
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

Three Bayesian econometric studies on forecast
evaluation
Jingtao Wu
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Economics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Wu, Jingtao, "Three Bayesian econometric studies on forecast evaluation" (2009). Graduate Theses and Dissertations. 11979.
https://lib.dr.iastate.edu/etd/11979

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=lib.dr.iastate.edu%2Fetd%2F11979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11979?utm_source=lib.dr.iastate.edu%2Fetd%2F11979&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


Three Bayesian econometric studies on forecast evaluation 

 

by 

 

Jingtao Wu 

 

 

 

A dissertation submitted to the graduate faculty  

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

 

 

Major:  Economics 
Program of Study Committee: 

Sergio H. Lence, Major Professor 
Barry L. Falk 

Dermot J. Hayes 
Joseph A. Herriges 
Travis R.A. Sapp 
Justin L. Tobias 

 

 

 

Iowa State University 

Ames, Iowa 

2009 

Copyright © Jingtao Wu, 2009.  All rights reserved.



  

 

ii

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................ iv 

CHAPTER 1.  General Introduction ..............................................................................1 

CHAPTER 2.  A Three-way Random Effects Study of Analyst Bias and Inefficiency 4 
2.1  Abstract .............................................................................................................. 4 
2.2  Introduction ........................................................................................................ 4 
2.3  Estimation Framework ....................................................................................... 8 

2.3.1  Testing for bias ........................................................................................... 8 
2.3.2  Inclusion of multiple random effects .......................................................... 9 
2.3.3  Testing for efficiency ................................................................................ 12 
2.3.4  Modeling analysts’ under-reaction and over-reaction .............................. 13 
2.3.5  Estimation method: Gibbs sampling ......................................................... 15 

2.4  Data .................................................................................................................. 17 
2.5  Estimation Results ........................................................................................... 20 

2.5.1  Estimation results regarding bias .............................................................. 20 
2.5.2  Estimation results regarding efficiency .................................................... 23 
2.5.3  Estimated time random effects .................................................................. 27 

2.6  Conclusion ....................................................................................................... 28 
2.7  References ........................................................................................................ 29 
2.8  Appendix .......................................................................................................... 31 

CHAPTER 3.  A Bayesian Hierarchical Study of Analyst Bias and Inefficiency.......34 
3.1  Abstract ............................................................................................................ 34 
3.2  Introduction ...................................................................................................... 34 
3.3  The Bayesian Hierarchical Model ................................................................... 37 
3.4  Estimation Framework ..................................................................................... 40 

3.4.1  Testing for bias and inefficiency ............................................................... 40 
3.4.2  Data ........................................................................................................... 41 
3.4.3  The Gibbs sampler .................................................................................... 41 
3.4.4  Prior choices and sensitivity analysis ....................................................... 43 

3.5  Estimation Results Regarding Bias .................................................................. 45 
3.6  Estimation Results Regarding Efficiency ........................................................ 49 
3.7  Earnings Surprises Forecasting ........................................................................ 51 
3.8  Conclusion ....................................................................................................... 60 
3.8  References ........................................................................................................ 61 
3.9  Appendix .......................................................................................................... 63 

CHAPTER 4.  Evaluating the Information Content of Forecasts ................................66 
4.1  Abstract ............................................................................................................ 66 
4.2  Introduction ...................................................................................................... 66 
4.3  Measures of Information Contents .................................................................. 71 

4.3.1  The predictive system and its application to survey forecasts .................. 71 
4.3.2  Measuring the information content of one set of forecasts ....................... 73 
4.3.3  Measuring the information content of competing forecasts ..................... 75 
4.3.4  Forecasts of other horizons ....................................................................... 75 
4.3.5  The advantages of the proposed measures ................................................ 76 

4.4  Empirical Applications .................................................................................... 77 



  

 

iii

4.4.1  Data ........................................................................................................... 77 
4.4.2  Replication of the basic model in Romer and Romer (2000) ................... 78 
4.4.3  Comparing information content of GB forecasts with SPF forecasts ....... 79 
4.4.4  Information contents of GB and SPF forecasts ......................................... 82 

4.5  Conclusion ....................................................................................................... 86 
4.6  References ........................................................................................................ 87 
4.7  Appendix .......................................................................................................... 88 

CHAPTER 5.  General Conclusion .............................................................................94 

ACKNOWLEDGEMENTS .........................................................................................95 

 

  

 



  

 

iv

ABSTRACT 

 

A complete theory for evaluating forecasts has not been worked out to this date. 

Many studies on forecast evaluation implicitly relied on assumptions that are not supported 

by data, e.g., the assumption of homoskedastic and uncorrelated errors, forecaster 

homogeneity, etc. In this dissertation, I apply Bayesian methods to analyze various aspects of 

forecast evaluation. The overall objective is to better evaluate forecasts in terms of bias, 

efficiency, and information content by accounting for the structure of forecasts and directly 

addressing various critical econometric issues that are ignored by previous studies. Three 

related studies have been undertaken to address three issues. My first paper studies forecasts’ 

bias and inefficiency after accounting for forecast error correlations. My second paper studies 

forecasts’ bias and inefficiency after accounting for forecasts’ hierarchical structure. My third 

paper proposes new measures of forecasts’ information content of actual variables. Although 

the three papers in this dissertation studies specific data sets, the employed methods could be 

easily applied to forecasts with similar structures.  
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CHAPTER 1.  GENERAL INTRODUCTION 

 

Producing and evaluating forecasts are two major areas in economic forecasting 

research. Since there are usually multiple forecasts for a single variable and forecasters 

generally do not make their forecasting processes available, properly evaluating available 

forecasts is as important as, if not more than, making good forecasts. A complete theory for 

evaluating forecasts has not been worked out to this date. Many studies on forecast 

evaluation implicitly relied on assumptions that are not supported by data, such as 

homoskedastic and uncorrelated errors or forecaster homogeneity. Consequently, this 

dissertation attempts to improve the forecast evaluation literature by applying Bayesian 

methods that rely on more realistic assumptions. Moreover, the employed Bayesian methods, 

in certain cases, could yield results that are not attainable via Frequentist approaches 

typically used in previous studies. Specifically, three studies have been undertaken to address 

three different aspects of forecast evaluation. The first study, entitled “A Three-way Random 

Effects Study of Analyst Bias and Inefficiency,” addresses the correlation structure of stock 

analysts’ earnings forecast errors. Previous studies either did not account for forecast error 

correlations, or imposed assumptions not supported by the data. I deal with forecast error 

correlations by adding analyst, firm, and time random effects, which allow forecast errors to 

be correlated not only across firms and analysts, but also across time periods. I show that the 

three-way random effects model is a more appropriate model as the variances of all three 

random effects are significantly larger than zero, which contradicts the usual assumption that 

forecast errors are not correlated. This study also offers additional evidence on the 

irrationality of analyst forecasts and reconciles contradicting results in the previous literature. 

It also corrects an inconsistency in one previous study and classifies variables by analysts’ 
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available information set. The proposed Bayesian estimation of the three-way random effects 

model also offers an analysis of individual random effects, which is very difficult, if not 

impossible, to implement using non-Bayesian methods. 

The second study, entitled “A Bayesian Hierarchical Study of Analyst Bias and 

Inefficiency,” relaxes the unrealistic assumption of forecaster homogeneity when studying 

pooled forecasts. It uses a Bayesian hierarchical model. It does not treat analysts as a 

homogenous population as the previous literature implicitly did by pooling forecasts across 

time periods and firms. The reasons to treat analyst as heterogeneous are twofold. From a 

theoretical point, existing studies have identified factors that affect forecast accuracy, which 

suggests that analysts are likely to have different forecast accuracies. Therefore, it is 

reasonable to allow for analysts to have different abilities, leading to different degrees of bias 

and inefficiency in their forecasts. From a practical standpoint, investors appear to think that 

analysts have different skills. The main contribution of the present study is that, as a result of 

the proposed method, I am able to assess forecasts at the individual analyst level. This allows 

me to identify that there is heterogeneity in the degrees of analysts' bias and inefficiency. The 

forecasts of some analysts, especially those of some firms that these analysts follow, are 

found to be unbiased and efficient. 

The third study, entitled “The Information Content of Forecasts,” proposes a new 

approach to compare forecasts’ information contents. Previous studies’ regression-based 

measures are prone to multicollinearity problems as forecasts for the same variable are 

usually highly correlated. By regarding forecasts as predictors, I derive next period’s 

expected value of the variable being forecasted conditional on alternative information sets 

using the Kalman filter. Forecasts that contain more information will lead to a smaller 

variance of deviations between actual values and expected values. The relative magnitude of 

the above variance is regarded as the measure of the relative information contents of 

competing forecasts. I also propose a way to measure the information content of forecasts 
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from the same source without competing forecasts, which could not be determined by 

previous methods. The advocated measures are computed for a well-known data set and yield 

different, yet compelling, conclusions from those drawn by the previous literature’s 

regression-based measures. 
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CHAPTER 2.  A THREE-WAY RANDOM EFFECTS STUDY OF 
ANALYST BIAS AND INEFFICIENCY 

 

2.1  Abstract 

Using a three-way random effects model, consistent with the previous literature, the 

present study shows that as a population, analysts’ forecasts are biased and inefficient. The 

present study offers additional evidence regarding the irrationality of analyst forecasts and 

reconciles previous contradicting results. In contrast to Keane and Runkle (1998), it is shown 

that the null hypothesis of analyst forecast rationality is rejected even if forecast error 

correlations and special charges are accounted for. The present study also corrects an 

inconsistency in Constantinou, Forbes and Skerratt (2003) and classifies variables by 

analysts’ available information set. This re-classification is shown to significantly change the 

results previously reported by the literature. The present study contributes to the literature on 

stock analysts by correctly accounting for forecast error correlations. Previous studies either 

did not account for forecast error correlations or adopted questionable assumptions (e.g., 

Keane and Runkle (1998)). In addition, evidence is provided about analysts’ asymmetric 

responses to different types of past information.  

 

2.2  Introduction 

Stock analysts who make forecasts of earnings per share (EPS) are an interesting 

group of economic agents to study for several reasons. First, researchers have found that 

earnings forecasts appear to have economic value for investors (e.g., Womack (1996)). 

Second, analysts' forecasts have often been found to outperform time series models, 
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suggesting that analysts are rather good at what they do (e.g., Brown, Hagerman, Griffin, and 

Zmijewski (1987)). Third, the precision of analysts' forecasts represents an upper bound of 

the quality of earnings forecasts made by less sophisticated agents.  

Although the importance of analysts is beyond dispute, the quality of their forecasts 

has become the subject of intense research and debate. An important category of research on 

analysts' forecasts examines their bias and inefficiency. In this literature, forecasts are usually 

considered to be biased if there is a systematic positive (or negative) difference between the 

forecasts and the actual EPS, whereas forecasts are typically labeled inefficient if they do not 

fully incorporate past information available at the time of issuing the forecasts. One of the 

most widely held beliefs in the literature is that analysts produce biased forecasts that are 

“too optimistic” (see, e.g., review by Kothari (2001)). In addition, numerous studies have 

documented analysts' inefficiency with respect to public information such as past earnings 

levels (e.g., De Bondt and Thaler (1990)), past earnings changes (e.g., Abarbanell and 

Bernard (1992)), extreme past earnings changes (e.g., Easterwood and Nutt (1999)), past 

returns (e.g., Lys and Sohn (1990), Abarbanell (1991), Ali, Klein and Rosenfeld (1992)), past 

forecast errors (e.g., Ali, Klein and Rosenfeld (1992)), and past forecast revisions (e.g., Amir 

and Ganzach (1998)), Mendenhall (1991)). Studies finding evidence of systematic under-

reaction include Lys and Sohn (1990), Abarbanell (1991), Abarbanell and Bernard (1992), 

Ali, Klein and Rosenfeld (1992), and Elliot, Philbrick and Wiedman (1995). In contrast, De 

Bondt and Thaler (1990) find that changes in EPS forecasts are too extreme, consistent with 

systematic over-reaction. Easterwood and Nutt (1999) attempted to reconcile the conflicting 

evidence by testing the robustness of Abarbanell and Bernard (1992) under-reaction results to 

the nature of the information. They find that financial analysts under-react to negative 

information but over-react to positive information. Ali, Klein and Rosenfeld (1992), among 

others, document that analysts' forecasts are inefficient with respect to their most recent 

forecast error.  
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Another category of research focuses on the properties of individual analysts’ 

forecasts, by studying the determinants of their accuracy (Mikhail, Walther and Willis 

(1997), Jacob, Lys and Neale (1999), Clement (1999)). These studies suggest that 

experience, the size of the brokerage firm that an analyst works for, and the number of firms 

and industries followed by an analyst affect forecast accuracy. 

Since each firm is usually followed by several analysts, there are typically multiple 

EPS forecasts given by different analysts for a given firm and period. On the other hand, each 

analyst usually follows several firms at the same time. Therefore, forecasts can be grouped 

by firms, analysts, and time periods. The existence of the above data hierarchies is neither 

accidental nor ignorable. Once a group (a specific firm, a specific analyst, or a specific time 

period) is established, it often tends to become differentiated from the other groups. This 

differentiation implies that the group and its members both influence and are influenced by 

the group membership. To ignore this relationship risks overlooking the importance of group 

effects, and it may also render invalid many of the traditional statistical techniques used for 

studying data relationships (Goldstein (2003)). Several authors (e.g., Crichfield, Dyckman 

and Lakonishok (1978), O'Brien (1988), Abarbanell (1991), Abarbanell and Bernard (1992)) 

have noted that statistical inference about the properties of analysts' forecasts is very difficult 

if forecast errors are correlated across analysts or firms.  

Some studies have attempted to deal with the problem of correlated errors across 

analysts/firms. Crichfield, Dyckman and Lakonishok (1978) first noted that forecasts for all 

companies may be cross-sectionally correlated due to aggregate market events and suggested 

that a relatively long time span is required to test the ability of analysts. O'Brien (1988) first 

allowed for random time-specific shocks to deal with aggregate shocks and found weak 

evidence that forecasts are upward-biased. Keane and Runkle (1998) extended O'Brien 

(1988) by allowing for firm-specific as well as analyst-specific shocks. However, Keane and 

Runkle (1998) assumed that forecast errors are not correlated across time.  
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The present study further extends Keane and Runkle (1998)'s work by allowing 

forecast errors to be correlated not only across firms and analysts, but also across time 

periods. The three-way random effects model used here is a form of hierarchical model 

where random effects are assumed to be normally distributed among analysts, firms, and time 

periods. Therefore, the random effects have the form of a shrinkage estimator, utilizing the 

complete sample information in addition to the group's information when estimating the 

random effects of each group. The three-way random effects model is estimated by Gibbs 

sampling. Using Gibbs sampling enables any posterior joint or marginal distribution of 

interest to be constructed, in principle to any degree of accuracy. Moreover, having available 

full posterior distributions instead of normal approximations can be valuable, particularly for 

highly skewed posteriors where maximum likelihood estimates are misleading. The Gibbs 

sampling approach also allows posterior distributions to be easily calculated for arbitrary 

functions of parameters. 

This present study shows that the three-way random effects model is a more 

appropriate model for the analyst forecast quality problem than Keane and Runkle (1998)’s 

model. This is true because the variances of all three random effects are significantly larger 

than zero, which contradicts Keane and Runkle (1998)’s assumption that forecast errors are 

not auto-correlated. The present study contributes to the research on stock analysts by 

correctly accounting for forecast error correlations. It offers additional evidence on the 

irrationality of analyst forecasts and reconciles previous contradicting results. In contrast to 

Keane and Runkle (1998), it is shown that the null hypothesis of analyst forecast rationality 

is rejected even if forecast error correlations and special charges are accounted for. The 

present study also corrects an inconsistency made by Constantinou, Forbes and Skerratt 

(2003) and classifies variables by analysts’ available information set. The proposed Bayesian 

estimation of the three-way random effects model also offers an analysis of individual 
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random effects, which is very difficult, if not impossible, to implement using non-Bayesian 

methods. 

The rest of the paper is organized as follows. Section 3 introduces the three-way 

random effects model and outlines the Gibbs sampling method. Section 4 describes the data. 

Section 5 discusses results regarding analysts' bias and inefficiency. Section 6 concludes. 

 

2.3  Estimation Framework 

This section outlines the three-way random effects model and the Gibbs sampling 

method used to estimate it. The tests for forecasts’ bias and inefficiency commonly used in 

the literature are also described.  

2.3.1  Testing for bias  

Let 1tr+  denote the actual value of variable r  at time 1t +  and let 1t
tx + denote the 

forecast of 1tr+  as of time t . Many, perhaps most, empirical studies of survey forecasts test 

for bias using the Mincer-Zarnowitz regression (Mincer and Zarnowitz (1969)) of the form,  

 1
1 1

t
t t tr xα β ε+
+ += + + , (2.1) 

where α  and β  are regression coefficients and ε  is a regression residual. Given (2.1), 

rejecting the null hypothesis 0 : ( , ) (0,1)H α β =  provides evidence of bias in the forecasts.1  

If one imposes 1β =  and subtracts 1t
tx +  from both sides of equation (2.1), the 

transformed regression is, 

                                                 
1 If 1tr+  and 1t

tx +  are nonstationary, both series are usually differenced by lagged actual values, 

transforming the levels regression into the “returns” regression 1
1 1( ) ( )t

t t t t tr r x rα β ε+
+ +− = + − + . In this 

specification of nonstationary variables, unbiasedness is still tested using the same null hypothesis 

0 : ( , ) (0,1)H α β =  as in the levels regression. 
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 1
1 1( )t

t t tr x α ε+
+ +− = + .  (2.2) 

Testing that 0α =  in the last regression is equivalent to jointly testing that 0α =  and 1β =  

in the Mincer-Zarnowitz regression. In the transformed regression, the null hypothesis 

0 : 0H α =  is equivalent to having forecast errors with no systematic bias. The idea is that 

unbiased forecasts should not be systematically smaller or larger than actual values. Some 

researchers (e.g., Carmona (2005)) prefer equation (2.2) over equation (2.1) for several 

reasons. First, equation (2.2) is more parsimonious. Second, in equation (2.1), 1t
tx +  is 

required to be uncorrelated with 1tε +  for estimates to be consistent. The above condition may 

not necessarily hold. Finally, if 1tr+  and 1t
tx + are persistent (or unit-root) processes, then the 

normal distribution may be a poor approximation to the distribution of the standard test of 

0 : ( , ) (0,1)H α β = . Because of the advantages of equation (2.2) over (2.1), equation (2.2) 

will be used to analyze forecasts in the present study. 

