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SUMMARY 
 
 

 Viral infections and cancer are major causes of death and disability worldwide, 

and new vaccine strategies are needed for preventive and therapeutic vaccines.  While 

traditional vaccines derived from attenuated or inactivated viruses have been successful 

in immunizing populations against certain infectious diseases, there are currently no 

approved vaccines for certain pathogens such as HIV, hepatitis C virus, and malaria, or 

for therapeutic treatment of most forms of cancer.  A promising strategy is the protein 

subunit vaccine, which is composed of purified protein antigens and immunostimulatory 

adjuvants.  The most widely studied adjuvants are agonists for Toll-like receptors 

(TLRs), which are expressed in antigen-presenting cells (APCs) and can recognize 

pathogen-associated molecular patterns.  Delivery of protein antigens and TLR agonists 

to APCs elicits cellular immunity through the generation of cytotoxic T lymphocytes.  

While many candidate delivery systems have been developed for protein/TLR vaccines, 

there is a need for further improvement with regard to the carrier materials and 

formulation methods, and through the utilization of new adjuvants, such as double-

stranded (ds)RNA (a TLR3 agonist).  The long-term objective of this research was to 

develop improved delivery vehicles for protein/TLR-based vaccines, guided by the 

central hypothesis that an effective vaccine delivery system would have stimulus-

responsive degradation and release, biodegradability into excretable non-acidic 

degradation products, and the ability to incorporate various TLR-inducing adjuvants.   

 The first two specific aims were centered around developing biodegradable 

polymeric delivery systems for protein antigens and TLR agonists, as model vaccine 

delivery systems.  In the first specific aim, we developed a cross-linked block copolymer 
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micelle for efficient encapsulation and retention of proteins, DNA, and RNA.  The 

micelle-based delivery system consists of a block copolymer of poly(ethylene glycol) 

(PEG) and poly(L-lysine), cross-linked by dithiopyridyl side groups to provide transport 

stability and intracellular release.  The focus of the second specific aim was to develop a 

pH-sensitive biodegradable polymer for fabricating microparticles encapsulating 

proteins/DNA/RNA and hydrophobic small molecules.  Using a new polymerization 

method based on the acetal exchange reaction, we synthesized hydrophobic, linear 

polymers containing pH-sensitive ketal linkages in the backbone.  This new polymer, 

termed a polyketal, has a combination of properties not found in existing drug delivery 

polymers, namely pH-sensitivity, biodegradability, ease of synthesis, and non-acidic 

degradation products.  Also, the technique of hydrophobic ion pairing was utilized to 

enhance the encapsulation of ovalbumin, DNA, and RNA in the polyketal microparticles 

via a single emulsion method.  In the third specific aim, we demonstrated that the 

micelle- and polyketal-based vaccine delivery systems enhanced the cross-priming of 

CD8+ T cells using in vitro and in vivo immunological models.  The model vaccines were 

composed of ovalbumin antigen and various TLR-inducing adjuvants including CpG-

DNA, monophosphoryl lipid A, and dsRNA.  The results demonstrate that the cross-

linked micelles and polyketal microparticles have considerable potential as delivery 

systems for protein-based vaccines.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

Viral infections and cancer are major causes of death and disability worldwide, 

and new strategies are greatly needed for preventive and therapeutic vaccines.  Treatment 

of these diseases requires vaccines that induce an adaptive immune response, specifically 

the generation of cytotoxic T lymphocytes which can eliminate virus-infected cells or 

tumors cells.  Traditional vaccines derived from attenuated or inactivated viruses have 

been successful in immunizing populations against certain infectious diseases such as 

polio, measles, and rubella.  However, there are currently no approved vaccines for 

certain pathogens such as HIV, hepatitis C virus, and malaria, or for therapeutic treatment 

of most forms of cancer (Kanzler 2007, Heit 2008).  Also, there is growing concern with 

preparedness for potential outbreaks such as influenza due to the long lead time in 

vaccine manufacturing by current processes.  There is thus a need for new vaccine 

strategies for preventive and therapeutic vaccines for cancers and infectious diseases. 

 A promising approach is the protein subunit vaccine, which is based on purified 

proteins derived from viruses or tumor cells (Bramwell 2005, Storni 2005).  Protein 

subunit vaccines have the potential to elicit an adaptive immune response specific to the 

pathogen or cancer cell.  Vaccines based on recombinant proteins can be manufactured 

on a large scale and would potentially have shorter lead times than current manufacturing 

processes such as egg-based cultures.  Also, protein-based vaccines do not carry the risk 

of infection as with live attenuated virus vaccines.  This is an important concern with 
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lethal viruses such as HIV.  Furthermore, there is flexibility in developing multivalent 

vaccines to improve efficacy against multi-clade viruses, such as HIV.  Multivalent 

vaccines could easily be formulated by combining proteins from different virus strains 

into a single vaccine or by tailoring the targeted strains to populations or individuals. 

 One important consideration with protein subunit vaccines is that proteins alone 

are weakly immunogenic and thus immunostimulatory adjuvants are required to boost 

their efficacy (Pashine 2005, Guy 2007).  The only approved adjuvant in the U.S. is alum, 

which consists of aluminum salts such as aluminum hydroxide or aluminum phosphate 

(Gupta 1998).  However, alum generally induces a T helper (TH)2-biased humoral 

(antibody) immune response as opposed to TH1-biased cellular (cytotoxic T cell) 

immunity (Lindblad 2004).  Thus there is a need for new adjuvants which stimulate a TH1 

response.  A widely studied class of immunostimulatory adjuvants being developed 

includes pathogen-derived molecules that are capable of stimulating innate immune 

responses through pathogen-associated molecular pattern (PAMP) recognition receptors 

such as the Toll-like receptors (TLRs) (Petrovsky 2004, Pashine 2005, Trinchieri 2007, 

Guy 2007). 

TLRs are expressed in antigen-presenting cells (APCs) and recognize 

characteristic molecules from pathogens, such as bacterial lipopolysaccharide (LPS) 

(TLR4) and bacterial and viral nucleic acids (TLRs 3, 7, and 9), as well as synthetic 

analogs of pathogen-derived molecules (Akira 2001, Takeda 2003, Ishii 2007).  

Treatment of APCs with agonists for TLR 3, 4, 7, and 9 leads to secretion of 

inflammatory cytokines such as Type I interferons, tumor necrosis factor (TNF)-α, 

interleukin (IL)-6, and IL-12, as well as upregulation of costimulatory surface molecules 
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such as CD80 and CD86 (Verdijk 1999, Alexopoulou 2001, Loré 2003, Napolitani 2005, 

Gautier 2005).  Also, the administration of protein antigens along with these TLR 

agonists to dendritic cells (DCs) enables the cross-priming of CD8+ T lymphocytes and 

the generation of an adaptive immune response with a CD4+ T helper 1 (TH1) bias. 

(Schulz 2005, Heit 2007, Zhang 2007, Standley 2007, Hamdy 2007).  Many formulations 

are in clinical development which utilize the TH1-inducing properties of TLR agonists 

(Kanzler 2007). 

A second major consideration with protein-based vaccines is the need for a 

delivery system which can target dendritic cells.  Proteins and nucleic acid TLR agonists 

are charged molecules which are not membrane-permeable and thus are not taken up 

effectively by DCs.  Considerable research has been reported on the development of 

microparticle-based vaccine delivery systems composed of poly(lactic-co-glycolic acid) 

(PLGA) and other polymers (Bramwell 2005, Jiang 2005, Storni 2005, Waeckerle-Man 

2005, and Tamber 2005).  These delivery systems typically target APCs via non-specific 

phagocytosis.  Vaccine delivery systems have been developed to deliver antigens for 

various infectious diseases and toxins, including anthrax, clostridium botulinum, ricin 

toxin, Marburg virus, Ebola virus, and tetanus, in addition to model antigens (Bramwell 

2005, Jiang 2005).  Microparticles also provide an advantage in that they enable 

simultaneous delivery of antigen and adjuvant to APCs.  Several studies have shown that 

injection of conjugated or co-encapsulated antigen/TLR ligand generates a stronger 

immune response than co-injection of separate antigen and TLR ligand (Cho 2000, 

Tafaghodi 2006, Kwon 2005b, Hamdy 2007, Heit 2007, Standley 2007, Zhang 2007).  

This is consistent with recent findings that the efficiency of major histocompatibility 
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complex (MHC) presentation of phagocytosed antigen is dependent on the presence of 

TLR ligand within the same phagosome (Blander 2006).   

Based on the objective of delivering protein antigen and immunostimulatory 

adjuvants to APCs, several design requirements can be identified for a protein vaccine 

delivery system.  The delivery vehicle should consist of a nano- or micro-scale particle 

which encapsulates protein antigen and adjuvants, and which is composed of 

biocompatible, degradable materials.  The vaccine should be easy to formulate and the 

carrier material should provide storage stability for the vaccine components.  It is also 

desirable to have a stimulus-responsive mechanism for intracellular release of the 

vaccine.  Finally, the formulation must have the flexibility of incorporating a variety of 

TLR agonists with different chemical properties. 

While many candidate delivery systems have been developed for protein/TLR 

vaccines, there is a need for further improvement with regard to the carrier materials and 

formulation methods, and through the utilization of new adjuvants.  For example, many 

of the microparticle systems are composed of PLGA and other polyesters, which have 

acidic degradation products.  This is a concern due to the potential for degradation of 

proteins or nucleic acids within the acidic microclimate inside degrading PLGA particles 

(Shenderova 1999, Fu 2000, Tamber 2005).  Also, many drug delivery polymers, 

including PLGA, do not exhibit stimulus-responsive release mechanisms, such as pH- or 

glutathione-sensitivity, which can selectively deliver therapeutic molecules to target cells.  

Certain delivery systems, such as acetal-crosslinked hydrogels, exhibit pH-sensitivity, 

however they are not composed of biodegradable polymers (Kwon 2005a, Kwon 2005b, 

Standley 2007). 



 5

There is also a need to expand the repertoire of available adjuvants in order to 

maximize the potential of protein-based vaccines.  Due to the variability in TLR 

expression among cell types and between species, different TLR agonists may be needed 

to target specific infectious diseases or cancers (Jarrossay 2001, Edwards 2003, Bagchi 

2007, Naik 2008).   For example, double-stranded (ds)RNA, a ligand for TLR3, is a 

strong inducer of a TH1 immune response and has shown promise as a vaccine adjuvant 

(Sloat 2006, Sloat 2008, Trumpfheller 2008).  TLR3 is an endosomal receptor, and thus 

delivery of dsRNA to the endosome would likely enhance engagement of TLR3 (Guy 

2007).  However, dsRNA has previously not been incorporated into microparticles, which 

are capable of endosomal delivery and thus could improve the efficacy of dsRNA as an 

adjuvant. 

 

1.2 Research Objectives and Specific Aims 

 The long-term objective of this research was to develop improved delivery 

vehicles for protein-based vaccines.  These improvements include new polymeric 

materials and formulation methods for encapsulating protein antigens and nucleic acid 

TLR agonists.  This work was guided by the central hypothesis that an effective vaccine 

delivery system would have the properties of stimulus-responsive degradation and 

release, biodegradability into excretable non-acidic degradation products, and the ability 

to incorporate various TLR-inducing adjuvants. 

 The first two specific aims were centered around developing biodegradable 

polymeric delivery systems for protein and nucleic acid therapeutics.  While the two 

delivery systems – cross-linked micelles and polyketal microparticles – have somewhat 
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different designs, both systems are capable of encapsulating proteins, DNA, and RNA.  

The third specific aim focuses on protein subunit vaccines, which is the primary 

application pursued in this thesis research.  In this aim, both of the delivery systems were 

used to formulate model vaccines that were evaluated using in vitro and animal models in 

collaboration with researchers at the Emory Vaccine Center.   

 

Specific Aim 1:  Develop a cross-linked block copolymer micelle for efficient 

encapsulation and retention of proteins, DNA, and RNA, as a model delivery system for 

protein-based vaccines. 

Hypothesis 1:  Efficient encapsulation and retention of proteins, DNA, and RNA can be 

achieved by optimizing the parameters governing self-assembly and cross-linking of a 

polyionic complex micelle delivery system.  

The micelle-based delivery system consists of a block copolymer of poly(ethylene 

glycol) (PEG) and poly(L-lysine), cross-linked by dithiopyridyl side groups to provide 

transport stability (Figure 1.1).  The PEG-poly(L-lysine) (PLL) polyionic complex 

micelle is based on a design originally developed by the Kataoka laboratory (Harada 

1995, Harada 1998, Kakizawa 1999).  The micelles self-assemble via electrostatic 

interactions between the polylysine block and the protein or nucleic acid, forming the 

core of the micelle.  The PLL block is modified with pyridyldithio groups to allow for 

cross-linking by a dithiol molecule.  The disulfide cross-linking is designed to be cleaved 

in the intracellular reducing environment, enabling release of the biotherapeutics.  An 

important development by the Murthy laboratory was the use of a Michael addition 

reaction to attach the pyridyldithio groups to the poly(Lys) chain, thereby retaining the 
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positive charge on the secondary amine.  Micelle formulations were prepared using 

various proteins and nucleic acids.  The micelles were initially developed for vaccine 

applications, in which a model protein antigen (ovalbumin) was encapsulated alone or 

with DNA- or RNA-based immunostimulatory agents.  Another application was later 

pursued, enzyme therapy, in which the model enzyme catalase was encapsulated.  The 

encapsulation of proteins, DNA, and RNA was confirmed by gel electrophoresis and 

filtration methods.  The size and morphology of the micelles was confirmed by dynamic 

light scattering and atomic force microscopy.  The efficacy of micelle-based vaccine 

formulations was tested in Specific Aim 3. 

 

Specific Aim 2.  Develop a pH-sensitive biodegradable polymer for fabricating 

microparticles encapsulating proteins/DNA/RNA and hydrophobic small molecules, as a 

model protein-based vaccine delivery vehicle. 
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Figure 1.1  Cross-linked micelle delivery system for proteins and nucleic acids. 
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Hypothesis 2:  Using the acetal exchange reaction, a ketal-containing polymer can be 

synthesized that will exhibit pH-sensitive degradation into biocompatible products and 

will thus provide a platform for intralysosomal delivery of proteins/DNA/RNA. 

A new polymerization method was developed, based on the acetal exchange 

reaction, which produced hydophobic, linear polymers containing pH-sensitive ketal 

linkages in the backbone (Figure 1.2).  This new polymer, termed a polyketal, has a 

combination of properties not found in existing drug delivery polymers, namely pH-

sensitivity, biodegradability, ease of synthesis, and non-acidic degradation products.  

Polyketals were used to fabricate pH-sensitive microparticles that are designed to release 

drugs or biotherapeutics in the acidic endosome of phagocytic cells.  Additionally, the 

technique of hydrophobic ion pairing was utilized to enhance the encapsulation of 

ovalbumin, DNA, and RNA in the polyketal microparticles via a single emulsion method.  

 

The chemical structure of the polyketals was characterized by gel permeation 

chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy, and pH-
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Figure 1.2.  Polyketal-based delivery system for proteins, nucleic acids, and 
hydrophobic molecules.
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sensitive degradation was demonstrated by NMR.  Encapsulation of ovalbumin, DNA, 

and RNA was measured using standard fluorescent labeling or fluorescent staining 

techniques.  Various polyketal microparticle-based vaccine formulations were evaluated 

for their efficacy in Specific Aim 3. 

 

Specific Aim 3:  Demonstrate the in vitro and in vivo efficacy of model vaccine 

formulations containing ovalbumin and immunostimulatory agents, using the cross-

linked micelle and polyketal microparticle delivery systems. 

Hypothesis 3:  Encapsulation of ovalbumin and Toll-like receptor (TLR) agonists in a 

micelle or polyketal microparticles can enhance the cross-priming of cytotoxic T 

lymphocytes. 

The efficacy of the two vaccine delivery systems (cross-linked micelles and 

polyketal nanoparticles) was evaluated using in vitro and in vivo methods.  The model 

vaccine formulations contained ovalbumin plus one or more immunostimulatory agents, 

including agonists for TLRs 3, 4, and 9.  In an in vitro cross-priming assay, murine 

splenic dendritic cells were treated with vaccine formulations and co-cultured with OT-1 

splenocytes for 4 days.  The expanded splenocytes were re-stimulated with ovalbumin 

peptide (SIINFEKL), and cross-priming was assayed by measuring the production of the 

cytokines interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and interleukin (IL)-2.  For 

the in vivo studies, mice were immunized with the model vaccine formulations and 

peripheral blood mononuclear cell (PBMC) samples were taken at later time points.  

