# Essays on infinite-variance stable errors and robust estimation procedures 

Fatma Ozgu Serttas<br>Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd
Part of the Economics Commons

## Recommended Citation

Serttas, Fatma Ozgu, "Essays on infinite-variance stable errors and robust estimation procedures" (2010). Graduate Theses and Dissertations. 11679.
https://lib.dr.iastate.edu/etd/11679

# Essays on infinite-variance stable errors and robust estimation procedures 

by

Fatma Özgü Serttaş

A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

Major: Economics<br>Program of Study Committee:<br>Barry L. Falk, Co-major Professor<br>Helle Bunzel, Co-major Professor<br>Joydeep Bhattacharya<br>Gray Calhoun<br>Daniel J. Nordman

Iowa State University
Ames, Iowa
2010
Copyright © Fatma Özgü Serttaş, 2010. All rights reserved.

## DEDICATION

I would like to dedicate this dissertation to my parents Öznur and Nihat Serttaş.

## TABLE OF CONTENTS

LIST OF TABLES ..... v
LIST OF FIGURES ..... vii
ACKNOWLEDGEMENTS ..... ix
ABSTRACT ..... x
PART I RESIDUAL-BASED TESTS OF CO-INTEGRATION WITH INFINITE-VARIANCE ERRORS: SIMULATION ANALYSIS AND ANEMPIRICAL APPLICATION 1
CHAPTER 1. INTRODUCTION ..... 2
1.1 Introduction and background ..... 2
1.2 Stable distributions ..... 6
1.2.1 Estimating the stable parameters ..... 8
CHAPTER 2. TESTING FOR CO-INTEGRATION ..... 11
2.1 Unit root tests ..... 11
2.2 Residual-based co-integration tests ..... 16
2.3 Residual-based co-integration tests via LAD estimation ..... 18
2.3.1 Critical values through Monte Carlo simulations ..... 18
2.3.2 Size comparisons ..... 22
2.3.3 Power comparisons ..... 23
CHAPTER 3. EMPIRICAL APPLICATION ..... 30
3.1 Diagnostic checks ..... 31
3.1.1 Model selection ..... 31
3.1.2 Portmanteau type tests ..... 39
3.1.3 Descriptive statistics and normality tests ..... 41
3.1.4 Graphical investigation ..... 47
3.2 Estimation of stable parameters ..... 49
3.3 Converging variance test ..... 53
3.4 Testing for forward rate unbiasedness hypothesis ..... 55
3.4.1 Economic background of the hypothesis ..... 55
3.4.2 Unit root tests ..... 57
3.4.3 Residual-based co-integration tests ..... 59
3.4.4 Fully-modified estimations ..... 64
CHAPTER 4. CONCLUDING REMARKS ..... 76
PART II TESTING WEAK-FORM AND STRONG-FORM PPP VIA ROBUST ESTIMATION PROCEDURES ..... 78
CHAPTER 5. INTRODUCTION ..... 79
CHAPTER 6. LITERATURE REVIEW ..... 82
CHAPTER 7. EMPIRICAL ANALYSIS ..... 89
7.1 Data ..... 89
7.1.1 Estimation of stable parameters ..... 92
7.1.2 Diagnostic checks for normality ..... 102
7.2 Unit root tests ..... 102
7.3 Residual-based co-integration tests ..... 110
7.4 Fully-modified estimations ..... 114
CHAPTER 8. CONCLUDING REMARKS ..... 119
APPENDIX
LONG-RUN COVARIANCE MATRIX ESTIMATION ..... 121
BIBLIOGRAPHY ..... 122

## LIST OF TABLES

## Table $2.15 \%$ critical values of $Z_{t}, Z_{t_{\mu}}, Z_{t_{\tau}}$ statistics for Caner unit root test <br> 14

Table $2.2 \quad 5 \%$ critical values for $\alpha=1.5$ ..... 20
Table $2.3 \quad 5 \%$ critical values for $\alpha=1.6$ ..... 20
Table $2.4 \quad 5 \%$ critical values for $\alpha=1.7$ ..... 21
Table $2.5 \quad 5 \%$ critical values for $\alpha=1.8$ ..... 21
Table $2.6 \quad 5 \%$ critical values for $\alpha=1.9$ ..... 21
Table 2.7 Empirical sizes for $5 \%$ nominal size (constant) ..... 24
Table 2.8 Empirical sizes for 5\% nominal size (constant and trend) ..... 24
Table 3.1 P-values of randomness tests for Australian exchange rates ..... 42
Table 3.2 P-values of randomness tests for French exchange rates ..... 44
Table 3.3 Descriptive statistics and normality tests of Australian log returns ..... 45
Table 3.4 Descriptive statistics and normality tests of Canadian log returns ..... 45
Table 3.5 Descriptive statistics and normality tests of French log returns ..... 46
Table 3.6 Descriptive statistics and normality tests of German log returns ..... 46
Table 3.7 Descriptive statistics and normality tests of Italian log returns ..... 46
Table 3.8 Descriptive statistics and normality tests of Japanese log returns ..... 46
Table 3.9 Descriptive statistics and normality tests of Swiss log returns ..... 47
Table 3.10 Descriptive statistics and normality tests of U.K. log returns ..... 47
Table 3.11 Maximum Likelihood Estimation of stable parameters ..... 51Table $3.12 Z_{t}$ statistic for a unit root test in the logarithms of spot and forwardrates58
Table 3.13 $\pi_{\phi}$ statistic for a unit root test in the logarithms of spot and forwardrates58
Table 3.14 $5 \%$ critical values of $Z_{t}$ statistic for Caner co-integration test ( $n=1$ ) ..... 61
Table 3.15 Co-integration tests between spot and 1-month forward rates ..... 62
Table 3.16 Co-integration tests between spot and 3-month forward rates ..... 62
Table 3.17 Co-integration tests between spot and 6 -month forward rates ..... 63
Table 3.18 Co-integration tests between spot and 1-year forward rates ..... 63
Table 3.19 Empirical estimates of equation (3.23) for spot and 1-month forwardrates70
Table 3.20 Empirical estimates of equation (3.23) for spot and 3-month forward rates ..... 71
Table 3.21 Empirical estimates of equation (3.23) for spot and 6-month forward rates ..... 72
Table 3.22 Empirical estimates of equation (3.23) for spot and 1-year forward rates ..... 73
Table 7.1 P-values for Lin-McLeod tests of randomness ..... 99
Table 7.2 Maximum Likelihood Estimation of stable parameters (PPP) ..... 103
Table 7.3 Caner unit root test in exchange rates ..... 111
Table 7.4 Samarakoon-Knight unit root test in exchange rates ..... 111
Table 7.5 Caner unit root test in price indices ..... 112
Table 7.6 Samarakoon-Knight unit root test in price indices ..... 112
Table $7.7 \quad 5 \%$ critical values of $Z_{t}$ statistic for Caner co-integration test ( $n=2$ ) ..... 113
Table $7.8 \quad 5 \%$ critical values of LAD-based co-integration tests $(n=2)$ ..... 113
Table $7.9 \quad 5 \%$ critical values of $Z_{t}$ and $\pi_{\phi}$ ..... 114
Table 7.10 OLS-based co-integration tests in PPP ..... 115
Table 7.11 LAD-based co-integration tests in PPP ..... 115
Table 7.12 Empirical estimates of equation (6.2) ..... 117

## LIST OF FIGURES

Figure 1.1 Simulated $S_{1.7}(0,1,0)$ variables with $N(0,1)$ variables ..... 8
Figure 2.1 Graphs of co-integrated and non-co-integrated series ..... 26
Figure 2.2 Size-adjusted power comparisons (constant) ..... 27
Figure 2.3 Size-adjusted power comparisons (constant and trend) ..... 28
Figure 3.1 SACFs with Gaussian confidence bounds ..... 35
Figure 3.2 SPACFs with Gaussian confidence bounds ..... 36
Figure 3.3 SACFs with conservative confidence bounds ..... 37
Figure 3.4 SPACFs with conservative confidence bounds ..... 38
Figure 3.5 Data based kernel densities versus stable and normal densities ..... 48
Figure 3.6 Quantiles of (standardized) residuals versus the quantiles of $N(0,1)$distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 3.7 Converging variance and mean tests ..... 54
Figure 3.8 Australian dollar: 1985-2007 and French franc: 1997-2007 ..... 60
Figure 3.9 Estimations of co-integrating regressions for Japanese exchange rates ..... 75
Figure 7.1 Canadian dollar exchange rate and PPI: 1973:1-2009:12 ..... 90
Figure 7.2 U.K. pound exchange rate and PPI: 1973:1-2009:12 ..... 91Figure 7.3 SACFs and SPACFs of the residuals from equation (7.1a) with Gaussianconfidence bounds93
Figure 7.4 SACFs and SPACFs of the residuals from equation (7.1a) with conser-vative confidence bounds94

Figure 7.5 SACFs and SPACFs of the residuals from equation (7.1b) with Gaussian confidence bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 7.6 SACFs and SPACFs of the residuals from equation (7.1b) with conservative confidence bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 7.7 SACFs and SPACFs of the residuals from equation (7.1c) with Gaussian confidence bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 7.8 SACFs and SPACFs of the residuals from equation (7.1c) with conservative confidence bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 7.9 Data based kernel densities of the residuals (log exchange rates) . . . . 104
Figure 7.10 Data based kernel densities of the residuals (log PPIs) . . . . . . . . . 105
Figure 7.11 Quantiles of (standardized) residuals (log exchange rates) . . . . . . . 106
Figure 7.12 Quantiles of (standardized) residuals (log PPIs) . . . . . . . . . . . . . 107
Figure 7.13 Converging variance and mean tests of residuals (log exchange rates) . 108
Figure 7.14 Converging variance and mean tests of residuals (log PPIs) . . . . . . . 109

## ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to those who helped me with various aspects of conducting research and the writing of this dissertation. First and foremost, Professor Barry Falk and Professor Helle Bunzel for their guidance, patience, support and suggestions at every step of my research. Their insights and words of encouragement have often inspired me and renewed my hopes for completing my graduate education. I would additionally like to thank Professor Helle Bunzel for her inspirational role in my graduate career. A hearty thank also goes to my committee members for their efforts, contributions and their interest in the subject matter: Professor Joydeep Bhattacharya, Professor Gray Calhoun and Professor Dan Nordman.

Last but not least, I would like to express my special gratitude and love to my parents Öznur and Nihat Serttaş and my two brothers Oğuzhan and Volkan Serttaş, for their help, support and continous encouragement over these challenging years.


#### Abstract

Gaussian normal error assumption and OLS-based regression estimations form the basis of co-integration testing techniques. However, many studies have found evidence that financial and some important economic time series data such as exchange rate returns and inflation rates are subject to high variability. In particular, their innovations exhibit the features of skewness, excessive peakness around the mean and heavier tails than those of the Gaussian normal distribution. Stable distributions (which are used to model high variability in data and infinite-variance processes) provide more realistic distributional assumptions than the Gaussian distribution for heavy-tailed financial and economic time series. Least Absolute Deviation (LAD) based estimators often yield robust results for heavy-tailed data compared to least squares based estimators. In this dissertation, as a natural extension of the extant studies, we consider a new robust residual-based co-integration test under the assumption of infinitevariance errors which are in the domain of attraction of a stable law. We implement the least absolute deviation (LAD) procedure in our regression estimations.

In part I, the new co-integration tests are proposed. The test is parametric: the critical values of the test statistic depend on the stability index of the stable distribution from which the errors are driven. The unit root test statistic we consider under the null of no co-integration is taken from Samarakoon and Knight (2009, Econometric Reviews, 28, 314-334). We find the critical values of these new co-integration tests through Monte Carlo simulations and observe that the null convergence of the test statistic is faster for lighter tails. Size and power comparisons are included to evaluate the performance of the new residual-based tests relative to conventional OLS-based ones which are due to Caner (1998, J. of Econometrics, 86, 155175). We observe that the LAD-based tests have power advantages over the OLS-based tests


as the sample size gets larger and the tails get heavier with infinite-variance error assumption, yet there are more size distortions associated with LAD-based tests especially for small sample sizes compared to OLS-based ones.

The new tests are employed to test for forward rate unbiasedness hypothesis (FRUH) with daily frequency data for a sample of eight currencies (Australian dollar, Canadian dollar, French franc, German mark, Italian lira, Japanese yen, Swiss franc and U.K. pound) against the U.S. dollar for 1-month, 3 -month, 6 -month and 1 -year forward contracts. ${ }^{1}$ We also run fully-modified ordinary least squares (FM-OLS) and fully-modified least absolute deviation (FM-LAD) estimators on the co-integrating regressions to test the coefficient restrictions which are implied by the FRUH. We observe that tests involving longer maturity forward contracts (6-month and 1-year) and LAD-based co-integration tests mostly provide the evidence that is inconsistent with FRUH.

In part II, weak and strong-form purchasing power parity (PPP) relations are re-examined by using LAD-based procedures under infinite-variance error assumption. LAD-based cointegration tests that are proposed in part I are used to test for weak-form PPP. FM-OLS and FM-LAD procedures are used to test for the strong-form PPP hypothesis. The results from LAD-based estimations are compared to their OLS-based counterparts. Monthly exchange rate (per U.S. dollar) and PPI data for a sample of eight countries (Austria, Canada, Denmark, Germany, Japan, Netherlands, Sweden and the U.K.) from 1973:1 to 2009:12 are used for estimation purposes. Neither weak-form nor strong-form PPP relations can be justified empirically regardless of the estimation procedure. Results from the new residual-based co-integration tests give slightly more support of the weak-form PPP.

[^0]
## PART I

## RESIDUAL-BASED TESTS OF CO-INTEGRATION WITH

 INFINITE-VARIANCE ERRORS: SIMULATION ANALYSIS AND AN EMPIRICAL APPLICATION
## CHAPTER 1. INTRODUCTION

### 1.1 Introduction and background

The behaviors of financial and some other important economic time series data such as exchange rate returns and inflation rates are more extremal than what the Gaussian normal distribution can predict. Those kinds of data variables are more frequently exposed to large fluctuations, crashes and booms that their distributions can be better approximated by heavier-tailed distributions. Errors describing such time series are also often asymmetric and have high peaknesses around their means. Stable family of distributions provide a better and more flexible alternative than the normal distribution for heavy-tailed financial and economic time series. Several parameters characterize the shape of a stable distribution. The parameter that determines the tail heaviness (stability index or characteristic exponent) provides a benchmark to distinguish between finite-variance and infinite-variance stable distributions. Normal distribution is a special case in the stable distribution family with finite-variance and a stability index that equals to 2 . A stability index less than 2 corresponds to infinite-variance case.

Stable distributions are appealing to researchers not only in the applications of finance and economics fields but also in other application areas including network traffic modeling, signal processing and oceanography (Xiaohu et al. (2003); Nikias and Shao (1995); Pierce (1997)). There are two unique properties of stable distributions that make them desirable for researchers in many diverse fields: stability property and generalized central limit theorem. "Stability property" makes stably distributed variables closed under linear combinations. Generalized central limit theorem (GCLT) states that stable distributions are the only possible limit law for sums of independent and identically distributed random variables when they are properly
normalized and centered. This result is similar to the result of ordinary central limit theorem (CLT) involving the normal distribution but CLT requires a finite second moment whereas GCLT can be generalized to the infinite-variance case. ${ }^{1}$

The error terms in regression and time series models can be hypothesized as the sum of a large number of factors. If those factors are independent with finite-variance and none of them is "too large" compared to others, then each error term is normally distributed by CLT (Griffiths et al., 1993, ch. 3). However, in practice, we observe that the behaviors of many random processes do not conform well with the characteristics of the normal distribution. Hence emphasis has shifted towards the stable distributions as they explain such processes in a much better way and are justified by the GCLT.

The "stable" name is given due to Lévy (1924) who has introduced the class of stable or $\alpha$-stable distributions. The early recognition of stable distributions in the field of economics appears in Mandelbrot (1963). Mandelbrot studies the cotton prices in the United States and shows that logarithmic price changes behave more like an infinite-variance stable distribution than a normal distribution. Fama (1965) studies the stock prices and arrives at a similar conclusion strengthening Mandelbrot's claims. Mandelbrot (1967) provides additional empirical evidence for wheat and railroad stock price changes, as well as for interest and exchange rate returns. He concludes that they possess a large number of extreme values and approximating them with a normal distribution is not appropriate.

Many empirical papers propose several other distributions to explain the observed leptokurtosis of financial returns. Those distributions include Student's $t$-distribution, mixture of normals and Weibull distribution (Boothe and Glassman (1987); Hall et al. (1989); Mittnik and Rachev (1993)). The main problem with such alternative distributions is that they do not satisfy the "stability property" and the GCLT does not apply to them. Financial returns are believed to be the aggregation or summation of vast number of independent small shocks which are influenced by the arriving of new information and the decisions of market participants (McCulloch, 1996). GCLT says that the only possible limiting distributions of financial

[^1]returns (which includes stock price, exchange rate and interest rate changes) have to be the stable ones (Rachev et al. (2005), ch. 7; Rachev et al. (2007), ch. 14).

Infinite-variance stable distributions have been used in modeling foreign exchange rates in numerous papers including Westerfield (1977), Bagshaw and Humpage (1986), So (1987), Fofack and Nolan (2001) and Falk and Wang (2003). Interest rate returns and inflation rates with stable distributions are considered in McCulloch (1985), Charemza et al. (2005) and Bidarkota and McCulloch (1998). Falk and Wang (2003) calculate the stability indices of inflation rates for 12 industrialized countries and find infinite-variance behavior.

There is an active research area on the testing of unit-roots and co-integration under the assumption of infinite-variance errors. Unit root tests with OLS estimator are studied in Chan and Tran (1989), Phillips (1990), Rachev et al. (1998), Horváth and Kokoszka (2003), Patterson and Heravi (2003) and Martins (2009). Extensions to M-estimators are made in Knight (1989, 1991), Shin and So (1999) and Samarakoon and Knight (2009). OLS-based co-integration tests for infinite-variance case are considered in Caner (1998), Paulauskas and Rachev (1998), Mittnik et al. (2001), Chen and Hsiao (2010) and Fasen (2010). ${ }^{2}$

In literature, although there are many studies that consider unit root and co-integration tests while assuming infinite-variance errors, the emphasis is mostly on least-squares (OLS) based methods. OLS estimator is widely used in applications because it has a closed form solution and it is easy to implement. However, when the error structure is heavy-tailed, OLS estimator will only focus on few large errors and tend to ignore the rest of the data, resulting in inferior estimates (Wilson (1978); Calder and Davis (1998)). For that purpose, LAD method is used in practice as a better alternative when the errors have heavy tails or large outliers. The outliers do not dominate the minimization procedure as they do for the OLS estimator.

The asymptotic theory of LAD estimator in non-stationary co-integrated regressions is studied in Phillips (1995). He shows that with finite-variance errors, similar to OLS, LAD is super-consistent-i.e. converging to the true parameter at the rate $O_{p}\left(T^{-1}\right)$ rather than the

[^2]usual rate $O_{p}\left(T^{-1 / 2}\right) .{ }^{3}$ Phillips (1995) also considers the consistency of OLS and LAD with infinite-variance errors and shows that LAD estimator has a faster convergence rate ( $O_{p}\left(T^{-a}\right)$ ) than OLS $\left(O_{p}\left(T^{-1}\right)\right)$, where $a>1$ for infinite-variance stable noise. However, because of endogeneity of the regressors, LAD and OLS estimators both suffer from a second order bias. They are both first order or mean unbiased but not second order or median unbiased. ${ }^{4}$ Phillips (1995) corrects that bias and develops fully modified versions of LAD and M-estimators. Bias corrected fully modified OLS estimator is first studied in Phillips and Hansen (1990).

Xiao (2009) considers quantile regression (which includes LAD estimator as a special case) in the co-integration context. He develops fully-modified quantile co-integrating regression estimators with endogenous regressors to remove the second order bias and nuisance parameters that occur in the asymptotic theory. In a Monte Carlo experiment, he shows the efficiency gain of the LAD estimator over the OLS estimator with errors generated from the finite-variance $t$-distribution (see Tables 1a and 1b in the same study). As an extension, he suggests considering quantile regression in a co-integration setting with infinite-variance errors. Knight and Samarakoon (2009) derive the limit distributions of M-estimators in co-integrated models with infinite-variance errors for Johansen approach and show that the convergence of M-estimators they consider are faster than the OLS.

Samarakoon and Knight (2009) propose new unit root tests under stably distributed infinite-variance noise structure. They develop the asymptotic theory of M-estimators for Dickey-Fuller type unit root tests. M-estimators are a broad class of estimators which include least-squares (OLS) and least absolute deviation (LAD) methods as special cases. In particular, for a simple regression as given below,

$$
\begin{equation*}
Y_{t}=\beta_{0}+\beta_{1} X_{t}+\epsilon_{t} \tag{1.1}
\end{equation*}
$$

The parameters $\beta_{0}$ and $\beta_{1}$ are estimated by minimizing,

[^3]\[

$$
\begin{equation*}
\sum_{t=1}^{n} \rho\left(Y_{t}-\beta_{0}-\beta_{1} X_{t}\right) \tag{1.2}
\end{equation*}
$$

\]

where $\rho$ is a suitably chosen loss function. The LAD estimator is found by setting $\rho(x)=|x|$ and the OLS estimator is found by setting $\rho(x)=x^{2}$.

In part I, we study new types of residual-based co-integration tests based on the LAD estimator and based on the unit root test statistics considered in Samarakoon and Knight (2009). We tabulate the critical values of our co-integration tests through Monte Carlo simulations. We assume that the error terms in the regression equations come from the $\alpha$-stable distribution family. In section 1.2 there is a brief summary of the properties of $\alpha$-stable distributions. Chapter 2 contains the details of the LAD-based co-integration tests that we propose and gives an overview of the relevant literature of unit root tests and residual-based co-integration tests. Monte Carlo simulations that we run in order to derive the critical values of our tests are also described in section 2.3 of chapter 2.

We apply the new LAD-based tests together with OLS-based ones of Caner (1998) to forward exchange rate market and test for the forward rate unbiasedness hypothesis (FRUH). The dataset we consider includes 1 -month, 3 -month, 6 -month and 1 -year maturities for the forward contracts. We observe that FRUH does not get support from the data mostly with LAD-based co-integration tests and the tests involving 6-month and 1-year forward contracts. The details of the empirical analysis are given in chapter 3. Chapter 4 concludes.

### 1.2 Stable distributions

An $\alpha$-stable distribution is described by four parameters: $\alpha, \beta, \sigma, \mu$. If a random variable $X$ has an $\alpha$-stable distribution then it is denoted as $X \sim S_{\alpha}(\beta, \sigma, \mu) . \alpha \in(0,2]$ is called the stability index and it determines the tail shape. The case of $\alpha=2$ corresponds to the Gaussian normal distribution and when $\alpha<2$, the variance of $X$ does not exist. As $\alpha$ gets smaller tails get heavier, if $\alpha \leq 1$ tails are so heavy that even the mean does not exist. $\beta \in[-1,1]$ is the
skewness parameter and it determines the degree and sign of asymmetry, $\sigma>0$ is the scale parameter and $\mu \in \mathbf{R}$ is the location parameter.

Infinite-variance means that the variance of the distribution is not defined. It is somehow counter-intuitive to argue for an infinite-variance as in practice we deal with finite sample size and for any finite set of data if we apply the formula of variance, we will get a finite value. But the financial return data are defined over an infinite range (from negative infinity to positive infinity). Over that range, finite-variance distributions assign so little probability to the tails that they have finite variances. Some distributions on the other hand assign much higher probabilities to the tails and have infinite variances (Kaplan, 2009). For an $\alpha$-stable distribution with $0<\alpha<2$ we can write, ${ }^{5}$

$$
\begin{aligned}
& E|X|^{p}<\infty \text { for } 0<p<\alpha \\
& E|X|^{p}=\infty \text { for } p \geq \alpha
\end{aligned}
$$

where $E|X|^{p}=\int_{-\infty}^{\infty}|x|^{p} f(x) d x, p$ is any real number and $f($.$) is the probability density$ function of $X$. Figure 1.1 compares simulated stable variables ( $\alpha=1.7$ ) with standard normal variables $(\alpha=2)$. From the figure we can see that stable distribution allows for more volatility than the normal distribution. Other features of stable distribution include excessive peakness around the mean and heavy-tails.

Probability density functions of $\alpha$-stable distributions exist and are continous, but their closed form solutions are not known except for three special cases; Cauchy distribution: ( $\alpha=$ $1, \beta=0)$, Gaussian distribution: $(\alpha=2, \beta=0)$, Lévy distribution: $(\alpha=0.5, \beta= \pm 1)$. Stable random variables are uniquely characterized through their characteristic function,

[^4]

Figure 1.1: Simulated $S_{1.7}(0,1,0)$ variables with $N(0,1)$ variables

$$
E \exp \{i \tau X\}=\left\{\begin{array}{ll}
\exp \left\{-\sigma^{\alpha}|\tau|^{\alpha}\left[1+i \beta\left(\operatorname{sign}(\tau) \tan \left(\frac{\pi \alpha}{2}\right)\right)\right]+i \mu \tau\right\} & \alpha \neq 1  \tag{1.3}\\
\exp \left\{-\sigma|\tau|\left[1+i \beta\left(\frac{2}{\pi}\right)(\operatorname{sign}(\tau)) \ln |\tau|\right]+i \mu \tau\right\} & \alpha=1
\end{array}\right\}
$$

In practice the values of stable parameters are unknown and have to be estimated. Maximum likelihood estimation (MLE) method gives accurate and reliable estimates of stable parameters. The method is briefly explained next.

### 1.2.1 Estimating the stable parameters

Maximum likelihood procedure is one way of estimating the stable parameters. It has been advocated by McCulloch (1997) and Fofack and Nolan (1999) primarily against the Hill (1975) estimator which is a widely used stability index estimator in literature. Recently, Borak et al. (2005) compares several different estimation techniques and mentions MLE as being "almost always the most accurate, in particular, with respect to the skewness parameter". The procedure involves deriving a numerical approximation of the density function of the stable distribution and estimating ( $\alpha, \beta, \sigma, \mu$ ) by maximizing the likelihood function (Nolan, 2001). The following equation describes a relation between the probability density function
$f(x)$ and the characteristic function $\varphi(t)$,

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp \{-i t x\} \varphi(t) d t \tag{1.4}
\end{equation*}
$$

Given this relation one can calculate the density function $f(x)$ for all $x$. A highly accurate method for that is discussed in Nolan (1997). The likelihood function can then be found given a sample $X=\left(X_{1}, X_{2}, \ldots, X_{T}\right)$. Maximum likelihood estimation applies a quasi-Newton method to numerically maximize the likelihood function with respect to the unknown parameters ( $\alpha, \beta, \sigma, \mu$ ) by using the quantile estimator of McCulloch (1986) as an initial approximation. In this study, we implement Nolan's approach as mentioned in estimating $(\alpha, \beta, \sigma, \mu) .{ }^{6}$

Let the parameter vector be denoted by $\vec{\theta}=(\alpha, \beta, \sigma, \mu)$. The parameter space is $\Theta=$ $(0,2] \times[-1,1] \times(0, \infty) \times(-\infty, \infty)$. The likelihood function for an i.i.d. stable sample $X=$ $\left(X_{1}, X_{2}, \ldots, X_{T}\right)$ is given by,

$$
\begin{equation*}
\ell(\vec{\theta})=\sum_{i=1}^{T} \log f\left(X_{i} \backslash \vec{\theta}\right) \tag{1.5}
\end{equation*}
$$

Consistency and asymptotic normality of the ML estimator are established in DuMouchel (1973). Covariance matrix of ML estimator is denoted by $T^{-1} B$, where $T$ is the sample size, $B=\left(b_{i j}\right)$ is the inverse of $4 \times 4$ Fisher information matrix $I$. The components of $I$ are given by,

$$
\begin{equation*}
I_{i j}=\int_{-\infty}^{\infty} \frac{\partial f}{\partial \theta_{i}} \frac{\partial f}{\partial \theta_{j}} \frac{1}{f} d x \tag{1.6}
\end{equation*}
$$

Large sample confidence intervals for $\theta_{i} \in \Theta$ are given by,

[^5]\[

$$
\begin{equation*}
\theta_{i} \pm z_{\phi / 2} \frac{\sigma_{\hat{\theta}_{i}}}{\sqrt{T}} \tag{1.7}
\end{equation*}
$$

\]

where $\sigma_{\hat{\theta}_{1}}, \ldots, \sigma_{\hat{\theta}_{4}}$ are the square roots of the diagonal entries of $B,(1-\phi)$ is the percentage of the confidence interval, and $z_{\phi / 2}$ corresponds to the tabular value of standard normal distribution that comes closest to the specified percentile $\phi / 2$. The standard theory applies when the parameters are in the interior of the parameter space $\vec{\theta}$.

## CHAPTER 2. TESTING FOR CO-INTEGRATION

### 2.1 Unit root tests

Many of the economic and financial time series are non-stationary and they possess a single unit root-i.e. they are $I(1)$ or difference stationary processes. There are many forms of stationarity, here stationarity denotes weak stationarity. A unit root process violates the conditions of being a weak stationary process (Shumway and Stoffer, 2006, p. 22). If a time series sequence $\left\{x_{t}\right\}$ is non-stationary but becomes stationary after differencing $d$ times then it is integrated of order $d$ or is an $\mathrm{I}(d)$ process. One important feature of a unit root variable is that, the persistence of shocks to that variable will be infinite. This in turn will have important implications while testing for co-integration so unit root variables are discussed briefly. If we consider the simple $\mathrm{AR}(1)$ process,

$$
\begin{equation*}
x_{t}=\delta x_{t-1}+\varepsilon_{t}, \varepsilon_{t} \sim \text { i.i.d. } \tag{2.1}
\end{equation*}
$$

After successive substitutions with an initial condition $x_{0}$, one can write equation (2.1) as,

$$
\begin{equation*}
x_{t}=\delta^{t} x_{0}+\delta^{t-1} \varepsilon_{1}+\delta^{t-2} \varepsilon_{2}+\ldots+\delta^{2} \varepsilon_{t-2}+\delta \varepsilon_{t-1}+\varepsilon_{t} \tag{2.2}
\end{equation*}
$$

The series $x_{t}$ is stationary when $|\delta|<1$ and the effects of past shocks die out as $t \rightarrow \infty$. Conversely, the series is non-stationary if $|\delta|=1$ and the effects of past shocks have a nondecaying effect on $x_{t} .{ }^{1}$ Stationary variables tend to revert back to a long-run mean over time,

[^6]whereas non-stationary unit root variables have no tendency to be mean reverting and wander randomly no matter how much we go further along the time index.

Testing for unit roots enables us to distinguish between stationary and non-stationary cases. In this paper, we apply Phillips and Perron (1988) and Samarakoon and Knight (2009) type unit root tests to test for a unit root in our data. Phillips-Perron tests are designed for normally distributed errors and involve running OLS estimations. Since we have infinite-variance error assumption and consider LAD estimations, we also implement Samarakoon and Knight (2009) type unit root tests, which require infinite-variance stable errors and use M-estimators with LAD being a special case.

