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Introduction

Overview

McFaddens (1981) hypothesis of random utility maximization (RUM) has been a workhorse

for researchers in different fields of economics to study household choices among competing

goods. The RUM hypothesis speculates that maximization of utility is the driving force behind

individual agents decision to choose among available alternatives and thus individual preference

distribution is a consequence of choices made by the whole population. This conjectures makes

the RUM model appealing to theorists and practitioners alike. In the recreation demand

models, a number of important additions have been made to the model to reflect the nature

of the problem faced by consumers. This includes the introduction of an aggregate demand

incorporating the need for multiple choices over a period of time.

The focus of this dissertation is to add to the existing literature on applying RUM models

to recreation demand by consistently estimating and evaluating the demand for and welfare

derived from recreational sites. The models proposed in this dissertation allows the Ran-

dom Utility Maximization (RUM) model to be robust to issues such as: limitations in the

information available to researchers; relaxing the assumption of constant marginal utility of

income and, incorporating model uncertainty in the estimation process. Another way to look

at this issues is in terms of model misspecification and the models proposed in each of the

chapters proposes to correct for these misspecification. For example, the first paper, looks at

respecifying the RUM model to incorporate unobserved site characteristics by the introduc-

tion of alternative specific constants with the ability to recover parameters of the observed site

characteristics that is of interest for policy scenario simulations. Ignoring this issues, we will



2

argue, will lead to inconsistent estimates of the parameters that determine the demand for

recreational site and consequently lead to mistaken inference and policy recommendations.

The models are then applied to study visitation patterns of Iowans to recreational sites

in order to measure the value residents place in the existing lake recreation opportunities, as

well as the changes in welfare that would result from proposed site improvements. The data

used for all the papers in this dissertation is from the Iowa Lakes Valuation Project at Iowa

State University. This is a four year panel data study, sponsored by the Iowa Department of

Natural Resources and the US EPA, that seeks to elicit the visitation patterns of Iowans to

major recreational lakes in the state. We make use of the first panel of the data for 2002 sent

to 8,000 households to elicit their visitation patterns to 129 principal Iowa lakes with socio-

demographic data. There is also a parallel data collected by Iowa State University’s Limnology

Laboratory that collected three times a year, over the course of a five-year project, thirteen

distinct water quality measurements at each of the lakes. This provides detailed information

on the characteristics of each lake.

The first paper Controlling for Observed and Unobserved Site Characteristics in RUM

Models of Recreation Demand accounts for the fact that researchers do not always have data on

all the attributes that a site has to offer individuals. The nature of many environmental goods

restricts the site attributes data available to researchers and to the extent that site specific

factors are omitted from the analysis and correlated with either observed site attributes or

the marginal utility of income parameter, the resulting parameter estimates and subsequent

welfare analysis will be biased. This is in line with the classic omitted variable bias problem.

Until recently, researchers typically ignore this problem and estimate the demand for the

site assuming that all the attributes are known. One solution to this problem is to include

a full set of alternative specific constants (ASC’s) when specifying the conditional utilities

derived from visiting sites. These constants absorb and isolate the impact of site-specific

attributes (including those unobserved by the analyst), allowing the key travel cost parameter

to be consistently estimated. This paper controls for unobserved site specific attributes in a

RUM model of recreation demand through the use of alternative specific constants. Whereas
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Murdock (2006) employs a contraction mapping algorithm to estimate site level fixed effects

(drawing on earlier work by Berry, Levinsohn and Pakes (1995)), we couch the problem within

a Hierarchical Bayesian framework. The model is fit via Markov Chain Monte Carlo (MCMC)

methods, combining data augmentation and Gibbs sampling.

The second paper, RUM Models Incorporating Nonlinear Income Effects relaxes the as-

sumption of constant marginal utility of income in RUM models. One of the main appeals of

the RUM model is its consistency with the assumption of a utility maximizing agent. How-

ever, even though the model specification can in principle be generalized to allow for seemingly

valid cases of varying effects of marginal utility of income, researchers typically impose con-

stant marginal utilities. The assumption of constant marginal utility of income is a restrictive

formulation of individual preferences and choice behavior, preventing the satisfaction derived

from a recreational good to vary across individuals depending on their level of income. In

this chapter, we propose a RUM model that allows for nonlinear income effect that combines

nonparametric estimation with Taylor series approximation and Bayesian methodology of hier-

archical modeling. Data collected in the Iowa lakes project and, as is typical of many research

in the area of recreation demand, have income brackets data available for each agent.

The third paper is Model Uncertainty and Recreation Demand applies the techniques of

Bayesian Model Averaging (BMA) and variable selection to incorporate model uncertainty in

recreation demand models. The motivation for this is the fact that economic theory provides

relatively little guidance regarding the form that the relationship between environmental goods

and utility should take and which variables ought to be included in the analysis. In many

applications choices must be made between, for example, level and logarithmic specifications

for an environmental characteristic. While model selection criterion can be used to narrow

the set of specifications, there is the risk that the analyst (even inadvertently) may engage

in a “fishing” process among the available models, biasing the final outcome of the analysis.

This paper proposes an alternative approach that draws on the Bayesian paradigm to integrate

the variable selection process into the model and reflect the accompanying uncertainty about

which is the “correct” specification into subsequent counterfactual predictions.
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To conclude, in all the three papers, extending the RUM model to allow for the uniqueness

of data in modeling recreation demand is the primary goal. This is important because the

estimated models can be used to infer the value households place in access to sites and/or

changes to site characteristics which can be a key information to policy-makers seeking to

manage recreational resources. All the papers propose models to handle the issues raised

showing that the model works with series of generated data experiments and application to

the Iowa Lakes data. Welfare analysis algorithms are also suggested.

Dissertation organization

Each of the chapters is a separate paper, with an introduction, literature review, Model

description and conclusion. The papers as listed above represent the next three chapters and

the dissertation concludes with a general conclusion for all the papers. The tables and figures

are presented in each of the papers.
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Controlling for Observed and Unobserved Site Characteristics in RUM

Models of Recreation Demand

A paper submitted to Journal of Environmental Economics and Management

Babatunde Abidoye

Abstract

Random Utility Maximization (RUM) models of recreation demand are typically plagued

by limited information on environmental and other attributes characterizing the available sites

in the choice set. To the extent that these unobserved site attributes are correlated with

the observed characteristics and/or the key travel cost variable, the resulting parameter esti-

mates and subsequent welfare calculations are likely to be biased. In this paper we develop a

Bayesian approach to estimating a RUM model that incorporates a full set of alternative spe-

cific constants, insulating the key travel cost parameter from the influence of the unobserved

site attributes. In contrast to estimation procedures recently outlined in Murdock (2006),

the posterior simulator we propose (combining data augmentation and Gibbs sampling tech-

niques) can be used in the more general mixed logit framework in which some parameters of

the conditional utility function are random. Following a series of generated data experiments

to illustrate the performance of the simulator, we apply the estimation procedures to data

from the Iowa Lakes Project. In contrast to an earlier study using the same data (Egan et

al. (2009)), we find that, with the addition of a full set of alternative specific constants, water

quality attributes no longer influence the choice of where to recreate.
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Introduction

McFadden’s Random Utility Maximization (or RUM) model provides the framework most

often used to characterize recreation demand, linking the frequency of site visitation to in-

dividual attributes, the characteristics of alternatives in the choice set, and the travel cost

required to reach each site. The estimated models can, in turn, be used to infer the value

households place in access to sites and/or changes to site characteristics. Such information is

key to policy-makers seeking to manage recreational resources. One advantage analysts have

in modeling recreation demand is that, unlike most empirical demand studies, there is rich

variation in the price data. The travel cost differs both across individuals and alternatives

because of differences in each person’s proximity to recreational sites. Unfortunately, variation

in the price data is frequently offset by a paucity of information characterizing the attributes

of the sites themselves. Researchers are often limited to one or two measures of site quality

such as fish catch rates (Chen, Lupi and Hoehn (1999) and Morey, Rowe and Watson (1993)),

fish toxin levels Phaneuf, Kling, Herriges (2000)) or dummy variable indicators capturing dif-

ferent levels of water quality (Parsons, Helm and Bondelid (2003)).1 The risk in this setting

is that unobserved site attributes may be correlated with the observed attributes or travel

costs (or both), leading to omitted variables bias for the estimated parameters and biasing any

subsequent welfare calculations.2

One solution to this problem is to include a full set of alternative specific constants (ASC’s)

when specifying the conditional utilities derived from visiting sites. These constants absorb

and isolate the impact of site-specific attributes (including those unobserved by the analyst),

allowing the key travel cost parameter to be consistently estimated. However, two problems
1There are, of course, exceptions. Hanemann (1981) highlights the importance of a large set of water

quality attributes in determining site selection, including chemical oxygen demand (COD), phosphorus and
fecal coliform bacteria levels. In a related study of beach usage in the Boston-Cape Cod area, Bockstael,
Hanemann and Strand (1986) employ a large number of water quality attributes, finding that these factors
again are significant determinants of recreation demand.

2It is not hard to imagine possible correlations between observed and unobserved environmental attributes.
For example, fish catch rates are likely to be lower in water bodies suffering from high pollution levels. The fish
catch rates, in this case, might serve as a proxy for a myriad of water quality attributes affecting recreational site
choices. Unobserved site attributes might also be correlated with travel costs, both because individuals might
choose to locate closer to sites with higher water quality and because regulators may place a higher priority on
improving the water quality of sites near population centers.
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emerge. First, when the available choice set is large, a full set of ASC’s will greatly expand

the parameter space, making the RUM model difficult to estimate. Second, the impacts that

site attributes have on site selection are no longer identified, having been absorbed into the

alternative specific constants. This limits the scope for policy analysis for regulators who are

often interested in how changing site attributes (particularly a site’s environmental conditions)

will alter recreational usage patterns and the welfare of their constituent residents.

In a recent article, Murdock (2006) provides a resolution to both problems. Drawing on

innovations in the industrial organization literature by Berry (1994) and Berry, Levinsohn,

and Pakes (1995), Murdock suggests dividing the estimation task, employing a contraction

mapping routine to estimate the alternative specific constants, while a standard maximum

likelihood routine is used to estimate the model’s remaining parameters conditional on the

estimated ASC’s. Whereas joint estimation of all of the RUM model’s parameters can be

difficult, Murdock’s iterative approach is significantly faster and more stable, addressing the

first problem noted above. To address the second issue (i.e., identification of the site attribute

affects) Murdock suggests a second stage estimation in which the ASC’s are regressed on

observed site attributes. As she notes, the advantage of this approach is that any concerns

regarding correlation between observed and unobserved site attributes can be readily dealt with

at this stage of the analysis using standard instrumental variable techniques in the context of

a simple linear regression model.

There are, however, limitations to the estimation procedure proposed by Murdock. In par-

ticular, and contrary to the claims in Murdock (2006), the procedure cannot be used to obtain

maximum likelihood parameter estimates if the RUM model includes random parameters (the

so-called mixed logit model).3,4 Murdock’s use of the contraction mapping is based on the

claim that “. . . in any random utility model the inclusion of a dummy variable for a particular

alternative means that the predicted number of times it is selected will be exactly equated with

the actual number of times it is selected in the data” (Murdock (2006), p. 8.) Unfortunately,

while this mean-fitting feature of maximum likelihood estimation does emerge for the standard
3See Train (2009) for a description of the mixed logit model.
4To our knowledge, Klaiber and von Haefen (2008) were the first to note the error in Murdock (2006).
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logit model, it does not hold once random parameters are introduced.5 Without this feature,

the alternative specific constants obtained by the contraction mapping routine no longer solve

the standard first order conditions implied by maximum likelihood estimation. In turn, this

implies that the remaining parameter estimates for the RUM model, which are obtained condi-

tional on the ASC’s, are also not maximum likelihood estimates. While forcing the alternative

specific constants to insure mean fitting may be a desirable feature of an estimator, it is no

longer clear what the statistical properties are of the resulting parameter estimates.6

The purpose of this paper is to provide an alternative approach to estimating the parameters

of a RUM model including a full set of alternative specific constants, but one that does allow

for the inclusion of random parameters. In particular, we propose a Bayesian approach using

data augmentation and Gibbs sampling to characterize the posterior distribution of model’s

parameters. Using a series of generated data experiments we demonstrate that our particular

posterior simulator yields a posterior distribution for the key travel cost parameter that is

insulated from the influence of unobserved site attributes, even those correlated with price or

the observed site attributes.7

The influence of observed site characteristics on site visitation is captured using a hierarchi-

cal structure in the RUM model, allowing the distribution of the alternative specific constants

to depend upon the observed site attributes. Unlike the post-estimation second stage regres-

sion used in Murdock (2006), our approach proceeds jointly rather than sequentially and fully

embraces the informational content provided by all stages of the hierarchy in the estimation

process. That is, information provided by the hierarchical priors can be used to help “predict”
5The mean-fitting nature of the logit model stems from its membership in the linear exponential family of

distributions, which the mixed logit model is not a member of. In her technical appendix to Murdock (2006),
Murdock essentially uses a standard logit model (by conditioning on the random parameters) to prove that the
first order conditions for maximum likelihood estimation imply that the estimates will be mean fitting. In an
appendix to this paper, available from the authors upon request, a similar proof demonstrates that mean fitting
is no longer implied by maximum likelihood estimation once random parameters are introduced.

6It should be noted that the limitation to Murdock’s procedure in no way carries over to the earlier work
of Berry (1994) and Berry, Levinsohn, and Pakes (1995). In those papers, a contraction mapping is used to
fit observed shares in the context of a GMM estimator and do not implicitly rely upon first order conditions
derived from maximum likelihood estimation.

7By “insulated” we mean that the posterior is approximately centered around the parameter of the (known)
data generation process and tends to collapse around this value as the sample size grows. This result is specific
to the posterior simulator we employ - had we chosen to implement traditional blocking approaches with panel
data, we would not obtain this desirable sampling performance.
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the site-specific constants in addition to what is learned by the first-stage exercise of intercept

estimation in the multinomial choice model. The adoption of such a hierarchical specification

allows the researcher to borrow strength from what is learned about the estimation of other

site-specific parameters and use it (in conjunction with site-level observables) to predict values

of the given site-specific constant. As such, the hierarchical model serves to shrink the model

estimates toward common means and helps mitigate concerns regarding overfitting, a common

criticism of the highly-parameterized fixed effects model. While we do not focus on this in

our empirical analysis, the hierarchical structure for the ASC’s can also be readily generalized

to allow for possible correlation between the observed and unobserved site attributes using an

instrumental variables approach along the lines described in Rossi, Allenby, and McCulloch

(2005) (section 7.1) and Lancaster (2004) (chapter 8).

We illustrate our method using data from the Iowa Lakes Project, a large scale recreation

demand study containing information on the visitation patterns of approximately 4,400 Iowa

residents to the 130 primary recreational lakes in the state. One advantage of this study is

that, in addition to household level usage data, detailed information is available on both site

attributes and lake water quality. Moreover, this same data was recently used in Egan et

al. (2009) to estimate a RUM model of lake usage as a function site attributes, individual

characteristics and travel cost, but without the use of alternative specific constants. The

authors find that households significantly and substantially respond to both site characteristics

and water quality attributes in deciding which lakes to visit. Using a similar specification

that does not contain site-specific constants, yet estimated from a Bayesian point of view,

we are able to replicate these qualitative results. Importantly, however, we find that once

alternative specific constants are included in the model, the impact of water quality attributes

is no longer clear, while site characteristics such as wake restrictions and boat ramps remain

important factors. We also find that there is about 20% drop in the coefficient of travel cost

with the addition of ASC’s, which in turn leads to an increase in most welfare calculations by

approximately 25%.

The outline of the paper is as follows. Section 2 provides a more detailed description of the
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basic RUM model, highlighting the potential for omitted variables bias and summarizing the

related literature. Section 3 then describes our proposed method for estimating the parameters

of the model, including a full set of alternative specific constants. A series of generated data

experiments is employed in Section 4 to illustrate the performance of our posterior simulator

under varying assumptions regarding unobserved site attributes. Section 5 provides a descrip-

tion of the Iowa Lakes Project and the data used in our empirical analysis. Estimation results

and model comparison exercises are provided in Section 6 and the implications of various model

specifications for welfare calculations in Section 7. The paper concludes with a summary in

section 8.

Controlling for Unobserved Site Attributes

As noted above, a significant concern in the recreation demand literature is that the analyst

typically has relatively few attributes characterizing the individual sites in the choice set. To

the extent that unobserved site attributes are correlated with either observed site attributes

or the travel cost variable (or both), the resulting parameter estimates and subsequent welfare

analysis will be contaminated by this correlation. Using both a generated data experiment

and an empirical application to recreational fishing in Wisconsin, Murdock demonstrates that

ignoring the unobserved site characteristics can “. . . cause biased standard errors that can

outrageously overstate the precision of the [parameter] estimates. . . ” (Murdock (2006), p.

14.) and welfare predictions that are off by up to a factor of four.

The nature of the issue can be illustrated using a simple RUM model. Suppose the utility

individual i receives from visiting site j is a linear function of a vector of site attributes (sj),

the travel cost required to visit the site (pij) and an idiosyncratic error component (εij) that

is uncorrelated across sites and individuals and uncorrelated with either sj or pij (e.g., εij is

i.i.d. extreme value). That is

Uij = sjα0 + pijβ + εij i = 1, 2, . . . , N ; j = 1, 2, . . . , J. (1)

Given distributional assumptions regarding the εij ’s, choice probabilities can be derived for
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each individual and alternative, providing the basis for estimating parameters of the condi-

tional utility function in (1). Unfortunately, the analyst may only observe a subset of the site

attributes, (soj), leading to a reduced form specification

Uij = sojα
o
0 + pijβ + ε̃ij i = 1, 2, . . . , N ; j = 1, 2, . . . , J. (2)

where

ε̃ij = sujα
u
0 + εij i = 1, 2, . . . , N ; j = 1, 2, . . . , J. (3)

In (3), suj denotes the unobserved site attributes and αk0 (k = o, u) denote the subset of

parameters associated with skj (k = o, u).8 Given this specification, consistent estimation of

the parameters αo0 and β will require that the observed site characteristics and travel cost

variables be uncorrelated with the unobserved characteristics. However, in applications where

there are numerous unobserved site attributes, this condition is unlikely to hold, resulting in

correlation between the error term ε̃ij and the included explanatory variables and leading to

the classic omitted variables bias (and inconsistency) problem.

One solution to this problem is to introduce a full set of alternative specific constants to

capture the unobserved site attributes. In particular, letting αuj ≡ sujαu0 , equation (1) becomes

Uij = αuj + sojα
o
0 + pijβ + εij i = 1, 2, . . . , N ; j = 1, 2, . . . , J. (4)

Unfortunately, perfect collinearity between the alternative specific constant αuj and the ob-

served site effects, sojα
o
0, will preclude identification of both αuj and αo0. Instead, one can only

identify an overall alternative specific constant

αj = sojα
o
0 + sujα

u
0 (5)

= sojα
o
0 + αuj (6)

capturing the total impact of the site characteristics (observed and unobserved) on latent

utility. That is, we can employ the model:

Uij = αj + pijβ + εij i = 1, 2, . . . , N ; j = 1, 2, . . . , J. (7)
8The specification in equation (2) is similar to that used in Egan et al. (2009) and in much of the recreation

demand literature.
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This resolves the omitted variables problem since the error term (εij) is once again uncorrelated

with the explanatory variable (pij). Unfortunately, in addressing the omitted variables issue,

we have created two new problems. First, there are now J-1 alternative specific constants to

estimate, which can be challenging when the choice set is large. Second, the impact of the site

characteristics on consumer welfare is no longer separately identified.

If the individual utilities (i.e., the Uij ’s) in equation (7) were observable, we would have a

classic linear regression model and the alternative specific constants could be treated as fixed

effects. In this setting, familiar partitioned regression techniques could be used to ease the

computational burden of estimating the many ASC’s. However, given the nonlinear nature of

the RUM model, these techniques are not available. Murdock’s solution, however, is somewhat

analogous. She uses a contraction mapping routine, together with the mean-fitting nature of

maximum likelihood estimation (MLE) in the logit setting (i.e., imposing that the actual and

fitted shares are equal under MLE) to separate the estimation of a full set of alternative specific

constants from the estimation of the remaining parameters. Once the ASC’s are estimated,

the relatively small number of remaining parameters are obtained using standard maximum

likelihood estimation, conditioning on the ASC’s. This is an elegant solution to the problem,

with both steps in the estimation process being easy to implement. Murdock goes on to suggest

that the role of the observed site attributes in determining recreation demand can be captured

using a second stage regression that fits the linear regression model implicit in equation (6),

replacing the ASC’s (i.e., the αj ’s) with their fitted values from the first stage and treating αuj

as the error term.9 Murdock observes that any omitted variables bias resulting from correlation

between the observed site attributes in (6) and the unobserved site attributes imbedded in αuj

can be handled using instrumental variables techniques. As noted in the introduction, the

principle drawback to the method proposed by Murdock (2006) is that it does not generalize

to the mixed logit setting, which allows for preference heterogeneity across individuals through

the use of random parameters. Moreover, the parameters αo0 are informative for the ASC

parameters, and we fail to capitalize upon this source of learning in the sequential approach
9Note that this regression will have only J − 1 observations.
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to estimation.

