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SUMMARY 

 

In addition to its intrinsic importance during quiet standing, posture also serves as 

the background for a wide variety of other critical motor tasks.  The hierarchical nature of 

the motor control system suggests that the different layers may be responsible for 

different aspects of posture.  I tested the hypothesis that spinal reflexes are organized 

according to optimal principles of stability, control accuracy, and energy.  I found that 

there were no globally stable muscle activation patterns for muscles operating near 

optimal fiber length, suggesting that the intrinsic viscoelastic properties of muscle are 

insufficient to provide limb stability. However, for stiffer muscles a stable limb could be 

created by selectively activating muscles based on their moment-arm joint angle 

relationships.  The optimal organization of length and velocity feedback to control and 

stabilize the endpoint position of a limb could not be produced from a purely muscle 

controller, but required neural feedback to improve endpoint performance, reduce 

energetic cost, and produce greater coordination among joints.  I found that while 

muscles at near optimal fiber length were insufficient to provide limb stability, the length 

feedback provided by the autogenic stretch reflex was sufficient to stabilize.  Length 

feedback was also sufficient to produce the directional tuning of muscle activity and 

constrained ground reaction forces as is observed in experiments. These results have 

implications for controlling powered prosthetic devices, suggesting that subdividing the 

responsibility for stability among hierarchical control structures will simultaneous 

improve stability and maneuverability of the devices.  



 

1 

CHAPTER 1 

INTRODUCTION 

Emerging fields at the intersection of movement biology and engineering have 

extraordinary potential in assistive technologies such as medical robots and prosthetics.  

A humbling perspective is gained, however, by comparing the robustness and versatility 

of the best engineered system with biological solutions.  Not only are we unable to 

reproduce many of the capabilities of biology but our understanding of how the nervous 

and musculoskeletal systems accomplish these tasks is extremely limited.  The goal of 

basic research in motor control is to develop our understanding of the nervous system.  

What are the strategies, pathways, mechanisms, networks, bits and pieces of the control 

of movement? 

In 2007 there were over 2 million people living in the US with a limb amputation.   

Despite dramatic increases in knowledge in the field of robotics and controls over the 

past half century, there has not been a successful transfer to prosthetic applications.  In 

addition, many neurological and muscular deficiencies affect the ability of patients to 

perform normal motor functions including balance.  A major difficulty in developing 

natural powered prosthetics and treating balance disorders is that the mechanisms by 

which the nervous and musculoskeletal systems interact to achieve balance are poorly 

understood.  Improving our understanding of the mechanisms of postural stability would 

be extremely useful in improving prosthetic design and balance disorder treatments as 

well as motor control research in general.  In addition to its intrinsic importance during 

quiet standing, postural control also serves as the background for a wide variety of other 

critical motor tasks.  The goal of this dissertation is to provide understanding of how 

neural feedback and intrinsic musculoskeletal properties are coordinated to achieve 

efficient postural stability. 



 2

Spinal cord

Muscle

ΣF = 0

EMG

GRF

b)a)

CoM (global) stability

Limb level stability

Joint level stability

Muscle level stability

Supraspinal

 

Figure 1.1: Postural control hierarchies.  A) Postural control requires stability at multiple levels.  In 
order for the center of mass (CoM) to be stabilized each limb must be stable.  In order for a limb to be 
stable the constituent joints and muscles must be stabilized.  B) The motor control hierarchy ranges from 
the immediate interactions with the environment and intrinsic musculoskeletal properties to neural control 
through spinal and supraspinal pathways.  External forces such as the ground reaction force (GRF) and 
gravity cause skeletal motion which deforms the tendons and muscles.  The deformation of these soft 
tissues causes changes in their force output which influences skeletal motion and interaction forces with the 
environment.  The external forces, internal muscle forces, and deformations are transduced and 
communicated to networks in the spinal cord.  This information is integrated in spinal networks and fed 
back to the muscles.  It is also communicated higher up through the hierarchy to the brainstem and other 
higher centers.  The neural contributions are reflected in a change in muscle activation (Electromyography 
EMG). 
 
 

Background and Motivation 

What mechanisms do animals use to achieve efficient and robust postural 

stability?  The introduction is organized to provide an overview of the postural task and 

what is known about how biological systems accomplish postural stability, as well as an 

introduction to the gaps in this knowledge. The anatomy and physiology of the specific 

mechanisms animals may use to stabilize is provided.  To measure the performance of the 

biological system and to choose strategies of motor control, the engineering principles of 

optimal control and Lyapunov stability are relied upon heavily, and a brief background of 

these principles is also provided in the introduction.  
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The Postural Task 

There are multiple levels to the postural task during quiet standing (Figure 1.1a).  

Ultimately, the center of mass (CoM) must be stabilized, or maintained above a base of 

support (global level).  In order for the center of mass to be stabilized the individual 

limbs must be coordinated to provide appropriate restoring forces at the ground to 

compensate for any external disturbances.  The restoring forces are provided by the 

transformation of muscle forces through joint torques to a limb endpoint force. The 

resultant endpoint force is sensitive to the configuration of the limb and so the limb must 

be stabilized (limb level).  For a limb to be stable the joints that comprise the limb must 

be stabilized (joint level).  In addition, multiple muscles may contribute differentially to 

force generation (Bernstein 1967) and stability (Bunderson et al. 2008, Young et al. 

1992) of a given joint and so must be coordinated to provide stability (muscle level).  In 

this way the stability of the whole requires stability and coordination of the constituents 

at multiple levels. 

There are various mechanisms that animals use to accomplish postural stability at 

the different levels of the task that constitute a motor hierarchy (Figure 1.1b).  The 

hierarchy is comprised of intrinsic mechanical properties of muscle, short latency spinal 

reflexes, longer latency postural responses, and volitional actions.  The respective roles of 

the various mechanisms in postural control is debated, however, the debates are centered 

on the global problem of balancing the CoM and generally do not address the subtasks of 

stabilizing and coordinating the limb and joint responses to perturbation (Hasan 2005, 

Lyalka et al. 2005, Macpherson and Fung 1999, Morasso and Sanguineti 2002, Peterka 

2002). Since stability and coordination of the constituents (muscles, joints, and limbs) is 

required for stability of the whole (CoM) it is conceivable that the responsibility for 

stabilizing the constituents is provided by the lower levels of the motor control hierarchy 

including intrinsic muscle properties and spinal reflex pathways. 
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Which mechanisms and strategies biological systems employ to accomplish 

postural control is generally studied using perturbation methods; a destabilizing 

perturbation is applied to an animal and the strategy used by the animal to achieve 

postural stability is observed.  The cat has served as a classical model of postural control 

(Liddell and Sherrington 1924, Macpherson 1988) and the postural response to 

perturbations of the animals has been reported in terms of CoM motion as well as outputs 

at the other levels (ground reaction forces, joint kinematics, and muscle EMGs) 

(Lacquaniti and Maioli 1994, Lacquaniti and Maioli 1994, Macpherson 1988, 

Macpherson 1988).  In addition neural outputs have been reported in configurations 

related to posture (Bosco and Poppele 1997, Bosco et al. 2000). 

The response to an external perturbation displays characteristic phases that 

support the model of hierarchical control.  Ground reaction forces change coincident with 

the applied perturbation, which implies the contribution of elastic, viscous and inertial 

properties of the limb.  No immediate alteration in muscle electrical activity is seen, but 

EMG changes are observed with latencies characteristic of the monosynaptic stretch 

reflex, polysynaptic spinal reflexes, and supraspinal reflexes.  Forces resulting from these 

stereotypical muscle activations facilitate recovery from increasingly complex 

perturbations, requiring increasing levels of sensory integration or increasingly complex 

internal models. 

The net postural correction is the force applied through the limbs to the ground.  

Independent forelimb and hindlimb control has been demonstrated in the postural 

response of cats (Deliagina et al. 2006), but a consistent “force constraint strategy” is 

observed in both forelimbs and hindlimbs (Macpherson 1988).  Quietly standing cats 

subject to horizontal perturbations of the support surface in a variety of directions 

revealed a “force constraint strategy”, where forces are constrained to a preferred 

direction regardless of the direction of postural perturbation (Macpherson 1988, 

Macpherson 1994).  This strategy has also been demonstrated in the human postural 
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response (Henry et al. 2001).  In cats it has been shown to be dependent on the posture of 

the animal (Torres-Oviedo et al. 2006) and is not due to limitations in the force-

producing capabilities of the limb (McKay et al. 2007).  Spinalized animals with poor 

postural control do not exhibit a force constraint strategy which suggests that the strategy 

is important for balance (Macpherson and Fung 1999).  It has been shown that the ground 

contact forces are controlled independently from the control of limb geometry 

(Lacquaniti and Maioli 1994) but it is not clear whether the force constraint is the result 

of a global strategy to balance the CoM or part of a sub-strategy to stabilize the limb. 

Muscle activity is also constrained during the postural response in cats and 

humans (Macpherson 1988, Torres-Oviedo and Ting 2007).  EMG signals were measured 

from hind and forelimb muscles of cats subject to the horizontal perturbations and muscle 

activity was found to vary with the direction of the platform perturbations (Macpherson 

1988).  The magnitude of the tuned responses was reduced in the spinalized cats with 

reduced balance control and the responses were delayed (Macpherson and Fung 1999).  

These changes in muscle activity indicate that some level of neural control is important 

for standing balance.  

The changes in EMG responses may be due to a variety of mechanisms including 

spinal reflexes, longer latency supraspinal responses, and volitional control.  The effect of 

each of these mechanisms on EMG patterns is difficult to separate except that the earliest 

responses can only be due to spinal reflexes.  The spinal reflexes are flexible in that their 

sensitivity is modulated by supraspinal centers in postural tasks (Hoffer et al. 1990, 

Schouten et al. 2008, Sinkjaer and Hoffer 1990).  In addition, proprioceptive spinal 

feedback is distributed across a limb (Bonasera and Nichols 1994, Eccles et al. 1957, 

Jankowska 1992, Nichols 1989), and the outputs of the spinal pathways are correlated 

with whole-limb variables (Bosco et al. 2000).  Taken together, these results suggest that 

the spinal reflex pathways could play a role in the stabilization and coordination at the 

limb level (Nichols et al. 1999). However, the contributions of the various levels of the 
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motor control hierarchy to stabilization of the various levels of the task is not known, and 

it remains unclear to what extent the observed endpoint forces, kinematics, and muscle 

activities represent a specific strategy of CoM stabilization or simply emerge from limb 

and joint stabilization.  This dissertation is concerned with addressing the role of 

proprioceptive spinal reflexes, particularly length feedback, in providing efficiency, 

stability, and coordination at the limb level. 

Mechanisms of Postural Control 

A key theme to the work has been the idea of hierarchies in motor control (Figure 

1.1b).  The various levels of the hierarchy each contribute to postural control to varying 

degrees (Deliagina et al. 2006, Hasan 2005, Peterka 2002, Ting and McKay 2008).  The 

first response of the body to any outside force comes from the intrinsic musculoskeletal 

properties.  Soft tissues are stretched or unstretched and, due to their inherent 

viscoelasticity, forces are applied to the skeleton which resist or assist the motion.  At the 

next level of the hierarchy are the spinal reflex pathways.  The soft tissues contain 

sensors such as muscle spindles, Golgi tendon organs, and cutaneous receptors, which 

sense perturbations and relay that information through feedback loops in the spinal cord 

to motoneurons that activate muscles throughout the body, further contributing to the 

response of the body to perturbations.  Finally, the sensed information is also carried to 

higher centers including the brainstem, cerebellum, and motor cortex, where further 

reflexive and volitional control is accomplished.  These higher centers are also involved 

in the modulation of the sensitivity of the spinal reflex pathways and motoneuron 

excitability. To what extent each layer is responsible for postural control is an intensely 

debated topic(Hasan 2005).  
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Intrinsic Mechanisms of Postural Control 

Soft tissues such as muscle, tendon, and ligament are the origin of the intrinsic 

viscoelastic resistance to perturbation.  The viscoelasticity of muscle has proven to be 

extremely challenging to describe and dependent on multiple parameters (Epstein and 

Herzog 2003).  Part of the difficulty in describing this viscoelasticity is that it arises from 

molecular interactions in muscle that are not fully understood.  The prevailing theory of 

muscle force generation, the sliding filament theory (Huxley 1957), is that the force 

generated by a sarcomere is greatest when the thick, myosin filaments exactly overlap the 

thin, actin filaments.  As the sarcomere changes length, the amount of overlap between 

thick and thin filaments changes, reducing the number of actin binding sites for myosin 

and reducing the number of attached, force-generating crossbridges, decreasing active 

tension (Gordon et al. 1966). Other contributions to the elasticity of muscle include short 

range stiffness, which may arise from the slow cycling rate of actin-myosin crossbridges 

(Campbell and Lakie 1998, Getz et al. 1998, Huyghues-Despointes et al. 2003, Nichols 

and Cope 2004, Rack and Westbury 1974).  Gasser and Hill (1924) observed that the 

speed of shortening of a muscle fiber decreased with the inertial load on the muscle, 

indicating that the muscle was inherently viscous.  Although this viscoelasticity is 

described as an intrinsic property, in reality it is not independent of neural activity; 

stronger muscle activation results in greater viscoelasticity (Gasser and Hill 1924, Rack 

and Westbury 1969). 

Two common forms of mathematical muscle models have emerged.  First 

described by A.F. Huxley (1957), Huxley models attempt to describe the whole fiber 

properties of muscle by modeling the action of individual myosin molecules.  The 

properties of an entire fiber and muscle arise from the concatenation of many of these 

individually-modeled sarcomeres.  On the other hand, Hill models (Hill 1938) are based 

on the length-tension and force-velocity properties of muscle fibers.  Instead of modeling 

the action of individual sarcomeres, Hill models use elastic and force generating elements 
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that describe the observed properties of whole fibers.  The advantage of Hill models over 

Huxley models is that they are much more computationally efficient.  In models which 

include many kinematic degrees of freedom and muscles, such as the one used in this 

dissertation, Hill models are used extensively (Epstein and Herzog 1998).  In the models 

of this dissertation I used muscle models of varying levels of complexity for the different 

studies.  Each mathematical muscle model is described in the chapter in which it is used. 

The viscoelasticity of muscle is inherently stabilizing at the muscle level but may 

be destabilizing at the joint level. This is due to the fact that muscle affects joint torques 

through a line of action at which force is applied to the skeleton by the tendons.  This is 

analogous to the fact that the torque applied to a bolt through a wrench depends on where 

on the handle the wrench is grasped and the angle at which the force is applied.  The 

muscle force – joint torque relationship (moment arm) varies with joint motion, thereby 

altering the net effect of the force.  A viscoelastic muscle level may be either stabilizing 

(Young et al. 1992) or destabilizing (Bunderson et al. 2008) at the joint level due to the 

moment arm contribution.   

Although the intrinsic musculoskeletal properties provide instantaneous resistance 

to perturbations, it has not been established whether they are of sufficient magnitude to 

stabilize limb posture in a variety of animals and tasks (Edwards 2007, Morasso and 

Sanguineti 2002, Morasso and Schieppati 1999, Richardson et al. 2005, Winter et al. 

1998, Winter et al. 2001).  The correlation between the center of pressure (CoP) and CoM 

was used to argue for intrinsic muscle control of postural sway in humans (Winter et al. 

1998, Winter et al. 2001).  However, Morasso and coworkers argued that this correlation 

does not indicate intrinsic control, but rather feedforward neural control of postural sway 

(Morasso and Sanguineti 2002, Morasso and Schieppati 1999). This debate, however, is 

in regard to the normal postural sway in unperturbed quiet standing and it is generally 

held that control of posture in response to perturbations requires neural control (Peterka 

2002).  Even if the intrinsic musculoskeletal properties are insufficient in cats to stabilize 
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the center of mass it has not been tested whether they are sufficient for the subtask of 

stabilizing an individual limb. In this dissertation I have tested whether intrinsic muscle 

properties are sufficient to stabilize at the limb level of a cat. 

Spinal Mechanisms of Postural Control 

The next level of the motor control hierarchy is comprised of reflex pathways in 

the spinal cord which excite or inhibit muscle activity based on information from a 

variety of sensors in the skin, muscles, tendons, or joints.  The proprioceptive sense 

originates largely from sensors at the muscle level: muscle spindles and Golgi tendon 

organs.  The sensed information is relayed by afferent fibers to the spinal cord by mono- 

and poly-synaptic networks and fed back to the motoneurons, which constitutes a short 

latency feedback loop important to posture and locomotion (Windhorst 2007). The fact 

that proprioceptive spinal feedback is distributed across a limb (Bonasera and Nichols 

1994, Eccles et al. 1957, Jankowska 1992, Nichols 1989), and the outputs of the spinal 

pathways are correlated with whole-limb variables (Bosco et al. 2000) suggest that the 

spinal reflex pathways could play a role in the stabilization and coordination at the limb 

level (Nichols et al. 1999). 

Golgi tendon organs (GTOs) are sensors in the tendon of muscle that are sensitive 

to muscle force.  Located at the junction of muscle and tendon, the GTO capsules contain 

the axons of several group Ib afferents. The group Ib’s are sensory neurons with cell 

bodies in the dorsal root ganglia and large-diameter myelinated axons.  The axons are 

intertwined with the collagen of the tendon, allowing the transduction of muscle tension 

to the axons themselves. Tension within the collagen causes an increase in the firing rate 

of the GTO and a decrease in the firing rate of adjacent GTOs (Jami 1992). The net firing 

of a population of these sensors in the tendon of a muscle provides a reasonably accurate 

estimate of active force generated by the muscle (Crago et al. 1982, Stephens et al. 1975). 

In the spinal cord the response to the firing of group Ib neurons is generally inhibitory; 
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that is, an increase in force of a muscle generally causes a decrease in the activation of 

motoneurons of that muscle (Jami 1992). This inhibitory effect is accomplished through 

the excitation of Ib inhibitory interneurons, which in turn inhibit the muscles motoneuron. 

However, there is evidence for positive force feedback in postural tasks (Pratt 1995).   

Muscle length and velocity information is sensed by muscle spindles.  

Interspersed with the force-generating (extrafusal) fibers of a muscle are the sensory 

intrafusal fibers.  Each muscle spindle is comprised of several intrafusal fibers, a single 

group Ia afferent and multiple group II afferents.  The intrafusal fibers have contractile 

apparatus at the polar regions of the fiber and are innervated with annulospiral endings of 

large diameter group Ia afferents and smaller group II afferents at the equatorial region of 

the fiber.  In response to stretch, ion channels in the annulospiral endings of the afferents 

open, resulting in an influx of sodium, thereby increasing the resting potential of the 

axons.  The intrafusal fibers are classified as dynamic nuclear bag fibers, static nuclear 

bag fibers, and nuclear chain fibers.  The dynamic bag fibers respond to fast changes of 

length, while the static bag fibers and chain fibers respond to static changes in length.  

These differences between fibers result in specialization of the group Ia and group II 

afferents.  Since the group Ia afferents innervate both bag and chain fibers they are often 

described as being sensitive to both length and velocity of the intrafusal fibers. Likewise, 

group II afferents are primarily associated with the chain fibers making them sensitive to 

the length of the intrafusal fibers.  The sensitivity of these afferents to fiber length and 

velocity can be adjusted by varying the tension of the polar regions of the fiber which are 

innervated by gamma motoneurons. 

The force (Nichols et al. 1999, Pratt 1995), velocity (Houk et al. 1981) and 

particularly length feedback (Liddell and Sherrington 1924, Lloyd 1946) provided by 

these proprioceptive sensors have long been believed to play a large role in providing 

postural stability through spinal reflex mechanisms (Sherrington 1910).  Information 

from each of the sensors is integrated in the spinal cord and sent to higher centers in 
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addition to being returned to the muscles through spinal reflex pathways.  The group Ia 

and to a lesser extent the group II neurons make direct, monosynaptic contact with 

motoneurons.  The sensory – motor feedback pathway in the spinal cord is also mediated 

polysynaptically through interneurons.  In the latter case, there are excitatory and 

inhibitory connections and a wide divergence of sensory information.  In summary, spinal 

reflexes include sensory input, information integration with interneurons and 

motoneurons, and motor output. They are rapid due to being contained completely within 

the spinal cord without requiring the influence of supraspinal centers. However, 

supraspinal centers may influence the sensitivity of these reflexes (Miller et al. 1996). 

The most direct spinal reflex pathway is the monosynaptic stretch reflex (Eccles 

and Lundberg 1958, Liddell and Sherrington 1924), whereby group Ia afferents make 

monosynaptic connections in the spinal cord with alpha motoneurons of the original 

muscle.  Excitation of the Ia afferent therefore results in excitation of the homonymous 

alpha motoneurons.  The group II afferents also make mono-synaptic connections to the 

alpha motoneurons (Kirkwood and Sears 1975).  In addition to the stretch reflex, sensory 

receptors from a given muscle provide excitatory feedback to  synergistic muscles, those 

of similar action, and inhibitory feedback to antagonist muscles, those of opposing action 

(Liddell and Sherrington 1924, Lloyd 1946).  

The Ia afferent feedback in the cat hindlimb including homonymous excitation 

and reciprocal inhibition and is non-uniform (feedback gains between different muscles 

are not of uniform strength) (Eccles 1956, Eccles et al. 1957, Nichols 1989).  Force 

feedback has an even wider limb distribution (Jankowska 1992, Powers and Binder 

1985).  Stimulation of hindlimb extensor muscles in cats evoked non-uniform excitatory 

responses that were widely distributed among other hindlimb extensor muscles through 

force feedback (Pratt 1995) .  Both length and force heterogenic feedback can be non-

uniform, favoring force generation by one muscle of a pair or at one joint over another 

(Bonasera and Nichols 1994, Eccles and Lundberg 1958, Nichols et al. 1999, Pratt 1995).  
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Despite the long history of research into the spinal reflex pathways it has been 

difficult to relate the neurophysiological results to the functional postural response of 

animal.  Sherrington (1910) described the postural control capabilities of spinal and 

decerebrate cats and attributed them to homonymous spinal reflex, or length regulation of 

a single muscle.  As the inhibitory action of the reflexes on antagonists became clear 

(Lloyd 1946) the functional role of the spinal reflex was expanded to include position 

control of a whole joint (Merton 1953). However, it was shown in human subjects that 

reflex control of the whole limb does not mimic a servo-like system (Crago et al. 1976) 

and the stretch reflex may be a better regulator of muscle stiffness than muscle length 

(Nichols and Houk 1976).  These results have led to the view that the spinal reflexes are 

organized in a manner that coordinates the response at the limb level (Nichols et al. 

1999).   

Again, the effect of the spinal reflexes on postural control has remained elusive 

due to the difficulty of separating their effects from those of the intrinsic muscle 

properties and neural control from supraspinal centers.  Spinalization changes the 

excitabilities of the spinal feedback pathways so this preparation is not ideal for 

determining the effect of these pathways in addition the effects of these pathways on the 

stability of the constituent levels (muscles, joints, limbs) has not been tested.  In this 

dissertation I have tested whether energetically optimal limb control can be constructed 

from the intrinsic viscoelasticity of muscles, from simple autogenic length feedback, or 

complex interjoint feedback.  In addition I have tested whether length feedback through 

spinal reflex pathways is sufficient to stabilize at the limb level of a cat. 