Earlier versions of unit root tests for normal errors and OLS-based regressions are studied in Dickey and Fuller (1979). They consider three different versions of equations to test for a unit root,

$$
\begin{align*}
& \Delta x_{t}=\gamma x_{t-1}+\varepsilon_{t},  \tag{2.3}\\
& \Delta x_{t}=\mu+\gamma x_{t-1}+\varepsilon_{t},  \tag{2.4}\\
& \Delta x_{t}=\mu+\gamma x_{t-1}+\beta t+\varepsilon_{t} \tag{2.5}
\end{align*}
$$

The null hypothesis $H_{0}: \gamma=0$, tests for a unit root in $x_{t}$ sequence against the alternative $H_{1}: \gamma<0$, where the sequence is stationary. ${ }^{2}$ The resulting $t$-statistic, $t_{\hat{\gamma}}=\hat{\gamma} /$ s.e. $(\hat{\gamma})$, is compared to the appropriate Dickey-Fuller critical values. ${ }^{3}$ The tests require the error structure to be normal and independent and identically distributed (i.i.d.). Otherwise an augmented version of Dickey-Fuller tests can be used by including the $p$ lag values of $x_{t}$ say in equation (2.3),

[^7]\[

$$
\begin{equation*}
\Delta x_{t}=\phi x_{t-1}+\sum_{i=2}^{p} \lambda_{i} \Delta x_{t-i+1}+\varepsilon_{t} \tag{2.6}
\end{equation*}
$$

\]

Phillips-Perron type unit root tests allow for serial correlation and heteroskedasticity in the innovation structure and involve running one of the three OLS regressions in the form,

$$
\begin{align*}
& x_{t}=\alpha x_{t-1}+u_{t},  \tag{2.7}\\
& x_{t}=\mu+\alpha x_{t-1}+u_{t},  \tag{2.8}\\
& x_{t}=\mu+\beta(t-T / 2)+\alpha x_{t-1}+u_{t} \tag{2.9}
\end{align*}
$$

where $T$ denotes the sample size. The innovation series $u_{t}$ do not have to be i.i.d.. In models (2.7), (2.8) and (2.9), the null hypothesis of a unit root is $H_{0}: \alpha=1$, and is tested against the alternative $H_{1}: \alpha<1$. Phillips-Perron adjusted $t$-statistics for the above three models are given by,

$$
\begin{align*}
Z_{t} & =\left(S_{0} / S_{T l}\right) t_{\hat{\alpha}}-1 / 2\left(S_{T l}^{2}-S_{0}^{2}\right)\left[T^{-1} S_{T l}\left(\sum_{t=2}^{T} x_{t-1}^{2}\right)^{1 / 2}\right]^{-1}  \tag{2.10}\\
Z_{t_{\mu}} & =\left(S_{0} / S_{T l}\right) t_{\hat{\alpha}}-\left(1 / 2 S_{T l}\right)\left(S_{T l}^{2}-S_{0}^{2}\right)\left[T^{-2} \sum_{t=2}^{T}\left(x_{t-1}-\bar{X}_{-1}\right)^{2}\right]^{-1 / 2}  \tag{2.11}\\
Z_{t_{\tau}} & =\left(S_{0} / S_{T l}\right) t_{\hat{\alpha}}-\left(T^{3} /\left(4 \sqrt{3} D_{x}^{1 / 2} S_{T l}\right)\right)\left(S_{T l}^{2}-S_{0}^{2}\right) \tag{2.12}
\end{align*}
$$

where $Z_{t}, Z_{t_{\mu}}$ and $Z_{t_{\tau}}$ are the test statistics for models (2.7), (2.8) and (2.9) respectively. $S_{0}$ is the regression standard error, $t_{\hat{\alpha}}=(\hat{\alpha}-1) /$ s.e. $(\hat{\alpha}), \bar{X}_{-1}$ is the mean of $x_{t-1}, D_{x}$ is the determinant of ( $\left.X^{\prime} X\right)$ with $X$ denoting the matrix of explanatory variables in model (2.9). $S_{T l}^{2}$ is given by,

Table 2.1: $5 \%$ critical values of $Z_{t}, Z_{t_{\mu}}, Z_{t_{\tau}}$ statistics for Caner unit root test

| $\alpha$ | standard $^{\text {a }}$ | constant $^{\text {b }}$ | constant and trend $^{\text {c }}$ |
| :---: | :---: | :---: | :---: |
| 1 | -1.68 | -3.22 | -3.56 |
| 1.5 | -1.83 | -2.98 | -3.45 |
| 1.6 | -1.87 | -2.96 | -3.44 |
| 1.7 | -1.88 | -2.91 | -3.44 |
| 1.8 | -1.88 | -2.90 | -3.42 |
| 1.9 | -1.90 | -2.89 | -3.42 |

${ }^{a}$ Phillips-Perron critical value $(\alpha=2)$ at $5 \%$ significance is -1.95 .
${ }^{\mathrm{b}}$ Phillips-Perron critical value $(\alpha=2)$ at $5 \%$ significance is -2.86 .
${ }^{\text {c }}$ Phillips-Perron critical value $(\alpha=2)$ at $5 \%$ significance is -3.41 .

$$
\begin{equation*}
S_{T l}^{2}=T^{-1} \sum_{t=1}^{T} \hat{u}_{t}^{2}+2 T^{-1} \sum_{s=1}^{l} \omega_{s l} \sum_{t=s+1}^{T} \hat{u}_{t} \hat{u}_{t-s} \tag{2.13}
\end{equation*}
$$

where $\omega_{s l}=l-s /(l+1), l$ is the number of autocorrelations of $\hat{u_{t}}$. Five percent critical values of Phillips and Perron (1988) tests can be found in Hamilton (1994), p. 763.

Caner (1998) considers Phillips-Perron type unit root test with OLS regressions but assumes errors that are in the domain of attraction of a stable law. He derives the critical values of Phillips-Perron unit root tests with infinite-variance errors. His study includes the critical values for $\alpha=0.5, \alpha=1$ and $\alpha=1.5$ only. We calculated the $5 \%$ critical values for other $\alpha$ levels ( $\alpha=1.6,1.7,1.8,1.9$ ), through Monte Carlo simulations. The results of those simulations are presented in Table 2.1 along with the 5\% critical values of Phillips-Perron test. Similar to Caner (1998), the number of iterations is set to 20,000 and the sample size is set to 1,000 . Standard, constant, constant and trend cases correspond to models (2.7), (2.8) and (2.9) respectively.

Samarakoon and Knight (2009) unit root tests extend Dickey-Fuller type unit root tests to infinite-variance errors and M-estimators. Tests involve running three regressions,

$$
\begin{align*}
& \Delta x_{t}=\phi x_{t-1}+\sum_{i=2}^{p} \lambda_{i} \Delta x_{t-i+1}+v_{t},  \tag{2.14}\\
& \Delta x_{t}=\mu+\phi x_{t-1}+\sum_{i=2}^{p} \lambda_{i} \Delta x_{t-i+1}+v_{t},  \tag{2.15}\\
& \Delta x_{t}=\mu+\beta(t-1)+\phi x_{t-1}+\sum_{i=2}^{p} \lambda_{i} \Delta x_{t-i+1}+v_{t} \tag{2.16}
\end{align*}
$$

where $v_{t}$ is i.i.d. stable with $\alpha<2$. Unit root hypotheses $H_{0}: \phi=0$ are tested against the alternative $H_{1}: \phi<0$.

Equations $(2.14),(2.15)$ and (2.16) can be estimated via LAD estimator. Then the corresponding test statistics for each equation is given by,

$$
\begin{align*}
& \pi_{\phi}=\left(\sum_{t=p+1}^{T} x_{t-1}^{2}\right)^{1 / 2} \hat{\phi}_{\mathrm{LAD}} /(2 f(\theta))^{-1}  \tag{2.17}\\
& \pi_{\mu}=\left(\sum_{t=p+1}^{T}\left(x_{t-1}-\bar{x}\right)^{2}\right)^{1 / 2} \hat{\phi}_{\mathrm{LAD}} /(2 f(\theta))^{-1}  \tag{2.18}\\
& \pi_{\tau}=C_{T}^{2} \hat{\phi}_{\mathrm{LAD}} /(2 f(\theta))^{-1} \tag{2.19}
\end{align*}
$$

where $f($.$) is the probability density function of v_{t}, \theta$ is the median of $v_{t}$ and $\bar{x}$ is the mean of $x_{p+1}, \ldots, x_{T} . C_{T}^{2}$ is defined as,

$$
\begin{align*}
C_{T}^{2}= & \sum_{t=p+1}^{T}\left[x_{t-1}+\frac{6 t}{T} \sum_{s=p+1}^{T}\left(1-\frac{2 s}{T}\right) x_{s-1}\right. \\
& \left.+\sum_{s=p+1}^{T}\left(2-\frac{3 s}{T}\right) x_{s-1}\right]^{2} \tag{2.20}
\end{align*}
$$

Samarakoon and Knight (2009) have shown that the asymptotic distributions of $\pi_{\phi}, \pi_{\mu}$ and $\pi_{\tau}$ statistics are standard normal.

### 2.2 Residual-based co-integration tests

A vector of time series $z_{t}$ are co-integrated of order $d, b$, denoted $z_{t} \sim C I(d, b)$, if all the components of $z_{t}$ are $I(d)$ and there exists a linear combination of them such that $\beta^{\prime} z_{t}=$ $u_{t} ; u_{t}$ is $I(d-b), b>0, \beta \neq 0$ is the co-integrating vector (Engle and Granger, 1987).

In economic applications, it is typical to consider the case: $d=1, b=1$, because the co-integrating combination is treated as an "equilibrium" relationship (Banerjee et al., 1993, ch. 5). The existence of a long-run equilibrium among $\mathrm{I}(1)$ economic variables requires those variables to be co-integrated. When such an equilibrium exists, the deviations from the equilibrium are only temporary. The components of $z_{t}$ vector can be interpreted as economic time series variables with an equilibrium condition: $\beta^{\prime} z_{t}=u_{t}$ and $u_{t}$ as the deviation from that equilibrium. If there is co-integration among the components of $z_{t}$, the economy reverts back towards equilibrium whenever it moves away and $u_{t}$ is $\mathrm{I}(0)$. If on the other hand, $u_{t}$ series is $\mathrm{I}(1)$, then the effects of past shocks to $u_{t}$ will never die out and the long-run equilibrium can not be maintained (Enders, 2004, ch. 6).

One popular way of testing for co-integration is through residual-based methods. Residualbased tests of co-integration appear in an early study of Engle and Granger (1987). The method is implemented by choosing one of the variables of $z_{t}$ as the dependent variable; say $y_{t}$, and the rest as explanatory variables, say vector $x_{t}$. Then it involves two steps; deriving the OLS residuals from the regression below,

$$
\begin{equation*}
y_{t}=\beta^{\prime} x_{t}+u_{t} \tag{2.21}
\end{equation*}
$$

As a next step, applying a unit root test on the residuals through running OLS to the regression,

$$
\begin{equation*}
\Delta \hat{u}_{t}=\phi \hat{u}_{t-1}+\sum_{i=2}^{p} \lambda_{i} \Delta \hat{u}_{t-i+1}+v_{t} \tag{2.22}
\end{equation*}
$$

Based on their power comparisons Engle and Granger (1987) suggest performing an augmented Dickey-Fuller test to test for a unit root in the residuals. The null hypothesis is $H_{0}: \phi=0$ and the alternative hypothesis is $H_{1}: \phi<0$. The null hypothesis corresponds to the hypothesis of no co-integration among the components of $z_{t}$ series and the alternative corresponds to co-integration. Test statistic used to test for this hypothesis is in the form of the usual $t$-statistic, $t=\hat{\phi}_{\mathrm{OLS}} /$ s.e. $\left(\hat{\phi}_{\mathrm{OLS}}\right)$.

Engle and Granger (1987) assume that the error processes driving $x_{t}$ and $y_{t}$ series in equation (2.21) are i.i.d. normal. Phillips and Ouliaris (1990) assume the error terms to be finite-variance and strict stationary processes. They consider running OLS regressions in the form of equation (2.21) and OLS regressions on the residuals,

$$
\begin{equation*}
\hat{u}_{t}=\delta \hat{u}_{t-1}+v_{t} \tag{2.23}
\end{equation*}
$$

The null hypothesis to test for no co-integration is then $H_{0}: \delta=1$ against the alternative of co-integration $H_{1}: \delta<1$. Phillips and Ouliaris (1990) derive the asymptotic theory for Phillips and Perron (1988) $Z_{t}$ statistic among other statistics. They also tabulate the critical values of those test statistics by assuming an i.i.d. normal error structure for $x_{t}$ and $y_{t}$ series in equation (2.21). The critical values change whether a constant or a trend is included in the equation.

Here we mention $Z_{t}$ statistic because it is the test statistic that we will use for our comparisons later. The asymptotics of $Z_{t}$ statistic are the same as the asymptotics of augmented Dickey-Fuller statistic (Phillips and Ouliaris (1990); Caner (1998)). $Z_{t}$ statistic is already studied in section 2.1. Here it is re-written in another form to be consistent with the formulation in Phillips and Ouliaris (1990). Equation (2.10) and below formulation are equivalent.
$Z_{t}$ can also be written as,

$$
\begin{equation*}
Z_{t}=\left(\sum_{t=2}^{T} \hat{u}_{t-1}^{2}\right)^{1 / 2}\left(\hat{\delta}_{\mathrm{OLS}}-1\right) / s_{t l}-(1 / 2)\left(s_{t l}^{2}-s_{k}^{2}\right)\left[s_{t l}\left(T^{-2} \sum_{t=2}^{T} \hat{u}_{t-1}^{2}\right)^{1 / 2}\right]^{-1} \tag{2.24}
\end{equation*}
$$

where,

$$
\begin{gather*}
s_{t l}^{2}=T^{-1} \sum_{l}^{T} \hat{v}_{t}^{2}+2 T^{-1} \sum_{s=1}^{l} \omega_{s l} \sum_{t=s+1}^{T} \hat{v}_{t} \hat{v}_{t-s}  \tag{2.25}\\
s_{k}^{2}=T^{-1} \sum_{l}^{T} \hat{v}_{t}^{2} \tag{2.26}
\end{gather*}
$$

and $\omega_{s l}=l-s /(l+1), l$ is the number of autocorrelations of $\hat{v_{t}}$.
Caner (1998) extends the asymptotic theory studied in Phillips and Ouliaris (1990) to infinite-variance case and assumes that errors that derive $x_{t}$ and $y_{t}$ in equation (2.21) come from $\alpha$-stable distribution with $\alpha<2$. Similar to the studies of Engle and Granger (1987) and Phillips and Ouliaris (1990), he runs OLS-based regressions. He also simulates the asymptotic critical values of some of the test statistics that are considered in Phillips and Ouliaris (1990).

### 2.3 Residual-based co-integration tests via LAD estimation

### 2.3.1 Critical values through Monte Carlo simulations

Unlike the previous studies that employ OLS based estimations, here we apply residualbased tests of co-integration through LAD estimation procedures. We consider the data generating processes of $x_{t}$ and $y_{t}$ in the form,

$$
\begin{align*}
& y_{t}=y_{t-1}+\varepsilon_{1 t}, \quad \varepsilon_{1 t} \sim \text { i.i.d. } S_{\alpha}(0,1,0), \alpha<2  \tag{2.27a}\\
& x_{t}=x_{t-1}+\varepsilon_{2 t}, \quad \varepsilon_{2 t} \sim \text { i.i.d. } S_{\alpha}(0,1,0), \alpha<2 \tag{2.27b}
\end{align*}
$$

Following regressions are run through LAD,

$$
\begin{align*}
& y_{t}=\beta_{0}+\beta_{1} x_{t}+u_{t}  \tag{2.28}\\
& y_{t}=\beta_{0}+\beta_{1} t+\beta_{2} x_{t}+u_{t} \tag{2.29}
\end{align*}
$$

Another LAD regression is run on the residuals from equations (2.28) and (2.29),

$$
\begin{equation*}
\Delta \hat{u}_{t}=\phi \hat{u}_{t-1}+\sum_{i=2}^{p} \lambda_{i} \Delta \hat{u}_{t-i+1}+v_{t}, v_{t} \sim \text { i.i.d. } \tag{2.30}
\end{equation*}
$$

Testing the null hypothesis of no co-integration corresponds to testing the null hypothesis of a unit root in the residual $\hat{u}_{t}$ series; $H_{0}: \phi=0$ against the alternative of co-integration $H_{1}: \phi<0$.

As mentioned in section 2.1, Samarakoon and Knight (2009) derive the asymptotics of LAD-based test statistics for Dickey-Fuller type unit root tests under the existence of infinitevariance stably distributed errors. They show that under the null of unit root of a raw time series say $u_{t}$ from a regression as given below,

$$
\begin{equation*}
\Delta u_{t}=\phi u_{t-1}+\sum_{i=2}^{p} \lambda_{i} \Delta u_{t-i+1}+\xi_{t}, \xi_{t} \sim \text { i.i.d. } S_{\alpha}(\beta, \sigma, \mu), \alpha<2 \tag{2.31}
\end{equation*}
$$

The statistic $\pi_{\phi}$ has an asymptotic standard normal distribution,

$$
\begin{equation*}
\pi_{\phi}=\frac{\left\{\sum_{t=p+1}^{T} u_{t-1}^{2}\right\}^{1 / 2} \hat{\phi}_{\mathrm{LAD}}}{(2 f(\theta))^{-1}} \tag{2.32}
\end{equation*}
$$

Since $u_{t}$ is a raw time series, the asymptotic critical values for $\pi_{\phi}$ can not be used in testing the unit root hypothesis of residual series $\hat{u}_{t}$ in equation (2.30) (see for example Hamilton
(1994), p. 592). The critical values of $\pi_{\phi}$ statistic for testing $H_{0}: \phi=0$ in equation (2.30), are calculated through our Monte Carlo simulations. We consider two co-integrating regressions, one with constant and one with constant and trend.

Tables 2.2 through 2.6 present the $5 \%$ critical values for different stability indices ( $\alpha=$ 1.5, 1.6, 1.7, 1.8, 1.9) and for different sample sizes. The number of iterations is 50,000 . Five percent critical values correspond to the 5 -th percentile of the simulated distribution of $\pi_{\phi}$ under the null hypothesis of no co-integration. Our simulation results for the critical values depend only on $\alpha$ but not on other stable parameters. Although the data generating processes assume that $x_{t}$ and $y_{t}$ are $\mathrm{AR}(1)$, the critical values are robust to higher autoregressive orders.

Table 2.2: $5 \%$ critical values for $\alpha=1.5$

| $T$ | constant | constant and trend |
| :--- | :---: | :---: |
| 50 | -3.19 | -3.84 |
| 100 | -2.90 | -3.37 |
| 500 | -2.62 | -3.01 |
| 1,000 | -2.52 | -2.92 |
| 2,000 | -2.45 | -2.84 |
| 3,000 | -2.40 | -2.81 |
| 5,000 | -2.34 | -2.78 |
| 7,000 | -2.30 | -2.75 |
| 15,000 | -2.24 | -2.73 |
| $\infty$ | -2.15 | -2.77 |

Table 2.3: $5 \%$ critical values for $\alpha=1.6$

| $T$ | constant | constant and trend |
| :--- | :---: | :---: |
| 50 | -3.08 | -3.63 |
| 100 | -2.92 | -3.34 |
| 500 | -2.71 | -3.06 |
| 1,000 | -2.64 | -2.97 |
| 2,000 | -2.59 | -2.90 |
| 3,000 | -2.53 | -2.87 |
| 5,000 | -2.50 | -2.83 |
| 7,000 | -2.47 | -2.78 |
| 15,000 | -2.38 | -2.74 |
| $\infty$ | -2.30 | -2.67 |

We mainly consider cases with $\alpha \geq 1.5 .{ }^{4}$ Convergence of the critical values to their asymptotic values tends to be faster for lighter tails. As $\alpha$ approaches 2 -i.e. the error distribution gets similar to the normal distribution, the critical values approach to their large sample values faster. An equation to find the asymptotic critical values for the constant without trend case can be estimated by OLS as below,

[^8]Table 2.4: $5 \%$ critical values for $\alpha=1.7$

| $T$ | constant | constant and trend |
| :--- | :---: | :---: |
| 50 | -3.05 | -3.53 |
| 100 | -2.96 | -3.32 |
| 500 | -2.80 | -3.12 |
| 1,000 | -2.75 | -3.07 |
| 2,000 | -2.70 | -3.02 |
| 3,000 | -2.67 | -2.99 |
| 5,000 | -2.65 | -2.95 |
| 7,000 | -2.63 | -2.91 |
| 15,000 | -2.56 | -2.85 |
| $\infty$ | -2.48 | -2.76 |

Table 2.5: $5 \%$ critical values for $\alpha=1.8$

| $T$ | constant | constant and trend |
| :--- | :---: | :---: |
| 50 | -3.02 | -3.44 |
| 100 | -2.99 | -3.33 |
| 500 | -2.89 | -3.22 |
| 1,000 | -2.86 | -3.18 |
| 2,000 | -2.81 | -3.14 |
| 3,000 | -2.80 | -3.12 |
| 5,000 | -2.77 | -3.07 |
| 7,000 | -2.76 | -3.05 |
| 15,000 | -2.69 | -3.00 |
| $\infty$ | -2.65 | -2.93 |

Table 2.6: $5 \%$ critical values for $\alpha=1.9$

| $T$ | constant | constant and trend |
| :--- | :---: | :---: |
| 50 | -3.01 | -3.41 |
| 100 | -3.01 | -3.36 |
| 500 | -3.00 | -3.34 |
| 1,000 | -2.99 | -3.32 |
| 2,000 | -2.98 | -3.31 |
| 3,000 | -2.97 | -3.29 |
| 5,000 | -2.95 | -3.29 |
| 7,000 | -2.95 | -3.27 |
| 15,000 | -2.93 | -3.25 |
| $\infty$ | -2.89 | -3.21 |

$$
\begin{aligned}
\text { c.v. }= & 0.62-1.83 \alpha \\
& R^{2}=0.99 \\
& (0.15)(0.09)
\end{aligned}
$$

Similarly, asymptotic critical values for the constant and trend case can be estimated by OLS as below,

$$
\begin{equation*}
\text { c.v. }=-18.15+19.26 \alpha-6.00 \alpha^{2} \quad R^{2}=0.99 \tag{2.34}
\end{equation*}
$$

where c.v. is the abbreviation for critical value and the numbers in parantheses are the standard errors of the coefficients.

Caner (1998) is an influential study that extends the widely used OLS-based co-integration tests to infinite-variance errors. We will make size and power comparisons between the residualbased co-integration tests that are studied in Caner (1998) and residual-based co-integration tests through LAD estimation procedures that we propose. We consider Phillips and Perron (1988)' s $Z_{t}$ statistic. The asymptotics of $Z_{t}$ statistic are derived in Phillips and Ouliaris (1990) for residual-based co-integration tests and extended to the infinite-variance case in Caner (1998).

### 2.3.2 Size comparisons

Tables 2.7 and 2.8 show the size comparisons between Caner test and our test for no trend and trend cases (equations (2.28) and (2.29) respectively). While making the size comparisons, asymptotic critical values are used. Comparisons are made for $\alpha=1.5,1.65,1.9$ with 50 , $100,500,1,000$ and 5,000 sample sizes with 20,000 iterations. The framework used for size calculations are as follows. First we consider a $\operatorname{VAR}(1)$ system of $y_{t}$ and $x_{t}$ where both series are simulated as unit root $\mathrm{I}(1)$ processes as in the system (2.27) with equal stability indices:

$$
\begin{align*}
& y_{t}=a_{10}+a_{11} y_{t-1}+a_{12} x_{t-1}+\varepsilon_{1 t}  \tag{2.35}\\
& x_{t}=a_{20}+a_{21} y_{t-1}+a_{22} x_{t-1}+\varepsilon_{2 t} \tag{2.36}
\end{align*}
$$

In each iteration, coefficients in equations (2.35) and (2.36) are estimated via OLS (LAD) method when we are calculating the size for Caner (our) test. Next, the residuals $\hat{\varepsilon}_{1 t}$ and $\hat{\varepsilon}_{2 t}$
are taken and the stability indices $(\alpha)$ are estimated from each residual series. We find that especially for small sample size, the stability indices from the two residual series are not always found to be equal to each other. ${ }^{5}$ In that case we follow a conservative approach: for Caner test we pick the smallest $\alpha$ level to determine the critical value and for our test we pick the largest $\alpha$ level to determine the critical value. The reason for that is because Caner test's critical values decrease as $\alpha$ decreases for any size and our test's critical values increase as $\alpha$ decreases. Last, we calculate the rejection rate with the asymptotic critical value corresponding to the estimated $\alpha$ to calculate the size of the test for each sample size. ${ }^{6}$

As the size comparison results indicate, both tests have size distortions for small sample sizes $(T=50,100)$, but our test has more compared to Caner test. For larger samples, Caner test's empirical sizes equal to the nominal size ( $5 \%$ ), whereas our test has higher empirical size than $5 \%$, which means the probability of making a type I error is greater than the predetermined $5 \%$ level. ${ }^{7}$ Our test' s size distortions are not so severe as $\alpha$ approaches 2. Size evaluation results of no trend and trend cases are similar. It is also worthwhile to mention that, for Caner test, the convergence of the test statistic $\left(Z_{t}\right)$ is faster: approximately 500 sample size is enough for $Z_{t}$ to attain its asymptotic values. Our test, on the other hand, requires much larger sample sizes. Even though the convergence is faster for $\alpha>1.7$, still a sample size of approximately 20,000 is needed for $\pi_{\phi}$ to attain its asymptotic values. For $1.5 \leq \alpha \leq 1.7$, the sample size required for convergence is around 30,000 . For that purpose, the usage of size-corrected critical values is recommended for our test especially for small sample sizes and small $\alpha$ levels around 1.5.

### 2.3.3 Power comparisons

Decisions based on statistical tests can be wrong due to two kinds of errors: type I and type II errors. Type I error is the probability of rejecting the null when the null hypothesis is true. It denotes the significance level of a test and as a rule of thumb it is set equal to $1 \%, 5 \%$ or $10 \%$.

[^9]Table 2.7: Empirical sizes for $5 \%$ nominal size (constant)

|  | $\alpha=1.5$ |  | $\alpha=1.65$ |  | $\alpha=1.9$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $T$ | Caner test | Our test | Caner test | Our test | Caner test | Our test |
| 50 | 0.07 | 0.18 | 0.07 | 0.12 | 0.07 | 0.07 |
| 100 | 0.06 | 0.15 | 0.06 | 0.11 | 0.06 | 0.07 |
| 500 | 0.05 | 0.12 | 0.05 | 0.10 | 0.05 | 0.07 |
| 1,000 | 0.05 | 0.11 | 0.05 | 0.09 | 0.05 | 0.06 |
| 5,000 | 0.05 | 0.08 | 0.05 | 0.07 | 0.05 | 0.07 |

Table 2.8: Empirical sizes for $5 \%$ nominal size (constant and trend)

|  | $\alpha=1.5$ |  | $\alpha=1.65$ |  | $\alpha=1.9$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $T$ | Caner test | Our test | Caner test | Our test | Caner test | Our test |
| 50 | 0.07 | 0.16 | 0.08 | 0.13 | 0.08 | 0.07 |
| 100 | 0.06 | 0.12 | 0.06 | 0.11 | 0.06 | 0.07 |
| 500 | 0.05 | 0.07 | 0.06 | 0.10 | 0.05 | 0.06 |
| 1,000 | 0.05 | 0.05 | 0.05 | 0.08 | 0.05 | 0.06 |
| 5,000 | 0.05 | 0.05 | 0.05 | 0.07 | 0.05 | 0.06 |

Here we will fix the size to $5 \%$. Type II error is the probability of not rejecting the null when the null hypothesis is false. Power of a statistical test is equal to the probability of rejecting the null when it is false. ${ }^{8}$ Power comparison results we present are based on size-adjusted power.

For power comparisons the data generating processes (DGPs) are chosen to be,

$$
\begin{align*}
& u_{t}=\rho u_{t-1}+v_{t}, v_{t} \sim \text { i.i.d. } S_{\alpha}(0,1,0),  \tag{2.37a}\\
& x_{t}=x_{t-1}+\varepsilon_{t}, \varepsilon_{t} \sim \text { i.i.d. } S_{\alpha}(0,1,0),  \tag{2.37b}\\
& y_{t}=a_{1}+a_{2} x_{t}+u_{t} \tag{2.37c}
\end{align*}
$$

where $a_{1}=0.9$ and $a_{2}=0.5$. After generating $x_{t}$ and $y_{t}$ series as above, the following regressions are run,

[^10]\[

$$
\begin{align*}
& y_{t}=\beta_{0}+\beta_{1} x_{t}+e_{t}  \tag{2.38}\\
& y_{t}=\beta_{0}+\beta_{1} t+\beta_{2} x_{t}+e_{t} \tag{2.39}
\end{align*}
$$
\]

Note that $x_{t}$ and $y_{t}$ are co-integrated for $\rho<1$ and not co-integrated for $\rho=1$ in the system (2.37). This DGP is similar to the ones in Blangiewicz and Charemza (1990) (DGP 2) and Engle and Yoo (1987). Graphs of co-integrated and non-co-integrated series that are derived from the system (2.37) with $a_{1}=0$ are illustrated in Figure 2.1. Panels (a), (c) and (e) are produced by simulating stable random variables with $\alpha=1.7, \beta=0, \sigma=1$ and $\mu=0$ for the errors in the DGP. Panels (b), (d) and (f) are produced by simulating standard normal random errors. For three-variable case, two explanatory variables $x_{1 t}$ and $x_{2 t}$ are generated as $\mathrm{I}(1)$. The DGPs in that case are as follows,

$$
\begin{align*}
u_{t} & =\rho u_{t-1}+v_{t}, \quad v_{t} \sim \text { i.i.d. } S_{\alpha}(0,1,0),  \tag{2.40a}\\
x_{i, t} & =x_{i, t-1}+\varepsilon_{i, t}, \quad \varepsilon_{i, t} \sim \text { i.i.d. } S_{\alpha}(0,1,0), \quad i=1,2  \tag{2.40b}\\
y_{t} & =0.5 x_{1 t}+0.5 x_{2 t}+u_{t} \tag{2.40c}
\end{align*}
$$

For power comparisons, a unit root test is applied on the residuals ( $\hat{e}_{t}$ ) from equations (2.38) and (2.39): no trend and trend included in co-integrating equation. There are two test statistics considered: $Z_{t}$ and $\pi_{\phi} . Z_{t}$ is calculated for OLS estimations and $\pi_{\phi}$ is calculated for LAD estimations. The rejection rate for the unit root tests are calculated for different values of $\rho=1,0.9,0.8, \ldots$ etc.. The number of iterations is 20,000 . Some results from power comparisons are given in Figures 2.2 (constant) and 2.3 (constant and trend). In the figures, $T$ denotes the sample size and $\alpha$ is the stability index.

