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ABSTRACT 

 

An important objective for policy-makers is how to allocate resources for the 

enjoyment of its citizens. Outdoor recreation is a very popular hobby for a lot of people. The 

sites they travel to for recreational purposes are public sites such as the Clear Lake, located in 

central Iowa. The users of the lake often care about the quality of the water. It is the goal of 

the researcher to determine how much they are willing to pay in order to preserve or improve 

the water quality. The researcher must decide on not only the theoretical methodology, but 

the appropriate statistical model. The focus of this thesis is using count data models to 

estimate individuals’ willingness to pay. A common count data model is the Poisson model, 

however it is restrictive and often alternative models must be used. This thesis introduces a 

new count data model to the literature: The Conway-Maxwell-Poisson regression model. 

Using the data gathered by individual users at Clear Lake, I contrast this model with a 

popular alternate to the Poisson model, the negative binomial model. 



 1 

 

CHAPTER 1. GENERAL INTRODUCTION  

1.1  Introduction  

Households enjoy spending their leisure at public sites such as lakes and parks for 

recreational activities. Due to resource constraints, policy-makers need a reliable estimate of 

the benefits and costs of actions that affect the quality and quantity. These goods share the 

“common-property” characteristics of non-excludability and non-depletion; therefore market 

prices cannot allocate resource usage. Since they are public goods, special methods and 

techniques are needed to estimate the welfare gained from site usage and quality 

improvements and the welfare lost from quality detriments and use restrictions. 

The act of placing a value on natural resources is sometimes controversial. Some 

environmentalists reject this practice for moral reasons that are similar to why someone 

rejects the concept of placing a value on somebody's life. Another argument against this 

approach is that some believe that natural resources contain intrinsic value. A natural 

resource contains intrinsic value if '“it is valuable in and for itself-if its value is not derived 

from its utility, but is independent of any use or function it may have in relation to something 

or someone else”' (Freeman 2003). While the concept of intrinsic value is sympathetic to 

those who have certain philosophical inclinations, it is problematic when applying it to 

natural resource management. The concept of intrinsic value cannot provide answers to many 

practical issues that policy-makers face.  For example, consider the problem of controlling 

pollution. The regulation of pollution imposes costs to both private industries and taxpayers. 

Intrinsic value does not provide help on determining the correct level of pollution. Another 
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example is the question of when to allow ecologically sensitive areas to be developed. Land 

development is important for economic growth but people value open space and habitat, thus 

tradeoffs must be made. Freeman (2003) advocates the concept of instrumental value instead 

of intrinsic value. Instrumental value is when the valuation of a natural resource has a goal or 

purpose. For example, a lake provides services for households by the means of boating and 

fishing. It also provides a habitat for many creatures. Since people gain utility from those 

activities and enjoy the existence of a lake to provide a habitat and economic value is based 

on the welfare of individuals, then the goal is measure the welfare that the lake provides for 

recreation and its very existence.  

1.2  Natural Resource Valuation Methodology 

 Economists use both revealed preference and stated preference methods in estimating 

the demand for non-market goods. Revealed preference methods use actual observed 

behavior of households to reveal their value on the resource. There are two different 

modeling approaches when using the revealed preference method. The continuous choice 

approach estimates the quantity of trips an individual takes. Then a demand function can be 

estimated so that welfare analysis can be performed. The travel cost method (TCM) is the 

most well-known example. The discrete choice approach models the decision of an 

individual who chooses among competing sites. The random utility model is commonly used 

to model that choice.    

Stated preference approaches rely on individuals to state their value on hypothetical 

changes of the resource or to give their expectations on their future use. The contingent 

valuation method (CVM) is the most widely used stated preference method. It is able to elicit 
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information about the individual’s value. The method asks a hypothetical question in which 

respondents are asked their willingness to pay for the change in a natural resource or 

willingness to accept compensation to forgo that change. There have been different ways to 

ask CVM questions. The most common is the dichotomous choice format. This format asks 

the respondent whether they are willing to pay $X. An answer of “yes” allows the researcher 

to place a lower bound on the respondent’s willingness to pay, while an answer of “no” 

places an upper bound.  

Contingent behavior is another stated preference method that is often used in 

conjunction with the TCM. A common contingent behavior question is to ask a respondent 

how many trips they would take if their travel costs changed by $X. Contingent behavior 

questions can also be used to elicit information on how many trips would be taken if there 

was a change in one of the environmental attributes of the recreation site.  

There are a lot of advantages and drawbacks of using either a revealed preference or 

stated preference method. Revealed preference methods have the advantage of using data that 

was generated from actual behavior. Problems of the TCM include what qualifies as a site, 

dealing with substitute sites, and how to measure the opportunity cost of time.  

In contrast, a huge disadvantage for stated preference methods is the hypothetical 

nature of the questions. A famous critique of CVM was made by Diamond and Hausman 

(1994). A group of well-known economists, the Blue Ribbon Panel, suggested guidelines for 

refining the CVM. While guidelines did not quiet every criticism, it has made the practice 

more generally accepted.  

