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ABSTRACT 

 

This dissertation consists of three papers, each regarding a particular aspect of the 

relationship between energy and agriculture. The objective of the first paper is to create a 

model that will enhance informed policy decisions regarding the bioeconomy.  A forward-

looking stochastic model captures the effect of uncertainty in crude oil prices and commodity 

yields on biofuel industry development.  Acreage limitations on feedstocks such as corn, 

soybeans, and switchgrass are shown to create competition for acreage among the crops. 

Investors in the model are rational in the sense that they engage in biofuel production only if 

returns exceed what they expect to earn from alternative investments.  

The Energy Independence and Security Act of 2007 mandates the use of 36 billion 

gallons of biofuels by 2022 with significant requirements for cellulosic biofuel and biodiesel 

production.  In the model, the price wedge created by mandated biofuel production at these 

levels is $2.50 per gallon for biodiesel and $1.07 per gallon for cellulosic biofuel. Long-run 

commodity prices were high in our simulation, with corn at $7.38 per bushel and soybeans at 

$19.57 per bushel. Intense competition for planted acreage drives the high commodity prices. 

  The second paper develops a model of the corn, soybean, and wheat markets to 

calculate welfare effects of increased biofuel production in the United States.  Demand is 

disaggregated into livestock feed, food, energy.  Uncertain crop yields permit the valuation of 

farm deficiency payments as options.  Incorporating soybean and wheat markets capture 

indirect welfare effects through equilibrium price increases.  Net welfare loss ranges from 

$200 million to $750 million depending on the size of biofuel increase.  Consumers make a 
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sizable transfer to farmers.  The sign of the net costs to taxpayers depends on the size of the 

biofuel industry. 

 In the third paper, the nature of the relationship between corn and ethanol prices is 

explored.  Economic fundamentals should require that the price of corn and ethanol maintain 

a long run equilibrium relationship.  The relationship is driven by a long run condition that 

says entry and exit in the industry will occur maintaining no sustained profits or losses for the 

industry.  Both ethanol producers and traditional users of corn have a stake in the behavior of 

these markets, and their profitability will rely on their ability to determine accurately this 

relationship.  I test for cointegration of these price series and find evidence that corn and 

ethanol prices are indeed maintain an equilibrium relationship.   

Statistical cointegration tests are known to have problems in small samples.  This is a 

potential issue in interpreting the results mentioned above because ethanol production only 

recently constituted a significant portion of the corn crop.  With only a few years of the most 

recent data for which we suspect that an equilibrium relationship existed the small sample 

properties of cointegration tests are important particularly in this application.  A Monte Carlo 

study tailored to mimic our actual data set is conducted.  I find that the corn and ethanol price 

series are not long enough to rely on the asymptotic properties of the cointegration statistics, 

and therefore one should use small sample critical values in this kind of analysis. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

Introduction 

It is clear that agricultural markets are increasingly interdependent with energy markets.  U.S. 

agriculture has long been a consumer of energy as an input, but with increased biofuel 

production stimulated by high transportation fuel prices and governmental mandates 

agriculture is becoming a major producer of energy as well.  This new facet in the 

relationship between agriculture and energy markets presents challenges and opportunities 

for individual producers of agricultural commodities and policy makers.  This dissertation 

will explore the nature of these new relationships, what they mean to with regard to existing 

policies and to traditional players in agricultural markets. 

 The U.S. government‘s biofuel policy has been a mix of per unit tax credits and 

annual usage mandates.  Increasing biofuel production from commodities grown on a 

(nearly) fixed amount of land has profound implications for both the traditional users of the 

commodities and for the cost to the taxpayer to maintain these programs.   

 On one hand, a production mandate requires a certain quantity of corn, soybeans, or 

cellulosic feedstock be devoted to biofuel production.  With a (nearly) fixed quantity of land 

in agricultural production, a binding biofuel mandate causes prices of all agricultural 

commodities to rise.  This means that the cost of producing biofuels increases since the 

largest cost is in purchasing feedstock, which causes the level of support required in the form 

of tax credits and subsidies to increase to keep biofuel producers in production.   

 It has been argued that increased commodity prices caused by biofuel production 

have decreased taxpayer‘s liability in farm programs in the form of loan deficiency payments 
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and counter cyclical payments.  The analysis in this dissertation finds that in fact, increasing 

biofuel production has a nonlinear effect on farm program liabilities.  A little bit of biofuel 

production increases commodity prices out of the range where they are likely to trigger farm 

program payments, but once commodity prices are high enough further increase makes 

almost no difference in the taxpayer‘s expected payment to the farmer because this value is 

already almost zero.  

 Further, previous research into the welfare effects of U.S. biofuel policy has focused 

primarily on the welfare effects driven by action in the energy markets.  This dissertation 

focuses on welfare transfers occurring in the agricultural markets, disaggregating demands to 

show the relative size of transfer among different commodity using sectors.  Further, in this 

dissertation indirect welfare effects are considered in the soybean and wheat markets whereas 

previous literature only discusses welfare effects in the corn market. 

 This dissertation partially fills a gap left by previous research concerning the evolving 

relationship of energy and agriculture.  It attempts to provide insight into the way biofuel 

policy affects commodity markets, existing farm programs, and the welfare effects felt by 

economic agents in these markets.   

  

Dissertation Organization 

This dissertation is organized into five chapters.  The present chapter contains a general 

introduction into the subject at hand, including motivation as to why the joint study of energy 

and agriculture is needed, and a describes the general organization of the dissertation.  

Chapters two, three, and four are each concerned with a specific question regarding the 
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relationship of energy and agriculture.  Each of these chapters can be read independently as 

they are largely self contained.   

 In chapter 2 the objective is to create a model that will enhance informed policy 

decisions regarding the bioeconomy.  A forward-looking stochastic model captures the effect 

of uncertainty in crude oil prices and commodity yields on biofuel industry development.  

Acreage limitations on feedstocks such as corn, soybeans, and switchgrass create competition 

for acreage among the crops, which has to be taken into account. Investors in the model are 

rational in the sense that they engage in biofuel production only if returns exceed what they 

expect to earn from alternative investments.  These two insights drive the result that 

competition for acreage drives up commodity prices as well as increases the cost of 

supporting biofuel industries which rely on land intensive crops.   

 Chapter 3 develops a model of the corn, soybean, and wheat markets to calculate 

welfare effects of increased biofuel production in the United States.  Demand is 

disaggregated into livestock feed, food, energy.  Uncertain crop yields permit the valuation of 

farm deficiency payments as options.  Incorporating soybean and wheat markets capture 

indirect welfare effects through equilibrium price increases.  Net welfare loss ranges from 

$200 million to $750 million depending on the size of biofuel increase.  Consumers make a 

sizable transfer to farmers.  The sign of the net costs to taxpayers depends on the size of the 

biofuel industry. 

 In chapter 4 the nature of the relationship between corn and ethanol prices is 

explored.  Economic fundamentals should require that the price of corn and ethanol maintain 

a long run equilibrium relationship.  The relationship is driven by a long run condition that 

says entry and exit in the industry will occur maintaining no sustained profits or losses for the 
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industry.  Both ethanol producers and traditional users of corn have a stake in the behavior of 

these markets, and their profitability will rely on their ability to determine accurately this 

relationship.  I test for cointegration of these price series and find evidence that corn and 

ethanol prices are indeed maintain an equilibrium relationship.   

Statistical cointegration tests are known to have problems in small samples.  This is a 

potential issue in interpreting the results mentioned above because ethanol production only 

recently constituted a significant portion of the corn crop.  With only a few years of the most 

recent data for which we suspect that an equilibrium relationship existed the small sample 

properties of cointegration tests are important particularly in this application.  A Monte Carlo 

study tailored to mimic our actual data set is conducted.  I find that the corn and ethanol price 

series are not likely long enough to rely on the asymptotic properties of the cointegration 

statistics, and therefore one should use small sample critical values in this kind of analysis. 

 The final chapter contains general conclusions of the dissertation, and summarizes the 

most interesting findings. 
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CHAPTER 2: CROP-BASED BIOFUEL PRODUCTION WITH ACREAGE 

CONSTRAINTS AND UNCERTAINTY  

 

 

Introduction 

Congress signed into law the Energy Independence and Security Act (EISA) in December 

2007.
1
 The Renewable Fuel Standard, or RFS, in the EISA mandated the use of 36 billion 

gallons of biofuels by 2022, of which 15 billion gallons can come from corn-based ethanol 

and 21 billion must come from advanced biofuels — including 16 billion of cellulosic 

biofuels and 1 billion from biomass based diesel. The text of the act provides specific year-

by-year ramp up targets, even though growth in the production of corn-based ethanol already 

was strong. In the year 2000, corn-based ethanol production was 1.63 billion gallons, and by 

the end of 2007 production reached 6.50 billion gallons.
2
  The increase in corn-based ethanol 

production led to record high nominal corn prices in 2008, and competition for acreage 

transferred the demand pressure in corn markets to other crops — soybeans and hay, for 

example — causing the prices of these to increase as well.  This paper examines the 

incentives required to encourage production of the mandated quantities of biofuels and 

explore the impact of these on U.S. agriculture. 

We present a model based on the assumption that one can predict biofuel production 

levels if one understands the factors influencing the decisions made by agents in the 

economy. Farmers make planting decisions based on expected market prices. Further, 

                                                           
1
 HR 6, The Energy Independence and Security Act of 2007, available at  

http://thomas.loc.gov/cgi-bin/bdquery/z?d110:h.r.00006: 

2
 Industry reported levels found at http://www.ethanolrfa.org/industry/statistics/ 

http://thomas.loc.gov/cgi-bin/bdquery/z?d110:h.r.00006:
http://www.ethanolrfa.org/industry/statistics/
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farmers recognize that land devoted to biofuel feedstock production has an opportunity cost, 

they will only grow biofuel feedstock such as switchgrass for cellulosic ethanol production if 

it is profitable to do so. Investors who build biofuel plants do so only if they expect a risk-

adjusted return on par with or superior to investments made elsewhere in the economy. 

Existing plants operate only if the marginal cost of production is less than the value of 

output. Those who blend and use biofuels do so only if the market price of ethanol is less 

than the prices of alternatives. 

Taking each decision just described, as well as parameters and data from the 

literature, we model the decisions of relevant agents in the economy and the market forces 

guiding them. We combine the resulting sub-models within a stochastic simulation model of 

U.S. crop and biofuel markets and calibrate it to reflect actual market conditions as of the 

spring of 2008. We evaluate the response of market participants to changes in incentives 

using this model.  

The expansion of biofuel production happened quickly, and over a short number of 

growing seasons.  The short amount of time for which data is available creates challenges in 

estimating an econometric model, but policymakers still need a tool with which to look 

forward.  In order to help fill this gap we develop a model that simulates the decisions of 

important players in the economy; providing insight about the implications of many policy 

choices. 

 

Previous Literature 

Elobeid et al. (2007) provided the first comprehensive model of the bioeconomy. Later, 

Tokgoz et al. (2007) expand this work, strengthening some of its elements. They include 
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equilibrium relationships for prices of biofuel co-products, most notably distillers grains. 

Both use the world agricultural model from the Food and Agricultural Policy Research 

Institute (FAPRI) to determine the potential size of the corn-based ethanol sector and to 

describe how it affects crop and livestock markets. First, they assume biofuel investments 

will continue until expected profit is zero, and they calculate the break-even corn price that 

drives margins on new corn-based ethanol plants to zero. Second, they assume this corn price 

clears the market, and they calculate the size of the biofuel sector required to bring about this 

price. Finally, once they determine the break even corn price, they evaluate its impact on 

U.S. and world agriculture. They ignore biofuels from cellulose and biodiesel because their 

results suggest these are not economically viable. They also ignore risks associated with 

investments in biofuel plants. 

Our model enhances this work by incorporating awareness of risk into the decision 

problem of the biofuel investor. Returns to biofuel production primarily are a function of 

energy and feedstock prices, which are uncertain. Crude oil prices are the main determinant 

of the prices of transportation fuels such as gasoline, ethanol, and diesel, and crop yields 

affect feedstock costs through its effects on equilibrium commodity prices.   

Incorporating uncertainty in crude oil prices and crop yields allows us to compare the 

risk-adjusted return in the production of each type of biofuel, determining which types are 

attractive to investors. Basing the investor‘s decision on risk-adjusted returns is more realistic 

than using a zero profit condition, which implies a risk-neutral investor. A stochastic model 

that delivers probability distributions over commodity prices and returns in the biofuel 

industry allows us to build a model in which the investor cares not only about the mean of 

returns but also about the variance.  
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The Model Economy 

The agricultural economy has three goods: corn, soybeans, and switchgrass.
 3

  Switchgrass is 

a perennial grass native to the U.S. tall-grass prairie, and scientists consider it a good 

candidate feedstock for cellulosic ethanol production (Schmer, et al., 2008).  The three major 

players in the economy are farmers, consumers (who are processors of cereal grains, oilseeds, 

and livestock), and investors. The consumers buy agricultural commodities and use them as 

input in producing either food or energy; investors can choose to build a corn ethanol plant, a 

biodiesel plant, or a switchgrass ethanol plant.  Alternatively, they can simply choose to 

invest in an alternative we call the market portfolio.  

We introduce uncertainty through agricultural commodity yields and crude oil prices 

and assume the two random variables are independent with joint probability distribution 

     ,ζ ζf g h   where ζ  is a vector of yield realizations and   is the realization of 

crude oil prices. By specifying commodity yields and crude oil prices as independent, we 

implicitly assume that shocks to domestic biofuel production do not influence world crude oil 

price shocks.  

Agents form expectations about crude oil prices and future crop yields. Farmers 

allocate acreage among corn, soybeans, and switchgrass, and investors plan long-run capacity 

in the biofuel sectors. Acreage allocation is carried out implicitly through time, and we 

                                                           
3
 We consider only corn, soybeans, and switchgrass because we focus on the decision of a 

farmer who must allocate crop ground. Other cellulosic feedstocks such as woodchips are not 

well suited to crop ground (Lewandowski et al., 2003).  



9 
 

 
 

assume that farmers choose the proportion of land in annual crops (an equilibrium corn-

soybean rotation) and land in the perennial, switchgrass. With this we avoid dealing with the 

difference in the timing of cost and payoff between the annual and perennial crops; what we 

lose in specificity in the farmer‘s yearly decision is not pertinent to the results and permits us 

to work with a cleaner model where we can focus on the long run results.  

 Supply is determined by acreage allocations and by crop yield realizations.  Demand 

for the commodities comes from the livestock feed, human food and export sectors but is 

represented in the model by an aggregate demand function.  Demand from the biofuel sectors 

is determined by production capacity, which is determined by a long run equilibrium 

condition.  We describe these components of the model in more detail below. 

 

Commodity Supply 

There exists a single representative and competitive farmer with an endowment of land, who 

takes both output prices and his cost function as given.  The farmer allocates his land to three 

different crops: corn, soybeans, and switchgrass.  The crops are indexed as follows: corn, i = 

1; soybeans, i = 2; and switchgrass, i = 3.  The endowed land is representative of total U.S. 

cropland devoted to these commodities.   

The farmer‘s per acre profit is given by 

(1)  
3

1

;i i i i i i
i

w p c  


       

where 
ip  is crop i’s output price, i  is the realized per acre yield of crop i, and i  is the 

proportion of crop land allocated to crop i.  The cost function for crop i is  ;i i ic   , where 

 is a vector of parameters defining each crop‘s cost function.  The set of parameters of the i
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cost functions of each crop are defined by  1 2 3, ,   Θ .  Aggregate (national) profit is 

then calculated by multiplying the per acre profit times the amount of acres in production. 

The farmer is risk neutral in profit; he wishes to maximize expected profit subject to 

land constraints. To this end, he chooses a land allocation vector,  1 2 3    , to solve the 

problem: 

(2)  
1 2 3, , 0
max E w

   
s.t. 

3

1

1i
i




     

If we denote for crop i the expected price by ip , the expected yield for crop i by i , and  the 

shadow value of land by  , the Kuhn-Tucker conditions for this problem are: 

   ; ;
0, 0, 0

i i i i i i

i i i i i i

i i

c c
p p

 
     

 

 

   
    
       

   

  for i = 1, 2, 3 

and 

1 2 3 1 2 31 0, 0, 1 0                         .   

 Assuming an interior solution, the first order conditions are: 

(3) 0i
i i

i

c
p 




 


   for i = 1, 2, 3 

The farmer‘s price expectations are assumed to be such that, when combined with demand, 

cause the ex-ante (but post planting) price distribution to have a mean of   1 2 3p p p p . 

The optimal acreage decisions combined with yield realizations, iζ , give the supply 

function for each crop:   

(4)    ; , , ; ,s

i i i iQ    p μ Θ p μ Θ
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Notice that both the expected output price and production cost of the other crops, 

enter each crop‘s supply function.   

 

Commodity Demand   

Demand for commodity i is denoted by  , ;d

i i iQ n p .  The demands are a function of 

commodity prices,  1 2 3p p p p , and the number of biofuel plants in operation, in .
 