Results of power comparisons show that as the sample size gets larger and tails of the distribution gets heavier, LAD-based co-integration tests that we consider have superior power over the conventional OLS-based ones with infinite-variance errors. If the sample size gets

(a) Two co-integrated series with $S_{1.7}(0,1,0)$ errors

(c) Three co-integrated series with $S_{1.7}(0,1,0)$ errors

(e) Three non-co-integrated series with $S_{1.7}(0,1,0)$ errors

(b) Two co-integrated series with $N(0,1)$ errors

(d) Three co-integrated series with $N(0,1)$ errors

(f) Three non-co-integrated series with $N(0,1)$ errors

Figure 2.1: Graphs of co-integrated and non-co-integrated series with stable and normal errors derived from systems (2.37) (with $a_{1}=0$ ) and (2.40)


Figure 2.2: Size-adjusted power comparisons (constant)


Figure 2.3: Size-adjusted power comparisons (constant and trend)
large, empirical power of both tests converge to $100 \%$ fast for all $\alpha$ levels (see panels (e) and (f) in Figures 2.2 and 2.3). For infinite-variance case, our test has superior power as the sample size exceeds 50 . Furthermore, as $\alpha$ approaches 2 and sample size gets large, our test still has some power advantages if the co-integrating regression's residuals are near unit root. The effects of past errors do not die out fast for near unit root processes. If the errors are stably distributed with $\alpha<2$, their distributions are subject to more volatility compared to normal distribution. In that case, LAD-based tests have a slightly better performance in distinguishing between co-integration and no co-integration (see panels (f) in Figures 2.2 and 2.3).

## CHAPTER 3. EMPIRICAL APPLICATION

In this chapter, we test the forward rate unbiasedness hypothesis (FRUH) for our data through residual-based co-integration tests and apply the new LAD-based test from chapter 2. The dataset contains Australian dollar, Canadian dollar, French franc, German mark, Italian lira, Japanese yen, Swiss franc and U.K. pound spot exchange rates as well as 1month, 3 -month, 6 -month, 1 -year forward exchange rates of daily frequency. Data span runs from 01/01/1985 to $11 / 30 / 2007$ for Australia and Canada ( $T=5,979$ ); from 01/02/1984 to $11 / 30 / 2007$ for Japan, Switzerland and U.K. $(T=6,240)$ and from 01/01/1997 to $11 / 30 / 2007$ for Germany, France and Italy $(T=2,848)$. Data is taken from Datastream. Australia, Canada, Japan, Switzerland and U.K. data source is Barclay Bank PLC. The data source of Germany, France and Italy is WM/Reuters. Following Caner (1998), if we let $Y_{t}$ be a $k$-vector integrated process:

$$
\begin{equation*}
Y_{t}=Y_{t-1}+\varepsilon_{t}, \quad \varepsilon_{t} \sim \text { i.i.d. } S_{\alpha}(0,1,0), \alpha<2 \tag{3.1}
\end{equation*}
$$

Then partitioning $Y_{t}$ vector into scalar $Y_{1 t}$ and $m$-vector $Y_{2 t},{ }^{1}$ the co-integrating regressions can be written as,

$$
\begin{align*}
Y_{1 t} & =\hat{\beta}^{\prime} Y_{2 t}+u_{t},  \tag{3.2}\\
\hat{u}_{t} & =\hat{\rho} \hat{u}_{t-1}+v_{t} \tag{3.3}
\end{align*}
$$

[^11]Equations (3.2) and (3.3) are utilized with OLS estimations to apply Caner (1998) test. Following equations are utilized with LAD estimations to apply our test,

$$
\begin{align*}
Y_{1 t} & =\hat{\beta}^{\prime} Y_{2 t}+u_{t},  \tag{3.4}\\
\Delta \hat{u}_{t} & =\phi \hat{u}_{t-1}+\sum_{i=2}^{p} \lambda_{i} \Delta \hat{u}_{t-i+1}+v_{t}, v_{t} \sim \text { i.i.d. } \tag{3.5}
\end{align*}
$$

### 3.1 Diagnostic checks

As a first step in empirical analysis we investigate whether or not an infinite-variance stable assumption is reasonable to describe the errors. We start by estimating the stable parameters of the residuals. By Caner (1998)' s assumptions, we assume that logged values of spot and forward exchange rates are $\mathrm{I}(1)$ processes and can be represented by a finite-order bivariate VAR process. The estimated residuals from those VARs can be replaced by the unobserved error terms if the correct model is selected and the VAR coefficients are consistent. Calder and Davis (1998) has shown that OLS and LAD estimators are consistent for $\operatorname{ARMA}(p, q)$ models under the infinite-variance assumption. Since we are assuming finite-order VARs, the consistency results of Calder and Davis (1998)'s study can be extended to our case for each of the VAR equations (see Falk and Wang (2003)).

The procedure we choose for estimating stable parameters is the maximum likelihood estimation (MLE) procedure. The procedure requires data to be i.i.d.. Thus before implementing the MLE method, appropriate VAR models should be selected. Standard Box and Jenkins (1976) approach of model selection assumes Gaussian errors but the model selection tools that are used in Gaussian case can also be generalized to infinite-variance stable case though one needs to be more cautious (Adler et al., 1998).

### 3.1.1 Model selection

Box-Jenkins model selection involves fitting a linear $\operatorname{ARMA}(p, q)$ model to a time series $x_{t}$,

$$
\begin{equation*}
x_{t}-\phi_{1} x_{t-1}-\ldots-\phi_{p} x_{t-p}=\theta_{1} \varepsilon_{t-1}+\ldots+\theta_{q} \varepsilon_{t-q}+\varepsilon_{t}, \varepsilon_{t} \sim \text { i.i.d. } \tag{3.6}
\end{equation*}
$$

where $\varepsilon_{t}$ is either normally or stably distributed. After fitting a model, i.i.d. tests are applied on the residuals. Depending on which distribution the errors come from, the limit theorems of test statistics of i.i.d. tests change (Runde (1997); Adler et al. (1998); Lin and McLeod (2008)).

One of the stylized empirical facts of exchange rate series of high frequency data is the fact that the returns exhibit very little serial correlation and the series itself behave as a random walk (see Cont $(2001,2007)$ ). Following this stylized fact in literature, we start with a VAR(1) model for the spot and forward exchange rates. Since we have 4 different forward rates (1month, 3 -month, 6 -month and 1-year), we consider 8 residual series for each country, in total yielding 64 residual series. VARs considered are,

$$
\begin{align*}
& s_{t}=a_{10}+a_{11} s_{t-1}+a_{12} f_{t-1}^{i}+\varepsilon_{1 t}  \tag{3.7a}\\
& f_{t}^{i}=a_{20}+a_{21} s_{t-1}+a_{22} f_{t-1}^{i}+\varepsilon_{2 t} \tag{3.7b}
\end{align*}
$$

where $s_{t}$ and $f_{t}^{i}$ are $\log$ spot rate and $\log$ forward rate respectively with $i$ being the index that determines the maturity of the forward rate. In particular, $i=1,2,3,4$ correspond to 1 -month, 3-month, 6-month and 1-year maturities respectively. Each residual series is checked for serial independence.

In general, if a finite-variance Gaussian series $x_{t}$ is i.i.d. noise then,

$$
\gamma_{x}(h)=\left\{\begin{aligned}
\sigma_{x}^{2} & \text { if } h=0 \\
0 & \text { if } h \neq 0
\end{aligned}\right.
$$

where $\gamma_{x}(h)=\operatorname{cov}\left(x_{t+h}, x_{t}\right)$. Autocorrelation function at lag $h$ is defined as,

$$
\begin{equation*}
r_{x}(h)=\frac{\gamma_{x}(h)}{\gamma_{x}(0)} \tag{3.8}
\end{equation*}
$$

Sample autocorrelation function (SACF) is calculated as,

$$
\begin{equation*}
\hat{r}_{x}(h)=\frac{\sum_{t=1}^{T-h} x_{t} x_{t+h}}{\sum_{t=1}^{T} x_{t}^{2}} \tag{3.9}
\end{equation*}
$$

Mean-corrected version of sample autocorrelations is,

$$
\begin{equation*}
\tilde{r}_{x}(h)=\frac{\sum_{t=1}^{T-h}\left(x_{t}-\bar{x}\right)\left(x_{t+h}-\bar{x}\right)}{\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}} \tag{3.10}
\end{equation*}
$$

Under the null hypothesis of i.i.d. noise,

$$
\begin{aligned}
& \qquad H_{0}: r(1)=r(2)=\ldots=r(m)=0 \\
& \text { against }
\end{aligned}
$$

$H_{1}$ : At least one of the autocorrelations is not zero
all autocorrelations must be zero for $|h|>0$ and,

$$
(\sqrt{T} \widetilde{r}(1), \sqrt{T} \widetilde{r}(2), \ldots, \sqrt{T} \widetilde{r}(m)) \xrightarrow{d} N\left(0_{m}, I_{m}\right) \text { as } T \rightarrow \infty
$$

where $\xrightarrow{d}$ denotes convergence in distribution, $0_{m}$ is $m$-dimensional zero vector and $I_{m}$ is $m \times m$ identity matrix. Thus in practice with a sample size $T$, if one plots the sample autocorrelations $\tilde{r}(h)$ against $h, 95 \%$ of them should lie between the $95 \%$ Gaussian confidence bounds: $\pm 1.96 T^{-1 / 2}$.

In addition to SACFs, sample partial autocorrelations are also checked to determine independence. Autocorrelations calculate the correlations between two values of the time series which are separated by $h$ time periods. The partial autocorrelation function (SPACF) on the other hand, calculates the correlation between the values of the time series separated $h$ time periods after removing the effects of the intervening time periods. In other words, the indirect effects of correlations are not present in the SPACF structure.

When there is heavy-tailed structure in the data and variances and even means may be infinite, the mathematical correlations do not exist. However, SACFs and SPACFs still can be used as useful tools in diagnostic checks, because they both have limiting distributions. Quantiles of those limiting distributions have been obtained in Adler et al. (1998), section 3. Adler et al. (1998) run Monte Carlo simulations to construct confidence intervals for model identification to test for three different distributions' (a stable distribution with correct $\alpha$, Cauchy distribution and normal distribution) performances in selecting the correct model. They suggest using Cauchy bounds for "small" sample sizes near 1,000, as they perform better than the other two distributions' bounds in selecting the correct model. However, as the sample size increases and as $\alpha \geq 1.7$, Gaussian bounds also have a good performance in model identification. The conventional Gaussian bounds can still be employed to check for independence of the residuals.

Mikosch (1998) also suggests the usage of classical confidence bounds with Box-Jenkins way of model selection under stably distributed error assumption but in a more conservative sense. Following Adler et al. (1998) and Mikosch (1998) studies, Tokat et al. (2003) use more conservative confidence bounds of $\pm 2.57 T^{-1 / 2}$ in model selection for variables with stable indices less than 1.7 and conventional Gaussian bounds for variables with stable indices greater than 1.7. Based on Tokat et al. (2003), the SACF and SPACF structure of bivariate first-order VAR residuals are also demonstrated with more conservative bounds of $\pm 2.57 T^{-1 / 2}$ in addition to the classical Gaussian bounds.

SACFs and SPACFs of the LAD-based $\operatorname{VAR}(1)$ residuals with $i=1$ in equation (3.7a) for Australia, France, Japan and U.K. are given in Figures 3.1, 3.2, 3.3 and 3.4. Similar results


Figure 3.1: SACFs with Gaussian confidence bounds: $\pm 1.96 \frac{1}{\sqrt{T}}$


Figure 3.2: SPACFs with Gaussian confidence bounds: $\pm 1.96 \frac{1}{\sqrt{T}}$


Figure 3.3: SACFs with conservative confidence bounds: $\pm 2.57 \frac{1}{\sqrt{T}}$


Figure 3.4: SPACFs with conservative confidence bounds: $\pm 2.57 \frac{1}{\sqrt{T}}$
are derived for OLS-based VARs' residual series and other equations. Based on the SACF and SPACF structures, accepting the i.i.d. hypothesis seems like a reasonable conclusion to make as all the SACFs and SPACFs are close to zero and lie between the confidence bounds approximately $95 \%$ of the time. Especially with the more conservative confidence bounds, the autocorrelations and partial autocorrelations indicate a random structure in the residuals. However, in order to make a certain decision on independence, residual series are tested for randomness via Portmanteau type tests. Gallagher (2001) has shown that, as $\alpha$ approaches 2, the large sample distribution of SACF provides a poor approximation and the accuracy of the tests depending on the limit theorems of SACFs is low under the stable distribution assumption. Thus we proceed with other i.i.d. tests to reach a more definite conclusion.

### 3.1.2 Portmanteau type tests

We further investigate the independence of our residuals by using Portmanteau type tests for infinite-variance stable variables which are proposed in a recent study of Lin and McLeod (2008). ${ }^{2}$ They consider tests that are stable analogues of Box and Pierce (1970) and Peňa and Rodriguez (2002) tests.

In Gaussian case, with i.i.d. assumption, Box-Pierce statistic,

$$
\begin{equation*}
\tilde{Q}_{T, m}=T \sum_{h=1}^{m} \tilde{r}^{2}(h), h=1, \ldots, m \tag{3.11}
\end{equation*}
$$

will have an asymptotic $\chi_{(m)}^{2}$ distribution, with $m$ being the number of lags.
Peňa-Rodriguez test statistic,

$$
\begin{equation*}
\tilde{D}_{m}=T\left(1-\left|\tilde{R}_{m}\right|^{1 / m}\right) \tag{3.12}
\end{equation*}
$$

where $\left|\tilde{R}_{m}\right|$ is the determinant of the residual correlation matrix of order $m$,

[^12]\[

\tilde{R}_{m}=\left[$$
\begin{array}{cccc}
1 & \tilde{r}(1) & \ldots & \tilde{r}(m) \\
\tilde{r}(1) & 1 & \ldots & \tilde{r}(m-1) \\
\vdots & \vdots & \ddots & \vdots \\
\tilde{r}(m) & \tilde{r}(m-1) & \ldots & 1
\end{array}
$$\right]
\]

will have an asymptotic $\operatorname{Gamma}(a, b)$ distribution with parameters defined as,

$$
\begin{equation*}
a=\frac{3 m[(m+1)-2(p+q)]^{2}}{2[2(m+1)(2 m+1)-12 m(p+q)]} \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
b=\frac{3 m[(m+1)-2(p+q)]}{2(m+1)(2 m+1)-12 m(p+q)} \tag{3.14}
\end{equation*}
$$

For stable case, the limit distributions of $\tilde{Q}_{T, m}$ and $\tilde{D}_{m}$ test statistics are studied in Runde (1997) and Lin and McLeod (2008). ${ }^{3}$ The convergence of both test statistics to their limiting distributions are very slow and require very large sample sizes in practice for those tests to be reliable. Therefore Lin and McLeod (2008) develop new Monte Carlo tests (or parametric bootstraps) which work as stable analogues of Box and Pierce (1970) and Peňa and Rodriguez (2002) tests for small sample size. Their study also includes new Monte Carlo tests that are developed for the same test statistics with normally distributed errors.

Lin and McLeod (2008) investigate the robustness of Box and Pierce (1970) and Peňa and Rodriguez (2002) tests with normally distributed errors to infinite-variance errors and show that the tests are not robust to infinite-variance assumption. As an empirical illustration, they test the daily S\&P 500 stock returns and monthly CRSP value-weighted index returns for independence. They show that Portmanteau type tests studied in Box and Pierce (1970) and Peňa and Rodriguez (2002) more often leads to a rejection of i.i.d. hypothesis if one mistakenly

[^13]assumes that the returns are normally distributed instead of being stably distributed. Also for a large enough lag length, the randomness assumption of daily stock returns is strongly rejected under the normality assumption but not rejected under the stable distribution assumption.

We use Lin-McLeod Monte Carlo tests (both for normal and stable cases), to test for independence. P-values of the Lin-McLeod i.i.d. tests are given in Tables 3.1 and 3.2 for Australia and France respectively. The conclusions drawn from the tests are similar for the exchange rate data of France, Germany, Italy, Japan and Switzerland: the i.i.d. hypothesis is not rejected no matter which distributional assumption is made since all p-values are unambigously greater than 0.05. On the other hand, for Australia, Canada and U.K. data, i.i.d. assumption can not be rejected only for the stable case. The hypothesis is generally rejected if we make the normality assumption and use "normal" versions of Peňa-Rodriguez and Box-Pierce tests. Test results are considerably different for Australia and U.K., at lags 50 and 100. P-values under normality assumption tend to be very low, rejecting the i.i.d. error hypothesis, whereas the opposite occurs under stable distribution assumption. In Tables 3.1 and 3.2, it is worthwhile noting that the new Monte Carlo tests of Lin-McLeod using normal random variables yield very similar results as the Box-Pierce tests with chi-square asymptotic distribution. Tables 3.1 and 3.2 present the results of LAD residuals. We have a similar structure for OLS residuals.

### 3.1.3 Descriptive statistics and normality tests

In this section we explore data characteristics of exchange rate returns. Some descriptive statistics are presented in Tables 3.3 through 3.10. The return series seem to be asymmetric (mostly negatively skewed except for Australian, Canadian and U.K. log returns) and have means zero. Excess kurtosis or kurtosis greater than 3 (which is the kurtosis level associated with normal distribution) is observed for all data series. Jarque and Bera (1980) test, which tests the null hypothesis of normality based on the sample skewness and kurtosis, rejects the null hypothesis since all p-values are less than 0.05. Jarque-Bera test statistic is,

Table 3.1: P-values of randomness tests for Australian exchange rates from $\operatorname{VAR}(1)$ model

| Spot Rate \& 1-month Forward Rate |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| lag | P-R Stable $^{\text {a }}$ | P-R Normal $^{\text {b }}$ | B-P Stable | B-P Normal | B-P Chi-square ${ }^{\text {e }}$ |
| 25 | 0.039 | 0.002 | 0.056 | 0.022 | 0.021 |
| 50 | 0.049 | 0.003 | 0.061 | 0.005 | 0.005 |
| 100 | 0.069 | 0.005 | 0.113 | 0.049 | 0.052 |
| 1-month Forward Rate \& Spot Rate |  |  |  |  |  |
| lag | P-R Stable | P-R Normal | B-P Stable | B-P Normal | B-P Chi-square |
| 25 | 0.039 | 0.002 | 0.056 | 0.022 | 0.021 |
| 50 | 0.049 | 0.003 | 0.061 | 0.005 | 0.005 |
| 100 | 0.069 | 0.005 | 0.113 | 0.049 | 0.052 |


| Spot Rate \& 3-month Forward Rate |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| lag | P-R Stable | P-R Normal | B-P Stable | B-P Normal | B-P Chi-square |
| 25 | 0.040 | 0.002 | 0.058 | 0.022 | 0.020 |
| 50 | 0.048 | 0.003 | 0.061 | 0.005 | 0.005 |
| 100 | 0.070 | 0.005 | 0.114 | 0.049 | 0.052 |


| 3-month Forward Rate \& Spot Rate |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| lag | P-R Stable | P-R Normal | B-P Stable | B-P Normal | B-P Chi-square |
| 25 | 0.043 | 0.003 | 0.050 | 0.009 | 0.007 |
| 50 | 0.046 | 0.001 | 0.056 | 0.001 | 0.002 |
| 100 | 0.063 | 0.002 | 0.106 | 0.030 | 0.029 |

Spot Rate \& 6-month Forward Rate

| lag | P-R Stable | P-R Normal | B-P Stable | B-P Normal | B-P Chi-square |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 0.038 | 0.002 | 0.058 | 0.022 | 0.019 |
| 50 | 0.047 | 0.003 | 0.060 | 0.004 | 0.005 |
| 100 | 0.070 | 0.005 | 0.113 | 0.049 | 0.050 |


| 6-month Forward Rate \& Spot Rate |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| lag | P-R Stable | P-R Normal | B-P Stable | B-P Normal | B-P Chi-square |
| 25 | 0.019 | 0.000 | 0.030 | 0.000 | 0.000 |
| 50 | 0.032 | 0.000 | 0.054 | 0.001 | 0.001 |
| 100 | 0.055 | 0.000 | 0.102 | 0.023 | 0.022 |

Table 3.1: (Continued)

| Spot Rate \& 1-year Forward Rate |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| lag | P-R Stable $^{\mathrm{a}}$ | P-R Normal $^{\text {b }}$ | B-P Stable $^{\mathrm{c}}$ | B-P Normal | B-P Chi-square ${ }^{\text {e }}$ |
| 25 | 0.039 | 0.001 | 0.058 | 0.021 | 0.019 |
| 50 | 0.046 | 0.003 | 0.060 | 0.004 | 0.005 |
| 100 | 0.069 | 0.005 | 0.114 | 0.048 | 0.048 |
| 1-year Forward Rate \& Spot Rate |  |  |  |  |  |
| lag | P-R Stable | P-R Normal | B-P Stable | B-P Normal | B-P Chi-square |
| 25 | 0.075 | 0.049 | 0.088 | 0.077 | 0.068 |
| 50 | 0.098 | 0.094 | 0.120 | 0.143 | 0.145 |
| 100 | 0.122 | 0.148 | 0.172 | 0.270 | 0.278 |

${ }^{\text {a }}$ Peňa-Rodriguez test statistic with stably distributed variables.
${ }^{\mathrm{b}}$ Peňa-Rodriguez test statistic with normally distributed variables.
${ }^{c}$ Box-Pierce test statistic with stably distributed variables.
${ }^{d}$ Box-Pierce test statistic with normally distributed variables.
${ }^{e}$ Box-Pierce chi-square test statistic with normally distributed variables.

$$
\begin{equation*}
J B=\frac{T}{6}\left(S^{2}+\frac{(K-3)^{2}}{4}\right) \tag{3.15}
\end{equation*}
$$

where $S$ is sample skewness and $K$ is sample kurtosis defined as,

$$
\begin{gather*}
S=\frac{\frac{1}{T} \sum_{i=1}^{T}\left(x_{i}-\bar{x}\right)^{3}}{\left(\frac{1}{T} \sum_{i=1}^{T}\left(x_{i}-\bar{x}\right)^{2}\right)^{3 / 2}}  \tag{3.16}\\
K=\frac{\frac{1}{T} \sum_{i=1}^{T}\left(x_{i}-\bar{x}\right)^{4}}{\left(\frac{1}{T} \sum_{i=1}^{T}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}} \tag{3.17}
\end{gather*}
$$

where $\bar{x}$ is the sample mean of the series which is being tested for normality. $J B$ statistic is asymptotically chi-squared with 2 degrees of freedom.

Table 3.2: P-values of randomness tests for French exchange rates from VAR(1) model

| Spot Rate \& 1-month Forward Rate |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| lag | P-R Stable $^{\mathrm{a}}$ | P-R Normal $^{\mathrm{b}}$ | B-P Stable $^{\mathrm{c}}$ | B-P Normal $^{\mathrm{d}}$ | B-P Chi-square ${ }^{\mathrm{e}}$ |
| 25 | 0.831 | 0.995 | 0.743 | 0.983 | 0.985 |
| 50 | 0.685 | 0.972 | 0.434 | 0.758 | 0.760 |
| 100 | 0.319 | 0.564 | 0.131 | 0.196 | 0.237 |
| 1-month Forward Rate \& Spot Rate |  |  |  |  |  |
| lag | P-R Stable | P-R Normal | B-P Stable | B-P Normal | B-P Chi-square |
| 25 | 0.782 | 0.987 | 0.716 | 0.977 | 0.978 |
| 50 | 0.665 | 0.962 | 0.393 | 0.709 | 0.715 |
| 100 | 0.276 | 0.491 | 0.109 | 0.136 | 0.162 |


| Spot Rate \& 3-month Forward Rate |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| lag | P-R Stable | P-R Normal | B-P Stable | B-P Normal | B-P Chi-square |
| 25 | 0.823 | 0.995 | 0.739 | 0.983 | 0.985 |
| 50 | 0.682 | 0.970 | 0.427 | 0.752 | 0.754 |
| 100 | 0.308 | 0.548 | 0.129 | 0.181 | 0.221 |


| 3-month Forward Rate \& Spot Rate |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| lag | P-R Stable | P-R Normal | B-P Stable | B-P Normal | B-P Chi-square |
| 25 | 0.790 | 0.987 | 0.717 | 0.977 | 0.978 |
| 50 | 0.667 | 0.960 | 0.385 | 0.688 | 0.693 |
| 100 | 0.268 | 0.478 | 0.097 | 0.113 | 0.141 |


| Spot Rate \& 6-month Forward Rate |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| lag | P-R Stable | P-R Normal | B-P Stable | B-P Normal | B-P Chi-square |
| 25 | 0.823 | 0.995 | 0.743 | 0.986 | 0.986 |
| 50 | 0.683 | 0.970 | 0.421 | 0.739 | 0.748 |
| 100 | 0.305 | 0.538 | 0.127 | 0.173 | 0.211 |


| 6-month Forward Rate \& Spot Rate |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| lag | P-R Stable | P-R Normal | B-P Stable | B-P Normal | B-P Chi-square |
| 25 | 0.802 | 0.990 | 0.732 | 0.980 | 0.981 |
| 50 | 0.676 | 0.962 | 0.392 | 0.683 | 0.689 |
| 100 | 0.267 | 0.474 | 0.097 | 0.109 | 0.137 |

Table 3.2: (Continued)

| Spot Rate \& 1-year Forward Rate |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| lag | P-R Stable $^{\mathrm{a}}$ | P-R Normal | B-P Stable | B-P Normal | B-P Chi-square ${ }^{\text {e }}$ |
| 25 | 0.823 | 0.995 | 0.755 | 0.987 | 0.988 |
| 50 | 0.682 | 0.970 | 0.414 | 0.723 | 0.735 |
| 100 | 0.291 | 0.519 | 0.120 | 0.155 | 0.192 |
| 1-year Forward Rate \& Spot Rate |  |  |  |  |  |
| lag | P-R Stable | P-R Normal | B-P Stable | B-P Normal | B-P Chi-square |
| 25 | 0.825 | 0.995 | 0.772 | 0.989 | 0.991 |
| 50 | 0.697 | 0.976 | 0.401 | 0.708 | 0.714 |
| 100 | 0.281 | 0.507 | 0.101 | 0.120 | 0.153 |

${ }^{\text {a }}$ Peňa-Rodriguez test statistic with stably distributed variables.
${ }^{\mathrm{b}}$ Peňa-Rodriguez test statistic with normally distributed variables.
${ }^{\mathrm{c}}$ Box-Pierce test statistic with stably distributed variables.
${ }^{d}$ Box-Pierce test statistic with normally distributed variables.
${ }^{e}$ Box-Pierce chi-square test statistic with normally distributed variables.

Table 3.3: Descriptive statistics and normality tests of Australian log returns

|  | Spot rate | 1-month fwd. | 3-month fwd. | 6-month fwd. | 1-year fwd. |
| :--- | ---: | ---: | ---: | :---: | :---: |
| Mean | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Median | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| St. Deviation | 0.005 | 0.005 | 0.007 | 0.007 | 0.007 |
| Skewness | 0.722 | 0.719 | 0.611 | 0.716 | 0.600 |
| Kurtosis | 11.059 | 9.163 | 11.361 | 9.189 | 8.599 |
| JB Test $^{\text {a }}$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

${ }^{\text {a }}$ P-values of Jarque-Bera normality test.

Table 3.4: Descriptive statistics and normality tests of Canadian log returns

|  | Spot rate | 1-month fwd. | 3-month fwd. | 6-month fwd. | 1-year fwd. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Mean | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Median | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| St. Deviation | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 |
| Skewness | 0.102 | 0.116 | 0.111 | 0.126 | 0.158 |
| Kurtosis | 6.185 | 6.186 | 6.144 | 6.092 | 7.098 |
| JB Test $^{\text {a }}$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

[^14]Table 3.5: Descriptive statistics and normality tests of French log returns

|  | Spot rate | 1-month fwd. | 3-month fwd. | 6-month fwd. | 1-year fwd. |
| :--- | ---: | ---: | ---: | :---: | :---: |
| Mean | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Median | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| St. Deviation | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 |
| Skewness | -0.214 | -0.205 | -0.202 | -0.198 | -0.195 |
| Kurtosis | 4.086 | 4.172 | 4.166 | 4.184 | 4.182 |
| JB Test $^{\text {a }}$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

${ }^{\text {a }}$ P-values of Jarque-Bera normality test.

Table 3.6: Descriptive statistics and normality tests of German log returns

|  | Spot rate | 1-month fwd. | 3 -month fwd. | 6 -month fwd. | 1-year fwd. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mean | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Median | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| St. Deviation | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 |
| Skewness | -0.209 | -0.195 | -0.192 | -0.188 | -0.182 |
| Kurtosis | 4.066 | 4.159 | 4.153 | 4.170 | 4.163 |
| JB Test ${ }^{\text {a }}$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

${ }^{\text {a }}$ P-values of Jarque-Bera normality test.

Table 3.7: Descriptive statistics and normality tests of Italian log returns

|  | Spot rate | 1-month fwd. | 3-month fwd. | 6-month fwd. | 1-year fwd. |
| :--- | ---: | ---: | ---: | :---: | :---: |
| Mean | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Median | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| St. Deviation | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 |
| Skewness | -0.206 | -0.208 | -0.204 | -0.200 | -0.198 |
| Kurtosis | 4.084 | 4.099 | 4.088 | 4.102 | 4.092 |
| JB Test $^{\text {a }}$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

${ }^{\text {a }} \mathrm{P}$-values of Jarque-Bera normality test.

Table 3.8: Descriptive statistics and normality tests of Japanese log returns

|  | Spot rate |  | 1-month fwd. | 3-month fwd. | 6-month fwd. |
| :--- | ---: | ---: | ---: | :---: | :---: | 1-year fwd.

${ }^{\text {a }} \mathrm{P}$-values of Jarque-Bera normality test.

Table 3.9: Descriptive statistics and normality tests of Swiss log returns

|  | Spot rate |  | 1-month fwd. | 3-month fwd. | 6-month fwd. |
| :--- | ---: | ---: | ---: | :---: | :---: | 1-year fwd. 9

${ }^{\text {a }} \mathrm{P}$-values of Jarque-Bera normality test.
Table 3.10: Descriptive statistics and normality tests of U.K. log returns

|  | Spot rate | 1-month fwd. | 3-month fwd. | 6-month fwd. | 1-year fwd. |
| :--- | ---: | ---: | ---: | :---: | :---: |
| Mean | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Median | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| St. Deviation | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 |
| Skewness | -0.095 | -0.110 | -0.121 | -0.165 | -0.088 |
| Kurtosis $^{\text {JB Test }}{ }^{\text {a }}$ | 6.952 | 7.015 | 6.939 | 7.426 | 7.086 |
| J $^{2}$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

${ }^{\text {a }} \mathrm{P}$-values of Jarque-Bera normality test.

### 3.1.4 Graphical investigation

Kernel density estimates of LAD-based $\operatorname{VAR}(1)$ residuals with $i=1$ from equation (3.7a) are compared to normal densities and stable densities. Figure 3.5 gives the densities of Australian and French residuals. Stable and normal $(N(0, s)$ with $s$ denoting the sample standard deviation) densities are estimated by simulating stable and normal random variables with parameters imposed from the actual data series. We observe that stable density provides a better fit than the normal density for the high peaked series. In order to better visualize the heavy-tailed structure, quantile quantile ( QQ ) plots are also provided.

