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ABSTRACT 

 Over the past 30 years, numerous option valuation models have been proposed hoping to explain 

the volatility smile and the volatility bias shown in the data. However, the Black and Scholes model 

remains the cornerstone of the option valuation model and its implied volatilities remain essential for 

calibrating parameters of the other option-valuation models. This research is the first in the literature to 

use a partial equilibrium model to explain the implied volatility bias using demand for and supply of the 

options market. The proposed theoretical model allows us to explain the existence of an upward bias and 

its determinants, and to simultaneously explain both the volatility smile and the volatility term structure. 

With data spanning the period of 1990 to 2008, twenty-six options on commodity futures markets are 

analyzed. For at-the-money options, as predicted by the proposed model, the implied volatility is found to 

be an upward-biased estimator of the realized volatility in nineteen markets. The implied volatility 

appears to be an unbiased estimator for the realized volatility in the cotton, oats, wheat No. 2, cocoa, 

orange juice, and heating oil markets. However, for out-of-the-money and in-of-the-money options, 

implied volatility appears to be an upward-biased estimator of the realized volatility. The theoretical 

model further suggests that the implied volatility’s bias is caused by the quantity hedged, the strike, 

volatility, futures price, the risk-free rate, option prices, and days to maturity. The bias is different across 

strikes, times to maturity, puts and calls, option year, and exchanges. In most markets, the open interest 

and the historical return variables do not appear to have much impact. However, the historical volatility, 

the Risk free rate, and the Option price variables are shown to have a positive impact on the bias in most 

markets. The empirical model appears to explain the bias reasonably well with 30%-40% R2 in eleven 

markets and more than 50% R2 in thirteen markets. The results suggest that one should subtract the 

average bias presented here from the actual option premium before obtaining the implied volatility of the 

options. This could provide implied volatility which is a more accurate predictor of the future realized 

volatility.  

 
 
Keywords:  Option smile, Bias in Implied Volatility, Implied Volatility, Options Markets. 
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CHAPTER 1. INTRODUCTION 

In 2000, while working at JPMorgan Chase, David Li became well-known through his paper 

“On Default Correlation: A Copula Function Approach” published in the Journal of Fixed Income.  

His paper proposed an elegant formula, known as the Gaussian Copula Function, to value 

collateralized debt obligations (CDOs). His model has been widely adopted by practitioners due in 

part to its simplicity. Since its first use, the biggest limitation of this formula, the assumption of 

constant correlation among assets, has been well known.  However, this weakness was apparently 

ignored by Wall Street traders.  At its peak, the Gaussian Copula formula was used to price hundreds 

of billions of dollars' worth of CDOs. Amid the breakdown associated with the global financial crisis 

during 2008 and 2009, the incorrect understanding and use of the Gaussian Copula formula is 

believed to be one of the factors that lead the financial industries into the greatest failure since the 

Great Depression1.  

In order to develop relevant economic or financial models, researchers often must restrict the 

model assumptions or assume away the actual complexity of the real world. Model users, on the other 

hand, should be aware of these limitations. The Gaussian Copula story has shown that, in the highly 

leveraged world of derivatives, the impact of mispricing is potentially enormous. 

The Black-Scholes model (BSM) is similar to the Gaussian Copula formula in the sense that 

the Black-Scholes model also depends on a set of strong assumptions. BSM assumes constant 

volatility and frictionless markets. However, unlike users of the Gaussian Copula formula, users of 

the Black-Scholes model apparently take these limitations into account when employing the model. 

As will be discussed later the non-constant shape of implied volatility is evidence of the market’s 

correction of the imperfection in the BSM. Despite voluminous research attempting to derive new 

option valuation models that can better fit the market data, the BSM remains the cornerstone of option 

valuation due to its speed and simplicity.  

 Along with the popularity of the BSM, the use of implied volatility has also increased 

dramatically. According to the BSM, the implied volatility inverted from the option price can be 

interpreted as the volatility of the underlying asset over the remaining life of the option. Hence, if the 

BSM is correct, the implied volatility should be the best predictor of future volatility because, by 

                                                      
1 http://www.wired.com/techbiz/it/magazine/17-03/wp_quant?currentPage=all   accessed on February 28, 2009 
http://www.lrb.co.uk/v30/n09/mack01_.html, accessed on October 4, 2008 
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definition, the implied volatility is the future volatility expected by the market. This realization is 

crucial because future volatility is one of the most important components in asset pricing and risk 

management used by a wide range of market participants. Option traders rely on future volatility 

when calculating the probability of future prices falling between certain ranges when constructing 

trading strategies. Insurance companies rely on future volatility when calculating their insurance 

premiums. Companies rely on future volatility when performing risk analysis. As exotic options have 

gained popularity over the past several years, the implied volatility has been used to calibrate inputs 

used to price these options.  

 Concerns about the correctness and precision of implied volatility have developed over time. 

First, according to the BSM, the implied volatility of any option represents the future realized 

volatility and should be constant regardless of option strikes or times to maturity (Black and Scholes, 

1973). Unfortunately, much of the research conducted over the past four decades has shown a non-

constant implied volatility in various markets over different time periods. This phenomenon is well-

known as the “Volatility Smile2” (Rubinstein, 1985, 1994) and “Volatility Term Structure3” (Hull 

2006).  This abnormality of the implied volatility raises questions as to whether the specification of 

the BSM is correct and whether the assumptions imposed by the BSM are appropriate, particularly 

those regarding constant volatility and frictionless markets. 

 Second, the concern about the ability of the implied volatility to predict the future realized 

volatility has been widely addressed and examined4. Most scholars agree that implied volatility is a 

biased predictor of realized volatility. However, when compared with other candidates for predicting 

future volatility, such as historical volatility, the results are found to be mixed. Some studies found 

that implied volatility is an efficient predictor of future realized volatility and that historical volatility 

contains no additional information not already incorporated in implied volatility  

 To address the first concern, researchers have developed new option-valuation models 

allowing for non-constant volatility. Examples include the stochastic volatility model by Heston 

(1993), the Jump Diffusion model by Bates (1996), and Deterministic Volatility (Dumas et al (1998). 

Although these models appear to fit the non-constant volatility data, their hedge effectiveness have 

proven to be no better than the simple BSM (Dumas et al. (1998)).  

 The second concern regarding the bias-prone and predictive character of the implied volatility 

has also been extensively examined and documented. Despite the evidence of bias in most markets, 

                                                      
2 The non-constant shapes include the shapes of smile, sneer, smirk, and skew over options' moneyness. For the remainder of the paper, we 
refer to these non-constant shapes as the “Volatility Smile”. 
3 Similar to volatility smile, volatility term structure refers to non-constant shapes of the volatility over options’ time to maturity. 
4 Chapter 2 provides lists of literature related to this topic. 
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practitioners continue to use the implied volatility as one candidate for predicting future realized 

volatility.  

1.1 Problem Statement 

This research addresses the widely-studied implied volatility bias of the BSM. A voluminous 

body of literature has attempted to explain the volatility smile through various option-pricing models. 

I show that when one allows for the demand and supply of the services of option writers, market 

participants will agree on an equilibrium bias. This bias is nothing more than a fair return to the skills 

needed and costs associated with option writing. The existence of the bias that is predicted here 

explains both the observed smile and the volatility term structure. To the best of my knowledge, no 

existing research examines the implied volatility bias within such a partial equilibrium model. The 

ability of the model to explain the cause and the size of the implied volatility bias should provide a 

better estimator of future realized volatility.  

1.2 Motivation and Scope 

 The research is motivated by the fact that there is an increasing usage of implied volatility as 

an estimator of the future realized volatility. In most cases, researchers have found evidence that the 

implied volatility is a biased estimator of future realized volatility, but for the most part this evidence 

has been simply ignored. For example, insurance providers use implied volatility as a proxy for future 

realized volatility when generating the price distribution to obtain a fair premium. Similarly, option 

traders use implied volatility as a predictor of future volatility in order to price exotic options. Hence, 

if implied volatility is actually a biased estimator of future realized volatility, these options and 

insurance premiums will also be biased. The upward bias in implied volatility will cause these prices 

to be upwardly biased as well.  

 To analyze bias in implied volatility, this research attempts to address the following 

questions. First, does bias in the implied volatility exist and is the actual volatility an upward estimate 

of expected future volatility? Although most research has found evidence of bias, none have 

concluded that implied volatility is an upward bias estimator of the realized volatility. 

 Second, what causes bias in the implied volatility? To answer this question, I propose a 

partial equilibrium framework in which the BSM option premium is an input. This model makes it 

possible to explain the bias. Moreover, the model is also designed to allow for bias at different strikes 

which result in non-constant volatilities across strikes.  
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 Third, does the partial equilibrium model really work? This question is tested empirically. 

The empirical research examines whether variables suggested by the theoretical model can explain 

the bias. The result from the empirical study should yield ideas about the size and the direction of the 

bias. If we discover that the bias can be systematically explained by a set of variables, practitioners 

could account for these variables when using the implied volatility as an input in for their models.  

Therefore, in order to obtain a more precise estimator of the future volatility, the implied volatility 

should be treated appropriately by eliminating the bias components.   

1.3 Contribution of the research  

The contribution of this research is that it provides the ability to explain economically the 

sources of the bias from the BSM through interaction between the demand and supply of the services 

of option writers in the market. Furthermore, I propose an econometric model that can be used to 

explain the sources of bias. This model allows market participants to better estimate future realized 

volatility, hence, better manage their risks.  

1.4 Summary of subsequent chapters 

 This paper is organized as follow: Chapter 2) discusses literature review & motivation. Chapter 

3) provides the model derivation, and Chapter 4) shows the empirical evidence of bias and the model 

results. The conclusion regarding further research is then presented in Chapter 5). 
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CHAPTER 2. LITERATURE REVIEW  

 This chapter discusses existing literature and provides motivation for the proposed model. 

Section 2.1 summarizes abnormalities resulting from the Black-Scholes model and reviews 

alternative option valuation models developed to overcome weaknesses of the Black-Scholes model. 

Section 2.1 concludes with a discussion of the limitation of these alternative models. Section 2.2 

describes the two most tested hypotheses regarding bias and the information contents of the implied 

volatility. This section also points out the limitation of the current empirical method and proposes an 

alternative empirical method. Section 2.3 discusses mechanism in the options markets. The discussion 

in this section provides motivation of the partial equilibrium model proposed here. Section 2.4 

provides details regarding this partial equilibrium model. The proposed model bridges the gap in 

existing literature by using the demand and supply for the services of option writers to explain the 

existence and determinants of the implied volatility bias. 

2.1 The Option pricing literature 

 Trading actively in many major exchanges throughout the world, options have become 

increasingly used for hedging and speculation. The collapse of the global financial sector in 2008 has 

proven the importance of the derivatives such as options in the modern financial system.  

 In the option world, the Black-Scholes (or Black-Scholes-Merton, or BSM) formula, 

developed in 1973, is the cornerstone of option pricing. Thanks to its elegance and simplicity, the 

BSM formula and its variations have been widely adopted among practitioners. However, the speed 

and simplicity offered by this formula do not come without costs. According to the BSM formula, the 

volatility input is assumed to be constant across strikes and times to maturity. However, in reality, the 

volatility derived from the model by equating option market prices to the BSM formula, known as 

“implied volatility”, appears to be anything but constant. The non-constant feature of the implied 

volatility has gained attention among scholars since it was first discovered. Over time, researchers 

have discovered that the patterns of volatility differ among markets and appear to change over time. 

For example, foreign currency options exhibit a completely symmetric “smile” shape over the strike 

price (Hull, 2006). The volatility smile also appears to have a downward sloping shape for post 1987 
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S&P 500 futures options5 (e.g. Hull (2006), Rubinstein (1994), Dumas et al. (1998), Ederington and 

Guan (2002)) and an upward sloping shape for corn futures options (Ferris et al. (2003)). However, in 

some markets, the implied volatility does not appear to have a perfect smile shape, even though the 

phenomenon of all non-constant volatilities is still referred to as the “Volatility Smile”. 

 Most studies have shown that the implied volatility is a biased estimator of the future 

volatility (for example, Edey and Elliott (1992), Day and Lewis (1992), Lamoureux and Lastrapes 

(1993), Jorion (1995), Fleming (1998) and Simon (2002)). However, as described in Section 2.2, with 

the existing methodology, most research can only conclude whether the implied volatility is a biased 

estimator of the future volatility or whether the implied volatility is more or less volatile than the 

future volatility. In most cases, the definite conclusion about the direction of the bias cannot be 

drawn. Although most studies agree on the biasness of the implied volatility, a handful of research 

studies disagree that the implied volatility is a biased estimator of the realized volatility. For example, 

consider Christensen and Prabhala (1998), who argue that the difference in their results could 

contribute to a longer time span using non-overlapping sampling method6.  They also suggest that the 

shift in the October, 1987 crash might explain the bias found in other research.  

 The discovery of the volatility smile and the bias of implied volatility have raised questions 

among researchers about the validity of the BSM. Several studies have examined whether sample 

variation, measurement errors7, or sample selection bias8 could cause these abnormalities. 

Measurement errors from asynchronous prices and bid-ask spreads in options and futures could also 

be a factor that causes bias in the implied volatility. However, several researchers such as Jorion 

(1995) consider 30 basis points bid-ask spread for options on foreign exchange that have no effect on 

the estimates of the implied volatility bias. Therefore, with the volatility smile observed over varieties 

of markets and periods of times, these explanations are too weak to explain the cause of the smile.  

 Another possibility for explaining the volatility smile is the specification error of the BSM. 

Since the BSM is based on several strong assumptions, violation of these assumptions could lead to 

results that are not consistent with the model's prediction. The price of volatility risk and the fat tail 

                                                      
5 Over the range of strike values, the implied volatility of the S&P 500 index has maintained the sneer shape since the stock market crash in 
1987. This effect corresponds to the common belief that bearish markets are more risky than bullish markets. That is because in bearish 
markets companies tend to increase their leverage because issuing equity is more difficult. As a result, companies become more risky and 
their implied volatility increases. Prior to the crash, the implied volatility for the S&P 500 index was much less depending on strike price 
(Hull 2006). 
6 Overlapping sample methodology tends to yield less precise and potentially inconsistent estimates (Christensen & Prabhala (1995)). 
7 Numerous research studies have been dedicated to choosing the best weighting scheme to estimate implied volatility. However, Poteshman 
(2000) suggests that sampling variation should not cause the bias. In addition, Neely (2004) points out that sampling variation can be 
eliminated using a long span of data such as 12 years. Bates (2000) also provides evidence that the implied volatility is not sensitive to the 
option pricing model. 
8In later work by Flemming (1998), he suggests that the bias might come from the non-zero correlation between price and volatility and the 
American style options (as compared to the European style options calculated by the Black-Scholes model) 
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distribution are among the factors most discussed in the literature. Lamoureux and Lastrapes (1993) 

agree that a price of volatility risk is likely to be responsible for bias in the implied volatility for the 

case of options on stocks. Doran et al. (2005) also indicate that the bias of implied volatility results 

not only from the price of volatility risk, but also from the presence of stochastic volatility and jumps. 

That is, the actual price distributions have fatter tails than that of the normal distribution assumed by 

the BSM.  

 In addition to the volatility risk and the unrealistic normal distribution assumption, the BSM 

also relies on another restricted assumption, namely, a frictionless market. In reality, transaction 

costs, market liquidity, and other elements of market friction are inevitable components of the 

markets. Market frictions create risks and prevent the market from completion9. The violation of the 

frictionless market assumption could lead to a serious issue with respect to model validity. Boyle and 

Vorst (1992) and Leland (1985) and Longstaff (1995) argue that, with the presence of transaction 

costs and other frictional elements, the value of a replicating portfolio of an option must be 

discounted using path dependent probabilities and that option prices need not follow the martingale 

condition. Hence, the options must be priced using an equilibrium model rather than using the no 

arbitrage model. Although researchers are still engaged in trying to explain the BSM bias10, this 

hasn’t slowed down its usage among practitioners. The model is widely used to price vanilla options. 

Moreover, since the implied volatility, by definition, represents future realized volatility over the life 

of the options, it is often used to estimate future realized volatility (or realized volatility). As 

derivatives markets become increasingly important, the use of implied volatility has expanded. 

Implied volatility is used to calibrate input parameters when pricing exotic options and insurance 

premiums. It is also used as an input for dynamic hedging strategies and risk analysis. 

 As the market has become more and more reliant upon speed and simplicity, the BSM has 

become widely adopted in the derivatives community. The volatility smile and the bias from implied 

volatility has also become widely accepted as a result of the model. However, the volatility smile 

creates a more serious problem, because it represents an internal inconsistency between the model’s 

assumptions and reality. This is because the volatility smile violates the constant-volatility 

assumption of the BSM that is required before the implied volatility can be generated. The volatility 

abnormalities cannot be just simple mispricing of the options, because if so, arbitragers would step in 

to buy cheap options and sell more expensive options. Over time, the prices of options would 

converge to their actual prices. However, this is not the case. The volatility smile and volatility bias 

                                                      
9 That is, the market is incomplete. 
10 Mayhew (1995) also provides excellent earlier survey of empirical results testing the Black and Scholes model. 
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persist in different markets over different time periods. Hence, any price deviation indicates that it is 

the level that the market agrees upon. As a result, research questions such as: what causes this 

volatility smile and volatility bias? and how should we develop the option-valuation models that can 

better fit the data have become the focal point for hundreds of research studies over the past several 

decades.  

 The second part of the questions regarding searching for new models that can be used to 

explain abnormalities in implied volatility will be discussed later. The first part of the question 

regarding the explanation of the smile and bias will be discussed as follow. 

  To understand how researchers develop new models in hopes of correcting the shortfalls of 

the BSM, it is important to understand how the BSM is derived. The derivation of the BSM is both 

simple and elegant and can be done through the non-arbitrage condition or through the Risk-Neutral 

Valuation Relation (RNVR). Through the non-arbitrage condition, the number of options hedged 

against the underlying asset depends on the strike price, the current price of the underlying asset, the 

time to option expiration, the interest rate on a risk-free bond, and the future stochastic process for the 

underlying asset price. When these factors are known, the proper hedging portfolio is known and an 

equilibrium price can be found that is invariant to risk preferences and to expected changes in the 

underlying commodity price. 

 If the BSM is derived through the RNVR technique, it can be determined either with or 

without preference assumptions. Through the non-preference assumption, the RNVR can be 

determined by converting the physical probability into the risk-neutral probability. Hence, the option 

payoff can be discounted using the risk-free rate (Cox, Ross and Rubinstein (1979))11. The 

preference-based RNVR relies on a general equilibrium model. By assuming different combinations 

of utility functions and underlying asset price processes, and by solving a representative agent's utility 

maximization problem, the RNVR can be recovered, leading to the original BSM formula. Several 

studies have found that the RNVR can be derived through Constant Relative Risk Aversion (CRRA) 

preferences and a lognormal distribution of underlying asset price (Merton (1973)), CRRA 

preferences and a bivariate lognormal distribution of the return on the underlying asset and the return 

on aggregate wealth (Rubinstein (1976)), Constant Absolute Risk Aversion (CARA) and a bivariate 

normal distribution of the price of the underlying asset and aggregate wealth (Brennan (1979)), and 

exponential risk preferences and a transformed normal distribution of aggregate wealth and the 

underlying asset price (Câmara (2003)). The most recent development in this field is to use Epstein-

                                                      
11 Sundaram (1997) provides an excellent intuitive explanation about how the RNVR works and how it is equivalent to the Black and 
Scholes model. 
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Zin preferences and multivariate affine jump diffusion underlying state variables (Eraker & 

Shaliastovich (2007)). 

