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ABSTRACT

Gaussian normal error assumption and OLS-based regression estimations form the basis of

co-integration testing techniques. However, many studies have found evidence that financial

and some important economic time series data such as exchange rate returns and inflation

rates are subject to high variability. In particular, their innovations exhibit the features of

skewness, excessive peakness around the mean and heavier tails than those of the Gaussian

normal distribution. Stable distributions (which are used to model high variability in data and

infinite-variance processes) provide more realistic distributional assumptions than the Gaussian

distribution for heavy-tailed financial and economic time series. Least Absolute Deviation

(LAD) based estimators often yield robust results for heavy-tailed data compared to least

squares based estimators. In this dissertation, as a natural extension of the extant studies,

we consider a new robust residual-based co-integration test under the assumption of infinite-

variance errors which are in the domain of attraction of a stable law. We implement the least

absolute deviation (LAD) procedure in our regression estimations.

In part I, the new co-integration tests are proposed. The test is parametric: the critical

values of the test statistic depend on the stability index of the stable distribution from which the

errors are driven. The unit root test statistic we consider under the null of no co-integration

is taken from Samarakoon and Knight (2009, Econometric Reviews, 28, 314–334). We find

the critical values of these new co-integration tests through Monte Carlo simulations and

observe that the null convergence of the test statistic is faster for lighter tails. Size and power

comparisons are included to evaluate the performance of the new residual-based tests relative

to conventional OLS-based ones which are due to Caner (1998, J. of Econometrics, 86, 155–

175). We observe that the LAD-based tests have power advantages over the OLS-based tests



xi

as the sample size gets larger and the tails get heavier with infinite-variance error assumption,

yet there are more size distortions associated with LAD-based tests especially for small sample

sizes compared to OLS-based ones.

The new tests are employed to test for forward rate unbiasedness hypothesis (FRUH)

with daily frequency data for a sample of eight currencies (Australian dollar, Canadian dollar,

French franc, German mark, Italian lira, Japanese yen, Swiss franc and U.K. pound) against

the U.S. dollar for 1-month, 3-month, 6-month and 1-year forward contracts.1 We also run

fully-modified ordinary least squares (FM-OLS) and fully-modified least absolute deviation

(FM-LAD) estimators on the co-integrating regressions to test the coefficient restrictions which

are implied by the FRUH. We observe that tests involving longer maturity forward contracts

(6-month and 1-year) and LAD-based co-integration tests mostly provide the evidence that is

inconsistent with FRUH.

In part II, weak and strong-form purchasing power parity (PPP) relations are re-examined

by using LAD-based procedures under infinite-variance error assumption. LAD-based co-

integration tests that are proposed in part I are used to test for weak-form PPP. FM-OLS

and FM-LAD procedures are used to test for the strong-form PPP hypothesis. The results

from LAD-based estimations are compared to their OLS-based counterparts. Monthly ex-

change rate (per U.S. dollar) and PPI data for a sample of eight countries (Austria, Canada,

Denmark, Germany, Japan, Netherlands, Sweden and the U.K.) from 1973:1 to 2009:12 are

used for estimation purposes. Neither weak-form nor strong-form PPP relations can be justi-

fied empirically regardless of the estimation procedure. Results from the new residual-based

co-integration tests give slightly more support of the weak-form PPP.

1We thank Professor Dermot Hayes for providing the data to us and helping us with Datastream.
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PART I

RESIDUAL-BASED TESTS OF CO-INTEGRATION WITH

INFINITE-VARIANCE ERRORS: SIMULATION ANALYSIS

AND AN EMPIRICAL APPLICATION
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CHAPTER 1. INTRODUCTION

1.1 Introduction and background

The behaviors of financial and some other important economic time series data such as

exchange rate returns and inflation rates are more extremal than what the Gaussian nor-

mal distribution can predict. Those kinds of data variables are more frequently exposed to

large fluctuations, crashes and booms that their distributions can be better approximated by

heavier-tailed distributions. Errors describing such time series are also often asymmetric and

have high peaknesses around their means. Stable family of distributions provide a better and

more flexible alternative than the normal distribution for heavy-tailed financial and economic

time series. Several parameters characterize the shape of a stable distribution. The param-

eter that determines the tail heaviness (stability index or characteristic exponent) provides

a benchmark to distinguish between finite-variance and infinite-variance stable distributions.

Normal distribution is a special case in the stable distribution family with finite-variance and

a stability index that equals to 2. A stability index less than 2 corresponds to infinite-variance

case.

Stable distributions are appealing to researchers not only in the applications of finance and

economics fields but also in other application areas including network traffic modeling, signal

processing and oceanography (Xiaohu et al. (2003); Nikias and Shao (1995); Pierce (1997)).

There are two unique properties of stable distributions that make them desirable for researchers

in many diverse fields: stability property and generalized central limit theorem. “Stability

property” makes stably distributed variables closed under linear combinations. Generalized

central limit theorem (GCLT) states that stable distributions are the only possible limit law

for sums of independent and identically distributed random variables when they are properly
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normalized and centered. This result is similar to the result of ordinary central limit theorem

(CLT) involving the normal distribution but CLT requires a finite second moment whereas

GCLT can be generalized to the infinite-variance case.1

The error terms in regression and time series models can be hypothesized as the sum of

a large number of factors. If those factors are independent with finite-variance and none of

them is “too large” compared to others, then each error term is normally distributed by CLT

(Griffiths et al., 1993, ch. 3). However, in practice, we observe that the behaviors of many

random processes do not conform well with the characteristics of the normal distribution.

Hence emphasis has shifted towards the stable distributions as they explain such processes in

a much better way and are justified by the GCLT.

The “stable” name is given due to Lévy (1924) who has introduced the class of stable or

α-stable distributions. The early recognition of stable distributions in the field of economics

appears in Mandelbrot (1963). Mandelbrot studies the cotton prices in the United States and

shows that logarithmic price changes behave more like an infinite-variance stable distribution

than a normal distribution. Fama (1965) studies the stock prices and arrives at a similar con-

clusion strengthening Mandelbrot’ s claims. Mandelbrot (1967) provides additional empirical

evidence for wheat and railroad stock price changes, as well as for interest and exchange rate

returns. He concludes that they possess a large number of extreme values and approximating

them with a normal distribution is not appropriate.

Many empirical papers propose several other distributions to explain the observed lep-

tokurtosis of financial returns. Those distributions include Student’ s t-distribution, mixture

of normals and Weibull distribution (Boothe and Glassman (1987); Hall et al. (1989); Mittnik

and Rachev (1993)). The main problem with such alternative distributions is that they do

not satisfy the “stability property” and the GCLT does not apply to them. Financial returns

are believed to be the aggregation or summation of vast number of independent small shocks

which are influenced by the arriving of new information and the decisions of market partici-

pants (McCulloch, 1996). GCLT says that the only possible limiting distributions of financial
1See Gnedenko and Kolmogorov (1968) and Uchaikin and Zolotarev (1999) on the central limit theorems.
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returns (which includes stock price, exchange rate and interest rate changes) have to be the

stable ones (Rachev et al. (2005), ch. 7; Rachev et al. (2007), ch. 14).

Infinite-variance stable distributions have been used in modeling foreign exchange rates

in numerous papers including Westerfield (1977), Bagshaw and Humpage (1986), So (1987),

Fofack and Nolan (2001) and Falk and Wang (2003). Interest rate returns and inflation rates

with stable distributions are considered in McCulloch (1985), Charemza et al. (2005) and

Bidarkota and McCulloch (1998). Falk and Wang (2003) calculate the stability indices of

inflation rates for 12 industrialized countries and find infinite-variance behavior.

There is an active research area on the testing of unit-roots and co-integration under the

assumption of infinite-variance errors. Unit root tests with OLS estimator are studied in Chan

and Tran (1989), Phillips (1990), Rachev et al. (1998), Horváth and Kokoszka (2003), Patterson

and Heravi (2003) and Martins (2009). Extensions to M-estimators are made in Knight (1989,

1991), Shin and So (1999) and Samarakoon and Knight (2009). OLS-based co-integration

tests for infinite-variance case are considered in Caner (1998), Paulauskas and Rachev (1998),

Mittnik et al. (2001), Chen and Hsiao (2010) and Fasen (2010).2

In literature, although there are many studies that consider unit root and co-integration

tests while assuming infinite-variance errors, the emphasis is mostly on least-squares (OLS)

based methods. OLS estimator is widely used in applications because it has a closed form

solution and it is easy to implement. However, when the error structure is heavy-tailed, OLS

estimator will only focus on few large errors and tend to ignore the rest of the data, resulting in

inferior estimates (Wilson (1978); Calder and Davis (1998)). For that purpose, LAD method

is used in practice as a better alternative when the errors have heavy tails or large outliers.

The outliers do not dominate the minimization procedure as they do for the OLS estimator.

The asymptotic theory of LAD estimator in non-stationary co-integrated regressions is

studied in Phillips (1995). He shows that with finite-variance errors, similar to OLS, LAD is

super-consistent—i.e. converging to the true parameter at the rate Op(T−1) rather than the

2There are two most popular approaches for co-integration tests: residual-based type (Engle and Granger
(1987); Phillips and Ouliaris (1990)) and Johansen (1988, 1991) type. Caner (1998) also examines the Johansen
approach. In this dissertation, we only consider the residual-based approach.
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usual rate Op(T−1/2).3 Phillips (1995) also considers the consistency of OLS and LAD with

infinite-variance errors and shows that LAD estimator has a faster convergence rate (Op(T−a))

than OLS (Op(T−1)), where a > 1 for infinite-variance stable noise. However, because of

endogeneity of the regressors, LAD and OLS estimators both suffer from a second order bias.

They are both first order or mean unbiased but not second order or median unbiased.4 Phillips

(1995) corrects that bias and develops fully modified versions of LAD and M-estimators. Bias

corrected fully modified OLS estimator is first studied in Phillips and Hansen (1990).

Xiao (2009) considers quantile regression (which includes LAD estimator as a special case)

in the co-integration context. He develops fully-modified quantile co-integrating regression es-

timators with endogenous regressors to remove the second order bias and nuisance parameters

that occur in the asymptotic theory. In a Monte Carlo experiment, he shows the efficiency gain

of the LAD estimator over the OLS estimator with errors generated from the finite-variance

t-distribution (see Tables 1a and 1b in the same study). As an extension, he suggests consid-

ering quantile regression in a co-integration setting with infinite-variance errors. Knight and

Samarakoon (2009) derive the limit distributions of M-estimators in co-integrated models with

infinite-variance errors for Johansen approach and show that the convergence of M-estimators

they consider are faster than the OLS.

Samarakoon and Knight (2009) propose new unit root tests under stably distributed

infinite-variance noise structure. They develop the asymptotic theory of M-estimators for

Dickey-Fuller type unit root tests. M-estimators are a broad class of estimators which in-

clude least-squares (OLS) and least absolute deviation (LAD) methods as special cases. In

particular, for a simple regression as given below,

Yt = β0 + β1Xt + εt (1.1)

The parameters β0 and β1 are estimated by minimizing,
3On the super-consistency of OLS in a finite-variance error structure see Stock (1987) and Phillips and

Durlauf (1986).
4On the property of median unbisedness see Birnbaum (1964).
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n∑
t=1

ρ(Yt − β0 − β1Xt) (1.2)

where ρ is a suitably chosen loss function. The LAD estimator is found by setting ρ(x) = |x|

and the OLS estimator is found by setting ρ(x) = x2.

In part I, we study new types of residual-based co-integration tests based on the LAD esti-

mator and based on the unit root test statistics considered in Samarakoon and Knight (2009).

We tabulate the critical values of our co-integration tests through Monte Carlo simulations.

We assume that the error terms in the regression equations come from the α-stable distribu-

tion family. In section 1.2 there is a brief summary of the properties of α-stable distributions.

Chapter 2 contains the details of the LAD-based co-integration tests that we propose and gives

an overview of the relevant literature of unit root tests and residual-based co-integration tests.

Monte Carlo simulations that we run in order to derive the critical values of our tests are also

described in section 2.3 of chapter 2.

We apply the new LAD-based tests together with OLS-based ones of Caner (1998) to

forward exchange rate market and test for the forward rate unbiasedness hypothesis (FRUH).

The dataset we consider includes 1-month, 3-month, 6-month and 1-year maturities for the

forward contracts. We observe that FRUH does not get support from the data mostly with

LAD-based co-integration tests and the tests involving 6-month and 1-year forward contracts.

The details of the empirical analysis are given in chapter 3. Chapter 4 concludes.

1.2 Stable distributions

An α-stable distribution is described by four parameters: α, β, σ, µ. If a random variable

X has an α-stable distribution then it is denoted as X ∼ Sα(β, σ, µ). α ∈ (0, 2] is called the

stability index and it determines the tail shape. The case of α = 2 corresponds to the Gaussian

normal distribution and when α < 2, the variance of X does not exist. As α gets smaller tails

get heavier, if α ≤ 1 tails are so heavy that even the mean does not exist. β ∈ [−1, 1] is the
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skewness parameter and it determines the degree and sign of asymmetry, σ > 0 is the scale

parameter and µ ∈ R is the location parameter.

Infinite-variance means that the variance of the distribution is not defined. It is somehow

counter-intuitive to argue for an infinite-variance as in practice we deal with finite sample

size and for any finite set of data if we apply the formula of variance, we will get a finite

value. But the financial return data are defined over an infinite range (from negative infinity

to positive infinity). Over that range, finite-variance distributions assign so little probability

to the tails that they have finite variances. Some distributions on the other hand assign much

higher probabilities to the tails and have infinite variances (Kaplan, 2009). For an α-stable

distribution with 0 < α < 2 we can write,5

E|X|p < ∞ for 0 < p < α

E|X|p = ∞ for p ≥ α

where E|X|p =
∫∞
−∞ |x|

pf(x)dx, p is any real number and f(.) is the probability density

function of X. Figure 1.1 compares simulated stable variables (α = 1.7) with standard normal

variables (α = 2). From the figure we can see that stable distribution allows for more volatility

than the normal distribution. Other features of stable distribution include excessive peakness

around the mean and heavy-tails.

Probability density functions of α-stable distributions exist and are continous, but their

closed form solutions are not known except for three special cases; Cauchy distribution: (α =

1, β = 0), Gaussian distribution: (α = 2, β = 0), Lévy distribution: (α = 0.5, β = ±1). Stable

random variables are uniquely characterized through their characteristic function,
5The reader is referred to Samorodnitsky and Taqqu (1994) and Nolan (2010) for a detailed analysis of stable

distributions.
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Figure 1.1: Simulated S1.7(0, 1, 0) variables with N(0, 1) variables

E exp{iτX} =


exp

{
− σα|τ |α[1 + iβ(sign(τ) tan(πα

2 ))] + iµτ
}

α 6= 1

exp
{
− σ|τ |[1 + iβ( 2

π )(sign(τ)) ln |τ |] + iµτ
}

α = 1

 (1.3)

In practice the values of stable parameters are unknown and have to be estimated. Max-

imum likelihood estimation (MLE) method gives accurate and reliable estimates of stable

parameters. The method is briefly explained next.

1.2.1 Estimating the stable parameters

Maximum likelihood procedure is one way of estimating the stable parameters. It has

been advocated by McCulloch (1997) and Fofack and Nolan (1999) primarily against the Hill

(1975) estimator which is a widely used stability index estimator in literature. Recently, Borak

et al. (2005) compares several different estimation techniques and mentions MLE as being

“almost always the most accurate, in particular, with respect to the skewness parameter”.

The procedure involves deriving a numerical approximation of the density function of the

stable distribution and estimating (α, β, σ, µ) by maximizing the likelihood function (Nolan,

2001). The following equation describes a relation between the probability density function
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f(x) and the characteristic function ϕ(t),

f(x) =
1
2π

∫ ∞

−∞
exp{−itx}ϕ(t)dt (1.4)

Given this relation one can calculate the density function f(x) for all x. A highly accu-

rate method for that is discussed in Nolan (1997). The likelihood function can then be found

given a sample X = (X1, X2, ..., XT ). Maximum likelihood estimation applies a quasi-Newton

method to numerically maximize the likelihood function with respect to the unknown parame-

ters (α, β, σ, µ) by using the quantile estimator of McCulloch (1986) as an initial approximation.

In this study, we implement Nolan’ s approach as mentioned in estimating (α, β, σ, µ).6

Let the parameter vector be denoted by ~θ = (α, β, σ, µ). The parameter space is Θ =

(0, 2] × [−1, 1] × (0,∞) × (−∞,∞). The likelihood function for an i.i.d. stable sample X =

(X1, X2, ..., XT ) is given by,

`( ~θ ) =
T∑

i=1

log f( Xi\~θ ) (1.5)

Consistency and asymptotic normality of the ML estimator are established in DuMouchel

(1973). Covariance matrix of ML estimator is denoted by T−1B, where T is the sample size,

B = (bij) is the inverse of 4 × 4 Fisher information matrix I. The components of I are given

by,

Iij =
∫ ∞

−∞

∂f

∂θi

∂f

∂θj

1
f

dx (1.6)

Large sample confidence intervals for θi ∈ Θ are given by,
6MLE parameters, density functions and distribution functions of stable distributions as well as stable random

variables can be derived by using the STABLE program for MATLAB which was written and provided by J. P.
Nolan. For more information see http://academic2.american.edu/˜jpnolan/stable/stable.html.
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θi ± zφ/2

σθ̂i√
T

(1.7)

where σθ̂1
, ..., σθ̂4

are the square roots of the diagonal entries of B, (1−φ) is the percentage of the

confidence interval, and zφ/2 corresponds to the tabular value of standard normal distribution

that comes closest to the specified percentile φ/2. The standard theory applies when the

parameters are in the interior of the parameter space ~θ.
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CHAPTER 2. TESTING FOR CO-INTEGRATION

2.1 Unit root tests

Many of the economic and financial time series are non-stationary and they possess a

single unit root—i.e. they are I(1) or difference stationary processes. There are many forms

of stationarity, here stationarity denotes weak stationarity. A unit root process violates the

conditions of being a weak stationary process (Shumway and Stoffer, 2006, p. 22). If a time

series sequence {xt} is non-stationary but becomes stationary after differencing d times then

it is integrated of order d or is an I(d) process. One important feature of a unit root variable is

that, the persistence of shocks to that variable will be infinite. This in turn will have important

implications while testing for co-integration so unit root variables are discussed briefly. If we

consider the simple AR(1) process,

xt = δxt−1 + εt, εt ∼ i.i.d. (2.1)

After successive substitutions with an initial condition x0, one can write equation (2.1) as,

xt = δtx0 + δt−1ε1 + δt−2ε2 + . . . + δ2εt−2 + δεt−1 + εt (2.2)

The series xt is stationary when |δ| < 1 and the effects of past shocks die out as t → ∞.

Conversely, the series is non-stationary if |δ| = 1 and the effects of past shocks have a non-

decaying effect on xt.1 Stationary variables tend to revert back to a long-run mean over time,
1The non-stationary case when |δ| > 1, is an unappealing and not so common case where the effects of past

shocks propagate over time. It is usually not considered in practice.
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whereas non-stationary unit root variables have no tendency to be mean reverting and wander

randomly no matter how much we go further along the time index.

Testing for unit roots enables us to distinguish between stationary and non-stationary cases.

In this paper, we apply Phillips and Perron (1988) and Samarakoon and Knight (2009) type

unit root tests to test for a unit root in our data. Phillips-Perron tests are designed for normally

distributed errors and involve running OLS estimations. Since we have infinite-variance error

assumption and consider LAD estimations, we also implement Samarakoon and Knight (2009)

type unit root tests, which require infinite-variance stable errors and use M-estimators with

LAD being a special case.

