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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW 

This thesis project evaluates greenhouse gas emissions from dairy production systems 

in Iowa and seeks reduction strategies.  Does one method of production produce significantly 

less impact than another?  What drives greenhouse gas emissions in each system and to what 

assumptions are they sensitive?  Will mechanisms for reduction of impacts look similar and 

produce similar results across production systems? 

Verifiable comparisons of the environmental impacts of different agricultural 

production systems either do not exist or are difficult to access for many products.  

Discussions of the environmental impacts of agricultural systems, therefore, are often 

charged with more emotional appeal than science.  Verifiable scientific analyses of 

production systems that allow consumers to evaluate products they purchase, and allow 

regulators to accurately value externalities in policy decisions are needed.  Quantification of 

environmental impacts on agricultural production systems is of social and political 

importance.  Producers, activists, and regulators must communicate in common terms to seek 

solutions and find common ground.  Life cycle assessment is a tool to account for 

environmental impacts across the entire life cycle of a product, from production of raw 

materials to use of the product and disposal.  Use of life cycle assessment to quantify 

environmental impacts is one way to find common ground.  

  Developing a sustainable agriculture system depends upon analyzing the systems in 

use and improving them in various metrics that contribute to increased resilience.  

Economics, social impacts, and environmental impacts are commonly discussed as factors 

important to sustainability of agricultural systems.   

Evidence of global warming is mounting and pressure is building to limit greenhouse 

gas emissions from many human activities, including agricultural production.  Agriculture 

must find ways to reduce resource use and environmental impacts, including global warming 

potential emissions.  Reducing emissions may consist of large shifts in production 

technology or seemingly minor changes that provide reductions throughout the system.  

Detailed analysis of agricultural systems is needed to find the variables within systems that 

can lead to reductions. 
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This thesis is part of a project funded by the Leopold Center for Sustainable 

Agriculture titled: Life Cycle Assessment of Confinement and Pasture-based Dairying in 

Iowa: Impacts and Options for Mitigation.  This thesis involves the construction of a model 

and evaluation of predicted global warming potential emissions from three dairy production 

systems.  

The remainder of this chapter consists of a literature review providing background 

information on dairy production and environmental assessment of agricultural systems. 

Chapter Two presents the framework and assumptions used in this life cycle assessment 

process.  Chapter Three presents detailed methods relating to the assumptions of the model, 

as well as results of the analysis. Chapter Four discusses the application of the results of this 

study and relates these results to existing literature and future research. 

Literature Review 

The literature review, discusses the environmental impacts of dairy production, the 

history and present state of dairy production in Iowa and the United States.  It also discusses 

ways in which life cycle assessment is useful for evaluating agricultural systems.  The 

conclusion provides a discussion of uncertainty in environmental assessments. 

Environmental impact  

The Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC, 

2007) warns that global warming due to human activities may potentially shift climate 

patterns worldwide;   to the benefit of some populations and ecosystems, and to the detriment 

of others.  This global panel of scientists came to a consensus that the changes predicted are 

more damaging than beneficial, and these changes will likely burden those least able to 

defend themselves against nature. 

The anthropogenic portion of global warming is due to concentrations of carbon 

dioxide (CO2) and other “greenhouse gases” in the atmosphere, which cause positive 

radiative forcing, reducing the amount of heat that the Earth can radiate back into space.  

This altered energy balance suggests that the Earth may receive more energy than it radiates 

back to space, leading to a net warming.  The United States Environmental Protection 
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Agency (USEPA) lists agriculture as a significant contributor to emissions of greenhouse 

gases.  The largest emitter of CO2 in the U.S. is the power generation sector (USEPA, 2006), 

but potent non-CO2 greenhouse gases are emitted in from a number of activities.  These non-

CO2 gases, such as methane (CH4) and nitrous oxide (N2O), cause significantly more positive 

radiative forcing per unit mass than CO2 in the short term (IPCC, 2007).  According to 

economic analysis published by the Massachusetts Institute of Technology, “Initial levels of 

reduction of several of these [non-CO2] gases can be achieved at low cost relative to CO2, so 

they are a natural early target for control efforts” (Paltsev et al., 2007, p18).    

Animal agriculture is the source of nearly 40 percent of non-CO2 greenhouse gas 

emissions in the U.S., and agriculture in general is responsible for over 70 percent of U.S. 

N2O emissions, and approximately 30 percent of CH4 emissions (USEPA, 2009b).  Globally, 

dairy production accounts for approximately 3 percent of all emissions with global warming 

potential (GWP) (Sevenster and de Jong, 2008).   

Environmental impacts other than greenhouse gas emissions also arise from 

agricultural activities.  The USEPA reports that eutrophication of surface water is an 

increasing problem that continues to damage aquatic ecosystems and human health.  Also, 

there can be impacts on structures and water bodies from acidifying compounds in the 

atmosphere, even after point-source control efforts have taken effect (USEPA, 2004; USEPA 

2009a).  These effects are more local than global. Regional effects are of little consequence 

for other areas, unless pollution is carried by wind or water to another location.  Agriculture 

is a potentially significant contributor to acidification and eutrophication in the U.S. 

(USEPA, 2004).  Emissions from industry and agriculture that have eutrophication and 

acidification potential are often subject to direct regulation, such as the Clean Water Act, or 

more sophisticated forms of market based regulation in the case of sulfur emissions from 

electricity generators (33 U.S.C.§1251, 2008; USEPA, 2009a).  While varying natural and 

human-induced processes lead to eutrophication and acidification, it is important for any 

human activity to reduce its contribution to these forms of environmental degradation. 

Many studies investigating environmental impacts of dairy production have been 

conducted during the last decade.  Some, such as Casey and Holden (2005a), have simply 
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quantified the global warming potential of the production system, while others have 

attempted to compare production systems to determine differences in environmental impacts, 

Arsenault et al. (2009) and Thomassen et al. (2008b).  Later studies built on existing 

literature to test assumptions and sensitivities in methodologies used to evaluate 

environmental impacts, (Cederberg and Stadig (2003) and Thomassen et al. (2008a).  In the 

literature on environmental burdens of dairy production, GWP is the most frequently 

analyzed impact.  Unlike more localized emissions, GWP emissions are currently 

unregulated in the United States and in most of the world, but there is debate over creating 

regulation and markets to lower impacts at a national or global scale.  USEPA issued an 

“advance notice of proposed rulemaking” in July, 2008, that indicated the possibility of 

taxing methane and other emissions of animal agriculture in the U.S. as part of a larger plan 

to lower GWP emissions (USEPA, 2008). 

Dairy production in Iowa 

Iowa has 35.6 million acres of land with twelve percent permanently developed, 

dedicated to public parks, or forested, or otherwise unsuitable for grazing (NRCS, 2007).  Of 

the 31.2 million acres remaining, 77 percent are devoted to row crops, 4 percent are in CRP 

programs, and 4.3 percent are in hay and other crops, and 13.6 percent of the state’s 

agricultural acres are potentially available for grazing (NRCS, 2007).  There were 4.1 million 

cattle in IOWA during 2008, 215,000 of which were dedicated to dairy production (NASS, 

2009). 

The dairy industry in Iowa has changed drastically over the last century.  Annual 

production of milk has ranged from a low of 3.8 million pounds in 1998 to a high of 6.8 

billion pounds in 1943.  Iowa produced 4.3 billion pounds and ranked 12th in total milk 

production among U.S. states in 2008 (NASS, 2009).  Past herds consisted of a diversity of 

breeds in small herds fed on pasture. Today, this is considered a low input, low output 

scenario (Capper et al., 2009).  The average herd size in 1965 was 13 cows, and present 

average herd size is 89 cows in Iowa and 126 cows nationwide (NASS, 2009).  In Iowa, the 
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number of cows on farms milking more than 500 cows has grown from less than 5 percent 

before 1993, when this category was established, to 30 percent in 2008 (NASS, 2009).   

Over 85 percent of dairy cattle in the U.S. are of the Holstein breed, and the majority 

of cows are permanently housed in barns or dry lots, where feed is transported to cows and 

manure is handled by equipment (USDA, 2007).  These cattle are fed diets of hay or ensiled 

grasses and concentrated energy sources such as grains or ensiled crops.   

Using intensified management, scientific feeding, and genetic improvement, 

production per cow in Iowa has nearly quintupled, from a rolling herd average of 4,132 

lb/cow in the 1920s to 20,160 lb/cow in 2008 (USDA, 2007; Capper et al., 2009; NASS, 

2009).  With increased productivity per cow, fewer producing cows are needed, and the five-

year average number of cows in Iowa declined from its peak of 1.5 million in 1934 to a low 

of 194,000 in 2004 (NASS, 2009). 

The increasing size of concentrated animal feeding operations, as labeled by the 

USEPA (i.e., operations with over 200 lactating cows on one site) raises concerns about 

pollution, and these large operations are regulated as point source polluters under the Clean 

Water Act (40 C.F.R, 2008).  Operations with fewer animal units are not regulated as point 

source polluters unless EPA officials determine that the operation is a threat to aquatic 

systems due to location, history of pollution or a number of other factors.  The construction 

of large confinement dairies is often actively resisted by surrounding communities due to 

concerns of odor and water pollution. 

The trend toward large confinement dairy systems in the U.S. is a trend not seen in 

other regions of the world.  In much of Europe, herds of 20-25 cows represent more than 45 

percent of cows (Hospido et al., 2003).  New Zealand has large herds, with an average of 351 

cows, but a majority of dairy production is from farms using grazing practices (DairyNZ, 

2008; Saunders and Barber, 2007).   

The effects of increased production of cows in modern dairies, and fewer cows 

needed to produce the same volume of milk, have led some researchers to assert that present 

dairy production has less environmental impact than past production methods (Sevenster and 

de Jong 2008; Arnot, 2009; Capper et al., 2009).  Critics of this view, however, point out that 
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in a multi-function system, all products, co-products, and the inter-relationships between 

them must be considered in any evaluation of environmental impacts (Martin and Seeland, 

1999).  Beef production, as a co-product of dairy production systems, is one of these factors 

that could potentially influence overall environmental impact, but is not often considered in 

studies on environmental impacts of dairy production.  In the U.S., it is estimated that 15 to 

30 percent of marketable beef is produced from co-products of dairy systems (Ahola et al., 

2009).  According to USDA slaughter records, culled dairy cows account for 7.4 percent of 

animals slaughtered for beef over the last 10 years (USDA, 2009).  In addition, dairy calves 

are an important source of veal, and surplus calves from dairy systems are frequently grown 

to be slaughtered for beef.  In Sweden, 70 percent of beef comes from byproducts of the 

dairy sector (Cederberg and Stadig, 2003).  In the European Union, this figure is 

approximately 50 percent.  In contrast to these European sources of beef, the U.S. derives 

most of its beef from animals specifically bred for beef production.  Beef cattle in the U.S. 

outnumber dairy cattle of almost 10:1 (NASS, 2009).   

Beef cow-calf production systems require keeping cows year-round to give birth to 

calves, which are then grown in a beef production system.  Dairy systems can also produce 

surplus calves, which can be a close substitute for the output of a beef cow-calf system 

(Cederberg and Stadig, 2003; Burdine et al., 2004). 

Beef cow-calf livestock emit 58 percent of the CH4 from cattle in the U.S. (USEPA, 

2009b).  If surplus calves from dairy systems were better utilized in the beef sector, these 

emissions may be avoidable (Martin and Seeland, 1999).  Analyses of beef systems suggest 

that reduction of beef cow-calf numbers, and fuller use of dairy surplus calves, is a potential 

strategy to reduce environmental impact of beef production (Casey and Holden, 2006).  

Optimal management of dairy systems in terms of environmental impacts, therefore, might 

include optimizing the export of calves that will yield satisfactory meat to offset beef calf 

production.  Thus, minimizing environmental impact of dairy production is not achieved by 

simply optimizing milk output per cow.  A methodical assessment of the entire production 

chain is necessary to seek improvements in the system, and to ensure that emissions and 

impacts are not simply transferred to other systems. 
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Life Cycle Assessment 

Life cycle assessment (LCA) is a method used to compile and assess total 

environmental impacts and emissions from the entire life cycle of a product or service.  The 

life cycle of a product includes acquisition of raw materials, processing, use, and final 

disposal (ISO 14040, 2006).  LCA methodology has gained wide acceptance, and though 

many assumptions are made in its execution, modern assessments are at least minimally 

comparable if they follow the pattern laid out by the International Organization for 

Standardization (ISO 14040, 2006).  An ISO 14040 compliant LCA consists of 4 parts:  goal 

and scope definition, life cycle inventory, impact assessment, and interpretation.  Best 

practices for important assumptions that must be made in LCA analysis are also included in 

the ISO standards, such as methods to allocate environmental impacts between products 

resulting from the same production system. 

LCA methodology is well-adapted to evaluate agricultural systems because it 

provides an objective method of defining the production system and quantifying impacts in 

terms of the outputs of a production system (Casey and Holden 2005b; Thomassen et al., 

2008a).  Availability of the farm-produced commodity to be consumed by humans or to enter 

another production process is generally the extent of modeling in agricultural LCA.  This 

means use and end-of-life scenarios are not considered for agricultural production systems.  

Typical LCA of a manufactured product is termed a “cradle to grave” analysis because all 

impacts on the environment from the life of that product have been included.  Without a use 

phase or end-of-life scenario, agricultural LCA is generally termed a “cradle to gate” 

analysis.  This name denotes an analysis that quantifies all environmental impacts of raw 

materials and processing to deliver the farm product to the farm gate, where another entity is 

assumed to pick up the commodity (Kim and Dale, 2005; ISO 14040, 2006; Saunders and 

Barber, 2007).    

Use of LCA in agriculture has been expanded to evaluate non-environmental impacts 

as well.  For example, Haas et al. (2001) evaluated rural aesthetics alongside environmental 

impacts using the LCA framework.  The premier software for LCA, SimaPro (PRé 

Consultants, Amersfoot, The Netherlands), has incorporated the ability to evaluate 
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economics and social impacts (PRé Consultants, 2008b).  Evaluations of impacts of an 

environmental or non-environmental nature can benefit from the strengths of life cycle 

assessment, the ability to evaluate impacts across the entire lifecycle of a product. 

Functional unit in life cycle assessment 

In LCA, it is critical to establish a functional unit during the goal and scope phase of 

the project.  If products are to be compared by LCA, it is important that products perform a 

similar function; this standard exceeds that which considers two end products equivalent 

simply based on similar volume or size.  In multi-function systems such as milk production, 

co-products as well as inputs to the system are scaled to the production of the functional unit.   

Milk produced by dairy cows serves as food for humans and animals and as the basis 

for processed foods and other products.  Important indicators of the ability of milk to perform 

these functions are its mass, fat content, and protein content.  These attributes of milk vary by 

breed of animal, production intensity, and quality of feed (Dale Thoreson, Iowa State 

University, Extension Dairy Specialist, pers. comm. 6/5/09).  Two equal volumes of milk 

having different levels of these components are not able to perform these functions equally.  

As found in LCA literature, raw milk fat content varies from 3.69 percent in the U.S. to 4.45 

percent in the Netherlands, and protein varies from 3.05 percent to 3.5 percent (Capper et al, 

2008; Thomassen et al., 2008b).  These disparities can lead to significant differences in 

calculations of the resources required to produce a unit of milk if only mass or volume of 

milk is considered.  To aid in comparing dairy systems globally, Sjaunja et al. (1990) 

developed a formula for correcting the mass of milk to account for the energy it contains.  

The result of the formula is an “energy corrected milk” (ECM) unit that has become the 

standard functional unit in dairy LCA (Cederberg and Mattson, 2000; Casey and Holden, 

2005a).  Some recent LCAs, however, have been published without the ECM factor.  The 

systems compared within such a study may be adequately analyzed using this approach, but 

results are generally less comparable with the majority of studies (Arsenault et al., 2009; 

Capper et al., 2009). 
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Sjaunja et al. (1990) defines the functional unit of a milk production system to be one 

kg ECM, as shown in Equation 1.1. 

 
Equation 1.1  Energy corrected milk (ECM) calculation (Sjaunja, 1990) 

 

ECM = .25W + 12.5F + 7.7P   

 

where W is the weight of the milk (kg), F is fat content (kg), and P is protein content (kg).  

Other methods of equalizing milk have been used in LCA, such as fat and protein corrected 

milk, as used by Thomassen and de Boer (2005), Thomassen et al. (2008a), and Thomassen 

et al. (2008b).  However, the methodology for this milk correction factor has been published 

only in the Dutch language, and it has not been as widely adopted.  Additional energy 

corrected milk equations exist as well, and the equations differ depending on the standard 

milk analysis to which the analyzed milk is being adjusted (DRMS, 2009).  The ECM 

equation was chosen for use in this analysis to allow direct comparison with other LCA 

literature on this topic. 

Multifunctionality and allocation 

Unit processes often produce more than one useful product or material. Such unit 

processes are referred to as multifunctional. When only a subset of the co-products enters the 

system being analyzed, a method must be used to disaggregate the inputs and outputs of the 

multifunctional process so that the inputs and outputs are "allocated" between all of the 

useful products of the process. This process is called co-product allocation and is a critical 

consideration in LCA.  According to ISO 14041 (1998), allocation should “approximate as 

much as possible such fundamental input-output relationships and characteristics” of the 

system in order to prevent distorting results.  In dairy production analyses, fluid milk output 

from the farm is typically the reference flow around which all other flows are scaled.  Co-

products include meat from cull cows and surplus calves.  Hide and offal are also natural co-

products of dairy production, as they are constituent parts of a cull cow.  These outputs of a 

dairy system, however, are of insignificant value in all of the allocation methods explored to 
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date, and are generally excluded from analysis in an LCA framework.  Several studies have 

analyzed and discussed the insignificance of hide and offal in LCA (Eide, 2002; Hospido et 

al., 2003), and many later studies have followed precedent, assigning no value to, and giving 

no mention of, these co-products (Casey and Holden, 2005a; Thomassen et al., 2008b). 

