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SUMMARY 

 

 Functional magnetic resonance imaging (fMRI) has emerged as the method of 

choice to non-invasively investigate brain function in humans. Though brain is known to 

act as a nonlinear system, there has not been much effort to explore the applicability of 

nonlinear analysis techniques to fMRI data. Also, recent trends have suggested that 

functional localization as a model of brain function is incomplete and efforts are being 

made to develop models based on networks of regions to understand brain function. 

Therefore this thesis attempts to introduce the twin concepts of nonlinear dynamics and 

network analysis into a broad spectrum of fMRI data analysis techniques.  

 Initially, the importance of low dimensional determinism in resting state fMRI 

fluctuations is explored using principles such as embedding drawn from nonlinear 

dynamics. The results suggest tissue-specific differences in the nonlinear determinism of 

gray matter and white matter. We establish that previously perceived higher random 

fluctuation in the gray matter can be attributed to the deterministic nonlinearity. We also 

show that this is not a result of higher noise level in the gray matter or the differential 

effect of physiological fluctuations in these tissues.  

 Subsequently, the concept of embedding is extended to multivariate analysis to 

characterize nonlinear functional connectivity in distributed brain networks during 

resting state and continuous movement. A new measure, bivariate nonlinear connectivity 

index, is introduced and shown to have higher sensitivity to the gray matter signal as 

compared to linear correlation and hence more robust to artifacts. The utility of 

dynamical analysis is shown in the context of investigating evolving neuronal changes. 



 xix 

 Next, we expand the scope of functional connectivity to include directional 

interactions in the brain, which is termed effective connectivity. We investigate both 

linear and nonlinear Granger models of effective connectivity. First, we demonstrate the 

utility of an integrated approach involving multivariate linear Ganger causality, coarse 

temporal scale analysis and graph theoretic concepts to investigate the temporal dynamics 

of causal brain networks. Application of this approach to motor fatigue data reinforced 

the notion of fatigue induced reduction in network connectivity. Finally we show that the 

results obtained from nonlinear Granger models were akin to the linear ones. However, 

the nonlinear model was more robust to artifacts such as baseline drifts as compared to 

the linear model.  

 Finally, functional connectivity in local networks is investigated. We introduce 

the measure of integrated local correlation (ILC) for assessing local coherence in the 

brain and characterize the measure in terms of reproducibility, the effect of physiological 

noise, effect of neighborhood size and the dependence on image resolution. We show that 

ILC is independent of these parameters and hence a robust linear measure for studying 

local coherence in the brain. As an illustration of its neuroscientific value, we 

demonstrate its utility with application to anesthesia and show the importance of the 

default mode network, particularly the frontal areas, in mediating anesthesia-induced 

neural effects. In addition, ILC is shown to be higher in the default mode network at rest 

which decreases significantly during a task. Finally, the linear ILC approach is 

complemented by the nonlinear approach and we show that the concept of embedding 

could also be used to study connectivity in local networks.  



CHAPTER 1 

INTRODUCTION 

 

 In the past several decades, it has been recognized that we need very sophisticated 

techniques for understanding the working of a complex system such as the human brain. 

Advances in various disciplines such as physics, mathematics, computers and 

neuroscience have helped in making a substantial progress in this direction. Functional 

neuroimaging is an example of a successful confluence of these disciplines that has made 

a great impact on our understanding of the brain by drawing from physics for image 

acquisition, mathematics for image processing, computers for handling large amounts of 

data and efficient computation and finally serving the purpose of neuroscience in 

answering certain fundamental questions about the functional organization of the human 

brain.  

 

Motivation 

 Among various imaging modalities, functional magnetic resonance imaging 

(fMRI) is becoming the method of choice owing to several advantages it offers. In fMRI, 

the brain is imaged over time with an MRI sequence sensitive to blood flow parameters 

to monitor the vascular hemodynamic response to neuronal metabolic activity (Bandettini 

et al, 1992; Kwong et al, 1992). The nature of the fMRI signal and its noise 

characteristics are not well understood and still under active research. In the past decade 

since its inception, research in fMRI has concentrated on characterizing event-related 

blood oxygenation level dependent (BOLD) response using static linear methods to 
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spatially localize neural substrates of brain functions (Ogawa et al, 1992). However, 

brain is a dynamically evolving system which is inherently nonlinear. Also, many 

functions of the brain are an emergent property of interacting functional networks and 

cannot be attributed wholly to discrete anatomical substrates. Hence, there is a need to 

develop methods that capture the nonlinearity and dynamics of evolving neuronal 

networks. Accordingly, this thesis will introduce novel ways of characterizing brain 

function in terms of nonlinear dynamics and network characteristics derived from the 

spatiotemporal fMRI data. 

 

Background and Literature Review 

 

Nonlinear Dynamics 

 Linear methods interpret all regular structure in a signal such as dominant 

frequencies and linear correlations. This underlies the assumption that the intrinsic 

dynamics are governed by the linear paradigm that small causes lead to small effects. 

However, recent advances (Sprott, 2003) have brought to light the fact that nonlinear 

systems can produce very complex data with purely deterministic governing equations. 

Therefore evidence of nonlinear dynamical determinism in a signal is an indication 

towards the possibility of such an underlying regime. 

 In practical situations, we do not have the knowledge of the governing equations 

of a system. In the specific case of fMRI, we only have the time evolution of observables 

(fMRI time series) obtained from the brain. The first problem, therefore, is to characterize 

the system only from observables. The second problem is that we do not know whether 
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the observables correspond to a single system or multiple interacting sub-systems. Even 

though both problems seem incredibly complicated and insurmountable, we can at least 

partially address those using dynamical systems theory. Chapter-2 addresses the first 

problem using univariate embedding and chapters 3, 4 and 5 tackle the second problem 

by employing multivariate embedding. 

 According to dynamical systems theory (Katok et al, 1996), the state of a system 

at every instant is controlled by its state variables. Thus it is important to establish a state 

space (or a phase space) for the system from the state variables such that specifying a 

point in this space specifies the state of the system and vice versa. Then we can study the 

dynamics of the system by studying the dynamics of the corresponding phase space 

points. However, what we observe in an fMRI experiment are not state variables, but 

only evolving scalar measurements which are the projections of the actual state variables 

on a lower dimensional space. The problem of converting the observations into state 

vectors is referred to as phase-space reconstruction and is solved using Taken’s 

embedding theorem (Takens, 1980). Thus, it is possible to study the nonlinear dynamics 

of biological systems from time series derived from the system. This aspect has been 

exploited by researchers in deriving useful insights about biological systems by analyzing 

the dynamics of EEG (Pritchard et al, 1992; Elbert et al, 1995), ECG (Kobayashi et al, 

1982; Narayanan et al, 1998; Fojt et al, 1998), heart rate variability (Guzzetti et al, 1996) 

and neuronal potentials (Butera et al, 1998).  

 In case of fMRI, it has been predominantly modeled as a linear stochastic process 

(Friston et al, 1995). However, arguments based on brain physiology indicate that the 

brain is likely to act as a nonlinear system that is not completely stochastic (Babloyantz, 
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1986; Goldberger et al, 1990; Elbert et al, 1994; Freeman, 1994). Despite the likely 

nonlinear nature of sources of signal fluctuations, existing methods work to a certain 

extent because a linear system can always approximate the behavior of a nonlinear 

system. Nonetheless, nonlinear approaches may be more pertinent and sensitive, and may 

reveal additional insights into the fMRI data. Therefore, nonlinear methods for the 

analysis of fMRI data have been proposed here. There have been several efforts to study 

the nonlinearity of BOLD response using Bayesian estimates (Friston, 2002), Volterra 

models (Friston et al, 1998), polynomial models (Birn et al, 2001) and Laplacian 

estimation (Vazquez et al, 1998). The nonlinear interactions between the neuronal, 

metabolic and hemodynamic factors giving rise to the BOLD response have also been 

investigated (Seth et al, 2004). Some nonlinear methods have been used to study 

activation data as well. These include delay vector variance (Gautama et al, 2004), 

multivariate nonlinear autoregressive models (Harrison et al, 2003), nonlinear principal 

component analysis (Friston et al, 2000) and nonlinear regression (Kruggel et al, 2000). 

However, it appears that no concerted effort has been made towards the study of 

nonlinear dynamics of resting-state fMRI data. Resting state time series is more complex 

as compared to activation time series and hence relatively difficult to characterize. 

Preliminary evidence suggests that nonlinear determinism in a bivariate phase space 

obtained from an fMRI experiment can be used as a measure of resting-state functional 

connectivity (LaConte et al, 2004). We build on this preliminary data and adopt the 

concept of embedding to demonstrate the utility of nonlinear methods. 
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Functional Connectivity 

Distributed Networks 

 There exists a dichotomy in the organization of the human brain. On one hand, 

there is the modularity, which corresponds to the functional specialization of different 

brain regions; the investigation of this specialization has been the major focus of 

neurophysiological studies and functional mapping studies. A great deal of progress has 

been made in this regard. On the other hand, networks of regions also act together to 

accomplish various brain functions. Along with the rapid growth of methods and 

applications of functional brain mapping for localizing regions with specialized 

functions, there has been a great deal of interest and progress made in studying brain 

connectivity. In particular, neuroimaging data can be used to infer functional connectivity 

(Lee et al, 2003), which permits a systematic understanding of brain activity and allows 

the establishment and validation of network models of various brain functions. Thus, 

when studying the function of the brain, it is of great importance to examine brain 

connectivity, either for understanding the interplay between regions or interpreting 

activation patterns, and characterization of connectivity is becoming an integral part of 

studies of brain function.  

 One approach for examining connectivity, that has gained a great deal of interest, 

is based on the temporal correlations in functional neuroimaging data (Friston et al, 

1993). In this vein, functional connectivity has been defined as “temporal correlations 

between remote neurophysiological events,” while effective connectivity has been 

defined as reflecting “the influence one neuronal system exerts over another” (Friston et 

al, 1993). In the present work we will be examining connectivity based on the similarity 
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of the nonlinear dynamics of different regions of the brain. This paradigm would 

definitely include temporal correlations and may also provide some additional insights. 

Therefore an apt description of the proposed connectivity measures would be ‘nonlinear 

dynamical connectivity’. As this is inclusive of temporal correlations, we would continue 

to use the term ‘functional connectivity’ for convenience.  

 Functional connectivity based on data obtained during brain activation was 

introduced a decade ago (Friston et al, 1993) and has been used to examine interaction 

between different areas during brain activity (Bodke et al, 2001; Li et al, 2004). These 

studies illustrate that examination of functional connectivity plays an important role in 

understanding brain imaging data and how the brain works as a concerted network. 

 With fMRI data acquired during resting state, low-frequency time course 

fluctuations were found to be temporally correlated between functionally related areas.  

These low frequency oscillations (<0.08 Hz) seem to be a general property of symmetric 

cortices and/or relevant regions and they have been shown to exist in a number of brain 

networks (Hampson et al, 2002; Biswal et al l, 1995, 97; Lowe et al, 1998; Cordes et al, 

2000). Low frequency oscillations in vast networks have been detected with data-driven 

analysis approaches (Cordes et al, 2002; Peltier et al, 2003). These fluctuations agree 

with the concept of functional connectivity defined by Friston et al. While the mechanism 

of interregional correlation in resting state fluctuations is not well understood, this 

correlation may be due to strengthened synaptic connections between areas with 

synchronized electrical activity, in accordance with Hebb’s theory (Hebb, 1949).  Several 

recent studies have shown decreased low frequency correlations for patients in 

pathological states, including cocaine use (Li et al, 2000), cerebral lesions (Quigley et al, 
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2001), Tourette syndrome (Biswal et al, 1998), multiple sclerosis (Lowe et al, 2002) and 

Alzheimer’s disease (Li et al, 2002). Thus, low frequency functional connectivity 

provides an important characterization of the brain.  

 To date, functional connectivity has been mostly characterized by linear 

correlations, which may not provide a complete description of the temporal properties of 

fMRI data. In addition, the linear correlation approach is very sensitive to variations 

unrelated to functional connectivity, including subject motion, baseline drifts, respiration 

and heart beat, and paradigm driven modulations. For an alternative, and perhaps 

complementary, approach, we resort to nonlinear dynamics. The intuitive appeal of the 

applicability of nonlinear dynamics, its success in characterizing various biological time 

series and the literature related to attempts by researchers to model the nonlinearity in 

BOLD response and activation data have been elaborated in the previous section. The 

literature on the application of nonlinear dynamics to measure connectivity is scanty. 

Preliminary evidence regarding the possibility of using determinism in a bivariate phase 

space reconstructed from fMRI time series as a marker of functional connectivity has 

been reported recently (LaConte et al, 2003). However, it appears that there has not been 

an attempt to fully utilize the potential of nonlinear dynamics to study connectivity using 

fMRI data. We attempt to unravel this potential in the current study using multivariate 

embedding for assessing nonlinear functional connectivity. This concept has been 

successfully applied to model multivariate meteorological data (Stewart, 1996). In the 

biological context, the idea of multivariate embedding was mooted a decade ago for 

application to EEG (Babloyantz, 1989; Freeman, 1989; Abraham, 1993). Complexity and 

predictability indices calculated from a multivariate embedding of cardio-respiratory data 
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have been used to infer nonlinear couplings between cardiac and respiratory rhythms 

(Hoyer et al, 1998ab). Given the success of the multivariate embedding concept in other 

contexts, it is encouraging to explore its applicability in the emerging field of fMRI 

functional connectivity.  

 

Local Networks 

 While most of the functional connectivity studies focus on distributed networks in 

the brain, we also investigate local networks in addition to distributed networks. 

Coherence in local functional networks arises due to coordination among neighboring 

neuronal units and is dependent on the local anatomic structure and homogeneity of 

neuronal processes. This is a fairly new concept in the field of functional neuroimaging 

introduced recently by Zang et al (Zang et al, 2004) in the context of activation data. 

However, the methodology adopted by them to measure local coherence using Kendall’s 

coefficient of concordance has limited applicability due to its dependence on imaging 

parameters and the size of the neighborhood in which the coherence is computed. In this 

work, we investigate these aspects and introduce a novel approach based on the spatial 

correlation function to overcome the above limitations. Also, the method is extended to 

the nonlinear case using multivariate spatial embedding in the local neighborhood for 

characterizing nonlinear local coherence. 

 

Effective Connectivity 

 Functional connectivity only provides information about correlations in 

fluctuations, but is not informative about the directions of influence between interacting 
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regions of a neural network. Effective connectivity, defined as the influence one neuronal 

system exerts over another (Friston et al, 1993), attempts to bridge this gap by defining 

explicit models of directed interactions. Structural equation modeling (Buchel et al, 1997; 

McIntosh et al, 1994), nonlinear system identification techniques (Friston et al, 2000), 

Bayesian estimation of deterministic state-space models (dynamic causal models) 

(Friston et al, 2003) have been used to infer effective connectivity. Although these 

models have their advantages and disadvantages, none of them incorporate information 

on temporal precedence (the assignment of cause and effect), which is central to the 

concept of causality. Also, these techniques require an a priori specification of an 

anatomical network model and are therefore best suited to making inferences on a limited 

number of possible networks. Recently an exploratory structural equation model 

approach was described (Zhuang et al, 2005) that does not require prior specification of a 

model. However with increasing number of regions of interest, its computational 

complexity becomes intractable and the numerical procedure becomes less stable. These 

disadvantages can largely be circumvented by methods such as Granger’s causality which 

are based on the cross-prediction between two time series (Granger, 1969). It is based on 

the assumption that a causal relation between two time series improves the prediction of 

one time series from the other. Such a formulation was supported by Weiner (Weiner, 

1956). Weiner’s proposal was formalized in the context of linear regression models of 

stochastic processes by Granger (Granger, 1969). 

 However, adoption of Granger causality to fMRI data is not straightforward. The 

spatial variability of the sluggish hemodynamic response has the potential to confound 

the results. Also, interpreting a large number of directed interactions obtained from a 
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neural network involving a large number of ROIs is challenging. These issues are 

addressed in this work and an integrated framework combining multivariate Granger 

causality analysis, temporal down-sampling of fMRI time series and graph theoretic 

concepts is proposed in chapter 4.  

 Conceptually, the extension of Granger causality to the nonlinear case could be 

accomplished by performing nonlinear prediction instead of linear prediction. Nonlinear 

prediction in the multidimensional embedded space using locally linear models (Chen et 

al, 2004) and radial basis functions (Ancona et al, 2004) have been validated using 

numerical simulations. In this work, we have adopted the radial basis function approach 

since it is more robust for short and noisy time series such as fMRI.  

 

The Approach 

 From the previous section, it is evident that since its inception a decade ago, 

functional neuroimaging has mostly been limited to linear functional mapping studies to 

localize brain function to distinct anatomical substrates.  We also reasoned out that based 

on preliminary evidence and intuitive arguments, nonlinear dynamic and network models 

of brain function are more appropriate. Accordingly, our approach will be to synthesize 

nonlinear dynamics and network analysis to develop novel models of brain function. We 

begin with a purely univariate nonlinear dynamic analysis of resting state fMRI data in 

healthy humans. Subsequently, both linear and nonlinear multivariate functional 

connectivity is investigated in undirected distributed networks in the cortex following 

which, directed causal network models are derived based on linear and nonlinear Granger 

causality. Finally, connectivity is investigated in local networks. This progression covers 
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a broad spectrum of analysis techniques currently employed by researchers to infer brain 

function based on fMRI as shown in Fig.1.1.  

 

Thesis Organization 

 

 This thesis is organized based on the twin themes of nonlinear dynamics and 

network analysis and resembles the actual progression of research during the course of 

this investigation. These themes are reflected in all the chapters but occur in different 

contexts for characterizing brain function. The basis for this organization is to cover a 

broad spectrum of analysis techniques prevalent in neuroimaging, further complementing 

and improving the existing methods by infusing the concepts of nonlinear dynamics and 

network analysis. Various types of fMRI data sets have been used in different chapters to 

illustrate the utility of the methods. The objective is to illustrate the methods using 

fMRI Data 
Analysis 

Univariate Methods 
(Mapping Studies) 

Multivariate 
Methods 

(Network Analysis) 

Linear  
Characterization 

Nonlinear  
Characterization 

Distributed 
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2 

Figure 1.1 The spectrum of fMRI data analysis techniques covered in this 

thesis. The arrows 2 to 5 indicate the four topics covered in chapters 2 to 5 
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examples and the results reveal interesting neuroscientific findings which are also 

discussed briefly in the corresponding chapters. 

