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“The important thing is not to stop questioning. Curiosity has its own 
reason for existing. One cannot help but be in awe when he contemplates the 

mysteries of eternity, of life, of the marvelous structure of reality.  It is 
enough if one tries merely to comprehend a little of this mystery every day. 

Never lose a holy curiosity.” 
--Albert Einstein 

 
 
 

“Ask and it will be given to you; seek and you will find; knock and the door will be 
opened to you.  For everyone who asks receives; he who seeks finds; and to him who 

knocks, the door will be opened.”  --Matthew 7:7-8 
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SUMMARY 

 

Tissue engineering has emerged as a promising alternative to conventional 

orthopaedic grafting therapies.  The general paradigm for this approach, in which 

phenotype-specific cells and/or bioactive growth factors are integrated into polymeric 

matrices, has been successfully applied in recent years toward the development of bone, 

ligament, and cartilage tissues in vitro and in vivo.  Despite these advances, an optimal 

cell source for skeletal tissue repair and regeneration has not been identified.   

Furthermore, the lack of robust, functional orthpaedic tissue interfaces, such as the bone-

ligament enthesis, severely limits the integration and biological performance of 

engineered tissue substitutes.  This works aims to address these limitations by spatially 

controlling the commitment of primary dermal fibroblasts toward an osteoblastic (bone 

cell) lineage within three-dimensional polymeric matrices.  The overall objective of this 

project was to investigate transcription factor-based gene therapy strategies for the 

differentiation of fibroblasts into a mineralizing cell source for orthopaedic tissue 

engineering applications.  Our central hypothesis was that fibroblasts genetically 

engineered to express Runx2 via conventional and biomaterial-mediated ex vivo gene 

transfer approaches will differentiate into a mineralizing osteoblastic phenotype. 

As a first step toward testing this hypothesis, we investigated retroviral gene 

delivery of the osteogenic transcription factor Runx2 as a mineralization induction 

strategy in primary dermal fibroblasts.  We found that a combination of constitutive 

Runx2 overexpression and supplementation with the steroid hormone dexamethasone 

(DEX) synergistically induced osteogenic differentiation, including bone sialoprotein 
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gene expression, alkaline phosphatase activity, and biological mineral deposition in 

primary dermal fibroblast monolayer cultures.  This unexpected result suggested that 

Runx2-engineered fibroblasts have the capacity to create mineralized templates for bone 

repair and may be a potential cell source for bone tissue engineering applications.  

Furthermore, the complete absence of native osteoblastic phenotype in hormone-only 

treated cultures suggested that these cells could be utilized as a robust experimental 

model to study the Runx2-dependent mechanisms of DEX-induced osteogenesis. 

 Further characterization of Runx2-engineered fibroblasts involved investigation 

of the cellular and molecular pathway(s) driving the induction of osteogenesis in this 

non-osteoblastic cellular phenotype.  More specifically, we used these cells as a model 

system to study the effect of DEX on Runx2 serine phosphorylation and the functional 

role of this phosphorylation state during osteoblastic differentiation.  We demonstrated 

that DEX decreased Runx2 phosphoserine levels, particularly on Serine125, in parallel 

with the upregulation of MAPK phosphatase-1 (MKP-1).  Mutation of Ser125 to glutamic 

acid, mimicking constitutive phosphorylation, inhibited Runx2-induced osteogenic 

differentiation, which was not rescued by DEX treatment.  Conversely, mutation of 

Serine125 to glycine, mimicking constitutive dephosphorylation, markedly increased 

osteogenic differentiation, which was enhanced by but did not require additional DEX 

supplementation.  The DEX-induced decrease in Runx2 phosphorylation correlated with 

upregulation of MKP-1 through a glucocorticoid-receptor-dependent mechanism.  

Furthermore, inhibition of MKP-1 abrogated the effect of DEX on Runx2 phosphoserine 

levels.  Collectively, these results demonstrated that DEX induces osteogenesis, at least 

in part, by modulating the phosphorylation state of a negative regulatory serine residue 
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(Ser125) on Runx2 via MKP-1. This work identifies a previously unreported mechanism 

for glucocorticoid-induced osteogenic differentiation and provides insights into the role 

of Runx2 phosphorylation during skeletal development. 