In the next section we propose an alternative to Murdock’s two-step procedure that can be

used in the mixed logit setting. Before proceeding with the technical details, some intuition as

to why our approach works may help. We approach the estimation problem from a Bayesian

perspective, combining data augmentation and Gibbs sampling to characterize the posterior

distribution of the model’s parameters, but in the process draw on results in the standard

fixed effects model familiar to non-Bayesians.10 The data augmentation aspect of the simulator

involves treating the unobserved latent site utilities (i.e., the Uij ’s) as additional parameters of

the model. At each stage a simulated value for this otherwise missing information is obtained

based on the observed decisions made by each individual. The key to the approach is that,

conditional on these draws of the latent utilities, the model is effectively linear, and thus the

problem of characterizing the posterior distribution of the parameters in (7) (i.e., the ASC’s αj

and the travel cost parameter β) proceeds in a manner very similar to the classic fixed effects

model. Indeed, with a diffuse prior on the parameters, the corresponding posterior mean of

(α1, . . . , αJ−1,β) reduces to the non-Bayesian’s fixed-effects estimator. By blocking together

the simulation of the conditional posterior distribution of ASC’s and the travel cost parameter,

we isolate the impact of the unobservables (capturing them entirely in the alternative specific

constants) and insulate the travel cost parameter from their effects, much like the standard

result that the fixed effects estimator is unbiased even when correlation exists between the

fixed effects and other explanatory variables included in the model.

Model

The basic RUM model presented in the previous section considers only a single choice from

among the available alternatives in the choice set. In order to capture the observed outcome
10There have been several papers using a Bayesian framework to estimate a model similar to that originally

proposed in Berry, Levinsohn and Pakes (1995), including a full set of alternative specific constants to control
for unobserved alternative attributes. Yang, Chen, Allenby (2003) develop a posterior simulation alternative
to Berry, Levinsohn and Pakes (1995) in modeling aggregate supply and demand. However, the routine is
conditional on correctly specifying the underlying supply relationships. Jiang, Manchanda and Rossi (2009)
provide a Bayesian counterpart to the contraction mapping approach outlined in Berry, Levinsohn and Pakes
(1995), though again the analysis is couched in the context of aggregate supply and demand data.



14

that individuals often take multiple trips to one or more sites during a course of a season, it

is common practice in the recreation demand literature to employ the repeated logit model

(Morey, Rowe and Watson (1993), Herriges and Phaneuf (2002) ). In this extension of the

basic RUM model, individuals are assumed to repeatedly choose from among the same set of

alternatives over a fixed number of choice occasions. Furthermore, each decision is assumed

conditionally independent across individuals and choice occasions.11 The particular form of

the model we use is the repeated mixed logit (RXL) model employed by Egan et al. (2009)

(allowing individual parameters of the model to be random), but with the addition of the

full set of alternative specific constants advocated by Murdock (2006). This section begins by

describing the structure of the RXL model and developing the necessary notation, followed

by a specification of the prior distributions employed in our analysis and a description of the

Gibbs sampler used to generate draws from the posterior distribution.

The Repeated Logit Model

In the repeated logit model it is assumed that, on each choice occasion t, individual i

chooses from among J + 1 alternatives, including the option to “stay at home” (j = 0). We

assume the conditional utility individual i derives from alternative j at time t is given by:

Uijt =

 ziγ + εi0t j = 0

αj + pijβ + ϕi + εijt j = 1, . . . , J.
(8)

In this form of the model, the utility from visiting any one of the recreation sites (i.e.,

j = 1, . . . , J) is decomposed into an overall site-specific effect (αj), a price (or travel cost)

effect (pij), an individual specific effect ϕi, and an idiosyncratic error term εijt. The term ϕi

is included in the model to allow for heterogeneity in preferences to recreate across individuals

and, specifically, we assume ϕi ∼ N (0, σ2
ϕ). The parameter σ2

ϕ is estimated within the model

and characterizes the extent of variation in preferences to recreate in the population. The

mean of this assumed normal distribution is restricted to be zero for identification purposes,
11Herriges, Kling and Phaneuf (1999) provide a summary of the repeated logit model and the implications of

its underlying assumptions.
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as a non-zero mean (and thus an overall intercept parameter) will be introduced through our

hierarchical prior for αj .Ceteris paribus, an individual with a small ϕi is more likely to stay

at home on a given choice occasion than someone with a larger ϕi. The inclusion of these

individual-level heterogeneity terms thus mimics the standard nested logit structure in which

all of the recreational sites are included in a single nest (See Herriges and Phaneuf (2002)).

The idiosyncratic error term εijt captures any remaining unobservable aspects of condi-

tional utility and is assumed to be independent across the J + 1 alternatives. We assume

εijt
iid∼ N (0, 1). This assumption can be relaxed, and more flexible correlation and substitu-

tion patterns permitted across the alternatives. We maintain this assumption here, however,

both because it is rather common in the recreation demand literature, mimics the often-used

nested logit structure in empirical practice, and the complexity of the current model leads

us to consider this parsimonious variant of the model as a starting point. Finally, individual

demographic characteristics (such as age and gender) are assumed to impact the individual’s

propensity to stay at home, through the term ziγ in equation (1), but are assumed to not

impact the relative preference for any given recreation site. Such an extension could, again, be

relaxed by allowing γ = γj , although this generalization may potentially introduce many new

parameters in the model.

The choice among the alternatives on any given choice occasion depends, of course, only

on relative utility levels. We use the stay-at-home-option as the base alternative, defining:

Ũijt = Uijt − Ui0t = αj + pijβ − ziγ + ϕi + ε̃ijt (9)

where ε̃ijt = εijt − εi0t for j = 1, ...., J. Stacking the error differences over alternatives, let

ε̃i·t =



εi1t − εi0t

εi2t − εi0t
...

εiJt − εi0t


∼ N (0,Σ∗)
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where

Σ∗ =



2 1 · · · 1

1 2 · · · 1

1 1
. . .

...

1 1 · · · 2


Stacking all the variables across alternatives, we then have

Ũi·t = α· + pi·β − (1J ⊗ zi)γ + 1Jϕi + ε̃i·t, (10)

where 1J is a J × 1 vector of ones,

Ũi·t =



Ũi1t

Ũi2t
...

ŨiJt


; α· =



α1

α2

...

αJ


; and pi· =



pi1

pi2
...

piJ


.

Grouping our covariates together, the vector of utility differences can be written more com-

pactly as

Ũi·t = Mi·tθ + vi·t, (11)

where

Mi·t =
[
IJ pi· 1J ⊗ zi

]
and θ =

[
α·
′ β γ ′

]′
.

Although Mi·t does not formally depend on t in our application, it may in other instances, and

we continue to make use of this notation here to remind us of the assumed repeated nature of

the decision problem. Finally, vi·t is the composite error term

vi·t = 1Jϕi + ε̃i·t (12)

where E(vi·t) = 0 and

E(vi·tvi·t′) ≡ Ω = σ2
ϕ1J1′J + Σ∗. (13)

The observed choice yit is linked to the latent variable vector Ũi·t as follows:

yit(Ũi·t) =

 0 if max{Ũijt}Jj=1 ≤ 0

k if max{Ũijt}Jj=1 = Ũikt > 0.
(14)
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What we observe for every individual is a count of the number of visits to the full menu of

potential sites over a given period of time, which for us represents a calendar year. Within

the RXL framework, we imagine that a series of decisions were made by the individual at

particular choice occasions - which in our case is weekly - in a manner that is consistent with

this aggregate data. For example, if we know that a person visits just a single site k once

and nothing else, then in 51 of the 52 cases, yit takes on the value of the stay-at-home option

(0), while in the remaining case, yit = k. The actual ordering of these occurrences is not

informed by the likelihood function, as nothing in the model depends on t, and we do not have

information on the specific timing of decisions within the data. Our posterior simulator, then,

will sample the Uijt for t = 1, 2, . . . , 52 in a manner that satisfies the observed information on

the total number of visits (and non-visits), and the particular order in which this is done is

irrelevant for estimation and inferential purposes.

Hierarchical Priors

As described in the previous section, the alternative specific constants (αj) play a particu-

larly important role in the model. The αj ’s capture both observed and unobserved attributes of

the site that might influence a person’s propensity to visit that site (as in equation [5)].12 The

alternative specific constants also provide the sole avenue by which the observed site attributes

impact the recreation demand decision. In Murdock’s (2006) two-stage estimation procedure,

this is accomplished in the second stage, in which the fitted α̂j ’s are regressed on the observed

site attributes, soj . In our Bayesian approach, this is captured by incorporating a hierarchical

structure into our model, assuming that the αj ’s are drawn from an underlying distribution

whose mean is a function of the observed site characteristics; i.e.,

αj
ind∼ N (qjα0, σ

2
α). j = 1, 2, . . . , J (15)

12We assume that these site-specific effects are constant over both time and individual. The model could
readily be generalized to allow for heterogeneity of preferences towards the site attributes by allowing the αj
to vary over individuals with some common mean. Allowing the site-effects to vary over time is substantially
more difficult in that most recreation demand data sets do not have diary data regarding when individuals visit
specific sites, but rather simply record how many times each site is visited over the course of a season.
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where qj includes a constant term and the observed site characteristics that influence demand

for site j. This simple hierarchical structure is mostly silent about any possible correlation

between unobserved site attributes and the observed attributes included in qj , although it

is often assumed - at least implicitly - that these unobserved characteristics are uncorrelated

with those in qj . If this assumption does not hold, then α0 will simply capture the correlation

between the αj ’s and the observed site attribute, rather than a causal relationship, suffering

from a form of omitted variables bias. In these instances, the hierarchical structure for the

ASC’s can be readily generalized to allow for possible correlation between the observed and

unobserved site attributes using an instrumental variables approach along the lines described

in Rossi, Allenby, and McCulloch (2005)(section 7.1) and Lancaster (2004) (chapter 8).

We do not explore this possibility in the present paper, as no compelling instruments were

identified in our data set and we do have available an extensive list of site attributes. In this

regard we recognize that application of our methods will not solve all problems - to the extent

that relevant unobserved site characteristics are omitted, yet correlated with observed site

characteristics, our posterior estimates of the α0 parameters will continue to be plagued by

poor sampling properties. However, we do claim victory in the sense that the inclusion of site-

specific constants, in conjunction with our particular posterior simulator, will yield accurate

estimates of the first-stage parameters in (8), even when such correlation and confounding is

present. We will elaborate on this issue when describing our generated data experiments in

the following section.

To complete our model, we specify priors for the remaining parameters. These are enumer-

ated below:

α0 ∼ N (µα,Vα) (16)

β ∼ N (µβ, Vβ) (17)

γ ∼ N (µγ ,Vγ) (18)

σ2
α ∼ IG(aα, bα) (19)

σ2
ϕ ∼ IG(aϕ, bϕ) (20)
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The hyperparameters of the priors above are supplied by the researcher and are in general

chosen to be relatively vague to allow dominance of the information from the data. While N

above obviously refers to the normal distribution, IG(·, ·) follows the notation in Koop, Poirier

and Tobias (2007) (pp. 336) and represents the inverse gamma distribution. The prior means

(µα, µβ, µγ) in our empirical work and generated data experiments are set to zero vectors of

appropriate dimensions with the respective prior variance for the parameters (Vα, Vβ, and Vγ)

set to identity matrices of the appropriate dimensions. We also select the hyperparameters

of the variances by choosing aα = 3; bα = 5 and aϕ = 3; bϕ = 5. This leads to a reasonably

non-informative prior for the variances with prior mean and standard deviation equal to 0.113

Posterior Simulator

Let

Ξ =
[
θ α0 σ2

α {ϕi} σ2
ϕ

]
denote all the parameters of the model. The joint posterior distribution of Ξ and the latent

utility Ũ defines the augmented posterior density for the parameters in our model. By Bayes

theorem this posterior density is obtained as:

p(Ξ, Ũ |y) ∝
[ T∏
t=1

N∏
i=1

φ(Ũi·t;Mi·tθ,Ω) (21)

×
〈
I(yit = j)I(Ũijt > max[Ũi,−j,t, 0]) + I(yit 6= j)I(Ũijt < max[Ũi,−j,t, 0])

〉]

×

 J∏
j=1

p(αj |α0, σ
2
α)

[ N∏
i=1

p(ϕi|σ2
ϕ)

]
p(β)p(γ)p(α0)p(σ2

α)p(σ2
ϕ).

As mentioned previously, the individual yit data are not directly observed, but are constructed

to be consistent with the total number of trips taken to all of the sites over a given period of

time. We construct the individual yit artificially, though without loss of generality, to match

these aggregate counts; the timing of when these decisions are assumed to occur does not affect

the augmented posterior distribution or its simulator. Therefore, our particular assignment of

the yit values, provided they properly reproduce the total counts, is arbitrary.
13It should be noted that in cases where the data provides little information such as “small” J , the priors can

be quite influential when making posterior inferences concerning these common parameters.
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We fit the above model using Markov Chain Monte Carlo (MCMC) methods, drawing

specifically upon Gibbs sampling techniques. The Gibbs sampler makes use of the fact that,

while joint posterior distributions frequently take unrecognizable forms (making them difficult

to draw from), the conditional posterior distributions for individual blocks (or partitions) of

the parameter space will often fall into well known distributional families that can be readily

drawn from. Sequentially drawing from the posterior conditional distributions will lead to

drawing from the joint posterior distribution of interest. In our particular implementation of

the Gibbs sampler, the parameters αj , β and γ are blocked together. This not only improves

the mixing of the posterior simulator, but also preserves some desirable sampling properties

of the posterior estimates of β. We will revisit this point when conducting our generated data

experiments.

Step 1: Draw the Ũi·t|Ξ,y

Given the structure of our model, and to ease computation, we draw the latent utilities that

individual i derives from visiting site j as an intermediate step in drawing the necessary utility

differences. That is, we sample the Uijt and then take differences from the baseline utility Ui0t

to obtain the Ũijt. Drawing the Uijt is straightforward, since conditional on αj , β,γ, and {ϕi}

there is no correlation among the alternatives or correlation across individuals. The posterior

conditional distributions for the Uijt’s are univariate truncated normal with mean µij and

variance of 1 and a truncation point dictated by the visitation pattern of the individual.14 In

particular, if an alternative is chosen, it must be the alternative that gives maximum utility.

This places a lower bound on the utility of the chosen alternative and an upper truncation

point for all the other alternatives.

We use the following steps to draw the Ũijt’s at a given draw r :

Assuming that individual i chooses alternative k at choice occasion t,

1: Draw U rijt for all j 6= k from a truncated normal distribution with mean µij , a variance

of 1, and upper truncation point Uikt = U r−1
ikt .

2: Draw U rikt from a truncated normal distribution with its mean µij , a variance of 1, and

14From equation (1), µij = αj + Pijβ + ϕi for j = 1, . . . , J and µi0 = ziγ.
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a lower truncation point at the max(U rijt) for all j 6= k.

3: Calculate Ũijt by taking the difference between utilities from all sites and the stay at

home option: Ũ rijt = U rijt − U ri0t.

Step 2: θ|Ξ−θ, Ũ ,y

In this case and in all the steps that follow, Ξ−m in the conditioning implies that we

condition on all the parameters in Ξ other than m. Using the result of Lindley and Smith

(1972), the posterior conditional for θ is given as:

θ|Ξ−θ, Ũ ,y ∼ N (Dθdθ,Dθ). (22)

where

Dθ ≡

[
T

N∑
i=1

M′
i·tΩ

−1Mi·t + Σ−1
θ

]−1

dθ ≡
∑
t

∑
i

M′
i·tΩ

−1Ũi·t + Σ−1
θ µθ

and

Σθ =


σ2
αIJ 0 0

0 Vβ 0

0 0 Vγ

 , µθ =


Qα0

µβ

µγ

 .
The blocking strategy adopted in this step is key to our proposed simulator, jointly draw-

ing the parameters α·, β and γ. This blocking not only helps in improving the mixing of

the sampler, but also avoids contamination of the travel cost parameter β stemming from un-

observed site attributes correlated with travel cost. A natural alternative blocking strategy,

performed by many in practice without recognition of its consequences, proceeds by drawing

β and γ jointly from the posterior conditional marginalized over the αj , and then drawing

each αj independently from their complete posterior conditional distributions. This simulator

would not achieve the same objective. In short, the steps used to integrate αj out of the β,γ

conditional in this approach assume independence of the errors of (15) and other covariates

in the model, even though such correlation may be present. Our simulator proceeds without

having to model this correlation, and without needing to be concerned about it. The analogy

here would be between the standard fixed and random effects estimators in the non-Bayesian
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paradigm. In the standard fixed effects estimator, the parameter estimates are robust to poten-

tial correlation between the regressors of the model and fixed effects. The same is not true of

the random effects estimator. Our blocking strategy simultaneously simulates the alternative

specific constants (our site fixed effects) jointly with the other parameters β and γ, much like

the fixed effects estimator simultaneously estimates the fixed effects and the parameters in the

linear regression model. We present results of a generated data experiment in the next section

that supports this.

Step 3: {ϕi}|Ξ−ϕi , Ũ ,y

{ϕi}|Ξ−ϕi , Ũ ,y ∼ N (Dϕdϕ, Dϕ) (23)

where

D−1
ϕ = JT +

1
σ2
ϕ

; and dϕ =
T∑
t=1

(Uϕ
i·t −M

ϕ
i·tθ

ϕ)

and Uϕ
i.t,M

ϕ
i·t, and θϕ are stacked over the sites j (j = 1...J) and choice occasion for each

individual without the stay at home equation. That is

Mϕ
i·t =

[
IJ P i

]
and θϕ =

[
α·
′ β

]′
.

Step 4: α0|Ξ−α0 , Ũ ,y

The remaining steps of our posterior simulator involve the sampling of parameters of the

hierarchical priors. Once we condition on the αj ’s, the mean of the posterior conditional for

α0 is similar to Murdock’s (2006) second stage linear regression of the fitted alternative specific

constants on observed site attributes. Specifically:

α0|Ξ−α0 , Ũ ,y ∼ N (Dα0dα0 ,Dα0) (24)

where

Dα0 = (Q′Q/σ2
α + V −1

α )−1 and dα0 = Q′α/σ2
α + V −1

α µα.

Step 5: σ2
α|Ξ−σ2

α
, Ũ ,y

σ2
α|Ξ−σ2

α
, Ũ ,y ∼ IG

J
2

+ aα,

b−1
α + .5

J∑
j=1

(αj −Qjα0)2

−1 . (25)
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Step 6: σ2
ϕ|Ξ−σ2

ϕ
, Ũ ,y

σ2
ϕ|Ξ−σ2

ϕ
, Ũ ,y ∼ IG

N
2

+ αϕ,

(
b−1
ϕ + .5

N∑
i=1

ϕ2
i

)−1
 . (26)

Generated Data Experiment

In this section we conduct a series of four generated data experiments to illustrate the

performance of our proposed methods. In particular, we examine how our sampler performs

given different degrees of correlation (a) between observed and unobserved site characteristics

and (b) between travel cost and unobserved site characteristics. The experiments also pro-

vide information as to how many draws will be needed to achieve the same level of precision

that would be obtained under independent and identical distribution (iid) sampling from the

posterior.

In the first pair of experiments we focus our attention on the impact that correlation

between the observed and unobserved site characteristics has on parameter recovery. The

sample size is set at N = 5, 000, with each individual choosing from among J = 30 sites and

the stay-at-home option over the course of T = 20 choice occasions. Two demographic variables

(i.e., zi’s) are included in the experiment, with one drawn from a uniform distribution and the

second a dummy variable drawn from a Bernoulli distribution with equal probability of success

and failure. The travel cost for each individual to each site (pij) is drawn from a standard

normal distribution. Finally, the alternative specific constants are generated assuming that

αj = α01 + α02s
o
j + αu0s

u
j (27)

with soj and suj drawn jointly from the bivariate normal distribution, with soj

suj

 ∼ N

 0

0

 ,

 σ2
o ρσoσu

ρσoσu σ2
u


 . (28)

In our experiments we use σ2
o = 0.03 and σ2

u = 0.05, with ρ denoting the degree of correlation

between the observed and unobserved site attributes. This, in turn, implies that

αj |soj
ind∼ N

(
α01 + α02s

o
j , (α

u
0)2σ2

u

)
. j = 1, 2, . . . , J. (29)
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In the notation of our hierarchical specification for the alternative specific constants (see equa-

tion (15)), qj = [1 soj ], α0 = (α01 α02)′, and σα = αu0σu. Experiment 1 assumes that soj

and suj are uncorrelated (i.e., ρ = 0), while experiment 2 assumes that they are correlated

with ρ = 0.7. Note that in these first two experiments there is no correlation between the

unobserved attribute suj and travel cost.