 With this framework, the thesis is organized into four main chapters. The second 

chapter introduces the basic concepts of nonlinear dynamics in the context of univariate 

analysis to investigate the origin of tissue specific differences in resting state fluctuations 

in fMRI data. This chapter dwells on the importance of low dimensional determinism in 

the data as inferred through the concepts of embedding and information theory.  

 Chapters 3, 4 and 5 describe a synthesis of network analysis and nonlinear 

dynamics to investigate different types of brain networks. While we compare and contrast 

the linear and nonlinear approaches, we also introduce novel concepts and significant 

improvements into the prevalent linear methodology. Though the concept of embedding 

is introduced in the univariate context in the second chapter, it is extended to the bivariate 

context to investigate nonlinear functional connectivity in distributed brain networks in 

the third chapter. In addition, we investigate the sensitivity of the nonlinear approach to 

the desired gray matter signal as compared to the linear approach.  

 In the fourth chapter we address the question of effective connectivity in 

distributed brain networks. This is the state of the art as far as network analysis is 

concerned because it enables us to construct models of directed interactions between 

brain regions in contrast to functional connectivity where the direction cannot be inferred. 

An integrated linear approach is introduced which combines the concepts of multivariate 

Granger causality, coarse temporal analysis and graph theory to investigate brain 

networks and their dynamics. Application of this concept to motor fatigue is discussed 

and the viability of existing hypotheses about fatigue is examined. Subsequently, the 
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Granger model is extended to the nonlinear case using the concept of embedding. The 

nonlinear model is compared with the linear one and is shown to be more robust in the 

presence of artifacts such as baseline drifts. 

 In the fifth chapter we investigate connectivity in local brain networks. This is an 

area that has received less attention in the literature as compared to distributed networks. 

We introduce a very robust technique to measure local coherence in the brain using the 

linear spatial correlation function. As an illustration, we demonstrate its utility with 

application to anesthesia and show the importance of the default mode network, 

particularly the frontal areas, in mediating anesthesia-induced loss and recovery of 

consciousness. The concept of embedding which is utilized in the third chapter for 

investigating distributed networks is modified so as to investigate local networks in the 

fifth chapter. This provides a complementary approach to the robust linear measure 

introduced earlier in the chapter. Finally, the sixth chapter concludes the findings of this 

thesis. 

  

Scope of the Thesis 

 It is presumed that the reader is familiar with the physical principles of fMRI data 

acquisition as well as basic concepts of signal and image processing concerning fMRI 

data analysis. Also, we have assumed preliminary knowledge of neuroscience while 

describing the neuroscientific findings in this thesis. An effort has been made to present 

the findings as concisely as possible. 
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CHAPTER 2 

TISSUE SPECIFICITY OF NONLINEAR DYNAMICS IN BASELINE 

fMRI 

 

Introduction 

 It is very well understood that fluctuations in fMRI data cannot be fully attributed 

to NMR noise (Kruger et al, 2001) and that the noise structure of the fMRI data may 

provide insights into the brain. In particular, fluctuations at very low frequencies (<0.1 

Hz) in fMRI data are spatially correlated within networks corresponding to related brain 

functions. This low frequency correlation has been utilized in the study of functional 

connectivity (Biswal et al, 1995; Lowe et al, 1998) and has been shown to reflect 

pathological and/or physiological alterations (Quigley et al, 2001; Li et al, 2002). The 

resting state (absence of explicit brain activation) is important because it conveys 

valuable information on basal neural activity. In addition, while we do not focus on a 

specific brain network here, these data have received increased attention with respect to 

diagnostic utility (Quigley et al, 2001; Li et al, 2002) and with proposed theories of the 

default mode of brain function (Raichle et al, 2001). 

 The neuroscience community has learned a lot about the spatio-temporal nature of 

brain function through functional connectivity studies using various statistical 

approaches, including linear correlations between spatial regions (Biswal et al, 1995; 

Lowe et al, 1998, Peltier et al, 2002), and data driven techniques such as principal 

component analysis (Strother et al, 1995) and self organizing maps (Peltier et al, 2003). 

However, there is still great potential for building this knowledge base with alternative 

approaches. Linear statistical methods make an underlying assumption that the signals are 
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produced by a linear stochastic system. Arguments based on brain physiology, however, 

suggest that the brain is likely to act as a nonlinear system that is not completely 

stochastic (Elbert et al, 1994; Schiff et al, 1994; Babloyantz et al, 1986; Freeman et al, 

1994) and the processes generating fMRI data are expected to be nonlinear. Although 

existing linear methods work to a certain extent because a linear system can always 

approximate the behavior of a nonlinear system, nonlinear approaches may be more 

pertinent and sensitive, revealing additional insights into the fMRI data. Therefore, 

nonlinear methods for the analysis of fMRI data have been investigated in this work. 

Even though there has been an effort to study the nonlinearity of the BOLD response to 

explicit tasks (Vazquez et al, 1998; Friston et al, 1998; Birn et al, 2001), very little work 

has been done in applying methods of nonlinear dynamics to fMRI, particularly during 

the resting state. Building upon our preliminary study (LaConte et al, 2003, 2004) we 

focus here on a systematic study of the tissue specific properties of nonlinear dynamics in 

fMRI resting state data.  

 In addition to possibly revealing interesting patterns in the resting state brain 

dynamics, nonlinear analysis may allow us to better characterize biological sources of 

noise in the MRI signal. Kruger et al reported higher random fluctuations in the gray 

matter (Kruger et al, 2001); this may be due to deterministic nonlinearity of the signal 

produced by an underlying finite dimensional system. If the driving sources of these 

fluctuations are of nonlinear origin, they should also be revealed with nonlinear analysis 

techniques. Further, an enhanced ability to characterize the biological noise may allow us 

to reduce its effect on activation detection. 
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 As described in the following sections, the present work examines several aspects 

of nonlinear dynamics. We start by reconstructing the state space of the system and 

finding a finite minimum embedding dimension (MED) of the underlying system. The 

nonlinearity arising from the finite dimensional dynamics are then characterized using 

patterns of singularities in the complex plane (PSC). However, the nonlinearity may arise 

either due to stochastic or deterministic dynamics. We thus evaluate the determinism in 

the dynamics to make this distinction. A finite embedding dimension is a measure of the 

determinism of the system, which can be quantified using information theoretic measures 

like Lempel-Ziv complexity. It is widely recognized by many that physiological noise 

due to respiration and cardiac pulsation can be a significant contribution to the signal 

fluctuation in fMRI (Kruger et al, 2001, Hu et al, 1995). Therefore, it is also of interest to 

study their contribution to the nonlinear dynamics in the fMRI signal. A minor aspect of 

the present work looks at this effect by applying the nonlinear analysis to data before and 

after physiological noise correction. Our approach, then, is to obtain a comprehensive 

understanding of resting state fMRI by estimating the appropriate embedding dimension 

and subsequently characterizing the system dynamics using nonlinearity and 

determinism. 

 

Theory 

 Linear methods can capture structures in a signal such as dominant frequencies 

and linear correlations. This relies on the assumption that the intrinsic dynamics are 

governed by the linear paradigm that small causes lead to small effects. Since the 

possible solutions of linear equations are either exponential or periodic oscillation, the 
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irregular structure in the signal has to be attributed to some random external input to the 

system producing the signal. However, recent advances in chaos theory have brought to 

light the fact that a random input is not the only possible source of irregularity in a 

system’s output. Nonlinear chaotic systems can produce very irregular data with purely 

deterministic governing equations. One way to evaluate whether a system is deterministic 

or random is to estimate the minimum embedding dimension (MED) (Grassberger et al, 

1983; Broomhead et al, 1986; Mees et al, 1987; Theiler et al, 1987; Kennel et al, 1992; 

Tsonis et al, 1992; Cao, 1997), which is the number of independent state variables 

contributing to the irregular dynamics of a signal like fMRI time series (please refer 

Appendix A for details about calculation of MED). Once the finite dimensionality of a 

system has been established through MED, it is possible to characterize the nonlinearity 

and determinism using methods described below. 

 

Pattern of singularities in the complex plane (PSC) algorithm 

 It has been found that the distribution of singularities in the complex plane is 

critical for determining the behavior of a dynamical system at any arbitrary time. From 

numerical investigations of the Lorenz equations (Tabor et al, 1981), it was demonstrated 

that when the system is in a periodic regime (limit cycle) the arrangement of singularities 

(poles) reflects the corresponding periodicity of the real-time solution. As the dynamical 

regime transitions toward the chaotic one, the corresponding arrangement of singularities 

becomes very irregular. From these results, Di Garbo and colleagues (Di Garbo et al, 

1998) suggested an algorithm (the PSC algorithm) to evaluate the nonlinear structure in a 

time series. The method determines a measure of significance, using a null hypothesis 
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that the time series under investigation arises from a linear process. The null hypothesis is 

rejected if the value of this significance is greater than a threshold (say, 95% confidence 

level). The significance value can be further used as a quantifier to assess deviation from 

linearity. The larger its value the more nonlinear is the time series (please refer Appendix 

B for details of PSC algorithm).  

 Since the PSC algorithm looks for only the nonlinear signal structure, it cannot be 

concluded from this measure alone whether the nonlinearity is due to deterministic 

dynamics or stochastic dynamics. To answer this question, Lempel-Ziv complexity 

measure is considered.  

 

Lempel-Ziv complexity measure algorithm 

 The Lempel-Ziv complexity measure (LZ) is a unique way of looking at the 

structure of the signal (Zhang et al, 1999). The signal must first be transformed into a 

finite symbol sequence S. If we have a string s1,s2,…,sn,  then c(n), which is the number 

of different sub-strings of s1,s2,…,sn, is the measure of complexity. It reflects the rate of 

new patterns arising with increasing sequence length, n. Thus by simple operations of 

comparison and accumulation, the computation of c(n) is achieved. In this work, we have 

used the normalized complexity measure C(n) which is the ratio of c(n) to b(n), where 

b(n) gives the asymptotic behavior of c(n) for a random string. LZ is zero for a fully 

deterministic signal and one for a totally random signal. Hence LZ indicates the degree of 

determinism in the signal. (Please refer Appendix C for details of LZ algorithm).  
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Methods 

 

MRI Data Acquisition and Analysis 

 Data acquisition consisted of imaging three normal, healthy human subjects in 

resting state using a single-shot BOLD-contrast gradient EPI sequence at 3T Siemens 

Trio (repetition time (TR)=750 ms, echo time (TE)=34 ms, flip angle=50 deg and field of 

view (FOV)=22cm, with 5 contiguous axial slices covering the region from the top of the 

head to the top of the corpus collosum, 5mm slice thickness, 1120 volumes (time points) 

per slice and 64 phase and frequency encoding steps). Two additional volunteers were 

scanned using the same parameters as above, but with 10 saggital (rather than axial) 

slices containing the ventricles. High resolution (512×512) T1-weighted axial anatomical 

images were acquired in the first scanning session. In the second session, anatomical 

images with 1 mm isotropic resolution were acquired using a magnetization prepared 

rapid gradient echo (MPRAGE) sequence (Mugler et al, 1990) (TR/TE/FA of 2600 

ms/3.93 ms/8 deg).  

 For the anatomical data from the first session, the images were segmented using a 

procedure involving manual removal of the extra-cranial signal and segmentation of gray 

and white matter based on their intensity. The resulting segmented images were down-

sampled by a factor of 8 to obtain a 64×64 mask of gray matter and white matter. The 

MPRAGE images in the second experiment were segmented into gray matter, white 

matter and cerebrospinal fluid (CSF) using SPM2 (Wellcome Department of Cognitive 

Neurology, London, UK; http://www.fil.ion.ucl.ac.uk). Since SPM2 segments the images 

in the normalized space, the resulting masks were transformed back into the original 
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image space, resliced to match the location of the EPI data and thresholded to obtain 

binary masks of the three tissue types. The resulting masks were similarly down sampled 

to the resolution of the EPI images.  

 A physiological monitoring unit consisting of a pulse-oximeter and nasal 

respiratory canula was used during data acquisition to record cardiac and respiratory 

pulsations, respectively. These physiological fluctuations were corrected for in the 

functional data retrospectively (Hu et al, 1995). Both physiologically corrected and 

uncorrected data were analyzed and compared. 

 

Nonlinear Dynamical Analysis 

The strategy employed for the application of the nonlinear dynamical methods is outlined 

below. A MATLAB program was developed and utilized for all the analysis described 

below.  The MED of baseline fMRI was first calculated using the modified false nearest 

neighbor approach (Cao, 1997). A low finite value of MED was obtained, which 

provided a justification for the characterization of nonlinearity using PSC. A high value 

of nonlinearity in resting-state fMRI prompted us to investigate the source of this 

nonlinearity (deterministic or stochastic) by employing the information-theoretic 

measure, LZ. The PSC and LZ values were calculated for each voxel in all the axial slices 

for subjects 1, 2 and 3 and all saggital slices for subjects 4 and 5. The mean values of the 

nonlinear measures for each tissue type were obtained and tabulated. Since the resultant 

parameters for each tissue type was not normally distributed, the statistical significance 

of the tissue difference of each measure was assessed using the nonparametric Wilcoxon 

rank sum test (Wilcoxon, 1945). Also, PSC and LZ values were used to generate 
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summary images for visualization. These strategies enabled us to characterize baseline 

fMRI dynamics using deterministic nonlinearity. 

 

Results and Discussion 

 The MED values were calculated by reconstructing the attractor for each voxel 

time series in all the slices as outlined in the previous section. The mean MED for gray 

matter, white matter and CSF was found to be 10.55 ± 0.97, 10.89 ± 0.96 and 9.6 ± 1.12 

respectively, which indicated that the difference in means was not significant and hence 

the embedding dimension was not tissue-specific. Since MED is an integer number, we 

rounded off the value to 10. The MED results suggest that a finite number of state 

variables describe the baseline fMRI dynamics and thus provide a justification for the 

quantification of nonlinearity using the PSC measure. We have calculated the PSC 

measure from simulated signals and various biological time series - cardiac and 

respiratory data obtained from the physiological monitoring unit during our fMRI data 

acquisition, EEG signal obtained from MIT-BIH data base, and the fMRI data from the 

present study. Normally distributed random numbers were generated to emulate signals 

of a linear stochastic process and a sinusoidal signal was used as an example of a 

deterministic signal. Both types of signal had the same number of time points as the 

experimental time series (1120 points). Table 2.1 lists the PSC for the various types of 

signals described above with and without the addition of 10 dB Gaussian noise. The high 

value of PSC for fMRI data confirms the nonlinear structure in the signal. The results 

also indicate that PSC is fairly robust to random noise.  
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Table 2.1 Typical values of the PSC nonlinearity index for simulated and commonly 

occurring physiological signals 
 

 

Typical PSC Nonlinearity Score 
Type of signal Without 

Noise 

With 

Noise 

Linear Stochastic Process 2 5 

Deterministic function 6 8 

Respiration 26-60 30-70 

EKG 10-30 17-35 

Background 175 182 
EEG 

Alpha activity 1500 1549 

Baseline fMRI 400-2000 420-2017 
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Figure 2.1 PSC map for an axial slice from subject 3 
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 Fig. 2.1 above shows the PSC map of an axial slice of the human cortex for 

subject 3. It may be observed from the figure that there is more nonlinearity in gray 

matter than white matter. This conclusion is quantitatively validated by the mean PSC 

values given for white, gray matter and CSF in Table 2.2. Statistically there is a highly 

significant difference in the PSC values between the three tissue types with gray matter 

showing significantly higher nonlinearity than white matter and CSF. As previously 

mentioned, the study by Kruger et al (Kruger et al, 2001) has shown that gray matter 

exhibits more random fluctuations compared to white matter. Our PSC results indicate 

nonlinear signal structure, but do not reveal whether the nonlinearity arises from 

deterministic dynamics or stochastic dynamics. The LZ results can be used to answer this 

question. Fig. 2.2 shows the LZ map for an axial slice from subject 3. Table 2.3 shows 

the mean values of LZ for all three tissues types. Since the values of LZ are less than one, 

there is evidence of determinism. Lower values for gray matter indicate higher 

determinism compared to white matter and CSF. Even though there is heterogeneity of 

PSC and LZ within a tissue type, the p-values from Wilcoxon sum rank test showed that 

their distributions are significantly different for the three tissues.  

 

Table 2.2 PSC values for gray matter, white matter and CSF  
 

Wilcoxon Sum Rank Test: p-value 
PSC  

Gray 

Matter 

White 

Matter 
CSF 

GM-WM GM-CSF WM-CSF 

Subject 1 765 457 - 8.68 × 10
-12
 - - 

Subject 2 1065 634 - 2.39 × 10
-12
 - - 

Subject 3 1080 645 - 0 - - 

Subject 4 962 716 841 6.9 × 10
-5
 1.5 × 10

-5
 4.8 × 10

-4
 

Subject 5 940 771 618 3.1 × 10
-5
 3.2 × 10

-4
 3.1 × 10

-5
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Figure 2.2 1-LZ map for an axial slice from subject 3 

 

Table 2.3 LZ values for gray matter, white matter and CSF 

 

Wilcoxon Sum Rank Test: p-value 
LZ  

Gray 

Matter 

White 

Matter 
CSF 

GM-WM GM-CSF WM-CSF 

Subject 1 0.82 0.91 - 2.28 × 10
-12
 - - 

Subject 2 0.60 0.72 - 3.05 × 10
-7
 - - 

Subject 3 0.64 0.82 - 3.89 × 10
-25
 - - 

Subject 4 0.56 0.69 0.75 2.5 × 10
-6
 8.9 × 10

-4
 8.5 × 10

-7
 

Subject 5 0.65 0.70 0.73 3.7 × 10
-4
 2.2 × 10

-3
 5.3 × 10

-5
 

 

 The inter-subject variability in the values can be attributed to the fact that the 

‘resting state’ or ‘baseline’ is not a well-defined state and can be highly variable from 

subject to subject. Also, we can see from Tables 2.2 and 2.3 that gray matter exhibits 

higher nonlinear determinism than white matter at a statistically significant level. This 
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tissue specificity can be attributed both to the differences in fMRI physiology and neural 

processing. The BOLD contrast in fMRI is a result of interactions between cerebral blood 

flow (CBF) and cerebral blood oxygenation (CBO). It has been shown that CBF 

fluctuations result in CBO fluctuations (Obrig et al, 2000). There are several arguments 

for and against blood pressure (Giller et al, 1999) and vasomotion (Hudetz et al, 1998) as 

being the source of fluctuations in CBF. Native fluctuations in CBF arising from 

fluctuations in nicotinamide adenine dinucleotide (NADH) and oxyhemoglobin (HBO2) 

can be attributed to such fluctuations in cortical metabolism and neuronal activity (Elwell 

et al, 1999). These give rise to a complex interplay of various factors that result in 

baseline fMRI signal fluctuations. The regional differences in the interplay between these 

factors are likely to give rise to the differences in fMRI signal fluctuations from different 

tissues structures. These signal differences have been characterized numerically in this 

study using nonlinear analysis. This complements previous studies that have indicated 

that there is non-uniform determinism across activities (Dhamala et al, 2002) in the brain. 

