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 SUMMARY 

 

Injury severs the axons in the spinal cord causing permanent functional loss.  

After injury, a series of events occur around the lesion site, including the deposition of 

growth cone inhibitory astroglial scar tissue containing chondroitin sulfate proteoglycan 

(CSPG)- rich regions.  It is important to encourage axons to extend through these 

inhibitory regions for regeneration to occur.  The work presented in this dissertation 

investigates the effect of three proteins, constitutively active (CA)-Cdc42, CA-Rac1, and 

brain-derived neurotrophic factor (BDNF) on axonal outgrowth through CSPGs-rich 

inhibitory regions after spinal cord injury (SCI).  Cdc42 and Rac1 are members of the 

Rho GTPase family and BDNF is a member of the neurotrophin sub-family.  These three 

proteins affect the actin cytoskeleton dynamics.  Therefore, Cdc42, Rac1, and BDNF 

promote axonal outgrowth. 

The effect of CA-Cdc42 and CA-Rac1 on neurite extension through CSPG 

regions was determined in an in vitro model.  Rac1 and Cdc42’s ability to modulate 

CSPG-dependent inhibition has yet to be explored.  In this study, a stripe assay was 

utilized to examine the effects of modulating all three Rho GTPases on neurite extension 

across inhibitory CSPG lanes.  Alternating laminin (LN) and CSPG lanes were created 

and NG108-15 cells and E9 chick dorsal root ganglions (DRGs), were cultured on the 

lanes.  Using the protein delivery agent Chariot®, the neuronal response to exposure of 

CA and dominant negative (DN) Rho GTPases, along with the bacterial toxin C3, was 

determined by quantifying the percent ratio of neurites crossing the CSPG lanes.  CA-

Cdc42, CA-Rac1, and C3 transferase significantly increased the number of neurites 

 xiii



 xiv

crossing into the CSPG lanes compared to the negative controls for both the NG108-15 

cells and the E9 chick DRGs.  We also show that these mutant proteins require the 

delivery vehicle, Chariot®, to enter the neurons and affect neurite extension.  Therefore, 

activation of Cdc42 and Rac helps overcome the CSPG-dependent inhibition of neurite 

extension. 

In an in vivo study, CA-Cdc42 and CA-Rac1 were locally delivered into a spinal 

cord cavity.  Additionally, BDNF was delivered to the lesion site, either individually or in 

combination with either CA-Cdc42 or CA-Rac1. The dorsal over-hemisection model was 

utilized, creating a ~2mm defect that was filled with an in situ gelling hydrogel scaffold 

containing lipid microtubules loaded with the protein(s) to encourage axons.  The lipid 

microtubules enable slow release of proteins while the hydrogel serves to localize them to 

the lesion site and permit axonal growth.  The results from this study demonstrate that 

groups treated with BDNF, CA-Cdc42, CA-Rac1, BDNF/CA-Cdc42, and BDNF/CA-

Rac1 had significantly higher percentage of axons from the corticospinal tract (CST) that 

traversed the CSPG-inhibitory regions, as well as penetrate the glial scar compared to the 

untreated and agarose controls.  Although axons from the CST tract did not infiltrate the 

scaffold-filled lesion, NF-160+ axons were observed in the scaffold.  Treatment with 

BDNF, CA-Cdc42, and CA-Rac1 also reduced the inflammatory response, quantified by 

analyzing GFAP and CS-56 intensity for reactive astrocytes and CSPGs, respectively, at 

the interface of the scaffold and host tissue.  Therefore, the local delivery of CA-Cdc42, 

CA-Rac1 and BDNF, individual and combination demonstrated the ability of axons to 

extend through CSPG inhibitory regions, as well as reduce the glial scar components. 



CHAPTER 1 

 

INTRODUCTION 

 

1.1  STATEMENT OF PROBLEM 

There is currently no successful therapeutic strategy for axonal regrowth through the 

inhibitory regions, specifically chondroitin sulfate proteoglycan-rich regions, after spinal 

cord injury. 

 

Injury to the central nervous system (CNS), especially to the spinal cord severely 

affects the quality of life.  Eleven thousand people annually suffer from spinal cord injury 

(SCI) in the United States alone (sci-info-pages.com March 2002).  There are currently 

250,000 people in the United States that are adapting to life after SCI.  The effect of SCI 

on patients can vary depending upon the location and severity of the injury.  Individuals 

may experience loss of sensation, muscle paralysis, sexual dysfunction, and loss of 

bladder and bowel control.  Along with the physical and emotional hardships after SCI, 

the cost of receiving treatment is a burden on the patient, as well as their family, with 

medical costs that can approach $1,000,000 per patient in the first year alone. 

There is a great need to find a tissue engineered therapeutic solution to regenerate 

axons in the CNS.  The current options for therapeutic clinical treatment in the CNS after 

injury are limited.  Anti-inflammatory agents, such as methylprednisolone, are 

administered after injury, but these do not provide any regenerative stimuli.  The main 

goals of the anti-inflammatory agents are to minimize pain and prevent further damage to 
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the spinal cord.    Surgical intervention is currently a subject of intense debate, with 

differing opinions on when surgery should be performed after injury. Although surgery 

may be performed to stabilize the spine by using a rigid brace in order to prevent further 

damage it does not typically provide any regenerative benefits. 

There are ongoing clinical trials that involve cellular transplantation of 

macrophages or stem cells, and testing the use of trophic factors.  Studies have 

investigated implantation of scaffolds involving cell transplantation, hydrogel scaffolds, 

and fibers, as well as various delivery vehicles, such as osmotic pumps, microspheres, 

and lipid microtubules.  These studies in animal models have shown functional 

improvement; however, high percentage of axons that infiltrate the spinal cord distal to 

the lesion site needs to be enhanced.  This study investigates two proteins, Cdc42 and 

Rac1, in combination of a neurotrophic factor, BDNF, to potentially improve axonal 

outgrowth through the inhibitory regions. 

 

1.2.  HYPOTHESIS 

Complete functional recovery after physical injury in the CNS remains a 

challenge.  Overcoming the challenge to promote axonal outgrowth requires: 1) negating 

the effects of the glial scar that forms after injury, which contains inhibitory cues that 

prevent the damaged axons from reforming lost connections; 2) encouraging axonal 

outgrowth despite the presence of the glial scar; and 3) delivering therapeutic agents 

without causing further damage to the spinal cord.  We believe spatio-temporal control of 

the therapeutic agents is a critical component to achieve axonal outgrowth through the 

inhibitory regions in the spinal cord. 
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 The failure of axonal outgrowth through inhibitory regions after injury converge 

on the Rho GTPases, Cdc42, Rac, and Rho, which are responsible for filopodial, 

lamellopodial, and growth cone collapse, respectively (Nobes and Hall 1995).  Studies 

have shown that when Nogo receptor and its coreceptor, p75NTR, bind to the inhibitory 

molecule ligands, the signaling pathway for Rho is activated (Niederost et al. 2002; 

Schweigreiter et al. 2004).  Cross-talk occurs between the three proteins (Kjoller and Hall 

1999; Yuan et al. 2003).  Specifically, the activation of Rho causes a decrease in the 

levels of Cdc42 and Rac, thus leading to growth cone collapse.  Most of the research has 

focused on inhibiting Rho or the downstream effectors.  We believe that the activation of 

Cdc42 and Rac1 should promote filopodial and lamellopodial extension, thereby 

encouraging axonal outgrowth through the inhibitory regions. 

  It is important to achieve spatial and temporal control of the delivered proteins at 

the injury site.  For spatial control, an in situ gelling agarose hydrogel scaffold will: 1) 

allow conformal filling of the defect created after injury, 2) provide the site for local 

deliver of the proteins, and 3) allow for axonal infiltration.  Most studies use the osmotic 

pump to deliver trophic factors and proteins to the lesion site; however, a large amount of 

the protein is removed by bodily fluids.  We believe that the use of a slow release 

delivery vehicle, the lipid microtubules, contained within the scaffold will allow the 

proteins to diffuse into the surrounding spinal cord tissue and be accessible to the neurons 

and axons over the desired duration. 
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1.3.  OBJECTIVES 

The overall goal of the work described in this thesis is to deliver proteins, 

activated Cdc42, activated Rac1, and BDNF to encourage axonal outgrowth through the 

inhibitory regions, particularly regions rich in CSPGs. 

 To determine whether Cdc42, Rac1, and BDNF promote axonal outgrowth, the 

following objectives were set: 

1. Development of a model that shows in vitro that the transduction of constitutively 

active forms of Cdc42 and Rac1 can encourage neurites to extend into CSPG- 

inhibitory regions. 

2. Development and characterization of a delivery system for Cdc42, Rac1, and 

BDNF, which are transduced to promote axonal outgrowth through inhibitory 

regions in vivo.  This will be achieved by: 

a.  Development of a hydrogel scaffold that conformally fills the spinal cord 

defect and supports axonal infiltration and outgrowth. 

b. Development and characterization of local, slow delivery of the proteins 

using the lipid microtubule delivery system embedded in the hydrogel 

scaffold. 

 4
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CHAPTER 2 

 

THERAPEUTIC STRATEGIES AFTER SPINAL CORD INJURY 

 

Physical injury to the spinal cord can lead to permanent functional loss due to the 

lack of spontaneous regeneration capabilities in the CNS.  The relative inability to 

regenerate is possibly due to the body’s wound healing response.  After injury to the 

CNS, a glial scar forms and there is a migration of macrophages/reactive microglia to the 

wound site to remove the debris produced (Fawcett and Asher 1999).  While these cells 

are present at the injury site, they secrete proteins, such as cytokines, that activate other 

local cells.  Astrocytes are one of these cells that become reactive after the release of 

cytokines.  At the injury site, there are inhibitory molecules that are up-regulated or 

exposed making the environment non-permissive for nerve regeneration.  Astrocytes, for 

example, up-regulate chondroitin sulfate proteoglycans (CSPGs) and oligodendrocyte 

debris is exposed, as well as myelin-related proteins, such as myelin associated 

glycoprotein (MAG) (McKerracher et al. 1994; Mukhopadhyay et al. 1994), NOGO 

(Niederost et al. 2002), and oligodendrocyte myelin glycoprotein (OMgp) (Kottis et al. 

2002).  Other inhibitory molecules are also present in the glial scar; however, the non-

regenerative environment has been mainly attributed to CSPGs, MAG, NOGO, and 

OMgp. 

The current clinical challenge is to obtain regeneration with accompanying 

functional recovery after injury in the spinal cord.  The crux of the approaches currently 

under development to promote regeneration in the CNS involves manipulating events in a 
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controlled manner.  Research to promote axonal outgrowth ranges from delivery of 

neurotrophic factors to proteins involved in actin cytoskeleton dynamics or alters the 

microenvironment.  To deliver these axonal promoting agents to the spinal cord, cellular 

transplantation, the utilization of scaffolds, and various temporal delivery vehicles, such 

as osmotic pumps and microparticles have been implemented. 

The research currently investigated to promote axonal regrowth can be divided 

into two main strategies: extrinsic and intrinsic.  The extrinsic strategy alters the 

microenvironment at and around the lesion site to promote axonal sprouting.  An example 

of this is to deliver siRNA that knocks-down inhibitory molecules, such as neurocan, a 

CSPG that is up-regulated after injury.  The second strategy involves intrinsically 

modifying cells to overcome the inhibitory nature of the glial scar.  An example of 

utilizing an intrinsic strategy is to modulate the Rho GTPases, which affect the actin 

cytoskeleton dynamics.  Three different areas are being research within the two strategies 

to promote axonal outgrowth.  The first area is to provide permissive bioactive substrates 

for axonal outgrowth.  For example, nerves are anchorage-dependent and the design of a 

substrate or bridge between the severed ends is an opportunity to present the correct 

spatial and temporal cues to both guide and stimulate axonal growth across the nerve gap. 

The second area is to deliver trophic factors in order to promote and stimulate axonal 

growth involving the application of specific factors known as neurotrophic factors in a 

spatially and temporally controlled manner in vivo.  The third area is to alleviate 

signaling due to the inhibitory entities present in the extracellular environment to allow 

axons to regenerate between the proximal and distal ends.  Any inhibitory cellular 

responses and/or any inhibitory cues that may be generated after injury must be 
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modulated such that they do not interfere in any putative regenerative attempt after 

injury.  This third aspect is especially critical in the CNS where an extremely inhibitory 

glial scar is generated at the distal nerve segment, often leading to regenerative failure in 

the CNS.  There are a series of technologies and challenges that are encountered in 

achieving this goal and they are discussed below. 

 

2.1.  EXTRINSIC STRATEGIES FOR AXONAL REGENERATION 

2.1.1.  Myelin-associated Inhibitors 

 As mentioned previously, Nogo, MAG, and OMgp are bound to the surface of 

myelin and are partially responsible for regenerative failure.  Studies have been 

performed to determine whether regenerative and functional recovery can be regained by 

knocking-out these myelin-associated proteins.  Nogo has been the most extensively 

studied.  This protein is a member of the Reticulon Family and has two transmembrane 

domains.  There are three isoforms:  Nogo-A, -B, and –C, which are similar in sequence 

at the C-terminus (Schweigreiter and Bandtlow 2006).  This inhibitory molecule binds to 

the Nogo receptor (NgR).  Another receptor, p75NTR, which is a neurotrophin receptor, 

behaves as a co-receptor to NgR, thus activating a signaling-transduction pathway as a 

receptor complex (Wang et al. 2002a; Wong et al. 2002).  Studies have been performed 

examining the contribution of Nogo and its receptors, NgR and p75NTR, in the lack of 

axonal regeneration after injury.  Contradictory results have been reported regarding the 

inhibition of Nogo and its affect on axonal regeneration.  Genetically engineered mice 

that were Nogo-deficient demonstrated that in the absence of this inhibitory molecule, 

significant axonal regeneration did not occur after SCI (Zheng et al. 2003).  In another 
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study, NgR and p75NTR were individually knocked down in mice and failed to exhibit 

enhanced axonal regeneration (Zheng et al. 2005), demonstrating that another inhibitory 

molecule and not Nogo may be the major contributor in inhibiting axonal outgrowth 

through injured spinal cord.  However, there have been studies published by the 

Strittmatter Laboratory that have shown that a peptide antagonist, developed from Nogo 

sequences, which competitively binds to NgR promoted axonal regeneration and 

improved functional recovery (GrandPre et al. 2002; Li and Strittmatter 2003). 

 The second myelin-associated protein, MAG, a member of the immunoglobulin 

gene superfamily, is a transmembrane protein.  MAG was the first of the three myelin-

associated inhibitors identified as an inhibitor to axonal regeneration (McKerracher et al. 

1994; Mukhopadhyay et al. 1994).  However, the role of MAG as a major contributor to 

inhibition has been questioned.  MAG is also present in the peripheral nervous system 

where axonal regeneration does not appear to be hindered by inhibitory molecules as in 

the CNS(Aguayo et al. 1981).  This begs the question as to its role in inhibition.  

Although studies have shown that MAG is inhibitory for outgrowth in vitro, a study 

demonstrated that in MAG knocked-out mice, axonal outgrowth was similar to wild-type 

animals, which was not significant (Bartsch et al. 1995). 

 OMgp was the most recently identified myelin-associated inhibitor (Kottis et al. 

2002).  This protein is glycosylphosphatidylinositol anchored and has leucine repeats 

(Vourc'h et al. 2003).  In vitro studies have shown that OMgp is inhibitory towards 

neurite outgrowth(Wang et al. 2002b); however, extensive research on its influence on 

axonal regeneration in vivo has not yet been conducted. 
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2.1.2.  Chondroitin Sulfate Proteoglycans 

 The contradictory evidence of axonal regenerative capabilities after SCI in 

myelin-associated protein deficient mice has lead to the belief that CSPGs are the major 

inhibitors present in the microenvironment preventing axons from crossing the lesion site 

into the caudal segments of the spinal cord.  After injury, astrocytes and oligodendrocyte 

precursor cells secrete CSPGs (Morgenstern et al. 2002), as well as macrophages and 

reactive microglia (Jones et al. 2002) into the glial scar matrix.  CSPGs consist of a 

protein core and glycosaminoglycans (GAGs) side chains.  It has been demonstrated that 

both components contribute to the inhibitory nature of the macromolecule (Hoke and 

Silver 1996; Morgenstern et al. 2002). 

Currently, many studies are investigating the removal of the inhibitory nature of 

the CSPGs through enzymatic degradation.  In particular, chondroitinase ABC (chABC) 

is a bacterial enzyme that cleaves the GAG side chains into disaccharide units.  

Consequently, studies have shown that after treating the CSPGs with chABC, axonal 

regeneration could occur and extend through the inhibitory glial scar region into the distal 

nerve end (Bradbury et al. 2002; McKeon et al. 1995; Zuo et al. 1998; Zuo et al. 2002).  

Although this bacterial enzyme has been introduced into rodent models to regenerate 

axons after SCI, it is a concern that chABC contains impurities and elicit an immune 

response.  Recently, a study was published where reactive astrocytes were genetically 

modified to express chABC.  Compared to the wild type, the axons were able to penetrate 

through the proximal region of the glial scar and enter into the lesion site (Cafferty et al. 

2007).  Although administration of chABC after SCI has shown potential as a possible 

therapeutic intervention, one must wonder about the effect of chABC on CSPGs 
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deposited during developmental stages to maintain the tracts and are located in the 

perineuronal nets.  Other strategies that are currently being investigated involve the use of 

ODNs and siRNAs to prevent the production of CSPGs by reactive astrocytes after 

injury.  If this is successful, the CSPGs deposited for tract maintenance will be preserved 

and only the negative CSPGs will be knocked-out. 

 

2.2.   INTRINSIC STRATEGIES TO ALLEVIATE INHIBITORY ENVIRONMENT 

AT THE SITE OF INJURY 

2.2.1.  Rho GTPases 

Neurites extend from the neuronal body and have a growth cone at the tip.  The 

role of the growth cone is to read the environmental cues and decide which direction the 

neurite will grow towards.  The growth cone extends filopodia and lamellipodia to read 

the cues.  Rho GTPases are involved in actin cytoskeleton dynamics, specifically in 

promoting filopodial and lamellipodial extension (Nobes and Hall 1995).  There are three 

main members of the Rho GTPase family, Cdc42, Rac, and Rho.  Cdc42 and Rac induce 

filopodial and lamellipodial outgrowth, respectively, and activation of Rho results in 

growth cone collapse.  In the glial scar the inhibitory molecules prevent the extension of 

the filopodia and lamellipodia and induce growth cone collapse.  Studies have shown that 

MAG and Nogo activate the signaling pathway that converges on Rho, thus causing 

growth cone collapse.  Therefore, it is necessary to mask or remove these negative 

components from the microenvironment in order to support axonal outgrowth.  Mutant 

Rho GTPases derivatives have been constructed (Coso et al. 1995; Kozma et al. 1995).  

When the Rho GTPases are GTP-bound they are in the active state and they are inactive 
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when bound to GDP.  The two derivates are constitutively active (CA) and dominant 

negative (DN).  Proteins that are constitutively active are always GTP-bound, therefore, 

in the active state. Dominant negative Rho GTPases are in the inactive conformation.  

Studies have utilized these derivatives to investigate how neurite extension is affected 

when in contact with inhibitory molecules. Protein transduction of these mutant 

derivatives is one of the methods utilized to promote and stimulate axonal regeneration.  

By intracellularly modulating levels of activated GTPase, the growth cone can be 

manipulated to extend and grow into an inhibitory environment.  Modulating Rho 

GTPases is one of the ways to overcome glial scar inhibition through protein transduction 

(Dubreuil et al. 2003; Jain et al. 2004; Monnier et al. 2003; Winton et al. 2002).    By 

modulating Rho GTPases levels in the neurons and elevating the concentration, the 

inhibitory effects of the glial scar will be masked and the growth cone will lead the axon 

towards the distal nerve ending. 

 

2.2.2. Cyclic AMP 

Other molecules that have been used to encourage neurite outgrowth in the face of 

inhibitory signals are cAMP and calcium in the CNS (Mattson et al. 1988).  It has been 

shown that the modulation of cAMP, through the use of active and inactive analogs, can 

encourage neurite outgrowth through inhibitory substrates (Bandtlow 2003).  The 

activation of the signal transduction pathway by cAMP shows that axonal regeneration 

can be stimulated and promoted (Qiu et al. 2002).  In vivo studies have also shown that 

increasing cAMP levels will promote axonal outgrowth (David and Lacroix 2003).  There 
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has been speculation that cAMP is proximal to the Rho GTPases on the same signaling 

transduction pathway, thus suggesting that cAMP can affect actin cytoskeleton dynamics. 

 

2.2.3.   Neurotrophic Factors Stimulate Process Extension 

 Neurotrophic factors have an important role in neural development and in adult 

life for axonal regeneration.  Neurotrophins, nerve growth factor (NGF), BDNF, and 

neurotrophin-3 (NT-3), are a specific family of neurotrophic factors, which promote 

regeneration in the nervous system.  NGF was the first neurotrophin discovered in a study 

that investigated the effects of lost target tissues on sensory and motor neuron survival 

(Levi-Montalcini 1987).  BDNF was the next to be discovered followed by NT-3.  The 

neurotrophins bind to two classes of receptors, the tropomyosin receptor kinase (Trk) and 

the p75 neurotrophin receptor (p75NTR).  The Trk receptors are members of the receptor 

tyrosine kinase (RTK) family and there are three subtypes, TrkA, TrkB, and TrkC.  NGF 

binds to TrkA and activates its signaling pathway, while TrkB and TrkC bind to BDNF, 

and NT-3, respectively (Hennigan et al. 2007). It has been suggested that when the 

trophic factors bind to Trk receptors, the signaling pathways for neuronal survival are 

activated, where as activation of p75NTR induces cell death (Hennigan et al. 2007).  This 

is correlated with the studies that demonstrate p75NTR role in the activation of Rho.  In the 

CNS, BDNF and NT-3 have been investigated for their regenerative capabilities.  Several 

studies, which will be discussed later, have shown that after administration of BDNF or 

NT-3, axonal regeneration was promoted in spinal cord injured adult animals. 
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2.3.  CELL TRANSPLANTATION FOR CELL-SCAFFOLD CONSTRUCTS: 

COMBINING PERMISSIVE SUBSTRATES WITH STIMULI FOR REGENERATION 

The birth of cell transplantation began with the discovery in the early 1900s by 

Ramon y Cajal; axons could infiltrate the peripheral nerve transplanted in the CNS. Cell 

transplantation techniques are an elegant way to combine two promising strategies to 

elicit regeneration: permissive substrates and spatio-temporally controlled delivery of 

trophic factors at the site of injury. 