Harvested cells were stimulated with SIINFEKL peptide and assayed for intracellular 

cytokine production. 
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1.3  Review of Relevant Literature 

Mechanism of inducing cellular immunity 

 Traditional vaccines for viral infections have largely been developed using 

empirical methods and typically consist of live attenuated or inactivated viruses or 

purified virus proteins adjuvanted with aluminum-based compounds.  Despite the 

decades of successful use, very little was known about vaccines’ mechanism of action 

until recent years.  Through the discovery of the Toll-like receptors (TLRs) and other 

receptors that recognize pathogen-associated molecular patterns (PAMPs), researchers 

have begun to elucidate the mechanisms by which pathogens (or vaccines derived form 

pathogens) induce adaptive immune responses (Akira 2001).  This process begins with 

the uptake of a vaccine or pathogen by an antigen-presenting cell (APC).  The APC 

processes the pathogen proteins by cleaving the proteins into peptide fragments and 

displaying the peptides on major histocompatibility (MHC) molecules on the cell surface.  

T lymphocytes with T cell receptors (TCRs) specific to the peptide antigen bind to the 

MHC-peptide complex, which constitutes the first signal in APC-T cell interaction.  A 

second signal comes in the form of costimulatory molecules, such as B7-1 (CD80) and 

B7-2 (CD86), which are also displayed on the APC cell surface and engage T cell 

ligands.   

 The presence of only these two signals can lead to tolerance, and thus a third 

signal is required to fully activate the APC and induce a robust T cell response.  This 

third signal consists of cytokines such as interleukin (IL-12) and type I interferons (IFN-α 

and IFN-β), which are induced by TLR activation (Mescher 2006).  IFN-α and IFN-β 

mediate an antiviral response through the production of viral replication inhibitors, the 
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recruitment of inflammatory cells, and the upregulation of MHC protein expression 

(Guidotti 2001).  The proinflammatory cytokine IL-12 provides a link between the innate 

and adaptive immune response, through the production of IFN-γ, which promotes 

recruitment and activation of inflammatory cells and upregulation of antigen processing 

and presentation.  IL-12 also promotes a T helper 1 (Th1) bias, which leads to expansion 

of cytotoxic T lymphocytes (CTL) to mount an attack against intracellular pathogens 

(Trinchieri 2003).  

 

Toll-like receptors (TLRs) as immunostimulatory adjuvants 

 The Toll-like receptors are a class of pathogen-recognition receptors within the 

innate immune system that detect the presence of bacteria and viruses in the extracellular 

space of endosomal compartments.  Engagement of TLRs leads to production of IFN-α 

and IL-12 through two distinct pathways.  All TLRs except TLR3 signal through a 

myeloid differentiation factor 88 (MyD88) pathway, whereas TLR3 and TLR4 signal 

through a MyD88-independent pathway.  TLR3 and TLR4 signal through an adaptor 

termed the Toll-IL-1 receptor (TIR) domain containing adaptor inducing IFN-β (TRIF), 

through an intermediate TRIF-related adaptor molecule (TRAM).  The MyD88 and TRIF 

pathways lead to the activation of nuclear factor (NF)-κB and IRF-3, which promote the 

expression of pro-inflammatory cytokines and chemokines (Pashine 2005). 

 Several of the TLRs are important in stimulating cellular immunity, by inducing a 

TH1 bias in the CD4+ T cell response.  For example, TLR4 is a cell surface receptor that 

recognizes lipopolysaccharide (LPS), a component of bacterial cell wall.  

Monophosphoryl lipid A (MPL) is a synthetic TLR4 agonist that is being developed for 
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hepatitis B and human papillomavirus vaccines and to treat non-small-cell lung cancer, 

among other applications (Kanzler 2007).  TLR9 recognizes unmethylated DNA 

containing “CpG” motifs, which is characteristic of bacterial DNA (Klinman 2004a, 

2004b, 2006).  CpG-DNA is administered in soluble form or conjugated to a protein 

antigen.  Clinical application under development include vaccines for hepatitis B, 

anthrax, influenza, HIV, and melanoma (Kanzler 2007).  Recently several groups have 

developed microparticles encapsulating CpG-DNA with protein antigens and have 

demonstrated enhancement of CD8+ T cell responses (Kwon 2005b, Heit 2007, Standley 

2007, Zhang 2007).  TLR7 is an endosomal receptor that recognizes single-stranded viral 

RNA (Heil 2004, Pashine 2005).  Synthetic TLR7 agonists such as Imiquimod have been 

developed which have more “drug-like” properties.  Imiquimod has been approved for 

treatment of basal cell carcinoma and papilloma-induced genital warts and is under 

clinical development for other applications (Kanzler 2007).   

 TLR3 is an endosomal receptor that recognizes double-stranded (ds)RNA, 

including the dsRNA analog poly(inosinic acid)-poly(cytidylic acid) (poly(I:C)) 

(Alexopoulou 2001).  Studies have shown that interaction of dsRNA with TLR3 depends 

on the acidification of the endosome (de Bouteiller 2005, Schulz 2005, Kumar 2005).  

Viral dsRNA and poly(I:C) induce maturation of dendritic cells (DCs), high IL-12 

expression, effective MHC-I antigen presentation, and strong T cell proliferation (Verdijk 

1999, Loré 2003, Schulz 2005).   Poly(I:C) has been investigated as a potential adjuvant 

for intranasal influenza vaccines, therapeutic treatment of cervical cancer, and treatment 

of herpes simplex virus type 2 infection (Ichinohe 2005, Cui 2006, Herbst-Kralovetz 

2006).  While TLR3 was the first receptor identified for dsRNA, the cytosolic receptor 
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melanoma differentiation associated gene 5 (Mda5) is also stimulated by dsRNA (Gitlin 

2005, Kato 2006). 

 The property of poly(I:C) as a pro-inflammatory agent makes it a potentially 

effective vaccine adjuvant; however, there may be concerns with the systemic 

inflammation resulting from high doses of soluble poly(I:C).  For example, one study 

reported that intraperitoneal (i.p.) injection of poly(I:C) in mice at doses of 2 to 12 mg/kg 

resulted in sickness behavior, reduced body weight, and fever (Cunningham 2007).  

Another study showed that i.p. injection of 3 mg/kg of poly(I:C) in rats resulted in 

reduced running wheel activity and increased expression of IFN-α in the central nervous 

system (Katafuchi 2003).  Similarly, i.p. injection of 5 mg/kg of poly(I:C) in mice was 

shown to reduce exercise capacity and increase levels of IFN-α and IFN-β in the 

bloodstream (Davis 1998).  These findings suggest that targeted delivery of poly(I:C) 

would be needed in order to reduce the adjuvant dosage and limit systemic effects. 

 

Co-delivery of antigen and adjuvants 

Recently, many studies have focused on the co-delivery of antigen and TLR 

agonists to enhance Th1 responses and cross-priming of CTLs.   For example, while 

CpG-DNA is often administered in soluble form, a few studies have demonstrated the 

advantages of co-delivery of CpG-DNA with antigen.  The Raz laboratory conjugated 

ovalbumin (a tumor model antigen) to CpG ssDNA (TLR9 ligand) and showed that the 

conjugate was more effective at suppressing an ovalbumin-expressing tumor than 

treatment with Ova antigen or CpG DNA alone (Cho 2000).  Tafaghodi et al. (2006) 

encapsulated tetanus toxoid (TT) with CpG-ODN in alginate microspheres for a vaccine 
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administered intranasally to rabbits, and showed improved IgA response in nasal lavages 

with TT/CpG versus TT microparticles or corresponding non-particle controls.  Also, the 

Fréchet group has demonstrated that hydrogel nanoparticles containing ovalbumin and 

CpG-DNA stimulate DCs to produce higher levels of IL-12 and induce stronger CD8+ T 

cell responses compared to Ova nanoparticle or free CpG DNA controls (Kwon 2005b, 

Standley 2007).   TLR4 ligands have also been employed as adjuvants.  For example, the 

Samuel laboratory has shown an effective in vivo T cell response in mice by co-

encapsulating ovalbumin with MPL (a TRL4 ligand) in PLGA nanoparticles (Hamdy 

2007).  The common finding in these studies is that injection of conjugated or co-

encapsulated antigen/TLR ligand generates a stronger immune response than co-injection 

of separate antigen and TLR ligand. 

 

Other protein/DNA delivery systems 

Various other delivery systems have been developed to deliver proteins and 

nucleic acids for vaccine applications.  Uto et al. encapsulated ovalbumin in poly(γ-

glutamic acid) (γ-PGA) nanoparticles and showed increased cytokine production, 

upregulation of costimulatory molecules, and enhanced antigen-specific B and T cell 

stimulation with Ova-nanoparticles.  Also, listerolysin (LLO) peptide immobilized on the 

γ-PGA NPs protected mice from infection with Listeria monocytogenes bacteria (Uto 

2007).  A DNA vaccine formulation was prepared by complexing polyethylene amine 

(PEI) with plasmid (p)DNA and reacting it with PEG-NHS to form a PEGylated 

polyplex, which was encapsulated in PLGA microparticles.  Oral delivery to rats resulted 

in plasmid DNA transgene expression of β-galactosidase in the spleen (Howard 2004).  
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Another DNA delivery vehicle consists of pDNA complexed with thiolated multi-arm 

PEG, crosslinked to form 300-800 nm size particles; the PEG nanogels exhibited 

glutathione-sensitive release of pDNA (Mok 2006).  Mohamed et al. fabricated hollow 

dimpled PLGA microcapsules for pulmonary vaccine delivery.  The low density 8 µm 

particles have a 3-4 µm aerodynamic diameter, which is suitable for delivery to the 

bronchus associated lymphoid tissue (BALT) and lung periphery (Mohamed 2006). 

 

Polyionic Crosslinked (PIC) Micelles for Delivery of Charged Molecules 

 The formation of polyionic complex (PIC) micelles was first reported by Harada 

and Kataoka (1995), where stable complexes were produced from a stoichiometric 

mixture of poly(ethylene glycol)(PEG)-poly(Lys) and PEG-poly(Asp) in aqueous buffer.  

The complexes were formed through the electrostatic interactions between the poly(Lys) 

and poly(Asp) chains, with the PEG chains forming the corona, or shell, of the micelle.  

This concept was further developed through the addition of disulfide cross-linking to 

stabilize PIC micelles.  Is this design, the micelles were composed of PEG-poly(Lys) and 

PEG-poly(Asp), where a portion of the lysine residues were modified through a reaction 

with SPDP and reduced to give free thiols (Kakizawa 1999).  After complexation, the 

thiols were oxidized to form disulfide cross-links, which provide micelle stability even at 

high salt concentrations.  The disulfide cross-linking was intended for intracellular 

delivery of charged biomolecules, based on evidence that a stronger reductive 

environment exists intracellularly (Huang 1998).  Cross-linked micelles were also formed 

with thiolated PEG-poly(Lys) and antisense DNA, and were shown to be stable against a 

competing polyelectrolyte, poly(vinyl sulfate) (PVS), and yet release the DNA upon 
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treatment with PVS and glutathione (Kakizawa 2001, Miyata 2005).  The PIC micelles 

have also been used for applications in delivering plasmid DNA and siRNA (Katayose 

1997, Miyata 2005, Nishiyama 2006a, Nishiyama 2006b). 

 The Kataoka group also demonstrated that PIC micelles could be formed with 

PEG-poly(Asp) and proteins such as trypsin and lysozyme (Harada 1998, Harada 1999, 

Harada 2001, Jaturanpinyo 2004).  The lysozyme micelles were shown to have greater 

enzyme activity than free lysozyme, which was attributed to attraction of the substrate by 

the PEG corona, which resulted in a decrease in the observed Michaelis constant (Harada 

2001).  Poly(Asp) micelles with trypsin were prepared using glutaraldehyde to cross-link 

the trypsin molecules within the core.  The micelles were shown to have less trypsin 

degradation (more retention of enzyme activity) than free trypsin, supposedly due to 

immobilization of trypsin in the core, which prevented autolysis of the enzyme. 

(Jaturanpinyo 2004) 

 

pH-Sensitive Vaccine Delivery Systems 

The property of pH-sensitivity has been pursued in many drug delivery vehicles 

as a means of achieving intracellular release through degradation of the polymer in the 

acidic lysosomal compartment.  The Frechet laboratory has developed polyacrylamide 

nanoparticles that contain acid-cleavable cross-linkers (Murthy 2003b, Standley 2004).  

The nanoparticles are prepared by inverse microemulsion polymerization of acrylamide 

monomers with a benzyl acetal bisacrylamide monomer.  In one system, a 

trimethylammonium monomer were used to create cationic nanoparticles encapsulating 

ovalbumin, with CpG-DNA or IL-10 antisense DNA complexed to the surface of the 
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particles.  The ovalbumin/CpG-DNA nanoparticles were shown to enhance IL-12 

production in bone marrow-derived dendritic cells (BMDCs) versus ovalbumin 

nanoparticles or free CpG-DNA.  Also, IL-10 antisense ODN-coated ovalbumin 

nanoparticles were shown to have a moderate reduction in IL-10 production as compared 

to free IL-10 antisense ODN. (Kwon 2005b)  In another variation on the hydrogel design, 

CpG-DNA was derivatized with methacrylamide to be incorporated into the acetal 

crosslinked polyacrylamide nanoparticles.  Nanoparticles containing ovalbumin and 

CpG-DNA enhanced stimulation of IL-12 and surface activation markers in BMDCs as 

compared to ovalbumin particles, and also induced strong ovalbumin-specific cytotoxic T 

cell responses in mice. (Standley 2007) 

 

Hydrophobic Ion Pairing 

 The technique of hydrophobic ion paring has been developed by several research 

groups as means of altering the solubility of proteins and nucleic acids, through the 

stoichiometric pairing with oppositely charged surfactants (Hegg 1979, Powers 1993, 

Bromberg 1994, Meyer 1998, Patel 2004, Dai 2007).  Various applications of ion pairing 

have been considered, such as making an enzyme available to a substrate that is soluble 

in a nonpolar solvent.  Another application is in the encapsulation of charged molecules 

in polymeric microparticles.  One group has utilized a microparticle fabrication method, 

precipitation with compressed antisolvent (PCA), which requires the drug molecules to 

be soluble in a nonpolar solvent (Falk 1997).  They have demonstrated that plasmid DNA 

can be ion paired with DOTAP via a Bligh-Dyer extraction method, producing a 

DNA:DOTAP complex that is soluble in dichloromethane (DCM), and have shown high 
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encapsulation efficiencies (>70%) in poly(lactic acid) microspheres. (Patel 2004)  It has 

also been shown that the anti-cancer drug cisplatin can be ion-paired with docusate 

sodium (aerosol OT, or AOT) to produce a compound with greater cytotoxicity toward 

cancer cells in vitro.  This effect was attributed to the greater hydrophobicity and 

consequent increase in cell permeability of the ion-paired cisplatin. (Feng 2004). 
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CHAPTER 2 

DEVELOPMENT OF CROSS-LINKED  

BLOCK COPOLYMER MICELLES 

 

2.1 Introduction 

In this chapter we discuss Specific Aim 1, which was to develop a cross-linked 

micelle delivery system for efficient encapsulation of proteins and nucleic acids.  Polyion 

complex (PIC) micelles had originally been developed by the Kataoka laboratory and 

were based on self-assembly of a poly(ethylene glycol)(PEG)-poly(Lys) or PEG-

poly(Asp) block copolymer with charged molecules such as DNA or proteins.  The core 

of the micelle is formed via electrostatic interactions between the polylysine and DNA, or 

between the poly(Asp) and positively charged proteins such as lysozyme or trypsin, while 

the PEG chain occupies the shell, or corona, of the micelle. (Harada 1995, Kakizawa 

1999, Kakizawa 2001).  Various cross-linking schemes have been developed, such as 

disulfide linkages and aldehyde-amine reactions.  The cross-linking provides for transport 

stability in serum or extracellular fluid, where the presence of competing charged 

molecules would cause disruption of the electrostatic interactions.  Figure 2.1 shows a 

schematic of the PIC micelle self-assembly and cross-linking. 

