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CHAPTER 1. GENERAL INTRODUCTION 
 
 

In this thesis, I present four essays that deal with several pressing, and diverse, issues 

in environmental economics. While all four essays are relevant to the problems of the 

environment that arise in the course of agricultural production, one essay also provides a 

contribution to the more general methodology of environmental economics. The issues dealt 

with by each essay are diverse, ranging from soil carbon sequestration, to a design of a 

pollution permit trading program, to proposing watershed-scale solutions to water quality 

problems, both on state and regional scale. However, a common thread connects all the 

essays: they all attempt to find a systematic way of dealing with ex ante uncertainty that is 

endemic in environmental policy. The term ex ante in this context does not refer to the timing 

of resolution of uncertainty, as that would be tautological, but rather to the timing of policy 

decisions relative to the possible resolution of uncertainty. It is helpful to categorize 

uncertainty that is present in policy decisions into two types: epistemic uncertainty, that is, 

uncertainty stemming from a lack of knowledge about the problem (e.g., scientific 

uncertainty); and aleatory uncertainty, associated with a truly random process. Each of the 

four essays provides an attempt to deal with one, or both types of uncertainty in making 

policy decisions. 

The first essay, titled “Environmental policy under benefit and cost uncertainty: 

application to soil carbon offsets,” deals with both types of uncertainty. In this essay, I 

address some aspects of uncertainty in soil carbon sequestration. Such uncertainty has been a 

widely stated reason for not including soil carbon sequestration in the portfolio of greenhouse 

gases reduction measures. On the benefit side, I use a biophysical simulation model to deal 
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with weather uncertainty (aleatory) and draw from farm surveys to deal with the uncertainty 

in the way farmers may undertake conservation tillage (epistemic). On the cost side, I use an 

econometric model of conservation tillage adoption to reduce the epistemic uncertainty 

regarding the potential costs of carbon sequestration. The second essay, titled “Optimal 

design of permit markets with an ex ante pollution target,” explores how a regulator should 

choose the parameters of a pollution permit trading market in the case that a pollution goal is 

expressed as a policymaker’s expectation and the abatement costs of firms are uncertain. 

Aleatory uncertainty in costs provides the motivation to the analysis presented in the paper. 

The case when the firms’ environmental impacts are differentiated, but the relative impact is 

uncertain, is also investigated.  

The third essay and fourth essays, titled, respectively, “Efficient reductions in local 

and state-level nonpoint source nutrient pollution: an application to the state of Iowa,” and 

“Searching for efficiency: least cost nonpoint source pollution control with multiple 

pollutants, practices, and targets,” deals with a kind of epistemic uncertainty a regulator faces 

when charged with finding a cost-efficient allocation of water pollution abatement activities 

in a watershed. This uncertainty stems from a complex, combinatorial nature of the 

optimization problem, even when the costs and water quality benefits of conservation 

practices are known. Without employing an optimization technique appropriate for such 

problems a regulator can be virtually sure that whatever allocation is chosen, it will not be 

cost-efficient. 

Next, I describe the essays present some of the findings. Subsequent chapters of the 

thesis contain the full essays. 
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The first chapter contains the essay titled “Environmental policy under benefit and 

cost uncertainty: application to soil carbon offsets”. In this work I aim to characterize an 

optimal spatial allocation of land parcels to specific environmental practices explicitly 

dealing with uncertainty in both the benefits and program costs. The empirical 

application focuses on a heavily agricultural Iowa watershed, and atmospheric carbon 

sequestered by agricultural soils is used as a measure of environmental benefit. 

Biophysical simulation models are used to evaluate the performance of parcel-level 

alternatives, as well as to generate a distribution of resulting environmental benefits. An 

econometric model of conservation practice adoption is used to generate a distribution of 

costs. The results provide a magnitude of uncertainty discount for soil carbon offsets and 

the margin of safety necessary in the budget to ensure at the planning stage that the 

program’s costs will not exceed the planned expenditures. The optimal mix between land 

retirement and conservation tillage depends on the size of the budget available. Overall, 

the magnitudes of the uncertainty discount for soil carbon suggest that soil carbon 

sequestration may be a viable option both for a regulator concerned with reducing 

greenhouse gas emissions and for an aggregator who considers consolidating land 

enrollment and selling carbon credits. 

The second chapter presents the essay “Optimal design of permit markets with an ex 

ante pollution target”. In this essay, the design of permit trading programs when the objective 

is to minimize the cost of achieving an ex ante pollution target; that is, one that is defined in 

expectation rather than an ex post deterministic value, is examined. I demonstrate that to 

minimize expected abatement costs regulators must use information on the joint distribution 

of firms’ abatement costs, as well as the pollution delivery coefficients. As a result, the 
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optimal trading ratio is a function of the delivery coefficient, as well as the moments of 

abatement costs, and the total permit allocation deviates from the pollution goal. These 

findings differ from a typical permit market design, where no cost information is needed to 

achieve cost-efficiency, the trading ratio is set to the ratio of pollution delivery coefficients, 

and the permit allocation exactly equals the pollution goal.  

The model is motivated by both positive and normative concerns. Real-world 

examples of pollution goals being set in terms of averages, or expectations, provide the 

motivation on the positive side. When pollution goals are set in this fashion, traditional 

permit market theory no longer can be relied upon to make claims of ex ante cost-efficiency.  

On the normative side, there may be pollutants, where the shape of the damage 

function makes meeting pollution goals on the average an appropriate policy focus. In those 

cases, the model builds flexibility in the permit market mechanism and allows for higher 

pollution when abatement costs are unexpectedly high, while tightening the pollution 

constraint when abatement costs turn out to be lower than expected.  

Information on firms’ abatement costs is important for the regulator to induce the 

optimal alignment between pollution level and abatement costs. 

The third and the fourth chapters of the thesis build a simulation-optimization 

modeling framework for the analysis of efficient nonpoint source pollution reduction 

strategies. These essays integrate modern multi-objective optimization tools with a realistic 

water quality model to provide decision-makers with sets of cost-efficient pollution reduction 

solutions. 

In the first application, in an essay titled “Efficient reductions in local and state-level 

nonpoint source nutrient pollution: an application to the state of Iowa,” I incorporate a water 
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quality model, SWAT, in conjunction with detailed information on conservation practices, 

into an evolutionary search algorithm to find allocations of conservation practices that 

minimize the costs of achieving given water quality targets for all the major watersheds in 

the state of Iowa, a state greatly affected by nonpoint source pollution. The set of 

conservation practices considered includes contour farming, terraces, conservation tillage, 

nitrogen fertilizer reductions, and land retirement. The resulting set of tradeoffs is used to 

generate watershed-level nonpoint source pollution abatement curve. Availability of nonpoint 

source pollution abatement cost curves makes solving for a cost-minimizing way of reducing 

state-level nutrient loadings straightforward. In particular, watershed-level loading reduction 

allocations for a variety of state-level nutrient reduction goals are found. I also explore how 

the cost-minimizing solution changes as a result of imposing local water quality constraints.  

Furthermore, watershed-level nutrient pollution reductions which minimize state-

wide costs are translated into a specific mix and distribution of conservation practices which 

achieve these water quality goals. For the range of nutrient loading reductions considered, 

grassed waterways (often implemented jointly with no-till and nitrogen fertilizer reductions) 

was the conservation practice selected most often. Terraces and targeted land retirement were 

also found to be a part of cost-minimizing solutions. 

Given that the version of the model used in the third essay is free to change the land 

use and a set of conservation practices on Iowa’s cropland (without being constrained by 

baseline land use and conservation practices), the results can be used to gauge the degree of 

inefficiency of the current set of water quality protection efforts. Indeed, the results do 

suggest that significant inefficiencies (and, therefore, a great potential for improvement) 

exist.  
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The final essay, titled “Searching for efficiency: least cost nonpoint source pollution 

control with multiple pollutants, practices, and targets,” also utilizes the integrated 

simulation-optimization modeling framework based on a multiobjective evolutionary 

optimization algorithm and a hydrologic model. In this chapter, I examine the policy 

implications for efficient control of nonpoint source pollution using a spatially explicit model 

of a large and critically important agricultural region: the Upper Mississippi River Basin in 

the central U.S. I derive the conservation production possibility frontier that explicitly 

incorporates the tradeoffs between pollution control costs and water quality benefits, between 

different pollutants, or between different control targets. To empirically estimate these 

tradeoffs, a modeling framework that (a) realistically incorporates the key attributes of NPS 

pollution and (b) is able to approximate the efficient solutions by optimally choosing the set 

of conservation practices for each spatial unit in the Basin was developed. The regional scale 

of the modeling framework facilitates the investigation of relevant policy analyses related to 

the growing “dead zone” in the Gulf of Mexico and the tradeoff between regional and local 

pollution reduction targets.  
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CHAPTER 2. ENVIRONMENTAL POLICY UNDER BENEFIT 
AND COST UNCERTAINTY: AN APPLICATION TO SOIL 

CARBON OFFSETS 

2.1. Introduction 
 

Intensively managed ecosystems present a challenging set of problems for 

policymakers, environmental scientists, and environmental economists. They also provide 

opportunities for providing the public with environmental benefits such as improved water 

quality, recreational services, and mitigation of greenhouse gas emissions. Often, the goal is 

to procure a particular level of such environmental benefits at least cost to society. An 

important complication is that both the benefits and costs are often uncertain. Furthermore, 

there are usually several competing options for providing environmental benefits. For 

example, each land parcel currently in agricultural production can be either retired from 

production altogether, or an environmentally-friendly production practice can be utilized. 

Under such conditions, an optimal policy of providing environmental benefits from 

intensively managed ecosystems must jointly consider both the multiple conservation options 

and the uncertain nature of benefits and costs.  

In this work I aim to characterize an optimal spatial allocation of land parcels to 

specific environmental practices explicitly dealing with uncertainty in both the benefits and 

program costs. Such a framework may be applicable to policy questions that extend beyond 

the problems of the environment (e.g., health, education, job training programs). For 

example, it may be applicable to a problem in education policy, where a regulator may need 

to find the maximum academic achievement level, so that, given the distribution of benefits 

and costs of alternative programs, 95 percent of all school districts achieve at least to that 
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level. Or, a jobs training program may have to be structured in such a way that, at the end of 

training, an employment target is achieved a high percentage of the time. 

 The empirical application focuses on a heavily agricultural Iowa watershed, and 

atmospheric carbon sequestered by agricultural soils is used as a measure of environmental 

benefit. Biophysical simulation models are used to evaluate the performance of parcel-level 

alternatives, as well as to generate a distribution of resulting environmental benefits. An 

econometric model of conservation practice adoption is used to generate a distribution of 

costs1.  

 

2.2. Methodology and Related Literature 
 

Uncertain quantities are often present in both the objective function and in the 

constraints in many optimization problems. Among the multitude of ways of dealing with 

uncertainty in a formal way, one approach has found extensive use in engineering, operations 

research, agricultural, health, and environmental economics. This is the chance-constrained 

programming approach first introduced by Charnes and Cooper (1959). As the name 

suggests, this method is applicable to cases when an uncertain quantity can be dealt with by 

imposing a probabilistic constraint of the form:  

(2.1) Pr( )X a η≤ ≥ , 
 
where X is a random variable, a specifies the threshold for X , and [0,1]η∈  specifies the 

reliability, or confidence, level with which X remains in the acceptable range.  The crux of 

the chance-constrained programming (CCP) approach is to convert probabilistic constraints 

                                                 
1 Use of simulation and an econometric model allows us to assign probabilities to different environmental and 
cost outcomes, thereby converting a situation of true Knightian uncertainty where probabilities of different 
outcomes are not known, into a situation involving “risk”. While the term “uncertainty” is used throughout the 
paper, from this point on, I refer to quantifiable uncertainty. 
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into their deterministic equivalents. Given that X has mean EX and variance ( )Var X , the 

above probability statement is rewritten as  

  

(2.2) Pr
( ) ( )

X EX a EX
Var X Var X

η
⎛ ⎞− −

≤ ≥⎜ ⎟⎜ ⎟
⎝ ⎠

,  

which in turn yields 

  
(2.3) 1( ) ( )EX a Var Xθ η−≤ − , 
 
a deterministic equivalent of the chance constraint expressed in terms of the mean, variance, 

and the standardized cumulative distribution of X , ( )xθ 2. The deterministic equivalent of 

the chance constraint can then be used as an object in the optimization program, and can 

usually be handled with standard optimization techniques.  

 The CCP method has found numerous applications in various fields of study over the 

years. Examples of its use in operations research include studies in capital budgeting by 

Keown and Taylor (1980) and by De, Acharya, and Sahu (1982). Keown and Taylor use 

chance constraints to allocate expenses between production lines to ensure that the 

probability of excess capacity in production of each of several products is low. De et al. 

extend this project selection problem to allow for random technological coefficients and for 

integer (that is, 0 or 1) project selection. Gurgur and Luxhoj (2003) analyze a budget 

rationing problem where, every year, the manager has to stay within budget with high 

probability, and the costs are not symmetrically distributed. In accounting, Hagigi, Kluger, 

and Shields (1990) consider a problem of a budget manager who gets penalized for both 

                                                 
2 In the case where the standardized distribution allows for computation of critical values, such values are used 
in the deterministic equivalents of probabilistic constraints. In cases where the distribution does not assume a 
convenient form, results such as Chebyschev’s inequality can be used to produce such statements, or an 
empirical distribution can be used.  
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over- and under-spending, and thus uses chance constraints to control the spending. In 

engineering, Kibzun and Kan (1996) consider a problem of minimizing the cost of building 

an aircraft landing strip subject to the constraint that a high share of all attempted landings is 

successful.  

 Various branches of economics literature have also utilized the CCP approach. In 

health economics, and in many problems dealt with by environmental economists, the task 

often is to find the maximum level of a non-monetized benefit subject to a budget constraint, 

or to find a cost-efficient way of reaching a particular target. In an influential paper on 

controlling environmental health risks, Lichtenberg and Zilberman (1988) analyze the 

problem of minimizing the total cost of meeting a health risk standard, subject to the 

condition that the frequency of the standard violation is low. The authors analyze a special 

case of a health agency minimizing the cost of regulating health risk, subject to the 

probabilistic constraint on the health risk determined by exposure, contamination level, and 

dose-response parameter (modeled to be outside of regulator’s control). The regulator has 

two options for controlling health risk, 1) regulating exposure to health hazards, or 2) 

regulating the contamination level. The authors derive the comparative statics results, 

providing the effects of stringency of health regulation and uncontrollable risk on minimum 

cost, as well as on optimal allocation of expenditure between the two options.  

One recent application in health economics, by Al, Feenstra, and van Hout (2005), 

considers first the problem where a task is to reach a maximum benefit subject to a 

probabilistic budget constraint (reflecting uncertainty about the costs of some health care 

options), and then the task of minimizing cost subject to achieving a health benefit a high 

percentage of times (reflecting uncertainty in health benefits). While the second problem is 
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essentially the problem considered by Lichtenberg and Zilberman, the authors do not utilize 

the previously obtained results. Further, the authors do not consider the possibility that 

benefits and costs may be simultaneously uncertain and this may have implications for the 

optimal solution. While an empirical example is provided, no real data is used; instead, 

fictitious health care programs are analyzed.  

A relevant work in the agricultural economics literature is by Paris and Easter (1985), 

who consider a model of Australian agriculture where producers face two primary sources of 

risk: production risk due to rainfall variability and price risk from international commodity 

markets. Producers are modeled as risk-averse toward price uncertainty, and the production 

risk is modeled through constructing a set of probabilistic input availability constraints, 

which subsequently are converted to their deterministic equivalents.  

Chance-constrained programming has found extensive use in the field of 

environmental economics, with most applications focusing on non-point-source pollution 

control. In one of the earlier studies, McSweeny and Shortle (1990) consider a risk-neutral 

farmer who faces a stochastic constraint on the amount of pollutant reduction. Three target 

reductions in nitrogen runoff were considered, (20, 40, and 60 percent), along with 

confidence (reliability) levels of achieving these reductions (50, 75, and 95 percent). 

Consistent with Lichtenberg and Zilberman’s analysis, increases in the reliability of 

stochastic runoff control increased the minimum costs of compliance. The magnitude of this 

effect in this study was enormous: increasing reliability level from 50 to 95 percent increased 

the cost of achieving a 40 percent runoff reduction sevenfold! Similar, if not quite so 

dramatic, results are obtained by Byström, Andersson, and Gren (2000), who also focus on 

nitrogen pollution reductions, and find that achieving a 30 percent reduction in nitrogen 
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levels is almost twice as costly when the target is to be reached with 90 percent certainty as 

opposed to 50 percent. Given that the distribution of the stochastic pollution quantity is 

symmetric, a 50 percent confidence required corresponds to the case when the deterministic 

equivalent of a chance constraint reduces to a deterministic constraint involving only the 

expected value. 

Eloffson (2003) also finds that when a 95 percent confidence in pollution reduction is 

required, the costs of compliance are 1.8 times higher than in the 50 percent confidence case. 

In this study, however, two pollutants are considered, nitrogen and phosphorus, and multiple 

abatement options are considered simultaneously. Kampas and White (2004) again focus on 

nitrogen as the only stochastic pollutant to be controlled. The regulator’s objective is to 

minimize the social costs of compliance with a pollution reduction standard expressed in 

probabilistic terms. The authors consider several options for reaching the standard, and 

explicitly model the administrative costs of each option. Unlike Eloffson, who considered 

multiple options simultaneously, Kampas and White consider the options one by one and 

rank them according to their relative efficiency in terms of achieving the probabilistically 

specified environmental goal at least cost. The confidence (reliability) level with which a 

standard is achieved is found to be important in ranking the policy options.  Again, as 

expected, the minimum costs of compliance rise with the confidence level.   

Notably absent from the literature are models that explicitly consider uncertainty in 

both the costs of policy options that yield some socially desirable benefit, and in the benefits 

themselves. All the studies above (with the exception of Al et al., who consider uncertainty in 

costs) focus on uncertainty in benefits, however they happen to be defined, and no study as of 
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yet analyzes both. A need for this type of analysis, along with explicit consideration of 

multiple options for achievement of desired results, provides the motivation for this paper.  

 

2.3. The Problem Considered 

In this chapter, I consider an optimal allocation of agricultural land parcels between 

two mutually exclusive environmentally friendly alternatives to achieve a maximum 

claimable environmental benefit, subject to a probabilistic budget constraint. The term 

claimable benefit refers to the benefit level that is achieved (or exceeded) by actual benefits 

resulting from a land allocation with a given probability.  

The costs of one of the alternatives are modeled as ex ante stochastic, while 

contributions of both alternatives to the benefit are also stochastic. The first alternative is 

retiring land from production altogether, and the second one is implementing an 

environmentally friendly production practice. Conservation Reserve Program (CRP) provides 

a real-world example of land retirement, while conservation tillage serves as an established 

example of working land conservation. The costs of land retirement are taken to be 

deterministic, while the costs of implementing conservation tillage are taken to be stochastic.  

Carbon sequestered in soil is the environmental benefit being considered. As 

agricultural soil carbon sequestration is believed to have potential to at least delay the global 

warming problem (Rosenberg and Izzauralde, 2001), it is likely that agricultural carbon 

offsets should be utilized in some way as part of the solution. However, uncertainty is 

inherent in the process of carbon sequestration in agricultural soils, and its presence has been 

one of the obstacles for including agricultural carbon sinks in international agreements on 

climate change, such as the Kyoto Protocol (see, e.g. Marland, McCarl, and Schneider, 2001; 
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Butt and McCarl, 2003)), or in the recent greenhouse gas reduction initiative adopted by the 

State of California.  Policymakers insist on greater “certainty” for soil carbon offsets. For 

example, in 1998, the government of Canada proposed that agricultural carbon can be used 

for carbon credits only if there is a 95 percent certainty in the amount sequestered. Such 

preferences can be modeled using chance-constrained formulations. 

In a recent paper, Kurkalova (2005) investigates discounting of carbon offsets to 

account for benefit uncertainty. The author models an aggregator, or broker, who purchases 

carbon offsets from farmers in the form of offering payment for retiring land from 

production. The aggregator then uses the acquired carbon offsets to generate claimable 

carbon credits that can be traded in an open carbon market. In order to make the offsets 

claimable, some extra carbon offsets have to be purchased to create a “safety margin”. With 

claimability constraints, total expected carbon sequestered from a watershed in Iowa must be 

discounted 2.5 percent to 4.7 percent. Also, from 3.4 percent to 6.9 percent of the 

aggregator’s expenditure on purchasing carbon offsets goes to create a “safety margin” and 

pays for ensuring the claimability of purchased offsets. These findings are consistent with 

earlier results, where uncertainty in benefits increased the minimum cost of achieving benefit 

targets.  

Feng, Kurkalova, Kling, and Gassman (2006) analyze the two options for providing 

carbon benefits, land retirement, and working land conservation in a fully deterministic 

setting. The authors compare the benefit-to-cost ratio for each land parcel, and pick the 

option with the highest ratio. Although this “critical ratios” approach is both historically 

popular (Weinstein and Zeckhauser, 1973; Babcock, Lakshminarayan, Wu, and Zilberman, 

1996, 1997), and easy to implement in practice, when more than one option is available at a 
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parcel level, it is second-best. While the authors recognize this fact, they, based on this 

algorithm, recommend that a high share of land in Iowa be allocated to working land 

conservation. The results of Feng et al. provide a useful benchmark for comparison purposes, 

as well as a “sanity check”.  

The next section develops the analytical framework for analyzing the problem at 

hand.  

 

2.4. The Conceptual Model 

2.4.1. Statement of the Problem 

In circumstances where the benefits are uncertain and a given level of performance 

has to be achieved in probabilistic terms, it is convenient to specify the objective function 

implicitly. In particular, I model a decision-maker (regulator, or an aggregator, in sense of 

Kurkalova (2005)), who seeks to maximize B , a claimable level of benefit obtainable from a 

region, defined by a probabilistic constraint: 

  
  

(2.4) 
1

Pr ( )
N

wl wl lr lr
i i i i

i
b b Bδ δ η

=

⎛ ⎞
+ ≥ =⎜ ⎟

⎝ ⎠
∑  

 
 
 
subject to the budget constraint 

  

(2.5) 
1

Pr ( )
N

wl wl lr lr
i i i i

i
c c Mδ δ α

=

⎛ ⎞
+ ≤ ≥⎜ ⎟

⎝ ⎠
∑  
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where 1, ,i N= …  indexes the decision-making unit in the region (a land parcel), wl
iδ  is a 

share of parcel i allocated to the working land conservation option,  lr
iδ is a share allocated to 

land retirement option, j
ib refers to the per-parcel benefit from option j , j=lr,wl, and 

[0,1]η∈  specifies the confidence level with which an a particular benefit level is deemed 

claimable. For example, if Canada’s 1998 recommendation of accepting carbon credits only 

if there is a 95 percent chance that the claimed level would actually be sequestered were 

adopted, η  would be set to 0.95. Similar provisions, if institutionalized through international 

agreements or as a part of a design of a carbon offsets trading program may give rise to the 

formulation adopted here.  

On the cost side, ~wl wl
wlc f(μ ,Ω )  is a 1N ×  random vector of per-parcel costs of 

working land conservation with mean wlμ  and variance-covariance wlΩ , lrc  is a 1N ×  vector 

of non-stochastic per-parcel costs of land retirement, M is the available conservation budget, 

and [0,1]α ∈  is the minimum acceptable probability of the entire program staying within the 

available budget. I model the costs of working land conservation as random because ex ante, 

in the design stage of the program, the decision-maker is uncertain what the actual adoption 

subsidies will turn out to be. On the other hand, it is more realistic to expect that costs of land 

retirement are known with a greater degree of certainty.  

There are several reasons why a decision-maker may be concerned with staying 

within the allotted budget. If one thinks of an aggregator, she will profit from a sale of 

claimable carbon offsets from agricultural land if the revenues exceed the costs. While 

modeling the aggregator’s beliefs about the distribution of a carbon offset price is outside the 

scope of this paper, an aggregator may wish to control the distribution of costs ex ante. There 
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may also be reasons for this kind of behavior on the part of a regulator. Some of these 

reasons may be administrative in nature, as when penalties exist for budget violations.  The 

regulator may then want to solve this kind of problem in order to be reasonably sure that the 

maximum amount of environmental benefit is obtained from a particular area and that the 

program is going to stay within its budget. One can also imagine a situation where the 

regulator, perhaps motivated by environmental concerns, wishes to preserve a particular land 

allocation for a lengthy period into the future (as one expects the case to be for carbon 

sequestration). However, the regulator may be allotted a budget only yearly and can only 

draw up annual contracts, and the program itself may be in jeopardy should the budget be 

exceeded. Under these circumstances it is warranted for the regulator to treat the costs as 

draws from a distribution in order to find a land allocation that could be sustained in the 

future.  

In general, the probabilistic constraint on the program cost can be interpreted as 

describing scenarios where conservation contracts have to be drawn up ex ante, while the 

program payments are made ex post, once the true costs of adoption become known.  

 

2.4.2. Reformulation of the Problem 
 

The next step is to reformulate the problem from one involving probability statements 

to one employing deterministic equivalents, in which case the problem becomes amenable to 

standard techniques of mathematical programming. 

 First, rewrite the claimable benefit constraint to obtain its deterministic equivalent. It 

is convenient at this point to switch to vector and matrix notation in benefits as well. Denote 

a 2 1N × vectorδ to be the allocation vector: 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

lr

wl

δ
δ

δ
.  Stack the per-parcel benefits from 
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land retirement and working land options into a 2 1N ×  vector of random variables b , where 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

lr

wl

b
b

b
. Let b follow a multivariate distribution bF with mean vector β and variance-

covariance matrix Σ . The 2 2N N× matrix Σ describes all the inter-parcel and inter-option 

covariances.  

Using above notation, one can rewrite the probabilistic benefit constraint as a 

deterministic function of the mean, variance, and the standardized distribution of benefits, b̂F  

: 

(2.6) 

( )
( ) ( )

( ) ( )

1/ 2 1/ 2

1/ 2 1/ 2

Pr Pr

ˆPr 1 b

BB

B Bz F η

⎛ ⎞′ ′ ′− −′ ≥ = ≥⎜ ⎟⎜ ⎟′ ′⎝ ⎠
⎛ ⎞ ⎛ ⎞′ ′− −

= ≥ = − ≥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠

δ b δ β δ βδ b
δ Σδ δ Σδ

δ β δ β
δ Σδ δ Σδ

 

 
Which further implies that the maximum claimable benefit, B , can be written as: 
 
(2.7) ( )1/ 21ˆ (1 )bB F η−′ ′= + −δ β δ Σδ  
 

The maximum claimable benefit is therefore a function of the mean obtainable 

benefit, its standard deviation, and the confidence level required to make the benefit 

claimable.  

If I further assume that the vector of benefits follows a multivariate normal 

distribution: ~ ( , )MVNb β Σ , the expression above can be simpliefied, making use of the 

symmetry of the standard normal probability density function. The expression for maximum 

claimable benefit becomes:  

  
(2.8) ( )1/ 21( )B η−′ ′= −Φ ⋅δ β δ Σδ  
 



 

 
 

19

 

where ( )Φ i is the cumulative density function of a standard normal random variable. 

Letting 1( )zη η−= Φ , one can interpret this scalar as a weight placed on risk associated with a 

particular parcel allocation δ , where the standard deviation of the resulting benefit serves as 

a measure of risk. Furthermore, the higher theη , the higher the zη , and, for a given level of 

expected benefit, ′δ β , the smaller the claimable benefit B.   

 Next I turn to the budget constraint. Given that the total cost of working land 

conservation, ′wl wlδ c , has mean ′wl wlδ μ  and variance ′wl wl
wlδ Ω δ , one can rewrite the 

probabilistic cost constraint the following way:  

  

(2.9) 

( ) ( ) ( )

( )

1/ 2 1/ 2

1/ 2

Pr Pr MM

Mθ α

⎛ ⎞
′ ′ ′ ′⎜ ⎟− − −′ ′≤ − = ≤⎜ ⎟
′ ′⎜ ⎟

⎝ ⎠
⎛ ⎞

′ ′⎜ ⎟− −
= ≥⎜ ⎟

′⎜ ⎟
⎝ ⎠

wl wl wl wl lr lr wl wl
wl wl lr lr

wl wl wl wl
wl wl

lr lr wl wl

wl wl
wl

δ c δ μ δ c δ μδ c δ c
δ Ω δ δ Ω δ

δ c δ μ

δ Ω δ

 

 
where ( )θ i  is the standardized distribution of total working land conservation costs. The 

deterministic equivalent of the probabilistic budget constraint becomes:  

(2.10) ( )1/ 2
1( ) Mθ α−′ ′ ′+ + ≤wl wl lr lr wl wl

wlδ μ δ c δ Ω δ . 

Given that 0′ ≥wl wl
wlδ Ω δ  and α  is high enough so that 1( ) 0θ α− ≥ , uncertainty in costs acts 

to decrease the effective size of the conservation budget. In other words, conservation funds 

have to be allocated so as to create a “margin of safety” in an attempt to prevent budget 

constraint violations.  
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 The conversion of probabilistic, or chance, constraints into their deterministic 

equivalents allows a formulation of the problem in terms of maximizing a deterministic 

function subject to a deterministic constraint, and subsequent derivation of the necessary first 

order conditions and characterizing the properties of the optimal solution. Two issues may 

complicate the matters. The first issue to address is the concavity of the objective function. 

The second is the convexity of the constraint. Beavis and Walker (1983) analyze a case 

where the feasible set defined by the deterministic equivalents of chance constraints is non-

convex. In this case, the appropriate Kuhn-Tucker necessary conditions are not also 

sufficient, and the global maximizers may lie elsewhere. Thus, before proceeding to 

characterize the optimal solution, curvature issues need to be addressed.  

 First, to show that the objective function is concave, one only needs to show that 

( )1/ 2′δ Σδ is convex. As a variance-covariance matrix, Σ is positive semi-definite. Following 

Paris and Easter (1985), in this case one can show that ( )1/ 2′δ Σδ  is convex. Since this result 

is an important one in the analysis of the problem, it is replicated in the Appendix to this 

chapter. 

Proposition 1 (Paris and Easter, 1985). If Ω  is a positive semi-definite matrix, the function 

( )′ 1/2xΩx is convex.  

Proof. (in the Appendix). The objective function being maximized therefore possesses the 

desired curvature property of being concave. 

 Second, if one can show that the deterministic equivalent of the budget constraint is 

convex, then it is assured that the Kuhn-Tucker necessary conditions are sufficient to define 

the unique global maximizer (Takayama, 1993).  
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Proposition 2. The left-hand side of the deterministic equivalent of a budget constraint, 

( )1/ 2
1( ) Mθ α−′ ′ ′+ + ≤wl wl lr lr wl wl

wlδ μ δ c δ Ω δ , is a convex function. 

Proof. The linear terms drop out, and assuming that α  is set high enough so that 1( ) 0θ α− > , 

what remains to be demonstrated is that ( )1/ 2
′wl wl

wlδ Ω δ is a convex function, which was 

demonstrated above.  

 The problem can now be restated in terms of the associated Lagrangean function and 

the Kuhn-Tucker conditions, which, under the curvature conditions outlined above, are 

necessary and sufficient for a unique optimal land parcel allocation vector, can now be 

presented. The Lagrangean is: 

  

(2.11) 
( )

( )
1/ 2

1/ 2
[ ] [ ]

L z

M z

η

αλ

′ ′= −

′ ′ ′ ′+ − − − +wl wl wl wl lr lr lr wl
wl

δ β δ Σδ

δ Ω δ δ μ δ c υ 1 - δ - δ
 

 
Here, 1( ) 0zη η−= Φ ≥ and 1( ) 0zα θ α−= ≥ , and υ  is a 1N × vector of constraints representing 

the fact that the sum of shares of each land parcel allocated either to a working land or a land 

retirement option cannot exceed one. The structure of the problem lends itself to a 

discounting interpretation (Kurkalova, 2005): the total benefit in the objective function is 

discounted by ( )1/ 2 0zη ′ ≥δ Σδ , and the magnitude of this discount rises with the stringency 

level η , as well as the total variance of the resulting carbon sequestration benefit, ′δ Σδ .  

 It is perhaps useful to note here that the present formulation of the problem does not 

allow the decision-maker any recourse in case either the benefit or the budget constraint is 

violated. Stochastic programming with recourse is one methodology that has been developed 

to deal with situations where recourse is possible. However, in the present setting, making an 
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assumption of no recourse seems to be justified as a decision-maker is unlikely to have an 

option of direct and prompt intervention for adjusting the optimal conservation option shares 

at a potentially very large set of land parcels. Further, the above specification is appropriate 

for analyzing large-scale policy decisions (Paris and Easter, 1985).  

 The following  Kuhn-Tucker conditions are necessary and sufficient for the optimal 

solution to the policymaker’s problem. All the decision variables are taken at their optimal 

level, and not distinguished from their generic counterparts to reduce  

notational clutter.  
 

The marginal condition with respect to the working land shares vector: 

  

(2.12) ( )1/ 2
1/ 2[ ( ) ]L z zη αλ

′∂∂ ′= − − + − ≤
∂ ∂

wl wl wl wl wl
wl wlwl wl

δ Σδ
β Ω δ δ Ω δ μ υ 0

δ δ
, ≥wlδ 0  

  
along with its complementary slackness condition: 
 
  

(2.13) ( )1/ 2
1/ 2[ ( ) ]z zη αλ

⎡ ⎤′∂ ′− − + − =⎢ ⎥
∂⎢ ⎥⎣ ⎦

wl wl wl wl wl wl
wl wlwl

δ Σδ
δ β Ω δ δ Ω δ μ υ 0

δ
. 

 
The marginal condition with respect to the land retirement shares vector is: 
 

(2.14) ( )1/ 2
L zη λ

′∂∂
= − − − ≤

∂ ∂
lr lr

lr lr

δ Σδ
β c υ 0

δ δ
, ≥lrδ 0 ,  

 
along with the associated complementary slackness condition: 
 

(2.15) ( )1/ 2

zη λ
⎡ ⎤′∂

− − − =⎢ ⎥
∂⎢ ⎥⎣ ⎦

lr lr lr
lr

δ Σδ
δ β c υ 0

δ
 

 
 
The marginal conditions state that, if a parcel is to be allocated to a particular conservation 

option, the marginal benefit of this decision, when adjusted for uncertainty in benefits, must 
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be at least as large as the marginal cost of that decision, adjusted for the uncertainty in costs. 

Otherwise, using the complementary slackness condition, the option should not be used. It is 

interesting to note that while the total benefit obtained from a region is discounted by a non-

negative quantity ( )1/ 2 0zη ′ ≥δ Σδ , per-parcel marginal benefit is adjusted by 

( )1/ 2

zη
′∂
∂ j

δ Σδ
δ

, j = wl, lr , which can be either positive or negative, depending on variances 

and covariances of per-parcel benefits in the entire region.  

The marginal condition with respect to the dual variables, and their associated 

complementary slackness conditions are:  

  

(2.16) 1/ 2( ) 0L M zαλ
∂ ′ ′ ′= − − − ≥
∂

wl wl wl wl lr lr
wlδ Ω δ δ μ δ c , 0λ ≥  

  

(2.17) 1/ 2( ) 0M zαλ ⎡ ⎤′ ′ ′− − − =
⎣ ⎦

wl wl wl wl lr lr
wlδ Ω δ δ μ δ c , and 

  

(2.18) L∂
= ≥

∂
lr wl1 - δ - δ 0

υ
, ≥υ 0  

  

(2.19) ⎡ ⎤⎣ ⎦
lr wlυ 1 - δ - δ = 0 . 

 

Examining the first order conditions, it becomes clear that the optimal allocation 

involves comparing modified benefit-to-cost ratios. In general, the rule becomes: at the 

optimum, one needs to compare the ratios of uncertainty-adjusted benefits to uncertainty-

adjusted costs. However, the magnitude of the uncertainty adjustment is a function of the 

optimal solution. It then is clear that once uncertainty in benefits and costs is explicitly 
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considered, no simple heuristic algorithm exists for allocating land parcels to conservation 

options, and the optimal parcel share is a function of all the parameters that characterize the 

distribution of benefits and costs in the entire policy region.  

It is thus difficult to make comparative static prediction for a general case of 

N parcels. However, a consideration of a special 2N = case may illuminate the effects of 

uncertainty on the optimal allocation, as well as provide additional intuition on the properties 

of the solution.3 

 

2.4.3. Special Case and Comparative Statics 

For simplicity, assume that both parcels are used completely for working land 

conservation and land retirement, that is, 1
i i

wl lr
iδ δ δ= = −  , i=1,2. This, of course, 

presupposes that the budget is sufficient to convert both parcels to environmentally friendly 

practices. While in general this will not be the case, the simplification allows us to focus on 

the relevant parameters describing uncertainty instead of on the effect of the marginal benefit 

of available budget, or of the scarcity of land. Using the same notation as in the general case, 

the Lagrangean function becomes:  

  

(2.20) 
1 1 1 1 2 2 2 2 1 2

1 1 2 2 1 1 2 2 1 2

(1 ) (1 ) ( , )

(1 ) (1 ) ( , )

wl lr wl lr

wl wl lr lr

L z

M c c z
η

α

δ β δ β δ β δ β σ δ δ

λ δ μ δ μ δ δ ω δ δ

= + − + + − −

⎡ ⎤+ − − − − − − −⎣ ⎦
 

 
  
The Kuhn-Tucker conditions are: 

                                                 
3 Results below only apply to the complete conversion of all land, i.e., each parcel is fully in LR and WL. 
Furthermore, land constraints are no longer needed as they become degenerate. This is done in order to keep the 
comparative statics analysis tractable by focusing on 3 variables.  
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(2.21) 1 2 1 2
1 1 1 1

1 1 1

( , ) ( , ) 0wl lr wl lrL z c zη α
σ δ δ ω δ δβ β λ μ

δ δ δ
⎡ ⎤∂ ∂ ∂

= − − − − + ≤⎢ ⎥∂ ∂ ∂⎣ ⎦
, 1 0δ ≥ ,  

 
plus the corresponding complementary slackness condition, and 
 

(2.22) 1 2 1 2
2 2 2 2

2 2 2

( , ) ( , ) 0wl lr wl lrL z c zη α
σ δ δ ω δ δβ β λ μ

δ δ δ
⎡ ⎤∂ ∂ ∂

= − − − − + ≤⎢ ⎥∂ ∂ ∂⎣ ⎦
, 2 0δ ≥ ,  

 
plus the corresponding complementary slackness condition, and 
 
 

(2.23) 0L
λ
∂

≥
∂

, 0λ ≥ , 0Lλ
λ
∂

=
∂

 

 
  
First thing to note is that, for an interior solution to be optimal at both parcels, the following 

needs to hold:  

(2.24) 

1 2 1 2
1 1 2 2

1 2

1 2 1 2
1 1 2 2

1 2

( , ) ( , )

( , ) ( , )

wl lr wl lr

wl lr wl lr

z z

c z c z

η η

α α

σ δ δ σ δ δβ β β β
δ δ

ω δ δ ω δ δμ μ
δ δ

∂ ∂− − − −
∂ ∂=

∂ ∂− + − +
∂ ∂

, 

 
which states that the ratio of marginal benefit to marginal cost of working land conservation, 

adjusted for benefit uncertainty and cost uncertainty, is equalized across the two parcels.   