 

The set of parameters defining the demand function is denoted by 
i , and the set of all three 

demand parameters is defined by  1 2 3, ,   Ω .  Later, we implement the model and 

specify functional forms for the demand equations. 

 

The Investors 

In each period, investors can choose among four different options: a corn-based ethanol 

plant, a biodiesel plant, a switchgrass ethanol plant, or an alternative investment we call the 

market portfolio — as in the capital asset pricing model (CAPM) of Sharpe (1964). The 

market portfolio functions as an option if none of the biofuel investments are attractive.  

We assume investors seek the largest risk-adjusted return on investment possible and 

we assume that there exists a riskless asset in the economy returning the risk-free rate, RFR.  

Investors use the CAPM to evaluate investment alternatives; they calculate the security 

market line to measure the required rate of return for an asset, a.  

(5)  

where M is the market portfolio and  is the expected return of the market portfolio. a

 

is 

  a a MRequired Return RFR R RFR  

MR
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defined by 

(6)  

where the variance of returns on the market portfolio is  and  is the return of asset a.  

The investors calculate the difference in the expected return and required return of asset a as 

calculated with the CAPM.  The investors choose the project with the highest excess returns 

over the required return.  However, if the difference is negative for each of the biofuel plants, 

an investor will choose to invest in the market portfolio.  As long as the biofuel industry 

earns excess returns over the required return, it will continue to attract investment, and thus 

continue to expand.    

 

Returns to Biofuel Production 

Input costs in each sector are determined by feedstock, production, and other capital costs. 

We do not consider technological advancement in the production of biofuels; non-feedstock 

production costs and capital costs are exogenous in the model. Feedstock costs are the most 

important input cost to biofuel production, and these are determined by market equilibrium. 

The annualized per gallon rate of return to producing biofuel of type a is 
 

 a

a

pergal

a i

R
q

k p


 .  

The effective price received by the plant for its product is 
 aq   ; that is, the market price 

of the biofuel plus any incentive offered by the government such as the blenders tax credit.  

(7)      a a aq p tax credit    

The market price of biofuel,  ap  , is a function of the crude oil price realization,  .  The 

 
2

,a M

a

M

Cov R R





2

M aR
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per gallon cost of producing biofuel of type a is  pergal

a ik p ,  

(8)  pergal pergal

a i i ak p p NFcost 
 

where the per gallon feedstock cost is denoted by 
pergal

ip .  That is, in the case of corn-based 

ethanol production, 1

pergalp  is the equilibrium price of corn transformed into a cost per gallon 

of ethanol, in the case of biodiesel production, 2

pergalp  is the equilibrium price of soybeans 

transformed into a cost per gallon of biodiesel, and in the case of cellulosic ethanol, 3

pergalp  is 

the equilibrium price of switchgrass transformed into a per cost per gallon of ethanol.  The 

non-feedstock cost of producing biofuel of type a is 
aNFcost ; this includes capital cost 

which is expressed per gallon and on an annual basis.  

This relationship essentially measures the annual return on capital invested over input 

costs of the plant.  Notice that the production cost depends on the realization of the 

commodity prices.  For example, in a year when crop yields are relatively poor production 

costs will be higher than expected due to high equilibrium commodity (feedstock) prices.  

Likewise, high energy prices imply high returns in the biofuel sectors because the output 

price of biofuel will be high. 

 

 Long Run Competitive Equilibrium 

In our agricultural economy, a long-run competitive equilibrium is defined by 

pricing functions  , , , ,ip ζ n Ω Θ  for  

crop demand functions  ; ,d

i iQ np Ω  for  

crop supply functions  ; ,s

iQ p Θ ζ  for  

1, 2, 3i 

1, 2, 3i 

1, 2, 3i 
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investment functions  ,in p  for   

Given the pricing functions, biofuel plants in operation, crop yield realizations, and crude oil 

prices, commodity markets clear. That is,  

(9)    ; , ; ,s d

i i iQ Q np Θ ζ p Ω for 1, 2, 3i   

The long-run equilibrium condition requires that, at the margin, the returns of each 

project equal the required risk-adjusted returns as determined by the CAPM: 

 

 

 

1

2

3

,

,

,

corn ethanol corn ethanol

biodiesel biodiesel

switch ethanol switch ethanol

R n RR

R n RR

R n RR

 

 

 







p

p

p

 

where RR is the required return to biofuel prodiction as determined by the CAPM. 

The zero excess return conditions ensure we have investment in each sector until the 

prices of feedstock (corn, soybeans, and switchgrass) are bid up to the point at which an 

investor is indifferent between any of the biofuel plants and the market portfolio.  If the 

return to biofuel production is less than the required return for all industry sizes, then 

investment equals zero in this biofuel sector.  

 

Implementing the Model        

Our question is empirical in nature. The incentives present for the biofuel industry to expand 

or contract depend on many factors, some of which are the price of crude oil, demand for 

corn and soybeans for food uses, and weather variability. Exploring more than the most basic 

results of this model requires us to specify functional forms and evaluate the results 

1, 2, 3i 
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numerically via the Monte Carlo method.
4
 We calibrated the model to spring 2008, when 

producers of corn, soybeans, and switchgrass (hay) were making acreage decisions.  

 

Algorithm for Simulating the Model 

Our strategy for simulating the economy is to specify functional forms for both crop supply 

and demand and to calibrate the distribution of crude oil prices and crop yields. A joint draw 

from these distributions implies an equilibrium price for corn, soybeans, and switchgrass and 

thus implies return levels in each biofuel industry.   The simulation algorithm is as follows: 

1) Form crop yield and crude oil price distributions and make joint draws.  

Calculate biofuel prices from the crude oil price draws 

2) Solve for the equilibrium crop prices for each draw using the market clearing 

conditions on crop supply and demand for a given level of biofuel capacity 

3) Calculate the implied distribution of returns to biofuel production using the 

biofuel prices from (1) and equilibrium crop (feedstock) prices from (2) 

4) Determine the tax credit or subsidy level on each biofuel type required in 

order for the long run (zero excess return) condition to be met 

 

For example, setting the levels of biofuel production high (as in the EISA RFS) causes crop 

prices to increase, due to the increase in demand for these commodities.  This increase in 

crop (feedstock) prices causes returns to biofuel production to shrink and ordinarily would 

cause the industry to contract.  If this is the case, we calculate the subsidy on the sale of 

biofuel output required to keep the plants just indifferent between operating and not.  The 

following subsections describe the details of implementing this algorithm further. 

 

Commodity Supply 

We assume the nominal cost functions of the crops are quadratic, given by 

                                                           
4
 All simulations were conducted in Matlab. 
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   
2

1, 2, 3i i i i i ic a i        . The proportion of land allocated to each 

crop, 
i , is the farmer‘s choice variable. This specification works well because we can 

separate out increasing and constant marginal production costs, and use the Economic 

Research Service (ERS) commodity cost and return budgets as estimates for corn and 

soybeans.
5
 ERS does not keep data on cost and returns to producing grass hay; instead, we 

use a production budget from Ohio State University Extension in 2003.
6
  

The yield realizations, ζ , are drawn from the joint beta distribution of yields using 

the algorithm developed by Magnussen (2004).   

                                                           
5
 Available at http://www.ers.usda.gov/Data/CostsAndReturns/. The parameters are 

calibrated to the most recent estimates available (2006 crop year), and inflated by the 

expected percent increase in crude oil prices from 2006 to 2012. The price of crude oil in 

2006 was $60 per barrel; we run several different long-run crude oil price scenarios. From 

the ERS budgets we use fertilizer cost as a proxy for the increasing marginal cost portion, 
i

 , 

and all other operating costs as the constant marginal cost portion, 
i

a . 

6
 Available at http://aede.osu.edu/Programs/FarmManagement/Budgets/crops-2003/grass.pdf. 

These costs from 2003 are inflated to 2012 levels in the same manner as for corn and 

soybeans. As with corn and soybeans, we assume fertilizer is the only element of the 

increasing marginal cost portion, 
3

 , and all others contribute to the constant marginal cost 

portion, 
3

a . 

1, 2, 3i 

http://www.ers.usda.gov/Data/CostsAndReturns/
http://aede.osu.edu/Programs/FarmManagement/Budgets/crops-2003/grass.pdf
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1~ , , ,ζ q q

corn

soybean max min

switchgrass



 





  
  
  
  
    

 

1

213.84 36.18 1.49

36.18 10.29 0.31 ,  

1.49 0.31 0.031



 
 

 
 
  

 

max

2

2  ,

2

corn corn

t

soybean soybean

switchgrass switchgrass

 

 

 

 
 

  
 

  

q  

min

3

 3

3

corn corn

t

soybean soybean

switchgrass switchgrass

 

 

 

 
 

  
 

  

q  

The mean of the beta distribution is  160.05 52.72 3.36 'μ  , with corn and soybeans in 

bushels per acre and switchgrass in tons per acre. Since trend yields are important (especially 

for corn), we need to set the mean at a particular year‘s trend level. Recall that the long run, 

in our model, is the length of time approximately necessary for the biofuel sectors to reach 

maturity given current technology. We set the trend at year 2012.
7, 8

  The matrix  is the 

                                                           
7
 We assume yields follow a linear trend, which we estimated from historical yield data for 

the years 1980 through 2006, maintained by the National Agricultural Statistics Service 

(http://www.nass.usda.gov/): 

3843.83 1.99 ,    993.52 .52 ,  13.94 .0086
t t t

corn soybean switchgrass
t t t             

1

http://www.nass.usda.gov/
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variance-covariance matrix for the yields of the three crops, and the  are the standard 

deviations of each crop found in .  

 

Commodity Demand 

We specify a constant elasticity, reduced-form demand function for each crop; we use the 

intermediate term own- and cross-price demand elasticities for beef from the ERS/Penn State 

Trade Model
9
 as our estimates. The price distribution of crude oil influences commodity 

demands indirectly through the number of biofuel plants of each type (corn ethanol, 

biodiesel, and cellulosic ethanol). In our simulation, crude oil prices are lognormal and 

calibrated to match current conditions in the futures market:
10, 11

 

(10) 
  31 2 4

0 1 2 3; ,     for 1,  2, 3
ii i i

d i

i i iQ n p p p n i
   p Ω

 

One of the equilibrium conditions requires the number of biofuel plants in each 

industry to be such that there are no excess returns over the required return. The parameter 

                                                                                                                                                                                    
8
 This is given in per harvested acre. We use alfalfa as a proxy for switchgrass yields, since 

the tonnage per acre is approximately equivalent to the switchgrass yields projected in the 

literature.  

9
 Model documentation of the ERS/Penn State Trade Model can be found at 

http://trade.aers.psu.edu/pdf/ERS_Penn_State_Trade_Model_Documentation.pdf. 

10
 The prices of other fuels (e.g., gasoline and biodiesel) are based on their relationship to 

crude oil prices. 

11
 Implied volatility in crude oil prices is estimated from 2007 option data. We vary the mean 

of the crude oil price distribution in different scenarios: $100, $150, and $200 per barrel. 

1

http://trade.aers.psu.edu/pdf/ERS_Penn_State_Trade_Model_Documentation.pdf
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 is an elasticity measuring the percentage change in quantity demanded of the crop over 

the percentage change in biofuel capacity, which depends only on the conversion factor of 

feedstock to biofuel.  

 

Accounting for Cellulosic Ethanol from Corn Stover and Wood Chips  

Biomass sources that do not compete directly for acres with high-value crops, such as corn 

and soybeans, would not have large implicit land costs. Since corn stover and woody biomass 

do not compete for crop acreage, it seems reasonable to assume the RFS for cellulosic 

ethanol of 16 billion gallons per year will only be met with a contribution of feedstock from 

these sources — if more land-intensive biomass like switchgrass is profitable, stover and 

woody biomass will be profitable also. Because this production occurs outside the framework 

of our model, we need to make assumptions about how much ethanol will be produced from 

these sources. We assume ethanol from both corn stover and woody biomass is produced 

when the economy produces a nonzero amount of switchgrass ethanol. It remains unclear 

exactly how much cellulosic ethanol will come from the sources not competing for land with 

traditional crops, so we present several scenarios varying the amount of cellulosic ethanol 

that must come from switchgrass to meet the mandate.  

 

Calculating Returns to Biofuel Production 

Returns to biofuel production are affected most by feedstock costs and governmental policy, 

with feedstock costs determined endogenously in the model. Ethanol and cellulosic ethanol 

plants use corn and switchgrass as feedstock, but biodiesel uses soy oil (not soybeans 

directly) as feedstock. Our model produces equilibrium soybean prices but not soy oil prices. 

4

i
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We estimate a simple linear relationship between the price of soybeans and the price of soy 

oil using recent data:
12

 

Soy Oil Price = 0.044 Soybean Price - .009    

Each biofuel production process generates a co-product, which creates value and 

offsets some feedstock cost. Corn ethanol produces dried distillers grains, dried distillers 

grains with solubles (DDGS), or wet distillers grains, which are used in beef, pork, and 

poultry rations. Distillers grains have approximately the same digestible energy content as 

corn, so we give credit to corn ethanol plants for DDGS consistent with its ability to 

substitute for corn (Shurson et al., 2003). The biodiesel production process yields glycerin, 

fatty acids, and filter cakes. We credit 8¢ per gallon to the biodiesel producer based on recent 

market value for these co-products (Paulson and Ginder, 2007).  

Production of ethanol from switchgrass produces lignin, which is combustible and 

used to generate electricity within the facility, or sold back to the electrical grid (Aden et al., 

2002). We credit switchgrass ethanol with 10¢ per gallon as suggested in Aden et al. The per 

gallon non-feedstock costs of producing corn-based ethanol and cellulosic ethanol are 76¢ 

per gallon and 97¢ per gallon, respectively, while the non-feedstock cost of producing 

biodiesel is 55¢ per gallon (Paulson and Ginder, 2007; Tokgoz et al., 2007). 

A biofuel plant‘s revenue relates directly to crude oil prices through the relationship 

between crude oil, ethanol, and diesel. We estimate the price of ethanol and diesel as 

deterministic linear functions of the price of crude oil, using monthly spot prices from 

                                                           
12

 We estimated the relationship from the daily nearest cash prices on the CBOT from 

October 17, 2005, to September 14, 2007. 

2 0.878R 
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January 1994 through August 2007 of the Cushing Oklahoma crude oil, New York Harbor 

conventional gasoline, and U.S. No. 2 wholesale/resale markets:
 13

   

Wholesale Gasoline Price = 0.21 + 2.84Crude Oil Price     

4.00 3.13Wholesale Diesel Price CrudeOil Price        

E10 (10% ethanol, 90% gasoline) is used for its ability to oxygenate gasoline, which 

enhances combustion and reduces emissions (NSTC, 1997). Following Tokgoz et al. (2007), 

we assume, based on the demand-side model, that when annual production is greater than 15 

billion gallons per year, the E10 market becomes saturated, causing ethanol to be priced at 

the margin according to its energy value (about two-thirds) compared to gasoline (Shapouri 

et al., 1995). When production is below this threshold, we assume ethanol is priced at a 

premium to gasoline and valued for its properties as an additive (Hurt et al., 2006). We 

interpolate between the additive and energy value to preserve a continuous pricing rule as 

follows: 

 

where  . 

                                                           
13

 Historical data maintained at http://tonto.eia.doe.gov/dnav/pet/pet_pri_spt_s1_d.htm.  

2 0.97R 

2 0.98R 

  

1.05*                              if  14  

1.05 .667 1 *  if 14   16   

.667*                              if 

gasoline

ethanol gasoline
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P ethanol production bil gal

P P bil gal ethanol production bil gal

P et

 



    
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



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Results 

We impose biofuel production at levels set in the RFS of the EISA of 2007 and consider the 

bioeconomy‘s equilibrium outcomes for three different long-run crude oil price scenarios. 

After imposing the biofuel production levels, our model allows us to solve for the level of 

subsidy (tax credit) required to maintain the zero-excess-return condition, in addition to 

delivering long-run equilibrium crop price distributions and acreage allocations. For a crude 

oil price of $150 per barrel corn has a mean long-run equilibrium price of $7.38 per bushel; 

soybeans, $19.57 per bushel; and switchgrass, $203.76 per ton. Long-run equilibrium acreage 

allocations are 48% of acres in corn, 27% in soybeans, and 22% in switchgrass or hay. This 

is equivalent to 105 million acres of corn, 59 million acres of soybeans, and 48 million acres 

of switchgrass or hay.
14

   

We compare the level of tax credit required to maintain the no-excess-return 

conditions across different crude oil price scenarios. Table 2 displays the results. We could 

not say, a priori, whether high crude oil prices imply higher or lower tax credit levels 

required to achieve long-run equilibrium at the mandated biofuel quantities. Crude oil prices 

act on biofuel returns in two ways: high crude prices imply high biofuel prices, positively 

affecting returns, but in addition, high crude prices have a negative effect on returns through 

upward pressure on commodity prices. Without simulating the model, we cannot determine if 

the positive or negative effect is stronger; table 1 illustrates, however, that as crude oil prices 

                                                           
14

 Compare this with 93 million acres, 63.6 million acres, and 61.5 million acres in corn, 

soybeans, and hay, respectively, in 2007. 
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rise, the tax credit required to maintain the production targets decreases. 

