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ABSTRACT

Over the past 30 years, numerous option valuation models have been proposetblefptan
the volatility smile and the volatility bias shown in the data. HoweklierBlack and Scholes model
remains the cornerstone of the option valuation model and its implied vielatiémain essential for
calibrating parameters of the other option-valuation models. Thigroésis the first in the literature to
use a partial equilibrium model to explain the implied volatiligshising demand for and supply of the
options market. The proposed theoretical model allows us to explainistener of an upward bias and
its determinants, and to simultaneously explain both the volatilitesanill the volatility term structure.
With data spanning the period of 1990 to 2008, twenty-six options on commaodity futukessnaae
analyzed. For at-the-money options, as predicted by the proposed modaflteé volatility is found to
be an upward-biased estimator of the realized volatility in nineteekets. The implied volatility
appears to be an unbiased estimator for the realized volatility ocottos, oats, wheat No. 2, cocoa,
orange juice, and heating oil markets. However, for out-of-the-moneyarehe-money options,
implied volatility appears to be an upward-biased estimator of theegaolatility. The theoretical
model further suggests that the implied volatility’s bias is chbgehe quantity hedged, the strike,
volatility, futures price, the risk-free rate, option prices, and taysaturity. The bias is different across
strikes, times to maturity, puts and calls, option year, and exchanges.timanksts, the open interest
and the historical return variables do not appear to have much impagatvet, the historical volatility,
the Risk free rate, and the Option price variables are shown to haveivepogact on the bias in most
markets. The empirical model appears to explain the bias reasoveblyith 30%-40% Rin eleven
markets and more than 50% iR thirteen markets. The results suggest that one should subg&act
average bias presented here from the actual option premium beforéngtianimplied volatility of the
options. This could provide implied volatility which is a more accuratdigiar of the future realized

volatility.

Keywords: Option smile, Bias in Implied Volatility, Implied Volatility, @ions Markets.



CHAPTER 1. INTRODUCTION

In 2000, while working at JPMorgan Chase, David Li became well-known through his paper
“On Default Correlation: A Copula Function Approach” published in the Joofrféiked Income.

His paper proposed an elegant formula, known as the Gaussian Copularkuactalue
collateralized debt obligations (CDOs). His model has been widely ablopteractitioners due in
part to its simplicity. Since its first use, the biggest limitatdf this formula, the assumption of
constant correlation among assets, has been well known. Howesevettkness was apparently
ignored by Wall Street traders. At its peak, the Gaussian Copula forraslased to price hundreds
of billions of dollars' worth of CDOs. Amid the breakdown associated wétlglibbal financial crisis
during 2008 and 2009, the incorrect understanding and use of the Gaussian Copulagormula
believed to be one of the factors that lead the financial industrieh@étgryeatest failure since the
Great Depressidn

In order to develop relevant economic or financial models, researchemsmist restrict the
model assumptions or assume away the actual complexity of the realModel. users, on the other
hand, should be aware of these limitations. The Gaussian Copula stomnpWadisat, in the highly
leveraged world of derivatives, the impact of mispricing is potéygaiormous.

The Black-Scholes model (BSM) is similar to the Gaussian Copula fanmtie sense that
the Black-Scholes model also depends on a set of strong assumptions. BSM assiataat
volatility and frictionless markets. However, unlike users of the Gau&xpula formula, users of
the Black-Scholes model apparently take these limitations into @icatxen employing the model.
As will be discussed later the non-constant shape of implied voladiltyidlence of the market’s
correction of the imperfection in the BSM. Despite voluminous reseasthing to derive new
option valuation models that can better fit the market data, the BSMn®=thai cornerstone of option
valuation due to its speed and simplicity.

Along with the popularity of the BSM, the use of implied volatility hias éncreased
dramatically. According to the BSM, the implied volatility inverteshfrthe option price can be
interpreted as the volatility of the underlying asset over the remgglifé of the option. Hence, if the

BSM is correct, the implied volatility should be the best predictoutofé volatility because, by

! http://www.wired.com/techbiz/ittmagazine/17-03/wiant?currentPage=alhccessed on February 28, 2009
http://www.Irb.co.uk/v30/n09/mack01_.htpaiccessed on October 4, 2008




definition, the implied volatility is the future volatility expectieg the market. This realization is
crucial because future volatility is one of the most important compoimeasset pricing and risk
management used by a wide range of market participants. Option tragers figure volatility

when calculating the probability of future prices falling between iceréenges when constructing
trading strategies. Insurance companies rely on future volattignwalculating their insurance
premiums. Companies rely on future volatility when performing riskyarslAs exotic options have
gained popularity over the past several years, the implied vol&igyeen used to calibrate inputs
used to price these options.

Concerns about the correctness and precision of implied volatilitydesetoped over time.
First, according to the BSM, the implied volatility of any option repregdbéetfuture realized
volatility and should be constant regardless of option strikes os ton@aturity (Black and Scholes,
1973). Unfortunately, much of the research conducted over the past foursleaadgdown a non-
constant implied volatility in various markets over different timeqoks: This phenomenon is well-
known as the “Volatility Smil& (Rubinstein, 1985, 1994) and “Volatility Term StructtirgHull
2006). This abnormality of the implied volatility raises questions as tthetthe specification of
the BSM is correct and whether the assumptions imposed by the BSM are apergariticularly
those regarding constant volatility and frictionless markets.

Second, the concern about the ability of the implied volatility to préuicfuture realized
volatility has been widely addressed and exanfinddst scholars agree that implied volatility is a
biased predictor of realized volatility. However, when compared wittr odrdidates for predicting
future volatility, such as historical volatility, the results famend to be mixed. Some studies found
that implied volatility is an efficient predictor of future realizvolatility and that historical volatility
contains no additional information not already incorporated in implied \tylatil

To address the first concern, researchers have developed new opiatieuainodels
allowing for non-constant volatility. Examples include the stochastatilif model by Heston
(1993), the Jump Diffusion model by Bates (1996), and Deterministic \iylédblumas et al (1998).
Although these models appear to fit the non-constant volatility datahtdge effectiveness have
proven to be no better than the simple BSM (Dumas et al. (1998)).

The second concern regarding the bias-prone and predictive charactanyfiiga volatility

has also been extensively examined and documented. Despite the evideaserofmost markets,

2 The non-constant shapes include the shapes a,sniter, smirk, and skew over options' moneytesshe remainder of the paper, we
refer to these non-constant shapes as the “VeyaSinile”.

% Similar to volatility smile, volatility term straare refers to non-constant shapes of the volatilier options’ time to maturity.

4 Chapter 2 provides lists of literature relatedhis topic.



practitioners continue to use the implied volatility as one candidaf@ddicting future realized

volatility.
1.1 Problem Statement

This research addresses the widely-studied implied volatility &f the BSM. A voluminous
body of literature has attempted to explain the volatility smile througbusoption-pricing models.
I show that when one allows for the demand and supply of the services of optéye, wnarket
participants will agree on an equilibrium bias. This bias is notitmiage than a fair return to the skills
needed and costs associated with option writing. The existence of the biagpthdicted here
explains both the observed smile and the volatility term structure. Teegtef my knowledge, no
existing research examines the implied volatility bias withohsupartial equilibrium model. The
ability of the model to explain the cause and the size of the impiatility bias should provide a

better estimator of future realized volatility.
1.2 Motivation and Scope

The research is motivated by the fact that there is an incraasagg of implied volatility as
an estimator of the future realized volatility. In most cases, i&dsa have found evidence that the
implied volatility is a biased estimator of future realized uldty but for the most part this evidence
has been simply ignored. For example, insurance providers use impliedtyaat#i proxy for future
realized volatility when generating the price distribution to obtdairgremium. Similarly, option
traders use implied volatility as a predictor of future volatilityider to price exotic options. Hence,
if implied volatility is actually a biased estimator of futureliesl volatility, these options and
insurance premiums will also be biased. The upward bias in implied itphaill cause these prices
to be upwardly biased as well.

To analyze bias in implied volatility, this research attempts to asldne following
guestions. First, does bias in the implied volatility exist and isatuakvolatility an upward estimate
of expected future volatility? Although most research has found evidemiasohone have
concluded that implied volatility is an upward bias estimator of thezezhliolatility.

Second, what causes bias in the implied volatility? To answer thisaqeégropose a
partial equilibrium framework in which the BSM option premium isrgrut. This model makes it
possible to explain the bias. Moreover, the model is also designed to alloasfat bifferent strikes

which result in non-constant volatilities across strikes.



Third, does the partial equilibrium model really work? This questitested empirically.
The empirical research examines whether variables suggested byottetichemodel can explain
the bias. The result from the empirical study should yield ideas disize and the direction of the
bias. If we discover that the bias can be systematically explained bpfavaeables, practitioners
could account for these variables when using the implied volatility agpanin for their models.
Therefore, in order to obtain a more precise estimator of the futurditygltite implied volatility

should be treated appropriately by eliminating the bias components.
1.3 Contribution of the research

The contribution of this research is that it provides the ability ttagxpconomically the
sources of the bias from the BSM through interaction between the demaswpahdof the services
of option writers in the market. Furthermore, | propose an econometric rhatleln be used to
explain the sources of bias. This model allows market participabetter estimate future realized

volatility, hence, better manage their risks.
1.4 Summary of subsequent chapters

This paper is organized as follow: Chapter 2) discusses litenauew & motivation. Chapter
3) provides the model derivation, and Chapter 4) shows the empirical eviofenias and the model

results. The conclusion regarding further research is then prese@bdpter 5).



CHAPTER 2. LITERATURE REVIEW

This chapter discusses existing literature and provides rtiohifar the proposed model.
Section 2.1 summarizes abnormalities resulting from the Black-Scholbs and reviews
alternative option valuation models developed to overcome weakneshesBidick-Scholes model.
Section 2.1 concludes with a discussion of the limitation of these aiternaddels. Section 2.2
describes the two most tested hypotheses regarding bias ansth®tidn contents of the implied
volatility. This section also points out the limitation of the curenpirical method and proposes an
alternative empirical method. Section 2.3 discusses mechanismdptibies markets. The discussion
in this section provides motivation of the partial equilibrium mgadeposed here. Section 2.4
provides details regarding this partial equilibrium model. The pexposodel bridges the gap in
existing literature by using the demand and supply for the services o ayiters to explain the

existence and determinants of the implied volatility bias.
2.1 The Option pricing literature

Trading actively in many major exchanges throughout the world, options haradec
increasingly used for hedging and speculation. The collapse of the giaadidl sector in 2008 has
proven the importance of the derivatives such as options in the mausmniéil system.

In the option world, the Black-Scholes (or Black-Scholes-Merton, or BSM) farmul
developed in 1973, is the cornerstone of option pricing. Thanks to its elegamnsienghcity, the
BSM formula and its variations have been widely adopted among practitiblesvever, the speed
and simplicity offered by this formula do not come without costs. According B3 formula, the
volatility input is assumed to be constant across strikes and timesutyndowever, in reality, the
volatility derived from the model by equating option market prices to thé B8nula, known as
“implied volatility”, appears to be anything but constant. The non-congtaturé of the implied
volatility has gained attention among scholars since it was first disstvOver time, researchers
have discovered that the patterns of volatility differ among masketsappear to change over time.
For example, foreign currency options exhibit a completely symmeitmde” shape over the strike

price (Hull, 2006). The volatility smile also appears to have a downwarchglspape for post 1987



S&P 500 futures optioAge.g. Hull (2006), Rubinstein (1994), Dumas et al. (1998), Ederington and
Guan (2002)) and an upward sloping shape for corn futures options (Ferri2@03)).(However, in
some markets, the implied volatility does not appear to have a perfecshape, even though the
phenomenon of all non-constant volatilities is still referred to as\bkatility Smile”.

Most studies have shown that the implied volatility is a biased estinfator future
volatility (for example, Edey and Elliott (1992), Day and Lewis (1992), Lampuaad Lastrapes
(1993), Jorion (1995), Fleming (1998) and Simon (2002)). However, as desorbection 2.2, with
the existing methodology, most research can only conclude whether the inghditgltyis a biased
estimator of the future volatility or whether the implied volstiis more or less volatile than the
future volatility. In most cases, the definite conclusion about thetidineaf the bias cannot be
drawn. Although most studies agree on the biasness of the impliedityplatiltandful of research
studies disagree that the implied volatility is a biased estiroatbe realized volatility. For example,
consider Christensen and Prabhala (1998), who argue that the differeraie liestits could
contribute to a longer time span using non-overlapping sampling nethbdy also suggest that the
shift in the October, 1987 crash might explain the bias found in other research.

The discovery of the volatility smile and the bias of implied volatiliye raised questions
among researchers about the validity of the BSM. Several stumiiesexamined whether sample
variation, measurement errrer sample selection bfasould cause these abnormalities.
Measurement errors from asynchronous prices and bid-ask spreads in optifutsrasctould also
be a factor that causes bias in the implied volatility. However, seesedrchers such as Jorion
(1995) consider 30 basis points bid-ask spread for options on foreign exchatriggevéhno effect on
the estimates of the implied volatility bias. Therefore, with thatility smile observed over varieties
of markets and periods of times, these explanations are too weak to expleausle of the smile.

Another possibility for explaining the volatility smile is the speaifion error of the BSM.
Since the BSM is based on several strong assumptions, violation of thesgtasss could lead to

results that are not consistent with the model's prediction. The priceatifityotisk and the fat tail

5 Over the range of strike values, the implied \titaof the S&P 500 index has maintained the sreepe since the stock market crash in
1987. This effect corresponds to the common b#iif bearish markets are more risky than bulliskketa. That is because in bearish
markets companies tend to increase their leveragause issuing equity is more difficult. As a restdmpanies become more risky and
their implied volatility increases. Prior to theash, the implied volatility for the S&P 500 indexasvmuch less depending on strike price
(Hull 2006).

© Overlapping sample methodology tends to yield pessise and potentially inconsistent estimatesi¢@nsen & Prabhala (1995)).

" Numerous research studies have been dedicatéddsing the best weighting scheme to estimate @dplolatility. However, Poteshman
(2000) suggests that sampling variation shouldcaase the bias. In addition, Neely (2004) pointstioat sampling variation can be
eliminated using a long span of data such as 1 yBates (2000) also provides evidence that tipdiexh volatility is not sensitive to the
option pricing model.

®n later work by Flemming (1998), he suggests thatbias might come from the non-zero correlatietwieen price and volatility and the
American style options (as compared to the Eurogide options calculated by the Black-Scholes rjode



distribution are among the factors most discussed in the literatureukenx and Lastrapes (1993)
agree that a price of volatility risk is likely to be responsibtebias in the implied volatility for the
case of options on stocks. Doran et al. (2005) also indicate that thef iigdied volatility results
not only from the price of volatility risk, but also from the presence ehsistic volatility and jumps.
That is, the actual price distributions have fatter tails thainahthe normal distribution assumed by
the BSM.

In addition to the volatility risk and the unrealistic normal distrioutssumption, the BSM
also relies on another restricted assumption, namely, a frictionkag®t. In reality, transaction
costs, market liquidity, and other elements of market friction are ai@eitomponents of the
markets. Market frictions create risks and prevent the maxdmtdompletiof The violation of the
frictionless market assumption could lead to a serious issue witltréspeodel validity. Boyle and
Vorst (1992) and Leland (1985) and Longstaff (1995) argue that, with the prexfdransaction
costs and other frictional elements, the value of a replicatingoportif an option must be
discounted using path dependent probabilities and that option prices need notifelloartingale
condition. Hence, the options must be priced using an equilibrium model ratheisthg the no
arbitrage model. Although researchers are still engaged in tryingplairethe BSM bia$, this
hasn't slowed down its usage among practitioners. The model is widely usésktegmilla options.
Moreover, since the implied volatility, by definition, represents futeadized volatility over the life
of the options, it is often used to estimate future realized vojdiili realized volatility). As
derivatives markets become increasingly important, the use of impliatlittohas expanded.
Implied volatility is used to calibrate input parameters when priciatjeoptions and insurance
premiums. It is also used as an input for dynamic hedging strategies aadaligsis.

As the market has become more and more reliant upon speed and simpidt$Mtas
become widely adopted in the derivatives community. The volatility saniethe bias from implied
volatility has also become widely accepted as a result of the modeévdowhe volatility smile
creates a more serious problem, because it represents an internasiecop®etween the model’s
assumptions and reality. This is because the volatility smile véollageconstant-volatility
assumption of the BSM that is required before the implied volatditybe generated. The volatility
abnormalities cannot be just simple mispricing of the options, bedaearbitragers would step in
to buy cheap options and sell more expensive options. Over time, the pricesé agmuld

converge to their actual prices. However, this is not the case. Thiéityadaile and volatility bias

° That is, the market is incomplete.
10 Mayhew (1995) also provides excellent earlier syref empirical results testing the Black and Sesohodel.



persist in different markets over different time periods. Hencepdog deviation indicates that it is
the level that the market agrees upon. As a result, researctogeestch as: what causes this
volatility smile and volatility bias? and how should we develop the optiamatiah models that can
better fit the data have become the focal point for hundreds aifrcesgtudies over the past several
decades.

The second part of the questions regarding searching for new models thatisaed twe
explain abnormalities in implied volatility will be discussetgfaThe first part of the question
regarding the explanation of the smile and bias will be discussedag. fol

To understand how researchers develop new models in hopes of correcsimortfadls of
the BSM, it is important to understand how the BSM is derived. The derivation BSttlds both
simple and elegant and can be done through the non-arbitrage condition dn theoRisk-Neutral
Valuation Relation (RNVR). Through the non-arbitrage condition, the numimgtiohs hedged
against the underlying asset depends on the strike price, the currerdffiiie underlying asset, the
time to option expiration, the interest rate on a risk-free bond, and the $taahastic process for the
underlying asset price. When these factors are known, the proper hedging pisrifotiovn and an
equilibrium price can be found that is invariant to risk prefereaoel to expected changes in the
underlying commaodity price.

If the BSM is derived through the RNVR technique, it can be determirfeat ®itth or
without preference assumptions. Through the non-preference assumptioNMRecBn be
determined by converting the physical probability into the risk-neutral pitithaHence, the option
payoff can be discounted using the risk-free rate (Cox, Ross and RubihSZm)t. The
preference-based RNVR relies on a general equilibrium model. By assdiffiangnt combinations
of utility functions and underlying asset price processes, and by solvipgeageatative agent's utility
maximization problem, the RNVR can be recovered, leading to the or@fgMlIformula. Several
studies have found that the RNVR can be derived through Constanv&Blisk Aversion (CRRA)
preferences and a lognormal distribution of underlying asset Miggan (1973)), CRRA
preferences and a bivariate lognormal distribution of the returneoartderlying asset and the return
on aggregate wealth (Rubinstein (1976)), Constant Absolute Risk Ave@AdR¥) and a bivariate
normal distribution of the price of the underlying asset and aggregati \{gednnan (1979)), and
exponential risk preferences and a transformed normal distribution egadgmnvealth and the

underlying asset price (Camara (2003)). The most recent developmenffigldhisto use Epstein-

1 Sundaram (1997) provides an excellent intuitivel@xation about how the RNVR works and how it igieglent to the Black and
Scholes model.



Zin preferences and multivariate affine jump diffusion underlying statiables (Eraker &
Shaliastovich (2007)).