2.3.2  Inclusion of multiple random effects 

Suppose at time t , analyst a  follows firm f . The realization of firm f 's next 

quarter EPS, 1ftE + , is unknown to analyst a .2 The forecast of 1ftE +  by a  as of time t  is 

designated by 1t
aftF + . Defining the forecast error of analyst a  for firm f ’s EPS from t  to 1t +  

as 1
1 1

t
aft ft afty E F +

+ += − , equation (2.2) can be written as,  

 1 1aft afty errorα+ += + .  (2.3) 

The term 1afterror +  may have a complex covariance structure due to the following three types 

of correlations. For a given analyst a , 1afterror +  may be correlated across firms and time 

because of his personal ability, foresight, forecasting methods used, etc. For example, he may 

be pessimistic and have a tendency to under-estimate EPS for all firms he follows. For a 

given firm f , 1afterror +  may be correlated across analysts and time because of firm-specific 

                                                 
2 There is not a subscript a for 1ftE + , because firm f ’s actual EPS does not depend on analyst a . 



  

 

10

characteristics. For example, one firm could be rapidly growing and consistently beating 

analysts’ forecasts. Finally, for a given time period t , 1afterror +  may be correlated across 

analysts and firms because of unanticipated systematic shocks to the economy. 

The present study allows for forecast error correlations across analysts, firms, and 

time periods by extending equation (2.3) to include analyst-specific, firm-specific and time-

specific random effects as in equation (2.4). 

                  1 1 1aft a f t afty α μ μ μ ε+ + += + + + + .                                              (2.4) 

In equation (2.4), α  is the average of all forecast errors, aμ  is the deviation of the average of 

analyst a ’s  forecast errors from the average of the sample, fμ  is the deviation of firm f ’s  

forecast errors from the average of the sample, and 1tμ +  is the deviation of the average of 

period 1t + ’s forecast errors from the average of the sample. The idiosyncratic error 1aftε +  is 

assumed to be iid 2(0, )N σ . To justify the assumption that the idiosyncratic error is 

homoskedastic, in the present empirical application, the actual EPS and forecasts are scaled 

by EPS standard deviations. This normalization procedure is crucial to justify the assumption 

of homoskedasticity and is common practice in previous studies.  The analyst random effects 

are aμ  and are assumed to be iid 2(0, )aN σ  for 1, ,a A= " . Similarly, the firm random 

effects are fμ  and are assumed to be iid 2(0, )fN σ  for 1, ,f F= "  and the time random 

effects are tμ  and are assumed to be iid 2(0, )tN σ  for 1, ,t T= " .  

Equation (2.4) is a three-way random effects model that can account for the complex 

patterns of correlation across forecast errors. To see the resulting covariance structure of 

1afterror +  induced by equation (2.4), suppose that there are two analysts ( 1, 2a a ) who give 

forecasts for two firms ( 1, 2f f ) in two periods ( 1, 2t t ). In the matrix form, equation (2.4) for 

this case will be, 
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Therefore, the 1afterror +  in equation (2.3) can be decomposed as, 
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Let 2 2 2 2
aft a f tσ σ σ σ≡ + + , 2 2 2

at a tσ σ σ≡ + , 2 2 2
ft f tσ σ σ≡ + , the covariance matrix of 

error , 'cov( , )error error , is: 

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2

0
0

0
0

0
0

0

aft af at a ft f t

af aft a at f ft t

at a aft af t ft f

a at af aft t f ft

ft f t aft af at a

f ft t af aft a at

t ft f at a a

σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ
σ σ σ σ σ σ

+
+

+
+

+
+

2 2 2

2 2 2 2 2 2 2 20
ft af

t f ft a at af aft

σ σ
σ σ σ σ σ σ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥+⎣ ⎦

. 

The most comprehensive study attempting to deal with the problem of correlated 

forecast errors is Keane and Runkle (1998). The forecast error covariances that Keane and 

Runkle (1998) assumed for error are the following, 
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0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

a b c d
a b c d

b a b c
b a b c

c d a b
c d a b

d c b a
d c b a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                          (2.5) 

where a , c ,b , d are constants to be estimated. The main difference between the forecast 

error covariance proposed here and that of Keane and Runkle (1998) is that forecast errors of 

different time periods are not correlated. In the present study, only the forecast errors of 

different analysts for different firms are not correlated across time periods, due to the lack of 

common random effects.  

The covariance structure of the present study represents an improvement because of 

the following two reasons. First, whether forecast errors are correlated across time periods or 

not depends on the estimated random effects variances. Comparing the two sets of covariance 

matrices, we have 2 2 2 2
a f ta σ σ σ σ= + + + , 2 2

a tb σ σ= + , 2 2
f tc σ σ= + , 2

td σ= .  Since (2.5) 

restricted a , c , b , d  to be of different values,  2
aσ  and 2

fσ  should be non-zeros values, 

which indicates that the present study’s covariance structure is more suitable even under 

Keane and Runkle’s reasoning. Second, previous research has documented that forecast 

errors are positively auto-correlated (e.g., Ali, Klein and Rosenfeld (1992)). As shown later, 

the present study also documented positive auto-correlation in analysts’ forecast error. 

Therefore, the covariance matrix (2.5) is not supported by data. 

2.3.3  Testing for efficiency 

Because an efficient forecast incorporates all available information, public and 

private, it follows that there should be no relationship between forecast errors and any 
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variable known to analysts at the time of the forecast. To test for efficiency, all variables 

known at t  should be included on the right-hand side of equation (2.4),  

 1 1 1aft aft a f t afty Xα β μ μ μ ε+ + += + + + + + , 

where aftX  are variables known at t . Since it is not feasible to include all variables known to 

analysts at the time of their forecasts, only a weak efficiency condition, i.e., whether 

forecasts are efficient with respect to a small set of relevant variables, is tested following the 

previous literature. Based on previous studies, two obvious variables to test the weak 

efficiency condition are past quarter forecast errors 1( )t
ft aftPQFE E F −= −  and past quarter 

EPS changes 1( )ft ftPQEC E E −= − . Therefore, equation (2.4) is extended as, 

              1 1 2 1 1aft a f t afty PQFE PQECα β β μ μ μ ε+ + += + + + + + + .                         (2.6) 

If 1t
aftE +  is an efficient forecast, both 1β  and 2β  will be zero. Non-zero values of 1β  and 2β  

means that analysts could improve their forecasts by incorporating information that is 

available at the time of the forecast.  

2.3.4  Modeling analysts’ under-reaction and over-reaction 

In addition to inefficiency, Abarbanell and Bernard (1992) gave a second 

interpretation of the sign of 2β . They suggested that 2 0β > ( 0)<  indicates under-reaction 

(over-reaction) to the prior earnings changes. Their interpretation is the following. For the 

case of 2 0β >  and 0PQEC > ( 0)< , equation (2.5) specifies 2 0PQECβ > ( 0)<  which 

implies 1
1 1 0t

aft ft afty E F +
+ += − > ( 0)< , excluding other terms in the equation. The under-

reaction explanation is that analysts are too cautious about current EPS rising (decreasing) 

further and give a forecast that is too low (high). Therefore, too little weight is given by the 

analyst to PQEC . 

Constantinou, Forbes, and Skerratt (2003) (henceforth CFS) pointed out that the 

interpretation of 2β  depends on whether earnings follow a trend (momentum) or earnings are 

mean-reverting (reversion). CFS classified earnings momentum and reversions by the signs 
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of PQEC  and current quarter earnings change CQEC  (defined as 1t tE E+ − ). If PQEC  and 

CQEC  have the same signs, CFS classified PQEC  as a momentum case. If PQEC  and 

CQEC  are opposite in signs, CFS classified PQEC  as a reversion case. The interpretation 

given by Abarbanell and Bernard (1992) essentially refers to the earnings momentum cases. 

In the cases of earnings reversions, when 2 0β >  and 0PQEC > , it implies that analysts 

under-estimate EPS. Since 0PQEC > , the reversion in earnings implies current quarter EPS 

will decrease. Therefore, analysts over-react to the information contained in PQEC  and give 

a forecast that is too low warranted by mean reversion. CFS found substantial under-reaction, 

particularly in situations of earnings momentum.  

However, the classification in CFS is problematic in the sense that analysts obviously 

do not know the sign of CQEC  when they make forecasts of 1tE + . Therefore, analysts would 

not be able to know whether earnings are in the momentum regime or reversion regime by 

the CFS definition. To include explanatory variables that are in the analysts’ information set 

at the time of issuing the forecast, the present study classifies earnings momentum and 

reversions by the signs of PQEC  and its first lag, lagPQEC (defined as 1 2ft ftE E− −− ).  

If PQEC  and lagPQEC  have the same signs, PQEC  is classified as a momentum case, 

MPQEC . If PQEC  and lagPQEC  are opposite in signs, PQEC  is classified as a reversion 

case, RPQEC . Equation (2.6) can be extended as,  

 1 1 2 2 1 1
R M

aft R M a f t afty PQFE PQEC PQECα β β β μ μ μ ε+ + += + + + + + + +  (2.7) 

Further extensions of equation (2.7) can be used to distinguish different cases 

of PQFE , RPQEC , and MPQEC so as to test for analysts’ asymmetric responses. PQFE can 

be divided into positive errors ( PPQFE ) and negative errors ( NPQFE ). 

PPQFE equals PQFE  when PQFE is positive (analysts under-estimate last quarter’s EPS) 

and equals zero otherwise. NPQFE  equals PQFE  when PQFE is negative (analysts over-

estimate last quarter’s EPS) and equals zero otherwise. RPQEC  can be divided into upward 

reversion ( URPQEC ) and downward reversion ( DRPQEC ). URPQEC  equals RPQEC  when 
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RPQEC is positive and equals zero otherwise. DRPQEC  equals RPQEC  when RPQEC is 

negative and equals zero otherwise. MPQEC  can be divided into upward momentum 

( UMPQEC ) and downward reversion ( DMPQEC ). UMPQEC  equals MPQEC  when MPQEC  

is positive and equals zero otherwise. DMPQEC  equals MPQEC  when MPQEC  is negative 

and equals zero otherwise. Equation (2.8) extends equation (2.7) to include all these cases: 
  

 1 1 1 2 2

2 2 1 1

P N UR DR
aft P N UR DR

UM DM
UM DM a f t aft

y PQFE PQFE PQEC PQEC

PQEC PQEC

α β β β β

β β μ μ μ ε
+

+ +

= + + + +

+ + + + + +
 (2.8) 

2.3.5  Estimation method: Gibbs sampling 

The parameters in equations (2.4), (2.6), (2.7), and (2.8) are estimated by Gibbs 

sampling. Using the Gibbs sampler, the joint posteriors of all parameters can be analyzed one 

set at a time. By cycling repeatedly through draws of each parameter conditional on the 

remaining parameters, the Gibbs sampler produces a Markov chain of parameter draws 

whose joint distribution converges to the posterior. It is assumed that the random effects are 

independently and normally distributed with zero means and certain variances which 

themselves have inverse-Gamma distributions with corresponding hyper-parameters. This 

subsection outlines the priors employed for the parameters and the joint likelihood function. 

The complete Gibbs sampler with conditional posterior distributions for each set of 

parameters is given in the Appendix.  

The joint posterior distribution for parameters of the proposed model for equation 

(2.4) can be written as, 3  

                                                 
3 Since it is straight-forward to extend the Gibbs sampling to include more independent variables to 

accommodate the estimation of equations (2.5) to (2.7), for simplicity, the notation in this section and the 

Appendix only refers to equation (2.4). 
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2 2 2 2
1 1 1

2 2 2 2

( | ) ( | , , , , ) ( | ) ( | ) ( | )

* ( | , ) ( | , ) ( | , ) ( | , ) ( | , )

N A F T

aft a f t a a f f t t
aft a f t

a a a f f f t t t

p data y

V p a b p a b p a b p a bα α

α μ μ μ σ μ σ μ σ μ σ

α μ σ σ σ σ

+ + +Γ ∝ Φ Φ Φ Φ

Φ

∏ ∏ ∏ ∏
 

where { } { } { }( )2 2 2 2
11 11

, , , , , , ,
AA T

a f t a f ta tf
α μ μ μ σ σ σ σ+= ==

Γ =  denotes all parameters in the model 

and ( )Φ i  denote the normal probability density function. The priors employed in the Gibbs 

sampling are as follows: 

 ( , )N Vα αα μ∼  

 2
1 (0, )
iid

aft Nε σ+ ∼  

 2(0, )
iid

a aNμ σ∼ , for 1, ,a A= "  

 2(0, )
iid

f fNμ σ∼ , for 1, ,f F= "  

 2
1 (0, )
iid

t tNμ σ+ ∼ , for 1, ,t T= "  

 2 ( , )IG a bσ ∼  

 2 ( , )a a aIG a bσ ∼  

 2 ( , )f f fIG a bσ ∼  

 2 ( , )t t tIG a bσ ∼  

where ( )IG i  denotes the inverse Gamma function. For the normal prior of α , the present 

study uses 0aμ =  and 1000aV = . The prior is chosen so that the prior mean is 0 and the prior 

variance is large, which makes the prior non-informative.4 The values of inverse Gamma 

hyper-priors are set as follows, 3a f ta a a a= = = =  and 3a f tb b b b= = = = . The hyper-

priors are chosen so that the prior means for the variances is 1/6. The prior means for 

                                                 
4 For regressions with multiple regressors, the coefficients α  and β  are given multivariate normal 

priors with zero means and large covariance matrix. For example, in the estimation of equation (2.5), the non-

informative prior given to α , 1β  and 2β  consists of '
1 2 3 3[ , , ] (0 , *1000)N Iα β β ∼ , where 

'
30 [0 0 0]=  and 3I  is a 3 3×  identity matrix. 
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variances are chosen to be of the same magnitude as the standard deviation of the scaled 

forecast errors. The degrees of freedom for the inverse-Gamma hyper-priors are chosen to be 

small so that prior distributions are spread around their means. These a  and b values make 

the inverse Gamma priors non-informative. Estimation results remain basically unchanged if 

different prior values are used.  

 

 

 

2.4  Data 

The present study focuses on analysts covering the U.S. equity market from the third 

quarter of 1997 until the first quarter of 2005, altogether 31 quarters. The EPS measures used 

are quarterly. Because of time random effects, firms in the sample are restricted to have fiscal 

years ending in December. Following Keane and Runkle (1998), which required a minimum 

number of forecasts for the companies in the sample, firms in the sample are further 

restricted to have at least 100 quarterly forecasts. The final sample has 604 firms followed by 

1122 analysts. The total number of analyst-firm-quarter observations is 121886.  

Because the levels of EPS vary across firms, most studies on EPS forecasts use some 

sort of scaling procedure to mitigate the heteroskedasticity problem. The present study scales 

the EPS changes and forecast errors by the corresponding firm’s standard deviations of 

quarterly EPS from 1994 to 1996. De Bondt and Thaler (1990) used EPS standard deviations 

to scale EPS, and showed that it yields qualitatively similar results as scaling with stock 

prices or company assets. The scaled forecast errors have a mean of -0.125 and a standard 

deviation of 1.309. Its histogram shows that forecast errors are slightly skewed to the left. 

The 5th percentile of the scaled forecast errors is -2.443 and the 95th percentile is 1.544. As 
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for the signs of the forecast errors, 48.54% are positive (analysts under-estimate), 40.90% are 

negative (analysts over-estimate) and 10.55% are zero.  

Since there are more positive errors than negative errors and the error mean is 

negative, analysts must, on average, have made bigger mistakes when they over-estimated. 

This seems to validate Keane and Runkle (1998)’s point that special attention should be paid 

to discretionary asset write-downs, as asset write-offs and other before-tax special charges 

negatively affect earnings. To accommodate this argument and compare with Keane and 

Runkle (1998)’s study, the present analysis uses four alternative approaches to eliminate the 

potential effects of discretionary asset write-downs.  

First, if any quarter’s EPS of a particular firm from third quarter of 1997 until the first 

quarter of 2005 is four standard deviations away form the mean EPS during that period, that 

firm is dropped from the sample. Denote this sample as ByEPSDev. It has 561 firms 

followed by 910 analysts with 79661 observations. Secondly, large forecast errors are 

identified. There are 99 forecast errors that are four standard deviations above the sample 

mean, and 1053 forecast errors that are four standard deviations below the sample mean. 

Three samples are derived by excluding these large forecast errors using different schemes. 

The first sample, ByAnalystFirm, is derived by excluding the analyst-firm combinations that 

contain these outliers, i.e.,  if one analyst made a large forecast error for a particular firm, 

then this analyst’s forecast history for this firm is dropped from the sample. The 

ByAnalystFirm sample has 604 firms followed by 1114 analysts with 107802 observations. 

The second sample, ByFirm, is derived by excluding the firms that contain these outliers, i.e.,  

if one firm has a large forecast error, then this firm’s forecast history is dropped from the 

sample. The ByFirm sample has 396 firms followed by 1087 analysts with 75873 

observations. The third sample, ByAnalyst, is derived by excluding the analysts that contain 

these outliers, i.e.,  if one analyst has a large forecast error, then this analyst’s forecast history 
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is dropped from the sample. The ByAnalyst sample has 587 firms followed by 580 analysts 

with 56338 observations. 

An interesting fact is that the number of firms in the ByAnalystFirm sample is the 

same as in the complete sample. Excluding the analyst-firm combinations that contain 

outliers eliminate the entire forecast histories of 8 analysts, and part of the forecast history for 

some remaining analysts. This raises questions about Keane and Runkle (1998)’s point of 

discretionary asset write-downs. If discretionary asset write-downs are an important problem, 

then no analyst should be able to forecast the EPS of the firms that have discretionary asset 

write-downs. Therefore, these firms will be completely dropped from the sample. However, 

the present study did not identify any firm that is not forecastable and only identified analysts 

who could not forecast. Furthermore, many special charges identified by Keane and Runkle 

(1998) are related to corporate restructure, plant closing, etc. These events are public 

information and analysts should be able to forecast, at least partially, some of their impacts 

on EPS. Moreover, in their sensitivity analysis, Keane and Runkle used a 3.5- and a 4.5-

standard-deviation cutoff, and showed the results remained the same. This indicates that the 

effects of special charges may not be large.  

  The percentages of various regressors are of interest for the efficiency analysis. 

They are presented below for the complete sample, with the ByAnalystFirm sample 

percentages shown between parentheses. The percentages of PQEC  classified as earnings 

momentum and earnings reversions are 48.45% (48.04%) and 51.55% (51.96%), 

respectively. The percentages of PQEC  that are classified as upward earnings momentum 

and downward earnings momentum are 33.33% (33.31%) and 15.12% (14.73%), 

respectively. Finally, the percentages of PQEC  that are classified as upward earnings 

reversions and downward earnings reversions are 25.75% (25.97%) and 25.80% (25.99%), 

respectively. 
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2.5  Estimation Results 

2.5.1  Estimation results regarding bias 

When estimating equation (2.4), the Gibbs sampler is run for 5000 iterations. The first 

1000 iterations are discarded as the burn-in period. Different chains were run with different 

and over-dispersed starting values. The commonly used convergence tests (e.g., the Geweke 

diagnostic test and the Gelman and Rubin diagnostic test) are performed on the parameters 
2 2 2 2, , , ,a f tα σ σ σ σ  and randomly selected estimated random effects. All of the parameters 

tested passed the convergence tests. The trace plots show that the simulated draws from 

different chains seem to settle down and explore the same region very quickly. In fact, after 

the first ten iterations or so, the progression of different chains seems very similar. These 

provide suggestive evidence that the choice of the number of iterations and burn-in periods 

are adequate for the present application. 