QQ plots indicate a heavy-tailed structure for the residuals. Each residual series is standardized: the mean is subtracted and the result is divided by the standard error of the series. Figure 3.6 provides the plots of the VAR(1) residuals of Australia, France, Japan and U.K. from equation (3.7a) with $i=1$. QQ plot displays a plot of the sample quantiles of the residuals versus theoretical quantiles from a standard normal distribution. If the residuals come


Figure 3.5: Data based kernel densities versus stable and normal densities
from a normal distribution then the plot should be approximately linear. The S-shape from the figures gives evidence that the tails of the distribution that residuals are drawn from are heavier than the tails of the normal distribution. French residuals have the least deviation from the 45 -degree line among the series.

### 3.2 Estimation of stable parameters

In this section we estimate the stable parameters as we are convinced (by the results in section 3.1) that the empirical evidence provide enough to conclude that the residuals come from an i.i.d. process. Table 3.11 gives the estimation results for stable parameters $(\alpha, \beta)$ for each country along with the $95 \%$ confidence intervals. We can see from Table 3.11 that all $\alpha$ estimates are less than 2 and all confidence intervals exclude 2 , which conforms well with the infinite-variance assumption made for error terms. Furthermore, skewness parameter estimates show that there is asymmetry in the errors which again does not conform with the symmetric normal distribution assumption. Although not presented here, negative skewness has been found for most of the exchange rate returns (especially for those of Canada, France, Germany, Italy, Japan and Switzerland). ${ }^{4}$ Negative skewness means that extreme negative returns are more frequent than extreme positive returns and there is a long-run tendency towards appreciation of these currencies against the U.S. dollar. Fofack and Nolan (2001) apply the maximum likelihood procedure and examine the behavior of exchange rate returns in African countries against the U.S. dollar. They find that those exchange rate returns are positively skewed, indicating a long-run tendency towards depreciation. In our case, we are considering the exchange rate changes in industrialized countries and negative skewness provide more realistic distributional assumptions.

[^15]

Figure 3.6: Quantiles of (standardized) residuals versus the quantiles of $N(0,1)$ distribution
Table 3.11: Maximum Likelihood Estimation of stable parameters

| Country | Equation of Residuals | Parameter | Forward Rate |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1-month | 3-month | 6-month | 1-year |
| Australia | Equation (3.7a) | $\hat{\alpha}$ | $1.68 \pm 0.04$ | $1.67 \pm 0.04$ | $1.67 \pm 0.04$ | $1.67 \pm 0.04$ |
|  |  | $\hat{\beta}$ | $0.26 \pm 0.10$ | $0.26 \pm 0.10$ | $0.26 \pm 0.10$ | $0.26 \pm 0.10$ |
|  | Equation (3.7b) | $\hat{\alpha}$ | $1.66 \pm 0.04$ | $1.64 \pm 0.04$ | $1.66 \pm 0.04$ | $1.63 \pm 0.04$ |
|  |  | $\hat{\beta}$ | $0.25 \pm 0.10$ | $0.23 \pm 0.09$ | $0.24 \pm 0.10$ | $0.22 \pm 0.09$ |
| Canada | Equation (3.7a) | $\hat{\alpha}$ | $1.61 \pm 0.04$ | $1.61 \pm 0.04$ | $1.61 \pm 0.04$ | $1.61 \pm 0.04$ |
|  |  | $\hat{\beta}$ | $-0.03 \pm 0.09$ | $-0.03 \pm 0.09$ | $-0.03 \pm 0.09$ | $-0.03 \pm 0.09$ |
|  | Equation (3.7b) | $\hat{\alpha}$ | $1.61 \pm 0.04$ | $1.62 \pm 0.04$ | $1.64 \pm 0.04$ | $1.64 \pm 0.04$ |
|  |  | $\hat{\beta}$ | $-0.03 \pm 0.09$ | $-0.03 \pm 0.09$ | $-0.02 \pm 0.10$ | $-0.02 \pm 0.10$ |
| France | Equation (3.7a) | $\hat{\alpha}$ | $1.87 \pm 0.04$ | $1.87 \pm 0.04$ | $1.87 \pm 0.04$ | $1.87 \pm 0.04$ |
|  |  | $\hat{\beta}$ | $-0.36 \pm 0.29$ | $-0.36 \pm 0.29$ | $-0.35 \pm 0.28$ | $-0.35 \pm 0.28$ |
|  | Equation (3.7b) | $\hat{\alpha}$ | $1.87 \pm 0.04$ | $1.87 \pm 0.04$ | $1.87 \pm 0.04$ | $1.87 \pm 0.04$ |
|  |  | $\hat{\beta}$ | $-0.32 \pm 0.28$ | $-0.32 \pm 0.28$ | $-0.31 \pm 0.28$ | $-0.31 \pm 0.28$ |
| Germany | Equation (3.7a) | $\hat{\alpha}$ | $1.88 \pm 0.04$ | $1.87 \pm 0.04$ | $1.87 \pm 0.04$ | $1.87 \pm 0.04$ |
|  |  | $\hat{\beta}$ | $-0.36 \pm 0.29$ | $-0.36 \pm 0.29$ | $-0.36 \pm 0.29$ | $-0.35 \pm 0.29$ |
|  | Equation (3.7b) | $\hat{\alpha}$ | $1.87 \pm 0.04$ | $1.87 \pm 0.04$ | $1.87 \pm 0.04$ | $1.87 \pm 0.04$ |
|  |  | $\hat{\beta}$ | $-0.32 \pm 0.28$ | $-0.32 \pm 0.28$ | $-0.31 \pm 0.28$ | $-0.31 \pm 0.28$ |
| Italy | Equation (3.7a) | $\hat{\alpha}$ | $1.88 \pm 0.04$ | $1.88 \pm 0.04$ | $1.88 \pm 0.04$ | $1.88 \pm 0.04$ |
|  |  | $\hat{\beta}$ | $-0.36 \pm 0.29$ | $-0.35 \pm 0.29$ | $-0.34 \pm 0.29$ | $-0.34 \pm 0.29$ |
|  | Equation (3.7b) | $\hat{\alpha}$ | $1.88 \pm 0.04$ | $1.88 \pm 0.04$ | $1.88 \pm 0.04$ | $1.88 \pm 0.04$ |
|  |  | $\hat{\beta}$ | $-0.34 \pm 0.29$ | $-0.34 \pm 0.29$ | $-0.33 \pm 0.29$ | $-0.33 \pm 0.29$ |

Table 3.11: (Continued)

| Country | Equation of Residuals | Parameter | Forward Rate |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1-month | 3-month | 6-month | 1-year |
| Japan | Equation (3.7a) | $\hat{\alpha}$ | $1.67 \pm 0.04$ | $1.67 \pm 0.04$ | $1.67 \pm 0.04$ | $1.67 \pm 0.04$ |
|  |  | $\hat{\beta}$ | $-0.14 \pm 0.10$ | $-0.14 \pm 0.10$ | $-0.14 \pm 0.10$ | $-0.14 \pm 0.10$ |
|  | Equation (3.7b) | $\hat{\alpha}$ | $1.64 \pm 0.04$ | $1.66 \pm 0.04$ | $1.66 \pm 0.04$ | $1.66 \pm 0.04$ |
|  |  | $\hat{\beta}$ | $-0.13 \pm 0.10$ | $-0.14 \pm 0.10$ | $-0.15 \pm 0.10$ | $-0.15 \pm 0.10$ |
| Switzerland | Equation (3.7a) | $\hat{\alpha}$ | $1.81 \pm 0.03$ | $1.82 \pm 0.03$ | $1.82 \pm 0.03$ | $1.82 \pm 0.03$ |
|  |  | $\hat{\beta}$ | $-0.15 \pm 0.15$ | $-0.15 \pm 0.15$ | $-0.15 \pm 0.15$ | $-0.15 \pm 0.15$ |
|  | Equation (3.7b) | $\hat{\alpha}$ | $1.78 \pm 0.04$ | $1.78 \pm 0.04$ | $1.78 \pm 0.04$ | $1.77 \pm 0.04$ |
|  |  | $\hat{\beta}$ | $-0.05 \pm 0.13$ | $-0.08 \pm 0.13$ | $-0.10 \pm 0.13$ | $-0.08 \pm 0.13$ |
| U.K. | Equation (3.7a) | $\hat{\alpha}$ | $1.69 \pm 0.04$ | $1.69 \pm 0.04$ | $1.68 \pm 0.04$ | $1.68 \pm 0.04$ |
|  |  | $\hat{\beta}$ | $0.09 \pm 0.10$ | $0.09 \pm 0.10$ | $0.09 \pm 0.10$ | $0.09 \pm 0.10$ |
|  | Equation (3.7b) | $\hat{\alpha}$ | $1.67 \pm 0.04$ | $1.67 \pm 0.04$ | $1.67 \pm 0.04$ | $1.66 \pm 0.04$ |
|  |  | $\hat{\beta}$ | $0.10 \pm 0.10$ | $0.09 \pm 0.10$ | $0.09 \pm 0.10$ | $0.09 \pm 0.10$ |

[^16]
### 3.3 Converging variance test

Granger and Orr (1972) have proposed the "converging variance test" for detecting infinite variance in a series. The conclusions can only be based on visual inspections. The test involves plotting the first $n$ realizations of the sample variance for $t \leq n \leq T$,

$$
\begin{equation*}
s_{n}^{2}=\frac{1}{n} \sum_{t=1}^{n}\left(x_{t}-\bar{x}_{n}\right)^{2} \tag{3.18}
\end{equation*}
$$

against $n$. If $x_{t}$ comes from a finite-variance population, $s_{n}^{2}$ sequence converges as $n$ increases, otherwise it diverges. The same type of test can be applied to sample mean $\left(\bar{x}_{T}\right)$ as well. If the population mean of $x_{t}$ is finite then the sample mean sequence should converge as we plot the first $n$ realizations of it against $n$. Figure 3.7 presents the converging variance test results for sample variances as well as means for Australian residuals from equation (3.7a), $i=1$ (panels (a) and (b)) and French residuals from equation (3.7a), $i=1$ (panels (c) and (d)). Panels (a) and (b) plot the first $n$ sample variances and means of Australian residuals respectively against $n$. Panels (c) and (d) plot the first $n$ sample variances and means of French residuals respectively against $n$. Sample means converge fast for both countries. Thus finite-mean structure can be unambigously determined. Sample variances calculated from the data, on the other hand, do not show an unambigous finite-variance structure. It is known that sample variances of stable distributions are prone to several jumps. Sample variances of normal variables converge very fast without exhibiting any jumps. From Figure 3.7 (panels (a) and (c)), if we observe the $s_{n}^{2}$ sequence for Australian and French series over $n$, we can see that our data can be better described by a stable distribution than a normal distribution. The behavior of the sample variances from the data mimics the behavior of the sample variances from the stable distribution more than the normal distribution.


Figure 3.7: Converging variance and mean tests

### 3.4 Testing for forward rate unbiasedness hypothesis

### 3.4.1 Economic background of the hypothesis

One form of market efficiency asserts that the current forward rate is an unbiased predictor of the future spot rate, which is also known as the forward rate unbiasedness hypothesis. If FRUH holds one can write,

$$
\begin{equation*}
E_{t}\left(s_{t+k}\right)=f_{t, k} \tag{3.19}
\end{equation*}
$$

where $s_{t+k}$ and $f_{t, k}$ are logarithms of future spot rate and current forward rate respectively and $E_{t}($.$) is the rational expectations formed at time t .{ }^{5}$ Spot rate, which is also interpreted as the current exchange rate, is the rate of a foreign exchange contract for immediate delivery. ${ }^{6}$ Forward rate is the exchange rate that is quoted and traded today but for delivery and payment on a specific future date. ${ }^{7}$

Equality in equation (3.19) ensures that there are no arbitrage oppurtunities in the market. Otherwise there would be room for the investors to make arbitrarily large profits through speculating in forward foreign exchange markets (Razzak, 1999). To be more specific, consider a speculator who bought foreign currency at the price $f_{t, k}$ to be delivered at period $t+k$. Since the foreign currency can be sold at $s_{t+k}$ in the spot market, the speculator can make a profit (loss) if $s_{t+k}>f_{t, k}\left(s_{t+k}<f_{t, k}\right)$.

Equation (3.19) makes two assumptions about the behaviors of agents in the market. First, it assumes that the agents are risk neutral (unconcerned about risk) so that the risk premium is zero and second, it assumes that all agents behave according to what the rational expectations hypothesis states. Under the assumption of rational expectations one can write,

[^17]\[

$$
\begin{equation*}
s_{t+k}-E_{t}\left(s_{t+k}\right)=\varepsilon_{t+k} \tag{3.20}
\end{equation*}
$$

\]

where $\varepsilon_{t+k}$ is a serially independent forecast error with mean zero. Rational expectations assume that agents in the market use all available information at time $t$ to make decisions about the future. Although future is not predictable, their expectations are not systematically biased so that "on average" their decisions are correct.

Combining equations (3.19) and (3.20), one can get,

$$
\begin{equation*}
s_{t+k}=f_{t, k}+\varepsilon_{t+k} \tag{3.21}
\end{equation*}
$$

Fama (1984) specifies the forward exchange rate as the sum of expected future spot rate and a risk premium,

$$
\begin{equation*}
E_{t}\left(s_{t+k}\right)+r p_{t}=f_{t, k} \tag{3.22}
\end{equation*}
$$

where the risk premium $r p_{t}$ is the compensation for perceived risk that might arise from holding different currencies (Razzak, 2002). If the agents are risk-neutral then $r p_{t}=0$. It is conventional to assume for the exchange rate market that the agents are risk-neutral and the risk premium is zero. The following equation has been widely used in literature to test for FRUH,

$$
\begin{equation*}
s_{t+k}=a+b f_{t, k}+\varepsilon_{t+k} \tag{3.23}
\end{equation*}
$$

where the parameter $a$ is a constant risk premium (Razzak, 1999). Provided that $s_{t}$ and $f_{t}$ are both $\mathrm{I}(1)$ variables, FRUH requires that there be a linear combination of them which is
stationary. ${ }^{8}$ Thus by running the "co-integrating regression" of equation (3.23), and estimating $\hat{a}$ and $\hat{b}$, one can test for residuals for a unit root and determine whether co-integration exists between forward and spot rates.

It should, however, be noted that with the assumptions of rational expectations and riskneutrality, in order for the FRUH to hold, $s_{t+k}$ and $f_{t, k}$ have to be co-integrated with the co-integrating vector $(1,-1)^{\prime}$-i.e. $a=0$ and $b=1$ (see for example Delcoure et al. (2003)). Thus formal tests should be applied to jointly test for $a=0$ and $b=1$. Also given the fact that the exchange rate series are heavy-tailed, one should use estimation methods that are robust to heavy-tails. Empirical studies that follow similar methodologies to test for FRUH include Phillips and McFarland (1997) and Phillips et al. (1996).

When testing for $a=0$ and $b=1$, conventional tests are not aymptotically valid for the coefficients estimated via LAD and OLS methods because of non-stationarity of the data. Tests that involve fully modified OLS (FM-OLS) and fully modified LAD (FM-LAD) estimators should be applied to test for the joint hypothesis $a=0$ and $b=1$ as well as the individual hypotheses of $H_{0}: a=0$ and $H_{0}: b=1$. FM-OLS and FM-LAD estimators are explained in section 3.4.4 in detail.

### 3.4.2 Unit root tests

One needs to test for co-integration between $s_{t+k}$ and $f_{t, k}$ because a lack of co-integration would be inconsistent with the FRUH. In order to test for co-integration, we need to show that forward and spot rates are both $\mathrm{I}(1)$. Unit root tests that are due to Caner (1998) and Samarakoon and Knight (2009) are applied for heavy-tailed data to determine the degree of integratedness.

Table 3.12 shows the unit root test results of Caner test. Table 3.13 shows the unit root test results of Samarakoon-Knight test. Graphing the natural logarithm of exchange rates against time shows that a constant term or a trend term is not necessary to be included in the equations while testing for a unit root (see panels (a) and (b) in Figure 3.8 for Australian and

[^18]Table 3.12: $Z_{t}$ statistic for a unit root test in the logarithms of spot and forward rates

| Country | Spot rate |  | 1-month fwd. rate |  | 3-month fwd. rate |  | 6-month fwd. rate |  | 1-year fwd. rate |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $x_{t}$ | $\Delta x_{t}$ |
| Australia | -0.73 | $-74.8{ }^{*}$ | -0.71 | -74.3* | -0.72 | $-76.2^{*}$ | -0.71 | -74.3 * | -0.69 | $-77.2^{*}$ |
| Canada | -0.94 | $-77.8^{*}$ | -0.94 | -77.8* | -0.94 | -77.3* | -0.94 | -76.9* | -0.94 | -78.5* |
| France | -0.51 | -52.9 * | -0.51 | -53.0 * | -0.50 | -53.0 * | -0.48 | -53.1* | -0.44 | -53.1* |
| Germany | -0.55 | -52.9 * | -0.55 | -53.0 * | -0.54 | -53.0 * | -0.53 | -53.1* | -0.50 | -53.1* |
| Italy | -0.47 | -52.6 * | -0.47 | -53.6 * | -0.48 | -52.6* | -0.47 | -52.6 * | -0.49 | -52.6* |
| Japan | -1.49 | $-76.8^{*}$ | -1.52 | -77.8* | -1.54 | -77.4* | -1.53 | $-77.1^{*}$ | -1.52 | -78.6* |
| Switzerland | -1.91 * | $-78.3^{*}$ | -1.91 * | -79.0* | -1.89 * | -78.9* | -1.85 | -79.0* | -1.79 | -79.6 * |
| U.K. | 0.46 | -74.9 * | 0.47 | -75.0 * | 0.48 | $-75.1^{*}$ | 0.41 | $-76.0^{*}$ | 0.43 | -76.8* |

* Rejects the null hypothesis of a unit root at $5 \%$ significance level. Critical values are taken from Table 2.1 (standard).
Note: $x_{t}$ denotes the $\log$ exchange rate series in levels and $\Delta x_{t}$ denotes the first difference of the series.

Table 3.13: $\pi_{\phi}$ statistic for a unit root test in the logarithms of spot and forward rates

| Country | Spot rate |  | 1-month fwd. rate |  | 3-month fwd. rate |  | 6-month fwd. rate |  | 1-year fwd. rate |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $x_{t}$ | $\Delta x_{t}$ |
| Australia | -0.08 | -78.9* | -0.06 | -79.8* | -0.09 | $-82.7^{*}$ | -0.09 | -80.2* | -0.11 | -82.6* |
| Canada | -0.04 | $-80.7^{*}$ | -0.07 | -80.4* | -0.05 | -79.8* | -0.06 | $-78.9{ }^{*}$ | -0.05 | -79.9 * |
| France | 0.08 | -45.5* | 0.22 | -45.8* | 0.15 | -45.8* | 0.11 | -45.8* | 0.14 | -45.8* |
| Germany | 0.52 | $-45.4^{*}$ | 0.43 | -45.8* | 0.46 | $-45.7^{*}$ | 0.28 | -45.8* | 0.33 | -46.0* |
| Italy | 0.06 | -45.4* | 0.08 | -45.5* | 0.08 | $-45.4{ }^{*}$ | 0.07 | $-45.4{ }^{*}$ | 0.08 | -45.4* |
| Japan | 0.05 | -80.6* | 0.04 | -83.1 ${ }^{*}$ | 0.06 | -82.5* | 0.06 | -82.0* | 0.05 | -83.3* |
| Switzerland | 0.02 | -71.3* | 0.01 | -72.3* | 0.02 | -72.5* | 0.01 | -72.6* | 0.02 | -73.2* |
| U.K. | 0.08 | $-77.9^{*}$ | 0.08 | $-78.7^{*}$ | 0.09 | -78.6* | 0.10 | -79.5* | 0.09 | -79.8* |

* Rejects the null hypothesis of a unit root at $5 \%$ significance level. Critical value at $5 \%$ significance is -1.64 .

Note: $x_{t}$ denotes the log exchange rate series in levels and $\Delta x_{t}$ denotes the first difference of the series.

French spot exchange rates). Similar graphs can be produced for all countries and exchange rates.

Based on Caner unit root test, all exchange rate series appear to be $I(1)$ : we can not reject the null hypothesis of a unit root in levels at $5 \%$ significance, but we can reject the unit root hypothesis in differences. ${ }^{9}$ A similar conclusion is reached for Samarakoon-Knight unit root test. All exchange rate series appear to be I(1).

### 3.4.3 Residual-based co-integration tests

In order to test for co-integration, the residuals from equation (3.23) should be checked whether they are $\mathrm{I}(0)$ or not. If the residuals are $\mathrm{I}(0)$ then we can reject the null hypothesis that spot and forward rates are not co-integrated. We run four different "co-integrating regressions" for spot rates against 1 -month, 3 -month, 6 -month and 1-year forward rates for each country. The value of $k$ is taken to be $22,66,132$ and 264 for 1 -month, 3 -month, 6 -month and 1 -year forward rates respectively. ${ }^{10}$ The procedure for determining $Z_{t}$ and $\pi_{\phi}$ statistics are as follows; estimate equation (3.23) and get the residuals. For $Z_{t}$, estimate the equation via OLS and run OLS on the residuals,

$$
\begin{equation*}
\hat{\varepsilon}_{t}=\delta \hat{\varepsilon}_{t-1}+v_{t} \tag{3.24}
\end{equation*}
$$

then test for the null hypothesis $H_{0}: \delta=1$ against $H_{1}: \delta<1$.
For $\pi_{\phi}$, estimate the equation by LAD and run LAD on the residuals,

[^19]
(a) Australian dollar log spot rate

(c) Australian dollar spot returns

(e) Australian dollar. Log spot and 3-month fwd. rate

(b) French franc log spot rate

(d) French franc spot returns

(f) French franc. Log spot and 1-year fwd. rate

Figure 3.8: Australian dollar: 1985-2007 and French franc: 1997-2007

Table 3.14: $5 \%$ critical values of $Z_{t}$ statistic for Caner co-integration test ( $n=1$ )

| $\alpha$ | constant $^{\mathrm{a}}$ | constant and trend $^{\mathrm{b}}$ |
| :---: | :---: | :---: |
| 1 | -3.76 | -4.10 |
| 1.5 | -3.45 | -3.88 |
| 1.6 | -3.43 | -3.86 |
| 1.7 | -3.40 | -3.84 |
| 1.8 | -3.38 | -3.83 |
| 1.9 | -3.37 | -3.80 |

${ }^{\text {a }}$ Phillips-Ouliaris critical value $(\alpha=2)$ at $5 \%$ significance is -3.37 .
${ }^{\mathrm{b}}$ Phillips-Ouliaris critical value $(\alpha=2)$ at $5 \%$ significance is -3.80 .
Note: $n$ is the number of regressors in co-integrating regression.

$$
\begin{equation*}
\Delta \hat{\varepsilon}_{t}=\phi \hat{\varepsilon}_{t-1}+\sum_{i=2}^{p} \lambda_{i} \Delta \hat{\varepsilon}_{t-i+1}+v_{t} \tag{3.25}
\end{equation*}
$$

then test for the null hypothesis $H_{0}: \phi=0$ against $H_{1}: \phi<0$.
Results of the co-integration tests are presented in Tables 3.15 through 3.18. Five percent critical values for $Z_{t}$ are - 3.43 for Canada ( $\alpha=1.60$ ); -3.40 for Australia, Japan ( $\alpha=1.65$ ) and U.K. $(\alpha=1.7) ;-3.38$ for Switzerland ( $\alpha=1.8$ ); -3.37 for France, Germany and Italy $(\alpha=1.9)$. $Z_{t}$ critical values are calculated through simulations based on 1,000 sample size with 20,000 iterations following Caner (1998). Results of those simulations are in Table 3.14. Five percent critical values of $\pi_{\phi}$ are -2.30 for Canada ( $\alpha=1.6$ ); -2.48 for Australia, Japan and U.K. $(\alpha=1.7)$; -2.65 for Switzerland ( $\alpha=1.8$ ); -2.89 for France, Germany and Italy ( $\alpha=1.9$ ). $\pi_{\phi}$ critical values are the asymptotic critical values and are present in Tables 2.2 through 2.6.

Tables 3.15 and 3.16 indicate that there is evidence for co-integration for all markets for shorter maturities (1-month and 3-month forward contracts) no matter which test is used. This result is consistent with FRUH. Results of 6-month and 1-year contracts however, depend on which type of co-integration test is applied. OLS-based co-integration tests find co-integration between spot and 6 -month forward rates for Australia, Canada, Japan, Switzerland and U.K.. Only Japan, Switzerland and U.K. data show evidence of co-integration between spot and 1 -year forward exchange rates via OLS-based tests. If we assumed normal errors and used

Table 3.15: Co-integration tests between logarithms of spot and 1-month forward rates

|  | OLS coefficients |  |  |  |  |  |  | LAD coefficients |  |  |  |  |  |
| :---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Country | $\hat{a}$ | $\hat{b}$ | $\hat{a}$ | $\hat{b}$ | $Z_{t}$ | $\pi_{\phi}$ |  |  |  |  |  |  |  |
| Australia | 0.005 | 0.979 | 0.005 | 0.972 | $-12.133^{*}$ | $-9.658^{*}$ |  |  |  |  |  |  |  |
| Canada | -0.004 | 1.008 | -0.004 | 1.009 | $-12.236^{*}$ | $-9.419^{*}$ |  |  |  |  |  |  |  |
| France | 0.014 | 0.992 | 0.006 | 0.997 | $-8.622^{*}$ | $-5.592^{*}$ |  |  |  |  |  |  |  |
| Germany | 0.043 | 0.991 | 0.002 | 0.997 | $-8.635^{*}$ | $-5.578^{*}$ |  |  |  |  |  |  |  |
| Italy | 0.066 | 0.991 | 0.019 | 0.997 | $-8.638^{*}$ | $-5.632^{*}$ |  |  |  |  |  |  |  |
| Japan | 0.114 | 0.977 | 0.079 | 0.984 | $-11.866^{*}$ | $-8.107^{*}$ |  |  |  |  |  |  |  |
| Switzerland | 0.007 | 0.981 | 0.007 | 0.985 | $-12.475^{*}$ | $-9.358^{*}$ |  |  |  |  |  |  |  |
| U.K. | -0.017 | 0.970 | -0.008 | 0.989 | $-11.794^{*}$ | $-8.426^{*}$ |  |  |  |  |  |  |  |

[^20]Table 3.16: Co-integration tests between logarithms of spot and 3-month forward rates

|  | OLS coefficients |  | LAD coefficients |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| Country | $\hat{a}$ | $\hat{b}$ | $\hat{a}$ | $\hat{b}$ | $Z_{t}$ | $\pi_{\phi}$ |  |  |  |
| Australia | 0.013 | 0.939 | 0.010 | 0.934 | $-7.301^{*}$ | $-4.026^{*}$ |  |  |  |
| Canada | -0.010 | 1.017 | -0.013 | 1.029 | $-6.856^{*}$ | $-4.709^{*}$ |  |  |  |
| France | 0.066 | 0.962 | -0.003 | 1.001 | $-4.117^{*}$ | $-3.034^{*}$ |  |  |  |
| Germany | 0.019 | 0.961 | -0.002 | 1.002 | $-4.097^{*}$ | $-3.074^{*}$ |  |  |  |
| Italy | 0.270 | 0.963 | 0.041 | 0.994 | $-4.172^{*}$ | $-3.197^{*}$ |  |  |  |
| Japan | 0.361 | 0.926 | 0.401 | 0.918 | $-5.937^{*}$ | $-3.907^{*}$ |  |  |  |
| Switzerland | 0.023 | 0.936 | 0.033 | 0.905 | $-5.624^{*}$ | $-4.984^{*}$ |  |  |  |
| U.K. | -0.055 | 0.904 | -0.033 | 0.949 | $-5.595^{*}$ | $-4.211^{*}$ |  |  |  |

[^21]Table 3.17: Co-integration tests between logarithms of spot and 6-month forward rates

|  | OLS coefficients |  | LAD coefficients |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Country | $\hat{a}$ | $\hat{b}$ | $\hat{a}$ | $\hat{b}$ | $Z_{t}$ | $\pi_{\phi}$ |  |  |  |
| Australia | 0.028 | 0.874 | 0.025 | 0.868 | $-4.548^{*}$ | $-2.718^{*}$ |  |  |  |
| Canada | -0.013 | 1.008 | -0.027 | 1.064 | $-5.109^{*}$ | $-3.706^{*}$ |  |  |  |
| France | 0.148 | 0.915 | 0.049 | 0.967 | -3.260 | -1.269 |  |  |  |
| Germany | 0.046 | 0.913 | 0.009 | 0.967 | -3.238 | -1.141 |  |  |  |
| Italy | 0.598 | 0.919 | 0.215 | 0.969 | -3.186 | -1.178 |  |  |  |
| Japan | 0.758 | 0.844 | 1.092 | 0.774 | $-4.162^{*}$ | -1.882 |  |  |  |
| Switzerland | 0.053 | 0.857 | 0.067 | 0.783 | $-4.326^{*}$ | -2.545 |  |  |  |
| U.K. | -0.118 | 0.786 | -0.104 | 0.819 | $-4.131^{*}$ | -2.415 |  |  |  |

* Rejects the null hypothesis of no co-integration at $5 \%$ significance level.
$Z_{t}$ critical values are taken from Table 3.14 (constant).
$\pi_{\phi}$ critical values are taken from Tables 2.2 through 2.6 (constant).

Table 3.18: Co-integration tests between logarithms of spot and 1-year forward rates

|  | OLS coefficients |  | LAD coefficients |  |  |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| Country | $\hat{a}$ | $\hat{b}$ | $\hat{a}$ | $\hat{b}$ | $Z_{t}$ | $\pi_{\phi}$ |  |  |  |  |  |
| Australia | 0.100 | 0.653 | 0.093 | 0.635 | -2.969 | -0.695 |  |  |  |  |  |
| Canada | -0.002 | 0.943 | -0.040 | 1.069 | -3.156 | -1.922 |  |  |  |  |  |
| France | 0.457 | 0.739 | 0.311 | 0.809 | -1.656 | 0.022 |  |  |  |  |  |
| Germany | 0.144 | 0.736 | 0.084 | 0.806 | -1.674 | 0.194 |  |  |  |  |  |
| Italy | 1.869 | 0.748 | 1.277 | 0.825 | -1.588 | -0.216 |  |  |  |  |  |
| Japan | 1.640 | 0.660 | 2.228 | 0.536 | $-3.545^{*}$ | -1.310 |  |  |  |  |  |
| Switzerland | 0.132 | 0.635 | 0.163 | 0.512 | $-3.415^{*}$ | -1.655 |  |  |  |  |  |
| U.K. | -0.239 | 0.555 | -0.269 | 0.481 | $-3.593^{*}$ | -0.389 |  |  |  |  |  |

[^22]Phillips-Ouliaris tests (critical value=-3.37), our conclusions would not change. LAD-based co-integration tests, on the other hand, find no evidence of co-integration for 1-year maturity forward and spot rates. Except for the cases of Australia and Canada, 6-month forward and spot rates do not seem to be co-integrated with LAD-based tests. No co-integration result is not consistent with FRUH, because we fail to find a long-run relationship between forward and corresponding future spot rates.

The results of OLS and LAD-based co-integration tests are similar except for Japan, Switzerland and U.K. for 6-month and 1-year contracts and for them the results are in favor of FRUH for OLS-based tests and not in favor of FRUH for LAD-based ones. Also, regardless of the estimation technique, FRUH is rejected more for longer maturity forward contracts (6-month and 1-year). This is an indication that the decisions of the agents in predicting the future spot rate from the current forward rate tend to be biased as time to maturity of the forward contract increases. This bias is more observed in the results of the LAD-based tests.

