
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2010

Three essays in economics of the environment
Subhra Bhattacharjee
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Economics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Bhattacharjee, Subhra, "Three essays in economics of the environment" (2010). Graduate Theses and Dissertations. 11299.
https://lib.dr.iastate.edu/etd/11299

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11299&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11299&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=lib.dr.iastate.edu%2Fetd%2F11299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11299?utm_source=lib.dr.iastate.edu%2Fetd%2F11299&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


Three essays in Economics of the Environment

by

Subhra Bhattacharjee

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Economics

Program of Study Committee:
Catherine L. Kling, Co-major Professor

Joydeep Bhattacharya, Co-major Professor
Helle Bunzel

Joseph A. Herriges
Brent Kreider

Iowa State University

Ames, Iowa

2010

Copyright c© Subhra Bhattacharjee, 2010. All rights reserved.



ii

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER 1. A KUHN-TUCKER MODEL OF MICRO-LEVEL HOUSE-

HOLD DEMAND: TEMPORAL STABILITY OF RECREATION PREF-

ERENCES USING PANEL DATA . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Kuhn-Tucker Approach and Model Specification . . . . . . . . . . . . . 4

1.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Bootstrap Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Correlation Term Constant Across Sites and Distributed Normally

with Mean Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.3 Correlation Term Not Constant Across Sites and Normally Distributed 23

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

CHAPTER 2. THE EFFECT OF THE SOURCE OF ERROR ON WEL-

FARE MEASURES IN A KUHN-TUCKER MODEL . . . . . . . . . 36

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



iii

2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Welfare Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

CHAPTER 3. GREEN CONSUMERISM AND THE POLLUTION-GROWTH

NEXUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 Competitive Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Planner’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.1 When mitigation is zero . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.2 Mitigation is positive . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Comparative Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



iv

LIST OF TABLES

Table 1.1 Summary of returns Respondents who do not visit any lake & av-

erage number of lakes visited . . . . . . . . . . . . . . . . . . . . . . 14

Table 1.2 Number of Trips to All Lakes1,2 . . . . . . . . . . . . . . . . . . . . 15

Table 1.3 Pair-wise Comparison across Years of Trips to All Lakes1 . . . . . . 16

Table 1.4 T-Statistic to Test for Pairwise Differences using Two-Year Panels 1 16

Table 1.5 T-Statistic to Test for Pairwise Differences for Full Four-year Panel 1 17

Table 1.6 Summary Statistics for Independent Variables . . . . . . . . . . . . 17

Table 1.7 Single Year Estimates of Simple Model . . . . . . . . . . . . . . . . 27

Table 1.8 Differences in Parameter Estimates across Years: 95% Confidence

Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Table 1.9 Differences in Parameter Estimates across Years: Percentage Positive 28

Table 1.10 Differences in Welfare Estimates across Years: 95% Confidence In-

tervals and Percentage Positive . . . . . . . . . . . . . . . . . . . . 28

Table 1.11 Restricted Model Estimated for Two-Year and Four-year Panels . 29

Table 1.12 Unrestricted Model Estimated for a Two-Year Panel . . . . . . . . 30

Table 1.13 Unrestricted Model Estimated with Full Four-Year Panel ui ∼ N(0, σ2
τ ) 31

Table 1.14 Likelihood Ratio Test between Restricted and Unrestricted Models 31

Table 1.15 Restricted Model Estimated for Two-Year and Four-year Panels:τij ∼

N(0, σ2
τ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



v

Table 1.16 Unrestricted Model Estimated for a Two-Year Panel:τij ∼ N(0, σ2
τ ) 33

Table 1.17 Unrestricted Model Estimated with Full Four-Year Panel::τij ∼

N(0, σ2
τ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 1.18 Likelihood Ratio Test between Restricted and Unrestricted Models

when τij ∼ N(0, σ2
τ ) . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 1.19 Year-wise Welfare Estimates in Dollars for an Improvement in Sec-

chi Depth of all Lakes to at least 5.6m:τij ∼ N(0, σ2
τ ) . . . . . . . . 35

Table 2.1 Summary Statistics for Independent Variables . . . . . . . . . . . . 45

Table 2.2 Single Year Estimates of Simple Model . . . . . . . . . . . . . . . . 52

Table 2.3 Mean CV and EV in dollars under Policy 1: Secchi Depth of all

lakes improved to at least 5.67 m . . . . . . . . . . . . . . . . . . . 52

Table 2.4 Mean CV and EV in dollars under Policy 2: Ten lakes are removed

from the choice set . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 2.5 Projected Mean Trips before and after Improvement: Policy 1 . . . 53



vi

LIST OF FIGURES

Figure 3.1 Law of Motion with a unique positive steady state . . . . . . . . . 69

Figure 3.2 Law of Motion with two positive steady states . . . . . . . . . . . . 71

Figure 3.3 Comparative Statics of the Planner and Market with respect to P̂* 79

Figure 3.4 Comparative Statics of the Planner and Market with respect to P̂*:

Planner’s Capital Equals the Market’s . . . . . . . . . . . . . . . . 83



vii

ACKNOWLEDGEMENTS

Many thanks are due to Cathy Kling for being a wonderful mentor, teacher and guide,

for the degree of her involvement in my research, for allowing me to wander off just so far in

my flights of fancy and then drawing me back gently into the realities of time and funding

constraints, for her persistent intolerance of sloppy thinking and constant encouragement.

Thank you.

Joydeep Bhattacharya advised my research, taught me how to distinguish good research

from bad, set the standards for good teaching of macroeconomics, understood my challenges

as an outsider in the USA, went out of his way to be helpful and supportive when I needed

it most and was brutally honest in his feedback when my work fell short of the mark.

Thank you ever so much!

Joe Herriges made an econometrician out of me, something I would not have thought

very likely four years ago. Many thanks are due to him for being a wonderful teacher, for

being closely involved in my research, for always being approachable (as long as I made an

appointment) and generous with his time, suggestions and insight. Thank you. Thanks are

due to Brent Kreider and Helle Bunzel for their inputs on my research and their support

and encouragement as teachers.

Many friends in Ames and outside helped, supported, coached, counseled, advised and

cheered me on through these years. Thank you, Haimanti Roy, Anindya Bhattacharya,

Luisa Menapace, Kanlaya Jintanakul, Babatunde Abidoye, Mindy Mallory, Keith Evans,



viii

Wang Min and Ofir Rubin. I don’t know what I would do without you.

Finally, but for my mother, none of this would have been possible. Trying to quantify

her contributions or even put them into words would be exercises in futility. I desist from

either. For everything she is and everything she does, I am utterly grateful.



1

CHAPTER 1. A KUHN-TUCKER MODEL OF MICRO-LEVEL

HOUSEHOLD DEMAND: TEMPORAL STABILITY OF

RECREATION PREFERENCES USING PANEL DATA

1.1 Introduction

Recreation demand models are one of the primary tools of trade for environmen-

tal economists seeking to estimate welfare changes from improved environmental quality.

These estimates are used in benefit-cost analysis and evaluation of policy that affects en-

vironmental amenities. Recreational usage provides one way to measure the use value of

environmental amenities and thus allows us to capture welfare changes through changes

in usage when the quality of an environmental amenity changes. The data collected for

analysis in these models is among the most detailed microeconomic data available for de-

mand estimation. Thus these data make an ideal laboratory for testing and evaluating

state of the art economic demand systems. Particularly challenging econometric aspects

of these micro-level household data include the fact that there are many recreation sites

to choose from, a large percentage of households take no trips at all, and a small propor-

tion of households make multiple trips, generally to a small subset of sites available. The

choice behavior underlying these data consists of both discrete and continuous components

- whether to make a trip or not and if taking a trip, which sites to visit and how many

trips to take to the chosen sites. The techniques developed to estimate recreation demand



2

models can be used to estimate demand for any micro-level household data.

Common recreation demand models are random utility maximization (RUM) models

(Yen et al., 1994; Herriges et al., 1997), count data models (Egan et al., 2006; Herriges et

al., 2008) and Kuhn-Tucker models (Phaneuf et al., 2000; Von Haefen et al, 2004). Each

of these addresses a specific subset of characteristics of the data. This paper focuses on

Kuhn-Tucker models.

The Kuhn-Tucker models are utility-theoretic and the estimating equations for them

are derived directly from the underlying optimization problem. Further, these models can

address all but one of the typical characteristics of recreation demand data, viz., their count

nature. However, the Kuhn-Tucker models are highly non-linear and the presence of cor-

ners, the situation where a consumer does not consume one or more goods available, makes

them analytically challenging. Phaneuf et al. (2000) presented one of the first estimates

of the Kuhn-Tucker model in conjunction with welfare estimates for hypothetical changes

in site quality and prices. von Haefen et al. (2004) extended that work by developing an

algorithm for estimating a Kuhn-Tucker model when the choice set is large, i.e. when there

are a very large number of possible combinations of recreation sites to visit and, therefore,

“corners” that each individual can choose among.

While significant strides have been made in accurate econometric estimation of Kuhn-

Tucker models of recreation demand, the application of these models is still rare. For

instance, very little is known about the temporal stability of parameter estimates and

associated welfare estimates of environmental quality improvements. Typical studies collect

a year of data, fit demand equations and use them to estimate welfare measures for policy

relevant changes in environment quality. But what if parameter estimates are not stable

over time? Is it possible to use welfare estimates from a single year of data to characterize

welfare changes for all future years? Or do parameters vary largely from year to year,
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necessitating the use of multiple years of data to accurately pin down preferences for

environmental quality changes? These are questions that have not been asked in the

literature before. This paper addresses these questions using a four-year panel dataset

with information on trips taken by households in Iowa to 127 major lakes. The availability

of such a dataset enables us to ask and answer these questions since we can observe how

demand for recreational trips have changed with changes in site quality attributes over the

four years.

This paper estimates a Kuhn-Tucker model with a large choice set using a four-year

panel dataset for close to 1300 households. This is the first such estimation in the literature,

and only the second estimation of corner solutions with panel data. Chakir et al.(2004)

estimated a model with corner solutions for four possible choices and two years of data.

However, that model is not utility theoretic as the Kuhn-Tucker model since it arbitrarily

posits a demand function and adds an error term to it. We present estimates with four

years of data and a choice set consisting of 127 sites.

There have been very few panel data studies in the recreation demand literature. Those

that use panel methods (Englin and Cameron, 1996; Egan and Herriges, 2006) combine

revealed preference and stated preference data from individuals at the same point of time,

but do not have multi-year data. In addition there are no prior studies that combine

the triad of a Kuhn Tucker model, a large choice set and a panel dataset. This research

fills that gap. Specifically, the contribution of this paper lies in presenting a method to

incorporate correlations in preferences over time within the Kuhn-Tucker model for a large

choice set and using that method to examine whether preferences of households for outdoor

recreation are stable over time.

The paper is organized as follows. Section 2 presents a brief overview of the precursors

of the Kuhn-Tucker models and discusses the place and the importance of this approach
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in the context of recreation demand models; sets up the model; describes the likelihood

functions for different assumptions about the distributions of the regression error term;

and presents the method for estimating the model with correlation across time. Section

3 describes the data and examines the stability of reported trips across different years.

Section 4 presents the estimation results and the final section concludes.

1.2 The Kuhn-Tucker Approach and Model Specification

The Kuhn-Tucker model is the latest in a line of approaches that model the downward

censored nature of recreation demand data, i.e the fact that trip demand cannot be neg-

ative. It is a development from the Amemiya-Tobin approach (Amemiya, 1974; Tobin,

1958). The Kuhn-Tucker formulation improves on the previous approaches in that it is

utility consistent while the earlier approaches are not. Utility consistency implies that the

decision to undertake a trip and the site choice decision are both derived from the same

underlying utility function. However, until recently these models were not extensively used

because of their analytical intractability. Recent advances in computational resources have

made it much easier to estimate these models.

Phaneuf et al. (2000) used the Kuhn Tucker model to estimate demand for fishing in

the Wisconsin Great Lakes region and offered a method for estimating the expected welfare

effects proxied by compensating variation associated with hypothetical policy changes in

the Great Lakes region. The welfare estimation process involved computing the demands

at every possible corner of the budget-constrained choice space and choosing the one that

maximized utility. With the choice set consisting of four different sites, for each individual

there were 16 (24) different corners at which demands had to be estimated. This was

computationally tractable. However, this method becomes unwieldy for large choice sets

which are typical for many kinds of recreational choices. Von Haefen et al. (2004) offered
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a method for estimating changes in welfare systems for large demand systems. All of these

studies worked with data for a single time period.

We extend the Phaneuf et al. (2000) and the von Haefen et al. (2004) work by

accounting for the correlation in household preferences over time and implement it using

a panel dataset for trips to 127 lakes in Iowa. This also enables us to look at the stability

of the parameter estimates from the Kuhn-Tucker model over time.

For the model we assume that there are T periods and a total of M sites each having

K characteristics. The utility function for a household i in period t is given by

Uit =
M∑
j=1

exp(δ′Sit + ηijt)ln[exp(γ′qit)xijt + θ] + ln(zit), (1.1)

where

xijt = Number of trips taken by the ith individual to site j in period t,

Qt = [q1t, q2t...qMt], where qjt is a K by 1 vector of quality variables associated with site j,

Sit = the set of demographic characteristics for the ith household in period t

θ = parameter allowing for corner solutions,

ηi = an MT by 1 matrix of error terms for the ith individual,

Pijt = the ith individual’s cost of visiting site j in period t,

zit = a composite of all other goods (the numeraire and a necessary good),

γ and δ = parameters of the model.

ηijt represents heterogeneity in preferences consisting of factors that are assumed known

to the individual but unobserved by the researcher. Associating the error term with prefer-

ences rather than with the demand makes this model consistent with McFadden’s random

utility maximization framework. This specification of the utility function is additively sep-

arable. Further, it assumes that every good (site in this case) is a normal good and all

goods are Hicksian substitutes. The utility function also assumes weak complementarity,
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meaning that quality attributes of a site do not affect the total utility of the individual if

the site is not visited (Maler, 1974). In other words, the individual cares about the quality

attributes of only those sites that s/he visits. The budget constraint for the individual in

period t is

Yit =
M∑
j=1

Pijtxijt + zit;xijt ≥ 0; zit > 0∀i, j, t. (1.2)

The decision variables for individual i are xijt and zit. The number of trips to any lake

must be non-negative while the expenditure on the numeraire must be strictly positive.

The Kuhn-Tucker first order condition for the ith individual, in period t with respect to

the jth site is given by

∂Uit
∂xijt

= exp(δ′Sit + ηijt)
γ′qit)

[exp(γ′qit)xijt + θ]
≤ Pijt

zit
, (1.3)

with a complementarity slackness condition which requires that

xijt(exp(δ′Sit + ηijt)
γ′qit)

[exp(γ′qit)xijt + θ]
− Pijt

zit
) = 0 (1.4)

This in turn implies that

ηijt ≤ ln(
Pijt
zit

) + ln[xijt +
θ

exp(γ′qit)
]− δ′Sit = g(xit, Pt, zit, Sit, qjt;β), (1.5)

where β is the vector of parameters to be estimated. For each individual i in each period

t, there are M such equations - one for each site. These equations together with the

assumed distribution of the error term define a likelihood function which can then be used

to estimate the parameters and welfare changes from hypothetical changes in site quality

attributes.