Many different allocation methods have been used to analyze dairy systems, and the 

sensitivity of LCA results to the allocation method has been tested in European studies 

(Cederberg and Stadig, 2003; Thomassen et al., 2008b).  Cederberg and Stadig (2003) found 

that environmental burden allocated to the milk product from a dairy system may vary from 

63 percent to 100 percent depending upon the allocation system used.  Thus, it is important to 

follow best practices and ISO standards to ensure accuracy and comparability between 

studies.   

The allocation methods found in literature for dairy systems are:  no allocation, mass 

allocation, economic allocation, cause and effect or biological allocation, and allocation 

avoidance through system expansion.  These methods will be discussed in detail in the 

following pages. 

No allocation 

 This method assigns the entire environmental burden of the production system to the 

functional unit.  No credit is given for co-products produced.  This method is used in 

Phetteplace et al. (2001) and Capper et al. (2009), and it is compared to other allocation 

methods in Cederberg and Stadig (2003) and Casey and Holden, (2005a).  The no allocation 

method overstates the environmental burden of dairy production relative to analyses that give 

credit for co-products produced (Cederberg and Stadig, 2003, Casey and Holden, 2005a).  

This method does not require as much data gathering as other allocation methods, but it also 

does not accurately represent the flows of energy and emissions within a multi-function 

system. 

Mass  

In this method, environmental impacts are allocated based upon the physical weight 

of the end-products of the system--the functional unit and the co-products.  Casey and 
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Holden (2005a) analyzed this method for a milk production system, and allocated 97 percent 

of impacts to milk and 3 percent to co-products.  Mass-based allocation is important in other 

industrial sectors, and it is important to understand as a point on the continuum of 

methodological complexity.  Agricultural products and co-products, however, often differ in 

energy content and density, and therefore the mass allocation method has limited ability to 

accurately account for environmental impacts of agricultural production. 

As with no allocation, this method overstates the environmental burden of milk 

production because the milk product consists of 87 percent water, giving it much greater 

weight per unit of energy or protein than the other co-products.  If compared on a protein 

mass basis, the results can be much different.  For example, Martin and Seeland (1999) used 

a protein mass allocation method and allocated 78 percent of the environmental burden to 

milk and 22 percent to co-products.     

Economic Allocation 

In this method, impacts are allocated based upon the economic motivation for 

producing the product and co-products, as determined by prices and volumes produced rather 

than the physical flow of energy and impacts.  For dairy production, this method has 

allocated 85-92 percent of impacts to milk, and 8-15 percent of impacts to co-products 

(Cederberg and Stadig, 2003; Hospido et al., 2003; Casey and Holden, 2005a).  In the 

Cederberg and Stadig (2003) analysis, co-products are further broken down into meat and 

surplus calves, with an allocation of 6 percent and 2 percent of the total impact, respectively.  

The reasoning behind this method is important to understand because economic profit is 

generally the motivating force that causes production to happen.  There are weaknesses to 

this method, however, as the prices of the goods are subject to volatility and regional 

differences that do not correspond to a difference in environmental impact or volume of 

production.  Economic allocation is also subject to market distortions due to agricultural 

subsidies.  Economic allocation is particularly relevant for industrial processes utilizing 

inputs with multiple uses and producing outputs with multiple substitutes. 
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Cause and effect/Biological/Energy Allocation 

Impacts associated with inputs to a system may be allocated according to how the 

input is used, and processing steps required for particular products may be allocated to 

associated final products.  In dairy production, some portion of the nutrients and energy 

consumed in the feed will go to maintaining bodily functions of the animal, known as 

maintenance energy.  Additional energy will be required for growth of the animal’s frame 

and carcass, lactation, and for growth of the calf in a pregnant cow.  Software models of cow 

nutrition, such as the Nutrient Requirements for Dairy Cattle: Seventh Revised Edition 

(National Research Council, Washington, D.C.), and the Cornell Net Carbohydrate and 

Protein System (Cornell University, Ithaca, NY), predict how certain feeds provide energy 

and protein for these different functions.  Using these tools, environmental impacts from feed 

production, enteric fermentation, and manure emissions can be allocated according to the 

metabolic needs of the animal to produce the product and co-products.  This type of analysis 

performed with cattle in Sweden placed 85 percent of the burden of environmental impact on 

milk and 15 percent on co-products (Cederberg and Mattson, 2000; Cederberg and Stadig, 

2003).  Eide (2002) found that only 38-60 percent of various crop and forage inputs to dairy 

systems are biologically associated with milk production.  This study suggests a lower 

percentage of impacts associated with the milk product than other studies have found, but 

comparison of these findings with other studies is difficult because key emissions such as 

enteric fermentation are not considered.  Arsenault et al., (2009) also uses the biological 

allocation method and allocated 32 percent of environmental impacts to co-products.  If 

allocation must be used, this method most closely fulfills the requirement of the ISO 

standards because it matches impacts to biophysical flows. 

System expansion 

Standards for LCA published in ISO 14041 (1998) recommend, when possible, 

integrating the production of co-products into the production of the functional unit to form a 

larger production system that includes all relevant processes.  A substitute for each co-

product of the system is then evaluated using LCA methodology in the same way as the 
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functional unit.  The environmental impact of the functional unit is reduced by the avoided 

environmental burden of producing the substitute (Guinée, 2001).  System expansion 

assumes that market demand for the co-products of a system are constant, and that if the co-

product was not produced as part of the studied system, the same function would have to be 

delivered by the substitute product, giving rise to emissions calculated in that system. 

System expansion requires greater amounts of data collection than other allocation 

methods, making it prohibitive in some smaller and older studies (Weidema and Meeusen, 

1999; Cederberg and Stadig, 2003).  Use of this method is limited when co-products have no 

close substitutes, or when production processes of substitutes are not well documented.  

System expansion is well suited for evaluating dairy systems because each co-product has an 

alternative system of production that can be evaluated using LCA. 

  System expansion and avoided production  

Cederberg and Stadig (2003) laid the foundation for system expansion in dairy, 

establishing assumptions that surplus calves in the dairy system avoid the production of 

calves produced in a beef cow-calf system, and that meat from cull cows displaces meat 

produced in a beef production system.  These assumptions are subject to some uncertainty 

because calves from different breeds are grown using different practices and feeds, and cull 

cows generally produce meat that cannot displace many of the high-value cuts from feedlot 

animals. 

True equivalency of calves going into feedlot systems would mean that they are able 

to produce identical products using identical inputs.  For an LCA analysis of dairy systems 

focusing on global warming potential, equivalence would mean the calves produce similar 

quality and quantity of meat with similar GWP emissions.  Equivalence is highly dependent 

upon the system in which the calf is placed.  Research on Holstein steers finds that they 

produce quality beef, but the systems in which they are grown differ from beef-bred animals 

(Burdine et al., 2004).  Holsteins have genetic potential to be larger animals than most beef 

breeds, and are generally put directly onto feed after weaning, whereas beef systems may 

feed the weaned calves on pasture or low-quality feeds for a time.  For the Holsteins, moving 
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directly to feedlot allows them to attain marketable meat quality before they become 

excessively heavy (Burdine et al., 2004).  If Holsteins are grown too large, the high-value 

meat cuts are outside the acceptable range for most purchasers, and thus the carcass value 

declines.  When Holstein steers are grown for meat and slaughtered at an optimal weight, the 

resulting marketable cuts are indistinguishable from those of beef-type animals (Schaefer, 

2005). 

Holstein steers can achieve carcass weight to live weight ratios similar to beef-type 

animals, but their genetics give them high metabolic activity, and thus Holsteins require 

approximately 20 percent higher maintenance energy, energy which cannot be used for 

growth  (Schaefer, 2005).  This difference in the energy required to grow Holstein steers does 

make the equivalence assumption somewhat uncertain, and analyses using it will need to 

determine the importance of this assumption and recommend methods to improve it. 

Cull cows from dairy and beef systems generally produce meat of a lower quality 

than animals bred for beef production and slaughtered at an optimal time (Burdine et al., 

2004).  This is due to the fact that the animals are older and have not been fed to gain the 

intramuscular fat necessary for tenderness.  However, cull cows do supply a significant 

amount of meat that, if quantity demanded remains unchanged, would otherwise have to be 

provided by a beef production system.  Various characteristics of the meat, such as 

intramuscular fat and prevalence of injection site lesions, affect the ability of cull cow meat 

to replace beef from feedlot production systems (Thrift, 2000).  Cederberg and Stadig (2003) 

is currently the only study found in the literature that discusses equivalency of cull cow beef 

to meat produced in a beef system.  Cederberg and Stadig calculate greenhouse gas emissions 

from Swedish dairy emissions with culled cow meat directly offsetting meat from a beef 

production system.  Because a majority of beef produced in Sweden is derived from by-

products of the dairy industry, the equivalency of beef from culled dairy cows and beef cows 

may not accurately represent the situation in the U.S.  Thus, direct offsetting of meat 

produced in a beef system by cull cow meat is the only precedent set by previous literature, 

but uncertainty exists, and studies using this assumption should carefully examine the 

sensitivity of results to this assumption. 
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Allocation of determinant products 

Co-products of grain processing are important feed ingredients in dairy rations, but 

accounting for the emissions generated by their production is difficult in the system 

expansion framework.  While it is possible to simply use the same process data and switching 

the functional unit for a by-product does not generally return accurate results (Weidema, 

1999).  Ethanol, for example generates by-product feed ingredients.  As is discussed 

Weidema (1999), an increase in ethanol demand will increase production of the by-product 

feed ingredient.  The reverse, however is not generally true.   An increase in animal feed 

demand will increase production of the lowest cost appropriate animal feed source.  In this 

case, ethanol is the determinant product flowing from the production process, and to analyze 

the system with one of the non-determinant co-products as a function unit would lead to 

inaccuracies. 

To determine the environmental impact of the production of a by-product feed, 

Weidema recommends an economic analysis to establish a substitute for the by-product feed.  

This substitution, however can be complicated if the substitute product is produced in a 

multi-function process as well.   This can generally be resolved through multiple iterations to 

determine a reasonable substitution to allow avoidance of allocation by system expansion, 

though economics of the market as a whole must be known (Weidema, 1999). 

Use of LCA in agriculture 

Life Cycle Assessment is well-suited for evaluating agricultural systems in part 

because it is able to avoid “problem shifting,” where processes that cause environmental 

impacts may be moved out of one system only to cause similar impacts as part of another 

system, with no change in causality (Guinée, 2001).  An example of this strategy is 

neglecting consideration of environmental impacts of crop production as an aspect of dairy 

production.  In this example, impacts recorded in the dairy system are reduced, but, in reality, 

the environmental impacts still occur and are attributable to milk production.  LCA focuses 

on the causal links of environmental impacts.  Therefore, if a production system demands an 
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input, the full burden of producing that input is added to the impact for the downstream 

production system (Guinée, 2001). 

To perform LCA on an agricultural system, it is critical to define the boundaries of 

that system, outside of which impacts will not be considered.  This is important because an 

agricultural system interacts with an ecosystem and industrial processes together.  To 

enhance the analysis of the functional unit at hand and limit uncertainty, analyses must define 

a boundary and exclude some processes that are not well understood or are beyond the scope 

of the immediate functional unit.  Several components of agricultural practice are generally 

outside the boundary of analysis:  interaction between crops in crop rotation, capital goods 

(machinery, buildings), and land use and soil quality changes.  Although several recent 

analyses have broken with this precedent and have included capital goods and infrastructure 

in their analysis, this is still uncommon in the literature (Saunders and Barber, 2007).  

Soil and the ecosystem surrounding the agricultural production system are important 

to distinguish as either inside or outside the production system.  In LCA methodology, 

emissions are not considered harmful to the environment until they leave the production 

system into air, water, or soil.  Some impact assessment methods consider soil as part of the 

technosphere, thus not considering it a natural input to the system (PRé Consultants, 2008a).  

In these assessments, nutrients and pollutants are allowed to accumulate in the soil, and only 

actual emissions to air and water from this pool in the soil are quantified in the LCA.   

However, most assessment methods consider soil to be an input from nature, and a 

common assumption in agricultural LCA is that the soil is in equilibrium, with constant pools 

of nutrients, carbon, and pollutants.  According to the University of Leiden (CML) 1992 

impact assessment method, “It may be assumed that emissions that initially enter the soil will 

ultimately appear in the groundwater and hence can be dealt with as emissions to water” 

(PRé Consultants, 2008a, p. 6).  Some of the life cycle inventory databases embedded in 

SimaPro internalize this assumption by calculating emissions as directly to air and water, as 

in the United States Life Cycle Inventory database (National Renewable Energy Laboratory, 

Golden, CO).  Under this assumption, additions of fertilizer, pesticides or other pollutants to 
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soil are assumed to move out of the soil into plants, air or water within the time scale of the 

analysis. 

Drawing the boundary on the finished good side is also of particular importance for 

dairy products.  Fluid milk, the least processed dairy product purchased by consumers, is 

generally processed by pasteurization, cream separation, and bottling.  Additional processing 

steps are needed to create value-added products such as cheese, butter, and yogurt, all adding 

environmental impacts beyond the farm gate.  Even with high levels of post-production 

processing, studies have found that on-farm production of raw milk accounts for 

approximately 80 percent of global warming potential emitted in the entire supply chain of 

dairy products, and on-farm activities are also the largest contributor to other impacts 

(Capper et al., 2009; Hospido et al., 2003).  For this reason, processing steps that take place 

after milk leaves the farm are generally excluded from the assessment of the dairy production 

phase. 

Hotspots in dairy production 

Many LCA analyses of dairy production focus on finding hotspots, which are 

described as factors in the production system with particularly high emissions, or factors that 

have large impact relative to the physical flow, that may most easily be reduced.  Some 

studies investigating the broader dairy industry simply conclude that, as the largest emitter of 

pollution, the agricultural production stage as a whole is the hotspot (Eide, 2002).  In studies 

more focused on the milk production system, a common recommendation is to reduce total 

concentrated feeds in favor of feeds that require less energy and machinery.  A slightly 

different recommendation is to reduce concentrated feed intake per unit of milk produced, 

which could come about by increasing the production of the animal or by substituting feeds 

(Phetteplace et al., 2001; Thomassen et al., 2008b).  Concentrated sources of energy and 

protein, such as corn silage and soybean meal, are a major component of feed rations for 

modern high-production dairy cattle in the U.S.  The inclusion of these feeds has increased 

dramatically as the U.S. dairy industry has moved away from low-intensity grazing systems.  

Although they enable the animals to consume sufficient feed to maintain high levels of 
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production, concentrated feeds, as compared to grazing systems, generally require more 

tractor-hours, fuel, and processing to grow and prepare them for consumption by animals 

(Arsenault et al., 2009).  While it may be a relatively simple, and perhaps even a “costless,” 

activity, to swap specific feed components that create significant emissions, major changes to 

the dairy system will be required to dramatically shift feed consumption back to low-impact 

feeds (Hospido et al, 2003).  With a significant change in production system to reduce GWP 

emissions, other environmental impacts are likely to gain importance, such as elevated 

nitrogen leaching in New Zealand, where studies have demonstrated low greenhouse gas 

emissions (Saunders and Barber, 2007; Sevenster and de Jong, 2008).  Contributing to this 

particular effect is the fact that changing the feeding system to a less controlled diet based on 

low-intensity feeds increases the probability that cattle will consume an excess of some 

nutrients, which, when later emitted as manure, can have environmental impacts.  Grass-

legume forages, for example, are high in nitrogen, and cows will excrete more nitrogen in 

manure per calorie consumed than if some of their energy is primarily derived from 

concentrated energy feeds that are lower in nitrogen, such as corn silage (Velthof et al., 1998; 

Luo et al., 2008). 

 Similarly, enteric fermentation is a primary cause of GWP emissions in ruminant 

livestock systems, but reducing it can create negative feedbacks.  Feedstuffs composed of 

cellulose, such as hay and pasture of grasses and legumes, requires microbial fermentation in 

the rumen to release usable energy.  While making energy available to the animal, this 

fermentation also allows microbes to release CH4 into the atmosphere, contributing to GWP 

emissions.  Concentrated energy feeds generally require less fermentation and pass through 

the gut more quickly, and thus lower emissions are released per calorie consumed.  There are 

tradeoffs to be made, as concentrated feeds may cause more emissions in their production, as 

discussed previously.  Gibbons et al. (2006) found that dairy systems may reduce enteric 

fermentation emissions by shifting away from grass-based dairying, but other environmental 

problems may be exacerbated.   

Animals require a base level of energy intake to maintain bodily functions, which is 

termed maintenance energy.  Reducing feed intake per unit of milk due to improved genetics 
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or a management practice such as milking three times per day is generally referred to as a 

“dilution of maintenance.”  The energy needed for maintaining an animal’s mobility and 

digestive and nervous systems varies little by how much milk is produced by the animal.  