The estimated posterior means and standard deviations of the parameters are reported 

in Table 2.1. From Table 2.1, it can be concluded that the posterior standard deviations are 

small compared with the posterior means, indicating that the parameters are accurately 

measured. The posterior means of intercept α  are -0.139 for the complete sample, -0.084 for 

the ByAnalystFirm sample, and -0.133 for the ByEPSDev sample. All of them are 

significantly negative. Since the dependent variable is actual EPS minus the forecast scaled 

by the EPS standard deviation, the negative intercept could be regarded as forecasts being too 

optimistic as the average error is negative. This result is consistent with the results in the 

previous literature as shown in the review by Kothari (2001), which finds that analysts are 

too optimistic.  

The results from the complete sample and the ByEPSDev sample are very similar. 

Eliminating firms that have unusual EPS could not bring unbiasedness to EPS forecasts. This 

is contradictory to Keane and Runkle’s finding. However, the posterior means of α  in the 



  

 

21

ByFirm and the ByAnalyst samples are not significantly different from zero. The ByFirm 

sample excluded firms that have large forecast errors. The ByAnalyst sample deleted analysts 

that have large forecast errors. The above results indicate that dropping bad analysts or 

difficult-to-forecast firms could make the EPS forecasts unbiased as a population. Therefore, 

it is quite possible for studies involving small samples, which do not contain bad analysts or 

difficult-to-forecast firms, to find that forecasts are unbiased.    

 

Table 2.1  Estimation Results Regarding EPS Forecasts’ Bias 

-0.139 (0.045) -0.084 (0.047) -0.041 (0.035) -0.037 (0.034) -0.133 (0.059)
1.486 (0.014) 1.007 (0.010) 0.710 (0.005) 0.872 (0.006) 0.964 (0.018)
0.034 (0.002) 0.021 (0.002) 0.018 (0.001) 0.023 (0.002) 0.032 (0.002)
0.149 (0.009) 0.103 (0.007) 0.069 (0.005) 0.094 (0.007) 0.132 (0.009)
0.075 (0.019) 0.060 (0.015) 0.052 (0.013) 0.057 (0.014) 0.062 (0.015)

No. of Analysts
No. of Firms
No. of Obs.

580
587

56338

910
561

79661

1114
604

107802

1087
396

75873

1122
604

121886

Post. Mean
ByAnalyst

Post. Mean Post. Mean Post. Mean Post. Mean
All ByAnalystFirm ByFirm ByEPSDev

α
2σ
2
aσ
2
fσ
2
tσ

 

Notes: 

1. The regression specification is 1 1 1aft a f t afty α μ μ μ ε+ + += + + + + . The dependent variable 

1
1 1

t
aft ft afty E F +

+ += − , and is the  forecast error of next quarter’s EPS. 2
1 (0, )
iid

aft Nε σ+ ∼ . The analyst random 

effects 2(0, )
iid

a aNμ σ∼ , for 1, ,a A= " . The firm random effects 2(0, )
iid

f fNμ σ∼  for 1, ,f F= " . The 

time random effects 2(0, )
iid

t tNμ σ∼ , for 1, ,t T= " . 

2. Posterior standard deviations are shown between parenthesis. Post. Mean refers to the mean of the 

parameter draws in the MCMC chain. Posterior standard deviations are the standard deviations of the parameter 

draws in the MCMC chain.  

 

Figure 2.1 depicts the histograms of idiosyncratic error variance as well as the 

variance of random effects for the complete sample. Because all of the random effects are 
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assumed to have zero means, the estimated variances can be seen as a measure of how 

significant the random effects are. The variances of the three random effects are all 

significantly larger than zero, which means that time periods, firms and analysts all have 

effects on the forecast errors. Since 2
aσ  and 2

fσ  are significantly larger than zero, the forecast 

errors are correlated across time as shown before. This contradicts Keane and Runkle 

(1998)’s assumption that forecast errors are not correlated. However, the magnitude of the 

idiosyncratic error variance 2σ is 15 to 20 times larger than 2
tσ , 2

aσ  and 2
fσ , indicating that 

the idiosyncratic error is by far the most important component of forecast errors. Because 

analyst, firm, and time random effects are small, correctly accounting for them will not 

change the results drastically. This may explain why the present study’s results are different 

from Keane and Runkle’s, but are consistent with the findings of other previous studies.  

 
Figure 2.1  Histograms of Selected Parameters 

 

The present study’s results contrast the lone results obtained by Keane and Runkle 

(1998) which failed to reject the hypothesis of rationality. They stated “We fail to reject the 

hypothesis of rationality as long as we take into account two complications: (1) the 
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correlation in a given period of analysts’ forecast errors in predicting earnings for firms in the 

same industry and (2) discretionary asset write-downs, which affect earnings but are 

intentionally ignored by analysts when they make earnings forecasts.” The above two 

complications alone may not be the reasons that they found rationality in analysts’ forecasts. 

First, the treatment of forecast error correlation in Keane and Runkle (1998) is not complete 

and is based on assumptions that do not seem to be justified by the data. Second, the effects 

of special charges may not be large as shown before. Even after correctly accounting for 

forecast error correlations and dropping large forecast errors, the present study still finds 

significant evidence to reject the null hypothesis of unbiasedness.  

Ruling out the above two reasons, the difference between Keane and Runkle (1998) 

and the present study as well as most of previous research may be explained by the much 

smaller sample used by the former authors. They only selected six four-digit Standard 

Industrial Classification industries to analyze. Each industry only has 3 to 5 firms and each 

industry only has 300 to 600 observations. They found that the forecasts of one industry they 

studied, the airline industry, are not rational. They attributed this to the aggregate shocks 

happened to the industry. In a related study that analyzes forecasts at the individual analyst 

level, Wu (2006) found that there is heterogeneity in the degrees of analysts' bias and 

inefficiency. The forecasts of some analysts, especially those of some firms that these 

analysts follow, can be regarded as unbiased and efficient. Therefore, it is quite possible to 

find subsets of firms and analysts for which the rationality condition can not be rejected. 

2.5.2  Estimation results regarding efficiency 

When estimating equations (2.6) to (2.8), the Gibbs sampler is run for 5000 iterations. 

The first 1000 iterations are discarded as the burn-in period. Different chains are run with 

different and over-dispersed starting values. The commonly used convergence tests (e.g., the 

Geweke diagnostic test and the Gelman and Rubin diagnostic test) are performed on the 
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parameters 2 2 2 2, , , ,a f tα σ σ σ σ , various β  parameters, and randomly selected random effects. 

All of the parameters tested passed the convergence tests.  

Estimation results of equations (2.6) to (2.8) are presented respectively in Panel A to 

Panel C in Table 2.2. From Table 2.2, the posterior standard deviations are very small 

compared with the posterior means, indicating that the parameters are quite accurately 

measured. The results regarding variances of random effects are similar to the previous 

findings about analysts’ forecasting bias, with the exception that the firm random effect 

variances are significantly smaller than the variance corresponding to equation (2.4).  

The posterior means and standard deviations of α  in Table 2.2 are very close to those 

in Table 2.1 for the five samples. The posterior means of α  in the ByFirm and ByAnalyst 

samples are not significantly different from zero, which indicates that forecasts are not biased 

in these two samples. However, the posterior means of β  are significantly greater than zero, 

especially the coefficients of PQFE . This shows that although forecasts in the ByFirm and 

ByAnalyst samples are not biased, they are still inefficient with respect to the variables 

included in this study. Since the efficiency results for the ByEPSDev, ByFirm, ByAnalyst, 

and ByAnalystFirm samples are qualitative similar to the complete sample, the following 

efficiency analysis focuses on the complete sample.  

 

Table 2.2  Estimation Results Regarding EPS Forecasts’ Inefficiency 

All ByAnalystFirm ByFirm ByAnalyst ByEPSDev
Post. Mean Post. Mean Post. Mean Post. Mean Post. Mean

-0.090 (0.049) -0.057 (0.043) -0.056 (0.023) -0.027 (0.034) -0.107 (0.043)
0.330 (0.003) 0.307 (0.003) 0.326 (0.004) 0.309 (0.004) 0.340 (0.004)
0.019 (0.002) 0.011 (0.002) 0.010 (0.002) 0.007 (0.002) 0.036 (0.003)
1.319 (0.005) 0.913 (0.004) 0.653 (0.003) 0.804 (0.005) 0.835 (0.005)
0.012 (0.001) 0.008 (0.001) 0.009 (0.000) 0.011 (0.001) 0.014 (0.001)
0.067 (0.004) 0.048 (0.003) 0.030 (0.003) 0.043 (0.003) 0.048 (0.004)
0.059 (0.015) 0.049 (0.012) 0.043 (0.011) 0.047 (0.012) 0.052 (0.013)

Panel A

α

1 ( )PQFEβ
2 ( )PQECβ
2σ
2
aσ
2
fσ
2
tσ
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All ByAnalystFirm ByFirm ByAnalyst ByEPSDev
Post. Mean Post. Mean Post. Mean Post. Mean Post. Mean

-0.087 (0.036) -0.040 (0.040) -0.028 (0.029) -0.045 (0.049) -0.137 (0.036)
0.321 (0.003) 0.300 (0.003) 0.319 (0.004) 0.302 (0.004) 0.328 (0.004)
0.001 (0.002) -0.003 (0.002) -0.003 (0.002) -0.006 (0.003) 0.002 (0.002)
0.065 (0.004) 0.048 (0.003) 0.048 (0.004) 0.044 (0.005) 0.099 (0.006)
1.317 (0.005) 0.912 (0.004) 0.652 (0.003) 0.803 (0.005) 0.833 (0.006)
0.012 (0.001) 0.008 (0.001) 0.009 (0.001) 0.011 (0.001) 0.014 (0.001)
0.066 (0.005) 0.047 (0.003) 0.030 (0.003) 0.041 (0.004) 0.047 (0.004)
0.059 (0.015) 0.049 (0.012) 0.044 (0.011) 0.048 (0.012) 0.052 (0.013)

Panel B

α

2σ
2
aσ
2
fσ
2
tσ

2 ( )R
RPQECβ

2 ( )M
MPQECβ

1 ( )PQFEβ

 

All ByAnalystFirm ByFirm ByAnalyst ByEPSDev
Post. Mean Post. Mean Post. Mean Post. Mean Post. Mean

-0.115 (0.030) -0.083 (0.042) -0.036 (0.035) -0.044 (0.038) -0.126 (0.044)
0.387 (0.007) 0.374 (0.006) 0.374 (0.007) 0.367 (0.008) 0.362 (0.009)
0.289 (0.004) 0.256 (0.005) 0.285 (0.005) 0.256 (0.006) 0.314 (0.005)

 -0.022 (0.004) -0.024 (0.004) -0.013 (0.004) -0.023 (0.005) -0.030 (0.006)
0.022 (0.004) 0.016 (0.004) 0.006 (0.004) 0.016 (0.005) 0.029 (0.006)
0.031 (0.005) 0.028 (0.005) 0.035 (0.005) 0.017 (0.006) 0.090 (0.009)
0.103 (0.007) 0.065 (0.006) 0.058 (0.007) 0.081 (0.008) 0.100 (0.009)
1.315 (0.005) 0.910 (0.004) 0.651 (0.003) 0.801 (0.005) 0.831 (0.005)
0.012 (0.001) 0.008 (0.001) 0.009 (0.001) 0.011 (0.001) 0.014 (0.001)
0.067 (0.004) 0.047 (0.003) 0.039 (0.003) 0.041 (0.003) 0.049 (0.004)
0.058 (0.015) 0.048 (0.012) 0.044 (0.011) 0.047 (0.012) 0.052 (0.014)

Panel C

α

2σ
2
aσ
2
fσ
2
tσ

1 ( )P
PPQFEβ

1 ( )N
NPQFEβ

2 ( )UR
URPQECβ

2 ( )DR
DRPQECβ

2 ( )UM
UMPQECβ

2 ( )DM
DMPQECβ

 
Notes: 

1. The regression specifications are as follows.  

Panel A: 1 1 2 1 1aft a f t afty PQFE PQECα β β μ μ μ ε+ + += + + + + + +  

Panel B: 1 1 2 2 1 1
R M

aft R M a f t afty PQFE PQEC PQECα β β β μ μ μ ε+ + += + + + + + + +  

Panel C: 
1 1 1 2 2

2 2 1 1

P N UR DR
aft P N UR DR

UM DM
UM DM a f t aft

y PQFE PQFE PQEC PQEC

PQEC PQEC

α β β β β

β β μ μ μ ε
+

+ +

= + + + +

+ + + + + +
 

2. Post. Mean refers to the mean of the parameter draws in the MCMC chain. Post. Std. Dev. refers to 

the standard deviation of the parameter draws in the MCMC chain.  
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The main focus of this section is the coefficients of various regressors and their 

implications for analysts’ forecasting inefficiency. Panel A gives the results of equation (2.6), 

the baseline regression. It shows that the posterior mean of the coefficient of PQFE  is 0.330 

and significantly greater than zero. Its sign means that there is a positive relationship between 

CQFE  and PQFE , i.e., if an analyst makes the mistake of over-estimating last quarter’s 

EPS, he tends to over-estimate the current quarter’s EPS, and vice versa. This relationship 

indicates that analysts tend to be slow in adjusting their forecasting practices to take into 

account their past errors. The previous literature (e.g., Ali, Klein and Rosenfeld (1992)) also 

documented such positive relationships. The coefficient of PQEC  is 0.019. This provides 

evidence that forecasts are inefficient with respect to past earnings changes. Previous studies 

using annual EPS measures estimate such coefficient at around 0.08. The difference may be 

explained by the shorter forecast horizon used in the present study or by the difference in the 

structure of the econometric model used.  

Panel B gives the results of equation (2.7), which distinguishes PQEC  into earnings 

momentum and earnings reversion. The posterior mean of the coefficient on MPQEC  is 

0.065 and highly significant, whereas, the posterior mean of the coefficient on RPQEC  is 

0.001 and not significant. The above results contrast sharply with Constantinou, Forbes, and 

Skerratt (2003), who found 2
Mβ around 0.50 and 2

Rβ  around -0.12. However, as explained 

before, their definitions of MPQEC  and RPQEC  contain information not available to 

analysts at the time of issuing their forecasts. Using only the information available to 

analysts, the present findings indicate that analysts under-react to the information contained 

in the PQEC  only in EPS momentum cases.  This suggests that analysts consider 

momentum in earnings to be not sustainable and are very cautious to give a forecast of 

continuous trend.   

Panel C gives the results of equation (2.8), which distinguishes between upward 

earnings momentum/reversion and downward earnings momentum/reversion, as well as 



  

 

27

different signs of PQFE . Significant positive serial correlations are found between forecast 

errors. The coefficient on PPQFE  (0.387) is found to be larger than the coefficient on 

NPQFE  (0.289). This suggests that analysts are quicker in adjusting their past mistakes 

when they over-estimated. The coefficient on downward momentum (0.103) is larger than 

the coefficient on upward momentum (0.031), which indicates analysts’ general optimism 

and their reluctance to confirm downward EPS trends. The coefficient on downward 

reversion is 0.022 and the coefficient on upward reversion is -0.022. In the case of downward 

reversion ( PQEC - & lagPQEC +), the EPS is expected to increase. In the case of upward 

reversion ( PQEC + & lagPQEC -), the EPS is expected to decrease. This indicates that 

analysts over-react to the information contained in RPQEC  as they overshoot the degree of 

earnings reversion.  

2.5.3  Estimated time random effects 

One advantage of the Bayesian estimation of the three-way random effects model 

proposed here is that all random effects are explicitly estimated. In previous research, the 

random effects are not of direct interest and they are treated as nuisance parameters. Since 

the magnitude of time-specific random effects could offer insights about analysts’ forecasting 

behavior, the posterior means of the 31 time-specific random effects in equation (2.7) for the 

complete sample are shown in Figure 2.2 along with their 5th and 95th percentiles. Figure 2.2 

shows that the estimated random effects for many quarters are fairly large, which indicates 

that analysts often failed to make good estimates of systematic shocks to the economy. For 

example, the largest negative time-specific random effect is -0.5, which happened during the 

4th quarter of 2001. This is probably due to analysts’ inability to estimate the negative impact 

of the events occurred during the 3rd quarter of 2001 (i.e., September 11 and its aftermath) 

and over-estimated too much the overall earnings levels for that quarter.  
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Figure 2.2  Estimated Time Random Effects 

 

2.6  Conclusion 

Using a three-way random effects model, the present study shows that consistent with 

most of the previous literature, as a population, analysts’ forecasts are biased and inefficient.  

The results provide evidence that the three-way random effects model is appropriate to study 

analyst EPS forecast, as the variances of all three random effects are significantly larger than 

zero. 

Analysts are found to be systematically optimistic. As for efficiency, the results show 

that if an analyst over-estimates EPS in one period, he will tend to over-estimate EPS in the 

next period, and vice versa. Analysts are found to be quicker in adjusting their past mistakes 

when they over-estimated than when they under-estimated. Analysts are found to under-react 

to previous quarter EPS changes in the cases of earnings momentum and over-react to 

previous quarter EPS changes in the cases of earnings reversions. The under-reaction is more 

severe in the cases of downward momentum, which indicates analysts’ general optimism.  



  

 

29

The present study offers additional evidence on the irrationality of analyst forecasts 

and reconciles previous contradicting results. It shows that accounting for the two reasons 

identified by Keane and Runkle (1998), namely forecast error correlations and special 

charges, is not sufficient to bring rationality to analyst forecasts. The present results suggest 

that the much smaller sample used by Keane and Runkle may be the reason of why their 

finding are different compared to most of the literature. The present study also points out an 

inconsistency in the construction of variables in Constantinou, Forbes and Skerratt (2003). 

Using correctly constructed variables, the present study reaches different conclusions.   

The present study extends the research on stock analysts by correctly accounting for 

forecast error correlations. Previous studies either did not account for forecast error 

correlations, or imposed assumptions not supported by the data. The present study also 

demonstrates that analysts respond asymmetrically different types of past information.  
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2.8  Appendix 

This appendix describes the complete Gibbs sampler with conditional posterior 

distributions for each set of parameters. Since the Gibbs sampling can be easily extended to 

include more independent variables to accommodate the estimation of equations (5) to (7), 

the notation in this section only refers to equation (4).  

 1 1 1aft a f t afty α μ μ μ ε+ + += + + + +  

 ( , )N Vα αα μ∼  

 2
1 (0, )
iid

aft Nε σ+ ∼  
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 2(0, )
iid

a aNμ σ∼ , for 1, ,a A= "  

 2(0, )
iid

f fNμ σ∼ , for 1, ,f F= "  

 2
1 (0, )
iid

t tNμ σ+ ∼ , for 1, ,t T= "  

 2 ( , )IG a bσ ∼  

 2 ( , )a a aIG a bσ ∼  

 2 ( , )f f fIG a bσ ∼  

 2 ( , )t t tIG a bσ ∼  

Each observation in the sample has its own 1, ,a f tμ μ μ +  and is normally distributed as. 