 

Table 1: Long-run results under different tax credits, RFS mandate, and crude oil price 

scenarios 

 

New RFS 

Low Crude  

New RFS 

Mid Crude  

New RFS 

High Crude  

($/barrel)
 

$100 $150 $200 

 ($/bu) $7.40 $7.38 $7.33 

 ($/bu) $19.64 $19.57 $19.38 

 ($/ton) $204.77 $203.76 201.17 

Land Allocations (0.48  0.27  0.22) (0.48  0.27  0.22) (0.48  0.27  0.22) 

Production    

Corn (mil bu) 16,760 16,760 16,760 

Soybeans (mil bu) 2,908 2,908 2,908 

Switchgrass (mil tons)  166 166 166 

Usage 
Biofuel Non-biofuel Biofuel Non-biofuel Biofuel Non-biofuel 

Corn (mil bu) 5,357 11,402   5,357 11,402   5,357 11,402   

Soybeans (mil bu) 682 2226 682 2226 682 2226 

Switchgrass (mil tons)  -- 166 -- 166 -- 166 

Corn ethanol production     

(million gallons) 
15,000 15,000 15,000 

Biodiesel production
a
 

(million gallons) 
1,000 1,000 1,000 

Switchgrass 

ethanol production 

(million gallons) 

0 0 0 

Tax credit  

Corn ethanol ($/gal) 
$0.80 $0 $0 

Tax credit–biodiesel 

($/gal) 
$4.10 $2.50 $0.88 

Tax credit–cellulosic 

ethanol ($/gal) 
$2.04 $1.07 $0.10 

 

   

 
crude

E p

 
corn

E p

 
sb

E p

 
sg

E p
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Land allocations, under the EISA RFS, shift toward crops whose associated fuels are 

mandated at a high level. Incentives provided to the greener fuels diffuse through the 

economy and cause a shift in land use patterns, and the increased usage of all the crops for 

biofuels cause higher commodity prices than in the baseline. If the cellulosic mandates are 

designed to avoid the feed-versus-fuel trade-off, our results suggest it will actually 

exacerbate the problem by inducing higher feedstuff costs than under the policy in which 

only corn ethanol is produced. With a fixed amount of land, it is impossible to increase the 

amount of each crop devoted to energy and maintain the same level of consumption of each 

commodity for food. With mandates reducing the price sensitivity of biofuel producers, the 

other users of the crops, namely food producers, adjust most.  

 

Sensitivity of Results to Required Levels of Switchgrass Production 

The amount of cellulosic ethanol than can be feasibly produced from corn stover and woody 

biomass is uncertain. This amount will be a significant factor in determining long-run 

commodity prices and land use patterns because the amount of cellulosic ethanol not covered 

by corn stover and woody biomass must be made up with land-intensive biomass crops such 

as switchgrass. The more land-intensive biomass needed to meet the cellulosic ethanol 

requirements, the greater the intensity of competition for acreage.  

 Table 2 presents the results of several scenarios increasing the amount of switchgrass 

ethanol needed to meet the new RFS. In the first scenario, we consider the case in which the 

new standard for cellulosic ethanol is met exclusively with corn stover and woody residue — 

with no land intensive biomass needed. Note that we calculate that the subsidy given to 

cellulosic ethanol (including corn stover and wood chip ethanol) can be as high as $1.07 per 
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gallon before the switchgrass ethanol sector begins to expand. The final scenario requiring 

750 million gallons of switchgrass ethanol per year required tax credits of $0.46, $5.26, and 

$2.69 for corn ethanol, biodiesel and switchgrass ethanol, respectively. With increasing 

requirements on land-intensive switchgrass ethanol, we see higher commodity prices and 

higher subsidy levels needed to maintain the mandated biofuel quantities. 
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Table 2: Sensitivity of crop prices and required subsidy levels to increasing switchgrass 

ethanol levels 

 

New RFS  

Mid Crude 

New RFS 

Mid Crude 

New RFS 

Mid Crude 

New RFS 

Mid Crude 

($/barrel)
 

$150 $150 $150 $150 

 ($/bu) $7.38 $9.12 $9.57 $9.66 

 ($/bu) $19.57 $25.53 $27.09 $27.42 

 ($/ton) $203.76 $284.84 $305.40 $309.92 

Land Allocations 

 1 2 3  
 

(0.48  0.27  0.22) (0.46  0.27  0.27) (0.45  0.27  0.28) (0.45  0.27  0.29) 

Production     

Corn (mil bu) 16,760 15,846 15,723 15,648 

Soybeans (mil bu) 2,908 2,656 2,633 2,613 

Switchgrass (mil 

tons) 

166 204 210 215 

Usage Biofuel 

Non-

biofuel Biofuel 

Non-

biofuel Biofuel 

Non-

biofuel Biofuel 

Non-

biofuel 

Corn (mil bu) 5,357 11,402   5,357 10,489 5,357 10,366 5,357 10,291 

Soybeans (mil bu) 682 2226 682 1,982 682 1,951 682 1,931 

Switchgrass (mil 

tons) 

-- 166 4 200 7 203 11 204 

Corn ethanol 

production 

(million gallons) 

15,000 15,000 15,000 15,000 

Biodiesel 

production
a
 

(million gallons) 

1,000 1,000 1,000 1,000 

Switchgrass ethanol 

production 

(million gallons) 
0 250 500 750 

Tax credit–corn 

ethanol ($/gal) 
$0 $0.30 $0.41 $0.46 

Tax credit–

biodiesel ($/gal) 
$2.50 $4.57 $5.10 $5.26 

Tax credit–

cellulosic ethanol 

($/gal) 

$1.07 $2.29 $2.59 $2.69 

 

 

 
crude

E p

 
corn

E p

 
sb

E p

 
sg

E p
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Conclusions 

Competition for land ensures that policy providing an incentive to even one type of biofuel 

— and indirectly to the crop it uses as feedstock — will increase the equilibrium prices of all 

crops. This means in order for switchgrass ethanol to be commercially viable, it must receive 

a differential subsidy over that awarded to corn-based ethanol. Homogeneous subsidy levels 

for both types of ethanol cannot entice expansion of switchgrass ethanol. Since switchgrass 

competes for the same acres as corn, and corn-based ethanol is less expensive to produce, 

corn-based ethanol will always have a comparative advantage over switchgrass ethanol in the 

absence of a differential subsidy. 

 Corn and soybeans also compete for the same acreage, so when energy prices are 

such that corn-based ethanol expands, the price of soybeans also increases, ensuring that a 

farmer allocates some land to soybeans. This increase in soybean prices reduces the 

profitability of biodiesel even in scenarios in which energy prices are high; and under pre-

EISA subsidy levels, the soy oil biodiesel sector is not viable under any energy price 

considered. If the EISA mandates are to be met in a voluntary fashion, the biodiesel sector 

requires a higher subsidy, relative to corn-based ethanol, than it has today. 

 We calculate the subsidies required to stimulate biofuel production to levels 

mandated in the EISA RFS and find that subsidy levels need to be in the range of $0 to $0.80 

per gallon for corn ethanol, and $0.88 to $4.10 per gallon for biodiesel, even assuming the 

cellulosic ethanol standard can be met solely with corn stover and woody biomass. Future 

crude oil prices largely determine the subsidy levels required to maintain industry sizes 

required by the EISA RFS.  
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Meeting the RFS causes much higher commodity prices than in the baseline, 

suggesting the cellulosic mandate in the EISA — which appear designed to avoid the feed-

versus-fuel trade-off — may actually exacerbate the situation relative to the scenario with 

corn-based ethanol only. Cellulosic ethanol is more expensive to produce, and switchgrass-

based ethanol is more land intensive than corn-based ethanol.  

We calculate that the tax credits required to maintain industry sizes prescribed in the 

2007 RFS are between $0 to $0.46, $2.56 to $5.26, and $1.07 to $2.69 for corn ethanol, 

biodiesel and switchgrass ethanol, respectively. The severity of upward pressure on 

commodity prices caused by the new RFS will be determined largely by the ability to 

produce cellulosic ethanol from biomass that is not land intensive: policies that expand 

cellulosic ethanol beyond levels that can be supplied by corn stover and woody biomass are 

more expensive in terms of the subsidy required and the resulting increase in food and feed 

prices.  
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Appendix: Supplemental Table 

The following table contains a summary of the parameter values used to implement the 

simulation.  The first two columns contain supply parameters and the remaining columns 

contain demand parameters for each commodity under consideration. 

 

Table 3: Parameters used in Monte Carlo simulation 

 

 

i   
 

   
 

Corn 200.43 125.81 81.35 - 0.258 0.002 0 0.155 

Soybeans 27.70 85.78 23.99 0.081 - 0.379 0 0.538 

Switchgrass 9.94 46.43 2.04 0 0 - 0.16 0.058 

 

  

ia 0

i 1

i 2

i 3

i 4

i
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CHAPTER 3: WELFARE CHANGES FROM INCREASED BIOFUEL 

PRODUCTION ON U.S. AGRICULTURE: THE ROLE OF UNCERTAINTY AND 

INTERLINKED COMMODITY MARKETS 

 

Introduction 

Ethanol production increased more than five hundred percent since the turn of the century
15

.  

Stimulated by a combination of tax incentives, a renewable fuel standard
16

, and strong energy 

prices, the industry has experienced seemingly exponential growth (see figure 1).  Ethanol 

currently is produced almost exclusively from corn, meaning that each gallon of ethanol 

produced diverts some corn away from its alternative uses, which are food for humans and 

feed for livestock.  Increased ethanol production amounts to a shift outward in the demand 

for corn, and it is important to understand the distributional impact of this shift on other 

agricultural sectors. In this paper we hope to illuminate some pertinent issues in quantifying 

these welfare effects and contribute to the discussion that has evolved regarding their nature 

and magnitude. 

 

  

                                                           
15

 According the Renewable Fuels Association industry statistics http://www.ethanolrfa.org . 

16
 The American Jobs Creation act of 2004 (H.R. 4520) provided a $0.51 per gallon 

Volumetric Ethanol Excise Tax Credit to blender‘s ethanol which was reduced to $0.45 per 

gallon as of January 1, 2009, and the Energy Security and Independence Act of 2007 (H.R.6) 

gradually increases the Renewable Fuel Standard to 36 billion gallons per year by 2022.  

http://www.ethanolrfa.org/
http://thomas.loc.gov/cgi-bin/query/D?c108:6:./temp/~c1086PMmnu::
http://thomas.loc.gov/cgi-bin/query/D?c110:8:./temp/~c110YGFLQj::
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Figure 1: Annual Ethanol Production in the United States 

Source: Renewable Fuels Association 

  

A number of researchers have approached the problem using different modeling assumptions.  

There are several features present in agricultural markets that, as a set, are overlooked or 

generalized in previous studies.  These include the valuation of farm deficiency programs as 

options, a farmer‘s ability to grow alternative crops, and demand disaggregated to understand 

the relative size of welfare loss in different consumption sectors.  

Government spending shifts from price deficiency programs to biofuel tax credits. 

The shift could theoretically reduce taxpayers‘ liability if increased biofuel production raises 

agricultural commodity prices to a level such that there is saving in farm program payments 

larger than expenditure on the tax credit.  However, in order to include the change in farm 

program liabilities in a welfare analysis, price uncertainty should be included in the model.  

Measuring a change in taxpayers‘ liability using a deterministic model does not allow one to 
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place a value on the option-like nature of these programs.  Therefore, we include uncertainty 

in crop yields, which translates into uncertain crop prices. 

We model the farmer‘s choice to allocate acres among many crops.  If two or more 

crops can be planted on the same acreage, the supply functions must include the price 

expectations of all crops under consideration.  This means biofuel production will affect the 

corn market as well as related crop markets. These indirect impacts should be included in a 

welfare analysis of increased biofuel production.  The crops we will consider are corn, 

soybeans and wheat. 

Using an aggregate demand function does not allow one to quantify the relative size 

of welfare gain or loss in different sectors.  A welfare analysis is used to describe who is 

benefitting and who is losing due to a particular phenomena.  Disaggregated demands allow 

for a more rich discussion of the welfare transfers involved.  We model demand for corn, 

soybeans and wheat from the livestock feed, human food, and export sectors.  

We calculate welfare effects based on the following scenarios: 

 Baseline:  

Biofuel production and crop yields are set at 2004 levels (3.4 billion gallons of 

ethanol and 25 million gallons of biodiesel)
 17

. 

 +3 Scenario:  

                                                           
17

 Annual ethanol production estimates from http://www.ethanolrfa.org/industry/statistics/, 

and annual biodiesel production estimates from 

http://www.biodiesel.org/pdf_files/fuelfactsheets/Production_graph_slide.pdf.  

http://www.ethanolrfa.org/industry/statistics/
http://www.biodiesel.org/pdf_files/fuelfactsheets/Production_graph_slide.pdf
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Biofuel production levels increased by 3 billion gallons of ethanol and 150 

million gallons of biodiesel.   

 + 6 Scenario:  

Biofuel production levels increased by 6 billion gallons of ethanol and 300 

million gallons of biodiesel. 

 + 9 Scenario:  

Biofuel production levels increased by 9 billion gallons of ethanol and 450 

million gallons of biodiesel. 

Using 2004 as the baseline scenario gives us a point of reference before ethanol and biodiesel 

production levels seemed to make a sizeable impact in the agricultural markets.  In the 

scenarios, we increase biofuel production levels and calculate the associated welfare changes.       

The remainder of article proceeds as follows. In the next section we describe the 

economic model used to conduct the welfare analysis in more detail; a section describes the 

way in which we calculate welfare changes.  A section describing the model‘s results comes 

next, followed by a section discussing our model‘s sensitivity to some parameter 

assumptions.  We provide a comparison of our findings with other recent studies in the 

literature, and the last section concludes. 

 

The Model Economy 

The model economy has three goods: corn, soybeans and wheat.  Consumers buy agricultural 

commodities and use them as an input in producing livestock feed, human food, energy, or 

for export.  We introduce uncertainty in the model through agricultural commodity yields.  In 

the first period, agents form expectations about future prices and crop yields, and farmers 
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allocate acreage among corn, soybeans and wheat.  In the second period, crop supply is 

determined by acreage allocations and crop yield realizations. 

 

         

 

Commodity Supply 

There exists a single representative and competitive farmer with an endowment of land, who 

takes both output prices and his cost function as given. While output prices and yields are 

uncertain, the farmer and consumers know the joint distribution.  The crops are indexed as 

follows: corn, i = 1; soybeans, i = 2; and wheat, i = 3.  In order to incorporate an acreage 

response in the model we assume the farmer can increase the quantity of available land, but 

that it is costly to do so.  He chooses the optimal level of land according to the problem 

 max I

cl
L

p L c L  ,  

where L is the quantity of land, and  clc   can be thought of as the cost of preparing the land to bring 

into production, and 
Ip  is an index of the prices 

1p , 
2p , 

3p , which are the prices of corn soybeans 

and wheat respectively.  The index is defined by  

1 2 3

1 2 3

1 2 3

04 1 04 2 04 3

I p p p
p

p p p

  

  

 


 
,  

Period 2 

 

 Crop yield and therefore supply is 

realized 

 Equilibrium prices emerge  

 Markets clear 

 

 

Period 1 

 

 Expectations formed about prices 

and crop yields  

 Farmers allocate acres 

 Demand functions for crops 

determined 
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where 
04

ip  is the price of commodity i in 2004 and i  is the proportion of land allocated to 

crop i in 2004.  To be consistent with our choice of baseline scenario we use the price level in 

2004 as the reference point of the price index. 

We assume the optimal acreage function  IL p  is of the form    I IL p A p


    

where A  represents acres from the baseline year, and   is the elasticity measuring aggregate 

acreage‘s responsiveness to the price level.  The actual harvested acreage for 2004 and 2007 

implies a value of 0.03  , 2004 to 2008 implies a value of  0.10  , and 2004 to 2009 

implies a value of 0.06  .  For our analysis we use 0.03  , since this seems to be more 

reasonable as a long run acreage response than the levels we saw in 2008 and 2009.  Table 1 

contains the actual planted and harvested acres from 2004 to 2009.   

 

Table 1:  Actual Planted and Harvested Acreage from 2004 – 2007  (Sum of Corn, Soybeans 

and Wheat) 

 PA % Change from 

2004 

HA % Change from 

2004  

2004 215,781  197,558  

2005 211,025 -0.02 196,472 -0.01 

2006 211,183 -0.02 192,040 -0.03 

2007 218,728 0.01 201,665 0.02 

2008 224,847 0.04 208,966 0.06 

2009 219,648 0.02 207,109
* 

0.05 
Soucre: NASS 

Units: 1,000 acres 
*
Projected 

 

We do not account for spatial heterogeneity in the productivity of land and  therefore 

the total acreage decision can be made independently from the acreage allocation decision.   