These new models typically alter the original the BSM assumpiotiavelop new
technique¥ for determining price options. For example, the univariate diffusion meldedes the
geometric Brownian motion assumption (e.g., Cox and Ross (1976), Cox and Ralfit88&i}°),
the stochastic volatility and jump process models relax the constatitityodessumption and the
underlying price process assumption, respectively (e.g. Hull & White (E9&i7iHeston (1993)), the
deterministic volatility model allows the volatility to be locally deteistic (Derman and Kani
(1994a,b), Dupire (1994), and Rubinstein (1994) ) and, finally, discrete time nsodklas the
Autoregressive Conditional Heteroskedasticity (ARCH) and Genedafméoregressive Conditional
Heteroskedasticity (GARCH) models relax the volatility procesgstre (Bollerslev (1986),
Duan(1995) and Heston and Nandi (20808everal extensions allowing for trading costs, short-
sales constraints, and other market friction elements have alsalé&esloped (for example, Leland
(1985), Hodges and Neuberger (1989), Bensaid et al. (1992), Boyle and Vorst (1982a¥and
Kou (1996), and Broadie et al. (1983) Bakshi et al. (1997) list more studies analyzing these new
option-pricing models.

By relaxing assumptions regarding the volatility process, these modelgocassfully
explain the volatility smile. For example, Dumas et al. (1998) refetsetwork by Taylor and Xu
(1993) wherein they demonstrate that more complex valuation models suctpadiffusion can
generate time-dependence in the sneer even when volatility is constatitnevédumas (1998) also
gives an example of stochastic volatility by Heston (1993) and Hull and VEBB&) that can
explain the sneer when the asset price and volatility are negatoreglated, because negative
correlation helps create the sneer. They also refer to the jump mdktlesf(1996a) that is able to
create the sneer if the mean of the jump is negative. However giffietprg and hedging
performance of these models are still questionable. For example, Duma2@d@) find that the
deterministic volatility function of option price performed worse tharativaoc Black and Scholes
model in terms of hedging and predicting out-of-sample option values.

However, instead of replacing the BSM models in the market placewengrnumber of

these sophisticated models makes the BSM even more important. Thiguséd#e increase in

2 The most recent technique used in the new devellojelel is the Fourier inversion approach usedéngnd Stein (1991), Heston
(1993) obtained these studies from Bates (2003))Enker and Shaliastovich (2007).

2 These studies are listed in Bates (2003)

14 Christoffersen and Jacobs (2004) provide a nurnbesferences using the GARCH model.

® These studies are listed in Broadie and Deten28le4)
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option complexity leads to an increasing usage of Monte Carlo techniquagmtive model
parameters need to be calibrated using market data. Market dbtpieadly collected from options
traded on the exchanges. These options are mostly plain vanilla and al&edlasing the BSM
because of its speed and simplicity. Therefore, the implied volatiierted from the BSM has
become necessary data for these newly developed models.

Not only do the data from the BSM become necessary input for these modelso Il a
models themselves have a major drawback, a lack of speed. To pnicegpldia options, these
models rely on a Monte Carlo technique, a major obstruction for practitionense \@arlo methods
require a relatively longer time to price the options and also eetimie intensive calculations. By
the time the models produce fair option prices, market conditiohbavié changed and the prices
will no longer represent the current market environment. Compared withsaehesticated models,
the BSM can produce prices very quickly. Although, in many cases, thesegracady quick and
dirty estimates, for options traders who understand the market, tiwseare usually adequate to
use as a first step in making the market.

When practitioners choose to use the more sophisticated models, the iramgadgtion that
should be considered is whether the benefits outweigh the costs. Baks(i@®a).ask whether we
gain anything from more complicated models and whether they are abledct ¢orithe biases
associated with the BSM. Their question is crucial for this reseAscwe examine the existence of
bias in various commodity markets and progress in the search for thedokettonexplain the bias
embedded in the implied volatility, we must keep in mind that the chosen modeal bbeaimple

enough to be understood by practitioners and should reflect the reality of theé. marke

2.2 Biasness and Informational efficiency hypotheses

After almost four decades and at least three major option valuation mbdebSM is still
the cornerstone for the options market. This brings us back to the firsibguessted in the previous
section, i.e., what causes the volatility smile and volatility bfesthe market continues to use the
BSM as a valuation model and implied volatility as an estimate of futatzed volatility, the
sources of the volatility smile and volatility bias have become edlyaaiportant.

In the literature, the conditional bias tendency of the implied vigfaslgenerally tested

using the following hypothesis:

2 2
Oryyr =+ /BO-IV,t,T + & (2.1)
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where aévﬂ and aﬁ,m are the subsequently realized volatility and the implied volatilityéen

periodt andT respectively. The rejection of the null hypothesis #h+t andp=1 indicates that the
implied volatility is a biased estimator of the realized volatility
To test whether the implied volatility is informationally effisiethe following regression is

typically conducted:

2 2 2
Oryir =+ PO 7 +V0r 1 + & (2.2)

where aﬁvﬂ is an alternative forecast of volatility from periotb T. The rejection of the null

hypothesisy =0 would lead to the rejection of the notion that the implied volatility is
informationally efficient in predicting the realized volatility.

Testing across asset classes over different periods of timeclesmsshave found: to be

positive and@’ to be less than 1. Most researchers agree that the implied woiatitonditionally

biased estimator of the subsequently realized volatility (Neely, 2004)ev#owsetting up the
empirical model this way does not directly allow researchers to concluelder the implied

volatility overestimates or underestimatbe realized volatility. This is because the positive values
of theq and Bdo not guarantee that the}, «7 Will be an upward estimator of,f{\,’t’T . As aresult,
only a few research studies have been able to make a conclusion abaectiendf the bias of the

implied volatility. For example, Bates (2003) showsto be 0.0027 an(ﬁ’ to be 0.681. From this
result, he concludes that the implied volatility overestimates #ieed volatility due to a small
intercept and a significantly greater than zero slope. For mostekstadies, the estimates do not
allow drawing of a conclusive direction about the implied volatility. Fongxta, Jorion (1995) tests

similar hypotheses using non-over lapping data for three foreign excxh@argets: The German

deutsche mark, Japanese yen, and Swiss franc during the period 1985 to 1992. He finis that

approximately 0.3 anqﬁ is approximately 0.5. Based on these estimates, the only conclusion that
can be drawn is that the implied volatility is more volatile thanahézed volatility; that is, the
implied volatility should be scaled down when relatively higher than averascaled up when

relatively lower than average. No conclusion about the direction diidiseés provided.
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Using the non-overlapping data of the S&P 100 index between 1986 and 2004, the S&P 500
index between 1994 and 2004, and natural gas, crude oil, and heating oil pricea h8&&and
2005, Doran et al. (2005) employ the instrumental variable technique to cotigtrastimated
implied volatility and use the estimated implied volatility to estingapeation (2.2). They conclude
that since the slope is less than one and the intercept is eitheregositiegative, the implied
volatility is an upward biased estimator of the realized vohatilihey attribute the implied volatility
bias to the negative market price of volatility risk. Howeversadree with the approach they use to
draw a conclusion because, as pointed out earlier, the positive slope, emeromiiined with a
positive intercept, does not guarantee that the implied volatilitype an upward bias estimator of
the realized volatility.

The conclusion that the implied volatility overestimates thezealvolatility is only true
under certain situation, such as when the slope is less than one and the iptsitept is small. Due
to this restriction, the empirical analysis is designed to accouttif issue by constructing the
dependent variable as the difference between the implied volatilitghe realized volatility. Hence,
the conclusion about the bias of the implied volatility can be drawn. Whenténegpt is negative
(positive), the implied volatility overestimates (underestimatesyealized volatility.

Since most researchers agree that the implied volatility issadistimator of the realized
volatility, the next mission is to determine the cause of this bias. &dwgrotheses have been tested.
Neely (2004) tests whether different kinds of measurement error cantbausias. These
measurement errors include error from using high-frequency options datdr@n using horizon-
by-horizon estimation, error from sample selection bias, and error fromgbrotatility risk. In the
end, he finds no explanation of the bias through any measurement errorenbittarclusions were
found by Doran et al. (2005), who examined the bias and concluded that it is afrdsaiitnarket
price of volatility risk. Other researchers (e.g. Longstaff (1995), Deamd Mayhew (2001) and
Aijo (2002)) examine the bias through the demand and supply framework, but neitbkrsions nor
theoretical models offer. This research will bridge the gap intérature. The model proposed in
Chapter 3 not only provides testable hypotheses, but also satisfies eciotion about the causes
of the bias.

The information content of the implied volatility is another aspetit@fmplied volatility
that is being extensively examined by researchers. Once again, theybleto find a common
ground regarding the information content embedded in the implied volatility i§ partly due to
different sampling and measuring techniques, different estimation methigdolagd different

markets. Using a simple BSM without accounting for dividend or early egaigl#ts, earlier
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researchers found that the implied volatility from stock options caniexpkarealized volatility
better than can the historical volatility (Szakmary et al. 2003). Hexvav 1988, Christensen and
Prabhala (1988) using monthly observations, constructed non-overlappingdi&tarahthat the
implied volatility is a good predictor of the realized volatility. Witle development of more
sophisticated sampling and testing methods, results from more rectas hiave been mixed
(Szakmary et al. 2003). Canina and Figlewski (1993) examine options on the S&P X0Gsindea
regression approach and find that there is no relation between impligtity@at realized
volatility. Day and Lewis (1992) study the at-the-money options on the S&Rntax and find that,
although the implied volatility does contain some predictive power,daries models such as
GARCH or the historical volatility do help improve this predictive power

Szakmary et al. (2003) analyzed options from 35 futures markets traded ovexelgiiges
and found that implied volatility is a good predictor of the realized Vibyadind that the time series
model such as the moving average and the GARCH model contain no predictinetidorthat is
not embedded in the implied volatility. They conclude that the futures optiahets are efficient.

In more recent work, Neely (2004) attempts to derive the explanation folathand the
inefficiency of implied volatility by estimating by means of the bmstic volatility model. He
corrects for the overlapping data (telescoping samples) by consgractiappropriate covariance
estimator following Jorion (1995) using horizon-by-horizon estimation. Howbkeestill finds that
implied volatility is a biased estimator for realized volatilindahat the foreign exchange market is
inefficient. His paper also rejects the hypothesis that the non-dzeeogbivolatility risk generates the
bias in the implied volatility.

Despite voluminous empirical works conducted over the past 30 yearsilitdelstable
whether implied volatility is a biased estimator of realized vata@ind whether the information

content embedded in the implied volatility is efficient enough to predictsfuaalized volatility.
2.3 What do we need to know about the options market?

It has been almost four decades since the BSM was introduced and reseaschdll
struggling trying to pinpoint the explanation of the volatility smiled golatility bias expressed in
the data. The focuses of previous research have been either tryimyéocadeoption valuation model
through new variants of stochastic processes of the underlying assesting the bias and
information content of the implied volatility. Yet, no final conclusion has beached. This research

proposes to explain the abnormalities of the implied volatility usiifferent approach - the partial
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equilibrium approach. | focus on the fundamental factors of the optioneintmd interaction
between demand for and supply of options, and the structure and mechanism abitsenogitket.

To understand how the demand for and supply of options function, we must fingttande
how options are traded. Option transactions are similar to ordinaryrstoklet transactions where
market makers (or traders) quote bid-ask prices and help indtawdithe price discovery process.
Therefore, the following observations about their behavior should help us unddrsta the options
market operates and what, where, and how the BSM fails to capture intpoidamation.

First, according to an interview with option traders from the heatlrgtait the New York
Mercantile Exchange (NYMEX) in May 2007, option traders admit that, thougiméoers of model
can be used to price options, they use B3Me to its speed and simplicity. Prices calculated from
the BSM are considered to be “good enough” because traders do not try tdhquotest accurate
option prices. Instead, the ability to price options satisfactorilyivelto their peers is more
important than the ability to price the options accurately. In fact, s@uers have not changed the
interest rate input of the BSM in montfsviost traders would agree that they do not know much
about the real values of the options until they are approaching matinisyobservation is also true
for electronic trading.

Second, most option traders are neither statisticians nor mathamgttidihey do not
understand complicated option valuation models. Though most traders on the excisanigendheld
computers (so-called, "the Tablet") to calculate option pribey,find the simplicity of the BSM (or
its slight variations) most attractive to them because the BSMeasangs the "volatility" as a
subjective input. As a result, traders can price any option by simply changipgrameter in the
pricing model, the volatility.

Third, since the volatility is the only unknown variable needed in takiulation, option
writers can incorporate their market perspective into option pricdgeefoeginning of each trading
day, the starting volatility parameter is the implied volatilityarted from the previous day’s option
price. Throughout the day, as market conditions change, e.g., if more demand) (sofgply/the
market, traders respond to demand changes by increasing (decreasing) o pis can be done
by increasing (decreasing) the volatility parameter. Hence, whetherdtadly interpret the
volatility parameter as an estimation of realized volatility overdneaining life of an option is

guestionable. However, from the option traders' perspective, volatititgasly used as a link

16 Note that, these option traders can also be cereichs market makers for the option markets ihvtiiey participate.

" For short dated options, the impact of interetst imvery small and, hence, mostly ignored byerad

18 Note that we are focusing on option traders whiaaanarket makers. The designations option trattaders, or option writers are used
interchangeably throughout this research.
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between the option price, demand and supply of the option market, and tradegsigeiaf the
market to reflect the fair value of the options.

Fourth, trading options incurs costs. Trading costs include cost of ercteatg, opportunity
cost of skills, time, and hedging. Option traders possess skills and econdstak to dynamically
manage their risks. In the competitive market, traders’ skillbearsed elsewhere unless they are
compensated for their costs and skills.

Fifth, unlike other businesses, the option market does not directlg eveatith in the
economy. Instead, it provides a risk-shifting service that allows buses&s$ocus on their core
business activities that can help increase wealth (Baird (1983 )sénse, option writers act like an
insurance company to bear extra risks for which they should be compensated.

Finally, sixth, the market generally believes that the prdibabf extreme events in the real
world is higher than the normal distribution assumed in the BSM. In other whedzal world
distribution appears to have a fatter tail than the normal distribution.

These observations clearly violate the BSM assumption regarmiiystant volatility and
frictionless markets. Therefore, the non-arbitrage condition andNiW&RReed not to be satisfied
and the option valuation model is no longer valid, so the options should be priceghttive
equilibrium model (Longstaff (1995)). Therefore, the question that rtedmsasked is: if option
markets and option traders behave as | described earlier, should optisrgpoted by these traders

reflect their behavior? If so, how do we capture this behavior?

2.4 A Patrtial Equilibrium Model — An Explanation for the Implied V olatility
Bias

The previous discussion about how the option market operates sheds some light@n how
explain the bias embedded in option prices. The key point to remember isghad]ess of any
weaknesses resulting from the BSM, it is still widely used among fiwaetis. To compensate for the
model’s unrealistic assumptions, the market instead imposes an ajustrprices derived from the
model. The only input parameter that allows market to incorporate jostment is the volatility
input; hence, the result of volatility smiles or volatility biasesaen in the data.

In contrast to previous studies whose primary objective is to skaralperfect valuation
model or to test for the degree of bias and information content of thedmnglatility, the focus of

this study is to model the imperfection of the current valuation model. §Hatiempt to explain the
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bias embedded in option prices using the partial equilibrium of the itierdbetween supply and
demand for the services of option writers rather than to develop a naatiealmodel.

The above observations suggest that the market price of the option isseahgbitwo
different components, the theoretical value from the BSM and the bias asljistithen options are
transacted, buyers and sellers of options must agree on the markehbgmmethe theoretical values
and the bias adjustments. If the theoretical values are known, the prebleces to finding the
equilibrium price of the bias. In equilibrium, demand and supply of the bias mustdle equ
Intuitively, bias supply comes from costs and additional risks that opédars must bear, and bias
demand comes from option buyers who are willing to pay a price premium in orddute their
risks and to compensate skilled traders to rebalance theiraibles than doing it themselves.

The idea of explaining volatility smiles and volatility biases throbhghdemand and supply
framework has been mentioned on several occasions in the literature. IHoweas received almost
no attention and has never been modeled systematically because mtsnastelirected toward
creating new valuation models that can explain volatility bias and volatilitles in the data. These
new models do not take into account the fact that the BSM is still thd osmteby traders.

In papers that are closest to this research, Fleming (1998) finds ardugias in S&P 100
futures options. He goes on and suggests that a linear model that dorrdwsmplied volatility
bias can provide a useful market-based estimator of conditionalitylati other words, the implied
volatility bias can be modeled as a function of a set of explanatorplexi®dumas, Fleming and
Whaley (1998) use an ad-hoc version of the BSM which specifies that therB3id volatility is a
linear function of the strike price, strike price squared, time tanibgtand time to maturity squared.
Although these studies do not provide a theoretical explanation of theitanibée methodology is
consistent with the assumption that we can view the bias in the impligiityods a function of sets
of explanatory variables resulting from the demand and supply of options.(B&@9) indicates that
option market practitioners believe that heavy demand for out-of-the-mond§) (QIT options has
driven up their prices. This could be one of the possible explanations ofphedivolatility smirk
after the 1987 crash However, in his paper, Bates chooses to explain this abnormality using
different stochastic volatility and jump-diffusion models instead of usidgmand-supply
perspective.

Some recent research on the option bias is directed toward using a demanupgnd s

framework. For example, Ferreira, Gaga, Leon, and Rubio (2005) providruasiti; on the impact

1% Since the 1987 stock market crash, the impliedtility of S&P 500 futures options are known to bakie volatility smirk pattern (Bates
(2000)).
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of net buying pressure and limited supply. Bates (2003), Whaley (2003), and Bollerhalay W
(2004) discuss the importance of a net buying effect on the option bias. Holwevezséarch takes a
different approach in which the bias is determined from a partial equilidramework that contains
broader economic insight. Equilibrium results from an agent’s expectiyg m@ximization problem.
Because of the nature of options trading, options writers must pui@hi@sse exchange seats in
order to become market makers. If they do not own a seat then option writefgsnasrvice fees to
have their contracts traded. The need to own a seat and the skills requirige options are barriers

to entry in for option writer. Hence, | introduce monopoly power into the rharke
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CHAPTER 3. MODEL

The model presented in this chapter is different than those prédgrBzennan (1979) and
Rubinstein (1976) that are based on a general equilibrium setting. Howevannfgleteness, |
present Brennan’s model to show how asset prices are derived in this ggnditalium setting.

Brennan (1979) extends the work by Merton (1973) and Rubinstein (1976) to shdwvethat t
BSM can be derived by assuming Constant Absolute Risk Aversion (CARi&ygmees combined
with the normality assumption of the price of the underlying asset.dllbgving section briefly
describes Brennan's model. His methodology and assumptions will be appliedhimdelyater. In
his model, Brennan assumes separability in a two-period utility Gmatid period-zero endowment.

Hence, a representative investor faces the following exghetitdely maximization problem:

Max {Co.X; | U(Co) + EV[VV:L] (3.1)
Where
N N
W, =(W0 ~Cy -0, Poj](1+rf )+ xR,
j=1 j=1
N
=W, -G,) (1+ Iy )+ ij (Pl] Ry (1+ ry ))
j=1
where

Utility function at period 0,

<

c
N~
~—

) Utility function at period 1,

W, Initial wealth of a representative investor,

W, Period 1 wealth of a representative investor,
G, Initial consumption of a representative investor,
X; Numbers of units of risky security j purchased,
Po; Initial price of risky security j (j=1,2,......,n),

P End of period price of risky security j,
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r Risk-free interest rate,

Solving the optimization problem using the Lagrangian method, First Order Goadit
(FOCs) become

U'(Co)- (141, JE[V'(W,)]=0 (3.2)
E[V'W)R |-y (141, JE [V'(w,)]=0 (33)

forj=1,2,....N. Using these FOCs and market clearing conditions are sufficient tondete

the B, . Dropping subscrigtand rearranging the above equation, we obtain

(e EVIW)] (2er)

(3.4)

E[V'W)R ] 1 [ VW )1}

This relationship is true for all assets. Assuming use of the expalnatility function and
bivariate normal distributidfi of the price of the underlying asset and aggregate wealth, this model
results in a risk-neutral valuation relation (RNVR) and hence, the B8kula.