We fix β, γ and the hierarchical parameters {α01, α02, σϕ, σα} at the true values listed in

column 3 of Table 1a and Table 1b. The Gibbs sampler described in section 3.3 is implemented

for 55,000 iterations, discarding the first 40,000 draws as burn-in. The chain is initialized at

values that are relatively far from the true parameters with σ2
α and σ2

ϕ set to unity and all

remaining parameters set to zero. Trace plots for so;e of the parameters are provided in Figure

1.

Parameter posterior means and posterior standard deviations for the first generated data

experiment are reported in the second column of Table 1a and Table 1b. Even with only a

small number of alternatives in the choice set, the results suggest that our algorithm performs

well in recovering the parameters of the model.

One concern, however, in any MCMC algorithm is the degree of correlation among the

parameter draws over sequential iterations. If the degree of correlation is high, the algorithm

will be slow in exploring all areas of the posterior surface and a large number of draws will

be needed to fully characterize the posterior distribution. A summary of the impact of high

autocorrelation on the precision of our posterior estimates can be obtained by calculating

so-called inefficiency factors:

√
inefficiency factor ≡

√
f =

√√√√1 + 2
m−1∑
j=1

(1− j

m
)ρj , (30)

where m is the number of draws after convergence and ρj represents the correlation between

simulations j periods (iterations) apart. These factors help to intuitively understand the

numerical accuracy of the MCMC-based posterior estimate by comparing it to the level of pre-

cision that would have been obtained under iid sampling. For example, if a given parameter’s

simulations yield
√
f = 5, then we will need to run the simulator for 25M iterations in order
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to obtain the same level of numerical precision that would be obtained from M iid posterior

draws.

The inefficiency factors are reported for each parameter in column 4 of Table 1. Unfortu-

nately, estimates of these inefficiency factors are often quite high, especially for the coefficient

on travel cost with an inefficiency factor of about 21. Such high values are an expected con-

sequence of a model of this type and this complexity, as we must sample the latent utilities

from their respective conditional posterior distributions and also sample {ϕi} separately from

the blocked elements of θ. The large inefficiency factors indicate that we will need to run our

simulations longer - in some cases more than 400M times as long - to obtain the same level of

accuracy as would be obtained in M iid draws. It is also worth noting that the posterior mean

of σ2
α is high (as indicated in Table 1), relying as it does on only J = 30 alternative specific

constants. Consequently, the prior will be quite influential.15 This will improve with a larger

number of alternatives.

Parameter posterior means and standard deviations for the second generated data exper-

iment are reported in the fifth column of Table 1. In this experiment there is substantial

correlation (ρ = 0.7) between the observed and unobserved site attributes. As anticipated, we

find that the posterior mean of α02 is far from the true value of 0.98, suffering what is akin

to omitted variables bias found in a classical linear setting. Despite this important limitation,

however, estimates of parameters appearing in the latent utility stage of the model in (8) are

unaffected by the induced correlation between soj and suj , with posterior means that are all

quite close to their true values.

In the final two experiments we examine the potential consequences of correlation between

travel cost and the unobserved site attributes. Specifically, we assume that the travel cost (pij)

is a weighted average of an independent random variable ωij
iid∼ N(0, 1) and the unobserved

site characteristics (suj ) with:

pij = (1− κ)ωij + κsuj , 0 < κ < 1. (31)

15However, the mode of the posterior distribution (not reported) is consistently close to the true value even
when J = 30.
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As in the previous two experiments, the unobserved site characteristic (suj ) is generated from

a normal distribution with mean zero and variance σ2
u = 0.05. As κ increases, the correlation

between the travel cost and unobserved site characteristic increases.16 We consider two levels

of correlation. In experiment 3 we use κ = 0.5 to induce a moderate level of correlation between

the unobserved attributes and travel cost, yielding Corr(pij , suj ) ≈ 0.22. In experiment 4 we

create a higher level of correlation by setting κ = 0.7, yielding Corr(pij , suj ) ≈ 0.46. For both

experiments the simulator described in section 3.3 was used to obtain 55,000 draws from the

posterior distribution, with 40,000 draws discarded as the burn-in. Parameter posterior means

and standard deviations from both experiments are reported in Table 2a and Table 2b, along

with the true parameters used to generate the data.

In both instances, and despite the correlation between the unobserved site attributes and

travel cost, the simulator does a good job in recovering the underlying parameters of the model.

The posterior mean of the key coefficient on the travel cost variable (β) differs from the true

value in both experiments by less than one percent and the true value falls within 1 or 1.5

standard deviations of the mean in both experiments. We again emphasize that this is a special

feature of our particular posterior simulator and such results would not be obtained had we

blocked the parameters in a “traditional” way by first integrating out the αj and then sampling

(β,γ). Indeed, when we implement such a simulator to this data, we obtain a posterior mean

and standard deviation of β equal to -5.63 and 0.07, which is clearly bounded away from the

actual parameters of the DGP.

As a whole, results from the four experiments reported in this section attest to the fact that

our sampling scheme works well, though for some parameters mixes rather slowly, and insulates

the travel cost coefficient from potential biases resulting from unobserved site characteristics. In

the absence of legitimate instruments and an elaborated structure on (15), however, estimated

coefficients on site-level variables are not immune to problems caused by relevant omitted site

characteristics that are correlated with elements of soj .

16In particular, Corr(pij , S
u
j ) = κσ2

u{σ2
u[(1− κ)2 + κ2σ2

u]}−1/2.
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Application and Data Description

We apply our methods using data from the Iowa Lakes Valuation Project at Iowa State

University. The Iowa Lakes Project is a four year panel data study, sponsored by the Iowa

Department of Natural Resources and the US EPA, eliciting the visitation patterns of Iowan

residents to the primary recreational lakes in the state. One of the objectives of the project

is to measure the value residents place in the existing lake recreation opportunities and to

predict the changes in welfare that would result from proposed water quality improvements.

Understanding how water quality attributes affect recreational activities will help policy makers

allocate limited environmental resources and prioritize their efforts to comply with the Clean

Water Act.

The data set is appropriate for our study for a number of reasons. The Iowa Lakes Project

not only covers all the major lakes in the state but also provides information on a wide variety of

site characteristics. The observed site characteristics (Q) include both site attributes, such as

lake acreage and indicators for paved boat ramps and handicap accessibility, and an unusually

large number of water quality attributes, such as Sechi transparency (a measure of the depth

of water clarity), Nitrogen, and Chlorophyll.17 In addition, the exact same data was used by

Egan et al. (2009) to estimate a repeated mixed logit model but without the inclusion of a full

set of alternative specific constants. Our analysis provides an indication of how the estimated

impact of travel cost is impacted by not controlling for unobserved site characteristics.

Although data for the project was collected over a four year period (2002-2005), we focus on

the 2002 survey. The initial survey was sent by mail to 8,000 randomly selected Iowa residents.

The response rate among deliverable surveys was 62%, yielding a total of 4,423 returned

surveys. We exclude from our analysis those individuals who (a) were not Iowa residents (42),

(b) failed to complete the section of the survey asking for lake visitation patterns (360), or

(c) reported taking more than fifty-two day trips per-year (223). The latter sample exclusion

follows the procedure used in Egan et al. (2009), wherein the authors note that individuals
17The water quality attributes were measured by Iowa State University’s Limnology Laboratory three times a

year at each lake. The values used in our analysis are simple averages of these measures, following the approach
used in Egan et al. (2009).
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taking such frequent trips are usually local residents who are counting casual visit to or the

passing by of their local lake. Instead, our analysis, like theirs, is concerned with day-trips

taken to lake sites solely for the purpose of recreation.18 The cut-off of fifty-two trips per year

allows for a day-trip each week.

Table 3 provides summary statistics for our sample, both in terms of household demo-

graphics and individual site characteristics. As the table indicates, the survey respondents in

our data set are, on average, older males with some college or trade/vocational school. The

average household size is 2.45, including (on average) 0.61 children. Travel cost (pij) is cal-

culated using 25 cents per mile for the round-trip travel distance [computed using PCMiler

(Streets Version 17)] plus one-third the respondent’s wage rate multiplied by the travel time.19

Overall, round-trip travel costs average just under $140, ranging from less than $1 to $1366.

One of the appealing features of the Iowa Lakes Project is that, not only is there a wealth

of information available regarding the site attributes and lake water quality, but there is also

considerable variation across the lakes in terms of these characteristics. The lakes in the

Iowa Lakes Project are, on average, 667 acres in size, ranging from 10 acres to approximately

19,000 acres. The other site attributes are represented with dummy variables that indicate the

availability of amenities of interest. The majority of the lakes in our sample have a paved boat

ramp (85%) and wake restrictions (i.e., Wake = 1) (65%), while less than forty percent of the

lakes have handicap facilities or are part of a local state park. There is also a wide range of

water quality in Iowa lakes. For example, Secchi Transparency (which measures the depth into

the lake that one can see) averages just over one meter, but varies from less than 0.1 meters

(approximately 3.5 inches) to 5.67 meters (well over 18 feet). Similar ranges are found for the

other water quality measures, including Total Nitrogen, Total Phosphorus, and Cyanobacteria.

Moreover, these water quality measures are not highly correlated, as the source and nature of

the water quality problems in individual lakes varies considerably across the state.
18Egan et al. (2009) also found that their qualitative results are not sensitive to the specific cut-off of fifty-two

trips per year.
19The “average wage rate” is calculated for all respondents as their household’s income divided by 2,000. This

allows for a 40 hour work week with two weeks of vacation.
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Empirical Results

We fit our random utility maximization model using the posterior simulator of Section 3.3.

As described there, Gibbs sampling is used to generate simulations from the joint posterior

distribution and the Gibbs algorithm is first run for 20,000 iterations. The last iteration from

this process is then used to initialize two different chains, run simultaneously on two different

machines with different seeds. Each of these runs produced 30,000 simulations, leaving us with

a total of 60,000 post-convergence draws to calculate parameter posterior means, standard

deviations and other quantities of interest.

Each iteration of the simulator was found to take about 30 seconds to run (or about 10 hours

to produce 1,000 iterations), with the most time consuming step being the simulation of latent

data for each agent, for each of 130 different sites, and for T = 52 different choice occasions.

Specifically, this step demands the simulation of nearly 21,400,000 truncated normal random

variables, which cannot be completely vectorized or done within a single coding step, since

the simulations just produced are used to update the conditioning information in the sampling

of the remaining latent data. A large burn-in value of 20,000 iterations was used because,

informed by our generated data experiments, we found the simulator for the parameters α′js,

β and γ to mix relatively slowly. Although we would like to obtain more post-convergence

simulations in light of the fact that the algorithm tends to exhibit slow mixing, generating

additional draws is quite costly - our two machines worked for nearly 12.5 days to provide the

set of simulations used here.

Application Results

We are primarily interested in applying the algorithm in Section 3.3 to data from Iowa Lakes

Project to address the following questions: (1) Does ignoring unobserved site characteristics

matter in understanding site visitation patterns of Iowans? (2) Which site attributes are

important in influencing site visitation patterns? and (3) What are the welfare implications of

water quality improvements?

We begin to address these questions by first considering our most general model (later
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denoted as Model “A”) which contains a complete set of water quality measures and non-water

quality site attributes in qj . We report parameter posterior means and posterior probabilities

of being positive [denoted P (· > 0|y)] for key parameters of the model in Tables 4 and 5. For

the sake of brevity we only report (in Table 4) the alternative specific constants results for an

illustrative subset of sites.

The alternative specific constants αj are negative for all the 130 sites in our sample with

less than 0.0001 percent of the posterior mass density in the positive region of the parameter

space. The large negative values for the site specific constants is consistent with our data

as these constants reflect the difference in utility from site visits relative to staying at home.

Given the large number of trip options, a large negative alternative specific constant is needed

to reflect the fact that approximately 39% of our sample reported visiting none of the lakes

in 2002. As expected, the α′js are higher (less negative) for popular destination lakes in the

state, such as Okoboji Lake, which has one of the highest quality site attributes in the U.S.

Within the context of the standard RUM framework used here, the negative of the travel

cost coefficient (i.e., −β) can be interpreted as the marginal utility of income, which is assumed

to be constant.20 Consistent with our expectations, the posterior mean for β in Table 4

is negative (-0.0137), with the vast majority of the posterior mass falling in the negative

region. Posterior distributions for parameters associated with the demographic variables are

also consistent with the literature. Similar to Egan et al. (2009), older individuals, females,

and the less educated are more likely to stay at home. Households with a greater number of

adults and children have a higher likelihood of visiting a site. However, in contrast to Egan

et al. (2009), the signs and overall magnitudes of these coefficients in our analysis are not

sensitive to the construction of qj . This, we argue is a key benefit of our hierarchical model

structure and posterior simulator; only estimates at the terminal stage of the hierarchy are

susceptible to having limited information on the attributes. All of the posterior densities for

the demographic variables coefficients are highly massed on either the positive or negative side

of the distribution, showing a consistent impact on the decision to stay at home.
20While it is standard in the recreation demand literature to assume a constant marginal utility of income, it

is not required for the methods outlined in this paper.
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The results for the parameters of the hierarchical prior are presented in Table 5. The

posterior mean of the “overall intercept” α01 is negative, as expected, and the posterior density

also places the majority of its mass over negative values. Similar to Egan et al. (2009), the

availability of amenities such as boat ramps, handicap accessibility, wake restrictions and

classification as a state park make a site more attractive. Larger lakes, ceteris paribus, are

also preferred, as all posterior simulations associated with the site size (acres) parameter were

positive.

The posterior results for the water quality attributes, however, are in sharp contrast to

earlier studies. In particular, whereas Egan et al. (2009), using the same data, conclude

that water quality attributes are important determinants of recreational lake usage and site

selection, we find little evidence of this effect. For most of the water quality coefficients, the

mass of their posterior densities are more or less evenly divided between the positive and

negative values [with P (· > 0|y) hovering around 0.5]. This result may call into question the

individual importance of water quality attributes in determining recreation demand.21 Only

Total Phosphorus, which contributes to algae growth, is convincingly massed on one side of

zero in our analysis, suggesting (as in Egan et al. (2009)) that high levels of Total Phosphorus

reduces the appeal of a site.

Table 6 represents our attempt to reproduce results in Egan et al. (2009) from the Bayesian

perspective. Here, we consider a simplified representation of latent utility, as in equation (2),

that ignores unobserved site characteristics by dropping the site-specific constants. When per-

forming this analysis, we obtain results that are similar to those in Egan et al. (2009) with

water quality attributes shown to have important influences on site selection. In particular,

the posterior probabilities of being positive for these characteristics are, with the exceptions of

Cyanobacteria and Volatile SS, virtually one or zero, indicating a clear role for these charac-

teristics in recreation decisions. Also, comparing the coefficient on travel cost between the two
21It is important to emphasize, however, that by incorporating alternative specific constants into our model,

the impact of site specific attributes on recreation demand is being captured entirely by the variation in the αj ’s.
In essence, we have only J−1 observations in modeling the impact of water quality on recreation demand. Thus,
it is not surprising that the resulting posterior distributions for the water quality coefficients are relatively diffuse,
with the data providing relatively little information by which update our diffuse priors on these parameters.
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results, we see a drop of about 20% in the estimated impact of travel cost when we allow for

site-specific constants. This translates into an approximate 25% increase in the welfare effect.

Model Comparison

In what follows we consider four different models, similar to those employed by Egan et

al. (2009), and with an eye toward determining the set of factors that play the largest role in

explaining recreation decisions. These models are enumerated below:

• Model A: The unrestricted model just discussed containing a full set of water quality

and non-water quality attributes.

• Model B: Includes Secchi transparency as the only water quality attribute, all non-water

quality attributes included.

• Model C: No water quality attributes included, all non-water quality attributes in-

cluded.

• Model D: Includes Secchi transparency as the sole site attribute (all other attributes

dropped).

When the Bayesian is faced with a problem of model selection / comparison of this sort, he or

she effectively treats the model itself as a parameter and notes, by Bayes rule:

p(Mk|data) =
p(data|Mk)p(Mk)

p(data)
(32)

where Mk denotes the kth model under consideration, p(data|Mk) denotes the marginal like-

lihood, p(Mk) is the prior probability of Model k and p(Mk|data) is the posterior probability

ofMk. Therefore, models can be compared pairwise based on their posterior odds ratio which

is defined as:

POkj =
p(Mk|data)
p(Mj |data)

=
p(data|Mk)p(Mk)
p(data|Mj)p(Mj)

. (33)

In practice, the prior odds ratio p(Mk)/p(Mj) is usually set to unity for all the possible models

considered so that:

POkj =
p(Mk|data)
p(Mj |data)

=
p(data|Mk)
p(data|Mj)

≡ BFkj , (34)
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with the ratio of marginal likelihoods denoted as the Bayes factor (BF).

For nested model comparison exercises, like those involved in deciding among Models A-

D above, the Savage-Dickey (S-D) density ratio offers a useful computational expedient for

the calculation of (34). Specifically, suppose we wish to “test” π = 0 for some subvector of

coefficients π. Provided the restricted model’s prior for parameters other than π is the same

as the unrestricted model’s prior for these parameters given that π = 0, we can write

BF12 =
p(π = 0|data,M2)
p(π = 0|M2)

, (35)

where Model 1 in the above represents the restricted version of Model 2, imposing π = 0. The

two expressions p(π = 0|data,M2) and p(π = 0|M2) are recognized as the posterior and prior

ordinates at zero under the unrestricted model 2, respectively, and the former of these can be

readily calculated given output from the posterior simulator. The results of these Bayes factor

calculations are presented in Table 7.

Though individuals might not be responsive to the individual water quality attributes as

shown in our result, there is the possibility that a combination of these attributes might be

important determinant of recreational demand. In order to investigate this, we compute the

Bayes factor for each of the model to compare if the data favors this hypothesis. Model C is the

model that includes none of the water quality attributes relative to Model A and B that has

one or more water quality attribute included in the model. The result of the Bayes factor of

5.61E+17 when we compare the unrestricted model (Model A) to Model C signals that Model

C is clearly preferred to Model A. This implies that the water quality measures do not matter

jointly either.

Welfare Analysis

Policy and counterfactual analysis is an important part of recreation demand research. In

this section, we briefly describe how our model can be used to evaluate policies that affect site

characteristics. Specifically, we consider changes to site attributes from baseline levels (Q0) to

an alternative conditions (Q1). Although our focus is on the welfare implications of a change in
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site quality, other types of counterfactuals (such as the loss of an entire site) can be considered

using a similar algorithm with few modifications.

Let Υs
it denote the maximum utility achieved by agent i on choice occasion t under scenario

s (s = 0, 1). That is,

Υs
it(Ξ−α·, Q

s) = max
j

(Usijt|Ξ−α·, Q
s) s = 0, 1, (36)

where α· = (α1, . . . , αJ) denotes the vector of alternative specific constants. Changes in the

site characteristics impact individual consumers by altering the overall appeal of the sites, as

reflected in the αj ’s. Thus, we no longer have a single set of alternative specific constants, but

a set for each scenario (denoted αs· ). We use the hierarchical structure in equation (15) to

simulate the changes to these constants resulting from a change in the site attributes.

The compensating variation (CV) is then defined as the monetized change in expected

maximum utility due to changes in the site attributes over the course of the season. That is

CV =
T

−β
EΞ

[
Υ1
it(Ξ−α· , Q

s)−Υ0
it(Ξ−α· , Q

s)
]

(37)

The term in square brackets above measures the change in utility per choice occasion. Since

the choice occasions are treated as independent of each other, the seasonal change in expected

utility is just a simple scaled multiple of the expected change per choice occasion. Finally,

dividing by the marginal utility of income (−β) creates a monetized measure of the change in

the consumer’s utility from a change in site characteristics.

We estimate the compensating variation in (35) by simulating utility values conditional on

the posterior distribution of the parameters for the two scenarios. The algorithm for welfare

analysis can be described in the following steps:

Step 1: Let Ξ(r)
−α·(r = 1, . . . , R), denote a draw from the posterior distribution of Ξ−α· .

Draw α
s(r)
j (j = 1, . . . , J ; s = 0, 1) using (15). That is, draw the alternative specific constant

for site j under scenario s (αs(r)j ) from a normal distribution with mean qsjα
(r)
0 and variance

(σ(r)
α )2.
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Step 2: Draws of the utility levels U s(r)ijt |Ξ−α· , Qs are obtained using equation (1), with

U
s(r)
ijt =

 ziγ
(r) + ε

(r)
i0t j = 0

α
s(r)
j + pijβ

(r) + ϕ
(r)
i + ε

(r)
ijt j = 1, . . . , J.