Earlier versions of unit root tests for normal errors and OLS-based regressions are studied

in Dickey and Fuller (1979). They consider three different versions of equations to test for a

unit root,

∆xt = γxt−1 + εt, (2.3)

∆xt = µ + γxt−1 + εt, (2.4)

∆xt = µ + γxt−1 + βt + εt (2.5)

The null hypothesis H0 : γ = 0, tests for a unit root in xt sequence against the alternative

H1 : γ < 0, where the sequence is stationary.2 The resulting t-statistic, tγ̂ = γ̂/s.e.(γ̂),

is compared to the appropriate Dickey-Fuller critical values.3 The tests require the error

structure to be normal and independent and identically distributed (i.i.d.). Otherwise an

augmented version of Dickey-Fuller tests can be used by including the p lag values of xt say in

equation (2.3),
2Note from the hypothesis that we are testing for a positive unit root. Assuming a positive unit root is

typical in practice when dealing with economic data because economic data are often positively correlated.
3The values can be found in Enders (2004), p. 439.
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∆xt = φxt−1 +
p∑

i=2

λi∆xt−i+1 + εt (2.6)

Phillips-Perron type unit root tests allow for serial correlation and heteroskedasticity in

the innovation structure and involve running one of the three OLS regressions in the form,

xt = αxt−1 + ut, (2.7)

xt = µ + αxt−1 + ut, (2.8)

xt = µ + β(t− T/2) + αxt−1 + ut (2.9)

where T denotes the sample size. The innovation series ut do not have to be i.i.d.. In mod-

els (2.7), (2.8) and (2.9), the null hypothesis of a unit root is H0 : α = 1, and is tested against

the alternative H1 : α < 1. Phillips-Perron adjusted t-statistics for the above three models are

given by,

Zt = (S0/ST l)tα̂ − 1/2(S2
T l − S2

0)

T−1ST l

(
T∑

t=2

x2
t−1

)1/2
−1

(2.10)

Ztµ = (S0/ST l)tα̂ − (1/2ST l)(S2
T l − S2

0)

[
T−2

T∑
t=2

(
xt−1 − X̄−1

)2]−1/2

(2.11)

Ztτ = (S0/ST l)tα̂ −
(
T 3/(4

√
3D1/2

x ST l)
)

(S2
T l − S2

0) (2.12)

where Zt, Ztµ and Ztτ are the test statistics for models (2.7), (2.8) and (2.9) respectively. S0

is the regression standard error, tα̂ = (α̂ − 1)/s.e.(α̂), X̄−1 is the mean of xt−1, Dx is the

determinant of (X ′X) with X denoting the matrix of explanatory variables in model (2.9).

S2
T l is given by,
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Table 2.1: 5% critical values of Zt, Ztµ , Ztτ statistics for Caner unit root test

α standarda constantb constant and trendc

1 -1.68 -3.22 -3.56
1.5 -1.83 -2.98 -3.45
1.6 -1.87 -2.96 -3.44
1.7 -1.88 -2.91 -3.44
1.8 -1.88 -2.90 -3.42
1.9 -1.90 -2.89 -3.42

a Phillips-Perron critical value (α = 2) at 5% significance is -1.95.
b Phillips-Perron critical value (α = 2) at 5% significance is -2.86.
c Phillips-Perron critical value (α = 2) at 5% significance is -3.41.

S2
T l = T−1

T∑
t=1

û2
t + 2T−1

l∑
s=1

ωsl

T∑
t=s+1

ûtût−s (2.13)

where ωsl = l− s/(l + 1), l is the number of autocorrelations of ût. Five percent critical values

of Phillips and Perron (1988) tests can be found in Hamilton (1994), p. 763.

Caner (1998) considers Phillips-Perron type unit root test with OLS regressions but assumes

errors that are in the domain of attraction of a stable law. He derives the critical values of

Phillips-Perron unit root tests with infinite-variance errors. His study includes the critical

values for α = 0.5, α = 1 and α = 1.5 only. We calculated the 5% critical values for other α

levels (α = 1.6, 1.7, 1.8, 1.9), through Monte Carlo simulations. The results of those simulations

are presented in Table 2.1 along with the 5% critical values of Phillips-Perron test. Similar

to Caner (1998), the number of iterations is set to 20,000 and the sample size is set to 1,000.

Standard, constant, constant and trend cases correspond to models (2.7), (2.8) and (2.9)

respectively.

Samarakoon and Knight (2009) unit root tests extend Dickey-Fuller type unit root tests to

infinite-variance errors and M-estimators. Tests involve running three regressions,
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∆xt = φxt−1 +
p∑

i=2

λi∆xt−i+1 + vt, (2.14)

∆xt = µ + φxt−1 +
p∑

i=2

λi∆xt−i+1 + vt, (2.15)

∆xt = µ + β(t− 1) + φxt−1 +
p∑

i=2

λi∆xt−i+1 + vt (2.16)

where vt is i.i.d. stable with α < 2. Unit root hypotheses H0 : φ = 0 are tested against the

alternative H1 : φ < 0.

Equations (2.14), (2.15) and (2.16) can be estimated via LAD estimator. Then the corre-

sponding test statistics for each equation is given by,

πφ =

 T∑
t=p+1

x2
t−1

1/2

φ̂LAD/ (2f(θ))−1 , (2.17)

πµ =

 T∑
t=p+1

(xt−1 − x̄)2

1/2

φ̂LAD/ (2f(θ))−1 , (2.18)

πτ = C2
T φ̂LAD/ (2f(θ))−1 (2.19)

where f(.) is the probability density function of vt, θ is the median of vt and x̄ is the mean of

xp+1, . . . , xT . C2
T is defined as,

C2
T =

T∑
t=p+1

[
xt−1 +

6t

T

T∑
s=p+1

(
1− 2s

T

)
xs−1

+
T∑

s=p+1

(
2− 3s

T

)
xs−1

]2

(2.20)

Samarakoon and Knight (2009) have shown that the asymptotic distributions of πφ, πµ

and πτ statistics are standard normal.
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2.2 Residual-based co-integration tests

A vector of time series zt are co-integrated of order d, b, denoted zt ∼ CI(d, b), if all the

components of zt are I(d) and there exists a linear combination of them such that β′zt =

ut; ut is I(d− b), b > 0, β 6= 0 is the co-integrating vector (Engle and Granger, 1987).

In economic applications, it is typical to consider the case: d = 1, b = 1, because the

co-integrating combination is treated as an “equilibrium” relationship (Banerjee et al., 1993,

ch. 5). The existence of a long-run equilibrium among I(1) economic variables requires those

variables to be co-integrated. When such an equilibrium exists, the deviations from the equi-

librium are only temporary. The components of zt vector can be interpreted as economic time

series variables with an equilibrium condition: β′zt = ut and ut as the deviation from that

equilibrium. If there is co-integration among the components of zt, the economy reverts back

towards equilibrium whenever it moves away and ut is I(0). If on the other hand, ut series is

I(1), then the effects of past shocks to ut will never die out and the long-run equilibrium can

not be maintained (Enders, 2004, ch. 6).

One popular way of testing for co-integration is through residual-based methods. Residual-

based tests of co-integration appear in an early study of Engle and Granger (1987). The method

is implemented by choosing one of the variables of zt as the dependent variable; say yt, and

the rest as explanatory variables, say vector xt. Then it involves two steps; deriving the OLS

residuals from the regression below,

yt = β′xt + ut (2.21)

As a next step, applying a unit root test on the residuals through running OLS to the

regression,

∆ût = φût−1 +
p∑

i=2

λi∆ût−i+1 + vt (2.22)
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Based on their power comparisons Engle and Granger (1987) suggest performing an aug-

mented Dickey-Fuller test to test for a unit root in the residuals. The null hypothesis is

H0 : φ = 0 and the alternative hypothesis is H1 : φ < 0. The null hypothesis corresponds

to the hypothesis of no co-integration among the components of zt series and the alternative

corresponds to co-integration. Test statistic used to test for this hypothesis is in the form of

the usual t-statistic, t = φ̂OLS/s.e.(φ̂OLS).

Engle and Granger (1987) assume that the error processes driving xt and yt series in

equation (2.21) are i.i.d. normal. Phillips and Ouliaris (1990) assume the error terms to be

finite-variance and strict stationary processes. They consider running OLS regressions in the

form of equation (2.21) and OLS regressions on the residuals,

ût = δût−1 + vt (2.23)

The null hypothesis to test for no co-integration is then H0 : δ = 1 against the alternative

of co-integration H1 : δ < 1. Phillips and Ouliaris (1990) derive the asymptotic theory for

Phillips and Perron (1988) Zt statistic among other statistics. They also tabulate the critical

values of those test statistics by assuming an i.i.d. normal error structure for xt and yt series

in equation (2.21). The critical values change whether a constant or a trend is included in the

equation.

Here we mention Zt statistic because it is the test statistic that we will use for our com-

parisons later. The asymptotics of Zt statistic are the same as the asymptotics of augmented

Dickey-Fuller statistic (Phillips and Ouliaris (1990); Caner (1998)). Zt statistic is already stud-

ied in section 2.1. Here it is re-written in another form to be consistent with the formulation

in Phillips and Ouliaris (1990). Equation (2.10) and below formulation are equivalent.

Zt can also be written as,
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Zt =
( T∑

t=2

û2
t−1

)1/2

(δ̂OLS − 1)/stl − (1/2)(s2
tl − s2

k)

[
stl

(
T−2

T∑
t=2

û2
t−1

)1/2
]−1

(2.24)

where,

s2
tl = T−1

T∑
l

v̂2
t + 2T−1

l∑
s=1

ωsl

T∑
t=s+1

v̂tv̂t−s (2.25)

s2
k = T−1

T∑
l

v̂2
t (2.26)

and ωsl = l − s/(l + 1), l is the number of autocorrelations of v̂t.

Caner (1998) extends the asymptotic theory studied in Phillips and Ouliaris (1990) to

infinite-variance case and assumes that errors that derive xt and yt in equation (2.21) come

from α-stable distribution with α < 2. Similar to the studies of Engle and Granger (1987) and

Phillips and Ouliaris (1990), he runs OLS-based regressions. He also simulates the asymptotic

critical values of some of the test statistics that are considered in Phillips and Ouliaris (1990).

2.3 Residual-based co-integration tests via LAD estimation

2.3.1 Critical values through Monte Carlo simulations

Unlike the previous studies that employ OLS based estimations, here we apply residual-

based tests of co-integration through LAD estimation procedures. We consider the data gen-

erating processes of xt and yt in the form,

yt = yt−1 + ε1t, ε1t ∼ i.i.d. Sα(0, 1, 0), α < 2 (2.27a)

xt = xt−1 + ε2t, ε2t ∼ i.i.d. Sα(0, 1, 0), α < 2 (2.27b)



19

Following regressions are run through LAD,

yt = β0 + β1xt + ut (2.28)

yt = β0 + β1t + β2xt + ut (2.29)

Another LAD regression is run on the residuals from equations (2.28) and (2.29),

∆ût = φût−1 +
p∑

i=2

λi∆ût−i+1 + vt, vt ∼ i.i.d. (2.30)

Testing the null hypothesis of no co-integration corresponds to testing the null hypothesis

of a unit root in the residual ût series; H0 : φ = 0 against the alternative of co-integration

H1 : φ < 0.

As mentioned in section 2.1, Samarakoon and Knight (2009) derive the asymptotics of

LAD-based test statistics for Dickey-Fuller type unit root tests under the existence of infinite-

variance stably distributed errors. They show that under the null of unit root of a raw time

series say ut from a regression as given below,

∆ut = φut−1 +
p∑

i=2

λi∆ut−i+1 + ξt, ξt ∼ i.i.d. Sα(β, σ, µ), α < 2 (2.31)

The statistic πφ has an asymptotic standard normal distribution,

πφ =

{∑T
t=p+1 u2

t−1

}1/2
φ̂LAD

(2f(θ))−1
(2.32)

Since ut is a raw time series, the asymptotic critical values for πφ can not be used in testing

the unit root hypothesis of residual series ût in equation (2.30) (see for example Hamilton



20

(1994), p. 592). The critical values of πφ statistic for testing H0 : φ = 0 in equation (2.30), are

calculated through our Monte Carlo simulations. We consider two co-integrating regressions,

one with constant and one with constant and trend.

Tables 2.2 through 2.6 present the 5% critical values for different stability indices (α =

1.5, 1.6, 1.7, 1.8, 1.9) and for different sample sizes. The number of iterations is 50,000. Five

percent critical values correspond to the 5-th percentile of the simulated distribution of πφ

under the null hypothesis of no co-integration. Our simulation results for the critical values

depend only on α but not on other stable parameters. Although the data generating processes

assume that xt and yt are AR(1), the critical values are robust to higher autoregressive orders.

Table 2.2: 5% critical values for α=1.5

T constant constant and trend
50 -3.19 -3.84
100 -2.90 -3.37
500 -2.62 -3.01
1,000 -2.52 -2.92
2,000 -2.45 -2.84
3,000 -2.40 -2.81
5,000 -2.34 -2.78
7,000 -2.30 -2.75
15,000 -2.24 -2.73
∞ -2.15 -2.77

Table 2.3: 5% critical values for α=1.6

T constant constant and trend
50 -3.08 -3.63
100 -2.92 -3.34
500 -2.71 -3.06
1,000 -2.64 -2.97
2,000 -2.59 -2.90
3,000 -2.53 -2.87
5,000 -2.50 -2.83
7,000 -2.47 -2.78
15,000 -2.38 -2.74
∞ -2.30 -2.67

We mainly consider cases with α ≥ 1.5.4 Convergence of the critical values to their asymp-

totic values tends to be faster for lighter tails. As α approaches 2—i.e. the error distribution

gets similar to the normal distribution, the critical values approach to their large sample values

faster. An equation to find the asymptotic critical values for the constant without trend case

can be estimated by OLS as below,
4We do not consider smaller stability indices because many empirical economic data possess α levels that

are greater or equal to 1.5 (see Kurz-Kim and Loretan (2007), p. 17).
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Table 2.4: 5% critical values for α=1.7

T constant constant and trend
50 -3.05 -3.53
100 -2.96 -3.32
500 -2.80 -3.12
1,000 -2.75 -3.07
2,000 -2.70 -3.02
3,000 -2.67 -2.99
5,000 -2.65 -2.95
7,000 -2.63 -2.91
15,000 -2.56 -2.85
∞ -2.48 -2.76

Table 2.5: 5% critical values for α=1.8

T constant constant and trend
50 -3.02 -3.44
100 -2.99 -3.33
500 -2.89 -3.22
1,000 -2.86 -3.18
2,000 -2.81 -3.14
3,000 -2.80 -3.12
5,000 -2.77 -3.07
7,000 -2.76 -3.05
15,000 -2.69 -3.00
∞ -2.65 -2.93

Table 2.6: 5% critical values for α=1.9

T constant constant and trend
50 -3.01 -3.41
100 -3.01 -3.36
500 -3.00 -3.34
1,000 -2.99 -3.32
2,000 -2.98 -3.31
3,000 -2.97 -3.29
5,000 -2.95 -3.29
7,000 -2.95 -3.27
15,000 -2.93 -3.25
∞ -2.89 -3.21

c.v. = 0.62− 1.83α R2 = 0.99 (2.33)

(0.15) (0.09)

Similarly, asymptotic critical values for the constant and trend case can be estimated by

OLS as below,
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c.v. = −18.15 + 19.26α− 6.00α2 R2 = 0.99 (2.34)

(1.65) (1.92) (0.57)

where c.v. is the abbreviation for critical value and the numbers in parantheses are the standard

errors of the coefficients.

Caner (1998) is an influential study that extends the widely used OLS-based co-integration

tests to infinite-variance errors. We will make size and power comparisons between the residual-

based co-integration tests that are studied in Caner (1998) and residual-based co-integration

tests through LAD estimation procedures that we propose. We consider Phillips and Perron

(1988)’ s Zt statistic. The asymptotics of Zt statistic are derived in Phillips and Ouliaris

(1990) for residual-based co-integration tests and extended to the infinite-variance case in

Caner (1998).

2.3.2 Size comparisons

Tables 2.7 and 2.8 show the size comparisons between Caner test and our test for no trend

and trend cases (equations (2.28) and (2.29) respectively). While making the size comparisons,

asymptotic critical values are used. Comparisons are made for α=1.5, 1.65, 1.9 with 50,

100, 500, 1,000 and 5,000 sample sizes with 20,000 iterations. The framework used for size

calculations are as follows. First we consider a VAR(1) system of yt and xt where both series

are simulated as unit root I(1) processes as in the system (2.27) with equal stability indices:

yt = a10 + a11yt−1 + a12xt−1 + ε1t (2.35)

xt = a20 + a21yt−1 + a22xt−1 + ε2t (2.36)

In each iteration, coefficients in equations (2.35) and (2.36) are estimated via OLS (LAD)

method when we are calculating the size for Caner (our) test. Next, the residuals ε̂1t and ε̂2t
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are taken and the stability indices (α) are estimated from each residual series. We find that

especially for small sample size, the stability indices from the two residual series are not always

found to be equal to each other.5 In that case we follow a conservative approach: for Caner test

we pick the smallest α level to determine the critical value and for our test we pick the largest

α level to determine the critical value. The reason for that is because Caner test’ s critical

values decrease as α decreases for any size and our test’ s critical values increase as α decreases.

Last, we calculate the rejection rate with the asymptotic critical value corresponding to the

estimated α to calculate the size of the test for each sample size.6

As the size comparison results indicate, both tests have size distortions for small sample

sizes (T = 50, 100), but our test has more compared to Caner test. For larger samples, Caner

test’ s empirical sizes equal to the nominal size (5%), whereas our test has higher empirical size

than 5%, which means the probability of making a type I error is greater than the predetermined

5% level.7 Our test’ s size distortions are not so severe as α approaches 2. Size evaluation

results of no trend and trend cases are similar. It is also worthwhile to mention that, for

Caner test, the convergence of the test statistic (Zt) is faster: approximately 500 sample size

is enough for Zt to attain its asymptotic values. Our test, on the other hand, requires much

larger sample sizes. Even though the convergence is faster for α > 1.7, still a sample size of

approximately 20,000 is needed for πφ to attain its asymptotic values. For 1.5 ≤ α ≤ 1.7,

the sample size required for convergence is around 30,000. For that purpose, the usage of

size-corrected critical values is recommended for our test especially for small sample sizes and

small α levels around 1.5.

2.3.3 Power comparisons

Decisions based on statistical tests can be wrong due to two kinds of errors: type I and type

II errors. Type I error is the probability of rejecting the null when the null hypothesis is true.

It denotes the significance level of a test and as a rule of thumb it is set equal to 1%, 5% or 10%.
5We make use of MLE procedure to estimate the stability indices.
6Asymptotic critical values for intermediate α levels can be found from equations (2.33) and (2.34).
7See section 2.3.3 on type I error.
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Table 2.7: Empirical sizes for 5% nominal size (constant)

α=1.5 α=1.65 α=1.9
T Caner test Our test Caner test Our test Caner test Our test
50 0.07 0.18 0.07 0.12 0.07 0.07
100 0.06 0.15 0.06 0.11 0.06 0.07
500 0.05 0.12 0.05 0.10 0.05 0.07
1,000 0.05 0.11 0.05 0.09 0.05 0.06
5,000 0.05 0.08 0.05 0.07 0.05 0.07

Table 2.8: Empirical sizes for 5% nominal size (constant and trend)

α=1.5 α=1.65 α=1.9
T Caner test Our test Caner test Our test Caner test Our test
50 0.07 0.16 0.08 0.13 0.08 0.07
100 0.06 0.12 0.06 0.11 0.06 0.07
500 0.05 0.07 0.06 0.10 0.05 0.06
1,000 0.05 0.05 0.05 0.08 0.05 0.06
5,000 0.05 0.05 0.05 0.07 0.05 0.06

Here we will fix the size to 5%. Type II error is the probability of not rejecting the null when

the null hypothesis is false. Power of a statistical test is equal to the probability of rejecting the

null when it is false.8 Power comparison results we present are based on size-adjusted power.

For power comparisons the data generating processes (DGPs) are chosen to be,

ut = ρut−1 + vt, vt ∼ i.i.d. Sα(0, 1, 0), (2.37a)

xt = xt−1 + εt, εt ∼ i.i.d. Sα(0, 1, 0), (2.37b)

yt = a1 + a2xt + ut (2.37c)

where a1 = 0.9 and a2 = 0.5. After generating xt and yt series as above, the following

regressions are run,
8Power = 1 - type II error.
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yt = β0 + β1xt + et (2.38)

yt = β0 + β1t + β2xt + et (2.39)

Note that xt and yt are co-integrated for ρ < 1 and not co-integrated for ρ = 1 in the

system (2.37). This DGP is similar to the ones in Blangiewicz and Charemza (1990) (DGP

2) and Engle and Yoo (1987). Graphs of co-integrated and non-co-integrated series that are

derived from the system (2.37) with a1 = 0 are illustrated in Figure 2.1. Panels (a), (c) and

(e) are produced by simulating stable random variables with α = 1.7, β = 0, σ = 1 and µ = 0

for the errors in the DGP. Panels (b), (d) and (f) are produced by simulating standard normal

random errors. For three-variable case, two explanatory variables x1t and x2t are generated as

I(1). The DGPs in that case are as follows,

ut = ρut−1 + vt, vt ∼ i.i.d. Sα(0, 1, 0), (2.40a)

xi,t = xi,t−1 + εi,t, εi,t ∼ i.i.d. Sα(0, 1, 0), i = 1, 2 (2.40b)

yt = 0.5x1t + 0.5x2t + ut (2.40c)

For power comparisons, a unit root test is applied on the residuals (êt) from equations (2.38)

and (2.39): no trend and trend included in co-integrating equation. There are two test statistics

considered: Zt and πφ. Zt is calculated for OLS estimations and πφ is calculated for LAD

estimations. The rejection rate for the unit root tests are calculated for different values of

ρ = 1, 0.9, 0.8,...etc.. The number of iterations is 20,000. Some results from power comparisons

are given in Figures 2.2 (constant) and 2.3 (constant and trend). In the figures, T denotes the

sample size and α is the stability index.