The error term for each individual and for each site are allowed to be correlated across

time. The error term for the ith individual and jth site in period t consists of two com-

ponents - one that is unique to the individual, the site and the time period - a purely
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stochastic term - and another which is unique to the individual but remains constant over

time. The second component is the one that induces correlation in preferences across time.

This component could be further broken down into two components - one that is constant

across time and sites and another that is constant across time but different for each site. All

three components of the error term are random. Errors are uncorrelated across individuals.

Formally, this can be written as:

ηijt = ui + τij + εijt

ui, τij and εijt are all drawn from different distributions with zero location parameters

and scale parameters given by σ2
u, σ2

τ , and σ2
ε , respectively. They are all uncorrelated

with each other and across individuals. This specification of the error term nests two

sub-specifications given by

ηijt = ui + εijt

ηijt = τij + εijt

ui indicates correlation across time and sites. When the correlation across time is constant

across sites as well, it indicates that individuals who are more likely to take trips to one site

are also more likely to take trips to other sites. It would capture the fact that some people

are avid trip takers, boat owners or fishers and others are not into outdoor recreation -

factors that are invariant across sites for a given individual. τij indicates correlation across

time but not across sites. A correlation term like this captures the fact that people like

some sites more than others and visit the same sites over and over again.

For the present paper, we assume that εijt, ui and τij are all drawn from different

normal distributions.

The first order conditions of the Kuhn-Tucker model together with the complementarity
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slackness conditions require that

ηijt = g(xit, Pt, zit, Sit, qjt;β) = gijt if xijt > 0 and

ηijt ≤ g(xit, Pt, zit, Sit, qjt;β) = gijt if xijt = 0.

Let us assume that the ith consumer makes no trips to the first n sites and a positive

number of trips to the rest. Further let [Pt, zit, Sit, qjt] = Rit. Then the likelihood function

for individual i in period t is given by

Lit | β =
∫ g(xi1t;Rit;β)

−∞
...

∫ g(xint;Rit;β)

−∞
f(ηi1t, ..., ηint, gi(n+1)t, ...giMt) | J | dηi1t...dηint (1.6)

where | J | is the Jacobian determinant for the transformation of the error term, f(ηit)

is the assumed probability density function of the error and F (ηit) is the corresponding

distribution function. If preferences are not correlated over time so that the error term has

only one component i.e ηijt = εijt then we can use this likelihood function to compute the

likelihood function for the entire sample.

However, we have data for more than one period, and we need to take into account the

term that for each individual induces correlation across time periods. There are two ways

that we can incorporate the correlation in our estimation process. If the correlation term

is given by ui, the first order condition can be written as

ui + εijt = g(xit, Rit;β) if xijt > 0, and

ui + εijt ≤ g(xit, Rit;β) if xijt = 0.
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These, in turn imply

εijt = g(xit, Rit;β)− ui if xijt > 0

εijt ≤ g(xit, Rit;β)− ui if xijt = 0

Taking into account this correlation term, the likelihood function in equation (5) is con-

ditional on a given draw of ui. Further, an individual’s likelihood function must include

the contributions for each year of the panel. Conditional on a given draw of the correla-

tion term ui, the likelihood functions for an individual in different years are independent.

Hence, the conditional likelihood function for individual i is given by the product of his/her

conditional likelihood functions in each year.

Li | β;ui =
T∏
t=1

(Lit | β;ui). (1.7)

The expected value of the likelihood for individual i is given by

E(Li | β) =
∫ ∞
−∞

T∏
t=1

(Lit | β, ui)fu(ui)dui. (1.8)

The estimation process will involve the following steps. First we define the likelihood

function for each individual in each period, conditional on a draw of the correlation term

ui. The conditional likelihood functions for that individual for each year are multiplied to

get the conditional likelihood function for that individual for a given draw of ui. Integrating

this over the range of ui gives us the expected likelihood function for that individual. This

integration will have to be done numerically since the functional form of this likelihood

function is not analytically tractable. If the correlation term is given by τij , individual i’s

conditional likelihood function is given by

Li | β; τij =
T∏
t=1

(Lit | β; τi,j). (1.9)
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so that her likelihood function is given by

E(Li | β) =
∫ ∞
−∞

...

∫ ∞
−∞

T∏
t=1

(Lit | β, τi)fτ (τi)dτi1...dτiM . (1.10)

Using the maximum likelihood approach we can estimate the distribution parameters

of the term that induces correlations in preferences and test if these parameters are signifi-

cantly different from zero. An alternate approach is to model the correlation in preferences

through a method of bootstrapping. To implement the bootstrapping method, we take a

set of random draws with replacement from the sample of households and estimate the

model for for each of the four years separately for the same set of individuals. Each time

we take 1280 draws with replacement from our sample of 1280 and repeat the process 1000

times. Since the single year estimates use data for the exact same individuals for each of

the four years, the correlation in preferences is absorbed into the other parameters of the

model and we do not use a separate parameter for correlation. Using a large number of

repeated draws (1000) we can establish the 95% confidence intervals for the parameter and

welfare estimates and also test the differences in these estimates across the years.

In the bootstrap method we do not estimate a parameter relating to the correlation

term. Neither do we need to make any assumptions about the nature of the correlation,

unlike the error components approach, which induces a specific for of correlation. If the

model with the error components is correctly specified, then the bootstrap method will be

less efficient in terms of the parameter estimates. However, it will be much more flexible

both in terms of the number of parameters and in terms of the form of the correlation.

1.3 Data

For four consecutive years from 2002 to 2005, a survey questionnaire about trips to

lakes in Iowa was sent out to a random sample of households within the state. Each
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year about 4000 completed surveys were returned. Of the returned surveys, information

on some individuals could not be used because the surveys were incomplete. Excluding

those individuals for whom complete information on trips taken was not available, we have

about 3500 completed surveys in each year except in 2003 for which we have about 4500

surveys. The sample was expanded in 2003 with surveys being sent out to an additional

sample of households who did not receive the survey in 2002. There was an attrition from

the balanced panel as households dropped out over the years. Some returned surveys did

not have complete trip information and were dropped from the dataset. Further, some

households claimed to have made over hundred trips. They were typically households who

lived on or close to a lake and drove by the lake everyday as they went by their daily

activities. Our purpose is to model recreational visit to lakes and hence these households

were dropped from the dataset. A balanced four-year panel with complete trip information

is available for 1621 observations.

One of the first questions in the survey asked respondents if they had visited any lakes

in Iowa in the previous year. The purpose of this paper is to model single-day trips taken

to lakes for recreational purposes. To that end, the data for visits include only day trips

and not overnight trips. Table 1 presents a year-wise summary of the returns received,

the number and percentage of respondents indicating that they did not visit any lake in

Iowa during that year (columns 3 and 4 titled “Novisits”) and the average number of lakes

visited by all individuals (column 5). The fourth column in table 1 indicates that 33-35%

of respondents in 2003, 2004 and 2005 did not visit any lake in Iowa. 41% of respondents

in 2002 did not visit any lakes. The average number of lakes visited by all respondents

ranged between 1.8 and 2.5. The table also presents this information for a two-year

panel, a three-year panel and the full four-year panel. All three panels are for consecutive

years. Comparing the single year statistics with the panels we can see that the sample size
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decreases as the years in the panel increase. This reflects the fact that people tend to drop

out of the sample over the years.

Comparing across the different panels in Table 1 we find that the percentage of re-

spondents who did not visit any lakes in any year decreases in 2002 and 2003 but not for

2004 and 2005, compared with the single year data as the number of years in the panel

increases. This indicates that people who make trips to lakes i.e. lake users are not any

more likely than non-users to continue responding to the survey over the years. The av-

erage number of lakes visited by each individual is also similar for the four-year panel as

compared with the single year averages. This indicates that the four year balanced panel

is fairly representative of the larger dataset. An anomalous finding is that the maximum

number of lakes visited is lower for the four-year panel as compared with the single years

or the two year-panel.

Table 2 presents the summary of the trips taken by the respondents to lakes in Iowa.

The table presents two sets of statistics - one for the entire sample in each year or panel

and the second for only those respondents who took one or more trips. For the second set

of statistics we exclude individuals who did not take any trips in that year. The average

number of trips for all individuals ranged between 6.4 and 7.5 (column 3). Between 64%

and 66.5% of all respondents in 2003, 2004 and 2005 took one or more trips during the year.

The proportion of positive trip takers in 2002 was lower at around 59%. The average trips

of those who took positive trips moved around 11 in each of the four years. The proportion

of positive trip takers was higher in the four-year panel as compared with the single year

data for all years. However, the average trips for all respondents was not systematically

different for the four-year panel as compared with the single year data. This was because

the average trips of positive trip takers was lower, albeit marginally, in the four-year panel

as compared with the single year data. The maximum trips of all trip takers is curtailed
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at 52 because we exclude individuals who report taking more than 52 trips in a year.

While this is an arbitrary threshold, it helps to exclude those that live close to a lake and

happen to pass the lake in course of other daily activities. The purpose of the paper is

to model recreational day trips to lakes and this arbitrary cutoff provides us with a set of

observations whose trips closely resemble what we are trying to model.

Table 3 presents pair-wise comparison across years of mean trips taken by all individuals

and lake users and the percentage of trip takers in the sample. The differences that show

up in tables 2 and 3 are statistically tested in tables 4 and 5. Table 4 presents the t-statistic

for testing the differences across years in (i) trips of all respondents; (ii) trips of lake users;

(iii) the number of lakes visited and (iv) the percentage of non-users in the sample. For

each pair of years, the statistic is calculated using a sample of all individuals who responded

in both of those years but not necessarily in any of the other years. Table 5 presents the

t-statistics calculated using information for individuals who responded to the survey in

all four years. Table 4 indicates that the mean trips of all respondents were significantly

different between 2003 and 2004 but not for the other years. The mean trips of trip takers

were not significantly different for any pair of years.
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Table 1.1 Summary of returns Respondents who do not visit any lake &
average number of lakes visited

Lakes visited34

Year Returns1 Novisits2 % Novisits Mean STDev Max
2002 3897 1607 41.2 1.8 2.5 31
2003 4579 1548 33.8 2.4 2.9 22
2004 3826 1356 35.4 2.4 3.1 30
2005 3516 1177 33.4 2.5 3.2 32

Individuals who responded in both 2002 and 2003
2002 2644 1014 38.4 1.9 2.6 31
2003 918 34.7 2.3 2.9 22

Individuals who responded in 2002, 2003 and 2004
2002 2033 758 37.3 2.0 2.5 19
2003 673 33.1 2.4 2.9 22
2004 740 36.4 2.3 3.0 30

Individuals who responded every year of the survey 2002-05
2002 1621 584 36.0 2.0 2.5 19
2003 524 32.3 2.4 2.9 20
2004 575 35.5 2.4 3.1 30
2005 542 33.4 2.5 2.9 24
1. Number of respondents in each year

2. Number of individuals who stated that they did not visit any lake in that year

3. Number of lakes that individuals report visiting in that year

4. Those who reported more than 52 trips in any year excluded from the sample
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Table 1.2 Number of Trips to All Lakes1,2

Year Returns Trips Trips of positive trip-takers Max
Mean Stdev % Taking trips Mean Stdev

2002 3897 6.4 10.1 58.8 10.8 11.2 52
2003 4579 7.3 10.2 66.2 11.1 10.7 52
2004 3826 6.9 9.9 64.6 10.8 10.6 52
2005 3516 7.5 10.4 66.5 11.2 11.0 52

Individuals who responded in both 2002 and 2003
2002 2644 6.5 9.8 61.6 10.5 10.7 51
2003 7.0 9.9 65.3 10.7 10.5 52

Individuals who responded in 2002, 2003 and 2004
2002 2033 6.5 9.6 62.7 10.4 10.4 51
2003 7.2 9.9 66.9 10.8 10.4 52
2004 6.3 9.0 63.6 9.9 9.5 51

Individuals who responded every year of the survey 2002-05
2002 1621 6.6 9.4 64.0 10.3 10.0 51
2003 7.3 9.8 67.7 10.8 10.3 52
2004 6.5 9.0 64.5 10.1 9.5 51
2005 6.9 9.4 66.6 10.5 9.9 52
1. Excluding individuals who took trips but did not disclose the number of trips taken

2. Excluding individuals who took more than 52 trips in any year
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Table 1.3 Pair-wise Comparison across Years of Trips to All Lakes1

Trips Trips of positive trip takers
Pair Returns Year Mean Stdev Mean Stdev % pos2

2002/2003 2644 2002 6.5 9.8 10.5 10.7 61.6
2003 7.0 9.9 10.7 10.5 65.3

2002/2004 2278 2002 6.4 9.8 10.5 10.7 60.8
2004 6.3 9.1 10.0 9.7 63.2

2002/2005 2097 2002 6.6 9.9 10.6 10.7 61.6
2005 7.0 10.0 10.8 10.6 65.4

2003/2004 3382 2003 7.4 10.1 10.9 10.5 67.8
2004 6.8 9.6 10.5 10.2 64.6

2003/2005 3142 2003 7.5 10.2 11.1 10.7 67.6
2005 7.2 9.9 10.8 10.4 66.5

2004/2005 2960 2004 7.1 9.9 10.8 10.4 65.8
2005 7.4 10.0 10.8 10.5 67.9

1. Excluding individuals who took trips but did not disclose the number of trips taken

2. Percentage of respondents who took positive trips

Table 1.4 T-Statistic to Test for Pairwise Differences using Two-Year Pan-
els 1

Years Sample Size T-Statistic
Trips Positive Trips2 Lakes visited Novisits

2002-03 2644 -1.76 -0.51 -4.73 2.74
2002-04 2278 0.29 1.73 -4.44 1.65
2002-05 2097 -1.57 -0.36 -5.11 2.53
2003-04 3382 2.52 1.59 0.52 -2.73
2003-05 3142 1.27 1.11 -0.43 -0.97
2004-05 2960 -0.92 -0.04 -0.52 1.74
1. Sample size is different for each pair of years and consists of the same individuals

for each pair but not necessarily across pairs.

2. Excluding individuals who took trips but did not disclose the number of trips taken
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Table 1.5 T-Statistic to Test for Pairwise Differences for Full Four-year
Panel 1

Trips Positive Trips 2 Lakes visited No visits
2002-03 -1.99 -1.21 -4.16 2.22
2002-04 0.25 0.62 -3.73 0.33
2002-05 -1.06 -0.36 -4.34 1.55
2003-04 2.27 1.85 0.25 -1.89
2003-05 0.95 0.86 -1.15 -0.67
2004-05 -1.32 -1.00 0.40 1.22
1. The sample consists of the same 1621 individuals for every year

2. Excluding individuals who took trips but did not disclose the number of trips taken

Table 1.6 Summary Statistics for Independent Variables

Years Income($1000s) Age Travel Cost Secchi Depth
Mean Min Max Mean Min Max Mean Min Max Mean Min Max

2002 57.9 5 170 52.2 17 80 136.0 0.5 750.2 1.2 0.1 5.7
2003 58.8 5 170 53.1 21.5 80 140.1 0.5 934.8 1.5 0.2 8.1
2004 61.8 5 170 54.0 17 80 144.5 0.5 937.2 1.1 0.2 5.1
2005 61.8 5 170 54.8 17 80 149.2 0.5 944.5 1.2 0.1 5.7

Column 4 of table 4 indicates that the number of lakes visited by each individual in

2002 differed significantly from the number of lakes visited by all individuals in 2003, 2004,

2005. The number of lakes visited by each individual were not significantly different in 2003,

2004 and 2005 (column 5). The proportion of non-users in the sample was significantly

higher in 2002 as compared with 2003 and 2005. The proportion of non-users in 2004 was

significantly higher in 2004 as compared with 2003.