Supraspinal Mechanisms of Postural Control 

Processed information from the spinal cord is transmitted to the brainstem and 

cerebellum where further sensory integration is accomplished.  The brainstem has been 

shown to participate in postural adjustments during a voluntary task (Schepens and Drew 
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2004). Higher centers provide the potential for voluntary control, yet response latencies 

may be significantly longer. Higher centers are also the locale for multiple sensory 

modality integration (e.g. vestibular, visual, neck afferents) resulting in an overall 

representation and interpretation of the body in space.  In addition to the long latency 

reflexive networks, an important role of the higher centers is the modulation of 

excitability of the spinal networks through a primarily inhibitory pathway (lateral 

reticulospinal tract) and a primarily excitatory pathway (medial reticulospinal tract). 

While visual and vestibular information integrated in the brainstem and 

cerebellum are certainly used for postural control to varying degrees in different contexts, 

experiments with labyrinthectomized cats in a darkened room have demonstrated that 

neither vestibular nor visual information is required for the force constraint strategy or 

the directional tuning of EMG patterns (Inglis and Macpherson 1995).  Although this 

information is not necessary to generate the postural response it has also been argued that 

the latency of the onset of the EMG response is appropriate for proprioceptive and 

cutaneous sensory integration at the level of brainstem and cerebellum (Horak and 

Macpherson 1996).  The role of the brainstem and cerebellum with respect to the spinal 

reflexes has been tested in spinalized animal preparations.  Spinalized cats could be 

trained to stand (De Leon et al. 1998, Fung and Macpherson 1999), but could balance 

only for short periods of time (Macpherson and Fung 1999).  In the spinalized cats with 

reduced balance control, the directional tuning of EMG remains intact although delayed 

and with reduced magnitude. This would seem to suggest that the long latency response 

is necessary for postural control.  However, in addition to directing the long latency 

response the higher centers control spinal reflex excitability (Miller et al. 1996).  The 

inability of the spinalized cats to generate a postural response may be due one or both of 

these effects. 

Evidence that the excitability control rather than the long latency response from 

higher centers is necessary for the postural response was shown in rabbits subject to 
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spinal hemisection (Lyalka et al. 2005).  Rabbits subject to ventral hemi-section of the 

spinal cord lost and did not regain the postural response, while rabbits subject to dorsal or 

lateral hemisection quickly regained the postural response (Lyalka et al. 2005).  The 

authors contend that since both dorsal and lateral hemisections substantially interfere 

with the feedback loops of the higher centers the most plausible explanation is that the 

excitability of the spinal networks is maintained in these preparations and not in the 

ventral hemi-section. They conclude that the spinal networks play a large role in 

generating the postural response. 

The pyramidal tract neurons (PTNs) (neurons of the corticospinal tract) were 

recorded in cats subject to a periodically tilting of the platform on which they stood.  The 

fact that the activity of these neurons correlated with tilt of the platform was taken as 

evidence that the motor cortex is directly involved in postural corrections (Beloozerova et 

al. 2005).  Further it was found that individual PTNs for a specific limb were directly 

dependent upon the proprioceptive information from the contralateral limb, indicating a 

role in the postural controller (Karayannidou et al. 2008). There is also evidence in 

humans that longer latency postural responses involve direct corticospinal projections 

onto motoneurons (Taube et al. 2006).  In spite of these results, however, it has been 

shown that premammilary decerebrate cats generate a postural response to perturbations 

(Bard and Macht 1958).  Although the higher centers especially brainstem may be 

important for the global task of balancing the center of mass this level of stability and 

level of neural control was not tested.  This thesis is built on the hypothesis that 

apparently complex neural control and ostensibly high degree of sensory integration can 

be an emergent property of anatomical structure and simple length feedback. 

Hierarchical Postural Control 

The hierarchical structure of the motor control system may be reflected in the 

motor task itself.  In balance control during quiet standing ultimately the center of mass 



 15

(CoM) must be stabilized, which, again, requires the coordination and stability of 

multiple levels (limbs, joints, muscles).  The stability of the whole therefore requires 

stability and coordination of the constituents.  The hierarchical nature of both task and 

controller suggest that different levels of the motor control system are responsible for 

different levels of the task.   

Postural control debates regarding the relative roles of intrinsic muscle and neural 

mechanisms, as well as spinal and supraspinal contributions are centered on the global 

problem of balancing the CoM and do not address the subtasks of stabilizing and 

coordinating the limb and joint responses to perturbation (Lyalka et al. 2005, Macpherson 

and Fung 1999, Morasso and Sanguineti 2002, Peterka 2002).  Although it is generally 

agreed that the intrinsic properties of muscle are insufficient to balance the CoM in 

humans (Morasso and Sanguineti 2002, Peterka 2002) it is unknown whether they are 

sufficient for the sub-task of providing limb stability.  The role of spinal reflexes in 

postural control has also been debated, again, in the context of balancing the CoM 

(Lyalka et al. 2005, Macpherson and Fung 1999).  Since stability and coordination of the 

constituents (muscles, joints, and limbs) is necessary to balance the CoM it is conceivable 

that the responsibility for stabilizing the constituents is provided by the lower levels of 

the motor control hierarchy including intrinsic muscle properties and spinal reflex 

pathways. In particular muscle stiffness and length feedback both provide a positional 

sensor for the configuration of the limb and could be used to stabilize at the level of 

muscle, joint, and limb.  I hypothesized that the lowest levels of the motor control 

system, the intrinsic properties of muscles are insufficient to stabilize a whole cat 

hindlimb and that muscle length feedback provided by spinal reflex mechanisms is 

sufficient to stabilize the cat hindlimb. I test this by demonstrating that an anatomically 

accurate model of the cat hindlimb is mathematically unstable under all patterns of 

muscle activation unless the intrinsic stiffness of muscles was augmented by length 

feedback.  In addition I hypothesized that the observed postural response in terms of 
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tuned muscle activation and constrained ground reaction forces would be observed in the 

limb stabilized by length feedback, and test this by demonstrating that application of 

measured and approximated gains of length feedback to the perturbed hindlimb results in 

constrained ground reaction forces and tuned muscle activation patterns. 

Ultimately stability could be provided by very stiff muscles or by strong length 

feedback gains at the cost of increased energetic expenditure.  Based on the assumption 

that the biological system seeks to minimize energy expenditure I also hypothesized that 

the stabilizing spinal reflexes are organized according to optimal principles of control 

accuracy and energy.  I tested this by designing an optimal asymmetric heterogenic 

feedback controller for a three-link hindlimb model measuring the effectiveness of the 

controller in maintaining postural endpoint control of a multi-link system.  I show that for 

a postural endpoint task, asymmetric control allows improved endpoint performance, 

reduced energetic cost, and greater coordination among joints (Bunderson et al. 2007). 

The hypotheses were tested using a mathematical model of a cat hindlimb.  The 

benefit of using a mathematical model was that the intrinsic muscle properties and spinal 

reflex pathways could be applied independently and optimal control theory could be used 

to determine optimal reflex gains.  First, I determined the optimal length and velocity 

feedback gains for maintaining postural control of a planar three-link limb model.  This 

optimization was also applied to determine the optimal feedback between the joints of a 

three-dimensional seven degree-of-freedom (DoF) model and these optimal gains were 

compared to the length and velocity feedback provided by known spinal reflex pathways. 

The second study directly tested whether the intrinsic muscle properties are sufficient to 

provide limb stability.  Here the problem of musculoskeletal redundancy was addressed 

by evaluating limb stability across a wide variety of functionally equivalent patterns of 

muscle activation.  The third study tested whether length feedback in addition to the 

intrinsic muscle properties were sufficient to provide limb stability.  In this study the 

response of the limb under postural perturbations was compared with the response of 
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intact cats (Macpherson and Fung 1999) specifically in terms of muscle activity 

(electromyography, EMG) and ground reaction forces (GRF).  Finally, the limb 

perturbations were applied to a decerebrate cat and the GRF and kinematics of the limb 

were compared with modeling results. 

Investigative Approach 

Engineering Principles of Control 

By using a mathematical model to evaluate the postural control problem, different 

levels of intrinsic mechanical and neural control can be independently and systematically 

investigated.  For example, the effects of each level of control on system outputs (e.g. 

EMG, GRF, and kinematics) can be estimated through dynamic simulation and 

contrasted.  In addition, the mathematical approach allows both rigorous determination of 

how the stability of the system depends on the different levels of control, and the 

application of optimal control theory to predict and test candidate strategies of neural 

control.  In the first study an optimal control formulation – the linear quadratic regulator 

– was used to determine the organization of length and velocity feedback that optimally 

controls a simplified model of a limb.  In the second and third studies, the detailed 

hindlimb model was linearized about an equilibrium posture and the stability of the limb 

(with and without length feedback, respectively) was quantified using Lyapunov stability 

theory.  Additionally in the third study, the responses of the full, nonlinear hindlimb 

model with length feedback during forward dynamic simulations were compared to those 

of intact cats.  Finally, in the fourth study, the responses of the hindlimb model during 

forward dynamic simulations were compared to those of a decerebrate cat. Linearization 

of non-linear systems, Lyapunov stability, and optimal control are introduced here 

briefly. 
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A requirement for the linear quadratic regulator formulation is that the system 

must be linear.  Although the muscle models and rigid body equations of motion (f(x)) 

are inherently nonlinear, the postural task being evaluated is near static equilibrium.  The 

equations of motion may therefore be linearized about this equilibrium point using a 

Taylor series approximation 
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If the disturbances are small, the higher order terms are much smaller than the 

first order term and the system can be approximated as 

 xAx v&v Δ=Δ  (2) 

Where,  
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v
. (3) 

This approximation of the system is used to evaluate the stability of the model and 

to predict patterns of length and velocity feedback. 

Lyapunov stability theory establishes rigorous mathematical definitions of and 

tests for “stability”.  The solution to equation (2) is an exponential that decays to the 

equilibrium if the matrix A is negative definite or, in other words, if all eigenvalues are 

less than zero.  Thus, according to Lyapunov stability theory, if the linear system 

(Equation 1) is perturbed slightly from equilibrium ( 0
v

&v =Δx ) and subsequently returns to 

equilibrium then it is said to be asymptotically Lyapunov stable. 

Optimal control theory can be applied to the linearized equations of motion in 

order to predict patterns of length and velocity feedback. Optimal control theory is based 

on mathematical constructs that minimize a theoretical cost function associated with a 

system.  In biomechanical systems, such "costs" can include measures of energy and 

accuracy.  Mathematical models and optimal control are being used increasingly in 
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evaluating postural control (He et al. 1991, Kuo 1995, Kuo 2005, Todorov 2004, Todorov 

and Jordan 2002).  The great benefit of optimal control theory is that in addition to being 

descriptive the models have the potential to be predictive of neural connectivity.  Models 

of human balance control have been used to explain physiologically observed properties 

such as the hip and ankle strategies of postural control in terms of the sensory weighting 

(Kuo 1995).  In addition, optimal state estimation and control have been used to predict 

the effect of the deterioration of various sensory modalities (vision, vestibular, joint 

proprioception) on the ability to balance (Kuo 2005).  He et al. (1991) applied linear 

optimal control theory to a planar cat hindlimb model to predict length and force 

feedback between muscles. The ability to identify the trade-offs the nervous system 

makes between energetic and accuracy goals is a key feature of these applications.  Liu 

and Todorov demonstrate that many specific features of motor tasks, such as late 

corrections during in reaching tasks, are attributable to this type of trade-off (Liu and 

Todorov 2007).  In this dissertation, a specific optimal control formulation called the 

linear quadratic regulator is used to predict patterns of length and velocity feedback.  The 

linear quadratic regulator formulation is described in detail in chapter 2. 

Muscle, Joint and Extrinsic Space 

Analyzing motor tasks from the perspective of these three spaces: extrinsic space, 

joint space, and muscle space, provides valuable insight into how the nervous system 

may coordinate control at one end to achieve results at the other end (Valero-Cuevas 

2006) (Figure 1.2).   Motor tasks are often considered in terms of extrinsic, Cartesian 

space, such as maintaining the center of mass above a base of support.  However, to 

actually accomplish this goal many joints must be coordinated, and exactly how the CoM 

is maintained above the base of support could be more specifically defined in terms of the 

joint motions in joint space.  Further, the joints of the limb are controlled not directly, but 

through the activation of muscles that cross the joints.  Finally, in most cases, any given 
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joint is crossed by multiple muscles, some of which in turn cross other joints.  The task of 

balance then requires coordination of all the muscles in muscle space to achieve the 

desired result in extrinsic space.  

It is interesting that the chiasmatic structure seen in the hierarchies of motor 

control is reflected here in the dimensional mapping between these three spaces.  In the 

motor control hierarchy a perturbation sensed in extrinsic (cutaneous), joint (joint 

proprioceptors) or muscle (spindles, GTO) space is processed and an appropriate 

response is returned back through the muscles (muscle space) to joint motion (joint 

space) resulting in ground reaction forces and center of mass movement (extrinsic space).  

The parallel mathematical mappings between the spaces are described here briefly along 

with their intuitive interpretation.  To begin with, imagine an animal standing on a 

movable platform. As the platform begins to move, the displacement of the toe ( TOExvΔ )  
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Figure 1.2: Multiple coordinate transformations are required in integrating sensory information and 
generating an appropriate motor response. The transformations from extrinsic (Cartesian) space to joint 
space are accomplished through the endpoint Jacobian (J).  The transformations from joint space to muscle 
space are accomplished through the muscle moment arm matrix (R).  The postural response can be 
measured in muscle space (EMG), joint space (joint kinematics JK), and extrinsic space (GRF and CoM 
motion). 
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in contact with the platform is explicitly related to the displacement of all the joints 

( θ
v

Δ ).  Mathematically this relationship is defined by the endpoint Jacobian 

which is simply the change endpoint position with the change in joint angles, 

 θ
v

v

∂
∂

= TOExJ
. (4) 

In other words, the endpoint Jacobian J is the mapping between the extrinsic and joint 

spaces.  This joint motion will cause a lengthening or shortening of each musculotendon 

unit and the relationship between the joint displacement and musculotendon length 

change ( MTL
v

Δ ) is, 

 θ
v

v

∂
∂

= MTLR
. (5) 

The matrix R is the mapping between joint and muscle space.  Next, suppose that the 

nervous system senses the lengthening of each muscle and so generates a response 

appropriate to the perturbation.  Each muscle will be activated appropriately to produce a 

force and the combination of these muscle forces will result in torques applied to all the 

joints crossed by the activated muscles.  The torque caused by the muscle forces is related 

to the muscle forces by, 

 M
T

M FT
vv

Δ= R . (6) 

This relationship demonstrates the mapping between joint and muscle space with the 

same matrix in terms of kinetics as opposed to kinematics (Eq. 5).  Finally, in order to 

resist the applied endpoint force and restore equilibrium the joint torque induced by the 

muscles must be related to the endpoint force applied by, 

 TOE
T

M FT
vv

Δ= J . (7) 

This relationship demonstrates kinetically the mapping between joint and extrinsic 

spaces. 
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The control of any given motor task necessarily involves multiple physical 

transformations that can be described both biologically and mathematically.  In the motor 

tasks considered in this work, this cascade involves the following transformations: from 

external or internal perturbation to sensory signal, from sensory signal to muscle 

activation, from muscle activation to muscle force, from muscle force to joint torques, 

and finally from joint torques to kinematics and endpoint forces.  These mappings are 

instrumental in describing and analyzing the biological principles of postural control in 

mathematical form and biomechanical models are a powerful tool in implementing these 

translations.  

Summary 

In balance control during quiet standing ultimately the center of mass must be 

stabilized which requires the coordination and stability of constituent levels (limbs, 

joints, muscles).  In addition the neuromusculoskeletal system is arranged in a hierarchy 

of control structures.  The hierarchical nature of both task and controller suggest that 

different levels of the motor control system are responsible for different levels of the task.   

I hypothesized that spinal reflexes are organized according to optimal principles 

of control accuracy and energy for stabilizing an animal at the limb level.  In the first 

study of the thesis I determined the optimal organization of joint length and velocity 

feedback to stabilize a simplified model of a limb (Bunderson et al. 2007).  I have 

compared this organization of feedback with the known spinal reflex pathways of the cat 

hindlimb.  

I further hypothesized that the lowest level of the motor control system, the 

intrinsic properties of muscles are insufficient to stabilize a cat hindlimb, that muscle 

length feedback is sufficient to stabilize the cat hindlimb, and that the limb stabilized 

with length feedback will result in a force constraint strategy and tuned muscle activation. 

In the second study I tested whether the intrinsic muscle properties are sufficient to 
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provide limb stability (Bunderson et al. 2008).  The problem of motor redundancy was 

addressed and the stability criterion was tested with a wide variety of functionally 

equivalent patterns of muscle activation.  The third study tested whether the known 

homonymous spinal length feedback pathways are sufficient to provide limb stability.  

Also the response of the limb under postural perturbations was compared with the 

response of intact cats (Macpherson and Fung 1999) in terms of EMG and ground 

reaction forces (GRF).  In the fourth study, limb perturbations were applied to a 

decerebrate cat and the GRF and kinematics of the limb were compared with modeling 

results.  
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CHAPTER 2 

ASYMMETRIC INTERJOINT FEEDBACK CONTRIBUTES TO 

POSTURAL CONTROL OF REDUNDANT MULTI-LINK SYSTEMS 

Introduction 

Postural control has proven to be a daunting engineering problem, but one that 

animals solve as a matter of course.  Control of multi-link systems is mathematically 

complicated by dynamic coupling among segments, which introduce torques at the 

remote joints in response to motion of any segment (Lacquaniti and Soechting 1986, Sage 

et al. 1999).  For kinematically redundant multi-link systems, maintaining the position of 

the endpoint does not fully constrain the configuration of the joints and this absence of a 

one-to-one relationship between the control goal of endpoint position and the system state 

variables further complicates the control problem (Patel and Shadpey 2005).  Despite the 

computational complexities, biological systems derive striking postural stability and 

control accuracy from the properties of muscles and proprioceptive reflexes (Kargo and 

Giszter 2000, Sinkjaer 1997). 

Biological systems use a complex network of inter- and intra-joint feedback along 

with intrinsic musculotendon properties to achieve endpoint control.  The intrinsic 

properties of individual muscles provide instantaneous stiffness, viscosity, and interjoint 

coupling (Hamill and Knutzen 2003).  These mechanisms are amplified by a carefully 

structured hierarchy of neural feedback mechanisms.  At the lowest level, the stretch 

reflex (Sherrington 1898) has been considered to provide spring-like or servo-like control 

of an individual muscle (Merton 1953, Nichols and Houk 1976).  Feedback from 

individual muscle spindles was subsequently shown to excite motorneurons of synergistic 

muscles and to inhibit motorneurons of antagonists (Liddell and Sherrington 1925, Lloyd 

1946), giving rise to the concept of a myotatic unit comprised of both agonists and 
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antagonists to provide servo-like control of individual joints (Merton 1953).  In human 

subjects, reflex control does not mimic a servo-like system (Crago et al. 1976), and the 

variation in intermuscular feedback gains measured in vivo varies among muscles 

crossing a single joint (Nichols 1989).  Short latency spindle reflexes modulate activity of 

many heteronymous muscles (Eccles 1956, Eccles et al. 1957, Nichols 1989), and it 

seems that reflex mechanisms can provide an integrated control system, spanning and 

coordinating multiple joints (Nichols et al. 1999).  This heterogenic feedback can be 

asymmetric, favoring force generation by one muscle of a pair or at one joint over 

another (Bonasera and Nichols 1994, Eccles and Lundberg 1958, Nichols et al. 1999, 

Pratt 1995). 

Asymmetry in heterogenic feedback results in an asymmetric, or non-

conservative, system (Hogan 1985).  Hogan raised this point to argue that symmetric or 

spring-like systems simplify control by allowing higher centers to specify endpoint 

position in terms of a potential function, the gradient of which defines the relationship 

between endpoint displacement and the restoring force.  The idea that the human arm 

functions as a symmetric system was tested during constrained planar motion in humans 

and found to hold for only two of the four subjects tested (Mussa-Ivaldi et al. 1985).  On 

average, 6.5% of the forces could not be accounted for under a symmetric assumption, 

and it is not clear whether this is an important fraction or not.  Even though substantial 

asymmetries are present at the muscle level, synergistic muscles form a highly redundant 

network around limited mechanical degrees of freedom, which may minimize the 

mechanical effect of the asymmetries.  However, substantial asymmetries in heterogenic 

feedback have been predicted using linear musculoskeletal models (Barin 1989, He et al. 

1991, Park et al. 2004).  He  and coworkers (He et al. 1991) used linear optimal control 

theory to predict length and force feedback between muscles of the feline hindlimb and 

found the heterogenic feedback gains to be asymmetric.  Considering higher levels of 

joint and interjoint feedback, asymmetric controllers were required to match human 
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postural responses modeled using two- (Park et al. 2004) and three- (Barin 1989) link 

inverted pendulum models.  Asymmetric joint-level stiffnesses have also been predicted 

(Stroeve 1999) and measured (Mussa-Ivaldi et al. 1985) in human arm models.  

Asymmetric controllers therefore appear to have performance advantages, despite the 

added complexity.  But, experimental observations supporting the importance of 

asymmetric reflexes have been equivocal, and it may be that the benefit provided by 

asymmetric interjoint feedback is relatively small and does not influence neural 

organization.   

Optimal controllers are mathematical constructs that minimize a theoretical cost 

function associated with a system.  In biomechanical systems, "costs" can include 

measures of energy and accuracy.  The linear quadratic regulator (Bryson and Ho 1975) 

is ideally suited to this class of problems and has frequently been used to test hypothetical 

cost functions to probe the organizing principles of the central nervous system  (He et al. 

1991, Kuo 1995, Kuo 2005).  One of the strongest advantages of the LQR approach is 

that it provides a unique, analytical solution, but previous work has not evaluated the 

change in cost associated with deviations from the optimal analytical solution, by, for 

example eliminating the asymmetric components of the feedback controller. 

The aim of this paper is to determine whether asymmetric interjoint feedback 

improves the performance of postural tasks for a generic redundant limb model.  We 

hypothesize that an asymmetric multi-joint control strategy results in lower energetic cost 

of recovery and reduced endpoint displacement due to perturbations.  We use optimal 

control theory to design specifically structured controllers and measure the effectiveness 

of each in maintaining postural endpoint control of a multi-link system.  We show that 

the benefits of asymmetric feedback are task-dependent.  Asymmetric feedback provides 

no benefit in a system tasked to maintain a specific joint configuration, but the system 

tasked to maintain joint configuration provides relatively poor endpoint stability.  For a 

postural endpoint task, asymmetric control allows improved endpoint performance, 
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reduced energetic cost, and greater coordination among joints.  These advantages of the 

optimal asymmetric controller could influence the structure of a biological controller, and 

is consistent with the limited experimental data in the literature. 