The farmer allocates his land in period one to three different crops: corn, soybeans, 
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and wheat. The endowed land is representative of total U.S. cropland devoted to these 

commodities.  Cellulosic ethanol was not commercially viable in the period of 2004 and thus 

is not included in this analysis
18

.   

The producer‘s per acre profit is given by 

(11)  
3

1

;i i i i i i
i

w p c  


       

where 
ip  is crop i’s output price, i  is the realized per acre yield of crop i, and i  is the 

proportion of crop land allocated to crop i.  The cost function for crop i is  ;i i ic   , where 

 is a vector of parameters defining each crop‘s cost function.  Aggregate (national) profit 

is then calculated by L w . 

The producer is risk neutral in profit; he wishes to maximize his expected profit 

subject to land constraints. To this end, he chooses a land allocation vector,  1 2 3    , 

to solve the problem: 

(12)  
1 2 3, , 0
max E w

   
s.t. 

3

1

1i
i




     

If we denote for crop i the expected price by ip , the expected yield for crop i by i , and  the 

shadow value of land by  , the Kuhn-Tucker conditions for this problem are: 

   ; ;
0, 0, 0

i i i i i i

i i i i i i

i i

c c
p p

 
     

 

 

   
    
       

   

  for i = 1, 2, 3 

                                                           
18

 A report on the status (as of February 2007) of biofuel production in the U.S. written by 

the Energy Information Administration can be found at: 

http://www.eia.doe.gov/oiaf/analysispaper/biomass.html. 

i

http://www.eia.doe.gov/oiaf/analysispaper/biomass.html
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and 

1 2 3 1 2 31 0, 0, 1 0                         .   

 Assuming an interior solution, the first order conditions are: 

(13) 0i
i i

i

c
p 




 


   for i = 1, 2, 3 

The farmer‘s price expectations above are assumed to be such that, combined with demand, 

cause the ex-ante (but post planting) price distribution to have a mean of   1 2 3p p p p . 

The optimal acreage decisions combined with yield realizations, 
iζ , give the supply 

function for each crop:   

(14)      ; , , ; ,i I

i i iS L p     p μ p μ Θ
   

 

Notice that both the expected output price and production cost of the other crops, 

enter each crop‘s supply function.   

 

Specification of Cost Function and Crop Yield Distributions 

Each crop‘s cost function is assumed to be quadratic; i.e.,     
2

i i i i i ic a     for 

1, 2, 3i  . The proportion of land allocated to each crop, 
i , is the farmer‘s choice variable 

and 
ia and 

i  are parameters.  Notice that the same solution would prevail if the cost 

function were re-parameterized in the more traditional way as a function of expected output, 

   
2

 for 1, 2, 3i i i i i ic q a q q i   where i i iq  .  Parameterizing our model as a 

function of land allocation allows for the more intuitive interpretation of the cost function as 
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variable cost per acre.
19

  The cost function parameters are calibrated such that the expected 

price levels of the crops in 2004 brings about the land allocations we saw in 2004 and can be 

found in table 2.   

 

Table 2: Parameters Used in Monte Carlo Simulation 

  Corn Soybeans Wheat 

Demand 0

i  8.815 640.132 -- 

 1

i  -0.550
*
 -0.379 -- 

 2

i  0.002 0.081 -- 

 0

i  1.645 16.922 1.216 

 1

i  -0.059 -0.150 -0.050 

 2

i  0.002 0.003 0.004 

 0

i  3.228 3.462 2.378 

 1

i  -0.840 -0.840* -0.670* 

 i
  

 171 2 8
56

 .

 
7.7/11 -- 

Supply i
a  -68.25 27.95 190.31 

 i
  2388.50 1293.35 1415.28 

 
 0.03   

Units of demand equations are billion bushels 

Demand elasticities are from the ERS trade model except where denoted by an 
*
. 

These values were calibrated to ensure price volatilities in the baseline that were 

typical of price volatility in 2004.   

 

 

A cost function that displays an increasing marginal cost of production is necessary in 

                                                           
19

 This is also closer to the way farmers actually think about their allocation problem.  They 

typically think about per acre expected revenue and costs when making planting decisions 

each year, not per bushel revenue and cost. 
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this model because if faced with constant marginal cost, a price-taking farmer would choose 

to allocate all land to one crop – the crop yielding the highest expected profit.  Using a cost 

function characterized by increasing marginal cost in land allocation is one way to ensure the 

farmer plants a mix of crops in the model. This is appropriate because we observe farmers 

planting a mix of crops in reality.  

The yield realizations, ζ , are drawn from the joint beta distribution of yields using 

the algorithm developed by Magnussen (2004).   

1

1

2

3

~ , , ,ζ q qmax min



 





  
  

  
   
  

 

1 1

max 2 2

3 3

2

2

2

t

 

 

 

 
 

  
 

 

q

 

1 1

min 2 2

3 3

3

 3

3

t

 

 

 

 
 

  
 

 

q  

Where 
1 2 2
  

  μ  is 2004 trend yield.
20

  The matrix  is the variance-covariance 

                                                           
20

 We assume yields follow a linear trend.  We estimate the trend from yield data (per 

harvested acre) for the years 1980 through 2006.  Available at http://www.nass.usda.gov/ The 

estimated yield trends used in the model are :  (note that t is the actual year)

3843.83 1.990 ,    993.52 .516 ,  460.50 0.250
t t t

corn soybean wheat
t t t          .  So the 2004 trend 

yields are  2004 144.98 42.77 40.50 μ    

1

http://www.nass.usda.gov/
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matrix for yields per harvested acre of the three crops, and  are the standard deviations of 

each crop found in .  We set the maximum and minimum values of the draws from the 

beta distribution to be two and three standard deviations away from the mean respectively. 

 

Commodity Demand 

Demand for each commodity comes from four different subsectors, livestock feed (l), human 

food consumption (f), exports (x), and energy (e).  All demands are constant elasticity 

functions of prices.  Table 2 contains parameter estimates of the demand equations used in 

the Monte Carlo simulation.  Most of the price elasticities are taken from the ERS/Penn State 

trade model
21

 for livestock feed and food/consumer demand.  We use one of the demand 

elasticities of each crop to calibrate the model‘s price volatility to levels typically found in 

the market in the baseline year.  Having realistic price volatility in our baseline scenario is 

important since we are going to estimate an ex-ante value of the loan deficiency and 

countercyclical payments.  The constant terms are calibrated to 2004 consumption levels, and 

we provide a sensitivity analysis on some of these parameter values later in the article. 

 

Corn Demand Equations 

More specifically, the corn demand equations are given by: 

(15)       
1 1
1 21 1

1 2 1 0 1 2

sbm sbm

l
D p p p p

 

 , ;  
 

                                                           
21

 The ERS/Penn State trade model documentation can be found at 

http://trade.aers.psu.edu/pdf/ERS_Penn_State_Trade_Model_Documentation.pdf. 

1

http://trade.aers.psu.edu/pdf/ERS_Penn_State_Trade_Model_Documentation.pdf
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     
1 1
1 21 1

1 2 1 0 1 2

oil oil

f
D p p p p

 

 , ;  

   
1

11 1

1 1 0 1x
D p p



 ;  

1

1 1e
D n  

 1 1 1 1 1

1
 

e x f l
D D D D D    p;

 

where p1 is the price of corn, 
2

sbmp   is the price of soybean meal, and 
2

oilp  is the price of 

soybean oil (in the description of soybean demand we describe the way soybean oil and 

soybean meal prices relate to soybean prices in the model).  The size of the corn-based 

ethanol industry in billion gallons per year is n1.  Therefore, 
1
  transforms the amount of 

ethanol produced into the amount of corn required.  In the ethanol production process 

distiller‘s grains are produced as a co-product with ethanol.  This substance is valuable as 

livestock feed and thus is added back in the model on a corn equivalent basis (Shurson, et al., 

2003).  Ethanol has a yield of 2.8 gallons per bushel of corn and for every bushel (56 lbs) of 

corn 17lbs of distillers grains are produced; therefore  1
171 2 8

56
   .  is the amount of corn 

(net of distiller‘s grains) required to produce n1 billion gallons of ethanol (Shapouri and 

Gallagher, 2005).  We denote the parameters of the corn demand function (elasticities and 

constant terms) by 
1 .   

 

The Soybean Complex 

Soybeans typically are not consumed in their natural state but instead are processed (crushed) 

into soybean meal and soybean oil.  The meal is used as animal feed and the oil is used 

mostly for human consumption and biofuel production.  Therefore, soybean demand is 
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comprised of crush demand and exports.  For simplicity we assume a constant elasticity of 

demand for all subsectors of the soybean market.  Denoting the parameters of the soybean 

demand functions by 
2 , soybean meal demand is given by equation 6 in bushels of 

soybeans required, and the amount of soybeans required to meet demand for soybean oil is 

given by equation 7, with both equations including a term for the cross price effect of corn.   

(16)      
2 2
1 22 2

2 1 2 0 2 1

1

47

sbm sbm

sb meal
D p p p p

 




 , ;  

(17)      
2 2

1 22 2

2 1 2 2 0 2 1 2 2

1

11

sboil sboil

sb oil
D p p n p p n

 

 


  , ; ,  

One bushel of soybeans yields 47 lbs of meal and 11 lbs of oil when crushed
22

.  Therefore, 

including the constants (1/47) and (1/11) in equations (6) and (7) means, for example, that we 

calibrate the units of    
2 2
2 22

0 1sbmeal
p p

 

  to be in lbs of meal and the (1/47) converts pounds 

of meal into a soybean bushel equivalent.  The size of the biodiesel industry in billion gallons 

per year is 
2

n  and 
2

 is the conversion factor that calculates the bushels of soybeans needed 

to produce enough soybean oil to produce 
2

n gallons of biodiesel; so, the expression 
2 2

n  in 

equation (7) is the amount of soybean oil required to meet the biodiesel production level.    

Soybean oil weighs 7.3 pounds per gallon and one pound of soybean oil can produce 0.973 

pounds of biodiesel, so 7.5 pounds of soybean oil are required to produce one gallon of 

biodiesel (AltIn, et al., 2001).  Converting to a soybean bushel equivalent we have 

2
7 5 11  . .   

                                                           
22

 Rounded to the nearest lb/bu for 2007 processing yields as reported by the National 

Oilseed Processors Association. http://www.nopa.org/content/stats/stats.html 

http://www.nopa.org/content/stats/stats.html
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Soybean crush demand is determined by the amount of soybeans required to satisfy 

the demand for meal and oil and equations 8 and 9 define soybean crush demand. 

(18)    2 2

2 1 2 2 2 1 2

sboil sbm

sb oil sb meal
D p p n D p p

 
  , ; , , ;  

(19)  2 2

2 2 1 2 2

sboil sbm

crush sb oil
D p p p n D


 , , ; ,  

 Since soybean meal and soybean oil are produced in fixed proportions in the crush process, 

the amount of soybeans required to meet soybean meal demand must equal the amount of 

soybeans required to meet soybean oil demand in equilibrium.  This is because we assume no 

storage or exports of soybean meal or oil.   

Crush demand depends upon the price of soy oil and soybean meal, not the price of 

soybeans directly.  However, the prices of these link tightly to the price of soybeans, and for 

simplicity, we estimate a simple deterministic linear relationship of each with the price of 

soybeans using recent data.
23

  This allows the demand for soybean meal and soybean oil to 

be written as a function of soybean prices.   

 Soybean export demand is written in equation 10 and the total demand for soybeans is 

the sum of soybean export and crush demand (equation 11).   

(20) 
   

2
12 2

2 2 0 2x
D p p



 ;
 

                                                           
23

 We estimate the relationship between the price of soy oil and soybeans from daily nearest 

contract prices on the CBOT from Oct. 17, 2005 to Sept. 14, 2007.  For soybean meal we use 

daily nearest contract prices of soybean meal and soybeans on the CBOT from April 30, 

2007 to March 3, 2008. Soy Oil Price
t
  =  0.044 t

sb
p  -  0.009,  R2

 = 0.878.  Soybean Meal 

Price
t
 =  33.53 + 0.23  100t

sb
p  ,   R

2  
= 0.929. 
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(21) 
 2 2 2

2 1 2 2 crush x
D p p n D D  , ; ,

 

 

Wheat Demand Equations 

Only demand from the food and exports sectors is included in the wheat demand functions, 

because only a small amount is used for livestock feeding and none is used for biofuel 

production.  Denoting the parameters of the wheat demand functions by 
3 , the wheat 

demand equations are given by: 

 
     

3 3
1 23 3

3 1 3 0 3 1f
D p p p p

 

 , ;  

   
3

13 3

3 3 0 3x
D p p



 ;  

 3 3 3

3 1 3 f x
D p p D D  , ;  

 

 

Competitive Equilibrium 

In our economy, a competitive equilibrium is defined by 

 pricing functions  , ,ζ Ω Θip  for , 

crop demand functions  ,p
i

iD   for ,  

crop supply functions  ; , ,i

iS p μ Θ  for ,  

 

where the set of demand parameters is defined byΩ ; i.e.,  1 2 3, ,Ω     , so that given the 

pricing functions, biofuel capacity, and crop yield realizations, the commodity markets clear.  

That is,    ; , , , for 1, 2, 3i i

i iS D i   p μ Θ p . 

 

1, 2, 3i 

1, 2, 3i 

1, 2, 3i 
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Calculating Welfare Changes    

This modeling framework allows the calculation of welfare changes of five different groups 

of stakeholders: farmers, livestock producers, processors of cereal grains and oilseeds for 

food use, gasoline consumers or blenders, and taxpayers.  Equilibrium price and quantity 

outcomes define the change in welfare resulting from the increase in biofuel production 

levels.  We detail how the change in welfare is calculated in the subsections below. 

 

Farmer Surplus 

The farmer‘s profit function, w, is given in equation 1, so the change in farmer surplus is the 

change in profit resulting from a shift from the baseline scenario to the tax credit scenario, or 

(22) 
farmer scenario baseline

PS w w w    
  
 

 

Consumer surplus 

Consumer surplus is calculated as the path integral from 0 0 0

1 2 3
p p p

  , , , the equilibrium prices 

in the baseline, to 1 1 1

1 2 3
p p p

  , , , the equilibrium prices in the scenario (Bullock, 1993, 

Larson, et al., 2002): 

(23)      
11 1
32 1

0 0 0
2 3 1

2 0 0 3 0 1 1 1 1

1 2 3 2 2 1 2 3 3 3 1 2 3 1 1

pp p

p p p

CS D p p p dp D p p p dp D p p p dp        , , , , , , , , ,

So that the particular path on which we integrate from 0 0 0

1 2 3
p p p

  , ,  to 1 1 1

1 2 3
p p p

  , ,  is the 
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line from 0 0 0

1 2 3
p p p

  , ,   to  0 1 0

1 2 3
p p p

  , , , 0 1 0

1 2 3
p p p

  , ,
 
to  0 1 1

1 2 3
p p p

  , , , and from

0 1 1

1 2 3
p p p

  , ,  to 1 1 1

1 2 3
p p p

  , , . 

 

Taxpayer Costs 

Taxpayers have two potential expenditures: the blender‘s credit and deficiency payments to 

farmers in the form of loan deficiency payments (LDPs) and countercyclical payments 

(CCPs).  Since the scenarios we consider define specific amounts of biofuel to be produced 

in each case, the change in the taxpayer cost from the blender‘s credit due to the increase in 

biofuel production is a straightforward calculation.  The change in the taxpayer‘s liability in 

the price deficiency programs is not as straightforward; we describe in some detail how we 

calculate this change below.  

LDPs are made when the market price of the commodity is below the loan rate (see table 

3 for a summary of relevant information on the farm LDP and CCP programs)
24

.  Taxpayers 

make a payment to the farmer equivalent to the difference between the loan rate and the 

posted county price times the amount of commodity owned on the date, T, the farmer 

chooses.  The LDP is equal to  
                                                           
24

 Information about the loan deficiency payment program is available at 

http://www.ers.usda.gov/Briefing/FarmPolicy/malp.htm; information about the 

countercyclical payment program is available at 

http://www.ers.usda.gov/Briefing/FarmPolicy/CounterCyclicalPay.htm; information about 

the direct payment program is available at 

http://www.ers.usda.gov/BRIEFING/FarmPolicy/directpayments.htm. 

http://www.ers.usda.gov/Briefing/FarmPolicy/malp.htm
http://www.ers.usda.gov/Briefing/FarmPolicy/CounterCyclicalPay.htm
http://www.ers.usda.gov/BRIEFING/FarmPolicy/directpayments.htm
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(24)    0T T T

i i i i i
LDP pcp LR T LR pcp , , max , , 

where LRi  is the loan rate for commodity i and 
T

i
pcp is the posted county price for crop i at 

time T.  