Taking into account common practices in the market, the proposed gquileorium model
developed here uses results from Brennan and Rubinstein's models, i&®8{l@s an input and
adds another layer of equilibrium analysis to account for the bias. Thid ezsgéatially replicates
the market pricing mechanism where the market is adjusting the optiorrpricéhe BSM.
However, from a practical perspective, this adjustment can only be ltongl volatility, the only
unknown input to the model. Note that, in the absence of market frictions, RINM#®Id and the
BSM will be valid. In that case, this partial equilibrium model will be uessary and the model will
reduce to Brennan's model.

My model assumes heterogeneous agents interact in the monopoly retitkgt $wo cases
are considered: 1) no discrimination, and 2) perfect discrimination. Néndiisation refers to the
case where a monopolist doesn’t have the power to charge different pritiferent customers.
Perfect discrimination is the case where a monopolist can chargenliffeices to different
customers.

The model considers a two-period economy with petied8, 1 There are two different

types of agents: asset owners and options writer. There are sssatabwners but only one option

2 A normality assumption can be appropriate whenraterlying asset can take on negative values (Breft979)).
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writer’’. Both the asset owners and the option writer attempt to maximize theiphnttlity,

which is the sum of utilities at periods 0 and 1. The asset owneiliskaeverse. Their utilities at each
period are concave and time-separable. The option writer is risk-naudralrites options in a
monopoly market environment. At period 0, both the asset owners and the optaraveréqually
endowed with physical goods. However, asset owners expect additional pggsidslin period 1
(e.g., from harvesting their crops). The price of physical goods at timen@wa for certain.
Although the price at time 1 is uncertain and unknown, parameters that govericelgigtribution
are public information and therefore known for certain at period 0. Due symaertainty, each
asset owner decides to buy put options to hedge the future price ungeisiiritassume that each
asset owner has a unique preference for a unique strike, e.g., each assetamia® purchase the
options for a particular strike and does not want to purchase any opti@my fother strikes. Each
option provides protection for one unit of physical good. Options trading takesgblme 0. In this
model, market participants are assumed to use a Black-Scholesmptiog-model to price the
options. With the well-known limitation of the Black-Scholes model, the etamposes an
additional price adjustment (the “Bias”) to the theoreticalgpof the options”. In equilibrium,

options buyers and seller agree on an optimal bias level.

Notation
S Bias (in dollars)
Popt The option price calculated from BSNP{, +S is the real option price that asset
owners actually pay)

re Risk free rate of return

a Risk aversion coefficient (Arrow-Pratt’s coefficient of aluge risk aversion)
P, Price of underlying asset at time 1

K; Strike price preferred by asset owner

Q Quantity of physical goods that asset owrrisrendowed with in period 1

A Quantity hedged by asset owier
W, Initial wealth of asset owner

H Fixed trading cost

o Variable trading cost (per Unit of physical good)

2L This is comparable with the real-world situatiBor example, an insurance company sells insuransevieral policy holders or there are
many options buyers with a limited number of optidraders.



21

3.1 The asset owner’s problem

The model assumestypes of asset owners with identical and separable utility functions.
Each type of asset owner prefers a different strike and has arcaep@ntity of physical good at
period 0. This quantity is known for certain and is also publicly known. The gfribe endowment
at period 1 is unknown and is assumed to follow a lognormal distribution. Tledreatypes of
assets: the endowment and the options on the endowment. Asset owners cae putdaatfons to
hedge against the price uncertainty of the goods during period 1. Asset owmarisadli@ved to
borrow money to buy options.

An asset owner’s objective is to allocate his endowment into consumpgobnayperiods
to maximize his total utility. An asset owners’ utility is assumedetoeipresented by an exponential
utility function. In period 0, each asset owner has to decide the optiontguhatihe wants to buy to
hedge against the price uncertainty. The only difference among aseattgpes is that they prefer
different strike prices. For example, asset owners ofitppefer strikeK; , i.e. their utility can be
represented ad; = f(Ki) whereU; is the utility function for asset owner type

farmer

Asset owner’s problem is to maximize his utility by choosii@, andA . Each type of

asset owner’s optimization problem and budget constraints are shown in e(@dtibpand (3.1.2)

respectively.

MaX {leg\rmer’A} U (Cigarmer) + EV [V\/Il] (311)
Where
W, = (W, —CE™ — A (P, +S)} L+, )+ A maxk, - B 0]+ QR (3.1.2)
— IPZERN J
~— Vs
Left-Over Initial Options Additional
Endowment payoff Endowment

From equation (3.1.1)) () is utility at period O an(EV[.] is expected utility at period 1. The

consumption at period 1 is comprised of: 1) The left-over initial endowyrggthe options payoff,

and 3) the additional endowment at period 0. The left-over initial endowméet left-over

endowment after the asset owner allocates his initial endowMénxiato consumption C,2™")

[¢]

and purchaseg\ options at the pricéPOpt + S) whereP

wot 1S the theoretical option price derived
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from the BSM, andSis the additional price of the option (the bias). This left-oveloement is
invested to receive a rate of retur% per yeaf”.

Dropping the asset owner’s superscript and solving the optimization prohilegrthes
Lagrangian method, First Order Conditions (FOCs) become

C farmer . U -(Cofarmer)_l_ E{VI(Wl)déj:i\éner :| Y (C farmer) E[V 1+ r )] 0 (3.1.3)
ie. U’ ()= E[v (W) (L+r, )] (3.1.4)
A E[v(wl)djv,; }0 (3.15)
Equation (3.1.5) can be written as
E[V' W) (maxk-B.0]-(P,, +S)(1+1, ) )|=0 (3.1.6)
e[V W) (mak-5.0]) |= (P, +SFE[V' W) (1+1,)] (3.1.7)
Plug in FOC from g
eV W) (madk-B.0]) |=(p,, +Sku(cim™) (3.1.8)

Note that with the exponential utility used in Bnan, utility function takes the form of

U(Wl):( 1jexp(—a*Wl) (3.1.9)

a

2 The rate of return can be negative in case ofjitayrcost of future goods and can be positive Beaaf opportunity cost of capital.
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U, (W,)=exqd- a*V\/l)dd—V;{ (3.1.10)

Therefore, equation (3.1.3) becomes

ex;{— aCO)
—Elexd(- {<W Co— ARy + S )) (141, )+ A mak - B o+ @B (141, )]0 G
expl-aG})
L+1y (3.1.12)
- Elexdl(- {<w Co— APy +S)) (141, )+ A mafk - B 0]+ Q5|
and equation (3.1.5) becomes
ex {<W ~Cy,—A (Popt+S )>(1+rf )+ A max[k—l51,0]+Ql5l})
E =0 (3.1.13)
*(- ( P+ S (141, )+ max{k-F, 0])
separating the terms that are known with certainty,
exp( {< o * Popt*S*» (1+rf)}) 3119

* Elexpl(- a){A max[k R0+ QR ) (max{k- B 0]- (B, + S ) (1+1,))]=0

cancelling out the exponential term that is knavith certainty and rearranging some terms,

E[exp( {A ma><{k P O]+QP}) (max{k—lsl,o] Popt+S) (1+rf))]:0 (3.1.15)
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E|exd(-a){ A" max{k - R 0]+ QR | ) max k- B 0|
- e[exd(-a){A mafk-F ol QB (B + ) (er,))] G110

E|expl(-a){ A" max{ k- P,.0 |+ QR } ) max{ k- P, 0|
(P +S) (1+r *E[exp( {A max[k P 0]+QP})] (3.1.17)

opt

The last equality results because the option [siteken as exogenous from the BSM and,

farmer*

hence, is known with certainty at period 0. Thesldamand function$ ) becomes

S o R 6119

- 2
By the lognormality assumption, we ha®e~ log Normal(ln(P0)+ (rf —%JT ,aﬁ] :

Therefore, the probability function d-?i can be written as

f(R) 1 (_%j{'n(ﬂ) |n(p0)_(rf _U;HZ

=———&€xX
\/272'0\/?P1 (gﬁ)z
The asset owner’s demand function is then
M 1
Sfarmer* :_1* _ P
M, (1tr, opt (3.1.19)
Where
M. - 1
' V2rodTR,
. ln(a)—ln(Po)—[rf —(’Zﬂ (3.1.20)
*J'max{k—lsl,o]ex ((—a){A* ma><{k—|51,0]+lel} );{ ( J_)Z 2 dP,
A oV T
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3.2 The Option writer's problem

The option writer operates in the monopoly market. simplicity, the option writer is assumed
to be a risk-neutral agent. For such a risk-neaigaht, his objective of maximizing his total exeec
utility is equivalent to maximizing his total exped profit. Note that if the option writer is agsed
to have the usual concave utility function, thelysia will remain the same but his decision regagdi
the amount of the options and the price of the Wilide different. The option writer’s total revea
derives from the sales of options. In return, Ise acurs fixed cost and variable cost resultitgnfr
selling options. His fixed cost can be thoughthesdtart up costs such as the payment for thetaght
use the seat on the exchange and his variableaodte thought as the cost of hedging his portfolio
In period 1, once the price of the asset is kndtv@ option writer is also responsible for the papdf
the options he sold. Following the standard monpparket framework, the monopolist views the

market demand as his own demand. His maximizatiobl@m can be formulated as

E[nm,1=zn:(Pom+S(A))A—H ZcA E{mep kO)A}[lfrfj (3.2.1)

i=1 i=1

where S(A ) follows from (3.1.19) and = 1,2,3,....1" asset ownercrepresents the

marginal cost andH represents the fixed cost. By substituting theatsdrfrom the asset owner, the

above maximization problem can be written as

O L ] B 2
_E{Zmin(ﬂ—k 0)A [le
= f

(3.2.2)
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The solution forA is characterized by the following FOC:

A d[[Popt+M2(A)* S —Pom]A] L (3.2.3)

1+r;

—c+E[min(Pl—ki,O)][ ] , fori=12.n

This equation can be thought of as representsituation in which the monopolist equates

his marginal revenue to his marginal cost.
3.3 Equilibrium

To analyze market equilibrium, | consider two €lifint cases. The first case assumes that the
option writer operates in a market where he is lentthimpose different biases on different asset
owners, denoted as a “no discrimination” case. Ehsmilar to the classic monopoly market where
the monopolist cannot conduct any discriminatiomagnhis patrons, i.e., options with different
strike prices are charged the same bk On the other hand, the second case, denotetpasfact
discrimination” case, allows the option writer teacge different biases for each asset owner. # thi
case, he treats each individual asset owner’s dé@sone of different demands from different

markets and maximizes the profit for each asseeowseparately.

Case I: No Discrimination Case

In the no-discrimination case, the option writetunable to practice price discrimination
among asset owners, i.e. he has to charge theleaet®f bias to all asset owners. This case can be
thought of as one in which the option dealer igging a flat fee for each option regardless okesi
and quantity or the case where he is regulatetidgovernment and is only allowed to charge a
certain amount of fee across asset owners. Therogtiiter’'s total revenue is the summation of BSM
price and the bias that he charges each asset .olireetotal cost of the option writer is composéd o
fixed cost and variable cost. The fixed cost regmescosts that he has incurred, such as the egeehan
seat and opportunity cost, in order to become @ioopriter. The variable cost represents costs
associated with each individual option transactéog,, dynamic hedging costs that increase with the
guantity of options sold. In equilibrium, the opéihguantity sold to each asset owner is charaeigriz
by equation (3.2.3) with the additional condititvat the additional charge (bias) is equal amonetass

owners, that is
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Sfarmer* — ijarmer* where i, ] — 1.2,----n (3.3.1)

with S™™" defined by equation (3.1.19), (3.1.20) and (2)L.Although there is no

closed-form solution for equation (3.3.1), the malggests that the optimal biaS*() can be

written as a function of the following parameters
S = flak,PR,o% 1, Pylr kP02 T)Q,c) (33.2)

The following diagram graphically illustrates thgtion writer's maximization problem. The
diagram assumes zero fixed cost, zero variableacwbthree asset owners in the market. Each asset

owner exhibits linear demand. The right-hand-sildé¢ igpresents the total market demand. To

maximize his profit, the option writer chooses titimal level of bias § ) represented by the
shaded are . By varying the bias lebel dption writer can find the bias level that pdag
him or her with the greatest profit level, i.eg fargest shaded area. The result produced by this

numerical method is presented in the next section.

Figure 1. Demands By Strikes: Case | No Discriminébn

Asset owner Asset owner Asset owner

(Strike = K1) (Strike = K2) (Strike = K3) Total Market

Demand

S*

Al Q A2 Q A3

v

Ovw

Case II: The Perfect Discrimination Case
In contrast to the no-discrimination case, theasptiriter in the perfect-discrimination case
can charge different level of biases to differesset owners. In this case, the option writer treath

asset owner as if he or she followed an individiemhand curve. The option writer is maximizing his
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utility by maximizing the profit from each demanagiree. With the same cost structure as the no-
discrimination case, the option writer's maximipatiproblem is shown in (3.2.1)and can be broken

down into maximizing profit for each asset owne&lsnand, i.e.,

eriter = i]‘_‘[l (333
i=1

Morier =[P + S (A1) oA ~E[min(?, -k, 0)A |
[P+ S (A0)A, —cA, — E[min(B -k, 0)A |

+ K 4P+ S0 (A))A, —cA, — E[min(B, —k; 0)A |
“H

Similar to case (1), the solution is characterizge@quation (3.2.3). However, since the

monopolist has the ability to charge different d@sdifferent asset owners, he is not subjeché t

equality constraint given by equation (3.3.1). Aseld form solution fo‘ﬁ* does not exist. However,

S* will be a function of the set of variables showreguation (3.3.2). Graphically, the model can be

represented b y the following diagram:

Figure 2. Demands By Strikes: Case Il Perfect Disamination

Asset owner 1 Asset owner 2 Asset owner 3
(Strike = K1) (Strike = K2) (Strike = K3)
s 4 S4
Sl s
M Dl - MR2 D2 MR3 D3 o Q
VQ Y > Q »
Al Az A3

The shaded area represents the profit that theroptiiter is able to make from each types of
asset owner. As mentioned earlier, the only diffeegbetween each type of the asset owners is the

preference on the strike prices. By choosing thiengb bias level corresponding to the demand of
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each asset owner type, the monopolist conducrtisr pricing strategy by maximizing each
shaded area separately.

In the models presented above, the option writposes an additional cost or “bias” on
options sold to asset owners. As described initds@ture, this bias accounts for imperfectionthim
BSM, such as the violation of several model assiomptsuch as constant volatility and frictionless
markets. However, when pricing options using th&/B8 its variations® , instead of adjusting in
terms of dollar amounts, practitioners typicallyust the volatility, the only unknown input in the
model, to take into account factors that the méaitd to represent. The implied volatility inverted
from the options prices is thus contaminated by #ldjustment. The next section presents a

numerical analysis of this theoretical model.
3.4 Numerical Analysis

This section performs a numerical analysis of tie®tetical model using Matlab. First, | plot
the asset owners’ option demands. Next, | simutatdel equilibrium for both of the cases discussed
above: (i) the no-discrimination case and (ii) pleefect-discrimination case. The code used in this

section is provided in Appendix A.

Demand for Options

Option demand $™™" ) is defined by equations (3.1.19), (3.1.20) @d.21). Using the
following initial values:a =1, P, (orF, for futures) = 10 (sigma) =0.25, T =1, r,=0.05, Q

=10, Figure 3 shows the demands derived from diffetygres of asset owner with various strike
preferences. Since the demand function involvegnation over the density function of the future
price, a numerical integration technique is empdoyihis is accomplished by dividing the range of
possible values into small trapezoids. Integratieer a certain range of values is performed by the
area summation of these small trapezoids. A peater for a higher strike results in a steeper
demand curve than that for a lower strike. Thismeehat, since an asset owner generally prefers

higher strikes for put options, the amount of e he or she is willing to pay increases.
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Figure 3. Farmer Demands (Base Case)
Base cased@ =1, F, =1, p=1,0=0.25, T=1,; =0.05,Q =10)

Figure 4 shows sensitivity of the demand curve hgadot shows the change of demands with

respect to the change in each parameter whilernglather parameters constant. The decrease

(increase) i, T, 0, Q and F, results in a demand curve tilting downward (upwarto interpret

this result, we can use the change in the risksamercoefficient §) as an example. Such a decrease
in the this coefficient means that the asset owasrbecome less risk-averse and therefore is less
willing to pay for the surcharge or bias from puasimg the options. Therefore, at the same value for
which he is willing to purchase the options, hiflimgness to pay for the bias decreases; hence, his
demand tilts downward from its original positiorhelimpact of the risk-free rate appears to be the
opposite, i.e., a decrease (increase) in the resk#fate results in the demand curve tilting skght
upward (downward). This can be explained by comsige¢he opportunity cost of money. When the
opportunity cost of money decreases, the assetrdvaz®emes more willing to pay for the surcharge,

as indicated by the asset owner’s demand tiltingaug.



31

Figure 4. Asset Owner Demands Using Different Paraaters
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Equilibrium Analysis
To analyze the model equilibrium, | assume injiatameters similar to those of the previous

section. | further assume that the market conefdisree asset owners with respective strike

preferences of 0.9, 1.0, and 1.1. With currentriufrices {,) at 1, these strikes can be thought of

as the put options with 90%, 100% and 110% strikes, the options are out-the-money, at-the-

money and in-the-money respectively. The monopslsbfit maximization problem follows

Equation (3.2.1), wher&™™" is defined by equation (3.1.19), (3.1.20) and @&.L.The monopolist

simultaneously choosea* fori =1, 2, 3 to maximize his expected profit functiorf3.2.1).

However, since each asset owner is facing a pHysicstraint, he is not allowed to purchase more
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put options than the quantity he is endowed with{®grefore, each asset owner is facing additional

constraints as follows

A <Q , for =123 (3.4.1)

The optimization problem searches for the optinpdilom quantity sold to each asset owner

(A* fori =1,23) that will maximize the monopolist's expected jiréidnction, the objective

function. The optimal level of bias is then deri\tquubstitutingA* into the S* equation in (3.1.19),

(3.1.20) and (3.1.21).
To complete this task, | employ the non-linear ¢@mst functionfminconsearch algorithm

in Matlab. This function searches for the valué\othat minimizes the objective function.