Methods 

The analytical methods of the paper follow the format of Table 2.1.  First, we 

define a kinematically redundant multi-link model.  Second, two postural tasks (a joint 

control task and endpoint control task), are specified for the model.  Third, three 

structures corresponding to a diagonal controller (single-joint control, homonymous 

feedback), a symmetric controller (multi-joint symmetric feedback), and an 

unconstrained controller (multi-joint asymmetric feedback) are designed for each postural 

task resulting in a total of 6 optimal controllers.  The endpoint stiffness and viscosity 

characteristics, and dynamic response of the model are reported.  To test the hypothesis 

that asymmetric multi-link strategies improve efficiency and control, the model is 

subjected to impulse perturbations at the endpoint, and kinematic and kinetic 

performance metrics are reported. 
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Model 

The model simulates a system of three identical links joined by single degree of 

freedom rotational joints (Figure 2.1a).  Each link of the model is a thin rod of length L 

and mass m.   The nominal joint configuration for simulations was chosen to mimic feline 

stance posture (θ1 = -51°, θ2 = -86°, θ3 = 35°) based on experimental data (Torres-Oviedo 

et al. 2006).  Additional simulations were performed with tree shrew posture (θ1 = -150°, 

θ2 = 120°, θ3 = -117°) (Schilling 2005), which is more compact. The equations of motion 

for the system, expressed in the generalized coordinate system, T],,[ 321 θθθθ =
v

, are 

 END
T FTv
vv&vvv&vvv&&v )(),(),( θθθθθθ JM ++−= . (1) 

where M is the inertia matrix, vv  is the centrifugal and Coriolis forces, T
v

 is the control 

joint torques, J is the Jacobian, and ENDF
v

 is an applied force at the endpoint.  The 

equations for M, vv  and J were derived in Autolev (Online Dynamics, Sunnyvale, CA).   

These equations were derived in non-dimensional units L̂ , m̂ , and t̂  with the 

characteristic length L, mass m, and force σ.  The characteristic time τ is derived from L, 

m, and the characteristic force or “effort” of the system (σ), 

 
σ

τ Lm
= .  

The effort of the system can be thought of as the ratio of accuracy to energy; for greater 

effort, accuracy of the system is increased with decreased energetic efficiency.  

The control torque applied to each joint element is determined by a lumped 

parameter, viscoelastic model, 

 ( ) ( ) θθθθ &vv&vvv
BR kk −Δ−=,T ,  

where, kR is the dimensionless 3x3 joint stiffness matrix and kB the dimensionless 3x3 

joint viscosity matrix. 

The system described in Eq. 1 was linearized by Taylor series expansion of the 

model around its nominal configuration with no applied endpoint force.  At the zero 
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velocity equilibrium point Coriolis forces are zero, and the governing equations in state 

space representation become 
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Figure 2.1:  Model diagram with example endpoint ellipse. (A) Three-link model (heavy black lines) 
with generalized coordinate system ( T],,[ 321 θθθθ =

v
).  The limb axis, LAvv , is directed from the endpoint 

to the proximal joint.  The endpoint stiffness (kR_END) and viscosity (kB_END) ellipses are characterized by 
the angle ϕ  between the limb axis and direction of maximum stiffness, MAXαv .  The direction of minimum 
stiffness is MINαv . Endpoint position perturbations (B) of equal magnitude are applied in all directions and 
the Jacobian pseudo-inverse used to compute the limb configuration for each endpoint position. Model 
responses (B) (top: JU/JS, middle: ES, bottom: EU) are shown for a perturbation applied in the x direction 
(ψ = 0°).  The time of maximum endpoint (dashed gray line) and maximum total joint (solid gray line) 
displacements are indicated. 
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where Tz ],[ 0 θθθ &vvvv −= .  Rearranging terms and defining the state matrix (A), input 

matrix (B), and state feedback matrix (k) as 

 ⎥
⎦
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⎢
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⎡
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, [ ]BR kkk = , (3) 

allows Eq. (2) to be written in the form, ( )zz v&v BkA −= . 

Task Specification and Optimization 

The steady-state linear quadratic regulator (LQR) formulation (Bryson and Ho 

1975) was used to uniquely determine the components of the optimal state feedback 

matrix k. The matrix minimizes a cost function (Ct) of the form 

 ( ) ( ) ( )∫∫∫
∞∞∞

+=+=+=
000

dtuuzzdtuudtzzCCC TTTT
ekt

vvvvvvvv RQRQ . (4) 

The first term of this expression, zz T vv Q , is a weighted sum of squares of state 

errors, and defines the kinematic cost Ck .  Two control tasks were defined to specify the 

kinematic cost.  A joint control matrix (QJ) represents the task of holding the limb at its 

nominal configuration, quantified by simple sum of squares of link displacement, 

 ( ) zzLd T
n

i
iJ

vv
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where n is the number of joints.  The accuracy matrix (QEP) was chosen to represent the 

task of maintaining endpoint position in Cartesian space, and incorporates an internal 

model in the form of the Jacobian, 

 zzdydxd T
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vv
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3333
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xx
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This control matrix assumes a constant Jacobian evaluated at the model’s nominal state 

and is therefore valid only for joint configurations close to this state.  Since QEP is not 

positive semi-definite, a requirement for LQR optimization, the endpoint task is 
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determined by a weighted sum of joint and endpoint control ( 22 9.01.0 EPJ
T ddzz +=vv

EQ ).  

The accuracy matrix QE for the endpoint task is  

 EPJ QQQ 9.01.0E += . 

The second term, uu T vv R , is a weighted sum of squares of the torques.  The effort 

weighting matrix, 33xIR = , was chosen to equally weight torque production at each joint 

and results in the sum of the squares of the joint torques, defining an energetic cost (Ce).   

The minimum solution of the cost function defined in Eq. (4) for a system of the 

form uzz vv&v BA +=  and control law, zvr k−=u , is 

( ) 00
0

)(
minmin, zzdtuuzztC TTT

tu

vvvvvv
v SRQ =⎥

⎦

⎤
⎢
⎣

⎡
+= ∫

∞

. 

The matrix S is the constant, analytical solution of the matrix algebraic Riccati equation, 

 SBSBRQSASA0 TT 1−−++= , (7) 

and the optimal state feedback matrix is  

 SBRk T1−= . (8) 

Controller Constraints 

To determine the consequences of structural changes in model stiffness (kR) and 

viscosity (kB), two matrix constraints were used.  First, a constrained controller with 

diagonal kR and kB produces torque at each joint due to motion of that joint only, 

representing single joint control.  The equivalent biological system would be comprised 

of only uniarticular muscles without heterogenic feedback across joints, and is similar to 

a myotatic unit.  Second, a constrained controller with symmetric off-diagonal terms 

causes the torque at a joint to be influenced by motion of remote joints, representing 

symmetric multi-joint control.  The biological equivalent would include biarticular 

muscles, but is constrained so that net heterogenic feedback is symmetric across joints. 
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Constrained controllers (k~ ) are not guaranteed to produce the absolute minimum 

S.  Optimal constrained controllers are obtained by nonlinear minimization of the 

Frobenius norm of the difference between the absolute minimum (S) and S~ , 

 ∑∑
= =

−=−=
n

i

n

j
ijijF

f
2

1

2

1

2~~ SSSS , 

where S~  is derived from application of the constrained controller (k~ ) to Eq. (4).  

Controllers for both the joint and endpoint tasks were determined subject to no 

constraints (JU, EU) and to the constraints of diagonal (JD, ED) and symmetric (JS, ES) 

stiffness and viscosity matrices. 

Analytical Methods 

To quantify the global viscoelastic properties of each controller model, endpoint 

stiffness (kR_END) and viscosity (kB_END) (Figure 2.1a) were determined from stiffness 

and viscosity matrices.  The endpoint stiffness is defined by, 

 ( ) 11
_

−−= TJJkk RENDR , 

for the multi-link model with no background force applied to the endpoint. Endpoint 

viscosity (kB_END) and endpoint inertia (MEND) matrices are determined by the same 

transformation of joint viscosity (kB) and inertia (M). 

Ellipse eccentricities ( MAXMINs αα /1−= ), areas (A), and the deviation (φ) of the 

direction of maximum stiffness of the ellipse ( MAXαv ) from the vector from the endpoint 

to the proximal joint center ( LAvv ) are reported (Figure 2.1a). 

The degree of asymmetry of the endpoint stiffness was measured with the 

quantity Zmean_R (Mussa-Ivaldi et al. 1985).  Zmean_R  is the ratio of asymmetric endpoint 

stiffness to symmetric endpoint stiffness, 
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The degree of asymmetry of the joint viscosity was measured from the joint viscosity 

kB_END with the quantity Zmean_B calculated in the same way as Zmean_R,. 

Dynamic properties of each model were quantified by the time to maximum 

endpoint displacement ( )maxˆ
EPdt , coordination index (CI) and damping ratios (ξi) of the 

three primary modes.  The coordination index is the maximum time between individual 

peak joint displacements (Figure 2.1b).  Damping ratio represents the ratio of actual 

damping to critical damping of the system.  The damping ratios (ξi) are determined 

according to the method of Inman (1984) as the eigenvalues (ξi) of the matrix ξ, 

 2
1

2
1 −−= crcr BBB kkkξ , 

where the critical damping matrix (kBcr) is defined as 

 2
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The exponent ½ represents the unique positive-definite square root of a positive-definite 

matrix.  The solution of the Riccati equation (7) is a system with kB equal to 1/√2 kBcr 

(see Appendix), resulting in damping ratios of 1/√2 for all modes of the unconstrained 

controllers JU and EU. 

To determine the success of the various controllers in optimizing joint and 

endpoint control, impulse force perturbations of equal magnitude were applied in all 

directions (ψ) to the endpoint of the model (Figure 4.1b).  The linear system response to 

an impulse endpoint force perturbation, assuming a constant Jacobian, is given by 

 ( ) ( )( ) ⎥
⎦

⎤
⎢
⎣

⎡
−= −

END
T F

ttz v
v

JM
0

BKA 1
ˆexpˆ . 

Performance of each controller is quantified by the maximum joint ( max
Jd ) (Eq. 5) 

and endpoint ( max
EPd )(Eq. 6) displacements experienced by the model and by the energy 

expenditure of the controller (Ce) (Eq. 4), for a perturbation in a given direction, ψ.  

Three sample responses (JU/JS, ES, EU) are shown in Figure 2.1b for a perturbation 
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applied in the x direction (ψ = 0°).  The time of maximum endpoint and joint 

displacements are shown in Figure 2.1b.  Note that depending on the controller, the 

maximum endpoint and joint displacements may occur at different times.  The endpoint 

position perturbation magnitude ( ENDF
v

 = 0.1) was chosen so that no component of the 

matrix J(θ)TJ(θ) differed by more than 10% from the value at the nominal posture during 

the perturbation.  To evaluate the global performance of the control models, max
Jd , max

EPd , 

and Ce were averaged ( max
Jd , max

EPd , eC ) across perturbation direction , ψ. 

Results 

Controller Structure 

The optimal unconstrained control structure minimizing joint displacement (JU) 

contains only diagonal elements for kR, and only symmetric components for kB (Table 

2.2) and is therefore identical to JS.  The joint control task, therefore, does not benefit 

from asymmetry in interjoint feedback.  The distal joint of the diagonal constrained joint 

controller (JD) is 45% more stiff and 47% less viscous than the proximal joint, reflecting 

the lower system inertia below the distal joint. 

In contrast, the optimal unconstrained control structure minimizing endpoint 

displacement (EU) is dramatically asymmetric, with off-diagonal stiffness terms ranging 

from 0.54-1.63, compared with diagonal stiffness terms of 0.93-1.31.  Upper off-diagonal 

terms are smaller than the lower off-diagonal terms meaning that the torque generated at 

distal joints due to motion at proximal joints is greater than torque generated at proximal 

joints due to distal joint motion.  For EU, the asymmetry in endpoint stiffness and 

viscosity is Zmean_ R = 11.5%, and Zmean_ B = 1.5%, respectively.  For ED, diagonal joint 

stiffness terms vary more than for JD, increasing by 300% from proximal to distal while 

viscosity increases by 46% across joints (Table 2.2).  Addition of symmetric terms 

inverts this relationship, dramatically decreasing stiffness and viscosity at distal joints. 
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Single joint stiffnesses are decreased by an average of 46%, and viscosities by an average 

of 62% when symmetric terms are introduced. 

Endpoint Characteristics 

The endpoint stiffness and viscosity ellipses incorporate both controller 

characteristics and system geometry and provide an integrated measure of the 

performance of the kinematically redundant system.  These ellipses are characterized by 

their eccentricity, which indicates directional sensitivity, and their area, which indicates 

overall system stiffness.  The endpoint stiffness ellipses of the joint control models 

(Figure 2.2b) are highly eccentric (JD: s = 0.967; JU/JS: s = 0.967) (Table 2.3), with the 

direction of greatest resistance near the axis of the limb (JD: φ = -7.4°; JU/JS: φ = -7.9°).  

In general the direction of maximum stiffness for all controller models is aligned closely 

with the limb axis (within 9°).  The joint control models contain no internal model of the 

endpoint position, so the eccentricity of the endpoint ellipses reflects geometrical 

characteristics of the system.   

 

Table 2.2: Model inertia matrix and stiffness (kR) and viscosity (kB) components. 

 JD JU/JS M 

 1.03 0 0 1.00 0 0 6.41 3.41 1.31 
kR 0 1.15 0 0 1.00 0 3.41 2.99 0.99 

 0 0 1.49 0 0 1.00 1.31 0.99 0.58 

 4.09 0 0 3.33 1.22 0.49    
kB 0 3.27 0 1.22 2.06 0.48    

 0 0 2.15 0.49 0.48 0.84    

 ED ES EU 

 2.29 0 0 2.75 1.26 1.23 1.17 0.39 0.19 
kR 0 4.94 0 1.26 1.70 0.59 0.93 1.31 0.33 

 0 0 9.14 1.23 0.59 0.69 1.82 1.23 0.93 

 6.50 0 0 4.76 1.84 1.47 3.95 1.85 0.74 
kB 0 7.37 0 1.84 2.49 0.86 2.53 2.71 0.82 

 0 0 9.49 1.47 0.86 0.68 2.03 1.46 1.00 
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Table 2.3: Endpoint inertial, stiffness and viscosity ellipse characteristics 

KR_END φ (°) s A  KB_END φ (°) s A 

JD -7.4 0.967 1.09  JD -8.7 0.967 10.96 

JU/JS -7.9 0.967 0.89  JU/JS -8.6 0.897 4.34 

         

ED -4.6 0.975 10.91  ED -7.4 0.968 44.21 

ES -8.9 0.839 2.63  ES -11.9 0.868 7.62 

EU -8.6 0.808 2.12  EU -9.1 0.748 6.68 

MEND -5.7 0.727 3.84       

 
 
 
 
When subject to the diagonal constraint, the endpoint control model (ED) also 

results in a highly eccentric (s = 0.975) stiffness ellipse (Figure 2.2b, Table 2.3).  

Relaxing the diagonal constraint to permit symmetric interjoint stiffness (ES) reduces the 

eccentricity of the stiffness ellipse (s = 0.839). The reduction in stiffness eccentricity is 

primarily due to decreased stiffness in the direction of maximum stiffness (ED: αmax = 

11.8, ES: αmax = 2.3), resulting in larger displacements in that direction, while the 

minimum stiffness increases only slightly (ED: αmin = 0.29, ES: αmin = 0.36).  Releasing 

all constraints on the control model (EU) further reduces endpoint stiffness eccentricity (s 

= 0.808).  The area of the stiffness ellipse decreases dramatically with the addition of 

symmetric off-diagonal terms (ED: A = 10.91; ES: A = 2.63), and decreases further with 

the addition of asymmetric off-diagonal terms (EU: A = 2.12). 

The endpoint viscosity ellipses demonstrate the same trends (Figure 2.2c, Table 

2.3); there is a sharp decrease in eccentricity and area with the addition of symmetric 

terms for both the joint and endpoint controllers (JD: s = 0.967, A = 10.96; JU/JS: s = 

0.897, A = 4.34; ED: s = 0.968, A = 44.21; ES: s = 0.868, A = 7.62, EU: s = 0.748, A = 

6.68).  The orientation of the endpoint viscosity ellipses is within 12° of the limb axis. 
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Figure 2.2:  Endpoint ellipses for the six models.  Ellipses represent the endpoint inertia (A), stiffness 
(B), and viscosity (C) of the optimal joint (left in B and C), and endpoint (right in B and C) controllers.  
The stiffness matrix of the JD, and JU/JS model is diagonal resulting in highly eccentric endpoint stiffness 
ellipses (B), while the addition of symmetric terms to the viscosity matrix for the joint controller JU/JS 
results in a dramatically less eccentric endpoint viscosity ellipse (C). The addition of symmetric terms to kR 
and kB in the endpoint controllers ES and EU also result in dramatically less eccentric and smaller endpoint 
ellipses (B,C).  All ellipses are of approximately the same orientation. 

 
 
 

Dynamic Response 

To characterize the ability of each controller to maintain endpoint position, we 

analyzed the response of the system to a force impulse perturbation applied at the 

endpoint.  The dynamic response of JU/JS, ES, and EU models (Figure 4.1b) demonstrate 

the different strategies employed to achieve joint and endpoint control.  In all responses 

the distal joint experiences the greatest and most rapid initial displacement in response to 

the perturbation.   
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Motion of the JU/JS controller model is dominated by inertia, and joints follow a 

progressive displacement pattern with individual joints reaching peak displacement 

successively.  Peak endpoint displacement is 0.15, occuring at t̂ = 3.3, and geometric 

recovery does not begin until substantially after the distal joint has completed its 

recovery.  Maximal joint displacements follow a successive distal-to-proximal pattern 

(Figure 2.1b, upper panel) and occur over a dimensionless time of 3.0 (CI). 

The endpoint controllers (ED,ES,EU), each of which contains an internal model 

of endpoint position, all display much better endpoint performance than the joint 

controllers (JD, JU/JS).  The maximal ED controller displacement was 0.09, 43% less 

than the best joint controller (JU/JS), and geometric recovery began at t̂ = 1.9.  For the 

ES controller, interjoint coupling links the rapid motion of the distal segment to amplified 

torque generation at the proximal joints.  The symmetry of this coupling causes slower 

displacement of the more proximal joints that poduces a sustained torque generation at 

the distal joint, which is sufficient to reverse the direction of motion of the distal joint 

(Figure 4.1b, middle and lower panels).  Interjoint coupling increases the apparent 

stiffness of proximal joints early in the perturbation, but reverses the apparent stiffness of 

the distal joint later in the perturbation.  This result is due to coupling of the inertially 

retarded motion of proximal and middle joints to torque generation at the distal joint.  

The reversal of the distal joint counteracts the continuing motion of the proximal and 

middle joints to maintain the x-y location of the endpoint. The time to peak endpoint 

displacement is faster for the ES controller at 1.3, but maximal joint displacements still 

follow a successive pattern as in the JU/JS controller model and occur within a 

dimensionless time of 3.5 (CI). 

This compensating effect of the distal joint is amplified for the EU controller, 

where torque generation is coupled asymmetrically.  The asymmetry of interjoint 

coupling permits the distal joint to undergo exaggerated extension without substantially 

altering proximal joint torque production.  Although there is an initial yield as the 
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perturbing force is applied, interjoint elastic coupling results in large distal joint torque 

generation as the proximal joint begins to yield, and subsequent motion of the distal joint 

is largely synchronous with the proximal joint (Figure 4.1b, lower panel).  Maximal 

individual joint displacements do not follow a successive pattern and the coordination 

index is 1.2, in contrast with 3.0 for the JU/JS model and 3.5 for the ES model.  Maximal 

endpoint displacement of 0.07 occurs at t̂ = 1.1, substantially before any single joint 

displacement maximum, and geometric recovery begins quickly after cessation of 

perturbation.  Table 2.4 shows the time to maximum endpoint displacement and 

coordination index averaged over perturbation direction ( )CIdt EP ,)(ˆ max .  The average 

values follow the trends described for the response to a perturbation in the x-direction (ψ 

= 0º) with a 7% decrease in )(ˆ max
EPdt  and 40% decrease in CI  from ES to EU.  

The global dynamic response of multi-link systems can be quantified with 

damping ratio (Table 2.4).  The damping ratio of diagonal controller models vary widely 

including underdamped (JD: ξ = 0.59, ED: ξ = 0.67) and overdamped (JD: ξ = 2.08, ED: 

ξ = 3.33) modes.  Symmetry allows for a more uniform response for ES for which all 

modes are underdamped (0.41, 0.57, 0.97).  The analytical solution to the matrix 

algebraic Riccati equation dictates that the damping ratio of EU and JU/JS be 1/√2. 

 

 

Table 2.4: Dynamic properties. Averaging is done across perturbation direction (ψ) 

 JD JU/JS ED ES EA 

)(ˆ max
EPdt  3.08 3.01 1.83 1.25 1.16 

CI  2.59 2.61 1.65 2.90 1.75 

ξi 0.59 0.71 0.67 0.41 0.71 

 1.64 0.71 1.85 0.57 0.71 

 2.08 0.71 3.33 0.97 0.71 
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Cost 

Costs associated with endpoint impulse force perturbations are presented in 

Figure 2.3.  The tradeoff in kinematic and energetic cost can be seen for the joint control 

model (Figure 2.3a-c).  The maximum joint displacement averaged over perturbation 

direction ( max
Jd ) is 12% higher for the JU/JS controller model than the restricted JD 

(Figure 2.3a, Table 2.5), while the average energetic cost ( eC ) is 15% lower for JU/JS 

than JD (Figure 2.3a, Table 2.5).  This means that the symmetric interjoint coupling 

through the viscosity matrix for JU/JS serves to coordinate joint motions so that the total 

energetic cost is minimized at the expense of slightly larger joint displacements ( max
Jd ) 

compared with JD.  The average maximum endpoint displacement ( max
EPd ) is 4% lower 

for JU/JS than JD. 

The kinematic-kinetic tradeoff is also seen for the endpoint controllers (Figure 

2.3d-f, Table 2.5).  The addition of symmetric off-diagonal terms (ES) results in an 11% 

increase in max
EPd , but a 28% decrease in eC  compared with ED.  The addition of 

asymmetric interjoint coupling, however, results in a decrease in both kinematic ( max
EPd  

decreased by 16% over ES) and kinetic ( eC  decreased by 21% over ES) quantities.  The 

improvements in endpoint control are achieved by exaggerated joint displacement; max
Jd  

is 140% (ES) and 400% (EU) greater for the coupled controllers than ED. 

 
 

Table 2.5: The average maximum displacements and energetic cost. Averaging is done across 
perturbation direction (ψ) 

 JD JU/JS ED ES EU 

max
Jd 0.034 0.039 0.019 0.046 0.096

max
EPd 0.106 0.101 0.057 0.063 0.053

eC  0.026 0.022 0.055 0.040 0.031
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Figure 2.3:  Measures of kinematic and kinetic performance.  (A,D) The maximum joint displacement 
( max

Jd ) (Eq. 5), (B,E) maximum endpoint displacement ( max
EPd ) (Eq. 6), and (C,F) energetic cost ( eC ) (Eq. 