 The second observation that can be made is that, when more than one conservation 

option is present, and the land is to be allocated between the two alternatives, the rule of per-

parcel decision-making that recommends picking the option with the highest benefit-to-cost 

ratio (Babcock et al., 1996, Feng et al., 2006) is no longer optimal, as the optimal decision is 

made based on ratios of extra benefits to extra costs. 

 The next step in analyzing the properties of the solution is to derive a series of 

comparative statics results that also may extend to the general case. In particular, the effects 



 

 
 

26

of parameters that describe the uncertainty in benefits and costs are of interest. In this most 

simple case, these parameters are: 

1. 2
1,wlσ  -- variance of working land option benefit at parcel 1. 

2. 2
2,wlσ  -- variance of working land option benefit at parcel 2. 

3. 2
1,lrσ  -- variance of land retirement option benefit at parcel 1. 

4. 2
2,lrσ -- variance of land retirement option benefit at parcel 2. 

5. ( )1 1cov ,wl lrb b  -- within-parcel, across-option covariance at parcel 1. 

6. ( )1 2cov ,wl wlb b  -- across-parcel, within-option covariance in working land benefits. 

7. ( )1 2cov ,wl lrb b  -- across-parcel, across-option covariance in benefits. 

8. ( )1 2cov ,lr wlb b -- across-parcel, across-option covariance in benefits. 

9. ( )1 2cov ,lr lrb b  -- across-parcel, within-option covariance in land retirement benefits. 

10. 2
1ω  -- variance of working land option cost at parcel 1. 

11. 2
2ω  -- variance of working land option cost at parcel 2.  

12. ( )1 2cov ,wl wlc c  -- covariance of working land option costs at parcels 1 and 2.  

For simplicity, the effects of the above parameters will be assessed according to their 

influence on 1δ  -- the optimal share of parcel 1 allocated to a working land option.  

Assuming an interior solution, the Kuhn-Tucker conditions above can be represented by: 

  
(2.25) 1 * * *

1 2 1( , , , , , ) 0mf δ δ λ α α =…  
 
(2.26) 2 * * *

1 2 1( , , , , , ) 0mf δ δ λ α α =…  
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(2.27) 3 * * *
1 2 1( , , , , , ) 0mf δ δ λ α α =… , 

 
 
where jf , 1, 2,3j =  represent the first derivatives of the Lagrangean function with respect to 

1 2, ,δ δ λ , respectively, evaluated at the interior optimum, and kα , 1, ,12k = … represent the 

parameters governing uncertainty as outlined above. Then, differentiating with respect to any 

jα , and presuming that differentiable functions 1 1 1( ,..., )mδ δ α α= , 2 2 1( ,..., )mδ δ α α= , and 

1( ,..., )mλ λ α α= exist, obtain: 

  

(2.28) 

11 1 1
1 2 3 1
2 2 2 2

1 2 3 2
3 3 3 3

1 2 3

j

j

j

j

j

j

ff f f
f f f f
f f f f

α

α

α

δ α
δ α
λ α

⎡ ⎤−⎡ ⎤ ⎡ ⎤∂ ∂ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ −⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 
where  
 
(2.29) 

2 2 2 2

1 12 2
1 1 1 2 1 2 1 1 1 1

1 2 32 2 2 2
1 2

2 2 2 22 2
1 2 1 2 2 2 2

1 1 2 2
1 2

0

lr wl

lr wl

lr wl lr wl

z z z z c z
f f f

F z z z z c z f f f

c z c z

η α η α α

η α η α α

α α

σ ω σ ω ωλ λ μ
δ δ δ δ δ δ δ

σ ω σ ω ωλ λ μ
δ δ δ δ δ δ δ

ω ωμ μ
δ δ

⎡ ⎤∂ ∂ ∂ ∂ ∂
− − − − − −⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂ ∂ ∂
= − − − − − − =⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂

− − − −⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

2
3

1 2
3 3 0f f

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
is the Hessian matrix, and by the second-order conditions for the maximum, | | 0F > .  

Furthermore, 1 2
3 3, 0f f > as long as the effective cost of working land option, wl

i
i

zα
ωμ
δ
∂

+
∂

, is 

less than the effective cost of the land retirement option, lr
ic .4  

Evaluation of individual comparative statics effects is done using Cramer’s rule: 
                                                 
4 A weaker assumption, namely, 1 2

3 3sgn[ ] sgn[ ]f f= , is sufficient for the subsequent comparative statics 
results to hold. In the absence of such an assumption, comparative static results (1), (3), and (7) still hold.  
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(2.30) 11 j

j

F
F

δ
α
∂

=
∂

,  

where 1 jF  is obtained by replacing the first column of F with 

1

2

3

j

j

j

f

f

f

α

α

α

⎡ ⎤−
⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥⎣ ⎦

. Since the determinant 

of the Hessian matrix is positive, 1
1sgn sgn j

j

Fδ
α

⎡ ⎤∂
=⎢ ⎥

∂⎢ ⎥⎣ ⎦
.  

 The following comparative statics results emerge: 

1. 1
2
1,

0
wl

δ
σ
∂

<
∂

. An increase in the variance of working land benefit at parcel 1 acts to 

decrease the optimal share of parcel 1 allocated to the working land option. Indeed, 

evaluating the derivatives of the first-order conditions with respect to 2
1,wlσ , obtain 

2
1 1

2
1 1,

0
wl

f zα η
δσ

δ σ σ
∂

− = = >
∂ ∂

, 2 0fα− = , 3 0fα− = , and ( )2 21
11 30 ( ) 0F fδ

σ
= − < . This is 

intuitive and is also likely to hold for a general case. Then, at a parcel level, if working land 

conservation practice yields carbon benefits with greater degree of uncertainty, the share of 

land allocated to that option should decline. 

2. 1
2
2,

0
wl

δ
σ
∂

>
∂

. An increase in the variance of working land benefit at parcel 2 acts to increase 

the optimal share of parcel 1 allocated to the working land option.  1 0fα− = , 

2
2 2

2
2 2,

0
wl

f zα η
δσ

δ σ σ
∂

− = = >
∂ ∂

, 3 0fα− = , and ( )1 21
12 3 30 0F f fδ

σ
= − − > . Again, this is 

intuitive, and is likely to hold in the general case, as one would expect the policymaker to 
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switch from parcel with high variability of working land benefits to ones that have a 

relatively lower working land benefit variability.  

3. 1
2
1,

0
lr

δ
σ
∂

>
∂

. An increase in the variability of land retirement option benefit in parcel 1 acts 

to increase the optimal share of parcel 1 allocated to the working land option. 

1 1(1 )fα
δ

σ
− −

− = , 2 0fα− = , 3 0fα− = , and ( )2 21
13 3

(1 ) 0 ( ) 0F fδ
σ
−

= − − > . As one would 

expect, when within a parcel, one particular option becomes “more risky”, it is optimal to 

shift to the alternative.  

4. 1
2
2,

0
lr

δ
σ
∂

<
∂

. An increase in the variability of land retirement option benefit in parcel 2 acts 

to decrease the optimal share of parcel 1 allocated to the working land option. 1 0fα− = , 

2
2 2

2
2 2,

(1 ) 0
lr

f zα η
δσ

δ σ σ
− −∂

− = = <
∂ ∂

, 3 0fα− = , and ( )1 22
14 3 3

(1 ) 0 0F f fδ
σ
−

= − < . This is 

intuitive: as these results presume complete conversion of a land parcel either to land 

retirement or the working land option, this result implies that the share of parcel 1 allocated 

to land retirement will rise. This can be viewed as a substitution effect, as land retirement in 

parcel 2 becomes more risky.  

5. The effects of within-parcel ( ( )1 1cov ,wl lrb b ) and within-option ( ( )1 2cov ,wl wlb b , 

( )1 2cov ,lr lrb b ) covariances are ambiguous. The comparative statics results indicate that the 

sign of the effect depends on the initial optimal allocation share.  

6. 1

1 2

0
cov( , )wl lrb b

δ∂
<

∂
. An increase in across-parcel, across-option covariance of parcel 1 

working land benefits with parcel 2 land retirement benefits results in a decrease in the 
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optimal share of parcel 1 devoted to the working land option. 1 21 0fα
δ
σ
−

− = > , 

2 1 0fα
δ
σ
−

− = < , 3 0fα− = , and 2 2 12 1
15 3 3 3

(1 ) 0F f f fδ δ
σ σ
−⎛ ⎞= − + <⎜ ⎟

⎝ ⎠
.  

7. 1

1 2

0
cov( , )lr wlb b

δ∂
>

∂
. An increase in across-parcel, across-option covariance of parcel 1  

land retirement  benefits with parcel 2 working land benefits results in an increase in the 

optimal share of parcel 1 devoted to the working land option. 1 2 0fα
δ
σ
−

− = < , 

2 11 0fα
δ

σ
−

− = > , 3 0fα− = , and 2 2 12 1
16 3 3 3

1 0F f f fδ δ
σ σ
− −⎛ ⎞= − − >⎜ ⎟

⎝ ⎠
.  

 The following interpretation may be given for results 6 and 7. At this point it is 

helpful to establish that 2

1 2

0
cov( , )wl lrb b

δ∂
>

∂
 and 2

1 2

0
cov( , )lr wlb b

δ∂
<

∂
. While it is difficult to 

provide an intuitive explanation for individual effects in (6) and (7), they appear more logical 

when considered jointly with the simultaneous adjustment of working land share occurring at 

parcel 2. In particular, the effects of the covariances have opposite directions: whenever more 

is spent on working land conservation at parcel 1, less is spent at parcel 2. Given that 

working land costs are positively correlated across parcels, this behavior is consistent with 

the policymaker’s desire to not increase the probability of budget constraint violation as the 

“portfolio” of land parcels is adjusted.  

8. Finally, the somewhat surprising result is that the effects of 2
1ω , 2

2ω , and ( )1 2cov ,wl wlc c  are 

all ambiguous.5 

                                                 
5 For example, the sign of the effect of 2

1ω is: 
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In particular, this suggests that one cannot outright claim that the increase in the variance of 

working land conservation costs at parcel 1 is necessarily going to decrease the share of 

parcel 1 allotted to working land option. The relative magnitudes of benefit and cost 

variances and covariances determine the direction of this effect. 

 

2.4.4. Safety First 

The probabilistic approach to benefits and program costs adopted in this paper is 

motivated by some evidence that policymakers actually attempt to make environmental and 

budget decisions in a similar way. A natural counterpart to such behavior as it relates to 

investments in risky assets is called “safety first”. The “safety first” models focus on 

investors who specify their criteria for portfolio returns in probabilistic terms. Elton, Gruber, 

Brown, and Goetzmann (2003) specify three types of safety first criteria and denote them as: 

(1) Roy’s (1952) criterion, (2) Kataoka’s (1963) criterion, and (3) Telser’s (1955) criterion. 

The first two types of the safety first criteria are directly related to the behavior of a decision-

maker analyzed in this paper. Investors following Roy’s criterion minimize the probability 

that the portfolio return falls below some pre-specified critical level. The investors using 

Kataoka’s criterion maximize the lowest level of portfolio return subject to the constraint that 

                                                                                                                                                       
2 2
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Thus, one needs: 1 2 2 1
2 3 2 3 0f f f f− < for the variance of working land cost to have a negative effect.  
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the probability of actual portfolio return falling below this level is not greater than some 

predetermined value.  

 Viewed in the light of safety first terminology, the decision-maker maximizing the 

claimable benefit subject to a given level of probability of staying within an allotted budget is 

utilizing Kataoka’s criterion with respect to environmental benefits, and is facing a Roy’s-

type budget constraint. 

 

2.4.5. Efficiency of Solutions 
 

In addition, realizing the connection that exists between our model and the portfolio 

choice theory, one can show that the allocations chosen by the decision-maker analyzed in 

this paper are efficient in the sense of Markowitz, that is, the allocations belong to the 

efficient mean-variance frontier. Then, the following propositions hold: 

Proposition 3: For every stringency level in claimability of benefits, η , the optimal 

allocation δwhich solves (2.11) lies on the efficient frontier in the mean-standard deviation 

space of environmental benefits. That is, one cannot find alternative allocations that either 

provide a higher mean benefit for the same level of benefit variance, or lead to lower benefit 

variance for the same level of mean benefit, or do both.  

Proof.  By definition, the optimal allocation maximizes ( )1/ 2B zη′ ′= − ⋅δ β δ Σδ . Clearly, no 

feasible alternative solution can increase the mean without increasing the variance, decrease 

the variance without decreasing the mean, or do both, as that would contradict the optimality 

ofδ . A similar proposition holds on the cost side: 

Proposition 4. For every budget level which results in a binding budget constraint and for 

every pre-specified probability of staying within the budget α , the optimal allocation 
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δwhich solves (2.11) lies on the efficient frontier in the mean-standard deviation space of 

costs. That is, one cannot find alternative allocations that either provide a lower mean cost 

for the same level of cost variance, or lead to lower cost variance for the same level of mean 

costs, or do both.  

Proof. Since the budget constraint is binding, it can be rewritten in the following form:  

 ( )1/ 2
1( )M θ α−′ ′ ′+ = −wl wl lr lr wl wl

wlδ μ δ c δ Ω δ . Clearly, given this relationship, it is impossible 

to decrease the left-hand side of the equality (mean costs) without decreasing the right-hand 

side through an increase in variance of costs. Conversely, decreasing the variance of costs is 

only possible via an increase in mean costs.  

 

2.4.6. Risk Aversion and the Confidencel Level for Claimability of 
Benefits 

 
 The previous section establishes that for any given level of probabilities in the 

claimable benefit and the budget constraint expressions, one can be assured that the optimal 

solution is mean-variance efficient. Decision-makers, who value benefits, dislike costs, and 

exhibit aversion to risk both in regards to benefits and to costs will find their optimal 

allocations on the mean-variance frontier. However, is there a more precise way to relate 

aversion to risk and the probabilities that the decision-maker uses in finding optimal 

allocations? This section attempts to clarify this connection. 

As can be noted from the statement of the general problem, the higher the η , the 

probability with which a particular benefit level has to be achieved in order to be considered 

claimable, the higher the weight the decision-maker puts on uncertainty regarding the 

benefits. One way to connect risk aversion and the confidence level in claimability of 
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benefits is to think about the decision-maker who has preferences over the quantity of 

benefits that can be described in terms of a constant absolute risk-aversion (CARA) utility 

function. An agent having such preferences would be placing the greater weight on the 

variance of benefits, the greater the coefficient of absolute risk-aversion, just like the 

decision-maker considered here places a greater weight on the standard deviation of obtained 

benefits, the greater the confidence level with which the benefits are claimable, η . Paris 

(1979) derived an explicit relationship between the coefficient of absolute risk aversion and 

the stringency, or confidence, level expressed by an agricultural firm regarding having 

sufficient quantity of inputs to produce the output. However, his analysis, pertaining to a 

limited class of so-called linear complementarity problems, is not directly applicable in the 

present case. Lichtenberg and Zilberman (1988) make an informal connection between the 

confidence level and the degree of risk aversion, but do not derive the formal relationship 

between the two.  

 Here, the formal connection between risk aversion on decision-maker’s part regarding 

benefits and the confidence level for claimability of benefits is made. Consider again the 

general, N -parcel problem and return to vector notation. If the per-parcel benefits are jointly 

normal ( )( )~ MVNb β,Σ , the benefits obtained follow a normal distribution: 

~ ( )N′ ′ ′δ b δ β,δ Σδ . In our present formulation, the claimable benefits can then be denoted as 

( )1/ 2B zη′ ′= − ⋅δ β δ Σδ . If, on the other hand, the decision-maker was risk-averse over 

obtained benefit level, he, following the famous mean-variance (E-V) rule, would seek to 

maximize max
2
r′ ′−

δ
δ β δ Σδ , where r  is the coefficient of absolute risk aversion. Provided 
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that the maximization takes place under the same probabilistic cost constraint outlined above, 

the two approaches are equivalent if and only if 1/ 2( )
z

r η=
′δ Σδ

.  

Proof. Consider a regulator who values environmental benefits, ′δ b . In particular, this 

regulator’s preferences can be described by a von Neumann-Morgenstern utility function of 

the form: ( )( ) rU e ′−′ = − δ bδ b .  Faced with an uncertain prospect, the regulator maximizes 

expected utility, ( )EU ′δ b . Given that the benefits follow a normal distribution, and that the 

moment-generating function of a normal variate X with mean μ and standard deviation σ  

is: 
2

2( )
ttttXM t Ee e

σμ +
= = , one can write the regulator’s expected utility as: 

( )
2 ( )( )( ) 2( ) ( )

rrrEU E e M r e
′

′− +′−′ = − = − − = −
δ Σδδ βδ bδ b . Hence, maximizing expected utility is 

equivalent to maximizing the negative of the exponent,
2 ( )( )

2
rr

′
′ −

δ Σδδ β . Factoring out r , 

one is left with maximizing the quantity, ( )
2

r ′
′ −

δ Σδδ β , which is the mean-variance (E-V) 

rule. Rewriting the problem in terms of the standard deviation, the resulting first-order 

condition for maximization is: 
1/ 2

1/ 2 ( )( )
set

r
′∂′− =
∂

δ Σδβ δ Σδ 0
δ

. Denote the solution to this 

problem as δ̂ . If the regulator maximizes claimable benefits, the first-order condition is: 

1/ 2( ) set
zη

′∂
− =

∂
δ Σδβ 0
δ

. Denote the solution to this problem as *δ . The two approaches are 

equivalent if they result in the same decision vectorδ . Clearly, this obtains if 
1/ 2( )

z
r η≡

′* *δ Σδ
, 

which can be seen by substituting the resulting value of r into the E-V first-order condition 
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and proposing  *δ as a solution. Conversely, if set 1/ 2ˆ ˆ( )z rη ′≡ δ Σδ and substitute this 

expression into the first-order condition for the claimable benefit maximization, one also gets 

ˆ*δ = δ . This establishes equivalence between the two approaches.  

Thus, a link between the two approaches in their treatment of benefits is obtained. For 

example, if the general N -parcel problem is solved under the conditions that carbon offsets 

are only claimable if there is 95 percent certainty in obtained reductions, the implied social 

coefficient of risk aversion regarding carbon emissions may be computed. The connection 

between the coefficient of absolute risk aversion, r , and the confidence level requirement, 

η , is highly nonlinear and depends both on the structure of the data given by covariance in 

benefits ( )Σ , as well as on the optimal solution, x .  

Conversely, if the regulator instead of solving the problem of maximizing claimable 

benefits maximizes CARA expected utility, the solution will imply the confidence level for 

claimability of uncertain benefits.  

 Furthermore, since the regulator in this setup maximizes claimable benefits subject to 

the probabilistic cost constraint of the same form, one can make a similar connection to the 

regulator’s risk preferences over budget violations. In this light, the regulator’s problem can 

be described as maximizing utility over benefits subject to the constraint on expected 

disutility of costs6.  

 It should be noted, however, that the above analysis does not claim that the decision-

maker necessarily possesses CARA utility over benefits. In principle, there are many utility 
                                                 
6 Since the distribution of total WL costs is not normal, the above analysis does not follow through exactly. 
However, a very similar analysis can be performed if one assumes a quadratic disutility function on costs. In 
this case, the assumption of normality is not required, however, and one can no longer interpret the weight 
placed on variance of costs in terms of the coefficient of absolute risk aversion. The quadratic utility function 
can be viewed as an approximation to the true utility function of a more complex form. Naturally, one could 
also assume a quadratic utility function in benefits and carry out a similar analysis.  
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functions that could give rise to the type of problem that is being solved in this paper. In 

particular, there is an infinity of expected utility functions that can rationalize a solution 

obtained using probabilistic constraints (Pyle and Turnovsky, 1970). All I am claiming is that 

if the decision-maker happened to have such utility function, he would arrive at the same 

solution, and, conversely, if one is willing to assume a certain type of a utility function, one 

can back out the preference parameter.  

 It is also not necessary to assume that the decision-maker has well-defined utility 

functions over environmental benefits and over program costs. However, it may be useful to 

think about decision-maker’s preferences for the following reason. Suppose  a decision-

maker is proposing (or implementing) a program that affects, directly or indirectly, the 

environmental benefit in question. While this hypothetical new program may not have the 

probabilistic constraints explicitly outlined in it, one may be able to check the consistency of 

the decision-maker’s choices by assuming certain preferences. For example, programs for 

agricultural carbon sequestration may be structured in a way that imply that the regulator is 

extremely risk-averse with respect to the benefits of greenhouse gas reductions, and at the 

same time, the regulatory behavior regarding, for example, power generators, may imply risk 

neutrality. The type of utility-based analysis used above may aid in identifying and analyzing 

such potentially troubling situations.  

 

2.5. An Empirical Application 

2.5.1. Data and Study Area 
 

An application of the above method is made to a heavily farmed region of Iowa, the 

North Skunk River Watershed, represented by the US Geological Survey 8-digit Hydrologic 
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Cataloging Unit 7080106. The watershed runs in a south-eastern direction roughly from the 

geographical center of the state in the direction of the Mississippi River in Iowa’s south-

eastern corner (Figure 1). The watershed’s cropland area is devoted primarily to cropland (57 

percent, Iowa DNR, 2006).  

 

 

Figure 1. The North Skunk River Watershed, Iowa 

 

Two independent sources of uncertainty are considered in evaluating the carbon 

sequestration benefits obtainable from the watershed. The first source is uncertainty 

associated with climate and weather conditions, such as precipitation, average minimum and 
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maximum temperatures, etc. The weather factors have been identified as important 

determinants of the potential of agricultural soils to sequester carbon (see, e.g., Bruce, 

Frome, Haites, Janzen, Lal, and Paustian, 1999). 

The second source of uncertainty lies with the way working land conservation is 

implemented. Conservation tillage is taken to be the working land option as one of the most 

widely recommended options in this particular part of the country. However, exactly how the 

conservation tillage is done and what implements are used, and when, is not known with 

certainty. Instead, one can draw from the surveys of farms from this part of the state to obtain 

a range of ways conservation tillage may actually be implemented. To this end, I draw from 

the 1995 Cropping Practices Survey, the most recent set of publicly available farmer surveys 

available at this level.  

The primary source of data on soil characteristics determining the potential carbon 

sequestration benefit is the 1997 National Resource Inventory (NRI) (Nusser and Goebel, 

1997). The expansion factors for each of the sample NRI points represent the area associated 

with that point, and the sum of the expansion factors (4,524) is used as the cropland area of 

the watershed. For each of the 216 NRI points in the watershed, 50 draws from the historical 

weather record are made for each of the 3 options available: conventional tillage, 

conservation tillage, and land retirement. Also, 50 draws from the farm surveys are made for 

the conservation tillage option. The data is then used as an input in Erosion Productivity 

Impact Calculator (EPIC) Version 3060 model simulations to produce the estimates of 

carbon sequestered. The benefit from conservation tillage is the difference between the 

annual parcel carbon level yielded by conservation tillage and the baseline conventional 

tillage scenario. Table 1 presents the summary statistics for simulated soil carbon. The 
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average quantity of mean per acre carbon is 0.1725 tons C per acre per year for conservation 

tillage and 0.3256 tons C per acre per year for land retirement. This translates into 0.6326 

tons CO2 per acre per year for conservation tillage and 1.1939 tons CO2 per acre per year for 

land retirement. These are consistent with some estimates reported in the literature (West and 

Post, 2002). While land retirement alternative produces higher mean carbon sequestration 

levels, it also appears to have lower sample per-acre variance. The mean variance of 

simulated per-acre carbon benefit from land retirement is higher than the mean variance of 

simulated per-acre carbon benefit from conservation tillage.7 While in the optimal choice of 

alternatives under safety first-type constraints depends on the full variance-covariance 

structure, the sample data indicates that, on average, land retirement is an alternative 

associated with less predicted soil carbon variability. This is to be expected, as the carbon 

benefits from conservation tillage include, in addition to weather, farm implement 

uncertainty.  

The data on costs of the two options, land retirement and conservation tillage, is 

obtained in the following way. Costs of land retirement are taken to be equal to the cash 

rental rates of farmland, computed by Kurkalova, Burkart, and Secchi (2004) for every NRI 

point in the area. The underlying assumption is that the rental rate represents the true 

opportunity cost of land.  

The costs of inducing landowners to switch to conservation tillage are obtained using 

the conservation tillage adoption model developed by Kurkalova and Rabotyagov (2006). 

The model is capable of estimating the determinants of NRI-point-level adoption behavior 

using 1997 NRI data (most recent available), even though individual tillage choices are not 

observable, and instead one only observes county-level data. 
                                                 
7 The null hypothesis of equal means is rejected at 1 percent level of significance.  
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The basic behavioral assumption of the model is the same as in Kurkalova, Kling, and 

Zhao (2006), namely, the farmer adopts conservation tillage if the net returns from adoption, 

plus the adoption premium required by farmer, exceed the net returns from conventional 

tillage. If a farmer chose not to adopt conservation tillage, there exists a payment that can be 

made to the farmer to induce adoption. This payment, or adoption subsidy, represents a 

Table 1. Data summaries 

Variable Sample min Sample 
average 

Sample max 

Mean carbon sequestered from land 
retirement, metric tons C per acre 
per year 

-0.19     0.33   1.12 

Variance of carbon sequestered 
from land retirement, metric tons C 
squared per acre squared 

  1.03× 10-3     8.02× 10-3  75.13× 10-3 

Mean carbon sequestered from 
conservation tillage, metric tons C 
per acre per year 

  0.03     0.17   0.49 

Variance of carbon sequestered 
from conservation tillage, metric 
tons C squared per acre squared 

  1.07× 10-3   11.11× 10-3  79.02× 10-3 

Cost of land retirement, $ per acre 
per year 

78.86 127.30 176.95 

Cost of conservation tillage, $ per 
acre per year 

  0.0   23.48   86.75 

NRI expansion factor, acres   1   20.94   41 

 

natural measure of parcel-level working land conservation cost, and is computed as: 

1
ˆˆ ˆ( )wl

i i oi ic P π π= + − , where îP  is the estimated adoption premium (due to risk aversion or 

existence of real options), and oiπ  and 1ˆ iπ  are net returns from conventional and 

conservation tillage. Both the adoption premium and the net returns from conservation tillage 

are linear functions of the underlying model parameter estimates. Thus, the practical way of 
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constructing the distribution of working land costs at each parcel i  is to obtain the 

conservation tillage adoption model parameter estimates and the corresponding variance-

covariance matrix, draw from the estimated parameters distribution, compute the adoption 

subsidy, and keep the computed value only if the adoption subsidy is positive. At each parcel, 

the process is repeated 50 times, as each parcel received 50 weather and implement draws. 

The sample mean value of approximately $23.5 dollars per acre subsidy to induce 

conservation tillage is consistent with estimates reported elsewhere (Kling et al., 2005). 

At this point it is worthwhile to consider a complication in establishing what is the 

appropriate distribution, and the subsequent critical value, 1( )θ α− , to be used in the 

deterministic equivalent of the probabilistic budget constraint? Clearly, the answer hinges on 

characterizing the distribution of the working land costs that follow the choice of allocation 

to parcels to working land, that is, on the distribution of * *

1

N
wl wl

i i
i

c cδ δ ′

=

=∑ , where a star ∗  

denotes the optimal solution. In particular, 1( )θ α− cannot be a function of δ , and needs to be 

a scalar instead.  If the vector of per-parcel working land costs, wlc , follow a multivariate 

normal distribution, the distribution of the linear combination of costs would be normal and 

could be standardized easily. However, even if the predicted adoption subsidy, ˆwlc , is 

multivariate normal, due to the fact that only positive adoption subsidies are considered, the 

distribution of working land costs is going to be censored8.  

                                                 
8 The predicted subsidies are linear combinations of maximum-likelihood estimated parameters of the 
conservation tillage adoption model, which are asymptotically normal. Analyzing histograms of predicted total 
subsidies required, I am unable to reject the null hypothesis of normality.  
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I proceed by constructing a series of approximations for the critical value of the 

distribution of the total working land costs based on standardized empirical distributions9. 

That is, I solve the problem of maximizing expected benefits subject to staying within budget 

in expectation for different budget levels and use the resulting allocation vectors to construct 

the total working land costs. Then, based on 50 draws from the working land cost at each 

parcel, the 50 different total working land costs are obtained. By generating histograms of the 

standardized total working land cost distribution, critical values can be produced. Table 2 

gives the critical values for the range of budgets and probabilities of staying within the 

budget:  

Table 2. Critical values for the standardized total working land cost distribution 
 

Probability of staying within budget 
   0.75 0.9 0.95 0.99 
 100 0.216 1.333 2.215 3.993 
Budget level, thousands 200 0.275 1.330 2.174 3.904 
 300 0.305 1.312 2.110 3.857 
 400 0.342 1.358 2.120 3.705 

 

The resulting critical values are quite close to each other for different budget levels, 

especially for the 90 percent and 95 percent probabilities of staying within the budget. This 

provides some limited assurance that whatever differences in the allocation vector are 

introduced by changing the size of the budget, they do not fundamentally change the nature 

of the standardized distribution. Carbon benefits obtainable from land retirement and 

conservation tillage were assumed to follow a multivariate normal distribution. This could 

turn out to be an untenable assumption. However, the normality assumption is not rejected by 

                                                 
9 A theoretically legitimate way to proceed would be to appeal to Chebyschev’s Inequality. As expected, the 
resulting critical values are rather large. I instead opt for an approximation based on the distribution information 
available.  
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the normality tests performed on parcel-level carbon benefits. Therefore, the normality 

assumption is maintained. 

 

2.5.2. Results  
 

Using the data described above, I solve the constrained optimization problem which 

allows me to quantify the size of the uncertainty discount for soil carbon offsets, the 

necessary margin of safety for budget planning, and the optimal allocation of the enrolled 

land in the watershed to the two mutually exclusive carbon sequestration options. I solve the 

problem for 4 different annual budget levels: $100,000, $200,000, $300,000, and $400,000. 

Given that the cost of total enrollment of the watershed to maximize expected carbon benefits 

is found to be $416,805, these budget levels represent the levels of funding that may enroll 

progressively larger share of the watershed into the carbon sequestration program, all the way 

up to almost full cropland enrollment.  

First, the size of soil carbon discount in percentage terms, which equals the absolute 

discount, ( )1/ 2 0zη ′ ≥δ Σδ , divided by the mean carbon benefit, is analyzed. Similar to 

Kurkalova’s (2005) findings, I find that the total uncertainty discount for soil carbon ranges 

from 2.4 percent to 9.4 percent, depending on the required confidence level in benefits, the 

size of the budget available and on the specified probability of staying within a budget. The 

following tables provide the magnitudes of the uncertainty discount for the scenarios 

analyzed. As expected, the size of uncertainty discount grows with the confidence level for 

claimability of benefits. Also, the uncertainty discount is non-decreasing in the probability of 

staying within a particular budget. While the first effect is clear to interpret (the weight 

placed on uncertainty in benefits grows, increasing the magnitude of the discount), the 
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second effect is indirect: as the decision-maker requires higher level of assurance of program 

costs, ex ante mean program expenditures fall (Figure 2), resulting, in turn, in lower mean 

benefits obtainable.  

The reduction in the absolute discount due to smaller effective budget does not 

outweigh the reduction in mean program benefits, so their ratio either rises (budget levels of 

$100,000, $200,000, and $300,000), or stays unchanged (for the budget of $400,000).  

Another clear pattern emerges: the higher the budget level, the lower the uncertainty discount 

for every confidence level/probability of staying within budget combination. This is mostly 

due to to the change in the mix of the land retirement and conservation tillage on the total 
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Figure 2. Ex ante mean program costs and the probability of staying within the budget, 
95 percent confidence in benefits 

 

land enrolled. In particular, the optimal mix of land retirement and working land practices 

changes as the size of available budget changes. Figure 3 demonstrates the composition of 

the land retirement and the working land option in the total land enrolled for different budget 
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levels for 95 percent confidence level in benefits and 90 percent probability of staying within 

the budget10.  

Tables 3. Carbon uncertainty discount, $100,000 budget, percent 
      
  Probability of staying within budget 
   75% 90% 95% 99% 
 90% 4.0 4.5 4.9 5.2 

Confidence level in benefits 95% 5.1 5.8 6.4 6.7 
 99% 7.2 8.0 8.9 9.4 
 

Tables 4. Carbon uncertainty discount, $200,000 budget, percent 
      
  Probability of staying within budget 
   75% 90% 95% 99% 
 90% 3.2 3.4 3.5 3.6 

Confidence level in benefits 95% 4.1 4.4 4.5 4.7 
 99% 5.8 6.2 6.4 6.5 
 

Tables 5. Carbon uncertainty discount, $300,000 budget, percent 
      
  Probability of staying within budget 
   75% 90% 95% 99%
 90% 2.7 2.7 2.8 2.8 

Confidence level in benefits 95% 3.4 3.5 3.6 3.7 
 99% 4.8 5.0 5.1 5.1 
 

Tables 6. Carbon uncertainty discount, $400,000 budget, percent 
      
  Probability of staying within budget 
   75% 90% 95% 99% 
 90% 2.4 2.4 2.4 2.4 

Confidence level in benefits 95% 3.0 3.0 3.1 3.1 
 99% 4.2 4.3 4.3 4.3 

 

As the budget size grows to approach the cost of complete conversion of a watershed 

to carbon sequestration activity, the mix of the two options changes in favor of land 

                                                 
10 The results for the other probabilistic constraints are similar.  
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retirement. For example, in the Figure above, the percentage of land enrolled in conservation 

tillage decreases from 89.9 percent for the $100,000 budget to 37.7 percent for the $400,000 

budget.  However, in the cases when the size of a budget is fairly small relative to the costs 

of conversion of the entire watershed, the working land option dominates the mix. 

Interestingly, the conclusions of Feng et al. (2006) hold up in general even with the 

introduction of uncertainty into the problem.  

Figure 3. Optimal mix of alternatives in enrolled land 

 

As discussed above, if one assumes certain risk preferences on the part of the 

decision-maker, one may be able to say something about the coefficient of risk aversion 

based on the probabilities that the decision-maker specifies go into the safety first constraints. 

In particular, given the assumed normality of benefits, it was shown that the coefficient of 

absolute risk aversion can be expressed as the function of the confidence level required and 
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the standard deviation of total benefits: 1/ 2( )
z

r η=
′δ Σδ

. Thus, given a particular solution, an 

implied coefficient of risk aversion can be computed. However, it is perhaps more interesting 

to look at the relative changes in the risk aversion coefficient as the confidence level changes. 

Suppose one decision-maker requires a 0η level of confidence in benefits, while the other 

demands 1 0η η> . Then, the ratio of their risk aversion coefficients becomes: 

1

0

1/ 2
1 0 0

1/ 2
0 1 1

( )
( )

zr
r z

η

η

′
=

′
δ Σδ
δ Σδ

, which is the product of a ratio of critical values of standard normal 

distribution and the ratio of program benefit standard deviations. If the computed standard 

deviations of program benefits do not differ by much, the coefficient of risk aversion of the 

second hypothetical decision-maker is directly proportional to their stated required 

confidence levels: 1

0

1 0

z
r r

z
η

η

≅ .  

Based on the optimization results, the ratios of standard deviations indeed 

approximately equal to one. Then, for example, if two decision-makers are observed, and the 

first one is comfortable with 90 percent level of confidence in benefits, while the other one 

insists on 99 percent, then one can claim that the second decision-maker’s coefficient of 

absolute risk aversion is 0.99

0.9

2.32 1.81
1.28

z
z

= = times higher than that of the first decision-maker.

 The model used in this paper is motivated by the problem faced by a regulator or an 

aggregator who wishes to plan for enrolling land into carbon sequestration and does not 

presume that there is a well-functioning carbon market. However, based on these results, one 

can compute a “break-even” price per ton of CO2. For example, if the carbon offsets are 

claimable with 95 percent confidence in carbon benefits and the decision-maker wishes to 
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control the program costs to be less than $100,000 dollars per year with 90 percent 

probability, a sure price of $44.8 per ton of carbon dioxide will ensure that the program will 

return a positive profit with 90 percent probability. Interestingly, the break-even prices rise 

monotonically with the available budget. The reason is that the bigger the budget that is to be 

spent in this particular watershed, the higher the proportion of the costly land retirement 

option, which in turn requires a higher carbon dioxide price in order to justify the program 

expense. Interestingly, unlike in Kurkalova’s (2005) study, I do not find that the size of the 

uncertainty discount in benefits increases with carbon price. In fact, the opposite is true, since 

as the budget size increases, the lower-variance land retirement option becomes more 

affordable and the magnitude of the uncertainty discount falls. On the cost side, the 

uncertainty effect can be explained in terms of budgeting with a margin of safety. The margin 

of safety is quite moderate for up to 90 percent ex ante probability of staying within the 

budget, which suggests that planning for agricultural carbon sequestration can be undertaken 

with reasonable certainty about the ex post program costs. In particular, insisting on 75 

percent probability of controlling the costs below the budget level results, depending on the 

budget level and the level of confidence in benefits, in creation of a margin of safety ranging 

from 2 to 9 percent of the budget. When 90 percent is specified as the relevant budget 

planning probability, the margin of safety ranges between 9 and 45 percent of the budget. 

Should the decision-maker insist on further assurances about the program costs, an even 

greater share of the budget would have to be set aside to create the necessary margin of 

safety. 
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2.6. Concluding Remarks 

Ignoring uncertainty in environmental benefits obtained from implementing a 

program that enrolls agricultural land may be both scientifically unjustifiable and politically 

infeasible. For example, if an analysis of carbon sequestered by agricultural soils ignores 

uncertainty, it is unlikely to illuminate the political process seeking a solution for greenhouse 

gas mitigation if the parties involved care about having some assurance of certainty of 

reaching sequestration targets (as they do). Second, in many cases, researchers and regulators 

ex ante have imperfect information about the costs of implementing a particular 

environmental practice.  

While the safety first-type constraints employed in this paper are by far not the only 

reasonable way of dealing with uncertainty, they do appear to enter, implicitly or explicitly, 

in many regulatory decisions. For example, the TMDL’s for water pollutants must include a 

“margin of safety” which directly follows from a probabilistic, safety first, constraint. Also, 

decision-makers may be more likely to give a numeric estimate for the desired probability of 

achieving a benefit or staying within budget than to explicitly voice, for example, the 

corresponding coefficients of risk aversion. Therefore, careful analysis of choices framed in 

such ways is necessary for a more systematic way of coping with uncertainties. It is hoped 

that this work contributes to such analytic framework.  

Results of the application of the analytical method to soil carbon sequestration from 

an Iowa watershed indicate that, while the concerns due to soil carbon uncertainty are 

justified, the magnitude of predicted discounts are such that inclusion of soil carbon offsets in 

a portfolio of greenhouse gas mitigation measures appears feasible. Further, accounting for 
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ex ante uncertainty in program costs by using models of economic behavior may allow the 

regulators and/or aggregators to better plan their carbon contracting decisions.  