Therefore, to apply this function to the problemultiply the monopolist’s objective function by.-1
Hence, the objective function becomes a global miation problem.
The equilibrium analysis is done for two separatges: 1) the no-discrimination case, and 2)

the perfect-discrimination case. The no-discrimoratase requires additional constraints thaticstr

the optimal bias ﬁ* ) to be equal for all asset owners, i.e.,

S =93 , for i#]j (3.4.2)



Table 1. Equilibrium Analysis: Case | No Discrimingion

Base
Parameters  value H change ¢ change a change fo change o change rf change Q change T change
H 1 0.9 1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
c 0.1 0.1 0.1 0.09 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
a 1 1 1 1 1 0.9 1.1 1 1 1 1 1 1 1 1 1 1
fo 1 1 1 1 1 1 1 0.9 1.1 1 1 1 1 1 1 1
o 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.24 0.26 0.25 0.25 0.25 0.25 0.25 0.25
rf 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.06 0.05 0.05 0.05 0.05
Q 10 10 10 10 10 10 10 10 10 10 10 10 10 9 11 10 10
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.9 1.1
K=0.8,
09,10,
11,12
w
w
Result
S 0.063 0.063 0.063 0.057 0.069 0.084 0.072 0.039 0.095 0.084 0.065 0.063 0.062 0.054 0.072 000866
A(K=0.8) 6.137 6.137 6.137 6.883 5.463 2.880 5.755 9.711 1.031 3.139 6.468 6.152 6.122 5.945 6.330 361804
A(K=0.9) 8.259 8.259 8.259 8.781 7.777 6.027 7.872 10.000 5.030 6.214 8.379 8.268 8.249 7.843 8.659
A(K=1.0) 8.936 8.936 8.936 9.297 8.597 7.375 8.633 9.806 7.029 7.510 8.995 8.941 8.930 8.354 9.496 796222
A(K=11) 9.069 9.069 9.069 9.331 8.820 7.906 8.846 9.580 7.922 8.004 9.118 9.072 9.067 8.389 9.730 890024
A(K=1.2) 9.044 9.044 9.044 9.248 8.848 8.109 8.876 9.416 8.289 8.186 9.094 9.045 9.043 8.308 9.764 891633
Total A 41.444 41.444 41.444 43.540 39.504 32.297  39.981 48.512 29.302 33.052  42.054 41.478  41.41138.839 43.979 33.027  42.179
Profit 7.362 7.362 7.362 7.787 6.957 6.917 7.530 11.625 4.475 6.778 7.799 7.433 7.293 6.383 8.383 6.660 7.902
Change S 0.000 0.000 -0.006 0.006 0.021 0.009 -0.024 0.032 0.021 0.002 0.0000 0. -0.009 0.009 0.019 0.003
Change Total
A 0.000 0.000 2.096 -1.940 -9.147  -1.463 7.068  -12.142 -8.392 0.610 0.033  -0.033 -2.605 2.535 -8.418 0.735
Change Total
F 0.000 0.000 0.425 -0.405 -0.445 0.168 4.263 -2.888 -0.584 0.437 0.00D69 -0.979 1.021 -0.702 0.540




Table 2. Equilibrium Analysis: Case Il Perfect Discimination

e

Base
Parameters  Value H change ¢ change a change fo change o change rf change Q change T change
H 1 0.9 1.1 1 1 1 1 1 1 1 1 1 1 1 1
C 0.1 0.1 0.1 0.09 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
a 1 1 1 1 1 0.9 1.1 1 1 1 1 1 1 1 1
fo 1 1 1 1 1 1 1 0.9 1.1 1 1 1 1 1 1
o 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.24 0.26 0.25 0.25 0.25 0.25 0.25
I 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.06 0.05 0.05 0.05 0.05
Q 10 10 10 10 10 10 10 10 10 10 10 10 10 9 10 10
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.9 1.1
K=0.8,
09,10,
11,12
Result
S (K=0.8) 0.091 0.091 0.091 0.085 0.096 0.084 0.097 0.077 0.092 0.088 0.093 0.091 0.090 0.084 0.097 0.0804
S (K=0.9) 0.086 0.086 0.086 0.079 0.092 0.077 0.095 0.051 0.102 0.084 0.087 0.086 0.085 0.077 0.094 0.08m8
S (K=1.0) 0.061 0.061 0.061 0.053 0.068 0.048 0.073 0.035 0.096 0.058 0.063 0.061 0.060 0.048 0.073 0.05%64
S(K=11) 0.041 0.041 0.041 0.041 0.041 0.040 0.043 0.028 0.073 0.039 0.044 0.042 0.041 0.040 0.043 0.03B15
S(K=1.2) 0.034 0.034 0.034 0.034 0.034 0.033 0.036 0.021 0.048 0.032 0.037 0.035 0.034 0.033 0.036 0.03189
A(K=0.8) 3.241 3.241 3.241 3.791 2.728 2.955 3.459 5.698 1.328 2.708 3.717 3.280 3.203 2.660 3.804 2.3485
A (K=0.9) 6.488 6.488 6.488 6.967 6.042 6.653 6.353 9.113 4.465 6.199 6.745 6.510 6.467 5.987 6.990 6.6107
A(K=1.0) 9.067 9.067 9.067 9.528 8.651 9.668 8.597 10.000 6.952 9.005 9.119 9.067 9.067 8.701 9.456 8.98330
A(K=11) 10.000  10.000  10.000 10.000  10.000 10.000 10.000 10.000 8.941 10.000 10.000 10.000  10.000 9.000 11.000 10.000
A(K=1.2) 10.000  10.000  10.000 10.000  10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000  10.000 9.000 11.000 10.000
Total A 38.797 38.797 38.797 40.285 37.422 39.275 38.409 44.812 31.687 37.912 39.581 38.857 38.73735.348 42.250 37.641 39.741
Profit 7.631 7.631 7.631 8.026 7.250 7.493 7.769 11.959 4.588 7.225 8.045 7.700 7.563 6.644 8.646 7.112 8.138
Change Total
A 0.000 0.000 1.488 -1.375 0.479 -0.388 6.015 -7.110 -0.885 0.784 0.060 -0.059 3.449 - 3454 -1.156 0.944
Change Total
F 0.000 0.000 0.395 -0.381 -0.138 0.138 4.329 -3.043 -0.406 0.414 0.06968 -0.987 1.015 -0.519 0.507
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Table 1and Table 2 show the numerical analysidtsefor the no-discrimination case and the
perfect -discrimination case, respectively. In plegfect discrimination case, a monopolist maximizes
his expected profit by charging an asset owner aitigher strike preference (in-the-money (ITM)
put option) a lower bias price in order to boositinedged quantities. The hedged quantity is lmighe
among these asset owners than that for the lowke $out-the-money (OTM) put option) asset
owners. In all scenarios, the monopolist’s abiityset different levels of bias for different asset
owners allows him to increase his profit. In thedaase, this ability to discriminate increases his
profit from $7.36 to $7.63.

The result of the sensitivity analysis is similaboth cases. As we should expect for a risk-
neutral decision maker, the change of fixed cotsfiduld be viewed as a sunk cost that turns out to
have no impact on the quantity hedged and the Evaias. A decrease in variable cosj (eads to a

decrease in the level of bias and therefore araser in the quantity hedged. Similarly, a decrgase

future price ¢,) and risk-free rater( ) leads to a smaller bias level and a higher qtyeiéidged.

However, decreases in volatilityr(), endowment@), and time ) produce an opposite result.
Finally, a decrease in the risk-aversion coeffic{@presults in a higher quantity hedged and lower
profit in the perfect-discrimination case and wado quantity hedged and lower profit in the no-
discrimination case.

The bias resulting from the model can producelatiity smile. To show this, | calculate the

prices of put options using similar parametersasé in the base case, i.B;, = 1,r; =5%, T =1,

o =25% andk =0.8,0.9,1.0,1.1, and 1.2. The second colunifable 3 and Table 4 shows the
BSM prices for the no-discrimination case and tbdgrt-substitution case, respectively. In the top
panel, the third column shows the bias level cateal using parameters from the base case as shown
in Table 1 andable2. On the middle and last panels, the third colghmmws the bias level calculated
from the case where the variable cas} € 0.9 and the risk aversion coefficient (a) =, 1.1

respectively. The market price paid by asset owisdigee summation of the BSM price and the bias
level shown in column four. Finally, the impliedlatlity in column four is calculated by searching

for the volatility that equates the BSM price tistimarket price.
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Figure 5. Implied Volatility Across Moneyness: Casé No Discrimination
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Figure 5 shows that when a constant bias adjustisi@pplied to the BSM price, the implied
volatility smile can be generated. A decreasedditrg-variable cost leads to a decrease in the bias
and a downward shift of the implied volatility cernvAs asset owners become more risk averse, i.e.,
as the risk aversion coefficient increases from 1.1, the bias increases, leading to an upwafd shi
in the implied volatility curve.

The volatility curve behaves differently for therfect discrimination case. As shown in
Figure 6, the volatility curve exhibits a higheasifor an 80% strike and a lower bias for a 120%
strike. Moreover, the volatility curve slopes dovard. As the cost of trading decreases, the vdiatili
curve tilts downward with a larger decrease in tifithafor an 80% strike. The decrease in variable
cost doesn’t impact the higher strikes (110% ar@®d)2hat already have a lower bias amount. This
could also be driven by the profit-maximizing pretnl of the monopolist in which he tries to
maintain a lower amount of bias for these assetosvim order to increase their quantity hedged. As
an asset owner becomes more risk-averse, he isgnitl pay the higher bias represented by the
upward tilt of the implied volatility curve.
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Figure 6. Implied Volatility Across Moneyness: Casél Perfect Discrimination
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Table 3. Implied Volatility Calculation: Case | No Discrimination
Bas¢

K BSM Price Bias (S Market Prict IV: Base Cast
80% 0.0z2 0.06: 0.08¢t 48.16%
90% 0.05( 0.06: 0.11: 43.69%
100% 0.09t 0.06: 0.15¢ 41.84%
110% 0.15¢ 0.06: 0.217 41.77%
120% 0.22¢ 0.06: 0.28¢ 42.94%

Trading Cost = 0.(

K BSM Price Bias (S Market Prict IV: Lower Trading Cost
80% 0.02: 0.051 0.07¢ 46.03%
90% 0.05( 0.051 0.107 41.84%
100% 0.09t 0.051 0.15] 40.14%
110% 0.15¢ 0.051 0.211 40.11%
120% 0.22¢ 0.051 0.28: 41.24%

Risk Aversion Coefficient = 1

K BSM Price Bias (S Market Prict IV: Higher risk aversion
80% 0.02: 0.07: 0.09¢ 51.19%
90% 0.05( 0.07: 0.12: 46.33%
100% 0.09t 0.07: 0.167 44.27%
110% 0.15¢ 0.07: 0.22¢ 44.14%
120% 0.22¢ 0.07: 0.291 45.35%
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Table 4. Implied Volatility Calculation: Case Il Perfect Discrimination

Bas¢

K BSM Price Bias Market Prict 1V: Base Cast
80% 0.02: 0.091 0.11: 57.51%
90% 0.05( 0.08¢ 0.13¢ 50.43%
100% 0.09¢ 0.061 0.15¢ 41.30%
110% 0.15¢ 0.041 0.19¢ 35.96%
120% 0.22¢ 0.03¢ 0.25¢ 35.00%

Trading Cost = 0.C

K BSM Price Bias Market Prict IV: Low er Trading Cost
80% 0.02: 0.08¢t 0.107 55.52%
90% 0.05( 0.07¢ 0.12¢ 48.38%
100% 0.09¢ 0.05: 0.14¢ 39.15%
110% 0.15¢ 0.041 0.19¢ 35.96%
120% 0.22¢ 0.03¢ 0.25¢ 35.00%

Risk Aversion Coefficient = 1

K BSM Price Bias Market Prict IV: Higher ri sk aversior
80% 0.02: 0.097 0.11¢ 59.49%
90% 0.05( 0.09¢ 0.14¢ 53.07%
100% 0.09¢ 0.07: 0.16¢ 44.54%
110% 0.15¢ 0.04: 0.197 36.49%
120% 0.22¢ 0.03¢ 0.261 35.56%

Figure 7. Implied Volatility Across Time-to-Maturit y: Case | No Discrimination
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Furthermore, the partial equilibrium model aldowat the implied volatility to be different
for different times to maturity. Figure 7 and Figy show the plots of implied volatilities acrossd
to maturity ranging from 0.5 years to maturity (epgmately 120 business days) to 1.3 years to
maturity (approximately 312 business days). Fermtb discrimination case, the option writer is
forced to charge the same amount of bias to aditassners. The plot of the bias is shown in Figure
using the right Y-Axis. Although the bias is incse& with time to maturity, the implied volatility
exhibits a smile across the time to maturity rageshown in Figure 7, the implied volatility fdret
options with 90% and 110% moneyness decreases tivhero maturity is less than 0.8 year and
increases afterward. The implied volatility of #%W&€M option exhibits increasing implied volatilitysa
time to maturity increases from 0.5 years to 1&ge

In the perfect-discrimination case, the optiontevrhas the ability to charges different biases
to different asset owners.
Figure s shows different levels of bias across time. Asmight expect, for put options, at a fixed
time to maturity, the bias is lowest for ITM puttigms and highest for OTM put options. As time to
maturity increases, the bias increases at a decgesaste for all moneyness levels. The implied
volatilities inverted from the summation of the End the BSM are plotted in Figure 9. The implied
volatility of options with 90% moneyness decreagetime to maturity increases. A mild smile curve
is observed for ATM options and an increase intildlais observed for a 110% moneyness option.

In order to explain the non-constant implied vititgtshapes (both across the strikes and
times to maturity), two points should be consideférst, examine the behavior of the option Véga
one of the most important option greeks. Vega ifiqdarly important when calculating the implied
volatility. Figure 10 shows the vega profile acrogsneyness and time to maturity. An option
displays higher vega as time to maturity increadethe same time to maturity, an ATM strike (or,
slightly, an ITM strike as time to maturity increa$ displays the highest vega value.

Second, different amounts of bias (e.g. bias shawrable 3, Table 4, Figure 7 and Figure
8). are derived based on demand and supply in #ikat Hence, depending on the moneyness level
and the time to maturity, the implied volatilityrcexhibit different shapes.

To explain how these two forces work togetheryassthat a bias amount of $1 is added to

the option price to get the total option cost. rhplied volatility of the total option cost is the

% \ega of an option measures the change in the pfittes option with respect to the change in thiatility of the underlying asset. For
this study’s purpose, vega is defined per 100 kmsigs of volatility, i.e., vega = 0.0045 meahatta change 1% of volatility will result in
a 0.0045% change of the option value.
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volatility that equates the BSM option price to thl option cost. As shown in Table 3, options
with higher vega have lower implied volatility, @ontrast to options with lower vega. Options can
have higher vega depending on their moneynessiraerd to maturity. An ATM will have higher
vega than a deep OTM option, or longer time to mitgtoptions will have higher vega than options
that are maturing soon. Therefore, the shape afitpked volatility will depend on the option price

the option moneyness level, the time to maturity ihe bias imposed on the option.

Figure 8. Bias Across Time-to-Maturity: Case Il Pefect Discrimination
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To show how the bias amount and the option veg wgether, let’s consider the shape of
the options with 90% strike across a range of difietimes to maturity. As shown in Figure 10, for
the same strike, as time to maturity increasedpgs the option vega. First, consider the perfect
discrimination case. As option vega increases title to maturity, the bias amount also increases,
although not fast enough to offset the increasega. As a result, the implied volatility appears t
decrease with time to maturity. However, for thediszrimination case, a similar situation occuns fo
options when time to maturity is less than 0.8 yelawever, once the time to maturity exceeds 0.8
year, an increase of the option vega could not emsgte for the increase in the bias amount. Hence,

the implied volatility appears to increase oves tlainge of time to maturity.
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Figure 9. Implied Volatility Across Time-to-Maturit y: Case Il Perfect Discrimination
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Figure 10. Vega (using 25% volatility and $1 Undesling Asset Price)
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CHAPTER 4. EMPIRICAL RESULTS

4.1 Testing Hypotheses

The theoretical model presented in Chapter 3 stigigeseral testable hypotheses. In this
chapter, several hypotheses are developed in trdgply to actual market data. Before proceeding
to explain the determinants of the bias, | firsimine the existence and the direction of the sasgu

the following testing hypothesis suggested by tieatetical model:
H1. Implied volatility is a positive biased estimatdgrfuture realized volatility.

To examine the H1 hypothesis, | construct a végiahlled “bias”, which is the difference
between the annualized implied volatility and thewalized realized volatility. The bias is measured
as an annualized percentage. For example, if theadized implied volatility equals 25% and the
annualized realized volatility equals 15%, the afized bias equals 10% (25%-10%). Details
describing the calculations of the implied vol&giland the realized volatility will be provided datin
this chapter.

Positive (negative) bias means that the impliedtidly over-(under-) estimates the realized
volatility. The simplest method to determine theesof the bias is to calculate the mean of the bias
across all observations. Another method is to segtige bias on a constant. The coefficient for the
constant (or the intercept) produced by the re@ess equal to the mean of the bias. The regrassio
method is preferred because it allows us to testhen the calculated mean (or the regression
coefficient) is statistically different than zetbthe mean/coefficient is statistically greatearnteero,
we fail to reject the H1 hypothesis, i.e., the iiglvolatility is a positive biased estimator of th
realized volatility. In addition, the regressiorpapach also allows us to adjust the standard errors
using standard clustered-data errors describeditatikis chapter. Given the data used in thisystud
ignoring the clustered nature of the data will diflthe standard error. This could result in over-

accepting the H1 hypothesis.
Define S ; to be the bias, the difference between the implaatility and the realized

volatility. The implied volatility (IV, ; ) is the volatility of the option witfT - tdays to maturity. The
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future realized volatility RV, ;) is the realized volatility of the underlying asdaring the current

timet and the time to maturity. To test the H1 hypothesis, the regression equata be written as

St=r+éng (4.1.1)

where y is the regression intercept. The magnitude andtitre of the bias can be
determined by the size and the sigy pfespectively. Ify is statistically greater than zero, the

implied volatility overestimates the future reatizeolatility, hence, we fail to reject the H1
hypothesis. Note that, in contrast to the hypothdisicussed in Section 2.2, setting up a hypotlimesis
this manner allows us to distinctively determine dlirection of the bias.

The regression models examining the bias deterrtsrae presented in equation (4.1.2) and
(4.1.3). The theoretical model in (3.3.2) sugg#sis the bias embedded in the implied volatilgty i

determined by the following variables: risk avensamefficient @), the option strike K ), the futures

price (F ), the futures volatility &), the risk free rater( ),the physical quantity@), the cost of

trading (C, ), and time until maturity of the optiond (). Unfortunately, the risk aversion coefficient

is the only variable that is suggested by the #t&al model, and it cannot be observed from the
market, at least from our data. This is becauseldlte does not contain information that can beskink
back to the risk aversion coefficient. However asguming that the risk aversion coefficient depends
on individual preferences, the risk aversion ceéfit is thus uncorrelated with other variables
included in the model. Hence, the omission of waisable will not bias the coefficients estimated f

other variables because the fundamental assunygitibe linear regression that the error terms are

uncorrelated with explanatory variables still holesaddition, the cost of trading,() is also not

available in the data set. However, dummy variatdpsesenting commodity exchanges are used
instead to represent different cost structure oh@mmmodity exchang Hence, except for the risk
aversion coefficient, these variables are incluakeéxplanatory variables in the regression models i
(4.1.2) and (4.1.3).

Similar to the H1 hypothesis, several hypothes@she constructed using these variables.
However, only the following hypotheses are devetbgee to the importance of strikes and times to
maturity on the bias as they are widely discusedte literature. Since the numerical analysis

presented in Chapter 3 suggests that the biavavifl simultaneously with respect to strikes and

2 Details about the dummy variables representingwodity exchanges are discussed at the end ofabi®a.
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times to maturity, across different strikes, thedeidias appears to have a smile shape and a
downward-sloping shape in the non-discriminatiosecand the perfect-discrimination case,
respectively. The numerical results further sugtestthe bias can take different shapes acrogstim
to maturity depending on the market situation. fdlewing hypotheses test these numerical

findings:

H2. The implied volatility bias is non-constant acresskes.