Under the dilution of maintenance theory, increasing milk production from each animal leads 

to fewer animals needed to produce the same level of output.  Recent papers cite this dilution 

of maintenance as the driving force in dairy sustainability (Capper et al., 2008; Arnot, 2009; 

Capper et al., 2009).  If higher production does lead to fewer animals needed, this 

unequivocally reduces environmental impact if the dairy system is viewed narrowly and 

without consideration of co-production, as Capper and Arnot have done.  The ISO standards, 

however, suggest full accounting for co-products.  According to Martin and Seeland (1999), 

increased milk production and using fewer producing dairy cows have implications for co-

product production.  This analysis found that increasing milk output of dairy cows did in fact 

result in fewer cows needed to supply the same milk product, which reduced environmental 

impact from the dairy system.  However, if co-products of beef and calves from the dairy 

system are considered, and no change in beef demand is assumed, additional beef cows are 

needed to supply beef calves that are no longer supplied by the dairy system.  While beef-

bred animals have a higher yield of meat per animal, the additional cows needed to produce 

calves resulted in greater overall emissions of greenhouse gases (Martin and Seeland, 1999).  

The 2008 Sustainable Dairy Sector report (Sevenster and de Jong, 2008) compared global 

emissions of dairy production and found that countries that produce lower GWP emissions 

from enteric fermentation per unit milk generally have higher total GWP emissions.  The 

primary tools cited by this report for directly reducing enteric fermentation are increased 

production per cow, and substantial supplementation of the diet with concentrated energy and 

protein sources.  Reducing enteric fermentation using these methods, however, may increase 

emissions from food production or decrease co-product credits in one way or another.   Full 

system analyses, accounting for co-products, are needed to find paths to reduce emissions 

from the entire system. 
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Uncertainty 

LCA and other analyses of biological production systems are subject to compounded 

uncertainties of natural and human origin.  Many processes within biological systems are not 

fully understood by science, and even when much is known, variability in weather and 

differences in soil and surrounding ecosystems are factors that are difficult to capture in LCA 

of agricultural systems (Weidema and Meeusen, 1999; Gibbons et al., 2006).  For example, 

Gibbons et al. (2006) found that “N2O emissions can vary substantially over a [spatial] scale 

[of land surface] of less than 9 cm.  This variation makes scaling-up of emissions, to the farm 

or even the field scale, potentially difficult.”  This differs from analyses of highly controlled 

systems such as power generation, where known and easily measurable quantities of gases 

are emitted from combustion of fossil fuels.  The IPCC default emission factors assume a 

single N2O conversion factor for all scales of analysis, which may not take into account 

considerable differences in emissions on a local scale due to climate, soil conditions, or a 

number of other factors. 

The composition and nutrient content of manure is also source of significant 

uncertainty in animal agriculture systems.  Nutrients contained in manure may volatilize or 

leach during transport and storage.  This possible loss of nutrients can be a source of 

pollution in air and water, and as the nutrient value of manure may displace synthetic 

fertilizer, the avoided burden of synthetic fertilizer production is less certain (Weidema and 

Meeusen, 1999).  

In addition to natural variation in many aspects of dairying, variation in practices 

between dairy producers within the same production system can be just as great as 

differences between production systems (Dr. Leo Timms, Iowa State University professor of 

Animal Science, pers. comm., 4/20/2009).  These challenges may not present the same 

degree of difficulty for other systems modeled by LCA, such as industrial processes, which 

are generally performed in a more controlled environment (Gibbons et al., 2006). 

Hospido et al. (2003) studied regional milk production using two operating farms in 

Spain, and concluded that overall uncertainty in the quantified GWP emissions is 13-17 

percent.  Gibbons et al. (2006) echoed this conclusion, finding a low confidence level in 
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quantifying absolute emissions at the farm level.  In agricultural systems, however, Gibbons 

found that once a baseline emission is established, modeling improvements on that system 

can be done with much higher confidence.   

Some emissions from biological systems are very sensitive to assumptions made 

about uncertain factors, such as feed and manure analysis.  Accurate estimation of the 

digestible energy (DE%) in a diet is singularly important in the estimation of feed intake, and 

thus emissions, as previously emphasized.  “A 10% error in [estimating] the average diet 

DE% will result in CH4 errors ranging from 12 to 20% depending on circumstance” (IPCC, 

2006a, p. 32).   

Agriculture LCA deals with particularly dynamic systems with interacting effects not 

controlled by human intervention.  Uncertainty must be recognized and minimized in order to 

generate the most usable results.  Uncertainty can be reduced by using data and prediction 

models that are most appropriate for the systems being evaluated, and at the highest 

resolution possible (Weidema and Meeusen, 1999; Gibbons et al., 2006). 

Conclusion 

In conclusion, literature regarding environmental impacts of dairy systems is 

plentiful, with many different angles explored.  The consensus found in literature is that the 

production system generates the most impact in the supply chain of dairy products to 

consumers, that co-products are a critical component to consider in calculating environmental 

impact of the production system, and that there are trade-offs that must be made to reduce 

overall impacts.  Prior studies have sought to differentiate emissions between dairy systems, 

but new methods exist to calculate key emissions such as enteric fermentation, and new data 

on U.S. dairy production enables a more detailed analysis of dairy systems than has been 

performed in the past.  The USDA 2007 Dairy report (USDA, 2007) contains data separated 

by type of production system, including grazing, combination grazing/conventional, and 

conventional production systems.  These systems differ in some key categories that may lead 

to different levels of emissions and emissions reduction strategies may look quite different 

for these different systems.  Analysis of these three different dairy systems utilizing best 
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practices from literature and this new data could further the discussion of how to reduce 

emissions from dairy systems by analyzing more closely the internal factors that influence 

emissions. 

 

 

 



23 

 

 

 

 

CHAPTER 2  INTRODUCTION TO PROJECT AND ASSUMPTIONS 

This chapter presents the first phase of the life cycle assessment process as 

recommended by ISO standards:  goal and scope of the project.  This phase of life cycle 

assessment (LCA) defines the system to be modeled, the functional unit, and boundaries of 

the analysis.   

Goal and scope 

This analysis is carried out to estimate global warming potential emissions from three 

dairy production systems in Iowa:  grazing, combination grazing/conventional, and 

conventional.  A cradle to farmgate LCA is performed for these three systems with milk 

production as the reference flow.  The functional unit is defined as one kg of energy 

corrected milk (ECM), as developed by Sjaunja et al., (1990).   

An ISO 14040 (2006) compliant framework is used, and best practices from literature 

are implemented, to ensure the most rigorous results possible from the available data.  Public 

databases are used whenever appropriate to supplement direct emissions estimates.   

The ISO 14041 (1998) best practice of avoiding allocation is achieved by using 

system expansion to assign emissions to the primary products of the dairy system: milk, 

surplus calves, and meat from cull cows.  System expansion is used for all processes except 

for by-product feed ingredients.  System expansion analysis for by-product feeds from grain 

processing, requires analysis of feed production markets and lowest-cost substitutable feeds.   

That level of analysis is beyond the scope of this study, and therefore economic allocation 

between the products from the grain processing systems is used.  Variables and assumptions 

in each system are analyzed to determine the sensitivity of net emissions.  Emissions 

reduction strategies are then developed based upon the system variables which provide the 

most potential for emissions reductions.    

Boundaries 

The boundaries for this analysis are consistent with practices used in literature. These 

include emissions from the dairy system and production and transportation of consumable 

inputs to the dairy system.  These inputs include energy use in the dairy and the crops fed to 
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the cattle and their inputs of fuel and fertilizer, as well as other upstream inputs (Figure 2.1).  

Emissions directly from the dairy system include enteric fermentation and manure 

management system emissions.  Emissions from soil due to manure deposition and 

agricultural inputs are also included.  Input of capital goods such as tractors, barns, tanks, and 

other infrastructure may differ between the modeled systems, but common practice in LCA is 

to exclude infrastructure, and these are not included in this analysis.  The downstream 

boundary in this analysis is defined as the farm gate.  Milk is assumed to be cooled on the 

farm using energy included in the model, and picked up by an external entity whose 

transportation and processing are not included.   

Boundaries of the beef system are also cradle to farmgate (Figure 2.1).  Upstream 

inputs are accounted for, excluding infrastructure.  Direct emissions from enteric 

fermentation and manure management are included in the analysis.  An outline of the 

modeled systems and a detailed description of underlying assumptions follow. 

Carbon Balance 

Carbon uptake of plants and respiration of CO2 by animals is excluded from analysis.  

Carbon in plants is readily released upon digestion, burning, or decomposition of the crop, 

and respiration by animals is the release of carbon captured by the plants eaten by the animal.  

This relatively rapid flux of carbon in and out of plant materials leaves no persistent change 

in carbon stocks, and thus CO2 uptake by plants is generally disregarded by LCA (Kim and 

Dale, 2004; Nathan Pelletier, Dalhousie University, pers. comm., 2009).  

The effects of land-use change, effects of cropping rotations, and changes in overall 

dairy and beef supply are also omitted from this analysis.  Carbon in agricultural soils 

depends on many local geologic and climactic conditions, and this carbon may be released 

upon a change in crop or change in land use that is beyond the scope of this analysis.   

Similarly, carbon sequestered in root systems of deep-rooted perennials is generally 

disregarded from LCA analysis (Kim and Dale, 2004).   
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Dairy Systems and Assumptions 

For this analysis, statistics for the three dairy systems are derived from producer 

responses in the USDA (2007) report titled “Dairy 2007: Reference of Dairy Cattle Health 

and Management Practices in the United States.”  In this survey, producers were asked to 

identify their operation as conventional, grazing, combination grazing/conventional, organic 

or other.  Organic and other systems were excluded from further analysis.  Specific data has 

been cross-tabulated according to the three remaining categories, and are detailed in the 

descriptions below.  Specifics of each system not detailed in the USDA (2007) report were 

developed with the aid of dairy specialists and in agreement with literature.  Rations for the 

lactating, dry, and heifer animals have been assembled by a dairy nutritionist to represent 

typical feeding conditions in Iowa for the projected milk production (Table 2.1).   

For the described systems, a model herd based on 100 total cows (milking and dry) is 

detailed in Table 2.2, rounded to the nearest whole animal.  Bulls are not considered in this 

analysis due to lack of data and widely varying practices on the use of artificial insemination.  

In addition, data is lacking on the differences in environmental impact between artificial 

insemination and natural service bulls. 

Dairy cows 

All three dairy systems analyzed here are assumed to be comprised of Holstein cows.  

While over 85 percent of dairy cattle in the U.S. are Holsteins, there is greater use of other 

breeds in the grazing systems (USDA, 2007).  The assumption of Holsteins was made to 

eliminate any effects of animal breed.  The Holstein cows in all three dairy systems are 

assumed to be   producing milk with the average analysis for Holsteins in Iowa, 3.7 percent 

fat and 3.0 percent protein (Dairy Records Management System: Dairy Metrics, Ames, IA, 

http://www.drms.org).  The result of this conversion is that 1 kg of average Iowa milk with 

this analysis is equivalent to 0.944 kg of energy corrected milk.   

It is assumed that Holstein heifers are freshened at 1300 lbs and that mature cows 

weigh 1500 lbs when culled.  Over the milking lifetime of the cow, weight gained by the cow 

is assumed to be 0.2 lb/day.  This gain is taken into account when calculating the nutrient 
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content of manure excretions.  At slaughter, the culled cows are assumed to have a dressed 

weight equaling 55 percent of live weight, or 825lbs (Rob Petersohn, Iowa State University 

Meat Lab, pers. comm. 5/28/09). 

Conventional dairy herd 

This management system seeks high milk production by closely controlling the 

environment of the cows, and by precisely controlled rations.  Cows are housed year-round in 

tie-stall or freestall barns and are fed a total mixed ration (TMR) throughout the year.  The 

modeled conventional herd consists of Holstein cows producing a rolling herd average 

(RHA) of 22,000 lbs of milk (USDA, 2007; Table 2.3).  The average milking lifetime of a 

cow in this herd is 3.2 years, with calving on average every 13.4 months (USDA, 2007; 

Table 2.3).  Culling and mortality rates, along with interval between calving, age at first 

calving, and heifer death loss are used to compute the number of replacement heifers needed 

to maintain the herd (Table 2.3).  After replacement heifers are retained, this herd produces 

50 calves for sale into other production systems (Table 2.2).   

 Combination grazing/conventional dairy herd 

This management system seeks some of the benefits of pasture-based systems by 

putting cows on pasture during the growing season, but maintains a high level of production 

by providing the majority of gross energy intake through concentrated feeds.  Manure 

deposited to pasture conforms to the IPCC definition, which states that manure deposited to 

pasture is to “lie as deposited, and is not managed” (IPCC 2006a). 

This herd consists of cows producing a RHA of 18,330 lb of milk per year (USDA, 

2007; Table 2.3).  Lactating and dry cows are turned out to graze on permanent pasture 

during 170 days of each year.  Pasture forages contribute 36.5 percent of their daily feed 

requirements over the grazing season.  During the grazing season, cows are housed on 

pasture and supplemental feed is provided through a mixed ration, and during the winter, 

cows are housed in a free-stall or tie-stall barn, and a TMR is fed.  During the grazing season, 

animals are assumed to be on pasture continually, except for 2 hours per day when they are in 

the milking parlor and holding areas.  The average milking lifetime of a cow in this herd is 
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3.8 years, and the cows calve on average every 13.0 months (USDA, 2007).  After 

replacement heifers are retained, this herd produces 57 calves for sale into other production 

systems (Table 2.2). 

Grazing dairy herd 

This management system is focused on utilizing fresh forages for the majority of feed 

intake during the growing season, and dried forages during the winter, with minimal 

supplementary feed during both seasons.  Yield per cow is considerably lower than other 

systems, but variable costs to feed the cows are generally lower.  This herd produces a RHA 

of 16,530 lbs of milk per cow (USDA, 2007; Table 2.3).  Lactating and dry cows are 

intensively grazed on grass-legume pastures for 170 days per year, with supplementation of 

grain at 17 percent of gross energy intake.  All other assumptions related to grazing time and 

manure management are the same as the combination grazing/conventional herd.  The 

average milking lifetime of a cow in this herd is 4.8 years, and the cows calve on average 

every 12.9 months (USDA, 2007; Table 2.3).  After replacement heifers are retained, this 

herd produces 64 calves for sale into other production systems (Table 2.2). 

Heifers and calves 

For this analysis, it is assumed that heifers are raised in a similar manner regardless of 

overall dairy system.  The heifers are weaned at eight weeks of age and fed pasture and a 

ration until freshening at 1300 lbs for Holsteins (USDA, 2007).  Calf mortality is 6.5 percent 

within the first 48 hours (USDA, 2007).  Surplus calves are assumed to be sold after this 48-

hour period; therefore, the calculation of surplus calves takes mortality into account.  

Mortality of pre-wean heifers (after 48-hours loss) is 7.9 percent and 1.6 percent for post-

wean heifers, and is assumed to be equal between systems (USDA, 2007).  Transportation is 

assumed to be insignificant, as 89.4 percent of operations transport heifers less than 50 miles 

(USDA, 2007).  This value was not reported on a per cow basis, and was not able to be 

tabulated separately for the three different dairy systems analyzed here.  While this statistic 

leads us to believe that the uncertainty would exceed any precision gained, some bias may 

exist in the size of dairies, as 17.7 percent of large operations (>500 cows) transported heifers 
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more than 50 miles (USDA, 2007).  The age at first calving for each system is assumed to be 

equal to numbers reported by USDA (2007); these are included in Table 2.3.    

Excess calves are bull and heifer calves not needed to replace dairy cows in the 

current production herd.  The number of heifers retained in the dairy system is calculated by 

taking into account culling rates, mortality of cows and calves, interval between calving, and 

age at first calving. 

Farm energy 

No research was found that allows direct comparison of the energy consumption in 

grazing, combination, and conventional dairy systems.  Electricity, diesel, and natural gas are 

the sources of energy discussed and estimated in university extension documents and in the 

energy audit of Iowa dairy production performed in 2008 by Ensave, Inc. (Ozkan, 1985; 

University of Wisconsin; Ensave, 2008).  Computations of electrical usage were made using 

published formulas, leading to a range of estimates from 0.0474 to 0.0955 kWh/kg milk 

(University of Wisconsin, 2009).  Most electrical usage estimation methods found in 

literature use milk production as the primary variable in dairy energy usage on the farm; 

therefore, this analysis uses an energy estimate per unit of milk production.  Wide variation 

in electrical energy use estimates and lack of data on differences in energy use between the 

systems prevents precise differentiation of electrical energy use across systems.  Equal 

electrical energy use per kilogram of milk produced in each system is assumed.  The Ensave 

audit reports electrical usage of 0.0686 kWh/kg milk.  This value will be used for each dairy 

production system (Table 2.4). 

Energy usage for water heating is discussed but not quantified in the Ensave audit.  

Natural gas usage for water heating is calculated using the United States Department of 

Agriculture Energy Consumption Awareness Tool (http://ahat.sc.egov.usda.gov/Dairy.aspx).  

The fuel is assumed to be natural gas, and the usage is calculated in the tool to be 0.0865 

ft3/kg milk, and is assumed to be equal between systems per kg of milk production (Table 

2.4).  
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Diesel use on-farm for manure management and handling of feed is estimated by 

Ozkan (1985), and diesel use for non-cropping operations on the dairy is reported in the 

Ensave (2008) energy audit.  Both sources estimate diesel usage of 0.0023 gallons per kg of 

milk production.  Substantial differences exist in the weight and volume of manure that must 

be handled by the dairy systems, as much manure in the grazing and combination systems is 

deposited directly to pasture.  However, no literature was found to establish causal 

relationships between diesel usage and volume of manure handled, and the contribution of 

this energy use to total system emissions is quite small.  Therefore, the uncertainty in 

attempting to estimate different diesel usage between dairy systems exceeds the possible 

precision gained in the model from consideration of differences in fuel use.  The reported 

value of 0.0023 gallons of diesel per kg milk will be used for all three dairy systems (Table 

2.4). 

