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1. Avoiding biases from data-dependent specification search.

Abstract

The study evaluates the gains from avoiding data-dependent specification search on an es-

timation sample in an application to discrete choice models. We incorporate data splitting, the

process by which the total available sample is randomly split in two or more sub-samples with

the first (specification) sub-sample used for specification search, and the second (estimation)

sub-sample used for obtaining “clean’ estimates using the model chosen on the specification

sub-sample according to a set criterion. We estimate 14 binary Logit models of the adoption

of conservation tillage corresponding to the major sub-watersheds of the Upper Mississippi

River Basin. For each of the sub-watershed models, we use the specification sub-sample to

choose the explanatory variables that lead to the highest number of correct predictions pro-

vided that estimated coefficients are in conformity with economic theory. To evaluate the gains

from avoiding specification search on the estimation sub-sample, we follow [33] and calculate

the expected excess error, which is a measure of excess optimism concerning model fit on the

specification sample. We find that the excess optimism varies with the sub-watersheds and has

a tendency to be larger for the sub-watersheds with smaller samples.

Introduction

Estimation of econometric model parameters customarily assumes that the model structure

is known. However, economic theory oftentimes provides only a partial guidance on the model

structure, leaving the choice of the model’s functional form and/or the set of explanatory

variables to the researchers. This model uncertainty then leads to specification search by

which explanatory variables are selected into the model to provide the best model specification
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according to preset criteria. However, if the same sample is used for both selecting the model

and for fitting the model and making inferences, too narrow prediction intervals and biases

in parameter estimates can ensue (Chatfield, 1995). In consequence, coefficient estimates and

standard errors following pretesting cannot be used for valid inference ([96], [79]). Although

the presence of non-trivial biases that result from data-dependent specification search is widely

recognized by statisticians ([14], [61]), it is rarely taken into account in applied econometrics.

Some exceptions to this practice are [18] and [49], who take into consideration the bias in

inferences that arise due to specification search.

Admittedly, model uncertainty is difficult to quantify. The commonly proposed remedial

approaches include the Bayesian Model Averaging Approach, collection of more data, and data

splitting (see, e.g., [14]). This study focuses on data splitting, the process by which the total

available sample is randomly split in two or more sub-samples with the first (specification) sub-

sample used for specification search, and the second (estimation) sub-sample used for obtaining

“clean” estimates using the model chosen on the specification sub-sample according to a set

criterion. The other sub-samples (if any) are then used to further evaluate model fit. Since

data sets available to researchers are almost never of the size permitting such procedure, this

approach is rarely used in applied work and the studies reporting specification search biases

are similarly scarce. Our analysis aims at filling this gap by evaluating the excess optimism

concerning model fit attributable to data-specification search on the estimation sample in an

application to discrete choice models.

In this paper we perform systematic data analysis and investigate the effects of data-

dependent specification search for a data set that originally contains some 37,000 data points.

We incorporate data splitting to estimate several binary logit models of the adoption of conser-

vation tillage corresponding to major sub-watersheds of the Upper Mississippi River Basin, and

estimate the excess optimism concerning model fit that is attributable to the data-specification

search, using the approach developed by Gong (1986).

The rest of the paper is organized as follows. In section 2, we discuss why model uncertainty

could be a problem and the different ways that have been used to deal with this problem.
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Section 3 presents an empirical application to the estimation of discrete choice models of

conservation tillage adoption, and section 4 concludes.

Model uncertainty

Pretesting or preliminary testing of the data to determine the type of model that is likely

to be applicable, is a potential problem in statistics. Pre-testing could entail a coefficient

restriction, testing for heteroscedasticity or serial correlation or as in our case, searching for

the model with the largest number of correct predictions. [105] provide asymptotic results for

inference after selecting a linear regression model based on final error prediction criterion. He

finds the asymptotic variance to be satisfactory but asymptotic confidence regions to be too

small. The problem is aggravated for small samples. But large sample with excessive data

mining is also likely to lead to invalid inference. The Optimism Principle defined by [77], that

model fitting necessarily gives optimistic results, is a manifestation of model uncertainty.

There are two schools of thought on the approach to dealing with model uncertainty,

Bayesian and frequentist. Bayesian Model Averaging requires taking the weighted average of

candidate models. The weights used are the Bayesian posterior probabilities and since they

depend on the specification of prior probabilities, they are difficult to compute especially where

there is no true model. Further, if the population form is uncertain, computing the Bayes factor

could be another problem. We employ a frequentist approach in this study.

In the spirit of scientific inference which ‘involves collecting many sets of data and es-

tablishing a relationship which generalizes to different conditions’ (Chatfield, 1995), the ideal

frequentist approach to solving model uncertainty is to use an existing data set for model

selection through testing and then collect new data to estimate the selected model. However,

collecting more data is expensive in most economic studies. A viable alternative to collection

of new data to perform out-of-sample inference is data splitting.



4

Data splitting and model selection

According to [29], if a large data set is available, the best way to perform out-of-sample

analysis is by a three-way random data split. The first set (specification set) should be used

for selection of model, the second (estimation set) for estimation of the parameters and for

point prediction and the third (validation set) for assessing the variability of the predictions.

However, Faraway (1998) has noted that ‘the purpose of data splitting is to obtain better

estimates of the variability of predictions, and the price one pays is that the actual variability

of the predictions will tend to be higher’ as the size of the estimation sample is smaller than

that of the original sample.

An important step in model selection is the selection of a criteria. There is no universally

acceptable model selection criteria in the discrete choice models, but two common approaches

are to select models with largest value of pseudo R2 and the largest number of correct predic-

tions ([97]). The goodness-of-fit statistic that is used in this study for specification search is

the ”percent correctly predicted”. Specifically, we assume that a choice is correctly predicted

if the predicted probability of the choice is greater or equal to 0.5. The threshold of 0.5 is

not suitable for every discrete choice model (see, e.g., a discussion in [73]), but it works in our

situation, since, as will be made clear from the application below, the cost of misclassifying

one alternative is not very different from the cost of misclassifying the other alternative. In

this paper, we first split the data set by applying the algorithm suggested by Faraway (1998)

and choose the best fitting model based mostly on the goodness-of-fit criterion. We then use

bootstrap methods to assess the benefits of avoiding specification search on the estimation

sample.

Bootstrap methods for estimating excess optimism

To estimate the excess optimism concerning model fit that is attributable to data-dependent

specification search, we employ bootstrap (resampling) techniques originally developed to cor-

rect for the optimism when data splitting is not an option ([23], [24] and [25]). As Efron and

Gong (1983) point out, although theoretical basis for these methods is limited, the techniques
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can be successfully used in practice. The methods are based on the assumption that the origi-

nal data set represents the underlying population and random draws from the original sample

are draws from the same population.

The estimation of the excess optimism is based on the following observation (Efron,1982).

Since the criteria for selecting the binary choice model with the best fit is the largest number

of correct predictions, the prediction error or the apparent error is the number of incorrect

predictions. Thus, the model selection bias can be manifested in the optimistic value of this

apparent error. We follow Gong (1986) who proposed bootstrap methods to estimate the

expected excess error.

Application

Agriculture in the Midwest has been targeted for conservation practices by various federal

and state incentive-based programs. To better estimate the costs of current and intended

programs and to better target conservation program expenditures there is an imperative need to

understand the farm-level costs of conservation practices adoption for large, diverse areas. This

study estimates these costs for one of the most effective conservation practices, conservation

tillage (CT), for the entire Upper Mississippi River Basin (UMRB), an area which encompasses

parts of Iowa, Illinois, Missouri, Wisconsin and Minnesota. The methodology we apply builds

upon the work of [59] who estimate the costs of CT adoption for the state of Iowa.

Study region and data

The study region, the Upper Mississippi River basin (UMRB) is defined as U.S. Geological

Survey hydrologic region 07 (http://water.usgs.gov). UMRB covers 492,000 square kilometers

in parts of Iowa, Illinois, Missouri, Wisconsin and Minnesota. The entire basin is divided into

sub-watersheds or 4-digit hydrologic units (HUC) that indicate the hydrologic region (first

two digits) and hydrologic subregion (second two digits). There is substantial heterogeneity

across the UMRB in terms of land use. As can be seen from Figure 1.1, the percentage

area that is under cropland ranges from a minimum of 9.9% in HUC 7030 to 68% to HUC
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7020. Incidentally, the major parts of both of these HUCs are in Minnesota. To reflect this

heterogeneity, we estimate several CT adoption models corresponding to the sub-watersheds.

The data comes primarily from the Natural Resource Inventory (NRI) ([74]). The NRI is a

scientifically based, longitudinal panel survey of soil, water, and related resources, designed to

assess conditions and trends every five years. The 1997 NRI provides results that are nationally

consistent for all nonfederal lands for four points in time 1982, 1987, 1992, and 1997. However,

conservation tillage information is provided only in 1992 and hence only the 1992 data set is

used for this study. The NRI data set for the UMRB region consists of a total of 103,849

observations. Table 1.1 shows the distribution of these points across the 4-digit HUCs and

under corn, soybean production and conservation tillage. Most of the UMRB area is under

corn production. Consistent with climate conditions, the northern HUCs have fewer soybean

acres than the southern HUCs and tillage adoption is higher in the south than in the north.

The NRI data set further provides information on geo-physical properties of the land, i.e. soil

characteristics, slope, erodibility, and the like. The complete data set is formed by adding

constructed net returns, climatic data and farm characteristics as in [59].

The economic theory provides a guidance only on which groups of variables ought to be

present in the set of explanatory variables (such as the crop grown, soil and landscape charac-

teristics of cropland, farmer characteristics, and climatic variables), and for the sake of brevity,

we refer interested readers to [59] for the details on the rationale for each of the groups of the

variables. Table 1.2 provides variable descriptions and summary statistics for the combined

data set.

Adoption models

The models that are similar to that of [59] are derived under the assumption that a farmer

adopts conservation tillage if the expected annual net returns from this farming practice, π1,

exceed those from the alternative, conventional tillage, π0, plus a premium, P , associated with

uncertainty. Then, assuming that π1 − P is a linear function of a set of observed explanatory
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variables x and that the observations on π0 are available, the model is given by

Pr[Y = 1] = Pr[π1 ≥ π0 + P + σϵ] = Pr

[
ϵ ≤ β′x

σ
− π0

σ

]
, (1.1)

where ϵ is a logistic error and the observed dependent variable Y takes on the value of 1 of CT

is adopted and zero otherwise. The parameters of interest are the linear function parameters

β together with σ, the error term multiplier.

The specific models for each of the sub-watersheds are the variants of the basic specification,

where

β′x = β0 + β0,cIc + β0,sIs

+β1SLOPE + β2PM + β3AWC

+β4EI + β5OM + β6PH

+β7TMAX + β8TMIN + β9PRECIP

+β10TENANT + β11OFFARM + β12AGE

+β13MALE + β14CODE

+PRSTD(β15 + β16π0 + β17TENANT

+β18OFFARM + β19AGE + β20MALE

+β21CODE)

where, Ic and Is are respectively the corn and soybean acres planted and are endogenous vari-

ables. The rest of the terms in the above equation are explained in Table 1.2. In addition to

the specification described above, we also consider a specification that describes the probability

of adopting conservation tillage as a function of the difference in the net returns between con-

ventional and conservation tillage. In this case, instead of viewing the returns to conventional

tillage as being known and that to conservation tillage being unknown, it is assumed that the

average returns to both tillage methods are known. In this case, the model can be written as

Pr[Y = 1] = Pr[π1 ≥ π0 + P + σϵ] = Pr

[
ϵ ≤ β′x

σ
− π0−1

σ

]
, (1.2)

where π0−1 denotes the difference in net returns to conventional and conservation tillage. In

this specification, β′x represents the negative of the risk premium, rather than the difference
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between the expected net returns from conservation tillage and the risk premium. We refer to

models (1.1) and (1.2) as net returns (NR) and difference (D) models, respectively.

Results of specification search

To conduct specification search, we split the sample of each HUC randomly into 4 sub-

samples, and use the first sub-sample (specification sample), for specification search. In this

search, we choose the specification that leads to the highest number of correct predictions,

provided that the estimate of 1/σ, which is the negative of the estimated coefficient of π0

in the NR model and is the negative of the estimated coefficient of π0−1 in the D model,

is positive as required by the theory. In this way, we find the best model structure and then

obtain specification-search-bias-free estimates for the chosen models on the second (estimation)

sub-sample. We chose the best-fitting models by varying the following model specifications:

1. Area: for each HUC, we choose the contiguous area containing the HUC,

2. Variable: choice among different soil and farmer characteristics variables,

3. Model : choice between the NR and D models.

Tables 1.3, 1.4, 1.5 and 1.6 provides parameter estimates and their standard errors after

specification search. (on the estimation sample). Table 1.7 provides the percentages of correct

predictions for the following four combinations of parameter estimates and data sets:

1. Specification sample and parameter

2. Estimation sample and parameter

3. Specification parameter and estimation sample

4. Estimation parameter and validation sample
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Computing excess optimism

To estimate the excess optimism concerning model fit that is attributable to the data-

specification search, we follow Gong (1986). Specifically, we consider the observed sample,

Z1 = (y1,X1) , ...,ZN = (yN ,XN ) as being independent and identically distributed from an

unknown distribution F . Here matrix X is defined as X =

 x

−π0

 for the NR model, and as

X =

 x

−π0−1

 for the D model. Let matrix β be defined as β =

 β/σ

1/σ

. The prediction

rule η = η (β,X) associated with the model is the rule that allows predicting the value y0 of the

CT adoption indicator for any new set of observed explanatory variables X0. Let e0 = β′X0.

The prediction rule η is given by the following: y0 = 1, if exp (e0) / (1 + exp (e0)) > 0.5, and

y0 = 0 otherwise.

Let us define Q (y0, η (β,X0)) as the criterion that scores the discrepancy between the

observed value y0 and its predicted value η = η (β,X0), which takes on the value of one if the

observed and the predicted values are different, and zero otherwise. Let F̂ be the empirical

distribution function that puts mass 1/N at each point Z1, ...,ZN . The true error is defined

to be the expected error that the set of estimates makes on a new observation Z0 = (y0,X0)

from distribution F , q = q
(
F̂ , F

)
= Ez0∼FQ (y0, η (β,X0)). The apparent error of η is defined

as q̂app = q
(
F̂ , F̂

)
= Ez0∼F̂Q (y0, η (β,X0)) = 1

N

N∑
i=1

Q (yi, η (β,Xi)). Finally, the difference

R
(
F̂ , F

)
= q

(
F̂ , F

)
− q

(
F̂ , F̂

)
is the excess error, and the expression r = EF̂∼FR

(
F̂ , F

)
is the expected excess error of the prediction rule η = η (β,X). Here the expectation is taken

over F̂ , which is obtained from Z1, ...,ZN generated by F . If no data-dependent specification

search has been conducted then the expected excess error is zero. However, if data-dependent

specification search has been performed then the expected excess error is positive and thus is

a reasonable measure of the excess optimism concerning model fit.

The bootstrapping procedure to compute the measure of optimism evolves in the following

steps:
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1. Let N be the number of observations in the sample Z = {Z1, ...,ZN}. Take N random

draws with replacement from Z. These constitute one bootstrap sample, Zb. Estimate

the selected logit model on the sample and obtain the bootstrap estimate β̂b.

2. Compute predicted probability with bootstrap estimates β̂b and bootstrap sample ex-

planatory variables Xb as Y ∗
bi =

exp(β̂bX
b
i )

(1+exp(β̂bX
b
i ))

for i = 1.....N.

3. Compute predicted probability with bootstrap estimates β̂b and the original sample X

as Y ∗
obi =

exp(β̂bXi)

(1+exp(β̂bXi))
for i = 1.....N.

4. Apply the prediction rule η with the 0.5 threshold and obtain the proportion of incorrect

predictions for both predicted probabilities, qb0 =
1
N

N∑
i=1

Q(bo) and qb =
1
N

N∑
i=1

Q(b), where

Qbo is estimated using Y ∗
obi and Qb is estimated using Y ∗

bi.

5. Repeat 1, 2, 3 and 4 a large number B times.

6. Obtain the estimate of the expected excess error, which is the average of the difference

between two proportions taken over all bootstrap samples as ω = 1
B

B∑
b=1

[qb0 − qb].

Table 1.8 reports the estimates of the average error and the distribution of the measure of

optimism ω over 1,000 bootstrap samples, for 3 different watersheds, HUC 7080, HUC 7100,

and HUC 7110 with 1,641, 856, and 412 observations in the specification data set, respectively.

Somewhat surprisingly, we get little difference in the model fit between the specification and

estimation samples. An average error of 0.33 for HUC 7080 means that 33% of the time we get

wrong predictions with the specification sample, while with estimation sample we get wrong

prediction 32% of the time. If we correct for the optimism by adding the expected excess

error estimates to the apparent error rates we get the bias corrected estimates as 34% for the

specification sample and 33.5% for estimation sample.

Excess error results from computing the difference between the average number of incorrect

predictions using the original sample and the bootstrap estimates, and the average number of

incorrect predictions using the bootstrap samples and bootstrap estimates. The mean value of

the optimism measure is positive, indicating that the apparent error tends to underestimate
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the prediction error. The magnitude of optimism is small, indicating that bias in the point

estimate from data mining is probably not serious in our application, but it gets worse as the

sample size gets smaller. The mean value is higher for the estimation sample than that of the

specification sample. This shows that the specification search leads to better fit and hence a

lower value of the optimism. Since the number of correct predictions is higher for specification

sample than for the estimation sample, the number of incorrect predictions, conversely, should

be lower for the specification sample resulting in lower values of the optimism parameter. Also,

the values are consistent with increasing sample size. As the sample size becomes smaller the

optimism parameter tends to be higher.

An Extension

The model presented in this paper could be used, for example, to compute regional-average

subsidies that would provide estimates of the cost of adopting conservation tillage practices.

Since we have four estimates from the four data combinations, it would be useful to evaluate

which combination is most suitable for this purpose. This section proposes such an extension

to the model.