4) for the optimized models (JD, JU/JS, ED, ES, EU) for impulse perturbations of equal magnitude across 
perturbation direction (ψ). 
 
 
 

The average displacement magnitudes ( max
Jd , max

EPd ) for the two unconstrained 

optimal controllers (JU/JS and EU) reflect the tasks for which each was optimized.  JU/JS 

has 60% lower max
Jd  than EU, while EU has 47% lower max

EPd  than JU/JS. 

The optimization was performed for an additional posture (θ1 = -150°, θ2 = 120°, 

θ3 = -117°) based on the stance phase of locomotion of the tree shrew Tuapaia glis 

(Schilling 2005).  The asymmetric structure of endpoint stiffness and viscosity was 

maintained for this posture (Zmean_ R = 20.5%, Zmean_ B = 9.9%), but the resulting 

kinematic and energetic cost improvement ( max
EPd  decreased by 5% from ES to EU; eC  

decreased by 11% from ES to EU), and homogenization of endpoint stiffness (ES: s = 
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0.648, A = 2.16, EU: s = 0.684, A = 2.23), viscosity (ES: s = 0.560, A = 4.62, EU: s = 

0.575, A = 5.54), and damping ratios (ES: 0.58, 0.64, 0.77; EU: 0.71) were smaller than 

seen in the extended posture, indicating that the benefits of asymmetry are limb 

configuration dependent. 

Discussion 

The goal of this project was to determine whether asymmetric interjoint feedback 

improved the performance of postural tasks as evaluated by energetic cost and 

maintenance of endpoint position.  The optimal controller for maintaining endpoint 

position contained substantial asymmetry in the off-diagonal terms, supporting the 

hypothesis that this structure contributes to endpoint control, and in agreement with 

similar models (Barin 1989, He et al. 1991, Park et al. 2004).  The results are coherent 

and testable with uncontrolled manifold (UCM) hypothesis (Scholz and Schoner 1999, 

Todorov and Jordan 2002): EU achieves much greater endpoint control than JU/JS, at the 

expense of variability in the state.  For the cat-like posture, the asymmetry provided an 

improvement (40% CI  , 16% max
EPd ) in the recovery from perturbation and a reduction 

(21%) in energetic cost.  These gains were more dramatic when the system was in an 

extended, cat-like posture than in a compressed, rodent-like posture.  The energetic 

benefit is substantial and likely to contribute to the development of neural control 

strategies, at least in some areas of the workspace.  The same analysis performed on a 

two degree of freedom model produced optimal asymmetric controllers (EU) that were 

only slightly better than the symmetric controllers (ES) for both an extended ( eC : 5%, 

max
EPd : 4%) and flexed ( eC : 3%, max

EPd : 2%) posture, suggesting that the improvement in 

control due to asymmetry is specific to kinematically redundant systems (unpublished 

observations).   
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The degree of asymmetry for the optimal endpoint controller is consistent with 

experimentally determined magnitudes.  Mussa-Ivaldi and coworkers (Mussa-Ivaldi et al. 

1985) measured elastic Zmean_R values for human arm ranging from 0.4% to 20.9% with a 

mean of 6.5% across four subjects and five arm configurations, which is similar to the 

EU controller Zmean_R of 11.5% in the feline posture and Zmean_R of 20.5% in the shrew-

like posture.   

Interjoint coupling provides substantial improvement in endpoint control, and 

both symmetric and asymmetric multi-joint control strategies result in greater 

homogeneity of endpoint properties and dynamic response. The endpoint stiffness ellipse 

eccentricities of the ES and EU controllers are reduced by 6.4 and 7.7 fold, respectively, 

over the ED controller.  Viscosity endpoint ellipses are reduced 4.1 (ES) and 7.8 (EU) 

fold.  Lower eccentricity means greater similarity in response across perturbations.  The 

dynamic response characteristics also become more uniform with the addition of 

asymmetric terms for the endpoint model.  Damping ratios are all 1/√2 for EU and vary 

from 0.41 to 0.97 for ES as opposed to ED where damping ratios vary from 0.67 to 3.33. 

The homogeneity of damping ratio permitted by asymmetric feedback has a 

dramatic effect on the coordination of the limb.  For ES, maximal joint displacements 

follow a successive pattern, with an average coordination index of 2.9 while maximal 

joint displacements follow a more coordinated pattern for EU model for the same 

perturbation, with a CI of 1.8 (Table 2.4).  The time course of middle joint displacement 

varies little between the ES and EU models, and the principal effect of the asymmetry is 

to impose the kinematics of the proximal joint response on the distal joint.  

Two postural tasks were specified to examine two potential mechanisms the 

central nervous system (CNS) uses to accomplish a stable endpoint posture.  The joint 

control task seeks to minimize the deviation of each specific joint.  The optimal controller 

for this task predicts a myotatic unit-like stiffness component, with no off-diagonal terms, 

and all interjoint coupling achieved by viscosity.  Physiologically, the static response is 
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dominated by individual joint or muscle displacements, encoded in the Group I & II 

spindle response (Matthews and Stein 1969).  The dynamic response, including all of the 

predicted interjoint coupling, is strongly influenced by velocity, which is encoded in the 

Group I spindle afferent (Matthews 1963).   The appearance of interjoint coupling only 

within the viscosity matrix generates torques at remote joints that counteract inertial 

coupling. This coupling could not be provided by biarticular muscles since they would 

contribute to both joint viscosity and joint stiffness.  This controller, however, presents 

relatively poor endpoint performance characteristics because of the lack of an internal 

model.  The displacement of the endpoint in response to a perturbation is highly 

dependent on perturbation orientation.  The system presents excellent resistance along the 

limb axis, which would provide sound weight support, but poorly resists perpendicular 

perturbations, and would require a stronger and faster response from higher centers to 

correct for any non-vertical perturbation.  The response of the system to perturbation is 

also uncoordinated.  Individual joints return to their initial configuration as quickly as 

possible, which would result in lower inertia segments responding extremely rapidly and 

a system that responds with time characteristic of the largest assembly.  In a biological 

system, in which the distal segments are systematically lighter than proximal segments, 

the joint control model would predict nearly rigid distal joints and a system response 

dominated by the hip or shoulder. 

The endpoint control task seeks to minimize the deviation of the endpoint from a 

specified position, regardless of the joint angles necessary to produce that endpoint 

position.  In the endpoint control model, QE contains an internal model of the Jacobian, 

and the optimal kR depends directly on posture through the Jacobian, and optimal kB 

depends on posture through both kR and M. The shrew-like posture is a more flexed 

posture and while the degree of asymmetry is increased, the benefits of that asymmetry 

decrease, indicating that the quantitative benefits of asymmetry are posture dependent.  In 

either of the test postures, the highly extended feline posture or the much more compact 
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shrew posture, the mean energetic cost of recovering from an impulse perturbation was 

smaller for the EU than ES (11% shrew-like, 21% cat-like).  

Regardless of posture, the optimal controller was asymmetric in the sense that 

displacement of the proximal joint resulted in powerful torque production at the distal 

joint, while displacement of the distal joint induced relatively small torques at the 

proximal joint.  The existence or strength of reflex feedback between hip and ankle 

muscles in cats is largely unknown, due to the technical difficulties of working with hip 

muscles (Loeb and Duysens 1979).  Stretch of the hip flexor iliopsoas, representative of a 

negative θ1 perturbation, has been reported to reduce ankle extensor activity during gait 

(Hiebert et al. 1996), equivalent to a positive torque at the distal joint as predicted by the 

optimal controller.  Group I feedback from vasti to soleus, which would contribute to 

kB(3,2), has been measured (Eccles et al. 1957), although feedback from vasti to 

gastrocnemius (contributing to both kR,B(3,2) and kR,B(2,2)) is inhibitory (Wilmink and 

Nichols 2003).  Length changes in soleus have little or no effect on vastus force 

generation (kR,B(2,3), (Wilmink and Nichols 2003), which suggests that, in the cat, 

kR(3,2) would be greater than kR(2,3), as predicted by the optimal control model.  EU 

also contains a strongly asymmetric relationship between proximal and distal joints.  For 

small proximal joint motion the distal joint remains relatively compliant, suitable for 

rejection of small endpoint perturbations.  For large proximal joint motion the asymmetry 

contributes to greater impedance at the distal joint.  This strategy is consistent with an 

observed role for the ankle in relationship to the hip in human pedaling (Fregly and Zajac 

1996). 

The measure of energetic cost used in this analysis is the integrated, squared 

torque produced during the recovery from perturbation.  This differs from work done or 

absorbed, and it does not account for co-contraction nor energetic savings associated with 

biarticular muscles.  As a biological cost function, it also neglects the higher muscle mass 

available to the proximal joints, although this may be compensated by structuring the 
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model with uniform segmental inertias, where the moment of inertia of distal segments is 

generally lower than proximal segments.  A cat foot, for example, is roughly 12% of the 

mass of the thigh.  The model also departs from biological systems by not considering 

delays associated with reflex feedback, but these simplifications are not expected to alter 

the fundamental asymmetric structure of the feedback gains. 

To determine whether predicted magnitudes of joint stiffness and viscosity are of 

appropriate physiological magnitude, kR and kB of EU were redimensionalized for 

average cat (m = 84 g, L = 9.5 cm) and tree shrew (m = 4 g, L = 3 cm) limb dimensions 

for comparison to measured values.  The scaling parameter, σ, was chosen for the cat (σ = 

4.0 N) so that the limb restores equilibrium on the same order as that measured 

experimentally (~400 ms) (Macpherson 1988).  Since no data is available for the postural 

response of a shrew, σ is approximately scaled with muscle force (P0), SHREWσ = 0.4 N.  

Dimensional values of kB/kR range from 0.05 to 0.21 s for the cat, and from 0.02 to 0.05 

s for the shrew.  The viscosity of mammalian muscle increases with animal size,and the 

prediction that shrew kB/kR is 50-80% smaller than cat is consistent with this scaling.  

Intrinsic viscosity results from the force velocity relation, and varies from 0.1-2 (P0 s)/L0, 

depending on fiber type and species (Close 1972).  The apparent intrinsic stiffness of 

muscle depends strongly on the length range being considered.  The range most relevant 

to postural perturbations is likely the short range stiffness, resulting from crossbridge 

elasticity, of 20-100 P0/L0.  (Huxley and Simmons 1971), yielding viscosity to stiffness 

ratio in the range of 0.001-0.1 s, which is consistent with the model prediction.  Over 

longer length ranges, stiffness described by the isometric length tension relationship is 

approximately 0.4 P0/L0.  This suggests viscosity to stiffness ratios in the range of 0.25-5 

s, which is only slightly higher than the model prediction. 

It is worth while to consider the implications of scaling an optimal solution with 

effort, σ.  As pointed out by Kuo (Kuo 1995), σ has various interpretations, including a 

measure of the relative cost of kinematic penalty, the speed of system response, and the 
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gain of intrinsic and reflexive impedance properties.  The structure of optimal kR and kB 

matrices are constant for the given parameters.  However, to obtain dimensional stiffness 

and viscosity kR is proportional to σ and kB is proportional to σ .  Thus, the dimensional 

endpoint ellipses would have the same shape and orientation with the size scaling with σ 

for stiffness and σ  for viscosity.  The scaling also maintains a constant damping ratio 

across σ.  These traits are consistent with observed characteristics of human arms.  

Mussa-Ivaldi and coworkers (Mussa-Ivaldi et al. 1985) found that adaptive changes in 

postural stiffness in response to a force in a single direction were accomplished by 

varying the size rather than the shape or orientation of the ellipses.  This is consistent 

with the idea that the “optimal” solution has the same shape and orientation but different 

magnitude for varying levels of effort.  Perrault and coworkers (Perreault et al. 2004) 

found that endpoint arm elasticity increased linearly with voluntary force generation 

while viscosity increased nonlinearly, consistent with σ scaling.  In addition, they found 

that relative scaling of stiffness and viscosity resulted in two underdamped modes that are 

consistent across all subjects and conditions tested.  The consistency of damping ratios 

across subjects and effort level is also in agreement with σ scaling.   

Since the magnitude of the optimal controllers scale not only with the physical 

size of the model (mass and length) but with a voluntary force or effort, both intrinsic and 

reflex properties of the limb must also scale with effort.  The force of a reflex can vary 

even with a constant stimulus.  Descending neurons from higher centers make synaptic 

connections at the alpha motor neurons, interneurons and presynaptic terminals of the 

afferent fibers, changing the tonic activity of the cell to modulate the sensitivity of reflex 

response.  Alpha-gamma coactivation may be responsible for coordinated increases of 

intrinsic and reflexive components of muscle impedance; in general gamma motor 

neurons are set at higher levels as the speed of movement increases (Hulliger et al. 1989).  

Prochazka and coworkers (Prochazka 1989) describe significant changes in 
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monosynaptic reflex pathways (tendon and H-reflex) in anticipation of co-activation, so 

that the reflex and intrinsic magnitudes may scale together.  
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Appendix 

Using LQR theory to determine optimal stiffness and viscosity matrices results in 

an optimal viscosity matrix that is 1/√2 times the critical damping matrix.  This appendix 

contains the derivation of this result from the matrix algebraic Riccati equation (7) and 

the optimal state feedback matrix Eq. (8).  Matrices R, Q, M and S are symmetric.  

Applying Eq. (8) to Eq. (7) yields 

 ( ) RkkQSASASBRRRBSQSASA0 TTTTTT −++=−++= −− 1 . 

Matrix S is symmetric and divided into components, 
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Substituting the definitions of S, as well as A, k, and Q, Eqs. (3-5), 
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and simplifying, yields 
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Equation (8) can be written as 

 [ ] [ ]CBBR SMRSMRkk 1111 −−−−= , (10) 

Solving the left hand side of the matrix equality in Eq. (10) for SB and applying to the 

lower left hand matrix equality of Eq. (9), 

 RBB MRkRkk 2=T
, (10) 
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Pre-multiplying both sides by 1−MkB
T  and simplifying 

 RBBBB RkkRkkMk TTT 21 =− . (11) 

Which is symmetric, by the relationships in Eq. (9).  Taking the transpose of the left side 

 RBBBB RkkkMRkk TT 21 =− . (12) 

Pre-multiplying both sides of Eq. (12) by T−−
BkR 1  

 RBB kkMk 21 =− . (13)  

Pre- and post-multiply Eq. (13) by the unique positive definite square root ( 2
1−M ) of 

positive definite matrix 1−M , 
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If kR and kB are positive definite, then 
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Solve for kB. 
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CHAPTER 3 

REDUCTION OF NEUROMUSCULAR REDUNDANCY FOR 

POSTURAL FORCE GENERATION USING AN INTRINSIC 

STABILITY CRITERION 

Introduction 

Maintaining standing balance is an important motor function where the overall 

task is to stabilize the body center of mass (CoM) by generating the appropriate forces in 

each limb. However, each limb has multiple muscles acting at many joints – more 

degrees of freedom than the joint torques specified by the task – suggesting a wide range 

of muscular coordination strategies is possible (Bernstein 1967), even within a single 

limb.  

The stability of the limb configuration is part of the postural task that could 

resolve this neuromuscular redundancy.  Muscle activity in response to a perturbation 

occurs after 50 ms in a cat, and electromechanical delays of the musculoskeletal system 

add another 50 ms delay before stabilizing forces are produced (Horak and Macpherson 

1996). A feedforward neural strategy of choosing an intrinsically stabilizing muscle 

activation pattern would potentially reduce the necessity for active neural feedback as 

well as decrease the number of candidate muscle activation patterns for performing the 

postural task. 

Several mechanisms in the musculoskeletal system can provide instantaneous 

mechanical stability as a function of muscle activation patterns.  The length-tension 

(Gordon et al. 1966, Rack and Westbury 1974), and force-velocity (Gasser and Hill 1924) 

relationships of muscle are inherently stabilizing and depend monotonically on muscle 

activation; stronger activation results in greater viscoelasticity (Rack and Westbury 

1969). Muscle moment arms also change with joint motion, altering the net torque 
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produced at a joint, and can contribute to either joint stability or instability (Young et al. 

1992).  Although these intrinsic musculoskeletal properties provide instantaneous 

feedback in response to perturbations, it has not been established whether they are 

sufficient to stabilize limb posture in a variety of animals and tasks (Edwards 2007, 

Morasso and Sanguineti 2002, Morasso and Schieppati 1999, Richardson et al. 2005, 

Winter et al. 1998, Winter et al. 2001).   

In this study, we hypothesized that the muscular redundancy in postural control is 

reduced when muscle activation patterns are chosen with respect to both intrinsic 

musculoskeletal stability and endpoint force production.  We evaluated our hypothesis 

using Lyapunov stability theory applied to the linearized mathematical model of the 

feline hindlimb (Burkholder and Nichols 2004) activated with a large set of muscle 

activation patterns that produced identical endpoint forces. We found that a reduced set of 

stabilizing muscle activation patterns exists, but that the relationship between individual 

muscle characteristics and whole-limb stability is not straightforward. 

Methods 

 Methods Overview 

We used a computational model to analyze the relationship of whole-limb 

mechanical stability of the cat hindlimb to individual muscle properties. The model is 

three-dimensional, has physiologically relevant degrees of freedom, and experimentally 

determined muscle properties (Burkholder and Nichols 2000, Burkholder and Nichols 

2004, Roy et al. 1997, Sacks and Roy 1982).  We generated a set of muscle activation 

patterns that produced the identical postural endpoint force and examined the model 

response to small disturbances to the limb for each muscle activation pattern. Using linear 

system-analysis tools (Alexandrov et al. 2005, Szidarovszky and Bahill 1992), we 

quantified the patterns of limb motion (limb modes) in response to disturbances, and the 

rate (eigenvalues) at which the whole-limb configuration returned to or moved away from 
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the initial position.  To determine individual muscle contributions to whole limb stability 

we compared the local (joint-level) stiffness of muscles to the stability of the limb modes.  

Finally, we constructed muscle activation patterns based on the local stiffness of muscles 

and compared the whole-limb stability of these patterns to the randomly generated 

patterns. 

Musculoskeletal Model 

The model had three degrees of freedom at the hip, and two each at the knee and 

ankle  (Burkholder and Nichols 2004, McKay et al. 2007, van Antwerp et al. 2007).  The 

pelvis was fixed and the foot was connected to the ground through a pin joint at the 

metatarsophalangeal joint (MTP) leaving 4 degrees of freedom.  The equations of motion 

for the model were expressed in the generalized coordinate system, 

T
AAAEKAKEHRHAHF ],,,,,,[ θθθθθθθθ =

v
, where the subscripts denote the positive 

direction of joint movement: hip flexion (HF), hip adduction (HA), hip external rotation 

(HR), knee extension (KE), knee adduction (KA), ankle extension (AE), and ankle 

adduction (AA).  Limb motion was described by the equations of motion: 

 [ ]),()(),()()(),(1 θθθεθθθθθθθ &vvvvv&vvvvv&vvv&&v
MTP

T FGV JFRM MAX −+−−= − , (1) 

where M is the inertia matrix, V
v

 is the vector of centrifugal and Coriolis torques, G
v

 is 

the vector of gravitational torques, R is the moment arm matrix, MAXF  is a diagonal 

matrix whose components are the maximum individual muscle forces corrected for 

pennation angle,εv is the vector of muscle activation levels  ( 10
vvv

≤≤ ε ),  JT is the 

transpose Jacobian mapping of external force at the MTP to joint torques, MTPF
v

 is the 

resultant force at the MTP which is calculated using the constraint that translational 

acceleration of the MTP be zero.  31 muscles were modeled using an adaptation of the 

Hill muscle model (Zajac 1989) using architectural parameters taken from the literature 

(Roy et al. 1997, Sacks and Roy 1982).  The stiffness of each muscle was set to 3 
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FMAX/L0
F where FMAX is the maximal force of the muscle and L0

F is optimal fiber length.  

This value is near maximal stiffness described by the length-tension curve (Gordon et al. 

1966) and the analysis was repeated for varying levels of stiffness. 

Selection of Muscle Activation Patterns 

Postural muscle activation patterns (εv ) were chosen to produce the endpoint 

force vector measured experimentally in standing cats, 0
MTPF
v

, when the model was 

placed in an initial posture matched to kinematic data (Torres-Oviedo et al. 2006): 

 0
MTP

T FG
vvv JRFMAX +=ε  (4) 

Equation (4) is redundant and has a 24 dimensional solution space (null space).  To span 

the εv  solution space, activation sets were chosen by projecting a random activation 

vector, 10
vvv

≤≤ 0ε  into the solution space using the quadratic cost function, 

 ( ) ( )00 εεεε vvvv −−= Tc   (5) 

and constraints, 

 ( ) 0
0

0 εεε vvvvv
MAXMAX RFJRF −+=− MTP

T FG  (6) 

 ( ) 000 εεεε vvvvvv
−≤−≤− 10  (7) 

The optimization yields an activation set εv  which produces the desired endpoint force, 

has all muscle activations between 0 and 1, and minimizes the distance to 0εv .  The test 

population consisted of 10,000 activation sets, which was large enough for the mean and 

covariance of activation level of 23 of the 31 modeled muscles to converge (Valero-

Cuevas et al. 2003). Five of eight nonconvergent muscles had knee-flexor moment arms, 

and thus were not expected to be highly active in standing.  Increasing the sample size 

12-fold resulted in convergence of only 3 additional muscles, and orders of magnitude 

more samples were required for the remaining muscles to converge. 
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Whole-Limb Stability of Muscle Activation Patterns 

To determine whether a given muscle activation pattern εv  produced a stable limb 

configuration, equation 1 was linearized by Taylor-series expansion about the initial 

posture at rest, and Lyapunov stability theory was applied to resulting linear, time-

invariant state matrix. If all of the eigenvalues of the state matrix are negative, then the 

system is asymptotically stable such the limb will always return to the equilibrium 

posture under small perturbations (Szidarovszky and Bahill 1992). The derivation of the 

dynamic equations of motion including the muscle model equations, and the  

linearization were performed using custom Matlab (Mathworks, Inc. Natick, MA) 

routines (www.neuromechanic.com).    

For each muscle activation pattern, the eigenvectors of the state matrix (limb 

modes), represent coordinated movements of joints and define a basis spanning all 

possible limb motion for the linearized system (Alexandrov et al. 2005). To compare 

across muscle activation patterns, the limb modes were grouped by hierarchical cluster 

analysis.  Distance between eigenvectors was computed using the Euclidean distance 

between vectors and the cluster hierarchy was created using Ward’s linkages (Ramsay 

and Silverman 2005).  The number of clusters was determined by the greatest average 

link height with inconsistent with lower linkages.   In order to have a physically 

interpretable metric of stability, the real component of the eigenvalue was converted to 

the perturbation halving time: 

 ( )
( )λRe

5.0ln
50 ≡t , (7) 

where λ is the eigenvalue corresponding to the limb mode.  A restatement of the 

Lyapunov criteria for asymptotic stability is that a given muscle activation pattern εv  

produces a stable limb configuration if t50 for all limb modes is positive. Negative values 

of t50 (λ > 0) represent the perturbation doubling time in an unstable limb.  

http://www.neuromechanic.com/
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To determine whether a limb stability criterion could reduce the redundancy of 

muscle activation patterns, we compared the total muscle activation set to the subset of 

stable muscle activation patterns.  We compared the range of activation for each muscle 

and the number of principal components required to account for 95% of the variability in 

each set. 