The aldehyde cross-linking of trypsin within the PIC micelle, as reviewed in 

Chapter 1, does not however generate a stimulus-responsive release mechanism for 

intracellular delivery.  The disulfide cross-linking method used with thiolated PEG-

poly(Lys), on the other hand, was effective at generating stable complexes with DNA and 

offers a means of intracellular release through cleavage by reducing agents such as 
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glutathione (Huang 1998).  However, it may not securely encapsulate proteins, which 

generally have fewer charged groups available for electrostatic complexation.  

Furthermore, in the Kataoka design, the pyridyldithio cross-linking moiety was attached 

by reacting the PLL backbone with SPDP.  The reaction of the lysine amine with the 

succinimidyl group produces an amide bond, which means one positive charge is lost for 

each cross-linking group added.  Because the positive charges are needed for 

complexation, an improvement would be to use a reaction that would attach pyridyldithio 

groups without losing positive charges on the poly(Lys) chain. 

 

We hypothesized that efficient encapsulation and retention of proteins, DNA, and 

RNA could be achieved by optimizing the parameters governing the self-assembly 

(electrostatic complexation) and cross-linking of a PIC micelle delivery system.  As a 

starting point for our PIC micelle design, we chose PEG-poly(Lys) as the block 

copolymer, which had previously been used to complex DNA.  The initial goal of this 

Figure 2.1  Schematic of polyion comlex (PIC) micelle self-assembly. 

PEG-poly(lysine)

PEG-poly(aspartic acid)

PEG-poly(lysine)
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project was to deliver ovalbumin and CpG-DNA for a model vaccine.  Therefore, PEG-

poly(Lys) would be suitable to complex with CpG-DNA and ovalbumin, which has an 

isoelctric point of pH 5 and carries a net negative charge.  In order to retain the positive 

charges on poly(Lys), we developed a new method of attaching the pyridyldithio group 

via a Michael addition, which generates a secondary amine.  Thus, we can maximize the 

number of disulfide groups and positively charged amines, to optimize the complexation 

and cross-linking.  An additional improvement was the conjugation of pyridyldithio 

groups to ovalbumin to covalently tether the protein to the PEG-poly(Lys) in the core of 

the micelle. 

For vaccine applications, we developed micelles containing peptide- and protein-

based antigens.  These vaccine formulations are designed to deliver antigen and 

immunostimulatory adjuvants to phagocytic antigen-presenting cells (APCs) to induce 

activation of the APCs and cross-priming of cytotoxic T lymphocytes (CTLs).  The 

original micelle developed in the Murthy laboratory was the peptide-crosslinked micelle 

(PCM), in work led by Jihua Hao (Hao 2006).  In the PCMs, the antigenic peptide 

SIINFEKL was modified with two cysteine residues and served as the cross-linking 

agent, while immunostimulatory CpG-DNA was the polyionic complexing agent in the 

core of the micelle.  The PCMs were shown to be stable in a solution of poly(vinyl 

sulfate) (PVS), which is intended to represent the conditions in serum or extracellular 

fluid, where the presence of competing amphiphilic molecules would cause disruption of 

the electrostatic interactions.  It was also shown that the disulfide cross-linking bonds can 

be cleaved by reducing agents such as glutathione (GSH), which is found in higher 

intracellular concentrations versus in the bloodstream (Huang 1998).  Additionally, the 
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PCMs enhanced the uptake of FITC-labeled peptide antigen by dendritic cells (Hao 

2006). 

In our subsequent work with protein-loaded micelles, we encapsulated the whole 

protein antigen ovalbumin along with immunostimulatory nucleic acids (CpG-DNA and 

poly(I:C)).  We demonstrated retention of CpG-DNA and poly(I:C) by agarose gel and 

retention of ovalbumin by SDS-PAGE.  We also showed that covalent tethering of 

ovalbumin via a pyridyldithio group resulted in better protein retention than untethered 

ovalbumin.  The efficacy of the ovalbumin-based model vaccine formulations was tested 

in vitro using primary murine dendritic cells and OT-1 splenocytes, and in vivo in mice, 

as described in Chapter 4. 

  

2.2 Experimental Methods 

Synthesis of PEG-poly(lysine-dithiopyridyl) (PEG-PLTP) copolymer.  

Synthesis of PEG-Polylysine Block Copolymer. 

The block copolymer backbone, consisting of a 5000 molecular weight PEG chain 

and approximately 10 to 20 lysine repeats, was synthesized by the methods developed by 

the Kataoka laboratories (Harada 1995, Kakizawa 1999).  Briefly, the N-

carboxyanhydride (NCA) of ε-benzyloxycarbonyl-L-lysine (Lys(Z)-NCA) was generated 

by reacting Lys(Z)-OH (10 g, 35.7 mmol) with triphosgene (5.3 g, 17.8 mmol) for 4 

hours at 50°C in dry THF.  The product was recrystallized three times in cold hexanes, 

with a 72% yield.  The poly(ethylene glycol)-block-poly(L-lysine(Z)) (PEG-PLL(Z)) 

copolymer was synthesized via a ring-opening polymerization of α-methoxy-ω-amino-

PEG (1.0 g, 0.2 mmol) with Lys(Z)-NCA (3.66 g, 12 mmol) for 20 hours at 40°C in 
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anhydrous DMF.  The product was precipitated in cold ethyl ether, vacuum filtered, and 

vacuum dried to yield 1.5 g of PEG-PLL(Z) block copolymer.  From the 1H NMR 

spectrum, the degree of polymerization (d.p.) was calculated to be 30.8.  Deprotection of 

the ε-benzyloxycarbonyl group was carried out by mixing PEG-PLL(Z) with 

trifluoroacetic acid, then a mixture of anisole and methanesulfonic acid, followed by 

ether/water extraction.  The aqueous phase was dialyzed against a 1000 molecular weight 

cut-off membrane, and lyophilized to yield 543 mg of PEG-PLL.  After deprotection, the 

d.p. was calculated to be 13.7 based on the 1H NMR spectrum.  The change in d.p. during 

the deprotection step was attributed to low molecular weight polylysine chains that were 

initiated by water molecules in the ring-opening polymerization reaction, and were 

subsequently removed during dialysis.  

 

Synthesis of Side Chain Monomer Pyridyldithio-Ethylacrylate 

Synthesis of pyridyldithioethylacrylate is described by Hao and Murthy (2006).  

Briefly, mercaptoethanol (0.886 g, 11.36 mmol) was reacted with 2,2-dithiodipyridine (5 

g, 22.7 mmol) and acetic acid (1.36 g, 22.7 mmol) in 15 mL of methanol for 1 hour at 

room temperature.  The 2-(2-pyridinyldithio)-ethanol product was purified by silica gel 

chromatography with 79.5% yield.  Next, 2-(2-pyridinyldithio)-ethanol (1.6 g, 8.56 

mmol) was dissolved in 16 mL of dichloromethane (DCM) with  triethylamine (1.297 g, 

12.84 mmol).  Acryloyl chloride (1.156 g, 12.84 mmol) was added in a dropwise manner 

to initiate the reaction.  After 1 hour, the product was purified by DCM/brine extraction 

(2 times), dried with sodium sulfate, and purified by silica gel chromatography, for a 45% 

yield of pyridyldithioethylacrylate (PDTEA). 
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Synthesis of Final Copolymer PEG-PLTP 

The pyridyldithioethylacrylate (PDTEA) side chain monomer was conjugated to 

the PEG-PLL backbone via a Michael addition reaction, which retains the positive charge 

on the lysine amine.  Briefly, PEG-PLTP (250 mg, 36.8 µmol) was dissolved in 6 mL of 

DMF, and PDTEA (133 mg, 552 µmol) was added with an additional 4 mL of DMF.  

Triethylamine (154 µL, 1.104 mmol) was added, and the reaction was run at 30°C 

overnight.  The reaction mixture was precipitated in 500 mL of cold ethyl ether, vacuum 

filtered, and vaccum dried to yield 179 mg of polymer.  The final polymer is termed 

poly(ethylene glycol)-block-poly(L-lysine-N-pyridyldithioethylethanoate) (PEG-PLTP) 

(Figure 2.2).  

Encapsulation of proteins, and nucleic acids in cross-linked copolymer micelles. 

The block copolymer PEG-PLTP was used to prepare polyionic complex micelles 

containing proteins and nucleic acids, including ovalbumin, catalase, CpG-DNA, and 

poly(I:C) (Figure 2.3).  The micelles were prepared by first combining solutions of FITC-

labeled ovalbumin, CpG-DNA, and/or poly(I:C), and vortexing to ensure thorough 

mixing.  Next, a 20 mg/mL solution of the PEG-poly(L-lysine-dithiopyridyl) (PEG-
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Figure 2.2.  PEG-poly(lysine-dithiopyridyl) (PEG-PLTP) block copolymer. 
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PLTP) copolymer was added to form the micelles.  Alternatively, PEG-PLTP was mixed 

with either FITC-labeled ovalbumin or FITC-labeled catalase.  The mixtures were left to 

stand at room temperature for 30 to 60 minutes to allow self-assembly of the micelles.  

Next, 3,6-dioxa-1,8-octanedithiol (DOODT) was added in a step-wise manner to 

crosslink the dithiopyridyl side chains through a disulfide exchange reaction.  The 

micelles were allowed to stand for 20 minutes following each addition of DOODT to 

complete the disulfide exchange. 

 

The step-wise cross-linking method was developed to ensure that the cross-

linking efficiency was as close as possible to 100%.  The amount of cross-linker thiols 

must be equimolar to the calibrated dithiopyridyl content of the PEG-PLTP polymer; if 

the amount of cross-linker is too high or too low, there will potentially be less than 100% 

cross-linking.  In a typical four-stage cross-linking, we add 70% of the stoichiometric 

amount of dithiol, followed by 15%, 10%, and 10%, at 20 minute intervals.  This method 

is preferred to simply adding an excess of DOODT, because that would result in some 

DOODT molecules reacting with a dithiopyridyl only at one end and not generating a 

Figure 2.3.  Cross-linked copolymer micelle encapsulating protein antigen and 
Poly(I:C). 
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cross-link.  The stepwise method ensures that the cross-linking will be between 95-100%, 

assuming a +/-5% inaccuracy in the DOODT stoichiometry. 

The dithiopyridyl content of the PEG-PLTP solution was calibrated prior to 

micelle preparation, by reacting the polymer with dithiothreitol (DTT) and measuring the 

production of thiopyridone by the increase in absorbance at 342 nm.  In a similar manner, 

the micelle cross-linking can be monitored by reacting a small sample with DTT to 

determine if all of the dithiopyridyl groups have been converted. 

 

Covalent linkage of protein within micelle. 

While the Ova/CpG/poly(I:C) micelles showed high encapsulation and retention 

of the nucleic acids in agarose gels, it was found that the FITC-Ova was not completely 

retained when the micelles were subjected to SDS-PAGE (data not shown).  Thus, we 

modified the protein-based micelle by first reacting the ovalbumin with Sulfo-LC-SPDP, 

a commercially available reagent based on succinimidyl-pyridyl-dithio-proprionate 

(SPDP) (Pierce).  Briefly, a 6.0 mg/mL solution of ovalbumin (15 mg, 0.34 µmol) was 

reacted with Sulfo-LC-SPDP (2.15 mg, 4.08 µmol) and purified by PD-10 column.  This 

gave the Ova approximately 5 or 6 pyridyldithio groups per protein molecule, so that the 

Ova was covalently tethered to the PEG-PLL-dithiopyridyl polymer during the cross-

linking step.   
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2.3 Results 

Characterization of Protein-Loaded Micelles 

Micelles Containing FITC-Ovalbumin, CpG-DNA, and Poly(I:C) 

Micelle-based vaccine formulations were prepared with concentrations of 10 mg/mL 

PEG-poly(L-lysine-dithiopyridyl), 0.5 mg/mL FITC-Ova, 1 mg/mL CpG ssDNA, and/or 

1 mg/mL poly(I:C).  An agarose gel stained with ethidium bromide shows that CpG-

DNA and Poly(I:C) are retained in the micelles (lanes 6, 7, and 8) (Figure 2.4).  FITC-

ovalbumin is retained in the FITC-Ova (lane 5) and FITC-Ova/poly(I:C) (lane 7) 

micelles, but is retained to a lesser extent in the FITC-Ova/CpG-DNA (lane 6) and FITC-

Ova/CpG-DNA/poly(I:C) (lane 8) micelles. 

 

 

Figure 2.4.  Agarose gel of cross-linked copolymer micelles with ovalbumin, CpG 
DNA, and poly(I:C) (9-25-05 batch).  Lanes: (1) free Ova, (2) free Ova/CpG, (3) free 

Ova/poly(I:C), (4) free Ova/CpG/poly(I:C), (5) micelle with Ova, (6) micelle with 
Ova/CpG, (7) micelle with Ova/Poly(I:C), (8) micelle with Ova/CpG/Poly(I:C). 

   1    2  3  4  5   6   7   8 
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Micelles Containing SPDP-FITC-Ovalbumin and CpG-DNA 

 The micelles made with Sulfo-LC-SPDP-modified FITC-Ova showed virtually 

100% retention of the Ova as determined by SDS-PAGE (Figure 2.5), as well as a 

significant degree of CpG DNA retention in agarose gel electrophoresis (Figure 2.6).  

The size and shape of the micelles were characterized by dynamic light scattering (DLS) 

(Figure 2.7) and atomic force microscopy (AFM) (Figure 2.8).  The micelles had an 

effective diameter of 130 nm, with clusters in the size distribution at 45 nm and 190 nm.  

AFM images show a spherical shape, and measurement of the half-peak widths ranged 

from 50 nm to 150 nm. 

SPDP-FITC-Ova

Ova 
+CpG

OvaOva 
+CpG

Ova
MicellesControls

Figure 2.5.  SDS-PAGE (4-20%) of SPDP-Ova/CpG micelles, prepared with 0.5 
mg/mL FITC-Ova-SPDP, 0.5 mg/mL CpG DNA, and 10 mg/mL PEG-poly(Lys-

Thio-Pyridyl). 
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Ova 
+CpG

OvaOva 
+CpG

Ova
MicellesControls

CpG DNA 
oligo

Figure 2.6.  Agarose gel of SPDP-Ova/CpG micelles, prepared with 0.5 mg/mL 
FITC-Ova-SPDP, 0.5 mg/mL CpG DNA, and 10 mg/mL PEG-poly(Lys-Thio-

Pyridyl). 

Figure 2.7.  Characterization of SPDP-Ova/CpG micelles by dynamic light scattering 
(DLS) size distribution by volume (effective diameter 130 nm). 
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Figure 2.8.  Characterization of SPDP-Ova/CpG micelles by atomic force 
microscopy (AFM); approximate diameter = 50 to 150 nm. (Courtesy of Catherine 

Santai (Hud lab, Georgia Tech) 

Field 
width 
1.5 µm

Courtesy of Catherine Santai (Hud lab, Ga. Tech)
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Micelles containing catalase 

 Cross-linked micelles were prepared with Sulfo-LC-SPDP-conjugated catalase, 

with 1:20 and 1:40 ratios of catalase to PEG-PLTP.  Both samples showed a high degree 

of encapsulation and retention in an SDS-PAGE assay (Figure 2.9). 

 

 

SPDP-FITC-Catalase 

SP-Cat 
1:40

SP-Cat 
1:20

SPDP-
Cat

SPDP-
Cat 

MicellesControls Polymer 
from 
1:40 

Figure 2.9.  SDS-PAGE (4-20%) of SPDP-FITC-Catalase micelles, prepared with 
0.25 or 0.50 mg/mL SPDP-FITC-Catalase and 10 mg/mL PEG-poly(Lys-Thio-

Pyridyl). 
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2.4 Discussion 

The objective of this research was to develop an improved polyion complex (PIC) 

micelle delivery system for proteins and nucleic acids.  The PIC micelle concept had first 

been demonstrated by the Kataoka laboratory as stable, self-assembled complexes 

between PEG-poly(Lys) and PEG-poly(Asp).  They later developed the PIC micelle as a 

delivery system for charged molecules, e.g., by complexing PEG-poly(Lys) with DNA 

and by complexing PEG-poly(Asp) with positively charged proteins such as trypsin and 

lysozyme.  Cross-linking schemes based on disulfide exchange reactions or aldehyde-

amine reactions were used to provide stability of the micelles against competing 

electrolytes or under dilute conditions.  In this project, we have focused on improving the 

chemistry involved in the cross-linking schemes, to generate a PIC micelle capable of 

efficient encapsulation and retention of a protein and/or nucleic acid.  In the context of 

developing a protein subunit vaccine, the cargo molecules were ovalbumin, CpG-DNA, 

and poly(I:C).  A secondary application was to deliver a therapeutic enzyme, for which 

we chose catalase as a candidate enzyme because of its applicability to treating 

inflammatory conditions (a focus area in the Murthy laboratory). 

