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SUMMARY

High-throughput cell culture is an emerging technology that shows promise as a

tool for research in tissue engineering, drug discovery, and medical diagnostics. An im-

portant, but overlooked, challenge is the integration of experimental methods with infor-

mation processing suitable for handling large databases of cell-cell and cell-substrate in-

teractions. In this work the traditional global descriptions of cell behaviors and surface

characteristics was shown insufficient for investigating short-distance cell-to-cell and cell-

to-surface interactions. Traditional summary metrics cannot distinguish information of cell

near neighborhood from the average, global features, thus often is not suitable for studying

distance-sensitive cell behaviors.

The problem of traditional summary metrics was addressed by introducing individual-

cell based local metrics that emphasize cell local environment. An individual-cell based

local data analysis method was established. Contact inhibition of cell proliferation was

used as a benchmark for the effectiveness of the local metrics and the method. Where

global, summary metrics were unsuccessful, the local metrics successfully and quantita-

tively distinguished the contact inhibition effects of MC3T3-E1 cells on PLGA, PCL, and

TCPS surfaces.

In order to test the new metrics and analysis method in detail, a model of cell con-

tact inhibition was proposed. Monte Carlo simulation was performed for validating the

individual-cell based local data analysis method as well as the cell model itself. The simu-

lation results well matched with the experimental observations. The parameters used in the

cell model provided new descriptions of both cell behaviors and surface characteristics.

Based on the viewpoint of individual cells, the local metrics and local data analysis

xix



method were extended to the investigation of cell-surface interactions, and a new high-

throughput screening and knowledge discovery method on combinatorial libraries, local

cell-feature analysis, was developed. PLGA/PCL combinatorial libraries were used as a

prototype and a “shaper and holder” phenomenon involving MC3T3-E1 cells interacting

with PCL islands was discovered.

In summary, the viewpoint of individual cells casts new light on the study of cell-cell

and cell-surface interactions and represents a novel methodology for developing new data

analysis and knowledge discovery methods.

The results of contact inhibition study and the “shaper and holder” model provide new

knowledge, while the local data analysis method as well as the cell model of contact inhi-

bition suggested novel approaches to study cell-cell and cell-surface interactions.

xx



CHAPTER I

INTRODUCTION

Cell-cell and cell-surface interactions are critical in life science, tissue engineering and

medicine. Among them, cell contact inhibition of proliferation and surface micro-structure

patterns (S MS P) are of special importance. Both have been investigated for decades, but

the underlying mechanisms are still not well known.

In the following sections, the current state of art is summarized, main obstacles are

analyzed, and a different point of view, the ‘individual-cell viewpoint’, is proposed for phe-

nomena description, data analysis, modeling and simulation. In this work a novel method-

ology based on the individual-cell viewpoint is developed and examined for the sensitivity

of both cell contact inhibition of proliferation and cell-S MS P interactions.

1.1 Cell-cell Interactions: Cell Contact

Cell-cell recognition is critical to a wide range of problems in biology and medicine. The

development of biochemical assay for protein binding and transcription events associated

with cell-cell recognition has seen many advances. However, little has been achieved re-

garding algorithms for the detection of the effects of cell-cell interactions from microscopy

images. Such methods might offer complimentary benefits to biochemical assay, due to

the relative ease of collecting microscopy data from cell cultures, as well as from tissues.

Two important cell-cell recognition effects of adhesion dependent cells, contact inhibition

of cell migration[3, 1] and cell growth (Ambrose and Sheppley’s personal communication

in 1964[84]) have been known for more than four decades. These phenomena are related

to the mutation, development, invasion, and metastasis of cancer cells[2], and play an im-

portant role in cell differentiation and tissue development.

1



Furthermore, understanding cell-cell interactions, especially cell contact effects, is crit-

ical for studying the effects of other factors on cell behaviors. For example, the effects of

cell-surface interactions on cell proliferation and differentiation are often overlapped and

entangled so much with the effects of cell contact that it is difficult to study other effects

quantitatively without a valid mathematical model of cell contact phenomenon.

However, the underlying mechanisms relating cell contact, cell proliferation, migra-

tion, and differentiation are not completely understood. Cell adhesion molecules have

been shown to play a major role[16]. Particularly, cadherins, e.g. VE-cadherin [20] and

N-cadherin [61, 62, 63, 90], have been found to initiate contact inhibition in some cell

lines. For example, the N-cadherin-triggered signaling pathway initiates upon cell-to-cell

contact a cascade of reactions that lead to the nucleus and ultimately modulates cell cy-

cle patterns[69, 26, 25] Some cancer cells show simultaneously reduced cadherin expres-

sion and loss of contact inhibition of growth, which in turn promote cancer metastasis[13,

24]. Conversely, it has also been shown that cell-cell contact under specific conditions

can promote cell proliferation, known as “density-dependent” contact stimulation of cell

proliferation[18, 17, 48, 77].

The ambiguity of contact inhibition mechanisms may be due in part to the traditional

methods of data presentation and analysis, which is discussed in details in the next section.

1.2 Data Analysis Methods for Cell Contact

The effects of cell density on proliferation have been studied mainly as relationships be-

tween global descriptions, such as cell density, proliferation rate, and protein expression

level[84, 19, 77, 76]. These general, summary-statistic descriptions may not illuminate all

of the information available from the data for addressing cell contact phenomena. Cell-

to-cell contacts are local interactions and are very sensitive to short-range cell-to-cell dis-

tance. When summary indicators of average values (cell density) are used, all cell-to-cell
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distances are treated equally. Critical information pertaining to nearest-neighbor cell-to-

cell distances is “diluted” by the many other cell-to-cell distances in the data set. These

other longer-range distances are not expected to have an effect and consequently introduce

noise into the data. Therefore, the global effect of cell contact on cell behaviors can only be

observed between cell cultures with dramatically different seeding density. Furthermore,

the stochastic characteristics of cell behaviors and the limited sample space from traditional

experiment design and data acquisition methods results in significant noise so that only the

major trends of cell response to neighbors is distinguishable (e.g., [90]).

In order to address the “diluting” effect mentioned above, artificially designed cell at-

tachable patterns were used to specifically and directly study the contact stimulation effects

of growth of a pair of cells by decoupling the effects of cell-cell contact from others[77]

and consistent conclusions were achieved. However, this method was limited by:

1. the difficulty in mimicking high cell density necessary for studying contact inhibition,

2. the limited sample space, and

3. the cell attachable area being artificially designed (design itself may affect cell be-

haviors via cell-surface contact interactions).

In this work we introduce a novel localized description system that emphasizes individual-

cell properties (like contact inhibition), but allows sampling from a large number of cells.

The method is based upon defining local cell feature metrics, which are histograms of local

cell properties. The use of these local variables expands the sample space considerably

and allows separation of short- and long-range effects. We show how the local cell feature

histograms are then incorporated into a Bayesian model. The new method and model are

examined quantitatively and compared with traditional summary approaches in a study of

contact inhibition of cell osteoblast proliferation. The noise due to the random features of

cell behavior was significantly suppressed as a result of the mass sample space.
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1.3 Modeling and Simulation of Contact Inhibition

Quantitative models of contact inhibition fall into two main groups: differential equation

models and Monte Carlo simulation models. For example, cell cycle dynamics was stud-

ied as age-structured population models with classic partial differential equations[72, 35,

33, 34, 60] and was simplified into differential delay equations[74, 75, 67, 9, 8]. Bon-

hoeffer and co-workers studied cell proliferation kinetics with partial differential equation

models[11]. Partial differential equations models are challenging when studying compli-

cated systems, and, practically, compromising assumptions are often necessary to simplify

the original partial differential equations. Individual-cell based Monte Carlo simulation ap-

proaches, initiated by Loeffler, Drasdo and co-workers[64, 38], have been shown promis-

ing for mimicking cell-cell and cell-surface interactions[41]. Based on different theoreti-

cal models, such approaches have been used for studying the growth dynamics of epider-

mal stem cells[64], growth and folding of one-layered tissues[39, 40, 41], development of

tumors[37, 41], and epithelial cell populations[46].

The data description methods used in the previous simulations were mainly general and

global, e.g., average density, total number of cells, and cluster size. In contrast, Monte

Carlo simulations are based on local, close-range interactions of individual cells. The ma-

jor reason for using only global (summary statistic) descriptors was the lack of individual-

cell based (local statistics) experimental data for validating simulation results. In a previous

study we developed a set of robust individual cell-based local variables for cell-cell interac-

tions. Using an experimental system of osteoblasts on various polymer surfaces, this study

showed that local metrics have significantly higher sensitivity to distance-dependent cell

behaviors, relative to global variables. It follows naturally that local metrics may be a use-

ful choice for comparing between experiments and models of cell interaction phenomena.

Monte Carlo simulations of cell contact inhibition are important for validating the new

data representations, like local metrics, as well as for testing candidate hypotheses and

mechanisms, and designing experiments. The explanations of data analysis results can be
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tested by artificial assignment of rules representing supposed physical meaning for Monte

Carlo simulations. Candidate mechanisms can be screened by comparing simulation re-

sults with experimental data. The individual-cell based Monte Carlo simulation and local

metrics for data analysis form a consistent system for modeling, testing, and validating cell

behaviors from the point of view of individual cells.

1.4 Screening Surface Micro-structure Patterns According to Cell Re-

sponse

Both chemical and physical micro- and nanometer surface features affect cell attachment

survival, differentiation and functions on polymeric biomaterials[79, 36, 49, 52, 29, 94,

89, 80, 66, 12, 32, 65, 47, 59]. In general cell-surface interactions, integrin binding and

downstream events play a central role in regulating cell responses to surface chemical

properties[47, 53, 54, 55].

Compared to homogeneous surfaces, patterned distributions of chemically distinct do-

mains provide new dimensions for flexible and reliable control of cell responses. The

promise of this technology is “fine-tuned” cell behavior by using engineered S MS P. This

ability would provide useful advances in tissue engineering constructs, diagnostic devices,

and cell culture surfaces.

One significant limitation in the development of patterned biomaterial surfaces is the

challenge inherent to experiments aimed at understanding cell-material interactions. In

particular, the mechanisms by which material physical surface features interact with cells

remains enigmatic, although important aspects have been delineated. These include the

effect of local mechanical stresses on cell shape[44, 21, 22, 23]. nuclear shape[36], for-

mation of focal adhesion[27, 28, 45], internal organization of the cytoskeleton[29, 51],

signaling[50], and selection of gene programs[27, 51].

Lithographically-patterned surfaces are very useful for controlled experiments varying

a single parameter. However, natural tissue surfaces do not typically exhibit these regu-

lar, ordered features. Self-organization phenomena that lead to tissue structures usually
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produce randomly-distributed or semi-regular patterns. In addition, natural self-organizing

phenomena (crystallization, phase separation) are not inherently limited to two-dimensions.

However, such pattern-generating phenomena are inherently complex and depend on mul-

tiple parameters. To address this problem, combinatorial libraries of phase-separated bio-

degradable polymers have been used for high-throughput assay of both osteoblast[71, 85,

91] and aortic smooth muscle cells[86]. Others have developed experimental strategies

for combinatorial synthesis of polymer libraries that investigate chemical differences based

on monomer content[15, 14]. A “microarray”-type technique for investigating cell-polymer

interactions has been reported also[4, 6]. One major conclusion of this previous experimen-

tal work is the ongoing and critical need for an effective informatics platform for analyzing

the large multi-variate data sets.

Traditional analysis of data in materials science and cell biology relies upon compar-

isons of three summary statistics. When summary statistics are taken from combinatorial

data sets, modeling and data mining techniques have been applied to discover correlations

in cell-material interactions[56, 57, 83, 82, 88, 92]. Two important considerations not easily

managed in global (summary) analysis are the inherently local, distance-dependent nature

of cell-material interactions and the multivariate, combinatorial relationships between pat-

terned surface chemistry, physical properties and cell responses.

In this work, from the point of view of individual cells, we applied the localized de-

scription system on cell-S MS P interactions, extended the one-dimensional data analy-

sis method mentioned in Section 1.1 to a novel two-dimensional screening method, and

established a simple local cell-feature analysis (LCFA) method, based on histograms of

micro-structural and cell images. We demonstrate that LCFA is ideally suited for screen-

ing combinatorial cell-material data sets, where large amounts of data from a broad sample

space often “mask” the detection of effects. LCFA overcomes this limitation by enhanc-

ing sensitivity to each cell’s “neighborhood”, composed of other cells and microstructures

within a range (< 100µm) most likely to affect that cell. Local feature histograms are also
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directly applicable to Bayesian analysis, a powerful data-mining method used widely in

multi-variate inference problems. With few exceptions, the local histogram approach has

not been routinely applied in the analysis of cell-material interactions. Frequency-based

metrics for surface roughness have been shown to be significantly better at explaining sur-

face topography effects on cell functions[7]. However, the local feature analysis proposed

here incorporates not only material surface properties, but also describes quantitatively the

local relationships between surface features and cell position.
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CHAPTER II

SETUP OF EXPERIMENTAL SYSTEM

A comprehensive experimental system has been established for studying contact inhibition

of cell proliferation and for screening the effects of S MS P on cell spreading and prolifer-

ation.

2.1 Materials

Three criteria are used for screening and choosing material models for surface micro-

structure pattern library construction and cell responses testing:

1. Controllable phase separation. Phase separation driven surface micro-structure pat-

tern construction, as most surface phenomena, is very sensitive to background noise

such as the slight change of temperature, air flow, humidity, and so on. Therefore,

system robustness becomes an important consideration for selecting candidate poly-

mer blends.

2. Convenient pattern characterization. Since multi-channel microscopy is required for

simultaneously examining both surface micro-structure patterns and cell behaviors,

as model systems, surface micro-structure pattern characterization should be conve-

nient to measure in situ, and be independent to bio-assay.

3. Potential application. The chosen polymer system should be potentially useful in

tissue engineering, bioscience, or medical fields.