Table 5 confirms the significant differences in number of lakes visited in 2002 and the

three following years. It also confirms in the significant differences in the proportion of
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non-users in 2002 as compared with 2003.

Table 6 presents the summary statistics for the other regressors of the model. For the

purposes of this paper, the only demographic variable used was age and the only water

quality measure used was secchi transparency, also know as secchi depth. Secchi depth

is a measure of clarity of the water in a lake - it indicates how deep into the water one

can see. It is one of the most easily observed and understood water quality measures.

The other variables of interest are income and travel cost. Travel distance and time for

each household to each lake was estimated using the PC Miler software. Travel cost was

computed using a fixed amount per mile and the imputed cost of time. The per mile cost

was the same for each household and was fixed at $0.25, $0.26, $0.265 and $0.28 for 2002,

2003, 2004 and 2005, respectively. The increasing mileage cost is meant to reflect rising

gasoline prices and general inflation. However, the increases are arbitrary and not derived

from a consumer price index or oil price index.

The opportunity cost of time for each household depends on the average wage rate

for that household. It is derived by dividing the yearly income by 2000, which is average

number of hours worked in a year after accounting for two weeks of leave (50 weeks at

40 hours a week). This is an average measure that allows us to translate the income in

the household to the cost of its time. It is not meant to substitute for exact information

on wage rates. For the purposes of this paper, the opportunity cost of time is given

by one-third of the wage rate computed this way. This is a fairly standard method of

calculating the time cost in recreation demand. However, there have been many studies

arguing against the use of income or wage rate as a reliable measure of the opportunity cost

of time (Shaw, 1992; Feather and Shaw, 1999; McKean et al., 2003). An obvious problem

is that it does not reflect the opportunity cost of time for students, the unemployed, the

retired, or homemakers. Further, salaried individuals usually do not have the option to
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work greater hours for more pay or fewer hours for less pay. Without the choice to work

more or fewer hours, the wage rates for salaried individuals do not reflect the opportunity

cost of their time either. Working time forgone is not the only opportunity cost of travel

time to recreational sites. Other alternative uses for travel time include voluntary work

and other recreational activities (Beal, 1995). Shaw (1992) suggested that the value of time

need not equal the cost of time. For instance, a person with a low wage rate may place very

high value on her time. Further, it is usually assumed that the travel to a recreational site

does not provide any utility in itself. That is a questionable assumption because individuals

may enjoy driving to a lake some distance away. In this case, the opportunity cost of time

will be lower than what is measured by the wage rate.

In practice, however, a fraction of the wage rate has often been used as a proxy for the

opportunity cost of time (Phaneuf et al., 2000; von Haefen et al., 2004; Egan et al., 2009).

There has been some discussion on what the appropriate fraction of wage rate should be.

There appears to be a consensus in the literature on 25% being the lower bound and 100%

being the upper bound (Parsons et al., 2003). In this range, 33% is the most commonly used

fraction (Hellerstein, 1993; Moeltner, 2005). Differences in travel cost are not the focus of

this paper. Hence, we choose to approximate opportunity cost of time by one-third of the

wage rate, even as we recognize the limitations of this approach.

We have complete trip information for a full four-year panel of 1621 observations.

Complete information on income and other demographic variables is not available for all of

these individuals. We have complete information required for our model for all four years

for 1280 individuals. The information in table 6 is for these 1280 observations.

As Table 6 indicates, secchi depth of all lakes ranged between less than 20 centimeters

to more than 5.5 meters in three of the four years. In 2003 there was an increase in the

maximum secchi depth of Lake Okoboji, the clearest lake in the state, to over eight meters.
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The average secchi depth was between one and 1.5 meters. Travel cost ranged from 45

cents to over $940 for a two-way trip with the mean around $140 in all four years.

Survey respondents were asked to indicate which of 14 income and seven age categories

they belonged to. Everyone belonging to an age category was assigned the median age for

that category. The same was done for income. The mean income in all four years was close

to $60,000 per annum and increased every year. The mean age in all four years was around

53 years.

1.4 Results

As a first step, the Kuhn-Tucker model was estimated separately for each year. Table 7

presents the parameter estimates from this estimation process. All of the parameters of this

simplified model are highly significant for each of the four years. Further, the parameters

have similar signs and are of the same order of magnitude over the years suggesting that

preferences were consistent over the time considered. The coefficient for secchi depth is

positive as expected. The coefficient of age is positive too. This may be counterintuitive

and conceal two different effects. Initially, when young adults grow older, they get jobs,

have higher incomes, acquire families and tend to take more trips. After reaching middle

age, trips taken tend to plateau and then fall as they grow older. The number of trips

taken may increase after retirement and then fall off as the household grows older. The

number of recreational trips, therefore, are expected to be positively correlated with age

up to a point and then negatively correlated with age.

The single year estimates do not account for correlation in preferences across time. To

model correlation in preferences we adopt two approaches - (i) bootstrapping from the

sample and estimating the model for each of four years for each draw. Thus the model is

estimated for each year for exactly the same individuals, which incorporates the correlation
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across time implicitly into our estimates. The second approach is to model the correlation

explicitly using a parameter of correlation.

1.4.1 Bootstrap Exercise

Bootstrapping offers a way to model the correlation in preferences across time in our

model without using a parameter of correlation. To implement this method we draw with

replacement, a random sample of 1280 households from our dataset. We estimate a single

year model without correlation for each of the four years for this sample. Since the data for

each of the four years consists of the same set of households, the correlation in preferences

is subsumed in the other parameters of the model. We do this 1000 times and compute

the mean willingness to pay for an improvement in Secchi depth of all lakes at least to

the level of lake Okoboji (5.66 meters) in each year for each of the 1000 draws. We then

compute the differences in parameters and welfare estimates across the years and check to

see if the 95% confidence intervals for each of these differences contain zero.

Table 8 presents the 95% confidence intervals for the differences in the parameter es-

timates. All of the differences are obtained by subtracting the estimate for the later year

from the estimate for the earlier year. If the 95% confidence interval for the difference

in the parameter estimate for a pair of years does not contain zero within it, it indicates

that the difference is significantly different from zero. In other words, it indicates that

the estimates for that parameter for the two years are significantly different from each

other. Table 9 presents the percentage of the differences in parameter estimates that were

positive. Percentages above 90% and below 10% indicate significant differences in the

parameter estimates for that pair of years.

As tables 8 and 9 indicate, there are significant differences in the parameter estimates

across years. In other words, parameter estimates do not appear to be stable over time.
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To check whether these estimates are substantively different, we look at welfare estimates

for each year for each of these 1000 draws. Welfare estimates are computed for a policy

that increases the secchi depth of all 127 lakes to at least 5.6 meters which is the secchi

depth of lake Okoboji, the clearest lake in Iowa. Table 10 presents the differences in

welfare estimates across years in terms of 95% confidence intervals and the percentages of

differences that are positive. Table 10 indicates that welfare estimates are significantly

different between all pairs of years except 2002 and 2005, and between 2003 and 2005.

The bootstrap approach is more flexible compared to the error components approach

presented in the following subsection. This is because the bootstrap approach does not

impose a structure on the correlation and does not require any assumptions about the

distribution of the correlation term. Further, the bootstrap approach can accommodate

a greater number of variables without getting computationally intractable. In the error

components approach, adding one variable will require four parameters to be estimated for

the four years in the panel, which will greatly increase the computing time required for the

estimation to converge. However, if the error components models is correctly specified, its

parameter estimates will be more efficient as compared with estimates from the bootstrap

approach.

1.4.2 Correlation Term Constant Across Sites and Distributed Normally with

Mean Zero

The next step was to estimate the model over a panel dataset taking into account

correlations across time and sites for each individual. The unobservable individual-specific

effect is given by ui which is drawn from a normal distribution with mean zero and a

standard deviation given by σu. Two models were estimated. The first model restricts the

parameters to be the same for each year in the panel. The second model removes that
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restriction and allows different parameters for each year in the panel. Table 11 presents

the results of the restricted model for a two-year panel (2002-03) and a four-year panel

(2002-05). The parameter estimates from the two-year panel are of similar sign and

order of magnitude as the single year estimates. In the two-year panel, the coefficient of

age is not significant. All other parameters are highly significant for both panels. One

parameter of interest here is the scale parameter associated with the correlation term. It

is highly significant indicating the presence of correlations across time and site for each

individual. Table 11 presents the results of the unrestricted model for a two-year panel.

A likelihood ratio test (Table 12) rejects the restricted model in favor of the unrestricted

model. This indicates that even though parameters are mostly consistent in sign across

the years, there are changes in their magnitude that are statistically significant. We have

estimated a simple specification of the Kuhn-Tucker model. However, if our specification

of the model is correct, then the above result indicates that preferences are not stable over

time. This is something that policy-makers need to take into account while computing wel-

fare changes from possible policy measures. Alternatively, it is possible that the differences

in the parameter estimates reflect the effect of omitted variables that affect preferences and

changed across the four years in question.

1.4.3 Correlation Term Not Constant Across Sites and Normally Distributed

Next we consider the case when the error component that induces correlation across

time is not constant across sites. The correlation term is given by τij which is drawn from

a normal distribution with mean zero and a variance given by σ2
τ . The restricted model

is estimated for a two-year and a four-year panel. The unrestricted model is estimated

for a two year and a four year panel. Table 14 presents the parameter estimates for
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the restricted model with a two-year and a four-year panel dataset. As before, all the

parameters of the model are highly significant. In particular the variance of the correlation

term is highly significant indicating that preferences are correlated across time. Table

15 presents the parameter estimates for the two-year unrestricted model. The parameter

estimates, which are all highly significant, are also of the same sign and roughly the same

magnitude for the two years.

A likelihood ratio test (Table 16) rejects the restricted model in favor of the unrestricted

model for the two-year panel dataset. This again confirms the fact that parameters of the

model vary across years. The likelihood ratio test establishes that parameter estimates

for the Kuhn-Tucker model are not stable over time for our dataset. To check if the

variation in parameter estimates translates into substantive changes in welfare estimates,

we compute welfare estimates for four years using the estimates from the restricted and

unrestricted models when the correlation terms is given by τij . Mean willingness to pay

is computed for an improvement in the secchi depth of all 127 lakes to the level of the

clearest lake, i.e. to 5.6 meters. Table 19 presents the welfare estimates for this change for

both the restricted and unrestricted models Table 19 indicates that there is a substantive

difference in the welfare estimates derived from the unconstrained and the constrained

model. This indicates that instability of parameter estimates over time translate into

substantive differences in the respective welfare estimates. However, the welfare estimates

are not systematically biased in one way or another between the two models.

The recent interest in Kuhn-Tucker models has been enabled by the availability of

greater computing power. There have been large improvements in the computing ability

and speed in the ten years since Phaneuf et al. 2000 used numerical integration to im-

plement the Kuhn-Tucker models. Allowing for correlation across time required a second

degree of integration which pushed the limits of our computing capacity . The estimations
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were done using the Maxlik package on GAUSS. The four year unrestricted models for the

two versions of the error term converged in 102 and 117 iterations respectively. These iter-

ations took, respectively, 178.1 hours and 213.6 hours to run. This is one of the reasons for

choosing a very parsimonious model for this paper. Adding one extra variable to the model

would require the program to optimize over four additional parameters when estimating

the four year unconstrained model. This would increase the computing time by close to

20% over the present setup where the four year unconstrained model requires optimizing

over 21 parameters.

1.5 Conclusion

This paper provided a method for incorporating correlation in preferences across time

in a Kuhn-Tucker model of recreation demand with a large choice set. The method was

implemented using a panel dataset of trips made by a random sample of Iowa households

to 127 lakes in Iowa and was used to examine if preferences are stable across time. This is

a logical next step from Phaneuf et al. (2000) and von Haefen et al. (2004) in extending

the application of the Kuhn-Tucker approach for modeling recreation demand data. The

Kuhn-Tucker model deals with a large number of corner solutions typical of recreation

demand data, in an internally consistent utility theoretic framework. The decision to take

a trip or not, the selection of the site and number of trips, if trips are taken are derived

from the same model. The availability of a panel dataset with information on trips taken

in four consecutive years allowed us to examine of parameter estimates in the Kuhn-Tucker

framework are stable over time. Most policy relating to provision of outdoor recreational

and other environmental amenities involve costs spread over an extended time period and

expect to create welfare gains over more than just a single period. If parameter estimates

are not stable over time, projecting welfare estimates computed using a single year of data
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may be misleading for cost benefit analysis.

We find that household preferences are significantly correlated across time. In addition,

for our specification of the model and dataset, parameter estimates are not stable across

time. The instability of parameter estimates across the years translates into substantive

differences in the corresponding welfare estimates. This implies that using a single year

of data to evaluate medium or long-term welfare changes from a policy measure may be

misleading. The instability of parameter estimates over time could be driven by changes in

other demographic variables not included in the model or even macroeconomic variables.

Consequently, models that are parsimonious, such as the one used in this paper, may be

more likely to yield parameter estimates that are not stable over time. Even models that

include a large number of variables may yield parameter estimates that vary over time,

if there are substantial differences in the macroeconomic environment from year to year.

Therefore, greater deliberation needs to go into projecting welfare estimates from one year

into other years. In particular, adjustments need to be made to account for changes in

macroeconomic environment. Further, if it is known beforehand that one year’s welfare

estimates are going to be projected into future years, it might be useful to choose a more

detailed model over a parsimonious one.