(38)

where

ε
(r)
ijt∼N (0, 1) and ϕ

(r)
i ∼N (0, σ2

ϕ(r)). (39)

The simulation based estimate is then computed using

ĈV =
1
R

R∑
r=1

T

−β(r)

[(
max
j
U

1(r)
ijt

)
−
(

max
j
U

0(r)
ijt

)]
. (40)

We applied the algorithm for calculating the compensating variation to the unrestricted

model. We look at a scenario in which the water quality attributes in 9 zonal lakes (listed in

Table 4) are improved to the quality of Lake W. Okoboji which is one of the clearest lakes in

the state. The results are presented in table 8. The CV estimates in dollar amount reflect the

dollar amount that the individuals will loose or gain if the policy is implemented. As expected,

the estimated compensated variation shows no strong evidence that improving these attributes

lead to higher welfare. The probability that the density of the compensation variation density

is greater than zero [P (ĈV > 0)] is approximately 34%. The CV estimates are generally

negative, though caution should be applied in interpreting this. The result is less definitive

owing largely to greater posterior uncertainty associated with the water quality attributes.

Also reported in Table 8 is the loss of lake W. Okoboji which can be thought of as a ban

on the use of the lake due to several reasons such as flooding which can be a problem in Iowa.

This is an interesting computation give the nature of the lake and the number of visits to this

lake. The result shows that the closure of the lake will result in a CV value of nearly $9 per

Iowa household to compensate for this change. Despite the availability of alternative sites for

households to visit, this welfare loss seems reasonably high.

Summary

Controlling for unobserved site characteristics is important as researchers are typically

restricted to single measure of site attributes and to the extent that site specific factors are
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omitted from the analysis and correlated with either observed site attributes or the travel cost

variable, the resulting parameter estimates and subsequent welfare analysis will be inconsistent.

In this study, we extend earlier recreational demand models by allowing for unobserved site

characteristics in the model. In particular, a Bayesian posterior simulator is employed for

fitting this model, which not only consistently estimates the price effect on utility, but also

unifies the analysis into a single model while allowing for a more general error structure.

A number of conclusions can be drawn from the model and particular application described

in this paper. Firstly, our methodology offers an improved estimate of the travel cost parameter

without explicitly modeling the correlation between the unobserved site characteristics and

travel cost. Our approach of isolating the travel cost parameter from the unobserved site

characteristics through the use of hierarchical prior on the alternative specific constant has

genuine promise for analyzing similar models in other fields. While our Bayesian solution

to this problem is similar to that discussed by Yang, Chen, and Allenby (2003) and Jiang,

Manchanda and Rossi (2009), our particular strategy of blocking parameters together when

implementing the posterior simulator insulates us from concerns regarding omitted site-level

characteristics and their impact on estimation results. Secondly, our methodology results in

the shrinkage of the site-specific parameters toward a common mean through the prior which

is a desirable sampling distribution property of the estimator in Murdock (2006) and can help

in applications where some sites are not visited in the sample.

In terms of the application, the results indicate that unobserved site characteristics do

matter in understanding factors that affect site visitation patterns in Iowa. In contrast to

earlier studies, there is no clear indication that site water quality attributes substantially

influence lake visitation. That is, with alternative specific constant, water quality attributes

does not matter. Similar to earlier studies, we found evidence that socio-demographic variables

are important factors in determining recreational demand and site attributes also encourage

individuals to take trips to these lakes. However, in contrast to other studies, our results are

robust to different model specification of water quality attributes.
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Table 1b: Generated Data Experiments 1 and 2a

Experiment 1: Exogenous Observable (ρ = 0) Experiment 2: Endogenous Observable (ρ = 0.7)

Parameter Posterior Mean True Value
√

Inefficiency Factor Posterior Mean True Value

α1 -3.15 -3.27 13 -2.94 -3.04

(0.03) (0.03)

α2 -3.91 -4.00 17 -3.96 -4.02

(0.03) (0.03)

α3 -3.77 -3.90 18 -3.95 -4.07

(0.04) (0.03)

α4 -3.21 -3.28 16 -3.42 -3.46

(0.03) (0.03)

α5 -3.81 -3.93 12 -3.93 -4.00

(0.03) (0.03)

α6 -3.07 -3.17 19 -3.25 -3.30

(0.04) (0.04)

α7 -3.85 -3.97 21 -3.98 -4.06

(0.04) (0.03)

α8 -3.18 -3.29 19 -3.04 -3.13

(0.03) (0.03)

α9 -3.22 -3.30 18 -3.02 -3.05

(0.03) (0.03)

α10 -3.50 -3.57 20 -3.48 -3.51

(0.04) (0.03)

α11 -3.58 -3.68 17 -3.44 -3.53

(0.03) (0.03)

α12 -3.46 -3.56 15 -3.50 -3.55

(0.03) (0.03)

α13 -3.45 -3.54 18 -3.62 -3.67

(0.04) (0.03)

α14 -3.50 -3.61 17 -3.57 -3.66

(0.04) (0.04)

α15 -3.63 -3.71 12 -3.64 -3.69

(0.03) (0.03)

a
Posterior standard deviation in parentheses
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Table 1b (Contd): Generated Data Experiments 1 and 2a

Experiment 1: Exogenous Observable (ρ = 0) Experiment 2: Endogenous Observable (ρ = 0.7)

Parameter Posterior Mean True Value
√

Inefficiency Factor Posterior Mean True Value

α16 -2.84 -2.93 17 -2.85 -2.89

(0.03) (0.03)

α17 -3.72 -3.78 16 -3.90 -3.93

(0.03) (0.03)

α18 -3.16 -3.22 15 -3.12 -3.14

(0.04) (0.04)

α19 -3.01 -3.11 20 -3.00 -3.07

(0.04) (0.03)

α20 -3.71 -3.86 19 -3.94 -4.04

(0.03) (0.03)

α21 -3.39 -3.45 16 -3.43 -3.46

(0.03) (0.03)

α22 -3.43 -3.50 14 -3.49 -3.52

(0.03) (0.03)

α23 -3.54 -3.67 19 -3.67 -3.75

(0.04) (0.03)

α24 -3.48 -3.54 20 -3.46 -3.49

(0.03) (0.03)

α25 -3.70 -3.81 20 -3.99 -4.05

(0.04) (0.03)

α26 -3.03 -3.08 20 -3.02 -3.03

(0.03) (0.03)

α27 -3.30 -3.37 20 -3.28 -3.34

(0.03) (0.03)

α28 -3.26 -3.31 15 -3.22 -3.25

(0.03) (0.03)

α29 -3.33 -3.40 20 -3.38 -3.42

(0.04) (0.04)

α30 -3.21 -3.31 20 -3.41 -3.47

(0.03) (0.03)

a
Posterior standard deviation in parentheses
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Table 2a: Generated Data Experiments 3 and 4a

Experiment 3: Moderate Correlation Between Experiment 4: High Correlation Between

Price and Unobservables (κ = 0.5) Price and Unobservables (κ = 0.7)

Parameter Posterior Mean True Value Posterior Mean True Value

α0(1) -3.53 -3.52 -3.55 -3.52

(0.06) (0.06)

α0(2) 0.92 0.98 0.90 0.98

(0.29) (0.29)

β0 -4.50 -4.50 -4.52 -4.50

(0.02) (0.02)

γ0(1) .92 0.96 0.90 0.96

(0.03) (0.04)

γ0(2) 0.80 0.75 0.78 0.75

(0.02) (0.02)

σ2
ϕ 0.41 0.40 0.41 0.40

(0.01) (0.01)

σ2
α 0.08 0.05 0.09 0.05

(0.02) (0.02)

a
Posterior standard deviation in parentheses
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Table 2b: Generated Data Experiments 3 and 4a

Experiment 3: Moderate Correlation Between Experiment 4: High Correlation Between

Price and Unobservables (κ = 0.5) Price and Unobservables (κ = 0.7)

Parameter Posterior Mean True Value Posterior Mean True Value

α1 -3.29 -3.27 -3.26 -3.27

(0.03) (0.03)

α2 -4.01 -4.00 -4.00 -4.00

(0.02) (0.03)

α3 -3.89 -3.90 -3.92 -3.90

(0.02) (0.02)

α4 -3.27 -3.28 -3.32 -3.28

(0.02) (0.02)

α5 -3.90 -3.93 -3.93 -3.93

(0.02) (0.03)

α6 -3.17 -3.17 -3.21 -3.17

(0.02) (0.02)

α7 -3.94 -3.97 -3.98 -3.97

(0.02) (0.02)

α8 -3.29 -3.29 -3.29 -3.29

(0.03) (0.04)

α9 -3.32 -3.30 -3.38 -3.30

(0.03) (0.04)

α10 -3.58 -3.57 -3.59 -3.57

(0.02) (0.03)

α11 -3.69 -3.68 -3.68 -3.68

(0.03) (0.03)

α12 -3.56 -3.56 -3.58 -3.56

(0.02) (0.03)

α13 -3.56 -3.54 -3.58 -3.54

(0.02) (0.02)

α14 -3.59 -3.61 -3.61 -3.61

(0.02) (0.03)

α15 -3.70 -3.71 -3.73 -3.71

(0.02) (0.03)

a
Posterior standard deviation in parentheses
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Table 2b (contd): Generated Data Experiments 3 and 4a

Experiment 3: Moderate Correlation Between Experiment 4: High Correlation Between

Price and Unobservables (κ = 0.5) Price and Unobservables (κ = 0.7)

Parameter Posterior Mean True Value Posterior Mean True Value

α16 -2.97 -2.93 -2.94 -2.93

(0.03) (0.03)

α17 -3.81 -3.78 -3.83 -3.78

(0.02) (0.02)

α18 -3.23 -3.22 -3.25 -3.22

(0.03) (0.03)

α19 -3.12 -3.11 -3.15 -3.11

(0.02) (0.03)

α20 -3.86 -3.86 -3.89 -3.86

(0.02) (0.02)

α21 -3.47 -3.45 -3.50 -3.45

(0.03) (0.03)

α22 -3.53 -3.50 -3.55 -3.50

(0.02) (0.03)

α23 -3.68 -3.67 -3.73 -3.67

(0.03) (0.02)

α24 -3.58 -3.54 -3.56 -3.54

(0.02) (0.03)

α25 -3.77 -3.81 -3.79 -3.81

(0.02) (0.02)

α26 -3.09 -3.08 -3.10 -3.08

(0.02) (0.03)

α27 -3.39 -3.37 -3.41 -3.37

(0.02) (0.03)

α28 -3.34 -3.31 -3.34 -3.31

(0.02) (0.03)

α29 -3.41 -3.40 -3.44 -3.40

(0.02) (0.03)

α30 -3.30 -3.31 -3.38 -3.31

(0.02) (0.02)

a
Posterior standard deviation in parentheses
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Table 3: Summary Statistics

Variable Model Variable Mean Std. Dev. Min Max

Total Day Trips (2002)a Ti 6.33 9.97 0 50

Travel Cost ($100’s) Pij 1.37 .83 4.4E-03 13.66

Age b Di(1) 4.85 1.42 0 7

Gender (Male=1, Female=2) Di(2) 1.28 0.50 0 2

Education c Di(3) 3.00 1.18 0 5

Adults (No. of adults in household) Di(4) 1.84 0.71 0 6

Child (No. of children in household) Di(4) 0.61 1.04 0 7

Lake Attributes

Acres Qj(2) 667.20 2112.83 10 19000

Ramps Qj(3) 0.85 0.36 0 1

Wake Qj(4) 0.65 0.48 0 1

Handicap Qj(5) 0.38 0.49 0 1

State Park Qj(6) 0.39 0.49 0 1

Water Quality

Secchi Transparency (m) Qj(7) 1.17 0.92 0.09 5.67

Total Nitrogen (mg/l) Qj(8) 2.19 2.53 0.55 13.37

Total Phosphorus (µg/l) Qj(9) 105.45 80.33 17.10 452.55

Volatile SS (mg/l) Qj(10) 9.30 7.98 0.25 49.87

Inorganic SS (mg/l) Qj(11) 10.12 17.79 0.57 177.60

Cyanobacteria (mg/l) Qj(12) 298.08 831.51 0.02 7178.13

Chlorophyll (µg/l) Qj(13) 40.64 38.01 2.45 182.92

a
39% of the sample did not visit any lake that year

b
Unsure = 0; Under 18=1, 18-25=2, 26-34=3, 35-49=4, 50-59=5, 60-75=6, 76+=7

c
Unsure = 0; Some high school or less=1, High school graduate=2, Some college or trade/vocational school=3, College graduate=4,

Advanced degree=5
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Table 4: Posterior Means of Selected Alternative Specific Constants

along with Travel Cost and Demographic Parameters.a

Parameter

Parameter Model A Model B Model C Model D

Mean P (· > 0|y) Mean P (· > 0|y) Mean P (· > 0|y) Mean P (· > 0|y)

αj Selected Alternative Specific Constants

Storm Lake -2.8665 0.0000 -3.3376 0.0000 -3.3412 0.0000 -3.3308 0.0000

Briggs Woods Lake -3.6978 0.0000 -3.6683 0.0000 -3.6654 0.0000 -3.6571 0.0000

Silver Lake -4.0309 0.0000 -4.0154 0.0000 -4.0115 0.0000 -3.9830 0.0000

Prairie Rose Lake -3.5275 0.0000 -3.5012 0.0000 -3.5127 0.0000 -3.5014 0.0000

Big Creek Lake -3.0382 0.0000 -2.9928 0.0000 -2.9963 0.0000 -2.9845 0.0000

Lake McBride -3.1943 0.0000 -3.1318 0.0000 -3.1304 0.0000 -3.1197 0.0000

Lake Lcaria -3.2517 0.0000 -3.2506 0.0000 -3.2562 0.0000 -3.2455 0.0000

Lake Darling -3.4999 0.0000 -3.4478 0.0000 -3.4572 0.0000 -3.4431 0.0000

Rathbun Roservoir Lake -2.8110 0.0000 -2.8024 0.0000 -2.8095 0.0000 -2.7988 0.0000

W. Okoboji Lake -2.2968 0.0000 -2.335 0.0000 -2.3473 0.0000 -2.3253 0.0000

Other Parameters

β (Travel cost) -0.0146 0.0000 -0.0132 0.0000 -0.0131 0.0000 -0.0132 0.0000

γ01 (Age) 0.1219 1.0000 0.1085 1.0000 0.1078 1.0000 0.1115 1.0000

γ02 (Gender) 0.1262 0.9826 0.1227 0.9978 0.1155 0.9926 0.1168 0.9971

γ03 (Education) -0.1813 0.0000 -0.1627 0.0000 -0.1592 0.0000 -0.1616 0.0000

γ04 (Adults) -0.1025 0.0000 -0.0929 0.0000 -0.0921 0.0000 -0.0935 0.0000

γ05 (Child) -0.0046 0.0453 -0.0042 0.0409 -0.0041 0.0414 -0.0042 0.0489

a
We only report the result for the nine major lakes in each zone and Okoboji. Estimates for the other sites are presented in Table 9.
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Table 5: Posterior Means of Hierarchical Parameters

Parameter

Parameter Model Aa Model B Model C Model D

Mean P (· > 0|y) Mean P (· > 0|y) Mean P (· > 0|y) Mean P (· > 0|y)

α01 -4.1487 0.0000 -4.087 0.0000 -4.064 0.0000 -3.700 0.0000

(-579.84)

Lake Attributes

α02 (Acres) 0.0001 0.9999 1.0E-04 1.0000 0.0001 1.0000

(5.87)

α03 (Ramps) 0.2616 0.9956 0.204 0.9870 0.209 0.9888

(-2.18)

α04 (Wake) 0.1261 0.9601 0.102 0.9870 0.098 0.9261

(2.61)

α05 (Handicap) 0.1738 0.9914 0.166 0.9915 0.162 0.9907

(-0.85)

α06 (State Park) 0.2118 0.9975 0.237 0.9997 0.236 0.9998

(-2.67)

Water Quality

α07 (Sechi) -0.0129 0.3851 0.005 0.5672 0.026 0.7318

(6.20)

α08 (Total Nitrogen) 0.0126 0.8305

(7.70)

α09 (Total Phosphorus) -0.0012 0.0304

(11.38)

α010 (Volatile SS) -0.0002 0.4902

(10.02)

α011 (Inorganic SS) 0.0030 0.8940

(10.6)

α012 (Cyanobacteria) 2.11E-06 0.5203

(20.22)

α013 (Chlorophyll) 0.0011 0.7933

(12.67)

Variance

σ2
α 0.1283 1.0000 0.118 1.0000 0.120 1.0000 0.190 1.0000

σ2
ϕ 3.0359 1.0000 1.800 1.0000 1.800 1.0000 1.770 1.0000

a
The values in parentheses are an approximation of the difference in Schwarz criterion (or BIC) between an unrestricted model k and

a restricted model j using derivations from the S-D density ratio. Higher positive values represents grades of evidence for model j.
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Table 6: Posterior Means without controlling for unobserved site characteristics
Parameter Mean P (· > 0|y)
Lake Attributes
Acres 4.07E-05 1.000
Ramp 0.264 1.000
Wake 0.160 1.000
Handicap 0.149 1.000
State Park 0.381 1.000
Water Quality
Sechi 0.031 1.000
Total Nitrogen 0.002 0.922
Total Phosphorus -0.001 0.000
Volatile SS -0.001 0.250
Inorganic SS 0.002 1.000
Cyanobacteria -4.32E-06 0.207
Chlorophyll -0.001 0.000
Other Parameters
Travel cost -0.017 0.000
Age 0.668 1.000
Gender -1.211 0.001
Education 1.515 1.000
Adults 0.102 0.697
Child 0.435 0.997
σ2
ϕ 1560.70 1.000

Table 7: Model Comparison
Bayes Factor (BF)

Model A Model B Model C Model D
“Unrestricted Model” H0 H0 H0
Model A 1.92E+16 5.61E+17 3.85E+11

(75)a (81.74) (53.35)
Model B 17.68 3.19E-15

(5.74) (-66.76)
a

The values in parentheses are 2 loge BF using S-D density ratio.

Table 8: Annual Compensating Variation Estimates
CV ($) P (· > 0|y)

Close W. Okoboji -8.83 0
Upgrade 9 Zone lakes to W. Okoboji -2.09 0.3445
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RUM Models Incorporating Nonlinear Income Effects.

A paper to be submitted to Journal of Environmental Economics and Management

Babatunde Abidoye

Abstract

The assumption of constant marginal utility though convenient is a restrictive formulation

of individual preferences and choice behavior. In this chapter we propose a generalized formu-

lation of the Random Utility Maximization (RUM) model that allows the data to dictate the

relationship between preferences and income and prices.

Introduction

The Random Utility Maximization (RUM) model has been a major tool for estimating

demand systems in economics and marketing. One of the main appeals of the model is its

consistency with the assumption of a utility maximizing agent. However, even though the

model specification can in principle be generalized to allow for seemingly valid cases of varying

effects of marginal utility of income, researchers typically impose constant marginal utilities.

The assumption of constant marginal utility of income is a restrictive formulation of individual

preferences and choice behavior, preventing the satisfaction derived from a recreational good

to vary across individuals depending on their level of income.

A few studies in the literature have highlighted the implications on parameter and welfare

estimates when nonlinearities in income are ignored (e.g. Herriges and Kling, 1999; Morey,
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Rowe and Watson, 1993; and Morey, Sharma and Karlstrom, 2003), yet most empirical anal-

ysis continue to assume a constant marginal utility of income. One practical reason for this

is that, when the marginal utility of income is constant, the expected compensating variation

(ECV) associated with a hypothetical policy scenario (e.g., changing site attributes or avail-

ability) take the familiar and convenient log-sum form for the typical logit specifications (i.e.,

multinomial and nested logit). However, once income enters the conditional indirect utility

function nonlinearly, the expected CV no longer reduces to a convenient form (McFadden,

1995). While alternative approaches for obtaining welfare estimates do exist, they are signifi-

cantly more complex (as in the case of McFadden’s, 1995 Monte Carlo simulation or Dagsvik

and Karlstrom’s, 2005 algorithm) or serve only as an approximation (as in the case of Morey,

Rowe and Watson’s, 1993 representative agent approximation).

These studies typically add, for example, a quadratic term on income to the indirect utility

function or assume a nonlinear functional form for utility to capture income nonlinearities.

However, these formulations by themselves still restrict the effect of income and prices on

individual preference to the specification defined by the researcher. In this paper, we allow

income to impact preferences in a piecewise linear fashion, providing more flexibility in allowing

the data to determine how income (and travel costs) alter the choice behavior of individuals.

We also demonstrate how welfare analysis proceed within the framework.