Olfactory ensheathing glia (OEG), fetal tissue, stem cells/neuronal precursor cells, 

Schwann cells, and macrophages are cells that have been transplanted in the spinal cord 

after injury, alone and in conjunction with each other and peripheral nerve grafts.  These 

cells provide both trophic cues, as well as physical contact guidance type cues in 

promoting regeneration as described below.  The use of cells, such as glia, utilizes the 

strategy that modulates intrinsic mechanisms to promote axonal outgrowth.  The 

transplantation of Schwann cells and OEG allows for spatial control of growth factors 

and other proteins, which are secreted by the cells. 

 

2.3.1.  Schwann Cells  

Although Schwann cells originate and have predominantly been transplanted in 

the PNS to aid in regeneration, these cells have been shown to promote axonal outgrowth 

in the CNS.  In studies that transected rat spinal cords and then implanted grafts 

containing Schwann cells and  Matrigel, it was demonstrated that the number of 

myelinated and unmyelinated axons was greater compared to grafts containing only 

Matrigel and the myelinated axons formed fascicles through the conduits (Xu et al. 1997; 
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Xu et al. 1999).  In another study transplanted Schwann cells, modified to release 

increased amounts of NGF, resulted in significantly more axons growing into the graft 

compared to treatment with Schwann cells that were not modified to release higher levels 

of NGF (Weidner et al. 1999).  It was also demonstrated that these Schwann cells 

expressed the same phenotype and myelinated axons in the CNS as in the PNS.  The 

combination of NGF and Schwann cells allows for the outgrowth of axons into the grafts 

due to the presence of NGF and then the Schwann cells provide direction for axonal 

growth due to the Bunger bands (Weidner et al. 1999).  As was mentioned previously, 

cAMP has been investigated to promote axonal regeneration.  In a study, cAMP and 

Schwann cells were both inserted into the spinal cord to observe whether there was a 

synergistic effect (Pearse et al. 2004).  The results demonstrated that by implanting 

Schwann cells and elevating cAMP, the number of myelinated axons increased, and 

functional recovery was observed compared to the transplantation of only Schwann cells. 

 

2.3.2.  Olfactory Ensheathing Glia 

Unlike Schwann cells, which can be transplanted in both the PNS and CNS, OEG 

are primarily transplanted in the CNS to promote axonal regeneration.  OEG ensheath 

olfactory axons and shield the axons from inhibitory molecules exposed in the 

environment, thus allowing the axons to regenerate throughout adult life (Santos-Benito 

and Ramon-Cueto 2003).  OEG demonstrates a promising method to ensheath the axons 

in other areas of the CNS that are injured and aid in regeneration.  The olfactory bulb is 

the main supplier for OEG, and one of the main benefits of using this source for OEG is 
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that the glia can migrate into other regions of the CNS and integrate with other CNS glia 

(Santos-Benito and Ramon-Cueto 2003). 

 Comparisons have been made between Schwann cells and OEG for their 

effectiveness in promoting axonal regeneration in the CNS.  In a study that compared the 

response of astrocytes and CSPG expression after OEG or Schwann cell transplantation 

in the CNS, it was demonstrated that OEG elicited less of an astrocytic response and 

lower expression of CSPG compared to Schwann cells (Lakatos et al. 2003).  Although 

OEG do not induce as severe a response as Schwann cells, Schwann cells have shown 

more promising results in improving locomotor performance compared to OEG after 

adult rats have suffered from contused thoracic SCI (Takami et al. 2002). 

 

2.3.3.  Macrophages 

 Macrophages along with reactive microglia, as mentioned previously, are part of 

the initial cellular response after SCI.  Macrophages are another type of cell that is 

transplanted in hopes to improve axonal regeneration and function within the injury site.  

The role of macrophages and its benefits towards axonal regeneration is controversial.  

Macrophages are responsible for secreting cytotoxic chemicals which enhance secondary 

injury thus making axonal outgrowth difficult, as well as activating astrocytes, which 

release factors that include CSPGs.  On the other hand, these cells are also responsible for 

clearing myelin debris containing inhibitory molecules.  This controversy has not 

hindered the investigation of macrophages, and currently there are studies that are in 

Phase I clinical trials. 
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2.3.4.  Stem Cells and Neural/Glia Progenitor Cells 

Injury to the spinal cord results in loss of neurons and axons.  Although loss of 

neurons in the thoracic region does not contribute to major functional loss, it has 

detrimental consequences in the cervical and lumbar regions.  Therefore, the use of 

embryonic/fetal stem cells and adult stem cells is highly appealing to replenish the loss of 

neurons and/or oligodendrocytes and for neurotrophic factor production.  There are many 

benefits for using embryonic stem cells, such as: indefinite replication, thus never 

entering the senescence phase; and dividing into genetically stable cells; which can easily 

be genetically manipulated pre-implantation (McDonald et al. 2004; Myckatyn et al. 

2004).  However, the use of fetal tissue is extremely controversial, not only due to 

political and ethical issues, but because of the number of fetuses that are required to treat 

one patient, which is 10-15 (Guo et al. 2007).  In a study, where human fetal neural stem 

cells were grafted into a lesion of a spinal cord after an induced contusion injury, it was 

shown that the stem cells differentiated into neurons and glia, without the formation of a 

tumor, and functional improvement occurred (Tarasenko et al. 2007). 

The difficulty of stems cells differentiating mostly into glial cells rather than 

neurons has encouraged the use of progenitor cells, such as radial glial cells.  These cells 

are intermediaries before they have fully differentiated into neurons or glia.  Radial glial 

cells have also been transplanted after SCI.  Radial glial cells were first thought to be 

support cells during development for new neurons (Fricker-Gates 2006).  However, 

recent studies have shown that these cells can differentiate into neurons.  Speculations on 

the role of the radial glial cells after development have led to suggestions that these cells 

might become adult neural stem cells (Doetsch 2003) and can differentiate into neurons 
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(Fricker-Gates 2006).  The transplantation of embryonic radial glial cells after SCI has 

shown improved functional recovery, as well as decreased migration of activated 

macrophages and accumulation of CSPGs (Grumet et al. 1993).  Oligodendrocyte 

progenitor cells have been another type of progenitor cell transplanted after SCI with the 

intention to remyelinate the axons and improve motor function (Keirstead et al. 2005). 

Not only have these cells been transplanted alone, but cells have also been co-

transplanted to improve axonal regeneration after injury.  There has been a study that co-

transplanted neural stem cells with Schwann cells, genetically modified to secrete NT-3, 

hypothesizing that the secreted NT-3 would encourage the neural stem cells to 

differentiate into neurons.  An increase in the number of neuron-like cells was observed 

compared to the controls that did not have modified Schwann cells co-transplanted (Guo 

et al. 2007). 

 

2.3.5.  Astrocytes 

It was mentioned earlier that astrocytes can also be used as a substrate for axonal 

outgrowth.  These studies were performed in vitro.  It was demonstrated that uniformly 

orienting the astrocytes and organizing the ECM and cell adhesion molecules in order to 

culture neurons on the astrocytes lead to the enhancement of neurites extending in a 

direction parallel to the astrocytes (Biran et al. 2003).  The use of glial cells, such as 

astrocytes, as a substrate can be combined with a biomatrix to enhance neurite extension 

in a specific direction (Deumens et al. 2004).  Glial cells were cultured on the 

biodegradable poly(D,L)-lactide matrices to orient the cells in  a specific direction.  

Although this substrate did not enhance either the number of extended neurites or the 
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length of the neurites, the cultured cortical neurons extended neurites along the 

orientation of the glial cells/biomatrix substrate. 

 

2.4.  GROWTH PERMISSIVE SUBSTRATES TO ACTIVELY SUPPORT GROWING 

AXONS 

An important strategy used to promote axonal regeneration is to provide 

substrates for the outgrowth to occur.  Substrates that have been investigated the most to 

provide an adequate scaffold in the spinal cord are hydrogels and fibers, as well as 

transplanted cells, which were discussed earlier.  Proteins and oligopeptides are coupled 

onto the substrates to provide a more permissive surface that mimics the ECM for the 

axons to anchor and extend through the nerve gap.  Collagen and laminin (LN) are the 

more common proteins coupled to the substrates, as well as the oligopeptides, RGD, 

YIGSR, and IKVAV.  The contribution of these proteins and oligopeptides will be 

discussed further later in this chapter.  Transplanting cellular substrates is another 

approach to encourage axonal regeneration.  Schwann cells, olfactory ensheathing glia 

(OEG), and astrocytes are examples of the cells that could be transplanted in the nerve 

gaps in the CNS.  These cells secrete proteins and growth factors that make the 

microenvironment less inhibitory for axonal outgrowth. 

In order for the three strategies to promote nerve regeneration, proteins must be 

controlled spatially and temporally in the CNS.  Typically, biomaterial scaffolds are used 

for the spatial control of proteins in three-dimensions (3D).  An important factor when 

developing scaffolds is that they must mimic the ECM in order to encourage axons to 

grow through the glial scar.  Therefore, in order to control the location of the proteins, 
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three-dimensional scaffolds, such as hydrogels and fibers can be utilized to promote 

axonal regeneration in the nervous system. 

 

2.4.1.  Spatial Control: Permissive Bioactive Hydrogel Scaffolds for Enhanced 

Regeneration 

The use of hydrogels provides a substrate for axonal outgrowth.  Hydrogels are 

polymers that swell with the addition of water and are crosslinked.  There are three main 

biomaterials belonging to the hydrogel family that have been used to provide a scaffold 

for axonal regeneration:  (1) agarose, (2) alginate, and (3) collagen. 

 

2.4.1.1.  Agarose as a Scaffolding Material 

Agarose, which is a thermoreversible copolymer of 1,4-linked 3,6-anhydro-α-L-

galactose and 1,3-linked β-galactose, is derived from red algae.  Agarose is a beneficial 

biomaterial to use as a scaffold for a few reasons.  The hydrogel is biocompatible as it 

causes no adverse reaction when implanted in vivo.  Its porosity and mechanical 

properties can be manipulated and optimized to maximize axonal growth (Balgude et al. 

2001; Bellamkonda et al. 1995b).  Most of all, agarose is beneficial because it can be 

used to control proteins spatially by binding proteins to the agarose and it can be used to 

support cell migration (Bellamkonda et al. 1995a; Borkenhagen et al. 1998).   

Agarose gel can be used to encourage axonal outgrowth by covalently coupling 

growth promoting molecules to the agarose hydrogel, which would embody the 

characteristics of the ECM allowing axonal outgrowth into the glial scar and reconnect 

with the distal nerve.  In vitro studies have shown that covalently coupling a growth 
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promoting ECM molecule, such as LN, to the agarose gel encouraged neurite outgrowth 

compared to a scaffold that did not have any modifications (Bellamkonda et al. 1995a; 

Yu et al. 1999).  Along with coupling whole proteins, such as LN and collagen, 

oligopeptides can be bound to hydrogels as well.  The oligopeptides of interest are the 

ones that influence cell-matrix interactions, such as RGD, which is responsible for the 

interaction between fibronectin and an integrin receptor, and YIGSR, which is a peptide 

on the β1 chain of laminin aiding in cell attachment (Borkenhagen et al. 1998).    

The application of the engineered scaffold, which was a polysulfone tube 

containing LN-bound agarose and a slow release system of NGF, in vivo in the peripheral 

nervous system demonstrated that the regenerated myelinated axons were comparable to 

the regeneration found in autografts (Yu and Bellamkonda 2003). 

There are different types of crosslinkers that can be used to couple the proteins to 

the gel.  There are thermochemical bifunctional crosslinkers, such as 1,1’-

carbonyldiimidazole (CDI), which can couple the protein to the agarose.  Another class 

of crosslinkers that can be used is photocrosslinkers.  These photocrosslinkers are 

activated by shining UV light onto the agarose gel that contains the crosslinker (Luo and 

Shoichet 2004).  Free radicals are created, which then can be bound to the protein of 

interest.  Photocrosslinkers can be used to covalently bind macromolecules to the agarose 

hydrogel.  Using UV light to produce free radicals is beneficial because laser beams can 

be used to create patterns in the hydrogel.  One such application used UV laser beams to 

create channels through the agarose gel, encouraging the neurons to extend their neurites 

down the channel, providing directional cues for the neurites (Luo and Shoichet 2004).  

In a study, both CDI and a photocrosslinker, benzophenone, were used to couple YIGSR 
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to agarose hydrogel.  Results from both in vivo and in vitro experiments have shown that 

DRG neurite outgrowth was enhanced when cultured in 0.5% agarose.  Additionally, in 

vivo the number of myelinated axons was higher in the agarose coupled to the YIGSR 

peptide than plain agarose (Borkenhagen et al. 1998).  This study also concluded that the 

effectiveness of the gel was not determined by the type of crosslinker used to couple the 

oligopeptide.  Although there is not a functional difference between the types of 

crosslinkers, the advantage of using the photocrosslinker is the ability to pattern the 

hydrogel to favor the axonal growth in a specific direction.   

 

2.4.1.2.  Alginate as a Scaffolding Material 

Alginate is another scaffold material, similar to agarose, which can be utilized to 

control proteins spatially in order to influence axonal regeneration.  Alginate can be 

found in brown seaweed and is a copolymer formed from α-L-glucoronic acid and β-D-

mannuronic acid.  Alignate sponge has been investigated as a potential scaffold to 

promote regeneration in the CNS after the spinal cord was transected in rats.  It was 

shown that regenerating axons infiltrated the alginate gel significantly more as compared 

to collagen gels (Kataoka et al. 2004).  It was also suggested that the formation of glial 

scar could be reduced by the alginate gel due to little infiltration of connective tissue.  

Although in the study above it was demonstrated that the alginate scaffold could support 

axonal outgrowth alone, another study showed that neuronal survival was limited and that 

the scaffold disappeared from the cavity within 8 weeks, and was replaced by fluid.  

However, when fibers coated with alginate were implanted into the cavity and BDNF was 

delivered after injury, it was observed that there was axonal outgrowth, as well as 
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neuronal survival (Novikov et al. 2002).  Mixed results have been published when 

unmodified alginate was implanted into the spinal cord cavity. However, an experiment 

using anisotropic capillary alginate hydrogels demonstrated that these modified scaffolds 

could provide directional axonal outgrowth (Prang et al. 2006). 

 

2.4.1.3.  Collagen as a Growth Permissive Scaffold for Nerve Regeneration 

The third type of hydrogel applied as a scaffold for nerve regeneration is collagen, 

more specifically type I collagen.  Collagen is found in the ECM and helps promote 

axonal outgrowth and cell adhesion.  Comparisons among different types of gel matrices, 

collagen, methylcellulose, and Biomatrix showed that collagen along with 

methylcellulose had the best results in regenerating axons across a peripheral nerve gap 

(Wells et al. 1997).  It has been reported that filling tubes with ECM molecules, such as 

collagen, LN, and fibronectin, improves axonal regeneration.  The affect of collagen and 

LN gels that are magnetically aligned improves the distance of axonal outgrowth 

compared to collagen added without any alterations (Ceballos et al. 1999; Verdu et al. 

2002).  Collagen gels have also been inserted into lesions after dorsal transections in rat 

spinal cords.  Although axonal regeneration did not occur through the entire lesion area, 

the collagen gel along with the neurotrophin encouraged outgrowth into the matrix 

(Houweling et al. 1998).  The study also showed minimal glial scar formation, which 

would provide a more promoting microenvironment for axonal regeneration. 
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2.4.1.4.  Other Hydrogel Scaffolds 

 There are other hydrogels that can be used as scaffolds besides the three main 

ones discussed above.  Some of the other hydrogels are Matrigel, NeuroGel™, and 

Biomatrix.  Matrigel is made out of a mixture of ECM proteins, such as LN and collagen.  

In vivo studies have shown that Matrigel alone is not adequate scaffold to promote axonal 

outgrowth (Guenard et al. 1992; Valentini et al. 1987).  However, when the Matrigel is 

used in conjunction with Schwann Cells, axonal outgrowth is significantly noticeable.  

NeuroGel™ is a crosslinked copolymer hydrogel made of N-2-(hydroxypropyl) 

methacrylamide.  When this hydrogel was inserted into the thoracic region of the spinal 

cord after a contusion injury, it was observed that the rats that had implanted NeuroGel™ 

in the lesioned cavity had an improved locomotion according to the BBB test and there 

was evidence of axonal fibers infiltrating the hydrogel, thereby crossing the tissue-

implant interface (Woerly et al. 2001).  NeuroGel™ also demonstrated the capability to 

hinder glial scar formation when it was implanted in the lesion of spinal cords in adult 

rats (Woerly et al. 2004).  Biomatrix is a hydrogel, similar to Matrigel, made of ECM 

proteins, such as LN.  However, Biomatrix does not appear to promote regeneration as 

well as collagen and other hydrogels (Wells et al. 1997). 

 

2.4.2.  Spatial Control:  Contact Guidance (Fibers) as a Strategy to Promote Regeneration 

It was previously mentioned that besides the use of hydrogels as a scaffold, fibers 

could also be utilized to direct axonal growth from the proximal to distal ends of the 

nerve.  This is another strategic technique to gain spatial control of proteins using a 

substrate.   Tubes are inserted between the nerve gaps and then the nerve ends are sutured 
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to the tubes with the fibers placed through the length of the tube.  Due to the fibers being 

oriented longitudinally through the tube, they provide the orientation for axons to grow 

from the proximal to distal end of the gap.  Poly (L-Lactide) (PLLA) is a material that is 

commonly used to make filaments.  In an in vitro study, it was demonstrated that if the 

PLLA was coated with LN, then the neurite outgrowth was significantly greater than 

neurite outgrowth on uncoated PLLA surface or the poly-L-lysine coated filaments 

(Rangappa et al. 2000).  Tubes are generally used to encapsulate the filaments and 

provide an environment for axonal growth along the filaments.  However, in a study 

conducted in the PNS, collagen filaments were sutured to the proximal and distal ends of 

the nerve without the aid of tubes in vivo.  The study showed that the number of 

myelinated axons that regenerated was greater than that found in the group that received 

the autograft, although the difference was not significant (Yoshii and Oka 2001).  This is 

the only study that did not use a conduit for the filaments or any neurotrophic factors. 

However, the regeneration was abundant and demonstrated that perhaps these two 

components are not completely necessary if the proper conditions are provided for axonal 

growth.  Another variable that needs to be considered in the application of fibers is the 

number of fibers that should be inserted between the nerve ends.  In studies conducted by 

Yoshii et al.,  collagen filaments were sutured to the sciatic nerve ends without the aid of 

a tube, two thousand filaments were connected at the ends to keep them joined over a 20 

mm and 30 mm gap (Yoshii and Oka 2001; Yoshii et al. 2003).  The myelinated axon 

regeneration was comparable to the results observed with autografts for the 20 mm gap 

(Yoshii and Oka 2001).  However, in the case of the 30 mm gap, the axonal regeneration 

was significantly less.   These studies suggest that a large number of filaments would aid 
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in axonal outgrowth.  However, another study, in which PLLA filaments were inserted 

inside silicone tubes, demonstrated that a lower packing density of filaments elicited the 

greatest number of myelinated axons (Ngo et al. 2003).   

Although filaments are predominantly used in the PNS, studies have been 

performed where filaments were inserted in CNS to promote axonal outgrowth.  Carbon 

filaments were implanted in the lesion of a fully transected rat spinal cord.  The carbon 

filaments allowed a scaffold for axons to advance through the lesion (Khan et al. 1991).  

This study was taken further, where 10,000 carbon filaments were cultured with fetal 

tissue and implanted into the spinal cord lesion.  This condition exhibited an 

improvement in electrical conduction through the injured axons (Liu et al. 1995).  A 

study conducted by the same group who inserted 2000 filaments into a nerve gap in the 

PNS, utilized the collagen filaments to encourage axonal regeneration in the CNS after 

spinal cord injury (SCI) (Yoshii et al. 2003).  Four thousand collagen fibers were inserted 

between the two nerve ends parallel to the spinal cord.  It was demonstrated that the 

collagen fibers provided an adequate scaffold to bridge the nerve ends and allow axons to 

extend across the gap.   

It was previously mentioned that proteins and oligopeptides could be coupled to 

hydrogels.   A similar method was used to couple peptides to fibers that could potentially 

be implanted as a scaffold in the CNS.  Two laminin peptides, YIGSR and IKVAV, were 

coupled to poly(tetrafluoroethylene) (PTFE) fibers and DRGs were cultured to observe 

neurite extension (Shaw and Shoichet 2003).  The peptide surface modified fibers 

encouraged neurite outgrowth; however, the neurites could not extend along unmodified 

PTFE fibers.  To have successful axonal regeneration using fibers as the scaffold, it is 
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important to either use a biomaterial that encourages fibrin matrix formation and 

Schwann cell infiltration or to coat the fibers with a protein that does those things.  

Current research has demonstrated that fibers made out of collagen, coated with proteins, 

such as collagen or laminin, or oligopeptides have produced the most significant axonal 

regeneration.  Controlling proteins spatially through fiber scaffolds allows a surface for 

axons to adhere, as well as orient the direction of growth. 

 

2.5.  TEMPORALLY CONTROLLING THE RELEASE OF PROTEINS 

 As important as it is to control the proteins spatially, it is equally imperative to 

control the amount of protein delivered over a period of time.  Regeneration over long 

nerve gaps requires several months.  Therefore, for axonal outgrowth to occur during this 

time period, the microenvironment must be actively supportive over this time scale.  If 

proteins, such as Rho GTPases and neurotrophic factors, are only administered as a single 

dose at the time of implantation of the scaffold, then some of the protein will be taken up 

intracellularly, diffuse into the surrounding tissue, and degrade.  Then there will not be a 

therapeutic level of protein to promote axonal outgrowth over the time necessary to have 

complete regeneration.  For example, it was concluded that after local administration of 

NGF into the brain, the half-life of NGF was 30 minutes (Krewson et al. 1995).  Once the 

effective concentration for the proteins is known, then it can be delivered and sustained.  

