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CHAPTER 1: OVERVIEW 

Nitrogen is an essential plant nutrient and an adequate supply of nutrients is necessary for crop growth. 

Ideally, soil nutrients should be available in the proper amounts at the time the plant can use them. 

Estimates of crop absorption of nitrogen range from 25% to 70% and generally vary as a function of 

plant growth, health, the method, and timing of nitrogen application (Blackmer, 2000). The amount of 

nitrogen fertilizer applied in excess of the amount taken up by the plant fertilized is a main source of 

nitrogen loss. Unused nitrogen can be immobilized, denitrified, washed into surface water, or leached 

into groundwater (Huang and Uri, 1995; Huang, Hewitt, and Shank, 1998; Huang et al., 1998; Dinnes 

et al., 2002; Randall and Schmitt, 1998; Uri, 1998; Blackmer, 1995). As a result, relatively heavy use of 

nitrogen and some other fertilizers can lead to soil acidification, changes in soil properties, and off-site 

environmental problems.  

Public concern over water quality increased a focus on agriculture as a potential source of 

surface and groundwater quality problems. Nitrate nitrogen concentrations in excess of 10 mg per liter 

in drinking water may pose risks to humans and livestock (USDA, 1991) and have cost some places 

millions of dollars for their removal or to provide alternate drinking water sources. For example, Des 

Moines, Iowa spent over $4.8 million for nitrate removal from drinking waters between 1991 and 1999 

(Dinnes et al., 2002). The presence of nitrates in drinking water can cause potentially fatal infant 

methemoglobinemia (blue baby syndrome). Nitrates are also linked to nitrosamine, a potent carcinogen 

which can affect a wide range of organs in many animal species (Huang and Uri, 1999; Johnson, 

Adams, and Perry, 1991; Yadav, Peterson, and Easter, 1997). Moreover, nitrate is the principal nutrient 

related to hypoxia in the Gulf of Mexico. This zone of low dissolved oxygen covers an area from 

13,000 to 20,000 km2 off the shore of Louisiana. It has been shown to be due to excess nutrients, 

particularly nitrate nitrogen, being transported to the Gulf from the Mississippi River Basin (Mitsch et 

al., 2001).  
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The Pew Oceans Commission on June 5, 2003 called for the federal government to force 

farmers to cut pollution running into waterways or risk losing federal aid (http://www.pewoceans. org/). 

The commission’s report says that problems such as ocean dead zones will not improve unless farmers 

try to follow the Clean Water Act. Some of the statistics show that Iowa and Illinois are two of the 

biggest sources of nitrogen running down the Mississippi River to the Gulf of Mexico (US Geological 

Survey, http://toxics.usgs.gov/hypoxia/).  They account for up to 35 percent of the nitrogen washing 

down the Mississippi River watershed, which covers 41 percent of the lower 48 states, while Corn Belt 

states apply most of nitrogen fertilizer (see Fig. 1). As a consequence, understanding the determinants 

of fertilizer and pesticide use is an important element in being able to solve the problem.  

                         Figure 1.1 

 

Nonpoint loss of nitrogen from fields to water resources, though, is not caused by any single 

factor. Rather, it is caused by a combination of factors, including tillage, drainage, crop selection, soil 

organic matter levels, hydrology, and temperature and precipitation. Therefore, a strategy to reduce 

contamination of water resources from crop production includes identifying appropriate management 

practices to minimize leaching and runoff of nitrogen. Practices for reducing nitrogen loss include 

improved timing of nitrogen application at appropriate rates, using soil tests and plant monitoring, 

diversifying crop rotations, including a cover crop, reducing tillage, precision farming, postharvest 

management of fields, etc. (Hatfield and Cambardella, 2001; Uri, 1998; Dinnes et al., 2002). These 
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practices often referred to as “best management practices” (BMPs) and are typically developed to 

increase the efficiency with which nutrients, pesticides, and irrigation water are used. 

The agronomic fertilizer recommendations for a field depend on the crop to be grown, 

anticipated yield goal, previous crop, and soil test results (Shapiro et al., 2003; Iowa State University 

Extension, 2007). Recommended nitrogen application rates should be adjusted to account for nitrogen 

supplied by previous legume crops, manure, other organic wastes, or residual soil nitrate. If farmers do 

not credit other sources of nitrogen, they may end up applying more nitrogen than is agronomically 

necessary. When fertilizers are overapplied, the total amount of plant nutrients available to growing 

crops not only exceeds the need of the plant but the economic optimum as well. Yadav, Peterson, and 

Easter (1997) using experimental data for farm sites in southeastern Minnesota empirically estimated 

the production function and profit maximizing level of nitrogen application. Their results showed that 

both the current recommendation rate and farmers’ use of nitrogen exceeded the profit maximizing 

level of nitrogen in the region suggesting that recommended rate needs to be revised and made more 

site specific. Additionally, research from across the Corn Belt indicated that economic optimum 

nitrogen rate (EONR) does not vary according to yield level (Sawyer and Nafziger, 2005). These issues 

increased uncertainty regarding current nitrogen rate recommendations. In recent years nitrogen 

recommendation systems have become more diverse across states in the Corn Belt moving away from 

yield goal as a basis of nitrogen rate decisions in some states to other methods such as cropping system 

(Iowa) or soil specific yield potential (Wisconsin) (Sawyer and Nafziger, 2005; Sawyer and Nafziger, 

2006).  

Time of nitrogen application studies have been reported extensively in the literature. The 

general conclusion among researchers is that nitrogen fertilizer should be applied nearest to the time it 

is needed by the crop, i.e., side-dressed several weeks after corn emergence (Huang et al., 2000; Huang, 

Hewitt, and Shank, 1998; Fuglie and Bosch, 1995; Bosch, Cook, and Fuglie, 1995). Nitrogen fertilizer, 

however, is typically applied to plant in fall, early spring (spring pre-emergent fertilization) and during 
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the growing season (spring post-emergent fertilization). Generally, farmers practice single or split 

fertilizer applications. According to results of the analysis of 1996 ARMS data for U.S. corn farms and 

producers, applying all nitrogen at or after planting was used on 30 percent of the corn acreage 

(Christensen, 2002). Data also show that nitrogen fertilizer was applied before planting, either in the 

fall, the spring, or both, on 42 percent of the total acreage. All the nitrogen was applied in the fall to 13 

percent of total acreage, but to almost 20 percent of the acreage in the Corn Belt. Thirty percent of all 

corn acreage received 100 percent of the nitrogen at or after planting, but this ranged from 45 percent in 

the Lake States to 24 percent in the Corn Belt. According to Dinnes et al. (2002) typical nitrogen 

fertilizer management for corn production in the subhumid Midwest currently consists of a single 

preplant application, usually in fall before the year that corn is grown. Table 1.1 contains data on timing 

of fertilizer application in U.S. for 1990-1997 period while Table 1.2 presents data for timing of 

fertilizer application by region in 1996 (http://www.ers.usda.gov/Briefing/ AgChemicals/nutrient 

mangement.htm). From data provided in these tables it is obvious that most of farmers still rely on pre-

planting fertilizer applications.  

Table 1.1. Timing of Fertilizer Application in U.S. 1990-1997. 

Year 
Nitrogen application timing: 90 91 92 93 94 95 96 97 

Fall before planting 27 26 23 20 27 30 22 27 
Spring before planting 57 50 53 51 54 52 54 51 

At planting 44 48 47 48 43 42 43 44 
After planting 26 31 31 35 27 29 33 30 

Table 1.2. Timing of Fertilizer Application by Region in 1996. 

Nitrogen application timing: Corn 
Belt 

Lake 
States 

Plains 
States 

Southeast All 

All in fall 19 5 6 0 13 
None at/after planting 32 14 33 28 28 

Less than 50% at/after planting 9 21 19 11 14 
50-99% at/after planting 15 7 12 22 13 

All at/after planting 24 45 27 38 30 
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For both agronomic and environmental reasons, spring post-emergent application of nitrogen 

fertilizer is frequently superior to fall and spring pre-emergent applications because less loss of nitrogen 

occurs in the one to three months between application and nitrogen uptake. Field experiments show that 

for certain types of soil, application of nitrogen fertilizer after planting can be more effective than 

before planting, including both fall and spring pre-emergent fertilizer applications, in reducing nitrogen 

losses. Nitrogen runoff may occur either between two agricultural seasons (in winter), or after early 

nitrogen application before the growing season (in the spring). Study of Balkcom et al. (2003) linked 

high nitrate concentrations in Iowa rivers to areas of intensive row crop production. Results showed that 

early-season rainfall and associated nitrate losses were major factors affecting nitrogen concentrations 

in soils. In some locations, a large part of the nitrogen may be lost if it is applied too long before the 

crop is planted, particularly if applied the previous fall before soil temperature drops to below 50° F. 

Fall application of nitrogen increases the loss of nitrogen through denitrification, it also gives nitrogen 

time to leach through the root zone and into groundwater or subsurface drainage tile. As a result, fall-

applied nitrogen is usually 10 to 15 percent less effective than spring-applied nitrogen. The relative 

effectiveness is largely determined by soil characteristics and climatic conditions, and, therefore, varies 

substantially among locations and years. According to Blackmer and Sanchez (1988), 50 to 60 percent 

of fall applied nitrogen fertilizer is lost from the surface soil through several of the pathways that lead to 

nitrogen loss from the soil.  In the research of Randall and Mulla (2001) nitrogen was applied in the fall 

(early November) and spring (late April) for continuous corn to determine the effect of nitrogen 

application time and rate on nitrate losses to subsurface drainage and corn yields in Minnesota. Corn 

yields from the late fall application averaged 8 percent lower than with spring application. Moreover, 

annual losses of nitrogen in the drainage water averaged 36 percent higher with fall application 

compared to spring application. Torbert et al. (2001) also reported 30 percent yield loss with fall 

fertilizer application compared with fertilizer application at planting. An 8-years study reported by 

Vetsch and Randall (2004) illustrated the large year-to-year effect of climatic conditions, but when 
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averaged across years, nitrate losses from a corn–soybean rotation in Minnesota were reduced 17 

percent by applying nitrogen in the spring compared with late in October. All this shows that changing 

the time of a single preplant fertilizer application from fall to spring could significantly decrease 

nitrogen loss and increase fertilizer use efficiency.  

However, recent trends in agriculture which include increased farm size, more farmers with off-

farm jobs (USDA-NASS; 1997, 1992) have left less time for farmers to sidedress nitrogen. Therefore, 

many corn growers, especially in the northern part of the Corn Belt (i.e., northern Iowa and southern 

Minnesota), still apply nitrogen in the fall and early spring because they usually have more time, 

potential for soil compaction following harvest is generally less, nitrogen fertilizer prices are often 

lower, and weather and soil conditions are generally more favorable (Randall and Schmitt, 1998; 

Dinnes et al., 2002). The opportunity cost of labor may be significantly higher during the late spring 

and growing season than during the fall. Spring rainfalls can result in very wet soils and prevent or 

delay nitrogen fertilizer applications. Consequently, uncertain weather conditions may shorten the time 

in which fertilizer can be applied during the growing season, increasing the risk of yield loss from 

inadequate nitrogen availability. Such risk is magnified for farmers with shorter growing seasons.  

Additionally, there are some events such as bad weather that can reduce a crop’s capacity to 

absorb nutrients. Also, unobservable processes such as leaching, denitrification, uptake in previous 

crops, and gain from nitrogen-fixing crops and manure application affect the availability of soil 

nutrients. As a result, the farmers’ nutrient application may be affected by his/her perception of the 

yield risk, especially in the case of nitrogen, the most mobile nutrient applied to crops. Several studies 

have shown that uncertainty about soil nitrate levels may cause farmers to use chemical nitrogen 

fertilizer as a risk reducing input (Babcock, 1992; Musser et al., 1995; Lambert, 1990, Feinerman, Choi, 

and Johnson, 1990; Bontem and Thomas, 2000; Huang, Hansen, and Uri, 1994).  

Babcock (1992) showed that soil nitrogen and weather uncertainty could result in expected 

profit-maximizing nitrogen applications 36% higher than under certainty. Feinerman, Choi, and 
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Johnson (1990) tested the hypothesis that excess fertilizer application at planting is used to insure 

against weather conditions not permitting a later application. They found that risk aversion leads to 

heavier reliance on early applications. For Iowa corn, risk aversion can lead to 3.2% increase in total 

applications. Huang, Hansen, and Uri (1994) also found that to insure against the risk of being unable to 

apply fertilizer during the growing season, risk-averse farmers apply more fertilizer prior to planting. 

They estimate that the impact of risk aversion on split fertilizer application decision for Iowa corn can 

almost triple nitrogen applications relative to risk-neutral levels. Bontem and Thomas (2000) 

considered a production model of sequential nitrogen application under risk. They estimated that risk 

premium and value of information (possibility for farmers to process information) account for 30 

percent of fertilizer cost for Midwest corn producers. All these studies showed substantially higher 

fertilizer application rates whenever farmers faced any kind of uncertainty whereas the magnitude of 

extra fertilizer application was higher for risk-averse farmers compared to neutral ones. Spring rainfall 

patterns can result in very wet soils and prevent or delay nitrogen fertilizer applications. This risk is very 

real, therefore, despite the opportunities to increase nitrogen use efficiency and decrease loss of 

nitrogen through drainage waters, many farmers continue fall fertilizer applications to minimize real 

and perceived risk.  

There are several reasons why farmers use crops rotation: (1) improve fertility by including 

nitrogen-fixing legumes in crop rotations, reducing the subsequent need for commercial nitrogen 

fertilizer, (2) control insects, diseases, and weeds, (3) reduce soil erosion and related loss of soil 

nutrients and moisture, (4) increase water-holding capacity of the soil through increased organic matter, 

(5) reduce the water pollution often associated with runoff and leaching, and (6) promote crop 

diversification to provide an economic buffer against price fluctuation for crops and production inputs 

(Christensen, 2002; Uri, 1998; Bosch and Pease, 2000; Riedall et al., 1998). Cropping patterns adopted 

by corn farmers vary by region. Corn-soybean rotations and continuous corn are the most widespread, 

they were practiced on 75 percent of the total non-irrigated acres. According to results of the analysis of 
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1996 ARMS data for U.S. corn farms and producers, a corn-legume rotation was used on almost 60 

percent of the 1996 corn acres (Christensen, 2002). Continuous corn was the rotation on 19 percent of 

the acreage. Use of a corn-legume rotation was highest in the Corn Belt, on 82 percent of the acreage, 

reflecting the common corn-soybean rotation used in this region. Most of the continuous corn 

production on nonirrigated acreage took place in the Corn Belt and Plains States, with 57 and 29 

percent of the total U.S. corn acreage, respectively, farmed in this pattern. The Corn Belt is the leading 

region for the corn-soybean-corn pattern on nonirrigated corn acreage (with 68 percent of the total U.S. 

nonirrigated corn acreage in this rotation).  

Studies show relatively high nitrate–nitrogen concentrations in subsurface drainage from row 

crops such as corn and soybeans; lower concentrations characterize perennial crops such as alfalfa or 

grass. Including legume crops in rotations has been shown to decrease nitrate losses (Randall et al., 

1997; Baker and Melvin, 1994; Weed and Kanwar, 1996). Legumes, such as soybeans and alfalfa, 

sequester nitrogen from the atmosphere through nitrogen fixation and are used to provide fixed-nitrogen 

as a substitute for fertilizer-nitrogen. Differences in fertilizer management between annual and perennial 

cropping systems also impact their relative nitrate–leaching potentials. Typically, perennial cropping 

systems receive less tillage and nitrogen fertilizer than do annual cropping systems. In Iowa, Baker and 

Melvin (1994) reported much lower nitrate-nitrogen concentrations for alfalfa than for corn or soybean. 

Weed and Kanwar (1996) found higher nitrate nitrogen losses from plots planted to continuous corn 

compared with a corn–soybean rotation in Iowa. Also, in Minnesota, Randall et al. (1997) found that 

nitrate-nitrogen concentrations in drainage water from alfalfa fields were 37 and 35 times lower than in 

drainage water from corn and soybean fields, respectively. In summary, these studies showed 

substantially higher nitrate nitrogen concentrations in row crops, especially continuous corn, compared 

with perennial crops. 

In addition to reduced amount of nitrogen fertilizer applied by farmers, rotation was shown to 

affect crop yields. In many studies corn yields were significantly higher under corn-soybean rotation 



9

than with continuous corn practice (Kanwar et al., 1997; Riedell et al., 1998). Therefore, one approach 

to decrease the use of nitrogen fertilizers is to adopt a fertilizer reducing farming practice, such as a 

crop rotation in which a legume crop (soybeans, alfalfa) is rotated with a non-legume crop (corn). 

Adoption of this sort of crop rotation can reduce the residual nitrogen in the soil through a reduction in 

the frequency and amount of nitrogen fertilizer applied on a field while increasing crop yields.  

Nitrogen credits from rotating corn with legume crops can range from about 45 kg per ha for soybeans 

to 170 kg per ha for alfalfa. In such cases this credit will suggest that no nitrogen fertilizer is required. 
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CHAPTER 2: TIMING OF FERTILIZER APPLICATIONS: ENVIRONMENTAL 
IMPLICATIONS 

2.1. Introduction 

The literature is replete with studies focused on the timing of nitrogen application. The general 

conclusion among researchers is that nitrogen fertilizer should be applied nearest to the time it is needed 

by the crop, i.e., side-dressed several weeks after corn emergence (Huang et al., 2000; Huang, Hewitt, 

and Shank, 1998; Fuglie and Bosch, 1995; Bosch, Cook, and Fuglie, 1995; Blackmer, 1995). For both 

agronomic and environmental reasons, spring post-emergent application of nitrogen fertilizer is 

frequently superior to fall and spring pre-emergent applications because less nitrogen is available for 

leaching, runoff, and denitrification (Huang and Uri, 1995; Huang, Hewitt, and Shank, 1998; Huang et 

al., 1998; Dinnes et al., 2002; Randall and Schmitt, 1998; Uri, 1998a; Blackmer, 1995). As a result, less 

loss of nitrogen occurs in the one to three months between application and nitrogen uptake. Still, fall 

nitrogen application remains a common practice used by farmers in the Midwest (Dinnes et al., 2002; 

Vetsch and Randall, 2004; Randall, Vetsch, and Huffman, 2003). There are several reasons given as to 

why farmers might apply nitrogen in fall: usually farmers have more time during the fall (the 

opportunity cost of time is lower in the fall), uncertain weather conditions in the spring may shorten the 

time available for fertilizer application during the growing season, increasing the risk of yield loss from 

inadequate nitrogen availability, potential for soil compaction following harvest is generally less, and, 

finally, fertilizer pricing patterns (lower in the fall than spring) tend to encourage fall fertilizer 

application rather than spring or growing season applications (Randall and Schmitt, 1998; Dinnes et al., 

2002; Huang, Hewitt, and Shank, 1998).  

The empirical literature addressing the timing of nitrogen fertilizer application has mainly 

focused on spring application and involved testing the hypothesis that excess fertilizer application at 

planting is used to insure against weather conditions that might not permit a later application 

(Feinerman, Choi, and Johnson, 1990; Huang, Hansen, and Uri, 1994; Huang, Hewitt, and Shank, 1998; 

Bontems and Thomas, 2000). All these studies show substantially higher fertilizer application rates 
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whenever farmers face weather uncertainty, with the magnitude of extra fertilizer application being 

higher for risk-averse farmers compared to risk-neutral ones. They also found that risk aversion leads to 

heavier reliance on early applications. 

Uncertain weather conditions result in uncertainty about available nitrogen, therefore some 

studies looked at the effect of nitrogen testing on fertilizer use (Fuglie and Bosch, 1995; Bosch, Cook, 

and Fuglie, 1995; Huang, Hewitt, and Shank, 1998; Babcock, 1992; Babcock and Blackmer, 1994; Wu 

and Babcock, 1998; Musser et al., 1995). These studies showed that temporal uncertainty regarding 

nitrogen levels at the time of fertilizer application can affect the optimal nitrogen fertilizer application 

rate and concluded that use of soil nitrogen testing to remove the temporal uncertainty of nitrate 

concentration in the soil can reduce average nitrogen fertilizer application rates. The study of Wu and 

Babcock (1998) extended farmers’ choice of nitrogen management practices to nitrogen testing, 

rotation, and tillage. They analyzed adoption decision of different crop management plans such as 

different combinations of these practices and its effects on fertilizer use and crop yields. They found 

that adoption of conservation tillage, rotation and nitrogen testing decreases nitrogen fertilizer rates. 

There are few studies that have looked at fall fertilizer application (Huang and Uri, 1995; 

Huang, Hewitt, and Shank, 1998; Huang et al., 2000). Huang and Uri (1995) present an analytical 

model for determining the optimal timing of fertilizer application in crop production. The model 

describes the factors that contribute to a farmer’s decision on determining the optimal application 

timing of nitrogen fertilizer by combining ex-ante and ex-post assessments of likely weather conditions 

after planting. Huang, Hewitt, and Shank (1998) use the model proposed by Huang and Uri (1995) to 

calculate compliance costs of timing nitrogen applications. Finally, Huang et al. (2000) exploit the 

same model to propose insurance that might be used to promote adoption of growing-season only 

fertilizer application. The model used in all these studies considers fall and spring fertilizer applications. 

However, it does not account for the role that amount of fertilizer applied in fall plays on farmers’ 
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decision of whether to fertilize in spring. Failure to account for relationship between fall and spring 

fertilizer applications results in inconsistent parameters estimates. 

The goals of this chapter are twofold. First, I seek to determine which factors influence the use 

of fall and early spring fertilizer applications in a modeling framework that recognizes the 

interrelationship between the two decisions. Second, I examine the implications of these practices on 

overall nitrogen use. One of the main hypotheses of the proposed model is that the decision-making for 

spring application depends not only on the fact that fall fertilizer application was used but also on the 

amount of fertilizer applied in fall. Therefore, the model includes the amount of fertilizer applied in fall 

as an explanatory variable for decision-making on spring fertilizer application1. I anticipate that a higher 

rate of nitrogen applied in fall will result in a lower probability of spring nitrogen application. Similarly, 

a higher the rate of nitrogen applied in fall should, all else equal, result in a lower rate of nitrogen 

applied in early spring. 

2.2. The Model 

A double-hurdle approach is employed for modeling individual farmer’s decision making on whether to 

apply fertilizer at certain time and how much to apply. Advantages of using a double hurdle model for 

adoption models with sample selection problems are discussed by Cooper and Keim (1996) and Uri 

(1998b). Recent Bayesian treatments of the approach can be found in Deb, Munkin, and Trivedi (2006), 

Koop, Poirier, and Tobias (2007), Munkin, and Trivedi (2003).  According to the logic of double-hurdle 

models, farmers must pass two separate hurdles in each season before they are observed to have 

positive fertilizer application levels. These two hurdles are the participation decision (whether to apply 

fertilizer during the season) and the consumption decision (how much to apply). For example, consider 

                                                 
1 An alternative specification of the model includes *

iF rather than *
FiY  as an explanatory variable for decision-

making on spring fertilizer application, as suggested by B.A. Babcock. Farmers’ decision on timing of fertilizer 
application is then modeled as a binary decision whether to apply fertilizer in fall or in spring.  
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fall fertilizer application. Following Koop, Poirier, and Tobias (2007), the participation decision of 

farmer i is assumed to be driven by a latent variable *
iF , with 

*
1 1 1 1 1i i i iF x zβ α ε= + +  

where 1ix  and 1iz  are exogenous factors (such as education, land characteristics and fertilizer prices) 

assumed to influence the participation decision, 1β  and 1α  are parameters to be estimated, and 1iε  

captures unobserved attributes influencing the farmer’s decision. The distinction between 1ix  and 1iz  is 

that the latter variables do not enter the subsequent spring variables and, hence, serve as instrumental 

variables. While the latent variable is not observed, we do observe the binary outcome iF , where: 

*

*

1, 0
0, 0.

i
i

i

F
F

F
⎧ >

= ⎨
≤⎩

 

The fall fertilizer consumption decision is similarly driven by a latent variable *
F iY , where 

*
2 2 2 2 2F i i i iY x zβ α ε= + + . 