Since the compatibility of poly (DL-lactic-glycolic acid) (PLGA) and poly (ε- capro-

lactone) (PCL) is moderate for phase separation process, and the temperature sensitivity

of this blend is appropriate for controlling the size of surface micro-structure patterns, the
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PLGA/PCL blend system is robust during preparation. The crystallinity of PCL phase,

in contrast to the amorphous PLGA phase, allows using crossed polarized microscopy for

S MS P characterization. Since most in situ bio-assay methods employ fluorescent mi-

croscopy, the contrast of crystallinity of PLGA phase and PCL phase minimizes the po-

tential interference between pattern characterization and bio-assays. More important, both

PLGA and PCL are approved by the Food and Drug Administration (FDA) for biomed-

ical application, and are widely used biomaterials in tissue engineering. Therefore, the

PLGA/PCL system was selected as the material model for the proposed work.

The tissue culture polystyrene (TCPS, Corning®) surface is used as a control surface for

PLGA and PCL in the cell contact inhibition study since TCPS is a widely used cell culture

surface for adhesion dependent cell lines, and all cells used in this work were passaged

on and harvested from TCPS surfaces. The TCPS surface is modified from polystyrene

surface by corona discharge treatment, which grafted highly energetic oxygen ions into the

polystyrene. Therefore, comparing with original polystyrene surface, TCPS is negatively

charged and becomes more hydrophilic, which improves cell attachment and growth[5, 78].

2.2 PLGA and PCL Polymer Surfaces Preparation

Poly (DL-lactic-glycolic acid) (PLGA, block copolymer, 50:50 ratio of poly-lactic acid

and poly-glycolic acid, 40,000 75,000 Da) and poly (ε-caprolactone) (PCL, 114,000 Da,

Mw/Mn = 1.43) were obtained from Sigma Aldrich, St Louis, MO. PLGA and PCL, re-

spectively, were dissolved in chloroform to 8% and 5% mass and spin coated on silicon

chips (22mm × 22mm to 25mm × 25mm). To provide adhesion of these polymers to the

silicon during cell culture, silicon chips were pretreated in Pirañha etch1 at 60 ◦C for half

an hour, followed by one minute etching in a hydrofluoric acid bath and a final rinse in DI

water (filtered at 0.2µm). Hydrofluoric acid treatment striped oxidized silicon and hence

the resultant silicon surface was hydrophobic, which stabilized PLGA and PCL attachment.

1The Piraña etch used in this work is a 3:1 mixture of 96% sulfuric acid and 10% hydrogen peroxide.
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Without such treatment, polymer films would peel off from the substrate during cell cul-

ture. Since the hydrofluoric acid treated surface is sensitive to oxygen, chips were prepared

freshly, stored in water and coated in half an hour after hydrofluoric acid etching.

2.3 Combinatorial Library Preparation

Silicon chips were cleaned with a Pirañha etch at 60 ◦C for half an hour, followed by

APT ES (3-aminopropyl-triethoxysilane, Sigma Aldrich, St Louis, MO) modification (4%

APTES in anhydrous hexane) to obtain a hydrophobic surface. APT ES modification in-

stead of hydrofluoric acid treatment was used because library preparation is time consum-

ing, and surfaces prepared by the hydrofluoric acid etching are time sensitive.

The polymer system, PLGA/PCL polymer blend, was selected as the model system

for biomaterials. Based on this polymer blend, composition-annealing temperature (φ/T )

two-dimensional libraries were prepared[70].

2.3.1 Solvent Casting: Establishment of Composition Gradient

Solvent casting procedures were used to form controllable composition gradients on li-

braries. As shown in Figure 1, initially an given amount of polymer PLGA was infused

into the vial. Two computer controlled syringes A (for infusing polymer PCL into the vial)

and B (for withdrawing the mixed solution from the vial) operated synchronously to create

a composition gradient of PCL (from φo = 0 to a given final composition φt) as a func-

tion of time. This gradient solution was sampled continuously into syringe S so that the

composition gradient with respect to time in the vial was transformed to a similar com-

position gradient along the syringe needle length(shown in Figure 1 (a)). Afterward the

composition gradient in the needle was applied on a suitable substrate (a silicon chip or

a glass microscope slide). Now a stripe with the same gradient was formed on the sub-

strate (Figure 1 (b)). At last, the stripe was spread by a blade on the silicon substrate

and a film with the original composition gradient of the mixture in the vial with respect

to sampling time was re-produced on the silicon chip along one direction (Figure 1 (c)).
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Maintaining the original composition gradient formed in the vial during the procedure was

crucial for achieving polymer films with repeatable and controllable PCL composition gra-

dient. Due to the low diffusivities of polymer solutions (about 10 ∼ 8cm2/S ), the diffusion

driving by composition gradient during processing was ignorable. In order to minimize

the human-caused error, the coating process was automatically performed and controlled

by LabView™programs. Quality of library composition gradient was validated by FT IR

examination.

2.3.2 Annealing and Phase Separation: Establish Temperature Gradient

An annealing bed with temperature gradient, as Figure 2 shows, was utilized to achieve

an annealing temperature gradient on libraries. Libraries with composition gradient was

mounted on this annealing bed, with the direction of their composition gradient perpen-

dicular to the direction of the annealing bed T gradient. Driven by crystallization and

LCST (low critical solution temperature) phase separation mechanisms, PLGA and PCL

separated to form surface micro-phases as a function of distinct combinations of T and φ.

Again, during annealing process, diffusion of melting polymer resulted from composition

gradient could be ignored due to polymer’s high viscosity and low diffusivity as well as

the thin film thickness. Annealed libraries were quenched to room temperature. Annealing

temperature gradient on annealing bed and library surface was controlled and monitored

by thermocouples.

After solvent casting and annealing, all combination of composition and annealing

temperature in the set range were represented on APT ES treated silicon chips. Two-

dimensional combinatorial libraries of composition and annealing temperature were there-

fore built up.

Surface micro-structure patterns were established during library annealing. Blend com-

position, annealing temperature, and annealing time are main determinant factors for con-

trolling the size, shape and distribution of PLGA and PCL phases. Since all combinations
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of annealing temperature and blend composition within the screening ranges were exam-

ined and all resultant surface PCL phase patterns were established, these chips are called

combinatorial surface micro-structure pattern libraries.

Hence, accompanying with the construction of φ/T libraries, surface micro-structure

pattern libraries were also established. Such libraries can be described with micro-structure

phase patterns (crossed polarized microscopy, Figure 3), surface topology (atomic force

microscopy, Figure 4), and average pattern size(Figure 5).

Annealing temperature (screening range from 93 to 130 ◦C) and PCL composition

(screening range from φo = 0 to φt = 0.7 mass fraction) gradients were generated in this

work.

2.4 Cell Culture and Assay

Established from newborn mouse calvaria, the MC3T3-E1 cell line has been shown capable

of differentiating into osteoblast and osteocytes in vitro. MC3T3-E1 cells have been shown

to exhibit specific bone related protein expression patterns, under different developmental

stages, similar to primary mouse calvaria cells. This cell line is thus a suitable in vitro model

for investigating cell behaviors, regulations of such behaviors, and underlying mechanisms

in different osteoblast maturation stages. Since the original MC3T3-E1 cell line has been

found phenotypically heterogeneous with regard to cell differentiation, more homogeneous

subclones have been established. The purity of cell line is crucial in this study, since the

model system itself is already very complicated and the methods developed in this study are

sensitive enough to clearly recognize the phenotypical heterogeneity introduced by impure

cell lines. Therefore, in this work, MC3T3-E1 subclone 4 (from ATCC, VA), which shows

homogeneous capabilities of osteogenesis both in vitro and in vivo, was chosen in order to

minimize variations due to phenotypical heterogeneity.

Cell proliferation was assayed by BrdU (5-bromo-2-φ-deoxyuridine) immunohisto-

chemistry. Briefly, PLGA- and PCL-coated wafers were mounted into Costar© 6-Well
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TC-Treated Microplates (Corning, NY). The tissue culture treated polystyrene (TCPS )

surfaces of the microplate wells were used as controls. After sterilization (70% ethanol

solution, 30min), MC3T3-E1 cells (passage 6) were seeded onto the coated wafers at

4 × 104cells/cm2. This relatively high seeding density was selected to highlight the ef-

fects of contact inhibition of cell growth and other space-sensitive cell-to-cell interactions.

We were using such seeding density for five reasons:

1. In order to emphasize cell contact inhibition phenomenon, researchers working on

cell contact effects often use high cell density. For example, to highlight the cell-

cell contact effects on the calcium response of MC3T3-E1 cells, an even higher cell

seeding density, 2.34× 105cells/cm2, was used. (For example, the seeding density of

1.17×104cells/cm2 was used as sparse condition and 2.34×105cells/cm2 was called

a dense condition[58].

2. Cell behaviors at 50% to 90% of confluence are of specific interest. During this

transient stage cells have finished a few cycles, have stabilized, and begin to com-

municate significantly via cell-cell contacts and soluble factors to achieve a more

homogenous phenotype. The cell density observed after BrdU incorporation was

about 2 × 104 ∼ 3 × 104cells/cm2.

3. We mounted polymer films on silicon chips, which were about 1mm higher than the

inner bottom surface of the culture plate. During seeding, cell density on the exposed

culture plate bottom surface was much higher than that on the top of the silicon chip.

Therefore, the actual cell density on the silicon after seeding is much lower than the

seeding density; In order to achieve a more uniform cell seeding, we used a shaker

to mildly shake the culture plate while seeding cells, which significantly improved

the seeding homogeneity. The fluid dynamic effect probably drove more cells to

distribute on the bottom of the exposed culture dish surface instead of the top of the

silicon chip.
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After seeding, microplates were shaken mildly for 10min on a shaker to obtain uni-

form seeding. Cells were cultured in DMEM (Cellgro© Dulbecco’s Modification of Ea-

gle’s Medium, Mediatech, Inc., VA) with 10% fetal bovine serum (ATCC© SCRC-1002,

ATCC, VA), L-glutamine and streptomycin at 37◦C in a humidified 5% CO2 atmosphere.

Five hours after seeding, surfaces were washed with Dulbecco’s Phosphate-Buffered Saline

(DPBS, with Ca and Mg) to remove non-attached cells, and fresh culture medium was

then added. Eighteen hours after seeding, 2mM BrdU (5-bromo-2-φ-deoxyuridine, Sigma,

MO) in Phosphate-Buffered Saline (PBS) was added to the culture medium to reach a fi-

nal concentration of 20µm. After 6 hour BrdU incorporation, cells were fixed with 3.6%

paraformaldehyde and BrdU incorporation was assayed by immunohistochemistry (pri-

mary antibody: mouse anti-BrdU, BD Biosciences, CA; secondary antibody: goat anti-

mouse, Rhodamine conjugated, Rockland Immunochemicals, Inc., PA; counter staining:

Hoechst 33342, Molecular Probes, Invitrogen™Corporation, CA).

F-actin was stained by fluorescent-labeled phalloidin (Alexa Fluor® 488 phalloidin or

rhodamine phalloidin, Molecular Probes, Invitrogen™Corporation, CA) for cell shape and

cytoskeleton structure. Vinculin was selected as the marker of cell focal adhesion and

was stained by immunohistochemistry ( secondary antibody: goat anti-mouse, Rhodamine

conjugated, Rockland Immunochemicals, Inc., PA)

2.5 Image Acquisition

A preliminary version of a multi-channel microscopy image acquisition (IMAQ) system

was established based on an customized Olympus BX41 microscope. This IMAQ system

is composed of three parts: a robotic translation stage, a multi-channel microscope, and

an image acquisition system (Figure 6). The three hardware subsystems are controlled and

integrated by a software platform based on Microsoft™Visual Studio™ 2.

Most commercially available microscopes do not have both crossed polarized microscopy

2The first prototype was developed based on Visual Basic™6.0, the current prototype was based on Visual

C#.NET 2003
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and fluorescent microscopy, because the strong UV light intensity required by fluorescent

labels will also bleach common polarizers. To address this problem, a UV cut-off filter and

a series of neutral density filters3 were used to protect polarizers from strong UV light. Then

the channel of crossed polarized light was combined with conventional fluorescent chan-

nels4, which allowed features of surface micro-structure patterns and fluorescent-labeled

cell response markers being examined in situ simultaneously.

An Optronics® MicroFire™ monochrome digital microscope camera is used for IMAQ.

To assort with the monochrome camera, all fluorescent channels were designed as “band-

pass” to avoid interference. Gray-scaled images were stored for further image analysis.

For comprehensively visualizing information from different channels, pseudo colors were

assigned to involved channels.

Cell locations and proliferation were quantified using fluorescent microscopy (Olympus

BX51 Clinical Microscope). A robotic translation stage was used to image predetermined

locations on each culture surface using a MicroFire© monochromatic digital camera (SKU

S99826, Optronics, CA). The image locations were fixed on a 16 × 20 grid with horizon-

tal and vertical spacing of 1280µm and vertical spacing of 960µm. For each location a

1189 × 892µm2 BrdU staining image and Hoechst counter staining image were acquired at

a resolution of 1600×1200 pixels2. All images and contextual information were organized

and stored in an Oracle™ 10g (Oracle, CA) database for further image processing and data

analysis.

3a combination of ND6, ND25 and ND50
4Currently three channels are used: DAPI, FITC and TRITC
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(a) Composition gradient column (b) Deposit stripe (c) Spread film

Figure 1: Solvent casting procedures
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Figure 2: Annealing bed
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Figure 3: Polarized microscopy for PLGA/PCL surface micro-structure pattern library

(scale bar = 400µm)
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Figure 4: AFM for PLGA/PCL surface micro-structure pattern library

(size of image: 100µm × 100µm)
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Figure 5: PCL phase diameter on library
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Figure 6: Multi-channel microscopy image acquisition system
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CHAPTER III

IMAGE PROCESSING AND ANALYSIS

The Image Processing Toolbox of Matlab™ R14 (MathWorks, MA) was employed for im-

age processing and analysis.

The enormous volume of image data space acquired in this work requires automated im-

age enhancing, processing and analyzing methods and dynamic, self-adapting algorithms.