This chapter is organized as follows. In section 2, we briefly describe why introducing

nonlinearity into the RUM model is important and also review related literature in this area.

Section 3 presents the model and how the parameters of interest are estimated. Section 4

describes a generated data experiment while section 5 presents a description of the data and

application Section 6 provides the empirical results. Section 7 describes our posterior inference

procedure and results. The paper concludes with a summary in section 8.

Related Literature

Before reviewing related literature, we will briefly describe the problem of imposing non-

linearity into RUM models. Suppose that the utility individual i receives from visiting site j is
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a function of an alternative specific constant αj , the amount of income the individual has left

to spend on other commodities if he visits site j, and an idiosyncratic error component (εij).1

The residual income is defined as the difference in income and travel cost to the site (yi−Pij)

and (εij) is uncorrelated across sites and individuals (e.g. εij is i.i.d. extreme value). That is

Uij = αj + f(yi − Pij) + εij i = 1, 2, . . . , N ; j = 1, 2, . . . , J. (1)

Given the above preference representation, the probability that an individual i will choose

alternative j over another alternative k (for j 6= k) can be defined as:

Pr(Uij > Uik) ≡ Pr(Uij−Uik > 0) = Pr [(αj − αk) + {f(yi − Pij)− f(yi − Pik)}+ (εij − εik) > 0] .

(2)

Typically, recreation demand studies that use the RUM model assume a linear form for

the function f(.) such that f(.) = β(yi − Pij). Given this representation, equation (2) can be

rewritten as:

Pr(Uij − Uik > 0) = Pr [(αj − αk) + {β(yi − Pij)− β(yi − Pik)}+ (εij − εik) > 0] (3)

= Pr [(αj − αk) + {β(yi)− β(yi)} − {β(Pij − Pik)}+ (εij − εik) > 0](4)

= Pr [(αj − αk)− {β(Pij − Pik)}+ (εij − εik) > 0] (5)

reducing the differences in utility as a function of income and travel cost to a simple linear

form with income eliminated from the choice probability. However, one might expect that at

least for a certain category of individuals, income will be an important determinant of choice

and price might not necessarily have a linear relationship with this preference.

As a way of accounting for income and price effects, Morey, Rowe and Watson (1993) speci-

fied an additional term to the linear specification to add some form of nonlinearity. Specifically

they let f(.) = β0(yi − Pij) + β00

√
(yi − Pij) in the indirect utility function. They concluded

that if the parameter β00 is significantly different from zero, then there exists nonlinearity in

how income affects utility. Even though this specification leads to the capturing of an income
1Note that αj captures site attributes affecting choices but for the purpose of this paper, we focus primarily

on income
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effect, there is no reason to believe that the shape of the function f(.) specified will be a

appropriate representation of the relationship between utility and income and price effect.

Also, Herriges and Kling (1999) compared the result assuming three different functional

forms for the indirect utility function using the case of sport fishing modal choice.2 They

highlighted the implications on parameter and welfare estimates when nonlinearities in in-

come are ignored and also extended and refined the work of McFadden (1995) and Morey,

Rowe and Watson (1993) on calculating welfare estimates when marginal utilities vary with

respect to both prices and income. They concluded that in their particular application, there

is little evidence that the introduction of nonlinear income effects has a significant impact on

parameter estimates and welfare values. They however signal caution in making general infer-

ences based on the need for additional empirical applications and other alternative preference

characterization.

Morey, Sharma and Karlstrom (2003) suggested a piece-wise linear spline function as a

way of incorporating income effects for cases where exact level of income is not observed. The

study employs a disaggregated approach to estimating the parameters of marginal utility of

income assuming no relationship between the income groups. While this study is similar in

spirit to what we propose in this chapter, the methodology is different. The Taylor series

approximation and hierarchical nature of our approach accounts for the fact that the income

groups are not fully independent. This places more structure and can allow for more accurate

estimation with large number of income groups and also with the assumption of diminishing

marginal utility of income. All these studies also suggested a method of evaluating welfare

estimates for changes in scenarios. The properties of some of these methods are discussed in

Dagsvik and Karlstrom (2005).

While these additions are useful in examining the role of income in the choice process,

any test for nonlinear income effects are conditional on the specific functional form assumed.

The contribution of this paper is to revisit the concept of diminishing marginal utility of

income by proposing a RUM model that allows for nonlinear income effect. This approach
2They compared welfare estimates using linear, Generalized Leontief and Translog functions.
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makes use of the Taylor series approximation to approximate the f(.) function which allows

for estimation of the marginal utility of income as piecewise linear. The proposed model makes

use of nonparametric estimation with Taylor series approximation and Bayesian methodology

of Hierarchical modeling. This is an advantage for applied researchers because it is not as

computationally intensive as a full semiparametric estimation of the f(.) function that will be

described later. It also has the advantage of abstracting from the problem of what time frame

or income value to use when estimating the indirect utility function. Also, since most data

used in the recreational demand literature only have information on the income brackets that

the household belongs too, the Taylor series approximation will be expected to be a natural

fit for the data.
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Model

In this section we present a model that accounts for nonlinear income effect by estimating

a function that has a different effect on the level of utility depending on the income category

the individual belongs to. This method makes use of the Taylor series function approximation

to the function f(.) in equation (1). Rewriting equation (1) to capture a nesting structure with

the introduction of an individual random effect for individuals that visited any site j, we have:

Uijt =

 Diγ + f(yi) + εijt if j = stay at home

αj + f(yi − Pij) + ϕi + εijt for j = 1, . . . , J.
(6)

The model is similar to that used in the first chapter with the integration of individuals’

choice among alternatives and problem of allocating time between multiple recreation sites.

While this model can be generalized, it aids comparison to models used in the recreation

demand literature. The parameters and variables are also as defined in the first chapter with

αj defined as the alternative specific constant, ϕi individual specific effect, εijt idiosyncratic

error term and Di is demographic characteristics. The choice among the J alternatives on

choice occasion t depends only on relative utility levels. Thus, if we take the difference in

utility with respect to the baseline utility of stay at home, equation (1) can be rewritten as:

Ũijt = αj −Diγ + f(yi − Pij)− f(yi) + ϕi + ε̃ijt for j = 1, ..., J (7)

Full Semi-Parametric Model

One alternative to the estimation of the function relating income to utility is to consider a

full semi-parametric estimation. This estimation procedure will follow the algorithm described

in Koop and Poirier (2004) which has been shown to overcome many of the problems that

plagues nonparametric estimations. This is achieved by imposing an informative prior that

serves both as a smoothing parameter and a solution to the curse of dimensionality problem.

This is particularly important in our application given that there is a high level of variability

in the travel cost between individuals and sites. The approach of handling the nonparametric
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treatment of f(.) in Koop and Poirier (2004) will lead to sorting the data by values of xij =

(yi − Pij) such that x11 ≤ x12 ≤ . . . ≤ x1J ≤ . . . ≤ xNJ . The idea behind this approach

is to estimate each unique point fij of the function f(.) with neighboring residual income

having similar estimate for the function. This results in the choice of the informative prior

that assumes that the difference between fh. and fk. for xh. ≥ xk. should be small. This prior

imposes structure on the parameter space so that estimation can be tractable.

One major difference between this model and that of Koop (Gary and Poirier) is the fact

that we have two related functions to estimate nonparametrically. Equation (7) has the term

f(yi) which will result in the problem of identification of each value of the function separately

from the parameters of ϕi. This will make the use of a full semi-parametric estimation prob-

lematic without further reparameterization.3 There is also the issue of income to use for the

semiparametric estimation. Even though we assume that people make choices on recreational

sites to visit on a weekly basis, the actual income value that they use in determining such

choices is unknown to the researcher. Employing a full semi-parametric estimation will entail

making an assumption of the income values which may not be right. Also, given that most

households only provide information on the income brackets in our application, assuming a

midpoint income value for the sake of estimating a semi-parametric model also raises questions

on the validity of the estimates.

Taylor Series Approximation

Suppose we consider a first order Taylor series approximation to the residual income term

i.e., (f(yi − Pij)) around the baseline income in (7). Specifically,

3One way to deal with this will be to recenter the variables in equation (4) such that

Ũijt = αj + f(yi − Pij) + ϕi + ε̃ijt for j = 1, ..., J (8)

where ϕi ∼ N (−[Diγ + f(yi)], σ
2
ϕ). The estimation method will have to take account of the correlation with

the parameters in f(yi − Pij)
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Ũijt = αj −Diγ + f(yi − Pij)− f(yi) + ϕi + ε̃ijt

≈ αj −Diγ + f(yi)− Pijf ′(yi)− f(yi) + ϕi + ε̃ijt

= αj −Diγ − Pijf ′(yi) + ϕi + ε̃ijt

(9)

With this approximation, we can estimate the marginal utility of income function f ′(yi)

in different ways. One possibility is to assume that it is a continuous function of income and

estimate it nonparametrically. In our particular application with only income bracket data

available, we will be dealing with few points depending on how the income brackets data are

classified. In recognition that the data on income is in the form of income brackets, we can

reparametize the last line of equation (9) to reflect a piecewise linear form that depends on

the income bracket. That is:

Ũijt ≈ αj −Diγ − Pij
B∑
b=1

θbI(yi ∈ Yb) + ϕi + ε̃ijt for b = 1, ..., B (10)

where

I(yi ∈ Yb) =

 1 if individual i is in the bth income bracket

0 if otherwise

The parameter θb is capturing f ′(yb) - the marginal utility of income. The model is a

generalization of the RUM model where the model reduces to the standard linear income model

if θb = θ ∀b. It is also analogous to a spline type model of Morey, Sharma and Karlstrom (2003),

with the cut-points for the splines being determined by the income brackets in the model.

As highlighted earlier, this approach is not as computationally intensive as a full semi-

parametric model and the discrete nature of the income data in most cases reduces the number

of parameters to be estimated. This makes the approach advantageous since the exact income

data is usually not known and partly abstracts away the problem of what time frame to use

in computing income in the semi-parametric model (though implicitly it affects the validity of

the Taylor series approximation).
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Posterior Simulator

In this section we describe a posterior simulator to estimate the conditional posterior distri-

butions of the parameters of equation (9). All the posterior distributions that will be presented

are of the standard form and we will apply the Gibbs sampler to draw from the complete

posterior distributions. The Gibbs sampler is an iterative algorithm that has become an in-

dispensable tool to Bayesian econometricians and researchers undertaking simulation based

inference. The idea is to draw from the posterior conditional distributions rather than the

joint posterior distributions themselves that are usually difficult to draw from.4 We outline

each posterior conditional distribution below.

Before describing the posterior conditionals, we write equation (9) concisely by stacking

over all J alternatives such that:

Ũ i.t = M iβ + P ∗i
B∑
b=1

θbI(yi ∈ Yb) + 1Jϕi + ε̃i.t (11)

where 1J is a J × 1 vector of ones;

Ũ i.t =



Ũi1t

Ũi2t
...

ŨiJt


; M i =



1 0 . . . 0 −Di

0 1 . . . 0 −Di

...
...

. . .
...

...

0 0 . . . 1 −Di


; P ∗i =



−Pi1

−Pi2
...

−PiJ


.

and

β =

 α′
γ ′

 ε̃i.t ∼ N


0,Σ ≡



2 1 · · · 1

1 2 · · · 1
...

...
. . .

...

1 1 · · · 2




Stacking over choice occasions (t), we have:

Ũ i.. = [1T ⊗M i]β + [1T ⊗ P ∗i ]
B∑
b=1

θbI(yi ∈ Yb) + 1TJϕi + ε̃i.. (12)

= [1T ⊗ M̃ i]Ψ + 1TJϕi + ε̃i.. (13)
4Theoretical explanation and proof of how it works can be found in Casella and George (1992) and other

Bayesian econometrics texts such as Koop, Poirier and Tobias (2007) provides more explanation of the Gibbs
sampler.
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Where

Ψ =

 β

θ.


and

M̃ i =
(
M i Ib. ⊗ P ∗i

)
Ib. is a 1 × B vector of zeros with one on the b column of the income bracket the individual

belongs to. This regrouping of variables is for ease of computation.

The model outlined above is essentially a latent variable realizations of the indirect utility

function, and is linked to the observed individual choices yit(Ũi·t) as follows:

yit(Ũi·t) =

 0 if max{Ũijt}Jj=1 ≤ 0

k if max{Ũijt}Jj=1 = Ũikt > 0.
(14)

yit is constructed from the observed count of the number of visits to the sites by individual

i over a calendar year. This assumes that within the RXL framework, we assume that series

of decisions are made by the individual at particular subintervals (choice occasions) − which

in our case is weekly − in a manner that is consistent with this aggregate data.

Hierarchical Prior

Given the hierarchical nature of the parameters in (8), we outline the hierarchical priors

for these parameters in this section. For the marginal utility of income parameters (i.e., the

θ′bs) we consider two priors. First, one possible prior for the marginal utility of income is

an hierarchical prior on θb. This assumes that the individuals in the different income groups

share the same class of distribution such that the parameter θb is drawn from the same normal

population:

θb ∼ N (θ0, σ
2
θ) (15)

A second possible prior on the marginal utility of income is an informative prior that is

in the spirit of the smoothing prior of Koop and Poirier (2004). Though the prior has other
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advantages in the context of combating issues in nonparametric regression problems, for the

purposes of this paper, it introduces the potential for smoothing the marginal utility of income

function. This prior does not assume that individuals in different income brackets have a

common mean as the previous prior assumes. The value of this prior is in the case where there

are large number of income brackets and there are few or no observations per income bracket.

The prior will induce a form of local averaging in estimating a continous function.

To describe this second prior in more detail, given sorted income brackets defined as yb, let

∆b = yb − yb−1. The differencing matrix H can be defined as follows:

H =



1 0 0 0
... 0 0 0

0 1 0 0
... 0 0 0

∆−1
2 [−∆−1

2 −∆−1
3 ] ∆−1

3 0
... 0 0 0

0 ∆−1
3 [−∆−1

3 −∆−1
4 ] ∆−1

4

... 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0
... ∆−1

B−1 [−∆−1
B−1 −∆−1

B ] ∆−1
B


(16)

We will also specify a hyperparameter η that governs the degree of smoothness of the

marginal utility of income parameters. Large values of η will make the marginal utility of

income function to be excessively jumpy leading to model overfit while too low values will over

smooth the function. To let the appropriate amount of smoothing be revised by the data,

we include it as a parameter in the model. The hierarchical prior for this parameter can be

specified as:

η ∼ IG(aη, bη)

Thus, the prior for the marginal utility of income parameters can be deduced by first specifying

a prior

Hθ|η ∼ N (0, ηVθ)

which implies:

θ|η iid∼ N (0, ηH−1Vθ[H−1]′) (17)
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where

Vθ =

 cI2 0

0 IB−2


The prior for αj and ϕi are as described in chapter one except that the prior on αj does not

include the observed site attributes. It still allows for unobserved site characteristics but since

the focus of this chapter is on the marginal utility of income, we only allow for a constant as

the mean of the alternative specific constants. The prior for the site-specific constant is such

that while the J sites share the same class of distribution in terms of their effect on utility,

these effects are assumed to be independent. It is also a form of decomposing the “overall”

effect of the attributes of the sites into observed and unobserved effect. With our specification,

the estimate of the other parameters of the model should not be significantly affected.5 The

prior is specified as:

αj ∼ N (α0, σ
2
α). j = 1, 2, . . . , J (18)

Finally, we set priors for the “common” parameters. For the first prior on the marginal

utility of income, the priors for the variability in the marginal utility of income across income

brackets is summarized by Σθ. The priors for the variability in the site and individual level

parameters is summarized by σϕ and σα. We let the appropriate amount of smoothing η be

revised by the data.

α0 ∼ N (µα, Vα) (19)

θ0 ∼ N (µθ, Vθ) (20)

Σθ ∼ IG(aθ, bθ) (21)

σ2
α ∼ IG(aα, bα) (22)

γ ∼ N (µγ ,Vγ) (23)

σ2
ϕ ∼ IG(aϕ, bϕ) (24)

5Further details on the benefit of introducing an hierarchical structure on the alternative specific constant
and justification is outlined in Chapter 1.
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While N above obviously refers to the normal distribution, IG(·, ·) follows the notation

in Koop, Poirier and Tobias (2007) (pp. 336) and represents the inverse gamma distribution.

One appeal of this prior is the conjugacy property that eases computation. The values of the

terminal parameters above are chosen to be practically uninformative to allow for dominance of

the data. For the prior for the common parameters, we set the prior means (µα, µθ,µγ) to zero,

and prior variances (Vα, Vθ,V γ) equal to the identity matrix with the appropriate dimensions.

We also set the prior for the hyperparameters of the variances and smoothing parameter as

aα = aϕ = aθ = aη = 5 and bα = bϕ = bθ = bη = 1. The choice of the hyperparameters

for the smoothing parameter seems reasonable in the generated data experiment and did not

constrain the function to be necessarily linear.

Complete Posterior Conditionals

Let

Ξ =
[
Ψ θ0 Σθ α0 σ2

α ϕ. σ2
ϕ

]
denote all the parameters of the model with variation on the parameters depending on the

prior on the marginal utility income.6

Step 1: Complete posterior conditional for Ψ

Using the result of ? with blocking step, the posterior conditional for Ψ is given as:

Ψ|Ξ−Ψ, Ũ ,y ∼ N(DΨdΨ,DΨ). (25)

where

DΨ ≡

[
T

N∑
i=1

M̃
′
itΩ
−1M̃ it + Σ−1

Ψ

]−1

dΨ ≡
∑
t

∑
i

M̃
′
itΩ
−1Ũi.t + Σ−1

Ψ µΨ

and depending on if we choose the prior from equation (15) or (17) ΣΨ will differ.
6For the smoothing prior, the full set of parameters will be: Ξ =

[
Ψ η α0 σ2

α ϕ. σ2
ϕ

]
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From equation (15), we have

ΣΨ =


σ2
αIJ 0 0

0 Vγ 0

0 0 Σθ

 , µΨ =


1Jα0

µγ

1Bθ0


while equation (17) will give us

ΣΨ =


σ2
αIJ 0 0

0 Vγ 0

0 0 ηH−1Vθ[H−1]′

 , µΨ =


1Jα0

µγ

0


The blocking strategy adopted here is appealing given that it insulates us from the issue

of inconsistency that might arise from potential correlation between variables at the site level

and the travel cost. This is because the sampler proceeds jointly in drawing the parameters

differently from the simulator from the standard panel model estimator with random effect.

Step 2(a1): Complete posterior conditional for θ0

Using a similar argument in Lindley and Smith (1974), the posterior condition for θ0 can

be expressed as:

θ0|Ξ−θ0 , Ũ ,y ∼ N (Dθ0dθ0 ,Dθ0). (26)

where

D−1
θ0

= 1′B(IB ⊗ Σ−1
θ )1B + V −1

θ = BΣ−1
θ + V −1

θ

and

dθ0 = 1′B(IB ⊗ Σ−1
θ )θ̃ + V −1

θ µθ = BΣ−1
θ θ + V −1

θ µθ

with θ̃ =
[
θ′1 θ′2 . . . θ′B

]′
, and θ = (1/B)

B∑
b=1

θb.

Step 2(a2): Complete posterior conditional for Σ−1
θ

Σθ|Ξ−Σθ , Ũ ,y ∼ IG

B
2

+ aθ,

(
b−1
θ + 0.5

B∑
b=1

(θb − θ0)2

)−1
 (27)

Step 2b: Complete posterior conditional for η
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η|Ξ−η, Ũ ,y ∼ IG
[
B

2
+ aη,

(
b−1
η + (1/2)θ′H ′[Vθ]−1Hθ

)−1
]

(28)

Step 3: α0|Ξ−α0 , Ũ ,y

Once we condition on the α′js, the posterior conditional for α0 is similar to that of a linear

regression and is of the form:

α0|Ξ−α0 , Ũ ,y ∼ N (Dα0dα0 ,Dα0) (29)

where

Dα0 = (1′J1J/σ2
α + V −1

α )−1 and dα0 = 1′Jα/σ
2
α + V −1

α µα

Step 4: σ2
α|Ξ−σ2

α
, Ũ ,y

σ2
α|Ξ−σ2

α
, Ũ ,y ∼ IG

J
2

+ aα,

b−1
α + .5

J∑
j=1

(αj − α0)2

−1 (30)

Step 5: {ϕi}|Ξ−ϕi , Ũ ,y Stacking over sites and choice occasions, we have:

ϕi|Ξ−ϕi , Ũ ,y ∼ N (Dϕdϕ, Dϕ) (31)

where

D−1
ϕ = 1′JT (IT ⊗ Σ−1)1TJ +

1
σϕ

; and dϕ = 1′JT (IT ⊗ Σ−1)(wi..)

and wi.. = Ũi.. − [1T ⊗M i]β − [1T ⊗ P ∗i ]θbI(yi ∈ Yb)

Step 6: σ2
ϕ|Ξ−σ2

ϕ
, Ũ ,y

σ2
ϕ|Ξ−σ2

ϕ
, Ũ ,y ∼ IG

N
2

+ aϕ,

(
b−1
ϕ + .5

N∑
i=1

ϕ2
i

)−1
 (32)

Step 7: Draw the Ũi.t|Ξ, yit.