Interestingly, our results seem to indicate that there is non-uniform determinism across 

different regions of the brain as well. 

 An important fact to consider is the effect of removal of physiological noise on 

the results. To investigate the spatial extent of the effect of correction, we plotted the 

difference images (original - corrected) of the PSC and LZ parameters. Fig. 2.3(a) and 

Fig. 2.3(b) show the PSC and LZ difference images, respectively, for an axial slice. For 

comparison, Fig. 2.3(c) illustrates the percentage reduction in signal variance after 

correction in the same axial slice. It can be seen that a greater amount of noise is removed 

in gray matter and CSF than in white matter, indicating higher physiological noise in 
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them. This observation is consistent with higher noise in gray matter compared to white 

matter reported by Kruger et al (Kruger et al, 2001), attributed to possible differences in 

blood volume and perfusion in those tissues. By carrying out the analysis on 

physiological noise-corrected data, we have accounted for the differences in fMRI noise 

characteristics arising from cardiac and respiratory pulsations. The similarity between 

Fig. 2.3(a), Fig. 2.3(b) and Fig. 2.3(c) indicates that the nonlinearity and determinism 

contributed by the physiological rhythms is mostly removed by retrospective correction.  

   

 

Figure 2.3(a) PSC difference map (original value- corrected value) for an axial slice. (b) 

LZ difference map for the same slice. (c) Percentage reduction in fMRI time course 

variance after physiological correction for the same slice 

 

 

 To test if the difference in noise level between gray matter and white matter as 

reported by Kruger (Kruger et al, 2001) is a major cause of the observed gray-white 

difference in nonlinear determinism, Gaussian random noise was added to white matter 

time courses to match their standard deviation to that of gray matter time series, and PSC 
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and LZ were calculated on these synthetic white matter time courses. From the results 

shown in Table 2.4, the PSC for the synthetic white matter time courses, although slightly 

increased, is still much less than that of gray matter shown in Table 2.2. This is consistent 

with the notion that Gaussian noise is a linear process and is not expected to increase the 

nonlinearity significantly. In Table 2.4, the noise addition slightly increases the LZ, as 

expected since the addition of random noise decreases determinism (and hence increases 

LZ), moving the LZ of synthetic white matter time courses further away from that of gray 

matter. Given these observations, it is unlikely that the increased noise level in gray 

matter is a major cause for the tissue specificity of deterministic nonlinearity. 

 

Table 2.4 White matter PSC and LZ obtained before and after the addition of white 

Gaussian noise to match the noise variance of gray matter time courses. 

 

Before Noise Addition After Noise Addition 
Sub 

PSC LZ PSC LZ 

1 457 0.91 481 0.98 

2 634 0.72 684 0.90 

3 645 0.82 676 0.98 

4 716 0.69 737 0.82 

5 771 0.70 789 0.84 

 

 To ascertain the nonlinear determinism of the CSF, we carried out a similar 

analysis on saggital slices, including an ROI on ventricles. Fig. 2.4(a), Fig. 2.4(b) and 

Fig. 2.4(c) illustrate the PSC and LZ difference images and percentage reduction in fMRI 

signal variance due to correction, respectively, for a representative saggital slice 

containing the ventricles. It is well known that CSF has higher physiological noise 

compared to gray matter and white matter (Kruger et al, 2001). This notion is confirmed 

in Fig. 2.4(c) which shows greater noise reduction in the ventricles compared to the 
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cortical gray/white matter, leading to greater differences in PSC and LZ values of CSF 

before and after correction. In particular, we found that the raw CSF pulsation, which 

contains the B-waves (Auer et al, 1983), is highly nonlinear. Retrospective correction 

substantially decreased the variance in CSF time courses as well its nonlinearity and 

determinism. In contrast, the decrease in nonlinearity and determinism in gray and white 

matter after correction was insignificant compared to that of CSF. It is worth noting that 

physiological correction only scaled down the nonlinearity and determinism, preserving 

its tissue specificity. Therefore, the tissue specificity of deterministic nonlinearity we 

report is unlikely to arise solely from cardiac and respiration effects. Rather, fMRI 

physiology and the nature of neural processing (reflected by the native fluctuations) vary 

across tissues, giving rise to the tissue-specific nature of the baseline signal. 

 

Figure 2.4(a) PSC difference map (original value- corrected value) for a saggital slice. 

(b) LZ difference map for the same slice. (c) Percentage reduction in fMRI time course 

variance after physiological correction for the same slice 

 

Conclusions 

 This study approaches the processing of fMRI data from a nonlinear dynamical 

perspective. We have shown that fMRI time courses are not produced by a purely 
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stochastic system, and hence have used various nonlinear techniques to obtain a new 

perspective into the underlying system dynamics. The results from the above techniques 

show that brain dynamics can be neither characterized by a purely stochastic nor a fully 

deterministic system. On the contrary, the underlying dynamics seems to be 

deterministic, produced by a system having roughly 10 state variables, exhibiting non-

uniform determinism among the different regions of the brain, with gray matter showing 

more determinism than white matter and CSF. What was previously perceived as higher 

random fluctuation in the gray matter is actually due to the deterministic nonlinearity of 

the signal produced by an underlying nonlinear dynamical system. We found that the 

nonlinearity exhibits tissue specificity even after the removal of physiological 

fluctuations. The possibility of higher noise level in gray matter as a main reason for 

tissue-specificity of deterministic nonlinearity was examined and ruled out. Therefore, 

higher nonlinear determinism in gray matter is not due to cardiac/respiratory effects or 

noise intensity differences, but can potentially be attributed to local differences in fMRI 

physiology and neural processing. 
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CHAPTER 3 

FUNCTIONAL CONNECTIVITY IN DISTRIBUTED NETWORKS 

 

Introduction 

 Primarily, functional connectivity has been characterized by linear models, which 

may not provide a complete description of its temporal properties. In this work, we 

broaden the measure of functional connectivity to study not only linear correlations, but 

also more general deterministic coupling arising from both linear and non-linear 

dynamics. It is encouraging to note that the field of nonlinear dynamics has been 

successfully applied to characterize many biological signals such as EEG, ECG, and 

respiratory movement (Pritchard et al, 1992; Narayanan et al, 1998; Fojt et al, 1998; 

Elbert et al, 1995; Kobayashi et al, 1982; Hoyer et al, 1998a). These studies investigate 

low dimensional chaotic behavior in distinction from a stochastic model. This is achieved 

by characterizing the system in terms of predictability or invariant features (e.g., 

correlation dimension) (Kaplan, 1994). These methods reconstruct the dynamics of the 

system from observables acquired from the system (such as time series). In the context of 

fMRI, which is relatively short and noisy time series, such approaches are particularly 

challenging. Furthermore, the computational load of these studies, the number of 

algorithmic free parameters and the large quantity of spatial locations make the 

application of traditional measures such as correlation dimension extremely challenging. 

 In this chapter we introduce a simpler and intuitively appealing nonlinear 

dynamical technique to characterize functional connectivity using short and noisy fMRI 

data. We do so by adapting the concept of multivariate phase space reconstruction (also 
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referred to as multivariate embedding) as proposed by Cao (Cao et al, 1998). This 

method relies on reconstructing the joint dynamics of two different time series and 

comparing the resulting joint embedding dimension with that of individual embedding 

dimensions. Accordingly, if the time course of a candidate voxel provides additional 

information concerning the time evolution of a reference voxel time series, the joint 

dimension will be lesser than the sum of the individual dimensions.  

 As an illustration, we have applied our method to both resting-state and 

continuous motor task data. Resting-state functional networks have been an area of 

extensive research of late considering the fact that several such networks in the brain 

have been identified (Hampson et al, 2002; Biswal et al, 1995, 97; Lowe et al, 1998; 

Cordes et al, 2000). Also, these networks are altered during pathological states (Li et al, 

2000, 2002; Quigley et al, 2001; Biswal et al, 1998; Lowe et al, 2002), hinting at the 

importance of these networks. Interestingly, there seems to be a concordance between 

connectivity identified from baseline data and that identified from data acquired during a 

continuous task (Hampson et al, 2002). Therefore it is believed that the task only 

modulates a common underlying network which is also identified during resting state 

(Morgan et al, 2004).  

 A major confound in ascertaining functional connectivity is the presence of 

systematic noise in the fMRI signal, which can obscure the detection of the spatio-

temporal patterns in functional imaging data. Possible sources include (but are not limited 

to) signal drifts (Bandettini et al, 1993), physiological noise due to the respiratory and 

cardiac rhythms (Hu et al, 1995, Biswal et al, 1996), statistical outliers in the time 

courses of the k-space data (Fitzgerald, 1996) and subject head motion (Lauzon et al, 
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1993; Hajnal et al, 1994; Eddy et al, 1996; Maas et al, 1997; Woods et al, 1998). 

Eliminating the effects of these noise sources is an important step in investigating 

functional connectivity. In detecting functional connectivity from baseline data, although 

some have used a repetition rate (TR) above 2 s (Lowe et al, 1998), most studies have 

employed sub-second TRs in order to permit the removal of cardiac and physiological 

noise via filtering, thus severely hampering the coverage of the whole brain. By 

regression to respiration and cardiac pulsations, studies (Rambouts et al, 2003) have 

shown that the effect of physiological noise can be significant in functional connectivity 

analysis. Their attempt to remove the physiological noise was limited by the use of a 

simple regression and by working in the image domain. However, the effects of 

physiological noise are better characterized and removed in the k-space based on 

retrospective fitting, prediction and subtraction of physiological perturbation (Hu et al, 

1995). In this work, we have performed the above procedure before functional 

connectivity analysis. 

 

Methods 

 According to dynamical systems theory (Katok et al, 1996), the state of a system 

at every instant is controlled by its state variables, and the vector space of its state 

variables specifies the dynamics of the system. Therefore, the dynamics of a system can 

be studied by studying the dynamics of its phase space. However, the data measured in an 

fMRI experiment are not state variables, but only evolving scalar measurements which 

are the projections of the actual state variables on a lower dimensional space. The 

problem of converting the observations into state variables is referred to as phase-space 
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reconstruction (embedding) and is solved using Taken’s embedding theorem (Takens, 

1980). The general form of multivariate embedding is given by the equation 

 

                        (3.1) 

 

where ϕn
j = {xj(t), xj(t-τ), xj(t-2τ),…, xj(t-(n-1)τ)} are time delay vectors formed from the 

fMRI time series xj(t), j is the number of fMRI time series used, n is the embedding 

dimension (Cao et al, 1998), and τ is the embedding lag. The embedding dimension is 

basically an estimate of the number of independent and orthogonal parameters required to 

describe the dynamic evolution of the system. The choice of the time series, embedding 

dimensions and embedding lag have to be made based on a justifiable criterion. In the 

present work, the choice of these parameters is made by using the idea of minimizing a 

cost function which reflects the prediction error in the embedded state space (Cao et al, 

1998). The cost function is given by- 

     (3.2)

    

                                          

        (3.3) 

 

where di’s are the embedding dimensions, xi,j are points in the state space, τi are the 

embedding lags, Z is the set of all non-negative integers and Z
M 
is the M-dimensional 

vector space corresponding to the scalar set Z. d=d1+d2+…+dM represents the 

multivariate embedding dimension of all the time series taken together.  
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 We introduce the bivariate nonlinear connectivity index (BNC), which is based on 

the bivariate and univariate embedding dimensions, to measure nonlinear functional 

connectivity between any two regions of interests (ROI) in the brain. Let d1 and d2 be the 

univariate embedding dimensions of fMRI time-series 1 and 2 obtained from respective 

ROIs. Let d be the bivariate embedding dimension of the two time series embedded 

together (as a special case of the more general multivariate embedding formulation 

described above). Then, we define 

                                        (3.4) 

 

When the two time series are fully connected, the bivariate dimension does not provide 

any extra information and d=d1=d2 and BNC=1. When the two time series are fully 

independent, d=d1+d2 and BNC=0. Therefore, higher values of BNC are associated with 

higher connectivity. Since this method makes no assumption of linearity, both linear and 

nonlinear couplings are accounted for. 

 

Data Acquisition and Analysis 

 

Resting State Paradigm  

 Two runs of echo-planar imaging (EPI) data were acquired, one during resting 

state and one during performance of a block design finger tapping paradigm, on 3 human 

subjects using a 3T Siemens Trio. Scan parameters were: repetition time (TR) =750 ms, 

echo time (TE) =34 ms, flip angle (FA)=50 deg and field of view (FOV)=22cm, with 5 

axial slices, 5mm slice thickness, 1120 images and 64 phase and frequency encoding 
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steps. A physiological monitoring unit consisting of a pulse-oximeter and nasal 

respiratory cannula was used during data acquisition to record cardiac and respiratory 

signals, respectively. These physiological fluctuations were corrected in the functional 

data retrospectively (Hu et al, 1995).  

 Subsequent to motion correction and removal of signal drifts, four regions of 

interests (ROI) - left motor (LM), right motor (RM), frontal (F) and supplementary motor 

(SMA) -were identified based on the activation maps obtained from the finger tapping 

data. A mean time course was calculated for each ROI. BNC was calculated between the 

time course of LM and that from each of the other ROIs. A Kolmogorov-Smirnov test, 

based on the null hypothesis that the BNC values are purely attributed to noise, was 

performed to test the significance. 

 The slice with the most motor activation pattern (obtained from the block design 

paradigm) was examined with both the BNC method and correlation analysis, using a 

seed voxel in the left primary motor cortex identified from the activation data. For both 

methods, a threshold was chosen to select the top 10% of connected brain voxels and 

corresponding maps were obtained for comparison.  

 

Continuous Motor Paradigm 

 EPI data was acquired in three healthy volunteers while they performed a 

continuous self-paced bimanual tapping of the thumb with the index, middle, ring and 

little fingers (in that order). Scan parameters were: TR= 750 ms, TE= 34 ms, FA= 50°, 

FOV=22 cm, 1120 volumes and 10 slices spanning the corpus callosum to the top of the 

head. Activated voxels were identified using independent component analysis (McKeown 
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et al, 1998) and a reference region was defined in bilateral motor cortex. The mean time 

course of the reference region was chosen as the seed for further analysis. Linear 

functional connectivity was estimated as the cross-correlation between the seed voxel and 

all other voxels (candidates) in slices containing the motor cortex whereas BNC was 

calculated as a measure of nonlinear functional connectivity between the seed and other 

voxels. Functional connectivity was calculated using three non-overlapping time 

windows, each containing 373 volumes. The significance of the changes in functional 

connectivity was ascertained using the Wilcoxon rank sum test. 

 

Results and Discussion 

 

Resting State Paradigm 

 Table.1 lists the BNC and linear correlation (LC) values for resting state fMRI 

data. LM↔RM and LM↔SMA exhibit strong connectivity, in agreement with results 

reported earlier (Biswal et al, 1995).  

 

Table 3.1 Significant FC and EC for resting-state fMRI data for two representative 

subjects 

 

  Network 
Linear  

Connectivity (LC)  

Nonlinear  

Connectivity (BNC) 

LM↔SMA 0.76 0.52 

LM↔RM 0.73 0.89 Subject 1 

LM↔F 0.22 0.15 

LM↔SMA 0.49 0.63 

LM↔RM 0.57 0.76 Subject 2 

LM↔F 0.45 0.54 
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 The thresholded connectivity maps are shown in Fig.3.1. The BNC approach was 

able to identify a connection between a seed in the left motor area (yellow arrow) and 

right motor area, SMA, and a medial frontal region (blue arrow) in the third subject 

(Fig.3.1). Although there are similarities between the connectivity identified with the 

BNC approach and that by the correlation analysis with the same seed, significant 

differences are present indicating that the embedding approach is likely to capture 

nonlinear correlations that may not be detected using linear correlation. In addition, the 

region indicated by the green arrow is a spurious correlation near a draining vein. Note 

that this region was not identified by the BNC method, suggesting that the nonlinear 

technique has enhanced specificity to the desired gray matter signal. 

 

 

Figure 3.1 Baseline data connectivity maps derived using linear correlation and BNC 

 

Continuous Motor Paradigm 

 The change in the magnitude of functional connectivity with the progression of 

time was not significant, though it showed an increasing trend. However, the number of 

Correlation BNC 
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significantly connected voxels (p<0.05) increased with time (Table.3.2). Also, nonlinear 

functional connectivity was seen in additional areas besides the voxels which exhibited 

linear functional connectivity (Fig.3.2). Previously, a progressive decrease in the 

magnitude of functional correlation has been reported in a unimanual event-related 

fatigue motor task, though it was shown that activation volume increased (Liu et al, 

2005). Our study reveals that in the absence of fatigue, additional resources, which 

closely coordinate with each other, might be recruited by the motor system in learning the 

task. 

