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ABSTRACT

We introduce and study a novel graph optimization problem to search for multiple

cliques with the maximum overall weight, to which we denote as the Maximum Weighted

Multiple Clique Problem (MWMCP). This problem arises in research involving network-based

data mining, specifically, in bioinformatics where complex diseases, such as various types of

cancer and diabetes, are conjectured to be triggered and influenced by a combination of

genetic and environmental factors. To integrate potential effects from interplays among un-

derlying candidate factors, we propose a new network-based framework to identify effective

biomarkers by searching for “groups” of synergistic risk factors with high predictive power

to disease outcome. An interaction network is constructed with vertex weight representing

individual predictive power of candidate factors and edge weight representing pairwise syn-

ergistic interaction among factors. This network-based biomarker identification problem is

then formulated as a MWMCP. To achieve near optimal solutions for large-scale networks,

an analytical algorithm based on column generation method as well as a fast greedy heuristic

have been derived. Also, to obtain its exact solutions, an advanced branch-price-and-cut

algorithm is designed and solved after studying the properties of the problem. Our algo-

rithms for MWMCP have been implemented and tested on random graphs and promising

results have been obtained. They also are used to analyze two biomedical datasets: a Type 1

Diabetes (T1D) dataset from the Diabetes Prevention Trial-Type 1 (DPT-1) Study, and a

v



breast cancer genomics dataset for metastasis prognosis. The results demonstrate that our

network-based methods can identify important biomarkers with better prediction accuracy

compared to the conventional feature selection that only considers individual effects.
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CHAPTER 1: INTRODUCTION1

Modern high-throughput technologies have generated unprecedented amounts of large-

scale high-dimensional “-omics” data for better understanding complex diseases, which have

been commonly believed to result from complicated interactions between both genetic risk

factors and environmental exposures [2]. Analyzing these high-dimensional heterogeneous

data to identify effective biomarkers for better disease prognosis and diagnosis has been a

critical challenge in computational biology [3, 4, 5]. Previous methods have focused on either

greedy or penalized feature selection including LASSO [4, 5, 6, 7], which typically do not

explicitly consider interactions among different candidate risk factors. These methods have

shown limited power to identify stable and effective biomarkers with high predictive power

in complex disease studies as interactive effects may be essential to understand these systems

impairments, including cancer and diabetes [2, 8, 9, 10].

To bridge this discrepancy, in a previous study [11], an interaction network represen-

tation scheme has been developed to capture both the individual effects from candidate risk

factors and the pairwise interactive effects among them. Network representations have been

effectively used in various research studies in bioinformatics, specifically, in [12] a molecular

interaction network is used to analyze changes in expression for yeast galactose utiliza-

tion pathway, and in [13] an approach is introduced for screening this network to identify

1This chapter was partially published in [1]. Permission is included in Appendix A.

1



connected subnetworks which lead to significant changes in expression. A model of genetic

network interactions is presented in [14] to identify drug targets, and in [15], this method

is combined with expression profiles to identify the genetic mediators and mediating path-

ways associated with prostate cancer. In [9] a protein-based-network approach is applied to

identify markers of metastasis for breast cancer.

In our interaction network, each vertex represents a candidate risk factor and its as-

signed vertex weight describes its individual predictive power for the outcome of interest.

An edge between any pair of vertices also has an assigned edge weight corresponding to the

synergistic power of the interaction between two corresponding factors. There are different

ways to estimate synergy between two risk factors, the estimation we present is based on

regression models. In this interaction network framework, we then formulate the biomarker

identification problem as a network optimization problem to search for a Maximum Weighted

Clique (MWC) that has the maximum total weight from both constituent vertices and in-

duced edges. The identified MWC is a complete subnetwork with selected risk factors that

have the highest predictive power with the most synergistic interactions among them. There-

fore, interactive effects among risk factors are integrated together with individual effects for

the most effective biomarker identification. It has been known that complex diseases may be

triggered and affected by multiple factors (genetic as well as environmental) [2, 16, 17, 18],

which indicates a single clique may not be sufficient to fully explain the cause or develop-

ment of disease. So, a more comprehensive model should be developed and employed to

identify a set of highly synergistic cliques in a systematic way. However, such a task imposes

2



a big computational challenge, given the fact that computing a single MWC is already NP-

hard [19, 20]. Actually, to the best of our knowledge, there has been no analytical study on

selecting a set of cliques whose total weight for both vertices and edges is maximized.

To achieve the goal of identifying effective biomarkers for accurate disease prognosis and

diagnosis, we aim to address this challenge by first developing advanced mathematical mod-

els and algorithms to identify multiple cliques from our interaction network representation.

Specifically, a discrete optimization model, which seeks for a collection of non-overlapping

(disjoint) cliques with maximum total weight, and its top-K extension, which restricts the

cardinality of that collection to K, are constructed. We observe that although those formula-

tions are compact, the state-of-the-art professional solvers cannot even deal with very small

instances with tens of candidate risk factors. Therefore, a sophisticated computational strat-

egy, i.e., the branch-price-and-cut method [21], is adopted and customized to identify those

disjoint cliques simultaneously. Branch-price-and-cut is an advanced solution framework to

solve complex integer programs to optimality and can be described as an algorithm that

incorporates three different tools: branch-and-bound, column generation and cutting planes.

Branch-and-bound (B&B) allows to partition the original problem into smaller and easier

problems. The information obtained by solving some of these problems, is used to assure that

many of the remaining problems do not need to be solved as they do not contain the optimal

solution. The smaller problems are solved by column generation (CG) algorithm that is a

two-level master-subproblem computing framework [22, 23] and is suitable to solve large-scale

optimization problems. In the master problem, which is a computationally friendly linear
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program (LP), a solution is derived based on a restricted set of feasible solutions. Then, the

dual information of the LP problem is applied to populate the subproblem to generate high

quality potential solutions, which will be used to augment the feasible solution set of the

master problem. By iteratively computing the master and subproblems, a global optimal

solution of a large-scale instance can be obtained. Recently, this computational method has

been adopted in the study of predicting HIV-1 drug resistance [24] and protein fold predic-

tion [25] problems. To strengthen the LP relaxation in a master problem, cutting planes can

be generated and added. Cutting planes are valid inequalities for the integer programming

formulation that cut out non-integral optimal solutions from its LP relaxation. It leads to

achieving more useful information to be used in branch-and-bound.

In addition to the branch-price-and-cut algorithm, to further improve our solution

capability for large-scale problems with -omics data, a heuristic method based on CG, as

well as a fast greedy heuristic method are also designed to identify highly weighted cliques

from the network. These heuristic algorithms allow us to handle networks at different scales

in a reasonable time with desired quality.

A set of random networks are generated to test the performance of the algorithms.

The experimental results have shown that the algorithms are capable to achieve optimal

or near optimal solutions for various networks efficiently. We also have performed a set

of experiments on real datasets to demonstrate the significance of considering synergistic

interactions for biomarker identification as well as the effectiveness of identified biomarkers

for disease prognosis. Two real datasets are studied: Type 1 Diabetes (T1D) and breast
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cancer. Our experimental results with constructed interaction networks from both T1D and

breast cancer datasets have shown that our network-based biomarker identification methods

can effectively identify critical biomarkers for better prediction accuracy.

In chapter 2, a background of the MWCP is presented and its generalization to the

MWMCP formulation is introduced. In chapter 3, the CG reformulation and its benefits are

discussed and its performance is tested. Chapter 4 delineates the incorporation of branch-

and-bound and cutting planes to the CG, i.e., the branch-price-and-cut algorithm together

with the implementation techniques and computational results on random graphs. In chap-

ter 5, a real-life application of the MWMCP in biomarker identification is explained and

compared to the conventional methods. Finally, chapter 6 outlines the possible future work

on this research in various directions.
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CHAPTER 2: CLIQUE-BASED NETWORK OPTIMIZATION

BACKGROUND

In a weighted undirected graph G(V,E) where V = {v1, ..., vn} and E ⊆ V × V are

sets of vertices and edges respectively, a subgraph C ⊆ V is a clique if all pairs of vertices

in C are directly connected by edges in E. All vertices and edges are assigned weights

by a function w : V ∪ E → R. Let eij denote the edge between vi and vj and EC ⊆ E

denote the set of edges induced by clique C. Then the weight of clique C, denoted by

wC , is defined as wC =
∑

vi∈C w(vi) +
∑

eij∈EC
w(eij). In the Maximum Weighted Clique

Problem (MWCP) the objective is to find a clique C with maximum wC . See Figure 1

for a simple example. Note that the MWCP is a generalization of the classical Maximum

Clique Problem (MCP) in which w(vi) = 1 for all vi ∈ V and w(eij) = 0 for all eij ∈ E.

Consequently, in the MCP, wC = |C| and the objective is to find a clique C of largest size.

The MCP is a well known NP-hard problem [19]. It is shown that this problem is actually

not even approximable [26] . As a consequence, the MWCP is also NP-hard. The MCP

and MWCP have been central problems in graph theory and have been used in numerous

applications, including sociology [27, 28], computational chemistry [29], computer vision [30],

coding theory [31], fault diagnosis [32], geometric tiling [33], and especially bioinformatics [34,

35, 36]. We refer the reader to the thorough survey in [20] for more details on the tremendous

effort that has been made on devising solution algorithms for both weighted and unweighted

6



maximum clique problems over years. Furthermore, because it is computationally equivalent

to the Maximum Independent Set Problem (MISP) and the Minimum Vertex Cover Problem,

the study of this problem is very important.

2.5

0.5

0

1

0.5

0.5

1 -2

Figure 1: A solution of the Maximum Weighted Clique Problem. All nodes and edges are weighted
and wC = 2.5 + 1 + 0.5 = 4.

2.1 Problem Formulation and Computational Complexity

In this dissertation, we introduce the Maximum Weighted Multiple Clique Problem

(MWMCP) as an expansion of the MWCP. In the weighted undirected graph G(V,E), the

objective of the MWMCP is to find a collection of disjoint (mutually exclusive) cliques with

maximum total weight, i.e., to find C∗ = {C1, ..., CK} such that
∑

Ci∈C∗ wCi
is maximized

and Ci ∩ Cj = ∅ for all Ci, Cj ∈ C∗, i 6= j. A schematic example of C∗ and G is illus-

trated in Figure 2. Because this is the first formal study of the MWMCP, we determine its

computational complexity first.

