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CHAPTER 1
INTRODUCTION

1.1 Data Mining Literature Review

Data Mining (DM) is the process of automatic disexgvof useful information in
large data repositories (Tan, Steinbach, Kumar5200is especially appropriate for the
fields where researchers do not have a theoraticdérstanding but large amounts of
data. Generally, DM can be divided into two categoiaccording to the objectives of
algorithms: Classification Analysis and Associatfamalysis.

Classification is a procedure of dividing data set® different classes based
either on the knowledge of the predefined classgsast on structure of data set itself,
which are called supervised classification (or sifesation for short), and unsupervised

classification (cluster), respectively.

Drata Wlining

Clazsification Agsociation
Analysis Analyszis
supervised Classification Unsupervised Classification
(Classification) [Cluster)

Figure 1.1 Structure of Data Mining



Association Analysis is used for discovering instirgy relationships, which are
called Association Rules, hidden in large data.ddsny fields such as web mining,

document analysis, and bioinformatics have apphgsbciation Analysis.

1.2 Optimization-Based Methods in Data Mining
Many DM methods involve with Mathematical Programgi techniques.
Optimization can contribute to DM in one of two wgay1) Optimization can be a
component of a larger DM process (Padmanabhan,)2@@8 instance, in Artificial
Neural Network (ANN), one of popular algorithmspattern recognition, we minimize

this function:

EW) =22 (v - ) a1

to obtain a set of parametexsin part of its procedure. (2) New DM techniques t&
built using entirely optimization-based Method (Reshabhan, 2003), which is also

called Optimization-Based Approach (OBA) Data Muopin

OBA Data Mining techniques are applied mainly inag3ification Analysis,
whereas there are few algorithms in Associationlysis are based on Optimization. The
reason may due to that objective of Association Iysis is not able to be directly
formulated as optimization problem appropriatelyr@ntly, several (OBA) algorithms
are developed based on Support Vector Machine (SVithod in Supervised
Classification and also on k-Mean in Unsuperviséas€ification

In certain classification cases, we could assuraewe know the proper form of
the discriminant functions, and use the samplesstonate the values of parameters of
the classifier (Duda, Hart, Stork, 2001). If thewsption is based on linear model, then

it is called linear discriminant function. For iagste, in Support Vector Machine (SVM)



method, the key is to discover a hyperplane (liranon-linear, which corresponds to
linear or non-linear functions) to separate datk iseR" space, and maximize the
“margin” between different classes. Data sets @ndtegorized into separable cases and

nonseparable cases.

1.2.1 Support Vector Machine Method

A linear SVM searches for a linear classifielx + b =1based on training data to
label unknown data. This classifier is also knowraanaximal margin classifier because

it maximizes the “distance” between data pointdifferent classes:

sty, (WD<i +b)>1,i=12..n

m|n 1.2)

It is a quadratic programming problem, amdY,, X, are vectorsb is scalar, which can

be solved by the standard Lagrange multiplier neb{fi@n, Steinbach, Kumar, 2005).
A more general form of linear SVM which can hanttie condition that there is

noise in training data or classes are overlapped is

mln” ” +C(z<z)

sty, (ng +hb)21-¢,i=1,2..n

(1.3)

where C and k are user-specified penalty parameters of misélasgi the training

instances, andfi represent errors introduced by the classifier. sThionlinear

programming problem can be converted to Lagrangiaal problem and solved

numerically by using quadratic programming teche&u The formulation of



nonseparable case is general, and can be applidoofb separable and nonseparable

cases.
1.3 Linear programming and Multi-surface Method

1.3.1 K-Mean Method

K-Mean is a cluster analysis algorithm and couldtdeated as an optimization
programming problem, which minimizes the sum of ‘tlistances” of each point to its
nearest centroid. The clustering problem is themégated as in (Bradley, Fayyad,

Mangasarian, 1999):

m .
min > min Hx‘ - H
d iZ=1:|:1""k

X ,1=1, ...m are given data pat s (1.4)
¢, 1=1 ...k are centroids of k cluste
|| is some arbitrary norm on"R

For different definitions of “distance”, there adkfferent specific objective
functions. The following table shows some choiaasproximity function, centroid, and
objective function that can be used in the basmédan algorithm. For instance, if we
apply 1st-Norm (Manhattan Distance), then the céhtof a cluster will be the median of
the data points belong to that cluster(so it is alslled k-median algorithm), which have

been proved mathematically.



Proximity Function Centroid Objective Function

(=)

Manhattan () Minimize sum of the., distance of an object t
median
its cluster centroid

Squared Euclidean Minimize sum of the squared, distance of an
mean
( |_22) object to its cluster centroid
cosine Maximize sum of the cosine similarity of an
mean

object to its cluster centroid

Bregman divergence| mean | Minimize sum of the Bregman divergence of an

object to its cluster centroid
Source: Tan, Steinbach, Kumar, Introduction to Daiaing, 2005

Table 1.1 K-mean: Common choices for proximity,to@ds, and objective functions

Although we can explicitly formulate the objectivieinction for k-mean
algorithm, the optimization problem can only solmditeration instead of a closed-form
solution. Moreover, the algorithm can only guaranéelocal optimum. The algorithm is
shown below. The two important issues in k-meagerghm are: (1) how to initial the K
centroids because the final outcome is sensitivit@l starting condition, (2) how to
update the centroids so they can converge to & ¢gtemum or global optimum. In the
basic k-means algorithm, because the initial Krceds$ are selected randomly, it usually
takes several runs to guarantee that the reswlptimal. Basic k-means and k-median
algorithms are shown below:

1. Select K points as initial centroids
2. Repeat
3. Form K clusters by assigning each point to itsetb€entroid

4. Compute the centroid of each cluster



5. Until Centroids do not change
(Busygin, Prokopyev, Pardalos, 2007) included safeénitions of k-means
algorithm in their optimization-based approach data classification. However, instead
of applying k-means in clustering, it was appliadclassification. Before assigning test
data to certain clusters, they apply k-mean cateto choose the feature weight of the

training set.

mxaxzmlx
s.t. i(aﬂ ~ G2 X Si(c’?} —¢ )P x, k=1, .., 1 (1.5)

Osx<1i=1 ...m

In the formulation above is the weight for feature g;is the ith feature in jth
sample and m is the total number of training daiatp. MoreoverGis the ith feature of
kth centroid which can be calculated By. r is the number of clusters. For a test sample

b, we will assign it to clas§<, if for all k=1 ... r the following inequality hold:
20 -c.)x<p (b= G)* X (1.6)
i=1 ! i=1

1.3.2 Others Optimization Based Methods
Logical Analysis of Data is another OBA algorithih.builds a classifier for a
binary target variable based on learning a logesgiression that can distinguish between
positive and negative examples in a data set (Paaloman,Tuzhilin, 2003). If some
attributes of data set are non-binary, cutoff vakiapplied to convert them into binary

variable. And a table with all the binary attribsitend target variables are obtained. The



objective then becomes to explore a partially afiBoolean function (pdBf), with all
the binary attributes as input and target varialsleutput.

Density Estimation method is based on Bayes’ Theard can be formulated as
mathematical programming problem. First, we assusne appropriate probability
distribution for each cluster, and then we tuneapaaters of the distribution from
minimizing the negative log-likelihood for the givedata (Bradley, Fayyad,
Mangasarian, 1999). An algorithm called Expectatibaximization can be applied to

find a local minimum for this problem.

1.4 Time-Series Data Mining

In the last decade there has been an explosiamterest in mining of time-series
data. Literally hundreds of papers have introduned algorithms to index, classify,
cluster and segment time series (Keogh and Ka63). Partly, such a great interest to
time series mining is explained by the challendred the classical methods of machine
learning and clustering have faced when applietihie series data ( Keogh and Pazzani,
1998). Another reason is that time-series datarnhece@adily available and increasingly
important in many areas, such as economics anddagprices of stocks), environmental
sciences (daily sea-surface temperature and wegaditterns) etc.

A time series is a sequence of real numbers, eactber representing a value at a
time point (Rafiei and Mendelzon, 1997). If there aeveral measures at the same time,
then there are several sequences of real numbeesponding to the same time period.
This type of time-series data is called multidimenal data sequence. Typical examples
of a multidimensional data sequence include videzam and image (Lee, etc, 2000).

One of the first papers in time-series data mirhag been written by (Agrawal,
Faloutsos and Swami, 1993). In this paper, theaasthroposed to use Discrete Fourier
Transform (DFT) to map time sequences from time aano frequency domain and just

keep the first few frequencies, then an algorithetied R*-tree (Bechmann, Kriegel,



Schneider, and Seeger, 1990) was applied to intesdéquences and efficiently answer
similarity queries. R*-tree is a variant of R-tredhich is one of the most popular access
methods (Guttman, 1984). DFT also acts as filtat #liminates noise and unimportant
information in time-series data. Since then, mare @ore researchers accepted the idea
that time-series data need to be preprocessedebeéoforming the “actual” data-mining
operations on it, thus the original data sequeacesusually called “raw data”. Some of
the techniques used to preprocess the raw dat@iseeg include DFT, Discrete Cosine
Transform (DCT), Singular Value Decomposition (SYDBjaar Wavelet (Popivanov,
Miller, 2002). All these techniques are involvediwsigmoid shape functions, but a few
papers also applied a piece-wise linear segmentatibich attempts to model the data as
sequences of piecewise patterns ( Keogh and PaZ2£88), (Geurts, 2001).

An important aspect of the data mining processeigcsion of thesimilarity
measure that defines what is “similar” and what is not dars usually application
dependent. Many researchers apply a traditional iatditive Euclidean norm or
generally, Lp norm to measure the difference between two dajaesees, which is also
one of the reasons why DFT is popular. AccordingPtoseval’'s theorem, the Fourier
transform preserves the Euclidean distance inithe or frequency domain (Agrawal,
Faloutsos and Swami, 1993). However, the naturientd series data introduces also a
number of challenges in selecting a “good” similameasure, namely the presence of
noise, offset translation, amplitude scaling, Iondinal scaling, linear drift,
discontinuities ( Keogh and Pazzani, 1998). No#, ttsimilarity measure” may be used
in whole matching, i.e., for comparing equal lengtita sequences, as well as in the
subsequence matching, where one looks for a subseq of the large sequence that
matches the query sequence best.

Generally, whole matching is considered to be edksan subsequence matching
because for subsequence matching, certain lendikequence need to be extracted

appropriately from whole sequence first, and themgares to sample sequence. There



are a few methods developed in the literature ghat a satisfactory solution on how to
deal subsequence matching. In clustering of timesedata, similar problems exist.
Some researchers formed subsequences by slidimgdaw through the time-series data
to resolve this difficulty (Das, 1998).

According to (Keogh and Pazzani, 2002), most oktseries data mining tasks

can be categorized into four kinds:

* Indexing (Query by Content): Given a query timeieserQ, and some
similarity/dissimilarity measure D, find the nedr@satching time series in
database DB.

» Clustering: Find natural groupings of the time egrin database DB under
some similarity/dissimilarity measure D.

» Classification: Given an unlabeled time series §sign it to one of two or
more predefined classes.

* Segmentation: Given a time series Q containing ta @gaints, construct a
modelQ from K piecewise segments (K<< n) such thg closely

approximates Q.

A general procedure for processing time-series iddisted below:

1. Preprocessing data: filter noise, outliers, anddéiwhole sequences into
equal length subsequences if it is necessary.

2. Processing data: Fourier transformation, Segmemt#giecewise linear
approximation)

3. Similarity Measures: Euclidean distandgnorm

4. post-processing (optional)
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CHAPTER 2
P-NORM MEASURES IN LINEAR PROGRAMMING DISCRIMINATI®I
2.1 Introduction

In the SVM method, nonlinear programming is emptby® estimate the
parameters of the linear discriminant functiontia paper “Robust linear programming
separation of two linearly sets” (Bennett, Mangasar 1992), a linear programming
algorithm was introduced, which is similar to théNb but computationally simpler. The
mathematical programming models of the linear pgogning and the SVM methods
have similar constraints but differing objectivenétions. In the SVM, the objective of
the equations (1.2) and (1.3) is to minimize theighied sum of the margin of
hyperplane and the error of misclassificatiovhereas the linear programming only
provides an error-minimizing plane that minimizes average sum of misclassified
points belonging to two disjoint point sets in madinsional spaceAlthough linear
programming does not consider the margin of planeits objective function,
computational results do not show consistent digathges of the LP-based approach.

In this chapter we propose a new-norm linear discrimination model that
generalizes the model of (Bennett, Mangasarian,2)199and reduces to linear
programming problems withp-order conic constraints. We demonstrate that the
developed model has nice methodological and cortipotd properties (for examlpe, it
does not allow for a null separating hyperplanemtine sets are linearly separable). The
presented approach for handling linear programnpngblems with p-order conic
constraints relies on construction of polyhedrgbragimations for p -order cones. A
case study on several popular data sets thatrdhest the advantages of the developed
model is conducted.

Consider two discrete sets BOR" comprised ofm andk points, respectively:

A={a,...,a}, B={b,...,b} . One of the principal tasks arising in machineriea
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and data mining is that ofliscriminationof these sets, namely, constructing a surface
f (x) = 0 such thatf (x) <0 foranyxJA and f(x)=0 for all x[IB.

Of particular interest is the linear separatingaee (hyperplane):

f(x)=w'x-y=0. (2.1)

Clearly, existence of such a separating hyperplanaot guaranteed; in general, a
separating hyperplane that minimizes some somisclassification errors desired.