Runx2-expressing fibroblasts were then evaluated within the context of three-

dimensional polymeric matrices for their potential as a mineralizing cell source for bone 

tissue engineering applications.  Genetically modified fibroblasts were cultured in vitro 

on three commercially available scaffolds with highly divergent properties, including: 

fused deposition-modeled polycaprolactone (PCL), gas-foamed polylactide-co-glycolide 

(PLGA), and fibrous collagen disks.  We demonstrated that the mineralization capacity of 

Runx2-engineered fibroblasts is scaffold-dependent, with collagen foams exhibiting ten-

fold higher mineral volume compared to PCL and PLGA scaffolds.  Constructs were 

differentially colonized by genetically modified fibroblasts, but the scaffold-directed 

changes in DNA content did not correlate with trends in mineral deposition.  Sustained 

expression of Runx2 upregulated osteoblastic gene expression relative to unmodified 

control cells and the magnitude of this expression was modulated by scaffold properties.  

Histological analyses revealed that matrix mineralization co-localized with cellular 

distribution, which was confined to the periphery of fibrous collagen and PLGA sponges 

and around the circumference of PCL microfilaments.  Fourier transform infrared 

analysis verified that mineral deposits within Runx2-engineered scaffolds displayed the 

chemical signature characteristic of carbonate-containing, poorly crystalline 

hydroxyapatite, whereas control constructs did not contain biologically-equivalent 

mineral.  Importantly, Runx2-transduced fibroblasts formed mineralized templates in vivo 

after implantation in a subcutaneous, heterotopic site, whereas minimal mineralization 
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was evident in control constructs.  Immunohistochemical analysis revealed that Runx2-

expressing cells co-localized with mineral deposits in vivo, suggesting that mineral was 

primarily produced by transplanted donor cells.  Taken together, these results establish 

Runx2-genetic engineering as a strategy for the conversion of a non-osteogenic cellular 

phenotype into a mineralizing osteoblastic cell source for bone repair.   

Finally, we explored the feasibility of spatially regulating Runx2 expression in 

fibroblasts to engineer heterogeneous bone-soft tissue interfaces.  Toward this end, we 

first demonstrated that biomaterial-mediated retroviral gene transfer is a feasible strategy 

for the genetic modification and differentiation of fibroblasts into a mineralizing 

osteoblastic phenotype.  Viral uptake from these constructs was found to be highly 

dependent on the non-covalent adsorption of retroviral vectors to positively-charged 

poly-L-lysine prior to cell seeding.  This observation was leveraged to create a graded 

distribution of Runx2 retrovirus within tissue engineered constructs.  These 3-D retroviral 

gradients resulted in spatially regulated genetic modification of fibroblasts and, 

consequently, zonal organization of osteoblastic and fibroblastic cellular phenotypes in 

vitro.  Moreover, implantation of heterogeneous constructs into a subcutaneous, ectopic 

site resulted in Runx2-induced spatial patterning of mineral deposition and non-

mineralized fibroblastic extracellular matrix in vivo.  Notably, discrete mineralized 

nodules co-localizing with transduced cell colonies were distributed throughout the 

interior of virus-coated constructs, suggesting that a biomaterial-mediated gene transfer 

approach may circumvent mass transport issues caused by the localization of a dense 

mineralized shell around the scaffold periphery.   Collectively, these results indicate that 

heterogeneous bone-ligament-mimetic tissue interfaces can be developed by a simple, 
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one step seeding of autologous fibroblasts into polymeric scaffolds containing a graded 

distribution of the Runx2 retroviral vector.  The concept of controlling expression of 

tissue-specific transcription factors to create spatial gradients of differential cell function 

within 3-D matrices may be applicable to the development of interfacial zones for a large 

number of tissue engineering applications.  