Feed and fodder production  

Crops represented in the United States Life Cycle Inventory (USLCI) (National 

Renewable Energy Laboratory, Golden, CO) are modeled with substantial updates to 

conform to the boundaries defined for this study.  The changes made to processes derived 

from the USLCI database are detailed on paged 38 under the heading “Databases.”  Crops 

and forage that are not present in the USLCI database are assumed to be grown in Iowa, and 

are modeled using data from literature.  Data from the United States Department of 

Agriculture: National Agricultural Statistics Service, university extension documents, expert 

and producer input, and peer-reviewed literature will be used to model these production 

systems.  Specific data used for each feed ingredient is included with results in Table 3.5.  

Grass hay is assumed to be fertilized with nitrogen (N), phosphorus (P) and potassium (K) 

macronutrients at average rates prescribed by Iowa State University Extension publications.  

Legume hay is assumed to be fertilized with P and K at recommended levels. Pasture is 

assumed to be a mix of legume and grass species, and assumed to be fertilized with P and K.   

The trampling rate for forages is assumed to equal harvesting losses from haying, 

approximately 25-30 percent, and therefore yields of forages are assumed to equal hay yields 
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on a dry matter basis; therefore, nutrient needs are assumed to be the same (Larry Tranel, 

Iowa State University, Extension Dairy Field Specialist, pers. comm.).   

Analysis of crop processing uses data from peer-reviewed studies using U.S. average 

electrical and fuel mixes, as discussed in the section on databases on page 38.  Emissions 

from the production of by-product feeds are associated with outputs using economic 

allocation.  Commodity price data for this allocation is either the five-year average Chicago 

Mercantile Exchange prices, or historic price analysis from Iowa State University documents. 

Energy inputs to crop production are derived from USLCI data and Iowa State 

University Extension publications.  Fertilizer production is assumed to have environmental 

impacts as calculated in the USLCI database.  Field-level emissions from nutrient application 

will be calculated using IPCC (2006a) Tier II methods using default emission factors for 

North America and system-specific activity data. 

Transportation 

Transportation of feeds produced on-farm is included in the fuel and energy use 

estimates in the energy audit of Iowa dairy production (Ensave, 2008).  Therefore, in this 

analysis, all feeds that could be produced on-farm are assumed to be transported using fuel 

accounted for in the energy audit, which is allocated to the functional unit directly, and no 

additional accounting of transportation is attempted.  Feed ingredients that require substantial 

processing and by-products of processing systems are assumed to be transported to the 

processor according to findings in the 1996 Iowa Grain Flow Survey.  The by-product used 

by the dairy farm is assumed to be returned the same distance, as presented in Table 2.5 

(Gervais and Baumel, 1996).  Assumptions for transportation of fertilizers are taken from 

examples in the USLCI database. 

Nutrient and manure management 

Manure management systems (MMS) have been shown to be a significant source of 

emissions on dairy farms (Massé et al., 2008).  All manure captured by the MMS is assumed 

to be handled according to the usage statistics published for North America in IPCC 

methodology reports (IPCC, 2006a; Table 2.6).  All manure produced during the non-grazing 
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season for the grazing and combination system, and year-round for the conventional system, 

is assumed to be collected and managed by the MMS.  Manure captured by a MMS is 

assumed to be used in lieu of commercial fertilizers with the same N, P, K analysis, with 

losses of fertilizer value accounted for using a weighted average IPCC default nutrient loss 

factor for each MMS, according to its usage in U.S. dairying (IPCC, 2006a).  This weighted 

average loss of N is calculated to be 42 percent.  P and K are assumed to suffer no loss.  

Manure deposited directly to pasture is assumed to contribute nutrients to soil at the same 

loss factor as daily application of manure:  22 percent loss of N, with no loss of P or K.  

Manure deposited or spread on crops or pasture is assumed to emit gases according to IPCC 

Tier II methodology using default emission factors and system-specific manure data. 

During the grazing period, cows are assumed to be in the holding area or in the 

milking parlor for two hours per day, and all manure excreted during this time is handled 

using the MMS assumptions outlined here.  This assumes even distribution of manure 

excretion over a 24 hour period (Dou et al., 1996).    

Emissions 

Emissions of compounds with global warming potential (GWP) are calculated using 

relevant IPCC (2006a) Tier I and Tier II methods using system-specific activity data and 

IPCC default or calculated emissions factors.  All emissions with GWP are characterized 

according to the IPCC 100-year time horizon. 

Allocation and interaction with the beef supply chain 

Impacts of the dairy production system are highly integrated with the impacts of beef 

production because co-products of dairy are assumed to displace products that would 

otherwise be produced in a system focused on meat production.  Dressed weight of dairy cull 

cows is assumed to directly offset dressed weight of beef from a feedlot production system, 

and surplus bull and heifer calves from the dairy system offset calves produced in a beef 

cow-calf system (Cederberg and Stadig, 2003).  Due to differing energy needs, feedlot 

practices, and carcass yields between Holsteins and beef-bred animals, these assumptions are 
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not without uncertainty.  Therefore, the sensitivity of overall emissions to this assumption is 

analyzed and discussed. 

Beef herd 

Emissions produced from the beef system will be quantified using assumptions from 

Pelletier et al. (in press) and IPCC Tier I and Tier II default emission factors and values.  

Beef cows have an assumed calving rate of 90 percent, and a culling rate of 15 percent 

(Pelletier et al, in press).  No additional death loss of heifers or cattle is accounted for.  An 

example herd of 100 beef cows is presented in Table 2.2.  The annual diet for beef cows and 

heifers, as analyzed in Pelletier at al. (in press), is presented in Table 2.7.  Culled beef cows 

yield a 440-lb carcass, assuming 55 percent yield from live weight (Pelletier et al., in press; 

Rob Petersohn, pers. comm.). 

In this system, spring-born calves are sent to a feedlot finishing system at 

approximately 6 months of age.  These cattle are fed in the feedlot system for 303 days until 

slaughter, at a live weight of 637 kg.  Carcass weight at slaughter from cattle in this system is 

394.9 kg, assuming 62 percent yield (Iowa State University, 2005).  The diet to bring feedlot 

steers to market weight is presented in Table 2.8. 

Nitrogen emissions from the beef herd are calculated using the IPCC default emission 

factor (IPCC 2006a).  Emissions of N2O from nitrogen in manure handled in a dry lot are 

computed using IPCC default conversion factors for the time period that the cattle are in the 

feedlot.  N2O emissions from N deposited to pasture are computed for the time that calves 

spend on pasture using IPCC default emission factors and system-specific animal weight. 
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Figure 2.1  Boundary of analysis for dairy and beef production systems for life cycle assessment 
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Table 2.1  Daily diet consumed by dairy animals in this study.  All values are on a dry matter basis, measured in pounds 

 Lactating Cows  Dry Cows  Heifers 

 
Graz 

(Summer) 
Graz 

(Winter) 
Graz/Conv 
(Summer) 

Graz/Conv 
(Winter) Conv  

Graz 
(Summer) 

Graz 
(Winter) 

Graz/Conv 
(Summer) Conva  

All 
Systems 

Grass-Legume Pasture 35.25  16.43 0.00 0.00  23.80 0.00 20.47 0.00  0.00 

Corn Silage 0.00  8.17 12.25 17.99  3.21 3.21 8.75 10.50  2.98 

Corn 3.83 3.83 10.27 8.09 5.22  1.19 1.19 0.00 0.00  0.00 

Grass Hay 0.00 17.63 0.00 0.00 0.00  0.00 11.90 0.00 6.43  0.00 

Alf Hay 0.00 17.63 2.55 3.40 0.00  0.00 11.90 0.00 0.00  0.00 

Alf Haylage 0.00 0.00 0.00 7.02 7.74  0.00 0.00 0.00 5.40  5.49 

Corn Gluten Pellets 0.00 0.00 0.00 7.12 8.90  0.00 0.00 0.00 1.60  4.45 

Dist Grain 0.00 0.00 3.15 4.50 4.05    0.00 0.90  0.00 

Wheat Straw 0.00 0.00 0.35 0.35 0.21  0.00 0.00 0.00 3.60  4.77 

Soybean Meal 0.58 0.58 3.40 1.48 1.31  0.42 0.42 0.00 0.87  0.00 

Mineral Mix 0.47 0.47 1.23 1.12 1.76  0.65 0.65 0.71 0.68  0.30 

Soy Hulls 1.72 1.72 0.00 0.00 0.00  0.00 0.00 0.00 0.00  0.00 

Corn Syrup 0.00  0.00 0.00 0.00  0.00 0.00 0.00 0.00  2.04 

Roasted Soybeans     1.1.844        

Vegetable Oil 0.04 0.04 0.00 0.00   0.00.18 0.18 0.00 0.00  0.00 
Total Dry Matter Intake 
(lb day-1) 41.89 41.89 45.55 45.33 49.02  29.45 29.45 29.93 29.98  20.03 
 a  The conventional dry cow diet is also used for the grazing/conventional combination herd during the winter. 
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Table 2.2  Dairy and beef herds modeled in this analysis, assuming 100 cows, as calculated using cross-
tabulated data from the USDA Dairy 2007 report, East region (USDA, 2007) 

  Graz Graz/Conv Conv Beefa 

Total cows 100 100 100 100 

     Lactating cows 86 85 86 - 

     Dry cows 14 15 14 - 

Total heifers 43 56 64 15 

     Unweaned heifers 3 4 5 - 

     Weaned heifers 18 22 26 - 

     Yearling heifers 22 30 33 - 
Total animals 143 156 164 115 
     
Cows culled  (yr—1) 21 26 31 15 
     
Calves born  (yr—1) 87b 86b 84b 90c 

Heifer calves retained  (yr-1) 23 29 34 15 
Calves exported (yr-1) 64 57 50 75 
a Beef herd data compiled using assumptions from Pelletier et al. (in press) 
b Counted after 48 hours, as reduced by the calf death loss percentage of 6.5 percent (USDA, 2007) 

 

Table 2.3  Cross-tablulated data from the USDA Dairy 2007 report, East region (USDA, 2007) 

  Graz Graz/Conv Conv 

RHA milk (lb yr-1) 
             

16,530  
             

18,330  
             

22,000  

    

Total cow replacement rate 20.8% 26.2% 30.9% 

     Cow removal rate (culling) 17.6% 21.6% 25.1% 

     Cow mortality 3.2% 4.6% 5.8% 

Average milking lifetime (years)a 4.8 3.8 3.2 

    

Calving interval (months) 12.9 13.0 13.4 

Age at first calving (months) 24.6 25.5 24.7 

Average days dry (per lactation) 56.3 59.1 56.1 
a Calculated as the inverse of the total cow replacement rate 

 

  



36 

 

 

 

 

Table 2.4  Energy use per kg energy corrected milk 
  Iowa  Dairy Systems 

Electricity use (kWh)a 0.0686 

Natural Gas (ft3)b 0.0865 

Diesel (gal)c 0.0023 
a Assumed to be equal per unit of milk between systems (Ensave, 2008) 
b Assumed to be equal per unit of milk between systems (USDA:NRCS Energy Consumption Awareness Tool  
http://ahat.sc.egov.usda.gov/Dairy.aspx) 
c Assumed to be equal per unit of milk (Ensave, 2008; Ozkan, 1985) 
 
 
 
Table 2.5  Transportation distance assumptions used in the calculation of environmental impacts of 
processed and by-product feed ingredients* 
Feed ingredient Distance traveled 

Corn, to processora 80 km 

By-products of corn processing, to farma 80 km 

Soybeans, to processora 51 km 

By-products of soybean processing, to farma 51 km 
  

Fertilizer,  to farm b 200km 

Fertilizer,  to farm (train)b 400km 
* Transportation is via truck unless otherwise noted 

a Gervais and Baumel, 1996 
b USLCI database (NREL, Golden, CO) 
 

 

Table 2.6  Manure management system usage in North American dairies (IPCC, 2006a) 
Manure Management System Percent usagea 

Lagoon 16.8% 

Liquid/slurry 30.3% 

Solid storage 29.5% 

Daily spread 20.6% 

Other (pit storage) 2.9% 
a After factoring out "Pasture/Range/Paddock" (PRP) as a manure management system.  Manure deposited to 
PRP will be assessed separately in the grazing/conventional combination and grazing dairy systems. 
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Table 2.7  Annual feed intake for cows and heifers in the beef cow-calf system, measured in tons, as fed 
(Pelletier et al., in press) 

 

 

 

Table 2.8  Feed intake to grow a steer in the beef feedlot production system to market weight, measured 
in tons, as fed (Pelletier et al., in press) 
 Beef Steer 

Alfalfa hay – mature  0.33 

Corn Silage 0.81 

Corn Grain 2.01 

Corn Gluten Feed 0.70 

Soybean Meal 0.07 

 

 

 Beef Cow Beef Heifer 

Pasture  21.61 7.90 

Hay  3.26 1.33 

Wheat Grain 0.10 0.11 
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CHAPTER 3  METHODS AND RESULTS 

This chapter describes the methods used to evaluate the previously described data and 

assumptions using life cycle assessment.  The term “total” emissions will be used to denote 

total emissions from the production system, not accounting for co-products.  “Net” emissions 

will denote emissions associated with the functional unit net of the “avoided burden” of 

producing co-products in an alternate system. 

Software 

SimaPro 7.1 (PRé Consultants, Amersfoot, The Netherlands) is used to compile data 

for each dairy system and to calculate environmental impacts.  This software package aids 

the researcher by streamlining data entry and unit conversions.  Using a professional software 

package helps prevent errors in time- and labor-intensive LCA, and SimaPro has become a 

standard and well-accepted tool for LCA.  SimaPro also facilitates direct integration of public 

and private databases, allowing access to a broad spectrum of background data that enhances 

the accuracy of the current study.   

The Tool for the Reduction and Assessment of Chemical and Other Environmental 

Impacts (TRACI), version 3.01, is used, as embedded in SimaPro 7.1, to classify and 

characterize the environmental impacts in this LCA (Bare et al., 2003).  This methodology 

uses IPCC global warming potential (GWP) emission equivalencies over a 100-year time 

horizon, which is the only time horizon cited in agricultural LCA literature reviewed for this 

study.  The 100-year time horizon relates only to the lifetime and potency of the emitted 

gasses in the atmosphere for the purpose of computing an equivalency of all gasses to CO2.    

TRACI has the capability to classify and characterize a broad range of impacts relevant to 

North American environmental risks and sensitivities, which will be useful for future 

expansion of this project. 

Databases 

The United States Life Cycle Inventory (USLCI) database (National Renewable 

Energy Laboratory, Golden, CO) is integrated into SimaPro and used to provide background 

data for this study.  Energy, material, and transportation processes from this database are 
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used as published.  The agricultural production processes in this database, however, contain 

flows that are inaccurate for use in this study.  The USLCI agricultural production processes 

were modified to exclude carbon dioxide (CO2) uptake by plants, as previously outlined in 

carbon balance section on page 23.  The USLCI agricultural production processes, as 

published, also included several sections that were incorrect or incomplete.  The product used 

to for lime soils was changed from quicklime to limestone.  The incomplete sections often 

contained “dummy” processes which contained quantity data of the input or emission, but no 

resource use or environmental impacts are associated with the processes.  Therefore, these 

dummy processes are replaced with appropriate processes and inputs from other databases.  

The U.S. energy mix and transportation assumptions from the USLCI are substituted into 

processes imported from databases applicable to other countries.  The LCA Food DK 

database (www.lcafood.dk), as embedded in SimaPro 7.1, is the source of data behind 

potassium (K) fertilizer production and several crop processing procedures.   

Enteric fermentation 

To estimate methane (CH4) emissions from dairy cattle due to enteric fermentation, 

the COWPOLL model is used, as developed by Kebreab et al. (2004).  COWPOLL is a 

mechanistic tool that models nutrient and microbial pools in digestive systems of ruminants 

and predicts methanogenesis from the entire bovine digestive system (Kebreab et al., 2004).  

There are many such models, and this one was investigated for use in this study at the 

recommendation of Dr. Dan Loy, Professor of Animal Science, Iowa State University.   Prior 

LCA studies of dairy production have used the IPCC default CH4 conversion factor (MCF) to 

estimate enteric fermentation emissions.   The IPCC default MCF is an empirical method of 

estimation that does not take into account digestibility of feedstuffs, predicting that 6.5 

percent of gross energy intake by a dairy cow will be converted to CH4.  When tested against 

observed data, COWPOLL has been shown to more accurately predict enteric fermentation 

emissions than empirical methods such as the IPCC default MCF (COWPOLL estimated 

r=0.75, IPCC estimated r=0.5) (Kebreab et al., 2008).    COWPOLL has also been shown to 

simulate differences in diet more accurately than some other enteric fermentation estimation 
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models that are able to take into account digestibility of feedstuffs (Kebreab at al., 2008).  

Accurately simulating enteric fermentation emissions across differing diet compositions and 

gross energy intakes between systems is critical in this study, and therefore COWPOLL was 

selected. 

COWPOLL, in general, predicts lower enteric fermentation emissions than the IPCC 

default MCF.  COWPOLL finds the average CH4 yield in dairy cattle to be 5.63 percent of 

gross energy (GE) intake, whereas the IPCC empirical approach estimates CH4 conversion at 

6.5 percent (Kebreab et al., 2008; IPCC, 2006a).   