Observe that if pointy™®,y®@ OR" satisfy the inequalities

WTy(l) — y> o, WTy(z) — y < O

for some w and y, then they are located on the opposite sides efhyperplane
w'x -y =0. Consequently, the discrete ses, BOR" are consideredinearly

separabldf and only if there existv JR" such that

w'a >y>w'b, foralli=1,..m,j=1,.k

with an appropriately chosen or, equivalently,

mina'w > maxb;w. (2.2)
aiDA bjDB

Definition (2.2) is not suitable for use in mathdima programming models since it
involves strict inequalities. However, the factttttee separating hyperplane can be scaled
by any non-negative factor allows one to formulhte following result, whose proof we

include for completeness.
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Proposition 1 (Bennett, Mangasarian, 199Discrete setsA BOR" represented by
matrices A = (@,,...,a,,)' OR™" and B = (b,,...,b, ) OR¥", respectively, are linearly

separable if and only if
Aw > )e+e Bws<ye- e for some WIR" yOR (2.3)
wheree is the vector of ones of the appropriate dimensen (1,...,1) .
Proof. Let A andB be linearly separable, then in accordance to tieim(2.2), there
existsvOR" such that
mina v=:a >b = maxbjTV (2.4)
i=1,..m i=1...k

Denotew =2v/(a -b),andy=(a +b)/(a - b); then for anya O A

aw-y-1=

2 _ __ 2 R
a6 a-b a—b(av min & VJZO' (2:5)

which means thaBw- e/— e 0. The second inequality in (2.3) follows analoggusl
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Figure 2.1An optimal separatovx = yfor linearly inseparable sets: A (0) and B (+)
(Mangasarian, Bennett, 1991)

2.2 P-Norm Separation Model
In this paper generalize theobust linear discriminationmodel proposed by

(Bennett, Mangasarian, 1992)

s.t. Aw-)e+y=e, (2.6)
-Bw+)e+z>¢
y=20, z=20

The linear programming model (2.6) determines aemyfane w 'x—y =0 that
minimizes the average misclassification error. gdjein accordance to the definition
(2.3), the points of set& and B that violate (2.3) will correspond to the non-zero
components of vectory and z in the first and second constraints of problent)2.

respectively.



14

This interpretation allows us to reformulate thérmzation problem (2.2) in the form of

a stochastic programming problem

min {E[(-a'w+y+1).J+E[(b'w-y+1).]}, (2.7)

(w,y)OR"™*

where a and b are uniformly distributed random vectors with sopipsetsA and B,
correspondingly

1

Pla=a}= " P{ b= bj}:%( forall a0OA b OB (2.8)

and (x), = max{0,xx}. In this sense, the misclassification errors ah{sofromA and/or
B can be viewed as realizations of random variables: X,(w, y) and X; = Xz(w, y)

, whose smaller values are preferred, and thupdh@metersv and ) must be selected
so asX, and X, assume values that are “small”.

As it is well known in stochastic programming aridkranalysis, the “risk”
associated with random outcome is often attribtetthe “heavy” tails of the probability
distribution. The risk-inducing “heavy” tails of gvability distributions, are, in turn,
characterized by the distribution's higher momentkus, if the misclassifications
introduced by a separating hyperplane can be vieagettandom”, the misclassification
risk may be controlled better if one minimizes tioé average (expected value) of the
misclassification errors, but their moments of orde>1. This gives rise to the

following formulation for linear discrimination &fetsA andB:

min o [ (-Aw +ye+e), ||, +5, [ (Bw-yer+ ¢, |, pO[1,+] (2.9)

(w,y)oR™

where|| ], is the “functional”’L, norm, which in the probabilistic context can betten

as
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| X ||p={(EIX Fy*. pOle) (2.10)

sup X |, p =

Assuming again that points of the sAtandB are “equiprobable” (or, in other words, all
points of setA, and, correspondinglyB, have equal “importance”), linear discrimination

problem (11) can be written as follows

min 6, +9,n
st &2yl

nzlzl, (2.11)
y=-Aw t+ey+e

z>2Bw-ey+e

z2,y=20,{n20

In the mathematical programming formulation (2.Jj)j, denotes the “vector” norm in

finite-dimensional space, i.e., farddR",

(I P+..+|x PY?, pO[lw)

(2.12)
max{| %, |....1% [ p =00

(in what follows, it will be clear from the contexthether the “functional” or “vector”
definition of p -norm is used). Note that in the formulation (2.1l parameters, and
J, represent weights of misclassification errors.hiis study, we considgr-norm linear
separation models wherg andd, take values §, =4, =1}, { 51=%,52 :%} and {

1 1
5=—50,=2)

mp

Model (2.11) constitutes a linear programming peablwith p-order conic

constraints. Using the “vector” norm notation, fadation (2.11) can be more succinctly

presented as
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min G [|(-Aw +ey+e), ||, +3,[| (Bw— &+ §. ||, (2.13)

(w,y)orM*

The p-conic programming linear separation model (2.11gres many key properties

with the LP separation model of (Bennett, MangasariL992), including the guarantee

that the optimal solution of (2.11) is none-zeroninfor linearly separable sets.

Proposition 2. When sets A and B, represented by matridesand B, are linearly
separable (i.e., they satisfg.2) and (2.3)), the separating hyperplanea 'x = y given
by an optimal solution 2.11)satisfiesw™ #0.

Proof:. By definition, separability of se’s andB immediately implies that at optimality

y =7 =0, or, equivalently,
-Aw-)e+e<0 and Bw-)pe+e<0

which is equivalent to the definition of linear segble Aw = )e+e , ye—e= Bw To

see that v =0, y) cannot be optimal for (2.12), note that if weset 0, then:

min g |ye+e),

; +d,|-yer @, ;>0 (2.14)
and the optimal value of (2.11) is zero. If oneuasss thatw™ =0, then the above

inequalities require that

This contradiction proves the proposition.
Secondly, thep -norm separation model (2.11) can produce a 0 solution only in a

rather special case that is identified by Theoredmelbw.
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Theorem 1. Assume that thep-order conic programming probler(2.11) is strictly
feasible and, without loss of generalig,k”? > dm’P. Then, for anyp(1,) the p-
order conic programming problem (2) has an optimalution wherew” = 0 if and only

if

T ' . , 0. -
emA:(t )'B, €t =120, o*lnzi’P 2], (2.15)

whereq satisﬁes1 +} =1. In other words, the arithmetic mean of the pointé& must
P q

be equal to some convex combination of points innBthe case ofdk"" =g’

condition reduces to

(2.16)

i.e., the arithmetic means of the points of seam@d B must coincide

Proof: Consider the dual of thgorder conic programming problem (2.11):

max e r+e't

rt.u,v
stATr-Bt =0
e'r-et=0
r+u =0
t+v=0
6, 2 uf,
%, 2|v|,
r=0,t =20

(2.17)

where ¢ is such tha¥+} =1.
P q
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First, by assumingiLk"? = d,m’'?one does not lose any of generality because the
roles of the seté&\ andB can be switched to obtain this inequality. Obsahad point
(w=0, y,vy, z) being an optimal solution for primal implies th#te first two

constraints of (2.18) become:

>(1+y).e
y={+y) (2.19)
z2(1-y),e
Whereby the objective of the primal problem (2.2Kes the form
min gm’? (1+ ), +3,K"" (1-y), (2.21)
14

Since k"? = g,m’?, then obviously, the objective value for primargtgem is 25m"'?
with y=1. Also, because the primal is strictly feasiblealdy gap is zero for the primal-

dual pair (2.12) and (2.17). Then we have

e'r+e t=29m"'?
(2.22)
e'r-e't=0
From (2.22) we have thaf r = om , and from the third constraint of the dual (2.%g)
obtain r =—u, by substitution of which in the fifth constraiof (2.17) we obtain a
system of equation and inequality that must besfati by vector at optimality and

r =—-u , we know for vector

— 1/q
r+r,+..r,=mo, /m

@ o sq (2.23)
e +rt+.r <o
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To derive the solution of (2.23) , consider thédaing convex problem

min g )=r*+r,+ .}
r o (2.24)
st cf )= +r,+ .. —md, m'" =0

Using Lagrange multiplier method, we form the Lagya function of problem (2.25)

L=rd+rl+.r9+ ¢, + ,+.1._-mJ M%) (2.25)

whose saddle point is determined from equations

oL :

—=qr"-1=0

or, a5

g—:qrrﬂ‘l—/lzo (2.26)
rm

g—;:rﬁ..rm -mg, /m'? =0

It is easy to see that =r, =..r_ =, Im*“is the only stationary point for functionrg(
And because gf is strictly convex continue, the saddle pointhe minimum point and
minimum value for the objective ig'. And at the same time, in (2.23)(r)<J;.
Therefore, solutions to (2.23) wittf +r,' +..r ! < d,'do not exist because minimum value

of g(r) under constraint cj is equal tod;' . Therefore, we can conclude that for (2.23), it

: : . o,
has an unique solution, whichiis=r, =..r_ =4, /Im*% orr =—1_e

'

Furthermore, becaus&'r -B 't =0 under solutiony =0, y, vy, z):



20

r'A=t'B
% e'A=t'B (2.27)
mas T |
e'A t' t'
= 1-1/q) B= /p B
m  Jni o,m
, t eA .t . .
Let t'=———, then from (2.27), =(t") B. Finally sincer =—u,t=-v {,t =20)
o,m"'P m
ande't=9om"'":
.
e A —(t)B
5 (2.28)
T4 — 2 !
et=1land ani’? zut Hq

Therefore, the theorem holds. This theorem thezaiyi explains the reason that why
&, =1/m"?, 3,=1/k"" should be chose. Whedk? >d,m'? then from the theorem
we know that if the arithmetic mean of the points A coincides with a convex
combination of some points of B, the formulationlwbtain a worthless optimal solution
w=0, y,y, z ,Moreover, if 5,k"? =gm"?, then the theorem degenerates to (2.16),
which is the arithmetic mean of the pointsdiequals the arithmetic mean of the points in
B. The advantage of this is that the satisfactio(2df6) by a real world data set is much

rarer than satisfaction of (2.28). In other wordsing J,k"? = 5,m"’* is more likely to

obtain a null solution in real problem. The demaatstn is in Figure 2.2.
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Figure 2.2 Demonstration of two data sets haveséimee arithmetic mean (A), and one
data set has the arithmetic mean in the convexdfdata points from another
data set (B)

In order to have the stricter condition (2.16) loé tform for the occurrence of
w’ =0 solution in the situation when the preferences rfosclassification error are
different for set®\ andB, the p -norm linear discrimination model can be extenaethée
case where misclassifications of pointAiandB are measured using norms of different

orders:

min 3| (-Aw +e+8). ||, +J,[ (Bw-yer 3, |, . p,,0[Le) (2.29)

(w,y)oR™*

Intuitively, a norm of higher order places more fgig” on outliers; indeed, application
of p=1 norm would minimize the average misclassificagoror, in effect regarding all
misclassifications as equally important. In corttrapplication of thep =c norm would
minimize the largest misclassification error. Thhg,selecting appropriately the orders

p and g in (2.29) one may introduce tolerance preferemremisclassifications in sets

A andB. At the same time, it can be shown that the oetioe of w =0 solution in

(2.29) would signal the presence of the aforemaetiosingularity about the sets, B.
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Namely, we it is easy to see from the proof of Teeo 1 that its statement carries over to

model (2.29) practically without modifications.

2.2.1 Solving linear programming problems with p-ordenicoconstraints using
polyhedral approximations of p-order cones

When p is greater than 2, one way to solve this specpiorder cone
programming problem is to approximate a p-ordericaonstraint by several linear

constraints. For a set,

L ={0% %) |y X+ %< % (2.30)

(Ben-Tal and Nemirovski, 2001) applied a polyhedipproximation ofL*, and via a
way called “Tower of variables”, any second ordenstraint can be expressed by several
3 dimensional second order constraints. Therefamne,terms of this polyhedral
approximation, any second order constraints caapipeoximated by linear constraints.
Following Ben-Tal and Nemirovski's idea, (KrokhnmaQ07) developed a method
that can approximate a 3-dimensional p-order cartbe positive orthant oR® by a set
of linear equalities.
Forp>1, %2(X"+X)"", x %, %20, an internal approximation can be

formulated as

x(sin’’?a,, cod’’a - co&’a,, sifia ) )31
2 x (sif %~ sid’® ¥ x, (cog’~ cd¥ )= Om- (2.:31)
and an external approximation can be written infeine
Pl
x;(cos a, — sirf a; )P (2.32)

>x cos a +x sifa j= 0..m
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whereO=a, <a, <...<a,, = 7n1/2Therefore, to approximate & +1-dimensional p-
order conic constraint:

t>(x"+..+xP)P

2.33
t,xP>0,j=1.J@0=72" (2.33)

First, we represent this constraint by a set off3ethsional p-order conic inequalities

X 2[4 P+ O4) 7

(2.34)
j=1..2%k=1.d,

where X9 =t, ><J =x(J=1... 2'). On the second step, every 3-dimensional p-oroieicc

constraint is approximated either by the interngpraximation or the external

approximation. The final LP approximation is showr{2.35).

min qu+adv
w,0y,z 5"‘ 2

st Aw-eyt+y=e
-Bw+ey+z>e
f (sif?a, ck’a,- cd¥a,, sifa, )

e+l
> 10D Sif°- SiE” ¥ 1D (- B8 D L.%8k: i, e=0.l-:
§ sifPa,, co®a,- cd8a,, Sha, )
>g50 sif?— st ¥o5” (cgd- of8 W= 1.72i5,.1c e 0.1
1O =y
F o = Yok
do=v
gg:&*)l_lz%—i

y=0z= 0

(2.35)

Finally, we can take the advantages of certain ceromal software to solve this linear

programming problem. Note, for these p-order caoigstraints (2.33), whicly # 2% +1,
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theoretically (f (J) — J) number of slack variables can be added into comnistraints to
satisfy this conditionJ =2 +1, and set as zero in additional linear equalitigsere
f(J) = 20°%)e  However, whenJ is comparable large, a huge number of slack
variables are needed; therefore, we deal it in feerdnt way in the computational
procedure. Instead of adding all the slack vargmbleone time, we put one slack variable
a time during each level of “the tower” dependinmgwhether or not the number of the

variables in that level is even or odd. For instarfor a conic constraint:

t>(x+..+xP)P

2.36
t,x’20,j=1..3Q0% 2) (2.30)

If Jis an even number, then no slack variable is rb&mtehe first “level of tower”, then

X 2[06) ) +(%)"]

2.37
j=J312 ( )
If Jis an odd number, then one slack variable is adsted,
X 2[5 )" +(%) "]
X; =0 (2.38)

=0 +1/2

So on and so forth for the other levels. It is olwg that approach can significantly
reduce the number of slack variables whlleis large. When j=700, for first approach
1024-700=324 slack variables are needed, but fmmekmethod, only 3 slack variables

are necessary.
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2.3 Data Set Information and Computation Results

Several real-world data sets from UCI Machine LeayrRepository (University
of California-Irvine) are classified by the methogle proposed. The method is
implemented in C++ environment and CPLEX SolverQ@. CPLEX® 10.0) is used to
solve the linear programming problem formulated.