However, fertilizer application levels are only observed if the farmer has passed the participation 

hurdle; i.e., one observes 

* * 0
0

F i i
Fi

Y if F
Y

otherwise
⎧ >

= ⎨
⎩

 

Turning to spring (pre-emergent) fertilizer applications, a similar double-hurdle model is considered.2 

The primary difference here is that it is assumed that the amount of fertilizer applied in the fall (i.e., 

FiY ) impacts both the spring participation and consumption decisions. Thus, the latent variable for the 

spring participation decision is given by:  

*
3 3 3 3i i F i iS x Yβ δ ε= + + , 

                                                 
2 In this analysis, I focus primarily on pre-plant fertilizer applications (i.e., both fall and early spring) because only 
a small portion of the farmers in data set applied fertilizer during the growing season. 
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with the observed participation outcome given by: 

*

*

1, 0
0, 0

i
i

i

S
S

S
⎧ >

= ⎨
≤⎩

 

Similarly, the latent variable governing the spring consumption decision is given by:  

*
4 4 4 4S i i Fi iY x Yβ δ ε= + + , 

with the observed level of spring fertilizer application given by 

* * 0
0 .

S i i
Si

Y if S
Y

otherwise
⎧ >

= ⎨
⎩

 

The error vector ( )1 2 3 4, , ,i i i i iε ε ε ε ε ′=i  is assumed to be normally distributed, allowing for possible 

correlations among the unobservables driving the fertilizer application decisions in both seasons; i.e., 

( )0,i Nε Σi ∼  with  

2
1 12 13 14

2
2 23 24

2
3 34

2
4

σ σ σ σ
σ σ σ

σ σ
σ

⎛ ⎞
⎜ ⎟
⎜ ⎟Σ = ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. 

These possible correlations imply that instrumental variables are required for identification of the 

parameters in the full model. These are labeled as 1 2and i iz z  in the fall fertilizer latent variable 

equations. 

2.3. Estimation Details 

I estimate the model derived in Section 2 using a Bayesian framework, combining data augmentation 

and Gibbs sampling procedures. In this section, I outline the derivation of the posterior distribution and 

the sampling routine, relegating details of the sampler to an appendix. 

2.3.1. Posterior Distribution 

The full system of equations to be estimated is given by: 
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(2.3.1)  

*
1 1 1 1 1

*
2 2 2 2 2

*
3 3 3 3

*
4 4 4 4

i i i i

F i i i i

i i F i i

S i i Fi i

F x z

Y x z

S x Y

Y x Y

β α ε

β α ε

β δ ε

β δ ε

= + +

= + +

= + +

= + +

 

Since *
iF  and *

iS  in the participation equations are unobservable, only the ratios 1

1

β
σ

, 1

1

α
σ

, 3

3

β
σ

,  and 

3

3

δ
σ

 are identified. One way to deal with identification problem is to restrict the error variances in 

participation equations to unity. McCulloch, Polson and Rossi (2000) provide the Bayesian analysis of 

the multinomial probit model, which incorporates the identification constraint by setting the one 

diagonal element of the covariance matrix equal to one. Nobile (2000) proposes way to generate 

Wishart and inverted Wishart random matrices conditional on one of the diagonal elements.  

However, since (3.3) contains two participation equations, it would require imposing two 

constraints on the diagonal elements of the covariance matrix:  1 1σ =  and 3 1σ = . Therefore, I follow 

McCulloch and Rossi (1994) approach where a proper prior is specified for the full set of parameters 

( ),θ Σ  and the marginal posterior of the identified parameters ( 1 1/β σ , 1 1/α σ , 3 3/β σ ,  and 

3 3/δ σ ) is reported. Thus, the prior on the identified parameters is the marginal prior of ( 1 1/β σ , 

1 1/α σ , 3 3/β σ ,  and 3 3/δ σ ) derived from the prior distribution specified for the full set of 

parameters ( ),θ Σ . The approach is taken because of the difficulties associated with a Bayesian 

analysis of covariance matrices with constraints.  

The four equations for each individual are stacked in the following manner: 
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*

*
*

*

*
4 1

i

F i
i

i

S i

F
Y

y
S
Y

×

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

, 

4 1

i

F i
i

i

S i

F
Y

y
S
Y

×

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

, 

1

2

3

4 4 1

i

i
i

i

i

ε
ε

ε
ε
ε

×

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

1 1

2 2

3

4 4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

i i

i i
i

i Fi

i Fi k

x z
x z

X
x Y

x Y
×

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

, and 

1

1

2

2

3

3

4

4 1k

β
α
β
α

θ
β
δ
β
δ

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

where k  is the total number of explanatory variables in all four equations. The system can be expressed 

then as  

( )

*

0, .
i i i

i

y X
N
θ ε

ε

= +

Σ∼
 

Finally, stacking over individuals yields: 

( )* , ny X N X Iθ ε θ= + ⊗Σ∼  

where 

*
1
*

* 2

*
4 1n n

y
y

y

y
×

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

1

2

4 1n n

y
y

y

y
×

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

1

2

4n n k

X
X

X

X
×

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

,

1

2

4 1n n

ε
ε

ε

ε
×

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

For computational simplicity, I use a data augmentation approach (Tanner and Wong, 1987; 

Albert and Chib, 1993), treating the latent data *y  as additional parameters of the model and, thus, 

making them a part of the posterior. Using Bayes Theorem, the augmented posterior is given by 
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){

* * *

* *

1

* *

1

, , , , , ,

, ,

, 1 0 0 0

n

i i i
i
n

i i i i
i

p y y p y y p y p

p p y y p y

p I F I F I F I F

θ θ θ θ

θ θ

θ

=

=

Σ ∝ Σ Σ Σ

∝ Σ Σ

⎡ ⎤∝ Σ = > + = ≤ ×⎣ ⎦

∏

∏

 

 

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) } ( )

*

* *

* *

1 0

1 0 0 0

1 0 , ,

i F i F i i F i

i i i i

i S i S i i S i

F I Y Y F I Y

I S I S I S I S

S I Y Y S I Y p y θ

⎡ ⎤× = + − = ×⎣ ⎦
⎡ ⎤= > + = ≤ ×⎣ ⎦

⎡ ⎤× = + − = Σ⎣ ⎦

 

where the second line follows from the assumed independence across individuals and I  denotes an 

indicator function taking on the value one if the statement in the parenthesis is true, and is zero 

otherwise. Conditional on the parameters of the model, the augmented likelihood can be expressed as  

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

4 1 1* * *2 2

1
14 * *2

12

1

* 1 *2

1

1, 2 exp
2

1exp
2

1exp
2

1exp .
2

n

n n

n
n n

nn

i i
i

nn

i i i i
i

p y I y X I y X

I y X I y X

e e

y X y X

θ π θ θ

θ β θ

θ θ

− −−

− −

− −

=

− −

=

⎛ ⎞′Σ = ⊗Σ − − ⊗Σ −⎜ ⎟
⎝ ⎠

⎛ ⎞′∝ Σ − − ⊗Σ −⎜ ⎟
⎝ ⎠

⎛ ⎞′∝ Σ − Σ⎜ ⎟
⎝ ⎠
⎛ ⎞′∝ Σ − − Σ −⎜ ⎟
⎝ ⎠

∑

∑

 

I choose an independent Normal prior distribution on θ : 

 ( )0 0
, ,N Vθ θθ μ∼  

where 
0θ

μ  and 
0

Vθ  denote the prior mean and covariance matrix of θ .  

Finally, I employ an Inverse Wishart prior distribution for the covariance matrix Σ , with 

( )1 1,W a b− −Σ ∼ , 

where a  is a positive definite matrix of size 4 × 4, and b is a scalar.  
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2.3.2. Posterior Simulation 

The conditional posteriors of both θ  and Σ  are proportional to the product of the likelihood and the 

respective prior distribution. As shown in Appendix A, the conditional posterior for θ  is Normal: 

( ) ( )1 1

*, ,p y N Vθ θθ μΣ =  

where 

(2.3.2) 
1 0

1 1 0 0

1
1 1

1

1 * 1

1
,

n

i i
i

n

i i
i

V X X V

V X y V

θ θ

θ θ θ θμ μ

−
− −

=

− −

=

⎛ ⎞′= Σ +⎜ ⎟
⎝ ⎠

⎛ ⎞′= Σ +⎜ ⎟
⎝ ⎠

∑

∑
 

and the conditional posterior distribution of Σ   is Inverse Wishart: 

(2.3.3) ( ) ( )
1

1 * * *

1
, ,

n

i i i i i
i

y W y X y X a n bθ θ θ
−

−

=

⎛ ⎞⎛ ⎞′Σ − − + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑∼ . 

Finally, the data augmentation step draws the values of latent variables *
iF , *

F iY , *
iS , and *

S iY  

conditional on the observed data iy  and parameters of the model θ  and Σ . The conditional posterior 

distributions of latent variables *
iF  and *

iS  are truncated normal: 

( ) ( )

( ) ( )
* **

* **

* 2

* 2

, , ,

, , , ,

i

i

i i F FR F

i i S SR S

F y TN

S y TN

β μ σ

β μ σ

Σ

Σ

∼

∼
 

where ( )* 2,RTN μ σ  denotes normal distribution with mean μ  and variance 2σ  truncated to the region 

R . For each individual i  these distributions are truncated to the regions:  

( ) [ )
( )

* 0, 1
,0 0

i
i

i

if F
R F

if F
⎧ ∞ =⎪= ⎨ −∞ =⎪⎩

 

and  ( ) [ )
( )

* 0, 1
,0 0

i
i

i

if S
R S

if S
⎧ ∞ =⎪= ⎨ −∞ =⎪⎩
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I follow Geweke (1991) to draw values from these truncated normal distributions. Each latent 

index is sampled from a univariate truncated normal density conditional on the current values of other 

latent indices using the inverse distribution function method.  

The latent variables *
F iY  and *

S iY  are drawn only for those observations for which 0iF =  and 

0iS = , respectively. Specifically, they are drawn from the normal distributions: 

( )* *
* 2, , ,F i i YF YF

Y y Nβ μ σΣ ∼  

( )* *
* 2, , ,S i i YS YS

Y y Nβ μ σΣ ∼ . 

Again, I sample each latent index from a univariate normal density conditional on the current values of 

other latent indices using the inverse distribution function method. In those cases in which 1iF =  or 

1iS = , then *
F i F iY Y=  and *

S i S iY Y= , respectively.3 

2.4. Data  

The data used in this paper comes from the Agricultural Resource Management Survey (ARMS) data 

survey for the year 2001, conducted by the Economic Research Service (ERS) and the National 

Agricultural Statistics Service (NASS) of the U.S. Department of Agriculture (USDA). This survey 

provides field-level information on the financial condition, production practices, resource use, and the 

economic well-being of U.S. farm households. The data used in our analysis comes from two phases in 

the data collection process, phases II and III.  

Phase II of the ARMS survey collects data associated with agricultural production practices, 

resource use, and variable costs of production for specific commodities and is conducted from 

September through December of the survey year. Phase III collects whole-farm finance variables, 

operator characteristics, and farm household information and is conducted from February through April, 

with the reference period being the previous year. Respondents sampled in Phase II are asked to 

                                                 
3 Generated data experiment was performed first to check the validity of the calculation code. 
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complete a Phase III report. Data from both phases provide the link between agricultural resource use 

and farm financial conditions. 

Farm operators included in the ARMS data are selected to ensure adequate coverage by state 

and region and to minimize reporting burden. Strata are based on state, the value of agricultural sales 

(farm size), and type of farm. NASS provides survey weights that account for these design features as 

well as for additional information available at the population level. Because of the complex design of 

the survey, all official estimates from the survey should be properly weighted. Therefore, NASS 

recommends the design-weighted approach as appropriate for many of the analyses for users of ARMS 

data (Panel to Review USDA's Agricultural Resource Management Survey, National Research Council, 

2007). Ignoring the survey design can result in bias estimates, and make it impossible to perform 

statistically valid inferences. However, including variables related to the design of the survey as 

predictor variables in a model results in a new, conditional model, for which the design is ignorable. In 

that case, model-based inference yields the appropriate conclusions for the sample, but not necessarily 

for the unweighted population. Therefore, to account for the survey design of the ARMS data, I 

included stratums in the set of explanatory variables. Particularly, state and farm size are included as 

predictive variables in the model. 

ARMS data on corn production for 2001 includes data for 19 states. However, only four main 

corn producing states were chosen for analysis in the current chapter: Illinois, Indiana, Iowa, and Ohio. 

Approximately 50% of all corn grown in the U.S. is from these four states. The resulting data set 

contains a total of 1726 observations. 

2.4.1. Definitions of Variables 

The definitions of variables used in estimation, as well as an indication as to which season’s equation 

they were used for, are given in Table 2.1. Mean values and standard deviations of all variables are 

given in Table 2.2. The dependent variables used in the estimating equations include dummy variables 

reflecting farmer’s participation decision on fall fertilizer application (i.e., iF = 1 if fall application was 
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used and = 0 otherwise), early spring fertilizer application (i.e., iS = 1 if early spring application was 

used and = 0 otherwise), and the nitrogen fertilizer application rates in fall and early spring measured in 

pounds per acre. As can be seen from the Table 2.2, about 18% of the sample applied fertilizer in the 

fall and 72% applied in the spring. Not reported is the fact that 13% of the sample applied fertilizer in 

both spring and fall. 

The independent variables consist of farm and operator characteristics, cropping history, and 

soil quality determinants. The set of variables governing the farmer’s decision regarding fall fertilizer 

application is the same as the set used to explain the amount of nitrogen fertilizer applied in fall. 

Similarly, the set of variables governing the farmer’s participation decision regarding early spring 

fertilizer application is the same as those allowed to impact the amount of nitrogen fertilizer applied in 

early spring.  

An operator characteristic included is formal schooling. I hypothesize that more educated 

farmers are likely to be more aware of the negative environmental consequences of fall fertilizer 

application, so they are more likely to apply nitrogen in the spring rather than in the fall. The discrete 

education variable takes value of “1” if the farm operator had some college education and “0” 

otherwise. Total acreage operated by the farmer was included as an indicator of size of operation. 

The amount of fertilizer applied is typically determined after “credit” is given for the amount of 

nutrients available from the soil, the previous legume crop, and livestock manure applied. Once the 

needed amount of fertilizer is estimated, management decisions can be made about the fertilizer 

application method and timing. Therefore, dummy variables for whether the field received manure and 

whether corn was rotated with a legume crop are included in the model. Giving appropriate nitrogen 

credits to animal manure applications is recommended to avoid overapplication of nitrogen fertilizer. 

Therefore, farmers who apply manure and rotate corn with a legume crop are expected to reduce the 

amount of nitrogen applied and have lower probability of fall fertilizer application.   
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To capture the yield differences among fields and farms, the variable “Land Capability Class” 

was used. The Land Capability Classification indicates the suitability of soils for most kinds of field 

crops. Land is evaluated on the basis of the range of potential crops, productivity, ease of management 

and risk of degradation. Capability classes are designated by the numbers 1 through 8. The numbers 

indicate progressively greater limitations and narrower choices for agricultural production. A dummy 

variable was created that takes the value of one if the capability class is 1 or 2, and is zero otherwise. I 

expect farmers to use more of nitrogen on the land with higher productivity as marginal return on 

nitrogen will be higher.  

As noted above, for identification purposes, it is necessary to include instrumental variables 

(denoted by 1 2 and i iz z ) into the fall participation and consumption latent variables (i.e., * *and i FiF Y , 

respectively). The opportunity cost of labor is significantly higher during the late spring and growing 

season than during the fall (Huang, Hewitt, and Shank, 1998; Randall and Schmitt, 1998; Dinnes et al., 

2002). Therefore, the off-farm employment of the farmer can be used as an instrumental variable 

specific to fall fertilizer application. The variable OFF-FARM represents the number of days worked 

off farm. Working off-farm leaves less time for a farmer to work in the field, particularly during pre-

planting and the planting season when a lot of work needs to be done in a short period of time. Working 

off-farm therefore increases a farmer’s risk of not being able to finish everything on time and increases 

the opportunity cost of time for a farmer during the planting season. As a result, a farmer who works 

off-farm is hypothesized to apply fertilizer in the fall. Thus, I expect a positive sign for off-farm 

employment parameter in the fall fertilizer application equation. 

The number of days available to complete the application of fertilizer is also an important 

consideration in deciding on the timing of fertilizer application (Iowa State University Extension, 

2007a; Rotz and Harrigan, 2004; Dillon, 1999). States report the number of days each week that soil 

and moisture conditions are suitable for fieldwork. This data also captures climatic and weather 

differences among sites that affect farmers’ decision making regarding the timing of fertilizer 
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application (Fletcher and Featherstone, 1987; Feinerman, Choi, and Johnson, 1990; Kurkalova, Kling, 

and Zhao, 2006; Wu et al., 2004). Estimates of the number of suitable fieldwork days are based on 

weekly records. The spring data covers the usual corn planting dates of mid-April to mid-May. The fall 

data covers the period of mid-September to the end of October. The values represent the median 

number of days reported each week and provide a second instrument for use in the fall fertilizer 

decision equations. Finally, to capture the differences across the states that are not reflected by the 

independent variables, state dummies are introduced into each equation of the model. 

2.5. Results 

For each of the specifications, 25,000 draws from the posterior distribution were obtained. The first 

5,000 were discarded as a burn-in, and the remaining 20,000 were used for analysis4. Posterior means, 

standard deviations, and probabilities of being positive for each of the parameters of interest are given 

in Table 3a and 3b, covering the fall and spring application decisions, respectively. 

Several important results emerge from Tables 2.3a and 2.3b. First, the posterior means and 

standard deviations on the off-farm employment variable in Table 2.3a suggest that the opportunity cost 

of farmers’ time in spring plays a significant role in their decision-making regarding the timing of 

fertilizer application. Working off –farm leaves farmers with fewer days for field work during the 

planting season so farmers who work off-farm have a higher probability of fall fertilizer application 

than those who are not employed off- farm. Second, the amount of fertilizer applied in the fall was 

found to be crucial in the decision making process concerning spring nitrogen application, impacting 

both the decision as to whether to apply nitrogen in spring and the amount of spring application. This 

indicated in Table 2.3b by the largely negative posterior distribution (i.e., small values for 

( )Pr 0 | y⋅ > ) for the parameters associated with fall nitrogen application in both of the spring fertilizer 

equations. It appears that, all else equal, farmers who apply higher rates of nitrogen in the fall have a 

                                                 
4 The model diagnostics was utilized to inspect the performance of the posterior simulators.  First, plots of lagged 
autocorrelations were examined to check how quickly chain mixes. Second, posterior simulators for different 
starting values were plotted. Figure 2.7 presents results of model diagnostics on only for a subset of parameters.  
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lower probability of applying nitrogen in the spring. On average, for every pound of additional fertilizer 

applied in the fall, about 2.5 pounds less fertilizer is applied in early spring. 

Other variables included in the model also generally perform as expected. The manure and 

rotation variables affect both whether and how much nitrogen is applied in both seasons. Specifically, 

manure application and rotating corn with a legume crop tend to decrease the probability of fall 

application and reduce the amount of nitrogen applied. The manure coefficient is negative (with 

( )Pr 0 | y⋅ >  = 0.15) suggesting that farmers applying manure apply less fertilizer. Rotating corn with a 

legume crop is also found to reduce the total nitrogen applied, a result that is consistent with Wu and 

Babcock (1998). Similar impacts arise for the spring fertilizer equations in Table 2.3b. 

Field acreage and fieldwork days are also found to affect farmers’ decisions regarding nitrogen 

application. Larger farms, requiring more time to finish planting and fertilizer application in the spring, 

are more likely to employ fall fertilizer and reduce their spring fertilizer application levels. Additional 

work days during the fall are found to increase the probability of fall fertilizer applications and the 

amount of fertilizer applied. Similar impacts arise during the spring season. 

The performance of soil characteristics is generally consistent with agronomic information and 

expectations. Lands with a high land capability are found to increasingly rely upon fertilizer in both the 

spring and fall seasons. This result supports the importance of land quality in the choice of farming 

practice (Lichtenberg, 2004; Caswell and Zilberman, 1985).  

2.6. Environmental Implications 

In this section, I consider the implications of the estimated model, both in terms of the appropriate 

credits for rotation and manure use and in terms of the potential impacts of policies to reduce the  

nitrogen use. 

2.6.1. Rotation and manure credits 

The agronomic fertilizer recommendations indicate that nitrogen application rates should be adjusted to 

account for nitrogen supplied by previous legume crops and manure application (USDA, ERS, 2001). 
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When managed correctly, nutrients from previous legume crops and in livestock manure can be a 

valuable resource of nitrogen, therefore, crediting for rotation and manure nutrients can be an important 

factor in deciding nitrogen application rates (Blackmer, 2000; Sharpley et al., 1998). To examine this 

issue, the estimation results are used in this subsection to compute the amount of rotation and manure 

credits by farmers in different seasons: fall and early spring. 

2.6.1.1. Calculation Details 

The rotation nitrogen credit refers to the difference between the amount of nitrogen applied for 

continuous corn and nitrogen applied for corn following soybean all else equal. Likewise, the manure 

nitrogen credit refers to the difference between the amount of nitrogen applied without manure 

application and nitrogen applied with manure application.  

The estimated model is used to estimate the distributions of the implied credits being used for 

rotation and applied manure. Specifically, the rotation credit is given by 1 0
r r r
i i iY YΔ = − , where 1

r
iY  

corresponds to the amount of nitrogen applied for a corn-corn rotation for observation i  and 0
r
iY  

corresponds to the amount of nitrogen applied for corn-soybean rotation. Similarly, the manure credit is 

given by 1 0
m m m
i i iY YΔ = − , where 1

m
iY  corresponds to amount of nitrogen applied with manure not 

applied and 0
m
iY  corresponds to amount of nitrogen applied with manure applied. Credit distributions 

then are analyzed to check whether the timing of fertilizer application affects rotation and manure 

credits and if there is a significant difference between r
fallΔ  and r

springΔ , and between m
fallΔ  and m

springΔ .  

The literature on the treatment effect focuses primarily on methods for estimating various 

average returns to the receipt of treatment. Particularly, it focuses on: (1) the average treatment effect 

( )ATE , and (2) the effect of treatment on treated  ( )TT  (Li, Poirier, and Tobias, 2004; Tobias, 2006). 

For the current research, ATE  is defined as the expected nitrogen credit for rotation and 

manure by a randomly chosen farmer.  



29

A conceptually different parameter is the credit by farmers who actually used fall or spring 

fertilizer applications. In this case Δ  represents the average credit for rotation and manure by farmers 

who actually used fall (spring) fertilizer application and is referred to in the literature as the Treatment 

on the Treated ( )TT .  

Given notation and assuming that covariates ix  are known, I characterize the following out-of-

sample sampling distributions, given θ  and ix , as follows: 

(2.6.1) ( ), ip xθΔ  

(2.6.2) ( ), , 1i ip x FθΔ = . 

The first density in (2.6.1) gives the distribution of nitrogen credit for rotation and manure by the 

farmer selected at random, whereas the density in (2.6.2) gives the nitrogen credit for those farmers 

who actually used fall (spring) fertilizer application. 

Expressions (2.6.1) and (2.6.2) for  ATE  and TT  predictive distributions are all conditioned 

on the parameters θ . A proper Bayesian approach to characterize the posterior predictive distributions 

of the nitrogen credit is to integrate out the parameters θ  from the densities (2.6.1) and (2.6.2) by 

averaging them over the posterior distribution of those parameters. Formally,  

( ) ( ) ( ) ( ): , , ,i iATE p x Data p x Data p Data d
θ

θ θ θΔ = Δ∫  

( ) ( ) ( ) ( ): , 1, , , 1,i i i iTT p x F Data p x F Data p Data d
θ

θ θ θΔ = = Δ =∫ ,  

where TT is shown for those farmers who applied fertilizer in fall with similar predictives for those 

farmers who applied it in early spring.  