The use of calibration techniques is a well known way to judge how good is a probability

estimate. Calibration is a test of whether an assigned probability agrees with its relative

frequency, ex post. The mean probability score or the Brier score is an alternative metric

for evaluating probabilistic forecasts which compares the probability of an outcome with the

actual outcome. One advantage of Brier score over calibration is that the Brier score can be

decomposed into components that index both calibration and resolution, that is the ability of

the forecaster to distinguish between events that occur and the events that do not occur.

Let Y be the actual binary outcome of the event. In the case of the tillage model, Y takes

on the value of 1 if CT is adopted and zero otherwise. Y ∗ is the probabilistic prediction of the

event. Then the quadratic probability score for a single observation or (forecast) is:

PS(p, d) = (Y − Y ∗)2 (1.3)
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PS ranges between 0 and 1. A score of 0 means perfect prediction, while a score of 1 is a bad

prediction. This measure is different from the square of the correct predictions.

The mean probability score or Brier score (P̄S) is an average of the single prediction version

of the probability score over N occasions, indexed by i = 1 . . . N :

P̄S(Y ∗, Y ) =
1

N

N∑
i=1

(Yi − Y ∗
i )

2 (1.4)

Yates’ Covariance Decomposition Calibration does not measure the ability of the

forecaster to sort or distinguish between events that actually occur and events that do not

occur. The Yates-partition of the Brier score is able to provide information on such sorting.

Yates (1982) noted that the mean PS can be factored into its covariance decomposition:

P̄S(Y ∗, Y ) = Bias2 + Scatter + var(Y ) +minvar(Y ∗)− 2Cov(Y, Y ∗) (1.5)

where minvar(Y ∗) is the minimum forecast variance. In order to obtain the lowest P̄S, the

forecaster needs to minimize the square of the bias, Scatter, variance and minimum forecast

variance terms and maximize 2Cov(Y, Y ∗). All the terms in Equation 1.5 are explained below.

V ar(Y ) represents the variance of the outcome index, defined as:

V ar(Y ) = Ȳ (1− Ȳ ) (1.6)

where, Ȳ = 1/N
∑N

i=1 Yi. V ar(Y ) reflects the factors that are out of the forecaster’s control.

The remaining terms reflect factors that are under the forecaster’s control.

Bias = Ȳ ∗ − Ȳ

Cov(Y, Y ∗) = Slope ∗ V ar(Y )

Slope = Ȳ ∗
1 − Ȳ ∗

0

where, Ȳ ∗
1 is the conditional mean probability of adopting and Ȳ ∗

0 is the conditional mean

probability of not adopting.
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Scatter(Y ∗) =
1

N
[N1V ar(Y ∗

1 ) +N0V ar(Y ∗
0 )]

V ar(Y ∗
1 ) =

1

N1

N1∑
i=1

(Yi1 − Y ∗
1 )

2

V ar(Y ∗
0 ) =

1

N0

N0∑
i=1

(Yi0 − Y ∗
0 )

2

Bias quantifies whether the probability predictions are too low or too high. It reflects the

overall miscalibration of the forecast. Bias2 reflects the calibration error regardless of the

direction of the error. Scatter is interpreted as an index of general excess variability contained

in the forecaster’s judgements. The scatter statistic indexes the forecaster’s responsiveness to

information not related to event’s occurrence.

The covariance measures the responsiveness of the forecaster to information related to

the event’s occurrence. The maximum value of slope is 1 which occurs when the forecaster

always reports Y1 = 1 whenever the event does occur and Y0 = 0 whenever the event does not

occur. The covariance term reflects the model’s ability to make distinctions between individual

occasions in which the event occurs or does not occur.

Minvar(Y ∗) is the minimum forecast variance defined as:

minvar(Y ∗) = V ar(Y ∗)− Scatter(Y ∗) (1.7)

It represents the overall variance in the forecaster’s probabilities if there were no scatter

about the conditional means Ȳ ∗
1 and Ȳ ∗

0 .

In the conservation tillage model, Y ∗ is the probability of adoption. The actual behavior

is given by the variable Till

Y ∗ =
exp(Estimate)

1 + exp(Estimate)
(1.8)

Table 1.9 reports the Brier score for HUC 7080 for each of the four combinations of parameter

estimates and data sets. The Brier score for the estimation sample is minimum for specification

sample since model uncertainty is least in this case. The specification sample estimation

performs the best, as it is supposed to, mainly because of the high value of the covariance,
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reflecting the model’s superior ability to make distinctions between individual occasions in

which the event occurs or does not occur.

The out-of-sample validation performs marginally better amongst the remaining three es-

timation types, again mainly because of the covariance term. Bias is very low for all the

estimation types, which indicates an overall good performance of the estimation. The variance

of the actual outcomes Y or the exogenous factors affecting estimations remain more or less

constant across the four estimations types. The scatter terms are highest for the specification

and the out of sample estimation. The data set is common in these two cases, which probably

explains the general variability in these two models.

The out-of-sample validation estimation performs well when presented under this crite-

ria. Thus the subsidy estimates resulting from these out-of-sample validation would provide

reasonable estimates as well as avoid the data-dependent specification search.

Conclusions

The objective of this paper is to evaluate the gains from avoiding data-dependent spec-

ification search on an estimation sample while estimating a number of conservation tillage

adoption models for the Upper Mississippi river basin. We began by splitting randomly the

total available data in four sub-samples. We undertook specification search on the specification

sub-sample to select the models with the best fit. We then obtained the specification-search-

bias-free estimates of model parameters by estimating the models selected on the second,

estimation sample. Finally, we used bootstrapping techniques to estimate the measures of

excess optimism concerning model fit. We found that the excess optimism is generally small,

but varies with the sub-watersheds and has a tendency to be larger for the sub-watersheds

with smaller samples. In the last section of the paper we provide a Brier score for the different

combinations of the split data and the estimations. It is found that the out of sample valida-

tion estimation performs well in terms of minimizing different sources of error in the estimation

process.

Because agricultural and ecological data sets are often characterized by a large number of
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observations, the model selection process we followed is viable for these data sets. While we

did not find large gains from avoiding the improper specification search in our application,

additional research is needed to evaluate the magnitudes of the gains in other applications.

An interesting extension of this study would concern evaluating the gains of avoiding data-

dependent specification search on the estimation of region-average subsidies needed for adop-

tion of conservation tillage. As the estimates of the conservation tillage adoption model are

affected by the specification search, so are the estimates of the subsidies which are functions

of the data and the adoption model parameters.



16

T
ab

le
1
.1

D
es
cr
ip
ti
o
n
o
f
th
e
U
M
R
B

w
a
te
rs
h
ed

b
y
4
d
ig
it

H
U
C

4
D
ig
it
H
U
C

T
ot
al

cr
op

la
n
d

p
o
in
ts

T
o
ta
l

a
re
a

in

m
il
li
on

a
cr
es

P
er
ce
n
ta
g
e

o
f

to
ta
l
a
re
a
u
n
d
er

cr
o
p
la
n
d

P
er
ce
n
ta
g
e

o
f

cr
o
p
la
n
d

a
re
a

u
n
d
er

co
rn

P
er
ce
n
ta
g
e

o
f

cr
o
p
la
n
d

ar
ea

u
n
d
er

so
y
b
ea
n

P
er
ce
n
ta
ge

of

to
ta
l
ar
ea

u
n
d
er

co
n
se
rv
at
io
n
ti
ll

70
10

8
95

4
1
.2

1
8

6
1

4
2

70
20

77
97

0.
9
2

6
9

5
0

28
12

70
30

4
11

3
0
.4
6

1
0

6
7

1
2

70
40

64
95

0.
6
5

3
3

6
9

6
14

70
50

3
84

7
0
.5
5

1
1

7
0

1
4

70
60

59
30

0.
5
5

4
2

7
8

6
32

70
70

5
14

1
0
.6
6

1
4

6
6

1
5

70
80

14
96

5
1.
4
6

6
7

6
2

24
45

70
90

7
16

7
0
.6
6

5
6

7
8

9
2
2

71
00

83
75

0.
9

6
4

5
4

28
43

71
10

5
88

3
0
.5
9

4
4

3
5

1
9

1
4

71
20

76
61

0.
6
3

5
5

5
8

22
18

71
30

9
74

5
1
.1
3

7
2

5
7

2
9

2
6

71
40

77
76

0.
7
9

4
4

4
2

19
13



17

T
a
b
le

1
.2

D
es
cr
ip
ti
v
e
S
ta
ti
st
ic
s

N
ot
at
io
n

D
es
cr
ip
ti
o
n

U
n
it
s

M
ea
n

S
ta
n
d
ar
d
d
ev
ia
-

ti
on

Y
C
o
n
se
rv
at
io
n
ti
ll
a
ge
(1
-y
es
,
0
-n
o
)

B
in
a
ry

n
u
m
b
er

0
.3
5

0
.4
7

IC
D
u
m
m
y
va
ri
ab

le
fo
r
co
rn

(1
-c
o
rn
,0
-n
o
t
co
rn
)

B
in
a
ry

n
u
m
b
er

0
.5
9

0
.5

IS
D
u
m
m
y
va
ri
ab

le
fo
r
so
y
b
ea
n
(1
-s
oy

b
ea
n
,0
-n
o
t
co
rn
)

B
in
a
ry

n
u
m
b
er

0
.3
4

0
.4
7

π
C
V
T

N
et

re
tu
rn
s
to

co
n
se
rv
at
io
n
ti
ll
a
g
e

$
p
er

a
cr
e

88
.8
8

8
1.
62

S
L
O
P
E

L
a
n
d
sl
o
p
e

P
er
ce
n
t

2.
9
9

3
.2

P
M

S
o
il
p
er
m
ea
b
il
it
y

In
ch
es

p
er

H
o
u
r

1
.3
2

1
.8
7

A
W
C

A
va
il
a
b
le

w
a
te
r
ca
p
a
ci
ty

o
f
so
il

P
er
ce
n
t

0.
2
1

0
.0
3

P
H

S
o
il

a
ci
d
it
y

(0
to

1
4)

7
-n
eu
tr
a
l,

le
ss

th
a
n

7
-
a
ci
d
ic
,

g
re
at
er

th
a
n
7
-
al
ka
li
n
e

N
u
m
b
er

6.
5
1

0
.5
0

O
M

P
la
n
t
a
n
d
an

im
al

re
si
d
u
e
in

so
il

P
er
ce
n
ta
g
e

4.
3
5

6
.0
1

E
I

E
ro
d
ib
il
it
y
In
d
ex

(E
I
≥

8
a
re

co
n
si
d
er
ed

h
ig
h
ly

er
o
d
ib
le

la
n
d
)

N
u
m
b
er

5.
7
5

9
.7
8

T
M
A
X

M
ea
n

of
d
ai
ly

m
ax

im
u
m

te
m
p
er
a
tu
re

d
u
ri
n
g

g
ro
w
in
g

se
a
so
n

F
a
h
re
n
h
ei
t

78
.5

2
.8
2

T
M
IN

M
ea
n
o
f
d
ai
ly

m
in
im

u
m

te
m
p
er
a
tu
re

d
u
ri
n
g
g
ro
w
in
g
se
a
-

so
n

F
a
h
re
n
h
ei
t

55
.4

2
.9
5

P
R
E
C
IP

M
ea
n
o
f
d
ai
ly

p
re
ci
p
it
at
io
n
d
u
ri
n
g
g
ro
w
in
g
se
a
so
n

In
ch
es

0.
1
3

0
.0
1

P
R
S
T
D

S
ta
n
d
a
rd

d
ev
ia
ti
o
n
of

p
re
ci
p
it
a
ti
o
n

In
ch
es

0.
3
1

0
.0
3

O
F
F
A
R
M

P
ro
p
or
ti
o
n

o
f
o
p
er
at
or
s
w
o
rk
in
g

o
ff
-f
a
rm

to
th
e
to
ta
l

n
u
m
b
er

o
f
fa
rm

op
er
a
to
rs

N
u
m
b
er

0.
5

0
.0
6

T
E
N
A
N
T

P
ro
p
or
ti
o
n
o
f
h
ar
v
es
te
d
cr
o
p
la
n
d
o
p
er
a
te
d
b
y
te
n
a
n
ts

to

th
e
to
ta
l
co
u
n
ty

h
ar
v
es
te
d
cr
o
p
la
n
d

N
u
m
b
er

0.
1
8

0
.0
7

A
G
E

C
ou

n
ty

av
er
a
ge

fa
rm

op
er
a
to
r
a
g
e

Y
ea
rs

50
.7
1

1
.7
4

M
A
L
E

P
ro
p
or
ti
o
n
o
f
m
a
le
o
p
er
a
to
rs

to
th
e
to
ta
l
n
u
m
b
er

o
f
fa
rm

o
p
er
at
or
s

N
u
m
b
er

0.
9
7

0
.0
1

C
O
D
E

R
u
ra
l
co
d
e
fo
r
co
u
n
ti
es

(0
to

9
)
9
co
m
p
le
te
ly

ru
ra
l

C
o
d
e

5.
3

2
.4



18

Table 1.3 Model specification and estimation

HUC 7010 7030 7050 7060 7070 7080

INTERCEPT-4602.71 2643.45 1449.5 9845.19 -1344.09 3400.85

(2092.38) (835.1) (596.26) (6421.66) (1644.82) (1500.53)

CORN ID 15.33 5.2 10.38 21.04 33.64 6.32

(10.68) (3.60) (4.15) (17.14) (15.54) (5.72)

SOY ID 14.98 4.2 11.55 17.36 34.89 4.44

(11.02) (3.7) (4.42) (15.57) (16.21) (5.73)

SLOPE -1.98 1.8 1.3 5.39 2.49 1.83

(1.47) (0.6) (0.33) (3.79) (1.08) (0.90)

PM -1.33 -0.8 x -2.41 x -0.59

(1.14) (0.72) (2.60) (1.04)

AWC 7.25 -31.9 x -192.07 x -94.85

(54.70) (38.13) (176.45) (64.03)

EI 2.11 -0.32 x -1.55 x -0.31

(1.34) (0.2) (1.13) (0.28)

OM -0.01 -0.07 x 0.32 x 0.11

(0.28) (0.16) (0.56 ) (0.23)

PH -4.03 3.01 x 5.38 x 0.52

(3.97) (2.00) (6.79) ( 2.78)

TMAX -5.39 0.14 x 10.55 x 0.25

(2.76) (0.6) (7.11) (0.94)

TMIN 6.20 2.23 x -4.68 x 1.20

(3.48) (0.7) (3.98) (1.02)

PRECIP -12.97 1118.9 1145.44 3134.21 2204.4 1243.24

(401.89) (228.6) (230.74) (1963.02) (857.4) (378.59)
x denotes variables that are not included in the estimation
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Table 1.4 Model specification and estimation (continued)

HUC 7010 7030 7050 7060 7070 7080

TENANT x 55.3 x 995.44 x 256.19

(100.25) (683.507) (193.78)

OFFARM x 52.9 x -1049 x 59.81

(105) (831.25) (230.74)

AGE x -3.6 x -24.21 x -1.55

(3.7) (17.51) (5.25)

MALE 4740.74 -2896.5 -1649 -9539 1089.8 -3796.85

(2145.77) (827.2) (62) (6269.92) (1632.9) (1523.02)

CODE x 8.6 x 13.90 x 14.44

(2.7) (11.83) (5.35)

VPRECIP -44780.9 28914.2 14013 105135 -14357.2 35780.70

(20743) (8446) (5915.81) (68027.8) (16943.3) (14916.50)

VRETURNS -0.29 0.35 0.27 -0.063 0.8 -0.48

(0.21) (0.26) (0.27) (0.71) (0.7) (0.43)

VTENANT x 297.4 x 9942.8 x 2537.93

(1019.8) (6726.62) (1879.31)

VOFFARM x 447.1 x -9626.09 x 292.73

(1040.5) (7813.82) (2087.97)

VAGE x -50.1 -14178 -292.74 x -54.01

(36.8) (6066.1) (206.35) (51.77)

VMSHARE 45622 -27495 x -90194.5 15262.9 -35052.1

(21043.1) (8143.8) (59624.6) (17411.1) (14614.40)

VCODE x 88.5 x 216.829 x 152.15

(27.4) (159.48) (55.84)

Invsigma 14.68 13.7 16.42 43.80 36.29 17.38

(6.93) (2.6) (3) (28.83) (14.38) (5.47)
x denotes variables that are not included in the estimation
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Table 1.5 Model specification and estimation (continued)

HUC 7090 7100 7110 7120 7130 7140

INTERCEPT 7742.55 8187.26 1932.89 483.212 1825.86 2851.59

(7592.82) (2573) (4948.64) (417.64) (594.76) (922.25)

CORN ID 86.96 0.72 4.58 13.94 17.21 20.26

(85.88) (6.46 ) (8.46) (8.05) (7.87) (6.96)

SOY ID 102.59 3.21 0.30 14.003 15.04 15.26

(100.07) (6.49) (3.58) (8.18) (7.65) (6.16)

SLOPE 8.40 0.40 1.15 3.60 3.85 2.27

(8.05) (0.57) (2.10) (0.87) (1.06) (0.71)

PM x -0.15 2.52 x x x

(2.00) (4.18)

AWC x -76.05 142.96 x x x

(68.74) (241.51)

EI x -0.05 -0.04 x x x

(0.18) (0.28)

OM x -0.24 1.39 x x x

(0.56) (2.58)

PH x -1.70 -1.67 x x x

(1.77) (3.67)

TMAX x 5.37 2.42 1.46 x 1.87

(1.32) (6.19) (0.73) (0.69)

TMIN x -7.13 -7.59 x x x

(1.56) (12.32)

PRECIP 6430.86 630.07 -226.08 1305.36 1318.26 2285.15

(6149.12) (196.55) (1060.02) (286.47) (331.28) (593.49)
x denotes variables that are not included in the estimation
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Table 1.6 Model specification and estimation (continued)

HUC 7090 7100 7110 7120 7130 7140

TENANT x 569.60 -502.92 x x x

(291.01) (1220.52)

OFFARM x 347.68 -1229.81 x x x

(221.71) (1173.72)

AGE x 2.66 -36.86 x x x

(11.35) (64.87)

MALE -8804.91 -9023.52 1266.04 -791.50 -2048.74 -3320.78

(8521.06) (2762.26) (2530.36) (435.93) (633.83) (1004.06)