Wisconsin Breast Cancer Data Set (Original): Thisabt cancer databases was
obtained from the University of Wisconsin HospitaMadison by Dr. William H.
Wolberg. There are 10 feature values and an ID rurfdy each data point in the dataset,
which are obtained by medical examination on cerbeeast tumors. There are 699 data
points in the data sets, but because some valaagiasing, only 682 data points are used
in the experiment. The whole data set consist of tlasses of data points, 444 (65.1%)
data points represent benign tumors, and the fe28® (34.9%) points correspond to

malignant cases. Other information is included abl€ 2.1.

L L Number of ;
Data Set Characteristics: Multlvanale Instances: 699 Area Life
. o Number of Data 7/15/199
Attribute Characteristics: Integer Attributes: 10 Donated 5
. . Classificatio Missing Number of
Associated Tasks: N Values? Yes Web Hits: 543

Table 2.1 Description of Wisconsin Breast Canceialaet (Original)

In this numerical experiment, we useandf to indicate benign and malignant
data sets, we randomly divide each set into aitrgiset possessing 2/3 of the data and a
test set including the remaining 1/3. Sd/ifdata points are in setandN data points are

in setP, then the numbers of benign and malignant datatpon the training set are

m=(2/3)M andn = (2/3)N . The p-norm linear programming formulation is fafated
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base on the training set and the obtained optitagkifier classify the test set. For every
specific valuep, this procedure repeats 10 times and average eercentage for whole
data set is calculated.increases from 1 to 5 by 0.1 step.

For a data point belongs to datasgetthe probability of this data point being
misclassified i@a/ nx100%, and similarly, the probability i@ﬂ /nx100% for a data

point belong tdB, where €, € indicate the number of data points misclassifiedeto,

andp , andm’, n’ are the number of test data points incsahdp.
Therefore, for an arbitrary point in the whole da#&t, the probability of being

misclassified is equal tp, xe, /m+ P x ¢/ n=(g+ g)/( n+ h, wherep p

are the probabilities of a random point belongiagsétoa or . Then we define error
percentage a&=[(€,+&)/( n 1] <100%.

The complete results are shown in the Appendixdhle 2.2, optimal order and
optimal average error percentage for different cibje weights are collected. As Table

2.2 shows, when Q=1/Ma,=1/r and p=1.9, we obtain the lowest average error

percentage 2.77%. Moreover, compare this with leeaaye error percentage obtained by

é=JJm52:JJr, p=1, which is also the average error percentageirautaby original

formulation, we can see that the average erroremeage decrease 3.48%.

In the results appended, with the same order bifiereint values ofq, @

objective coefficientsd =1/M &, =1/N “most time” obtain a better result than others’.
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51_52_1 g =1/m 0, =1/mP
0, =1/n J,=1/n®
Optimal Order 2 1.9 15
Optimal Error % 3.22% 2.77% 2.82%
The percentage of error decreaged 8.78% 3.48% 1.74%
Compare w/ order 1

Table 2.2 Comparison of classification error betwd#ferent orders and differer(i, é
for Wisconsin Dataset

Similar tests also run on Pima Indians Diabetesal&dt, Connectionist Bench
(Sonar, Mines vs. Rocks) Data Set, and lonosphata Bet, all of which are obtained
from UCI Machine Learning Repository. Note, amohgse tests onlys, = 5, =1 and
d6,=1/m",5,=1/n" are used. The results of average error percerdage all the
orders ofp are shown in appendix. The value of paramptearcreases from 1 to 5 by

every 0.1 step.
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Coefficients 5.=0,=1 gq=1/n? .
Results from other algorithms
Data Sets é =1/n
12.3%
lonosphere 16.60% 18.13% (Radivojac, Obradovic, Dunker,
Vucetic, 2004)
26.3%
Pima 29.51% 31.07% (Radivojac, Obradovic, Dunker,
Vucetic, 2004)
24%
Sonar 30.23% 30.45% (Tan, Dowe, 2004)

Table 2.3 Average classification error with differeq, é for different data sets

As the results shown above, these data sets asatlinseparable”, that means an
optimum hyperplane obtained in vector space, canlassify “the most of” data points
correctly. Therefore, a nonlinear classifier or thlayperplane is necessary for this kind
of data sets. One thing need to be point out isvih@n compare to the result obtained by
other methods, our result is only slight worse, dut method is much simpler both in

theoretical and practical.
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CHAPTER 3
LINEAR DISCRIMINANT FUNCTION, K-NEAREST NEIGHBOR MEHODS AND
NEURAL NETWORKS IN CLASSIFYING PSYCHOPHYSIOLOGICADATA

3.1 Data Set Information and Characteristics

3.1.1 Background

Psychophysiology is a branch of physiology whiclioisused on the relationship
between mental (psyche) and physical (physiolopmaicesses; it studies the interaction
between mind and body. Applied psychophysiolog\estigates the effects of emotional
states on the central nervous system, by obseraing recording data on such
physiological processes as sleep rhythms, heat gastrointestinal functioning, immune
response, and brain function. Techniques that aeel to measure such factors include
electroencephalography (EEG), magnetic resonanaging (MRI), computerized axial
tomography (CAT) scans, electrocardiography (EG@3 electrooculography (EOG).

ECG records the electrical activity of human heastr time, EEG measures the
electrical activity of human brain and EOG is aht@que for measuring the resting
potential of the retina. Electroencephalogram, tedeardiogram and electrooculogram
are the resulting signals measured by EEG, ECG EDG. These psychophysiological
measures techniques are employed for classifyiggitee work load in laboratory and
real-world setting. Because the EEG, ECG, and E@& dan be recorded without
interfering task performance of the human subjdoty are suitable for estimating
operator functional state. Since they are recoidegal time, they are time-series data

sets.

3.1.2 Data Set Information

The data set we used in our research comes fromjecpin which the human

operators performed a set of tasks of varying Ewélcognitive difficulty. The specific
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tasks concerned navigation and guidance of unmamee@l vehicles (UAVS) in a
simulated environment. The goal of this study isestimate the operators’ cognitive
states by analyzing their psycho-physiological meaments. The data were collected
during the simulation tasks from three participaniés, 'E' and 'F', each of whom
completed two trials, denoted as '01' and '02".ikstance, the second trial completed by
participant E is denoted as 'E02'. The simulatinpeements and data collection have
been performed at the Air Force Research Lab ayM/fatterson AFB (Dayton, OH).

In each trial, ECG, horizontal EOG, vertical EOGddive channels of EEG
signals were recorded. The EEG data were recomded the scalp sites F7, Fz, Pz, T5,
and O2 of the 10/20 electrode system using an fBlécap. The EOG electrodes were
placed above and below the midline of the right &yeecord vertical movement and
blink activity. The ECG electrodes were placed loa $sternum and the left clavicle. The

sampling rate was 200 Hz with a band pass fromd3.4 Hz.
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Figure 3.1 EEG 10-20 System Diagram
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During the simulation, the operators have beenesiggl to three tasks of zero,
low, and high levels of cognitive workload, indiedtby 0, 1, and 2:
'0": simulation running, no cognitive task beingfpemed
'1": simulation running, low cognitive workload kaseing performed.
'2". simulation running, high cognitive workloagkabeing performed.

These are the three classes we aim to classifyethoes we also refer to task 0
as None Cognitive Load (NCL) task and tasks laras Zognitive Load (CL) task. A
time period in which the test subjects continuglgrforms under the same level of
cognitive workload is called a “taskFor instance, if a subject works under the level 1
cognitive workload for 20 seconds, then we say ghitsk 1 happened for 20 secorls.
fraction of this time period is called a sub-tabk.each trial, a subject performs under
different situations for about 20 minutes, whicltamsisted of eight tasks 0 (no cognitive
load), four tasks 1 (low cognitive load), and féasks 2 (high cognitive load). The tasks
0 last for about 50 t0100 seconds, while the tdskad 2 usually take about 20 seconds.
Note that this asymmetry in the durations of NCld &1 tasks may have an impact on

the computational results of our study.

3.1.3 Data Set Transformation and Characteristics

The Fourier Transform is a mathematical operatiat transforms a signal from
the timedomainto thefrequency domain, and vice versa. We are accustaméidhe-
domain signals in the real world. In the time damaine signal is expressed with respect
to time. In the frequency domain, a signal is egpeel with respect to frequency. We
apply the Discrete Fourier Transform (DFT) to canwir time-series data from the time
domain to the frequency domain, and analyze thenmatges over certain frequency

band (e.g. from 1 Hz to 10 Hz) among the diffetasks.
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Discrete Fourier Transform takes as input a sequesfcN real or complex
numbers X=(X,X%,...%;) and generates its N-dimensional transformation

X=(><1, Xz,---,x\, ) The DFT and its inverse are given by the follayiarmulas:

X (k) = Z X( e DD
. 3 (3.1)
X())=@/ N)z X (K96

where &, =€ 7™ andi = v=1.

Since the goal of this research is to find outdperators’ cognitive states at real
time, DFT should be applied to the data over ativelly short time period. In addition,
the length of the time period shouldn’t vary, whitkeans the numbers of data collected
in these two periods are also the same assumingpthple rates are the same; otherwise
it is not rational to compare the magnitudes betwee different long time periods. A
straightforward application of the DFT to signafsddferent lengths (or even the same
periodic signal, but over time windows of differéamngth) may result in different outputs
(i.e., magnitudes of the frequencies comprising stgmal). Thus, a special precaution
needs to be exercised when working with signaldiiéérent durations. In practice, this
difficulty can be circumvented by fixing the lengtif the input data for the DFT
transform.

The main application of the Fourier transform igrsil analysis is to obtain a
spectral decomposition of a given signal into a afeharmonic frequencies that this
signal is comprised of. When applied to a statiprnmariodic signal that is a mixture of
several stationary harmonics, the graph of DFTclby looks as a series of “peaks”,
where the location of each peak identifies the desgy of a harmonic that is present in

the input signal, and the “height” of the peak esponds to this harmonic’s amplitude.
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This method works very well even when the pericglgnal may contain a substantial
noise component.

However, the resolving power of the DFT diminishesen the input signal
changes dynamically in time. In the data set usddis study, all signals, except, maybe,
the ECG signal, exhibit a high degree of non-stetrg and noisiness. In such a case, to
identify the composition of the input signal at agiyen time moment, the DFT can be
applied over shorter time windows. The length ef time window over which the DFT is
computed then becomes a crucial issue, and the watignal results may significantly
depend on the choice of this parameter. If one sbo@ large time window, the results
may be insensitive to the temporal changes in pgftysiological measurements caused
by the changes in the operator’s cognitive stdtthd window is too short, the resulting
DFT transforms may be too noisy, and some lowegueacy information in the signals
may be lost.

Moreover, the length should be decided before th@.Df the lengths of these
two or several signals are about the same, thensohg the shortest length among all
these signals is a good choice. However, if thetlen of these signals are rather
different, then we may lose quite substantial amhaefninformation by applying the
method mentioned. In this case, we select a cortipalsgasmall length, and divide all the
signals by this length. Then we apply DFT on adisth “standard- length” signals, so the
magnitude of a signal is the average of the madeguof all the “standard length”
signals. The limitation of this method is thathetstandard length is too short, then some
lower frequency information in the signals may bstl Figure 3.2 provides a graphical
illustration of the method that we used to prodbsstime-series data set before DFT. We
introduce two time windows, a larger one of Iené{ﬁ; and a shorter window of length
W. For instance, the data in Figure 3.2, which is Bz EEG signal, recorded from
subject A in task 0. In this particular case, wstfdivide the data of task O into subtasks

of equal IengthW:BOOO, which corresponds to time interval of 1509els (since the
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sampling frequency is 200 Hz). Then, each ofVMdong sub-tasks is divided into six

500 data points.

windows, each of which includé@

2000
Time

Figure 3.2 lllustration of data preparation befDieT

After investigation, two EEG signals (Fz, F7) haveeresting patterns, and could

be used to classify the data. We plot the magn#tunfethese two signals in a two-

dimensional space for each task, and obtain ptotedch trial as in Figure 3.3. As just

mentioned, we split a certain task into equal Isnb-tasks, divide these sub-tasks into

certain long intervals, and then apply DFT to tfarma these intervals from time domain

to frequency domain. Finally, the average magnsgumkeer certain frequency band (1 Hz

to 10 Hz here) are computed, and the magnitudesaartain sub-tasks are the average

magnitudes of these intervals in this sub-taskitjure 3.3, it shows different tasks have

different magnitudes in these two signals. The fasisually has the biggest magnitudes

in both Fz and F7 among the three, followed by thsko the conclusion is the higher

cognitive level the task is in, the smaller magwés it has. Also, although there are
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similarities between two trials of the same subjémt two subjects, we cannot say the
magnitudes of the signals are related. Similarepatbelso be discovered in two EOG

signals.