Sustaining the presence of proteins at the effective concentration can be achieved through 

a controlled slow release delivery system.  There are currently four main techniques that 

are being investigated for controlling protein concentration at the site of injury over time: 

 27



(1) osmotic pumps, (2) embedded microspheres, (3) lipid microtubules and (4) enzyme 

dependent demand-driven trophic factor release. 

 

2.5.1.  Temporal Control:  Osmotic Pumps Release Protein to Encourage Axonal 

Outgrowth 

 Osmotic pumps can be used to deliver proteins, such as neurotrophic factors, to 

promote axonal regeneration.  Osmotic pumps are mostly utilized to deliver the proteins 

in the CNS.  There are two parts to this delivery system, one component is the infusion 

pump that is usually implanted under the skin on the back of the animal, and other 

component is the catheter that is inserted in the lesion of the nerve. 

Several studies have investigated the benefits of continuous infusion of the 

neurotrophic factors BDNF and NT-3 after SCI.  Typically, after SCI, 

methylprednisolone (MP) is administered to the patient.  It has been demonstrated that 

the levels of BDNF and NT-3 decrease after the administration of MP.  In a study, after 

treatment of MP, it was concluded that if BDNF was continuously delivered, then the rats 

locomotor function improved (Kim and Jahng 2004).  In a study that delivered both 

BDNF and NT-3 over a short time period (2 weeks) and a longer time period (8 weeks), it 

was shown that only the rats treated with BDNF and NT-3 over the 8 week time period 

allowed for the survival of the rubrospinal neurons (Novikova et al. 2002).  However, 

rubrospinal axonal regeneration was not observed.  In another study that delivered either 

NT-3 or BDNF for 4 weeks into the spinal cord after it was crushed, the rats treated with 

BDNF did not exhibit any axonal regeneration.  However, fiber sprouting was observed 

into and through the lesion in the rats that had NT-3 administered to the spinal cord lesion 
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(Bradbury et al. 1999).  In a study that infused only BDNF for two weeks into the rat 

motor cortex after SCI, sprouting of corticospinal fibers was observed; however, axonal 

regeneration did not occur into the peripheral nerve transplant that was placed in the 

lesion (Hiebert et al. 2002).  The constant release of neurotrophic factors using the 

osmotic pump appears to exhibit therapeutic results.  The site of administration seems to 

affect the response of axonal regeneration and fiber sprouting.  The only disadvantage of 

utilizing the osmotic pump is the different locations of its components. 

It was mentioned above that osmotic pumps can be used to deliver neurotrophic 

factors to the CNS to modulate intra-neuronal mechanisms.  Osmotic pumps have also 

been utilized to infuse IN-1 antibody that neutralizes NOGO-A, an isoform of NOGO 

that is one of the main inhibitory molecules located in the glial scar (Brosamle et al. 

2000).  It was observed that after 2 weeks of IN-1 delivery, regenerating fibers were 

observed through the lesion in the thoracic region into the lumbar region of the spinal 

cord.  Therefore, the use of osmotic pumps can also be used to deliver proteins that can 

neutralize the inhibitory environment of the glial scar. 

Other than the use of osmotic pumps to deliver proteins, gelfoam, an insoluble 

gelatin sponge, was used to deliver chondroitinase ABC into the spinal cord lesion.  The 

animals treated with chondroitinase ABC filled gelfoam displayed axonal regeneration of 

the Clarke’s neurons through the lesion area and it was exhibited that CSPG was digested 

by the chondroitinase ABC (Yick et al. 2003). 
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2.5.2.  Temporal Control:  Slow Release of Trophic Factors Using Microspheres 

   Microspheres, used in drug delivery applications, are being investigated to 

deliver protein to the CNS in order to encourage axonal outgrowth.  Microspheres have 

an advantage over osmotic pumps because only a single administration is needed to 

release the protein over time.  The size of the microspheres depends upon the application.  

The size of the microparticles in the studies that use microspheres to promote axonal 

outgrowth is typically around 12-16 μm.  The materials that are used to make the 

microsphere are typically biodegradable polymers.  The use of copolymers and altering 

the ratio of the polymers can affect the biodegradation profiles because the polymeric 

characteristics, such as glass transition temperature and hydrophilicities, change (Sinha 

and Trehan 2003).  The polymeric materials mostly used for the microspheres are 

poly(lactic acid) (PLA), the copolymer poly(lactic-co-glycolic acid) (PLGA) and 

polyphosoesters.  When investigating a specific polymer or another biomaterial, it is 

important to make sure that when the material degrades it does not denature the protein 

due to the possible  immunogenic response it can cause, which would alter the release 

profile and bioactivity (Sinha and Trehan 2003). 

Most of the current research focuses on delivering NGF loaded microspheres to 

regenerate nerves in the PNS.  However, in the CNS, one of the first studies conducted 

using microspheres to deliver protein to the CNS was by Camarata et al.  In order to 

combat neurodegenerative disease, microspheres loaded with NGF were inserted that 

could be released in vivo for 4 to 5 weeks (Camarata et al. 1992).  In another in vitro 

study, the number of days NGF was released was increased to 91 days.  Various ratio of 

PLGA were tested to determine the release characteristics, as well as poly(ε-
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caparolactone) (PCL) (Cao and Schoichet 1999).  The surface morphology of the 

microspheres that are loaded versus unloaded is different.  The surface of protein loaded 

microspheres is rougher, whereas the unloaded microspheres have a smoother surface.  

The smaller the microsphere, the greater the surface area, thus increasing the degradation 

rate of the microsphere and release of the protein.  The smaller the microspheres, the less 

of an inflammatory response will be triggered.  Therefore, nanoparticles are now being 

utilized in vivo to decrease the chances of being phagocytosed by macrophages. 

 

2.5.3.  Temporal Control:  Lipid Microtubules for Sustained Release of Stimulatory 

Trophic Factors 

Another method to slowly release protein in the CNS and PNS is the use of lipid 

microtubules, also referred to as microcylinders.  These microtubules are hollow 

cylinders with a diameter of 0.5 μm (Meilander et al. 2001).  The length of the 

microtubules varies based on the time period in which the protein, DNA, or other desired 

molecule needs to be released.  The molecule is released at the ends of the microtubules, 

which is the reason why the length of the microcylinders controls the release profile of 

the protein.  In a study previously mentioned, to aid axonal regeneration in the PNS, a 

two-step slow release system was developed.  The first step involved NGF loaded 

microtubules, which had a length of 40 μm, and the second step involved embedding the  

loaded microtubules within the agarose hydrogel (Yu and Bellamkonda 2003).  The two-

step release system thus consisted first of the diffusion of the NGF from the microtubules 

into the agarose and then the release of the NGF from the agarose in to the gap between 

the two nerve ends.  This slow release system allows the NGF to last longer in the nerve 
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gap and prevents degradation or dilution by macrophages and other fluids.  Two months 

post-implantation, a cable formed, the number of myelinated axons was statistically 

similar to the autograft condition, and the density of myelinated axons was similar to that 

of the autograft and a normal sciatic nerve.  We have shown that an agarose scaffold, 

containing lipid microtubules loaded with BDNF, injected into a spinal cord cavity 

reduced the inflammatory response and aided in axonal infiltration into the scaffold (Jain 

et al. 2006). 

 

2.5.4.  Temporal Control:  Demand Driven Release of Trophic Factors 

Another form of controlled release of a protein is the fibrin matrix, which was 

initially developed for wound healing.  Cells that migrate to the area degrade the matrix 

through proteolysis, thereby releasing the contained protein (Sakiyama-Elbert and 

Hubbell 2000b).  A fibrin matrix covalently coupled to heparin that interacted with 

neurotrophins, NGF, BDNF, and NT-3 was developed.  It was demonstrated in vitro that 

the neurite outgrowth was enhanced when the neurotrophins were released using this 

delivery system as compared to when soluble neurotrophins were added to the fibrin 

matrix (Sakiyama-Elbert and Hubbell 2000a).  When the heparin immobilized fibrin 

matrix was implanted in a nerve gap in the PNS, fiber sprouting was observed through 

the conduit to the distal end (Lee et al. 2003). 
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2.6.  TRANSDUCTION OF PROTEINS OR TRANSGENES 

2.6.1.  Peptide, Non-viral Delivery Systems 

 The hydrophobic nature of the plasma membrane consisting of phospholipids 

makes it difficult for hydrophilic molecules to cross the membrane without aid.  There 

are techniques to have cell expression or knock-down of a certain protein, such as lipids, 

electroporation and viral vectors.  However, there were constraints to using these 

methods, such as lack of delivery to non-dividing cells (i.e. neurons), the optimization 

required for each cell type, low transfection levels, and cellular toxicity (Green et al. 

2003; Zelphati and Szoka 1996).  Therefore, other methods have been developed to 

effectively transfer protein.  To transduce proteins into the cells, transduction peptides 

have been identified and utilized.  These peptides are cell-permeable peptides, also 

referred to as protein transduction domains (PTDs).  PTDs have been identified to allow 

the internalization of larger proteins (Joliot and Prochiantz 2004).   These transduction 

peptides can be naturally found, such as the Tat peptide; synthetically formulated, Pep-1 

for example; or created by phage display, such as Pep-7 (Joliot and Prochiantz 2004). 

Tat is a sequence of peptides that can be found on the human immunodeficiency 

virus (HIV-1).  It is typically 8-11 amino acids in length and does not contain any genetic 

viral component.  One of the theories as to the internalization of the peptide, as well as 

the compound is through ionic interactions.  The interactions between the peptide and the 

anionic structures on the cell surface then give way to the endocytic internalization of Tat 

and desired compound (Vives 2003). Once internalized, the amino acids that make up the 

Tat peptide sequence are catabolized (Vives 2003).  In order to deliver the desired 

compound, it must be conjugated to the Tat peptide and then replicated.  This custom 
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delivery can be a tedious process.  There are several studies that have conjugated proteins 

to the Tat peptide to be delivered within the lesion site after SCI (Monnier et al. 2003; 

Winton et al. 2002).  In our study, we have also used Rho GTPases that have been 

conjugated to Tat.  Tat has also been conjugated to siRNA, which shows promise in 

knocking-out the inhibitory molecules, such as CSPGs. 

There are commercially available generic peptides, such as Pep-1 also known as 

Chariot.  Pep-1 is a 21 residue peptide, which is lysine-rich, that does not require pre-

chemical covalent coupling (Deshayes et al. 2004; Gros et al. 2006; Morris et al. 2001).  

Multiple peptide strands form complexes with the protein, peptide, or antibody in 

question.  The Pep-1 sequences are on the outside of the complex with the protein on the 

inside, so that Pep-1 interacts with the cellular membrane when it inserts itself as a 

transmembrane pore structure.  Once the protein has transduced across the cellular 

membrane, the complex between the peptide and the compound is broken (Deshayes et 

al. 2004).  In an in vitro study it was shown that this peptide aided in the transduction of 

Rho GTPases, CA-Cdc42 and CA-Rac1, without inducing cytotoxic effects or disturbing 

the conformation of the proteins, allowing the proteins to continue with their function 

(Jain et al. 2004).  The McKerracher laboratory has also developed a peptide construct 

that is conjugated to proteins for transduction across cellular membranes (Winton et al. 

2002). 

 

2.6.2.  Viral-based Delivery Systems 

Viral vectors have been used to induce the production of proteins by the 

endogenous local cells.  There are four viral vectors that are used for gene delivery:  (1) 
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adenoviral vectors, (2) adeno-associated vectors (AAV), (3) retroviral vectors, (4) 

lentiviral vectors, and (5) Herpes simplex viral vectors (HSV).  These five viruses can be 

distinguished into two categories, those that integrate their genomes into the host cellular 

chromatin or viruses that are in the cell nucleus as extrachromosomal episomes (Thomas 

et al. 2003).  The target cells for gene therapy are one of the determining factors as to 

which viral vector should be used.  For efficient transfection of non-dividing cells, the 

use of viruses that integrate their genomes into the host cellular chromatin are utilized, 

such as lentiviruses.  However, for cells that proliferate, integrating vectors are the best 

choice to allow for stable genetic alterations (Thomas et al. 2003). 

Adenoviral vectors consist of non-enveloped DNA.  This viral vector is 

advantageous because they can infect a wide variety of cell types, which include non-

dividing cells, and can be grown to high titers (Robbins et al. 1998).  However, the 

advenoviruses induce a strong immune response.  Adenoviral vectors were being used in 

clinical trials in the 1990s.  However, the use of adenoviral vectors was reconsidered after 

a tragic case; a patient suffered from a massive inflammatory response when the 

adenoviral vector, which was locally delivered, systemically traveled, leading to multi-

organ failure (Thomas et al. 2003).  This case and other studies lead to the re-evaluation 

into the use of viral vectors.  Newer generations of adenoviral vectors have been 

developed, which do not elicit as severe an immunogenic response and has shown to be 

effective in animal models (Thomas et al. 2003).  Although the newer generations of the 

adenoviruses have elicited less of an inflammatory response, the CNS studies that have 

used this vector have shown that the toxicity is still an issue. 
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The second type of viral vector, AAV, is a member of the parvovirus family.  The 

benefits are that they infect non-dividing cells and the integration location into the 

chromosome is known each time.  However, the disadvantages are that this vector 

requires a helper virus, such as an adenovirus or HSV, for replication and the infection 

efficiency is low.  After SCI, AAVs encoding for either BDNF or NT-3 were transfected 

into neurons distal to the lesion site to encourage axonal infiltration into the caudal spinal 

cord.  It was observed that although the neurons did express BDNF or NT-3 for 16 weeks 

post-injection, the axons did not infiltrate the caudal spinal cord segment (Blits et al. 

2003).  

Unlike the adenoviral vectors, the retrovirus is made up of an enveloped RNA 

virus.  The benefits of using the retroviral vector are that it can stably infect dividing 

cells, and has high infection efficiency (Robbins et al. 1998).  The disadvantage of using 

this viral vector is that it does not have the capacity to deliver large genes, the cells must 

be dividing, and it is difficult to concentrate and purify the vector (Blits and Bunge 2006; 

Robbins et al. 1998).  The use of retroviruses after SCI is limited due to the fact that these 

vectors cannot infect non-dividing cells, such as neurons. 

The benefits of the lentiviral vectors are that these vectors are able to transfect 

both proliferating and non-dividing cells.  Therefore, in the CNS it allows for the 

transduction of genetic material in both glia and neurons (Blits and Bunge 2006).  The 

transgene using the lentiviral vector can be around 8-10 kb in size (Azzouz et al. 2004).  

A limited inflammatory response is seen after use of this vector.  The fifth viral vector, 

HSV, can also infect non-dividing cells, however, the expression is transient. 
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 In a study that compared the efficiency and protein expression after delivery of a 

transgene into spinal cord using lentiviral, adenoviral, and retroviral vectors, it was 

shown that the protein expression lasted longer when the lentiviral vector was used 

compared to the other two vectors, over 4 weeks (Abdellatif et al. 2006).  For transient 

delivery, the retroviral vector can be useful, which by 2 weeks showed that protein 

expression had decreased.  However, cellular expression of the protein at 2 weeks when 

the adenoviral vector was used to deliver the transgene, demonstrating that this vector 

would be useful if protein expression is desired for a couple of weeks. 

 

2.7.  SPINAL CORD INJURY MODELS 

The implementation of the strategies mentioned in this chapter requires a SCI 

model that allows for full behavioral and immunohistochemical analysis.  There are four 

main SCI models that are relevant to examine axonal outgrowth after injury.  These 

include a contusion model, a complete transection model, a lateral hemisection model, 

and a dorsal over-hemisection model, each with its own advantages and disadvantages.   

 

2.7.1.  Contusion Injury 

The contusion model is the most clinically relevant, since the vast majority of SCI 

in humans results from a “fracture-dislocation” of a particular vertebrae and resultant 

compression of the spinal cord running through the spinal canal of each vertebra.  In 

humans and rats, this injury results in a significant amount of cell death and tissue 

damage leading to the formation of a fluid filled cyst within the center of the spinal cord 

surrounded by a rim of intact tissue.  Cyst formation takes place over the course of weeks 
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and the amount of preserved tissue is highly variable (Kwon et al. 2002).  A disadvantage 

of this model is the axonal sparing that occurs after injury (Steward et al. 2003).  It is 

difficult to distinguish between regenerated axons versus axons that were spared at the 

time of injury.  Therefore, in a study where the main focus is axonal outgrowth, this 

model has its limitations.  

 

2.7.2.  Complete Transection Injury 

In place of the contusion injury, many labs have utilized complete transection 

models to examine regeneration of specific axon pathways.  However, while this model 

eliminates some of the overlap between sprouting and regenerating fibers, it is a drastic 

model that completely eliminates function below the injury site, which is stressful on the 

animal. 

 

2.7.3.  Lateral Hemisection Injury 

In the lateral hemisection model, all pathways on one side of the spinal cord are 

severed.  Therefore, this model does not raise questions as to whether the axons are 

spared or regenerated.  Also, this allows for the examination of multiple pathways.  

However, the drawback to this model is that the intact axons from the non-lesioned side 

of the spinal cord may sprout into dennervated areas below the lesion (Kwon et al. 2002). 

 

2.7.4.  Dorsal Over-hemisection Injury 

In the dorsal over-hemisection model, damage is limited to the dorsal columns 

and the dorsal CST bilaterally.  Although the chance of spared axons is slim due to the 
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bilateral transaction of the CST, it will be possible to distinguish between spared and 

regenerated axons by injecting BDA into the sensory motor cortex where these axons 

originate and examining the distribution of BDA-positive axons in the distal spinal cord. 

We have chosen to use the dorsal over-hemisection model because the CST is 

critically important in humans but has remained generally refractory to all attempts at 

promoting its regeneration.  Consequently, the dorsal CST will give us the most sensitive 

and potentially clinically important read-out of regeneration in response to our different 

and combined therapeutic approach.   The damage is limited to the dorsal columns; 

therefore, the animals regain the ability to urinate and defecate, thereby requiring less 

care and experiencing less mortality than animals with larger spinal cord transections. 

 

2.8.  CONCLUSIONS 

Many recent advancements in CNS regeneration have been due to the utilization 

of nano- and micro-technologies.  Most of the technology that has been developed has 

been geared towards controlling proteins spatially and temporally.  There are three main 

strategies used to elicit axonal outgrowth after injury that allow spatial and temporal 

control of proteins.  These are 1) providing permissive bioactive substrates for the axonal 

outgrowth, (2) using trophic factors to stimulate growth, and (3) alleviating inhibitory 

signals present in the extracellular environment to allow axons to regenerate between the 

proximal and distal ends.   

This chapter briefly summarizes the use of proteins, such as Rho GTPases and 

chABC in the extrinsic and intrinsic strategies.  To deliver these proteins, strategies 

involving spatial and temporal control have been developed.  Cells, hydrogel scaffolds, 
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and fibers have been implanted within the cavity for spatial control.  For temporal 

control, osmotic pumps, microspheres, lipid microtubules, and demand driven release of 

trophic factors have been used.  Previously, most of these strategies have been used 

alone, but recent studies have been using them in combination to enhance axonal 

outgrowth.  The key combination, however, remains elusive and is the focus of active 

ongoing investigation. 
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CHAPTER 3 

 

MODULATION OF RHO GTPASES TO OVERCOME CSPG-DEPENDENT 

INHIBITION ON NEURITE EXTENSION IN VITRO 

(As published with S.M. Brady-Kalnay and R.V. Bellamkonda, Journal of Neuroscience 

Research, 77(2004) 299-307). 

 

The central nervous system (CNS) fails to regenerate after injury.  A glial scar 

forms at the injury site, contributing to regenerative failure partly due to the chondroitin 

sulfate proteoglycans (CSPGs) in the glial scar.  The family of Rho GTPases, which 

include Cdc42, Rac1, and RhoA, is involved in growth cone dynamics.  Although the 

response of neural cells to the inactivation of Rho when contacting myelin-related 

substrates, or CSPG, has been investigated, Rac1 and Cdc42’s ability to modulate CSPG-

dependent inhibition has yet to be explored.  In this study, a stripe assay was utilized to 

examine the effects of modulating all three Rho GTPases on neurite extension across 

inhibitory CSPG lanes.  Alternating laminin (LN) and CSPG lanes were created and 

NG108-15 cells and E9 chick dorsal root ganglions (DRGs), were cultured on the lanes.  

Using the protein delivery agent Chariot®, the neuronal response to exposure of 

constitutively active (CA) and dominant negative (DN) mutants of the Rho GTPases, 

along with the bacterial toxin C3, was determined by quantifying the percent ratio of 

neurites crossing the CSPG lanes.  CA-Cdc42, CA-Rac1, and C3 transferase significantly 

increased the number of neurites crossing into the CSPG lanes compared to the negative 

controls for both the NG108-15 cells and the E9 chick DRGs.  We also show that these 
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mutant proteins require the delivery vehicle, Chariot®, to enter the neurons and affect 

neurite extension.  Therefore, activation of Cdc42 and Rac, as well as inhibition of Rho, 

helps overcome the CSPG-dependent inhibition of neurite extension. 

 

3.1  INTRODUCTION 

Physical injury to the CNS often results in permanent functional loss as astroglial 

scar at the site of injury results in a non-permissive environment for regeneration.  

Astroglial scar contains astrocytes, oligodendrocytes, oligodendrocyte precursors, 

meningeal cells, and microglia, that produce inhibitory molecules (Fawcett and Asher 

1999) that have been implicated in regenerative failure (David and Lacroix 2003); (Hoke 

and Silver 1996).  Inhibitory macromolecules include myelin-associated glycoproteins 

(MAG) (McKerracher et al. 1994; Mukhopadhyay et al. 1994), NOGO-A (Niederost et 

al. 2002), and oligodendrocyte-myelin glycoprotein (OMgp) (Kottis et al. 2002), which 

are myelin-related, and CSPGs, a family of non-myelin molecules (reviewed in (Spencer 

et al. 2003).  CSPGs, consisting of a protein core and glycosaminoglycan (GAG) side 

chains (referred to as chondroitin sulfate) (Morgenstern et al. 2002), are classified as 

aggrecan, phosphacan, neurocan, brevican, NG2, and versican (Tang 2003).  CSPGs are 

mainly produced by astrocytes and are also expressed by oligodendrocyte precursors and 

meningeal cells (Fawcett and Asher 1999).   