Each daily diet was compiled in the COWPOLL for this project by Dr. Ermias 

Kebreab (University of Manitoba).  Emissions were reported from the COWPOLL model as 

MJ CH4, day-1 and are converted to kg CH4 day-1 using the IPCC default conversion factor of 

55.65 MJ (kg CH4)
-1 (IPCC, 2006a).  The GE content of the diets was also calculated by Dr. 

Kebreab.  This value for each diet was used as an input to calculating enteric fermentation 

using the IPCC default CH4 conversion factor, and the difference between the prediction 

models is compared and discussed.  Enteric fermentation emissions are attributed directly to 

the daily diets associated with cows and heifers in this study, facilitating tests of different 

parameters that would change the diet consumed during a year.  Emissions from beef cows 

and beef heifers are computed using IPCC Tier I default CH4 emissions factors. 

Feed production 

Diets for each dairy animal are compiled in SimaPro on a daily basis so that changes 

in parameters, such as number of days on pasture, days dry, and other variables, can be 

changed to test sensitivity of net emissions to these assumptions.  Agricultural commodities 

modeled in the USLCI database are used with the modifications described previously.  Plant 

production and feeds that are included in the animal rations but not modeled in the USLCI 

database are compiled using peer-reviewed literature, extension documents, and expert input.  

Specific sources for each feed ingredient are included with the results in Table 3.5. 

Several by-products of grain processing were identified by the nutritionists as 

imperative for dairying in Iowa.  Dry distillers grains, soybean meal, and corn gluten pellets 
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were identified as important by-product feed ingredients for dairy production in Iowa.  These 

feeds are included in the diets in this study, and are modeled according to assumptions in 

literature, listed with the results in Table 3.5.  Allocation of impacts of processing and 

agriculture to by-product feed ingredients was modeled with economic allocation.  Price data 

for economic allocation are 5 year average prices from Chicago Board of Trade data, with no 

basis assumed, and Iowa State University extension documents discussing prices.  By-

product feed ingredients are modeled using agricultural production processes as described 

earlier, and background processes of energy and transportation from the USLCI database.  

There are various ways to allocate impacts to products and co-products of processing.  Many 

by-product feed ingredients have been modeled as co-product when another functional unit 

was being evaluated, such as distillers grain for ethanol production.   Simply reversing these 

analysis, using the by-product feed as the functional unit is possible, but this practice 

highlights some debate in the LCA community about whether a product should be evaluated 

to find environmental impacts independent on the system in which it’s analyzed, or whether 

impacts should always be relative to the context in which the product is being evaluated.  

These by-product feed ingredients are modeled as well using system expansion, with the by-

product feed as the functional unit.  This difference in allocation method is tested to 

determine net emissions sensitivity to this assumption, and is discussed later. 

Lime is the most significant feed ingredient in the diets that is not derived from a 

biomass source.  It is modeled using the USLCI “limestone, at mine“ system process, 

following the example of other feed rations modeled in the USLCI database.   

Manure management 

An IPCC Tier II approach to emissions from manure management systems (MMS) is 

used, incorporating both IPCC default emission factors for the average Iowa climate and 

system-specific activity data.  Emissions from MMS vary widely by the local climate (IPCC, 

2006a).  Some IPCC default emissions factors account for temperature, and for these Iowa’s 

annual mean temperature of 9.2°C is used  (USNWS, 2009; IPCC, 2006a). This average 
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temperature fits into the lowest category estimated by IPCC default emissions factors, <10°C 

average annual temperature. 

The emission factor for various GWP gas emissions from MMS is assumed to be a 

weighted average emission factor of the individual MMS, as reported for North American 

dairies, as presented in the assumptions.  Lacking more specific data, this MMS is assumed 

to be used for all manure deposited to MMS in all three dairy systems.  Manure deposited to 

pasture does not enter a manure management system, and therefore are considered separately 

using IPCC default emissions factors. 

Rations for each animal are compiled in the Cornell Net Carbohydrate and Protein 

System (CNCPS) (Cornell University, Ithaca, NY), and excretions of nitrogen (N) and 

phosphorus (P) are calculated on a daily basis.  Nitrogen excretion estimates are inputs to the 

equations for emissions from MMS.  Diets are also compiled in the software package that 

accompanies Nutrient Requirements for Dairy Cattle: Seventh Revised Edition (National 

Research Council, Washington, D.C.) to corroborate results with the CNCPS model and 

compute excretion of potassium (K).    

Methane (CH4) 

Volatile solids (VS) deposited to the manure management system from each daily 

ration are calculated according to IPCC formulas, and potential conversion of VS to CH4 

(Bo), is assumed to be 0.24 m3 CH4 (kg VS)-1 for dairy cattle, according to IPCC default 

values (IPCC, 2006a).  The calculated weighted average methane conversion factor (MCF) 

for manure systems in all three dairy systems is 17.4 percent (Table 3.1).  Volatile solids 

deposited to pasture are assumed to convert to CH4 at 1 percent of their potential (Bo) (IPCC, 

2006a).  

Nitrous Oxide (N2O) 

Direct N2O emissions from MMS are calculated using nitrogen excretion rates 

predicted by CNCPS, and a weighted average N to N2O-N conversion factor of 0.003 kg 

N2O-N (kg N)-1.  Pasture emissions are calculated at the default conversion factor of 0.02 kg 

N2O-N (kg N)-1 (IPCC, 2006b).  Nitrogen excretion from beef animals is calculated using the 
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assumed animal weights from Pelletier et al. (in press) and the Tier I nitrogen excretion 

formula for North American “other” cattle: 0.31 kg N (1000 kg animal mass)-1(day-1) (IPCC, 

2006a).  Conversion of this N to N2O uses the same assumptions as dairy cow manure 

deposits to pasture. 

Indirect N2O emissions from leaching and volatilization of N from manure are 

calculated using IPCC default N2O-N conversion factors for N volatilized and leached from 

manure management systems.  The N loss factors from each manure system are combined in 

the weighted average manure management system assumed in this analysis.  These N losses 

are calculated to be 29.1 percent of N loss to volatilization and 13.1 percent loss to leaching 

(Table 3.1).   

Fertilizer value 

Fertilizer derived from MMS, after losses, is assumed to directly replace commercial 

fertilizers.  The IPCC default emission factor for N2O emitted from N deposited to managed 

soil is the same for manure application as for commercial fertilizer, so manure directly offset 

production emissions of fertilizer production, and no difference is modeled in the cropping 

system (IPCC, 2006b).  Nitrogen loss from manure deposited to MMS is the sum of losses 

due to leaching and volatilization, using the weighted average losses of MMS usage in North 

America, 42.2 percent (IPCC, 2006a; Table 3.1).  Manure deposited to pasture directly 

offsets the fertilizer needs of the pasture.  The grass-legume pasture, as assumed in this 

model, requires no N fertilizer.  Therefore the N fertilizer value in the manure deposited 

directly to the grass-legume pasture does not displace the production of any fertilizer.  The 

remaining nutrients needed are supplied by commercial fertilizer. 

Alternate manure management system 

Each dairy system was modeled with an anaerobic digester system substituted for the 

weighted average manure management system outlined earlier.  Only manure captured in the 

manure management system is assumed to be handled in the digester system.  Default IPCC 

emissions factors and nitrogen loss factors are used with system-specific activity data.  All 

methane produced in the digester is assumed to be captured, and 35 percent of the energetic 
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value is assumed to be used within the digester system to maintain temperature (Barker, 

2001; IPCC, 2006a).  The remaining captured methane is then assumed to offset natural gas 

on an energetic equivalent basis (Barker, 2001).  The process modeled for the offset is 

“Natural gas, processed, at plant/US,” from the USLCI database.  This process, as published 

in the USLCI, does not include pipeline transportation or leakages, which could add 

significantly to the emissions of natural gas production. 

Co-products 

Co-products of the dairy system, surplus calves and cull cow meat, are assumed to 

displace products of equivalent function.  As outlined by Cederberg and Stadig (2003) the 

avoided burden of producing the equivalent products are subtracted from the milk functional 

unit.  Cull cow meat quantities vary according to assumptions made in the dairy system 

concerning culling rate.  Cows lost to mortality are assumed to be not usable as meat, and 

therefore account for no avoided burden of production.  The formula to determine export 

calves uses this culling and mortality data along with statistics on calf death loss and interval 

between calving as reported in the USDA Dairy 2007 report.  

 Meat from cull cows is assumed to displace beef from a feedlot system on a dressed 

carcass weight basis, and surplus calves are assumed to be equivalent to a calf produced in a 

beef cow-calf system (Cederberg and Stadig, 2003).  These assumptions are somewhat 

uncertain, and could have an impact on the dairy system.  Thus, the sensitivity of net 

emissions to this assumption is tested. 

The beef herd modeled is based on assumptions in Pelletier et al. (in press) using 

IPCC Tier I and Tier II default emission factors for enteric fermentation and manure 

management.  Meat from culled beef cows is also assumed to offset beef from a feedlot 

production system on a dressed carcass weight basis.   

Sensitivity Analysis 

Sensitivity tests are performed in this model to determine which variables and 

assumptions have significant impacts on net emissions.  This analysis is important, not only 

to find which variables are most likely to bring about the desired result of reducing 
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emissions, but also to indicate which assumptions and variables are most important in 

determining emissions, so that these highly sensitive factors can be more closely scrutinized 

to reduce uncertainty.  The sensitivity for a variable is defined as the percent change in 

greenhouse gas emissions as a percent of the change in the parameter, (Equation 3.1). 

Equation 3.1  Sensitivity of net emissions to changes in parameter values assumed in the dairy models. 

∆ Y 
Y 
∆ X 
X 

where X is the parameter and Y is the net greenhouse gas emission. 

Sensitivity tests for non-numerical assumptions, such as allocation methods, provide 

the percentage change in greenhouse gas emissions due to the change in assumption, 

according to Equation 3.2. 

Equation 3.2  Sensitivity of net emissions to changes in non-numeric and assumptions in the dairy 
models. 

Y2-Y1 
Y1 

where Y1 is the net greenhouse gas emissions in the base scenario, and Y2 is the net 

greenhouse gas emissions resulting when the alternate assumption is used. 

Economics and land use 

The CO2-equivalent emissions calculated in this analysis will be used with predicted 

prices of carbon credits for additional consideration of the economic implications of 

emissions regulations, (Paltsev et al. (2007).   

Switching production from one system to another carries impacts beyond greenhouse 

gasses.  To further explore other impacts, land used in each dairy system for production of 

feed will be calculated using the land classes defined in SimaPro: arable land and 

pasture/meadow.  Hayed and ensiled grasses and grazed fodder are assumed to be grown on 

pasture/meadow and all cultivated crops are assumed to be grown on arable land.  Land 

occupied by the infrastructure of the dairy is not considered. 

Sensitivity =  

Sensitivity =  
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Results 

Total environmental impact 

The total global warming potential emissions from the dairy systems, without considering 

credits for co-products, are quite similar, at 1.04 kg CO2-eq (kg ECM)-1 for the grazing 

system, 1.07 for the combination grazing/conventional system, and 1.02 for the conventional 

system (Table 3.2).  The emission credit from co-products is 34.7 percent of the total 

emission for the grazing system, 30.9 percent for the combination system, and 27.0 percent 

for the conventional system.  Net emissions attributable to the milk product are 0.681 kg 

CO2-eq (kg ECM)-1 for the grazing system, 0.736 for the combination grazing/conventional 

system, and 0.742 for the conventional system.    

Global warming potential (GWP) emissions from the dairy systems are classified into 

five categories to facilitate discussion of positive and offsetting factors that determine net 

emissions. These categories are enteric fermentation, manure management, feed production, 

energy, and co-product credits.  Figure 3.1 illustrates the balance of gasses emitted from each 

emission category and the relative contribution of each emission category to net emissions of 

the dairy systems.  Each emission category will be discussed individually in the following 

sections.   

Enteric fermentation 

Emissions of methane (CH4) from enteric fermentation are the largest contributor to 

environmental impacts in each dairy system, accounting for 50.3 percent of total GWP 

emissions from the grazing system, 42.5 percent from the combination system, and 37.7 

percent from the conventional system (Table 3.2).  Lactating and dry cows in each system 

emit over 80 percent of CH4 due to enteric fermentation, with the remainder coming from 

heifers.  Enteric fermentation from beef cattle is accounted for in the co-product credits 

category. 

COWPOLL estimates considerably higher CH4 emissions per megajoule of gross 

energy feed intake for rations with high amounts of forage than for diets based on 

concentrates (Table 3.3).  The calculated methane conversion factor (MCF) from enteric 
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fermentation using this method ranges from a high of 6.96 percent for grazing dry cows to a 

low of 4.63 percent for lactating conventional cows.  All diets for the grazing dairy system 

and the combination herd’s summer dry cow diet are calculated to have an MCF very near or 

in excess of the IPCC default value of 6.5 percent.  All other diets have an MCF considerably 

below this value, with a maximum MCF of 5.68 percent for diets not named here.  The beef 

animal diets are assigned a fixed emission per year by IPCC Tier I methods, and therefore 

have no MCF. 

The choice of MCF estimation method for the dairy cattle has a much larger impact 

on the combination and conventional dairy than the grazing dairy.  Using the IPCC default 

MCF, net emissions and enteric fermentation emissions from the grazing system rise 4.3 

percent and 5.4 percent, respectively, over the base case using COWPOLL results.  Net 

emissions and enteric fermentation emissions increase 15.2 percent and 24.6 percent, 

respectively, for the combination herd, and increase 18.5 percent and 35.8 percent, 

respectively, for the conventional herd, when the IPCC default emission factor is substituted 

for COWPOLL (Table 3.4). 

Feed production 

The feed production impact category accounts for 15.3 percent of total GWP 

emissions in the grazing system, 23.6 percent in the combination system, and 27.5 percent in 

the conventional system (Table 3.2).  The inverse relationship between enteric fermentation 

emissions and emissions from feed productions was similar to results reported elsewhere. 

The GWP emissions from the production of 1 kg of each feed used is shown (Table 

3.5).  The feed ingredient with the highest emissions per unit was roasted soybeans, with .885 

(kg CO2-eq (kg as fed)-1).  The feed with lowest emissions per unit was grass/legume 

pasture, with 0.021 (kg CO2-eq (kg dry matter)-1).   

Emissions to produce complete daily diets are compiled in Table 3.3.  Substantial 

differences in emissions are shown to exist between high-input and low-input diets.  For 

lactating cows, producing the diet for a grazing cow in summer is associated with emissions 

of 1.62 kg CO2-eq day-1, while the diet for a cow in the conventional system is associated 
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with 6.41 kg CO2-eq day-1.  These emissions are directly attributed to the cow, and are not 

calculated on a kg energy corrected milk basis.  A disparity exists for dry cows, where 1.03 

kg CO2-eq day-1 is attributed to producing feed for a grazing cow in summer, and 2.27 kg 

CO2-eq  day-1 for a combination or conventional cow during the winter. 

Net emissions from the dairy systems are very sensitive to the method used to allocate 

GWP emissions within crop processing systems that produce co-product feeds.  Economic 

allocation is assumed in the base case.  When system expansion, rather than economic 

allocation, is used with by-product feed as the functional unit, net emissions from the systems 

rise considerably.  With this change from the base case, net emissions and feed production 

emissions rise by 4.3 percent and 21.4 percent, respectively, for the grazing system, 25.3 

percent and 76.7 percent respectively, for the combination system, and 29.5 percent and 80.8 

percent for the conventional system (Table 3.6).   

Net emissions are very insensitive to changes in the assumed number of days grazing 

(Table 3.7).  Net emissions have a sensitivity of -0.022 and 0.014, for the grazing and 

combination systems, respectively, measured in percent change in emissions per percent 

change in assumed days grazing.  Feed production emissions decrease slightly with 

additional days grazing, but these reductions are offset by increases in enteric fermentation 

and manure management emissions, resulting in a slight increase in emissions for the grazing 

system, and a slight increase in emissions from the combination system. 

Manure management 

Emissions from manure management are very similar among the three systems tested 

per kg ECM.  Emissions from manure management account for 25.9 percent of total 

emissions from the grazing system, 25.0 percent from the combination system, and 25.3 

percent of the conventional system (Table 3.2).  While emissions from manure management, 

accounting for the fertilizer credit, are nearly equal, manure management in the three dairy 

systems differs significantly on the species of gases emitted from manure management.  The 

grazing system derives 65.0 percent of the manure management GWP emissions from nitrous 

oxide (N2O), largely due to nitrogen in manure excreted to pasture, with the balance emitted 
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as CH4 (Table 3.8).  The combination system emits 62.0 percent N2O and 38.0 percent CH4.  

GWP emissions due to manure management from the conventional system are 63.0 percent 

CH4, with the balance emitted as N2O.  Manure management emissions offset by avoided 

fertilizer production total 5.0 percent for the grazing system, 6.0 percent for the combination 

system, and 8.8 percent for the conventional system (Table 3.9). 

Net emissions from the dairy systems are estimated using an alternate manure 

management system, using IPCC Tier II default values for an anaerobic digester manure 

management system.  The result is a 29.1 percent reduction in overall emissions, and a 13.3 

percent reduction in manure management emission within the grazing system.  These 

reductions were 13.2 percent and 31.5 percent for net emissions and manure management 

emissions, respectively, and for the conventional system, 23.5 percent and 76.3 percent 

(Table 3.10).  The conventional system benefits much more from an anaerobic digester 

system than the other systems because a higher percentage of manure is captured in the 

MMS, reducing emissions more effectively and transforming the emission of methane into a 

useable stream that avoids production of natural gas. 