Given the structure of our model and to ease computation, we draw the latent utilities that

individual i derives from visiting site j at the levels instead of differences. That is, we sample

the Uijt and then take the differences to get the Ũijt. This is straightforward to implement in

our case given our assumption of iid distribution on the error term εijt. At the structural level
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of the Uijt in equation (3), there is no correlation among the alternatives conditional on the

parameters (αj , β, γ, and ϕi) of the model.

Each of the Uijt’s are conditionally normal with mean µ and variance of 1 with truncation

point that depends on the choice of the individual. That is, if an alternative is chosen, it must

be the alternative that gives the maximum utility - this gives the upper truncation point for

all the other alternatives.

We therefore follow the following steps to draw the Ũijt’s at a given draw r :

Assuming that individual i chooses alternative k at choice occasion t,

1: Draw U rijt for all j 6= k from a truncated normal distribution with mean and variance

from equation (1) and upper truncation point Uikt = U r−1
ikt .

2: Draw U rikt from a truncated normal distribution with its mean and variance with lower

truncation point at the max(U rijt) for all j 6= k.

3: Calculate Ũijt by taking the difference between utilities from all sites and the stay at

home option: Ũ rijt = U rijt − U ribt.

The table below presents a summary result of a generated data experiment comparing the

two priors.

Generated Data Experiment

Using generated data is important to illustrate the performance of the sampler and supports

the ability of the model to consistently estimate the parameters we are interested in. In this

section we describe the generated data experiment to illustrate how to allow for nonlinearity

in the marginal utility of income in a RUM model.

To achieve this, we fix the number of alternatives (J) at 10. 5,000 individuals are generated

to choose among the J alternatives over 5 choice occasions (T) with the individuals randomly

assigned to 15 income categories (B). The demographics variable Di is randomly generated

from a uniform distribution and Bernoulli distribution with equal probability of success and

failure.

We specify the residual income function as a natural log function ln(yi−Pij) which implies
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a diminishing marginal utility of Income. We assume this simple form since it is consistent with

economic theory and the first derivative can be easily calculated to know the true marginal

utility of income though other complicated functions can also be used. The income values

(yi) ranges from 1.075 to 3 while the travel costs for each individual to each site is set to be

generated from a standard uniform distribution.

The alternative specific constant for a give site is drawn from a normal distribution with

mean α0 and variance σ2
α. We also fix γ and the remaining common parameters of the model

which are used to sample the individual random effects and the latent utility values. The latent

variables are then mapped to the observed site selection by each individual.

The sampler described in section 3 is implemented for 22,000 iterations with 2,000 as

burn-in. Different starting values were used to check for convergence. The summary of the

distribution of the parameters also show that the algorithm performed well in recovering the

parameters of the generated data experiment as reported in Table 1. We find that the posterior

means are quite close to the true values. The posterior standard deviations are also reported

and the posterior means are typically within a posterior standard deviation when the actual and

estimated posterior means diverges. Trace plots using the first prior for selected parameters

are reported in Figure 1.

In addition, we also calculated the inefficiency factors for the posterior distribution of the

parameters as the ratio of the numerical standard error with correlated draws (NSE) over the

standard error of the parameter. That is:

√
inefficiency factor ≡

√
f =

√√√√1 + 2
m−1∑
j=1

(1− j

m
)ρj , (33)

where m is the number of draws after convergence and ρj is the autocorrelation coefficient

which is a correlation between draws as a function of j time separation between them. The

estimates of these inefficiency factors are quite high especially for the coefficient on marginal

utility of income for the generated data experiment are relatively high. Most of the parameters

in θ have values around 5 except for that of the variance (σ2
ϕ) which is the highest with a value

of about 8. Once convergence is reached, the sampler does not seem to move much as shown

in the trace plot hence the high autocorrelation coefficient and inefficiency factors. The high
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inefficiency factors shows that we will need to run our simulation longer to get the same level

of accuracy as will be in m iid draws (for instance we will need about 65,000 draws to get 1000

iid sample).

In summary, the generated data experiment shows that our sampling scheme works well

in recovering the parameters of the model including that of the marginal utility of income by

income category. The first series Taylor approximation approach too seems to work well for

the particular functional form assumed.

Data Description and Application

The data set we use to illustrate the methodology is from the Iowa Lakes Valuation Project

at Iowa State University, a four year study of recreational lake usage in the state. The data is

appropriate for our analysis in a number of ways. First, Income brackets data was collected

for each household which allows for the estimation of the marginal utility of income by income

group. For households that did not respond to the income bracket question, an imputed

income of $56,000 (average income level using midpoint) was used and they were categorized

as a separate income group. 375 households fall into this category. This will help to check

if the behavior of the item nonrespondents is similar to any of the household that reported

income values. There is also information on the round trip travel cost to all the 130 sites in the

state. Detailed description of the data and how other variables were calculated is presented in

chapter one.

Empirical Results

The application of the methodology discussed in section 3 to the Iowa Lakes Data seeks

to address the following questions: (1) Does the assumption of constant marginal utility of

income hold in the demand for lakes in Iowa across household? (2) Are there distributional

differences in marginal utility of income and welfare derived from environmental policy shift

between income categories in Iowa?
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Estimation

For each of our prior on the marginal utility of income, we implement the algorithm de-

scribed in Section 3. The posterior simulator is run for 100,000 iterations, discarding the first

25,000 as burn-in. Results from these runs suggested that the chain mixed reasonably well and

appeared to converge after about 10,000 iteration for all parameters.

Presented in Table 2 and 3 are posterior means, posterior standard deviation and posterior

probabilities of being positive [denoted P (· > 0|y)] associated with the parameters of the

marginal utility of income, demographic variables and selected site-specific parameters of our

model for each type of prior. Before discussing the results for the marginal utility of income,

we discuss results for the other parameters. These results are generally consistent with the

previous chapter and will not be discussed at length. The estimates for the alternative specific

constant is as expected with West Okoboji Lake, one of the best lakes in Iowa, having the

highest posterior mean. In general, the αj ’s are higher for popular destination lakes in the

state as is the case in chapter one with the values closer higher though negative. The scale

of the parameters in the two chapters are relatively the same. The posterior distribution for

the demographic variables are also consistent with previous work on this topic: individuals

with less education, females and older are more likely to stay at home. Somewhat surprisingly,

households with greater number of adults and children are more likely to stay at home (though

the evidence for the effect for adults is not strong and significant).7

The results from using the two priors are generally consistent with our prior expectations.

Specifically, there is no evidence that the assumption of constant marginal utility of income

holds across the income categories. We present a plot of the values for the posterior mean

using results from the smoothing prior in Figure 2. For clarity of presentation, standard error

bands are not included within the figure but we present probability that the difference between

marginal utility of income between two income categories is greater than zero in Table 4. The

figure suggests several important results. First, there is evidence of diminishing marginal utility
7Demographic variables in this chapter was recoded differently from that in chapter one which made the

estimates on the alternative specific constant and demographic variables different. For example, schooling was
recoded from the zero to five categorization to a zero-one variable (1 been individuals with at least some college)
and midpoint values were used for age instead of the zero to seven categorization.
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of income across households in our sample. Except for households with income of $12,500

(group 2) and $67,500 (group 11), we find a declining pattern in the values of the marginal

utility of income as income increases. Second, there is no sufficient evidence against constant

marginal utility of income across some income groups. Table 4 reports P ((θd−θc) > 0|y) where

a negative sign implies that the mass of the distribution for income category d is at least higher

than that of income category c at least 90% of the time (Assuming Income level for group c is

higher than group d). Blank sign in the upper triangular matrix implies the difference in the

marginal utility of income is not significantly different (difference in the distribution overlap

between the two distribution). To explain this in the context of our application, households in

the income group with $37,500 have a marginal utility of income which is not different from

those with income levels of $45,000, $55,000 and $56,000, but higher 90% of the time than

other categories with higher income levels (>$102,500). Thus, depending on the household

income categorization, marginal utility of income is constant for a range of income level and

diminishing across other groups. In general, marginal utility of income is nonincreasing except

for about two outliers.

Looking at the smoothing parameter in the second prior, we have a posterior mean of 0.0869

and posterior standard deviation of 0.0269. Comparing this to our choice of prior with aη = 5

and bη = 1, this choice of the parameters of the prior sets the prior mean and prior stand

deviation equal to 0.25. The result shows that the data has moved our prior towards smaller

values (posterior mean is about one-third of the prior mean and posterior standard deviation

that is about one-tenth the magnitude of the prior standard deviation) hence linearity despite

the posterior mean suggesting nonlinearity. A useful exercise in this case will be to change the

prior hyperparameters for the smoothing parameter to keep track of when the data move our

prior toward larger values of η which will signal nonlinearity.

We also estimated the model assuming constant marginal utility of income. This is equiv-

alent to estimating the model in chapter one with modifications to the data. The posterior

mean for the marginal utility of income is estimated to be 0.019 which is close to the posterior

mean in Table 2 assuming Hierarchical prior on f ′(y). Inference made using this estimate of
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marginal utility on income will be misleading since income level varies by household and policy

targeted to all households may not have the desired results based on misrepresentation. This

will be especially important for welfare analysis in evaluating different policy changes. We will

explore this in detail in the next section.

Welfare Analysis

Bayesian methodology has an advantage over other methods in conducting posterior in-

ference and prediction. Estimating the welfare impact of changes in policy scenarios will be

particularly informative to examine if introducing nonlinearity into RUM models matter. The

methodology presented follows closely what is presented in chapter 1 though our focus is pri-

marily on the loss of a site.

Using similar notation as in chapter two, we let Υs
it denote the maximum utility achieved

by agent i on choice occasion t under scenario s (s = 0, 1). That is,

Υs
it(Ξ−α·) = max

j∈Js
(U sijt|Ξ−α·) s = 0, 1, (34)

where α· = (α1, . . . , αJ) denotes the vector of alternative specific constants where Js denotes

the index of valuable sites under scenario s. However, since we assume no correlation between

the sites in terms of attributes, closure of a site is primarily simulating the alternative choice

of the household among the remaining J − 1 alternatives. We use this information to simulate

the observed site choice in the new scenario and compare this to the base scenario which is the

status quo, with all the sites included in the choice set.

The compensating variation (CV) is then defined as the monetized change in expected

maximum utility due to changes in the site attributes over the course of the season. That is

CV = − T

θbI(yi ∈ Yb)
E
[
Υ0
it(Ξ−α·)−Υ1

it(Ξ−α·)
]

(35)

Thus, welfare analysis following this model specification is similar to what exists in the

literature for constant marginal utility of income except that the marginal utility of income

differs by income bracket.8

8One thing to note is the case where the change in policy makes agents move from one income bracket to
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Thus Step 2, as described in chapter 2, can be re-written as:

Step 2: Draws of the utility levels U s(r)ijt |Ξ−α· are obtained using equation above, with

U
s(r)
ijt =

 Diγ
(r) + ε

(r)
i0t j = 0

αsj + pij
∑B

b=1 θ
(r)
b I(yi ∈ Yb) + ϕ

(r)
i + ε

(r)
ijt j = 1, . . . , J.

(36)

where

ε
(r)
ijt∼N (0, 1) and ϕ

(r)
i ∼N (0, σ2

ϕ(r)). (37)

The result using this scenario is presented in Table V for closure of the West Okoboji

lake. We present the result by different income groups showing that the impact of closure

of the site has varied distributional impacts depending on the income category. This can be

informative to policy makers considering how a particular policy will affect different income

groups. Closure of Okoboji has higher impact on the high income groups than the low income.

This is in contrast to the model using constant marginal utility of income. Though the average

CV estimates for the whole sample is not different from the model incorporating nonlinear

income effect, there is a form of reversal in the CV estimates across income groups. When

we assume constant marginal utility of income, the closure of West Okoboji has a higher CV

values for low income groups than high income groups which is the opposite for the other two

models incorporating nonlinear income effects.

Future Directions

One future direction in terms of estimating the marginal utility of income function will be

to actually impose diminishing marginal utility of income on the parameters. This procedure

will follow Geweke (1996) on Gibbs sampling in a regression model with inequality constraints.

This will involve reparameterizing the marginal utility of income parameters and the difference

between the parameters for high and low income to be truncated between zero and infinity.

Also, checking the sensitivity of our result to the number of brackets chosen might also

be worth exploring. This can be achieved by extending the generated data experiment. Also,

the other. If this occurs the CV estimate will have to be adjusted to account for this. The algorithm presented
here however ignores that possibility.
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generating the agents in each bracket by first creating a continuous function of the relationship

between utility and income (continuous) before grouping the agents by income brackets might

be insightful. This way we do not impose on the data a priori that only income bracket data

is available to the researcher.

Another future direction is related to deriving welfare estimate for the Taylor series ap-

proximation model. The nature of the income bracket data offers the possibility of households

switching groups depending on the scenario and how large the income group is. This possibility

can cause problem on which marginal utility of income parameter to use to calculate the CV

estimate. The full semi-parametric estimation model might have an advantage over the Taylor

series approach in this regards since we will have an estimate of the function relating utility

and income rather than just the slope. Implementing the full semi-parametric model will also

be instructive to compare the results with the Taylor series proposed in this paper.

Summary and Conclusion

In this chapter, an empirical methodology to incorporate nonlinear income effect in RUM

models is introduced. RUM models is a major tool in estimating site visitation patterns of

households, and out of convenience, researchers typically assume constant marginal utility of

income in the analysis. The methodology introduced in this chapter is a case of hierarchical

RUM model which allowed for nonlinear income effect following a Taylor series approximation

of the functional relationship between utility and residual income.

We used this methodology to investigate the visitation patterns of Iowans to 130 major

lakes in the state and estimate the demand for the sites. We also estimated the marginal utility

of income across households by income groups showing that marginal utility of income is not

constant across income group as is assumed in practice. Other results are in general consistent

with previous studies in the literature.

Our methodology also enabled us to test if the differences in the estimates of marginal utility

of income is significant and to make posterior inferences on the impact of scenario changes.

Interestingly, the impact on the household of exogenous changes in the site availability differs
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by income groups and may affect the results of the policy. We find counter intuitive result for

the welfare estimates when constant marginal utility of income is assumed. As expected the

mean CV is not significantly different in all the models.

Our hope is that this methodology can be extended and applied in other applications of

the RUM model. The fact that specific amount of income is not required and the simplicity

of the model should make it appealing to practitioners. One relatively easy extension will

be to impose diminishing marginal utility of income assumption instead of the two priors we

used here. Another extension will be the use of a semi parametric approach in estimating the

function instead of a Taylor series approximation. One problem with this approach is the fact

that in most surveys, actual level of income is not known and the methodology can be highly

intensive especially in the case of the repeated choice model.
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Tables and Figures

Table 1: Generated Data Experiment Result for Taylor series Model

Hierachical Prior on f ′(y) Smoothing Prior on f ′(y)

Posterior mean Posterior SD posterior mean posterior SD True value

θ1 0.8931 0.0563 0.8919 0.0428 0.9302

θ2 0.7932 0.0571 0.8633 0.0310 0.8889

θ3 0.9040 0.0590 0.8358 0.0276 0.8511

θ4 0.8418 0.0506 0.8005 0.0271 0.8163

θ5 0.7400 0.0530 0.7601 0.0271 0.7843

θ6 0.6663 0.0538 0.7230 0.0277 0.7547

θ7 0.7124 0.0505 0.6956 0.0284 0.7273

θ8 0.6327 0.0532 0.6652 0.0288 0.6897

θ9 0.6116 0.0561 0.6412 0.0296 0.6452

θ10 0.6803 0.0561 0.6407 0.0296 0.6442

θ11 0.6558 0.0506 0.6130 0.0334 0.5970

θ12 0.5128 0.0546 0.5386 0.0400 0.5333

θ13 0.4925 0.0590 0.4729 0.0413 0.4706

θ14 0.3976 0.0550 0.4031 0.0448 0.4211

θ15 0.3035 0.0590 0.3000 0.0537 0.3333

η 0.1581 0.0660

σ2
θ 0.1120 0.0358

θ0 0.6517 0.0871 0.6725



75

T
ab

le
2

:
P

os
te

ri
or

M
ea

ns
of

Si
te

-S
pe

ci
fic

P
ar

am
et

er
s

an
d

th
e

re
st

of
th

e
m

od
el

pa
ra

m
et

er
s9

P
ar

am
et

er

P
ar

am
et

er
H

ie
ra

rc
hi

ca
l

P
ri

or
on

f
′ (
y
)

Sm
oo

th
in

g
P

ri
or

on
f
′ (
y
)

C
on

st
an

t
M

U
I

M
ea

n
P

(·
>

0|
y
)

M
ea

n
P

(·
>

0|
y
)

M
ea

n
P

(·
>

0|
y
)

α
j

Si
te

-S
pe

ci
fic

P
ar

am
et

er
s

St
or

m
L

ak
e

2.
14

2
0.

96
58

2.
07

69
0.

94
11

2.
25

29
0.

97
92

B
ri

gg
s

W
oo

ds
L

ak
e

0.
92

26
0.

83
30

0.
78

33
0.

78
47

1.
13

25
0.

91
19

P
ra

ir
ie

R
os

e
L

ak
e

1.
10

42
0.

86
3

0.
94

04
0.

80
63

1.
34

92
0.

94
12

B
ig

C
re

ek
L

ak
e

1.
87

69
0.

94
78

1.
78

94
0.

91
26

2.
06

86
0.

97
56

W
es

t
O

ko
bo

ji
L

ak
e

2.
99

82
0.

98
5

3.
02

65
0.

98
62

2.
98

74
0.

99
13

Sa
yl

or
vi

lle
2.

13
96

0.
96

57
2.

07
11

0.
93

82
2.

32
31

0.
98

24

O
th

er
P

ar
am

et
er

s

α
0

1.
02

73
0.

85
21

0.
85

94
0.

78
98

1.
25

14
0.

92
90

γ
0
1

(A
ge

)
0.

27
88

1.
00

0
0.

39
40

1.
00

0
0.

25
19

1.
00

00

γ
0
2

(G
en

de
r)

-0
.7

20
9

0.
15

86
-0

.4
25

7
0.

28
93

-2
.2

31
6

0.
00

09

γ
0
3

(S
ch

oo
lin

g)
-0

.4
22

4
0.

27
65

-1
.7

62
6

0.
02

19
4.

62
39

1.
00

00

γ
0
4

(A
du

lt
s)

0.
35

70
0.

73
62

0.
65

33
0.

81
89

0.
83

45
0.

91
93

γ
0
5

(C
hi

ld
re

n)
1.

15
43

0.
97

51
1.

44
48

0.
97

79
1.

54
97

0.
99

14

W
e

on
ly

re
po

rt
th

e
re

su
lt

fo
r

se
le

ct
ed

zo
na

l
la

ke
s

in
cl

ud
in

g
W

.
O

ko
bo

ji
fo

r
br

ev
it

y.



76

Table 3: Result for Taylor series Model (Iowa Lakes Data)

Hierachical Prior on f ′(y) Smoothing Prior on f ′(y)

Posterior mean Posterior SD posterior mean posterior SD

θ1 0.0358 0.0060 0.0396 0.0070

θ2 0.0281 0.0059 0.0296 0.0062

θ3 0.0434 0.0088 0.0496 0.0113

θ4 0.0438 0.0081 0.0498 0.0099

θ5 0.0356 0.0079 0.0395 0.0089

θ6 0.0301 0.0072 0.0345 0.0080

θ7 0.0248 0.0058 0.0266 0.0062

θ8 0.0259 0.0062 0.0288 0.0065

θ9 0.0239 0.0061 0.0277 0.0071

θ10 0.0229 0.0044 0.0245 0.0047

θ11 0.0141 0.0031 0.0146 0.0032

θ12 0.0169 0.0044 0.0184 0.0047

θ13 0.0195 0.0045 0.0212 0.0048

θ14 0.0130 0.0030 0.0140 0.0034

θ15 0.0107 0.0030 0.0119 0.0034

η 0.0869 0.0269

Σθ 0.0456 0.0145

θ0 0.0223 0.0396
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Table 4: Probability that the difference between marginal utility of income

between group c and d is greater than zero using model with smoothing prior

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 - - - - - - - - - - -

2 + + + + -

3 - - - - - - - -

4 - - - - - - - - - - -

5 - - - - - - - - -

6 - - - - - - - -

7 - - - -

8 - - - -

9 - - - - -

10 - - - - -

11 + -

12 - -

13 - -

14 -
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Table 5: CV estimates for closure of Okoboji Lake by income group

Income Group CV (Hierarchical Prior) CV (Smoothing Prior) CV (Constant MUI)

5000 -12.12 -11.64 -32.64

12,500 -19.18 -20.19 -32.75

17,500 -9.700 -8.90 -33.72

22,500 -7.410 -6.77 -28.13

27,500 -12.76 -12.11 -32.26

32,500 -15.05 -13.22 -28.86

37,500 -13.65 -13.63 -18.74

45,000 -22.47 -21.26 -30.68

55,000 -20.14 -17.93 -24.43

56,000 (inputed) -21.73 -22.34 -24.85

67,500 -40.44 -44.50 -18.23

87,500 -22.91 -22.70 -14.66

112,500 -16.20 -15.95 -14.17

137,500 -30.82 -32.02 -11.18

>150,000 -32.12 -30.92 -8.74

meanCV -20.90 -20.81 -23.89
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Figure 2 Plot of Posterior Mean of Marginal Utility of Income
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Model Uncertainty and Recreation Demand

A paper to be submitted to American Journal of Agricultural Economics

Babatunde Abidoye

Abstract

Bayesian variable selection procedure is used to model uncertainty in recreational demand’s

model specification. In contrast to comparing models based on the likelihood values as in

Egan et al with unknown sampling properties, we propose a model that draws on the Bayesian

paradigm to integrate the variable selection process into the model and reflect the accompa-

nying uncertainty about which is the “best” specification used for counterfactual predictions.