Moreover, the smallest theoretical length of ingata for calculating the average
magnitude from 1 Hz to 10 Hz is 20. Because thepgaritequency of data is 200 Hz,
after using DFT convert 20 data points from theetdiomain to the frequency domain, 10
data points are outputted, which represent the matgs of frequencies from 0 Hz to
190 Hz by every 10 Hz. In this case, the magnitatd&0 Hz is used to approximate the
average magnitude from 1 Hz to 10 Hz. When thetlemg) decided, a certain task is
divided by this length and several time periods @v&ined for the task. Then DFT is
performed on the data of these equal long timeodsrand the average magnitude over

certain frequencies is calculated.
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Figure 3.3 DFT transforms of Fz and F7 signal$ianftequency band 1~10 Hz for
subjects A, E, and F

The information in Table 3.1 shows the frequencydsafor EEG signals defined
by some researchers and the brain activities quorebng to these certain bands. In
general, low frequency signals indicate low cogeitiactivities, and high frequency
signals are related to the activities which reqtiv@king and concentration. Also, we
can see that low frequency bands (0~12) includgaDdlheta and Alpha, and high
frequency bands (>12) incorporate Beta and Gammaut research, we discover that
low frequency signals perform better in classifymgcognitive and cognitive tasks than
higher frequency signals, which is also the reagby a frequency band from 1 Hz to 10

Hz is applied.
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Type Frequency (Hz) Related Activities
= Adults slow wave
sleep
Delta 0-3Hz = In babies

* Young children
=  Drowsiness or arousa
in older children and

Theta 4—-7Hz adults

= Idling

» Relaxed/reflecting
Alpha 8 -12 Hz » Closing the eyes

= Alert/working

= Active, busy or
Beta 12 - 30 Hz anxious thinking,
active concentration

= Certain cognitive or
Gamma 34 - 100 Hz motor functions

Table 3.1 Explanation of EEG frequency Bands

In order to see the inter-relations between thaght esignals the correlation
values are calculate between each signal in eathTthe values for subject A are shown
in the table 3.1, others are listed in the appen@imm the correlation coefficient, it is
noticed that for subject A and E, vertical EOGt®gly correlated with Fz (>0.68), and
Horizontal EOG closely related to F7 (>0.7). Andtba other side, Fz and F7 only have
a medium correlation coefficient (usually < 0.5)owever for subject F, only the
correlation between Horizontal EOG and F7 EEG exis0.79). These statistics can also
explain that why there are similar patterns betwe&®©G, HEOG and Fz, F7 EEGs.

Note, the correlation coefficients are calculatefohe the DFT. We also calculated the
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coefficients after the DFT, the correlation vallbbesome even higher, which may be due

to some unique characteristics are tossed awdeiprocess.

A01 | 1(ECG) | 2(VEOG) | 3(HEOG) | 4(Fz) 5(F7) 6(Pz) | 7(P7/T5) | 8(02)
1 1 -0.0089 | 0.0102 | -0.0734 | -0.0277 | -0.085 | -0.0675 | -0.0691
2 -0.0089 1 -0.4725 | -0.716 | -0.7652 | -0.1095 | -0.2623 | 0.1504
3 0.0102 | -0.4725 1 -0.048 | 0.8768 | -0.3512 | 0.0055 | -0.5768
4 -0.0734 | -0.716 | -0.048 1 0.3948 | 0.5663 | 0.4795 | 0.3203
5 -0.0277 | -0.7652 | 0.8768 | 0.3948 1 -0.1166 | 0.1957 | -0.4052
6 -0.085 | -0.1095 | -0.3512 | 0.5663 | -0.1166 1 0.7155 | 0.8212
7 -0.0675 | -0.2623 | 0.0055 | 0.4795 | 0.1957 | 0.7155 1 0.5837
8 -0.0691 | 0.1504 | -0.5768 | 0.3203 | -0.4052 | 0.8212 | 0.5837 1

AO01

A02 | 1(ECG) | 2(VEOG) | 3(HEOG) | 4(Fz) 5(F7) 6(Pz) | 7(P7/T5)| 8(02)
1 1 -0.0085 | 0.0268 | -0.0917 | -0.021 | -0.0974 | -0.0775 | -0.0849
2 -0.0085 1 -0.4712 | -0.6821 | -0.7454 | -0.0985 | -0.2559 | 0.146
3 0.0268 | -0.4712 1 -0.0929 | 0.8794 | -0.3753 | -0.023 | -0.5828
4 -0.0917 | -0.6821 | -0.0929 1 0.3329 | 0.5726 | 0.4675 | 0.3405
5 -0.021 | -0.7454 | 0.8794 | 0.3329 1 -0.1551 | 0.1597 | -0.4194
6 -0.0974 | -0.0985 | -0.3753 | 0.5726 | -0.1551 1 0.7014 | 0.8256
7 -0.0775 | -0.2559 | -0.023 | 0.4675 | 0.1597 | 0.7014 1 0.5817
8 -0.0849 | 0.146 | -0.5828 | 0.3405 | -0.4194 | 0.8256 | 0.5817 1

A02

Table 3.2 Raw signal correlations in trials AO1 &€ of subject A

Furthermore, the distribution of each signal frdme taw data is also plotted in
Figure 3.4, some appealing phenomenon is foundeaah task the signals are unimodal
distributed and has comparable mean, however fferetice between task 0 and task 1,
2 is that task 0 has a two side heavy-tails. Tizatthis interesting point in classification,
we can measure the variance of each task or metuvariance in certain intervals, like
the tail areas of the distribution. However, a majoawback is that it not always

applicable to all the tasks.
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So far, there are only four signals out of eighe &und interesting for the
classification, vertical, horizontal EOGs and FZ, EEGs. The ECG is unsurprisingly
unrelated with the cognitive level, and the oth&CEsignals seem to react randomly on
different tasks. The understanding is that forasartunctions only left hemisphere have,
such like the analytical and logical abilities. Alndm the task descriptionve know that
the tasks are highly demanded for analytical agecéd abilities and Fz, F7 positions are

located on the left side of brain.

taskO taskl task2

0.012

0.01

0.008

0.006

0.004

0.002

Figure 3.4 The Amplitude distributions of raw sigfram AO1 for task 0, 1 and 2

3.1.4 Error Measurements

For the most common way to measure the classificairor, errora/m, wheren
is the number of parts classified inaccurately, ents the number of total number of
parts in testing sets, it cannot provide us a gergrspective on how well an algorithm
performs due to the special condition of the dataSor instance, a testing set has been
divided into 81 parts, only 17 parts correspondaisk 1 and the rest represent task 0.

Even an algorithm classified all the parts as tdskhe error only equals to 20.988%.

Therefore, we apply another type of error meas@¥X =N/M, Nis the number of

sub-task misclassified,Mlis the total number of sub-tagkFor the same instance above,
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the errors become errorl=20.988% and error2=100%erefore, the second
measurement can provide more details about howweltlassify the data set than the

first approach.

3.2 Linear Programming Method

3.2.1 Algorithm for linear programming Discrimination Meid

Based on the characteristic in the frequency domairlinear programming
method is applied to classify the data. The alparitis shown as below, the input
parameters includ¥y, W | F, and K. “Training” and “classifying” are two consecutive
phases in this algorithm. Moreover, DFT is only lagp for one-dimensional
decomposition, for a multiple dimensional data #&, data in each dimension could be
transformed separately.

“Training Stage”

1. In theoriginal training data, usW as the length of sub-tasks, separate the known
tasks in the data set and split every identifistt fato equal long sub-tasks.

2. Split every sub-task int(y\! length and then apply DFT on eveW-Iong data
points.

3. Compute the average magnitudes oﬁrto |:2from the outputs; calculate the
average of W/W) values; it is the “characteristic value” of th&ib-task.
Therefore, each sub-task has its own characteviahee.

4. Apply the linear optimization method (2.6) , whithes to find an optimum
hyperplane that can separate different sub-taskst morrectly based on the
characteristic values. The optimum solution of fimgar programming problem
includes a vectok, and a scalar, which are the direction and location of this
hyperplane. The dimension of this hyperplane depemdthe dimension of the

characteristic value, which depends on the dimensihmsen from the data set.

“Classifying Stage”
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5. Divide the testing data into equw long consecutive segments in the time
domain. These segments are the unknown sub-taskiedi¢o be classified in the
following steps. It is possible that one unknowmdiperiod is contains by two
different sub-tasks. Then, just discard this kifdsegments and don't classify
them.

6. Compute the characteristic values of all segmenth@same way in the studying
stage using the same paramet¥ W  F, andF.

7. Use the optimum hyperplane in learning stage tgstia these unknown sub-
tasks.

Here only one hyperplane is applied to classify twamditions, non-cognitive
workload and cognitive workload. If classifying neoconditions or higher classify
accuracy is needed, we could apply the greedy tipgsgramming-based algorithm
MSMT (Multi Surface Method Tree) and MSM (Multi Sace Method) (Bennett,
Mangasarian, 1992). Both these two methods are dbawse solving the linear
programming problem formulated above. For MSMT, ittea is to continue bi-split data
sets until all sets contain only one kind of daténts or to some desired percentage so
there are at most' LP’s in every iteration. In comparison with MSMfhge advantage of
MSM is that only a single linear program needsdasblved at each step because when a
linear surface obtained, points classified coryeette discarded by the surface and
formulate linear programming problem based on th&t f data. So at the end, a

piecewise-linear surface is generated.
3.2.2 Computational Procedure

For each subject we have two trials, thus thregestdand six trials in all (AO1,
A02, EO1, EO2, FO1, and F02). For a subject, aakir used as training set and the other
trial is used as testing set, then switch the imginand testing set. Note, because

individual has his/her own *“brain characteristicst, haven’'t found any promising



43

algorithms that are able to use the data from oigest to classify the data for another
subject.

For the features selection, four combinations ampleyed: (Fz, F7), (HEOG,
VEOG), (Fz, HEOG), (Fz, F7, HEOG, VEOG). For thegmeters in the algorithm, we
calculate the average magnitude from 1 to 10 Hz',:lsequals 1 and:2 equals to 10. For
W and W multiple values are chosen in order to find ar jdioptimal values. The
values selected in the computational experimenudg [4000, 20/50/100/4000], [3000,
20/50/100/3000], [2000, 20/50/100/2000], [1000,580100/1000]. The value before the
comma is the value for paramer, and the values after the comma are the values for
W. For instance, in [4000, 20/50/100/400W, equals to 4000, an\ﬂ equals to 20, 50,
100, and 4000. Therefore, in each brackets, theréoar pairs of values for thW and

3.2.3 Computational Results

The results are presented in the Table 3.3. Wesearthat for the parameté@
=2000 andW=20, the average error rate for both No Cognitiead. (NCL) tasks and
Cognitive Load (CL) tasks are the optimum amongtadl parameters. By applying DFT
and linear programming discrimination method, wa chassify the NCL tasks and CL
tasks at the average accuracy of about 14.8% ar@®@0urthermore, from the Table
3.4, using Fz and F7 signals provide us not onlyetier average accuracy but also

smaller variance for the different values of theapaeters WW)
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W 4000 3000
W 20 50 100 | 4000/ 20 50 100 300D
CLerror | 0.4974] 0.3001 0.304 0.2968 0.2334 0.263324® | 0.2702
NCLerror | 0.319| 0.2947 0.2991 0.2508 0.2508 0.25892355| 0.2702
W 2000 1000
W 20 50 100 | 2000 20 50 1000 100D
CLerror | 0.1476] 0.225¢ 0.2104 0.2759 0.1929 0.2891275 | 0.264
NCL error | 0.2057| 0.2196 0.2026 0.2541 0.2699 0.28022712| 0.2435

Table 3.3 The test results of linear separatioorélyn fqor EEG signals Fz, F7 with
different values o (W

Fz,F7,
Signals Fz, F7 HEOG, VEOG HEOG, Fz
HEOG,VEGOG
AVE/STDV 0.147625 0.145733 0.164567 0.154575
CL error /0.057568 /0.07094 /0.178737 /0.07228
AVE/STDV 0.2056917 0.21505 0.220658 0.219200
NCL error /0.09144 /0.117397 /0.217710 /0.116993

Table 3.4 Average and standard deviation of classibn error for using different
combinations of features

3.3 Principal Component Analysis Method

Principal Component Analysis (PCA) Method is a vedydentifying patterns in
data, and expressing the data in such a way asigtdight their similarities and
differences (Smith, 2002), which transforms a numdfepossibly correlated variables

into a smaller number of uncorrelated variablegedabrincipal components. In principal
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components analysis, we attempt to explain thd w@taability of n correlated variables
through the use aofh orthogonal principal components. The componergmtelves are
merely weighted linear combinations of the origimatiables. Each principal component
is a linear combination of the original variabl®dreover, each principal component is a
single axis in the space of the data, and as aenthely form an orthogonal basis for the

space. The first principal component can be exprkas:

Xl = a11|\/|l+ a.21M 2+"'+ a’lan
or X,=a,' M

(3.2)
dis the first principal component coefficients] is a variable inn dimensions,Xl
accounts for the maximum variability of tipevariables of any linear combination. In
other words, projecting the data onto the firsh@pal component, the projection data
has the maximal variance among the entire axihiénspace. And the second principal
componentXZ Is formed such that its variance is the maximunowamh of the remaining
variance and that it is orthogonal to the firshpipal component. That ia'lazzl. For a

variableM OR P, we have

X =a'™M

a,a =0, forj=1, ...,i— ! (3.3)
i a

i=1 ..,p

Here, @, is called the principal component coefficients.
For a matrixM, each column represents a variable, and each roves&mom the
observations of these variables. AndMf™ has a zero empirical mean, then the PCA

transformation is given by
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X' =MW
(3.4)
=VZ
Wherevzwis the singular value decomposition »f" .

Similar to the procedure in the linear programmahgprithm, to plot Figure 3.6,
each trial is divided into several tasks accordmthe prior information, and each task is
split into equal long sub-tasks. Then, DFT is méll to transform each sub-tasks from
time domain into frequency domain and calculateatherage magnitudes over 1Hz to 10
Hz on signal Fz and F7 for these sub tasks. Sosathask has a two dimensional value,
the value for the whole task equals to the avekadge of all the sub tasks belong to
itself.

The length of sub-task is 100 data points or ireothords half seconds, which is
relatively small comparing to duration of a whotsk (usually having more than 4000
points). The dots, the stars and the trianglebenplots represent the value calculated for
every task. The blue dots represent task 0. Thengsears represent task 1 and the red
triangle indicates the task 2. The advantage & #pproach over the previous one is
more information could be extract from a task. Axanpare to the method we earlier, a

“better” plots is achieved (different kinds of taskre more separable).
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Figure 3.5 The magnitudes of task 0, 1, 2 of Subjeand E in Fz-F7 spaces

In Figure 3.5, NCL tasks and CL tasks are separabléhe optimum value of
objective function always equals to zero and the fafnulations (2.6) has optimal
solutions. However, in Figure 3.6, it is obvioug finear separator varies dramatically
from one trial to the other trial for the same ®abj This trait is undesirable for the
classification and contradict to the assumptiont thiae subject should have similar
characteristics in different trials. As a resuhpther attribute of a “good” separator is
“robustness”, which loosely defined as the stapitietween the different trials for the
same subject.