There are two possible strategies, extrinsic and intrinsic, to regenerate nerves 

through the glial scar.  Extrinsic approaches focus on removing inhibition, typically by 

using the enzyme chondroitinase ABC to cleave the GAG into its constituent 
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disaccharides.  This strategy helps partially alleviate CSPG mediated inhibition in vitro 

and in vivo (Bradbury et al. 2002; McKeon et al. 1995; Zuo et al. 1998). 

  In this study, we investigate an intrinsic strategy of alleviating the inhibitory 

influence of CSPGs through modulation of Rho GTPases.  The Rho GTPase family, 

particularly Cdc42, Rac1, and RhoA, are involved in the growth cone dynamics (Hall 

1998).  Cdc42 induces filopodia growth and Rac1 promotes lamellipodia formation 

(Nobes and Hall 1995).  RhoA responds to inhibitory cues by inducing growth cone 

collapse (Hall 1998).  Rho GTPases are active when GTP-bound and are inactive when 

GDP-bound.  Mutant forms of the Rho GTPases that mimic either the GTP-bound, 

constitutively active (CA), or GDP-bound, dominant negative (DN), have been 

constructed (Coso et al. 1995; Kozma et al. 1995).  We utilized CA- and DN-glutathione 

S-transferase (GST)-fusion proteins of the Rho GTPases.   

  It has been reported previously that MAG, NOGO-A, and OMgp contribute to the 

CNS inhibition (reviewed in (Filbin 2003).  Alleviation of myelin-related inhibition by 

inhibiting the activation of Rho and its downstream effector ROCK, using C3 transferase 

(C3) or Y27632 has been reported.  Typically, these proteins are transduced into cells 

through trituration (Jin and Strittmatter 1997).  However, this disrupts cell function and 

reduces cell viability.  Therefore, delivery reagents that transduce the Rho GTPases while 

preserving cell viability are needed.  Therefore TAT, a human immunodeficiency viral 

peptide, was fused to C3 to aid in protein uptake (Winton et al. 2002); (Dubreuil et al. 

2003); (Monnier et al. 2003).  While these studies have mainly focused on Rho and 

ROCK inactivation on both myelin and CSPG surfaces, the effect of modulating Rac1 

and Cdc42 on CSPG-dependent inhibition is still unclear.   
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Using a generic protein delivery agent, we investigated the effect of modulating 

Rac1 and Cdc42, as well as C3, on CSPG-mediated inhibition (specifically aggrecan).  

We used a modified in vitro Bonhoeffer stripe assay (Vielmetter et al. 1990), consisting 

of alternating lanes of laminin (LN) and CSPG (Snow et al. 2002); (Chen et al. 

2002);(Monnier et al. 2003).  CSPG lanes are non-permissive for cellular attachment and 

neurite outgrowth (Sango et al. 2003; Schmalfeldt et al. 2000).  Laminin was used to aid 

in neuronal attachment on the non-CSPG lanes (Condic and Lemons 2002).  NG108-15 

cells and whole E9 chick dorsal root ganglions (DRGs) were added on the lanes and 

transduced with Rho GTPase mutant proteins.  The percent ratio of neurites that grew 

along the LN lanes versus the percentage of neurites that crossed into the CSPG lanes 

was quantified as a measure of alleviation of CSPG-dependent inhibition. 

 

3.2  MATERIALS AND METHODS 

3.2.1.  Surface Modification of Tissue Culture Dishes 

Alternating CSPG and LN (Invitrogen, Carlsbad, CA) lanes were created on 60 

mm diameter tissue culture dishes using a modified version of the Bonhoeffer method 

(Vielmetter et al. 1990).  The CSPG (aggrecan), a gift from Dr. Arnold Caplan’s 

laboratory (Department of Biology, Case Western Reserve University, Cleveland, OH) 

was purified from embryonic chick chondrocytes.  The 60 mm dishes were initially 

coated with nitrocellulose (5 cm2 of nitrocellulose dissolved in 12 mL methanol) and air 

dried for 30 minutes.  The Bonhoeffer silicone matrices (Max Planck Institute, Tubingen, 

Germany) were placed over a uniform nitrocellulose region.  CSPG was dissolved in 

distilled deionized water for a final concentration of 150 μg/mL, and 25 μg/mL of bovine 
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albumin serum-FITC (BSA, Sigma-Aldrich, Milwaukee, WI) was added for 

visualization.  This mixture was injected into the matrix chamber, aspirated into the 

channels, and allowed to bind to the nitrocellulose for 10 minutes.  The CSPG solution 

was then aspirated out of the channels, and the procedure was repeated 4 additional times.  

Next, 2 % bovine serum albumin (BSA, Sigma, Milwaukee, WI) was aspirated through 

the channels and allowed to incubate for ten minutes to block any unbound sites.  This 

cycle was performed 3 times.  Phosphate buffered saline (PBS) was aspirated into the 

channels in three rapid successions to remove any unbound protein.  The silicone matrix 

was removed and LN (40 μg/mL) was added over the modified region for 30 min.  To 

block the unbound nitrocellulose, 2% BSA was added to the entire dish for 10 minutes.  

After removing the BSA, the dishes were rinsed with Dulbecco’s Modified Eagle Media 

(DMEM, Invitrogen, Carlsbad, CA) then stored at 37°C with 2 mL of DMEM to be used 

within a few hours. 

 

3.2.2.  NG108-15 Cells Neurite Outgrowth Assays 

NG108-15 cells (ATCC, Manassas, VA) were removed from T75 culture flasks 

by trypsinization and then resuspended in Neurobasal-A media (Invitrogen, Carlsbad, 

CA) supplemented with N-2, L-glutamine, and 1% penicillin streptomycin.  The DMEM 

was removed from the modified tissue culture dishes, and 2 mL of Neurobasal-A media 

along with 2×104 NG108-15 cells were added over the lane region.  The cultures were 

incubated for 4 hours in 37°C and 5% CO2.  By 4 hrs, NG108-15 cells typically formed 

concise lanes, adhering only to LN lanes, and not to CSPG containing lanes.  The Rho 

GTPases: L61 Cdc42(CA)-GST, N17 Cdc42(DN)-GST, L61 Rac1(CA)-GST, N17 
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Rac1(DN)-GST, and L63 RhoA(CA)-GST, as well as C3 transferase (Cytoskeleton, 

Denver, CO), were prepared for protein transduction by complexing them with Chariot® 

described below.  For the GST control, the GST fusion protein is complexed to the 

Chariot®. To form the protein transduction complexes, 8 μL of 1 mg/mL protein in 200 

μL of PBS and 20 μL of Chariot® (Active Motif, Carlsbad, CA), which was dissolved 

previously in sterile deionized distilled water, was further diluted in 200 μL of deionized 

distilled water and the two solutions were mixed and incubated at room temperature for 

30 min.  For the C3, the molar equivalent (2 μg/mL) to the other mutant proteins was 

transduced.  Four hours after plating the cells, 400 μL of the Neurobasal-A medium was 

removed from the culture and the protein/Chariot® complex was added to the dish.  For 

the media control, sterile deionized distilled water and PBS were added to the cultures 

without protein or Chariot®
.  Five hours after plating, 1 mL of Neurobasal-A media was 

added for a final culture media volume of 3 mL.  The cultures were placed in humidified 

incubators at 37°C and 5% CO2 and were imaged under light microscopy after 48 hr as 

described below.  The cultures were then fixed using 4% paraformaldehyde and stored 

for further analysis. 

  A dose response study was performed using the following final concentrations of 

CA-Cdc42, 1 μg/mL, 2 μg/mL, 3 μg/mL, 4 μg/mL, 6 μg/mL, and 8 μg/mL.  The 

culturing, incubation, and protein transduction were performed as described above. 

To evaluate whether the Chariot® aids proteins to enter the cells, protein 

transductions with CA-Rac1 and C3 were performed without the addition of Chariot®.  

The same procedures were performed as described above, however, the same solution 

was made without the Chariot® reagent. 
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3.2.3.  DRG Neurite Outgrowth Assays 

Sixty mm culture dishes with alternating lanes of LN and CSPG were prepared as 

described above.  Whole E9 White Leghorn chicks were dissected and 3-4 whole DRGs 

were cultured on each of the modified tissue culture dishes.  Neurobasal medium (500 

μL) supplemented with B-27 supplement and L-glutamine was added to the culture 

dishes.   The protein/Chariot® complexes were prepared with 8 μL of 1 mg/mL of protein 

and 20 μL of Chariot® and added to the DRGs for 1 hr at 37° C as described above for 

NG108-15 cells.  At the end of the hour, another 500 μL of Neurobasal medium was 

added.  The cultures were imaged after 48 hour as described below and then fixed with 

4% paraformaldehyde. 

 

3.2.4.  Quantification of Neurite Crossing 

The NG108-15 cells and DRGs were imaged and analyzed using ImagePro 

software (Media Cybernetics, Carlsbad, CA) through a Magnafire CCD camera 

(Optronics, Goleta, CA) attached to an inverted Nikon T300 microscope.  For the cultures 

with NG108-15 cells, the neurites were counted and categorized into two groups: (1) 

neurites that extended along LN lanes and (2) processes that crossed into the CSPG lanes.  

Neurites were counted only in the regions where cells attached and formed distinct lanes.  

A percent ratio of neurites crossing the CSPG lane was calculated based on the equation:  

100*
lanes LNtheongrowingneuritesof#
laneCSPG into crossingneuritesof# .  For the cultures with whole DRGs, the 

results were quantified in a blinded state by two, independent, unbiased people.  Each 

DRG explant in the cultures was scored from 0 to 4, similar to the scoring system used by 
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Walter et al to quantify the amount of neurite crossing from retinal explants (Walter et al. 

1987).  The score of 0 is given to explants that exhibit a preference for either LN or 

CSPG substrate and 4 is given to explants with neurites that show no preference for either 

of the two substrates.  The scores 1-3 were given for intermediate neurite crossing.  At 

least 3 DRGs per condition were analyzed by each of the two blinded people and their 

scores were averaged. 

 

3.2.5.  Statistical Analysis 

The Student t-test was performed using Minitab software.  Conditions were 

considered to be statistically different for p-values < 0.05. 

 

3.3.  RESULTS 

3.3.1.  Percent Ratio of Neurites Crossing after Transduction of Rho GTPases 

The percent ratio of neurite crossing into the CSPG lanes was measured for the 

two negative controls (no protein transduction and GST transduction), as well as Chariot® 

complexed to C3 and the Cdc42, Rac1, and RhoA mutants (Fig.3.1).  The two negative 

controls, either containing only media or GST protein, complexed with the Chariot®, 

displayed few neurites crossing the CSPG lanes (11.3% and 8.9%, respectively).  The 

mutant protein, CA-Rac1, had the highest percentage of crossing at 41.1%, followed by 

CA-Cdc42 and C3, which had crossing percentages of 31.3% and 28.1%, respectively, 

which were all statistically significant compared to the negative controls. 
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Figure 3.1  Percent ratio of neurites crossing for the controls, Rho GTPase mutant 
proteins, and C3 transferase.  After treatment with CA-Cdc42, CA-Rac1, or C3, the 
percent ratio of neurites crossing CSPG increased.  The data represent the mean + S.E.M. 
for three experiments.  # Statistically different compared to media control  
(p-value < 0.05). 
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In Figure 3.2, phase micrographs illustrate the effect of the mutant proteins, C3, 

and the negative controls.  The neurites extended on the LN lane or along the CSPG/LN 

border under the control conditions (Fig. 3.2A and B).  CA-Cdc42, CA-Rac1, and C3 had 

the greatest amount of neurites crossing the CSPG lane (Fig. 3.2C, D, and E).  The 

dominant negative mutants and CA-RhoA had little effect on neurite extension (Fig. 

3.2F, G, and H). 
BA 

Media GST

D E

C3 Transferase 

C 

CA-Cdc42 CA-Rac1

G

DN-Cdc42

HF 

CA-RhoA DN-Rac1 

Figure 3.2  NG108-15 cells transduced with mutant Rho GTPases and C3.  (A) Media 
control, (B) GST control, (C) CA-Cdc42, (D) CA-Rac1, (E) C3 transferase, (F) CA-
RhoA, (G) DN-Cdc42, and (H) DN-Rac1.  The neurons attached on the laminin lanes 
and the neurites predominantly grew along the laminin/CSPG border.  CA-Cdc42, CA-
Rac1, and C3 (C-E) induced neurites to cross the CSPG lanes.  The neurites in the two 
controls, DN-Cdc42, DN-Rac1, and CA-RhoA (A,B, F-H) sample groups grew on the 
laminin lanes with very little to no crossing of the CSPG lanes.  Scale Bars = 50 m.μ
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3.3.2.  Optimal Dosage for Percent Ratio of Neurite Crossing 

A dose response experiment was conducted on CA-Cdc42 using 6 different 

protein concentrations; 1 μg/mL, 2 μg/mL, 3 μg/mL, 4 μg/mL, 6 μg/mL, and 8 μg/mL 

(Fig. 3.3).  Only the lower four concentrations are plotted on this graph as the higher 

doses (6 μg/mL, and 8 μg/mL) were toxic and did not permit cell attachment.  As shown 

in Fig. 3, the percent ratio of crossing was 14.7%, 14.4%, and 12.7% for 1 μg/ mL, 2 μg/ 

mL, and 3 μg/mL CA-Cdc42 sample groups, respectively.  The concentration that elicited 

the highest percent ratio of crossing was 4 μg/mL CA-Cdc42 (31.3%).  Only the 4 μg/mL 

CA-Cdc42 sample group was statistically different from the media control. 
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Figure 3.3  CA-Cdc42 dose response curve for NG108-15 cells.  CA-Cdc42: 4 μg/mL 
induced the highest percent ratio of neurites crossing the CSPG lanes.  The data represent 
the mean + S.E.M. for three experiments.  # Statistically different compared to media 
control (p-value < 0.05). 



   

3.3.3.  Effect of Chariot® Transduction System 

Figure 3.4 graphically portrays the effect of using the Chariot® transduction 

system.  CA-Rac1 was used to investigate whether Chariot® was necessary to aid protein 

uptake by the cells.  Figure 3.4 demonstrates that there was a significantly greater number 

of neurites that crossed the CSPG lane when the mutant protein was complexed to the 

delivery reagent compared to the negative control.  The average percent ratio of crossed 

neurites through the inhibitory region in the absence of Chariot® was lower than the 

media control with an average of 6.9%.   
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Figure 3.4  Percent ratio of neurites crossing after CA-Rac1 treatment with and 
without Chariot®.  CA-Rac1 with Chariot® elicited the highest percentage of crossing.  
CA-Rac1 without the Chariot® had a similar percent ratio as the media control.  The 
data represent the mean + S.E.M. for three experiments.  # Statistically different 
compared to media control (p-value < 0.05). 
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C3 was administered as the molar equivalent of the other mutant proteins (Fig. 

3.1).  However, in a separate experiment, the molar amount of C3 was doubled (4 μg/mL) 

to observe the effect on neurite extension through the CSPG lanes.  When comparing the 

different C3 sample groups to the media control, 2 μg/mL and 4 μg/mL of C3 were 

statistically greater (Fig. 3.5).  C3 was added to the cells without Chariot as well.  The 

percent ratio of neurites crossing was similar to the media control (13%). 
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Figure 3.5  C3 transferase with and without Chariot®.  When the dosage of C3 was 
doubled, the percent ratio of crossing increased.  Without the Chariot® the percent ratio 
of neurites crossing is similar to the media control.  The data represent the mean + 
S.E.M. for three to four experiments.  # Statistically different compared to media 
control (p-value < 0.05). 



   

3.3.4.  Transduction of Rho GTPases into DRGs 

To determine whether or not the effect observed in the NG108-15 cells would be 

similar in primary neurons, CA-Cdc42, CA-Rac1, DN-Rac1, and C3 proteins were 

transduced into whole E9 chick DRGs.  Figure 3.6 depicts the results for whole DRGs 

neurites extending along the LN and CSPG regions.  A modified version of the 

preference scoring system developed by Walter et al (Walter et al. 1987) was used for 

analysis.  The results demonstrate that in the media control, the neurites had a score of 

1.2 with a strong preference for the laminin regions.  CA-Cdc42 and CA-Rac1 had a 

score of 3 and 2.9, respectively, with greater number of neurites crossing over into the 

CSPG regions.  The neurite crossing for C3 scored a 2 and DN-Rac1 scored a 1.5.  In 

Figure 3.7, phase micrographs of the DRG cultures at 48 hours after plating are shown.  

The lower portion of each image distinguishes between LN lanes (grey) and CSPG lanes 

(black).  The media control shows the majority of the neurites in tight bundles growing 

along the LN regions with a few neurites crossing the CSPG lanes (Fig. 3.7A).  Bundles 

of neurites extending along the LN lanes can also be seen in the sample groups when CA-

Cdc42, C3, or CA-Rac1 was transduced into the E9 DRGs, however, there are also 

increased amounts of neurites that are crossing the CSPG inhibitory lanes (Fig. 3.7B, C, 

and D).  The sample group that was transduced with DN-Rac1 was similar to the media 

control, with neurites growing along the LN lanes and very few crossing into the CSPG 

lane (Fig. 3.7E).  Therefore, CA-Cdc42, C3, and CA-Rac1 increased the number of 

neurites extending into the CSPG lane in both NG108-15 cells and primary DRGs. 
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Figure 3.6  DRG neurite preference for a substrate.  A score of 0 means that neurites 
preferred to extend on only one substrate, either LN substrate or CSPG.  A score of 4 
means that the neurites do not show a preference for a specific substrate.  A score 
between 1 and 3 indicates that there is a preference for one substrate, however, the 
neurites will extend along the other regions.  After treatment with CA-Cdc42 and CA-
Rac1, the neurites show less of a preference for laminin and extended along the CSPG 
lanes.  The data represent the mean + S.E.M. for three experiments.  # Statistically 
different com

 
 
 
 
 

 
pared to the media control (p-value < 0.05). 
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A B C

CA-Cdc42 Media C3 Transferase

ED 

CA-Rac1 DN-Rac1

Figure 3.7  DRGs transduced with mutant Rho GTPases and C3.  (A) Media 
control, (B) CA-Cdc42, (C) C3 transferase, (D) CA-Rac1, and (E) DN-Rac1.  Three 
to five experiments were conducted per condition.  Note that under each neurite 
image is an image that shows LN lanes in gray and CSPG 
lanes ιν βλαχκ.  Σιμιλαρ το τηε ΝΓ10815 χελλσ, ΧΑ−Χδχ42, ΧΑ−Ραχ1, ανδ Χ
3 (Β−Δ) ινδυχεδ νευριτεσ το χροσσ τηε ΧΣΠΓ λανεσ.  Τηε νευριτεσ ιν τηε με
δια χοντρολ ανδ τηε ΔΝ−Ραχ1 (Α ανδ Ε) σαμπλε γρουπσ γρεω ον τηε λαμινι
ν λανεσ ωιτη ϖερψ λιττλε χροσσινγ.  Σχαλε Βαρσ = 50 μm. 
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3.4.  DISCUSSION 

Nerve regeneration in the CNS is currently limited.  Our hypothesis is that CSPGs 

in glial scars are partially responsible for CNS regenerative failure by specifically 

sending inhibitory signals to the neurons, blocking regeneration.  Understanding the 

signaling pathways involved in blocking neurite outgrowth through the scar has been 

difficult.  However, knowledge of the signals involved in this region would illuminate the 

strategies that promote regeneration through the scar.  We hypothesized that regardless of 

the precise nature of the signals, they must converge on molecules that regulate the actin 

cytoskeleton, which are necessary for neurite outgrowth.  The Rho GTPases represent a 

point of convergence for many extracellular signals that regulate the actin 

polymerization.  Our strategy was to either block the inhibitory signals or mimic positive 

signals to stimulate neurite extension through inhibitory interfaces.  Therefore, we 

modulated the activity of the Rho GTPases (Rac1, Rho and Cdc42), which play important 

roles in regulating the actin cytoskeleton (Hall and Nobes 2000); (Luo 2000).   The Rho 

GTPases have also been implicated in axon guidance and in neurite outgrowth (Kuhn et 

al. 2000).  We demonstrate that this strategy is effective in overcoming CSPG-dependent 

inhibition of neurite outgrowth in an in vitro model system.  We demonstrate that 

activation of Rac1 and Cdc42, as well as inhibition of Rho, promotes neurite outgrowth 

through CSPG regions. We speculate that the CSPG-mediated inhibition was alleviated 

either by modulating intracellular signaling to frustrate CSPG’s inhibitory role, or by 

altering the cytoskeletal mechanics so that repulsive forces was overcome. 

Specifically, the effect of the mutant Rho GTPases proteins on the NG108-15 

neurites’ ability to cross into CSPG regions was quantified (Fig. 3.1).  All the mutant 
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proteins were transduced into the NG108-15 cells using the Chariot® system.  The 

proteins that promoted neurite crossing, C3, CA-Cdc42, and CA-Rac1, had significantly 

higher percent ratio of neurite crossing into the CSPG lanes compared to the negative 

controls.  CA-Cdc42 and CA-Rac1 were also statistically greater than DN-Cdc42, DN-

Rac1, and CA-Rho, indicating that these two proteins in their active state promote neurite 

extension into CSPG regions.  Through the inactivation of RhoA signal transduction 

pathway, C3 had a significantly higher number of neurites crossing than DN Cdc42 and 

CA-RhoA when 2 μg/mL of C3 was transduced.  When a higher concentration of C3 (4 

μg/mL) was transduced, the condition was statistically greater than DN-Cdc42, DN-

Rac1, and CA-RhoA.  Therefore, these results demonstrate that transducing CA-Rac1 and 

CA-Cdc42 complexed to Chariot®, as well as C3, can increase the number of neurites 

extending from the LN lanes into the CSPG lanes. 