 We used the PEG-poly(Lys) block copolymer as our platform for developing an 

improved micelle design.  The first modification was to use a Michael addition reaction 

to attach the pyridyldithio (PDT) cross-linking monomer to the PEG-poly(Lys) backbone.  

The Michael addition reaction was shown to proceed nearly quantitatively in DMF, 

resulting in a high number of PDT groups and retaining the positively charged amines.  A 

second change was to use a dithiol molecule to cross-link the PDT groups directly, in 

contrast to the reported method of reducing the PDT groups and allowing open air 
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oxidation to proceed over 3 days.  The direct cross-linking of PDT has the advantages of 

being more rapid and is easily monitored by the 342 nm absorbance of thiopyridone. 

 While this design was capable of a moderate degree of protein retention, an 

additional modification was introduced to covalently tether the protein in the core of the 

micelle, by conjugating multiple SPDP molecules to each protein molecule.  This method 

was shown to improve the retention of ovalbumin in SDS-PAGE assays.  It would be 

especially useful for proteins having a low charge density or neutral isoelectric point, in 

which case the electrostatic complexation and poly(Lys) core cross-linking would be 

insufficient to retain a globular protein.  Based on agarose gel assays, however, the 

covalent tethering does not appear to be as necessary for oligo- and polynucleotides, 

which are more linear and have a higher charge density than proteins, and thus form 

strong complexes with the poly(Lys) chain. 

 In summary, these improvements have resulted in a cross-linked micelle design 

that has efficient encapsulation and retention of ovalbumin, CpG-DNA, and poly(I:C), as 

well as the enzyme catalase.  The PEG-PLTP block copolymer is generated through a 

six-step convergent synthesis, using standard reaction mechanisms and commercially 

available reagents.  PEG-PLTP is stored in dry form and is reconstituted prior to micelle 

formation.  Preparation of cross-linked micelles requires about 3 to 4 hours and can be 

done under sterile conditions.  Furthermore, the micelles have the advantage that small 

scale batches can be efficiently prepared.  The developments reported here demonstrate 

that the cross-linked micelle is a promising delivery system for protein and nucleic acid 

therapeutics, with potential applications in vaccines or enzyme-based therapy. 
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CHAPTER 3 

DEVELOPMENT OF POLYKETAL MICROPARTICLES 

 

3.1 Introduction 

Objective 

 The overall objective of Specific Aim 2 was to develop a pH-sensitive 

biodegradable polymer which could be used to fabricate micro- or nano-sized particles 

for intracellular delivery of biotherapeutics and organic drugs.  Various polymers have 

been employed in making colloid nanoparticles, with poly(lactic-glycolic acid) (PLGA) 

being the most commonly used due to its excellent biocompatibility profile and 

commercial availability.  However, there are concerns over the highly acidic 

microclimate within degrading PLGA particles that may complicate the use of PLGA in 

delivering functional proteins and nucleic acids (Fu 2000).  Furthermore, numerous 

medical applications, such as targeting the acidic environment of lysosomes and tumors, 

require drug delivery systems that undergo rapid, pH-sensitive degradation.  Several pH-

responsive delivery systems have been reported for delivery of proteins and DNA 

(Murthy 2003b, Kwon 2005a, Kwon 2005b, Standley 2007).  These systems are ketal-

crosslinked hydrogels generated by free-radical polymerization and thus contain non-

degradable carbon backbone polymer chains.  Another family of pH-sensitive polymers, 

the poly(ortho ester)s, have lengthy synthetic routes and generate acidic degradation 

products (Wang 2004).  Therefore, there is a need for new materials for intracellular 

delivery of proteins and nucleic acids, that have the necessary combination of properties, 
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namely pH-sensitivity, biodegradability, ease of synthesis, and non-acidic degradation 

products. 

We hypothesized that by using the acetal exchange reaction, a ketal-containing 

polymer could be synthesized that would exhibit pH-sensitive degradation and thus 

provide a platform for intralysosomal delivery of proteins/DNA/RNA.  This new pH-

sensitive polymer would be synthesized in a one-step reaction and would have material 

properties needed for fabricating microparticles.  For example, the polymer would be 

sufficiently hydrophobic to be soluble in chloroform or dichloromethane, in order that the 

polymer could be used to fabricate nano- or microparticles using oil-in-water emulsion 

methods.  Another requirement was that the polymer would degrade into low molecular 

weight, water-soluble compounds, so that the degradation products could be excreted 

from the circulation.  Finally, it was desirable to develop a polymer which would not 

generate acidic degradation products, as with polyester-based materials such as PLGA.   

 

Development of the Acetal-Exchange Polymerization 

 In order to meet the requirements of pH-sensitivity and degradation into low 

molecular weight products, we decided to construct a polymer containing acid-labile 

acetal or ketal linkages in the polymer backbone.  Acetals and ketals are functional 

groups that are cleaved by acid-catalyzed hydrolysis and are commonly used in drug 

delivery polymers where intracellular, phagolysosomal release is desired.  We initially 

attempted to synthesize a ketal-containing molecule with an amine group on each end.  

The ketals are a subset of acetals in which neither substituent is a hydrogen.  We 

synthesized the precursor to the diamine ketal molecule, 2,2-di-(phthalimidoethoxy) 
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propane using the acetal exchange reaction (Sheppard 1989).  The diamine ketal 

molecule would be reacted with a molecule containing an acyl chloride group on either 

end.  The two molecules, designated A-A and B-B, would polymerize in a step-growth 

manner through the reaction of the amine with the acyl chloride, thus producing a linear 

polymer with a ketal and amide groups in the backbone.  

 A preliminary trial of the step-growth polymerization using 1,5-diaminopentane 

and terephthaloyl chloride resulted in a polyamide product which was not soluble in 

dichloromethane and chloroform and thus would not be suitable for the oil-in-water 

method of microparticle formation.  However, in our work with synthesizing the diamine 

ketal precursor molecule, we gained familiarity with the use of the acetal exchange 

reaction to generate ketal intermediates.  The acetal exchange reaction is an equilibrium 

reaction which can be driven forward by removal of one of the products (Lorette 1960).  

In the case where 2,2-dimethoxypropane is the starting ketal, the byproduct will be 

methanol, which can be removed by distillation.  We hypothesized that a ketal-containing 

polymer could be generated by directly reacting a diol (a molecule containing two 

alcohol groups) with 2,2-dimethoxypropane at a high temperature where the methanol 

byproduct would be distilled off.  This reaction would generate mixed ketal 

intermediates, which can combine with each other or with the starting materials in a step-

growth manner to form oligomer chains and eventually a polymer (Figure 3.1).  The 

acetal exchange method avoids the introduction of a amide bond and thus can produce a 

hydrophobic polymer.  The development of the acetal exchange polymerization led to the 

synthesis of various  ketal-containing polymers, termed “polyketals”, which could be 

used to fabricate microparticles via oil-in-water emulsion methods. 
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Development of Co-Polyketals Based on Cyclohexanedimethanol 

 We initially used the diol 1,4-benzenedimethanol to generate the prototype 

polyketal poly(1,4-phenylene-acetonedimethylene ketal) (PPADK) (Heffernan 2005).  

Because the hydrolysis of the ketal linkage produces a molecule of acetone and two 

alcohol groups, the degradation of PPADK were simply acetone and the original diol, 

1,4-benzenedimethanol.  One concern with 1,4-benzenedimethanol as a degradation 

product was that there was no data available on the compound’s toxicity.  An alternate 

diol compound was considered, namely 1,4-cyclohexanedimethanol (CDM), which has a 

known biocompatibility profile.  In work led by Stephen Yang of the Murthy laboratory, 

a solid polyketal (PCADK) was synthesized with CDM; however, its degradation rates 

were much slower than PPADK (Lee 2007).  Other polyketals were synthesized with 1,4-

butanediol, 1,5-pentanediol, and 1,8-octanediol; these polymers, however, were liquids at 

room temperature and thus were not suitable for microparticle formation.  Next, 

copolymers of CDM and the various short-chain diols were synthesized, resulting in solid 

co-polyketals with a range of degradation rates corresponding (inversely) to the 

Figure 3.1.  Synthesis of a polyketal via the acetal exchange reaction. 
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hydrophobicity of the monomers.  One of these is an 80:20 copolymer of CDM and 1,4-

pentanediol, termed PK3, which is suitable for microparticle fabrication and has 

relatively fast degradation kinetics (Yang 2008).  PK3 has a hydrolysis half-life on the 

order of 1 to 2 days and has material properties which are suitable for microparticle 

fabrication.  One significant property of PK3 is the biocompatibility of its degradation 

products.  As shown in Figure 3.2, the degradation products of PK3 have relatively high 

lethal dose values.  For the purpose of comparison, a typical in vivo application of the 

polyketal microparticles would require 50 mg/kg of polyketal; thus the amount of the 

degradation products would be much less than the reported LD50 values. 

 

Hydrophobic Ion Pairing  

 In this chapter we also describe the development of the hydrophobic ion pairing 

(HIP) technique for encapsulation of proteins and nucleic acids in polyketal 

microparticles.  We established the need for the ion pairing technique based on 

preliminary findings that proteins such as ovalbumin could not be encapsulated with high 

LD50 = 3200 mg/kg 
(Rat – oral) 

LD50 = 1600 mg/kg 
(Mouse – oral) 

LD50 = 6300 mg/kg 
(Rabbit – oral) 

LD50 = 20000 mg/kg 
(Rabbit - skin) 

LD50 = 5800 mg/kg 
(Rat – oral) 

LD50 = 7426 mg/kg 
(Guinea pig – dermal) 

HO
OH

+ O+OHHO

Figure 3.2.  Toxicity of degradation products of co-polyketal PK3. (Sigma-
Aldrich MSDS) 
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efficiency using the water-oil-water double emulsion method.  These findings may have 

been due to insufficient polymer chain length and entanglement which allows escape of 

the protein from the inner aqueous phase to the outer aqueous phase.  The hydrophobic 

ion pairing technique has been reported in the literature for the extraction of water-

soluble biotherapeutics (DNA and proteins) into an organic solvent (Hegg 1979, Powers 

1993, Bromberg 1994, Meyer 1998, Patel 2004).  The basic procedure involves the 

pairing of a polar lipid or surfactant molecule with a (charged) DNA, RNA, or protein 

molecule, with an equimolar ratio of opposite charges (Figure 3.3).  This cancels the 

charges and produces a complex with a hydrophobic character.  The resulting 

hydrophobic complex can be co-dissolved with the polyketal in an organic solvent, or a 

mixture of solvents, enabling microparticles to be fabricated by the oil-in-water single 

emulsion method.  Because the hydrophobic complex partitions to the oil phase, this 

Figure 3.3.  Hydrophobic ion pairing of poly(I:C) to CTAB (top) and ovalbumin 
to CTAB (bottom). 
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method has the potential to generate higher encapsulation efficiencies than the double 

emulsion method.  Several water-soluble compounds were encapsulated in polyketals 

using the HIP/single emulsion process, including ovalbumin, single-stranded oligo DNA, 

poly(I:C) (dsRNA), and siRNA.  

 

3.2  Experimental Methods 

Synthesis of Polyketals via the Acetal Exchange Reaction 

 As described in the Introduction, we developed a novel polymerization strategy 

based on the acetal exchange reaction, which generated a linear polymer with ketal 

groups in the backbone.  This synthesis uses a step-growth acetal exchange 

polymerization of a diol with 2,2-dimethoxypropane, yielding a polyketal (Figure 3.4).  

The reaction was based on a published protocol for the acetal-exchange reaction between 

N-(2-hydroxy ethyl) phthalimide and 2,2-dimethoxypropane (Sheppard 1989).  The first 

polyketal synthesized in the Murthy laboratory was poly(1,4-phenylene-

acetonedimethylene ketal) (PPADK) (Heffernan 2005).  Polyketals based on 1,4-

cyclohexanedimethanol as the primary diol were later synthesized (Lee 2007, Yang 

2008). 

 

Synthesis of poly(1,4-phenylene-acetonedimethylene ketal) (PPADK) 

 A schematic of the synthesis of PPADK is shown in Figure 3.4.  PPADK was 

synthesized in a 25 mL two-necked flask, connected to a short-path distilling head.  1,4-

Benzenedimethanol (1.0 g, 7.3 mmol) dissolved in 10 mL of warm ethyl acetate was 

added to 10 mL of distilled benzene kept at 100°C.  Re-crystallized p-toluenesulfonic 
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acid (5.5 mg, 0.029 mmol) dissolved in 550 µL of ethyl acetate was then added.  After 

allowing the ethyl acetate to distill off, distilled 2,2-dimethoxypropane (DMP, 900 µL, 

7.4 mmol) was added to initiate the reaction.  Five additional doses of DMP were added 

via a metering funnel, with each dose consisting of 2 mL of benzene plus 300 to 500 µL 

of 2,2-dimethoxypropane.   Each dose was added over a 30 to 40 min period with a 30 

min interval in between.  The total duration of the reaction was 7 h.  The reaction was 

stopped with the addition of 100 µL of triethylamine and was precipitated in cold 

hexanes.  The crude product was vacuum filtered, rinsed with ether and hexanes, and 

vacuum dried to yield 600 mg of white solid product (48% yield). (Heffernan 2005) 

 

Synthesis of Co-polyketal Based on 1,4-Cyclohexanedimethanol and 1,5-Pentanediol 

(PK3)   

 The co-polyketal PK3 was developed by Stephen Yang of the Murthy laboratory, 

using the acetal exchange polymerization (Yang 2008).  Two diols are reacted with 2,2-

dimethoxypropane to create a copolymer, as shown in Figure 3.5.  A typical synthesis of 

Figure 3.4.  Synthesis of the polyketal, poly(1,4,-phenylene-acetone dimethylene 
ketal)(PPADK), via the acetal exchange reaction. (Heffernan 2005) 
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PK3 is carried out in a 25 mL two-necked flask connected to a short-path distilling head.  

1,4-Cyclohexanedimethanol (5.0 g, 34.7 mmol) and 1,5-pentanediol (0.903 g, 8.67 mmol) 

were dissolved in 30 mL of distilled benzene at 100°C.  Re-crystallized p-toluenesulfonic 

acid (3.5 mg, 0.0197 mmol) dissolved in 3.5 mL of ethyl acetate was then added.  

Distilled 2,2-dimethoxypropane (DMP, 5.33 mL, 43.3 mmol) was added to initiate the 

reaction.  Additional doses of DMP (2.5 mL, 20.3 mmol) and benzene (5 mL) were 

subsequently added to the reaction every hour for 6 hours via a metering funnel at slow 

drip rate to compensate for DMP and benzene that had distilled off.  After 20 hours, the 

reaction was stopped with the addition of 2 mL of triethylamine.  The polymer was 

isolated by precipitation in cold hexanes (-20°C) followed by vacuum filtration.  

 

Characterization of Polyketals PPADK and PK3 

 The polyketals were characterized by gel permeation chromatography (GPC) and 

1H nuclear magnetic resonance (NMR) spectroscopy.  The GPC measurements were run 

in tetrahydrofuran (THF) using a Shodex KF-803 column with a Shimadzu SPD-10A 

Figure 3.5.  Synthesis of the co-polyketal PK3 via the acetal exchange 
polymerization. (Yang 2008) 
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UV-Visible detector.  Samples were analyzed against polystyrene standards (Mw = 1060; 

2970; 10,680) to calculate molecular weight, using Shimadzu software.  The 1H NMR 

spectra of the polyketals were run in CDCl3 using a Varian Mercury Vx 400 machine.  A 

small amount of triethylamine was added to the polyketal samples to prevent hydrolysis 

during the analysis. 