 

2.7. References 

Al, M.J., T.L. Feenstra, and B.A. van Hout. 2005. Optimal allocation of resources over health 
care programmes: dealing with decreasing marginal utility and uncertainty. Health 
Economics 14: 655-667. 

 
Babcock, B.A., P.G. Lakshminarayan, J. Wu, and D. Zilberman. 1996. The economics of a 

public fund for environmental amenities: a study of CRP contracts. American Journal 
of Agricultural Economics 78: 961-971. 

 
Babcock, B.A., P.G. Lakshminarayan, J. Wu, and D. Zilberman. 1997. Targeting tools for the 

purchase of environmental amenities. Land Economics 73(3): 325-339. 
 
Beavis, B., and M. Walker. 1983. Achieving environmental standards with stochastic 

discharges. Journal of Environmental Economics and Management 10: 103-111. 
 
Bruce, J.P., M. Frome, E. Haites, H. Janzen, R. Lal, and K. Paustian. 1999. Carbon 

sequestration in soils. Journal of Soil and Water Conservation 54(1): 382-389. 
 
Butt, T.A., and B.A. McCarl. 2003. Can farmers sell all the carbon they sequester? Texas 

A&M University, unpublished manuscript. 
 
Byström, O., H. Andersson, and I.-M. Gren. 2000. Economic criteria for using wetlands as 

nitrogen sinks under uncertainty. Ecological Economics 35: 35-45. 
 
Canada. 1998. Methodological issues, inventories and uncertainties. United Nations 

Framework Convention on Climate Change, Subsidiary Body for Scientific and 
Technological Advice. Additional submissions by parties to the Ninth Session at 
Buenos Aires, 2-13 November, 1998, Item 4 of the provisional agenda. Other 
Matters, Approaches to resolving methodological issues related to national 
communications from Annex I Parties. Available online at: 
http://www.unfccc.de/resource/docs/1998/sbsta/misc06a01.pdf. Accessed April 20, 
2005.   

 
Charnes, A., and W.W. Cooper. 1959. Chance constrained programming. Management 

Science 6: 73-79. 
 
De, P.K., D. Acharya, and K.C. Sahu. 1982. A chance-constrained goal programming model 

for capital budgeting. The Journal of the Operational Research Society 33(7): 635-
638. 



 

 
 

52

 
Eloffson, K. 2003. Cost-effective reductions of stochastic agricultural loads to the Baltic Sea. 

Ecological Economics 47: 13-31. 
 
Elton, E.J., M.J. Gruber, S.J. Brown, and W.N. Goetzmann. 2003. Modern portfolio theory 

and investment analysis. Sixth Edition. John Wiley & Sons.  
 
Feng, H., L.A. Kurkalova, C.L. Kling, and P.W. Gassman. 2006. Environmental conservation 

in agriculture: Land retirement versus changing practices on working land. Journal of 
Environmental Economics and Management 52(2): 600-614. 

 
Gurgur, C.Z., and J.T. Luxhoj. 2003. Application of chance-constrained programming to 

capital rationing problems with asymmetrically distributed cash flows and available 
budget. The Engineering Economist 48(3): 241-258. 

 
Hagigi, M., B.D. Kluger, and D. Shields. 1990. Cost uncertainty and budget overspending: a 

safety-first perspective. Journal of Accounting and Public Policy 9: 257-270. 
 
Iowa Department of Natural Resources. 2006. Watershed Initiative. Available at: 

http://www.igsb.uiowa.edu/nrgislibx/watershed/watersheds.htm. Accessed October 
10, 2006.   

 
Kampas, A., and B. White. 2004. Administrative costs and instrument choice for stochastic 

non-point source pollutants. Environmental and Resource Economics 27: 109-133. 
 
Keown, A.J., and B.W. Taylor. 1980. A chance-constrained integer goal programming model 

for capital budgeting in the production area. The Journal of the Operational Research 
Society 31(7): 579-589. 

 
Kibzun, A., and Y. Kan. 1996. Stochastic programming problems with probability and 

quantile functions. Chichester: John Wiley & Sons. 
 
Kling, C.L., S. Secchi, M. Jha, L. Kurkalova, H.F. Hennessy, and P.W. Gassman. 2005. 

Nonpoint source needs assessment for Iowa: The cost of improving Iowa’s water 
quality. Final Report to the Iowa Department of Natural Resources. Center for 
Agricultural and Rural Development, Iowa State University, Ames, Iowa. 

 
Kurkalova L.A., C.L. Kling and J. Zhao. 2006. Green subsidies in agriculture: estimating the 

adoption costs of conservation tillage from observed behavior, Canadian Journal of 
Agricultural  Economics 54: 247–267. 

 
Kurkalova, L.A., and S.S. Rabotyagov. 2006. Estimation of a binary choice model with 

grouped choice data. Economics Letters 90(2): 170-175. 
 
Kurkalova, L.A. 2005. Carbon sequestration in agricultural soils: discounting for uncertainty. 

CARD Working Paper 05-WP 388. 



 

 
 

53

Kurkalova, L.A., C. Burkart, and S. Secchi. 2004. Cropland cash rental rates in the Upper 
Mississippi River Basin. CARD Technical Report 04-TR 47. 

 
Lichtenberg, E., and D. Zilberman. 1988. Efficient regulation of environmental health risks. 

The Quarterly Journal of Economics 103(1): 167-178. 
 
Marland, G., B.A. McCarl, and U. Schneider. 2001. Soil carbon: policy and economics. 

Climatic Change 51: 101-117. 
 
McSweeny, W.T., and J. S. Shortle. 1990. Probabilistic cost effectiveness in agricultural 

nonpoint pollution control. Southern Journal of Agricultural Economics 22(1): 95-
104. 

Nusser, S.M., and J.J. Goebel. 1997. The National Resource Inventory: A long-term multi-
resource monitoring programme. Environmental and Ecological Statistics 4: 181–
204.  

 
Paris, Q. 1979. Revenue and cost uncertainty, generalized mean-variance, and the linear 

complementarity problem. American Journal of Agricultural Economics 61: 268-275. 
 
Paris, Q., and C.D. Easter. 1985. A programming model with stochastic technology and 

prices: the case of Australian agriculture. American Journal of Agricultural 
Economics 67: 120-129. 

 
Pyle, D.H., and S.J. Turnovsky. 1970. Safety-first and expected utility maximization in 

mean-standard deviation portfolio analysis. The Review of Economics and Statistics 
52(1): 75-81.  

 
Rosenberg, N.J., and R.C. Izaurralde. 2001. Storing carbon in agricultural soils to help head-

off a global warming. Guest editorial. Climatic Change 51: 1-10. 
 
Takayama, A. 1993. Analytical methods in economics. University of Michigan Press, Ann 

Arbor. 
 
United States Department of Agriculture (USDA), 1995. Cropping practices survey, 

unofficial USDA data files. Available at: 
http://usda.mannlib.cornell.edu/usda/usda.html. Accessed January 23, 2005.  

 
Weinstein, M., and R. Zeckhauser. 1973. Critical ratios and efficient allocation. Journal of 

Public Economics 2: 147-157. 
 
West, T.O., and W.M. Post. 2002. Soil organic carbon sequestration by tillage and crop 

rotation: a global data analysis. Soil Science Society of America Journal 66: 1930-
1946. 

 



 

 
 

54

CHAPTER 3. OPTIMAL DESIGN OF PERMIT MARKETS 
WITH AN EX ANTE POLLUTION TARGET 

 

3.1. Introduction 

A highly celebrated property of emissions trading markets is that decentralized 

decisions made by firms will achieve a preset emissions target at the least possible cost and 

no information on the firm’s abatement costs is required to achieve this outcome (Baumol 

and Oates, 1988; Montgomery, 1972).11  Montgomery (1972) demonstrated that this property 

extends to the class of non-uniformly mixed pollutants, pollutants whose damages differ 

based on their location. He showed that if the regulatory authority allows firms to trade 

emissions according to the ratio of delivery coefficients (the effect that a source’s emissions 

have on resulting pollution loadings) and sets the pollution cap equal to the desired pollution 

standard, the least cost property is retained.  

The basic model underlying these findings assumes that the regulator is interested in 

minimizing the cost of meeting an ex post environmental standard. While ex ante uncertainty 

regarding firm’s abatement costs is commonly used to motivate the attractiveness of a permit 

system, the pollution constraint is typically specified in ex post terms – the environmental 

target is invariant with respect to realizations of any sources of uncertainty. As has long been 

recognized, characterization of the objective function in this way requires that the pollution 

control level is independent of the actual realization of costs – no tradeoff between abatement 

costs and benefits (pollution levels) is permitted. As a result, even though the target would be 

reached at the least cost, the least (realized) cost may turn out to be very expensive. Roberts 

                                                 
11 The total permit quantity can be set at the socially efficient level, a legally mandated requirement, or any 
other level deemed appropriate by the regulator. 
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and Spence (1976) and Montero (2001) recognized that the rigidity of a quantity mechanism 

may be socially costly. Roberts and Spence (1976) proposed a penalty for exceeding the 

pollution cap, while Montero (2001) modeled incomplete enforcement to provide a softening 

of the quantity constraint. 

In this chapter, I study the optimal design of a permit trading system when the 

regulator is uncertain about the firms’ abatement costs or delivery coefficients. In such 

situations, the regulator can specify her objective function based on minimizing expected 

costs subject to meeting an expected pollution level.  This target is called an ex ante target. 

There are at least two situations in which an ex ante target will be important to model: 1) 

when there is genuine uncertainty in the delivery coefficients an ex ante target is the only 

feasible choice for the regulator to consider and 2) even if the delivery coefficients are 

known to the regulator, the damage function may be such that it is appropriate to focus on the 

average (or total) emission level. The large array of nonpoint source emission problems are 

all excellent examples of the first situation. Indeed, uncertainty in the delivery coefficient is 

often identified as one of the definitional aspects of a nonpoint source pollutant.12 In the 

second situation, the use of an ex ante target offers another way to soften the rigidity of a 

quantity constraint. Additional examples of the situations are provided throughout the paper. 

Several noteworthy findings emerge from the model.  First, the optimal total permit cap 

does not necessarily equal the regulators pollution target. One is an ex ante concept (the 

desired pollution level) while the other is an ex post construct (the emissions cap).  This can 

be viewed as a two-stage decision where in the first time period the regulator settles on a 

                                                 
12 While the primary focus of the essay is on expected pollution, the model can be extended to deal with 
pollution targets which are expressed as statements controlling quantiles of the pollution distribution. For 
example, if, instead of the expectation, the target was specified as a probability of actual pollution not exceeding 
the target, chance- constrained formulations could be employed.  
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desired pollution target and then, based on the firms’ expected emissions decisions, sets the 

number of permits and trading ratio to implement the market. 

 Second, the optimal trading ratio depends on the moments of the uncertain costs as 

well as the delivery coefficients. In particular, even when the delivery coefficients are 

assumed to be known with certainty, it is not optimal to set trading ratios equal to the simple 

ratio of delivery coefficients – the basic Montgomery (1972) solution. Instead, the regulator 

can lower expected costs by including some information on the uncertain abatement costs in 

the formation of the trading ratio. That the optimal trading ratio depends on both the 

regulators information about costs and the delivery coefficients is consistent with the findings 

from Horan and Shortle (2005) and Malik et al. (1993). However, the result here is derived in 

a different policy context. While previous studies continue in the tradition of using complete 

information on abatement costs to characterize first-best levels of pollution control, the focus 

of this paper is on meeting a given standard (regardless of its social optimality) which, based 

on established theory should be achievable without any information on abatement costs. In 

practice, pollution targets are often set by political processes, for example, the sulfur permit 

trading program where the SO2 standards were set in legislation or water quality trading 

programs (e.g., Horan and Shortle, 2005). Furthermore, the social damage of pollutants is 

often unknown. Thus, it is also important to consider the design of permit markets in a cost-

effectiveness context. 

These somewhat surprising findings come directly from the fact that the regulator’s 

objective function is specified in ex ante terms: she minimizes expected costs subject to an 

expected pollution level.  This allows the regulator flexibility that is not present when 
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emission levels must be met with certainty ex post.13 In essence, this allows the regulator to 

adjust for, at least to some degree, the actual cost realizations of firms: if costs are 

unexpectedly high (low), the resulting pollution levels will be higher (lower) than they would 

be without this flexibility. In considering this tradeoff, the regulator recognizes that the 

ultimate abatement levels chosen by firms will depend upon their cost realization and 

therefore the ultimate emission levels become stochastic from the regulator’s perspective. By 

choosing the parameters of the trading program to be a function of the moments of the 

distribution of costs, the regulator can lower total expected abatement costs, while ensuring 

that the environmental goal is still being met on the average.14 

Whether the regulator has (or should have) the freedom to design a permit market that 

allows the aforementioned flexibility is a policy question that will have a case by case 

answer. However, there are many real world examples where averages over time or space 

define standards. Examples include nitrogen dioxide (an annual arithmetic mean), lead 

(quarterly average during the phase-out), and sulfur dioxide (annual means, a 24- hour 

average and a 2-hour average) (USEPA, 2007a).  Examples from water pollution abound as 

well: values for arsenic, cadmium, cyanide, and selenium emissions in storm water under the 

National Pollutant Discharge Elimination System (a key regulatory program that regulates 

point sources of water effluents) trigger need for action only when the annual average 

exceeds the benchmark (USEPA, 2007b).  

Perhaps, the best examples of trading programs with an ex ante target can be found in 

emerging water quality trading programs. The Total Maximum Daily Load (TMDL) process 

                                                 
13 In this way, the current model and findings are in the spirit of Roberts and Spence (1976) and Montero 
(2001). 
14 Note that I do not consider the important problem of information extraction from firms, but assume that the 
regulator has some independent source of cost information.  See Montero (2000) or Lewis (1996) for careful 
discussions of asymmetric information problems. 
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is being implemented around the country to address the nation’s still prevalent problem of 

water quality degradation. Under a TMDL, the sources of water quality impairment are 

identified and the loading reduction responsibilities allocated among the various sources.   

Even though it is called TMDL, many of the loadings are specified in terms of the annual 

average loadings. In this sense, the TMDL is given as an ex ante target. Many watersheds 

have established water quality trading programs or are exploring trading as a policy 

instrument to implement the TMDL targets in a cost-effective way (Hoag and Hughes-Popp 

1997; USEPA 2004; Woodward et al. 2002). Setting trading ratios and permit caps will be a 

key component of such programs.      

 In the next section of the paper, the basic model of firms’ behavior under a tradable 

emissions program and the regulator’s problem is presented. Section 3 examines the optimal 

permit market design under two different assumptions. First, the case when the delivery 

coefficient is known, is considered. This provides results that contrast with the ex post 

standards studied in Baumol and Oates (1988) and Montgomery (1972), highlighting the 

implication of using ex ante targets and objective functions. Second, an important case when 

the delivery coefficient is uncertain, is presented. While this latter feature is typically viewed 

as a characteristic of nonpoint sources, there are likely many point sources where the true 

impact of emissions from the source are known with less than perfect certainty such as air 

sheds where dispersion of particulates may depend on stochastic weather conditions (Foster 

and Hahn, 1995). Final remarks and conclusions complete the paper in section 4. 
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3.2. The Model 

3.2.1. Model Setup 
 

Suppose there are two firms acting as sources of emissions and the environmental 

impacts of the two firms’ emissions are not identical. Specifically, assume that the impact of 

the first firm on the resulting pollution level is such that one unit of Firm 1’s emissions 

increases the resulting pollution level by one unit. The impact of Firm 2 is described by the 

delivery coefficient d , that is, one unit of Firm 2’s emissions increases the resulting 

pollution level by d  units. The delivery coefficient can be thought of as describing the 

relative environmental impact of the two firms’ emissions. Specifically, the total resulting 

pollution level is 1 2e de+ , where for 1,2ie i =  represents Firm i's emissions. Both the 

situation in which the delivery coefficient is fixed and known by the regulator, as well as a 

more realistic case where the delivery coefficient is uncertain, is modeled. In the latter case 

the regulator, however, knows the distribution of the delivery coefficient: its mean, ( )E d μ= , 

and its variance, 2( ) dVar d σ= . The model lends itself to multiple interpretations including (1) 

two firms located spatially apart whose emissions contribute differentially to loadings at the 

receptor (Baumol and Oates, 1988), (2) two firms whose emissions contribute differentially 

to loadings for reasons other than spatial location, such as production process or 

concentration of emissions released, or (3) two firms, one of which is a point source and the 

other is a nonpoint source with an uncertain delivery coefficient. 

The abatement cost function for Firm i is 0( ; )i i i iC e e θ− , where, for 1,2,i =  0
ie  

represents the initial (unregulated) emissions level for firm i and 0
i ie e−  represents the 

abatement of Firm i after the implementation of a permit trading program. The abatement 
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cost function is assumed to be increasing and convex in abatement, that is, ' 0
i

C >  and 

'' 0
i

C ≥ . The parameter ( iθ ) in the cost function captures the uncertainty regarding the costs 

of pollution abatement on the regulator’s side. I assume that the regulator has some, albeit 

incomplete, information on abatement costs. Uncertainty is modeled as stochastic 

information not revealed at the design stage of the permit market, but revealed at the time 

permit trading decisions are made. Formally, when making their emissions decisions, firms 

know 1θ  and 2θ . However, the regulator, when making the decisions on the parameters of 

the permit market, knows only their distribution: the means (zero), variances ( 2
1σ  and 2

2σ ), 

and covariance, ( 1 2cov( , )θ θ ). Furthermore, the regulator is assumed to know the covariances, 

if any, between the delivery coefficient and the cost parameters: 1cov( , )d θ  and 2cov( , )d θ . 

Such correlations may arise, for example, when weather affects the efficacy and cost of 

abatement as well as its spatial impacts.  

The setup of the model is similar to that in the point and nonpoint source trading 

literature (e.g., Horan and Shortle 2005; and Malik et al. 1993) with the following notable 

differences. First, I examine the optimal trading programs in a cost-effectiveness context. 

That is, the policy objective is to set the parameters of the trading program so that a pollution 

target will be achieved at the least cost. Thus, the social damage of the pollution does not 

directly enter the design of the trading policy. Second, the regulator is assumed to be 

uncertain of firms’ abatement costs in this model, while in the previous studies full 

information is assumed at the policy design stage.  
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3.2.2. Ex Ante and Ex Post Pollution Targets; Total Permit Cap, and 
Actual Pollution Level 

 
Since cost minimizing firms equate marginal abatement costs with permit prices to 

choose their emission levels, once uncertainty is introduced into the cost functions, there will 

be uncertainty in emission levels. Given this and the potential uncertainty associated with the 

delivery coefficients, it is necessary to clearly differentiate between ex ante and ex post 

measures of pollution as well as other constraints that relate to the design of an emissions 

trading system. Only one of the two constraints will be relevant for a particular policy and 

they can be written as  

(3.1)  1 2

1 2 p

(Ex ante pollution constraint)          [ ] [ ] ,
(Ex post pollution constraint)           .

ante

ost

E e E de P
e de P

+ ≤
+ ≤  

If the pollution target is specified in an ex ante manner, the first equation in (1) describes the 

constraint and indicates that the expected pollution has to be less than or equal to a pre-fixed 

target ( anteP ).  Under this constraint, the ex post realization of pollution level can be greater 

or less than the target.  In contrast, if the constraint is specified as ex post, the realized ex post 

pollution levels must be less than a pollution target ( postP ) in each realization.  

A third relevant constraint defines the restriction faced by the permit market, 

(3.2) 1 2(Permit market constraint)              .permite te P+ ≤  
 
Here, t  is the trading ratio for the emissions of the two firms—1 unit of Firm 2’s emissions is 

equivalent to t  units of Firm 1’s emissions—and permitP is the total permit cap, denominated 

in terms of Firm 1’s emissions. Thus, this constraint requires that total emissions (weighted 

by the trading ratio) be less than or equal to the total permit cap. Note that the firms are only 

concerned with the permit market constraint while the regulator will care predominately 
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about the pollution constraint (either the ex ante or ex post version). Finally, 

1 2 actuale de P+ = specifies the actual realization of pollution given firms’ emissions decisions 

and the realization of the delivery coefficient.  

With perfect information, there is no distinction between ex ante and ex post and it is 

known from Montgomery (1972) that efficiency dictates that t d= , resulting in 

anteP = postP = permitP . That is, the three constraints are essentially the same. However, when 

there is uncertainty, either postP or anteP may be used as a target in pollution reduction policies 

resulting, as will be shown, in very different efficient designs for a permit program. If it is 

legally stipulated, or the damage function dictates, that pollution not exceed a deterministic, 

prefixed standard, then postP is the relevant constraint for cost minimization. This is the 

commonly analyzed case when total pollution is limited to a prefixed cap, regardless of 

firms’ abatement costs. As discussed in the Introduction, there are many examples when 

standards are framed in terms of averages suggesting that such an inflexible target may not 

be appropriate or necessary in many cases.   

Given an ex ante target, the regulator potentially has the flexibility to issue permits, 

permitP , and set the trading ratio, t , to achieve the expected pollution target at least cost. The 

following chart illustrates the decision process and the occurrence of events: 

 

Thi 

   

 

Figure 1. Decision process 
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This sequential timing process makes clear that the actual pollution, actualP , varies 

with the realization of firms’ abatement costs and/or the delivery coefficient whereas  

anteP (or postP , or permitP ) must be set before the realization of these uncertainties and will not 

change when the uncertainties are resolved.  

 

3.2.3. Firms’ Emission Decisions in a Permit Trading Market 
 

Should an emissions trading program be introduced, the firms will face the permit 

market constraint in (3.2). Suppose the initial permit endowments allocated to Firm i (and 

denominated in Firm i's emissions) are ie  for 1,2i = ; and 1 2 permite te P+ = . Through trading, 

both firms can hold the permits denominated in terms of another firm’s emissions, and the 

trading ratio is used to convert between the two types of permits. The trading program 

requires that each firm’s actual emissions do not exceed its holding of permits. Let iy ,  

denominated in terms of Firm i’s emissions, denote the equilibrium quantity of permits 

traded. Specifically, iy  is the permit quantity sold by Firm i and purchased by the other firm. 

Assuming that each firm takes permit prices as given, then Firm 1’s problem would be as 

follows 

(3.3) 1 1 2

0
1 1 1 1 1 2 2, ,

1 1 2 1

min ( )

   
e y y

C e e p y p y

subject to e y ty e

− − +

+ − ≤
. 

Firm 2’s problem is similar. Solving for the firms’ problems, it is well-known that market 

equilibrium requires that: 0 *( )i i i i iMC C e e p′≡ − = , for 1,2i = ; and 1 2 1p p t= . This implies 

that the ratio of permit prices must be equal to the trading ratio. Otherwise, costless arbitrage 

opportunities would be available to firms. Then, it must be that  
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(3.4) 2

1

MC t
MC

= . 

From (3.4) and the permit market constraint in (3.2), one can solve for firms’ optimal 

emissions as a function of t  and permitP , that is, *
1 2( , ; , )i permite t P θ θ  for 1,2.i =  When emissions 

decisions are made in the permit trading market, firms have complete information on their 

costs, i.e., 1θ  and 2θ  are known with certainty. Equation (3.4) indicates that the results of the 

permit trading market are such that the ratio of marginal costs equals the trading ratio. 

However, with complete information on 1θ  and 2θ , it is known from Montgomery (1972) 

that social efficiency requires t d= , resulting in  

(3.5) 2

1

MC d
MC

= . 

Any gains in setting t  at a level other than d in an ex ante targeting program would need to 

be weighed against the efficiency costs of not attaining the equality in (3.5).  This is an issue 

I will return to in the next section. 

 

3.2.4. The Regulator’s Problem 
 

This chapter focuses on the design of permit trading programs where the goal is to 

reach an environmental target at the lowest cost when the target is set as an ex ante pollution 

level, rather than an ex post standard. When damage is linear in pollution, the solution to this 

problem coincides with the solution to the problem of minimizing the sum of damage and 

abatement costs. While I believe the conditions of uncertainty modeled are representative of 

a broad variety of environmental pollutants, water quality provides a strong motivating 

example. Imagine there are two sources of effluent that enter a river: source 1 is a large 
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“point” source that is located at the river’s edge and source 2 is a “nonpoint” source that is 

located some distance from the river. Given the proximity of source 1 to the river, its delivery 

coefficient is known with certainty to be unity whereas the nonpoint nature of source 2 

means that the delivery coefficient is uncertain due to weather variability. 

For the situation analyzed most in the permit trading literature where the delivery 

coefficient is known and an ex post pollution target is used, the regulator must set the trading 

ratio equal to d and permitP = postP  if she does not have complete information on firms’ 

abatement costs. Otherwise, there is no guarantee that the target will be met. This is because 

from (3.1), one knows that  

(3.6) 2( )permit postP P t d e− = − . 

If t d= , then post permitP P= , regardless of the value of 2e . However, if the regulator is to set 

t d≠ , then she needs to adjust permitP  as well so that the ex post pollution target will be met. 

However, any adjustment will depend on the magnitude of 2e , which is assumed unknown to 

the regulator when designing the permit market (due to uncertain abatement costs).  

Interestingly, as mentioned in the Introduction, it is not even feasible to use an ex post 

pollution constraint if the delivery coefficient is uncertain. This is because, for any given 

( ,  P )permitt , the value of postP  will vary with d  and 2e . While the realization of d is affected 

by weather conditions, the decision regarding 2e depends on ( ,  P )permitt  and the parameters 

of the abatement cost function. Thus, there may be different realizations of d for the same 

value of 2e .  It is then obvious that (3.6) will not hold for all possible values of d  and 2e in a 

permit trading program. In this case, an ex ante constraint is the only meaningful policy 

option. 
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When an ex ante pollution target is used, the realization of total pollution can be 

higher or lower than the target. Even though the regulator cannot directly control the 

realization of total pollution, she can set the parameters of the permit system ( t  and permitP ) 

in conjunction with her (incomplete) knowledge of the firms’ abatement costs. The optimal 

parameters would generate higher than average emission levels when firms’ abatement costs 

turn out to be high and vice versa. Formally, the regulator’s problem is as follows, 

(3.7) * *
1 1 1 2 2 2 1 2,

min     [ ] ( ( , ; , ) ( ( , ; , ) ,
permit

permit permitt P
E TC E C e t P C e t Pθ θ θ θ⎡ ⎤≡ +⎣ ⎦  

subject to                Ex ante pollution constraint in (3.1). 

Note that firms emissions decisions, *
1 2( , ; , )i permite t P θ θ  for 1,2i = , are  incorporated into the 

regulator’s program. Next I explore the optimal trading ratio and total permit cap. 

 

3.3. Characterization of the Optimal Program 

3.3.1. Optimal Permit Trading Ratio and Total Permits 
 

For tractability, assume that one firm faces a linear abatement cost function while the 

other faces an increasing convex abatement cost function, as specified below,  

(3.8) 0 0
1 1 1 1 1 1 1( , ) ( )( )C e e a e eθ θ− = + − , 

(3.9) 0 0 0 2
2 2 2 2 2 2 2 2 2( , ) ( )( ) ( )C e e b e e c e eθ θ− = + − + − . 

As will be clear later, this linear-quadratic setup is sufficiently rich to generate critical 

insights while remaining simple enough for intuitive discussion. In (3.8), assume that 

2 2
1a σ− >0, that is, the mean of Firm 1’s marginal abatement cost (which represents the 

deterministic part) dominates the variance (which represents the stochastic part). This 
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assumption also ensures that the second order condition for the problem in (3.7) is satisfied. 

With the above cost functions, one can derive firms’ optimal emissions from equation (3.4)  

and the permit market constraint in (3.2),  

(3.10) 
0 2
2 2 1*

1 1 2

2 ( ) ( ) ( )
( , ; , )

2
permit

permit

c P e t b t t a
e t P

c
θ θ

θ θ
− − + + +

=  

(3.11) 
0

* 2 2 1
2 1 2

2 ( ) ( )( , ; , )
2permit

ce b t ae t P
c

θ θθ θ + + − +
= . 

 
With analytical solutions in (3.10) and (3.11) for the firms’ choice of emission levels, 

it is straightforward to solve the ex ante optimization problem (3.7) and derive the optimal 

trading ratio and permit cap. 15  First, I obtain the optimal trading ratio as a function of the 

regulator’s prior information on the covariance structure of abatement cost uncertainties and 

the delivery coefficient, or specifically,  

(3.12) ( )* 2
1 1 1 22 2

1

1 cov( , ) cov( , )t a d
a

μ μσ θ θ θ
σ

= + + −
−

. 

To derive the optimal permit cap, first note that as long as the program is intended to 

reduce emissions, both the ex ante pollution constraint in (3.1) and the market permit 

constraint in (3.2) will be binding. Then, one can derive the following, 

(3.13)  
*

* * * 2 1
2

( , ) ( , )[ ]( )
2permit ante

Cov d t Cov dP P E e t
c

θ θμ −
− = − + . 

The details are provided in the Appendix to the chapter. Equations (3.12) and (3.13) imply 

that with known values of 1θ , 2θ and d (with d μ= ),  the optimal trading ratio would be set 

equal to the delivery coefficient, i.e., * ( )t d μ= = , and the total permit quantity allocated to 

firms would equal the pollution target, i.e., *
permit anteP P= . However, in general,  *t d≠  and 

                                                 
15 The problem is a standard optimization problem with one constraint and so the details on the derivation of the 
solutions are not presented. To simplify the discussions, interior solutions are assumed throughout the essay.   
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*
permit anteP P≠ . This, of course, differs starkly from most permit trading programs where the 

trading ratio is the same as the delivery coefficient and the total permit cap is set the same as 

the pollution target that the regulator sets out to achieve. 

 

3.3.2. The Total Pollution Effect and the Deadweight Loss Effect 

To see the effects of setting t d≠  and permit anteP P≠ , consider a benchmark permit 

trading program where t d=  and permit anteP P= . The total abatement costs in the benchmark 

trading program and in any other permit trading program are denoted as ( ), anteTC d P and 

( ), permitTC t P , respectively. The difference between these total costs can be broken down as 

follows, 

(3.14) 

( ) ( )

( ) ( ) ( ) ( )

, ,

, , , , ,

    

ante permit

ante actual actual permit

TC d P TC t P

TC d P TC d P TC d P TC t P

total pollution effect deadweight loss effect

−

= − + −
 

where actualP is the actual amount of pollution resulting from a trading program with 

( ), permitt P , that is, 

(3.15) * * * *
1 2 1 2( , ) ( , ) and ( , ) ( , )actual permit permit permit permit permitP e t P de t P P e t P te t P= + = + . 

The total cost of each trading program is derived by using firms’ emissions decisions under 

the program, for example, ( ), anteTC d P =  *
1 1( ( , ))anteC e d P  *

2 2( ( , ))anteC e d P+ .  

The total pollution effect represents the cost difference that is due to the deviation of 

total pollution level from the benchmark program. This deviation can arise from a total 

permit cap that is not equal to that of the benchmark program and/or to the fact that t d≠ . 
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The latter causes a divergence because when t  is used in the permit market constraint, 

instead of d , one unit of permit is no longer necessarily the same as one unit of pollution. 

The total pollution level will equal the permit cap in the benchmark program. However, this 

is not necessarily true in a program with trading ratio not equal to d.  

The deadweight loss effect is directly linked to the use of t  as the trading ratio, 

instead of the delivery coefficient d , which leads to a suboptimal allocation of emissions as 

was pointed out in section II.2.  I refer to this effect as the deadweight loss effect since it 

represents the extra cost incurred by using t  to achieve the same amount of total pollution 

( actualP ). Given an ex ante pollution target, the regulator would like to induce a high pollution 

level when abatement cost turns out to be high and vice versa, that is, to exploit the total 

pollution effect by setting t d≠  and permit anteP P≠ . However, doing so incurs a cost in the 

form of a deadweight loss. In designing an optimal program, the regulator will seek to 

achieve a balance between these two effects in order to minimize abatement costs to achieve 

the pollution target on average. 

 

3.3.3. A Case of a Known Delivery Coefficient 

To isolate the role of uncertainty with regard to the abatement costs, next I examine 

the optimal trading ratio and permit quantity in the absence of uncertainty in the delivery 

coefficient. When the delivery coefficient is a known constant, it is known from (3.1) and 

(3.2) that the gap between the total permits allocated and the pollution target is:  

(3.16) 2[ ]( )permit anteP P E e t d− = − . 

Thus, if t d≠ , then the total permit quantity will also deviate from the ex ante target so that 

the ex ante pollution constraint will be met. Similarly, one can derive 
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(3.17) 2 ( )actual permitP P e t d− = − −  

That is, if t d> , then the actual pollution will be less than the permit allocated. This occurs 

because 1 unit of Firm 2’s emissions contributes d units to total actual pollution, but 1 unit of 

Firm 2’s emissions requires t units of permits in the permit market constraint. Adding up the 

previous two equations, obtain: 

(3.18) ( ) 1 2
2 2( ) [ ] ( )

2actual ante
tP P t d E e e t d

c
θ θ−

− = − − = − . 

To derive the second equality in (3.18), equation (3.11) is used. For any given 2θ , the higher 

1θ  is, the higher the actual pollution will be if t d> . 

 

3.3.3.1. The Tradeoff of the Total Pollution Effect and the Deadweight Loss 
Effect 

 
With firms’ emissions decisions, *( , )i antee d P , *( , )i actuale d P and *( , )i permite t P , onen 

obtain an expression for the two effects (assuming d is known) as defined in (3.14), 

(3.19) 1 1 2
1  ( )( )( ),  
2

total pollution effect t d a t
c

θ θ θ= − + −  

(3.20) 2 2
1

1 ( ) ( )  .
4

deadweight loss effect a t d
c

θ= − + −  

Equation (3.19) indicates that the two effects depend on the parameters in the cost functions 

and how much the trading ratio differs from d. As is expected, (3.20) implies that the 

deadweight loss effect is never positive. For any given 1θ , the larger the difference between 

the trading ratio and the delivery coefficient, the larger the deadweight loss effect.  

 Figure 2 and Figure 3 illustrate the intuition and magnitude of the two effects. For 

simplicity, the delivery coefficient in the Figures is set to one, which is assumed known by 
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the regulator. In both figures, the total length of the horizontal axis represents the total 

permits available and the solid downward sloping line is the marginal abatement cost curve 

of Firm 2 as emissions are increased (i.e., abatement is decreased).  

 
 

Figure 2. The effects of setting * 1t d> = under the ex ante pollution constraint 
1 2 antee de P+ =  and the permit market constraint 1 2 permite te P+ =  (for 1 0,θ =  2 0θ < ) 

 

In Figure 2, the marginal abatement cost curve of Firm 1 is represented by the 

horizontal line that intersects with Firm 2’s marginal cost curve at 0B . When 1t d= = , 

1t
permitP =  is set equal to anteP  by (3.16).  Since 1 2MC MC=  at 0B , 0B  represents the permit 

market equilibrium, indicating the split of the emissions by the two firms with Firm 1’s 

emissions read from the right ( 1O ) and Firm 2’s emissions read from the left ( 2O ). As (3.5) 

a
 

2e 1e

2
0

2 2 2 22 ( )MC b c e e θ= + − +

1t
permit anteP P= =

b
 

'B
 

0B

1t
permitP >

''Bta
 

2O 1O 1 'O
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is satisfied at 0B , 0B represents the least cost solution to reach a total pollution level of 

1t
permitP = with complete information on 1θ  and 2θ .   

When the trading ratio is set greater than the known delivery coefficient several 

changes occur in Figure 2.  First, the optimal total permit cap increases to 1t
permitP >  by (3.16), 

which is reflected by the shifting out of the right boundary of Figure 2 from 1O  to 1 'O . 

Second, the new permit market equilibrium is represented by point 'B , indicating a reduction 

in 2e . Third, one can no longer obtain 1e from right ( 1 'O ) to the equilibrium point ( 'B ), since 

the permit market constraint now requires that the total permits be greater than or equal to the 

weighted sum of emissions (with the weight on 2e equal to t ), not the simple sum of 

emissions from the two firms. To reflect the weighting, it would be necessary to adjust the 

MC curve as in the dotted downward sloping curve to represent 2*t e  for every 2e on 2MC . 

Then, Firm 1’s emissions can be obtained by reading from right ( 1 'O ) to ''B .   

The two effects of setting t d> on the total abatement cost of meeting the ex ante 

pollution target are illustrated by the shaded areas in Figure 2. As to the deadweight loss 

effect, note that the marginal abatement cost for Firm 1 is still the horizontal line a , not the 

horizontal line ta . However, firms make their decisions based on the latter, which leads to 

too few emissions (i.e., too much abatement) by Firm 2, resulting in a deadweight loss 

represented by the shaded triangle. The area of the triangle is given by (3.20). For the case 

illustrated in Figure 2 (with 1 0θ =  and 2 0θ < ), it is clear from (3.18) that the actual total 

pollution is greater than the ex ante pollution target. The savings in abatement cost from this 

increased pollution are represented by the area of the shaded rectangle and is also given by 

(3.19).  
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An optimally designed permit market will try to achieve a balance between the total 

pollution effect and the deadweight loss effect. To show how the regulator can reduce total ex 

ante expected abatement costs by setting t d> ,  I use the illustration in Figure 3, which is the 

same as Figure 2 except that it illustrates a case where 1θ can take on two values ( 1̂>0θ+  and 

1̂θ− ) with equal probability. For simplicity, assume 1 2cov( , ) 0θ θ = . Consistent with (3.20), 

the figure shows that there is a deadweight loss regardless of whether marginal abatement 

cost is high or low. The larger (smaller) shaded triangle represents the higher (lower) 

distortion when the realization of Firm 1’s marginal abatement cost is high, i.e., 1 1̂θ θ= +  

(low, i.e., 1 1̂θ θ= − ).  

The total pollution difference between setting t d> and t d= is given by (3.18) and is 

represented by the width of the large shaded rectangle for 1 1̂θ θ= +  and by the width of the 

small shaded rectangle for 1 1̂θ θ= − . When marginal cost is high (i.e., 1 1̂θ θ= + ), setting 

t d> will result in a cost saving from less abatement (or higher than expected pollution level) 

which is represented by the area of the large shaded rectangle. Similarly, when marginal cost 

is low (i.e., 1 1̂θ θ= − ), setting t d> will result in an extra cost from more abatement which is 

represented by the area of the small shaded rectangle. When the difference between the cost 

saving and the extra cost is positive, and when the difference is greater than the deadweight 

loss (the sum of the two shaded triangles), the regulator reduces total abatement cost with 

t d> . As illustrated in Figure 3, the area of the larger rectangle is larger than the sum of the 

areas of the smaller rectangle and the two shaded triangles, resulting in a welfare gain from 

setting t d> . 
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Figure 3. A comparison of the welfare effects when 1θ  is high versus when 1θ  is low for 
a given value of 2θ  ( 2 0θ = ). (In the Figure, 1θ  is assumed to take two values, 

1 1
ˆ ˆ>0 and θ θ+ − , with equal probability) 

 
 

3.3.3.2. Effect of the Covariance Structure on the Optimal Permit Trading 
Program 

 
As noted earlier, if 2 0iσ =  and 1 2cov( , ) 0θ θ = , then the benchmark program will also 

be the optimal program. However, as long as 2
1 0σ > , in general (3.12) implies that 

*t d≠ even when d is known for certain. In this section, the effects of the covariance 

structure are examined. Since an ex ante design minimizes expected abatement costs, begin 

1 'O  

1̂( )t a θ+

b  

1̂( )t a θ−  

'A  

 

0A  

 'D  

1̂a θ+

ta  
a

1̂a θ−  

0
2 2 2 22 ( )MC b c e e= + −  

1t
permitP >  

'''A  

0D  

2e  1e  
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1t
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by taking the expectation of the total pollution effect and the deadweight loss effect (when d  

is known),  

(3.21) 2
1 1 2

( )
2

[   ] [ cov( , )]t d
c

E total pollution effect tσ θ θ−
= − ,   and  

(3.22) 
2

2 2
1

( )[   ] ( )
4

t dE deadweight loss effect a
c

σ−
= − + . 