To determine if combinations of mutant proteins produced synergistic effects, 

CA-Cdc42 and CA-Rac1 were cotransduced into the same lane modified culture dish 

such that the total mutant protein concentration was the same as with the single protein 

alone (4 μg/mL) combining 2 μg/mL of CA-Cdc42 with 2 μg/mL of CA-Rac1.  The 

percent ratio of crossing for this condition was around 13% (data not shown).  This 

percent ratio is similar to that observed when 2 μg/mL is transduced alone (Fig. 3.3).  

When higher concentrations of CA-Cdc42 and CA-Rac1 were cotransduced into the 

NG108-15 cells (total concentrations of 6 μg/mL and 8 μg/mL), the cells did not survive, 

although they remained attached to the surface, probably due to toxicity associated with 

the protein transduction.  Therefore, there was no observed synergistic effect of adding 

CA-Cdc42 and CA-Rac1. 
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To determine if there was a dose response to the mutant protein, six different 

concentrations of CA-Cdc42 were added (Fig. 3.3).  CA-Cdc42 was chosen for the dose 

response curve due to its positive effect on neurites crossing the CSPG lanes (Fig. 3.1).  

At the higher concentrations (6 μg/mL and 8 μg/mL), cell death occurred probably due to 

cytotoxicity either due to the protein itself or the Chariot® reagent.  A higher 

concentration, basic proteins in the cell such as the Rho GTPases, may potentially trigger 

a signal to begin apoptosis, leading to cell death.   The lower three concentrations of 

protein did not evoke a substantial increase compared to the negative controls in the 

percent average of the neurites crossing the lanes.  The narrow range of protein 

concentration that leads to cellular responses, shows that there is an optimal 

concentration to observe the desired response.  Therefore, the percentage ratio of neurites 

crossing the CSPG lane was more of a rectangular response rather than a peak response. 

The percent of neurites crossing in wells that were transduced with the lower three 

concentrations of CA-Cdc42 were statistically lower when compared to dishes with 4 

μg/mL of CA-Cdc42, which produced an average neurite crossing that was 2-fold higher.  

Therefore, the concentration of 4 μg/mL of CA-Cdc42 was optimal to elicit a crossing 

response from the neurons in our culture conditions.  This validates the mutant protein 

concentrations used for the experiment comparing the effects of all of the Rho GTPase 

mutants. 

Three commonly utilized methods to express a specific protein in cells, trituration 

(Jin and Strittmatter 1997), microinjection (Paterson et al. 1990), and scrape loading 

(Lehmann et al. 1999), are aggressive and can disrupt normal cell function.  Therefore, it 

is necessary to engineer a method of transducing proteins efficiently without risking cell 
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viability and administering the proteins in vivo.  In some studies, the TAT peptide was 

used to aid in protein transduction (Winton et al. 2002); (Dubreuil et al. 2003); (Monnier 

et al. 2003).  In this study, the Chariot® reagent was used to transduce the proteins across 

the cellular membrane.  Thus far, none of the previous studies have complexed protein 

with a generic delivery vehicle to aid in the protein transduction.  To investigate the 

contribution of Chariot®, both CA-Rac1, and C3 (two of the three conditions with the 

highest percent crossing through the CSPG lanes (Fig. 3.4) were added to the neurons 

without any Chariot® (Fig. 3.4 and 3.5).  Figure 3.4 shows that CA-Rac1 complexed with 

Chariot® had a 6-fold higher percent ratio of neurites crossing the lane compared to when 

the protein was added directly to the cultures, which makes it significantly higher.  When 

the Chariot® was excluded during the addition of C3, the percent ratio of crossing 

decreased by more than a 2-fold (Fig. 3.5).  These experiments confirm that the Rho 

GTPase mutant proteins as well as C3 have a limited ability to enter the cells on their 

own and need the aid of a delivery vehicle to enter the cells and influence neurite 

extension on CSPG. 

C3 was the only protein transduced into the neurons that is not a member of the 

Rho GTPase family.  The other mutants are constitutively active or dominant negative 

forms of the Rho GTPases. However, C3 is used to inhibit the activation of the RhoA.  

The molecular weight of C3 (24 kDa) is approximately half that of the other mutant 

proteins (50-52 kDa), therefore, 2 μg/mL was used in a previous experiment as a molar 

equivalent (Fig.3.1).  To observe the effect of doubling the molar concentration, 4 μg/mL 

of C3 was complexed to Chariot®.  The percent ratio increased by more than a 2-fold 

(Fig. 3.5).  The percent ratio of neurite crossing after transducing 4 μg/mL of C3 was 
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significantly greater than 2 μg/mL of C3 and both of these conditions were statistically 

greater than C3 without the Chariot® reagent.  This demonstrates that a higher 

concentration of C3 can promote greater number of neurites crossing the inhibitory CSPG 

lanes in vitro.   

Most studies investigating Rho GTPases have focused on RhoA, rather than 

examining Rac1 and Cdc42-dependent regulation of regeneration.  The addition of C3 or 

Y27632 blocks myelin and myelin/CSPG inhibition in vitro (Dergham et al. 2002), as 

well as CSPG inhibition (Borisoff et al. 2003).  Another study demonstrated that on 

NOGO and myelin substrates, the percentage of neurite outgrowth increased after the 

administration of C3 (Fournier et al. 2003).  In in vitro stripe assay experiments, C3 was 

fused to TAT and the studies demonstrated that inactivating the Rho pathway overcame 

CSPG inhibition (Monnier et al. 2003), as well as myelin (Winton et al. 2002) and 

NOGO (Dubreuil et al. 2003).  The use of TAT as a delivery vehicle requires a tedious 

process to construct the mutant protein.  Chariot® is convenient to use because it is a 

generic delivery reagent that can be complexed to any protein and works with high 

efficiency.  There has been conflicting evidence on the benefits of adding C3 into the 

corticospinal tract in order to achieve long length regeneration (Dergham et al. 2002; 

Fournier et al. 2003).  One of the theories for C3 failing to generate axon growth over 

long-distance gaps is that the Rho inhibitor is not successfully transduced into the injured 

cells at the site (Fournier et al. 2003). 

E9 whole DRGs were cultured to determine whether the results obtained with the 

NG108-15 cells could be replicated in primary neurons.  CA-Cdc42 and CA-Rac1 were 

transduced into the cells and induced a significantly greater amount of crossing similar to 
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the NG108-15 cells.  This demonstrates that although neurites preferred the LN substrate, 

after CA-Cdc42 or CA-Rac1 was transduced, the neurites were manipulated to extend on 

CSPG lanes  Although C3 was not significantly different compared to the media control, 

transducing the protein did evoke a neurite crossing into the CSPG region.  DN-Rac1 was 

used as the negative control in this experiment and did not encourage neurites to cross 

into the inhibitory region, which is shown in Figures 3.6 and 3.7.  Obtaining similar 

results from two different cell types allows the conclusion that CA-Cdc42, CA-Rac1, as 

well as C3 stimulate growth cone extension into the CSPG lane and overcome its 

inhibitory effects.  It would be interesting to evaluate the utility of CA-Cdc42 and CA-

Rac1 transduction in vivo to overcome regenerative failure in the CNS. 
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CHAPTER 4 

 

DELIVERY AND CHARACTERIZATION OF BDNF, CA-CDC42, AND CA-

RAC1 TO PROMOTE AXONAL OUTGROWTH THROUGH CSPG-

INHIBITORY REGIONS AFTER SPINAL CORD INJURY 

(Partially as published with Y.T. Kim, R.J. McKeon, and R.V. Bellamkonda, 

Biomaterials, 27(2006) 497-504 and  manuscript in preparation with S.M. Brady-Kalnay, 

R.J. McKeon, and R.V. Bellamkonda) 

 

 Spinal cord injury often results in permanent functional loss.  After injury, a series 

of events occur around the lesion site, including the deposition of growth cone inhibitory 

astroglial scar tissue containing chondroitin sulfate proteoglycan (CSPG)- rich regions.  It 

is important to encourage axons to extend through these inhibitory regions for 

regeneration to occur.  In this study, the Rho GTPases, Cdc42 and Rac1, which are 

involved in actin cytoskeleton dynamics, were locally delivered in constitutively active 

(CA) form into a hemisectioned lesion site.  Additionally, BDNF was delivered to the 

lesion site, either individually or in combination with either CA-Cdc42 or CA-Rac1. The 

dorsal over-hemisection model was utilized, creating a ~2mm defect that was filled with 

an in situ gelling hydrogel scaffold containing lipid microtubules loaded with the 

protein(s) to encourage axonal outgrowth.  The lipid microtubules enable slow release of 

proteins while the hydrogel serves to localize them to the lesion site and permit axonal 

outgrowth.  The results from this study demonstrate that groups treated with BDNF, CA-

Cdc42, CA-Rac1, BDNF/CA-Cdc42, and BDNF/CA-Rac1 had significantly higher 
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percentage of axons from the corticospinal tract (CST) that traversed the CSPG-

inhibitory regions proximal to the lesion site, as well as penetrate the glial scar compared 

to the untreated and agarose controls.  Although axons from the CST tract did not 

infiltrate the scaffold-filled lesion, NF-160-positive axons were observed in the scaffold.  

Treatment with BDNF, CA-Cdc42, and CA-Rac1 also reduced the reactive astrocytes and 

CSPG deposition, quantified by analyzing GFAP and CS-56 intensity, respectively, at the 

interface of the scaffold and host tissue.  Therefore, the local delivery of CA-Cdc42, CA-

Rac1 and BDNF, individual and combination demonstrated the ability of axons to extend 

through CSPG inhibitory regions proximal to the lesion site, as well as reduce the glial 

scar components. 

 

4.1.  INTRODUCTION 

Injuries to the CNS trigger a cascade of events, typically resulting in permanent 

functional loss.  In order for axonal regeneration to occur in the CNS after injury, a 

microenvironment suitable for regeneration is critical (Evans 2001).  One strategy is to 

design a suitable biomaterial scaffold that can be implanted at the site of injury.  In this 

study we report the design and evaluation of an agarose based scaffold with two-

elements: (1) a three-dimensional (3D) scaffold that is optimized to allow axonal growth 

in 3D, and (2) an embedded drug delivery system for sustained, local release of 

neurotrophic factors.  Although not included in this study, these scaffolds also have the 

potential to present growth promoting extracellular matrix (ECM) proteins such as 

laminin-1 to the lesion site. 
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 Due to their soft, tissue-like mechanical properties, agarose, alginate and collagen 

hydrogels have been investigated as potential scaffolds in the CNS and in the peripheral 

nervous system(Dubey et al. 1999; Houweling et al. 1998; Kataoka et al. 2004; Labrador 

et al. 1998).  Specifically, our laboratory has utilized agarose as a scaffold for neural 

tissue engineering for a few reasons: 1) it is biocompatible and does not cause an adverse 

reaction when implanted in vivo; 2) by manipulating the porosity and mechanical 

properties, it can be optimized for maximum axonal outgrowth (Balgude et al. 2001; 

Bellamkonda et al. 1995b; Dillon et al. 2000); 3) it can support cell migration; and (4) it 

can be utilized as part of a trophic factor delivery system with embedded sustained 

release vehicles (Meilander et al. 2001), as well as be used to bind protein to its backbone 

for spatial control (Bellamkonda et al. 1995a; Borkenhagen et al. 1998; Yu and 

Bellamkonda 2003).  However, in situ gelling agarose hydrogels have previously not 

been extensively used in the CNS, specifically to bridge spinal cord defects before, and in 

this study we report the response of spinal CNS tissue to implanted agarose hydrogels 

and to local delivery of the Rho GTPases,  Cdc42 and Rac1, and BDNF. 

 Intrinsic and extrinsic strategies can be used to overcome the inhibitory astroglial 

environment to promote axonal outgrowth.  Intrinsic strategies involve modulating 

proteins or genetic material into neurons to promote axonal outgrowth, where as extrinsic 

methods remove the inhibitory components from the microenvironment.  Intrinsic 

therapies have consisted of transducing Rho GTPases and cAMP.  Rho GTPases, Cdc42 

and Rac1, are responsible for the filopodial and lamellopodial extension on the growth 

cone (Hall 1998; Nobes and Hall 1995), where as activation of Rho leads to growth cone 

collapase (Hall 1998).  It has previously been demonstrated by our laboratory and other 
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groups that when CA-Cdc42 and CA-Rac1 or molecules that inhibit Rho and its signaling 

pathway were transduced into neurons in vitro, neurites extended through inhibitory 

regions (Jain et al. 2004; Jin and Strittmatter 1997; Monnier et al. 2003; Winton et al. 

2002).  Studies were performed where inhibitors to Rho and ROCK were delivered in 

vivo, preventing growth cone collapse, thus promoting axonal regeneration (Dergham et 

al. 2002).  However, in a similar study, significant axonal regrowth was not observed 

after C3 transferase transduction (Fournier et al. 2003).  In this study, CA-Cdc42 and 

CA-Rac1 are locally delivered into the lesion site after SCI.  Studies that have delivered 

Cdc42 or Rac1 after SCI have not been published. 

 Neurotrophic factors play a significant role in axonal regeneration, as well as in 

neural development, survival and outgrowth.  Neurotrophic factors include BDNF, NGF, 

NT-3 (Schmidt and Leach 2003).  After SCI, retrograde degradation occurs, which 

induces neuronal death in the tracts that have been transected.  Specifically the three 

neurotrophic factors listed above, BDNF, NGF and NT-3, exhibit neuroprotective 

behavior due to their influence on motor and sensory neuronal survival (Novikova et al. 

2000), as well as on regenerative outgrowth of sensory fibers (Oudega and Hagg 1999; 

Zhou and Shine 2003).  It has been demonstrated that delivery of neurotrophins several 

weeks post-injury resulted in improvement in neuronal survival (Novikova et al. 2000), 

and aided in regeneration of fibers in the spinal cord.    Sustained local delivery may be 

important to generate these beneficial effects as it has been shown that a single injection 

of trophic factors into the brain has a limited half-life of 30 minutes (Krewson et al. 

1995).  Also, in the case of NT-3, it was demonstrated that continuous infusion rather 

than a single injection provided a neuroprotective component (Sayer et al. 2002).   
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Therefore, slow release of neurotrophins should be an integral component of any 

strategy to achieve CNS axonal regeneration to ensure their activity over the prolonged 

period of time (weeks to months) that is likely necessary for fibers to regenerate.  

Technology for sustained local release of proteins, specifically neurotrophic factors, has 

primarily been focused on the use of osmotic pumps.  The disadvantage of using the 

osmotic pump is that they are capable of producing additional damage at the site of 

implantation and require having their protein reservoir replaced.  To address some of 

these shortcomings, our laboratory has reported the use of lipid microtubular slow release 

vehicles that can be embedded in hydrogels to achieve sustained release.  We have 

previously reported that lipid microtubules can deliver DNA and proteins in vitro and in 

vivo (Meilander et al. 2003; Meilander et al. 2001; Yu and Bellamkonda 2003).  The 

microtubules are composed of multiple planar lipid bilayers that form hollow cylinders 

when they are loaded with a solution (Schnur 1993; Shimizu 2002).  The microtubules 

are 40 μm in length and 0.5µm in diameter and release the protein from the ends of the 

tubule.  Several parameters including the initial loading concentration, the length of the 

microtubules, and the mass of microtubules/ml can be modulated to achieve a desired 

release profile. 

 In this study, the hydrogel scaffold and embedded lipid microtubule delivery 

system was used to deliver the CA-Cdc42 and CA-Rac1, and BDNF individually and in 

combination.  We investigated the in situ gelling capabilities of an agarose hydrogel to 

determine whether it would conform to the shape of the spinal cord cavity without 

inducing an inflammatory response besides what occurs due to injury.  This study 

demonstrates that the agarose conforms to the shape of the spinal cord cavity as it gels in 
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situ, 37°C, and provides a scaffold for BDNF delivery without inducing an inflammatory 

response.  Our results demonstrated that the Rho GTPases and BDNF increased the 

percentage of axons that traversed the inhibitory regions proximal to the glial scar 

compared to the untreated and agarose controls.  Also, CA-Cdc42 reduced the 

inflammatory response, reactive astrocytes and CSPG deposition, while CA-Rac1, 

BDNF, BDNF/CA-Rac1, and BDNF/CA-Cdc42 decreased axonal retraction from the 

lesion site. 

 

4.2.  MATERIALS AND METHODS 

4.2.1.  Agarose Gelling Temperature 

SeaKem®, SeaPlaque®, and SeaPrep® agarose (Cambrex Bio Science Rockland 

Inc., Rockland, ME) samples of 0.3%, 0.5%, and 1% (wt/vol) were prepared using 

methods similar to those previously reported (Dillon et al. 1998)  Briefly, for example, 

100 mg of SeaKem® agarose was dissolved in 10 ml of 300 mM PBS at 90 °C.  Two 

hundred microliters of agarose solution was loaded onto the stage of the Bohlin CVD 

Rheometer (Bohlin, East Brunswick, NJ).  Upon cooling, a parallel plate configuration 

was utilized in the Rheometer with the sample being subjected to a constant frequency of 

0.05 Hz and low amplitude shear stress of 1.5 Pa.  A temperature sweep was performed 

starting at 50 °C and decreased to 0 °C to quantify the specific temperature at which the 

agarose solution becomes a gel. 
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4.2.2.  Neurite Extension of DRGs in 3D Agarose Gels 

 Whole embryonic day 9 (E9) White Leghorn Chick dorsal root ganglia (DRG) 

were cultured in various concentrations of agarose.  The agarose was prepared as 

mentioned above.  To develop the 3D scaffolds, 200 μL of agarose was initially added to 

a 24 well and gelled at 4 °C for 20 min.  The DRGs were then mixed with 200 μL of 

agarose and added above the initial agarose layer.  One milliliter of Neurobasal media 

(Invitrogen, Carlsbad, CA), supplemented with B-27, L-glutamine, and 1% penicillin 

streptomycin, along with 1 μg/mL of NGF was added to each culture well. 

 

4.2.3.  Fabrication and Loading of Lipid Microtubules for Sustained Release of CA-

Cdc42, CA-Rac1, and BDNF 

 The methodology to fabricate the lipid microtubules was previously published 

(Meilander et al. 2003; Meilander et al. 2001).  Briefly, 1,2-bis-(tricosa-10,12-diynoyl)-

sn-glycero-3-phosphocholine (DC8,9PC, Avanti Polar Lipids, Alabaster, AL) was 

dissolved in 70% ethanol at a concentration of 1 mg/mL.  The lipid was placed in a water 

bath (Thermo NESLAB, Portsmouth, NH) programmed to decrease from 50 to 20°C over 

48 h and then stored at room temperature to facilitate self-assembly of the lipid 

microtubules.  Trehalose (18.9 mg/mL) was added to the microtubule solution and then 

dehydrated using a rotary evaporator.   

For the individual treatments, 1 mg of dehydrated microtubules were loaded with 

BDNF (Millepore, Temecula, CA), CA-Cdc42, or CA-Rac1 (Rho GTPases conjugated to 

TAT were purified in Dr. Susann Brady-Kalnay’s Laboratory) and the loading 

concentrations were 500 μg/mL, 500 μg/mL and 230 μg/ml, respectively.  The protein 
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loaded microtubules were mixed into 2.6% agarose (w/v) at a 1:1 volume ratio.  For the 

combination treatments, each protein was loaded into 2 mg of microtubules at the same 

concentration as in the individual groups.  The protein loaded microtubules were mixed 

into the 2.6% SeaPrep® agarose at a volume ratio of 1:1:2 for BDNF:Rho 

GTPase:agarose.  This was to ensure that the same concentration of total protein 

delivered in the individual treatments was injected in the combination groups. 

 

4.2.4.  Characterization of Microtubule Mediated Sustained Release of BDNF In Vitro 

Eighty microliters of 500 μg/mL BDNF was loaded into 2 mg of lipid 

microtubules by incubating the BDNF solution with dehydrated microtubules.  The 

BDNF loaded microtubules were mixed into 2.6% SeaPrep® agarose to obtain a 

microtubule concentration of 8.33 mg/mL in 1.3% concentration of agarose.  Forty 

microliters of the BDNF loaded microtubules and agarose mixture was added into wells 

of a 96 well plate, allowed to gel, and 150 μL of PBS was added to the above mixture.  

The 96 well plate was placed in a 37°C oven and after the first 24 hours, the 150 μL of 

PBS was removed and replaced with 150 μL of fresh PBS.  This method was followed 

every 48 hours for the following 13 days.  The retrieved PBS solutions were stored in -

20°C until they were ready to be analyzed for BDNF content.  The BDNF released from 

the microtubules was quantified using the BDNF ELISA Sandwich Kit (Chemicon).  

Briefly, the BDNF standards and the PBS solutions containing BDNF collected over 14 

days were allowed to attach onto a precoated 96 well plate overnight.  The standards and 

BDNF experimental wells were treated with monoclonal anti-BDNF for 2.5 hours.  Then 

the second antibody streptavidin-HRP was added to the wells for 1 hour.  
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Tetramethylbenzidine (TMB) was added to each well to stain for the secondary antibody.  

Lastly, the standard and sample wells were placed in the Synergy HT Micro Detection 

Microplate Reader (BIO-TEK Instruments, Inc., Winooski, VT) and the absorbance was 

read at 450 nm.  A standard curve was obtained from the absorbances of the BDNF 

standards to determine the amount of the BDNF released in the PBS. 

 

4.2.5.  Conjugation of Rhodamine to BDNF 

To permit visualization and characterization of BDNF’s diffusion through the 

spinal cord tissue, Rhodamine was conjugated to BDNF.  The protocol provided with the 

EZ-Label™ Rhodamine Protein Labeling Kit (Pierce, Rockford, IL) was followed to 

conjugate the Rhodamine to BDNF (BDNF/Rhodamine).  Briefly, Rhodamine was added 

to 1 mg/mL of BDNF at a 5-fold molar excess.  The Rhodamine and BDNF solution was 

incubated for 1 h at 25 °C.  The solution was collected and then dialyzed in 0.1 M PBS 

for 1 h to remove unconjugated Rhodamine.  The BDNF/Rhodamine was diluted to 500 

μg/mL and then loaded to the microtubules as mentioned above.  The 

agarose/BDNF/Rhodamine loaded microtubules mixture was injected into the spinal cord 

as described below.  After 2 weeks the spinal cords were retrieved and processed, which 

is described in further detail below. 