Theorem 1 The Maximum Weighted Multiple Clique Problem (MWMCP) is NP-hard.

Proof. We provide a proof by reducing the Exact Cover problem, a well-known NP-complete

problem [37], to a MWMCP. Given an instance 〈V,S〉 of Exact Cover, we construct an

7



Figure 2: A solution of the Maximum Weighted Multiple Clique Problem. All the nodes and
edges are weighted in this graph.

instance 〈G′, w〉 of MWMCP in polynomial time such that there exists an exact cover S∗ ⊆ S

if and only if S∗ corresponds to an optimal solution for MWMCP in G′ with weight equal

to |V|. Given S = {S1, ..., Sm} a collection of subsets of V = {v1, ..., vn}, the exact cover

problem can be represented by a bipartite graph (See Figure 3 for an example). Vertices of

this graph consist of two groups, one representing m subsets in S and another representing

n elements in V. If an element is contained in a subset, an edge connects the corresponding

vertices in the graph. Let G = (S ∪ V, E) denote this graph. Then, an exact cover is a

selection of vertices S∗ ⊆ S such that any vertex in V is connected to exactly one element

in S∗ by an edge in E. To construct 〈G′, w〉, let G′ = (S ∪ V, E ∪ E ′) where E ′ is a set of(
n
2

)
edges connecting all pairs of vertices in V, and let w be a function assigning real-valued

weights to vertices and edges in G′. Zero weights are assigned to all elements in V and E ′

while weight of edges in E is 1 + ε and weight of vertex Sj ∈ S is −djε where dj is the degree

8



of vertex Sj for all j = 1, ...,m and ε ∈ (0, 1
n
). Note that degree of vertex Sj is the same in

both G and G′ for all j.

1

2

3

4

1

2

3

4

5

6

{1} =

{2} =

{3} =

{1, 2} =

{2, 3} =

{3, 4} =

1

2

3

4

1

2

3

4

5

6

0

0

0

0

0

0

1+

1+

1+

1+

1+

1+

1+

1+

1+

-

-

-

-2

-2

-2

0

0

0

0

Figure 3: Reduction of an exact cover problem (top) to a MWMCP (bottom).

We now show that if there exists an exact cover S∗ ⊆ S, then it corresponds to an

optimal solution for MWMCP in G′ with total weight of |V|. For any Sj ∈ S∗, let Qj be

the maximal clique that includes vertex Sj. Qj clearly includes all neighbors of Sj as they

all are directly connected. Let Q∗ be the collection of such cliques and corresponding to S∗.

Since S∗ is an exact cover, cliques in Q∗ are disjoint and therefore Q∗ is a feasible solution

to MWMCP. Denote the weight of Qj by WQj
= dj(1 + ε) − djε = dj and let WQ∗ denote

9



the total weight of Q∗. We have

WQ∗ =
∑

j:Qj∈Q∗
WQj

=
∑

j:Qj∈Q∗
dj =

∑
j:Sj∈S∗

dj = |V|.

We claim that the total weight of any feasible solution for MWMCP in G′ cannot exceed |V|

and hence Q∗ is an optimal solution. We provide the proof for this claim later on.

We now show that if the total weight of the optimal solution for MWMCP in G′ is equal

to |V|, then there exists an exact cover S∗ ⊆ S. Let Q∗ be an optimal solution for MWMCP

with WQ∗ = |V| = n and let k denote the number of vertices in V that are connected to

vertices in S with selected edges in Q∗. If k < n, we have

WQ∗ =
∑

j:Qj∈Q∗
WQj

= k(1 + ε)−
∑

j:Qj∈Q∗
djε

< k(1 + ε) < k +
k

n

≤ n.

Hence, k must be equal to n. Given Q∗, we construct a corresponding S∗ and show that it

is an exact cover. For any Qj ∈ Q∗ let Sj = Qj ∩S be its corresponding element in S∗. Note

that Sj is nonempty since k = n. Denote by lj the number of vertices in V that are selected

in Qj. Note that lj ≤ dj since k = n, also, lj ≥ 1 since vertices in S cannot be selected as

single-vertex cliques due to their negative weight. Then

10



WQ∗ = n ⇒
∑

j:Qj∈Q∗
WQj

= n

⇒
∑

j:Qj∈Q∗
[lj(1 + ε)− djε] = n

⇒ ε
∑

j:Qj∈Q∗
(lj − dj) = n−

∑
j:Qj∈Q∗

lj (2.1)

The left hand side of the equation (2.1) is nonpositive while the right hand side is nonnegative,

thus both are equal to zero. Then

∑
j:Qj∈Q∗

(lj − dj) = 0 ⇒ lj = dj ∀j : Qj ∈ Q∗

⇒ lj = dj ∀j : Sj ∈ S∗

⇒ S∗ ⊆ S.

Since each vertex in V is in at most one clique in Q∗, it can be connected to at most one

element in S∗. Also from (2.1) we have

∑
j:Qj∈Q∗

lj = n ⇒
∑

j:Sj∈S∗
lj = n.

This shows that S∗ is an exact cover. Note that if the weight of the optimal solution for

MWMCP in G′ is less than |V|, S contains no exact cover.

Lastly, we prove the claim we made earlier. We need to show that the total weight of

any feasible solution for MWMCP in G′ does not exceed |V| = n. Let Q′ be an arbitrary

feasible solution for MWMCP in G′. Let k be the number of vertices in V that are connected

to vertices in S by selected edges in Q′. Denote by WQ′ the total weight of Q′. Then

11



WQ′ =
∑

j:Qj∈Q′

[
lj(1 + ε)− djε

]
=

∑
j:Qj∈Q′

lj − ε
∑

j:Qj∈Q′
(dj − lj)

= k − ε
∑

j:Qj∈Q′
(dj − lj)

≤ k ≤ n. �

As a preprocessing step, we identify certain conditions to remove some of the vertices

from G and make the problem smaller and easier to solve. Any vertex that cannot be in the

optimal solution or only can be selected within a single-vertex clique is removed in this step.

These conditions are depicted in Theorem 2 and 3 in detail.

Theorem 2 Suppose w(vi) +
∑

j:eij∈E max{0, w(eij)} < 0 for some vi ∈ V, then vi is not in

any optimal solution of the MWMCP.

Proof. Assume vi is in the optimal solution within clique C. By substituting C by C ′ =

C \ {vi} in the solution, we can form a feasible solution with a better objective value since

we have

wC = wC′ + w(vi) +
∑

j:eij∈E

w(eij)

≤ wC′ + w(vi) +
∑

j:eij∈E

max{0, w(eij)}

< wC′ .

This contradicts with the optimality of the solution. Notice if C = {vi}, then wC′ = w∅ = 0.

�
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Theorem 3 Suppose w(vi) > 0 and w(eij) < 0 ∀eij ∈ E for some vi ∈ V, then any optimal

solution of MWMCP contains vi within a single-vertex clique.

Proof. First we show by contradiction that vi must be in any optimal solution, and second,

we proof it is selected within a single-vertex clique.

Assume vi is not in the optimal solution for MWMCP. By adding a single-vertex clique

C1 = {vi} to the solution, we form a feasible solution with a better objective value because

we have wC1 = w(vi) > 0. This contradicts with the optimality of the solution.

Now, assume vi is in the optimal solution within clique C that is not single-vertex

(|C| > 1). Let C1 = {vi} and C2 = C \{vi}. By substituting C by C1 and C2 in the solution,

we can form a feasible solution with a better objective value because:

wC = wC1 + wC2 +
∑

j:eij∈E

w(eij)

< wC1 + wC2 .

This contradicts with the optimality of the solution. �

The MWMCP can be formulated as an quadratic integer programming model in QIP.

QIP : max
∑
k

[∑
i

w(vi)Xik +
∑
i

∑
j>i

w(eij)XikXjk

]

s.t.
∑
k

Xik ≤ 1 ∀i (2.2)

Xik +Xjk ≤ 1 ∀i, j, k : j > i, eij /∈ E (2.3)

13



Xik ∈ {0, 1} ∀i, k

i = 1, ..., n , j = 1, ..., n , k = 1, ...,K

where Xik is a binary variable equal to 1 if vertex vi is selected in k-th clique and 0 otherwise

and parameter K is an upper bound for the number of selected cliques, e.g., K = n. There are

n constraints of type (2.2) to guarantee that no vertex will be selected in multiple cliques,

while there are
((

n
2

)
− |E|

)
K constraints of type (2.3) to avoid selection of non-adjacent

vertices in the same clique. Also, there are nK variables in the model. Note that QIP can

be easily linearized by introducing
(
n
2

)
K new variables and 2

(
n
2

)
K new constraints as in LIP.

LIP : max
∑
k

[∑
i

w(vi)Xik +
∑
i

∑
j>i

w(eij)Zijk

]
s.t.

∑
k

Xik ≤ 1 ∀i

Xik +Xjk ≤ 1 ∀i, j, k : j > i, eij /∈ E

Zijk ≤
1

2
(Xik +Xjk) ∀i, j, k : j > i (2.4)

Zijk ≥ Xik +Xjk − 1 ∀i, j, k : j > i (2.5)

Xik, Zijk ∈ {0, 1} ∀i, j, k

i = 1, ..., n, j = 1, ..., n, k = 1, ...,K,

where variable Zijk equals to 1 if edge eij is selected in clique k and 0 otherwise, note that

we let Zijk = XikXjk ∀i, j > i, k by adding constraints (2.4) and (2.5).
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These compact formulations are not suitable to solve the MWMCP since their linear

relaxations are weak. Furthermore, their symmetric structures make any solution algorithm

inefficient. Finally, solving an integer quadratic programming or its linearized version that

has many constraints is a daunting task. However, due to the special problem structure,

it can be decomposed and reformulated to obtain a stronger relaxation and also to reduce

symmetry. This reformulation leads to a linear problem with many variables. Nonetheless,

dynamic addition of such variables entailed by a column generation approach. In chapter 3

and 4 we explain how this algorithm is adopted and then combined with branch-and-bound

and cutting planes to solve the MWMCP efficiently.
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CHAPTER 3: A COLUMN GENERATION FORMULATION 1

In many large linear programs, it is intractable to consider all the variables explicitly

and only a subset of columns are needed to solve the problem. This approach is based on the

observation that in any optimal solution of large problems, most columns will be nonbasic

with their corresponding variables equal to zero. Therefore, a large majority of columns are

irrelevant for solving the problem. Leveraging this idea, column generation (CG) [22, 23, 38]

only generates the variables that potentially improve the objective function, i.e., finding

variables with positive reduced cost (negative in minimization problems).