CODE x 28.26 -22.71 x x x

(9.75) (18.62)

VPRECIP 45345.2 81129.00 6045.21 3817.34 23497.9 36904.2

(56301.8) (25530.00) (40530.3) (4382.54) (7203.35) (10327.3)

VRETURNS -2.87 -0.18 -9.52 0.13 -0.73 -1.09

(7.34) (0.26) (1.04) (0.22) (0.22) (0.29)

VTENANT x 5006.36 -9276.06 x x x

(2575.12) (16185.7)

VOFFARM x 1802.43 -12706.9 x x x

(2125.39) (11795.7)

VAGE x 0.82 -316.16 x x x

(96.73) (599.85)

VMSHARE -45890.6 -86034.20 22212.6 -3554.98 -23554.6 -36694.6

(57824.8) (26886.6) (30870.7) (4488.29) (7307.5) (10410.9)

VCODE x 245.67 -279.493 x x x

(87.42) (233.44)

Invsigma 125.28 9.53 6.86 34.08 35.65 26.73

(116.35) (2.57) (11.18) (7.37) (9.14) (7.10)
x denotes variables that are not included in the estimation
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Table 1.8 Bootstrap estimation of the measure of optimism

Sample Average

error

Mean Std. Dev. Min Max

Specification 7080 0.330 0.010 0.011 -0.028 0.05

Estimation 7080 0.323 0.012 0.011 -0.025 0.044

Specification 7100 0.248 0.015 0.013 -0.05 0.07

Estimation 7100 0.25 0.015 0.014 - 0.03 0.06

Specification 7110 0.12 0.019 0.016 -0.05 0.07

Estimation 7110 0.16 0.025 0.018 - 0.03 0.08

Table 1.9 Yates Decomposition of the Brier Score

Estimation Types Brier

Score

Bias

Square

Variance

of Till

Covariance Scatter Minimum

variance

of predic-

tion

Specification 0.1975 0.000 0.2483 0.0513 0.0413 0.0106

Validation 0.2089 0.000 0.2479 0.0388 0.0326 0.0061

Out-of-sample 0.2207 0.00003 0.2479 0.039 0.0447 0.0061

Out-of-sample vali-

dation

0.2011 0.0002 0.2473 0.0435 0.0329 0.0076
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Figure 1.1 4 digit Hydrologic Units in the Upper Mississippi River Basin
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2. Empirical Ag-Environmental Model for Iowa

Abstract

This research develops an empirical model to estimate the effects of domestic policies like

a) taxes on input prices, b)restrictions on input use and c)subsidies for adopting more envi-

ronmentally benign crop rotation, on water quality and wildlife habitat. The crop acreage

allocation, obtained from profit maximizing rotation decisions, affects the environmental vari-

ables. Results suggest that a subsidy payment for adopting a corn-soybean rotation has the

largest impact on the improvement of water quality. Even though the policies become more

expensive in the presence of rising commodity prices, the environmental pollution created by

rising ethanol demand can be corrected with these policy instruments.

Introduction

Since the Uruguay Round Agreement Act (URAA) of 1994, which took effect in 1996,

domestic agricultural policies have emerged as an important issue in multilateral trade nego-

tiations. Current domestic subsidy policies in some countries may violate commitments made

under URAA to reduce export subsidies, leading to negotiations at the WTO forum. An ex-

ample of WTO influence stretching into what had formerly been viewed as a domestic policy

is the A sugar quota in the European Union. The Dispute Settlement Body of WTO ruled in

2004 that price discrimination along with production quotas have the effect of cross subsidizing

exports, ([20]). The A sugar quota would almost certainly be filled and the subsequent higher

domestic price for sugar could then be viewed as a pure income transfer to farmers, leading to

production beyond the quota amount at lower world prices. Decisions at the margin are also

affected because some farmers limit their production to the quota amount and would have ex-
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ited the industry were it not for the high domestic prices resulting from production within the

quota. [15] examine the effect of infra-marginal production subsidies like loan deficiency pay-

ments (LDPs) or production flexibility contract (PFC) payments on exit and output expansion

decisions beyond quota. They calibrate the production and cost structure of the United States

wheat sector and find a large impact from removal of these payments on the exit decisions of

the low profit farm units. But the aggregate impact on output is small so long as the marginal

farm remains small.

Currently the WTO recognizes environmental protection as a legitimate policy goal. Do-

mestic environmental policies are placed under the ‘green box’ which permits direct payments

that are not linked to the present or future production of any specific product and is de-

termined, instead, by historic levels of production. Green box programs are considered to

be non-trade distorting and give complete freedom to the governments to provide unlimited

amounts of funds under these programs. Conservation programs are an example of green box

policies. The legality of these green box payments has been questioned during the 2003 dispute

between US and Brazil over cotton subsidies ([89]). The case against the United States was

that several of its domestic programs, that are included in the green box, are export subsidies

that have depressed world cotton prices and increased US exports. Some countries are now

proposing to place limitations on the amount of payments that can be provided under the

‘green box’ policies. Payments at issue include EQIP (Environmental Quality Incentive Pro-

gram), which is a cost share program, and CRP (Conservation Reserve Program), which is a

rental and easement payment program. These, rather costly programs, actually take land out

of production which could be a reason why they still remain unchallenged in the WTO forum.

As with cotton and sugar disputes, the United States may face challenges with respect to

some of its domestic environmental policies. [51] provides various reasons for these challenges

to ‘green box’ policies. Firstly, it is not very easy to define what is ‘minimally trade distort-

ing’ without extensive research. Secondly, any income support that reduces downside risks

in fluctuations distorts production. Finally, any expectation of reassessment of the historical

bases that determine payments can prevent farmers from adopting more environment friendly
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land uses. [9] provide an excellent literature survey on decoupling of farm programs. The

case against US domestic support would gain more importance in the WTO forum if envi-

ronmental policies are increasingly used to provide income support to farmers. Evidence on

any improvements in environmental outcomes, linked directly to these policies could help to

inform the debate. A production possibility frontier that incorporates all the environmental

outcomes along with production and acreage allocation outcomes would give a complete picture

of these agricultural-environmental linkages. Some control interventions in output and input

markets may or may not be defensible from a pollution management perspective. Specifically,

government support could be severely restricted if there is no environmental improvement in

the presence of trade distorting issues. The question then is how well prepared are the parties

involved in understanding the linkages between domestic support policies and the environment.

Establishing the linkages between market responses and changes in environmental variables

becomes critical in the light of the new farm bill and forthcoming WTO negotiations. The

[75] recommends that “The combination of agricultural and environmental policy measures ..

be carefully designed and implemented to ensure coherence so that they improve environmen-

tal quality in the most cost-effective and transparent way, with least distortion to production

and trade.” In light of these recommendations, [55] examine the cost-effectiveness of ‘green

payment’ policies for agricultural production. Green payments are financial incentives given

to the farmers for voluntarily changing their choice of input use or production technology so

that there is less pollution from agricultural production. [55] find that the costs of abatement

of alternative green payment policies are not very different relative to each other, unless it

is a large cost sharing program. Looking at other standards and pricing policy approaches,

it is then necessary to base these policy choices by comparing their effects on environmental

outcomes.

Another important issue concerning U.S. agriculture bio-fuel production. Ethanol usage

has a large advantage in reducing green house gas emissions but might come in conflict with

other environmental attributes. The [8] projections in 2006 show an increase of 6 million acres

of the U.S. corn acreage during the next 10 years, attributed mostly to rising ethanol demand.
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These changes will occur mainly in the Upper Mississippi River Basin (UMRB) and will have

dramatic implications for water quality via nitrogen use and soil erosion, especially on the

hypoxia zone of the Gulf of Mexico ([80], [30]). [83] in their popular Science magazine article

claim that world-wide land use change, as a result of US policy, will nearly double greenhouse

emissions over 30 years and increase greenhouse gases for 167 years.

As long as the United States uses corn as an input in the production of ethanol, corn

demand and prices will increase. One way to meet this additional demand would be to reduce

US corn exports to other countries. If this increased demand is met by more intensive corn

production per acre then the increase in the allocation of corn acreage could counter the

policies that provide adequate environmental benefits. Some bio-fuel promotion policies, for

example, the ethanol excise tax exemption and the tax credit to retailers, are already effective

in Iowa. These results in high demands for corn which, in turn, leads to high price commodity

market scenario. It is crucial to take into account this market situation while analyzing policy

effectiveness.

Several studies have looked at the impact of non-point agricultural pollution, specifically

how crop acreage allocations affect environmental amenities. (e.g.[101],[99], [102])). These

studies have incorporated economic models for estimating the crop choices, tillage choices, crop

rotation choices and adoption of best management practices. The above studies, particularly

the ones with crop rotation choices, do not take into account the yield effects of rotation on

subsequent crops, mainly because the data set is simply not available to conduct such research.

The decision to adopt a particular rotation at a particular time depends crucially on the profit

maximizing yield and fertilizer requirements of all the rotations under the prevailing market

conditions. Many agronomic studies have consistently shown the presence of a yield drag in

a subsequent crop where corn after corn average yield is 10% less than corn after soybean

average yield. These yield effects should be incorporated when estimating rotation adoption

models.

Policies differ in their effect on the entry and exit decisions in the presence of heteroge-

nous land quality. Several studies have addressed the effect on acreage/planting decisions in
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the presence of land set-aside and cost share programs. [100] has attempted to quantify the

amount of non-cropland brought into crop production as a result of the conservation easements

on the farmland. This slippage effect could be caused by increased output prices and substi-

tution effects. [88] models the interaction between conservation and production decisions and

shows how this interdependence causes unintended effects for a cost share program by induc-

ing changes in land profitability and affecting cropping patterns. [55] emphasizes the role of

information acquisition in the presence of heterogenous entities. The present paper overcomes

the requirement to model entry and exit decisions by using aggregate panel data of county

level land use. At this level of analysis the individual entry-exit decisions are integrated into

aggregate acreage allocation.

The environmental literature has looked at multiple benefits of a single policy ([3], [60],

[106]). Specifically, most studies have looked at the multiple benefits of more costly programs

like the Conservation Reserve Program and Conservation Security Program. Although policies

like fertilizer taxes and quotas attempt to target the immediate environmental concern of water

quality benefits, they might have some residual effects due to changes in acreage allocation.

Many studies with integrated models make use of physical models to simulate the environmental

variables under different management conditions. An example of such a tool is the Soil and

Water Assessment Tool (SWAT) which is being increasingly used to simulate environmental

outputs. The inputs for these models, usually land topography, weather conditions and soil

conditions, are many and remain constant throughout simulations. While this tool is desirable

when monitoring data is not available and is efficient in addressing the complex network of

rivers draining a watershed, it is limited in the scope of the environmental variables that can

be addressed. The observations on other environmental variables like wildlife and lake water

quality, will not be obtained with SWAT models.

The purpose of this paper is to develop a framework which helps in understanding the

consequences of various alternative domestic policies for environmental management. The

model has two components. First a framework for an ecological model that links acreage

allocation to environmental variables is established to obtain an effective mapping of economic
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choices to environmental outcomes. The environmental outcomes that we propose to study are

river and lake water quality and wildlife habitat. For certain time periods there are extensive

monitoring data available on water and wildlife in Iowa. These environmental outputs can be

incorporated into the production possibility frontier along with the shares of acres allocated

to corn and soybean, the two main crops grown in Iowa. Factors like soil quality, weather, and

other ecological variables are accounted for in estimating the effect of acreage allocation on

environmental outcomes.

Acreage allocation is then determined by a model developed to study the market determi-

nants of rotation choices. A major contribution of this paper is the way in which the economic

model has been formulated. The theoretical foundation for this paper is given in [42] where

the author emphasizes that the spill over yield effects persisting for one or more years, is im-

portant in determining the optimality of a particular rotation. Access to an agronomy field

data set allows the estimation of the production technology for different rotations
1
. The

estimated production technology is applied to each county after appropriate scaling. Under

joint price and yield uncertainty, the profitability of various rotations are estimated for each

county. Economic theory suggests and statistical analysis confirms that the revenues of corn

and soybean yields are not independent. The correlation between them needs to be taken

into account while generating the random deviates for profit estimations. An emerging tool in

finance that is used in this analysis to address the correlation structure is the copula approach.

Copulas are functions that join multivariate distribution functions to their one dimensional

marginal distribution functions ([70]). We then proceed to find the probability of occurrence

of the two most optimal rotations given various combinations of input and output prices in

each county. The acreages allocated to corn and soybean production are then determined for

all the counties. The producers are assumed to adopt the two most profitable rotations, at

an aggregate level. This links the market prices and input use to the acreage allocation. The

main advantage of this approach is that it includes effect of changes in yields in the estimation

1Data have been kindly provided by Antonio Mallarino, Department of Agronomy, Iowa State University
and Ken Pacionovsky, farm superintendent. These are field trial data from Iowa State University’s Northeast
Iowa Research and Demonstration Farm located in Floyd County, IA.
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of crop acreage under different rotations.

The above framework can then be used for evaluating different policy scenarios in improving

environmental degradation. Policies addressed here are fertilizer taxes, a per acre subsidy for a

corn-soybean rotation adoption and a restriction on nitrogen use. The estimates for expected

nitrogen use, average profits, acreage allocation, and effects on water quality and pheasant

population are provided. With baseline values of 2001, all the policies are compared under two

price scenarios. These are low corn prices and high corn prices, in anticipation of the boom in

ethanol market. The study provides important insight into policy effectiveness with respect to

environmental output.

Ecological models

In Iowa, agricultural runoff has been identified as a primary source of water quality prob-

lems. Fertilizers are the leading cause of increases in nutrient levels in water bodies, beyond

sustainable levels that are consistent with the ecosystem. Nitrate nitrogen in excessive amounts

may cause lake eutrophication, depleting the level of dissolved oxygen necessary for sustaining

aquatic life. River water quality in terms of nutrients in this region in the Upper Mississippi

River Basin has direct impact on the hypoxia zone in the Gulf of Mexico ([80], [30] and [57]).

Assessment of environmental outcomes as a result of a policy change requires accounting for

all environmental outcomes, which is beyond the scope of this study. For example, we do not

consider environmental benefits from carbon sequestration. However wildlife changes are also

considered along with water quality changes in lakes and rivers. It will be shown later in this

paper that the same policies have different effects on water quality and wildlife habitat, not

only in their magnitude but also in the direction of change.

Lake water quality

Lakes provide environmental amenities for recreational use and drinking water supply.

The key factors for promoting recreational use of lakes are improving water clarity, reducing

algal blooms and increasing fish population. There is no unique water quality indicator that
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adequately encompasses all the requirements for different uses. The nutrient levels for lakes

are appropriately determined by its assigned beneficial use. This paper looks at the levels of

key nutrients in all the lakes regardless of their uses.

Extensive data on the lake water quality in Iowa are provided by the Limnology Laboratory

at Iowa State University. According to the Report on Iowa Lakes Classification for Restoration,

May 2005, the Iowa Lakes Survey was conducted by sampling 132 principal recreational lakes

from 2000 to 2005. One hundred and fifteen of the lakes were previously studied, and classified

for restoration, in 1979 and again between 1990 and 1992 ([6]). The Iowa Lakes Survey

refined the existing classification system based on water quality, public benefit and potential

restoration effectiveness.

Some of the water quality measures considered are nutrient levels like total nitrogen, total

phosphorus and water clarity measures like total suspended solids (TSS) and Secchi disk depth,

all of which are affected by agricultural pollution. Nitrogen from cropped fields is a leading

source of water quality pollution in agricultural areas. Phosphorous is the key nutrient affecting

the amount of algae growth. [1] find that intensive row crop agriculture leads to higher levels

of N:P. Measurements for total phosphorus include soluble phosphorus and the phosphorus in

plant and animal fragments suspended in lake water. Secchi depth is the depth at which the

bottom of the lake can still be seen, providing a measure of water transparency. TSS provides

the actual weight of particulate matter present in a sample of water collected from the site.

Table 2.1 provides the summary statistics for the lake variables. The EPA’s recommended

nutrient criteria for lakes and reservoirs in the Corn Belt and Northern Great Plains Region

are 37.5 µg/l of total phosphorus, 0.78 mg/l of total nitrogen and Secchi Depth of 1.36 m. The

average lake water quality in Iowa is poorer than the EPA recommended criteria. The table

indicates considerable variation across the panel data set, in terms of lake quality. The levels

of lake nitrogen and phosphorus in 2001 are shown in Figures 2.1 and 2.2. Nitrogen levels are

highest in north-central Iowa region which is the prime agricultural area. Phosphorus levels in

lakes are more spread out without any particular pattern.
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The following set of equations is estimated as the supply function of the lake water quality:

TotalNitrogen = a0 + a1 ∗ corn+ a2 ∗ soybean+ b ∗ x+ c ∗ z (2.1)

TotalPhosphorus = a0 + a1 ∗ corn+ a2 ∗ soybean+ b ∗ x+ c ∗ z (2.2)

TSS = a0 + a1 ∗ corn+ a2 ∗ soybean+ b ∗ x+ c ∗ z (2.3)

SecchiDepth = a0 + a1 ∗ corn+ a2 ∗ soybean+ b ∗ x+ c ∗ z (2.4)

where corn and soybean are the total acres of corn and soybean respectively, in the county.

Corn acres, soybean acres, and the total land in farms were obtained from the National Agri-

cultural Statistical Services (NASS) data for 99 counties in Iowa for the years 2000 to 2005.

Vector x comprises lake characteristics like volume of the lake in cubic meters, the size of the

lake watershed (in acres) and the average temperature of the lake. The lake characteristics

were also obtained from the Iowa Lakes Survey. All of these factors are important in explaining

the capacity to process the nutrient supply. The z vector comprises county characteristics like

average precipitation, texture of soil (coarse or fine), percentage of land in the county that

has maximum slope greater than 8%, weighted average of corn suitability rating (CSR)
2

for

the county and the average value of K factor
3
for the county. These county characteristics

are obtained from three sources, the Natural Resource Inventory (NRI, 1997), the Iowa Soil

Properties and Interpretation Database (ISPAID, 2004) and the Iowa Environmental Mesonet

(IEM) for the climate data . The lake water quality is mainly affected by runoff from the lake

watershed which are distinct from the river watersheds and are much smaller. However, for

simplicity it is assumed that the land use in the entire county affects the water quality at the

lakes
4
.