 

pH-Dependent Hydrolysis of PPADK 

The hydrolysis rates of PPADK were measured at lysosomal pH (5.0) and physiological 

pH (7.4).  To measure the hydrolysis rates, PPADK was ground into a fine powder and 

added to deuterated solutions at pH 7.4 (phosphate buffer), pH 5.0 (acetate buffer), and 

pH 1.0 (DCl) at a concentration of 10 mg/mL.  Dioxane was added to each sample as a 

reference molecule.  Next, the suspensions were stirred at 37°C and data points were 

taken at 3, 24, 48, and 72 hours.  Each suspension was centrifuged for 4 minutes at 

1800g, and a sample of the supernatant was analyzed by 1H NMR.  The NMR spectra 

contained peaks for 1,4-benzenedimethanol (7.24 and 4.47 ppm) and acetone (2.05 ppm).  

The average of the two 1,4-benzenedimethanol (BDM) peak integrals were used to 

determine the percentage of phenylene groups present as BDM; any phenylene groups 

present in the (water insoluble) polymer would not be present in the supernatant.  The 

eight dioxane protons served as a reference to normalize the BDM levels between the 

various samples.  The hydrolysis half-lives were determined by subtracting the percent 

hydrolysis curves from 100% and fitting the difference to an exponential decay function. 

(Heffernan 2005) 

 



 44

Fabrication of polyketal nano- and microparticles using the oil-in-water emulsion 

method. 

Method 1:  Preparation of PPADK nanoparticles 

 Polyketal nanoparticles were made using a single oil-in-water emulsion/solvent 

evaporation method.  Typically, 50 mg of PPADK dissolved in 1 mL of CHCl3 was 

added to 5 mL of pH 9 buffer (10 mM NaHCO3) containing 0.2 to 1% poly(vinyl 

alcohol) (31–50 kDa) as the emulsifier.  The oil-water mixture was shaken briefly and 

then sonicated for 2 to 3 minutes at 40 watts using a Branson Sonifier 250 to form a fine 

oil-in-water emulsion.  The emulsion was stirred under nitrogen flow for at least 3 hours 

to evaporate the solvent and produce a nanoparticle suspension.  The nanoparticles were 

centrifuged at 4°C for 10 minutes at 5000g and washed with deionized water to prepare 

samples for scanning electron microscopy.  Particle sizes were analyzed by dynamic light 

scattering using a Brookhaven 90Plus particle sizer. (Heffernan 2005) 

 

Method 2:  Preparation of Polyketal Microparticles Containing Ova:CTAB and 

poly(I:C):CTAB Complexes 

 Microparticles were fabricated using an oil-in-water emulsion, solvent 

evaporation method.  The oil phase contained 50 mg of PK3 dissolved in 400 µL of 

chloroform, plus 0.8 mg of Ova:CTAB in 400 µL of 1:1 chlorform-DMSO and 0.9 mg of 

poly(I:C):CTAB in 150 µL of 4:1 chloroform-methanol.  Control batches included 

Ova:CTAB particles, poly(I:C):CTAB particles, or empty particles.  The total volume of 

the organic phase was made up to 1.2 mL with chloroform and homogenized in 15 mL of 

5% PVA solution at for 2 minutes 24000 rpm.  The resulting emulsion was poured into 
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85 mL of 1% PVA solution and stirred for 4 hours to evaporate the chloroform.  The 

PVA solutions were buffered with 8 mM sodium phosphate (pH 8) to prevent hydrolysis 

of the acid-sensitive polyketal.  The microparticles were collected by centrifugation at 

10000 g, washed once with OmniPur water, resuspended in 5 mL OmniPur water, then 

lyophilized overnight.  Particle yields were 25% to 70% of the starting polyketal mass.  

The size and morphology of the microparticles were characterized by dynamic light 

scattering (DLS) and scanning electron microscopy (SEM).  DLS samples were prepared 

by re-suspending the lyophilized particles in water and vortexing and bath sonicating for 

a few minutes.  The SEM samples were prepared either by spreading dry microparticles 

onto sticky carbon tape or by drying a drop of re-suspended particles on the metal SEM 

mounting stub. 

 

In vivo delivery of polyketal nanoparticles to murine macrophages. 

 In collaboration with Dr. Robert Pierce at the University of Rochester, we 

investigated the delivery of polyketal nanoparticles (PKNs) to liver macrophage cells.  

PPADK particles were prepared by Method 1 as described above, except that fluorescein 

was dissolved along with the polyketal in the chloroform phase. The attempted loading 

was 1% fluorescein by mass.  A volume of 200 µL of (10 mg/mL) fluorescein-containing 

PKNs was injected into the tail vein of mice.  The mice were sacrificed after 1 hour.  

Frozen sections of liver and spleen were fixed in 4% paraformaldehyde, stained with the 

macrophage marker F4/80, and analyzed by fluorescent microscopy and 

immunohistochemistry (IHC).   
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Hydrophobic Ion Pairing  

The hydrophobic ion pairing technique was used to convert various nucleic acid 

and protein molecules to hydrophobic complexes that could be dissolved in organic 

solvents or mixtures of solvents.  For oligonucleotides, such as 20-base single-stranded 

(ss)DNA or 21 base-pair short interfering (si)RNA, we used a water-dichloromethane 

(DCM)-methanol procedure with the surfactant 1,2-dioleoyl-3-trimethylammonium-

propane (DOTAP).  For ovalbumin, the water-DCM-methanol method resulted in 

aggregation, so a purely aqueous method was developed, using the surfactants DOTAP, 

docusate sodium, and cetyltrimethylammonium bromide (CTAB).  Similarly, poly(I:C) 

could not be ion-paired by the water-DCM-methanol method, so the aqueous method 

with CTAB was utilized. 

 

Hydrophobic Ion Pairing of Oligonucleotides (CpG-DNA and siRNA) by the Water-

Dichloromethane-Methanol Procedure 

 The oligonucleotides CpG-DNA and siRNA were each ion paired with 1,2-

dioleoyl-3-trimethylammonium-propane (DOTAP).  This method was adapted from a 

reported procedure for ion pairing plasmid DNA for encapsulation in microparticles 

(Patel 2004).  In a typical procedure, a solution of DNA or RNA (0.8 mg) in 1 mL TE 

buffer was combined with a solution of DOTAP (1.9 mg) in 1 mL dichloromethane 

(DCM) and 2.1 mL of methanol.  This mixture created a Bligh & Dyer monophase, 

which was allowed to stand for 5 minutes.  Next, we added 1 mL DCM and 1 mL water 

to bring about phase separation, and the two-phase mixture was vortexed for 1 minute.  

The mixture was then centrifuged at 1200 g for 5 minutes at 20°C.  The organic phase 
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was immediately isolated using a syringe, and the nucleic acid content was analyzed by 

UV absorbance at 260 nm.  This process resulted in nearly 100% extraction of DNA or 

RNA into the organic phase; however, the actual yield (70 to 80%) was limited by the 

volume of the DCM phase that could be isolated.  Scaling down the process by one-half 

resulted in slightly lower percent yield due to losses in the isolation step. 

 

Hydrophobic Ion Pairing of Ovalbumin with CTAB 

 Ovalbumin was first converted to the stabilized form (S-ovalbumin) by heating a 

10 mg/mL ovalbumin solution to 55°C for 20 hours in 100 mM, pH 10 sodium phosphate 

buffer, followed by desalting in a PD-10 column.  The S-ovalbumin solution was diluted 

to 1 mg/mL in OmniPur water and adjusted to pH 11 by addition of NaOH.  Next, 10 mL 

(10 mg) of S-ovalbumin solution (4°C) was added to 364 µL of cetyltrimethylammonium 

bromide (CTAB) solution (3.64 mg), resulting in a precipitate which was collected by 

centrifugation at 20000g for 20 minutes at 5°C.  The lyophilized S-Ova:CTAB ion-pair 

complex was dissolved in 1:1 chloroform-DMSO, at an approximate concentration of 1 

to 2 mg/mL as determined by UV absorbance at 280 nm.  The ratio of CTAB cations to 

ovalbumin anions was 0.7:1. 

 

Hydrophobic Ion Pairing of Poly(I:C) to CTAB. 

Poly(I:C) was also ion-paired with CTAB using a similar protocol at a molar 

charge ratio (+/-) of 1.32 to 1.  Poly(I:C) was initially dissolved in IDTE pH 7.5 buffer at 

a concentration of 2.26 mg/mL, as determined by the UV absorbance at 260 nm (50 

µg/mL/A.U., per supplier’s literature).  The poly(I:C) solution was diluted to 0.1 mg/mL 
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in OmniPur nuclease-free water and kept at 4°C.  Next, 10 mL of poly(I:C) solution (1 

mg) was combined with 1 mL of CTAB solution (1.52 mg), resulting in a precipitate 

which was collected by centrifugation at 20000g for 20 minutes at 5°C.  The lyophilized 

poly(I:C):CTAB complex was dissolved in 4:1 chloroform-methanol at a concentration of 

6 mg/mL as determined by absorbance at 260 nm. 

 

Characterization of Protein and Nucleic Acid Loading in Polyketal Microparticles  

 For measuring the encapsulation levels of protein, DNA, or RNA, a sample of 

microparticles (approximately 5 mg) was first digested in 200 µL of 0.01 M HCl (with 

0.25% SDS) over a 5 to 10 minute period.  The sample was vortexed and bath sonicated 

as needed to ensure uniform digestion.  This resulted in a slightly hazy solution which 

was neutralized with 400 µL of 0.05 M pH 9.5 sodium bicarbonate buffer.  At this point, 

different methods were used to analyze loading, depending on the type of molecules 

being analyzed.   

 For ovalbumin, we used a fluorescamine assay in a 96-well plate, with 3 wells per 

particle digest sample.  Ovalbumin standard dilutions were prepared in the same 

neutralized solution containing HCl, SDS, and sodium bicarbonate.  The plate was read 

with a Bio-Tek plate reader using KC4 software.   

 To measure Poly(I:C) content, the samples and poly(I:C) standards were diluted 

in IDTE pH 7.5 buffer and stained with SYBR Green I or OliGreen nucleic acid dye.  

The samples were analyzed using a Shimadzu RF-5301PC spectrofluorophotometer with 

an excitation of 494 nm for SYBR Green I and 480 nm for OliGreen. 
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 For siRNA-loaded microparticles, the digest mixture was diluted in half and the 

absorbance peak at 260 nm was recorded using a Shimadzu UV-1700 spectrophotometer.  

The absorbance difference between a plain polyketal microparticle sample and the siRNA 

particle sample was multiplied by the reported extinction coefficient for siRNA to obtain 

the concentration of siRNA in the sample. 

 

MTS Cell Viability Assay 

 RAW264.7 macrophage cells were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) with 10% FBS and Pen/Strep/Fungizone per ATCC’s protocol.  Cells 

were seeded overnight in a 96-well plate at 15,000 cells/150 µL/well.  Empty polyketal 

microparticles and particles containing Ova, poly(I:C), or Ova+poly(I:C) were re-

suspended in complete medium with vortexing and bath sonication.  Microparticle 

suspensions and solutions of Ova, poly(I:C), and CTAB were diluted in complete 

medium, and 50 µL of each dilution was added to triplicate wells.  After 5 hours, Cell 

Titer 96 MTS reagent was added at 30 µL per well, and the cells were incubated.  After 1 

hour incubation, the difference in absorbance at 490 nm and 650 nm was recorded using a 

Bio-Tek Synergy™ HT plate reader with KC4 software.  Measurements were corrected 

for background (medium only) and expressed as cell viability relative to untreated cells. 
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3.3  Results 

Synthesis of Polyketals 

 Using the acetal exchange polymerization method developed in the Murthy 

laboratory, the prototype polyketal PPADK was synthesized and purified.  Following the 

precipitation and drying steps, 600 mg of white solid product was recovered (48% yield).  

Analysis of polyketal batches by GPC indicated weight-average molecular weights 

ranging from Mw = 2290 to 4000, with a polydispersity index of 1.4 to 1.6 (Figure 3.6).  

The corresponding degree of polymerization ranges from 12.9 to 22.5 repeating units.  

The 1H NMR spectrum (Figure 3.7) shows repeating unit peaks at 7.3 ppm (4b), 4.5 ppm 

(4c), and 1.5 ppm (6a).  The peaks at 2.5 ppm and 1.0 ppm are due to the triethylamine 

added to prevent ketal hydrolysis.  The NMR spectrum confirms that the repeating unit of 

PPADK contains a ketal group (‘6a’).  Together, the GPC and 1H NMR data provide 

evidence for the successful synthesis of PPADK.  (Heffernan 2005) 

Figure 3.6.  GPC trace of PPADK in THF (Shimadzu SCL-10A). (Heffernan 2005). 
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pH-dependent hydrolysis of PPADK 

The percent hydrolysis of PPADK is plotted over a 3-day time course at pH 1.0, 

pH 5.0, and pH 7.4 (Figure 3.8).  The calculated exponential decay half-lives for the 

hydrolysis of PPADK are 102 hours at pH 7.4 and 35 hours at pH 5.0.  The pH 1.0 

sample was completely hydrolyzed by the first time point of 3 hours and thus did not 

have a calculated half-life.  The PPADK hydrolysis data show a 3-fold rate increase from 

pH 7.4 to 5.0, which is significantly less than the 250-fold rate increase observed for a 

water-soluble ketal in going from pH 7.4 to 5.0 (Kwon 2005a) .  It is hypothesized that 

the lower pH sensitivity of PPADK is due to its water insolubility, which limits the 

diffusion of water and creates a rate-limiting step that is pH-independent. 

Figure 3.7.   1H NMR spectrum of PPADK in CDCl3  (Heffernan 2005). 
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Release of Rhodamine B from polyketal microparticles 

 The release kinetics of Rhodamine B from PCADK microparticles at room 

temperature are shown in Figure 3.9.   The particles were made by single emulsion and 

their diameter was approximately 5 µm by SEM.  The amount of rhodamine B released 

was determined by measuring the fluorescence of the supernatant following 

centrifugation.  The calculated half-lives were 1 day at pH 1.0, 5 days at pH 4.5, and 

greater than 15 days at pH 7.4. 
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Figure 3.8.  Hydrolysis kinetics of PPADK. (Heffernan 2005) 
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In vivo delivery of polyketal nanoparticles to murine macrophages. 

 In collaboration with Dr. Robert Pierce at the University of Rochester, PPADK 

particles (effective diameter 256 nm by DLS) containing 1% (nominal) fluorescein by 

weight were administered intravenously to mice, and liver histology was examined 1 

hour post-injection.  Fluorescent microscopy of the liver sections indicates that the PKNs 

are abundantly present throughout the liver, residing mainly in the Kupffer cells (data not 

shown).  Anti-FITC IHC confirms the presence of fluorescein-PKNs within the 

cytoplasm of a Kupffer cell lining a liver sinusoid (Figure 3.10).  Control “empty” PKNs 

were also administered and show virtually none of the punctate fluorescence 

characteristic of the fluorescein-PKNs.  Occasional green autofluorescent globules were 

identified within Kupffer cells of mice treated with either control PKNs or PBS (data not 
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Figure 3.9.  Release of rhodamine B from PCADK microparticles at room 
temperature. 
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shown).  These likely represent scavenged cell debris.  Similarly, the splenic 

macrophages contained FITC-PKNs (data not shown).  

 

Hydrophobic Ion Pairing of Proteins and Nucleic Acids 

We used the technique of hydrophobic ion pairing to convert several water-

soluble molecules – CpG-DNA, siRNA, ovalbumin and poly(I:C) –  into hydrophobic 

complexes that were soluble in organic solvents or mixtures of solvents.  The most 

efficient ion pairing was achieved with the oligonucleotides (CpG-DNA and siRNA) 

using the water-DCM-methanol procedure.  This method typically results in nearly 

complete extraction of the nucleic acid into the DCM phase, with the yield being limited 

by the amount of the DCM phase that could be isolated.  Typical yields were 70-80% 

based on UV absorbance measurements.   

Figure 3.10.  Release of fluorescein from PPADK nanoparticles.  
Dark red = anti-FITC staining; Blue = DAPI staining (nuclei). 
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Initial attempts to ion pair DOTAP to either poly(I:C) or ovalbumin were 

unsuccessful due to aggregation at the DCM-water interface. Thus, a purely aqueous 

method was developed, and we were successful in ion pairing ovalbumin to three 

different surfactants:  docusate sodium, DOTAP, and CTAB.  In the case of docusate 

sodium, which is negatively charged, the ovalbumin solution was adjusted to pH 4, 

whereas with DOTAP and CTAB the ovalbumin solution was adjusted to pH 11.  In all 

three cases, the resulting ion-pair complexes were soluble in a chloroform-DMSO 

mixture.  Because the objective of this study was to co-encapsulate ovalbumin and 

poly(I:C) in a microparticle, it was essential that the respective ion-paired complexes be 

compatible in solution.  It was observed that mixing of 1) an ovalbumin:docusate ion-pair 

dissolved in DMSO-chloroform and 2) a CpG-DNA:DOTAP ion-pair dissolved in DCM 

resulted in slight precipitation, from which it was concluded that ion-paired compounds 

would only be compatible in solution if the surfactants were of the same charge.  