Besides the advantage of solving a problem with a huge number of variables implicitly,

there are several reasons that a column generation formulation is considered. It provides

stronger linear programming (LP) relaxation than the compact formulation (LIP). Also,

a compact formulation may have symmetric structure resulting in a poor performance of

branch-and-bound. Further, CG decomposes the problem into a master problem and a

subproblem, and may provide an interpretation for the nature of the problem. This may

allow for further structural investigation, e.g., incorporation of special constraints. In the

MWMCP, we benefit from all of these reformulation properties.

In general, a column generation algorithm has two parts in implementation: a master

problem and a subproblem. The master problem is the original problem consisting of only a

1This chapter was partially published in [1]. Permission is included in Appendix A.
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subset of variables and hence is called a restricted master problem (RMP). The subproblem

on the other hand is a new problem created and solved to identify new variables that will

be added to the master problem. In the subproblem, the objective function is the reduced

cost of the new variable with respect to the current dual prices, and the constraints require

that the variable obey the naturally occurring constraints. The column generation algorithm

works as follows. The master problem is solved and dual prices are obtained for each of the

constraints. Then, this dual information is passes into the subproblem and utilized in the

objective function. The subproblem is solved and if the objective value is positive (negative

for minimization problems), an improving variable has been identified. This new variable is

added to the master problem. The master problem is re-solved and the new set of dual prices

are obtained. This process is repeated until no positive reduced cost variable is identified by

subproblem, i.e., the master problem is optimal.

The column generation algorithm was first used by Ford and Fulkerson [39] for a multi-

commodity maximum flow problem. However, its formulation of integer programs was first

proposed by Gilmore and Gomory [40, 41] on the cutting stock problem. The implementation

of column generation on integer problems, arises several technical considerations [42].

In the case of integer problems, LP relaxation is used to form the master problem.

An exact solution is obtained only if the column generation procedure terminates with an

integer solution to the master problem. However, when this solution is not integral, further

steps are necessary to be taken in order to find a feasible solution. In this study we take two

different routes to obtain an integral solution. First, we include the integrality restriction
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in the master problem and resolve it. We term this method CG-IP. Although it does not

guarantee to obtain the optimal solution, the integer solution of this method is of high quality

in general because the column generation procedure only generates most needed columns.

Second, we employ a branch-and-price algorithm [43, 44] to guarantee the optimality. The

branch-and-price algorithm is a branch-and-bound method that at each vertex of the tree,

columns may be generated and added to the master problem. In this chapter we discuss

the reformulation of the MWMCP to perform a column generation algorithm as well as the

CG-IP method. In chapter 4, we discuss how the branch-and-price algorithm can be utilized

to obtain optimal solutions for a MWMCP.

3.1 Problem Reformulation

Given a graph G = (V,E), any feasible solution for the MWMCP is a collection of

disjoint cliques in G. Let C = {C ⊆ V : C is a clique in G} be the set of all cliques in G

and for any C ∈ C, wC denotes the weight of clique C. As C is a finite set and the objective

of the MWMCP is to find a solution with maximum total weight, one can formulate the

MWMCP as the following integer (binary) programming model:

MWMCP-IP : max
∑
C∈C

wCXC

s.t.
∑

{C∈C:i∈C}

XC ≤ 1 ∀i ∈ V (3.1)

XC ∈ {0, 1} ∀C ∈ C (3.2)
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where XC is a binary variable equal to 1 if clique C is selected in the solution and 0 otherwise.

In this formulation, the objective function is to maximize the total weight of the selected

cliques and constraints (3.1) are to guarantee that selected cliques do not overlap.

As the size of C can exponentially grow with respect to the size of V, the column

generation algorithm is suitable here as it allows us to solve this model without the need of

knowing set C. Let C ⊆ C be a subset of cliques in G, substituting C in MWMCP-IP by

C, gives a restricted version of the problem. Theorem 4 shows that this restricted version is

still NP-hard.

Theorem 4 Let C be an arbitrary set of weighted cliques in graph G = (V,E), the problem

of finding a collection of disjoint cliques C∗ ⊆ C with maximum total weight is NP-hard.

Proof. We provide a proof by reducing the Exact Cover problem, a well-known NP-complete

problem [37] to this problem.

Given an instance 〈U,S〉 of Exact Cover, we construct an instance 〈C, w〉 of this problem

in polynomial time where C is the set of cliques and w is a function assigning weights to

cliques. Let C = S be a representation of every set in S with a clique in C, and w(Cj) =

|Cj| ∀Cj ∈ C. Now, it is easy to see that there exists an exact cover S∗ ⊆ S if and only if

the total weight of maximum multiple cliques in C∗ = S∗ equals to |U|. �

To perform the column generation algorithm, a master problem and a subproblem need

to be formulated properly.
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3.1.1 Master Problem

MWMCP-IP is an integer programming model and its linear relaxation is considered

by relaxing the integrality constraints (3.2) to form the master problem. Moreover, the

column generation algorithm can start with a subset C of all cliques. Finally, to show that

cliques are actually columns in this formulation, we define parameter ai,C = 1 if i ∈ C and

0 otherwise for all i ∈ V and C ∈ C. Hence, the master problem (MP) is as follows.

MP : max
∑
C∈C

wCXC

s.t.
∑
C∈C

ai,CXC ≤ 1 ∀i ∈ V

0 ≤ XC ≤ 1 ∀C ∈ C

Note that every column is the incidence vector of the corresponding clique. By solving

this linear program, we obtain the dual solution to each constraint. Such dual information

provides us an improving direction to seek (price out) a new clique, i.e., a column denoting

the vertices belonging to the clique.

To create the initial subset C, different primal heuristics can be performed. A simple

initiation is to consider all single-vertex cliques to start with, i.e., letting C = {C1, ..., Cn}

such that Ci = {vi} for all i ∈ V. This simple heuristic method has showed satisfactory

results comparing to some other heuristics we have tested. Especially, having all single-vertex

cliques present in the column pool, guarantees an important property of the model, i.e., all

inequalities are face-defining. This property is demonstrated in Theorem 5.
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Theorem 5 Let Conv(S) denote the MWMC polytope of a given graph G = (V,E). Then

for any given i = 1, ..., |V |, if {vi} ∈ C then inequality
∑

Cj∈C ai,Cj
XCj

≤ 1 induces a facet

of Conv(S).

Proof. Let S = {x ∈ B|C| :
∑|C|

j=1 ai,Cj
xj ≤ 1 ∀i = 1, ..., |V |} define the feasible space of the

restricted MWMCP-IP, where C = {C1, ..., C|C|} is the set of all columns in the model,

Cj denotes the j-th column which corresponds to variable xj and ai,Cj
= 1 if vi ∈ Cj and

0 otherwise, for i = 1, ..., |V | and j = 1, ..., |C|. Moreover, for a given i = 1, ..., |V |, let

Ri = {j : vi ∈ Cj ∀j = 1, ..., |C|} denote the set of all columns that include vi (Ri represents

the i-th row of the model), and let Ii = {vi} denote a unit column with i-th vertex only.

Also, let ek ∈ R|C| denote the unit vector with k-th element one and all others zero.

To show that dim(Conv(S)) = |C|, we construct |C|+1 affinely independent vectors as

x0 = 0, xk = ek for k = 1, ..., |C|. Now, for any given i = 1, ..., |V |, let Fi = {x ∈ Conv(S) :∑
j∈Ri

xj = 1}. We show if Ii ∈ C, we can construct |C| affinely independent vectors in Fi

and therefore Fi is a facet of Conv(S). Without loss of generality, assume Ci = Ii (then

Ii ∈ C is equivalent to i ∈ Ri). For every column Ck, k = 1, ..., |C|, let xk = ek if vi ∈ Ck and

xk = ek + ei otherwise. Except xi, all these vectors have a different element equal to one. It

follows that if
∑

k λkx
k = 0, then λk = 0 ∀k. Therefore x1, ..., x|C| are affinely independent.

Every xk is a solution consisting of either one or two columns. This solution can be infeasible

only if two intersecting columns Ci and Ck are selected. It is clearly not possible since if

vi /∈ Ck then Ci ∩ Ck = {vi} ∩ Ck = ∅. Hence xk ∈ Conv(S) for all k. Similarly, every xk

satisfies the inequality in equality form since exactly one of k or i is in Ri. �
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This is important because it shows that the problem formulation is tight and provides

good bounds. Also, the structure of columns may not be altered since no lifting procedure

is necessary to tighten the constraints.

3.1.2 Subproblem

In the subproblem (also called the pricing problem) we seek for a column (clique) with

a positive reduced cost to enter the basis. Ideally, we want to find the most positive one,

however, it is not necessary. We need to solve a MWCP that can be formulated as QIP with

K = 1 (constraints (2.2) become redundant), where vertex weights are penalized by the dual

values from the master problem. Specifically, let πi denote the dual value corresponding to

the i-th constraint in MP. The weight of vi in the subproblem is updated as w(vi)−πi from

the original vertex weight, see Figure 4 for an illustration. Then, in this updated graph, we

solve the subproblem and identify clique C ′. If wC′ is positive, we expand C to C ∪ {C ′},

i.e., include one more column in MP. If there is no clique with a positive weight, the master

problem is solved to optimality and we stop the procedure.

Note that finding the optimal column is NP-hard as a MWCP needs to be solved.

Considering that any column with a positive reduced cost can enter the basis, we use a

two-phase approach. We call a quick approximation algorithm to find a clique (column)

with a positive weight. In case this algorithm fails to find such a clique, we call an exact

algorithm to either find a positive-weight clique or prove optimality. Let us also remark that

adding non-optimal columns to MP may result in an increase in the number of iterations in

the column generation. Therefor, there is a trade-off between the subproblem solution time
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and the number of times it is solved. Finally, it is worthwhile to consider adding more than

one column to MP at each iteration. This may help to reduce the number of iterations but

does increase the size of MP.
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Figure 4: Illustration of the subproblem in CG in three iterations. Each time, the dual values
(represented in vectors) are updated by solving the master problem and selected cliques are
added to the master problem. We stop when there is no clique with a positive total weight.

3.1.2.1 Exact Algorithm for MWCP

The generalized case of the MWCP, in which both vertices and edges could have un-

restricted real-valued weights, has not received much attention in the existing literature.