 These new models typically alter the original the BSM assumptions or develop new 

techniques12 for determining price options. For example, the univariate diffusion model relaxes the 

geometric Brownian motion assumption (e.g., Cox and Ross (1976), Cox and Rubinstein (1985)13), 

the stochastic volatility and jump process models relax the constant-volatility assumption and the 

underlying price process assumption, respectively (e.g. Hull & White (1987) and Heston (1993)), the 

deterministic volatility model allows the volatility to be locally deterministic (Derman and Kani 

(1994a,b), Dupire (1994), and Rubinstein (1994) ) and, finally, discrete time models such as the 

Autoregressive Conditional Heteroskedasticity (ARCH) and Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) models relax the volatility process structure (Bollerslev (1986), 

Duan(1995) and Heston and Nandi (2000))14. Several extensions allowing for trading costs, short-

sales constraints, and other market friction elements have also been developed (for example, Leland 

(1985), Hodges and Neuberger (1989), Bensaid et al. (1992), Boyle and Vorst (1992), Karatzas and 

Kou (1996), and Broadie et al. (1998)15). Bakshi et al. (1997) list more studies analyzing these new 

option-pricing models.  

 By relaxing assumptions regarding the volatility process, these models can successfully 

explain the volatility smile. For example, Dumas et al. (1998) refers to the work by Taylor and Xu 

(1993) wherein they demonstrate that more complex valuation models such as jump diffusion can 

generate time-dependence in the sneer even when volatility is constant over time. Dumas (1998) also 

gives an example of stochastic volatility by Heston (1993) and Hull and White (1987) that can 

explain the sneer when the asset price and volatility are negatively correlated, because negative 

correlation helps create the sneer. They also refer to the jump model of Bates (1996a) that is able to 

create the sneer if the mean of the jump is negative. However, the predicting and hedging 

performance of these models are still questionable. For example, Dumas et al. (2000) find that the 

deterministic volatility function of option price performed worse than the ad-hoc Black and Scholes 

model in terms of hedging and predicting out-of-sample option values.  

 However, instead of replacing the BSM models in the market place, a growing number of 

these sophisticated models makes the BSM even more important. This is because the increase in 

                                                      
12 The most recent technique used in the new developed model is the Fourier inversion approach used in Stein and Stein (1991), Heston 
(1993) obtained these studies from Bates (2003)) and Eraker and Shaliastovich (2007). 
13 These studies are listed in Bates (2003) 
14 Christoffersen and Jacobs (2004) provide a number of references using the GARCH model. 
15 These studies are listed in Broadie and Detemple (2004) 
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option complexity leads to an increasing usage of Monte Carlo techniques in which the model 

parameters need to be calibrated using market data. Market data are typically collected from options 

traded on the exchanges. These options are mostly plain vanilla and are calculated using the BSM 

because of its speed and simplicity. Therefore, the implied volatility inverted from the BSM has 

become necessary data for these newly developed models.  

 Not only do the data from the BSM become necessary input for these models, but also the 

models themselves have a major drawback, a lack of speed. To price plain vanilla options, these 

models rely on a Monte Carlo technique, a major obstruction for practitioners. Monte Carlo methods 

require a relatively longer time to price the options and also require time intensive calculations. By 

the time the models produce fair option prices, market conditions will have changed and the prices 

will no longer represent the current market environment. Compared with more sophisticated models, 

the BSM can produce prices very quickly. Although, in many cases, these prices are only quick and 

dirty estimates, for options traders who understand the market, these prices are usually adequate to 

use as a first step in  making the market.  

 When practitioners choose to use the more sophisticated models, the immediate question that 

should be considered is whether the benefits outweigh the costs. Bakshi et al. (1997) ask whether we 

gain anything from more complicated models and whether they are able to correct for the biases 

associated with the BSM. Their question is crucial for this research. As we examine the existence of 

bias in various commodity markets and progress in the search for the best model to explain the bias 

embedded in the implied volatility, we must keep in mind that the chosen model should be simple 

enough to be understood by practitioners and should reflect the reality of the market.   

2.2 Biasness and Informational efficiency hypotheses 

 After almost four decades and at least three major option valuation models, the BSM is still 

the cornerstone for the options market. This brings us back to the first question posted in the previous 

section, i.e., what causes the volatility smile and volatility bias? As the market continues to use the 

BSM as a valuation model and implied volatility as an estimate of future realized volatility, the 

sources of the volatility smile and volatility bias have become especially important. 

  In the literature, the conditional bias tendency of the implied volatility is generally tested 

using the following hypothesis: 

 

 
tTtIVTtRV εβσασ ++= 2

,,
2

,,  (2.1) 
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where 2
,, TtRVσ and 2

,, TtIVσ  are the subsequently realized volatility and the implied volatility between 

period t and T respectively. The rejection of the null hypothesis that α=0 and β=1 indicates that the 

implied volatility is a biased estimator of the realized volatility.  

To test whether the implied volatility is informationally efficient, the following regression is 

typically conducted: 

 

 
tTtFVTtIVTtRV εγσβσασ +++= 2

,,
2

,,
2

,,  (2.2) 

 

where 2
,, TtFVσ is an alternative forecast of volatility from period t to T.  The rejection of the null 

hypothesis 0=γ  would lead to the rejection of the notion that the implied volatility is 

informationally efficient in predicting the realized volatility. 

Testing across asset classes over different periods of time, researchers have found α̂  to be 

positive andβ̂  to be less than 1. Most researchers agree that the implied volatility is a conditionally 

biased estimator of the subsequently realized volatility (Neely, 2004). However, setting up the 

empirical model this way does not directly allow researchers to conclude whether the implied 

volatility overestimates or underestimates the realized volatility. This is because the positive values 

of theα̂ and β̂ do not guarantee that the 2 ,,ˆ TtIVσ  will be an upward estimator of2 ,, TtRVσ  . As a result, 

only a few research studies have been able to make a conclusion about the direction of the bias of the 

implied volatility. For example, Bates (2003) shows α̂
 

to be 0.0027 and β̂  to be 0.681. From this 

result, he concludes that the implied volatility overestimates the realized volatility due to a small 

intercept and a significantly greater than zero slope. For most research studies, the estimates do not 

allow drawing of a conclusive direction about the implied volatility. For example, Jorion (1995) tests 

similar hypotheses using non-over lapping data for three foreign exchange markets: The German 

deutsche mark, Japanese yen, and Swiss franc during the period 1985 to 1992. He finds that α̂ is 

approximately 0.3 and β̂
 

is approximately 0.5.  Based on these estimates, the only conclusion that 

can be drawn is that the implied volatility is more volatile than the realized volatility; that is, the 

implied volatility should be scaled down when relatively higher than average and scaled up when 

relatively lower than average. No conclusion about the direction of the bias is provided.  
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Using the non-overlapping data of the S&P 100 index between 1986 and 2004, the S&P 500 

index between 1994 and 2004, and natural gas, crude oil, and heating oil prices between 1995 and 

2005, Doran et al. (2005) employ the instrumental variable technique to construct the estimated 

implied volatility and use the estimated implied volatility to estimate equation (2.2). They conclude 

that since the slope is less than one and the intercept is either positive or negative, the implied 

volatility is an upward biased estimator of the realized volatility. They attribute the implied volatility 

bias to the negative market price of volatility risk. However, I disagree with the approach they use to 

draw a conclusion because, as pointed out earlier, the positive slope, even when combined with a 

positive intercept, does not guarantee that the implied volatility will be an upward bias estimator of 

the realized volatility.  

The conclusion that the implied volatility overestimates the realized volatility is only true 

under certain situation, such as when the slope is less than one and the positive intercept is small. Due 

to this restriction, the empirical analysis is designed to account for this issue by constructing the 

dependent variable as the difference between the implied volatility and the realized volatility. Hence, 

the conclusion about the bias of the implied volatility can be drawn. When the intercept is negative 

(positive), the implied volatility overestimates (underestimates) the realized volatility. 

Since most researchers agree that the implied volatility is a biased estimator of the realized 

volatility, the next mission is to determine the cause of this bias. Several hypotheses have been tested. 

Neely (2004) tests whether different kinds of measurement error can cause the bias. These 

measurement errors include error from using high-frequency options data, error from using horizon-

by-horizon estimation, error from sample selection bias, and error from price of volatility risk.  In the 

end, he finds no explanation of the bias through any measurement errors. Different conclusions were 

found by Doran et al. (2005), who examined the bias and concluded that it is a result of the market 

price of volatility risk. Other researchers  (e.g. Longstaff (1995), Dennis and Mayhew (2001) and 

Aijo (2002)) examine the bias through the demand and supply framework, but neither conclusions nor 

theoretical models offer. This research will bridge the gap in the literature. The model proposed in 

Chapter 3 not only provides testable hypotheses, but also satisfies economic intuition about the causes 

of the bias. 

The information content of the implied volatility is another aspect of the implied volatility 

that is being extensively examined by researchers. Once again, they are unable to find a common 

ground regarding the information content embedded in the implied volatility. This is partly due to 

different sampling and measuring techniques, different estimation methodologies, and different 

markets. Using a simple BSM without accounting for dividend or early exercise rights, earlier 
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researchers found that the implied volatility from stock options can explain the realized volatility 

better than can the historical volatility (Szakmary et al. 2003). However, in 1988, Christensen and 

Prabhala (1988) using monthly observations, constructed non-overlapping data and found that the 

implied volatility is a good predictor of the realized volatility. With the development of more 

sophisticated sampling and testing methods, results from more recent studies have been mixed 

(Szakmary et al. 2003). Canina and Figlewski (1993) examine options on the S&P 100 index using a 

regression approach and find that there is no relation between implied volatility and realized 

volatility. Day and Lewis (1992) study the at-the-money options on the S&P 100  index and find that, 

although the implied volatility does contain some predictive power, time series models such as 

GARCH or the historical volatility do help improve this predictive power.  

Szakmary et al. (2003) analyzed options from 35 futures markets traded over eight exchanges 

and found that implied volatility is a good predictor of the realized volatility and that the time series 

model such as the moving average and the GARCH model contain no predictive information that is 

not embedded in the implied volatility. They conclude that the futures options markets are efficient. 

 In more recent work, Neely (2004) attempts to derive the explanation for the bias and the 

inefficiency of implied volatility by estimating by means of the stochastic volatility model. He 

corrects for the overlapping data (telescoping samples) by constructing an appropriate covariance 

estimator following Jorion (1995) using horizon-by-horizon estimation. However, he still finds that 

implied volatility is a biased estimator for realized volatility and that the foreign exchange market is 

inefficient. His paper also rejects the hypothesis that the non-zero price of volatility risk generates the 

bias in the implied volatility.  

Despite voluminous empirical works conducted over the past 30 years, it is still debatable 

whether implied volatility is a biased estimator of realized volatility and whether the information 

content embedded in the implied volatility is efficient enough to predict future realized volatility. 

2.3 What do we need to know about the options market? 

 It has been almost four decades since the BSM was introduced and researchers are still 

struggling trying to pinpoint the explanation of the volatility smiles and volatility bias expressed in 

the data. The focuses of previous research have been either trying to derive an option valuation model 

through new variants of stochastic processes of the underlying assets or testing the bias and 

information content of the implied volatility. Yet, no final conclusion has been reached. This research 

proposes to explain the abnormalities of the implied volatility using a different approach - the partial 
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equilibrium approach. I focus on the fundamental factors of the options market, the interaction 

between demand for and supply of options, and the structure and mechanism of the options market.  

 To understand how the demand for and supply of options function, we must first understand 

how options are traded. Option transactions are similar to ordinary stock market transactions where 

market makers (or traders) quote bid-ask prices and help in facilitating the price discovery process. 

Therefore, the following observations about their behavior should help us understand how the options 

market operates and what, where, and how the BSM fails to capture important information. 

 First, according to an interview with option traders from the heating oil pit at the New York 

Mercantile Exchange (NYMEX) in May 2007, option traders admit that, though a numbers of model 

can be used to price options, they use BSM16 due to its speed and simplicity. Prices calculated from 

the BSM are considered to be “good enough” because traders do not try to quote the most accurate 

option prices. Instead, the ability to price options satisfactorily relative to their peers is more 

important than the ability to price the options accurately. In fact, some traders have not changed the 

interest rate input of the BSM in months17! Most traders would agree that they do not know much 

about the real values of the options until they are approaching maturity. This observation is also true 

for electronic trading. 

 Second, most option traders are neither statisticians nor mathematicians18. They do not 

understand complicated option valuation models. Though most traders on the exchanges use handheld 

computers (so-called, "the Tablet") to calculate option prices, they find the simplicity of the BSM (or 

its slight variations) most attractive to them because the BSM only leaves the "volatility" as a 

subjective input. As a result, traders can price any option by simply changing one parameter in the 

pricing model, the volatility. 

     Third, since the volatility is the only unknown variable needed in their calculation, option 

writers can incorporate their market perspective into option prices. At the beginning of each trading 

day, the starting volatility parameter is the implied volatility inverted from the previous day’s option 

price. Throughout the day, as market conditions change, e.g., if more demand (supply) enters the 

market, traders respond to demand changes by increasing (decreasing) option prices. This can be done 

by increasing (decreasing) the volatility parameter. Hence, whether traders truly interpret the 

volatility parameter as an estimation of realized volatility over the remaining life of an option is 

questionable. However, from the option traders' perspective, volatility is clearly used as a link 

                                                      
16 Note that, these option traders can also be considered as market makers for the option markets in which they participate. 
17 For short dated options, the impact of interest rate is very small and, hence, mostly ignored by traders. 
18 Note that we are focusing on option traders who act as market makers. The designations option traders, traders, or option writers are used 
interchangeably throughout this research. 
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between the option price, demand and supply of the option market, and traders' perception of the 

market to reflect the fair value of the options. 

     Fourth, trading options incurs costs. Trading costs include cost of exchange seats, opportunity 

cost of skills, time, and hedging. Option traders possess skills and economies of scale to dynamically 

manage their risks. In the competitive market, traders’ skills can be used elsewhere unless they are 

compensated for their costs and skills.  

 Fifth, unlike other businesses, the option market does not directly create wealth in the 

economy. Instead, it provides a risk-shifting service that allows businesses to focus on their core 

business activities that can help increase wealth (Baird (1993)). In a sense, option writers act like an 

insurance company to bear extra risks for which they should be compensated.  

 Finally, sixth, the market generally believes that the probability of extreme events in the real 

world is higher than the normal distribution assumed in the BSM. In other words, the real world 

distribution appears to have a fatter tail than the normal distribution. 

 These observations clearly violate the BSM assumption regarding constant volatility and 

frictionless markets. Therefore, the non-arbitrage condition and the RNVR need not to be satisfied 

and the option valuation model is no longer valid, so the options should be priced through the 

equilibrium model (Longstaff (1995)). Therefore, the question that needs to be asked is: if option 

markets and option traders behave as I described earlier, should option prices quoted by these traders 

reflect their behavior? If so, how do we capture this behavior? 

2.4 A Partial Equilibrium Model – An Explanation for the Implied V olatility 

Bias 

 The previous discussion about how the option market operates sheds some light on how to 

explain the bias embedded in option prices. The key point to remember is that, regardless of any 

weaknesses resulting from the BSM, it is still widely used among practitioners. To compensate for the 

model’s unrealistic assumptions, the market instead imposes an adjustment to prices derived from the 

model. The only input parameter that allows market to incorporate this adjustment is the volatility 

input; hence, the result of volatility smiles or volatility biases is seen in the data. 

 In contrast to previous studies whose primary objective is to search for a perfect valuation 

model or to test for the degree of bias and information content of the implied volatility, the focus of 

this study is to model the imperfection of the current valuation model. That is, I attempt to explain the 
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bias embedded in option prices using the partial equilibrium of the interaction between supply and 

demand for the services of option writers rather than to develop a new valuation model. 

 The above observations suggest that the market price of the option is comprised of two 

different components, the theoretical value from the BSM and the bias adjustment. When options are 

transacted, buyers and sellers of options must agree on the market price, hence the theoretical values 

and the bias adjustments. If the theoretical values are known, the problem reduces to finding the 

equilibrium price of the bias. In equilibrium, demand and supply of the bias must be equal. 

Intuitively, bias supply comes from costs and additional risks that option traders must bear, and bias 

demand comes from option buyers who are willing to pay a price premium in order to reduce their 

risks and to compensate skilled traders to rebalance their risks rather than doing it themselves.  

 The idea of explaining volatility smiles and volatility biases through the demand and supply 

framework has been mentioned on several occasions in the literature. However, it has received almost 

no attention and has never been modeled systematically because most attention is directed toward 

creating new valuation models that can explain volatility bias and volatility smiles in the data. These 

new models do not take into account the fact that the BSM is still the model used by traders.  

 In papers that are closest to this research, Fleming (1998) finds an upward bias in S&P 100 

futures options. He goes on and suggests that a linear model that corrects for the implied volatility 

bias can provide a useful market-based estimator of conditional volatility, in other words, the implied 

volatility bias can be modeled as a function of a set of explanatory variables. Dumas, Fleming and 

Whaley (1998) use an ad-hoc version of the BSM which specifies that the BSM implied volatility is a 

linear function of the strike price, strike price squared, time to maturity, and time to maturity squared. 

Although these studies do not provide a theoretical explanation of their models, their methodology is 

consistent with the assumption that we can view the bias in the implied volatility as a function of sets 

of explanatory variables resulting from the demand and supply of options. Bates (2000) indicates that 

option market practitioners believe that heavy demand for out-of-the-money (OTM) put options has 

driven up their prices. This could be one of the possible explanations of the implied volatility smirk 

after the 1987 crash19. However, in his paper, Bates chooses to explain this abnormality using 

different stochastic volatility and jump-diffusion models instead of using a demand-supply 

perspective. 

 Some recent research on the option bias is directed toward using a demand and supply 

framework. For example, Ferreira,  Gaga, Leon, and Rubio (2005) provide a discussion on the impact 

                                                      
19 Since the 1987 stock market crash, the implied volatility of S&P 500 futures options are known to have the volatility smirk pattern (Bates 
(2000)). 



17 

 

 

 

of net buying pressure and limited supply.  Bates (2003), Whaley (2003), and Bollen and Whaley 

(2004) discuss the importance of a net buying effect on the option bias. However, this research takes a 

different approach in which the bias is determined from a partial equilibrium framework that contains 

broader economic insight. Equilibrium results from an agent’s expected utility maximization problem. 

Because of the nature of options trading, options writers must purchase or lease exchange seats in 

order to become market makers. If they do not own a seat then option writers must pay service fees to 

have their contracts traded. The need to own a seat and the skills required to write options are barriers 

to entry in for option writer. Hence, I introduce monopoly power into the market.  
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CHAPTER 3. MODEL 

 The model presented in this chapter is different than those presented by Brennan (1979) and 

Rubinstein (1976) that are based on a general equilibrium setting. However, for completeness, I 

present Brennan’s model to show how asset prices are derived in this general equilibrium setting.  

 Brennan (1979) extends the work by Merton (1973) and Rubinstein (1976) to show that the 

BSM can be derived by assuming Constant Absolute Risk Aversion (CARA) preferences combined 

with the normality assumption of the price of the underlying asset. The following section briefly 

describes Brennan's model. His methodology and assumptions will be applied to my model later. In 

his model, Brennan assumes separability in a two-period utility function and period-zero endowment. 