These two expected effects will help one understand how the covariance structure will affect 

the optimal trading ratio, which will then determine the optimal permit cap through (3.16). 

By adding up the two expected effects in (3.21) and (3.22), obtain from (3.14)  

(3.23)  ( ) ( ) ( ) 2 2
1 1 2, , ( ) 2cov( , ) ( )

4ante permit

t d
E TC d P TC t P t d t d a

c
σ θ θ

−⎡ ⎤ ⎡ ⎤− = + − − −⎣ ⎦⎣ ⎦  

Thus, the larger the variance and the more the cost shocks are negatively correlated, the 

larger the effects of setting t d> tend to be. Although most of the discussion focuses on the 

case where * 0t d− > , it is worth noting that it can be optimal for *t d< , which happens if 

1 2cov( , )θ θ  is very large. More details are provided in the Appendix to the chapter.  

 

3.3.4. Impact of an Uncertain Delivery Coefficient 

 The delivery coefficient is likely to be known for some pollutants (e.g. carbon 

dioxide), but there are many pollutants where delivery coefficients will be uncertain. While 

uncertain delivery coefficients clearly characterize nonpoint source pollution, many point 

sources can also have uncertain delivery coefficients; for example, wind and weather 

uncertainty can affect air pollution deposition rates. Many water pollutants exemplify this 

notion well. The fate and transport of water pollutants is subject to both stochastic elements 
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related to weather as well as scientific uncertainty concerning the physical diffusion 

process.16 This is true for both point and nonpoint water pollution sources. 

The impact of uncertain delivery coefficient is reflected in (3.12) by 1cov( , )d θ and the 

use of the expected value of d . The optimal trading ratio moves in the same direction 

as 1cov( , )d θ : 
*

1cov( , )

t

d θ

∂
=

∂
 

2 2

1

0
a

a σ
>

−
. Suppose 1cov( , ) 0d θ > , that is, if the delivery 

coefficient is expected to be high, the marginal cost of abatement by Firm 1 is also expected 

to be high. For given emissions, a high d  means more total pollution in the absence of any 

abatement. In order to reduce pollution to a fixed target, more abatement has to be 

undertaken. To ameliorate the pressure for more abatement, combining equations (3.13) and 

(3.17) implies that the trading ratio should be increased and so more emissions will be 

allowed when the delivery coefficient is high and the abatement cost is also expected to be 

high. By the same logic, when the delivery coefficient is low and the abatement cost shock 

also tends to be low (e.g., negative), a higher trading ratio will restrict the amount of 

emissions that are allowed. However, the cost savings from extra pollution is higher than the 

increased cost from more abatement and so total abatement costs are reduced on average. 

Thus, setting a higher trading ratio pays off. 

The optimal permit allocation gap with an uncertain delivery coefficient is given by 

equation (3.13). Compared to the case with a known delivery coefficient as given in equation 

(3.16), there are two additional covariance terms, which represent the covariance between 

                                                 
16 In the nonpoint source pollution literature, where one of the defining features of nonpoint source pollution is 
its inherent unobservability (Segerson, 1988), the focus has been on the trading in expected, as opposed to 
actual, emissions from a nonpoint source (e.g., Horan et al, 2001). In this case, basically, another layer of 
uncertainty would be added to the design of the permit market: both firms and the regulator only know the 
distribution of emissions given any action taken by the firms. One can show that, like the uncertainty on firms’ 
abatement costs and the delivery coefficient, this uncertainty will also be reflected in the optimal trading ratio 
and the optimal total number of permits.  
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2e and d  (see Appendix B). The terms indicate that if 2e and d are positively correlated, then 

the optimal total permit cap should be even higher and vice versa. Thus, with an uncertain 

delivery coefficient, there is an additional reason that the optimal total permit cap might 

differ from the ex ante pollution target. 

 

3.4. Conclusions 

In this chapter, I investigate the optimal design of permit trading programs in a setup 

that incorporates three key features: (1) the regulator’s objective is to minimize the expected 

abatement costs of meeting an ex ante pollution target (i.e., the pollution standard or target is 

represented as an expectation); (2) the firms’ abatement costs are ex ante stochastic, the 

regulator knows their distributions, and uses this information to set the parameters of a 

permit trading program; and (3) the delivery coefficient of emissions can be uncertain. It is 

well known that the regulator does not have to have any information on firms’ abatement 

costs for a permit trading program to minimize the cost of achieving an ex post pollution 

target. However, it is found that such information is useful in designing a trading program 

that meets an ex ante target at the lowest abatement costs. 

In addition to the result that the optimal total permit cap is in general not equal to the 

ex ante pollution target, it is found that the optimal trading ratio is not equal to the delivery 

coefficient even if the regulator has complete information on the delivery coefficient ex ante. 

The latter result arises from the dual roles that the trading ratio plays in a permit trading 

program. First, the trading ratio determines the substitution rate among emissions of different 

sources. Some studies have examined thoroughly the optimal trading ratio in situations where 

the regulator, with complete information on firms’ abatement costs, seeks to minimize the 
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sum of abatement costs and damages from pollution (e.g., Kling and Rubin, 1997). Second, 

and equally importantly, trading ratio affects the actual amount of pollution resulting from a 

trading program. This is because, when the trading ratio is not equal to the delivery 

coefficient, the total permit cap is no longer the same as the total pollution that will result 

from a trading program. When designing a program, the regulator can use the trading ratio to 

induce the desirable pollution level.  

Environmental trading programs have received increasing amount of attention in recent 

years because of their potential for cost savings relative to other policy instruments. In some 

of the emerging permit trading programs, for example, water quality trading, environmental 

targets are commonly set as an ex ante standard. The findings in this paper indicate that it is 

important that the nature of a pollution target be clarified prior to the design of a trading 

program, given the stark difference between the optimal trading programs with an ex ante 

pollution target and the optimal trading program with an ex post target.  Under an ex ante 

target, not surprisingly, the actual pollution level as the result of implementing an optimal 

trading program would fluctuate around the target. When the nature of the pollutant is such 

that some fluctuation in emissions is acceptable, using the information on the joint 

distribution of firms’ abatement costs and the environmental delivery coefficients allows the 

regulator to reduce expected pollution abatement costs.   
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CHAPTER 4. EFFICIENT REDUCTIONS IN LOCAL AND 
STATE-LEVEL NONPOINT SOURCE NUTRIENT 

POLLUTION: AN APPLICATION TO THE STATE OF IOWA 
 

4.1. Introduction 

Nonpoint source pollution from agriculture continues to be a major policy concern 

across the country. Historically, U.S. water quality regulation focused on point sources, and, 

as a result, a large portion of the nation’s waters remains too polluted for basic uses (U.S. 

EPA, 2002). Iowa is a state where nonpoint source pollution from agriculture is one of the 

most important and pressing environmental issues. Iowa’s water quality problems also 

resonate quite far downstream. Iowa Department of Natural Resources estimates that, despite 

occupying only 5 percent of land area in the Mississippi River Basin, Iowa contributes 

almost 25 percent of nitrate loadings delivered by the Mississippi River to the Gulf of 

Mexico (IA DNR, 2007). Excessive transport of nitrate-nitrogen (and other nutrients like 

phosphorus and silicate) to the Gulf of Mexico is now believed to be the primary cause for 

the Gulf of Mexico’s annual hypoxic zone, now second largest in the world.  

 Conservation practices, both involving retirement of land from agricultural 

production, and those which can be undertaken in conjunction with agricultural production 

have long been looked to as potential means of reducing negative impacts of agriculture on 

in-stream water quality. Numerous studies have modeled the effects of conservation practices 

on nitrate, phosphorus, and sediment loadings (see, e.g., Vache et al., 2002; Hu et. al., 2007; 

Secchi et al., 2007 ). Also, beneficial effects of conservation practices have been historically 

documented in efforts to improve water quality in the Great Lakes (e.g., Richards and Baker, 

2002).   
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 A number of federal and state programs exist which provide financial support for 

implementation of conservation practices on agricultural landscapes. For instance, the 2002 

Farm Bill provided up to 1.3 billion dollars in 2007 fiscal year to the Environmental Quality 

Incentives Program (EQIP), which provides cost-sharing for installation and maintenance of 

conservation practices. Given that public funds are being invested in the placement of 

conservation practices which may enhance water quality, discovering efficient ways of 

allocating conservation practices is of primary importance. Indeed, federal legislators 

recognize this fact, explicitly specifying that to “optimize environmental benefits” is one of 

the purposes of EQIP (U.S. Farm Security and Rural Investment Act of 2002, Subtitle D, 

Section 2301).  

However, in nonpoint source water pollution problems, the complex biophysical 

relationships that connect human actions to eventual environmental outcomes make solving 

for cost-efficient allocations of abatement activities across space a formidable task. This 

research integrates modern multi-objective optimization tools, water quality modeling 

capability, and data on costs of implementing conservation practices to develop a set of cost-

efficient nonpoint-source pollution reduction solutions. By combining multi-objective 

evolutionary algorithm with a hydrologic model, sets of cost-efficient solutions for the 

watersheds in the state of Iowa are obtained. By interpreting frontiers of cost-efficiency as 

total pollution cost curves, I am able to solve for least-cost allocations of nutrient loading 

reductions for problems of reducing state-level nutrient exports.  

I discuss the conservation practices selected for the achievement of nutrient loading 

reductions, both at the watershed and sub-watershed level. The set of practices considered 

includes contour farming, terraces, no-till, nitrogen fertilizer reductions, and land retirement. 



 

 
 

83

4.2. Efficient Nonpoint Source Pollution Control and the 
Optimization Algorithm 

 
Studying the least cost solution in the watershed context is fraught with difficulty.  

The effectiveness of a given conservation practice on a given field depends on the placement 

of other conservation practices, on cropping systems in the watershed, and the physical 

characteristics of the watershed location and the watershed itself. In other words, off-site 

impacts of land use on any parcel in a watershed tend to be endogenous to land use choices 

on other parcels of the watershed. However, earlier studies on the economics of water 

pollution control on watershed scale essentially followed Montgomery’s (1972) conceptual 

model of fixed, exogenous, pollution delivery coefficients. Studies by Carpentier, Bosch, and 

Batie (1998), Kramer, McSweeny, Kerns, and Stravros (1984), and Ribaudo (1986, 1989) 

assume that off-site impacts can be accurately described as a proportion of on-site pollution 

generated. Given such assumptions, it is straightforward to solve for cost-efficient allocations 

of pollution abatement using calculus-based constrained optimization techniques.  

Development of realistic, physically-based, spatially distributed hydrologic 

simulation models highlighted the fact that parcel-level off-site impacts are endogenous and 

moved the researchers dealing with nonpoint source pollution issues to incorporate some 

features of these models into their analyses. Until recently, there were essentially two types 

of studies: studies that attempted spatial optimization (but incorporated only some parts of 

the hydrologic modeling), and studies that incorporated full hydrologic simulations but relied 

on comparison of scenarios without explicit optimization. 

Of the former type, studies undertaken by Braden, Bouzaher, Johnson and colleagues 

(Braden, Johnson, Bouzaher, and Miltz, 1989; Bouzaher, Braden, and Johnson, 1990; 

Bouzaher, Braden, Johnson, and Murley, 1994) in the late 1980’s and early 1990’s are an 
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excellent example. Braden et al. (1989) attempt to find cost-efficient sediment control 

strategies, incorporating management practices of downslope parcels. The authors separate a 

watershed into hydrologically independent flow paths, and use a hydrologic model to 

estimate the impact of various management alternatives for the flow paths onto the resulting 

sediment yield. As a result, a problem of finding cost-efficient sediment reduction solutions 

becomes a variant of the knapsack model in operations research. By focusing on 

hydrologically independent flow paths, the authors are able to use dynamic programming to 

allocate the sediment reductions across flow paths.  

A study by Khanna, Yang, Farnsworth, and Onal (2003) provides another good 

example of the ingenuity that was demonstrated by researchers in attempting to cope with the 

complexity of water pollution dynamics. In this study, the authors focus on fairly narrow 

hydrologically independent flow paths that are adjacent to streams, and attempt to fully 

capture the interdependencies between upslope and downslope parcels by using a hydrologic 

model. They restrict their attention to three parcels up from a stream, and to two alternatives 

on each parcel: crop production or land retirement.  Even in the stylized model they present, 

the problem becomes highly nonlinear, and is likely to be non-convex; thus, an empirical 

simplification is used in order to make the model tractable for calculus-based optimization.  

 A major drawback to these approaches is that hydrologic models developed for the 

entire watershed are broken up; hence, one does not get the full benefit of a hydrologic 

simulation model. Therefore, the studies of the latter type utilize complete hydrologic 

simulation models and focus on several land use change scenarios that achieve the pollution 

reduction goals. For example, Secchi, Jha, Kurkalova, Gassman, and Kling (2005) consider 
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retirement of land in proximity to waterways and with high erodibility and analyze the 

resulting water quality benefits using a hydrologic simulation model.  

 Conceptually, if one could analyze all possible (and feasible) scenarios, and evaluate 

the cost and the pollution outcomes, picking cost-efficient solutions would be trivial. 

However, for any realistic watershed problem, a brute force approach appears infeasible. 

Specifically, if there are N  conservation practices possible for adoption on each field and 

there are F  fields, this implies a total of FN possible watershed configurations to compare. 

In a watershed with hundreds of fields and more than a couple of conservation practices, this 

comparison quickly becomes unwieldy. The combinatorial nature of the problem was already 

recognized by Braden et al. (1989), and was one of the reasons for Khanna et al.’s (2003) 

decision to focus on a narrow band of land around streams.  

Recently, however, several researchers have found a tool which appears to be able to 

deal with the combinatorial nature of a watershed simulation-optimization problem. 

Evolutionary algorithms provide one systematic way for searching through large search 

spaces. Evolutionary algorithms aim to mimic the process of biological evolution, which, in 

the words of Mitchell (1996), “in effect, is a method of searching for solutions among an 

enormous amount of possibilities”. Researchers beginning with Srivastava, Hamlett, 

Robillard, and Day (2002) and Veith, Wolfe, and Heatwole (2003) have used genetic 

algorithms (GA) in order to search for single cost-efficient watershed-level pollution 

reduction solutions. Before I discuss this recent strand of literature, some background on the 

philosophy and terminology of evolutionary computation is needed. The next section 

provides some (by no means complete) background on evolutionary computation and genetic 
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algorithms17. The concepts outlined below also provide the foundation behind the approach 

used in this essay.  

 

4.2.1. Evolutionary Algorithms: Brief Background and Terminology 
 

Beginning in 1950’s and 1960’s computer scientists came to a realization that the 

theory of biological evolution can be used as an optimization tool for engineering problems. 

Since the field of evolutionary computation owes its origins to observations of biological 

evolution, the terminology used has its analogs in biology, although, typically, the entities 

used to describe an optimization problem are much simpler than the real biological entities 

bearing the same name. A genome (or a chromosome) refers to a complete collection of 

genes and fully describes an individual (typically, a candidate solution in an optimization 

problem). A set of possible values that any gene can take is referred to as an allele set, or 

alphabet. Often, a genome representing a candidate solution is a one-dimensional array, or 

vector. A gene then is an element of this array and encodes a particular element of a 

candidate solution. A value of a gene comes from its allele set, also a vector. Analogous to 

haploid organisms in real biology, offspring is created from two parent individuals. During 

sexual reproduction, recombination (crossover) occurs: the offspring’s genome consists of 

portions of each of the two parents’ genomes. As in biological evolution, offspring are 

subject to mutation: a random substitution of a gene’s value with a value from its allele set.  

In many applications of evolutionary algorithms to spatial optimization (including 

this one), a genome is a vector of length F, where F is the number of spatial decision-making 

units (fields). Each element of the vector (gene) represents a field, with its value coming 

                                                 
17 See, for example, Mitchell (1996), for more history of evolutionary computation. 
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from the allele set A, and encoding a particular land use option. The allele set is typically the 

same for all genes. Table 1 presents a correspondence of evolutionary computation terms to a 

typical problem of spatial optimization of a watershed for the purpose of nonpoint source 

pollution control.  

 

Table 1. Typical correspondence of terms 
 

Evolutionary 
algorithm term 

Interpretation Corresponding term 
in a watershed 
application 

Individual (genome) Candidate solution 
vector 

A particular 
watershed 
configuration 

Gene Element of a candidate 
solution vector 

A field; a spatial 
decision-making unit 

Allele set A set of values that an 
element of a candidate 
solution can take 

A set of land 
use/conservation 
practice options 
which can be 
implemented in each 
field 

Allele A value of an element 
of a candidate solution; 
member of the allele 
set 

A particular land 
use/conservation 
practice combination 
which can be assigned 
to a field 

Population A collection of 
candidate solutions 

A collection of 
distinct watershed 
configurations 

 
 

Finally, as in biological evolution, individuals at every generation form populations, 

and are characterized by their fitness—a score which measures how well each individual is 

solving the optimization problem at hand (for example, a value of an objective function). 

Individuals possessing higher fitness scores are more likely to be selected for reproduction 
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and therefore are more likely to pass along the characteristics associated with the candidate 

solutions they represent.  

While there are many variations of evolutionary algorithms, most have the following 

elements in common: populations of individual solutions, selection for reproduction 

according to fitness levels, crossover to produce new solutions (offspring), and random 

mutation of new offspring.  

There is no strict theoretical guidance as to what are the optimization problems that 

evolutionary algorithms can attempt to solve, however, most researchers agree that the 

following characteristics of a problem make it a good candidate for evolutionary-based 

solution techniques: a) a large search space, which is not smooth or unimodal (or is not well 

understood), and b) acceptability of sufficiently good approximations (i.e., not needing to 

find the global solution exactly) (based on Mitchell (1996)) A problem of cost-efficient 

watershed management appears to fit the criteria outlined. The combinatorial nature of the 

spatial problem makes for a very large search space, and, given the complexity of the 

problem, a good approximation to the solution is in itself a worthwhile goal.  

One of the earlier applications of genetic algorithms to watershed management is one 

by Srivastava et al. (2002). The authors use a genetic algorithm to allocate 45 fields to 15 

mutually exclusive best management practices (BMPs), combine water pollution and 

agricultural net returns into the fitness score, and discover a spatial allocation that reduced 

pollutant loads by 56 percent relative to the baseline of the worst-case scenario, while 

simultaneously increasing net returns by 109 percent. 

Veith, Wolfe, and Heatwole (2003) minimize costs subject to sediment reduction 

target by proceeding lexicographically – first minimize pollution; then, when pollution target 
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is reached, minimize costs. Cost minimization is done under an additional constraint of 

“equitable” distribution of control costs over farms. In a later study, Veith et al. (2004) 

compare solutions obtained using a genetic algorithm to solutions obtained by targeting land 

based on slope, and find that optimization reduces costs of sediment reduction from $42 per 

kg/ha to $36 per kg/ha. Such findings emphasize the fact that for any watershed problem, the 

returns to using a systematic search technique such as a genetic algorithm are likely to be 

significant.  

 

4.2.2. Multiobjective Problem and Pareto Optimality 
 

Clearly, efficient solutions must lie on a Pareto-efficient frontier in the pollution-cost 

space. Multiple pollutants may be of concern; then, for any solution on the Pareto-efficient 

frontier, it is not possible to identify an alternative solution where either (a) control costs can 

be lowered without increasing any of the pollutants’ loadings; or, (b) any pollutant’s loading 

is lowered without increasing control costs or any other pollutants’ loadings. Thus, if one 

could identify the frontier itself, cost-efficient solutions for given pollution reduction targets 

could simply be read off the frontier. Given the difficulties outlined above that prevent 

finding even a single cost-efficient solution for a watershed, how can one hope to find the 

entire set?18 Fortunately, one particular class of search algorithms appears to be particularly 

useful for identifying Pareto-optimal frontiers for competing objectives. Multiobjective 

optimization evolutionary algorithms (MOEA’s) provide a particularly useful way to search 

for entire sets of cost-efficient nonpoint source pollution reduction strategies.  

While most applications of evolutionary algorithms to the problem of watershed 
                                                 
18 Braden et al. (1989) solve the cost minimization problem for a wide range of sediment reduction targets, and 
are thus able to provide a full tradeoff curve. Khanna et al (2003) solve for several sediment reduction targets, 
and can identify several points on the curve.  
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management have been limited to finding single cost-efficient pollution reduction 

solutions, recently, some researchers have also utilized multiobjective methods. Muleta 

and Nicklow (2002) combine an MOEA with a hydrologic model to look for Pareto-optimal 

frontiers for each spatial decisionmaking unit in the watershed. In the later study, Muleta and 

Nicklow (2005) subsequently focus more on the watershed scale, and develop an 

approximation a genetic algorithm to identify the spatial units that would maximize the 

benefit to cost ratio (where benefits are measured as sediment reductions), subject to an 

exogenously specified constraint of only 10 percent of land in the watershed being allocated 

for sediment reduction. Lant, Kraft, Beaulieu, Bennett, Loftus, and Nicklow (2005) model a 

watershed as a complex adaptive human ecosystem and incorporate an evolutionary 

algorithm to provide an approximation to the optimal set of tradeoffs between an index of 

ecosystem services and returns from agricultural production for a small watershed in Illinois 

by considering land retirement as an option at farm scale. Perhaps the most closely related 

study is one by Bekele and Nicklow (2005), where the authors applied a multiobjective 

evolutionary algorithm to search for watershed-level Pareto-optimal solutions in the space 

defined by nitrogen, phosphorus, sediment, and economic net returns. The authors’ focus, 

however, was mostly on the choice of crop-tillage combinations, and did not consider other 

conservation practices. Arabi, Govindaraju, and Hantush (2006), on the other hand, 

considered several structural conservation practices, including terraces and grassed 

waterways in their application of genetic algorithms to optimizing the placement of 

conservation practices. The authors, however, aggregate multiple environmental objectives 

into a single weighted index in order to be able to use single-objective genetic algorithm. The 

current work offers both methodological and policy contributions. 
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 Methodological contributions to the growing area of watershed-level simulation-

optimization literature which relies on evolutionary computation include a) preservation of 

the population of Pareto-nondominated individuals; b) addition of diversity preservation by 

weighting individuals based on their location in the objective space, and, c) careful 

construction of the allele set, designed to capture the non-mutually exclusive nature of some 

conservation practices. I discuss these in greater detail in the next section which describes the 

algorithm implementation. Also, previous studies do not make an explicit connection 

between Pareto-efficient frontiers and total pollution costs. But, a straightforward 

interpretation of Pareto-efficient frontiers as total pollution cost curves bridges the gap 

between traditional environmental economics theory which operates with total and marginal 

abatement cost curves, and problems of nonpoint source pollution.  

 Policy contributions are also important, however. Previous studies which utilize 

evolutionary algorithms do so on a much smaller geographic scale. Certainly, none of the 

studies I am aware of take up the task of a state-wide analysis. This is the kind of scale which 

is likely to get attention of policymakers and stakeholder groups.   

 

4.3. Application: The Watersheds in the State of Iowa 
 

This section describes the application of an evolutionary algorithm to the hydrologic 

representation of the state of Iowa. First, I describe the algorithm, the logic of fitness 

assignment, and the allele set. I then briefly describe the watersheds under study, and turn to 

the hydrologic model, SWAT. Data needed for the hydrologic model and cost assignment is 

discussed next. The section concludes with the presentation of the overall flow of simulation-

optimization procedure, and the setup of the algorithm run.  
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4.3.1. Multiobjective evolutionary algorithm 
 

In this application, I consider a three-objective minimization problem: that is, for 

every watershed under study, I attempt to minimize (1) average annual nitrate-nitrogen (NO3-

N) loadings at the watershed outlet19; (2) average annual phosphorus (P) loadings at the 

watershed outlet, and, (3) the total cost of controlling in-stream nutrient pollution. 

Environmental objectives represent the two main nutrients (nitrogen and phosphorus) which 

may be responsible for both local and downstream water quality problems, with nitrates 

typically being the main source of in-stream nitrogen. Measure of control cost is, of course, 

necessary to quantify the efficiency of alternative patterns of conservation practices.  

The following section describes the logic of a multiobjective optimization problem 

and a particular MOEA used in this paper. A general multiobjective optimization problem 

can be described as a vector function f that maps a tuple of m parameters (decision 

variables) to a tuple of n objectives (Zitzler and Thiele, 1999). Framing the problem as one 

of minimization (keeping in mind the application to “bads” such as cost or pollution), a 

typical multiobjective optimization problem is to minimize 

(4.1) ( )1 2( ) ( ), ( ), , ( )nf f f f= =y x x x x…  

 

 

subject to  

(4.2) 1 2( , , , )mx x x X= ∈x …  

 

                                                 
19 The term “nitrate-nitrogen” is used to specify the source of nitrogen. In the discussion following, for 
simplicity, I will use “nitrate”, or NO3. The mass of loadings is expressed, however, as the mass of element N in 
the nitrate form.  
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(4.3) 1 2( , , , )my y y Y= ∈y … , 

 

where x is called the decision vector, X is the parameter space, y is the objective vector, and 

Y is the objective space. In this application, the objective space is defined by nitrate-P-cost 

space. The set of solutions to the multiobjective optimization problem consists of all decision 

vectors that are Pareto-optimal. A decision vector a is Pareto-optimal if there is no 

X∈a such that ( ) ( )i if f≤a a , {1,2, , }i n∀ ∈ … , and {1,2, , }: ( ) ( )j jj n f f∃ ∈ <a a… . The 

decision vectors that are nondominated within the entire search space constitute the Pareto-

efficient set, or frontier. Over the last decade, several MOEA’s have been suggested (see, 

e.g., Deb et al., 2000). One advantage of all MOEA’s is that they are capable of searching for 

multiple Pareto-efficient solutions in a single optimization run.  

 In this paper, I use a modification of the Strength Pareto Evolutionary Algorithm 2 

(SPEA2), proposed by Zitzler, Laumanns, and Thiele (2002).  As in genetic algorithms (GA), 

the search process starts with a population of candidate solutions from which a new 

population is created by the process of selection, crossover, and mutation. Unlike in the GA, 

the fitness score of each individual i in the population is now a function of how many other 

individuals in the population i dominates (in the sense of Pareto) and by how many 

individuals is i dominated by. Furthermore, the algorithm takes into account the degree of 

“crowding” around i  in order to preserve the diversity in the population and to cover as 

much as possible with the resulting Pareto-optimal frontier. The following discussion is 

framed in terms of fitness score minimization, following Zitzler et al. (2002).   

 To be specific, an individual i is assigned a strength value ( )S i  which equals to the 

number of solutions it dominates: 
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(4.4) ( ) { | }t tS = ∈ ∪ ∧i j j P P i j , 

where tP is the original population at generation t ,  tP is the temporary population created, 

⋅ denotes the cardinality of a set, and  corresponds to the Pareto dominance relation. On 

the basis of this definition of strength values, the raw fitness for individual i is calculated:  

(4.5) 
,

( ) ( )R S
∈ ∪

= ∑
t tj P P j i

i j . 

Thus, the raw fitness of an individual is determined by the strength of the dominators 

(individuals that dominate i ). Then, the raw fitness value of ( ) 0R =i  corresponds to a 

nondominated individual, while a high raw fitness value corresponds to an individual that is 

dominated by many other individuals (which in turn dominate other individuals). In light of 

this interpretation, fitness minimization used in the formulation of the algorithm makes 

intuitive sense. Figure 1 demonstrates the fitness assignment process and highlights the fact 

that individuals that are located in the “crowded” areas of the objective space get a higher 

raw fitness value, and therefore are less likely to be selected into a future generation. For 

instance, point F dominates points B, C, and A, and therefore gets a strength value of 3. Since 

point F is nondominated, its raw fitness is zero. Point D, on the other hand, dominates only 

A, and thus gets the strength value of one, but is dominated by point G, which itself 

dominates 3 points. Thus, point D gets the raw fitness value of 3. Point A is the ‘worst’ point 

in the objective space, as it is associated with the highest cost and pollution levels. It itself 

does not dominate any other points, but is dominated by points F, G (with a strength value of 

3), H (with a strength value of 2), D (with a strength value of 1), and E (with a strength value 

of 1). Therefore, the raw fitness value for point A is 3+3+2+1+1=10. Recalling that in this 
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algorithm, individuals with the lower fitness scores are considered “more fit”, it is clear that 

individual A is far less likely to survive into the next generation than, for example, point F.  

 Such assignment of raw fitness scores also takes into account the relative 

“isolatedness” of candidate solutions in the objective space. Conceptually, one would like the 

resulting Pareto-optimal frontier to span a large portion of the objective space. Therefore, 

candidate solutions on the interior of the frontier are somewhat less preferred than those close 

to the edges. In the figure, for example, while both points B and C are dominated, point C is 

dominated by both points F and G by virtue of its “interior” location in the objective space; 

whereas point B is dominated only by point F and not by point G: its pollution level is lower 

than that of G. As a result, point B has a raw fitness score of 3 as opposed to the score of 6 

for C, and its “genetic makeup” is therefore less likely to be eliminated in the subsequent 

generations.  

Finally, while the raw fitness score assignment outlined above incorporates some 

information on the location of the solutions in the objective space, additional density 

information is also incorporated into the calculation of a fitness score. Density estimation 

technique is used to further differentiate between individuals that are located in the 

“crowded” areas of the objective space (less preferred) from those located in the relatively 

sparse areas of the objective space (more preferred). Density estimation is a way to preserve 

diversity in the Pareto frontier (Deb, 2001). The density estimation technique used in SPEA2 

is an adaptation of the k -th nearest neighbor method, where the density at any point is a 

decreasing function of the distance to the k -th nearest data point. For each individual i , I 

calculate the distances (in objective space) to all the individuals in the current population, 
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and store them in a list. After sorting the list in an increasing order, the k -th element yields 

kσ i , the distance.20   

 
 

 
Figure 1. Raw fitness assignment in SPEA2 
 

 

An additional measure of distance was incorporated into the algorithm in order to 

preserve diversity in the objective space. In each generation, the distance from a given 

individual to the center of the cube defined by the endpoints of the frontier was established. 

The purpose of this calculation is to further reward individuals who are located closer to the 

edges of the frontier, and thus prevent loss of diversity.  This distance is denoted as cσ i . 

The density is then computed as:  

                                                 
20 k  is chosen to equal to the square root of the sum of the initial population size and the size of the temporary 
population.  
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(4.6) 1( )
0.25 2k cD

σ σ
=

+ +i i

i , 

 

where 2 is added to the denominator to ensure that the value of the density is greater than 

zero and less than one.  

 Given the raw fitness score and the estimated density, the fitness of an individual i is 

calculated as:  

(4.7) ( ) ( ) ( )F R D= +i i i . 

This is the fitness score used for selecting individuals in the algorithm implemented.21 

 

4.3.2. The Hydrologic Model 
 

A process-based hydrologic simulation model, the Soil and Water Assessment Tool 

(SWAT) (Arnold et al., 1998; Arnold and Forher, 2005; Gassman et al., 2007), is used in this 

study to estimate changes in water quality due to changes in conservation practices. SWAT is 

a hydrologic and water quality model developed by the USDA’s Agricultural Research 

Service (ARS). It is a long-term continuous watershed scale simulation model that operates 

on a daily time step and is designed to assess the impact of different management practices 

on water, sediment, and nutrient yields. The model is physically based, computationally 

efficient, and capable of simulating a high level of spatial detail. Major model components 

include weather, hydrology, soil temperature, crop growth, nutrients, pesticides, and land 

management. In SWAT, a watershed is divided into multiple subbasins, which are further 

subdivided into unique soil/land use characteristics called hydrologic response units (HRUs). 

                                                 
21 In order to preserve the logic of the original GA library which was set up for fitness score maximization, I use 
K-fitness score as the actual fitness score used by the program, where K=100000.  
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The water balance of each HRU is represented by four storage volumes: snow, soil profile, 

shallow aquifer, and deep aquifer. Flow generation, sediment yield, and pollutant loadings 

are summed across all HRUs in a subbasin, and the resulting loads are then routed through 

channels, ponds, and/or reservoirs to the watershed outlet. For a more detailed description of 

the model, see Gassman et al. (2007), or Neitsch et al. (2005). 

 In terms of the evolutionary algorithm, each HRU is a gene, and a particular 

combination of land use and conservation practices simulated by the SWAT model for each 

HRU is an allele. The next section describes the allele set and the means by which each allele 

is simulated by the hydrologic model.  

 

4.3.3. The Allele Set 
 

The set of mutually exclusive land use options which are to be simulated on each of 

the hydrologic response units (HRUs) in the watershed comprises the allele set. The allele set 

is formed by interacting in-field conservation practices with a tillage mode and a presence or 

a lack of a nitrogen fertilizer reduction. In-field conservation practices considered are contour 

farming, terraces, grassed waterways, and land retirement. No-till and a 20 percent reduction 

in the rate of nitrogen fertilizer application are also considered. In reality, many conservation 

practices can be implemented simultaneously on a given field. For example, terraces could be 

present on field together with no-till system, or a grassed waterway. I attempt to capture such 

interactions subject to modeling constraints. For example, SWAT cannot, at the present time, 

simulate a terrace and a grassed waterway in the same HRU. It can, however, simulate a 

combination of fertilizer reduction, no-till, and a grassed waterway. Land retirement 

(modeled as establishment of permanent grass cover) is not interacted with any other 
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practices. All other practices are modeled in conjunction with a two-year corn-soybean 

rotation, which is assumed to carry no incremental cost. Costs of conservation practices are 

discussed below. As a result, 17 mutually exclusive combinations make up the allele set 

(Table 2).  

 
Table 2. The allele set 
  

Allele 
number 

 
Allele name 
 

Allele Description 
 

1 Land retirement Retirement of land from production; establishment 
of permanent grass cover 

2 CT  Conventional tillage (less than 15% of crop residue 
remaining) 

3 CT RF Conventional tillage, 20% nitrogen fertilizer 
application reduction 

4 NT No-till (more than 30% of crop residue remaining)

5 NT RF No-till, 20% nitrogen fertilizer application 
reduction 

6 CT Terraced Conventional tillage, establishment of parallel 
terraces 

7 CT Terraced RF  
Conventional tillage, establishment of parallel 
terraces, 20% nitrogen fertilizer application 
reduction 

8 NT Terraced  No-till, establishment of parallel terraces 

9 NT Terraced RF No-till, establishment of parallel terraces, 20% 
nitrogen fertilizer application reduction 

10 CT Contour Conventional tillage, contour farming 

11 CT Contour RF Conventional tillage, contour farming, 20% 
nitrogen fertilizer application reduction  

12 NT Contour No-till, contour farming 

13 NT Contour RF No-till, contour farming, 20% nitrogen fertilizer 
application reduction 

14 CT GW  Conventional tillage, establishment of grassed 
waterways 

15 CT RF GW 
Conventional tillage, establishment of grassed 
waterways, 20% nitrogen fertilizer application 
reduction 

16 NT GW No-till, establishment of grassed waterways 

17 NT RF GW No-till, establishment of grassed waterways, 20% 
nitrogen fertilizer application reduction 
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Each of the 17 alleles can be applied to an HRU and simulated by SWAT. SWAT 

represents in-field and management practices in several different ways. Nitrogen fertilizer 

reductions are accounted for by reducing the application rate in the management table. In-

field conservation practices are simulated by adjustment of SWAT parameters, namely the 

‘P-factor’ and Manning’s N coefficients. The effect of all in-field conservation practices is 

accounted for by adjusting the “support practice (P) factor,” which is one of the factors used 

in the original Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1978) and also 

in the Modified USLE (MUSLE) equation that is used in SWAT. The P factors used for 

contouring and terraces are based on values reported by Wischmeier and Smith (1978) as a 

function of slope range (Table 3). The choice of a P factor value of 0.4 for grassed waterways 

is based on the methodology used by Gassman et al. (2006). The effect of grassed waterways 

was further accounted for in SWAT by adjusting the Manning’s N values.22 No-till is 

simulated by removing tillage machinery passes in the SWAT management table, as well as 

by adjusting the Crop Type Factor (“C-factor”) in the Modified USLE, where the magnitude 

of adjustment varies by crop and tillage system.23 

 
Table 3. P-factor values for contouring, terraces, and grassed waterways 
 

Slope ranges Contouring Terraces Grassed Waterways 

1 to 2 0.6 0.12 0.4 
3 to 5 0.5 0.1 0.4 
6 to 8 0.5 0.1 0.4 

9 to 12 0.6 0.12 0.4 
13 to 16 0.7 0.14 0.4 
17 to 20 0.8 0.16 0.4 
21 to 25 0.9 0.18 0.4 

                                                 
22 Manning’s N value was set to 0.24 for HRUs with grassed waterways.  
23 C-factor is reduced from 0.3 for conventional tillage for both corn and soybeans to 0.04 for no-till for corn 
and to 0.08 for no-till for soybeans.  
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Further, the effect of terraces was simulated by adjusting the slope length parameter in 

accordance with American Society’s of Agricultural and Biological Engineers standards 

(2003). 

 

4.3.4. Iowa Watersheds Under Study 
 

Since the SWAT model is a watershed-based model, the state of Iowa (a political 

entity) has to be delineated in hydrologic, watershed, terms. To that end, the state is divided 

into 13 major watersheds, as shown in Figure 1, based on the criterion that the watershed 

outlet should drain watersheds that either lie entirely or largely within the political 

boundaries of Iowa. Delineation of each watershed into smaller spatial units required for the 

SWAT simulations consists of two steps: (1) subdividing each major watershed into smaller 

units such as U.S. Geological Survey (USGS) 8-digit Hydrologic Cataloging Unit (HCU) 

watersheds (Seaber et al., 1987) or smaller 10-digit watersheds (as described in  

 

Figure 2. Hydrologic representation of the state of Iowa 
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http://www.igsb.uiowa.edu/gsbpubs/pdf/WFS-2001-12.pdf), and (2), further subdividing 

subwatersheds into HRUs.  