Applying an algorithm involving PCA, a more “robUseparating algorithm can
be acquired. In the algorithm, PCA is used to obtie first principal component
coefficient (it is also the direction vector of theis which is vertical to the first principal
axis in the). Then, set the first principal compuneoefficient as the value of in the LP
formulation (2.6); thereforew is fixed before solving the LP, and only the optim
value ofr need to compute. In other words, we utilize thst forincipal component as the
direction of the separating hyperplane and solve P to find a location of the
hyperplane at where this hyperplane can separhtiat@ points in the space. In Figure

3.6, separating planes for subject E are genelgtékis new method and the LP method.
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We can conclude by visual observation that the approach is more “robust”. All of the

three subjects have similar results.

=ubject E-LF
12 T T

o k0
L bk 1 *
16 & BEkZ

141 g
12F

101

Figure 3.6 Comparison between the linear sepacdtiained by LP and PCA for two
trials of subject E

3.4 K-Nearest-Neighbor Method

3.4.1 Introduction
Linear discriminant function method is one of pae#mne techniques which are

based on the assumption that the underlying discaimt functions are known, with
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several parameters need to adjust. However, thssingstion is suspect in many
situations, and some nonparametric procedures e€arsdd without this assumption.
There are several types of nonparametric methogsttern recognition, among
which is k nearest-neighbor rule. General speakhmgrule of this method is simple: find
the “nearest k known points” of a certain test poiand classify the test point into the
category in which “most” of the nearest points are.
A general procedure for K-nearest neighbor method:
Training:
Build the set of training examples D
Classification:
Given a query instanc¥ to be classified,
Let KNN={ X.. 3$} denote thé& instances fronD that are nearest t§
Then

y(x)=argmax > f & ¢ (3.5)
p X;OKNN
Where f(X,6){0,1 indicates whether; belongs to clas€,, p is the number of

classes in a data set. Whé&nl, then k-nearest-neighbor method becomes nearest-

neighbor method, and in 2-dimensional space, toesid® surface is a Voronoi diagram.
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Figure 3.7 A Voronoi diagram

3.4.2 The Algorithm and Application

In the data set, although the training data paanésusually linear separable, the
testing data points in the space are generallafimeseparable. But the linear hyperplane
can still separate most of the NCL and CL tasksamehile, for low cognitive and high
cognitive load tasks, the linear separator appratgsn’t perform well because of the
nonlinearity. Therefore, k-nearest neighbor metimay be a good choice for a nonlinear
separator. In the implementation of k-nearest rn®gmethod, the classification is also
based on individual subject.

The algorithm using k-nearest neighbor methodnslar to the algorithm using
linear optimization method; the only differencethsit after the characteristic values of
training data are obtained, we applied k-neareghber method instead of solving linear
programming problem to classify the testing data.

There are details in our research need to be $pecifere. First, we apply
“Euclidean norm” as the measure of distance in teshod. Second, k-nearest neighbor

rule generally doesn’t consider the number of sanspe, however in our algorithm, we
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not only consider the “k nearest points” but alse number of training data where these
points belong to. Therefore, after the k nearesiniing points of one test point are
located, we count the number of training pointseach class, then the numbers are
divided by the size of each class. Here the nurabdata points that each class has in the
training set, has an effect on the decision of &rest neighbor rule. The more data one
class has, the less effect a point in this classdmits neighbors. This method should
offer better result than the original one under ¢badition that unbalanced information
on different classes is given. For instance, in oheur research data set, because of the
design of experiment, the researchers collectee mata in one class than the data in the
other two classes. Since this biased informatios made by man-induced factor and it is
not part of the characteristics of the data safjtsvithout eliminating this factor, it
would deteriorate the classification results

The procedure for building training set and tessag

For training data set:

1. For theoriginal training data, identify the known task<se data set.

2. Split every known task intw length sub-tasks and then apply DFT on e\)é!y
data points.

3. Compute the average magnitudes oﬁeno onn the outputs in step 2; calculate
the average values of all the sub-tasks in ead itais the “characteristic value”
of this task. It is also the coordinates of a trggndata point in a multi-
dimensional space.

For testing data set, the procedure is similar wilittle difference:

1. Divide the testing data into equw long consecutive segments in the time
domain. These segments are the unknown sub-taskiedi¢o be classified in the
following steps.

2. Split every sub-task int(w long span and then apply DFT on evéﬁ[/ data

points.
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3. Compute the average magnitudes oﬁrto |:2from the outputs; calculate the
average of totaIW/W) values; it is the “characteristic value” of ttgab-task,
also the coordinates of a testing point.

The k-nearest-neighbor algorithm applied in oueagesh:

1. Select a testing point

2. Calculate the distances from this testing poirguery training points (Euclidean
Distance applied)

3. Sort the distances from smallest to the biggest

4. Find the training points corresponding to thetfirslistances, Count the classes

of these training points

5. The testing point is classified ds= Max{%, i=1, ..., ¢}, jis the class that the

testing point assigned to, ¢ the total classesrttiging data hasl) is the number

of the training points belong to class i amongkheearest pointsN Is the

number of the training points belong to class i agiall the training points.

Also, four combinations of signals are tested is thethod: 1. all eight features.
2. Fz and F7 of EEGs. 3. ECG, Pz, T5, and 02 of EBGVEOG, HEOG, and EEGs on
Fz, F7. First all signals are transformed to thegfiency domain. Then the average
magnitudes from 1 Hz to 10 Hz are comput&dequals to 1 is appliedAs it is
mentioned, there are six combinations for trainengd testing data set, A01/A02,
EO01/EO02, FO1/FO2, A02/A01, E02/E01, FO2/FO01, théaskt before the slash is the
testing set, the one after the slash is the trgiset.

Furthermore, we select different values 8§, 3000, 2000, and 1000 which
corresponds to 15s, 10s, and 5s time periods. fEweirtg error and testing error are
obtained after each run. The error measurementideddn 3.1.4 is applied. Since three
classes are available in the data set, the errasanement is ax33 matrix, the diagonal

are the accuracy percentage for task 0, 1and 2offlitagonal ; elements indicate how
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many percentages data in classare misclassified as clags The results for 3

combinations are listed in Table 3.5, the restlmafound in the appendix.

Fz, F7 A02/A01 E02/EO01 F02/FO1
0.714 | 0.262 | 0.024 | 0.698 | 0.116 | 0.186 | 0.667 | 0.222 0.111
15s [0.167 | 05 |0333]0.167| 05 |0333| 04 | 04 0.2
02 | 04 | 04 |o0167] 05 |0333] o 0 1
0.651 | 0.286 | 0.064 | 0.641 | 0.219 | 0.141 | 0.609 | 0.219 0.172
ETriZtr 10s | o [0778]0.222|0222 033304440222 | 0.111 0.667
o |o0625]0375| 01 [ 02 | 07 | o | o025 0.75
0.633 | 0.258 | 0.109 | 0.638 | 0.213 | 0.15 | 0.577 | 0.162 0.262
5s | o |0563]0438| 025 | 025 | 05 [o0.188]0.375 0.438
0.063 | 0.25 | 0.688 | 0.158 | 0.263 | 0.579 | 0.059 | 0 0.941
1 0 0 1 0 o |o0.889|0.111 0
155] 0o [075 025 o | 05 | o5 | o025 075 0
o |o2s|07s| o [ o5 | o5 | o |o02s 0.75
. 1 0 0 1 0 o |o0.889|0.111 0
eor | 20s[ o [o75 [025| o | 05 | 05 |o025 075 0
o |o2s|07s| o [ o5 | o5 | o |o02s 0.75
1 0 0 1 0 o |o0.889|0.111 0
ss| o [075]025| o | 05 | o5 [o025] 075 0
o o025 |075| o [ o5 | 05| o |o02s 0.75

Table 3.5 Testing and training errors for k-neanesghbor method with different time
windows

We also calculate out the mean and standard dewi&br accuracy over all the
different combinations in Table 3.6. The resultewglthat k-nearest neighbor method has
a lower accuracy in separation of tasks (0) anlistd§, 2) than the linear separation
method. Moreover, the best average classificatamuracy is from using all the features
in the data set and Withm. The longer the time periods is, the better the
classification results is. This is because thatlﬂngerW is, the more data points one

time window has, and the more accurate informagibaut the cognitive status we can
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extract. Nevertheless, the disadvantage of a Iast that we would not be able to
identify a subject’s state in a short time scald armake it unpractical in real-time data
mining. Applying all the signals gives us the bestult among all the four combinations’.
Also, the standard deviations are around 0.2 to @t8ch may due to the individual

characteristics of each subject.

Table 3.6 Mean and standard devi
with different

ion of testingiacy for ne

Another similar method called Nearest-centroid atgm:

All features Fz,F7 ECG,Pz, 7502 VEOG,HEOG,Fz|F7
Mean | STDEV| Mean | STDEV| Mean | STDEV| Mean STDEV
0.6797| 0.3118| 0.6594| 0.3026| 0.6733| 0.3110{ 0.6732| 0.3104
15s| 0.4000| 0.2143| 0.3714| 0.2870| 0.4000| 0.2143| 0.3191| 0.2707
0.5946| 0.3157| 0.4946| 0.3247| 0.5898| 0.3385| 0.5898| 0.3385
0.6204| 0.2922| 0.6270| 0.2958| 0.6071| 0.2912| 0.6182| 0.2900
10s| 0.4286| 0.2755| 0.3413| 0.2836] 0.4306| 0.2827| 0.4127| 0.2921
0.5119| 0.2931| 0.5492| 0.2986| 0.4940| 0.2797| 0.5119| 0.2931
0.5476| 0.2512| 0.5697| 0.2618| 0.5487| 0.2541| 0.5442| 0.2492
5s | 0.3680| 0.2261| 0.2411| 0.1961| 0.3666| 0.2157| 0.3257| 0.1809
0.5668| 0.2725| 0.6127| 0.2935| 0.5668| 0.2725| 0.5743| 0.2753

t-nejighbor method
and different signals whev\y =

1. Compute the centroids for all the classes in thimiing set:

C :m Ci is the centroid of clags &is a training point

belong to clasg andn is the total number of training points in class

2. Select a testing point; calculate the distanceas fitus testing point to the

centroid of each class (Euclidean Distance applied)

3. The testing point is assigned to the class, whghearest centroid belong

to.
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This algorithm is a combination of k-mean method agarest-neighbor rule: first
within training data, the centroid of each the slas found, and then testing data is
classified by applying these centroids and neareigthbor method. The same parameters
and combinations of signals in k-nearest neighbethiod are used in the nearest-centroid
method. The computational results are shown in &&bl. The k-nearest neighbor
method outperforms nearest-centroid method in a#narios. Remark, using the
combination of ECG, Pz, T5 and O2 we obtain the esagsults as applying all the
features. It may be explained by that some of tli@sesignals have higher magnitudes

in frequency domain and overshadow the other ssgnahe classification procedures.

All features Fz,F7 ECG,Pz, 75,02 VEOG,HEOG,Fz|F7
Mean | STDEV| Mean | STDEV| Mean | STDEV| Mean | STDEV
0.5442 0.2804| 0.6262 0.2959| 0.5442 0.2804| 0.5810 0.2813
15s| 0.4000 0.3151| 0.4619 0.2542| 0.4000 0.3151| 0.4000 0.3372
0.5435 0.2574| 0.4946 0.3035| 0.5435 0.2574| 0.5660 0.3028
0.5534 0.2876| 0.5957 0.2967| 0.5534 0.2876| 0.5692  0.2820
10s| 0.3294 0.2118| 0.3651 0.2681| 0.3294 0.2118| 0.3333  0.2546
0.4560 0.2198| 0.4849 0.2467| 0.4560 0.2198| 0.5401  0.2685
0.4982 0.2472| 0.5411 0.2488| 0.4982 0.2472| 0.5098 0.2390
5s | 0.3403 0.2113| 0.3124 0.1677| 0.3403 0.2113| 0.3481  0.2106
0.4288 0.2823| 0.6189 0.3023| 0.4288 0.2823| 0.5627  0.2761

Table 3.7 Mean and standard deyiation of testimgi@cy for ne rest-c&?troid method
with different VY and different signals Whgﬁ\{zl

3.5 Feedforward Neural Network

3.5.1 Multi-layer feed forward Neural Networks
Artificial neural networks method is a branch ofifasial intelligence, which is
inspired by biological nervous systems. The sirtiks between biological nervous

systems and artificial neural networks are thay e both composed of simple elements
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operating in parallel, and if the number of thesepse elements reaches certain point,
they can perform complex functions. This simplenmedat is called neuron both in

biological and artificial networks. However in &dial intelligence area, a “neuron”

actually means a parameterized function. The visabf the function are often called
inputs of the neuron and its value is its outpuefius, 2005).

A neural network is a composition of several near@and a feed forward neural
network can be demonstrated by the graph in Fidule where the edges are the
connections and the vertices are neurons. Infoomatiways goes forward and never
goes back. In addition, in a multi-layer netwothkere are usually more than three layers
of neurons and they connect with each other oneny from the input layer to output
layer. Note, the “neurons” in the input layer signprovide the input data to hidden layer
instead of processing the data, which is the redasasome books and software the input
units are not referred as “input neurons”, andHwiden layer, the neurons are usually
sigmoid parameterized functions, while the linaarctions are always applied in output
layer.

There are values for all the connections betweerh eeuron, which called
weights. A neural network can be trained to perfa@marticular function by adjusting
these weights. Proved by Kolmogorov but refinedalyers, any continuous function
from input to output can be implemented in a tHeye@r net, give sufficient number of
hidden units, proper nonlinearities, and weightsid® Hart, Stork, 2001). Therefore,
theoretically a three-layer network with enough deid neurons should be able to
approximate any functions, but in practice, redsens also utilize networks more than
one hidden layers due to the efficiency reasor(fetver total units).

As the rapid developments in computer technologtifiaal neural network
becomes more and more populargreat amount of effort is spent on the developnoén
neural networks for applications such as pattercogeition and modeling, data

compression, optimization, etc. The advantages eafral network over conventional
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methods rely on its ability in solvii problems which are not well understood or
soluion is too complex to be found, | it doesn’t provide any insig informationabout
the problem.