Hence, a representative investor faces the following expected utility maximization problem: 
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 where 

( ).U  Utility function at period 0, 

( ).V   Utility function at period 1, 

0W  Initial wealth of a representative investor, 

1W   Period 1 wealth of a representative investor, 

0C  Initial consumption of a representative investor, 

jx   Numbers of units of risky security j purchased, 

jP0  Initial price of risky security j (j=1,2,......,n), 

jP1  End of period price of risky security j, 
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fr   Risk-free interest rate, 

 Solving the optimization problem using the Lagrangian method, First Order Conditions 

(FOCs) become  

 ( ) ( ) ( )[ ] 0'1' 10 =+− WVErCU f  (3.2) 

 ( )[ ] ( ) ( )[ ] 0'1' 101 =+− WVErPPWVE fjij  (3.3) 

     

 for j = 1,2,.....N. Using these FOCs and market clearing conditions are sufficient to determine 

the jP0 . Dropping subscript j and rearranging the above equation, we obtain 
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 This relationship is true for all assets. Assuming use of the exponential utility function and 

bivariate normal distribution20 of the price of the underlying asset and aggregate wealth, this model 

results in a risk-neutral valuation relation (RNVR) and hence, the BSM formula. 

 Taking into account common practices in the market, the proposed partial equilibrium model 

developed here uses results from Brennan and Rubinstein's models, uses the BSM, as an input and 

adds another layer of equilibrium analysis to account for the bias. This model essentially replicates 

the market pricing mechanism where the market is adjusting the option price from the BSM. 

However, from a practical perspective, this adjustment can only be done through volatility, the only 

unknown input to the model. Note that, in the absence of market frictions, RNVR will hold and the 

BSM will be valid. In that case, this partial equilibrium model will be unnecessary and the model will 

reduce to Brennan's model. 

 My model assumes heterogeneous agents interact in the monopoly market setting. Two cases 

are considered: 1) no discrimination, and 2) perfect discrimination. No discrimination refers to the 

case where a monopolist doesn’t have the power to charge different prices to different customers. 

Perfect discrimination is the case where a monopolist can charge different prices to different 

customers. 

  The model considers a two-period economy with periods t = 0, 1. There are two different 

types of agents: asset owners and options writer. There are several asset owners but only one option 

                                                      
20 A normality assumption can be appropriate when an underlying asset can take on negative values (Brennan (1979)). 
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writer21. Both the asset owners and the option writer attempt to maximize their own total utility, 

which is the sum of utilities at periods 0 and 1. The asset owners are risk-averse. Their utilities at each 

period are concave and time-separable. The option writer is risk-neutral and writes options in a 

monopoly market environment. At period 0, both the asset owners and the option writer are equally 

endowed with physical goods. However, asset owners expect additional physical goods in period 1 

(e.g., from harvesting their crops). The price of physical goods at time 0 is known for certain. 

Although the price at time 1 is uncertain and unknown, parameters that govern the price distribution 

are public information and therefore known for certain at period 0. Due to price uncertainty, each 

asset owner decides to buy put options to hedge the future price uncertainty risk. I assume that each 

asset owner has a unique preference for a unique strike, e.g., each asset owner wants to purchase the 

options for a particular strike and does not want to purchase any options for any other strikes. Each 

option provides protection for one unit of physical good. Options trading takes place at time 0. In this 

model, market participants are assumed to use a Black-Scholes option-pricing model to price the 

options. With the well-known limitation of the Black-Scholes model, the market imposes an 

additional price adjustment (the “Bias”) to the theoretical price of the options”. In equilibrium, 

options buyers and seller agree on an optimal bias level. 

Notation 

         S  Bias (in dollars) 

       optP  The option price calculated from BSM ( SPopt +   is the real option price that asset 

 owners  actually pay) 

        fr   Risk free rate of return 

       
a

 
 Risk aversion coefficient (Arrow-Pratt’s coefficient of absolute risk aversion) 

       1P   Price of underlying asset at time 1 

       ik    Strike price preferred by asset owner i 

       iQ    Quantity of physical goods that asset owner i is endowed with in period 1 

      iA   Quantity hedged by asset owner i 

      0iW   Initial wealth of asset owner i 

      H   Fixed trading cost 

       c   Variable trading cost (per Unit of physical good) 

                                                      
21 This is comparable with the real-world situation. For example, an insurance company sells insurance to several policy holders or there are 
many options buyers with a  limited number of options traders.  
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3.1 The asset owner’s problem 

 The model assumes n types of asset owners with identical and separable utility functions. 

Each type of asset owner prefers a different strike and has an identical quantity of physical good at 

period 0. This quantity is known for certain and is also publicly known. The price of the endowment 

at period 1 is unknown and is assumed to follow a lognormal distribution. There are two types of 

assets: the endowment and the options on the endowment. Asset owners can purchase put options to 

hedge against the price uncertainty of the goods during period 1. Asset owners are not allowed to 

borrow money to buy options. 

 An asset owner’s objective is to allocate his endowment into consumption over two periods 

to maximize his total utility. An asset owners’ utility is assumed to be represented by an exponential 

utility function. In period 0, each asset owner has to decide the option quantity that he wants to buy to 

hedge against the price uncertainty.  The only difference among asset owner types is that they prefer 

different strike prices. For example, asset owners of type i prefer strike Ki , i.e. their utility can be 

represented as ( )ii KfU =  where iU is the utility function for asset owner type i.  

 Asset owner i’s problem is to maximize his utility by choosing farmer
iC 0  and iA . Each type of 

asset owner’s optimization problem and budget constraints are shown in equation (3.1.1) and (3.1.2) 

respectively. 
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 From equation (3.1.1), ( ).U is utility at period 0 and [ ].EV  is expected utility at period 1. The 

consumption at period 1 is comprised of: 1) The left-over initial endowment, 2) the options payoff, 

and 3) the additional endowment at period 0. The left-over initial endowment is the left-over 

endowment after the asset owner allocates his initial endowment (0iW ) into consumption ( farmer
ioC ) 

and purchases iA  options at the price ( )SPopt +  
where optP
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from the BSM, and S is the additional price of the option (the bias). This left-over endowment is 

invested to receive a rate of return %fr  per year22.  

 Dropping the asset owner’s superscript and solving the optimization problem using the 

Lagrangian method, First Order Conditions (FOCs) become  
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Equation (3.1.5) can be written as 
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Plug in FOC from C0  
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Note that with the exponential utility used in Brennan, utility function takes the form of  
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22 The rate of return can be negative in case of carrying cost of future goods and can be positive in case of opportunity cost of capital. 
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Therefore, equation (3.1.3) becomes  
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and equation (3.1.5) becomes 
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separating the terms that are known with certainty, 
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  cancelling out the exponential term that is known with certainty and rearranging some terms, 
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 The last equality results because the option price is taken as exogenous from the BSM and, 

hence, is known with certainty at period 0. The bias demand function ( *farmerS ) becomes 
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 By the lognormality assumption, we have ( ) 
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 The asset owner’s demand function is then 
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3.2 The Option writer's problem 

The option writer operates in the monopoly market. For simplicity, the option writer is assumed 

to be a risk-neutral agent. For such a risk-neutral agent, his objective of maximizing his total expected 

utility is equivalent to maximizing his total expected profit.  Note that if the option writer is assumed 

to have the usual concave utility function, the analysis will remain the same but his decision regarding 

the amount of the options and the price of the bias will be different. The option writer’s total revenue 

derives from the sales of options. In return, he also incurs fixed cost and variable cost resulting from 

selling options. His fixed cost can be thought as the start up costs such as the payment for the right to 

use the seat on the exchange and his variable cost can be thought as the cost of hedging his portfolio. 

In period 1, once the price of the asset is known, the option writer is also responsible for the payoff of 

the options he sold. Following the standard monopoly market framework, the monopolist views the 

market demand as his own demand. His maximization problem can be formulated as 
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 where ( )iAS  follows from (3.1.19) and  i = 1,2,3,….nth  asset owner. c represents the 

marginal cost and H represents the fixed cost.  By substituting the demand from the asset owner, the 

above maximization problem can be written as 
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 The solution for iA  is characterized by the following FOC: 
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 This equation can be thought of as representing a situation in which the monopolist equates 

his marginal revenue to his marginal cost.  

3.3 Equilibrium 

 To analyze market equilibrium, I consider two different cases. The first case assumes that the 

option writer operates in a market where he is unable to impose different biases on different asset 

owners, denoted as a “no discrimination” case. This is similar to the classic monopoly market where 

the monopolist cannot conduct any discrimination among his patrons, i.e., options with different 

strike prices are charged the same bias (S). On the other hand, the second case, denoted as a “perfect 

discrimination” case, allows the option writer to charge different biases for each asset owner. In this 

case, he treats each individual asset owner’s demand as one of different demands from different 

markets and maximizes the profit for each asset owner separately.  

Case I: No Discrimination Case 

 In the no-discrimination case, the option writer is unable to practice price discrimination 

among asset owners, i.e. he has to charge the same level of bias to all asset owners. This case can be 

thought of as one in which the option dealer is charging a flat fee for each option regardless of strikes 

and quantity or the case where he is regulated by the government and is only allowed to charge a 

certain amount of fee across asset owners. The option writer’s total revenue is the summation of BSM 

price and the bias that he charges each asset owner. The total cost of the option writer is composed of 

fixed cost and variable cost. The fixed cost represents costs that he has incurred, such as the exchange 

seat and opportunity cost, in order to become an option writer. The variable cost represents costs 

associated with each individual option transaction, e.g., dynamic hedging costs that increase with the 

quantity of options sold. In equilibrium, the optimal quantity sold to each asset owner is characterized 

by equation (3.2.3) with the additional condition that the additional charge (bias) is equal among asset 

owners, that is 
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 with *farmer
iS  defined by equation  (3.1.19), (3.1.20) and (3.1.21). Although there is no 

closed-form solution for equation (3.3.1), the model suggests that the optimal bias (*S ) can be 

written as a function of the following parameters 
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 The following diagram graphically illustrates the option writer’s maximization problem. The 

diagram assumes zero fixed cost, zero variable cost and three asset owners in the market. Each asset 

owner exhibits linear demand. The right-hand-side plot represents the total market demand. To 

maximize his profit, the option writer chooses the optimal level of bias ( *S ) represented by the 

shaded area          . By varying the bias level, the option writer can find the bias level that provides 

him or her with the greatest profit level, i.e., the largest shaded area.  The result produced by this 

numerical method is presented in the next section.  

 

Figure 1. Demands By Strikes: Case I No Discrimination 

 

 

 

 

 

 

 

            

  

   

Case II: The Perfect Discrimination Case 

In contrast to the no-discrimination case, the option writer in the perfect-discrimination case 

can charge different level of biases to different asset owners. In this case, the option writer treats each 

asset owner as if he or she followed an individual demand curve. The option writer is maximizing his 
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utility by maximizing the profit from each demand curve. With the same cost structure as the no-

discrimination case, the option writer’s maximization problem is shown in (3.2.1)and can be broken 

down into maximizing profit for each asset owner’s demand, i.e., 
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 Similar to case (1), the solution is characterized by equation (3.2.3). However, since the 

monopolist has the ability to charge different bias for different asset owners, he is not subject to the 

equality constraint given by equation (3.3.1). A closed form solution for *
iS does not exist. However, 

*
iS will be a function of the set of variables shown in equation (3.3.2). Graphically, the model can be 

represented b y the following diagram: 

 

Figure 2. Demands By Strikes: Case II Perfect Discrimination 

 

 

 

 

 

 

            

                                                                         

 

 

 

The shaded area represents the profit that the option writer is able to make from each types of 

asset owner. As mentioned earlier, the only difference between each type of the asset owners is the 

preference on the strike prices. By choosing the optimal bias level corresponding to the demand of 
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each asset owner type, the monopolist conducts his or her pricing strategy by maximizing each 

shaded area separately. 

In the models presented above, the option writer imposes an additional cost or “bias” on 

options sold to asset owners. As described in the literature, this bias accounts for imperfections in the 

BSM, such as the violation of several model assumptions such as constant volatility and frictionless 

markets. However, when pricing options using the BSM or its variations 20 , instead of adjusting in 

terms of dollar amounts, practitioners typically adjust the volatility, the only unknown input in the 

model, to take into account factors that the model fails to represent. The implied volatility inverted 

from the options prices is thus contaminated by this adjustment.  The next section presents a 

numerical analysis of this theoretical model.   

3.4 Numerical Analysis 

This section performs a numerical analysis of the theoretical model using Matlab. First, I plot 

the asset owners’ option demands. Next, I simulate model equilibrium for both of the cases discussed 

above: (i) the no-discrimination case and (ii) the perfect-discrimination case. The code used in this 

section is provided in Appendix A. 
 

Demand for Options  

Option demand ( *farmer
iS  ) is defined by equations (3.1.19), (3.1.20) and (3.1.21). Using the 

following initial values: a  = 1, 0P
 

(or 0F  for futures) = 1, σ  (sigma) = 0.25, T  = 1, fr = 0.05, Q  

= 10, Figure 3 shows the demands derived from different types of asset owner with various strike 

preferences. Since the demand function involves integration over the density function of the future 

price, a numerical integration technique is employed. This is accomplished by dividing the range of 

possible values into small trapezoids.  Integration over a certain range of values is performed by the 

area summation of these small trapezoids.  A preference for a higher strike results in a steeper 

demand curve than that for a lower strike. This means that, since an asset owner generally prefers 

higher strikes for put options, the amount of bias that he or she is willing to pay increases.   
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Figure 3. Farmer Demands (Base Case) 

Base case (a  = 1, 0F  = 1, µ=1, σ = 0.25, T = 1, fr  = 0.05, Q  = 10) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 shows sensitivity of the demand curve. Each plot shows the change of demands with 

respect to the change in each parameter while holding other parameters constant. The decrease 

(increase) in a, T, σ, Q and 0F  results in a demand curve tilting downward (upward).  To interpret 

this result, we can use the change in the risk-aversion coefficient (a) as an example. Such a decrease 

in the this coefficient means that the asset owner has become less risk-averse and therefore is less 

willing to pay for the surcharge or bias from purchasing the options. Therefore, at the same value for 

which he is willing to purchase the options, his willingness to pay for the bias decreases; hence, his 

demand tilts downward from its original position. The impact of the risk-free rate appears to be the 

opposite, i.e., a decrease (increase) in the risk-free rate results in the demand curve tilting slightly 

upward (downward). This can be explained by considering the opportunity cost of money. When the 

opportunity cost of money decreases, the asset owner becomes more willing to pay for the surcharge, 

as indicated by the asset owner’s demand tilting upward.  
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Figure 4. Asset Owner Demands Using Different Parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equilibrium Analysis 

To analyze the model equilibrium, I assume initial parameters similar to those of the previous 

section. I further assume that the market consists of three asset owners with respective strike 

preferences of 0.9, 1.0, and 1.1. With current future prices ( 0F ) at 1, these strikes can be thought of 

as the put options with 90%, 100% and 110% strikes, i.e.,  the options are out-the-money, at-the-

money and in-the-money respectively. The monopolist’s profit maximization problem follows 

Equation (3.2.1), where *farmer
iS is defined by equation (3.1.19), (3.1.20) and (3.1.21). The monopolist 

simultaneously chooses *iA
 

for i = 1, 2, 3 to maximize his expected profit function in (3.2.1). 

However, since each asset owner is facing a physical constraint, he is not allowed to purchase more 
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put options than the quantity he is endowed with(Q). Therefore, each asset owner is facing additional 

constraints as follows 

 

 1,2,3,* =≤ iforQA ii  (3.4.1) 

 

The optimization problem searches for the optimal option quantity sold to each asset owner 

( 3,2,1* =iforAi ) that will maximize the monopolist’s expected profit function, the objective 

function. The optimal level of bias is then derived by substituting *
iA  into the *

iS equation in (3.1.19), 

(3.1.20) and (3.1.21).  

To complete this task, I employ the non-linear constraint function fmincon search algorithm 

in Matlab. This function searches for the value of*
iA  that minimizes the objective function. 

Therefore, to apply this function to the problem, I multiply the monopolist’s objective function by -1. 

Hence, the objective function becomes a global minimization problem.  

The equilibrium analysis is done for two separate cases: 1) the no-discrimination case, and 2) 

the perfect-discrimination case. The no-discrimination case requires additional constraints that restrict 

the optimal bias ( *
iS ) to be equal for all asset owners, i.e., 

 

 j,** ≠= iforSS ii  (3.4.2)  
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Table 1. Equilibrium Analysis: Case I No Discrimination 

 

Parameters  

Base 

H change 

  

c change 

  

a change 

  

f0 change 

  

σ change 

  

r f change 

  

Q change 

  

T change Value        

                           

H 1 0.9 1.1  1 1  1 1  1 1  1 1  1 1  1 1  1 1 

c 0.1 0.1 0.1  0.09 0.11  0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1 

a 1 1 1  1 1  0.9 1.1  1 1  1 1  1 1  1 1  1 1 

f0 1 1 1  1 1  1 1  0.9 1.1  1 1  1 1  1 1  1 1 

σ 0.25 0.25 0.25  0.25 0.25  0.25 0.25  0.25 0.25  0.24 0.26  0.25 0.25  0.25 0.25  0.25 0.25 

rf 0.05 0.05 0.05  0.05 0.05  0.05 0.05  0.05 0.05  0.05 0.05  0.04 0.06  0.05 0.05  0.05 0.05 

Q 10 10 10  10 10  10 10  10 10  10 10  10 10  9 11  10 10 

T 1 1 1  1 1  1 1  1 1  1 1  1 1  1 1  0.9 1.1 

K = 0.8 , 

0.9 , 1.0 , 

1.1 , 1.2                          

                           

Result                          

S 0.063 0.063 0.063  0.057 0.069  0.084 0.072  0.039 0.095  0.084 0.065  0.063 0.062  0.054 0.072  0.081 0.066 

A (K = 0.8) 6.137 6.137 6.137  6.883 5.463  2.880 5.755  9.711 1.031  3.139 6.468  6.152 6.122  5.945 6.330  3.107 6.504 

A (K = 0.9) 8.259 8.259 8.259  8.781 7.777  6.027 7.872  10.000 5.030  6.214 8.379  8.268 8.249  7.843 8.659  6.228 8.393 

A (K = 1.0) 8.936 8.936 8.936  9.297 8.597  7.375 8.633  9.806 7.029  7.510 8.995  8.941 8.930  8.354 9.496  7.522 9.012 

A (K = 1.1) 9.069 9.069 9.069  9.331 8.820  7.906 8.846  9.580 7.922  8.004 9.118  9.072 9.067  8.389 9.730  8.002 9.144 

A (K = 1.2) 9.044 9.044 9.044  9.248 8.848  8.109 8.876  9.416 8.289  8.186 9.094  9.045 9.043  8.308 9.764  8.168 9.128 

Total A 41.444 41.444 41.444  43.540 39.504  32.297 39.981  48.512 29.302  33.052 42.054  41.478 41.411  38.839 43.979  33.027 42.179 

Profit 7.362 7.362 7.362  7.787 6.957  6.917 7.530  11.625 4.475  6.778 7.799  7.433 7.293  6.383 8.383  6.660 7.902 

                           

 Change S  0.000 0.000  -0.006 0.006  0.021 0.009  -0.024 0.032  0.021 0.002  0.001 0.000  -0.009 0.009  0.019 0.003 