### 3.4.4 Fully-modified estimations

Fully-modified OLS and LAD estimators are developed in Phillips and Hansen (1990) and Phillips (1995) respectively. The estimators correct the OLS and LAD estimators in a cointegrating regression such as equation (3.23) for possible autocorrelation and heteroskedasticity in the error terms and for endogeneity bias that occurs because the regressors and the regression error are correlated. In econometrics, the term "endogeneity" is used in a broad sense to describe any situation where the explanatory variable is correlated with the error term. If the explanatory variable is not correlated with the equation error then it is said to be exogenous (Wooldridge, 2002, p. 50).

FM-OLS and FM-LAD estimators are developed for estimating co-integrating equations with non-stationary data and making inference. Specifically, in a co-integration system given
by,

$$
\begin{align*}
y_{t} & =x_{t}^{\prime} \beta+u_{0 t}  \tag{3.26a}\\
\Delta x_{t} & =u_{x t} \tag{3.26b}
\end{align*}
$$

where $\Delta x_{t}=x_{t}-x_{t-1}$ and $u_{t}=\left(u_{0 t}, u_{x t}^{\prime}\right)^{\prime}, t=2, \ldots, T$, is a stationary $m$-vector time series ( $m=1+m_{x}$ ) with long-run covariance matrix, ${ }^{11}$

$$
\Omega_{u u}=\sum_{j=-\infty}^{\infty} E\left(u_{0} u_{j}^{\prime}\right)=\left[\begin{array}{ll}
\Omega_{00} & \Omega_{0 x}  \tag{3.27}\\
\Omega_{x 0} & \Omega_{x x}
\end{array}\right]
$$

where $\Omega_{x x}$ is assumed to be a positive definite matrix and the partition of $\Omega_{u u}$ is conformable with vector $u_{t}$. The one-sided long-run covariance matrix of $u_{t}$ is,

$$
\Delta_{u u}=\sum_{j=0}^{\infty} E\left(u_{0} u_{j}^{\prime}\right)=\left[\begin{array}{cc}
\Delta_{00} & \Delta_{0 x}  \tag{3.28}\\
\Delta_{x 0} & \Delta_{x x}
\end{array}\right]
$$

In equation (3.26a), endogeneity bias occurs due to $\operatorname{cov}\left(x_{t}, u_{0 t}\right) \neq 0$. Although the OLS and LAD coefficients estimated from a co-integrating regression are both super-consistent, they suffer from a second order bias or are not median unbiased because of the existence of endogeneous regressors. ${ }^{12}$ Also the standard testing procedures such as $t$-tests can not be used in making inference because either the existence of endogeneity bias or autocorrelation can lead to standard errors that are incorrect (Lim and Martin, 1995, p. 7). Fully modified estimation methods get rid of the second order bias and come up with an asymptotic theory that allows one to make use of standard testing procedures such as $t$-tests and Wald tests.

OLS estimator is written in the form,

[^23]\[

$$
\begin{equation*}
\beta_{O L S}=\left(X^{\prime} X\right)^{-1}\left(X^{\prime} y\right) \tag{3.29}
\end{equation*}
$$

\]

The corrected FM-OLS estimator can be written as,

$$
\begin{equation*}
\beta_{O L S}^{+}=\left(X^{\prime} X\right)^{-1}\left(X^{\prime} y^{+}-T \hat{\Delta}_{x 0}^{+}\right) \tag{3.30}
\end{equation*}
$$

with

$$
\begin{equation*}
y^{+}=y-\Delta X^{\prime} \hat{\Omega}_{x x}^{-1} \hat{\Omega}_{x 0} \tag{3.31}
\end{equation*}
$$

where $\hat{\Omega}_{x x}^{-1}, \hat{\Omega}_{x 0}$ and $\hat{\Delta}_{x 0}^{+}$are consistent estimates of $\Omega_{x x}^{-1}, \Omega_{x 0}$ and $\Delta_{x 0}^{+}=\Delta_{x 0}-\Delta_{x x} \Omega_{x x}^{-1} \Omega_{x 0}$ respectively. ${ }^{13}$

The asymptotic distribution of FM-OLS can be approximated with a normal distribution,

$$
\begin{equation*}
\beta_{O L S}^{+} \stackrel{a}{\sim} N\left(\beta, \omega_{00 . x}\left(X^{\prime} X\right)^{-1}\right) \tag{3.32}
\end{equation*}
$$

where $\omega_{00 . x}=\Omega_{00}-\Omega_{0 x} \Omega_{x x}^{-1} \Omega_{x 0}$. If one can consistently estimate $\omega_{00 . x}$ then standard $t$-tests and Wald tests can be applied for testing linear restrictions on the FM-OLS coefficients. The fully modified $t$-ratios for tests about individual coefficients are given by,

$$
\begin{equation*}
t_{i}=\frac{\left(\beta_{O L S}^{+}-\beta_{i}\right)}{s_{i}} \tag{3.33}
\end{equation*}
$$

and

[^24]\[

$$
\begin{equation*}
s_{i}=\sqrt{\left[\hat{\omega}_{00 . x}\left(X^{\prime} X\right)^{-1}\right]_{i i}} \quad i=1, \ldots, k \tag{3.34}
\end{equation*}
$$

\]

where $\hat{\omega}_{00 . x}=\hat{\Omega}_{00}-\hat{\Omega}_{0 x} \hat{\Omega}_{x x}^{-1} \hat{\Omega}_{x 0}$ is a consistent estimate of $\omega_{00 . x}$ and $k$ is the number of coefficients estimated in equation (3.26a). The $t$-ratios are asymptotically $N(0,1)$ so that inference can be made as in stationary linear regression.

When testing hypothesis about two or more linear restrictions ( $H_{0}: R \beta-r=0$ against $\left.H_{0}: R \beta-r \neq 0\right)$ on FM-OLS coefficients, Wald statistic can be used,

$$
\begin{equation*}
W^{+}=\left(R \beta_{O L S}^{+}-r\right)^{\prime}\left\{R \hat{\omega}_{00 . x}\left(X^{\prime} X\right)^{-1} R^{\prime}\right\}^{-1}\left(R \beta_{O L S}^{+}-r\right) \tag{3.35}
\end{equation*}
$$

The limiting distribution of the statistic $W^{+}$under the null is $\chi_{q}^{2}$ with $q$ number of restrictions.
In order to estimate the FM-LAD estimator, we transform the error $v_{t}=\operatorname{sign}\left(u_{0 t}\right)\left(v_{t}=1\right.$ for $u_{0 t} \geq 0$ and $v_{t}=-1$ for $\left.u_{0 t}<0\right)$. The long-run covariance matrix of $w_{t}=\left(v_{t}, u_{x t}^{\prime}\right)^{\prime}$, $t=2, \ldots, T$, is given as,

$$
\Omega_{w w}=\sum_{j=-\infty}^{\infty} E\left(w_{0} w_{j}^{\prime}\right)=\left[\begin{array}{ll}
\Omega_{v v} & \Omega_{v x}  \tag{3.36}\\
\Omega_{x v} & \Omega_{x x}
\end{array}\right]
$$

The one-sided long-run covariance matrix is given as,

$$
\Delta_{w w}=\sum_{j=0}^{\infty} E\left(w_{0} w_{j}^{\prime}\right)=\left[\begin{array}{cc}
\Delta_{v v} & \Delta_{v x}  \tag{3.37}\\
\Delta_{x v} & \Delta_{x x}
\end{array}\right]
$$

FM-LAD estimator is from the same family as FM-OLS and has the same features in a regression with non-stationary regressors. In addition to having the same features, FM-LAD is robust and outlier resistant when applied to heavy-tailed data. FM-LAD estimator can be derived as,

$$
\begin{equation*}
\beta_{L A D}^{+}=\beta_{L A D}-\left[2 \hat{f}(0)\left(X^{\prime} X\right)\right]^{-1}\left[X^{\prime} \Delta X \hat{\Omega}_{x x}^{-1} \hat{\Omega}_{x v}+T \hat{\Delta}_{x v}^{+}\right] \tag{3.38}
\end{equation*}
$$

In equation (3.38), $\hat{f}(0)$ is a consistent estimator of $f(0)$ : the probability density of $u_{0 t}$ at the origin. $\hat{\Omega}_{x x}, \hat{\Omega}_{x v}$ are consistent estimates of $\Omega_{x x}$ and $\Omega_{x v} . \hat{\Delta}_{x v}^{+}$is a consistent estimate of one-sided long-run covariance matrix,

$$
\begin{equation*}
\Delta_{x v}^{+}=\sum_{k=0}^{\infty} E\left(u_{x 0} v_{k}^{+}\right)=\Delta_{x v}-\Delta_{x x} \Omega_{x x}^{-1} \Omega_{x v} \tag{3.39}
\end{equation*}
$$

To estimate $\Delta_{x v}^{+}$, we first need to estimate $v_{t}^{+}$,

$$
\begin{equation*}
v_{t}^{+}=v_{t}-\Omega_{v x} \Omega_{x x}^{-1} \Delta x_{t} \tag{3.40}
\end{equation*}
$$

Since $\hat{v}_{t}=\operatorname{sign}\left(\hat{u}_{0 t}\right)$, by using consistent estimates $\hat{\Omega}_{v x}$ and $\hat{\Omega}_{x x}$, we can construct $\hat{v}_{t}^{+}$. Then $\Delta_{x v}^{+}$can be estimated by the one sided long-run covariance matrix of $v_{t}^{+}$and $u_{x t}$.

The limiting distribution of FM-LAD estimator can be approximated as normal,

$$
\begin{equation*}
\beta_{L A D}^{+} \stackrel{a}{\sim} N\left(\beta,[1 /(2 f(0))]^{2} \omega_{v v . x}\left(X^{\prime} X\right)^{-1}\right) \tag{3.41}
\end{equation*}
$$

where $\omega_{v v . x}=\Omega_{v v}-\Omega_{v x} \Omega_{x x}^{-1} \Omega_{x v}$. The $t$-statistics and Wald statistics for testing linear restrictions about FM-LAD coefficients can be constructed as in the FM-OLS case,

$$
\begin{gather*}
t_{i}=\frac{\left(\beta_{L A D}^{+}-\beta_{i}\right)}{s_{i}}  \tag{3.42}\\
s_{i}=\sqrt{\left[\hat{\omega}_{v v . x}\left(X^{\prime} X\right)^{-1}\right]_{i i}} \quad i=1, \ldots, k  \tag{3.43}\\
W^{+}=\left(R \beta_{L A D}^{+}-r\right)^{\prime}\left\{R \hat{\omega}_{v v . x}\left(X^{\prime} X\right)^{-1} R^{\prime}\right\}^{-1}\left(R \beta_{L A D}^{+}-r\right) \tag{3.44}
\end{gather*}
$$

where $\hat{\omega}_{v v . x}=\hat{\Omega}_{v v}-\hat{\Omega}_{v x} \hat{\Omega}_{x x}^{-1} \hat{\Omega}_{x v}$ is a consistent estimate of $\omega_{v v . x}$.

Phillips (1995) considers the limit distribution of FM-LAD with infinite-variance stably distributed error terms in the system (3.26). For infinite-variance case, equations (3.41), (3.42), (3.43) and (3.44) still hold but $\Omega_{v v}$ replaces $\omega_{v v . x . ~}{ }^{14}$ Also with infinite-variance errors in $u_{t}$, the long-run covariance matrices $\Omega$ and $\Delta$ are not well-defined. However, it is still possible to proceed in the same way as in the finite-variance case and calculate the covariances in the usual way with a finite sample of data (see Phillips et al. (1996) and the references therein).

Tables 3.19 through 3.22 present FM-OLS and FM-LAD coefficients. FM-LAD ${ }^{\ddagger}$ row denotes the FM-LAD estimator with infinite-variance errors. The $t$-statistics for testing the hypotheses, $H_{0}: a=0$ and $H_{0}: b=1$ and Wald statistics for testing the joint hypothesis, $H_{0}: a=0, b=1$ of market efficiency are also presented. Wald statistic has an asymptotic $\chi_{2}^{2}$ distribution.

From Tables 3.19 through 3.22, it is observed that there are differences between FM-OLS and FM-LAD regression coefficients. In general, FM-OLS estimates of $a$ and $b$ are closer to 0 and 1 respectively when compared to FM-LAD ones. The differences are small for regressions involving shorter maturity (1-month and 3 -month) forward contracts, but are more obvious for regressions involving longer maturity (6-month and 1-year) contracts except for French, German and Italian data, for which cases, FM-LAD coefficients of $a$ and $b$ are closer to 0 and 1. It is also observed that $a$ and $b$ estimates of FM-OLS and FM-LAD both tend to get farther away from 0 and 1 as the contract maturity increases.

If the current forward rate is an unbiased predictor of the future spot rate then there should exist co-integration between future spot and current forward rates. In addition to that, we test whether the co-integrating vector is $(1,-1)^{\prime}$-i.e. whether the null hypothesis $H_{0}: a=0, b=1$ holds or not. For 1-month and 3-month contracts, co-integration exists for OLS and LAD-based regressions and the co-integrating vector is generally found to be $(1,-1)^{\prime}$ with both FM-OLS and FM-LAD coefficients (exceptions occur with Australia, Canada and U.K.). Regarding the estimations involving longer maturity contracts: joint chi-square and individual $t$-test results are much less in favor of FRUH for FM-OLS, FM-LAD and FM-LAD ${ }^{\ddagger}$.

[^25]Table 3.19: Empirical estimates of equation (3.23) for spot and 1-month forward rates

| Country | Method | Parameters, $t$-ratios and $\chi_{(2)}^{2}$ statistic |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\hat{a}$ | $t_{a}=\hat{a} / s_{a}$ | $\hat{b}$ | $t_{b}=(\hat{b}-1) / s_{b}$ | Joint test |
| Australia | FM-OLS | -0.003 | -1.327 | 0.999 | -0.046 | $16.790^{\text {c }}$ |
|  | FM-LAD | -0.002 | -0.410 | 0.990 | -1.001 | $17.365^{\text {c }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | -0.002 | -0.274 | 0.990 | -0.670 | $7.772^{\text {c }}$ |
| Canada | FM-OLS | -0.003 | $-3.123^{\text {a }}$ | 1.004 | 1.132 | $36.458^{\text {c }}$ |
|  | FM-LAD | -0.004 | -1.775 | 1.005 | 0.829 | $8.923^{\text {c }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | -0.004 | -1.194 | 1.005 | 0.558 | 4.039 |
| France | FM-OLS | 0.001 | 0.123 | 0.999 | -0.224 | 1.773 |
|  | FM-LAD | -0.009 | -0.408 | 1.005 | 0.421 | 0.202 |
|  | FM-LAD ${ }^{\ddagger}$ | -0.009 | -0.252 | 1.005 | 0.260 | 0.077 |
| Germany | FM-OLS | 0.000 | -0.069 | 0.999 | -0.221 | 1.535 |
|  | FM-LAD | -0.003 | -0.385 | 1.005 | 0.433 | 0.213 |
|  | FM-LAD ${ }^{\ddagger}$ | -0.003 | -0.238 | 1.005 | 0.268 | 0.082 |
| Italy | FM-OLS | 0.004 | 0.115 | 0.999 | -0.146 | 2.885 |
|  | FM-LAD | -0.043 | -0.455 | 1.006 | 0.456 | 0.209 |
|  | FM-LAD ${ }^{\ddagger}$ | -0.043 | -0.288 | 1.006 | 0.288 | 0.084 |
| Japan | FM-OLS | 0.017 | 0.889 | 0.996 | -0.894 | 0.805 |
|  | FM-LAD | 0.002 | 0.073 | 1.000 | 0.038 | 5.484 |
|  | FM-LAD ${ }^{\ddagger}$ | 0.002 | 0.046 | 1.000 | 0.024 | 2.181 |
| Switzerland | FM-OLS | -0.000 | -0.460 | 1.000 | 0.085 | 0.809 |
|  | FM-LAD | -0.000 | -0.067 | 1.002 | 0.283 | 0.274 |
|  | FM-LAD ${ }^{\ddagger}$ | -0.000 | -0.038 | 1.002 | 0.161 | 0.088 |
| U.K. | FM-OLS | -0.006 | $-2.088^{\text {a }}$ | 0.995 | -0.940 | $27.778^{\text {c }}$ |
|  | FM-LAD | 0.002 | 0.483 | 1.011 | 1.089 | $7.706^{\text {c }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | 0.002 | 0.319 | 1.011 | 0.718 | 3.350 |

${ }^{\text {a }}$ Rejects the null: $H_{0}: a=0$ against $H_{1}: a \neq 0$ at $5 \%$ significance.
${ }^{\mathrm{b}}$ Rejects the null: $H_{0}: b=1$ against $H_{1}: b \neq 1$ at $5 \%$ significance.
${ }^{\text {c }}$ Rejects the null: $H_{0}: a=0, b=1$ against $H_{1}$ : Otherwise at $5 \%$ significance.
Five percent critical values for $t$-statistics (two-sided) are $\pm 1.96$.
Five percent critical value for $\chi_{(2)}^{2}$ statistic is 5.99.
FM-LAD ${ }^{\ddagger}$ denotes the FM-LAD estimator with infinite-variance errors.

Table 3.20: Empirical estimates of equation (3.23) for spot and 3-month forward rates

| Country | Method | Parameters, $t$-ratios and $\chi_{(2)}^{2}$ statistic |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\hat{a}$ | $t_{a}=\hat{a} / s_{a}$ | b | $t_{b}=(\hat{b}-1) / s_{b}$ | Joint test |
| Australia | FM-OLS | -0.010 | -1.032 | 1.002 | 0.090 | $8.498^{\text {c }}$ |
|  | FM-LAD | -0.005 | -0.442 | 0.978 | -0.680 | $11.615^{\text {c }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | -0.005 | -0.360 | 0.978 | -0.554 | $7.713^{\text {c }}$ |
| Canada | FM-OLS | -0.012 | $-3.235^{\text {a }}$ | 1.023 | 1.818 | $24.048^{\text {c }}$ |
|  | FM-LAD | -0.016 | $-2.248^{\text {a }}$ | 1.037 | 1.610 | $7.376^{\text {c }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | -0.016 | -1.878 | 1.037 | 1.345 | 5.149 |
| France | FM-OLS | 0.012 | 0.371 | 0.992 | -0.445 | 1.139 |
|  | FM-LAD | -0.061 | -0.736 | 1.033 | 0.712 | 0.620 |
|  | FM-LAD ${ }^{\ddagger}$ | -0.061 | -0.595 | 1.033 | 0.576 | 0.405 |
| Germany | FM-OLS | 0.002 | 0.218 | 0.992 | -0.436 | 1.006 |
|  | FM-LAD | -0.021 | -0.764 | 1.033 | 0.706 | 0.611 |
|  | FM-LAD ${ }^{\ddagger}$ | -0.021 | -0.612 | 1.033 | 0.574 | 0.403 |
| Italy | FM-OLS | 0.034 | 0.211 | 0.995 | -0.232 | 1.426 |
|  | FM-LAD | -0.204 | -0.560 | 1.027 | 0.588 | 0.719 |
|  | FM-LAD ${ }^{\ddagger}$ | -0.204 | -0.498 | 1.027 | 0.489 | 0.497 |
| Japan | FM-OLS | 0.116 | 1.412 | 0.976 | -1.413 | 1.998 |
|  | FM-LAD | 0.196 | 1.941 | 0.960 | -1.901 | 4.418 |
|  | FM-LAD ${ }^{\ddagger}$ | 0.196 | 1.405 | 0.960 | -1.376 | 2.313 |
| Switzerland | FM-OLS | 0.003 | 0.333 | 0.989 | -0.612 | 0.641 |
|  | FM-LAD | 0.016 | 1.389 | 0.948 | -1.990 | 4.886 |
|  | FM-LAD ${ }^{\ddagger}$ | 0.016 | 1.041 | 0.948 | -1.491 | 2.744 |
| U.K. | FM-OLS | -0.025 | $-2.096^{\text {a }}$ | 0.968 | -1.349 | $13.901^{\text {c }}$ |
|  | FM-LAD | -0.011 | -0.641 | 0.995 | -0.128 | 5.305 |
|  | FM-LAD ${ }^{\ddagger}$ | -0.011 | -0.530 | 0.995 | -0.105 | 3.616 |

${ }^{\text {a }}$ Rejects the null: $H_{0}: a=0$ against $H_{1}: a \neq 0$ at $5 \%$ significance.
${ }^{\mathrm{b}}$ Rejects the null: $H_{0}: b=1$ against $H_{1}: b \neq 1$ at $5 \%$ significance.
${ }^{\text {c }}$ Rejects the null: $H_{0}: a=0, b=1$ against $H_{1}$ : Otherwise at $5 \%$ significance.
Five percent critical values for $t$-statistics (two-sided) are $\pm 1.96$.
Five percent critical value for $\chi_{(2)}^{2}$ statistic is 5.99.
FM-LAD ${ }^{\ddagger}$ denotes the FM-LAD estimator with infinite-variance errors.

Table 3.21: Empirical estimates of equation (3.23) for spot and 6-month forward rates

| Country | Method | Parameters, $t$-ratios and $\chi_{(2)}^{2}$ statistic |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\hat{a}$ | $t_{a}=\hat{a} / s_{a}$ | $\hat{b}$ | $t_{b}=(\hat{b}-1) / s_{b}$ | Joint test |
| Australia | FM-OLS | -0.009 | -0.368 | 0.974 | -0.399 | 5.840 |
|  | FM-LAD | 0.000 | 0.005 | 0.936 | -0.895 | $8.077^{\text {c }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | 0.000 | 0.004 | 0.936 | -0.782 | $6.165^{\text {c }}$ |
| Canada | FM-OLS | -0.019 | $-2.103^{\text {a }}$ | 1.028 | 0.958 | $14.920^{\text {c }}$ |
|  | FM-LAD | -0.031 | $-2.258^{\text {a }}$ | 1.078 | 1.701 | $6.993{ }^{\text {c }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | -0.031 | $-2.037^{\text {a }}$ | 1.078 | 1.534 | 5.687 |
| France | FM-OLS | 0.059 | 0.766 | 0.964 | -0.828 | 1.344 |
|  | FM-LAD | -0.009 | -0.056 | 0.999 | -0.008 | 0.731 |
|  | FM-LAD ${ }^{\ddagger}$ | -0.009 | -0.045 | 0.999 | -0.006 | 0.477 |
| Germany | FM-OLS | 0.017 | 0.644 | 0.964 | -0.835 | 1.264 |
|  | FM-LAD | -0.009 | -0.172 | 0.999 | -0.016 | 0.696 |
|  | FM-LAD ${ }^{\ddagger}$ | -0.009 | -0.140 | 0.999 | -0.013 | 0.458 |
| Italy | FM-OLS | 0.224 | 0.638 | 0.969 | -0.656 | 1.423 |
|  | FM-LAD | -0.001 | -0.002 | 0.999 | -0.015 | 0.950 |
|  | FM-LAD ${ }^{\ddagger}$ | -0.001 | -0.002 | 0.999 | -0.013 | 0.694 |
| Japan | FM-OLS | 0.393 | $2.196{ }^{\text {a }}$ | 0.919 | $-2.194^{\text {b }}$ | 4.820 |
|  | FM-LAD | 0.766 | $3.562^{\text {a }}$ | 0.842 | $-3.570^{\text {b }}$ | $12.755^{\text {c }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | 0.766 | $3.031^{\text {a }}$ | 0.842 | $-3.039^{\text {b }}$ | $9.239^{\text {c }}$ |
| Switzerland | FM-OLS | 0.018 | 1.007 | 0.945 | -1.312 | 1.899 |
|  | FM-LAD | 0.045 | $2.264{ }^{\text {a }}$ | 0.839 | $-3.486^{\text {b }}$ | $16.506^{\text {c }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | 0.045 | 1.685 | 0.839 | $-2.595^{\text {b }}$ | $9.143^{\text {c }}$ |
| U.K. | FM-OLS | -0.076 | $-2.840^{\text {a }}$ | 0.875 | $-2.230^{\text {b }}$ | $13.915^{\text {c }}$ |
|  | FM-LAD | -0.068 | -1.891 | 0.896 | -1.388 | $7.759^{\text {c }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | -0.068 | $-1.627$ | 0.896 | -1.195 | 5.758 |

${ }^{\text {a }}$ Rejects the null: $H_{0}: a=0$ against $H_{1}: a \neq 0$ at $5 \%$ significance.
${ }^{\mathrm{b}}$ Rejects the null: $H_{0}: b=1$ against $H_{1}: b \neq 1$ at $5 \%$ significance.
${ }^{\text {c }}$ Rejects the null: $H_{0}: a=0, b=1$ against $H_{1}$ : Otherwise at $5 \%$ significance.
Five percent critical values for $t$-statistics (two-sided) are $\pm 1.96$.
Five percent critical value for $\chi_{(2)}^{2}$ statistic is 5.99.
FM-LAD ${ }^{\ddagger}$ denotes the FM-LAD estimator with infinite-variance errors.

Table 3.22: Empirical estimates of equation (3.23) for spot and 1-year forward rates

| Country | Method | Parameters, $t$-ratios and $\chi_{(2)}^{2}$ statistic |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\hat{a}$ | $t_{a}=\hat{a} / s_{a}$ | $\stackrel{\text { b }}{ }$ | $t_{b}=(\hat{b}-1) / s_{b}$ | Joint test |
| Australia | FM-OLS | 0.044 | 0.651 | 0.797 | -1.228 | 4.571 |
|  | FM-LAD | 0.058 | 1.072 | 0.723 | $-2.081^{\text {b }}$ | $13.775^{\text {c }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | 0.058 | 0.973 | 0.723 | -1.890 | $11.363^{\text {c }}$ |
| Canada | FM-OLS | -0.016 | -0.714 | 0.988 | -0.164 | $8.305^{\text {c }}$ |
|  | FM-LAD | -0.042 | -1.307 | 1.075 | 0.723 | 4.692 |
|  | FM-LAD ${ }^{\ddagger}$ | -0.042 | -1.116 | 1.075 | 0.617 | 3.421 |
| France | FM-OLS | 0.379 | $3.227^{\text {a }}$ | 0.783 | $-3.322^{\text {b }}$ | $12.441^{\text {c }}$ |
|  | FM-LAD | 0.273 | 0.793 | 0.831 | -0.881 | 2.170 |
|  | FM-LAD ${ }^{\ddagger}$ | 0.273 | 0.607 | 0.831 | -0.675 | 1.272 |
| Germany | FM-OLS | 0.117 | $2.941^{\text {a }}$ | 0.781 | $-3.262^{\text {b }}$ | $11.847^{\text {c }}$ |
|  | FM-LAD | 0.070 | 0.615 | 0.829 | -0.889 | 2.115 |
|  | FM-LAD ${ }^{\ddagger}$ | 0.070 | 0.478 | 0.829 | -0.691 | 1.276 |
| Italy | FM-OLS | 1.565 | $3.339^{\text {a }}$ | 0.789 | $-3.365^{\text {b }}$ | $13.565^{\text {c }}$ |
|  | FM-LAD | 1.156 | 0.803 | 0.841 | -0.825 | 2.348 |
|  | FM-LAD ${ }^{\ddagger}$ | 1.156 | 0.579 | 0.841 | -0.596 | 1.223 |
| Japan | FM-OLS | 1.196 | $3.916^{\text {a }}$ | 0.752 | $-3.918^{\text {b }}$ | $15.350^{\text {c }}$ |
|  | FM-LAD | 1.945 | $6.655^{\text {a }}$ | 0.595 | $-6.695^{\text {b }}$ | $45.242^{\text {c }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | 1.945 | $5.837^{\text {a }}$ | 0.595 | $-5.872^{\text {b }}$ | $34.812^{\text {c }}$ |
| Switzerland | FM-OLS | 0.080 | $2.163^{\text {a }}$ | 0.770 | $-2.624^{\text {b }}$ | $7.135^{\text {c }}$ |
|  | FM-LAD | 0.136 | $3.682^{\text {a }}$ | 0.583 | $-4.774^{\text {b }}$ | $25.025^{\text {c }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | 0.136 | $2.895^{\text {a }}$ | 0.583 | $-3.754^{\text {b }}$ | $15.475^{\text {c }}$ |
| U.K. | FM-OLS | -0.202 | $-4.778^{\text {a }}$ | 0.636 | $-4.021^{\text {b }}$ | $31.504^{\text {c }}$ |
|  | FM-LAD | -0.235 | $-4.060^{\text {a }}$ | 0.556 | $-3.572^{\text {b }}$ | $19.678^{\text {c }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | -0.235 | $-3.816^{\text {a }}$ | 0.556 | $-3.358^{\text {b }}$ | $17.383^{\text {c }}$ |

${ }^{\text {a }}$ Rejects the null: $H_{0}: a=0$ against $H_{1}: a \neq 0$ at $5 \%$ significance.
${ }^{\mathrm{b}}$ Rejects the null: $H_{0}: b=1$ against $H_{1}: b \neq 1$ at $5 \%$ significance.
${ }^{\text {c }}$ Rejects the null: $H_{0}: a=0, b=1$ against $H_{1}$ : Otherwise at $5 \%$ significance.
Five percent critical values for $t$-statistics (two-sided) are $\pm 1.96$.
Five percent critical value for $\chi_{(2)}^{2}$ statistic is 5.99.
FM-LAD ${ }^{\ddagger}$ denotes the FM-LAD estimator with infinite-variance errors.

The conclusions drawn from the test results involving FM-LAD and FM-LAD ${ }^{\ddagger}$ are similar except for Canada (1-month, 3 -month and 6 -month contracts) and U.K. (1-month and 6 -month contracts). For those cases, FM-LAD ${ }^{\ddagger}$ chi-square tests do not reject the null hypothesis that $a=0$ and $b=1$ whereas FM-LAD ones reject it. Thus with infinite-variance assumption, FRUH restrictions are less rejected for the FM-LAD estimator.

FM-LAD coefficient estimates in general tend to give the results that are less in favor of the FRUH as the forward contract maturity increases, especially with the data from Japan, Switzerland and U.K.. Figure 3.9 provides the graphs of OLS, LAD, FM-OLS and FM-LAD regressions for Japanese exchange rate data, where outliers are more pronounced for regressions with 6-month and 1-year forward contracts. LAD and FM-LAD based regression coefficients are not as influenced by the outliers as OLS and FM-OLS coefficients.

Phillips and McFarland (1997) apply tests of FRUH with daily frequency data of spot, 1-month and 3-month forward Australian exchange rates over the period 1984-1991. They observe that tests based on FM-OLS accept the joint hypothesis of market efficiency whereas tests based on FM-LAD tend to reject it and the chi-square test statistics get larger in the direction of rejecting the hypothesis more for 3-month case than the 1-month case. Regarding the individual coefficients, FM-OLS coefficients of $a$ and $b$ are closer to 0 and 1 than the FMLAD ones and the magnitude of the coefficients get farther away from 0 and 1 as the forward contract expiration is longer. Chi-square test statistic strongly rejects the joint hypothesis with FM-LAD estimations and accepts it with FM-OLS estimations. Phillips et al. (1996) test for FRUH with daily data involving 1-month forward contracts of Belgian and French franc, Italian lira and U.S. dollar measured against British pound during 1920s. Their market efficiency (chi-square) test results yield the same conclusions for FM-OLS and FM-LAD based tests but the FM-LAD coefficient estimates of $a$ and $b$ are closer to 0 and 1 .