As mentioned in Section 2.5, several hundreds to more than one thousand images was

obtained from each chip1. It is practically impossible to manually count cell numbers

and assay cell proliferation ratio. Common image processing software such as ImageJ2

is sufficient for general image enhancement and complicated tasks such as cell counting

and segmentation. However, such image processing and analysis software is designed for

general purposes and has not been optimized for specific applications in this work. Fur-

thermore, key parameters used in such common software are often required to be manually

adjusted and the performance manually evaluated for each image, which is impractical in

this work. Therefore, it is necessary to develop self-adaptive image processing algorithms

and optimize them to meet the specific requirements of image processing and analysis in

this study.

In following sections the overall workflow of image processing and analyzing proce-

dures as well as details of critical image processing steps and strategies were illustrated.

1There were 300 ∼ 400 different locations scanned for each chip, at each location two to four channels

were used, and at least one image was taken from each channel at each location.
2ImageJ is a public domain, Java-based image processing program developed at the National Institutes of

Health.
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3.1 Overall Workflow

Original gray-scale images are classified as Hoechst counter staining, BrdU staining and

PCL crossed polarized images. Images in each class went through the following steps:

• quality check;

• image enhancement;

• image processing and analysis; and

• supervision of final results.

Procedures and algorithms were comprehensively designed and coordinated with staining

protocols, microscope setup and image acquisition strategies used in this work.

3.1.1 Hoechst Counter Staining for Cell Nuclei

The shape and location of cell nuclei were the major information of interest during pro-

cessing Hoechst counter staining images. The following steps were used for this purpose:

Leveling. The background images was obtained from originals by “morphological open-

ing”3 of raw images with a disk-shape structural element4. The disk-like shape was

selected to match the shape of cell nuclei. The diameter of the structural element

is significantly larger than the cell nuclei5. The leveled images were obtained by

subtracting the background images from originals. Most global and low frequency

noises were remove during leveling while the signal of cell nuclei were reserved and

relatively enhanced.

Thresholding segmentation. After leveling, black-and-white images were attained by histo-

gram-based thresholding segmentation. The optimal threshold T H of each image

3The image processing that an erosion followed by a dilation with the same structuring element is called

a morphological opening process.
4Structural elements are lines, surfaces or volumes used in structural analysis.
5The diameter of the disk-like structural element was 31 pixel since the sizes of most cell nuclei were

smaller than 20 pixel.
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was determined by the variation-adjusted iterative selection method (VAIS ) which

is discussed in details in Section 3.2.

Filling. The morphological closing6 and holes filling7 were performed to achieve solid cell

nuclei with smooth outlines. Smooth outlines are important in watershed segmenta-

tion step for controlling over-segmentation.

Despeckling. Then noise spots were despeckled8 according to the area of particles.

Separating connecting nuclei. Connecting cell nuclei were segmented by the marker-

controlled watershed method, which is explained in details in 3.3. Images were

despeckled again based on area of particles9 after water-shed segmentation.

The resultant black-and-white images are called cell nuclei masks, which would be used to

determine cell proliferation.

The centroids of cell nuclei as well as the total cell number on each image were deter-

mined by regional property analysis, and results indexed and stored.

The performance of image processing algorithms and strategies was monitored by log-

ging image names with warning tags for

• images of abnormal cell numbers;

• images of significant decreasing of cell numbers after each despeckling;

• images of significant increasing of cell numbers after water-shed segmentation;

, and logged images were manually examinated. Resultant images were also randomly

sampled for evaluating the error introduced by image processing. Algorithms and strategies

were further modified when necessary to ensure that cell numbers determined by manually

counting were within the 95% confidence interval of that determined by programs.

6The image processing that a dilation following by an erosion of the same structuring element is called a

morphological closing process.
7A disk-shaped structure element of 5 pixel diameter was used for hole-filling.
8Despeckle means to remove noise by filtering off small particles
9Particles smaller than 20 pixels were discarded as noise.
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3.1.2 BrdU Staining for Cell Proliferation

The proliferating status of each cell stained by BrdU immunohistochemistry was the ma-

jor information to be determined in this process. BrdU stained images were “masked”

by the cell nuclei masks generated in 3.1.1 so that only BrdU staining signals inside cell

nuclei were considered. The total amount of BrdU signal intensity (Isum) and the average

signal intensity (Iavg) inside a cell nucleus were calculated for each cell in every image.

The variation-adjusted iterative selection method was employed to determine the thresh-

old (T H f inal) for both Isum and Iavg. The corresponding T H f inal’s, denoted as T H f inal,sum and

T H f inal,avg, were both used for determining whether a cell was in proliferative status or not.

Cell proliferation ratios for each image were calculated. If the proliferative statuses of a

cell determined by the two thresholds (T H f inal,sum and T H f inal,avg) were not consistent, this

cell is labeled as “inconsistent”.

The performance of programs in this process was monitored by logging image names

with warning tags for:

• images of which the proliferation ratios were outliers;

• images of which the number of cells labeled as “inconsistent” exceeded 5% of the

number of cells in proliferation status determined by T H f inal,sum;

and the same performance evaluation and controlled mentioned in Section 3.1.1 was em-

ployed.

Cell proliferating data attained from Isum were used for further analysis.

3.2 Variation-adjusted Iterative Selection Method (VAIS)

The self-adaptive threshold-determining method, variation-adjusted iterative selection(VAIS)

method, was developed from the original iterative selection method[68, 87, 81].

Shown in Figure 7, the histogram of BrdU staining intensity per nucleus (from all im-

ages on a chip) is composed of two major peaks: the low intensity peak (background)
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Figure 7: Variation-adjusted iterative segmentation: BrdU staining case
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represents cells at rest, while the high intensity peak (foreground) indicates proliferating

cells. The optimal threshold between these two peaks was determined automatically by the

VAIS method.

Briefly, starting at an initial threshold T Ho determined by

T Ho =
1

2
(1)

(that is, i = 0), the histogram was divided into resting (background) and proliferating

(foreground) parts. Means and standard deviations of the foreground and background,

respectively denoted as Mbo, M f p, σbo, and σ f o, were determined by fitting peaks in each

section to a Gaussian curve. A new threshold T H1 was calculated from T Ho as

T Hi+1 =
σbiMbi + σ f iM f i

σbi + σ f i

(2)

where i = 0. This process was repeated until convergence on a stable threshold. Most

often, Equation (2) converged to a single stable threshold, indicated by the difference of the

last two iteration ∆T H

∆T H = abs (T Hi+1 − T Hi) < 1bit, (3)

and the final threshold T H f inal was determined by

T H f inal =
T Hi + T Hi+1

2
. (4)

In rare cases, system reached a bi-stable state10. In this case, when

∆T H f 1 = abs (T Hi+2 − T Hi) < 1bit (5)

and

∆T H f 2 = abs (T Hi+3 − T Hi+1) < 1bit, (6)

system was defined to be in stable status. Two stable thresholds can be calculated by

T H f inal,1 =
T Hi + T Hi+2

2
(7)

10Bi-stable state: T Hi is jumping back and forth from one stable T H to another one
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and

T H f inal,2 =
T Hi+1 + T Hi+3

2
, (8)

and the final threshold was defined as

T H f inal =
T H f inal,1 + T H f inal,2

2
. (9)

Compared with the original iterative selection methods, which use a simple mean intensity

T Hi+1 =
Mbi + M f i

2
(10)

the modified VAIS procedure is more robust when background and foreground intensities

have different variances.

Figure 7 shows a typical example of overall histogram of BrdU staining intensities on

a chip. In this case, the standard variation of the BrdU signals from non-proliferating cells

was significantly greater than that of the proliferating cells11. The threshold determined by

original iterative selection method noticeably biased toward the wider peak (the background

peak in this case) while the one determnined by the variation-adjusted method is much

closer to the optimal one.

Figure 8 illustrates an example of Hoechst staining case. The original image (Fig-

ure 8 (a)) shows considerable background noise, which means a wide variation in the back-

ground section. Some background noises were maintained after segmentation by the it-

erative selection method (Figure 8 (b)) since the background part peak is wider than the

forground one. The original iterative selection tends to generate a threshold toward the

wider background peak and mistakenly classifies some noises as signals. Contrastingly,

most noises were filtered off by the variation-adjusted selection method (Figure 8 (c)).

As illustrated above, the VAIS method is a self-adapt algorithm which recognizes the

characteristics of the image histogram, generates optimal thresholds, and addresses the

specific image processing needs of this work. This modification is critical to the later data

11Background peaks were generally wider than foreground peaks in this work, therefore the modification

of the original method is necessary.
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(a) Original image

(b) Iterative selection segmentation

Figure 8: Variation-adjusted iterative segmentation: Hoechst counter staining case
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(c) Variation-adjusted iterative selection segmentation

Figure 8 (continued) Variation-adjusted iterative selection segmentation: Hoechst counter

staining case
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analysis, while no common or commercial image processing software provides similar

function.

3.3 Marker-controlled Watershed Segmentation (MCWS ) Method

Segmentation of contacting cell nuclei is critical in this work. The nuclei of a pair of

recently-divided cells were often too close to be distinguished with thresholding segmenta-

tion alone. Comparing with other common segmentation algorithms such as thresholding

methods, edge-detection based methods and clustering methods, watershed segmentation

method[10], as a region-based method, is specifically efficient for separating contacting ob-

jects, and therefore widely used in bio-fields for cell nuclei segmentation and cell boundary

detection. However, when addressing complex cases, over-segmentation effects, known as

the major problem of original watershed methods, becomes disastrous. Over-segmentation

causes a single cell being segmented into several to several hundred fragments, which are

recognized as false “cells”. False “cells” in such “cell clusters” are of very close cell-to-

cell distances and entangles with the effects of cell contact inhibition. Marker-controlled

watershed segmentation significantly suppresses over-segmentation by guiding the water-

shed processing with a priori “markers” as “seeds”, and makes the detection of contact

inhibition possible.

As shown in Figure 9, original gray-scale images of contacting cell nuclei (labeled in

Figure 9(a)) were thresholded into binary images, then contacting cell nuclei were further

segmented by the marker-controlled watershed segmentation (MCWS) method [73] to sep-

arate images of closely-spaced cell nuclei(labeled in Figure 9(b)).

Images were further defragmented after MCWS process. Comparing with the original

gray-scale image(Figure 10(a)), Figure 10(b) shows the removal of fragments (red parti-

cles) generated during the MCWS process.

As the critical image processing step, the parameters used in MCWS method were
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(a) Segmentation: original image

(b)Segmentation: MCWS

Figure 9: Marker-controlled watershed segmentation: segmentation. White: original sig-

nals; yellow: final results; red: fragments removed.
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(a) De-fragmentation: original image

(b)Defragmenation: MCWS

Figure 10: Marker-controlled water-shed: defragmentation. White: original signals; yel-

low: final results; red: fragments removed.
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fine tuned and the efficacy were strictly validated during image processing, and Over-

segmentation and under-segmentation were closely monitored. Images with significant

over- or -under-segmentation (more than 5% of segmentation cases) were discarded. If

more than 5% images of good quality were discarded, the algorithms were further modi-

fied for better performance.

34



CHAPTER IV

METHOD: INDIVIDUAL-CELL BASED LOCALIZED ANALYSIS

As discussed in Section 1.2, in order to address the characteristics of cell-to-cell and cell-

to-surface interactions, especially the sensitiveness of cells to the near neighborhood, a

novel and localized data analysis method based on the point of view of individual cells are

developed.

In this chapter, using contact inhibition of cell proliferation as an example, the limitation

of traditional global descriptions of cell environments and cell behaviors are shown, the

concepts of individual-cell based localized data analysis method proposed, mathematical

forms established, and basic analysis strategies illustrated.

4.1 Global Metrics

Figure 11(a) cartooned an image of PCL islands (blue), nuclei of proliferating cells(red)

and cells at rest (green). Cell density and proliferation were described with summary statis-

tics such as number of cells at rest and proliferated computed for each image. This approach

provides a set of global metrics for features in each image. As indicated in Figure 11(a) and

Table 1, global metrics are most naturally understood in terms of conventional summary-

statistics, exploratory data analysis, and well-known methods for estimating confidence and

significance levels based on an assumed probability distribution.

Traditional regression and statistical inference would test to relationships between global

features and global cell behaviors, from one image to another.

4.1.1 Contact Inhibition Study

In the pure PLGA, PCL, and TCPS cases, the ability to detect contact inhibition of cell

proliferation, a known phenomenon, was used as an indicator of the effectiveness of the
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Table 1: Global metrics of cell environment and behaviors

Symbol Name Definition

NCell Number of cell per image

NProli f Number of proliferating cells per image

Prol Proliferation ratio Proli f =
NProli f

NCell

NPCL Number of PCL islands

S i Area of the ith PCL island

S umS Total PCL area in an image S umS =
∑

i S i

S̄ Arithmetic mean of PCL area

S̄ S Area-weighted mean area of PCL islands S̄ S =

∑
i S i∑
i S i

Li Size of the ith PCL island

S umL Sum of the PCL island Sizes in an images S umL =
∑

i Li

L̄ Arithmetic mean of PCL size L̄ =
S umL

NPCL

PerS Percentage of PCL phase area PerS =
S umS

S Image

DispS Dispersion of PCL phase area DispS =
S̄

S̄ S
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global metrics cell density and proliferation averages. The results and discussion are in

Chapter 4 Section 4.1.

4.1.2 Library Screening Study

The application of global metrics in material informatics, especially knowledge discovery

approaches on PLGA/PCL combinatorial libraries for screening surface microstructure

patterns that affect cell proliferation, were studied as comparison and validation of the

individual-cell-based methods. Factor importance analysis was performed for candidate

factors listed in Table 1. PCL island density (NPCL), arithmetic means of PCL island size

and area (S̄ ), area-weighted mean area of PCL islands (S̄ S ), percentage PCL phase area

in an image (PerS ), dispersion of PCL island area distribution (DispS ), total PCL area

in an image (S umS ), and the virtual sum of PCL island sizes in an image (S umL) were

selected as candidate metrics. Candidate descriptors shown in Table 1 were calculated

for each image from the library. Then, each candidate descriptor was standardized with

respect to the mean and standard deviation. The F-test was applied as the major factor

screening approach to screen out the standardized descriptors that best captured data trends

in cell proliferation. The significant surface feature descriptor(s) was determined based on

a significant level of α = 0.05, and their effects on cell proliferation were visualized by

linear regression.