Results of power comparisons show that as the sample size gets larger and tails of the

distribution gets heavier, LAD-based co-integration tests that we consider have superior power

over the conventional OLS-based ones with infinite-variance errors. If the sample size gets
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(a) Two co-integrated series with S1.7(0, 1, 0) errors (b) Two co-integrated series with N(0, 1) errors

(c) Three co-integrated series with S1.7(0, 1, 0) errors (d) Three co-integrated series with N(0, 1) errors

(e) Three non-co-integrated series with S1.7(0, 1, 0) errors (f) Three non-co-integrated series with N(0, 1) errors

Figure 2.1: Graphs of co-integrated and non-co-integrated series with stable and normal errors
derived from systems (2.37) (with a1 = 0) and (2.40)
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(a) α = 1.5, T = 50 (b) α = 1.9, T = 50

(c) α = 1.5, T = 100 (d) α = 1.9, T = 100

(e) α = 1.5, T = 500 (f) α = 1.9, T = 500

Figure 2.2: Size-adjusted power comparisons (constant)
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(a) α = 1.5, T = 50 (b) α = 1.9, T = 50

(c) α = 1.5, T = 100 (d) α = 1.9, T = 100

(e) α = 1.5, T = 500 (f) α = 1.9, T = 500

Figure 2.3: Size-adjusted power comparisons (constant and trend)
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large, empirical power of both tests converge to 100% fast for all α levels (see panels (e) and

(f) in Figures 2.2 and 2.3). For infinite-variance case, our test has superior power as the sample

size exceeds 50. Furthermore, as α approaches 2 and sample size gets large, our test still has

some power advantages if the co-integrating regression’ s residuals are near unit root. The

effects of past errors do not die out fast for near unit root processes. If the errors are stably

distributed with α < 2, their distributions are subject to more volatility compared to normal

distribution. In that case, LAD-based tests have a slightly better performance in distinguishing

between co-integration and no co-integration (see panels (f) in Figures 2.2 and 2.3).
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CHAPTER 3. EMPIRICAL APPLICATION

In this chapter, we test the forward rate unbiasedness hypothesis (FRUH) for our data

through residual-based co-integration tests and apply the new LAD-based test from chap-

ter 2. The dataset contains Australian dollar, Canadian dollar, French franc, German mark,

Italian lira, Japanese yen, Swiss franc and U.K. pound spot exchange rates as well as 1-

month, 3-month, 6-month, 1-year forward exchange rates of daily frequency. Data span runs

from 01/01/1985 to 11/30/2007 for Australia and Canada (T = 5, 979); from 01/02/1984 to

11/30/2007 for Japan, Switzerland and U.K. (T = 6, 240) and from 01/01/1997 to 11/30/2007

for Germany, France and Italy (T = 2, 848). Data is taken from Datastream. Australia,

Canada, Japan, Switzerland and U.K. data source is Barclay Bank PLC. The data source of

Germany, France and Italy is WM/Reuters. Following Caner (1998), if we let Yt be a k-vector

integrated process:

Yt = Yt−1 + εt, εt ∼ i.i.d. Sα(0, 1, 0), α < 2 (3.1)

Then partitioning Yt vector into scalar Y1t and m-vector Y2t,1 the co-integrating regressions

can be written as,

Y1t = β̂′Y2t + ut, (3.2)

ût = ρ̂ût−1 + vt (3.3)

1Yt = (Y1t, Y
′
2t)

′.
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Equations (3.2) and (3.3) are utilized with OLS estimations to apply Caner (1998) test.

Following equations are utilized with LAD estimations to apply our test,

Y1t = β̂′Y2t + ut, (3.4)

∆ût = φût−1 +
p∑

i=2

λi∆ût−i+1 + vt, vt ∼ i.i.d. (3.5)

3.1 Diagnostic checks

As a first step in empirical analysis we investigate whether or not an infinite-variance stable

assumption is reasonable to describe the errors. We start by estimating the stable parameters

of the residuals. By Caner (1998)’ s assumptions, we assume that logged values of spot and

forward exchange rates are I(1) processes and can be represented by a finite-order bivariate

VAR process. The estimated residuals from those VARs can be replaced by the unobserved

error terms if the correct model is selected and the VAR coefficients are consistent. Calder

and Davis (1998) has shown that OLS and LAD estimators are consistent for ARMA(p, q)

models under the infinite-variance assumption. Since we are assuming finite-order VARs, the

consistency results of Calder and Davis (1998)’ s study can be extended to our case for each

of the VAR equations (see Falk and Wang (2003)).

The procedure we choose for estimating stable parameters is the maximum likelihood esti-

mation (MLE) procedure. The procedure requires data to be i.i.d.. Thus before implementing

the MLE method, appropriate VAR models should be selected. Standard Box and Jenkins

(1976) approach of model selection assumes Gaussian errors but the model selection tools that

are used in Gaussian case can also be generalized to infinite-variance stable case though one

needs to be more cautious (Adler et al., 1998).

3.1.1 Model selection

Box-Jenkins model selection involves fitting a linear ARMA(p, q) model to a time series xt,
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xt − φ1xt−1 − . . .− φpxt−p = θ1εt−1 + . . . + θqεt−q + εt, εt ∼ i.i.d. (3.6)

where εt is either normally or stably distributed. After fitting a model, i.i.d. tests are applied

on the residuals. Depending on which distribution the errors come from, the limit theorems

of test statistics of i.i.d. tests change (Runde (1997); Adler et al. (1998); Lin and McLeod

(2008)).

One of the stylized empirical facts of exchange rate series of high frequency data is the fact

that the returns exhibit very little serial correlation and the series itself behave as a random

walk (see Cont (2001, 2007)). Following this stylized fact in literature, we start with a VAR(1)

model for the spot and forward exchange rates. Since we have 4 different forward rates (1-

month, 3-month, 6-month and 1-year), we consider 8 residual series for each country, in total

yielding 64 residual series. VARs considered are,

st = a10 + a11st−1 + a12f
i
t−1 + ε1t (3.7a)

f i
t = a20 + a21st−1 + a22f

i
t−1 + ε2t (3.7b)

where st and f i
t are log spot rate and log forward rate respectively with i being the index that

determines the maturity of the forward rate. In particular, i = 1, 2, 3, 4 correspond to 1-month,

3-month, 6-month and 1-year maturities respectively. Each residual series is checked for serial

independence.

In general, if a finite-variance Gaussian series xt is i.i.d. noise then,

γx(h) =

 σ2
x if h = 0

0 if h 6= 0

where γx(h) = cov(xt+h, xt). Autocorrelation function at lag h is defined as,
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rx(h) =
γx(h)
γx(0)

(3.8)

Sample autocorrelation function (SACF) is calculated as,

r̂x(h) =
∑T−h

t=1 xtxt+h∑T
t=1 x2

t

(3.9)

Mean-corrected version of sample autocorrelations is,

r̃x(h) =
∑T−h

t=1 (xt − x̄)(xt+h − x̄)∑T
t=1(xt − x̄)2

(3.10)

Under the null hypothesis of i.i.d. noise,

H0 : r(1) = r(2) = . . . = r(m) = 0

against

H1 : At least one of the autocorrelations is not zero

all autocorrelations must be zero for |h| > 0 and,

(
√

T r̃(1),
√

T r̃(2), . . . ,
√

T r̃(m)) d→ N(0m, Im) as T →∞

where d→ denotes convergence in distribution, 0m is m-dimensional zero vector and Im is m×m

identity matrix. Thus in practice with a sample size T , if one plots the sample autocorrela-

tions r̃(h) against h, 95% of them should lie between the 95% Gaussian confidence bounds:

±1.96 T−1/2.
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In addition to SACFs, sample partial autocorrelations are also checked to determine in-

dependence. Autocorrelations calculate the correlations between two values of the time series

which are separated by h time periods. The partial autocorrelation function (SPACF) on the

other hand, calculates the correlation between the values of the time series separated h time

periods after removing the effects of the intervening time periods. In other words, the indirect

effects of correlations are not present in the SPACF structure.

When there is heavy-tailed structure in the data and variances and even means may be

infinite, the mathematical correlations do not exist. However, SACFs and SPACFs still can

be used as useful tools in diagnostic checks, because they both have limiting distributions.

Quantiles of those limiting distributions have been obtained in Adler et al. (1998), section 3.

Adler et al. (1998) run Monte Carlo simulations to construct confidence intervals for model

identification to test for three different distributions’ (a stable distribution with correct α,

Cauchy distribution and normal distribution) performances in selecting the correct model.

They suggest using Cauchy bounds for “small” sample sizes near 1,000, as they perform better

than the other two distributions’ bounds in selecting the correct model. However, as the

sample size increases and as α ≥ 1.7, Gaussian bounds also have a good performance in

model identification. The conventional Gaussian bounds can still be employed to check for

independence of the residuals.

Mikosch (1998) also suggests the usage of classical confidence bounds with Box-Jenkins

way of model selection under stably distributed error assumption but in a more conservative

sense. Following Adler et al. (1998) and Mikosch (1998) studies, Tokat et al. (2003) use more

conservative confidence bounds of ±2.57 T−1/2 in model selection for variables with stable

indices less than 1.7 and conventional Gaussian bounds for variables with stable indices greater

than 1.7. Based on Tokat et al. (2003), the SACF and SPACF structure of bivariate first-order

VAR residuals are also demonstrated with more conservative bounds of ±2.57 T−1/2 in addition

to the classical Gaussian bounds.

SACFs and SPACFs of the LAD-based VAR(1) residuals with i = 1 in equation (3.7a) for

Australia, France, Japan and U.K. are given in Figures 3.1, 3.2, 3.3 and 3.4. Similar results
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(a) Australian residuals (b) French residuals

(c) Japanese residuals (d) U.K. residuals

Figure 3.1: SACFs with Gaussian confidence bounds: ±1.96 1√
T
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(a) Australian residuals (b) French residuals

(c) Japanese residuals (d) U.K. residuals

Figure 3.2: SPACFs with Gaussian confidence bounds: ±1.96 1√
T
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(a) Australian residuals (b) French residuals

(c) Japanese residuals (d) U.K. residuals

Figure 3.3: SACFs with conservative confidence bounds: ±2.57 1√
T
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(a) Australian residuals (b) French residuals

(c) Japanese residuals (d) U.K. residuals

Figure 3.4: SPACFs with conservative confidence bounds: ±2.57 1√
T
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are derived for OLS-based VARs’ residual series and other equations. Based on the SACF

and SPACF structures, accepting the i.i.d. hypothesis seems like a reasonable conclusion to

make as all the SACFs and SPACFs are close to zero and lie between the confidence bounds

approximately 95% of the time. Especially with the more conservative confidence bounds,

the autocorrelations and partial autocorrelations indicate a random structure in the residuals.

However, in order to make a certain decision on independence, residual series are tested for

randomness via Portmanteau type tests. Gallagher (2001) has shown that, as α approaches

2, the large sample distribution of SACF provides a poor approximation and the accuracy

of the tests depending on the limit theorems of SACFs is low under the stable distribution

assumption. Thus we proceed with other i.i.d. tests to reach a more definite conclusion.

3.1.2 Portmanteau type tests

We further investigate the independence of our residuals by using Portmanteau type tests

for infinite-variance stable variables which are proposed in a recent study of Lin and McLeod

(2008).2 They consider tests that are stable analogues of Box and Pierce (1970) and Peňa and

Rodriguez (2002) tests.

In Gaussian case, with i.i.d. assumption, Box-Pierce statistic,

Q̃T,m = T
m∑

h=1

r̃2(h), h = 1, . . . ,m (3.11)

will have an asymptotic χ2
(m) distribution, with m being the number of lags.

Peňa-Rodriguez test statistic,

D̃m = T (1− |R̃m|1/m) (3.12)

where |R̃m| is the determinant of the residual correlation matrix of order m,
2See http://www.stats.uwo.ca/faculty/aim/2007/LinMcLeod/.
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R̃m =



1 r̃(1) . . . r̃(m)

r̃(1) 1 . . . r̃(m− 1)
...

...
. . .

...

r̃(m) r̃(m− 1) . . . 1


will have an asymptotic Gamma(a, b) distribution with parameters defined as,

a =
3m[(m + 1)− 2(p + q)]2

2[2(m + 1)(2m + 1)− 12m(p + q)]
(3.13)

and

b =
3m[(m + 1)− 2(p + q)]

2(m + 1)(2m + 1)− 12m(p + q)
(3.14)

For stable case, the limit distributions of Q̃T,m and D̃m test statistics are studied in Runde

(1997) and Lin and McLeod (2008).3 The convergence of both test statistics to their limiting

distributions are very slow and require very large sample sizes in practice for those tests to

be reliable. Therefore Lin and McLeod (2008) develop new Monte Carlo tests (or parametric

bootstraps) which work as stable analogues of Box and Pierce (1970) and Peňa and Rodriguez

(2002) tests for small sample size. Their study also includes new Monte Carlo tests that are

developed for the same test statistics with normally distributed errors.

Lin and McLeod (2008) investigate the robustness of Box and Pierce (1970) and Peňa and

Rodriguez (2002) tests with normally distributed errors to infinite-variance errors and show

that the tests are not robust to infinite-variance assumption. As an empirical illustration, they

test the daily S&P 500 stock returns and monthly CRSP value-weighted index returns for

independence. They show that Portmanteau type tests studied in Box and Pierce (1970) and

Peňa and Rodriguez (2002) more often leads to a rejection of i.i.d. hypothesis if one mistakenly
3Peňa-Rodriguez test has better power than Box-Pierce test both for normal and stable errors (Peňa and

Rodriguez (2002); Lin and McLeod (2008)).
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assumes that the returns are normally distributed instead of being stably distributed. Also for

a large enough lag length, the randomness assumption of daily stock returns is strongly rejected

under the normality assumption but not rejected under the stable distribution assumption.

We use Lin-McLeod Monte Carlo tests (both for normal and stable cases), to test for inde-

pendence. P-values of the Lin-McLeod i.i.d. tests are given in Tables 3.1 and 3.2 for Australia

and France respectively. The conclusions drawn from the tests are similar for the exchange rate

data of France, Germany, Italy, Japan and Switzerland: the i.i.d. hypothesis is not rejected

no matter which distributional assumption is made since all p-values are unambigously greater

than 0.05. On the other hand, for Australia, Canada and U.K. data, i.i.d. assumption can

not be rejected only for the stable case. The hypothesis is generally rejected if we make the

normality assumption and use “normal” versions of Peňa-Rodriguez and Box-Pierce tests. Test

results are considerably different for Australia and U.K., at lags 50 and 100. P-values under

normality assumption tend to be very low, rejecting the i.i.d. error hypothesis, whereas the

opposite occurs under stable distribution assumption. In Tables 3.1 and 3.2, it is worthwhile

noting that the new Monte Carlo tests of Lin-McLeod using normal random variables yield

very similar results as the Box-Pierce tests with chi-square asymptotic distribution. Tables 3.1

and 3.2 present the results of LAD residuals. We have a similar structure for OLS residuals.

3.1.3 Descriptive statistics and normality tests

In this section we explore data characteristics of exchange rate returns. Some descriptive

statistics are presented in Tables 3.3 through 3.10. The return series seem to be asymmetric

(mostly negatively skewed except for Australian, Canadian and U.K. log returns) and have

means zero. Excess kurtosis or kurtosis greater than 3 (which is the kurtosis level associated

with normal distribution) is observed for all data series. Jarque and Bera (1980) test, which

tests the null hypothesis of normality based on the sample skewness and kurtosis, rejects the

null hypothesis since all p-values are less than 0.05. Jarque-Bera test statistic is,
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Table 3.1: P-values of randomness tests for Australian exchange rates from VAR(1) model

Spot Rate & 1-month Forward Rate
lag P-R Stablea P-R Normalb B-P Stablec B-P Normald B-P Chi-squaree

25 0.039 0.002 0.056 0.022 0.021
50 0.049 0.003 0.061 0.005 0.005
100 0.069 0.005 0.113 0.049 0.052

1-month Forward Rate & Spot Rate
lag P-R Stable P-R Normal B-P Stable B-P Normal B-P Chi-square
25 0.039 0.002 0.056 0.022 0.021
50 0.049 0.003 0.061 0.005 0.005
100 0.069 0.005 0.113 0.049 0.052

Spot Rate & 3-month Forward Rate
lag P-R Stable P-R Normal B-P Stable B-P Normal B-P Chi-square
25 0.040 0.002 0.058 0.022 0.020
50 0.048 0.003 0.061 0.005 0.005
100 0.070 0.005 0.114 0.049 0.052

3-month Forward Rate & Spot Rate
lag P-R Stable P-R Normal B-P Stable B-P Normal B-P Chi-square
25 0.043 0.003 0.050 0.009 0.007
50 0.046 0.001 0.056 0.001 0.002
100 0.063 0.002 0.106 0.030 0.029

Spot Rate & 6-month Forward Rate
lag P-R Stable P-R Normal B-P Stable B-P Normal B-P Chi-square
25 0.038 0.002 0.058 0.022 0.019
50 0.047 0.003 0.060 0.004 0.005
100 0.070 0.005 0.113 0.049 0.050

6-month Forward Rate & Spot Rate
lag P-R Stable P-R Normal B-P Stable B-P Normal B-P Chi-square
25 0.019 0.000 0.030 0.000 0.000
50 0.032 0.000 0.054 0.001 0.001
100 0.055 0.000 0.102 0.023 0.022
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Table 3.1: (Continued)

Spot Rate & 1-year Forward Rate
lag P-R Stablea P-R Normalb B-P Stablec B-P Normald B-P Chi-squaree

25 0.039 0.001 0.058 0.021 0.019
50 0.046 0.003 0.060 0.004 0.005
100 0.069 0.005 0.114 0.048 0.048

1-year Forward Rate & Spot Rate
lag P-R Stable P-R Normal B-P Stable B-P Normal B-P Chi-square
25 0.075 0.049 0.088 0.077 0.068
50 0.098 0.094 0.120 0.143 0.145
100 0.122 0.148 0.172 0.270 0.278
a Peňa-Rodriguez test statistic with stably distributed variables.
b Peňa-Rodriguez test statistic with normally distributed variables.
c Box-Pierce test statistic with stably distributed variables.
d Box-Pierce test statistic with normally distributed variables.
e Box-Pierce chi-square test statistic with normally distributed variables.

JB =
T

6

(
S2 +

(K − 3)2

4

)
(3.15)

where S is sample skewness and K is sample kurtosis defined as,

S =
1
T

∑T
i=1(xi − x̄)3(

1
T

∑T
i=1(xi − x̄)2

)3/2
(3.16)

K =
1
T

∑T
i=1(xi − x̄)4(

1
T

∑T
i=1(xi − x̄)2

)2 (3.17)

where x̄ is the sample mean of the series which is being tested for normality. JB statistic is

asymptotically chi-squared with 2 degrees of freedom.
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Table 3.2: P-values of randomness tests for French exchange rates from VAR(1) model

Spot Rate & 1-month Forward Rate
lag P-R Stablea P-R Normalb B-P Stablec B-P Normald B-P Chi-squaree

25 0.831 0.995 0.743 0.983 0.985
50 0.685 0.972 0.434 0.758 0.760
100 0.319 0.564 0.131 0.196 0.237

1-month Forward Rate & Spot Rate
lag P-R Stable P-R Normal B-P Stable B-P Normal B-P Chi-square
25 0.782 0.987 0.716 0.977 0.978
50 0.665 0.962 0.393 0.709 0.715
100 0.276 0.491 0.109 0.136 0.162

Spot Rate & 3-month Forward Rate
lag P-R Stable P-R Normal B-P Stable B-P Normal B-P Chi-square
25 0.823 0.995 0.739 0.983 0.985
50 0.682 0.970 0.427 0.752 0.754
100 0.308 0.548 0.129 0.181 0.221

3-month Forward Rate & Spot Rate
lag P-R Stable P-R Normal B-P Stable B-P Normal B-P Chi-square
25 0.790 0.987 0.717 0.977 0.978
50 0.667 0.960 0.385 0.688 0.693
100 0.268 0.478 0.097 0.113 0.141

Spot Rate & 6-month Forward Rate
lag P-R Stable P-R Normal B-P Stable B-P Normal B-P Chi-square
25 0.823 0.995 0.743 0.986 0.986
50 0.683 0.970 0.421 0.739 0.748
100 0.305 0.538 0.127 0.173 0.211

6-month Forward Rate & Spot Rate
lag P-R Stable P-R Normal B-P Stable B-P Normal B-P Chi-square
25 0.802 0.990 0.732 0.980 0.981
50 0.676 0.962 0.392 0.683 0.689
100 0.267 0.474 0.097 0.109 0.137



45

Table 3.2: (Continued)

Spot Rate & 1-year Forward Rate
lag P-R Stablea P-R Normalb B-P Stablec B-P Normald B-P Chi-squaree

25 0.823 0.995 0.755 0.987 0.988
50 0.682 0.970 0.414 0.723 0.735
100 0.291 0.519 0.120 0.155 0.192

1-year Forward Rate & Spot Rate
lag P-R Stable P-R Normal B-P Stable B-P Normal B-P Chi-square
25 0.825 0.995 0.772 0.989 0.991
50 0.697 0.976 0.401 0.708 0.714
100 0.281 0.507 0.101 0.120 0.153
a Peňa-Rodriguez test statistic with stably distributed variables.
b Peňa-Rodriguez test statistic with normally distributed variables.
c Box-Pierce test statistic with stably distributed variables.
d Box-Pierce test statistic with normally distributed variables.
e Box-Pierce chi-square test statistic with normally distributed variables.