 

Table 3.2 Dynamic changes in the number of connected significant voxels using linear 

correlation and BNC 
 

 

 

 

 

Sub FC Window-1 Window-2 Window-3 

LC 115 439 629 
1 

BNC 393 938 1457 

LC 500 702 1001 
2 

BNC 970 1087 1456 

LC 89 453 1085 
3 

BNC 647 1023 1654 

Figure 3.2 Linear and nonlinear connectivity maps overlaid on the T1-weighted anatomical 

image for initial (left), middle (center) and final (right) time windows. Significance threshold 

p=0.05. Green: Both significant correlation and BNC, Blue: Only significant BNC 
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Conclusions 

 In this work we have presented the functional connectivity analysis of distributed 

brain networks using fMRI data obtained from the human brain under resting state and 

continuous bimanual movement. We have introduced nonlinear techniques to infer 

functional connectivity using the concept of embedding and demonstrated its advantages 

with respect to linear methods in terms of its sensitivities to nonlinear couplings and 

insensitivities to confounds introduced by draining veins. The utility of dynamical 

analysis is shown in the context of investigating temporally evolving neuronal changes. 

In conclusion, we have made a strong case for nonlinear and dynamical connectivity 

analysis of neuroimaging data.         
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CHAPTER 4 

EFFECTIVE CONNECTIVITY IN DISTRIBUTED NETWORKS 

 

Introduction 

 In functional neuroimaging, brain networks are primarily studied in terms of 

functional connectivity (defined as temporal correlations between remote 

neurophysiologic events) and effective connectivity (defined as the causal influence one 

neuronal system exerts over another) (Friston et al, 1995). Though the two prominent 

approaches to characterizing effective connectivity - structural equation modeling 

(McIntosh et al, 1994) and dynamic causal modeling (Friston et al, 2003) - have their 

advantages and disadvantages, neither of them incorporate information on temporal 

precedence (the assignment of cause and effect), which is central to the concept of 

causality. Also, these techniques require an a priori specification of an anatomical 

network model and are therefore best suited to making inferences on a limited number of 

possible networks. Recently an exploratory structural equation model approach that does 

not require prior specification of a model was described (Zhuang et al, 2005). However 

with increasing number of regions of interest, its computational complexity becomes 

intractable and the numerical procedure becomes unstable. These disadvantages can 

largely be circumvented by methods such as Granger’s causality which are based on the 

cross-prediction between two time series (Granger, 1969). 

 With fMRI data, recent studies have applied Granger causality analysis between a 

target region of interest (ROI) and all other voxels in the brain to derive Granger 

causality maps (Roebroeck et al, 2005; Abler et al, 2006). A major limitation of applying 
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the target ROI based approach to neuroimaging data is that it is a bivariate method and 

ignores interactions between other ROIs in the underlying neuronal network leading to an 

oversimplification of the multivariate neuronal relationships that exist during the majority 

of cognitive tasks. Simulations by Kus et al (Kus et al, 2004) have shown that a complete 

set of observations from a process have to be used to obtain causal relationships between 

them and that pair-wise estimates may yield incorrect results. To date, multivariate 

measures of Granger causality have been largely limited to electrophysiological data 

(Ding et al, 2000; Kaminski et al, 2001; Kus et al, 2004; Blinowska et al, 2004). For 

fMRI, we have recently presented early forms of the full study described in this chapter 

(Deshpande et al, 2006a; 2006b).  

 A critical consideration for fMRI data is the limitations imposed by the 

hemodynamic response. The fMRI response is dictated by the sluggish hemodynamic 

response which is believed to be spatially dependent (Aguirre et al, 1998; Silva et al, 

2002; Handwerker et al, 2004). Given that the hemodynamic response takes 6-10 

seconds, Granger causality analysis applied to the measured raw time series sampled with 

a TR on the order of a second may be contaminated by regional differences in the 

hemodynamic response. We alleviate the effect of spatially varying hemodynamic delay 

by focusing on the causal relationships at a temporal scale much coarser than the 

hemodynamic response. Neuronal processes such as fatigue, learning and habituation 

evolve slower than the hemodynamic response and are amenable to a coarse temporal 

scale causal analysis.  

 Another consideration is that multivariate causality relationships can be difficult 

to interpret and to compare across data sets. With several anatomical regions included in 
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a network, the possible number of interconnections between them increases 

exponentially. The complexity of the problem is further increased by our desire to 

characterize the temporal evolution of these network interactions. Graph theoretic 

concepts are well suited to represent the information present in these networks. Graphical 

representations for fMRI-derived causal neuronal networks were introduced recently in 

the context of studying unmeasured latent variables in effective connectivity analysis 

(Eichler, 2005). The utility of graphical models in characterizing the topology of large 

networks has been demonstrated in the case of anatomical networks in macaques 

(McIntosh et al, 2006), and functional networks obtained from MEG (Stam, 2004) and 

EEG (Fallani et al, 2006; Sakkalis et al, 2006). In the present study, we have used the 

graphical representation for effective characterization of the network topology. In 

addition to utilizing concepts such as clustering (Stam, 2004; Fallani et al, 2006; Sakkalis 

et al, 2006), we introduce the application of eccentricity analysis to determine the ROIs 

having a major influence on the network. 

 In this work, we have adapted the directed transfer function (DTF) which was 

recently introduced as a causal multivariate measure for EEG (Kus et al, 2004). The DTF 

is based on Granger causality, but is rendered in a multivariate formulation (Blinowska et 

al, 2004) and hence is effective in modeling the inherent multivariate nature of neuronal 

networks. For our application, we used the product of the non-normalized DTF and 

partial coherence to emphasize the direct connections and de-emphasize mediated 

influences. Using an extended period of fMRI data collected during a fatigue experiment 

(Peltier et al, 2005a), we extracted the area under each epoch to form a summary time 

series which captures the epoch-to-epoch variation. The rationale was that this is more 
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likely to reflect the physiological process of fatigue and also alleviates the effect of the 

spatially varying hemodynamic delay. Further, we investigated the changes in the 

dynamics of the networks as the subjects progressively fatigued, demonstrating the utility 

of this approach. 

 As we have seen in the previous chapter, nonlinear approaches either provide 

some additional information or are insensitive to artifacts or provide a complimentary 

approach to the linear methods. Therefore we further explore the nonlinear granger 

causality approach in this work. The basic idea behind nonlinear Granger causality is to 

perform nonlinear prediction in phase space as compared the linear prediction in scalar 

space performed by linear Granger causality. A nonlinear Granger model in embedded 

space was recently proposed and validated using numerical simulations (Chen et al, 

2004), which was subsequently extended using the radial basis function (RBF) approach 

(Ancona et al, 2004). In this study, we adopt the RBF approach for application to fMRI 

data acquired during a continuous motor task as it is more suitable for short and noisy 

time series such as fMRI. The adoption of the continuous motor task is another way of 

circumventing the spatial variability of the hemodynamic response apart from the 

summary time series approach used in the linear study. Here we focus on comparing the 

nonlinear model with the linear model for which bivariate maps are obtained. It is to be 

noted that a bivariate nonlinear model is used for the simplicity of comparison with the 

linear model but could however be extended to the multivariate model as in the linear 

case. 

 

 



 44 

Methods 

 

Linear Granger Causality 

Data Acquisition and Pre-processing 

 Ten healthy right-handed male subjects performed a prolonged motor task while 

they were scanned in a 3T Siemens Trio. Informed consent was obtained prior to 

scanning and the procedure was approved by the internal review board at Emory 

University. The subjects performed repetitive right-hand contractions at 50% maximal 

voluntary contraction (MVC) level by gripping a bottle-like device (Liu et al, 2002). 

Online measurement of handgrip force was accomplished by a pressure transducer 

connected to the device through a nylon tube filled with distilled water. For each subject, 

the target level of 50% MVC was calculated based on the maximal grip force measured at 

the beginning of the experiment. Visual cues (a rectangular pulse whose profile matched 

the amplitude and duration of the handgrip contraction) were generated by a waveform 

generator and projected onto the screen above the subject’s eye in the magnet to guide the 

subjects in performing the contractions. Each contraction lasted 3.5 seconds, followed by 

a 6.5 second inter-trial interval (ITI). The total fatigue task comprised of 120 contractions 

lasting 20 minutes. After the completion of the task, the level of muscle fatigue was 

determined by measuring the MVC handgrip force. The choice of 50% MVC level was 

made so as to fatigue the muscles in approximately 10-15 minutes for the given length of 

contraction and ITI. Echo planar imaging (EPI) data was obtained with the following 

scan parameters: Thirty 4-millimeter slices (no gap) covering from the top of the 

cerebrum to the bottom of the cerebellum, 600 volumes, repetition time (TR) of 2 s, echo 
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time (TE) of 30 ms, a flip angle (FA) of 90°, and an in-plane resolution of 3.44×3.44 

mm
2
.  

 The data analysis for activation detection was carried out using Brainvoyager
TM
 

2000 (Ver 4.9 © Rainer Goebel and Max Planck Society, Maastricht, The Netherlands. 

www.brainvoyager.com). Two subjects were excluded from the analysis due to excessive 

head motion. Subsequent to motion and slice scan time correction, a reference waveform 

derived based on the activation paradigm (Fig. 4.1) was correlated with each voxel time 

series to produce activation maps (Fig. 4.2). The correspondence of the activation 

paradigm with a time series from the primary motor area is illustrated in Fig. 4.1. As 

shown in Fig. 4.2, six ROIs – contralateral (left) primary motor (M1) cortex, primary 

sensory cortex (S1), pre-motor area (PM), ipsilateral (right) cerebellum (C), 

supplementary motor area (SMA), and medial parietal area (P) - were identified from the 

activation maps, and ROI specific average time courses were obtained. Due to the 

overlap of activations in M1 and S1, these areas were delineated based on the location of 

central sulcus (Yousry et al, 1997) by assigning the activations in the pre-central gyrus as 

M1 and that in the post-central gyrus as S1. SMA activation was taken to be medial and 

the parietal activation included both medial and contra-lateral activations in the posterior 

parietal cortex.  

  

 Figure 4.1 A time series from M1 overlaid on the activation paradigm. 

Red: 3.5 sec contraction. Blue: 6.5 sec inter trial interval 
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 To investigate fatigue induced causal influences, the area under the time course of 

each epoch was calculated as a summary measure and a corresponding summary time 

series was derived from the mean time series for each ROI (Fig. 4.3).  
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Figure 4.3 Left: Original fMRI time series. Right: Summary time series (yellow 

patch shows the first time window).  

Figure 4.2 A sample activation map obtained from the fatigue motor task 
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Three non-overlapping segments from this time series, each containing 40 points, was 

input into the multivariate Granger causality analysis. The use of these windows allowed 

us to investigate the temporal dynamics of the network.  

 

Multivariate Granger Causality Analysis 

 The principle of Granger causality is based on the concept of cross prediction. 

Accordingly, if incorporating the past values of time series X improves the future 

prediction of time series Y, then X is said to have a causal influence on Y (Granger, 

1969). In the case of any two time series X and Y, the efficacy of cross-prediction could 

be inferred either through the residual error after prediction (Roebroeck et al, 2005) or 

through the magnitude of the predictor coefficients (Blinowska et al, 2004). As shown by 

earlier reports (Kaminski et al, 2001), given multivariate time series, residual error could 

not be used to derive the simultaneous causal relationships between all of them; instead 

the predictor coefficients had to be used as the basis for multivariate Granger causality. In 

this section, we describe the multivariate model of Granger causality used in this study. 

 The causality analysis was accomplished using software written in MATLAB 

(The MathWorks Inc, Massachusetts). A multivariate autoregressive (MVAR) model was 

constructed from the summary time series of the ROIs. In the following, an italic capital 

letter represents a matrix with components corresponding to the ROIs and the variable in 

the parenthesis indicates either time or temporal frequency. Let X(t) =(x1(t),x2(t)... xk(t)) 

be the data matrix and xk correspond to the time series obtained from the k
th
 ROI. The 

MVAR model with model parameters A(n) of order p is given by 
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                           (4.1) 

 

where E(t) is the vector corresponding to the residual error. Akaike information criterion 

was used to determine the model order (Akaike, 1974). Eq. 4.1 was transformed to the 

frequency domain resulting in 

 

                                     (4.2) 

 

where     (4.3) 

 

δij is the Dirac-delta function which is one when  and zero elsewhere. Also, 

where k is the total number of ROIs. The transfer matrix of the 

model, H(f), contains all the information about the interactions between the time series 

and hij(f), the element in the i
th
 row and j

th
 column of the transfer matrix, is referred to as 

the non-normalized DTF (Kus et al, 2004) corresponding to the influence of ROI j onto 

ROI i. In order to emphasize direct connections and de-emphasize mediated influences, 

Hij(f) was multiplied by the partial coherence between ROIs i and j to obtain direct DTF 

(dDTF) (Kus et al, 2004). In order to calculate the partial coherence, we first computed 

the cross-spectra using 
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where V is the variance of the matrix E(f) and the asterisk denotes transposition and 

complex conjugate. The partial coherence between ROIs i and j is then given by 

 

            (4.5) 

 

where Mij(f) is the minor obtained by removing the i
th
 row and j

th
 column from the matrix 

S. The partial coherence between a pair of ROIs indicates the association between them 

when the statistical influence of all other ROIs is discounted. It lies in the range [0, 1] 

where a value of zero indicates no direct association between the ROIs. The direct DTF 

(dDTF) was obtained as the sum of all frequency components of the product of the non-

normalized DTF and partial coherence as given in the equation below. 

 

                    (4.6) 

 

 dDTF as defined above emphasizes the direct connections between ROIs. It is to 

be noted that unlike previously reported studies (Kaminski et al, 2001; Kus et al, 2004; 

Blinowska et al, 2004), we avoided normalizing DTF so as to allow direct comparison 

between the absolute values of the strengths of influence. Normalization of DTF with 

respect to inflows into any ROI as in Kus et al (Kus et al, 2004) would make such a 

comparison untenable. As described in the previous sub-section, the calculation of dDTF 

was carried out using the summary time series in three non-overlapping windows so as to 

investigate the temporal dynamics of the network. 
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Statistical Significance Testing 

 Analytical distributions of multivariate Granger causality are not established since 

they are said to have a highly nonlinear relationship with the time series data (Kaminski 

et al, 2001). Therefore, to assess the significance of the causality reflected by dDTF, we 

employed surrogate data (Theiler et al, 1992; Kaminski et al, 2001; Kus et al, 2004) to 

obtain an empirical null distribution. The original time series was transformed into the 

frequency domain and their phase was randomized so as to be uniformly distributed over 

(-π, π) (Kus et al, 2004). Subsequently, the signal was transformed back to the time 

domain to generate the surrogate data. This procedure ensured that the surrogate data 

possessed the same spectrum as the original data but with the causal phase relations 

destroyed. dDTF was calculated between the surrogate data time series representing each 

ROI. Null distributions were derived for all possible connections between the ROIs, in 

each time window and for every subject, by repeating the above procedure 2500 times. 

Therefore, corresponding to six ROIs (we had 30 possible links between the ROIs) and 

three time windows, a total of 90 null distributions were generated per subject. In order to 

obtain a group significance threshold, we combined the null distributions obtained from 

the 8 subjects using the consensus inference method (Hansen et al, 2001). This approach 

involved histogram equalization of all distributions into a common scale and averaging 

the equalized histograms. The position of the mean dDTF value of every connection in 

the corresponding null group distribution was ascertained. In order to estimate the p-

value for the mean dDTF, the fractional area of the null group distribution for this 

position was calculated. Subsequent to obtaining the p-values for all the connections in 
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the three temporal windows, a one way ANOVA was carried out with the variation of 

dDTF across subjects being tested for significance.  

 

Analysis using Graph Theory 

 The causal influences between the ROIs in a network could in principle be 

represented as a weighted directed graph, whose weights are represented by the dDTF 

value for the corresponding link between the ROIs, the direction of the link being the 

direction of causal influence and the ROIs themselves representing the vertices (or nodes) 

of the network. As mentioned in the introduction, this type of representation has been 

used to characterize network topology of causal functional networks obtained from MEG 

data (Stam, 2004) and EEG (Fallani et al, 2006; Sakkalis et al, 2006). In this study, we 

focus on clustering and eccentricity. While clustering has been used previously (Stam, 

2004; Fallani et al, 2006; Sakkalis et al, 2006), we have adopted the concept of 

eccentricity from graph theory (Edwards, 2000) and have shown its relevance in 

interpreting the resultant networks. 

 

Mathematical Representation of a Graph 

 A graph G is mathematically represented in the form of a sparse matrix called the 

adjacency matrix (Skiena, 1990). The adjacency matrix of the directed graph is a matrix 

with rows and columns labeled by graph vertices (v), with the dDTF value corresponding 

to the influence from vj to vi in the position (vi,vj).  
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Clustering Coefficient 

 One of the most important aspects of the topology of a network is the role of the 

nodes as either drivers of other nodes or being driven by other nodes. This is assessed by 

the total strength of causal influence that is emanating from or incident on the node. 

Correspondingly, cluster-in and cluster-out coefficients (Watts et al, 1998) for node i are 

defined as, 

 

                 (4.7) 

        

                (4.8) 

 

where p (in this case equal to 6) is the number of nodes in the network. While calculating 

clustering coefficients from the fatigue data, the mean dDTF averaged over the subjects 

were used as entries in the matrix G. Also, the analysis was carried out separately for 

each of the three temporal windows.  

 

Eccentricity 

 The eccentricity E(v) of a graph vertex v in a connected graph G is the maximum 

geodesic distance between v and any other vertex u of G. The geodesic distance between 

two vertices in a weighted graph is the sum of the causal influences along the shortest 

path connecting them. We used the Floyd-Warshall algorithm for solving the all-pairs 

shortest path problem (Cormen et al, 2001) to the find the shortest path between any pairs 

of nodes. Given that graph distance is measured in terms of the strength of causal 

∑
=

=
p

j

jiin vvGC
1

),(

∑
=

=
p

i

jiout vvGC
1

),(



 53 

influence, the shortest path between two nodes indicates the path along which maximum 

causal influence is exerted. Eccentricity is related to the individual influence of a vertex 

on the overall network performance (Skiena, 1990). A vertex v is said to have a major 

influence on the network performance if it has the maximum E(v) among all vertices in 

the graph. Such a vertex, termed the major node, wields maximum influence on network 

behavior. The major nodes in each time window were ascertained to infer the changing 

roles of brain regions. 