In summary, this research has established transcription factor-based gene therapy 

strategies for the conversion of a non-osteoblastic cellular phenotype into a mineralizing 

cell source for orthopaedic tissue engineering applications.  This work is significant 

because it leverages these genetically engineered fibroblasts to simultaneously (1) 

elucidate previously unreported molecular pathways involved in bone formation and (2) 

develop mineralized templates for orthopaedic (bone, ligament) tissue repair.  This work 

is innovative because it utilizes novel biomaterial-mediated gene transfer technologies to 

engineer bone-soft tissue interfacial zones.  Overall, these results are significant toward 

our ultimate goal of regenerating complex, higher order tissue structures which mimic the 

cellular and microstructural characteristics of native tissue. Cellular therapies based on 

primary dermal fibroblasts would be particularly beneficial for patients with a 

compromised ability to recruit progenitors to the sight of injury as result of traumatic 

injury, radiation treatment, or osteodegenerative disease.  
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CHAPTER 1 

INTRODUCTION 

 

Six million bone fractures are reported each year in the Unites States and roughly 

10% of these require some form of orthopaedic graft 1, 2.  As a result, approximately 

500,000 grafting procedures are performed annually in victims of non-healing defects 

caused by age-related bone deterioration, traumatic injury, tumor resection, or osteolytic 

disease 3.  Conventional skeletal grafting therapies typically involve the implantation of 

autogenic bone harvested from the patient’s iliac crest or allogenic bone from cadaver 

tissue banks.  Although successful in many cases, these grafts remain limited by 

inadequate osseointegration, donor site morbidity, poor mechanical properties, and/or the 

risk of disease transmission.  More recently, formulations based on recombinant human 

bone morphogenetic proteins (BMP-2 and BMP-7) have been approved by the FDA for 

the treatment of severe orthopaedic conditions such as spinal fusion and skeletal 

nonunion 4-6.  However, the doses of recombinant protein required to accelerate healing 

in humans are significantly higher than the levels expressed during normal bone repair, 

likely due to suboptimal delivery vehicles and rapid in vivo protein degradation.  These 

supraphysiologic concentrations are cost-prohibitive to widespread clinical usage and 

may be problematic if the non-selective targeting of neighboring non-osseous tissues 

leads to ectopic bone formation 7, 8.   

Tissue engineering has emerged as a promising alternative to conventional 

skeletal repair strategies 9-12.  The general paradigm for this approach, in which 

phenotype-specific cells and/or bioactive growth factors are integrated into polymeric 
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matrices, has been successfully applied in recent years toward the development of 

skeletal tissues in vitro and in vivo.  Cell-based strategies have shown particular efficacy 

in bone repair applications, as several groups have demonstrated healing of critical-sized 

defects by combining marrow-derived mesenchymal stem cells with three-dimensional 

scaffolds 13-18.  Although results in animal studies are promising, it is still unknown if 

MSC transplantation will induce an osteogenic response robust enough to heal critical-

sized bone defects in humans.  Moreover, these autologous osteogenic precursors remain 

intrinsically limited by their complex and painful cell procurement process and age- and 

passage-dependent decreases in mineralization capacity 16, 19.  These limitations leave a 

pressing need for alternative cell source options for bone repair.   

Non-osteogenic cells, such as skin fibroblasts, are a particularly attractive cell 

source alternative because they are easy to harvest from autologous donors and display a 

high capacity for in vitro expansion.  Ex vivo gene therapy strategies based on soluble, 

osteoinductive factors have been developed for the induction of osteogenesis in 

fibroblastic cell types 20-23.  Notably, dermal fibroblasts genetically engineered to express 

BMP-2 form significant amounts of bone in both ectopic implantation sites and critical 

sized calvarial defects 24, 25.  Despite these advances, complex release kinetics and 

uncontrolled paracrine signaling to neighboring non-osseous tissues may limit the clinical 

success of this approach 26-28.   The present research is fundamentally different from 

growth factor-based gene therapy strategies because it focuses on gene delivery of the 

transcription factor Runx2, a downstream intracellular effector, to primary dermal 

fibroblasts in order to avoid detrimental effects associated with unregulated protein 

secretion.   
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In addition to cell sourcing issues, the regeneration of complex tissue structures 

with graded interfacial tissue zones remains another significant challenge in current tissue 

engineering strategies.   In particular, the lack of robust, functional interfaces between 

bone and soft tissues severely limits the integration and biological performance of 

engineered orthopaedic substitutes.  One such complex structure is found at the insertion 

site between native anterior cruciate ligament (ACL) and bone, where there is a 

heterogeneous interface consisting of four distinct regions, including: ligament, non-

mineralized fibrocartilage, mineralized fibrocartilage, and bone.  ACL graft failure is 

typically localized to this insertion site, suggesting that regeneration of a heterogeneous 

tissue interface would promote graft osseointegration into the surrounding bone tissue 

and, consequently, enhance the long-term mechanical function of tissue engineered ACL 

replacements. 