To calculate these predictives I use the following approximations (Poirier and Tobias, 2003; 

Tobias, 2006): 
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( ) ( ) ( )
1

1ˆ: , , , ,
K

k
i i

k
ATE p x Data p x Data

K
θ θ

=

Δ = Δ =∑  

and ( ) ( ) ( )
1

1ˆ: , 1, , , 1, ,
K

k
i i i i

k
TT p x F Data p x F Data

K
θ θ

=

Δ = = Δ = =∑  

where kθ  denotes draws from the posterior distribution of  θ  and K  denotes number of such 

parameter draws. 

2.6.1.2. Results  

There are several guides provided by University Extension illustrating how to estimate the crop 

available nutrients from previous legume crops and manure application (University of Nebraska-

Lincoln Extension, 2006; Iowa State University Extension, 2003, 2007b). According to these guides, 

the nitrogen credit given for soybeans should be 40-50 lb/acre. The amount of the total nitrogen 

available from manure depends on the species and whether the manure is liquid or solid. The 

recommended manure credits for average manure application rates in Illinois, Indiana, Iowa, and Ohio 

in year 2001 were 110-130 lb/acre.  

Two types of distributions for manure and rotation credits were constructed: (1) the farmer’s 

expected credits in fall and spring independently on his/her timing of fertilizer application ( )ATE  and 

(2) credits by farmer who actually used fall or spring fertilizer application ( )TT . Specifically, Figures 

2.1 and 2.2 present the ATE  and TT  posterior predictive distributions of rotation credits for spring 

applied nitrogen. From Figure 1, ATE  predictive is centered near 26 (specifically, its posterior mean is 

26.43), indicating that on average all farmers (independently on their timing of fertilizer application) 

apply 26 lb/acre more of nitrogen for continuous corn than for corn following soybean. The TT 

predictive in Figure 2.2 is shifted to the right compared to ATE  distribution and, consequently, has 

higher mean and median values. Specifically, the posterior mean of TT  is approximately 31 lb/acre, 
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suggesting that on average farmers who applied fertilizer in spring used 31 lb/acre more of nitrogen for 

continuous corn than for corn following soybean. 

Next, for the purpose of comparing rotation credits by farmers in fall and early spring, both TT 

posterior predictives for fall and spring are used. Specifically, Figure 2.3 presents two  TT posterior 

predictives for rotation credit in fall and spring. As can be seen from Figure 2.3, rotation credits in 

spring are higher than in the fall.  The posterior mean of TT for rotation credit calculated for ARMS 

2001 data is 31.23 lb/acre in spring as opposed to 25.37 lb/acre for fall. Both of these values are lower 

than the level of rotation credit that farmers are recommended to use by Extension: 40-50 lb/acre. 

However, these values also suggest that applying nitrogen in spring increases the level of rotation credit 

relative to the fall nitrogen application.  

Figure 2.1. Rotation Credit for Spring Application ATE 
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Figure 1: Rotation credit for spring application ATE

 

Figure 2.2. Rotation Credit for Spring Application TT 
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Figure 2: Rotation credit for spring application TT
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Figure 2.3. Rotation Credit for Fall and Spring Applications. 
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Previous attempts to quantify the soybean nitrogen credit showed that it varied with year and 

soil characteristics. Gentry et al. (2001) obtained the value of 27 kg/ha ( )30.3 /lb acre≈  of nitrogen 

credit in Illinois. In the research of Bundy, Andraski, and Wolkowski (1993) estimated nitrogen credits 

that differed significantly among locations and years and ranged from 22 to 210 kg/ha 

( )24.7 -317.7 /lb acre≈ .  The findings here are broadly consistent with the previous results.  

 The posterior probability that on average farmers who apply fertilizer in spring credit at least 50 

lb/acre of nitrogen for rotation is also calculated: 

( )Pr 50 , 1, 0.24ix x S DataΔ > = = = .    

This result says that on average 76 percent of farmers do not follow recommendations and credit less 

than 50 lb/acre of nitrogen for rotation. 

Next, the posterior predictive distribution was constructed for the “total” rotation credit. The 

“total” rotation credit is referred to the sum of rotation credit in fall and spring r
fallΔ  and r

springΔ . 

Specifically, Figure 2.3a presents the posterior predictive distribution of rotation credits for total 

applied nitrogen. From Figure 2.3a, predictive is centered near 36 indicating that on average all farmers 

in total apply 38 lb/acre more of nitrogen for continuous corn than for corn following soybean. 
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Figure 2.3a. Total Rotation Credit  
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Figure 3a: Total Rotation Credit

 

Analogous results are obtained for manure credits. Figure 2.4 presents  TT posterior 

predictives for manure credit in fall and spring. The posterior mean of TT for manure nitrogen credit 

calculated for ARMS 2001 data is 48.74 lb/acre for spring fertilizer application. This result indicates 

that on average farmers who apply fertilizer in spring use 48.74 lb/acre less of nitrogen when they apply 

manure than without manure application. The posterior mean of TT for manure nitrogen credit 

calculated for fall is 39.64 lb/acre. Again, both estimated TT values for fall and spring are lower than 

the level of manure credit that is recommended to farmers by Extension: 110-130 lb/acre; and the 

posterior mean of TT for manure credit calculated for ARMS data for spring is higher than in fall.  

Figure 2.4. Manure Credit TT for Fall and Spring Applications 
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University of Minnesota Extension (2008) calculated that, on average, manure nitrogen would 

be approximately 75 pounds per manured corn acre for typical small dairies farm in southeastern 

Minnesota. The findings here are consistent with their estimates. 

The posterior probability that on average farmers who apply fertilizer in spring credit at least 

100 lb/acre of nitrogen for manure application is also calculated.    

This result says that on average 92 percent of farmers do not follow recommendations and credit less 

than 100 lb/acre of nitrogen for manure application. 

Next, the posterior predictive distribution was constructed for the “total” manure credit. The 

“total” rotation credit is referred to the sum of manure credits in fall and spring m
fallΔ  and m

springΔ . 

Specifically, Figure 2.4a presents the posterior predictive distribution of manure credit for total applied 

nitrogen. From Figure 2.4a, predictive is centered near 53 indicating that on average all farmers in total 

apply 38 lb/acre more of nitrogen without manure than with manure application. 

Figure 2.4a. Total Manure Credit  
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Figure 4a: Total Manure Credit

 

Results for both rotation and manure credits suggest that applying nitrogen in spring increases 

the level of credit. Therefore, a policy that would induce farmers to switch from fall to spring fertilizer 

application might be expected to reduce the amount of fertilizer applied since farmers credit more 

nitrogen for rotating corn with legume crop and manure application. 
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2.6.2. Demand for Nitrogen Fertilizer 

One way of reducing nitrogen application in corn production is imposing tax on the nitrogen. This 

chapter examines the potential implications of adopting a tax strategy as the policy choice to reduce the 

level of nitrogen application. There are several studies that focused primarily on estimating the fertilizer 

demand and corresponding fertilizer price elasticities (Griliches, 1958 and 1959; Roberts and Heady, 

1982; Roberts, 1986; Vroomen and Larson, 1991; Denbaly and Vroomen, 1993). Some other studies 

investigated the effect of agro-environmental policies on agricultural production and fertilizer input 

demand (Onianwa et al., 1992; Abler and Shortle, 1995, Hertel and Stiegert, 2000; Hertel, Stiegert, and 

Vroomen, 1996).   

Vroomen and Larson (1991) obtained estimates of -0.23 and -0.02 as the minimum own-price 

elasticities of demand for nitrogen and phosphorous in the Corn Belt area, and estimates of  

-0.85 and -1.27 as the maximum own-price elasticities of demand for both nutrients, respectively. 

Similarly, in their study of nutrient plant elasticities of demand for corn production in the United States, 

Denbaly and Vroomen (1993) obtained estimates of -0.23, -0.02, and -0.16 as the short-run elasticities 

of demand for nitrogen, phosphorous, and potassium in corn production, and -0.48, -0.30, and -0.27 for 

the long-run price elasticities of demand for these plant nutrients, respectively. Onianwa, Alderfer, and 

Levins (1992) estimated the elasticity of demand for nitrogen in corn production in Minnesota to be -

0.35. Hertel, Stiegert, and Vroomen (1996) obtained the estimate of  -0.22 for own-price elasticity of 

demand for nitrogen in corn production in Indiana.  

The calculation of the elasticity of demand for sample selection models is different from linear 

models (Yen, 2005). If the probability of a positive observation for each dependent variable yi is 

( ) ( )0i iP y zα′> = Φ  with the observed i iy x β′= , and 0iy =  otherwise, then the elasticity of the 

unconditional mean with respect to jx  is  
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( )iju vu
i i ii i ij j

ij

e z x
x
β

λ α ρ σ α
β

⎧ ⎫⎪ ⎪′= + +⎨ ⎬′⎪ ⎪⎩ ⎭
 where 

( )
( )

φ
λ

⋅
=
Φ ⋅

, 

and the elasticity of the conditional mean with respect to jx  is  

( ) ( )ijc vu
i i ii i i ij j

ij

e z z x
x
β

λ α ρ σ λ α α
β

⎧ ⎫⎪ ⎪⎡ ⎤′ ′= + + −⎨ ⎬⎣ ⎦′⎪ ⎪⎩ ⎭
. 

Then, the elasticity of the conditional mean of demand for fall applied nitrogen by the average farmer 

from the ARMS 2001 data is calculated  to be 0.63ce = −  with standard error of 0.22. Corresponding 

probability of elasticity value being positive ( )Pr 0 | y⋅ > =0.15.  

One of the main assumptions of this model is that the amount of nitrogen applied in the fall 

affects the probability of spring nitrogen application and the amount of nitrogen applied in spring as 

well. Therefore, the effect of the price of fall nitrogen on demand for nitrogen in spring is also 

calculated to see the substitution effect between nitrogen applied in fall and spring. Then, the total 

demand for nitrogen in both periods is calculated.  

There are two scenarios to investigate how demand for nitrogen fertilizer is affected by the 

price of nitrogen. The first scenario looks at how the change in the price for fall applied nitrogen affects 

the quantity of nitrogen demanded in the fall, in the spring, and in total. Keeping the price of nitrogen in 

spring constant, the quantity of fertilizer applied in fall and amount of fertilizer applied in spring are 

calculated for different prices of fall applied nitrogen. Figure 2.5 shows the demand for nitrogen in fall, 

demand for nitrogen in spring, and the total demand for nitrogen in both periods. As expected, the 

higher the price of fall applied nitrogen, the less of nitrogen fertilizer is demanded. Moreover, due to 

substitution effects, the higher price of nitrogen in the fall makes farmers apply more nitrogen in the 

spring. As a result, the total demand for nitrogen in both periods is more inelastic relative to the demand 

for fall nitrogen, and is calculated to be 0.39ce = − . 
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Figure 2.5. Demand for Nitrogen Fertilizer 
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Figure 5: Demand for Nitrogen Fertilizer
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The second scenario examines how the changes in both prices for fall and spring applied 

nitrogen affect the demand for nitrogen in each period and total demand for nitrogen fertilizer. In this 

scenario both prices for fall applied nitrogen and spring applied nitrogen change simultaneously and the 

amount of nitrogen applied in both periods is calculated. Figure 2.6 presents quantities of nitrogen 

demanded in fall, in spring, and the total demand for nitrogen in both periods. As expected, the higher 

the price of nitrogen, the less is the quantity of nitrogen applied. Moreover, the total demand for 

nitrogen becomes more inelastic and is calculated to be 0.26ce = − .   

Figure 2.6. Demand for Nitrogen Fertilizer 
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Figure 6: Demand for Nitrogen Fertilizer
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In both scenarios the total demand for nitrogen fertilizer was found to be quite inelastic, with estimated 

elasticities equal to -0.39 and -0.26, respectively. These results suggest that the 10 percent tax imposed 
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on fall nitrogen will reduce the total amount of nitrogen applied by 3.9 percent, and a 10 percent tax on 

nitrogen fertilizer (fall and spring) will result in 2.6 percent reduction in the total amount of nitrogen 

demanded. These results support previous findings by Vroomen and Larson (1991), Denbaly and 

Vroomen (1993), Onianwa et al. (1992), Hertel, Stiegert, and Vroomen (2000) who obtained low 

estimates for own-price elasticity of demand for nitrogen in corn production. 

 Control of nonpoint source pollution often requires regulation of inputs. Wu and Tanaka 

(2005) found that a fertilizer-tax is much more cost effective than other easement policies (incentive 

payments for conservation tillage, for corn-soybeans rotations, and for cropland retirement) and 

advocated its use for reducing nitrogen loads from Upper Mississippi River Basin to the Gulf of 

Mexico. Estimated elasticities in this chapter indicate that a tax on nitrogen fertilizer would reduce 

nitrogen fertilizer use in corn production. However, the effectiveness of a tax in reducing nitrogen 

fertilizer use is limited due to elasticity being less than one.  

2.7. Conclusions 

Spring fertilizer application can reduce the amount of nitrogen leaving a field via leaching, runoff, and 

denitrification. All this makes spring nitrogen application more desirable from an environmental point 

of view. This chapter proposes a model to estimate the financial incentives for switching from fall to 

spring nitrogen application. The model accounts for the effect that fall fertilizer application has on 

spring fertilizer application. As expected, the results show that a higher rate of nitrogen applied in fall 

lowers probability of spring nitrogen application. Moreover, a higher rate of nitrogen applied in the fall 

yields a lower rate of nitrogen applied in early spring.  

Agronomists have long recommended that, nitrogen application rates should be adjusted to 

account for nitrogen supplied by previous legume crops and manure. If farmers do not credit other 

sources of nitrogen, they may apply more nitrogen than can be used by crops and increase the amount 

of nitrogen leaving the field. Results of this research show that, on average, farmers credit less nitrogen 

available from manure and previous legume crops than is recommended by University Extension. 
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Furthermore, those farmers who apply fertilizer in the fall credit less nitrogen from rotation and manure 

than those farmers who apply fertilizer in spring. 

Calculated own-price elasticities of the total demand for nitrogen are equal to -0.39 and  

-0.26 and suggest that imposing tax on the nitrogen fertilizer works as a tool for reducing the amount of 

fertilizer applied in the fall. These results suggest that the 10 percent tax imposed on fall nitrogen will 

reduce the total amount of nitrogen applied approximately by 3.9 percent, and a 10 percent tax on 

nitrogen fertilizer (fall and spring) will result in 2.6 percent reduction in the total amount of nitrogen 

demanded.  
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Appendices : 

Appendix 1: Conditional posterior distribution 

Using the augmented posterior from section 3.1, the conditional posterior for the parameter vector θ  is 

given by:     
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⎜ ⎟⎜ ⎟⎢ ⎥∝ Σ − − − + Σ
⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎝ ⎠

∑  
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( ) ( )
1

1 * * *

1
, ,

n

i i i i i
i

y W y X y X a n bθ θ θ
−

−

=

⎛ ⎞⎛ ⎞′Σ − − + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑∼  

Appendix 2: The posterior simulator 

The posterior simulator employs a Gibbs sampling procedure, drawing in turn from the conditional 

posterior distribution for , ,θ Σ  and *y : 

Step 0: Set ( ) ( ) ( ) ( ) ( )0 0 0 0 0* * * * *
i i F i i S i i F i i S iy F Y S Y F Y S Y

′ ′⎡ ⎤ ⎡ ⎤= = ⎣ ⎦⎢ ⎥⎣ ⎦
 and 

0

1 0 0 0
0 1 0 0

400
0 0 1 0
0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟Σ = ×
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

Step 1: Draw 1θ  from the distribution given by (2.3.2) conditional on ( )0*
iy  and 0Σ . 

Step 2: Draw the elements of the covariance matrix 1Σ  conditional on 1θ  and ( )0*
iy  using (2.3.3). 

Step 3:  Data augmentation step. Draw the latent data ( ) ( ) ( ) ( ) ( )1 1 1 1 1* * * * *
i i Fi i Siy F Y S Y

′⎡ ⎤= ⎢ ⎥⎣ ⎦
 conditional 

on 1θ  and 1Σ : 

a. Compute the errors 2iε , 3iε  and 4iε  given 1θ  from Step 1 and latent data ( )0*
F iY ,  ( )0*

iS , and 

( )0*
S iY ; 

b. Draw ( )1*
iF  from 
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[ ) ( )( ( ) ( ) )1 1 11 1 1 1 2 1 1 1
1 1 1 1 11 1 1 1 11 10, ,i iTN x zβ α σ ε σ σ σ

− −

− − − − − −∞
′ ′+ + Σ − Σ  if  0iF ≥  

where ij−Σ  denotes the variance-covariance matrix Σ  with row i  and column j  removed,  iσ−  

denotes the thi column of the variance-covariance matrix Σ  with thi element removed, and, 

finally, iε−  denotes the error vector with  the thi  element removed. 

( ] ( )( ( ) ( ) )1 1 11 1 1 1 2 1 1 1
1 1 1 1 11 1 1 1 11 1,0 ,i iTN x zβ α σ ε σ σ σ

− −

− − − − − −−∞
′ ′+ + Σ − Σ  if  0iF <  

c. Compute the errors 1iε  given 1θ  from Step 1 and latent data ( )1*
iF ; 

d. Draw ( )1*
F iY  from 

( )( ( ) ( ) )1 1 11 1 1 1 1 2 1 1 1
2 2 2 2 2 22 2 2 2 22 2,i iN x zβ α σ ε σ σ σ

− −

− − − − − −
′ ′+ + Σ − Σ         if  ( )1* 0iF <  

  and set *
F i F iY Y=  if  ( )1* 0iF ≥  

e. Compute the errors 2iε  given 1θ  from Step 1 and latent data ( )1*
F iY ; 

f. Draw ( )1*
iS  from 

[ ) ( ) ( ) ( )( )1 1 11 1 1 1 1 1 2 1 1 1
3 3 3 3 33 3 3 3 33 30, ,i F iTN x Yβ δ σ ε σ σ σ

− −

− − − − − −∞
′ ′+ + Σ − Σ   if  0iS ≥  

( ] ( ) ( ) ( )( )1 1 11 1 1 1 1 1 2 1 1 1
3 3 3 3 33 3 3 3 33 3,0 ,i F iTN x Yβ δ σ ε σ σ σ

− −

− − − − − −−∞
′ ′+ + Σ − Σ     if  0iS <   

g. Compute the errors 3iε  given 1θ  from Step 1 and latent data ( )1*
iS  and ( )1*

F iY ; 

h. Draw ( )1*
S iY  from 

( ) ( ) ( )( )1 1 11 1 1 1 1 1 2 1 1 1
4 4 4 4 44 4 4 4 44 4,i F iN x Yβ δ σ ε σ σ σ

− −

− − − − − −
′ ′+ + Σ − Σ     if  ( )1* 0iS <  
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 and set  *
S i S iY Y=  if  ( )1* 0iS ≥ . 

i. Compute the errors 4iε  given 1θ  from Step 1 and latent data ( )1*
S iY  and ( )1*

F iY ; 

Step 4: Repeat steps 1-3 K  times. 

The Gibbs algorithm generates a sample of size K  from conditional posterior distribution of each of 

the parameters of the model. The first 0K  draws are discarded as burn-in, the remaining 1 0K K K= −  

draws are used for the analysis. 
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Table 2.1. Definitions of Variables 

Variables Definition Fall Spring
Fall fertilizer application Fertilizer applied in fall (1=yes, 0=no) X  

Early spring fertilizer 
application Fertilizer applied in early spring (1=yes, 0=no)  X 

Nitrogen application rate in fall Amount of nitrogen applied (pounds) X  
Nitrogen application rate in 

spring Amount of nitrogen applied (pounds)  X 

College education 
Farm operator had some college education 
(1=yes, 0=no) X X 

Off-farm employment Farmer worked off-farm (1=yes, 0=no) X  
Field acreage Number of acres in farm X X 

Land capability class Land capability class is 1 or 2 (1=yes, 0=no) X X 
Manure applied Manure was applied in field (1=yes, 0=no)  X X 

Rotation 
Corn was rotated with a legume crop (1=yes, 
0=no) X X 

Fieldwork days in fall Number of days available for a fieldwork X  
Fieldwork days in spring Number of days available for a fieldwork  X 

Fertilizer price in fall Fertilizer price in fall ($/lb) X  
Fertilizer price in spring Fertilizer price in spring ($/lb)  X 

 
 
Table 2.2. Descriptive Statistics of Variables 

Units Mean St. dev. 
Fall fertilizer application Number 0.18 0.012 

Early spring fertilizer application Number 0.72 0.026 
Nitrogen application rate in fall Lb/acre 83.46 3.64 

Nitrogen application rate in spring Lb/acre 132.5 2.86 
College education Number 0.40 0.015 

Off-farm employment Number 0.60 0.046 
Field acreage Acres 68.45 1.425 

Land capability class Number 0.74 0.04 
Manure applied Number 0.18 0.004 

Rotation Number 0.73 0.012 
Fieldwork days in fall Days 20.64 2.125 

Fieldwork days in spring Days 16.48 1.98 
Fertilizer price in fall $ per lb 0.14 0.01 

Fertilizer price in spring $ per lb 0.199 0.02 
Dummy for IL Number 0.28 0.09 
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Dummy for IN Number 0.28 0.07 
Dummy for OH Number 0.27 0.08 

 
 
Table 2.3a. Results: Posterior Means, Standard Deviations, and Probabilities of Being 
Positive. 

Fall Application 
 

Fall Application 
Rate 

Variables Mean Std. ( )Pr 0 y⋅ > Mean Std. ( )Pr 0 y⋅ >

Intercept 2.21 0.68 1 3.54 1.21 1 
College education -0.023 0.01 0.13 -2.4 1.35 0.22 

Off-farm employment 0.28 0.01 0.90    
Field acreage 0.92 0.05 0.97 0.30 0.061 0.94 

Land capability class 0.54 0.23 0.94 0.35 0.22 0.84 
Manure applied -0.024 0.008 0.13 -34.45 2.58 0.15 

Rotation -0.15 0.04 0.07 -20.03 1.47 0.01 
Fieldwork days in fall 0.19 0.03 0.99 1.64 0.86 0.97 
Fertilizer price in fall -0.43 0.29 0.25 -1.47 1.36 0.22 

Dummy for IL 0.03 0.04 0.85 0.001 0.001 0.84 
Dummy for IN -0.24 0.10 0.17 -0.02 0.003 0.08 
Dummy for OH -0.22 0.10 0.09 -0.023 0.015 0.06 

 
 
Table 2.3b. Results: Posterior Means, Standard Deviations, and Probabilities of Being 
Positive. 

Spring Application 
 

Spring Application 
Rate 

Variables Mean Std. ( )Pr 0 y⋅ > Mean Std. ( )Pr 0 y⋅ >

Intercept 3.27 0.68 1 1.64 0.46 1 
College education 0.04 0.02 0.82 1.32 0.90 0.84 

Field acreage 0.05 0.007 0.93 -0.96 0.59 0.14 
Land capability class 0.73 0.58 0.95 0.44 0.44 0.96 

Manure applied -0.03 0.004 0.11 -46.32 0.62 0.08 
Rotation -0.14 0.03 0.09 -28.79 2.92 0.11 

Fieldwork days in spring 0.15 0.42 0.97 0.68 0.66 0.93 
Fertilizer price in spring -0.013 0.009 0.17 -1.32 0.90 0.13 

Nitrogen application rate in fall -0.23 0. 09 0.11 -2.48 1.68 0.09 
Dummy for IL -0.13 0.07 0.17 -0.14 0.10 0.13 
Dummy for IN -0.21 0.09 0.05 -0.32 0.12 0.08 
Dummy for OH -0.16 0.11 0.13 -0.18 0.06 0.09 
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Figure 2.7. Model Diagnostics. 
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CHAPTER 3: DECISIONS ON TIMING OF FERTILIZER APPLICATION AND TILLAGE 

SYSTEM: IMPLICATIONS FOR NITROGEN PRODUCTIVITY. 