Larger 8-digit subwatersheds were used for the Des Moines and Iowa River 

Watersheds (Figure 2), which were the two largest watersheds included in the analysis. The 

smaller 10-digit subwatersheds were used for those watersheds that consist of 1 to 3 8-digit 

watersheds (Figure 2), to avoid potential distortions in predicted pollutant indicators when 

only a small number of subwatersheds are used in a SWAT application, as discussed by Jha 

et al. (2004). 

 

4.3.5. SWAT Data Inputs 
 

The hydrologic model requires numerous data inputs, including weather, soil, 

topographic, and land use, and agricultural management data. Historic data on cropping 

patterns is necessary for model calibration and validation.  

Historical precipitation, maximum temperature, and minimum temperature data 

obtained from Iowa Environmental Mesonet (http://mesonet.agron.iastate.edu/COOP/) were 

used for the SWAT simulations. The main data source for the land use, soil, and management 

information is the USDA 1997 NRI database (Nusser and Goebel, 1997; 

http://www.nrcs.usda.gov/technical/NRI/), which contains soil type, landscape features, 

cropping histories, conservation practices, and other data for roughly 800,000 U.S. 

nonfederal land “points” including 23,498 in Iowa. Each point represents an area that is 

assumed to consist of homogeneous land use, soil, and other characteristics, which generally 

ranges from a few hundred to several thousand hectares in size. Table 4 provides the 

characteristics of each watershed. 
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The NRI clusters serve as HRUs in the SWAT simulations. All of the points within a 

given category were clustered together within each 8-digit watershed for the Des Moines and 

Table 4. Characteristics of the 13 study watersheds 

 
Key Land Uses (% of watershed) 

 
Drainage Area 

Watershed 
# of Delineated 
Subwatersheds 

Number of 
HRUs mi2 km2 Cropland

Grassland 
(CRP and 
Pasture) Forest Urban

Boyer 5 425 1,089 2,820 68 26 4 2 
Des Moines  9 1,223 14,477 37,496 71 16 6 7 
Floyd 5 524 917 2,376 84 13 0 3 
Iowa  9 2,055 12,663 32,796 77 12 4 8 
Little Sioux 10 1,879 3,553 9,203 86 13 1 0 
Maquoketa 10 2,041 1,864 4,827 56 32 10 3 
Monona 5 379 947 2,452 78 19 2 1 
Nishnabotna 11 2,997 2,980 7,718 84 15 1 0 
Nodaway 7 593 792 2,051 52 41 5 3 
Skunk 12 3,284 4,342 11,246 69 25 5 1 
Turkey  9 1,640 1,699 4,400 56 25 16 3 
Upper Iowa  7 664 992 2,569 51 26 19 3 
Wapsipinicon 11 3,141 2,542 6,582 77 19 3 1 
 

 

Iowa River Watershed simulations, except for the cultivated cropland. For the cultivated 

cropland, the NRI points were first aggregated into different crop rotation land use clusters 

within each 8-digit watershed, based on the NRI cropping histories. Details on creating 

HRUs are provided in Kling, Rabotyagov, Jha, Feng, Parcel, Gassman, and Campbell 

(2007).24  

To estimate the water quality changes, it is necessary to calibrate SWAT to existing 

baseline data on the watersheds and to accurately represent the current land use, land 

management, and weather conditions of the region using data obtained from several sources. 

                                                 
24 As a result, HRUs can only be identified spatially up to the subbasin level (i.e., 8-digit HUC for Des Moines 
River and Iowa River Watersheds, and 10-digit HUCs for other watersheds). This limits the spatial resolution of 
the algorithm results also to the subbasin level.  
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A calibration and validation exercise was performed with SWAT2005 for all 13 Iowa 

watersheds. Details on model calibration and validation are provided in Appendix B of Kling 

et al. (2007). Calibration and validation showed that the SWAT model performed very well, 

especially for streamflow, because of the abundance of measured data availability. Water 

quality components were also calibrated but with lower confidence because of a lack of 

sufficient measured data. However, total simulated state-level nitrate loadings match fairly 

closely the estimates obtained from measured data (Libra, Schilling, and Wolter, 1999; Libra, 

Wolter, and Langel, 2004). 

 

4.3.6. Cost Data 
 
 Estimates of costs of each of the alleles were collected from several sources. The 

costs of contour farming were gathered from the report by Kling et al. (2005), while the cost 

of nitrogen fertilizer reduction was estimated based on agronomic yield response data 

(Sawyer et al., 2006). The costs of the other practices (terraces, grassed waterways, no-till, 

land retirement) were calculated from data which Kling et al. (2007) collected from various 

federal and state conservation program sources. County-level cost estimates were converted 

into subbasin-level costs by weighting them by the area of a watershed subbasin contained in 

the county.  

 Estimates of costs for terraces (per ft) and grassed waterways (per acre) were 

converted into costs per protected acre and annualized over their useful life using a 5 percent 

rate of interest. For terraces, a 25-year useful life was assumed, and, based on Kling et al.’s 
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(2005) results, it was assumed that 166.67 ft of terrace protect one acre or cropland.25 For 

grassed waterways, it was assumed (as in Secchi et al. (2007)), that 2 percent of an acre 

allocated to a grassed waterway protects the entire acre; useful life was assumed to be 20 

years.  

 Table 5 below provides summary statistics for the costs, as well as the source of data. 

Details on original sources and computation of estimates can be found in Kling et al. (2007), 

Secchi et al. (2007), and Kling et al. (2005). 

 
Table 5. Summary of the cost data 
 

Practice Mean, $/acre Standard 
Deviation, $/acre 

Source 

Land Retirement 148.1 21.7 Kling et al. (2007) 
Terraces   36.6 15.8 Kling et al. (2007) 
Grassed 
Waterways    5.5   1.3 Kling et al. (2007) 

No-till  16.8   8.1 Kling et al. (2007) 
Contour farming    6.6 - Kling et al. (2005) 
N fertilizer 
reduction     3.9 

 
  1.7 

 

Sawyer et al. 
(2006); Libra, 
Wolter, and Langel 
(2004) 

 
  

In estimating the cost of nitrogen fertilizer reductions, I focus on the revenue effect 

by utilizing the latest available agronomic studies which estimate corn yield response to 

nitrogen fertilizer under different rotation schemes (Sawyer et al., 2006). Coupled with the 

best available data on nitrogen fertilization rates for Iowa (Libra et al., 2004), yield response 

curves (available at http://extension.agron.iastate.edu/soilfertility/nrate.aspx ) are used to 

                                                 
25 In Kling et al. (2005), this conversion factor was a low-cost estimate. Using a high-cost conversion factor 
would, in many subbasins, resulted in a per acre annualized cost of terracing larger than the estimated cost of 
retiring land from production altogether.  
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arrive at the yield effect of reducing fertilizer application by 20 percent in a corn-soybean 

rotation. Predicted yield reductions are multiplied by the price of corn and divided by two to 

generate an average cost for corn-soybean crop rotation.26 An example of yield reduction 

computation is given in the Appendix to this chapter. To the extent that farmers may over-

apply nitrogen fertilizer and not experience appreciable yield effects as a result of fertilizer 

reductions (e.g., Yadav et al., 1997), yield-based revenue loss may overstate the cost of 

fertilizer reductions. On the other hand, since such estimate does not account for other costs 

farmers may incur if they reduce their fertilizer applications, such as the costs of establishing 

a nutrient management plan (e.g., Secchi et al. (2007)), or costs associated with preferences 

for risk (e.g., Sheriff, 2005), it may understate the true costs27.  

 The cost of land retirement is proxied by the most recently available data on cropland 

rental rates for Iowa, which represent the opportunity cost of taking land out of production 

(Edwards and Smith, 2007). County-level land rent estimates were converted into subbasin-

level data by weighting county estimates by the share of subbasin area located in a county. 

 

4.4. Algorithm Initialization and Progression 
 

Now that all the components of the simulation-optimization algorithm (a specific 

evolutionary algorithm, allele set, hydrologic simulation model, input data), optimization 

runs can be conducted. A publicly available C++ library of genetic algorithms, GALib, 

originally developed by Wall (1996), was built upon to implement the logic of the 

                                                 
26 Price of corn is assumed to be $3.54/bushel, which reflects the Chicago Board of Trade May 2007 corn 
futures price. This time interval was chosen for the measurement of the corn price in order to match the survey 
period when the information on cash rental rates was collected.   
27 Raw field-trial data that formed the basis of the polynomial yield response function found in 
http://extension.agron.iastate.edu/soilfertility/nrate.aspx was not available, and precluded testing of various 
functional forms for yield response (as in Yadav et al., 1997). Polynomial yield response curves may also 
overstate the yield effect, and thus, the cost estimate.  
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evolutionary algorithm described above. Implementation of the evolutionary algorithm was 

coupled with the i_SWAT program (Campbell, 2006), which manages SWAT model inputs 

and outputs. 

The algorithm starts with an initial population of 40 individuals. Unlike previous 

studies (e.g., Bekele and Nicklow, 2005), I do not create initial population in a purely random 

fashion. Instead, I “seed” the initial population with 17 individuals which represent a uniform 

application of each of the 17 alleles on all the cropland in a watershed. Figure 3 presents the 

population for the initial generation for the Iowa River Watershed. Individuals marked as 

triangles are Pareto-nondominated, while the ones marked with a cross are dominated.  

The remaining 23 individuals in the initial population are created by randomly 

assigning one of the 17 alleles to an HRU (gene). The effects of seeding are discussed in 

greater detail below; however, I find that it ensured a very good coverage of the objective 

space. This has both benefits in terms of the progression of the evolutionary algorithm 

(ensuring diversity), as well as in terms of interpretation of the results (the allele set spans the 

entire policy-relevant range of costs: from zero cost with no conservation practices to the 

highest possible cost of retiring all cropland from production).  

It should be noted that since each cropland HRU in a watershed is assigned one of the 

alleles from the allele set, baseline crop choices and baseline conservation practices are 

replaced by the selected allele. This represents the algorithm allocating conservation 

practices on the landscape as if working with a “blank slate”. This is true for every baseline 

conservation practice, with the exception of pasture and CRP land, which is left unchanged. 

This “blank slate” implementation has its advantages and disadvantages. Given that the 

baseline set of conservation practices is likely to be placed in an inefficient (relative to the 
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objectives in this study) fashion, allowing the algorithm to freely place conservation practices 

to cropland HRUs is advantageous. The disadvantages include missing the effects of 

 

 

Figure 3. Initial population, Iowa River Watershed 

 

alternative crop rotations present in the baseline data, and a somewhat lessened ability to 

compare the costs of a solution discovered in the optimization process with the costs of 

baseline practices.28,29  

                                                 
28 A two-year corn-soybean rotation (staggered randomly as either a corn-soybean or a soybean-corn rotation) 
provides the basis for 16 of 17 alleles used in this study. This rotation is by far the most common rotation 
observed in the baseline data, and carries environmental benefits relative to monoculture cropping. Other 
rotations (most notably, corn-oats-alfalfa rotation) were present in the baseline, but mostly in smaller 
watersheds. An alternative allele set, including this rotation, was developed. One issue with allowing the 
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 The individuals in the initial population are all evaluated for their nitrate, P, and cost 

impacts. Fitness scores are then assigned to each individual based on its Pareto-ranking 

relative to other individuals, as well as based on its location in the objective space. 

Individuals are then selected for mating using a fitness-proportional selection method30, and 

uniform single-point crossover operator is applied to create new individuals. Each of the 

genes is subject to random mutation (with probability 0.003), whereby any allele value could 

be chosen for that gene. As a result, 12 new individuals are created. Pareto-ranking and 

fitness score assignment is done again, and Pareto-dominated individuals are deleted from 

the population. In the subsequent generation, the newly created population (consisting of 

Pareto-non-dominated individuals) is used again for the creation of new individuals using 

operators of selection, crossover, and mutation, and the process continues. The size of the 

population thus grows dynamically as new non-dominated solutions are created31. For the 

watersheds under study, the target number of generations was set to about 250. This exceeds 

a typical number of population evaluations conducted in the related literature (e.g., Bekele 

and Nicklow (2005) used 50, while Arabi et al. (2006) limited optimization runs to 2000 

hydrologic model evaluations).  

                                                                                                                                                       
algorithm to choose among multiple rotations is producing a good estimate for the cost of a rotation. Extension 
budgets were used to obtain cost estimates for a corn-oats-alfalfa rotation. Given that this rotation was predicted 
to carry an incremental cost which was large relative to the cost of most conservation practices, and the fact that 
this rotation was not observed in most of Iowa, this expanded allele set was not used to generate results 
presented here.  
29 An alternative, “baseline-aware”, implementation, could leave all crop rotations in place, and place 
conservation practices ‘on top of’ existing baseline practices. This approach circumvents the necessity to obtain 
crop rotation cost estimates, and is implemented for the study of the Upper Mississippi River Basin in the next 
chapter.  
30 Another term is “roulette-wheel selection” where the probability of an individual being selected for 
reproduction is proportional to the ratio of its fitness score to the sum of the fitness scores of individuals in the 
current population. Linear scaling of fitness scores (see Wall (1996) for details) was used to correct for effects 
of fitness score magnitudes.  
31 Thus, the algorithm satisfies the conditions to be of Rudolph and Agapie’s (2000) “Base Algorithm VV” 
type. The authors show that for all evolutionary algorithms of this type, all Pareto-optimal solutions will be 
members of the population of non-dominated individuals in finite time with probability 1.  
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 Figure 4 below provides a graphic depiction of the basic flow of the algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Algorithm flow 
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4.5. Results and Analysis 
 

The outcome of each simulation run is an approximation to the Pareto-efficient frontier 

in nitrates-phosphorus-control cost space. Figure 5 presents the final population for the Iowa 

River Watershed, as two-dimensional, and three-dimensional, projections. The left bottom 

panel in the two-dimensional image represents a projection of the frontier in nitrates-cost 

space, and the right bottom panel presents a projection in the phosphorus-cost space, while 

the top panel presents the nitrate-phosphorus projection. On the watershed level, Pareto-

efficient frontier approximations summarize a variety of tradeoffs and can be used to find 

individuals satisfying particular nutrient reduction goals at least cost or finding efficient (and 

feasible) nutrient reduction combinations for a given level of control cost.  

 

4.5.1. Pareto-efficient Frontiers as Total Abatement Cost Curves 
 

The empirical approximations of the Pareto-efficient frontiers in nitrates-P-cost space 

can be thought of as total pollution cost curves, relating pollution (nutrient loadings) to 

control cost. Thus, looking for efficient nonpoint source pollution reduction strategies using 

multiobjective evolutionary algorithms produces a set of data which can be easily translated 

to represent pollution abatement cost curves for each of the watersheds under study.  

A final generation from the evolutionary algorithm run results in a data set containing 

nitrate loadings, P loadings, and estimated control cost. I estimate a relationship between 

pollution loadings and control cost in order to obtain a convenient mathematical 

representation of the total pollution cost curve for each of the 13 watersheds in the state. 

 A semilog approximation to each of the frontiers was developed, resulting in a fitted 

cost curve ˆ ( , )i i iC N P for each watershed, 1,...,13i = , where N is nitrate loading at the outlet, 
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and P is total phosphorus loading at the watershed outlet. Figure 6 presents an example of 

the fitted cost surface for the Iowa River Watershed.32  

 
 

 

Figure 5. Pareto-efficient frontier approximations, Iowa River Watershed  

 

Cost curves differ across the watersheds (due both to variation in per unit costs of 

conservation practices and hydrologic and geographic characteristics of each watershed). 

Thus, if a policy goal is to reduce state-level nutrient exports downstream, then a cost-

minimizing solution will likely allocate loading reduction burdens unequally among the 

watersheds, exploiting differences in marginal abatement costs.  

 Given that multiple nutrient pollutants are of concern, two sets of problems are 

solved. One involves reducing state-level nitrate exports, while the other involves reducing 

state-level phosphorus export. Reducing total nitrate loadings which ultimately make their 

way to the Gulf of Mexico has long touted as an important step in reducing both the 

                                                 
32 ( )2 2( , ) exp 20.49808 0.00073216 0.0378 0.00000112 0.00133 0.00027571C N P N P N P NP= − + + + −  is the fitted 

cost curve. R2=0.82. Nitrate and phosphorus loadings are scaled by dividing by 100,000.  
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likelihood and the severity of Gulf Hypoxia (CENR, 2000).  Policy relevance of reducing 

statewide nutrient loadings for both nitrates and phosphorus is highlighted by recent research 

 

Figure 6. Fitted total pollution cost curve for the Iowa River Watershed 

 

related to the Gulf of Mexico hypoxic zone, which suggests that total phosphorus loadings to 

the Gulf may also be a contributing factor to the creation of hypoxic conditions (e.g., 

Lohrentz et al., 1992, 1997, 1999; Ammerman et al., 2004; Sylvan et al., 2006).  

 

4.5.2. State-level Nutrient Abatement Cost Curves 
 

I solve for cost-minimizing allocation of loading reductions to reduce statewide 

nitrates under two scenarios of treating the other nutrient, phosphorus. In the first scenario, 

cost of total nitrate loading reductions is minimized subject to the constraint that each 
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watershed’s P loadings remain at or below baseline levels. This represents a case where the 

state’s goal is to meet its downstream environmental obligations of reducing nitrates, and 

improvements in local (watershed-level) P loadings are not required. The second scenario 

incorporates local water quality objectives by requiring that each watershed’s P loadings be 

reduced by at least 30 percent relative to baseline.33 In addition, both sets of problems 

contain a constraint specifying that nutrient loadings cannot fall below loadings which obtain 

from uniform land retirement, or above baseline loadings.34 Formally, both problems solve:  

(4.8) 
13

{ , } 1

ˆmin ( , )
i i

i i iN P i

C N P
=
∑ , 

subject to  

(4.9) 
13

1

goal
i

i

N TN
=

≤∑  

and 

(4.10) landret baseline
i i iN N N≤ ≤ , 

where goalTN is the total state-level nitrates export goal. The first problem uses the following 

constraints on local P: baseline
i iP P≤ , while the second problem tightens the phosphorus 

constraints: 0.7 baseline
i iP P≤ . For the sake of convenience, from now on I will refer to the first 

problem as problem (a), and the second problem as problem (b). 

                                                 
33 Local water quality goals may exist at a finer geographic level than the watersheds analyzed. That is, 
subbasin-level targets may be specified. A version of the evolutionary algorithm that searches for solutions 
which satisfy subbasin-level nutrient constraints has been developed. Results for the Des Moines River 
Watershed incorporating subbasin-level nitrate reduction goals are presented in the Appendix.   
34 I further impose additional constraints in nitrates-P space in order to limit the domain of the cost-
minimization problem to the region where individuals exist in the empirical frontier. Observing 13 empirical 
frontiers shows that the feasible region, in nitrates-P space, can be constructed by imposing 3 linear constraints 
and considering the region between these constraints. The 3 constraints in nitrates-P space are defined by: (1) a 
line between allele #1 (uniform land retirement) and allele #3 (CT+RF); (2) a line between allele #2 (CT) and 
allele #12 (NT+Contour); and (3) a line between allele #1 and allele #8 (NT+Terr). Further, nitrate loadings in 
each of the watersheds were not allowed to exceed loadings which obtain from uniform application of allele #2 
(CT).  
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 Similarly, the set of problems which allocate loadings in order to minimize statewide 

export of phosphorus involves two ways of handling local nitrate loadings: first, I require that 

watershed-level nitrate loadings not exceed baseline levels, and, for the second problem, I 

impose a 30 percent nitrate reduction constraint in each of the watersheds. Again, the 

objective function for these two problems is the same:  

(4.11) 
13

{ , } 1

ˆmin ( , )
i i

i i iN P i

C N P
=
∑ , 

subject to  

(4.12) 
13

1

goal
i

i

P TP
=

≤∑  

and  

(4.13) landret baseline
i i iP P P≤ ≤ . 

Similarly, goalTP is the total state-level phosphorus export goal.  The first problem (to 

which I henceforth refer to as problem (c)) imposes the constraint: baseline
i iN N≤ , and the 

second problem (problem (d)) imposes a tighter local nitrate constraint: 0.7 baseline
i iN N≤ .  

 Figure 7 presents the estimated costs of reducing total statewide nitrates which 

are obtained by varying the levels of goalTN . The higher of two curves represents solutions to 

problem (b) and reflects the higher cost of meeting more stringent local P goals.  

 The two cost curves almost converge after 50 percent nitrate abatement goal, which 

reflects the fact that, since it is likely that land retirement will be the main option used to 

arrive at such dramatic nitrate reductions, an addition of watershed-level P constraint adds 

relatively little to the total abatement cost.    
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Figure 7. State-level nitrate export reduction cost curves 

 

Figure 8 presents the cost curve for reducing total statewide P loadings, obtained by 

successively decreasing goalTP .  

Both Figures depict cost curves which are increasing and convex. Tightening of 

constraints on watershed-level nutrient reductions is estimated to increase the cost of total 

state-level nutrient control. Each of the points on the four cost curves represents a particular 

nutrient loading allocation across the 13 watersheds. This, in turn, presupposes a particular 

allocation of conservation practices in each of the watersheds.  

Thus, developing the cost curves provides several useful insights into the nature of 

nonpoint source pollution control at the state level. In addition to summarizing and 

quantifying the total and marginal abatement costs for nutrients, they, in conjunction with the 
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watershed-level Pareto-efficient frontiers, may be able to provide practical guidance on how 

to conduct nutrient reduction policy for a specific nutrient target. In the following section, I 
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Figure 8. State-level phosphorus export reduction cost curves  

 

illustrate how this might be done using a 30 percent state-level nutrient reduction target as an 

example. 

 

4.5.3. Ways of Achieving Given State-Level Nutrient Reductions 
 

This section is organized as follows. First, I present the solutions which are obtained 

from a cost-minimization based on the fitted cost curves. Next, I turn to the watershed-level 

Pareto-efficient frontiers to identify individuals capable of achieving needed nutrient 

reductions. Then, I describe the set of conservation practices used to achieve these 
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reductions. I explain the choice of particular alleles based on the effect which uniform 

conversion of each watershed to a particular allele has on nutrients. Finally, I discuss the 

distribution of conservation practices at the subbasin level.  

 Table 6 below presents the solutions to cost-minimization problems (a) and (b), 

where total state-level nitrates are to be reduced by 30 percent (
13

1

0.7goal baseline
i

i

TN N
=

= ∑ ). The 

cost of reducing total state-level nitrates 30 percent and reducing all watershed-level P 

loadings to the baseline level was estimated to be $149 million, and the addition of the 

requirement that all watershed-level P loadings be reduced by 30 percent raises the predicted 

cost to $230 million per year.  

 
 
Table 6. Solutions to problems (a) and (b), based on fitted cost curves 
 

Solution to problem (a) Solution to problem (b) 

Watershed 

NO3 
baseline, 
tons/year 

P 
baseline, 
tons/year 

NO3, 
tons/yr 

NO3, % 
of 

baseline 
P, 

tons/year 
P, % of 
baseline 

NO3, 
tons/yr 

NO3, % 
of 

baseline 
P, 

tons/year 
P, % of 
baseline 

Boyer 2,479 1,087 1,369 100 822 91 1,369 100 630 70 
Des Moines 70,250 2,539 49,602 71 2,539 100 49,062 70 1777 70 

Floyd 2,420 566 1,117 46 566 100 1,156 48 396 70 

Iowa 80,908 3,623 59,262 73 3,623 100 59,167 73 2536 70 

Little Sioux 11,513 1,392 6,653 58 1,392 100 6,656 58 975 70 

Maquoketa 490 37 271 55 37 100 271 55 26 70 

Monona 1,974 332 1,032 52 332 100 1,074 54 232 70 

Nishnabotna 9,996 3,075 6,574 66 3,075 100 6,381 64 2153 70 

Nodaway 1,968 574 1,458 74 574 100 1,495 76 402 70 

Skunk 13,882 2,896 10,276 74 2,896 100 10,594 76 2028 70 

Turkey 7,277 1,376 5,326 73 1,376 100 5,515 76 963 70 

Upper Iowa 2,761 216 2,304 83 148 69 2,304 83 148 69 

Wapsipinicon 16,151 611 9,429 58 611 100 9,627 60 428 70 
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Table 7 presents the solutions to the cost-minimization problem (d), where total state-

level P is targeted for a 30 percent reduction (
13

1

0.7goal baseline
i

i

TP P
=

= ∑ ). Based on estimated 

watershed cost curves, reducing state-level P by 30 percent while requiring a 30 percent 

reduction in nitrate loadings in each of the watersheds would cost $206 million.  

 

Table 7.  Solution to the problem (d), based on fitted cost curves  
 

Watershed 

NO3 
baseline, 
tons/year 

P baseline, 
tons/year 

NO3, 
tons/yr 

NO3, % 
of 

baseline P, tons/year 
P, % of 
baseline 

Boyer 2,479 1,087 959 70 502 56 
Des Moines 70,250 2,539 49,175 70 2,539 100 
Floyd 2,420 566 1,694 70 209 37 
Iowa 80,908 3,623 56,636 70 3,540 98 
Little Sioux 11,513 1,392 8,059 70 564 40 
Maquoketa 490 37 343 70 34 93 
Monona 1,974 332 1,382 70 196 59 
Nishnabotna 9,996 3,075 6,997 70 1,225 40 
Nodaway 1,968 574 1,377 70 293 51 
Skunk 13,882 2,896 9,718 70 1,939 67 
Turkey 7,277 1,376 5,094 70 919 67 
Upper Iowa 2,761 216 1,933 70 127 59 
Wapsipinicon 16,151 611 11,306 70 611 100 

 
 

By and large, the exercise of identifying individuals in the empirical Pareto-efficient 

frontiers, whose nutrient loadings closely mimic the loadings found as a part of cost-

minimization solution, was a success. The only solution for which close empirical 

counterpart could not be identified in a satisfactory manner was the solution to problem (c), 

which involved P reductions without any nitrate reductions relative to the baseline. 

Identification of individuals with the kinds of P reductions which were needed to match the 

solution resulted in finding individuals whose nitrate loadings were oftentimes also reduced. 

As a result, while the cost predicted from the cost-minimization exercise was estimated to be 
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around $70 million per year, the empirical counterpart to this solution resulted in an annual 

cost of over $157 million per year. Thus, presentation of these results is omitted. As to the 

reasons why this might be happening, I present those below. 

The rest of the section is organized as follows.  Tables 8, 9, and 10 present the 

individuals found to be a closest match to the prescriptions of the cost-minimization program.  

Tables 8 and 9 below present individuals which match the solutions to problems (a) 

and (b): problems of minimizing total statewide nitrates subject to holding watershed-level P 

loading to the baseline levels (problem (a)), or to 70 percent of baseline levels (problem (b)).  

 

Table 8. Individuals identified to correspond to the solution of problem (a) 
  

Watershed Ind. # NO3, tons/yr 
$, 

thousand/year P, tons/year 
NO3, % of 
baseline 

P, % of 
baseline 

Boyer 2166 1,329 7,405 821 97 91 
Des Moines 2049 52,093 50,986 2,661 74 105 
Floyd 280 1,085 1,259 620 45 110 
Iowa 1733 59,854 47,661 3,974 74 110 
Little Sioux 14 6,256 9,712 807 54 58 
Maquoketa 732 218 828 26 45 70 
Monona 1899 963 1,798 330 49 99 
Nishnabotna 2470 6,773 10,719 3,075 68 100 
Nodaway 619 1,556 1,539 592 79 103 
Skunk 14 9,770 8,374 2,506 70 87 
Turkey 113 4,866 6,014 1,338 67 97 
Upper Iowa 14 1,971 1,220 203 71 94 
Wapsipinicon 1144 9,375 8,104 601 58 98 
 

 

Individuals in Table 8 carry a combined annual cost of $156 million (relative to $149 

million identified from solving problem (a)), and individuals in Table 9 combine for $264 

million per year, relative to $230 million estimated as part of the solution to problem (b). 

Table 10 presents individuals which were found to result in nutrient reductions 

consistent with the solution to the problem (d): minimization of total statewide P subject to 
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reducing nitrates 30 percent in every watershed. The total annual cost of implementing each 

of the individuals is estimated to be $221 million, which is within 7 percent of cost estimated 

by the cost-minimization program ($206 million).  

 

Table 9. Individuals identified to correspond to the solution of problem (b) 
 

Watershed Ind. # 
NO3, 

tons/yr $, thousand/year P, tons/year
NO3, % of 
baseline 

P, % of 
baseline 

Boyer 2848 1,342 8,603 591 98 66 
Des Moines 848 48,698 103,553 1,695 69 67 
Floyd 712 1,063 1,955 390 44 69 
Iowa 2903 58,408 71,632 2,525 72 70 
Little Sioux 14 6,256 9,712 807 54 58 
Maquoketa 732 218 828 26 45 70 
Monona 14 950 2,793 229 48 69 
Nishnabotna 1355 6,129 16,088 2,146 61 70 
Nodaway 1270 1,486 3,358 393 76 68 
Skunk 962 10,412 16,226 1,960 75 68 
Turkey 370 5,097 10,132 937 70 68 
Upper Iowa 3402 2,128 3,004 149 77 69 
Wapsipinicon 2043 9,624 16,487 406 60 66 

 
 
Table 10. Individuals identified to correspond to the solution of problem (d) 
 

 Watershed Ind. # 
NO3, 

tons/yr $, thousand/year P, tons/year 
NO3, % of 
baseline 

P, % of 
baseline 

Boyer 1743 944 25,419 230 69 26 
Des Moines 2049 52,093 50,986 2,661 74 105 
Floyd 1844 1,133 4,353 218 47 39 
Iowa 2137 56,356 54,941 3,189 70 88 
Little Sioux 2139 6,159 11,187 720 54 52 
Maquoketa 732 218 828 26 45 70 
Monona 2217 915 3,344 197 46 59 
Nishnabotna 100 6,654 22,078 1,169 67 38 
Nodaway 2324 1,342 4,556 305 68 53 
Skunk 707 9,605 18,676 1,843 69 64 
Turkey 370 5,097 10,132 937 70 68 
Upper Iowa 5059 1,760 6,186 137 64 63 
Wapsipinicon 1144 9,375 8,104 601 58 98 
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That is, the results suggest that in order to reduce state-level average annual nitrate 

loadings by 30 percent (and not allow any watershed’s P loadings to be greater than the 

baseline), $156 million per year would have to be spent on appropriately placed conservation 

practices and targeted additional land retirement. To achieve, in addition to the nitrate 

reduction goal, a reduction in total P loadings at each of the watershed outlets would cost an 

additional $108 million per year. Reducing state-level P loadings and simultaneously 

reducing each watershed’s average annual nitrate loadings would cost approximately $221 

million per year. It also should be pointed out that the total cost of baseline conservation 

practices (excluding existing CRP) is estimated to be $150 million per year.35 Going back to 

state-level nutrient abatement cost curves, it is clear that reallocating conservation practices 

in accordance with the algorithm’s prescriptions may allow for significantly lower nutrient 

loadings for the same level of cost. For example, one can almost (falling short by just under 

$6 million per year) implement solution to the problem (a), and reduce state-level nitrates by 

30 percent essentially for the same cost. Another possibility is reducing state-level nitrate 

exports by 20 percent and reducing watershed-level P by 30 percent at a cost of $147 million. 

That is, ignoring transaction costs, reallocating conservation practices in accordance to the 

algorithm’s prescriptions results in lower state-level nutrient loading, same or lower 

watershed-level nutrient loadings, and lower costs. Thus, efficiencies discovered by the 

algorithm are large.36 

                                                 
35 Existing CRP land is estimated to cost approximately $176 million per year. This cost is presumed to be 
incurred in all the results presented, since the algorithm assumes that current CRP land does not come back into 
agricultural production.  
36 One could be concerned that reallocating practices in accordance to the algorithm’s prescriptions may hurt 
other environmental objectives, such as soil erosion protection. This is unlikely to be a concern in the solutions 
found, given the beneficial soil protection effects of conservation tillage, contouring, terracing, and grassed 
waterways, and the fact that most of the cropland would be protected by one (or more) of these practices. The 
only exception perhaps is the Maquoketa River Watershed, where conventional tillage was selected.  
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Finally, to gauge the efficiency gains from reallocating nutrient loading abatement 

across watersheds relative to a uniform nutrient reduction case, I compute the costs of 

uniformly reducing nitrates by 30 percent (and no P reductions), as well as the costs of 

uniformly reducing nitrates and P by 30 percent in all watersheds. The former scenario 

results in a control cost of $189 million, while the latter costs involves the annual cost of 

around $288 million. Thus, the cost savings from reallocating nitrate reductions are $33 

million for solution (a) and $24 million for solution (b). The cost savings from reallocating P 

reductions with a local nitrate constraint (problem (d)) results in efficiency gains of $67 

million. While the cost savings are significant for both sets of problems, the results indicate 

that abatement reallocations for the control of state-level P yields greater cost savings than 

abatement reallocations for the control of state-level nitrate loadings.  

The rest of the section takes a closer look at the alleles used to achieve the needed 

nutrient reductions. In order to better explain the mix of alleles selected, I describe how each 

allele, if implemented uniformly on the landscape, would affect nutrient loadings.  

Tables 11, 12, and 13 below provide a more detailed look at the distribution of the 

conservation practices within each of these individuals. Figures 8, 9, and 10 further illustrate 

subbasin-level distribution of the alleles for each of the watersheds.   

 

4.5.4. Watershed-level Analysis 
 

A couple of things need to be mentioned prior to watershed-level analysis of allele 

utilization. First, cost-minimization problems above were solved to achieve reductions 

relative to baseline nutrient loading levels. Baseline cropping practices and existing 

conservation practices all play a role in determining the baseline. Given the nature of the 
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allele set and the fact that I do not explicitly model the baseline land use and conservation 

practices, there is no guarantee that the nutrient loadings resulting from, e.g., allele #2 (all 

conventional tillage), would be greater or lower than the baseline. Two effects may be in play 

here: first, the allele set I use assumes all cropland is in corn-soybean rotation, which 

presupposes that every other year nitrogen fertilizer applications are not conducted; and, 

second, the allele set ignores any conservation practices already in place. To the extent that 

baseline crop rotations include rotations like continuous corn, or corn-corn-soybeans, the 

assumption of corn-soybean rotation would serve to reduce nitrate loadings relative to 

baseline. At the same time, ignoring existing conservation practices serves to increase 

estimated nutrient loadings stemming from any allele in the current set. Thus, in the 

discussion below, when I find that a particular allocation of conservation practices acts to 

reduce nutrient loadings, it is implied that a crop rotation shift is undertaken as well. In 

practice, analysis of results indicates that, for most watersheds, baseline nitrate loadings 

either exceed the loadings resulting from allele #2 (zero-cost conventional tillage), or fall just 

short of it. Thus, achieving baseline loadings for nitrates is often completely costless. On the 

contrary, baseline P loadings are typically significantly smaller than allele #2’s P loadings. 

Therefore, achieving baseline P loadings typically requires investment in P-reducing alleles. I 

also believe this to be the reason for not being able to find individuals which replicate 

nutrient reductions for the solution to problem (c). As the discussion below shows, many P-

reducing alleles also reduce nitrates (and are not costless). Thus, it is difficult to find 

empirical counterparts to solutions involving P reductions but not involving any nitrate 

reductions relative to the baseline.  
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4.5.4.1. Effect of Conservation Practices on Nutrient Loadings 
 

As discussed above, for each watershed, the initial population contained 17 

individuals which were formed by uniformly applying each of the allele values to all of the 

cropland HRUs in the watershed. Such seeding can be viewed as utilizing “domain-specific” 

knowledge, and, as such, is recommended by the practitioners of evolutionary algorithms 

(Deb, 2001; Reeves and Rowe, 2003). By analyzing the way nitrate and phosphorus loadings 

in the Iowa watersheds respond to each combination of conservation practices encoded by 

the allele set one can understand which alleles may be effective at controlling these 

pollutants. Some practices may be effective across all watersheds, while others may only 

work for some watersheds. Some understanding of general patterns and also of peculiarities 

of particular watersheds will also help in explaining why a particular solution was chosen for 

a specific level of nutrient control.  

Tables (in Appendix C) present first 17 individuals in the initial population for all the 

13 watersheds. Table 14 below summarizes the effectiveness of each allele in reducing 

phosphorus and nitrates both in relation to baseline loadings and loadings which would result 

from a uniform application of allele #2 (corn-soybean rotation, conventional tillage) on all 

cropland. 

Several very interesting patterns emerge. First, I present the patterns observed which 

relate to conservation practices’ estimated effectiveness at reducing phosphorus, and then I 

present the patterns which relate to nitrate control.  

Regarding phosphorus loading reductions, “pure” alleles representing no-till or 

terraces (alleles #4-5 and #6-7, respectively) perform as expected by reducing phosphorus 

loadings relative to baseline. Contour farming and grassed waterways interacted with 
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conventional tillage (alleles #10-11 and #14-15) are not always successful in reducing 

phosphorus loadings relative to baseline. Uniform application of contour farming actually 

results in an increase in phosphorus loadings relative to baseline in 8 out of 13 watersheds, 

and uniform application of grassed waterways with conventional tillage increases P loadings 

 

Table 14. Summary statistics of effectiveness of alleles in nutrient reductions 

P reductions Nitrate reductions 
% relative to  

baseline 
% relative 
to allele #2 

(CT) 

% relative to  
baseline 

% relative to 
allele #2 (CT) 

Allele # Allele Description Mean 
Std. 
Dev. Mean 

Std. 
Dev. Mean Std. Dev. Mean Std. Dev.

1 Land retirement 83 5 91 3 92 3 90 2 
2 CT  -79 31 0 0 15 20 0 0 
3 CT RF -65 37 7 18 24 21 11 10 
4 NT 24 47 58 18 11 8 -11 30 
5 NT RF 37 9 64 6 24 5 5 24 
6 CT Terraced 79 6 88 3 35 10 20 18 
7 CT Terraced RF  79 6 88 3 48 9 36 14 
8 NT Terraced  86 4 92 2 9 8 -15 35 
9 NT Terraced RF 87 4 93 2 25 7 5 29 

10 CT Contour 0 23 44 6 22 14 6 9 
11 CT Contour RF 1 23 45 6 35 14 22 5 
12 NT Contour 61 8 78 4 4 7 -20 34 
13 NT Contour RF 62 7 79 4 21 6 1 28 
14 CT GW  16 19 53 7 33 12 19 9 
15 CT RF GW 17 19 54 7 44 12 33 6 
16 NT GW 64 7 80 4 14 6 -7 30 
17 NT RF GW 65 6 80 4 29 5 11 25 

 

relative to baseline in 4 watersheds. However, in all of the watersheds, contour farming and 

grassed waterways (with conventional tillage) reduce P loadings relative to allele #2, where 

all cropland is managed using solely conventional tillage.  

Further, interaction of no-till with grassed waterways, and contouring leads to 

observed “super-additivity” in the effectiveness of such combinations. That is, estimated P 
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loading reduction which results from a combination of no-till and a an in-field practice is 

often greater than the sum of the estimated P reductions resulting from  uniform application 

of no-till and reductions resulting from uniform application of an in-field practice. For 

example, in the Skunk River Watershed, relative to baseline, allele #4 (all no-till) results in a 

44 percent P reduction, and allele #14 (all grassed waterways ‘on top of’ conventional 

tillage) results in a 13 percent P reduction, while allele #16 (grassed waterways interacted 

with no-till) results in a 69 percent P reduction. This phenomenon is observed for interactions 

of no-till and grassed waterways and no-till and contouring in all watersheds, except Floyd 

and Little Sioux.  