Table 3.3: Descriptive statistics and normality tests of Australian log returns

Spot rate 1-month fwd. 3-month fwd. 6-month fwd. 1-year fwd.
Mean -0.000 -0.000 -0.000 -0.000 -0.000
Median 0.000 0.000 0.000 0.000 0.000
St. Deviation 0.005 0.005 0.007 0.007 0.007
Skewness 0.722 0.719 0.611 0.716 0.600
Kurtosis 11.059 9.163 11.361 9.189 8.599
JB Testa 0.000 0.000 0.000 0.000 0.000
a P-values of Jarque-Bera normality test.

Table 3.4: Descriptive statistics and normality tests of Canadian log returns

Spot rate 1-month fwd. 3-month fwd. 6-month fwd. 1-year fwd.
Mean -0.000 -0.000 -0.000 -0.000 -0.000
Median 0.000 0.000 0.000 0.000 0.000
St. Deviation 0.004 0.004 0.004 0.004 0.004
Skewness 0.102 0.116 0.111 0.126 0.158
Kurtosis 6.185 6.186 6.144 6.092 7.098
JB Testa 0.000 0.000 0.000 0.000 0.000
a P-values of Jarque-Bera normality test.
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Table 3.5: Descriptive statistics and normality tests of French log returns

Spot rate 1-month fwd. 3-month fwd. 6-month fwd. 1-year fwd.
Mean -0.000 -0.000 -0.000 -0.000 -0.000
Median 0.000 0.000 0.000 0.000 0.000
St. Deviation 0.006 0.006 0.006 0.006 0.006
Skewness -0.214 -0.205 -0.202 -0.198 -0.195
Kurtosis 4.086 4.172 4.166 4.184 4.182
JB Testa 0.000 0.000 0.000 0.000 0.000
a P-values of Jarque-Bera normality test.

Table 3.6: Descriptive statistics and normality tests of German log returns

Spot rate 1-month fwd. 3-month fwd. 6-month fwd. 1-year fwd.
Mean -0.000 -0.000 -0.000 -0.000 -0.000
Median 0.000 0.000 0.000 0.000 0.000
St. Deviation 0.006 0.006 0.006 0.006 0.006
Skewness -0.209 -0.195 -0.192 -0.188 -0.182
Kurtosis 4.066 4.159 4.153 4.170 4.163
JB Testa 0.000 0.000 0.000 0.000 0.000
a P-values of Jarque-Bera normality test.

Table 3.7: Descriptive statistics and normality tests of Italian log returns

Spot rate 1-month fwd. 3-month fwd. 6-month fwd. 1-year fwd.
Mean -0.000 -0.000 -0.000 -0.000 -0.000
Median 0.000 0.000 0.000 0.000 0.000
St. Deviation 0.006 0.006 0.006 0.006 0.006
Skewness -0.206 -0.208 -0.204 -0.200 -0.198
Kurtosis 4.084 4.099 4.088 4.102 4.092
JB Testa 0.000 0.000 0.000 0.000 0.000
a P-values of Jarque-Bera normality test.

Table 3.8: Descriptive statistics and normality tests of Japanese log returns

Spot rate 1-month fwd. 3-month fwd. 6-month fwd. 1-year fwd.
Mean -0.000 -0.000 -0.000 -0.000 -0.000
Median 0.000 0.000 0.000 0.000 0.000
St. Deviation 0.007 0.007 0.007 0.007 0.007
Skewness -0.543 -0.515 -0.546 -0.557 -0.589
Kurtosis 7.718 7.957 7.877 7.804 8.435
JB Testa 0.000 0.000 0.000 0.000 0.000
a P-values of Jarque-Bera normality test.
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Table 3.9: Descriptive statistics and normality tests of Swiss log returns

Spot rate 1-month fwd. 3-month fwd. 6-month fwd. 1-year fwd.
Mean -0.000 -0.000 -0.000 -0.000 -0.000
Median 0.000 0.000 0.000 0.000 0.000
St. Deviation 0.007 0.007 0.007 0.007 0.007
Skewness -0.199 -0.172 -0.175 -0.176 -0.144
Kurtosis 5.269 5.332 5.379 5.325 5.478
JB Testa 0.000 0.000 0.000 0.000 0.000
a P-values of Jarque-Bera normality test.

Table 3.10: Descriptive statistics and normality tests of U.K. log returns

Spot rate 1-month fwd. 3-month fwd. 6-month fwd. 1-year fwd.
Mean -0.000 -0.000 -0.000 -0.000 -0.000
Median 0.000 0.000 0.000 0.000 0.000
St. Deviation 0.006 0.006 0.006 0.006 0.006
Skewness -0.095 -0.110 -0.121 -0.165 -0.088
Kurtosis 6.952 7.015 6.939 7.426 7.086
JB Testa 0.000 0.000 0.000 0.000 0.000
a P-values of Jarque-Bera normality test.

3.1.4 Graphical investigation

Kernel density estimates of LAD-based VAR(1) residuals with i = 1 from equation (3.7a)

are compared to normal densities and stable densities. Figure 3.5 gives the densities of Aus-

tralian and French residuals. Stable and normal (N(0, s) with s denoting the sample standard

deviation) densities are estimated by simulating stable and normal random variables with

parameters imposed from the actual data series. We observe that stable density provides a

better fit than the normal density for the high peaked series. In order to better visualize the

heavy-tailed structure, quantile quantile (QQ) plots are also provided.

QQ plots indicate a heavy-tailed structure for the residuals. Each residual series is stan-

dardized: the mean is subtracted and the result is divided by the standard error of the series.

Figure 3.6 provides the plots of the VAR(1) residuals of Australia, France, Japan and U.K.

from equation (3.7a) with i = 1. QQ plot displays a plot of the sample quantiles of the resid-

uals versus theoretical quantiles from a standard normal distribution. If the residuals come
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(a) Australian residuals (b) Australian residuals

(c) French residuals (d) French residuals

Figure 3.5: Data based kernel densities versus stable and normal densities
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from a normal distribution then the plot should be approximately linear. The S-shape from

the figures gives evidence that the tails of the distribution that residuals are drawn from are

heavier than the tails of the normal distribution. French residuals have the least deviation

from the 45-degree line among the series.

3.2 Estimation of stable parameters

In this section we estimate the stable parameters as we are convinced (by the results in

section 3.1) that the empirical evidence provide enough to conclude that the residuals come

from an i.i.d. process. Table 3.11 gives the estimation results for stable parameters (α, β)

for each country along with the 95% confidence intervals. We can see from Table 3.11 that

all α estimates are less than 2 and all confidence intervals exclude 2, which conforms well

with the infinite-variance assumption made for error terms. Furthermore, skewness parameter

estimates show that there is asymmetry in the errors which again does not conform with the

symmetric normal distribution assumption. Although not presented here, negative skewness

has been found for most of the exchange rate returns (especially for those of Canada, France,

Germany, Italy, Japan and Switzerland).4 Negative skewness means that extreme negative

returns are more frequent than extreme positive returns and there is a long-run tendency

towards appreciation of these currencies against the U.S. dollar. Fofack and Nolan (2001)

apply the maximum likelihood procedure and examine the behavior of exchange rate returns

in African countries against the U.S. dollar. They find that those exchange rate returns are

positively skewed, indicating a long-run tendency towards depreciation. In our case, we are

considering the exchange rate changes in industrialized countries and negative skewness provide

more realistic distributional assumptions.

4Exchange rate returns are calculated as the first-order log differences of exchange rates.
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(a) Australian residuals (b) French residuals

(c) Japanese residuals (d) U.K. residuals

Figure 3.6: Quantiles of (standardized) residuals versus the quantiles of N(0, 1) distribution
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3.3 Converging variance test

Granger and Orr (1972) have proposed the “converging variance test” for detecting infinite

variance in a series. The conclusions can only be based on visual inspections. The test involves

plotting the first n realizations of the sample variance for t ≤ n ≤ T ,

s2
n =

1
n

n∑
t=1

(xt − x̄n)2 (3.18)

against n. If xt comes from a finite-variance population, s2
n sequence converges as n increases,

otherwise it diverges. The same type of test can be applied to sample mean (x̄T ) as well.

If the population mean of xt is finite then the sample mean sequence should converge as we

plot the first n realizations of it against n. Figure 3.7 presents the converging variance test

results for sample variances as well as means for Australian residuals from equation (3.7a),

i = 1 (panels (a) and (b)) and French residuals from equation (3.7a), i = 1 (panels (c) and

(d)). Panels (a) and (b) plot the first n sample variances and means of Australian residuals

respectively against n. Panels (c) and (d) plot the first n sample variances and means of

French residuals respectively against n. Sample means converge fast for both countries. Thus

finite-mean structure can be unambigously determined. Sample variances calculated from the

data, on the other hand, do not show an unambigous finite-variance structure. It is known

that sample variances of stable distributions are prone to several jumps. Sample variances of

normal variables converge very fast without exhibiting any jumps. From Figure 3.7 (panels

(a) and (c)), if we observe the s2
n sequence for Australian and French series over n, we can see

that our data can be better described by a stable distribution than a normal distribution. The

behavior of the sample variances from the data mimics the behavior of the sample variances

from the stable distribution more than the normal distribution.
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(a) Australian residuals (b) Australian residuals

(c) French residuals (d) French residuals

Figure 3.7: Converging variance and mean tests
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3.4 Testing for forward rate unbiasedness hypothesis

3.4.1 Economic background of the hypothesis

One form of market efficiency asserts that the current forward rate is an unbiased predictor

of the future spot rate, which is also known as the forward rate unbiasedness hypothesis. If

FRUH holds one can write,

Et(st+k) = ft,k (3.19)

where st+k and ft,k are logarithms of future spot rate and current forward rate respectively

and Et(.) is the rational expectations formed at time t.5 Spot rate, which is also interpreted as

the current exchange rate, is the rate of a foreign exchange contract for immediate delivery.6

Forward rate is the exchange rate that is quoted and traded today but for delivery and payment

on a specific future date.7

Equality in equation (3.19) ensures that there are no arbitrage oppurtunities in the market.

Otherwise there would be room for the investors to make arbitrarily large profits through

speculating in forward foreign exchange markets (Razzak, 1999). To be more specific, consider

a speculator who bought foreign currency at the price ft,k to be delivered at period t+k. Since

the foreign currency can be sold at st+k in the spot market, the speculator can make a profit

(loss) if st+k > ft,k (st+k < ft,k).

Equation (3.19) makes two assumptions about the behaviors of agents in the market. First,

it assumes that the agents are risk neutral (unconcerned about risk) so that the risk premium is

zero and second, it assumes that all agents behave according to what the rational expectations

hypothesis states. Under the assumption of rational expectations one can write,
5The reason why logs are considered instead of levels is because of Siegel (1972)’ s paradox. For details on

Siegel’ s paradox, see Obstfeld and Rogoff (1999), p. 586.
6Investopedia, A Forbes Digital Company.
7Wikipedia, The Free Encyclopedia.
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st+k − Et(st+k) = εt+k (3.20)

where εt+k is a serially independent forecast error with mean zero. Rational expectations

assume that agents in the market use all available information at time t to make decisions

about the future. Although future is not predictable, their expectations are not systematically

biased so that “on average” their decisions are correct.

Combining equations (3.19) and (3.20), one can get,

st+k = ft,k + εt+k (3.21)

Fama (1984) specifies the forward exchange rate as the sum of expected future spot rate

and a risk premium,

Et(st+k) + rpt = ft,k (3.22)

where the risk premium rpt is the compensation for perceived risk that might arise from

holding different currencies (Razzak, 2002). If the agents are risk-neutral then rpt = 0. It is

conventional to assume for the exchange rate market that the agents are risk-neutral and the

risk premium is zero. The following equation has been widely used in literature to test for

FRUH,

st+k = a + bft,k + εt+k (3.23)

where the parameter a is a constant risk premium (Razzak, 1999). Provided that st and ft

are both I(1) variables, FRUH requires that there be a linear combination of them which is
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stationary.8 Thus by running the “co-integrating regression” of equation (3.23), and estimating

â and b̂, one can test for residuals for a unit root and determine whether co-integration exists

between forward and spot rates.

It should, however, be noted that with the assumptions of rational expectations and risk-

neutrality, in order for the FRUH to hold, st+k and ft,k have to be co-integrated with the

co-integrating vector (1,−1)′—i.e. a = 0 and b = 1 (see for example Delcoure et al. (2003)).

Thus formal tests should be applied to jointly test for a = 0 and b = 1. Also given the fact that

the exchange rate series are heavy-tailed, one should use estimation methods that are robust

to heavy-tails. Empirical studies that follow similar methodologies to test for FRUH include

Phillips and McFarland (1997) and Phillips et al. (1996).

When testing for a = 0 and b = 1, conventional tests are not aymptotically valid for

the coefficients estimated via LAD and OLS methods because of non-stationarity of the data.

Tests that involve fully modified OLS (FM-OLS) and fully modified LAD (FM-LAD) estimators

should be applied to test for the joint hypothesis a = 0 and b = 1 as well as the individual

hypotheses of H0 : a = 0 and H0 : b = 1. FM-OLS and FM-LAD estimators are explained in

section 3.4.4 in detail.

3.4.2 Unit root tests

One needs to test for co-integration between st+k and ft,k because a lack of co-integration

would be inconsistent with the FRUH. In order to test for co-integration, we need to show

that forward and spot rates are both I(1). Unit root tests that are due to Caner (1998) and

Samarakoon and Knight (2009) are applied for heavy-tailed data to determine the degree of

integratedness.

Table 3.12 shows the unit root test results of Caner test. Table 3.13 shows the unit root

test results of Samarakoon-Knight test. Graphing the natural logarithm of exchange rates

against time shows that a constant term or a trend term is not necessary to be included in the

equations while testing for a unit root (see panels (a) and (b) in Figure 3.8 for Australian and
8See Hakkio and Rush (1989).
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Table 3.12: Zt statistic for a unit root test in the logarithms of spot and forward rates

Country Spot rate 1-month fwd. rate 3-month fwd. rate 6-month fwd. rate 1-year fwd. rate

xt ∆xt xt ∆xt xt ∆xt xt ∆xt xt ∆xt

Australia -0.73 -74.8* -0.71 -74.3* -0.72 -76.2* -0.71 -74.3* -0.69 -77.2*

Canada -0.94 -77.8* -0.94 -77.8* -0.94 -77.3* -0.94 -76.9* -0.94 -78.5*

France -0.51 -52.9* -0.51 -53.0* -0.50 -53.0* -0.48 -53.1* -0.44 -53.1*

Germany -0.55 -52.9* -0.55 -53.0* -0.54 -53.0* -0.53 -53.1* -0.50 -53.1*

Italy -0.47 -52.6* -0.47 -53.6* -0.48 -52.6* -0.47 -52.6* -0.49 -52.6*

Japan -1.49 -76.8* -1.52 -77.8* -1.54 -77.4* -1.53 -77.1* -1.52 -78.6*

Switzerland -1.91* -78.3* -1.91* -79.0* -1.89* -78.9* -1.85 -79.0* -1.79 -79.6*

U.K. 0.46 -74.9* 0.47 -75.0* 0.48 -75.1* 0.41 -76.0* 0.43 -76.8*

* Rejects the null hypothesis of a unit root at 5% significance level. Critical values are taken from Table 2.1
(standard).

Note: xt denotes the log exchange rate series in levels and ∆xt denotes the first difference of the series.

Table 3.13: πφ statistic for a unit root test in the logarithms of spot and forward rates

Country Spot rate 1-month fwd. rate 3-month fwd. rate 6-month fwd. rate 1-year fwd. rate

xt ∆xt xt ∆xt xt ∆xt xt ∆xt xt ∆xt

Australia -0.08 -78.9* -0.06 -79.8* -0.09 -82.7* -0.09 -80.2* -0.11 -82.6*

Canada -0.04 -80.7* -0.07 -80.4* -0.05 -79.8* -0.06 -78.9* -0.05 -79.9*

France 0.08 -45.5* 0.22 -45.8* 0.15 -45.8* 0.11 -45.8* 0.14 -45.8*

Germany 0.52 -45.4* 0.43 -45.8* 0.46 -45.7* 0.28 -45.8* 0.33 -46.0*

Italy 0.06 -45.4* 0.08 -45.5* 0.08 -45.4* 0.07 -45.4* 0.08 -45.4*

Japan 0.05 -80.6* 0.04 -83.1* 0.06 -82.5* 0.06 -82.0* 0.05 -83.3*

Switzerland 0.02 -71.3* 0.01 -72.3* 0.02 -72.5* 0.01 -72.6* 0.02 -73.2*

U.K. 0.08 -77.9* 0.08 -78.7* 0.09 -78.6* 0.10 -79.5* 0.09 -79.8*

* Rejects the null hypothesis of a unit root at 5% significance level. Critical value at 5% significance is -1.64.

Note: xt denotes the log exchange rate series in levels and ∆xt denotes the first difference of the series.
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French spot exchange rates). Similar graphs can be produced for all countries and exchange

rates.

Based on Caner unit root test, all exchange rate series appear to be I(1): we can not reject

the null hypothesis of a unit root in levels at 5% significance, but we can reject the unit root

hypothesis in differences.9 A similar conclusion is reached for Samarakoon-Knight unit root

test. All exchange rate series appear to be I(1).

3.4.3 Residual-based co-integration tests

In order to test for co-integration, the residuals from equation (3.23) should be checked

whether they are I(0) or not. If the residuals are I(0) then we can reject the null hypothesis that

spot and forward rates are not co-integrated. We run four different “co-integrating regressions”

for spot rates against 1-month, 3-month, 6-month and 1-year forward rates for each country.

The value of k is taken to be 22, 66, 132 and 264 for 1-month, 3-month, 6-month and 1-year

forward rates respectively.10 The procedure for determining Zt and πφ statistics are as follows;

estimate equation (3.23) and get the residuals. For Zt, estimate the equation via OLS and run

OLS on the residuals,

ε̂t = δε̂t−1 + vt (3.24)

then test for the null hypothesis H0 : δ = 1 against H1 : δ < 1.

For πφ, estimate the equation by LAD and run LAD on the residuals,

9Caner test results of Swiss spot rate, 1-month forward rate and 3-month forward rate reject the null of a unit
root in levels as well (critical value is -1.88 for α=1.8) but the difference between the computed test statistics
and the critical value are slight. If we assumed normally distributed returns for Swiss data and applied Phillips-
Perron test, the critical value for rejecting the null hypothesis of a unit root would be -1.95 and with that value
we would not reject the unit root hypothesis in Swiss spot rate, 1-month and 3-month forward rates in levels.
For Zt statistic, order of serial correlation (l) is selected according to l = int(4(T/100)1/4).

10Here k values are chosen according to the procedure mentioned in Phillips et al. (1996). Our data do not
include saturdays and sundays.
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(a) Australian dollar log spot rate (b) French franc log spot rate

(c) Australian dollar spot returns (d) French franc spot returns

(e) Australian dollar. Log spot and 3-month fwd. rate (f) French franc. Log spot and 1-year fwd. rate

Figure 3.8: Australian dollar: 1985-2007 and French franc: 1997-2007
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Table 3.14: 5% critical values of Zt statistic for Caner co-integration test (n = 1)

α constanta constant and trendb

1 -3.76 -4.10
1.5 -3.45 -3.88
1.6 -3.43 -3.86
1.7 -3.40 -3.84
1.8 -3.38 -3.83
1.9 -3.37 -3.80

a Phillips-Ouliaris critical value (α = 2) at 5% significance is -3.37.
b Phillips-Ouliaris critical value (α = 2) at 5% significance is -3.80.

Note: n is the number of regressors in co-integrating regression.

∆ε̂t = φε̂t−1 +
p∑

i=2

λi∆ε̂t−i+1 + vt (3.25)

then test for the null hypothesis H0 : φ = 0 against H1 : φ < 0.