Figure 3.9: Estimations of co-integrating regressions for Japanese exchange rates

## CHAPTER 4. CONCLUDING REMARKS

In many empirical papers, error terms of some important economic and financial data are shown to have heavier-tails than the tails of Gaussian normal distribution. Stable distribution family is a better fit for such data than Gaussian distribution. In part I, we consider residualbased tests of co-integration with infinite-variance errors that come from the stable distribution family. As an alternative to conventional OLS-based tests that is widely studied, we propose LAD-based co-integration tests for infinite-variance heavy-tailed data. We evaluate the size and power of our new tests by comparing them with Caner (1998) test. Caner (1998) extends the residual-based tests of Phillips and Ouliaris (1990) to infinite-variance stable errors.

Size comparisons indicate significantly more size distortions for the new LAD-based tests for small sample sizes especially around 50 and 100, compared to OLS-based tests. Those distortions decrease for our test as the tail structure gets closer to the normal distribution assumptions-i.e. as $\alpha$ approaches 2 .

Power comparisons between the two types of tests show that the new residual-based cointegration tests are superior to the conventional OLS-based ones when the tails of the error distribution get heavier and the sample size gets larger. For stability indices $(\alpha)$ less than 1.7 and for sample sizes larger than 50, LAD-based tests perform better than the conventional OLS-based ones. As the stability index gets closer to 2 , conventional OLS-based tests perform better especially with small sample size. For large sample size, which test is superior over the other depends on how far away the structure is from the null of no co-integration. Our test still has some power advantages in distinguishing the null from the alternative when the residual series are "close" to being non-stationary or the near unit root case. For the near unit root case, the effects of past shocks tend to be high and if those shocks come from a
heavy-tailed stable distribution, the new LAD-based co-integration tests have slightly higher empirical power.

As an empirical illustration, we apply OLS and LAD-based co-integration tests and associated statistical tests to test for the forward rate unbiasedness hypothesis (FRUH) with daily data for a sample of eight countries: Australia, Canada, France, Germany, Italy, Japan, Switzerland and U.K.. Their currencies are measured relative to the U.S. dollar for spot rate and 1 -month, 3 -month, 6 -month, 1 -year forward exchange rates. We find that the infinitevariance stable error distribution assumption is a reasonable assumption to make for all cases we consider. There is also evidence of negative skewness in the exchange rate returns indicating a long-run tendency of those currencies towards appreciation against the U.S. dollar.

From the co-integration tests, we find that co-integration exists between the current forward $\left(f_{t, k}\right)$ and the future spot rate $\left(s_{t+k}\right)$ for shorter maturity (1-month and 3-month) contracts with both OLS and LAD-based co-integration tests. Tests involving LAD estimations reject the hypothesis that there is co-integration between forward and spot rates more for longer maturity ( 6 -month and 1-year) contracts. Furthermore, joint hypotheses tests for testing a cointegrating vector of $(1,-1)^{\prime}$ between $s_{t+k}$ and $f_{t, k}$ are pursued with FM-OLS and FM-LAD based methods. In general, regardless of the estimation method, the restrictions on the cointegrating vectors hold when shorter maturity (1-month and 3-month) forward contracts are considered. This reconciles with FRUH. For longer maturity (6-month and 1-year) contracts, however, the restrictions are generally rejected with both methods. This finding contradicts with FRUH and suggests that the decisions of the agents in predicting the future spot rate from the current forward rate tend to be biased as time to maturity of the forward contract increases.

## PART II

TESTING WEAK-FORM AND STRONG-FORM PPP VIA ROBUST ESTIMATION PROCEDURES

## CHAPTER 5. INTRODUCTION

The law of one price (LOP) states that the same good should cost the same price everywhere if all prices are measured in terms of one common currency. The theory of purchasing power parity (PPP), which is a logical extension the law of one price, states that apart from transportation costs and trade barriers, similar goods should sell for similar prices, if prices are measured in terms of one common currency. On a broader sense, PPP states that once converted to a common currency, national price levels should be equal (Rogoff, 1996).

PPP theory has important implications in international finance and is an important relation in exchange rate determination. Thus testing the validity of the PPP through different econometric methods has been an important issue for econometricians for many years. LOP is the basic building block of PPP. One can put LOP into equations by the following equational form for any good $i$,

$$
\begin{equation*}
\frac{E \cdot P_{i}^{*}}{P_{i}}=1 \tag{5.1}
\end{equation*}
$$

where $E$ is the nominal exchange rate defined as the amount of domestic currency needed to purchase one unit of foreign currency, $P_{i}^{*}$ is the foreign price of good $i$ and $P_{i}$ is the domestic price of good $i$.

LOP is the simplest form of PPP. Absolute PPP theory provides a broader measure for the international price differentials by taking the aggregate price levels into account and considers a "basket" of goods instead of one single good. The following equation form can be used in formulating the PPP theory, ${ }^{1}$

[^26]\[

$$
\begin{equation*}
\frac{E . P^{*}}{P}=1 \tag{5.2}
\end{equation*}
$$

\]

where $E$ is the nominal exchange rate defined as the amount of domestic currency needed to purchase one unit of foreign currency, $P^{*}$ is the foreign aggregate price level and $P$ is the domestic aggregate price level. Equation (5.2) can be summarized as follows: a basket of goods in the domestic country should be of the same price as the same basket of goods in the foreign country once the foreign prices are expressed in terms of the domestic currency. Another implication of equation (5.2) is that the acceptance of PPP requires the exchange rate between two currencies to be equal to the relative price of these two countries. In a time series context the relationship of PPP can be written as,

$$
\begin{equation*}
s_{t}=p_{t}-p_{t}^{*}+\varepsilon_{t} \tag{5.3}
\end{equation*}
$$

where $s_{t}, p_{t}, p_{t}^{*}$ are the log of nominal exchange rate, domestic price level and foreign price level respectively. An error term is added to the equation to generalize the approach and capture the shocks that affect the system. Note that in the equation we are assuming a linear form.

Equation (5.3) is often known as the strong-form PPP. It has been one of the common equations in testing PPP. However, strong-form PPP theory suffers from some serious problems. Therefore, another form of PPP, which is called weak-form PPP, has captured the attention of economists as a more realistic form. ${ }^{2}$ In this study, we test whether weak-form and strong-form PPP holds for a sample of eight countries (Austria, Canada, Denmark, Germany, Japan, Netherlands, Norway and the United Kingdom) with monthly bilateral exchange rates against U.S. dollar between January 1973 and October 2009. The innovations describing exchange rate returns and inflation rates are heavy-tailed in nature and their densities can be better approximated by stable distributions other than the Gaussian normal distribution (Falk and Wang, 2003). Based on this fact, this study has two main contributions to the existing PPP testing literature. First, we test weak-form PPP through LAD-based co-integration tests

[^27]that are introduced in part I of this dissertation. LAD estimator has superior properties over OLS estimator with heavy-tailed data structure. Secondly, strong-form PPP is tested through fully-modified least absolute deviation (FM-LAD) procedure by considering the heavy-tailed structure of exchange rate returns and inflation rates.

There exists a contrasting empirical evidence on determining whether PPP theory holds or not. The evidence from different empirical studies will be shown in chapter 6, which accounts for a literature review on the subject. In chapter 7, empirical analysis is performed: data variables are explored and the estimation results are presented. Chapter 8 concludes.

## CHAPTER 6. LITERATURE REVIEW

Many macroeconomic time series are non-stationary processes which have trend and cyclical components. Early works of time series econometrics have devoted significant attention to the problems that occur when dealing with regressions that include non-stationary variables. ${ }^{1}$ A necessary condition for a set of non-stationary variables to have a long-run equilibrium relationship is that they are co-integrated. A vector of time series $v_{t}$, which is formed of $n$ individual time series, is co-integrated if those individual series are difference stationary and their linear combination $\delta^{\prime} v_{t}$ is stationary. ${ }^{2}$ In other words, $v_{t}$ is co-integrated with the cointegrating vector $\delta$ if a linear combination of the series forming $v_{t}$ (which is $\delta^{\prime} v_{t}$ ) is integrated with a lower order than the individual series. It is possible to have more than one co-integrating vectors for $n>2$. In that case, it can be assumed that there are $r \leq n-1$ linearly independent co-integrating vectors and the number of co-integrating vectors is the co-integrating rank of $v_{t}$. The reason why we can use co-integration methods to test for PPP is because PPP can be considered as a long-run equilibrium concept. Note that in the case of PPP, the time series components that form the vector $v_{t}$ are $s_{t}, p_{t}, p_{t}^{*}$ and $n=3$.

As mentioned in section 1.1, it is possible to categorize the most popular approaches in testing co-integration into two: residual-based co-integration tests (Engle and Granger, 1987; Phillips and Ouliaris, 1990) and likelihood ratio tests (Johansen, 1988, 1991). Both type of tests can be used in testing the weak-form PPP relation. The proposal of the residual-based approach is to estimate the co-integrating relationship and use one of the unit root tests to check for the stationarity of the residuals. We use the residual-based approach to test the weak-form PPP relation.

[^28]In testing long-run PPP through co-integration methods, it is important to mention different estimation procedures together with different forms of PPP. The first form of PPP that will be considered is the strong-form PPP. If the co-integrating vector $\delta$ is known a priori through economic theory, one can decide whether co-integration holds by testing if the linear combination $\delta^{\prime} v_{t}$ is stationary or not. To understand the strong-form PPP it helps to re-write the relationship of equation (5.3) in the following form,

$$
\begin{equation*}
s_{t}-p_{t}+p_{t}^{*}=v_{t} \tag{6.1}
\end{equation*}
$$

If strong-form PPP holds then one would expect the components of the $v_{t}$ series represented in equation (6.1) to be tied together in the long-run although many developments could cause permanent changes in individual $s_{t}, p_{t}$ and $p_{t}^{*}$ series. If $v_{t}$ is a stationary process in equation (6.1) then strong-form PPP is said to hold. In particular, if $v_{t}$ series is stationary $(\mathrm{I}(0))$ even though $s_{t}, p_{t}$ and $p_{t}^{*}$ are all $\mathrm{I}(1)$ then the null hypothesis of no co-integration can be rejected. Testing the strong-form PPP through equation (6.1) implies the restriction of the cointegrating vector $\delta$ among $s_{t}, p_{t}$ and $p_{t}^{*}$ series to $[1-11]^{\prime}$. Strong-form PPP has homogeneity as the underlying assumption. Homogeneity assumption says that if the prices are multiplied by the same constant, PPP remains unchanged.

Corbae and Ouliaris (1988) is one of the early studies that test for the validity of strongform PPP for U.S., West Germany, U.K., Japan, Italy, Canada and France. They apply the unit root tests: augmented Dickey-Fuller and Phillips-Perron, for monthly averages of daily data of U.S. dollar, Deutsche mark, Japanese yen, British pound, Italian lira, Canadian dollar and French franc to test whether real exchange rates are stationary. Their test results led to the rejection of long-run PPP for the period between July 1973 and September 1986. Lothian and Taylor (1996) analyze the long-run mean reversion properties of real exchange rates of France and U. S. against the sterling beginning in 1791 and ending in 1990. Their results are mostly in favor of the strong-form PPP hypothesis. By applying Dickey-Fuller and PhillipsPerron unit root tests, they can reject the unit root hypothesis of their real exchange rates for the full sample period. When they consider smaller subperiods, however, they can not reject
the existence of a unit root in the real exchange rates. They also estimate $\operatorname{AR}(1)$ equations for dollar-sterling and franc-sterling exchange rates both over the full sample period and the period excluding the years after 1973. The estimated coefficients are found to be close but less than unity.

Studies by Taylor (2002) and Lopez et al. (2005) use more recent unit root tests to test whether the real exchange rates are stationary or not. Taylor (2002) investigates the PPP theory for 20 countries ( 16 developed and 4 developing) over 100 years by performing augmented Dickey-Fuller (ADF) and generalized least squares versions of Dickey-Fuller (DF-GLS) tests of Elliot et al. (1996), which are more powerful than the ADF tests. He finds that ADF tests do not reject the null hypothesis of a unit root for most cases but there is strong support for PPP when DF-GLS tests are applied. Thus he concludes that long-run PPP holds in the twentieth century. ${ }^{3}$ Lopez et al. (2005) challenges Taylor's results and lag selection methods for ADF and DF-GLS tests. ${ }^{4}$ They re-test the stationarity of real exchange rates for the same sample that Taylor (2002) used excluding the developing countries and focusing on developed ones by again performing ADF and DF-GLS tests. But they employ proper lag selection procedures: general to specific procedure of Hall (1994) for ADF tests and modified Akaike information criterion (MAIC) of Ng and Perron (2001) for DF-GLS tests. They find that the unit root hypothesis is rejected only for 9 out of 16 real exchange rates and the differences in the ADF and DF-GLS test results are almost eliminated, suggesting that there is no sufficient evidence to conclude that long-run PPP held in the twentieth century.

Many researchers prefer to test a less restrictive version of PPP than the strong-form PPP. In reality, price series have substantial measurement error and contain important non-tradeable elements constructed differently from country to country which makes it a relatively difficult and restrictive theory to justify. Especially with time series data, other problems arise as new goods emerge over time. Also the tastes of consumers and the quality of goods are different for different countries. Thus it is difficult to identify a relevant consumption basket and to

[^29]assign the right weights to the goods in the basket (Rogoff (1996); Levanoni and Darnell (1999)). Weak-form PPP is a less restrictive version of strong-form PPP and it has started getting attention among economists due to its more realistic nature (Patel (1990); MacDonald (1993)). Strong-form PPP restricts the co-integrating vector among economic series $s_{t}, p_{t}$ and $p_{t}^{*}$ to $[1-11]^{\prime}$. Weak-form PPP allows for any kind of co-integration and tests whether there is an arbitrary relation among the three series. In a time series context, weak-form PPP can be tested in a general trivariate form by the following equation,
\[

$$
\begin{equation*}
s_{t}=\beta_{0}+\beta_{1} p_{t}+\beta_{2} p_{t}^{*}+\varepsilon_{t} \tag{6.2}
\end{equation*}
$$

\]

Patel (1990) argues that restricting $\beta_{1}$ and $\beta_{2}$ to 1 and - 1 is inappropriate because of measurement errors and differing weights for different countries in constructing price indices. Restricting $\beta_{1}=1$ and $\beta_{2}=-1$ is related to the differences in price index weights and also to the presence of non-tradeable goods. If this restriction holds then the homogeneity assumption is said to hold (Hallwood and MacDonald (2000), p. 144). ${ }^{5}$ In practice, the aggregate price indices such as the CPI or PPI contain many non-tradeable goods prices, which are less likely to be equalized by international trade. Dutton and Strauss (1997) find that non-traded goods relative prices are in fact an important determinant of real exchange rate behavior and are an important source of persistent deviations of the real exchange rate away from its PPP value.

Patel (1990) makes use of the testing methods of Engle and Granger (1987) and Stock and Watson (1988) to test for weak-form PPP for 6 developed and relatively free-market economies (U.S., U.K., Canada, West Germany, Netherlands and Japan) between 1974 and 1986 with quartely data. His results do not present enough evidence in accepting the PPP theory in the long-run, as he finds support for PPP only in 5 out of 15 country pairs. Enders (1988) tests for PPP through error correction models and residual-based tests as proposed in Engel and Granger (1987). His monthly data is formed of wholesale price index based real exchange rates between U.S.A. and her trading partners (Canada, Japan and Germany) for two different periods: January 1960-April 1971 (period of fixed exchange rates) and January 1973-November

[^30]1986 (period of flexible exchange rates). He tests for PPP by making the symmetry assumption $\left(\beta_{1}=-\beta_{2}\right)$. Although he finds strong support for PPP between U.S. and Japan during the fixed exchange rates period and weak support for PPP between U.S. and Canada during the flexible exchange rates period, the data overall does not indicate strong evidence to accept the PPP theory.

Residual-based tests can test for the existence of co-integration, likelihood-ratio-based tests allow us to test for the number of co-integrating vectors. MacDonald (1993) tests weak-form PPP with Johansen's method for Canada, France, U.K., Germany and Japan through January 1974 and June 1990. His data gives supportive evidence to a long-run PPP relationship between the sample countries' bilateral exchange rates with U.S. dollar and their corresponding relative prices. He also tests and rejects the existence of strong-form PPP for his data. Salehizadeh and Taylor (1999) apply the Johansen co-integration procedure for 27 emerging/developing economy countries against the U.S. dollar with monthly data covering the period 1975:011997:09. They find out that only 14 out of 27 countries show significant evidence in support of the weak-form PPP. When they test for strong-form PPP with ADF unit root tests, their results are not in favor of real exchange rate stationarity except for Mexico.

Based on the study of Phillips and Hansen (1990), some researchers test the strong-form PPP through fully-modified OLS (FM-OLS) procedure (Dutt and Ghosh (1995); Braha and Anoruo (2002); Crownover et al. (1996)). Dutt and Ghosh (1995) and Crownover et al. (1996) make the symmetry assumption. Dutt and Ghosh (1995) test for both weak-form and strongform PPP. They use Phillips and Ouliaris (1990) residual-based co-integration tests to test for weak-form PPP (necessary condition for PPP) and FM-OLS Wald tests to test for strongform PPP (necessary and sufficient condition for PPP). Their monthly data span the period from 1973:1 to 1992:12 and are formed of the countries of the members of EMS (European Monetary System) and participants to the European Exchange Rate Mechanism (ERM): Belgium, Denmark, France, Italy, Netherlands. Bilateral exchange rates are studied vis-á-vis the anchor currency Deutschemark. Their results support the weak-form PPP and show evidence that there is co-integration between the exchange rate and price ratio series (only exception
is with the Belgian franc/German mark exchange rate series). However, the strong-form PPP is not supported by the data and strongly rejects the null of joint restrictions for the EMS. Crownover et al. (1996) also test for both weak-form and strong-form PPP and make use of FM-OLS method for annual data running from 1927 to 1992. They consider six countries: Canada, France, Germany, Italy, U.K. and U.S.A. with bilateral exchange rates. While testing for the weak-form PPP, they investigate whether there is a unit root in FM-OLS residuals or not. They find that weak-form PPP holds for 10 out of 15 country pairs. When it comes to strong-form PPP tests by FM-OLS Wald tests, for only 5 country pairs they can not reject the null of joint restrictions. A more recent study by Braha and Anoruo (2002) tests weak-form PPP and strong-form PPP through Harris-Inder co-integration tests and FM-OLS method respectively for Asian countries (Philippines, Singapore, Thailand and Malaysia) with quarterly data from 1973:1 to 1999:2. While the results are mostly in favor of the weak-form PPP, strong-form PPP does not get much support from their data.

Residual-based and Johansen-type likelihood ratio tests assume that exchange rates and inflation rates follow normal or at least near normal behavior in the tails. But when the distributional aspects of the exchange rates and inflation rates are taken into account, many studies indicate that exchange rate returns and inflation rates are subject to high volatility and heavy-tails. Furthermore, their innovations exhibit Pareto-like infinite-variance behavior in the tails. In particular, the studies that find evidence of infinite-variance in exchange rate returns are Koedijk et al. (1990), Koedijk and Kool (1992), Akgiray et al. (1988), Fofack and Nolan (2001) and Basterfield et al. (2003). Bidarkota and McCulloch (1998) and Charemza et al. (2005) find evidence of infinite-variance behavior in inflation rates.

A recent study by Falk and Wang (2003), tests PPP with the infinite-variance error assumption. While applying the theoretical findings of Caner (1998) to test for weak-form PPP through residual-based tests of Phillips and Ouliaris (1990) and (Johansen, 1988, 1991) type tests, Falk and Wang (2003) assume that the log levels of exchange rate, domestic price level, foreign price level are finite-order, trivariate VARs with i.i.d. disturbances that are $\alpha$-stable processes sharing a common stability index $\alpha$. They consider the bilateral exchange rates and
price levels (CPI) of 12 industrialized countries: Belgium, Canada, Denmark, France, Germany, Italy, Japan, the Netherlands, Norway, Spain, Sweden and U.K.. All exchange rates are measured relative to the U.S. dollar. They estimate the stability indices of the innovation series by Nolan (1997)'s maximum likelihood procedure for each country with monthly data (1973:1-1999:12). Their results indicate that all $\alpha$ levels are less than 2 (except for the Canadian exchange rate), supporting the infinite-variance assumption. Their results are slightly less supportive of the PPP theory under the infinite-variance error assumption.

Overall evidence from the previous empirical studies that investigate the heavy-tailed structure of exchange rate returns and inflation rates suggests that it is not appropriate to assign a normal distributional structure to the exchange rate returns and inflation rates. Based on this evidence, in our empirical application to test for weak-form and strong-form PPP, we assume that the error distributions of our exchange rate and price series come from infinite-variance stable distributions. We utilize a general trivariate form as in equation (6.2) for our estimation purposes. Our contributions to the literature are twofold: first to test for weak-form PPP, we make use of the new robust residual-based tests that are proposed in part I, and secondly, to test for strong-form PPP, we make use of FM-LAD estimator, which is more robust to heavy-tails than the FM-OLS estimator. ${ }^{6}$

[^31]
## CHAPTER 7. EMPIRICAL ANALYSIS

### 7.1 Data

Data are taken from the International Monetary Fund's International Financial Statistics (IFS). Data span the period of flexible exchange rate regimes. A sample of eight countries is chosen including Austria, Canada, Denmark, Germany, Japan, Netherlands, Sweden and the United Kingdom. Frequency of the data is monthly between January 1973 and December 2009. Exchange rate data are domestic currencies per unit of the United States Dollar: Austria (Schilling), Canada (Canadian Dollar), Denmark (Krone), Germany (Deutsche Mark), Japan (Yen), Netherlands (Guilder), Sweden (Krona) and U.K. (Pound). Exchange rate data are from the line RF (period average) in IFS tapes. ${ }^{1}$ Producer price indices (PPIs) have been collected to be the price levels. All PPI series have been indexed to year $2005=100$.

Graphs of Canadian exchange rate and PPI data together with the exchange rate returns and inflation rates (log difference of PPIs) against time are presented in Figure 7.1. Similar graphs are given for U.K. in Figure 7.2.

Similar to Caner (1998) and Falk and Wang (2003), $s_{t}, p_{t}$ and $p_{t}^{*}$ series are assumed to follow a finite-order trivariate VAR system with infinite-variance stable innovations that share a common stability index $\alpha .{ }^{2}$ We check whether weak-form PPP holds or not through residualbased co-integration tests. Both OLS-based and LAD-based co-integration tests will be used. Next, fully-modified coefficient estimates from equation (6.2) will be used to test whether strong-form PPP holds or not through Wald tests.

[^32]

Figure 7.1: Canadian dollar exchange rate and PPI: 1973:1-2009:12


Figure 7.2: U.K. pound exchange rate and PPI: 1973:1-2009:12

### 7.1.1 Estimation of stable parameters

In this section, we use Box-Jenkins methods of model selection to fit $\operatorname{VAR}(q)$ models to $s_{t}$, $p_{t}$ and $p_{t}^{*}$. We run a system of regressions that are in the form:

$$
\begin{align*}
& s_{t}=\mu_{1}+a_{11} s_{t-1}+b_{11} p_{t-1}+c_{11} p_{t-1}^{*}+\ldots+a_{1 q} s_{t-q}+b_{1 q} p_{t-q}+c_{1 q} p_{t-q}^{*}+\varepsilon_{1 t}  \tag{7.1a}\\
& p_{t}=\mu_{2}+a_{21} s_{t-1}+b_{21} p_{t-1}+c_{21} p_{t-1}^{*}+\ldots+a_{2 q} s_{t-q}+b_{2 q} p_{t-q}+c_{2 q} p_{t-q}^{*}+\varepsilon_{2 t}  \tag{7.1b}\\
& p_{t}^{*}=\mu_{3}+a_{31} s_{t-1}+b_{31} p_{t-1}+c_{31} p_{t-1}^{*}+\ldots+a_{3 q} s_{t-q}+b_{3 q} p_{t-q}+c_{3 q} p_{t-q}^{*}+\varepsilon_{3 t} \tag{7.1c}
\end{align*}
$$

OLS and LAD procedures are used for estimation purposes for Caner test and our test respectively. We also include 11 seasonal dummies to VAR equations. ${ }^{3}$ Then we test the residual series from those $\operatorname{VAR}(q)$ models for independence to determine whether they come from an i.i.d. distribution or not. In total there are 24 residual series from 8 countries.

Lag selection of the VARs are utilized by checking the SACF \& SPACF structures of the residuals. SACFs and SPACFs for some of the Canadian and U.K. residuals from the fitted VARs are presented in Figures 7.3 through 7.8. VAR(12) models are fitted for Canada and U.K.. Lin-McLeod i.i.d. tests are applied on the residuals after we identified a model. Table 7.1 shows all the lag orders chosen for the VARs together with the Lin-McLeod i.i.d. test results. In order to consume less space, only the results from LAD-based VARs are presented for i.i.d. tests and estimates of stable parameters. Lag length selection and stability index estimation are important to decide about the critical values. Table 7.9 shows the critical values chosen for OLS-based Caner test in addition to our test which is LAD-based.

In Table 7.1, p-values of Lin-McLeod tests need to be greater than 0.05 for us not to reject the i.i.d. hypothesis at $5 \%$ significance level. From Table 7.1, we can see that the selected VAR models perform well enough to decide that the innovations are in fact i.i.d. processes. Next, we estimate the stable parameters $(\alpha, \beta)$ for each residual series and present the $95 \%$ confidence intervals. The results are shown in Table 7.2.

[^33]

Figure 7.3: SACFs and SPACFs of the residuals from equation (7.1a) with Gaussian confidence bounds: $\pm 1.96 \frac{1}{\sqrt{T}}$


Figure 7.4: SACFs and SPACFs of the residuals from equation (7.1a) with conservative confidence bounds: $\pm 2.57 \frac{1}{\sqrt{T}}$


Figure 7.5: SACFs and SPACFs of the residuals from equation (7.1b) with Gaussian confidence bounds: $\pm 1.96 \frac{1}{\sqrt{T}}$


Figure 7.6: SACFs and SPACFs of the residuals from equation (7.1b) with conservative confidence bounds: $\pm 2.57 \frac{1}{\sqrt{T}}$


Figure 7.7: SACFs and SPACFs of the residuals from equation (7.1c) with Gaussian confidence bounds: $\pm 1.96 \frac{1}{\sqrt{T}}$


Figure 7.8: SACFs and SPACFs of the residuals from equation (7.1c) with conservative confidence bounds: $\pm 2.57 \frac{1}{\sqrt{T}}$
Table 7.1: P-values for Lin-McLeod tests of randomness

| Country | Fitted Model | Variable | lag | P-R Stable ${ }^{\text {a }}$ | P-R Normal ${ }^{\text {b }}$ | B-P Stable ${ }^{\text {c }}$ | B-P Normal ${ }^{\text {d }}$ | B-P Chi-square ${ }^{\text {e }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Austria | $\operatorname{VAR}(13)$ | Exchange Rate | 25 | 0.517 | 0.751 | 0.553 | 0.799 | 0.837 |
|  |  |  | 50 | 0.596 | 0.835 | 0.311 | 0.468 | 0.617 |
|  |  |  | 65 | 0.551 | 0.804 | 0.364 | 0.548 | 0.747 |
|  |  | PPI | 25 | 0.223 | 0.492 | 0.065 | 0.069 | 0.072 |
|  |  |  | 50 | 0.145 | 0.257 | 0.061 | 0.063 | 0.083 |
|  |  |  | 65 | 0.159 | 0.286 | 0.035 | 0.033 | 0.045 |
|  |  | US PPI | 25 | 0.079 | 0.077 | 0.100 | 0.123 | 0.157 |
|  |  |  | 50 | 0.064 | 0.037 | 0.061 | 0.047 | 0.061 |
|  |  |  | 65 | 0.058 | 0.033 | 0.039 | 0.027 | 0.039 |
| Canada | $\operatorname{VAR}(12)$ | Exchange Rate | 25 | 0.116 | 0.155 | 0.052 | 0.063 | 0.058 |
|  |  |  | 50 | 0.127 | 0.165 | 0.086 | 0.099 | 0.142 |
|  |  |  | 65 | 0.159 | 0.225 | 0.074 | 0.091 | 0.158 |
|  |  | PPI | 25 | 0.520 | 0.901 | 0.486 | 0.862 | 0.896 |
|  |  |  | 50 | 0.284 | 0.571 | 0.142 | 0.230 | 0.342 |
|  |  |  | 65 | 0.168 | 0.271 | 0.084 | 0.124 | 0.222 |
|  |  | US PPI | 25 | 0.062 | 0.035 | 0.061 | 0.036 | 0.032 |
|  |  |  | 50 | 0.047 | 0.006 | 0.043 | 0.027 | 0.038 |
|  |  |  | 65 | 0.044 | 0.005 | 0.031 | 0.028 | 0.039 |
| Denmark | $\operatorname{VAR}(12)$ | Exchange Rate | 25 | 0.528 | 0.782 | 0.696 | 0.929 | 0.952 |
|  |  |  | 50 | 666 | 0.914 | 0.590 | 0.886 | 0.943 |
|  |  |  | 65 | 0.665 | 0.917 | 0.610 | 0.894 | 0.966 |
|  |  | PPI | 25 | 0.109 | 0.142 | 0.200 | 0.324 | 0.376 |
|  |  |  | 50 | 0.260 | 0.481 | 0.492 | 0.884 | 0.941 |
|  |  |  | 65 | 0.324 | 0.633 | 0.484 | 0.887 | 0.962 |
|  |  | US PPI | 25 | 0.094 | 0.120 | 0.095 | 0.104 | 0.110 |
|  |  |  | 50 | 0.070 | 0.032 | 0.054 | 0.041 | 0.053 |
|  |  |  | 65 | 0.060 | 0.028 | 0.051 | 0.035 | 0.055 |