Thus, we first develop an exact algorithm [11] for this general case. It can be considered as

an extension of the algorithm in [45] for unweighted cases, which is also modified to solve

vertex-weighted cases [46, 47]. Our algorithm adopts a branch-and-bound framework to ob-
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tain the exact solution. It maintains three sets: S, which denotes the current forming clique;

U , which is the working set and stores the prospective members to S; and P , which stores

the updated weights of vertices in S. Initially and at the root vertex of the branch-and-

bound tree (level 0), S0 = ∅, U0 = V and P0 = {w(vj)|vj ∈ U0}. A branch at level d + 1 is

created by selecting a vertex vnew from Ud. This new member is added to the forming clique

Sd+1 and removed from the previous working set. All vertices in Ud that are adjacent to

vnew will form Ud+1 and vertex weights are updated by shifting the respective weights of the

edges connecting these vertices to vnew. Equivalently, Ud = Ud \ {vnew}, Sd+1 = Sd ∪ {vnew},

Ud+1 = Ud ∩ N(vnew) and Pd+1 = {w(vj) +
∑

vk∈Sd+1
w(ejk)|vj ∈ Ud+1} are updated, where

N(vnew) is the set of all neighbors of vnew. The algorithm adopts a depth-first search for

branch-and-bound: it goes in depth of the search tree first; and whenever Ud = ∅ it steps

back to level d−1 to branch again. This procedure keeps track of the updated total weight of

the forming clique while forming all possible cliques recursively. Eventually, the clique with

the maximum weight is obtained when U0 = ∅, i.e., the search tree is traversed completely.

Note that the updated vertex weights in P are used for all weight calculations.

To enhance the search process, we embed a pruning strategy during the depth-first

branch-and-bound. Specifically, assuming that we are in level d, before expanding the form-

ing clique Sd, we calculate an upper bound, for the weight of the best clique in Ud. If this

upper bound together with the weight of the forming clique wSd
is lower than the weight of

the current best clique, we do not need to explore Ud, thus, the current branch is pruned and

the algorithm directly steps back to level d− 1. To obtain strong bounds on updated weight
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estimation for fast pruning, we adopt a quick heuristic coloring technique [48] which assigns

distinct colors to any two adjacent vertices. Given that all vertices in a clique will have

all different colors, we can obtain an upper bound for the weight of the maximum clique

in a working set Ud, by adding the maximum vertex weights in each color class with the

summation of all edge weights induced by Ud. We further have adopted another strategy

to improve efficiency: we have employed an ordered set of vertices V , given that the vertex

ordering may only affect the efficiency of the algorithm due to the induced branching order

but not the correctness of the solution. In our implementation, we order vertices increasingly

by their degrees for more efficient pruning, because intuitively fewer branches on lower levels

of the search tree may help to prune higher degree vertices in higher levels. Experimental

observations have confirmed the effectiveness of this ordering strategy.

3.2 Top-K-Vertex Model

It is common nowadays that we collect high-dimensional measurements by including

all candidate risk factors that may contribute to disease development, especially due to the

advancement of high-throughput-omic profiling technologies [49]. By analyzing these high-

dimensional data, we hope to identify critical risk factors as biomarkers to better understand

the disease of interest. It is often the case that only a limited number of measured variables

are associated with disease outcome. Motivated by identifying a small number of biomarkers

that are most effective, we consider a variety of MWMCP-IP model, i.e., the top-K model.

It finds a collection of cliques with maximum total weight such that they contain up to

K vertices. Towards this direction, the top-K extension is modeled by adding a knapsack
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constraint:

∑
C∈C

|C| XC ≤ K

to MWMCP-IP. Parameter K can be set based on the percentage of vertices in G that we

want to include for prediction. For example, if we take 25% of vertices in G, K = d0.25 ne.

3.3 Heuristic Sequential Method

In case of very large-scale problems with more than tens of thousands of vertices, we

observe that it may be challenging to solve MWMCP-IP or its top-K extension by our

column generation method in a reasonable time. Clearly, the computational complexity of

this problem necessitates the development of a faster method to obtain solutions with high

quality within a shorter time frame. Hence, we develop a fast greedy heuristic method to

handle such problems. We mention that this heuristic procedure can also be applied to solve

the top-K-vertex variant with minor modifications.

In the greedy method, we sequentially solve the MWCP in G to find a single maximum

weighted clique C, update G by removing the selected clique from G, and repeat those

operations until there exists no clique with a positive weight. Obviously, the collection of

obtained cliques is a feasible solution to MWMCP-IP as those cliques are disjoint. To

further improve the solution quality, we design and implement a perturbation procedure

that can avoid removing a clique that may hurt other potentially highly-weighted cliques.

Specifically, before removing C from G, we check whether there exists a vertex vi ∈ C that

could be removed from C to form a separate clique C ′ (consisting of vi only, or vi with one of
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its neighbors outside C) such that the total weight of the resulting two cliques (C \ {vi} and

C ′) is greater than the weight of C. If such a vertex exists, we perturb C by removing vi.

The idea of perturbation is demonstrated in Figure 5 where all vertex weights are assumed

to be zero. The solution to the MWCP for the network given in Figure 5, is the triangle

in the middle with a total weight of 2.1. If we remove this clique, there would be no clique

with a positive weight in the remaining network. Hence, this triangle clique would be a

solution to MWMCP based on the greedy sequential procedure while it is not optimal as

there are three pairwise cliques with a greater total weight of 6. Now with perturbation,

we can perturb any vertex in the triangle clique C by removing it from C, forming another

clique with weight of 2 by connecting it to its adjacent vertex and obtaining two cliques with

2.7 as their total weight, greater than wC = 2.1. By repeating those steps, we will have

three cliques as shown in Figure 5 (right), which actually consists the optimal solution for

the MWMCP in the given network.

2

2 2

0.7 0.7

0.7

2

2 2

0.7 0.7

0.7

Figure 5: The solution to MWMCP without perturbation (left) may vary dramatically from
the solution with perturbation (right).

3.4 Computational Results on Random Graphs

The performance of our CG-IP and greedy heuristic methods is evaluated on both

Erdős-Rényi (ER) random graphs [50] and constructed interaction networks based on data
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collected from the DPT-1 study for T1D as well as the breast cancer microarray dataset. The

results for real-world data sets are presented in chapter 5. The algorithms are implemented

in C++ on a standard PC with a 2.2 GHz CPU and 2 GB of RAM. The state-of-the-art

integer programming solver IBM ILOG CPLEX 12.1 [51, 52] is adopted to solve MP within

the CG method, as well as the compact integer programming formulation (LIP). Results

of the latter can be used to benchmark the developed CG-IP and the heuristic sequential

methods.

To generate an ER random network with a given number of edges (or equivalently the

density), a pair of disjoint vertices are randomly chosen and connected by adding an edge,

this process is repeated until we get the desired number of edges. Vertex and edge weights

are also assigned randomly. Vertex weights are random numbers between −1 and 1 following

a uniform distribution, while edge weights are uniformly distributed between −0.5 and 0.5.

For the top-K extensions, we set K such that the solution involves 25% of the vertices, i.e.,

K = d0.25 ne.

Experimental results on ER networks are presented in Table 1. It is obvious that solving

the compact integer programming formulation by CPLEX is not practically feasible as it is

extremely hard to solve instances with only tens of vertices. On the contrary, the CG-IP

method can solve instances up to a thousand vertices in a reasonable time, which drastically

improves our solution capability to larger instances. Indeed, for instances that their optimal

solutions can be computed by CPLEX, CG-IP solves them to optimality with negligible

computational time. For those instances that CPLEX fails to derive their optimal solutions
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within two hours, the CG-IP method always generates significantly better solutions. Hence,

this observation confirms the capability of CG-IP method to obtain optimal or near optimal

solutions. Actually, the experiments on random networks have shown empirically that for

CG-IP method, the gap between the integral solution obtained after adding the integrality

constraint, and the optimal integral solution is no more than 10%.

We further note for instances with thousands of vertices, that CG-IP method may

take a long time to compute. Nevertheless, the heuristic sequential method is much less

sensitive to the size of instances. It can quickly generate high-quality solutions for large-

scale networks. In fact, it generally generates solutions of high quality and sometimes the

difference is marginal, compared to those derived by CG-IP method. Hence, we believe

that these two algorithms allow us to handle networks at different scales in a reasonable

time with desired quality.

Finally, for the top-K model, both CG-IP and the sequential methods can complete

within a shorter time. One explanation is that the cardinality constraint made the problems

easier to solve by cutting out a significant amount of feasible solutions.

29



Table 1: Experimental results on random graphs

CG-IP CG-IP top-K Seq Seq top-K CPLEX-IP

n % |C| obj t obj t obj t obj t obj t gap%

20 50 27 4.65 0.02 3.6 0.01 3.97 0.01 2.99 0.01 4.65 11.3 0
20 80 35 13.02 0.02 6.6 0.02 12.29 0.01 6.3 0.01 13.02 67.3 0
50 5 58 13.73 0.03 9.65 0.02 13.51 0.01 8.62 0.01 13.73 31.1 0
50 20 75 14.15 0.03 8.9 0.02 13.48 0.01 8.12 0.01 14.15 7200 12.8
50 30 91 22.61 0.05 13.22 0.04 21.12 0.01 11.26 0.01 22.03 7200 42.3
50 40 86 17.86 0.06 12.29 0.05 16.78 0.01 10.2 0.01 11.58 7200 193.3
50 60 129 29.81 0.34 15.16 0.26 26.92 0.01 14.33 0.01 19.59 7200 261.4
50 80 162 36.11 5.43 19.53 5.37 32.2 0.03 17.8 0.02 17.24 7200 453.0
100 40 295 173.1 7.88 64.47 1.42 169.6 0.03 65.36 0.01 - - -
200 40 525 120.0 66.8 56.75 44.8 108.4 0.59 51.97 0.37 - - -
500 25 1261 270.5 578.2 132.2 563.2 247.2 7.76 125.4 4.8 - - -
1000 10 2873 1535.8 1385.9 554.2 1026.1 1520.7 11.8 523.6 8.15 - - -
2000 5 5730 2355.0 4674.1 888.2 4630.1 2213.3 57.0 849.3 33.4 - - -

n—graph size;

%—density in percent;

|C|—number of generated columns;

obj—total weight of selected cliques;

t—computing time in seconds;

gap%—relative gap between the best integer solution and the best upper bound in percent;

CG-IP—column generation algorithm (CG-IP);

Seq— heuristic sequential algorithm;

CPLEX-IP— compact formulation (LIP) solved by solver;
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CHAPTER 4: CUTTING PLANES AND BRANCHING METHODS

In this chapter, we describe our exact solution algorithm to solve a MWMCP to opti-

mality. As mentioned earlier, in order to obtain the exact solution, the column generation

can be combined with a branch-and-bound algorithm to search the feasible region thor-

oughly. This combination is called the branch-and-price algorithm [43, 44]. Yet to improve

the performance of this method and the efficiency of the branch-and-bound procedure, one

may tighten the linear programming formulation by introducing cutting planes [53] to the

model. Namely, a branch-price-and-cut algorithm can be developed. We first explain how

to generate efficient cutting planes, and then, we delineate how a branch-and-price-and-cut

algorithm can be tailored for the MWMCP.