Change Total 

A  0.000 0.000  2.096 -1.940  -9.147 -1.463  7.068 -12.142  -8.392 0.610  0.033 -0.033  -2.605 2.535  -8.418 0.735 

Change Total 

F   0.000 0.000   0.425 -0.405   -0.445 0.168   4.263 -2.888   -0.584 0.437   0.071 -0.069   -0.979 1.021   -0.702 0.540 
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Table 2. Equilibrium Analysis: Case II Perfect Discrimination 

 

Parameters  

Base 

H change 

  

c change 

  

a change 

  

f0 change 

  

σ change 

  

r f change 

  

Q change 

  

T change Value        

H 1 0.9 1.1  1 1  1 1  1 1  1 1  1 1  1 1  1 1 

c 0.1 0.1 0.1  0.09 0.11  0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1 

a 1 1 1  1 1  0.9 1.1  1 1  1 1  1 1  1 1  1 1 

f0 1 1 1  1 1  1 1  0.9 1.1  1 1  1 1  1 1  1 1 

σ 0.25 0.25 0.25  0.25 0.25  0.25 0.25  0.25 0.25  0.24 0.26  0.25 0.25  0.25 0.25  0.25 0.25 

rf 0.05 0.05 0.05  0.05 0.05  0.05 0.05  0.05 0.05  0.05 0.05  0.04 0.06  0.05 0.05  0.05 0.05 

Q 10 10 10  10 10  10 10  10 10  10 10  10 10  9 11  10 10 

T 1 1 1  1 1  1 1  1 1  1 1  1 1  1 1  0.9 1.1 

K = 0.8 , 

0.9 , 1.0 , 

1.1 , 1.2                          

                           

Result                          

S (K = 0.8) 0.091 0.091 0.091  0.085 0.096  0.084 0.097  0.077 0.092  0.088 0.093  0.091 0.090  0.084 0.097  0.087 0.094 

S (K = 0.9) 0.086 0.086 0.086  0.079 0.092  0.077 0.095  0.051 0.102  0.084 0.087  0.086 0.085  0.077 0.094  0.083 0.088 

S (K = 1.0) 0.061 0.061 0.061  0.053 0.068  0.048 0.073  0.035 0.096  0.058 0.063  0.061 0.060  0.048 0.073  0.057 0.064 

S (K = 1.1) 0.041 0.041 0.041  0.041 0.041  0.040 0.043  0.028 0.073  0.039 0.044  0.042 0.041  0.040 0.043  0.038 0.045 

S (K = 1.2) 0.034 0.034 0.034  0.034 0.034  0.033 0.036  0.021 0.048  0.032 0.037  0.035 0.034  0.033 0.036  0.030 0.039 

A (K = 0.8) 3.241 3.241 3.241  3.791 2.728  2.955 3.459  5.698 1.328  2.708 3.717  3.280 3.203  2.660 3.804  2.545 3.815 

A (K = 0.9) 6.488 6.488 6.488  6.967 6.042  6.653 6.353  9.113 4.465  6.199 6.745  6.510 6.467  5.987 6.990  6.110 6.797 

A (K = 1.0) 9.067 9.067 9.067  9.528 8.651  9.668 8.597  10.000 6.952  9.005 9.119  9.067 9.067  8.701 9.456  8.985 9.130 

A (K = 1.1) 10.000 10.000 10.000  10.000 10.000  10.000 10.000  10.000 8.941  10.000 10.000  10.000 10.000  9.000 11.000  10.000 10.000 

A (K = 1.2) 10.000 10.000 10.000  10.000 10.000  10.000 10.000  10.000 10.000  10.000 10.000  10.000 10.000  9.000 11.000  10.000 10.000 

Total A 38.797 38.797 38.797  40.285 37.422  39.275 38.409  44.812 31.687  37.912 39.581  38.857 38.737  35.348 42.250  37.641 39.741 

Profit 7.631 7.631 7.631  8.026 7.250  7.493 7.769  11.959 4.588  7.225 8.045  7.700 7.563  6.644 8.646  7.112 8.138 

                           

Change Total 

A  0.000 0.000  1.488 -1.375  0.479 -0.388  6.015 -7.110  -0.885 0.784  0.060 -0.059  -3.449 3.454  -1.156 0.944 

Change Total 

F   0.000 0.000   0.395 -0.381   -0.138 0.138   4.329 -3.043   -0.406 0.414   0.069 -0.068   -0.987 1.015   -0.519 0.507 
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 Table 1and Table 2 show the numerical analysis results for the no-discrimination case and the 

perfect -discrimination case, respectively. In the perfect discrimination case, a monopolist maximizes 

his expected profit by charging an asset owner with a higher strike preference (in-the-money (ITM) 

put option) a lower bias price in order to boost their hedged quantities. The hedged quantity is higher 

among these asset owners than that for the lower strike (out-the-money (OTM) put option) asset 

owners. In all scenarios, the monopolist’s ability to set different levels of bias for different asset 

owners allows him to increase his profit. In the base case, this ability to discriminate increases his 

profit from $7.36 to $7.63. 

 The result of the sensitivity analysis is similar in both cases. As we should expect for a risk-

neutral decision maker, the change of fixed cost (H) should be viewed as a sunk cost that turns out to 

have no impact on the quantity hedged and the level of bias. A decrease in variable cost (c ) leads to a 

decrease in the level of bias and therefore an increase in the quantity hedged. Similarly, a decrease in 

future price ( 0F ) and risk-free rate (fr ) leads to a smaller bias level and a higher quantity hedged. 

However, decreases in volatility (σ ), endowment (Q), and time (T) produce an opposite result. 

Finally, a decrease in the risk-aversion coefficient (a) results in a higher quantity hedged and lower 

profit in the perfect-discrimination case and  a lower quantity hedged and lower profit in the no-

discrimination case.   

 The bias resulting from the model can produce a volatility smile. To show this, I calculate the 

prices of put options using similar parameters as those in the base case, i.e., 0F   = 1, fr  = 5%, T = 1, 

σ  = 25% and k  = 0.8, 0.9, 1.0, 1.1, and 1.2. The second column in Table 3 and Table 4 shows the 

BSM prices for the no-discrimination case and the perfect-substitution case, respectively. In the top 

panel, the third column shows the bias level calculated using parameters from the base case as shown 

in Table 1 and Table 2. On the middle and last panels, the third column shows the bias level calculated 

from the case where the variable cost (c ) = 0.9 and the risk aversion coefficient (a) = 1.1, 

respectively. The market price paid by asset owners is the summation of the BSM price and the bias 

level shown in column four. Finally, the implied volatility in column four is calculated by searching 

for the volatility that equates the BSM price to this market price.  
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Figure 5. Implied Volatility Across Moneyness: Case I No Discrimination 

 
 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5 shows that when a constant bias adjustment is applied to the BSM price, the implied 

volatility smile can be generated. A decrease in trading-variable cost leads to a decrease in the bias 

and a downward shift of the implied volatility curve. As asset owners become more risk averse, i.e., 

as the risk aversion coefficient increases from 1 to 1.1, the bias increases, leading to an upward shift 

in the implied volatility curve.  

 The volatility curve behaves differently for the perfect discrimination case. As shown in 

Figure 6, the volatility curve exhibits a higher bias for an 80% strike and a lower bias for a 120% 

strike. Moreover, the volatility curve slopes downward. As the cost of trading decreases, the volatility 

curve tilts downward with a larger decrease in volatility for an 80% strike. The decrease in variable 

cost doesn’t impact the higher strikes (110% and 120%) that already have a lower bias amount. This 

could also be driven by the profit-maximizing problem of the monopolist in which he tries to 

maintain a lower amount of bias for these asset owners in order to increase their quantity hedged. As 

an asset owner becomes more risk-averse, he is willing to pay the higher bias represented by the 

upward tilt of the implied volatility curve. 

 



37 

 

 

 

 

Figure 6. Implied Volatility Across Moneyness: Case II Perfect Discrimination 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Table 3. Implied Volatility Calculation: Case I No Discrimination 

   

   Base 

K BSM Price Bias (S) Market Price IV: Base Case 

80% 0.022 0.063 0.085 48.16% 

90% 0.050 0.063 0.113 43.69% 

100% 0.095 0.063 0.158 41.84% 

110% 0.154 0.063 0.217 41.77% 

120% 0.225 0.063 0.288 42.94% 

      

   Trading Cost = 0.09 

K BSM Price Bias (S) Market Price IV: Lower Trading Cost  

80% 0.022 0.057 0.078 46.03% 

90% 0.050 0.057 0.107 41.84% 

100% 0.095 0.057 0.151 40.14% 

110% 0.154 0.057 0.211 40.11% 

120% 0.225 0.057 0.282 41.24% 

      

   Risk Aversion Coefficient = 1.1 

K BSM Price Bias (S) Market Price IV: Higher risk aversion  

80% 0.022 0.072 0.094 51.19% 

90% 0.050 0.072 0.122 46.33% 

100% 0.095 0.072 0.167 44.27% 

110% 0.154 0.072 0.226 44.14% 

120% 0.225 0.072 0.297 45.35% 
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Table 4. Implied Volatility Calculation: Case II Perfect Discrimination 

   

   Base 

K BSM Price Bias Market Price IV: Base Case 

80% 0.022 0.091 0.113 57.51% 

90% 0.050 0.086 0.136 50.43% 

100% 0.095 0.061 0.156 41.30% 

110% 0.154 0.041 0.195 35.96% 

120% 0.225 0.034 0.259 35.00% 

      

   Trading Cost = 0.09 

K BSM Price Bias Market Price IV: Low er Trading Cost 

80% 0.022 0.085 0.107 55.52% 

90% 0.050 0.079 0.129 48.38% 

100% 0.095 0.053 0.148 39.15% 

110% 0.154 0.041 0.195 35.96% 

120% 0.225 0.034 0.259 35.00% 

      

   Risk Aversion Coefficient = 1.1 

K BSM Price Bias Market Price IV: Higher ri sk aversion 

80% 0.022 0.097 0.119 59.49% 

90% 0.050 0.095 0.145 53.07% 

100% 0.095 0.073 0.168 44.54% 

110% 0.154 0.043 0.197 36.49% 

120% 0.225 0.036 0.261 35.56% 

     

 
 
   

Figure 7. Implied Volatility Across Time-to-Maturit y: Case I No Discrimination 
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 Furthermore, the partial equilibrium model also allows the implied volatility to be different 

for different times to maturity. Figure 7 and Figure 9 show the plots of implied volatilities across time 

to maturity ranging from 0.5 years to maturity (approximately 120 business days) to 1.3 years to 

maturity (approximately 312 business days).  For the no discrimination case, the option writer is 

forced to charge the same amount of bias to all asset owners. The plot of the bias is shown in Figure 7 

using the right Y-Axis. Although the bias is increasing with time to maturity, the implied volatility 

exhibits a smile across the time to maturity range. As shown in Figure 7, the implied volatility for the 

options with 90% and 110% moneyness decreases when time to maturity is less than 0.8 year and 

increases afterward. The implied volatility of the ATM option exhibits increasing implied volatility as 

time to maturity increases from 0.5 years to 1.3 years 

 In the perfect-discrimination case, the option writer has the ability to charges different biases 

to different asset owners.  

Figure 8 shows different levels of bias across time. As we might expect, for put options, at a fixed 

time to maturity, the bias is lowest for ITM put options and highest for OTM put options.  As time to 

maturity increases, the bias increases at a decreasing rate for all moneyness levels. The implied 

volatilities inverted from the summation of the bias and the BSM are plotted in Figure 9. The implied 

volatility of options with 90% moneyness decreases as time to maturity increases.  A mild smile curve 

is observed for ATM options and an increase in volatility is observed for a 110% moneyness option.  

 In order to explain the non-constant implied volatility shapes (both across the strikes and 

times to maturity), two points should be considered. First, examine the behavior of the option vega23, 

one of the most important option greeks. Vega is particularly important when calculating the implied 

volatility. Figure 10 shows the vega profile across moneyness and time to maturity. An option 

displays higher vega as time to maturity increases. At the same time to maturity, an ATM strike (or, 

slightly, an ITM strike as time to maturity increases) displays the highest vega value.  

 Second, different amounts of bias (e.g. bias shown in Table 3, Table 4, Figure 7 and Figure 

8). are derived based on demand and supply in the market. Hence, depending on the moneyness level 

and the time to maturity, the implied volatility can exhibit different shapes.  

 To explain how these two forces work together, assume that a bias amount of $1 is added to 

the option price to get the total option cost. The implied volatility of the total option cost is the 

                                                      
23 Vega of an option measures the change in the price of the option with respect to the change in the volatility of the underlying asset. For 
this study’s purpose, vega is defined per 100 basis points of volatility, i.e.,  vega = 0.0045 means that a change 1% of volatility will result in 
a 0.0045$ change of the option value. 
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volatility that equates the BSM option price to the total option cost.  As shown in Table 3, options 

with higher vega have lower implied volatility, in contrast to options with lower vega. Options can 

have higher vega depending on their moneyness and times to maturity. An ATM will have higher 

vega than a deep OTM option, or longer time to maturity options will have higher vega than options 

that are maturing soon. Therefore, the shape of the implied volatility will depend on the option price, 

the option moneyness level, the time to maturity, and the bias imposed on the option. 

 

Figure 8. Bias Across Time-to-Maturity: Case II Perfect Discrimination 

 

 

 

 

 

 

 

 

 

 

 

 

  

 To show how the bias amount and the option vega work together, let’s consider the shape of 

the options with 90% strike across a range of different times to maturity. As shown in Figure 10, for 

the same strike, as time to maturity increases, so does the option vega. First, consider the perfect 

discrimination case. As option vega increases with time to maturity, the bias amount also increases, 

although not fast enough to offset the increase in vega. As a result, the implied volatility appears to 

decrease with time to maturity. However, for the no discrimination case, a similar situation occurs for 

options when time to maturity is less than 0.8 year. However, once the time to maturity exceeds 0.8 

year, an increase of the option vega could not compensate for the increase in the bias amount. Hence, 

the implied volatility appears to increase over this range of time to maturity. 
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Figure 9. Implied Volatility Across Time-to-Maturit y: Case II Perfect Discrimination 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Vega (using 25% volatility and $1 Underlying Asset Price) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 

 

 

 

CHAPTER 4. EMPIRICAL RESULTS 

4.1 Testing Hypotheses 

The theoretical model presented in Chapter 3 suggests several testable hypotheses. In this 

chapter, several hypotheses are developed in order to apply to actual market data. Before proceeding 

to explain the determinants of the bias, I first examine the existence and the direction of the bias using 

the following testing hypothesis suggested by the theoretical model: 

 
 H1. Implied volatility is a positive biased estimator of future realized volatility. 

 
 To examine the H1 hypothesis, I construct a variable called “bias”, which is the difference 

between the annualized implied volatility and the annualized realized volatility. The bias is measured 

as an annualized percentage. For example, if the annualized implied volatility equals 25% and the 

annualized realized volatility equals 15%, the annualized bias equals 10% (25%-10%). Details 

describing the calculations of the implied volatility and the realized volatility will be provided later in 

this chapter. 

Positive (negative) bias means that the implied volatility over-(under-) estimates the realized 

volatility. The simplest method to determine the size of the bias is to calculate the mean of the bias 

across all observations. Another method is to regress the bias on a constant. The coefficient for the 

constant (or the intercept) produced by the regression is equal to the mean of the bias. The regression 

method is preferred because it allows us to test whether the calculated mean (or the regression 

coefficient) is statistically different than zero. If the mean/coefficient is statistically greater than zero, 

we fail to reject the H1 hypothesis, i.e., the implied volatility is a positive biased estimator of the 

realized volatility. In addition, the regression approach also allows us to adjust the standard errors 

using standard clustered-data errors described later in this chapter. Given the data used in this study, 

ignoring the clustered nature of the data will deflate the standard error. This could result in over-

accepting the H1 hypothesis. 

Define TtS , to be the bias, the difference between the implied volatility and the realized 

volatility. The implied volatility ( TtIV , ) is the volatility of the option with T - t days to maturity. The 
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future realized volatility ( TtRV , ) is the realized volatility of the underlying asset during the current 

time t and the time to maturity T. To test the H1 hypothesis, the regression equation can be written as  

 

 TtTtS ,, εγ +=  (4.1.1) 

 

where γ is the regression intercept. The magnitude and direction of the bias can be 

determined by the size and the sign ofγ , respectively. If γ is statistically greater than zero, the 

implied volatility overestimates the future realized volatility, hence, we fail to reject the H1 

hypothesis. Note that, in contrast to the hypothesis discussed in Section 2.2, setting up a hypothesis in 

this manner allows us to distinctively determine the direction of the bias.  

The regression models examining the bias determinants are presented in equation (4.1.2) and 

(4.1.3).  The theoretical model in (3.3.2) suggests that the bias embedded in the implied volatility is 

determined by the following variables: risk aversion coefficient (a ),
 
the option strike (k ), the futures 

price (F ), the futures volatility (σ ),
 
the risk free rate (fr ),the physical quantity (Q ), the cost of 

trading ( tc ), and time until maturity of the options (T ). Unfortunately, the risk aversion coefficient 

is the only variable that is suggested by the theoretical model, and it cannot be observed from the 

market, at least from our data. This is because the data does not contain information that can be linked 

back to the risk aversion coefficient. However, by assuming that the risk aversion coefficient depends 

on individual preferences, the risk aversion coefficient is thus uncorrelated with other variables 

included in the model. Hence, the omission of this variable will not bias the coefficients estimated for 

other variables because the fundamental assumption of the linear regression that the error terms are 

uncorrelated with explanatory variables still holds. In addition, the cost of trading (tc ) is also not 

available in the data set. However, dummy variables representing commodity exchanges are used 

instead to represent different cost structure of each commodity exchange24. Hence, except for the risk 

aversion coefficient, these variables are included as explanatory variables in the regression models in 

(4.1.2) and (4.1.3). 

 Similar to the H1 hypothesis, several hypotheses can be constructed using these variables. 

However, only the following hypotheses are developed due to the importance of strikes and times to 

maturity on the bias as they are widely discussed in the literature. Since the numerical analysis 

presented in Chapter 3 suggests that the bias will vary simultaneously with respect to strikes and 

                                                      
24 Details about the dummy variables representing commodity exchanges are discussed at the end of this section. 
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times to maturity, across different strikes, the model bias appears to have a smile shape and a 

downward-sloping shape in the non-discrimination case and the perfect-discrimination case, 

respectively. The numerical results further suggest that the bias can take different shapes across times 

to maturity depending on the market situation. The following hypotheses test these numerical 

findings:  

  

 H2. The implied volatility bias is non-constant across strikes. 

 H3. The implied volatility bias is non-constant across times to maturity. 

 

To capture the volatility smile and the downward sloping shape across the option strikes, the 

option strikes are transformed into 
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log has a downward sloping shape across strikes. Hence, positive coefficients 

of these variables support the evidence of the smile and the downward slope of the biases across 

strikes.  Moreover, to capture the curvature of the time to maturity, the square of time to maturity is 

also included in the regression model. 

Moreover, the numerical results in Section 3.4 also suggest the impacts of these variables on 

the bias. The increase in future price and physical quantity should lead to an increase in the bias. For 

the no discrimination case, the increase in volatility should lead to a decrease in the bias and for the 

perfect discrimination case, the opposite result is found. The risk free rate appears to have very small 

impact on the bias. Note that, although, according to Section 3.4, the bias is defined in terms of the 

dollar amount and the bias discussed here is defined in terms of the annualized percentage, the signs 

suggested by the numerical results should be the same regardless of this unit difference.  