Table 7.1: (Continued)

| Country | Fitted Model | Variable | lag | P-R Stable ${ }^{\text {a }}$ | P-R Normal ${ }^{\text {b }}$ | B-P Stable ${ }^{\text {c }}$ | B-P Normal ${ }^{\text {d }}$ | B-P Chi-square ${ }^{\text {e }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Germany | $\operatorname{VAR}(12)$ | Exchange Rate | 25 | 0.575 | 0.778 | 0.646 | 0.826 | 0.868 |
|  |  |  | 50 | 0.590 | 0.793 | 0.349 | 0.510 | 0.659 |
|  |  |  | 65 | 0.547 | 0.756 | 0.364 | 0.547 | 0.742 |
|  |  | PPI | 25 | 0.472 | 0.911 | 0.424 | 0.841 | 0.883 |
|  |  |  | 50 | 0.458 | 0.900 | 0.465 | 0.922 | 0.969 |
|  |  |  | 65 | 0.418 | 0.864 | 0.375 | 0.817 | 0.927 |
|  |  | US PPI | 25 | 0.068 | 0.038 | 0.070 | 0.036 | 0.032 |
|  |  |  | 50 | 0.054 | 0.007 | 0.045 | 0.025 | 0.033 |
|  |  |  | 65 | 0.049 | 0.008 | 0.034 | 0.025 | 0.035 |
| Japan | $\operatorname{VAR}(12)$ | Exchange Rate | 25 | 0.494 | 0.740 | 0.475 | 0.732 | 0.768 |
|  |  |  | 50 | 0.338 | 0.553 | 0.224 | 0.334 | 0.473 |
|  |  |  | 65 | 0.305 | 0.509 | 0.289 | 0.473 | 0.677 |
|  |  | PPI | 25 | 0.167 | 0.335 | 0.272 | 0.646 | 0.681 |
|  |  |  | 50 | 0.321 | 0.747 | 0.516 | 0.974 | 0.993 |
|  |  |  | 65 | 0.391 | 0.870 | 0.551 | 0.989 | 0.999 |
|  |  | US PPI | 25 | 0.069 | 0.039 | 0.065 | 0.040 | 0.035 |
|  |  |  | 50 | 0.047 | 0.005 | 0.047 | 0.030 | 0.040 |
|  |  |  | 65 | 0.044 | 0.005 | 0.034 | 0.025 | 0.035 |
| Netherlands | $\operatorname{VAR}(12)$ | Exchange Rate | 25 | 0.170 | 0.274 | 0.218 | 0.293 | 0.336 |
|  |  |  | 50 | 0.317 | 0.456 | 0.092 | 0.104 | 0.148 |
|  |  |  | 65 | 0.344 | 0.493 | 0.121 | 0.141 | 0.257 |
|  |  | PPI | 25 | 0.043 | 0.010 | 0.089 | 0.097 | 0.098 |
|  |  |  | 50 | 0.083 | 0.099 | 0.177 | 0.296 | 0.432 |
|  |  |  | 65 | 0.106 | 0.127 | 0.312 | 0.624 | 0.810 |
|  |  | US PPI | 25 | 0.047 | 0.007 | 0.067 | 0.028 | 0.027 |
|  |  |  | 50 | 0.047 | 0.001 | 0.055 | 0.027 | 0.038 |
|  |  |  | 65 | 0.042 | 0.001 | 0.037 | 0.025 | 0.035 |

Table 7.1: (Continued)

| Country | Fitted Model | Variable | lag | P-R Stable ${ }^{\text {a }}$ | P-R Normal ${ }^{\text {b }}$ | B-P Stable ${ }^{\text {c }}$ | B-P Normal ${ }^{\text {d }}$ | B-P Chi-square ${ }^{\text {e }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sweden | VAR(12) | Exchange Rate | 25 | 0.387 | 0.643 | 0.310 | 0.506 | 0.552 |
|  |  |  | 50 | 0.309 | 0.535 | 0.476 | 0.797 | 0.888 |
|  |  |  | 65 | 0.284 | 0.477 | 0.506 | 0.824 | 0.932 |
|  |  | PPI | 25 | 0.519 | 0.791 | 0.556 | 0.811 | 0.853 |
|  |  |  | 50 | 0.389 | 0.671 | 0.327 | 0.558 | 0.700 |
|  |  |  | 65 | 0.385 | 0.663 | 0.231 | 0.338 | 0.543 |
|  |  | US PPI | 25 | 0.084 | 0.076 | 0.091 | 0.089 | 0.090 |
|  |  |  | 50 | 0.063 | 0.027 | 0.075 | 0.088 | 0.122 |
|  |  |  | 65 | 0.060 | 0.029 | 0.066 | 0.085 | 0.149 |
| U.K. | VAR(12) | Exchange Rate | 25 | 0.620 | 0.852 | 0.387 | 0.600 | 0.623 |
|  |  |  | 50 | 0.491 | 0.716 | 0.233 | 0.349 | 0.492 |
|  |  |  | 65 | 0.409 | 0.625 | 0.200 | 0.286 | 0.477 |
|  |  | PPI | 25 | 0.281 | 0.602 | 0.398 | 0.816 | 0.860 |
|  |  |  | 50 | 0.461 | 0.904 | 0.567 | 0.981 | 0.996 |
|  |  |  | 65 | 0.552 | 0.973 | 0.675 | 0.999 | 0.999 |
|  |  | US PPI | 25 | 0.047 | 0.004 | 0.063 | 0.022 | 0.022 |
|  |  |  | 50 | 0.045 | 0.000 | 0.049 | 0.025 | 0.035 |
|  |  |  | 65 | 0.045 | 0.001 | 0.031 | 0.013 | 0.018 |

[^34]
### 7.1.2 Diagnostic checks for normality

Residuals from the LAD-based VAR models are visually checked to determine how much they deviate from the normality assumption. ${ }^{4}$ The empirical densities of some of the residuals can be found in Figures 7.9 and 7.10. Stable and normal $(N(0, s)$ with $s$ denoting the sample standard deviation) densities are drawn by simulating random variables from stable and normal distributions with parameters estimated from actual data. From the figures it can be inferred that the stable distribution assumption on the errors is more suitable than the normality assumption.

Figure 7.11 contains the QQ plots for the VAR residuals of exchange rates for Austria, Canada, Germany and U.K.. Figure 7.12 contains the QQ plots for the same countries for the VAR residuals of log price levels. QQ plots show that heavy-tailedness is an important issue for our data especially for the inflation rates.

Converging mean and variance tests are also applied to the residuals. Figure 7.13 and 7.14 present the results for Canadian and Swedish data. Panels (a) and (b) plot the first $n$ sample variances and means of Canadian residuals respectively against $n$. Panels (c) and (d) plot the first $n$ sample variances and means of Swedish residuals respectively against $n$. In the figures, " $N(0, s)$ " ( $s$ : sample standard deviation) and "Stable" denote the simulated normal and stable random variables respectively with parameters imposed from actual data. From what we observe in Figures 7.13 and 7.14, stable distribution with infinite-variance and finitemean seems to be an appropriate assumption on the errors rather than the finite-variance and finite-mean Gaussian normal assumption.

### 7.2 Unit root tests

First, the order of integration of all variables are checked since the necessary condition for PPP is that all variables are $\mathrm{I}(1)$. Tables 7.3 and 7.4 report the results of the OLS-based Caner and LAD-based Samarakoon-Knight unit root tests for the nominal exchange rate series. The results of PPI series are shown in Tables 7.5 and 7.6. Order of serial correlations for Caner

[^35]Table 7.2: Maximum Likelihood Estimation of stable parameters (PPP)

|  |  | Variable |  |  |
| :---: | :---: | :---: | ---: | :---: |
| Country | Parameter | Exchange Rate | PPI | US PPI |
| Austria | $\hat{\alpha}$ | $1.70 \pm 0.14$ | $1.53 \pm 0.15$ | $1.25 \pm 0.14$ |
|  | $\hat{\beta}$ | $-0.08 \pm 0.40$ | $0.07 \pm 0.30$ | $0.07 \pm 0.21$ |
| Canada | $\hat{\alpha}$ | $1.86 \pm 0.12$ | $1.59 \pm 0.15$ | $1.33 \pm 0.14$ |
|  | $\hat{\beta}$ | $-0.32 \pm 0.69$ | $0.09 \pm 0.32$ | $0.12 \pm 0.22$ |
| Denmark | $\hat{\alpha}$ | $1.86 \pm 0.12$ | $1.59 \pm 0.15$ | $1.33 \pm 0.14$ |
|  | $\hat{\beta}$ | $-0.32 \pm 0.69$ | $-0.27 \pm 0.32$ | $0.06 \pm 0.20$ |
| Germany | $\hat{\alpha}$ | $1.83 \pm 0.12$ | $1.36 \pm 0.15$ | $1.24 \pm 0.14$ |
|  | $\hat{\beta}$ | $-0.17 \pm 0.63$ | $0.02 \pm 0.24$ | $0.11 \pm 0.21$ |
| Japan | $\hat{\alpha}$ | $1.86 \pm 0.10$ | $1.34 \pm 0.15$ | $1.30 \pm 0.14$ |
|  | $\hat{\beta}$ | $-0.99 \pm 0.43^{*}$ | $0.03 \pm 0.23$ | $0.03 \pm 0.22$ |
| Netherlands | $\hat{\alpha}$ | $1.80 \pm 0.13$ | $1.47 \pm 0.15$ | $1.18 \pm 0.14$ |
|  | $\hat{\beta}$ | $-0.18 \pm 0.52$ | $0.16 \pm 0.27$ | $0.15 \pm 0.19$ |
| Sweden | $\hat{\alpha}$ | $1.86 \pm 0.11$ | $1.80 \pm 0.13$ | $1.26 \pm 0.14$ |
|  | $\hat{\beta}$ | $0.31 \pm 0.70$ | $0.18 \pm 0.52$ | $-0.01 \pm 0.22$ |
| U.K. | $\hat{\alpha}$ | $1.85 \pm 0.12$ | $1.31 \pm 0.14$ | $1.11 \pm 0.13$ |
|  | $\hat{\beta}$ | $0.27 \pm 0.68$ | $0.17 \pm 0.22$ | $-0.01 \pm 0.18$ |

* $95 \%$ confidence interval is given for $\beta=-0.9$, since $\beta=-0.99$ is very close to the boundary.
Note: The results are based on LAD estimations.


Figure 7.9: Data based kernel densities of the residuals from the fitted VARs (log exchange rates) versus stable and normal densities


Figure 7.10: Data based kernel densities of the residuals from the fitted VARs (log PPIs) versus stable and normal densities


Figure 7.11: Quantiles of (standardized) residuals from the fitted VARs (log exchange rates) versus the quantiles of $N(0,1)$ distribution


Figure 7.12: Quantiles of (standardized) residuals from the fitted VARs (log PPIs) versus the quantiles of $N(0,1)$ distribution


Figure 7.13: Converging variance and mean tests of residuals from the fitted VARs (log exchange rates)


Figure 7.14: Converging variance and mean tests of residuals from the fitted VARs (log PPIs)
test is chosen by the following criteria,

$$
\begin{equation*}
l=\operatorname{int}\left(4(T / 100)^{1 / 4}\right) \tag{7.2}
\end{equation*}
$$

where $T$ is the sample size and "int" function returns the nearest integer. For SamarakoonKnight tests, lag lengths have been chosen by the AIC and diagnostic checks with SPACF and SACF structure.

When the results of OLS-based unit roots are considered: all nominal exchange rate series (except for Austrian and Japanese exchange rates) appear to have a unit root in levels and have no unit root in first differences. For Austria and Japan, the nominal exchange rates are found to be $I(0)$ both in levels and first differences. The conclusions hold regardless of whether we make infinite-variance or finite-variance assumption. The results from LAD-based tests show that all exchange rate series appear to be $I(1)$.

When OLS-based unit root tests are applied on the price indices, nearly half of the price series seem to be $I(0)$ both in levels and in first differences; exceptions occur with Germany, Netherlands, Sweden and U.K., price series of which appear to be $I(1)$ (see Table 7.5). If we make finite-variance assumption, U.K. PPI seems to be $I(0)$. The results of the LAD-based Samarakoon-Knight unit root tests with PPI series are shown in Table 7.6. The price indices are $\mathrm{I}(1)$ except for those of Canada, Japan and U.K.. PPIs of Canada, Japan and U.K. are again found to be $I(0)$ both in levels and first differences.

We need all exchange rate and price series to be $I(1)$. There seem to be some deviations from that assumption especially when we consider OLS-based unit root tests. The number of series that appear to be $I(1)$ is greater when we consider LAD-based unit root tests. Although we have mixed results from the two types of unit root tests, we proceed to the next estimations by assuming that all series that we have are $I(1)$.

### 7.3 Residual-based co-integration tests

Weak and strong-form PPP can be tested through a general equation as in equation (6.2). Here we consider testing the weak-form PPP through residual-based co-integration tests. We

Table 7.3: Caner unit root test in exchange rates

|  | Level | First Difference |
| :---: | :---: | :---: |
| Country | $Z_{t}^{\dagger}$ | $Z_{t}$ |
| Austria | $-1.97^{*}$ | $-15.93^{*}$ |
| Canada | -0.03 | $-16.12^{*}$ |
| Denmark | -0.68 | $-15.90^{*}$ |
| Germany | -1.88 | $-15.78^{*}$ |
| Japan | $-2.41^{*}$ | $-15.70^{*}$ |
| Netherlands | -1.58 | $-15.79^{*}$ |
| Sweden | -1.31 | $-14.67^{*}$ |
| U.K. | 0.32 | $-14.28^{*}$ |

* Rejects the null hypothesis of a unit root at $5 \%$ significance level.
${ }^{\dagger}$ For $\alpha=2$, critical value is -1.95 (standard). Critical values are taken from Table 2.1.

Table 7.4: Samarakoon-Knight unit root test in exchange rates

|  | Level |  | First Difference |  |
| :---: | :---: | :---: | :---: | :---: |
| Country | Lag $^{\dagger}$ | $\pi_{\phi}$ | Lag | $\pi_{\phi}$ |
| Austria | 2 | -0.38 | 1 | $-14.09^{*}$ |
| Canada | 5 | 0.35 | 4 | $-12.60^{*}$ |
| Denmark | 2 | 0.55 | 2 | $-14.22^{*}$ |
| Germany | 2 | -0.16 | 1 | $-14.23^{*}$ |
| Japan | 4 | -0.53 | 3 | $-17.07^{*}$ |
| Netherlands | 2 | -0.87 | 1 | $-13.32^{*}$ |
| Sweden | 4 | 0.70 | 3 | $-14.50^{*}$ |
| U.K. | 4 | 1.27 | 3 | $-16.03^{*}$ |

${ }^{\dagger}$ Selected by AIC and SACF \& SPACF structure.

* Rejects the null hypothesis of a unit root at $5 \%$ significance level. $5 \%$ critical value is -1.64 .

Table 7.5: Caner unit root test in price indices

|  | Level | First Difference |
| :---: | :---: | :---: |
| Country | $Z_{t_{\mu}}{ }^{\dagger}$ | $Z_{t}^{\ddagger}$ |
| Austria | $-3.68^{*}$ | $-15.26^{*}$ |
| Canada | $-3.60^{*}$ | $-14.26^{*}$ |
| Denmark | $-3.54^{*}$ | $-10.92^{*}$ |
| Germany | -2.69 | $-14.21^{*}$ |
| Japan | $-5.87^{*}$ | $-10.26^{*}$ |
| Netherlands | -1.22 | $-19.23^{*}$ |
| Sweden | -2.10 | $-14.51^{*}$ |
| U.K. | -2.91 | $-13.90^{*}$ |
| U.S. | $-3.27^{*}$ | $-22.45^{*}$ |

* Rejects the null hypothesis of a unit root at $5 \%$ significance level.
${ }^{\dagger}$ For $\alpha=2$, critical value is -2.86 (constant).
$\ddagger$ For $\alpha=2$, critical value is -1.95 (standard). Critical values are taken from Table 2.1.

Table 7.6: Samarakoon-Knight unit root test in price indices

|  | Level |  | First Difference |  |
| :---: | :---: | :---: | :---: | :---: |
| Country | Lag $^{\dagger}$ | $\pi_{\mu}$ | Lag | $\pi_{\phi}$ |
| Austria | 15 | -1.11 | 14 | $-14.02^{*}$ |
| Canada | 2 | $-2.85^{*}$ | 1 | $-9.68^{*}$ |
| Denmark | 3 | -2.50 | 2 | $-8.54^{*}$ |
| Germany | 6 | -0.65 | 5 | $-12.26^{*}$ |
| Japan | 3 | $-4.56^{*}$ | 2 | $-18.12^{*}$ |
| Netherlands | 4 | -0.34 | 3 | $-19.03^{*}$ |
| Sweden | 14 | -0.43 | 13 | $-6.84^{*}$ |
| U.K. | 4 | $-3.99^{*}$ | 3 | $-12.94^{*}$ |
| U.S. | 7 | 0.52 | 6 | $-11.94^{*}$ |

${ }^{\dagger}$ Selected by AIC and SACF \& SPACF structure.

* Rejects the null hypothesis of a unit root at $5 \%$ significance level. $5 \%$ critical value is -1.64 .
implement both OLS and LAD-based tests. Our LAD-based tests' critical values are presented in section 2.3 .1 of part I with one regressor in the co-integrating regression. Table 7.8 presents the critical values of our test with two regressors in the co-integrating regression (as needed in testing PPP) and Table 7.7 shows the critical values for Caner test with two regressors. $Z_{t}$ critical values are calculated through simulations based on 1,000 sample size with 20,000 iterations following Caner (1998). $\pi_{\phi}$ critical values are the large sample critical values that are found with 50,000 iterations.

Table 7.7: $5 \%$ critical values of $Z_{t}$ statistic for Caner co-integration test ( $n=2$ )

| $\alpha$ | constant $^{\mathrm{a}}$ | constant and trend $^{\mathrm{b}}$ |
| :---: | :---: | :---: |
| 1 | -4.22 | -4.54 |
| 1.5 | -3.85 | -4.21 |
| 1.6 | -3.81 | -4.19 |
| 1.7 | -3.81 | -4.17 |
| 1.8 | -3.79 | -4.17 |
| 1.9 | -3.78 | -4.16 |

${ }^{\text {a }}$ Phillips-Ouliaris critical value $(\alpha=2)$ at $5 \%$ significance is -3.77 .
${ }^{\mathrm{b}}$ Phillips-Ouliaris critical value $(\alpha=2)$ at $5 \%$ significance is -4.16 .
Note: $n$ is the number of regressors in the co-integrating regression.

Table 7.8: $5 \%$ critical values of LAD-based co-integration tests $(n=2)$

| Stability index | constant | constant and trend |
| :---: | :---: | :---: |
| 1.5 | -2.25 | -2.72 |
| 1.6 | -2.44 | -2.74 |
| 1.7 | -2.65 | -2.90 |
| 1.8 | -2.90 | -3.14 |
| 1.9 | -3.13 | -3.41 |

Note: $n$ is the number of regressors in the co-integrating regression.

Note that the stability indices of the errors that drive the $s_{t}, p_{t}$ and $p_{t}^{*}$ series are not the same for each country. However, both Caner test and our test require homogeneous stability indices. For Caner test, the critical values decrease as $\alpha$ decreases for any given size. Therefore, following a conservative approach, we choose the critical values of Caner test according to the smallest $\alpha$ of the three innovation series. For our test, the critical values increase as $\alpha$ decreases
for any given size. Thus if we want to follow a conservative approach, we should select the critical values according to the largest $\alpha$ of the three innovation series. By doing this our aim is to make the actual size of the tests less than the nominal size. ${ }^{5}$ Five percent critical values chosen for $Z_{t}$ and $\pi_{\phi}$ are given in Table 7.9. In the Table, minimum $\alpha$ levels are found by MLE procedure from OLS-based estimations and maximum $\alpha$ levels are found by the same procedure from LAD-based estimations.

Table 7.9: $5 \%$ critical values of $Z_{t}$ and $\pi_{\phi}$

|  |  |  | $Z_{t}$ |  | $\pi_{\phi}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Country | Minimum $\alpha$ | Maximum $\alpha$ | No Trend | Trend | No Trend | Trend |
| Austria | 1.58 | 1.70 | -3.81 | -4.19 | -2.65 | -2.90 |
| Canada | 1.60 | 1.86 | -3.81 | -4.19 | -3.13 | -3.41 |
| Denmark | 1.61 | 1.86 | -3.81 | -4.19 | -3.13 | -3.41 |
| Germany | 1.52 | 1.83 | -3.85 | -4.21 | -2.90 | -3.14 |
| Japan | 1.55 | 1.86 | -3.81 | -4.19 | -3.13 | -3.41 |
| Netherlands | 1.80 | 1.87 | -3.79 | -4.17 | -2.90 | -3.14 |
| Sweden | 1.50 | 1.86 | -3.85 | -4.21 | -3.13 | -3.41 |
| U.K. | 1.45 | 1.85 | -3.85 | -4.21 | -3.13 | -3.41 |

Note: $Z_{t}$ critical values are taken from Table 7.7 and $\pi_{\phi}$ critical values are taken from Table 7.8.

Residual-based co-integration test results are shown in Tables 7.10 (OLS-based) and 7.11 (LAD-based). Regardless of making the finite-variance or infinite-variance assumption, OLSbased co-integration tests fail to provide evidence of the weak-form PPP hypothesis. When our LAD-based test is applied, we see that the hypothesis is again rejected for all countries except for Denmark and U.K. for no trend case.

### 7.4 Fully-modified estimations

Considering equation (6.2), if the strict interpretation of long-run PPP theory (or strongform PPP) applies, joint parameter restrictions of the null hypothesis $H_{0}: \beta_{0}=0, \beta_{1}=1, \beta_{2}=$ -1 should hold. In addition to the joint restrictions, here individual coefficient restrictions are also tested. In summary, we test the following joint and individual hypotheses:

[^36]Table 7.10: OLS-based co-integration tests in PPP

| Country | No Trend | Trend |
| :---: | :---: | :---: |
| Austria | -3.07 | -3.19 |
| Canada | -2.79 | -2.76 |
| Denmark | -2.87 | -2.98 |
| Germany | -2.36 | -2.55 |
| Japan | -1.56 | -1.42 |
| Netherlands | -1.91 | -3.36 |
| Sweden | -2.17 | -2.12 |
| U.K. | -2.71 | -2.52 |

$5 \%$ critical values are from Table 7.9.

Table 7.11: LAD-based co-integration tests in PPP

| Country | Fitted Model $^{\dagger}$ | No Trend | Trend |
| :---: | :---: | :--- | :---: |
| Austria | $\operatorname{AR}(13)$ | -2.20 | -2.34 |
| Canada | $\operatorname{AR}(12)$ | -2.14 | -2.10 |
| Denmark | $\operatorname{AR}(12)$ | $-3.22^{*}$ | -3.40 |
| Germany | $\operatorname{AR}(12)$ | -2.84 | -2.65 |
| Japan | $\operatorname{AR}(12)$ | -2.45 | -2.66 |
| Netherlands | $\operatorname{AR}(12)$ | -1.80 | -2.80 |
| Sweden | $\operatorname{AR}(12)$ | -2.83 | -2.93 |
| U.K. | $\operatorname{AR}(12)$ | $-3.27^{*}$ | -3.09 |

${ }^{\dagger}$ Model fitted for residuals from Equation 6.2. Selected according to VAR order of section 7.1.1.

* Rejects the null hypothesis of no co-integration at 5\% significance level.
$5 \%$ critical values are taken from Table 7.9.

$$
\begin{aligned}
& H_{0}: \beta_{0}=0, \beta_{1}=1, \beta_{2}=-1 \\
& H_{1}: \text { Otherwise }
\end{aligned}
$$

$$
\begin{aligned}
& H_{0}: \beta_{0}=0 \\
& H_{1}: \beta_{0} \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& H_{0}: \beta_{1}=1 \\
& H_{1}: \beta_{1} \neq 1
\end{aligned}
$$

$$
\begin{aligned}
& H_{0}: \beta_{2}=-1 \\
& H_{1}: \beta_{2} \neq-1
\end{aligned}
$$

We can see from Table 7.12 that using fully-modified Wald tests to justify the strong-form PPP empirically turns out to be a disappointment. All the p-values are very small strongly rejecting the joint hypothesis: $H_{0}: \beta_{0}=0, \beta_{1}=1, \beta_{2}=-1$. We also explore the results from the individual coefficient tests: $H_{0}: \beta_{0}=0, H_{0}: \beta_{1}=1$ and $H_{0}: \beta_{2}=-1$. The individual restrictions are mostly rejected with FM-OLS regressions. But even through FMLAD regressions, the coefficient estimates are not close to the predictions of the strong-form PPP hypothesis. The results associated with FM-LAD and FM-LAD ${ }^{\ddagger}$ based tests are similar.

Table 7.12: Empirical estimates of equation (6.2)

| Country | Method | Parameters, $t$-ratios and P-values for joint test |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\hat{\beta}_{0}$ | $t_{\beta_{0}}$ | $\widehat{\beta}_{1}$ | $t_{\beta_{1}}$ | $\widehat{\beta}_{2}$ | $t_{\beta_{2}}$ | P -value |
| Austria | OLS | -1.16 |  | 2.62 |  | -1.85 |  |  |
|  | FM-OLS | -1.48 | -1.11 | 2.67 | $2.80{ }^{\text {b }}$ | -1.83 | $-2.60^{\text {c }}$ | $0.00^{\text {d }}$ |
|  | LAD | -0.41 |  | 2.27 |  | -1.67 |  |  |
|  | FM-LAD | -0.79 | -0.48 | 2.44 | 1.95 | -1.76 | -1.93 | $0.00^{\text {d }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | -0.79 | -0.37 | 2.44 | 1.52 | -1.76 | -1.50 | $0.00^{\text {d }}$ |
| Canada | OLS | 0.28 |  | 1.35 |  | -1.37 |  |  |
|  | FM-OLS | 0.18 | 1.21 | 1.30 | $2.32{ }^{\text {b }}$ | -1.29 | -1.94 | $0.00^{\text {d }}$ |
|  | LAD | 0.30 |  | 1.40 |  | -1.43 |  |  |
|  | FM-LAD | 0.15 | 0.84 | 1.37 | 2.37 | -1.35 | -1.95 | $0.00^{\text {d }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | 0.15 | 0.76 | 1.37 | 2.17 | -1.35 | -1.78 | $0.00^{\text {d }}$ |
| Denmark | OLS | 2.55 |  | 2.04 |  | -2.21 |  |  |
|  | FM-OLS | 2.11 | $6.20{ }^{\text {a }}$ | 1.73 | $2.09{ }^{\text {b }}$ | -1.80 | $-2.07^{\text {c }}$ | $0.00^{\text {d }}$ |
|  | LAD | 2.39 |  | 1.77 |  | -1.91 |  |  |
|  | FM-LAD | 2.22 | $8.41^{\text {a }}$ | 1.73 | $2.68{ }^{\text {b }}$ | -1.83 | $-2.75{ }^{\text {c }}$ | $0.00^{\text {d }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | 2.22 | $7.37{ }^{\text {a }}$ | 1.73 | $2.35{ }^{\text {b }}$ | -1.83 | $-2.41^{\text {c }}$ | $0.00^{\text {d }}$ |
| Germany | OLS | -3.11 |  | 3.08 |  | -2.31 |  |  |
|  | FM-OLS | -2.58 | -1.84 | 2.60 | $2.13{ }^{\text {b }}$ | -1.94 | $-2.05^{\text {c }}$ | $0.00^{\text {d }}$ |
|  | LAD | -2.40 |  | 2.67 |  | -2.07 |  |  |
|  | FM-LAD | -2.38 | -1.18 | 2.66 | 1.54 | -2.05 | -1.61 | $0.00^{\text {d }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | -2.38 | -1.01 | 2.66 | 1.32 | $-2.05^{\text {c }}$ | -1.37 | $0.00^{\text {d }}$ |
| Japan | OLS | 4.77 |  | 1.10 |  | -1.14 |  |  |
|  | FM-OLS | 4.57 | $4.98{ }^{\text {a }}$ | 1.09 | 0.41 | -1.09 | -1.28 | $0.00^{\text {d }}$ |
|  | LAD | 5.22 |  | 0.97 |  | -1.10 |  |  |
|  | FM-LAD | 5.03 | $2.32^{\text {a }}$ | 0.94 | -0.11 | -1.03 | -0.20 | $0.00^{\text {d }}$ |
|  | FM-LAD ${ }^{\ddagger}$ | 5.03 | $2.23{ }^{\text {a }}$ | 0.94 | -0.10 | -1.03 | -0.20 | $0.00^{\text {d }}$ |

Table 7.12: (Continued)

|  |  | Parameters, $t$-ratios and P-values for joint test |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Country | Method | $\hat{\beta}_{0}$ | $t_{\beta_{0}}$ | $\hat{\beta}_{1}$ | $t_{\beta_{1}}$ | $\hat{\beta}_{2}$ | $t_{\beta_{2}}$ | P-value |
| Netherlands | OLS | 0.22 |  | 1.68 |  | -1.60 |  |  |
|  | FM-OLS | 0.75 | 0.69 | 1.47 | 0.57 | -1.50 | -0.84 | $0.00^{\mathrm{d}}$ |
|  | LAD | 0.62 |  | 1.30 |  | -1.31 |  |  |
|  | FM-LAD | 0.52 | 0.54 | 1.57 | 0.81 | -1.56 | -1.09 | $0.00^{\mathrm{d}}$ |
|  | FM-LAD |  |  |  |  |  |  |  |
|  | 0.52 | 0.47 | 1.57 | 0.69 | -1.56 | -0.94 | $0.00^{\mathrm{d}}$ |  |
| Sweden | OLS | 1.50 |  | 1.06 |  | -0.96 |  |  |
|  | FM-OLS | 1.35 | $4.62^{\mathrm{a}}$ | 1.05 | 0.37 | -0.91 | 0.51 | $0.00^{\mathrm{d}}$ |
|  | LAD | 1.57 |  | 1.09 |  | -1.01 |  |  |
|  | FM-LAD | 1.35 | 1.91 | 0.98 | -0.08 | -0.84 | 0.36 | $0.00^{\mathrm{d}}$ |
|  | FM-LAD | 1.35 | 1.89 | 0.98 | -0.08 | -0.84 | 0.35 | $0.00^{\mathrm{d}}$ |
| U.K. | OLS | 0.03 |  | 0.66 |  | -0.79 |  |  |
|  | FM-OLS | 0.14 | -0.45 | 0.60 | $-3.49^{\mathrm{b}}$ | -0.69 | 1.74 | $0.00^{\mathrm{d}}$ |
|  | LAD | 0.16 |  | 0.67 |  | -0.83 |  |  |
|  | FM-LAD | 0.07 | 0.18 | 0.59 | $-2.92^{\mathrm{a}}$ | -0.73 | 1.23 | $0.00^{\mathrm{d}}$ |
|  | FM-LAD ${ }^{\ddagger}$ | 0.07 | 0.15 | 0.59 | $-2.40^{\mathrm{b}}$ | -0.73 | 1.01 | $0.00^{\mathrm{d}}$ |

${ }^{\text {a }}$ Rejects the null: $H_{0}: \beta_{0}=0$ against $H_{1}: \beta_{0} \neq 0$ at $5 \%$ significance.
${ }^{\mathrm{b}}$ Rejects the null: $H_{0}: \beta_{1}=1$ against $H_{1}: \beta_{1} \neq 1$ at $5 \%$ significance.
${ }^{\text {c }}$ Rejects the null: $H_{0}: \beta_{2}=-1$ against $H_{1}: \beta_{2} \neq-1$ at $5 \%$ significance.
${ }^{\mathrm{d}}$ Rejects the null: $H_{0}: \beta_{0}=0, \beta_{1}=1, \beta_{2}=-1$ against $H_{1}$ : Otherwise at $5 \%$ significance. Five percent critical values for $t$-statistics (two-sided) are $\pm 1.96$.
Five percent critical value for $\chi_{(3)}^{2}$-statistic is 7.82 .
FM-LAD ${ }^{\ddagger}$ denotes the FM-LAD estimator with infinite-variance errors.