 2
1 1 1| , , , ( , )aft a f t a f ty Nα μ μ μ α μ μ μ σ+ + ++ + +∼ . 

The joint posterior distribution for parameters of the proposed model can be written as,  
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Similarly for fμ  and 1tμ + . 

Complete Posterior Conditional for 2σ  
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CHAPTER 3.  A BAYESIAN HIERARCHICAL STUDY OF 
ANALYST BIAS AND INEFFICIENCY 

 

3.1  Abstract 

Using a Bayesian hierarchical model, the present study shows that, consistent with 

previous studies, analysts' forecasts are biased and inefficient as a population. The Bayesian 

hierarchical model allows us to avoid making scaling transformations to the original data. It 

also allows us to relax the unrealistic assumption of analyst homogeneity. It is shown that 

there is heterogeneity in the degrees of analysts' bias and inefficiency. The forecasts of some 

analysts, especially those of some firms that these analysts follow, can be regarded as 

unbiased and efficient. Based on the results of the hierarchical model, two approaches to 

forecast earnings surprises are proposed. The proposed measures are shown to be able to 

forecast earnings surprises with success rates that are statistically higher than 50%.  

 

3.2  Introduction 

Stock analysts who make forecasts of earnings per share (EPS) are an interesting 

group of economic agents to study for several reasons. First, researchers have found that 

earnings forecasts appear to have economic value for investors (e.g., Womack (1996)). 

Second, analysts' forecasts have often been found to outperform time series models, 

suggesting that analysts are rather good at what they do (e.g., Brown, Hagerman, Griffin, and 

Zmijewski (1987)). Third, the precision of analysts' forecasts represents an upper bound of 

the quality of earnings forecasts made by less sophisticated agents.  
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Although the importance of analysts is beyond dispute, the quality of their forecasts 

has become the subject of intense research and debate. An important category of research on 

analysts' forecasts examines their bias and inefficiency. In this literature, forecasts are usually 

considered to be biased if there is a systematic positive (or negative) difference between the 

forecasts and the actual EPS, whereas forecasts are typically labeled inefficient if they do not 

fully incorporate past information available at the time of issuing the forecasts. One of the 

most widely held beliefs in the literature is that analysts produce biased forecasts that are 

“too optimistic” (see, e.g., review by Kothari (2001)). In addition, numerous studies have 

documented analysts' inefficiency with respect to public information such as past earnings 

levels (e.g., De Bondt and Thaler (1990)), past earnings changes (e.g., Abarbanell and 

Bernard (1992)), extreme past earnings changes (e.g., Easterwood and Nutt (1999)), past 

returns (e.g., Lys and Sohn (1990), Abarbanell (1991), Ali, Klein and Rosenfeld (1992)), past 

forecast errors (e.g., Ali, Klein and Rosenfeld (1992)), and past forecast revisions (e.g., Amir 

and Ganzach (1998)), Mendenhall (1991)). Ali, Klein and Rosenfeld (1992), among others, 

document that analysts' forecasts are inefficient with respect to their most recent forecast 

error.  

Another category of research focuses on the properties of individual analysts’ 

forecasts, by studying the determinants of their accuracy (Mikhail, Walther and Willis 

(1997), Jacob, Lys and Neale (1999), Clement (1999)). These studies suggest that 

experience, the size of the brokerage firm that an analyst works for, and the number of firms 

and industries followed by an analyst affect forecast accuracy. 

Because each firm is usually followed by several analysts, there are usually several 

EPS forecasts given by different analysts for a given firm and time. The common practice of 

the previous literature is to pool the consensus forecasts (the mean or median of all available 

forecasts of a given firm at a given time) across firms and across time, and then perform 

ordinary least squares (OLS) regression analysis on the pooled sample. This approach is 
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likely to exhibits problems of cross-sectional dependence among observations, because 

different forecasts’ qualities for a particular firm (or a particular analyst) tend to be 

correlated. Furthermore, since the previous literature aggregates information from all firms, it 

almost universally employs some sort of scaling procedure to the EPS and forecasts. The 

need for scaling arises because forecast errors may be heteroskedastic across firms (i.e., the 

deviations of forecasts from the actual EPS may depend on the levels of share prices or EPS). 

The most popular choices for scaling are previous share prices and EPS. The unintended 

consequence of scaling is that it could introduce unnecessary noises in the econometric 

system. 

Because of the above potential shortcomings of the OLS method commonly 

employed in the previous literature, the present study looks at analysts' forecasts bias and 

inefficiency using a Bayesian hierarchical model. In the hierarchical model proposed here, 

the scaling procedure is not necessary. Most importantly, the hierarchical model does not 

treat analysts as homogenous as the previous literature implicitly did by pooling forecasts 

across time and firms. The reasons to treat analysts as heterogeneous are twofold. From a 

theoretical standpoint, it is reasonable to allow for analysts to have different abilities, leading 

to different degrees of bias and inefficiency in their forecasts. The previous studies have 

identified factors that affect the forecast accuracy, suggesting that analysts are likely to have 

different forecasting skills. From a practical standpoint, investors appear to think that 

analysts have different skills. Evidence in this regard is that the magazine Institutional 

Investor conducts annual polls of money managers regarding analysts forecast qualities. The 

top three vote getters in each industry are called All-Americans and are highly rewarded for 

this honor. In sum, it seems reasonable to allow for differential ability among analysts when 

setting up the econometric model.  

The Bayesian hierarchical model proposed in the present study could yield bias and 

inefficiency estimates not only for a “representative” analyst like the previous literature, but 
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also for each individual analyst as well as each individual analyst-firm combination. It allows 

us to avoid making scaling transformations to the original data. Such transformations are 

unavoidable in past research methods but may introduce problems of their own. In addition, 

the Bayesian hierarchical model allows us to relax the unrealistic assumption of analyst 

homogeneity. Using the three-level Bayesian hierarchical model, consistent with previous 

studies, it is found that as a population, analysts' forecasts are biased and inefficient. Analysts 

are systematically optimistic and their forecasts are too extreme. As for efficiency, the results 

show that if an analyst over-estimates EPS in one period, he will tend to over-estimate EPS 

next period, and vice versa. There is also evidence that if a firm's EPS in the current quarter 

is greater than last quarter's, analysts tend to under-estimate next quarter's EPS, and vice 

versa. The main contribution of the present study is the analysis of forecasts at the individual 

analyst level. Considerable heterogeneity in the degrees of analysts' bias and inefficiency is 

found. The forecasts of some analysts, especially those of some firms that these analysts 

follow, can be regarded as unbiased and efficient. Based on the results of the hierarchical 

model, two approaches to forecast earnings surprises are proposed here. The proposed 

measures are shown to be able to forecast earnings surprises with success rates that are 

statistically higher than 50%. 

The rest of the paper is organized as follows. Section 3 introduces the Bayesian 

hierarchical model. Section 4 lays out the estimation framework. Section 5 and 6 discuss 

results regarding bias and inefficiency respectively. Section 7 presents the results on earnings 

surprises forecasting. Section 8 concludes. 

 

3.3  The Bayesian Hierarchical Model 

The study of analysts has a hierarchical, nested, or clustered structure, i.e., firms are 

grouped within their corresponding analysts who follow them. The basic variation is 
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therefore at two levels, between analyst-firms and between analysts. Analyst-firm refers to 

the unique combination of one analyst and one firm he follows, since each firm can be 

followed by multiple analysts and each analyst can follow multiple firms. As shown later, 

Analyst-firms from the same analysts are found to be more alike in their EPS forecast 

qualities than analyst-firms chosen at random. One possible explanation for this difference is 

that analyst-firms from the same analyst have similar forecasting difficulty levels due to a 

common business environment, as analysts tend to follow companies in the same sector. 

Another possible explanation is that analysts are heterogeneous in their forecasting skills, 

with some of them performing consistently better than others. 

The longitudinal structure of the data, with multiple forecasts for each analyst-firm, 

introduces an additional level, namely a between-forecast-within-analyst-firm (BfWaf) level. 

The BfWaf level consists of each analyst-firm's time series observations of forecasts and 

EPS. Therefore, the BfWaf level is level 1, analyst-firms are level 2, and analysts are level 3. 

The existence of the above data hierarchies is neither accidental nor ignorable. Once a group 

(e.g., several analyst-firms form an analyst group) is established, often it tends to become 

differentiated from the other groups. This differentiation implies that the group and its 

members both influence and are influenced by the group membership. To ignore this 

relationship risks overlooking the importance of group effects, and may also render invalid 

many of the traditional statistical analysis techniques used for studying data relationships 

(Goldstein (2003)). This is true because if the qualities of one analyst's forecasts for different 

quarters of a particular firm tend to be similar, they would provide less information than if 

the same number of forecasts were for different firms. Put another way, when looking only at 

levels 1 and 2, the basic unit for purpose of comparison should be the analyst-firm, not the 

forecast. The function of the forecasts can be seen as providing, for each analyst-firm, an 

estimate of that analyst-firm's quality. Increasing the number of forecasts per analyst-firm 

would increase the precision of those estimates but not change the number of analyst-firms 
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being compared. Beyond a certain point, simply increasing the numbers of forecasts hardly 

improves things at all. However, increasing the number of analyst-firms to be compared, with 

the same or somewhat smaller number of forecasts per analyst-firm, considerably improves 

the precision of the comparisons. Analogously, the same relationship exists between levels 2 

and 3. 

One important issue arises when one wishes primarily to have information about each 

analyst-firm in a sample. In this instance, because of the large number of analyst-firms, 

estimation by OLS involves a large number of parameters which is likely to result in 

overfitting. To further complicate matters, some analyst-firms may have rather few quarterly 

observations, in which case OLS is likely to yield imprecise estimates. In such situations, 

because the hierarchical structure regards analyst-firms as members of a population (analyst), 

population estimates of the mean and between-(analyst-firm) variations are used to obtain 

more precise estimates for each analyst-firm. Analogously, the same effects apply to level 3 

(analyst) estimates. 

Estimation of the advocated hierarchical structure can be implemented by maximum 

likelihood (ML) using iterative generalized least squares. However, the random effects are 

not directly estimated in ML, but are summarized into their estimated variances and 

covariances. If one is only interested in fixed effects, which are estimated directly, then ML 

will suffice. However, if one is interested in the specific random effects at levels 1 and 2, 

then an alternative estimation method is needed. The alternative estimation method proposed 

in the present paper is Bayesian estimation using Markov Chain Monte Carlo (MCMC). The 

Bayesian hierarchical model incorporates prior distribution assumptions and, based on 

successively sampling from conditional posterior distributions of the model parameters, 

yields chains of parameter values which are then used for making inferences. The advantage 

of the Bayesian hierarchical model is that it yields parameter estimates at each level. 

Therefore, one can get much more detailed information about cross-unit variations in 



  

 

40

addition of variances and covariances. The relevance of such information will become 

evident in later sections. 

 

3.4  Estimation Framework 

3.4.1  Testing for bias and inefficiency 

Suppose at time t , analyst a  follows firm f . The realization of firm f 's next 

quarter EPS, 1ftE + , is unknown to analyst a . However, analyst a  may obtain information 

about 1ftE +  which allows him to issue a conditional forecast of 1ftE + , 1t
aftF + . If analyst a  had 

perfect foresight, then 1
1

t
ft aftE F +
+ = . Therefore, the following equation should hold for each t , 

 1
1

t
ft ft aft ftE E F E+
+ − = − . (3.1) 

In the absence of perfect foresight, equation (3.1) does not hold exactly. The following 

regression could be run to test the validity of (3.1): 

 1 2
1 ( ) ,  (0, )t

ft ft af af aft ft aft aft afE E F E Nα β ε ε σ+
+ − = + − + ∼ . (3.2) 

The joint null hypothesis of 0 : 0, 0af afH α β= =  is regarded as a test of whether analyst a 's 

EPS forecasts for firm f  are unbiased. If the null hypothesis is supported by the data, then 

the forecasts are regarded as unbiased. 

If 1( )t
aft ftF E+ −  is subtracted from both sides of equation (3.2), the transformed 

equation is, 

                 1 * 1 2
1 ( ) ,  (0, )t t

ft aft af af aft ft aft aft afE F F E Nα β ε ε σ+ +
+ − = + − + ∼ .                       (3.3) 

The dependent variable of equation (3.3) is analyst a 's forecast error of 1ftE + . Let tI  be a set 

of variables known as of time t , analyst a 's forecasts are tI -efficient if they comprise all 

available information in tI . Therefore, the coefficients of the variables in tI  will be 

insignificant in regression (3.3) if forecasts are tI -efficient. Two obvious candidates for 

inclusion in tI  are 1
t

ft aftE F −− , the forecast error of ftE , and 1ft ftE E −− , the difference of EPS 

from 1t −  to t . Therefore, the extended version of equation (3.3) is, 
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1 1 2
1 1 1( ) ( ) ( ) , (0, )t t t

ft aft af af aft ft af aft aft af ft ft aft aft afE F F E E F E E Nα γ δ φ ε ε σ+ +
+ − −− = + − + − + − + � � �∼ .(3.5) 

3.4.2  Data 

The present study focuses on analysts covering the U.S. equity market. The following 

procedure is used to construct the sample used for estimation. First, analysts who give 

forecasts during 2004 are identified. Second, each identified analyst's forecast histories of the 

firms he follows are collected from historical public records. The EPS measures used are 

quarterly.5 1ft ftE E+ −  and 1t
aft ftF E+ −  are constructed by taking the differences between 

adjacent quarters for each analyst-firm.6 Third, any analyst-firm combination that has 

observations fewer than 12 quarters is deleted from the sample. The final sample has 1428 

analysts covering 3829 unique firms, with 14478 unique analyst-firm combinations. On 

average, analysts cover 16 firms, and the maximum number of firms covered by a single 

analyst is 51.  

3.4.3  The Gibbs sampler 

This section outlines the Gibbs sampler used to estimate the parameters in equation 

(3.2). The Gibbs sampler can be easily extended to include more independent variables to 

accommodate the estimation of equation (3.4). Without loss of generality, the notation in this 

section and the Appendix only refers to equation (3.2).  

To simplify notation, equation (3.2) is rewritten into the following matrix form. Let 

afN  denote the number of observations for analyst a ’s forecast history for firm f . Stack the 

                                                 
5 The above quarters are calendar quarters. For example, if a firm announces its earnings during the 

first three months of 2004, that earnings report will be classified as corresponding to the first quarter of 2004, 

regardless of the actual fiscal quarter of that firm. 

6 It is common practice for analysts to revise their forecasts before the actual earnings are announced. 

In this study, only analysts' most recent forecasts are kept in the sample. 
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afN  observations of changes in actual EPS, 1ft ftE E+ − , into a column vector fy  and the 

corresponding forecast errors, 1t
aft ftF E+ − , into a column vector afx . Let afX  denote 

1[ ]
afN afI x×  where 1afNI ×  is an afN  vector of ones, and define afθ  as the vector '[ ]af afα β . 

Then (3.2) can be rewritten as, 

                              2,  (0, ).
aff af af af af af Ny X N Iθ ε ε σ= +i ∼                                       (3.5) 

Priors are represented by: 

 ( , ),  1,2, , ;  1,2, , ,
iid

af a a aN f F a Aθ θ Ω = =∼ " "  

 2 ( , ),  1, 2, , ;  1, 2, , ,
iid

af aIG a b f F a Aσ = =∼ " "  

 0( , ),  1, 2, ,
iid

a N a Aθ θ Σ =∼ " , 

 1 1([ ] , ),   1, 2, , .
iid

a Wishart R a Aρ ρ− −
Ω Ω ΩΩ =∼ " , 

 0 ( , )N Cθ η∼ , 

                                                 1 1([ ] , )Wishart Rρ ρ− −
Σ Σ ΣΣ ∼ , 

where A  denotes the number of analysts in the sample, and aF  denotes the number of firms 

followed by analyst a .  

In the above framework, 0θ  is a population parameter and is given a multivariate 

normal prior with mean vector η  and covariance matrix C . The aθ  vectors are analyst-level 

parameters and are given iid  multivariate normal priors with mean vector 0θ  and covariance 

matrix Σ  across analysts. The covariance matrix Σ  measures the degree of heterogeneity 

among analysts and is given an inverse-Wishart prior with parameters ρΣ  and RΣ . The afθ  

vectors are analyst-firm level parameters and are given iid  multivariate normal priors with 

mean vector aθ  and covariance matrix aΩ  across analyst-firms. The covariance matrix aΩ  

measures the degree of heterogeneity among analyst-firms within a given analyst, and is 

given an inverse-Wishart prior with parameters ρΩ  and RΩ . The 2
afσ  is the error variance 

and is given an inverse Gamma prior with parameters a  and b  by the properties of inverse 

Gamma distribution.  
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Assuming conditional independence across analysts, the joint posterior distribution 

for all of the parameters of the proposed model can be written as, 
 

2 2
0

1 1

0

( | ) ( | , , ) ( | , ) ( | , ) ( | , ) ( | , )

( | , ) ( | , )

aFA

f af af af af a a af a a
a f

p y p y X p p a b p p R

p C P R

θ σ θ θ σ θ θ ρ

θ η ρ

Ω Ω
= =

Σ Σ

⎧ ⎫⎡ ⎤⎪ ⎪Γ ∝ Ω Σ Ω⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∗ Σ

∏ ∏  

where { } { }2
0, , , , ,af af a aθ σ θ θ⎡ ⎤Γ ≡ Ω Σ⎣ ⎦ denotes all parameters of the model. (In the Appendix, 

x−Γ  denotes all parameters other than x .) Parameters in the above three-level hierarchical 

model can be divided into sets, namely, population, analyst, and analyst-firm. The population 

parameters affect all analysts, and consist of 0θ  and Σ . Analyst-specific parameters consist 

of aθ  and aΩ , and analyst-firm specific parameters consist of afθ  and 2
afσ . Using a Gibbs 

sampler, the joint posterior of all these parameters can be analyzed one set at a time. By 

cycling repeatedly through draws of each parameter conditional on the remaining parameters, 

the Gibbs sampler produces a Markov chain of parameter draws whose joint distribution 

converges to the posterior. The conditional posterior distributions for each set of parameters 

and the Gibbs sampler are given in the Appendix. The notation and procedures of the Gibbs 

sampler closely follow those of Koop, Poirier, and Tobias (2006). 

3.4.4  Prior choices and sensitivity analysis 

The matrix aΩ  measures the variation among analyst-firms for each analyst, whereas 

the matrix Σ  measures the variation across analysts. The inverse of aΩ  and Σ  are given 

Wishart prior distributions with the following parameters, 
 

 
2 2

2 2

0.1 0 0.05 0
15,  ,  

0 0.5 0 0.25
R Rρ ρΩ Σ Σ Ω

⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
. 