Researchers decide on which method to use based on the problem they are trying to 

address. The TCM is able to measure the value of using the recreation site, while CVM is 
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able to measure both use value and non-use value. For example, it is possible for an 

individual to value the existence of a recreation site while never actually visiting it. Krutilla 

(1967) argues that individuals can have a bequest motivation. They will value the 

preservation of the site for future generations to use. Researchers used to favor one method 

over another. However, there has been a trend to use both methods in order to validate the 

other approach (Haab and McConnell 2002). 

1.3  Empirical Background  

The goal of non-market valuation studies is to measure the well-being that individuals 

receive from visiting a recreation site. Researchers are not able to measure the economic 

value of a site directly from the data generated by observed behavior. That is why they rely 

on statistical inference. The accuracy of estimation is dependent on both the econometric 

model chosen and the reliability of data. The respondent is subject to time constraints, the 

ability to correctly interpret questions, and recall the necessary information. Respondents are 

often asked to recall how many trips they’ve taken in a particular year and how much money 

they spent in a particular month/year. For a nice discussion of potential pitfalls of survey 

methods see Phaneuf and Smith (2005).  

There have been numerous statistical methods that have been used to estimate single 

site demand models. The trip data that is gathered is in the form of non-negative integers. 

This had led to the use of count data models, the most common being the Poisson regression 

model. An assumption of that model is that the conditional mean and the conditional variance 

are equal. This is known as the equidispersion of counts. This assumption is often violated 
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and alternative count model is needed. A popular alternative is the negative binomial 

regression model which allows for overdispersion. 

1.4  Problem Statement and Thesis Outline 

This thesis focuses on the estimation of recreation demand for Clear Lake, located in 

Clear Lake, Iowa. The lake is used for recreational purposes such as fishing, boating, and 

beach use. Since the mid-20th century, the quality of the water was detraining. In the summer 

of 2000, researchers at Iowa State University conducted a survey to users. Using the revealed 

preference data generated from that survey, I will explore the estimation of recreation 

demand using count data models including a newer regression model that results from the 

Conway-Maxwell Poisson distribution. 

A brief organization of this thesis follows. Chapter 2 contains brief review the 

theoretical framework and count models that are used with travel cost models. Chapter 3 

develops the Conway-Maxwell Poisson generalized linear model. Chapter 4 discusses the 

survey that was use for the Clear Lake study. Finally, Chapter 5 will provide the estimation 

and welfare calculations.  
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CHAPTER 2. A THEORETICAL AND EMPIRCAL INTRODUCTION  

TO THE TRAVEL COST MODEL 

2.1  Introduction  

The travel cost model is a widely used method of estimating the recreational demand 

of a natural resource. Its underlying premise is the fact that households have to travel to a 

recreational site to benefit from its amenities. Harold Hotelling in 1947 was the first to 

suggest using travel costs as implicit prices for recreation sites (Haab and McConnell 2002). 

Burt and Brewer (1971) were the first to use the travel cost model to estimate demand 

equations in their application of recreational activity at rivers, lakes and reservoirs in 

Missouri. There has been a variety of different applications of the travel cost model including 

sport fishing in the Chesapeake Bay (Bockstael et.al 1990), hunting trips in California (Creel 

and Loomis 1990), and the effect of wildfires on biking and hiking demand in New Mexico 

(Hesseln et.al 2003). 

2.2  Theoretical Development and Assumptions 

2.2.1 The Basic Travel Cost Model 

The basic travel cost model is based off standard microeconomic theory. Although 

the demand for the site could be modeled as an aggregate demand, the model estimates it on 

the individual level and estimates the economic value of the site by adding up each 

individual’s value.  The total economic benefits to users of a site can be obtained by 

summing up the area under each individual’s demand function.  Each individual demand 

function shows the number of visits depends on the cost of visiting the site.   
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The formal model is set up as a representative consumer maximizing their utility 

given their income and time constraint, 

,                                          (2.1)         

where U(·) is a quasi-concave utility function, y is the number of trips to a site, z is a 

numeraire (private) good, q is the quality of the site, c is the cost of visiting the site, m is a 

household’s income that is exogenous to the model,  is the time spent working,  is the 

time spent traveling to the site,  is the time spent onsite, and T is the total time available. 

Setting up the Lagrangian and taking the first order condition yields  

.                   (2.2)
 

The Lagrangian multiplier µ represents the marginal utility of time and the ratio µ/λ 

represents the marginal WTP for time. Therefore, (2.2) can be interpreted as the marginal 

WTP should be the same as a household’s full cost of visit (Freeman 2003).   The model 

yields a demand function dependent on the price of visiting the site, the quality of the site and 

the income of the individual.  

2.2.2 The Role of Time 

An important assumption of the model is that opportunity cost of time serves as a 

proxy for the travel cost. This approach follows the household production framework of 

Becker (1965). The household production framework states the household’s demand for 

market goods and similarly non-market goods are just vehicle for their consumption process, 
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i.e. they transform the goods into service flows that produce utility (Smith 1991). These 

service flows are not observable but we can observe a different combination of inputs used in 

the production process given a change in constraints. Consider the household production 

activity of watching a movie with the family. Given income and time constraints, we can 

observe the amount of convenience services such as Netflix that allows families to save time 

and money instead of driving to the local video store. The household production framework 

gives a framework for how non-market and market goods relate to each other.  