 

Table 3: Farm Program Details 

 Corn Soybeans Wheat 

adjustment  $0.08  $0.05  $0.13  

Base acres (million)  73.83  52.79  75.53  

Payment Yield (bu)  114  34.10  36.10  

Target price  $2.63  $5.80  $3.92  

Loan Rate  $1.95  $5.00  $2.75  

Direct Payment Rate $0.28  $0.44  $0.52  

    

 

 

Countercyclical payments are similar to loan deficiency payments; however, they are 

determined not by the current season‘s production but by historical production.  Further, they 

are not based on the harvest time price, but on the season average price or the loan rate.  

Payments are made when the target price is less than the effective price, which is defined by: 

(25)  SA

i i i i
Effective Price Direct Payment Rate p LR max , . 

Here the direct payment rate is a fixed quantity set by Congress and 
SA

i
p  is the season 

average price of crop i.  At time T the CCP made to the farmer is, 
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(26) 
 

  0 0 85

T SA

i i i i i

i i i i

CCP p LR Target Price Direct Payment Rate T

Target Price EffectivePrice BA × HY     

, , , ,

max , .

    

        
 

 

where BAi is the base acreage for crop i, and HYi is the historical yield of crop i.  See figure 2 for an 

example of the time T net payoffs from the LDP and CCP programs. 

 

 
 

Figure 2: Deficiency payments to farmer as a function of market prices 

 
Note:  Corn market is depicted with a $1.95 loan rate, $2.63 target trice, and $0.28 direct payment. 

The CCP is made on 85% of base acres, and LDP is made on actual production.  To illustrate, this is 

the per acre payment of the three programs and we assume the payment is based on 110 bu/acre 

historical yield and 170 bu/acre realized yield. 
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Looking at equation (14) one can see that the payoff of the LDP is of the same form 

as a put option with the LRi as the strike price (Gardner, 1977, Hull, 2002, Marcus and 

Modest, 1986).  The counter cyclical payment has the same payoff as an Asian option when 

the season average price is higher than the loan rate, but the payment is capped by the 

amount, i i i i
MAXCCP Target Price Direct Payment Rate LR     , when the season average 

price is below the loan rate.   

Because of these option-like characteristics of the price deficiency programs, welfare 

studies that quantify the change in taxpayers‘ obligation should value the liabilities of these 

programs in a similar way as financial options with price uncertainty. The value of the LDP 

‗option‘ at time  t < T  that is written by the taxpayer and owned by the farmer has a value of  

(27)      0
r T tt t T

i i i i i
LDP p LR T e E LR p

   
 

, , max ,  

 

for crop i, where r is the risk free interest rate (assumed constant)
25

,  and T is the payment 

date of the LDP.   

The farmer chooses the date on which his LDP payment will be calculated.  Since our 

model does not have a mechanism for the evolution of price changes through the marketing 

year, the LDP payment in our analysis is calculated with respect to harvest time price. 

 Similarly, the value of the CCP ‗option‘ at time  t < T  that is written by the taxpayer 

and owned by the farmer has a value of, 

                                                           
25

 The Fed Funds rate was approximately 1.5% throughout most of 2004, we use this value to 

discount the LDP and CCP options.  

http://www.newyorkfed.org/markets/omo/dmm/fedfundsdata.cfm 

http://www.newyorkfed.org/markets/omo/dmm/fedfundsdata.cfm
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(28) 
 

   0 0 85

t SA

i i i i i

r T t

i i i i

CCP p LR Target Price Direct Payment Rate T

e E Target Price - Effecitve BA HY
     

 

, , , ,

max , .

    

                       
 

 

Since we do not have a way to calculate season average prices directly within the model we 

cannot fully account for the Asian option characteristics of the CCP payment.  Asian options 

are less valuable than their European or American counterparts because the distribution of 

average prices have lower variance than the distribution of price levels (Hull, 2001).  We 

recognize this and acknowledge that as a result our estimates of the option value of the CCP 

will be overstated.  

We adjust the harvest-time price by the average of the difference between the season 

average price and the harvest-time price for each crop from 1960 through 2007 to adjust for 

the difference in the harvest time price level from the season average price level.   

(29) 
2007

1960

SA harvest

i it it

t

adj p p


 
 

 

 

which is $0.08, $0.05, and $0.13 for corn soybeans and wheat respectively.  CCP payments 

are therefore calculated using an approximated season average price defined by 

SA harvest

i i i
p p adj  . 

 

For the purpose of this analysis we consider the value of the option at planting time for each 

crop.   
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Results  

We simulate the model by making 5,000 draws from the crop yield probability distribution 

and solving for the equilibrium price and quantity outcomes, the deficiency program 

payments, and welfare effects.  Table 4 contains the modeled market outcomes, and table 5 is 

a modeled disappearance table of the commodity usage in each sector.   
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Table 4: Model Market Outcomes  

Baseline       

Price  Corn Soybean Wheat 

 Level $2.32 $5.62 $4.40 

 volatility 0.23 0.22 0.22 

Land Use     

 Proportions 0.37 0.37 0.26 

 (mil acres) 197   

Baseline + 3 billion gallons ethanol and 150 mil gals biodiesel 

Price  Corn Soybean Wheat 

 Level $2.80 $6.17 $4.43 

 volatility 0.25 0.23 0.22 

Level Change $0.48 $0.55 $0.03 

Land Use     

 Proportions 0.37 0.37 0.26 

  (mil acres) 198   

Baseline + 6 billion gallons ethanol and 300 mil gals biodiesel 

Price  Corn Soybean Wheat 

 Level $3.45 $6.83 $4.46 

 volatility 0.29 0.25 0.22 

Level Change $1.13 $1.21 $0.06 

Land Use     

 Proportions 0.37 0.37 0.26 

  (mil acres) 198   

Baseline + 9 billion gallons ethanol and 450 mil gals biodiesel 

Price  Corn Soybean Wheat 

 Level $4.29 $7.61 $4.66 

 volatility 0.34 0.27 0.22 

Level Change $1.97 $1.99 $0.26 

Land Use     

 Proportions 0.38 0.37 0.26 

  (mil acres) 199   
*
Baseline contains 3.4 billion gallons ethanol and 25 million gallons biodiesel production (2004 levels). 
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Table 5: Model Disappearance Table –  (million bushels) 

Baseline*         

   Feed Food Export Biofuel Total Supply 

  Corn 5,970 1,653 1,920 972 10,515 10,515 

  Soybean 1,987 1,987 974 17 2,978 2,978 

  Wheat - 1,130 954 - 2,088 2,088 

Baseline + 3 billion gallons ethanol and 150 mil gals biodiesel 

  Corn 5,416 1,635 1,657 1,831 10,539 10,539 

  Soybean 1,960 1,960 905 119 2,985 2,985 

  Wheat - 1,129 951 - 2,084 2,084 

Baseline + 6 billion gallons ethanol and 300 mil gals biodiesel 

  Corn 4,872 1,617 1,412 2,689 10,590 10,590 

  Soybean 1,933 1,933 837 222 2,991 2,991 

  Wheat - 1,129 947 - 2,081 2,081 

Baseline + 9 billion gallons ethanol and 450 mil gals biodiesel 

  Corn 4,377 1,598 1,202 3,547 10,724 10,724 

  Soybean 1,903 1,903 770 324 2,997 2,997 

  Wheat - 1,126 920 - 2,053 2,053 
*
Baseline contains 3.4 billion gallons ethanol and 25 million gallons biodiesel production (2004 levels). 

**
Recall that the food and feed demand for soybeans represents the same bushels; e.g., 1,903 + 770 + 324 = 

2,997 million bushels. 

 

 

In the baseline scenario market prices were $2.32, $5.62, and $4.40 for corn, 

soybeans, and wheat respectively.  In the scenarios, the mean of the equilibrium price 

distributions for corn soybeans and wheat ranged from $2.80, $6.17, and $4.43 in the +3 

scenario to $4.29, $7.61, and $4.66 in the +9 scenario.   

Not only did the level of commodity prices increase, but also the volatility.  Corn 

price volatility went from 23% in baseline to 34% in the +9 scenario, while soybean price 

volatility increased from 22% to 27% and wheat price volatility remained constant at 22%.  

The probability distributions of the commodity prices in each scenario are depicted in figures 

3 through 5.  
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Figure 3: Probability Distribution of Corn Price 

  

                    Baseline           + 9 Scenario 
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Figure 4: Probability Distribution of Soybean Price 

 

 

  

                    Baseline           + 9 Scenario 
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Figure 5: Probability Distribution of Wheat Price 

 

 

Crop acreage increased from just over 197 million acres in the baseline to 199 million 

acres in the +9 scenario, and land allocation shifted slightly in favor of corn production and 

away from wheat as more ethanol production increased across the scenarios.     

 Increased demand for corn and soybean oil in biofuel causes equilibrium prices to be 

higher, resulting in a reduction in the quantity demanded of corn, soybeans, and wheat for 

livestock feed, food, and export.  Exports of each commodity, being the most elastic, 

experience the largest reduction as is shown in table 5.         

 The simulated welfare effects of the three scenarios are contained in tables 6-8.    

In each case, the groups with net welfare gains are farmers and consumers of transportation 

fuel.  Farmers experience a welfare loss on the order of $2 billion because the increase in 

                    Baseline           + 9 Scenario 
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crop prices pushes the LDP and CCP options out of the money, but they benefit much more 

from the increase in market prices of the commodities.  They gain from $6.5 to $14.4 to 

$23.4 billion in surplus across the three scenarios. 

 

Table 6: Welfare effects (millions of dollars) –Baseline + 3 billion gallons 

 Corn Soybean Wheat Total 

Change in PS       

Market (+) $4,841 $1,592 $83 $6,516 

Lost LDP (-) ($561) ($354) $0 ($915) 

Lost CCP (-) ($704) ($76) ($3) ($783) 

Total  $3,576 $1,162 $80 $4,818 

      

      

Change in CS       

Feed (-) ($2,585) ($945) -- ($3,530) 

Food (-) ($786) ($1,075) ($31) ($1,892) 

Export (-) ($789) ($480) ($25) ($1,294) 

Total  ($4,160) ($2,500) ($56) ($6,716) 

     

   Total Domestic ($5,422) 

Consumers of fuel (+) $1,530 $150 -- $1,680 

Change in 

Taxpayer Outlays 
     

LDP (+) $561 $354 $0 $915 

CCP (+) $704 $76 $3 $783 

Blender‘s 

Credit 
(-) ($1,530) ($150) -- ($1,680) 

Total  ($265) $280  $3  $18  

      

      

   Net Domestic Total 

   Mean $1,093 ($201) 

   St. Dev. $332 $212 
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Table 7: Welfare effects (millions of dollars) –Baseline + 6 billion gallons 

 Corn Soybean Wheat Total 

Change in PS       

Market (+) $10,747 $3,470 $190 $14,408 

Lost LDP (-) ($633) ($581) $0 ($1,214) 

Lost CCP (-) ($1,084) ($146) ($6) ($1,236) 

Total  $9,030 $2,743 $184 $11,957 

      

      

Change in CS       

Feed (-) ($5,687) ($2,025) -- ($7,712) 

Food (-) ($1,835) ($2,327) ($65) ($4,227) 

Export (-) ($1,679) ($1,001) ($52) ($2,733) 

Total  ($9,201) ($5,354) ($117) ($14,672) 

     

   Total Domestic ($11,939) 

Consumers of fuel (+) $3,060 $300 -- $3,360 

Change in 

Taxpayer Outlays 
     

LDP (+) $633 $581 $0 $1,214 

CCP (+) $1,084 $146 $6 $1,236 

Blender‘s 

Credit 
(-) ($3,060) ($300) -- ($3,360) 

Total  ($1,343) $427 $6 ($910) 

      

      

   Net Domestic Total 

   Mean $2,469 ($264) 

   St. Dev. $1,258 $814 
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Table 8: Welfare effects (millions of dollars) –Baseline + 9 billion gallons 

 Corn Soybean Wheat Total 

Change in PS       

Market (+) $16,897 $5,717 $804 $23,417 

Lost LDP (-) ($633) ($681) $0 ($1,314) 

Lost CCP (-) ($1,134) ($204) ($20) ($1,358) 

Total  $15,130 $4,832 $784 $20,745 

      

      

Change in CS       

Feed (-) ($9,200) ($3,272) -- ($12,472) 

Food (-) ($3,174) ($3,803) ($291) ($7,269) 

Export (-) ($2,623) ($1,570) ($231) ($4,424) 

Total  ($14,997) ($8,646) ($522) ($24,165) 

     

   Total Domestic ($19,740) 

Consumers of fuel (+) $4,590 $450 -- $5,040 

Change in 

Taxpayer Outlays 
     

LDP (+) $633 $681 $0 $1,314 

CCP (+) $1,134 $204 $20 $1,358 

Blender‘s 

Credit 
(-) ($4,590) ($450) -- ($5,040) 

Total  ($2,823) $435 $20 ($2,368) 

      

      

   Net Domestic Total 

   Mean $3,677 ($748) 

   St. Dev. $3,482 $2,629 
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Consumers or blenders of transportation fuel receive welfare gains from biofuel tax 

credits in an amount equal to taxpayer liability from the blender‘s credit.  The model does not 

distinguish how much of this welfare gain is passed through to retail gasoline consumers.  

However, Du and Hayes (2009) examine the effect of the ethanol industry on retail gasoline 

prices and find that ethanol production has reduced retail gasoline prices by $0.29 to $0.40 

per gallon depending on the region.  This suggests that blenders pass at least some of the 

welfare gains on to retail gasoline consumers. 

Interestingly, taxpayers are not net losers in the first scenario.  Increasing ethanol 

production by 3 billion gallons causes the LDP and CCP payment options to move out of the 

money reducing their value by more than taxpayers spent in tax credits to biofuel.  As biofuel 

expands further this effect is overturned.  Once biofuel production expands far enough, the 

LDP and CCP options are so far out of the money that they are effectively worthless and thus 

taxpayer savings are capped.    

It is the consumer, though, that is the biggest loser with welfare losses ranging from 

$6.7 to $24.1 billion across the scenarios.  The animal feeding industry experiences the 

largest losses, since they are the largest user of the corn and soybeans.  The export sector, 

with the most elastic demand and small usage share, experiences the smallest welfare loss. 

Aggregate welfare loss ranges from approximately $260 million to $750 million.  It is 

interesting to note, however, that there is a net positive domestic welfare effect on the order 

of $2 billion; i.e., ignoring the welfare of the export market, the remaining welfare effects are 

net positive.  Assuming policymakers have an objective to increase the production of 

biofuels, and if policymakers place equal weight on domestic and foreign players in the 



62 
 

 
 

agricultural markets, then the biofuel policy has a net negative welfare effect.  If, however, 

policymakers disregard welfare losses in the export market, then there is a net positive 

welfare effect from increased biofuel production from their perspective.  Table 9 contains a 

summary of the welfare effects across scenarios in both levels and per billion gallons of 

ethanol added to the scenario.   

 

Table 9: Summary of Transfers 

 Scenario  Change in PS   Change in CS   
Taxpayer 

Outlays 
Net 

Levels 
Baseline + 

3
* $4,805 ($6,716) $31 ($201) 

 Baseline + 6
 

$11,940 ($14,672) ($892) ($264) 

 Baseline + 9
 

$20,725 ($24,165) ($2,348) ($748) 

Per bil gals 

ethanol added 
Baseline + 3

 
$1,602 ($2,239) $10 ($67) 

 Baseline + 6
 

$1,990 ($2,445) ($149) ($44) 

 Baseline + 9
 

$2,303 ($2,685) ($261) ($83) 

 

 

We should note that these results abstract from any distortions occurring in the fuel 

markets; so these aggregate results should not be viewed as aggregate in terms of the 

economy at large but aggregate in the agricultural sector only.  Market distortions causing 

more than the economically efficient amount of ethanol or gasoline to be produced and 

consumed would make the welfare losses larger than are reported here. 

 

Sensitivity Analysis 
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Our model relies on the use of many parameters borrowed from outside sources.  We perform 

a sensitivity analysis on two parameters that are likely to affect the outcomes, the own price 

elasticity of corn feed demand and the own price elasticity of soybean export demand.  The 

welfare change between the baseline and the +6 scenario is used to conduct the sensitivity 

analysis.  We vary the absolute value of the parameter in question and report an abbreviated 

version of the welfare results.  The sensitivity analysis is found in table 10 and the results 

from the previous analysis are in the first row for comparison.   

 

Table 10: Sensitivity analysis 

Parameter 

scenario 
Change in PS   Change in CS   

Taxpayer 

Outlays 
Net 

Original  $11,940 ($14,672) ($892) ($264) 

1

1
5  %  $11,842 ($14,404) ($1,134) ($336) 

1

1
5  %  $12,777 ($15,240) ($1,024) ($127) 

1

2
5  %  $13,779 ($15,933) ($1,582) ($376) 

1

2
5  %  $13,375 ($15,367) ($1,584) ($216) 

Sensitivity analysis done with respect to the +6 scenario  

 

  

Comparison with the Existing Literature 

Several researchers have recently conducted analyses on the welfare effects of biofuel 

production.  A side-by-side comparison is provided in table 11of the market structure and 

important modeling assumptions of these studies.  The numerical welfare results from each 

study outlined are contained in table 12.  Table 13 contains the same information as table 12, 

but is presented on a per billion gallons of ethanol basis.  The estimates of welfare change 
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range from -$3.1 billion to $1.3 billion, compared to our results that are on the order of -$200 

to -$750 million depending on the scenario.   