Stability Contribution of Individual Muscles 

To determine whether specific muscles were associated with whole-limb stability, 

we calculated correlation coefficients between limb mode eigenvalues and muscle 

activation levels.  We used a threshold of |r| > 0.4 to determine substantial correlation for 

31 degrees of freedom (all p<10-35).   

We also determined whether individual muscle contributions to joint stiffnesses 

were predictive of whole-limb stability across the set of muscle activation patterns.  Each 

muscle crosses more than one degree of freedom (e.g. knee flexion/extension and knee 

ab/adduction) and therefore contributes to multiple joint stiffnesses when activated. 

Because the stiffness of the muscle across the joints are not independent, we quantified 

the contributions of each muscle to the joint stiffness by computing the eigenvalues of the 

stiffness matrix for each muscle (e.g. the Jacobian of muscle torque with respect to all of 

the degrees of freedom crossed by that muscle). As a metric of stability, we defined the 

terms maximum local positive stiffness ( +
iκ ), maximum local negative stiffness ( −

iκ ), and 

mean local ( iκ ) stiffness for each muscle such that: 
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Prediction of Stable Muscle Activation Patterns 

To determine whether local muscle stiffness could be used to restrict the set of 

muscle activation patterns for standing posture, we replaced the cost function (5), with 

one weighted by each muscle’s mean local stiffness ( iκ ): 

 ( )( ) ( ) ( )0001 εεκμεεεεμ vvvvvvv −−−−−= T
i

Tc  (8) 

We then evaluated whole-limb stability of muscle activation patterns generated as a 

function of μ.  A value of μ = 1 resulted in a single unique activation set regardless of the 

random activation guess 0εv .   

Finally, to verify the robustness of results to a weight-bearing configuration, the 

entire analyses were recomputed with the fixed pelvis constraint relaxed to allow a single 

translational degree of freedom in the vertical direction.  To satisfy equilibrium, the 

weight of the pelvis was set to a value of about ¼ the weight of a cat, such that the 

combined weight of the pelvis and limb was equal to the vertical component of the 

ground reaction force.   

Results 

Mechanical Modes 

Whole-limb motion was characterized by four limb-mode clusters (graphical 

representations in Figure 3.1). The first mode can be approximately described as ankle 

motion in the sagittal plane (AS) (Figure 3.1A). The remaining three modes can be 

described primarily as frontal plane motion of the ankle (AF), hip (HF), and knee (KF) 

(Figure 3.1B-D).  Limb modes with t50 faster than 7 msec were not examined, as they 

were all unconditionally stable, and faster than physiological timescales relevant to 
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postural control. The included angle between the means of the four clusters ranged from a 

maximum of 102º between AS and AF to a minimum of 69º between AS and HF with an 

average inter-cluster distance of 88º and an average intra-cluster distance of 13º. 

Stability of All Muscle Activation Patterns 

Only 35% of the muscle activation patterns were stable in all limb modes (Table 

3.1).  Two modes (KF and HF, Figure 3.2) were stable for greater than 99.5% of muscle 

activation patterns (Table 3.1). The remaining two were stable for 88% (AF) and 37% 

(AS) of activation patterns, respectively (Figure 3.2, Table 3.1).  KF was the fastest mode 

with |t50| between 7-36 ms, while all other modes were slower than 62 ms (Table 3.1). 

 

 

Ankle Sagittal (AS) Mode Ankle Frontal (AF) Mode Hip Frontal (HF) Mode Knee Frontal (KF) Mode

a b c d

 

Figure 3.1:  Mechanical modes of the limb.  Four limb modes characterized the whole-limb motion 
following perturbations. A) The ankle sagittal (AS) mode is dominated by flexion and extension of the 
ankle, but includes motion at all joints. B,C,D) The remaining three modes are dominated by motions in the 
frontal plane. The gray limb represents the nominal limb posture.  The black limb represents the limb 
displacement associated with each of the four modes describing limb motion.  Note that this appears to 
displace the toe from its endpoint constraint in some cases because the eigenvectors are scaled for 
illustrative purposes.  The modes are a feature of the linearized model and are valid only for small angle 
displacements. 
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Table 3.1:  Stability characterization of each limb mode 

 AS AF HF KF ALL 
% stable 37 88 99.5 100 35 
t50 (sec) stable modes 0.224 – 68 0.125 – 60 0.228 – 45 .007–.036  
t50 (sec) unstable modes 0.062 – 67 0.065 – 67 0.088 - 35   
Mean t50 (sec) stable  0.683 0.270 0.387 0.020  
Mean t50 (sec) unstable  -0.305 -0.436 -0.359   
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Figure 3.2: Histogram of limb stability for each mode across all muscle activation patterns.  
Histograms show the number of activation sets for each binned eigenvalue range for each limb mode. Limb 
modes with positive finite t50 (eigenvalues less than 0) are stable and limb modes with negative finite t50 
(eigenvalues greater than 0) are unstable.  The gray band centered at neutral stability (t50 = ∞) spans all limb 
modes with doubling time magnitude greater than 10 seconds.  The dark gray histogram shows the 
distribution of stability of each mode for the set of random activation patterns (μ = 0), for which A) The AS 
mode was stable for 37% of muscle activation patterns, B) the AF mode was stable for 88%, C) the HF was 
stable for 99.5%, and D) the KF mode was stable for 100% of muscle activation patterns. The white 
histogram shows the distribution of the stability of the limb when the selection of muscle activation 
patterns was biased toward locally stiff muscles (μ = 0.5).  The asterisk represents the t50 value for the 
unique muscle activation pattern that maximized the activation of locally stiff muscles (μ = 1). 35% of the 
patterns resulted in a limb with negative eigenvalues (stable) in all modes.   
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Stability Contribution of Individual Muscles 

The range of activation levels within each muscle were similar in the stable and 

unstable sets, with only a 4% average decrease in the range of muscle activation levels 

between the two sets; only Gluteus Medius (GMED) decreased in range of activation by 

more than 10%.  Fifteen principal components were required to account for 95% of the 

variability in both stable and total sets.  

Few correlations were found between individual muscle activation levels and limb 

mode stability (Figure 3.3a).  HF and KF stability were most strongly correlated with 

inactivation of Biceps Femoris, posterior compartment (BFP) and Rectus Femoris (RF) 

(r=0.52, and r=0.57, respectively for HF; r=0.83, and r=0.72, respectively for KF) (Figure 

3.3a, 3rd and 4th column, asterisks).  AF stability was most strongly correlated with 

activation of Tibialis Posterior (TP) and Peroneus Brevis (PB) (r=-0.45, and r=-0.68, 

respectively), and deactivation of Flexor Hallucis Longus (FHL, r=0.51) (Figure 3.3a, 1st 

column, asterisks).  AS stability was most strongly correlated with activation of Medial 

Gastrocnemius (MG, r=-0.78), VL (r=-0.52), and EDL (r=-0.40), and deactivation of 

FHL (r=0.60) (Figure 3.3a, 2nd column, asterisks). 

No consistent relationships between local stiffness of activated muscles and 

whole-limb stability were found (Figure 3.3a and 3b).  Most muscles had stronger 

positive than negative local stiffness (i.e. the magnitude of +
iκ (Figure 3.3a, black bars) 

was greater than the magnitude of −
iκ (Figure 3.3b, white bars)).  In AS, stability was 

strongly correlated with MG, VL, and EDL activation, but only MG had greater than 

average local positive stiffness (Figure 3.3b).  The activation of these four muscles was 

highly correlated because they are mutually advantageous when standing up against 

gravity (data not shown).  KF stability was negatively correlated with activation of BFP, 

the muscle with the greatest positive local stiffness.  Although BFP had the large 

maximum local stiffness, it also had substantial negative local stiffness values as well, 
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highlighting the difficulty of assigning responsibility of whole-limb stability to the 

characteristics of a particular muscle.  
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Figure 3.3: Relationship between overall limb stability, individual muscle activation levels, and joint-
level stiffness of individual muscles.  Gray bars indicate biarticular muscles.  A)  Correlation coefficients 
of individual muscle activation with eigenvalues of each mode.  Negative correlation coefficients indicate 
that activation of the muscle correlates with increased modal stability (decreased eigenvalue).  Muscles 
with statistically significant correlation coefficient magnitudes of greater than 0.4 are indicated by an 
asterisk (*).  In general, hip and knee muscles are correlated with HF and KF stability and knee and ankle 
muscles are correlated with AS and AF stability. B) The maximum local positive (black bars, κi

+) and 
negative (white bars, κi

-) stiffness for each muscle. C) The muscle activation pattern generated when using 
a cost function maximizing activation of muscles with high local stiffness (μ  = 1, Eq. 8) results in a unique 
activation pattern with strong coactivation of hip and ankle uniarticular muscles. 
 
 

Prediction of a Stable Set of Muscle Activation Patterns 

An increasingly stable set of muscle activation patterns was found when muscles 

with large mean local stiffness were preferentially selected (i.e. weighting factor μ, 

Equation 8, was increased) (Figure 3.4a).  For μ > 0.5, all muscle activation patterns were 
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stable in all modes (Figure 3.2, Figure 3.4).  The number of principal components 

decreased monotonically with μ  (Figure 3.4a); a value of μ = 1 resulted in a unique 

activation pattern (Figure 3.3c).  This activation pattern was in the 99.96 percentile of 

stability in mode AS, and the 96, 59, and 42 percentile of stability in modes AF, HF, and 

KF, respectively (Figure 3.2, asterisks). 

In contrast, as intrinsic stiffness of individual muscles was increased from the 

nominal value of 3 FMAX/L0
F, the number of stable muscle activation patterns increased 

monotonically, but the number of principal components to describe 95% of data 

variability remained at 15 (Figure 3.4b).  At stiffness values of 0.3 FMAX/L0
F, 

corresponding to the stiffness of the length-tension curve at 95% optimal fiber length, no 

stable muscle activation patterns were found. To generate a set with 97% stable muscle 

activation patterns, intrinsic stiffness had to be increased to 8, which cannot be achieved 

from the length-tension property of muscle alone, but is less than the short-range stiffness 

of muscle (Rack and Westbury 1974). 
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Figure 3.4: Changes in activation set dimensionality and stability due to biasing of the activation sets 
to locally stiff muscles and to varying magnitudes of intrinsic muscle stiffness.  Randomized set of 
muscle activity were generated for different values of μ, weighting the cost function in favor of locally 
stabilizing muscles, and at different stiffness values for the muscles. A) As the weighting toward locally 
stable muscle increases, the percentage of stable muscle activation patterns within each randomized set 
increases, and the number of principal components accounting for 95% variability of the set decreases.  B) 
As intrinsic stiffness  (normalized to the maximum force generating capability of the muscle times the 
optimal fiber length) increases, the percentage of stable muscle activation patterns increases without 
decreasing the number of principal components describing 95% variability of the set.  
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Allowing the pelvis to move vertically did not substantially change the results. In 

addition to AS, AF, HF, and KF modes, a fifth mode, comprised mostly of hip and knee 

flexion/extension, was created that was stable for 99% of the activation patterns. The 

proportion of total stable muscle activation patterns decreased by 3% to 31%, and the 

correlation of local muscle stability to whole-limb stability was unaffected. 

Discussion 

Within the large set of activation patterns that satisfy the force requirement for 

posture, a reduced subset of the same dimensional complexity produced mechanical limb 

stability, and few strong correlations between specific muscles and stability were found.  

This suggests that the stability criterion restricts the size of the muscle activation solution 

space without restricting the muscle activation strategy.   

Based on intrinsic musculoskeletal properties, muscle activation patterns may be 

chosen by the nervous system to set the relative mechanical stability or maneuverability 

of the limb in addition to meeting the kinetic constraints of a task.  It has been suggested 

that muscles operate near optimum length, where muscle stiffness due to the length-

tension relationship is close to zero.  There were no globally stable muscle activation 

patterns for muscle stiffnesses in this range (<1), although KF and HF modes were stable.  

In contrast, essentially no unstable activation patterns were found for muscle stiffnesses 

greater than 8.  At its maximum slope, the length-tension relationship has a stiffness of 4, 

which may be increased as much as four-fold by the autogenic stretch reflex (Nichols and 

Houk 1976), suggesting, along with short-range stiffness contributions (Epstein and 

Herzog 2003), that these mechanisms alone may be adequate to ensure limb stability.  

Supporting this idea, cats with spinal cord transection are able to stand independently and 

resist small perturbations (De Leon et al. 1998, Pratt et al. 1994), but do not generate 

direction-specific postural responses  (Macpherson and Fung 1999). Our model 

demonstrated that even when the limb is unstable, the perturbation doubling-time was 
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greater than 100 ms, approximately the latency of active force-generation in postural 

responses (50 ms muscle activation latency plus 50 ms electromechanical delay) 

(Macpherson 1988). The viscous force-velocity relationship of muscle contributes 

significantly to prolonging the perturbation doubling-time, illustrating its importance to 

postural control.   

Neural control may be dedicated more towards sagittal plane control and ankle 

control, consistent with the primary joint motions of the limb in both locomotion and 

posture. The high stability of non-sagittal modes in our analysis suggests that frontal 

plane control of these joints does not require substantial neural control and reflects 

inherently stabilizing non-sagittal moment arms (Young et al. 1992).  The relative 

instability of ankle flexion/extension and ad/abduction modes is consistent with the 

important role of the ankle in directing the actions of more proximal muscles (Fregly and 

Zajac 1996, Ting et al. 1999, van Antwerp et al. 2007, Zajac 2002), which may be 

particularly important during perturbations (Daley et al. 2007).   

Our analysis highlights two strategies by which postural stability may be 

increased.  For novel environments, it may be advantageous to increase limb stability 

through co-contraction (Osu et al. 2002) or by increasing neural feedback gains 

(Bonasera and Nichols 1996, Nichols and Houk 1976). In contrast, biasing selection of 

muscle activation patterns to locally stiff muscles, due to moment-arm properties can also 

result in whole limb stability without need for co-contraction.  These two different 

strategies may explain our prior data demonstrating different muscle activation patterns 

across individuals during quiet standing (Torres-Oviedo et al. 2006, Torres-Oviedo and 

Ting 2007). Similarly, some subjects maintain trunk rotational stiffness through 

feedforward activation of muscles, whereas others modulate muscle activation in 

response to trunk motion (Gurfinkel et al. 2006). Our results demonstrate the vast number 

of possible muscle activation patterns that could stabilize the limb. We propose that 

individual variations in the selection of a muscle activation pattern may result from 
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differential tradeoffs between stability, energetic efficiency, and other factors (Welch and 

Ting 2008). 

It may be possible to increase stability of musculoskeletal simulations for a range 

of dynamics tasks by considering muscle stiffness and moment-arm properties in 

optimizations of muscle activation patterns. While activation of locally stabilizing 

muscles did not guarantee whole-limb stability in our analysis, it was possible to increase 

probability of whole limb stability preferentially selecting muscles with greater local joint 

stiffness. Our approach may be extendible to more dynamic simulations of locomotion 

(Higginson et al. 2006, Neptune et al. 2001), and be used to choose muscle activation 

patterns that increase the stability of the simulations, helping to maintain the body on a 

particular cyclic trajectory (Holmes et al. 2006).  
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CHAPTER 4 

LENGTH FEEDBACK IN POSTURAL CONTROL OF A CAT 

HINDLIMB: A MODELING STUDY AND STABILITY ANALYSIS 

Introduction 

Postural control is a fundamental task of the neuromusculoskeletal system.  In 

addition to its intrinsic importance during quiet standing, posture also serves as the 

background for a variety of many other critical motor tasks.  The biological mechanisms 

responsible for postural control have been intensely debated, primarily in the context of a 

hierarchical neuromusculoskeletal system.  Some  (Winter et al. 1998) have argued that 

the lowest level of the hierarchy, the intrinsic viscoelastic properties of the muscles, are 

sufficient to stabilize quiet standing in a human.  On the other hand, others (Hasan 2005) 

claim that the highest level of the hierarchy, voluntary nervous control, is required for 

balance control.  Many others have argued that the various levels of the intermediate 

reflex pathways are the most critical in maintaining balance (Lyalka et al. 2005, 

Macpherson et al. 1997).  Even among these there are differences over which pathways 

are the most important (Deliagina et al. 2008). 

When subjected to a perturbation, the system must generate a net restoring force 

that returns the center of mass to the base of support.  The restoring ground reaction 

forces for cats subjected to horizontal plane perturbations has been described as a passive 

phase characterized by restoring forces directly countering the perturbation followed by a 

reflexive response characterized by a “force constraint strategy.” Under force constraint, 

the forces produced by each limb are constrained to a preferred direction regardless of the 

direction of postural perturbation , and the net response is a directionally tuned change in 

support force (Macpherson 1988, Macpherson 1994).  This constraint has also been 

demonstrated in the human postural response (Henry et al. 2001).  The activation of 
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individual muscles, as indicated by EMG responses, are directionally tuned (Macpherson 

1988); each muscle responds only across a certain range of perturbation directions.  The 

directional tuning of individual muscles parallels the directionally tuned change in 

support force, so the endpoint force constraint seems to emerge from the directional 

tuning of individual muscle responses. 

The relative amount of spinal and supraspinal control necessary to explain the 

features of the postural response is still debated.  Experimentally, Macpherson 

(Macpherson 1988) measured the activity in the muscles of the hindlimb of cats subject 

to horizontal platform displacements and found that a postural response was initiated at 

latencies consistent with a reflex loop through supraspinal centers.  Experiments with 

labyrinthectomized cats have demonstrated that neither vestibular nor visual information 

is required for the force constraint strategy or the directional tuning of EMG 

patterns(Inglis and Macpherson 1995) suggesting that an appropriate postural response 

requires integration of only proprioceptive and cutaneous sensory information.  In 

contrast, spinalized cats can be trained to stand (De Leon et al. 1998, Fung and 

Macpherson 1999) and still exhibit directional tuning of the EMG, although delayed and 

with reduced magnitude.  However, rabbits subject to ventral hemi-section of the spinal 

cord at T12 level experienced dramatically reduced postural response in terms of 

kinematics and EMG, while rabbits subject to dorsal or lateral hemisection quickly 

regained the postural response(Lyalka et al. 2005).  Lyalka et al. contend that since both 

dorsal and lateral hemisections substantially interfere with the supraspinal feedback 

loops, these longer latency reflex loops do not contribute greatly to the postural response 

in the intact, or dorsal and lateral hemisected animals.  On the other hand, the descending 

tracts that are destroyed in the ventral hemisection interfere with the natural tone of the 

spinal reflexes therefore reducing the postural response. 

The overall function of the postural response is to stabilize the limb and length 

feedback may provide this stability.  Although some have argued that the intrinsic 
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viscoelastic properties of muscle are sufficient to stabilize posture (Winter et al. 2001) it 

is generally held that some level of nervous control is necessary in humans(Morasso and 

Sanguineti 2002) and cats (Macpherson et al. 1997).  We have previously shown that at 

near optimal fiber lengths (95%) (Burkholder and Lieber 2001) the intrinsic stiffness of 

the hindlimb muscles is insufficient to stabilize the limb (Bunderson et al. 2008).  As 

previously discussed it remains unclear whether the spinal reflex pathways under the 

appropriate tone are sufficient to stabilize posture, but the preservation of the directional 

tuning of EMG responses in the spinalized cat is consistent with proprioceptive length 

feedback.  We test the hypothesis that homonymous fiber length feedback is sufficient to 

provide limb stability by comparing the Lyapunov stability of a model limb with and 

without fiber length feedback. 

One potential explanation for the observed directional tuning of muscle activity 

and force constraint strategy is the stretch reflex of the muscle.  Muscle length and 

velocity feedback is provided by muscle spindles, groups of intrafusal fibers innervated 

by large-diameter (group Ia) fibers and smaller group II afferents.  The firing rate of these 

afferents increases with stretching of the spindle and decreases with shortening of the 

spindle (Houk et al. 1981). These Ia afferents make monosynaptic connections in the 

spinal cord with homonymous alpha motor neurons, so that excitation of the Ia afferent 

results in excitation of the homonymous alpha motor neurons.  The directional tuning of 

muscle activity may simply reflect the perturbation directions of maximal muscle 

lengthening and therefore maximal stretch response.  This direction specific stretch 

response may also be responsible for the force constraint strategy observed in the postural 

response.  An alternative possibility is that the directional tuning of a particular muscle is 

triggered by an integrated signal from a set of muscle and/or cutaneous afferents and 

therefore does not reflect the length change of the muscle.  Support for this has been 

shown in voluntary postural tasks with monkeys where the activity of muscles differ from 

their anatomical action (Fagg et al. 2002, Kurtzer et al. 2006). We test the hypothesis that 



 68

the directional tuning of EMG in the postural response is due to homonymous length 

feedback by comparing experimental muscle tuning curves to tuning curves resulting 

from length feedback in a model of a cat hindlimb. 

We found that the directional tuning of the muscles in response to postural 

perturbations was similar for 3 of the 6 muscles compared with experiments.  The force 

response was similar for the dynamic portion but diverged as stiffness became dominant.  

The limb was unstable for all muscle activation patterns without length feedback and 

became stable for all muscle activation patterns when homonymous length feedback was 

included. 

Methods 

Summary 

We used a biomechanical model to evaluate the effect of homonymous fiber 

length feedback on the stability, muscle activity, and ground reaction forces of the limb in 

response to postural perturbations.  A large set of muscle activation patterns were 

selected that produce the same endpoint force and satisfy the equilibrium constraints of 

the model. To determine the endpoint perturbation directions that maximally lengthen the 

muscle the equations of motion for the model were linearized for each muscle activation 

pattern.   Postural perturbations based on those that have been applied experimentally 

(Macpherson and Fung 1999) were applied to a biomechanical model of a cat hindlimb 

with and without homonymous length feedback, and the spatial tuning of muscle 

activation was measured for the limb with fiber length feedback.  The ground reaction 

force was recorded for perturbations in a variety of directions and at different times after 

perturbation onset.  Lyapunov stability of the limb was also evaluated using the linearized 

state equations for all activation patterns in the limb with and without length feedback.   
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Anatomical Model 

The model had seven kinematic degrees of freedom consisting of hip flexion 

(HF), hip adduction (HA), hip external rotation (HR), knee extension (KE), knee 

adduction (KA), ankle extension (AE), and ankle adduction (AA) (Burkholder and 

Nichols 2004, McKay et al. 2007, van Antwerp et al. 2007).  The pelvis was welded to 

ground (zero degrees of freedom) and the foot was connected to the ground through a pin 

joint at the MTP (three degrees of freedom reduction), leaving 4 total degrees of 

freedom.  The equations of motion for the system were expressed in the generalized 

coordinate system, T
AAAEKAKEHRHAHF ],,,,,,[ θθθθθθθθ =

v
, where the subscripts denote 

the positive direction of joint movement.   Limb motion was described by the vector 

equation, 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]aLFaLFGvf FEND
T

FM ,,,,,1 θθθθθθθθθ θ

vvvvvvvv&vvvvv&&v
&& JRM −+−−==

− . (1) 

where M is the inertia matrix, vv  is the centrifugal and Coriolis torques, G
v

 is the 

gravitational torques, R is the moment arm matrix, J is the Jacobian mapping joint 

velocities to the translational velocity of the MTP, MF
v

 is the vector of muscle forces, 

ENDF
v

 is the resultant force at the MTP joint.  For clarity, the state dependence of the 

variables is omitted in future references.  These equations of motion were subject to the 

endpoint acceleration constraint, 

 ( ) ( )[ ]xFGvF M
T

END &&&v&
vvvv

+++−−= −−− θJRJMJJM 111 , (2) 

where x&&  is the acceleration of the toe, which is defined by the perturbation. 