The basic model assumes that the individual can freely substitute labor and leisure at 

a constant wage rate. This assumption is necessary so that the time spent working is in the 

same units as the time spent onsite and traveling to the site. Cesario (1976) discovered that 

empirically, this assumption does not hold. This has led researchers to develop alternative 

ways of modeling time. A response to Cesario’s findings has led to researchers to use a 

fraction of the wage rate, most commonly one-third (Shaw and Feather 1999). This is still 

problematic because it assumes that every user has the same tradeoff. Other researchers have 

addressed the problem in a different way. Bockstael, Strand and Hanemann (1987) argue that 

an individual’s marginal value of time may not be equal to their wage rate because they 

might not be able to optimally choose the number of hours they can work. Their model 

allows for the “corner solution”, a worker can choose to have a job with fixed hours or 

choose not to work at all.  

Also important is the role of onsite time. The assumption of the basic model is 

that all visits to the site are of the same duration. This is important because it allows the 

number of visits to be constant.  It also ensures that the price of visiting the site is 
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exogenous to the model. In practice, researchers use people who only make day trips to 

the site in order for the assumption to hold.  

2.2.3 The Role of On-site Quality 

The quality of a recreation site influences the amount of pleasure that an individual 

receives from visiting the site. The basic model yields an individual demand function that is 

partially dependent on the quality of the site. To be able to know how individual preference 

of the site quality can be inferred from decisions affected by it, there has to be a way to find 

the relationship between quality and the utility that an individual receives from visiting the 

site. The concept of weak complementarity was developed to deal with this issue. The 

assumption requires that along with visiting the recreation site, an individual consumes a 

private good. The private good is said to be non-essential, which indicates that there is a 

price, known as a “choke price”, where the consumption of it is zero. When the weak 

complementary good is not consumed, the user will not value any changes to the quality of 

the recreation site. 

 Consider the example of fishing in a lake. The water quality of a lake can affect 

whether fishing in it is safe. If the private good is the rental of fishing equipment, the 

individual won’t care about the quality of lake if they are not fishing in it. It is generally 

thought not to be possible to test the plausibility of weak complementarity from data (Haab 

and McConnell 2002). It is thought to be realistic and intuitive because people only value 

changes in the quality of the resource if they use it. Measuring quality changes from travel 

cost data is very difficult. It is usually complimented with contingent behavior data so that 

the researcher can measure how behavior is changed when the quality changes. 
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2.2.4 Other Assumptions 

 The basic model assumes that all travel costs that an individual incurs are for a single 

site. There also cannot be any substitute sites that are available for the individual to choose 

from. If there are multiple substitute sites, then the number of trips to the recreation site will 

depend on the travel costs to substitute sites and can lead to biased estimates (Freeman 2003).  

2.3  Count Data Models for Recreation Demand 

2.3.1 Why Count Data Models? 

 Recreational site trip data is generated by a stochastic process; dependent on the 

sampling method that was used. Researchers assume the dependent variable, the number of 

trips, is assumed to be distributed continuously or discretely. There have been applications in 

which the researchers assume that the number of trips is distributed continuously. Early 

applications used ordinary least squares on aggregate zonal data (Phaneuf and Smith 2005). 

The Tobit model has also been popular because it is a censored model that allows a large 

number of observations massed at zero. Count data models are popular because the recreation 

trips are recorded as non-negative integers. They are also attractive because they assume a 

semi-log demand functional form, which is very popular in the literature.  

 The theoretical basis for using count data models is very important for interpretation 

of estimation results. The problem in using the standard microeconomic approach is that if 

trips are non-negative integers, differential calculus cannot be used to obtain the optimal 

consumption bundle. Hellerstein and Mendelsohn (1999) address the problem by adding an 

additional constraint that the number of trips must be a non-negative integer. Their solution 

requires that each individual has a set of unobserved factors that given a price, determines the 
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quantity of trips that are taken. This along with observable factors such as price and income 

will yield a distribution of demand that can be modeled using a count data distribution.  

2.3.2 The Poisson Count Regression Model 

The Poisson probability density function is  

 ,               (2.3) 

with i=1,…, n observations. The mean  and .To apply (2.3) for the 

purpose of regression, assume , and  is assumed to be a function of a 1 x 

k vector of covariates  and a k x 1 vector of coefficients . The functional form of the 

parameterization for the conditional mean is 

.                 (2.4) 

The Poisson model assumes that the conditional mean, , is equal to the conditional 

variance. Overdispersion is when the conditional variance exceeds the conditional mean and 

is considered to be heteroskedastic. The standard approach of estimating the model is using a 

form of maximum likelihood estimation, either using a Newton-Ralphson algorithm or the 

iterative reweighted least squares, which is used by the generalized linear model approach. 

The likelihood equation that is given by 

.               (2.5) 

Equation (2.5) is globally concave and guarantees convergence. If the conditional mean 

function (2.4) is correctly specified, the Poisson model is robust to the presence of 

overdispersion. This leads to using the pseudo-likelihood estimator. See Cameron and 

Trevidi (1998) for more details on this estimator.  