 

4.2.6.  Cooling System for In Situ Gelling Agarose 

Our laboratory has previously established that SeaPrep® agarose was supportive 

of neurite extension in vitro and regeneration in vivo.  However, as this form of 

hydroethylated agarose gels at 17 °C, a cooling system was developed to enable rapid, 
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Nitrogen gas tank Tubing with Nitrogen gas in 
100% ethanol/dry ice solution

Aluminum rod inside 50 mL 
tube containing dry ice 

Figure 4.1.  Gel cooling system.  Tygon tubing ran from the
regulator on the nitrogen gas tank to a Styrofoam box that 
contained a 100% ethanol/dry ice solution and then ran out of 
the tube and ended with an aluminum rod inside a 50 mL tube 
that contained dry ice to maintain the low temperature.  Th
cooled nitrogen gas was directed over the agarose fill
spinal cord cavity to cause in situ gelation of the agaros
solution. 
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localized cooling at the lesion site for in situ gelation.  The system consisted of tubing 

that ran from the regulator on a nitrogen gas tank into a Styrofoam box (4300 cm3) that 

contained a 100% ethanol/dry ice, which served to lower the temperature of the gas.  The 

tubing then came out of the box and at the end was an aluminum rod that released the 

cooled nitrogen gas (Fig. 4.1).  Surrounding the aluminum rod was a 50 mL tube that 

contained dry ice to maintain the low temperature.  The cooled nitrogen gas was applied 

over the agarose filled spinal cord cavity for 30 seconds to ensure that the agarose gelled. 

Surgical Procedures 

4.2.7.  Implantation of Agarose-Protein Scaffolds in a Dorsal Over-hemisection Model In 

Vivo 

Male Sprague-Dawley (Charles River Laboratory) rats weighing 190-230 grams 

were anesthetized with Nembutal®.  The skin and muscle were opened on the back to 

expose the thoracic vertebrae T8-T10.  Fine rongeurs were used to remove the bone and 
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expose the spinal cord.  A modified dorsal over-hemisection was made removing 2 mm × 

2 mm × 1.5 mm deep spinal cord section at T10, removing the dorsal portion of the CST.  

The protein loaded microtubules/agarose solution was injected using a 1-10 μL pipet, into 

the spinal cord cavity as mentioned above in the section describing the fabrication and 

loading of the microtubules.  The cooling system was used to gel the agarose scaffold and 

the agarose scaffold containing the microtubules loaded with protein as mentioned above.  

The cooled nitrogen gas was applied over the agarose filled spinal cord cavity for 30 

seconds to ensure that the agarose gelled.  After the scaffold was injected into the cavity, 

the muscle was sutured together and the skin was closed with wound clips.  The animals 

were manually expressed twice a day until urinary function was recovered. 

 

4.2.8.  Anterograde Neuronal Tracer Injection into the Corticospinal Tract 

Four weeks post-injury, biotinylated dextran amine (BDA, Invitrogen) was 

bilaterally injected into the motor cortex to trace the axons in the CST.  The animals were 

anesthetized with 2% isoflurane and maintained through the surgery at 0.5% isoflurane.  

The skin and the periosteum were opened to expose the skull.  Three injection sites, 

located within each hemisphere 2 mm from the midline and 1 mm apart from each site, 

were used to inject 0.5 μL of BDA at each site over 2 min.  Six weeks post-injury, the 

animals were anesthetized with ketamine (1 mL/kg), xylazine (0.17 mL/kg), and 

Acepromazine (0.37 mL/kg), transcardially perfused with 4% paraformaldehyde, the 

spinal cords from T9-T11 were retrieved, and incubated in 4% paraformaldehyde 

overnight and then stored in PBS containing 0.01% sodium azide. 
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4.2.9.  Immunohistochemistry and Histological Evaluation of Explanted Spinal Cords and 

Hydrogels 

The spinal cords were transferred from PBS to 30% sucrose and allowed to 

incubate overnight.  Serial sagittal cryostat (Leica CM 300, Leica, Bannockburn, IL) 

sections of 25 μm thickness were made of the spinal cords and mounted onto glass slides.  

Immunohistochemical staining for reactive astrocytes and microglia/macrophages, as 

well as growth inhibitory extracellular matrix molecules, such as CSPGs, was conducted.  

In addition, to help visualize the axons and neurons at the injury site, neurofilament 

staining was conducted as described below. 

A triple-stain was performed on the spinal cord sections to visualize anti-rabbit 

glial fibrillary acidic protein (GFAP) (Chemicon), ED-1 (mouse anti-rat CD68, Serotec, 

Raleigh, NC), and BDA.  The sections were incubated in 4% goat serum in 0.5% Triton-

X 100 for 1 hour.  GFAP helps identify reactive astrocytes, while ED-1 stains for reactive 

microglia and macrophages.  GFAP (1:1000 dilution) and ED-1 (1:1000 dilution) in 4% 

goat serum and 0.5% Triton-X 100 were added to the sections and incubated at 4°C 

overnight.  The sections were washed three times with 0.5% Triton-X 100 and then the 

secondary antibodies, Alexa Fluor 350 goat anti-rabbit IgG (1:200 dilution) (Molecular 

Probes, Eugene, OR), Alexa Fluor 594 goat anti-mouse IgG1 (1:200 dilution) (Molecular 

Probes), and Alexa Fluor 488 Streptavidin (1:200 dilution) were added for GFAP,  ED-1, 

and BDA, respectively, and allowed to incubate for 1 hour at room temperature.  The 

sections were rinsed thrice with 0.5% Triton-X 100 and twice with 0.1M PBS and then 

the slides containing the spinal cord sections were mounted with glass coverslips. 
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A triple stain was also done with GFAP and CS-56, an antibody to identify 

growth inhibitory CSPGs (Sigma, St. Louis, MO), along with BDA.  Similar to the 

method mentioned above for the GFAP/ED-1/BDA stain, the sections were incubated in 

4% goat serum in 0.5% Triton-X 100 for 1 hour.  The GFAP (1:1000 dilution) and CS-56 

(1:250 dilution) were added to the 4% goat serum in 0.5% Triton-X 100, placed over the 

spinal cord sections, and was incubated in 4 °C overnight.   The sections were washed 

three times with 0.5% Triton-X 100 and then the secondary antibodies, Alexa Fluor 350 

goat anti-rabbit IgG (1:200 dilution), Alexa Fluor 594 goat anti-mouse IgM (1:200 

dilution), and Alexa Fluor 488 Streptavidin were added to the sections.  Glass coverslips 

were placed on top of the sections. 

A double stain with BDA and anti-mouse Neurofilament 160 kDa (NF-160, 

Sigma), used to stain for the neurofilament of the neurons and axons, was performed.  

Similar to the method mentioned above, the sections were incubated in 4% goat serum in 

0.5% Triton-X 100 for 1 hour.  The NF-160 (1:500) was added to the 4% goat serum in 

0.5% Triton-X 100, placed over the spinal cord sections, and was incubated at 4 °C 

overnight.  The sections were washed three times with 0.5% Triton-X 100 and then Alexa 

Fluor 594 goat anti-mouse (1:200 dilution) to stain for neurofilament and Alexa Fluor 

488 Streptavidin were added to the sections for 1 hour at room temperature.  The slides 

containing the spinal cord sections were mounted with coverslips and images were taken 

on the Zeiss Axioskop 2 Plus microscope (Zeiss, Thornwood, NY). 
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4.2.10.  Quantitative Analysis of Cellular, Molecular, and Axonal Response to Scaffold 

and Protein 

Methodology for GFAP and CS-56 Analysis 

The methodology to quantify the fluorescent intensity of GFAP and CS-56 

images has been previously published (Jain et al. 2006).  Briefly, to quantify the cellular 

response to the SCI, the immunostained images (i.e., GFAP and CS-56) were captured 

with a Olympus digital camera. The intensity of the immunostains were quantified,   

averaged and compared using MATLAB (Mathwork) based image analysis program. 

This program generated line profiles (30 line profiles/image) and extracted relative 

fluorescent intensity as a function of distance from the interface between the agarose gel 

filled cavity and spinal cord tissue.  Four images/spinal cord section were taken at the 

interface (Fig. 4.2A).  All images were taken at the same exposure time and conditions.  

For each stained image, a reference arc was generated at the interface and then 30 

radial line profiles were generated (Fig. 4.2B). An average intensity profile for each 

staining (i.e., GFAP and CS-56) was calculated by averaging the coinciding increments 

of the 30 line profiles and displayed by an average intensity profile versus distance from 

the interface. A minimum of 60 images (4 images/spinal cord section x 5 spinal cord 

section/each animal x 3 animals) per experimental group was utilized to obtain the 

overall average intensity profiles for each staining representing 1800 different individual 

intensity profiles per condition.  The overall average intensity profiles for both GFAP and 

CS-56 as a function of distance from the interface was compared between experimental 

groups. 
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A B 

Figure 4.2.  Method for quantitative analysis of immunostained spinal cord sections.  
A. 10x immunostained image with four boxes made along the spinal cord/scaffold 
interface, which will be used for quantitative analysis.  Scale bar = 500 μm B. One of 
the four boxes from A that was enlarged (20x immunostained image) to analyze the 
fluorescent intensity.  The arc represents the interface and the 30 radial lines will be 
generated using a custom designed MATLAB program and then averaged to display an 
average intensity profile for GFAP, CS-56, and NF-160 versus the distance from the 
interface. 

 

 

 

 

 

 

 

 

 

Quantification of ED-1+ Cells 

 To determine if the hydrogel/microtubule delivery system elicited a chronic 

inflammatory response, the number of ED-1+ cells was quantified in and around the 

lesion site.  Two 10x images were taken of each section using an Olympus digital camera 

attached to the Zeiss Axioskop 2 Plus microscope.  ImagePro software (Media 

Cybernetics, Carlsbad, CA) was used to count the number of cells that were present.  

Two parameters, (1) the fluorescent intensity and (2) cell diameter, were kept constant for 

all the images of the different conditions when counting the cells. 

 

4.2.11.  Quantification of Average Lesion Area 

The lesion area was measured to determine whether the scaffold and delivered 

proteins influenced the size of the lesion site after SCI.  Sections that were located at the 

 89



 90

epicenter of the lesion were used to determine the lesion area.  The average lesion area 

was then calculated for each of the conditions. 

 

4.2.12.  Axonal Outgrowth Through Inhibitory Regions Proximal to Lesion Site 
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BDA+ axons 
stopped before 
proximal interface 

CSPGs are present in the glial scar around the lesion area.  However, it was 

observed that there were CSPG regions proximal to the lesion site not part of

scar.  The CSPG regions were identified by CS-56 staining.  A region was considered to 

itory if the fluorescent intensity values were similar to the intens

l scar.  The BDA+ axons were placed in three categories: (1) axon

before the inhibitory region, (2) axons passed the proximal interface of the inhibitory 

region; however, stopped within the inhibitory region, and (3) passed the distal interface 

of the inhibitory region; and were counted (Fig. 4.3).  A percent of 

was determined by the following equation: 

CS-56+- inhibitory region 
Axons passed distal 
interface 

Axons stopped within region

Figure 4.3.  Schematic of axon quantification in CS-56+- 
inhibitory regions.  Axons were placed into 3 categories: 1) 
axons that stopped before the proximal interface of the inhibitory 
region, 2) axons that stopped within the inhibitory region, and 3) 
axons that passed the distal interface of the inhibitory region. 



Distance Traveled by Axons within Inhibitory Region 

The axons that had stopped within the inhibitory region mentioned in the section 

above were then measured to determine the distance traveled after crossing the proximal 

interface.  The shortest total distance traveled by the axons within the inhibitory region 

was measured and then averaged.  The length of all the axons that stopped their 

outgrowth within this region was measured and then averaged for each condition.  The 

percent of distance traveled by the axons within the CS-56 was calculated by the 

following equation: 

(Average Axonal Distance Traveled/Total Length of Inhibitory Region) *100 

 

4.2.13.  Quantification of BDA+ Axons 

Spinal cord sections stained for BDA+ axons were imaged at 10x on the Nikon 

Eclipse 80i upright microscope using a Microfire CCD camera (Optronics, Goleta, CA) 

that interfaced with the Neurolucida software (MicroBrightField Bioscience, Williston, 

VT) to obtain a montage of each section.  The images were used to measure axonal 

retraction from the lesion site for all of the conditions.  The distance from the 3 or more 

closest axons to the lesion site was measured using ImagePro Software.   

The beginning of the proximal side of the lesion was marked as 0 mm and every 

millimeter was marked up until 4 mm rostral to the lesion site (Fig. 4.4).  The number of 

BDA+ axons, from 0 to 1 mm, 1 to 2 mm, 2 to 3 mm, and 3 to 4 mm, proximal to the 

injury site was counted.  The number of axons 4 mm proximal to the lesion site was 

considered as the total number of axons.  The percent of axonal outgrowth was 

determined by the following equation: 
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(Number of axons at specific distance range/Total number of axons at 4 mm) * 100 

 

 

 

 

 

 

 

 

4.2.14.  Behavioral Analysis 

 Behavioral tests were performed to determine if there was any functional 

improvement in the control or treated animals.  The grid walk and the beam walk tests 

were performed at 3 and 5 weeks post-injury.  During the grid walk tests, the number of 

slips, where the hind feet slipped through the wires in the grid, was counted over 2 min.  

For the beam walk test, the animals walked a beam that was 5 cm in width and 105 cm in 

length.  The number of slips of the hind feet was counted. 

 

4.2.15.  Statistical Analysis 

GFAP, CS-56, and NF 160:  The area under the curve of the overall average 

intensity profiles was determined for four different bins: 0 to 100 μm, 100 to 200 μm, 

200 to 300 μm, and 300 to 400 μm from the interface extending into the spinal cord. The 

2 mm 1 mm 3 mm 4 mm 

Proximal 
Beginning of 
lesion site 

Figure 4.4.  Schematic for quantification of the 
percentage of BDA+ axons from beginning of the 
lesion site to 4 mm proximal. 



area under the curve of the profiles was statistically compared by ANOVA and Tukey’s 

test (P < 0.05).  To determine if there was significant difference amongst the conditions 

and between different groups, ANOVA and Tukey’s test (P < 0.05) was performed for all 

other analysis. 

 

4.3.  RESULTS 

4.3.1.  Characterization of  Agarose Hydrogels   

Rheology was used to determine the gelling temperature for various 

concentrations of SeaKem®, SeaPlaque®, and SeaPrep® agarose.  As the temperature 

decreases, the viscous modulus, also referred to as loss modulus, of the agarose increases.  

It can be seen that the average gellation temperature for the various concentrations for 

SeaKem®, SeaPlaque®, and SeaPrep® were 35, 25, and 11°C, respectively.  When E9 

chick DRGs were cultured in vitro in agarose gels in the presence of exogenous NGF, the 

1% SeaPrep®  agarose scaffolds supported robust neurite extension in 3D compared to 

the various concentrations of SeaKem® and SeaPlaque® (Fig. 4.6). 
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Figure 4.5.  Gelling temperatures for various agarose gels and concentrations.   
The average gelling temperature for SeaKem® agarose was around physiological 
temperatures for the various concentrations.  The various concentrations of 
SeaPlaque® agarose gels approximately at 26°C.  SeaPrep® agarose gels 
approximately at 11 °C.  The data represent the mean ± SEM. 



500 μm

Figure 4.6. Micrograph images 
of DRGs cultured in different 
agarose gels after 48 hrs at 5x 
magnification.  A. 1% SeaPrep® 
agarose.  B. 0.5% SeaPlaque® 
agarose. C. 0.3% SeaKem® 
agarose.  Greater number and 
longest neurite outgrowth was in 
the 1% SeaPrep® agarose 
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4.3.2.  Characterization of BDNF Release 

 An in vitro release assay for BDNF loaded microtubules was performed.  

Approximately 3 μg of BDNF was released within the first 24 h.  A cumulative of 4 μg 

of BDNF was released within the first 3 days.  In Figure 4.7B, it is shown that 

approximately 30 ng/day of BDNF was released for the subsequent 11 days.  

Microtubules loaded with BDNF/Rhodamine embedded in the agarose were injected into 

the spinal cord cavity.  After two weeks, the spinal cords were retrieved and sectioned.  

After two weeks of delivery, BDNF/Rhodamine can be seen in the spinal cord tissue 

between 1 to 2 mm proximal to the lesion site. (Fig. 4.7C).  An ED-1 stain for 

macrophages/microglia and DAPI stain for nuclei were performed to observe if there was 

co-localization with BDNF/Rhodamine.  It can be seen that some of the 

BDNF/Rhodamine co-localized with ED-1+ cells and DAPI (Fig. 4.7D and E). 
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Figure 4.7.  Diffusion of BDNF.  A.  Bright field image of lipid microtubules.  B.  In 
vitro release assay of BDNF over the first 2 weeks.  The graph shows that an initial 
burst released 4 μg of BDNF within the first 3 days.  An average of 30 ng/day of 
BDNF was released for the following 11 days.  The data represent mean ± SEM  C.  
An image of the proximal region of a spinal cord section after delivery of 
BDNF/Rhodamine at 4x.  The 20x images labeled 1 and 2 are outlined with white 
boxes in C and demonstrate that BDNF/Rhodamine diffused approximate 2 mm 
proximal to the lesion site.  The dashed line represents the interface between the spinal 
cord and scaffold.  White arrows indicated BDNF/Rhodamine.  D.  Image of ED-1+ 
cells and BDNF/Rhodamine (red) in 10x.  BDNF can be seen co-localized with ED-1+ 
stain, as well as in the tissue.  E.  Image of DAPI (blue) and BDNF/Rhodamine (red) in 
20x.  BDNF can be seen co-localized with DAPI, as well as in the tissue.  F and G.  
BDNF/Rhodamine in scaffold 48 hrs and 1 week post-injury at 10x.  White box 
represents focused inset image.  
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 Gelling Hydrogel in the Spinal Cord Cavity 

The liquid phase of SeaPrep® agarose was injected into the spinal co

gen gas was applied above the cavity containing the injected

the agarose had gelled.  It can be seen in Figure 4.8 that the agarose gelled in the spinal 

ity.  

Figure 4.8.  Images 
demonstrating the agarose 
injected into spinal cord 
cavity.  A.  Intact Spinal 
Cord at T10.  B. Cavity 
made in spinal cord.  C.  
Cavity filled with agarose.  
Cavity outlined by dotted 
line. 

A B 

C 



4.3.4.  Cellular and Molecular Inflammatory Response 

The inflammatory response after injury was measured by observing cellular and 

molecular response.  Spinal cord sections were incubated with antibodies to GFAP, ED-1 

and CS-56, which stained for astrocytes, microglia/macrophages, and CSPGs, 

respectively.  In Figure 4.9, micrograph images of reactive astrocytes response and CSPG 

deposition at the interface between the spinal cord cavity and the implants can be seen.  

The regions with high GFAP intensity generally correlates with increased CS-56 

intensity.  A custom MATLAB program was developed to measure and correlate how the 

fluorescent pixel intensity changed from the scaffold/spinal cord interface radially 

outward into the spinal cord.  The graphs in Figures 4.10 and 4.11, demonstrate that the 

GFAP and CS-56 intensities are lower for CA-Cdc42, CA-Rac1, and BDNF as compared 

to the untreated control.  Also, CA-Cdc42 condition had significantly lower GFAP and 

CS-56 intensity compared to the agarose control and fluorescent intensity was 

statistically lower for BDNF treatment compared to the agarose control. 

 Besides staining for GFAP and CS-56 for the inflammatory response at 6 weeks, 

reactive microglia/macrophages were quantified by counting the number of ED-1+ cells 

in and around the lesion site.  A statistical difference between the two control conditions, 

untreated and agarose groups, and the experimentally treated animals was not observed 

(Fig. 4.12). 
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Figure 4.9.  GFAP and CS-56 expression at the lesion site.  A-G.  Images of the lesion 
site for the controls and treated conditions that show the GFAP stain for reactive 
astrocytes at 10x.  The white box represents the focused image (20x) to the right of CS-
56 (red) and GFAP (blue) in 1 and 2, respectively.  A.  Untreated spinal cord.   B.  
Agarose  C.  BDNF treated animals.  D.  CA-Cdc42  E.  CA-Rac1  F.  BDNF/CA-
Cdc42  G.  BDNF/CA-Rac1. 
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Figure 4.10.  GFAP fluorescent intensity from the interface into the spinal cord.  
A.  Individual treatments.  The intensity for BDNF,CA-Cdc42, and CA-Rac1 
compared to the untreated control is significantly less.  CA-Cdc42 was 
significantly less intense compared to the agarose control.  B.  Combination 
treatments.  A significant difference was not observed compared to the controls.  
The data represent the mean.  The gray lines represent the ± SEM.  (# p< 0.05 
BDNF, CA-Cdc42, and CA-Rac1 compared to untreated control, * p<0.05 CA-
Cdc42 compared to agarose control).   
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Figure 4.11.  CS-56 fluorescent intensity from the interface into the spinal 
cord.  A.  Individual treatments.  The CS-56 intensity was significantly lower 
in spinal cords treated with CA-Cdc42 and BDNF compared to the untreated 
and agarose controls.  B.  Combination treatments.  The data represent the 
mean. The gray lines represent ± SEM.  (*p<0.05 CA-Cdc42 and BDNF 
compared to untreated and agarose controls). 
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Figure 4.12.  Comparison of the number of ED-1+ macrophages/reactive microglia 
around the lesion area.  This bar graph shows that there was no  statistical difference in 
the number of macrophages/reactive microglia in the treated animals compared to the 
untreated and agarose controls.  The data represent the mean ± SEM. 
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            The average lesion area was measured for all the experimental groups to 

determine if the treatments caused a greater secondary injury.  The average lesion area 

for the untreated and agarose controls was greater than 1 mm2, which was significantly 

larger than all of the treated groups, BDNF, CA-Cdc42, CA-Rac1, BDNF/CA-Cdc42, 

and BDNF/CA-Rac1 that had an area approximately of 0.7 mm2 (Fig. 4.13). 
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Figure 4.13.  Average lesion area of the controls and treated spinal cords.  The 
average lesion area was statistically smaller in all of the treated conditions 
compared to the untreated and agarose controls. The data represent the mean ± 
SEM.  (* p<0.05 compared to untreated control and #p<0.05 compared to 
agarose control).   