4.1 Cutting Planes

When the column generation algorithm terminates, the optimal solution to the MP is

obtained. In case of integer programs, if this solution is fractional (non-integral and hence

infeasible), it can be used as an upper bound (UB) for the optimal objective value. This

bound is important in the implementation of the branch-and-price, as it helps to prune the

branches of the search tree more effectively. In other words, it helps to decrease the size of

the tree to explore by terminating the branches with the UBs lower then any known lower

bound. Hence, the lower the obtained UB is, the more branches we can terminate. With

regard to achieving tighter bounds, cutting planes can be added to the MP. A cutting plane
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(a cut) is a valid inequality for the integer formulation that is designated to cut off (make

infeasible) the current fractional optimal solution from the feasible region, while remaining

all the feasible integral solutions in the model. After adding a cutting plane, a new solution

for this revised problem can be obtained. It may still be fractional, however, it provides a

tighter upper bound. The idea of cutting planes to solve integer programming and mixed-

integer programming problems was first proposed by Gomory [54] in 1950s. Despite their

mathematical elegance, cutting planes were believed to be impractical and ineffective until

1990s when Balas et al. [55] showed them to be very effective if combined with branch-and-

bound.

In order to generate cutting planes, special problems (often called separation problems)

might be formulated and solved. As this separation step increases the solution time, we need

to ensure that it will be compensated by a significant reduction in the tree search time. There

are different general and special types of cutting planes that can be generated for a given

integer programming problem. Namely, Gomory cuts, cover inequalities, clique inequalities,

odd hole inequalities, etc. can be formulated (see [53, 56] for surveys).

As the MWMCP is a maximization problem containing constraints with only 0-1 coef-

ficients and its right-hand-side is 1, it is in the form of a weighted set packing problem [53].

Any set packing problem has an interesting graph theoretic interpretation. Let H(VH , EH)

be a graph where each vertex represents a column in C, i.e., a clique in G. Two vertices

are connected by an edge only if their corresponding columns have a common non-zero el-

ement in some row (equivalently, the corresponding cliques overlap). More formally, let
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VH = {c1, ..., cK} where vertex cj represents Cj ∈ C for j = 1, ..., K and K = |C|, and

EV = {eij : Ci ∩ Cj 6= ∅ ∀Ci, Cj ∈ C}. The weights are also mapped onto graph H by

assigning clique weights to vertices while edge weights are zero, w(cj) = wCj
∀cj ∈ VH ,

w(eij) = 0 ∀eij ∈ EH . Graph H is called a (column) intersection graph. Then, observe

that any integral feasible solution to MP, is an independent set in H. Because of this

polynomial-time one-to-one reduction between these problems, by studying the independent

set problem in H, valid inequalities can be generated for MP. Here we focus on the most

common and suitable families of cutting planes for problems with a 0-1 coefficient matrix:

clique inequalities and odd hole inequalities.

4.1.1 Clique Inequalities

A clique inequality is formed with a group of binary variables that at most one of which

can be non-zero in any feasible solution. Note that any clique in graph H defines a valid

clique inequality for MP. Fulkerson and Padberg [57, 58] showed that if such a clique is

maximal, the corresponding inequality is facet-defining.

Theorem 6 (Fulkerson and Padberg) Let Q ⊆ VH be a clique in graph H. The inequality∑
cj∈QXCj

≤ 1 defines a facet for MP if and only if Q is maximal in H.

Proof. See [57] and [58].

Corollary 1 Let Q∗ ⊆ VH be the maximum clique in graph H. The inequality
∑

cj∈Q∗ XCj
≤

1 defines a facet for MP if and only if Q∗ is maximal in H.

Let X∗ = (X∗C1
, ..., X∗CK

) denote the non-integral optimal solution to MP. To cut out

this solution by introducing a valid inequality, new weights are properly assigned to graph
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H. Let new vertex weights be the optimal solution for the corresponding variable, i.e.,

let w(cj) = X∗Cj
for all cj ∈ VH . Then, a clique in H with a total weight greater than 1

represents a valid inequality that is violated by X∗. The most violated clique inequality is

obtained by solving a maximum weighted clique problem in H. As this problem is NP-hard,

one may use approximation algorithms here. If the weight of the maximum clique is less

than or equal to 1, no clique inequality is violated by X∗ (it satisfies all clique inequalities).

Because the column pool C grows within the column generation algorithm, the intersection

graph H grows as well. To ensure that clique inequalities remain facet-defining, we need to

ensure they are maximal in H. Therefore, whenever a new column is generated and added

to C, we try to lift all the clique inequalities by adding the new variable corresponding to the

new column. Moreover, we utilize the dual information associated with these inequalities to

adjust the weights in the subproblem as follows. Let πi denote the dual value corresponding

to the i-th original constraint in MP and µ denote the dual value corresponding to a clique

inequality
∑

cj∈QXCj
≤ 1. In the subproblem, we adjust the vertex weight of vertices as

w(vi)− πi − µ for vi ∈ Cj if cj ∈ Q.

4.1.2 Other Inequalities

We have also tested odd hole inequalities and cover inequalities for MP. An odd hole

S in H is an odd cycle that has no chords. Odd holes inequalities are in form:

∑
j∈S

Xj ≤
|S| − 1

2
,
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and are facet-defining and can be generated in polynomial time. However, their improvement

on MP solution was limited and we did not use them in our algorithm. Cover inequalities

are not directly applicable to MP since all original inequalities are generalized upper bound

(GUB) constraints. Therefore they dominate any cover inequality. However, to find a cover

inequality, a temporary constraint can be created by adding up some of the constraints in

the model. We took the corresponding dual value for each constraint as its weight to create

a weighted summation of all the original constraints. Then, we solve a separation problem

to find the most violated cover inequality based on this temporary constraint. A cover

inequality is in form:

∑
j∈S

Xj ≤ |S| − 1,

where S is a cover for the temporary constraint. This method has showed negligible improve-

ment in our experiments and hence is not used for MWMCP in this study. One potential

reason these classes of inequalities do not perform well, could be the already tight formula-

tion of MP where all original constraints are in the form of clique inequalities and define

facets for its polytope.

4.2 Branch-Price-and-Cut

The idea of the branch-and-bound algorithm for finding the optimal solution of discrete

problems was first proposed in 1960 [59, 60]. This algorithm systematically enumerates

all possible solutions (typically within a search tree), while discarding a large subset of

useless solutions. Two procedures are required for this method: branching and bounding. In
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the branching procedure, the problem is split into several smaller problems under different

branches of the tree. These smaller problems are called children of the current (parent)

node and typically are easier to solve. The tree size grows by adding new branches. In the

bounding procedure, on the other hand, we try to prune the unfruitful branches of the tree.

In general, there are three criteria under which the current node (and thereafter branch) will

be pruned:

1. pruning by bound occurs when the solution at the current node is dominated by the best

known feasible solution. The current node can be safely discarded as it does not have a

better solution than the best known one. In a maximization problem, this is true when

the upper bound of the current node is less than the global lower bound.

2. pruning by infeasibility occurs when the problem at the current node is not feasible. This

is possible as child nodes are often more restricted than their parent nodes.

3. pruning by optimality occurs when the solution at the current node is feasible and can

be used to update the best known feasible solution.

If the current node cannot be pruned, branching is performed and the search algorithm pro-

ceeds to another node in the tree. This procedure repeats until the whole tree is traversed

and an optimal solution is obtained. To design an effective branch-price-and-cut framework

that integrates column generation and cutting plane methods with a branch-and-bound algo-

rithm, the structure of the search tree and the way it is traversed, are of crucial importance.

In the following sections we describe how this framework is designed to solve the MWMCP

to optimality.
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4.2.1 Branching Criteria

On a given node of the tree, there are different ways to separate the feasible search

space into smaller regions and create child nodes. However, it is known that the branch-and-

bound algorithm is more likely to be effective if the feasible region is partitioned evenly [61].

In other words, an unbalanced tree is not desirable [62]. Moreover, since children problems

are created by adding new restrictions, it is imperative to ensure that they are not difficult

to solve.

For the MWMCP, due to the fact that there are many columns in MP, direct branching

on columns may not be effective as it exhaustively enumerates branches that result in an

unbalanced tree. Instead, we need an intelligent and special approach toward branching

to identify more important feasible regions of the problem. As the number of vertices is

drastically fewer than columns, by branching based on vertices, i.e., fixing them in or out of

the optimal solution, an effective branching procedure can be designed. Moreover, observe

that cliques can be naturally grouped by their common vertices. This is of our special interest

because at most one clique from each group can be selected in the optimal solution. This

provides a strong branching scheme for the problem.

To identify a good vertex for branching, we first need to define a measure to rank

vertices. Several measures are defined and tested and the following measure with the best

performance is chosen. Let X∗ = (X∗C1
, ..., X∗CK

) be the current optimal solution to MP in a

given node of the tree. Assume this branch is not pruned and branching needs to take place

(obviously, X∗ is not integral).
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Let Fi = {Cj ∈ C : vi ∈ Cj ∀j = 1, ..., K} be the set of columns in C that include

vi, and F′i = {Cj ∈ Fi : 0 < X∗Cj
< 1 ∀j = 1, ..., K} be a subset of such columns that their

corresponding variables are fractional. Clearly, we have F′i ⊆ Fi ⊆ C for all i = 1, ..., n. Now

we take vertex i∗ as the next vertex for branching, where:

i∗ = arg min
i

{∑
Cj∈F′i

∣∣∣X∗Cj
− 1

|F′i|

∣∣∣}. (4.1)

This intuitive procedure identifies the vertex that is most equally selected in multiple cliques.