 12 

 

2.3.3 The Negative Binomial Count Regression Model 

 In many empirical applications of recreation demand, trip counts are often 

overdispered. A reason for this is because many users only take a few trips and a few take 

many trips. Although econometricians have modified the Poisson regression model to deal 

with overdispersion, a popular alternative has been the use of the negative binomial 

regression model. The probability mass function for the negative binomial distribution is  

,             (2.6) 

where  is the gamma function. The mean and variance of the negative binomial are 

 and . It is common to parameterize r and p in the terms of 

 and . Define , then , solving yields . After the 

reparametrization, (2.6) becomes 

.                           (2.7) 

The mean of this parameterization is  and . This is known as 

the “NB-2” model because it has a quadratic variance function. In this model  and if 

, then it reduces to a Poisson. There are other ways to derive (2.7), including mixing 

distributions of the Poisson-gamma and Poisson-beta (Johnson, Kemp and Kotz 2005). The 

derivation from the Poisson-gamma mixture provides some intuition into the usefulness of 

the NB2. It specifies a Poisson model with an error term in the mean. This error term reflects 

unobserved heterogeneity and is distributed gamma. The problem of overdispersion could a 

result of unobserved heterogeneity that is not captured by the Poisson model (Cameron and 

Trivedi 1998).  
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 The negative binomial model can be estimated using maximum likelihood. The NB2 

likelihood function is  

            (2.8) 

The NB2 model is less robust to distributional misspecification than the Poisson model 

where one could use a pseudo-maximum likelihood estimator. If the conditional mean is 

correctly specified, s will be consistent (produce the correct standard errors) but  will not 

be. See Cameron and Trivedi (1998) for first order conditions, Fisher information matrix, and 

asymptotic results of the maximum likelihood estimators.  

2.3.4 Welfare Analysis for Count Regression Models 

 The eventual goal of recreation demand studies is to use welfare measures for policy 

recommendations. For count models there are problems when trying to perform this analysis. 

One problem is that they do not have to be ability to distinguish users and nonusers from 

those who report zero trips. The preference structure from those who are nonusers to those 

who are users that might not take any trips during that particular time period will be different. 

For these models, the number of trips is guided by a distribution that is not associated with a 

random error, which suggests that the quantity demanded is itself a random variable (Haab 

and McConnell 1996). Hellerstein (1999) considers a semi-log demand function with a 

stochastic error term; this function is continuous and is unlike any semi-log demand function 

generated from a count distribution.  He argues that the demand function without the 

stochastic error should be considered as a “description of potential behavior” (p.272). 

Welfare analysis is conducted via deriving the consumer surplus by integrating under the 
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demand function. Since the number of trips is guided by a count distribution, taking the 

expectation of the distribution will yield the expected number of trips. Thus, consumer 

surplus can be obtained by integrating under the expected number of trips. Formally, the 

expected number of trips can be calculated as  

,               (2.9) 

where  is the stepwise demand function resulting from (2.1), whose stepwise structure is 

influenced by unobserved factors.  does not have any distributional assumptions. 

Consumer surplus can be obtained by taking the expectation of (2.9) with respect to the price.  

For the semi-log demand function, the choke price is infinite. Let  denote the choke price 

and  denote the initial price, and then the consumer surplus can be calculated as  

                                            (2.10) 

Haab and McConnell (1996) argue that for this to occur, price changes have to be 

independent of the error structure, which they find unsatisfactory. Despite this debate, these 

models are used as a way to a good way to fit the data given the discrete, non-negative 

structure of it. 

2.3.5 The Use of On-site Sampling  

The use of on-site sampling is popular because it is cheaper in terms of both time and 

money for researchers to be able to obtain information from users. The problem with an on-

site sample is that there are not any households that have not taken any trips. The sample will 

not reflect the true population and those that visit the site more frequently than others will 
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more likely be sampled. Since the sample is not reflective of the population, the conditional 

mean is not reflected by . The problem of truncation deals with the fact that the 

researcher only deals with households that take a positive number of trips. Grogger and 

Carson (1991) apply truncated Poisson and negative binomial models to Alaskan fishing 

trips.  

 Shaw (1988) was the first to recognize the problem of truncation and endogenous 

stratification simultaneously. The benefits of correcting for truncation and endogenous 

stratification is that it allows for the estimation of the benefits of a trip to any individual in a 

population, the mean number of trips that an individual will take and the theoretical 

availability of calculating the benefits themselves. Failure to correct for this will result in 

biases in welfare estimates. Correcting for the biased sample will allow researchers to infer 

the value by potential users (Englin and Shonkwiler 1995b).  

Shaw (1988) and Santos Silva (1997) show that from a population density function 

, the endogenous stratified probability density function is 

 .                      (2.11) 

Santos Silva (1997) and Patil and Rao (1978) show that the mean for the endogenous 

stratified sample is  

 .             (2.12) 

Herriges and Egan (2006) provide the intuition for (2.12). When researchers use count data 

models to estimate on-site samples without correcting for truncation and endogenous 

stratification, the amount of bias to estimate the population average will depend on the 

relative overdispersion, i.e. the ratio of the variance to the mean. When the probability of 



 16 

 

sampling a household that visits the site more often than others in the population increases, it 

will increase the variance.  

 Shaw shows that the Poisson regression model when adjusted for endogenous 

stratification has a probability density function of the form  

                                               (2.13) 

where . The mean and variance for (2.13) are  and 

. Estimating the on-site Poission regression model is easy because all that is 

needed to regress the dependent variable  on the covariates.  