Muscle Model 

31 muscles were modeled using a Zajac adaptation of the Hill muscle model 

(Zajac 1989).  The force of an individual muscle i (FM,i) was described by, 

 ( )iiM tflF δ=,
ˆ , (3) 
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 iMAXiMiM FFF ,,,
ˆ= , (4) 

where the function tfl is a spline relationship of tendon strain ( iδ ) to normalized tendon 

force ( iMF ,
ˆ ) and iMAXF ,  is the maximum isometric force of the muscle. The tendon strain 

is obtained from the fiber length ( iFL , ), pennation angle ( iα ), and musculotendon length 

of the muscle. 

Fiber length dynamics were obtained by solving the state equation, 
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for muscle fiber velocity ( FL& ).  The functions pfl and afl relate the ratio of fiber length to 

optimal fiber length, 0
,, / iFiF LL , to the normalized isometric force of the muscle and 

normalized passive force of the muscle respectively.  The variables ivk , , isk , , and ifmax,  

are hill equation parameters, ivmax,  is the maximum shortening velocity, and iη is the 

passive damping of the muscle.  The activity level of the muscle ( ia ) is governed by the 

activation dynamics, 
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where iε  is the excitation, iak ,1 , and iak ,2  are activation constants. 
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Selection of Activation Sets 

The initial states of the system were chosen such that all state equations were in 

equilibrium.  Muscle force vectors ( MF
v

) were chosen such that the muscle torques 

balance the gravitational and endpoint torques, 

 0
END

T
M FGF

vvv
JR += . (7) 

The activation pattern produces a force at the toe ( 0
ENDF
v

) that is derived from 

experiments(Torres-Oviedo et al. 2006).  Since MF
v

R  has dimensions 7 x 31, equation 4 

is redundant and there are an infinite number of solutions.  To span the MF
v

 solution 

space, activation sets were chosen by projecting a random force vector ( 0,MF
v

), into the 

solution space of equation 7 by quadratic programming with the cost function 

 ( ) ( )0,0, MM
T

MM FFFFc
vvvv

−−= , (8) 

and constraints, 

 ( ) 0,
0

0, MMTP
T

MM FFGFF
vvvvv

RJR −+=− , (9) 

 ( ) 0,max,0,0,min, MMMMMM FFFFFF
vvvvvv

−≤−≤− . (10) 

To allow changes in activation without saturation, a maximum ( max,MF
v

) and 

minimum ( min,MF
v

) bound to the muscle force vector was chosen so that max,MF
v

 was 

10% below the maximum force and that min,MF
v

 was 1% greater than the minimum force 

that could be generated by each muscle at a particular posture.  The method of choosing 

activation patterns differs from our previous work (Bunderson et al. 2008) in that the 

muscle force rather than muscle activation pattern is solved for directly.  This is 

necessitated by the inclusion of a tendon in the muscle model.  Ten thousand random 

muscle force vectors were projected into the solution space.  This number was previously 

found to be sufficient for convergence of the mean activation level of 23 of the 31 

modeled muscles (Bunderson et al. 2008, Valero-Cuevas et al. 2003).  For each unique 
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muscle force vector there is a unique fiber length vector and activation pattern that 

satisfies equilibrium for muscle fiber dynamics.   

Reflexes 

The reflex model is a direct linear feedback of the deviation of fiber length from 

the equilibrium fiber length.  The excitation for muscle i is, 

 0
,

,0,
,0

)(

iF

iFiF
iii

L

LL
G

−
+= εε  (11) 

The muscle excitation depends on the current ( iFL , ), initial ( 0,FiL ), and optimal ( 0
,iFL ) 

fiber lengths, the initial muscle excitation ( 0,iε ), and the length feedback gain ( iG ).  The 

forward simulations were run without length feedback (G = 0) and with length feedback 

gains approximated from experiments (G = GA).  The approximated gains iAG ,  for the 31 

muscles are shown in Table 4.1. 

Linearized Equations of Motion 

To determine whether a given muscle activation pattern produces a stable limb, 

equation 1 was linearized by Taylor series expansion about the initial posture.  The 

equations of motion can be linearized to the form of  
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where A is the state matrix defined by, 
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The linearized state equations were used to determine the endpoint perturbation direction 

associated with the maximum change in musculotendon length for a given muscle i, 

max
,iMTLxv .  This direction will be called the lengthening direction.  For small displacement 

perturbations assuming no initial change in fiber length, 

 ( ) 111max
,

−−−= TT
iiMTL Rx JJKJK JJ
vv , (14) 

where joint stiffness (KJ) is, 
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and iR
v

 is the moment arm vector for muscle i.  Since this relationship is dependent on 

muscle force it varies with activation pattern.  We report the mean lengthening direction 

( max
,iMTLxv ) for all 10,000 activation patterns as well as the angle corresponding to the 

standard deviation of the patterns from this mean lengthening direction. 

The linearized equations of motion were also used to determine the stability of the 

limb for each activation pattern.  Lyapunov stability theory states that if all eigenvalues 

of the state matrix, A, are negative the system is asymptotically stable, that is, under 

small perturbations the limb will always return to the equilibrium posture.  Because of the 

large number of states we report only the largest eigenvalue.  If the largest eigenvalue is 

less than zero all other eigenvalues will be negative and the system will be stable.  The 

state matrix is activation pattern dependent and we report the largest eigenvalue of the 

state matrix for all activation patterns for both the reflexive and non-reflexive model.  In 
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order to have a physically interpretable metric of stability, the largest real component of 

the eigenvalues was converted to the perturbation halving time: 

 ( )
( )max

50 Re
5.0ln

λ
≡t , (16) 

Simulations 

To assess the effect of length feedback on the postural response of the limb, 

forward dynamic simulations were performed from the initial equilibrium state.  The 

activation pattern for these simulations was based on minimization of the magnitude of 

the muscle force vector obtained by quadratic programming (equations 8-10) with the 

random muscle force vector set to zero ( 00, =MF
v

), similar to a minimization of muscle 

noise cost function (Crowninshield and Brand 1981). 

Perturbations were applied by constraining endpoint acceleration to be,  
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The acceleration profile consisted of Gaussian pulses at 0.2,  and 0.485 sec 

resulting in a ramp and hold endpoint position perturbation, with a maximum endpoint 

displacement of 5 cm (Figure 4.1), and a maximum velocity of 18 cm/sec. The directions 

of perturbations ( dirxv ) were spaced evenly in the horizontal plane at elevation angles of 

±90° (2 perturbations), ±60° (16 perturbations), ±30° (24 perturbations) and 0° (16 

perturbations), for a total of 58 perturbations (Figure 4.1).   

To determine the directional tuning of the changes in activation for the muscles, 

the baseline muscle activity level was subtracted from the mean muscle activity level for 

0.15 sec after the onset of perturbation. Onset was determined as the time at which the 

acceleration reached ~25% of maximum (t = 0.165 sec).  This mean change in activity 

was measured for each perturbation direction for the reflexive muscle.   
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Three-dimensional endpoint force were also computed for both the reflexive and 

non-reflexive model at the time of maximum acceleration of the first pulse (t = 0.2 sec), 

when the velocity had reached its maximum (t = 0.25 sec), and during the hold period 

when the velocity had settled to less than 0.1% of maximum (t = 0.55 sec). 

 

 

Platform displacement (5cm)

200 ms  
Figure 4.1:  Forward simulations with ramp and hold endpoint displacements were performed in 58 
directions.  The perturbation directions were spaced evenly in the horizontal plane at elevation angles of 
±90° (2 perturbations), ±60° (16 perturbations), ±30° (24 perturbations) and 0° (16 perturbations), for a 
total of 58 perturbations.  The endpoint ramp and hold perturbations had peak accelerations of 3.2m/s^2, 
peak velocity of 18 cm/s and total displacement of 5 cm. 
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Sensitivity 

To determine sensitivity of limb stability to the effective stiffness of muscles both 

feedback gains and operating fiber length were varied.  The stability of the limb was 

tested at uniform feedback gains of G = 0.10, G = 0.25, and G = 0.5, to determine the 

sensitivity of stability to length feedback gain.  The operating length of the fibers was 

changed from 95% of optimal length, which minimizes the intrinsic stiffness, to 65% of 

optimal fiber length, near maximal stiffness of the length tension curve, to determine the 

stability of the limb with near maximal intrinsic muscle stiffness. 

Results 

The mean lengthening directions ( max
MTLxv ) reflect the mechanical coupling of the 

joints as approximated by the linearization.  These directions reinforce the joint-action 

description of muscles, such as the knee extensors (RF, VM, VL, and VI), which all 

lengthen maximally in response to endpoint dislpacement nearly vertical.  Conversely, 

shortening of these muscles would be expected to produce nearly vertical extension of the 

limb.  Hamstrings, the biarticular hip extensors/knee flexors (GRAC, ST, SM, BFP), are 

lengthened by perturbations exactly opposite the knee extensors, reinforcing the view that 

these groups are functional antagonists at both the joint and limb level.  Likewise, the 

ankle dorsiflexors (TA, EDL) and ankle plantarflexors (FHL, SOL, MG, LG, PLAN) had 

lengthening directions nearly opposing each other. The uni-articular hip-extensors (ADL, 

ADF, BFA, PEC) were grouped close to the ankle plantarflexors, suggesting functional 

synergy between these groups (Figure 4.2).  The hip extensor Iliopsoas aligned with the 

bi-articular hip extensor/knee flexors. The only muscles with significant response outside 

of the sagittal plane were the ankle everters (PB,PL, PT) and ankle inverters (FDL, TP), 

supporting the view that these muscles primarily provide lateral support for the ankle and 

the limb. 
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Table 4.1:  Muscle activation pattern (ε ) and length feedback gains (GA) for the forward 
simulations.  The angular difference between lengthening direction (linear approximation) and the 

direction of maximum averaged muscle activity under the forward simulations is shown for the three 
dimensional vectors (3D) and projected into the horizontal plane (Horiz) 

  ε  GA 3D Horiz 
ADF 0.01 0.16 16 0 
ADL 0.01 0.34 4 15 
BFA 0.01 0.26 21 10 
BFP 0.01 0.25 7 6 
EDL 0.01 0.29 20 28 
FDL 0.01 0.54 53 13 
FHL 0.03 0.33 20 25 
GMAX 0.01 0.41 31 20 
GMED 0.01 0.52 7 21 
GMIN 0.01 0.73 7 21 
GRAC 0.01 0.14 9 18 
LG 0.01 0.39 14 3 
MG 0.07 2.96 20 39 
PB 0.16 16.16 54 27 
PEC 0.01 0.43 5 3 
PL 0.33 11.91 79 16 
PLAN 0.01 0.58 12 19 
ILPS 0.01 0.48 70 155 
PT 0.21 9.20 81 17 
PYR 0.02 1.46 38 33 
QF 0.05 4.31 12 23 
RF 0.09 4.37 20 42 
SART 0.23 1.97 26 10 
SM 0.01 0.12 57 3 
SOL 0.60 12.98 23 22 
ST 0.01 0.31 8 2 
TA 0.01 0.16 25 30 
TP 0.01 1.61 51 4 
VI 0.42 16.93 14 127 
VL 0.15 5.02 13 101 
VM 0.04 1.49 20 176 
 MEAN     28 35 
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Figure 4.2:  The lengthening directions for each muscle were calculated from the linearized state 

equations for the model.  The mean lengthening directions ( max
MTLxv ) across all 10,000 activation patterns 

is shown in the horizontal (a) and sagittal (b) planes.  The hemisphere of the lengthening direction is 
indicated by the symbol (circle, downward; square, upward; gray, rightward; white, leftward).  The angular 
standard deviation of each muscle for the 10,000 patterns is represented by circles around each muscle. 

 

 

The mean lengthening directions for each muscle were conserved across 

activation patterns (Figure 4.2).   The standard deviation of the angles of lengthening 

direction for each activation pattern from the mean lengthening direction for each muscle 

was on average 3.5°.  The standard deviation for Iliopsoas (ILPS) was 11°, all other 

muscles had a standard deviation of less than 7°.  With the exceptions of the ankle 

stabilizers, the mean muscle lengthening direction of all 10,000 activation patterns lay 

within a region of ±32° of the rostral-caudal direction in the sagittal plane (Figure 4.2a). 

The linearized model of the limb was unstable for all activation patterns without 

fiber length feedback and stable for all activation patterns with fiber length feedback 

(Figure 4.3a).  The largest real component of the eigenvalues for all activation patterns 

for the limb without fiber length feedback was greater than zero and less than zero for the 

limb with fiber length feedback for the same activation patterns, resulting in an 

asymptotically stable limb for all activation patterns.  In terms of perturbation halving 
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time, the most stable activation pattern reduced perturbations by 50% every 100 ms. On 

the other hand, the perturbations doubled every 100 ms for the limb operating under the 

most unstable activation pattern. 
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Figure 4.3: The Lyapunov stability of the model depends on length feedback gains. A) The distribution 
of the largest real component of the eigenvalues (λmax) of the linearized equations of motion is shown 
across 10,000 activation patterns.  The value of λmax is greater than zero for all 10,000 activation patterns in 
the model without length feedback (a, black square) and less than zero for all 10,000 activation patterns in 
the model with length feedback (a, white square).  Also shown is the perturbation halving time (t50) or the 
time it takes for a perturbation to be reduced by 50%.  B) The percentage of activation sets that are 
Lyapunov stable (λmax < 0) is shown for the length feedback gains used in the simulations (GA) and without 
length feedback (G=0) and for equal gains across all muscles (G = 0.1, 0.25, 0.5).  The stability of the limb 
without feedback but with all muscles set to near maximal stiffness of the length-tension curve (LF = 65% 
LF0) is also shown. 
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 Length feedback gain was a strong determinant of stability (Figure 4.3b).  The 

observed reflex gains (GA) were replaced with various uniform gains (G) applied to all 

muscles.  Increasing G caused the population eigenvalues to migrate towards stable, 

negative values, increasing the fraction of activation patterns that met the Lyuapunov 

stability criterion (Figure 4.3b).  A gain of 0.5 produced stability in 98% of the muscle 

activation patterns and decreased to 56% (G = 0.25) and 8% (G = 0.1).  At an operating 

length of 65% optimal fiber length and no length feedback (G = 0) the limb was stable 

under all activation patterns. 
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Figure 4.4: Forward simulations of the model with fiber length feedback (solid) and without feedback 
(dashed) for different endpoint perturbation directions.  a-b) The magnitude of the ground reaction 
force varies with feedback and with perturbation direction.  Vertical limb perturbation results in an increase 
in ground reaction force (a) while a perturbation in the rostral direction results in a decrease in total 
endpoint force (b). The addition of length feedback decreases the change in GRF as the limb is perturbed 
vertically and increases the GRF response to rostral perturbation.  c-d) Vastus Lateralis (VL) is typical of 
all muscles in that its length change depends on the direction of perturbation.  A vertical perturbation 
results in substantially stretching VL (c) and a rostral perturbation slightly shortens VL (d).  The amount of 
length change depends on whether fiber length feedback is present or not (c,d).  e-f) With length feedback, 
length change in VL results in a proportional change in the activation of VL.  g-h)  The force in the muscle 
depends on both the stretch of the muscle and the activation. 



 81

 
Exemplary forward simulation results are shown in Figure 4.4.  When the 

endpoint was displaced vertically (Figure 4.4a, c, e, g) or rostrally (Figure 4.4b, d, f, h), 

the simulation produced a complex endpoint force response (Figure 4.4a-b).  The 

immediate response is dominated by acceleration and inertia, reflected in the rapid force 

rise in response to vertical perturbation (Figure 4.4a), which requires substantial 

acceleration of the femur segment.  The rostral perturbation induces acceleration of the 

less massive foot segment, and a smaller acceleration dependent rise in force.  In each 

direction, muscle lengths change proportionally with endpoint position (Figure 4.4c-d), 

and for simulations including length feedback, activation changes accordingly (Figure 

4.4e-f).  Resultant muscle force reflects the combined effects of changing activation, 

tendon elasticity, and muscle force-velocity or viscosity.  This is most apparent in VL 

during vertical perturbation (Figure 4.4g), in which VL force rises rapidly, then yields as 

the tendon strain equilibrates with muscle viscosity.  The instability of the model without 

feedback is evident in the continued drift of forces and muscle length change after the 

completion of perturbation, leading in both perturbation directions to catastrophic 

collapse around 0.95s.  In contrast, muscle length remains nearly constant in the model 

with length feedback. 

Full forward dynamic simulations of endpoint perturbations of the limb also 

demonstrated direction dependence of muscle lengthening.  Vastus Lateralis (VL) fiber 

length change was greater when the limb was perturbed in the vertical direction (Figure 

4.4c) than in the rostral direction (Figure 4.4d).  This greater change in VL fiber length 

when the limb is perturbed vertically resulted in a greater change in VL activation when 

fiber length feedback was included in the model (compare black solid line Figure 4.4e to 

black solid line Figure 4.4f).  The change in activation for the model with fiber length 

feedback results in changes to the VL force (Figure 4.4g, Figure 4.4h) and the aggregate 

changes in all muscles result in a ground reaction force which remains closer to the 
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baseline across the entire perturbation (compare black solid line to gray dash line Figure 

4.4a, Figure 4.4b).  The magnitude of the ground reaction force increases for an upward 

perturbation of the limb (Figure 4.4a) and decreases slightly for a forward perturbation 

(Figure 4.4b) for the model with and without length feedback.   

The average change in activation over the first 150 ms of the perturbation 

(forward dynamic simulations of the nonlinear model) was directionally tuned with the 

lengthening direction (obtained from the linearized approximations) for most muscles   

On average the angular difference between the lengthening direction and the 3-

dimensional direction of maximum activation response in the simulations was 27° (Table 

4.1).  Vastus Intermedius is typical with the direction of maximum lengthening (Figure 

4.5a, arrow) 14 degrees from the perturbation direction which elicited the maximum 

excitatory response.  The projection of the lengthening direction into the horizontal plane 

was also compared with the maximum activation response direction for simulated 

perturbations in the horizontal plane (Table 4.1, Figure 4.5b-g).  On average these were 

also reasonably aligned with a mean for all muscles of 33° (Table 4.1), and alignment in 

3-D did not always correlate with alignment of the horizontal plane projections.  The 

maximum responses of Gluteus Medius (GMED), Sartorius (SART), and Gracilis 

(GRAC) were 7°, 26°, and 9° away from the maximum lengthening direction in 3-D, and 

the maximum activation due to horizontal perturbations was shifted 21°, 10° and 18° 

from the projection of the lengthening direction in the horizontal plane.  On the other 

hand, the maximum responses of Rectus Femoris (RF), and Vastus Intermedius (VI) were 

rotated by 42° and 127° from the lengthening direction, respectively, in the horizontal 

plane compared with rotations of 20°,  and 14° three-dimensionally (compare Figure 4.5a 

and Figure 4.5g).  Iliopsoas (ILPS) aligned poorly both in the horizontal plane (155°) and 

three-dimensionally (70°) (Figure 4.5e).   
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Figure 4.5:  The lengthening directions (linearized approximations) are not always aligned with the 
direction of maximum activation response (from nonlinear simulations).  a) The lengthening direction 
(arrow) of Vastus Intermedius (VI) is compared with the magnitude (circles) of the average change in 
muscle activation over the first 150 ms of the perturbation for 58 directions in three dimensions.  Increases 
in activation (excitation: white circles) are differentiated from decreases in activation (inhibition: black 
circles).  Vastus Intermedius lengthening direction is near vertical and the perturbation direction that results 
in the greatest increase in muscle activation in the forward simulations is vertical.  Perturbations in the 
horizontal plane result in small changes in activation.  b-g) The horizontal projections of the lengthening 
direction (arrow) are compared with the change in activation (filled and open circles) and experimental 
muscle tuning curves from two cats (hatched regions) for six muscles Gluteus Medius (GMED)(b), 
Sartorius (SART)(c), Gracilis (GRAC)(d), Iliopsoas (ILPS)(e), Rectus Femoris (RF)(f), and Vastus 
Intermedius (VI). 
 
 
 

Changes in activation were not symmetric in lengthening and shortening.  The 

increase in activation for muscles GMED, SART, and GRAC (white circles Figures 

5b,c,d) due to muscle lengthening was stronger than the decrease in activation due to 

muscle shortening (black circles Figure 4.5b,c,d).  Since the gain is constant for these 

simulations this can only be due to non-linearities in muscle strain.  On the other hand, 

both RF and VI are asymmetric with the shortening response being larger than the 

lengthening response (Figure 4.5f,g).  The response of ILPS is symmetric (Figure 4.5e).  

The muscle tuning from the simulations was also compared with data from the 

postural response for six muscles in the right hindlimb of two intact cats (Macpherson 

and Fung 1999).  GMED was tuned in both cats to respond to forward-left perturbations.  

Both SART and ILPS responded to right perturbations.  GRAC responded to forward 
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right perturbations.  Both VI and RF responded to left perturbations in cat RU but in cat 

NI VI responded to both left and right perturbations. The tuning of GMED, RF, and 

GRAC in the simulations were aligned closely with the tuning curves of cats RU and NI 

from the experiments.  The simulated tuning of VI was closely matched to experiments 

for cat RU and for one of the lobes of cat NI.  The simulated tuning of ILPS and SART 

were shifted by greater than 60° from both cats.  The shape of the experimental tuning 

curves varied between muscles; GMED, RF, and GRAC were fairly narrow in tuning 

while VI, SART and ILPS had a broader response. 