Finally, the completeness of the data allows us to extend the regression model in (4.1.2) and 

(4.1.3) to test the following hypotheses: 

 

 H4. The implied volatility bias is different between puts and calls. 

 H5. The implied volatility bias is different over time. 

 H6. The implied volatility bias is different across the Exchanges. 

 

To test the difference between puts and calls in the H4 hypothesis, the dummy variable cp is 

included where cp =1 represents call options and cp =0 represents put options. In addition, to test 
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whether the bias differs across time, dummy variables for different years are included. Finally, to test 

whether the bias level varies across the commodity Exchanges, the trading cost variable (tc ) is 

replaced by dummy variables to represent each Exchange. These dummy variables allow us to 

compare trading costs across Exchanges. The numerical result suggests that the higher the trading 

cost, the higher the bias, i.e., we should see that the bias is higher for an exchange that has a higher 

trading cost. The empirical regression model for each futures market can be written as: 
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and the aggregate model used to test the difference in trading cost is: 
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where 90Y is a dummy variable for year 1990,91Y is a dummy variable for year 1991, etc., , 

and mDexch is a dummy variable for exchange m where m represents an exchange included in the 

data.  

4.2 Data and Methodology 

Futures and options data were obtained from the Commodity Research Bureau (CRB).  The 

data set is comprised of daily futures and options information, including high and low prices, closing 

price, volume, open interest, and option strikes. Although there is an increasing availability of high 

frequency intraday data, this study utilizes daily data rather than intraday data because the benefits 

resulting from using higher frequency data do not seem to outweigh the marginal cost of dealing with 

the massive data set (Neely (2004)), particularly when analyzing large numbers of commodity 

markets, as I do in this study 

 



46 

 

 

 

Table 5. Commodities and Exchanges 

Ticker Commodity Exchange Contract Months* Period 

Agricultural 

C- Corn / No. 2 Yellow CBOT H,K,N,U,Z 1990-2008 

CT Cotton/1-1/16" NYCE H,K,N,V,Z 1990-2008 

MW Wheat/ No. 2 Soft Red CBOT H,K,N,U,Z 1991-2008 

O- Oats/ No. 2 White Heavy CBOT H,K,N,U,Z 1990-2008 

RR Rough Rice #2 CBOT F,H,K,N,U,X 1992-2008 

S- Soybeans/ No. 1 Yellow CBOT F,H,K,N,Q,U,X 1990-2008 

SM Soybean Meal/ 48% Protein CBOT F,H,K,N,Q,U,V,Z 1990-2008 

W- Wheat/ No. 2 Soft Red CBOT H,K,N,U,Z 1990-2007 

WA Barley, Western / No. 1 WCE H,K,N,V,Z 1997-2008 

WF Flaxseed / No. 1 WCE F,H,K,N,U,V,X,Z 1993-2004 

LB Lumber/ Spruse-Pine Fir 2x4 CME F,H,K,N,U,X 1990-2008 

Soft 

CC Cocoa/Ivory Coast CSCE H,K,N,U,Z 1990-2007 

DE Milk, BFP CME F,G,H,J,K,M,N,Q,U,V,X,Z 1998-2008 

JO Orange Juice, Frozen Concentrate NYCE F,H,K,N,U,X 1990-2008 

KC Coffee 'C' / Columbian CSCE H,K,N,U,Z 1990-2008 

LW Sugar #7/ White LCE H,K,Q,V,Z 1995-2008 

SB Sugar #11/ World Raw CSCE F,H,K,N,V 1990-2008 

Livestock 

FC Feeder Cattle/ Average CME F,H,J,K,Q,U,V,X 1990-2008 

LC Live Cattle/ Choice Average CME G,J,M,Q,V,Z 1990-2008 

Precious Metal 

GC Gold COMEX G,J,M,Q,V,Z 1990-2008 

HG Copper Hig Grade/ Scrap No. 2 Wire COMEX F,G,H,J,K,M,N,Q,U,V,X,Z 1990-2008 

PL Platinum NYMEX F,J,N,V 1991-2006 

Energy 

BO Soybean Oil/ Crude CBOT F,H,K,N,Q,U,V,Z 1990-2008 

CL Clude Oil NYMEX F,G,H,J,K,M,N,Q,U,V,X,Z 1990-2008 

NG Natural Gas NYMEX F,G,H,J,K,M,N,Q,U,V,X,Z 1992-2008 

HO Heating Oil #2 NYMEX F,G,H,J,K,M,N,Q,U,V,X,Z 1990-2008 

          

Note: Options’ contract months represent the expiration months of the options. Contract months follow the standard exchange symbols 
below: 
F = January H = March  K = May  N = July  U  = September X = November  
G = February J = April  M = June  Q = August V = October Z = December 

 

All commodities analyzed are listed in Table 5. These commodities are traded at various 

major exchanges, including the Chicago Board of Trade (CBOT), the Chicago Mercantile Exchange 
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(CME), the Commodity Exchange, Inc (COMEX), the New York Mercantile Exchange (NYMEX), 

the New York Cotton Exchange (NYCE), the Minneapolis Grain Exchange (MGE), the LIFFE 

Commodity Exchange (LCE), the Coffee, Sugar & Cocoa Exchange (CSCE), and the Winnipeg 

Commodity Exchange (WCE).  When available, the data began in 1990 and ended in 2008, although 

some commodities did not start options trading until later or the data are not available through the 

data vendor until 2008. In those cases only available data are included in the analysis.  

The following section discusses the data construction method which can be best explained 

through an example. Consider the corn market which contains data between 1990 and 2008, all 

options traded during this period are included. However, if all daily observations are included, this 

will lead to high correlation among observations and a drop of correlation when options switch to the 

new futures contract. Therefore, to reduce correlation among observations over time, instead of using 

daily option data, only options with 15, 20, 25, 30, 35, 40, 45, 50, 55, and 60 days to maturity are 

included and the clustered standard deviation, discussed in the next section, is used instead of the 

usual standard deviation. The following diagram demonstrates the example of the data where each 

option represents each observation. 

According to the above figure, number of days to maturity is determined as the number of 

trading days from the analyzed date to the last date when the options were traded. Since the volatility 

calculated between Friday and Monday does not add much information to the volatility level 

calculated between trading days, I follow the approach of Jorion (1995) of using the number of 

trading days to maturity instead of the number of calendar days to maturity. The days to maturity 

value starts at 15 days in order to avoid extreme price fluctuations during the last month of expiration 

and ends at 60 days, which should be long enough to have adequate liquidity in the option markets 

and to provide a reasonable estimation of the future realized volatility. If there are many strikes traded 

on one futures contract (e.g., the August 2006 contract of natural gas 2006 has more than 250 strikes) 

some of these strikes are chosen to represent a reasonable moneyness level25.  

 

 

 

 

 

 

                                                      
25 We are unable to accommodate all strikes traded mainly due to the restriction in the number of columns in Excel 2003. However, strikes 
have been carefully chosen with higher weight to those with the moneyness between 60% and 140% from the future prices. 
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Figure 11. The Example of Data Structure: Corn 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final data clean-up process is to eliminate any inactive options. As options become deep 

out-of-the-money (OTM) or deep-in-the money (ITM), they become inactive. The values of deep 

OTM options are reduced to the minimal tick value. For example, a deep OTM corn option will have 

a closing value of 0.125 cents, the minimum tick value for corn options. Although these options are 

almost worthless, the exchanges continue to provide their closing values for settlement purposes. I 

exclude these options from the data set because the implied volatility calculated using these options 

will be inappropriately large and could distort the analysis. To determine which options to use, I first 

search for the threshold strike, the first strike with the minimum option value. I then discard options 

with strikes that are higher than the threshold strikes (for calls) and options with strikes that are lower 
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than the threshold strike (for puts). For deep ITM options, I discard options with time value equal to 

zero. Time value is the difference between the option price and the intrinsic value. Similarly to the 

deep OTM options, zero time value means the options are deep ITM and are generally inactive. Due 

to some limitations in the original data provided by CRB, I also had to discard options that appeared 

to be inconsistent with their peers.  

Currently, most research focuses on analyzing the implied volatility of ATM options, and, in 

particular, calculating the implied volatility by using the average of the implied volatility values from 

two ATM put and two ATM call options. This is because ATM options are also more liquid and 

hence produce fewer pricing errors. Furthermore, Beckers (1981) also suggests that ATM options 

provide the best estimation of the subsequently-realized volatility. However, focusing on the ATM 

options does not explain volatility skew across strikes. Therefore, since my model suggests that the 

option strike (or the option moneyness26) is one of the determinants of the bias, I unconventionally 

include options with a range of moneyness between 50% and 150%. In addition, the definition of 

ATM options can be different across different studies. In this research, ATM options refer to options 

with the moneyness ranges between 99% and 101%.  

 The empirical analysis proceeds in two stages. First I look for evidence of bias and then 

apply the theoretical model to determine the sources of bias.  

4.3 Clustered Data 

Although the sampling procedure discussed earlier helps to alleviate the correlation issue 

among observations over time, options from the same futures with similar days to maturity still have 

higher correlation than those collected from different futures with different days to maturity. For 

example, options with 15 days to maturity from September 1990 corn will have higher correlation 

among themselves when compared with options from September 1990 with 50 days to maturity or 

options from other contracts. Although the coefficients estimated from correlated data are still 

unbiased, statistical inference will be incorrect because the standard error is too small, perhaps 

leading to over-rejecting the standard null hypothesis of the regression. I employ the clustered robust 

standard error to correct for bias in statistical inference from the data structure. The data is clustered 

by the combination of the futures contract and number of days to maturity. The clustered robust 

standard error is calculated as 

  

                                                      
26 In general, moneyness refers to the ratio of strike divided by the futures price. 
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where ei is the residual of the i th observation, xi is a row vector of explanatory variables 

including the intercept, and m is the total number of clusters that is in turn equal to the total number of 

futures contracts. This clustered robust standard error is quite similar to the White robust standard 

error except that the sum over each observation in White’s formula is replaced by the sum over each 

cluster. In STATA, the option cluster  of the regress  command automatically replaces the 

normal standard error with the clustered robust standard error.  

4.4 Variables 

Most explanatory variables are self-descriptive and can be easily obtained. The risk-free rate 

( fr ) represents the 3-month treasury yield posted by the Department of the Treasury27.  Variable 
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27 http://www.treas.gov/offices/domestic-finance/debt-management/interest-rate/yield.shtml  accessed May 1, 2009. 
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of the option ( opt
tp ) is directly obtained from the option market price. For the quantity demanded 

(Q ), since I do not have data for the quantity demanded for the options, I proxy the option demand 

by the open interest of the futures. The dummy variables for years and exchanges follow the usual 

convention. For example, the value is equal to 1 when the year of the observation equals the year of 

the dummy variable and 0 otherwise. The calculation of the bias (S) is discussed in detail below.  

 

Bias and Implied Volatility Calculation 

The bias of an option is defined as the difference between the future realized volatility of the 

underlying asset over the remaining life of the options and the option’s implied volatility, i.e., 

 

 Bias = Implied Volatility – Realized Volatility (4.4.2)  

 

The realized volatility (RV) is calculated as an annualized standard deviation of the daily 

future return over the remaining life of the option according to the following formula: 
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. Similar to the calculation of the historical volatility, the futures market is assumed 

to be unbiased. Hence, the realized volatility is calculated by setting the mean of 
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As a result, equation (4.4.3)  is reduced to the square root of the sum of the squares of the return.  

 As suggested by Jorion (1995), to avoid the well-known the Friday-to-Monday variance 

effect in which the variance over the weekend is slightly higher than the daily variance, the 

annualized volatility is calculated using the square root of 252 trading days instead of 365 calendar 

days. 
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  The calculation of the implied volatility is not quite straightforward because it cannot be 

directly observed from the market. The Black formula for calls and puts on futures are presented 

below, 
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k  is the strike price, F  is the future price, fr  is the risk free rate, T is time to maturity, and 

σ is the volatility of the underlying asset. Since this formula is not invertible, once the market prices 

of the options are observed, the implied volatility must be calculated through an iterative process. In 

the end, the implied volatility is the volatility that equates the option market price to the BSM price, 

i.e., 

 

 ( ) optionMKIVoptionBSM PP =σ  (4.4.5)  

 

where optionMKP  is the market price of the option and ( )IVoptionBSMP σ  is the BSM option value 

with implied volatility ( )IVσ  as an input. The iteration process used to search for the implied 

volatility must be done numerically. The most common means for finding implied volatility is 

through the Bisection and the Newton-Raphson methods (Figlewski (1997)). However, since the 

result from using both methods is very similar, I decided to use the Newton- Raphson method for 

calculating the implied volatility. In a very few cases where the NR method failed to converge, the 

bisection method was used instead. Table 6 shows the result yielded by both the Bisection and 

Newton-Raphson methods. Using various input parameters, these two methods yield essentially the 

same implied volatilities. 
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Table 6. Implied Volatility Calculation from Bisection Method & Newton-Raphson Method 

            Implied Volatility 

F K T r σ 

Price of Call 

Option 

Bisection 

Method 

Newton - Raphson 

Method 

100 100 15 2.00% 30.00% 2.42 30.00% 30.00% 

100 90 30 2.00% 24.00% 10.16 24.00% 24.00% 

100 110 60 3.00% 15.75% 0.20 15.75% 15.75% 

110 120 120 3.00% 14.00% 0.65 14.00% 14.00% 

  

 With most exchange-traded options priced using the BSM or a variation of it that could allow 

for early exercise rights, it is appropriate to calculate the implied volatility using the generalized BSM 

formula that accounts for the early exercise right and to use the Newton Rahpson or the Bisection 

methods mentioned above to calculate the implied volatility. 

4.5 Summary Statistics 

 The summary statistics of the bias are shown in Table 7. The statistics summary is broken 

down into categories puts, calls and a combination of puts and calls. The left panel summarizes the 

bias for combined options. The middle and the right panels summarize bias for calls and puts 

respectively. Summary statistics include numbers of observations, mean, standard deviation, 

minimum, and maximum of the bias for each futures market. The table also includes statistics by 

group and statistics of all observations combined.  

 From the table, the average bias of all options combined is 5.4%. The average bias is higher 

for calls (6.1%) than for puts (4.7%). Soft commodities have highest bias (9.4%) and energy 

commodities have lowest bias (4.0%). Soft commodities also have highest standard deviation (14.2), 

lowest minimum of bias (-71.7) and highest maximum of bias (227.8).  Livestock commodities have 

the lowest standard deviation of the bias (6.6), highest minimum of bias (-19.9), and lowest maximum 

of bias (60.3). Except for flaxseed, feeder cattle, life cattle, and crude oil, the average of bias for calls 

appears to be higher than the average of bias for puts.  

 Heating oil has the lowest bias (1.9%), followed by spring wheat (3.0%) and soybean meal 

(3.4%). Cocoa, coffee, and world sugar have highest biases at 14.7%, 12.5% and 10.2% respectively. 

Among call options, heating oil, life cattle, and spring wheat have lowest biases and cocoa, coffee, 

and world sugar have highest biases. However, among put options, heating oil, soybean meal, and  
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Table 7. Summary Statistics of the Bias (the mean is in annualized percentage) 

                                    

ALL CALLS PUTS 

Markets Obs. Mean Std Min Max   Obs. Mean Std Min Max   Obs. Mean Std Min Max 

Agricultural 

Corn / No. 2 Yellow 17,750 5.3 8.4 -35 90.9 9,772 6.1 8.8 -29.2 90.9 7,978 4.3 7.9 -35 69.5 

Cotton/1-1/16" 30,393 3.5 7.9 -17.2 84.4 15,794 3.8 8.3 -17.1 84.4 14,599 3.2 7.3 -17.2 52.8 

Wheat/ Spring 14% Protein 12,194 3 7.5 -23.1 66.8 7,499 3.4 7.7 -23.1 60.7 4,695 2.4 7.2 -21.2 66.8 

Oats/ No. 2 White Heavy 9,572 6.1 13.3 -52.6 99.8 5,525 7.5 14.3 -52.6 99.8 4,047 4.3 11.6 -47.2 67.9 

Rough Rice #2 15,802 6.6 9.5 -32.1 92.2 9,018 7.3 9.7 -32.1 92.2 6,784 5.6 9.3 -31 76.5 

Soybeans/ No. 1 Yellow 28,540 7.4 11.6 -30.2 100.7 17,084 9.2 12.3 -30.2 100.7 11,456 4.8 10 -28.2 65.7 

Soybean Meal/ 48% Protein 23,916 3.4 10.5 -38.5 178.9 13,585 4.5 11.9 -38.5 178.9 10,331 1.9 8.1 -26.9 81.4 

Wheat/ No. 2 Soft Red 43,390 4.6 9.8 -22.4 87 25,200 5.3 10.4 -22.4 87 18,190 3.6 8.6 -18.3 61.1 

Barley, Western / No. 1 5,746 5.5 7.3 -22 66.8 2,845 5.6 7.6 -22 66.8 2,901 5.5 6.9 -20.2 35.2 

Flaxseed / No. 1 7,222 4 6.4 -22 45.6 3,778 3.7 6.6 -22 45.6 3,444 4.2 6.1 -11.1 34.6 

Lumber/ Spruce-Pine Fir 2x4 19,258 5.7 7.1 -19 81.8 10,330 5.8 7.2 -18.2 81.8 8,928 5.5 7 -19 56.6 

     Average 213,783 5 9.6 -52.6 178.9 120,430 5.8 10.3 -52.6 178.9 93,353 3.9 8.4 -47.2 81.4 

Soft 

Cocoa/Ivory Coast 4,800 14.7 19.2 -27.5 120.7 2,948 20.2 21.2 -26.3 120.7 1,852 5.8 10.5 -27.5 74.1 

Milk, BFP 24,044 8 10.9 -32.7 101.1 12,750 8.6 11.5 -29.2 101.1 11,294 7.2 10.1 -32.7 73.5 
Orange Juice, Frozen 
Concentrate 24,415 6 13.3 -71.7 92.7 11,628 8 14.5 -71.7 92.7 12,787 4.2 11.9 -71.6 69.4 

Coffee 'C' / Columbian 28,857 12.5 15.8 -60.3 99.3 18,777 12.9 15.9 -60.2 99.3 10,080 11.9 15.4 -60.3 82.5 

Sugar #7/ White 6,635 7.9 13.5 -28.3 112.2 3,678 8.4 15 -28.3 112.2 2,957 7.2 11.2 -28.2 63.6 

Sugar #11/ World Raw 17,188 10.2 15.4 -25.3 227.8 8,986 12.2 18.3 -23.3 227.8 8,202 8.1 11 -25.3 151.2 

     Average 105,939 9.4 14.5 -71.7 227.8 58,767 11 15.7 -71.7 227.8 47,172 7.5 12.4 -71.6 151.2 
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Table 7. (continued) 

                                    

ALL CALLS PUTS 

Markets Obs. Mean Std Min Max   Obs. Mean Std Min Max   Obs. Mean Std Min Max 

Livestock 

Feeder Cattle/ Average 18,132 5.3 7.1 -19.9 60.3 8,250 4.2 5.6 -19.9 57.8 9,882 6.2 8.1 -16.9 60.3 

Live Cattle/ Choice Average 16,317 4.2 5.9 -14.1 38.1 7,613 3.1 4.3 -12.2 33.6 8,704 5.1 6.9 -14.1 38.1 

     Average 34,449 4.7 6.6 -19.9 60.3 15,863 3.7 5 -19.9 57.8 18,586 5.7 7.6 -16.9 60.3 

Precious Metal 

Gold 40,892 7.5 10 -31.4 82.3 19,659 7.7 10.4 -31.4 82.3 21,233 7.3 9.6 -31.4 69.6 
Copper High Grade/ Scrap No. 2 
Wire 60,822 6.3 13.9 -63.3 104.4 29,529 8.1 16 -58.4 104.4 31,293 4.6 11.2 -63.3 84.9 

Platinum 7,967 3.7 7.3 -24.9 39.7 4,751 3.8 7.2 -24.9 35.7 3,216 3.6 7.6 -24.9 39.7 

     Average 109,681 6.6 12.2 -63.3 104.4 53,939 7.6 13.6 -58.4 104.4 55,742 5.6 10.5 -63.3 84.9 

Energy 

Soybean Oil/ Crude 20,796 4.9 9.7 -33.1 107 11,821 5.7 10.9 -33.1 107 8,975 3.8 7.6 -23.2 64.7 

Crude Oil 84,521 5 9.6 -51.9 130.8 47,854 4.8 9 -51.9 130.8 36,667 5.2 10.4 -51.4 97.2 

Natural Gas 75,516 4.9 12.9 -48 110.8 39,555 5 12.7 -48 108.9 35,961 4.7 13.1 -46.7 110.8 

Heating Oil #2 79,175 1.9 8.5 -57.3 76 42,732 2.7 8.4 -56.8 76 36,443 0.9 8.6 -57.3 66.5 

     Average 260,008 4 10.5 -57.3 130.8 141,962 4.3 10.2 -56.8 130.8 118,046 3.6 10.8 -57.3 110.8 

ALL 730,940 5.4 11.1 -71.7 227.8 394,540 6.1 11.8 -71.7 227.8 336,400 4.7 10.3 -71.6 151.2 
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spring wheat have lowest biases and orange juice, world sugar, and gold appear to have highest 

biases.   