A neural networ performs in two different modes: learning (or tiag) and
testing. Insupervised classificati, before a neural networks applied, training i
necessary for agptimal result. A common training procere is demonsated in Figure
3.9. To be precisétraining” is defined as findinghe appropriate weights between e
connection sa@ (output, targey<od. f Is the performance function, and is the

threshold chosen according to different situati
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Figure 3.8A typical three layergeed forward neural netwc

Before traininga network, the number of layers, the number of oresifor eacl
layer, the transfer functions for each layer, tta@ning algorithm, and the performar
functions should be decid.. At the beginning of théraining process, a training set

selectedthe network predict the target value for each trgirdata based on initialize
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weights However,as training goes on, the network adjusts interraflya certain training
algorithm until it reaches a stable stage at whighoutputs are considered satisfactory:
f (output, targ et)> & . After that, all weights in the network should fdeed and stop
training, go to the next stage: testing. In summbagrning is an adaptive process during
which the weights change in order to offer the esponse to all the observed stimuli.
In the testing stage, the trained network is useddssify new, previously unseen inputs.

At this stage, the network receives an input sigimal processes it to generate an output.

Neural Network

p-| including connections
| (called weights) 0
nput between neurons utput

Compare

Adjust
weights

Figure 3.9 A procedure to train a neural network

3.5.2 Application
Previously research is based on the assumptiorfdhdihe same subject, all the
trials are related, so based on the informatioanie trial, one should be able to classify
the tasks in another trial for the same subjectielbeless, it is possible that every trial
has its distinctive characteristics while they agkated with each other at the same time.
More important, this unique characteristic may rifgee with the performance of our

algorithm. In order to extinguish this factor asahuwas possible, a potential way is to
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treat each trial as an independent trial and ramgl@mlect a fraction of the data as
training data and the rest as testing data.

Two different algorithms are implemented by the NéuNetwork Toolbox
(NNT) in the Matlab (The Mathworks, Inc), an allrpose neural network environment.
In the first algorithm, a three-layer neural netkanth three neurons in the output layer
is applied since we have three classes in theetatask 0, 1 and 2 correspond to target
value [1, O, 0], [0, 1, O], [O, O, 1], respectivelihe number of inputs is related to the
number of features we extract from the multidimenal time-series data set, and 20
neurons are in the hidden layer. All the informatior the network is listed in Table 3.8.

For the second approach, two networks are utiliretiead of one. The first
network separate NCL tasks (0) from CL tasks (12n@nd the second network identify
the low cognitive tasks (1) and the high cognittasks (2). Both networks have three
layers with the same transfer functions, trainitgpathm and learning function as in
Table 3.8. The differences between these two nésware: first, the output values have
different meanings. The target value for NCL task®, for CL tasks is 1, while in the
second network, low and high cognitive tasks cquwes to target value O and 1. In
addition, the first network has 5 neurons and theosd has 20. The reason different
numbers of neurons are chosen for the two netwasksot only based on experiment,
but also based on the observation of the linedréijeveen non-cognitive and cognitive

tasks and the nonlinearity between low and higmttvg tasks.
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Number of inputs 35, 28,7
Number of outputs 3
Number of hidden neurons 20
Transfer function for hidden layer Hyperbolic Tang8igmoid
Transfer function for output layer Linear
Training algorithm Levenberg-Marquardt back propema
Performance function Mean square error

Table 3.8 Details for the neural network

Note, different numbers of inputs are tested fax ame data set in order to
discover the combination of features which can dive best classification result. In
Wilson and Russell's paper (Wilson and Russell, 720@hey calculated the average
magnitudes over 5 bands from every EEG and EOGakajter the data was transferred
from time domain to frequency domain by DFT: d€ReD to 40 Hz), theta (5.0 to 8.0
Hz), alpha (9.0 to 13.0 Hz), beta (14.0 to 32.0,ldnd gamma (33.0 to 43.0 Hz). Include
the 5 bands mentioned, 4 bands and 1 band ardredoFor 4 bands, they are 1 to 10
Hz, 11 to 20 Hz, 21 to 30 Hz, 31 to 40 Hz, andX¥dvand, it is from 1 to 10 Hz. The 5
bands, 4 bands and 1lband correspond to 35 inpiispRts and 7 inputs for the neural
network since VEOG, HEOG, Fz, F7, Pz, T5 and OZhosen.

Each trial is treated as an individual data sehc&ithe tasks are performed
continually during a certain time period, classifyievery time point in the data set is
unpractical. Hence, every single trial is dividedoi equal long consecutive segments

along the time axis. Randomly 50% of the data liscted as training set, 25% of the data
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as cross validation set, and the other 25% as¢esét. Furthermore, the length of task 0
is at least 6 times longer than the time of thi faand 2 in each trial. If data is arbitrarily
selected as training set and testing set over thelevdata, this unbalanced situation
would be kept in the training and testing set. Afigr the training, the neural network
would be biased: more sensitive to task 0. To attuglsituation, the same percentage of
data is selected from each task, and the dataskh2zaand 3 is replicated to make they
have the same amount data as in task 1. A fiversktang segment is used as input
signal to the network. And for each trial, we ru@ times and compute mean and
standard deviation of accuracy for each task. #dltesults can be found in the appendix,
only the results for 35 inputs are listed in Takl@.

In Table 3.10, the accuracies of the algorithm d algorithm 2 are comparable.
The average accuracy for algorithm 1 among diffeneals is 0.85053, 0.47083, 0.59443
for task O, task 1, and task 2, comparing to 0.2586375, 0.61667 from algorithm 2.
The neural network with 35 inputs gives the simisults in algorithm 1 and 2, and task
0 is easier to identify, again. For 7 inputs nety@lgorithm 1 gives the worst accuracy,
but algorithm 2 still have a similar or even betdecuracy compare to the results from
the network with 35 and 28 inputs. Base on thesemations, conclusion is that using
35 inputs in algorithm 1 has no advantages overgu2B inputs. Additional, applying 7
inputs can achieve a similar result by algorithmathough algorithm 1 with 28 inputs

has the best result over all.
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Algorl A0l EO1 FO1

35 input AVE STDV AVE STDV AVE STDV
Task O 0.8871 0.06847 0.780 0.14489  0.8323 0.08439
Task 1 0.425 0.28988 0.55 0.28382 0.5 0.26352
Task 2 0.6 0.26296 0.7 0.24596  0.6333 0.33148
Algorl A02 EO02 FO2

35 input AVE STDV AVE STDV AVE STDV
Task 0 0.8581 0.08214 0.8908 0.04612 0.8548 0.05P38
Task 1 0.45 0.2582 0.55 0.30732 0.3% 0.33747
Task 2 0.5333 0.35833 0.4333 0.27444  0.6667 0.35[L37

Algorithm 1

Algor2 A01 EO1 FO1

35 input AVE STDV AVE STDV AVE STDV
Task O 0.8387| 0.12814 0.8161  0.211B3  0.8968 0.06933
Task 1 0.375 0.35843 0.275 0.24861 0.35 0.33y47
Task 2 0.575 0.26484 0.725 0.24861 0.8 0.2582
Algor2 A02 EO02 F02

35 input AVE STDV AVE STDV AVE STDV
Task O 0.871 0.11069  0.8194  0.092y4  0.9097 0.0884
Task 1 0.4 0.35746 0.525 0.24861 0.325 0.26484
Task 2 0.525 0.27513 0.55 0.32914 0.525 0.18447

Algorithm 2

Table 3.9 The result of neural network with 35 itgpior (a) algorithm 1 and (b)
algorithm 2



35 28 7
TaskO | 0.85053] 0.82902 0.7397

Algorl |Taskl | 047083 0512§  0.2666
Task2 | 0.59443 0.60002 0.4777
TaskO0 | 0.85862] 0.87312 0.869¢

Algorz |Taskl | 0375 | 042083 0425
Task2 | 0.61667| 05916] 0.6
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0 0 ~N

Table 3.10 The average classification accuracyfgorithm 1 and 2 with different
numbers of inputs

3.6 Peak Detection Method

The Peak Detection Method (PDM) is based on thamaggon that the brain’s

state of a subject at a certain time point candierchined by the time period before and

after this point. In this algorithm, a fixed-lengthndow slides through the time axis and

certain value are measured every time the winddecisted. Also, the value calculated is

assigned to the time point at the middle of thedew. For this algorithm, these

parametersW the length of the window, an¥¥ the span that every time the window

slides, need to be pre-determined. There are twgswa gauge the window: the

magnitude for a frequency band after DFT or theddad deviations for all the data in

the window since interesting patterns are founthéprevious section. Both of these two

measures are applied on a single feature whichnaleds to choose prior.

Figure 3.10 is generated by the PDM, the X axighes time axis; the Y axis

represents values of a certain measurement. Thigaldines indicate the finishing of

events: the black lines mean task 0 ends, the gredoates the task 0 and the red

indicates the task 2. Therefore, a task 2 happetvgelen a black line and a red line, and a

task 1 happens between a black line and a greenTine parameters chosen here are
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W =18se and W, =1se(, which imply the length of this moving window i8 econds
and this window moves 1 seconds every time. Furibeg, the feature chosen from the
data set is EEG signal on Fz spot and the frequieany is from 1 Hz to 10 Hz.

In Figure 3.10, for the same trial and the samgestithere are two plots, the plot
above applies measure of the standard deviatiortheofaw data and the plot below
calculates the average magnitude for the transfdiateG signal. Also, In Figure 3.10, at
the beginning of every task 1 and task 2, a pegeas in both two measurements. It
indicates that when a subject is performing undét.dask, the EEG data collected from
Fz spot always has a lower average magnitude quérecy domain and a lower standard
deviation in the time domain, than under a NCL tds#@te, the negative values of both
two measurements are used in Figure 3.10 justHer donvenience of observation.
Another interesting phenomenon is that these twasa@ments are closely correlated;

the correlation coefficients are in
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Figure 3.10 The two measurements versus time fitmts PDM for data set A01, EO1,

FO1
Trail A0l A02 EO1 EO02 FO1 FO2
Correlation 0.9488 0.9392 0.926b 0.8937 0.8848 9874

Table 3.11 The correlation between the average rualps and standard deviation in the
Peak Detection Method

A heuristic peak detection algorithm is applieddtscover the change during the
trial:

Initial y,,, = —inf, max=0with predefinedd, y

For i=1...n, nis the number of data points along the time axis.

If y.>vy. theny =y andmax= i

Elseify ., >y +J andy,,, >y then Point ) is a peak.

max’? ymax



End
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o is the relative threshold to identify a peak gnds the absolute threshold. Only a point

satisfies these two at the same time would be éaba$ a peak. In our computational

experiment,0 equals to one standard deviation of all the pamtke plot, andy equals

to the mean plus one standard deviation.

The result from the algorithm applied on the presgiGstandard deviation plot” of

EO1 is shown in Figure 3.11.In this figure, mostlté peaks detected are the transitional

point of different tasks, although the peaks areatloon the exact time point of task O

shifting into task 1 or 2,, they are close to tloents in a satisfied precision. The results

for each data set are listed in Table 3.12. Théetaizludes the number of transition

points it has for each trial, how many of them de¢ected, and how many false alarms

have been triggered. Note, for PDM, task 0 is agreid as a baseline or benchmark, and

this method cannot differentiate task 1 and tank\&.
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Figure 3.11The points detected by the peak deteeligorithm in EQ1 data set
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Table 3.13 shows that the percentage of task Tidetdy PDM is comparable to
the percentage of task 2: average 87.50% and 83r83pectively. The average total
accuracy is 72.16%. The reason that the total acguis lower than both of the
percentage of task 1 detected and task 2 detextherie are several false alarms during

each trails. Therefore, to increase the total amyrwe need to lower the false alarm

rate.
Data | Transitional Correctly Taskl Tasks2
False alarm
Set points detected: detected: detected:

AO01 8 8 4 4 3
A02 8 7 3 4 1
EO1 8 8 4 4 1
EO2 8 6 3 3 3
FO1 8 8 4 4 3
FO2 8 4 3 1 1

Table 3.12 Detail results from PDM for each data se

After all, PMD is still in a preliminary stage arths its own merits and
drawbacks. The method only adopts one signal owigtit so it is straightforward to
apply but may miss useful information in the regnhals. Although it doesn’t need to be
trained, several parameters need to be selectextl s either the prior-experience or

certain information of the data set.



Accuracy False Alarm
Task 1 Task 2 Total Rate
AO01 100% 100% 72.73% 27.27%
A02 75% 100% 87.5% 12.5%
EO1 100% 100% 88.89% 11.11%
EO02 75% 75% 66.67% 33.33%
FO1 100% 100% 72.73% 27.27%
FO2 75% 25% 44.44% 55.56%
Average 87.50% 83.33% 72.16% 27.84%

Table 3.13 Accuracy and false alarm rate by PDMerh data set

69
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CHAPTER 4
DISCUSSION AND CONCLUSION
Our research mainly consisted by two parts. Fapply p-norm error measure
instead of 1-norm measure in the linear programndisgrimination, which generates a
linear hyperplane to classify two data sets. Witis fp-norm error measure, the errors
generated by the classifier are not treated equimityrather biased. F@>1, the bigger
one error is, the more weight it obtains in theegbye function.
Numerical results show this method can improverdsailt of classification and
the accuracy is promising for Breast Cancer Data ISa@wever, for other data sets, the

computational results are not good enough, whictluis to the nonlinear character of
these data sets. WhéFl/m 5221“7, the result is always much better than

3=14,=1andd, =1/mP*, 5, =1/n".

Second, investigation is conducted on a psychoplogical data set. Various
methods are tested on this multi-dimensional tieres data set, from the linear
programming method to the neural network methodhWhe help of DFT, The data is
able to be transferred from the time domain toftequency domain, in which the data
set has interesting patterns. Generally speakiorgsdme of the EEG signals, a higher
average magnitude of a low frequency band (1-10 d42) indicates a low cognitive
activity, and the lower the magnitudes is, the magerously the brain acts.

The linear programming method can classify the N@&k and CL task with
average accuracies 14.8% and 20.6%. However, ribarliprogramming method cannot
differentiate the low cognitive task and high cdye task with comparable accuracies.
The K-nearest neighbor methods can be applied tegoazing 0, 1 and 2 tasks. The
average accuracies for the three tasks are aroditd 0%, 50%, which are depending
on the parameters of the algorithm. Furthermorndjcal neural network have also been

tested for this data set. The optimal average acguis 85.05%, 47.08%, and 59.44%.
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However, the way that neural network is utilizedke®s it impossible for real-time data
mining, which may be essential in practice.