A related phenomenon is observed in analyzing nitrate reductions resulting from 

tillage and conservation practice combinations. Prior to discussing the effect of interactions, 

the effect of “pure” practices should be presented. Nitrogen fertilizer reductions (allele #3, 20 

percent fertilizer reduction) is predicted, on average, to reduce nitrate loadings by 11 percent 

relative to allele #2 which does not contain any fertilizer reductions. This is consistent with 

Doering et al. (2001) who found that a 20 percent reduction in nitrogen fertilizer results in an 

11 percent (edge-of-field) reduction in nitrogen. Terraces, contouring, and grassed 

waterways, uniformly applied in combination with conventional tillage all reduce nitrate 

loadings. No-till, however, increases nitrate loadings relative to conventional tillage in 5 out 

of 13 watersheds. This can be attributed to the fact that no-till increases infiltration, which, 

especially in the watersheds utilizing sub-surface tile drainage, can act to increase the export 

of highly soluble nitrates (P. Gassman, personal communication, August 2007; Dinnes, 2004, 

p. 51).   
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 This effect of “pure” no-till may be responsible for the observed phenomenon of 

“sub-additivity” in the interaction of no-till with terraces, grassed waterways, and contouring. 

Analogous to the effect observed in the interactions of no-till and other practices for P 

reductions, “sub-additivity” leads to a reduction in nitrate loadings resulting from a 

combination of no-till and a practice to be smaller than the sum of reductions from a pure no-

till and from a conservation practice used in conjunction with conventional tillage. 

Interacting no-till with grassed waterways (alleles #16-17), terraces (alleles #8-9), and 

contouring (alleles #12-13) all leads to this phenomenon. In fact, the effect of interacting no-

till with contouring is so strong in Floyd, Skunk, and Upper Iowa River Watersheds that, 

while both no-till and contouring separately result in a decrease in nitrate loadings (relative to 

baseline), a combination of no-till and contouring actually increases nitrate loadings. The 

phenomenon of such “sub-additivity” has been observed in relation to the effect of 

interaction of no-till and contouring on nitrates by, e.g., Gassman, Saleh, Osei, Abraham, and 

Rodecap (2003), while I have not been able to find descriptions of “super-additivity” in 

regards to P reductions in the SWAT literature. Of course, one must be cautious in 

interpreting such model predictions. On the other hand, non-linearities in the effectiveness of 

conservation practices is definitely something to be expected; moreover, it necessitates the 

use of hydrologic simulation models, since otherwise, effects of separate practices could just 

be added up “by hand”.  

Finally, land retirement, as expected, is very effective in reducing both nitrate and 

phosphorus loadings, with the average reduction (relative to baseline) of 83 percent in P and 

92 percent in nitrates.  
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 Overall, most practices and combinations of practices included in the allele set 

behave as “conservation” practices – that is, they reduce one or both nutrient loadings. The 

analysis of the portion of the initial population representing a uniform application of the 

allele values provides one with a sense of expected direction which the evolutionary 

algorithm is likely to take.  

 

4.5.4.2. Description of Solutions at the Watershed Level 
 
 This section describes the solutions found to best match cost-minimization results for 

each of the 13 watersheds. Given that the information on how a uniform application of each 

of the allele values affects the nutrients is available, the makeup of the three different 

solutions for each of the watersheds can be better understood and explained.  

 By describing the allele distribution which the evolutionary algorithm selected to 

achieve a particular level of nutrient reductions for each of the three solutions, and by 

utilizing watershed-specific information on the effectiveness of particular alleles contained in 

the initial population, I am able to provide a reasonable explanation for a particular allele 

distribution. This is yet another advantage of seeding the initial population with each member 

of the allele set, as opposed to starting the evolutionary algorithm with a population 

generated completely at random.  

 Boyer River Watershed. The three individuals selected to match the solutions to 

problems (a), (b), and (d) are, respectively, #2166, #2848, #1743. As can be seen from the 

Table 15 above, #1743 is estimated to produce the following nutrient loadings for 

nitrates/phosphorus, in percent of baseline: 68/26. Similarly, such loadings for #2166 are 

97/91, and 98/66 for #2848. 
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 That is, a hypothetical transition from individual #2166 to #2848 involves reducing P 

without significant changes in nitrate loadings. As can be seen from the distribution of 

conservation practices, this is achieved by an increased use of alleles containing terraces 

(alleles #6 and 7). Individual #1743 reduces both nitrates and P, and that is accomplished by 

extensive use of terraces and land retirement. Given the initial population analysis, such 

selections are intuitive: alleles containing terraces are quite effective at reducing both nitrates 

and P, while land retirement is the strongest available option for reducing both nutrient 

loadings. 

 Des Moines River Watershed. For this watershed, individual #2049 was selected to 

match the solutions to problems (a) and (d), and individual #848 was selected to match the 

solution to problem (b). Nitrate/phosphorus loadings in terms of percentage of baseline are 

74/105 for #2049 and 69/67 for #848. While individual #2049 relies primarily on nitrogen 

fertilizer application reductions alone (allele #3), or in conjunction with grassed waterways 

(allele #15), individual #848 does not utilize nitrogen fertilizer reductions as part of the 

solution (although grassed waterways are utilized extensively), and introduced land 

retirement as an option which can control both nitrates and P.  

 Floyd River Watershed. The three individuals selected to match the solutions to 

problems (a), (b), and (d) are, respectively, #280, #712, #1844. Nitrate/phosphorus loadings 

in terms of percentage of baseline are 45/109, 44/69, and 47/39, respectively. Thus, one can 

present these individuals basically in terms of successively higher P reductions. While 

individual #280 uses a small amount of grassed waterways, #712, in order to achieve a 31 

percent P reduction, introduces about four times as much grassed waterways-protected area, 

and, in order to further decrease P, #1844 brings in terraces. Based on the initial population 
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analysis, it is intuitive as to why the algorithm may do that: while grassed waterways (with 

conventional tillage) can achieve sizeable P reductions, terraces are capable of reducing P 

loadings much more effectively, and thus are brought in as a part of the makeup of individual 

#1844. 

 Iowa River Watershed.  The three individuals selected to match the solutions to 

problems (a), (b), and (d) are, respectively, #1733, #2903, #2137. Nitrate/phosphorus 

loadings in terms of percentage of baseline are 74/110, 72/70, and 70/88, respectively. Again, 

one can look at these solutions in terms of successive P reductions (with minor nitrate 

changes). Individual #1733 does not reduce P below baseline at all, and all the nitrate 

reductions are due to nitrogen fertilizer reductions, either alone (allele #3), or with  grassed 

waterways (allele #15). A 12 percent P reduction (individual #2137) is achieved by greater 

use of grassed waterways, some terraces, and land retirement. In order to reduce P further, by 

30 percent, more terraces are needed, as well as grassed waterways combined with no-till. 

Iowa River Watershed is one of the watersheds where “super-additivity” of no-till and 

grassed waterways is observed in their combined effect on P reductions, and this effect is 

exploited.  

 Little Sioux River Watershed. Two individuals #14, and #2139 are selected to satisfy 

the requirements for a solution for problems (a)-(b), and (d), respectively. Nitrate/phosphorus 

loadings in terms of percentage of baseline are 54/58 for #14 and 54/52 for #2139. 

Interestingly, individual #14 is the member of the initial population, representing uniform 

application of allele #14 (CT+GW) to all cropland HRUs. While through the iterations of the 

evolutionary algorithm, many more non-dominated individuals were created, #14 still 

provided the closest and lowest cost match for nitrate loading reduction required by solutions 
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to problems (a) and (b). In terms of allele distribution, individual #2139 achieves greater P 

reductions by utilizing terraces (allele #7).  

 Maquoketa River Watershed. For this watershed, a single individual #732 was 

identified as satisfying the requirements for solution for problems (a), (b), and (d). 

Nitrate/phosphorus loadings as percentage of baseline for this individual are found to be 

44/70. Grassed waterways and fertilizer reductions are the primary conservation practices 

selected for this watershed.  

 Monona River Watershed. For this watershed, three individuals, approximating cost-

minimizing solutions, were found. They (and their loadings descriptions) are: #1899 (49/99), 

#14 (48/69) for problems (a) and (b), and #2217 (46/59) for problem (d). Again, the 

successively higher P reductions are achieved by means of higher levels of grassed waterway 

application, and then by introducing terraces. A uniform application of grassed waterways 

yields a 31 percent reduction in P, and terraces are needed to achieve further reductions.  

 Nishnabotna River Watershed. The three individuals selected to match the solutions 

to problems (a), (b), and (d) are, respectively, #2470, #1355, #100. Nitrate/phosphorus 

loadings in terms of percentage of baseline are 68/100, 61/70, and 67/38, respectively. 

Moving from individual #2470 to #1355 involves reducing P loadings by 30 percent and 

reducing nitrate loadings by additional 7 percentage points. A hypothetical movement to 

individual #100 involves dramatic reductions in P while somewhat increasing nitrate 

loadings.  Analysis of the uniform application of the alleles in the watershed reveals that 

grassed waterways are not capable to bring P reductions down even to the level of the 

baseline. This explains the use of terraces by individual #2470, even though P loadings are 

exactly at the baseline level. Further P reductions are achieved by utilizing more terraces (in 
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moving to individual #1355), and by introducing no-till, both as a stand-alone option (allele 

#4), and in conjunction with grassed waterways (allele #16).  

 Nodaway River Watershed. Three distinct individuals matching the cost-minimization 

solutions were found for this watershed. They (and their loadings descriptions) are: #619 

(80/103), #1270 (76/68) for problems (a) and (b), and #2324 (68/53) for problem (d). Once 

again, higher P reductions are achieved by means of increased utilization of terraces and no-

till. For individual #2324, no-till is interacted with grassed waterways (given the observed 

“super-additivity” effect, this is not surprising). 

 Skunk River Watershed. The three individuals selected to match the solutions to 

problems (a), (b), and (d) are, respectively, #14, #962, #707. Nitrate/phosphorus loadings in 

terms of percentage of baseline are 70/87, 75/68, and 69/64, respectively. Individual #14 is a 

member of the initial population, and represents uniform application of grassed waterways 

(with conventional tillage) on the cropland. No-till, interacted with grassed waterways 

provides for higher P loading reductions observed for individuals #962 and #707. Again, the 

“super-additivity” effect appears to be one reason for these alleles being selected.  

 Turkey River Watershed. Two individuals are found for this watershed: #113 (69/97), 

approximating the solution to (a), and #370 (70/68), approximating the solutions to (b) and 

(d). Both grassed waterways and terraces are part of the makeup of individual #113, owing to 

relative ineffectiveness of grassed waterways in reducing P in this watershed. Larger P 

reductions (with a minor increase in nitrate loadings) are achieved by means of allele #17 

(NT+GW+RF). Again, the “super-additivity” phenomenon discussed above appears to be 

playing a role in this selection.   
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 Upper Iowa River Watershed. For this watershed, the three individuals, 

approximating cost-minimizing solutions to (a), (b), and (d) (and their loadings descriptions) 

are: #14 (71/94), #3402 (77/69), and #5059 (64/63). As was the case with Little Sioux  and 

Skunk River Watersheds, one of the individuals found is #14, which consists of uniform 

application of grassed waterways on the cropland. Once again, terraces and no-till (in 

combination with grassed waterways) are the preferred means of successive P reductions.  

 Wapsipinicon River Watershed. Two individuals #1144, and #2043 are selected to 

satisfy the requirements for a solution for problems (a)-(d), and (b), respectively. 

Nitrate/phosphorus loadings in terms of percentage of baseline are 58/98 for #1144 and 60/66 

for #2043. Significant nitrate reductions are allocated to this watershed by the cost-

minimization programs. As a result, extensive use of nitrogen fertilizer reductions, alone or 

in combination with grassed waterways, is part of the makeup of individual #1144. 

Individual #2043 interacts nitrogen fertilizer reductions with terraces, which maintains most 

of the nitrate reductions, and further reduces P.  

 

4.5.5. Subbasin-level Distributions of Conservation Practices 
 
 Figures below present subbasin-level distributions of the alleles for the 13 

watersheds. Given the data limitations, the level of subbasins is the finest spatial resolution 

for placement of conservation practices on the landscape. However, even at this level of 

detail, the maps contain a great deal of useful information for policymakers and water quality 

researchers.  

Looking at the solutions to problems (a), (b), and (d) in this sequence, it becomes 

clear that moving from solution (a) to solution (b) involves reducing P loadings in all 
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watersheds, and moving from solution (b) to solution (d) involves further reducing P loadings 

except for 2 watersheds (Des Moines and Wapsipinicon River Watersheds). This is due to 

solution (d) allowing unequal P abatement across the watersheds, and partially accounts for 

lower cost of solution (d) relative to the cost of solution (b). Aside from these two 

watersheds, looking at the 3 solutions in sequence is quite similar to observing the 

consequences of tightening watershed-level P reduction goals.  

The distribution of alleles for the three solutions indicates that, for this range of 

nutrient reductions, grassed waterways is chosen most frequently, while nitrogen fertilizer 

reductions are chosen frequently as well, either as a stand-alone option (with conventional 

tillage), or in conjunction with grassed waterways. Successively higher P reductions 

necessitate the use of terraces and no-till (alone or with grassed waterways). Also, as 

described above in the description of solutions for each of the watersheds, “super-additive” 

properties of combining no-till with grassed waterways appear to be utilized in some 

watersheds for solutions involving large P reductions. Additional land retirement is also 

needed in some watersheds. Finally, alleles including contour farming are not chosen, despite 

the fact that contour farming is a relatively inexpensive practice.  

 Furthermore, as can be seen from Figures 9-11, these alleles are spatially 

concentrated on the subbasin level. That is, for many watersheds, alleles are chosen in a way 

that allocates an overwhelming majority of land in any given subbasin to a single allele. Des 

Moines River Watershed is a dramatic example of such spatial concentration: virtually all of 

land retirement prescribed by the algorithm (for solution (b)) is allocated to the outlet 

subbasin.  
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 Figure 9. Subbasin distribution of conservation practices for the solution to 
problem (a): 30 percent state-level reduction in NO3, holding each watershed’s P 
loadings at or below baseline values 
 
 

Figures 9 and 10 present subbasin-level distributions of conservation practices for the 

solutions to problems (a) and (b). Both of these solutions require a 30 percent reduction in 

total statewide export of nitrates, with problem (a) requiring only that individual watersheds 

not experience any increases in P loadings as a result, and problem (b) tightening local P 

constraint and requiring at least a 30 percent reduction in P loadings for every watershed.  

Watershed-level analysis of the alleles chosen for these solutions already highlighted 

the fact that more P-reducing alleles become a part of the solution as one moves from 

problem (a) to problem (b). This fact is also evident in the subbasin-level maps of allele 

distributions for the two solutions. In particular, increased use of no-till (combined with 

grassed waterways) in Nodaway, Iowa and Turkey River Watersheds, as well as more 

terraces prescribed for Nishnabotna, Boyer, and Nodaway River Watersheds is readily seen 
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by comparing the two maps. Again, the algorithm’s prescriptions imply a fairly 

homogeneous use of conservation practices at the subbasin level. This alleviates the problem  

 
 
 

 
 
 
 
 
 
 

Figure 10. Subbasin distribution of conservation practices for the solution to problem 
(b): 30 percent state-level reduction in NO3, while reducing each watershed’s P loadings 
by 30 percent 
 
 
with the lack of spatial resolution in the data used for the analysis. Still, an analysis based on 

fully spatially-explicit HRUs would clearly be required to make better policy 

recommendations.  

The last map (Figure 11) presents empirical approximations to the solution of cost-

minimization problem (d), where total statewide P loadings are reduced by 30 percent and 

each of the 13 watersheds also experiences a 30 percent reduction in nitrate loadings. 

Application of grassed waterways, either in conjunction with conventional tillage (e.g. Des 

Moines Watershed, Iowa Watershed, Wapsipinicon Watershed) or no-till (e.g., Skunk, 

Turkey, Nishnabotna River Watersheds) is clearly the most common conservation practice 
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prescribed for the subbasins in the watersheds. For the solution which achieves reductions in 

statewide export of P, the greatest reductions are allocated to Boyer, Floyd, Nishnabotna 

River Watersheds. This can be easily seen on the map, as these watersheds differ from the 

rest in their extensive use of terraces (Floyd, Nishnabotna River Watersheds), or land 

retirement (Boyer River Watershed). Again, the spatial concentration of conservation 

practices is evident in this solution.  

The fact that the current analysis is conducted as if starting with a clean slate in terms 

of ignoring structural conservation practices which were recorded in the available baseline 

land use data allows one to compare the historical placement of conservation practices and 

the placement prescribed by the algorithm. 

Of course, direct comparisons are difficult here. For example, even if I find that the 

conservation practices prescribed as being part of a solution to, e.g., problem (a), do not at all 

match the pattern of conservation practices recorded in the earlier land use data, 

 
 
 
 

 
 
 

Figure 11. Subbasin distribution of conservation practices for the solution to problem 
(d): 30 percent state-level reduction in P, while reducing each watershed’s NO3 
loadings by 30 percent 
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it does not necessarily mean that baseline conservation practices are inefficient, as the policy 

context would definitely not match the set-up of problem (a) (minimization of statewide 

nitrate export subject to “local” P constraint). In fact, it is not clear what (if any) objective 

function governed the placement of the observed set of conservation practices. One can 

almost surely state that no watershed-level (or a state-level) objective governed some 

coordinated effort for the placement of existing conservation practices.  

 Given these caveats, it is still interesting to make (at least qualitative) comparisons 

between the observed baseline and the set of conservation practices identified for the present 

analysis. Secchi et al. (2007) observe that existing terraces in Iowa are located mainly in 

western part of the state. Interestingly, whenever terraces were selected by the algorithm, 

they were selected for western Iowa watersheds: Boyer, Floyd, Nishnabotna. That is perhaps 

the most dramatic similarity. This may also be explained by the soil and geomorphologic 

characteristics of these watersheds. Boyer and Nishnabotna River Watersheds are located in 

the Loess Hills region of the state, and Floyd River Watershed is located in the Northwestern 

Iowa Plains region, both of which are susceptible to soil erosion (Dinnes, 2004, pp. 11-12). 

Selection of terraces is then reasonable, both in the baseline, and as part of the solution 

discovered by the algorithm.37  Another one is that, given the existing distribution of land 

retirement (presented in Figure 3 of Secchi et al. (2007)), the algorithm allocates land 

retirement in the Des Moines Watershed to the same subbasin (#9), which is already 

observed to have the highest amount of CRP land in the state. The results for the distribution 

of no-till are mixed: baseline conservation tillage is “estimated to be more widespread in the 

central part of the state” (Secchi et al., 2007). This is consistent with some subbasins of the 

Skunk Watershed which lie in the central part of the state being allocated to no-till by the 
                                                 
37 A similar explanation may apply for selection of no-till in the Nishnabotna River Watershed.  



 

 
 

143

algorithm. However, the rest of Central Iowa is not selected for implementation of no-till in 

the solutions analyzed. Also, while existing grassed waterways are observed to be in south-

eastern part of the state, the algorithm allocates grassed waterways to virtually all of Iowa, 

and not only (or even to the largest extent) to the south-eastern part. Finally, contour farming 

was observed to be practices mostly in western (and some eastern) parts of the state. The 

evolutionary algorithm, however, virtually ignored all the alleles involving contouring (#10-

13).   

 

4.6. Conclusions and Policy Implications 
 

Application of evolutionary algorithm-based optimization to the problem of finding 

Pareto-efficient allocations of conservation practices is a flexible and powerful tool for 

addressing issues in watershed-scale nonpoint-source pollution reduction policy. This 

approach generates a wealth of information which is of great interest to policymakers, 

research community, and stakeholders. It is capable of generating watershed-scale Pareto-

efficient frontiers which incorporate multiple conflicting environmental and cost objectives. 

Points on the frontiers can be further analyzed to provide a guide to the mix of conservation 

practices which the model predicts will generate given water quality improvements. 

Watershed-level frontiers can be combined within political boundaries to provide guidance to 

cost-minimizing loading reduction allocations within the political jurisdiction, with the 

ability to handle local water quality constraints. 

I illustrate this by analyzing the frontiers for the 13 watersheds which make up most 

of the state of Iowa. Several scenarios involving state-level and watershed-level nutrient 

reduction goals, were analyzed. Cost of achieving these goals varied from $210 to $286 
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million per year. For the range of nutrient reductions considered, grassed waterways (often 

interacted with no-till or nitrogen fertilizer reductions), was the most commonly selected type 

of conservation practice. Terraces and land retirement were also selected, but to a smaller 

extent.  

These kinds of results are definitely linked to the quality of the hydrologic model, its 

ability to represent conservation practices, as well as the quality of the input (physical and 

economic) data. Improvements in the hydrologic model and the economic cost estimates can 

readily be incorporated into the simulation-optimization system. Additional caveats include 

the possibility that the set of conservation practices misses an important and effective method 

of reducing nutrient loadings. Wetlands provide one such example. Again, the approach is 

flexible enough to be able to incorporate additional options through the modifications of the 

allele set.  

With such caveats in mind, the results which specify a particular mix and distribution 

of conservation practices can provide policymakers with tools for better targeting of 

conservation policy aimed at water quality improvements. Of course, the specific set of 

practices targeted will depend on particular (state-level or watershed-level) nonpoint source 

pollution reduction goals. In particular, it seems that these kinds of simulation-optimization 

methods ought to be a part of the TMDL process. Armed with the algorithm’s prescriptions, 

policymakers can offer targeted payments (method suggested by Khanna et al. (2003)), or 

elicit bids and accept or reject them using modeling results as guidance.  

On the research side, application of evolutionary algorithms and similar methods to 

better handle the complexities associated with water quality is likely to grow in scope, 

accuracy, and realism, reflecting continuing improvements in computational power and 
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environmental modeling capability. However, unless the current political landscape does not 

change to make targeting possible in order to improve local and downstream water quality, 

results presented in this study will likely provide only a lower bound on the costs of water 

quality improvements.  
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CHAPTER 5. SEARCHING FOR EFFICIENCY: LEAST COST 
NONPOINT SOURCE POLLUTION CONTROL WITH 

MULTIPLE POLLUTANTS, PRACTICES, AND TARGETS 
 

5.1. Introduction 
 

Nonpoint source (NPS) pollution from agriculture remains a major source of water 

degradation in the U.S. despite the devotion of substantial resources to its control over the 

past two decades. By definition, NPS pollution comes from many sources whose 

contributions to water pollution are hard to measure. Numerous economic studies have 

investigated the efficiency of different policy instruments in this context; Shortle and Horan 

(2001) provided an excellent survey of the literature.  

However, some attributes of NPS pollution that can be critical in the design of 

policies have received little attention. The first is that there are multiple NPS pollutants 

which may interact with each other, including nitrogen, phosphorous, sediment, pathogens, 

and pesticides. Conservation practices that are effective at controlling one pollutant are not 

necessarily equally good at controlling other pollutants. Another characteristic of NPS 

pollution control is that multiple conservation practices can be implemented simultaneously 

in the same field and different fields within a watershed can have distinct practices. Some 

practices achieve more pollution reduction than others on a given field. Moreover, the 

effectiveness of a given conservation practice on a given field depends on the conservation 

practices and cropping systems in place elsewhere in the watershed. In other words, off-site 

impacts of land use on any given field in a watershed are endogenous to land use choices on 

other fields of the watershed.  
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 In this chapter, I examine the policy implications of these three attributes of NPS 

pollution using a spatially explicit model of a large and critically important agricultural 

region: the Upper Mississippi River Basin in the central U.S. Specifically, I study (1) the 

tradeoffs between the costs of pollution control and the level of water quality; (2), the 

tradeoffs between meeting the water quality targets of different pollutants. While the fact that 

higher control costs are necessary to achieve larger water quality improvements is intuitive, 

the nature of the second tradeoff is less obvious and will depend on the nature of the 

pollutants and the physical conditions of a watershed. In this paper, I will quantify these 

tradeoffs and explore the subsequent policy implications.  

To empirically estimate these tradeoffs, a modeling framework that (a) realistically 

incorporates the key attributes of NPS pollution and (b) is able to approximate the efficient 

solutions by optimally choosing the set of conservation practices for each field, is developed. 

Neither (a) nor (b) is an easy task, as manifested by the dearth of economic studies that 

reflect both features. Instead, economists have in general utilized simplified representations 

of the biophysical process of water pollution so that optimization could be performed with 

conventional approaches. For example, early studies used a simplified model with fixed, 

exogenous pollution delivery coefficients (e.g., Montgomery, 1972; Ribaudo, 1986 and 

1989).  Given such assumptions, it is straightforward to solve for cost-efficient allocations of 

pollution abatement using calculus-based constrained optimization techniques.  

Development in the past two decades of realistic, physically-based, spatially 

distributed hydrologic simulation models highlighted the fact that field-level off-site impacts 

are endogenous and led several economists to incorporate some features of these models into 

their analyses via one of two approaches: full spatial optimization using a simplified version 
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of the hydrologic process or incorporation of the hydrologic process but comparing the 

efficiency of a few select scenarios without explicit optimization. 

One example of the first type is Braden et al. (1989), who separated a watershed into 

hydrologically independent flow paths and use a hydrologic model to estimate the impact of 

various management alternatives for the flow paths on the resulting sediment yield. As a 

result, a problem of finding cost-efficient sediment reduction solutions becomes a variant of 

the knapsack model in operations research. A study by Khanna et al. (2003) provides another 

good example of the ingenuity demonstrated by researchers to cope with the problem’s 

complexity. The authors capture the interdependencies between upslope and downslope 

parcels by using coefficients derived from a hydrologic model. They restrict their attention to 

three parcels up from a stream, and to two alternatives on each parcel: crop production and 

land retirement.  

A drawback to these approaches is that hydrologic models developed for the entire 

watershed are broken up; hence, one does not get the full benefit of a hydrologic simulation 

model. By contrast, studies that incorporate the complete hydrologic simulation models 

typically have not attempted optimization of land use choices. Instead, alternative land use 

change scenarios that achieve the pollution reduction goals are evaluated (e.g., Secchi et al. 

(2005)). 

Agricultural engineers have recently examined the cost of NPS control with 

integrated modeling systems that incorporate the full water quality models into optimization 

routines that are capable of finding the optimal or near optimal solutions to a problem 

otherwise intractable with conventional optimization methods. Arabi et al. (2006), Srivastava 

et al. (2002), and Bekele and Nicklow (2005) are outstanding examples. However, these 
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studies are done at a small scale (smaller than 133 km2 in Bekele and Nicklow (2005) versus 

492,000 km2 in the region studied here). In addition, none of these studies examined 

explicitly the tradeoffs between different NPS pollutants and the tradeoffs between meeting 

targets at different spatial scales both of which are important policy issues in the control of 

NPS pollution. 

In this essay, a modeling framework that closely integrates an optimization 

methodology with a biophysical model, is developed. The full biophysical model, not 

simplified proxies, is employed. Second, the modeling framework is built at a regional scale 

to facilitate the investigation of relevant policy analyses related to the growing “dead zone” 

in the Gulf of Mexico and the tradeoff between regional and local pollution reduction targets. 

Third, I derive the conservation production possibility frontier that explicitly incorporates the 

tradeoffs between pollution control costs and water quality benefits, between different 

pollutants, or between different control targets. Although the empirical results of this essay 

may be specific to the region and pollutants considered in this study, the modeling 

framework and the issues raised in the paper have wide applications in the NPS control of 

any watershed or area.  

The rest of the chapter is organized as follows. The next section sets up a conceptual 

framework for water pollution control in a watershed. Next, I introduce an empirical 

modeling framework that integrates a water quality model and an optimization algorithm. 

After that, the study region, the pollutants, and the implementation of the optimization 

algorithm are described. Results are presented in section 6 with regard to the three tradeoffs 

discussed above. The final section provides concluding remarks. 
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5.2. Theoretical Framework 
 

Suppose there is a watershed with J subwatersheds. In each subwatershed j , there are 

jK  fields each of which has its own unique land characteristics and land management 

practices. A set of conservation actions, jkx , can be taken for field k  of subwatershed j  in 

order to improve the environmental conditions of the watershed. The vector jkx has 

I elements, which indicate the adoption of a set of I distinct conservation practices. That is, 

if conservation practice, i , is taken, then 1jkx =i ; otherwise, 0jkx =i  for all 1,2,......i I= . 

Note that more than one conservation practice can be adopted on a field so multiple elements 

of this vector can be non-zero. For ease of reference, I will denote the conservation actions in 

all fields of the whole watershed as X , i.e., 

( , ,...... , ,... ...... , ,... )
1 2 J11 12 1K 21 22 2K J1 J2 JKX ; ;= x x x x x x x x x . In other words, X  is a collection 

of conservation actions planned for the watershed. The impacts of any jkx are likely to be 

affected by conservation actions on other fields of the watershed. Thus, for convenience, I 

will refer to a set of conservation actions planned for the entire watershed, X , as a single 

plan.  

The environmental impact of X is denoted as Y  where Y  is a vector with N  

elements, i.e., 1 2( , ,...... )NY y y y= . Each element represents one environmental indicator; for 

example, ny can be any pollutant (nitrogen, phosphorus, etc) loading at the watershed outlet; 

or some index of local water quality indicators. The relationship between Y and X  is 

denoted as  

(5.1) ( ; )n ny f X Z= , 
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for all 1,2,......n N= , where Z is set of factors that affect ny  but are not part of the 

conservation plan such as soil and land characteristics, crop rotations and other crop 

management practices, climate, etc. Potentially, Z represents a collection of all the land and 

climate characteristics for each field in each watershed.  

One important note on (5.1) is that an environmental indicator , ny , can be affected 

by conservation actions on fields within its own watershed as well as any watershed that 

drains into the watershed.   One contribution of the paper is that the modeling framework 

employed realistically represents such interactions.  

Denote T as the conservation possibility set that gives all feasible combinations of 

conservation plans and environmental outcomes. In other words, T  is the set of all ( , )X Y  

combinations that are technically feasible given the existing state of conservation technology, 

and subject to the physical constraints imposed by the environmental processes. The cost of a 

conservation plan is represented by a cost function, ( )c X . In general, different conservation 

plans will result in different costs and different environmental outcomes. Thus, one obvious 

goal of watershed management is to achieve a desirable tradeoff of costs, ( )c X , and benefits, 

Y . In addition, watershed stakeholders may value different environmental indicators 

differently. For example, a local watershed may have a goal of reducing its phosphorous 

loading in its lakes but does not feel the need to have its nitrate loading reduced, which may 

be a concern regionally. Thus, there can be tradeoffs among the different elements of Y .  

These tradeoffs can be identified through the following multi-objective optimization 

problem: 

(5.2) 
1 2min     [ ( ),  , ,...... ]

. .,         ( , ) .

Nc X y y y
s t X Y T∈
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The set of solutions to (5.2) consists of all conservation plans that are Pareto-optimal. 

A conservation plan X is Pareto-optimal if there is no ( ', ')X Y T∈  such that 

( ') ( )n nf X f X≤  and ( ') ( )c X c X≤ , for all {1,2, , }n N∈ … , and such {1,2, , }m N∈ … , such 

that ( ') ( )m mf X f X<  or ( ') ( )c X c X< . In other words, the solutions to (2) together make 

up the efficiency possibility frontier given T  and ( )c i . Since this frontier is conceptually 

very close to the production possibility frontier (PPF) in production economics, I will simply 

refer to it as the conservation PPF.  

To illustrate the tradeoffs, suppose N=2. One can consider 1y  and 2y  as the nitrogen 

and phosphorus runoff at the watershed outlet, respectively. Alternatively, these indicators 

might be the local and regional targets for phosphorus. Then the conservation PPF based on 

problem (5.2) has three dimensions: 1 2( ),  ,c X y y . One way to interpret this PPF is that it 

represents the least cost necessary to achieve the two environmental outcomes 1 2 and y y . The 

subsequent analysis empirically identifies this conservation PPF for the study region. To gain 

a clear picture of the tradeoffs, one can also break down the three-dimensional PPF into 

different two-dimensional PPFs that are most often used in economic analysis. For example, 

one can derive a PPF for 2( ) and c X y , which is essentially a cost curve for 2y , while 

holding 1y  at a prefixed value. In practice, this can mean that the watershed planner intends 

to identify the tradeoffs between conservation costs and phosphorous loading while insuring 

the attainment of a nitrogen target, set to meet some ecological needs such as the mitigation 

of the Hypoxic zone in the Gulf of Mexico. Similarly, one can derive a two dimensional PPF 

for 1 2 and y y  while holding ( )c X  at a prefixed value. This is an isocost curve, representing 
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all the efficient combinations of 1 2and y y . This curve depicts the combinations of nitrogen 

and phosphorous loadings that are possible under a given budget.  

The shape of the isocost curve, and thus the shape of the cost curve of 2y  for a 

given 1y , will critically depend on T , the conservation possibility set. In other words, they 

will depend on the functions 1( )f X  and 2 ( )f X . At one unlikely extreme, there may be a 

one-to-one correspondence between 1y and 2y , e.g., 2 2 1 1( ) ( )y f X y f Xα α= = = .  In this 

case, the isocost curve for 1y and 2y  degenerates to a single point, as shown in Figure 1(a). 

This happens if the impacts of the efficient allocation of conservation practices are 

proportional with respect to 1y and 2y , and no other reallocation is efficient. At another 

unlikely extreme, all conservation practices that affect 1y  have no impact on 2y  and those 

that affect 2y  have no impact on 1y . A single practice that exhibits this property is the 

reduced application of nitrogen or phosphorous fertilizers. In that case, the isocost curve for 

1y and 2y  appears as in Figure 1(b). In particular, both ends of the curve touch the axes 

(which represent minimum achievable pollutant loadings). Essentially, the funding is split 

between the control of 1y and 2y . The share of each pollutant control can range from zero to 

one hundred percent. More generally, most conservation practices have some impact on both 

pollutants, which implies that an efficient conservation plan will reduce both pollutants even 

though the degree of reduction may vary across the pollutants. Thus, the transformation 

curve often looks as illustrated in Figure 1(c), with some distances between both ends of the 

curve and the axes.  
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As a result, different forms of the isocost curves imply different levels of flexibility 

that watershed managers have in setting targets for different environmental outcomes. Figure 

1(a) implies there is no flexibility at all—setting a target for 1y is equivalent to setting a 

target for 2y . On the other hand, in a Figure 1(b), the targets are not linked at all which 

allows complete freedom in setting the targets. In the more realistic case, as shown in Figure 

1(c), setting a target for one pollutant will have some implications for the other pollutant but 

there would be some flexibility for watershed planners. In practice, how much flexibility 

there is will depend on the characteristics of the watershed, the nature of the pollutants under 

consideration, and the practices that are included in the portfolio of pollution control.  

 

 

Figure 1. An illustration of the possible shapes of an isocost curve 

 

5.3. An Integrated Empirical Modeling Framework 
 

To solve problem (5.2), one needs the knowledge of the relationship between water 

quality outcomes and conservation practices, as represented by equation (5.1). In economic 

analyses, biophysical relationships models are often expressed as a functional form which 
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gives the impression that one can apply standard mathematical optimization procedures. 

However, the relationship between water quality and conservation practices is very complex, 

and often determined by multiple processes. For example, to model the nitrogen loading at a 

watershed outlet, the whole life cycle of nitrogen, where mineralization, decomposition, and 

immobilization are important parts, has to be modeled in the watershed. In the empirical 

analysis, I use the Soil and Water Assessment Tool (SWAT) model. In SWAT, the nitrogen 

cycle is simulated using two inorganic forms and three organic forms. Figure 2 describes the 

process involved.  

 

NH4 NO3 Active Stable Fresh
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Organic NMineral N

Decay

Residue mineralization

Residue
Organic N
fertilizer

Volatilization Denitrification

Inorganic N fertilizer

Plant Uptake

MineralizationNitrification
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Figure 2. Nitrogen cycle as simulated in SWAT (adapted from SWAT Theoretical 
Document, Neitsch et al., 2005) 
 

To most accurately represent the biophysical processes in a watershed, it is necessary 

to employ the full biophysical model rather than a set of more easily characterizable 

equations that proxy the model.    

 

5.3.1. A Water Quality Model—The Soil and Water Assessment Tool 
 

The SWAT model (Arnold et al., 1998; Arnold and Forher, 2005) is a conceptual, 

physically based, long-term, continuous watershed scale simulation model that also operates 
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on a daily time step.  In SWAT, a watershed is divided into multiple subwatersheds, which 

are further subdivided into Hydrologic Response Units (HRU) that consist of homogeneous 

land use, management, and soil characteristics.  Streamflow generation, sediment yield, and 

non-point-source loadings from each HRU are summed and the resulting loads are routed 

through channels, ponds, and/or reservoirs to the watershed outlet.  Key components of 

SWAT include hydrology, plant growth, erosion, nutrient transport and transformation, 

pesticide transport, and management practices. Outputs provided by SWAT include 

streamflow and in-stream loading or concentration estimates of sediment, organic nitrogen, 

nitrate, organic phosphorous, soluble phosphorus, and pesticides.  Previous applications of 

SWAT for streamflow and/or pollutant loadings have compared favorably with measured 

data for a variety of watershed scales (e.g., Arnold and Allen, 1996; Arnold et al., 1999, 

2000; Santhi et al., 2001; Borah and Bera, 2004; Jayakrishnan et al., 2005; Gassman et al., 

2007). Arnold et al. (2000) performed a stream flow validation study of the UMRB using 

input data based on the Hydrologic Unit Model for the United States modeling framework. 

The calibration and validation of SWAT for the UMRB region can be found in Gassman et 

al. (2006) and Jha et al. (2006).  

 

5.3.2. Optimization Method—The Evolutionary Algorithm 
 

Using SWAT directly in lieu of the function, ( ; )nf X Z , in problem (5.2) poses 

practical solution challenges. One approach is to run the model for all all possible 

conservation plans and evaluate the cost and the pollution outcome of each combination. The 

Pareto frontier would then be the set of least cost combinations associated with each 

combination of pollution reductions. However, for any realistic watershed problem, this brute 
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force approach is infeasible. Specifically, given that there are I  conservation practices 

possible for adoption on each field and there are 
1

J
jj

K
=∑  fields, this implies a total of 

1
( )

J
jj

K
I =∑ possible conservation plans to compare. In a watershed with hundreds of fields and 

several conservation practices, this comparison quickly becomes unwieldy. The 

combinatorial nature of the problem was recognized by Braden et al. (1989), and was one of 

the reasons for Khanna et al.’s (2003) decision to focus on a narrow band of land around 

streams.  

Evolutionary algorithms provide a systematic way for searching through large search 

spaces. These algorithms mimic the process of biological evolution, which, in the words of 

Mitchell (1996), “in effect, is a method of searching for solutions among an enormous 

amount of possibilities.” Researchers, beginning with Srivastava et al. (2002) and Veith et al. 