Introduction

Analysts and policymakers are typically interested in understanding the impact that chang-

ing environmental conditions has on the demand for recreational alternatives and quantifying

the welfare implications of these changes. Policy makers, for example, use this information

to appropriately direct resources aimed at maintaining and restoring environmental quality.

However, this requires the specification of a functional relationship between individual demand

and observable individual and site characteristics. Unfortunately, economic theory provides

relatively little guidance regarding the form that this relationship should take and which vari-

ables ought to be included in the analysis. In many applications, limitations in the available

data (e.g., describing the water quality conditions at a lake site) narrow the range of possibili-

ties, but choices must still be made between, for example, level and logarithmic specifications
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for an environmental characteristic. This can lead to different posterior inference and spurious

parameter estimates depending on the variable choice by the researcher.

While model selection criterion can be used to narrow the set of specifications, there is the

risk that the analyst (even inadvertently) may engage in a “fishing” process among the available

models, biasing the final outcome of the analysis. In a recent paper, Egan et al. (2009) attempt

to ameliorate this problem by employing a split sample approach, using separate portions of

the available data for model specification, estimation and evaluation. They isolated one third

of their sample in order to consider alternative models and functional forms, using a likelihood

dominance criteria to pick their final model, which is in turn estimated using a separate sample.

Though this can arguably reduce the impact of the specification search process on the final

parameter estimates, it does not eliminate the problem. More importantly, the procedure

inevitably requires the selection of a single model and does not account for the uncertainty in

this process. Indeed, the selection of the final model is not based on a test among competing

models (as the alternatives are non-nested), but on a log-likelihood based ranking.

In this paper, we consider an alternative approach that draws on the Bayesian paradigm

to integrate the variable selection process into the model and to reflect the accompanying un-

certainty about which is the “correct” specification into subsequent counterfactual predictions.

Specifically, we describe a Bayesian posterior simulator that combines the literature on hierar-

chical modeling, Bayesian variable selection and data augmentation. Our underlying modeling

framework is the class of repeated random utility models (See Herriges and Phaneuf (2002)

and Herriges, Kling and Phaneuf (2002) for a review) and follows closely the model proposed

in the first paper. We then employ the stochastic search variable selection (SSVS) method

described in George and McCulloch (1993) to determine the posterior probability that individ-

ual site characteristics influence the site selection decision. The model can be used to identify

a preferred model specification. Alternatively, and we would argue preferably, the model can

be used as part of the process of employing a Bayesian model averaging, integrating compet-

ing models into a single structure that can be used for welfare analysis and counterfactual

predictions.
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The model is applied using data from the 2002 survey of Iowa Lakes Project, the same data

underlying the Egan et al. (2009) analysis. We use our model to contrast our findings with

those obtained in Egan et al. (2009), highlighting the benefits of integrating model uncertainty

into a unified framework. One advantage of this study is that we have large number of sites

(130) and detailed information on both site attributes and lake water quality.

The outline of the chapter is as follows. Section 2 touches on the issue of model uncertainty

in econometric analysis and also frames our approach in the context of other methods in the

literature. Section 3 presents the model and how the parameters of interest are estimated.

Section 4 describes a generated data experiment as a check for the performance of the sampler.

Section 5 describes the data and application and section 6 provides posterior simulation and

welfare analysis. The chapter concludes with a summary in section 7.

Related Literature

Model uncertainty

Researchers are often faced with the dilemma of which model specification or subset of

explanatory variables will best fit their data. This problem is more pronounced in situations

where economic theory does not dictate a priori the specific functional form or distributional

assumption to be used. The inability to lay claim to a “best” model makes inference on the

chosen model less certain and potentially inaccurate. This has led to widespread criticism of

estimates presented for a “best” model Leamer (1983)) - for example, changing from linear to

nonlinear specification or changing the functional form of some variables can lead to different

estimates. A number of studies including Regal and Hook (1991) and Draper (1995) have

shown the impact of ignoring uncertainty of the model on inference.

Various techniques has been proposed in the literature to account for this problem. The

paper by Raftery (1995) among others have argued that the use of p-values, R2 and other

statistical tests based on them to search for the “best” model can lead to misleading inference

and prediction. Poirier (1995) also has a discussion on problems with using hypothesis testing

to select a specific model especially given that the procedure of pretesting introduces a level of
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uncertainty into the pretest estimator. Aside from the problem of choosing the significance level

and balancing it with the power of the alternative hypothesis, most studies involves comparing

more than two models. The sampling properties of the popular stepwise regression are usually

unknown and making inference based on a model selected in this way can be misleading.

A solution to the hypothesis testing problem that has gained popularity among researchers

is the use of Bayesian model selection and/or averaging. Bayesian model selection methods

are used to select a model(s) with maximum posterior probabilities conditional on the data.

Bayesian Model averaging (BMA) on the other hand employs the rules of conditional probabil-

ity to estimate posterior probabilities of possible models that are used as weights in averaging

over all possible models. The enormous number of possible explanatory variables and non-

linearity makes the use of model selection important for reducing the size of possible models

before averaging among the most probable models. Variable selection methods can also be

used to select a specific model Raftery (1995). There are a number of papers in the literature

that have applied BMA in economics.1 In the environmental and resource literature, some of

the papers include Clyde (2000), Clyde, Guttorp and Sullivan (2000), Koop and Tole (2004),

Layton and Lee (2006), Fernandez, Ley and Steel (2002), and Leon and Leon (2003). The

message of all these papers is that model uncertainty can have a big impact on parameter

estimates and should be accounted for explicitly.

For problems related to uncertainty regarding predictors in a model (which is our focus

in this chapter), the stochastic search variable selection (SSVS) method proposed by George

and McCulloch (1993) provides an insightful and easy to implement approach to solving the

problem. The model works by capturing the entire possible model setup in a hierarchical

Bayes mixture model with the use of latent variables to identify the models supported by the

data. The latent variable is used to nest all of the possible models. The number of visits to a

particular model through the iterative sampling (Gibbs) process determines how promising the

model is. SSVS makes use of both practical and statistical relevance of the model to select the

“best” possible models. One major advantage of the SSVS approach especially in the Bayesian
1There are number of websites that are devoted to posting developments and research in this area. See

http://www.research.att.com/˜volinsky/bma.html for some of the papers and software.
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framework is that the researcher does not have to calculate the marginal likelihoods for each

of the possible models.2

Model uncertainty in recreation demand

One major reason in estimating the demand for recreational sites is to quantify how site

attributes (especially water quality attributes) influence demand for these sites. This is essen-

tial for policy analysis and budget purposes.3 However, economic theory provides little or no

guidance as to which characteristics should be in the model and subsequent welfare analysis.

Few studies have been done that incorporate this uncertainty in the model. Layton and Lee

(2006) using a stated preference (SP) survey of saltwater angling in Alaska applied the proce-

dure suggested by Buckland, Burnham and Augustin (1997) to control for model uncertainty.

They estimated weights for different model specifications and used those weights to calculate

the expected willingness to pay. One problem with this procedure is that model uncertainty

is incorporated ex post and it does not account for uncertainty in the estimates of the param-

eters of the model. In a recent paper, Egan et al. (2009), in an attempt to search for the best

model specifications estimate different combinations of variable specification and parameter

distribution assumptions. They compared different models based on the likelihood values from

different combinations of water quality measures applied to one third sample split of their data.

The “best” model, chosen based on the likelihood dominance criteria, was then re-estimated

using the second third of the sample.4 While this does reduce the “fishing” problem, it still

does not incorporate uncertainty in the final model estimated. The model selection process is

not based on a test among competing model but on a log-likelihood based ranking which with

“tight” rankings given that the log-likelihood values were very close. To limit the number of

models to be compared, Egan et al. (2009) assumed that all the water quality variables are

to be included in the model and the choice is if they are suppose to enter linearly or logarith-

mic fashion. This limits the number of models they compare to 32.5 Their preferred model
2The marginal likelihood defined as P (Y |m = j) =

∫
P(Y |θj)P(θj)dθj are often difficult to estimate

3These estimates are used to justify important environmental policies such as pollution abatement programs.
4The final third was used to assess out-of-sample predictions
5In addition, they also grouped the water quality attributes to five to limit the number of models to be

compared
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has Secchi depth and suspended solids entering the model linearly, with the remaining water

quality variables entering in a logarithmic fashion.

In this chapter, we present a Random Utility Maximization (RUM) model that incorporates

model uncertainty on the specification of site attributes in recreation demand. Specifically we

apply the SSVS algorithm to identify the probability that a model is supported by the data.

Model

As described in the previous sections, the model we present in this study will incorporate

model uncertainty in the site characteristics attributes in recreation demand. In addition,

we want our model to be relatively flexible for posterior inference including welfare analysis.

For the purpose of our model, we index individuals by i = 1, 2, . . . , N , choice occasions by

t = 1, 2, . . . , T and sites by j = 1, 2, . . . , J .

Basic Structure

The model is similar to the repeated nested logit model (Morey, Rowe and Watson (1993))

and repeated mixed logit model (Herriges and Phaneuf (2002)). These models integrate indi-

viduals’ choice among alternatives and the problem of allocating time between multiple recre-

ation sites. The model of Morey, Rowe and Watson (1993) assumes that individuals face the

decision to participate in recreation activities over fixed discrete occasions and at most one trip

is taken at such an occasion. Furthermore, each decision is assumed conditionally independent

across individuals and choice occasions. A summary of this framework and implications of the

assumptions is presented in Herriges , Kling and Phaneuf (1999). Our model is similar to that

in chapter two with the incorporation of uncertainty at the level specifying the functional form

of the site characteristics.

Formally, we assume that an individual i at choice occasion t has to choose among J sites

and also inactivity, or “staying at home.” We represent the utility that an individual derives

from making a particular choice at a given time as:
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Uijt =

 Diγ + εijt if j = stay at home (0)

αj + Pijβ + ϕi + εijt for j = 1, . . . , J.
(1)

where αj is the overall site-specific effect; β is the marginal utility of income; ϕi captures

the individual specific effect and εijt represents an idiosyncratic error that is assumed to be

independent across the J + 1 alternatives with variance normalized such that εijt ∼ N(0, 1).

We also assume that the demographic characteristics of an agent (Di) has an effect on the

likelihood of choosing the “stay at home” option and not visiting any of the recreation sites.

Given that it is the difference in utility that matters, we have the base case to be the stay

at home option and take the difference in utilities. Thus,

Ũijt = αj + Pijβ −Diγ + ϕi + ε̃ijt (2)

where Ũijt = Uijt − Ui0t; ε̃ijt = εijt − εi0t; for j = 1, ...., J. So that

ε̃i.t =



εi1t − εi0t

εi2t − εi0t
...

εiJt − εi0t


∼ N (0,Σ∗)

where

Σ∗ =



2 1 · · · 1

1 2 · · · 1

1 1
. . .

...

1 1 · · · 2


.

The observed choice yit is linked to the latent variable vector Ũi·t as follows:

yit(Ũi·t) =

 0 if max{Ũijt}Jj=1 ≤ 0

k if max{Ũijt}Jj=1 = Ũikt > 0.
(3)

Stacking over the alternatives, we have:

Ũi.t = α+ Pi.β − (1J ⊗Di)γ + 1Jϕi + ε̃i.t. (4)
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where 1J is a J × 1 vector of ones,

α =



α1

α2

...

αJ


; Ũi.t



Ũi1t

Ũi2t
...

ŨiJt


and Pi. =



Pi1

Pi2
...

PiJ


.

We can then re-write the above equation concisely as

Ũi.t = Mi.tθ + 1Jϕi + ε̃i.t (5)

where

Mi.t =
[
IJ Pi. 1J ⊗Di

]
;θ =

[
α′ β′ γ ′

]′
.

Another way to write equation (5) is in terms of the error component. That is:

Ũi.t = Mi.tθ + vi.t

where

vi.t = 1Jϕi + ε̃i.t

E(vi.tvi.t′) ≡ Ω = σ2
ϕ1J1′J + Σ∗.

Hierarchical Priors

As described earlier, the αj ’s captures the overall site-specific effect. Given that these

depend on the characteristics of the site, we specify an hierarchical prior on αj with the

assumption that its mean is the aggregate effect of the observed attributes and the unobserved

site characteristics signals deviation from the mean.

The priors for the site-specific parameters is specified as:

αj ∼ N(Qjα0, σ
2
α). j = 1, 2, ....J (6)

where Qj includes a constant term and the observed site characteristics that influence demand

for site j.
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To control for model uncertainty at the site characteristics level, we will focus on the pa-

rameters of all K possible model specification of combinations of observed site attributes (α0,k)

for k = 1, 2, . . . ,K. Thus, we will seek to calculate the probability that a model specification

or subset of variables belong to the model using the SSVS approach. If a variable k is not

supported by the data, we will expect that the true value of the parameter (α0,k) be zero.

To capture this we introduce an additional level to the hierarchical structure described above.

Specifically, we specify a prior for each regression coefficients (α0,k) as a mixture of two normal

distributions with different variances and zero mean. That is conditional on a binary latent

variable λk = 0 or 1, each k element of α0 can be defined as:

α0,k|λk ∼ (1− λk)N(0, τ2
k ) + λkN(0, c2

kτ
2
k )) (7)

and

P (λk = 1) = 1− P (λk = 0) = pk; 0 ≤ pk ≤ 1. (8)

λk is a binary latent variable that indicates if the observed site characteristics is supported

by the data or not. With the above representation, when λk = 0, α0,k ∼ N(0, τ2
k ), whereas

α0,k ∼ N(0, c2
kτ

2
k ) when λk = 1. The variance term for the first normal distribution (τ2

k ) is

assumed to be very small such that the distribution of the α0,k is massed around zero and little

evidence for its inclusion in the model. The second variance (c2
kτ

2
k ) on the other hand is large

and signals evidence that the variable should be included in the model. pk can be thought of

as the prior probability that α0,k should be included in the model. Thus, the prior on α0 is

represented as multivariate normal:

α0|λ ∼ Nk(0,DλVαDλ) (9)

where λ = (λ1, ...., λK), Vα is the prior correlation matrix and Dλ ≡ diag[L1τ1, ...., LKτK ],

with Lk = 1 if λk = 0 and Lk = ck if λk = 1. Dλ is like a tuning parameter that ensures that

the prior on α0,k holds.
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Finally, we set priors for the other parameters as

p(λ) =
K∏
k=1

pλkk (1− pk)1−λk (10)

σ2
α ∼ IG(aα, bα) (11)

σ2
ϕ ∼ IG(aϕ, bϕ) (12)

γ ∼ N(µγ ,Vγ). (13)

Posterior Simulator

The posterior simulator uses the Gibbs sampler to generate draws from the posterior condi-

tional distribution. We will derive the posterior conditionals and describe how to make draws

from the distributions.

Let

Ξ =
[
θ α0 λ σ2

α ϕ. σ2
ϕ

]
denote all the parameters of the model with ϕ. denoting ϕi stacked over individuals.

The joint posterior distribution of Ξ and the latent utility data Ũ gives us the posterior

density for the parameters in our model. We use blocking step (e.g., Chib and Carlin (1999))

to obtain draws from the joint posterior conditional of the individual random effects and the

site specific effects to improve the mixing of the sampler. Using Bayes theorem, we can write

the posterior density as:

p(Ξ, Ũ |y) ∝
T∏
t=1

N∏
i=1

φ(Ũi.t,Mi.tθ,Ω) (14)

×
〈
I(yi.t = j)I(Ũijt > max[Ũi,−j,t, 0]) + I(yi.t 6= j)I(Ũijt < max[Ũi,−j,t, 0])

〉
×

 J∏
j=1

p(αj |α0,λ, σ
2
α)

[ N∏
i=1

p(ϕi|σ2
ϕ)

]
p(α0|λ)p(β)p(γ)p(α0)p(σ2

α)p(σ2
ϕ)p(λ).

We outline each posterior conditional distribution below.

Step 1: Draw the hierarchical parameter conditional on the latent utility and the hierar-

chical prior (θ|Ξ−θ, Ũ ,y) using the results of Lindley and Smith (1972) with blocking step.
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The posterior conditional for θ is given as:

θ|Ξ−θ, Ũ ,y ∼ N(Dθdθ,Dθ). (15)

where

Dθ ≡

[
T

N∑
i=1

M′
itΩ
−1Mit + Σ−1

θ

]−1

dθ ≡
∑
t

∑
i

M′
itΩ
−1wit + Σ−1

θ µθ

and

Σθ =


σ2
αIJ 0 0

0 Vβ 0

0 0 Vγ

 , µθ =


Qα0

µβ

µγ

 .
Step 2: α0|Ξ−α0 , Ũ ,y

Once we condition on the α, the posterior conditional for α0 is similar to that of a linear

regression parameter. However, the introduction of the latent variable λ into the model spec-

ification helps account for model uncertainty such that less weights are put on specifications

not supported by the data.

α0|Ξ−α0 , Ũ ,y ∼ N(Dα0dα0 ,Dα0) (16)

where

Dα0 = (Q′Q/σ2
α + (DλVαDλ)−1)−1 and dα0 = Q′α/σ2

α + (DλVαDλ)−1µα.

Step 3: σ2
α|Ξ−σ2

α
, Ũ ,y

σ2
α|Ξ−σ2

α
, Ũ ,y ∼ IG

J
2

+ aα,

b−1
α + .5

J∑
j=1

(αj −Qjα0)2

−1 . (17)

Step 4: Draw the λk

As described earlier, the marginal posterior distribution p(λ|α) carries information on the

relevance of each model and variable specification. However, since the only link between λ and

the alternative specific constants (α) is through the mean parameters α0, the distribution of

λk simplifies to a Bernoulli distribution with probability
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P (λk|α0,λ−k) =
p(α0|λ−k, λk = 1)pk

p(α0|λ−k, λk = 0)(1− pk)
(18)

where λ−k represents all λ except λk.

Step 5: ϕ.|Ξ−ϕi , Ũ ,y

ϕ.|Ξ−ϕi , Ũ ,y ∼ N(Dϕdϕ, Dϕ) (19)

where

D−1
ϕ = JT +

1
σϕ

; and dϕ =
T∑
t=1

(Uϕ
i.t −Mϕ

i.tθ
ϕ)

and Uϕ
i.t,M

ϕ
i.t, and θϕ are stacked over the sites j (j = 1...J) and choice occasion for each

individual without the stay at home equation. That is

Mϕ
i.t =

[
IJ Pi

]
;θϕ =

[
α·
′ β

]′
.

Step 6: σ2
ϕ|Ξ−σ2

ϕ
, Ũi.t

σ2
ϕ|Ξ−σ2

ϕ
, Ũi.t ∼ IG

N
2

+ αϕ,

(
b−1
ϕ + .5

N∑
i=1

ϕ2
i

)−1
 . (20)

Step 7: Draw the Ũi·t|Ξ,y

Given the structure of our model and to ease computation. We draw the latent utilities

that individual i derives from visiting site j at the levels instead of differences. That is, we

sample the Uijt and then take the differences to get the Ũijt. This works in our case given

our assumption of iid distribution on the error term εijt. At the structural level of the Uijt in

equation (1), there is no correlation among the alternatives conditional on αj , β, γ, and ϕ..

Each of the Uijt’s are conditionally normal with mean µ and variance of 1 with truncation

point that depends on the choice of the individual. That is, if an alternative is chosen, it must

be the alternative that gives the maximum utility - this gives the upper truncation point for

all the other alternatives.