4.3.5.  Crossing of Axons through Inhibitory Regions In Vivo 

CS-56+ regions were identified proximal to the lesion site, aside from the glial 

scar in the treated and control groups.  The area was considered to be inhibitory if the CS-

56 pixel intensity values were within the same range as those in the glial scar expressed 

in the immediate vicinity of the lesion.  The fluorescent images of the controls and treated 

conditions can be seen in Figure 4.14.  The number of axons that crossed the region, 

stopped within the inhibitory region, or stopped proximal to the inhibitory region 

interface was counted.  The percentage of axons that stopped in each of the 3 regions was 

determined (Fig. 4.15A).  The untreated and agarose animals had a significantly higher 

number of axons that stopped before the proximal interface of the inhibitory region 

compared to the animals treated with CA-Rac1, BDNF/CA-Cdc42, and BDNF/CA-Rac1.  

All the treated groups had axons that traversed the distal interface of the inhibitory 

region, which was significantly higher than the control groups.  However, in all the 

conditions, a high percentage of axons, 45-65%, stopped within the inhibitory region 

(Fig. 4.15A). 

Due to the high percentage of axons that stopped within the inhibitory region 

shown in Figure 4.15A, the distance the axons extended from the proximal interface and 

stopped within the inhibitory region was measured relative to the size of the inhibitory 

region.  The percent of distance extended by the axons was determined by measuring the 

average axonal distance traveled by the total distance of the possible path.  It can be seen 

that the controls, untreated and agarose, extended less than half the distance of the CS-56 

intense region (Fig. 4.15B).  However, CA-Rac1 and BDNF/CA-Rac1 had axons that 

extended at a significantly higher percent of distance, over 60%, than the controls. 
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Figure 4.14.  BDA+ axons and CS-56+
 inhibitory regions.  A-G are 10x images of 

BDA and CS-56.  The white box represents the image below (40x) of BDA.  A.  
Untreated.  B.  Agarose.  C.  BDNF.  D.  CA-Cdc42. E.  CA-Rac1.   F.  BDNF/CA-
Cdc42.  G.  BDNF/CA-Rac1.  The control groups have a high percentage of axons 
that have stopped before or within the inhibitory regions.  However, the treatment 
groups have a significantly higher percentage of axons that crossed the distal interface 
of the inhibitory region compare to the untreated and agarose controls. 
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Figure 4.15.  Percentage of axons in CS-56+ inhibitory regions.  A.  A significantly 
higher percentage of axons crossed the distal interface of the inhibitory region in the 
BDNF, CA-Cdc42, CA-Rac1, BDNF/CA-Cdc42, and BDNF/CA-Rac1 compared to 
the untreated and agarose controls.  Also, the axons in the controls stopped at the 
proximal interface of the inhibitory region at a significantly higher percentage than in 
the spinal cords treated with CA-Rac1, BDNF/CA-Cdc42, and BDNF/CA-Rac1.  B.  
In the spinal cords treated with CA-Rac1 and BDNF/CA-Rac1, the axons traveled a 
significantly further distance within the inhibitory region than the untreated and 
agarose controls. (* and % p<0.05 compared to untreated control and # and + p<0.05 
compared to agarose control).  The data represents mean ± SEM. 



4.3.6.  Sprouting Axons after Implantation of Hydrogel/Protein-Microtubule Delivery 

System 

BDA+ axons in the CST were measured to quantify the distance of retraction from 

the lesion site.  The beginning of the proximal side of the lesion was marked as the origin 

and the distance to the closest axons (3 or more axons) were measured.  The micrographs 

and the graph (Figs. 4.16 and 4.17) show that the axons in the two controls, untreated and 

agarose conditions, retracted over 1 mm from the beginning of the lesion site.  However, 

the treated groups had axons within 1 mm of the beginning of the lesion site, more 

specifically; the axons were approximately 400 μm away from the lesion site in the 

groups treated with BDNF, CA-Rac1, BDNF/CA-Cdc42, and BDNF/CA-Rac1.  Thus, 

there was significant difference amongst BDNF, CA-Rac1, BDNF/CA-Rac1, and 

BDNF/CA-Cdc42 from the controls. 
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Figure 4.16 BDA+ axons in CST.  Fluorescent images of controls and treated 
conditions at 10x.  White box represents image to the right in 40x.  A. Untreated   
B. Agarose  C.  BDNF  D. CA-Cdc42  E.  CA-Rac1  F.  BDNF/CA-Cdc42   
G.  BDNF/CA-Rac1  The arrows represent the begging of the lesion site.  The images 
on the right show the closest axons to the lesion site.
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Figure 4.17.  Axonal retraction from the lesion site in the treated and control spinal 
cords.  The distance of 3 or more axons from the lesion site in each image were 
averaged.  All the treated cords were within 1 mm of the lesion site and were 
significantly closer to the lesion site compared to the untreated cords.  BDNF, CA-
Rac1, BDNF/CA-Cdc42, BDNF-CA-Rac1 were statistically closer to the agarose 
control and were within 400 μm to the lesion site.  The data represents mean ± 
SEM.  (* p<0.05 compared to untreated controls and # p< 0.05 compared to agarose 
control). 
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 Besides measuring the distance from the lesion site to the closest axons, the number of 

axons was quantified between the lesion site and 4 mm proximal and the percent of 

axonal outgrowth towards the lesion site was determined.  The lesion site was labeled as 

the origin, 0 mm, and the proximal side was marked every millimeter, up to 4 mm (Fig. 

4.4).  The proximal side of the spinal cord was divided into 4 regions of 0 to 1 mm, 1 to 2 

mm, 2 to 3 mm, and 3 to 4 mm.  The axons were counted in each of the regions.  The 

number of axons that were present at 4 mm was considered to be the total number of 

axons because axons stopped retracting before that distance proximal to the lesion site.  It 

can be seen that the percent of axons for the two controls as the axons extended closer to 

the lesion site decreased and were significantly lower than the number of axons for the 

CA-Rac1, BDNF/CA-Rac1, and BDNF/CA-Cdc42 (Fig. 4.18).  By 2 mm, there were 

twice the percentage of axons in the treated groups, CA-Rac1, CA-Cdc42, BDNF/CA-

Rac1, and BDNF/CA-Cdc42 compared to the untreated and agarose controls.  Between 

the ranges of 0 to 1 mm, there was significant difference in the number of axons between 

the treatment groups and the controls. 
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Figure 4.18.  Percent of axonal outgrowth towards the lesion site.  The percent of 
axons was measured from 4 mm proximal to the beginning of the lesion site.  The 
graph shows that 2 mm from the lesion site, the 75-80% of the axons are present in the 
conditions treated with CA-Cdc42, CA-Rac1, BDNF/CA-Cdc42, and BDNF/CA-Rac1 

ared to the untreated and agarose controls, which had significantly lower percent 
of axons (45-50%).  One millimeter away from the lesion site, there were not any 

 the control conditions, where as there were 45-50% of the axons in the spinal 
cords treated with CA-Rac1, BDNF/CA-Cdc42, and BDNF/CA-Rac1.  The data 

ents mean ± SEM  (* p<0.05 compared to untreated control and # p<0.05 
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 Another method to observe axonal outgrowth was to stain the spinal cord sections 

against NF-160, which can be seen in the micrographs (Fig. 4.19).  The NF-160 stain was 

quantified using the custom MATLAB program utilized for the GFAP and CS-56 

analysis; however, rather than quantifying the pixel intensity from the interface into the 

spinal cord, the fluorescent intensity was measured from the interface into the 

scaffold/spinal cord cavity.  In the untreated and agarose controls, the NF-160 staining 

had significantly less intensity compared to the treated conditions (Fig. 4.20).  The axons 

in the control groups did not infiltrate a significant distance into the scaffold, about 150 

μm.  However, compared to the controls, the treatment groups, BDNF, CA-Cdc42, CA-

Rac1, BDNF/CA-Cdc42, and BDNF/CA-Rac1, had a significantly higher fluorescent 

intensity compared to the controls and the intensity levels did not change with distance 

into the scaffold.  The treatment groups had statistically traveled further through the 

hydrogel scaffold than the untreated and agarose controls.  Although there was statistical 

difference between the controls and the treatment groups, a significant difference 

amongst the treatment groups was not observed. 

 

4.3.7.  Behavioral Analysis 

 Behavioral tests, grid and beam walk were performed to determine if functional 

improvement occurred.  The tests were performed 3 and 5 weeks post-injury.  A 

statistical difference amongst the controls and the treatment groups was not observed 

(Fig. 4.21). 
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Figure 4.19.  NF-160+ Fluorescent Images.  A-G.  Representative images for the 
controls and treated conditions with NF-160 stain at 10x.  The interface between the 
spinal cord tissue and scaffold is identified with a white dashed line. To the right of 
each image, is a 10x image of the area outlined with a white box.  A.  Untreated.  B.  
Agarose  C.  BDNF  D.  CA-Cdc42.  E.  CA-Rac1.  F.  BDNF/CA-Cdc42.  G.  
BDNF/CA-Rac1.  In C-G, the treated conditions had NF-160+ axons in the scaffold-
filled cavity, where as NF-160+ axons were not observed in the controls. 



Figure 4.20.  Quantitative analysis of NF-160 intensity for the stained spinal cords.  
The spinal cords treated with CA-Cdc42, CA-Rac1, BDNF, BDNF/CA-Cdc42, and 
BDNF/CA-Rac1 had significantly higher fluorescent intensity and also had extended 
further into the scaffold-filled spinal cord cavity than the untreated and agarose 
controls.  Gray lines represent ± SEM (# p<0.05 treatment groups compared to 
untreated and agarose controls). 
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Figure 4.21.  Grid walk test at 3 and 5 weeks post-injury.  A.  Grid walk test at 3 
weeks.  B.  Grid walk test at 5 weeks.  A statistical difference amongst the groups 
for either 3 or 5 weeks, was not observed.  There was also no significant functional 
improvement when comparing the same condition at 3 and 5 weeks.  The data 
represent the mean ± SEM. 
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Figure 4.22.  Beam walk test at 3 and 5 weeks post-injury.  A.  Beam walk test at 
3 weeks.  B.  Beam walk test at 5 weeks.  A statistical difference amongst the 
groups for either 3 or 5 weeks, was not observed.  There was also no significant 
functional improvement when comparing the same condition at 3 and 5 weeks.  
The data represent the mean ± SEM. 
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4.4.   DISCUSSION 

This study was performed to determine whether BDNF, CA-Cdc42, CA-Rac1, 

delivered individually or in combination utilizing the hydrogel/microtubule scaffold 

delivery system would encourage axonal outgrowth through the CSPG-inhibitory regions 

and influence the inflammatory response, particularly the reactivity of the astrocytes and 

CSPG deposition.  The results demonstrated that the individual treatments, BDNF, CA-

Cdc42, and CA-Rac1 reduced the GFAP+ and CS-56+ regions in the glial scar around the 

lesion site.  It was also exhibited that the treatment conditions promoted axonal 

outgrowth through CSPG-rich inhibitory regions proximal to the lesion site.  Although 

BDA+ axons did not infiltrate the scaffold-filled cavity, a significantly higher percentage 

of axons were present within 1 mm of the lesion site compared to the untreated and 

agarose controls.  The growth permissivity of the hydrogel in the lesion cavity was 

demonstrated by the high number of NF-160+ sprouted fibers within the scaffold. 

The ideal 3-D scaffold that supports and promotes axonal outgrowth across a 

lesion in the spinal cord remains elusive.  It is important to minimize the physical gap 

between the spinal cord and the scaffold to make the microenvironment more conducive 

for growth, as well as minimize any inflammatory response.  One advantage of utilizing 

the agarose is its ability to gel in situ and conformally fill the defect by adopting its 

shape.  To investigate whether the agarose would provide an adequate scaffold, we 

utilized the dorsal-over hemisection model, which transects the dorsal portion of the CST. 

Initially, in vitro experiments were performed to characterize the temperature 

sensitive gelling properties of agarose hydrogels to explore their suitability for gelation in 

vivo and to characterize neurite extension in 3D agarose cultures.  Using rheology, the 
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specific temperature range at which the agarose changes from liquid phase to a gel phase 

was determined to be at physiological temperatures, 35 to 37.5 °C for SeaKem®, 22.5 to 

27 °C for SeaPlaque®, and  11 °C  for SeaPrep® (Fig. 4.5).  Another important feature is 

that the in situ gelling hydrogels are capable of supporting neurite extension in vitro.  

This characteristic of the hydrogel is important as it suggests that should regenerating 

fibers be enticed to enter the gel, the scaffold would provide a supportive substrate for 

neurite extension.  The in vitro experiments demonstrated that 1% SeaPrep® supported 

the greatest amount of neurite outgrowth. Also, the SeaPrep® agarose gel has been well 

characterized by our laboratory in vitro (Balgude et al. 2001; Dillon et al. 1998)  and in 

vivo in the peripheral nervous system (Yu and Bellamkonda 2003),  demonstrating that 

hydrogels are capable of supporting neurite extension in vitro.  This characteristic of the 

hydrogel is important as it suggests that should regenerating fibers be enticed to enter the 

gel, the scaffold would provide a supportive substrate for neurite extension.   

The agarose gelling in situ within the spinal cord defect ensures that it adopts the 

shape of the cavity, thus minimizing the gap between the spinal cord tissue and the 

agarose.  Several studies have reported inserting hydrogels, such as NeuroGel™ (Woerly 

et al. 2001; Woerly et al. 2004), alginate (Kataoka et al. 2004), and collagen (Kataoka et 

al. 2004) between the nerve gaps, however; the hydrogels were either inserted as a 

sponge or as a pre-formed gel.  When filling irregular defects, we suggest that in situ 

gelling is critical as it is difficult to ‘pre-fabricate’ a gel of the exact shape and 

dimensions of an irregular soft tissue defect in vivo.   However, as the agarose gel that is 

optimal for neurite extension gels at the low temperature of 11 °C, we developed the 

hydrogel cooling system that can cool agarose in liquid phase at the lesion site rapidly 
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(within seconds).  When evaluating the ability of our gels to conformally fill the defect, 

there existed a possibility that the agarose would leak out of the cavity/defect generated 

by hemisection of the spinal cord before it gelled.  However, upon retrieval and 

processing of the spinal cord, it was observed that the agarose scaffold did in fact gel in 

situ and was restricted within the lesion site.   

As evident by visual inspection and histological inspection, the explanted agarose 

scaffolds remained in the spinal cord lesion for 6 weeks.  No shrinkage of the gel was 

observed, and the gel-spinal cord interface appears stable after six week in vivo 

confirming the performance of the agarose gels as a viable in situ gelling biopolymer. 

To encourage axonal outgrowth into the hydrogel scaffold, we embedded lipid 

microtubules that released CA-Cdc42, CA-Rac1, and BDNF, individually or in 

combination, in a sustained manner within the agarose gel construct.  The sustained 

release of BDNF was characterized in vitro and in vivo.  The in vitro release assay 

demonstrated that BDNF was released from the microtubules for at least 2 weeks (Fig. 

4.7B).  BDNF was conjugated to Rhodamine and delivered using the 

hydrogel/microtubule delivery system.  Two weeks post-implantation, the spinal cords 

were explanted.  It can be seen that BDNF/Rhodamine is present around the lesion site, 

as well as up to 2 mm proximal to the lesion site (Fig. 4.7C).  These sections were double 

stained with antibody against ED-1 and complete co-localization was not observed 

between the ED-1+ cells and delivered BDNF/Rhodamine (Fig. 4.7D).  We believe that 

the delivery of the Rho GTPases will demonstrate similar characteristics due to the 

molecular weight of BDNF and the Rho GTPases being approximately 25 kDa.  This is a 

crucial time period due to the formation of the glial scar and severed axons retracting 
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away from the lesion site.  Therefore, delivery of the proteins during this time period will 

affect the inflammatory response and axonal regrowth due to the proteins being 

transduced into microglia, macrophages, astsrocytes, as well as neurons.  Other data from 

our laboratory have demonstrated that we have the capability to optimize the 

microtubules to release bioactive agents over a period of 5-7 weeks if necessary 

(Meilander et al. 2003; Meilander et al. 2001).  The microtubules release proteins through 

diffusion; and have well characterized the release profile, which provided the information 

on the loading concentration to ensure the release of the therapeutic concentration (10-

100 ng/ml).  

The Rho GTPases, Cdc42 and Rac1, were delivered in their constitutively active 

form, as well as BDNF, to encourage axonal outgrowth through the inhibitory regions 

after injury.  In vitro studies of Cdc42 and Rac1 and in vivo studies of BDNF have 

demonstrated that these proteins affect the actin cytoskeleton dynamics, thereby 

influencing axonal outgrowth.  Antibodies against GFAP and CS-56 were used to stain 

spinal cord sections to observe the affects of these three proteins delivered individually 

and in combination on reactive astrocytes and CSPG deposition. 

The quantification of the GFAP and CS-56 fluorescent pixel intensities 

demonstrated that the spinal cords treated with CA-Cdc42, CA-Rac1, and BDNF have 

significantly lower expression of GFAP and CSPGs than the untreated control; however, 

the combination treatments, BDNF/CA-Cdc42 and BDNF/CA-Rac1 had similar 

intensities to the controls.  As mentioned above, it has been established that Cdc42 and 

Rac1 are involved in actin cytoskeleton dynamics.  In a study investigating the migration 

of astrocytes in an in vitro wound healing response, it was demonstrated that inhibition of 
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Rho by C3, a bacterial toxin, increased the astrocytes’ migratory response (Holtje et al. 

2005), evidenced by GFAP expression.  In this study, when CA-Cdc42, CA-Rac1, and 

BDNF were delivered individually, these exogenous proteins may have triggered a 

feedback mechanism activating an alternate signaling pathway, causing the astrocytes to 

become less migratory.  For the combination treatments, it has been shown that BDNF 

and Cdc42 converge on the same pathway affecting the actin cytoskeleton, with BDNF 

upstream on the transduction pathway (Chen et al. 2006; Yuan et al. 2003).  Therefore, it 

is possible that the delivery of CA-Cdc42 and BDNF in combination, for the 

concentrations delivered, caused feedback inhibition, activating an alternate pathway due 

to a higher concentration of Cdc42, including exogenous CA-Cdc42, possibly resulting in 

increased astrocyte migration. 

In another study, Y27632, an inhibitor to Rho Kinase, which is a downstream 

effector of Rho, was delivered to the spinal cord after a dorsal column transection.  It was 

shown that GFAP expression increased in the Y27632 treated animals around the lesion 

cavity (Chan et al. 2007).  The CST axons did not infiltrate the glial scar.  In the same 

study, in vitro co-cultures of astrocytes treated with Y27632 and cortical neurons 

demonstrated increased expression of CSPGs (identified by CS-56 staining); however, 

Y27632 did not inhibit neurite outgrowth.  This demonstrates that although GFAP 

expression had increased, the potential for axonal outgrowth into the glial scar had 

increased, as well.  Similar results were observed for GFAP expression in our 

combination studies.  The axonal retraction was less pronounced in the BDNF/CA-Cdc42 

and BDNF/CA-Rac1 treated groups compared to the controls; however, GFAP 

expression was similar to the untreated and agarose controls.  This phenomenon did not 
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occur in the individual treatments; therefore, it is possible that by optimizing the 

concentration for each of the proteins in combination could increase the potential for 

axonal outgrowth through the glial scar while decreasing GFAP and CS-56 expression. 

The lower pixel intensity of GFAP in the individual treatments, meaning less 

astrocyte reactivity, may be due to the proteins not activating the signaling pathway 

involved GFAP expression. This also correlates to the CS-56 pixel intensity.  Some 

studies have used chABC to digest the CSPGs in the inhibitory environment (Bradbury et 

al. 2002; Zuo et al. 1998; Zuo et al. 2002).  The disadvantage of this extrinsic strategy is 

that it modifies all CSPGs, even those that were deposited during development to 

maintain axonal tract structure.  Digestion of these CSPGs can lead to aberrant axonal 

outgrowth across tracts, thereby possibly altering connections and functions.  The 

transduction of CA-Cdc42 only affects the levels of CSPGs that comprise the glial scar, 

while the CSPGs present before the SCI remain intact.  

Although the microglia/macrophage response peaks at 2 weeks and decreases 

after 4 weeks, the ED-1+ cells were counted at 6 weeks to observe whether a chronic 

inflammatory response occurred due to our hydrogel/microtubule delivery system.  A 

significant difference was not observed in the number of ED-1+ cells when the untreated 

was compared to when agarose was injected alone or in the treatment conditions, BDNF, 

CA-Cdc42, CA-Rac1, BDNF/CA-Cdc42, and BDNF/CA-Rac1 (Fig. 4.12).  Therefore, 

the scaffold delivery system does not elicit a long-term inflammatory response and 

demonstrates potential for future therapeutic use. 

In addition to initial injury, secondary injury leads to the increase in the lesion 

size.  A study showed that delivery of anti-tumor growth factor- β (anti-TGF-β) increased 
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secondary injury, thus increasing the lesion area (King et al. 2004).  In this study, the 

lesion area was measured to observe whether there was a similar occurrence.  However, 

the treated groups, BDNF, CA-Cdc42, CA-Rac1, BDNF/CA-Cdc42, and BDNF/CA-

Rac1 decreased the lesion area compared to the controls rather than increasing the area of 

the lesion,.  This suggests that BDNF, CA-Cdc42, and CA-Rac1 may have influenced the 

reactivity and migratory response of the microglia and macrophages, which lead to a 

decrease in inflammatory cytokine production, thus reducing the astrocytic response.  If 

the reactive astrocytes response has decreased, this in turn affects the GFAP and CSPG 

production. 

Inhibitory regions, identified by the fluorescent intensity of CS-56 were observed 

proximal to the glial scar in spinal cord and similar in intensity values.  When the 

astrocytes become reactive after injury, these cells deposit CSPGs creating a glial scar.  