Results of the co-integration tests are presented in Tables 3.15 through 3.18. Five percent

critical values for Zt are -3.43 for Canada (α=1.60); -3.40 for Australia, Japan (α=1.65) and

U.K. (α=1.7); -3.38 for Switzerland (α=1.8); -3.37 for France, Germany and Italy (α=1.9).

Zt critical values are calculated through simulations based on 1,000 sample size with 20,000

iterations following Caner (1998). Results of those simulations are in Table 3.14. Five percent

critical values of πφ are -2.30 for Canada (α=1.6); -2.48 for Australia, Japan and U.K. (α=1.7);

-2.65 for Switzerland (α=1.8); -2.89 for France, Germany and Italy (α=1.9). πφ critical values

are the asymptotic critical values and are present in Tables 2.2 through 2.6.

Tables 3.15 and 3.16 indicate that there is evidence for co-integration for all markets for

shorter maturities (1-month and 3-month forward contracts) no matter which test is used. This

result is consistent with FRUH. Results of 6-month and 1-year contracts however, depend on

which type of co-integration test is applied. OLS-based co-integration tests find co-integration

between spot and 6-month forward rates for Australia, Canada, Japan, Switzerland and U.K..

Only Japan, Switzerland and U.K. data show evidence of co-integration between spot and

1-year forward exchange rates via OLS-based tests. If we assumed normal errors and used
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Table 3.15: Co-integration tests between logarithms of spot and 1-month forward rates

OLS coefficients LAD coefficients
Country â b̂ â b̂ Zt πφ

Australia 0.005 0.979 0.005 0.972 -12.133* -9.658*

Canada -0.004 1.008 -0.004 1.009 -12.236* -9.419*

France 0.014 0.992 0.006 0.997 -8.622* -5.592*

Germany 0.043 0.991 0.002 0.997 -8.635* -5.578*

Italy 0.066 0.991 0.019 0.997 -8.638* -5.632*

Japan 0.114 0.977 0.079 0.984 -11.866* -8.107*

Switzerland 0.007 0.981 0.007 0.985 -12.475* -9.358*

U.K. -0.017 0.970 -0.008 0.989 -11.794* -8.426*

* Rejects the null hypothesis of no co-integration at 5% significance level.

Zt critical values are taken from Table 3.14 (constant).

πφ critical values are taken from Tables 2.2 through 2.6 (constant).

Table 3.16: Co-integration tests between logarithms of spot and 3-month forward rates

OLS coefficients LAD coefficients
Country â b̂ â b̂ Zt πφ

Australia 0.013 0.939 0.010 0.934 -7.301* -4.026*

Canada -0.010 1.017 -0.013 1.029 -6.856* -4.709*

France 0.066 0.962 -0.003 1.001 -4.117* -3.034*

Germany 0.019 0.961 -0.002 1.002 -4.097* -3.074*

Italy 0.270 0.963 0.041 0.994 -4.172* -3.197*

Japan 0.361 0.926 0.401 0.918 -5.937* -3.907*

Switzerland 0.023 0.936 0.033 0.905 -5.624* -4.984*

U.K. -0.055 0.904 -0.033 0.949 -5.595* -4.211*

* Rejects the null hypothesis of no co-integration at 5% significance level.

Zt critical values are taken from Table 3.14 (constant).

πφ critical values are taken from Tables 2.2 through 2.6 (constant).
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Table 3.17: Co-integration tests between logarithms of spot and 6-month forward rates

OLS coefficients LAD coefficients
Country â b̂ â b̂ Zt πφ

Australia 0.028 0.874 0.025 0.868 -4.548* -2.718*

Canada -0.013 1.008 -0.027 1.064 -5.109* -3.706*

France 0.148 0.915 0.049 0.967 -3.260 -1.269
Germany 0.046 0.913 0.009 0.967 -3.238 -1.141

Italy 0.598 0.919 0.215 0.969 -3.186 -1.178
Japan 0.758 0.844 1.092 0.774 -4.162* -1.882

Switzerland 0.053 0.857 0.067 0.783 -4.326* -2.545
U.K. -0.118 0.786 -0.104 0.819 -4.131* -2.415

* Rejects the null hypothesis of no co-integration at 5% significance level.

Zt critical values are taken from Table 3.14 (constant).

πφ critical values are taken from Tables 2.2 through 2.6 (constant).

Table 3.18: Co-integration tests between logarithms of spot and 1-year forward rates

OLS coefficients LAD coefficients
Country â b̂ â b̂ Zt πφ

Australia 0.100 0.653 0.093 0.635 -2.969 -0.695
Canada -0.002 0.943 -0.040 1.069 -3.156 -1.922
France 0.457 0.739 0.311 0.809 -1.656 0.022

Germany 0.144 0.736 0.084 0.806 -1.674 0.194
Italy 1.869 0.748 1.277 0.825 -1.588 -0.216
Japan 1.640 0.660 2.228 0.536 -3.545* -1.310

Switzerland 0.132 0.635 0.163 0.512 -3.415* -1.655
U.K. -0.239 0.555 -0.269 0.481 -3.593* -0.389

* Rejects the null hypothesis of no co-integration at 5% significance level.

Zt critical values are taken from Table 3.14 (constant).

πφ critical values are taken from Tables 2.2 through 2.6 (constant).
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Phillips-Ouliaris tests (critical value=-3.37), our conclusions would not change. LAD-based

co-integration tests, on the other hand, find no evidence of co-integration for 1-year maturity

forward and spot rates. Except for the cases of Australia and Canada, 6-month forward and

spot rates do not seem to be co-integrated with LAD-based tests. No co-integration result is

not consistent with FRUH, because we fail to find a long-run relationship between forward and

corresponding future spot rates.

The results of OLS and LAD-based co-integration tests are similar except for Japan,

Switzerland and U.K. for 6-month and 1-year contracts and for them the results are in favor

of FRUH for OLS-based tests and not in favor of FRUH for LAD-based ones. Also, regard-

less of the estimation technique, FRUH is rejected more for longer maturity forward contracts

(6-month and 1-year). This is an indication that the decisions of the agents in predicting the

future spot rate from the current forward rate tend to be biased as time to maturity of the

forward contract increases. This bias is more observed in the results of the LAD-based tests.

3.4.4 Fully-modified estimations

Fully-modified OLS and LAD estimators are developed in Phillips and Hansen (1990) and

Phillips (1995) respectively. The estimators correct the OLS and LAD estimators in a co-

integrating regression such as equation (3.23) for possible autocorrelation and heteroskedas-

ticity in the error terms and for endogeneity bias that occurs because the regressors and the

regression error are correlated. In econometrics, the term “endogeneity” is used in a broad

sense to describe any situation where the explanatory variable is correlated with the error

term. If the explanatory variable is not correlated with the equation error then it is said to be

exogenous (Wooldridge, 2002, p. 50).

FM-OLS and FM-LAD estimators are developed for estimating co-integrating equations

with non-stationary data and making inference. Specifically, in a co-integration system given
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by,

yt = x′tβ + u0t (3.26a)

∆xt = uxt (3.26b)

where ∆xt = xt − xt−1 and ut = (u0t, u
′
xt)

′, t = 2, . . . , T , is a stationary m-vector time series

(m = 1 + mx) with long-run covariance matrix,11

Ωuu =
∞∑

j=−∞
E(u0u

′
j) =

 Ω00 Ω0x

Ωx0 Ωxx

 (3.27)

where Ωxx is assumed to be a positive definite matrix and the partition of Ωuu is conformable

with vector ut. The one-sided long-run covariance matrix of ut is,

∆uu =
∞∑

j=0

E(u0u
′
j) =

 ∆00 ∆0x

∆x0 ∆xx

 (3.28)

In equation (3.26a), endogeneity bias occurs due to cov(xt, u0t) 6= 0. Although the OLS

and LAD coefficients estimated from a co-integrating regression are both super-consistent,

they suffer from a second order bias or are not median unbiased because of the existence of

endogeneous regressors.12 Also the standard testing procedures such as t-tests can not be used

in making inference because either the existence of endogeneity bias or autocorrelation can lead

to standard errors that are incorrect (Lim and Martin, 1995, p. 7). Fully modified estimation

methods get rid of the second order bias and come up with an asymptotic theory that allows

one to make use of standard testing procedures such as t-tests and Wald tests.

OLS estimator is written in the form,
11See Appendix on how to consistently estimate the long-run covariance matrices.
12Median unbiasedness is another term used for second order unbiasedness (see for example Taniguchi (1983)).

If the median of the limiting distribution is equal to the true parameter, the estimator is median unbiased.
Similarly if the mean of the limiting distribution is equal to the true parameter, the estimator is mean unbiased
or unbiased in the usual sense.
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βOLS = (X ′X)−1(X ′y) (3.29)

The corrected FM-OLS estimator can be written as,

β+
OLS = (X ′X)−1(X ′y+ − T ∆̂+

x0) (3.30)

with

y+ = y −∆X ′Ω̂−1
xx Ω̂x0 (3.31)

where Ω̂−1
xx , Ω̂x0 and ∆̂+

x0 are consistent estimates of Ω−1
xx , Ωx0 and ∆+

x0 = ∆x0 −∆xxΩ−1
xx Ωx0

respectively.13

The asymptotic distribution of FM-OLS can be approximated with a normal distribution,

β+
OLS

a∼ N
(
β, ω00.x(X ′X)−1

)
(3.32)

where ω00.x = Ω00 − Ω0xΩ−1
xx Ωx0. If one can consistently estimate ω00.x then standard t-tests

and Wald tests can be applied for testing linear restrictions on the FM-OLS coefficients. The

fully modified t-ratios for tests about individual coefficients are given by,

ti =

(
β+

OLS − βi

)
si

(3.33)

and
13û0t is the estimate of u0t. It is the residual series from the equation (3.26a) via OLS (LAD) when estimating

FM-OLS (FM-LAD).
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si =
√

[ω̂00.x(X ′X)−1]ii i = 1, ..., k (3.34)

where ω̂00.x = Ω̂00 − Ω̂0xΩ̂−1
xx Ω̂x0 is a consistent estimate of ω00.x and k is the number of

coefficients estimated in equation (3.26a). The t-ratios are asymptotically N(0, 1) so that

inference can be made as in stationary linear regression.

When testing hypothesis about two or more linear restrictions (H0 : Rβ − r = 0 against

H0 : Rβ − r 6= 0) on FM-OLS coefficients, Wald statistic can be used,

W+ =
(
Rβ+

OLS − r
)′ {

Rω̂00.x(X ′X)−1R′}−1 (
Rβ+

OLS − r
)

(3.35)

The limiting distribution of the statistic W+ under the null is χ2
q with q number of restrictions.

In order to estimate the FM-LAD estimator, we transform the error vt = sign(u0t) (vt = 1

for u0t ≥ 0 and vt = −1 for u0t < 0). The long-run covariance matrix of wt = (vt, u
′
xt)

′,

t = 2, . . . , T , is given as,

Ωww =
∞∑

j=−∞
E(w0w

′
j) =

 Ωvv Ωvx

Ωxv Ωxx

 (3.36)

The one-sided long-run covariance matrix is given as,

∆ww =
∞∑

j=0

E(w0w
′
j) =

 ∆vv ∆vx

∆xv ∆xx

 (3.37)

FM-LAD estimator is from the same family as FM-OLS and has the same features in a

regression with non-stationary regressors. In addition to having the same features, FM-LAD

is robust and outlier resistant when applied to heavy-tailed data. FM-LAD estimator can be

derived as,

β+
LAD = βLAD −

[
2f̂(0)(X

′
X)
]−1 [

X ′∆XΩ̂−1
xx Ω̂xv + T ∆̂+

xv

]
(3.38)
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In equation (3.38), f̂(0) is a consistent estimator of f(0): the probability density of u0t at

the origin. Ω̂xx, Ω̂xv are consistent estimates of Ωxx and Ωxv. ∆̂+
xv is a consistent estimate of

one-sided long-run covariance matrix,

∆+
xv =

∞∑
k=0

E(ux0v
+
k ) = ∆xv −∆xxΩ−1

xx Ωxv (3.39)

To estimate ∆+
xv, we first need to estimate v+

t ,

v+
t = vt − ΩvxΩ−1

xx ∆xt (3.40)

Since v̂t = sign(û0t), by using consistent estimates Ω̂vx and Ω̂xx, we can construct v̂+
t . Then

∆+
xv can be estimated by the one sided long-run covariance matrix of v+

t and uxt.

The limiting distribution of FM-LAD estimator can be approximated as normal,

β+
LAD

a∼ N
(
β, [1/(2f(0))]2ωvv.x(X ′X)−1

)
(3.41)

where ωvv.x = Ωvv −ΩvxΩ−1
xx Ωxv. The t-statistics and Wald statistics for testing linear restric-

tions about FM-LAD coefficients can be constructed as in the FM-OLS case,

ti =

(
β+

LAD − βi

)
si

(3.42)

si =
√

[ω̂vv.x(X ′X)−1]ii i = 1, ..., k (3.43)

W+ =
(
Rβ+

LAD − r
)′ {

Rω̂vv.x(X ′X)−1R′}−1 (
Rβ+

LAD − r
)

(3.44)

where ω̂vv.x = Ω̂vv − Ω̂vxΩ̂−1
xx Ω̂xv is a consistent estimate of ωvv.x.
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Phillips (1995) considers the limit distribution of FM-LAD with infinite-variance stably

distributed error terms in the system (3.26). For infinite-variance case, equations (3.41), (3.42),

(3.43) and (3.44) still hold but Ωvv replaces ωvv.x.14 Also with infinite-variance errors in ut,

the long-run covariance matrices Ω and ∆ are not well-defined. However, it is still possible

to proceed in the same way as in the finite-variance case and calculate the covariances in the

usual way with a finite sample of data (see Phillips et al. (1996) and the references therein).

Tables 3.19 through 3.22 present FM-OLS and FM-LAD coefficients. FM-LAD‡ row de-

notes the FM-LAD estimator with infinite-variance errors. The t-statistics for testing the

hypotheses, H0 : a = 0 and H0 : b = 1 and Wald statistics for testing the joint hypothesis,

H0 : a = 0, b = 1 of market efficiency are also presented. Wald statistic has an asymptotic χ2
2

distribution.

From Tables 3.19 through 3.22, it is observed that there are differences between FM-OLS

and FM-LAD regression coefficients. In general, FM-OLS estimates of a and b are closer to 0

and 1 respectively when compared to FM-LAD ones. The differences are small for regressions

involving shorter maturity (1-month and 3-month) forward contracts, but are more obvious

for regressions involving longer maturity (6-month and 1-year) contracts except for French,

German and Italian data, for which cases, FM-LAD coefficients of a and b are closer to 0 and

1. It is also observed that a and b estimates of FM-OLS and FM-LAD both tend to get farther

away from 0 and 1 as the contract maturity increases.

If the current forward rate is an unbiased predictor of the future spot rate then there should

exist co-integration between future spot and current forward rates. In addition to that, we test

whether the co-integrating vector is (1,−1)′—i.e. whether the null hypothesis H0 : a = 0, b = 1

holds or not. For 1-month and 3-month contracts, co-integration exists for OLS and LAD-based

regressions and the co-integrating vector is generally found to be (1,−1)′ with both FM-OLS

and FM-LAD coefficients (exceptions occur with Australia, Canada and U.K.). Regarding the

estimations involving longer maturity contracts: joint chi-square and individual t-test results

are much less in favor of FRUH for FM-OLS, FM-LAD and FM-LAD‡.
14See Phillips and McFarland (1997), p. 889.
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Table 3.19: Empirical estimates of equation (3.23) for spot and 1-month forward rates

Parameters, t-ratios and χ2
(2) statistic

Country Method â ta = â/sa b̂ tb = (b̂− 1)/sb Joint test
Australia FM-OLS -0.003 -1.327 0.999 -0.046 16.790c

FM-LAD -0.002 -0.410 0.990 -1.001 17.365c

FM-LAD‡ -0.002 -0.274 0.990 -0.670 7.772c

Canada FM-OLS -0.003 -3.123a 1.004 1.132 36.458c

FM-LAD -0.004 -1.775 1.005 0.829 8.923c

FM-LAD‡ -0.004 -1.194 1.005 0.558 4.039
France FM-OLS 0.001 0.123 0.999 -0.224 1.773

FM-LAD -0.009 -0.408 1.005 0.421 0.202
FM-LAD‡ -0.009 -0.252 1.005 0.260 0.077

Germany FM-OLS 0.000 -0.069 0.999 -0.221 1.535
FM-LAD -0.003 -0.385 1.005 0.433 0.213
FM-LAD‡ -0.003 -0.238 1.005 0.268 0.082

Italy FM-OLS 0.004 0.115 0.999 -0.146 2.885
FM-LAD -0.043 -0.455 1.006 0.456 0.209
FM-LAD‡ -0.043 -0.288 1.006 0.288 0.084

Japan FM-OLS 0.017 0.889 0.996 -0.894 0.805
FM-LAD 0.002 0.073 1.000 0.038 5.484
FM-LAD‡ 0.002 0.046 1.000 0.024 2.181

Switzerland FM-OLS -0.000 -0.460 1.000 0.085 0.809
FM-LAD -0.000 -0.067 1.002 0.283 0.274
FM-LAD‡ -0.000 -0.038 1.002 0.161 0.088

U.K. FM-OLS -0.006 -2.088a 0.995 -0.940 27.778c

FM-LAD 0.002 0.483 1.011 1.089 7.706c

FM-LAD‡ 0.002 0.319 1.011 0.718 3.350
a Rejects the null: H0 : a = 0 against H1 : a 6= 0 at 5% significance.
b Rejects the null: H0 : b = 1 against H1 : b 6= 1 at 5% significance.
c Rejects the null: H0 : a = 0, b = 1 against H1 : Otherwise at 5% significance.

Five percent critical values for t-statistics (two-sided) are ± 1.96.

Five percent critical value for χ2
(2) statistic is 5.99.

FM-LAD‡ denotes the FM-LAD estimator with infinite-variance errors.
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Table 3.20: Empirical estimates of equation (3.23) for spot and 3-month forward rates

Parameters, t-ratios and χ2
(2) statistic

Country Method â ta = â/sa b̂ tb = (b̂− 1)/sb Joint test
Australia FM-OLS -0.010 -1.032 1.002 0.090 8.498c

FM-LAD -0.005 -0.442 0.978 -0.680 11.615c

FM-LAD‡ -0.005 -0.360 0.978 -0.554 7.713c

Canada FM-OLS -0.012 -3.235a 1.023 1.818 24.048c

FM-LAD -0.016 -2.248a 1.037 1.610 7.376c

FM-LAD‡ -0.016 -1.878 1.037 1.345 5.149
France FM-OLS 0.012 0.371 0.992 -0.445 1.139

FM-LAD -0.061 -0.736 1.033 0.712 0.620
FM-LAD‡ -0.061 -0.595 1.033 0.576 0.405

Germany FM-OLS 0.002 0.218 0.992 -0.436 1.006
FM-LAD -0.021 -0.764 1.033 0.706 0.611
FM-LAD‡ -0.021 -0.612 1.033 0.574 0.403

Italy FM-OLS 0.034 0.211 0.995 -0.232 1.426
FM-LAD -0.204 -0.560 1.027 0.588 0.719
FM-LAD‡ -0.204 -0.498 1.027 0.489 0.497

Japan FM-OLS 0.116 1.412 0.976 -1.413 1.998
FM-LAD 0.196 1.941 0.960 -1.901 4.418
FM-LAD‡ 0.196 1.405 0.960 -1.376 2.313

Switzerland FM-OLS 0.003 0.333 0.989 -0.612 0.641
FM-LAD 0.016 1.389 0.948 -1.990 4.886
FM-LAD‡ 0.016 1.041 0.948 -1.491 2.744

U.K. FM-OLS -0.025 -2.096a 0.968 -1.349 13.901c

FM-LAD -0.011 -0.641 0.995 -0.128 5.305
FM-LAD‡ -0.011 -0.530 0.995 -0.105 3.616

a Rejects the null: H0 : a = 0 against H1 : a 6= 0 at 5% significance.
b Rejects the null: H0 : b = 1 against H1 : b 6= 1 at 5% significance.
c Rejects the null: H0 : a = 0, b = 1 against H1 : Otherwise at 5% significance.

Five percent critical values for t-statistics (two-sided) are ± 1.96.

Five percent critical value for χ2
(2) statistic is 5.99.