The priors are chosen so that afθ  and aθ  are quite diffuse around their means and there is 

more analyst heterogeneity than there is analyst-firm heterogeneity within each analyst. As 
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stated in the introduction, analysts are believed to have ability, therefore, the value of η  and 

C  are given as, 
 

 
2

2

0 0.05 0
,

1 0 0.5
Cη

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

. 

Finally, for the error variance 2
afσ , hyper-parameters are chosen as 3a =  and 0.005b =  so 

that the prior mean and prior standard deviation are equal to 0.005. 

Similarly, for the estimation of equation (3.4), the priors are given as, 
 

2 2

2 2

2 2

2 2

0.1 0 0 0 0.05 0 0 0
0 0.5 0 0 0 0.25 0 0

15,  ,  
0 0 0.1 0 0 0 0.05 0
0 0 0 0.1 0 0 0 0.05

R Rρ ρΩ Σ Σ Ω

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, 

 

 

2

2

2

2

0 0.05 0 0 0
1 0 0.25 0 0

,  C
0 0 0 0.05 0
0 0 0 0 0.05

η

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

For the error variance 2
afσ , hyper-parameters are still chosen as 3a =  and 0.005b = . 

To perform prior sensitivity analysis, inverse Wishart and inverse Gamma priors 

more and less diffuse than the ones presented above are used. The results indicate that the 

population level parameters are very robust to prior choices, the analyst level parameters are 

less robust (some analysts' results are robust, whereas some analysts' results are sensitive), 

and the analyst-firm level parameters are sensitive to prior choices. The reason for the 

sensitivity results is that the population (the whole sample) and some analysts (the third 

level) have many data points; therefore, the data dominate the priors. The analyst-firms (the 

second level) and some analysts do not have many data points. In these cases, the priors 

dominate the data and have an important effect on the estimation results. 



  

 

45

 

3.5  Estimation Results Regarding Bias 

The Gibbs sampler is run for 1100 iterations, discarding the first 100 of them as the 

burn-in period. Different chains were run with different and over-dispersed starting values. 

The commonly used convergence tests (e.g., the Geweke diagnostic test and the Gelman and 

Rubin diagnostic test) are performed on the population-level parameters ( 0θ  and Σ ) and 

randomly selected parameters from the analyst-level ( aθ  and aΩ ) and the analyst-firm level 

( afθ  and 2
afσ ). All of the parameters tested passed the convergence tests. The trace plots 

show that the simulated draws from different chains appear to settle down and explore the 

same region very quickly. In fact, after the first ten iterations or so, the progression of chains 

seems very similar. These provide suggestive evidence that the choice of the number of 

iterations and burn-in periods are adequate for the present application. 

The estimated population parameters are reported in Table 3.1. From Table 3.1, it can 

be concluded that the posterior standard deviations are very small compared with the 

posterior means, indicating that the parameters are quite accurately measured. The estimate 

of intercept 0α  is -0.003 and significantly negative which is usually regarded in the literature 

as forecasts being too optimistic. The magnitude of the intercept estimate is considerably 

smaller than similar estimate in De Bondt and Thaler (1990), which report a value of -0.094. 

Since it is documented that analysts' bias gets larger with the increase of forecast horizon, the 

above difference is consistent with the fact that the estimation in the present study is based on 

quarterly data, whereas De Bondt and Thaler (1990) is based on annual data. The slope 

estimate 0β  is 0.664 and significantly less than one. The magnitude of the slope estimate is 

very close to De Bondt and Thaler (1990)'s estimate of 0.648. This presents evidence 

supporting the hypothesis that forecasts are too extreme. Ignoring the constant term in 

equation (3.2), a forecasted change of $1 in EPS is followed on average by an actual change 



  

 

46

of only 66.43 cents. Furthermore, when compared with Bondt and Thaler (1990)'s estimate 

based on annual EPS forecasts, analysts' forecasts do not seem to improve as the forecast 

horizon get shorter. 

As for the covariance matrix results, there is evidence of heterogeneity across 

analysts, as both 11Σ  and 22Σ  are reasonably large. This heterogeneity shows that it may be 

rewarding to study each individual analyst rather than to simply draw inferences from the 

representative analyst of the aggregated sample. The covariance between the intercept and 

slope, 12Σ , implies a small and positive correlation coefficient of 0.03. 

 

Table 3.1  Population Parameter Estimates Regarding Bias 

Post. Mean Post. Std. Dev
-0.003 0.001
0.664 0.006

0.0003 1.70E-05
0.0001 0.0001
0.041 0.002

0α
0β

11Σ
12Σ
22Σ

 

As stated in the introduction, one strong advantage of the Bayesian hierarchical 

model is that it can be used to obtain aα  and aβ  estimates for each analyst, and afα  and afβ  

estimates for each analyst-firm. This allows us to study the degree of bias of each analyst and 

each analyst-firm. Because the parameters at the analyst and analyst-firm levels are too many 

to be presented individually, only kernel densities of posterior means ( | )aE yα , ( | )aE yβ , 

( | )afE yα , ( | )afE yβ , and 2( | )afE yσ  are presented in Figure 3.1.7 From the ( | )aE yα  and 

( | )afE yα  density plots, the analyst and analyst-firm intercepts seem to be normally 

distributed and centered around zero. From the ( | )aE yβ  and ( | )afE yβ  density plots, the 

majority of analyst and analyst-firm slopes are less than one. These results provide evidence 

                                                 
7 There are altogether (2+4)* N +

1
(2 1)*N

i i
F

=
+∑ = (2+4)*1428+(2+1)*14478=52002 parameters in 

the second and third levels. 
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that analysts' forecasts are biased not only at the population level, but also at the analyst and 

analyst-firm levels. The results also provide strong evidence that there is substantial 

heterogeneity among analysts and among analyst-firms. Moreover, the forecasts of some 

analysts and analyst-firms could be considered as unbiased. 
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Figure 3.1  Densities of Posterior Means of Parameters Regarding Bias 

One could go one step further beyond the simple visual interpretation of Figure 3.1 

and calculate the Bayes factor in favor of the hypothesis that '[0 1]afθ = , which is given by, 

 

 

'

12 '

'

'

marginal posterior density of  evaluated at [0 1]
marginal prior density of  evaluated at [0 1]

( [0 1] | )
      

( [0 1] )

af afaf

af af
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B

p y
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θ θ
θ θ

θ
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=

 

Within the hierarchical framework, the above test can also be carried out for 

individual analysts using the joint null hypothesis of 0aα =  and 1aβ = , and for the analyst 
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population level using the joint null hypothesis 0aα =  and 1aβ = , In terms of the Bayes 

factors, ' '
12 ( [0 1] | ) / ( [0 1] )a

a aB p y pθ θ= = =  and 0 ' '
12 0 0( [0 1] | ) / ( [0 1] )B p y pθ θ= = =  

could be calculated to evaluate the bias at analyst level and population level. Given the 

results in Table 3.1, it is not surprising that the calculated 0
12 0B ≈ . The percentiles of 12

aB  and 

12
afB  are presented in Table 3.2. It is evident from Table 3.2 that none of the Bayes factors 

favor the null hypothesis at the 5% percentile. However, some large values of 12
aB  and 12

afB  do 

suggest that data favor the null hypothesis. For example, the 50% percentile of 12
afB  is 

1481.75, which means data favor the null hypothesis by a factor of 1481.75 to 1. The above 

result could also be seen straightforwardly from Figure 3.1. In Figure 3.1, since most of the 

masses of 12
aB  and 12

afB  are less than 1, it is hard to imagine that the unbiasedness could be 

substantiated for all analysts and analyst-firms. However, given that aβ  and afβ  do have 

masses at 1, and aα  and afα  do have masses at 0, it would not be surprising that the null 

hypothesis can not be rejected for some analysts and analyst-firms. In sum, as a population, 

analysts' forecasts can not be considered as unbiased. However, the forecasts of some 

analysts and analyst-firms can be deemed as unbiased. Furthermore, it is straightforward to 

quantify the degree of biasedness through α  and β  estimates and/or the Bayes factors. 

 

Table 3.2  Percentiles of the Bayes Factors 

5% 1.9E-05 0.014
10% 0.004 0.360
15% 0.055 2.601
50% 92.427 1481.75
85% 2299.6 25962
90% 3481.7 40867
95% 5948 75763

12
afB12

aB

 
Note: The null hypothesis is [ ]'0 1afθ =  and [ ]'0 1aθ = . If the Bayes factor is greater than one, 

data support the null, and vice versa. 
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3.6  Estimation Results Regarding Efficiency 

Estimation results of equation (3.4) are presented in Table 3.3. The prior sensitivity 

analysis and convergence tests results are very similar to those of equation (3.2); therefore 

they are not discussed here to avoid redundancy. From Table 3.3, the posterior standard 

deviations are very small compared with the posterior means, indicating that the parameters 

are quite accurately measured. The posterior mean of 0α  is -0.003 and significantly smaller 

than zero, the posterior mean of 0γ  is -0.2917 and significantly smaller than zero. This is 

expected as 0 0 1γ β= −  if the other two regressors are ignored.   

The coefficient of 1
t

ft aftE F −− , 0δ , is 0.145 and significantly greater than zero. Its sign 

means that there is a positive relationship between 1
t

ft aftE F −−  and 1
1

t
ft aftE F +
+ − , i.e., if analyst 

a  makes the mistake of over-estimating ftE  by one dollar, he tends to over-estimate 1ftE +  by 

14.5 cents, and vice versa. This relationship indicates that analysts tend to be slow in 

adjusting their forecasting practices to take into account their past errors. Previous literature 

(e.g., Ali, Klein and Rosenfeld (1992)) also documented such positive relationship but with 

larger magnitudes. One contribution of the present study is that the interpretation of afδ  is 

more compelling from a behavioral point of view, since afδ  is derived for each analyst-firm. 

Both 1
t

aft aftE F −−  and 1
1

t
aft aftE F +

+ −  are mistakes made by the same analyst for the same firm. If 

consensus earnings are used, the comparison base most likely will not be the same. This is 

because not all of the same analysts will give forecasts for a given firm year after year. 

The coefficient of past changes in EPS, 1ft ftE E −−  is 0.022 and significantly different 

form zero. Previous studies (e.g., Constantinou, Forbes, and Skerratt (2003)) usually find 

estimates similar to 0φ  around 0.08. The difference may be explained by the shorter forecast 

horizon used in the present study as explained before. This result provides evidence that 

forecasts are inefficient with respect to past earnings changes. Comparing with the results on 

past forecast error, the coefficient on past EPS change is relatively small. 
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Table 3.3  Population Level Parameter Estimates Regarding Efficiency 

Post. Mean Post. Std. Dev Post. Mean Post. Std. Dev
-0.003 0.001 0.006 0.000
-0.292 0.006 0.000 0.000
0.145 0.004 0.000 0.000
0.022 0.003 0.000 0.000
0.000 1.52E-05 0.012 0.001
0.038 0.002 -0.008 0.001
0.011 0.001 -0.003 0.000

0α
0γ
0δ 13Σ
0φ
11Σ
22Σ
33Σ

44Σ
12Σ

14Σ
23Σ
24Σ
34Σ

 
As discussed in the previous section, one could also study the degree of inefficiency 

of each analyst and each analyst-firm. Because the parameters at the analyst and analyst-firm 

levels are too many to be presented individually, only kernel densities of posterior means 

( | )aE yα , ( | )aE yγ , ( | )aE yδ , ( | )aE yφ , ( | )afE yα , ( | )afE yγ , ( | )afE yδ , ( | )afE yφ are 

presented in Figure 3.2. In Figure 3.2, the majority of the masses of ( | )aE yδ  and ( | )afE yδ  

are greater than zero. However, ( | )aE yδ  and ( | )afE yδ  have considerable amount of 

masses at zero, which means that there is no relationship between past forecast errors and 

future forecast errors for some analysts and analyst-firms. The distributions of ( | )aE yφ  and 

( | )afE yφ  are centered around zero, which implies that for many analysts, past earnings 

changes could not explain their forecast errors.  
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Figure 3.2  Densities of Posterior Means of Parameters Regarding Efficiency 

 

3.7  Earnings Surprises Forecasting 

Because the joint null hypothesis of [ ]'0 0 1θ =  is not supported by the data, then 

equation (2) suggests that analysts' forecasts should be treated as signals of 1ftE +  rather than 

as the conditional expectations of 1ftE + . Given data and Γ , after adjusting for forecast bias, 

in principle, a better adjusted forecast 1*t
aftF +  can be calculated from analyst a ’s signal as, 

 1* 1
1( | ) ( | ) ( | ) (1 ( | ))t t

aft ft af af aft af ftF E E y E y E y F E y Eα β β+ +
+= = + + − . 



  

 

52

The variance of the adjusted forecast 1*t
aftF +  is 2( | )afE yσ . When aggregating different 

analysts' forecasts for the same company, the weighted mean could be calculated by the 

following formula, 

 

1*

2

1

2

( | )
(  ) 1

( | )

a

a

t
N aft
a

af
ft N

a
af

F
E y

Weighted Mean

E y

σ

σ

+

+ =
∑

∑
. 

where aN  is the number of analysts who give forecasts for firm f  at time t . In the above 

formula, the weight of each adjusted forecast is the inverse of 2( | )afE yσ . Forecasts of better 

analysts (with smaller 2( | )afE yσ ) will carry bigger weights in the weighted mean.8 

Investors usually care more about the consensus forecast rather than individual 

forecasts. The standard industry practice is to calculate the consensus forecast as the median 

or mean of all available analysts' forecasts. To forecast earnings surprises, the simple mean 

of the original forecasts (Mean) is compared with the weighted mean of the adjusted 

forecasts (Weighted Mean). If Weighted Mean > Mean, then Weighted Mean predicts that the 

consensus Mean will under-estimate the actual EPS. If the actual EPS is larger than Mean, 

then Weighted Mean is successful at predicting the positive earnings surprise. Similarly, if 

Weighted Mean < Mean, then Weighted Mean predicts that the consensus Mean will over-

estimate the actual EPS. If the actual EPS is smaller than Mean, then Weighted Mean is 

successful at predicting the negative earnings surprise. Analogously, Adjusted Median can be 

calculated as the median of the adjusted forecasts. Predictions about earnings surprises can be 

derived from the comparison of Adjusted Median and Median (the median of original 

forecasts).  

 

                                                 
8 Other weighting schemes, such as using the log of the Bayes factor of each analyst, yield results 

similar to the analysis in the present subsection.  
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To study the earnings surprises forecasting ability of Weighted Mean (Adjusted 

Median ),  let iz  denote the forecasting outcome of each Weighted Mean (Adjusted Median). 

Specifically, let 1iz =  if Weighted Mean (Adjusted Median) is successful at predicting the 

earnings surprise, and 0iz =  otherwise. The success probability of a single trial is denoted 

by ( 1)ip prob z= = . Denoting z  as the number of successes in n  trials, i.e., 
1

n
ii

z z
=

= ∑ , it 

follows that z  is distributed as a ( )Binomial ,n p . 

To test whether the success probability is greater than 50%, two tests can be used. 

First, for the null hypothesis of 0 0.5p p= = , the following test statistic can be used,  
 

 0ˆ ˆ,  where , and (0,1)
ˆ ˆ(1 ) /

p p zp N
np p n

τ τ−
= =

−
∼ .  

Second, the complementary cumulative distribution function (CCDF), defined as 

0 0( ) 1 ( )p z z F z> = − , tells how often the random variable z  is above a particular level 0z . 

For given 0z  and n , if CCDF is small for 0 0.5p = , it means observing 0z  successes in n  

trials with success probability 1/2 is a low probability event. If 0z z=  actually occurs, it is 

unlikely for the null hypothesis 0 0.5p =  to be true. 

Using the aforementioned method, the ability of Weighted Mean (Adjusted Median) 

to forecast earnings surprises is analyzed using five out-of-sample quarters. The earnings 

surprises forecasting results of Weighted Mean (Adjusted Median) for 2004:Q1 are shown in 

Table 3.4 . The results for 2004:Q2 to 2005:Q1 are qualitatively similar to 2004:Q1, 

therefore, they are not presented here to avoid redundancy. For each of the five quarters 

studied, Weighted Mean (Adjusted Median) are constructed using estimation results from 

sub-samples ending at the previous quarter. Within each quarter, the results are further 

divided into sub-groups by the number of analysts that follows a firm. Table 3.4 lists the 

number of firms in each sub-group, the mean of iz , the p-value under the null hypothesis 

0 0.5p =  (indicated by mean's superscript *), and CCDF with 0 0.5p = . For example, for Q1, 

2004, there are 305 firms that have exactly 3 analysts following them. The forecasting 
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success rate for Weighted Mean is 56.4%, and the null hypothesis of 0 0.5p =  is rejected at 

the 5% significance level. The probability of observing more than 169 (305×56.4%) 

successes out of 305 trials is 0.015. Therefore, the null hypothesis 0 0.5p =  is also rejected at 

the 5% significance level by the CCDF test. The forecasting success rate for Adjusted 

Median is 58.0% , and the null hypothesis of 0 0.5p =  is rejected at the 1% significance 

level. The probability of observing more than 305*58.0% successes out of 305 trials is 0.002. 

Therefore, the null hypothesis 0 0.5p =  is also rejected at the 1% significance level by the 

CCDF test.  

 

Table 3.4   Earnings Surprises Forecasting Results 

No. of Analysts No. of Companies Mean CCDF Mean CCDF
1 813 0.566*** 0.000 0.566*** 0.000
2 431 0.568*** 0.002 0.575*** 0.001
3 305 0.564** 0.015 0.580*** 0.002
4 190 0.553 0.064 0.495 0.586
5 168 0.589** 0.012 0.577** 0.018
6 103 0.602** 0.024 0.602** 0.024
7 93 0.570 0.073 0.559 0.107
8 82 0.488 0.544 0.488 0.544
9 66 0.591 0.054 0.576 0.088

10 43 0.605 0.063 0.605 0.063
>10 168 0.613*** 0.002 0.583** 0.018

Weighted Mean Adjusted Median

 
Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. 
 

In the Bayesian framework, not only can one get the point estimate of 1*t
aftF + , one can 

also get the probability distribution of 1*t
aftF + . The sampling distribution of an out-of-sample 

1*t
aftF +  would be an acceptable predictive distribution if Γ  were known. However, without 

knowledge of Γ , this can not be used. In its place is the Bayesian predictive probability 

distribution, 
 1* 1*( | ) ( | , ) ( | )t t

aft aftp F y p F y p y d+ +

Γ
= Γ Γ Γ∫ . 
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Similarly, the sampling distribution of Weighted Mean could also be derived. Figure 

3.3 plots the Bayesian predictive density of Weighted Mean for Yahoo's 2005:Q1. Also 

plotted in Figure 3.3 are actual EPS (henceforth actual) and consensus Mean  EPS 

(henceforth consensus). The consensus is just the simple mean of relevant forecasts in the 

sample. 
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Figure 3.3  The Bayesian Predictive Density 

 

Since the density of weighted mean gives the probabilities associated with different 

values of Weighted Mean, the relative position of the consensus over the density of Weighted 

Mean offers hints about whether the consensus will under-estimate or over-estimate the 

actual. If the majority of Weighted Mean 's mass is to the right of  the consensus (as shown in 

Figure 3.3), it means that the better analysts identified by the proposed method think the 

actual will be larger than consensus; therefore, the consensus will likely under-estimate 

actual. For the case of Figure 3.3, 91.1% of the draws of Weighted Mean are larger than the 

consensus. Since the actual EPS is higher than the consensus, in this instance, the density of 

Weighted Mean yields the correct prediction of earnings surprise. 