 

Nonlinear Granger Causality 

Data Acquisition 

 EPI data was acquired in a 3T Siemens Trio scanner from three healthy volunteers 

while they performed continuous bimanual tapping of the thumb with the index, middle, 

ring and little fingers (in that order), respectively. The subjects were provided visual 

feedback where in the numericals from one to four were displayed at a constant rate so 

that the subjects could synchronize their tapping of the fingers with the rate of display. 

This procedure ensured that the subjects tapped their fingers at a constant rate so that the 

results were not contaminated with effects of the pace of tapping. Scan parameters were: 

TR= 750 ms, TE= 34 ms, FA= 50°, FOV=22 cm and 1120 volumes.  

 

Nonlinear Granger causality model 

For any given two time series x(t) and y(t), the bivariate linear model is given by 
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          (4.10) 

 

where 



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
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vv

vv
V  are the predictor co-efficients, p is the model order and exy and eyx 

are the residual errors. Instead of predicting the future of the time series based on its past 

scalar values, the prediction can be based on the past vector values in the embedded space 

(Chen et al, 2004). This renders the prediction scheme nonlinear. Let x(t) and y(t) 

represent the embedding as shown below. 

 

         (4.11)

  

                                            (4.12)

          

where n is the embedding dimension and τ is the embedding lag. Then, prediction in the 

phase space is represented as 

 

       (4.13) 

 

        (4.14) 

 

where the bold faced letters are the corresponding phase space vector equivalents of the 

scalar values in Eq. 4.9 and Eq. 4.10. According to Ancona et al (2004), any prediction 

scheme should satisfy the following property: if y is statistically independent of x, then 
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ex= exy; if x is statistically independent of y, then ey= eyx. They also contend that the 

approach by Chen et al (2004) corresponding to Eq. 4.13 and Eq. 4.14 satisfies the above 

property only if the point density in the phase space is high enough. This leads to the 

condition that the time series be long and less noisy. These conditions are hard to satisfy 

in the case of fMRI where we have short and noisy time series. Therefore we adopt RBFs 

to model the past values of the embedded time series vectors (Ancona et al, 2004) as 

given below 

   

                       (4.15) 

 

       (4.16)

    

where {w} are four n-dimensional real vectors, Φ=(φ1… φn) are n given RBFs to 

represent x’s past, and Ψ=(ψ1… ψn) are n other RBFs to represent y’s past. Φ and Ψ 

represent RBFs centered at the locations s. n such locations were determined by fussy c-

means clustering (Cannon et al, 1986) in the n-dimensional embedded space 

reconstructed using n-1 past values of x and y, respectively. The value of n was chosen so 

as to minimize the model error. Similar models were constructed for self prediction of x 

using x’s past and y using y’s past only as shown below 

 

                       (4.17) 

 

                                                      (4.18) 
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Let the resulting model residuals be ex and ey respectively. Then the directionality index 

(D) is defined as given below 

 

                      (4.19) 

 

where                     (4.20)

   

D=-1 for unidirectional influence from y to x and D=1 for x to y. However D=0 may 

either indicate that the influence is fully bidirectional or that there is no influence i.e. it 

indicates the lack of net drive in any direction. This is one of the disadvantages of 

directional maps obtained from a bivariate model in contrast to the multivariate model 

described in the previous section. However, it offers the advantage of pictorial 

representation using maps. It is to be noted that in a bivariate model, residual errors could 

be used to ascertain the magnitude and direction of influence while in the multivariate 

case, predictor coefficients have to be employed. 

 

Data Analysis 

Subsequent to motion correction, activated voxels were identified using independent 

component analysis (Mckeown et al, 1998). The mean voxel time series from SMA was 

chosen as the seed voxel and was input into the nonlinear Granger model along with 

every other voxel in the brain slice (candidate voxels) to obtain causal maps of the 

directionality index. In addition, linear Granger maps were obtained using the same seed 
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for comparison with the nonlinear model. To investigate the effect of artifacts, the maps 

were obtained both with and without the removal of baseline drift.  

 

Results 

 

Linear Granger Causality 

Behavioral Data and Pre-processing 

 There was a significant decrease (p<0.002) in hand grip force measured after the 

motor task as compared to before the task, indicating that significant muscle fatigue had 

occurred. Of the eight subjects selected for analysis, behavioral data was not available for 

two subjects due to technical difficulties. In the rest of the six subjects, the decrease in 

hand grip force was 29 ±11 % (Peltier et al, 2005a). Fig. 4.2 shows a sample activation 

map obtained by correlating the fMRI time series with the reference waveform and the 

ROIs selected for further analysis. A representative summary and original time series are 

shown in Fig. 4.3 (Figs. 4.2 and 4.3 were shown earlier). It can be seen that the summary 

time series captures the slow epoch-to-epoch variation. 

 

Multivariate Granger Causality  

 A model order of one was assigned based on the Akaike information criterion 

(Akaike, 1974). Since a single time point in the summary time series corresponds to the 

area under the corresponding epoch, the resulting MVAR model represents epoch-to-

epoch prediction. The temporal variation of the significance values α (α=1-p) for 

connections between all pairs of ROIs is shown in Fig. 4.4. The links that passed the 
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significance threshold of α=0.95 are represented by the bars in red while the connections 

that did not pass the threshold are shown as green bars. A one-way ANOVA showed that 

the dDTF variation across subjects was not significant (p>0.05), indicating that the 

results were consistent across subjects. The network representation of the results in Fig. 

4.4 is shown in Fig. 4.5, where the significant connections are shown as solid lines with 

their width reflecting the statistical significance of the influence. It is to be noted that the 

absence of a connection does not necessarily imply that there is no causal influence 

between the corresponding ROIs. A more lenient threshold or additional statistical power 

might render an insignificant connection significant.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 The temporal variation of significance value α (α=1-p) for all possible 

connections between the ROIs. The direction of influence, as indicated by the black 

arrow, is from the columns to the rows. The red bars indicate the connections that 

passed the significance threshold of α=0.95 and the green ones that did not 
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Graph Analysis  

Clustering Coefficients 

 Table 4.1 lists Cin and Cout for the three windows. In the first window, M1 was 

predominantly driven while S1 was a strong driver. The other areas had a dual role in the 

sense that they both received and transmitted information. In the second window, S1 and 

cerebellum were strong drivers. In the third window, while S1 and cerebellum remained 

to be the main drivers, the absolute value of the coefficients decreased for all ROIs, 

indicating a reduction of network connectivity. This reduction, also evident in Fig. 4.5, 

indicates that as muscles fatigued, the connections in the motor network decreased. 

 

Eccentricity 

The primary sensory area was the major node in the first window, while the cerebellum 

was the major node in the second and third windows. This is schematically represented in 

Fig. 4.5 where the major nodes are marked in black. This result indicates that S1 wielded 
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Figure 4.5 A network representation of Fig. 4.4. The significant links are represented as solid 

arrows and the p-value of the connections are indicated by the width of the arrows. The major 

node in each window is also indicated as dark ovals 
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maximum influence on the network in the first window, and the dominance of influence 

shifted to the cerebellum in the second and third windows. 

 

 M1 SMA PM S1 C P 

Cin 19 15 7 9 16 11 
Window-1 

Cout 8 13 7 25 10 13 

Cin 15 21 15 9 16 8 
Window-2 

Cout 8 14 11 23 18 10 

Cin 11 13 9 9 15 8 
Window-3 

Cout 7 8 9 18 14 9 

 

Discussion 

 The results presented above reflect a gradual shift in connectivity patterns across 

brain regions during the course of prolonged motor task. During the first time window, 

the network is highly interconnected as illustrated by Fig. 4.5. A high value of Cin for M1 

and Cout for S1 indicates that the neural network is predominantly driven by feedback 

mechanisms from the primary sensory cortex. This pattern is consistent with the fine 

tuning of motor responses with sensory feedback (Solodkin et al, 2004).  Furthermore, 

we know that all regions drive the primary motor cortex through both direct (SMA, 

premotor cortex) and indirect (parietal, cerebellum) anatomical pathways (Passingham, 

1988; Strick et al, 1999). Structural equation modeling by Solodkin and colleagues 

(2004) found that the primary sensory cortex weakly drove the primary motor cortex, but 

did not exert causal influence on other brain regions. However, our results suggest that S1 

could have a strong causal influence on M1. The fact that neither Cin nor Cout dominates 

each other for the cerebellum and parietal areas points to the existence of bidirectional 

Table 4.1 Cluster-in and cluster-out coefficients for all ROIs for the three windows 
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connections between these ROIs and the rest of the network and hence the possibility of 

both top-down and bottom-up mechanisms of influence.  

 As the motor task progresses into the middle temporal window, regions that guide 

motor performance – the cerebellum, SMA, and premotor cortex – become more 

prominent as indicated by their elevated clustering coefficients as compared to those in 

the first window. These regions are collectively responsible for timing motor responses, 

response preparation, and sequencing responses (Passingham, 1988; Ivry et al, 1989; 

Deiber et al, 1991; Tanji, 1996; Gordon et al, 1998). While S1 is the major node in the 

first window, the cerebellum becomes the major node in the middle window. This shift in 

the role of the nodes in the network suggests that participants have mastered the motoric 

components of the task and are now primarily focused on orchestrating these responses. 

The shift from the primary sensory cortex to cerebellum also implies that participants are 

less reliant on tactile feedback to guide performance. 

 The network changes yet again during the final stages of the experiment, but this 

shift is more subtle than before. The network structure is largely consistent between the 

middle and last windows. Most striking is the change in magnitude; the causal strength of 

all connections as well as the clustering coefficients decreases. Whereas the middle 

window most likely reflects learning (manifesting as both the strengthening and paring of 

connections), the last window only shows the weakening of connections. These results 

are consistent with fatigue, which we have previously demonstrated to reduce 

interhemispheric connectivity (Peltier et al, 2005a). Although the neural network 

optimized during the middle window remains largely intact, the interregional causal 

strengths diminishes as fatigue takes its toll. 
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 The nodes in the network considered here are not intended as an exhaustive 

account of regions mediating motor behavior.  Only the neural regions demonstrating the 

most significant activation were examined. Thus, subcortical regions such as the basal 

ganglia and red nucleus were not addressed despite their influence on motor performance 

(Harrington et al, 1998; Liu et al, 1999). Likewise, thalamic activity was not modeled, 

even though most of the corticocortical, corticocerebellar and cerebellocortical 

anatomical pathways are routed through the thalamus (Jones, 1999). 

 Besides supporting the existing hypothesis on the neural effects of muscle fatigue, 

our model demonstrates gradual changes in neural communication patterns in the 

prolonged motor task. We propose that these changes reflect slowly varying 

neurophysiological alterations caused by fatigue. In addition to obviating the effect of the 

hemodynamic response on the predictive model, our use of summary measure enabled us 

to match the temporal scale of analysis with the temporal scale at which the underlying 

physiology is likely to evolve.  

 Since the resulting networks have a complicated topology, a manual perusal of 

every connection and their interpretation is untenable. Therefore we have employed 

graph theoretic concepts to unearth possible patterns of communication in the network. 

This approach gives useful insights about the changes in the connectivity patterns and the 

contribution of individual and specific groups of ROIs to network behavior. Although we 

have used only clustering and eccentricity to characterize network topology, several other 

options exist within the framework of graph theory such as connected components and 

path length analyses (Skiena, 1990) which could potentially be used to characterize the 

network.   
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 Apart from integrating coarse temporal scale analysis and graph theoretic 

concepts with multivariate Ganger causality, we introduced some modifications to the 

existing literature on multivariate Granger causality analysis which are noteworthy. 

Unlike previous EEG applications of DTF (Kus et al, 2004), we did not normalize the 

DTF values with respect to the inflows at each node. Normalization makes the value of 

DTF dependent on the inflow at each node, and hence DTF values corresponding to 

connections not involving the same receiving node cannot be compared since the inflows 

into different nodes may be different. While normalization provides an intuitive appeal 

by rendering the DTF values in the range (0,1), it makes comparisons between 

connections untenable and the study of dynamic evolution difficult.  

 

Nonlinear Granger Causality 

The linear and nonlinear Granger maps for the three subjects after the removal of baseline 

drift is as shown in Fig. 4.6. Note that these maps are not thresholded. It can be seen that 

there is drive from the SMA to the primary motor area and pre-motor area. This result is 

in agreement with previous studies (Abler et al, 2006). Also, it is interesting to note that 

the linear and nonlinear maps are very similar. Fig. 4.7 shows the corresponding Granger 

maps without the removal of baseline drift. It can be seen that the linear maps are 

distorted while the nonlinear maps retain the original pattern. In addition, artifacts appear 

due to CSF which seems to drive SMA. We know that CSF oscillations are not metabolic 

in origin (Obrig et al, 2000) and hence the drive from CSF to SMA is artifactual. From 

these results, we conclude that while nonlinear Granger causality gives results very 

similar to the liner model, it is more robust to artifacts caused by baseline drift.  
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Figure 4.6 Linear and nonlinear Granger causality maps with the removal of 

baseline drift. White arrow indicates the seed region 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.1

0

0.1

0.2

0.3

0.4

0.5

Subject-1 Subject-2 Subject-3 

L 

I 

N 

E 

A 

R 

N 

O 

N 

L 

I 

N 

E 

A 

R 

With Baseline Drift 

Figure 4.7 Linear and nonlinear Granger causality maps without the removal of 

baseline drift. White arrow indicates the seed region 
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Conclusions 

 In this work, we have discussed the linear and nonlinear Granger models of 

effective connectivity. First, we demonstrated the utility of an integrated approach 

involving multivariate linear Ganger causality, coarse temporal scale analysis and graph 

theoretic concepts to investigate the temporal dynamics of causal brain networks. 

Multivariate granger causality allowed us to factor in the effects of all relevant ROIs 

simultaneously. The coarse temporal scale analysis obviated the effect of the spatial 

variability of the hemodynamic response on prediction and permitted us to study slowly 

varying neural changes caused by fatigue. Subsequently, by applying graph theoretic 

concepts, we obtained an interpretable characterization of the complicated network 

topology. We believe that our integrated approach is a novel contribution to the effective 

connectivity analysis of functional networks in the brain. Application of this approach to 

motor fatigue data revealed the dynamic evolution of the motor network during the 

fatigue process and reinforced the notion of fatigue induced reduction in network 

connectivity. Finally we showed that the results obtained from nonlinear Granger models 

were akin to the linear ones. However, the nonlinear model was shown to be more robust 

to artifacts such as baseline drifts as compared to the linear model. 
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CHAPTER 5 

CONNECTIVITY IN LOCAL NETWORKS 

 

Introduction 

 Functional connectivity (Friston, 1993) between anatomically distributed regions 

of the brain in resting-state has been well studied using neuroimaging techniques 

including fMRI. Most functional connectivity studies focus on connectivity between 

different regions in networks. On the other hand, local coherence carries information 

regarding localized coordination among neighboring neuronal units and is dependent on 

the local anatomic structure and homogeneity of neuronal processes. This aspect has been 

investigated recently by a regional homogeneity (ReHo) measure (Zang et al, 2004) 

derived using Kendall’s coefficient of concordance (KCC) (Kendall et al, 1990; 

Baumgartner et al, 1999). In their study, Zang et al. found significant changes in ReHo in 

a finger tapping experiment. In a more recent study, Kriegeskorte et al showed that 

improved functional activation maps could be obtained using an information-based 

approach incorporating the local functional homogeneity but avoiding spatial smoothing 

(Kriegeskorte et al, 2006).  

 Methodologically, previous studies of local coherence utilized predefined 

neighborhoods, making the result explicitly dependent on the neighborhood size and 

implicitly on the spatial resolution. In this work, we introduce a general approach to 

characterizing local brain coherence by defining a metric, integrated local correlation 

(ILC), which is the integration of the spatial correlation function for each voxel. In 

principle, the integration does not require the specification of a finite neighborhood. In 
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practice, the spatial correlation function becomes negligible beyond the 25-43 mm limit 

of ‘local scale’ defined by Bellec et al (Bellec et al, 2006) except in cases of distributed 

networks, which were discussed in the previous chapters. Therefore, for the practical 

implementation of ILC calculation, only a finite neighborhood needs to be considered. 

While the spatial correlation function for a voxel is a continuous function in principle, it 

can only be measured discretely in practice at the acquired image resolution. This is a 

potential problem for ReHo (Zang et al, 2004) KCC is dependent on ranking, which is 

sensitive to the number of voxels in the neighborhood, and hence indirectly dependent on 

resolution. This problem is negligible for ILC because the integration of the entire 

correlation function with respect to the physical dimensions is not expected to depend on 

the sampling resolution significantly.   

 Resting-state fluctuations in fMRI have gained significant interest because they 

are thought to carry vital physiological information. In fact, low frequency correlation 

between distributed regions is being extensively used in examining functional 

connectivity in networks (Biswal et al, 1995, 1997; Lowe et al, 1998; Cordes et al, 2000; 

Peltier et al, 2003; Hampson et al, 2002). Therefore, local coherence in resting state may 

provide an added measure for understanding the brain. To demonstrate that ILC is a 

meaningful measure, we examined its tissue specificity and reproducibility in resting 

state fMRI data. To demonstrate that ILC does not arise primarily from fluctuations due 

to heart beat and respiration, we also compared ILC derived with and without the 

removal of physiological noise. Our results show that ILC is tissue-specific, reproducible, 

has functional relevance, and not greatly influenced by physiological fluctuations. 

Comparing ILC maps obtained from resting state and a continuous motor task revealed 
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reduced local coherence in the default mode network during the task thereby 

demonstrating the utility of ILC for differentiating experimental conditions. Finally, we 

compared ILC and regional homogeneity (ReHo) by examining their ability to 

discriminate between gray and white matter in resting state data and found ILC to be 

more sensitive. 