In data mining, it is difficult to evaluate perfoamce of an algorithm or compare
two algorithms without a specific data set so ithewd to say a certain algorithm is
“better” than another in general. An algorithm whigonderfully performs on a data set
may misclassify many data points in another dataTdes fact is all because the domain
knowledge of specific data set is poor, which sogbart of the reason why data mining
algorithms are applied. It is a dilemma. Therefdhe challenging questions are: does
that choosing a DM algorithm all depend on the tgpéata set or something else? Are
there any measurements can indicate which algositsimould be applied after a data set
is given but before any algorithms are tested ®n it

In our case, even the same data set has been tegtddferent algorithms,
comparison between the performances of two algosthapplied in two different
procedures is inappropriate. We applied linear mnagning method, k-nearest neighbor
method and artificial neural network on this psyafngsiological data set. These three
algorithms could be applied in different occasiamsl have their own advantages and
limitations. Generally, Linear programming methodsha better performance than k-
nearest neighbor method in classify none cognttasgis and cognitive tasks, which may
due to that k-nearest neighbor method cannot capierreal linearity in the data set.

Additionally, According to the computational resuyltve could conclude that this
psychophysiological data set is individual indeparidor even trial independent, which
imply each subject or each trial has its distinbaracteristics. Besides, there is no
evidence so far that shows we can classify the flata one subject based on the data
from another one. However, all the subjects do eslsmme similar characteristics: in
cognitive state: the signals tend to have the lowagnitudes in frequency domain and
lower standard deviation in time domain. Nevertbglethese characteristics are not

enough to identify the brain’ states.
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From practical perspective, classifying the dathlsesed on subject is more
realistic and meaningful since only classifying tteta from one trial cannot satisfy the
requirements of real-time classification. The bastl most reasonable way to apply
classification in this situation is that: before@erator is allowed to control a real UAV,
he/she goes to a training program and takes cestainlation tasks, in which personal
data is collected and analyzed, then the paramefetse data mining algorithm are
searched until required classification accuracgdbieved. Last, the operator can be in
charge of a real UAV and performs in real missi@mg] the performer’s functional states
would be indicated by the algorithm with paramef@esviously fixed.

Furthermore, separating NCL task and CL task ishregsier than categorizing
different level of cognitive activities. An intwt explanation would be that brain
functions qualitatively differently in none cogmé behavior and cognitive behavior.
Meanwhile, the difference between different levebmitive tasks is only quantitative.
Besides, the tasks in the experiment may be tostiNe to be differentiated. Therefore,
making a clear definition or measurement on thenitovg level of tasks should be in the
future research. Also, identifying the requisitesni the task, and explore how these
interact with the brain would help classifying thype of data set in the future. Due to the
curse of dimensionality, an effective feature regucmethod is in demand. Ideally, in
order to reduce the dimensionality of the data aeteature reduction method either
chooses useful features out of total features orbooes several features into one. In our
research, the features are selected based on thendang results, so they are simply
chosen by trial and error.

Finally, quoting from Robert D. Small (Small, 199A) great deal of what is said
about data mining is incomplete, exaggerated, angr When you undertake a data-
mining project, avoid a cycle of unrealistic ex@icins followed by disappointment.

Understand the facts instead, and your data-mieffogts will be successful.
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APPENDIX A: CLASSIFICATION RESULTS FOR WISCONSIN BRAST CANCER

DATA SET (ERROR RATE)

P-order M=N=1 M=m, N=n M=m"p, N=n"p
Benign| Malignant| total | Benign| Malignant]| total | Benign| Malignant| total
1 2.64% 5.19% 3.53% 2.64% | 3.29% 2.87%| 2.649 3.29% 2.87
1.1 2.57% 5.19% 3.49% 2.77% 2.919 2.82% 2.71M% 2.9192.82%
1.2 2.57% 5.19% 3.49% 2.91% 3.169 3.00% 2.81% 3.1492.95%
1.3 2.57% 4.81% 3.35% 2.91% 2.669 2.82% 2.80% 3.049%2.91%
1.4 2.64% 4.68% 3.35% 2.91% 2.539 2.78%  2.84% 2.9192.86%
15 2.57% 4.68% 3.31% 2.91% 2.539 2.78®.77% | 2.91% | 2.82%
1.6 2.57% 4.81% 3.35% 2.97% 2.539 2.82% 2.7% 3.049%2.86%
1.7 2.57% 4.68% 3.31% 2.97% 2.419 271% 2.80% 3.049%2.91%
1.8 2.57% 4.56% 3.27% 3.04% 2.419 2.82% 2.84% 3.14%2.95%
1.9 2.57% 4.56% 3.27% 3.04% | 228% |2.77%| 2.84% 3.29% 3.009
2 257% | 4.43% | 3.22% | 3.04% 2.28% 2.77% 2.84% 3.29% 3.0(
2.1 2.57% 4.68% 3.31% 3.11% 2.289 2.82% 2.80% 3.4398.04%
2.2 2.57% 4.81% 3.35% 3.18% 2.289 28f% 2.7M% 3.2992.95%
2.3 2.50% 4.94% 3.35% 3.24% 2.289 2.90% 2.84% 3.4398.04%
2.4 2.50% 5.06% 3.39% 3.38% 2.289 3.00% 2.81% 3.8098.18%
2.5 2.50% 5.19% 3.44% 3.38% 2.289 3.00% 2.7% 4.0%98.22%
2.6 2.50% 5.44% 3.53% 3.38% 2.289 3.00% 2.7p% 4.5698.35%
2.7 2.50% 5.57% 3.57% 3.38% 2.289 3.00% 2.64% 4.4398.27%
2.8 2.43% 5.57% 3.53% 3.38% 2.539 3.08% 2.64% 4.4398.27%
2.9 2.43% 5.57% 3.53% 3.31% 2.789 3.12% 2.64% 4.4398.27%
3 2.43% 5.70% 3.57% 3.31% 2.919 3.17% 2.6/% 4.439%.2798
3.1 2.36% 5.82% 3.57% 3.31% 3.049 3.22% 2.64% 4.6898.35%
3.2 2.36% 5.70% 3.53% 3.31% 3.169 3.26% 2.50% 4.8198.31%
3.3 2.36% 5.95% 3.61% 3.31% 3.169 3.26% 2.50% 5.1998.44%
3.4 2.30% 5.95% 3.58% 3.38% 3.169 3.30% 2.50% 5.1998.44%
3.5 2.30% 6.08% 3.62% 3.38% 3.169 3.30% 2.4B% 5.1998.39%
3.6 2.30% 6.46% 3.75% 3.38% 3.299 3.35% 2.4B% 5.1998.39%
3.7 2.30% 6.58% 3.80% 3.31% 3.429 3.35% 2.4B% 5.4498.48%
3.8 2.30% 6.84% 3.89% 3.24% 3.429 3.30% 2.36% 5.7998.53%
3.9 2.30% 6.96% 3.93% 3.11% 3.549 3.26% 2.36% 5.7998.53%
4 2.30% 7.22% 4.02% 3.04% 3.549 3.21% 2.3p% 5.74% .539%8

%
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41 2.23% 7.22% 3.97% 3.044 3.679 3.26% 2.36% 5.9998.61%
4.2 2.23% 7.22% 3.979 2.97 3.809 3.26% 2.36% 6.0498.66%
4.3 2.23% 7.09% 3.93¢ 2.91¢ 4.189 3.3%% 2.3p% 6.3398.71%
4.4 2.23% 7.22% 3.979 2.97¢ 4.189 3.39% 2.3p% 6.5898.80%
4.5 2.23% 7.34% 4.029 2.97( 4.189 3.39% 2.3p% 6.5498.80%
4.6 2.16% 7.59% 4.069 2.97 4.189 3.39% 2.3p% 6.5498.80%
4.7 2.16% 7.72% 4.109 2.97 4.189 3.39% 2.36% 6.7198.88%
4.8 2.23% 8.23% 4.339 3.04( 4.309 3.48% 2.36% 6.7198.88%
4.9 2.23% 8.61% 4.469 2.97¢ 4.439 3.413% 2.36% 6.9498.97%

5 2.23% 9.11% 4.639 2.9719 4.439 3.42#% 2.3p% 6.94%.9798




APPENDIX B: CLASSIFICATION RESULTS FOR THE DATA SESTFROM UCI

M=N=1
lonosphere Pima Sonar
1 8.00%)| 33.10%] 17.01%| 41.56%]| 17.90%| 26.14%]| 27.84%| 31.25%] 29.43%
1.1 8.00%| 32.86%] 16.92%| 41.44%] 18.26%| 26.33%]| 29.73%| 32.50%] 31.03%
1.2 7.87%| 32.38%] 16.67%| 41.89%] 18.92%| 26.92%]| 31.08%| 32.19%] 31.60%
1.3 8.13%| 32.38%] 16.84%| 42.44%] 19.28%| 27.35%| 27.84%| 32.50%] 30.02%
14 8.13%| 30.71%] 16.24%| 41.56%] 19.82%| 27.39%| 30.27%| 31.88%] 31.02%
15 8.00%] 30.95%] 16.24%| 41.89%] 20.30%| 27.82%| 28.65%| 31.88%] 30.16%
1.6 7.87%| 30.71%] 16.07%| 42.11%] 21.20%| 28.48%| 28.65%| 28.75%] 28.70%
1.7 8.00%| 31.43%] 16.41%| 42.44%] 21.38%| 28.72%| 27.84%| 31.88%] 29.73%
1.8 7.73%| 31.19%] 16.15%| 42.33%| 21.74%| 28.91%| 28.65%| 31.56%] 30.01%
1.9 8.00%| 30.71%] 16.15%| 42.44%] 21.86%| 29.03%| 31.35%| 33.44%] 32.33%
2 8.13%)| 30.95%] 16.32%| 42.67%]| 21.86%| 29.11%| 29.46%| 31.25%] 30.30%
2.1 8.13%| 30.95%] 16.32%| 42.78%] 21.98%| 29.23%] 29.19%| 31.56%] 30.30%
2.2 8.00%| 31.19%] 16.32%| 42.67%]| 22.16%| 29.30%| 25.68%| 32.81%] 29.01%
2.3 7.60%| 31.67%] 16.24%)| 42.56%] 22.22%| 29.31%| 26.76%| 30.62%]| 28.57%
2.4 7.47%| 31.90%] 16.24%| 42.78%] 22.10%| 29.30%| 27.84%| 35.00%] 31.19%
25 7.60%| 32.14%] 16.41%| 43.00%] 22.28%| 29.50%| 28.38%| 32.19%] 30.16%
2.6 7.60%| 32.38%] 16.50%| 43.22%] 22.28%| 29.57%| 25.95%| 33.75%] 29.60%
2.7 7.60%| 32.38%] 16.50%| 43.33%| 22.34%| 29.65%] 31.89%| 32.19%] 32.03%
2.8 7.60%| 32.38%] 16.50%| 43.44%]| 22.28%| 29.65%| 28.38%| 33.13%] 30.60%
2.9 7.60%| 32.62%] 16.58%| 43.78%] 22.40%| 29.85%| 28.65%| 30.62%]| 29.57%
3 7.73%| 33.10%)| 16.84%]| 43.78%| 22.51%]| 29.92%| 28.65%]| 30.94%| 29.72%
3.1 7.60%| 33.10%] 16.75%| 43.78%] 22.69%| 30.04%| 26.22%| 31.25%] 28.57%
3.2 7.33%| 33.10%] 16.58%| 43.78%| 22.57%| 29.96%| 26.22%| 33.44%] 29.60%
3.3 7.33%| 33.33%] 16.66%| 43.89%] 22.75%| 30.11%| 27.84%| 32.50%] 30.02%
3.4 7.33%| 33.10%] 16.58%| 43.89%] 22.69%| 30.07%] 30.00%| 30.94%] 30.44%
3.5 7.20%| 33.10%] 16.50%| 44.00%| 22.87%| 30.23%| 26.22%| 30.94%| 28.43%
3.6 7.20%| 33.33%] 16.58%| 44.11%] 22.81%| 30.23%]| 30.00%| 30.63%] 30.29%
3.7 7.20%| 33.57%] 16.67%| 44.22%]| 22.99%| 30.39%| 27.57%| 32.50%] 29.88%
3.8 7.47%| 33.57%] 16.84%| 44.33%]| 23.05%| 30.46%]| 28.92%| 30.62%] 29.71%
3.9 7.33%| 33.57%] 16.75%| 44.33%] 22.99%| 30.42%| 28.38%| 30.00%] 29.14%
4 7.20%| 33.81%)| 16.75%| 44.44%| 23.05%)| 30.50%| 28.38%| 28.75%| 28.55%
4.1 7.20%| 34.05%] 16.84%| 44.33%] 23.23%| 30.58%] 28.92%| 33.13%] 30.89%