Ovalbumin was thus ion-paired with one of the cationic lipids (CTAB), so that it would 

be compatible with poly(I:C) paired to a cationic lipid.  One issue with the ion-pairing of 

ovalbumin was the formation of aggregates that could not be dissolved in the organic 

solvents.  This resulted only about 10 to 15% of the ovalbumin being recovered after the 

lyophilization step.  Because aggregation is related to the stability of the protein, it was 

speculated that converting ovalbumin to the stabilized form, S-ovalbumin, would resulted 

in a higher yield when ion paired with CTAB.  CTAB was ion-paired with S-ovalbumin 

(at pH 11) with a yield of 15 to 20%.  The mass ratio was 0.364 to 1, which corresponds 

to a calculated charge ratio of 0.7 moles of CTAB cations to 1 mole of ovalbumin anions.  
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The ion pairing of poly(I:C) to CTAB was more efficient, with yields of 90% using the 

aqueous method. 

 

 

Characterization of Polyketal Microparticles  

 Microparticles were fabricated using the oil-in-water single emulsion methods 

described above.  Various small hydrophobic molecules, such as dyes or inhibitors, have 

been encapsulated by dissolving the molecule with the polyketal in the oil phase.  Initial 

attempts at using a double emulsion method to encapsulate water-soluble proteins, 

however, resulted in low encapsulation levels.  Thus, the hydrophobic ion pairing 

technique was used to form hydrophobic complexes of the proteins or nucleic acids with 

a surfactant.  The ion-paired complexes were efficiently incorporated into polyketal 

microparticles using a single emulsion method.  Figure 3.11 shows scanning electron 

microscope (SEM) images of representative polyketal microparticle batches.  Typical 

loading levels of PK3 microparticles were 20 µg/mg ovalbumin and 10 µg/mg poly(I:C).  
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Cell toxicity of polyketal microparticles 

 An MTS cell viability assay was performed to measure cytotoxicity of polyketal 

microparticles containing ion-paired complexes.  RAW264.7 cells treated with 

microparticles containing Ova:CTAB and/or poly(I:C):CTAB complexes had 

approximately 50% cell viability at a concentration range of 0.05 to 0.25 mg/mL.  Plain 

polyketal microparticles were less toxic, with 70% cell viability at 1.25 mg/mL. (Figure 

3.12).  The corresponding concentrations of soluble ovalbumin and poly(I:C) were not 

toxic to RAW264.7 cells, however the ion-pairing surfactant CTAB showed significant 

toxicity at 0.8 µg/mL (Figure 3.13). 

Figure 3.11.  Scanning electron microscope images of microparticles fabricated 
with PPADK (left) and PK3/Ova/poly(I:C) (right). 
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Figure 3.12  MTS cell viability assay for polyketal microparticles containing 
ovalbumin and/or poly(I:C). 
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Figure 3.13.  MTS cell viability assay for soluble ovalbumin, poly(I:C), and CTAB. 
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3.4  Discussion 

 In this study, the acetal exchange reaction has been shown to be an effective 

method of synthesizing a linear, hydrophobic polymer with pH-sensitive ketal linkages in 

the polymer backbone.  The acetal exchange polymerization uses the ketal as the joining 

group between 2,2-dimethoxypropane and a diol, and this method allows flexibility in the 

selection of the diol to achieve the desired combination of material properties and 

degradation products.  The incorporation of a pH-sensitive ketal linkage produces a 

polymer that is relatively stable at physiological pH (7.4) yet degrades more rapidly at 

acidic pH (5.0).  This property make polyketal microparticles useful as an intracellular 

delivery vehicle designed to undergo accelerated degradation and release in the acidic 

lysosomes of phagocytic cells.  Also, because the ketal linkage is contained in the 

backbone of the polymer, the polyketal will degrade into small molecules that are 

excretable.  This is a significant advantage over ketal cross-linked hydrogels that contain 

non-biodegradable carbon backbone polymers. 

Another important property of polyketals is that they do not have acidic 

degradation products.  This is in contrast to polyesters such as poly(lactic-co-glycolic 

acid) (PLGA), polyanhydrides, and poly(ortho ester)s.  One area of concern with 

polyester-based particles is that the acidic microenvironment within degrading particles 

can be deleterious to proteins or nucleic acids being delivered (Tamber 2005).  The pH 

within degrading PLGA microparticles has been estimated to reach levels as low as pH 2 

(Fu 2000, Shenderova 1999).  This has necessitated the inclusion of buffer salts in PLGA 

microparticle formulations or the modification of proteins (such as PEGylation) prior to 
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encapsulation, in order to protect acid-labile proteins from hydrolysis (van de Weert 

2000, Mok 2007).  A second area of concern is the release of acid within cells or into the 

surrounding tissue, which can lead to an inflammatory response.  The absence of acidic 

degradation products in polyketals is particularly important in delivering drugs or 

biotherapeutics to treat inflammatory diseases, because the generation of acid would itself 

cause inflammation.  This is also a consideration with pulmonary vaccines, where the 

release of acid from degrading microparticles might induce lung inflammation 

(Armstrong 1996, Segal 2007).  In other vaccine applications, this property allows the 

inflammatory response to be controlled by specific immunostimulatory adjuvants and 

localized to the targeted antigen-presenting cells, which offers a potential advantage over 

polyester-based biomaterials such as PLGA.   

 The cell toxicity of polyketal microparticles was measured with cultured RAW 

264.7 macrophages, using an MTS cell viability assay.  The toxicity was greater with the 

ion-paired ovalbumin and/or poly(I:C) formulations as compared to the plain polyketal 

particles.  The higher cytotoxicity of the ovalbumin/poly(I:C) particles is potentially due 

to the ion-pairing surfactant, CTAB, contained in the particles.  Based on the 

stoichiometry of the ion pairing procedures and the measured loading of ovalbumin and 

poly(I:C) in the microparticles, the combined Ova/poly(I:C) particles are estimated to 

have 22.5 µg/mg of CTAB.  Thus the particle dosage of 0.05 mg/mL, which exhibited 

approximately 50% toxicity, contained 1.13 µg/mL of CTAB.  The toxicity data for 

soluble CTAB showed a drop in cell viability at 0.8 µg/mL.  This suggests that a 

significant proportion of the ion-paired CTAB was released from the microparticles 

during the 5 hour incubation with cells.  This data for CTAB toxicity also falls within the 
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range reported for other cell lines treated with CTAB-containing liposomes, micellar 

solutions, cationic vesicles, and nanoparticles (Mirska 2005, Cortesi 1996, Kuo 2005, 

Delie 2001).  

In this study we have employed the technique of hydrophobic ion pairing to 

enable encapsulation of water-soluble components such as ovalbumin and poly(I:C) via a 

single emulsion, solvent evaporation method.  This method produced polyketal 

microparticles with loading levels in the range of 1% to 2% (wt/wt), which could not be 

achieved by the water-oil-water double emulsion method.  Hydrophobic ion pairing has 

been used by several groups to encapsulate nucleic acids and proteins in microparticles, 

with improved loading levels or release profiles (Choi 2006, Yoo 2004, Fu 2003, Patel 

2004, Delie 2001).  In the present study, we have achieved the first hydrophobic ion 

pairing of the double-stranded RNA analog poly(I:C) and the first co-encapsulation of 

ion-paired ovalbumin and poly(I:C) in a microparticle.  The methods developed in our 

study can potentially be used for other protein antigens and TLR ligands for vaccines, as 

well as delivery of nucleic acids such as plasmid DNA, mRNA, and siRNA. 

 In conclusion, we have developed a new family of pH-sensitive polymers, termed 

polyketals, which degrade into water-soluble, non-acidic products.  Polyketals are linear 

hydrophobic polymers that can be fabricated into microparticles using solvent 

evaporation methods.  Polyketals contain acid-labile ketal linkages in the backbone and 

are synthesized by a step-growth polymerization based on the acetal exchange reaction.  

Polyketals exhibit pH-sensitivity and thus the microparticles are designed to be stable at 

physiological pH yet release the vaccine components within the acidic phagolysosomes 

of dendritic cells.  Additionally, an adaptation of the hydrophobic ion-pairing technique 
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was used to improve the encapsulation efficiency of water soluble molecules.  Ovalbumin 

and the double-stranded RNA analog poly(I:C) were each ion-paired to the surfactant 

CTAB to produce hydrophobic complexes which were encapsulated in biodegradable 

polyketal microparticles.  The ion-paired polyketal formulation represents a significant 

contribution to the field of microparticle vaccine delivery systems, and the methods 

developed here can be applied to other areas such as intracellular delivery of enzymes, 

plasmid DNA, or interfering RNA. 
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CHAPTER 4 

EFFICACY OF MICROPARTICLE VACCINES CONTAINING 

OVALBUMIN AND IMMUNOSTIMULATORY AGENTS 

 

4.1  Introduction 

In Specific Aim 3, the objective was to demonstrate the efficacy of model vaccine 

formulations based on the PEG-polylysine cross-linked micelles and polyketal 

microparticles, using in vitro and in vivo protocols.  The cross-linked micelles and 

polyketal microparticle vaccines are designed to deliver protein antigen and TLR-

inducing adjuvants to the phagolysosomes of dendritic cells, where the vaccine 

components will induce activation of DCs and cross-priming of cytotoxic T lymphocytes.  

The adjuvants consisted of TLR agonists including CpG-DNA, MPL, and poly(I:C).  

These adjuvants are capable of stimulating the innate immune response within antigen-

presenting cells (APCs), leading to secretion of inflammatory cytokines such as Type I 

interferons, tumor necrosis factor (TNF)-α, and interleukin (IL)-6, IL-10, and IL-12, as 

well as upregulation of costimulatory surface molecules such as CD80 and CD86 

(Verdijk 1999, Alexopoulou 2001, Loré 2003, Napolitani 2005, Gautier 2005). 

Our working hypothesis was that encapsulation of antigen and TLR agonists in a 

vaccine delivery formulation would enhance the cross-priming of CTLs, in comparison to 

administration of soluble antigen and adjuvant.  To test this hypothesis, we used an in 

vitro dendritic cell-OT1 splenocyte co-culture system and an in vivo immune response 

model.  The experimental protocols are designed to measure the ability of vaccine-treated 

antigen-presenting cells (APCs) to cross-prime cytotoxic T lymphocytes (CTLs).  In the 
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in vitro test, murine splenic dendritic cells were treated with vaccine formulations and co-

cultured with splenocytes from an OT-1 mouse.  The OT-1 mouse strain expresses a 

transgenic T-cell receptor that recognizes the H-2Kb-restricted ovalbumin peptide 

SIINFEKL presented by major histocompatibility complex (MHC) class I molecules.  

Following the co-culture, the expanded T cells were re-stimulated with the SIINFEKL 

peptide along with a Golgi block to induce production and accumulation of cytokines 

within the cells.  We used an anti-CD8+ surface stain to identify cytotoxic T lymphocytes 

(CTLs) and intracellular cytokine staining for IFNγ, TNFα, and IL-2 to measure T cell 

activation and differentiation.   

These experiments were conducted in collaboration with Dr. Bali Pulendran’s 

laboratory at the Emory Vaccine Center.  Dr. Marcin Kwissa and Dr. Sudhir Kasturi 

made significant contributions to the in vitro and in vivo experiments presented in this 

chapter. 

 

4.2  Experimental Methods 

Preparation of Murine Splenic Dendritic Cells and OT-1 Splenocytes 

 Splenic dendritic cells were expanded by daily intraperitoneal injections of 

C57B16 mice with Flt-3 ligand (20 µg/mouse) for 8 days.  Flt-3 ligand was provided by 

Dr. Robert Mittler at the Emory Vaccine Center.  On day 9, the mice were sacrificed and 

splenocytes were harvested, pooled, and frozen.  Dendritic cells were isolated from 

thawed splenocytes using a MACS cell sorter with anti-CD11c magnetic beads, prior to 

cross-priming experiments.  OT-1 splenocytes were obtained by harvesting total 

splenocytes from a C57BL/6-Tg (OT-1) RAG<tm1Mom> mouse.  All animal work was 
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performed under protocols approved by the Institutional Animal Care and Use 

Committee at Emory University. 

 

Dendritic Cell Cross-Priming of CD8+ T Cells 

 Dendritic cell-CD8+ T cell cross-priming experiments were conducted with model 

vaccine formulations based on cross-linked copolymer micelles and polyketal 

microparticles.  A schematic of the in vitro protocol is shown in Figure 4.1.  In this 

procedure, Flt-3 CD11c+ dendritic cells at 1.5 x 105 cells/well were treated with vaccine 

formulation in RPMI medium in a 96-well U-bottom plate.  The micelle formulations 

were added at concentrations ranging from 0.1 to 1 µg/mL ovalbumin, 0.1 to 2 µg/mL of 

CpG-DNA, and/or 0.1 to 2 µg/mL of poly(I:C).  Polyketal and polyketal/PLGA hybrid 

microparticles were added at concentrations ranging from 0.005 to 1 µg/mL of 

ovalbumin.  Control wells were treated with corresponding concentrations of soluble 

ovalbumin and adjuvants.  After 4 or 5 hours of incubation at 37°C, cells were washed 

twice with PBS, and co-cultured with OT-1 splenocytes for 88 hours at 37°C.  In one 

variation, the OT-1 splenocytes were sorted for CD8+ cells before adding to the DCs.  

Cells were then given fresh culture medium containing 5 µg/mL Brefeldin A and 1 

µg/mL ovalbumin-specific MHC class I-restricted peptide (SIINFEKL) and cultured for 5 

hours at 37°C.  Cells were then stained and analyzed by flow cytometry as described 

below. 
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In Vivo Vaccine Efficacy of Micelle-Based Vaccine 

The in vivo efficacy of micelle-based vaccine formulations was evaluated using a 

prime-boost study or a single-injection study in B6 mice.  Mice were vaccinated with 

micelles containing 2 to 20 µg of ovalbumin and 2 to 20 µg of CpG-DNA.  For the prime-

boost study, injections were performed on days 0 and 36, and blood was collected on 

days 6, 12, 28, 42, 48 and 58.  PBMCs were isolated using Histopaque®-1077 Hybri-

Max™ solution and restimulated with SIINFEKL peptide for 6 hours and stained as 

described below.  For the single injection study, mice were injected on day 0 and 

sacrificed on day 7, at which time PBMCs were isolated.  

OT-1
splenocytes

5 hours

4 days culture
Wash 3x

Brefeldin A
SIINFEKL

Vaccine Formulation

Flt-3 spleen
MACS-sorted CD11c+ 

dendritic cells Flt-3
+

anti-CD8

fix & permeabilize cells

TNF-α

IL-2

IFN-γ

3-color intracellular 
cytokine stain (ICCS):
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Figure 4.1  In vitro protocol for dendritic cell cross-priming of OT-1 splenocytes. 
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In Vivo Vaccine Efficacy of Polyketal-Based Vaccine 

The in vivo efficacy of polyketal-based vaccine formulations was evaluated using 

a single-injection, 7 day study in B6 mice.  Mice were vaccinated with polyketal or 

polyketal/PLGA hybrid microparticles containing 20 to 50 µg of ovalbumin and 10 to 25 

µg of adjuvant, including MPL, CFA, and poly(I:C).  On Day 7, blood was collected, the 

mice were sacrificed, and spleens and draining lymph nodes were harvested.  Peripheral 

blood mononuclear cells (PBMCs) were isolated using Histopaque®-1077 Hybri-Max™ 

solution.  Spleen cells and lymph node cells were recovered by gentle grinding in a 

plastic strainer. 

 

Intracellular Cytokine Staining and Flow Cytometry 

 Intracellular cytokine staining and surface CD8a staining was performed 

following manufacturer’s protocol.  Cells were centrifuged and resuspended in 100 µL of 

FACS staining buffer (PBS + 5% FBS) containing a 1:200 dilution of Fc block (Anti 

CD16/32, 2.4G2) and a 1:66 dilution of anti-CD8 antibody and stained for 30 min at 4°C.  