 ILC is the integration of the spatial correlation function which is derived based on 

a linear model. However, it is also of interest to investigate nonlinear connectivity in 

local networks. To achieve this objective, we extended the concept of phase-space 

reconstruction introduced in the previous chapters to perform a spatial embedding in the 

local neighborhood of a voxel. By estimating the spatial largest Lyapunov exponent 

(SLLE) from the spatially embedded data (Gonzalez et al, 2000), we obtained an estimate 

of the coupling in the local neighborhood. The utility of spatial embedding has been 

debated in literature, for example in the estimation of correlation dimension of EEG 

(Pritchard et al, 1996, 1999; Pezard et al, 1999), but nevertheless its utility has been 

demonstrated in the analysis of schizophrenic patients using EEG (Lee et al, 2001). 

Moreover the formulation by Gonzalez is very general in nature and presents itself nicely 

for application to fMRI data.  

 Finally, we illustrate the neuroscientific utility of local coherence by probing the 

neurophysiological effects of varying concentrations of the anesthetic agent sevoflurane. 

The loss and recovery of consciousness and their corresponding neural substrates is the 

central conundrum in anesthesiology. Network models (Crick et al, 2003; Mashour, 

2004) attribute the loss of consciousness induced by anesthesia to cognitive unbinding 

resulting from reduced connectivity of distributed functional networks in the brain. 
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Accordingly, functional neuroimaging studies have indicated disruption of functional 

connectivity in thalamo-cortical networks (Ries et al, 1999; White et al, 2003), inter-

hemispheric cortico-cortical networks (Peltier et al, 2005) and in the default mode 

network (Peltier et al, 2006) as a result of anesthetic sedation. The “dynamic core 

hypothesis” hypothesizes a dynamic core network comprising of the limbic system, the 

thalamo-cortical pathway and the frontal cortex (Tononi et al, 1998) to be crucial in 

mediating alterations of consciousness. According to this hypothesis, consciousness is an 

emergent phenomenon arising from a resonance between the activity within individual 

regions and that with the other regions of the dynamic core network. In the light of the 

above hypotheses, it is important to investigate the local coherence of neural sub-systems 

in addition to their distributed connectivity with other sub-systems in order to understand 

the cortical effects of anesthesia. In this work we investigate this aspect by examining the 

local coherence of the default mode network during graded sedative states induced by 

varying concentrations of sevoflurane in healthy subjects. 

 

Methods 

 

Integrated Local Correlation 

Definition and Calculation of ILC 

 With local coherence attributed to physical proximity, the temporal correlation of 

a given pixel with its neighbors is a function that decreases with distance and can be used 

to characterize the local coherence. In this work, the spatial correlation function is 

integrated, giving rise to integrated local correlation or ILC, to characterize local 
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coherence. In the 2-dimensional case considered here, ILC reflects the volume under the 

spatial correlation function. Given that our measurement of the correlation function is 

discrete and truncated, it is desirable for any measure of local coherence to be 

independent of discretization and truncation. Although the definition of ILC suggests this 

independence, it needs to be experimentally verified. Discretization is dictated by the 

finite spatial resolution of image acquisition. If the correlation function is sufficiently 

smooth, the ILC obtained should be independent of the spatial resolution. This hypothesis 

is tested experimentally with data obtained at two spatial resolutions.  

 Even though we have considered the 2-dimensional (2D) case in this report, ILC 

could theoretically be extended to the 3-dimensional (3D) case if we have contiguous 

slices. These voxels would not need to be isotropic based on our demonstration of 

insensitivity to voxel size. However with multi-slice imaging, issues of imperfect slice 

profile and slice timing would have to be considered and may make the ILC calculated in 

3D more complicated. 

 

Data Acquisition 

 In the first experiment, echo planar imaging (EPI) data was obtained from a 

phantom containing a solution of 3.75 g NiSO4 and 5 g NaCl in 1000 g H2O, using a 3.0 

T Siemens Trio scanner. The scan parameters were: repetition time (TR)= 750 ms, echo 

time (TE)= 34 ms, flip angle (FA)= 50°, field of view (FOV)= 22 cm, 5 slices with a 

thickness of 5 mm, 280 volumes per slice and an in-plane resolution of 3.44 × 3.44 mm
2
.
 
 

 In experiment 2, resting state EPI runs were obtained in three healthy subjects 

while they were instructed to keep their eyes open, fixate on a central cross, and not 
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engage in any mental activity. Three consecutive scans were performed with parameters 

similar to those used in the phantom experiment: TR= 750 ms, TE= 34 ms, FA= 50°, 

FOV= 22 cm, 10 axial slices 5 mm thick covering the section between the corpus 

collusum and the top of the brain, 280 volumes per slice and an in-plane resolution of 

3.44 × 3.44 mm
2
. In addition, a high resolution resting-state scan was also performed 

with an in-plane resolution of 2 × 2 mm
2 
and other EPI parameters matched to the first 

three scans. T1-weighted anatomical images with 1 mm isotropic resolution were 

acquired using a magnetization prepared rapid gradient echo (MPRAGE) sequence 

(Mugler et al, 1990) with TR/TE = 2600/3.93 ms and FA=8°.  

 In the third experiment, resting-state data (in-plane resolution of 3.44 × 3.44 mm
2
) 

were acquired in three subjects using the scan parameters described above, with the 

difference that only 5 slices were acquired. These slices started at the top of the brain 

with a voxel size of 3.44 × 3.44 × 5 mm
3
. A pulse-oximeter and nasal respiratory cannula 

were used during data acquisition to obtain cardiac and respiratory pulsations, 

respectively. T1-weighted axial anatomical images were acquired in the same slices at an 

image resolution of 512×512 using a spin-echo sequence (TR=534 ms, TE=8.6 ms and 

FA=90°). 

 In the fourth experiment, EPI data were acquired in three healthy volunteers with 

a paradigm consisting of three minutes of a fixation condition (resting state) followed by 

three minutes of a continuous motor task which required the subjects to continuously 

perform bimanual finger opposition. The finger opposition was paced at 1 Hz by a 

number (1, 2, 3 or 4) visually presented, indicating which digit to oppose against the 

thumb. Scan parameters were: TR= 750 ms, TE= 34 ms, FA= 50°, FOV=22 cm. The 
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volume imaged consisted of 10 axial slices 5 mm thick covering the section between the 

bottom of the corpus collusum and the top of the brain. The resting and task periods each 

consisted of 280 time points. In addition, T1-weighted anatomical images with 1 mm 

isotropic resolution were acquired using an MPRAGE sequence (Mugler et al, 1990) with 

TR/TE = 2600/3.93 ms and FA=8°. 

 

Data Analysis 

 The operational procedure for calculating ILC is as follows. Motion correction 

and slice scan time correction was performed. Subsequently, detrending was applied to 

each voxel time series to remove baseline drift. For each voxel in the image, a two 

dimensional correlation function corresponding to its temporal correlation with 

neighboring voxels was calculated and integrated to obtain ILC as given in the equation 

below. 

 

              (5.1) 

 

 

where s
r
 is the position of the voxel under consideration and )(nas

r  is the time course for 

that voxel. )(nbxy represents all other neighboring voxels where x and y span the 

dimensions of the neighborhood. ILC was calculated only for those voxels for which the 

neighborhood used for the calculation was contained within the image. In addition, as 

described below, a correction to account for system inherent correlation was determined 
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form ILC maps. The anatomical images were manually segmented into gray matter and 

white matter using MRIcro (Rorden et al, 2000), a freely available medical image 

processing software package (http://www.sph.sc.edu/comd/rorden/ mricro.html). The 

segmented images were down-sampled to match the EPI resolution and separate gray 

matter and white matter masks were obtained and used in assessing the tissue-specificity 

of ILC. 

 

Characterization of ILC 

Inherent correlation in fMRI data and its correction 

 It is possible that fMRI data contains inherent correlation due to the image 

acquisition and reconstruction processes. To ascertain the possible inherent correlation in 

the data and its effect on ILC, the spatial correlation function of the phantom data and the 

corresponding ILC maps were obtained and examined.  Furthermore, the distribution of 

the phantom ILC was compared to that of a simulated independent Gaussian random field 

with matching standard deviation using the Wilcoxon rank sum test. It was found that the 

inherent correlation was small but could not be ignored. To compensate for this effect, 

the spatial correlation function of the phantom, obtained by averaging the correlation 

function of all voxels in the phantom, was subtracted from the spatial correlation function 

of each pixel in the human brain data before ILC calculation. 

 

Discretization and Truncation 

 To investigate the effect of resolution on the calculated ILC, we used the high 

resolution EPI data with the matrix size of 128 × 128. The in-plane resolution for this 
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data set was 2 × 2 mm
2
. To obtain ILC maps calculated with low resolution images, the 

k-space data of the high-resolution images was truncated to a 64 × 64 matrix, zero padded 

to 128 × 128, and inverse Fourier transformed to form an image that had a resolution of 4 

× 4 mm
2
 but a matrix size of 128 × 128. This image was divided into four non-

overlapping, 64 × 64 sub-images using the simple sub-sampling scheme shown in Fig. 

5.1. Each of these sub-sampled images was used to calculate an ILC map, using a 

neighborhood that has the same physical size as that used for the high resolution image. 

The resultant maps were combined by reversing the down sampling process, providing a 

128 × 128 ILC map for comparison of mean ILCs in gray matter and white matter ROIs. 

Note that this process allowed us to calculate the ILC map with low resolution images 

and to perform the comparison at the same high resolution. To examine the effect of 

truncation, the above process was repeated for neighborhood sizes ranging from 12 × 12 

mm
2
 to 68 × 68 mm

2
 (corresponding to 3 × 3 to 17 × 17 low resolution voxel 

neighborhoods). 

 

 

A bunch of 4 voxels 

in the high 

resolution image 

Single voxels in 

four different sub-

sampled images 

Figure 5.1 A schematic illustrating the sub-sampling scheme used to derive low resolution 

images from high resolution data  
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Effect of Physiological Noise 

 The effect of cardiac and respiratory pulsations on fMRI data has been 

extensively studied (Hu et al, 1995; Kruger et al, 2001; Deshpande et al, 2006). To test 

the effect of physiological fluctuations, data from experiment 3 were analyzed with and 

without physiological noise correction using a retrospective technique (Hu et al, 1995). 

ILC maps were obtained before and after the correction and the significance of the 

difference was ascertained. 

 

Tissue-specificity 

 Gray matter and white matter masks were obtained as described in the data 

analysis section and used to obtain mean ILC values for the gray matter and white matter, 

respectively. In addition, the ILC maps were up sampled to the resolution of the 

anatomical image and overlaid on it.  

 

Regional ILC Differences in Gray Matter 

 Using EPI data obtained from the three subjects in the second experiment, the 

mean ILC value of gray matter for each of the three runs was calculated. The statistical 

significance of the difference between the ILC value of each voxel and the gray matter 

mean ILC was ascertained and displayed as a statistical parametric map. For every 

subject, the T1-weighted anatomical images and the statistical parametric maps were 

spatially transformed to MNI space. The voxels common to the statistical parametric 

maps from all three runs were overlaid onto that subject’s anatomical image for display. 
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Reproducibility 

 fMRI data obtained from repeated resting-state runs in the second experiment was 

used to test the reproducibility of the tissue-specific pattern in 3 healthy subjects. ILC 

maps were obtained for all three runs, and the correlation coefficient between them was 

ascertained to assess reproducibility (Strother et al, 1997).  

 

Differentiating Experimental Conditions 

 ILC maps were generated for the resting state (condition 1) and continuous motor 

(condition 2) separately and the difference between the maps of the two conditions was 

obtained to assess changes in local coherence. It has been reported that the default mode 

network is deactivated during the performance of an explicit task as compared to resting 

state (Raichle et al, 2001). Based on this, the difference maps may highlight this network.  

 

Comparison of ILC and ReHo 

 We performed an explicit comparison of ILC with ReHo by evaluating their tissue 

specificity and within tissue variance. ILC and ReHo (Zang et al, 2004) maps were 

calculated from the data obtained in the second experiment. Histograms of ILC and ReHo 

maps were plotted and the statistical significance of the difference between their gray 

matter and white matter distributions was ascertained. The ability of ILC and ReHo to 

differentiate between the tissues demonstrates their sensitivities to fMRI physiology and 

neural processing in the tissues (Deshpande et al, 2006; Kruger et al, 2001). 
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Statistical Significance Testing 

 We subjected the gray matter and white matter ILC distributions to a Jarque-Bera 

test for goodness-of-fit to a normal distribution (Jarque et al, 1980) and found that the 

distributions were not normal (at 95% significance). Hence we employed the non-

parametric Wilcoxon rank sum test (Wilcoxon, 1945) to test for the significance of the 

difference in tissue specific ILC distributions. This test was employed before and after 

physiological correction, and for high and low resolution data. For testing the 

significance of the difference between ILC values of each voxel and the gray matter mean 

ILC, the gray matter distribution was ascertained. Subsequently, the position of the ILC 

value of every voxel in the corresponding gray matter distribution was calculated. In 

order to estimate the p-value of each voxel’s ILC, the fraction of gray matter voxels with 

ILC above it was ascertained. This procedure was adopted instead of the t-test since the 

gray matter distributions were not normal. 

 

Application to Anesthesia 

Data Acquisition 

 Six right-handed volunteers took part in this study which was approved by the 

internal review board at Emory University. The study was designed to monitor the graded 

effects of anesthesia in three states: awake, deep and light anesthesia, in that order. This 

was achieved by administering 0%, 2% and 1% end-tidal sevoflurane, respectively. The 

awake state corresponded to a normal resting state scan without anesthesia. The 

volunteers gargled with 4% viscous lidocaine prior to anesthesia. Single breath technique 

with sevoflurane in oxygen was used to administer anesthesia (Peltier et al, 2005). For 
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achieving the deep anesthetic state, a laryngeal mask airway was placed with sevoflurane 

concentration held constant for 15 minutes at 2%. The scans corresponding to the deep 

state were obtained after brain equilibration was established. Subsequently, the same 

procedure was repeated with 1% sevoflurane corresponding to the light anesthetic state. 

Resting state EPI data were acquired on a 3T Siemens Trio for each of the three states. 

The pulse sequence parameters were: TR= 750 ms, TE= 35 ms, FA= 20°
,
 FOV= 22 cm, 

10 axial slices with 5 mm slice thickness, 280 volumes per slice and an in-plane 

resolution of 3.44mm × 3.44 mm. In addition, T1-weighted anatomical images with 1 mm 

isotropic resolution were acquired using a magnetization prepared rapid gradient echo 

(MPRAGE) sequence with TR/TE = 2600/3.93 ms and FA=8°. 

 

Data Analysis 

 The motion parameters for all the subjects were reviewed using Brainvoyager
TM
 

2000 (Ver 4.9 © Rainer Goebel and Max Planck Society, Maastricht, The Netherlands. 

www.brainvoyager.com). One subject was excluded from the analysis due to gross head 

motion at the beginning of the scan. In the remaining subjects, the regions corresponding 

to the default mode network were identified in the resting awake state using independent 

component analysis (ICA) (Greicius et al, 2004) and a mask formed. The resting state 

default mode mask was transformed into MNI (Montreal Neurological Institute) space 

(Evans et al, 1993). The default mode masks in the deep and light states were generated 

by transforming the mask in the MNI space to the native EPI space of deep and light 

states, respectively. The transformations between EPI and MNI space were carried out 
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using SPM2 (Wellcome Department of Cognitive Neurology, London, UK; 

http://www.fil.ion.ucl.ac.uk). 

 ILC maps were generated by calculating ILC values corresponding to each voxel 

within the brain. This procedure was carried out in the native EPI space of the data. The 

ROI specific ILC values for the default mode network regions - posterior cingulate cortex 

(PCC), dorsal anterior cingulate cortex (dACC), inferior parietal cortex (IPC) and frontal 

cortex (FC) - were derived by applying the default mode masks to the ILC maps and 

calculating the mean ILC values within each ROI. Within each default mode mask, the 

four ROIs were discriminated based on the evidence of their anatomical location. The 

frontal ROI consisted of medial and lateral prefrontal regions. The statistical significance 

of the change in ILC values from awake to deep state and that from deep to light state 

was ascertained by performing a Wilcoxon rank sum test (Wilcoxon, 1945) between the 

sample ILC values of each ROI in different states. The non-parametric Wilcoxon rank 

sum test was employed instead of the t-test since ILC distributions were found to be not 

normal. It is to be noted that the significance of the change in ILC was calculated for the 

state transitions that were embedded in the experimental design. 

 

Spatial Largest Lyapunov Exponent 

 The principle of phase space reconstruction was introduced in Chapter 3 for 

obtaining estimates of nonlinear connectivity from the joint embedding of fMRI time 

series. In this chapter, we adopt the same concept of embedding to reconstruct the joint 

dynamics of multiple fMRI time series in a voxel’s neighborhood. However, to obtain the 

connectivity between multiple time series (unlike bivariate time series in the third 
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chapter) we measured the divergence rates of nearby orbits in the phase space. This was 

accomplished by computing Lyapunov exponents. Usually the largest Lyapunov 

exponent is sufficient to infer the divergence (Kantz et al, 1997). For periodic systems, 

the Lyapunov exponent is zero, is negative for deterministic systems and infinity for a 

completely stochastic system. However, for systems with deterministic coupling it is a 

low positive value.  

 In the following sections, we elucidate the procedure for calculating Lyapunov 

exponents and suggest a coupled map lattice model to validate the viability of the method 

for detecting local connectivity. 

 

Computation of SLLE 

This section presents an overview of the procedure to compute SLLE. For an I-

dimensional dynamical system, I Lyapunov exponents exist, which was obtained from 

the Eigen values of the matrix 

 

                       (5.2) 

 

where P(n) corresponds to the product of the first ‘i’ Jacobians computed along the phase 

space trajectories (Gonzalez et al, 2000) and (  )
T
 denotes the matrix transpose. The phase 

space trajectories were obtained by embedding the fMRI time series in a voxel’s 

neighborhood. The embedding procedure is similar to the one described in Chapter 3. 