The earnings surprises forecasting results of all available companies for 2005:Q1 are 

shown in Table 3.5. Table 3.5 is further broken into whether the densities of Weighted Mean 
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predict positive surprises or negative surprises. The prediction confidence refers to the 

percentages of Weighted Mean's mass to the right or left of the consensus. For example, 

95%-99% prediction confidence means that 95%-99% of the draws of Weighted Mean are 

larger than the consensus for positive surprises in Panel A, or are smaller than the consensus 

for negative surprises in Panel B. For the prediction of positive earnings surprises, at the 

95%-99% prediction confidence level, there are 49 successes out of 66 predictions. The 

success rate p  is 0.7424 with a standard deviation of 0.0538. For the prediction of negative 

earnings surprises, at the 95%-99% prediction confidence level, there are 37 successes out of 

56 predictions. The success rate p  is 0.6607 with a standard deviation 0.0633. Both success 

rates are statistically higher than 0.5 and are quantitatively large enough to be economically 

significant. 

It is interesting to note that for the confidence levels 50%-75%, the success rates are 

close to 0.5. However, for the confidence levels greater than 75%, the success rates for 

positive and negative earnings surprises are 0.7009 and 0.6480 respectively. As the 

confidence levels get higher, the success rates generally get larger. In the extreme, the 

success rate for predicting positive earnings surprises with greater than 99.5% confidence 

level is 0.8611. 
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Table 3.5  Predicting Earnings Surprises Using Bayesian Predictive Densities 

Prediction Number of Number of Success Rate Std. Dev. 
Confidence Predictions Successes (P) of P

>99.5% 36 31 0.8611 0.0576
99%-99.5% 14 12 0.8571 0.0935
95%-99% 66 49 0.7424 0.0538
90%-95% 84 53 0.6310 0.0527
85%-90% 68 45 0.6618 0.0574
80%-85% 102 72 0.7059 0.0451
75%-80% 98 66 0.6735 0.0474

>75% 468 328 0.7009 0.0212
50%-75% 688 377 0.5480 0.0190

Prediction Number of Number of Success Rate Std. Dev. 
Confidence Predictions Successes (P) of P

>99.5% 35 25 0.7143 0.0764
99%-99.5% 8 7 0.8750 0.1169
95%-99% 56 37 0.6607 0.0633
90%-95% 66 47 0.7121 0.0557
85%-90% 52 30 0.5769 0.0685
80%-85% 75 46 0.6133 0.0562
75%-80% 83 51 0.6145 0.0534

>75% 375 243 0.6480 0.0247
50%-75% 647 340 0.5255 0.0196

Panel A: Predicting consensus will under-estimate actual (positive earnings surprise)

Panel B: Predicting consensus will over-estimate actual (negative earnings surprise)

 
 

The present study also estimated the success rate for earnings surprises using the 

Bayesian predictive density for 2004:Q1 to 2004:Q4. The results are presented in Figure 3.4 

and Figure 3.5. In Figure 3.4, the predictions are based on the estimated results using the 

sample ending at 2003:Q4. For positive surprises, the success rates are generally higher than 

0.6 and decrease as the forecast horizon gets longer. For negative surprises, the success rates 

are generally higher than 0.5. Figure 3.4 also shows that the higher the confidence level, the 

higher the success rates.    
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Figure 3.4  Earnings Surprises Predictions Based on 2003:Q4 

 

In Figure 3.5, the predictions are based on the estimated results using the sample 

ending at the previous quarter. When comparing Figure 3.4 with Figure 3.5, the shapes of the 

graphs do not vary significantly. This indicates that even some forecast horizons do not 

utilize all available information, the decrease in forecasting performance is not very 

significant. This shows that analysts’ abilities are fairly stable over time. For positive 

surprises, the success rates are generally higher than 0.6. There is less variation in success 

rates when compared with those in Figure 3.4. For negative surprises, the success rate are 

generally higher than 0.5. As in Figure 3.4, Figure 3.5 also shows that the higher the 

confidence level, the higher the success rate.    
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Figure 3.5  Earnings Surprises Predictions Based on Previous Quarter 
 

In summary, this subsection shows that the Weighted Mean derived here could help to 

predict whether the original forecast will under- or over-estimate the actual EPS. Moreover, 

the density of Weighted Mean could also help to quantify the level of certainty about the 

predictions. The levels of certainty are especially useful for practical applications. Since it 

has been documented in the finance and accounting literatures that the stock market reacts to 

earnings announcements,9 when constructing portfolios based on the earnings surprises 

                                                 
9 For example, Sultan (1994) finds that unexpected earnings can be used as a discriminator between 

stocks that performed relatively well and stocks that performed relative poorly in Japan. Brown and Jeong 

(1998) show that an earnings surprise predictor is effective in selecting stocks from S&P 500 firms. Dische and 

Zimmermann (1999) report that abnormal returns can be earned from the portfolio of Swiss stocks exhibiting 
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predictions, one could just focus on the predictions associated with a high level of certainty, 

e.g. greater than 75%. 
 
 

3.8  Conclusion 

Using a three-level Bayesian hierarchical model, consistent with previous studies, the 

present study shows that as a population, analysts' forecasts are biased and inefficient. 

Analysts are systematically optimistic and their forecasts are too extreme. As for efficiency, 

the results show that if an analyst over-estimates EPS in one period, he will tend to over-

estimate EPS in the next period, and vice versa. There is also evidence that if a firm's EPS in 

the current quarter is greater than last quarter's, analysts tend to under-estimate next quarter's 

EPS, and vice versa. The Bayesian hierarchical model allows us to avoid making scaling 

transformations to the original data, and to relax the unrealistic assumption of analyst 

homogeneity. The main contribution of the present study is that, as a result of the proposed 

method, we are able to analyze forecasts at the individual analyst level. This allows us to 

identify that there is considerable heterogeneity in the degrees of analysts' bias and 

inefficiency. The forecasts of some analysts, especially those of some firms that these 

analysts follow, can be regarded as unbiased and efficient.  

The present study also adjusts for biases in analysts’ original forecasts. From the 

adjusted forecasts, weighted mean and adjusted median are derived. The proposed weighted 

mean and adjusted median measures are shown to be able to forecast earnings surprises with 

success rates that are statistically higher than 0.5. The levels of certainty about the 

                                                                                                                                                       

the most positive earnings revision. Conroy, Eades, and Harris (2000) find that stock prices are significantly 

affected by earnings surprises in Japan. Mozes (2000) shows that the strategy of buying stocks on the basis of 

positive forecasted earnings surprises is more profitable for value firms than for growth firms. 
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predictions could also be quantified. As the confidence levels get higher, the success rates 

generally get larger. When the prediction confidence levels are greater than 75%, the success 

rates are generally higher than 0.6.  
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3.9  Appendix 

This appendix describes the posterior distributions of the parameters in regression 

(3.5). 

Complete posterior conditional for afθ : 

 ( | , ) ( , ),  where
af af af af

afp y N D d D
θ θ θ θ

θ
−

Γ ∼  

 ' 2 1 1( / ) ,
af

af af af aD X X
θ

σ − −= +Ω  

 ' 2 1/
af

af af af a ad X y
θ

σ θ−= +Ω . 



  

 

64

 Complete posterior conditional for 2
afσ : 

 2

1
2 '1 1( | , ) ( , ( ) ( ) )

2 2af
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af af af af af af af
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bσ
σ θ θ
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−
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∼ .  

Complete posterior conditional for aθ : 

 0
1
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θ
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−

=
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Γ ∝ Ω Σ⎨ ⎬

⎩ ⎭
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Since the second stage of the model specifies ( | , )af a ap θ θ Ω  as iid  , the following equation 

applies, 
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or equivalently,  
 af aIθ θ μ= +� � � , where, 

 
'' ' '

1 2 aaf Fθ θ θ θ⎡ ⎤= ⎣ ⎦
� " , 

 
'

2 2 2I I I I⎡ ⎤= ⎣ ⎦
� " , 

 
'' ' '

1 2 aFμ μ μ μ⎡ ⎤= ⎣ ⎦� " , 

                                                 'and ( )
aF aE Iμ μ = ⊗Ω� �i . 

Expressed in the above form, the posterior of aθ  can be shown to be normal and has the following 

form.   

                                 ( | , ) ( , ),  where
a a a a

ap y N D d D
θ θ θ θ

θ
−

Γ ∼  

 ' 1 1 1 1 1 1( ( ) ) ( )
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Complete posterior conditional for 1
a
−Ω : 
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CHAPTER 4.  EVALUATING THE INFORMATION 
CONTENT OF FORECASTS 

 

4.1  Abstract 

The present study proposes a new approach to compare forecasts’ information 

contents. Following recent developments in the forecasting literature, it regards forecasts as 

predictors, and derives next period’s expected value of the variable being forecasted 

conditional on alternative information sets using the Kalman filter. Forecasts that contain 

more information will lead to a smaller variance of deviations between actual values and 

expected values. The relative magnitude of the above variance is regarded as the measure of 

the relative information contents of competing forecasts. The present study also proposes a 

way to measure the information content of forecasts from the same source without competing 

forecasts, which could not be determined by previous methods. The advocated measures are 

computed for a well-known data set and yield different conclusions from those drawn by the 

previous literature’s regression-based measures. The proposed measures do not suffer from 

the multicollinearity problem that could affect previous regression-based measures. 

Furthermore, they are derived from well-defined information sets. The flexibility researchers 

enjoy in constructing the information sets allows the proposed measures to be applied to 

various situations.     

 

4.2  Introduction 

Forecasts of future values of macroeconomic variables, company earnings, etc., are 

widely perceived to provide useful information about economic agents’ expectations. One 
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question of particular interest is how to determine forecasts’ information contents of actual 

values. Forecasts’ information content and accuracy are inextricably linked. A forecast that 

contains more information about the actual value should have a smaller forecast error than a 

less informative forecast. However, various forecast accuracy measures based on root mean 

squared errors (RMSE) may not be direct measures of forecasts’ information content. For 

example, if the RMSEs of two forecasts are so close that the differences are not economically 

meaningful, little can be said about which one contains more information. In addition, the 

RMSE framework assumes forecasters have symmetric quadratic loss functions. In reality, 

forecasters may have other types of loss functions. There are cases when the forecast about 

the direction of change is at least as important as the forecast of the actual level, such as 

variables related to futures and options. Forecasters could potentially maximize trading 

profits by correctly predicting the direction of change, regardless of the magnitude of mean 

squared errors.  

In contrast to the forecast accuracy literature, which contains literally hundreds of 

forecast accuracy comparisons, there are few papers that explicitly compare the information 

contents of competing forecasts. Notable examples of the latter include Fair and Shiller 

(1989, 1990), and Romer and Romer (2000). Fair and Shiller (1989, 1990) examined whether 

one model’s forecast of real GNP carries different information from another model’s forecast 

by regressing the actual change in real GNP on the forecasted changes from the two models. 

Let t sy +  denote the actual value of variable y  at time t s+ . Let 1
t s
tx +  (from model 1) and 2

t s
tx +  

(from model 2) denote two competing forecasts of t sy +  as of time t . Fair and Shiller (1989, 

1990) run the following regression, 
 
 1 2( ) ( )t s t s

t s t t t t t t sy y x y x yα β γ ε+ +
+ +− = + − + − + . (4.1) 

Fair and Shiller (1990) regarded the hypothesis 0 : 0H β =  as the hypothesis that 

forecast 1
t s
tx +  contains no information, in addition to the constant term and forecast 2

t s
tx + ,  
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relevant to forecasting the s-period-ahead actual value t sy + ; and the hypothesis 0 : 0H γ =  as 

the hypothesis that forecast 2
t s
tx +  contains no information, in addition to the constant term and 

forecast 1
t s
tx + ,  relevant to forecasting the s-period-ahead actual value t sy + . Fair and Shiller 

(1990) used actual GNP changes and forecasted changes, instead of GNP level and 

forecasted levels in equation (1) because they suspected that GNP may be an integrated 

process. When studying whether the Federal Reserve has additional information compared to 

commercial forecasters, Romer and Romer (2000) used levels in equation (4.1), as they 

believed that the inflation rate is a stationary process. Their interpretation of β  and γ  is 

similar to Fair and Shiller (1990).  

Another related strand of literature consists of forecast encompassing studies. 

Forecast encompassing implicitly compares the information contents of competing forecasts. 

Forecast encompassing tests evaluate whether competing forecasts can be combined into a 

better forecast. Such tests are usually implemented by regressing the actual level of t sy +  (or 

the actual change) on the forecasts (or the forecasted changes) from two models (e.g., Chong 

and Hendry (1986), Ericsson (1993), Stock and Watson (1999), Ang, Bekaert and Wei 

(2005)), 
 
 1 2

t s t s
t s t t t sy x xβ γ ε+ +
+ += + + , subject to 1β γ+ =  (4.2) 

Equation (4.2) is a restricted version of equation (4.1) with 0α =  and 1β γ+ = . Conditional 

on 1β γ+ = , if 0β ≠  and 0γ = , the first model encompasses the second model. According 

to Chong and Hendry (1986) and Clements and Hendry (1993), one forecast encompasses 

another forecast if the weight assigned to the first forecast is not significantly different from 

one and the weight assigned to the second forecast is not significantly different from zero 

when combining the two forecasts. If one forecast is found to encompass another forecast, 

then the encompassed forecast does not contain extra information in addition to the 

encompassing forecast, at least in the sense of linear combination. 
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One disadvantage of equations (4.1) and (4.2) is that 1
t s
tx +  is often highly correlated 

with 2
t s
tx +  because of the following two reasons. First, they both contain public information. 

Second, in many cases, one model’s forecaster knows the other model’s forecast if the two 

forecasts are not announced simultaneously. Hence, two models’ forecasts could be further 

correlated due to overlapping private information. Therefore, equations (4.1) and (4.2) often 

likely suffer from multicollinearity problems. Collinear variables do not provide enough 

information to estimate their separate effects. Some of the variances, standard errors, and 

covariances of the OLS estimators may be large as seen in Romer and Romer (2000). 

The present study proposes a new approach to measure the information content of 

competing forecasts. The advocated approach is based on the results of Pastor and 

Stambaugh (2006)’s predictive system, a state-space model that they first applied to the 

problem of stock returns predictability. They focused on how to derive better estimates of 

expected stock returns. Pastor and Stambaugh (2006) found that the predictive system could 

deliver different and substantially more precise estimates than the standard regression 

approach when used to predict stock returns.  

Pastor and Stambaugh (2006) decomposed 1ty +  as, 

 1 1t t ty uμ+ += + , (4.3) 

where 1( | )t t tE y Dμ +≡  is the expectation of 1ty +  conditional on information set tD  at time 

t , 1tu +  is the un-forecasted shock to y  from t  to 1t +  and has mean zero conditional on 

information set tD . Regarding tμ  as the unobserved state, the value of tμ  can be derived 

through the Kalman filter (Kalman (1960)). The estimated tμ  is considered as the best 

estimate of 1ty +  by the researcher (the general public) based on information set tD . The 

information set tD consists of the collection of variables that the predictive system uses to 

derive tμ . Because of the flexibility of the predictive system, researchers could arbitrarily 

change the variables in tD . Each estimated tμ  will be unique to the tD used to derive it. 

Depending on tD , the accuracy of estimated tμ will be different. If tD contains variables 
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that are highly correlated with 1ty + , the estimated tμ  will be highly correlated with 1ty + . 

Consequently, the un-forecasted part of 1ty + , 1tu + , will be small. Therefore, the more 

information 1{ }T
t tD =  contains about 1 1{ }T

t ty + = , the smaller will be the variance of 1 1{ }T
t tu + = .  

By focusing on the variance of 1 1{ }T
t tu + = , researchers could use the predictive system 

to study the information content of forecasts. Specifically, the variances of 1 1{ }T
t tu + =  

associated with different information sets can be calculated. Since the information sets’ 

composition are clearly defined in terms of the variables included in it, the researcher can 

choose various information sets by including extra variables or excluding existing variables. 

The ratio of the variances of 1 1{ }T
t tu + =  can be regarded as the measure of the relative 

information content of different information sets. The differences in the information contents 

can be attributed to the differences in the variable composition of information sets which are 

controlled by the researcher.  

The contribution of the present study is mainly methodological. It proposes new 

measures that can determine the relative information contents of forecasts explicitly 

accounting for the conditioning information. The proposed measures are derived from clear 

and well-defined information sets. The flexibility researchers enjoy in constructing the 

information sets allows the proposed measures to be applied to various situations. By 

contrast, previous studies’ regression-based measures do not have clear and well-defined 

information sets. They could only compare the information contents of competing forecasts 

and could not determine the information content of a single set of forecasts. The measures 

proposed in the present study do not suffer from multicollinearity problems that could affect 

the regression-based measures. The proposed measures are applied to the data used by Romer 

and Romer (2000). The empirical application shows that both measures perform reasonably 

well. It is found that the Federal Reserve is better than commercial forecasters in forecasting 

inflation rates. But its informational advantage in only confined to the very short term. The 2- 

to 4-quarter-ahead forecasts of both the Federal Reserve and commercial forecasters do not 
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offer much extra information about future inflation rates in addition to past inflation rates. 

Whereas Romer and Romer (2000) believed that the Federal Reverse forecasts are good for 

all horizons. The present study also extends the forecasting literature by applying Pastor and 

Stambaugh (2006)’s predictive system to the literature on forecasts’ information content. 

The remainder of the paper is organized as follows. Section 3 outlines the predictive 

system and the information content measures. Section 4 gives an application of the 

information content measures. Section 5 concludes. 

 

4.3  Measures of Information Contents 

4.3.1  The predictive system and its application to survey forecasts 

Pastor and Stambaugh (2006) originally applied the predictive system to the problem 

of stock returns predictability. However, as shown here, the predictive system is also well-

suited for the analysis of survey forecasts. The goal of the predictive system is to estimate the 

states of a dynamic system ( 1{ }T
t tμ = ) from a series of noisy measurements ( 1{ }T

t ty = , and  
1

1{ }t T
t tx +

=  if available) by the Kalman filter. The Kalman filter is very powerful in several 

aspects: it supports estimations of past, present, and future states, and it can do so even when 

the precise nature of the modeled system is unknown. Regarding forecasts as noisy 

measurements of 1ty + , the predictive system can efficiently estimate the states of 1 1{ }T
t ty + = , 

1{ }T
t tμ = . The quality of 1{ }T

t tμ =  and the other parameters in the predictive system can shed 

light on the quality of forecasts. The main features of the predictive system are discussed in 

the following paragraphs.  