We therefore follow the following steps to draw the Ũijt’s at a given draw r :

Assuming that individual i chooses alternative k at choice occasion t,
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1: Draw U rijt for all j 6= k from a truncated normal distribution with mean and variance

from equation (1) and upper truncation point Uikt = U r−1
ikt .

2: Draw U rikt from a truncated normal distribution with its mean and variance with lower

truncation point at the max(U rijt) for all j 6= k.

3: Calculate Ũijt by taking the difference between utilities from all sites and the stay at

home option: Ũ rijt = U rijt − U ribt.

Generated Data experiment

In this section we illustrate the performance of the algorithm described above in accounting

for model uncertainty in a RUM model with hierarchical structure. We will also use the

generated data as a guide to know how many draws will be needed for our application to

achieve the same level of precision under independent and identical distribution (iid) sampling.

To implement this, we generated data assuming that an individual has to choose between

visiting J = 10 sites and staying at home over T = 52 choice occasions. We also set number of

individuals N = 3, 000. The variable in Di consists of a uniformly generated random variable

that signify the age of the individual and a vector of gender dummy variable generated from

a Bernoulli distribution with equal probability of success and failure.

The alternative specific constant for site j (αj) is drawn from a normal distribution with

mean Qjα0 and variance σ2
α = 0.25 where Qj includes an intercept term and a uniformly

generated random variable Qj,1 which can be thought of as water clarity. However, in our

estimation, we experiment by naively estimating a model with an added predictor to Qj . In

our first experiment, the added predictor is generated from a standard normal distribution

that is independent of Qj,1. In a second experiment, the added predictor is generated such

that it is equal to Qj,1 plus a randomly generated uniformly distributed variable. That is

Qj,2 = Qj,1 + U(0, 1). This is to test the performance of our model when high correlation

exists the two observed site characteristics which can be the case with some water quality

measures. Also, to initiate correlation between the unobserved site characteristics and the

price coefficient, the travel costs for each individual to each site is set to be the sum of a
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normal random variable and 0.1 times the unobserved site characteristics. We also set the

value of c = 10 and τ = 0.1.6 The remaining parameters of the model were also fixed (values

reported in Table 1). These parameters and the variables in equation (1) are then used to

generate the latent utility values Uijt for j = 0, .., J which are mapped into the observed choice

of the individuals.

The Gibbs sampler described in section 3.3 is implemented for 50000 iterations with 5,000

as burn-in. The results are presented in table 1. The table report parameter posterior means

and posterior probabilities of being positive [denoted P (· > 0|y)]. We first look at the result

of the model selection parameter λ since it is the focus of our study. The model specification

that appear with the highest frequency signals that they have the largest probability in the

distribution of λ. The result for the first experiment shows that the site attribute Q.,1 used to

generate the true model appeared with the highest frequency as expected. The intercept term

appeared in almost all iterations (49,976 out of the 50,000 times) while Q.,1 appeared 36,038

times. The added predictor however appeared only 9400 times signaling that the variable is

not a promising part of the model. Figure 1 and 2 presents the graphs of the distribution

of the two parameters. The distribution for α0(2), as expected, looks like a mixture of two

normal distribution with majority of the mass in the distribution that includes the variable in

the model. However, the distribution for α0(3) is largely massed around zero as expected.7

For the second experiment where the added variable can actually act as a proxy for Q.,1

given the high level of correlation (0.92) between the two variables, we find that the frequency

is distributed relatively evenly between the two variables. Specifically, either one of the two

variables is almost always visited as expected with 47% and 65% relative frequency respectively.

The distributions are presented in figure 3 and 4.

The benefit of controlling for model uncertainty can be seen if we naively estimate the model

assuming that the site attributes are the two variables described above. The result from this

model shows that even the posterior mean for the additional variable is massed away from zero
6Other values of c were also used to test the robustness of our results and the conclusions were not qualitatively

different
7Since the variable was included in the model 9,400 times, the distribution is not fully centered on zero.
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(Figure 5) which imply that we would have made posterior inference assuming that the model

is an important determinant of demand. P (. > 0|y) = 0.09 signaling that the distribution is

negative more than 90% of the time. Policies directed to improve such an attribute would be

a waste of resources.

The results for the other parameters also converged to their true values relatively quickly.

We found that the posterior mean of the parameters are close to the true values with all of

them within two standard deviation of the true values. From the posterior distributions, we

see that even with the small number of alternatives used, our algorithm performed well in

recovering the parameters of the model. We present the Posterior means for the parameters

of the generated data experiment in Table 1.

We also calculated the inefficiency factors for the posterior distribution of the parameters

as the ratio of the numerical standard error with correlated draws (NSE) over the standard

error of the parameter. That is:

√
inefficiency factor =

√√√√1 + 2
m−1∑
j=1

(1− j

m
)ρj (21)

wherem is the number of draws after convergence and ρj is the autocorrelation coefficient which

is a correlation between draws as a function of j time separation between them. The estimates

of these inefficiency factors are quite high especially for the variance of the individual random

effect. The high inefficiency factors shows that we will need to run our simulation longer to

get the same level of accuracy as will be in m iid draws.

Application

The methods described above is applied to data from the Iowa lakes Valuation project at

Iowa State University. This is the same data described in Egan et al. (2009) and in the earlier

chapters of this dissertation. The wide array of observed water quality attributes and site

attributes available to researchers in this data makes it appealing for our study. The water

quality attributes were measured by Iowa State University’s Limnology Laboratory and include

attributes such as Secchi transparency ( a measure of the depth of water clarity), Nitrogen and
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Phosphorus.8 The use of this study is also appealing in that there is considerable amount of

variation regarding the site characteristics. For example, Secchi Transparency (which measures

the depth into the lake that one can see) averages just over one meter, but varies from less

than 0.1 meters (approximately 3.5 inches) to 5.67 meters (well over 18 feet). Similar ranges

are found for the other water quality measures, including Total Nitrogen, Total Phosphorus,

and Cyanobacteria. Moreover, these water quality measures are not highly correlated, as the

source and nature of the water quality problems in individual lakes varies considerably across

the state.

The lakes in the Iowa Lakes Project are, on average, 667 acres in size, ranging from 10

acres to approximately 19,000 acres. The other site attributes are represented with dummy

variables that indicate the availability of amenities of interest. The majority of the lakes in

our sample have a paved boat ramp (85%) and wake restrictions (i.e., Wake = 1) (65%), while

less than forty percent of the lakes have handicap facilities or are part of a local state park.

For the purpose of this application, the observed site characteristics (Q) include the levels

and appropriate natural log form of both site and water quality attributes. In contrast to Egan

et al. (2009), we estimate a single model allowing the data to dictate the model with high

posterior density that incorporates model uncertainty.

Empirical Results

Using the model and posterior simulator detailed in the previous sections, we fit the site

choice model using the Iowa Lakes data. Similar to the first paper, Gibbs sampling is used

to generate simulations from the joint posterior distribution and the Gibbs algorithm is first

run for 50,000 iterations. The last iteration from this process is then used to initiate two

different chains, run simultaneously on two different machines with different seeds. Each of

these runs produced 50,000 draws, leaving us a total of 130,000 post-convergence draws to

calculate posterior means, standard deviations and to make posterior inference. This is with

a burn-in value of 20,000 iterations which was informed by our generated data experiment.
8The availability of a large set of water quality attribute of this nature is atypical in recreational demand

data but provides for a good pool of attributes used in the literature.
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Each iteration of the simulator is also similar to that of the first paper with the additional

step of adding an hierarchical structure to the observed site characteristics. As with the first

paper, the step of the sampler that takes longer to implement is the simulation of latent utility

data for each agent, over 52 choice occasions for each of the 130 alternatives.

Estimation Results

We are primarily interested in applying the algorithm in earlier sections to data from Iowa

Lakes Project to address the issue of uncertainty in model specification. Following the results

of the first paper where we found no evidence that the water quality attributes included in the

model influence site visitation patterns in Iowa, we seek to evaluate how incorporating model

uncertainty will change this conclusion.

We addressed this question by considering a general model which contains all available set

of water quality measures and non-water quality site attributes. We report parameter posterior

means and posterior probabilities of being positive [denoted P (. > 0|y)] for key parameters of

the model in Tables 2 and 4.

In general, the results are not significantly different from the first paper given that we used

similar data and posterior simulator. The alternative specific constants for each site, αj are all

negative with over 99.9% of the posterior mass lying below zero. This is consistent with the

data as majority of the households did not visit any given site and the conditional utility from

each site reflects this. The marginal utility of income (negative of the coefficient on travel cost

i.e., −β) has a posterior mean of 0.0134. This assumes constant marginal utility of income

which is standard in the recreational demand literature. Turning to the individual households

characteristics, similar to Egan et al. (2009) and the first paper, the size of the household

influences the decision to visit a site with older individuals, females, and the less educated

more likely to stay at home.

Table 3 provides the results for the observed site characteristics and the frequencies with

which the variables are visited in the simulator. The frequency table contains information

relevant to variable selection and provides ranking that can be used to select the more promising
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submodels for further investigation.

The results indicate that variables such as natural log of Total Phosphorus (TP) and acres

including wake restrictions are identified as the submodels supported most by the data and

the prior chosen. Phytoplankton growth and nutrient conditions in freshwater systems are

determined by the level of total phosphorus and is consistent with the fact that high levels of

Total Phosphorus reduces the appeal of a site. Other variables that are also ranked relatively

high include state park classification, natural log of Total Nitrogen (TN) and the availability

of handicap facility. However, there seems to be no substantial difference in the frequency of

including the log and levels of total nitrogen. The volatile suspended solids (VSS) variable

that decreases water clarity, though with posterior distribution massed away from zero was

visited only 9% of the time.

The variables that were included in the model for chapter two were primarily informed by

Egan et al and was not based on any particular economic theory. We compare the results in

this chapter to that of chapter two. In terms of the water quality variables, the only water

quality attributes that possessed the expected sign and posterior distribution massed away

from zero is the Total Phosphorus variable. This variable also showed up in the model in

this chapter about 60% of the time and is also consistent with the first chapter. The other

water quality variables in chapter two either came out with the wrong sign or have posteriors

equally massed around the positive and negative region. Incorporating model uncertainty in

this chapter, though helpful in terms of the sign of some of the parameters, further supports the

fact that we do not find a convincing evidence that all the water quality variables included in

chapter one are important determinant of recreational site decision. Secchi depth for instance

only appeared in the model 10% of the time. The non-water quality variables however are

as expected and consistent with the results of chapter two. ln(Acres), Wake, State Park and

handicap facilities are among the highest ranked variables in the table.

If the goal is to pick a single “best” model, we can use the rankings to select a subset

of the variables by choosing a cutoff for the frequency.9 For example, choosing variables
9George and McCulloch (1997) suggested using a -5 on the log posterior scale to set a factor for selecting

the best model
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that are visited at least 15% of the time following this method leaves us with a model that

includes, ln(TP ), ln(Acres), wake restriction, state park classification, ln(TN) and availability

of handicap facility. However, aside from the ln(TP ), the coefficients on the water quality

attributes in most cases have their posterior densities that are more or less evenly divided

between the positive and negative values.

We also compare our results to that of Egan et al. (2009) that used likelihood ratio values

to select the water quality variables that are important in determining site visitation patterns.

The differences between our modeling framework and that of Egan et al. (2009) has been

described in the first paper aside from the variable selection that was introduced in this paper.

First, in contrast to Egan et al. (2009), we do not make the conclusion that the water variables

individually and as a group were consistently significant based on the results in this paper and

the first paper. Secondly, Egan et al. (2009) concluded that Secchi transparency is clearly the

best one measure to include, as it is easy to obtain and the most important single measure.

However, from our result, not only is the mass of the posterior densities [P (. > 0|y)] hovering

around 0.5, it is ranked 9th our of the water quality variables included in our model.

Similar to Egan et al. (2009), we find the log of the Total Phosphorus, which determines

algae growth to be the variables visited with the highest frequency by the sampler. However,

Egan et al ’s choice of the most important single additional water quality measure is not con-

sistent with our result. Inorganic suspended solids (ISS) and the log of Chlorophyll ranks low

on our list of water quality variables.

Posterior Calculation and Welfare

Recreational demand models are used primarily to predict how exogenous changes in the

attributes of the sites will affect the welfare of the household. These posterior calculations are

in particular intuitive and relatively easy to implement in the Bayesian framework. Though

the algorithm is similar to that in the first paper, the introduction of model uncertainty in

this paper adds another level of complexity to calculating welfare implications of a change in

policy scenarios.
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The approach we propose is in the spirit of implementing a Bayesian Model Averaging for

posterior inference purposes. This approach of averaging over all the variables of the model

rather than selecting a subset of the model for welfare analysis takes into consideration the

uncertainty related to each of the variables.

As in the first paper, we Let Υs
it denote the maximum utility achieved by agent i on choice

occasion t under scenario s (s = 0, 1). That is,

Υs
it(Ξ−α·, Q

s) = max
j

(Usijt|Ξ−α·, Q
s) s = 0, 1 (22)

where α· = (α1, . . . , αJ) denotes the vector of alternative specific constants. Changes in the

site characteristics impact individual consumers by altering the overall appeal of the sites, as

reflected in the αj ’s. Thus, we no longer have a single set of alternative specific constants,

but a set for each scenario (denoted αs· ). We use the hierarchical structure in equation (6) to

simulate the changes to these constants resulting from a change in the site attributes. However,

given the structure of the α0 parameter, we average over the parameter instead of choosing a

subset. Thus, the first step of drawing the alternative specific constant will proceed as follows:

Step 1: Draw αs(r), s = 0, 1 using (6).

That is, draw αs(r) from a normal distribution with mean Qs[α0(r) ∗ p(λ(r)|Y )] and vari-

ance σ2
α(r). where (r) indexes each iteration of the posterior simulator of the stated parameter.

What this does is that at each iteration, only variables visited are used to simulate the alterna-

tive specific constant which will be used to average the CV estimate. This way the frequency

that a variable is included in the model is used to weight the variable and follows the procedure

proposed by Chipman, George and McCulloch (2001).

Once we draw the alternative specific constants, the other steps in the algorithm is the

same as that of the first paper. The utility levels are drawn using the simulated parameters

and used to calculate the simulated based estimate of the compensating variation defined as:

ĈV =
1
R

R∑
r=1

T

−β

[(
max
j
U

1(r)
ijt

)
−
(

max
j
U

0(r)
ijt

)]
. (23)

This algorithm is then applied to the Iowa lakes data. The scenario of interest is a case

in which the water quality attributes in the 9 zonal lakes are upgraded to the quality of W.
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Okoboji lake. This is similar to the first paper and Egan et al. (2009). The result is an

estimated compensated variation of $17.47. However, the result should be interpreted with

caution. The probability that the density [P (ĈV > 0)] is greater than zero is approximately

80%. This result is in contrast to Egan et al. (2009) that found the CV estimates to range

between $8 and $40 depending on the model used with their “best” model having a CV estimate

of about $29.

Summary

This study has proposed a method for incorporating model uncertainty in RUM models,

with particular attention to welfare measurement. In addition to proposing a method of

selecting a “best” model, posterior calculation of welfare implications of changes in policy

scenarios is proposed. The resulting model is used to study visitational patterns of Iowans

and how site characteristics influence choice of sites. The proposed method is in the spirit

of hierarchical model framework employing the stochastic search variable selection (SSVS)

method in George and McCulloch (1993). The model can used to identify a preferred model and

as part of the process of employing a Bayesian Model Averaging technique. This is particularly

useful for welfare analysis and counterfactual calculation. This technique accounts for model

uncertainty which is incorporated not only into model selection but also posterior simulation

and welfare analysis.

Comparing the results of our approach to Egan et al. (2009), our choice of model and sub-

sequent welfare analysis produces a different result. First, we do not find compelling evidence

that all water quality attributes are important in the determination of visitation patterns of

Iowans. Secondly, welfare estimates accounting for model uncertainty is lower in our model

compared to the preferred model in Egan et al. (2009).

In summary, this paper proposes a framework for incorporating model uncertainty in recre-

ation demand. In contrast to Egan et al. (2009) that proposes a likelihood ratio dominance

method with unknown sample properties, we propose a method that selects a model(s) with

maximum posterior probabilities conditional on the data. In general, the results from this
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paper indicate that incorporating model uncertainty is important in understanding visitation

patterns of Iowans.

The findings of this study suggests that there is uncertainty surrounding the inclusion of

site attributes in a model of recreational demand. Ignoring this uncertainty may lead to wrong

prioritization of clean-up activities especially for water quality attributes. The ability to av-

erage over all possible models makes this method appealing for identifying lakes to target for

improvements and in an efficient manner with probability based ranking of the site character-

istics. This will be particularly useful for policy makers and stakeholders concerned with water

quality.
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Table 2: Posterior Means of Travel Cost,

Table 2: Demographic Variables and Variance Parameters

Parameter Mean P (· > 0|y)

Travel cost -0.0134 0.0000

Demographic Variables

Age 0.1083 1.0000

Gender 0.1342 0.9985

Education -0.1633 0.0000

Adults -0.0956 0.0000

Child -0.0045 0.0381

Variance parameters

σ2
ϕ 1.91 1.0000

σ2
α 0.08 1.0000
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Table 3: Posterior Means of hierarchical Parameters (Site Characteristics)

Site Characteristics Posterior Mean P (· > 0|y) Proportion [P (λ|Y )]

α0 -4.2366 0 1

ln(Total Phosphorus) -0.2584 0.0317 0.5878

ln(Acres) 0.1771 1 0.3312

Wake 0.1558 0.9977 0.3019

State Park 0.1116 0.98 0.1974

ln(Total Nitrogen) -0.0079 0.4734 0.1925

Handicap 0.0944 0.9667 0.1625

ln(N03) -0.0687 0.125 0.1433

Total Nitrogen -0.0375 0.2956 0.1281

Ramp 0.0416 0.7326 0.1273

ln(Cyanobacteria) -0.0705 0.0358 0.1252

N03 0.0342 0.7053 0.1212

ln(Chlorophyll) 0.0173 0.5981 0.1184

Water Quality Interactiona 0.0559 0.9408 0.1135

Secchi 0.0022 0.5249 0.1005

Total Phosphorus 0.0009 0.7166 0.0932

Chlorophyll 0.0006 0.641 0.0922

Cyanobacteria 7.50E-06 0.5749 0.0911

ISS -0.0017 0.2287 0.091

VSS -0.0089 0.0718 0.0904

Acres 9.00E-07 0.5207 0.0901

a
Water Quality interaction was introduced as a way of capturing a single water quality indicator. This is a crude way to capture this

and is defined as the log of the product of all the water quality attributes
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General Conclusions

General Discussion

The three papers in this dissertation contributes to the recreation demand literature by

correcting for model misspecification. The first paper focuses on consistently estimating the

travel cost parameter by isolating it from the effect of unobserved site characteristics, the

second paper allows for more flexibility in the estimation of the marginal utility of income

parameter and the third paper accounts for uncertainty in model specification of the observed

site characteristics.

The first paper corrects for omitted variable bias misspecification by extending the RUM

model to allow for unobserved site characteristics. While analysts studying recreation demand

can boast of wide variation in the price data, this variation is frequently offset by a paucity of

information characterizing the attributes of the sites. The introduction of alternative specific

constants with a distribution that depend upon the observed site attributes enhances the

estimation of the parameters of the observed site characteristics and simultaneously capture

unobserved site characteristics.

The second paper accounts for nonlinear income effect by estimating a function that has a

different effect on the level of utility depending on the income category the individual belongs

to. The method makes use of the Taylor series function to approximate the nonlinear function.

For the applied researcher, this approach of capturing income effect offers a number of advan-

tages. First of all, it is not as computationally intensive as a full semi-parametric model. Also,

the discrete nature of the income data in most cases reduces the number of parameters to be

estimated. This approach also partly abstracts away the problem of what time frame to use
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in computing income in the semi-parametric model (though implicitly it affects the validity of

the Taylor series approximation).

The third paper on incorporating model uncertainty in recreation demand is a follow up

to the first paper. Researchers are forced to use the few observed attributes available to them,

however, economic theory does not dictate which of these variables are to be included or in

what form. While all the site attributes can be important determinant of demand, there is

huge uncertainty as to the link through which these variables can impact demand. The model

proposed draws from the literature on Stochastic Search Variable Selection (SSVS) of George

and McCulloch (1993) and Bayesian Model Averaging.

Welfare scenarios were calculated in all the three papers exploring how the closure of West

Okoboji lake will affect households in Iowa. In papers one and three, we also explored the

possibility of improving the nine zonal lakes in Iowa to the water quality level of West Okoboji

which is considered to be one of the cleanest lakes in the state. The results indicate that the

closure of West Okoboji lake will result in a loss of welfare but no convincing evidence that

improving the zonal lakes will result in welfare gain.
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