3.1. Introduction 

Nonpoint loss of nitrogen from fields to water resources is not caused by any single factor. Rather, it is 

caused by a combination of factors. Choices of tillage and nitrogen management (type of tillage, timing 

of tillage, timing of nitrogen application, and nitrogen rate) have a significant effect on nitrogen use by 

corn and nitrate movement through the soil. A tillage survey sponsored by the Iowa Resource 

Management Partnership committee in 1999 indicated the need for an integrated approach in the 

adoption of best management practices for nutrients, tillage, and crop residue (Al-Kaisi and Hanna, 

2005). Such integration of tillage and nitrogen management is important for both water quality and soil 

productivity.  

One reason for considering tillage and fertilizer application decisions jointly is that nitrogen 

fertilizer management can be greatly affected by changes in tillage. For example, conservation tillage 

systems may increase nitrogen immobilization and its losses from leaching, denitrification, and 

volatilization (Gilliam and Hoyt, 1987; Wood and Edwards, 1992). Since no-till soils usually have 

higher water content than soils managed by conventional tillage, the leaching of nitrogen through 

macropores becomes a bigger problem (Priebe and Blackmer, 1989). Moreover, research shows that 

soil moisture and temperature (cooler and wetter soil under conservation tillage) impact both soil 

nitrogen dynamics (Torbert and Wood, 1992) and early corn growth (Beyaert, Schott, and White, 2002; 

Al-Kaisi and Hanna, 2005; Halvorson et al., 2006). Overall, immobilization of nitrogen and its losses 

from leaching, denitrification, and volatilization associated with use of conservation tillage result in 

lower efficiency of applied nitrogen.  

One concern regarding these interactions between tillage and nitrogen efficacy is that, in order 

to offset the negative effects of nitrogen deficiency on crop yields, farmers might increase the amount 

of nitrogen fertilizer applied compared to conventional tillage. Indeed, in their study Randall and 
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Bandel (1991) showed that in conservation tillage fertilizer nitrogen rates have been increased by as 

much as 25% to prevent yield limitations from nitrogen immobilization. Moreover, higher nitrogen 

application rates associated with conservation tillage might increase farmer’s risk of not being able to 

finish everything on time and drive up opportunity cost of time for farmer during planting season. As a 

result, farmers utilizing conservation tillage are more inclined to apply fertilizer in fall. Indeed, results 

of the 1996 Agricultural Resource Management Survey (ARMS) data for U.S. corn farms and 

producers highlighted how tillage systems seemed to influence different nutrient management practices, 

including the timing of fertilizer application (Christensen, 2002). It was found that a greater share of 

acres in no-till than in conventional tillage received nitrogen in the fall prior to planting, with a smaller 

percentage in the spring at or before planting, but the influence of these soil tillage systems on fertilizer 

nitrogen rates in corn production was not determined. 

Several studies have considered the issues related to adoption of practices aimed at reducing 

nutrient losses from agricultural fields and improving water quality, including conservation tillage 

(Korsching et al., 1983; Kurkalova, Kling, and Zhao, 2006; Wu and Babcock, 1998; Wu et al., 2004; 

Uri, 1998; Fuglie, 1999). Researchers and policy makers are concerned about their low adoption rate. 

Khanna, Epouhe, and Hornbaker (1999) reported low adoption rates (around 20%) for soil testing and 

variable-rate application in Wisconsin, Iowa, and Illinois. One explanation of low adoption rate is that 

farmers fear that these practices may reduce their yields. There are several factors that may affect 

farmers’ perception that adoption of a particular practice may lead to a decrease in yield.  For example, 

if additional field operations are required, this activity may delay other farm activities that must be 

completed within that time of year. 

There are, however, three important issues related to fall fertilizer and tillage choice that have 

not been addressed in the past. First, the overall question of fall fertilizer application (relative to spring) 

has received little attention in empirical literature. Past work concentrates on analysis of split fertilizer 

application where farmers’ apply nitrogen fertilizer in the spring before planting vs. during the growing 
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season. Second, the previous literature on this topic has not considered the possible relationship 

between a farmers’ decisions regarding tillage choice and fall fertilizer application. Since factors 

affecting the farmer’s decision regarding tillage may influence their decision regarding fall fertilizer 

applications, both decisions should be considered jointly. Econometrically, recognition of the 

interrelationships between decisions on timing of fertilizer application and tillage choice is important 

for obtaining consistent and more efficient estimates of parameters of the output equation. Third, the 

previous literature on this topic mostly focused on the effect of timing of fertilizer application on 

nitrogen application levels but there is lack of empirical evidence on effect of timing of fertilizer 

application on subsequent yields.  

The goals of this chapter are twofold. First, I seek to determine which factors influence the use 

of fall fertilizer application and conservation tillage in a modeling framework that recognizes the 

interrelationship between the two decisions. Second, I examine the implications of adopting these two 

practices for nitrogen productivity, which is measured by crop yield.  One of the main hypothesis of the 

proposed model is that the decisions on the timing of fertilizer application and tillage choice are 

interrelated. Conservation tillage is associated with fall fertilizer application. Therefore, I expect 

positive sign on the correlation term between unobservables in fertilizer timing and tillage choice 

equations.  

The chapter proceeds as follows. The next section describes previous research on the topic, 

followed by a section 3 that describes the model used for individual farmer’s decision making and the 

associated Bayesian posterior simulator. The data used in the analysis are described in section 5, 

followed by a description of empirical results in 6th and 7th sections. Finally, the chapter concludes with 

a summary of findings. 

3.2. Previous Literature 

There is a considerable agronomic literature concerning the timing of fertilizer application, the 
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 choice of tillage practices, and their subsequent impact on yields. For example, with regards to fall 

fertilizer application, the 2–3 months between application and nitrogen uptake create the potential for 

significant nitrogen losses. These nitrogen losses, in turn, create conditions where nitrogen becomes 

deficient and crop productivity declines. Several studies have evaluated the effect of the time of 

nitrogen application on nitrate losses and crop yields (Randall and Mulla, 2001; Buzicky et al., 1983; 

Randall, Vetsch, and Huffman, 2003; Randall and Vetch, 2003; Randall and Vetch, 2005; Al-Kaisi and 

Licht, 2004). In each case, nitrogen was applied in the fall (early November) and spring (late April) for 

continuous corn to determine the effect of nitrogen application time and rate on nitrate losses and corn 

yields. The results show that, averaged over  the period of study, corn yields were significantly reduced 

with fall fertilizer application and nitrogen losses were greatest for fall applied nitrogen. 

There is also a substantial literature on the adoption and efficacy of conservation tillage. 

Researchers consistently recommend conservation tillage systems following soybeans in Corn Belt 

region because previous research has shown them to be economically, environmentally, and 

agronomically effective (Vetsch and Randall, 2004; Uri, Atwood, and Sanabria, 1999; Uri, 1998). 

Leaving the residue in the field is beneficial for reducing erosion, improving the soil physical condition, 

maintaining lower soil temperatures during hot weather, improving the micro-environment above the 

soil, and for improving the soil water infiltration and holding capacity.  

At the same time, minimum tillage slows early corn growth and reduces grain yields in some 

cases due to wet and cold, early season soil conditions (Beyaert, Schott, and White, 2002; Al-Kaisi, 

Hanna, 2005; Halvorson et al., 2006). Moreover, spring, preplant application of nitrogen fertilizer to 

corn under a no tillage system is often considered undesirable by growers because of delayed planting, 

which can result in yield reductions. Randall and Hill (2000) showed that strip tillage for corn after 

soybean in the northern Corn Belt is preferred in the fall immediately after soybean harvest due to more 

favorable and drier soil conditions, over-winter settling of soil in the tilled area, and a warmer and drier 

seedbed ideal for early planting in the spring.  
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A number of agronomic studies have looked at the combined effects of tillage systems and 

nitrogen application timing on overall crop production. Vetsch and Randall (2004) examined the effects 

of four tillage systems and two nitrogen application times on corn production following soybean. Al-

Kaisi and Licht (2004) evaluated the effects of strip tillage and fertilizer application timing on corn 

yield and nitrate movement through the soil. Both studies showed the corn yields were significantly 

lower when fertilizers were applied in the fall rather than the spring application. At the same time, 

tillage choice had no significant effect on corn yields in study by Al-Kaisi and Licht. Vetsch and 

Randall found no significant interaction between the tillage system and the application time of nitrogen, 

indicating that the effect of fall versus spring application on corn production was the same for all tillage 

systems.  

In general, past studies of practice adoption focused on either a single practice or on a set of 

practices considered as a single unit. In each case, independently defined univariate logit or probit 

models were used to examine the adoption decision for each practice or set of new practices. This 

ignores the possibility that practices may be substitutes or compliments. When practices are 

interrelated, as might be case of tillage choice and timing of fertilizer application, single equation 

models are inefficient because they ignore the correlation in the error terms of equations explaining the 

adoption decisions for these practices. Additionally, they ignore the possibility that a decision to adopt a 

particular practice may be conditional on the adoption of another complementary practice. Dorfman 

(1996) applied multinomial probit for modeling adoption decisions by farmers facing two technologies. 

His model allows for full analysis of the interaction between decisions to adopt these two technologies, 

however, his model does not consider implications of adoption decisions on production process.  

In most empirical research on the adoption of site-specific practices and their implications for 

the nitrogen productivity, two-stage methods were used. Khanna (2001) investigated the sequential 

decision to adopt two site-specific practices, soil testing and variable rate technology, and the impact of 

adoption on nitrogen productivity. The two-stage procedure gives consistent estimates of the model 
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coefficients (Maddala, 1983, p. 244), but the estimates of variances of the coefficients may be 

inconsistent because predicted values of endogenous variables are used in the second stage of the 

estimation. Bayesian framework used in this research eliminates these problems and results in 

consistent estimates. 

3.3. The Model 

There are three components to the model analyzed in this chapter: (1) a model of fall fertilizer 

application; (2) a model of conservation tillage adoption; and (3) a model of crop yields as a function of 

these first two decisions. In this section, I discuss each component of the model in turn, starting with the 

decision of fall fertilizer usage. Section 4 then provides the estimation procedures employed. 

As in chapter 2, a double-hurdle approach is employed for modeling individual farmer’s 

decision making on whether to apply fertilizer in fall and how much to apply. It is an extension to 

Heckman’s selectivity model, which explicitly models non-participation and potential participation 

apart from the quantity decision. Advantages of using double hurdle model for adoption models with 

sample selection problems are discussed by Cooper and Keim (1996) and Uri (1998). Recent Bayesian 

treatments of the approach can be found in Deb, Munkin, and Trivedi (2006), Koop et al. (2007), 

Munkin, and Trivedi (2003).   

According to the logic of the double-hurdle models, farmers must pass two separate hurdles 

before they are observed with a positive level of fertilizer application. These two hurdles are the 

outcome of farmer’s choice: a participation decision (whether to apply fertilizer in the fall) and a 

consumption decision (how much to apply). Following Koop et al. (2007) the participation decision of 

farmer i is assumed to be driven by a latent variable *
iF , with 

*
1 1 1 1 1i i i iF x zβ α ε= + +  

where 1ix  and 1iz  are exogenous factors (such as education, land characteristics and fertilizer prices) 

assumed to influence the participation decision, 1 1and β α  are parameter vectors to be estimated, and 
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1iε  captures unobserved attributes influencing the farmer’s decision. The distinction between 1ix  and 

1iz  is that the latter variables do not enter the subsequent tillage and yield variables and, hence, serve as 

instrumental variables. While the latent variable is not observed, we do observe the binary outcome iF , 

where: 

*

*

1, 0
0, 0

i
i

i

F
F

F
⎧ >

= ⎨
≤⎩

 

The fall fertilizer consumption decision is similarly driven by a latent variable *
F iY , where 

*
2 2 2 2 2F i i i iY x zβ α ε= + + . 

However, fertilizer application levels are only observed if the farmer has passed the participation 

hurdle; i.e., we observe 

* * 0
0 otherwise

F i i
Fi

Y if F
Y

⎧ >
= ⎨
⎩

 

The decision as to whether or not to adopt conservation tillage is modeled using a standard probit 

framework. Specifically,  *
iT  is the latent variable for choice of tillage system. The binary observed 

outcome variable iT  is obtained from latent variable associated with choice of conservation tillage in 

the following way: 

*

*

1, 0
0, 0

i
i

i

T
T

T
⎧ >

= ⎨
≤⎩

 where    *
3 3 3 3 3i i i iT x zβ α ε= + +      

Crop yields are modeled as a censored regression, dependent on the both the amount of fall fertilizer 

usage and the tillage decision. Formally, *
iY  is a latent variable governing the crop yield. Yield function 

is truncated at zero and is given by: 

* *

*

, 0
0, 0
i i

i
i

Y Y
Y

Y
⎧ >

= ⎨
≤⎩

where  *
4 4 4i i Fi i iY x Y Tβ δ η ε= + + +  
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The error vector ( )1 2 3 4, , ,i i i i iε ε ε ε ε ′=i  is assumed to be normally distributed, allowing for possible 

correlations among the unobservables driving the fertilizer application, tillage choice decisions, and 

yield; i.e., ( )0,i Nε Σi ∼  with  

2
1 12 13 14

2
2 23 24

2
3 34

2
4

σ σ σ σ
σ σ σ

σ σ
σ

⎛ ⎞
⎜ ⎟
⎜ ⎟Σ = ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. 

These possible correlations imply that instrumental variables are required for identification of the 

parameters in the full model. These are labeled as 1 2and i iz z  in the fall fertilizer latent variable 

equations and 3iz  in tillage choice equation. 

Decisions on timing of fertilizer application and on choice of tillage system are assumed to be 

made by farmer simultaneously. Results of both decisions are assumed to affect farm yield so the model 

to investigate this problem falls into the category of treatment effect models. The binary decision on 

choice of conservation tillage is included in the mean function of outcome so the coefficient of it is 

referred to as the causal impact of the tillage treatment on Y . However, for fall fertilizer application 

only the amount of fertilizer applied is assumed to affect yield and included into the yield equation. 

Correlation in the unobservable factors influencing both the fall fertilizer and tillage decisions are 

captured by correlation coefficients 13 23andσ σ  . The sign of these coefficients show the nature of the 

relationship between two practices. It is anticipated that no-till soils receive more nitrogen in the fall 

prior to planting when compared to conventional tillage. Therefore, I expect to observe positive 

correlation between tillage system and fall fertilizer application, i.e. 13 0σ > . Also, farmers increase 

fertilizer nitrogen rates with conservation tillage to prevent yield reductions from nitrogen 

immobilization, leaching, and denitrification. Therefore, I expect to observe positive correlation 

between tillage system and fall fertilizer application rate, i.e. 23 0σ > , as well.  
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3.4. Estimation Details 

I estimate the model derived in Section 3 using a Bayesian framework, combining data augmentation 

and Gibbs sampling procedures. In this section, an outline of the derivation of the posterior distribution  

and the sampling routine is presented, relegating details of the sampler to an appendix. 

3.4.1. Posterior Distribution 

The full system of equations to be estimated is given by: 

 (3.4.1) 

*
1 1 1 1 1

*
2 2 2 2 2

*
3 3 3 3 3

*
4 4 4

i i i i

F i i i i

i i i i

i i F i i i

F x z

Y x z

T x z

Y x Y T

β α ε

β α ε

β α ε

β δ η ε

= + +

= + +

= + +

= + + +

 

Since *
iF  and *

iT  in the participation equations are unobservable, only the ratios 1

1

β
σ

, 1

1

α
σ

, 3

3

β
σ

,  and 

3

3

α
σ

 are identified. One way to deal with identification problem is to restrict the error variances in 

participation equations to unity. McCulloch, Polson and Rossi (2000) provide the Bayesian analysis of 

the multinomial probit model, which incorporates the identification constraint by setting the one 

diagonal element of the covariance matrix equal to one. Nobile (2000) proposes way to generate 

Wishart and inverted Wishart random matrices conditional on one of the diagonal elements.  

However, since (3.4.1) contains two participation equations, it would require imposing two 

constraints on the diagonal elements of the covariance matrix:  1 1σ =  and 3 1σ = . Therefore, I follow 

McCulloch and Rossi (1994) approach where a proper prior is specified for the full set of parameters 

( ),θ Σ  and the marginal posterior distributions of the identified parameters ( 1 1/β σ , 1 1/α σ , 3 3/β σ ,  

and 3 3/α σ ) are reported. Thus, the prior on the identified parameters is the marginal prior of ( 1 1/β σ , 

1 1/α σ , 3 3/β σ ,  and 3 3/α σ ) derived from the prior distribution specified for the full set of 
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parameters ( ),θ Σ . The approach is taken because of the difficulties associated with a Bayesian 

analysis of covariance matrices with multiple constraints.  

The four equations for each individual are stacked in the following manner: 

*

*
*

*

*
4 1

i

F i
i

i

i

F
Y

y
T
Y

×

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

, 

4 1

i

F i
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i

i

F
Y

y
T
Y

×

⎛ ⎞
⎜ ⎟
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⎝ ⎠
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1

2

3

4 4 1
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i

e
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where k  is the total number of explanatory variables in all four equations. The system can be expressed 

then as  

( )

*

0, .
i i i

i

y X
N
θ ε

ε

= +

Σ∼
 

The observations can then be stacked together as  

( )* , ny X N X Iθ ε θ= + ⊗Σ∼  

where 

*
1
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For computational simplicity, I use data augmentation approach (Tanner and Wong, 1987; 

Albert and Chib, 1993) and treat the latent data *y  as additional parameters of the model, thus making 

it a part of posterior. Using Bayes Theorem, the augmented posterior is given by 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) } ( )

* * *

* *

1

* *

1

*

* *

* *

, , , , , ,

, ,

, 1 0 0 0

1 0

1 0 0 0

1 0 ,

n

i i i
i
n

i i i i
i

i F i F i i F i

i i i i

i i i i i

p y y p y y p y p

p p y y p y

p I F I F I F I F

F I Y Y F I Y

I T I T I T I T

Y I Y Y Y I Y p y

θ θ θ θ

θ θ

θ

θ

=

=

Σ ∝ Σ Σ Σ

∝ Σ Σ

⎡ ⎤∝ Σ = > + = ≤ ×⎣ ⎦

⎡ ⎤× = + − = ×⎣ ⎦
⎡ ⎤= > + = ≤ ×⎣ ⎦

⎡ ⎤× = + − = Σ⎣ ⎦

∏

∏  

where the second line follows from the assumed independence across individuals and I  denotes an 

indicator function taking on the value one if the statement in the parenthesis is true, and is zero 

otherwise. Conditional on the parameters of the model, the augmented likelihood can be expressed as  
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I choose independent Normal prior distribution on θ : 

 ( )0 0
,N Vθ θθ μ∼  

where 
0θ

μ  and 
0

Vθ  denote the prior mean and covariance matrix of θ .  

 I place an Inverse Wishart distribution as a prior for covariance matrix Σ : 
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( )1 1,W a b− −Σ ∼ , 

where a  is a positive definite matrix of size 4 × 4, and b is a scalar.  

3.4.2. Posterior Simulation 

The conditional posteriors of both θ  and Σ  are proportional to the product of likelihood and the 

respective prior distribution. As shown in Appendix A, the conditional posterior for θ  is also Normal: 

( ) ( )1 1

*, ,p y N Vθ θθ μΣ =  

where 

(3.4.2) 
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and the conditional posterior distribution of Σ   is Inverse Wishart: 

(3.4.3) ( ) ( )
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1 * *

1
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i i i i
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W y X y X a n bθ θ
−

−

=
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∑∼ . 

Finally, the data augmentation step draws the values of latent variables *
iT , *

F iY , *
iT , and *

iY  

conditional on the observed data iy  and parameters of the model θ  and Σ . The distributions of latent 

variables *
iF  and *

iT  are truncated normal: 

( ) ( )

( ) ( )
* **

* **

* 2

* 2

, , ,

, , ,

i

i

i i F FR F

i i T TR T

F y TN
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θ μ σ

θ μ σ

Σ

Σ

∼

∼
 

where ( )* 2,RTN μ σ  denotes normal distribution with mean μ  and variance 2σ  truncated to the region 

R . For each individual i  these distributions are truncated to the regions:  
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I follow Geweke (1991) to draw values from these truncated normal distributions. I sample 

each latent index from a univariate truncated normal density conditional on the current values of other 

latent indices using the inverse distribution function method. The latent variables *
F iY  and *

iY  are drawn 

only for those observations for which 0iF =  and 0iY = , respectively. *
F iY  is drawn from the normal 

distribution: 

( )* *
* 2, , , ,

F F
F i i Y Y

Y y Nθ μ σΣ ∼  

and *
iY  is drawn from the truncated normal distribution: 

( ) ( )* **
* 2, , ,

i
i i Y YR Y

Y y TNθ μ σΣ ∼  

where ( ) [ )
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,0 0

i
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if Y
R Y
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⎧ ∞ >⎪= ⎨ −∞ =⎪⎩

 

Again, I sample each latent index from a univariate normal density and univariate truncated normal 

density conditional on the current values of other latent indices using the inverse distribution function 

method. In case if 1iF =  or 0iY >  then *
F i F iY Y=  and *

i iY Y= , respectively. 

3.5. Data  

The data used in this paper comes from the Agricultural Resource Management Survey (ARMS) data 

survey for the year 2001, conducted by the Economic Research Service (ERS) and the National 

Agricultural Statistics Service (NASS) of the U.S. Department of Agriculture (USDA). This survey 

provides field-level information on the financial condition, production practices, resource use, and the 
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economic well-being of U.S. farm households. The data used in our analysis comes from two phases in 

the data collection process, phases II and III.  

Phase II of the ARMS survey collects data associated with agricultural production practices, 

resource use, and variable costs of production for specific commodities and is conducted from 

September through December of the survey year. Phase III collects whole-farm finance variables, 

operator characteristics, and farm household information and is conducted from February through April, 

with the reference period being the previous year. Respondents sampled in Phase II are asked to 

complete a Phase III report. Data from both phases provide the link between agricultural resource use 

and farm financial conditions. 

Farm operators included in the ARMS data are selected to ensure adequate coverage by state 

and region and to minimize reporting burden. Strata are based on state, the value of agricultural sales 

(farm size), and type of farm. NASS provides survey weights that account for these design features as 

well as for additional information available at the population level. Because of the complex design of 

the survey, all official estimates from the survey should be properly weighted. Therefore, NASS 

recommends the design-weighted approach as appropriate for many of the analyses for users of ARMS 

data (Panel to Review USDA's Agricultural Resource Management Survey, National Research Council, 

2007). Ignoring the survey design can result in bias estimates, and make it impossible to perform 

statistically valid inferences. However, by including variables related to the design of the survey as 

predictor variables in a model results in a new, conditional model, for which the design is ignorable. In 

that case, model-based inference yields the appropriate conclusions for the sample, but not necessarily 

for the unweighted population. Therefore, to account for the survey design of the ARMS data, I 

included stratums in the set of explanatory variables. Particularly, state and farm size are included as 

predictive variables in the model. 

ARMS data on corn production for 2001 includes data for 19 states. However, only four main 

corn producing states were chosen for analysis in the current chapter: Illinois, Indiana, Iowa, and Ohio. 
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Approximately 50% of all corn grown in the U.S. is from these four states. The resulting data set 

contains a total of 1726 observations. 

3.5.1. Definitions of Variables  

Table 3.1 provides a definition of variables used in estimation with indication as to which equation they 

were used in. Mean values and standard deviations of all variables are given in Table 3.2. The 

dependent variables include dummy variables reflecting farmer’s decision on fall fertilizer application 

(which takes value of 1 if fall application was used and 0 otherwise), the nitrogen fertilizer application 

rates in fall measured in pounds per acre, tillage choice (takes value of 1 if conservation tillage was 

used and 0 otherwise), and the crop yield measured in bushels per acre. 