H3. The implied volatility bias is non-constant acrtases to maturity.

To capture the volatility smile and the downwampghg shape across the option strikes, the

2 2
option strikes are transformed uitmg(%j and Iog(%} , respectively. By constructioﬂng{%)

has a U-shape andg(EJ has a downward sloping shape across strikes. Hpos#ive coefficients

of these variables support the evidence of theesamnitl the downward slope of the biases across
strikes. Moreover, to capture the curvature oftitme to maturity, the square of time to maturgy i
also included in the regression model.

Moreover, the numerical results in Section 3.4 alsggest the impacts of these variables on
the bias. The increase in future price and physjoahtity should lead to an increase in the bias. F
the no discrimination case, the increase in vit\ashould lead to a decrease in the bias andhor t
perfect discrimination case, the opposite resutiusid. The risk free rate appears to have venjllsma
impact on the bias. Note that, although, accortiingection 3.4, the bias is defined in terms of the
dollar amount and the bias discussed here is dkfinterms of the annualized percentage, the signs
suggested by the numerical results should be tine sagardless of this unit difference.

Finally, the completeness of the data allows wextend the regression model in (4.1.2) and

(4.1.3) to test the following hypotheses:

H4. The implied volatility bias is different betweeuntp and calls.
H5. The implied volatility bias is different over time

H6. The implied volatility bias is different acrosetBxchanges.

To test the difference between puts and callserti#h hypothesis, the dummy variableis

included wherep =1 represents call options acyl=0 represents put options. In addition, to test
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whether the bias differs across time, dummy vageigbr different years are included. Finally, tstte
whether the bias level varies across the commaégithanges, the trading cost variabtg)(is
replaced by dummy variables to represent each Egehd hese dummy variables allow us to
compare trading costs across Exchanges. The nwahersult suggests that the higher the trading

cost, the higher the bias, i.e., we should seettieabias is higher for an exchange that has ahigh

trading cost. The empirical regression model fahefatures market can be written as:

F F\? o
St =a+pQ +p; |09(?j + 53 |Og(_j +ﬂ40320 +BsR o0+ Bel's + 5P, "
t

K )i (4.1.2)
+ BT + BoT 2 + B1oCP+ 0, Yoo + 0, +K +6,6Yog + &t
and the aggregate model used to test the differi@rtcading cost is:
F F\?
St=a+pQ +5; |09(Ij + B3 Iog(?j + 84020+ PsR s + Bel' + P
t t (4.1.3)

+ BT + BT 2y P1oCP+ 0, Yoo + 0, +K +6,9Yog + z/im Dexch, +¢, ¢

meExchanges

whereYy,is a dummy variable for year 199Q, is a dummy variable for year 1991, etc., ,

andDexch, is a dummy variable for exchangewherem represents an exchange included in the

data.
4.2 Data and Methodology

Futures and options data were obtained from ther@mdity Research Bureau (CRB). The
data set is comprised of daily futures and optiof@mation, including high and low prices, closing
price, volume, open interest, and option strikdthdugh there is an increasing availability of high
frequency intraday data, this study utilizes dd#ya rather than intraday data because the benefits
resulting from using higher frequency data do eeins to outweigh the marginal cost of dealing with
the massive data set (Neely (2004)), particulatigrmvanalyzing large numbers of commodity
markets, as | do in this study
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Ticker Commodity Exchange Contract Months* Period
Agricultural
C- Corn / No. 2 Yellow CBOT H,K,N,U,Z 1990-2008
CT Cotton/1-1/16" NYCE H,K,N,V,Z 1990-2008
MW Wheat/ No. 2 Soft Red CBOT H,K,N,U,Z 1991-2008
O- Oats/ No. 2 White Heavy CBOT H,K,N,U,Z 1990-2008
RR Rough Rice #2 CBOT F,H,K,N,U,X 1992-2008
S- Soybeans/ No. 1 Yellow CBOT F,H,K,N,Q,U,X 199108
SM Soybean Meal/ 48% Protein CBOT F,H,K,N,Q,U,V,Z 990-2008
W- Wheat/ No. 2 Soft Red CBOT H,K,N,U,Z 1990-2007
WA Barley, Western / No. 1 WCE H,K,N,V,Z 1997-2008
WF Flaxseed / No. 1 WCE F,H,K,N,U,V,X,Z 1993-2004
LB Lumber/ Spruse-Pine Fir 2x4 CME F,H,K;N,U,X 192008
Soft
CcC Cocoa/lvory Coast CSCE H,K,N,U,Z 1990-2007
DE Milk, BFP CME F.G,H,J,K,M,N,Q,U,V,X,Z 1998-2008
JO Orange Juice, Frozen Concentrate NYCE F,H,KXN,U, 1990-2008
KC Coffee 'C' / Columbian CSCE H,K,N,U,Z 1990-2008
LW Sugar #7/ White LCE H,K,Q,V,Z 1995-2008
SB Sugar #11/ World Raw CSCE F,H,K,N,V 1990-2008
Livestock
FC Feeder Cattle/ Average CME F,H,J,K,Q,U,V,X 12908
LC Live Cattle/ Choice Average CME G,J,M,Q,V,Z 192008
Precious Metal
GC Gold COMEX G,J,M,Q,V,Z 1990-2008
HG Copper Hig Grade/ Scrap No. 2 Wire COMEX F,GKM,N,Q,U,V,X,Z 1990-2008
PL Platinum NYMEX F,J,N,V 1991-2006
Energy
BO Soybean Oil/ Crude CBOT F.H,K,N,Q,U,V,Z 1990-200
CL Clude Ol NYMEX F,.G,H,J,K.M,N,Q,U,V,X,Z 1990-2@0
NG Natural Gas NYMEX F,G,H,J,K,M,N,Q,U,V,X,Z 19928
HO Heating Oil #2 NYMEX F,G,H,J,K,M,N,Q,U,V,X,Z 1992008

Note: Options’ contract months represent the epimanonths of the options. Contract months foltbw standard exchange symbols

below:
F = January H = March K = May N = July U = Smpber X = November
G = February J = April M = June Q = August V =t@er Z = December

All commaodities analyzed are listed in Table 5. §¢heommaodities are traded at various
major exchanges, including the Chicago Board oflér@CBOT), the Chicago Mercantile Exchange
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(CME), the Commodity Exchange, Inc (COMEX), the Néark Mercantile Exchange (NYMEX),
the New York Cotton Exchange (NYCE), the Minneap@iain Exchange (MGE), the LIFFE
Commodity Exchange (LCE), the Coffee, Sugar & Cdérehange (CSCE), and the Winnipeg
Commodity Exchange (WCE). When available, the Baan in 1990 and ended in 2008, although
some commaodities did not start options tradingl leder or the data are not available through the
data vendor until 2008. In those cases only aviagildata are included in the analysis.

The following section discusses the data constrnetiethod which can be best explained
through an example. Consider the corn market wtichiains data between 1990 and 2008, all
options traded during this period are included. Ewsy, if all daily observations are included, this
will lead to high correlation among observationd ardrop of correlation when options switch to the
new futures contract. Therefore, to reduce coltelamong observations over time, instead of using
daily option data, only options with 15, 20, 25, 38, 40, 45, 50, 55, and 60 days to maturity are
included and the clustered standard deviationpdsed in the next section, is used instead of the
usual standard deviation. The following diagram destrates the example of the data where each
option represents each observation.

According to the above figure, number of days teumity is determined as the number of
trading days from the analyzed date to the lagt déien the options were traded. Since the volatilit
calculated between Friday and Monday does not addhrimformation to the volatility level
calculated between trading days, | follow the apphoof Jorion (1995) of using the number of
trading days to maturity instead of the numberadérdar days to maturity. The days to maturity
value starts at 15 days in order to avoid extrerite ffluctuations during the last month of expioati
and ends at 60 days, which should be long enoughue adequate liquidity in the option markets
and to provide a reasonable estimation of the éuteialized volatility. If there are many strikesded
on one futures contract (e.g., the August 2006raohbf natural gas 2006 has more than 250 strikes)

some of these strikes are chosen to represensanaale moneyness ledel

% We are unable to accommodate all strikes tradedlyrdue to the restriction in the number of colugtim Excel 2003. However, strikes
have been carefully chosen with higher weight ts¢hwith the moneyness between 60% and 140% frerfuthre prices.
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Figure 11. The Example of Data Structure: Corn
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The final data clean-up process is to eliminateinagtive options. As options become deep
out-of-the-money (OTM) or deep-in-the money (ITMey become inactive. The values of deep
OTM options are reduced to the minimal tick valeer example, a deep OTM corn option will have
a closing value of 0.125 cents, the minimum tickiggor corn options. Although these options are
almost worthless, the exchanges continue to prahele closing values for settlement purposes. |
exclude these options from the data set becausmfied volatility calculated using these options
will be inappropriately large and could distort erealysis. To determine which options to use sk fir
search for the threshold strike, the first strikthwhe minimum option value. | then discard opsion

with strikes that are higher than the thresholitestr (for calls) and options with strikes that Eneer
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than the threshold strike (for puts). For deep laptions, | discard options with time value equal to
zero. Time value is the difference between theoogpirice and the intrinsic value. Similarly to the
deep OTM options, zero time value means the optioesleep ITM and are generally inactive. Due
to some limitations in the original data providgd@RB, | also had to discard options that appeared
to be inconsistent with their peers.

Currently, most research focuses on analyzingrtiptied volatility of ATM options, and, in
particular, calculating the implied volatility byging the average of the implied volatility values
two ATM put and two ATM call options. This is bes@uATM options are also more liquid and
hence produce fewer pricing errors. FurthermorekBes (1981) also suggests that ATM options
provide the best estimation of the subsequentlyzezhvolatility. However, focusing on the ATM
options does not explain volatility skew acrosies. Therefore, since my model suggests that the
option strike (or the option moneyn&$ss one of the determinants of the bias, | uncativeally
include options with a range of moneyness betw®&f &hd 150%. In addition, the definition of
ATM options can be different across different stigdiln this research, ATM options refer to options
with the moneyness ranges between 99% and 101%.

The empirical analysis proceeds in two stagest Flook for evidence of bias and then

apply the theoretical model to determine the sauotdias.
4.3 Clustered Data

Although the sampling procedure discussed earéiggdto alleviate the correlation issue
among observations over time, options from the damoees with similar days to maturity still have
higher correlation than those collected from défdrfutures with different days to maturity. For
example, options with 15 days to maturity from 8egiter 1990 corn will have higher correlation
among themselves when compared with options fropteBgber 1990 with 50 days to maturity or
options from other contracts. Although the coeéfits estimated from correlated data are still
unbiased, statistical inference will be incorreetéuse the standard error is too small, perhaps
leading to over-rejecting the standard null hypsitef the regression. | employ the clustered robus
standard error to correct for bias in statistio&tience from the data structure. The data iseledt
by the combination of the futures contract and nema days to maturity. The clustered robust

standard error is calculated as

% |In general, moneyness refers to the ratio ofestlikided by the futures price.
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m

Vcluster:(X'X)ilzuljuj(xlx)il (431)

=1

where

o= ax (4.3.2)

whereeg is the residual of th&" observation; is a row vector of explanatory variables
including the intercept, and is the total number of clusters that is in turnado the total number of
futures contracts. This clustered robust standawst & quite similar to the White robust standard
error except that the sum over each observatidvihite’s formula is replaced by the sum over each
cluster. In STATA, the optionluster  of theregress command automatically replaces the

normal standard error with the clustered robustdsied error.

4.4 Variables

Most explanatory variables are self-descriptive eaud be easily obtained. The risk-free rate

(r, ) represents the 3-month treasury yield postedieyDepartment of the Treastity Variable

2
Iog(EJ and {Iog(%ﬂ are the forms of the option strik& J and the future priceK ). By

construction, positive coefficients of these vaesalrepresent a downward slope and the volatility
smile across option strikes. The volatility Y of the futures is calculated using the annualized

historical volatility (HV) over the past 20 dayhis is

i-1 i-1

HV, = %i{ln(gJ—E(ln[gjﬂz *4/252*100 (4.4.1)

For our purpose, the futures market is assumée tmbiased. Therefore the realized

volatility is calculated by setting the meanlnE—'j from the above equation to be zero. The price
i-1

27 http://www.treas.gov/offices/domestic-finance/detinagement/interest-rate/yield. shtadcessed May 1, 2009.
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opt

of the option (p,"") is directly obtained from the option market pri€er the quantity demanded

(Q), since | do not have data for the quantity deredrfdr the options, | proxy the option demand

by the open interest of the futures. The dummyaldeis for years and exchanges follow the usual
convention. For example, the value is equal to @mwiihe year of the observation equals the year of

the dummy variable and 0 otherwise. The calculatiothe bias §) is discussed in detail below.
Bias and Implied Volatility Calculation

The bias of an option is defined as the differameteveen the future realized volatility of the
underlying asset over the remaining life of thaays and the option’s implied volatility, i.e.,

Bias = Implied Volatility — Realized Volatility (4.4.2)

The realized volatility (RV) is calculated as amaalized standard deviation of the daily

future return over the remaining life of the optixtording to the following formula:

RV, - T_lti{ [ j ["{Filmz * \J252%100 (4.4.3)

1=t

wheret denotes each trading days to maturity value obfitens andE[In[FF—iB is the
i-1

mean ofIn[—'J . Similar to the calculation of the historical viligy, the futures market is assumed

i-1

F
to be unbiased. Hence, the realized volatilityalealated by setting the mean Io{
i-1

J to be zero.
As a result, equation (4.4.3) is reduced to thesgroot of the sum of the squares of the return.
As suggested by Jorion (1995), to avoid the wedvin the Friday-to-Monday variance
effect in which the variance over the weekendighsly higher than the daily variance, the
annualized volatility is calculated using the sguaot of 252 trading days instead of 365 calendar

days.
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The calculation of the implied volatility is nqtiite straightforward because it cannot be
directly observed from the market. The Black forafdr calls and puts on futures are presented

below,
Call=e ™ [FN(d,)-KN(d,)] , Put=e " [KN(-d,)-FN(-d,)] (4.4.4)

Where

k is the strike priceF is the future pricer; is the risk free ratdl is time to maturity, and
o is the volatility of the underlying asset. Sinhestformula is not invertible, once the market psic
of the options are observed, the implied volatitityst be calculated through an iterative process. |
the end, the implied volatility is the volatilithat equates the option market price to the BSMepric
ie.,

PoptionBSM(O-IV ) = I:)optionMK (445)

where P, ..« iS the market price of the option alﬁﬁlpﬁonBSM(alv) is the BSM option value

with implied volatility (O-IV ) as an input. The iteration process used to sdar¢he implied

volatility must be done numerically. The most conmmaeans for finding implied volatility is
through the Bisection and the Newton-Raphson metlieiglewski (1997)). However, since the
result from using both methods is very similaretidled to use the Newton- Raphson method for
calculating the implied volatility. In a very fevases where the NR method failed to converge, the
bisection method was used instead. Table 6 shavwetult yielded by both the Bisection and
Newton-Raphson methods. Using various input paramethese two methods yield essentially the

same implied volatilities.
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Table 6. Implied Volatility Calculation from Bisection Method & Newton-Raphson Method

Implied Volatility

Price of Call Bisection Newton - Raphson
F K T r o Option Method Method
100 100 15 2.00% 30.00% 2.42 30.00% 30.00%
100 90 30 2.00% 24.00% 10.16 24.00% 24.00%
100 110 60 3.00% 15.75% 0.20 15.75% 15.75%
110 120 120 3.00% 14.00% 0.65 14.00% 14.00%

With most exchange-traded options priced usindt®B® or a variation of it that could allow
for early exercise rights, it is appropriate tocaddte the implied volatility using the generaliZz28M
formula that accounts for the early exercise ragid to use the Newton Rahpson or the Bisection
methods mentioned above to calculate the implidatity.

4.5 Summary Statistics

The summary statistics of the bias are shown bield The statistics summary is broken
down into categories puts, calls and a combinadfqruts and calls. The left panel summarizes the
bias for combined options. The middle and the rjggtels summarize bias for calls and puts
respectively. Summary statistics include numbershskervations, mean, standard deviation,
minimum, and maximum of the bias for each futuresket. The table also includes statistics by
group and statistics of all observations combined.

From the table, the average bias of all optiomslzned is 5.4%. The average bias is higher
for calls (6.1%) than for puts (4.7%). Soft comntigdi have highest bias (9.4%) and energy
commodities have lowest bias (4.0%). Soft commeslitilso have highest standard deviation (14.2),
lowest minimum of bias (-71.7) and highest maximafrbias (227.8). Livestock commodities have
the lowest standard deviation of the bias (6.@)hést minimum of bias (-19.9), and lowest maximum
of bias (60.3). Except for flaxseed, feeder califle cattle, and crude oil, the average of biascfls
appears to be higher than the average of biasutsr p

Heating oil has the lowest bias (1.9%), followgdspring wheat (3.0%) and soybean meal
(3.4%). Cocoa, coffee, and world sugar have highieses at 14.7%, 12.5% and 10.2% respectively.
Among call options, heating oil, life cattle, amutiag wheat have lowest biases and cocoa, coffee,

and world sugar have highest biases. However, ampongptions, heating oil, soybean meal, and



Table 7. Summary Statistics of the Bias (the meas in annualized percentage)

ALL CALLS PUTS

Markets Obs. Mean  Std Min  Max Obs. Mean Std  Min  Max Obs. Mean  Std Min  Max
Agricultural
Corn / No. 2 Yellow 17,750 5.3 8.4 -35 90.9 9772 .16 88 -292 909 7,978 4.3 7.9 -35 69.5
Cotton/1-1/16" 30,393 35 79 -172 844 15,794 3883 -17.1 844 14,599 3.2 73 -172 5238
Wheat/ Spring 14% Protein 12,194 3 75 -231 66.8 499 34 77 231 607 4,695 24 72 -212 66.8
Oats/ No. 2 White Heavy 9,572 6.1 13.3 -52.6 99.8 ,525 75 143 -52.6 99.8 4,047 4.3 116 -472 679
Rough Rice #2 15,802 6.6 95 -32.1 922 9,018 73 .7 9-321 922 6,784 5.6 9.3 -31 76.5
Soybeans/ No. 1 Yellow 28,540 74 116 -30.2 100.7 17,084 9.2 12.3 -30.2 100.7 11,456 4.8 10 -28.2 765.
Soybean Meal/ 48% Protein 23,916 34 105 -38.5 .9178 13,585 4.5 119 -385 1789 10,331 19 81 -26.81.4
Wheat/ No. 2 Soft Red 43,390 4.6 9.8 -224 87 25,20 5.3 104 -224 87 18,190 3.6 86 -183 611
Barley, Western / No. 1 5,746 5.5 7.3 -22 66.8 2,84 5.6 7.6 -22 66.8 2,901 5.5 6.9 -202 352
Flaxseed / No. 1 7,222 4 6.4 -22 45.6 3,778 37 6.622 45.6 3,444 4.2 6.1 -11.1 346
Lumber/ Spruce-Pine Fir 2x4 19,258 5.7 7.1 -19 81.8 10,330 5.8 72 -182 818 8,928 5.5 7 -19 56.6

Average 213,783 5 96 -52.6 1789 120,430 5.810.3 -52.6 178.9 93,353 3.9 84 472 814
Soft
Cocoa/lvory Coast 4,800 147 19.2 -275 1207 2,04820.2 21.2 -263 120.7 1,852 5.8 105 -275 741
Milk, BFP 24,044 8 109 -32.7 1011 12,750 8.6 11.829.2 101.1 11,294 7.2 101 -32.7 735
Orange Juice, Frozen
Concentrate 24,415 6 133 -71.7 927 11,628 8 14317 927 12,787 4.2 119 -716 694
Coffee 'C' / Columbian 28,857 125 158 -60.3 99.3 18,777 129 159 -60.2 993 10,080 119 154 -60.825
Sugar #7/ White 6,635 7.9 135 -283 1122 3678 4 8. 15 -283 1122 2,957 7.2 11.2 -282 63.6
Sugar #11/ World Raw 17,188 10.2 154 -253 227.8 ,98@ 12.2 183 -233 22738 8,202 8.1 11  -25.3 1512

Average 105,939 9.4 145 -71.7 2278 58,767 11157 -71.7 227.8 47,172 7.5 124 -716 151.2

12°]



Table 7. (continued)

ALL

CALLS

PUTS

Markets

Obs. Mean

Obs. Mean  Std Min Max

Obs. Mean  Std

Livestock
Feeder Cattle/ Average
Live Cattle/ Choice Average

Average

Precious Metal

Gold
Copper High Grade/ Scrap No. 2
Wire

Platinum

Average

Energy

Soybean Oil/ Crude
Crude Oll

Natural Gas
Heating Oil #2

Average

ALL

18,132 53

16,317 4.2
34,449 4.7
40,892 7.5
60,822 6.3
7,967 3.7

109,681 6.6

20,796 4.9
84,521 5
75,516 4.9
79,175 19
260,008 4

730,940 5.4

25, 4.2 56 -19.9 578
7,613 3.1 43 -122 336
15,863 3.7 5-19.9 57.8

19,659 7.7 10.4 -31.82.3

29,529 8.1 16 4581044
4,751 3.8 7.2 .924 357
53,939 6 7. 13.6 -584 104.4

11,8215.7 109 -331 107
47,854 4.8 9 .951130.8
39,555 5 12748  108.9
42,732 2.7 4 8 -56.8 76
141,962 4.310.2 -56.8 130.8

394,540 6.1 11.871.7 227.8

9,882 6.2
8,704 51

18,586 5.7 7.6

21,233 7.3 9.6

31,293 4.6 11.2

3,216 3.6 7.6

55,742 5.6 10.5

8,975 3.8 7.6
36,667 5.2 10.4
35,961 4.7 13.1
36,443 0.9 8.6
118,046 3.6 10.8

336,400 4.7 10.3
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spring wheat have lowest biases and orange juicd¢\sugar, and gold appear to have highest

biases.
4.6 Empirical Results

Empirical results are presented in two parts. firsepart shows the result with respect to
hypothesis H1; that is, to examine whether theiedplolatility is a positive biased estimator o th

future realized volatility. The second part shotes tesult with respect to the remaining hypotheses.