 

Table 11: Components included in recent welfare analyses 

 
This 

study
 

Babcock 

2008 

de 

Gorter 

& Just 

2009 

Du et 

al. 

2009 

Gardner 

2007 

McPhail 

Babcock 

2008 

Schmitz 

et al. 

2007 

Markets 

considered 
       

Corn X X X X X X X 

Soybeans X       

Wheat X       

Ethanol  X X X X X X 

Demand        

Aggregate X X X X X* X X 

Feed X X    X X 

Food X X    X X 

Export X X    X X 

Farm programs        

LDP X  X  X
** 

 X 

CCP X  X    X 

Stochastic X     X  

*
Distinguishes ethanol and non-ethanol demand for corn 

**
Not the traditional deficiency payment program. Gardner calculates the benefit of a transfer directly to corn 

growers instead of the ethanol subsidy  
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A paper by de Gorter and Just (2009) calculates the welfare effects of the U.S. 

ethanol tax credit and they note that the tax credit causes significant rectangular welfare 

losses.  Their modeling framework includes the corn market with demand disaggregated into 

foreign and domestic producers, with the excess supply of corn absorbed by the ethanol 

industry.  They then model the fuel market to calculate the effect of ethanol in the domestic 

fuel market.  They find net welfare losses from the ethanol tax credit.   

Schmitz et al. (2007) calculate the welfare costs and benefits of U.S. ethanol 

production, and find a positive aggregate welfare gain.  The driver of this result is that while 

tax revenue is decreased because of the blender‘s tax credit, taxpayer liabilities are reduced 

by more than this amount because subsidies to corn farmers are reduced.  They conduct their 

analysis using a deterministic model.  Welfare effects to non-ethanol users of corn are 

separated among food, alcohol, and industrial use verses feed and residual use.   

 Du et al. (2009) perform a welfare analysis focusing on the fuel markets for both 

gasoline and ethanol on a energy equivalent basis, and the market for corn.  They find the net 

welfare effect of ethanol production to be negative. Babcock (2008) uses a deterministic 

model of the ethanol and corn markets, distinguishing demand for corn as coming from feed, 

food, and exports.  A paper written by McPhail and Babcock (2008) incorporates uncertainty 

in corn yields, corn demand, and ethanol demand, but does not include the cross market 

effects with soybeans and wheat.   

 Gardner (2007) uses a deterministic model of the ethanol market including corn 

producers, users of corn including ethanol, feed and exports, taxpayers, ethanol producers, 

and ethanol consumers. 
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 The present study is the only one of the articles discussed to treat farm program 

payments as an option farmers own and taxpayers are obligated to honor.  We therefore 

include the reduced farm program payment as a reduction in farmer surplus as well as a 

decrease in taxpayer cost.  In an aggregate welfare analysis, the reduction of farmer surplus 

from the decreased value of deficiency payments should be included in calculating the 

farmer‘s welfare change.   

This study is also the first to include the indirect welfare effects on the soybeans and 

wheat markets.  These markets are important to consider in a welfare analysis since they are 

produced on the same type of land and compete for acreage.  An equilibrium increase in one 

commodity‘s price will affect equilibrium prices in related markets as well.    
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Table 12: Comparison of Recent Welfare Studies (Millions of Dollars) 

 This study
 Babcock 

2008 

de Gorter 

& Just 

2009 

Du et al. 

2009 

Gardner 

2007 

McPhail 

Babcock 

2008 

Schmitz 

et al. 

2007 

Ag 

Producers 
       

Market $14,408 $4,108 $1,484 $7,430 $2,029 $1,581 $1,154 

Lost CCP ($1,214) -- -- -- -- -- -- 

Lost LDP  ($1,236) -- ($1,388) -- -- -- -- 

Total $11,957 $4,108 $96 $7,430 $2,029 $1,581 $1,154 

Ag 

Consumers 
       

Feed ($7,712) ($1,990) 

($1,484) 

-- -- ($730) ($1,008) 

Food ($4,227) ($400) -- -- ($197) ($3,094) 

Export ($2,733) ($695) $433 -- -- ($276) ($993) 

Total ($14,672) ($3,085) ($1,051) ($10,440) ($1,731) ($1,203) ($5,095) 

Consumers 

of Trans. 

Fuel 

$3,360 $3,291 $1,606 $1,660 $1,428 $2,337 $3,883 

Taxpayers         

LDP/CCP $2,450 -- $1,388 $3,450 -- -- $4,084 

Blender‘s 

Credit 

($3,360) 
($7,450) ($3,330) ($2,990) ($2,600) ($1,391) ($2,761) 

Total ($910) ($7,450) ($1,942) ($890) ($2,600) ($1,391) $1,323  

Net Change ($264) ($3,137) ($1,291) ($780) ($665) ($568) $1,281 

 

 
*
Comparison uses the +6 scenario of this study 
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Table 13: Comparison of recent welfare studies – per billion gallons of ethanol  (millions of 

dollars) 

 This study
 Babcock 

2008 

de Gorter 

& Just 

2009 

Du et al. 

2009 

Gardner 

2007 

McPhail 

Babcock 

2008 

Schmitz 

et al. 

2007 

Change in 

Ethanol 

Production 

6.00 4.00 2.7 5.9 2.60 1.50 2.00 

Ag 

Producers 
       

Market $2,401 $1,027 $550 $1,259 $780 $1,450 $577 

Lost CCP ($202) -- -- -- -- -- -- 

Lost LDP  ($206) -- ($514) -- -- -- -- 

Total $1,993 $1,027 ($36) $1,259 $780 $1,450 $577 

Ag 

Consumers    
    

Feed ($1,285) ($498) 

($550) 

-- -- ($670) ($504) 

Food ($705) ($100) -- -- ($181) ($1,547) 

Export ($456) ($174) $160 -- -- ($253) ($497) 

Total ($2,445) ($771) ($389) ($1,770) ($666) ($1,104) ($2,548) 

Consumers 

of Trans. 

Fuel 

$560 $823 $595 $281 $549 $2,144 $1,942 

Taxpayers  
    

 
  

LDP/CCP $408 -- $514 $585 -- -- $2,042 

Blender‘s 

Credit 
($560) ($1,863) ($1,233) ($507) ($1,000) ($1,276) ($1,381) 

Total ($152) ($1,863) $719 ($151) ($1,000) ($1,276) $662 

Net Change ($44) ($784) ($478) ($133) ($256) ($521) $641 

 
*
Comparison uses the +6 scenario of this study 
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 The range of estimates among these articles illustrates how sensitive welfare studies 

are to model assumptions – particularly to the model structure imposed. A model that 

assumes a market functioning in isolation will yield quantitatively different results than a 

model that includes market interactions; every piece left out distorts the picture of where 

transfers are going, the size of aggregate transfer, and deadweight loss.  For example, in this 

analysis the size of transfer from consumers to producers is larger than in the other articles.  

This is because ignoring the soybean and wheat market effects understates the size of the 

transfers.    

Further, the studies we reviewed each draw elasticity estimates from different sources 

compounding the issue that the models are constructed in very different ways.  Since 

collectively the welfare estimates vary greatly an interpretation of the results is difficult, 

especially for policy recommendations.   

 

Conclusion 

We conduct a welfare analysis of the effect of an increase in the size of the biofuel industry, 

including some features that are not present in the existing literature on the subject.  Our 

analysis includes uncertainty in crop yields, soybean and wheat markets, and disaggregated 

demands for the commodities.   

Including uncertainty allowed us to value more appropriately the change in deficiency 

payments.  LDP and CCPs are made based on the realization of uncertain crop prices and 

should be treated in the fashion of a financial option; therefore, only a model incorporating 

uncertainty is able to assess the change in value of these programs.   
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Including the soybean and wheat markets is important because these markets are 

linked to corn through competition for acreage suggesting that the expected price of each 

crop influences the supply decisions of all the crops.  The indirect welfare effects in the 

soybean and wheat markets can severely understate the size of transfer caused by an increase 

in biofuel production.   

  Our results suggest that increased biofuel production results in welfare losses on the 

order of $200 to $750 million depending on the size of increase in the biofuel industry and 

resulted in a transfer largely from consumers to producers.  If the welfare of only domestic 

consumers is considered (ignoring the welfare of those in the export market), then the 

welfare affect is net positive.  This analysis was focused on the agricultural sector and 

abstracts from potential distortions or exogenous events occurring in the (fossil) fuel markets.  
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CHAPTER 4: INSIGHT INTO A POSSIBLE EQUILIBRIUM RELATIONSHIP 

BETWEEN THE PRICE OF CORN AND ETHANOL – ANALYSIS AND A SMALL 

SAMPLE MONTE CARLO STUDY 

 

 

Introduction 

Energy markets, particularly oil and gasoline, seem to have an increasingly important 

influence on the corn market.  It makes intuitive sense for there to be a link between corn and 

ethanol prices because the existence of a large ethanol sector makes corn an energy 

commodity in addition to an edible commodity.  Corn‘s value as an energy commodity will 

be larger than its value as an edible commodity if energy prices are high enough.  This 

implies that if corn is priced at the margin by its value as an input in producing energy, then 

it may respond to the fundamentals in the energy markets as much as it would respond to 

fundamentals in the agricultural markets.  This paper explores the statistical evidence that 

there exists a link between the corn and energy sector.  

Recent research attempted to pin down the relationship between energy and 

agriculture created by corn-based ethanol production.  Tokgoz et al. (2007) use the model 

maintained by the Food and Agricultural Policy Research Institute (FAPRI) to make long run 

projections of the effect of biofuel production on commodity prices and production.  Tokgoz 

et al. (2008) again uses the FAPRI model to simulate the effect of an exogenous event in one 

market on other markets; in particular they explore the effect of a spike in crude oil price and 

the effect of a significant drought coupled with a renewable fuels mandate.  Kruse et al. 

(2007) use a long run relationship to analyze the effect of removing biofuel subsidies, and 

Thompson et al. (2009) in a similar analysis as Kruse et al. (2007) examine the covariance 

among corn, ethanol, and oil markets.   
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We develop a theory that says a long run relationship between two or more price 

series in futures markets can be transmitted to spot prices through intertemporal arbitrage.  

This explains why we may observe spot prices behaving in such a way that is consistent with 

long-run equilibrium, but not required for a short-run equilibrium.  We then try to determine 

if there is statistical support for the hypothesis that corn and ethanol prices maintain an 

equilibrium relationship.  If there is an equilibrium relationship between corn and ethanol 

prices, it has been in place for a relatively short time.  Since the statistical methods available 

for testing this hypothesis, namely the cointegration tests developed by Johansen (1991), rely 

on asymptotic properties of the test statistic, a detailed discussion of their small sample 

properties is necessary.     

The paper is organized as follows.  In the following section we describe the long run 

equilibrium condition that requires the ethanol industry to earn zero economic profit in the 

long run; we posit that futures prices far from maturity should be related according to this 

breakeven relationship.  The next section shows how the futures market could transmit this 

relationship to spot prices through intertemporal arbitrage.  We then test this theory using the 

cointegration tests developed by Johansen (1991).  The small sample properties of the 

Johansen statistics are discussed next, including a review of some previous Monte Carlo 

work regarding these statistics.  We also tailor a Monte Carlo study with a data generating 

process that is intended to mimic our data in some important ways.  A final section concludes 

by summarizing our findings. 

 

A Theory of the Link between the Corn and Ethanol Markets 
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Tokgoz et al. (2007) first provided intuition for why the long run price of corn might be 

drawn to the level at which the ethanol industry breaks even.  The logic is that if the price of 

corn is too low, ethanol plants enter the market and bid the corn price higher, and if the price 

of corn is too high, ethanol plants exit putting downward pressure on corn prices.  This 

break-even condition should impose a long run equilibrium relationship between the price of 

corn and the price of ethanol if the ethanol industry is large enough.  We expand on this 

theory and describe the mechanism by which this long run relationship between corn and 

ethanol prices can be transmitted to spot prices.   

The long run zero economic profit or breakeven rule is that Total Revenue – Total 

Cost = 0.  If the price of ethanol at time t is eth

t
p , the price of corn at time t is c

t
p , the ethanol 

yield per bushel of corn is 2.8 (2.8 gallons per bushel from (Shapouri and Gallagher, 2005)), the per gallon 

non-corn cost of producing ethanol is C-corn, and the level of tax credit an ethanol producer 

receives is TC, then this breakeven rule is given by  171 2 8
56

eth c

t t corn
p TC p C


   . .  

 The (1 – 17/56) in the expression above comes from the fact that the corn-based 

ethanol production process generates a co-product, distiller‘s grain, which is used for animal 

feed as a substitute for corn.  For every bushel of corn (56 lbs) processed, an ethanol plant 

produces 17lbs of distillers grains.  Distiller‘s grains contain approximately the same energy 

content as corn and thus are valuable as an alternative livestock feed (Shurson, et al., 2003).  

This means an ethanol plant‘s feedstock cost is not the full price of corn times the number of 

bushels of corn processed; e.g., if distiller‘s grains are valued at par with corn then for every 

bushel of corn processed ethanol plants only have to pay for (1 – 17/56) times the price of a 
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bushel of corn.  The remaining (17/56) comes back to them when they sell the distiller‘s 

grain. 

Solving the breakeven rule for c

t
p , an expression for the energy value of corn (per 

gallon of ethanol) is: 

(1)  172 8 1
56

c eth

t t corn
p p TC C


     .     

   

This theory of a breakeven relationship between corn and ethanol suggests that corn and 

ethanol prices should maintain a linear relationship with one another. 

 

Futures prices  

Assuming corn and energy futures markets are relatively efficient (in the sense of Fama 

(1970) and Malkiel (2003)) implies that deviations from the equilibrium relationship between 

corn and ethanol prices posited by equation (1) cannot be violated in the long run.  The far to 

maturity futures contracts provide a signal to the ethanol industry to expand or contract.  

Speculators in futures markets can recognize this and take positions that allow them to gain 

when the relative price of corn and ethanol return to their equilibrium relationship.   

For example, if corn is trading for less than its energy value for delivery two years 

from now, the market is sending a signal for additional ethanol plants to be built.  This 

expansion will cause the price of corn to rise relative to the price of ethanol.  Conversely, if 

corn is trading higher than its energy value, ethanol production will decrease and the price of 

corn relative to ethanol will fall.   
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If corn is selling below its energy value a speculator can potentially profit from 

buying corn and selling ethanol.  Denote the time t futures price of corn for delivery at time 

T  by c

t T
F

,  
 and the time t futures price of ethanol for delivery at time T  by eth

t T
F

,
.  The 

presence of traders who take positions based on the spread between the corn and ethanol 

price means the relationship  172 8 1
56

c eth

cornt T t T
F F TC C


     , ,

.
 
should hold in the 

futures markets whose time to delivery is long enough away that the size of the ethanol 

industry can respond to market incentives by expanding or contracting. 

 

Intertemporal Arbitrage and the Spot-Futures Price Relationship 

The theory above is only applicable to expectations about corn prices in the future.  In the 

short-run the ethanol industry cannot quickly expand to take advantage of inexpensive spot 

prices of corn as there is some time lag involved in constructing a plant.  Thus, there is no 

reason to expect a relationship between corn and ethanol spot prices on these grounds.   

 However, both corn and ethanol are storable commodities, and storage provides a 

mechanism by which a relationship that is maintained between two or more futures prices 

can be transmitted to the spot prices.  A common model to explain the intertemporal price 

behavior of a commodity is the cost of carry model (Hull, 2002).  If the spot price of ethanol 

at time t is eth

t
p , and assuming the cost of storage is a constant proportion of the spot price, u, 

then the expected spot price of corn at time T should be    u T tc c

t tT
E p p e


 .  If for example 

the expected future spot price is higher than the spot price at time t inflated by the cost of 
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carry then one could buy ethanol at time t, store it and expect to make a profit on the spot 

market at time T .   

Assuming that the futures price of a commodity is an unbiased expectation of the 

future spot price, then  u T teth eth

tt T
F p e




,
 , the spot price of ethanol at time t influences the 

futures price of ethanol for delivery at time T .  Then the breakeven relationship in ethanol 

production requires that  172 8 1
56

c eth

cornt T t T
F F TC C


     , ,

.  , and finally the 

intertemporal storage arbitrage in the corn market requires that  u T tc c

t t T
p F e

 


,
 (see figure 1).  