Independent variables consist of farm and operator characteristics, cropping history, and soil 

quality determinants The set of variables governing the farmer’s decision regarding fall fertilizer 

application is the same as the set used to explain the amount of nitrogen fertilizer applied in fall (though 

I allow the associated parameters to differ). For model parameters identification purposes it is necessary 

to include instrumental variables into equations related to farmer’s decision making on fall fertilizer 

application and tillage choice.  

The opportunity cost of labor is significantly higher during the late spring and growing season 

than during the fall (Huang, Hewitt, and Shank, 1998; Randall and Schmitt, 1998; Dinnes et al., 2002). 

The variable OFF-FARM represents number of days worked off farm. Working off-farm leaves less 

time to farmer to work in the field particularly during pre-planting and planting season when a lot of 

work should be done in a short period of time. It increases farmer’s risk of not being able to finish 

everything on time and increases opportunity cost of time for farmer during planting season As a result, 

a farmer who works off-farm is hypothesized to apply fertilizer in the fall. Thus, I expect a positive sign 

for off-farm employment parameter in the fall fertilizer application equation. As for adoption of 

conservation tillage, off-farm employment is expected to be positively related to the adoption rate. 

Conservation tillage is found to either decrease crop yield or increase the variability in crop yield 
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(Beyaert, Schott, and White 2002; Al-Kaisi, Hanna, 2005; Halvorson et al., 2006). Since farmers 

working off-farm have more diversified sources of income, they fear yield losses or higher variability in 

yields less compared to those who are not employed off-farm. Thus, I expect a positive sign for off-

farm employment parameter in tillage choice equation. 

Operator characteristics include formal schooling. More educated farmers are more aware of 

negative environmental consequences of fall fertilizer application and conventional tillage so they are 

more likely to apply nitrogen in the spring rather than in the fall and choose conservation tillage.  

Education is assumed to affect yield, with more educated farmers assumed to have more knowledge that 

helps them to achieve higher yields. A discrete variable describes farmer’s education and takes value of 

“1” if the farm operator had some college education and “0”. Total acreage operated by the farmer was 

included as an indicator of size of operation. The bigger is the farm the more time it requires to 

complete a series of machinery operations, such as tillage, fertilizer application, and planting. 

Therefore, I expect positive signs for total acreage parameter in the fall fertilizer application and tillage 

choice equations.  

The amount of fertilizer is typically determined after “credit” is given to the amount of 

nutrients available from the soil, the previous legume crop, and livestock manure. Once the needed 

amount of fertilizer is estimated, management decisions can be made about the fertilizer application 

method and timing. Therefore, dummy variables for whether the field received manure and whether 

corn was rotated with a legume crop are included in the model. Giving appropriate nitrogen credits to 

rotating corn with legume crop and animal manure applications is recommended to avoid 

overapplication of fertilizer nitrogen. Therefore, farmers who apply manure and rotate corn with 

legume crops are expected to reduce amount of nitrogen applied and, consequently, have lower 

probability of fall fertilizer application.   

To capture the yield differences among fields and farms, the variable “Land Capability Class” 

was used. The Land Capability Classification indicates the suitability of soils for most kinds of field 
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crops. Land is evaluated on the basis of the range of potential crops, productivity, ease of management 

and risk of degradation. Capability classes are designated by the numbers 1 through 8. The numbers 

indicate progressively greater limitations and narrower choices for practical use. A dummy variable was 

created that takes the value of one if the capability class is 1 or 2, and is zero otherwise. I expect 

farmers to use more of nitrogen on the land with higher productivity as marginal return on nitrogen will 

be higher on that land.  

The number of days available to complete fertilizer application is also an important 

consideration in deciding on the timing of fertilizer application (Iowa State University Extension, 

2007a; Rotz and Harrigan, 2004; Dillon, 1999). States report the number of days each week that soil 

and moisture conditions are suitable for fieldwork. These data also captures climatic and weather 

differences among sites that affect farmers’ decision making regarding the timing of fertilizer 

application (Fletcher and Featherstone, 1987; Feinerman, Choi, and Johnson, 1990; Kurkalova, Kling, 

and Zhao, 2006; Wu et al., 2004). Estimates of the number of suitable fieldwork days are based on 

weekly records. The spring data covers the usual corn planting dates of mid-April to mid-May. The fall 

data covers the period of mid-September to the end of October. Climatic variables also found to affect 

choice of tillage and yield (Kurkalova, Kling, and Zhao, 2006; Uri, 1998). Hence, the number of 

suitable fieldwork days in spring is used as an explanatory variable in tillage and yield equations.  

Slope of a field is added as an independent variable in tillage equation as it is found to affect a 

choice of tillage system (Kurkalova, Kling, and Zhao, 2006; Wu et al., 2004; Wu and Babcock, 1998; 

Uri, 1998). Land slope represents the amount of inclination of the soil surface from the horizontal 

expressed as the vertical distance divided by the horizontal distance. The higher the slope the bigger the 

chance of soil erosion when it is used for crop production. As a result, I expect a positive sign for the 

slope parameter in the tillage equation. Ownership of a land is also found to affect choice of tillage 

(Kurkalova, Kling, and Zhao, 2006; Wu and Babcock, 1998; Soule, Tegene, and Wiebe, 2000; 

Lichtenberg, 2007) and, therefore, is included as an explanatory variable in tillage equation. Finally, to 
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capture the differences across the states that are not reflected by the independent variables, state 

dummies are introduced into each equation of the model.  

3.6. Results 

For each of the specifications, 25,000 draws from the posterior distribution were obtained. The first 

5,000 were discarded as a burn-in, and the remaining 20,000 were used for analysis. Posterior means, 

standard deviations, and probabilities of being positive for each of the parameters of interest are given 

in Table 3.3a, 3.3b and 3.3c. 

Several important results emerge from Tables 3a, 3b, and 3c. First, the posterior means and 

standard deviations on the off-farm employment variable suggest that the opportunity cost of farmers’ 

time in spring plays a significant role in their decision-making regarding timing of fertilizer application 

and tillage choice. Working off –farm leaves farmers with fewer days for field work during planting 

season so farmers who work off-farm have a higher probability of fall fertilizer application than those 

who are not employed off- farm. Off-farm employment is also found to affect the adoption of 

conservation tillage. This result is consistent with previous findings by Kurkalova, Kling, and Zhao 

(2006) and Fuglie (1999) who found a higher adoption of conservation tillage by farmers working off-

farm. Second, the amount of fertilizer applied in fall was found to be crucial for crop yield. This 

indicated in Table 3.3b by the largely positive posterior distribution (i.e., high values for ( )Pr 0 | y⋅ > ) 

for the parameter associated with fall nitrogen application in yield equation. It appears that, all else 

equal, farmers who apply higher rate of nitrogen in fall have higher yields. Third, decisions on the 

timing of fertilizer application and tillage choice are interrelated. Conservation tillage is associated with 

the fall fertilizer application, the fact is indicated in Table 3.3c by the largely positive posterior 

distribution for the correlation coefficients between decisions on whether to apply in fall and amount of 

application fall nitrogen application, and tillage choice. 

Other variables included in the model also generally perform as expected. The manure and 

rotation variables affect both whether and how much nitrogen to apply in fall. Specifically, manure 
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application and crop rotation tend to decrease probability of fall application and reduce the amount of 

nitrogen applied. Manure coefficient is negative (with ( )Pr 0 | y⋅ >  = 0.12) suggesting that farmers 

applying manure apply less of fertilizer. Rotation with a legume crop is also found to reduce the total 

nitrogen applied, a result that is consistent with Wu and Babcock (1998). At the same time, manure and 

rotation were not found to affect the adoption of conservation tillage. 

Field acreage and fieldwork days are also found to affect farmers’ decisions regarding nitrogen 

application and choice of tillage practice. Larger farms, requiring more time to finish planting and 

fertilizing in the spring are more likely to employ fall fertilizer and choose conservation tillage. 

Additional work days during the fall are found to increase the probability of fall fertilizer applications 

and the amount of fertilizer applied. At the same time, additional work days during the spring are 

negatively correlated with adoption of conservation tillage. This result is consistent with agronomic 

science: the higher precipitation (less additional work days during the spring) limits crop production. 

College education has positive effect on adoption of conservation tillage. Similar results were 

obtained by Wu and Babcock (1998), Korsching et al. (1983). However, college education was found 

not to affect timing of fertilizer application and yield. 

The performance of soil characteristics is generally consistent with agronomic information. 

Lands with a high land capability are found to increasingly rely upon fertilizer in the fall and are more 

likely to use conservation tillage. This result supports the importance of land quality in the choice of 

farming practice (Lichtenberg, 2004; Kurkalova, Kling, and Zhao, 2006; Wu and Babcock, 1998; 

Soule, Tegene, and Wiebe, 2000).  

Slope is found to affect the adoption of conservation tillage. Conservation tillage occurs more 

frequently on sloped land since it helps to reduce soil losses due to soil erosion. The positive 

relationship between the slope and the probability of conservation tillage adoption is consistent with 

results of previous studies by Wu and Babcock (1998), Kurkalova, Kling, and Zhao (2006), and Uri 

(1998). 
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Tenancy is found to affect the adoption of conservation tillage. Conservation tillage is more 

frequently adopted by owners of the land. This result supports previous findings by Soule, Tegene, and 

Wiebe (2000), Lichtenberg (2007), Wu and Babcock (1998), and Wu et al. (2004).  

3.7. Environmental Implications 

In this section, I consider the implications of estimated model, both in terms of the appropriate credits 

for rotation and manure use and in terms of the potential impacts of policies to reduce the nitrogen use. 

3.7.1. Rotation and manure credits 

The agronomic fertilizer recommendations indicate that nitrogen application rates should be adjusted to 

account for nitrogen supplied by previous legume crops and manure application (USDA, ERS, 2001). 

When managed correctly, nutrients from previous legume crops and in livestock manure can be a 

valuable resource of nitrogen. Therefore, crediting for rotation and manure nutrients can be an 

important factor in deciding nitrogen application rates (Blackmer, 2000; Sharpley et al., 1998). If 

farmers do not credit these sources of nitrogen, they may end up applying more nitrogen than is 

agronomically necessary. To examine this issue, the estimation results are used in this subsection to 

compute the amount of rotation and manure credits by farmers in the fall. 

3.7.1.1. Calculation Details 

The rotation nitrogen credit refers to the difference between the amount of nitrogen applied for 

continuous corn and nitrogen applied for corn following soybean all else equal. Likewise, the manure 

nitrogen credit refers to the difference between the amount of nitrogen applied without manure 

application and nitrogen applied with manure application.  

The estimated model is used to estimate the distributions of implied credits being used for 

rotation and applied manure. Specifically, the rotation credit is given by 1 0
r r r
i i iY YΔ = − , where 1

r
iY  

corresponds to amount of nitrogen applied for a corn-corn rotation and 0
r
iY  corresponds to amount of 

nitrogen applied for corn-soybean rotation. Similarly, the manure credit is given by 1 0
m m m
i i iY YΔ = − , 
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where 1
m
iY  corresponds to amount of nitrogen applied with manure not applied and 0

m
iY  corresponds to 

amount of nitrogen applied with manure applied.  

Literature on the treatment effect focuses primarily on methods for estimating various average 

returns to the receipt of treatment. Particularly, it focuses on: (1) the average treatment effect ( )ATE , 

and (2) the effect of treatment on treated  ( )TT  (Li, Poirier, and Tobias, 2004; Tobias, 2006). 

For the current research, ATE  is defined as the expected nitrogen credit for rotation and 

manure by a randomly chosen farmer. Formally, 

( ) ( ) ( )1 0ATE X E X E Y Y X≡ Δ = − .  

A conceptually different parameter is the credit by farmers who actually used fall fertilizer 

applications. In this case Δ  represents the average credit for rotation and manure by farmers who 

actually used fall fertilizer application and is referred to in the literature as the Treatment on the Treated 

( )TT . Formally, 

( ) ( ) ( )1 0, 1 , 1 , 1 .TT X F E X F E Y Y X F= ≡ Δ = = − =  

Given notation and assuming that covariates ix  are known, I characterize the following out-of-

sample sampling distributions, given θ  and ix , as follows: 

(3.7.1) ( ), ip xθΔ  

(3.7.2) ( ), , 1i ip x FθΔ = . 

The first density in (3.7.1) gives the distribution of nitrogen credit for the farmer selected at random, 

whereas the density in (3.7.2) gives the nitrogen credit for those farmers who actually used fall fertilizer 

application. 

Expressions (3.7.1) and (3.7.2) for  ATE  and TT  predictive distributions are conditioned on 

the parameters θ . A proper Bayesian approach to characterize the posterior predictive distributions of 
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the nitrogen credit is to integrate out the parameters θ  from the densities (3.7.1) and (3.7.2) by 

averaging them over the posterior distribution of those parameters. Formally,  

( ) ( ) ( ) ( ): , , ,i iATE p x Data p x Data p Data d
θ

θ θ θΔ = Δ∫  

( ) ( ) ( ) ( ): , 1, , , 1,i i i iTT p x F Data p x F Data p Data d
θ

θ θ θΔ = = Δ =∫ ,  

To calculate these predictives I use the following approximations (Poirier and Tobias, 2003; Tobias, 

2006): 

( ) ( ) ( )
1

1ˆ: , , , ,
K

k
i i

k
ATE p x Data p x Data

K
θ θ

=

Δ = Δ =∑  

and ( ) ( ) ( )
1

1ˆ: , 1, , , 1, ,
K

k
i i i i

k

TT p x F Data p x F Data
K

θ θ
=

Δ = = Δ = =∑  

where kθ  denotes draws from the posterior distribution of  θ  and K  denotes number of such 

parameter draws. 

3.7.1.2. Results  

There are several guides provided by University Extensions illustrating how to estimate the crop 

available nutrients from previous legume crops and manure application (University of Nebraska-

Lincoln Extension, 2006; Iowa State University Extension, 2003, 2007b). According to these guides, 

the nitrogen credit given for soybeans should be 40-50 lb/acre. The amount of the total nitrogen 

available from manure depends on the species and whether the manure is liquid or solid. The 

recommended manure credits for average manure application rates in Illinois, Indiana, Iowa, and Ohio 

in year 2001 were 110-130 lb/acre.  

Two types of distributions for manure and rotation credits were constructed: (1) the farmer’s 

expected credit in fall independently on his/her timing of fertilizer application ( )ATE  and (2) credit by 

farmers who actually used fall fertilizer application ( )TT . The TT predictive is shifted to the right 
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relative to ATE, indicating that both manure and rotation credits are much higher for those farmers who 

actually use fall nitrogen application. Specifically, figures 3.1 and 3.2 present the ATE  and TT  

posterior predictive distributions of rotation credits for fall applied nitrogen. The TT predictive is 

shifted to the right compared to ATE distribution and, consequently, has higher mean and median 

values.  

Figure 3.1. Rotation Credit for Fall Application ATE 
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Figure 1: Rotation credit for fall application ATE

 

Figure 3.2. Rotation Credit for Fall Application TT 
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Figure 2: Rotation credit for fall application TT

 

The posterior mean of TT for rotation credit calculated for ARMS 2001 data is 29.35 lb/acre for 

fall suggesting that on average farmers who applied fertilizer in fall used 29.35 lb/acre more of nitrogen 

for continuous corn than for corn following soybean. This value is lower than the level of rotation credit 

 that farmers are recommended by Extension: 40-50 lb/acre.  
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Previous attempts to quantify the soybean nitrogen credit showed that it varied with year and 

soil characteristics. Gentry et al. (2001) obtained the value of 27 kg/ha ( )30.3 /lb acre≈  of nitrogen 

credit in Illinois. In the research of Bundy, Andraski, and Wolkowski (1993) estimated nitrogen credits 

that differed significantly among locations and years and ranged from 22 to 210 kg/ha 

( )24.7 -317.7 /lb acre≈ .  Such a big discrepancy in the value of nitrogen credit suggests that there is 

a high uncertainty about amount of nitrogen available for plant growth from previous legume crop. As a 

result, farmers credit less nitrogen than is recommended and apply more nitrogen to reduce risk of yield 

losses associated with nitrogen deficiency.  

 The posterior probability that on average farmers who apply fertilizer in fall credit at least 50 

lb/acre of nitrogen for rotation is also calculated: 

( )Pr 50 , 1, 0.25ix x F DataΔ > = = =     

This result says that on average 75 percent of farmers who apply fertilizer in the fall do not follow 

recommendations and credit less than 50 lb/acre of nitrogen for rotation. 

Analogous results are obtained for manure credits. Figure 3.3 presents TT posterior predictive 

for manure credit in the fall. The posterior means of TT for manure credit calculated for ARMS 2001 

data is 46.93 lb/acre for fall. Again, this value is lower than the level of manure credit that is 

recommended to farmers by university extensions: 110-130 lb/acre.  

3.3. Manure Credit for Fall Application 
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Figure 3: Manure credit TT for fall application
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The posterior probability that on average farmers who apply fertilizer in fall credit at least 100 

lb/acre of nitrogen for manure application is also calculated: 

( )Pr 100 , 1, 0.07ix x F DataΔ > = = =     

This result says that on average 93 percent of farmers who apply fertilizer in fall do not follow 

recommendations and credit less than 100 lb/acre of nitrogen for manure application.  

University of Minnesota Extension (2008) calculated that, on average, manure nitrogen would 

be approximately 75 pounds per manured corn acre for typical small dairies farm in southeastern 

Minnesota. The findings here are consistent with their estimates. 

Results for both rotation and manure credits suggest that applying nitrogen in spring increases 

the level of credit. Therefore, policy to switching from fall to spring fertilizer application will reduce 

amount of fertilizer applied since farmers credit more for manure and rotation. 

3.7.2. Demand for Nitrogen Fertilizer 

One way of reducing nitrogen application in corn production is imposing tax on the nitrogen. This 

paper examines the potential implications of adopting a tax strategy as the policy choice to reduce the 

level of nitrogen application. There are several studies that focused primarily on estimating the fertilizer 

demand and corresponding fertilizer price elasticities (Griliches, 1958 and 1959; Roberts and Heady, 

1982; Roberts, 1986; Vroomen and Larson, 1991; Denbaly and Vroomen, 1993). Some other studies 

investigated the effect of agro-environmental policies on agricultural production and fertilizer input 

demand (Onianwa et al., 1992; Abler and Shortle, 1995, Hertel and Stiegert, 2000; Hertel, Stiegert, and 

Vroomen, 1996).   

Vroomen and Larson (1991) obtained estimates of -0.23 as the minimum and -0.85 as the 

maximum own-price elasticity of demand for nitrogen in the Corn Belt area. Similarly, in their study of 

nutrient plant elasticities of demand for corn production in the United States, Denbaly and Vroomen 

(1993) obtained estimates of -0.23 for the short-run and -0.48 for the long-run price elasticities of 

demand for nitrogen in corn production. Onianwa et al. (1992) estimated elasticity of demand for 
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nitrogen in corn production in Minnesota to be -0.35. Hertel and Stiegert (2000) obtained the estimate 

of -0.227 for own-price elasticity of demand for nitrogen in corn production in Indiana. 

The calculation of the elasticity of demand for sample selection models is different from the regular 

linear models (Yen, 2005). If the probability of a positive observation for each dependent variable yi is 

( ) ( )0i iP y zα′> = Φ , with  the observed i iy x β′= , and 0iy =  otherwise, then the elasticity of 

unconditional mean with respect to jx  is  

( )iju vu
i i ii i ij j

ij

e z x
x
β

λ α ρ σ α
β

⎧ ⎫⎪ ⎪′= + +⎨ ⎬′⎪ ⎪⎩ ⎭
 where 

( )
( )

φ
λ

⋅
=
Φ ⋅

, 

and the elasticity of conditional mean with respect to jx  is  

( ) ( )ijc vu
i i ii i i ij j

ij

e z z x
x
β

λ α ρ σ λ α α
β

⎧ ⎫⎪ ⎪⎡ ⎤′ ′= + + −⎨ ⎬⎣ ⎦′⎪ ⎪⎩ ⎭
. 

Figure 3.4 shows demand for nitrogen in fall. As expected, the higher the price of fall applied 

nitrogen, the less is demand for nitrogen in fall. The elasticity of the conditional mean of demand for 

fall applied nitrogen using the ARMS 2001 data is calculated to be 0.58ce = − . 

3.4. Demand for Fall Nitrogen Fertilizer 
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This result shows that the 10 percent tax imposed on fall nitrogen will reduce the total amount of 

nitrogen applied by 5.8 percent. These result supports previous findings by Vroomen and Larson 
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(1991), Denbaly and Vroomen (1993), Onianwa et al. (1992), Hertel, Stiegert, and Vroomen (2000) 

who obtained low estimates for own-price elasticity of demand for nitrogen in corn production. 

 Control of nonpoint source pollution often requires regulation of inputs. Wu and Tanaka 

(2005) found that fertilizer-tax is much more cost effective than other easement policies (incentive 

payments for conservation tillage, for corn-soybeans rotations, and for cropland retirement) and 

advocated its use for reducing nitrogen loads from Upper Mississippi River Basin to the Gulf of 

Mexico. Estimated elasticity in this chapter indicates that a tax on nitrogen fertilizer would reduce 

nitrogen fertilizer use in corn production. However, effectiveness of a tax in reducing nitrogen fertilizer 

use is limited due to elasticity being less than one.  

Tax imposed on nitrogen fertilizer in fall reduces amount of fertilizer applied in the fall. As a 

result, it might affect crop yields. Let  ij−Σ  denote the variance-covariance matrix Σ  with row i  and 

column j  removed,  iσ−  denote the thi column of the variance-covariance matrix Σ  with thi element 

removed, and, finally, iε−  denote the error vector with  the thi  element removed. The posterior 

predictive of crop yield, conditional on model parameters, ,θ Σ , and farmer’s decision on fall nitrogen 

application, is given by:  

( ) ( )
( ) ( )

( ) ( ) ( )

** *

1* * * *
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 Since this conditional predictive has above closed-form solution, the unconditional (on the parameters 

θ ) predictive can be obtained via “Rao-Blackwellization” (Li, Poirier, and Tobias, 2004; Tobias, 2006) 

by averaging draws from the following distribution: 

( ) ( ) ( )

( )

* *

*

1

, 1, , , 1,

1 , , 1, ,

i i i i i i

K
k

i i i
k

E Y x F Data p Y x F Data p Data d

p Y x F Data
K

θ

θ θ θ

θ θ
=

= = =

= = =

∫

∑
 

where K  denotes number of draws of parameters.  

Figure 3.5 shows the effect of tax imposed on fall applied nitrogen on the crop yield. Results show that 

tax imposed on fall nitrogen fertilizer lowers crop yields. Moreover, as a result of 100 percent tax on 

fall applied nitrogen yields are reduced by almost 4 bu/acre.  

3.5. Yield 
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3.8. Conclusion 

Fall fertilizer application is associated with excessive application of nitrogen and higher amount of lost 

nitrogen due to leaching, runoff, and denitrification. All this makes spring nitrogen application more 

desirable from environmental point of view. As was shown in the previous chapter, tax imposed on fall 
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applied nitrogen reduces amount of nitrogen fertilizer applied in the fall. Moreover, it induces some 

farmers to switch from fall to spring application. As a result, tax imposed on fall applied nitrogen, 

works as a tool in reducing the amount of nitrogen leached from fields to water resources. However, 

reduced amount of nitrogen fertilizer applied might have an adverse effect on a crop yield. As a result, 

farmers might be at a risk of losses. Another factor that affects crop yield is a choice of tillage system 

that in turn has effect on timing of fertilizer application. This chapter proposes a model that accounts for 

the relationship between fall fertilizer application and choice of tillage system, and examines the 

implications of adopting these two practices on nitrogen productivity, which is measured by crop yield.  