Assuming tμ  obeys the first-order autoregressive process, 

 1 1t t tB wμ α μ+ += + + , (4.4) 

the Kalman filter technique can be used to derive the unobserved states 1{ }T
t tμ =  with 

equations (4.3) and (4.4) alone. In the language of the Kalman filter, equation (4.3) is 
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regarded as the observation equation and equation (4.4) is regarded as the state equation. 

Since forecasters base their forecasts on the variables related to 1{ }T
t tμ = , the innovations of 

forecasts contain useful information about the change of these variables which could help to 

infer the value of 1{ }T
t tμ = , even if forecasts are biased. Therefore, forecasts, as well as 

variables that are correlated with 1{ }T
t tμ = , should be included in the Kalman filter. Forecasts 

are assumed to follow a first-order autoregressive process, 

 2 1
1 1

t t
t t tx Ax vθ+ +
+ += + + . (4.5) 

Equations (4.3), (4.4), and (4.5) can be combined to formed a predictive system for tμ : 

 1 1t t ty uμ+ += +  (4.6) 

 2 1
1 1

t t
t t tx Ax vθ+ +
+ += + +  (4.7) 

 1 1t t tB wμ α μ+ += + +  (4.8) 

The residuals in the system are assumed to be distributed identically and independently 

across t  as, 

 
0

(0, ) 0 ,
0

t uu uv uw

t vu vv vw

t wu wv ww

u
v N N
w

Σ Σ Σ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥Σ = Σ Σ Σ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟Σ Σ Σ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

∼  (4.9) 

The predictive system is a version of a state-space model in which there is non-zero 

correlation among the disturbances. The value of tμ  is unobservable, but the predictive 

system implies a value of 1( | ) ( | )t t t tE D E y Dμ += , where 1 2
1 1{ , , , , , }t t

t t t t tD y y x x+ +
− −= " " , the 

history of actual values and forecasts observed through time t .  

The composition of information set tD  depends on the specification of equation (4.7). 

Researchers could change equation (4.7) to include or exclude specific variables. Using the 

Kalman filter, 1( | )t tE y D+  can be written as the unconditional mean of y  plus a linear 

combination of past un-forecasted shocks { }1 2, , ,t t tu u u− − " , and innovations in the forecasts 

{ }1 2, , ,t t tv v v− − " . Specifically, the expected value of 1ty +  conditional on 
1 2

1 1{ , , , , , }t t
t t t t tD y y x x+ +

− −= " " is given by, 
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 1
0

( | ) ( ) ( )t t s t s s t s
s

E y D E y u vψ φ
∞

+ − −
=

= + +∑ , 

where sψ  and sφ  are functions of the parameters in (4.6) through (4.9). In essence, 

( | )t tE Dμ  will be a linear function of variables in the set tD , i.e., 

1 2
1 1, 1( | ) ( , , , , )t t

t t t t t tE y D f y y x x+ +
+ − −= " " . The forecast innovation term tv , which is the change 

from 1
t
tAxθ −+  to 1t

tx + , summarizes the changes happened during time period t  that the 

forecaster thinks are relevant for the prediction of the actual value 1ty + .  

The parameters in the predictive system are estimated using a Bayesian approach. 

The Bayesian approach has several advantages over frequentist alternatives such as the 

maximum likelihood method. First, the former incorporates parameter uncertainty as well as 

uncertainty about the path of the unobservable state 1{ }T
t tμ = . Second, it allows posterior 

distributions to be easily calculated for arbitrary functions of parameters. Non-informative 

priors are employed for both ( , , , )A Bθ α  and Σ . The posterior distributions are derived 

using Gibbs sampling. In each step of the MCMC chain, the parameters ( , , , )A Bθ α  and Σ  

are first drawn conditional on the current draw of 1{ }T
t tμ = . Then the forward filtering, 

backward sampling algorithm developed by Carter and Kohn (1994) and Fruhwirth-Schnatter 

(1994) is used to draw the time series of 1{ }T
t tμ =  conditional on ( , , , )A Bθ α  and Σ . The 

details of each step are given in the Appendix. 

4.3.2  Measuring the information content of one set of forecasts 

The predictive system regards tμ  as the forecast of 1ty +  conditional on information 

set tD  for 1, ,t T= " . By focusing on the variance of the un-forecasted shocks 1 1{ }T
t tu + = , 

researchers can use the predictive system to study the information content of forecasts. Since 

the composition of the predictive system’s information set is controllable by the researcher, 

various information sets can be constructed by including extra variables or excluding existing 

variables. The variances of 1 1{ }T
t tu + =  associated with different information sets can be 
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calculated. The ratio of the variances of 1 1{ }T
t tu + =  can be regarded as the measure of the 

relative information content of different information sets.  

Consider for example, the case when researchers only have forecasts from the same 

source without competing forecasts. In this instance, equation (4.7) could be lagged by one 

period,  
 
 1

1 1
t t
t t tx Ax vθ+

− += + + . (4.10) 

In the predictive system consisting of equations (4.6), (4.8), and (4.10), the 

information set is 1
1 1 2{ , , , , , }t t

t t t t tD y y x x −
− − −= " " , which contains only past histories of actual 

earnings and forecasts, but not the current forecast 1t
tx +  for 1ty + . In essence, 1t

tx +  is 

considered unknown as of time t , 1
t
tx −  is considered unknown as of time 1t − , etc. In 

contrast, in the predictive system consisting of equations (4.6), (4.8), and (4.7), the 

information set is 1
1 1{ , , , , , }t t

t t t t tD y y x x+
− −= " " , which contains the current forecast 1t

tx +  too. 

Therefore, the information set tD  used to calculate 1( | )t tE y D+  in the predictive system 

consisting of equations (4.6), (4.8), and (4.10) is a subset of the information set tD  used in 

the predictive system consisting of equations (4.6), (4.8), and (4.7). The only difference 

between the two information sets is that 1t
tx +  is included in the latter but not in the former. 

Hence, any differences between two predictive systems’ estimates could only come from the 

additional information contained in the current forecast 1
1{ }t T

t tx +
= . If the forecast 1t

tx + contains 

pertinent information of 1ty +  for 1, ,t T= " , including it in tD  will increase the precision of 

tμ  for 1, ,t T= " and reduce uuΣ , the variance of 1 1{ }T
t tu + = . Hence, the ratio of uuΣ derived 

under (4.10) and (4.7) is regarded as a measure of the information content in the current 

forecast 1
1{ }t T

t tx +
= . When estimating the predictive systems via the Gibbs sampler, the same 

random number generator seeds are used for different predictive systems to eliminate the 

effects of different random numbers. 
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4.3.3  Measuring the information content of competing forecasts 

For the case when researchers have competing forecasts, the predictive system can be 

separately applied to the competing forecasts. For example, if there are two sets of competing 

forecasts, 1
1
t
tx +  and 1

2
t
tx +  for 1ty +  for 1, ,t T= " , the following two equations can be separately 

combined with equations (4.6) & (4.8) to form two predictive systems.  

 2 1
1 1 1 1
t t
t t tx Ax vθ+ +
+ += + +  (4.11) 

 2 1
2 1 2 1
t t
t t tx Ax vθ+ +
+ += + +  (4.12) 

 In the first predictive system consisting of equations (4.6), (4.8), and (4.11), 
1

1 1 1 1{ , , , , , }t t
t t t t tD y y x x+

− −= " " . In the second predictive system consisting of equations (4.6), 

(4.8), and (4.12), 1
1 2 2 1{ , , , , , }t t

t t t t tD y y x x+
− −= " " . If 1

1
t
tx +  contains more information related to 

1ty +  than 1
2
t
tx +  for 1, ,t T= " , the first predictive system’s estimates of 1{ }T

t tμ =  will be more 

accurate than those of the second predictive system. Consequently, the first predictive 

system’s estimate of uuΣ  will be smaller than that of the second predictive system. This 

reduction in the variance of the un-forecasted shocks is regarded as the relative measure of 

the information content of 1
1 1{ }t T
t tx +

=  over 1
2 1{ }t T

t tx +
= . Essentially, forecasts’ information contents 

are determined by the size of the predictive system’s un-forecasted part of the variable being 

forecasted. The greater the ability of the predictive system to estimate the states of ty , the 

greater the information contained in the variables in its information set.   

4.3.4  Forecasts of other horizons 

The above two sections only discuss the information content of the next period’s 

forecast. Although forecasts for the immediate future may be the most useful and sought 

after, quite often forecasts for various other horizons are available. In the present framework, 

it is straightforward to measure the information content of these forecasts. For example, for 

the 2-period-ahead forecast, 2t
tx + , equation (4.7) can be replaced by,  

 2 1
1 1

t t
t t tx Ax vθ+ +

− += + + .  
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Therefore, 1
1, 1 2{ , , , , }t t

t t t t tD y y x x+
− − −= " " . Since 1

1
t
tx +
−  is the 2-period-ahead forecast of 1ty +  for 

1, ,t T= " , if 1
1

t
tx +
−  contains useful information about 1ty + , the precision of 1{ }T

t tμ =  will be 

increased. The above measures of information contents could be used. In general, for the n-

period-ahead forecast, t n
tx + , equation (4.7) can be substituted by, 

 2 1
2 1 1

t t
t n t n tx Ax vθ+ +
+ − + − += + + . 

To measure the information content of a single set of forecasts, similar modifications can be 

made to equation (4.10) 

4.3.5  The advantages of the proposed measures  

From the above discussion, the proposed measures of information content have the 

following advantages over the regression-based measures. First, the proposed measures do 

not suffer from the multicollinearity problem that affected the regression-based measures as 

explained before. Second, the proposed measures are derived from well-defined information 

sets. It is straightforward to control for the desired conditioning information, and to see 

where the differences in information contents come from. Finally, the regression approach in 

equations (4.1) and (4.2) is too restrictive in modeling forecasts 1
1{ }t T

t tx +
=  as an exact linear 

function of the actual value 1 1{ }T
t ty + =  (or the unobserved states 1{ }T

t tμ = ). It seems more likely 

that the forecasts are imperfect, in that they are correlated with 1 1{ }T
t ty + =  but cannot deliver 

them perfectly. For example, there may be periods when the variable being forecasted is 

quite stable and periods when it is very unstable. As a result, the forecasting difficulty will 

vary accordingly. Therefore, there will be periods when the correlation between forecasts and 

actual values is high and periods when the correlation is low. The predictive system regards 

forecasts as relevant variables that could help infer the unobserved states 1{ }T
t tμ = . The 

predictive system uses the information in the forecasts through their innovations, without 

imposing an exact linear relationship between forecasts and actual values throughout the 

sample. 
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4.4  Empirical Applications 

4.4.1  Data 

To compare with earlier studies, Romer and Romer (2000)’s data set is chosen to 

calculate the proposed measures of information content. The present study focuses on the 

comparison of Federal Reserve’s Green Book (GB) and Survey of Professional Forecasters’ 

(SPF) inflation (GNP deflator) forecasts. Before each meeting of Federal Open Market 

Committee (FOMC), the Federal Reserve staff prepares forecasts of key economic variables 

which are presented in the GB. Since the information content measures proposed in the 

present study require the data to be of uniform frequency and FOMC meetings take place 

roughly every six weeks, quarterly series of GB forecasts are constructed by taking the 

FOMC meeting date closest to the middle of each quarter. The SPF survey begun in 1968 as 

a project of the American Statistical Association and the National Bureau of Economic 

Research, and was taken over in 1990 by the Federal Reserve Bank of Philadelphia. The SPF 

forecasts are quarterly and the mean of all survey participants’ forecasts is taken to be the 

consensus forecast.  

Because of Federal Reserve’s policy of releasing its forecasts with a five-year lag, the 

above two sets of inflation forecasts are ideal for the comparison of information content. 

Since SPF forecasters do not have real time access to Federal Reserve’s forecasts, they can 

not infer Federal Reserve’s private information content by studying its forecasts. The sample 

period is from the 4th quarter of 1968 to the 2nd quarter of 1991, for a total of 91 

observations. There are some missing values of the 2- to 4-quarter-ahead forecasts at the 

beginning of the sample. Because SPF seldom makes forecast more than 4 quarters ahead, 

the present study analyzes current quarter forecasts to 4-quarter-ahead forecasts. Following 

Romer and Romer (2000), the second revisions of actual data are used. The rationale for 
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proceeding in such way is that the forecasting literature usually treats near-term revisions as 

actual values.  

Table 4.1 shows the correlation matrix of SPF forecasts, GB forecasts, and actual 

values. Two stylized facts can be observed in Table 4.1. First, the SPF and GB forecasts are 

more correlated between themselves than they are with actual values. This legitimizes the 

collinearity concern in the introduction. Because they are highly correlated, SPF and GB 

forecasts in some sense have a lot of common information content. Second, GB forecasts are 

slightly more correlated with actual values than SPF forecasts. Based on the correlation 

coefficients, one would expect the GB forecasts to be slightly better than the SPF forecasts. 

 

Table 4.1  The Correlations of Inflation Forecasts and Actual Values 

Actual GB SPF Actual GB SPF
Actual 1 0.87 0.84 Actual 1 0.79 0.70

GB 1 0.93 GB 1 0.94
SPF 1 SPF 1

Actual GB SPF Actual GB SPF
Actual 1 0.69 0.56 Actual 1 0.65 0.43

GB 1 0.91 GB 1 0.88
SPF 1 SPF 1

Actual GB SPF
Actual 1 0.77 0.59

GB 1 0.89
SPF 1

4 Quarters Ahead

2 Quarters Ahead

Current Quarter 1 Quarter Ahead

3 Quarters Ahead

 
 

4.4.2  Replication of the basic model in Romer and Romer (2000) 

To facilitate comparison of the present results with those of previous studies, the 

parameters of the basic model in Romer and Romer (2000) (equation 2) are estimated using 

the present data and presented in Table 4.2. The results in Table 4.2 are very similiar to those 

in Romer and Romer (2000)’s study. The minor differences are probably due to slight 
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differences in the samples, as the data set used here contains more observations. The point 

estimates of GB forecasts are typically between one and two. The point estimates of SPF 

forecasts are typically smaller than zero. Romer and Romer (2000) interpreted the results as 

the Federal Reserve possessing valuable information not contained in the SPF forecasts. 

According to their interpretation, GB forecasts dominate SPF forecasts for all forecast 

horizons, since the coefficients corresponding to SPF forecasts are significantly less or equal 

to zero, and the coefficients associated with GB forecasts are significantly larger than zero. 

 

Table 4.2  Estimates of the Basic Model in Romer and Romer (2000) 

Forecast Horizon N
Current Quarter 0.02 (0.37) 0.19 (0.18)  0.82 (0.16)  0.76 91
1-Quarter-Ahead 0.42 (0.49) -0.42 (0.26) 1.39 (0.24) 0.62 91
2-Quarter-Ahead 1.15 (0.64) -0.65 (0.29) 1.51 (0.26) 0.49 90
3-Quarter-Ahead 1.96 (0.70) -1.09 (0.27) 1.83 (0.24) 0.51 87
4-Quarter-Ahead -0.08 (0.67) -0.63 (0.24) 1.66 (0.24) 0.62 64

α (SPF)β (GB)γ 2R

   
Notes: 

1. The regression specification is t s t s
t s tSPF tGB t sy x xα β γ ε+ +
+ += + + + , where t sy +  denotes the actual 

inflation, t s
tSPFx +  denotes SPF inflation forecasts, t s

tGBx +  denotes GB inflation forecasts. s and t  index the 

horizon and date of the forecasts.  

2. Standard errors are in the parentheses.  

3. N is the number of observations.  

4.4.3  Comparing information content of GB forecasts with SPF forecasts 

Using the predictive system, the variances of un-forecasted shocks of the GB and SPF 

forecasts are separately estimated, and denoted as GB
uuΣ  and SPF

uuΣ  respectively. The variance 

ratio, /GB SPF
uu uuΣ Σ , is then calculated. Table 4.3 gives the posterior means and standard 

deviations of the variance ratios as well as the percentages of the draws that are less than one. 

It shows that GB forecasts contain more information about actual values than SPF forecasts 
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for the current quarter and 1-quarter-ahead forecasting. But for more than 1-quarter-ahead 

forecasts, GB’s information advantage is statistically insignificant.  

The GB’s advantage over SPF is most noticeable for current quarter forecasts. The 

posterior mean of /GB SPF
uu uuΣ Σ  is 0.73 for the current quarter forecasts. About 99.9% of the 

/GB SPF
uu uuΣ Σ  draws are less than one for the current quarter forecasts. These two numbers drop 

to 0.86 and 97.27% respectively for the 1-quarter-ahead forecasts. The posterior means of 

/GB SPF
uu uuΣ Σ  for 2- to 4-quarter-ahead forecasts are not significantly less than one, as the 

percentages of /GB SPF
uu uuΣ Σ  draws smaller than one are all less than 95% for these three sets of 

forecasts. For the 4-quarter-ahead forecasts, the posterior mean of /GB SPF
uu uuΣ Σ  is 0.98, and 

only 69.63% of the /GB SPF
uu uuΣ Σ  draws are less than one. The histograms of /GB SPF

uu uuΣ Σ are 

shown in Figure 4.1. As expected from Table 4.3, for current quarter and 1-quarter-ahead 

forecasts, most of the mass of the distributions are to the right of a variance ratio equal to 

one. As the forecast horizon gets longer, the distribution gets more dispersed and it has more 

mass for ratios greater than one.  

An interesting fact about Table 4.3 and Figure 4.1 is that the decrease in GB 

forecasts’ information content over SPF is not monotonic. The 3-quarter-ahead forecasts are 

better than 2-quarter-ahead forecasts. This may be due to seasonality in macroeconomic 

series. At time t , last quarter ( 1t − )’s actual values of most macroeconomic series are 

known. If there is seasonality in quarterly inflation rates and in the series that forecasters use 

to forecast inflation, the actual value of inflation rate and its related series at 1t −  may have 

relatively more information about the inflation rate at 3t +  than about the inflation rate at 

2t + , since 1t −  and 3t +  are exactly 4 quarters apart. Therefore, GB could forecast 3t +  

inflation rate relatively better than 2t +  at time t . Since forecasters probably draw from 

many macroeconomic series to forecast inflation rates and it is not feasible to determine 

exactly which related variables GB and SPF use in making their forecasts, it is not possible to 
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formally test the above hypothesis. However, the fact that most macroeconomic series have a 

seasonal component gives comfort to the explanations above.  

The above results show that GB forecasts do contain more information about the 

actual values than SPF forecasts. But this advantage is only restricted to short term 

forecasting. As forecast horizons get longer, the informational advantage becomes 

statistically insignificant. Intuitively, this makes sense, since it is very difficult to accurately 

forecast macroeconomic shocks multiple periods into the future. Hence, the decline of the 

informational advantages, if any, should be expected. In contrast, Romer and Romer (2000) 

concluded that GB forecasts have additional information for all the forecast horizons. The 

limitation of their approach is that the standard errors in the OLS regressions are too large to 

distinguish one regression from another.  