A brief principal component analysis (PCA) was also performed and the major princi-

pal components were used for clustering against cell proliferation.

The results are shown and discussed in Chapter 7 Section 7.1.

4.2 Local Individual-cell-based Metrics

The concepts of local individual-cell-based data analysis was proposed and established for

cell-to-cell interaction study. Contact inhibition of cell proliferation was chosen as the

model system for its simplicity. The method developed in contact inhibition study, after

validation and refining, was then extended as a high-throughput screening method to the
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much more complicated cell-to-surface interaction study.

4.2.1 Cell-to-cell Interactions and Contact Inhibition

Local feature histograms were used to monitor the individual cell environment and relate

it to proliferating status. Cell-to-cell distance was defined as the distance between the

centroids of two cell nuclei. The collection of all cell-cell distances were sorted into fre-

quency histograms. the results of the proliferation assay, cell-to-cell distance histograms

were further classified as representing distances between: proliferated cells (P), cells at

rest (R), and any cell (A), i.e., without distinguishing proliferating vs. non-proliferating.

Therefore, 9 classes of cell-to-cell distance (disPP, disPR, disPA, disRP, disRR, disRA, disAP,

disAR, and disAA) were defined. Three types of distances, disPP, disPR, and disPA, from the

point of view of an individual P class cell are highlighted in Figure 11(b). The biologi-

cal rationale for the use of inter-nuclear distances is the relative of ease of nuclear counter

staining and the involvement of near-nuclear structures in cell-contact signaling. For exam-

ple, N-cadherin cell contact signaling in fibroblasts utilizes microtubules emanating from a

microtubule organization center near the cell nuclei.

Local cell metrics are naturally connected to Bayesian analysis, which is a powerful

statistical method used for classification. Local cell metrics are naturally connected to

a statistical method known as Bayesian analysis. The cell-to-cell distance, PR, is used

here to illustrate the use of local metrics in a naïve Bayes model to quantify the local cell

background (or environment). Specifically, the Bayesian approach allows one to quantify

the local environment of a proliferating cell, P, as the conditional probability of finding

a non-proliferating (R) cell a certain distance PR from the P cell. Assume that in the kth

image the number of P-class and R-class cells is nPk and nRk, the distance PRi jk between

the centroids of the nuclei of the ith P-cell and the jth R-cell can be calculated readily from

the results of image analysis (the location of each cell nucleus in each image were returned

as a list of coordinates of cell nucleus centroids by image analysis). On the kth image, the
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set of all such distance, PRk was defined as

PRk =
{
PRi jk | i = 1, 2, . . . , nPk; j = 1, 2, . . . , nPk

}
(11)

And for all images an overall set PR can be defined as

PR =
⋃

k

PRk (12)

Based on a (N + 1)-level distance scale,

S caledist = {d0, d1, . . . , dN} , (13)

a set of distance bins bindist was defined as

bindist = {[d0, d1) , [d1, d2) , . . . , [dN−1, dN]} . (14)

For i = 1, 2, . . . ,N, centroid of each interval in bindist, d̂i was defined as

d̂i =



di−1 + di

2
if S caledist is linearly spaced

√
di−1 · di if S caledist is logarithmically spaced

(15)

and the resultant centroid set d̂ for bindist is

d̂ =
{
d̂1, d̂1, . . . , d̂N

}
(16)

was used to sort set PR into an N-bin histogram NPR(d̂):

NPR

(
d̂
)
= hN

(
PR|bindist

)
= hN

(
PR|d̂
)

(17)

where NPR|d̂ is the number of elements of set PR that are in the interval [di−1, di) (which is

centered at d̂i). According to the needs of analysis, S caledist’s with specific range (repre-

sented by do and dN), Resolutions(N), and spacing style (linearly or logarithmically spaced)

were designed and applied. Therefore, each S caledist set was used as a specific observing

window for cell environments. For convenience, d̂, an equivalent form of S caledist, was

instead defined as an operationally observation “window” for a given cell environment.
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Since the total number of elements in set PRk is nPRk
= nPK · nRK, the total number of

elements in set PR is

nPR =
∑

k

nPK · nRK. (18)

Normalized by nPR, a frequency function was achieved from NPR

(
d̂
)

as

fPR

(
d̂
)
=

NPR

(
d̂
)

nPR

≡ h f

(
PR|d̂
)

(19)

fPR(d̂) was defined as the R type cell background of the P class cells observed from the

window d̂. Physical meanings of this definition will be discussed in detail in the discussion

section.

Based on the definition of fPR, a nav̈e Bayes model can be established. Given a cell, the

effects of the distance from other non-proliferating cells on the possibility of proliferation

of this cell to be in proliferating status is given by the following conditional probability

function

p
(
proli f |Rd̂1

,Rd̂2
, ·,Rd̂N

)
(20)

where Rd̂i
, the feature variable of R type cell background, represents the possibility of

occurrence of non-proliferating cells around a distance of d̂i. Using Bayer’s theorem,

p
(
proli f |Rd̂1

,Rd̂2
, . . . ,Rd̂N

)
=

p (proli f ) · p
(
Rd̂1
,Rd̂2
, . . . ,Rd̂N

|proli f
)

p
(
Rd̂1
,Rd̂2
, . . . ,Rd̂N

) (21)

In the above function, the components p
(
Rd̂1
,Rd̂2
, . . . ,Rd̂N

)
and p (proli f ) are constants,

that can be determined from their frequency in the data. The only non-constant component

40



the class-conditional probability,

p
(
Rd̂1
, Rd̂2

, . . . ,Rd̂N
|proli f

)

= p
(
Rd̂1
|proli f

)
· p
(
Rd̂2
, . . . ,Rd̂N

|proli f
)

= p
(
Rd̂1
|proli f

)
· p
(
Rd̂2
|proli f

)
· p
(
Rd̂3
, . . . , Rd̂N

|proli f ,Rd̂1
, Rd̂2

)

...

= p
(
Rd̂1
|proli f

)
· p
(
Rd̂2
|proli f

)
· p
(
Rd̂3
|proli f

)

· · · p
(
Rd̂N
|proli f , Rd̂1

,Rd̂2
, . . . , Rd̂N

)

(22)

Assuming the occurrence probabilities around the non-proliferating cell distances, de-

noted as Rd̂1
,Rd̂2
, . . . ,Rd̂N

, are conditionally independent (uncorrelated) then p
(
Rd̂i
|proli f

)
=

p
(
Rd̂i
|proli f ,Rd̂ j

)
when i , j. A nav̈e Bayes model can be achieved as

p
(
Rd̂1
,Rd̂2
, . . . ,Rd̂N

|proli f
)
=

N∏

i=1

p
(
Rd̂i
|proli f

)
(23)

Noticing that p
(
Rd̂i
|proli f

)
= fPR|d̂i

, and denoting p
(
Rd̂1
,Rd̂2
, . . . ,Rd̂N

)
by scaling factor

ZPR, the original conditional probability function becomes

p(proli f |Rd̂1
,Rd̂2
, . . . ,Rd̂N

)

=
p (proli f )

ZPR

·
N∏

i=1

fPR|d̂i

∝
N∏

i=1

fPR|d̂i

(24)

Therefore, the nav̈e Bayes model for the effects of R class cells on cell proliferation

can be sufficiently determined by products of elements in fPR

(
d̂
)
, which is easily computed

from a training data set.

Frequency functions, or cell environments, denoted as fPP

(
d̂
)
, fAA

(
d̂
)
, fRR

(
d̂
)
, and

fPA

(
d̂
)
, were also calculated for cell-to-cell distances PP, AA, RR, and PA observed from

the window d̂ in similar manner.

To obtain a meaningful posterior conditional probability, further normalization is nec-

essary to relate observed occurrences to random occurrences. Given the finite image size
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and non-square, the distribution of random cell occurrences is not. The random distribution

curve of cell-cell distance,

fstd

(
d̂
)
= h fstd

(
AA|d̂
)

(25)

was calculated by a Monte Carlo method using 1 × 1010 randomly-distributed spots (non-

interacting cells) on one image of 1600 pixels by 1200 pixels. The normalized cell his-

togram ˜fPR

(
d̂
)

is

f̃PR

(
d̂
)
=

fPR

(
d̂
)

fstd

(
d̂
) for i = 1, 2, . . .N (26)

and the normalized conditional probability model becomes

p̃(proli f |Rd̂1
,Rd̂2
, . . . ,Rd̂N

)

∝
N∏

i=1

f̃PR|d̂i

=

N∏

i=1

fPR

(
d̂
)

fstd

(
d̂
)

=

N∏

i=1

fPR

(
d̂
)

N∏

i=1

fstd

(
d̂
)

(27)

Other cell histograms were also normalized similarly. Normalization of cell histograms

not only allows direct comparisons of different types of cell distances on different surfaces,

but also the normalized cell histograms themselves provide important information on pat-

terns of cell attachment and migration. Practically, ratios between cell histogram functions
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were used also in our analysis, in which case the standardized (random) histogram cancels,

rPR|PA

(
d̂
)
=

f̃PR

(
d̂
)

f̃PA

(
d̂
)

=

N∏

i=1

fPR

(
d̂
)/ N∏

i=1

fstd

(
d̂
)

N∏

i=1

fPA

(
d̂
)/ N∏

i=1

fstd

(
d̂
)

=

N∏

i=1

fPR

(
d̂
)

N∏

i=1

fPA

(
d̂
)

=
fPR

(
d̂
)

fPA

(
d̂
)

(28)

More importantly, rPR|PA highlights the specific effects of non-proliferated cell on the

central proliferating cell (P) relative to any given cell. Thus, the probability of cell re-

sponses under different cell environments can be compared meaningfully.Furthermore,

each set of cell-to-cell distances can be decomposed into subsets, which allows investi-

gations of contributions of each subset to the overall effects. For example, observed from

the same d̂, since

PA = PP ∪ PR (29)

and

PP ∩ RR = ∅ (30)

instead of using rPR|PA, the effects of non-proliferating cells on cell proliferation can be

better presented by removing the PR component from PA, i.e. replacing PA with PP.

Obviously, after removing the shared component from the denominator, rPR|RR has higher

contrast than rPR|PA. The method of optimizing contrast of comparison of the two sets

by analyzing and manipulating compositions of sub-components is called decomposition

analysis.
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Therefore, ratios of cell backgrounds were constructed and used as classifiers for screen-

ing and identifying significant cell environment patterns. In this study, rPA|AA, rPP|RR, and

rPR|RR were used for decoupling cell contact inhibition effects on cell proliferation from

others, and a preliminary model was achieved.

Furthermore, rPA|AA and rPR|RR represent specific and important physical and mathe-

matical meanings. This two descriptors defined either posterior odds or Bayes factors of

proliferation behaviors. Considering the case that there is only one image acquired (k = 1),

rPA|AA =
fPA|d̂i

fAA|d̂i

=
NPA|d̂i

/
nPA

NAA|d̂i

/
nAA

=
NPA|d̂i

/
NAA|d̂i

nPA/ nAA

(31)

where

nPA

nAA

=

∑

k

(nPk · nAk)

∑

k

(nAk · nAk)
=

nP

nA

= Proli f |average (32)

Also define a set of vectors pointed from one cell toward another

AA|d̂i
≡
{−−−−−−→(

Ai, A j

)
| dist

(
Ai, A j

)
∈ [dl−1, dl) , i , j

}
(33)

and its subset

PA|d̂i
≡
{−−−−−−→(

Pi, A j

)
| dist

(
Pi, A j

)
∈ [dl−1, dl) , i , j

}
(34)

and two sets of cells involved in these two vector sets

A|d̂i
≡
{
Ai | Ai involved inAA|d̂i

}
(35)

and

P|d̂i
≡
{
Pi | Pi involved inPA|d̂i

}
(36)

with numbers of elements of AA|d̂i
and PA|d̂i

, respectively. Then, and described the numbers
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of elements in sets and , respectively:

NAA|d̂i
= NA|d̂i

· NA|d̂i

NPA|d̂i
= NP|d̂i

· NA|d̂i

(37)

and the proliferation ratio is defined as

NPA|d̂i

NAA|d̂i

=
NP|d̂i

· NA|d̂i

NA|d̂i
· NA|d̂i

=
NP|d̂i

NA|d̂i

≡ Prol|d̂i
(38)

Applying Equation (38) and Equation (32) to Equation (31),

rPA|AA =
NPA|d̂i

/
NAA|d̂i

nPA/ nAA

=
Prol|d̂i

Prol|average

(39)

which represents how many folds the cell proliferation ratio has been promoted when two

cell have a distance around d̂i. Extending this concept into the k > 1 cases will not change

the physical meaning, i.e.,

rPA|AA =
Prol|d̂i

Prol|average

(40)

Let dmax denote the maximum distance possible in one image, and establish a virtual image

composed of all images acquired from a surface, separated with each other on any direction

by a distance larger than dmax, and only focus on the cell-to-cell distance within the range

of [0, dmax], Equation (40) still holds.

Similarly, define another descriptor for proliferation behaviors as the posterior odds

ProlOdd =
nP

nR

(41)

rPR|RR can be physically explained as

rPA|AA =
ProlOdd|d̂i

ProlOdd|average

(42)

Significant mathematical meanings can be obtained when these two conclusions (Equa-

tion (40) and Equation (42)) are re-expressed with terminology of Bayes modeling. When

Prol and ProlOdd are used as descriptors for cell proliferation, Prol|average and ProlOdd|average

are prior odds, Prol|d̂i
and ProlOdd|d̂i

are posterior odds at d = d̂, rPA|AA and rPR|RR Bayes
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factors at d = d̂, respectively. The models can be further simplified by normalizing Prol

and ProlOdd against Prol|average and ProlOdd|average. In this context,

Oddprior = 1, (43)

Oddpost (Prol) =
Prol|d̂

Prol|average

= rPA|AA (44)

and

Oddpost (ProlOdd) =
ProlOdd|d̂

ProlOdd |average

= rPR|RR. (45)

The normalized forms are used in this paper for discussion due to its simplicity.