This work aims to address cell sourcing and osseointegration limitations 

associated with skeletal tissue engineering by spatially controlling the differentiation of 

fibroblasts into an osteoblastic phenotype within three-dimensional polymeric matrices.   

The overall objective of this project was to investigate transcription-factor based gene 

therapy strategies for the differentiation of fibroblasts into a mineralizing cell source for 

orthopaedic tissue engineering applications.  Our central hypothesis was that fibroblasts 

genetically engineered to express Runx2 via conventional and biomaterial-mediated ex 

vivo gene transfer approaches will differentiate into a mineralizing osteoblastic 

phenotype. The overall objective was accomplished by testing our central hypothesis 

according to the following specific aims:  
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Aim1:  Elucidate the molecular mechanism(s) by which Runx2-expressing 

fibroblasts differentiate into a mineralizing osteoblastic phenotype. 

Our working hypothesis was that glucocorticoid hormones induce osteoblastic 

differentiation in fibroblasts by modulating the phosphorylation state of Runx2. We 

tested this hypothesis using Runx2-expressing fibroblasts as a model system.  Site-

directed mutagenesis was used to mutate a specific serine residue (Ser125) within Runx2 

into glycine (mimicking constitutive dephosphosphorylation) or glutamic acid 

(mimicking constitutive phosphorylation).   Primary fibroblasts were transduced with 

wild type Runx2 (Runx2-WT), Runx2-125Gly, or Runx2-125Glu retroviral vectors and 

cultured in osteogenic media supplemented with or without the synthetic glucocorticoid 

hormone dexamethasone.  These experimental conditions were used to investigate the 

effect of dexamethasone on Runx2 serine phosphorylation, the functional role of this 

phosphorylation state during osteoblastic differentiation, and to identify upstream 

signaling molecules which modulate the phosphorylation state of Runx2. 

 

Aim2:  Investigate Runx2-genetically engineered dermal fibroblasts as a 

mineralizing cell source for bone tissue engineering applications. 

Our working hypothesis was that primary fibroblasts genetically modified to 

constitutively express the osteoblastic transcriptional activator Runx2 will create 

mineralized templates in vitro and in vivo.  We tested this hypothesis by integrating 

Runx2-transduced fibroblasts into three commercially available scaffolds with divergent 

properties: fused deposition-modeled polycaprolactone (PCL), gas-foamed polylactide-

co-glycolide (PLGA), and fibrous collagen disks. Tissue-engineered constructs which 
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displayed the highest degree of osteogenic potential in vitro were implanted in vivo into 

an ectopic, subcutaneous site in order to assess the mineralization capacity of these cells 

in the absence of osteoinductive cues and cell-types typically present in orthotopic 

defects. 

 

Aim3:  Engineer a heterogeneous bone-ligament tissue interface by spatially 

regulating Runx2 expression in fibroblasts 

Our working hypothesis was that zonal organization of bone and ligament tissue can be 

engineered by seeding primary fibroblasts onto three-dimensional scaffolds containing a 

spatial distribution of the Runx2 retroviral vector.  We tested this hypothesis by 

transducing fibroblasts with a novel biomaterial-mediated gene transfer approach in 

which Runx2 retrovirus was non-covalently adsorbed to polymeric biomaterials.  

Retroviral gradients were created by partially coating the proximal portion of these 

scaffolds with poly-L-lysine prior to incubation in retroviral supernatant and cell seeding.  

The spatial distribution of bone and ligament markers, mineralization, and mechanical 

properties was characterized after both in vitro culture and in vivo implantation in a 

subcutaneous, ectopic site.     