At the time of peak acceleration, where displacements are small, the effect of 

stiffness on the limb was minimal, and limb inertia and muscle viscosity dominated 

(Figure 4.6a,b).  The change in ground reaction force in the horizontal plane for 

horizontal plane perturbations were the same with and without fiber length feedback 

(Figure 4.6b).  Also at this early time the change in ground reaction force is biased to the 

rostral-caudal direction and is stronger for rostral-caudal perturbations (Figure 4.6b), but 

all endpoint forces are restorative.  As the displacement of the limb increased the force 

response of the limb with length feedback began to deviate from the force response of the 

limb without feedback (Figure 4.6a).  At peak velocity (t = 0.25), (the endpoint of the 

limb has only moved 9 mm) the restoring force in the horizontal plane for the fiber length 

feedback model was substantially different than the response for the no feedback model 

(Figure 4.6c).  Without length feedback, restorative forces are generated only for 

displacements within 25° of rostral.  Length feedback expanded the restorative range to 

45° around rostral and 25° around caudal.  In addition, the response to rostral directed 

perturbations became larger than the response to caudal directed perturbations (Figure 

4.6c).  This is primarily due to the asymmetric stretching of several hip muscles including 

GMED (Figure 4.4b).  The change in endpoint force for the model without feedback 

during the hold phase of the ramp-and-hold perturbations was directed away from the 

initial posture for most directions (Figure 4.5d). The addition of length feedback 
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increased the magnitude of restoring forces when the limb was subject to rostral 

perturbations and decreased the magnitude of non-restoring forces. 
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Figure 4.6:  The force response varies across the timecourse of the perturbation for the model with 
and without fiber length feedback.  a) Normalized endpoint acceleration, velocity, and position during 
the simulation.  Peak acceleration is at 0.2s and velocity is maximal between 0.25 and 0.45s.  The rostral 
component of the change in endpoint force is shown for a rostral perturbation and is the same for the model 
with and without length feedback.  By the time peak velocity is reached the forces for the two conditions 
have begun to deviate and by the time the endpoint stops moving the forces are dramatically different. b-d) 
The endpoint force components in the horizontal plane for all horizontal plane perturbations for the model 
with (solid lines) and without (dashed lines) length feedback at peak acceleration (b), velocity (c) and 
displacement (d).  e-f) Experimental force data for several trials averaged over 50ms windows 
corresponding to peak acceleration and velocity.  Center of mass position changes substantially during the 
perturbation, so there is no experimental equivalent to the maximum displacement condition. 
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The simulated forces were compared to forces from the postural response of two 

intact cats (Macpherson and Fung 1999).  The earliest neural response to perturbation 

occurs at a latency exceeding 50 ms, so the response over t-0.17-0.22 reflects purely 

passive contributions and directly oppose the perturbation (Figure 4.6e).  For the first 

time window, when viscosity and inertia dominated, the simulated force responses were 

similar with a stronger rostral-caudal component than medial-lateral component (Figure 

4.5b and Figure 4.5e). In addition, the magnitude of the force response was similar for the 

experimental and simulated data (Figure 4.5b and Figure 4.5e).  For the second time 

window, the range of force magnitudes in the horizontal plane was similar but where the 

force response was greater to rostral directed perturbations in the simulated data (Figure 

4.5c), the force response to caudal directed perturbations was greater in the experimental 

data (Figure 4.5f). 

Discussion 

The principle results of this study are that length feedback is sufficient to stabilize 

a linearized model of the cat hindlimb, to provide directional tuning of muscle activation 

in response to perturbations, and to increase the resistance of the nonlinear model to 

perturbation.  These results indicate that direct fiber length feedback is sufficient to 

stabilize the limb against small perturbations from the equilibrium posture.  Without 

length feedback the largest real component of the Eigen-values was greater than zero for 

all 10,000 activation patterns.  However, the relative instability of these patterns varied 

dramatically with perturbation doubling times ranging from 100 ms to 5 s.  With the 

addition of length feedback these activation patterns became stable and the perturbation 

halving time ranged from 100 to 400 ms.  In either case, these time constants are 

substantially greater than the stretch reflex latency, and support the omission of feedback 

delays.  Since data was not available to estimate the length feedback of all muscles we 

deemed it important to determine how sensitive the stability of the limb is to changes in 
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the length feedback gains.  We found that a gain value of 0.5; equivalent to a 5% increase 

in activation level for a 10% change in fiber length (muscle would increase by 5% points 

e.g. from 15% activity level to 20% activity level, or from 90% to 95%) resulted in a 

stable limb for 98% of the activation patterns tested.  Gains observed during ramp-and-

hold experiments in decerebrate cats ranged between 0.16 (TA) and 12 (soleus), 

suggesting that the stabilizing gain is well within the physiological range.  The variation 

in observed gains seems to favor antigravity (vasti, soleus, gastrocnemius) and so-called 

stabilizing muscles (TP, PB), which may reflect a strategy of reflex recruitment of 

muscles that contribute to normal stance.  Although the limb stability would be dependent 

on reflex delays it may be that the short latency reflex pathways such as the 

monosynaptic stretch reflex provide stability for an individual limb rather than for 

balance.   

Complex models such as the one used in this study are prone to criticism because 

of the large number of parameters that must be measured, approximated, or guessed.  The 

response of the model is sensitive to these parameters to varying degrees just as the real 

limb is.  All muscle parameters were either taken from the literature or approximated 

based on muscles of similar function.  Therefore none of the current results are due to 

fitting of model parameters.  The stability of the limb is not sharply sensitive to changes 

in the length feedback gains and was quantified across a large set of activation patterns. 

The sensitivity of these results to posture has yet to be determined.  

Most of the maximal lengthening directions were substantially elevated from the 

horizontal plane, suggesting that horizontal plane perturbations may be relatively 

insensitive to proprioceptive responses.  Both simulated and experimental turning curves 

were highly variable, highlighting the inadequacy of horizontal plane perturbations in 

characterizing limb response.  Nearly half (14 of 31) of the muscles had lengthening 

directions that were less than 30° from vertical.  The tuning of these muscles in the 

horizontal plane is more likely to be sensitive to changes in posture highlighting the need 
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for perturbations in three dimensions.  Experimental interventions intended to test 

proprioceptive feedback should include vertical components.   

Asymmetries were seen both in the change in muscle activation due to 

lengthening versus shortening and in the endpoint forces produced at the ground.  Since 

the activation changes are proportional to length changes, asymmetries in the muscle 

activations may be due to asymmetries in muscle length changes and therefore 

asymmetries in joint kinematics or moment-arm relationships.  Alternatively, the fact that 

many of the muscles barely active (19 of 31 muscles are at less than 1%) would mean 

that while lengthening could substantially activate the muscle, shortening could not 

substantially decrease the muscle activation. The asymmetries in ground reaction forces 

may be attributable either to these asymmetries or some other non-linear property of the 

muscle force generation or moment-arms.  One such non-linear property is the passive 

force length property which does not influence force generation for these muscles (at 

95% optimal fiber length) in shortening. 

Direct fiber length feedback results in directional tuning of the individual muscle 

activations and these overlapped with the experimental tuning curves for four (GMED, 

RF, VI, GRAC) of the six muscles compared.  This suggests that individual muscle 

lengthening may be a strong signal in determining the directionality of the postural 

response.  The linearized prediction of directional tuning was consistent across a large 

family of stance-like muscle activation patterns, suggesting that this tuning is a feature of 

mechanical connectivity, segmental inertia, and joint torques required for weight support 

and relatively independent of the force generated by specific muscles..  However, five 

(GMED, RF, VI, GRAC, and ILPS) of the six muscles produced tuning curves that 

aligned more closely with the experimental data than with the linearized predictions, 

suggesting that the required assumptions for deriving the lengthening direction bias the 

result.  This is most likely due to the same muscle strain nonlinearities that produce the 

asymmetry in the activation and force response. 
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The change in ground reaction force early in the perturbation indicates that a 

stronger rostral-caudal component is intrinsic to the limb and independent of neural 

control.  Early in the response, before any neural control and even before stiffness begins 

to play a role (Figure 4.6b), the simulated force is stronger in the rostral-caudal direction.  

This preferred direction persists throughout the perturbation but its presence early 

indicates it is independent of a neural response.  The simulated force response is 

asymmetric later in the perturbation (Figure 4.6c, d) with a stronger restoring force to 

rostral perturbations than to caudal perturbation.  This asymmetry is also seen 

experimentally although in the opposite direction (Figure 4.6f) and is attributable to a 

strong non-linearity due to the low baseline activation levels.  Extensors at the hip which 

are lengthened by rostral perturbations increase force without limit; while shortening by 

caudal perturbations result in only a small decrease in activation until the muscle is off.  

One problem with comparing with the experimental force and EMG responses is that the 

simulated limb had a fixed pelvis. Center of mass motion in the intact cat would result in 

smaller total joint angle and muscle length changes.  This would reduce the magnitude of 

the endpoint force response which would be particularly noticeable later in the 

perturbation (Figure 4.6d). 
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CHAPTER 5 

ENDPOINT PERTURBATION RESPONSE OF THE HINDLIMB OF 

A DECEREBRATE CAT AND HINDLIMB MODEL 

Introduction 

 Previous work has shown that an appropriate pattern of length and velocity 

feedback, which could only result from neural control, produces a more stable and more 

energetically efficient control system for a kinematically redundant limb than does 

intrinsic mechanics alone.  Limb stability may or may not be achieved using an 

appropriate activation pattern depending on where the muscles are operating on the 

length tension curve.  In addition limb stability can be provided by the known patterns of 

length feedback. Length feedback alone is sufficient to produce directional tuning of 

postural responses, although that tuning matches experiments for 4 of the 6 muscles 

tested.  In freely standing cats the mechanical effect of length feedback in terms of 

endpoint force production is radically different than the experimental observations.  The 

question arises, why there are such large differences between the simulated data and the 

experimental results.  Potential explanations include the structure of model, initial 

activation patterns, muscle operating length, artifacts in the experimental data, or that the 

perturbation poorly represents the perturbation of a free standing cat.  One potential 

dramatic difference that results is that the change in joint angles and muscle lengths may 

be exaggerated in the simulations since the CoM is not allowed to move with the 

endpoint.  It is unclear what if any would be the difference between perturbations applied 

to a constrained individual limb versus the entire support surface of a balancing cat.  

Identifying the source of the discrepancy requires a closer look at the responses and the 

closest biological equivalent of the model perturbations are single limb displacements of 

a decerebrate cat. 
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 Previously, the outputs that have been compared between the model and 

experiments are endpoint force and EMG responses, which neglect the kinematics of the 

postural response.  While endpoint force is useful in determining the endpoint impedance 

of the limb, the joint impedance can only be determined from experimental data with a 

combination of kinematics and endpoint force.  Previously in the thesis no comparison 

has been made between modeled and experimental joint kinematics. 

 The goal of this work was to quantify the limb response experimentally at the 

joint level and not just at the endpoint level, and to quantify the limb response when the 

center of mass does not move, to identify potential sources of disagreement between 

modeled and experimental results. 

Methods 

Summary 

 Ramp and hold perturbations were applied to the toe of the right hindlimb of a 

decerebrate cat to determine the endpoint force and kinematic response of the limb in a 

reduced preparation.  The posture and endpoint force at the beginning of the perturbation 

were used to initialize forward dynamic simulations of a cat hindlimb model.  The 

simulated and experimental results were compared. 

Animal 

 The experiment was performed on an animal that was being used for another 

experiment.  The Emory University Institutional Animal Care and Use Committee 

approved the procedures in this experiment.  The cat was anesthetized with isofluorane 

and placed in a stereotaxic frame.  An intercollicular decerebration was performed and all 

brain matter rostral to the transection was removed.  The body was supported with a sling 

under the abdomen and a clamp on the tail.  The body and head were positioned at a 

natural stance.  Each foot was placed on a six-degree-of-freedom force transducer which 
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was attached to a movable platform.  The platform had the capability of moving any 

combination of the four transducers.  Six kinematic markers were placed on the right 

hindlimb using bony landmarks as guides.   The markers were placed at the iliac crest 

(IC), greater trochanter (GT), upper ankle (UA), lateral malleolus (LM), lateral 

metatarsophalangeal joint (MTP), and toe. 

Experimental Protocol 

 The experiment included three protocols to determine the limb response of the 

decerebrate cat.  The first set of perturbations were applied while the cat was under 

anesthesia (passive), the second set after anesthesia had been removed (unstimulated), 

and the third set with a background activation in the ipsilateral limb elicited by 

stimulating the contralateral tibial nerve at two times threshold (crossed-extension). Only 

the results from unstimulated and crossed-extension are shown since the passive data was 

nearly identical to the unstimulated data. 

 The perturbations for all three protocols were ramp and hold displacements of the 

right hindlimb and were applied in 16 directions in the horizontal plane (Figure 5.1).  The 

perturbations had a peak velocity of 10 cm/s and the total displacement was 4 cm. 

Anatomical Model 

 The model has been described previously (Burkholder and Nichols 2004).  Briefly 

the model had seven kinematic degrees of freedom consisting of hip flexion (HF), hip 

adduction (HA), hip external rotation (HR), knee extension (KE), knee adduction (KA), 

ankle extension (AE), and ankle adduction (AA).  The pelvis was welded to ground (zero 

degrees of freedom) and the motion of the foot was constrained under motion control.  

The equations of motion for the system were expressed in the generalized coordinate 

system, T
AAAEKAKEHRHAHF ],,,,,,[ θθθθθθθθ =

v
, where the subscripts denote the positive 

direction of joint movement.   Limb motion was described by the vector equation, 
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where M is the inertia matrix, vv  is the centrifugal and Coriolis torques, G
v

 is the 

gravitational torques, R is the moment arm matrix, J is the Jacobian mapping joint 

velocities to the translational velocity of the MTP, MF
v

 is the vector of muscle forces, 

ENDF
v

 is the resultant force at the MTP joint.  For clarity, the state dependence of the 

variables is omitted in future references.  31 muscles were modeled using a Zajac 

adaptation of the Hill muscle model (Zajac 1989).  The tendon lengths were adjusted so 

that each muscle fiber was at 95% of optimal fiber length in the initial posture for each 

simulation. 

Data Collection 

 Force data were collected from six-degree-of-freedom transducers at 2 kHz 1 

second before perturbation until after the end of the perturbation.  The data were low-pass 

filtered using a 3rd order butterworth filter at 40 Hz.  Kinematic data were captured at 250 

Hz using two cameras and PEAK data acquisition software.  Custom MatLab software 

(Mathworks, Natick, MA) was used to calculate model joint angles from the images at 

each time point.  First, 3 dimensional coordinates of each of the six kinematic markers 

were triangulated from the two camera images, and low-pass filtered using a 3rd order 

butterworth filter at 37.5 Hz.  The UA and LM markers were used to compute the 

location of a virtual knee (VK) joint.  We solved for values of HFθ  and HAθ  that aligned 

the vector from GT to VK in the model with the same vector computed from the images.  

Likewise, KEθ , KAθ , AEθ , and AAθ were computed by aligning the VK – LM and LM – 

MTP vectors.  The hip rotation angle HRθ  could not be computed from the limited 

kinematic data and was set to be constant for each perturbation.  This constant angle was 

chosen for each perturbation to be the value that minimized the non-sagittal values of the 

distal joints KEθ  AEθ  in the first frame.   
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Figure 5.1:  Sample images showing two frames at the initial state and at peak displacement. Six 
kinematic markers were placed on the right hindlimb at the iliac crest (IC), greater trochanter (GT), lateral 
malleolus (LM), upper ankle (UA),lateral metatarsophalangeal joint (MTP), and toe (TOE).  Two markers 
(LM and UA) were used to calculate the position of the knee (VK). 
 
 
 

Simulations 

 Forward dynamic perturbation simulations were performed on the mathematical 

model for 2 conditions: unstimulated and crossed-extension for the same directions 

applied to the experiments.  The unstimulated simulations were performed with the limb 

in the posture and with ground reaction force ( active
ENDF
v

) calculated from the kinematic and 

force data at the beginning of the unstimulated trials.  The crossed-extension simulations 

were performed with the limb posture and ground reaction force ( extx
ENDF −
v

) calculated from 

the beginning of the crossed-extension trials. The simulations were performed with the 

muscle forces calculated by quadratic programming with cost function 

 M
T

M FFc
vv

= , (8) 

and constraints, 
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vvv
≤≤ . (10) 

To allow changes in activation without saturation, an upper ( uMF ,

v
) and lower ( lMF ,

v
) 

bound to the muscle force vector was chosen so that uMF ,

v
 was 5% below the largest force 

and lMF ,

v
 was 1% greater than the minimum force that could be generated by the muscles 

at a particular posture.  The activation patterns for the unstimulated and crossed-

extensions are shown in Table 5.1. 

 Perturbations were applied by constraining endpoint acceleration to be,  
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which resulted in a endpoint displacement similar to that of the experiments (Figure 5.1).  

The directions of perturbations ( dirxv ) were spaced evenly in 16 directions in the 

horizontal plane as were the experiments. 

Data Analysis 

 The endpoint forces were averaged at three different time windows to observe the 

force response to mostly acceleration (t1 = 0.2 – 0.25 sec), velocity and displacement (t2 

= 0.3 – 0.5 sec) and pure displacement (t3 = 0.7 – 1.2 sec) portions of the postural 

perturbations (Figure 5.2a,d 2nd, 3rd, and 4th grayed regions). The background force is 

quantified as the the average force from 0.15 sec before the onset to the onset of the 

perturbation (Figure 5.2a,d 1st grayed region).  The background forces were subtracted 

from the averaged forces for each of the three time periods and this change in force 

magnitude (ΔF) is reported for the three time periods.  In addition the angular deviation is 

defined as the included angle between the background force vector and the average force 
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vector for each time period. These analytical methods were applied to both experimental 

and simulated data. 

 
 
 

Table 5.1:  Activation patterns and baseline forces for the unstimulated and crossed-extension 
simulations.  0 is no activation and 1 is maximally active 

   Unstimulated
Crossed-
extension  

SART 0.51 0.78
ILPS 0.02 0.03
GMIN 0.95 0.95
GMED 0.01 0.10
GMAX 0.03 0.36
PYR 0.44 0.84
QF 0.01 0.01
PEC 0.01 0.01
ADL 0.01 0.01
ADF 0.01 0.01
BFA 0.01 0.01
BFP 0.02 0.05
GRAC 0.01 0.01
ST 0.01 0.01
SM 0.01 0.01
RF 0.01 0.01
VM 0.01 0.01
VI 0.08 0.32
VL 0.08 0.30
EDL 0.01 0.01
LG 0.01 0.01
PLAN 0.01 0.01
MG 0.01 0.05
SOL 0.01 0.74
FHL 0.01 0.04
FDL 0.01 0.01
TP 0.02 0.02
PB 0.02 0.16
PT 0.18 0.21
PL 0.31 0.49
TA 0.11 0.01
      
FRostral -0.22 -1.13
 FDorsal -0.73 -7.70
 FLateral 0.03 1.12
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 The joint angles calculated from the kinematic markers were averaged over a 0.4 

sec period 0.5 sec after the ramp portion of the perturbation (Figure 5.2b,c,e,f, second 

grayed region).  The joint angles averaged over the first 0.3 seconds of video (before the 

perturbations, Figure 5.2b,e, first grayed region) were subtracted from the displaced 

postures to get the directional tuning of the joint responses. 
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Figure 5.2: The ground reaction forces and kinematics are shown for a forward-right perturbation of 
the limb in the decerebrate cat and the simulated hindlimb model for the unstimulated and crossed-
extension conditions.  In both crossed-extension (a-c) and unstimulated (d-f) trials the endpoint force (a,d) 
was initially similar for the experimental (solid lines) and simulated (dashed lines) trials and force varied 
proportionally with endpoint displacement. The kinematics also varied proportionally with the perturbation 
for both experiments (b,e) and simulations (c,f).  
 

Results 

 A typical response of the endpoint force and kinematics demonstrates differences 

between simulations and experiments and the crossed-extension state and unstimulated 
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state (Figure 5.2).  A small burst in force is seen at motion onset and termination (t = 0.4, 

0.8) in the experiments but not in the simulations (Figure 5.2a,d).  It is likely that this is 

an artifact of the transducer.  In all cases, endpoint force increases monotonically with 

endpoint displacement and settles to a new equilibrium force at the displaced position 

(Figure 5.2a,d). The joint angle displacements are proportional to the endpoint 

displacement (Figure 5.2b,c,e,f).  All the experimental, but not all simulated, joint angles 

reached a displaced equilibrium posture.  A small amount of ringing in the force response 

was seen in the experiments but not in the simulations (Figure 5.2a,d). Pixel resolution 

issues in the acquisition of the kinematic data resulted in the variability of the joint angles 

(Figure 5.2b,e). 

 The joint angle changes in the experiment were, for the most part, consistent 

between the unstimulated and crossed-extension trials (Figure 5.3). The hip flexed for 

forward perturbations and extended for backward perturbations in both the unstimulated 

and crossed-extension state (Figure 5.3a) and the hip adducted for leftward perturbations 

and abducted for rightward perturbations (Figure 5.3g). Both degrees of freedom at the 

hip experienced greater motion while the cat was in the crossed-extension state than in 

the unstimulated state (Figure 5.3a,g). The knee extended for forward perturbations, 

flexed for backward perturbations while the cat was in the unstimulated state (Figure 

5.3c).  The knee extensions and flexions in the unstimulated state were less than 3 

degrees at the greatest.  In the crossed-extension state the sagittal plane knee motion was 

further reduced to approximately 2 degrees in extension for most perturbation directions.  

The knee adducted for leftward perturbations, and abducted for rightward perturbations 

for both the unstimulated and crossed-extension states but this motion was stronger in the 

unstimulated state (Figure 5.3i).  Ankle sagittal plane motion was asymmetric favoring 

extension when the toe was perturbed backward and leftward over flexion when the toe 

was perturbed forward and rightward (Figure 5.3e).  The degree of extension was nearly 

identical for the unstimulated and crossed-extension states but the amount of flexion was 
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greater in the crossed-extension state.  The ankle adducted for leftward perturbations and 

abducted for rightward perturbations and these responses were stronger in the 

unstimulated state than in the crossed-extension state (Figure 5.3k). 

 

 

-10

0

10

-10

0

10

-4

0

4

8

-10

0

10

Perturbation direction (deg)
0 100 200 300

-10

0

10

Perturbation direction (deg)
0 100 200 300

-10

0

10

Δθ
 (d

eg
)

Δθ
 (d

eg
)

Δθ
 (d

eg
)

Δθ
 (d

eg
)

Δθ
 (d

eg
)

Δθ
 (d

eg
)

Hip Flexion

Knee Extension

Ankle Extension

Knee Abduction

Ankle Abduction

Hip Abduction

Simulations Crossed Extension

Simulations Unstimulated
Experiments Unstimulated

Experiments Crossed Extension
0

10

Hip Rotation

a)

c)b)

e)d)

g)f)

 
Figure 5.3:  The joint angle changes at maximum displacement vary with perturbation direction and 
these variations are similar in unstimulated and crossed-extension trials.  Since only two points on the 
femur were used to calculate joint angles hip rotation (a) was reported for simulations but not for 
experiments.  Hip flexion (b), and hip adduction (c) vary sinusoidally with perturbation direction.  Knee 
extension (d) is small for both experiments and simulations.  Knee abduction (e) motion is dramatically 
larger in experiments than simulations.  Peak knee abduction occurs for rightward perturbations in the 
simulations and for leftward perturbations in the experiments.  Ankle extension (f) and abduction (g) vary 
sinusoidally with perturbation direction. 
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 The hip flexes for forward perturbations and extends for backward perturbations 

for both the unstimulated and crossed-extension states similar to the experiments (Figure 

5.3b).  Also, the hip adducted for leftward perturbations and abducted for rightward 

perturbations (Figure 5.3h). While these motions were stronger in the crossed-extension 

state than unstimulated state in the experiments they were generally stronger (with the 

exception of hip flexion) in the unstimulated state than in the crossed-extension state 

(Figure 5.3b,h).  The ab/adduction response at the hip was asymmetric in the simulations, 

favoring adduction (Figure 5.3h).  The knee extended or did not move for nearly all 

perturbation directions in the unstimulated and crossed-extension states and this motion 

was stronger in the unstimulated than the crossed-extension states (Figure 5.3d).  The 

knee non-sagittal motion in the simulations was opposite the knee motion in the 

experiments; the knee adducted for leftward perturbations and abducted for rightward 

perturbations (Figure 5.3j).  However this motion was small, less than 3 degrees.  At the 

ankle the sagittal plane motion was similar to experiments with the ankle extending for 

backward and leftward perturbations and flexing for forward and rightward perturbations 

(Figure 5.3f).  While in the experiments the ankle response was greater in flexion for the 

crossed-extension than the unstimulated and the same in extension (Figure 5.3e), in the 

simulations the ankle response was greater in extension for the crossed-extension than the 

unstimulated state and the same in flexion (Figure 5.3f).  Ankle non-sagittal motion was 

also strongly asymmetric with abduction dominating in the rightward and forward 

perturbation directions (Figure 5.3l). By comparison with the experimental results, the 

simulated joint angle changes were generally more asymmetric (Figure 5.3). 