Co-products 

The production of co-products of meat and surplus calves in the dairy system results 

in a net reduction of emissions associated with milk production due to avoided burdens of 

producing the meat and calves in another system.  Emissions avoided by producing these 

products within the dairy system equals 34.7 percent of total emissions for the grazing 

system, 30.9 percent for the combination system, and 27.0 percent for the conventional 

system (Table 3.2).  In addition to the difference in percentage of total emissions offset, the 

balance between offsets from calves and cull cow meat is different between the systems 

(Table 3.12).   

 Production of one calf in the beef cow-calf system is associated with emissions of 

2,520 kg CO2-eq (Table 3.11).  This quantity of GWP emissions is directly credited to the 

dairy production system for every calf produced that is not needed to replace cows that are 

currently milking or dry.  Due to calving and replacement rate assumptions made in this 
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study, resources for 1.33 beef cow-years are needed to produce one calf available to be 

grown in a feedlot system.  Production of meat in a beef production system is associated with 

emissions of 14.2 kg CO2-eq per kg of dressed weight (Table 3.11).   

Net emissions calculated from each dairy system are sensitive to the assumption that 

co-products produced directly offset production in other systems.  Sensitivity to the calf 

equivalency and meat equivalency are -0.338 and, -0.115, respectively, for the grazing 

system, -0.250 and -0.136, respectively, for the combination system, and -0.181 and -0.143, 

respectively, for the conventional system, measured in change in net emissions per percent 

change in the variable (Table 3.7).   

Sensitivities 

Many input variables in this analysis are tested to determine net emission sensitivity, 

as discussed in each emissions category.  Additional variables were tested and are presented 

in Table 3.7.  Net emissions are most sensitive to the interval between calving in each dairy 

system, as reported by the USDA Dairy 2007 report (USDA, 2007).  The grazing dairy 

system has a sensitivity of 0.338, the combination system, 0.360, and the conventional 

system, 0.303, measured in percentage change in net emissions per percentage change in the 

variable.  Testing the sensitivity of this variable did not include accounting for milk 

production effects of changing the interval between calving. 

The emissions categories as discussed above are recalculated and displayed in Table 

3.13 on a net emissions basis to determine the sensitivity of net emissions to direct changes 

in emissions in each of these categories.  Of the impact categories, enteric fermentation has 

the most influential effect on net emissions, with a sensitivity of 0.767 for the grazing 

system, 0.618 for the combination system, and 0.519 for the conventional system, measured 

in percentage change in net emissions per percentage change in the variable.  Net emissions 

of all three systems are also sensitive to feed production and manure management emissions 

changes, with the conventional system most sensitive to feed production, and all the systems 

nearly equally sensitive to manure management emissions. 
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Default emissions factors used from IPCC literature was tested for sensitivity as well 

to find their effect on net emissions (Table 3.14).  The Tier I emission factor for enteric 

fermentation from beef cattle was found to have strong influence on net emissions in all three 

systems.  This sensitivity is larger than many of the variables in the dairy system that may be 

paths to reducing emissions.  

The methane conversion factor for the manure management system in the 

conventional system also has a large influence on net emissions in the base case.  The 

influence of this factor is almost completely eliminated, however, in the test case with an 

anaerobic digester system, as all methane is assumed to be captured, and the amount of 

methane converted influences only the avoided production of natural gas, which is a very 

small part of the impact of the system. 

Land use and carbon prices 

Land use for feed production in each system is calculated in Table 3.15.  Total and 

net land use are 1.46 m2/kg ECM and 0.326 m2/kg ECM, respectively for the grazing system, 

1.22 and 0.210 m2/kg ECM for the combination system, and 1.13 and 0.314 m2/kg ECM for 

the conventional system.  These values reveal a considerable offset of land use due to 

avoided production of co-products in other systems.  The use of arable land and 

pasture/meadow varies considerably between systems per kg ECM, with the grazing system 

using less arable land and greater pasture/meadow.  Land use per cow-year is also presented 

in Table 3.15.  Differences in land use per cow-year are exacerbated by differing levels of 

production in the three dairy systems.  A cow in the grazing system occupies slightly less 

land than a cow in the conventional system, but produces much less milk.   

The possible value of carbon credits over the next 25 years, as predicted by Paltsev et 

al. (2007) is presented in Table 3.16.  Combining these prices with predicted net CO2-

equivalent emissions from each dairy system in this study, the possible value of carbon 

credits needed to offset production of one kg ECM is extremely small.  However, after 

inflating to a hundredweight, as milk is sold in the U.S., climate regulation could have 

economic impacts of $1.77-1.92 per hundredweight of milk for these dairy systems. 
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Figure 3.1  Global warming potential emissions for dairy systems in this study with results separated by emitted gas  
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Table 3.1  Emission and conversion factors used to calculate emissions from manure management 
systems* 
Manure 
Management 
System 

Usagea 
CH4 

emissions 
factorb 

N loss from MMS 
(volatilization of  

N-NH3 and N-NOx) 

N Loss 
from MMS 
(leaching) 

Total N 
loss from 

MMS 

Direct N2O emission 
factor 

(kg N2O-N (kg N)-1) 

Lagoon 16.8% 66.0% 35% 42% 77% - 

Liquid/slurry 30.3% 17.0% 40% - 40% 0.005 

Solid storage 29.5% 2.0% 30% 10% 40% 0.005 

Daily spread 20.6% 0.1% 7% 15% 22% - 

Other (pit storage) 2.9% 17.0% 28% - 28% 0.002 

Weighted average  17.4% 29.1% 13.1% 42.2% 0.003 
* All values used in the model are weighted average values as calculated here.  All dairy systems are assumed 
to use the same mix of manure management systems, though systems that include grazing will deposit some 
percentage of manure directly to pasture, the emissions of which are calculated separately. 
a Percent of  usage in North American dairy systems, after factoring out Pasture/Range/Paddock (IPCC, 2006a) 
b System-specific methane conversion factor (MCF) that reflects the portion of theoretically potential methane 
conversion (Bo) that is achieved 
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Table 3.2  Quantity and classification of global warming potential emissions per kg energy corrected 
milk, measured in kg CO2-equivalent, using the IPCC 100 year characterizations (IPCC, 2006a) 

  Graz Graz/Conv Conv 

Total Emissions (No Allocation) 1.04 1.07 1.02 

   Enteric Fermentationa 0.523 0.455 0.385 

   Manure Managementb 0.269 0.267 0.258 

   Feed Productionc 0.159 0.253 0.281 

   Energyd 0.092 0.092 0.092 

   Co-Product Credite -0.361 -0.331 -0.275 

Net Emissions (System Expansion) 0.681 0.736 0.742 

Enteric Fermentationf 50.3% 42.5% 37.7% 

Manure Managementf 25.9% 25.0% 25.3% 

Feed Productionf 15.3% 23.6% 27.5% 

Energyf 8.9% 8.6% 9.0% 

Co-Product Creditf -34.7% -30.9% -27.0% 
a Calculated using COWPOLL enteric fermentation emission estimation method (Kebreab et al, 2004)  
b Emissions calculated according to IPCC (2006a), and includes reduction in emissions from avoided  
   production of fertilizer due to nutrient value of manure, subject to losses outlined in IPCC (2006a). 
c By-product feed ingredients are allocated using economic allocation.  Transportation distances for processed  
   feed ingredients are derived from Gervais and Baumel (1996) and the USLCI database (National Renewable  
   Energy Laboratory, Golden, CO).   
d  Energy use derived from the energy audit of Iowa dairy production (Ensave, 2008), Ozkan (1985), and the  
   United States Department of Agriculture Energy Consumption Awareness Tool  
   (http://ahat.sc.egov.usda.gov/Dairy.aspx).   
e By-products of the diary system offset beef and calves modeled in this study using assumptions from Pelletier,  
   et al. (in press). 
f Percentages are calculated using total emissions as the denominator
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Table 3.3  Global warming potential emissions from production and digestions of daily diets fed to cattle 
    Enteric fermentation  Production  Manure management 

 
Dairy 
system 

Diet 

Gross 
energy 
contenta 

(MJ) 

IPCC 
CH4

b 
(kg day-1) 

COWPOLLc 
CH4 

(kg day-1) 

COWPOLL 
calculated 

MCFd 
 

Total emissions 
(kg CO2-eq  

day-1) 
 

Volatile 
solidse 

(kg day-1) 

N excretionf 

(kg day-1) 

Lactating 
cows 

Grazing 
Summer 337 0.393 0.385 6.36%  1.62  5.216 0.527 
Winter 337 0.393 0.385 6.36%  3.20  5.264 0.408 

Graz/Conv 
Summer 371 0.433 0.379 5.68%  3.97  5.971 0.521 

Winter 381 0.445 0.322 4.70%  5.25  6.713 0.466 

Conv  415 0.485 0.346 4.63%  6.41  7.439 0.537 

Dry cows 

Grazing 
Summer 240 0.280 0.300 6.96%  1.03  3.103 0.410 

Winter 240 0.280 0.300 6.87%  1.49  3.130 0.330 

Graz/Conv 
Summer 244 0.285 0.299 6.84%  1.01  3.654 0.369 
Winter 240 0.280 0.240 5.56%  2.27  5.109 0.290 

Conv  240 0.280 0.240 5.56%  2.27  5.109 0.290 

Dairy heifers    0.201 0.157 5.07%  2.19  3.108 0.173 
Beef cows   - 0.145g - -  1.02  - - 
Beef heifers   - 0.145g - -  0.47  - - 
a Estimated by Dr. Ermias Kebreab, University of Manitoba 
b Using IPCC default MCF of 6.5 percent conversion of GE to CH4 and diet-specific GE from diets outlined in this study (IPCC, 2006a) 
c COWPOLL methodology from Kebreab et al. (2004) using diets outlined in this study 
d Calculated using diet specific GE and COWPOLL predicted CH4 emissions per day 
e Calculated using the IPCC (2006a) method and diet-specific GE and DE, IPCC default urine energy loss, Ash percentage calculated in CNCPS for the diet  
f Calculated from system-specific diet using the Cornell Net Carbohydrate and Protein System (CNCPS) 
g IPCC Tier I default value for “other cattle”
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Table 3.4  Sensitivity of net emissions and enteric fermentation emissions to the method used to calculate 
enteric fermentation, measured in kg CO2-eq (kg energy corrected milk)-1 

    Graz Graz/Conv Conv 

COWPOLL (Kebreab et al., 2004) Net emissions 0.681 0.736 0.742 

  Total enteric fermentation emissionsa 0.523 0.455 0.385 

IPCC (IPCC, 2006a) Net Emissions 0.710 0.848 0.879 

  Total enteric fermentation emissionsa 0.551 0.567 0.523 

Net emissions changeb  4.3% 15.2% 18.5% 

Enteric fermentation changeb 5.4% 24.6% 35.8% 
aEmissions only from dairy animals.  Enteric fermentation calculations from the beef system were not calculated 
using COWPOLL, and are therefore not subject to this assumption. 
b Results differed based on method of estimating enteric fermentation emissions (COWPOLL and IPCC 
methods).  In this analysis, COWPOLL is the base method, and emissions calculated using COWPOLL are used 
as the denominator in calculation of sensitivity. 
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Table 3.5  Global warming potential emissions from production of individual feed ingredients included in 
the diets of cattle 

Feed 
GWP emissions         
(kg CO2-eq kg-1) 

as fed 
Notes Sources 

Grains & Residues 
Corn, grain 0.256 USLCI, removed carbon uptake by 

plant, replaced "dummy process” of  
K fertilizer with production process 
copied from  LCA Food DK database, 
updated with U.S. Energy.  Updated 
herbicide/pesticide dummy 
production process with energy 
assumptions from West and Marland 
(2002)   

West and Marland (2002)  

Corn silage 0.072 Updated Corn, Grain process above 
with fertilizer recommendations 
(percentage change from corn 
following corn) and yield for same 
years as USLCI data (1998-2000) 

Iowa State University 
(2009); NASS (2009) 

Soybean, grain 0.840 USLCI, removed carbon uptake by 
plant, replaced "dummy process” of  
K fertilizer with production process 
copied from  LCA Food DK database, 
updated with U.S. Energy.  Updated 
herbicide/pesticide dummy 
production process with energy 
assumptions from West and Marland 
(2002)   

  

Roasted soybeans 0.885 Soybean grain processed according to 
documentation provided by Dietz-
Wetzl equipment manufacturing 
company 

www.Dietz-Wetzl.com 
(2009) 

Wheat straw  
(Energy Alloc)a 

0.173 USLCI, adjusted allocation between 
grain/straw (Originally 100%, 0%) to 
reflect energetic value of each product 
(58% grain, 42% straw). 

Sauvant (2001); Brian 
Lang, Iowa State 
University Extension, pers. 
comm.  

Wheat straw  
(USLCI default alloc)d 

0.000 USLCI without modification, assumes 
entire burden of crop is borne by 
grain production 

  

Byproducts 

Dry distillers grains 
(Econ Alloc)b 

0.296 Dry mill ethanol process, allocated 
impacts between DDG and ethanol 
using 5 year average ethanol price of 
$2.20 and  $115/ton DDG, and yields 
as reported in literature. 

Shapouri et al. (1995); 
Futures.tradingcharts.com 
(2009); CARD (2009) 

Dry distillers grains  
(Sys Exp)cd 

1.620 Dry mill ethanol process as reported in 
literature, system expansion with 
ethanol offsetting gasoline production 
at energetic equivalent 

Shapouri et al. (1995) 
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Table 3.5  (Continued) 

Feed 
GWP emissions         
(kg CO2-eq kg-1) 

as fed 
Notes Sources 

Corn gluten feed  
(Econ Alloc)b 

0.432 Wet mill ethanol process, allocated 
impacts between ethanol, corn gluten 
feed, and corn oil using 5 year average 
prices of $2.20/gallon,  $231/ton corn 
gluten meal, $96/ton corn gluten feed, 
and $.37/lb corn oil, and yields as 
reported in literature. 

Wang (1999); GREET 
(Argonne National 
Laboratory – Argonne, 
IL); Renouf et al. (2008);  
Futures.tradingcharts.com 
(2009); CARD (2009) 

Corn Gluten feed    
(Sys Exp)cd 

1.060 Wet mill ethanol process, system 
expansion with ethanol offsetting 
gasoline production at energetic 
equivalent, unrefined corn oil 
offsetting palm oil on mass basis, and 
corn gluten meal offsetting soybean 
meal on mass basis. 

 Wang (1999); GREET 
(Argonne National 
Laboratory – Argonne, 
IL); Renouf et al. (2008) 

Soybean meal  
(Econ Alloc)b 

0.660 LCAFood DK database, replaced 
European/Danish energy processes 
with U.S. soybean grain input, U.S. 
energy mix, and U.S. Transportation 
assumptions.  Oil yield offsets USLCI 
crude palm oil. 

Gervais and Baumel 
(1996) 

Soybean meal  
(Sys Exp)cd 

0.703 LCAFood DK database, uses replaced 
European/Danish energy processes 
with U.S. energy mix, soybean grain 
input, U.S. energy mix, and U.S. 
Transportation assumptions.  Oil yield 
offsets USLCI crude palm oil. 

Gervais and Baumel 
(1996) 

Soy hulls 0.660 Assumed to be same impact as 
soybean meal - both co-products of 
soybean processing, and soy hulls 
generally included in soy meal unless 
fiber content limit is reached. 

Ohio State University 
(2009) 

Forages 
Grass-legume pasture 
(Dry Matter) e 

0.021 Yield from NASS, establishment inputs 
detailed in ISU Extension AG-96, stand 
assumed to last 4 years. 

Iowa State University 
(2001);  Iowa State 
University (2008) 

Grass hay 0.104 Yield from NASS, establishment and 
fertilizer inputs detailed in ISU 
Extension AG-96, stand assumed to last 
4 years 

Iowa State University 
(2001);  Iowa State 
University (2008) 

Alfalfa hay 0.042 Establishment inputs and fertilizer, and 
fuel use for harvesting as detailed in 
Extension publications 

Iowa State University 
(2001);  Iowa State 
University (2008); 
Kopecky et al. (2008); 
Schulte and Kelling 
(2009) 



59 

 

 

 

 

Table 3.5  (Continued) 

Feed 
GWP emissions         
(kg CO2-eq kg-1) 

as fed 
Notes Sources 

Alfalfa haylage 0.028 Establishment inputs and fertilizer, and 
fuel use for harvesting as detailed in 
Extension publications,   

Iowa State University 
(2008);  Iowa State 
University (2001); 
Kopecky et al. (2008); 
Schulte and Kelling 
(2009) 

Manufactured Products 
Corn Syrup 0.285 Dry matter basis impact same as sugar 

(USLCI) 
 

a Energy Allocation - Impacts of production are allocated by the relative mass and energy content per unit mass  
  of each product 
b Economic Allocation - Impacts of production are allocated by the relative mass and value per unit mass of  
  each product 
c System Expansion - Impacts of production are allocated by system expansion, using the listed feed as the  
  functional unit 
d Was not used in the analysis - used for comparison of allocation method only 
e Dry Matter basis 
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Table 3.6  Sensitivity of net emissions to the allocation method used to account for impacts of by-product 
feed production.  Emission units are  CO2-eq (kg energy corrected milk)-1 

   Graz Graz/Conv Conv 

Economic Allocation Net emissions 0.681 0.736 0.742 

  Feed production emissions 0.159 0.253 0.281 

System Expansion Net emissions 0.710 0.922 0.961 

  Feed production emissions 0.193 0.447 0.508 

Net emissions change  4.3% 25.3% 29.5% 

Feed emissions Change  21.4% 76.7% 80.8% 

 
 
 
Table 3.7  Sensitivity of net emissions to change in the given parameter in each dairy system.  Unit of 
measurement is percentage change in net emissions per one percent change in the variable. 