4.2.2 Cell-to-surface Interactions: Screening and Knowledge Discovery

Based on the same conceptual and mathematical foundation, the method developed for

cell-to-cell interactions and especially for study of contact inhibition of cell proliferation

(Section 4.2.1) was extended to cell-surface interaction cases. The local cell-feature analy-

sis, a novel high-throughput screening method for exploring surface microstructure features

that affect cell proliferation on PLGA/PCL combinatorial libraries was developed.

Besides the three cell classes used in Section 4.2.1, PCL islands on the PLGA/PCL

combinatorial libraries were treated as additional class of particles, represented as class C.

Three cell-to-PCL-island distances, disPC, disRC, and disAC, were defined as the centroid-

to-centroid distance between proliferated (P), non-proliferated (R), or average (A) cells

and PCL islands(C). Another important modification in the LCFA method is that PCL size

diai, defined as

diai ≡
√

S i

4

π
(46)

(slightly different with the traditional descriptor L̄ defined in Table 1), was also used in

modeling. The introduction of PCL island size extends the original one-dimensional factor

system (in which the particle-to-particle distance is the only factor and frequency functions

are curve lines with respect to dis) to a two-dimensional factor system (in which frequency

functions are curve surfaces defined on the dis × dia space). The definitions of the naïve
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Bayes model for cell-surface-micro-structure interactions are briefly summarized below

with the distance set PC as an example.

As the definition of PR, PCi jk is defined as the distance between the centroids of the

nucleus of the ith P-cell and the jth PCL island in the kth image, and the set PC is defined

as the set of

PC =
⋃

i, j,k

PCi jk (47)

Besides the S caledist defined in Section 4.2.1 (used as cell-to-PCL-island distance),

another scale, S caledia is defined for PCL island size. The two scales were used for defining

the two-dimensional space grid

griddist,dia =


[d0, d1), [dia0, dia1) [d0, d1), [dia1, dia2) . . . [d0, d1), [diaM−1, diaM)

([d1, d2), [dia0, dia1)) ([d1, d2), [dia1, dia2)) . . . ([d1, d2), [diaM−1, diaM)

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

([dN−1, dN), [dia0, dia1)) ([dN−1, dN), [dia1, dia2)) . . . ([dN−1, dN), [diaM−1, diaM)



(48)

After similar histogram processing based on grid and normalization based on amount

of elements in the set PC, the frequency function fPC(d̂, d̂ia),

fPC

(
d̂, d̂ia

)
==

NPC |grid
d̂,d̂ia

nPC |grid
≡ h f

(
grid

d̂,d̂ia

)
(49)

is achieved and is defined as the surface pattern background of the P class cells. The

definition of d̂ is the same as in Equation (15), and d̂ia is defined in a similar way as

d̂iai =



diai−1 + diai

2
if S caledia is linearly spaced

√
diai−1 · diai if S caledia is logarithmically spaced

(50)

And the conditional probability model under the naïve Bayes assumption is

p
(
proli f |griddist,dia

)
=

pproli f

ZPC

·
M,N∑

i=1, j=1

fPC |di,diai

∝
M,N∑

i=1, j=1

fPC |di,diai

(51)
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The fAC(d̂, d̂ia) was also calculated by the same method

fAC

(
d̂, d̂ia

)
=

NAC |grid
d̂,d̂ia

nAC |grid
≡ h f

(
grid

d̂,d̂ia

)
(52)

Instead of the ratio rPC|AC between fPC(d̂, d̂ia) and fAC(d̂, d̂ia), which is denoted as

rPC|AC

(
grid

d̂,d̂ia

)
=

fPC

(
d̂, d̂ia

)

fAC

(
d̂, d̂ia

) (53)

the difference ∆PC|AC

∆PC|AC

(
grid

d̂,d̂ia

)
=
(
d̂, d̂ia

)
− fAC

(
d̂, d̂ia

)
(54)

was practically used for comparing for localized analysis of cell nearby regions. The major

reason of using ∆PC|AC instead of rPC|AC is due to the data scarcity resulted from the higher

dimensions of the naïve Bayes model comparing with that for cell-cell interaction cases.

The introduction of feature variable set S caledia exponentially reduced the amount of data

points in each grid in griddist,dia. Under this condition the differences showed more robust

performance than ratios, given some regions of the results were slightly distorted. For the

application of fast screening and material informatics, however, robustness of the screening

method is crucial, while the slight distortion introduced by using the difference instead of

ratio does not significantly affect the screening results.

Vinculin and F-actin staining for cell attachment and spreading on PLGA/PCL-libraries

was used for validating the screening results.
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Figure 11: Global and local metrics (Blue: crossed polarized image of PCL islands; red:

nuclei of proliferating cells; green: nuclei of cells at rest.)

49



CHAPTER V

LOCALIZED ANALYSIS OF CELL-TO-CELL INTERACTIONS

5.1 Global Metrics

To provide a benchmark for establishing the effectiveness of local metrics, contact inhi-

bition of cell proliferation was studied using global analysis first. For each image in the

database, the overall cell proliferation is plotted versus cell density, shown in Figure 12

and Tables 2. Global analysis, based on summary statistic descriptions, did not detect the

contact suppression effects on cell proliferation. Linear regression (Tables 2) yields in an

adjusted R2 of 12.8% (on PLGA) or 10.86% (on PCL), indicating that the contact inhibition

effect masked by “noise” in the data. This may also be related to the narrow range of the

cell seeding densities. The use of a larger range may allow the global analysis to distinguish

contact effects from natural variance in cell properties. However, there are drawbacks to

the use of larger ranges, such as the introduction of seeding-density effects that mask or

alter the cell-cell interactions.

The factor importance analysis results based on global metrics are shown and discussed

in Section 7.1.

5.2 Local Cell Based Metrics

For reasons discussed in Section 4.2, the noise level inherent to proliferation measurements,

combined with the small seeding density range, make contact inhibition a robust test-case

for comparing local versus global metrics. A contact phenomenon is detected when a rel-

evant metric changes significantly relative to the data sampling noise. For global statistics,

the assumed distribution (usually normal distribution) provides the random noise reference.

For local metrics, the random cell-cell distance frequency distribution was calculated using
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Figure 12: Effects of cell density on cell proliferation for MC3T3-E1 cultured on (a) PLGA

and (b) PCL surfaces
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a Monte-Carlo approach, termed the standard frequency distribution, fstd. The reference

fstd is shown in Figure 13 together with the experimental fAA for MC3T3-E1 osteoblasts on

PLGA. The profile of fstd is similar to a beta- or chi-distribution with asymmetry towards

larger distances due to the non-overlapping nature of the nuclei centers at close distances.

The computed fstd distribution is nearly identical to the experimental fAA distribution. This

is expected since fAA indicates the likelihood of finding any two cells (whether proliferat-

ing or not) separated by a given distance, which should in principle be random. Figure 13

also shows the distance distribution fPA, which is the likelihood of finding a proliferated

cell a certain distance from any cell. If cell-cell distance has any relation to proliferating

status then fPA and fAA should differ from one another and from fstd. However, the random

fstd profile dominates all types of cell-cell distance distributions, except at very close dis-

tances (< 80µm). Hence, no noticeable effect of contact inhibition is observed unless the

plot is redrawn at close distances. This has been done in Figures 14-16, which show the

normalized distributions fPA / fstd , fAA / fstd and fPP / fstd for the three polymer surfaces.

Figures 14- 16 indicate the non-random effects of contact inhibition when values be-

come less than one. Contact inhibition occurs when the distance between cell nuclei be-

comes less than 50µm. In addition, local fine structure in the contact inhibition region

is seen. A local maximum peak between 10 and 20µm is observed, indicating a local

enhanced proliferation at very close distance, even when overall proliferation is being in-

hibited. Interestingly the local peak magnitudes at 10 ∼ 20µm always follow the order

fPP > fAA > fPA on each of the three surfaces examined, TCPS , PLGA and PCL. We

hypothesize that the local enhancement peak is due to two daughter cells (from the same

parent cell) that are very close, not having enough time to migrate away during the BrdU

staining time period. If so, then this cell division peak should appear on the fPP curve

but not the fPR curve, which we did observe, the evidence for which is presented with the

simulation data in Chapter 6 (Figure 23 (c) and (d)).
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Table 2: Linear regression from global analysis results

Surface Coeff. S S E R2 RMS E Ad j R2

PCL −6.106 × 10−4 0.5314 0.1312 0.04396 0.1280

PLGA −5.237 × 10−4 1.846 0.1111 0.07251 0.1086
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Figure 13: Comparison of the experimentally determined fAA and fPA for MC3T3-E1 on a

PLGA surface and the computed standard curve fstd.
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Figure 17: PLGA surface: localized data analysis after component decomposition: rPA|AA.
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Figure 18: PLGA surface: model of contact inhibition of cell proliferation: rPR|RR.
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Figure 19: PCL surface: model of contact inhibition of cell proliferation: rPR|RR.
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Returning to the issue of detecting and quantifying contact inhibition of prolifera-

tion, direct ratios between experimentally-determined distributions are examined in Fig-

ures 17∼ 20. These are the most useful format for describing contact phenomena, since the

choice of numerator and denominator can be made to isolate the phenomena of interest.

Figure 17 shows the rPA|AA profile, which is classified into two regions: the proliferation

suppressed region (0 ∼ 40µm) where cell proliferation was suppressed up to 6 fold (rPA|AA

falls to ∼ 1/6) and the null region (beyond 40µm) where cell proliferation was not no-

ticeably affected by the contact of other cells. Based on analysis in Section 4.2 and the

discussion for Figure 17, the ratio rPA|AA does not fully decouple the division and daughter-

cell migration phenomena (indicated by PP) from the proliferation phenomena (indicated

by PR), since PP ⊆ PA. We illustrate in details how separation of the PP and PR compo-

nents enhances the detection of contact inhibition of proliferation. By definition the various

distances are logically related as follows

PA = PP ∪ PR (55)

RA = RR ∪ PR (56)

AA = (PP ∪ RR) ∪ PR (57)

with

PR ∩ RR = ∅ (58)

PP ∩ PR = ∅ (59)

the two shared components of AA and PA are PP and PR. Removal of the PP component

from rPA|AA leads to rPR|RR, shown in Figure 18 for the PLGA surface. The ratio is classified

into two regions: the NaN region (below 5µm) where few pairs occur, and the contact

inhibition region (5 ∼ 40µm). In the contact inhibition region, a clear trend of decreasing

probability of finding a neighboring cell is seen as the distance between cells decreases. A

minimum is observed at dmin = 8µm, where contact inhibition effects are maximized. To
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our knowledge, this is the first time both the pattern and the range of contact inhibition of

cell proliferation have been determined quantitatively in a single function. By using the

ratio of the two distance distributions, rPR|RR, one can determine the posterior odds (PO)

of proliferation at different separation distances. For example, consider two cells that are

well-separated at 40µm, and another two cells that are at a close distance of 8µm, where

the extreme in contact inhibition behavior is found. The posterior odds that one of the two

cells has proliferated is

PO PP
PR
=

rPR|RR

(
d̂ = 40µm

)

rPR|RR

(
d̂ = 8µm

) = 8,

, i.e., 8 folds lower at 8µm than at a distance of 40µm.

The profiles of rPP/RR from the other polymer surfaces are shown in Figure 19 (PCL sur-

face) and Figure 20 (TCPS surface). The rPP/RR curves shows very similar shape, but with

different magnitudes for the minimum point. Table 2 summarizes the variation of rPR|RR,min

and dmin on different surfaces. The different location and strength of contact inhibition

might be due to surface features such as roughness, crystallinity, hydrophobicity, surface

charge, protein adsorption, and so on. For example, the surface roughness is increasing

in the order of TCPS , PLGA, and PCL, and at the same time the POPP/PR is decreasing,

and the dmin is increasing. While purely correlative, this observation suggests that surface

roughness may act to “screen” cell contacts, preventing as close contact as is possible on

smoother surfaces. At the least, these types of comparisons suggest potentially fruitful

avenues of investigation that may be of value to biomaterials research.

The sensitivity of the localized individual-cell based data analysis method for detecting

cell responses to cell-to-cell distance was also evaluated by analysis of variance (ANOVA)

with F-test. As shown in Table 3, the null hypothesis that cell-to-cell distance strongly

affects cell behaviors is valid. The significantly large F-values suggests that the correlation

of cell-to-cell distance and cell behavior is very strong, and supports that the localized

individual-cell based data analysis method is very sensitive to cell-to-cell distance.
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Figure 20: TCPS surface: model of contact inhibition of cell proliferation: rPR|RR.

Table 3: ANOVA of cell-to-cell distance on PLGA, PCL, and TCPS surfaces

f̃AA

(
d̂
)

f̃PA

(
d̂
)

f̃PP

(
d̂
)

f̃PR

(
d̂
)

f̃RR

(
d̂
)

PLGA
F-value 417.6 628.0 205.7 832.4 87.2

p-value 0 0 0 0 0

PCL
F-value 241.7 444.3 257.7 364.8 101.4

p-value 0 0 0 0 0

TCPS
F-value 759.3 728.7 99.1 726.2 546.8

p-value 0 0 0 0 0
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CHAPTER VI

MODELING AND SIMULATION OF CELL-TO-CELL

INTERACTIONS

6.1 Model of Contact Inhibition

A comprehensive model of cell attachment, spatial distribution, proliferation, and division

was developed. The simulations serve as a well-controlled source of data for which the

interaction parameters of the (virtual) cells are set a priori, in order to test the effectiveness

of local-feature analysis.

6.1.1 Hypotheses

Major hypotheses of this model are:

• Self avoiding. Cells tend to spread into void areas and avoid significant overlap with

one other.

• Contact inhibition. A cell’s proliferation is increasingly suppressed as it becomes

surrounded by neighboring cells.

• Spatial preference of cell division. Once a cell has proliferated, the daughter cell is

placed in the neighboring position that allows the most unoccupied space.