2CSR is an index that provides relative ranking of all soils based on their potential to be utilized for intensive
row crop production. Therefore higher values of this variable is likely to contribute towards more polluted lakes
simply because more row crop production is likely to take place in these lands.

3Higher values of K factor indicates higher susceptibility to rill and sheet erosion by water. The estimates
are based primarily on percentage of silt, sand, and organic matter (up to 4%) and on soil structure and
permeability. High crop production on land with high K Factor is expected to lead to higher lake pollution.

4Ideally a panel data set on land use in the lake watersheds should be used in this study. However, such
a data set is not available. Instead, the panel data of land use in the counties is assumed to provide land use
changes in the watershed. This serves the additional purpose of estimating the effect of county crop acreage on
surface water quality.
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River and stream water quality

A set of equations similar to lake water quality can be estimated for rivers and streams. One

complication that might arise in using river and stream water quality data is the overlaying of

watershed boundaries with county boundaries. Water quality attributes in rivers and streams

are affected by the land use pattern in the watershed. Since this study is done at the county

level, there is a need to address this disparity. Iowa cropland drains into either the Mississippi

River in the east or the Missouri River in the west. Any river or stream that drain into either

one of these rivers, is affected by land-use in the watershed defined by that stream. Although

it is desirable to include only the upstream acres for a particular monitoring point, the data

on the annual acreage allocation for smaller watersheds are not readily available. Instead, we

include the set of areas defined by the intersection of the counties and the larger watershed

that contains the monitoring site. The area under crop c that affects a site k, at time t is then

given by:

yckt =
∑
i∈Ωk

WiC
c
i,t (2.5)

where, Ωk is the set of areas formed by the intersection of county boundaries and the watershed

boundaries that affect site k. Wi are the weights constructed by taking the area of each of

the intersection as a percentage of watershed area and
∑

Wi = 1. Cc
i,t is the total area of the

county under the particular crop at time t.

River and stream water qualities are obtained from monitored data maintained by Envi-

ronmental Protection Agency (EPA). These data are are available at the web site of Iowa De-

partment of Natural Resources. The Iowa Ambient Water Monitoring Program is a statewide

monitoring program for Iowa’s surface, groundwater, lake, and wetland resources. It is ad-

ministered by the Geological Survey Bureau of the Iowa Department of Natural Resources.

Table 2.1 provides summary statistics for the river water quality. The EPA’s recommended

nutrient criteria for rivers and streams in the Corn Belt and Northern Great Plains Region

are 76.25 µg/l of total phosphorus, and 2.18 mg/l of total nitrogen. The average amount of

nutrients in the rivers in Iowa exceeds these criteria.
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The following equation is estimated for the river and stream water quality:

Nitrogen = a0 + a1 ∗ ycorn + a2 ∗ ysoybean + b ∗ flow + c ∗ z (2.6)

Phosphorus = a0 + a1 ∗ ycorn + a2 ∗ ysoybean + b ∗ flow + c ∗ z (2.7)

where ycorn and ysoybean are the constructed total area of land in the watershed under corn

and soybean respectively. Vector z comprises watershed characteristics that would affect river

and stream qualities. Some of the watershed characteristics that are considered here are

average slope of the watershed, the water erodibility index (EIwater) and wind erodibility

index (EIwind). The watershed characteristics are obtained from the 1997 National Resource

Inventory (NRI) data set.

There are 54 water monitoring sites used in the study. Nitrogen and Phosphorus levels

are available in most cases as monthly observations for 8 years, 1999-2006. The dependent

variables are the annual average of the observations. The explanatory variable, flow is the

amount of water flowing into the water body at the monitoring site. Figures 2.3 and 2.4 show

the nitrogen and phosphorus levels at the selected water monitoring sites in the year 2001.

Wildlife habitat

An increase in pheasant population is viewed as an indicator of wildlife benefits. Hayfields,

oat fields, pastures, idle grassland areas, wetlands and Conservation Reserve Program lands

provide good pheasant nesting cover while intensive row cropping and habitat fragmentation is

detrimental to pheasant population. [17] recognized grassland cover as one of the most impor-

tant determinants of pheasant population and studied the effects of grassland under CRP as

opposed to conversion of grassland to conservation buffer strips, on pheasant population. They

showed the importance of a diversified agricultural landscape with large blocks of undisturbed

habitat as opposed to disturbed habitat fragments to pheasant population.

The pheasant data are obtained from Iowa Department of Natural Resources (IDNR),

which conducts an annual roadside survey of upland game population. The total number of

pheasant counts on 30 mile routes in each county are provided from 1962 to 2005. The statewide

pheasant counts were low for the years with severe winter or abnormally wet weather. [68],
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studies the impact of land use changes on the pheasant population in Iowa. A distinction

is made between the northern row crop region and the southern pasture region, providing

different wildlife habitats. As seen in Figure 2.5, the north-west region, which is the prime

agricultural region in Iowa has most of the pheasants.

Almost 89% of the annual diet of ring-necked pheasant consists of seed, primarily corn even

though corn and soybean are considered to be of little value to pheasant population as foraging

habitat because of their low insect abundance and biomass. According to the Department of

Conservation, Missouri, ring-necked pheasants do best where there are agricultural crops along

with some grassland for nesting and woodland for winter cover. Also, pheasant food and cover

are more diverse on farms using a crop rotation system.

The following supply equation for the pheasant population is estimated:

Pheasant Population = p0 + p1 ∗ cornsh+ p2 ∗ soybeansh+ p2 ∗ cornsh2 + p ∗ z (2.8)

In the above equation, the share of agricultural land in corn, cornsh and its square are assumed

to be explanatory variables in the determination of pheasant supply. The quadratic function

was hypothesized by Clark et. al. (2002), since there seems to be an optimal amount of corn

land that is most suitable for pheasant growth. Vector z in this case comprises of county

characteristics like county population from the U.S. Census 2000, precipitation and a dummy

variable for the counties located in the northwestern part of Iowa. County population is

expected to have an indirect effect on pheasant population. Larger population might lead to

more hunting of pheasants. Precipitation as a measure of rain is an important factor in pheasant

habitat. Early rain is good for nesting cover while too much rain might limit the hatch. Finally

the dummy variable distinguishing northwestern counties from the rest is included to take into

account the natural and more favorable habitat in this area [68].



37

Ecological model estimation and discussion

Lake water quality

Table 2.2 provides the results for pooled SUR estimation of the lake water quality produc-

tion function. The system weighted R2 for this model is 0.2879. Most of the coefficients for

Sechhi Depth are significant. Corn and soybean acres are not significant for any of the nutri-

ents. Tests for multi-collinearity shows that the variance inflation factor for corn and soybean

acres are a high of 11.64 and 16 respectively. This suggests that the corn and soybean acres

might be correlated. Further tests indicate that for the years 2000-2005 the corn acres and the

soybean acres are negatively correlated within a county over time, although the correlation is

not significant for most counties. Table 2.3 presents the results for the SUR estimation without

soybean acres. The R2 for this model decreases marginally to 0.2857. We find in this table

that corn area is a significant variable in the determination of lake quality. However, for our

policy analysis, the estimation results of Table 2.2 are considered, since some of the policies

shift land from corn to soybean production.

In both the specifications, most of the explanatory variables are significant. As expected,

larger area of the lake watersheds, precipitation, sandy soil and soil phosphorus content are

all significant pollution enhancing factors. Higher sloped lands and lands with higher corn

suitability rating tend to decrease nutrients and clarity. This could be because there is less

cultivation in highly sloped lands, whereas higher CSR indicates better quality land and hence

less pollution.

River and stream water quality

Table 2.4 shows the estimations for the river water quality supply in Iowa. The R2 for

this system of equation is 0.0562. The area under corn and soybean production are significant

variables in the determination of total nitrogen at the monitoring sites. However, these are not

significant determinants of phosphorus levels. Nitrogen and phosphorus levels increase with

corn area and the flow into the water body, and decrease with the soybean area. The flow into

the rivers at the monitoring sites is defined as the portion of precipitation on the surrounding
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land that ultimately reaches streams, often with dissolved or suspended material. A positive

coefficient on this variable is expected since the surrounding area is mostly agricultural. Esti-

mations without the soybean acreage are provided in Table 2.5. Omitting the soybean acres

from the estimation results in a positive and significant coefficients for corn acreage for nitro-

gen. Again, as in the case of the lake water quality, the estimation results with soybean acres

are considered for policy analysis.

Pheasant population

The estimated coefficients of the pheasant supply function are given in Table 2.6. The

dependent variable in the ordinary least squares regression is the average annual pheasant

population per 30 mile route per county and the R2 for this model is 0.071. The share of corn

acres has a significant positive effect and the square of the shares of corn acres has a negative

effect on the pheasant population. The average pheasant population reaches a maximum level

at 38.75% share of corn acres in a county on an average, assuming all other variables remain

constant. In the study by [17], the average pheasant population reaches a maximum of 54% of

grassland or buffer strip, while the remaining 46% comprises of row cropland (primarily corn

and soybean), roads, wetlands, hayland, pastureland and oats. Their study is based on two

northwestern counties in Iowa. Palo Alto County has 57% and performs better than Kossuth

county with 86% row crop, in terms of supporting pheasant population. The percentage acres

of soybean in the county seems to have a negative effect on pheasant population. Population

density has a significant negative effect on the pheasant population. The northwestern counties

comprising of prime agricultural land are good for pheasant population as shown by [68].

Economic model

Most studies in the literature that perform environmental policy assessment analyze the

adoption decision of specific management practices by farmers. For example [59] study con-

servation tillage adoption and [37] study the adoption of irrigation technology. These studies

typically require data on the adoption decisions at the farm level, namely crop rotation decision
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of each farmer in the entire state. In the absence of such data set, an alternative procedure is

employed. The results of a field experiment conducted in one county are extrapolated to all the

other counties. The design of the field experiment allows the estimation of a primal production

function incorporating the yield effects of input use. Together with market prices prevailing in

the corresponding years, conditions for profit maximization can be estimated. A disadvantage

of this method, common to all experimental data, is that actual farmers’ decisions are not

used. Nevertheless, this procedure contributes to the literature by addressing the joint effects

of nitrogen input use and rotation on yield. The steps involved in the procedure are outlined

briefly in the following paragraph.

First, crop distribution functions are estimated using field level agronomy data for crop

yields under different rotations. A county-wide shift parameter is included to estimate rotation-

specific yield distribution functions for each county. This takes into account the spatial hetero-

geneity of crop production across the counties. Second, the profits under different rotations are

estimated for each county. A crucial assumption in this step is that the distribution functions

(with the exception of the parallel shifts) that are estimated from field data hold true for all

counties in Iowa. Under joint uncertainty in prices and yields, Monte Carlo methods are used

to estimate average profits for each county under each rotation. Difference in the prices of

corn and soybean across county are taken into account. The correlation between crop yields

and prices are accounted for in the construction of random deviates, using a Copula approach.

Finally, the probability of occurrence of the two most profitable rotations are computed for

various combinations of input and output prices for each county. This provides a smoothing

factor for the calculation of total land under corn and soybean production for each county.

Use of this factor accounts for heterogeneity among producers and prevents all from switching

to the single most profitable rotation upon a small change in market factors. The acreage

allocated to corn and soybean production is then determined for all the counties. In the next

three sections these steps are explained in detail.
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Estimation of crop yield and price distribution function

The yield data under different rotations allow us to estimate density functions for gener-

ating observations for simulation. The data set is obtained from experiments on Iowa State

University’s Northeast Iowa Research and Demonstration farm located in Floyd County, IA.

Twenty-five years of field trials were conducted since 1979, with 3 plot-level observations on

yield per year. Five rotations were considered per field: Continuous corn (C), Continuous soy-

bean (S), corn-soybean (CS), corn-corn-soybean (CCS) and corn-corn-corn-soybean (CCCS).

For each of these rotations, crop yields were recorded at four different levels of nitrogen 0, 80,

160 and 240 lbs per acre. For estimation purposes, corn at different stages of rotation are taken

to be separate crops. For example, for a CCCS rotation there are four crops, first year corn,

second year corn, third year corn and soybean and four different density functions for each of

these crops were estimated. Crop yields are assumed to follow the beta distribution and the

parameters of the distribution are estimated using Maximum Likelihood Estimations. There

are 300 (25 X 3 X 4) yield observations available for each crop. A total of ten production

functions are estimated for each crop under each of the four rotation, seven for corn and three

for soybean. We do not take into account the case of a continuous soybean rotation because it

is not profitable and is never observed in practice.

Several studies have rejected the normality assumption on crop yields. Some of these

authors, for example, [19], [12] and [71], agree that the crop yields are generally skewed,

however they fail to reach a consensus on the nature of skewness. On the other hand [54] fail

to reject normality of yield distribution for Kansas farm-level wheat, corn and sorghum. Using

a Kolmogorov-Smirnov test for normality we can reject the hypotheses that corn and soybean

yields follow the standard normal distribution at 5% significance level. It is assumed that a

beta distribution is appropriate for yield function. Following [71] and [4], the parameters of

the beta distribution function are conditioned on variables influencing yield. Ideally one would

estimate a two-parameter beta distribution function with the following probability density

function:
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β(y|p, q, a, b) = Γ[p+ q](y − a)p−1(b− y)q−1

Γ[p]Γ[q]bp+q−1
for a ≤ y ≤ b. (2.9)

Parameters a and b in the above equation are bounds of support on the β distribution, Γ denotes

the gamma function, and p and q are parameters which influence the shape of the probability

density function. If we assume a production technology where the yield plateau shifts over

time, then we have a time conditioned density function, given by a = 0 and b = b0 + b1t. The

parameters p and q are ideally functions of nitrogen application N , time t and the interaction

terms. Under assumptions of concavity which requires specification of a second-order fit for

the parameters of the β distribution function, one would require an estimation of 10 unknown

parameters. There is not enough variation in the data set to estimate so many parameters. The

problem is then simplified by excluding the nitrogen and time interaction terms and specifying

the maximum attainable yield, b, exogenously. Given data restrictions, the following functional

forms for p and q with 8 unknown parameters are estimated:

p = p1 + p2t+ p3N + p4N
2

q = q1 + q2t+ q3N + q4N
2

Parametric estimates of production technologies are obtained with corn yields as functions of

nitrogen application and time and soybean yields as function of time. The average yields from

the data and the coefficient estimates of the above equations are presented in Table 2.7. The

average increase in corn yield following soybean in CS rotation is 28.7% higher over continuous

corn.

These estimated distribution functions are then adjusted to take into account the produc-

tivity differences across the counties. A county-wise shift parameter is constructed for corn

and soybean by taking the ratio of the five year average yield of each county and the five year

average yield of Floyd county. The construction of the shift parameter is based on the assump-

tion that the experimental field is representative of the farms in Floyd county in terms of land

quality and productivity. Communication with the data providers supported this assumption.



42

Thus the estimated distribution functions are assumed to hold true for Floyd county. A sepa-

rate beta pdf for each of the remaining 98 counties in Iowa is obtained by parallel shifts of the

beta pdf for Floyd county by the amount of the shift parameter.

In a given year the product of the price of a crop and its yield that year would give an

internally consistent revenue for that year. The data for the corn and soybean prices were

obtained from Chicago Board of Trade (CBOT) reports of futures prices. [32] and [53] argued

in favor of using futures prices acreage response analysis on grounds of rational expectation

and forecasting accuracy. The average settlement price observed during the first few weeks

in April for the December and November maturity contract of the same year is considered to

affect the planting decision of corn and soybean acreage, respectively. The annual crop prices

are used to estimate the correlation structure between the yields and the crop prices.

For simulation purposes, it is assumed that crop prices follow the log-normal distribution

with parameters explained in later sections. The assumption of log-normal distribution removes

the possibility of negative prices and is common in agricultural economics literature ([40], [36]).

The draws from log-normal distribution were adjusted to take into account price difference

across counties. Data on the historical average annual basis for each county were obtained from

the Center for Agricultural and Rural Development, Iowa State University. The basis describes

the variation between the spot price of a commodity and the relative price of its futures

contract. Differences in basis across counties arise due to transportation or other transaction

cost differential causing a spatial price variation. The futures price for each commodity is

adjusted using a basis differential. The historical average basis at maturity, reached during

the month of October for each county is subtracted from that of the Floyd county to arrive at

the basis differential.

Copula approach for correlated random variables

Literature on crop insurance programs not only emphasize the correlation between prices

and yields but also correlations between yields from different crops. The Midwest corn pro-

ducing states show strong negative corn and soybean yield-price correlation, forming a natural
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hedge with moderate revenue variability. This is characteristic of the Corn-belt region, where

most farm-level yields are closely related to area-wide production and the areas production

accounts for a significant share of world production. Accounting for yield correlation across

crops in order to calculate more accurate insurance rates is also gaining popularity. [34] demon-

strated that yield performance tends to be highly correlated across some crops and [35] show

that corn and soybean specifically, are highly correlated.

Both types of correlation discussed above are taken into account during the simulation

exercise. The estimated marginal distributions of the yield and price function and the correla-

tion matrix obtained from the time series data are then used to estimate the joint distribution

between the corresponding variables for each rotation. Again with our example of CCCS rota-

tion, we would require an estimation of joint distribution of four crops and two prices. Under

the Monte Carlo simulation approach, we need to draw from this joint distribution in order

to calculate the profits for each rotation, given parameter values of nitrogen levels, price of

nitrogen and time. Two procedures are generally used in agricultural economics literature to

obtain random samples from correlated random variables. One commonly used method in con-

structing the rates for crop revenue insurance is the [50] method where uncorrelated random

draws are combined using a weighted linear combination method. A limitation of the approach

is the strict parametric specification leading to high sensitivity of these rates to correlations

between prices and yields, which might not be measured accurately. Also there is no evidence

that higher order cross moments are matched in this method. This method works well when

the number of marginal distributions is small. A second method involves re-sorting as outlined

by [46]. This method is used in many studies on crop insurance [39], [76]). In this method,

correlation between independent random numbers could be obtained by orthogonal transfor-

mations. [47] note that the method is a close approximate, i.e., the rank correlation matrix

of the distribution from which the draws are made is close to the prescribed rank correlation.