The Lyapunov exponents were defined as the logarithms of the Eigen values β. The 

largest of the Lyapunov exponents was defined as SLLE.  
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Coupled Map Lattice Model 

 Even though we have a broad understanding of low dimensional nonlinear 

systems (Kantz et al, 1997), there is not enough literature on high dimensional spatially 

extended systems. The addition of a spatial extent to the dynamics produces a complex 

interplay between the dynamics of individual units and the spatial interactions. The 

individual units may be discrete or continuous in space. A typical model in the latter case 

(if time is also continuous) is described by partial differential equations . By discretizing 

space we obtain a lattice of ordinary differential equations. In the discrete space case, the 

system can be viewed as a collection of low dimensional dynamical systems coupled 

together via some spatial rule (Bunimovich, 1995). Examples of this kind of model are 

widespread in the literature, particularly in the field of solid-state physics where they are 

used to study the dynamics of interacting atoms arranged in a lattice (Poggi et al, 1997). 

Here we focus on a third category of extended dynamical systems where not only space 

but also time is discrete. In such a case the model consists of low dimensional dynamical 

units with discrete time, arranged in some discrete lattice configuration (Kaneko, 1984) in 

one or more spatial dimensions. Such models are usually called coupled map lattices 

(CMLs) as shown in Fig 5.2. We propose to adopt such a model for the fMRI data 

obtained in a local neighborhood of a voxel. 
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Figure 5.2 A Coupled map lattice model for representing the spatio-temporal dynamics 

of fMRI 

 

Model Validation Using a Simulated CML and Application to Resting State Data  

 For simplicity, consider an array of I number of sites (a voxel location in case of 

fMRI data). At the j
th
 site a discrete time local dynamical unit is introduced whose state at 

time n is denoted by xj
n
. We assume that all the spatial units are alike. In the simplest 

case, the local variable xj
n
 is taken to be one-dimensional. The dynamics of the CML is 

then a combination of the local dynamics of individual units and the coupling between 

the units which is represented by the weighted sum over some spatial neighborhood. The 

time evolution of the j
th
 variable is thus given by 

 

                                   (5.3) 

 

where f is the coupling function and the range of summation defines the neighborhood. 

The coupling parameters εk are site independent, and satisfy Σεk=1. The common choice 

for the coupling scheme is (Gonzalez et al, 2000) 
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                                         (5.4) 

 

The coupling parameter ε is constrained by the inequality 0<ε<1, to ensure that the signs 

of the coupling coefficients in Eq. 5.4 (i.e., ε/2 and (1-ε) ) remain positive. As in 

Gonzalez et al, we used a lattice of size I=20 and f(x)=4x(1-x) with coupling strength ε 

=0.4. Finally, the Lyapunov exponents were calculated from this simulated system for 

varying coupling strengths.  

 Subsequent to validation of the model, SLLE was computed separately for gray 

matter and white matter regions from the resting state data obtained from healthy 

volunteers (data acquisition details discussed in the previous section). 

 

Results and Discussion 

 

Integrated Local Correlation 

Inherent correlation in fMRI data and its correction  

 The average spatial correlation functions for the phantom and the brain tissue, 

respectively, are shown in Fig. 5.3. A re-scaled version of the phantom spatial correlation 

function is depicted in Fig. 5.4 which shows the sinc modulation in the read-out direction. 

This is likely the result of inherent filtering caused by the interpolation of data sampled 

on the readout gradient ramps in the EPI sequence. In EPI, a finite time is needed to 

switch the readout gradient from the positive value to the negative value. Sometimes, as 

is the case here, data are sampled on the ramps and interpolation has to be performed in 

the k-space during image reconstruction, leading to the sinc modulation in Fig. 5.4.  
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Figure 5.4 Re-scaled spatial correlation function of the phantom showing sinc-modulation 

in the read-out direction. The original scale (0, 1) is compressed to (0, 0.04) in this figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 5.3 Mean spatial correlation functions. Left: brain tissue. Right: EPI phantom 
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Figure 5.5 Left: EPI phantom image obtained with parameters matched to in vivo data 

Right: ILC image of EPI phantom plotted on a matched scale 
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 The ILC map for the phantom is shown in Fig. 5.5. Although the mean value of 

phantom ILC is substantially less than that of brain tissue, the distribution of phantom 

ILC is significantly different from the null distribution (Fig. 5.6), indicating non-

negligible inherent correlation. Therefore we subtracted the average spatial correlation 

function of the phantom from the spatial correlation function of the brain tissue pixels 

before calculating ILC.         

      

          

 

Figure 5.6 Left: ILC null distribution obtained from Gaussian noise matched to the 

phantom noise level. Right: ILC distribution obtained from the phantom 
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Discretization 

 As we explained in the introduction, a major advantage of the ILC method is its 

independence of the image resolution. Table 5.1 lists the mean gray matter and white 

matter ILC values calculated by using high and low resolution images. The Wilcoxon 

rank sum test shows that there is no significant difference between the two resolutions. 

 

 

Gray Matter White Matter 

Subject 
High 

Resolution 

Low 

Resolution 

p-

value 

High 

Resolution 

Low 

Resolution 

p-

value 

1 21.8 21.6 0.7 6.1 6.0 0.7 

2 20.5 20.3 0.4 7.9 7.6 0.3 

3 23.6 23.2 0.8 7.4 7.2 0.6 

 

Truncation 

Fig. 5.7 plots the ILCs, calculated with low and high resolution images, respectively, 

versus the neighborhood size used. It can be seen that the ILC plateaus at 52 × 52 mm
2
, 

indicating that correlation beyond this distance is negligible, which is in agreement with a 

recent work (Bellec et al, 2006). This result also indicates that for the calculation of ILC, 

as long as a sufficiently large neighborhood is used, the result is independent of the 

neighborhood size. In this work, we employed a 60 × 60 mm
2
 neighborhood. Also, the 

high and low resolution curves follow each other closely, reinforcing the fact that ILC is 

independent of image resolution. 

 

 

Table 5.1 Mean ILC values of gray matter and white matter for high and low resolution data  
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Effect of Physiological Noise 

As shown in both Table 5.2 and Fig. 5.8, the removal of respiratory and cardiac noise did 

not significantly alter the ILC values in gray matter and white matter. In fact, the 

Wilcoxon rank sum test showed that the difference in the tissue ILCs before and after 

correction is not significant. The difference map in Fig. 5.8 shows that most voxels were 

not affected by the correction, with few voxels in isolated areas in the proximity of large 

vessels and cerebrospinal fluid exhibiting detectable differences. 
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Figure 5.7 Variation of ILC with increasing neighborhood size for both high (dotted 

line) and low resolution data (solid line). Blue: gray matter. Red: white matter  
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Gray Matter White Matter 

Subject 

BC AC p-value BC AC p-value 

4 21.7 22.7 0.35 11.4 12.0 0.34 

5 27.9 28.1 0.76 11.8 11.7 0.89 

6 26.3 26.7 0.59 8.1 8.3 0.66 

 

 

Tissue-specificity 

 ILC was found to be tissue-specific as shown in Fig. 5.9 where the gray matter-

white matter boundary, obtained from manual segmentation, is overlaid on the ILC image 

for a representative subject. The corresponding mean ILC values for gray matter and 

white matter are shown in Tables 5.1 and 5.2. The p-values of the Wilcoxon ranksum test 

are less than 10
-20
 for all the subjects, indicating that white matter and gray matter ILC 

Table 5.2 Effect of physiological rhythms on ILC. BC- Before correction for physiological 

noise. AC- After Correction 

Figure 5.8 ILC difference maps obtained by subtracting the ILC maps before and after 

correcting for physiological noise for five slices 

0 

3 

6 
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distributions are significantly different. ILC is higher in the gray matter than that in the 

white matter (a fact also apparent in the gray matter and white matter distributions shown 

in Fig. 5.10). This difference possibly reflects a combination of neuronal and 

hemodynamic factors that have been implicated in earlier reports of differences between 

gray matter and white matter (Kruger et al, 2001; Deshpande et al, 2006). 

Figure 5.9 ILC map during resting-state with overlaid gray matter-white matter 

boundary indicating the tissue specificity of ILC 

Figure 5.10 Histogram of Fig. 5.9 showing gray matter and white matter distributions 

of ILC 
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Regional ILC Differences in Gray Matter 

Fig. 5.11 shows the regions having ILC values significantly higher than the mean gray 

matter ILC for the three subjects from the second experiment. It is evident that the 

components of the default mode network, particularly posterior and anterior cingulate 

cortices have significantly higher ILC compared to other gray matter regions. This result 

is consistent with previous studies which have reported significantly higher regional 

cerebral blood flow (Raichle et al, 2001) and ReHo values (He et al, 2004) in the default 

mode network.  

 

Sub 1 Sub 2 Sub 3 

Figure 5.11 Regions having ILC values significantly higher than the mean gray matter 

ILC for the three subjects. The three slices shown in each subject are those containing 

the majority of voxels exhibiting significantly higher ILC 
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Reproducibility 

 Table 5.3 lists the correlation coefficients between the ILC maps obtained from 

three repeated runs in three subjects. It is clear that there is a high degree of consistency 

between them. The resting-state ILC maps for all the three subjects are shown in Fig. 

5.12. In these maps tissue-specific patterns are consistent across consecutive resting-state 

runs. Note that the value and the spatial patterns of the phantom ILC (Fig. 5.5) are 

significantly different from those shown in Fig. 5.12, confirming that the tissue-specific 

resting-state pattern is not due to the inherent correlation. 

Subject Run 1 and Run 2 Run 1 and Run 3 Run 2 and Run 3 

1 0.94 0.94 0.95 

2 0.93 0.91 0.94 

3 0.84 0.83 0.91 

  

Differentiating Experimental Conditions 

It is evident from the ILC difference maps shown in Fig. 5.13 that there is a reduction of 

local coherence in the default mode network during the continuous motor task as 

compared to resting state. This is consistent with previous reports of deactivation of the 

default mode network during the performance of an explicit task as compared to resting 

state (Raichle et al, 2001). This result shows that ILC could be a useful measure to 

capture ROI-specific changes in local coherence with different experimental conditions. 

Interestingly, the continuous motor task did not alter the ILC values in the motor network 

Table 5.3 Correlation coefficient between ILC maps obtained from repeated runs demonstrating 

reproducibility  
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significantly similar to a lack of change in inter-regional connectivity in the network 

reported by a previous study (Morgan et al, 2004) 

 

 

 

 

Figure 5.12 ILC maps for three consecutive resting-state runs in healthy individuals  

RUN-1 RUN-2 RUN-3

Subject 1 

Subject 2 

Subject 3 
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Subject 1 Subject 2 Subject 3 

Figure 5.13 ILC difference maps showing the regions having higher ILC during resting 

state as compared to the continuous motor condition. Note that the maps were 

thresholded at a p-value of 0.05. The regions indicated are A: Lateral pre-frontal cortex 

(LPFC), B: Inferior parietal cortex (IPC), C: Medial pre-frontal cortex (MPFC), D: 

Dorsal anterior cingulate cortex (dACC) and E: Posterior cingulate cortex (PCC) 

extending rostrally into precuneus. The slices containing the components of the default 

mode network are displayed for each subject. 
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Comparison of ILC and ReHo 

As shown in Table 5.4, the difference between gray and white matter distributions was 

only significant in one subject for ReHo while it was significant in all three subjects for 

ILC. A comparison of gray matter and white matter ReHo distributions shown in Fig. 

5.14 with that of the corresponding ILC distributions in Fig. 5.10 confirms the results 

shown in Table 5.4. Previous studies (Deshpande et al, 2006; Kruger et al, 2001) have 

attributed tissue specificity in the brain to differences in fMRI physiology and neural 

processing. Our results show that ILC may be more sensitive to these differences as 

compared to ReHo. 
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Figure 5.14 Histograms of the ReHo values of the white matter (WM) and gray matter 

(GM). This histogram is derived from the data of the subject shown in Fig. 5.10. Based 

on these histograms it is difficult to separate the gray matter from the white matter 

based on ReHo values 
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ILC KCC 

Subject 

Gray Matter White Matter p-value Gray Matter White Matter p-value 

1 21.6 6.0 0 0.20 0.04 0.10 

2 20.3 7.6 0 0.18 0.05 0.12 

3 23.2 7.2 0 0.26 0.05 0.05 

 

 

 

Application to Anesthesia Data 

 The ILC maps in the awake, deep and light states for a representative subject are 

shown in Fig. 5.15. The ROI specific ILC values for individual subjects are shown in Fig. 

5.16. It can be seen that there is a significant decrease in local coherence in the deep 

anesthetic state in all the regions of the default mode network. The transition from deep 

to light state is accompanied by an increase in local coherence.  The recovery in the light 

state is partial to complete in posterior cingulate cortex, anterior cingulate cortex and 

inferior parietal cortex. However in the frontal cortex, ILC does not change significantly 

between the deep and light states and remains attenuated in the light state.  

  

 

 

Table 5.4 Mean ILC and KCC values of gray matter and white matter  
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Figure 5.15 ILC maps for the awake (top), deep (middle) and light (bottom) anesthetic states 

in a representative subject. Slices containing the default mode network are displayed 
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 The above results support existing hypotheses regarding the neurophysiological 

effects of artificially induced anesthesia. In addition, they provide novel insights into 

local connectivity changes associated with sevoflurane anesthesia. Network models have 

hypothesized that loss of consciousness due to anesthesia is a result of cognitive 

unbinding initiated by reduced connectivity of distributed networks (Tononi et al, 1998; 

Crick et al, 2003; Mashour, 2004). Previous studies showing reduced thalamo-cortical 

(Ries et al, 1999; White et al, 2003) and cortico-cortical (Peltier et al, 2005, 2006) 
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Figure 5.16 ROI-specific ILC values for all the five subjects. Arrow indicates that the 

corresponding transition was not significant (p>0.05). PCC: Posterior cingulate cortex, ACC: 

Anterior cingulate cortex, IPC: Inferior parietal cortex, FC: Frontal cortex. The color of the 

bar indicates the anesthetic state. Blue: awake, Green: deep and Red: light 
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connectivity due to anesthesia, support the above hypothesis. There is preliminary 

evidence to suggest that distributed connectivity between the regions of the default mode 

network reduces with higher concentrations of sevoflurance (Peltier et al, 2006). Our 

results indicate that reduced local connectivity may accompany corresponding reduction 

of distributed connectivity. The fact that local coherence reduces in individual regions of 

the default mode network in the deep state suggests that ILC may be a useful tool to 

assess connectivity within individual regions.  

 The default mode network has been implicated in self-awareness (Raichle et al, 

2001; Greicius et al, 2003). Also, the default mode network has been shown to be having 

a role during altered states of consciousness such as sleep (Horovitz et al, 2006) and 

meditation (Pagnoni et al, 2006). Therefore we hypothesized that the default mode 

network may be involved in sedation induced by anesthesia. Our results support this 

hypothesis and suggest that in addition to the dynamic core network proposed by Tononi 

et al (1998), the default mode network may also have a role in loss and recovery of 

consciousness.  

 While the attenuation of local coherence in the deep state was uniform, the 

recovery of ILC in the light state was ROI specific. The fact that the revival was partial to 

complete in posterior cingulate cortex, anterior cingulate cortex and inferior parietal 

cortex while it was not significant in the frontal cortex supports the notion that anesthesia 

is not a uniform entity (Veselis et al, 2001) and there may be different end points of 

interest such as ablation of sensorimotor responses and executive functions. Our results 

suggest that cortical functionality may be compromised in the frontal areas in the light 

state while it was not the case with other regions. This supports earlier reports of dose 
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dependent suppression of cortical function (Antognini et al, 1997; Veselis et al, 2002) 

and reduction of regional cerebral blood flow (rCBF) due to anesthesia (Bonhomme et al, 

2001) and behavioral deficits in psychomotor and cognitive performance (Galinkin et al, 

1997, Ibrahim et al, 2001). 

 It is to be noted that the results should be viewed within the context of our 

experiment and not be generalized. Sedatives such as midazolam have been shown to 

increase the temporal synchrony in fMRI BOLD signal (Kiviniemi et al, 2005), an effect 

contrary to that reported in studies employing sevoflurane as a sedative (Peltier et al, 

2005). The effect of different sedatives and their mechanism of administration on brain 

physiology are not properly understood. Also, in the absence of a unified model, the 

mechanisms involved in anesthesia-induced consciousness alterations have not been 

established. Moreover, consciousness may not be a monolith and hence its neural 

substrates could vary depending on whether it is induced artificially (sedatives) or 

naturally (sleep) (Mashour, 2004). In the light of these facts, our results should be 

interpreted within the specifics of our experiment. 

 

Spatial Largest Lyapunov Exponent 

Simulated Coupled Map Lattice 

 Fig. 5.17 shows the Lyapunov spectra for a coupled logistic lattice of size I=20 

with periodic boundary conditions obtained using the known dynamics (Eq. 5.3). From 

this figure we can observe that some Lyapunov exponents are positive proving that the 

system has determinism. Also, a low positive value for the largest exponent indicates the 

existence of spatial coupling, which in fact is the case. Therefore the simulations indicate 
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that the CML model shown in Fig. 5.2 could be used to capture the spatiotemporal 

dynamics of a coupled system and characterize the spatial couplings in such a framework. 

Thus, the application of this model for real fMRI data is justified. 

 

 

 

 

 

 

 

 

 

 

Application to Resting State fMRI Data 

 Table 5.5 lists the mean SLLE values calculated using a 60×60 mm
2
 

neighborhood. The neighborhood choice was dictated by the results presented in the 

previous section which showed that correlation becomes negligible after a 60×60 mm
2
 

neighborhood. This is also supported by previous studies which investigated spatial 

correlation (Bellec et al, 2006) in the brain. The relatively low positive values of SLLE 

point to the existence of local coupling as demonstrated by ILC. Also, gray matter 

exhibits higher local coupling than white matter. Note that a lower value of SLLE 

indicates lesser divergence and hence higher coupling. These results confirm the results 

Figure 5.17 Lyapunov spectrum for a CML of N=20 fully chaotic logistic maps f(x)=4x(1-x) 

with coupling strength ε =0.4 
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obtained by ILC and suggest that SLLE could perhaps be used as a complimentary 

approach while investigating local coherence in the brain. However, SLLE is similar to 

the ReHo approach in the sense that it utilizes distinct time series in the neighborhood 

instead of a spatial function as in ILC. Therefore it suffers from the same disadvantages 

as that of ReHo described before. 