4.6.1 The implied volatility is a biased estimator of the future reatied volatility

The result of whether the implied volatility ib&sed estimator of the future realized
volatility is shown below. Table 8 and Table 9 emsthe regression result for hypothesis H1
(equation (4.1.1). Due to higher liquidity, ATM agts as opposed to non-ATM options are widely
believed to have the smallest bias. Hence, mosarels focuses their analysis of the bias embedded
in the options on ATM options. Following conventidmethods, | separate options into two types:
ATM options and non-ATM options.

Table 8 shows the regression result of the kin&TM options. Positive bias means that the
implied volatility overestimates the realized vdigt and negative bias means that the implied
volatility underestimates the realized volatility.

Examining Table 8, twenty out of twenty-six maskekhibit significant positive bias. Only
the soybean meal market exhibits significant nggdtias. The biases in cotton, oats, wheat, cocoa,
orange juice and heating oil markets are not $itzdlly different from zero. The overall bias is
estimated to be 1.108% which means that, when densg all markets, on average the implied
volatility over-estimates the realized volatility th.108%. ATM options on barley futures are shown
to have the highest bias at 4.35%. Soybean oibogpthave the lowest positive bias at 0.666%

The regression of the bias for non-ATM optionshswn in Table 9. All bias estimations in
all markets are positive and statistically diffarfom zero. The average of the biases in all ntaske
8.142%, approximately 7% higher than the estimate fATM options, consistent with general
belief.
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Table 8. Regression Result: Existence of Bias forTM options

Regression St 1 =)+ &g for ATM options where S 1 (bias) = implied volatility — realized volatility.

Market Bias Market Bias Market Bias

All 1.108***

Agricultural Soft Precious Metal

Corn/ No. 2 Yellow 1.835%* Cocoa/lvory Coast a4 Gold 0.805***

Copper High Grade/

Cotton/1-1/16" 0.124 Milk, BFP 3.279%* Scrap No. 2 Wire 0.967**

Wheat/ Spring 14% Orange Juice, Frozen

Protein 0.714** Concentrate -0.598 Platinum 1.213*

Oats/ No. 2 White Heavy ~ 0.799 Coffee 'C' / Coluambi ~ 3.330***

Rough Rice #2 3.506*** Sugar #7/ White 1.505**

Soybeans/ No. 1 Yellow 0.666** Sugar #11/ World\Ra  1.132*

Soybean Meal/ 48%

Protein -0.602** Energy

Wheat/ No. 2 Soft Red -0.159 Soybean Oil/ Crud®.666***

Barley, Western / No. 1 4.350%+* Livestock Clude QOll 1.255%**

Flaxseed / No. 1 3.51 1% Feeder Cattle/ Average .458*** Natural Gas 2.686***

Lumber/ Spruse-Pine Fir Live Cattle/ Choice

2x4 3.266** Average 0.996%** Heating Oil #2 0.118
Note:

(a) tstatistics in parenthesis

(b) *p<0.05, * p<0.01, *** p< 0.0001

However, one important characteristic of ATM optas that they have a higher cost of hedging
than non-ATM options. Given the same time to m&tuATM options have higher vega and gamma.
Hence, the risk management of the ATM options be&xsomore involved. In many cases, the cost of

managing risk for ATM options could exceed the sgsiresulting from more liquidity.
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Table 9. Regression Result: Existence of Bias forad-ATM options

Regression St 1 =) + &1 fornon-ATM options where S 1 (bias) = implied volatility — realized volatility.

Market Bias Market Bias Market Bias

All 8.142%*

Agricultural Drinks Precious metal

Corn / No. 2 Yellow 5.958*** Cocoa/lvory Coast e S Gold 9.005*+*

Copper High Grade/

Cotton/1-1/16" 4.462% Milk, BFP 8.507*** Scrap No. 2 Wire 7.727%**
Orange Juice, Frozen

Wheat/ Spring 14% Protein 3.277%* Concentrate 10.60*** Platinum 4.032%+*

Oats/ No. 2 White Heavy 7.726%* Coffee 'C'/ Colhian  28.12**

Rough Rice #2 7.462%* Sugar #7/ White 12.76%*

Soybeans/ No. 1 Yellow 8.951** Sugar #11/ WorldiR ~ 17.94***

Soybean Meal/ 48% Protein 5.750%* Energy

Wheat/ No. 2 Soft Red 5.629** Soybean Oil/ @eu  6.695***

Barley, Western / No. 1 5.692** Livestock Crude Oill 5.601**

Flaxseed / No. 1 4.009*+* Feeder Cattle/ Average .078*** Natural Gas 7.519%+*
Live Cattle/ Choice

Lumber/ Spruce-Pine Fir 2x4 5.942%+* Average 4.756%+* Heating Oil #2 2.183**

Note:

(c) tstatistics in parenthesis
(d) *p<0.05,* p<0.01, *** p< 0.0001

Therefore, although non-ATM options have siguifity higher volatility bias, whether or
not these options will have higher monetary biagilsquestionable. To answer this question, |
calculate the fair value of the option using thevB&ption price (equation (4.4.4)) with the actual
realized volatility over the remaining life of tegtion. The difference between the actual optiocepr
and the fair price is the bias in dollar terms.sTikidifferent than the definition of bias usedha
empirical result (e.g. the definition of the biased in Section 4.1) where the bias is definedas th
percentage difference between the implied andzeshholatility. The bias is then multiplied by
contract size and, when applicable, divided by tbOfnvert into dollar units.

However, one important characteristic of ATM op8as that they have a higher cost of
hedging than non-ATM options. Given the same tiommaturity, ATM options have higher vega and
gamma. Hence, the risk management of the ATM optimtomes more involved. In many cases, the

cost of managing risk for ATM options could excdlee savings resulting from more liquidity.
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Table 10. Option Bias in Dollars

Price Difference** AverageBias Per
= P(actual) - P(RV) Contract ($)
Contract Non- Non-

Market Size Unit Price Per Unit ATM ATM ALL ATM ATM ALL
Agricultural
Corn/ No. 2 Yellov 5,000 bushe cents/Busht 0.82¢ 0.55( 0.56¢ 41 28 28
Cotton/}-1/16' 50,000  pound: cents/poun 0.02¢ 0.03] 0.031 13 15 15
Wheat/ Spring 14% Prote 5,000 bushe cents/Bush¢ 0.31¢ 0.38] 0.37¢ 1€ 19 19
Oats/ No. 2 White Hea' 5,000 bushe Cents/Busht¢ -0.10¢ 0.18¢ 0.171 -5 9 9
Rough Rice # 2,000 cwt dollars/cw 0.04¢€ 0.03: 0.03¢ 92 66 68
Soyteans/ No. 1 Yello 5,000 bushe cents/Bush¢ 0.86¢ 0.761 0.77: 43 38 39
Soybean Meal/ 48% Prot¢ 100 tons dollars/tor -0.24% 0.00(¢ -0.01¢ -25 0 -2
Wheat/ No. 2 Soft Re 5,000 bushe cents/Busht -0.09¢ 0.26( 0.24( -5 13 12
Barley, Western / No. 100 tons CAD/ton 0.92i 0.40: 0.44: 93 40* 44*
Flaxseed / No. 100 tons CAD/ton 1.64¢ 0.73:2 0.81« 127 56* 81*
Lumber/ Spruc-Pine Fir 2x: 80,000 board fee dollars/1000 b 1.57¢ 1.213 1.23¢ 97 75 99
Drinks
Cocoallvory Coa: 10  metric tor dollars/tor -1.302 1.06( 1.02( -13 11 10
Milk, BFP 50,000  pound: cents/poun 0.08: 0.03] 0.03¢ 41 15 17
Orange Juice, Froze
Concentrate 15,000 pound cents/pound -0.244 0.120 0.107 -37 18 16
Coffee 'C'/ Columbig 37,500  pounc cents/poun 0.54¢« 0.44¢ 0.44i 204 167 16€
Sugar #7/ Whit 50  metric tor dollars/tor 0.24¢ 0.32( 0.31€ 12 16 16
Sugar #11/ World Ra 112,000  pound: cents/poun 0.017 0.02¢ 0.027 19 25 25
Livestock
Feeder Cattle/ Avera 50,000 pound: cents/poun 0.18¢ 0.15¢ 0.16: 94 79 82
Live Cattle/ Choice Averay 40,000  pound: cents/poun 0.11¢ 0.10¢ 0.11(¢ 47 44 44
Precious meta
Gold 100 ounce dollars/ounce 0.13¢ 0.27(¢ 0.261 13 27 26
Copper High Grade/ Scr:
No. 2 Wire 25,000 pounds cents/pound 0.210 0.171 0.173 53 43 43
Platinun 50 ounce dollars/ounce 0.68¢ 0.71% 0.71¢ 34 36 36
Energy
Soybean Oil/ Cruc 60,000 pound: cent/poun 0.017 0.03¢ 0.03: 1C 20 20
Crude Oi 1,000 Barrels dollars/Barre 0.047 0.04¢ 0.04¢ 47 48 48
Natural Ga 10,000 MMBtu dollars/MMBtL 0.02t 0.01¢ 0.02( 247 194 19¢
Heating Oil #: 42,000 gallor dollars/gallol 0.001 0.001 0.001 42 52 51

*Contract specified in Canadian Dollars. Convetdib.S. dollars using exchange rate 1.3 Canadiflargmerl U.S. dollar.
** Price Difference could be in cents or dollargpdading on the price per unit.
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Therefore, although non-ATM options have signifitha higher volatility bias, whether or
not these options will have higher monetary biagtilsquestionable. To answer this question, |
calculate the fair value of the option using thévB&otion price (equation (4.4.4)) with the actual
realized volatility over the remaining life of tbgtion. The difference between the actual optiocepr
and the fair price is the bias in dollar terms.sTikidifferent than the definition of bias usedria
empirical result (e.g. the definition of the biased in Section 4.1) where the bias is definedas th
percentage difference between the implied andzeWolatility. The bias is then multiplied by
contract size and, when applicable, divided by tbOfonvert into dollar units.

However, one important characteristic of ATM op8as that they have a higher cost of
hedging than non-ATM options. Given the same timmaturity, ATM options have higher vega and
gamma. Hence, the risk management of the ATM optimtomes more involved. In many cases, the
cost of managing risk for ATM options could excélee savings resulting from more liquidity.

Table 10 shows the result of this calculationraged by market. Negative bias means that
the actual option prices are lower than the fatroppprice. Similar to the result from Table 8, for
ATM options, markets with negative bias are orgjogge, soybean meal, cocoa, oats, and wheat,
respectively. Orange juice has the highest negata®in dollars ($37/contract). Although the
percentage bias for oats is positive, the dollas s slightly negative ($5/contract). This negaii/
mainly driven by large negative bias in 2008, tharywhen the financial crisis started. It is pdssib
for the market to have positive average percertéageand negative monetary bias because option
values are non-linear functions of volatility.

As we might expect, in all markets, the dollarskimpositive for non-ATM options. When
both types of options are combined, the bias iaddo be positive in all markets except for the
soybean meal market. The slight negative dolles {$a2/contract) in the soybean meal market is
primarily driven by options traded during 2004 2008. Natural gas ($196) and coffee ($168) are
the only two markets that have bias exceeding $bd®act. For other markets, the bias ranges from
$9/contract in oats to $99/contract in lumber.

Notice that the ATM dollar bias is in the sameg@amas commission charges. If we view
access to a seat as a barrier to entry for opticiens then this result makes sense. Those who have
access to a seat must compete with those writeosdemot. If the seat holders attempt to charge a
bias that is greater than the barrier to entry theg will attract competition from writers who dot
have a seat. The equilibrium ATM bias appears tthbdransactions cost faced by the off exchange

option writers.
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The empirical results in Table 8, Table 9, andl@dl® support the hypothesis H1. That is,
the implied volatility is, in twenty-five marketa, positive biased estimator of the realized vatgtil
for ATM options and, for all markets, a positivaged estimator of the realized volatility for non-
ATM options. Hence, over all, we fail to reject tH& hypothesis that is the implied volatility is
positive biased estimator of the realized volatilit

One could raise a concern that the bias shownrheudts from the bid-ask spread in the
option market. However, the data was collected daily basis using the closing price which,
according to the Chicago Mercantile Exchange (CME]f, represents the mid prie Therefore,
the estimation should not be contaminated by tfexebdf the bid-ask spread.

4.6.2 Determinants of the implied volatility bias

The results for the remaining hypotheses are pteden this section. Table 11shows the
regression result for agricultural commodity mask@table 12 shows the result for soft commodity
and livestock markets, Table 13 shows the resuli® precious metal and energy markets, and,
Table 14 shows the result for all markets combifidx theoretical model seems to fit the data quite
well, with only two markets having less than 30% &even markets having between 30%-40% R
and thirteen markets having more than 50% R

The plots of the bias surface for each marketrenleded in Appendix A. These plots are
generated by taking the average of the volatiigstsince the data in the dataset became available,
many cases, between 1990 and 2008. The bias ssidee¢hen generated by having the days to
maturity and the moneyness (%) on the x-axes ambitts (%) on the y-axis. As before, the
moneyness (%) equals the ratio of the strike tduhee price.

The result from all market fails to reject the kigothesis that the implied volatility bias is
non-constant across strikes. The variable represeatbias across strikes, eitmmg(gj or

2 2
Iog(%j or both are strongly statistically significant ihraarkets. Positive value dbg(Ej reflect

the smile shape of the bias. Appendix A shows tae $urface. Although not all markets show a
perfectly symmetric smile shape, some degree adifike can be found in all markets, particularly

when options get closer to maturity date. Cott@mldy, feeder cattle, live cattle, copper, and erud

2 According to the phone conversation with Tom Ldditector of Settlements at 312.341.3116, the nbpgirice generated by the CME
should represent the mid price between the bidspstad.
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oil have positive and significant coefficients the Iog(Ej variable; that is, the volatility bias in

these markets is downward sloping shape acro&estiThe bias surface plots in Appendix A show
the pattern of downward sloping across the moneyagis among these markets. The downward
sloping shape is more prominent when options hawe ays to maturity.

Eighteen out of twenty-six markets have negatoefficients for theDays to maturity
variable with a significant level of at least 5%ende, we fail to reject the H3 hypothesis that the
implied volatility bias is non-constant across tinte maturity. According to the coefficient of the
Days to maturity5 days closer to maturity will increase the biasapproximately 1% (e.g. in cotton
and oats markets) to 5% (in cocoa market). Martketsreject the H3 hypothesis include corn, spring
wheat, soybean meal, flaxseed, lumber, life caithgjnum, and heating oil. In these markets, the
difference between the bias at 15 days to mataritythe bias at 60 days to maturity appears to be
smaller than in other markets. This is especiallg for 70% moneyness where the difference
between the bias at 15 days to maturity and 60 gagsturity for these markets is less than 15%,
significantly less that other markets in which tia¢ue is greater than approximately 20%. The
variableDays to maturity*Zaptures the rate of impact of the varidb#ys to maturityWhenDays
to maturity”2is significant, it has a positive sign, meaningttthe impact of the number of days to
maturity on the bias is increasing at an increasibe)

The bias difference between puts and calls (théypbthesis) is tested using the variatpe
The value otp equals 1 for calls and 0 for puts. In eighteenketa:; the coefficient afpis positive
and significant. This means that the bias is highealls than in puts. The coefficient ranges from
0.3% in the gold market to 1.5% in the world sugarket. The negative coefficient of tog
variable can be found in two markets: spring wiaeat cocoa. This means that, in these markets, the

bias is higher in puts than in calls. When comaidethe coefficient of thep and the

Iog(%) variables together, one interesting point can beéeman feeder cattle, life cattle, and barley

markets, the coefficient @f is insignificant but the coefficient dﬁg(Ej Is strongly significant.

The insignificant coefficient for thep variable implies that in these markets, call apiare not

more expensive than put options. When market streigs considered, particularly for the feeder
cattle and the life cattle markets, this is trueduse these markets are very sensitive to animal
diseases. Hence, more protection is directed toparecting the risk of price decrease. This market

nature could bid up the price for lower strikesha prices of put options. As a result, the prices
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call options in these markets do not show more thiaisthat of put options. The bias surfaces in
Appendix A also tell the same story. The surfacestfese markets clearly exhibit downward slope
across moneyness. In conclusion, since most maskets strongly significant coefficients, | fail to
reject the H4 hypothesis that the implied volatibias is different between puts and calls.

The H5 hypothesis can be tested using a set ofrguvariables in which each variable
represents a year of data. The dummy variable kakia of 1 if the data is collected during thadrye
and O otherwise. If there is no data during anyi@aar year, the coefficient of that year's dummy
variable is left blank. Due to the shift of thedireg system from the open outcry system to the
electronic system starting in 2001, the year 280ised as the base year. As shown in the tables
below, coefficients of year dummy variables havthlpmsitive and negative values depending on
markets and years. For example, coefficients of/da 2002 to 2008 are negative and statistically
significant for the sugar #7 market. This means thhen comparing with the year 2001, the bias in
this market was smaller during this time perioccadnpletely opposite result is found in the natural
gas market where coefficients during the same gexie positive and significant. However, with
more than half of the coefficients statisticall§felient from zero, we fail to reject the H5 hypatise
that the bias is non-constant over time.