Also, a multivariate distribution is not uniquely defined by its marginal distributions and its

rank correlation.

In order to account for dependence between random variables we use an alternative pro-
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cedure, the copula method. This a well-known tool in financial literature and its potential

is recently being recognized in agricultural and environment fields, for example in [81]. This

method is an improvement over the Johnson and Tenenbein approach since it can be easily

implemented for more number of marginal distributions. [38] shows the similarity of results be-

tween IC method and the normal copula approach. The main advantage of the copula method

is the flexibility it provides in addressing the correlation structure. This is done by specifying

various functional form of the copula. [16] provide a comprehensive discussion of the various

copula functions.

Definition and properties of copula function

A copula is a function that joins a multivariate probability distribution to a collection of

univariate marginal probability functions. It is essentially a multivariate cumulative distri-

bution function (cdf) with uniform pdfs. Consider n random variables X1, ...Xn, with the

following marginal distributions: u1 = F1(X1 ≤ x1), ...un = Fn(Xn ≤ xn). The multivariate

cdf is the probability P (X1 ≤ x1, ..., Xn ≤ xn) or F (X1, ...Xn). Application of the method of

copula is established upon the Sklar’s Existence Theorem, which states that, “Given a joint

distribution function and the respective marginal distribution functions, there exists a copula

that binds the marginals to the joint distribution.” [69]

F (X1, ...Xn) = C(u1, ...un) (2.10)

where C(.) is the joint distribution function of Uj , j = 1...n, which are correlated uniform

random variables.

The copula provides information on the nature of dependence between different random

variables, while the random variables themselves can follow any pre-specified distribution.

In this approach the information on the individual marginal distribution functions and the

dependence information are effectively separated from each other. Linear correlation is suitable

as a measure of dependence when the underlying random variable is normal. However, when

nonlinear transformations are applied to those random variables, linear correlation is no longer
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appropriate. Correlation measures for other distribution becomes more complicating. For

example, for elliptical distributions a linear correlation estimator such as the Pearson product-

moment correlation estimator has a very bad performance for heavier tailed data [63]. By

separating the marginal distributions and the correlation structure, the copula approach helps

in overcoming some of the problems of correlation as a measure of dependency. There is a

very large number of copulas that can be specified. In this paper, Gaussian copulas are very

effectively used to obtain the joint distributions.

Gaussian Copula

A Gaussian copula is constructed from the multivariate normal distribution as shown in

the following equation:

C(u1, ...un) = Φu1,...un,Ω(Φ
−1(u1), .....,Φ

−1(un)) (2.11)

=
1

|Ω|
1
2

exp
(
− 1

2
ξT (Ω−1 − I)ξ

)
(2.12)

where Φ is the standard univariate normal cdf, Φu1,...un,Ω is multivariate normal cdf, Ω is an

n× n correlation matrix and ξ = Φ−1(uj). Thus the copula can be separated into a marginal

model for the inverse normal score Φ−1(Gj(xj)) and joint distribution model of the inverse

normal scores Φu1,...un,Ω(Φ
−1(G1(x1)), .....,Φ

−1(Gn(xn))), where Gj(xj) = uj is the cdf of xj .

The dependence structure is normal but the marginals can follow any distribution denoted by

G.

The construction of Gaussian copulas require specification of the correlation structure

among the variables. The Pearson correlation coefficient could be affected by the change

of scale in the marginal variables. Instead, a rank correlation coefficient, such as Kendall’s

tau or Spearman’s rho, is more appropriate. In this paper, Kendall’s τ , is calculated between

yields and prices for each rotation. It is invariant under strictly increasing transformation of

the random variable.

The advantage of using the normal dependent structure lies in its analytical simplicity.

It requires the estimation of only the correlation matrix. However, Gaussian copulas are not
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suitable when there is tail dependence among the correlated variables ([26]). Tail dependence

refers to the probability that the outliers, positive or negative, occur jointly. For example, in

finance, the Gaussian copulas are not suitable in modeling default risks which are considered

to be rare events.

Correlated random draws

The procedure for drawing correlated random numbers is given by the following:

1. In the first step, k correlated normal random variables are generated 10,000 times for each

rotation in each county. Here, k is the number of correlated marginals for each rotation.

Correlation between the k variables are estimated from the data using Kendall’s τ . For

example, in case of continuous corn, random deviates are from the bivariate normal

distribution since there are two marginal distributions, one for yield and the other for

price. For CCCS, k is 6, three for the three years of corn yield, one for soybean yield

and two for the prices of the two crops.

2. The normal cdf of each of these normal random variables are calculated to obtain random

variables that are uniform over the interval [0,1] . These uniform variables define the

dependence structure. Figure 2.6 shows 1,000 correlated random uniform variables for a

CCS rotation. Kendall’s τ is stated for each pair of correlated uniform random variates.

First year corn and soybean yields have a higher correlation than the second year corn

and soybean yields.

3. The marginal distributions are then constructed by taking the inverse of these uniform

random variables. Crop yields are obtained by taking the inverse of the beta distribution

with parameters given in Table 2.7 and specified levels of t and N . We use the built

in functions in MATLAB to obtain the inverse of the beta distribution. For prices, the

inverse of the log normal distribution is taken with mean and standard deviation equal

to that of the futures prices.
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Estimation of the expected profits and acreage allocations.

Expected profits from each rotation can now be calculated for each county. Monte Carlo

simulations and grid search are useful techniques for extending the farm level analysis to the

county. Nitrogen levels are varied from 0 to 300 lbs, by 1 lb increments. For a particular year,

t̂ and a particular nitrogen price ŵ per lb, the expected profits per acre for each rotation is

given by :

ΠC = Corn(t,N)Pcorn − ŵN

ΠCS = 0.5Corn(t,N)Pcorn + 0.5Soybean(t)Psoybean − 0.5ŵN

ΠCCS = 0.33Corn1(t,N1)Pcorn + 0.33Corn2(t,N2)Pcorn + 0.33Soybean(t)Psoybean

− 0.33ŵ(N1 +N2)

ΠCCCS = 0.25Corn1(t,N1)Pcorn + 0.25Corn2(t,N2)Pcorn

+ 0.25Corn3(t,N3)Pcorn + 0.25Soybean(t)Psoybean − 0.25ŵ(N1 +N2 +N3)

where Corn1, Corn2 and Corn3 are the first, second and third year corn yields in a rotation

and N1, N2 and N3 are the respective nitrogen application. Pcorn and Psoybean are the corn

and soybean prices per unit.

We then perform a grid search over the different levels of nitrogen to arrive at the maximum

profits and the profit maximizing nitrogen level. The maximum profits are compared across

four rotation for each county to obtain the two most profitable rotations for each county. The

ratio of the number of times the two highest profits are obtained gives the odds of occurrence

of these profits. We apply this ratio as a smoothing factor to obtain the acreage under the

two crops in all the 99 counties in Iowa. Under the assumption that all crop producers adopt

the optimal rotation given the output and the input prices, the acres of cropland devoted to

corn and soybean can then be estimated according to the rotation. For example, if the two

most profitable rotations are CS and CCCS and they occur in the ratio p in the simulations

then the total land under corn is p ∗ 50% + (1− p) ∗ 75% and the total land under soybean is

p ∗ 50% + (1 − p) ∗ 25%. This is because if the optimal rotation is CS, then exactly 50% of
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cropland in a county is under corn production and 50% under soybean production. Similarly

if the optimal rotation is CCCS for a given market condition then the entire cropland in the

county is divided into 75% corn production and 25% soybean production. The percentage of

corn and soybean acres in total corn and soybean acres obtained from the simulations are then

transformed into percentage of corn and soybean acres in total acres in agricultural for each

county.

The optimal distribution of cropland acreage between corn and soybean, as obtained from

the optimal rotation is now a function of the nitrogen levels and the price of nitrogen. We can

then study the effect of policies such as a corn-soybean rotation subsidy, a fertilizer tax and a

nitrogen quota on ecological variables by varying the acreage allocation in each county.

Policy simulations

In order to do policy analysis, we first obtain the simulation results for profit maximizing

nitrogen levels and maximum profits for each rotation and provide a prediction for the percent-

age of cropping acreage under corn and soybean for each county. A baseline is first established

to evaluate the impacts of the policies. The nitrogen price did not change much towards the

end of the field study period, that is, from 2001 to 2003. For the simulation, the nitrogen price

is fixed at $0.21 per lb, the price for the given years ([22]). For corn prices, the log-normal

distribution has a mean of $2.30 and a standard deviation of 0.20; for soybean prices they are

$6.00 and 0.15, respectively.

The environmental consequences of ethanol industry is widely studied ([84], [85]). [2]

estimate the amount of subsidy required to switch from row crop production to energy crop

like switchgrass. Land under switchgrass production resulted in large reductions in nutrients

in water. However, very little is known about what factors affect switchgrass production and a

very large subsidy is needed for the conversion. [86] examine the impacts of higher crop prices

on Iowa land going out of Conservation Reserve Program.

In this paper the ethanol effect is captured through rising corn prices, leading to a switch

toward more corn intensive rotation like the CCCS rotation. Another high corn price baseline
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is set to study the effects of higher corn price due to increased demand for corn from the

ethanol industry. Corn prices are log-normal with a mean of $3.75 and volatility of 27%. For

soybean, the mean price is $7.00 and price volatility is 20%. These price levels and volatilities

are based on the settlement of the December 2007 corn futures and November 2007 soybean

futures contracts on December 21, 2006, [76]. The nitrogen price is assumed to be $0.31 per

lb., from ISU Extension Publications.

The effect of ethanol can be seen in Table 2.8. The table provides descriptive statistics for

the profit maximizing nitrogen levels, maximum profits and acreage allocation across the 99

counties in Iowa. In the low corn price scenario, CS rotation gives the highest profit followed

by CCS rotation. In the high corn price scenario the highest profit is obtained from CCS

rotation followed by CCCS rotation. This result is similar to [5], where at $6.00/bu price of

soybean and $0.30 per pound of nitrogen, the break even corn price needed to induce a move

away from CS rotation is $3.39 per bushel. This study shows a dramatic increase in corn acres

from 56.56% to almost 70% of cropland, resulting in large changes in the ecological model.

It is important to note that the percentage acres here are computed as a percentage of land

under corn and soybean production alone.

Profit maximization and acreage allocation

The impact of different policies on acreage allocation is evaluated by taking the baseline

values for the year 2001 for the two price scenarios. A subsidy given to the producers who

adopt the corn-soybean rotation can be simulated by increasing the per acre revenues by a

lump-sum amount. Similarly, the effect of a fertilizer tax can be simulated by increasing the

fertilizer price. And the effect of a quota on nitrogen use can be simulated by specifying a

smaller grid size of nitrogen input over which the profit functions are optimized. The effect of

these policies on the average of the maximum expected profit, the average profit maximizing

nitrogen levels, and the average expected corn and soybean acreage across all counties are

presented in the Tables 2.9, 2.10 and 2.11.

Table 2.9 presents the effect of the three levels of fertilizer taxes at 15%, 45% and 90%
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. A high fertilizer tax of 90% at the low price baseline scenario has a very small effect on

the percentage of corn acres under production. One explanation for this could be that the

Nitrogen fertilizer price in Iowa is cheap relative to its effect on output, leading to inelastic

own-price effect of nitrogen fertilizer. [90] obtained the similar result that the elasticity of corn

and soybean with respect to a fertilizer tax is very small. Under high prices, an input tax

policy first corrects the increase in corn acreage due to the ethanol affect. A high tax (more

than 90%) switches the acreage allocation under corn from as high as 70% to the low price

scenario baseline. Beyond this level under high price scenario, the input tax policy acts similar

to the low price scenario baseline and does not have a large effect on the acreage allocation.

The effect of a corn-soybean rotation subsidy, shown in Table 2.10 is the largest, especially

under the low corn price baseline scenario. A $90.00 per acre subsidy given to producers

who adopt the CS rotation under low price scenario decrease corn acreage by almost 7%. A

low subsidy of only $18 per acre, comparable to more than a 100% fertilizer tax, corrects

the distortion in the acreage allocation created by the ethanol effect. At this subsidy level

the expected profit from CS rotation in each county is higher than that from CCS rotation,

resulting in a decrease in corn acreage effectively because of the switch to the CS rotation. It

should be noted that the percentage of corn acreage presented in the tables are a percentage of

corn and soybean acres only. The percentage change in corn acreage as a percentage of total

agricultural land would be smaller than these reported percentages. [103] estimate the corn-

soybean rotation subsidy and find that at least $25.00 per acre is required before any change

in rotation occurs and at this payment level there is an increase of only 1% of CS rotation in

total acreage. Their conservative estimates could be attributed to the fact that their study is

based on the entire UMRB region which includes other crop production systems other than

corn and soybean. The way the rotation decisions are modeled here differs from their paper

since they do not account for a more corn intensive rotation like CCS or CCCS rotation.

Tables 2.11 presents the effects of a restriction on nitrogen use per acre on acreage allocation

and profits. The per acre change in the profit level gives an idea of the amount the farmers

needs to be paid in order to compensate him for the profit loss due to a quota on nitrogen
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application levels. This, in effect, provides an estimation of the ‘green payments’ that need to

be made to the farmers under restricted fertilizer use. For a nitrogen quota restriction from 200

lb per acre to 140 lb per acre and low corn prices, the average decrease in the profits is $3.93

per acre for the corn-soybean rotation, $9.42 per acre for the corn-corn-soybean rotation and

$15.28 for the corn-corn-corn-soybean rotation. The corresponding profit changes under high

corn prices are $7.16, $16.48 and $26 per acre respectively. The cost of any green payments

associated with the policy increases by more than 100% under high corn prices. Under a high

corn price scenario, a quota of 140 lbs per acre reduces the corn acreage by almost 11%. At

this level of nitrogen, the corn-soybean rotation is the dominant rotation since the yield from

corn-soybean rotation is the highest.

Figures 2.7 show the effect of the three policies on the acreage allocation under a high corn

price scenario. The change in acreage allocation shown by the difference between the Figures

5E and 5A captures the ethanol effect. Except for few counties in the south-western region

in Iowa, all the counties show that 10% of the county acres are converted from soybean to

corn production due to the increase in the corn prices. The effectiveness of the three different

policies in reversing the ethanol effect, i.e. moving from the high corn price baseline scenario in

Figure 5A to the low price baseline scenario in Figure 5E, can be compared from Figures 5B,

5C and 5D. The change in the corn acreage allocation has important implications for ecological

impacts, which will be studied in the next section.

Ecological effects

The acreage allocation obtained under different policies are then fed into the ecological

models to obtain the percentage change in the environmental variables corresponding to a

particular policy. The baseline values for ecological simulations are taken to be those of year

2001. The results for the changes in lake variables, river variables and pheasant population for

changes in fertilizer taxes are shown in Tables 2.12, 2.13 and 2.14. For a fertilizer tax of 45%,

the mean nitrogen levels in lakes decrease by -0.02% and the mean Secchi Depth increases

by 0.80% under low corn price scenario. Given that some lakes in Iowa have as much as 16
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mg/liter of N and fail to meet the maximum load criteria set by EPA, USDA initiative under

the Total Maximum Daily Load (TMDL) program, a fertilizer tax would do little to rectify

the situation. The input price tax performs better under high corn price baseline scenario. A

tax of 45% decrease nitrogen levels by 0.31%. The effect on lake clarity is more dramatic than

the effect on lake nutrients. The total suspended solids decrease by 3.5% and the Secchi Depth

increases by 15% for the same level of tax, increasing the recreational value of the lakes. The

effect of fertilizer taxes on river water nutrients is stronger. For river water quality, a 45% tax

decreases nitrogen by more than 6% and phosphorus by almost 12%. Under a sufficiently high

tax rate, almost 90%, the river water quality of that of the low price scenario is obtained. In

the case of pheasant population, at 45% tax rate, there is a decrease by 0.24% under the low

corn prices, and an increase by 2.49% under the high corn prices. The reverse effect of tax

policy can be explained by the quadratic nature of the supply curve of pheasants. Under low

corn prices, the tax policy improves water quality but lowers pheasant population. On the

other hand in the situation of a high corn price, the tax policy is very effective for both water

quality and pheasant population.

The effects of a nitrogen quota on the ecological variables are similar to those of a fertilizer

tax. These are shown in Tables 2.15, 2.16 and 2.17. The nutrient levels in lakes change vary

little under both high and low price scenarios. There is a marked improvement in lake clarity,

as shown by more than 50% increase in Secchi Depth.

In terms of water quality, the corn-soybean rotation subsidy performs well as seen in Ta-

bles 2.18 and 2.19. There is a decrease in nitrogen levels in lakes by 0.19% and increase in

Secchi Depth by more than 6% with a subsidy of $25 per acre, under low price scenario. Under

high corn prices, a subsidy of $25 per acre, achieves the low corn price baseline water quality

levels. River nitrogen decreases by more than 10% and phosphorus decreases by almost 15%.

The subsidy is more effective in reducing river water pollution under high corn prices. Even

though water quality improves with the subsidy, the pheasant population first increases and

then decreases with the subsidy. A subsidy of $25 per acre increases pheasant population by

0.65% and obtains the low corn price baseline population.
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Conclusions

This paper develops an integrated framework to quantitatively analyze the gains in environ-

mental outcomes of alternative environmental policies that seek to reduce non-point pollution.

It differs from earlier studies in attempting to address multiple environmental outputs. The

framework developed in this paper explicitly incorporates the economics of crop rotation deci-

sions leading to changes in acreage allocation between crops.