(2003) have used genetic algorithms (GA) in order to search for single cost-efficient 

watershed-level pollution reduction solutions. However, as discussed in the introduction, 

these papers examine small study areas and do not focus on the important issues of NPS 

pollution control considered in this study. 

 

5.3.3. The Language and Logic of Evolutionary Algorithms 
 

Beginning in 1950’s and 1960’s computer scientists came to a realization that the 

theory of biological evolution can be used as an optimization tool for engineering problems. 

Since the field of evolutionary computation owes its origins to observations of biological 

evolution, the terminology used has its analogs in biology, although, typically, the entities 

used to describe an optimization problem are much simpler than the real biological entities 

bearing the same name. A genome (or a chromosome) refers to a complete collection of 
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genes and fully describes an individual (a candidate solution in an optimization problem). A 

set of possible values that any gene can take is referred to as an allele set, or alphabet. Often, 

a genome representing a candidate solution is a one-dimensional array, or vector. A gene 

then is an element of this array and encodes a particular element of a candidate solution. A 

value of a gene comes from its allele set, also a vector. Analogous to haploid organisms in 

real biology, offspring is created from two parent individuals.  During sexual reproduction, 

recombination (crossover) occurs: the offspring’s genome consists of portions of each of the 

two parents’ genomes. As in biological evolution, offspring are subject to mutation: a 

random substitution of a gene’s value with a value from its allele set.  

In this study, the following correspondence between the terminology of evolutionary 

algorithms and entities related to nonpoint source pollution is made. Table 1 provides the 

necessary terms: 

 

Table 1. Terminology of evolutionary algorithms in relation to watershed optimization 

Evolutionary computation term Its interpretation in a nonpoint 
source pollution setting 

Allele set A set of mutually exclusive land use 
options and conservation practices 

Individual (genome) A distinct allocation of conservation 
practices and land use options in the 
watershed 

Gene Spatial unit of analysis (HRU) 

 

In this application of evolutionary algorithms to spatial optimization, a genome is a 

vector of length F, where F is the number of spatial decision-making units. Each element of 

the vector (gene) is encoded with a value from the allele set A, and denotes a particular land 

use option.  
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As in biological evolution, individuals at every generation form populations, and are 

characterized by their fitness—a score which measures how well each individual is solving 

the optimization problem at hand (for example, a value of an objective function). Individuals 

possessing higher fitness scores are more likely to be selected for reproduction and therefore 

are more likely to pass along the characteristics associated with the candidate solutions they 

represent.  

While there are many variations of evolutionary algorithms, most that can be called 

“genetic algorithms” have the following elements in common: populations of individual 

solutions, selection for reproduction according to fitness levels, crossover to produce new 

solutions (offspring), and random mutation of new offspring.  

Given that in order to characterize the tradeoffs outlined above, a multiobjective 

optimization problem needs to be addressed, I turn to a class of evolutionary algorithms 

designed to solve multiobjective problems. Recent years have seen emergence of several 

multiobjective evolutionary algorithms. I use an algorithm called Strength Pareto 

Evolutionary Algorithm 2 (SPEA2), developed by Zitzler and Thiele (Zitzler, Laumanns, and 

Thiele, 2002).  

The search process starts with a population of candidate solutions from which a new 

population is created by the process of selection, crossover, and mutation. The fitness score 

of each individual in the population is a function of how many other individuals in the 

population it dominates (in the sense of Pareto) and by how many individuals it is dominated 

by. The algorithm provides an approximate solution to problem (2) by preserving Pareto-

nondominated individuals, by eliminating Pareto-dominated solutions, and by iteratively 

creating new candidate solutions and assessing how well they perform on the multiple 
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objectives outlined in (2). Furthermore, the algorithm takes into account the degree of 

“crowding” around an individual in order to preserve the diversity in the population and to 

explore a greater region of the objective space. Details of the fitness assignment in the 

algorithm are presented in Appendix D.  

 

5.3.4. Integrating the Optimization Algorithm With the Water Quality 
Model 

 
In this application, three major components were integrated to arrive at the final 

modeling framework. The first component is the logic and the fitness assignment method of a 

multiobjective evolutionary optimization algorithm, SPEA2. The second component is a 

publicly available C++ library of genetic algorithms, GALib, originally developed by Wall 

(1996), with the current version available online. The third component is the hydrologic 

model, the SWAT2005, coupled with a Windows-based database control system, i_SWAT 

(Campbell, 2006; Gassman et al., 2003). SPEA2 provides the fundamental multiobjective 

optimization logic, while GALib provides the basis that is needed to implement an 

evolutionary search algorithm. Finally, SWAT and i_SWAT provide a way to model the 

different conservation practices considered in this paper and model their watershed-level 

environmental impacts. 

 

5.4. The Study Region and the Pollutants 
 

The Upper Mississippi River Basin extends from the source of the Mississippi river at 

Lake Itasca in Minnesota to a point just north of Cairo, Illinois. The total drainage area is 

nearly 492,000 km2, which lies primarily in parts of Minnesota, Wisconsin, Iowa, Illinois, 

and Missouri. Figure 3 contains a map of the Upper Mississippi River Basin and its position 
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in the central U.S. Cropland and pasture are the dominant land uses in the UMRB, which 

together are estimated to account for nearly 67 percent of the total area (NAS, 2000). 

Nutrient inputs (nitrogen and phosphorus) to fertilize the land are the primary sources of 

nonpoint source pollution in the UMRB stream system.  These nutrients are also apparently 

the cause of a major oxygen-depleted hypoxic or “dead” zone in the Gulf of Mexico which 

has exceeded 20,000 km2 (Rabalais et al., 2002). While the task force charged with assessing 

the causes of Gulf hypoxia in 2000 identified nitrogen (and, in particular, nitrate) 

contributions, as the primary nutrient loading causing the problem, more recent evidence 

suggests that both nitrate and phosphorous loads from the UMRB region (and elsewhere) are 

to blame (Integrated Assessment, 2000; e.g., Lohrentz et al., 1992, 1997, 1999; Ammerman 

et al., 2004; Sylvan et al., 2006). Recent evidence suggests that the UMRB is responsible for 

43 percent of nitrate and for 26 percent of phosphorus loadings into the Gulf of Mexico 

(Aulenbach et al., 2007). 

While nitrogen and phosphorous are believed to be the primary limiting nutrients 

contributing to the creation of the dead zone in the Gulf, they are also the culprits of 

substantial local water quality problems within many areas of the UMRB. While 

phosphorous is more often a target in Total Maximum Daily Load programs in the UMRB, 

there are also many water bodies listed as impaired due to high nitrogen concentrations. 

In short, water quality problems in the UMRB are substantial and multi-faceted.  On the one 

hand, nutrients from the region negatively affect water quality in lakes and streams locally 

throughout the basin, negatively affecting recreation opportunities, wildlife viewing, and 

ecosystem functioning. On the other hand, these nutrients travel out of the watershed and 
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Figure 3. UMRB and the watershed outlet at Grafton (from Kling et al. (2006)) 

 

flow in to the Gulf of Mexico where they directly contribute to the large region devoid 

completely of life. No single regulatory authority has identified a standard or set of water 

quality standards for the many impacted lakes and streams in the region, but numerous Total 

Maximum Daily Load regulations, nutrient “criteria,” and “targets” for nutrient reduction are 

in place or being developed by various state and federal agencies. Thus, the model described 

here representing a multitude of water quality targets at different spatial scales accurately 

describes the policy environment.   
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5.5. Algorithm Implementation and the Allele Set 
 

There are a number of abatement activities that individual farmers can undertake to 

reduce nitrogen and phosphorous loadings from their fields.  Various in-field conservation 

practices include conservation tillage (where residue from the previous year’s crop is left on 

the ground to help reduce erosion), buffer strips, grassed waterways, as well as complete 

retirement of land from crop production in favor of other uses.38 In addition, nitrogen and 

phosphorous loadings can be directly controlled by reducing the amount of application of 

nitrogen and phosphorous fertilizer to the crop. In this study, I consider several in-field 

conservation practices, a reduction in the quantity of nitrogen fertilizer applied, and 

retirement of land from crop production. With the exception of land retirement, all other 

practices are modeled in conjunction with the cropping system currently in place.39  

Furthermore, some conservation practices are already a part of the baseline scenario. 

In this application, the conservation practices and cropping systems observed in the baseline 

are preserved, while allowing the algorithm to add other conservation practice options.  

The attractiveness of this “baseline-aware” approach is clear. First, by preserving the 

crop rotations as observed in the data, an effort is made to realistically model the large 

agricultural landscape under study. Second, by not removing current conservation practices 

already in place, better policy relevance is achieved. It is, no doubt, interesting to “start from 

scratch”, that is, to model the removal of all conservation practice from the landscape and let 

the algorithm allocate those in a cost-efficient manner, as it is likely that the historical 

allocation of practices is not efficient, given the water quality objectives being considered. 
                                                 
38 The Conservation Reserve Program (CRP) is a very large, federally funded program that makes direct 
payments to farmers to remove their land from active production and instead plant trees or other perennial 
ground cover. 
39 The source of cropping systems and conservation practice coverage is the 1997 NRI Survey (Nusser and 
Goebel, 1997). 
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The prescriptions of the algorithm could then be used to gauge these inefficiencies. However, 

the historical investments in conservation practices are to some extent sunk costs, and to 

move forward to improve water quality one needs to heed the current state of the landscape. 

Further, given that improvements in water quality are of greatest policy interest, it is sensible 

that the worst situation, as far as water quality goes, is reserved for the status quo.  

There is, however, an additional complication raised by preserving the baseline set of 

conservation practices. In executing the assignment of HRUs to a particular member of the 

allele set, a constraint which guaranteed that the new set of conservation practices is “no 

worse” than the baseline had to be added. This, in turn, necessitates imposing some form of 

ordering on conservation practices. For example, if an HRU is observed to contain a grassed 

waterway in the baseline, I constrained the algorithm to be able to replace it with a terrace, 

but not with contour farming. Thus, contour farming, grassed waterway, and terraces are 

implicitly ranked from ‘weakest’ to ‘strongest’. Similarly, tillage practices are ranked by the 

amount of plant residue left on the field: conventional till, ridge till, mulch till, and no-till 

(CT, RT, MT, and NT, respectively). Also, if in the progression of the algorithm, a 

conservation practice is to be removed, extra care had to be taken to only revert as far back as 

the baseline set of conservation practices allows.  

The following table presents the (unconstrained) allele set used in this study. As 

discussed above, for the HRUs which were observed to have the relevant conservation 

practice in the baseline, the allele set was constrained. Reduced fertilizer (RF) in the table 

above refers to a 20 percent reduction in nitrogen fertilizer application. The allele set is 

constructed to take into account the fact that many of the practices considered are not 

mutually exclusive and can be implemented jointly on any given field. 
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Table 2. Conservation options (allele set) 

Allele number Allele description 

1 Conventional Till (CT) 
2 Ridge Till (RT) 
3 Mulch Till (MT) 
4 No Till (NT) 
5 CT+Contour 
6 RT+Contour 
7 MT+Contour 
8 NT+Contour 
9 CT+Grassed Waterway 

10 RT+Grassed Waterway 
11 MT+Grassed Waterway 
12 NT+Grassed Waterway 
13 CT+Terraced 
14 RT+ Terraced 
15 MT+Terraced 
16 NT+Terraced 
17 CT+RF 
18 RT+RF 
19 MT+RF 
20 NT+RF 
21 CT+Contour+RF 
22 RT+Contour+RF 
23 MT+Contour+RF 
24 NT+Contour+RF 
25 CT+Grassed Waterway+RF 
26 RT+Grassed Waterway+RF 
27 MT+Grassed Waterway+RF 
28 NT+Grassed Waterway+RF 
29 CT+Terraced+RF 
30 RT+Terraced+RF 
31 MT+Terraced+RF 
32 NT+Terraced+RF 
33 Land retirement 

 

The practices considered are simulated using the SWAT model. In particular, land 

retirement is modeled by assigning a permanent grass cover to the HRU, fertilizer reductions 

are modeled by reducing nitrogen fertilizer applications (USDA-ERS) by 20 percent for all 
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crop rotations where nitrogen fertilizer is used, and the in-field practices (tillage, grassed 

waterways, contour farming, and terraces) are modeled by adjusting the SWAT model 

parameters in the manner suggested by Arabi et al. (2007) and Secchi et al. (2007).  

To meaningfully capture a tradeoff between water quality objectives and total control 

costs, detailed information on the costs of all the options in the allele set is needed and was 

obtained from multiple sources. State-level costs of terraces, no-till, and contouring were 

gathered from the Natural Resource Conservation Service website40.  The costs of grassed 

waterways were obtained from the CRP program office, and converted to a per acre 

protected, annualized basis using a 5 percent discount rate and a 20 year useful life term41.  

The costs of land retirement are proxied by the cash rental rates and the costs of 

nitrogen fertilizer reductions were developed using the yield curves inferred from Iowa State 

University Extension’s N-Rate Calculator information for geographic zones and corn-

soybean crop sequences for Iowa, Minnesota, Illinois, and Wisconsin. State-level data for 

fertilizer application allowed us to compute the implied reduction in corn yields. Predicted 

yield reduction, multiplied by the price of corn, served as an approximation to the cost of 

reducing nitrogen fertilizer application. Details on the computed cost of nitrogen fertilizer 

reduction are provided in the Appendix.  

The algorithm was initialized with a population of 40 individuals. In order to 

efficiently exploit prior domain-specific knowledge, and in contrast to the earlier studies 

(e.g., Arabi et. al (2006), Bekele and Nicklow (2005)), the initial population was not created 

                                                 
40 The cost of establishing a terrace had to be converted to an annualized, per acre, basis. To that end, a cost per 
foot reported by NRCS was multiplied by 166.7, as this many feet of a terrace can protect one acre of land 
(Kling et. al., 2005; Secchi et al., 2007). The resulting cost was annualized using a 5 percent rate of discount 
and a 25 year term representing the useful life of a terrace. 
41 It is assumed that 2 percent of a unit of land, appropriately converted to a grassed waterway, protects the 
entire unit of land (Kling et al., 2005). 
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completely at random. First, the initial population was seeded with an individual representing 

the baseline allocation of conservation practices, and an individual representing a scenario of 

all cropland in the UMRB being retired from production and placed under permanent grass 

cover (i.e., allele #33). These individuals represent the boundary points on the conservation 

PPF: the baseline individual results in the lowest cost, and highest nutrient loadings, while 

the “all cropland retired” individual results in the highest cost and lowest nutrient loadings. I 

further assist the algorithm in exploring the search space by seeding it with additional 32 

individuals representing the uniform application of the alleles #1 through #32 onto the entire 

cropland in the watershed. The purpose (and the payoff) of such seeding is twofold: first, a 

good coverage of the objective space is achieved; and, second, the land use options which are 

immediately judged to be “good” help define the direction of the stochastic search and 

improve the algorithm’s efficiency 42. The rest of the initial population was generated by 

randomly assigning the cropland HRUs with one of the 33 alleles above (subject to the 

baseline constraint discussed above).43 I expect good initial coverage of the objective space, 

thus assisting the evolutionary algorithm in exploring a wider range of the search space.  

 

5.6. Empirical Analysis and Results 
 

I apply the evolutionary algorithm to develop a conservation PPF which provides an 

approximate solution to the multiobjective optimization, using two distinct sets of objectives. 

                                                 
42 For instance, seeding with every allele value proved to be a dramatic improvement over an algorithm which, 
in addition to defining the PPF boundaries by seeding the initial population with the baseline and allele #34 
(retirement of all cropland), included an individual assigning all corn HRUs a 20 percent N fertilizer reduction 
(allele #17, “CT+RF”), and an individual assigning terracing, no-till, and fertilizer reductions (allele #32, 
“NT+Terraced+RF”). 
43 An individual constructed in a way that strived to replicate as closely as possible, given the data limitations, 
the “Sound Conservation Practices” scenario of Kling et al. (2006) was also included, but was immediately 
dominated, and eliminated from subsequent generations.  
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The first set of results develops a PPF which relates to the regional water quality 

improvement objectives (motivated, perhaps, by the problem of hypoxia in the Gulf of 

Mexico). Specifically, the three objectives to be minimized are: 1) the cost of nonpoint 

source pollution control; 2) the mean annual nitrate loadings at the overall UMRB watershed 

outlet (Grafton, Illinois), and 3) the mean annual total phosphorus loadings at the UMRB 

outlet.  

 The second set of results is developed for objectives that incorporate both local water 

quality and Gulf hypoxia concerns. In particular, I wish to explore the set of conservation 

practices needed to reduce mean annual nitrate loadings by at least 30 percent in each of the 

subbasins in the UMRB (as represented by the 8-digit HUC watersheds).   

 The resulting frontiers for the two sets of objectives allow us to provide empirical 

answers to important policy questions. In particular, what is the nature of a tradeoff between 

the NPS control costs and NPS reductions? What are the costs of reducing nutrient loadings 

at the outlet for each of the nutrients separately, and jointly? Given a particular cost of 

control, what are the tradeoffs between nutrients? What practices should be used to control 

nitrates separately, phosphorus separately, and nitrates and phosphorus jointly? How do the 

answers change with a change in a spatial scale of nutrient reduction targets (i.e., when a 

subbasin-level targets for nitrates are employed)?   

 

5.6.1. The Conservation PPF 
 

The solution to a multiobjective optimization problem (2) is a three-dimensional 

(nitrates-phosphorus-cost) conservation PPF. A set of Pareto-nondominated individuals 

surviving after 463 generations (iterations of the evolutionary algorithm) provides an 
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approximation to the true frontier. Figures 4 and 5 provide two-dimensional projections and a 

three-dimensional visualization of the empirical frontier. The dashed lines in Figure 4 

represent the baseline nitrates, P, and cost. 

 

 

Figure 4. 2-dimensional projections of the empirical conservation PPF 

 

Having access to the full conservation PPF provides empirical content to the 

conceptual discussion above and enables one to answer a wide array of relevant water quality 

policy questions. On one level, the PPF allows for a “look at the big picture”: that is, 

quantification of various tradeoff schedules under different assumptions about the focus of 

water quality policy or the potential water quality improvement budget. In order to answer 

these kinds of questions, each individual on the PPF is treated as a data point characterized 

by outlet nitrate and phosphorus loadings, and control cost. The use of the frontier in this 
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Figure 5. 3-dimensional vizualization of the empirical conservation PPF  

 

fashion essentially answers a variety of “what?” questions: e.g., what is the cost of reducing 

nitrates by a given percentage, or what is the nature of the tradeoff between nutrients when 

an NPS pollution control budget is of particular magnitude? 

However, the usefulness of the conservation PPF does not end there. By looking at 

the individuals comprising the frontier, one can look deeper and essentially ask the “how?” 

questions. Each one of the over 1300 non-dominated individuals in the frontier represents a 

unique mix of land use and conservation practices in the UMRB. A policymaker could then 

use the frontier in the following fashion: first, ask, what is the nature of the tradeoff between 

cost and a particular nutrient of interest? Then, using the public’s preferences for water 
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quality, identify appropriate nutrient reduction targets. Then a policymaker can go back to 

the frontier, select an individual satisfying these water quality and cost criteria, and see which 

conservation practices are selected, and where they need to be implemented in the watershed 

in order to achieve the needed nutrient reductions.  

The next section highlights the use of the PPF to answer the “what” questions on the 

nature of the tradeoffs. The section following selects a set of particular nutrient reduction 

targets and explores the “how” questions by breaking down the distribution of conservation 

practices which achieve the given water quality targets. 

 

5.6.2. Tradeoffs of NPS Control Costs and Water Quality Benefits 
 

This section illustrates the tradeoffs between nutrient reductions and control costs. 

These tradeoffs are captured by the total abatement cost curves which can be derived from 

the conservation PPF. Both Figures present nitrate loadings in terms of the percentage of 

baseline loadings (over 423,000 tons of nitrate-nitrogen) on the horizontal axis, and control 

costs in terms of the percentage of baseline cost (estimated to be just over $416 million per 

year), on the vertical axis.  

Figure 6 contains cost curves for nitrate reductions under two different scenarios. 

Under one scenario, the cost curve is developed from the PPF in the absence of any 

constraint on phosphorus levels (as a lower envelope of the PPF in nitrate-cost space). Under 

an alternative scenario, a 30 percent concomitant reduction in phosphorus loadings is 

imposed as a constraint. As theory suggests, the constrained cost curve can be no lower than 

the unconstrained one, and that is indeed the case.   
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 Figure 6.  Cost-pollution tradeoff for nitrate loadings at the outlet 

 

Figure 6 provides interesting insight on the interactions between conservation 

practices considered and the two nutrients. Note that while the unconstrained cost curve starts 

out at the baseline level of nitrate loadings, imposing a phosphorus constraint forces the 

curve to start at a level of nitrate loadings which is about 9 percent lower than the baseline. In 

other words, given the set of practices considered, once phosphorus loadings are reduced by 

30 percent, an automatic reduction of about 9 percent in nitrate loadings follows. Further 

evidence of such interactions is revealed by the fact that the phosphorus constraint is only 

binding up to about a 20 percent reduction in nitrates. Greater reductions in nitrates lead to 

simultaneous reductions in phosphorus, suggesting complementarities in the set of practices 

used to achieve greater nitrate reductions. Also, as one can see from the Figure, the extra cost 

of achieving a 30 percent phosphorus target is relatively small. Over the range of nitrate 

reduction values where the phosphorus constraint is binding (from 9 to 20 percent reduction 

in nitrates), average extra cost is just over $168 million per year.  
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 Interestingly, such complementarities are not evident in the case of modest 

phosphorus reduction targets. Figure 7 depicts an unconstrained phosphorus cost curve and a 

constrained phosphorus cost curve, subject to the 30 percent constraint on nitrate loadings. 

Baseline phosphorus loadings in the UMRB were estimated to be over 29,000 tons of total P 

per year. In this case, imposing a nitrate constraint automatically reduces phosphorus 

loadings by about 35 percent, and a nitrate constraint is binding up to a 40 percent reduction 

in phosphorus, and is not binding thereafter. Furthermore, in contrast to the case above, the 

average extra cost of achieving a nitrate target over the range where nitrate constraint is 

feasible and binding is estimated to be over $805 million per year. 

 These findings suggest an asymmetry between the impact of a set of practices used to 

achieve moderate nitrate reductions on phosphorus loadings and the impact of practices 

achieving moderate phosphorus reductions on nitrate loadings. In particular, for this 

watershed, a set of practices which achieves moderate nitrate reductions appears to be 

effective in controlling outlet phosphorus loadings, while the converse turns out to be false.44 

Thus, if water quality policy in the UMRB targets outlet nitrates, then a sizeable (30 percent) 

reduction in outlet phosphorus loadings come at no extra cost if the nitrate policy seeks 

reductions in excess of 20 percent, and come at a very moderate cost if the nitrate reduction 

targets fall between 9 and 20 percent. However, a policy seeking exclusively phosphorus 

loadings reductions at the outlet will not be effective in simultaneously controlling nitrates, 

unless an ambitious (in excess of 50 percent) phosphorus reduction target is specified.  

                                                 
44 Indeed, examining the table of the consequences of uniform application of each of the alleles  (subject to the 
“baseline-aware” constraints discussed above) reveals that only alleles containing terraces (#13, #14, and #15) 
are predicted to yield at least significant P reductions, and simultaneously provide moderate (greater than 20 
percent) reduction in nitrates. Other sets of practices such as contouring or grassed waterways, while effective at 
controlling P loadings, were mostly ineffective in providing nitrates reductions in excess of 9 percent (without 
being combined with reduced nitrogen fertilizer applications).  
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Figure 7. Cost-pollution tradeoff for Phosphorus loadings at the outlet  

 

As the stringency of the nutrient control rises for nitrates (phosphorus), the constraint 

on phosphorus (nitrate) loadings becomes nonbinding. This is due to the complementarities 

in controlling both nutrients imbedded in the land retirement option. Once greater reliance on 

land retirement becomes necessary to further control nitrates (phosphorus), leading to 

simultaneous reductions in the other nutrient, the constraint on phosphorus (nitrates) becomes 

non-binding. 

 

5.6.3. Tradeoffs Between Different Pollutants (Nitrates and P) 
 

This section takes, literally, a different perspective on the nature of the tradeoffs 

implied by the conservation PPF. As highlighted in the theoretical discussion above, the 

tradeoff between different pollutants for a particular level of control costs can range from a 

curve spanning the entire range of possible nutrient values to just a single point, or anything 
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in between. Thus, theory alone provides fairly limited guidance as to what one should expect 

from a particular isocost curve.  

 The task of looking at the tradeoffs between nutrients is further complicated by the 

fact that, in order to properly explore such a tradeoff curve, all the points on the curve have to 

have identical control costs. This works well in theory, but, in the empirical application, a 

finite number of points define the PPF. Thus, potentially, only a few points may be located in 

a narrow band in a cost dimension to approximate such a tradeoff curve, and it is likely that 

one cannot identify distinct points along nitrate and phosphorus dimensions carrying 

identical control costs. These considerations make the empirical analysis of isocost curves 

somewhat limited45.  

 Nonetheless, given these caveats, a set of tradeoffs depicted in Figure 9, drawn for 

successively higher levels of control costs, tells an interesting story. For the cost levels 

ranging from 200 to 500 percent of baseline cost, the empirical isocost curves span a wide 

range in the nutrient loadings space. Thus, a policymaker whose charge was to allocate a 

water quality improvement budget equal to 200 percent of baseline cost would be able to 

select from a fairly wide range of phosphorus pollution outcomes (roughly from 20 to 26 

thousand tons), and a range of nitrate loadings ranging from 346 to 387 thousand tons. 

However, as the cost levels rise to 1000 percent, the dimensions of the empirical isocost 

curves decrease dramatically. This is consistent with the pattern observed in developing  

                                                 
45 It should also be pointed out, that, given the diverse set of conservation practices being considered, I expect a 
dense set of individuals to occupy an isocost curve, as the tremendous number of possible reallocations of 
conservation practices implies that there is also a large number of possible allocations of conservation practices 
for a single level of cost. A full development of a (restricted) frontier in nitrate-phosphorus space could be 
undertaken using the methods employed in this study, and could serve as an interesting extension of this 
research. The current set of results demonstrate that such tradeoffs indeed exist, and that their dimensions and 
shape varies with the cost level and the practices used.   
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Figure 8. Tradeoffs between Nitrates and Phosphorus control 

 

abatement cost curves for nutrients: as costs rise, use of land retirement becomes more 

widespread, which leads, eventually, to an essential collapse of the empirical isocost. As the 

size of the budget available for water quality improvements rises, an increased use of a 

practice which is effective at controlling both pollutants (land retirement) essentially leads to 

the elimination of the notion of tradeoff between the two nutrients. 

The dimensions of the isocosts highlight the scope of the tradeoff, while the shape of 

the empirical isocost curves dictates the rate of the tradeoff. This marginal rate of substitution 

between nitrates and phosphorus changes depending on the size of the available pollution 

control budget.  
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5.6.4. Effects of Targeting Nutrients Separately or Jointly 
 

The empirical frontier above consists of a large number of individuals, each 

representing a distinct way of placing conservation practices in the watershed. While the 

frontier itself summarizes the tradeoffs for a range of control costs and nutrient reductions, 

each individual on the empirical frontier contains information on the “look” of the watershed, 

that is, it is essentially a prescription for the application of conservation practices in the 

watershed. Potentially, a regulator makes use of the tradeoff information embedded in the 

frontier, and selects a set of appropriate nutrient reduction targets. A particular individual 

meeting these targets is then selected from the frontier, and it then specifies the quantity and 

the subbasin-level distribution of conservation practices in the watershed. Similarly to the 

development of unconstrained and constrained abatement cost curves presented in the section 

above, this section selects 30 percent as a target nutrient reduction. 

 A priori, one expects that whether nitrates and phosphorus at the outlet are targeted 

separately or jointly may have dramatic implications for which set of conservation practices 

should be used and where they should be located within the watershed. Further, this 

highlights the importance of careful planning of nutrient reduction goals. If a plan meant to 

control only nitrates (or phosphorus) is quite different from a plan controlling both pollutants, 

then implementing water quality policy in a piecemeal fashion (e.g., control nitrates first, 

then focus on phosphorus) may be socially costly and inefficient.  

 Careful empirical analysis is needed to assess the validity of these concerns. Next, the 

implications of targeting each nutrient for the allocation of conservation practices for a 30 

percent reduction goal are analyzed.  
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 First, Figure 9 below demonstrates how one identifies distinct individuals on the 

frontier, depending on the targeting strategy. Suppose a regulator wishes to reduce nitrate 

loadings by 30 percent. Such an individual (highlighted in red) is located at the intersection 

of the lower envelope of the frontier in nitrate-cost space and the line specifying the loadings 

target (dashed line). This individual lies on the unconstrained cost curve for nitrates 

identified above. Thus, by looking at the unconstrained nitrate abatement cost curve, it is 

clear that, as a result of reducing nitrates by 30 percent, phosphorus loadings are in fact 

reduced by more than 30 percent. However, focusing on phosphorus reductions alone (blue 

point) results in nitrate loadings much greater than the 30 percent reduction goal. Again, this 

is also evident from analyzing the empirical phosphorus abatement cost curve.  

  For the UMRB, striving for a 30 percent reduction in nitrates only also, as a by-

product, (over)achieves a 30 percent phosphorus reduction goal. On the other hand, seeking 

to reduce phosphorus alone produces only slight reductions in nitrate loadings. Thus, for a 30 

percent reductions target for the UMRB, 2 distinct individuals are identified from the 

empirical PPF. In general, of course, this does not have to be the case. Depending on the 

magnitude of the reduction target, the mix of conservation practices, and the nature of the 

watershed, one could also observe situations where three distinct scenarios are found (one for 

nitrate reductions, one for phosphorus reductions, and one for both), or where achieving a 

phosphorus reduction goal automatically implies the achievement of the nitrate goal, but 

achieving a nitrate goal does not imply the achievement of a phosphorus goal, or even the 

case where achievement of a target in one nutrient automatically implies the achievement of 

target reductions in the other46.  

                                                 
46 For example, in this watershed, if the target reductions are 20 percent for both nutrients, 3 distinct individuals 
are identified.   



 

 
 

184

 

 

Figure 9. Graphical representation of targeting distinct nutrients 

 

Each individual in the PPF is encoded with a unique identification number. An 

individual which achieves a 30 percent nitrate reduction goal and which is highlighted in red 

in the Figure above, is identified as individual #4715. An individual achieving the 

phosphorus target (highlighted in blue in the Figure above) is identified as individual #3821. 

Table 3 below lists the cost and pollution consequences for the 2 individuals: 

 

Table 3. Consequences of targeting nutrients for a 30 percent reduction 

Ind # NO3 
loadings, 
tons/year 

Total control 
cost, million $/year

Net control 
cost, million

$/year 

P 
loadings, 
tons/year 

NO3, % of 
baseline 

Cost, % of 
baseline 

P, % of 
baseline 

4715 (red) 295,720 1,854 1,438 18,792 70 445.7 64.5 
3821 (blue) 385,360 786 370 20,379 91.2 188.8 69.9 
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 Individual #4715, achieving a 30 percent reduction in nitrates and almost a 36 percent 

reduction in phosphorus, is almost four times as costly as individual #3821, in terms of 

needed net control costs (total less baseline cost).  Each of these individuals prescribes a 

distinct placement of conservation practices. A priori, I expect to see greater use of options 

containing nitrogen fertilizer reduction for individual #4715. Also, since this individual is 

also found to reduce phosphorus loadings, one expects to see practices which are effective at 

controlling phosphorus to also be selected.47 That is, options containing terraces, grassed 

waterways, and contouring, as well as land retirement could be expected to have been 

selected for individual #4715. On the other hand, for the individual focusing on phosphorus 

(individual #3821), options containing nitrogen fertilizer reductions should not be selected, 

but, instead, a greater area of the watershed may be devoted to practices typically considered 

helpful in controlling erosion (and thus soil-bound phosphorus): terraces, conservation 

tillage, grassed waterways.  

  Land retirement is beneficial for both nitrate and phosphorus loadings, so no a priori 

ranking in its use between the two individuals is obvious. However, if “nutrient-specific” 

options are not sufficient to reach a 30 percent reduction, then some use of land retirement is 

expected. In particular, this could help explain some complementarities observed (i.e., that 

individual #4715 also reduces phosphorus by 36 percent, while targeting nitrates alone).  

Empirical results confirm some of the expectations, while disproving others. 

Individual #4715 allocates most of the cropland to an option combining grassed waterways 

with nitrogen fertilizer reductions, to terraces combined with nitrogen fertilizer reductions, 

and to land retirement. Contouring proves to be a losing option, with none of the alleles 

                                                 
47 The effects of uniform application of each of the alleles (subject to baseline constraints) are presented in  
Appendix D.  
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Table 4.  Distribution of cropland between alleles for the 2 individuals 

Ind # 4715: 30% NO3, 36% P  
reduction 

Ind # 3821: 9% NO3, 30% P 
reduction 

 
Allele 

number 
Allele description area, km2 percent of

total area 
Change from 
baseline, km2 Area, km2 percent of 

total area 
Change from 
baseline, km2

1 Conventional Till 
(CT) 0 0 -78,071 0 0 -78,071 

2 Ridge Till (RT) 0 0 -40,485 0 0 -40,485 
3 Mulch Till (MT) 0 0 -78,144 0 0 -78,144 
4 No Till (NT) 0 0 -35,413 0 0 -35,413 
5 CT+Contour 0 0 -1,074 0 0 -1,074 
6 RT+Contour 0 0 -52 0 0 -52 
7 MT+Contour 0 0 -2,189 0 0 -2,189 
8 NT+Contour 0 0 -576 0 0 -576 

9 CT+Grassed 
Waterway 0 0 -2,299 76,154 31 73,855 

10 RT+Grassed 
Waterway 0 0 -444 38,806 16 38,362 

11 MT+Grassed 
Waterway 0 0 -4,087 78,376 31 74,289 

12 NT+Grassed 
Waterway 0 0 -3,330 33,532 13 30,201 

13 CT+Terraced 0 0 -75 75 0 0 
14 RT+ Terraced 0 0 0 0 0 0 
15 MT+Terraced 0 0 -2,875 2,875 1 0 
16 NT+Terraced 0 0 -210 210 0 0 
17 CT+RF 262 0 262 5,289 2 5,289 
18 RT+RF 172 0 172 2,175 1 2,175 
19 MT+RF 1,136 0 1,136 6,044 2 6,044 
20 NT+RF 205 0 205 5,787 2 5,787 
21 CT+Contour+RF 0 0 0 0 0 0 
22 RT+Contour+RF 0 0 0 0 0 0 
23 MT+Contour+RF 63 0 63 0 0 0 
24 NT+Contour+RF 0 0 0 0 0 0 

25 CT+Grassed 
Waterway+RF 77,296 31 77,296 0 0 0 

26 RT+Grassed 
Waterway+RF 36,219 15 36,219 0 0 0 

27 MT+Grassed 
Waterway+RF 73,007 29 73,007 0 0 0 

28 NT+Grassed 
Waterway+RF 31029 12 31,029 0 0 0 

29 CT+Terraced+RF 825 0 825 0 0 0 
30 RT+Terraced+RF 1,429 1 1,429 0 0 0 
31 MT+Terraced+RF 3,683 1 3,683 0 0 0 
32 NT+Terraced+RF 1,035 0 1,035 0 0 0 
33 Land retirement 22,962 9 22,962 0 0 0 
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containing contouring being included in the makeup of either individual. Terraces, despite 

their predicted effectiveness in reducing both nitrates and phosphorus (see Appendix), are 

present in a relatively small area. Application of grassed waterways is the main vehicle of 

achieving phosphorus reductions for individual #3821.  

 The columns in Table 4 which describe the change in land allocation relative to 

baseline indicate a major shift to grassed waterways for both individuals, as well as the 

addition of nitrogen fertilizer reductions for individual #4715. 

 Finally, and also somewhat unexpected, the use of land retirement is limited to 

individual #4715, with zero additional land retirement prescribed for phosphorus control. As 

land retirement is the most costly option, significant utilization of land retirement for the 

achievement of the 30 percent nitrate reduction goal is partially responsible for the large cost 

disparity between individuals #4715 and #3821. 

 

5.6.5. Subbasin-level Distributions of Conservation Practices 
 

This section describes in greater detail the geographic distribution of conservation 

practices which were selected to make up both individuals. The maps present additional 

conservation practices implemented on the landscape, relative to the baseline. In order to 

improve the readability of the maps, subbasin distributions of alleles other than “Land 

Retirement” are summed over the two main tillage types: “conventional tillage” (to include 

conventional till and ridge-till), and “conservation tillage” (to include mulch-till and no-till).  

 The first set of maps looks at the distribution of land retirement for individual #4715, 

as well as a map of land retirement costs used in implementing the algorithm. Retirement of 

additional 9 percent of the cropland in the UMRB from production is needed for the control 
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of nitrates, while no additional land retirement is a part of a solution which reduces 

phosphorus only (#3821).  

 Comparing the distribution of land retirement with the distribution of estimated costs 

of land retirement, it is clear that the algorithm does not allocate land to be retired from 

production based on cost considerations alone, but rather on the impact that the spatial 

placement of land retirement has on nutrient loadings at the outlet. In fact, expensive areas in 

Illinois (Illinois River Watershed) are to be retired from production. Interestingly, land 

retirement is prescribed in one single compact area of the UMRB. Allocation of land 

retirement to land in close proximity to the watershed outlet has important policy 

implications of targeting land retirement efforts for the reduction of nitrate export from the 

watershed.  

The single most widely selected conservation practice for this particular set of 

nutrient reduction targets is grassed waterways (and grassed waterways with the addition of 

nitrogen fertilizer reductions for individual #4715).  

 In fact, grassed waterways is really the only conservation practice selected for 

individual #3821. The fact that some terraces appear to be a part of the individual is due to 

the nature of “baseline-aware” constraints imposed on the allele set. These constraints 

ensured that, if a conservation practice is present in the baseline data, the algorithm could not 

remove the conservation practice or step down to another, “weaker”, conservation practice. 

Given these constraints, for instance, if a cropland HRU was observed to be in mulch-till, 

with a terrace, then the algorithm could only change that particular HRU to no-till in the 

tillage dimension, add nitrogen fertilizer reductions, or retire the HRU from production. It 

would not be allowed, however, to apply grassed waterways if a terrace was already in place.  
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Rental Rates, $/acre
30 - 61

62 - 92

93 - 122

123 - 148

149 - 186

Land Retirement, sq. km
0 - 493

494 - 2524

2525 - 3859

 

Figure 10. Cash rents and the distribution of land retirement, individual #4715 

 

This explains the presence of terraced land as a part of makeup of individual #3821: the 

algorithm left the baseline terraced land as is.48 

The two maps below present the distribution of grassed waterways in individual 

#3821. The map on the left presents grassed waterways interacted with “conventional” 

                                                 
48 The presence of nitrogen fertilizer reduction alleles (#17-20) is observed as part of the makeup of individual 
3821. This is counterintuitive, as nitrogen fertilizer reductions do very little to reduce outlet P (see Appendix). 
Mapping these alleles, it becomes apparent that the subbasins where these alleles are observed actually lie in 
Illinois, below the UMRB Grafton outlet. Thus, conservation practices in those subbasins do not affect nutrient 
loadings at Grafton, and, in the efficient solution, a zero-cost option should be selected for these subbasins. 
Fertilizer reductions are the cheapest conservation practice for Illinois but eventually, the algorithm should 
remove them from the subbasins which cannot help reduce loadings at Grafton. This again highlights the fact 
that the solutions produced by the algorithm are approximations to the truly efficient solutions.  
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tillage, while the map on the right presents grassed waterways combined with “conservation” 

tillage methods.  