To test the H6 hypothesis, whether the implielatility bias differs across different
exchanges, | combined the data from all marketsthe regression shown in Table 14. Each
observation represents one option strike tradeal perticular exchange. Therefore, the exchange
dummy variables take values of 1 if the option waded on that exchange and 0 otherwise. Using
the Chicago Board of Trade (CBOT) as a base cad#e 1.4 shows that the bias from the New York
Mercantile Exchange (NYMEX), the Minneapolis Gr&rchange (MGE), and the New York Cotton
Exchange (NYCE) and are -1.46% ,-1.11%, and -0.Ed8ér than the bias from the CBOT. When
comparing across Exchanges, The Chicago Mercdmtitbange (CME) appears to have the highest
level of bias. With all coefficients statisticallijffferent from zero, we clearly fail to reject hypesis
H6.

As discussed in Section 4.1, we next consideratfwgables included in the regression

models (equation (4.1.2) and (4.1.3)). The physjcalintity of the underlying asse®| is proxied by
theOpen Interesvariable, which is the open interest of the unded future market (per 100,000

contracts). The numerical analysis suggests tleati¢ésrease in physical quantity would lead to the
decrease in the bias. However, in most markets viriable does not appear to have any impact on
the bias level. Only ten markets show significargfticient of this variable. Of these ten markets,

five markets show positive signs and another fieek®ats show negative signs. This mixed result
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could happen because, although the decrease iitahgaantity could lead to smaller demand for
hedge, hence, smaller bias, the decrease in physiaatity could also lead to less liquidity which
could drive up the demand for hedging in orderrtitgrt against price fluctuation, hence, largesbia
Therefore, with these two forces working againsheather, the impact of tH@pen interesvariable

is different depending on the market and cannatdmelusively determined.

In most markets, thidistorical return (20 daysyariable proxied for the futures pric€ |
does not seem to have much impact on the biasileeentrast to thélistorical volatility (20 days)
variable proxied for the futures volatilitys(). The coefficient of thélistorical return (20 days)
variable is only significant among energy commaditivhere the coefficients are positive and the
world sugar market where the coefficient is negatiVhe volatility in the futures market seems to
have a significant impact on the bias in all buirfmarkets: corn, flaxseed, cocoa, and milk. Simila
to the sign expected from the perfect discrimimatiase, in most markets, the higher the volaiifity
the futures market, the higher the bias in theomgtimarket. Intuitively, this is because, as the
underlying market becomes more volatile, the maiskatore willing to pay more bias in order to
hedge against the increased uncertainty.

Although the numerical results show that the impdithe risk free rate is very small in terms
of monetary bias, the impact of tResk free rat€r, ) in terms of annualized percentage bias is
statistically greater than zero in sixteen market® 1% increase of the risk free rate could raault
0-3% increase of the bias. Positive coefficienthefrisk free rate means that as the cost of bangw
and the option price increases, the bias alsoasee Finally, the impact of tiption price

variables @,,,) are mostly positive which means that ITM optienl have higher volatility bias

than other options.
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Table 11. Regression Result: Agricultural Commodites

2
F F .
Sr=a+BQ +5 |09[—k j + 55 |09[—j + B4 %0+ PsRoso + Bolt + BB BT + BoT + BuCP+ 0oy + 0oy +K + Oyo¥os + &, 1
t

k t
Wheat/

Corn/ No. 2 Cotton/1- Spring 14%  Oats/ No.2  Rough Rice
Variables Yellow 1/16" Protein White Heavy #2
Open Interest -1.360%** 2,817 1.89 24.18** -2009
Log(s/k) -18.11%x* 1.651*** -16.63*** -7.601%** -8.929***
Log(s/k)"2 83.06*** 108.9%** 115.4%* 135.9%** 1090%**
Historical volatility (20
days) -0.0114 0.226%* 0.0765* 0.187** 0.167***
Historical return (20 days) 28.10*** -10.19 8.106 181 14.26
Risk free rate 2,137 1.318%** 1.379%+* 3.938%* 1.386**
Option price 0.0136 0.171%** 0.0383*** 0.0669*** 602***
Days to maturity -0.126 -0.307*** -0.0448 -0.383** -0.219*
Days to maturity "2 0.000142 0.00265** 0.000145 oa@r* 0.00208
Calls / Puts 0.449* 0.710%** -0.278* 0.385* 0.897*
Year 90 -8.989%** 4.118* -15.09%**
Year 91 -8.240%** 3.205** -4.315** -7.013*
Year 92 -0.617 5.575%** -1.115 0.471 10.06***
Year 93 0.461 7.478%** -3.908*** 5.396** -1.553
Year 94 -2.302* 4.813%** -2.006*** 2.665 2.329
Year 95 -3.685** 2.735* -4.179** -4.028 4.730*
Year 96 -7.565%* 5.571*+* -7.676%* -12.26*** 5.16***
Year 97 -4.659%** 9.386*** -4.464% -4.56 9.471%**
Year 98 -3.900*** 3.051* -1.163 2.139 6.215%+*
Year 99 -4.211%* 5.551 %+ -4.734%% 5.051* 0.759
Year 00 -3.484* 1.547 0.0665 -0.519 3.956*
Year 02 2.638 5.607*** -6.244%% -0.712 7.486***
Year 03 1.179 5.267* -0.123 8.693*** 9.609***
Year 04 3.675 -0.35 -1.512 6.834** 6.848**
Year 05 1.804 4.763** -0.969 2.994 8.477**
Year 06 -3.944* 7.723%** -6.414%* -5.653** 4.038*
Year 07 -3.249 5.059*** -6.513*** -4.823* 4.764**
Year 08 -0.736 1.65 -12.73% -6.896** 2.867
Intercept 3.846 -9.607*** -1.861 -12.63** -6.275
Obs. 17,750 30,393 12,194 9,572 15,802
R2 0.424 0.557 0.421 0.522 0.434

Note:

(a) tstatistics in parenthesis
(b) *p<0.05, * p< 0.01, *** p< 0.0001
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Soybeans/ Soybean Barley, Lumber/
No. 1 Meal/ 48% Wheat/ No. Western / Flaxseed /  Spruce-Pine
Variables Yellow Protein 2 Soft Red No. 1 No. 1 Fir 2x4
Open Interest 1.018*** -1.431 -0.54 34.44* 40.61 .26y
Log(s/k) -13.00%** -15.44%* -9.557%* 4.521%* -0574 1.57
Log(s/k)*2 138.5%** 132.2%** 133.9*** 108.2*** 1537+ 74.54*%**
Historical volatility (20
days) 0.0900%** 0.175%** 0.146** -0.343%** -0.0593 0.303***
Historical return (20 days) 2.985 26.77** 2.749 4862 2.771 9.868
Risk free rate 1.596%+* 2.880%* 0.796* -0.505 1.96 0.438
Option price 0.0368*** 0.0165** 0.0708*** 0.0506*** 0.00536 0.0367***
Days to maturity -0.342%* -0.143 -0.368*** -0.3458* -0.2 -0.102
Days to maturity "2 0.00271** 0.00051 0.00334*** 00340* 0.0017 0.000941
Calls / Puts 1.443%* 0.199 0.373%** -0.115 -0.315 0.663**
Year 90 -4,145%** -13.57*+* -4,211** 3.62
Year 91 -5.151 % -10.23*** -3.494** 4.102*
Year 92 4.514%* 3.018*** 0.437 7.064***
Year 93 3.780%** 1.902* 0.26 -1.749 2.239
Year 94 0.188 0.76 1.104 2.046 5.046***
Year 95 0.59 -5.481%* -3.311* -3.796%*** -2.368
Year 96 -1.439* -3.003*** -7.299%** -0.392 0.758
Year 97 -5.085%** -8.560*** -3.439%* -2.541* 6.615 4.757%*
Year 98 0.304 -5.830%** -0.626 -1.016 -1.726 2.459
Year 99 -1.011 -6.434%** -2.020* -0.175 -1.545 1247
Year 00 3.708*** -2.248* 1.651 -2.478 -2.074 4.852*
Year 02 2.650* 4.673%* -2.552* -0.473 9.092%** 38+
Year 03 2.764* 5.314*** -5.465*** -5.965* 8.190*** 5.686**
Year 04 -7.139%* -4.194* -5.212%* -2.88 19.60*** 5.624**
Year 05 -3.104** 0.515 0.779 2.408 3.169*
Year 06 -1.642* -0.636 -3.197** -4.364** 2.917*
Year 07 -5.195%* -7.446%+* -7.172%* -0.347 3.939*
Year 08 0.186 -3.728** -6.974** 3.554
Intercept -0.0834 -8.581*** 2.898 17.78*** 1.181 .7B3*
Obs. 28,540 23,916 43,390 5,746 7,222 19,258
R2 0.652 0.496 0.633 0.347 0.318 0.319
Note:

(a) tstatistics in parenthesis
(b) *p<0.05, * p<0.01, *** p< 0.0001
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Table 12. Regression Result: Soft Commodities & Lastock

2
F F
Sr=a+BQ +5 |Og[?j +5s |Og[_j + B0+ BsR g + Bel'c + LR + BoT + BoT % + BioCD+ Ogq + Oy +K + O o¥o5 + EuT
t

k t
Soft Commaoditie Lifestock
Orange Live
Juice, Coffee 'C' Feeder Cattle/

Cocoa/lvory Frozen / Sugar #7/  Sugar #11/ Cattle/ Choice
Variables Coast Milk, BFP  Concentrate Columbian White World Raw Average Average
Open Interest 1.342 -34.08 9.206 -5.859* 2.130 01*3 -9.127* -0.679
Log(s/k) 0.797 -5.396%** -4.055%** -18.76**  -0.944 0.947 28.76%** 2]1.25%*
Log(s/k)"2 101.7%+* 143.8%+* 132.0%** 104.2%** 1297+ 117.2%** 153.9%+* 128.3%**
Historical volatility (20 days) -0.0277 -0.00665 102** 0.150%** 0.152** 0.276** 0.186*** 0.270%**
Historical return (20 days) -22.75 -7.716 15.41 715 -13.67 -29.11%* -1.387 0.231
Risk free rate -1.898* 0.151 -0.321 3.004*** -0.417 2.422%** 0.345 0.935***
Option price 0.0253*** 1.396*** 0.0337*** 0.0978***  0.0711***  1.686*** 0.0902***  0.0591***
Days to maturity -1.090%*** -0.801%** -0.315* -0.478*  -0.520%*  -0.709*** -0.186***  0.00282
Days to maturity 2 0.00934***  0.00728**  0.00308 .0D300 0.00472**  0.00591*** 0.00152**  -0.000704
Calls / Puts -2.269*** 1.352%** 1.406*** 0.971%** 0327* 1.528*** -0.0412 0.0397
Year 90 9.374* 3.174 -23.92%** -19.31%x -1.735 -3.446**
Year 91 10.29%** 1.186 -20.90%** -5.731%* 1.7 -1.879*
Year 92 3.124* 4.638** -17.74% 2.882* 1.090*  0.305
Year 93 8.661*** 1.876 -21.63*** -4.521** 0.318 -0.529
Year 94 3.537 -0.263 -40.67*** 6.333*** -1.471%*  -2.756%**
Year 95 16.79%+* -0.795 S2247%% A707* -3.421* -0.648 -3.150%**
Year 96 19.10%** -1.484 -18.90**  0.820 2.767* 2% -2 551
Year 97 9.817*** 0.133 -39.07*** -4.045** 7.344%+ -2.779%** -1.537*
Year 98 15.62*** -4.247* -3.849 -24.38*** -7.760%  -4.135** -2.662*** -4.447%x
Year 99 -0.390 -22.39%** -0.204 -18.72%*  9.882**  -4.039 -0.814 -1.689**
Year 00 11.56%+* -0.160 8.169** -23.96**  -2.968* -2.305 0.0153 -1.281
Year 02 -2.045 -0.938 4.040* -3.475 -4.065** 3.920 -0.962 1.772
Year 03 -14.43%* -0.935 2.276 -5.186 -4.018* 7.5%5 0.878 2.162*
Year 04 -11.03%** -5.281%** -4.970 -5.259 -4.963% 12,77 1.835* 0.322
Year 05 -1.093 -3.686%** -1.263 -14.24%%  -3.963***  13.67*** 0.664 1.851**
Year 06 11.35%** -1.554 -8.555%** -14.04%+* -16.10% -2.968 -1.623** -0.245
Year 07 10.23*** -4.810*+* -9.432%+* -13.93%** -3.193* 4.383* -0.175 1.206
Year 08 -2.293 -5.076* -11.07**  -14.63**  1.110 -0.241 0.140
Intercept 28.82%** 24.18%** 5.113 18.10%** 15.46**  -0.466 3.985%** -3.533*
Obs. 4,800 24,044 24,415 28,857 6,635 17,188 28,13 16,317
R2 0.784 0.626 0.449 0.536 0.769 0.617 0.705 0.637

Note:

(a) tstatistics in parenthesis
(b) *p<0.05, ** p<0.01, *** p< 0.0001
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Table 13. Regression Result: Precious Metal & EneygCommodities

2

Sr=a+BQ +5 |09[%1 + P |Og[%1 + Ba0 a0+ BsR ao + BT + B + BT + BT % + BioCP+ Yoo + Oy +K + 6,0¥oq + &
Precious Met: Energy
Copper High
Grade/ Scrap Soybean Heating
Variables Gold No. 2 Wire Platinum Oil/ Crude Crude Oil Natural Gas Oil #2
Open Interest 0.193 -2.213 -5.133 -3.130%*** -0.960 -5.900*** 3.316*
Log(s/k) -10.49%* 2.439%** -7.823%* -7.919%* 2.778%* -13.65%** -5.614%*
Log(s/k)*2 172.6%** 97.28*** 196.9*** 135.4*** 6416*** 43.27*+* 45.84***
Historical volatility (20 days) ~ 0.120** 0.143%** B16*** 0.105** 0.0790** 0.232%* 0.241%
Historical return (20 days) 15.14 19.78 -9.863 832+ 27.16*** -0.365 11.59*
Risk free rate 0.927* 2.703** 0.976 3.102%** 0.469 -0.0325 0.656
Option price 0.00650***  0.0366*** 0.0359*** 0.377* -0.0236 -0.685*** 2.444%+*
Days to maturity -0.443%* -0.436%** -0.219 -0.268 -0.274** -0.250* 0.0374
Days to maturity "2 0.00399***  0.00394** 0.00181 .00197* 0.00211 0.00236 0.0000814
Calls / Puts 0.281%** 0.228* 0.0494 0.392%** 0.582 -0.567*** 1.259%+*
Year 90 -8.777** -12.61%** -12.92%* -15.05%** -5.697*
Year 91 -2.100 -2.403 -5.269%** -8.180%** -0.574 5.911*
Year 92 -0.479 2.402** 0.612 4.147% 2.795** 158> 5.495*+*
Year 93 -3.336** 2.416 -2.275 1.732 2.141 15.77**  7.509%**
Year 94 0.179 -2.020* 2.840 -0.762 0.224 13.30***  2.545
Year 95 -1.106 -3.526** 0.584 -3.524** 4.038*** BB+ 7.974%**
Year 96 0.598 -5.221 % 3.529%+* -2.537** -2.564** 7.212%** 1.591
Year 97 -4.550%** -3.691 %+ -5.328** -0.604 0.381 5.628 4.178*
Year 98 -4.677** -2.293* -1.657 0.175 -2.112* BB 0.721
Year 99 -1.662* -2.639%** 3.038** -1.279 0.447 PRr* 1.610
Year 00 0.544 -1.410 -8.763*** 0.397 -4.168*** BO*** -3.485*
Year 02 1.657 5.596* 1.837 5.567*** 5.345% 1235% 5.776**
Year 03 -1.486 5.225 3.871 8.203*** 5.127** 13.34* -0.405
Year 04 -1.995 -0.720 -2.390 4.641* 0.556 11.23*  -1.694
Year 05 -2.144* 4.597** 3.011 3.831** -0.108 15%09 -1.887
Year 06 -11.51%* -6.666*** 1.800* 2.677* 10.43* 3.532*
Year 07 -7.887** -8.318*** -0.0603 1.258 21.01#* 2.520
Year 08 -9.961%** -8.120%** -6.426** -7.845% 1879%* -2.274
Intercept 10.56*** -0.0296 -2.433 -6.247* 5.442 105* -14.16***
Obs 40,89: 60,82: 7,961 20,79¢ 84,52: 75,51¢ 79,17¢
R2 0.675 0.481 0.415 0.570 0.323 0.218 0.258
Note:

(a) tstatistics in parenthesis
(b) *p<0.05, ** p< 0.01, *** p< 0.0001
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Table 14. Regression Result: All Markets

2
F F
Sr=a+pQ +5 |Og[?j + P |Og[?] + Bu0%0+ BsR a0 + BT + SR
t t

+ ST + ,BQT2 + BioCP+ OYgo + O,Yg, + K + 0,6Yg + zszexch“ + &t

meExchanges

Variables All options Variables All markets
Open Interest -0.0215 Year 90 -3.369%**
Log(s/k) -8.353*** Year 91 0.582
Log(s/k)"2 95.60*** Year 92 2.319***
Historical volatility (20 days) -0.0128 Year 93 085**
Historical return (20 days) -0.174 Year 94 0.661
Risk free rate 0.572* Year 95 0.623
Option price 0.0312%** Year 96 -0.830
Days to maturity -0.303** Year 97 -1.538**
Days to maturity 22 0.00253*** Year 98 0.596
Calls / Puts 0.845%* Year 99 0.874
Chicago Mercantile Exchange 2.929%** Year 00 1251
Commodity Exchange 1.130%** Year 02 3.310***
Coffee, Sugar & Cocoa Exchange 2.761%* Year 03 .012**
LIFFE Commodity Exchange 1.757%** Year 04 -0.205
Minneapolis Grain Exchange -1.110%** Year 05 BET
New York Cotton Exchange -0.916%** Year 06 -0.898
New York Mercantile Exchange -1.462%** Year 07 108
Winnipeg Commodity Exchange 1.102%** Year 08 -3BA5
Intercept 5.965%**

Obs. 730,940

R 0.307

Note:
(a) tstatistics in parenthesis
(b) *p<0.05, **p<0.01, ** p< 0.0001
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CHAPTER 5. CONCLUSION

Because of the well-known weaknesses of curretimmpricing models, it would be naive
for option traders to quote option prices baseelguwn an options-pricing model. Among all option
valuation models, the Black and Scholes model (BBMjill the foundation for pricing vanilla
options. Practitioners use the BSM not only togptain-vanilla options, but also to give estimates
of other more sophisticated options, and to intletmodel to determine the implied volatility that
can be used for the calibration of other valuatimdels. The imperfections of the BSM are manifest
in the form of bias of implied volatility as an iesator of future-realized volatility, and as the
volatility smile. Over the past 30 years, researsh@ve been struggling to explain the source cifi su
smiles. Although several more complicated valuatimuels have been developed and volatility
smiles can be produced, these models often doavet ¢tlosed form solutions and are
computationally intensive. Moreover, several stadiave found that complexity costs of the more
advanced models usually outweigh the drawbackseosimpler BSM.