Results show that tax imposed on fall nitrogen fertilizer lowers crop yields. However, as a result of 100 

percent tax on fall applied nitrogen yields are reduced by about 4 bu/acre. Furthermore, the results also 

show that conservation tillage is associated with the fall fertilizer application.  

Agronomists have long recommended that nitrogen application rates should be adjusted to 

account for nitrogen supplied by previous legume crops and manure. If farmers do not credit other 

sources of nitrogen, they may apply more nitrogen than can be used by crop and increase the amount of 

nitrogen leaving the field. Results of this research show that, on average, farmers credit less nitrogen 

available from manure and previous legume crops than is recommended by University Extension.  
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Appendices: 

Appendix 1: Conditional posterior distribution 

Using the augmented posterior from section 3.1, the conditional posterior for the parameter vector θ  is 

given by:     
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1 1

1
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− −
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⎝ ⎠
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1 1 0 0
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i i
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V X y Vθ θ θ θμ μ− −

=

⎛ ⎞′= Σ +⎜ ⎟
⎝ ⎠
∑  

Therefore, 

( ) ( )1 1

*, ,p y N Vθ θθ μΣ =  

The conditional posterior for *, yθΣ  is similarly derived from the augmented posterior,  

( ) ( ) ( )
( ) ( )( )
( ) ( )( ) ( )

/2* * 1 *

1

11 /2

12 1 /2 * * 1

1

1, exp
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exp / 2
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i i i i
i

b n
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p y y X y X
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θ θ θ

θ θ

− −

=

−− + +

−− + + −

=

⎛ ⎞′Σ ∝ Σ − − Σ −⎜ ⎟
⎝ ⎠

× Σ − Σ

⎛ ⎞⎡ ⎤′
⎜ ⎟⎢ ⎥∝ Σ − − − Σ + Σ
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
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       ( ) ( )( )2 1 /2 * * 1 1

1

1exp
2

n
b n

i i i i
i

tr y X y X aθ θ− + + − −

=

⎛ ⎞⎛ ⎞⎡ ⎤′
⎜ ⎟⎜ ⎟⎢ ⎥∝ Σ − − − + Σ
⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎝ ⎠
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Therefore,  
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1

1 * * *

1
, ,

n

i i i i i
i

y W y X y X a n bθ θ θ
−

−

=

⎛ ⎞⎛ ⎞′Σ − − + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑∼  

Appendix 2: The posterior simulator 

The posterior simulator employs a Gibbs sampling procedure, drawing in turn from the conditional 

posterior distribution for , ,θ Σ  and *y : 

Step 0: Set ( ) ( ) ( ) ( ) ( )0 0 0 0 0* * * * *
i i F i i i i F i i iy F Y T Y F Y S Y

′ ′⎡ ⎤ ⎡ ⎤= = ⎣ ⎦⎢ ⎥⎣ ⎦
 and 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟Σ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

Step 1: Draw 1θ  from the distribution given by (3.4.2) conditional on ( )0*
iy  and 0Σ . 

Step 2: Draw the elements of the covariance matrix 1Σ  conditional on 1θ  and ( )0*
iy  using (3.4.3). 

Step 3:  Data augmentation step. Draw the latent data ( ) ( ) ( ) ( ) ( )1 1 1 1 1* * * * *
i i Fi i iy F Y T Y

′⎡ ⎤= ⎢ ⎥⎣ ⎦
 conditional 

on 1θ  and 1Σ : 

j. Compute the errors 2iε , 3iε  and 4iε  given 1θ  from Step 1 and latent data ( )0*
F iY ,  ( )0*

iT , and 

( )0*
iY ; 

k. Draw ( )1*
iF  from 

[ ) ( )( ( ) ( ) )1 1 11 1 1 1 2 1 1 1
1 1 1 1 11 1 1 1 11 10, ,i iTN x zβ α σ ε σ σ σ

− −

− − − − − −∞
′ ′+ + Σ − Σ  if  0iF ≥  
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where ij−Σ  denotes the variance-covariance matrix Σ  with row i  and column j  removed,  iσ−  

denotes the thi column of the variance-covariance matrix Σ  with thi element removed, and, 

finally, iε−  denotes the error vector with  the thi  element removed, and 

    ( ] ( )( ( ) ( ) )1 1 11 1 1 1 2 1 1 1
1 1 1 1 11 1 1 1 11 1,0 ,i iTN x zβ α σ ε σ σ σ

− −

− − − − − −−∞
′ ′+ + Σ − Σ  if  0iF <  

l. Compute the errors 1iε  given 1θ  from Step 1 and latent data ( )1*
iF ; 

m. Draw ( )1*
F iY  from 

( )( ( ) ( ) )1 1 11 1 1 1 1 2 1 1 1
2 2 2 2 2 22 2 2 2 22 2,i iN x zβ α σ ε σ σ σ

− −

− − − − − −
′ ′+ + Σ − Σ         if  ( )1* 0iF <  

 and set *
F i F iY Y=  if  ( )1* 0iF ≥  

n. Compute the errors 2iε  given 1θ  from Step 1 and latent data ( )1*
F iY ; 

o. Draw ( )1*
iT  from 

[ ) ( ) ( ) ( )( )1 1 11 1 1 1 1 1 2 1 1 1
3 3 3 3 33 3 3 3 33 30, ,i F iTN x Yβ δ σ ε σ σ σ

− −

− − − − − −∞
′ ′+ + Σ − Σ     if  0iT ≥  

( ] ( ) ( ) ( )( )1 1 11 1 1 1 1 1 2 1 1 1
3 3 3 3 33 3 3 3 33 3,0 ,i F iTN x Yβ δ σ ε σ σ σ

− −

− − − − − −−∞
′ ′+ + Σ − Σ    if  0iT <  

p. Compute the errors 3iε  given 1θ  from Step 1 and latent data ( )1*
iT ; 

q. Draw ( )1*
iY  from 

( ) ( ) ( )( )1 1 11 1 1 1 1 1 2 1 1 1
( ,0] 4 4 4 4 44 4 4 4 44 4,i F iTN x Yβ δ σ ε σ σ σ

− −

−∞ − − − − − −
′ ′+ + Σ − Σ    if  ( )1 0iY <  

and set  *
i iY Y=  if  ( )1 0iY ≥ . 
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r. Compute the errors 4iε  given 1θ  from Step 1 and latent data ( )1*
iY  , ( )1*

iT , and ( )1*
F iY ; 

Step 4: Repeat steps 1-3 K  times. 

The Gibbs algorithm generates a sample of size K  from conditional posterior distribution of each of 

the parameters of the model. The first 0K  draws are discarded as burn-in, the remaining 1 0K K K= −  

draws are used for the analysis. 
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Table 3.1. Definitions of Variables 
    

Variables Definition Timing Tillage Yield 
Fall fertilizer application Fertilizer applied in fall (1=yes, 0=no) X  X 

Conservation tillage Conservation tillage was used (1=yes, 0=no)  X X 
Yield  Corn yield per acre (bu)   X 

College education 
Farm operator had some college education (1=yes, 
0=no) X X X 

Off-farm employment Farmer worked off-farm (1=yes, 0=no) X X  
Field acreage Number of acres in farm X X  

Land capability class Land capability class is 1 or 2 (1=yes, 0=no) X X X 
Slope of field Slope percentage of field (%)  X  

Manure applied Manure was applied in field (1=yes, 0=no)  X X X 
Rotation Corn was rotated with a legume crop (1=yes,0=no) X X X 
Own land  Field owned by farm operator (1=yes, 0=no)  X  

Fieldwork days in fall Number of days available for a fieldwork  X   
Fieldwork days in spring Number of days available for a fieldwork  X X 

Fertilizer price in fall Fertilizer price in fall ($/lb) X   
 
Table 3.2. Descriptive Statistics of Variables  
    

Variables Units Mean St. dev. 
Fall fertilizer application Number 0.18 0.012 

Nitrogen application rate in fall Number 83.46 3.64 
Conservation tillage Number 0.78 0.12 

Yield Number 138.2 100.45 
College education Number 0.40 0.015 

Off-farm employment Number 0.60 0.046 
Field acreage Acres 68.45 14.25 

Land capability class Number 0.74 0.04 
Slope of field Number 4.21 3.63 

Manure applied Number 0.18 0.004 
Rotation Number 0.73 0.012 

Land ownership Number 0.65 0.71 
Fieldwork days in fall Days 20.64 2.125 

Fieldwork days in spring Days 16.48 1.98 
Fertilizer price in fall $ per lb 0.14 0.01 

Dummy for IL Number 0.28 0.09 
Dummy for IN Number 0.28 0.07 
Dummy for OH Number 0.27 0.08 
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Table 3.3a. Results: Posterior Means, Standard Deviations, and Probabilities of Being 
Positive. 
    

Fall Application 
Fall Application 

Rate 

Variables Mean Std. ( )Pr 0 y⋅ > Mean Std. ( )Pr 0 y⋅ >

Intercept 1.41 0.33 1 5.56 2.49 1 
College education -0.017 0.02 0.21 -3.54 2.31 0.31 

Off-farm employment 0.32 0.07 0.93    
Field acreage 0.43 0.06 0.92 0.52 0.098 0.85 

Land capability class 0.24 0.02 0.91 0.94 0.45 0.87 
Manure applied -0.018 0.009 0.10 -43.77 1.32 0.12 

Rotation -0.17 0.03 0.06 -24.38 2.69 0.07 
Fieldwork days in fall 0.43 0.23 0.92 1.48 0.57 0.95 
Fertilizer price in fall -0.53 0.19 0.12 -1.47 1.36 0.14 

Dummy for IL 0.03 0.04 0.85 0.012 0.001 0.87 
Dummy for IN -0.34 0.10 0.15 -0.03 0.009 0.09 
Dummy for OH -0.32 0.10 0.08 -0.04 0.02 0.07 

 

Table 3.3b. Results: Posterior Means, Standard Deviations, and Probabilities of 
Being Positive. 
    

Conservation Tillage Yield 

Variables Mean Std. ( )Pr 0 y⋅ > Mean Std. ( )Pr 0 y⋅ >  

Intercept 2.65 1.32 1 3.27 0.68 1 
Nitrogen application rate in fall    0.75 0.22 0.91 

Conservation tillage    -1.54 2.43 0.26 
College education 0.32 0.13 0.93 0. 4 0.2 0.83 

Off-farm employment 0.47 0.18 0.88    
Field acreage 0.26 0.05 0.91 0.50 0.07 0.81 

Land capability class 0.39 0.24 0.94 3.86 2.58 0.95 
Slope 0.52 0.28 0.92    

Manure applied 0.44 0.58 0.65 0.30 0.04 0.85 
Rotation 0.63 0.47 0.71 2.14 0.3 0.89 

Land ownership 0.51 0.38 0.93    
Fieldwork days in spring -0.22 0.13 0.14 3.73 1.46 0.91 

Dummy for IL 0.01 0.002 0.88 1.14 0.07 0.88 
Dummy for IN -0.03 0.002 0.17 -1.21 0.09 0.09 
Dummy for OH -0.01 0.015 0.24 0.56 0.11 0.84 
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Table 3.3c. Results: Posterior Means, Standard 
Deviations, and Probabilities of Being Positive. 
    

Yield 

Variables Mean Std. ( )Pr 0 y⋅ >

13σ  0.36 0.19 0.88 

23σ  0.43 0.15 0.88 
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CHAPTER 4: CONTRACTING SPLIT FERTILIZER APPLICATION 

4.1. Introduction  

There is increased concern for nitrate pollution in the water from agriculture although regulating 

nonpoint source pollution remains one of the most difficult challenges in agricultural environmental 

policy. Nonetheless, the importance of nonpoint pollution problems has stimulated economic interest in 

the design of environmental policy for nonpoint sources. Shortle and Horan (2001) list policy 

mechanisms that have received significant attention in the economic literature. They discuss different 

economic incentives applied to inputs and practices as a part of a nonpoint water pollution control 

program. These include various incentive mechanisms, including charges (taxes) and subsidies, 

standards, pollution permits trading, contracts/bonds, and liability rules applied to inputs or practices, 

emission proxies, and ambient concentrations. One of incentives they list for nonpoint pollution control 

is a contract, under which producers agree to implement a negotiated set of practices.  

There is a growing literature on using direct revelation mechanisms to design input-based 

contracts for nonpoint pollution control (Wu and Babcock, 1995, 1996; Smith, Tomasi, 1995; Peterson 

and Boisvert, 2001; Bontems and Thomas, 2006). Still, as Shortle and Horan (2001) point out, there is 

limited research on the design of input based instruments taking into account both moral hazard about 

one or more input choices and asymmetric information about land types.  

This study, similar to Wu and Babcock, develops a contract to induce farmers to choose an 

efficient level of fertilizer application depending on the soil leaching capacity. However, in addition to 

asymmetric information about soil type considered by Wu and Babcock (1995,1996), the model 

developed here also takes into account the moral hazard problem which appears because of unobserved 

actions taken by some farmers. The contract requires the environmental agency to know the distribution 

of soil types, and pays farmers based on the total nitrogen fertilizer they apply.  

For both agronomic and environmental reasons, spring post-emergent application of nitrogen 

fertilizer is frequently superior to fall and spring pre-emergent applications because there is less loss of 
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nitrogen. Nitrogen fertilizer, however, is typically applied to plants in fall, early spring (spring pre-

emergent fertilization) and during the growing season (spring post-emergent fertilization)5. Depending 

on weather conditions and their time constraint, farmers might choose to use split fertilizer application 

in order to avoid the risk of not having enough time to do it only in spring. Since actual split nitrogen 

applications are unobservable to the environmental regulator, the contract scheme studied here is based 

on total nitrogen application. There are two types of asymmetric information: 

1. The amount of nitrogen applied by farmer in fall and spring, and 

2. The amount of soil nitrogen runoff from fields. 

The contract is signed by farmer in the fall. Significant nitrogen leaching occurs between fall and 

spring applications, hence soil nitrogen runoff is private information to the farmer that is observed by 

him/her only after the contract is signed. 

The optimal contract scheme for this case can be modeled as a principal-agent problem. Regulator 

announces and commits himself to a contract schedule: 

 ( ) ( ){ }, ;Z Tα α α α α⎡ ⎤ ≤ ≤⎣ ⎦ , 

where α  is a retention parameter (non-leaching parameter), ( )αZ  is the total nitrogen use on type α  

soil, and ( )αT  is the per acre payment from the environmental agency if the specified nitrogen amount 

is used. The regulator does not have accurate information on farmer production characteristics, 

particularly, the level of leaching that occurs on a farmer’s field. The soil nitrogen run-off potential is 

only anticipated because it depends partly on some random events such as local climatic and soil 

conditions. So, the contract should be designed to provide an incentive for farmers to choose the 

contract intended for them. Specifically, the contract should be designed such that farmers with 

retention parameter 0α  will voluntarily choose contract ( ) ( ){ }00 , αα TZ . After accepting the contract 

                                                 
5  The research interest is focused primarily on pre-plant fertilizer application (both fall and early spring) because 
of the small portion of farmers applying fertilizer in the growing season. 
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and before observing the true retention parameter α , the farmer decides on the amount of nitrogen 

he/she applies in fall. Here is moral hazard problem: the level of nitrogen application in fall should be 

optimal for farmer. Therefore, another challenge for the regulator in designing the contract is to induce 

farmers to choose the optimal level of nitrogen applied in the fall. Finally, regulators have to design a 

contract mechanism consistent with 

• incentive compatibility or self-selection constraint – by accepting the contract, the  farmer reveals 

his/her true type; 

• individual rationality constraint – it is profitable for the farmer to accept the contract; 

• moral hazard constraint – the primary nitrogen application level in fall is optimal for the farmer. 

The outline of paper is following: the next section describes the previous studies related to this 

issue. Section 3 presents the model from farmers and regulator points of view, followed by analysis of 

the model for the cases of perfect and imperfect information in section 4. The next section presents the 

data used in the application on nitrogen pollution, and the econometric estimation used to calibrate the 

sequential production process. It also describes the numerical simulation conducted to compute optimal 

nitrogen paths. Finally, the paper concludes with a summary of findings. 

4.2. Previous Literature 

There is a growing literature on using direct revelation mechanisms to design input-based contracts for 

nonpoint pollution control. A major difficulty in agricultural contract design is that the principal 

(landlord, environmental agency, etc.) is frequently unable to observe some of the characteristics or 

actions taken by contracting agents. There are two categories of information about nonpoint sources 

(Tomasi, Segerson, and Braden, 1994). One is polluter’s profit or control-cost type, relating to the 

returns to the firm from its production and pollution control choices. The second type of information is 

polluter’s environmental type relating to information about the impact of a firm’s choices on the 

environment. Laffont and Tirole (1993), Salanie (1998), Laffont (2002), Bolton and Dewatripont (2005) 

provide a modern treatment of contracting models, many of which are built upon principal-agent theory.  
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In the principal-agent framework, the principal has the power to design the contract, while the 

agent responds to the contract in a self-serving way. The principal’s goal is to design the contract so as 

to achieve his goal, given that the agent will respond to the contract by optimizing his goals. Smith and 

Tomasi (1995) use mechanism design theory to develop the properties of optimal pollution control 

incentive schemes in the presence of adverse selection, moral hazard, and transaction costs. They 

demonstrate that only second-best solutions are obtainable with direct revelation mechanisms when 

there are transaction costs related to the collection of tax revenues.  

Wu and Babcock (1995) use a principal-agent model to design a green payment program under 

asymmetric information. Another study by Wu and Babcock (1996) develops a contract to induce land-

based nonpoint polluters to choose second-best input vectors for their land type. The contract requires 

the environmental agency to know the distribution of land types, and pays polluters based on the land 

area they put under contract. Their model assumes that land types define both environmental and profit 

types. Analogous to Smith and Tomasi, Wu and Babcock include the social costs of tax revenue 

collection for funds paid to nonpoint polluters. Peterson and Boisvert (2001) empirically estimated the 

payments required for such a policy to reduce nitrate losses from corn production in New York. Each of 

the above mentioned studies focuses on the adverse selection problem, and assumes that input choices 

can be observed costlessly. The study of Bontem and Thomas (2006) considers a model of pollution 

regulation for a risk-averse farmer involving hidden information, moral hazard, and risk sharing. The 

farmer faces the production risk originating from nitrogen leaching. This research adds to the literature 

by considering the case of contract design for fall and spring fertilizer application when the regulator 

faces asymmetric information and moral hazard problems. 

4.3. The Model 

At the beginning, both agency and farmer have a common prior on parameter α , which is represented 

by the distribution function ( )⋅G  with density function ( )⋅g  on the interval [ ],α α . In early spring, 

after the decision on fall fertilizer application, the farmer learns the true value of α  before deciding on 
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the spring one.6 The agency gets information on α  through communication with the farmer and 

observes only the total amount of fertilizer applied Z . Formally, the contract is the pair of functions 

( ) ( ){ },T Zβ α  from [ ],α α  to +× RR , depending on the farmer’s report about the value of α , 

where T  is the transfer paid by the agency to the farmer if the latter commits to apply Z  amount of 

fertilizer in total. The total amount of fertilizer applied Z and transfer T offered to the farmer by the 

agency depend on the farmer’s and agency’s prior belief about α .  

The timing then is as follows: 

• at t=0, the “menu” of contracts ( ) ( ){ }, :T Zα α α α α≤ ≤  is offered to the farmer; 

• at t=1, the farmer chooses the nitrogen fertilizer amount to apply in fall, X , to maximize his 

expected utility, given the prior ( )⋅G  on the distribution of α . Between fall and spring some 

fertilizer leaching and runoff occurs, therefore forcing the farmer to make second fertilizer 

application in spring. 

• at t=2, the value of  α  becomes known to the farmer only and he announces value α̂  to the 

agency (equivalently, chooses a total nitrogen application amount ( )α̂Z  in the contract) or, if 

chooses, can get out of the contract. 

• at t=3, the transfer T  is paid. 

 

                                                 
6 Farmers can use the late-spring nitrogen test for this purpose. The late-spring test for  soil nitrate is a tool that 
producers use to estimate amount of available nitrogen in the soil before corn plants start intensively taking up this 
nitrogen. 

Contract 
(T,Z) is 
signed 

t=0 t=1 t=2 t=3 

Action X is    
taken 

α  is observed and 
α  is announced 

Transfer T   
    is paid 



96

4.3.1. Farmer’s Problem  

Yield generally depends on the level of available fertilizer in the soil during the growing season. 

Because of random weather conditions in spring, total output, in general, may be random. Output price 

can be random as well. However, this analysis does not consider price randomness; output price is 

assumed to be known too. Let A  denote the residual fertilizer in the soil before fall application and X  

be the quantity of fertilizer applied in fall. It is suggested that carryover of fertilizer between two points 

in time can be approximated as a fixed portion of fertilizer available at the beginning of the period. If 

fertilizer retention is captured by a parameter [ ],α α α∈ , then the total amount of available fertilizer in 

spring, B , is given by 

 )( XAB +=α  

and αβ −= 1  is the proportion of available fertilizer leached between the fall and early spring.  

Some of fertilizer applied in fall and early spring leaches by planting season. Hence, fertilizer 

uptake by the plant is assumed to be the fraction γ  of fertilizer available in early spring. Let Y~  

represent nitrogen take-up by the plant. Then, between dates t=1 and t=2, amount of fertilizer available 

for the plant is  

 )( XA +α  

and after date 2, since fertilizer applied is subject to leaching in spring, fertilizer available to the plant is 

[ ]YXAY ++= )(~ αγ . 

Let F  denote the underlying crop yield as an explicit function of fertilizer applications and agronomic 

parameters. This yields 

( )( )( )( )F Y F A X Yγ α= + +  

Usually farmers have more time during the fall and, as a result, the opportunity cost of time is lower in 

the fall and higher in the spring (Randall and Schmitt, 1998; Dinnes et al., 2002; Huang, Hewitt, and 
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Shank, 1998). Therefore, to reflect the fact that spring nitrogen application is associated with higher 

opportunity cost for farmer, the profit function includes the cost part that is related to nitrogen applied 

in spring, Y . Consequently, if farmer signs the contract his/her profit function becomes: 

( )( ) ( )pF Y w X Y C Y Tπ = − + − +  

where  p          - output price; 

 w        - fertilizer price; 

 T         - transfer paid by agency to the farmer; 

C      - cost associated with spring nitrogen application (opportunity cost  of time in spring).  

C  is assumed to be increasing and convex function. Let Z  denote total fertilizer application, 

YXZ += . Then yield and cost functions could be rewritten in terms of fall fertilizer application X , 

total application Z , and parameterα : 

( ) ( , , )F Y f X Zα≡  and  ( ) ( , )C Y c X Z≡  

and profit now is: 

( ) ( )( , , ) ( , , ) ,pf X Z wZ C Z X T pf X Z wZ c X Z Tπ α α= − − − + = − − +  

Babcock and Blackmer (1994) showed that increases in a field’s yield potential increase optimal 

fertilizer rate. Hence, the yield is assumed to be increasing and concave in amount of nitrogen available 

to the plant, then it follows that f  is increasing in α  and that Zff Z ∂∂∂= αα /2  is strictly negative: 

( ) 0
~

>+′=
∂
∂′=

∂
∂ XAFYFf γ

αα
 

and   ( )
2

2 0Z
f F A X c
Z

γ
α
∂ ′′ ′= + − <
∂ ∂

 

The latter condition means that marginal product of fertilizer Z  decreases as α  increases that 

is, the land with lower leaching process (higher values of retention parameter α ) requires lower rates 

of input use. This condition is called single-crossing or Spencer-Mirrlees condition and simplifies 
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analysis of optimal contracts (Guesnerie and Laffont, 1984; Laffont and Rochet, 1998). The analysis 

also assumes that farmers’ preferences are characterized by a strictly monotonic, increasing and strictly 

concave von Neumann-Morgenstern utility function denoted U. 