Cells were washed twice with 150 µL of FACS staining buffer and then fixed and 

permeabilized using BD Cytofix/Cytoperm solution (BD) for 15 min at 4°C.  Cells were 

washed twice with Perm Wash buffer and stained for IFNγ, IL-2, and TNFα for 30 min at 

4°C.  Cells were washed twice with Perm Wash buffer and once with FACS staining 

buffer and resuspended in 250 µL of FACS staining buffer.  Flow cytometry was 

performed on a FACSCaliburTM  system and analyzed using FlowJo software.  Cells were 
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gated on forward/side scattering (live cells) and CD8a (surface stain), and populations 

were analyzed for intracellular cytokines IFNγ, IL-2, and TNFα (Figure 4.2) 

 

 

4.3  Results 

Efficacy of Cross-Linked Micelle Vaccine Containing Ovalbumin and CpG-DNA 

(June 2005 batch) 

In Vitro Cross-Priming of CD8+ Splenocytes by Ova/CpG Micelles  

 The in vitro cross-priming experiment was conducted with micelles containing 

0.5 mg/mL each of ovalbumin and CpG-DNA.  In one experiment, Flt3-expanded 

dendritic cells were pulsed with the micelle vaccine and then co-cultured with total OT-1 

splenoctyes.  At a dosage of 1 µg/mL, the micelles enhanced the cross-priming of CD8+ T 

cells, as measured by the percentage of IFNγ-producing CD8+ T cells (Figure 4.3).  Also, 

the adjuvant CpG-DNA boosted the efficacy of the micelle formulation at this dosage. 
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Figure 4.4.  In vitro cross-priming of CD8+ T cells by micelles containing 
ovalbumin and CpG-DNA.  Vaccine-pulsed dendritic cells were co-cultured with 

CD8+ OT-1 splenocytes. 
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Figure 4.3.  In vitro cross-priming of CD8+ T cells by micelles containing 
ovalbumin and CpG-DNA.  Vaccine-pulsed dendritic cells were co-cultured with 

total OT-1 splenocytes. 
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 In a separate experiment, the vaccine-pulsed DC were co-cultured with CD8+ 

sorted OT-1 splenocytes; i.e., the cell population was devoid of CD4+ helper T cells.  As 

shown in Figure 4.4, the micelle formulation containing ovalbumin and CpG-DNA 

induced a strong CD8+ T cell response at the 1 µg/mL dosage.  This suggests that the 

vaccine formulation bypasses the requirement for CD4+ T cells in stimulating a CD8+ T 

cell reponse. 

   

In Vivo Prime-Boost Vaccination with Ova/CpG Micelles  

 A 58-day prime-boost vaccination study was conducted with the June 2005 batch 

of ovalbumin/CpG-DNA micelles.  The results in Figure 4.5 show a strong CD8+ T cell 

response at 6 days after the prime injection and 6 to 12 days following the boost 

injection.  The fact that the boost response was longer-lasting than the prime response 

Figure 4.5.  In vivo prime-boost vaccination by micelles containing ovalbumin and 
CpG-DNA.  Mice were vaccinated on Day 0 and Day 36. 
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suggests that memory T cells were generated by the first injection.  The 

micelle(Ova/CpG) vaccine formulation had enhanced efficacy in comparison to the 

soluble Ova/CpG control.  Interestingly, the micelle(Ova) formulation had a decreased 

boost response, which suggests tolerance due to the lack of an immunostimulatory TLR 

agonist.  

 

Efficacy of Cross-Linked Micelle Vaccine Containing Ovalbumin, CpG-DNA, and 

Poly(I:C) (Sept 2005 batch) 

In vitro cross-priming of CD8+ splenocytes by Ova/CpG/poly(I:C) micelles  

 Micelles containing ovalbumin, CpG-DNA, and poly(I:C) were evaluated using 

an in vitro DC-OT1 co-culture assay.  The co-culture used either total OT-1 splenocytes 

or CD8+ sorted OT-1 splenocytes.  Figure 4.6 shows the number of CD8+ cells that were 

positive for intracellular IFNγ, as a percentage of total CD8+ cells.  In the control groups, 

the addition of either soluble TLR agonist CpG-DNA or poly(I:C) enhances IFNγ 

production as compared to Ova alone.  The Ova/CpG micelle showed an increased 

response versus soluble Ova/CpG in stimulating CD8+ purified OT-1 splenocytes. 

 

In vivo cross-priming of CD8+ splenocytes by Ova/CpG micelles 

 Because the efficacy of the Sept. 2005 batch was not a strong as the June 2005 

batch, the two batches were compared side-by-side using a 7 day in vivo assay.  In this 

experiment,  the Sept. 2005 batch in general had a weaker response for in vivo activation 

of PBMCs (Figure 4.7).   The large variability between micelle batches eventually led us 

to switch to polyketal microparticle formulations as the vaccine delivery system.  



 72

 

 

Figure 4.6.  In vitro cross-priming of CD8+ T cells by micelles containing 
ovalbumin, CpG-DNA, and poly(I:C).  Vaccine-pulsed dendritic cells were co-
cultured with total OT-1 splenocytes (left) or CD8+ OT-1 splenocytes (right). 

0 5 10 15 20 25 30

mock

OVA

OVA CpG

OVA pIC

OVA pIC+CpG

nano OVA 

nano OVA CpG

nano OVA pIC

nano OVA pIC+CpG

 OT1 splenocytes 1 ug/ml

%CD8+IFNγ+/total CD8+

0 5 10 15 20 25 30

mock

OVA

OVA CpG

OVA pIC

OVA pIC+CpG

nano OVA 

nano OVA CpG

nano OVA pIC

nano OVA pIC+CpG

CD8+CD4- MACS puryf. OT1 splenocytes 1 ug/ml

%CD8+IFNγ+/total CD8+



 73

0 2 4 6

mock

20 ug batch 092905

10 ug batch 092905

2 ug batch 092905

20 ug batch 062305

10 ug batch 062305

2 ug batch 062305

PBMC IFNg

% CD8+ IFNg+ / CD8+

0 2 4 6

PBMC TNFa

% CD8+ TNFa+ / CD8+

0 2 4 6 8

mock

20 ug batch 092905

10 ug batch 092905

2 ug batch 092905

20 ug batch 062305

10 ug batch 062305

2 ug batch 062305

PBMC Tetramer

mouse 1
mouse 2

% CD8+ tetr+ / CD8+

Figure 4.7.  In vivo cross-priming of CD8+ T cells by micelles containing 
ovalbumin and CpG-DNA.  PBMCs were stained for IFNγ, TNFα, or SIINFEKL 

tetramer. 
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Efficacy of Hybrid Polyketal/PLGA Vaccine Containing Ovalbumin and MPL 

In Vitro OT-1 Cross-Priming of CD8+ Splenocytes by Ovalbumin/MPL Vaccine 

 Microparticles containing ovalbumin were prepared by double emulsion method 

with a blend of polyketal and PLGA.  MPL was co-encapsulated with Ova or was 

encapsulated alone using a single emulsion.  As controls, Ova and MPL were 

administered in soluble form.  Figure 4.8 shows the in vitro cross-priming of OT-1 

splenocytes, in terms of IFNγ+ cells as a subset of CD8+ cells.  The Ova dosages ranged 

from 0.005 to 0.5 µg/mL for the microparticle groups and from 0.005 to 50 µg/mL for the 

soluble Ova group.  This experiment demonstrates that encapsulation of ovalbumin in 

polyketal-based microparticles dramatically enhances the efficacy as compared to soluble 

ovalbumin.  The addition of MPL in the same particle, or in a separate particle, slightly 

increases the polyketal(Ova) response.  
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Figure 4.8.  In vitro cross-priming of CD8+ T cells by hybrid polyketal/PLGA 
microparticles containing ovalbumin and MPL. 
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In Vivo Cross-Priming of CD8+ T cells by Ovalbumin/MPL Vaccine 

 A 6-day vaccine efficacy study in mice was conducted with vaccine formulations 

containing ovalbumin and MPL.  Hybrid polyketal/PLGA microparticles were prepared 

with Ova or MPL in separate particles, or Ova + MPL combined in the same particle 

batch.  Figure 4.9 shows the cross-priming of PBMCs, presented in terms of IFNγ+ cells 

as a subset of CD8+ cells.  The results show that delivery of ovalbumin and MPL in 

separate microparticles enhances the CD8+ T cell response over the controls.  

Interestingly, the combined Ova/MPL particle did not have a strong response.  

 

 

Figure 4.9.  In vivo cross-priming of CD8+ T cells by hybrid polyketal/PLGA 
microparticles containing ovalbumin and MPL. 
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Efficacy of Polyketal-based Vaccine Containing Ovalbumin and Poly(I:C) 

In Vitro OT-1 Cross-Priming of CD8+ Splenocytes by Ovalbumin/poly(I:C) Vaccine 

 In this experiment, polyketal microparticles containing ion-paired ovalbumin and 

poly(I:C) were tested in vitro at dosage levels of 0.01, 0.1, and 1 µg/mL ovalbumin and 

0.005, 0.05, and 0.5 µg/mL poly(I:C), respectively.  An example of the flow cytometry 

gating is shown in Figure 4.10, for the lowest dosage groups.  Figures 4.11, 4.12, and 

4.13 show the levels of IFNγ, TNFα, and IL-2, respectively, for all three vaccine dosage 

levels.  All results are presented as the percentage of CD8+ cells that are positive for the 

particular cytokine.  The IFNγ results in Figure 4.11 indicate that at dosage levels of 0.01 

and 0.1 µg/mL ovalbumin, the polyketal microparticles containing ovalbumin and 

poly(I:C) induced significantly higher levels of IFNγ+ T cells than ovalbumin-containing 

microparticles or soluble ovalbumin/poly(I:C).  Notably, the 0.01 µg/mL dosage of 

ovalbumin/poly(I:C)-containing microparticles induced a stronger IFNγ+ T cell response 

than a 10-fold higher dose (0.1 µg/mL) of ovalbumin microparticles.  At the lowest dose 

(0.01 µg/mL), the co-delivery of antigen and TLR3 agonist also significantly enhanced 

the generation of TNFα+ and IL-2+ cells when compared the control formulations 

(Figures 4.12 and 4.13).  The TNFα+ and IL-2+ cell levels induced by the 

ovalbumin/poly(I:C) microparticles at the 0.01 µg/mL dosage were slightly greater than 

that of the ovalbumin microparticles at a 10-fold higher dosage (0.1 µg/mL) (Figures 4.12 

and  4.13).  This was the second of two identical experiments with independent batches 

of polyketal, ion-pairing, and microparticles.  The second batch performed slightly better 
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than the first batch, mostly likely due to better particle dispersion, but both had similar 

trends. 

 

In Vivo Cross-Priming of CD8+ T cells by Ovalbumin/poly(I:C) Vaccine 

 In this single experiment, polyketal microparticles containing ion-paired 

ovalbumin and poly(I:C) were tested in vivo at dosage levels of 20 µg/mouse ovalbumin 

and 10 µg/mouse poly(I:C).  Figure 4.14 shows the percentage of cytokine-producing 

CD8+ T cells from PBMCs, spleen cells, and lymph node cells.  Both vaccine groups 

(soluble and microparticle formulations) showed an increase in levels of CD8+ T cell 

activation compared to untreated mice; however, there was no significant difference 

between the soluble control group and the microparticle group. 
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Figure 4.10.  In vitro DC-OT1 cross-priming by polyketal(Ova-poly(I:C)) vaccine 
at 0.01 µg/mL Ova; flow cytometry scatter plots for CD8+IFNγ+ cells. 
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Figure 4.11.  In vitro DC-OT1 cross-priming by polyketal(Ova-poly(I:C)) vaccine; 
percentage of IFNγ-producing CD8+ cells, n = 4 wells per group. 
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Figure 4.12.  In vitro DC-OT1 cross-priming by polyketal(Ova-poly(I:C)) vaccine; 
percentage of TNFα-producing CD8+ cells, n = 4 wells per group. 
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Figure 4.13.  In vitro DC-OT1 cross-priming by polyketal(Ova-poly(I:C)) vaccine; 
percentage of IL-2-producing CD8+ cells, n = 4 wells per group. 
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Figure 4.14.  In vivo cross-priming of CD8+ T cells by polyketal(Ova-poly(I:C)) 
vaccine. Data is shown as mean plus/minus standard deviation for n = 2 (untreated) 

or n = 4 (vaccine groups). 
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4.4  Discussion 

 Our objective in this study was to demonstrate that a vaccine delivery system 

could be developed which would enhance the cytotoxic T lymphocyte response of model 

vaccines containing protein antigen and immunostimulatory adjuvants.  The initial 

experiments were conducted using the PEG-PLTP crosslinked micelle with ovalbumin 

antigen and CpG-DNA (TLR9 agonist).  One particular batch of this micelle formulation 

showed a strong level of CTL cross-priming in vitro and in vivo; however, later batches 

could not reproduce the same level of dendritic cell uptake or CTL cross-priming.  

Possible causes were identified, such as differences in the PEG-PLL degree of 

polymerization or micelle degree of cross-linking, however efforts to pinpoint the root 

cause(s) of the batch-to-batch variation were unsuccessful.  Through the process of 

improving the robustness of the micelle formulation, the SPDP-ovalbumin modification 

and step-wise crosslinking method were introduced, and characterization of these 

micelles demonstrated a high level of encapsulation and retention of ovalbumin and CpG-

DNA, as presented in Chapter 2.  Despite these improvement to the formulation, the 

micelles showed variable enhancement of uptake by DCs, and therefore we pursued solid 

microparticle formulations as an alternative. 

 Microparticle-based vaccine formulations were initially prepared by Sudhir 

Kasturi of the Pulendran laboratory using the polyketal with a double emulsion (water-

oil-water) to encapsulated ovalbumin protein and TLR agonists.  The double emulsion 

process yielded low encapsulation efficiency for ovalbumin, which was attributed to the 

material properties of the polyketals developed at the time.  It was believed that the low 
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molecular weight of the polyketals resulted in less polymer entanglement which allowed 

protein to escape from the inner water phase to the external water phase in the double 

emulsion.   Therefore, polyketal/PLGA blends were pursued, which would provide the 

pH-sensitivity of the polyketal along with the higher molecular weight of the PLGA.  

Hybrid polyketal/PLGA microparticles were prepared at polymer blend ratios of 50/50 

and 25/75, encapsulating ovalbumin and MPL. 

 In subsequent work with double-stranded RNA as the adjuvant, it was deemed 

necessary to use a pure polyketal microparticle, which did not have acidic degradation 

products that might be deleterious to the encapsulated RNA.  In order to encapsulate 

dsRNA and ovalbumin in a polyketal microparticle, we utilized the technique of ion-

pairing to create hydrophobic complexes that could be encapsulated via a single emulsion 

method.  Through this process, polyketal microparticles were formulated with ovalbumin 

and poly(I:C), and the efficacy of this formulation was tested using the in vitro DC-OT1 

assay and in vivo testing in mice. 

Our results demonstrate that the polyketal microparticles and PK/PLGA hybrid 

microparticles containing ovalbumin and TLR agonists are highly effective at cross-

priming CD8+ splenocytes in a DC/OT-1 co-culture system, and in vivo testing of the 

PK/PLGA hybrids showed that a single injection was capable of generating high levels of 

IFNγ+ CTLs.  The in vitro experiments with pure polyketal microparticles containing ion-

paired ovalbumin and poly(I:C) showed that at the lower dosages, the microparticles 

significantly enhanced CD8+ T cell cross-priming as compared to control groups with 

soluble antigen and adjuvant, as shown by high levels of IFNγ-, TNFα-, and IL-2-

producing cells.  The preliminary in vivo results with the ovalbumin/poly(I:C) 
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microparticles did not show any enhancement over the soluble control.  A similar result 

was seen at the highest dosage tested in vitro, which suggests that a lower dosage would 

be more effective in vivo. 

The in vitro tests for the polyketal-formulated Ova/poly(I:C) vaccine showed that 

the microparticles were highly effective at the lower dosages.  For example, the 

polyketal-formulated Ova/poly(I:C) vaccine achieved a higher IFNγ+ CTL response at 

0.1 µg/mL antigen than that seen with a 10-fold higher dose of soluble antigen/adjuvant 

(Figure 4.11).  This dose-sparing effect is seen as an advantage of microparticle-based 

protein vaccines because it enables higher production volumes of the vaccine in the case 

of an epidemic.  Further studies are warranted to examine the effects of dosage and 

combinations of different TLR agonists. 