75
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4.2 7.20%| 34.29%] 16.92%| 44.22%] 23.29%| 30.58%| 29.46%| 34.06%]| 31.61%
4.3 7.20%| 34.29%] 16.92%| 44.11%] 23.29%| 30.54%| 26.76%| 35.62%] 30.90%
4.4 7.07%| 34.29%] 16.84%| 44.11%] 23.35%| 30.58%| 27.84%| 35.00%] 31.19%
4.5 6.93%| 34.52%] 16.83%| 44.00%| 23.41%| 30.58%| 27.84%| 32.19%] 29.87%
4.6 6.67%| 34.76%] 16.75%| 44.00%] 23.29%| 30.50%| 26.76%| 33.44%] 29.88%
4.7 6.67%| 34.76%]| 16.75%| 44.22%| 23.35%| 30.62%] 29.19%| 34.38%] 31.62%
4.8 6.53%| 34.76%]| 16.66%| 44.22%]| 23.41%| 30.66%| 30.54%| 32.50%| 31.46%
4.9 6.40%| 35.24%] 16.75%| 44.33%]| 23.53%| 30.78%] 29.19%| 34.38%] 31.62%
5 6.27%| 36.43%)| 17.10%| 44.22%| 23.59%| 30.78%| 28.65%| 33.12%| 30.74%
average] 7.47%| 32.90%| 16.60%)| 43.33%| 22.13%] 29.51%| 28.48%] 32.23%| 30.23%
M=m"p, N=n"p
lonosphere Pima Sonar
11.33%| 29.29%| 17.78%]| 33.00%| 26.83%]| 28.98%| 22.97%| 38.44%| 30.20%
11 11.33%| 29.05%| 17.69%]| 33.00%| 27.01%]| 29.10%| 29.73%]| 32.50%| 31.03%
1.2 11.33%| 29.76%| 17.95%| 33.67%| 26.77%]| 29.17%| 31.08%| 32.19%| 31.60%
1.3 11.33%| 30.48%| 18.20%| 34.44%| 26.83%]| 29.48%| 27.84%]| 32.50%| 30.02%
1.4 11.87%| 30.48%| 18.55%]| 35.00%| 26.83%]| 29.68%| 30.27%| 31.88%| 31.02%
15 12.13%| 29.52%| 18.37%]| 35.56%| 26.83%]| 29.87%| 28.65%| 31.88%| 30.16%
1.6 12.13%| 29.29%| 18.29%| 35.78%| 26.71%]| 29.87%| 28.65%| 28.75%| 28.70%
1.7 12.13%| 28.81%| 18.12%]| 36.22%| 26.77%]| 30.06%| 28.38%| 34.69%| 31.33%
1.8 12.00%| 29.05%| 18.12%]| 36.67%| 26.53%]| 30.06%| 29.73%| 32.50%| 31.03%
1.9 12.27%| 29.05%| 18.29%| 37.22%| 26.59%]| 30.29%| 31.35%| 33.44%| 32.33%
2 12.27%| 29.05%| 18.29%| 37.11%| 26.77%]| 30.37%| 29.46%| 31.25%| 30.30%
2.1 12.00%| 30.00%| 18.46%| 37.44%| 26.77%]| 30.49%| 27.57%| 28.12%| 27.83%
2.2 11.87%| 30.24%| 18.46%| 37.44%| 26.95%]| 30.60%| 25.68%| 32.81%| 29.01%
2.3 11.87%| 30.48%| 18.55%| 37.67%| 26.95%]| 30.68%| 26.76%| 30.62%| 28.57%
2.4 12.27%| 30.95%| 18.98%| 37.67%| 27.13%]| 30.80%| 27.84%]| 35.00%| 31.19%
25 12.00%| 31.19%| 18.89%]| 37.89%| 26.95%]| 30.76%| 28.38%| 32.19%| 30.16%
2.6 12.13%| 31.19%| 18.97%| 38.22%| 27.13%]| 30.99%| 27.30%| 34.69%| 30.76%
2.7 12.13%| 30.95%| 18.89%| 38.67%| 27.13%]| 31.15%| 31.89%| 31.88%| 31.89%
2.8 11.87%| 31.19%| 18.81%]| 39.00%| 27.19%| 31.30%| 29.73%| 33.44%| 31.46%
2.9 11.87%| 31.19%| 18.81%]| 39.33%| 27.25%]| 31.46%| 28.11%| 31.56%| 29.72%
3 11.73%| 31.19%| 18.72%| 39.44%| 27.31%]| 31.54%| 28.38%| 32.19%| 30.16%
3.1 11.73%| 30.95%| 18.63%]| 39.56%| 27.31%]| 31.58%| 26.49%| 34.06%| 30.03%
3.2 11.60%| 30.95%| 18.55%]| 39.56%| 27.31%]| 31.58%| 29.19%| 33.44%| 31.18%




3.3 11.33%] 30.95%| 18.37%| 39.78%| 27.37%| 31.69%] 29.73%]| 33.75%] 31.61%
3.4 11.33%] 30.71%| 18.29%| 39.78%| 27.31%| 31.65%] 31.35%]| 33.13%| 32.18%
3.5 10.93%| 30.71%| 18.03%]| 39.89%| 27.19%] 31.61%]| 27.57%] 30.31%| 28.85%
3.6 10.80%| 30.71%]| 17.95%]| 40.11%| 27.25%] 31.73%] 29.73%| 31.88%| 30.74%
3.7 10.67%] 31.19%| 18.04%| 40.11%| 27.25%| 31.73%] 25.41%]| 35.31%] 30.04%
3.8 10.13%] 31.43%| 17.78%| 40.22%]| 27.19%| 31.73%] 27.03%| 30.94%| 28.86%
3.9 10.13%] 31.43%| 17.78%| 40.67%| 27.25%| 31.92%] 30.27%]| 29.38%| 29.85%
4 10.13%| 31.43%| 17.78%]| 40.78%| 27.25%] 31.96%]| 28.92%| 30.62%] 29.71%
4.1 10.00%| 31.67%| 17.78%]| 41.00%| 27.25%] 32.04%] 28.92%| 31.25%] 30.01%
4.2 9.47%| 31.90% 17.52%| 41.11%| 27.31%| 32.12%] 29.19%]| 32.81%| 30.88%
4.3 9.20% | 32.14% 17.43%)| 41.00%| 27.19%]| 32.00%| 28.38%]| 35.31%| 31.62%
4.4 9.07%| 32.14% 17.35%| 41.11%| 27.31%| 32.12%| 28.38%]| 34.38%| 31.19%
4.5 8.80% | 32.86% 17.44%)] 41.11%]| 27.25%| 32.08%] 29.19%| 32.19%| 30.59%
4.6 8.80% | 32.86% 17.44%)] 41.00%]| 27.25%| 32.04%| 27.57%| 34.38%]| 30.75%
4.7 8.67%| 33.33% 17.52%| 41.00%| 27.13%]| 31.96%| 25.95%]| 33.75%| 29.60%
4.8 8.80% | 33.33% 17.61%| 41.00%| 27.01%| 31.88%]| 29.46%]| 32.50%| 30.88%
4.9 8.40% | 33.81% 17.52%] 41.00%]| 27.01%)| 31.88%] 28.65%| 34.69%| 31.47%
5 8.27% | 34.05% 17.52%] 41.00%]| 26.95%| 31.84%] 16.76%| 44.69%| 29.82%
Average| 10.93%] 31.00%| 18.13%)| 38.57%] 27.06%]| 31.07%| 28.24%] 32.96%]| 30.45%
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APEENDIX C: CORRELATION FOR EACH TRIAL IN THE

PSYCHOPHYSIOLOGICAL DATA

78

EO1 1 2 3 4 5 6 7 8
1 1 -0.012 | 0.02120 -0.076R -0.0287 -0.0446 -0.0259.019
2 -0.012 1 -0.1 -0.7288 -0.5587 -0.27112 -0.1926 0067
3 0.0212 -0.1 1 -0.1232 0.7601 -0.2893 -0.0774 4334
4 -0.0762| -0.7283 -0.123p 1 0.4693 0.6343 0.367 /652
5 -0.0287| -0.5557 0.7601 0.4693 1 0.06//6  0.1338 2340.
6 -0.0746| -0.2712 -0.2898 0.6343 0.06[6 1 0.5$31685h
7 -0.0259| -0.1926 -0.0774 0.36y 0.1388 0.5331 1 6104
8 -0.019 | -0.0064 -0.4433 0.2765 -0.231 0.6855 (4pl 1

EO02 1 2 3 4 5 6 7 8
1 1 -0.002 0.011 -0.076 -0.0424 -0.0807 -0.0835 0218
2 -0.002 1 -0.0531 -0.8197 -0.629 -0.3855 -0.291.0899
3 0.011 | -0.053] 1 -0.1273 0.7084 -0.2657 -0.0634.3531
4 -0.076 | -0.8191 -0.1273 1 0.5214 0.6584 0.4296 89¥.2
5 -0.0424| -0.629| 0.7084 0.5214 1 0.13p5 0.2014 2821
6 -0.0807| -0.3853 -0.265/ 0.6584 0.13p5 1 0.60396551
7 -0.0335| -0.291] -0.0634 0.4296 0.2014 0.6039 1 13¥5
8 -0.0278| -0.0899 -0.353[L 0.2897 -0.1252 0.6%51 13¥5 1
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FO1 1 2 3 4 5 6 7 8
1 1 0.0044| 0.0059 -0.0697 -0.0318 -0.0412 -0.047.032%
2 0.0044 1 -0.106] -0.406b -0.3115 -0.2249 -0.2410.0659
3 0.0059| -0.106 1 0.0122 0.7998 -0.1453 0.0%55 5883
4 -0.0657| -0.4063 0.0122 1 0.3636 0.7001 0.6336 7333
5 -0.0318| -0.3113 0.7998 0.3636 1 0.0686  0.2686 214K
6 -0.0712| -0.2249 -0.1458 0.700Q1 0.06B6 1 0.7969738Y.
7 -0.047 | -0.241q 0.055% 0.6336 0.2686 0.7969 1 10.64
8 -0.0324| -0.0659 -0.3558 0.3733 -0.2126 0.7387 4116 1
FO2 1 2 3 4 5 6 7 8
1 1 -0.0066| 0.0157 -0.0398 -0.0159 -0.0479 0.00590081
2 -0.0066 1 -0.1718 -0.36% -0.3203 -0.2529 -0.459.1655
3 0.0157| -0.1718 1 0.037 0.8095 -0.0438 0.1%35 64.1
4 -0.0398| -0.365| 0.032 1 0.4112 0.785 0.6482 0.5p05
5 -0.0159| -0.3203 0.809% 0.4112 1 0.2447 0.4344 0421
6 -0.0279| -0.2529 -0.0438 0.75p  0.2447 1 0.8417 0318
7 0.0059| -0.259| 0.153% 0.6482 0.4344 0.8417 1 @.792
8 0.0081| -0.1653 -0.162 0.5005 0.1042 0.8031 0.79221




APPENDIX D RESULT FOR K-NEAREST NEIGHBOR METHOD

Fz, F7 A02/A01 E02/E01 F02/F01

0.909 | 0.091 0 0.81 | 0.167 | 0.024 | 0.818 | 0.182 0
15s | 04 0 0.6 0.4 0.4 0.2 0.2 0.8 0
0.2 0 0.8 10.429 | 0.143 | 0.429] 0.167 | 0.333 | 0.5
0.894 | 0.106 0 0.825 ] 0.127 | 0.048 1 0.769 | 0.2 | 0.031
10s 1 0.375| 0.25 | 0.375|0.125 | 0.25 | 0.625 | 0.111 | 0.667 | 0.222
0 0.125 | 0.875| 0.3 0 0.7 10.111 | 0.444 | 0.444
0.812 | 0.135 | 0.053 | 0.691 | 0.183 | 0.127 | 0.638 | 0.26 | 0.102
5s | 0.467 | 0.067 | 0.467 | 0.353 | 0.118 | 0.529 | 0.368 | 0.316 | 0.316
0.063 | 0.188 | 0.75 | 0.105 | 0.263 | 0.632 | 0.15 | 0.15 0.7

Test
Error

1 0 0 1 0 0 0.889 | 0.111 0

15s 0 0.25 | 0.75 0 0.5 0.5 0.25 | 0.25 0.5
0 0.5 0.5 0 0.5 0.5 0 0

Train 1 0 0 1 0 0 0.889 | 0.111 0

Error 10s 0 0.25 | 0.75 0 0.5 0.5 0.25 | 0.25 0.5
0 0.5 0.5 0 0.5 0.5 0 0

1 0 0 1 0 0 0.889 | 0.111 0

5s 0 0.25 | 0.75 0 0.5 0.5 0.25 | 0.25 0.5

0 0.5 0.5 0 0.5 0.5 0 0 1




APPENDIX E: RESULTS FOR NEURAL NETWORK

Algorl A0l EO1 FO1

28 input AVE STDV AVE STDV AVE STDV
state O 0.793% 0.13618| 0.7935| 0.16878 0.829| 0.10204
state 1 0.5 0.32914 0.35| 0.24152 0.575| 0.23717
state 2 0.6667 0.35137| 0.5667| 0.31624 0.6| 0.21084

Algorl A02 EO2 FO2

28 input AVE STDV AVE STDV AVE STDV
state O 0.8328 0.07573| 0.8613 | 0.06978 0.8645 0.08437
state 1 0.5 0.28382| 0.425 0.23717 0.62p 0.29463
state 2 0.5667 0.27444| 0.7333 | 0.21082 0.4667 0.32204
Algor2 A0l EO1 FO1

28 input AVE STDV AVE STDV AVE STDV
state O 0.9194 0.04623| 0.8742( 0.19021| 0.8548| 0.11608
state 1 0.4 0.21082 0.375| 0.27003 0.4| 0.31623
state 2 0.5 0.30732 0.5| 0.26352 0.625| 0.29463
Algor2 A02 EO02 FO2

28 input AVE STDV AVE STDV AVE STDV
state O 0.893% 0.05492| 0.8323| 0.1739| 0.8645| 0.04995
state 1 0.33 0.29345 0.5| 0.20412 0.5| 0.33333
state 2 0.47% 0.2993 0.675| 0.16874 0.725| 0.2189




Algorl A01 EO1 FO1

7 input AVE STDV AVE STDV AVE STDV
state O 0.7129 0.19442| 0.8129 0.071| 0.6774 0.149
state 1 0.27% 0.14191 0.225| 0.2189 0.2 0.22973
state 2 0.6667 0.31429| 0.3333| 0.27218] 0.6333| 0.29187
Algorl A02 EO2 FO2

7 input AVE STDV AVE STDV AVE STDV
state O 0.771 0.08111 0.7| 0.12075| 0.7645| 0.11076
state 1 0.4 0.22973 0.4] 0.29345 0.3 0.2582
state 2 0.4667 0.32204 0.4| 0.34428] 0.3667| 0.29188
Algorl A01 EO1 FO1

7 input AVE STDV AVE STDV AVE STDV
state O 0.829 0.10757| 0.8935| 0.04574| 0.8516| 0.09273
state 1 0.37% 0.3385 0.475| 0.18447 0.35| 0.29345
state 2 0.7 0.20412 0.6| 0.35746 0.65| 0.24152
Algor2 A02 EO2 FO2

7 input AVE STDV AVE STDV AVE STDV
state O 0.8871 0.0532 0.871| 0.06083] 0.8871| 0.06671
state 1 0.52% 0.2189 0.375| 0.35843 0.45| 0.22973
state 2 0.47% 0.2189 0.6 0.1291 0.525| 0.34258
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