These concepts form a minimum set of constraints required to achieve cell-to-cell dis-

tance distributions in agreement with experimental data. In order to keep the model simple,

other phenomena such as migration, spreading, morphology, and viability were not con-

sidered. Each of the three primary hypotheses are associated with one or more adjustable

parameters and an assumed probability distribution from which cell positions are sampled

in an unbiased manner using Monte Carlo methods.

60



6.1.2 Assumptions

Assumptions used in the simulations are:

• The stochastic variation in behaviors of individual cells can be simulated by a MC

method, involving sampling of cell configurations from an assumed distribution func-

tion.

• The distribution function, describing the distance dependence of the three cell-cell

interaction hypotheses above, is given by a multivariate normal distribution.

• The centroid positions of cell nuclei are a valid metric for describing cell-cell inter-

actions.

• The contact inhibition effects can be well illustrated by a one-round simulation

According to the experimental settings, the last assumption obviously over-simplified

the simulation by using static and time independent processes to mimic the dynamic and

history dependent cell responses observed in experiments. That is, experimental data rep-

resents a collection of cells of different cell cycle phases with a history of multiple cell

cycles. Cell-to-cell distance distribution ˜fAA

(
d̂
)

and ˜fRR

(
d̂
)

shows not only the effects of

self avoidance, but also the effects of contact inhibition and spatial preference of cell divi-

sion happened after the seeding, so do ˜fPA

(
d̂
)
, ˜fPR

(
d̂
)
, and ˜fPP

(
d̂
)
. Multi-round approaches

such as Markov chain MC simulation should represent the characteristics of the cumulative

effects of cell behaviors better than the one-round strategy used in this research. However,

since the multi-simulation is very time-consuming, and only the effects of contact inhibi-

tion of cell proliferation are of interest in this study, the one-round simulation strategy is

preferable as long as the contact inhibition effects can be well mimicked.

The evaluation of the one-round simulation assumption is very important for assuring

the simulation is valid.

6.2 Monte Carlo Simulation
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Figure 21: Flowchart of Simulation of Cell Contact Inhibition.
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The strategy of simulation of cell contact inhibition based on these concepts and as-

sumptions is summarized in the flowchart in Figure 21. The simulation was performed by

three steps.

Step I: Self avoiding Cell position was simulated using the self-avoiding hypothesis. To-

tally NCell cells were seeded at positions chosen randomly from a uniform distribu-

tion into a rectangle with area w × l. Actual values employed for this paper were

Ncell = 200, l = 1600pixels, and w = 1200pixels, representing the actual area of a

microscope image from our experimental data, 1.06mm2, or 1189µm-by-892µm. The

insertion was rejected if a cell overlaps with another cell at distance dis according to

a probability of avoidance, pavoid , given below.

pavoid =



Navoid (dismin|µavoid , σavoid) if dismin > disexcl

1 if dismin 6 disexcl

(60)

Navoid (dis|µavoid, σavoid)is an assumed normal distribution of cell-to-cell distances,

dis, with mean (µavoid) and variance (σavoid), and disexcl, the excluded distance, is

the shortest allowable distance between two cells. Hence, the self avoiding effect is

determined by three adjustable parameters µavoid , σavoid, and disexcl. According to the

Metropolis Monte Carlo algorithm, a random number r, known as the value of a dice,

was generated from a uniform distribution and compared with provide. If r < pavoid ,

this cell was removed, otherwise it remained at its randomly-chosen position. This

process was repeated for each virtual cell. In each simulation, 360 virtual images

were generated, and all the properties discussed below were averaged from these.

Step II: contact inhibition Cell proliferation was simulated based on the contact inhibi-

tion hypothesis. A multivariate normal distribution, MVNinhibit (pos|poso,Σinhibit),

was defined for addressing the effects on cell proliferation of both cell-to-cell dis-

tance and local cell density around a given cell. For the given ith cell , the effects

of its neighbor cells was taken to be an inhibition probability, pinhibit , which was
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determined based on the position of the cell (−−−→posi) and the possibility distribution

MVNinhibit (pos|poso,Σinhibit):

pinhibit =

j,i∑

j

MVNinhibit

(−−−→pos j|−−−→posi,Σinhibit

)

MVNCDFinhibit

(
Aimage|−−−→posi,Σinhibit

) · Aimage

j,i∑

j

1

· C (61)

where

Σinhibit =


σinhibit 0

0 σinhibit

 (62)

describes the sensitivity of cell proliferation to the cell-to-cell distance, without spa-

tial preference, MVNCDFinhibit

(
Aimage

)
is the cumulative distribution function of

MVNinhibit (pos|poso,Σinhibit) and Aimage is the area of the observing window (1.92 ×

106 pixels), “
∑ j,i

j
1” is the number of all neighbor cells of the given ith cell in the

given virtual image, and C is the normalization constant. The actual probability of

proliferation was determined by

Prolactual = e−pinhibit · Prolo (63)

where Prolo is the probability of proliferation without effect of contact inhibition.

Step III: spatial preference of cell division The positions of daughter cells were deter-

mined by the hypothesis of spatial preference. A portion of cells in proliferation

status would have divided during observation time window. Whether a cell would

have divided or not was determined by comparing 1/rdiv
1 and a random number r

with the MC method mentioned previously. For the ith cell chosen in Step II to di-

vide, the positions of the two daughter cells are determined as follows. One of the

two daughter cells was assumed to occupy the position of the original cell. From this

position, a base direction (thetao) was randomly selected, and six candidate dividing

1The symbol rdiv represents the division ratio
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directions (theta j where j = 1, 2, . . . , 6) derived from the base direction thetao,

theta j = thetao + (i − 1)
1

3
π ( j = 1, 2, . . . , 6) (64)

were determined. Along each candidate direction theta j, a candidate position, posdiv,i, j,

for the other daughter cell was determined by both a random distance disdiv,i, j which

followed the normal distribution Ndiv (dis|µdiv, σdiv) and the candidate direction theta j

itself. The “strength of contact inhibition of cell division”, pinhibit,div,i, j , were deter-

mined for of all six candidate positions posdiv,i, j ( j = 1, 2, . . . , 6), and the candidate

position of the least strength of contact inhibition was chosen. This procedure is

similar in nature to the continuum configurational bias technique often used in MC

simulation of polymers and large molecules [30][31].

6.3 Data Analysis

As previously discussed in Section 5.2, local cell feature metrics based on distance his-

tograms are used to describe cell-cell contact phenomena. The normalized cell distance

histograms, namely f̃AA

(
d̂
)
, f̃PA

(
d̂
)
, f̃PP

(
d̂
)
, f̃PR

(
d̂
)
, and f̃RR

(
d̂
)
, were obtained from the

simulated virtual images as well as experimental data. Briefly, these distributions are the

probability of locating two cells separated by a distance dis when the two cells are in prolif-

erative status P (proliferated), R (resting), and A (any randomly selected cell). Parameters

used in the simulation were adjusted to best match experimental data. The coefficient of

determination, f̃AA

(
d̂
)
, was used for evaluating parameter fitting. The distribution was used

for determining parameters for Step I, and f̃PP

(
d̂
)

for parameters for Step II and III. The

parameters are summarized in Section 6.4.

6.4 Results and Discussion

6.4.1 Standard Curve for Normalization

The Monte Carlo simulation results of f̃std

(
d̂
)
, achieved from 1 × 1010 pairs of points on

a 1600-pixel-by-1200-pixel virtual image, is shown in Figure 22. As shown in Figure 22,
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the random effects due to the Monte Carlo approach are negligible as the curve f̃std

(
d̂
)

is

smooth, that is, the normalization process will not introduce noticeable artificial effects or

noise. The extremely large data space (1 × 1010 pairs of points) used in this process is

necessary for a reliable and robust normalization of experimental or computational data at

narrow range.

6.4.2 Determining Parameters

As mentioned in Section 6.3, after a series of try-and-error, the final values of parameters

were optimized and listed in Table 4. These parameters were determined by fitting ex-

perimental curves ( f̃AA

(
d̂
)
, f̃PA

(
d̂
)
, f̃PP

(
d̂
)
, f̃PR

(
d̂
)
, and f̃RR

(
d̂
)
) taken from proliferation

assays of MC3T3-E1 cells on PLGA, PCL, and TCPS surfaces. For example, the process

for determining parameters for simulating cell behaviors on PLGA surfaces were shown in

Figure 23. First of all, disexcl was determined according to (Figure 23 (a)). The standard

deviation σavoid, which address the effective range of cell self-avoiding interaction, was de-

termined so that the f̃AA

(
d̂
)

curve from simulation matched best with that from experiment

data. A significant difference between the simulated data and the original observation is the

peak between 10 ∼ 20µm.

6.4.3 Simulation of Contact Inhibition on PLGA Surfaces

The range of contact inhibition (indicated by σinhibit) was determined by matching the right-

side part of the curves (beyond 25µm in this case) shown in Figure 23 (c), and the normal-

ization constant C was adjusted to control the steepness of the contact inhibition curve.

Afterward, according to the location and width of the sharp peak of cell division (between

8 and 25µm), µdiv and σdiv were determined. Finally, rdiv was determined so that the height

of the peaks of cell division matched.

The simulated f̃PA

(
d̂
)
, f̃PP

(
d̂
)

and f̃PR

(
d̂
)

curves (Figure 23 (b), (c), and (d)) fitted the

experimental ones with high R2 values (97%, 92%, and 99%, respectively), and the residue

analysis showed no obvious patterns. This suggests that the cell contact inhibition model
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Figure 22: The normalized random distribution curve of cell-cell distance f̃std

(
d̂
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Table 4: Parameters used in simulation

Surface disexcl(µm) σavoid(µm) rdiv σinhibit(µm) µdiv(µm) σdiv(µm)

PLGA 7.2 112 1/200 200 10 3

PCL 7.2 56 1/140 120 10 3

TCPS 7.2 112 1/200 200 11 3
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and the simulation strategy were successful.

6.4.4 Validation of Assumptions on PLGA Surfaces

Although the R2 value of the f̃AA

(
d̂
)

case (97%) was high for simulation, a significant peak

of residues was found between 10 and 20µm (Figure 23 (a)). This effect was much more

significant in the f̃RR

(
d̂
)

case (Figure 23 (e)), which showed a poor R2 value (71%). As

emphasized in Section 6.1.2, this phenomenon is expected and is due to that the simulation

method is static and time independent, but the real cell responses are dynamic and history

dependent. That is, the f̃AA

(
d̂
)

and f̃RR

(
d̂
)

distributions determined from experimental

data were cumulative. Cell division during cell culture history, which would contribute to

the peak between 10 and 20µm, was not recorded on the f̃RR

(
d̂
)

curve, and only partially

recorded on f̃AA

(
d̂
)
.

The simulation data show that the temporal effect was negligible in the simulation for

contact inhibition. The high R2 values of simulation of f̃PA

(
d̂
)
, f̃PP

(
d̂
)

and especially

f̃PR

(
d̂
)
, which indicated the contact inhibition effects, suggested that such simplification

is valid.

6.4.5 Modeling and Simulation on PCL and TCPS Surfaces

The simulation of cell behaviors on PCL and TCPS surfaces, as shown in Figure 24 and

Figure 25, also shows high R2 values for f̃PA

(
d̂
)
, f̃PP

(
d̂
)

and f̃PR

(
d̂
)

curves (> 95%).

The comparable simulation quality on the PLGA, PCL, and TCPS surfaces suggests

the hypotheses of the contact inhibition model and the assumptions used in the simulation

are independent to the three surfaces investigated. Therefore, the cell model and simulation

strategy developed from this study are potentially applicable for general contact inhibition

phenomena on some other surfaces.
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6.4.6 Explanation of Parameters

In Table 4, the parameter disexcl suggests that most cells are at least 7.2µm apart after

seeding, and σavoid implies more than 84% of self avoidance phenomenon happens when

two cells are closer than 112µm on PLGA and TCPS surfaces, and 56µm on PCL surface.

The value of rdiv, varied from 1/140 to 1/200, implies that around 1/70 or 1/100 cells with

positive BrdU staining were divided cells, which is reasonable when comparing the short

BrdU staining time (6hr) with the cell cycle time. The physical meaning of µdiv = 10 ∼

11µm and σdiv = 3µm is that the average nucleus-to-nucleus distance of two daughter cells

just after division on surface is 10 ∼ 11µm with a standard variation of 3µm. The parameter

σinhibit = 120 ∼ 200µm suggests that at a significant level α = 0.05, contact inhibition of

growth can be neglected when two cells are normcd f −1 = 329µm apart for PLGA and

TCPS cases and 197µm apart for PCL cases.

The disexcl values larger than the defragmentation threshold (less than 3µm) during

image processing suggest a hard self-avoiding effect defined as the “cut-off” distance that

almost no cell-to-cell distance shorter than that distance was observed. The similar disexcl

value (7.2µm) on the three different surfaces implies that the “soft self-avoiding effects” is

not surface dependent for adhesion-dependent cells. Thus, when two cell nuclei are very

close to each other, the effects of surface properties are overwhelmed by the self-avoiding

effect to avoid overlapping of nuclei.

The distance between two daughter cells, represented by Ndiv (dis|µdiv, σdiv), also shows

surface-independence on the three polymer surfaces. This observation suggests the distance

between two centrosome in the metaphase during mitosis is highly reserved.

The results also imply that cells on smooth, amorphous PLGA and TCPS surfaces

sense farther than those on rough, crystalline PCL surfaces. The effective distance of the

“soft self-avoiding” effect, represented byσavoids, are two folds longer in PLGA and TCPS

cases than that in PCL cases, so do the effective distance of the contact inhibition effects

(represented by σinhibit). This discovery is consistent to the discovery of other researchers
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that cells are better spread (cover larger area)[93] and less polar [43, 42, 93] on smooth

surfaces than on rough surfaces.

6.5 Summary

For f̃AA

(
d̂
)
, f̃RR

(
d̂
)
, and f̃RR

(
d̂
)

cases, the simulation results well matched the experiment

data, which proved the effectiveness of the hypotheses and assumptions used in the model-

ing. However, noticeable difference in details suggested this static and temporal indepen-

dent model can be further enhanced by introducing multi-round approaches such as Markov

chain MC simulation if other cell behaviors are also of interest.