4.6 Empirical Results 

 Empirical results are presented in two parts.  The first part shows the result with respect to 

hypothesis H1; that is, to examine whether the implied volatility is a positive biased estimator of the 

future realized volatility. The second part shows the result with respect to the remaining hypotheses. 

4.6.1 The implied volatility is a biased estimator of the future realized volatility 

 The result of whether the implied volatility is a biased estimator of the future realized 

volatility is shown below. Table 8 and Table 9 present the regression result for hypothesis H1 

(equation (4.1.1). Due to higher liquidity, ATM options as opposed to non-ATM options are widely 

believed to have the smallest bias. Hence, most research focuses their analysis of the bias embedded 

in the options on ATM options. Following conventional methods, I separate options into two types: 

ATM options and non-ATM options.  

  Table 8 shows the regression result of the bias for ATM options. Positive bias means that the 

implied volatility overestimates the realized volatility and negative bias means that the implied 

volatility underestimates the realized volatility.  

 Examining Table 8, twenty out of twenty-six markets exhibit significant positive bias. Only 

the soybean meal market exhibits significant negative bias. The biases in cotton, oats, wheat, cocoa, 

orange juice and heating oil markets are not statistically different from zero. The overall bias is 

estimated to be 1.108% which means that, when considering all markets, on average the implied 

volatility over-estimates the realized volatility by 1.108%. ATM options on barley futures are shown 

to have the highest bias at 4.35%. Soybean oil options have the lowest positive bias at 0.666% 

 The regression of the bias for non-ATM options is shown in Table 9. All bias estimations in 

all markets are positive and statistically different from zero. The average of the biases in all market is 

8.142%, approximately 7% higher than the estimate from ATM options, consistent with general 

belief. 
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Table 8. Regression Result: Existence of Bias for ATM options 

Regression  TtTtS ,, εγ +=  for ATM options where   TtS , (bias) = implied volatility – realized volatility. 

Market Bias    Market Bias    Market Bias  

All 1.108***       

        

Agricultural    Soft    Precious Metal  

Corn / No. 2 Yellow 1.835***  Cocoa/Ivory Coast -0.994  Gold 0.805*** 

Cotton/1-1/16" 0.124  Milk, BFP 3.279***  

Copper High Grade/ 

Scrap No. 2 Wire 0.967*** 

Wheat/ Spring 14% 

Protein 0.714**  

Orange Juice, Frozen 

Concentrate -0.598  Platinum 1.213** 

Oats/ No. 2 White Heavy 0.799  Coffee 'C' / Columbian 3.330***    

Rough Rice #2 3.506***  Sugar #7/ White 1.505**    

Soybeans/ No. 1 Yellow 0.666**  Sugar #11/ World Raw 1.132*    

Soybean Meal/ 48% 

Protein -0.602**     Energy   

Wheat/ No. 2 Soft Red -0.159     Soybean Oil/ Crude 0.666*** 

Barley, Western / No. 1 4.350***  Livestock   Clude Oil 1.255*** 

Flaxseed / No. 1 3.511***  Feeder Cattle/ Average 1.458***  Natural Gas 2.686*** 

Lumber/ Spruse-Pine Fir 

2x4 3.266***  

Live Cattle/ Choice 

Average 0.996***  Heating Oil #2 0.118 

                

Note:  
(a) t statistics in parenthesis 
(b) * p< 0.05, ** p< 0.01, *** p< 0.0001 

  

However, one important characteristic of ATM options is that they have a higher cost of hedging 

than non-ATM options. Given the same time to maturity, ATM options have higher vega and gamma. 

Hence, the risk management of the ATM options becomes more involved. In many cases, the cost of 

managing risk for ATM options could exceed the savings resulting from more liquidity. 
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Table 9. Regression Result: Existence of Bias for Non-ATM options 

Regression  TtTtS ,, εγ +=  for non-ATM options where   TtS , (bias) = implied volatility – realized volatility. 

Market Bias    Market Bias    Market Bias  

All 8.142***       

        

Agricultural   Drinks   Precious metal  

Corn / No. 2 Yellow 5.958***  Cocoa/Ivory Coast 18.77***  Gold 9.005*** 

Cotton/1-1/16" 4.462***  Milk, BFP 8.507***  

Copper High Grade/ 

Scrap No. 2 Wire 7.727*** 

Wheat/ Spring 14% Protein 3.277***  

Orange Juice, Frozen 

Concentrate 10.60***  Platinum 4.032*** 

Oats/ No. 2 White Heavy 7.726***  Coffee 'C' / Columbian 28.12***    

Rough Rice #2 7.462***  Sugar #7/ White 12.76***    

Soybeans/ No. 1 Yellow 8.951***  Sugar #11/ World Raw 17.94***    

Soybean Meal/ 48% Protein 5.750***     Energy  

Wheat/ No. 2 Soft Red 5.629***     Soybean Oil/ Crude 6.695*** 

Barley, Western / No. 1 5.692***  Livestock   Crude Oil 5.601*** 

Flaxseed / No. 1 4.009***  Feeder Cattle/ Average 6.073***  Natural Gas 7.519*** 

Lumber/ Spruce-Pine Fir 2x4 5.942***  

Live Cattle/ Choice 

Average 4.756***  Heating Oil #2 2.183*** 

                

Note:  
(c) t statistics in parenthesis 
(d) * p< 0.05, ** p< 0.01, *** p< 0.0001 

 

  Therefore, although non-ATM options have significantly higher volatility bias, whether or 

not these options will have higher monetary bias is still questionable. To answer this question, I 

calculate the fair value of the option using the BSM option price (equation (4.4.4)) with the actual 

realized volatility over the remaining life of the option. The difference between the actual option price 

and the fair price is the bias in dollar terms. This is different than the definition of bias used in the 

empirical result (e.g. the definition of the bias used in Section 4.1) where the bias is defined as the 

percentage difference between the implied and realized volatility. The bias is then multiplied by 

contract size and, when applicable, divided by 100 to convert into dollar units.  

 However, one important characteristic of ATM options is that they have a higher cost of 

hedging than non-ATM options. Given the same time to maturity, ATM options have higher vega and 

gamma. Hence, the risk management of the ATM options becomes more involved. In many cases, the 

cost of managing risk for ATM options could exceed the savings resulting from more liquidity.  
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Table 10. Option Bias in Dollars 

  

 Contract 

Size  

    

Price Difference**  

= P(actual) - P(RV)   

Average Bias                 Per 

Contract ($) 

Market Unit Price Per Unit ATM 

Non-

ATM ALL   ATM 

Non-

ATM ALL 

           

Agricultural            

Corn / No. 2 Yellow          5,000  bushel cents/Bushel 0.828 0.550 0.568  41 28 28 

Cotton/1-1/16"        50,000  pounds cents/pound 0.026 0.031 0.031  13 15 15 

Wheat/ Spring 14% Protein          5,000  bushel cents/Bushel 0.319 0.381 0.375  16 19 19 

Oats/ No. 2 White Heavy          5,000  bushel Cents/Bushel -0.108 0.185 0.171  -5 9 9 

Rough Rice #2          2,000  cwt dollars/cwt 0.046 0.033 0.034  92 66 68 

Soybeans/ No. 1 Yellow          5,000  bushel cents/Bushel 0.869 0.767 0.773  43 38 39 

Soybean Meal/ 48% Protein              100  tons dollars/ton -0.245 0.000 -0.018  -25 0 -2 

Wheat/ No. 2 Soft Red          5,000  bushel cents/Bushel -0.094 0.260 0.240  -5 13 12 

Barley, Western / No. 1              100  tons CAD/ton 0.927 0.403 0.443  93*  40* 44* 

Flaxseed / No. 1              100  tons CAD/ton 1.648 0.732 0.814  127* 56* 81* 

Lumber/ Spruce-Pine Fir 2x4        80,000  board feet dollars/1000 bf 1.574 1.213 1.238  97 75 99 

           

Drinks            

Cocoa/Ivory Coast                10  metric ton dollars/ton -1.303 1.060 1.020  -13 11 10 

Milk, BFP        50,000  pounds cents/pound 0.083 0.031 0.035  41 15 17 

Orange Juice, Frozen 

Concentrate        15,000  pound cents/pound -0.244 0.120 0.107  -37 18 16 

Coffee 'C' / Columbian        37,500  pound cents/pound 0.544 0.445 0.447  204 167 168 

Sugar #7/ White                50  metric ton dollars/ton 0.249 0.320 0.316  12 16 16 

Sugar #11/ World Raw      112,000  pounds cents/pound 0.017 0.022 0.022  19 25 25 

           

Livestock           

Feeder Cattle/ Average        50,000  pounds cents/pound 0.189 0.158 0.163  94 79 82 

Live Cattle/ Choice Average        40,000  pounds cents/pound 0.118 0.109 0.110  47 44 44 

           

Precious metal           

Gold              100  ounces dollars/ounces 0.135 0.270 0.261  13 27 26 

Copper High Grade/ Scrap 

No. 2 Wire        25,000  pounds cents/pound 0.210 0.171 0.173  53 43 43 

Platinum                50  ounces dollars/ounces 0.688 0.717 0.714  34 36 36 

           

Energy           

Soybean Oil/ Crude        60,000  pounds cent/pound 0.017 0.034 0.033  10 20 20 

Crude Oil          1,000  Barrels dollars/Barrel 0.047 0.048 0.048  47 48 48 

Natural Gas        10,000  MMBtu dollars/MMBtu 0.025 0.019 0.020  247 194 196 

Heating Oil #2        42,000  gallon dollars/gallon 0.001 0.001 0.001  42 52 51 

                      

*Contract specified in Canadian Dollars. Convert into U.S. dollars using exchange rate 1.3 Canadian dollar per1 U.S. dollar. 
** Price Difference could be in cents or dollars depending on the price per unit. 
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 Therefore, although non-ATM options have significantly higher volatility bias, whether or 

not these options will have higher monetary bias is still questionable. To answer this question, I 

calculate the fair value of the option using the BSM option price (equation (4.4.4)) with the actual 

realized volatility over the remaining life of the option. The difference between the actual option price 

and the fair price is the bias in dollar terms. This is different than the definition of bias used in the 

empirical result (e.g. the definition of the bias used in Section 4.1) where the bias is defined as the 

percentage difference between the implied and realized volatility. The bias is then multiplied by 

contract size and, when applicable, divided by 100 to convert into dollar units. 

 However, one important characteristic of ATM options is that they have a higher cost of 

hedging than non-ATM options. Given the same time to maturity, ATM options have higher vega and 

gamma. Hence, the risk management of the ATM options becomes more involved. In many cases, the 

cost of managing risk for ATM options could exceed the savings resulting from more liquidity. 

 Table 10 shows the result of this calculation, averaged by market. Negative bias means that 

the actual option prices are lower than the fair option price. Similar to the result from Table 8, for 

ATM options, markets with negative bias are orange juice, soybean meal, cocoa, oats, and wheat, 

respectively. Orange juice has the highest negative bias in dollars ($37/contract). Although the 

percentage bias for oats is positive, the dollar bias is slightly negative ($5/contract). This negative is 

mainly driven by large negative bias in 2008, the year when the financial crisis started. It is possible 

for the market to have positive average percentage bias and negative monetary bias because option 

values are non-linear functions of volatility.  

 As we might expect, in all markets, the dollar bias is positive for non-ATM options. When 

both types of options are combined, the bias is found to be positive in all markets except for the 

soybean meal market. The slight negative dollar bias ($-2/contract) in the soybean meal market is 

primarily driven by options traded during 2004 and 2008. Natural gas ($196) and coffee ($168) are 

the only two markets that have bias exceeding $100/contract. For other markets, the bias ranges from 

$9/contract in oats to $99/contract in lumber.  

 Notice that the ATM dollar bias is in the same range as commission charges. If we view 

access to a seat as a barrier to entry for option writers then this result makes sense. Those who have 

access to a seat must compete with those writers who do not. If the seat holders attempt to charge a 

bias that is greater than the barrier to entry then they will attract competition from writers who do not 

have a seat. The equilibrium ATM bias appears to be the transactions cost faced by the off exchange 

option writers. 
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 The empirical results in Table 8, Table 9, and Table 10 support the hypothesis H1. That is, 

the implied volatility is, in twenty-five markets, a positive biased estimator of the realized volatility 

for ATM options and, for all markets, a positive biased estimator of the realized volatility for non-

ATM options. Hence, over all, we fail to reject the H1 hypothesis that is the implied volatility is 

positive biased estimator of the realized volatility.  

 One could raise a concern that the bias shown here results from the bid-ask spread in the 

option market. However, the data was collected on a daily basis using the closing price which, 

according to the Chicago Mercantile Exchange (CME) staff, represents the mid price28.   Therefore, 

the estimation should not be contaminated by the effect of the bid-ask spread.  

4.6.2 Determinants of the implied volatility bias 

 The results for the remaining hypotheses are presented in this section. Table 11shows the 

regression result for agricultural commodity markets. Table 12 shows the result for soft commodity 

and livestock markets, Table 13 shows the result for the precious metal and energy markets, and, 

Table 14 shows the result for all markets combined. The theoretical model seems to fit the data quite 

well, with only two markets having less than 30% R2, eleven markets having between 30%-40% R2, 

and thirteen markets having more than 50% R2. 

 The plots of the bias surface for each market are included in Appendix A.  These plots are 

generated by taking the average of the volatility bias since the data in the dataset became available, in 

many cases, between 1990 and 2008. The bias surfaces are then generated by having the days to 

maturity and the moneyness (%) on the x-axes and the bias (%) on the y-axis. As before, the 

moneyness (%) equals the ratio of the strike to the future price. 

 The result from all market fails to reject the H2 hypothesis that the implied volatility bias is 

non-constant across strikes. The variable represents the bias across strikes, either 







k

F
log or 

2

log 







k

F
or both are strongly statistically significant in all markets. Positive value of 

2

log 







k

F
reflect 

the smile shape of the bias. Appendix A shows the bias surface. Although not all markets show a 

perfectly symmetric smile shape, some degree of the smile can be found in all markets, particularly 

when options get closer to maturity date. Cotton, barley, feeder cattle, live cattle, copper, and crude 

                                                      
28 According to the phone conversation with Tom Lord, Director of Settlements at 312.341.3116, the closing price generated by the CME 
should represent the mid price between the bid-ask spread. 
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oil have positive and significant coefficients for the 







k

F
log variable; that is, the volatility bias in 

these markets is downward sloping shape across strikes. The bias surface plots in Appendix A show 

the pattern of downward sloping across the moneyness axis among these markets. The downward 

sloping shape is more prominent when options have more days to maturity. 

 Eighteen out of twenty-six markets have negative coefficients for the Days to maturity 

variable with a significant level of at least 5%. Hence, we fail to reject the H3 hypothesis that the 

implied volatility bias is non-constant across times to maturity. According to the coefficient of the 

Days to maturity, 5 days closer to maturity will increase the bias by approximately 1% (e.g. in cotton 

and oats markets) to 5% (in cocoa market). Markets that reject the H3 hypothesis include corn, spring 

wheat, soybean meal, flaxseed, lumber, life cattle, platinum, and heating oil. In these markets, the 

difference between the bias at 15 days to maturity and the bias at 60 days to maturity appears to be 

smaller than in other markets. This is especially true for 70% moneyness where the difference 

between the bias at 15 days to maturity and 60 days to maturity for these markets is less than 15%, 

significantly less that other markets in which the value is greater than approximately 20%. The 

variable Days to maturity^2 captures the rate of impact of the variable Days to maturity. When Days 

to maturity^2 is significant, it has a positive sign, meaning that the impact of the number of days to 

maturity on the bias is increasing at an increasing rate. 

 The bias difference between puts and calls (the H4 hypothesis) is tested using the variable cp. 

The value of cp equals 1 for calls and 0 for puts. In eighteen markets, the coefficient of cp is positive 

and significant. This means that the bias is higher in calls than in puts. The coefficient ranges from 

0.3% in the gold market to 1.5% in the world sugar market. The negative coefficient of the cp 

variable can be found in two markets: spring wheat and cocoa. This means that, in these markets, the 

bias is higher in puts than in calls.  When considering the coefficient of the cp and the 









k

F
log variables together, one interesting point can be made.  In feeder cattle, life cattle, and barley 

markets, the coefficient of cp is insignificant but the coefficient of 







k

F
log is strongly significant. 

The insignificant coefficient for the cp variable implies that in these markets, call options are not 

more expensive than put options. When market structure is considered, particularly for the feeder 

cattle and the life cattle markets, this is true because these markets are very sensitive to animal 

diseases. Hence, more protection is directed toward protecting the risk of price decrease. This market 

nature could bid up the price for lower strikes or the prices of put options. As a result, the prices for 
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call options in these markets do not show more bias that that of put options. The bias surfaces in 

Appendix A also tell the same story. The surfaces for these markets clearly exhibit downward slope 

across moneyness. In conclusion, since most markets show strongly significant coefficients, I fail to 

reject the H4 hypothesis that the implied volatility bias is different between puts and calls. 

 The H5 hypothesis can be tested using a set of dummy variables in which each variable 

represents a year of data. The dummy variable has a value of 1 if the data is collected during that year 

and 0 otherwise. If there is no data during any particular year, the coefficient of that year’s dummy 

variable is left blank. Due to the shift of the trading system from the open outcry system to the 

electronic system starting in 2001, the year 2001 is used as the base year. As shown in the tables 

below, coefficients of year dummy variables have both positive and negative values depending on 

markets and years. For example, coefficients of the year 2002 to 2008 are negative and statistically 

significant for the sugar #7 market. This means that, when comparing with the year 2001, the bias in 

this market was smaller during this time period. A completely opposite result is found in the natural 

gas market where coefficients during the same period are positive and significant. However, with 

more than half of the coefficients statistically different from zero, we fail to reject the H5 hypothesis 

that the bias is non-constant over time.  