  Graz Graz/Conv Conv 

Interval between calving 0.338 0.360 0.303 

Dairy calf equivalency with beef calves -0.338 -0.250 -0.181 

Cull cow meat equivalency with feedlot beef -0.115 -0.136 -0.143 

Culling Rate 0.117 0.129 0.115 

Mortality Rate 0.059 0.068 0.074 

Number of days grazing per year -0.022 0.014 - 
 
 
 
Table 3.8  Percentage contribution of methane (CH4) and nitrous oxide (N2O) to total global warming 
potential emissions from manure management (MM).   Emission units are  CO2-eq (kg energy corrected 
milk) -1 
 Graz Graz/Conv Conv 

Total MM emissions (no fertilizer offset) 0.283 0.283 0.284 

Nitrous Oxide (N20) 0.184 0.176 0.105 

Methane (CH4) 0.099 0.108 0.179 

Nitrous Oxide 65.0% 62.0% 37.0% 

Methane 35.0% 38.0% 63.0% 
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Table 3.9  Emission offset of manure management due to fertilizer value of manure and, therefore, 
avoided production of synthetic fertilizer.  Emission units are CO2-eq (kg energy corrected milk)-1 
 Graz Graz/Conv Conv 

Manure management emissions (no fertilizer credit) 0.283 0.284 0.283 

     N Fertilizer credit -0.013 -0.015 -0.023 

     P Fertilizer credit -0.001 -0.001 -0.001 

     K Fertilizer credit -0.000 -0.000 -0.001 

Net manure emissions (with fertilizer credit) 0.269 0.267 0.258 
    

Fertilizer credit of manure emissions -5.0% -6.0% -8.8% 

 
 
 
Table 3.10  Sensitivity of manure management emissions to changing manure management system to 
anaerobic digester*, using IPCC default emission factors.  Emission units are CO2-eq (kg energy 
corrected milk)-1 

    Graz Graz/Conv Conv 

Weighted average MMS Net emissions 0.681 0.736 0.742 

  Manure management emissions 0.269 0.267 0.258 

Anaerobic digester Net emissions 0.588 0.635 0.561 

  Manure management emissions 0.191 0.183 0.061 

 Avoided natural gas production -0.009 -0.009 -0.016 

Net emissions change  -13.7% -13.7% -24.4% 

Manure management emissions change -29.1% -31.5% -76.3% 
* This calculation assumes that all manure handled in a manure management system is handled in an anaerobic 
digester designed to capture and utilize the methane.  Nutrient losses and emissions of other gasses are 
calculated according to default emission factors and system-specific activity data as outlined in IPCC (2006a).  
A 100 percent capture of methane is assumed.  35 percent of the energetic value of the captured gas is assumed 
to be used in the digester, and 65 percent is assumed to offset natural gas production. 
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Table 3.11  Emissions associated with beef feedlot and cow-calf production system modeled in this study 
according to assumptions developed in Pelletier et al. (in press).  Emission units are kg CO2-eq per unit 
specified in each column 

  
Beefa  

(kg dressed weight)-1 
Beef cow  

(yr-1) 
Beef heiferb  

(yr-1) 
Beef calfc 

Total emissions 14.2 2,320 1,830 2,520 

     Beef calf 6.66 - - - 

     Enteric fermentation 4.08 1,220 1,220 - 

     Feed production 2.43 374 170 - 

     Manure management 1.03 450 396 - 

     Energy 0.03 8 12 - 

     Beef heifer - 270 - - 

     Cull meat offset - -426d - - 

Net Emissions n/a 1,890 n/a n/a 

Beef calf 46.9% - - - 

Enteric fermentation 28.7% 52.6% 66.7% - 

Feed production 17.1% 16.1% 9.3% - 

Manure management 7.3% 19.4% 21.6% - 

Energy 0.2% 0.3% 0.7% - 

Beef heifer - 11.6% - - 

Cull meat offset - -18.4% - - 
a Meat produced in a beef feedlot system; all assumptions from Pelletier et al. (in press) 
   Dressed weight assumed to be 62 percent of live weight for meat-type animals (Iowa State University, 2005) 
b Emissions from heifers as calculated here includes only the emissions relating to the maintenance and growth  
   of  the animal during one year.  Emissions associated with the calf that becomes a heifer and emissions after   
   the first calving are calculated with the calf and cow. 
c Calf at birth, for comparison to surplus dairy calves that are exported from the dairy system 48 hours after  
   birth.  1.33 beef cow-years are required to produce 1 calf for export to the beef feedlot system due to death  
   loss and retention of heifers to replace cows. 
d Dressed weight of 440 lbs, at 55 percent dressed weight yield from live weight (Pelletier et al, in press; Rob  
   Petersohn, pers. comm.) 
 
 
 
Table 3.12  Percentage of total emissions offset by avoided production of beef calves and beef from a 
feedlot production system.  Emission units are  CO2-eq (kg energy corrected milk)-1 

  Graz Graz/Conv Conv 

Total Emissions 1.04 1.07 1.02 

     Calf Offset -0.229 -0.185 -0.133 

     Meat Offset -0.133 -0.147 -0.142 

     Calf Offset -22.09% -17.3% -13.0% 

     Meat Offset -12.8% -13.7% -13.9% 
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Table 3.13  Sensitivity of net emissions to change directly in the emissions categories defined in this study.  
Unit of measurement is percent change in net emissions per one percent change in the variable 

  Graz Graz/Conv Conv 

Enteric Fermentation 0.767 0.618 0.519 

Feed Production 0.394 0.363 0.348 

Manure Management 0.233 0.344 0.379 

Energy 0.135 0.125 0.125 

Co-Product Credit -0.529 -0.450 -0.371 
 
 
 
Table 3.14  Sensitivity of net emissions to changes in IPCC default emissions factors and conversion 
factors used in this study 

  Graz Graz/Conv Conv 

Enteric Fermentation emission CH4 - Beef Cattle -0.317 -0.269 -0.218 

CH4 conversion factor - manure management system 0.135 0.133 0.235 

N to N2O-N conversion factor - pasture deposited manure 0.162 0.128 - 

Daily N excretion factor - beef cattle -0.106 -0.090 -0.070 

N to N2O-N conversion factor - manure handled in MMS 0.026 0.022 0.038 

Indirect N to N2O-N conversion factor - N volatilization from MMS 0.023 0.022 0.035 

Indirect N to N2O-N conversion factor - N leaching from MMS 0.009 0.005 0.011 

Manure management emission CH4 - Beef Cattle -0.006 -0.005 -0.005 

CH4 conversion factor - pasture deposited manure 0.006 0.005 - 
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Table 3.15  Direct land use in the modeled dairy systems,* measured in m2 

  Graz Graz/Conv Conv 

Total land use (per kg ECM) 1.46 1.22 1.13 

     Arable landa 0.349 0.771 0.848 

     Pasture/meadowb 1.11 0.447 0.281 

Net land use (per kg ECM) 0.326 0.210 0.314 

     Arable land 0.277 0.689 0.765 

     Pasture/meadow 0.049 -0.478 -0.450 

         Offset land use -1.13 -1.01 -.816 

Total land use (per cow-year) 10,228 9,557 10,540 

     Arable land 2,398 6,057 7.890 

     Pasture/meadow 7,830 3,500 2,650 
*This calculation is a measure of land used directly in the dairy production system for the growing of crops to 
be consumed by animals. 
a Arable land is land used for growing crops which will be fed to animals in these systems. 
b Pasture/meadow land occupation, as classified in SimaPro 7.1, is used for production of mechanically 
harvested hay and for grazed fodder.  
 
 
 
Table 3.16  Predicted value of carbon allowances needed to offset milk production in each system* 

  
Carbon price 

($/tona) 
Graz Graz/Conv Conv 

Net emissions (kg ECMb)-1   0.681 0.736 0.742 

Per kg ECM $5.00  $0.00  $0.00  $0.00  

$25.00  $0.02  $0.02  $0.02  

  $50.00  $0.04  $0.04  $0.04  

Per U.S. hundredweight of milk $5.00  $0.17  $0.18  $0.19  

$25.00  $0.85  $0.92  $0.93  

  $50.00  $1.70  $1.84  $1.86  

Per U.S. gallon of milkc $5.00  $0.01  $0.02  $0.02  

$25.00  $0.07  $0.08  $0.08  

  $50.00  $0.15  $0.16  $0.16  
* Carbon prices as predicted over the next 25 years (Paltsev et al. 2008). 
a U.S. standard ton. 
b Energy corrected milk; while milk is not purchased at retail using an energy corrected milk factor, at the 
wholesale level prices are generally based on specified components, with price adjustments for milk with higher 
component analysis. 
c Assuming 8.6 lb gallon-1 and assuming all emissions from raw milk production are allocated to retail milk.  
This accounts only for the on-farm production phase of milk production and does not account for additional 
processing or co-products that may occur before consumer delivery.  
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CHAPTER 4 DISCUSSION AND CONCLUSION 

Discussion 

The LCA model described in this thesis was designed to quantify greenhouse gas 

emissions from three dairy systems in Iowa and determine variables within each dairy system 

that could reduce emissions.  The results show that, in the base case, one system does emit 

less GWP emissions than the other systems. The possibilities for reduction in each system are 

larger than the difference between systems.  The system with the highest emissions may have 

more potential for reduction than the others.  This is possible because the conventional 

system is further from the optimum in many variables within the dairy system which leaves 

room for improvement.  The conventional systems also has a greater ability to improve 

emissions from manure management due to the fact that all of the manure produced is 

managed in a system which theoretically could capture emissions, where grazing herds 

deposit much manure to pasture, which is not easily managed. 

It was hypothesized that the dairy systems, due to their different positions on a low 

input-low output to high input-high output spectrum, would have considerably different 

sensitivities and recommended steps for reduction of GWP emissions.  The results show that 

the dairy systems are largely sensitive to the same variables, but achieving reductions in each 

system may present different challenges.  Some factors for reduction within a dairy system 

may be determined by the dairy system used but, between the systems, the theoretical steps 

that can be taken to reduce emissions in the systems are largely the same. 

 The dairy systems analyzed in this study emit fewer greenhouse gasses per unit milk 

than predicted by Phetteplace et al. (2001), which predicted emissions of 1.09 kg CO2-eq/kg 

milk, without consideration of an energy correction factor or allocation of emissions to co-

products.  The results of this study, without the ECM factor are presented in Table 4.1 for 

comparison with studies that did not use this factor.  Total emissions of the conventional 

system, after removing the ECM factor from this study, predicts emissions to be 10 percent 

below emissions predicted by Phetteplace.  Phetteplace also predicted a 12 percent difference 

in GWP emissions between conventional and intensive grazing systems, with grazing 
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systems having the lower emission.  Without considering co-product credits, this study finds 

emissions of the grazing system to be higher than the conventional system by 2.0 percent 

and, after considering co-products, emissions from the grazing system are 9.2 percent below 

the conventional system. 

The results of this study differ further from other, more recent literature.  With no 

ECM transformation, Capper et al. (2009) calculated emissions of the U.S. Dairy industry to 

be 1.35 kg CO2-eq per kg milk, focusing on conventional production.  Those results are 40.2 

percent above the non-ECM total emissions of the conventional system found in this study.  

Net emissions from Iowa dairy systems are compared to other literature results in Table 4.2. 

Emissions from production of co-products in the beef production system are 

compared to literature results in Table 4.3.  Emissions associated with calf production in the 

beef system are similar to those found in literature, though the emissions from beef 

production are considerably less than those found in dairy LCA literature.  The difference in 

results may represent true differences in production systems between European systems 

found in the literature, and the U.S.  Further research is needed on beef systems to be able to 

accurately compare the differences. 

Comparison of dairy systems and methods for emissions reduction 

The grazing system in this study emits less net greenhouse gas with lower climate 

change potential per kg energy corrected milk (ECM) than the conventional system by 9.2 

percent, and the combination system emits 0.7 percent less than the conventional system.  

Emissions differ considerably between these systems in the categories of enteric 

fermentation, feed production and co-product credits.  The differences in enteric fermentation 

and feed production largely offset due to correlation of consumption of high-energy feeds, 

which are emissions intensive to produce, but results in lower enteric fermentation emissions 

due to easy digestibility of these feeds.  The inverse of this relationship holds true as well, 

with low energy-density feeds requiring lower emissions to produce, but higher emissions to 

digest. 
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This study probes many aspects of dairy production as factors potentially affecting 

GWP emissions which had not been previously explored in detail.  The sensitivity of net 

emissions to these factors within the dairy system can provide a guide to target efforts to 

reduce global warming potential.  The improvement methods discussed here are listed with 

sensitivity in the previous chapter.  Many of these emissions-reducing strategies, if 

implemented in the beef production system as well, may not result in decreased emissions 

allocated to the milk production system.  If total emissions are reduced by a practice, and off-

set credits are reduced as well due to less emissions-intense production in the alternate 

system, the details of the reduced emission would determine if a net reduction from the milk 

production system would result.  Some of these reduction strategies may be implemented 

more easily or economically than others, but will be discussed here in order of their net 

emissions sensitivity. 

Enteric fermentation 

Sevenster and de Jong, (2008) predict that systems with high enteric fermentation will 

have lower overall GWP emissions.  The grazing system has the highest enteric fermentation 

emissions:  14.9 percent higher than the combination herd and 35.8 percent higher than the 

conventional herd.  As predicted by Sevenster and de Jong, the grazing herd also has lower 

net emissions.  In this study, the COWPOLL method predicts higher enteric fermentation per 

unit of feed energy intake for diets containing significant amounts of forage.  This finding 

agrees with other literature on GWP emissions, and also agrees with literature which 

discusses this problem in terms of other factors important in livestock rearing, such as the 

economics of losing feed energy to volatilized gases.  

Net emissions of all three systems are most sensitive to changes in emissions from 

enteric fermentation.  This emission is easily reduced in the grazing herds by substituting 

concentrated feed for forage, but the tradeoff will likely increase emissions from other 

sources.  Feed additives such as monensin have shown some promise in reducing enteric 

fermentation emissions, though effects can be short-lived or inconsistent (Odongo et al., 

2007).   
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Feed Production 

Feed production also has a significant effect on net emissions from the dairy systems, 

with net emissions from the conventional and combination systems being more sensitive to 

this variable then the grazing system.  Strategies to reduce emissions from cropping practices 

are already being recognized within carbon trading markets (CCX, 2004).  These recognized 

strategies focus on reduced tillage as a way to save fuel and prevent the oxidation of carbon 

in the soil, which would result in GWP emissions.  Results of this study indicate that N2O, 

which is not addressed by current agricultural emissions reduction schemes, is an important 

emission from cropping systems due to application of nitrogen fertilizers.  Emission of CO2 

from liming of soil is another impact not currently considered in carbon trading schemes, and 

this study suggests that this may be a considerable source of GWP.  Implementing practices 

which reduce tillage, fertilizer, and liming needs may reduce the emissions from feed 

production, and thus lower the emissions from the systems that depend on these feeds.  These 

reductions must be carefully applied as to not increase in other areas or reduce yields, which 

would have land use and cause negative greenhouse gas emission impacts. 

Manure Management 

Manure management emissions are highly dependent on the amount of manure that is 

collected in the manure management system or is deposited directly to pasture by the cattle, 

due to the large difference in conversion factors from N to N2O-N.  The avoided production 

of fertilizer due to capture of nutrients in a MMS is small in comparison to the reductions in 

CH4 and N2O achieved by directing more manure to manure management systems. 

Manure management systems have the potential to reduce GWP emissions by 

utilizing digester systems that concentrate methane into a usable stream from which heat or 

electricity can be produced, generating another co-product credit (Barker, 2001; IPCC, 

2006a).  Most of the benefit of this type of system comes from preventing the release of CH4 

into the atmosphere, rather than from the avoided production of natural gas.  Therefore, what 

is done with the gas is of little importance.  Utilizing a digester and simply flaring the 

methane is still a significant advantage over open manure systems, and this strategy avoids 
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much of the complexity of systems to capture the energetic value of the methane.  By 

assuming the relevant IPCC default emission and conversion factors for an anaerobic digester 

system and avoided production of natural gas, net emissions from the conventional system 

are predicted to be 4.6 percent less than the grazing system and 11.7 percent less than the 

combination system.  While net emissions of the grazing system are also sensitive to 

emissions from manure management, the majority of that herd’s emission result from N2O 

conversion of manure deposited to pasture.  Management strategies to reduce nitrogen 

excretion, or to prevent the conversion of N to N2O on pasture, would be more effective than 

advanced manure management systems to reduce manure management emissions from 

grazing and combination systems. 

Energy 

Net emissions are not highly sensitive to reductions in GWP emission from energy 

use, but this is one area that producers can directly reduce expenses on the dairy farm while 

improving the carbon metric as well.  Savings from energy use does not depend on carbon 

regulation, though if regulation were to happen, economic saving from these reductions 

would be even larger.  The Ensave (2007) energy audit focusing on Iowa dairy production 

presents a number of ways to reduce energy consumption, from more efficient pumps and 

electric motors to improved lighting and ventilation systems.   The Ensave audit predicts an 

electrical energy use decrease of 27 percent and payback periods from 0.6 to 4.7 years. 