The model and simulation worked well on three different polymer surfaces (PLGA,

PCL, and TCPS ), which suggested the cell model and the simulation method is poten-

tially applicable to other adhesion-dependent cell lines and other surfaces. The simulation

parameters determined by curve fitting are potential descriptors of characteristics of cell

behaviors and effects of surface properties. Further study is required for evaluating the ef-

fectiveness of the model and simulation strategies on other cell lines and surfaces as well as

the possible applications of simulation parameters in surface screening, mechanism study,

tissue engineering and medical diagnosis.
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Figure 23: Simulation of contact inhibition on PLGA surface (blue: experiment data;

green: simulation result; red dots: residues. Prolo = 0.45)
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Figure 23 (continued): Simulation of contact inhibition on PLGA surface
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Figure 23 (continued): Simulation of contact inhibition on PLGA surface
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Figure 24: Simulation of contact inhibition on PCL surface (blue: experiment data; green:

simulation result; red dots: residues. Prolo = 0.45)
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Figure 24 (continued): Simulation of contact inhibition on PCL surface
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Figure 24 (continued): Simulation of contact inhibition on PCL surface
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Figure 25: Simulation of contact inhibition on TCPS surface (blue: experiment data;

green: simulation result; red dots: residues. Prolo = 0.45)
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Figure 25 (continued): Simulation of contact inhibition on TCPS surface
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Figure 25 (continued): Simulation of contact inhibition on TCPS surface
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CHAPTER VII

SCREENING OF CELL-SURFACE INTERACTIONS

7.1 Traditional Global Feature Analysis

Traditional global metrics were used for knowledge discovery in this study as comparison

of screening results of individual-cell-based data analysis.

7.1.1 Factor Important Analysis

After standardization, distributions of candidate traditional descriptors of surface features,

cell response (represented by cell proliferation ratio), and cell density (represented by cell

number per image) of 126 locations on the PLGA/PCL library are visualized in the boxplot

in Figure 26. Cell densities on these locations are 282.15 ± 42 per image. The p-values of

F-tests of these normalized surface feature descriptors, screened against Prol, are listed in

Table 5. (Since S umS and PerS are linearly identical, only one of them can be used for

screening. In this work PerS is used. )

Based on a significant level α = 0.05, L̄ was screened out as the only significant factor

among all selected candidates. Linear regression results of model Prol ∼ L̄ are listed

in Table 6. Therefore, PCL island size is the only major factor among candidates that

significantly affects cell proliferation. The result is consistent with that from screening

by localized data analysis, shown in Section 7.2. However, traditional factor importance

analysis methods based on global descriptions (such as L̄) could only provide a general

guide and do not illuminate specific relationships.

7.1.2 Principal Component Analysis

PCA was performed on candidate global descriptors NPCL, S umS , S̄ , S̄ S , S umL, L̄, and
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Figure 26: Boxplot of traditional summary metrics as applied to the library, including

surface descriptors, cell proliferation ratio, and cell density at 126 locations. Values have

been standardized by centering and normalizing the range by high and low values.

Table 5: Screening of candidate traditional surface feature descriptors

Descriptor NPCL S̄ S̄ S S umL L̄ * PerS DispS

p-value 0.564 0.999 0.561 0.669 0.0015 0.411 0.929

Table 6: Linear regression results for Prol ∼ L̄

Parameter Coe f f icient R2 RMS E Ad j R2 F-value p-value

Value 0.278 0.0783 0.964 0.0635 10.54 0.0015
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DispS , and the results are shown in Table 7. No candidate descriptor significantly con-

tributes to the primary component. Though L̄ contributes most to the secondary component,

it is not distinguishable from other descriptors.

The first two principal components (PCs) explain 84.5% variation observed from the

original descriptor set (Table 8 and Figure 27) and thus provide an acceptable representation

of the original data set of candidate global descriptors for further analysis.

However, cell proliferation behaviors show no noticeable correlation to the first two

principal components (Figure 28). Attempts of clustering against the first two or three

principal components yield no meaningful result at all.

Based on global descriptor sets, PCA, as a typical and common tool in exploratory

data analysis and data mining, was not effective in this study for knowledge discovery and

modeling on combinatorial libraries. Clustering, as another typical approaches for data

mining, also does not yield impressive result.

7.2 Local Feature Analysis

The local cell-feature analysis results are discussed in this section. The enhancement of

cell proliferation, represented by ∆PC|AC, were screened among combinations of PCL island

size and cell-to-PCL distance and favorable combinations were highlighted in Figure 29.

Different from previous definitions of distance, the results were modified by converting the

centroid-to-centroid distance (disPC and disAC) to the centroid-to-edge distance (dis′
PC

and

dis′
AC

) between cell nuclei and PCL islands,

dis′PC

(
grid

d̂,d̂ia

)
= disPC

(
grid

d̂,d̂ia

)
− d̂ia

2
(65)

dis′AC

(
grid

d̂,d̂ia

)
= disAC

(
grid

d̂,d̂ia

)
− d̂ia

2
(66)

as the modified one is independent to PCL island size and provides direct visualization

of cell-PCL-island interactions. After the conversion, for the cases that the cell-to-PCL

distance is negative, cell nuclei are on top of PCL islands.
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Table 7: Results of PCA

Symbol
Principal component

1st PC 2nd PC 3rd PC 4th PC 5th PC 6th PC 7th PC

NPCL 0.3072 -0.5525 0.1598 -0.0896 0.1171 -0.6618 -0.3393

S umS -0.4281 -0.2086 0.4000 -0.5392 -0.2743 0.2998 -0.3967

S̄ -0.4821 0.0792 0.1996 -0.3257 0.3598 -0.4194 0.5568

S̄ S -0.4412 -0.2830 -0.0213 0.4683 0.6110 0.2195 -0.2897

S umL 0.3396 -0.1789 0.7639 0.2314 0.0741 0.2922 0.3531

L̄ -0.1793 0.5969 0.4309 0.3677 -0.1563 -0.3714 -0.3582

DispS -0.3845 -0.4202 -0.0699 0.4326 -0.6151 -0.1574 0.2838
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Figure 27: PCA: percentage of data explained by principal components
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Table 8: PCA: data explained

NPCL S umS S̄ S̄ S S umL L̄ DispS

Explained (%) 56.63 27.84 11.47 2.536 1.210 0.2348 0.07975

Cumulatively Explained (%) 56.63 84.47 95.94 98.48 99.69 99.92 100.0
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Figure 28: PCA: re-mapping Prol according to the first two principal components
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PCL lateral distance and PCL diameter.
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7.3 “Holder” and “Shaper” Model

The data analysis results shown in Figure 29 suggest a shaper-holder model. Several local

“hot spots” have been found from the two dimensional profile. According to the cell-PCL

island distance and PCL island size, the surface lateral patterns represented by these hot

spots can be classified as holders, which are about 10µm away or farther from cell nuclei,

and shapers, which have a large size and are very close to or even overlapped with cell

nuclei.

In the holder-shaper model, holders provide anchor sites for cell attachment, while

shapers affect cell shapes by physically hindering cell spreading or increasing cellular in-

ternal tension. Each type of holder or shaper is characterized by its size range and cell-

to-PCL distance range. The combinations of holders and shapers, which are defined as

holder-shaper patterns, are used as descriptors of surface features. The comprehensive

effects of both holders and shapers of a specific pattern may affect cell proliferation.

∆PC|AC was used to fast screen the combinatorial libraries for apparent holders and

shapers and specific patterns of holder-shaper combinations as candidates. Such candidate

patterns can be further investigated under well-controlled conditions.

Two candidate holders (in the region
(
d̂ ∈ [11, 12]µm ), d̂ia < 3µm

)
and the region

(
d̂ ∈ [7, 13]µm), d̂ia ∈ [10, 22]µm

)
) and two shapers (in the region

(
d̂ ∈ [−8,−4]µm ),

d̂ia ∈ [25, 60]µm
)

and the region
(
d̂ ∈ [−11,−14]µm ), d̂ia ∈ [40, 70]µm

)
are recognized

from the profile.

This quantitative model and the discovery of holders and shapers suggests that not only

the average size of PCL islands, L̄, but also the combinations of different sizes of islands,

is important for cell proliferation. Being incapable of recognizing distribution patters, tra-

ditional data analysis methods, as shown in the Prol ∼ L̄ regression, would have sug-

gested that larger PCL islands promoted cell proliferation, while smaller ones suppressed

it. However, such conclusion would against the observations shown in Figure 29 that hold-

ers smaller then 3µm may also play an important role for promoting cell proliferation.
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(a) Cells spread freely on small PCL islands

(b) Cells begin to recognize medium PCL islands

Figure 30: Micrographs of cells overlaid on PCL microstructures images from three select

locations from the library, illustrating the effect of PCL size on cell shapes. Red: vinculin

(over-exposed to show cell shapes); green: cell nuclei; blue: PCL islands
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(c) Cells avoid large PCL islands

Figure 30 (continued): Micrographs of cells overlaid on PCL microstructures
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The holder-shaper model casts new light on a comprehensive understanding of cell-

surface interactions on multiple scales, and is of potentials to be applied in tissue engi-

neering, medical care, and cellular biology research. Although the effectiveness of this

model on other material/cell behavior systems needs to be validated, the methodologies

demonstrated in these work can be applied to most studies of cell behaviors.

Three locations on the combinatorial libraries featured with PCL islands of different

dominating sizes were shown in Fig. (6). While spreading freely on small islands (Fig-

ure 30(a)), cells began to recognize medium size islands (Figure 30(b)), and obviously

avoided big islands (Figure 30(c)). When PCL size increased, cell spreading was con-

strained, and cells were reshaped by big PCL islands. The observations of cell shape and

PCL island correlation were direct evidence of the shaper-holder model.
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CHAPTER VIII

CONCLUSIONS

This work was motivated by developing a systematic, comprehensive methodology to ad-

dress the difficulty of analyzing short-distance sensitive cell behaviors. A primary applica-

tion is the analysis of large databases resulting from high-throughput cell culture, in order

to discover cell-cell and cell-substrate interactions. A novel point of view, the point of

view from individual cell, was used for distinguishing the near neighborhood environment

of cells from the global average ones. Contact inhibition of cell proliferation, a typical

short-scale cell-to-cell interaction, was used as the prototype for establishing the method-

ology, developing novel data analysis methods from it, and validating the effectiveness of

the methodology and related new statistical tools developed in this study. A contact inhi-

bition cell model based on a priori hypothesis was proposed. Based on this cell model,

Monte Carlo simulation was performed to

• validate the individual cell-based data analysis methods

• validate the individual cell viewpoint-based methodology for investigating short-distance

sensitive cell behaviors, and

• validate the contact inhibition model

• develop novel describing methods for the characteristics of biomaterial that affects

cell behaviors, and

• provide novel computational tools for investigating cell-to-cell and cell-to-surface

interactions.

The proposed methodology and related data analysis methods, after being established and

tested, was extended into the high-dimensional cell-to-surface-pattern interactions, and a
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novel high-throughput screening tool for material informatics on combinatorial libraries

was developed and used for knowledge discovery and pattern screening.

It has been shown that describing the interactions of adherent cells with global (sum-

mary) statistics can be problematic due to the noise intrinsic to cell-cell interactions, and

the inherent local nature of these interactions. The novel data analysis strategy, individual

cell-based local metrics, has been introduced in this work. Local metrics such as cell-cell

distance histograms describe cell environments from the “point of view” of individual cells.

These metrics allow facile “fine tuning” to search a variety of phenomena by decompos-

ing the distributions into specific cell-types (proliferating vs. non-proliferating). However,

local metrics as defined herein are not limited to proliferation analysis, nor to cell-cell in-

teractions alone. The metrics are generic and can be applied to any type of quantifiable cell

assay, and can be applied to cell-biomaterial and cell-tissue interactions as well. We show

how the method of local metrics is related to the naïve Bayes model, which makes them

useful for data mining and classification.

This work has demonstrated the new local metrics by considering the contact inhibition

of cell proliferation on three types of polymeric surfaces. A quantitative and probabilistic

description of contact inhibition effect has been achieved for the first time. The results of lo-

calized, individual-cell-based analysis of cell-to-cell interaction on three different surfaces

strongly support that the analysis method itself is repeatable and reliable.

A comprehensive model on contact inhibition was proposed, and Monte Carlo simula-

tion approaches were designed and performed based on the results of individual cell based

local data analysis. The simulation brought new insight into the mechanism of cell contact

inhibition, suggested new descriptions of cell-behavior based biomaterial characteristics,

and showed that the contact inhibition model and the simulation method can be potentially

extended to other adhesion-dependent cell lines and other biomaterials.

Furthermore, in this work the novel high-throughput lateral pattern screening strategy,

local cell-feature analysis, which integrated individual cell based descriptions, localized
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data analysis, Bayes models, and combinatorial design of libraries of polymer of individual

cells, was successfully developed. The screening results were consistent with traditional

factor importance analysis and with observations of cell-pattern interactions.

This local cell-feature analysis strategy, established from the concepts of the individ-

ual cell viewpoint-based methodology and directly extended from the individual cell-based

data analysis methods for contact inhibition, is promising in screening out candidate sur-

face lateral patterns for further study, discovering new knowledge of cell-surface interac-

tions, and exploring new materials for tissue engineering and medical applications.

The data scarcity for higher dimensional cases (such as the two dimensional case in the

section of high throughput screening of surface microstructural patterns (surface micro-

structure pattern)s) is one of the major challenges of this method. For example, in order to

achieve the same sensitivity and statistical confidence, if 1,000 data elements is required in

a one dimensional case, 1 × 106 data elements are required for a two dimensional system,

and 1 × 109 data elements are required for a three dimensional system. The current full

orthogonal method used in this work is sufficient for study the two dimensional case of

PLGA/PCL libraries (where we investigated two parameters interacting cell-PCL distance

and PCL size). We would like to suggest two strategies for higher dimensional cases.