While the model in the current paper includes only one demographic variable and one

water quality variable, the framework can accommodate any number of demographic and

site attribute variables. All the models in this paper were estimated using a balanced panel

of 1280 individuals. Using a balanced panel requires dropping a number of observations

from the dataset. Estimating the restricted and unrestricted models with an unbalanced

panel will allow us to use the information in the complete dataset. These constitute the

agenda for future work.
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Table 1.7 Single Year Estimates of Simple Model

2002 2003 2004 2005
Constant -8.24** -8.86** -8.47** -8.47**

(0.06) (0.07) (0.06) (0.06)
Age 4.98** 11.22** 5.44** 7.94**

(0.84) (0.85) (0.82) (0.80)
Secchi Depth 9.37** 9.76** 13.30** 8.26**

(1.05) (0.86) (1.18) (1.00)
Theta1 1.36** 1.26** 1.24** 1.23**

(0.03) (0.03) (0.03) (0.03)
Sigma2 0.24** 0.36** 0.30** 0.27**

(0.01) (0.01) (0.01) (0.01)
No. of Obs 1280 1280 1280 1280

Mean log lik -12.84 -15.41 -14.94 -14.95
Figures in brackets indicate standard errors

1. Log of the parameter that allows corner solutions

2. Log of the standard deviation of the normal distribution

**: Significant at 1% level

Table 1.8 Differences in Parameter Estimates across Years: 95% Confi-
dence Intervals

Years Constant Age Secchi Depth Theta1 Sigma2

2002-03 0.39 – 0.82 -9.13 – -3.23 -2.70 – 1.66 0.03 – 0.16 -0.16 – -0.07
2002-04 -0.03 – 0.47 -3.92 – 3.05 -6.60 – 1.16 0.06 – 0.20 -0.10 – -0.01
2002-05 -0.02 – 0.45 -6.68 – -0.62 -1.34 – 3.46 0.06 – 0.20 -0.08 – 0.02
2003-04 -0.62 – -0.16 2.80 – 8.75 -5.75 – -1.19 -0.04 – 0.09 0.01 – 0.10
2003-05 -0.60 – -0.19 0.25 – 6.19 -0.84 – 3.80 -0.03 – 0.10 0.04 – 0.12
2004-05 -0.21 – 0.20 -5.59 – 0.71 2.28 – 7.49 -0.05 – 0.06 -0.01 – 0.07
1. Log of the parameter that allows corner solutions

2. Log of the standard deviation of the normal distribution for the error
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Table 1.9 Differences in Parameter Estimates across Years: Percentage
Positive

Years Constant Age Secchi Depth Theta1 Sigma2

2002-03 100 0.0 36.0 99.8 0.0
2002-04 96.4 40.9 0.1 99.9 0.4
2002-05 95.7 5.9 80.1 100.0 7.8
2003-04 0.0 100.0 0.1 79.1 99.0
2003-05 0.0 98.4 89.6 84.2 100.0
2004-05 49.2 6.3 100.0 58.7 92.2
1. Log of the parameter that allows corner solutions

2. Log of the standard deviation of the normal distribution for the error

Table 1.10 Differences in Welfare Estimates across Years: 95% Confidence
Intervals and Percentage Positive

Years 95% Confidence Interval Percentage positive
2002-03 -55.61 – 9.35 9.5
2002-04 -156.22 – -53.14 0.0
2002-05 -51.33 – 26.66 25.8
2003-04 -127.48 – -34.66 0.1
2003-05 -28.96 – 50.09 66.2
2004-05 37.80 – 143.63 99.9
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Table 1.11 Restricted Model Estimated for Two-Year and Four-year Panels

Two-year Panel Four-year Panel
(2002-03) (2002-04)

Constant -7.9** -7.80**
(0.08) (0.06)

Age 5.28** 3.05*
(1.38) (1.04)

Secchi Depth 9.42** 9.09**
(0.57) (0.43)

Theta1 1.44** 1.38**
(0.02) (0.01)

Sigma2 0.03** -0.03**
(0.01) (0.01)

Sigmacorr3 -0.27** -0.24**
(0.03) (0.02)

No. of Obs 1280 1280
Mean log lik -26.02 -52.85
Figures in brackets indicate standard errors

1. Log of the parameter that allows corner solutions

2. Log of the standard deviation of the normal error

3. Log of the standard deviation for the correlation term

* and ** indicate significance of levels 5% and 1%, respectively
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Table 1.12 Unrestricted Model Estimated for a Two-Year Panel

Parameter Estimates for
2002 2003

Constant -7.60** -8.14**
(0.09) (0.09)

Age 1.84 7.72**
(1.48) (1.49)

Secchi Depth 8.74** 9.03**
(0.91) (0.75)

Theta1 1.48** 1.39**
(0.03) (0.03)

Sigma2 -0.05** 0.09**
(0.01) (0.01)

Sigmacorr3 -0.25**
(0.02)

No. of Obs 1280 1280
Mean log lik -25.95
Figures in brackets indicate standard errors

1. Log of the parameter that allows corner solutions

2. Log of the standard deviation of the normal error

3. Log of the standard deviation for the correlation term

* and ** indicate significance of levels 5% and 1%, respectively
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Table 1.13 Unrestricted Model Estimated with Full Four-Year
Panel ui ∼ N(0, σ2

τ )

2002 2003 2004 2005
Constant -7.50** -7.98** -7.63** -7.72**

(0.07) (0.07) (0.05) (0.07)
Age -1.40 4.34** 0.05 2.32**

(0.94) (0.95) (0.35) (0.91)
Secchi Depth 8.82** 9.00** 12.00** 7.62**

(0.92) (0.75) (1.01) (0.88)
Theta 1.46** 1.38** 1.36** 1.34**

(0.03) (0.03) (0.02) (0.03)
Sigma -0.17** 0.10** -0.00** 0.01**

(0.01) (0.01) (0.01) (0.01)
Sigmacorr -0.23**

(0.02)
No. of Obs 1280

Mean log lik -52.76
Figures in brackets indicate standard errors

1. Log of the parameter that allows corner solutions

2. Log of the standard deviation of the normal distribution

*: Significant at 1% level

Table 1.14 Likelihood Ratio Test between Restricted and Unrestricted
Models

Year Mean log-likelihood LR Stat Crit. Value—
Unrestr. Model Restr. Model at 1%

2002-03 -25.95 -26.01 161.02 15.09
2002-05 -52.76 -52.85 238.85 30.58
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Table 1.15 Restricted Model Estimated for Two-Year and Four-year
Panels:τij ∼ N(0, σ2

τ )

Two-year Panel Four-year Panel
(2002-03) (2002-04)

Constant -8.57** -8.54**
(0.05) (0.03)

Age 8.42** 7.72**
(0.59) (0.41)

Secchi Depth 10.07** 9.66**
(0.66) (0.49)

Theta1 1.32** 1.26**
(0.02) (0.01)

Sigma2 0.30** 0.27**
(0.01) (0.01)

Sigmacorr3 -1.71** 1.26**
(0.08) (0.03)

No. of Obs 1280 1280
Mean log lik -28.28 -57.93
Figures in brackets indicate standard errors

1. Log of the parameter that allows corner solutions

2. Log of the standard deviation of the normal error

3. Log of the standard deviation for the correlation term

* and ** indicate significance of levels 5% and 1%, respectively



33

Table 1.16 Unrestricted Model Estimated for a Two-Year
Panel:τij ∼ N(0, σ2

τ )

Parameter Estimates for
2002 2003

Constant -8.24** -8.85**
(0.06) (0.07)

Age 4.96** 11.20**
(0.83) (0.84)

Secchi Depth 9.18** 9.73**
(1.05) (0.86)

Theta1 1.36** 1.26**
(0.03) (0.03)

Sigma2 0.23** 0.35**
(0.01) (0.01)

Sigmacorr3 -1.70**
(0.08)

No. of Obs 1280 1280
Mean log lik -28.24
Figures in brackets indicate standard errors

1. Log of the parameter that allows corner solutions

2. Log of the standard deviation of the normal error

3. Log of the standard deviation for the correlation term

* and ** indicate significance of levels 5% and 1%, respectively
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Table 1.17 Unrestricted Model Estimated with Full Four-Year
Panel::τij ∼ N(0, σ2

τ )

2002 2003 2004 2005
Constant -8.31** -8.89** -8.50** -8.52**

(0.06) (0.07) (0.06) (0.06)
Age -5.13** 11.43** 5.52** 8.03**

(0.83) (0.84) (0.82) (0.80)
Secchi Depth 8.75** 9.52** 13.39** 7.83**

(1.06) (0.86) (1.18) (1.01)
Theta 1.33** 1.24** 1.22** 1.20**

(0.03) (0.03) (0.03) (0.03)
Sigma 0.20** 0.31** -0.26** 0.23**

(0.01) (0.01) (0.01) (0.01)
Sigmacorr -0.89**

(0.02)
No. of Obs 1280

Mean log lik -57.53
Figures in brackets indicate standard errors

1. Log of the parameter that allows corner solutions

2. Log of the standard deviation of the normal distribution

*: Significant at 1% level

Table 1.18 Likelihood Ratio Test between Restricted and Unrestricted
Models when τij ∼ N(0, σ2

τ )

Year Mean log-likelihood LR Stat Crit. Value—
Unrestr. Model Restr. Model at 1%

2002-03 -28.24 -28.28 122.62 15.09
2002-05 -57.53 -57.94 1036.03 30.58
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Table 1.19 Year-wise Welfare Estimates in Dollars for an Improvement in
Secchi Depth of all Lakes to at least 5.6m:τij ∼ N(0, σ2

τ )

Constrained Model Unconstrained Model
2002 268.26 201.24
2003 261.07 285.99
2004 304.05 441.22
2005 294.45 239.27

No. of Obs 1280
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CHAPTER 2. THE EFFECT OF THE SOURCE OF ERROR ON

WELFARE MEASURES IN A KUHN-TUCKER MODEL

2.1 Introduction

As discussed in the previous chapter, one of the main goals of recreation demand

models is to estimate changes in welfare from changes in the quality and availability of

environmental goods. Benefits estimates computed from these studies inform decisions of

policymakers on the the optimal allocation of resources for the provision and maintenance

of public goods. The typical way these models are used is to examine whether a proposed

change in the availability, quality or price of a public good will result in a net increase in

welfare over all individuals affected.

An important component of all regression analyses is the regression error. In the

context of recreation demand models, the source of the regression error can be of prime

importance. This is because, the way welfare estimates are computed for these models may

differ depending on what the regression error represents. Most recreation demand models

assume the error term to represent heterogeneity in preferences - arising out of some factor

that is known to the consumer but not to the researcher. Hence, the expected consumer

surplus from hypothetical changes in price and quality attributes of a site is estimated by

drawing randomly from the assumed distribution of the errors and averaging the estimates

over all draws. However, other sources of error have been discussed in the literature.
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The error term has variously been traced to socioeconomic factors that is known to

the individual but not to the researcher (Gum and Martin, 1975), randomness in human

behavior (Hanemann,1983), measurement error in the dependent variable (Hiett and Wor-

rall, 1977) and measurement errors in the explanatory variables (Brown et. al, 1983).

Bockstael and Strand (1987), discuss four possible sources for the error in regression: (i)

omitted variables; (ii) randomness in preferences; (iii)error in the measurement of the de-

pendent variable and (iv) error in the measurement of one or more independent variables.

The heterogeneity in preferences as modeled in standard recreation demand models, derives

from omitted variables as discussed by Bockstael and Strand (1987). It is important to note

that regression error arising out of the first three sources can still satisfy the Gauss-Markov

conditions, while error on account of wrongly measured independent variables will not be

orthogonal to the independent variables. Hence, estimating a model where the regression

error refers to measurement errors in the independent variable will require corrections that

make the estimation process different from the process for models where the error derives

from the first three sources of error.

Bockstael and Strand (1987) consider only the first three sources of the regression error

in the context of linear or log linear demand functions and show that different sources of

error imply different welfare measures - higher welfare estimates associated are associated

with the regression error arising from heterogeneity in preferences as compared to random-

ness in preferences. Their findings cannot be extended automatically to non-linear models.

For a range of recreation demand models, including the Kuhn-Tucker models, the error

term enters the demand function in a more complex manner than the linear and log-linear

functions and it is not possible to isolate and sign the effect of the error term on the welfare

measure analytically. The purpose of this paper to explore the issue empirically.

There have been studies that assumed the regression error arising from sources other
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than heterogeneity in preferences in the context of non-linear models (Herriges et al., 1999;

Whitehead et al. 2000; Von Haefen et al., 2004), but none that conduct a systematic

empirical study of the welfare estimates under different sources of the error, especially in

the context of the highly non-linear Kuhn-Tucker framework. This paper fills that gap by

computing the welfare measures when the regression error arises from two different sources

in a Kuhn-Tucker model with non-linear demand functions. In case of linear or semi-log

demand functions Bockstael and Strand (1987) found that welfare estimates derived under

the assumption that the errors represent heterogeneity in preferences are likely to be larger

as compared with the estimates that are derived under the assumption that errors represent

randomness in preferences. If this result extends to the non-linear functions too, it would

suggest that careful consideration needs to go into the assumptions about the source of

the regression error to ensure that the welfare measure computed is truly indicative of the

benefits from a policy measure.

Kuhn-Tucker models are particularly suitable for studying site choice behavior when the

consumer chooses among several options. This is because the Kuhn-Tucker framework is

utility theoretic and can model the downward censored nature of trip data. In addition, the

high degree of non-linearity of the Kuhn-Tucker framework makes is a good case study for

undertaking the Bockstael and Strand (1987) kind of comparison in a non-linear framework.

In this paper, we estimate welfare measures using the Kuhn-Tucker model applied to

a large and unique data set: four years of recreation trips from a random sample survey

of Iowa residents regarding their use of 127 lakes. This is the same dataset that is used

in chapter 1. Both compensating and equivalent variation is estimated for the sample

separately for each of the four years - 2002-2005. In constructing the welfare measures,

we consider two interpretations of the error term - first, that it represents heterogeneity in

preferences on account of factors that are known to the individual but not to the researcher



39

and second, that it arises from an inherent randomness in human behavior or circumstances

that cannot be predicted even by the individual in advance. Note, in both cases the

error term is associated with the demographic variable and enters the utility function in

an identical manner. The process of estimating the parameters are identical in the two

cases, but the process of computing welfare estimates are not. In both cases, the model

is correctly specified. Further, in both cases the regression error can safely be assumed

to satisfy identical regularity conditions. This is what makes them especially suitable for

comparing the effect of the source of error on welfare estimates.

Unlike Bockstael and Strand (1987), we do not focus on the case where the regression

error represents measurement errors in the dependent variable - the number of trips taken

in this case. In the linear demand functions studied by Bockstael and Strand (1987),

the error term was associated linearly with the demand function and was identical for the

three sources of regression error that they considered. In the Kuhn-Tucker model, the error

enters the utility function in a non-linear fashion in association with the demographic terms

for the first two cases, viz., heterogeneity in preferences and randomness in preferences.

As a result the regression error enters the demand function non-linearly too. But when

the regression error originates from incorrectly measured trips taken, it can no longer be

associated with the demographic variables and must enter the demand function linearly.

This will make the equations estimated different from the equations estimated in the first

two cases. Hence, we do not consider the case where error originates from measurement

errors in trip data.

The rest of the paper is organized as follows. Section 2 describes the Kuhn-Tucker model

for estimating the parameters of the utility and demand functions. Section 3 discusses the

way the different welfare measures are estimated under the different interpretations of the

error term. Section 4 provides a brief overview of the data, section 5 discusses the results
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and section 6 concludes.

2.2 The Model

Assume that there are T periods and a total of M sites each having K characteristics.

The utility function for a household i in period t is given by

Uit =
M∑
j=1

exp(δ′Sit + ηijt)ln[exp(γ′qit)xijt + θ] + ln(zit), (2.1)

where

xijt = Number of trips taken by the ith individual to site j in period t,

Qt = [q1t, q2t...qMt], where qjt is a K by 1 vector of quality variables associated with site j,

Sit = the set of demographic characteristics for the ith household in period t

θ = parameter allowing for corner solutions,

ηi = an MT by 1 matrix of error terms for the ith individual,

Pijt = the ith individual’s cost of visiting site j in period t,

zit = a composite of all other goods (the numeraire and a necessary good),

γ and δ = parameters of the model.