Now, note that there are only three possibilities for this specific vertex:

• (Type 1) vi∗ is not in the optimal solution.

• (Type 2) vi∗ is in the optimal solution but within a column (clique) that is not yet

generated.

• (Type 3) vi∗ is in the optimal solution within a column (clique) that is already generated,

and therefore is in Fi.

Based on this observation, three types of branches can be created. Theorem 7 implies that

the type 1 branch is not always necessary.

Theorem 7 Suppose w(vi) > 0 for some vi ∈ V , then any optimal solution of MWMCP

contains vi.

Proof. Assume that the optimal solution does not contain vi. By selecting vi within a

single-vertex clique and adding it to the solution, we can form a better feasible solution and

it contradict with the optimality of the solution. �
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Consequently, when w(vi∗) ≤ 0, a single type 1 child is created by removing vi∗ from

G and changing the right-hand side of the constraint associated with vi∗ to zero. These two

adjustments make it impossible to select vertex vi∗ in the optimal solution under this branch.

For types 2 and 3, we have considered two general branching rules: non-binary branching

and binary branching that are described and compared in detail in the following sections.

4.2.1.1 Non-Binary Branching

In the non-binary branching method, we first create the type 2 branch. We do not

allow to select vertex vi∗ within already-generated cliques by fixing all variables associated

with Fi∗ to zero. Therefore, we create a single type 2 child by adding constraint (4.2) to the

current model.

∑
Cj∈Fi∗

XCj
≤ 0 (4.2)

For type three branches, we create a child node for every clique in Fi∗ to fix that clique

selected in the optimal solution. As a result, |Fi∗| child nodes are created. To fix clique

Cj ∈ Fi∗ , constraint (4.3) can be added to the model.

XCj
≥ 1 (4.3)

However, rather than explicitly adding such constraints to the model that may increase the

problem complexity, clique Cj is removed from G and its weight wCj
is fixed in the objective

value. Also, all other cliques that overlap with Cj are eliminated because selected cliques
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cannot overlap in any optimal solution. In general, this elimination makes a significant

change in the model and is done by changing the right-hand side of all the constraints asso-

ciated with vertices in Cj to zero. This non-binary branching method is easy to implement,

however, it may increase the tree size significantly. See Figure 6 for an illustration of this

method.

. . .

Type 1 Type 2 Type 3

Figure 6: Illustration of the non-binary branching procedure

4.2.1.2 Binary Branching

Most commonly, on a given node of a branch-and-bound tree, the problem is divided

into two subproblems. This two-way approach was first proposed in [63] and we term it

binary branching as it results in a binary tree. To construct a balanced tree, we need to split

Fi∗ into two partitions as evenly as possible. We first rank cliques in Fi∗ decreasingly based

on the value of their corresponding elements in X∗. Then we create set F1 by taking every

other clique in this ranking. Also, we let F2 = Fi∗ \ F1. Clearly F1 and F2 form a partition

for Fi∗ . Note that the sizes of F1 and F2 are as close as possible, i.e.,
∣∣|F1| − |F2|

∣∣ ≤ 1.

Also, given that vi∗ is the most equally selected vertex, this procedure provides a meaningful
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an effective partitioning of the cliques. Consequently, we create two child nodes by adding

constraints (4.4) to one and constraint (4.5) to the other.

∑
Cj∈F1

XCj
≤ 0 (4.4)

∑
Cj∈F1

XCj
≥ 1 (4.5)

Observe that in the child node with constraint (4.5), vi∗ can be removed from G. Also, notice

that constraint (4.4) contains the type 2 child where none of the existing columns in Fi∗ are

in the optimal solution. This branching method is shown in Figure 7.

Figure 7: Illustration of the binary branching procedure

Constraining a group of variables in a branch is known as constraint branching. In

contrast to non-binary branching, in this method, the tree grows more slowly, however, the

added constraints are less restricting. Note that one can develop a hybrid branching rule,

that is to use both binary and non-binary rules to split the search space. Figure 8 depicts

such a hybrid branching rule. A decision needs to be made at any node of the tree for
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choosing the branching rule. The following sections provide details on the implementation,

results, and discussions of the branch-price-and-cut algorithm.

or

. . .

Binary 

Branching

Select

Non-Binary 

Branching

Find

Type 1 Type 2 Type 3

Find

if

Figure 8: Illustration of a hybrid branching procedure

4.2.2 Implementation

On the root node of the tree, we start with MP, the linear relaxation of the restricted

model. The column generation is performed and MP is solved to optimality. If the solution is

not integral, cutting planes are generated and added to the model to reduce the global upper

bound (UB). If the solution is still non-integral, the branching procedure is started and some
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child nodes are created. The current (root) node is considered visited and an unvisited node

of the tree is chosen. At the chosen node, the corresponding MP with additional restrictions

is solved and the UB is updated. Then the bounding procedure is performed to prune the

current branch if possible. If bounding fails, the branching procedure is performed. The

current node is marked as visited and the search process continues by choosing an unvisited

node. This process continues to explore the tree until all nodes are visited and therefore an

optimal solution is obtained. Figure 9 outlines the algorithm in a flowchart. The details for

each step of this algorithm are described as follows.

Start

Select Node

Solve MP

Solve Sub-problem
Add Column to MP

Lift Cuts (if  any)

Add Cuts

Branch

End

new 
Column?

tree 
explored? pruned?

add
Cuts ?

Yes

Yes

Yes

Yes

Figure 9: Outline of the Branch-price-and-cut algorithm
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4.2.2.1 Lower and Upper Bounds

Initially, a trivial UB is used (e.g.
∑

i max{0, w(vi)}+
∑

i

∑
j>i max{0, w(eij)}), how-

ever, it is updated as the maximum of the upper bounds of all unvisited nodes in the tree.

Note that the upper bound of an unvisited node is its parent’s optimal value. The UB is

updated when a branch is pruned or added to the tree. The global lower bound (LB) on the

other hand, is the best feasible solution found so far. Considering that a good LB is critical

in any branch-and-bound algorithm, feasible solutions are frequently found within the tree.

A fast heuristic algorithm based on [64] is developed to quickly solve the MWISP in H.

As mentioned earlier, this is equivalent to solving the restricted MWMCP-IP. Moreover,

when this heuristic algorithm fails to obtain good feasible solutions, CPLEX solver is used to

solve the restricted MWMCP-IP while the time limit is set to 20 seconds. The search for

a feasible solution is performed only when the local upper bound (optimal value for current

MP) is greater than a certain value. Intuitively, a node with greater local upper bound is

more likely to contain a good feasible solution and our experiments have approved it. This

value is set to LB + 0.8(UB−LB). The LB is updated if the new feasible solution provides a

better lower bound. The new stronger LB is used to possibly prune the unpruned branches

of the tree.

4.2.2.2 Priority of Nodes to Branch

The goal here, is to minimize the number of evaluated nodes in the tree. Hence, a

best-node first strategy is taken to traverse the tree. That is to choose an unvisited node

with the maximum local upper bound to be visited next. Further, because this maximum
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value is actually the UB, by visiting this node, the UB can be reduced. In case of multiple

nodes with the same priority, the deepest node is selected.

4.2.2.3 Uniqueness of Columns

At every node of the tree, the column generation algorithm is carried out on a different

MP. This leads to generating identical columns in different nodes. However, to avoid this

redundancy in computation, we store all generated columns in a pool. Then, before solving

the subproblem, this column pool is searched for a column with maximum reduced cost. If

the reduced cost is positive, the column is introduced to MP, otherwise, the subproblem

is solved. The implementation of the column pool is essential for an efficient algorithm to

avoid regenerating the existing columns.

4.2.2.4 Merging Constraints

As we go deeper in the tree, more constraints are added to the problem and it becomes

bigger and possibly more complicated. However, it is easy to see that constraints of type (4.2)

can be merged together without changing the structure of the model. This is true for

constraints of type (4.4) as well. Similarly, for constraints of type (4.5), Theorem 8 implies

that they can also be added together without imposing any relaxation. As a result, at any

node of the tree, at most two additional constraints are needed in the MP, one in ≤ 0 form

and one in ≥ 1 form. However, instead of adding the ≤ 0 inequality, the variables in this

inequality are dropped from the model. Note that adding the single constraint (≥ 1) to the

model does not make it more difficult to solve.

Theorem 8 Let FA = {x ∈ Conv(S) :
∑

j∈Sk
aikjxj ≥ 1 ∀k = 1, ..., K} be a subspace of

Conv(S) restricted by K inequalities and FB = {x ∈ Conv(S) :
∑K

k=1

∑
j∈Sk

aikjxj ≥ K}
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be a subspace of Conv(S) restricted by a single inequality which is the summation of all K

inequalities in FA where Sk ⊆ {1, ..., |C|} and ik ∈ {1, ..., |V |} for all k = 1, ..., K, then we

have FA = FB.

Proof. Clearly FA ⊆ FB since if x satisfies all K inequalities in FA then it satisfies the single

inequality in FB as well. We need to show FB ⊆ FA. To prove by contradiction, assume

FB * FA and there exists x ∈ FB such that x /∈ FA. Then:

x /∈ FA ⇒ ∃ k0 ∈ {1, ..., K} :
∑
j∈Sk0

aik0jxj < 1 (4.6)

x ∈ FB ⇒ x ∈ Conv(S) ⇒
|C|∑
j=1

aikjxj ≤ 1 ∀k ⇒
∑
j∈Sk

aikjxj ≤ 1 ∀k (4.7)

(4.6), (4.7) ⇒
K∑
k=1

∑
j∈Sk

aikjxj < K ⇒ x /∈ FB

Thus, FB ⊆ FA and therefore FA = FB. �

4.2.2.5 Solving Master Problem and Subproblem

In the branch-price-and-cut algorithm, the master problem needs to be solved numerous

times. It is therefore necessary to have a simple formulation in order to solve the model

quickly. In the case of MWMCP, the (MP) is fairly easy to solve. The sophisticated

commercial solver, IBM ILOG CPLEX is used for this purpose. It is important specially

due to its built-in reoptimization algorithm, that starts from the optimal base to reoptimize

the model after adding a new column. This feature significantly reduces the total number

of iterations of the simplex algorithm for individual MPs [62].
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A great advantage of our proposed branching scheme, is that the structure of the

subproblem remains intact. It is to solve the MWCP in a given graph. At the root node of

the tree, it is graph G, and as we go in depth, more of its vertices are eliminated. It makes

the subproblem easier to solve. To solve the subproblem, we use the algorithm described in

section 3.1.2. Note that by solving the subproblem, we only introduce one column (usually

the optimal column) to the MP, rather than multiple columns.