Since the Poisson regression model assumes equidispersion, Englin and Shonkwiler 

(1995) correct the negative binomial regression model to account for truncation and 

endogenous stratification. They show the probability density function as  

 .        (2.14) 

When  approaches zero, equation (2.14) will be reduced to (2.13). Thus, testing the 

statistical significance of  can be used to test for overdispersion. The mean and variance  

for (2.14) are  and . 

There are different ways to parameterize , and the parameterization that is chosen implies 

an assumption about the functional form of the heteroskedasticity (Cameron and Trivedi 

1986) and will result in different estimates in the covariates.  
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CHAPTER 3. THE CONWAY-MAXWELL-POISSON MODEL 

3.1  Introduction  

The Poisson distribution is one of the most widely used distributions in statistical 

applications. The distribution does have its limitations because its mean and variance are 

equal. In many situations this assumption is not realistic. Thus researchers have used 

different specifications of the Poisson to deal with this problem. Usually this done by 

introducing a mixing distribution or estimating the Poisson with extra parameters that 

account for over-dispersion or under-dispersion. A recent specification of the Poisson is that 

of the Conway-Maxwell- Poisson distribution.  The Conway-Maxwell-Poisson distribution is 

a two parameter Poisson distribution that was first introduced by Conway and Maxwell 

(1962). Even though Conway and Maxwell introduced this distribution a long time ago, it 

was relatively ignored in the literature and its properties were not fully developed. Shmueli et 

al. (2005) reintroduce this distribution into the literature and develop many properties for it.  

The rise in the popularity of the distribution, other than being relatively new, is that 

the CMP family belongs to the exponential family. Many useful properties of the exponential 

family have been developed and make the distribution favorable for the use of Bayesian 

analysis and other statistical inference.  Since the reintroduction there has been a recent 

increase in applications of the distribution including analyzing motor vehicle crashes, electric 

power reliability, retail predictions of households, and predicting cancer recurrence. See Lord 

et al. (2008), Guikema and Gofflet (2008), Boatwright, Borle and Kadane  (2003) and 

Rodrigues et al. (2009). This chapter follows the result of Sellers and Schmueli (2008), who 

extend this distribution in the context of generalized linear models.  
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3.2  Distributional Properties  

The Conway-Maxwell-Poisson (CMP) has a probability mass function of the form  

 , and                                               (3.1)    

             
,
                                                                                             (3.2) 

for  and . The function  is an infinite series that converges for  and 

. The CMP distribution generalizes other well-known distributions. It is a limiting 

distribution for the Bernoulli, as , then . When , then 

 and the distribution nests the Poisson.  becomes a geometric 

series when  and the distribution nests the geometric distribution. The CMP distribution 

shows that there is a non-linear relationship between the ratio of successive probabilities as 

displayed by 

.                  (3.4)
 

Schumeli et al. (2005) shows the moments as being in the form of the recursive formula  

 .                         (3.5) 

The mean and variance can be represented as 

                   (3.6) 

  .                 (3.7) 
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Sellers and Schumeli (2008) show that the variance can also be specified as  

 .                  (3.8)   

Since the moments of the distribution do not have a closed form, Schueli et al. show that 

(3.6) can be approximated by   

  ,                 (3.9) 

and Sellers and Schumeli show (3.7) can be approximated by  

  .                (3.10) 

These approximations are only valid for  or  (Minka et al. 2003). As shown in 

(3.10),  measures the dispersion of the mean.  

3.3  The Conway-Maxwell-Poisson Generalized Linear Model 

Sellers and Schmueli (2008) extend the CMP distribution into the classical GLM 

framework. A brief summary of the GLM framework can be found in Appendix A. The CMP 

distribution is a member of the linear exponential family as displayed by:  

            (3.11) 

Like the Poisson case, the nuisance function is assumed to be normalized and has a logarithm 

link function. The log-likelihood function is represented as   

                                      (3.12)        

The log-likelihood function can be solved in a few different ways. If the standard Newton-

Ralphson algorithm is employed, it must be maximized under the constraint  (Sellers 
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and Schmueli 2008). However, a far less restrictive approach is the use the IRLS algorithm. 

Taking the first order conditions of (3.3.2) yields  

 

 
        (3.13)

 

Using the estimates from Poisson regression as initial values, these equations can be 

solved iteratively with the IRLS algorithm. To estimate the parameters and their 

corresponding standard errors, the Fisher information matrix is used. The matrix contains the 

covariance and variance of , the variance of  and the covariance between  and . The 

derivation of these estimates can be found in Sellers and Schumeli (2008 Appendix B). Using 

reweighted least squares, the estimation can be set up similarly to in (A.5) in Appendix A.  

3.4  On-site Sampling and Coefficent Interpretation 

3.4.1 Correcting for On-site Sampling 

The sampling procedure that was used in this thesis was to intercept users on-site. To 

correct for endogenous stratification, the mean of a distribution has to be specified using 

(2.11).  However, the CMP distribution does not have moments in closed form. Thus, the 

approximation in (3.9) is used. The probability mass function for the on-site CMP model is  

                   (3.14) 
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3.4.2 Interpreting Coefficents 

In both the Poisson and the NB2 model the conditional mean is parameterized as  

. For coefficient interpretations it is useful to look at the marginal 

effects   

.      