 The angular deviation at t1 and t2 in the unstimulated simulations (Figure 5.4a) 

match the experiments (Figure 5.4b) for backward perturbations (180° – 360°) but not 

forward perturbations (0° – 180°).  Both experiment and model deviate by approximately 

20° from stance force, and that deviation varies smoothly over 180° – 360°.  At t3 the 

angular deviation in the simulations does not match the angular deviation of the 
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experiments for all perturbation directions.  The change in force in the unstimulated 

simulation (Figure 5.4e) matches the experimental data (Figure 5.4f) for t1 and t2 across 

all perturbation directions and matches at t3 over the range (180° – 360°).   
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Figure 5.4:  Angular deviation and change in ground reaction force in the experimental and 
simulated limb responses to endpoint position perturbation quantified at three time periods after 
perturbation onset (peak acceleration: t1 red, peak velocity: t2 blue, and peak displacement: t3 
black).  a-d) The angular deviation of the unstimulated trials is much larger for forward (0° – 180°) 
perturbations in the simulations (a) than in the experiments (b).  For crossed-extension trials the angular 
deviation is substantial for forward perturbations in the simulations (c) and is negligible for all perturbation 
directions in the experiments (d).  e-h) The change in force for unstimulated trials is similar in simulated (e) 
and experimental (f) responses at t1 and t2.  For crossed-extension trials the change in force of the 
simulations (g) is out of phase with the experiments (h). 
 
 
 

In the crossed-extension experiments (Figure 5.4d), the force direction of the 

response did not deviate from the background force.  In the simulations (Figure 5.4c) the 

force also did not deviate from the background force for t1 and t2 across the range 180° – 
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360° and deviated by approximately 10° at the later time (t3) across this range.  In the 

crossed-extension experiments (Figure 5.4h) the change in force varied sinusoidally 

across perturbation direction with an increase in amplitude for t2 and t3.  The change in 

force of the crossed-extension simulations (Figure 5.4g) also varied sinusoidally but was 

out of phase with the experiments. 

 The length change for posterior Biceps Femoris and Semitendinosis is sinusoidal 

across perturbation directions for time period t3 of the unstimulated simulations (Figure 

5.5) but force generation is asymmetric.  For forward perturbations both muscles are 

lengthened beyond optimal fiber length and so experience an increase in passive force in 

these directions.  Since the activation of the muscles is small (ST = 1%, BFP = 2%, Table 

5.1) the asymmetric passive force dominates.  Similar asymmetries were seen in hip 

flexors for backward perturbations but with much smaller magnitudes (data not shown). 
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Figure 5.5:  Muscle force and fiber length averaged over t3 for the unstimulated simulations for the 
bi-articular hamstrings posterior Biceps Femoris (BFP) and Semitendinosus (ST).  These muscles 
experience a sinusoidal fiber length changes (a) and asymmetric force generation (b). 
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Discussion 

 The endpoint force response of the model compared favorably with the 

experimental results for perturbations in the forward direction but not in the backward 

direction.  This asymmetry is attributable to non-linear properties of the muscle model, 

particularly the passive tension of muscles that cross the hip.  The model compared well 

with the sagittal plane kinematics but not the non-sagittal kinematics. These differences 

may be due to the limited data available to resolve hip motion.  The differences in the 

kinematics of the unstimulated and crossed-extension experiments were small. 

 The fact that the force magnitude in the decerebrate cat varies with perturbation 

direction even in the earliest time window (t1) before any reflex response is possible 

demonstrates that neither reflexive mechanisms nor interlimb coordination are required 

for a direction specific response such as the force constraint strategy.  At later time 

periods the force was strongly asymmetric in the simulations but not in the experiments.  

This asymmetry can be attributed to the passive forces generated in the muscles.  

 Experimental evidence suggests that muscles operate near optimal fiber length in 

a variety of species (Burkholder and Lieber 2001).  Accordingly the muscles were set to 

operate at 95% of their optimal fiber length.  In the muscle model, passive force begins 

when the muscle is stretched past optimal fiber length and the passive force is not scaled 

by muscle activation.  The change in force in muscles that have low activation levels 

would therefore be dominated by the passive forces rather than the active forces.  For the 

hamstrings which have large moment arms in the cat this effect is amplified and 

asymmetries in muscle force are translated to asymmetries in joint torques and endpoint 

forces.  In future work it may be important to determine the onset of passive forces for 

each muscle.  Future work will also test the sensitivity of these results to activation 

pattern, model sensitivities (e.g. posture, muscle and joint parameters), reflex 

connectivity.  In addition the force and kinematic data from these experiments will be 

combined so that endpoint impedances can be transformed to impedances at the joints.  
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This will allow us to identify if there are key joints that modulate endpoint response of 

the limb or what combinations of joints regulate this response.  From that point we can 

use the model to determine intermuscular feedback that will accomplish this observed 

force and kinematic responses. 

 If the increase in stiffness were the same between all joints the same endpoint 

perturbation would result in the same displacements for all the joints.  This was not 

observed however in the kinematics of the experiments.  Hip motion in both the sagittal 

and non-sagittal planes increased and knee motion decreased in both planes.  The ankle 

motion decreased in the non-sagittal plane but increased in the sagittal plane for forward-

right perturbations and was unchanged in backward left perturbations.  The result then 

seemed to be that stiffness at the knee was increased relative to stiffness at the hip and 

stiffness at the ankle increased relative to hip stiffness in the non-sagittal plane but not in 

the sagittal plane.  This strategy of stiffening the distal joints in the non-sagittal plane 

would better preserve the limb configuration at the perturbed stance.  In the sagittal plane 

it is more difficult to come to this conclusion because of the ambiguity in the ankle 

motion.  Most of these differences between unstimulated and crossed-extension states 

were not observed in the simulations.  This may be taken as evidence that the difference 

between the two states is not simply a change in activation pattern.  To determine 

whether other influences such as the excitability of the spinal reflex pathways is 

important is a future direction of the work. 

 Despite the fact that the simulations did not reproduce the differences between the 

states, they were in general successful at predicting sagittal plane kinematics of the limb 

response.  In particular the relative magnitude of hip, knee, and ankle motion were 

accurate with larger hip and smaller knee motion.  The non-intuitive rotation of the 

preferred direction of ankle motion to forward and right perturbations was also accurately 

reproduced in the simulations as was the asymmetry of ankle motion, with much larger 

extensions to backward left perturbations than flexions to forward right perturbations.  
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The simulations performed poorly at reproducing the non-sagittal displacements observed 

in the experiments, with different directions and large asymmetries.  One reason that the 

model may reproduce sagittal plane motion well and not non-sagittal motion is that three 

degrees of freedom at the hip cannot be resolved with only two known locations (GT and 

VK).   
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CHAPTER 6 

CONCLUSIONS 

 In addition to its intrinsic importance during quiet standing, posture also serves as 

the background for a wide variety of other critical motor tasks.  The hierarchical nature of 

the motor control system suggests that the different layers (intrinsic musculoskeletal, 

reflexive, voluntary) may be responsible for different aspects of a postural task (e.g. joint 

stability, limb stability, center of mass balance).  The role of spinal reflexes in postural 

control has been debated primarily in the context of balancing the CoM (Lyalka et al. 

2005, Macpherson and Fung 1999).  Since stability and coordination of the constituents 

(muscles, joints, and limbs) is necessary to balance the CoM it is conceivable that the 

responsibility for stabilizing the constituents is provided by the lower levels of the motor 

control hierarchy including intrinsic muscle properties and spinal reflex pathways. In 

particular muscle stiffness and length feedback both provide a positional sensor for the 

configuration of the limb and could be used to stabilize at the level of muscle, joint, and 

limb.  I hypothesized that the spinal reflexes are organized according to optimal 

principles of stability, control accuracy, and energy at the whole limb level.  I 

hypothesized that the lowest levels of the motor control system, the intrinsic properties of 

muscles are insufficient to stabilize a whole cat hindlimb and that muscle length feedback 

provided by spinal reflex mechanisms is sufficient to stabilize the cat hindlimb.  In 

addition, I hypothesized that the observed postural response in terms of tuned muscle 

activation and constrained ground reaction forces would be observed in the limb 

stabilized by length feedback. 

The role of direct length and velocity feedback in the postural response has 

remained elusive largely due to the inherent difficulty of separating the effects of the 

various levels of the motor control hierarchy.  This thesis has been directed by the idea 

that with a mathematical representation of the biological system, the different levels of 
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intrinsic muscle and nervous control can be independently and systematically applied and 

the effect of each of these levels on the postural response evaluated.  In addition the 

mathematical approach allows a rigorous determination of the stability of the limb subject 

to the different levels of control, and the application of optimal control theory to predict 

and test strategies of neural control.   

The first goal was to determine whether the length and velocity feedback of the 

limb were organized to provide optimal control of the limb.  Previous work has shown 

that asymmetric heterogenic feedback contributes to the postural response of biological 

systems.  A satisfactory functional explanation for this feedback has not been put forth. 

The hypothesis tested in the first study was that asymmetric multi-joint control strategy 

would confer an energetic and stability advantage in maintaining endpoint position of a 

kinematically redundant system. The hypothesis was tested by determining optimal 

control models incorporating symmetric or asymmetric feedback with the goal of 

maintaining endpoint location of a kinematically redundant, planar limb. Asymmetric 

feedback improved endpoint control performance of the limb by 16%, reduced energetic 

cost by 21% and increased interjoint coordination by 40% compared to the symmetric 

feedback system.  The increases in efficiency and control associated with the asymmetry 

were unique to the kinematically redundant system; when the same criteria and tasks 

were applied to a non-redundant two-link model the optimal asymmetric controllers were 

only slightly better than the symmetric controllers (energetic improvement: 5%, control 

accuracy improvement: 4%).  Functionally, the overall effect of the asymmetry was that 

torque generation at distal joints were more sensitive to motion of proximal joints than 

vice versa. This organization is consistent with heterogenic stretch reflex gains measured 

experimentally. Likewise, the magnitude of asymmetry for the optimal endpoint 

controller is also consistent with experimentally determined magnitudes. In conclusion, 

asymmetric feedback has a functionally relevant role in coordinating redundant degrees 

of freedom in maintaining the position of the endpoint of a limb. 
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 The optimal control criteria developed in the first study were applied to the seven 

degree of freedom hindlimb model to determine the structure of optimal length and 

velocity feedback for this model.  These criteria resulted in length and velocity feedback 

organization similar to that for the simplified model.  That is, the optimal patterns of 

feedback emphasized torque generation at distal joints in response to motion of proximal 

joints. This organization would require spinal reflexes originating in the spindles of hip 

muscles to activate ankle muscles.  Although no such connections have been observed in 

the spindle pathways of the cat it is possible that force feedback which has a wider limb 

distribution could provide this asymmetry and this idea remains to be tested. 

 The second hypothesis specifically tested whether the lowest levels of the motor 

control system, the intrinsic properties of muscles, are insufficient to stabilize a cat 

hindlimb. A 3-dimensional musculoskeletal model of the cat hindlimb with 31 muscles 

operating at near maximum stiffness (65% optimal fiber length) was used to determine 

the possible contributions of intrinsic muscle properties to limb stability during isometric 

force generation.  Using dynamic stability analysis it was demonstrated that within the 

large set of activation patterns that satisfy the force requirement for posture, only a 

reduced subset produce a mechanically-stable limb configuration. If the muscles were 

assumed to operate at lengths closer to optimal (95% of optimal fiber length) there were 

no globally stable muscle activation patterns, suggesting that the intrinsic viscoelastic 

properties of muscle are insufficient to provide limb stability.  However, even when the 

limb was unstable, the time-constants of instability were sufficiently great to allow long-

latency neural feedback mechanisms to intervene, which may be preferential for 

movements requiring maneuverability versus stability. 

 The results highlighted that in addition to co-contraction and reflexive action, 

stiffness of the limb may be achieved by biasing the selection of muscle activation 

patterns to locally stiff muscles.  The overall local stiffness of the muscles was influenced 

to a large extent by the moment-arm/joint angle relationship of the muscle as well as the 
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intrinsic stiffness of the fibers.  While activation of locally stabilizing muscles did not 

guarantee whole-limb stability in our analysis, it was possible to increase probability of 

whole limb stability by preferentially selecting muscles with greater local joint stiffness.  

This strategy could be a useful criterion in the force-sharing problem. 

 Finally, since the model could not be stabilized by intrinsic muscle stiffness when 

the muscles operated at near optimal fiber lengths, the hypothesis was tested that the 

known patterns of homonymous fiber length feedback were sufficient to provide limb 

stability.  Also this study tested whether known features of the postural response, 

including the tuning of EMG activation during horizontal perturbations and the force 

constraint strategy could be attributed to spinal reflex mechanisms.  The 3-dimensional 

musculoskeletal model was enhanced with a tendon model and fiber length feedback.  

The principle results of this study are that length feedback is sufficient to stabilize a 

linearized model of the cat hindlimb and to provide directional tuning of muscle 

activation in response to perturbations.  These results indicate that direct fiber length 

feedback is sufficient to stabilize the limb against small perturbations from the 

equilibrium posture.  Without length feedback the limb was unstable for all activation 

patterns and with the addition of length feedback these activation patterns became stable.  

In either case, these time constants are substantially greater than the stretch reflex 

latency, and support the omission of feedback delays.   

 Direct fiber length feedback results in directional tuning of the individual muscle 

activations and these overlapped with the experimental tuning curves for four of the six 

muscles compared, suggesting that individual muscle lengthening may be a strong signal 

in determining the directionality of the postural response.  Preferred directions in the 

ground reaction force early in the perturbation indicate that at least a component of the 

experimentally observed directionality is independent of a neural response.   

 Finally, the fourth study compared kinematics and kinetics of the hindlimb model 

without reflex control and a decerebrate cat as horizontal ramp and hold perturbations 
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were applied to the toe.  The important differences in force production were the direction 

and symmetry.  The early force response of the cat was directly in opposition to the 

perturbation direction while in the simulations the force response was directionally 

constrained.  At later time periods the force was strongly asymmetric in the simulations 

but not in the experiments.  The asymmetry was found to be due to the passive tension of 

the muscle model.   

 The kinematics of the decerebrate cat seemed to indicate a strategy of stiffening 

the distal joints in the non-sagittal plane to preserve the limb configuration at the 

perturbed stance.  In the sagittal plane hip and ankle motion were of comparable 

magnitude and knee motion was reduced.   The simulations predicted this sagittal plane 

coordination and also predicted an experimentally observed rotation of the preferred 

direction and asymmetry of ankle motion.  However, the simulations performed poorly at 

reproducing the non-sagittal displacements observed in the experiments, with different 

directions and large asymmetries. 

 Taken together these results provide evidence that direct length feedback in the 

spinal reflex pathways provide limb stability, and may account for the directional tuning 

of muscle EMG to horizontal plane perturbations.  Likewise the preferred direction of the 

restoring ground reaction forces may be due to the intrinsic viscoelasticity of the limb. 

 Future efforts will be concentrated in three areas.  First the sensitivity of the 

results to modeling assumptions needs to be thoroughly quantified.  Fortunately the 

stability can be determined from the linearized system making forward dynamic 

simulations unnecessary.  Thus far the results seem to be most sensitive to muscle 

activation levels, non-sagittal angles of the posture, joint locations and directions, and 

kinematic constraints such as the pinned toe.  Second, a more complete picture of the 

reflex feedback will be implemented, including force feedback.  The reflex model also 

needs to be modified to scale with the background activation level.  Third and lastly, 

these analyses will be extended from limb stability to balance control of the whole body.  
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Ultimately the goal of the observed postural response is to stabilize the whole body and 

comparisons of this response with a complete four-legged cat model would be of great 

value. 
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APPENDIX A 

SENSITIVITY OF THE MUSCLE ACTIVATION POPULATION TO 

POSTURE 

 The sensitivity of the percentage of stable populations to posture changes was 

determined.  The methods of Chapter 3 were duplicated to determine the percentage of 

activation patterns that resulted in a stable limb (maximum real eigenvalue less than 

zero).  Three different postures (Table A.1) were evaluated, including the posture used in 

Chapter 3 (Russell 1).  For each posture the muscles were set to operate at 65%, 70%, or 

95% of their optimal fiber length.  In addition, each joint angle was varied independently 

by ±5°.  For the 135 conditions 10,000 activation patterns were generated to produce the 

endpoint force used in Chapter 3. 

 

 

Table A.1:  Three postures were used for the sensitivity analysis 

  Default 
Russell 
2 

Russell 
1 

HF -60.5 -53.8 -54.3
HA -14.6 -2.0 7.5
HR 0.0 0.0 -10.6
KE -82.0 -88.6 -86.4
KA 0.0 -3.3 11.1
AE -78.0 -50.5 -43.0
AA 0.0 -0.1 -9.3

  
 
 

 The model was originally constructed in the default posture and this is the posture 

that was used to validate the moment arms of the muscle (Burkholder and Nichols 2004).  

The Russell 1 posture was determined by the methods similar to those described in 

Chapter 5 from kinematic data of an intact cat (McKay et al. 2007).  The Russell 2 
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posture used the same kinematic data and the methods described in Chapter 5.  However, 

the location of the femoral condyles in the model were corrected and hip rotation, as a 

free parameter, was chosen to be zero. 

 Of the three postures the Default posture was the most stable with all perturbed 

postures greater than 98% stable at 65% optimal fiber length and greater than 65% stable 

at 70% optimal fiber length.  The Russell1 posture was the least stable with all perturbed 

postures less than 55% stable at 65% optimal fiber length and less than 20% stable at 

70% optimal fiber length.  In addition the Default posture was the least sensitive to 

perturbations in the joint angles and the Russell1 posture was the most sensitive.  There 

were no stable activation patterns found for any posture at 95% optimal fiber length. 

 

 

Table A.2:  Stability of the limb across postural conditions 

Posture Default  Russell 2   Russell1 
Operating 

Length 65% 70% 95%  65% 70% 95%   65% 70% 95%
                        

Nominal 99.4 76.8 0.0  92.1 45.8 0.0   35.3 9.5 0.0
 -5° 99.1 73.2 0.0  84.7 32.8 0.0   17.2 2.2 0.0HF  +5° 98.2 72.2 0.0  96.0 47.9 0.0   51.6 17.2 0.0
 -5° 99.9 85.3 0.0  85.0 35.3 0.0   30.9 6.8 0.0HA  +5° 99.1 73.8 0.0  96.8 56.8 0.0   40.1 12.3 0.0
 -5° 99.8 82.3 0.0  86.3 38.3 0.0   37.6 9.3 0.0HR  +5° 98.6 70.9 0.0  96.3 51.7 0.0   31.9 8.0 0.0
 -5° 98.7 71.7 0.0  85.7 33.4 0.0   18.4 3.2 0.0KE  +5° 99.6 79.3 0.0  95.7 54.7 0.0   52.9 19.5 0.0
 -5° 99.6 80.3 0.0  96.2 54.5 0.0   52.5 17.9 0.0KA  +5° 99.4 74.5 0.0  85.2 32.9 0.0   0.0 0.0 0.0
 -5° 99.9 82.3 0.0  94.8 53.4 0.0   53.6 18.4 0.0AE  +5° 97.9 68.3 0.0  84.9 27.5 0.0   17.1 1.9 0.0
 -5° 99.9 87.2 0.0  83.4 39.1 0.0   38.3 10.5 0.0AA  +5° 98.9 68.6 0.0  96.2 47.2 0.0   34.1 6.0 0.0
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APPENDIX B 

OPTIMAL CONTROL OF THE THREE DIMENSIONAL MODEL 

 The cost functions used in Chapter 2 were applied to the model of Chapters 3-5 to 

determine optimal joint and endpoint controllers for the extended 3 dimensional 7-DoF 

model. The results of the optimization are similar to and confirm the results of Aim 1; the 

joint controller is more compliant in endpoint space, and the joints are coordinated in the 

endpoint controller so that endpoint displacement is minimized (data not shown).  The 

stiffness structures of these controllers (Figure B.1) were also similar to those of the 

simplified model in Chapter 2 in that the joint controller (Figure B.1a) had only diagonal 

stiffness terms and the endpoint controller (Figure B.1b) was asymmetric with the ankle 

torques being enhanced by proximal joint motion.  These patterns are compared with the 

joint stiffness due to the intrinsic musculoskeletal properties of the limb (Figure B.1c) for 

a typical activation pattern from Chapter 3 and to the joint stiffness provided by 

autogenic and heterogenic reflexes (Figure B.1d, Figure B.2).  The asymmetries required 

for optimal endpoint control cannot be provided by the autogenic and heterogenic 

patterns used.  Indeed, any reflex pattern that does not contain asymmetric hip muscle / 

ankle muscle reflex gains cannot provide this structure. 

 



 115

 
 
 
 
 
 

 
 
Figure B.1:  Joint stiffness of the model.  The shade of the grid indicates the contribution of joint 
displacement (columns) to torque production at a joint (rows).  A linear quadratic regulator tasked to 
control for joint position (a) predicts a diagonal stiffness matrix.  A linear quadratic regulator tasked to 
control for endpoint position (b) predicts an asymmetric joint stiffness matrix with stronger hip-motion-to-
ankle-torque contributions (lower left elements of b) than ankle-motion-to-hip-torques (upper right 
elements of b).  The intrinsic properties of muscle (c) provide a symmetric joint stiffness. The approximate 
contributions of the reflex feedback to joint stiffness (d) are nearly symmetric as well.   
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Figure B.2:  Reflex feedback pathways.  The connections between each of the 31 modeled muscles are 
represented in the boxes.  The shade corresponds to a percent increase in activation of the recipient muscle 
(row) for a stretch of the donor muscle (column) in length units normalized to optimal fiber length. 
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