     To test the H6 hypothesis, whether the implied volatility bias differs across different 

exchanges, I combined the data from all markets into the regression shown in Table 14. Each 

observation represents one option strike traded on a particular exchange. Therefore, the exchange 

dummy variables take values of 1 if the option was traded on that exchange and 0 otherwise. Using 

the Chicago Board of Trade (CBOT) as a base case, Table 14 shows that the bias from the New York 

Mercantile Exchange (NYMEX), the Minneapolis Grain Exchange (MGE), and the New York Cotton 

Exchange (NYCE) and are -1.46% ,-1.11%, and -0.91% lower than the bias from the CBOT. When 

comparing across Exchanges, The Chicago Mercantile Exchange (CME) appears to have the highest 

level of bias. With all coefficients statistically different from zero, we clearly fail to reject hypothesis 

H6. 

 As discussed in Section 4.1, we next consider other variables included in the regression 

models (equation (4.1.2) and (4.1.3)). The physical quantity of the underlying asset (Q ) is proxied by 

the Open Interest variable, which is the open interest of the underlying future market (per 100,000 

contracts). The numerical analysis suggests that the decrease in physical quantity would lead to the 

decrease in the bias. However, in most markets, this variable does not appear to have any impact on 

the bias level. Only ten markets show significant coefficient of this variable. Of these ten markets, 

five markets show positive signs and another five markets show negative signs. This mixed result 
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could happen because, although the decrease in physical quantity could lead to smaller demand for 

hedge, hence, smaller bias, the decrease in physical quantity could also lead to less liquidity which 

could drive up the demand for hedging in order to protect against price fluctuation, hence, larger bias.  

Therefore, with these two forces working against each other, the impact of the Open interest variable 

is different depending on the market and cannot be conclusively determined. 

 In most markets, the Historical return (20 days) variable proxied for the futures price (F ) 

does not seem to have much impact on the bias level in contrast to the Historical volatility (20 days) 

variable proxied for the futures volatility (σ ). The coefficient of the Historical return (20 days) 

variable is only significant among energy commodities where the coefficients are positive and the 

world sugar market where the coefficient is negative.  The volatility in the futures market seems to 

have a significant impact on the bias in all but four markets: corn, flaxseed, cocoa, and milk. Similar 

to the sign expected from the perfect discrimination case, in most markets, the higher the volatility in 

the futures market, the higher the bias in the options market. Intuitively, this is because, as the 

underlying market becomes more volatile, the market is more willing to pay more bias in order to 

hedge against the increased uncertainty. 

 Although the numerical results show that the impact of the risk free rate is very small in terms 

of monetary bias, the impact of the Risk free rate ( fr ) in terms of annualized percentage bias is 

statistically greater than zero in sixteen markets. The 1% increase of the risk free rate could result in 

0-3% increase of the bias. Positive coefficient of the risk free rate means that as the cost of borrowing 

and the option price increases, the bias also increases. Finally, the impact of the Option price 

variables ( optP ) are mostly positive which means that ITM options will have higher volatility bias 

than other options. 
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Table 11. Regression Result: Agricultural Commodities 
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Variables 
Corn / No. 2 

Yellow 
Cotton/1-

1/16" 

Wheat/ 
Spring 14% 

Protein 
Oats/ No. 2 

White Heavy 
Rough Rice 

#2 

Open Interest -1.360*** 2.817*** 1.89 24.18** -20.99 

Log(s/k) -18.11*** 1.651*** -16.63*** -7.601*** -8.929*** 

Log(s/k)^2 83.06*** 108.9*** 115.4*** 135.9*** 109.0*** 
Historical volatility (20 
days) -0.0114 0.226*** 0.0765* 0.187*** 0.167*** 

Historical return (20 days) 28.10*** -10.19 8.106 8.111 14.26 

Risk free rate 2.137*** 1.318*** 1.379*** 3.938*** 1.386** 

Option price 0.0136 0.171*** 0.0383*** 0.0669*** 0.502*** 

Days to maturity -0.126 -0.307*** -0.0448 -0.383** -0.219* 

Days to maturity ^2 0.000142 0.00265** 0.000145 0.00407* 0.00208 

Calls / Puts 0.449** 0.710*** -0.278* 0.385* 0.897*** 

Year 90 -8.989*** 4.118** -15.09*** 

Year 91 -8.240*** 3.205** -4.315** -7.013** 

Year 92 -0.617 5.575*** -1.115 0.471 10.06*** 

Year 93 0.461 7.478*** -3.908*** 5.396** -1.553 

Year 94 -2.302* 4.813*** -2.006*** 2.665 2.329 

Year 95 -3.685** 2.735* -4.179** -4.028 4.730** 

Year 96 -7.565*** 5.571*** -7.676*** -12.26*** 5.165*** 

Year 97 -4.659*** 9.386*** -4.464*** -4.56 9.471*** 

Year 98 -3.900*** 3.051* -1.163 2.139 6.215*** 

Year 99 -4.211*** 5.551*** -4.734*** 5.051* 0.759 

Year 00 -3.484* 1.547 0.0665 -0.519 3.956* 

Year 02 2.638 5.607*** -6.244*** -0.712 7.486*** 

Year 03 1.179 5.267** -0.123 8.693*** 9.609*** 

Year 04 3.675 -0.35 -1.512 6.834** 6.848** 

Year 05 1.804 4.763*** -0.969 2.994 8.477*** 

Year 06 -3.944* 7.723*** -6.414*** -5.653** 4.038* 

Year 07 -3.249 5.059*** -6.513*** -4.823* 4.764** 

Year 08 -0.736 1.65 -12.73*** -6.896** 2.867 

Intercept 3.846 -9.607*** -1.861 -12.63** -6.275 

Obs. 17,750 30,393 12,194 9,572 15,802 

R
2
 0.424 0.557 0.421 0.522 0.434 

            

Note:  
(a) t statistics in parenthesis 
(b) * p< 0.05, ** p< 0.01, *** p< 0.0001 
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Table 11. (continued) 
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Variables 

Soybeans/ 
No. 1 

Yellow 

Soybean 
Meal/ 48% 

Protein 
Wheat/ No. 
2 Soft Red 

Barley, 
Western / 

No. 1 
Flaxseed / 

No. 1 

Lumber/ 
Spruce-Pine 

Fir 2x4 

Open Interest 1.018*** -1.431 -0.54 34.44* 40.61 -4.267 

Log(s/k) -13.00*** -15.44*** -9.557*** 4.521*** -0.574 1.57 

Log(s/k)^2 138.5*** 132.2*** 133.9*** 108.2*** 153.7*** 74.54*** 
Historical volatility (20 
days) 0.0900*** 0.175*** 0.146*** -0.343*** -0.0593 0.303*** 

Historical return (20 days) 2.985 26.77*** 2.749 -6.412 2.771 9.868 

Risk free rate 1.596*** 2.880*** 0.796* -0.505 1.209** 0.438 

Option price 0.0368*** 0.0165** 0.0708*** 0.0506*** 0.00536 0.0367*** 

Days to maturity -0.342*** -0.143 -0.368*** -0.345** -0.2 -0.102 

Days to maturity ^2 0.00271** 0.00051 0.00334*** 0.00340* 0.0017 0.000941 

Calls / Puts 1.443*** 0.199 0.373*** -0.115 -0.315 0.663** 

Year 90 -4.145*** -13.57*** -4.211** 3.62 

Year 91 -5.151*** -10.23*** -3.494** 4.102* 

Year 92 4.514*** 3.018*** 0.437 7.064*** 

Year 93 3.780*** 1.902* 0.26 -1.749 2.239 

Year 94 0.188 0.76 1.104 2.046 5.046*** 

Year 95 0.59 -5.481*** -3.311** -3.796*** -2.368 

Year 96 -1.439* -3.003*** -7.299*** -0.392 0.758 

Year 97 -5.085*** -8.560*** -3.439*** -2.541* 6.615* 4.757*** 

Year 98 0.304 -5.830*** -0.626 -1.016 -1.726 2.459 

Year 99 -1.011 -6.434*** -2.020* -0.175 -1.545 1.472 

Year 00 3.708*** -2.248* 1.651 -2.478 -2.074 4.852** 

Year 02 2.650* 4.673*** -2.552* -0.473 9.092*** 3.834* 

Year 03 2.764* 5.314*** -5.465*** -5.965* 8.190*** 5.686** 

Year 04 -7.139*** -4.194* -5.212*** -2.88 19.60*** 5.624** 

Year 05 -3.104** 0.515 0.779 2.408 3.169* 

Year 06 -1.642* -0.636 -3.197** -4.364** 2.917* 

Year 07 -5.195*** -7.446*** -7.172*** -0.347 3.939** 

Year 08 0.186 -3.728** -6.974** 3.554 

Intercept -0.0834 -8.581*** 2.898 17.78*** 1.181 -7.733* 

Obs. 28,540 23,916 43,390 5,746 7,222 19,258 

R
2
 0.652 0.496 0.633 0.347 0.318 0.319 

              

Note:  
(a) t statistics in parenthesis 
(b) * p< 0.05, ** p< 0.01, *** p< 0.0001 
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Table 12. Regression Result: Soft Commodities & Livestock 

Tt
opt

tf
tt

tTt YYYcpTTPrR
k

F

k

F
QS ,081991290110

2
9876205

2
204

2

321, loglog εθθθββββββσββββα ++++++++++++







+








++= −− Κ

 

                    

 Soft Commodities  Lifestock 

Variables 

Cocoa/Ivory 

Coast Milk, BFP 

Orange 

Juice, 

Frozen 

Concentrate 

Coffee 'C' 

/ 

Columbian 

Sugar #7/ 

White 

Sugar #11/ 

World Raw   

Feeder 

Cattle/ 

Average 

Live 

Cattle/ 

Choice 

Average 

          

Open Interest 1.342 -34.08 9.206 -5.859* 2.130 -1.301*  -9.127* -0.679 

Log(s/k) 0.797 -5.396*** -4.055*** -18.76*** -0.944 0.947  28.76*** 21.25*** 

Log(s/k)^2 101.7*** 143.8*** 132.0*** 104.2*** 129.7*** 117.2***  153.9*** 128.3*** 

Historical volatility (20 days) -0.0277 -0.00665 0.112** 0.150*** 0.152** 0.276***  0.186*** 0.270*** 

Historical return (20 days) -22.75 -7.716 15.41 -15.74 -13.67 -29.11***  -1.387 0.231 

Risk free rate -1.898* 0.151 -0.321 3.004*** -0.417 2.422***  0.345 0.935*** 

Option price 0.0253*** 1.396*** 0.0337*** 0.0978*** 0.0711*** 1.686***  0.0902*** 0.0591*** 

Days to maturity -1.090*** -0.801*** -0.315* -0.476*** -0.520*** -0.709***  -0.186*** 0.00282 

Days to maturity ^2 0.00934*** 0.00728*** 0.00308 0.00300 0.00472** 0.00591***  0.00152** -0.000704 

Calls / Puts -2.269*** 1.352*** 1.406*** 0.971*** 0.327* 1.528***  -0.0412 0.0397 

Year 90 9.374*  3.174 -23.92***  -19.31***  -1.735 -3.446** 

Year 91 10.29***  1.186 -20.90***  -5.731***  -1.079 -1.879* 

Year 92 3.124*  4.638** -17.74***  2.882*  1.090** 0.305 

Year 93 8.661***  1.876 -21.63***  -4.521**  0.318 -0.529 

Year 94 3.537  -0.263 -40.67***  6.333***  -1.471*** -2.756*** 

Year 95 16.79***  -0.795 -22.47*** -4.707** -3.421*  -0.648 -3.150*** 

Year 96 19.10***  -1.484 -18.90*** 0.820 2.767*  -2.272*** -2.551*** 

Year 97 9.817***  0.133 -39.07*** -4.045** 7.344***  -2.779*** -1.537* 

Year 98 15.62*** -4.247** -3.849 -24.38*** -7.760*** -4.135**  -2.662*** -4.447*** 

Year 99 -0.390 -22.39*** -0.204 -18.72*** 9.882*** -4.039  -0.814 -1.689** 

Year 00 11.56*** -0.160 8.169*** -23.96*** -2.968* -2.305  0.0153 -1.281 

Year 02 -2.045 -0.938 4.040* -3.475 -4.065** 3.920  -0.962 1.772 

Year 03 -14.43*** -0.935 2.276 -5.186 -4.018* 7.515***  0.878 2.162* 

Year 04 -11.03*** -5.281*** -4.970 -5.259 -4.963** 12.77***  1.835* 0.322 

Year 05 -1.093 -3.686*** -1.263 -14.24*** -3.963*** 13.67***  0.664 1.851** 

Year 06 11.35*** -1.554 -8.555*** -14.04*** -16.10*** -2.968  -1.623*** -0.245 

Year 07 10.23*** -4.810*** -9.432*** -13.93*** -3.193* 4.383*  -0.175 1.206 

Year 08  -2.293 -5.076* -11.07*** -14.63*** 1.110  -0.241 0.140 

Intercept 28.82*** 24.18*** 5.113 18.10*** 15.46*** -0.466  3.985*** -3.533* 

          

Obs. 4,800 24,044 24,415 28,857 6,635 17,188  18,132 16,317 

R
2
 0.784 0.626 0.449 0.536 0.769 0.617  0.705 0.637 

                    

Note:  
(a) t statistics in parenthesis 
(b) * p< 0.05, ** p< 0.01, *** p< 0.0001 
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Table 13. Regression Result: Precious Metal & Energy Commodities 
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 Precious Metal  Energy 

Variables Gold 

Copper High 

Grade/ Scrap 

No. 2 Wire Platinum   

Soybean 

Oil/ Crude Crude Oil Natural Gas 

Heating 

Oil #2 

         

Open Interest 0.193 -2.213 -5.133  -3.130*** -0.960 -5.900*** 3.316* 

Log(s/k) -10.49*** 2.439*** -7.823***  -7.919*** 2.778*** -13.65*** -5.614*** 

Log(s/k)^2 172.6*** 97.28*** 196.9***  135.4*** 64.16*** 43.27*** 45.84*** 

Historical volatility (20 days) 0.120** 0.143*** 0.316***  0.105** 0.0790** 0.232*** 0.241*** 

Historical return (20 days) 15.14 19.78 -9.863  22.83*** 27.16*** -0.365 11.59* 

Risk free rate 0.927* 2.703** 0.976  3.102*** 0.469 -0.0325 0.656 

Option price 0.00650*** 0.0366*** 0.0359***  0.377*** -0.0236 -0.685*** 2.444*** 

Days to maturity -0.443*** -0.436*** -0.219  -0.266*** -0.274** -0.250* 0.0374 

Days to maturity ^2 0.00399*** 0.00394** 0.00181  0.00197* 0.00211 0.00236 0.0000814 

Calls / Puts 0.281*** 0.228* 0.0494  0.392*** 0.582*** -0.567*** 1.259*** 

Year 90 -8.777*** -12.61***   -12.92*** -15.05***  -5.697* 

Year 91 -2.100 -2.403 -5.269***  -8.180*** -0.574  5.911* 

Year 92 -0.479 2.402** 0.612  4.147*** 2.795** 13.35*** 5.495*** 

Year 93 -3.336** 2.416 -2.275  1.732 2.141 15.77*** 7.509*** 

Year 94 0.179 -2.020* 2.840  -0.762 0.224 13.30*** 2.545 

Year 95 -1.106 -3.526** 0.584  -3.524** 4.038*** 10.66*** 7.974*** 

Year 96 0.598 -5.221*** 3.529***  -2.537** -2.564** 7.212*** 1.591 

Year 97 -4.550*** -3.691*** -5.328**  -0.604 0.381 5.628 4.178** 

Year 98 -4.677*** -2.293** -1.657  0.175 -2.112* 16.38*** 0.721 

Year 99 -1.662* -2.639*** 3.038**  -1.279 0.447 14.92*** 1.610 

Year 00 0.544 -1.410 -8.763***  0.397 -4.168*** 14.80*** -3.485* 

Year 02 1.657 5.596* 1.837  5.567*** 5.345*** 12.35*** 5.776** 

Year 03 -1.486 5.225 3.871  8.203*** 5.127** 13.34*** -0.405 

Year 04 -1.995 -0.720 -2.390  4.641** 0.556 11.23*** -1.694 

Year 05 -2.144* 4.597** 3.011  3.831** -0.108 15.09*** -1.887 

Year 06 -11.51*** -6.666***   1.800* 2.677** 10.43*** 3.532* 

Year 07 -7.887*** -8.318***   -0.0603 1.258 21.01*** 2.520 

Year 08 -9.961*** -8.120***   -6.426** -7.845*** 18.79*** -2.274 

Intercept 10.56*** -0.0296 -2.433  -6.247* 5.442 -11.05* -14.16*** 

         

Obs. 40,892 60,822 7,967  20,796 84,521 75,516 79,175 

R
2
 0.675 0.481 0.415  0.570 0.323 0.218 0.258 

Note:  
(a) t statistics in parenthesis 
(b) * p< 0.05, ** p< 0.01, *** p< 0.0001 
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Table 14. Regression Result: All Markets 
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Variables All options  Variables All markets 

     

Open Interest -0.0215  Year 90 -3.369*** 

Log(s/k) -8.353***  Year 91 0.582 

Log(s/k)^2 95.60***  Year 92 2.319*** 

Historical volatility (20 days) -0.0128  Year 93 1.085** 

Historical return (20 days) -0.174  Year 94 0.661 

Risk free rate 0.572**  Year 95 0.623 

Option price 0.0312***  Year 96 -0.830 

Days to maturity -0.303***  Year 97 -1.538** 

Days to maturity ^2 0.00253***  Year 98 0.596 

Calls / Puts 0.845***  Year 99 0.874 

Chicago Mercantile Exchange 2.929***  Year 00 1.251* 

Commodity Exchange 1.130***  Year 02 3.310*** 

Coffee, Sugar & Cocoa Exchange  2.761***  Year 03 2.011** 

LIFFE Commodity Exchange  1.757***  Year 04 -0.205 

Minneapolis Grain Exchange  -1.110***  Year 05 1.613*** 

New York Cotton Exchange  -0.916***  Year 06 -0.0988 

New York Mercantile Exchange -1.462***  Year 07 -0.128 

Winnipeg Commodity Exchange 1.102***  Year 08 -3.458*** 

Intercept 5.965***    

     

Obs. 730,940    

R
2
 0.307    

          

Note:  
(a) t statistics in parenthesis 
(b) * p< 0.05, ** p< 0.01, *** p< 0.0001 
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CHAPTER 5. CONCLUSION 

 Because of the well-known weaknesses of current option-pricing models, it would be naïve 

for option traders to quote option prices based purely on an options-pricing model. Among all option 

valuation models, the Black and Scholes model (BSM) is still the foundation for pricing vanilla 

options. Practitioners use the BSM not only to price plain-vanilla options, but also to give estimates 

of other more sophisticated options, and to invert the model to determine the implied volatility that 

can be used for the calibration of other valuation models. The imperfections of the BSM are manifest 

in the form of bias of implied volatility as an estimator of future-realized volatility, and as the 

volatility smile. Over the past 30 years, researchers have been struggling to explain the source of such 

smiles. Although several more complicated valuation models have been developed and volatility 

smiles can be produced, these models often do not have closed form solutions and are 

computationally intensive. Moreover, several studies have found that complexity costs of the more 

advanced models usually outweigh the drawbacks of the simpler BSM.  