FM-LAD‡ denotes the FM-LAD estimator with infinite-variance errors.
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Table 3.21: Empirical estimates of equation (3.23) for spot and 6-month forward rates

Parameters, t-ratios and χ2
(2) statistic

Country Method â ta = â/sa b̂ tb = (b̂− 1)/sb Joint test
Australia FM-OLS -0.009 -0.368 0.974 -0.399 5.840

FM-LAD 0.000 0.005 0.936 -0.895 8.077c

FM-LAD‡ 0.000 0.004 0.936 -0.782 6.165c

Canada FM-OLS -0.019 -2.103a 1.028 0.958 14.920c

FM-LAD -0.031 -2.258a 1.078 1.701 6.993c

FM-LAD‡ -0.031 -2.037a 1.078 1.534 5.687
France FM-OLS 0.059 0.766 0.964 -0.828 1.344

FM-LAD -0.009 -0.056 0.999 -0.008 0.731
FM-LAD‡ -0.009 -0.045 0.999 -0.006 0.477

Germany FM-OLS 0.017 0.644 0.964 -0.835 1.264
FM-LAD -0.009 -0.172 0.999 -0.016 0.696
FM-LAD‡ -0.009 -0.140 0.999 -0.013 0.458

Italy FM-OLS 0.224 0.638 0.969 -0.656 1.423
FM-LAD -0.001 -0.002 0.999 -0.015 0.950
FM-LAD‡ -0.001 -0.002 0.999 -0.013 0.694

Japan FM-OLS 0.393 2.196a 0.919 -2.194b 4.820
FM-LAD 0.766 3.562a 0.842 -3.570b 12.755c

FM-LAD‡ 0.766 3.031a 0.842 -3.039b 9.239c

Switzerland FM-OLS 0.018 1.007 0.945 -1.312 1.899
FM-LAD 0.045 2.264a 0.839 -3.486b 16.506c

FM-LAD‡ 0.045 1.685 0.839 -2.595b 9.143c

U.K. FM-OLS -0.076 -2.840a 0.875 -2.230b 13.915c

FM-LAD -0.068 -1.891 0.896 -1.388 7.759c

FM-LAD‡ -0.068 -1.627 0.896 -1.195 5.758
a Rejects the null: H0 : a = 0 against H1 : a 6= 0 at 5% significance.
b Rejects the null: H0 : b = 1 against H1 : b 6= 1 at 5% significance.
c Rejects the null: H0 : a = 0, b = 1 against H1 : Otherwise at 5% significance.

Five percent critical values for t-statistics (two-sided) are ± 1.96.

Five percent critical value for χ2
(2) statistic is 5.99.

FM-LAD‡ denotes the FM-LAD estimator with infinite-variance errors.



73

Table 3.22: Empirical estimates of equation (3.23) for spot and 1-year forward rates

Parameters, t-ratios and χ2
(2) statistic

Country Method â ta = â/sa b̂ tb = (b̂− 1)/sb Joint test
Australia FM-OLS 0.044 0.651 0.797 -1.228 4.571

FM-LAD 0.058 1.072 0.723 -2.081b 13.775c

FM-LAD‡ 0.058 0.973 0.723 -1.890 11.363c

Canada FM-OLS -0.016 -0.714 0.988 -0.164 8.305c

FM-LAD -0.042 -1.307 1.075 0.723 4.692
FM-LAD‡ -0.042 -1.116 1.075 0.617 3.421

France FM-OLS 0.379 3.227a 0.783 -3.322b 12.441c

FM-LAD 0.273 0.793 0.831 -0.881 2.170
FM-LAD‡ 0.273 0.607 0.831 -0.675 1.272

Germany FM-OLS 0.117 2.941a 0.781 -3.262b 11.847c

FM-LAD 0.070 0.615 0.829 -0.889 2.115
FM-LAD‡ 0.070 0.478 0.829 -0.691 1.276

Italy FM-OLS 1.565 3.339a 0.789 -3.365b 13.565c

FM-LAD 1.156 0.803 0.841 -0.825 2.348
FM-LAD‡ 1.156 0.579 0.841 -0.596 1.223

Japan FM-OLS 1.196 3.916a 0.752 -3.918b 15.350c

FM-LAD 1.945 6.655a 0.595 -6.695b 45.242c

FM-LAD‡ 1.945 5.837a 0.595 -5.872b 34.812c

Switzerland FM-OLS 0.080 2.163a 0.770 -2.624b 7.135c

FM-LAD 0.136 3.682a 0.583 -4.774b 25.025c

FM-LAD‡ 0.136 2.895a 0.583 -3.754b 15.475c

U.K. FM-OLS -0.202 -4.778a 0.636 -4.021b 31.504c

FM-LAD -0.235 -4.060a 0.556 -3.572b 19.678c

FM-LAD‡ -0.235 -3.816a 0.556 -3.358b 17.383c

a Rejects the null: H0 : a = 0 against H1 : a 6= 0 at 5% significance.
b Rejects the null: H0 : b = 1 against H1 : b 6= 1 at 5% significance.
c Rejects the null: H0 : a = 0, b = 1 against H1 : Otherwise at 5% significance.

Five percent critical values for t-statistics (two-sided) are ± 1.96.

Five percent critical value for χ2
(2) statistic is 5.99.

FM-LAD‡ denotes the FM-LAD estimator with infinite-variance errors.
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The conclusions drawn from the test results involving FM-LAD and FM-LAD‡ are similar

except for Canada (1-month, 3-month and 6-month contracts) and U.K. (1-month and 6-month

contracts). For those cases, FM-LAD‡ chi-square tests do not reject the null hypothesis that

a = 0 and b = 1 whereas FM-LAD ones reject it. Thus with infinite-variance assumption,

FRUH restrictions are less rejected for the FM-LAD estimator.

FM-LAD coefficient estimates in general tend to give the results that are less in favor of

the FRUH as the forward contract maturity increases, especially with the data from Japan,

Switzerland and U.K.. Figure 3.9 provides the graphs of OLS, LAD, FM-OLS and FM-LAD

regressions for Japanese exchange rate data, where outliers are more pronounced for regressions

with 6-month and 1-year forward contracts. LAD and FM-LAD based regression coefficients

are not as influenced by the outliers as OLS and FM-OLS coefficients.

Phillips and McFarland (1997) apply tests of FRUH with daily frequency data of spot,

1-month and 3-month forward Australian exchange rates over the period 1984-1991. They

observe that tests based on FM-OLS accept the joint hypothesis of market efficiency whereas

tests based on FM-LAD tend to reject it and the chi-square test statistics get larger in the

direction of rejecting the hypothesis more for 3-month case than the 1-month case. Regarding

the individual coefficients, FM-OLS coefficients of a and b are closer to 0 and 1 than the FM-

LAD ones and the magnitude of the coefficients get farther away from 0 and 1 as the forward

contract expiration is longer. Chi-square test statistic strongly rejects the joint hypothesis

with FM-LAD estimations and accepts it with FM-OLS estimations. Phillips et al. (1996)

test for FRUH with daily data involving 1-month forward contracts of Belgian and French

franc, Italian lira and U.S. dollar measured against British pound during 1920s. Their market

efficiency (chi-square) test results yield the same conclusions for FM-OLS and FM-LAD based

tests but the FM-LAD coefficient estimates of a and b are closer to 0 and 1.
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(a) OLS and LAD regressions: 6-month contracts (b) OLS and LAD regressions: 1-year contracts

(c) Fully-modified regressions: 6-month contracts (d) Fully-modified regressions: 1-year contracts

Figure 3.9: Estimations of co-integrating regressions for Japanese exchange rates
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CHAPTER 4. CONCLUDING REMARKS

In many empirical papers, error terms of some important economic and financial data are

shown to have heavier-tails than the tails of Gaussian normal distribution. Stable distribution

family is a better fit for such data than Gaussian distribution. In part I, we consider residual-

based tests of co-integration with infinite-variance errors that come from the stable distribution

family. As an alternative to conventional OLS-based tests that is widely studied, we propose

LAD-based co-integration tests for infinite-variance heavy-tailed data. We evaluate the size

and power of our new tests by comparing them with Caner (1998) test. Caner (1998) extends

the residual-based tests of Phillips and Ouliaris (1990) to infinite-variance stable errors.

Size comparisons indicate significantly more size distortions for the new LAD-based tests

for small sample sizes especially around 50 and 100, compared to OLS-based tests. Those

distortions decrease for our test as the tail structure gets closer to the normal distribution

assumptions—i.e. as α approaches 2.

Power comparisons between the two types of tests show that the new residual-based co-

integration tests are superior to the conventional OLS-based ones when the tails of the error

distribution get heavier and the sample size gets larger. For stability indices (α) less than 1.7

and for sample sizes larger than 50, LAD-based tests perform better than the conventional

OLS-based ones. As the stability index gets closer to 2, conventional OLS-based tests perform

better especially with small sample size. For large sample size, which test is superior over

the other depends on how far away the structure is from the null of no co-integration. Our

test still has some power advantages in distinguishing the null from the alternative when the

residual series are “close” to being non-stationary or the near unit root case. For the near

unit root case, the effects of past shocks tend to be high and if those shocks come from a
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heavy-tailed stable distribution, the new LAD-based co-integration tests have slightly higher

empirical power.

As an empirical illustration, we apply OLS and LAD-based co-integration tests and as-

sociated statistical tests to test for the forward rate unbiasedness hypothesis (FRUH) with

daily data for a sample of eight countries: Australia, Canada, France, Germany, Italy, Japan,

Switzerland and U.K.. Their currencies are measured relative to the U.S. dollar for spot rate

and 1-month, 3-month, 6-month, 1-year forward exchange rates. We find that the infinite-

variance stable error distribution assumption is a reasonable assumption to make for all cases

we consider. There is also evidence of negative skewness in the exchange rate returns indicating

a long-run tendency of those currencies towards appreciation against the U.S. dollar.

From the co-integration tests, we find that co-integration exists between the current forward

(ft,k) and the future spot rate (st+k) for shorter maturity (1-month and 3-month) contracts

with both OLS and LAD-based co-integration tests. Tests involving LAD estimations reject

the hypothesis that there is co-integration between forward and spot rates more for longer

maturity (6-month and 1-year) contracts. Furthermore, joint hypotheses tests for testing a co-

integrating vector of (1,−1)′ between st+k and ft,k are pursued with FM-OLS and FM-LAD

based methods. In general, regardless of the estimation method, the restrictions on the co-

integrating vectors hold when shorter maturity (1-month and 3-month) forward contracts are

considered. This reconciles with FRUH. For longer maturity (6-month and 1-year) contracts,

however, the restrictions are generally rejected with both methods. This finding contradicts

with FRUH and suggests that the decisions of the agents in predicting the future spot rate

from the current forward rate tend to be biased as time to maturity of the forward contract

increases.



78

PART II

TESTING WEAK-FORM AND STRONG-FORM PPP VIA

ROBUST ESTIMATION PROCEDURES
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CHAPTER 5. INTRODUCTION

The law of one price (LOP) states that the same good should cost the same price every-

where if all prices are measured in terms of one common currency. The theory of purchasing

power parity (PPP), which is a logical extension the law of one price, states that apart from

transportation costs and trade barriers, similar goods should sell for similar prices, if prices

are measured in terms of one common currency. On a broader sense, PPP states that once

converted to a common currency, national price levels should be equal (Rogoff, 1996).

PPP theory has important implications in international finance and is an important rela-

tion in exchange rate determination. Thus testing the validity of the PPP through different

econometric methods has been an important issue for econometricians for many years. LOP is

the basic building block of PPP. One can put LOP into equations by the following equational

form for any good i,

E.P ∗
i

Pi
= 1 (5.1)

where E is the nominal exchange rate defined as the amount of domestic currency needed to

purchase one unit of foreign currency, P ∗
i is the foreign price of good i and Pi is the domestic

price of good i.

LOP is the simplest form of PPP. Absolute PPP theory provides a broader measure for the

international price differentials by taking the aggregate price levels into account and considers

a “basket” of goods instead of one single good. The following equation form can be used in

formulating the PPP theory,1

1See Rogoff (1996).
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E.P ∗

P
= 1 (5.2)

where E is the nominal exchange rate defined as the amount of domestic currency needed

to purchase one unit of foreign currency, P ∗ is the foreign aggregate price level and P is the

domestic aggregate price level. Equation (5.2) can be summarized as follows: a basket of

goods in the domestic country should be of the same price as the same basket of goods in

the foreign country once the foreign prices are expressed in terms of the domestic currency.

Another implication of equation (5.2) is that the acceptance of PPP requires the exchange rate

between two currencies to be equal to the relative price of these two countries. In a time series

context the relationship of PPP can be written as,

st = pt − p∗t + εt (5.3)

where st, pt, p∗t are the log of nominal exchange rate, domestic price level and foreign price level

respectively. An error term is added to the equation to generalize the approach and capture

the shocks that affect the system. Note that in the equation we are assuming a linear form.

Equation (5.3) is often known as the strong-form PPP. It has been one of the common

equations in testing PPP. However, strong-form PPP theory suffers from some serious prob-

lems. Therefore, another form of PPP, which is called weak-form PPP, has captured the

attention of economists as a more realistic form.2 In this study, we test whether weak-form

and strong-form PPP holds for a sample of eight countries (Austria, Canada, Denmark, Ger-

many, Japan, Netherlands, Norway and the United Kingdom) with monthly bilateral exchange

rates against U.S. dollar between January 1973 and October 2009. The innovations describing

exchange rate returns and inflation rates are heavy-tailed in nature and their densities can be

better approximated by stable distributions other than the Gaussian normal distribution (Falk

and Wang, 2003). Based on this fact, this study has two main contributions to the existing

PPP testing literature. First, we test weak-form PPP through LAD-based co-integration tests
2Strong-form and weak-form PPP are further explored in chapter 6.
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that are introduced in part I of this dissertation. LAD estimator has superior properties over

OLS estimator with heavy-tailed data structure. Secondly, strong-form PPP is tested through

fully-modified least absolute deviation (FM-LAD) procedure by considering the heavy-tailed

structure of exchange rate returns and inflation rates.

There exists a contrasting empirical evidence on determining whether PPP theory holds or

not. The evidence from different empirical studies will be shown in chapter 6, which accounts

for a literature review on the subject. In chapter 7, empirical analysis is performed: data

variables are explored and the estimation results are presented. Chapter 8 concludes.
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CHAPTER 6. LITERATURE REVIEW

Many macroeconomic time series are non-stationary processes which have trend and cyclical

components. Early works of time series econometrics have devoted significant attention to the

problems that occur when dealing with regressions that include non-stationary variables.1

A necessary condition for a set of non-stationary variables to have a long-run equilibrium

relationship is that they are co-integrated. A vector of time series vt, which is formed of n

individual time series, is co-integrated if those individual series are difference stationary and

their linear combination δ
′
vt is stationary.2 In other words, vt is co-integrated with the co-

integrating vector δ if a linear combination of the series forming vt (which is δ
′
vt) is integrated

with a lower order than the individual series. It is possible to have more than one co-integrating

vectors for n > 2. In that case, it can be assumed that there are r ≤ n−1 linearly independent

co-integrating vectors and the number of co-integrating vectors is the co-integrating rank of

vt. The reason why we can use co-integration methods to test for PPP is because PPP can be

considered as a long-run equilibrium concept. Note that in the case of PPP, the time series

components that form the vector vt are st, pt, p∗t and n = 3.

As mentioned in section 1.1, it is possible to categorize the most popular approaches in

testing co-integration into two: residual-based co-integration tests (Engle and Granger, 1987;

Phillips and Ouliaris, 1990) and likelihood ratio tests (Johansen, 1988, 1991). Both type of

tests can be used in testing the weak-form PPP relation. The proposal of the residual-based

approach is to estimate the co-integrating relationship and use one of the unit root tests to

check for the stationarity of the residuals. We use the residual-based approach to test the

weak-form PPP relation.
1See for example Granger and Newbold (1974) and Phillips (1986).
2A formal definition of co-integration due to Engle and Granger (1987) was also given in section 2.2.



83

In testing long-run PPP through co-integration methods, it is important to mention dif-

ferent estimation procedures together with different forms of PPP. The first form of PPP that

will be considered is the strong-form PPP. If the co-integrating vector δ is known a priori

through economic theory, one can decide whether co-integration holds by testing if the linear

combination δ
′
vt is stationary or not. To understand the strong-form PPP it helps to re-write

the relationship of equation (5.3) in the following form,

st − pt + p∗t = vt (6.1)

If strong-form PPP holds then one would expect the components of the vt series repre-

sented in equation (6.1) to be tied together in the long-run although many developments could

cause permanent changes in individual st, pt and p∗t series. If vt is a stationary process in

equation (6.1) then strong-form PPP is said to hold. In particular, if vt series is stationary

(I(0)) even though st, pt and p∗t are all I(1) then the null hypothesis of no co-integration can be

rejected. Testing the strong-form PPP through equation (6.1) implies the restriction of the co-

integrating vector δ among st, pt and p∗t series to [1− 11]′. Strong-form PPP has homogeneity

as the underlying assumption. Homogeneity assumption says that if the prices are multiplied

by the same constant, PPP remains unchanged.

Corbae and Ouliaris (1988) is one of the early studies that test for the validity of strong-

form PPP for U.S., West Germany, U.K., Japan, Italy, Canada and France. They apply the

unit root tests: augmented Dickey-Fuller and Phillips-Perron, for monthly averages of daily

data of U.S. dollar, Deutsche mark, Japanese yen, British pound, Italian lira, Canadian dollar

and French franc to test whether real exchange rates are stationary. Their test results led to

the rejection of long-run PPP for the period between July 1973 and September 1986. Lothian

and Taylor (1996) analyze the long-run mean reversion properties of real exchange rates of

France and U. S. against the sterling beginning in 1791 and ending in 1990. Their results are

mostly in favor of the strong-form PPP hypothesis. By applying Dickey-Fuller and Phillips-

Perron unit root tests, they can reject the unit root hypothesis of their real exchange rates for

the full sample period. When they consider smaller subperiods, however, they can not reject
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the existence of a unit root in the real exchange rates. They also estimate AR(1) equations

for dollar-sterling and franc-sterling exchange rates both over the full sample period and the

period excluding the years after 1973. The estimated coefficients are found to be close but less

than unity.

Studies by Taylor (2002) and Lopez et al. (2005) use more recent unit root tests to test

whether the real exchange rates are stationary or not. Taylor (2002) investigates the PPP the-

ory for 20 countries (16 developed and 4 developing) over 100 years by performing augmented

Dickey-Fuller (ADF) and generalized least squares versions of Dickey-Fuller (DF-GLS) tests of

Elliot et al. (1996), which are more powerful than the ADF tests. He finds that ADF tests do

not reject the null hypothesis of a unit root for most cases but there is strong support for PPP

when DF-GLS tests are applied. Thus he concludes that long-run PPP holds in the twentieth

century.3 Lopez et al. (2005) challenges Taylor’ s results and lag selection methods for ADF

and DF-GLS tests.4 They re-test the stationarity of real exchange rates for the same sample

that Taylor (2002) used excluding the developing countries and focusing on developed ones by

again performing ADF and DF-GLS tests. But they employ proper lag selection procedures:

general to specific procedure of Hall (1994) for ADF tests and modified Akaike information

criterion (MAIC) of Ng and Perron (2001) for DF-GLS tests. They find that the unit root

hypothesis is rejected only for 9 out of 16 real exchange rates and the differences in the ADF

and DF-GLS test results are almost eliminated, suggesting that there is no sufficient evidence

to conclude that long-run PPP held in the twentieth century.

Many researchers prefer to test a less restrictive version of PPP than the strong-form PPP.

In reality, price series have substantial measurement error and contain important non-tradeable

elements constructed differently from country to country which makes it a relatively difficult

and restrictive theory to justify. Especially with time series data, other problems arise as new

goods emerge over time. Also the tastes of consumers and the quality of goods are different

for different countries. Thus it is difficult to identify a relevant consumption basket and to
3Taylor (2002) also tests PPP through Johansen-type co-integration tests but can not find a strong supportive

evidence and mentions that it might be due to the low power problem of those type of tests.
4Taylor (2002) chooses the lag lengths by a Lagrange multiplier criterion.
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assign the right weights to the goods in the basket (Rogoff (1996); Levanoni and Darnell

(1999)). Weak-form PPP is a less restrictive version of strong-form PPP and it has started

getting attention among economists due to its more realistic nature (Patel (1990); MacDonald

(1993)). Strong-form PPP restricts the co-integrating vector among economic series st, pt and

p∗t to [1− 11]′. Weak-form PPP allows for any kind of co-integration and tests whether there

is an arbitrary relation among the three series. In a time series context, weak-form PPP can

be tested in a general trivariate form by the following equation,

st = β0 + β1pt + β2p
∗
t + εt (6.2)

Patel (1990) argues that restricting β1 and β2 to 1 and - 1 is inappropriate because of

measurement errors and differing weights for different countries in constructing price indices.

Restricting β1 = 1 and β2 = −1 is related to the differences in price index weights and also to

the presence of non-tradeable goods. If this restriction holds then the homogeneity assumption

is said to hold (Hallwood and MacDonald (2000), p. 144).5 In practice, the aggregate price

indices such as the CPI or PPI contain many non-tradeable goods prices, which are less likely

to be equalized by international trade. Dutton and Strauss (1997) find that non-traded goods

relative prices are in fact an important determinant of real exchange rate behavior and are an

important source of persistent deviations of the real exchange rate away from its PPP value.