So the enforcement of a long run breakeven condition in the ethanol market causes 

the expected future prices of corn and gasoline to maintain an equilibrium relationship; then 

the intertemporal arbitrage between the futures and spot prices can cause this relationship to 

be transmitted to the spot market as well. 
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Figure 1: Intertemporal Arbitrage and the Spot-Futures Price Relationship 

 

In the parlance of time series analysis, the theory above suggests the long run break-

even condition in the ethanol market requires that the price of corn and the price of ethanol 

be cointegrated.  Non-stationary time series are said to be cointegrated if there exists at least 

one linear combination of the variables that is itself stationary (Engle and Granger, 1987, 

Granger, 1981, Granger and Weiss, 2001). The following section describes the methods for 

detecting cointegration among time series; we employ these to determine if there is evidence 

of an equilibrium relationship between corn and ethanol prices.    

 

Testing for Cointegration 

 A vector, t
y , of n cointegrated time series are written in vector error correction form by,  

(1) 
1

1

1

k

t t i t i t t

i

y y y  


 



           for t  = 1, …, T,   

eth

t
p corn

t
p

 

eth

t T
F

,  

corn

t T
F

,
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where  is an n r  matrix of speed of adjustment coefficients,    is an r n matrix of 

cointegrating vectors, the i
  are n n  matrices, and t

  is a vector of intercept terms .  This 

representation is the same as a traditional vector autoregression (VAR) in first differences, 

but with the additional error correction term (
1t

y


 )  that ensures the series maintain the 

equilibrium relationships defined by 
1t

y


  with   a vector of speed of adjustment 

coefficients (Hamilton, 1994).   

The first methods, developed by Engle and Granger (1987) and Phillips and Ouliaris 

(1990), test for the presence of an equilibrium relationship between two or more  time series 

which are integrated of order one,  1I ,  by examining the fitted residuals from a 

cointegrating regression.  The basic idea behind these tests is to partition the vector t
y  from 

(1) into 1 2
,

t t t
y y y    , where 1

t
y  is a 1T   dimensional vector, and 2

t
y  is a 1T n   

dimensional vector and estimate the regression equation, 1 2

0 1t t t
y y     .  If the fitted 

residuals, ˆ
t
 , are stationary, then one can conclude the 1 1n  vector  0 1

1     is a 

cointegrating vector for the series t
y .  Phillips and Ouliaris (1990) note that the residual 

based tests are easy to apply and intuitively appealing, but also have the undesirable property 

that the results are sensitive to the choice of normalization (i.e., which series is chosen for 1y

).   

Johansen (1991, 1988), developed maximum likelihood techniques to determine the 

rank of and test for linear restrictions on the matrix  .  This is useful because the number 

of cointegrating relationships in the system can be estimated without specifying the nature 

causation, and it can test for the presence of multiple cointegrating vectors whereas the 
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earlier residual based tests can only estimates one relationship at a time.  In the VECM, the 

rank of the n x n matrix   in equation (1) determines the number of equilibrium 

relationships or cointegrating vectors in the system. The time series, y, are:  

 stationary if  rank n  , or  

  1I
 
and not cointegrated if   0rank   ; i.e., a traditional VAR model in 

first differences is the appropriate model, or 

 cointegrated with r equilibrium relationships if  rank r  , and 0 r n  .   

The procedure for estimating the rank of the matrix   is detailed in Johansen (1991) and 

Hamilton (1994) as follows:  

1)   Perform auxiliary regressions.   

 Regress t
y  on  1 2 1

1
t t t k

y y y
   

    and obtain residuals 
t

û .   

 Regress t
y  on  1 2 1

1
t t t k

y y y
   

    and obtain residuals  
t

ŵ .   

2) Calculate the sample  covariance matrices of the residuals 

  VV

1

1
T

t t

t

T v v


  ˆ ˆ ˆ  

  UU

1

1
T

t t

t

T u u


  ˆ ˆ ˆ  

  UV

1

1
T

t t

t

T u v


  ˆ ˆ ˆ  

 

3) Calculate the n eigenvalues, 1 2 n
    ˆ ˆ ˆ , of the matrix 

1 1

VV UV UU VV UV
M       ˆ ˆ ˆ ˆ ˆ . 

4) Perform hypothesis tests on the cointegrating rank, r, using Johansen‘s trace 

and/or maximum eigenvalue tests.       
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The trace and maximal eigenvalue statistics are defined by   

(2)    
1

ln 1
n

trace i

i r

r T 
 

   ˆ
  , and  

(3)    max 1
ln 1

r
r T 


   ˆ

  
, 

which test the null hypothesis of  r equilibrium relationships against the general alternative, 

and against the alternative of r+1 equilibrium relationships respectively.  The   statistics are 

likelihood ratio statistics but are not asymptotically 2 .  The asymptotic distributions of the 

statistics in (2) and (3) are the same as the distribution of the trace of matrices containing 

stochastic integrals of Brownian motions.  As such, these distributions are non-standard and 

the percentiles have been tabulated by Monte Carlo simulation by Johansen and Juselius 

(1990),  Osterwald-Lenum (1992), and MacKinnon et al. (1999).  The distributions also are 

dependent upon the specification of the deterministic terms in (1).     

 

Data  

The data used are daily nearby settlement prices of the corn, ethanol, and soybeans contracts 

on the Chicago Mercantile Exchange from July 30, 2006 to April 7, 2009 archived at 

barchart.com.  We choose this period as our sample because in 2006, popular interest in 

ethanol seemed to reach a new level.  To illustrate, a search of the Google News
26

 archives 

with the keyword ‗ethanol‘ more than doubled the number of hits from 2005 to 2006 going 

from 18,000  to 41,000 articles.   

                                                           
26

  http://news.google.com/  

http://news.google.com/
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Scholarly interest increased during approximately the same time period.  A search of 

the term ‗ethanol‘ in the IDEAS
27

 database of published and unpublished scholarly articles in 

economics and finance returns only 47 articles in 2003, 53 articles in 2004, and 40 articles in 

2005; but it returns 227 articles in 2006, 351 articles in 2007, and 427 articles in 2008.  This 

suggests there was a change in the ethanol industry that caused the popular press and 

academic researchers to take notice in 2006.   

The trace and maximal eigenvalue statistics are sensitive to the choice of sample in 

finite samples.  To illustrate we provide a table that reports the statistics‘ value for different 

start dates of our data at fifteen-day intervals around the start date of July 30 used in the 

analysis below (see table 1).  This table points to issues with the small sample properties of 

the statistics, but we postpone a more detailed look consideration of this to a later section.  

 

Table 1: Sensitivity to Sample Analysis – trace and max statistic for ethanol, corn, and 

soybeans at 15 day intervals around the July 30, 2006 sample start date 

2
H : 0r   Trace test 5% c.v. 1% c.v Max test 5% c.v. 1% c.v 

6/15/06 35.67** 29.68 35.65 25.58** 20.97 25.52 

6/30/06 40.21** 29.68 35.65 30.30** 20.97 25.52 

7/15/06 38.88** 29.68 35.65 28.74** 20.97 25.52 

7/30/06 32.24* 29.68 35.65 22.94* 20.97 25.52 

8/16/06 34.30* 29.68 35.65 25.30* 20.97 25.52 

8/30/06 22.62 29.68 35.65 14.96 20.97 25.52 

Critical values from Osterwald-Lenum(1992) 

No constant term in the cointegrating vector 

 

                                                           
27

  http://ideas.repec.org/  

http://ideas.repec.org/
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We are interested primarily in the relationship between corn and ethanol, if one 

exists, but one might expect the price of soybeans to be present in any equilibrium 

relationship that involves corn.  The two commodities compete for the same acreage, have 

roughly the same growing season, are impacted by the same weather realizations, and are 

both used extensively as animal feed.  Because of these reasons we should not exclude the 

price of soybeans in the analysis a priori.   

We perform a preliminary analysis to determine whether soybeans should be present 

in the model.  Testing whether all three series are cointegrated, both the trace and the max 

eigenvalue statistic reject the null hypothesis of no cointegration at the 5% asymptotic level, 

but cannot reject the null hypothesis that there is one cointegrating vector (note that there can 

be at most two linearly independent cointegrating vectors for three time series).   

However, when the tests are run pair wise the only pair for which the null hypothesis 

can be rejected is ethanol and corn.  See table 2 for a summary of these results.  Further, 

when we estimate an error correction model of the form in equation (1) we find that the error 

correction term is not significant in the soybean price equation and the price of soybeans is 

not significant in the cointegrating vector.  Causality tests suggest that soybeans do not 

Granger cause ethanol or corn in the short run sense.  Ethanol and corn do not Granger cause 

soybeans in the short run sense.  Therefore, we drop the price of soybeans from the 

subsequent analysis and focus solely on the price of ethanol and corn. 
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Table 2: Johansen tests– ethanol corn, and soybeans  

 
2

H : Trace test 5% c.v. 1% c.v Max test 5% c.v. 1% c.v 

Eth Corn & 

Soybeans 
0r   32.24* 29.68 35.65 22.94* 20.97 25.52 

 1r   9.30 15.41 20.04 5.67 14.07 18.63 

 2r   3.63 3.76 6.65 3.63 3.76 6.65 

Corn & 

Soybeans 
0r   9.58 15.41 20.04 6.92 14.07 18.63 

 1r   2.66 3.76 6.65 2.66 3.76 6.65 

Eth & 

Soybeans 
0r   14.68 15.41 20.04 10.15 14.07 18.63 

 1r   4.54 3.76 6.65 4.53 3.76 6.65 

Eth & Corn 0r   23.41** 15.41 20.04 18.36** 14.07 18.63 

 1r   5.05 3.76 6.65 5.05 3.76 6.65 

7/ 30/06 – 4/7/09 

Critical values from Osterwald-Lenum(1992) 

No constant term in the cointegrating vector 

 

     

Ethanol and corn futures contracts are available for differing contract months so in 

order to make a conformable price series, we take daily settlement prices of the contract 

month corresponding to the contract offered least frequently, which is corn.  Corn contracts 

are available for December, March, May, July, and September.  As the nearby contract 

comes to maturity, the series is rolled forward to the daily settlement price of the next closest 

contract.  We do this on the third business day prior to the 25
th

 calendar day of the month 

preceding the delivery month.  The data series contains T = 1012 observations. 

 

Cost of carry and futures prices  
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Some care is required when using the nearby futures contract as a proxy for the spot price.  

The futures price at time t of a commodity with maturity T includes a cost of storing the 

commodity; an unadjusted series of nearby futures prices contains jumps on the dates when 

the series rolls forward to the next contract.  This is especially problematic when testing for 

cointegration because the spurious co-movement of the series on the days the contracts roll 

forward make it more likely we reject the null hypothesis when it is in fact true.   

Assuming the cost of carry is proportional to the commodity‘s price, the spot price at 

time t is related to the futures price (or the expected future spot price) of a contract with 

maturity T by the equation 

(4)     u T tT

t t
F S e


  

This means that a series of nearby futures contract prices is an inaccurate proxy for the spot 

price by the amount 

(5) 
  1

u T tT

t t t
F S S e


   , 

which is largest when the contract is far from expiration and goes to zero as the contract 

approaches maturity.   

  Since there is no direct way to measure the cost of carry, we use an estimate denoted 

by u .  On days the series is rolled forward to a new contract we measure the implied cost of 

carry per day as the solution to the equation 

(6) 
  1 001

0 0 0
1

u T TTT

T T T
F F S e


   , 

which assumes 0

0 0

T

T T
F S .  The solution is then  

01

0 0

0

01 0

1
1

TT

T T

T

T

F F
u

T T F

 
  

   

log . 
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 We deflate (or inflate if the market happens to be inverted) each futures price by the 

amount 
 u T t

e
 

, and obtain a series of synthetic spot prices defined by,  u T tT

t t
S F e

 


 , which 

have been removed of the spurious co-movement generated by the series‘ construction.   

 

Pretesting and lag length selection  

We select a lag length of k = 2  based on Sims (1980) likelihood ratio statistic, the Akaike 

information criterion (AIC), and Schwartz Bayesian information criterion (SBIC) (see table 3 

). The Phillips-Perron (PP) Z , modified PP MZ , t
MZ , and Elliot, Rothenberg and Stocks‘ 

T
P  statistics all fail to reject the null hypothesis of a unit root in each individual data series 

(Elliott, et al., 1996, Perron and Ng, 1996, Phillips, 1987, Phillips and Perron, 1988).  So we 

conclude the corn and ethanol price series are non-stationary. 

 

Table 3: Lag length selection 

Statistic LR df p-value AIC SBIC 

1 64.29 9 0.00 -15.34 -15.17* 

2 16.18 9 0.06* -15.36* -15.05 

3 17.86 9 0.04 -15.32 -14.89 

4 15.66 9 0.07 -15.26 -14.72 

 

 

Seasonality in the data 

Agricultural commodity prices are expected to contain seasonality (Brennan, 1958).  The 

spot price verses expected future spot prices must be such that sufficient amount of the crop 

is stored for consumption throughout the year.   
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 To correct for seasonality in the data we include sinusoidal regressors with periods of 

1 year, 6 months, and 3 months initially.  We fit the data to a standard VAR to determine 

which of the seasonal regressors provide explanatory power to the data, and the t-

probabilities from each regressor in each equation are included in table 4. 

 

Table 4: Seasonal regressors 

Period ( fraction of yr) 1 0.50 0.25 

Ethnaol 0.04 0.05 0.46 

Corn 0.13 0.35 0.89 

*p-values of the t-statistic on the sinusoidal regressors in the given price equatons of a VAR 

 

 

 The only sinusoidal regressor significant at the 5% level is that with period of 1 year 

in the corn price equation.  We include only this one in the price equations in the model 

analyzed below.  

 

Preliminary (Asymptotic) Results 

We conduct a preliminary analysis of the prices of corn and ethanol.  In table 2 observe that 

the null hypothesis of no cointegration is rejected at the 1% level by the trace statistic and at 

the 5% level by the maximal eigenvalue statistic.  Table 5 contains the results of fitting the 

corn and ethanol data to a vector error correction model.  Neither variable Granger causes the 

other in the short run, as illustrated by the short run Granger probabilities.  The error 

correction term is significant in the ethanol price equation since the p-values on the 
 

parameter in the ethanol equation is less than 0.01, but the error correction term is not 

significant in the corn price equation.  This implies when the variables are shocked away 
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from their equilibrium relationship, the price of ethanol adjusts two bring the two series back 

into equilibrium.   

 

Table 5: Error correction results and Granger causality  – corn and ethanol 

    

Short run   corn ethanol  

Granger corn 0.11 0.80 

probabilities ethanol 0.13 0.63 

    

   -0.19 0.98 

p-value  0.00 0.00 

   -0.02 -0.03 

p-value  0.39 0.00 

  

 

 

 We caution against a strict interpretation of these analyses of the corn and ethanol 

price relationship.  The Johansen tests we employ, while currently state of the art for 

detecting equilibrium relationships, have severe limitations in small samples; we explore 

these problems in more detail in the sections that follow. 

 

Small Sample Issues with Johansen’s Cointegration tests 

Since Johansen‘s trace and maximum eigenvalue tests of cointegrating rank are asymptotic 

likelihood ratio tests they have undesirable properties in small samples.  It is known that that 
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the tests suffer from size distortion and low power in small samples, especially when the 

error correction model produces residuals are nearly I(1).  Several Monte Carlo studies have 

been published outlining the severity of these issues.   

Cheung and Lai (1993) determine the finite sample sizes of the Johansen tests and 

quantify the finite sample critical values using response surface analysis.  They conclude the 

Johansen tests are biased toward rejecting a null of no cointegration too often in finite 

samples compared to the asymptotic distribution of the test statistics.  Further, they conclude 

that the bias worsens as the dimension of the system or length of the lag structure increases. 

Toda (1995) performs an independent study of the finite sample performance of the 

Johansen tests and determines that with 100 observations the simulated distribution of the 

asymptotic test statistic under the null is fairly good.  However, 100 observations are not 

enough to determine the true cointegrating rank under the alternative if the one or more of the 

stationary roots of the process is nearly 1.  Unlike Cheung and Lai, Toda asserts that this 

leads to underestimation of the cointegrating rank because of the nature of sequential testing 

inherent in the Johansen procedure.  Further, he finds the test‘s performance is affected by 

initial values of the stationary component of the process.  Toda concludes that one needs 300 

observations for the test to perform well uniformly over the range of finite sample scenarios 

he considers.  

Alternative to determining the critical values of the actual finite sample distribution, 

small sample corrections to the test statistics or critical values have been proposed.  Johansen 

(2002) proposes a correction factor that depends on parameters of the error correction model 

as well as the sample size.  However, the correction is fairly complicated to apply (the 

components of the correction which depend only on functionals of a random walk are 
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simulated and described in (Johansen, et al., 2005)); it is not clear that one cannot obtain 

better estimates of the small sample critical values from simulating the small sample 

distributions directly.  After all, the correction of the statistics developed by Johansen (2002) 

requires estimating the parameters of the data, just as is required to simulate the small sample 

distribution correctly. 

Ahn and Reinsel (1990) and Reimers (1992) develop a correction that is a simple 

function of sample size, system dimension and lag order.  However, as part of their Monte 

Carlo analysis Cheung and Lai (1993) conclude that the Ahn-Reinsel method does not yield 

unbiased estimates of the finite sample critical values.    