In the standard Kuhn-Tucker model as estimated in chapter 1, ηijt would represent

heterogeneity in preferences - demographic or other systematic factors that are known

to the individual but unobserved by the researcher. In this case it could also stand for a

random error that is unknown to both the individual and the researcher. This specification

of the utility function is additively separable. Further, it assumes that every good (site in

this case) is a normal good and all goods are Hicksian substitutes. The utility function

also assumes weak complementarity meaning that quality attributes of a site do not affect

the total utility of the individual if the site is not visited (Maler, 1974). In other words,
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the individual cares about the quality attributes of only those sites that s/he visits. The

budget constraint for the individual in period t is

Yit =
M∑
j=1

Pijtxijt + zit;xijt ≥ 0; zit > 0∀i, j, t. (2.2)

The decision variables for individual i are xijt and zit. The number of trips to any lake

must be non-negative while the expenditure on the numeraire must be strictly positive.

The Kuhn-Tucker first order condition for the ith individual, in period t with respect to

the jth site implies

exp(δ′Sit + ηijt)
γ′qit)

[exp(γ′qit)xijt + θ]
− Pijt

zit
≤ 0, and

(exp(δTSit + ηijt)
exp(γT qjt)

[exp(γT qjt)xijt + θ]
− Pijt

zit
)xijt = 0

This in turn implies that

ηijt ≤ ln(
Pijt
zit

) + ln[xijt +
θ

exp(γ′qit)
]− δ′Sit = g(xit, Pt, zit, Sit, qjt;β),

where β is the vector of parameters to be estimated. This also implies a demand function

of the form

xijt = Max

(
0,

exp
[
δTSit + ηijt

]
zit
Pjt

exp
(
γT qjt

)
− θ

exp (γT qjt)

)
(3)

For each individual i in each period t, there are M such equations - one for each site.

These equations together with the assumed distribution of the error term define a likelihood

function which can then be used to estimate the parameters of the model.
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2.3 Welfare Measures

We consider a policy which improves one or more site quality attributes in one or more

sites and may involve corresponding changes in the access prices of those sites. Compen-

sating variation is given by the change in income required to ensure that the individual

has the same utility after the change as she did before. Thus, for a policy that improves

one or more site quality attributes, the compensating variation would be a measure of the

individual’s willingness to pay to obtain that change. Equivalent variation is given by the

change in income required to ensure that the individual does at least as well under the

current regime as she would under the new regime. For a policy change that worsens one

or more site quality attributes, the equivalent variation would indicate the willingness to

accept payment to allow that change.

Denoting the original price-quality configuration by
(
p0, q0

)
and the new price-quality

configuration by
(
p1, q1

)
compensating variation for the ith individual for this change is

defined as

CVi = yi − e
(
p1, q1;u0

i

)
where

yi : income of the ith individual

u0
i : maximum total utility of the ith individual at the

original price-quality configuration

e
(
p1, q1;u0

i

)
: minimum expenditure required for the individual to attain u0

i

at the new price-quality configuration

Similarly equivalent variation for the individual is defined as
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EVi = e
(
p0, q0;u1

i

)
− yi

where

u1
i : maximum total utility that the individual can attain with the current income

at the new price-quality configuration

The compensating and equivalent variations can then be averaged over all individuals

in the sample to get an average measure of the welfare change. When the error term arises

from heterogeneity in preferences that is known to the individual, then the error term is

like an explanatory variable or a composite effect of explanatory factors. This is because

the error term stands in for some variable that affects utility and demand functions in a

systematic way. It should, therefore, be included in the calculation of demand and total

utility because excluding it will result in an omitted variable bias. On the other hand,

when the error term reflects a randomness in tastes and circumstances which affect trip

demand but cannot be predicted by the individual, the researcher is better off focusing on

the systematic portion of the trip demand. In this case, therefore, only the mean of the

error term should be incorporated into either trip demand or total utility. For the two

sources of error that we consider, the process for estimating the parameters of the model

are identical. The only difference is in the computation of welfare estimates. If we were

to consider, a model where the error term reflects inaccurate reporting of trips taken or

one of the explanatory variables, the process of estimating the parameters of the model

would be different since the corresponding regression equations would be different. For

this reason, it is useful in our context, to focus only on the first two sources of error which

provides us with a way to compare two cases that are nearly identical except in the last
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step, i.e. computation of welfare estimates. This is different from Bockstael and Strand

(1987) where the error term was associated with the demand function.

In the Kuhn-Tucker model with our specification of the utility function, there is no

analytical solution for either the compensating variation or the equivalent variation. Both

must be computed numerically. When the error term is to be included in the welfare

computation, for each individual we take 500 draws from the distribution of the error

and calculate demand at the initial and new regimes for each draw of the error. Thus

for each draw we have an estimate of the compensating and equivalent variations. The

compensating variation and equivalent variation for each individual are the averages of

each measure over all 500 error draws.

2.4 Data

The dataset for this analysis is the same as used in chapter 1. For four consecutive

years from 2002 to 2005, a survey questionnaire about trips to lakes in Iowa was sent out to

a random sample of households within the state. Each year about 4000 completed surveys

were returned. Of the returned surveys, information on some individuals could not be

used because the surveys were incomplete. Excluding those individuals for whom complete

information on trips taken was not available, we have about 3500 completed surveys in

each year except in 2003 for which we have about 4500 surveys. A complete four-year

panel is available for 1621 observations.

As discussed in chapter 1, 33-35% of respondents in 2003, 2004 and 2005 did not visit

any lake in Iowa. 41% of respondents in 2002 did not visit any lakes. The average number

of lakes visited by all respondents ranged between 1.8 and 2.5.

The average number of trips for all individuals ranged between 6.4 and 7.5. Between

64% and 66.5% of all respondents in 2003, 2004 and 2005 took one or more trips during
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the year. The proportion of positive trip takers in 2002 was lower at around 59%. The

average trips of those who took positive trips moved around 11 in each of the four years.

The proportion of positive trip takers was higher in the four-year panel as compared with

the single year data for all years. However, the average trips for all respondents was not

systematically different for the four-year panel as compared with the single year data. This

was because the average trips of positive trip takers was lower, albeit marginally, in the

four-year panel as compared with the single year data. As in Chapter 1, we are modeling

single-day trips to lakes for recreational purposes and do not consider overnight trips taken.

The maximum trips of all trip takers is curtailed at 52 because we exclude individuals who

report taking more than 52 trips in a year. While this is an arbitrary threshold, it helps to

exclude those that live close to a lake and happen to pass the lake in course of other daily

activities. Table 1 reproduces the information in Table 6 of chapter 1 to provide summary

statistics for the independent variables.

Table 2.1 Summary Statistics for Independent Variables

Years Income($1000s) Age Travel Cost Secchi Depth
Mean Min Max Mean Min Max Mean Min Max Mean Min Max

2002 57.9 5 170 52.2 17 80 136.0 0.5 750.2 1.2 0.1 5.7
2003 58.8 5 170 53.1 21.5 80 140.1 0.5 934.8 1.5 0.2 8.1
2004 61.8 5 170 54.0 17 80 144.5 0.5 937.2 1.1 0.2 5.1
2005 61.8 5 170 54.8 17 80 149.2 0.5 944.5 1.2 0.1 5.7

Table 1 presents the summary statistics for the regressors of the model. For the purposes

of this paper, the only demographic variable used was age and the only water quality

measure used was secchi depth. Secchi depth is one of the most easily observed and

understood water quality measures. The other variables of interest are income and travel

cost. Travel distance and time for each household to each lake was estimated using the PC
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Miler software. Travel cost was computed using a fixed amount per mile and the imputed

cost of time. The per mile cost was the same for each household and was fixed at $0.25,

$0.26, $0.265 and $0.28 for 2002, 2003, 2004 and 2005, respectively. The imputed cost of

time for each household depends on the average wage rate for that household calculated by

the yearly income divided by 2000, which is average number of hours worked in a year after

accounting for two weeks of leave. This is an average measure that allows us to translate

the income in the household to the cost of its time. It is not meant to substitute for exact

information on wage rates. We have complete trip information for a full four-year panel

of 1621 observations. Complete information on income and other demographic variables is

not available for all of these individuals. We have complete information required for our

model for all four years for 1280 individuals. The information in Table 1 is for these 1280

observations.

As Table 1 indicates, secchi depth of all lakes ranged between less than 20 centimeters

to more than 5.5 meters in three of the four years. In 2003 there was an increase in the

maximum secchi depth of Lake Okoboji, the clearest lake in the state, to over eight meters.

The average secchi depth of all lakes ranged between one and 1.5 meters in the four years

under consideration. Travel cost ranged from 45 cents to over $940 for a two-way trip with

the mean around $140 in all four years.

Survey respondents were asked to indicate which of 14 income and seven age categories

they belonged to. Everyone belonging to an age category was assigned the median age for

that category. The same was done for income. The mean income in all four years was close

to $60,000 per annum and increased every year. The mean age in all four years was around

53 years.
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2.5 Results

In estimating the model we assume that the error term follows a normal distribution

with mean zero and a variance that is estimated from the data. The errors are indepen-

dently and identically distributed for each individual and each site within a year. Table 2

presents the parameter estimates for each of the four years. All of the parameters of this

simplified model are highly significant for each of the four years. Further, the parameters

have similar signs and are of the same order of magnitude over the years suggesting that

preferences were consistent over the time considered. The coefficient for secchi depth is

positive as expected. The coefficient of age is positive too.

For the purposes of computing welfare estimates, two policy measures were considered.

In the first case, the secchi depth of all lakes are increased to at least 5.67 meters which is

the secchi depth of the clearest lake (Lake Okoboji) in three of the four years. Note that

this is an exceptionally large improvement meant to drive a large willingness to pay. For

many of the lakes in the dataset, increasing secchi depth to 5. 67 meters would amount to

an improvement of more than 500%. This is obviously not observed in reality. The access

price for each of the lakes remains unchanged. In this case, the willingness to pay should be

positive and the compensating variation should exceed the equivalent variation measure.

In the second case, 10 of the 127 sites were removed from the choice set. This was done by

raising the access price of each of these 10 lakes above the choke price, i.e. the price at which

all demand for trips to that lake falls to zero. The access prices for the other lakes were

left unchanged. In this case, the willingness to pay should be negative and the equivalent

variation should exceed the compensating variation. The welfare measures for the policies

were computed at the point estimates presented in Table 2 for two interpretations of the

error term. Tables 3 and 4 present the welfare estimates for the two policy measures.
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As expected, the equivalent variation in each case is of similar magnitude to the com-

pensating variation. If the error term is interpreted as heterogeneity in preferences, the

magnitude of the willingness to pay is substantially higher than if the error term is inter-

preted as randomness in preferences. This is true for both policies and for both compensat-

ing and equivalent variation measures of willingness to pay. For instance, the willingness to

pay for an improvement in secchi depth of all lakes to 5.67 meters ranged between $221 and

$460 when the error was assumed to come from heterogeneity in preferences. When the

error was assumed to arise from randomness in preferences, the corresponding willingness

to pay ranged between $0.40 and $1.30. Thus the benefits from policy 1 are substantially

lower if we assume the error term arising from randomness in preferences. This implies

that depending on the cost of undertaking such an improvement, assumptions about the

source of the error term can make a critical difference to whether a project is considered

worth undertaking or not.

Similarly for policy 2, the willingness to accept compensation to allow the removal of 10

lakes from the choice set ranged between $27 to $51, when the error was assumed to rep-

resent heterogeneity in preferences. When the error was assumed to represent randomness

in behavior, the corresponding willingness to accept compensation ranged between $0.01

amd $0.04. This indicates that the assumption about the source of the error can make a

crucial difference to the total benefit estimate and hence benefits net of costs of a project

that improves one or more sites.

The stark differences in the welfare measures associated with the two sources of re-

gression errors observed particularly in Table 3, can be traced to the way that the error

enters the utility function. From section 2, the error term enters the demand function

exponentially. Thus xijt is increasing and convex in ηijt. Consider a matrix ηit of N draws

of 127 error terms drawn from a mean zero distribution, for individual i in period t. Let
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x̂it be the corresponding Nx127 matrix of trips for this individual in the same period given

by

x̂ijt =
exp

[
δTSit + ηijt

]
zit
Pjt

exp
(
γT qjt

)
− θ

exp (γT qjt)
(2.3)

For the purposes of this thought experiment, we are not requiring the x̂ijt to be non-

negative. Thus the matrix x̂it consists of both negative and positive numbers. Let ¯̂xit be

the mean of the matrix x̂it over the N draws. Thus ¯̂xit is a 1x127 vector. The mean of ηit,

barηit is a 127x1 vector of numbers that are very close to zero because the errors are drawn

from a mean zero distribution. The untruncated trip vector corresponding to barηit is a

1x127 vector, which we will call ˜̂xit. Let xit be the truncated trip vector corresponding to

ηit and given by

xijt = Max

(
0,

exp
[
δTSit + ηijt

]
zit
Pjt

exp
(
γT qjt

)
− θ

exp (γT qjt)

)
(3)

Let x̄it be the mean of xit over the error draws. xit is of dimension Nx127, while x̄it is of

dimension 1x127. Since xijt is increasing and convex in ηijt, by Jensen’s inequality ¯̂xit > ˜̂xit.

x̂it contains both positive and negative terms while xit is left-truncated. Hence x̄it ≥ ¯̂xit.

Together, these two inequalities imply that x̄it ≥ ¯̂xit > ˜̂xit. This explains why mean trips

in our model are not just higher but are substantially higher when we average over the

error draws than when we compute them at the mean of the error draws which is zero.

The predicted trips under the two conditions before and after the improvement on account

of policy 1 are presented in Table 5. As before, when the error reflects heterogeneity in

preferences, the predicted trips should be averaged over all error draws. When the error

reflects randomness in preferences, the predicted trips should include only the mean of the

error draws, which, in this case is zero. As Table 5 shows, error reflecting heterogeneity in

preferences is associated with much higher predicted trips than error reflecting randomness

in preferences. This is true both before and after the improvement. The large differences
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in welfare estimates associated with the two error interpretations is driven largely by this

difference in predicted trips. But the effect of the error term on welfare estimates is further

exaggerated by the fact that the error term enters the indirect utility function in two ways

- directly with the demographic variables and indirectly through the trip demand. The

indirect utility function in our model is given by

Uit =
M∑
j=1

exp(δ′Sit+ηijt)ln[exp(γ′qit)Max

(
0,

exp
[
δTSit + ηijt

]
zit
Pjt

exp
(
γT qjt

)
− θ

exp (γT qjt)

)
+θ]+ln(zit)

(2.4)

This further amplifies the impact of large positive error draws on the indirect utility func-

tion. The effect of large negative draws are muted by the fact that for large negative draws,

trip demand is zero - the same as for smaller negative draws. Thus non-linearity of the

indirect utility function in the error term, together with the left-ward truncated nature of

trip demand amplifies the effect of large positive error draws and mutes the effect of large

negative error draws, thus resulting in welfare estimates which are substantially higher

than the estimates computed with the error draw set at zero.