The farmer’s problem is to maximize the expected utility and it would be  

(FP) ( )( )max max ( , , ) , ( )
X Z

U pf X Z wZ c X Z T dGα α⎡ ⎤− − +⎣ ⎦∫      s.t.  ZX ≤≤0      

if the farmer signs the contract, where ( )αG  is the probability distribution function for private 

information parameter α . 

Farmer’s decision making will be sequential: 

1. Decides on the level of primary fertilizer application  X ; 

2. Observes true value of leaching parameter α ; 

3. Decides on the level of additional fertilizer application Y . 

4.3.2. The regulator’s problem 

The goal of the environmental agency is to maximize expected net social surplus associated with 

production, where the policy instrument is a contract signed between farmer and agency. This contract 

specifies a level of total fertilizer application Z and a transfer T  from agency to the farmer. The crucial 

assumptions in this case are that the contract is signed before any action the farmer can take and before 

the value of α  is observed by the farmer and that transfer is given to the farmer at the end of season.  

If a type-α  farmer chooses the contract intended for a type-α̂  farmer, ( ) ( ){ }ˆ ˆ,T Zα α   

his per acre net return, given amount of nitrogen applied in fall, X, would be 

( )ˆ ˆ ˆ ˆ ˆ( , , ) ( , , ( )) ( ) , ( ) ( )X pf X Z wZ c X Z Tπ α α α α α α α= − − + . 

 However, if the farmer chooses the contract intended for him, ( ) ( ){ }αα ZT , , his per acre net 

return would be ( )( , ) ( , , ) ( , , ( )) ( ) , ( ) ( )X X pf X Z wZ c X Z Tπ α π α α α α α α α≡ = − − + . 
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The incentive compatibility constraint requires that farmers who observe retention parameter α  

prefer ( ) ( ){ }αα ZT ,  to all other options offered in the menu. Thus, a contract menu 

( ) ( ){ }, :T Zα α α α α≤ ≤  satisfies the incentive compatibility constraint and farmer will accept the 

contract if and only if  

(IC) )ˆ,(),()( ααπααπαπ ≥≡              αα ˆ,∀∀                         

where  α̂  is the type the farmer reports to the agency after the uncertainty upon α   is resolved for the 

farmer. 

Since the agency can observe only the level of total nitrogen application, Z , but not the part of 

it applied in the fall, X , agency has to take into account the moral hazard constraint, which requires the 

level of X  to be optimal for the farmer: 

(MH) arg max ( ( , )) ( )
X

X U X dG
α

α

π α α∈ ∫                                               

To ensure voluntary participation, the contract schedule also satisfies individual rationality 

constraint: 

  ( ) ( )nπ α π α≥ ,  α∀  

where ( )nπ α  is the maximum per acre net return on land type α  that can be obtained without the 

contract. This constraint guarantees that farmers will be at least as well-off participating in the contract 

program as not participating. Assuming that the reservation utility for the farmer is zero and that agency 

is constrained to offer minimum profit regardless of realized value of α , ex-post individual rationality 

constraint is:  

(IR) 0)( ≥απ ,     α∀ .                                                                       

With fall fertilizer application, the two-three months between application and nitrogen uptake create an 

opportunity for significant nitrogen losses. Nitrogen can be immobilized, denitrified, washed into 



100

surface water, or leached into groundwater (Huang and Uri, 1995; Huang, Hewitt, and Shank, 1998; 

Dinnes et al., 2002; Randall and Schmitt, 1998; Uri, 1998; Blackmer, 1995). As a result, relatively 

heavy use of nitrogen and some other fertilizers can lead to soil acidification, changes in soil properties, 

and off-site environmental problems. Following Wu and Babcock (1996), this analysis assumes that 

pollution is represented by a pollution production function ( )( )( ) ( )1 ,s h A X h Xα α= − + =  

associated with nitrogen leaching between fall and spring, and is the per acre pollution on soil with 

retention parameter α . In many cases, it is reasonable to assume that ( ),h Xα  is convex in X .  Given 

X , ( ),h Xα  is decreasing in α . That is, higher retention parameters (higher values of α ) are 

associated with smaller pollution. Assume that the agency wishes to maximize social surplus from 

agricultural production. Given the contract schedule ( ) ( ){ }, :T Zα α α α α≤ ≤ , social value of 

production on soil with retention parameter α , ( )( ), ,S X Zα α  is   

( )( ) ( ) ( ), , ( , , ( )) ( ) , ,S X Z pf X Z wZ c X Z h Xα α α α α α= − − −  

and social surplus from production is ( , , ( )) ( )S X Z Tα α λ α− , where λ  denotes the opportunity cost 

of public funds.  

The agency’s problem may be written as: 

(AP) [ ]
, ( ), ( )
max ( , , ( )) ( ) ( )

X Z T
S X Z T dG

α

α

α α λ α α
⋅ ⋅

−∫                 

subject to (IC), (MH), (IR),  ).(0 αZX ≤≤  

Given the production and pollution technologies, the socially optimal levels of nitrogen applied in fall 

and in total on a soil with retention parameter α , eX  and eZ  (first-best solution), can be expressed as 

(SP) 
, ( )

max ( , , ( )) ( )
X Z

S X Z dG
α

α

α α α
⋅ ∫  
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with first-order conditions 

( ) ( ): , , ( ) , ( ) ( ) ( , ) ( )X X X XFOC pf X Z c X Z dG h X dG
α α

α α

α α α α α α− =⎡ ⎤⎣ ⎦∫ ∫  

( ) ( ): , , ( ) , ( )Z Z ZFOC pf X Z c X Z wα α α− =  

which say that socially optimal eX  should equalize the marginal private net value of production with 

the expected marginal damage from nitrogen fertilizer applied in the fall, and marginal private net value 

of production due to total nitrogen use eZ  should be equal to its private cost w .7  

In a command and control economy with complete information, the agency would set the contract menu 

equal to ( ){ }0, :eZ α α α α≤ ≤ .  

4.4. Analysis of the Model 

In this section, I examine the properties of an optimal contract under two cases: (1) optimal contract 

under perfect information and (2) optimal contract under imperfect information. 

4.4.1. Optimal contract under perfect information 

Under perfect information when agency is able to observe both X  and parameter α , (IC) and (MH) 

constraints in agency problem should be ignored. Getting an expression for transfer T from the profit 

function: 

( )( ) ( , ) ( , , ( )) ( ) , ( )T X pf X Z wZ c X Zα π α α α α α= − + +  

agency problem could be rewritten as: 

( ){ }
, ( ), ( )
max ( , , ( )) ( ) ( , , ( )) ( ) , ( ) ( )

X Z
S X Z pf X Z wZ c X Z dG

α

α

α α λ π α α α α α α
⋅ Π ⋅

⎡ ⎤− − + +⎣ ⎦∫  

s.t. (IR),  ).(0 αZX ≤≤  

                                                 
7 Since changing the rate of nitrogen application does not necessarily require longer application time, the marginal 
opportunity cost of total nitrogen applied could be equal to zero: ( ), ( ) 0Zc X Z α = . However, this specification 
does not alter the qualitative results.  
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Maximizing expected welfare over X and ( )⋅Z  gives the following first order conditions: 

( ) ( ){ }

( ) ( )

: 1 ( , , ( )) , ( ) ( ) ( , ) ( )

: , , ( ) , ( )

X X X X

Z Z Z

FOC pf X Z c X Z dG h X dG

FOC pf X Z c X Z w

α α

α α

λ α α α α α α

α α α

+ − =

− =

∫ ∫  

which say that optimal X  should equalize the marginal private net value of production weighted by the 

social cost of public funds with the expected marginal damage from nitrogen fertilizer applied in the 

fall, and marginal private net value of production due to  total nitrogen use, Z , should be equal to sum 

of its private cost , w , and marginal opportunity cost.  

Finally, every type of farmer has no rent at the optimum,  0)( =απ ,   α∀ .            

4.4.2. Optimal contract under imperfect information 

In the case where neither level of fall fertilizer application X  nor retention parameter α  can be 

observed by regulator he has to take into account two sets of constraints (MH) and (IC). In order to 

derive the characteristics of the optimal contract schedule, four lemmas will be proven. Lemma 1 

examines the properties of a self-selecting contract schedule. Lemma 2 reformulates the individual 

rationality constraint by using results from lemma 1. Lemma 3 derives the properties of the optimal 

contract schedule. Finally, lemma 4 provides with optimal payment schedule given the optimal input 

schedule8. 

Lemma 1. A contract schedule ( ) ( ){ }, :T Zα α α α α≤ ≤  is self-selecting if and only if  

(a)  ( ) 0Z α′ ≤  

(b) ( ) ( )( ) ( )( ) ( ), , ,Z ZT pf X Z w c X Z Zα α α α α⎡ ⎤′ ′= − − −⎣ ⎦  

Condition (a) of lemma 1 indicates that a self-selecting contract should not allow more input 

use on soil with a high retention process (high values of α ). Without signing contract, farmers would 

                                                 
8 Reader is referred to Appendix for proves of all lemmas. 
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choose the total fertilizer application level so that marginal private net value of production due to  total 

nitrogen use, Z , should be equal to sum of its private cost , w , and marginal opportunity cost: 

( ) ( ): , , ( ) , ( )Z Z ZFOC pf X Z c X Z wα α α− =  

Under contract, the fertilizer use is reduced so that ( ) ( ), , ( ) , ( )Z Zpf X Z w c X Zα α α≥ + . Thus, the 

condition (b) of lemma 1 implies that ( ) 0T α′ > . So, it means that in choosing contract farmers have to 

tradeoff decrease in fertilizer application level with increase in transfer payments from environmental 

agency. Taking the total derivative of the profit with respect to α   it follows: 

( ), z z
z z z TX pf pf w cαπ α
α α α α
∂ ∂ ∂ ∂′ = + − − +
∂ ∂ ∂ ∂

 

And substituting condition (b) of lemma 1 gives: 

( ), 0X pfαπ α′ = >  

where pfα  is a marginal value product of parameter α . Thus, the profit function is increasing in 

parameter α . 

Lemma 2. For any self-selecting policy, the individual rationality constraint is satisfied when 

( , ) 0Xπ α ≥ . 

Lemma 2 indicates that, given the incentive compatibility constraint, the individual rationality 

constraint will be satisfied as long as farmers with the highest leaching parameter are not worse off if 

they sign the contract. This implies that all farmers will participate as long as farmers with the lowest 

retention parameter participate. 

Lemma 3. In case of no pooling and assuming an interior solution for X  and Z , necessary conditions 

for an optimum are: 

( )i  ( ) ( ) ( )/Z Z XZ Zpf w c U pf g pfαλ κ π υ′− − = − − , 

where  
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( ) ( )( ) ( )( ) ( )( ){ } ( )( ) ( )1 , , ,X XG pf u X Z u c X Z u U u g u du
α

α

υ α λ α κ π′′= − − + −∫  

and  

( )( ) ( )

( )( ) ( )( ){ } ( )( ) ( ), , ,

X X X X

X X X XX

S pf c g g u du pf d

pf u X Z u c X Z u U u gdu pf U pf g d

α α

α
α α

α α

α
α α

λ λ α

κ

π π α

⎧ ⎫⎛ ⎞⎪ ⎪+ − −⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭= −
⎧ ⎫⎛ ⎞⎪ ⎪′′ ′− +⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∫ ∫

∫ ∫
 

( )ii  ( ) ( )( ) ( )( ){ } ( ), , , 0X XU pf u X Z u c X Z u dG
α

α

π α′ − =∫ , 

( )iii  ( ) ( ) ( )( ), , + , ,X X pf u X Z u du
α

α
α

π α π α= ∫ . 

Condition ( )ii  is the first order condition associated with the moral hazard constraint. 

Condition ( )iii  shows the level of profit received by type-α  farmer. Condition ( )i  says that compared 

to the perfect information case, two distortions should be added to the condition determining the 

screening variable Z :  

( ) ( )( ), , ( ) , ( ) ( )Z Z XZ Zpf X Z w c X Z U pf pf
g α
υλ α α α κ π′− − = − −  

This is because the agency has to take into account two sets of constraints due to unobservability of 

both fall nitrogen application X  (moral hazard constraint defined by ( ) XZU pfκ π′− ) and the retention 

parameter α  (adverse selection constraint defined by Zpf
g α
υ

− ). The direction of both distortions 

compared to the perfect information level is ambiguous for this level of generality and depends on the 

specification of the model.  
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The distortion due to imperfect information on α  comes from the fact that increasing the 

application level of a particular type will also increase the payment to all more efficient farmers. Even 

for the most efficient type, there can be overproduction or underproduction at the top ( )α α= , so that 

the usual result of no distortion at the top no longer holds. Indeed, in this case ( ) 0=αυ  so that the 

distortion due to the incentive compatibility constraint disappears. But there still remains distortion due 

to the moral hazard constraint as indicated by ( )i . If the term ( )( ) XZU pfκ π′−  is positive, then this 

leads the environmental agency to distort downward the total amount of nitrogen applied in order to 

take account of the moral hazard constraint. However, if it is negative, then it leads the environmental 

agency to distort the total amount of nitrogen applied upward.  

Lemma 4. Given the optimal input schedule, ( )*Z α , the optimal payment, ( )*T α , can be 

determined   by 

 ( ) ( ) ( )( ) ( )( ) ( ) ( )* * , , , *Z ZT T pf X Z w c X Z Z d
α

α

α α θ θ θ θ θ′⎡ ⎤= − − −⎣ ⎦∫  

where  ( )*T α  is selected to minimize the payment subject to ( ) 0π α ≥ . 

4.5. Empirical Application 

Simulated optimal contract is used to show properties of the optimal contract. First, the data set used is 

presented. Then, the crop yield function is estimated for different production function specifications. 

Finally, estimation results are used to calibrate the optimal contract.  

4.5.1. Data 

The data used in this paper comes from ARMS data survey for year 2001 conducted by the Economic 

Research Service (ERS) and the National Agricultural Statistics Service (NASS) of the U.S. 

Department of Agriculture (USDA). It provides field-level information on the financial condition, 

production practices, resource use, and the economic well-being of U.S. farm households.  
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Farm operators included in the ARMS data are selected to ensure adequate coverage by state 

and region and to minimize reporting burden. Strata are based on state, the value of agricultural sales 

(farm size), and type of farm. NASS provides survey weights that account for these design features as 

well as for additional information available at the population level. Because of the complex design of 

the survey, all official estimates from the survey should be properly weighted. Therefore, NASS 

recommends the design-weighted approach as appropriate for many of the analyses for users of ARMS 

data (Panel to Review USDA's Agricultural Resource Management Survey, National Research Council, 

2007). Ignoring the survey design can result in bias estimates, and make it impossible to perform 

statistically valid inferences. However, by including variables related to the design of the survey as 

predictor variables in a model results in a new, conditional model, for which the design is ignorable. In 

that case, model-based inference yields the appropriate conclusions for the sample, but not necessarily 

for the unweighted population. Therefore, to account for the survey design of the ARMS data, I 

included stratums in the set of explanatory variables. Particularly, state and farm size are included as 

predictive variables in the model. 

Data on corn production includes data for 19 states. However, only four main corn producers 

were chosen for analysis: Illinois, Indiana, Iowa, and Ohio. Approximately 50% of all corn grown in the 

U.S. is from these four states. Data set for this analysis contains 1726 observations.  

4.5.2. Model Estimation and Calibration 

This paragraph describes particular function specifications used for numerical simulation procedure. 

The farmer’s utility function has the CRRA specification. This choice is motivated by  

Moschini and Hennessy (2001): 

   ( )
1

1
U

ρππ
ρ

−

=
−

, 

There are several functional specifications of production function used in literature (Frank, Beattie, and 

Embleton, 1990; Feinerman, Choi, and Johnson, 1990; Yadav, Peterson, and Easter, 1997; Huang and 
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Uri, 1995; Llewelyn and Featherstone, 1996). Two commonly used specifications are employed and 

compared for the best fit9. Quadratic production function takes form:     

( ) [ ] [ ]( )22
0 1 2 0 1 2

2 2
0 1 2 3 4 5

( ) ( )f Y a a Y a Y a a A X Y a A X Y

a a X a X a Y a Y a XY

γ α γ α= + + = + + + + + +

= + + + + +
 

Mitscherlich-Baule production function takes form: 

( ) ( )( ) [ ]( )( )
( )( )

1 2 1 2

1 2 3 4

1 exp 1 exp ( )

1 exp

f Y b b Y b b A X Y

X Y

γ α

α α α α

= − = − + +

= − + +
 

where X and Y denote the fertilizer application levels in fall and spring, respectively. A particular 

attention has to be paid to endogeneity of explanatory variables in production function. Due to 

sequential nature of the model, spring fertilizer application level Y  is an implicit function of fertilizer 

amount applied in fall X . Therefore, use of ordinary OLS gives inconsistent parameter estimates. 

Moreover, a double-hurdle approach is used for modeling individual farmer’s decision making on 

whether to apply fertilizer at certain time and how much to apply10. According to the logic of double-

hurdle models, farmers must pass two separate hurdles before they are observed to have positive 

fertilizer application levels. These two hurdles are the participation decision (whether to apply fertilizer 

during the fall) and the consumption decision (how much to apply). Following Koop, Poirier, and 

Tobias (2007), the participation decision of farmer i is assumed to be driven by a latent variable *
iF , 

with 

*
1 1 1 1 1i i i iF x zβ α ε= + +  

where 1ix  and 1iz  are exogenous factors (such as education, land characteristics and fertilizer prices) 

assumed to influence the participation decision, 1β  and 1α  are parameters to be estimated, and 1iε  

                                                 
9 One of main requirements for production function, differentiability, reduced the set of possible functional 
specifications. 
10 Details on choice of double –hurdle approach for modeling timing of fertilizer application are given in previous 
chapters. 
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captures unobserved attributes influencing the farmer’s decision. The distinction between 1ix  and 1iz  is 

that the latter variables do not enter the subsequent fertilizer application level variables and, hence, 

serve as instrumental variables. While the latent variable is not observed, we do observe the binary 

outcome iF , where: 

*

*

1, 0
0, 0.

i
i

i

F
F

F
⎧ >

= ⎨
≤⎩

 

The fall fertilizer consumption decision is similarly driven by a latent variable *
F iY , where 

*
2 2 2F i i iY x β ε= + . 

However, fertilizer application levels are only observed if the farmer has passed the participation 

hurdle; i.e., one observes 

* * 0
0

F i i
Fi

Y if F
Y

otherwise
⎧ >

= ⎨
⎩

 

So, final system to estimate, for the case of quadratic production function, looks like: 

( ) ( )

*
1 1 1 1 1

*
2 2 2

2* * 2 *
0 1 2 3 4 5

i i i i

F i i i

i F i F i i i F i i

FA x z

Y x

f Y a a Y a Y a Y a Y a Y Y

β α ε

β ε

= + +

= +

= + + + + +

 

Independent variables consist of farm and operator characteristics, cropping history, and soil quality 

determinants. It is assumed that set of variables governing the farmer’s decision making regarding fall 

fertilizer application is the same as the set used to explain the amount of nitrogen fertilizer applied in 

fall (though I allow the associated parameters to differ). As noted above, for identification purposes it is 

necessary to include instrumental variables (denoted by 1iz ) into the fall participation latent variable 

(i.e., *
iF ). The opportunity cost of labor is significantly higher during the late spring and growing 

season than during the fall (Huang, Hewitt, and Shank, 1998; Randall and Schmitt, 1998; Dinnes et al., 
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2002). Therefore, the off-farm employment of the farmer can be used as an instrumental variable 

specific for fall fertilizer application. The variable OFF-FARM represents the number of days worked 

off farm. Working off-farm leaves less time for a farmer to work in the field, particularly during pre-

planting and the planting season when a lot of work needs to be done in a short period of time. Working 

off-farm therefore increases a farmer’s risk of not being able to finish everything on time and increases 

the opportunity cost of time for a farmer during the planting season. As a result, a farmer who works 

off-farm has higher probability  to apply fertilizer in the fall.  

Operator characteristics include formal schooling. A discrete variable describes farmer’s 

education and takes value of 1 if farm operator had some college education and zero otherwise. Total 

acreage operated by the farmer was included as an indicator of size of operation. The amount of 

fertilizer applied is typically determined after “credit” is given for the amount of nutrients available 

from the soil, the previous legume crop, and livestock manure applied. Once the needed amount of 

fertilizer is estimated, management decisions can be made about the fertilizer application method and 

timing. Therefore, dummy variables for whether the field received manure and whether corn was 

rotated with a legume crop are included in the model. To capture the yield differences among sites, the 

variable land capability class was used. Dummy variable was created that takes value zero if capability 

class is 1 or 2 and one otherwise. The number of days available to complete fertilizer application is 

another important consideration in deciding on timing of fertilizer application.  

Resulting system of three equations is estimated using two-stage least squares (2SLS) 

procedure. In a first stage, first two equations representing two hurdles in individual farmer’s decision 

making on whether to apply fertilizer in the fall and how much to apply, are estimated simultaneously. 

In the second stage, the production function is estimated, and in this stage amount of fall applied 

nitrogen, X, is replaced with its approximation estimated in the first stage.  The definitions of variables 

used in estimation are given in Table 4.1. Mean values and standard deviations of all variables are given 
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in Table 4.2. According to estimation results the Mitscherlich-Baule production function exhibited the 

best fit (higher R-squared). Table 4.3 presents the estimation results. 

Additional restrictions are introduced so the resulting system is identified. Value of A  is set to 

35 kg/ha=31.23 lb/acre (Bontems, Thomas, 2006; Huang et al., 1998; Huang, Shank, and Hewitt, 

1996). Nitrate leaching losses can vary from 0% to 60% of the applied nitrogen, but losses from 

common grain-production systems would range from 10% to 30% of nitrogen, therefore γ  is set to 0.7 

(Dinnes et al. 2003; Randall, Mulla, 2001). Corn price and nitrogen price are set to $2.5/bu and 

$0.17/lb, respectively. Following Wu and Babcock, I set λ  to be 0.35. 

Cost function and damage function also take quadratic form: 

( ) 2c Y dY=   ( ) ( )( ) 2
1h X e A Xα⎡ ⎤= − +⎣ ⎦  

Their choice was motivated by Bontems and Thomas (2006), parameters d  and e  are chosen to obtain 

the average values for the total nitrogen level close to its sample mean and are set to 0.15 and 0.25 

respectively. Figure 4.7 presents the damage function for different levels of primary fertilizer 

application X. 

4.5.3. Numerical Simulation Procedure  

This paragraph describes the numerical procedure used to solve for the optimal solution. The numerical 

algorithm solves for a steady point ( )Z α . The distribution function for the farmer type is assumed 

uniform in [ ]0,1 . The details of the algorithm are as follows: 

Step 1:  Generate 100 values for α  in the interval [ ]0,1 , and choose initial values for fall fertilizer 

application 0X  (mean value of fall fertilizer application),  and initial  value for quota Z , 

( )0 350 1Z α= − .  
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Step 2:  For every value of α  compute multipliers κ  and ( )υ α . Corresponding integrals are 

calculated using Monte-Carlo simulations.  

Step 3:  Solve for X  using a numerical root-finding method (bisection, for example).  

Step 4: Compute the next value of Z , as a solution to part ( )i  in Lemma 3:  

( ) ( ) ( )/ / /Z Z XZ Zpf w c U pf g pfακ π λ υ λ′= + − −    

Step 5:   Update parameters and variable paths, using a smoothing technique allowing for faster 

convergence. The smoothing parameter, weighting the new value as opposed to the former one, is set to 

0.6. The algorithm stops when convergence criteria are met, i.e., when the relative change in fall and 

total amount of fertilizer applied is less than 1.0E-6. 

4.5.4. Results 

To see how presence of contract affects levels of nitrogen applied in fall and in total, several cases are 

considered in simulation process.  