The slope of the demand function varies with the expected demand function. The elasticity, 

which is the percentage change in the expected number of trips for a unit change in the 

covariates are 

  .               (3.15) 

For interpretation, the CMP model cannot rely on the conditional mean because the 

relationship between the conditional mean and its covariates are neither additive, like 

Gaussian regression is, or multiplicative, like Poisson regression is. An alternative approach 

is to examine the relationship between the fitted values and the changes in the covariates  

Sellers and Schumeli (2008) show the ratio of the successive probabilities (3.2.3) relate 

multiplicatively to the covariates by 

.                       (3.16) 

The interpretation is that a unit increase in a covariate results in an increase the ratio of 

successive probabilities that an individual takes a trip to a recreational site by  . When 

the CMP distribution reduces to the Poisson, the standard multiplicative interpretation holds. 

If the distribution reduces to the Bernoulli, the odds-ratio interpretation holds.   
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CHAPTER 4. THE DATA SET 

4.1  Introduction  

Clear Lake is the third largest lake in Iowa, located in central region of the state. In 

the mid 20th century, the lake’s water quality was immaculate. By the turn of the century, the 

water quality had regressed so much that its visibility decreased from 5-8 feet below the 

surface to 6 inches to one foot (Egan 2004). Water quality deterioration was caused by a 

variety of sources, including runoff from fertilizer. The poor water quality stems from algae 

blooms, which can contribute to health concerns, staunch odor and unwelcomed color. The 

corroded lake also includes the loss of biodiversity.  

Regardless of the lake’s conditions, it remained a thriving source for recreation. Most 

users spend their time participating in recreational boating, swimming/beach use, and fishing. 

As of 2001, Clear Lake generated $30 million a year in tourism revenue for the City of Clear 

Lake (Egan 2004). 

4.2  Survey Design 

4.2.1. Survey Structure 

 The survey was designed to elicit how respondents feel about water quality issues of 

Clear Lake. To inform the visitors and local residents, a description of the lake’s condition 

was written by limnologists at Iowa State. The survey can be found in Appendix B.  

 The different types of questions that were asked correspond to different methods of 

estimating visitors’ willingness to pay. The first section consists of travel cost and contingent 

behavior questions. They are asked to give the number of trips they’ve taken through 
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different time periods from November 1999 through October 2000. They are also asked how 

they spend their time at the lake and their visits to substitute sites.  

The next section describes various plans that present different scenarios regarding the 

lakes conditions, including the water clarity, algae blooms and the state biodiversity. The 

respondent is then asked their willingness to pay for that scenario. These questions 

correspond to the method of contingent ranking. The survey also contains a contingent 

valuation method question. They are asked whether or not they would vote yes or no on a 

hypothetical referendum to maintain the water quality of the lake and avoid degradation as 

described by one of the contingent ranking questions. The last part of the survey asks 

respondents their preference regarding water quality issues and whether they would support 

suggested projects. The survey ends by asking respondents to give their socio-demographic 

information.  

4.2.2. Survey Sampling and Response Rate 

The goal of the survey design was to obtain the opinions of visitors and local 

residents regarding potential water quality improvements. In the summer of 2000, users were 

intercepted on-site, 1024 users agreed to participate in a mail survey in October. The local 

residents were randomly sampled from white pages. A total of 900 residents from Clear 

Lake, IA and Ventura, IA were sampled. All local residents have at least visited the site once. 

Of the 1024 visitors that were mailed a survey, 26 were returned undeliverable and 662 were 

returned resulting in a 66% response rate. For the local residents, 443 of the 990 that were 

mailed were returned with 132 were returned undeliverable.   
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For determining the final sample that is to be used for empirical analysis, I follow the 

application of Egan and Herriges (2006). The analysis consists of visitors only. To make sure 

that those in the sample visited the lake as a day trip, those who drove more than five hours 

away were removed. This consisted of 19 individuals. Individuals that took more than 52 

trips per year, resulting in more than a trip per weekend, were removed.  This included 39 

individuals. Finally, those that did not answer every question were removed in order to make 

analysis easier. The final data set has a sample of n=546.  

4.3  Model Specification  

Models considered in this thesis has the mean number of trips as a function of the 

travel cost to the site, the individual’s income, and socio-demographic characteristics. Each 

model parameterizes  

,          (4.1) 

where for i=1,…n individuals, C denotes the roundtrip travel cost, m represents their income, 

Male is a binary variable representing the gender of the individual, where Male =1 if the 

respondent is male, and equals 2 otherwise, Education is a coded variable representing the 

different levels of education, and Household is the total number of people in the household.  

The total travel cost was computed by taking the total round-trip distance, computed by PC 

Miller, multiplied by $0.25 plus one-third multiplied by the respondent’s wage rate, 

multiplied by their round-trip travel time.  I estimate the CMP model using the approximate 

conditional mean relationship    

    and  .   
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4.4  Survey Statistics  

The following section will discuss the survey summary statistics for the Clear Lake 

survey. The following summary statistics can be found in the following table.  