## CHAPTER 8. CONCLUDING REMARKS

Purchasing Power Parity is an important condition in international finance as exchange rate determination is of crucial importance to understand the links between domestic and foreign economies. In part II, weak-form and strong-form PPP relationships are re-examined for a sample of eight countries (Austria, Canada, Denmark, Germany, Japan, Netherlands, Sweden and the United Kingdom) with monthly data on exchange rate (per U.S. dollar) and PPI series from January 1973 to December 2009.

As a contribution to the extant literature, weak-form PPP is tested through residual-based co-integration tests by utilizing the least absolute deviation (LAD) estimator and strong-form PPP through fully-modified least absolute deviation (FM-LAD) method while considering the heavy-tailed error structure of exchange rate returns and inflation rates. LAD method is known to be more robust to heavy-tailed data than the OLS estimator. The errors driving our exchange rates and inflation rates show characteristics that are consistent with those of the $\alpha$-stable distributions with infinite-variance. LAD-based weak-form PPP test results are compared to those of conventional OLS-based co-integration tests and strong-form PPP test results of FM-LAD regressions are compared to those of fully-modified ordinary least squares (FM-OLS) regressions.

Weak-form PPP does not get support from the data with both OLS-based co-integration tests. On the other hand, only for 2 cases out of 16 , we accept weak-form PPP with LADbased tests. Strong-form PPP is tested through both FM-OLS and FM-LAD based chi-square tests. Strong-form PPP is strongly rejected for all countries with both methods regardless of the finite-variance or infinite-variance assumption. When the individual coefficients are considered, it is observed that the parameters are in general not close to the predictions of the
strict PPP theory neither with FM-OLS nor with FM-LAD estimations.
The results show that weak-form and strong-form PPP can not be justified empirically. Even the weak-form PPP does not hold (except for 2 cases) although we consider the heavytailed structure of errors and apply LAD-based co-integration tests. However, there are limitations to our study. Our residual-based tests assume that all the variables that are tested for co-integration are driven by errors with the same stability index. There is no test for testing the equality of stability indices. In part I, we tested for forward rate unbiasedness hypothesis. Stability indices of the errors from the spot and forward exchange rates for the same country turned out to be the same with only very slight differences. In part II, with PPP data, stability indices of the errors of exchange rate, PPI and US PPI tend not to be that similar even though the differences are not too big. Nevertheless, we can still follow a conservative approach both for Caner (1998) test and our test to reach a conclusion.

## APPENDIX LONG-RUN COVARIANCE MATRIX ESTIMATION

Long-run covariance matrices $\Omega$ and $\Delta$ can be consistently estimated from the residuals $\hat{u}_{t}=\left(\hat{u}_{0 t}, u_{x t}^{\prime}\right)^{\prime}, t=2, \ldots, T$, via a kernel. Kernel estimates have the general form, ${ }^{1}$

$$
\begin{equation*}
\hat{\Omega}=\sum_{j=-T+1}^{T-1} W(j / M) \Gamma(j) \tag{A.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\Delta}=\sum_{j=0}^{T-1} W(j / M) \Gamma(j) \tag{A.2}
\end{equation*}
$$

where $\Gamma(j)=(1 / T) \sum_{t=j+1}^{T} \hat{u}_{t-j} \hat{u}_{t}^{\prime}$ with $\Gamma(-j)=\Gamma(j)^{\prime}, W($.$) is a weight function (kernel) and$ $M$ is a lag truncation or bandwidth parameter. In equations (A.1) and (A.2), truncation occurs when $W(j / M)=0$ for $|j| \geq M$. A bandwidth parameter is chosen according to the data-based automatic bandwidth selection method of Andrews (1991). A Parzen kernel is chosen,

$$
W(x)= \begin{cases}1-6 x^{2}+6|x|^{3} & \text { for } 0 \leq|x| \leq 1 / 2 \\ 2(1-|x|)^{3} & \text { for } 1 / 2 \leq|x| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

where $W(0)=1$.

[^37]
## BIBLIOGRAPHY

Adler, R. J., Feldman, R. E., and Gallagher, C. (1998). Analysing stable time series. In Adler, R. J., Feldman, R. E., and Taqqu, M. S., editors, A Practical Guide to Heavy Tails: Statistical Techniques and Applications, pages 131-158. Birkhäuser, Boston.

Akgiray, V., Booth, G. G., and Seifert, B. (1988). Distribution properties of Latin American black market exchange rates. Journal of International Money and Finance, 7:37-48.

Andrews, D. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59(3):817-858.

Bagshaw, M. L. and Humpage, O. F. (1986). Intervention, exchange rate volatility, and the stable Paretian distribution. Federal Reserve Bank of Cleveland Working Paper 8608.

Banerjee, A., Dolado, J. J., Galbraith, J. W., and Hendry, D. F. (1993). Co-integration, Error correction, and the econometric analysis of non-stationary data. Oxford University Press, New York.

Basterfield, D., Bundt, T., and Murphy, G. (2003). Statistical properties of African FX rates: An application of the stable Paretian hypothesis. In Proceedings of the IEEE 2003 International Conference on Computational Intelligence for Financial Engineering (CIFEr), pages 223-229, Hong Kong.

Bidarkota, P. and McCulloch, J. H. (1998). Optimal univariate inflation forecasting with symmetric stable shocks. Journal of Applied Econometrics, 13:659-670.

Birnbaum, A. (1964). Median-unbiased estimators. Bulletin of mathematical statistics, 11:2534.

Blangiewicz, M. and Charemza, W. (1990). Cointegration in small samples: Empirical percentiles, drifting moments and customized testing. Oxford Bulletin of Economics and Statistics, 52(3):303-315.

Boothe, P. and Glassman, D. (1987). The statistical distribution of exchange rates. Journal of International Economics, 22:297-319.

Borak, S., Härdle, W., and Weron, R. (2005). Stable distributions. In Čížek, P., Härdle, W., and Weron, R., editors, Statistical Tools for Finance and Insurance, pages 21-44. Springer, New York.

Box, G. E. P. and Jenkins, G. (1976). Time Series Analysis, Forecasting and Control. Holden Day, San Francisco.

Box, G. E. P. and Pierce, D. A. (1970). Distribution of residual autocorrelation in autoregressive integrated moving average time series models. Journal of American Statistical Association, 65:1509-1526.

Braha, H. and Anoruo, E. (2002). Testing weak and strong forms PPP for Asian countries. International Advances in Economic Research, 8(3).

Calder, M. and Davis, R. (1998). Inference for linear processes with stable noise. In Adler, R. J., Feldman, R. E., and Taqqu, M. S., editors, A Practical Guide to Heavy Tails: Statistical Techniques and Applications, pages 159-176. Birkhäuser, Boston.

Caner, M. (1998). Tests for cointegration with infinite variance errors. Journal of Econometrics, 86:155-175.

Chan, N. H. and Tran, L. T. (1989). On the first order autoregressive process with infinite variance. Econometric Theory, 5(3):354-362.

Charemza, W., Burridge, P., and Hristova, D. (2005). Is inflation stationary? Applied Economics, 37:901-903.

Chen, P. and Hsiao, C.-Y. (2010). Subsampling the Johansen test with stable innovations. Australian ${ }^{3}$ New Zealand Journal of Statistics, 52:61-73.

Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance, 1:223-236.

Cont, R. (2007). Volatility clustering in financial markets: Empirical facts and agent based models. In Kirman, A. and Teyssiére, G., editors, Long memory in economics, pages 289-309. Springer, New York.

Corbae, D. and Ouliaris, S. (1988). Cointegration and tests of purchasing power parity. The Review of Economics and Statistics, 70:508-511.

Crownover, C., Pippenger, J., and Steigerwald, D. G. (1996). Testing for absolute purchasing power parity. Journal of International Money and Finance, 15:783-796.

Delcoure, N., Barkoulas, J., Baum, C., and Chakraborty, A. (2003). The forward rate unbiasedness hypothesis reexamined: Evidence from a new test. Global Finance Journal, 14:83-93.

Dickey, D. and Fuller, W. (1979). Distribution of the estimates for autoregressive time series with a unit root. Journal of the American Statistical Association, 74:427-431.

DuMouchel, W. (1973). On the asymptotic normality of the maximum-likelihood estimate when sampling from a stable distribution. The Annals of Statistics, 1:948-957.

Dutt, S. D. and Ghosh, D. (1995). Purchasing power parity doctrine: Weak and strong form tests. Applied Economics Letters, 2:316-320.

Dutton, M. and Strauss, J. (1997). Cointegration tests of purchasing power parity: The impact of non-traded goods. Journal of International Money and Finance, 16:433-444.

Elliot, G., Rothenberg, T., and Stock, J. H. (1996). Efficient tests for an autoregressive unit root. Econometrica, 64:813-836.

Enders, W. (2004). Applied Econometric Time Series. John Wiley \& Sons, Hoboken.

Engle, R. E. and Granger, C. W. (1987). Cointegration and error-correction: Representation, estimation, and testing. Econometrica, 55:251-276.

Engle, R. E. and Yoo, B. S. (1987). Forecasting and testing in co-integrated systems. Journal of Econometrics, 35:143-159.

Falk, B. and Wang, C.-H. (2003). Testing long-run PPP with infinite variance returns. Journal of Applied Econometrics, 18:471-484.

Fama, E. (1965). The behavior of stock market prices. Journal of Business, 38(1):34-105.

Fama, E. (1984). Forward and spot exchange rates. Journal of Monetary Economics, 14:319338.

Fasen, V. (2010). Time series regression on integrated continuous-time processes with heavy and light tails. Preprint.

Fofack, H. and Nolan, J. P. (1999). Tail behavior, modes and other characteristics of stable distributions. Extremes, 2(1):39-58.

Fofack, H. and Nolan, J. P. (2001). Distribution of parallel exchange rates in African countries. Journal of International Money and Finance, 20:987-1001.

Gallagher, C. M. (2001). A method for fitting stable autoregressive models using the autocovariation function. Statistics and Probability Letters, 53:381-390.

Gnedenko, V. V. and Kolmogorov, A. N. (1968). Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Reading.

Granger, C. W. J. and Newbold, P. (1974). Spurious regressions in econometrics. Journal of Econometrics, 2:111-120.

Granger, C. W. J. and Orr, D. (1972). Infinite variance and research strategy in time series analysis. Journal of the American Statistical Association, 67(338):275-285.

Griffiths, W. E., Hill, R. C., and Judge, G. G. (1993). Learning and Practicing Econometrics, chapter 3, pages 72-125. John Wiley and Sons, New York.

Hakkio, C. S. and Rush, M. (1989). Market efficiency and cointegration: An application to the sterling and deutschemark exchange rates. Journal of International Money and Finance, 8:75-88.

Hall, A. (1994). Testing for a unit root in time series with pretest data-based model selection. Journal of Business and Economic Statistics, 12:461-470.

Hall, J. A., Brorsen, B. W., and Irwin, S. H. (1989). The distribution of futures prices: A test of the Stable-Paretian and mixture of normal hypothesis. Journal of Financial and Quantitative Analysis, 24:105-116.

Hallwood, J. P. and MacDonald, R. (2000). International Money and Finance. Blackwell Publishing Ltd, Massachusetts.

Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press, Princeton.
Hansen, B. (1992). Tests for parameter instability in regressions with I(1) processes. Journal of Business and Economic Statistics, 10(3):321-335.

Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. The Annals of Statistics, 3(5):1163-1174.

Horváth, L. and Kokoszka, P. (2003). A bootstrap approximation to a unit root test statistic for heavy-tailed observations. Statistics and Probability Letters, 62(2):163-173.

Investopedia (2009). Spot exchange rate - Investopedia, a forbes digital company. http:// www.investopedia.com/terms/s/spotexchangerate.asp. [Online; accessed 27-October-2009].

Jarque, C. M. and Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6(3):255-259.

Johansen, S. (1988). Statistical analysis of co-integrating vectors. Journal of Economic Dynamics and Control, 12:231-254.

Johansen, S. (1991). Estimation and hypothesis testing of co-integration vectors in Gaussian vector autoregressive models. Econometrica, 59:1551-1580.

Kaplan, P. D. (2009). Déjà vu all over again: The volatility endured during the credit crunch isn' $t$ as unusual as one might expect. http://www.morningstar.co.uk/uk/news/article.aspx? lang=en-GB\&articleid=80478\&categoryid $=505$.

Knight, K. (1989). Limit theory for autoregressive-parameter estimates in an infinite-variance random walk. The Canadian Journal of Statistics, 17(3):261-278.

Knight, K. (1991). Limit theory for M-estimates in an integrated infinite variance process. Econometric Theory, 7(2):200-212.

Knight, K. and Samarakoon, M. (2009). Cointegration testing with infinite variance noise. Presented in Econometrics, Time Series Analysis and Systems Theory: A Conference in Honor of Manfred Deistler (18-20 June), Vienna, Austria.

Koedijk, K. G. and Kool, C. (1992). Tail estimates of East European exchange rates. Journal of Business and Economic Statistics, 10:83-96.

Koedijk, K. G., Schafgans, M. M. A., and Vries, C. G. D. (1990). The tail index of exchange rate returns. Journal of International Economics, 29:93-108.

Kosko, B. (2006). Most bell curves have thick tails. http://www.edge.org/q2006/q06_11.html.

Kurz-Kim, J.-R. and Loretan, M. (2007). A Note on the Coefficient of Determination in Models with Infinite Variance Variables. FRB International Finance Discussion Paper No. 895. Available at SSRN: http://ssrn.com/abstract=996664.

Levanoni, D. and Darnell, M. (1999). Purchasing power parity: Even the big mac can predict FX rates. First Quadrant Partner's Message, pages 6-14.

Lévy, P. (1924). Théorie des erreurs la loi de Gauss et les lois exceptionelles. Bulletin de la Société Mathématique de France, 52:49-85.

Lim, G. C. and Martin, V. L. (1995). Regression-based cointegration estimators with applications. Journal of Economic Studies, 22(1):3-22.

Lin, J.-W. and McLeod, A. I. (2008). Portmanteau tests for ARMA models with infinite variance. Journal of Time Series Analysis, 29(3):600-617.

Ling, S. and Peng, L. (2004). Hill's estimator for the tail index of an ARMA model. Journal of Statistical Planning and Inference, 123:279-293.

Lopez, C., Murray, C. J., and Papell, D. H. (2005). State of the art unit root tests and purchasing power parity. Journal of Money, Credit and Banking, 37:361-369.

Lothian, J. R. and Taylor, M. P. (1996). Real exchange rate behavior: The recent float from the perspective of the past two centuries. The Journal of Political Economy, 104:488-509.

MacDonald, R. (1993). Long-run purchasing power parity: Is it for real? Review of Economics and Statistics, 36(75):690-695.

Mandelbrot, B. (1963). The variation of certain speculative prices. The Journal of Business, 36(4):394-419.

Mandelbrot, B. (1967). The variation of some other speculative prices. The Journal of Business, 40(4):393-413.

Martins, L. F. (2009). Unit root tests and dramatic shifts with infinite variance processes. Journal of Applied Statistics, 36(5):547-571.

McCulloch, J. H. (1985). Interest-risk sensitive deposit insurance premia: Stable ARCH estimates. Journal of Banking and Finance, 9:137-156.

McCulloch, J. H. (1986). Simple consistent estimators of stable distribution parameters. Comm. Statist. Simul., 15:1109-1136.

McCulloch, J. H. (1996). Financial applications of stable distributions. In Maddala, G. S. and Rao, C. R., editors, Handbook of Statistics: Statistical Models in Finance, Vol. 14, pages 393-425. Elsevier, Amsterdam.

McCulloch, J. H. (1997). Measuring tail thickness to estimate the stable index alpha: A critique. Journal of Business and Economic Statistics, 15(1):74-81.

Mikosch, T. (1998). Periodogram estimates from heavy tailed data. In Adler, R. J., Feldman, R. E., and Taqqu, M. S., editors, A Practical Guide to Heavy Tails: Statistical Techniques and Applications, pages 241-257. Birkhäuser, Boston.

Mittnik, S., Paulauskas, V., and Rachev, S. T. (2001). Statistical inference in regression with heavy-tailed integrated variables. Mathematical and Computer Modelling, 34:1145-1158.

Mittnik, S. and Rachev, S. T. (1993). Modeling asset returns with alternative stable distributions. Econometric Reviews, 12(3):261-330.

Ng, S. and Perron, P. (2001). Lag length selection and the construction of unit root tests with good size and power. Econometrica, 69:1519-1554.

Nikias, C. L. and Shao, M. (1995). Signal Processing with Alpha-Stable Distributions and Applications. Wiley, New York.

Nolan, J. P. (1997). Numerical calculation of stable densities and distribution functions. Communications in Statistics-Stochastic Models, 13:759-774.

Nolan, J. P. (2001). Maximum likelihood estimation and diagnostics for stable distributions. In Barndorff-Nielsen, O. E., Mikosch, T., and Resnick, S. I., editors, Lévy Processes: Theory and Applications, pages 379-400. Birkhäuser, Boston.

Nolan, J. P. (2010). Stable Distributions - Models for Heavy Tailed Data. Birkhäuser, Boston. In progress, Chapter 1 online at academic2.american.edu/~jpnolan.

Obstfeld, M. and Rogoff, K. (1999). Foundations of International Macroeconomics. MIT Press, Cambridge.

Patel, J. (1990). Purchasing power parity as a long-run relation. Journal of Applied Econometrics, 5:367-379.

Patterson, K. D. and Heravi, S. M. (2003). The impact of fat-tailed distributions on some leading unit root tests. Journal of Applied Statistics, 30(6):635-667.

Paulauskas, V. and Rachev, S. T. (1998). Co-integrated processes with infinite-variance innovations. Annals of Applied Probability, 8:775-792.

Peňa, D. and Rodriguez, J. (2002). A powerful portmanteau test of lack of fit for time series. Journal of American Statistical Association, 97:601-610.

Phillips, P. C. B. (1986). Understanding spurious regressions in econometrics. Journal of Econometrics, 53:473-496.

Phillips, P. C. B. (1990). Time series regression with a unit root and infinite variance errors. Econometric Theory, 6(1):44-62.

Phillips, P. C. B. (1995). Robust non-stationary regression. Econometric Theory, 11:912-951.

Phillips, P. C. B. and Durlauf, S. N. (1986). Multiple time series with integrated variables. Review of Economic Studies, 33:311-340.

Phillips, P. C. B. and Hansen, B. E. (1990). Statistical inference in instrumental variables regression with I(1) processes. The Review of Economic Studies, 57(1):99-125.

Phillips, P. C. B. and McFarland, J. W. (1997). Forward exchange market unbiasedness: The case of the Australian dollar since 1984. Journal of International Money and Finance, 16(6):885-907.

Phillips, P. C. B., McFarland, J. W., and McMahon, P. C. (1996). Robust tests of forward exchange market efficiency. Journal of Applied Econometrics, 11:1-22.

Phillips, P. C. B. and Ouliaris, S. (1990). Asymptotic properties of residual based tests for cointegration. Econometrica, 58:165-193.

Phillips, P. C. B. and Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75:335-346.

Pierce, R. D. (1997). Application of the positive alpha-stable distribution. In Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics, pages 420-424, Banff, Alta., Canada.

Rachev, S. T., Menn, C., and Fabozzi, F. J. (2005). Fat-tailed and Skewed Asset Return Distributions: Implications for Risk Management, Portfolio Selection, and Option Pricing, chapter 7, pages 81-92. Wiley, Hoboken.

Rachev, S. T., Mittnik, S., Fabozzi, F. J., Focardi, S. M., and Jašić, T. (2007). Financial Econometrics: From Basics to Advanced Modeling Techniques, chapter 14, pages 465-494. Wiley, Hoboken.

Rachev, S. T., Mittnik, S., and Kim, J.-R. (1998). Time series with unit roots and infinitevariance disturbances. Applied Mathematics Letters, 11(5):69-74.

Razzak, W. A. (1999). The forward rate unbiasedness hypothesis in inflation-targeting regimes. Reserve Bank of New Zealand Discussion Paper No. G99/3.

Razzak, W. A. (2002). The forward rate unbiasedness hypothesis is revisited. International Journal of Finance and Economics, 7:293-308.

Resnick, R. and Stărică, C. (1997). Asymptotic behavior of Hill s estimator for autoregressive data. Commun. Statist.-Stochastic Models, 13:703-723.

Rogoff, K. (1996). The purchasing power parity puzzle. Journal of Economic Literature, 34:647-668.

Runde, R. (1997). The asymptotic null distribution of the Box-Pierce Q-statistic for random variables with infinite variance: An application to German stock returns. Journal of Econometrics, 78:205-216.

Samarakoon, M. and Knight, K. (2009). A note on unit root tests with infinite variance noise. Econometric Reviews, 28(4):314-334.

Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes. Chapman and Hall, New York.

Shin, D. W. and So, B. S. (1999). New tests for unit roots in autoregressive processes with possibly infinite variance errors. Statistics E Probability Letters, 44(4):387-397.

Shumway, R. H. and Stoffer, D. S. (2006). Time Series Analysis and Its Applications with $R$ Examples. Springer, New York.

Siegel, J. J. (1972). Risk interest rates and the forward exchange. Quarterly Journal of Economics, 89:173-175.

So, J. C. (1987). The Sub-Gaussian Distribution of Currency Futures: Stable Paretian or Nonstationary? Review of Economics and Statistics, 69:100-107.

Sosvilla-Rivero, S. and Garcia, E. (2006). Purchasing power parity revisited. In Zumaquero, A. M., editor, International macroeconomics: Recent Developments, pages 1-38. Nova Science Publishers, New York.

Stock, J. H. (1987). Asymptotic properties of least squares estimators of co-integrating vectors. Econometrica, 55(5):1035-1056.

Stock, J. H. and Watson, M. W. (1988). Testing for common trends. Journal of American Statistical Association, 83:1097-1107.

Taniguchi, M. (1983). On the second order asymptotic efficiency estimators of Gaussian ARMA processes. The Annals of Statistics, 11:157-169.

Taylor, A. M. (2002). A century of purchasing power parity. The Review of Economics and Statistics, 84:139-150.

Tokat, Y., Rachev, S. T., and Schwartz, E. S. (2003). The stable non-Gaussian asset allocation: a comparison with the classical Gaussian approach. Journal of Economic Dynamics and Control, 27(6):937-969.

Uchaikin, V. V. and Zolotarev, V. M. (1999). Chance and Stability: Stable Distributions and their Applications. VSP, Utrecht.

Westerfield, J. M. (1977). An examination of foreign exchange risk under fixed and floating rate regimes. Journal of International Economics, 7(2):181-200.

Wikipedia (2009). Exchange rate - Wikipedia, the free encyclopedia. [Online; accessed 27-October-2009].

Wilson, H. G. (1978). Least squares versus minimum absolute deviations estimation in linear models. Decision Sciences, 9(2):322-335.

Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. The MIT Press, Cambridge.

Xiao, Z. (2009). Quantile cointegrating regression. Journal of Econometrics, 150(2):248-260.

Xiaohu, G., Guanxi, Z., and Yaoting, Z. (2003). On the testing for alpha-stable distributions of ethernet network traffic. Journal of Electronics, 20(4):839-312.


[^0]:    ${ }^{1}$ We thank Professor Dermot Hayes for providing the data to us and helping us with Datastream.

[^1]:    ${ }^{1}$ See Gnedenko and Kolmogorov (1968) and Uchaikin and Zolotarev (1999) on the central limit theorems.

[^2]:    ${ }^{2}$ There are two most popular approaches for co-integration tests: residual-based type (Engle and Granger (1987); Phillips and Ouliaris (1990)) and Johansen $(1988,1991)$ type. Caner (1998) also examines the Johansen approach. In this dissertation, we only consider the residual-based approach.

[^3]:    ${ }^{3}$ On the super-consistency of OLS in a finite-variance error structure see Stock (1987) and Phillips and Durlauf (1986).
    ${ }^{4}$ On the property of median unbisedness see Birnbaum (1964).

[^4]:    ${ }^{5}$ The reader is referred to Samorodnitsky and Taqqu (1994) and Nolan (2010) for a detailed analysis of stable distributions.

[^5]:    ${ }^{6}$ MLE parameters, density functions and distribution functions of stable distributions as well as stable random variables can be derived by using the STABLE program for MATLAB which was written and provided by J. P. Nolan. For more information see http://academic2.american.edu/~jpnolan/stable/stable.html.

[^6]:    ${ }^{1}$ The non-stationary case when $|\delta|>1$, is an unappealing and not so common case where the effects of past shocks propagate over time. It is usually not considered in practice.

[^7]:    ${ }^{2}$ Note from the hypothesis that we are testing for a positive unit root. Assuming a positive unit root is typical in practice when dealing with economic data because economic data are often positively correlated.
    ${ }^{3}$ The values can be found in Enders (2004), p. 439.

[^8]:    ${ }^{4}$ We do not consider smaller stability indices because many empirical economic data possess $\alpha$ levels that are greater or equal to 1.5 (see Kurz-Kim and Loretan (2007), p. 17).

[^9]:    ${ }^{5}$ We make use of MLE procedure to estimate the stability indices.
    ${ }^{6}$ Asymptotic critical values for intermediate $\alpha$ levels can be found from equations (2.33) and (2.34).
    ${ }^{7}$ See section 2.3.3 on type I error.

[^10]:    ${ }^{8}$ Power $=1$ - type II error.

[^11]:    ${ }^{1} Y_{t}=\left(Y_{1 t}, Y_{2 t}^{\prime}\right)$.

[^12]:    ${ }^{2}$ See http://www.stats.uwo.ca/faculty/aim/2007/LinMcLeod/.

[^13]:    ${ }^{3}$ Peňa-Rodriguez test has better power than Box-Pierce test both for normal and stable errors (Peňa and Rodriguez (2002); Lin and McLeod (2008)).

[^14]:    ${ }^{\text {a }} \mathrm{P}$-values of Jarque-Bera normality test.

[^15]:    ${ }^{4}$ Exchange rate returns are calculated as the first-order log differences of exchange rates.

[^16]:    Note: $95 \%$ confidence intervals are given along with parameter estimates of $\alpha$ and $\beta$.

[^17]:    ${ }^{5}$ The reason why logs are considered instead of levels is because of Siegel (1972)'s paradox. For details on Siegel' s paradox, see Obstfeld and Rogoff (1999), p. 586.
    ${ }^{6}$ Investopedia, A Forbes Digital Company.
    ${ }^{7}$ Wikipedia, The Free Encyclopedia.

[^18]:    ${ }^{8}$ See Hakkio and Rush (1989).

[^19]:    ${ }^{9}$ Caner test results of Swiss spot rate, 1-month forward rate and 3-month forward rate reject the null of a unit root in levels as well (critical value is -1.88 for $\alpha=1.8$ ) but the difference between the computed test statistics and the critical value are slight. If we assumed normally distributed returns for Swiss data and applied PhillipsPerron test, the critical value for rejecting the null hypothesis of a unit root would be -1.95 and with that value we would not reject the unit root hypothesis in Swiss spot rate, 1-month and 3-month forward rates in levels. For $Z_{t}$ statistic, order of serial correlation $(l)$ is selected according to $l=\operatorname{int}\left(4(T / 100)^{1 / 4}\right)$.
    ${ }^{10}$ Here $k$ values are chosen according to the procedure mentioned in Phillips et al. (1996). Our data do not include saturdays and sundays.

[^20]:    * Rejects the null hypothesis of no co-integration at $5 \%$ significance level.
    $Z_{t}$ critical values are taken from Table 3.14 (constant).
    $\pi_{\phi}$ critical values are taken from Tables 2.2 through 2.6 (constant).

[^21]:    * Rejects the null hypothesis of no co-integration at $5 \%$ significance level.
    $Z_{t}$ critical values are taken from Table 3.14 (constant).
    $\pi_{\phi}$ critical values are taken from Tables 2.2 through 2.6 (constant).

[^22]:    * Rejects the null hypothesis of no co-integration at $5 \%$ significance level.
    $Z_{t}$ critical values are taken from Table 3.14 (constant).
    $\pi_{\phi}$ critical values are taken from Tables 2.2 through 2.6 (constant).

[^23]:    ${ }^{11}$ See Appendix on how to consistently estimate the long-run covariance matrices.
    ${ }^{12}$ Median unbiasedness is another term used for second order unbiasedness (see for example Taniguchi (1983)). If the median of the limiting distribution is equal to the true parameter, the estimator is median unbiased. Similarly if the mean of the limiting distribution is equal to the true parameter, the estimator is mean unbiased or unbiased in the usual sense.

[^24]:    ${ }^{13} \hat{u}_{0 t}$ is the estimate of $u_{0 t}$. It is the residual series from the equation (3.26a) via OLS (LAD) when estimating FM-OLS (FM-LAD).

[^25]:    ${ }^{14}$ See Phillips and McFarland (1997), p. 889.

[^26]:    ${ }^{1}$ See Rogoff (1996).

[^27]:    ${ }^{2}$ Strong-form and weak-form PPP are further explored in chapter 6.

[^28]:    ${ }^{1}$ See for example Granger and Newbold (1974) and Phillips (1986).
    ${ }^{2}$ A formal definition of co-integration due to Engle and Granger (1987) was also given in section 2.2.

[^29]:    ${ }^{3}$ Taylor (2002) also tests PPP through Johansen-type co-integration tests but can not find a strong supportive evidence and mentions that it might be due to the low power problem of those type of tests.
    ${ }^{4}$ Taylor (2002) chooses the lag lengths by a Lagrange multiplier criterion.

[^30]:    ${ }^{5}$ It is also known as the proportionality condition (Sosvilla-Rivero and Garcia, 2006).

[^31]:    ${ }^{6}$ As mentioned above, one study that uses the FM-OLS estimator to test for strong-form PPP is Crownover et al. (1996). They also investigate the possibility of thick tails for exchange rate data and find little evidence of thick tails with annual frequency. Therefore, they proceed with FM-OLS calculations. However, they apply the Hill (1975) estimator to estimate the tail indices. Hill (1975)'s method has been criticized by many studies for not giving accurate results (see for example McCulloch (1997) and Fofack and Nolan (1999) and the references therein.). Moreover, they apply the Hill (1975) estimator to the logarithms of exchange rate data directly. It is known that Hill (1975) estimator is only optimal when applied to i.i.d. data (Resnick and Stărică (1997); Ling and Peng (2004)).

[^32]:    ${ }^{1}$ The exchange rate data for U.K. are from the line RH. The reciprocal of the published data is used.
    ${ }^{2} s_{t}, p_{t}$ and $p_{t}^{*}$ series in our case are $\log$ nominal exchange rate, $\log$ PPI and $\log$ US PPI respectively for each country.

[^33]:    ${ }^{3}$ See for example MacDonald (1993) and Falk and Wang (2003).

[^34]:    ${ }^{\text {a }}$ Peňa-Rodriguez test statistic with stably distributed variables. ${ }^{\text {b }}$ Peňa-Rodriguez test statistic with normally distributed variables.
    ${ }^{c}$ Box-Pierce test statistic with stably distributed variables.
    ${ }^{d}$ Box-Pierce test statistic with normally distributed variables.
    ${ }^{e}$ Box-Pierce chi-square test statistic with normally distributed variables.

[^35]:    ${ }^{4}$ We have a similar structure for OLS-based VAR residuals.

[^36]:    ${ }^{5}$ Our conjecture that the actual test size will be less than the nominal size can be proven by Monte Carlo simulations.

[^37]:    ${ }^{1}$ See for example Hansen (1992).