Among practitioners, the BSM remains the most paopaption valuation model due to three
major factors. First, more sophisticated modelscareputationally intensive, making them virtually
impossible for option traders to use in their déigding activities. Second, the calibration of iiesv
models is time-consuming and sometimes even implesstinally, practitioners still must rely on the
implied volatility of plain vanilla options to céliate parameters of the other option-valuation risode

Therefore, instead of imposing new assumptionthemunderlying asset and the volatility
structure in order to develop a new valuation méolebptions as done in most other studies, this
research takes a different approach in which ths, biot the option price itself, is being modeled.
The idea of modeling the bias stems from the faat the BSM is still the most widely used model
among practitioners. This means that the markeeptanply views the bias as a correction of
imperfections resulting from the BSM. Hence, mauglhe bias itself as opposed to developing a
new valuation model seems to be a more useful apprimr practitioners.

In this study, the volatility bias is determinedrh a partial equilibrium framework which
contains economic insight into the causes of ths.lAccording to the proposed model, the goods
that are being traded are the services of optigitere who are protected by trading rules that irequ
access to a seat on the exchange to avoid seedseabsociated with trading. This model allowsus t

replicate the actual option market mechanism.
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Although it could be argued that some researdm@re employed the ad-hoc BSM model to
empirically explain the bias, however, to my knosge this theoretical approach has never been
described in the literature before. Model equilibmiresults from the agent’s utility maximization
problem in which the option writer is assumed teehenonopoly power in order to reflect the
advantage and skill that option writers posseserder to obtain a certain level of bias in terrhs o
dollars, the monopolist has to inflate the impheditility for options. The two scenarios considere
here produce a downward sloping volatility and katitty smile. A combined mixture of these two
scenarios should provide different curvatures fiervolatility curve. Moreover, by changing the time
to maturity of the options, different shapes of tbéatility term structures can be reproduced. As a
result, this model not only provides economic itaun behind the bias, it is also the first modeitth
can explain both the volatility smile and the vibkgtterm structure.

Discussion of empirical results was divided imm tparts: (i) to show the evidence of bias
and (ii) to show determinants of the bias. For ABMions, in nineteen out of twenty-six markets, the
implied volatility is an upward-biased estimatortiog realized volatility. The difference betweeis th
study and the previous literature is that the pneviliterature focused on the existence of a bias
where in this study, the proposed model predigtssitive bias which is what we find in the data.
Although the implied volatility appears to be arbiased-biased estimator for the realized volatility
in the cotton, oats, wheat No. 2, cocoa, orangejund heating oil markets for ATM options,
however, for non-ATM options, implied volatility ppars to be an upward-biased estimator for the
realized volatility in all markets. Therefore, ilm@st all cases, we fail to reject the hypothdsé t
the implied volatility is a positive biased estimabf future realized volatility.

The theoretical model also suggests that the @dpiolatility’s bias behavior is caused by the
quantity hedged, the strike, volatility, futurescpt the risk-free rate, option prices, and days to
maturity. The second section of the empirical firgdi presents results using these variables to test
that the bias is non-constant across strikes, ttmesaturity, puts and calls, option year, and
exchanges. The empirical results fail to rejecoithese hypotheses. Hence, the bias varies
according to these variables. Additionally, theutealso shows that the Chicago Mercantile
Exchange has the highest bias among all the Exelsaiitpe introduction of electronic trading does
not seem to have had any influence of the sizheptesence of a bias.

In most markets, th®pen Interesand theHistorical return (20daysyariables do not appear
to have much impact. However, tHestorical volatility (20days)the Risk free rate, and the Option

price variables are shown to have a positive impadhe bias in most markets. Finally, the empirica
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model appears to explain the bias reasonably witl 30%-40% Rin eleven markets and more than
50% R in thirteen markets.

Future research could adapt this model to conaledging strategies and to compare hedging
performance between this model and other existiodets. Moreover, since this model not only
suggests that, in most markets, the implied valaig a biased estimation of the realized volfjli
variables possibly explaining the bias are als@estgd, hence, future research should be done
looking at employing this model as another toolftmecasting future volatility.

Finally, the results shown here also shave aiped@pplication for those who would like to
use options prices to find the markets estimaiepfied volatility. To do this one would first
subtract the average bias presented here (or g@rage/transaction fee for a round trip option
purchase) from the actual option premium beforeisglfor the implied volatility for an at the

money option.
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APPENDIX A. THE BIAS SURFACE BY MARKETS

Agricultural Commodities
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Soybean Meal Bias Surface

Wheat/ No. 2 Soft Red Bias Surface
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Soft Commodities
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Livestock Commodities
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Energy Commodities
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APPENDIX B. MATLAB CODE FOR NUMERICAL ANALYSIS

Main Program

A0 =[1;1;2;1;1]

Ib =[0;0;0;0;0]

ub =[10;10;10;10;10]

% change ub according to Q

[A, fval] = fmincon(@MonopolistProgram, A0 ,[],[1, [0, 0, b, ub,
@MonopolistUnConst)

[A, fval] = fmincon(@MonopolistProgram, A0 ,[],[], 0. [, b, ub,
@MonopolistConst1)

function [profitSum] = MonopolistProgram(A)

global H
global ¢
global a
global fO
global mu
global sigma
global rf
global Q
global k
global T

H=1;
c=0.1;

a-=1,

fo=1;

mu = 1,
sigma = 0.25;
T=0.5

rf = 0.05;

Q =10;

k=[8;.9;1;1.1;1.2];

profit = 0;
fori=1:1:5

% part 2) utility at time 1

p0 = exp(-rf*T)*f0;

d1 = (log(pO/k(i,1)) + T*(rf+sigma”2/2) ) / (si gma * sqrt(T) );
d2 = d1 - sigma * sqgrt(T);

PoptPut = exp(-rf*T)* ( k(i,1) * normcdf(-d2) - fO * normcdf(-d1)



end
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[pl,interval] = gnwtrap(30000, 0.00000001, 200);
sigmalog = sqrt( T ) * sigma;
muLog = T*rf - T*(sigma”*2)/2;

piecel = interval™ ( (1./(sigmaLog*sqrt(2*pi).*p1l
pl1,0).* exp( (-a)*( A(i,1).*max(k(i,1)-p1,0) + Q.*p
((log(pl) - log(p0)-muLog)./sigmalog).*2));
piece2 = interval* ( (1./(sigmaLog*sqrt(2*pi).*pl
A(i,1).*max(k(i,1)-p1,0) + Q.*pl) - (1/2).* ((log(p
muLog)./sigmalog).”2));

rev = (piecel/piece2)*(1/(1+rf)) ;

futureRev = interval™ ( (1./(sigmaLog*sqrt(2*pi)
k(i,1) ,0)*A(i,1).* exp(- (1/2).* ((log(p1) - log(p
muLog)./sigmalog).”2));

profitindividual = rev*A(i,1) - c*A(i,1) - futureR

profit = profit + profitindividual;

profitSum = - (profit - H)

function [constl, czero] = MonopolistUnConst(A)

global H
global ¢
global a
global fO
global mu
global sigma
global rf
global Q
global k
global T

% % % k = [.95; 1; 1.05];

p0 = exp(-rf*T)*f0;

d11 = (log(p0/k(1,1)) + T*(rf+sigman2/2) ) /(s
d12 = (log(p0/k(2,1)) + T*(rf+sigman2/2) ) /(s
d21 =d11 - sigma * sqrt(T);

d22 = d12 - sigma * sqrt(T);

PoptPutl = exp(-rf*T)* ( k(1,1) * normcdf(-d21) -
PoptPut2 = exp(-rf*T)* ( k(2,1) * normcdf(-d22) -

[pl,interval] = gnwtrap(30000, 0.00000001, 200);
sigmalog = sqrt( T ) * sigma;
mulLog = T*rf - T*(sigma”2)/2;

). *max(k(i,1) -
1) - (1/2).*

))-* exp( (-a)*(
1) - log(p0)-

Fpl)).*min(pl -
0)-

ev;

igma * sqrt(T) );
igma * sqrt(T) );

fO * normcdf(-d11) );
fO * normcdf(-d12) );



piecel = interval™ ( (1./(sigmaLog*sqrt(2*pi).*p1l

pl1,0).* exp( (-a)*( A(1,1).*max(k(1,1)-p1,0) + Q.*p
- log(p0)-muLog)./sigmalog)."2));

piece2 = interval* ( (1./(sigmaLog*sqrt(2*pi).*p1l

A(1,1).*max(k(1,1)-p1,0) + Q.*pl) - (1/2).* ((log(p
muLog)./sigmalog).”2));

S1 = (piecel/piece2)*(1/(1+rf)) - PoptPutl;

piecell = interval* ( (1./(sigmaLog*sqrt(2*pi).*p

pl1,0).* exp( (-a)*( A(2,1).*max(k(2,1)-p1,0) + Q.*p
- log(p0)-muLog)./sigmalog)."2));

piece22 = interval* ( (1./(sigmaLog*sqrt(2*pi).*p

A(2,1).*max(k(2,1)-p1,0) + Q.*pl) - (1/2).* ((log(p
muLog)./sigmalog).”2));

S2 = (piecell/piece22)*(1/(1+rf)) - PoptPut2;
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p0 = exp(-rf*T)*f0;

d13 = (log(p0/k(3,1)) + T*(rf+sigman2/2) ) /(s
d23 = d13 - sigma * sqrt(T);

PoptPut3 = exp(-rf*T)* ( k(3,1) * normcdf(-d23) -

[pl,interval] = gnwtrap(30000, 0.00000001, 200);
sigmalog = sqrt( T ) * sigma;
mulLog = T*rf - T*(sigma”2)/2;

piece3 = interval* ( (1./(sigmaLog*sqrt(2*pi).*p1l

p1,0).* exp( (-a)*( A(3,1).*max(k(3,1)-p1,0) + Q.*p
- log(p0)-muLog)./sigmalog)."2));

pieced = interval™ ( (1./(sigmaLog*sqrt(2*pi).*p1l

A(3,1).*max(k(3,1)-p1,0) + Q.*pl) - (1/2).* ((log(p
muLog)./sigmal.og)."2));

S3 = (piece3/pieced)*(1/(1+rf)) - PoptPut3;

pO = exp(-rf*T)*f0;

d14 = (log(p0/k(4,1)) + T*(rf+sigman2/2) ) / (s
d24 = d14 - sigma * sqrt(T);

PoptPut4 = exp(-rf*T)* ( k(4,1) * normcdf(-d24) -

[pl,interval] = gnwtrap(30000, 0.00000001, 200);
sigmalog = sqrt( T ) * sigma;
mulLog = T*rf - T*(sigma”2)/2;

piece3 = interval™ ( (1./(sigmaLog*sqrt(2*pi).*p1l
p1,0).* exp( (-a)*( A(4,1).*max(k(4,1)-p1,0) + Q.*p
- log(p0)-muLog)./sigmal.og).*2));

)).*max(k(1,1) -
1) - (1/2).* ((log(p1)

))-* exp( (-a)*(
1) - log(p0)-

1)).*max(k(2,1) -
1) - (1/2).* ((log(p1)

1)).* exp( (-a)*(
1) - log(p0)-

igma * sqrt(T) );

fO * normcdf(-d13) );

))-*max(k(3,1) -
1) - (1/2).* ((log(p1)

))-* exp( (-a)*(
1) - log(p0)-

igma * sqrt(T) );

fO * normcdf(-d14) );

)).*max(k(4,1) -
1) - (1/2).* ((log(p1)
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piece4 = interval™ ( (1./(sigmalLog*sqrt(2*pi).*p1l
A(4,1).*max(k(4,1)-p1,0) + Q.*pl) - (1/2).* ((log(p
mulLog)./sigmalog)."2));

S4 = (piece3/pieced)*(1/(1+rf)) - PoptPut4;

p0 = exp(-rf*T)*f0;

d15 = (log(p0/k(5,1)) + T*(rf+sigman2/2) ) /(s
d25 = d15 - sigma * sqrt(T);

PoptPut5 = exp(-rf*T)* ( k(5,1) * normcdf(-d25) -

[pl,interval] = gnwtrap(30000, 0.00000001, 200);
sigmalog = sqrt( T ) * sigma;
muLog = T*rf - T*(sigma”2)/2;

piece3 = interval™ ( (1./(sigmaLog*sqrt(2*pi).*p1l

p1,0).* exp( (-a)*( A(5,1).*max(k(5,1)-p1,0) + Q.*p
- log(p0)-muLog)./sigmal.og).*2));

piece4 = interval™ ( (1./(sigmaLog*sqrt(2*pi).*p1l

A(5,1).*max(k(5,1)-p1,0) + Q.*pl) - (1/2).* ((log(p
muLog)./sigmalog).”2));

S5 = (piece3/pieced)*(1/(1+rf)) - PoptPut5;

))-* exp( (-a)*(
1) - log(p0)-

igma * sqrt(T) );

fO * normcdf(-d15) );

)).*max(k(5,1) -
1) - (1/2).* ((log(p1)

))-* exp( (-a)*(
1) - log(p0)-

%

PoptPutl
PoptPut2
PoptPut3
PoptPut4
PoptPut5

Sall = [S1; S2; S3; S4; S5 ]
constl =[-S1; -S2;-S3; -S4 ; -S5];
czero =];

function [czero, constl] = MonopolistConst1(A)

global H
global ¢
global a
global fO
global mu
global sigma
global rf
global Q
global k
global T

0 =======Set 1 & 2 ==========—=======—=—=—=—=—=======
% % % k = [.95; 1; 1.05];

p0 = exp(-rf*T)*f0;

d11 = (log(p0/k(1,1)) + T*(rf+sigman2/2) ) /(s

d12 = (log(p0/k(2,1)) + T*(rf+sigman2/2) ) /(s

igma * sqrt(T) );
igma * sqrt(T) );



d21 =d11 - sigma * sqrt(T);
d22 = d12 - sigma * sqrt(T);
PoptPutl = exp(-rf*T)* ( k(1,1) * normcdf(-d21) -
PoptPut2 = exp(-rf*T)* ( k(2,1) * normcdf(-d22) -

[pl,interval] = gnwtrap(30000, 0.00000001, 200);
sigmalog = sqrt( T ) * sigma;
muLog = T*rf - T*(sigma”2)/2;

piecel = interval™ ( (1./(sigmaLog*sqrt(2*pi).*p1l

pl1,0).* exp( (-a)*( A(1,1).*max(k(1,1)-p1,0) + Q.*p
- log(p0)-muLog)./sigmalog)."2));

piece2 = interval* ( (1./(sigmaLog*sqrt(2*pi).*p1l

A(1,1).*max(k(1,1)-p1,0) + Q.*pl) - (1/2).* ((log(p
muLog)./sigmalog).”2));

S1 = (piecel/piece2)*(1/(1+rf)) - PoptPutl;

piecell = interval™ ( (1./(sigmalLog*sqrt(2*pi).*p

pl1,0).* exp( (-a)*( A(2,1).*max(k(2,1)-p1,0) + Q.*p
- log(p0)-muLog)./sigmalog)."2));

piece22 = interval* ( (1./(sigmaLog*sqrt(2*pi).*p

A(2,1).*max(k(2,1)-p1,0) + Q.*pl) - (1/2).* ((log(p

muLog)./sigmalog).”2));

S2 = (piecell/piece22)*(1/(1+rf)) - PoptPut2;
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p0 = exp(-rf*T)*f0;

d13 = (log(p0/k(3,1)) + T*(rf+sigman2/2) ) /(s
d23 = d13 - sigma * sqrt(T);

PoptPut3 = exp(-rf*T)* ( k(3,1) * normcdf(-d23) -

[pl,interval] = gnwtrap(30000, 0.00000001, 200);
sigmalog = sqrt( T ) * sigma;
mulLog = T*rf - T*(sigma”2)/2;

piece3 = interval* ( (1./(sigmaLog*sqrt(2*pi).*p1l

p1,0).* exp( (-a)*( A(3,1).*max(k(3,1)-p1,0) + Q.*p
- log(p0)-muLog)./sigmalog)."2));

pieced = interval™ ( (1./(sigmaLog*sqrt(2*pi).*p1l

A(3,1).*max(k(3,1)-p1,0) + Q.*pl) - (1/2).* ((log(p
mulLog)./sigmal.og)."2));

S3 = (piece3/pieced)*(1/(1+rf)) - PoptPut3;

p0 = exp(-rf*T)*f0;

d14 = (log(p0/k(4,1)) + T*(rf+sigman2/2) ) /(s
d24 = d14 - sigma * sqrt(T);

PoptPut4 = exp(-rf*T)* ( k(4,1) * normcdf(-d24) -

[pl,interval] = gnwtrap(30000, 0.00000001, 200);
sigmalog = sqrt( T ) * sigma;

fO * normcdf(-d11) );
fO * normcdf(-d12) );

))-*max(k(1,1) -
1) - (1/2).* ((log(p1)

))-* exp( (-a)*(
1) - log(p0)-

1)).*max(k(2,1) -
1) - (1/2).* ((log(p1)

1)).* exp( (-a)*(
1) - log(p0)-

igma * sqrt(T) );

fO * normcdf(-d13) );

))-*max(k(3,1) -
1) - (1/2).* ((log(p1)

))-* exp( (-a)*(
1) - log(p0)-

igma * sqrt(T) );

fO * normcdf(-d14) );
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muLog = T*rf - T*(sigma”'2)/2;

piece3 = interval™ ( (1./(sigmaLog*sqrt(2*pi).*p1l

pl1,0).* exp( (-a)*( A(4,1).*max(k(4,1)-p1,0) + Q.*p
- log(p0)-muLog)./sigmal.og).*2));

piece4 = interval™ ( (1./(sigmaLog*sqrt(2*pi).*p1l

A(4,1).*max(k(4,1)-p1,0) + Q.*pl) - (1/2).* ((log(p
muLog)./sigmalog).”2));

S4 = (piece3/pieced)*(1/(1+rf)) - PoptPut4;

p0 = exp(-rf*T)*f0;

d15 = (log(p0/k(5,1)) + T*(rf+sigman2/2) ) /(s
d25 = d15 - sigma * sqrt(T);

PoptPut5 = exp(-rf*T)* ( k(5,1) * normcdf(-d25) -

[pl,interval] = gnwtrap(30000, 0.00000001, 200);
sigmalog = sqrt( T ) * sigma;
mulLog = T*rf - T*(sigma”2)/2;

piece3 = interval* ( (1./(sigmaLog*sqrt(2*pi).*p1l
p1,0).* exp( (-a)*( A(5,1).*max(k(5,1)-p1,0) + Q.*
- log(p0)-muLog)./sigmalog)."2));

piece4 = interval™ ( (1./(sigmaLog*sqrt(2*pi).*p1l
A(5,1).*max(k(5,1)-p1,0) + Q.*pl) - (1/2).* ((log(p
mulLog)./sigmalog)."2));

S5 = (piece3/pieced)*(1/(1+rf)) - PoptPut5;

©

%

PoptPutl
PoptPut2
PoptPut3
PoptPut4
PoptPut5

Sall = [S1; S2; S3; S4; S5 ]

constl = [S1-S2; S1-S3; S1-S4; S1-S5; S2-S3; S2-S4;
S4-S5];

czero =];

)).*max(k(4,1) -
1) - (1/2).* ((log(p1)

))-* exp( (-a)*(
1) - log(p0)-

igma * sqrt(T) );

fO * normcdf(-d15) );

))-*max(k(5,1) -
1) - (1/2).* ((log(p1)

))-* exp( (-a)*(
1) - log(p0)-

S2-S5; S3-S4; S3-S5;
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