4.3 Computational Results on Random Graphs

Our exact branch-price-and-cut algorithm is evaluated on variants of randomly gener-

ated graphs. The experiments presented in this chapter have been performed on a work-

station with two 3.46 GHz processors and 24GB of memory. ER random graphs with four

different sizes and densities are considered. Also, both non-binary and binary branching

rules are tested on every graph. For each size and density, 10 graphs are randomly generated

and their average results are presented in Table 2. We also have limited the solution time to

2 hours. The results demonstrate that our algorithm is capable to solve instances of reason-

able sizes and densities. Note that none of the branching rules is consistently better than

the other. Evidently, the non-binary branching rule performs better in dense graphs while

the binary branching is more effective in sparse ones. It also became evident that the linear

relaxation of the model is quite tight and provides very good upper bounds. On the other

hand, note that the lower bounds we obtained for the problems are of high quality as well.

It is interesting to notice that even with such small gaps between the UB and LB, many

nodes in the search tree is created and evaluated to obtain the optimal solution. This obser-
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vation verifies that the MWMCP is a very difficult problem to tackle. Finally, the number

of improving columns found in the column pool shows how valuable it is, considering that

the average computation time to find a column in the pool is much shorter than of solving

the subproblem.
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Table 2: Experimental results on random graphs

n % Rule t UB obj LB #Cuts #Cols #Cols Reused #Nodes gap%

100 50 B 540.8 102.579 101.394 100.216 124.5 1313.4 27604.5 3136.6 0
100 50 N 233.6 102.579 101.394 100.259 124.3 1604.6 31464.0 2070.5 0
200 25 B 328.4 168.405 167.51 166.672 33.2 1095.5 10752.4 1962.8 0
200 25 N 332.5 168.405 167.51 166.672 33.2 1433.3 30973.1 3690.0 0
500 10 B 1936.4 357.854 357.18 356.407 10.1 1946.0 21210.5 3877.7 0
500 10 N 2812.5 357.854 357.18 356.407 10.1 2428.4 80388.8 11032.4 0.0005
1000 5 B 3470.6 658.096 657.747 657.316 4.8 3066.3 18812.8 2869.1 0.0022
1000 5 N 3889.1 658.096 657.734 657.316 4.8 3822.2 32915.2 4566.0 0.0092

n—graph size;

%—density in percent;

Rule—branching rule (B:binary, N:non-binary);

t— computing time in seconds;

UB—initial upper bound;

obj—optimal total weight of selected cliques;

LB—initial lower bound;

#Cuts—number of cuts in MP;

#Cols—number of all columns generated;

#Cols Reused—number of columns added from column pool;

#Nodes—number of all nodes in tree;

gap%—relative gap between LB and UB in percent;



CHAPTER 5: APPLICATIONS OF BIOMEDICAL DATA SETS 1

In this chapter we discuss in details how our developed methods can be applied on

real world problems to identify effective biomarkers. The network construction phase and

the implementation details are described. Then the results for two biomedical data sets are

presented and compared with the results from the conventional method.

5.1 Construction of Interaction Networks

In order to evaluate our network-based biomarker identification methods, we first con-

struct a weighted network for all included candidate risk factors in the analysis. We define

the node weight w(vi) = − log(pi), in which pi is the coefficient p-value for β1 by fitting a

logistic regression model:

log(
g

1− g
) = β0 + β1vi,

with the corresponding candidate factor vi. Here, g denotes the posterior probability of a

certain disease outcome y given measurement of vi: g = Pr(y|vi); and log(g/(1− g)) is the

link function of the logistic regression model. Similarly, we can define the edge weight w(eij)

between candidate factors vi and vj as w(eij) = − log(pij) based on the coefficient p-value

pij for β3 in the logistic regression model integrating with the interaction term between vi

and vj:

log(
g

1− g
) = β0 + β1vi + β2vj + β3vivj,

1This chapter was partially published in [1]. Permission is included in Appendix A.
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in which g = Pr(y|vi, vj). In the constructed network, to focus on strong interactions, low-

weighted edges (i.e., w(eij) ≤ Threshold) can be removed. It also makes the problem easier

to solve for large scales.

5.2 Network-based Biomarker Identification and Performance Evaluation

We implement our network-based methods and compare them with a traditional for-

ward feature selection algorithm [4] that only considers the discriminating power of individual

candidate biomarkers. Such a comparison demonstrates that our network-based biomarker

identification approach can achieve better prediction accuracy due to the integration of in-

teractive effects among candidate factors. We first apply both CG 2 and heuristic sequential

algorithms to solve MWMCP on the interaction networks. As a result, we obtain multiple

cliques which capture both individual and interactive effects among candidate factors. To

evaluate and compare the performance of biomarker identification, we adopt a Support Vec-

tor Machine (SVM) with polynomial kernel of degree two as our classifier. The choice of

kernels in SVM is to ensure that interactions among biomarkers are considered for classifi-

cation while controlling model complexity at the same time. In our experiments, we have

adopted the LIBSVM [65] implementation of SVM in Matlab. For both network-based and

individual biomarker identification, the same forward feature selection procedure has been

applied to select the best group of biomarkers with the highest classification accuracy.

As there are several steps during our classifier training stage, we perform the follow-

ing “embedded” cross-validation to appropriately estimate the classification performance for

both network-based and individual biomarker identification. In this cross-validation proce-

2In this chapter, CG refers to the CG-IP method (See chapter 3).
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dure, we first randomly divide the dataset into five folds. Then, four folds of data are used

as the training set to select biomarkers and build the classifier; and the remaining fold is

used as the testing set to estimate the classification accuracy of selected biomarkers. This

procedure is repeated five times for each fold as the testing set.

For each training set, we perform a feature selection algorithm. For individual feature

selection, we rank candidate biomarkers based on a descending order of their individual

discriminating power measured by the coefficient p-values from fitted regression models. For

network-based methods, we rank the identified cliques based on a descending order of their

corresponding total weights. Then, the same forward selection procedure is implemented to

sequentially add individual biomarkers or cliques, in the ranked order to the set of selected

biomarkers. If adding a new individual factor or clique improves the estimated classification

accuracy, it will be selected in the final biomarker set. Otherwise, we move on to the next

ranked factor or clique to iterate the same procedure.

The classification accuracy for feature selection is estimated by traditional three-fold

cross-validation using the training set, in which two folds of the training set are used to train

the SVM classifier and one fold is used for testing. The procedure is repeated three times to

estimate the accuracy based on the currently selected biomarkers. Finally, the testing set is

used to estimate the testing classification accuracy based on the selected final biomarker set.

The overall evaluation procedure is repeated 100 times and the average accuracy is reported

as the estimated classification accuracy.
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5.2.1 DPT-1

We first test and compare the performance of different biomarker identification methods

using a relatively small dataset studying Type 1 Diabetes (T1D). We study baseline char-

acteristics including immunologic and metabolic indices with respect to T1D development

in subjects with high risk using the collected data from the Diabetes Prevention Trial-Type

1 (DPT-1) study. In DPT-1, there are 3, 483 subjects positive for islet cell autoantibodies

(ICA) among the total 103, 391 screened subjects. The projected five-year risk of diabetes

for these subjects is estimated according to genetic susceptibility; age; immunologic indices

from different autoantibodies, including ICA, IAA (insulin autoantibodies), GAD (glutamic

acid decarboxylase), ICA512 (insulinoma-associated protein 2), and MIAA (micro-insulin

autoantibodies); and metabolic indices, including 2-hour glucose, fasting glucose, glycated

hemoglobin (HbA1c), fasting insulin, first-phase insulin response (FPIR), C-peptide mea-

surements in the fasting state, and then 30, 60, 90, and 120 minutes after oral glucose. As in

the previous univariate analysis [66], we compute Homeostasis model assessment of insulin

resistance (HOMA-IR = fasting insulin (mµ/l) × fasting glucose (mmol/l) /22.5), FPIR-to-

HOMA-IR ratio, peak C-peptide as the maximum point of all measurements, and AUC (area

under the curve) C-peptide using the trapezoid rule based on the given metabolic indices.

Furthermore, we include age and Body Mass Index (BMI) in our network-based multivariate

analysis as important confounding factors.

In this study, we focus on DPT-1 study subjects staged to the “high risk” group [67,

68, 66], which contains 339 subjects in total. Within this high risk group, 169 subjects
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received parenteral insulin supplement and we refer this set as the “Treatment” group while

the other 170 subjects received placebo as a control group, which is referred as “Placebo”.

We are interested in identifying the most predictive group of biomarkers from the previ-

ously described candidates to predict the outcome y—the development of T1D at the end

of DPT-1 study. Within both the “Treatment” and “Placebo” groups, there are 80 sub-

jects diagnosed with T1D at the end of the study with y = 1. We have tested both the

individual and network-based methods using both groups of data. We have computed the

classification accuracies from different biomarker identification methods based on the pre-

vious cross-validation procedure. These estimated classification accuracies are reported in

Table 3.

Comparing both column generation and sequential network-based methods with the

individual-based feature selection, the reported results clearly show that both network-based

biomarker identification methods are performing significantly better (with p-values < 1e−6)

than the traditional individual-based feature selection. These results verify our expectation

that network-based biomarker selection methods are able to find biomarkers with higher

predictive accuracies by integrating interactive effects among biomarkers.

Table 3: Classification accuracies of methods based on T1D datasets. (Ind—Individual
predictive power based feature selection; CG—Column Generation algorithm; Seq— heuristic
sequential algorithm)

Dataset Ind Seq CG

T1D Treatment 62.39 65.69 65.60
T1D Placebo 59.74 62.57 62.45
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Figure 10: Features that appeared in at least 70% of 500 feature selections done in experi-
ments for Treatment (A) and Placebo (B) groups in T1D dataset.

In the previous cross-validation experiments, we have implemented 500 (100 repeated

five-fold “embedded” cross validation) feature selections, each time based on a randomly sam-

pled training subset. As a result, we have found 500 different subsets of final biomarker sets.