 

Grassed Waterways, Conventional Tillage  
(Alleles #9-10) 

Grassed Waterways, Conservation Tillage 
(Alleles #11-12) 

Area protected by GW, sq. km
0 - 359

360 - 998

999 - 1864

1865 - 2956

2957 - 4950

Area protected by GW, sq. km
0 - 268

269 - 771

772 - 1612

1613 - 2685

2686 - 4517

 

Figure 11. Distribution of grassed waterways, individual #3821 

 

 Grassed waterways combined with conventional tillage are predominant in the 

Minnesota, Northern Wisconsin, and Indiana portions of the UMRB, while grassed 

waterways with conservation tillage are selected by the algorithm for most of the Iowa and 

Illinois portions of the watershed. By overlaying the two maps it is clear that grassed 

waterways are prescribed for phosphorus control for the overwhelming majority of the 

subbasins in the UMRB.  
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 For individual #4715, grassed waterways, in conjunction with nitrogen fertilizer 

reductions, are also prevalent. The distributions of grassed waterways, by tillage type, are 

presented below.  

 

                      Grassed Waterways,  
                     Conventional Tillage,  
                     N fertilizer reduction 

                    (Alleles #25-26) 

                     Grassed Waterways, 
                    Conservation Tillage, 
                    N fertilizer reduction 
                          (Alleles #27-28) 

Area Protected by GW, sq. km
0 - 359

360 - 998

999 - 1864

1865 - 2956

2957 - 4950

Area protected by GW, sq. km
0 - 268

269 - 771

772 - 1612

1613 - 2685

2686 - 4517

 

Figure 12. Distribution of grassed waterways, by tillage type,  individual #4715 

  

The distribution of grassed waterways across the two tillage types, ignoring the 

presence of fertilizer reductions is quite similar to the distribution within individual #3821.49 

This similarity, incidentally, has somewhat comforting policy implications. If the policy of 

                                                 
49 In fact, given the nutrient reduction targets considered, protection of water quality by means of grassed 
waterways is recommended for most of the cropland HRUs in the UMRB for both individuals.  
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nutrient reductions in the UMRB proceeds sequentially, where phosphorus reduction strategy 

is implemented first, then, in order to achieve a nitrate target, no large-scale redistribution of 

grassed waterways would be required. Instead, adding fertilizer reductions ‘on top of’ 

existing grassed waterways, in conjunction with targeted land retirement, would 

consequently achieve the nitrate goal. Of course, if nitrate reduction is the goal, then 

phosphorus reductions follow immediately. This is an important finding, as nothing, in 

principle, guarantees that it should hold. The makeup of the two solutions could be quite 

distinct, which would then imply that choosing an initial nutrient reduction target is 

extremely important. However, for the UMRB, for the targets considered, it appears that if a 

policymaker gets the distribution of conservation practices right for one nutrient reduction 

goal, the other goal can subsequently be achieved with little to no (deadweight loss) spatial 

redistribution of conservation practices.  

 Finally, similarly to individual #3821, terraces present in the makeup of individual 

#4715 are also ones present in the baseline land use allocation. However, in contrast to 

#3821, nitrogen fertilizer reductions are added onto a large portion of terraced areas.   

 

5.6.6. Implications of Selected Water Quality Targets 
 

The analysis above was conducted under an objective of simultaneously reducing 

nitrate and phosphorus loadings at the outlet of the UMRB. Thus, in principle, the 

evolutionary algorithm only rewards those solutions which reduce nutrient loadings at the 

outlet subbasin, and does not directly seek reductions occurring in other subbasins in the 

watershed. This may have important implications for local water quality (subbasin-level 
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nutrient loadings). To illustrate, I again turn to individuals analyzed in the section above, and 

consider the spatial distribution of loadings of nitrates and phosphorus.  

 The first set of maps depicts the subbasin-level loadings of nitrates for individuals 

#4715 and #3821, expressed in terms of percentage of baseline loadings. The histogram 

below counts the number of subbasins where a particular loading reduction is observed.  
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Figure 14. Histogram of subbasin nitrate loadings, by share of baseline loadings 

 

As one can clearly see, setting a nutrient reduction goal in terms of reductions at the 

outlet of the watershed has profound implications for local water quality. When the goal is 

nitrate loading reductions at the outlet, the maps indicate that the algorithm allocates 

reductions very unequally, with a few subbasins where reductions are dramatic (over 90 

percent), while many of the subbasins experience very modest nitrate loading reductions, if at 
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all. This is, of course, what one would expect the algorithm to do, given the location of the 

watershed outlet.  

 For individual #3821, about 20 subbasins out of 131 experience small reductions in 

nitrate loadings, with the remaining subbasins seeing no reductions at all or even an increase 

in nitrate loadings. Again, this is consistent with the nature of individual #3821, which is an 

individual which has been selected for its ability to reduce phosphorus alone, regardless of 

the consequence for nitrate loadings.  

 

Distribution of nitrate loadings,  
as fraction of baseline, #4715 

Distribution of nitrate loadings,  
as fraction of baseline, #3821 

Nitrate loadings, fraction of baseline
0.07 - 0.36

0.37 - 0.47

0.48 - 0.63

0.64 - 0.81

0.82 - 1.00

 

Nitrate loadings, fraction of baseline
0.767 - 0.863

0.864 - 0.937

0.938 - 0.995

0.996 - 1.053

1.054 - 1.140

Figure 15. Subbasin nitrate loading distributions, individuals #4715 and #3821 

  

It is also interesting to point out that some subbasins experiencing nitrate loading 

reductions follow the flow path of the Mississippi River (it is especially evident in 
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Minnesota), and of Illinois River. That is, the evolutionary algorithm allocates conservation 

practices to include nitrate loading reductions to the major waterways. Again, this is what 

one would expect the algorithm to do.  

 A different pattern is observed for subbasin-level phosphorus reductions. Maps 

below, as well as the histogram of subbasin loadings as a proportion of baseline loadings 

indicate that widespread application of grassed waterways (for both individuals), and land 

retirement (in the case of #4715) serves to produce a surprisingly uniform spatial distribution 

of sizeable phosphorus loading reductions.    

 

                               Distribution of P loadings,  
                              as fraction of baseline, #4715 

                 Distribution of P loadings,  
               as fraction of baseline, #3821 

P loadings, fraction of baseline
0.12 - 0.31

0.32 - 0.48

0.49 - 0.58

0.59 - 0.75

0.76 - 1.05

P loadings, fraction of baseline
0.195 - 0.396

0.397 - 0.557

0.558 - 0.739

0.740 - 0.935

0.936 - 1.384

 

Figure 16. Subbasin phosphorus loading distributions, individuals #4715 and #3821 
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 In particular, the mix of conservation practices describing individual #4715 produces 

a spatial pattern of reductions where only 16 subbasins do not experience phosphorus loading 

reductions. For individual #3812, loadings in 25 subbasins either do not decrease, or 

increase. 
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Figure 17. Histogram of subbasin phosphorus loadings, by share of baseline loadings 

 

Thus, for the UMRB, the mix of conservation practices which efficiently reduces 

outlet phosphorus and nitrate loadings also produces large local water quality gains in terms 

of phosphorus loading reductions. Local nitrate loading reductions, on the other hand, are 

concentrated in a few select subbasins of the watershed.  

 One implication of these findings is that should a policy which strives to achieve 

outlet-level nitrate reductions for the UMRB be implemented, not only outlet-level 

phosphorus loadings are reduced automatically, but large and widespread improvements in 
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local P reductions can also be expected. Of course, many downstream loading reductions are 

inextricably linked to the introduction of conservation practices in the upstream subbasins.  

 

5.7. Concluding Remarks 
 

In this chapter, I examined the policy implications for efficient control of NPS 

pollution using a spatially explicit model of a large and critically important agricultural 

region: the Upper Mississippi River Basin in the central U.S. I derived the conservation 

production possibility frontier that explicitly incorporates the tradeoffs between pollution 

control costs and water quality benefits, between different pollutants, or between different 

control targets. To empirically estimate these tradeoffs, a modeling framework that (a) 

realistically incorporates the key attributes of NPS pollution and (b) is able to approximate 

the efficient solutions by optimally choosing the set of conservation practices for each spatial 

unit in the Basin was developed. The regional scale of the modeling framework facilitates the 

investigation of relevant policy analyses related to the growing “dead zone” in the Gulf of 

Mexico and the tradeoff between regional and local pollution reduction targets. 

Several caveats should be mentioned. First, the enormity of the search spaces 

precludes one from characterizing the solutions obtained as truly efficient. However, I 

believe that the approximations found are quite relevant to policy analysis. Second, the 

results are indeed tied to the set of conservation practices and cost estimates. Although an 

effort was made to evaluate a wide variety of conservation practices discussed in water 

quality literature, inclusion of other possibly relevant practices (e.g., wetlands) may alter the 

results. This, however, is not so much a challenge to the modeling approach as an 

opportunity for further productive research.  
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Economists have long been able to point out that tradeoffs are ever-present in all of 

environmental policy, and in particular in nonpoint source pollution control. Tradeoffs are 

only meaningful when conservation policy options are efficient. Making such options explicit 

and thereby identifying numerous tradeoffs inherent in nonpoint source pollution control is 

the main contribution of this work.  
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CHAPTER 6. GENERAL CONCLUSIONS 
 

The four chapters above highlight the importance of both epistemic and aleatory 

uncertainty and suggest ways to handle some uncertainties inherent in contemporary 

environmental policy problems.  

In the first chapter, I aim to characterize an optimal spatial allocation of land parcels 

to specific environmental practices explicitly dealing with uncertainty in both the benefits 

and program costs. The empirical application focuses on a heavily agricultural Iowa 

watershed, and atmospheric carbon sequestered by agricultural soils is used as a measure of 

environmental benefit. The results provide a magnitude of uncertainty discount for soil 

carbon offsets and the margin of safety necessary in the budget to ensure at the planning 

stage that the program’s costs will not exceed the planned expenditures. Overall, the 

magnitudes of the uncertainty discount for soil carbon suggest that soil carbon sequestration 

in Iowa may be a viable option both for a regulator concerned with reducing greenhouse gas 

emissions and for an aggregator who considers consolidating land enrollment and selling 

carbon credits. Future research directions may include adding the time dimension to the 

problem, as well as addressing issues of contract design and compliance. 

In the second chapter, the design of permit trading programs when the objective is to 

minimize the cost of achieving an ex ante pollution target; that is, one that is defined in 

expectation rather than an ex post deterministic value, is examined. I demonstrate that to 

minimize expected abatement costs regulators must use information on the joint distribution 

of firms’ abatement costs, as well as the pollution delivery coefficients. As a result, the 

optimal trading ratio is a function of the delivery coefficient, as well as the moments of 

abatement costs, and the total permit allocation deviates from the pollution goal. These 
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findings differ from a typical permit market design, where no cost information is needed to 

achieve cost-efficiency, the trading ratio is set to the ratio of pollution delivery coefficients, 

and the permit allocation exactly equals the pollution goal. It is hoped that these findings may 

both contribute to a clearer understanding of the theoretical properties of a permit trading 

system with pollution targets specified in terms of averages, as well as serve to improve the 

design of real-world permit trading programs. 

The third and the fourth chapters of the thesis build a simulation-optimization 

modeling framework for the analysis of efficient nonpoint source pollution reduction 

strategies. These essays integrate modern multi-objective optimization tools with a realistic 

water quality model to provide decision-makers with sets of cost-efficient pollution reduction 

solutions. 

In the first application, I search for allocations of conservation practices that 

minimize the costs of achieving given water quality targets for all the major watersheds in 

the state of Iowa, a state greatly affected by nonpoint source pollution. The resulting set of 

tradeoffs is used to generate watershed-level nonpoint source pollution abatement curve. 

Availability of nonpoint source pollution abatement cost curves makes solving for a cost-

minimizing way of reducing state-level nutrient loadings straightforward. In particular, 

watershed-level loading reduction allocations for a variety of state-level nutrient reduction 

goals are found. I also explore how the cost-minimizing solution changes as a result of 

imposing local water quality constraints.  

Furthermore, watershed-level nutrient pollution reductions which minimize state-

wide costs are translated into a specific mix and distribution of conservation practices which 

achieve these water quality goals. For the range of nutrient loading reductions considered, 
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grassed waterways (often implemented jointly with no-till and nitrogen fertilizer reductions) 

was the conservation practice selected most often. Terraces and targeted land retirement were 

also found to be a part of cost-minimizing solutions. 

The results suggest that significant inefficiencies exist in the current suite of 

conservation practices in Iowa. This, in turn, signals an opportunity for reallocation of 

conservation practices in a way that could result in lower level of investment in conservation 

practices and in lower levels of nutrient pollution. For example, results indicate that a 20 

percent reduction in state-level nitrate loading export, as well as a 30 percent reduction in 

watershed-level phosphorus loadings could be achieved at a cost which is lower than the 

baseline investment in conservation practices.  

In the final chapter, I examine the policy implications for efficient control of nonpoint 

source pollution using a spatially explicit model of a large and critically important 

agricultural region: the Upper Mississippi River Basin in the central U.S. I derive the 

conservation production possibility frontier that explicitly incorporates the tradeoffs between 

pollution control costs and water quality benefits, between different pollutants, or between 

different control targets. To empirically estimate these tradeoffs, a modeling framework that 

(a) realistically incorporates the key attributes of NPS pollution and (b) is able to 

approximate the efficient solutions by optimally choosing the set of conservation practices 

for each spatial unit in the Basin was developed. The regional scale of the modeling 

framework facilitates the investigation of relevant policy analyses related to the growing 

“dead zone” in the Gulf of Mexico and the tradeoff between regional and local pollution 

reduction targets.  
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Future research potential of evolutionary algorithms in general, and of the coupled 

water quality model-evolutionary algorithm framework in particular, is enormous. 

Improvements in the water quality models and better availability of detailed spatial land use 

and conservation practices data can drastically increase the level of detail and realism of the 

obtained solutions. Considerations of additional or alternative environmental objectives (e.g., 

nutrient concentrations, or a specific quantile of the loadings distribution) may be in order to 

better address the nature of nutrient pollution. Increased computational capacity may allow 

for better characterizations of uncertainty imbedded in the input data and/or the water quality 

model parameters.  

 On a final note, I would like to mention that while research such as this one may be 

able to provide insights to policymakers on how to handle particular uncertainties and 

complexities which are endemic to most important environmental problems, the public 

should not accept the presence of uncertainties as an excuse for the lack of action. Academic 

research will likely never be able to resolve all the uncertainties associated with interactions 

of economic agents, social institutions, and the environment. Thus, when a pressing 

environmental issue (such as nonpoint source nutrient pollution) arises, a policy response 

ought not to wait for the “final answer” from the research community. Instead, policy and 

relevant research should co-exist in time, ideally with a positive feedback loop, where policy 

action stimulates research, and policy-relevant research has the power to influence policy 

discussions. I hope that this research contributes, to whatever extent, to improving the policy 

options for environmental protection.  
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APPENDIX A. APPENDIX TO CHAPTER 2 
 

Proposition 1 (Paris and Easter, 1985). If Ω  is a positive semi-definite matrix, the 

function ( )′ 1/2xΩx is convex.  

Proof. Let (1 )λ λ= + −w y z , where 0λ ≥ is a real scalar, and y and z are 1N × vectors. One 

then needs to show that ( ) ( ) ( )(1 )λ λ′ ′ ′≤ + −1/2 1/2 1/2w Ωw y Ωy zΩz . Invoking the Cauchy-

Schwartz inequality, ( ) ( ) ( )′ ′ ′≤2xΩz xΩx zΩz , and since, by the definition of positive semi-

definiteness, 0′ ≥x Ωx and 0′ ≥zΩz , obtain: ( ) ( ) ( )1/ 2 1/ 2′ ′ ′≤xΩz xΩx zΩz . Now,  

 

[ ] [ ]
2 2

2 1/ 2 1/ 2 2

21/ 2 1/ 2

( ) (1 ) (1 )

2 (1 ) (1 )
2 (1 )( ) ( ) (1 )

( ) (1 )( )

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ

′′ = + − + −

′ ′ ′= + − + −

′ ′ ′ ′≤ + − + −

′ ′⎡ ⎤= + −⎣ ⎦

w Ωw x z Ω x z

xΩx xΩz zΩz
xΩx xΩx zΩz zΩz

xΩx zΩz

 

Taking the square root on both sides, obtain the result, and letting δ = x and Σ = Ω , it is 

clear that ( )1/ 2′δ Σδ  is convex.  
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APPENDIX B. APPENDIX TO CHAPTER 3 
 

B.1. Proof of Equation (3.13) 
 

Since the permit market constraint must hold for every level of firms’ emissions, it also 

must hold for expected emissions levels, that is, *
1[ ]E e *

2[ ]=tE e+ *
permitP . Taking the 

difference of this equation and the ex ante pollution constraint in (3.1), obtain  

(B.1) * * * *
2 2[ ] [ ]permit anteP P E e t E de− = −  

 
Note that *

2[ ] E de =  * *
2 2[ ] [ ] ( , )E d E e Cov d e+ , [ ] ,E d μ= and *

2( , ) Cov d e =  

2 1

*( , ) ( , )

2

Cov d t Cov d

c

θ θ− . Rearranging equation (B.1) with these relationships, obtain (3.13). 

 

B.2. More Details on *t d<  
 

First note that, if 1 2cov( , ) 0θ θ ≤ , then clearly *t d≥ from (3.12). However, it is possible 

to have *t d< , if 1 2cov( , ) 0θ θ > and large enough. The intuition is as follows. Equation 

(3.18) implies that the actual pollution level, compared to the ex ante target, depends on 

1 2( )( )t d tθ θ− − . If 1θ  is high when 2θ  tends to be low, then actualP is high if 0t d− > . Since 

it is desirable to have a high pollution when marginal cost is high (i.e., 1θ  is high), it is 

optimal for * 0t d− > . On the other hand, if 1θ  is high when 2θ  tends to be high, and if 2θ  

tends to be so high that 1 2( ) 0tθ θ− ≤ , then actualP will be relatively high only if 0t d− ≤ . In 

such a situation, * 0t d− ≤  is optimal. In the paper, most of our discussions focus on the case 

where * 0t d− > . The other case can be analyzed similarly. 
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APPENDIX C. APPENDIX TO CHAPTER 4 
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Figure 1C. Example of computation of corn yield reduction using a yield response curve 
(corn-soybean rotation) 
Note: Polynomial response curve (N is fertilizer rate, lbs/acre): 

4 3 22.099947E-09 6.122697E-06 0.003794412
0.734609417 0.861475151

yield N N N
N

= ⋅ + ⋅ − ⋅
+ ⋅ −

 

 
 
Table 1C. Fitted cost curve parameters 

 
  Boyer Des Moines Floyd Iowa Little Sioux Maquoketa 
Intercept 18.8204 20.9101 18.3279 20.4981 17.5395 15.9875 
N -0.1284 -0.0015 -0.2808 -0.0007 0.0041 -0.0169 
P -0.1304 -0.0283 0.3302  0.0378 1.0507  2.2300 
N2  0.0022       1.31E-06 0.0109    1.12E-06 0.0003  0.0177 
P2  0.0252 0.0028 0.0447 0.0013 0.0229  6.8163 
NP -0.0207 -0.0003 -0.1008 -0.0003      -0.0258 -4.9884 
R2 0.9394 0.9830 0.8719 0.7533 0.7170 0.6995 
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Table 1C, continued 
 

 Monona Nishnabotna Nodaway Skunk Turkey Upper Iowa Wapsipinicon 
Intercept 18.2541 19.8098 17.9707 19.2702 18.2548 17.5869 19.3016 
N -0.4097 -0.0564 -0.2889 -0.0010  0.0004 -0.0324 -0.0164 
P 0.8053 -0.0012 0.5255  0.0324  0.0479  0.6691   0.1135 
N2 0.0228 0.0004 0.0116    1.31E-05 -0.0001       4.843E-05   0.0001 
P2 0.0669 0.0011 -0.0122 0.0026  0.0067 -0.0558   0.0242 
NP -0.1832 -0.0014 -0.0537 -0.0023 -0.0063 -0.0902 -0.0068 
R2 0.8132 0.7542 0.7789 0.7870 0.8495 0.9050 0.8212 

 
Nitrate and P loadings are scaled by dividing by 100,000.  
Bold coefficients are not significant. 
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C.1. Incorporating Local Nutrient Reduction Targets 
 
 Given that the algorithm searching for efficient nitrate reductions at the watershed 

outlet produces a distribution of subbasin-level nitrate loadings where most of the subbasins 

do not experience nitrate loading reductions, it may be necessary to look for solutions which 

achieve local (subbasin-level) nitrate reduction goals. One then is facing a problem of 

incorporating (multiple) constraints into an evolutionary algorithm.  

One way of incorporating multiple, subbasin-level, constraints into a multiobjective 

evolutionary algorithm is by means of a penalty function approach (Deb, 2001). For a 

particular individual X , a measure of overall constraint violation is computed, based on 

subbasin nutrient (e.g., nitrate) loadings implied by the allele makeup of X  : 

1

( ) max(0, ( ) )
J

baseline
j j

j
X N X Nβ

=

Ω = −∑ , where (0,1]β ∈  is the proportion of baseline 

loadings in each subbasin j  to which nitrate loadings are to be reduced, and J is the total 

number of subbasins in the watershed. That is, a feasible solution X̂ which satisfies all local 

nitrate constraints has an ˆ( )XΩ  value of zero.  

Then, each of the objectives in the multiobjective problem is augmented by scaled Ω  

to create new objectives ( ) ( ) ( )i i
iF X f X R X= + ⋅Ω , 1,...,i N=  (number of environmental 

objectives), and where iR  is chosen to appropriately scale Ω . The cost objective undergoes a 

similar transformation. For example, a set of objectives 

( , , ) ( , , )N P P
P cF F C f R c R= Ω + ⋅Ω + ⋅Ω sets up a problem the solution to which would be a 

Pareto-efficient frontier in the phosphorus-control cost space subject to the set of constraints 

on subbasin-level nitrate loadings.  



 

 
 

214

 What can one expect from a solution to the problem which incorporates local water 

quality targets? At first glance, one could expect that every subbasin’s nutrient loadings 

would be reduced by the specified percentage. Upon more reflection, however, it definitely 

becomes possible that some subbasins may experience nutrient reductions greater than the 

required goal. One can conceive of a watershed where, in the upper reaches, required 

reductions are achieved exactly. There may be subbasins, however, which, due to the 

watershed’s hydrology, benefit from reductions from several upstream subbasins at once 

(even if no abatement activity takes place in the subbasin in these particular subbasins). One 

can see then that, due simply to the hydrologic routing structure of the watershed, exact 

reductions in upstream subbasins could produce more than required reductions in the 

downstream subbasins.50  

 With these considerations in mind, I apply a two-dimensional version of the 

constraint-handling technique discussed above to the problem of reducing nitrates in every 

subbasin of the Des Moines River Watershed by 50 percent (that is, 0.5β = ). That is, the 

two objectives in the multiobjective evolutionary algorithm become 

( , ) ( , )N
cF C c R= Ω + ⋅Ω , where cR  is chosen to equal 1. The outcome of a two-dimensional 

problem is a two-dimensional frontier in ( ,CΩ ) space, and the solutions satisfying the set of 

local nitrate reduction constraints are located on the ( 0,C ) axis.51  

                                                 
50 This also relates to a standard feature of many traditional optimization problems, where imposing multiple 
constraints is likely to lead to some of the constraints being non-binding at the optimum. 
51 An alternative solution approach would be to abandon multiobjective evolutionary algorithms and to turn to a 
traditional, single-objective genetic algorithm. Framed in terms of fitness maximization, the fitness ( s ) of 
solutions satisfying the set of local nutrient constraints could be calculated as maxi is C C= − , where maxC  is, 

for example, the highest cost observed at current generation, and iC is the control cost for individual i . 

Solutions not satisfying the set of constraints could be assessed a fitness value of maxi i is C C k= − − ⋅Ω , 
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A two-dimensional version is chosen for two reasons. First, given the size of the 

search space, including an extra dimension (e.g., outlet P) in the problem could lead to a 

large number of individuals appearing which reduce P without attaining the nitrate standard, 

carry a higher control cost, but yet are non-dominated because of the P reductions. Second 

reason is more problem-specific. For an individual found to reduce outlet nitrates by 50 

percent (individual #3610), subbasin-level nitrate reductions for several subbasins fall short 

of a 50 percent reduction achieved in the outlet subbasin (Table 4C): 

 

Table 4C: Subbasin distribution of nutrient loadings for individual #3610 for the Des 
Moines River Watershed (focus on outlet nitrate reductions) 
 

Subbasin NO3, tons/yr P, tons/year NO3, % reduction P, % reduction 
1 1,369 83 37 58 
2 4,589 182 34 51 
3 6,297 141 22 66 
4 21,243 688 31 44 
5 5,435 181 32 24 
6 5,234 236 70 63 
7 422 52 90 82 
8 29,388 1,001 46 55 

9 (outlet) 35,012 1,034 50 59 
 

 Figure 1B presents the frontier from which an individual satisfying subbasin-level 

nitrate reductions can be found. Overall constraint violation, Ω , is depicted on the horizontal 

axis. Thus, an individual satisfying the set of local nitrate reduction constraints is located on 

the vertical axis. Individual #5335 was found in the portion of the frontier near the axis. As 

expected, the subbasin distribution of nitrate reductions is such that every subbasin, except 

                                                                                                                                                       
where iΩ  is the measure of overall constraint violation by individual i , computed in the manner discussed 

above, and 0k > is a scaling factor.  
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subbasins 1, experience nitrate loading reductions of at least 50 percent, and subbasins 1 

comes very close.   

 

 
Figure 2C. Frontier incorporating 30 percent local nitrate reduction constraints, Des 
Moines River Watershed 
  

Table 5C presents the subbasin distribution of nutrient loadings for individual #5335. 

While this individual achieves greater nitrate reductions on a subbasin level, subbasin-level P 

reductions are smaller in some subbasins, while they are larger in others.  

The cost of individual #3610 was found to be about $295 million per year, while the 

cost of individual #5335 was found to be $299 million per year. Not surprisingly, enforcing  
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Table 5C. Subbasin distribution of nutrient loadings for individual #5335 for the Des 
Moines River Watershed (imposing local 50 percent nitrate reduction constraints) 
 

Subbasin NO3, tons/yr P, tons/year NO3, % reduction P, % reduction 
1 1,234 80 43 60 
2 3,450 168 50 55 
3 2,939 148 64 65 
4 12,939 585 58 53 
5 1,889 60 76 75 
6 8,735 339 51 47 
7 1,667 188 59 34 
8 25,964 1,355 52 39 

9 (outlet) 35,118 1,520 50 40 
 

stricter standards for nitrates in all of the watershed subbasins results in a higher control 

cost.52  

However, perhaps what is even more important than the cost difference is the 

potential difference in the set of conservation practices which would be required to achieve 

nitrate reductions in all the subbasins. This again highlights the connection of any “efficient” 

conservation placement to the set of environmental targets.  

 For this watershed, I find the following set of conservation practices which meet the 

local nitrate standard (distribution of total allele areas for individual #3610 are presented for 

comparison): 

The differences in the algorithm’s prescriptions are even more apparent in the map of 

subbasin-level distributions of the alleles for the two individuals.  

 

 

                                                 
52 Individual #5335’s P loadings are higher in some subbasins than those of #3610. If outlet-level P reductions 
are still the goal, the constrained version of the algorithm can be implemented in 3 dimensions (Ω , P+RΩ , 
C+RΩ ), and an individual achieving same outlet P reductions as #3610 could be found. I expect such 
individual to be more costly than #5335.  
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Table 6C. Distribution of alleles for individuals #5335 and #3610 

Allele Description Individual #5335 Individual #3610 
Land retirement 6,995 6,202 
CT  226 16 
CT RF 346 13 
NT 334 65 
NT RF 62 120 
CT Terraced 49 26 
CT Terraced RF  360 2,426 
NT Terraced  19 0 
NT Terraced RF 13 25 
CT Contour 85 38 
CT Contour RF 13 69 
NT Contour 224 13 
NT Contour RF 256 12 
CT GW  27 2,309 
CT RF GW 16,214 11,460 
NT GW 39 12 
NT RF GW 125 2,581 

 

While individual #5335 employs land retirement to a somewhat larger extent, it is in 

the distribution of land retirement where the differences between the two individuals are 

most readily apparent. Relative to individual #3610, which falls short of the nitrate target in 

subbasins 1 through 5, and which does not allocate any land retirement to these subbasins, 

individual #5335 reduces nitrates in these subbasins by allocating land retirement to these 

subbasins. Interestingly, in subbasin 8, individual #5335 utilizes much less land retirement 

than individual #3610 does, while nitrate loadings in this subbasin are smaller for individual 

#5335 than for individual #3610. This observation, I believe, provides empirical support to 

the discussion above: that is, higher upland nitrate reductions achieved by the allele 

distribution of individual #5335 allows for scaling back the use of land retirement in subbasin 

8, without sacrificing any nitrate reductions.  

In addition to land retirement, grassed waterways (with and without nitrogen fertilizer 
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Figure 3C. Subbasin-level distribution of alleles for individuals #3610 and #5335 
  

reductions) remain the preferred conservation practice option, which is consistent with the 

results reported above.  
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APPENDIX D. APPENDIX TO CHAPTER 5 
 
Table 1D. Summary of cost estimates, by state 

 
 

State name 

Annualized cost of 
GW, per protected 

acre, $ 

Mean cash 
rental rate, 

$/acre 

Cost of No-Till, $/acre Annualized cost per 
terrace-protected 

acre, $ 

Illinois 7.4 133.9 22.2 22.0 

Iowa 5.3 149.9 9.6 51.6 

Minnesota 5.3 85.8 10.8 40.2 

Missouri 3.9 79.6 12.9 13.7 

Wisconsin 13.1 80.5 51.9 24.0 
 

 
Table 2D. Estimates of cost of 20 percent nitrogen fertilizer application reduction 

*Cost for the corn-soybean rotation is divided by 2 to get the annual cost. 

 

yield 
zone 

State N 
application, 

lb/acre 

20% reduced Corn-Corn 
Yield drag, 

bu 

Cost, 
C-C, 

$/year 

Corn-SB 
Yield drag, bu

Cost, 
C-S, 

$/year*
1 Illinois (North) 157.1 125.7 6.9 15.2 3.2 3.5 
2 Illinois (Central) 157.1 125.7 5.8 12.8 5.4 5.9 
2 Missouri(North) 153.4 122.8 7.1 15.6 3.4 3.7 
3 Illinois(South) 157.1 125.7 6.4 14.1 4.9 5.4 
3 Missouri (Central) 153.4 122.8 6.1 13.4 5.6 6.1 
4 Iowa 125.3 100.2 8.1 17.9 3.1 3.5 
5 Minnesota 114.1 91.3 3.0 6.7 2.5 2.8 
6 Wisconsin 87.8 70.2 6.3 13.8 4.4 4.9 
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Figure 1D. Yield zones in the UMRB 

 

D.1. SPEA2 Fitness Assignment 
 

An individual i is assigned a strength value ( )S i  which equals to the number of 

solutions it dominates: 

(D.1) ( ) { | }t tS = ∈ ∪ ∧i j j P P i j , 



 

 
 

222

where tP is the original population at generation t ,  tP is the temporary population created, 

⋅ denotes the cardinality of a set, and  corresponds to the Pareto dominance relation. On 

the basis of this definition of strength values, the raw fitness for individual i is calculated:  

(D.2) 
,

( ) ( )R S
∈ ∪

= ∑
t tj P P j i

i j . 

Thus, the raw fitness of an individual is determined by the strength of the dominators 

(individuals that dominate i ). Then, the raw fitness value of ( ) 0R =i  corresponds to a 

nondominated individual, while a high raw fitness value corresponds to an individual that is 

dominated by many other individuals (which in turn dominate other individuals). In light of 

this interpretation, fitness minimization used in the formulation of the algorithm makes 

intuitive sense. Figure 2 demonstrates the fitness assignment process and highlights the fact 

that individuals that are located in the “crowded” areas of the objective space get a higher 

raw fitness value, and therefore are less likely to be selected into a future generation. For 

instance, point F dominates points B, C, and A, and therefore gets a strength value of 3. Since 

point F is nondominated, its raw fitness is zero. Point D, on the other hand, dominates only 

A, and thus gets the strength value of one, but is dominated by point G, which itself 

dominates 3 points. Thus, point D gets the raw fitness value of 3. Point A is the “worst” point 

in the objective space, as it is associated with the highest cost and pollution levels. It itself 

does not dominate any other points, but is dominated by points F, G (with a strength value of 

3), H (with a strength value of 2), D (with a strength value of 1), and E (with a strength value 

of 1). Therefore, the raw fitness value for point A is 3+3+2+1+1=10. Recalling that in this 

algorithm, individuals with the lower fitness scores are considered “more fit”, it is clear that 

individual A is far less likely to survive into the next generation than, for example, point F.  
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 Such assignment of raw fitness scores also takes into account the relative 

“isolatedness” of candidate solutions in the objective space. Conceptually, one would like the 

resulting Pareto-optimal frontier to span a large portion of the objective space. Therefore, 

candidate solutions on the interior of the frontier are somewhat less preferred than those close 

to the edges. In the figure, for example, while both points B and C are dominated, point C is 

dominated by both points F and G by virtue of its “interior” location in the objective space; 

whereas point B is dominated only by point F and not by point G: its pollution level is lower 

than that of G. As a result, point B has a raw fitness score of 3 as opposed to the score of 6 

for C, and its “genetic makeup” is therefore less likely to be eliminated in the subsequent 

generations.  

 

Figure 1B. Raw fitness assignment in SPEA2 
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Finally, while the raw fitness score assignment outlined above incorporates some 

information on the location of the solutions in the solution space, additional density 

information is also incorporated into the calculation of a fitness score. Density estimation 

technique is used to further differentiate between individuals that are located in the 

“crowded” areas of the objective space (less preferred) from those located in the relatively 

sparse areas of the objective space (more preferred). The density estimation technique used in 

SPEA2 is an adaptation of the k -th nearest neighbor method, where the density at any point 

is a decreasing function of the distance to the k -th nearest data point. For each individual i , I 

calculate the distances (in objective space) to all the individuals in the population and the 

temporary population, and store them in a list. After sorting the list in an increasing order, the 

k -th element yields the distance, denoted as kσ i .  k  is chosen to equal to the square root of 

the sum of the initial population size and the size of the temporary population 

( 40 12 7+ ≈ ). An additional measure of distance was incorporated into the algorithm in 

order to preserve diversity in the objective space. In each generation, the distance from a 

given individual to the center of the cube defined by the endpoints of the frontier was 

established. The purpose of this calculation is to further reward individuals who are located 

closer to the edges of the frontier, and thus prevent loss of diversity.   

 This distance is denoted as cσ i . The density is computed as:  

(D.3) 1( )
0.25 2k cD

σ σ
=

+ +i i

i , 

where 2 is added to the denominator to ensure that the value of the density is greater than 

zero and less than one. Given the raw fitness score and the estimated density, the fitness of an 
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Table 1B. Nutrient loading consequences from a uniform application of each of the 
alleles (subject to baseline constraints) 
 
Allele # Allele Description NO3, 

tons/year 
P, tons/year Cost, 

thousand $/year 
N, % 

baseline 
P, % 

baseline 
Cost, % 
baseline 

1 Conventional Till 
(CT) 422,740 29,139 416,031 100 100 100 

2 Ridge Till (RT) 424,480 29,166 416,031 100 100 100 
3 Mulch Till (MT) 411,680 25,747 704,559 97 88 169 
4 No Till (NT) 429,340 22,359 1,173,998 102 77 282 
5 CT+Contour 417,960 21,636 1,024,211 99 74 246 
6 RT+Contour 420,400 21,720 1,024,211 99 75 246 
7 MT+Contour 415,380 19,975 1,312,739 98 69 316 
8 NT+Contour 442,600 18,848 1,782,178 105 65 428 

9 CT+Grassed 
Waterway 386,440 20,292 793,859 91 70 191 

10 RT+Grassed 
Waterway 388,940 20,424 793,859 92 70 191 

11 MT+Grassed 
Waterway 385,840 19,210 1,082,387 91 66 260 

12 NT+Grassed 
Waterway 414,860 18,913 1,551,826 98 65 373 

13 CT+Terraced 389,780 15,013 2,507,686 92 52 603 
14 RT+ Terraced 391,880 15,158 2,507,686 93 52 603 
15 MT+Terraced 394,260 15,031 2,796,214 93 52 672 
16 NT+Terraced 428,780 16,215 3,265,653 101 56 785 
17 CT+RF 368,200 28,613 1,056,221 87 98 254 
18 RT+RF 369,480 28,632 1,056,221 87 98 254 
19 MT+RF 355,760 25,250 1,344,749 84 87 323 
20 NT+RF 369,720 21,755 1,814,188 87 75 436 
21 CT+Contour+RF 359,660 21,264 1,664,401 85 73 400 
22 RT+Contour+RF 361,400 21,338 1,664,401 85 73 400 
23 MT+Contour+RF 355,380 19,615 1,952,929 84 67 469 
24 NT+Contour+RF 378,320 18,370 2,422,368 89 63 582 

25 CT+Grassed 
Waterway+RF 333,060 19,932 1,434,049 79 68 345 

26 RT+Grassed 
Waterway+RF 334,980 20,053 1,434,049 79 69 345 

27 MT+Grassed 
Waterway+RF 330,780 18,836 1,722,577 78 65 414 

28 NT+Grassed 
Waterway+RF 355,940 18,375 2,192,016 84 63 527 

29 CT+Terraced+RF 331,980 14,783 3,147,876 79 51 757 
30 RT+Terraced+RF 333,680 14,919 3,147,876 79 51 757 
31 MT+Terraced+RF 335,040 14,778 3,436,404 79 51 826 
32 NT+Terraced+RF 365,380 15,791 3,905,843 86 54 939 
33 Land retirement 100,060 12,457 7,921,487 24 43 1,904 
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individual i is calculated as:  

(D.4) ( ) ( ) ( )F R D= +i i i . 

In order to preserve the logic of the original GA library which was set up for fitness score 

maximization, I use K-fitness score as the actual fitness score used by the program, where 

K=100000. 
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