2.6 Conclusion

This chapter sought to examine if the source of the error term in a Kuhn-Tucker model

of recreation demand makes a material difference to welfare estimates from hypothetical

changes to site quality attributes. Earlier studies have examined this question in the con-

text of linear and semi-log demand functions where the error term is associated additively

with trip demand. There have been no systematic empirical studies to answer this ques-

tion in the context of non-linear demand functions. The Kuhn-Tucker model is highly

non-linear and so it is not possible to analytically map the source of the error to the size of

the welfare estimate in such a model. Using four years of data on a sample of Iowa house-
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holds’ demand for trips to lakes in Iowa, I examine the welfare estimates associated with

two interpretations of the error term, viz., heterogeneity in preferences and randomness

in behavior. I find that the source of the error does make a difference to the magnitudes

of both compensating variation and equivalent variation from a change in some site qual-

ity attributes in one or more lakes. Specifically, benefits estimates associated with error

arising out of heterogeneity in preferences are systematically larger than benefits estimates

associated with the error arising out of randomness in behavior. This is consistent with

the findings of Bockstael and Strand (1987) with linear and semi-log demand functions.

It is, therefore, important to carefully consider the source of the error when using these

measures to determine if a project is worth undertaking or not.



52

Table 2.2 Single Year Estimates of Simple Model

2002 2003 2004 2005
Constant -8.24** -8.86** -8.47** -8.47**

(0.06) (0.07) (0.06) (0.06)
Age 4.98** 11.22** 5.44** 7.94**

(0.84) (0.85) (0.82) (0.80)
Secchi Depth 9.37** 9.76** 13.30** 8.26**

(1.05) (0.86) (1.18) (1.00)
Theta1 1.36** 1.26** 1.24** 1.23**

(0.03) (0.03) (0.03) (0.03)
Sigma2 0.24** 0.36** 0.30** 0.27**

(0.01) (0.01) (0.01) (0.01)
No. of Obs 1280 1280 1280 1280

Mean log lik -12.84 -15.41 -14.94 -14.95
Figures in brackets indicate standard errors

1. Log of the parameter that allows corner solutions

2. Log of the standard deviation for the normal distribution

**: Significant at 1% level

Table 2.3 Mean CV and EV in dollars under Policy 1: Secchi Depth of all
lakes improved to at least 5.67 m

Error reflects 2002 2003 2004 2005

CV
Heterogeneity 221.64 302.60 447.50 250.70
Randomness 0.70 0.42 1.20 0.72

EV
Heterogeneity 225.26 308.02 457.90 254.18
Randomness 0.79 0.44 1.29 0.76
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Table 2.4 Mean CV and EV in dollars under Policy 2: Ten lakes are re-
moved from the choice set

Error reflects 2002 2003 2004 2005

CV
Heterogeneity -30.48 -50.64 -39.89 -41.72
Randomness -0.04 -0.01 -0.02 -0.03

EV
Heterogeneity -26.55 -44.88 -36.47 -38.39
Randomness -0.01 -0.01 -0.01 -0.03

Table 2.5 Projected Mean Trips before and after Improvement: Policy 1

2002 2003 2004 2005

Before Improvement
Heterogeneity 9.35 11.04 10.09 10.36
Randomness 0.45 0.29 0.36 0.44

After Improvement
Heterogeneity 12.44 14.04 14.69 13.15
Randomness 0.73 0.46 0.74 0.68
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CHAPTER 3. GREEN CONSUMERISM AND THE

POLLUTION-GROWTH NEXUS

3.1 Introduction

In recent decades, there has been a worldwide surge in awareness of the enormity of

global environmental problems and the role of human activity in creating these problems.

That awareness has produced a kind of environmental consciousness – living in a way so as

to lower one’s negative impact on the environment. This heightened consciousness has been

documented in numerous surveys. For example, the 2009 Cone Consumer Environmental

Survey finds that 35% of Americans report greater interest in the environment compared to

the previous year.1 70% of the Americans surveyed indicate that they are paying attention

to the current activities of companies with regard to the environment. A very similar

picture emerges from the 2008 NHK “Survey of Attitudes Toward the Environment” in

Japan.

The heightened environmental consciousness has translated into concrete action at the

level of individuals. The NHK survey found that more than 50% of Japanese have adopted

relatively easy energy-saving efforts, such as setting air conditioners and heating units at

moderate temperatures, turning off lights when not needed, and bringing their own bags
1The 2009 Cone Consumer Environmental Survey presents the findings of an online survey conducted

January 29-30, 2007 by Opinion Research Corporation among a sample of 1,087 adults comprising 518 men
and 569 women 18 years of age and older. The margin of error associated with a sample of this size is ±3%.



55

with them when shopping (eko baggu); 83% took out old newspapers and empty bottles

and cans for goods-recycling or reusable waste collection. When asked what is necessary

to solve environmental problems, 26% answered “effort of individuals”.2 A large number

of Americans too are now environmental ”doers” – in 2007, almost half have purchased

environmentally-friendly products, of whom 62% bought products with recycled content,

56% made energy-efficient home improvements, 24% bought organic or other third-party

certified foods/beverages, and 13% bought energy-efficient cars.3 Despite the economic

downturn, in 2009, 34% of Americans were more likely to buy environmentally responsible

products than they were a year back. Only 14% did not shop with the environment in mind.

I label all such private action aimed at reducing one’s negative impact on the environment

as voluntary environmentalism or green consumerism.4

Green behavior consists of a set of lifestyle choices based on a concern for the envi-

ronment. It manifests itself in activities such as, more energy conservation than is war-

ranted by simple cost savings, broad-based recycling, purchase and use of biodegradable

products, greater use of public transportation and bicycles (in spite of the associated in-

conveniences), purchasing fuel-efficient cars with dubious pecuniary benefits, and so on.

Green consumerism also manifests in patronizing businesses and purchasing products of

companies that are known to be environmentally responsible. Undertaken by enough indi-
2As for the question “How willing would you be to accept cuts in your standard of living in order

to protect the environment?” as few as 3 percent said “very willing,” while 37 percent said “fairly will-
ing,” 25 percent “fairly unwilling,” and 12 percent “very unwilling.” When asked “How willing would
you be to pay higher taxes in order to protect the environment?” only 1 percent said “very willing,”
while 30 percent said “fairly willing,” 27 percent “fairly unwilling,” and 18 percent “very unwilling.”
[http://www.nhk.or.jp/bunken/english/pdf/090228-07.pdf]

3Back in 2003, Business Week reported on the greening of China: “But, as in much of the rest of the
world, the rise in living standards is also leading to calls among members of the new middle class for greater
attention to the environment. Newspapers are writing about the problem more often, and independent
environmental groups are springing up. As Beijing’s leaders try to balance the needs of development with
the imperative to clean up, it may well be the citizens who lead the way.”

4I use the phrase voluntary environmentalism or mainstream environmentalism to distinguish it from
the more-militant environmental movement. Such environmentalism consists of private lifestyle and con-
sumption choices as distinct from political activism and lobbying that marks the enviromental movement.
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viduals, these activities collectively will likely result in observable differences in the quality

of the environment, but the activities of any one individual are too miniscule to make any

difference to the environment as a whole.

In this paper, I introduce green consumerism into an otherwise-standard, neoclassical

growth model, and use it to study the well-known pollution-growth nexus. Green behavior

is modeled by assuming that all agents derive a warm glow (in the sense of Andreoni,

1990) from their green activities. That is, the fact that people voluntarily incur private

costs intended to increase the supply of a public good such as environmental quality, is

motivated by the private benefit of a warm glow and is unrelated to the actual supply of

the public good. More specifically, I study a two-period overlapping-generations model (a

“Diamond model”) with production where agents receive direct utility from consumption

in each period of life and from their pollution-abatement expenditures made when young.

Agents save for standard life-cycle reasons, and the collective savings of a generation become

the start-of-period capital stock in the following period. The current pollution level is

assumed to depend on its immediate-past level, capital use in the current period, and the

combined pollution-mitigation expenditures made by these green agents. Pollution affects

the lives of agents in that it reduces a scale factor attached to second-period felicity; ceteris

paribus, more pollution reduces the attractiveness of old-age consumption. The assumption

that pollution affects the marginal utility from old-age consumption, i.e., pollution is not

additively-separable from consumption in its impact on utility is of crucial importance in

mapping the impact of pollution on human choices. What is also crucial is that private

agents do not internalize the effect of their green activities on pollution, and in turn, its

effect on their lives.

I go on to characterize optimal green expenditures by agents. I show that in a suffi-

ciently capital-poor economy, agents do not indulge in green consumerism, that is unless
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an economy becomes rich enough, agents do not invest in pollution-abatement expendi-

tures. This result conforms well to popular notions that green lifestyles among people are

more commonly seen in developed countries, and not so much in countries such as India

and China, which nevertheless face dire environmental problems. I also show that capital

rich economies which engage in green consumerism do not necessarily enjoy lower long run

levels of pollution than economies which do not engage in green consumerism.

Next, I consider dynamic, competitive equilibria both in settings where private agents

do and do not make pollution-abatement expenditures. In the former case, the evolution

equation for pollution reduces to a one-dimensional dynamical system, making the analysis

analytically tractable. I can show that, depending on parameter restrictions, the economy

admits either a unique steady state or two steady states. The unique steady state may

be attracting but the path to it involves oscillatory pollution dynamics – periods of high

pollution are followed by those of low pollution. If there are two steady states, the low-

pollution steady state is locally stable, indicating that, once agents in an economy start

to make green expenses, the long-run level of pollution is low. In the case where private

agents do not make pollution-abatement expenditures, the evolution equation for pollution

and capital forms a two-dimensional dynamical system. In this case, I can prove there is

a unique non-trivial steady state. I can show that economies that do not engage in green

consumerism, the dirtier technology as reflected in higher emissions per unit capital, is

associated with higher pollution and lower capital. Further, higher tolerance for pollution

is associated with higher pollution and higher capital. For future use, note a certain self-

destructing nature to pollution: as pollution increases, old-age consumption becomes less

attractive, and this causes agents to smoothen lifecycle consumption by raising young-age

consumption via reduction in saving, which, in turn, helps to reduce future pollution.

I go on to characterize the set of allocations that would be chosen by a benevolent social
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planner. Such a planner would internalize the effect of pollution-mitigation expenses on

pollution, something that the market economy (described above) would not. For standard

reasons, the market economy may or may not accumulate more capital than the planner

would. Here, in addition to that route for inefficiency, it is possible that the market econ-

omy may allocate more or less resources to pollution-abatement. The young consumption

associated with green consumerism in a market economy is higher than the young con-

sumption associated with green consumerism that emerges from the planning solution. I

can show that, given the level of development of the economy, the planner may choose not

to allocate any resources to pollution-abatement. I can further show that in the planning

solution young and old consumption as well as capital are higher when mitigation is posi-

tive as compared with the situation where it is zero. However, pollution will not necessarily

be lower in presence of mitigation than in absence of it.

Using numerical methods, I proceed to compare long-run levels of various variables of

interest across the market and planned economies. The upshot of this comparison is this.

Relative to the competitive outcome, the planner allocates less to both young and old-

age consumption, but uses these freed-up resources to finance more pollution-mitigation

expenses. The result is lower pollution and lower capital than what the market would have

chosen.

My analysis departs from previous work in this area in several ways. First, many

models (such as, in the seminal piece by John and Pecchenino, 1994, and many others

in that line), studying the pollution-growth nexus incorporate environmental quality as

an argument of utility, and allow private agents to influence it either directly via their

own pollution-mitigation investments or indirectly by a government via tax collections. In

contrast, I explicitly model the idea that actions taken by an atomistic private agent could

not possibly influence the overall quality of the environment. These studies implicitly
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assume that the quality of the environment does not impact the marginal utility from

consumption of non-environmental goods. This additive-separability of the environment

and consumption buys them tractability but is restrictive in that the impact of human

choices on the environment is studied but the reverse, the impact of the environmental

on human behavior, is ignored. My paper is part of a short, recent line of work that

incorporate the bi-directional link between individual choices and pollution. In Jouvet et

al. (2007), Varvarigos (2008), and Mariani et al. (2010), pollution reduces longevity, and

hence saving (which, in turn, affects pollution via production); however, the strength of

the empirical link – see Bloom et al. (2003), for example – between longevity and saving

is not very strong. My formulation avoids this potential pitfall. Finally, to the best of my

knowledge, the current paper is the first to study the new and evolving phenomenon of

green consumerism and its connection to the pollution-growth nexus.

Rest of the paper is organized as follows. Section 2 describes the model and examines

the competitive equilibrium, section 3 details the benchmark planning problem, and Section

4 discusses some comparative static results comparing the competitive equilibrium with the

planning solutions in the long run. Section 5 concludes.

3.2 The model

Consider an economy populated by an infinite sequence of two-period lived overlapping

generations and an initial old generation. At each date, t = 1, 2, 3..., a new generation

is born; each consists of a continuum of agents with mass 1. Each agent, starting with

Generation 1, has one unit of time when young and retires when old.

The sole final good of the economy is produced using a production function F (Kt, Lt),

where Kt denotes the capital input and Lt denotes the labor input at t. Let kt ≡ Kt/Lt

denote the capital-labor ratio (capital per young agent). Output per young agent at time
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t may be expressed as yt = f(kt); f(kt) ≡ F (Kt/Lt, 1) is the intensive form. For most

of what I do below, I assume f (k) = Akθ, θ ∈ (0, 1) . The final good is either consumed

in the period it is produced or it can be stored to yield capital the following period. For

analytical tractability, capital is assumed to depreciate entirely between periods.

Let c1t (c2t+1) denote the consumption of the final good at date t (date t + 1) by

a representative young (old) agent born at t. Let mt denote the pollution-mitigating

expenditures at date t by a young agent. All such agents have preferences representable

by the time-separable utility function

U(c1t, c2t+1,mt) ≡ ln (c1t) + ϕ ln (c2t+1) + γmt; γ > 0

where ϕ is a factor that scales old-age felicity. Agents take ϕ as given. In actuality, ϕ is

assumed to depend on the level of pollution in the economy; specifically,

ϕ ≡ ϕ (Pt) = β

(
1− Pt

P̂

)
where Pt is pollution at date t. The parameter P̂ provides an upper bound on the pollution

tolerable. Intuitively, it stands for that level of pollution at which agents attach zero

weight on second period consumption and do not save for the future. In that sense it is

the maximum tolerable pollution. The parameter β is positive. For future reference note,

in my overlapping-generations setup, it is strictly speaking, not necessary to have ϕ ≤ 1.

Intuitively, ϕ can be thought of as a scaling factor that weighs utility from second

period consumption relative to that from first period consumption. In recent studies that

examine the impact of pollution on longevity, ϕ is the probability of the agent surviving to

old age (Jouvet et al., 2007; Varvarigos, 2008; and Mariani et al. 2010).5 In other studies

examining health expenditure in the context of growth models this has been interpreted
5Exposure to fine particulate matter in air has long been associated with increased morbidity and mor-

tality. For instance, particulate matter (PM) air pollution has been known to increase risks of cardiovascular
incidents. Even short-term exposure to PM2.5 over a few hours can trigger myocardial infarctions, cardiac
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as the fraction of the second period that the agent is alive (Bhattacharya and Xiao, 2005).

In its present formulation, ϕ could be analogous to quality-adjusted life years, indicating

that young-age exposure to pollution reduces the ability to enjoy consumption in old age.