Given these reservations about the propriety of the small sample corrections, it seems 

the better approach is to obtain small sample critical values from a simulated finite sample 

distribution.  However, the Monte Carlo experiments performed in analysis preceding this 

article do not draw a connection between their simulation experiments and the type of data 

series they intend to mimic.  Are they simulated daily, weekly, monthly, quarterly, or yearly 

data?  This would be characterized by the variance of innovations in the process, but the 

Monte Carlo studies considered above usually set the variance in a convenient range (such as 

 0 25 1. ,  ); no explicit link between the data generating process (DGP) and a specific 

type of data series is made. 

However, in many time series studied by applied researchers this distinction is 

important.  While 400 observations of yearly data is a longer series than social scientists ever 

enjoy, 400 observations of daily data contain scarcely more than a year‘s worth of 

information.  For price series like corn or other agricultural commodities, one year‘s worth of 

data only includes one crop yield realization.  The day-to-day variation of these is determined 
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mostly by the market‘s incentive to store, and a year is not likely to be nearly enough time to 

capture the variation required in the data to test for cointegrating relationships between 

variables in this context.   

Further, the evidence is mixed about whether temporal aggregation of the data helps 

or hinders the power of cointegration tests to detect equilibrium relationships in small 

samples (see (Hooker, 1993, Lahiri and Mamingi, 1995, Otero and Smith, 2000, Shiller and 

Perron, 1985) for discussion).  The level of temporal aggregation will certainly influence the 

distribution of the test statistics in a small sample, and whether it increases or decreases the 

tests‘ power will depend on the nature of the DGP.   

Therefore, it seems appropriate to investigate how much data is required before the 

tests statistic appears to approach asymptotic behavior under a range of assumptions about 

the DGP.  Further, it seems worthwhile to provide small sample critical values that are 

associated more directly with a particular type of temporally aggregated data set, and for 

varying lengths of data available.   

In the next section we perform a small Monte Carlo study that provides critical values 

for Johansen‘s statistics on cointegrating rank.  The experiment is tailored explicitly to ‗daily 

data‘.  We provide both critical values of the distribution of the statistic under the null 

hypothesis as well as a small study of the power of the test statistic under the alternative 

hypothesis.  

 

A Monte Carlo Study 

The DGP we use closely resembles that used in prior Monte Carlo studies done by Banerjee 

et al. (1986) and Haug (1996).  In this study, we restrict our attention to a bivariate system, 
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since our original interest was in exploring the nature of a possible equilibrium relationship 

between corn and ethanol prices.  The data generating process is  

(7) t t t
y x   ,    1t t t

w 


  , 

(8) t t t
y x   ,    1t t t

r 


  ,      1t t t
r  


   

(9) 

2

1

2

2

0

0
,

iid
t

t

w
N

 

  

     
       

       
. 

With this DGP a moving average component in the error terms exists when   is non-

zero.  For  1   the data is generated under the null hypothesis of no cointegration, while a 

value of 1   corresponds to the alternative hypothesis that the two series are cointegrated.  

We choose values of   and  so that the covariance matrix of  t t
y x   matches levels 

typical for the two series of interest, in this case the corn and ethanol prices, and run the 

simulations for each parameter scenario   , , where  0 85 0 90 1 . , . , , and 

 0 80 0 0 80   . , , .  .  We follow Haug (1996) in the choice of these parameter values, 

which allows us to illustrate the effect of a moving average component in the error term on 

the size distortion and power of the Johansen tests. 

Deriving the variances and covariance of  t t
y x   implied by the data generating 

process in (7) and (8), one finds that the covariance matrix of  t t
w    relates to the 

covariance of  t t
y x   by the equations  

(10)  2 2

1
2

x xy
     

(11)    2 2 2

2
2 1

y xy
       
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(12) 
2 2

y x
     

Where 

2

2

y yx

yx

yx x

 

 

 
   

  

 is the covariance matrix of the  t t
y x    series.  These equations 

allow us to tailor the Monte Carlo experiment to mimic data of any temporal aggregation 

level. 

We match the covariance structure of the simulated data series to that of the first 

difference of logged corn and ethanol futures prices in the analysis above.  So that 

0 000406 0 000172

0 000172 0 000435
y x

 
   

 
,

. .

. .
 . 

 We perform the simulation using 100,000 replications, and for sample lengths 

varying from one month to 100 years.  Table 6 contains the finite sample critical values for 

different assumptions on the error term (values of  ), lag specification of the VECM, and for 

varying data series lengths.  When the moving average component of the DGP is zero or 

positive, ( 0  ), the small sample size distortion disappears with little more than six months 

of data, and the statistics have surprisingly small size distortion with as little as three months 

of data.   

 On the other hand when data is generated with a negative moving average component 

in the errors, the size distortion is severe.  A lag length of k = 2 is not enough to purge the 

system of autocorrelation, and we see size distortion persist even after the statistic seems to 

have converged.  Increasing the lag length is helpful in reducing the size distortion, but this 

costly in terms of power of the test statistic under the alternative. 

Table 6: Finite sample critical values for Johansen‘s cointegration tests – ―Daily data‖ 
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 Sample 

length 
Empirical 

Size
28

 

Trace Max 

 T*
29

 95% c.v. 99% c.v. 95% c.v. 99% c.v. 

0   1 mo 0.19 24.17 30.97 20.22 26.44 

k = 2 3 mos 0.07 19.36 24.45 16.17 20.68 

 6 mos 0.06 18.71 23.80 15.59 20.02 

 2 yrs 0.05 18.32 23.09 15.28 19.56 

 4 yrs 0.05 18.10 22.88 15.01 19.30 

 10 yrs 0.05 18.11 22.80 15.01 19.33 

 20 yrs 0.05 18.13 22.88 15.08 19.29 

 100 yrs  0.05 18.12 22.91 15.03 19.34 

     18.17 23.46 16.87 21.47 

0 8.   1 mo 0.20 25.33 32.56 21.18 27.56 

k = 2 3 mos 0.07 19.41 24.94 16.18 21.15 

 6 mos 0.06 18.54 23.58 15.44 20.12 

 2 yrs 0.05 17.90 22.81 14.92 19.44 

 4 yrs 0.05 17.85 22.67 14.84 19.25 

 10 yrs 0.04 17.74 22.57 14.78 19.28 

 20 yrs 0.04 17.79 22.69 14.83 19.26 

 100 yrs  0.04 17.75 22.65 14.79 19.19 

     18.17 23.46 16.87 21.47 

0 8.    1 mo 0.22 25.23 31.68 21.12 27.11 

k = 2 3 mos 0.40 28.41 34.36 24.86 30.52 

 6 mos 0.60 35.19 42.75 31.98 39.26 

 2 yrs 0.73 52.47 66.73 49.67 63.73 

 4 yrs 0.74 59.17 77.65 56.31 74.82 

 10 yrs 0.76 64.23 86.60 61.41 83.58 

 20 yrs 0.76 66.54 91.73 63.74 88.39 

 100 yrs  0.76 67.94 94.73 64.98 92.28 

 200 yrs 0.76 68.12 94.04 65.28 91.36 

     18.17 23.46 16.87 21.47 
n = 2, k is the number of lags used to perform the tests, 100,000 replications 

Asymptotic critical values from Osterwald-Lenum (1992) 

 

 

                                                           
28

 If the 95% asymptotic critical value is used. 

29
 Based on the assumption that there are approximately 250 trading days in one year.  I.e., if 

T = 4 years this corresponds to nobs = 1000 observations. 
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Table 6 (cont.): Finite sample critical values for Johansen‘s cointegration tests – ―Daily data‖ 

0 8.    1 mo 0.48 37.32 49.05 32.07 42.84 

k = 4 3 mos 0.18 23.44 29.07 19.85 25.06 

 6 mos 0.24 25.44 31.39 21.98 27.79 

 2 yrs 0.34 30.58 39.28 27.43 36.06 

 4 yrs 0.37 32.33 42.20 29.34 39.02 

 10 yrs 0.38 33.67 44.54 30.69 41.42 

 20 yrs 0.39 34.26 45.42 31.25 42.50 

 100 yrs  0.39 34.56 46.25 31.67 43.19 

 200 yrs 0.39 34.47 46.24 31.52 43.56 

     18.17 23.46 16.87 21.47 

0 8.    1 mo 0.81 71.82 98.12 63.68 89.80 

k = 5 3 mos 0.17 23.07 28.93 19.35 24.73 

 6 mos 0.18 23.45 29.28 20.00 25.70 

 2 yrs 0.24 26.41 33.60 23.18 30.30 

 4 yrs 0.25 27.27 35.62 24.16 32.27 

 10 yrs 0.26 27.93 36.59 24.84 33.32 

 20 yrs 0.27 28.31 37.22 25.22 34.02 

 100 yrs  0.27 28.49 37.60 25.51 34.54 

 200 yrs 0.27 28.41 37.70 25.46 34.60 

         
n = 2, k is the number of lags used to perform the tests, 100,000 replications 

 

 

 

Table 7 contains the results of a small power study of the test statistic under the 

alternative hypothesis that 1  .  The reported values are size adjusted powers, so it is the 

probability of rejecting the false null hypothesis using the appropriate small sample critical 

values.  Performing the simulations for 0 85 0 90 and 0 95  . , . , .  demonstrates how the test 

loses ability to discern a cointegrating relationship from a persistent alternative.   
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Table 7: Size-adjusted finite sample power of Johansen‘s trace cointegration test under the 

alternative 1   – ―Daily data‖    

 Sample length 
0   0 8.   0 8.    

 T 

0 85.   1 mo 0.05 0.05 0.05 

 3 mos 0.10 0.10 0.08 

 6 mos 0.28 0.27 0.12 

 2 yrs 1 1 0.49 

 4 yrs 1 1 0.99 

 10 yrs 1 1 1 

 20 yrs 1 1 1 

 100 yrs  1 1 1 

0 90.   1 mo 0.05 0.05 0.05 

 3 mos 0.08 0.07 0.06 

 6 mos 0.15 0.15 0.09 

 2 yrs 0.99 0.99 0.22 

 4 yrs 1 1 0.70 

 10 yrs 1 1 1 

 20 yrs 1 1 1 

 100 yrs  1 1 1 

0 95.   1 mo 0.05 0.05 0.05 

 3 mos 0.06 0.06 0.06 

 6 mos 0.08 0.08 0.0 

 2 yrs 0.55 0.56 0.09 

 4 yrs 0.99 0.99 0.17 

 10 yrs 1 1 0.90 

 20 yrs 1 1 1 

 100 yrs  1 1 1 
n = 2, 100,000 replications 

 

 

 The trace statistic performs relatively well in terms of power also when 0  .  When 

the DGP has 0 85  .  the power of the test is relatively good for sample length as small as 

six months, and has very high power for samples of 2 years or longer.  The power becomes 

weaker when the DGP is closer to a the null hypothesis of 1   with 0 90 and 0 95  . . .   In 
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these cases, two years of data are required before the test statistic has reasonable power; 

however, the power is very good for data series of four years or more. 

 The results of this Monte Carlo study are consistent with the findings of earlier 

research on the topic.  The Johansen trace statistic suffers from size distortion in small 

samples, the severity of which depends on the nature of the error term in the data generating 

process.  A negative moving average component to the error terms results in severe size 

distortions, while a positive or no moving average component in the error term results in 

fairly good properties of the statistic under  the null hypothesis.  The power of the statistic 

also is lower when the data generating process has a moving average component, but is more 

severely affected by the persistence of the data series measured by the distance of   from 

unity. 

 With respect to our original question of interest, the Monte Carlo study teaches us 

that the analysis conducted above on the cointegration of corn and ethanol prices, while 

instructive, should be interpreted with a healthy measure of caution.  The data set contained 

daily data spanning less than three years.  If the data generating process is either 1) highly 

persistent or 2) contains a negative moving average component or both, we can expect the 

statistic to perform poorly regardless of whether the null or the alternative hypothesis 

happens to be true.  The test rejects the null hypothesis of no cointegration between ethanol 

and corn under the assumption that the DGP does not contain a negative moving average 

component in the errors, since the trace test statistic is 23.41 compared to the 99% critical 

values of approximately 23 and 22.7 respectively.  But the test fails to reject the null 

hypothesis under the assumption that the DGP does contain a negative moving average 
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component in the errors, since the 99% and 95% critical values are decidedly above the test 

statistic. 

 

Conclusion 

In this paper we explored the possibility of an equilibrium relationship between corn and 

ethanol prices.  Using the equilibrium condition that in the long-run zero economic profit 

should be earned by the ethanol industry, we posit that futures contracts far from maturity 

should have prices related according to this breakeven relationship.  

 We demonstrated how this long run relationship could be transmitted to spot prices 

through intertemporal arbitrage.  In the cost-of-carry model intertemporal arbitrage governs 

the relationship between the futures and spot price of a storable commodity.  This could 

impose a long run relationship that is maintained by the price of two or more futures 

contracts on spot prices as well.  

 In order to test this theory we use the statistical methods of Johansen (1991).  We find 

evidence that there exists an equilibrium relationship between corn and ethanol prices, but at 

the same time caution against a strong interpretation of the results.   

 We discussed the small sample properties of the Johansen trace and maximal 

eigenvalue statistics.  The probability distributions of the statistics are only valid 

asymptotically; the statistics have been shown to have poor finite sample properties in 

previous Monte Carlo studies. 

 We tailor a Monte Carlo study with a data generating process that mimics the series 

we study, in order that we may determine how much data of this particular kind of series is 

required for good performance of the statistic.  We found that our data set would not be 
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sufficient to expect good performance of the statistic if a negative moving average is present 

in the error term, and obtained mixed results under different assumptions about the DGP. 
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CHAPTER 5: GENERAL CONCLUSTIONS 

 

This dissertation is a collection of three papers. Each paper dealt with a particular aspect of 

the relationship between energy and agriculture. The objective of the first paper was to create 

a model that would enhance informed policy decisions.  A forward-looking stochastic model 

captured the effect of uncertainty in crude oil prices and commodity yields on biofuel 

industry development.  Acreage limitations on feedstocks such as corn, soybeans, and 

switchgrass were shown to create competition for acreage among the crops, and lead to high 

commodity prices. Investors in the model were rational in the sense that they engaged in 

biofuel production only if returns exceeded what they could expect to earn from alternative 

investments.  

The Energy Independence and Security Act of 2007 mandated the use of 36 billion 

gallons of biofuels by 2022 with significant requirements for cellulosic biofuel and biodiesel 

production.  In the model, the price wedge created by mandated biofuel production at these 

levels was $2.50 per gallon for biodiesel and $1.07 per gallon for cellulosic biofuel. Long-

run commodity prices were high in our simulation, with corn at $7.38 per bushel and 

soybeans at $19.57 per bushel.  

  The second paper developed a model of the corn, soybean, and wheat markets to 

calculate welfare effects of increased biofuel production in the United States.  Demand was 

disaggregated into livestock feed, food, energy.  Allowing for uncertainty in crop yields 

permitted the valuation of farm deficiency payments as options.  Incorporating soybean and 

wheat markets captured indirect welfare effects through an equilibrium price increase.  Net 

welfare loss ranged from $200 million to $750 million depending on the size of biofuel 
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increase.  Consumers made a sizable transfer to farmers.  The sign of the net costs to 

taxpayers depended on the size of the biofuel industry. 

 In the third paper, the nature of the relationship between corn and ethanol prices was 

explored.  Economic fundamentals should require that the price of corn and ethanol maintain 

a long run equilibrium relationship.  The relationship is driven by a long run condition that 

says entry and exit in the industry will occur maintaining no sustained profits or losses for the 

industry.  Both ethanol producers and traditional users of corn have a stake in the behavior of 

these markets, and their profitability will rely on their ability to determine accurately this 

relationship.  I tested for cointegration of these price series and find evidence that corn and 

ethanol prices are indeed maintaining an equilibrium relationship.   

Statistical cointegration tests are known to have problems in small samples.  This is a 

potential issue in interpreting the results mentioned above because ethanol production only 

recently constituted a significant portion of the corn crop.  With only a few years of the most 

recent data for which we suspect that an equilibrium relationship existed, the small sample 

properties of cointegration tests are important.  I conducted a Monte Carlo study that was 

tailored to mimic the actual data set of corn and ethanol prices.  I find that the corn and 

ethanol price series are not long enough to rely on the asymptotic properties of the 

cointegration statistics, and therefore one should use small sample critical values in this kind 

of analysis. 

This dissertation demonstrates some of the important ways energy markets and 

agricultural markets are intertwined because of biofuel production.  The use of agricultural 

commodities as an input into the production of energy fundamentally changes the way these 

markets interact.  There are still many questions about how these two seemingly distinct 
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sectors are related, but this dissertation fills some of these gaps.  The three papers collected 

here consider, in turn, the tax credit or subsidy required to maintain a biofuel industry at 

EISA 2007 mandated levels, the welfare implications of biofuel production increase, and 

they way corn and ethanol price behavior may has been altered due to biofuel production. 
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