Patel (1990) makes use of the testing methods of Engle and Granger (1987) and Stock and

Watson (1988) to test for weak-form PPP for 6 developed and relatively free-market economies

(U.S., U.K., Canada, West Germany, Netherlands and Japan) between 1974 and 1986 with

quartely data. His results do not present enough evidence in accepting the PPP theory in

the long-run, as he finds support for PPP only in 5 out of 15 country pairs. Enders (1988)

tests for PPP through error correction models and residual-based tests as proposed in Engel

and Granger (1987). His monthly data is formed of wholesale price index based real exchange

rates between U.S.A. and her trading partners (Canada, Japan and Germany) for two different

periods: January 1960-April 1971 (period of fixed exchange rates) and January 1973-November
5It is also known as the proportionality condition (Sosvilla-Rivero and Garcia, 2006).
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1986 (period of flexible exchange rates). He tests for PPP by making the symmetry assumption

(β1 = −β2). Although he finds strong support for PPP between U.S. and Japan during the

fixed exchange rates period and weak support for PPP between U.S. and Canada during the

flexible exchange rates period, the data overall does not indicate strong evidence to accept the

PPP theory.

Residual-based tests can test for the existence of co-integration, likelihood-ratio-based tests

allow us to test for the number of co-integrating vectors. MacDonald (1993) tests weak-form

PPP with Johansen’ s method for Canada, France, U.K., Germany and Japan through January

1974 and June 1990. His data gives supportive evidence to a long-run PPP relationship between

the sample countries’ bilateral exchange rates with U.S. dollar and their corresponding relative

prices. He also tests and rejects the existence of strong-form PPP for his data. Salehizadeh

and Taylor (1999) apply the Johansen co-integration procedure for 27 emerging/developing

economy countries against the U.S. dollar with monthly data covering the period 1975:01-

1997:09. They find out that only 14 out of 27 countries show significant evidence in support

of the weak-form PPP. When they test for strong-form PPP with ADF unit root tests, their

results are not in favor of real exchange rate stationarity except for Mexico.

Based on the study of Phillips and Hansen (1990), some researchers test the strong-form

PPP through fully-modified OLS (FM-OLS) procedure (Dutt and Ghosh (1995); Braha and

Anoruo (2002); Crownover et al. (1996)). Dutt and Ghosh (1995) and Crownover et al. (1996)

make the symmetry assumption. Dutt and Ghosh (1995) test for both weak-form and strong-

form PPP. They use Phillips and Ouliaris (1990) residual-based co-integration tests to test

for weak-form PPP (necessary condition for PPP) and FM-OLS Wald tests to test for strong-

form PPP (necessary and sufficient condition for PPP). Their monthly data span the period

from 1973:1 to 1992:12 and are formed of the countries of the members of EMS (European

Monetary System) and participants to the European Exchange Rate Mechanism (ERM): Bel-

gium, Denmark, France, Italy, Netherlands. Bilateral exchange rates are studied vis-á-vis the

anchor currency Deutschemark. Their results support the weak-form PPP and show evidence

that there is co-integration between the exchange rate and price ratio series (only exception
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is with the Belgian franc/German mark exchange rate series). However, the strong-form PPP

is not supported by the data and strongly rejects the null of joint restrictions for the EMS.

Crownover et al. (1996) also test for both weak-form and strong-form PPP and make use of

FM-OLS method for annual data running from 1927 to 1992. They consider six countries:

Canada, France, Germany, Italy, U.K. and U.S.A. with bilateral exchange rates. While testing

for the weak-form PPP, they investigate whether there is a unit root in FM-OLS residuals or

not. They find that weak-form PPP holds for 10 out of 15 country pairs. When it comes to

strong-form PPP tests by FM-OLS Wald tests, for only 5 country pairs they can not reject the

null of joint restrictions. A more recent study by Braha and Anoruo (2002) tests weak-form

PPP and strong-form PPP through Harris-Inder co-integration tests and FM-OLS method

respectively for Asian countries (Philippines, Singapore, Thailand and Malaysia) with quar-

terly data from 1973:1 to 1999:2. While the results are mostly in favor of the weak-form PPP,

strong-form PPP does not get much support from their data.

Residual-based and Johansen-type likelihood ratio tests assume that exchange rates and

inflation rates follow normal or at least near normal behavior in the tails. But when the

distributional aspects of the exchange rates and inflation rates are taken into account, many

studies indicate that exchange rate returns and inflation rates are subject to high volatility

and heavy-tails. Furthermore, their innovations exhibit Pareto-like infinite-variance behavior

in the tails. In particular, the studies that find evidence of infinite-variance in exchange rate

returns are Koedijk et al. (1990), Koedijk and Kool (1992), Akgiray et al. (1988), Fofack and

Nolan (2001) and Basterfield et al. (2003). Bidarkota and McCulloch (1998) and Charemza

et al. (2005) find evidence of infinite-variance behavior in inflation rates.

A recent study by Falk and Wang (2003), tests PPP with the infinite-variance error as-

sumption. While applying the theoretical findings of Caner (1998) to test for weak-form PPP

through residual-based tests of Phillips and Ouliaris (1990) and (Johansen, 1988, 1991) type

tests, Falk and Wang (2003) assume that the log levels of exchange rate, domestic price level,

foreign price level are finite-order, trivariate VARs with i.i.d. disturbances that are α-stable

processes sharing a common stability index α. They consider the bilateral exchange rates and
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price levels (CPI) of 12 industrialized countries: Belgium, Canada, Denmark, France, Ger-

many, Italy, Japan, the Netherlands, Norway, Spain, Sweden and U.K.. All exchange rates

are measured relative to the U.S. dollar. They estimate the stability indices of the innovation

series by Nolan (1997)’ s maximum likelihood procedure for each country with monthly data

(1973:1-1999:12). Their results indicate that all α levels are less than 2 (except for the Cana-

dian exchange rate), supporting the infinite-variance assumption. Their results are slightly less

supportive of the PPP theory under the infinite-variance error assumption.

Overall evidence from the previous empirical studies that investigate the heavy-tailed struc-

ture of exchange rate returns and inflation rates suggests that it is not appropriate to assign a

normal distributional structure to the exchange rate returns and inflation rates. Based on this

evidence, in our empirical application to test for weak-form and strong-form PPP, we assume

that the error distributions of our exchange rate and price series come from infinite-variance

stable distributions. We utilize a general trivariate form as in equation (6.2) for our estimation

purposes. Our contributions to the literature are twofold: first to test for weak-form PPP,

we make use of the new robust residual-based tests that are proposed in part I, and secondly,

to test for strong-form PPP, we make use of FM-LAD estimator, which is more robust to

heavy-tails than the FM-OLS estimator.6

6As mentioned above, one study that uses the FM-OLS estimator to test for strong-form PPP is Crownover
et al. (1996). They also investigate the possibility of thick tails for exchange rate data and find little evidence of
thick tails with annual frequency. Therefore, they proceed with FM-OLS calculations. However, they apply the
Hill (1975) estimator to estimate the tail indices. Hill (1975)’ s method has been criticized by many studies for
not giving accurate results (see for example McCulloch (1997) and Fofack and Nolan (1999) and the references
therein.). Moreover, they apply the Hill (1975) estimator to the logarithms of exchange rate data directly. It is
known that Hill (1975) estimator is only optimal when applied to i.i.d. data (Resnick and Stărică (1997); Ling
and Peng (2004)).
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CHAPTER 7. EMPIRICAL ANALYSIS

7.1 Data

Data are taken from the International Monetary Fund’ s International Financial Statistics

(IFS). Data span the period of flexible exchange rate regimes. A sample of eight countries

is chosen including Austria, Canada, Denmark, Germany, Japan, Netherlands, Sweden and

the United Kingdom. Frequency of the data is monthly between January 1973 and December

2009. Exchange rate data are domestic currencies per unit of the United States Dollar: Austria

(Schilling), Canada (Canadian Dollar), Denmark (Krone), Germany (Deutsche Mark), Japan

(Yen), Netherlands (Guilder), Sweden (Krona) and U.K. (Pound). Exchange rate data are

from the line RF (period average) in IFS tapes.1 Producer price indices (PPIs) have been

collected to be the price levels. All PPI series have been indexed to year 2005=100.

Graphs of Canadian exchange rate and PPI data together with the exchange rate returns

and inflation rates (log difference of PPIs) against time are presented in Figure 7.1. Similar

graphs are given for U.K. in Figure 7.2.

Similar to Caner (1998) and Falk and Wang (2003), st, pt and p∗t series are assumed to

follow a finite-order trivariate VAR system with infinite-variance stable innovations that share

a common stability index α.2 We check whether weak-form PPP holds or not through residual-

based co-integration tests. Both OLS-based and LAD-based co-integration tests will be used.

Next, fully-modified coefficient estimates from equation (6.2) will be used to test whether

strong-form PPP holds or not through Wald tests.
1The exchange rate data for U.K. are from the line RH. The reciprocal of the published data is used.
2st, pt and p∗t series in our case are log nominal exchange rate, log PPI and log US PPI respectively for each

country.
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(a) Canadian dollar exchange rate (b) Canadian Producer Price Index

(c) Canadian dollar exchange rate returns (d) Canadian inflation rates

Figure 7.1: Canadian dollar exchange rate and PPI: 1973:1-2009:12
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(a) U.K. pound exchange rate (b) U.K. Producer Price Index

(c) U.K. pound exchange rate returns (d) U.K. inflation rates

Figure 7.2: U.K. pound exchange rate and PPI: 1973:1-2009:12
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7.1.1 Estimation of stable parameters

In this section, we use Box-Jenkins methods of model selection to fit VAR(q) models to st,

pt and p∗t . We run a system of regressions that are in the form:

st = µ1 + a11st−1 + b11pt−1 + c11p
∗
t−1 + . . . + a1qst−q + b1qpt−q + c1qp

∗
t−q + ε1t (7.1a)

pt = µ2 + a21st−1 + b21pt−1 + c21p
∗
t−1 + . . . + a2qst−q + b2qpt−q + c2qp

∗
t−q + ε2t (7.1b)

p∗t = µ3 + a31st−1 + b31pt−1 + c31p
∗
t−1 + . . . + a3qst−q + b3qpt−q + c3qp

∗
t−q + ε3t (7.1c)

OLS and LAD procedures are used for estimation purposes for Caner test and our test

respectively. We also include 11 seasonal dummies to VAR equations.3 Then we test the

residual series from those VAR(q) models for independence to determine whether they come

from an i.i.d. distribution or not. In total there are 24 residual series from 8 countries.

Lag selection of the VARs are utilized by checking the SACF & SPACF structures of the

residuals. SACFs and SPACFs for some of the Canadian and U.K. residuals from the fitted

VARs are presented in Figures 7.3 through 7.8. VAR(12) models are fitted for Canada and

U.K.. Lin-McLeod i.i.d. tests are applied on the residuals after we identified a model. Table 7.1

shows all the lag orders chosen for the VARs together with the Lin-McLeod i.i.d. test results.

In order to consume less space, only the results from LAD-based VARs are presented for i.i.d.

tests and estimates of stable parameters. Lag length selection and stability index estimation

are important to decide about the critical values. Table 7.9 shows the critical values chosen

for OLS-based Caner test in addition to our test which is LAD-based.

In Table 7.1, p-values of Lin-McLeod tests need to be greater than 0.05 for us not to reject

the i.i.d. hypothesis at 5% significance level. From Table 7.1, we can see that the selected

VAR models perform well enough to decide that the innovations are in fact i.i.d. processes.

Next, we estimate the stable parameters (α, β) for each residual series and present the 95%

confidence intervals. The results are shown in Table 7.2.

3See for example MacDonald (1993) and Falk and Wang (2003).
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(a) SACF–Canada (b) SPACF–Canada

(c) SACF–U.K. (d) SPACF–U.K.

Figure 7.3: SACFs and SPACFs of the residuals from equation (7.1a) with Gaussian confidence
bounds: ±1.96 1√

T
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(a) SACF–Canada (b) SPACF–Canada

(c) SACF–U.K. (d) SPACF–U.K.

Figure 7.4: SACFs and SPACFs of the residuals from equation (7.1a) with conservative confi-
dence bounds: ±2.57 1√

T
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(a) SACF–Canada (b) SPACF–Canada

(c) SACF–U.K. (d) SPACF–U.K.

Figure 7.5: SACFs and SPACFs of the residuals from equation (7.1b) with Gaussian confidence
bounds: ±1.96 1√

T
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(a) SACF–Canada (b) SPACF–Canada

(c) SACF–U.K. (d) SPACF–U.K.

Figure 7.6: SACFs and SPACFs of the residuals from equation (7.1b) with conservative confi-
dence bounds: ±2.57 1√

T
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(a) SACF–Canada (b) SPACF–Canada

(c) SACF–U.K. (d) SPACF–U.K.

Figure 7.7: SACFs and SPACFs of the residuals from equation (7.1c) with Gaussian confidence
bounds: ±1.96 1√

T
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(a) SACF–Canada (b) SPACF–Canada

(c) SACF–U.K. (d) SPACF–U.K.

Figure 7.8: SACFs and SPACFs of the residuals from equation (7.1c) with conservative confi-
dence bounds: ±2.57 1√

T
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7.1.2 Diagnostic checks for normality

Residuals from the LAD-based VAR models are visually checked to determine how much

they deviate from the normality assumption.4 The empirical densities of some of the residuals

can be found in Figures 7.9 and 7.10. Stable and normal (N(0, s) with s denoting the sample

standard deviation) densities are drawn by simulating random variables from stable and normal

distributions with parameters estimated from actual data. From the figures it can be inferred

that the stable distribution assumption on the errors is more suitable than the normality

assumption.

Figure 7.11 contains the QQ plots for the VAR residuals of exchange rates for Austria,

Canada, Germany and U.K.. Figure 7.12 contains the QQ plots for the same countries for the

VAR residuals of log price levels. QQ plots show that heavy-tailedness is an important issue

for our data especially for the inflation rates.

Converging mean and variance tests are also applied to the residuals. Figure 7.13 and

7.14 present the results for Canadian and Swedish data. Panels (a) and (b) plot the first n

sample variances and means of Canadian residuals respectively against n. Panels (c) and (d)

plot the first n sample variances and means of Swedish residuals respectively against n. In the

figures, “N(0, s)” (s: sample standard deviation) and “Stable” denote the simulated normal

and stable random variables respectively with parameters imposed from actual data. From

what we observe in Figures 7.13 and 7.14, stable distribution with infinite-variance and finite-

mean seems to be an appropriate assumption on the errors rather than the finite-variance and

finite-mean Gaussian normal assumption.

7.2 Unit root tests

First, the order of integration of all variables are checked since the necessary condition for

PPP is that all variables are I(1). Tables 7.3 and 7.4 report the results of the OLS-based Caner

and LAD-based Samarakoon-Knight unit root tests for the nominal exchange rate series. The

results of PPI series are shown in Tables 7.5 and 7.6. Order of serial correlations for Caner
4We have a similar structure for OLS-based VAR residuals.
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Table 7.2: Maximum Likelihood Estimation of stable parameters (PPP)

Variable
Country Parameter Exchange Rate PPI US PPI
Austria α̂ 1.70±0.14 1.53±0.15 1.25±0.14

β̂ -0.08±0.40 0.07±0.30 0.07±0.21
Canada α̂ 1.86±0.12 1.59±0.15 1.33±0.14

β̂ -0.32±0.69 0.09±0.32 0.12±0.22
Denmark α̂ 1.86±0.12 1.59±0.15 1.33±0.14

β̂ -0.32±0.69 -0.27±0.32 0.06±0.20
Germany α̂ 1.83±0.12 1.36±0.15 1.24±0.14

β̂ -0.17±0.63 0.02±0.24 0.11±0.21
Japan α̂ 1.86±0.10 1.34±0.15 1.30±0.14

β̂ -0.99±0.43* 0.03±0.23 0.03±0.22
Netherlands α̂ 1.80±0.13 1.47±0.15 1.18±0.14

β̂ -0.18±0.52 0.16±0.27 0.15±0.19
Sweden α̂ 1.86±0.11 1.80±0.13 1.26±0.14

β̂ 0.31±0.70 0.18±0.52 -0.01±0.22
U.K. α̂ 1.85±0.12 1.31±0.14 1.11±0.13

β̂ 0.27±0.68 0.17±0.22 -0.01±0.18
* 95% confidence interval is given for β = −0.9, since β = −0.99 is very close to the

boundary.
Note: The results are based on LAD estimations.
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(a) Canadian residuals from VAR(12) (α = 1.86) (b) Canadian residuals from VAR(12)

(c) Swedish residuals from VAR(12) (α = 1.86) (d) Swedish residuals from VAR(12)

Figure 7.9: Data based kernel densities of the residuals from the fitted VARs (log exchange
rates) versus stable and normal densities



105

(a) Canadian residuals from VAR(12) (α = 1.59) (b) Canadian residuals from VAR(12)

(c) Swedish residuals from VAR(12) (α = 1.80) (d) Swedish residuals from VAR(12)

Figure 7.10: Data based kernel densities of the residuals from the fitted VARs (log PPIs) versus
stable and normal densities
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(a) Austrian residuals from VAR(13) (α = 1.70) (b) Canadian residuals from VAR(12) (α = 1.86)

(c) German residuals from VAR(12) (α = 1.83) (d) U.K. residuals from VAR(12) (α = 1.85)

Figure 7.11: Quantiles of (standardized) residuals from the fitted VARs (log exchange rates)
versus the quantiles of N(0, 1) distribution
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(a) Austrian residuals from VAR(13) (α = 1.53) (b) Canadian residuals from VAR(12) (α = 1.59)

(c) German residuals from VAR(12) (α = 1.36) (d) U.K. residuals from VAR(12) (α = 1.31)

Figure 7.12: Quantiles of (standardized) residuals from the fitted VARs (log PPIs) versus the
quantiles of N(0, 1) distribution
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(a) Canadian residuals from VAR(12) (α=1.86) (b) Canadian residuals from VAR(12)

(c) Swedish residuals from VAR(12) (α=1.86) (d) Swedish residuals from VAR(12)

Figure 7.13: Converging variance and mean tests of residuals from the fitted VARs (log ex-
change rates)
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(a) Canadian residuals from VAR(12) (α=1.59) (b) Canadian residuals from VAR(12)

(c) Swedish residuals from VAR(12) (α=1.80) (d) Swedish residuals from VAR(12)

Figure 7.14: Converging variance and mean tests of residuals from the fitted VARs (log PPIs)
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test is chosen by the following criteria,

l = int(4(T/100)1/4) (7.2)

where T is the sample size and “int” function returns the nearest integer. For Samarakoon-

Knight tests, lag lengths have been chosen by the AIC and diagnostic checks with SPACF and

SACF structure.

When the results of OLS-based unit roots are considered: all nominal exchange rate series

(except for Austrian and Japanese exchange rates) appear to have a unit root in levels and

have no unit root in first differences. For Austria and Japan, the nominal exchange rates are

found to be I(0) both in levels and first differences. The conclusions hold regardless of whether

we make infinite-variance or finite-variance assumption. The results from LAD-based tests

show that all exchange rate series appear to be I(1).

When OLS-based unit root tests are applied on the price indices, nearly half of the price

series seem to be I(0) both in levels and in first differences; exceptions occur with Germany,

Netherlands, Sweden and U.K., price series of which appear to be I(1) (see Table 7.5). If we

make finite-variance assumption, U.K. PPI seems to be I(0). The results of the LAD-based

Samarakoon-Knight unit root tests with PPI series are shown in Table 7.6. The price indices

are I(1) except for those of Canada, Japan and U.K.. PPIs of Canada, Japan and U.K. are

again found to be I(0) both in levels and first differences.

We need all exchange rate and price series to be I(1). There seem to be some deviations

from that assumption especially when we consider OLS-based unit root tests. The number of

series that appear to be I(1) is greater when we consider LAD-based unit root tests. Although

we have mixed results from the two types of unit root tests, we proceed to the next estimations

by assuming that all series that we have are I(1).

7.3 Residual-based co-integration tests

Weak and strong-form PPP can be tested through a general equation as in equation (6.2).

Here we consider testing the weak-form PPP through residual-based co-integration tests. We
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Table 7.3: Caner unit root test in exchange rates

Level First Difference
Country Zt

† Zt

Austria -1.97* -15.93*

Canada -0.03 -16.12*

Denmark -0.68 -15.90*

Germany -1.88 -15.78*

Japan -2.41* -15.70*

Netherlands -1.58 -15.79*

Sweden -1.31 -14.67*

U.K. 0.32 -14.28*

* Rejects the null hypothesis of a unit root at
5% significance level.

† For α = 2, critical value is -1.95 (standard).

Critical values are taken from Table 2.1.