 Among practitioners, the BSM remains the most popular option valuation model due to three 

major factors. First, more sophisticated models are computationally intensive, making them virtually 

impossible for option traders to use in their daily trading activities. Second, the calibration of the new 

models is time-consuming and sometimes even impossible. Finally, practitioners still must rely on the 

implied volatility of plain vanilla options to calibrate parameters of the other option-valuation models.  

 Therefore, instead of imposing new assumptions on the underlying asset and the volatility 

structure in order to develop a new valuation model for options as done in most other studies, this 

research takes a different approach in which the bias, not the option price itself, is being modeled. 

The idea of modeling the bias stems from the fact that the BSM is still the most widely used model 

among practitioners. This means that the market place simply views the bias as a correction of 

imperfections resulting from the BSM. Hence, modeling the bias itself as opposed to developing a 

new valuation model seems to be a more useful approach for practitioners.   

 In this study, the volatility bias is determined from a partial equilibrium framework which 

contains economic insight into the causes of the bias. According to the proposed model, the goods 

that are being traded are the services of options writers who are protected by trading rules that require 

access to a seat on the exchange to avoid service fees associated with trading. This model allows us to 

replicate the actual option market mechanism.  



71 

 

 

 

 Although it could be argued that some researchers have employed the ad-hoc BSM model to 

empirically explain the bias, however, to my knowledge this theoretical approach has never been 

described in the literature before. Model equilibrium results from the agent’s utility maximization 

problem in which the option writer is assumed to have monopoly power in order to reflect the 

advantage and skill that option writers possess. In order to obtain a certain level of bias in terms of 

dollars, the monopolist has to inflate the implied volatility for options. The two scenarios considered 

here produce a downward sloping volatility and a volatility smile. A combined mixture of these two 

scenarios should provide different curvatures for the volatility curve. Moreover, by changing the time 

to maturity of the options, different shapes of the volatility term structures can be reproduced. As a 

result, this model not only provides economic intuition behind the bias, it is also the first model that 

can explain both the volatility smile and the volatility term structure. 

 Discussion of empirical results was divided into two parts: (i) to show the evidence of bias 

and (ii) to show determinants of the bias. For ATM options, in nineteen out of twenty-six markets, the 

implied volatility is an upward-biased estimator of the realized volatility. The difference between this 

study and the previous literature is that the previous literature focused on the existence of a bias 

where in this study, the proposed model predicts a positive bias which is what we find in the data. 

Although the implied volatility appears to be an unbiased-biased estimator for the realized volatility 

in the cotton, oats, wheat No. 2, cocoa, orange juice, and heating oil markets for ATM options, 

however, for non-ATM options, implied volatility appears to be an upward-biased estimator for the 

realized volatility in all markets. Therefore, in almost all cases, we fail to reject the hypothesis that 

the implied volatility is a positive biased estimator of future realized volatility. 

 The theoretical model also suggests that the implied volatility’s bias behavior is caused by the 

quantity hedged, the strike, volatility, futures price, the risk-free rate, option prices, and days to 

maturity. The second section of the empirical findings presents results using these variables to test 

that the bias is non-constant across strikes, times to maturity, puts and calls, option year, and 

exchanges. The empirical results fail to reject all of these hypotheses. Hence, the bias varies 

according to these variables. Additionally, the result also shows that the Chicago Mercantile 

Exchange has the highest bias among all the Exchanges. The introduction of electronic trading does 

not seem to have had any influence of the size or the presence of a bias. 

 In most markets, the Open Interest and the Historical return (20days) variables do not appear 

to have much impact. However, the Historical volatility (20days), the Risk free rate, and the Option 

price variables are shown to have a positive impact on the bias in most markets. Finally, the empirical 



72 

 

 

 

model appears to explain the bias reasonably well with 30%-40% R2 in eleven markets and more than 

50% R2 in thirteen markets. 

 Future research could adapt this model to conduct hedging strategies and to compare hedging 

performance between this model and other existing models. Moreover, since this model not only 

suggests that, in most markets, the implied volatility is a biased estimation of the realized volatility, 

variables possibly explaining the bias are also suggested, hence, future research should be done 

looking at employing this model as another tool for forecasting future volatility.  

 Finally, the results shown here also shave a practical application for those who would like to 

use options prices to find the markets estimate of implied volatility. To do this one would first 

subtract the average bias presented here (or the average transaction fee for a round trip option 

purchase) from the actual option premium before solving for the implied volatility for an at the 

money option. 
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APPENDIX A. THE BIAS SURFACE BY MARKETS 

Agricultural Commodities 
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Soft Commodities 
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Livestock Commodities 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Precious Metal Commodities 
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Energy Commodities 
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APPENDIX B.  MATLAB CODE FOR NUMERICAL ANALYSIS 

Main Program 

A0 = [1;1;1;1;1]  
lb = [0;0;0;0;0]  
ub = [10;10;10;10;10]  
% change ub according to Q  
  
[A , fval] = fmincon(@MonopolistProgram, A0 ,[],[],  [], [], lb, ub, 
@MonopolistUnConst)  
  
[A , fval] = fmincon(@MonopolistProgram, A0 ,[],[],  [], [], lb, ub, 
@MonopolistConst1)  
 
 
function [profitSum] = MonopolistProgram(A) 

global H  
global c  
global a   
global f0  
global mu  
global sigma  
global rf  
global Q  
global k  
global T  
     
H = 1;  
c = 0.1;  
  
a = 1;   
f0 = 1;  
mu = 1;  
sigma = 0.25;  
T = 0.5;  
rf = 0.05;  
Q = 10;  
  
k = [.8; .9 ; 1 ; 1.1 ; 1.2];  
 
profit = 0;  
for i = 1:1: 5  
  

% part 2) utility at time 1  
p0 = exp(-rf*T)*f0;  
d1 = ( log(p0/k(i,1)) + T*(rf+sigma^2/2)  )  / ( si gma * sqrt(T) );  
d2 = d1 - sigma * sqrt(T);  
PoptPut = exp(-rf*T)* ( k(i,1) *  normcdf(-d2) - f0  * normcdf(-d1) 
);  
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[p1,interval] = qnwtrap(30000, 0.00000001, 200);  
sigmaLog = sqrt( T ) * sigma;  
muLog = T*rf - T*(sigma^2)/2;  
  
piece1 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).*max(k(i,1) - 
p1,0).* exp( (-a)*( A(i,1).*max(k(i,1)-p1,0) + Q.*p 1) - (1/2).* 
((log(p1) - log(p0)-muLog)./sigmaLog).^2));  
piece2 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).* exp( (-a)*( 
A(i,1).*max(k(i,1)-p1,0) + Q.*p1) - (1/2).* ((log(p 1) - log(p0)-
muLog)./sigmaLog).^2));  
   
rev = (piece1/piece2)*(1/(1+rf)) ;  
  
futureRev =  interval'*  ( (1./(sigmaLog*sqrt(2*pi) .*p1)).*min(p1 - 
k(i,1) ,0)*A(i,1).* exp(- (1/2).* ((log(p1) - log(p 0)-
muLog)./sigmaLog).^2));  
  
profitIndividual = rev*A(i,1)  - c*A(i,1) - futureR ev;  
  
profit = profit + profitIndividual; 

 
end  
  
profitSum = - (profit - H)  
 
function [const1, czero] = MonopolistUnConst(A) 

global H 
global c  
global a   
global f0  
global mu 
global sigma  
global rf  
global Q  
global k  
global T 
 
% ======= Set 1 ============================  
% % % k = [.95; 1; 1.05];  
p0 = exp(-rf*T)*f0;  
d11 = ( log(p0/k(1,1)) + T*(rf+sigma^2/2)  )  / ( s igma * sqrt(T) );  
d12 = ( log(p0/k(2,1)) + T*(rf+sigma^2/2)  )  / ( s igma * sqrt(T) );  
d21 = d11 - sigma * sqrt(T);  
d22 = d12 - sigma * sqrt(T);  
PoptPut1 = exp(-rf*T)* ( k(1,1) *  normcdf(-d21) - f0 * normcdf(-d11) );  
PoptPut2 = exp(-rf*T)* ( k(2,1) *  normcdf(-d22) - f0 * normcdf(-d12) );  
  
[p1,interval] = qnwtrap(30000, 0.00000001, 200);  
sigmaLog = sqrt( T ) * sigma;  
muLog = T*rf - T*(sigma^2)/2;  
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piece1 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).*max(k(1,1) - 
p1,0).* exp( (-a)*( A(1,1).*max(k(1,1)-p1,0) + Q.*p 1) - (1/2).* ((log(p1) 
- log(p0)-muLog)./sigmaLog).^2));  
piece2 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).* exp( (-a)*( 
A(1,1).*max(k(1,1)-p1,0) + Q.*p1) - (1/2).* ((log(p 1) - log(p0)-
muLog)./sigmaLog).^2));  
S1 = (piece1/piece2)*(1/(1+rf)) - PoptPut1;  
  
piece11 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p 1)).*max(k(2,1) - 
p1,0).* exp( (-a)*( A(2,1).*max(k(2,1)-p1,0) + Q.*p 1) - (1/2).* ((log(p1) 
- log(p0)-muLog)./sigmaLog).^2));  
piece22 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p 1)).* exp( (-a)*( 
A(2,1).*max(k(2,1)-p1,0) + Q.*p1) - (1/2).* ((log(p 1) - log(p0)-
muLog)./sigmaLog).^2));  
S2 = (piece11/piece22)*(1/(1+rf)) - PoptPut2;  
  
  
% ======= Set 3 ============================  
p0 = exp(-rf*T)*f0;  
d13 = ( log(p0/k(3,1)) + T*(rf+sigma^2/2)  )  / ( s igma * sqrt(T) );  
d23 = d13 - sigma * sqrt(T);  
PoptPut3 = exp(-rf*T)* ( k(3,1) *  normcdf(-d23) - f0 * normcdf(-d13) );  
  
[p1,interval] = qnwtrap(30000, 0.00000001, 200);  
sigmaLog = sqrt( T ) * sigma;  
muLog = T*rf - T*(sigma^2)/2;  
  
piece3 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).*max(k(3,1) - 
p1,0).* exp( (-a)*( A(3,1).*max(k(3,1)-p1,0) + Q.*p 1) - (1/2).* ((log(p1) 
- log(p0)-muLog)./sigmaLog).^2));  
piece4 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).* exp( (-a)*( 
A(3,1).*max(k(3,1)-p1,0) + Q.*p1) - (1/2).* ((log(p 1) - log(p0)-
muLog)./sigmaLog).^2));  
S3 = (piece3/piece4)*(1/(1+rf)) - PoptPut3;  
  
  
% ======= Set 4 ============================  
p0 = exp(-rf*T)*f0;  
d14 = ( log(p0/k(4,1)) + T*(rf+sigma^2/2)  )  / ( s igma * sqrt(T) );  
d24 = d14 - sigma * sqrt(T);  
PoptPut4 = exp(-rf*T)* ( k(4,1) *  normcdf(-d24) - f0 * normcdf(-d14) );  
  
  
  
[p1,interval] = qnwtrap(30000, 0.00000001, 200);  
sigmaLog = sqrt( T ) * sigma;  
muLog = T*rf - T*(sigma^2)/2;  
  
piece3 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).*max(k(4,1) - 
p1,0).* exp( (-a)*( A(4,1).*max(k(4,1)-p1,0) + Q.*p 1) - (1/2).* ((log(p1) 
- log(p0)-muLog)./sigmaLog).^2));  
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piece4 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).* exp( (-a)*( 
A(4,1).*max(k(4,1)-p1,0) + Q.*p1) - (1/2).* ((log(p 1) - log(p0)-
muLog)./sigmaLog).^2));  
S4 = (piece3/piece4)*(1/(1+rf)) - PoptPut4;  
  
  
% ======= Set 5 ============================  
p0 = exp(-rf*T)*f0;  
d15 = ( log(p0/k(5,1)) + T*(rf+sigma^2/2)  )  / ( s igma * sqrt(T) );  
d25 = d15 - sigma * sqrt(T);  
PoptPut5 = exp(-rf*T)* ( k(5,1) *  normcdf(-d25) - f0 * normcdf(-d15) );  
  
[p1,interval] = qnwtrap(30000, 0.00000001, 200);  
sigmaLog = sqrt( T ) * sigma;  
muLog = T*rf - T*(sigma^2)/2;  
  
piece3 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).*max(k(5,1) - 
p1,0).* exp( (-a)*( A(5,1).*max(k(5,1)-p1,0) + Q.*p 1) - (1/2).* ((log(p1) 
- log(p0)-muLog)./sigmaLog).^2));  
piece4 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).* exp( (-a)*( 
A(5,1).*max(k(5,1)-p1,0) + Q.*p1) - (1/2).* ((log(p 1) - log(p0)-
muLog)./sigmaLog).^2));  
S5 = (piece3/piece4)*(1/(1+rf)) - PoptPut5;  
  
% ================================================= ============  
PoptPut1  
PoptPut2  
PoptPut3  
PoptPut4  
PoptPut5  
  
Sall = [S1; S2 ; S3; S4; S5 ]  
const1 = [-S1 ;  -S2 ; -S3 ; -S4 ; -S5];  
czero = [];  
 
function [czero, const1] = MonopolistConst1(A) 

global H 
global c  
global a   
global f0  
global mu 
global sigma  
global rf  
global Q  
global k  
global T 
 
% ======= Set 1 & 2 ============================  
% % % k = [.95; 1; 1.05];  
p0 = exp(-rf*T)*f0;  
d11 = ( log(p0/k(1,1)) + T*(rf+sigma^2/2)  )  / ( s igma * sqrt(T) );  
d12 = ( log(p0/k(2,1)) + T*(rf+sigma^2/2)  )  / ( s igma * sqrt(T) );  



82 

 

 

 

d21 = d11 - sigma * sqrt(T);  
d22 = d12 - sigma * sqrt(T);  
PoptPut1 = exp(-rf*T)* ( k(1,1) *  normcdf(-d21) - f0 * normcdf(-d11) );  
PoptPut2 = exp(-rf*T)* ( k(2,1) *  normcdf(-d22) - f0 * normcdf(-d12) );  
   
[p1,interval] = qnwtrap(30000, 0.00000001, 200);  
sigmaLog = sqrt( T ) * sigma;  
muLog = T*rf - T*(sigma^2)/2;  
  
piece1 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).*max(k(1,1) - 
p1,0).* exp( (-a)*( A(1,1).*max(k(1,1)-p1,0) + Q.*p 1) - (1/2).* ((log(p1) 
- log(p0)-muLog)./sigmaLog).^2));  
piece2 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).* exp( (-a)*( 
A(1,1).*max(k(1,1)-p1,0) + Q.*p1) - (1/2).* ((log(p 1) - log(p0)-
muLog)./sigmaLog).^2));  
S1 = (piece1/piece2)*(1/(1+rf)) - PoptPut1;  
   
piece11 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p 1)).*max(k(2,1) - 
p1,0).* exp( (-a)*( A(2,1).*max(k(2,1)-p1,0) + Q.*p 1) - (1/2).* ((log(p1) 
- log(p0)-muLog)./sigmaLog).^2));  
piece22 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p 1)).* exp( (-a)*( 
A(2,1).*max(k(2,1)-p1,0) + Q.*p1) - (1/2).* ((log(p 1) - log(p0)-
muLog)./sigmaLog).^2));  
S2 = (piece11/piece22)*(1/(1+rf)) - PoptPut2;  
  
  
% ======= Set 3 ============================  
p0 = exp(-rf*T)*f0;  
d13 = ( log(p0/k(3,1)) + T*(rf+sigma^2/2)  )  / ( s igma * sqrt(T) );  
d23 = d13 - sigma * sqrt(T);  
PoptPut3 = exp(-rf*T)* ( k(3,1) *  normcdf(-d23) - f0 * normcdf(-d13) );  
  
[p1,interval] = qnwtrap(30000, 0.00000001, 200);  
sigmaLog = sqrt( T ) * sigma;  
muLog = T*rf - T*(sigma^2)/2;  
  
piece3 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).*max(k(3,1) - 
p1,0).* exp( (-a)*( A(3,1).*max(k(3,1)-p1,0) + Q.*p 1) - (1/2).* ((log(p1) 
- log(p0)-muLog)./sigmaLog).^2));  
piece4 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).* exp( (-a)*( 
A(3,1).*max(k(3,1)-p1,0) + Q.*p1) - (1/2).* ((log(p 1) - log(p0)-
muLog)./sigmaLog).^2));  
S3 = (piece3/piece4)*(1/(1+rf)) - PoptPut3;  
  
  
% ======= Set 4 ============================  
p0 = exp(-rf*T)*f0;  
d14 = ( log(p0/k(4,1)) + T*(rf+sigma^2/2)  )  / ( s igma * sqrt(T) );  
d24 = d14 - sigma * sqrt(T);  
PoptPut4 = exp(-rf*T)* ( k(4,1) *  normcdf(-d24) - f0 * normcdf(-d14) );  
  
[p1,interval] = qnwtrap(30000, 0.00000001, 200);  
sigmaLog = sqrt( T ) * sigma;  
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muLog = T*rf - T*(sigma^2)/2;  
  
piece3 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).*max(k(4,1) - 
p1,0).* exp( (-a)*( A(4,1).*max(k(4,1)-p1,0) + Q.*p 1) - (1/2).* ((log(p1) 
- log(p0)-muLog)./sigmaLog).^2));  
piece4 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).* exp( (-a)*( 
A(4,1).*max(k(4,1)-p1,0) + Q.*p1) - (1/2).* ((log(p 1) - log(p0)-
muLog)./sigmaLog).^2));  
S4 = (piece3/piece4)*(1/(1+rf)) - PoptPut4;  
  
  
% ======= Set 5 ============================  
p0 = exp(-rf*T)*f0;  
d15 = ( log(p0/k(5,1)) + T*(rf+sigma^2/2)  )  / ( s igma * sqrt(T) );  
d25 = d15 - sigma * sqrt(T);  
PoptPut5 = exp(-rf*T)* ( k(5,1) *  normcdf(-d25) - f0 * normcdf(-d15) );  
  
[p1,interval] = qnwtrap(30000, 0.00000001, 200);  
sigmaLog = sqrt( T ) * sigma;  
muLog = T*rf - T*(sigma^2)/2;  
  
piece3 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).*max(k(5,1) - 
p1,0).* exp( (-a)*( A(5,1).*max(k(5,1)-p1,0) + Q.*p 1) - (1/2).* ((log(p1) 
- log(p0)-muLog)./sigmaLog).^2));  
piece4 = interval'*  ( (1./(sigmaLog*sqrt(2*pi).*p1 )).* exp( (-a)*( 
A(5,1).*max(k(5,1)-p1,0) + Q.*p1) - (1/2).* ((log(p 1) - log(p0)-
muLog)./sigmaLog).^2));  
S5 = (piece3/piece4)*(1/(1+rf)) - PoptPut5;  
  
% ============================  
  
PoptPut1  
PoptPut2  
PoptPut3  
PoptPut4  
PoptPut5  
  
Sall = [S1; S2 ; S3; S4; S5 ]  
  
const1 = [S1-S2; S1-S3; S1-S4; S1-S5; S2-S3; S2-S4;  S2-S5; S3-S4; S3-S5; 
S4-S5];  
  
czero = []; 
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