Variables within dairy systems that can reduce emissions 

Interval between calving 

Interval between calving is an important management metric that has direct 

implications for the GWP emissions of a dairy system.  Net emissions from each of the three 

dairy systems are more sensitive to this metric than any other single variable.  A calving 

interval of 12 months is theoretically possible, and even claimed by some producers (Dale 

Thoreson, pers. comm.; Jerry Burkhart, Picket Fence Creamery, Elkhart, IA, pers. comm.), 

yet it is not achieved by the average dairy farm in the U.S., according to the USDA Dairy 

2007 report.  While all systems show a significant reduction in emissions with reduced 
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interval between calving, the conventional system has a greater potential for reduction 

because its performance is further from the optimum. 

Shortening the interval between calving increases fractionally the calves produced per 

year, allowing the export of more calves from the dairy system, and thus greater co-product 

credits.  Improving this metric, however, has uncertainties not modeled here, including 

changes in milk production due to reduced days of lactation in each cycle, which could 

amplify or mitigate any change in emissions.  Management practices that can reduce the 

interval between calving include better detection of heat and timely breeding practices, as 

well as chemically inducing estrus to ensure timely insemination, increasing the chance of 

pregnancy during each cycle (Penn State, 2008b). 

Calf Equivalency 

Net emissions from all three dairy systems are sensitive to equivalency of surplus 

calves from the dairy system and beef calves.  To reduce emissions from the milk product of 

dairy systems, preserving and improving the value of surplus calves to other systems should 

be a priority.  As found in literature, the major difference between Holsteins grown for beef 

and beef-type cattle grown in a feedlot is the overall feed efficiency.  Holsteins require 

additional energy for maintenance, making them consume additional feed for the same gain.   

Producing surplus calves from the dairy system that grow more efficiently in a beef 

system is one way of improving this equivalency.  One way to do this is to cross a percentage 

of Holstein heifers and cows with beef-type bulls (More O’Ferrall, 1982; Penn State, 2008a).  

The number of heifers needed to maintain a milk production system can be estimated from 

culling and mortality rate data, and using this information, a percentage of cows or heifers 

may be crossed with meat type animals to yield sufficient dairy heifers and produce surplus 

calves that are more suitable for meat production.  Further advancement of this technique 

might include using artificial insemination with sexed semen to produce sufficient 

replacement dairy heifers.  Impregnating the fewest cows necessary with dairy genetics 

allows more calves to be born as cross-bred meat-type animals (Zotto et al., 2009).  

Depending on the breed, these cross-bred animals may gain muscle faster and with greater 
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feed efficiency, leading to lower emissions per unit of meat produced.  Greater equivalency 

between surplus calves from the dairy system and calves from a beef cow-calf system would 

result, generating a larger co-product credit and reducing the emissions from the milk product 

in a dairy system. 

Meat Equivalency 

Unlike calf equivalency, the equivalency of cull cow meat with beef from a feedlot 

system does not depend on circumstances after culling.   The condition of the cow and the 

resulting meat determine if it is able to offset production in a beef feedlot system.  Research 

shows that timing of culling can have a considerable effect on the quality of meat produced 

from a cull cow (AARD, 2000).   Culling directly after weaning a calf or directly after heavy 

lactation can leave a cow extremely lean, reducing the dressing percentage and quality of the 

meat.  If cull cows are fattened for 60 days prior to slaughter, their dressing percentage and 

quality of meat yielded will likely increase (AARD, 2000).  Feeding for this period of time 

would give rise to additional emissions not modeled here, but may be an efficient method of 

reducing the allocated emissions from milk production by maintaining or improving the co-

product offset.  Additionally, injection site lesions and bruising are particular problems with 

cull cows, reducing the marketable carcass yield of the animal.  Fattening the cow can help 

reduce bruising during shipment to a slaughter facility and careful application of injections 

will improve the value and marketability of a cull cow carcass (Thrift, 2000). 

Culling Rate 

Culling rate differs more between the studied dairy systems than other factors that 

considerably affect emissions.  Culling rate is a choice made by the manager of the herd, but 

is also influenced by the dairy system being used (Dale Thoreson, pers. comm.).  Cows in 

conventional systems that spend most of their lives on concrete floors may develop leg 

problems sooner than those that spend a substantial amount of time on pasture or other 

surfaces more amiable to hooves (Hernandez-Mendo et al., 2007).  Cows that can no longer 

walk, termed “downer cows,” are not permitted to be slaughtered for human consumption, 

and therefore are much less valuable.  The economic reality is that systems that are less able 
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to prevent leg problems in cows must cull more to prevent losses due to downer cattle, with 

implications for GWP emissions (Dale Thoreson, pers. comm.).  There are many factors that 

go into the decision to cull a cow, including economics, health and diseases, and production.  

Higher culling rates cause higher GWP emissions, and if these emissions become an 

important part of decision-making on the dairy farm, culling rates may be a variable that can 

be adjusted to reduce emissions.  Culling rate and mortality rate impact this model 

differently, as culling leads to a co-product of meat, where mortality contributes only to 

calculations of needed replacement heifers.  While absolute reductions in mortality will 

reduce emissions more effectively than absolute reductions in culling rate, percentage 

reductions in mortality will be less effective than percentage decreases in culling rate because 

mortality rates are much less than culling rates, and therefore bear on emissions less. 

Uncertainty and future research 

IPCC default values used to calculate many emissions in this and prior LCAs are 

subject to a large amount of uncertainty.  Some emission factors, such as direct conversion of 

N in manure deposited to pasture to N2O-N, have large uncertainty ranges and considerable 

impact on the results of this study.  This conversion factor is not directly observable or 

controllable by a dairy production system.  Other values, such as the CH4 conversion factor 

for manure management systems, have considerable impact, and are highly determined by 

the system used, which is a management choice.  Some of the net emissions sensitivities to 

assumed conversion factors are larger than sensitivity to factors directly controlled by 

management.  This casts some doubt on the recommended reduction strategies with lower 

sensitivity values.  Future research should attempt to reduce the uncertainty and sensitivity 

associated with IPCC default factors. 

This analysis attempted to reduce uncertainty in the assumptions with the greatest net 

emissions sensitivity by using the COWPOLL enteric fermentation estimation method.  The 

IPCC default enteric fermentation emission factor of 6.5 percent carries an uncertainty of ±1 

percent.  No comparable uncertainty statistic can be found for the COWPOLL model, but it 

does produce results that take into account the digestibility of the feeds.  This important 



73 

 

 

 

 

consideration is extremely important when comparing feeding systems with varying feed 

types.  Future research should use advanced tools such as COWPOLL when doing so will 

likely more accurately distinguish impacts in the modeled systems. 

 Many assumptions in agricultural systems have uncertainty due to weather 

conditions, and modeling a system in an extreme environment would introduce uncertainty 

beyond the norm.  The IPCC default emissions factors for manure management, for example, 

are estimated for the average annual temperature of the area being studied, from 10°C to 

28°C.  Iowa’s average temperature of 9.2°C, for example, is near, but below the lowest 

estimated category in IPCC methodology.  This adds uncertainty to those factors that use 

temperature as an input, and in addition, having a climate far from the mean of the climates 

modeled may add uncertainty to variables that are affected by temperature, but have no 

temperature scaling available in the IPCC default emission factors.  Analysis of systems in 

colder climates needs further development of emission factors and methods to more 

accurately assess impacts. 

The sensitivity of net emissions to the method used to allocate emissions of co-

product feed inputs raises questions of why such discrepancy exists, and adds uncertainty to 

this analysis.  The production of these feed ingredients were analyzed using economics 

allocation instead of system expansion, because preliminary results using system expansion 

showed extremely high emissions from the production of these products that was seemingly 

unwarranted.  Using system expansion, all inefficiencies of the production system are 

concentrated on one product.   Generally, this allocation avoidance method is used when 

evaluating the main product of a process, and co-products generally have close substitutes.  

In the case of by-product feed ingredients, the co-products did not have close substitutes.  For 

example, in a system expansion analysis of dry distillers grain, ethanol is a co-product and is 

assumed to displace gasoline on an energetic equivalence basis.  These production processes 

are vastly different, and concentrating all of the inefficiencies in the ethanol production 

process on one by-product leads to extremely high emissions associated with the by-product 

feeds.  These inefficiencies and emissions must be accounted for in one system or another if 

the goal is lowering overall emissions, but to almost double emissions from feed production 
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by including these feed ingredients with system expansion does not serve this analysis well.  

Production of inputs to the farming system needs to be allocated in a way that does not create 

extreme distortion, or these feeds should be substituted for another feed ingredient that is not 

subject to this uncertainty. 

Land Use  

Before consideration of co-products, the dairy systems occupy land as predicted 

considering the intensive nature of land use of the conventional system, and more extensive 

nature of land use in the combination and grazing herds.  According to this study, the grazing 

system uses 29 percent more total land than the conventional system, with the combination 

system using an intermediate value.  The grazing system, however, uses less than half of the 

arable land needed to support the conventional dairy.  A majority of the land needed by the 

combination dairy is arable land as well.   

The production of beef calves and beef from feedlot systems uses land as well, and as 

the production of these calves are avoided, land use is offset.  With consideration of co-

products, the grazing system still uses more total land than the other systems, and the 

conventional and combination systems result in a net offset of pasture/meadow usage.  The 

total land offset is in line with expectations; since the grazing system has a larger offset of 

GWP due to co-products, it is not surprising that this is also the case for land use.  An 

interesting result, however, is that after co-product consideration, the combination system 

uses the least amount of land by a considerable margin.  A combination of factors contributes 

to this unexpected result.  The land use values without allocation are closer to those of the 

conventional system, while the offset of land is closer to that of the grazing system.  In this 

balance, the milk product of the combination system carries a burden of land use 33-35 

percent below the other systems. 

Land use is an important factor in the placement of these different systems of dairies.  

The arable land supporting these dairies may be placed far from the cows, while the grazing 

system requires fodder production immediately adjoining the housing system.  Highly 

perishable products such as milk are expensive to transport, and conventional dairy 
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production systems are generally located with more regard to the consumers than the sources 

of agricultural commodity inputs.  If research of this type recommended that production 

systems needed to change type instead of making improvements, land use issues of locating 

dairies close enough to consumers would be a major problem.  The recommendations made 

in this study for reduction of greenhouse gas emissions avoid creating these large scale land 

use questions and problems. 

Carbon regulation and pricing 

If greenhouse gas emissions are to come under regulation, cap and trade systems are 

likely to be used to allocate emissions of global warming potential (Paltsev et al., 2007).  If 

this happens, the CO2-eqivalent from systems such as those analyzed here will begin to bear 

on the economics of the production system.   LCA is likely not the most appropriate tool to 

directly assess a tax or other penalty onto a production system for its GWP emissions due to 

issues of double-counting.  Penalties for emissions from fuel and energy consumption may be 

assessed upstream of the dairy production system, and other products may incorporate 

economic costs of regulation into their prices.  Adding a penalty for the full life-cycle 

emissions of a system, then, would be double counting for those penalties that are already 

priced in. 

However, LCA can predict the total amount of GWP emissions from a system, which 

can be assessed a value, and the total economic burden may be predicted for the system.  

According to Paltsev, et al. (2007), CO2-equivalent GWP emissions are predicted to be 

traded for a maximum of $50 per ton in the next 25 years.  Using this maximum carbon 

emissions price and net emissions from milk production calculated in this study, an economic 

burden of $1.70 per hundredweight of milk produced would be placed on the grazing system, 

$1.84 on the combination system, and $1.86 for the conventional system.  The five-year 

average milk price in the U.S. is $14.40 per hundredweight, making this burden 12-13 

percent of the selling price of milk if time and inflation are ignored. 
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Conclusion 

As these Iowa dairy systems exist today, emissions differ between systems by less 

than 10 percent.  With ample practical and effective ways to reduce emissions within each 

system, it cannot be suggested from these results that production should shift to one model 

over another.  However, it can be concluded that the conventional system is further than the 

grazing system from optimum values that would decrease greenhouse gas emissions.  On the 

other hand, the conventional system may have more potential for reductions due to its highly 

controlled environment, which allows for precise control of many variables and resources.  

The environment that creates this precise control, however, may have implications for the 

longevity and fertility of cattle that prevents reduction of emissions from reduced culling, 

mortality, or interval between calving. 

Furthering the development of sustainable agriculture systems includes reforming the 

systems of today for the coming regulatory, social, and climatic conditions.   Research shows 

that global warming may have many different effects on agriculture, but a visible effect today 

is the attention being paid to greenhouse gas emissions from many sources.  Regulation of 

these emissions may be implemented in the foreseeable future, and producers need to have 

research to use in improving their production systems to a new regulatory environment. 

Development and implementation of practices to directly reduce emissions from 

enteric fermentation, manure management, and feed production categories should be a 

priority for research and experimental dairies.  In addition, research to find paths to improve 

variables such as interval between calving and beef calf equivalency within dairies will be 

important to allow the greatest production of co-products and greatest reduction of emissions.  

There are substantial tradeoffs to be made on some of these factors, such as those between 

feed production and enteric fermentation, but a life cycle approach to reducing emissions 

should be continued as it allows these tradeoffs to be fully accounted for. 

It has been said that ruminants are necessary in agriculture, to the extent that they can 

utilize non-tillable acres and convert carbohydrate energy from sources not edible to humans 

into protein that is highly valued for human consumption (Peters et al., 2007).  Dairy 

production in Iowa and the U.S. is utilizing ruminants well beyond this threshold, using crops 
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grown on acres that could be supporting human food consumption directly.  While there is no 

implicit problem associated with this trend, in order to feed ourselves sustainably, we must 

continually analyze agricultural systems from many different angles to reduce environmental 

impacts and find those systems that create greater benefits to society than costs.  Climate 

change emissions is one of the newest lenses through which agriculture and animal 

production must be analyzed, and how society chooses to react to the evidence presented on 

climate change will carry important implications for how we eat in the future. 
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Table 4.1  Results of this study with and without the energy corrected milk (ECM) factor 

  
No Allocation  

(total emissions) 
 System Expansion  

(net emissions) 

  Graz Graz/Conv Conv  Graz Graz/Conv Conv 

With ECM factora 1.04 1.07 1.02  0.681 0.736 0.742 

Non-ECM 0.98 1.01 0.96  0.644 0.695 0.700 
a Using the ECM factor defined in Sjaunja et al. (1990) and average Iowa milk analyzed at 3.7 percent fat and  
   3.0 percent protein.  This yields an ECM factor of .944
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Table 4.2  Comparison of results of this study to others in literature 

 Allocation Method Allocation Herd 
Emissions 

kg CO2-eq (kg ECM)-1 a 
    Milk Co-Products  Milk Co-Products 

Current Study System Expansion 
65% 35% Grazing 0.681 0.361 
69% 31% Combination 0.736 0.331 
73% 27% Conventional 0.742 0.275 

Arsenault et al. (2009) Biological 68% 32% 
Grazing 0.686b 0.323b 

Conventional 0.698b 0.329b 

Capper et al. (2009) None 100% - 
Year 2007 1.35b  
Year 1944 3.66b  

Casey and Holden (2005a) 
None 100% -   1.50 - 
Mass  97% 3%   1.45 0.051 
Economic  85% 15%   1.30 0.229 

Casey and Holden (2005b) None 100% - 
Lowest emissions 0.92 - 
Average (11 herds) 1.14 - 
Highest emissions 1.51 - 

Cederberg and Mattsson (2000) Biological 85% 15% 
Organic 0.98c 0.173c 

Conventional 1.08c 0.191c 

Cederberg and Stadig (2003) 

None 100% -   1.05 - 
Economic  92% 8%   0.97 0.084 
Biological 85% 15%   0.89 0.158 
System Expansion 63%d 37%d   0.66 0.389 

Haas et al. (2001) None 100% - 
Extensive 1.00b - 
Intensive 1.30b - 
Organic 1.30b - 

Hospido et al. (2003) Economic 87% 13%   0.730d 0.109d 

Phetteplace et al. (2001) None 100% - 
Conventional 1.09b - 
Intensive grazing      0.959b e - 

Thomassen et al. (2008a) 
Economic 92% 8%   1.61 0.140 
Mass  96% 4%   1.56 0.070 
System Expansion 53%f 47%f   0.90 0.822 

Thomassen et al. (2008b) Economic 
90% 10% Organic 1.50 0.167 
91% 8% Conventional 1.40 0.123 
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Table 4.2  (Continued) 
a Energy Corrected Milk, as defined by Sjaunja et al. (1990) 
b Analyzed and reported on a kg of milk basis, not ECM 
c Values estimated from a graph in this publication 
d Reported on a liter basis 
e Predicted value—12 percent decrease in emissions predicted from baseline value 
f Estimated by back-calculation of allocated impacts 
 

 

 



81 

 

 

 

 

Table 4.3  Comparison of emissions from dairy system co-products found in this study and others in 
literature 
  Study kg CO2-eq (calf-1) 

Calf Production This Study 2,320a   

 Casey and Holden (2005a) 2,509a 

   

    kg CO2-eq (kg live weight)-1 

Meat Production This Study 8.80b 

 Casey & Holden (2006) 11.26b 

   

    kg CO2-eq (kg live weight)-1 
Meat production (without 
cow-calf phase) This Study 4.67b 

 Subak (1999) 7.40b 

   
a Combined results of two studies--Subak (1999) and Casey and Holden (2005a)--as discussed in Casey and   
   Holden  (2005a) 
b Results of this model are measured in kg CO2-eq/kg dressed weight.  Results scaled to live weight assuming  
  carcass weight is 62 percent of live weight (Iowa State University, 2005) 
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