Table 1: Summary Statistics 

Variable                              Mean          Std. Dev.   Minimum     Maximum 

Observed Trips (y)  

Travel cost ( C ) 

Income  (m)                                                              

Male        

Education 

Household                                    

11.80            11.93              

$98.75          $196.52          

$59,750       $37,124            

1.37              0.48 

4.77              1.58 

8.85       1.90 

1 52 

$10.98          $ 2262.21 

$7500           $200,000 

1                    2 

1  8   

 1                   14         

 

 Table 1 provides useful summary statistics. It should be noted that these summary 

statistics were the result of on-site sampling and should not be inferred to be reflective of the 

entire population. Between November 1999 and October 2000, the average number of trips 

was 11.80. With the standard deviation being 11.93, the variance should be quite higher than 

the mean, indicating evidence that there might be overdispersion. Camerson and Trevedi 

(1998) recommend that if the sample variance is over twice the sample of the mean, then the 

counts are likely to be overdispersed. Egan and Herrges (2006) report that since 63% of the 

users are male and that percentage is much higher than the Iowa population percentage of 

males, gives more evidence to the bias of on-site sampling. For more information regarding 

summary statistics including the total spending by users see Azevedo, Herriges and Kling 

(2001).  
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CHAPTER 5. ESTIMATION RESULTS 

5.1  Testing for Overdispersion 

In Poisson regression, it assumed that there is equidispersion – that the conditional 

mean is equal to the conditional variance. The failure of this assumption is like the presence 

of heteroskedasticity in linear regression. Consider the independent 

responses , where . Consider the conditional 

variance . A simple test for extra Poisson variation is: 

. 

Cameron and Trivedi (1986) propose a Lagrangian multiplier test for this hypothesis test, 

they derive the Lagrange multiplier statistic as  

 , where  is a weighted parameter that depends on 

the alternative distribution. For the negative binomial distribution, . The LM statistic 

can be reduced to , where n is the sample size (Green 2008). I 

estimated L = 2.807e+16, with a p-value = 0. Thus, the null hypothesis of no overdispersion 

is rejected. The Poisson model cannot be a candidate for estimation and the data requires an 

alternative model. Cameron and Trivedi (1986), Dean and Lawless (1989) and Dean (1992) 

review the Lagrange Multiplier, likelihood ratio and score tests that have been developed for 

detecting overdispersion.  
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5.2  NB2 and CMP Model Comparison 

5.2.1. Statistical Inference 

 

 

For both tables:  ** Significant at the 5% level, * Significant at the 1% level, All parameters except for the constant scaled by 100 
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The on-site corrected and non-corrected models for the NB2 and the CMP models are 

shown in Table 2 and Table 3. The CMP model was estimated with code and assistance 

provided by Kimberly Sellers.  

 With each model, the price and income coefficients have the expected signs. The 

amount of trips taken will increase if the average individual’s opportunity cost to visit 

decreases. The amount of trips also increases when the average individual’s income 

increases. The coefficient for price is statistically significant for both models at the 1% level. 

However, the coefficient for income is not significant. The socio-demographic variables are 

also not statistically significant for each of the models.  

The problem with the corrected negative binomial model is that the value for the 

intercept coefficient and the  parameter are very high indicating a poor fit. The reason for 

this is that there is a high frequency of households that only took one trip. This suggests that 

a zero-truncated negative binomial model would be more appropriate. For the negative 

binomial model, . After rescaling and combing with (2.7) the 

likelihood becomes,  

                 (5.1) 

with .  

 Table 2 shows the estimation results of this model. The estimation of the dispersion 

parameter  is 1.54 which is reasonable while the on-site corrected model isn’t. It has an AIC 

of 3680, which is lower than the AIC of the on-site corrected model. Therefore the zero-

truncated model fits better than the on-site corrected model. 
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 In terms of model diagnostics, the on-site corrected CMP model has a lower AIC than 

any other model considered. However, the zero-truncated NB2 model has a lower AIC than 

the uncorrected CMP model. It should be noted that each model fails a chi-squared goodness 

to fit test.  

5.2.2. Welfare Analysis and Expected Trips 

       Table 4: Expected Trips and Welfare Analysis 

Model                               Expected Trips.   Consumer Surplus 

NB2  

Truncated NB2 

On-site NB2 

CMP 

On-site CMP                                                                   

    3.18 

    2.57                   

    1.57e28                                   

    23.51     

    11.32 

    69.77 

      55.86  

      49.93 

      171.39 

      171.04 

 

Since the on-site corrected versions of the models have been estimated, welfare 

analysis can now be performed. It should be noted that I estimated the welfare measures for 

the non-corrected models to illustrate differences.  Table 4 illustrates the differences between 

the models.  

Not correcting for truncation or endogenous stratification and truncation leads to a 

higher consumer surplus estimate for the NB2. This result is intuitive since those that are 

sampled on-site take more trips than the average household in the population. For the 

uncorrected model, the consumer surplus is $69.77 and for the corrected model it is $49.93. 

Since the on-site corrected model fits the data so poorly, it has a standard error of $290.30. 

For comparison, the consumer surplus for the zero-truncated NB2 model is $55.86.  
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Unlike the NB2, the uncorrected and corrected CMP differs slightly. The difference 

between the two models is only $0.35. For the uncorrected CMP and NB2 models, the 

consumer surplus ranges from $69.77 to $171.39. For the on-site corrected CMP and NB2 

models, the consumer surplus ranges from $49.93 to $171.04.  

A worthy goal for researchers is to be able to estimate the expected number of trips. 