 

Table 5.5 Mean values of SLLE. The difference between gray and white matter SLLE 

was significant in all subjects (p<0.05) 

 

SLLE Gray matter White matter 

Subject 1 1.30 1.96 

Subject-2 0.93 1.68 

Subject-3 1.69 1.99 

 

 

Conclusions 

 

 In this work we have introduced and characterized a general measure, ILC, to 

quantify local brain coherence. We hypothesized and demonstrated that ILC is effectively 

independent of image resolution and the neighborhood size as long as it is sufficiently 

large. In addition, we also found that respiratory and cardiac fluctuations do not 

significantly affect ILC values in brain tissue. Furthermore, the inherent correlation in the 

data was found to be small but non-negligible, and a correction was introduced. As a 

demonstration of biological relevance, reproducible, tissue-specific ILC patterns were 

found in the resting-state fMRI data of healthy individuals and discriminated between 

gray and white matter. Within the gray matter, the default mode network exhibited higher 

ILC in resting state. The reduction of ILC in the default mode network during a 
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continuous motor task as compared to the resting state showed the utility of ILC in 

discriminating experimental conditions. Also ILC was shown to discriminate between 

different tissues better than regional homogeneity (ReHo). It is concluded that the ILC 

measure is a robust tool to assess local brain coherence. Subsequently, we demonstrated 

the neuroscientific utility of ILC with application to anesthesia. We investigated the 

changes in local coherence of the default mode network with graded sedation induced by 

sevoflurane anesthesia. The results indicated that in the deep anesthetic state, local 

coherence reduced in all the regions of the default mode network. However, the recovery 

in the light anesthetic state was partial to complete in posterior cingulate cortex, anterior 

cingulate cortex and inferior parietal cortex while it was not significant in the prefrontal 

cortex. These results imply that the default mode network, particularly the frontal cortex, 

has a significant role in the neurophysiological changes induced by anesthesia. Finally, 

the linear ILC approach was complemented by the nonlinear SLLE approach and we 

showed that the concept of embedding which we introduced in the earlier chapters could 

also be used to study connectivity in local networks.  
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CHAPTER 6 

CONCLUSIONS 

 

The Problem Revisited 

 

 We briefly discuss the problem we set out to investigate, the path taken and the 

result of the investigation. The principal motive behind this work was to explore the 

applicability of nonlinear dynamics and network analysis for characterizing brain 

function. This motive was driven by the fact that though brain is known to act as a 

nonlinear system, there has hardly been any effort to explore the applicability of 

nonlinear analysis techniques to fMRI data. Also, recent trends have suggested that 

functional localization as a model of brain function is incomplete and that certain 

sensory, motor and cognitive functions may be carried out by a network of regions rather 

than individual areas. Given this fact, it is imperative to develop network models in an 

effort to understand brain function. Therefore this thesis attempts to introduce the twin 

concepts of nonlinear dynamics and network analysis into a broad spectrum of fMRI data 

analysis techniques.  

 

Overview of Findings 

 

 This work has provided a new thrust towards incorporating the concepts of 

nonlinear dynamics and network analysis in the repertoire of fMRI data analysis 

techniques which covers both univariate and multivariate methods.  



 104 

 The second chapter explored the importance of low dimensional determinism in 

resting state fMRI fluctuations using principles drawn from the concept of embedding 

and information theory. We showed that fMRI time courses are not produced by a purely 

stochastic system, and hence used various nonlinear techniques to obtain a new 

perspective into the underlying system dynamics. The results from the above techniques 

showed that brain dynamics can be neither characterized by a purely stochastic nor a fully 

deterministic system. On the contrary, the underlying dynamics seems to be 

deterministic, produced by a system having roughly ten state variables, exhibiting non-

uniform determinism among the different regions of the brain, with gray matter showing 

more determinism than white matter and CSF. What was previously perceived as higher 

random fluctuation in the gray matter was actually due to the deterministic nonlinearity 

of the signal produced by an underlying nonlinear dynamical system. We found that 

nonlinearity exhibits tissue specificity even after the removal of physiological 

fluctuations. The possibility of higher noise level in gray matter as the main reason for 

tissue-specificity of deterministic nonlinearity was examined and ruled out. Therefore, 

higher nonlinear determinism in gray matter is not due to cardiac/respiratory effects or 

noise intensity differences, but can potentially be attributed to local differences in fMRI 

physiology and neural processing.  

 The third chapter extended the concept of embedding to multivariate analysis 

allowing us to characterize nonlinear functional connectivity in distributed brain 

networks during resting state and bimanual continuous movement. A new measure, 

bivariate nonlinear connectivity index, was introduced and shown to have higher 

sensitivity to the gray matter signal as compared to linear correlation and hence more 
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robust to artifacts. Also, sliding window analysis was carried out to investigate the 

dynamical connectivity changes in the distributed motor network during the bimanual 

continuous motor task.  

 The fourth chapter dealt with the extension of functional connectivity to include 

directional interactions in the brain, which is termed effective connectivity. We 

investigated both linear and nonlinear Granger models of effective connectivity. First, we 

demonstrated the utility of an integrated approach involving multivariate linear Ganger 

causality, coarse temporal scale analysis and graph theoretic concepts to investigate the 

temporal dynamics of causal brain networks. Multivariate granger causality allowed us to 

factor in the effects of all relevant ROIs simultaneously. The coarse temporal scale 

analysis obviated the effect of the spatial variability of the hemodynamic response on 

prediction and permitted us to study slowly varying neural changes caused by fatigue. 

Subsequently, by applying graph theoretic concepts, we obtained an interpretable 

characterization of the complicated network topology. We believe that our integrated 

approach is a novel contribution to the effective connectivity analysis of functional 

networks in the brain. Application of this approach to motor fatigue data revealed the 

dynamic evolution of the motor network during the fatigue process and reinforced the 

hypothesis of fatigue induced reduction in network connectivity. Finally we showed that 

the results obtained from nonlinear Granger models were akin to the linear results. 

However, the nonlinear model was more robust to artifacts such as baseline drifts as 

compared to the linear model. 

 The fifth chapter investigated connectivity in local networks. In this work we 

introduced and characterized a robust linear measure, ILC, to quantify local brain 



 106 

coherence. This measure is an improvement upon existing linear measures such as ReHo, 

to measure local coherence in the brain. We hypothesized and demonstrated that ILC is 

effectively independent of image resolution and the neighborhood size as long as it is 

sufficiently large. In addition, we also found that respiratory and cardiac fluctuations do 

not significantly affect ILC values in brain tissue. Furthermore, the inherent correlation in 

the data was found to be small but non-negligible, and a correction was introduced. As a 

demonstration of biological relevance, reproducible, tissue-specific ILC patterns were 

found in the resting-state fMRI data of healthy individuals which discriminated between 

gray and white matter. Within the gray matter, the default mode network exhibited higher 

ILC in resting state. The reduction of ILC in the default mode network during a 

continuous motor task as compared to the resting state showed the utility of ILC in 

discriminating experimental conditions. Also ILC was shown to discriminate between 

different tissues better than regional homogeneity (ReHo). Thus it was found that the ILC 

measure is a robust tool to assess local brain coherence. Subsequently, we demonstrated 

the neuroscientific utility of ILC with application to anesthesia. We investigated the 

changes in local coherence of the default mode network with graded sedation induced by 

sevoflurane anesthesia. The results indicated that in the deep anesthetic state, local 

coherence reduced in all the regions of the default mode network. However, the recovery 

in the light anesthetic state was partial to complete in posterior cingulate cortex, anterior 

cingulate cortex and inferior parietal cortex while it was not significant in the prefrontal 

cortex. These results imply that the default mode network, particularly the frontal cortex, 

has a significant role in the neurophysiological changes induced by anesthesia. Finally, 

the linear ILC approach was complemented by the nonlinear SLLE approach and we 
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showed that the concept of embedding which we introduced in earlier chapters could also 

be used to study connectivity in local networks.  

 

Final Thoughts 

 

 We conclude this thesis by stating that the concepts of nonlinear dynamics and 

network analysis have the potential to add great value to the existing fMRI data analysis 

techniques in aiding us to construct models of brain function at a systemic level. 

Nonlinear models give some additional insights and were found to be generally more 

robust to artifacts and more sensitive to signals of biological interest than linear models. 

But the trade off is that nonlinear models are computationally more intensive and hence if 

computational complexity is not a concern and we are not able to account for the artifacts 

separately, then nonlinear linear models may be better. 

 Network models of brain function give invaluable insights into the working of the 

brain. While functional localization studies have their own value, we believe that it is 

incomplete. Our findings confirm the recent reports in the field that evaluating 

interactions between regions in the brain and studying their dynamics forms an 

inseparable part of the effort to understand the systems level functional organization of 

the human brain. 
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APPENDIX A 

ESTIMATION OF MINIMUM EMBEDDING DIMENSION 

 

 The technique we have employed to estimate the minimum embedding dimension 

(MED) of fMRI data is a variant of False Nearest Neighbor (FNN) method and follows 

the description by Cao (Cao, 1997). The first step in nonlinear dynamical analysis is the 

reconstruction of the attractor in phase-space using Taken’s embedding theorem (Takens, 

1980), which ensures that the reconstructed attractor preserves all topological properties 

of the original attractor.  

 Given an fMRI time series from a single voxel, x(i), Li ,......2,1= , its time-delay 

vectors in phase-space are formed as: 

 

                                                                (A.1) 

 

where the number of time-delay vectors is given by τ)1( −−= mLN , τ being the time 

delay and m  being the embedding dimension, and each time-delay vector is given by 

 

 Xi = [x(i+τ) x(i+2τ) ……… x(i+(m-1) τ]  ;  I = 1,2,……… L-(m-1) τ               (A.2) 

 

τ is selected using the autocorrelation function based technique (Tsonis, 1992).  

T

21 ][ NXXXX ..........=
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 For each phase-space vector, Xi, its distance to its nearest neighbor at different 

values of m, d(i, m), is computed.  The ratio, d(i, m+1)/d(i ,m), is calculated and averaged 

over i to derive )(mE . )(mE is dependent only on m  andτ . In order to see its variation 

from m  to 1+m  , we examine E1 (m), defined the ratio of E(m+1) to E(m). It is found 

that the E1 (m) approaches a saturation value of 1 when m is greater than some value om  

if the time series comes from an attractor.  

 To determine mo at which E1 attains saturation, a nonlinear least-squares fit to E1 

is obtained (Por et al, 2005). The fit is assumed to be of an exponential form given by the 

equation cmeb −−−  where the initial values of b and c are 1 and 0 respectively. The values 

of b and c corresponding to the closest fit are obtained using the Gauss-Newton method 

(Por et al, 2005). The residual, which is the error between the fit and the original curve, is 

the highest at the knee of the curve. Since the saturation point is represented by the knee 

of the curve, the dimension corresponding to the maximum residual is taken as the MED. 
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APPENDIX B 

PATTERN OF SINGULARITIES IN THE COMPLEX PLANE (PSC) 

ALGORITHM 
 

The steps for deriving PSC of a given fMRI time series are: 

1. Determine the local maxima jt
s
and the time at which it occurred, jt  in the fMRI 

time series, where j is the index for each maximum and assumed to have values 

1,2,…….. m. 

2. Define Lo as a global distance measure in the st-t space:                    

                                                                               

         (B.1) 

 

3. Generate n number of surrogates and compute Lo for each surrogate. Gaussian 

scaled surrogates were generated by rank ordering the fMRI time series
 
in the 

rank order of the time series obtained from a phase-randomized Gaussian 

distribution of the same mean and standard deviation as that of the fMRI data 

(Di Garbo et al, 1998). 

4. Determine mean ML and standard deviation Lσ of these quantities. 

5. Determine the measure of significance. 

                                                                                                                    

                 (B.2)    

 

 The hypothesis (that the given time series is not different from a linear process) is 

rejected if this significance is greater than a threshold (for this work, we have chosen the 
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95% confidence level). Moreover, the significance value is the PSC measure, which can 

be used as a quantifier to assess the deviation of the fMRI time series from linearity. The 

larger its value, the more nonlinear is the fMRI time series.  
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APPENDIX C 

LEMPEL-ZIV COMPLEXITY MEASURE ALGORITHM 

 

 Lempel-Ziv (LZ) is a complexity measure for assessing the structure of a signal 

(Zhang et al, 1999) from an information theoretic point of view. The algorithm for 

calculating this complexity measure c(n) for a given fMRI time series x(i) of length n can 

be summarized as follows. x(i) must be first transformed into a finite symbol sequence L 

with two possible binary values: zero and one. We start by subtracting the mean value of 

x(i) from every data point. We need to find a threshold T to transform x(i) into a binary 

sequence. The threshold is found as follows. Positive peak value Up and negative peak 

value Un of x(i) are calculated. The number of data points of x(i) which satisfy the 

condition 0<xi<10%Up.is calculated. Let this number be A. Similarly, the number of data 

points of x(i) satisfying the condition 10%Un<xi<0 is calculated. Let this number be B. If 

(A+ B) < 40% of n, threshold T=0. If (A<B), T = 20% Up  else, T = 20% Un . The value 

of each data point of the fMRI time series x(i) is compared with T  and assigned a value 

of 0 or 1 depending on whether it’s value is below or above T. The finite binary sequence 

L is used for further analysis. 

 Let us consider the sequence L = s1,s2,…,sn, where si is the character 0 or 1. Let M 

and N be two sub-strings of L and let MN be their concatenation. We will denote MN' as 

the sequence MN without its last character. Initially, c(n) is set to 1. Therefore c(n)=1, 

M=s1, N=s2 , MN= s1s2 and MN' =s1. If M = s1,s2,…,sr (1<r<n) and N= sr+1 , then MN'= 

s1,s2,…,sr. The value of c(n) is incremented by one if N∉ MN'. N∈ MN', then N is a sub-

sequence of MN' and not a new sequence. Therefore M remains unchanged and N is 
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renewed to sr+1, sr+2. The process of appending and comparing N to MN' is continued 

until N∉ MN' again. As the whole sequence L is traversed, the value of c(n) is also 

updated. The final value of c(n) obtained by traversing the whole length of L, is the 

complexity measure. Normalization of the final c(n) results in the LZ measure. Let d(n) 

be the value of c(n) in the asymptotic case of an infinitely long random string. Then, 

        

             (C.1) 

 

Finally, the normalized complexity measure, LZ, is given by 

 

              (C.2) 
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APPENDIX D 

PUBLICATIONS ARISING FROM THIS THESIS 

 

Journal Articles 

1. Gopikrishna Deshpande, Stephen LaConte, Scott Peltier, Xiaoping Hu. 2006. 
Tissue specificity of nonlinear dynamics in baseline fMRI. Magnetic Resonance 

in Medicine 55(3): 626-632. 

 

2. Gopikrishna Deshpande, Stephen LaConte, Scott Peltier, Xiaoping Hu. 2006. 
Connectivity analysis of human functional MRI data: from linear to nonlinear and 

static to dynamic. Lecture Notes in Computer Science 4091: 17-24. 

 

3. Gopikrishna Deshpande, Stephen LaConte, Scott Peltier, Xiaoping Hu. Integrated 
Local Correlation: a New Measure of Local Coherence in fMRI Data. Human 

Brain Mapping, under review. 

 

4. Gopikrishna Deshpande, Stephen LaConte, George Andrew James, Scott Peltier, 
Xiaoping Hu. Multivariate Granger Causality Analysis of Brain Networks. 

Human Brain Mapping, under review. 

 

Conference Proceedings 

1. Gopikrishna Deshpande, Stephen LaConte, Scott Peltier, Xiaoping Hu. 2005. 
Spatial embedding of fMRI for investigating local coupling in human brain. 

Proceedings of SPIE International Symposium on Medical Imaging, San Diego 

5746: 119-125. 

 

2. Gopikrishna Deshpande, Stephen LaConte, Scott Peltier, Xiaoping Hu. 2005. 
Evaluation of nonlinear functional connectivity using phase-space embedding. 

Proceedings of ISMRM 13
th
 Scientific Meeting, Miami 13: 1598. 

 

3. Gopikrishna Deshpande, Stephen LaConte, Scott Peltier, Xiaoping Hu. 2006. 
Tissue specificity of nonlinear dynamics in baseline fMRI. Proceedings of 

ISMRM 14
th
 Scientific Meeting, Seattle 14: 533. 

 

4. Gopikrishna Deshpande, Stephen LaConte, Scott Peltier, Chantal Kerssens, 
Stephen Hamman, Peter Sebel, Michael Byas-Smith, Xiaoping Hu. 2006. Local 

Coherence as a Measure of Localized Co-ordination in the Brain: An Application 

to Anesthesia. Proceedings of ISMRM 14
th
 Scientific Meeting, Seattle 14: 1100. 

 



 115 

5. Gopikrishna Deshpande, Stephen LaConte, Scott Peltier, Xiaoping Hu. 2006. 
Investigating effective connectivity in cerebro-cerebellar networks during motor 

learning using directed transfer function. 12th annual meeting of Human Brain 

Mapping, Florence, Italy. Reference in NeuroImage 31 (S40): 377. 

 

6. Gopikrishna Deshpande, Stephen LaConte, Scott Peltier, Xiaoping Hu. 2006. 
Directed transfer function of fMRI to investigate network dynamics. Proceedings 

of 28
th
 Annual International Conference of IEEE EMBS New York: 671-674. 

 

7. Gopikrishna Deshpande, Stephen LaConte, Scott Peltier, Xiaoping Hu. 2007. 
Integrated Local Correlation: a New Measure of Local Coherence in fMRI Data. 

Proceedings of ISMRM 15
th
 Scientific Meeting, Berlin, Germany 15: 3480. 

 

8. Gopikrishna Deshpande, Stephen LaConte, Scott Peltier, Andrew James, 
Xiaoping Hu. 2007. Multivariate Granger Causality Analysis of Brain Networks. 

Proceedings of ISMRM 15
th
 Scientific Meeting, Berlin, Germany 15: 3184. 
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