1. Private equilibrium: solution to the risk-neutral farmer’s problem with 0T = ; 

2. Social equilibrium: perfect information case; 

3. Social equilibrium: imperfect information for risk-neutral farmer; 

4. Social equilibrium: imperfect information for risk-averse farmer ( )4ρ = . 

Table 4.4 presents the estimations of X, initial nitrogen application in the fall. Results show that under 

regulation initial nitrogen application in the fall is lower that in the private equilibrium. Farmers tend to 

overapply nitrogen in the fall, and, as a result, regulator has to decrease initial nitrogen application 

compared to private equilibrium. Figure 4.1 presents optimal nitrogen paths ( )Z α  for all cases. Private 

equilibrium solution is reported for the case of risk neutrality. Private equilibrium and perfect 

information nitrogen paths do decrease over the interval [ ],α α . Regulation under perfect information 
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allows for the higher level of total nitrogen for every farmer compared to the imperfect information 

equilibrium.  

For the risk neutrality case under imperfect information, there is a lower level of total nitrogen 

over the entire range of α  compared to the private equilibrium and perfect information cases. In the 

risk neutrality case due to the cost of hidden information and moral hazard, the regulator needs to 

reduce the level Z  of total nitrogen so that the constraint Z X≥  is binding for all values of α . Also, 

risk-neutral farmers are partly compensated by the level of X  higher than in the private equilibrium. 

So, in case of risk neutrality, distortions are such that the optimal policy is uniform for all farmers.  

For the risk aversity case, the optimal nitrogen level is also lower than the perfect information 

level. Again, because of the moral hazard, regulator needs to reduce the level Z  of total nitrogen. 

Figure 4.3 presents optimal nitrogen levels for two different risk aversity parameters 4ρ =  and 2ρ =  

to see how risk aversity affects level of nitrogen application. Results show that as risk aversity 

parameter increases so does the level of nitrogen application.  

In all contract cases there is a lower level of total nitrogen over the entire range of α  compared 

to the private equilibrium. This results is similar to the result obtained by Wu and Babcock and that 

postulates that compared to the policy that eliminates all farm programs, the payment program 

(contract) reduces input use and pollution. 

Figure 4.2 presents transfers as a function of the total nitrogen application Z. It shows that all 

farmers are taxed when information is perfect.  

In case of imperfect information two distortions are added to the condition determining the 

screening variable Z , compared to the perfect information case. This is because the agency has to take 

into account two sets of constraints due to unobservability of both fall nitrogen application X  (moral 

hazard constraint defined by ( ) XZU pfκ π′− ) and the retention parameter α  (adverse selection 

constraint defined by Zpf
g α
υ

− ). Figure 4.4 presents the optimal nitrogen paths for two different cases: 
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(1) both constraints are present and (2) only adverse selection constraint is present and moral hazard 

constraint is relaxed. Results show that in case of only asymmetric information on retention parameter 

α , the distortion to optimal nitrogen level is negative which causes agency to increase the level of 

nitrogen application compared to the perfect information case. It follows that the distortion due to moral 

hazard is positive and magnitude of it is bigger than the one of distortion due to asymmetric information 

on retention parameter α . As a result, in case when both constrains are present, agency has to decrease 

the level of total nitrogen application compared to the perfect information case. 

Some of fertilizer applied in fall and early spring leaches by planting season. The fraction of 

fertilizer available to the plant at planting is captured by parameter γ , the value of which is not known 

when the contract is signed neither to the farmer nor to agency. Figure 4.5 presents the optimal nitrogen 

paths for two different values of parameter γ : 0.7γ =  and 0.4γ = . Results show that the lower the 

fraction of nitrogen available to the plant, the higher the total amount of nitrogen application level. 

Finally, Figure 4.6 presents the optimal nitrogen paths for two different values of λ  - the opportunity 

cost of public funds. Results show that the higher the opportunity cost of public funds the higher the 

total amount of nitrogen application level. 

4.6. Conclusions 

This chapter presents a contract between environmental agency and a farmer that accounts for 

asymmetric information and moral hazard. Farmer privately observes the soil capacity in retaining 

nitrogen after contract is signed. The optimal contract specifies a quota for total nitrogen use, however, 

regulator does not know the amount of fertilizer applied in the fall and spring separately. The 

characteristics of optimal solutions are derived under general assumptions of farmer utility function, 

nitrogen damage function, and cost of spring nitrogen application. Moreover, the farmer’s sequential 

decision model is estimated on ARMS crop production data for year 2001. Results of this model are 

used to simulate the optimal contract.  
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 Compared to the perfect information case two distortions are added to the condition 

determining the optimal level of total nitrogen. This is because the regulator has to take into account 

two sets of constraints due to the unobservability of both the fall nitrogen application X  and nitrogen 

retention parameter α . The directions of both distortions depend on particular specification of the 

model. In empirical application there is underproduction at the top compared to the perfect information 

outcome. 

 Additionally, simulation results have confirmed the finding of Wu and Babcock: compared to 

the policy that eliminates all farm programs, the payment program (contract) reduces input use and 

pollution. 
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Appendix: 

Proof of Lemma 1: By definition, a contract schedule is self-selecting only if farmers maximize their 

net returns by reporting their true environmental characteristics. Incentive compatibility constraint 

)ˆ,(),()( ααπααπαπ ≥≡  αα ˆ,∀∀    

where ( )ˆ ˆ ˆ ˆ ˆ( , ) ( , , ( )) ( ) c , ( ) ( )pf X Z wZ X Z Tπ α α α α α α α= − − +  ensures that every farmer will 

correctly reveal his/her type. Thus, if ( ) ( ){ }, :T Zα α α α α≤ ≤  is self-selecting, then α  should be 

solution to the following maximization problem: 

( ) ( )
ˆ

ˆ ˆ ˆ ˆ ˆmax , ( , , ( )) ( ) c , ( ) ( )pf X Z wZ X Z T
α

π α α α α α α α= − − +  

Consequently, α  must satisfy the first-order and second-order conditions. First and second order 

derivatives of profit function evaluated at α̂ α=  are: 

(1) 
ˆ

0
ˆ z z

z z z Tpf w c
α α

π
α α α α α=

∂ ∂ ∂ ∂ ∂
= − − + =

∂ ∂ ∂ ∂ ∂
                                                                 

(2) 
( )

2 22 2 2 2 2

2 2 2 2 2

ˆ

0
ˆ zz z zz z

z z z z z Tp f f w c c
α α

π
α α α α α αα

=

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + − − − + ≤⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠∂ ⎢ ⎥⎣ ⎦
. 

From equation (1) follows condition (b) of lemma 1. To obtain condition (a), note that the agency 

selects the combination of input level and payment level for each α  so that the farmer, who is selecting 

the optimal α̂  given that his actual retention parameter is α , will actually select his true α . Because 

equation (1) is true for any α , the left-hand side of this equation must be identical to zero. Therefore, 

its derivative with respect to α  must also be identical to zero. 

Taking derivative of first-order condition with respect to α  yields: 

 
2 22 2 2 2

2 2 2 2 0z zz z zz z
z z z z z z Tpf pf pf w c cα α α α α α α α
∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + − − − + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

Taking into account the second-order derivative (2) gives: 
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 (3) 0z
zpf α α
∂

≥
∂

   

Condition (a) follows because of the single-crossing condition 
2

0f
Zα

∂
<

∂ ∂
. Thus, the optimal quote is 

non-increasing in α . To show that any payment scheme satisfying conditions (a) and (b) is self-

selecting, let any  α  and  [ ]ˆ ,α α α∈ ,  

(4) 
( )

ˆ

, ,
ˆ( , , ) ( , , )

X
X X d

α

α

π α θ
π α α π α α θ

θ
∂

− =
∂∫       

where  

(5)  
( ), ,

Z Z

X z z z Tpf w c
π α θ

θ θ θ θ θ
∂ ∂ ∂ ∂ ∂

= − − +
∂ ∂ ∂ ∂ ∂

    

From condition (b), ( ) ( )( ) ( )( ) ( ), ,Z ZT pf Z w c Z Zθ θ θ θ θ θ⎡ ⎤′ ′= − − −⎣ ⎦ . Substituting this 

expression into equation (5) gives 

( ) ( )( ) ( )( ), ,
, ,Z Z

X zp f Z f Z
π α θ

α θ θ θ
θ θ

∂ ∂⎡ ⎤= −⎣ ⎦∂ ∂
   

If ˆα α≥ , then ( )( ) ( )( ), , 0Z Zf Z f Zα θ θ θ− ≤  because of single-crossing condition  
2

0f
Zα

∂
<

∂ ∂
 

and [ ]ˆ,θ α α∈ . Also, by condition (a), ( ) 0Z α′ ≤ . Therefore, the expression in integral (4) is non-

negative and ˆ( , , ) ( , , ) 0X Xπ α α π α α− ≥ . If ˆα α≤ , then the expression in integral (4) is non-

positive but  ˆ( , , ) ( , , ) 0X Xπ α α π α α− ≥  still holds because the direction of integration is backwards. 

Thus, when conditions (a) and (b) hold, the contract schedule is self-selecting.     

Proof of Lemma 2: Derivative of profit with respect to α  is: 

Z Z
z z z Tpf pf w cα

π
α α α α α
∂ ∂ ∂ ∂ ∂

= + − − +
∂ ∂ ∂ ∂ ∂

 

and taking into account (1), reduces it to   
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(6) pfα
π
α
∂

=
∂

                                          

Then, taking into account (3), the incentive compatibility constraint under single-crossing condition can 

be reduced to the following set of conditions: 

pfα
π
α
∂

=
∂

    and   0z
zf α α
∂

≥
∂

                                                                               

where pfα  is the marginal value product of the leaching process. Thus, the payment schedule should be 

determined such that farmers with a higher parameter α  (lower leaching process) receive a larger total 

return (agency payment plus production profits). Otherwise, farmers with less leaching will have an 

incentive to claim that their leaching is high because they can always get a larger total return than 

farmers with high leaching soil by choosing their contracts. Moreover, given that π ′  is strictly positive 

as indicated by (6), constraint (IR) reduces to: 

(7)  ( ), 0Xπ α ≥                                                                                                                   

Proof of Lemma 3: Now, redefine X  as a state variable with respect to α , where 0X =  and 

( ) ( )X Xα α= .  The moral hazard constraint on X  could be rewritten as: 

 (8) 
( )( ) ( )

,
0

U X
dG

X

α

α

π α
α

⎡ ⎤∂
=⎢ ⎥

∂⎢ ⎥⎣ ⎦
∫                                                                                        

To verify that second order condition is satisfied consider the second derivative: 

( )( ) ( ) ( )( ) ( )
2 2

2 2

, ( , , ( )) ( ) , ( ) ( )
=   

U X U pf X Z wZ c X Z T
dG dG

X X

α α

α α

π α α α α α α
α α

⎡ ⎤ ⎡ ⎤∂ ∂ − − +
=⎢ ⎥ ⎢ ⎥

∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∫ ∫     

 ( )  

U f cp
X X dG

X

α

α

π α

⎡ ⎤∂ ∂ ∂⎛ ⎞⎛ ⎞∂ −⎜ ⎟⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠⎢ ⎥ =
∂⎢ ⎥

⎢ ⎥
⎣ ⎦

∫     
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     ( )
2 22 2 2

2 2 2
U f c U f cp p dG

X X X X

α

α

α
π π

⎛ ⎞⎧ ⎫ ⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞− + −⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎩ ⎭⎪ ⎪⎩ ⎭⎝ ⎠
∫                        

Since utility function U is monotonic, increasing and strictly concave, 
2

2 0f
X
∂

≤
∂

 and 
2

2 0c
X
∂

≥
∂

, for 

second derivative to have negative sign it is necessary that 
2 2

0f cp
X X
∂ ∂⎛ ⎞ ⎛ ⎞− ≥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

, which means that 

marginal private benefit from additional fertilizer applied in fall should be higher than reduction in 

marginal opportunity cost of spring applied fertilizer because of higher application rate in fall.  Then (5) 

could be rewritten as follows 

( )( ) ( ) ( )
,

0
U X

dG MdG
X

α α

α α

π α
α α

⎡ ⎤∂
= =⎢ ⎥

∂⎢ ⎥⎣ ⎦
∫ ∫                                                                                        

where ( )( ) ( ) ( )( ) ( ) ( )( ), , ,X XM U pf X Z c X Zπ α α α α α α⎡ ⎤′= −⎣ ⎦ .  To deal with this integral 

constraint, define new state variable as follows 

( ) ( ) ( )( ) ( ), , ,K M X Z gα α α π α α=    with ( ) ( ) 0K Kα α= = . 

Define Z ψ= −  where ψ  is a control variable and Z is redefined as a state variable. Then condition 

(a) from Lemma 1 becomes  0ψ ≥ . 

Denote by  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( )

, , , , , , ,

,

W X Z S X Z pf X Z

wZ c X Z

α α α π α α α α λ α α α

λ π α α α α

= +

− + +
 

Then, the agency problem (AP) could be transformed into an optimal control problem: 

( ) ( ) ( )( ) ( )max , , ,W X Z dG
α

ψ
α

α α α π α α∫  

 s.t.                      0X =                                                          ( )μ  
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                            ( ) ( )( ), ,pf X Zαπ α α α=                           ( )υ  

      Z ψ= −                                                        ( )σ  

      ( ) ( ) ( )( ) ( ), , ,K M X Z gα α α π α α=     ( )κ  

      ( ) ( ) 0Z Xα α− ≥                                      ( )1ξ  

      ( ) 0ψ α ≥                                                    ( )2ξ  

                            ( ) 0X α ≥                                                      ( )3ξ  

                            ( )X Xα =  

      ( ) 0π α ≥  

      ( ) ( ) 0K Kα α= = . 

The Lagrangean for this problem is: 

( ) ( )( ) ( ) ( )( ){
( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )}

1

2 3

, , , ,

,

, ,

, , ,

L S X Z pf X Z

wZ c X Z g X

pf X Z Z

M X Z g K Z X

X d

α

α

α

α α α λ α α α

λ π α α α α α μ α

υ α α α α π α σ α ψ α

κ α α α α π α α ξ α α α

ξ α ψ α ξ α α α

⎡= + −⎣

⎤ ′+ − − +⎦

′ ′− − + +

− + − +

+

∫

  

Integrating by parts and applying the initial terminal conditions gives: 

( ) ( ) ( ) ( ) ,X d X d
α α

α α

μ α α α μ α α α′ ′= −∫ ∫  

( ) ( ) ( ) ( )K d K d
α α

α α

κ α α α κ α α α′ ′= −∫ ∫ , 
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( ) ( ) ( ) ( )Z d Z d
α α

α α

σ α α α σ α α α′ ′= −∫ ∫ , 

because ( ) ( ) 0σ α σ α= =  ( ( )Z α  and ( )Z α  are free) and  ( ) ( ) 0μ α μ α= =  ( ( )X Xα =  and  

( )X α  is free). 

Thus, after plugging these expressions into the Lagrangian and omitting α  for simplicity, it becomes 

( ), , , , , ,L H X Z K d
α

α

α π π ψ α′= ∫   

where 

  
( ) ( ) ( )( )

( ) ( )1 2 3

, , , , , , , , , , ,

, , ,

H X Z K W X Z g pf X Z X

Z M X Z g K Z X X
αα π π ψ α π υ α π μ

σψ σ κ α π κ ξ ξ ψ ξ

′ ′ ′= + − +

′ ′− + + + + − + +
 

Then, pointwise maximizations give the following necessary conditions: 

(9)   2 0H σ ξ
ψ
∂

= − + ≤
∂

   and if  2 0σ ξ− + <  then 0ψ = .   

Moreover, there is a complementary slackness condition: 

2 0, 0ξ ψ≥ ≥   and 2 0ξ ψ =  

So that, whenever 0ψ > , then ( ) ( )2 0σ α ξ α= = .  

(10)  1 3 0X X X
H W g pf M g
X αυ μ κ ξ ξ∂ ′= + + + − + =
∂

,    

(11)  ( )0H
K

κ κ α κ∂ ′= = ⇒ =
∂

 everywhere,     

(12)  1 0Z Z Z
H W g pf M g
Z αυ σ κ ξ∂ ′= + + + + =
∂

     

with the following slackness conditions: 

1 0, 0Z Xξ ≥ − ≥  and ( )1 0Z Xξ − = , 
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3 0, 0Xξ ≥ ≥  and  3 0Xξ = , 

And transversality conditions: 

(13) ( ) ( ) 0σ α σ α= = ,            ( ) ( ) 0μ α μ α= =     

With regard to π , consider the derivative of L  with respect to π  in the direction of any arbitrary 

differentiable function ( )l α  satisfying ( ) 0l α >  and ( ) 0l α = . Let’s define ( ) ( ) ( )tlπ α π α α= +  

with t  a real number and ( ) ( )I t L tlπ= + . Assume that π  is optimal which means that function I  is 

maximum at 0, then a necessary condition is ( )0 0I ′ =  which can be written as follows: 

 ( ) ( ) ( )
0

0 lim
t

L tl LLI l
t

π π
π →

+ −∂′ ≡ = =
∂

 

( ) ( ){ }X Xlg l pf c U lg d
α

α

λ υ κ π α′ ′′− + − −∫  

or 

(14) ( ) ( ) 0X Xpf c U lgd l d
α α

α α

λ κ π α υ α′′ ′⎡ ⎤− − − − =⎣ ⎦∫ ∫                                      

Denote by 

( ) ( ) ( )( ) ( )X XB pf c U u g u du
α

α

α λ κ π⎡ ⎤′′= − − −⎣ ⎦∫  

Then (14) can be rewritten as  

( ) ( ) ( ) ( ) 0B l d l d
α α

α α

α α α υ α α α′ ′− − =∫ ∫  

Integrating by parts the first integral and rearranging terms gives: 

(15) ( ) ( ) ( ) ( )( ) ( ) 0B l B l d
α

α

α
α

α α α υ α α α′− + − =⎡ ⎤⎣ ⎦ ∫                                            



122

Since l  is arbitrary, it can be chosen so that ( ) 0l α = .  Moreover, ( ) 0.B α =  

Finally (15) implies that  

( ) ( )Bυ α α= ,   

or   

 (16) ( ) ( )g u du
α

α

υ α λ= −∫  

 ( ) ( )( ) ( ) ( )( ){ } ( )( ) ( ), , , .X Xpf u X u Z u c X u Z u U u g u du
α

α

κ π′′+ −∫                                         

Plugging (16) into (10) and assuming an interior solution for X  and ( )1 3 0Z ξ ξ= =  gives: 

( )XW g g u du
α

α

μ λ
⎡

′ = − − −⎢
⎣
∫  

   ( ) ( )( ) ( ) ( )( ){ } ( )( ) ( ), , , .X X X Xpf u X u Z u c X u Z u U u g u du pf M g
α

α
α

κ π κ
⎤

′′+ − −⎥
⎦

∫  

Integrating and using (13), yields: 

0 X Xd W g gdu pf d
α α α

α
α α α

μ α λ α
⎧ ⎫⎛ ⎞⎪ ⎪′ = = −⎜ ⎟⎨ ⎬
⎪ ⎪⎝ ⎠⎩ ⎭

∫ ∫ ∫  

{ } ( ) ( ) .X X X Xpf c U g u du pf M g d
α α

α
α α

κ π α
⎧ ⎫⎛ ⎞⎪ ⎪′′+ − +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭
∫ ∫  

Thus, the co-state variable κ  is equal to: 

{ } ( ) ( )

X X

X X X X

W g gdu pf d

pf c U g u du pf M g d

α α

α
α α

α α

α
α α

λ α

κ

π α

⎧ ⎫⎛ ⎞⎪ ⎪+ ⎜ ⎟⎨ ⎬
⎪ ⎪⎝ ⎠⎩ ⎭= −

⎧ ⎫⎛ ⎞⎪ ⎪′′− +⎜ ⎟⎨ ⎬
⎪ ⎪⎝ ⎠⎩ ⎭

∫ ∫

∫ ∫
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and the co-state variable ( )υ α  is given by (16). Plugging these values in (12) and recalling that in the 

no pooling case ( ) ( )0 0σ α σ α′= ⇒ =  gives ( )i  for an interior solution. The first order condition of 

farmer’s program with respect to X  gives ( )ii . Finally, integrating (6) gives ( )iii  which means that 

strictly positive information rent is left to any farmer with retention parameter α α> .  

Proof of Lemma 4: By using condition (b) of lemma 1 ( )T α  could be rewritten as 

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ), , ,Z ZT T T d T pf X Z w c X Z Z d
α α

α α

α α θ θ α θ θ θ θ θ⎡ ⎤′ ′= + = − − −⎣ ⎦∫ ∫    

Since a self-selecting contract should not allow more input use on soil with a low leaching process 

(high values of α ) that follows from condition (a) of lemma 1, optimal payment scheme should offer 

higher payments to motivate farmers with low leaching soil to use less of input. 
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Table 4.1. Definitions of Variables 
    

Variables Definition 
Yield  Corn yield per acre (bu) 

Fall fertilizer application Fertilizer applied in fall (1=yes, 0=no) 
Nitrogen application rate in fall Amount of nitrogen applied (pounds) 

Nitrogen application rate in spring Amount of nitrogen applied (pounds) 

College education 
Farm operator had some college education 
(1=yes, 0=no) 

Off-farm employment Farmer worked off-farm (1=yes, 0=no) 
Field acreage Number of acres in farm 

Land capability class Land capability class is 1 or 2 (1=yes, 0=no) 
Manure applied Manure was applied in field (1=yes, 0=no)  

Rotation 
Corn was rotated with a legume crop 
(1=yes, 0=no) 

Fieldwork days in fall Number of days available for a fieldwork 
Fertilizer price in fall Fertilizer price in fall ($/lb) 

 
 
 
 
Table 4.2. Descriptive Statistics of Variables  
    

Variables Units Mean St. dev. 
Yield Number 138.2 100.45 

Fall fertilizer application Number 0.18 0.012 
Nitrogen application rate in fall Lb/acre 83.46 3.64 

Nitrogen application rate in spring Lb/acre 132.5 2.86 
College education Number 0.40 0.015 

Off-farm employment Number 0.60 0.046 
Field acreage Acres 68.45 1.425 

Land capability class Number 0.74 0.04 
Manure applied Number 0.18 0.004 

Rotation Number 0.73 0.012 
Fieldwork days in fall Days 20.64 2.125 
Fertilizer price in fall $ per lb 0.14 0.01 

Dummy for IL Number 0.28 0.09 
Dummy for IN Number 0.28 0.07 
Dummy for OH Number 0.27 0.08 
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Table 4.3. Coefficient Estimates for the Mitscherlich-
Baule Production Function 

Variable Parameter Bootstrap St.Err. 

1α  182.63** 3.65 

2α  12.86** 1.24 

3α  0.013** 0.004 

3α  0.021* 0.009 
adj. R2= 0.636  
Note: (**) – indicates significance at the 1% level and  
(*) – indicates significance at the 5% level       
 
 

Table 4.4. Simulation Results  
Case X 

Private equilibrium 125.71 
Perfect information 22.47 

Risk neutrality 34.86 
Risk aversity 47.22 

 
 

Figure 4.1. Optimal Path for Total Nitrogen Z 
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Figure 1: Optimal path for Total Nitrogen Z
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Figure 4.2. Transfer Payment  
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Figure 2: Risk aversity case

 
 

Figure 4.3. Optimal Path for Total Nitrogen Z 
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Figure 3: Optimal path for Total Nitrogen Z
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Figure 4.4. Optimal Path for Total Nitrogen Z 
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Figure 4: Optimal path for Total Nitrogen Z
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Figure 4.5. Optimal Path for Total Nitrogen Z 



129

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

40 

80 

120

160

200

240

280

alpha

To
ta

l N
itr

og
en

 Z
Figure 5: Optimal path for Total Nitrogen Z
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Figure 4.6. Optimal Path for Total Nitrogen Z 
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Figure 6: Optimal path for Total Nitrogen Z
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Figure 4.7. Damage function 
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