Several important insights are obtained from this study. First, each policy is different in

its implication on different environmental outcomes. For example, a policy like a CS rotation

subsidy to induce more land under nitrogen fixing soybean can have substantial effect on water

quality but detrimental effects on pheasant population. Second, the commodity market price

scenario should be taken into account while formulating an environmental policy. Different

environmental policies have different effects under different commodity price scenario. The CS

rotation subsidy is beneficial to pheasant population under high price scenario, but detrimental

under low prices. Finally, under high corn prices the environmental damages are increased and

the environmental policies become more expensive. However, there are threshold levels of

policies, under high price scenarios, up to which point the policies are highly effective. Beyond

these levels, once the acreage allocation under low corn prices are achieved, the policies have

marginal effects. Since acreage allocation is modeled on the profitability of rotations, the

policies can correct the acreage allocation resulting from a market of high corn prices. With

suitable levels of taxes, subsidies or quotas, the corn-soybean rotation can be achieved as the

dominant rotation with most profits, leading to low price baseline levels of environment quality.

However, these policy instruments are not very effective in improving environmental quality

beyond these low price baseline scenarios.

The results of this study provide information for future policy debates at the WTO forum.

From the WTO perspective, a fertilizer tax and nitrogen quota based on a fixed, historical

base period is acceptable since it is believed that they do not change the acreage allocation

[9]. As these results show, fertilizer taxes and quotas can have substantial effect on acreage

allocation under high commodity prices. On the other hand, corn-soybean rotation subsidy
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is more likely to be challenged at the forum or could come in conflict with domestic bio-fuel

promotion policies, some of which might have the converse effect on corn acreage allocations.

In such scenarios, the subsidy could be justified due to its dramatic effect on reducing water

pollution.

The analysis of the ecological models in this paper is limited by data availability. The

model could be extended to include other ecological effects of agricultural production, such

as carbon sequestration. A desirable extension of this study would involve formulating an

all-encompassing environmental index giving proper weights to different benefits.
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Table 2.1 Summary Statistics for Ecological variables

Variables N Mean Std.Dev Min Max

Secchi Depth (m) 926 1.18 0.88 0.05 8.1

Lake Nitrogen (mg/l) 926 2.54 2.85 0.17 16.75

Lake Phosphorus (µg/l) 926 121.13 96.44 14 760

Lake TSS (mg/l) 831 19.65 21.82 2 218

River Nitrogen 453 5.45 2.89 0.07 14.23

River Phosphorus 453 105.7 105.5 0 770

Pheasant 1971 37.47 29.70 0 220
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Table 2.4 River and Stream Water Quality Estimation.

Nitrogen Phosphorus

Estimate t value Estimate t value

Intercept 5.60169 6.14 0.128798 3.67

Corn Area 3.10E-05 3.51 3.64E-07 1.06

Soybean Area -3.00E-05 -2.82 -4.80E-07 -1.16

Flow 2.24E-04 1.99 3.91E-06 0.9

Slope -0.38015 -0.81 -0.01899 -1.05

EI for water 0.37083 0.9 0.034312 2.18

EI for wind -0.05768 -0.29 0.002964 0.38

Weighted R-square 0.0562

Table 2.5 River and Stream Water Quality Estimation without Soybean

Acres.

Nitrogen Phosphorus

Estimate t value Estimate t value

Intercept 5.336681 5.83 0.12459 3.57

Corn Area 9.02E-06 2.18 7.91E-09 0.05

Flow 0.000209 1.85 3.68E-06 0.85

Slope -0.40805 -0.86 -0.01943 -1.07

EI for water -0.13608 -0.37 0.026262 1.85

EI for wind -0.01916 -0.09 0.003576 0.46

Weighted R-square 0.0402

Table 2.6 Estimation of pheasant supply.

Pheasant counts

Estimate t value

Intercept 15.26 3.10

Corn Area 289.18 9.65

Soybean Area -85.12 -12.13

Square of corn area -373.08 -8.03

Population Density -25.01 -6.16

Northwest Dummy 10.11 6.65

Precipitation -0.18 -2.57

R square 0.0706
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Table 2.10 Effect of corn-soybean subsidy on corn acres for two price sce-

narios.

Subsidy Low corn price High corn price

per acre % corn acres† % corn acres†
0 57.56 69.85

10 56.63 64.58

25 55.30 57.42

50 53.44 55.90

75 51.98 54.50

90 51.07 53.72

†Corn acres as a percentage of total corn and soybean acres

Table 2.11 The effect of N quota on mean profits and mean percentage of

corn acres.

Continuous CS CCS CCCS Percentage

N Quota Corn π π π π corn acres†

Low corn price

200 278.40 333.27‡ 325.17‡ 317.31†† 57.56

170 272.77 332.72 323.38 313.24 57.44

140 261.18 329.34 315.75 302.03 57.02

High corn prices

200 459.93 470.96‡ 481.68‡ 480.34†† 69.80

170 449.79 469.80 478.27 473.33 67.90

140 429.954 463.80 465.20 454.34 58.41

‡: quota is non-binding.
††: quota is non- binding for the first year corn only

†Corn acres as a percentage of total corn and soybean acres

Table 2.12 Effects of fertilizer tax on lake variables

Lake N Lake P TSS Secchi Depth

N tax Average % change in Average % change Average % change Average % change

State of low corn prices

0 3.0566 114.04 20.75 1.0981

15 3.0564 -0.00654 114.06 0.017538 20.732 -0.08675 1.1009 0.254986

45 3.0559 -0.0229 114.09 0.043844 20.687 -0.30361 1.1069 0.801384

90 3.0551 -0.04907 114.14 0.087689 20.618 -0.63614 1.1161 1.639195

State of high corn prices

0 3.0898 111.95 23.617 0.71666

15 3.0869 -0.09386 112.13 0.160786 23.369 -1.05009 0.7496 4.596322

45 3.0802 -0.3107 112.56 0.544886 22.784 -3.52712 0.82751 15.46759

90 3.0649 -0.80588 113.52 1.402412 21.465 -9.11208 1.0033 39.99665
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Table 2.13 Effects of fertilizer tax on river and stream variables.

Nitrogen Phosphorus

N tax Average % change in Average % change in

State of low corn prices

0 5.93 114.31

15 5.706 -3.84 101.15 -11.51

45 5.54 -6.64 100.8 -11.82

90 5.51 -7.15 100.28 -12.27

State of high corn prices

0 7.14 122.95

15 7.14 0.00 122.89 -0.05

45 6.81 -4.62 118.32 -3.77

90 5.8 -18.77 104.52 -14.99

Table 2.14 Effects of fertilizer tax on pheasant population.

N tax Average % change in pheasant

Pheasant population

State of low corn prices

0 35.67

15 35.64 -0.08

45 35.58 -0.24

90 35.49 -0.50

State of high corn prices

0 35.38

15 35.17 -0.59

45 36.26 2.49

90 35.86 1.36

Table 2.15 Effects of N quota on lake variables.

Lake N Lake P TSS Secchi Depth

N tax Average % change Average % change Average % change

State of low corn prices

200 3.06 0 114.04 0 20.75 0.02 1.10 -0.009

170 3.06 -0.01 114.06 0.017 20.72 -0.12 1.10 0.34

140 3.05 -0.046 114.13 0.08 20.63 -0.57 1.11 1.47

State of high corn prices

200 3.08 -0.27 111.90 0.04 23.62 0.001 0.72 0.001

170 3.08 -0.20 112.34 0.35 23.08 -2.28 0.79 10.01

140 3.06 -1.00 113.9 1.74 20.95 -11.30 1.07 49.58
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Table 2.16 Effects of N quota on river variables.

River N River P

N tax Average % change Average % change

State of low corn prices

200 5.93 0.01 114.32 0.09

170 5.92 -0.29 114.08 -0.20

140 5.86 -1.27 113.27 -0.91

State of high corn prices

200 7.12 0.03 123 0.04

170 7.47 4.64 135.57 10.26

140 6.05 -15.27 115.92 -5.72

Table 2.17 Effects of N quota on pheasant population.

Pheasant population

N tax Average % change

State of low corn prices

200 35.67 0.01

170 35.63 -0.10

140 35.52 -0.41

State of high corn prices

200 35.40 0.4

170 34.94 -1.24

140 35.88 1.42

Table 2.18 Effects of CS rotation subsidy on lake variables

Subsidy Nitrogen Phosphorus TSS Secchi Depth

(per acre) Average % change Average % change Average % change Average % change

State of low corn prices

0 3.0566 114.04 20.75 1.0981

10 3.054 -0.08506 114.21 0.149071 20.526 -1.07952 1.1283 2.750205

25 3.0507 -0.19302 114.42 0.333216 20.242 -2.44819 1.1662 6.201621

50 3.0458 -0.35333 114.72 0.596282 19.822 -4.47229 1.2221 11.29223

75 3.042 -0.47765 114.96 0.806734 19.492 -6.06265 1.2661 15.29915

90 3.0396 -0.55617 115.12 0.947036 19.285 -7.06024 1.2936 17.80348

State of high corn prices

0 3.0898 111.95 23.617 0.71666

10 3.077 -0.41427 112.76 0.723537 22.512 -4.67883 0.86381 20.53275

25 3.0563 -1.08421 114.06 1.88477 20.727 -12.2369 1.1016 53.71306

50 3.0523 -1.21367 114.31 2.108084 20.382 -13.6978 1.1475 60.11777

90 3.0466 -1.39815 114.67 2.429656 19.89 -15.781 1.2131 69.27134
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Table 2.19 Effects of CS rotation subsidy on river and stream variables

Subsidy River N River P

(per acre) Average % change Average % change

State of low corn prices

0 5.93 114.31

10 5.46 -7.99 99.72 -12.76

25 5.3 -10.68 97.41 -14.78

50 5.07 -14.56 94.2 -17.59

75 4.88 -17.76 91.64 -19.83

90 4.76 -19.78 89.99 -21.28

State of high corn prices

0 7.14 122.95

10 6.66 -6.73 116.22 -5.47

25 5.56 -22.13 101.1 -17.77

50 5.38 -24.65 98.46 -19.92

90 5.1 -28.57 94.7 -22.98

Table 2.20 Effects of CS rotation subsidy on pheasant population

Pheasant Population

Subsidy (per acre) Average % change

State of low corn prices

0 35.67

10 35.68 0.04

25 34.94 -2.04

50 34.21 -4.09

90 33.11 -7.17

State of high corn prices

0 35.38

10 35.80 1.19

25 35.61 0.65

50 35.14 -0.68

90 34.32 -3.00
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Figure 2.7 Simulations under different policy scenarios
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3. Further Investigation of the Effects of Meat Recalls and Correlations on

Consumer Demand and Volatility.

Abstract

Product recalls provide information on new sources of contamination or defects that could

trigger a series of recalls. Closely related US beef, pork and poultry data are examined for

the presence of recall clusters. Specifically, the correlations between the recall events for these

products are determined. There is reason to suspect the presence of pairwise correlation

which can be attributed to a number of factors, including the use of similar technologies as

meat packers operate across species. Also, the recall correlations vary over time. It is well

established that the recalls convey important food safety information and are found to affect

consumer demand. An important contribution of this paper is to examine whether consumers

take into account the possibility that another recall is likely to occur soon. A static model

is used to determine the change in the shares of expenditure for different recall correlation

patterns. An absolute price version of the Rotterdam demand model is estimated. Recalls

are assumed to follow a Poisson arrival process and copula techniques are used to generate

correlated variables to simulate the effects of correlation on the shares of expenditure of the

three food groups. It is found that although the mean values of the shares of expenditure remain

unchanged in the simulation, the variance of the shares change with a change in the specified

correlation structure. This suggests growing uncertainty with higher levels of correlation, and

has implications for the demand elasticity estimates of recall. This study is further extended

to test whether recalls increase the volatility of retail prices.
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Introduction

Product recalls serve as essential policy tools to align social and private incentives with

respect to product safety. The recent spurt in recalled products raises an important issue in

underpinning the economic forces that lead to consecutive recall events. After the extensive

Toyota recalls that hit the headlines since October 2009, auto makers worldwide have been

quick to initiate recall process rather than wait for long, drawn out government inquiries.

According to industry analysts, auto makers are now more aware of the harmful publicity

that results from not addressing a safety problem quickly. More recently Iowa’s Hillandale

Farms recalled more than 170 million eggs after laboratory tests confirming salmonella. This

occurred one week after another Iowa farm, Wright County Eggs, recalled 380 million eggs.

Both the recalls are said to be related since both the plants could have a rodent problem, or

both plants could have gotten hens that were already infected or feed that was contaminated.

These examples motivate the need to establish correlation patterns between the recalls and the

ramifications of these correlations on the economic agents. Understanding this recall correlation

is essential in forecasting future recalls as it relates these events with some identifiable pattern.

Public-private crisis management procedures could act on these relationships to improve recall

effectiveness.

Usually when an outbreak is detected, there is heightened inspection, testing and investiga-

tion which brings to the fore safety measures that are violated or overlooked. Recall incidence

are generally more prevalent during these times. The correlations could also arise because sim-

ilar technologies are used during production, slaughter, processing, and distribution of hogs,

poultry and beef. In the production phase, for example, hogs and poultry being non-ruminants

and produced in confinement could be more closely related than cattle which are typically raised

on range or pasture lands and then placed in a feedlot. According to [41], an important aspect

of food quality failure is the interconnected stages and inputs in the food production systems.

A [94] report found that larger feedlots had higher incidence of diseases, despite evidence that

larger feedlots took more precautions. Larger feedlots supplied to larger packing companies.

Technical progress and scale effects have led to oligopsony power in the meat packing industry
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([31]). Further these few large companies, Tyson Foods Inc., Smithfield, Cargill and JBS now

operate across species, with a myriad of value added/processed and packaged beef, pork and

poultry products. Similar technology and company policy would affect safety issues for a large

number of these products.

This paper borrows the idea of default correlation from financial literature, to analyze these

events. Default correlation measures whether credit risky assets are more likely to default

together or separately. The main hypothesis of this paper is that the recall events for related

food groups might be correlated. A recall group event correlation is the likelihood that if

there is a recall in a particular food group, there will be a recall in another food group soon

after. That is, if a certain pork product is found to be contaminated then it is likely that a

contaminated beef product could be detected in the near future. This paper then proceeds to

show how the relationships between food recall events might affect the parameter estimates

of two different models. Firstly, failure to account for the dynamic changes in the food recall

correlation might produce inefficient parameter estimates of the consumer demand response to

meat recall information. Secondly, the volatility of food prices might be affected in the presence

of food recalls. Price volatility indicates the range within which prices might vary in future

and this complicates the production, investment and consumption decisions of businesses and

consumers.

Consumer demand response to meat recall information has been studied extensively. Some

of the factors that act as meat demand shifters, for example, food safety and product recalls

and related news have been included in demand estimations by [78], [67], [13]. In general it has

been observed that when USDA Food Safety Inspection Service (FSIS) beef product recalls

increase, beef demand declines. Moreover, beef product recalls have a significant positive spill-

over effect on poultry demand, suggesting that consumers shift away from beef and toward

poultry products in response to beef food safety recalls. Previous recall events are included to

study the long run and short run effects of recall. However, there are no studies on the effects of

the second order properties of recalls, that is correlation and autocorrelation. The recall events

between several food groups like beef, pork and poultry may be correlated and this correlation
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might vary over time. In the presence of this correlation, the parameter and elasticity estimates

from the consumer demand model may not be efficiently estimated. Consumers may face

increased uncertainty over their consumption decisions if they anticipate more recalls in the

future. Time varying correlations are extensively studied in stocks and bond markets ([11]),

international stock prices ([64]) and play a significant role in pricing other financial instruments

and portfolio management. In all these studies, the assumption of a constant correlation are

shown to lead to biased or inefficient parameter estimates.

There are several studies on the effect of recall on stock prices ([98]), futures prices ([65])

and the stock market reaction to food recalls based on industry or firm structure ([82]). [98]

study the effect of food recalls on the conditional variance of the stock returns and use the

GARCH approach. They reject the assumption of a constant variance of the stock prices of

two companies. Salin and Hooker (2001) investigated the stock market reaction to food recalls

using an event study approach. They found statistically significant evidence of a negative effect

on returns. [65] quantify the effects of beef and pork recall announcements on daily live cattle

and lean hog futures market prices. Their results indicate that, in general, pork and beef recall

events have not systematically impacted daily lean hog and live cattle futures market. A news

impact curve is often used to measure how new price information is incorporated into volatility

([27]). Inclusion of the recall events in the volatility might help in explaining a part of the

volatility and provide a more accurate measure of the conditional variance.

The remainder of the article proceeds as follows. First, we discuss the available data on

recall and provide evidence for the presence of constant or dynamic correlations. Following

that, we present two illustrations to study the effect of ignoring a time-varying structure.

One develops the system of equation to study the demand for meat and provides simulated

results on the parameter estimates in the presence of recall correlation. The other presents

an asymmetric GARCH model, where negative shocks have a greater effect, to show how food

recalls might affect the volatility of food prices. In the conclusion we revisit the question of

including correlation structure and discuss substantive insights from doing so.
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Food recalls

Recalls of meat products in the USA are regulated by the Federal Meat Inspection Act

of 1906 and the Poultry Products Inspection Act of 1957. USDA-FSIS has responsibility for

ensuring that meat and poultry are safe, and accurately labeled. But for the most part, recalls

are voluntary action by firms to remove the contaminated product from market. Following,

[67], the recall event measures are constructed by aggregating the total number of recalls per

quarter for beef, pork and poultry. The recall dataset is obtained from the FSIS and comprises

of data from 1994 to 2008. Figure 3.1 shows the number of recall events for beef, pork and

poultry products cumulated per quarter. During the period 2000 to 2003, average quarterly

recalls were high for all three food groups. Summary statistics of the number of FSIS recall

events per quarter are provided in Table 3.1. The average recall per quarter for beef is 5.23,

for pork it is 1.72 and for poultry it is 3.1. Beef recalls are most frequent, followed by poultry

and then pork.

Correlation Analysis

A recall action is initiated based on the results of any one of the following actions: regular

sampling tests by FSIS, microbial testing or product inspection by the firms, consumer com-

plaint reports or other actions like results from epidemiological tests by CDC, reports from

state health departments, FDA etc. Each of these agents has an interest in the timely discovery

of the problem or contamination and effective handling of the recall process. The recall events

of different industries could be correlated, if any of these agents internalize the information on

a recent recall to detect problems. For example, recalls by other firms could lead companies

to investigate their own production and supply chain processes to avoid similar hazards. That

is, if the recall events are temporally correlated then it could be an outcome of search and

information acquisition. As soon as a recall event occurs it provides immediate information on

the possible occurrence of the next recall event. That is, the first few days following a recall

event might increase the likelihood of recalls in the same food supply chain. As the number

of days increase after a recall the possibility of another recall decreases as more information is
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obtained from the last recall in terms of learning about the pathogen, maintaining safe food

handling techniques etc. The rest of this section analyzes the temporal correlation between

the three time series i.e., quarterly recalls of beef, pork and poultry.