By doing so, it allows policy-makers to use resources efficiently in order to accommodate for 

the use of the site. Intuitively, since this sampling was done on-site, not correcting for 

endogenous stratification will predict more trips. For the CMP, the results are drastic. For the 

corrected model, the expected numbers of trips are 11.32, while 23.41 for the uncorrected 

model. For the NB2 model, the zero truncated model estimates 2.57 trips. In contrast, the 

uncorrected model predicts 3.18 trips. For the NB2 models, the difference is much smaller.  

5.3  Summary and Conclusion  

Clear Lake is a popular recreational attraction for Iowans. It offers sporting activities 

such as boating and fishing and also features a beach for swimming. It used to have pristine 

water quality in the 1950s, but since then its water quality had degraded. Azevedo, Herriges 

and Kling (2001) show that people are concerned about the water quality treatment and 

would favor certain programs. Policy is dependent on knowing how to allocate scarce 

resources. Recreation demand studies provide a valuable tool in aiding the decisions.  

One of the most important decisions that a researcher has is their choice on the 

econometric model to estimate the demand for the site. The Poisson and negative binomial 

regression models are the most common in empirical studies of recreation demand. The 

Conway-Maxwell-Poisson gives an alternative to the negative binomial as a count model that 
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can accommodate overdispersion. In terms of diagnostics, the CMP model fits the best. 

However, it is important to note the results of Kling (1989). In that paper she finds that 

consumer surplus measures are sensitive the functional form of the demand function. The 

Poisson, NB2 and CMP models assume a semi-log demand function. So they are not robust 

to using other functional forms. Policy-makers must be cautious when choosing one estimate 

of welfare over the other.  

The correction of endogenous stratification and truncation allows for on-site samples 

to be used for welfare analysis. If consumer surplus is estimated for uncorrected models, it is 

biased because it will not represent the entire population. For illustration purposes, the 

consumer surplus was not much difference except for that of the negative binomial model. 

Herriges and Egan (2006) make a great point that the correction for endogenous stratification 

assumes that both users and non-users have the same characteristics.  

The results from this thesis show that in terms of statistical fit, the on-site corrected 

CMP model is the best. Unfortunately, the on-site corrected NB2 model is computationally 

fragile, and provided unreliable estimates. In its place, the zero-truncated NB2 model did the 

second best in terms of AIC. When estimating the welfare measure consumer surplus, the 

intuition is that not correcting for on-site sampling would lead to higher estimates; this was 

the case for the NB2 model but not for the CMP. The bias of on-site sampling shows up more 

when estimating the expected number of trips. Without correcting for this bias, the model 

predicts more trips to be taken because it fails to account for non-users or users that might 

not decide to travel to the site during that time. This is especially true for the CMP model.  
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APPENDIX A: A BRIEF SUMMARY OF GENERALIZED LINEAR 

MODELS 

Nelder and Wedderburn (1972) were the first to introduce a unified framework for 

regression models, the generalized linear model (GLM). The main purpose of the GLM is to 

specify the relationship of the observed dependent variable with the covariates. A particular 

attractive feature of this class of models is they allow for the violation of the standard Gauss-

Markov assumptions. This allows for the “linearization” of a non-linear relationship between 

the observed dependent variable and the covariates.  

GLMs can be characterized into three components; the first component is the 

stochastic component. Let . The assumption is that  is a member of a specific 

parameterization of the linear exponential family. The linear exponential family is expressed 

as  

 .     (A.1) 

If , then the distribution is in its canonical or natural form. If there are any 

parameters included in the distribution, then they are referred to as nuisance parameters. The 

GLM framework of Nelson and Wedderburn is a canonical parameterization. Their 

parameterization of the linear exponential family is  

.                                     (A.2) 

   The nuisance parameter  is used to scale the errors so they follow a particular distribution 

of the exponential family. For example, for both the Poisson and the binomial case,  is 

normalized to 1.  
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 The systematic component is the component that produces the linear predictor. The 

canonical link function is the function that links the random component to the systematic 

component. Let the systematic component be  and the link function be , 

where  is a monotonic, differentiable, injective function. Then the inverse link function 

exists, and relates the mean to the systematic component such that  

 .  

The mean and variance of the GLM parameterization of the linear exponential family are  

  and .  

The derivation of these can be found in Dobson and Barnett (2008), GLMs are estimated via 

the maximum likelihood method, the log-likelihood function is  

.                             (A.3) 

The first order conditions yield (A full derivation can be found in Hardin and Hilbe (2001)):  

    

 is the known as the score function.  is the ith observation for the jth covariate. The 

parameters are obtained using the iterative reweighted least squares algorithm.  

The Iterative Reweighted Least Squares algorithm (IRLS) is a type of Newton-

Raphson algorithm that uses Fisher Scoring (Expected Hessian matrix) to obtain estimates of 

the parameters. What is nice about the IRLS is that it does not need starting values for , 

rather it uses starting values , which is easier to implement (Hardin and Hilbe 2001). The 
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Fisher Information Matrix is , where  is a n x n weighted diagonal 

matrix. The estimating equation is  

 .              (A.4) 

If  is multiplied to both sides of (3.1.4), the right handed side of the new equation can 

be expressed as . Thus the estimating equation can be written as  

                                                          (A.5) 

where  and  
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APPENDIX B: THE CLEAR LAKE SURVEY 
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