1. Such challenge can be addressed by a better analysis and sampling design that em-

ploys an orthogonal factorial method. That is, data elements are not simply binned

into full orthogonal grids, but orthogonally randomized and binned into a much finer

factorial grid to achieve much higher resolution.

2. Another work-around is using a so-called “bootstrap” strategy and randomly re-

sampling the original data for much higher efficiency of usage of experimental data.

Another major limitation of this work is that all cell and surface information must be

measured in situ, which is a challenge in some fields. Consider, for example, studying

the distance effects on mRNA transcription. One would need to establish a quantitative
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fluorescent in situ hybridization (FISH) method for the mRNA of interest before using our

methodology.

This work offers new insight into related fields.

• For contact inhibition phenomena, the method allowed us to measure experimentally

a “contact-inhibition profile” (e.g., fPR(d̂)) for the first time. Such functions quan-

titatively describes the probability of cell proliferation as a function of distance to

other cells. It is unique because it is measured from a set of static (all cells are fixed)

immuno-stained microscope images, and yet it gives us a quantifiable measure of

the dynamics of cell-cell interactions relevant to proliferation. For example, we now

know that at a distance of 9 microns, MC3T3-E1 cells show a 15 fold reduction in

probability of proliferating (in term of proliferation odd) on PCL surface. We also

learned that this statistic is about the same on PLGA and TCPS , but is significantly

different on PCL. We know of no other report of such information, especially not

coming from a static set of images. Therefore, specifically to the cell-cell, we quan-

titatively visualized and simulated, in a distance-based way, the contact inhibition

phenomenon, which provides powerful tools to study underlying mechanisms, to

disentangle such effects from other cell behaviors, and to engineer devices and pro-

tocols to clinically diagnose of related diseases, such as early screening of cancers

based on the lost of capability to inhibit cell growth.

• For the micro-structured surfaces (PLGA/PCL system), we have discovered that cell-

surface interactions are only “active” to effect a proliferation in certain size ranges,

and then only when cells are at a certain distance from the appropriately-sized is-

lands. We didn’t know this before and the global methods did not allow us to detect

it. Why is this important? For one, it leads one to propose phenomenological mod-

els (such as the cell model of contact inhibition, the “critical-size” model, and the

“shaper-and-holder” model) for further investigation. These may, in turn, lead to

concrete hypotheses about how cells sense the surface patterns. Secondly, we now
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know how to design, quantitatively, an experiment to test these ideas. We know what

size PCL islands to make and what cells to look in detail at based on how far they

are from those islands – in subsequent hypothesis testing. In an empirically-driven

field this is tremendously important information that can save time and lead to more

quantitative testing.

• The method also provides promising material informatics tools for high throughput

screening of candidate biomaterials based on specific cell behaviors, and can be used

to develop bio-MEMS to screen biomaterials.

• It is important that the field of this work is methodology. The methodology proposed

and developed in this work provides a quantitative approach to conveniently studying

the distance sensitive phenomena in all related fields, and may have fundamental im-

pact to not only cell-cell and cell-surface interactions, but also other similar systems

such as polymer physics, nano-particles, and so on.

In conclusion, this work focused on the point of view of individual cells, established

a systematic and comprehensive methodology from that viewpoint and developed novel

data analysis methods. We showed that local metrics successfully recognized contact in-

hibition of cell proliferation from experimental data of MC3T3-E1 cells on PLGA, PCL

and TCPS surfaces. A theoretical model for contact inhibition was proposed and used

to validate the local metric analysis method. The local cell-behavior based characteris-

tics can be viewed as quantitative descriptors for biomaterials, which extend the field of

high-throughput screening and knowledge discovery of biomaterials.
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CHAPTER IX

FUTURE DIRECTIONS

This work addressed the difficulty of analyzing short-distance sensitive cell behaviors by

traditional global and summary metrics, established the novel “individual cell based local-

ized data analysis method”, proposed a cell model for contact inhibition, performed Monte

Carlo simulation for the cell model, and developed screening methods of material infor-

matics.

Because this work focused on methodology, the data methods as well as statistical

tools established in this work are potential to fundamentally impact related fields. Some

promising directions for future study based on this work are listed bellow.

Apply the contact inhibition model to other cell lines Contact inhibiton effect is com-

mon in most adhesion dependent cells. The effectiveness of the proposed cell model

can be tested on other cell lines, and the characteristics of these cell lines, described

by parameters used in the model, is potentially useful for the mechanism study of

contact inhibition and comparison of these cell lines.

Apply the contact inhibition model to other surfaces The results of this study have shown

that, fot the same cell line, cells behave differently on different surfaces, and such

difference can be described by parameters in the cell model. Other materails and sur-

faces can be characterized by such parameters for their effects on contact inhibition

of proliferation. That is, the new describing parameters can be used for the screening

and characterization of biomaterials.

Study other cell-to-cell interactions As a general method for studying short-range cell-

to-cell interactions, the local metrics can be used for other cell-to-cell inteactions,
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such as cell recognition, differentiation, migration, stem cell and cancer study.

Screening and material informatics As mentioned in Chapter 7.1, a novel high-throughput

screening method based on local metrics and combinatorial libraries has been de-

veloped and tested. This screening method can be used for other cell lines, other

biomaterials and surfaces, and other short-range cell-surface interactions.

“Shaper and holder” model Discovered in PLGA/PCL combinatorial library screening

for the effects of surface macrostructures of PCL islands on cell proliferation, the

“shaper and holder” model should be further studied under well-controlled condi-

tions, so do the underlying mechanisms and potential application of this discovery in

bioscience, tissue engineering, and medicine.
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APPENDIX A

SELECTED CODES

Some M codes used in this work are listed in this chapter for illustration of the algo-

rithms and strategies.

A.1 Variation-adjusted Iterative Selection

The original iterative selection algorithm, known as file “isodata.m” (listed in Listing 1)

which is available from Matlab™ Central File Exchange provided by Dhanesh Ramachan-

dram, was modified to address the influence of the variations of the foreground and the

background. The modified code can be found in Listing 2

1 function level=isodata(I)

% ISODATA Compute global image threshold using iterative isodata method.

% LEVEL = ISODATA(I) computes a global threshold (LEVEL) that can be

% used to convert an intensity image to a binary image with IM2BW. LEVEL

% is a normalized intensity value that lies in the range [0, 1].

6 % This iterative technique for choosing a threshold was developed by Ridler and ↓

→ Calvard .

% The histogram is initially segmented into two parts using a starting threshold ↓

→ value such as 0 = 2B-1,

% half the maximum dynamic range.

% The sample mean (mf,0) of the gray values associated with the foreground pixels↓

→ and the sample mean (mb,0)

% of the gray values associated with the background pixels are computed. A new ↓

→ threshold value 1 is now computed

11 % as the average of these two sample means. The process is repeated, based upon ↓

→ the new threshold,

% until the threshold value does not change any more.

%

% Class Support

16 % -------------

% The input image I can be of class uint8, uint16, or double and it

% must be nonsparse. LEVEL is a double scalar.
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%

% Example

21 % -------

% I = imread(’blood1.tif’);

% level = graythresh(I);

% BW = im2bw(I,level);

% imshow(BW)

26 %

% See also IM2BW.

%

% Reference :T.W. Ridler, S. Calvard, Picture thresholding using an iterative ↓

→ selection method,

% IEEE Trans. System, Man and Cybernetics , SMC-8 (1978) 630-632.

31

% Convert all N-D arrays into a single column. Convert to uint8 for

% fastest histogram computation.

I = im2uint8(I(:));

36 % STEP 1: Compute mean intensity of image from histogram, set T=mean(I)

[counts,N]=imhist(I);

i=1;

mu=cumsum(counts);

T(i)=(sum(N.*counts))/mu(end);

41 T(i)=round(T(i));

% STEP 2: compute Mean above T (MAT) and Mean below T (MBT) using T from

% step 1

mu2=cumsum(counts(1:T(i)));

46 MBT=sum(N(1:T(i)).*counts (1:T(i)))/mu2(end);

mu3=cumsum(counts(T(i):end));

MAT=sum(N(T(i):end).*counts(T(i):end))/mu3(end);

i=i+1;

51 % new T = (MAT+MBT)/2

T(i)=round((MAT+MBT)/2);

% STEP 3 to n: repeat step 2 if T(i)~=T(i-1)

while abs(T(i)-T(i-1))>=1

56 mu2=cumsum(counts (1:T(i)));

MBT=sum(N(1:T(i)).*counts (1:T(i)))/mu2(end);

mu3=cumsum(counts(T(i):end));

MAT=sum(N(T(i):end).*counts(T(i):end))/mu3(end);

61

i=i+1;
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T(i)=round((MAT+MBT)/2);

Threshold=T(i);

end

66

% Normalize the threshold to the range [i, 1].

level = (Threshold - 1) / (N(end) - 1);

Listing 1: (isodata.m) The Original iterative selection algorithm in M

1 function level=isohist(I)

% Jing Su modified the original ‘ISODATA’ function to ‘ISOHIST’.

% Improvement:

% 1. determine a threshold of any histograph.

% 2. use median instead of mean, which is more robust

6 % 3. introduce the std’s of the two groups for justification of peak

% distributions.

%

% ISODATA Compute global image threshold using iterative isodata method.

% LEVEL = ISODATA(I) computes a global threshold (LEVEL) that can be

11 % used to convert an intensity image to a binary image with IM2BW. LEVEL

% is a normalized intensity value that lies in the range [0, 1].

% This iterative technique for choosing a threshold was developed by Ridler and ↓

→ Calvard .

% The histogram is initially segmented into two parts using a starting threshold ↓

→ value such as 0 = 2B-1,

% half the maximum dynamic range.

16 % The sample mean (mf,0) of the gray values associated with the foreground pixels↓

→ and the sample mean (mb,0)

% of the gray values associated with the background pixels are computed. A new ↓

→ threshold value 1 is now computed

% as the average of these two sample means. The process is repeated, based upon ↓

→ the new threshold,

% until the threshold value does not change any more.

21 %

% Class Support

% -------------

% The input image I can be of class uint8, uint16, or double and it

% must be nonsparse. LEVEL is a double scalar.

26 %

% Example

% -------

% I = imread(’blood1.tif’);

% level = graythresh(I);
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31 % BW = im2bw(I,level);

% imshow(BW)

%

% See also IM2BW.

%

36 % Reference :T.W. Ridler, S. Calvard, Picture thresholding using an iterative ↓

→ selection method,

% IEEE Trans. System, Man and Cybernetics , SMC-8 (1978) 630-632.

% Convert all N-D arrays into a single column. Convert to uint8 for

% fastest histogram computation.

41

I = I(:);

I = sort(I);

% STEP 1: Compute mean intensity of image from histogram, set T=mean(I)

46

i = 1;

T(i) = median(I);

% STEP 2: compute Mean above T (MAT) and Mean below T (MBT) using T from

51 % step 1

MA = I(find(I <= T(i)));

MB = I(find(I > T(i)));

56 MAT = median(MA);

MBT = median(MB);

i=i+1;

% new T = (MAT*stdA + MBT*stdB)/(stdA + stdB)

61

T(i) = round( (MAT*std(MA)+MBT*std(MB))/(std(MA)+std(MB)↓

→ ));

Threshold = T(i);

66 % STEP 3 to n: repeat step 2 if T(i)~=T(i-1)

while abs(T(i)-T(i-1)) >= mean(I)/40 & i <= 100

%%mu2=cumsum(counts(1:T(i)));

%%MBT=sum(N(1:T(i)).*counts(1:T(i)))/mu2(end);

%%

71 %% mu3=cumsum(counts(T(i):end));

%% MAT=sum(N(T(i):end).*counts(T(i):end))/mu3(end);

%%
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76 MA = I(find(I <= T(i)));

MB = I(find(I > T(i)));

MAT = median(MA);

MBT = median(MB);

81 i = i+1;

T(i) = round( (MAT*std(MA)+MBT*std(MB))/(std(MA)+std↓

→ (MB)));

end

86 % Normalize the threshold to the range [i, 1].

if i > 100,

if abs(T(i)-T(i-2)) < mean(I)/40 & ...

abs(T(i-1)-T(i-3)) < mean(I)/40,

level = (T(i)+T(i-1))/2;

91 else,

level = -1; %Warning signal for error

end;

else,

level = Threshold;

96 end;

Listing 2: (isohist.m) The Variation-adjusted iterative selection algorithm in M

A.2 Marker Controlled Watershed Segmentation

The MCWS algorithm is shown in Listing 3.

1 % Marker-controlled watershed segmentation

% Modified from Matlab News & Notes & Demo

% Final version: 102606

4 % by Jing Su

%

% i_o: original raw image

% i_info: metadata of the raw image abtained

%−−−−−−−−−−−−−−→by function iminfo

9 % i_MCWS: output image

%
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function i_MCWS = MCWS(i_o, i_info)

if ~strcmp(i_info.ColorType , ’grayscale’),

14 i_o = rgb2gray(i_o);

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Leveling

19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

bg = imopen(i_o, strel(’disk’, 15));

i_o = imsubtract(i_o,bg);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

24 % Openning and filling

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SE3 = strel(’disk’,3);

i_bw_fill = imfill(imopen(i_bw, SE3), ’holes’);

29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Watershed

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

D_QE = bwdist(~i_bw_fill , ’quasi -euclidean’);

D_QE = mat2gray(D_QE);

34 f_a = fspecial(’disk’, 5);

D_QE5 = imfilter(D_QE, f_a, ’replicate’);

D_QE5 = -D_QE5;

D_QE5(~i_bw_fill) = -Inf;

L_QE5 = watershed(D_QE5);

39 i_MCWS = i_bw_fill .* L_QE5;

%Remove fragmental particles

[lf,nf] = bwlabel(i_MCWS);

stats = regionprops(lf,’all’);

idx = find([stats.Area] <= 20);

44 BW2 = ismember(lf,idx);

i_MCWS = i_MCWS .* (~BW2);

Listing 3: (MCWS.m) The Marker controlled watershed segmentation algorithm in

M
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