Time series diagnostics involved checking for stationarity and autocorrelation using data

for the sample period 1994-2008. The null hypothesis of non-stationarity based on the Phillips

Perron test is rejected for beef at 5% level and pork and poultry at 1% level. The Ljung-Box

Q test results provide significant evidence that there is autocorrelation in the time series. Ta-

ble 3.2 shows pairwise unconditional correlation between the number of recalls per quarter. The

t-test is performed to test the significance of the correlation. Linear unconditional correlation

between pork and poultry recalls is the highest at 0.356 and significant. This association could

be due to similarities in pork and poultry industry. For example, both pork and poultry are

produced in confinement in climate-controlled buildings. Also, both the industries are more

vertically integrated and offer more consumer driven value added processed products than

beef. The correlation between beef and pork is close at 33% although the correlation is not

significant. The correlation between beef and poultry is 25% and significant. One drawback

of this time invariant correlation, is that, this will include old information that may be of far

less use than recent information. Also, this is a global correlation measure. Local correlations

or relationships between a few events in a particular time frame, might not be the same across

the entire time frame. This calls for a more time dependent study of the correlation structure.

Correlations between recalls can be examined under two different time scales: (1) Frequency

of recalls in each time period (i.e. each quarter) (2) Intra recall event time period (number of

days between two recalls). Rolling correlations (Figures 3.2) are used to visualize whether or

not the correlations between the frequency of recalls tend to be stable over time. Although

using only a few recent observations to calculate these correlations creates more variability,

this method is nevertheless useful in obtaining a general idea of the trend in these correlations.

The figures show rolling correlations over sliding window widths of 8 quarters. Rolling means

and correlation coefficients of 8 quarter window width are computed by starting with the first

8 quarters and then rolling the sample period forward by one quarter at a time. The linear



79

trend line fitted to each graph shows the long run trend in correlation. An analysis of the long

term trend emerging from the history of considered temporal correlation shows that there is a

negative trend between the correlation of beef and pork recalls, and a positive trend between

beef and poultry recalls. Part of the fluctuation in the correlation could be explained by the

instability of the mean recalls over the same time periods. During the period 2000 to 2002

when the average number of recalls were large for all three groups the correlations were also

large and positive. With the exception of these years, the correlation between poultry and

beef recalls is mostly negative while the correlation between poultry and pork recalls is mostly

positive. A negative correlation between poultry and beef suggests that when poultry recalls

occurred, beef recalls did not. Both the constant and the dynamic correlations between pork

and poultry recalls are positive.

Following [64], the stability of the correlation matrix for different time periods is studied.

The null hypothesis is that the correlation matrix is constant over two adjacent sub-periods.

A brief description of the Jenrich (1970) statistic that tests the equality of two matrices is

given separately as Appendix A. Table 3.3 shows the results of the Jennrich test of equality

between two correlation matrices calculated over different time periods. The test statistic has

an asymptotic chi-square distribution with 28 and 120 degrees of freedom for window sizes 8

and 16 respectively. The null hypothesis of a constant correlation between pork and poultry

is rejected 45% of the times for a window size of 4 with a lag of 4 and the average correlation

between the two is approximately 0.053. These are correlation between 1994Q1 to 1995Q4

and 1996Q1 to 1997Q4 and so on. The chances of rejecting the null hypothesis of constant

correlation decreases with the increase in window size. The greatest number of significant

values of the Jennrich test statistic is obtained when the window size equals the lag length.

The chances of obtaining a nonconstant correlation over a period of 8 quarters is highest

for beef and pork (43.2%), followed by beef and poultry (31.2%) and then pork and poultry

(22.7%). Changing structure of the meat and poultry industry could be one reason for the

instability of these correlation matrices.

Another way to look at recall correlations is similar to that of bond default correlations.
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This is done by calculating the correlation between the number of days survived without recalls.

In case of meat recalls, the smallest time difference between successive recalls is one day. There

are days on which more than one recall occurs. The correlation between the time lags between

two recall events, is calculated using the pairwise binomial correlation used by [44]. Let Iit0+T

be the indicator function for when a recall for product i occurs T time units after t0. i takes

the value B for beef, P for pork and C for poultry. Then a binary measure of the covariance

between beef and pork recalls is given by E[IBt0+T I
P
t0+T ] − E[IBt0+T ]E[IPt0+T ] . We choose t0

randomly and empirically calculate the hull pair wise binomial correlation statistic given by:

ρ =
E[IBt0+T = 1, IPt0+T = 1]− E[IBt0+T = 1]E[IPt0+T = 1]√

var[IBt0+T = 1]var[IPt0+T = 1]
(3.1)

Figure 3.3 shows the correlation between the survival days of the two meat groups varying

over the number of days. The figure indicates that correlation path is bi-modal for all three

groups. There is zero correlation between beef and pork recall that survived 50 days. For

smaller number of days there is positive correlation, reaching almost 8% within the first 25

days. For more than 50 days, the beef and pork recall survival days are likely to be negative

reaching a low of -17%. A negative correlation between two species implies that if there is a

recall in one species then there possibly would not be any recalls in the other species. Almost

the same pattern is observed for pork and poultry with a more enhanced positive correlation,

almost 11% within the first 30 days. For poultry and beef survival days the correlations are

largely negative with zero correlations observed within the first 10 days and again after almost

60 days.

Some conclusions could be drawn from the correlation analysis of the recall events of beef,

pork and poultry. There is enough evidence to show that the null hypotheses of no correlation

cannot be completely rejected. Statistical tests for the presence of non-zero correlations in the

raw data shows that there is positive and significant correlation between the recalls of pork

and poultry products, followed by beef and pork and then beef and poultry. Pork and poultry

are more similar in various stages of production, confined, non-ruminant, etc. Also, poultry

industry is highly vertically integrated followed closely by the hog industry. It can also be
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concluded that the conditional correlations between the recalls are likely to be nonconstant

over time. Recalls are sources of new information that could potentially change the time

structure of future recalls. In the following sections, the effect of ignoring this correlation in

consumer demand estimation and price volatility is estimated.

Application in Consumer Demand System

The role of meat product recall as a source of information on perceived quality of meat, and,

consequently, the effect on its demand, has been studied extensively. [67] and [56] have included

the recall of other meat and poultry products in the estimation of the demand shares. [28]

presents a model with correlated learning across products that are marketed under a common

brand name. The consumers perceive that the quality of common brand products is correlated

and these correlations affect choices. However, to date a formal analysis of the correlation

structure between the time of recall of meat and poultry items has not been addressed. In this

section, we look at whether the correlation between the timing of food recalls affect consumers

perception on any hidden information about food safety issues. First, a Rotterdam model for

meat and poultry products is estimated. Second simulations are used to identify the variation

in the estimated demand as a result of variation in the correlation structure.

Model Specification

Different authors have studied effects of meat recalls on several different variables. [82],

[98], and [92] examined the effect of meat and poultry recalls on firm’s stock price, market

returns, and societal reactions. They present evidence that the market reacts to food recalls.

[67] estimated a Rotterdam model incorporating Food Safety Inspection Service (FSIS) recall

information and found a small, but statistically significant decline in meat demand and an

increase in demand for non meat goods following meat recalls. The procedure followed by [67]

is replicated here with newer data and a different set of exogenous demand shifting variables.

All the recalls reported in FSIS data set is included irrespective of their size. The Rotterdam

model belongs to the class of differential demand systems and is obtained from a first order
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approximation to the Marshallian demand functions. The Rotterdam model is of particular

interest here because it easily accommodates multiple covariates that may be highly correlated

in levels, but not in first differences. The demand equations are generated by defining the

total differential equation for each food product, without the need to specify the utility or cost

functions. Following [67], the share equation of the Rotterdam model estimated here is given

by:

widlnxi = ai0 +

n∑
j=1

aijDij + bi(dlnq̄) +

n∑
j=1

cij(dlnpj) +

K∑
k=1

L∑
l=1

δikl(dlnRkl) + vi (3.2)

where wi is budget share of the i
th good (i=1,,4), d is the standard across-period first-difference

operator, xi is per capita consumption of good i, Dj is a quarterly dummy variable included

to capture seasonality, pj is the price of the jth good, dlnq̄ is a Divisia volume index, Rkl

represents the kth exogenous shifter with lag length of l = 0, 1, 2, ...L, ai0, aij , bi and cij are

the intercept and the parameters to be estimated and vi is a random error term. The intercept

or the linear time trend is included for any structural changes that are not captured by the

exogenous shifters. Demand restrictions, obtained from economic theory, imposes parameter

constraints. The adding up conditions are given by the following set of equations:

N∑
i=1

cij = 0
∑N

i=1 bi = 1 (3.3)

N∑
i=1

δikl = 0
∑N

i=1 aij = 0 (3.4)

(3.5)

The homogeneity and symmetry restrictions are the following:

N∑
j=1

cij = 0 cij = cji (3.6)

Similar to [67], the empirical demand system is specified as a four good demand system

that includes beef, pork, poultry, and other consumption goods. This provides flexibility for

the meat recall elasticities across beef, pork, and poultry to be negative or positive. One

share equation (all other goods) from the demand system is deleted before estimation to avoid
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singularity in the estimated variance covariance matrix of the error terms. The parameters of

this omitted equation are recovered using the adding-up restrictions from economic theory of

demand.

Data Description for Demand System Analysis

The quantity of beef, pork and poultry represents quarterly per capita disappearance ex-

pressed in retail weights (in pounds). The poultry variable includes both chicken and turkey.

The prices are the estimates of quarterly average retail prices (cents per pound). The poul-

try price is obtained by dividing the poultry expenditure by poultry consumption. But the

expenditure variable is available only until 2005 2nd quarter. For the rest of the years, the

composite retail price of chicken (a weighted average of whole chicken prices and prices for

parts) is used. These price and quantity data are obtained from USDA-ERS. The complete

demand system specification includes an aggregate commodities, all other goods. Expenditure

on all other goods was calculated using personal consumption expenditure (PCE) per capita

less the expenditure on meat and poultry. The PCE data were obtained from the Bureau of

Economic Analysis (BEA). The price index for personal consumption expenditure is used as

the price of all other goods. The summary statistics of the quarterly data (1994-2008) used to

estimate the meat and poultry demand is provided in Table 3.1.

In the Marsh et. al. article, the authors introduced a second measure of product recalls

based on popular press covering of meat recalls. They did not find any statistically significant

effect of media coverage. In contrast this paper tests whether media distraction, that is all the

popular news items other than the news on foodborne disease outbreaks, crowd out the infor-

mation that people get from food product recalls. Theoretically, the idea of media distraction

is based on a growing literature in behavioral economics on mental accounting and cognitive

limitations ([91]). One way of thinking of this is that we have a limited resource to devote to

multiple tasks and our time allocation to media is limited. If the airwaves are dominated by

big news event, then either a recall may not get much airing, even if the recall stories are there,

or consumers might be too distracted to take into account the information in the recall news
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items. The quarterly index for media distraction was created using the aggregate news articles

published in the World Almanac ([52]). World Almanacs are available from 1993 to 2009 and

each almanac has a section on the Chronology of the previous year’s event, reported month by

month in 3 categories, national, international and general categories. Only the national and

the general news articles were aggregated leaving out all the published news on meat/poultry

related outbreak leading to recalls . For example, the following news items were not included

in the aggregate quarterly index of media distraction: 1.ConAgra recalled chicken and turkey

pot pies due to 152 cases of salmonella poisoning in 31 states (October, 2007). 2. Ecoli in

ground beef from the Topps Meat Company in New Jersey leading to the second largest beef

recall in US history. (September, 2007) 3. 5.7 million pounds of potentially contaminated

meat were recalled by United Food group (April, May 2007). 4. Ecoli affecting 57 people in 7

states whereby ConAgra recalled 2.8 million pounds of ground beef (August,September 2002).

5. 25 million pounds of beef recalled, by Hudson Foods Company (August 1997). Summary

statistics of the media distraction index is also shown in Table 3.1. On average there are almost

33 big news items per quarter, ranging from 19 in the third quarter of 2001 to 46 in the second

quarter of 2003.

The adding-up constraint implies that only three equations in the system are independent.

The procedure followed in this study is to drop the other goods equation, estimate the remain-

ing system, and then calculate the parameters from the omitted equation using the classical

restrictions. To obtain estimates of the standard errors of the “deleted” equation, the model

was estimated twice: once with the poultry equation deleted, and again with the other good

equation deleted.

Results of the consumer demand model

The demand model is estimated using SUR with restrictions on the parameters. The de-

mand equation for other goods is dropped during the estimation to avoid singularity of the

error covariance matrix. Some quarters had zero recalls and to perform logarithmic transfor-

mations, 1 was added to each FSIS recall. Symmetry, adding up and homogeneity conditions
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are imposed. The empirical analysis was conducted following [67], where lag length from 0 to

2 are considered for the FSIS recall variables.

The estimated price, expenditure, seasonality and trend coefficients of two Rotterdam

models, one with media distraction and the other without media distraction are reported in

Table 3.4. The goodness of fit is measured by the adjusted R square which is 83%, 88%, 78%

and 99% for beef, pork, poultry and other goods respectively. The matrix of price coefficients

for the estimated Rotterdam models is negative semi-definite. Own price coefficients for beef is

statistically significant at the 0.05 level. Expenditure coefficients for poultry and other goods

are statistically significant at the 0.05 level. All the coefficients of the seasonality and trend

variables are statistically significant.

The parameter estimates of the lagged and current recall variables and the media distraction

index are reported in the Table 3.5. Current period recall events are negative for beef and pork

equations and positive for poultry equation. Statistically significant effects of current period

recalls are observed for beef and poultry equations. Lagged values of recalls are not significant

for any of the other equations. For the poultry equation, a positive own current period effect is

counter-intuitive. A likelihood ratio test was used to compare the two model specifications, one

with media distraction index and the other without it. It is found that the media distraction

index is not significant. The coefficients of media distraction index is negative for the meat

and poultry products and positive for all other goods. The lack of statistical significance for

the media distraction index suggests that other news articles do not necessarily crowd out the

information obtained from recalls, weakening their impact as a source of information on food

safety.

Table 3.6 shows the compensated price and expenditure and current period recall elas-

ticities that are computed at the mean value of the shares from coefficient estimates of the

earlier tables. Own-price elasticity coefficients are all negative, indicating the expected inverse

relationship between price and quantity demanded. Beef is the most price sensitive at -0.53,

followed by pork and poultry at -0.18 and -0.15. [67] also find beef to be the most price elastic

at -0.78%. Expenditure elasticities are positive as expected for normal goods, with poultry be-
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ing more sensitive to expenditure than beef or pork. Expenditure elasticity estimates are 0.25

for beef, 0.13 for pork, 0.95 for poultry and 1.003 for other goods. This result is different from

that of [67], who find beef to be the most sensitive to expenditure unlike poultry products. The

elasticity of beef demand is negative with respect to recalls of all the species. The elasticity

results for poultry demand with respect to recalls are all positive. This counter-intuitive result

for poultry suggests the need to look at the long run elasticity of poultry demand with respect

to the recalls. One reason these results differ from those of [67] could be that the study period

is different. They study recalls from 1982 to 1994, while this paper looks at recalls during the

period 1994 to 2008. This analysis included all the recalls irrespective of the size of recalls,

similar to the analysis by [67]. More reasonable estimates could be obtained by controlling

for the size of the recalls included in the analysis, as consumers are usually aware of massive

product recalls as opposed to the smaller recalls that get unnoticed. However these large events

are also sparse and would require a different approach to analysis which is a future course this

research could take.

Simulation of demand system with correlated recalls

In the following sections, a Monte Carlo experiment is designed to show how the simulated

shares of expenditures change when there is a change in the correlation structure between

the recalls of the three products, with all the other variables remaining constant at the mean

values. The recall events are first modeled as univariate independent Poisson distributions.

A Gaussian copula is then used to defined the dependence structure between the Poisson

marginal distributions assumed for the recalls. The correlated random draws from Poisson

distribution are the correlated recall variables which are plugged into the estimated demand

system to obtain the variation in the shares of expenditure. Mean shares do not change as

there is no change in the mean values of recalls. However, both the standard deviation and

the correlations between the shares changes. Hence, the elasticity of demand with respect

to recalls remain unaffected but their standard deviation and hence their confidence interval

might change.
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Recall events as a Poisson count models

Recall events are a sequence of events that are randomly spaced in time. A simplifying

assumption is made for the purposes of simulating recalls, that is recalls for a particular species

are assumed to be independent. The recalls of a particular product can be assumed to follow

a Poisson process. The arrival rate (λ) of this Poisson process is given by the average number

of recalls per unit time. Then the number of recalls (k) in an interval of length t has a Poisson

distribution with parameter λt, i.e. p(k, t) = e−λt(λt)k

k! .

Next, a discuss of arrival times is provided to better understand the properties of the

underlying process. Let Tj be the time of jth recall. The probability of no recalls in the

interval (t, t+ s) is given by e−λs. Then the event that at least one recall does occur between

Tj and Tj+s is given by (1− e−λs). The inter arrival times T1, T2 − T1, T3 − T2... of a Poisson

process are i.i.d. with distribution function given by 1−e−λs. This is exponentially distributed

with density λe−λt. Therefore, the inter arrival times of a Poisson process are i.i.d. with

an exponential distribution and the converse is also true. Since the exponential density is

monotone decreasing, there is a high probability of a short interval and a small probability of

a long interval between arrivals ([7]). The recall arrival intensity per quarter, k, is calculated

by counting the number of recalls in each quarter from 1994 to 2008. The average recall per

quarter for beef is 5.23, for pork it is 1.72 and for poultry it is 3.1.