Alternatively, absence of pollution or cleanliness of the environment may be thought of as

complementary to old age consumption.

It deserves mention that utility is assumed to be linear in mitigation. This is a deliberate

choice and serves two purposes. First, it permits corner solutions in mitigation expenses.

This is important in the present context because green consumerism, as yet, is observed

primarily in the developed world. Second, linearity of utility in mitigation greatly enhances

the analytical tractability of the model. The thrust of our results will not change if this

linearity is abandoned.

Since young agents do not value leisure, they supply their unit labor endowments

inelastically in competitive labor markets, earning a wage of wt at time t, where

wt ≡ w(kt) = f(kt)− ktf ′(kt) = (1− θ)Akθt

and w′(kt) > 0. In addition, capital is traded in competitive capital markets, and earns a

gross real return of Rt+1 between t and t+ 1, where

Rt+1 ≡ R (kt+1) = f ′(kt+1) = θAkθ−1
t+1

with R′ (kt+1) < 0.

ischemia, arrhythmias, heart failure, stroke, exacerbation of peripheral arterial disease, and sudden death.
Chronic exposure to moderately elevated levels also enhances the risk for developing a variety of cardio-
vascular diseases, possibly including hypertension and systemic atherosclerosis (Brook, 2007) On the other
side of the coin is the documented improvement in longevity on account on improvements in air quality.
In a study of 211 county units in the 51 U.S. metropolitan areas for two periods between late 1970s and
early 1980s and the late 1990s and early 2000s, Pope et al. (2009) found that a decrease of 10 µg per cubic
meter in the concentration of fine particulate matter was associated with an estimated increase in mean
life expectancy of 0.61 years after adjusting for changes in socioeconomic and demographic variables and
in proxy indicators for the prevalence of cigarette smoking. The study concluded that reductions in air
pollution accounted for 15% of overall increases in life expectancy in the study areas. It is important to
note that the impact of air and water pollution goes beyond mortality rates.
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Finally, it remains to describe the process of evolution for polluion. Pollution in period

t is given by

Pt = (1− α)Pt−1 + bkt − νmt (1)

where α < 1 is the fraction of pollutants that is naturally absorbed by the biosphere in

one period. Thus (1− α)Pt−1 is the pollution from period t − 1 that persists into period

t. New emissions from production (capital use k) add to the pollution and mitigation (m)

activities neutralize some of the emissions and persisting pollution.

The representative agent’s budget constraints are given by

wt = c1t + st +mt

c2t+1 = Rt+1st

where s denotes saving. Wage income is allocated to consumption, savings and potentially

to mitigation investment. Savings are loaned out to firms who use them as capital for

production. Wages are paid at the beginning of each period. Interest on capital is paid at

the end of each period. At the end of each period, young agents retire and receive their

interest earnings which they consume fully as old agents in the next period.

3.2.1 Competitive Equilibrium

Atomistic agents take the environment as given and do not internalize the impact of

their consumption or mitigation decisions on the environment. As a result they take the

discount factor ϕ as given. Similar to the standard Diamond model, agents also take

the market interest rate as given. The first-order conditions of the representative agent’s

problem are given by
1
c1t

= ϕ
1
st
≥ γ.
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where γ is the constant marginal utility of mitigation expenditure. The standard Kuhn-

Tucker necessary conditions require that mt = 0 as long as the marginal utility of young

(and old) consumption exceeds γ, the constant marginal utility of mitigation and mt > 0

when the marginal utility of young consumption equals γ.

A competitive equilibrium is a sequence {c1t, c2t+1,mt, st, kt+1, Pt}∞t=0 such that the

agents’ first order conditions are satisfied, the goods market and the capital market both

clear, and pollution evolves according to (1). In equilibrium st = kt+1 so that the agent’s

first order conditions imply

kt+1
1

ϕ (Pt)
= c1t ≤

1
γ

This condition will hold with equality when mitigation is positive. This tells us that an

economy will engage in mitigation expenditure only when it is rich enough in the sense that

its savings and young age consumption are high enough. The economy will not mitigate

till its consumption equals 1
γ . Since ϕ′ (Pt) < 0, it may be tempting to suggest that an

economy will engage in mitigation expenditure only when its pollution level is high enough.

But this line of argument may be inaccurate since current mitigation also affects current

pollution as given by (1) and the two variables are simultaneously determined. It is useful

to look at the competitive equilibrium in terms of two regimes. viz. when mitigation is

positive and when it is at zero. As can be anticipated from here, the path of the economy

where mitigation expenditure is zero will be determined by a different set of conditions

from the path of an economy where mitigation expenditure is positive. In other words, a

poor economy’s dynamics will be different from those of a rich economy. This means that

in terms of the dynamics of an economy the transition from poverty to prosperity will not

be smooth.



64

3.2.1.1 Mitigation Expenditure is zero

In an economy that is not rich enough for green consumerism to have started, the

competitive equilibrium is determined by

kt+1
1

ϕ (Pt)
= c1t

Market clearing requires that

w (kt) = c1t + kt+1

which translates into

A (1− θ) kθt =
(

1 +
1

ϕ (Pt)

)
kt+1 (2)

The law of motion for pollution is given by

Pt = (1− α)Pt−1 + bkt (3)

Equations (2) and (3) together define the dynamics of the economy over time. This is a two

dimensional system so that the standard analysis of the time paths will not be possible.

Steady states for the economy are given by

A (1− θ) kθ =
(

1 +
1

ϕ (P )

)
k

αP = bk

Proposition 1 The economy admits two steady states, a trivial one where k and P both

equal zero, and another positive steady state.

Proof. The two equations above can be collapsed into one to give

A (1− θ) kθ =

(
1 +

1
ϕ
(
b
αk
)) k



65

This obviously has a solution at k = 0 since ϕ
(
b
α0
)

= β. Consider the case where

k 6= 0. Then we have

A (1− θ) kθ−1 =

(
1 +

1
ϕ
(
b
αk
)) (4)

LHS = A (1− θ) kθ−1 is decreasing and concave in k. RHS = 1 + 1

β
(
1− b

hP̂
k
) is increasing

and convex in k. Therefore, there can be at most one intersection between the two, implying

that there can be only one steady state solution at which both k and P are positive. Such

an intersection will exist only if limk→0 LHS < limk→0RHS.

lim
k→0

LHS = lim
k→0

A (1− θ) kθ−1 =∞

lim
k→0

RHS = 1 + lim
k→0

1

β
(

1− b
αP̂
k
) = 1 +

1
β
<∞

This implies that there does exist an intersection between the LHS and the RHS. Let

the positive steady state equilibrium defined by this intersection be given by k0, and let

the corresponding level of pollution be given by P 0.

Lemma 1 There is an upper bound on the unique positive steady state level of pollution

of an economy which does not engage in green consumerism. It is given by P 0 ≤ β
αγ
b + β

P̂

. The corresponding upper bound on capital is given by k0 ≤ α
b

β
αγ
b + β

P̂

Proof. See Appendix 1

At this positive steady state we can examine the comparative static results with respect

to some of the parameters of the model.

Proposition 2 In the positive steady state of an economy that does not does not mitigate

dk
dP̂

> 0, dk
db < 0, dP

dP̂
> 0, and dP

db > 0

Proof. See Appendix 2
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A higher tolerance for pollution as manifested in a high value of P̂ translates into a

higher value of the discount factor for second period consumption. This makes old age

consumption more valuable and hence encourages savings which in turn implies higher

levels of capital so that dk
dP̂

> 0. Higher levels of savings (capital) correspond with higher

levels of pollution in absence of mitigation implying dP
dP̂

> 0. The parameter b is the

amount of emissions per unit capital used for production. A dirtier technology manifesting

in a high value of b implies higher levels of pollution, which through the discount factor

lowers attractiveness of old age consumption and hence savings (capital). This indicates

that technology transfer to less developed economies for lowering emissions per unit capital

use are useful for lowering their long run pollution levels.

3.2.1.2 Mitigation Expenditure is Positive

When the economy is engaging in green consumerism, meaning mt > 0 holds, its com-

petitive equilibrium is defined by kt+1 = ϕ(Pt)
γ or kt = ϕ(Pt−1)

γ and c1t = 1
γ . This is the

primary benefit of assuming quasi-linearity; the marginal utility of young-age consump-

tion is a constant, and hence, young-age consumption is fixed. Using the agent’s budget

constraint, it follows that

w (kt) =
1
γ

+
ϕ (Pt)
γ

+mt such that

mt = w

(
ϕ (Pt−1)

γ

)
− 1
γ
− ϕ (Pt)

γ

Substituting this into the law of motion for pollution, I get

Pt = (1− α)Pt−1 + b
ϕ (Pt−1)

γ
− ν

[
w

(
ϕ (Pt−1)

γ

)
− 1
γ
− ϕ (Pt)

γ

]
The constant marginal utility of mitigation allows us to capture the dynamics of the econ-

omy in a single equation in lagged values of Pt. Expanding ϕ (Pt) into its specified func-
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tional form we can express Pt as a function of Pt−1 and the parameters of the model

as

Pt =
(1− α)Pt−1 + bϕ(Pt−1)

γ − νw
(
ϕ(Pt−1)

γ

)
+ ν(1+β)

γ(
1 + νβ

P̂γ

) (5)

As discussed earlier, P̂ is the maximum tolerable pollution, beyond which the atomistic

agent has no incentive to save for old age. This is an extreme situation and it is useful to

focus on the conditions under which agents do save for old age. So far, there is nothing

that prevents pollution in period t from exceeding P̂ . As it happens, we need to impose

some restrictions on parameters of the model to ensure that pollution in any period does

not exceed P̂ .

Lemma 2 ν
γ ≤ αP̂ is necessary and sufficient condition to ensure that Pt never exceeds P̂

Proof. See Appendix 3

Call this condition C1.
ν

γ
≤ αP̂ (C1)

Differentiating with respect to Pt−1 we get

dPt
dPt−1

=
(1− α)− β

P̂γ

[
b− νAθ (1− θ)

((
1− Pt−1

P̂

)
β
γ

)θ−1
]

(
1 + νβ

P̂γ

) and

d2Pt
dP 2

t−1

=
νAθ (1− θ)2

((
P̂ − Pt−1

))θ−2 (
1
P̂

β
γ

)θ(
1 + 1

P̂

βg
γ

) > 0

The slope dPt
dPt−1

is increasing in Pt−1. This slope could be positive throughout or negative

initially and then bottom out before becoming positive. A priori, we cannot say which

of these would materialize for an economy but we can impose certain necessary and/or

conditions on the parameters associated with each scenario.
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Lemma 3 (i) 1−α− b
P̂

β
γ +νAθ (1− θ)

(
β
γ

)θ−1
1
P̂
> 0 is sufficient to ensure that dPt

dPt−1
> 0

always. (ii) 1−α− b
P̂

β
γ + νAθ (1− θ)

(
β
γ

)θ−1
1
P̂
< 0 is a necessary condition for dPt

dPt−1
< 0

at least for a stretch.

Proof. (i) Since dPt
dPt−1

is increasing in Pt−1, dPt
dPt−1

is at its lowest when Pt−1 = 0. Hence,

if dPt
dPt−1

≥ 0 when Pt−1 = 0, it must be positive for all Pt−1 > 0. When Pt−1 = 0,

dPt
dPt−1

=
1− α− β

P̂γ

[
b− νAθ (1− θ)

(
β
γ

)θ−1
]

(
1 + νβ

P̂γ

)
Hence 1 − α − β

P̂γ

[
b− νAθ (1− θ)

(
β
γ

)θ−1
]
≥ 0 implies and is implied by dPt

dPt−1
≥ 0 at

Pt−1 = 0. (ii) Since 1 − α − β

P̂γ

[
b− νAθ (1− θ)

(
β
γ

)θ−1
]
≥ 0 is a sufficient condition for

dPt
dPt−1

to be positive always, its violation is a necessary condition to ensure that dPt
dPt−1

< 0

at least for a stretch.

Note, if 1 − α − b
P̂

β
γ + νAθ (1− θ)

(
β
γ

)θ−1
1
P̂
< 0 then dPt

dPt−1
< 0 for very small values

of Pt−1 and dPt
dPt−1

> 0 for larger values of Pt−1.

d2Pt
dP 2
t−1

> 0 implies that the slope of the path of pollution is continually rising and if Pt

is initially falling in Pt−1, it will eventually bottom out and then rise with Pt−1. In other

words, if there is a stationary point on this path, it is a minimum. We call this necessary

condition C2.

1− α− b

P̂

β

γ
+ νAθ (1− θ)

(
β

γ

)θ−1 1
P̂
< 0 (C2)

The steady states for this economy are given by

αP +
b+ ν

γ
β
P

P̂
= −νw

(
β

γ

(
1− P

P̂

))
+
ν

γ
+
b+ ν

γ
β
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Proposition 3 If condition C1 holds, then ν
γ + b+ν

γ β − νA (1− θ)
(
β
γ

)θ
< 0 is necessary

and sufficient to ensure that there exists a unique steady state for this economy when

mitigation is positive.

Proof. See Appendix 4

Figure 3.1 Law of Motion with a unique positive steady state

Let A = 12, θ = 0.39, γ = 0.2, β = 1, α = 0.1, b = 2.9, ν = 2, and P̂ = 10. Figure

1 illustrates the relation between Pt and Pt−1 under these parameter restrictions so that

condition C2 is satisfied. As can be seen from the figure, dPt
dPt−1

is negative initially and then

becomes positive. This is an instance when the path of pollution cuts the 45 degree line
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from above. An economy approaching this steady state will display cycles with periods of

low pollution alternating with periods of high pollution. The steady state shown in figure

1 is stable if the slope of the path of pollution is less than one in absolute value at the

steady state. Slope of the path of pollution at a steady state is given by

∣∣∣∣ dPtdPt−1

∣∣∣∣ =
α+ b

P̂

β
γ − 1− νAθ (1− θ)

((
1− P

P̂

)
β
γ

)θ−1
1
P̂

β
γ(

1 + βν

P̂γ

)
The denominator is greater than one and so a necessary condition for the absolute value

of this derivative to be positive is that α + b
P̂

β
γ > 1 + βν

P̂γ
or b > ν + (1− α) P̂ γβ . If this

condition does not hold, it implies that
∣∣∣ dPt
dPt−1

∣∣∣ < 1 and the steady state is stable. Thus a

sufficient condition for the steady state to be stable is

b > ν + (1− α)
P̂ γ

β
(C3)

b is the emission per unit capital usage in production. ν is the pollution abated per unit

expenditure on mitigation. Hence, for the steady state to be unstable, the abatement

potential of mitigation investment has to be less than the emission potential for new pro-

duction. In other words, mitigation has to be inefficient. For an economy on this path, the

cycles will eventually die down and converge to the steady state. However, in the transition

period it will periodically seem to regress on its path to lower pollution. The possibility

of a steady state like this indicates that just because an economy is mitigating does not

mean it will be on a path of monotonically declining pollution.

Another possible time path of pollution could arise when condition C2 does not hold.