 

Table 4.3  Descriptive Statistics of /GB SPF
uu uuΣ Σ  

Forecast horizon Posterior Posterior Percentage
(Quarters) Mean Standard Deviation Ratio<1

0 0.73 0.07 99.90%
1 0.86 0.06 97.27%
2 0.95 0.05 87.67%
3 0.87 0.09 91.67%
4 0.98 0.05 69.63%

 
Note: The variance ratio refers to the ratio of uuΣ s derived separately using GB and SPF forecasts by 

the predictive system. A ratio less than 1 indicates that GB forecasts have additional information not contained 

in SPF forecasts.  
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Figure 4.1  Histograms of /GB SPF

uu uuΣ Σ  

 

4.4.4  Information contents of GB and SPF forecasts 

Subsection 4.3.2 outlines the measure to determine the information contents of one 

set of forecasts. This section shows how to estimate and use this measure by studying GB 

and SPF forecasts separately. Denote C
uuΣ  as the variance of un-forecasted shocks in the 

predictive system consisting of equations (4.6), (4.8), and (4.7). Denote Lag
uuΣ  as the variance 

of un-forecasted shocks in the predictive system consisting of equations (4.6), (4.8), and 

(4.10). Table 4.4 gives the posterior means and standard deviations of /C Lag
uu uuΣ Σ  as well as 

the percentages of the /C Lag
uu uuΣ Σ  draws that are smaller than one for GB and SPF forecasts.  

Panel A in Table 4.4 shows that if current GB forecasts are included in the calculation 

of tμ , uuΣ  could be reduced by 50%  and 25% for the current quarter and 1-quarter-ahead 

prediction, respectively. This shows that GB short term forecasts do have significant 

additional information compared to forecasts issued earlier. But for longer horizon forecasts, 

the reduction in uuΣ  is not significant. For 2- and 4-quarter-ahead forecasts, none of the 

posterior means of /C Lag
uu uuΣ Σ  are significantly less than one. For the 3-quarter-ahead 
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forecasts, 95.7% of /C Lag
uu uuΣ Σ  draws are smaller than one. Figure 4.2 depicts the histograms 

of /C Lag
uu uuΣ Σ  for the GB forecasts. It shows overwhelmingly favorable evidence for the 

current quarter forecasts as the /C Lag
uu uuΣ Σ  mass is smaller than one. But for other forecast 

horizons, the /C Lag
uu uuΣ Σ  masses are generally centered around one. These results are 

suggestive evidence that GB long term forecasts do not contain much information about 

actual values.  

Panel B in Table 4.4 shows that if current SPF forecasts are included in the 

calculation of tμ , uuΣ  could be reduced by 20% for the current quarter forecasting. 

Surprisingly, the reduction in uuΣ  is minimal for 1- to 4-quarters ahead forecasts. As a matter 

of fact, the posterior means of /C Lag
uu uuΣ Σ  are larger than one for 2- to 4-quarter-ahead 

forecasts. This indicates that SPF forecasts contain very little information about actual values 

except for current quarter forecasts. Figure 4.3 depicts the histograms of /C Lag
uu uuΣ Σ  for the 

SPF forecasts. It is obvious that the majority of the mass correspond to /C Lag
uu uuΣ Σ  ratio is 

larger than one for the 2- to 4-quarter-ahead forecasts. Including the SPF’s 2- to 4-quarter-

ahead forecasts in the predictive system only adds noise to the estimate of 1{ }T
t tμ = . In other 

words, nothing will be lost by using only past inflation values in the predictive system, i.e., 

using equations (4.6) and (4.8) alone.  

 

Table 4.4  Descriptive Statistics of /C Lag
uu uuΣ Σ  

Panel A: Federal Reserve Green Book Forecasts 

Forecast horizon Posterior Posterior Percentage
(Quarters) Mean Standard Deviation (Ratio<1)

0 0.50 0.09 100.00%
1 0.75 0.09 99.40%
2 0.94 0.05 88.70%
3 0.79 0.12 95.70%
4 0.94 0.05 87.10%
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Panel B: Survey of Professional Forecasters Forecasts 

Forecast horizon Posterior Posterior Percentage
(Quarters) Mean Standard Deviation (Ratio<1)

0 0.80 0.07 98.65%
1 0.97 0.06 73.10%
2 1.03 0.03 17.93%
3 1.02 0.04 27.47%
4  0.98  0.05  65.83%

 
Note: The ratio /C Lag

uu uuΣ Σ  refers to the ratio of uuΣ s derived separately using current and lagged 

forecasts by the predictive system. A ratio less than one indicates that forecasts have additional information not 

contained in past actual values.  

 

 

 
Figure 4.2  Histograms of /C Lag

uu uuΣ Σ  of GB Forecasts 
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Figure 4.3  Histograms of /C Lag
uu uuΣ Σ  of SPF Forecasts 

In sum, GB’s current and 1-quarter-ahead forecasts are found to have more 

information than corresponding SPF’s forecasts. GB’s 2- to 4-quarter-ahead forecasts and 

SPF’s 1- to 4-quarter-ahead forecasts are found to have very little information about the 

actual values in addition to previous forecasts. The standard regression method would find 

that GB forecasts contain useful information for all forecast horizons as shown in Table 4.2.     

The method proposed in the present study could distinguish the qualities of seemingly 

identical forecasts. For the 1-quarter-ahead forecasts, the correlation between GB and SPF 

forecasts is 0.94 and both series are very close to each other as shown in Figure 4.4. 

However, the proposed measures show that GB forecasts contain extra information and SPF 

forecasts do not.  
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Figure 4.4  Time Series Plot of 1-Quarter-Ahead Forecasts and Actual Values 

 

4.5  Conclusion 

The present study proposes a new approach to compare survey forecasts’ information 

content. It differs from the regression-based approach by Fair and Shiller (1989, 1990) which 

often suffers from multicollinearity problems and makes it difficult to define the conditioning 

information set. Based on recent developments in the forecasting literature (Pastor and 

Stambaugh (2006)), the present study regards forecasts as predictors and derives tμ  as the 

next period’s expected values of 1ty + , the variable being forecasted. It focuses on the variance 

of 1 1{ }T
t tu + = , the un-forecasted shocks of 1 1{ }T

t ty + =  conditional on well-defined information sets 

specified by the researcher. Depending on the forecast quality, the accuracy of 1{ }T
t tμ =  will 

change. The more accurate 1{ }T
t tμ = , the smaller the variance of 1 1{ }T

t tu + = . The variances of 1tu +  

associated with competing forecasts can be calculated. The ratio of these variances can be 

regarded as the measure of the relative information contents of the competing forecasts. The 

present study also proposes a way to measure the information content of forecasts from the 

same source, without reference to competing forecasts.  
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The above two measures are applied to the data used in Romer and Romer (2000). 

The empirical application shows that both measures perform fairly well. The present study is 

able to find that GB forecasts do dominate SPF forecasts but only in the short term. GB’s 2- 

to 4-quarter-ahead forecasts and SPF’s 1- to 4-quarter-ahead forecasts are found to contain 

very little information about actual values in addition to past inflation values. These results 

contrast Romer and Romer (2000), who find that GB forecasts dominate SPF forecasts for all 

horizons. The differences come from the fact that the regression-based method yields large 

standard errors, which makes the regressions indistinguishable from each other. 

The proposed information content measures do not suffer from the multicollinearity 

problem that could affect previous regression-based measures. The flexibility of the 

advocated measures allows one to determine the information content of a single set of 

forecasts, which is not achievable in the regression-based method. The proposed measures 

are derived from well-defined information sets. The predictive system used in the present 

study uses the information in the forecasts through their innovations without imposing an 

exact linear relationship between forecasts and actual values throughout the sample, which is 

an implicit assumption in the regression-based methods. It is more likely that forecasts are 

imperfect, in that they are correlated with the actual values but cannot predict them perfectly. 
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4.7  Appendix 

This Appendix outline the estimation steps of tμ , as well as the parameters in the 

predictive system. The predictive system consists of: 

 1 1t t ty uμ+ += +   

 2 1
1 1

t t
t t tx Ax vθ+ +
+ += + +   

 1 1t t tB wμ α μ+ += + +   
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The residuals in the system are assumed to be distributed identically and independently 

across t  as, 

 
0

(0, ) 0 ,
0

t uu uv uw

t vu vv vw

t wu wv ww

u
v N N
w

Σ Σ Σ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥Σ = Σ Σ Σ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟Σ Σ Σ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

∼ .   

Let 0D  denote the null information set, the unconditional moments are given as: 

 1
0| ( , ) ,

t y yy yx y
t
t x xy xx x

t y y x

y E V V V
x D N E V N E V V V

E V V V

μ

μ

μ μ μμμ

+

⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

∼  

Let tz  denote the vector of the observed data at time t , 1
t

t t
t

y
z

x +

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. Therefore, data observed 

through time t  consists of 1( , , )t tD z z= " , and the complete data is TD . Also define: 

, ,yy yxy yu
z zz zu

xy xxx xu

V VE V
E V V

V VE V
⎡ ⎤⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

. The unconditional moments can be solved as: 

 /(1 )yE Bα= − , /(1 )xE Aθ= −  

 2/(1 )wwV Bμμ = Σ − , yy uuV Vμμ= + Σ , 2/(1 )xx vvV A= Σ −  

       /(1 )x wvV BAμ = Σ − , y wuV BVμ μμ= + Σ , yx x uvV AVμ= + Σ . 

Drawing the time series of tμ  

To draw the time series of the unobservable values of tμ  conditional on the current 

parameter draws, the forward filtering, backward sampling approach, originally developed by 

Carter and Kohn (1994) and Fruhwirth-Schnatter (1994) is applied. 

Filtering 

The first stage follows the standard methodology of Kalman filtering. Let Γ  denote 

the parameters in the model. Define, 

                             1( | , )t t ta E Dμ −= Γ , 1( | , )t t tP Var Dμ −= Γ  

                             ( | , )t t tb E Dμ= Γ ,   ( | , )t t tQ Var Dμ= Γ  
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                             1( | , )t t tf E z D −= Γ ,        1( | , )t t tS Var z D −= Γ  

                             1( | , , )t t t te E z Dμ −= Γ ,   1( | , , )t t t tR Var z Dμ −= Γ  

                                                1( , | )t t t tG Cov z Dμ −=  

Note that 1 ya E= , 1P Vμμ= , 1 zf E= , 1 zzS V= , 1 zG V μ= , 1 0 1 1| ( , )D N a Pμ ∼ , 

1 0 1 1| ( , )z D N f S∼ , and that 1 1 0 1 1| , ( , )z D N e Rμ ∼ , where 1
1 1 1 1 1 1( )e f G P aμ−= + − , 

1 '
1 1 1 1 1R S G P G−= − . Combining this density with 1 0 1 1| ( , )D N a Pμ ∼  gives 1 1 1 1| ( , )D N b Qμ ∼ , 

where ' 1 1 ' 1
1 1 1 1 1 1 1 1 1 1 1( ) ( )b a P P G R G G R z f− − −= + + − , ' 1 1

1 1 1 1 1 1 1( )Q P P G R G P− −= + . Continuing in this 

fashion, all conditional densities could be found to be normally distributed, and the moments 

for 2, ,t T= "  are: 

 1t ta Bbα −= +  
 '

1t t wwP BQ B−= + Σ  

 1

1

t
t t

t

b
f

Axθ
−

−

⎡ ⎤
= ⎢ ⎥+⎣ ⎦

 

 1t uu uv
t

vu vv

Q
S − + Σ Σ⎡ ⎤
= ⎢ ⎥Σ Σ⎣ ⎦

 

 
'

1t uw
t

vw

Q B
G −⎡ ⎤+ Σ

= ⎢ ⎥Σ⎣ ⎦
 

 1( )t t t t t te f G P aμ−= + −  

 1 '
t t t t tR S G P G−= −  

 ' 1 1 ' 1( ) ( )t t t t t t t t t t tb a P P G R G G R z f− − −= + + −  

 ' 1 1( )t t t t t t tQ P P G R G P− −= +  

The values of { , , , }t t t ta b Q P  for 1, ,t T= "  are used for the sampling stage.  

Sampling 

Let 1
t

t
t t

t

y
xζ
μ

+

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. First sample Tμ  from ( | )T Tp Dμ , the normal density obtained in the 

last step of the filtering. Then for 1, 2, ,1t T T= − − " , sample Tμ  from the conditional 
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density of 1( | , , )t t tp Dζ ζ + Γ . Note that the first two elements of tζ , tz , are already observed 

and thus need not be sampled. To obtain the conditional density, first note that, 

 

'

1
1

1 1

| , ,
t t uu uv t uw

t
t t t vu vv vw

t t wu wv t

b Q Q B
D N Ax

a BQ P
ζ θ +

+

+ +

⎛ ⎞⎡ ⎤+ Σ Σ + Σ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥Γ + Σ Σ Σ⎜ ⎟⎢ ⎥⎢ ⎥
⎜ ⎟⎢ ⎥+ Σ Σ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

∼ , 

 1

0 0 0
| , , 0 0 0

0 0

t
t

t t t

t t

y
D N x

b Q
ζ +

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥Γ ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

∼ , 

 '
1

0 0 0
cov( , | , ) 0 0 0

0 '
t t t

t t

D
Q Q B

ζ ζ +

⎡ ⎤
⎢ ⎥Γ = ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Therefore, 1| , , ) ( , )t t t t tD N h Hζ ζ + Γ ∼ , where,  

 
1'

1
1 2 1

1

1 1 1

0 0 0
0 0 0

0 '

t t uu uv t uw t t
t t t

t t vu vv vw t t

t t t t wu wv t t t

y Q Q B y b
h x x Ax

b Q Q B BQ P a
θ

μ

−

+
+ + +

+

+ + +

⎡ ⎤+ Σ Σ + Σ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + Σ Σ Σ − −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥+ Σ Σ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 and 

1'

1

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 ' 0 '

t uu uv t uw

t vu vv vw

t t t t wu wv t t t

Q Q B
H

Q Q Q B BQ P Q Q B

−

+

⎡ ⎤+ Σ Σ + Σ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − Σ Σ Σ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥+ Σ Σ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

. 

The mean and variance of tμ  are taken as the relevant elements of th  and tH . 

Drawing the parameters 

The following describes how to obtain the posterior draws of all parameters 

conditional on the current draw of the time series of tμ . 

Prior distributions 
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Let 
A

B

θ

β
α

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 and 
uu uv uw

vu vv vw

wu wv ww

Σ Σ Σ⎡ ⎤
⎢ ⎥Σ = Σ Σ Σ⎢ ⎥
Σ Σ Σ⎢ ⎥⎣ ⎦

. Employing normal prior for β and inverse-

Wishart prior for Σ , i.e., ( , )N Vβ ββ μ∼  and 1 1(( ) , )W ρ ρ− −Σ Ω∼ . The values of the 

hyper-parameter values are given as, 4 40 , 1000* , , 4V I Vβ βμ ρ= = Ω = = . 

Drawing Σ  given β  

            The likelihood function can be expressed as, 

 1 1 1

1 1

1( , ) (2 ) | | exp( ( ) ' ( ))
2

T T

t t t t
t i

L y X y Xβ π β β− − −

= =

Σ = Σ − − Σ −∏ ∑ � �� � , where 

 
1

1
1

1

0 0 0 0
, 0 1 0 0

0 0 0 1

t t
t t

t t t t

t t

y
y x X x

μ

μ μ

−
+

−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

�� . 

Combining the likelihood function above with the inverse-Wishart prior for Σ , the following 

posterior conditional distribution could be attained, 

 1 1

1

| (( ( )( ) ') , )
T

t t t t
i

W y X y X Tρ β β ρ− −

=

Σ • Ω + − − +∑ � �� �∼ . 

Drawing β  given Σ  

Conditional on tμ  and 1ty + , the value of 1tμ +  is known. Because 

[ ]1 1 1 ' (0, )t t tu v w N+ + + Σ∼ , the conditional distribution of [ ]1 1 1' |t t tv w u+ + +  is normal and 

its mean and covariance could be easily calculated. Denote the conditional mean vector as 

, 1vw tMEAN +  and the conditional covariance matrix as vwCOV . Subtracting the conditional 

mean , 1vw tMEAN +  from 2
1 1 't

t tx μ+
+ +⎡ ⎤⎣ ⎦ , equations (7) and (8) can be rewritten as, 

 
2 1
1 1

, 1 , 1
1 1

1 0 0
0 0 1

t t
t t t

vw t vw t
t t t

x x v
MEAN MEAN

w
β

μ μ

+ +
+ +

+ +
+ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
− = + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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Let 
2 2
1 1

, 1
1 1

ˆ
ˆ

t t
t t

vw t
t t

x x
MEAN

μ μ

+ +
+ +

+
+ +

⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 and 1 1

, 1
1 1

ˆ
ˆ

t t
vw t

t t

v v
MEAN

w w
+ +

+
+ +

⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
. Stacking series 

over t  and denote [ ]1 1

1 0 0ˆ ˆˆ ˆ ˆ ˆ ˆ' ' ', , ' ' '
0 0 1

X
y X X e v wμ

μ+ +

⎡ ⎤⎡ ⎤= = =⎢ ⎥⎣ ⎦ ⎣ ⎦
. Equations (7) and 

(8) can be further rewritten as, ˆˆ ˆy X eβ= + , which is a standard Seemingly Unrelated 

Regression. The posterior conditional for β  can be written as,  

 | ( , )N D d Dβ β ββ • ∼ ,  

where, 1 1ˆ ˆ( '( ) )vw TD X COV I X Vβ β
− −= ⊗ +  and 1ˆ ˆ'( )vw Td X COV I y Vβ β βμ

−= ⊗ + . 
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CHAPTER 5.  GENERAL CONCLUSION 

 

In this dissertation, I applied Bayesian econometric methods on various aspects of 

forecast evaluation. The overall objective is to better evaluate forecasts in terms of bias, 

efficiency, and information content by accounting for the structure of forecasts and directly 

addressing various critical econometric issues that are ignored by previous studies. Three 

related studies have been undertaken to address three issues. My first paper studies forecasts’ 

bias and inefficiency after accounting for forecast error correlations. This study offers 

additional evidence on the irrationality of stock analysts’ forecasts and reconciles 

contradicting results in the previous literature. My second paper studies forecasts’ bias and 

inefficiency after accounting for forecasts’ hierarchical structure. It shows that there is 

heterogeneity in the degrees of analysts' bias and inefficiency. My third paper proposes new 

measures of forecasts’ information content of actual variables. The advocated measures are 

computed for a well-known data set and yield different, yet compelling, conclusions from 

those drawn by the previous literature’s regression-based measures. Although the three 

papers in this dissertation studies specific data sets, the employed methods could be easily 

applied to forecasts with similar structures.  
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