The strong response even at low doses of antigen can be attributed to the rapid 

simultaneous delivery of antigen and TLR ligand to the phagosomes of dendritic cells.  

The pH-dependent hydrolysis exhibited by the polyketal family enables tuning of the 

hydrolysis kinetics to achieve rapid polymer degradation at lysosomal pH.  The 

copolyketal (PK3) used in this study has a hydrolysis half-life on the order of 1 to 2 days 

at pH 4.5.  This is within the timeframe that antigen presentation and cross-priming of 

CTLs occurs in vivo.  The results are consistent with reported studies that show a strong 

TH1-biased adaptive immune response through activation of TLRs 3, 4, and 9.  For 

example, DCs treated with TLR agonists have been shown to express type I interferons 

(IFN-α and IFN-β), which promote a local antiviral response in infected cells, and pro-

inflammatory cytokines such as interleukin (IL)-12p70 and IL-6 (Verdijk 1999, 

Alexopoulou 2001).  The cytokines induced by TLR 3, 4, and 9 stimulation promote a 
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TH1 bias and antigen-specific cross-priming of CTLs (Lore 2003, Schulz 2005, Zaks 

2006). 

An important feature of the polyketal(ovalbumin/poly(I:C)) formulation is that 

rapid degradation at lysosomal pH allows for delivery of the poly(I:C) at the site of TLR3 

engagement.  TLR3 is an endosomal receptor with its dsRNA binding site facing the 

interior of the endosome.  After the polyketal particles are phagocytosed and the 

phagosome is acidified, the pH-sensitive polyketal should undergo rapid degradation and 

release poly(I:C) into the phagolysosome, where it can be recognized by TLR3.  

Furthermore, it has been shown that TLR3 interacts with poly(I:C) in a narrow pH 

window (pH 5.7 to 6.7) (de Bouteiller 2005); thus, as the pH of the phagosome is lowered 

from its initial level of pH 7.4, the accelerated degradation of the polyketal should allow 

for poly(I:C) to be released and engage TLR3 in the phagolysosome.  We believe that the 

property of tunable, pH-sensitive degradation of polyketals makes this family of 

polymers well suited for delivery of ligands for endosomal TLRs, in particular TLR3. 

The polyketal-based ovalbumin/TLR agonist vaccine formulations induce strong 

CD8+ T cell responses, which indicates that antigenic peptides are presented by MHC-I 

molecules.  This is consistent with reports in the literature that dendritic cells present 

phagocytosed exogenous protein antigen on MHC-I molecules.  For example, reports 

have shown that ovalbumin conjugated to iron oxide beads is presented by bone marrow-

derived DCs on MHC-I molecules (Shen 1997), and conjugates of ovalbumin and CpG-

DNA induce T-helper cell-independent activation of CTLs (Cho 2000).  Because MHC-I 

molecules originate in the endoplasmic reticulum, the processing of antigens trafficked 

through the endosomal-phagosomal system relies on a mechanism which brings the 
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antigen in contact with MHC-I processing machinery.  While the exact processes have 

not been determined, various cellular mechanisms have been proposed in which protein 

antigens or MHC-I molecules are transported between intracellular compartments 

(Groothuis 2005).   

An alternate pathway by which phagosomal antigen may access the MHC-I 

processing machinery is through antigen escape from the lysosome into the cytosol.  This 

would enable the antigen to be processed and loaded onto MHC-I platforms in the same 

manner as endogenous proteins.  In the case of microparticles prepared with CTAB as a 

hydrophobic ion-pairing agent, phagolysosome destabilization may occur as a result of 

interaction of CTAB, a cationic surfactant molecule, with the anionic endosomal 

membrane.  Phagolysosome rupture may also occur due to the osmotic pressure 

imbalance resulting from rapid degradation of the polyketal microparticles into numerous 

small molecules within the phagolysosome.  This mechanism has been proposed with 

other biodegradable delivery vehicles as a means of antigen escape from the endosome to 

the cytosol to achieve MHC-I presentation (Shen 2006, Standley 2007).  Thus, while 

various controlled mechanisms are thought to be involved in endosome-derived antigen 

being presented on MHC-I platforms, alternate pathways involving phagolysosome 

rupture and antigen escape may contribute to MHC-I processing of ion-paired ovalbumin 

released from polyketal microparticles. 

In conclusion, we have demonstrated the development of novel vaccine delivery 

systems for protein antigen and TLR-inducing adjuvants.  The cross-linked micelle has 

been shown to be capable of high efficiency encapsulation of protein, DNA, and RNA; 

however, significant batch-to-batch variation was observed with regard to DC uptake and 
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CTL cross-priming.   The issue of low uptake would need to be addressed, perhaps 

through the addition of a targeting ligand, to realize the potential of the cross-linked 

micelle as a vaccine delivery vehicle.  Solid microparticles based on pH-sensitive 

polyketals were shown to have enhanced uptake by DCs, and various microparticle 

formulations were prepared using a polyketal/PLGA hybrid with a double emulsion, or a 

polyketal with ion-pairing and a single emulsion method.  We have demonstrated that the 

polyketal-based vaccine formulations enhance the ability of dendritic cells to cross-prime 

cytotoxic T lymphocytes in vitro, as evidenced by production of IFN-γ, TNF-α, and IL-2.  

Very low doses of antigen and adjuvant are required, which can be attributed to the rapid 

intracellular release from the polyketal-based microparticles.  Additionally, 

polyketal/PLGA hybrid formulations containing ovalbumin and MPLA have shown 

significant enhancement of CTL priming in mice. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

5.1  Conclusions 

 In completing these specific aims, we have demonstrated the development of two 

versatile delivery systems for protein and nucleic acid biotherapeutics.  The first system 

is a self-assembling block copolymer micelle that encapsulates proteins and nucleic acids 

via electrostatic interactions and disulfide cross-linking.  The micelle has the advantages 

of high encapsulation efficiency and flexible batch scaling, and has a size range of 50-

150 nm.  The second system is a solid nanoparticle composed of a pH-sensitive 

biodegradable polyketal which is capable of encapsulating hydrophobic compounds as 

well as proteins and nucleic acids.  The polyketal particles (300 nm to 3 µm) have high 

uptake by phagocytic cells, and the polyketal degrades into non-acidic molecules that are 

not detrimental to encapsulated biotherapeutics.  The micelles and microparticles were 

evaluated for their efficacy as protein vaccine delivery vehicles, using ovalbumin as a 

model antigen and various TLR agonists as immunostimulatory adjuvants.  These 

experiments focused on the cross-priming of CD8+ T cells by DCs treated with vaccine 

formulations.  The cross-linked micelles served as a proof-of-concept for the 

enhancement of CD8+ T cell priming by encapsulation of ovalbumin (protein antigen) 

along with CpG-DNA (TLR9 agonist) and/or poly(I:C) (TLR3 agonist) in a delivery 

vehicle; however, variability in DC uptake and activation was observed among micelle 

batches.  Solid microparticles based on pH-sensitive polyketals were developed, which 

improved the uptake by phagocytic cells.  We demonstrated that polyketal-based 
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microparticle formulations containing ovalbumin and the TLR4 agonist MPL were 

capable of enhancing CD8+ T cell responses in vitro and in vivo, in comparison to 

soluble formulations.  We also showed that polyketal microparticles could be prepared 

with hydrophobic ion-paired ovalbumin and poly(I:C) (TLR3 agonist), and that this 

vaccine formulation elicited strong CD8+ T cell responses in vitro at low antigen doses.  

From these results it can be concluded that the polyketal-based microparticles, in 

conjunction with the hydrophobic ion pairing technique, have significant potential as a 

delivery system for protein/TLR-agonist vaccines.  

 

5.2  Future Directions 

 Several areas of future research have been considered to improve the functionality 

of the cross-linked micelles and polyketal microparticles, and to explore more effective 

protein-based vaccine formulations. 

 

1.  Further Development of Cross-linked Micelle Delivery System 

a)  Add a targeting ligand to improve uptake by DCs or other target cells.  A simple 

method would be to conjugate a targeting peptide to the PEG-PLTP polymer by including 

a single cysteine residue at one end of the peptide and adding the peptide prior to the 

cross-linking step.  Another method would be to conjugate the targeting ligand to the 

distal end of the PEG chain.  This would require a heterobifunctional PEG with 

conjugation chemistry that is orthogonal to that used in cross-linking the interior of the 

micelle.  For example, the click reaction between an alkyne and a azide could be used to 

attach the targeting ligand to free end of the PEG chain. 
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b)  Synthesize a PEG-poly(Lys) dendrimer.  A PEG-poly(Lys) dendrimer could be 

synthesized in a controlled manner, as opposed to the ring-opening polymerization 

currently used for the PEG-poly(Lys).  This would produce a polymer with narrow 

distribution, and thus would improve the uniformity of the micelles.  The dendrimer 

could be synthesized using Fmoc protecting groups on the Lysine, similar to the methods 

used in solid-state peptide synthesis.  Preliminary experiments would be needed to 

demonstrate that the dendrimer block could complex proteins and nucleic acids as 

effectively as a linear polymer chain.   

c)  Develop non-reversible cross-linking chemistry.  An alternative cross-linking scheme 

could be used for extracellular applications where it might be desired to keep the micelle 

intact for an extended time.  One possible application is enzyme-cleavable prodrug 

therapy for cancer.  Micelles loaded with enzyme would be delivered to the tumor site 

due to the enhanced permeability and retention effect (EPR), and the enzyme, which is 

active inside the core of the micelle, would convert the prodrug to the active drug at the 

tumor site. 

d)  Develop alternative method of conjugating proteins in the micelle core.  The SPDP 

conjugation has been demonstrated for ovalbumin and catalase, both of which are 

relatively inexpensive proteins.  If this process were to be scaled down, there would be 

some loss in material in the conjugation and purification steps.  Thus, it would be 

preferred to use a method such as glutathione-GST affinity to bind a GST fusion protein 

in the core of the micelle. 
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2.  Improvements to Polyketal Microparticles 

a)  Improve microparticle fabrication process.  Optimization of the homogenization, 

solvent evaporation, and particle washing steps are needed to increase the particle yield. 

b)  Prevent aggregation of precipitated microparticles.  Aggregation has been an issue 

with microparticles following the washing and lyophilization steps.  This may be 

improved by analyzing the effects of the size and material properties of the polyketal 

microparticles, and modifying the chemistry or process parameters to reduce aggregation. 

 

3.  Improvements to Vaccine Formulations 

a)  Investigate synergy between TLR agonists.  Evidence of synergy between TLR 

agonists has been reported in the literature (Napolitani 2005, Gautier 2005, Theiner 

2008).  The microparticle delivery system provides an excellent platform to explore 

various combinations of TLR agonist delivered simultaneously with protein antigen.  A 

systematic evaluation of combinations of agonists for TLRs 3, 4, 7, and 9 could be 

performed using in vitro DC-splenocyte cross-priming and in vivo T cell proliferation 

models. 

b)  Optimize dosage of antigen and adjuvant.  In vitro and in vivo results have suggested 

that high doses of microparticle-formulated antigen/adjuvant are not optimal.  Various 

dosages should be explored to achieve the highest CTL response, and also to determine if 

the benefits of dose-sparing can be realized.  Furthermore, experiments should be 

conducted with different ratios of antigen and adjuvant to optimize the dosages. 

c)  Delivery of siRNA for IL-10.  The hydrophobic ion paring technique has been used to 

encapsulate siRNA in polyketal microparticles, and TNFα siRNA particles enhance the 
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suppression of TNF-α in RAW264.7 cells (Sungmun Lee, manuscript in preparation).  

We have also been interested in suppressing IL-10 for vaccine applications (Igietseme 

2000, Liu 2004). Preliminary experiments, however, suggest that siRNA-mediated IL-10 

suppression may be difficult to ascertain due to the non-specific stimulation induced by 

dsRNA through TLR3 or MDA-5.  As an alternative, IL-12 expression can be measured, 

to determine if IL-10 siRNA is more effective at increasing IL-12 production than 

scrambled siRNA or other forms of dsRNA, such as poly(I:C). 
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APPENDIX A 
 

MATERIALS AND SUPPLIES 
 
 
Poly(riboinosinic acid)-poly(ribocytidylic 
acid) (Poly(I:C)) 

Amersham Biosciences (GE 
Healthcare) 

Piscataway, NJ 

1,2-dioleoyl-3-trimethylammonium-
propane (DOTAP) 

Avanti Polar Lipids, Inc. Alabaster, AL 

H-Lysine(Z)-OH Bachem Torrance, CA 

Antibodies (BD Pharmingen) 
Fc block (Anti CD16/32, 2.4G2) 
 

BD Biosciences San Jose, CA 

BD Cytofix/CytopermTM 
fixation/permeabilization solution 

BD Biosciences San Jose, CA 

BD CytofixTM fixation buffer BD Biosciences San Jose, CA 

BD-FalconTM round-bottom tube BD Biosciences San Jose, CA 

Agarose Gel Bio-Rad Laboratories Hercules, CA 

Ready Gel, 4-15% polyacrylamide gel, 
Tris-HCl, 50 µL, 10 wells 

Bio-Rad Laboratories Hercules, CA 

Ethidium bromide Bio-Rad Laboratories Hercules, CA 

C57B16 mice Charles River Laboratories, 
Inc. 

Wilmington, MA 

Costar® 96-well, round bottom cell culture 
plates 

Corning, Inc. Corning, NY 

Ovalbumin Class I SIINFEKL peptide Emory University,  
Microchemical & 
Proteomics Core Facility 
 

Atlanta, GA 

CpG-DNA Oligonucleotide Integrated DNA 
Technologies, Inc. 

Coralville, IA 

IDTE pH 7.5 buffer (10 mM Tris, 0.1 mM 
EDTA) 

Integrated DNA 
Technologies, Inc. 

Coralville, IA 
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Fluorescein-5-isothiocyanate (FITC 
'Isomer I') 

Invitrogen Carlsbad, CA 

OliGreen dye Invitrogen Carlsbad, CA 

SYBR Green I dye Invitrogen Carlsbad, CA 

Anti-CD11c magnetic beads Miltenyi Biotech Auburn, CA 

MACS cell sorter Miltenyi Biotech Auburn, CA 

α-methoxy-ω-amino-poly(ethylene 
glycol), MW 5000 

Nektar Therapeutics Huntsville, AL 

N-Succinimidyl 3-(2-pyridyldithio)-
propionate (SPDP) 

Pierce Protein Reseach 
Products (Thermo Fisher 
Scientific) 
 

Rockford, IL 

Succinimidyl 6-(3-[2-pyridyldithio]-
propionamido)hexanoate (LC-SPDP) 

Pierce Protein Reseach 
Products (Thermo Fisher 
Scientific) 
 

Rockford, IL 

Polystyrene standards Polymer Laboratories, Inc. Amherst, MA 

CellTiter 96® AQueous One Solution Cell 
Proliferation Assay (MTS reagent) 

Promega Madison, WI 

1,4-Benzenedimethanol Sigma-Aldrich St. Louis, MO 

1,4-Cyclohexanedimethanol Sigma-Aldrich St. Louis, MO 

1,5-Pentanediol Sigma-Aldrich St. Louis, MO 

2,2-Dimethoxypropane Sigma-Aldrich St. Louis, MO 

2,2-Dithiopyridine (Aldrithiol) Sigma-Aldrich St. Louis, MO 

3,6-Dioxa-1,8-octanedithiol Sigma-Aldrich St. Louis, MO 
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Acryloyl chloride Sigma-Aldrich St. Louis, MO 

Albumin from chicken egg white (A5503) Sigma-Aldrich St. Louis, MO 

Dithiothreitol Sigma-Aldrich St. Louis, MO 

Docusate Sodium Sigma-Aldrich St. Louis, MO 

Fluorescamine Sigma-Aldrich St. Louis, MO 

Mercaptoethanol Sigma-Aldrich St. Louis, MO 

Poly(vinyl alcohol) Sigma-Aldrich St. Louis, MO 

p-Toluenesulfonic acid Sigma-Aldrich St. Louis, MO 

Triphosgene Sigma-Aldrich St. Louis, MO 

(5-carboxyfluorescein)-
CGSIINFEKLGCG 

SynPep Dublin, CA 

C57BL/6-Tg (OT-1) RAG<tm1Mom> 
mouse 

Taconic Farms, Inc. Hudson, NY 
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