Let A = 15, θ = 0.4, γ = 0.3, β = 1.5, α = 0.1, b = 5, ν = 1, and P̂ = 11. Figure 2

illustrates the relation between Pt and Pt−1 under these parameter restrictions. In this

instance, the slope of the curve is positive throughout. There are two steady states
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Figure 3.2 Law of Motion with two positive steady states

In this case the lower steady state is stable while the higher one is not. It indicates

that when an economy is engaging in green consumerism, it will not converge to a high

pollution steady state in the long run. Convergence to the low pollution steady state will

be monotonic.

From the first order conditions of the market economy we surmised that the economy

will have a higher level of young consumption when mitigation expenditure is positive

than when it is not mitigating. We can take the comparison between the two regimes in a

market economy further. Let us denote the unique positive steady state when mitigation
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expenditure is positive by (k∗, P ∗). As before, the unique positive steady state when the

mitigation expenditure is zero is given by
(
k0, P 0

)
.

Proposition 4 k∗ ≥ k0; P ∗ T P 0

Proof. See Appendix 5 This tells us that an economy will start engaging in green

consumerism only when it is sufficiently capital rich. However, just because it is engaging

in green consumerism does not mean that an economy will have lower levels of pollution

than the time when it was capital poor but was not engaging in green consumerism. This

is because the higher levels capital result in higher emissions which may or may not be

entirely neutralized by the green consumerism. Total pollution in the mt > 0 is lower as

compared to the mt = 0 regime if the pollution abatement on account of green consumerism

more than neutralizes the entire additional emissions on account of the higher capital.

It is useful to study the steady states of this economy in comparison with the first best.

The planner’s problem provides the first best steady states. As stated earlier, atomistic

agents do not internalize the impact of their savings decisions either on the interest rate or

on the level of pollution. Similarly, atomistic agents do not internalize the impact of their

green consumerism on the level of pollution and they take the scale factor φ as given. It is

interesting to see what happens in the planner’s where these three factors are internalized

in making the consumption, savings and mitigation decisions.

3.3 Planner’s Problem

The planner maximizes the discounted sum of the utilities of all current and future

generations subject to a resource constraint and the law of motion for pollution. The

Lagrangian function for the planner is given by
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L = u0+
∞∑
t=0

δt
[
ln (c1t) + β

(
1− Pt

P̂

)
ln (c2t+1) + γmt + λt

[
Akθt − c1t − c2t − kt+1 −mt

]
+ µt [Pt − (1− α)Pt−1 − bkt + νmt]

]
where δ is the intergenerational discount rate. λt and µt are Lagrange multipliers.

Note, −µt is the marginal disutility of emissions so that µt is positive. The first order

conditions for the planner are given by

1
c1t
− λt = 0

β

(
1− Pt−1

P̂

)
1
c2t
− δλt = 0

γ − λt + µtν ≤ 0

δλt+1Aθk
θ−1
t+1 − λt − δµt+1b = 0

− β
P̂

ln (c2t+1) + µt − (1− α) δµt+1 = 0

Akθt − c1t − c2t − kt+1 −mt = 0

Pt − (1− α)Pt−1 − bkt + νmt = 0

The planner internalizes four different factors which the atomistic agent does not. First,

the planner recognizes impact of pollution on the discount factor for old age consumption.

Second, the planner recognizes that pollution is persistant and higher pollution in any one

period translates into higher residual pollution in the next period. Third, she recognizes

the impact of capital accumulation on pollution. For this reason, the planner perceives a

lower marginal utility of savings than the market does. Fourth, the planner internalizes the

impact of mitigation on the level of pollution. This is reflected in the first order condition

with respect to mitigation. For the market, the marginal utility of mitigation is given by

γ, reflecting only the warm-glow on account of green consumerism. For the planner, the

marginal utility of mitigation expenditure equals γ + µtν.



74

In the steady state the planner’s first order conditions are given by

1
c1
− λ = 0

γ − λ+ µν ≤ 0

δλAθkθ−1 − λ− δµb = 0

−β
(

1
P̂

)
ln (c2) + µ− (1− α) δµ = 0

Akθ − c1 − c2 − k −m = 0

αP − bk + νm = 0

Several things stand out. First, that we can put a lower bound on old age consumption

and an upper bound on capital in the first best solution.

The first order condition with respect to pollution in the planner’s problem implies

[1− (1− α) δ]µ =
β

P̂
ln (c2)

Note, negative µ is the shadow price of net emissions or the marginal utility of net emissions.

Typically we would expect µ to be positive. If µ is always positive, it implies that ln (c2)

is positive or c2 > 1.

From the first order condition with respect to capital we have

(
δAθkθ−1 − 1

)
λ = δbµ

where λ, the shadow price of capital, is positive. This implies that δAθkθ−1 − 1 is positive

meaning k < (δAθ)
1

1−θ

Like the competitive equilibrium, the planner’s problem too needs to be studied under

two regimes, one where there is no mitigation going on and another where the mitigation

expenditure is positive.
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3.3.1 When mitigation is zero

As long as c1t ≤ 1
γ+µtν

, the planner will not allocate resources to mitigation investment.

The steady state for the planner when mitigation expenditure is zero is described by the

following equations.

c2 =
β

δ

(
1− P

P̂

)
c1

Akθt − k =
(

1 +
β

δ

(
1− P

P̂

))
c1

αP = bk

µ =
(
δAθkθ−1 − 1

) 1 + β
δ

(
1− bk

αP̂

)
(
Akθt − k

)
δb

[1− (1− α) δ]µ =
β

P̂
ln (c2)

Together they can be written as a single equation in k as

[1− (1− α) δ]
(
δAθkθ−1 − 1

) 1 + β
δ

(
1− bk

αP̂

)
(
Akθt − k

)
δb

=
β

P̂
ln

β
δ

(
1− bk

αP̂

)
Akθt − k(

1 + β
δ

(
1− bk

αP̂

))


3.3.2 Mitigation is positive

The planner allocates resources to mitigation investment as soon as young consumption

equals 1
γ+µtν

. A market economy, will not engage in green consumerism unless young age

consumption equals 1
γ . In other words, the first best solution would require mitigation

expenditure to start at lower levels of young age consumption than the levels at which

market economy starts mitigating. In this regime, the planner’s steady state equilibrium

is given by

c2 =
β

δ

(
1− P

P̂

)
c1
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1
c1
− λ = 0

γ − λ+ µν = 0

δλAθkθ−1 − λ− δµb = 0

−β
(

1
P̂

)
ln (c2) + µ− (1− α) δµ = 0

Akθ − c1 − c2 − k −m = 0

αP − bk + νm = 0

Rearranging these conditions, we can define the steady state in terms of three equations

in the variables c1, k and P .

c1 =
1
γ
−
[
δAθkθ−1 − 1

] ν

δbγ

Akθ − k −
(

1 +
β

δ

(
1− P

P̂

))
c1 =

b

ν
k − α

ν
P

β

P̂
ln
(
β

δ

(
1− P

P̂

)
c1

)
c1 =

(
δAθkθ−1 − 1

)
δb

[1− (1− α) δ]

This can be further reduced to two equations in k and P after substituting out c1.

As in the case for the market economy, the planning solution too admits a higher young

consumption under the positive mitigation regime than under the zero mitigation regime.

This derives directly from the first order conditions with respect to young consumption

and mitigation which imply that c1 ≤ 1
γ+µν when resources are not allocated to mitigation

and c1 = 1
γ+µν when resources are allocated to mitigation expenditure. Further, the steady

state capital in the presence of mitigation expenditure exceeds steady state capital in the

no-mitigation regime. Consider a case where there is a unique, non-trivial steady state in
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each of the two regimes. Let
{
c01, c

0
2, k

0, P 0
}

indicate the steady state levels of young-age

consumption, old-age consumption, capital and pollution in the no-mitigation regime and

let {c∗1, c∗2, k∗, P ∗} indicate the corresponding steady state levels in the positive mitigation

regime. As discussed before c∗1 ≥ c01. Further, let µ0 and µ∗ be the steady state levels of µ

in the two regimes.

Proposition 5 c∗2 ≥ c02, k∗ > k0, P ∗ T P 0

Proof. From the first order conditions for young consumption and mitigation we have

µ0 ≤ γ − 1
c01

µ∗ = γ − 1
c∗1

c∗1 ≥ c01 implies that µ∗ ≥ µ0. From the first order conditions for pollution we have

[1− (1− α) δ]µ =
β

P̂
ln (c2)

so that
β

P̂
ln (c∗2) ≥ β

P̂
ln
(
c02
)

which in turn implies that c∗2 ≥ c02. The resource constraints in the two regimes can be

written as

f
(
k0
)
− k0 = c01 + c02

f (k∗)− k∗ = c∗1 + c∗2 +m∗

This, together with c∗1 ≥ c01 and c∗2 ≥ c02 implies that f (k∗) − k∗ > f
(
k0
)
− k0. By

Lemma 3, f ′ (k) > 1. This is true for capital in both regimes. Hence f (k∗)−k∗ > f
(
k0
)
−k0

implies that k∗ > k0. k∗ > k0 means that emissions in under positive mitigation are higher.
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But the higher emissions will be neutralized to some extent by positive mitigation. In the

end

P ∗ =
b

α
k∗ − ν

α
m∗ T

b

α
k0 = P 0

Comparing the planner’s solution with that of the market we find that the planner

starts allocating resources to mitigation at a lower level of young age consumption than the

market. From the first order conditions with respect to young consumption and mitigation

of the we have, c1p ≤ 1
γ+µpν

< 1
γ = c1mk, where the subscript p stands for the planner

and the subscript mk stands for the market economy. This implies that the planner’s

level of young consumption is associated with positive mitigation is lower than the young

consumption in a market economy at which mitigation begins.

3.4 Comparative Statics

The steady states of the planner and the market cannot be compared analytically but

we can examine the comparative statics of the two numerically. The purpose of this is to

examine the responses of the market economy relative to the first best responses, when a

parameter of the models is changing. In other words, it allows us to examine the long run

equilibria of the market economy relative to the first best for a continuum of changes in

the values of one parameter, holding other parameters unchanged. As a first instance, it

might be useful to look at the comparative statics with respect to the maximum tolerable

pollution or P̂ . To examine the comparative statics for the competitive equilibrium and

the planning solution with respect to P̂ To to this, we set the parameters of the model

as follows A = 8.5, θ = 0.3, γ = 0.2, β = 1, α = 0.5, b = 3.5, ν = 2, and δ = 0.9999.

The parameter of interest, P̂ ranged betwee 21 and 30. Figure 3 presents the comparative
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static results for the planner and the market economy with respect to P̂ .

Figure 3.3 Comparative Statics of the Planner and Market with respect to
P̂*

*The planning solutions are indicated in red and the competitive equilibria in blue

The red lines represents the planner’s comparative statics and the blue lines do the

same for the competitive equilibrium.

As figure 3 indicates, the planner delivers a higher utility with lower consumption than

the market in both young and old age. The higher utility in the planner’s solution comes

from two sources, viz., the higher discount factor for old age consumption and higher levels

of warm-glow satisfaction on account of greater mitigation expenditure. In the standard
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Diamond model the only source of inefficiency arises from the the failure of atomistic agents

to internalize the effect of their savings on the prevailing interest rate in the economy. In

the steady state of the standard model we have

u′
(
cM1
)

= ρRu′
(
cM2
)

u′
(
cP1
)

= ρf ′
(
kP
)
u′
(
cP2
)

where the superscripts M and P stand for the market and the planner, respectively,

ρ stands for the discount factor for old age consumption, R represents the market rate of

interest, and c1 and c2 stand for young and old consumption, respectively. The market

solution is different from the planner’s when R 6= f ′
(
kP
)
. In my model, in addition to this,

we have two more sources of inefficiency, the first of which relates to capital accumulation.

u′
(
cM1
)

= ϕRu′
(
cM2
)

u′
(
cP1
)

= ϕ
(
PP
)
f ′
(
kP
)
u′
(
cP2
)

where PP is the planner’s steady state pollution. Now, in addition to the rate of return on

capital, the planner’s discount factor might be different from the markets. This discount

factor depends on pollutions levels which in turn depend partly on the level of capital.

Thus from the planner’s perspective, the market is overaccumulating capital. The second

factor which affects this discount factor is the level of mitigation. To isolate the effect of

mitigation on the differences between the planner’s and the market’s solutions, we conduct

a thought experiment. We ask what happens when we force the level of capital to be the

same for the market and the planner and allow the other variables to adjust optimally. To

do this we take the optimal levels of capital in the market and set the planner’s capital to

equal the market’s capital for different values of P̂ . Figure 4 represents the comparative

statics for the planner and the market under these conditions. Note, the parameter values

are identical to the ones used for generating figure 3.
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With capital and hence the output equalized between the planning and competitive

equilibria, the only source of suboptimality in the market solution comes from allocation

of that output to consumption and mitigation. Here again, we find that the planner

allocates greater resources to mitigation at the cost of young and old consumption. The

differences in the discount factor in this case reflect differences in pollution solely on account

of differences in mitigation. Internalizing the impact of lower pollution on marginal utility

of old consumption through the discount factor causes the planner to mitigate much more

than the market even when the output is the same for both.

3.5 Conclusion

This paper sought to study the role of environment as public good in an overlapping

generation growth model. The main body of the literature in this area has focused on the

effect of human activity on the environment through the emission of pollutants. Additive

separability of pollution and consumption in these models ensures that levels of pollution

do not affect human choices. This paper added to the small but growing line of studies

that seek to study the impact of long-term pollution on human choices, by relaxing the

assumption of additive separability of pollution and consumption in the utility function.

A second contribution of this paper has been to incorporate green lifestyle choices and

corporate environmentalism as a driver of pollution abatement. This is the first such

attempt to model a growing trend in developed economies in the western world that is

catching on in the fast growing economies like India and China as well. Using green

choices as the primary driver of pollution abatement is an improvement on the standard

literature because it gets around the problematic assumption that earlier studies make

whereby mitigation investment is either decided by a central authority or by agents in a

provision of a public good game.
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As expected, I find that an economy starts to expend on mitigation of the environment

only when it is rich enough in terms of having high enough capital and consumption.

Among economies that are not abating pollution, capital and pollution are both higher for

the economies with higher tolerance for pollution. But in such economies capital stock is

smaller for those with dirtier industries, i.e. having greater emissions per unit capital used

for production. Pollution is also higher for these economies. This supports the traditional

view that transfer of cleaner technology to these economies will bring down pollution in the

long run. Multiple steady states are possible for economies that mitigate the environment.

In particular some of these steady states may involve cyclical fluctuations in pollution.

Thus even though an economy is investing in the abatement of pollution, it may experience

alternating periods of high and low pollution. Unless mitigation is sufficiently inefficient,

this economy will eventually converge to the steady state. In case of multiple steady states,

the one with the lower pollution is stable while the one with the higher pollution is not. This

implies that when an economy is engaging in pollution abatement, it will not converge to a

long run equilibrium with high pollution levels. Comparing with the benchmark planner’s

solution we find that because atomistic agents do not internalize the polluting impact of

their savings decisions, the market will overaccumulate capital and usually under-mitigate

the environment in the long run.
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Figure 3.4 Comparative Statics of the Planner and Market with respect to
P̂*: Planner’s Capital Equals the Market’s

*The planning solutions are indicated in red and the competitive equilibria in blue
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