Dependent Poisson random variables

There are a variety of methods for generating Poisson multivariate random variables. The

Trivariate Reduction method proposed by [66], a computationally fast modification of this

method presented by [87], a convolution based method by [58] are some of the commonly

used methods. The drawbacks of these methods are that they either do not support negative

correlation values or involve very complex methodology.

In this paper, a copula based technique is used to generate the correlated Poisson random

draws. The copula model for multivariate distributions take into account the effects of the

marginal distributions as well as the dependence between them. The copula technique has
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been introduced in an earlier chapter of this thesis. Copula based models can, in general, be

estimated without resorting to numerical integration or simulation. [62] proposed a Gaussian

copula function which was used by [95] to analyze dependence in a bivariate count model. A

full discussion of the technique is available in [93] parts of which are provided in Appendix

B. The correlation matrix used to generate these random numbers take the values of the

quarterly correlation coefficient. The simulation strategy assumes a fixed time. Figures 3.4

shows the randomly generated bivariate poisson marginals for the three food groups. The

first diagram shows 100 randomly generated numbers of pork and beef recalls per quarter that

have a correlation coefficient of -0.09. The linear fit between these randomly generated recall

variables show a slight negative relationship.

Results of the simulation of the demand model

As expected, recall correlations directly affect the correlations between shares of expendi-

ture on beef, pork and poultry, as shown in Table 3.7. The table shows pairwise correlation

between simulated shares of expenditure for given pairwise correlation between recalls. The

expenditure share correlations approach the recall correlations as the simulation sample size is

increased, except for the case of perfectly positive correlation between recalls. Table 3.8 shows

the mean and the standard deviation of the shares of expenditure. There is very little change in

the mean values of shares with respect to changes in recall correlation. However, the standard

deviation of the shares increase with the increase in the recall correlation. The percentage in-

crease in the standard deviation is the largest for poultry expenditure share (60%), followed by

expenditure share of beef (47%) and then pork (close to zero) if the recall correlation increases

from 0% to nearly 100%.

Application in retail price volatility

Commodity price volatility or uncertainty has been widely modeled as the conditional

variance in the GARCH framework, originally developed by Engle and later generalized by [10].

Many papers have employed this methodology to explore various issues related to commodity
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price volatility ([43]). In GARCH models risk is defined as a function of the variance of the

price forecast errors conditional on available information. This paper extends the GARCH

framework to test the hypothesis that the recalls of the meat and poultry products provide

sufficient information to better predict the volatility of the retail prices of these products. A

multivariate GARCH would capture the temporal dependence in the second order moments of

the prices. It would give a more complete picture of how the price volatilities move together

more or less closely over time. However, this paper investigates, more simply, how the second

order moments of the recalls of different products affect the volatility of prices and not the

changing nature of the relationship between the prices. A univariate GARCH model is a

first step towards this analysis. Following [107], an exponential GARCH model is estimated

to account for the asymmetry of negative shocks (recalls) that can have a bigger impact on

volatility of commodity prices than positive shocks.

Let pit be the price of the meat product i. The first difference of the natural log of

price is given by yit = log(pit/pi,t−1). The conditional mean of the returns from retail prices

are specified as an ARMA(1,1) process to capture any autocorrelation effect present in the

market. Price volatility is modeled using exponential GARCH (EGARCH) specification where

the logarithmic value of conditional variance is specified as a linear function of the past squared

errors, past values of the conditional variance and also include the recall events as the exogenous

variable. A EGARCH(1,1) model of [72] for the conditional variance equation is specified as:

ln(ht) = ω + βln(ht−1) + γ

(
ϵt−1

h
1/2
t−1

)
+ α

[(
|ϵt−1|
h
1/2
t−1

)
−

(
2

π

)1/2]
+

3∑
i=1

cixit−1 (3.7)

where ω,β,γ and α are coefficients to be estimated.

When ϵt−1 is positive (negative) there is good (bad) news. Bad news can have a larger

impact on volatility. The asymmetry is captured by γ. If γ = 0 there are no asymmetric

effects. If γ is positive (negative) high (low) price news generates more volatility. The external

regressors xit−1 are the lagged quarterly recalls of beef, pork and poultry.
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Results

The asymmetric volatility models for the quarterly prices of beef, pork and poultry are

estimated using R 2.12.0 supplemented with package rgarch. Table 3.9 shows the results of

a standard likelihood ratio test, where under null hypothesis, the three coefficients of the

recall events, for each equation, are constrained to zero, (the standard EGARCH(1,1) without

the exogenous variables.) The alternative hypothesis is the unconstrained GARCH model

which includes the recall variables. The appropriate statistic is twice the difference of the

maximized values of the log likelihood functions for the unconstrained and constrained models,

respectively, which will have a chi-square distribution with 3 degrees of freedom under the null

hypothesis. The alternative hypothesis that the recall events explain a part of the nonconstant

conditional variance could be rejected for the beef prices. The recalls variables are significant

in explaining the volatility of pork and poultry prices.

Maximum Likelihood estimates of the EGARCH(1,1) model without the recall variables

are shown in Table 3.10. There is evidence of nonconstant variance since the GARCH effects is

high and significant for each of the food groups. The sum of the ARCH coefficient and γ gives

the effect of high price news on conditional variance. It is 0.26 for beef, 0.35 for pork and 0.24

for poultry. That is, an unexpected price increase with ϵt−1 > 0 increases the volatility for pork

by 35%, followed by beef and poultry. The effect of low price news is given by the difference

between the ARCH term and γ, i.e. 0.25 for beef, -0.40 for pork and -0.31 for poultry. An

unexpected price decrease with ϵt−1 < 0 decreases the volatility of pork by 40%, poultry by

31% and increases the volatility of beef by 25%. For pork and poultry prices, the negative

shocks have a bigger impact on volatility than the positive shocks.

The estimated effects of recall variables on the volatility of prices are shown in Table 3.11

which presents the results of the EGARCH(1,1) model with recalls. In both the models the

GARCH effects are large and positive although there is a marked decline in the case of pork.

Beef recalls increase the volatility of beef and poultry prices but have a significant decreasing

effect on the volatility of pork price. Pork recalls have a significant negative effect on poultry

prices. Poultry recalls decrease the volatility of poultry and beef prices and these effects are
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significant. The asymmetry terms in this model are negative for beef and pork prices and

positive for poultry prices. An unexpected price increase (ϵt−1 > 0) will decrease the volatility

of pork by almost 8%, beef by 30% and poultry by 19%. A unexpected price decrease (ϵt−1 < 0)

will increase the volatility of pork by more than 100% and that of beef by 80% and decrease

the volatility of poultry by 4%.

Conclusion

This study investigates the presence of correlation between recalls of closely related food

products to examine the claim that the recalls appear in clusters over time. Both the static and

dynamic correlations between the FSIS recall events of beef, pork and poultry are estimated.

There is evidence that the recalls are correlated across products. The empirical findings show

the significant and positive pairwise correlation between pork and poultry recalls, and pork

and beef recalls highlighting the similarities in these industries. Moreover, this correlation is

time dependent and decreases with the increase in the number of days between two consecutive

recalls.

The paper then proceeds to examine the effect of these recall correlations on the estimation

of the shares of expenditure in the meat/poultry consumer demand model. The parameter es-

timates and resulting elasticity coefficients are largely consistent with classical demand theory.

There are two ways in which food recall events might affect a consumer’s demand. First the

recall event itself might lead the consumer to switch within product brand or the cross product

loyalty. This effect is well established in the existing literature, where the own elasticity of

recalls on demand are negative. This paper investigated whether people are distracted by other

media headlines when responding to recalls. It was found that the media distraction index

was not significant. Thus there is no evidence of crowding out of the information contained in

food recalls due to other news headlines dominating the airwaves.

A simple simulation is provided to understand the effect of current period cross correlation

on the estimated shares of expenditure. The results of the simulation are consistent with

expected values of the mean, standard deviation and correlations of the shares of expenditure.
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It is found that the variance of the expenditure shares increases with the increase in the

correlation between the recalls. These findings imply an increase in uncertainty during periods

of highly clustered recalls.

Asymmetric GARCH models of volatility of the commodity prices as a function of recalls

are used to look for evidence of additional risk. Some of the volatility in the quarterly retail

prices can be explained by the recalls. This is especially true for pork prices. For all beef and

pork, the effect of bad news on the volatility of prices is more pronounced when recalls are

included in estimation. The asymmetric effect on poultry prices are not amplifying when recalls

are included. One explanation could be that the poultry markets are matured as suggested

by [107] who put forth the idea that mature food markets have constant variance. It can be

concluded from this analysis that recalls send food safety signals that affect consumer demand

decisions and volatility of commodity prices.
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Table 3.1 Summary statistics of quarterly data (1994-2008)

Variable Mean Standard Minimum Maximum

Deviation

Beef consumption (lbs/capita) 16.5 0.58 15 17.5

Pork consumption (lbs/capita) 12.7 0.68 11.3 14.3

Poultry consumption (lbs/capita) 24.2 1.68 21 27.1

Retail beef price (cents/lb)* 340.2 58.57 273.5 445.9

Retail pork price (cents/lb)* 257.4 26.88 201.2 300.8

Retail poultry price (cents/lb)* 158.6 9.81 140.6 177.3

Beef expenditure share (%) 31 1.51 27.4 34.2

Pork expenditure share (%) 23.7 1.17 21.5 26.5

Poultry expenditure share (%) 45.2 1.82 41.8 48.1

Beef Recalls per quarter 5.2 3.82 17 314

Pork Recalls per quarter 2.15 1.77 7 103

Poultry Recalls per quarter 3.13 2.05 9 186

Media distraction index 33.83 5.97 19 46

Table 3.2 Correlation between quarterly recalls by food groups

Variable by Variable Correlation Count Lower 95% Upper 95% Signif Prob

Pork Beef 0.3292 60 0.0822 0.5382 0.0102*

Poultry Beef 0.2566 60 0.0029 0.4793 0.0478*

Poultry Pork 0.3560 60 0.1122 0.5594 0.0052*

One asterisks indicate statistical significance at 10% levels
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Table 3.3 Test of the equality of correlation matrix over time

Pairs Window X∗ Average

Size Correlation

pork&poultry 4 25 0.053

8 22.72 0.0099

16 10.71 -0.39

poultry&beef 4 36.53 -0.087

8 31.81 -0.096

16 28.57 -0.34

beef&pork 4 34.61 0.03

8 43.18 0.23

16 32.14 -0.098

*The null hypothesis of a constant correlation matrix is rejected at the

15% confidence level in X% of the times
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Table 3.6 Compensated price and income elasticities

Compensated Price and Income Elasticity

Quantity of:

With respect to: Beef Pork Poultry Other goods

Beef Price -0.529 0.026 0.064 0.001

Pork Price 0.015 -0.179 0.072 0.000

Poultry Price 0.041 0.08 -0.147 0.000

Other goods price 0.472 0.073 0.011 -0.001

Expenditure 0.246 0.134 0.946 1.003

Current period FSIS recall elasticities

Quantity of:

With respect to: Beef Pork Poultry Other goods

Beef Recalls -0.0099 -0.0041 0.0158 0.000005

Pork Recalls -0.0043 0.0005 0.0206 -0.000021

Poultry Recalls -0.0058 0.012 0.0237 -0.000038

Elasticities are calculated at the mean values of the explanatory variables.
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Table 3.7 Correlation between simulated shares of beef, pork and poultry

expenditure

Percentage correlation between simulated shares of expenditure

Recall correlation Sample size Beef-Pork Pork-Poultry Poultry-Beef

From data* 100 24.60 17.31 22.35

1000 28.78 25.14 22.55

10000 31.41 30.96 30.03

0 100 -11.89 -9.23 -8.15

1000 3.26 -1.83 0.69

10000 -0.06 -0.34 1.05

0.5 100 71.84 65.50 61.19

1000 57.14 52.94 50.36

10000 44.97 44.92 45.09

0.98 100 92.55 87.51 92.29

1000 91.27 91.16 89.89

10000 90.74 90.79 90.63

*Correlation obtained from data: Beef-Pork 33%, Pork-Poultry 35% and Poultry-Beef 25%

Table 3.8 Mean and standard deviation of the simulated shares of expen-

diture

Beef share Pork share Poultry share

Correlation Sample size Mean SD Mean SD Mean SD

From data* 100 0.0050755 0.03149963 0.001249 0.0092264 0.001011 0.015076

1000 0.0007912 0.0259982 0.001288 0.010186 0.0010057 0.013269

10000 0.0008128 0.02515622 0.001309 0.0102697 0.0010073 0.012678

0 100 0.0008014 0.02387997 0.00111 0.0116603 0.000988 0.00998

1000 0.000786 0.0218515 0.001321 0.0111291 0.001002 0.010126

10000 0.00812 0.0214082 0.001309 0.0104769 0.001008 0.010174

0.98 100 0.0006721 0.04300416 0.001114 0.0113425 0.0009978 0.021696

1000 0.000791 0.03328504 0.001286 0.0100606 0.0009992 0.01735

10000 0.0008144 0.03192701 0.001309 0.0097829 0.0010071 0.016558

*Correlation obtained from data: Beef-Pork 33%, Pork-Poultry 35% and Poultry-Beef 25%

Table 3.9 Results of the Likelihood Ratio Test

Value of Log Likelihood Function

Variable Under H0 Under H1 Value of test Result of

EGARCH(1,1) EGARCH(1,1) statistic test

with recall variables

Beef retail price 250.8692 249.8267 2.085 Cannot reject H0

Pork retail price 229.1332 236.0047 -13.743 Reject H0

Poultry retail price 197.0335 183.5644 26.9382 Reject H0
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Table 3.10 Maximum likelihood estimates of the Exponential GARCH

(1,1) Model

Beef Retail Price Pork Retail Price Poultry Retail Price

Coefficients t value Coefficients t value Coefficients t value

Conditional mean equation

Constant 0.006287 2.86742 NA NA NA NA

AR term -0.387843 -3.03812 0.57375 1.46769 -0.04224 -0.59211

MA term 0.47484 3.2284 -0.31868 -0.61539 NA NA

Conditional variance equation

Constant -0.918473 -1.14841 -0.87718 -0.14433 -0.25902 -1.75292

ARCH 0.253356 1.37418 -0.02607 -0.10207 -0.03137 -0.2592

Asymmetry term 0.003109 0.13387 0.37844 0.28446 0.275552 2.23856

GARCH 0.878158 8.20143 0.87602 1.02464 0.950948 41.05884

Table 3.11 Maximum likelihood estimates of the Exponential GARCH

(1,1) Model with recalls

Beef Retail Price Pork Retail Price Poultry Retail Price

Coefficients t value Coefficients t value Coefficients t value

Conditional variance equation

Constant -2.256 -1.630 -2.875 -2.959 -0.504 -3.792

ARCH 0.558 2.919 0.549 2.737 0.076 0.803

Asymmetry term -0.258 -1.197 -0.470 -0.978 0.118 0.787

GARCH 0.728 4.090 0.628 4.609 0.940 47.425

Beef Recall (lag 1) 0.028 0.866 -0.101 -3.110 0.116 2.501

Pork Recall (lag1) 0.005 0.315 -0.009 -0.484 -0.041 -2.363

Poultry Recall (lag 1) -0.055 -1.834 0.005 0.251 -0.066 -2.347
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Figure 3.1 Total number of FSIS product recalls per quarter by meat cat-

egory
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Figure 3.2 Rolling correlations for pairwise quarterly recalls, window width

= 8
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Figure 3.3 Pairwise correlation between the time lags of recall events
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Figure 3.4 Bivariate simulated data generated with Poisson marginals and

empirical correlation coefficient
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APPENDIX A. Equality of two correlation matrices (Jenrich (1970) test)

The test statistic suggested by [48] to test the equality of two given correlation matrices

is shown below. The correlation matrices are computed from different sample sizes. The null

hypothesis of the test holds if the two correlation matrices are equal. This test has a χ2

distribution with the degrees of freedom p(p−1)/2, where p is the dimension of the correlation

matrix. The test statistic is given by the following equation:

χ2 =
1

2
tr(Z2)− diag′(Z)S−1diag′(Z) (A.1)

where,

Z = c0.5R̄−1(R1 −R2) (A.2)

R̄ ≡ (r̄ij) =
1

(n1 + n2)
(n1R1 + n2R2) (A.3)

S = (δi,j + r̄i,j r̄
i,j) (A.4)

c =
n1n2

(n1 + n2)
(A.5)

The term tr in the above expression stands for the trace of the matrix, where diag implies

diagonal elements of the matrix. R1 and R2 are sample correlation matrices of two successive

samples of size n1 and n2, respectively, and δij is the Kronecker delta (equalling 1 when i = 1

and 0 otherwise). The elements (r̄i,j) are from the inverse of the matrix R̄.
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APPENDIX B. Simulation of Random Variables

The following algorithm generates random variables u1 and u2 from the Gaussian copula

C(u1, u2, θ).

1. Generate two independent distribution N(0, 1) variables v1 and v2.

2. Set y1 = v1.

3. Set y2 = v1θ + v2
√
1− θ2.

4. Set ui = Φ(yi), i = 1,2. Φ is cumulative distribution function of the standard normal

distribution.

Then the pair (u1, u2) are uniformly distributed variables drawn from the Gaussian copula.

Simulation of Bivariate Poisson.

Technique of [21] to simulate two correlated discrete count variables.

1. Draw correlated uniform random variables (u1, u2) from a particular copula using Gaus-

sian method.

2. Set the Poisson mean = µ1 s.t. Pr(Y1 = 0) = e−µ1 .

3. Set Y1 = 0, P0 = e−µ1 , S = P0.

4. If u1 < S, then Y1 remains 0.

5. If u1 > S, then proceed sequentially as follows: While u1 > S, replace (i) Y1 with Y1+1.

(ii) P0 with µ1P0

Y1
. (iii) S with S + P0. This process continues until u1 < S.
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These steps produce a simulated variable Y1 that is Poisson distributed with mean µ1. To

obtain draws of the second poisson variable Y2, replace u1 and µ1 with u2 and µ2 and repeat

the steps. Then the pair (Y1, Y2) are jointly distributed poisson variables with means µ1 and

µ2.
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