Table 7.4: Samarakoon-Knight unit root test in exchange rates

Level First Difference
Country Lag† πφ Lag πφ

Austria 2 -0.38 1 -14.09*

Canada 5 0.35 4 -12.60*

Denmark 2 0.55 2 -14.22*

Germany 2 -0.16 1 -14.23*

Japan 4 -0.53 3 -17.07*

Netherlands 2 -0.87 1 -13.32*

Sweden 4 0.70 3 -14.50*

U.K. 4 1.27 3 -16.03*

† Selected by AIC and SACF & SPACF structure.
* Rejects the null hypothesis of a unit root at 5%

significance level. 5% critical value is -1.64.
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Table 7.5: Caner unit root test in price indices

Level First Difference
Country Ztµ

† Zt
‡

Austria -3.68* -15.26*

Canada -3.60* -14.26*

Denmark -3.54* -10.92*

Germany -2.69 -14.21*

Japan -5.87* -10.26*

Netherlands -1.22 -19.23*

Sweden -2.10 -14.51*

U.K. -2.91 -13.90*

U.S. -3.27* -22.45*

* Rejects the null hypothesis of a unit root at
5% significance level.

† For α = 2, critical value is -2.86 (constant).
‡ For α = 2, critical value is -1.95 (standard).

Critical values are taken from Table 2.1.

Table 7.6: Samarakoon-Knight unit root test in price indices

Level First Difference
Country Lag† πµ Lag πφ

Austria 15 -1.11 14 -14.02*

Canada 2 -2.85* 1 -9.68*

Denmark 3 -2.50 2 -8.54*

Germany 6 -0.65 5 -12.26*

Japan 3 -4.56* 2 -18.12*

Netherlands 4 -0.34 3 -19.03*

Sweden 14 -0.43 13 -6.84*

U.K. 4 -3.99* 3 -12.94*

U.S. 7 0.52 6 -11.94*

† Selected by AIC and SACF & SPACF structure.
* Rejects the null hypothesis of a unit root at 5%

significance level. 5% critical value is -1.64.
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implement both OLS and LAD-based tests. Our LAD-based tests’ critical values are presented

in section 2.3.1 of part I with one regressor in the co-integrating regression. Table 7.8 presents

the critical values of our test with two regressors in the co-integrating regression (as needed

in testing PPP) and Table 7.7 shows the critical values for Caner test with two regressors.

Zt critical values are calculated through simulations based on 1,000 sample size with 20,000

iterations following Caner (1998). πφ critical values are the large sample critical values that

are found with 50,000 iterations.

Table 7.7: 5% critical values of Zt statistic for Caner co-integration test (n=2)

α constanta constant and trendb

1 -4.22 -4.54
1.5 -3.85 -4.21
1.6 -3.81 -4.19
1.7 -3.81 -4.17
1.8 -3.79 -4.17
1.9 -3.78 -4.16

a Phillips-Ouliaris critical value (α = 2) at 5% significance is -3.77.
b Phillips-Ouliaris critical value (α = 2) at 5% significance is -4.16.

Note: n is the number of regressors in the co-integrating regression.

Table 7.8: 5% critical values of LAD-based co-integration tests (n = 2)

Stability index constant constant and trend
1.5 -2.25 -2.72
1.6 -2.44 -2.74
1.7 -2.65 -2.90
1.8 -2.90 -3.14
1.9 -3.13 -3.41

Note: n is the number of regressors in the co-integrating
regression.

Note that the stability indices of the errors that drive the st, pt and p∗t series are not the

same for each country. However, both Caner test and our test require homogeneous stability

indices. For Caner test, the critical values decrease as α decreases for any given size. Therefore,

following a conservative approach, we choose the critical values of Caner test according to the

smallest α of the three innovation series. For our test, the critical values increase as α decreases
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for any given size. Thus if we want to follow a conservative approach, we should select the

critical values according to the largest α of the three innovation series. By doing this our aim

is to make the actual size of the tests less than the nominal size.5 Five percent critical values

chosen for Zt and πφ are given in Table 7.9. In the Table, minimum α levels are found by

MLE procedure from OLS-based estimations and maximum α levels are found by the same

procedure from LAD-based estimations.

Table 7.9: 5% critical values of Zt and πφ

Zt πφ

Country Minimum α Maximum α No Trend Trend No Trend Trend
Austria 1.58 1.70 -3.81 -4.19 -2.65 -2.90
Canada 1.60 1.86 -3.81 -4.19 -3.13 -3.41

Denmark 1.61 1.86 -3.81 -4.19 -3.13 -3.41
Germany 1.52 1.83 -3.85 -4.21 -2.90 -3.14

Japan 1.55 1.86 -3.81 -4.19 -3.13 -3.41
Netherlands 1.80 1.87 -3.79 -4.17 -2.90 -3.14

Sweden 1.50 1.86 -3.85 -4.21 -3.13 -3.41
U.K. 1.45 1.85 -3.85 -4.21 -3.13 -3.41

Note: Zt critical values are taken from Table 7.7 and πφ critical values are taken from Table 7.8.

Residual-based co-integration test results are shown in Tables 7.10 (OLS-based) and 7.11

(LAD-based). Regardless of making the finite-variance or infinite-variance assumption, OLS-

based co-integration tests fail to provide evidence of the weak-form PPP hypothesis. When

our LAD-based test is applied, we see that the hypothesis is again rejected for all countries

except for Denmark and U.K. for no trend case.

7.4 Fully-modified estimations

Considering equation (6.2), if the strict interpretation of long-run PPP theory (or strong-

form PPP) applies, joint parameter restrictions of the null hypothesis H0 : β0 = 0, β1 = 1, β2 =

−1 should hold. In addition to the joint restrictions, here individual coefficient restrictions are

also tested. In summary, we test the following joint and individual hypotheses:
5Our conjecture that the actual test size will be less than the nominal size can be proven by Monte Carlo

simulations.
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Table 7.10: OLS-based co-integration tests in PPP

Country No Trend Trend
Austria -3.07 -3.19
Canada -2.79 -2.76

Denmark -2.87 -2.98
Germany -2.36 -2.55

Japan -1.56 -1.42
Netherlands -1.91 -3.36

Sweden -2.17 -2.12
U.K. -2.71 -2.52

5% critical values are from Table 7.9.

Table 7.11: LAD-based co-integration tests in PPP

Country Fitted Model† No Trend Trend
Austria AR(13) -2.20 -2.34
Canada AR(12) -2.14 -2.10

Denmark AR(12) -3.22* -3.40
Germany AR(12) -2.84 -2.65

Japan AR(12) -2.45 -2.66
Netherlands AR(12) -1.80 -2.80

Sweden AR(12) -2.83 -2.93
U.K. AR(12) -3.27* -3.09

† Model fitted for residuals from Equation 6.2. Selected
according to VAR order of section 7.1.1.

* Rejects the null hypothesis of no co-integration at 5%
significance level.

5% critical values are taken from Table 7.9.

H0 : β0 = 0, β1 = 1, β2 = −1

H1 : Otherwise

H0 : β0 = 0

H1 : β0 6= 0
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H0 : β1 = 1

H1 : β1 6= 1

H0 : β2 = −1

H1 : β2 6= −1

We can see from Table 7.12 that using fully-modified Wald tests to justify the strong-form

PPP empirically turns out to be a disappointment. All the p-values are very small strongly

rejecting the joint hypothesis: H0 : β0 = 0, β1 = 1, β2 = −1. We also explore the results

from the individual coefficient tests: H0 : β0 = 0, H0 : β1 = 1 and H0 : β2 = −1. The

individual restrictions are mostly rejected with FM-OLS regressions. But even through FM-

LAD regressions, the coefficient estimates are not close to the predictions of the strong-form

PPP hypothesis. The results associated with FM-LAD and FM-LAD‡ based tests are similar.
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Table 7.12: Empirical estimates of equation (6.2)

Parameters, t-ratios and P-values for joint test
Country Method β̂0 tβ0 β̂1 tβ1 β̂2 tβ2 P-value
Austria OLS -1.16 2.62 -1.85

FM-OLS -1.48 -1.11 2.67 2.80b -1.83 -2.60c 0.00d

LAD -0.41 2.27 -1.67
FM-LAD -0.79 -0.48 2.44 1.95 -1.76 -1.93 0.00d

FM-LAD‡ -0.79 -0.37 2.44 1.52 -1.76 -1.50 0.00d

Canada OLS 0.28 1.35 -1.37
FM-OLS 0.18 1.21 1.30 2.32b -1.29 -1.94 0.00d

LAD 0.30 1.40 -1.43
FM-LAD 0.15 0.84 1.37 2.37 -1.35 -1.95 0.00d

FM-LAD‡ 0.15 0.76 1.37 2.17 -1.35 -1.78 0.00d

Denmark OLS 2.55 2.04 -2.21
FM-OLS 2.11 6.20a 1.73 2.09b -1.80 -2.07c 0.00d

LAD 2.39 1.77 -1.91
FM-LAD 2.22 8.41a 1.73 2.68b -1.83 -2.75c 0.00d

FM-LAD‡ 2.22 7.37a 1.73 2.35b -1.83 -2.41c 0.00d

Germany OLS -3.11 3.08 -2.31
FM-OLS -2.58 -1.84 2.60 2.13b -1.94 -2.05c 0.00d

LAD -2.40 2.67 -2.07
FM-LAD -2.38 -1.18 2.66 1.54 -2.05 -1.61 0.00d

FM-LAD‡ -2.38 -1.01 2.66 1.32 -2.05c -1.37 0.00d

Japan OLS 4.77 1.10 -1.14
FM-OLS 4.57 4.98a 1.09 0.41 -1.09 -1.28 0.00d

LAD 5.22 0.97 -1.10
FM-LAD 5.03 2.32a 0.94 -0.11 -1.03 -0.20 0.00d

FM-LAD‡ 5.03 2.23a 0.94 -0.10 -1.03 -0.20 0.00d
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Table 7.12: (Continued)

Parameters, t-ratios and P-values for joint test
Country Method β̂0 tβ0 β̂1 tβ1 β̂2 tβ2 P-value

Netherlands OLS 0.22 1.68 -1.60
FM-OLS 0.75 0.69 1.47 0.57 -1.50 -0.84 0.00d

LAD 0.62 1.30 -1.31
FM-LAD 0.52 0.54 1.57 0.81 -1.56 -1.09 0.00d

FM-LAD‡ 0.52 0.47 1.57 0.69 -1.56 -0.94 0.00d

Sweden OLS 1.50 1.06 -0.96
FM-OLS 1.35 4.62a 1.05 0.37 -0.91 0.51 0.00d

LAD 1.57 1.09 -1.01
FM-LAD 1.35 1.91 0.98 -0.08 -0.84 0.36 0.00d

FM-LAD‡ 1.35 1.89 0.98 -0.08 -0.84 0.35 0.00d

U.K. OLS 0.03 0.66 -0.79
FM-OLS 0.14 -0.45 0.60 -3.49b -0.69 1.74 0.00d

LAD 0.16 0.67 -0.83
FM-LAD 0.07 0.18 0.59 -2.92a -0.73 1.23 0.00d

FM-LAD‡ 0.07 0.15 0.59 -2.40b -0.73 1.01 0.00d

a Rejects the null: H0 : β0 = 0 against H1 : β0 6= 0 at 5% significance.
b Rejects the null: H0 : β1 = 1 against H1 : β1 6= 1 at 5% significance.
c Rejects the null: H0 : β2 = −1 against H1 : β2 6= −1 at 5% significance.
d Rejects the null: H0 : β0 = 0, β1 = 1, β2 = −1 against H1 : Otherwise at 5% significance.

Five percent critical values for t-statistics (two-sided) are ± 1.96.

Five percent critical value for χ2
(3)-statistic is 7.82.

FM-LAD‡ denotes the FM-LAD estimator with infinite-variance errors.



119

CHAPTER 8. CONCLUDING REMARKS

Purchasing Power Parity is an important condition in international finance as exchange rate

determination is of crucial importance to understand the links between domestic and foreign

economies. In part II, weak-form and strong-form PPP relationships are re-examined for a

sample of eight countries (Austria, Canada, Denmark, Germany, Japan, Netherlands, Sweden

and the United Kingdom) with monthly data on exchange rate (per U.S. dollar) and PPI series

from January 1973 to December 2009.

As a contribution to the extant literature, weak-form PPP is tested through residual-based

co-integration tests by utilizing the least absolute deviation (LAD) estimator and strong-form

PPP through fully-modified least absolute deviation (FM-LAD) method while considering the

heavy-tailed error structure of exchange rate returns and inflation rates. LAD method is

known to be more robust to heavy-tailed data than the OLS estimator. The errors driving

our exchange rates and inflation rates show characteristics that are consistent with those of

the α-stable distributions with infinite-variance. LAD-based weak-form PPP test results are

compared to those of conventional OLS-based co-integration tests and strong-form PPP test

results of FM-LAD regressions are compared to those of fully-modified ordinary least squares

(FM-OLS) regressions.

Weak-form PPP does not get support from the data with both OLS-based co-integration

tests. On the other hand, only for 2 cases out of 16, we accept weak-form PPP with LAD-

based tests. Strong-form PPP is tested through both FM-OLS and FM-LAD based chi-square

tests. Strong-form PPP is strongly rejected for all countries with both methods regardless

of the finite-variance or infinite-variance assumption. When the individual coefficients are

considered, it is observed that the parameters are in general not close to the predictions of the
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strict PPP theory neither with FM-OLS nor with FM-LAD estimations.

The results show that weak-form and strong-form PPP can not be justified empirically.

Even the weak-form PPP does not hold (except for 2 cases) although we consider the heavy-

tailed structure of errors and apply LAD-based co-integration tests. However, there are limi-

tations to our study. Our residual-based tests assume that all the variables that are tested for

co-integration are driven by errors with the same stability index. There is no test for testing

the equality of stability indices. In part I, we tested for forward rate unbiasedness hypothesis.

Stability indices of the errors from the spot and forward exchange rates for the same country

turned out to be the same with only very slight differences. In part II, with PPP data, stability

indices of the errors of exchange rate, PPI and US PPI tend not to be that similar even though

the differences are not too big. Nevertheless, we can still follow a conservative approach both

for Caner (1998) test and our test to reach a conclusion.
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APPENDIX

LONG-RUN COVARIANCE MATRIX ESTIMATION

Long-run covariance matrices Ω and ∆ can be consistently estimated from the residuals

ût = (û0t, u
′
xt)

′, t = 2, . . . , T , via a kernel. Kernel estimates have the general form,1

Ω̂ =
T−1∑

j=−T+1

W (j/M)Γ(j) (A.1)

and

∆̂ =
T−1∑
j=0

W (j/M)Γ(j) (A.2)

where Γ(j) = (1/T )
∑T

t=j+1 ût−j û
′
t with Γ(−j) = Γ(j)′, W (.) is a weight function (kernel) and

M is a lag truncation or bandwidth parameter. In equations (A.1) and (A.2), truncation occurs

when W (j/M) = 0 for |j| ≥ M . A bandwidth parameter is chosen according to the data-based

automatic bandwidth selection method of Andrews (1991). A Parzen kernel is chosen,

W (x) =


1− 6x2 + 6|x|3 for 0 ≤ |x| ≤ 1/2

2(1− |x|)3 for 1/2 ≤ |x| ≤ 1

0 otherwise

where W (0) = 1.

1See for example Hansen (1992).
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Caner, M. (1998). Tests for cointegration with infinite variance errors. Journal of Econometrics,

86:155–175.

Chan, N. H. and Tran, L. T. (1989). On the first order autoregressive process with infinite

variance. Econometric Theory, 5(3):354–362.

Charemza, W., Burridge, P., and Hristova, D. (2005). Is inflation stationary? Applied Eco-

nomics, 37:901–903.



124

Chen, P. and Hsiao, C.-Y. (2010). Subsampling the Johansen test with stable innovations.

Australian & New Zealand Journal of Statistics, 52:61–73.

Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues.

Quantitative Finance, 1:223–236.

Cont, R. (2007). Volatility clustering in financial markets: Empirical facts and agent based

models. In Kirman, A. and Teyssiére, G., editors, Long memory in economics, pages 289–309.

Springer, New York.

Corbae, D. and Ouliaris, S. (1988). Cointegration and tests of purchasing power parity. The

Review of Economics and Statistics, 70:508–511.

Crownover, C., Pippenger, J., and Steigerwald, D. G. (1996). Testing for absolute purchasing

power parity. Journal of International Money and Finance, 15:783–796.

Delcoure, N., Barkoulas, J., Baum, C., and Chakraborty, A. (2003). The forward rate unbiased-

ness hypothesis reexamined: Evidence from a new test. Global Finance Journal, 14:83–93.

Dickey, D. and Fuller, W. (1979). Distribution of the estimates for autoregressive time series

with a unit root. Journal of the American Statistical Association, 74:427–431.

DuMouchel, W. (1973). On the asymptotic normality of the maximum-likelihood estimate

when sampling from a stable distribution. The Annals of Statistics, 1:948–957.

Dutt, S. D. and Ghosh, D. (1995). Purchasing power parity doctrine: Weak and strong form

tests. Applied Economics Letters, 2:316–320.

Dutton, M. and Strauss, J. (1997). Cointegration tests of purchasing power parity: The impact

of non-traded goods. Journal of International Money and Finance, 16:433–444.

Elliot, G., Rothenberg, T., and Stock, J. H. (1996). Efficient tests for an autoregressive unit

root. Econometrica, 64:813–836.

Enders, W. (2004). Applied Econometric Time Series. John Wiley & Sons, Hoboken.



125

Engle, R. E. and Granger, C. W. (1987). Cointegration and error-correction: Representation,

estimation, and testing. Econometrica, 55:251–276.

Engle, R. E. and Yoo, B. S. (1987). Forecasting and testing in co-integrated systems. Journal

of Econometrics, 35:143–159.

Falk, B. and Wang, C.-H. (2003). Testing long-run PPP with infinite variance returns. Journal

of Applied Econometrics, 18:471–484.

Fama, E. (1965). The behavior of stock market prices. Journal of Business, 38(1):34–105.

Fama, E. (1984). Forward and spot exchange rates. Journal of Monetary Economics, 14:319–

338.

Fasen, V. (2010). Time series regression on integrated continuous-time processes with heavy

and light tails. Preprint.

Fofack, H. and Nolan, J. P. (1999). Tail behavior, modes and other characteristics of stable

distributions. Extremes, 2(1):39–58.

Fofack, H. and Nolan, J. P. (2001). Distribution of parallel exchange rates in African countries.

Journal of International Money and Finance, 20:987–1001.

Gallagher, C. M. (2001). A method for fitting stable autoregressive models using the autoco-

variation function. Statistics and Probability Letters, 53:381–390.

Gnedenko, V. V. and Kolmogorov, A. N. (1968). Limit Distributions for Sums of Independent

Random Variables. Addison-Wesley, Reading.

Granger, C. W. J. and Newbold, P. (1974). Spurious regressions in econometrics. Journal of

Econometrics, 2:111–120.

Granger, C. W. J. and Orr, D. (1972). Infinite variance and research strategy in time series

analysis. Journal of the American Statistical Association, 67(338):275–285.



126

Griffiths, W. E., Hill, R. C., and Judge, G. G. (1993). Learning and Practicing Econometrics,

chapter 3, pages 72–125. John Wiley and Sons, New York.

Hakkio, C. S. and Rush, M. (1989). Market efficiency and cointegration: An application to

the sterling and deutschemark exchange rates. Journal of International Money and Finance,

8:75–88.

Hall, A. (1994). Testing for a unit root in time series with pretest data-based model selection.

Journal of Business and Economic Statistics, 12:461–470.

Hall, J. A., Brorsen, B. W., and Irwin, S. H. (1989). The distribution of futures prices: A

test of the Stable-Paretian and mixture of normal hypothesis. Journal of Financial and

Quantitative Analysis, 24:105–116.

Hallwood, J. P. and MacDonald, R. (2000). International Money and Finance. Blackwell

Publishing Ltd, Massachusetts.

Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press, Princeton.

Hansen, B. (1992). Tests for parameter instability in regressions with I(1) processes. Journal

of Business and Economic Statistics, 10(3):321–335.

Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. The

Annals of Statistics, 3(5):1163–1174.
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and Applications, pages 379–400. Birkhäuser, Boston.
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Econometrics: From Basics to Advanced Modeling Techniques, chapter 14, pages 465–494.

Wiley, Hoboken.

Rachev, S. T., Mittnik, S., and Kim, J.-R. (1998). Time series with unit roots and infinite-

variance disturbances. Applied Mathematics Letters, 11(5):69–74.

Razzak, W. A. (1999). The forward rate unbiasedness hypothesis in inflation-targeting regimes.

Reserve Bank of New Zealand Discussion Paper No. G99/3.

Razzak, W. A. (2002). The forward rate unbiasedness hypothesis is revisited. International

Journal of Finance and Economics, 7:293–308.
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