However, it has also been shown that macrophages/microglia are responsible for the 

deposition of inhibitory CSPGs (Jones et al. 2002).  Therefore, the CS-56 intense regions 

observed proximal to the lesion site are possibly due to the reactive microglia and 

macrophages.  Although a large percentage of axons stopped in the middle of the 

inhibitory region in the treated conditions, a significant percentage of axons crossed the 

distal interface of the inhibitory region (Fig. 4.15A).  This suggests that the delivered 

proteins promoted axonal outgrowth through the inhibitory regions.  In the study where 

BDNF conjugated Rhodamine was delivered using the hydrogel/microtubule system.  It 

was observed after 2 weeks that BDNF had diffused 1 to 2 mm proximal to the lesion 

site, suggesting that the proteins diffused through the tissue to influence axonal 

outgrowth through the inhibitory regions.  Therefore, the proteins diffused to the areas of 
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the inhibitory region to affect axonal outgrowth.  The presence of the CSPG-rich 

inhibitory regions and the affect of the Rho GTPases and BDNF on axonal outgrowth 

proximal to the lesion site, suggests that it is imperative to deliver proteins to down-

regulate inhibitory molecules not only into the cavity, but also into the proximal area of 

the lesion site to increase the number axons extending towards the lesion site. 

Four weeks post-injury, the anterograde neuronal tracer, BDA, was injected into 

the motor cortex to trace the axons in the CST towards the lesion site.  In the controls, as 

well as the treated groups, BDA+ axons did not penetrate into the scaffold-filled cavity.  

However, axons did penetrate the glial scar in the groups treated with BDNF, CA-Rac1, 

BDNF/CA-Cdc2, and BDNF/CA-Rac1, where axons had traveled within 200-300 μm to 

the lesion site (Fig. 4.17), which is within the glial scar as shown in the GFAP and CS-56 

intensity graphs (Figs. 4.10 and 4.11).  In animals that were injured but were not treated, 

as well as the animals injected only with agarose, approximately 50% of the axons had 

retracted 2mm away and the remaining axons stopped 1 mm away from the lesion site 

(Fig. 4.18). The Rho GTPases, as well as BDNF, influence actin cytoskeleton dynamics.  

These proteins aid in the polymerization of the actin, which may have allowed axons that 

retracted in the treated conditions to extend towards the lesion site despite the inhibitory 

regions.  However, it is also possible that the CA-Cdc42, CA-Rac1, and BDNF hindered 

the depolymerization process of the actin, which causes axonal retraction.  Therefore, the 

axons in the treated groups are close to the lesion site compared to the controls. 

Axons from the CST failed to regenerate into the hydrogel scaffold-filled spinal 

cord cavity.  This finding led to the question that perhaps the hydrogel scaffold did not 

permit axonal penetration.  Therefore, spinal cord sections were stained with anti-NF-
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160, and it was observed that the cavity in the treated conditions were positive for NF-

160 (Fig. 4.19).  Although the CST axons did not cross the entire proximal side of the 

glial scar into the lesion site, axons from other tracts were able to infiltrate the inhibitory 

glial scar and the scaffold and extend a significant distance in the treated conditions 

compared to the untreated and agarose controls (Fig. 4.20).  Serotonergic (5-HT+) axons 

in the spinal cord were stained to identify whether these axons were a population of the 

NF-160+ fibers found in the scaffold.  Although serotonergic axons were present in the 

scaffold, these fibers were not a significant population (data not shown).  The origin of 

the NF-160+ axons could potentially be fibers from ascending sensory tracts.  The 

ascending sensory tracts are located in the dorsal column of the spinal cord, which were 

also severed at the time of injury.  In vivo studies have shown that BDNF helps stimulate 

axonal outgrowth of sensory fibers (Oudega and Hagg 1999; Zhou and Shine 2003).  Due 

to convergence of pathways between BDNF and the Rho GTPases, CA-Cdc42 and CA-

Rac1 could also aid in axonal outgrowth of the sensory fibers. 

Individual treatments and combination treatments of CA-Cdc42, CA-Rac1, and 

BDNF were delivered after SCI.  Quantification of GFAP, CS-56, BDA, NF-160 stains 

did not demonstrate a significant difference between the individual treatments and the 

combination treatments.  However, treatment with CA-Cdc42 demonstrated a reduction 

in GFAP and CS-56 fluorescent intensity, thereby reducing astrocytes reactivity and 

CSPG deposition, where as treatment with CA-Rac1 demonstrated a higher percentage of 

BDA+ axonal extension towards the lesion site.  This suggests that Cdc42 influences the 

inflammatory response by affecting the macrophage/microglia and astrocyte responses 

and Rac1 had more of an affect on neurons and their axonal outgrowth.  
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In this study, the combinations of BDNF/CA-Cdc42 and BDNF/CA-Rac1 were 

delivered to the lesion site after SCI.  However, the combination of CA-Cdc42/CA-Rac1 

or delivery of CA-Cdc2, CA-Rac1, and BDNF in combination was not performed in this 

study due to cytotoxic effects that were observed in the neurons when CA-Cdc42 and 

CA-Rac1 were transduced together (Jain et al. 2004).  The BDNF diffusion study in vitro 

demonstrates that the microtubules release protein for at least 2 weeks.  The delivery of 

BDNF, CA-Cdc42, and CA-Rac1 individually and in combination encouraged axons to 

extend through CSPG inhibitory regions proximal to the lesion site.  These proteins 

delivered individually also reduced the inflammatory response.  Although axonal 

outgrowth was not observed in the scaffold-filled lesion site in the treated conditions, 

axons extended a significant distance compared to the untreated and agarose treated 

spinal cords suggesting that the proteins were encouraging axons through the inhibitory 

region.  These results suggest that the proteins delivered in this study could possibly 

promote axonal outgrowth into the lesion site if the concentration of delivered CA-

Cdc42, CA-Rac1, and BDNF were optimized. 
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CHAPTER 5 

 

CONCLUSIONS 

 

The global objective of this study was to investigate whether the Rho GTPases 

could mask the effect of the inhibitory molecules, particularly CSPGs, in order to 

encourage axonal outgrowth. To accomplish this objective, the study was divided into 

two parts, one which was conducted in vitro and the other in vivo.  The study performed 

in vitro was to determine whether modulating Rho GTPases, Cdc42 and Rac1, in neurons 

could influence axonal outgrowth into CSPG-rich regions.  To conduct a study in vivo the 

following sub-goals were set: (1) to develop a 3-dimensional (3D) scaffold that 

conformally filled the spinal cord cavity and allow for the axons to infiltrate the hydrogel; 

(2) to utilize a delivery vehicle that locally delivered the proteins within the lesion site 

into the surrounding tissue, permitting the transduction of the proteins into the neurons; 

and (3) to deliver Rho GTPases, which had demonstrated in vitro could affect neurite 

extension through inhibitory regions after transduction, and BDNF to observe whether 

axonal outgrowth occurred through CSPG-rich regions. 

 In the in vitro study the Rho GTPases were modulated to alleviate CSPG-

dependent inhibition on neurite extension.  Studies had previously shown in similar in 

vitro models that the inhibition of RhoA or its downstream effector by C3 or Y27632, 

respectively, had prevented growth cone collapse and increased neuronal extension 

(Dubreuil et al. 2003; Monnier et al. 2003; Winton et al. 2002).  Although RhoA can be 

inhibited to prevent growth cone collapse, this does not signify an increase in the 
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activation of filopodia and lamellopodia on growth cones to read the environmental cues 

and promote neurite extension through the inhibitory regions.  Therefore, we modulated 

Cdc42 and Rac1, which directly induced filopodial and lamellopodial extensions, in the 

mutant derivative forms, as well as RhoA and C3 to determine if there was an increase in 

neurite crossing through inhibitory CSPG regions. 

 The molecular weight of the Rho GTPases does not allow the proteins to cross the 

cellular membrane without the aid of a delivery vehicle.  Chariot, a commercially 

available peptide, was complexed to transduce the proteins across the membrane.  A 

significantly higher percent ratio of neurites crossing the inhibitory regions was observed 

when CA-Rac1 was complexed to Chariot versus the media control or when CA-Rac1 

was added to the media alone.  Our study demonstrated the necessity and success of the 

peptide delivery system to effectively transduce the Rho GTPases across the membrane 

in order for CA-Rac1 and CA-Cdc42 to affect the signaling transduction pathway 

involved in actin cytoskeleton dynamics. 

 CA-Cdc42 was transduced into neurons at various concentrations: 1 μg/ml, 2 

μg/ml, 3 μg/ml, 4 μg/ml, 6 μg/ml and 8 μg/ml.  Although the differences amongst the 

concentrations were very small, the cellular response was strikingly different.  The 

percent ratios for the concentrations between 1 μg/ml and 3 μg/ml were not significantly 

different from the negative controls, while the cytotoxic effects were observed in the 

neurons when 6 μg/ml and 8 μg/ml of protein were delivered, either due to too high 

protein concentration or the Chariot concentrations levels.  However, significantly higher 

percent ratio of neurite crossing was seen for 4 μg/ml, the middle concentration.  This 
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demonstrates that activation versus inactivation of a signal transduction pathway can 

occur due to slight differences in intracellular protein concentrations. 

 From the in vitro study, we concluded that transduction of CA-Cdc42 and CA-

Rac1, endogenous proteins, promoted axonal outgrowth through inhibitory regions.  

Delivery of C3, a bacterial toxin, demonstrated similar results.  Athough C3 may hinder 

growth cone collapse by inhibiting the Rho signaling pathway, this does not translate to 

the activation of filopodia and lamellopodia such that the neurites can overcome CSPG-

dependent inhibition.  Therefore, when developing the experimental design in vivo, only 

CA-Cdc42 and CA-Rac1 were transduced into neurons after injury, along with BDNF. 

 A delivery system, which included a hydrogel scaffold and delivery vehicle, was 

developed to slowly release CA-Cdc42, CA-Rac1, and BDNF locally.  Agarose gels of 

different gelling temperatures and gel strengths were investigated to develop an in situ 

gelling hydrogel and to promote axonal infiltration.  Based on the rheology data and 

DRG cultures, it was determined that SeaPrep® agarose is the most conducive as a 

scaffold for delivery and axonal infiltration.  The gelling temperature for this agarose was 

11°C.  An in situ gel cooling system was developed so that the agarose could gel within 

the created cavity.  An agarose scaffold that gelled in situ rather than pre-fabricated is 

more desirable because it takes the shape of the defect, thereby minimizing the physical 

space between the spinal cord tissue and the scaffold.  Although an approximately same 

size cavity was made for the animals in all of the conditions, slight differences would 

preclude the conformal filling of the cavity by a pre-fabricated scaffold.  An in situ 

gelling scaffold also has clinical relevance.  Patients suffering from SCI have different 

size lesions and a pre-fabricated scaffold would demand time that may not be available to 
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resize the scaffold, where as in situ gelling scaffold could be used immediately 

irregardless of the cavity size. 

 The agarose scaffold contained lipid microtubules that slowly and locally 

delivered the proteins.  The lipid microtubules were chosen as the delivery vehicle 

because it had been shown previously that the microtubules could deliver the proteins for 

several weeks.  The in vitro release assay demonstrated that the microtubules slowly 

released BDNF for at least 2 weeks.  This time period is biologically crucial because the 

glial scar is forming and the severed axons are retracting.  Therefore, the release of the 

CA-Cdc42, CA-Rac1, and BDNF from the microtubules during the first two weeks after 

injury into the surrounding tissue allows for accessibility to the neurons and allows the 

retracted axons to stall or extend forward.    The quantification of ED-1+ stain for 

macrophages/reactive microglia at 6 weeks exhibited that the hydrogel/ microtubule 

delivery system did not elicit a chronic inflammatory response when compared to the 

untreated controls.  This signifies that the microtubules did not provoke the inflammatory 

response.  It also does not seem that the microtubules affect the bioactivity of the 

proteins.  In comparison with other delivery vehicles, osmotic pump, microparticles, and 

Gelfoam, using microtubules is more advantageous.  The insertion of the catheter from 

the osmotic pump induces another injury that needs to be treated and microspheres have 

been phagocytosed by macrophages.  As mentioned above, the microtubules have shown 

to release for at least 2 weeks in vitro; however, the release of proteins from Gelfoam 

cannot be controlled and releases the proteins in large amounts over a short period of 

time. 
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 The conclusions drawn from the in vitro studies encouraged the investigation of 

Cdc42 and Rac1 to be delivered in vivo.  BDNF was also chosen because it demonstrated 

neuroprotective behavior, as well as its effect on actin cytoskeleton.  CA-Cdc42 and CA-

Rac1 were delivered in combination with BDNF to determine whether synergistic effects 

occurred.  However, CA-Cdc42 and CA-Rac1 were not delivered in combination due to 

the cytotoxic effects observed in the in vitro study.  The effects of delivery of CA-Cdc42, 

CA-Rac1, and BDNF were analyzed by staining for the astrocytic response using the 

antibody against GFAP, CSPG deposition with anti-CS-56, and axons after injection of 

BDA and NF-160.  The quantification of GFAP pixel intensity demonstrated that when 

the proteins were delivered individually, the intensity of reactive astrocytes was 

significantly lower than the controls, however, when the proteins were delivered in 

combination, the fluorescent intensity was similar to the untreated and agarose controls.  

This could be due to the amount of protein delivered causing the astrocytes to be more 

migratory, thereby increasing GFAP expression.  However, when the proteins were 

delivered individually, the pathway was not activated due the protein levels.  It is also 

possible that an alternative signaling pathway was activated causing a reduction in 

astrocyte activity.  A similar trend was observed with the CS-56 staining near the lesion 

site.  The GFAP intensity was lower signifying less reactive astrocytes, thereby reducing 

secretion of CSPGs. 

 After injury, axonal retraction occurs.  In the case of injured untreated animals, 

axonal retraction can occur up to 4 mm rostral to the lesion site.  In the treated groups, a 

higher percentage of axons were shown between the beginning of the lesion site and 1 
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mm proximal, especially in the CA-Rac1, and BDNF/CA-Cdc42 and BDNF/CA-Rac1 

treatment groups. 

 CS-56 stained inhibitory regions were seen proximal to the lesion site.   Axonal 

outgrowth through these regions was quantified similar to the in vitro study quantifying 

the percent ratio of neurite crossing the CSPG-rich regions.  The results demonstrated 

that the treatment groups had a significantly higher number of axons that crossed the 

distal interface of the inhibitory region.  It can also be seen from the data showing the 

average axonal retraction from the beginning of the lesion site that the groups treated 

with BDNF, CA-Rac1, BDNF/CA-Cdc42, and BDNF/CA-Rac1 had axons that infiltrated 

the glial scar; however, these axons stopped before the lesion site. 

 The McKerracher and Strittmatter Laboratories have delivered C3 after SCI to 

determine whether CST axons would regenerate.  The results from the two labs were 

contradictory.  McKerracher’s group stated that sprouting was observed into the lesion 

site after treatment with C3 (Dergham et al. 2002), whereas Strittmatter’s groups stated 

that C3 did not promote any sprouting or long-distance regeneration (Fournier et al. 

2003).  The delivery of C3 affects the Rho signaling pathway.  In order to affect the 

growth cone cytoskeleton dynamics, it requires cross-talk between Rho and Cdc42 and 

Rac.  Studies on delivery of Cdc42 and Rac1 in vivo after SCI have not been reported.  

Our studies report that it is more beneficial to deliver Cdc42 and Rac1 to promote axonal 

outgrowth.  We have observed beneficial effects of delivering CA-Cdc42 and CA-Rac1 

on axonal growth.  However, we have not been able to extrapolate whether the proteins 

affected the signaling pathway for actin polymerization or depolymerization.  It would be 
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a worthwhile study in the future to perform immunoblots for proteins in the two signaling 

pathways to determine which pathway is activated more. 

 The other approaches, discussed in Chapter 2, observed axonal regrowth and/or 

functional recovery.  It is difficult to make a comparison between those studies and ours 

due to difference in parameters, such as the delivered dosage, time of protein delivery, 

and duration of the study.  The benefits of our strategy are the local delivery of proteins, 

lack of an immune response to the proteins, and an in situ conformally filling scaffold.  

Strategies that transplant cells or use viral vectors raise concern about the host immune 

response, which raises issues of clinical relevance.  The advantages of our lipid 

microtubule delivery system compared to other delivery systems were mentioned above.  

Although axonal outgrowth was not observed in the lesion site, the delivery of Cdc42 and 

Rac1 shows potential with their effect on the astroglial scar and axonal outgrowth.  It has 

become evident that a multi-factorial approach, a combination of treatments, is 

imperative for regeneration of the spinal cord.  The studies presented in this thesis have 

demonstrated that Cdc42 and Rac1 should be pursued and considered as players in the 

strategy to promote axonal regeneration and achieve full functional recovery. 
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CHAPTER 6 

 

FUTURE PERSPECTIVES 

  

 Axonal regeneration into the distal spinal cord, reforming proper connections, 

leading to full functional recovery, has yet to be accomplished.  Our study investigated 

the potential of Cdc42, Rac1, and BDNF to encourage axons to extend through inhibitory 

regions.  However, the ultimate goal is to study whether these proteins can promote 

axonal outgrowth through the scaffold-filled cavity into the distal portion of the spinal 

cord.  This chapter will discuss further aspects that can be studied to determine whether 

this can be achieved. 

 

6.1.  OPTIMIZATION OF DOSAGE 

 In the in vivo study presented in Chapter 4, one concentration for each of the 

proteins was delivered to observe the effect on the axons, particularly in the CST, as well 

as the inflammatory response.  In the in vitro study presented in Chapter 3, it was 

observed that of the five different dosages delivered to the DRGs, it was the 4 μg/mL that 

elicited the greatest response.   Therefore, delivering different concentrations of CA-

Cdc42, CA-Rac1, and BDNF to determine the optimal dosage may result in axonal 

outgrowth through the scaffold into the distal portion of the spinal cord. 

 Combinations of BDNF/CA-Cdc42 and BDNF/CA-Rac1 were delivered into the 

spinal cord lesion (Chapter 4).  The optimal dosage delivered for each of the proteins 

individually will not necessarily translate to the best possible dosage delivered in 
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combination.  Therefore, it is necessary to perform studies that optimize the concentration 

of each protein when delivered in combination.  It was observed that when BDNF was 

delivered in combination with Cdc42 or Rac1, there was a greater inflammatory response 

in terms of the reactive astrocytes and deposition of CSPGs.  If the concentrations of the 

two proteins are altered, then the responses maybe greater or lesser than what was 

observed in our in vivo study. 

 

6.2.  OPTIMIZATION OF DELIVERY VEHICLE 

 Lipid microtubules were used to deliver the proteins in our in vivo study.  An in 

vitro experiment was conducted, demonstrating that the microtubules release the proteins 

for at least 2 weeks.  If desired, longer microtubules could be fabricated to increase the 

duration of release of the proteins.  Nanoparticles can also be used to deliver the proteins.  

Although nanoparticles risk being phagocytosed, if the copolymer, such as PLGA, is used 

at different ratios of the two monomers, it allows for control of the degradation of the 

delivery vehicle, thereby controlling the period of time the protein is released.  It would 

be interesting to observe the effect on axonal outgrowth that delivering the proteins had at 

various time points post-injury.  If the proteins were delivered during the 3rd to 5th weeks 

post-injury, as well as immediately after injury, it may encourage axons to traverse the 

scaffold and penetrate the distal spinal cord. 

 

6.3.  MODIFICATION OF SCAFFOLD 

 We used agarose as the scaffold in the in vivo study.  It is possible to crosslink 

proteins in order to modify the hydrogels (reviewed in Chapter 2).  Laminin has been 
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shown to promote axonal outgrowth.  Therefore, crosslinking laminin to the hydrogel 

scaffold may aid in axonal infiltration into the scaffold. 

 

6.4.  DURATION OF IN VIVO STUDY 

The duration of the in vivo study conducted for this thesis was 6 weeks.  If the 

study had been terminated later, such as at 8 or 10 weeks, axonal outgrowth might have 

been observed closer to the lesion, or even into the scaffold-filled cavity.  Also, 

behavioral analysis at these timepoints might have shown functional recovery. 

 

6.5. SHORT-TERM STUDY OF INFLAMMATORY RESPONSE 

 In the in vivo study, no significant difference was observed in the ED-1+ cells 

between the treatment groups and the controls at 6 weeks.  Our study showed that the 

Rho GTPases and BDNF affected the reactive astrocyte response and CSPG deposition.  

The number of macrophages and reactive microglia peaks at 2 weeks and begins to fall 

by 4 weeks.  The shorter time studies should be performed in vivo to determine whether 

activation of microglia and the migration of macrophages were affected.  Because these 

cells secrete cytokines that activate astrocytes and inhibitory molecules, additional 

studies would help explain how the glial scar is being altered. 

 

6.6.  MULTI-FACTORIAL APPROACH 

 A multi-factorial approach, rather than a unilateral one, will be necessary to 

restore complete functional recovery.  In our in vivo study, we observed that CSPG 

inhibitory regions, possibly formed after CSPG secretion by macrophages/reactive 
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microglia proximal to the lesion site, inhibited a high percentage of axons prior to the 

glial scar.  Therefore, for future studies it would be important in the experimental design 

to include delivery of an anti-inflammatory agent approximately 1-2 mm proximal to the 

lesion site, which decreased macrophages/reactive microglia, thus preventing the 

deposition of CSPGs. 

There are two main strategies to promote axonal outgrowth: intrinsic and 

extrinsic.  These studies investigated the use of the intrinsic strategy, by utilizing Rho 

GTPases and their role in actin cytoskeleton dynamics.  However, it would be interesting 

to determine whether a study that combines both strategies would have a greater effect on 

the promotion of axonal outgrowth.  An example would be to deliver either CA-Cdc42 or 

CA-Rac1 in combination with siRNA, which hinders the production of specific CSPGs.  

CA-Cdc42 and CA-Rac1 should encourage the growth cones on the retracted axons to 

read the environmental cues and extend further while the delivery of the siRNA against 

CSPGs would prevent the production of the protein by the reactive astrocytes, thus 

altering the composition of the glial scar, making it less inhibitory and more conducive 

for axonal outgrowth.  The Strittmatter group demonstrated that genetically modified 

astroyctes secreted chABC, which could also be used to remove the CSPGs from the glial 

scar, as well as provide a substrate for axonal outgrowth (Chapter 2).  Other strategies 

mentioned could also be used in combination with the Rho GTPases to obtain axonal 

regeneration. 
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