To ensure that we have obtained reliable results without overfitting, we provide in Figures 10

(A) and (B) the lists of frequently selected final biomarkers that appeared in at least 70% of

500 different feature selection runs from different biomarker identification methods for the

“Treatment” and “Placebo” groups respectively. When comparing selected features by our

CG and sequential methods, we find that the additional features selected by CG are Fasting

glucose levels from either OGTT or IVGTT. As discussed in the recent position statement

of the American Diabetes Association (ADA) [69], these indices are main diagnosis criteria

for clinical diabetes. We also have tested the performance of those final biomarkers based

on 100 repeated five-fold cross validation (without feature selection) and their corresponding
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estimated testing accuracies are given in Table 4. The results further verify that within these

commonly conjectured important biomarkers for T1D [67, 68, 66], network-based biomarker

selection can provide better biomarkers with higher predictive power for T1D, which may

lead to better prognosis models.

Table 4: Estimated testing classification accuracies of final biomarkers based on 100 repeated
five-fold cross validation for different methods. (Ind—Individual predictive power based
feature selection; CG—Column Generation algorithm; Seq— heuristic sequential algorithm)

Dataset Ind Seq CG

T1D Treatment 62.1 68.21 68.02
T1D Placebo 57.51 65.36 65.18
Breast Cancer 74.56 75.26 76.43

5.2.2 Breast Cancer

We further evaluate our proposed network-based biomarker identification methods on a

large genomic dataset for breast cancer metastasis study [70], which is referred as the “USA”

dataset as in the literature [9, 10]. The USA dataset contains the gene expression profiles for

22,283 genes of 286 breast cancer patients from which 107 are detected with metastasis and

the remaining 179 are metastasis-free. An extremely large amount of time needs to be spent,

especially for CG method, if we apply the previous embedded cross validation procedure

with 500 repeats of network construction and clique finding with such a large number of

candidate genes. In order to perform a comparison between CG and the other methods in a

reasonable time, we have adopted a preprocessing step to filter out a large number of genes.

To obtain a smaller set of important genes as potential biomarkers, they are ranked by their

individual predictive power, again based on the coefficient p-value in logistic regression using
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all the samples. Then, the top 1% of genes (222 genes in total) with the highest individual

predictive power are kept for performance comparison for the USA dataset. Table 5 provides

the estimated classification accuracies for all the methods. The results clearly show that our

network-based biomarker identification methods which incorporate the interactions among

candidate genes, select markers with significantly (p-values < 1e − 7) better classification

accuracy than the traditional feature selection based on only individual power.

Table 5: Classification accuracies of methods based on breast cancer dataset. (Ind—
Individual predictive power based feature selection; CG—Column Generation algorithm;
Seq— heuristic sequential algorithm)

Dataset Ind Seq Seq top-K CG CG top-K

Breast Cancer 65.54 70.89 68.65 71.02 67.82

To check the consistency of selected genes among 500 repeated runs in cross validation,

we draw a frequency curve for selected genes. Each gene would appear from 0 to 500 times

among 500 final biomarker sets of genes. We compute the ratio of the number of genes

that have appeared at least f times (1 ≤ f ≤ 500) over the total number of genes that

are selected at least once. As illustrated in Figure 11, the ratio of repeatedly selected

genes for our network-based methods are consistently higher than the corresponding ratio

for individual-based feature selection method. This demonstrates that the selected genes by

network-based methods are more stable towards different training sets.

Finally, we provide in Figure 12 the list of frequently selected genes as final biomarkers

that have been selected in at least 30% of 500 repeated runs from different biomarker iden-

tification methods. According to a recent study [71], protein RNF19A has been identified
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Figure 11: Stability curves for breast cancer (USA) dataset.

as a differentially expressed marker for breast cancer. The authors in [71] have shown that

RNF19A is one of functional molecules in cancer-associated fibroblasts. Based on our pro-

posed feature selection results shown in Figure 12, the CG method has successfully selected

this marker, which demonstrates its promising potential for accurate identification of dis-

criminating biomarkers. We also have tested the performance of those final biomarkers based

on 100 repeated five-fold cross validation (without feature selection) and the corresponding

estimated testing accuracies are given in Table 4. Although the difference of the obtained

accuracies by different feature selection methods is relatively small, the improvement by our

new methods considering interactions among biomarkers in the synergy network is consis-

tent and indeed statistically significant with p-values smaller than 0.01 based on two sample

t-tests.
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Figure 12: Features that appeared in at least 30% of 500 feature selections done in experi-
ments for breast cancer dataset.
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CHAPTER 6: FUTURE WORK

6.1 Biomedical Insight

The proposed network-based biomarker identification by solving MWMCP has been

shown to be able to help identify important biomarkers for more accurate prognosis and

diagnosis for complex diseases, such as cancer and diabetes. Due to the underlying complex

disease mechanisms, there are still many aspects that we may need to mathematically model

them faithfully for effective biomarker identification, such as the non-linearity of potential

interaction (rather than simply adding up the individual and interactive power) as well as the

possible noise and uncertainty from the available data. Moreover, it is indeed imperative to

further investigate the responsibility of the identified biomarkers for the initiation, progres-

sion and onset of diseases, as well as the establishment of a methodology to systematically

utilize such insights in patient stratification and classification.

6.2 Applications of the MWMCP

The MWMCP introduced in this study has several potential applications. From the

problem definition, we can see that in any network that multiple disjoint and complete

sub-networks are of interest, this problem can be applied to identify such sub-networks. For

example, in network interdiction problem where critical elements of a network need to be

identified. Also, in power grids, where the contingency analysis and network reliability are
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essential, the MWMCP can be utilized. The vulnerability of other infrastructure networks

in general, is of vital national interests.

6.3 Variant Network Structures

The MWMCP can be formulated in generalized networks to solve broader problems.

For instance, one may think of networks with multiple layers, that is a network with edges

of different types. Such a network could be utilized to model different parameters within

same elements (vertices). A two-layer network formulation has applications in biomarker

identification, drug discovery, etc.

6.4 Variant Sub-network Structures

The solution approach in this research can be viewed as a general framework to si-

multaneously find multiple sub-networks with some specific property in a given network.

A wide range of problems then can be formulated and solved within this framework. The

sub-network of interest is application-specific and could have any common or special graph

theoretic structure. One may consider a tree, a k-plex, a hub-spoke or a path as the

sub-network and develop similar solution algorithms as in the MWMCP. Note that to solve

some of these new problems, the only necessary modification is to substitute the sub-problem

algorithm of the MWMCP while the rest of the model remains unchanged. This property

alone clearly shows the flexibility of our solution framework. Especially, recall that the sub-

problem does not need to be solved to optimality and as long as new improving columns are

generated, the algorithm works.
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6.5 Robust and Stochastic Extensions

Another direction to expand the MWMCP is for the case that we deal with special

uncertainties. More sophisticated formulations are needed to model such uncertainties. For

example, consider a data set of poor quality given as an input of a network-based optimization

model. Robust optimization can be involved to expand the problem and provide solution

techniques in this case. Also, to deal with probabilistic data and network entries, stochastic

version of the model can be considered and studied.

6.6 Implementation

Several methodologies and techniques are considered within our solution algorithms to

solve the MWMCP. From the branch-price-and-cut algorithm to the fast heuristic algorithms,

there are many opportunities to introduce new techniques and methods to improve the

algorithms. For instance, stronger cutting planes may be formulated for the problem or

more effective branching procedures may be developed. Also, different solution methods for

the sub-problem may be considered to quickly generate good columns.
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CHAPTER 7: CONCLUDING REMARKS

Motivated by the biomarker identification problem in computational biology, we rep-

resent the biomarkers in a network and formulate their individual and interaction effects

in this network simultaneously. Vertex and edge weights are used to represent these effects

respectively. To identify highly discriminating and interacting markers, multiple complete

sub-networks, i.e., cliques with maximum total weights are found and studied. To find such

maximum weighted cliques, we introduce a novel optimization problem called the Maximum

Weighted Multiple Clique Problem (MWMCP). After proving its NP-hardness, its integer

programming formulations are presented and compared within two different approaches.

Namely, compact formulations and column generation (CG) reformulation are discussed.

Benefiting from the advantages of CG reformulation, a solution framework is developed to

obtain the exact solutions for the MWMCP by combining CG and the branch-and-bound

algorithm that is known as branch-and-price. By formulating cutting planes to strengthen

the linear relaxation of the model, the branch-price-and-cut algorithm is formed to solve

the problem efficiently. Also, fast heuristic algorithms are developed to solve problem of

larger scales. The preliminary results on a set of random networks show that the developed

algorithms can handle instances of different scales with high quality solutions. Finally, the

algorithms are utilized on interaction networks created based on real-world datasets for Type

1 Diabetes and breast cancer to obtain important biomarkers. The results show that the
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interaction network framework and our MWMCP solution approach are capable to identify

more accurate biomarkers in comparison to individual-based feature ranking.

64



REFERENCES

[1] S. J. Sajjadi, X. Qian, B. Zeng, and A. A. Adl, “Network-based methods to identify
highly discriminating subsets of biomarkers,” Computational Biology and Bioinformat-
ics, IEEE/ACM Transactions on. DOI: 10.1109/TCBB.2014.2325014, in press.

[2] D. Thomas, “Gene–environment-wide association studies: Emerging approaches,” Na-
ture Reviews Genetics, vol. 11, no. 4, pp. 259–272, 2010.

[3] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine,
“Broad patterns of gene expression revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays,” Proceedings of the National Academy
of Sciences, vol. 96, no. 12, pp. 6745–6750, 1999.
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[33] K. Corrádi and S. Szabó, “A combinatorial approach for Keller’s conjecture,” Periodica
Mathematica Hungarica, vol. 21, no. 2, pp. 95–100, 1990.

[34] A. Ben-Dor, R. Shamir, and Z. Yakhini, “Clustering gene expression patterns,” Journal
of Computational Biology, vol. 6, no. 3-4, pp. 281–297, 1999.

[35] S. Zhang, X. Ning, and X.-S. Zhang, “Identification of functional modules in a ppi net-
work by clique percolation clustering,” Computational Biology and Chemistry, vol. 30,
no. 6, pp. 445–451, 2006.

[36] B. Adamcsek, G. Palla, I. J. Farkas, I. Derényi, and T. Vicsek, “Cfinder: locating
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