 

This work is significant because it develops hybrid ex vivo gene therapy/tissue 

engineering strategies to address the cell sourcing and osseointegration issues associated 

with cell-based orthopaedic therapies.  First, it establishes the use of transcription factor-

based genetic engineering strategies for the conversion of a non-osteogenic cell-type into 

a mineralizing cell source for bone tissue engineering applications.  Second, it contributes 
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to the field of orthopaedic biology by elucidating a previously unreported mechanism for 

glucocorticoid-induced osteogenic differentiation.  Third, it validates the feasibility of a 

biomaterial-mediated retroviral gene transfer approach to create heterogenous bone-soft 

tissue interfacial zones.  The proposed research is innovative because it utilizes 

biomaterial-mediated retroviral gene transfer as a novel strategy for spatially-controlled 

genetic modification and transdifferentiation of fibroblasts within 3-D matrices.  Overall, 

cellular therapies based on primary dermal fibroblasts would be particularly beneficial for 

patients with a compromised ability to recruit progenitors to the sight of injury as result 

of traumatic injury, radiation treatment, or osteodegenerative disease. 
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CHAPTER 2 

LITERATURE REVIEW* 

 

Bone Anatomy and Physiology 

Bone is a specialized connective tissue which provides mechanical support and 

protection for the body’s internal organs.  Beyond this structural role, bone tissue also 

serves as a major reservoir for calcium and phosphate ions and contains a population of 

hematopoietic and stromal cell precursors within its marrow cavity.  Thus, despite its 

inert appearance, bone is a metabolically active organ that undergoes continuous 

remodeling throughout life in order to maintain serum homeostasis and the structural 

integrity of the skeleton 29.  This remodeling process involves a complex series of highly 

regulated steps that primarily depend on the interplay of two cell types, the osteoblast and 

the osteoclast.  Osteoblasts promote bone formation by regulating deposition of osteoid 

and mineral nucleation. Osteoclasts are primarily responsible for bone resorption through 

the secretion of hydrogen ions and acid proteases.   Mature osteoblasts (termed 

osteocytes) are embedded within the dense extracellular matrix in lacunae and extend 

microfilament-rich canaliculi processes.  These processes contact canaliculi originating 

from other cells through gap junctions, enabling the propagation of signals to the interior 

of the highly dense bone matrix.     

Bone contains both cortical (compact) and trabecular (spongy) tissue types.   

 

*Modified from 
J.E. Phillips, C.A. Gersbach, and A.J. Garcia, Virus-based gene therapy strategies for bone regeneration. 
Biomaterials, 2007. 28(2):211-229. 
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Although these tissues are structurally and functionally different, they contain the same 

fundamental constituents, including a highly organized extracellular matrix, bone 

resorbing cells (osteoclasts), and bone forming cells at various stages of maturation (e.g. 

osteoprogenitors, osteoblasts, osteocytes, and periosteal lining cells).  The matrix is 

comprised of an inorganic, poorly crystalline hydroxyapatite mineral phase and a mixture 

of collagenous and noncollagenous (e.g. osteocalcin, bone sialoprotein, osteopontin, 

fibronectin) proteins.  Trabecular bone is found within the marrow cavity and throughout 

the ends of long bones and consists of a latticework of reticulated spicules lined with 

osteoblasts and osteoclasts.  Compact bone is located around the circumference of all 

bones and comprises the outer tubular shell surrounding the intramedullary marrow 

cavity in long bones.  It consists of parallel cylindrical units (osteons), which contain a 

Haversian canal surrounded by concentric lamellar rings of osteocytes embedded within 

the calcified matrix.  Blood vessels and nerves run through this canal system to allow for 

transport of nutrients and waste and to innervate osseous tissue.  Finally, eriostemon, a 

thin layer of connective tissue, covers the outer surface of bone and contains progenitor 

cells capable of bone formation.   

 

Bone Development 

Normal skeletal development originates from two main processes:  

intramembranous ossification and endochondral ossification30.  Intramembranous 

ossification primarily occurs during embryonic development of flat bones such as the 

calvarium and mandible.  In this process, mesenchymal precursors within vascularized 

embryonic connective tissue differentiate directly into an osteoblastic phenotype.  
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Endochondral ossification is the primary mode of long bone development during 

embryogenesis, pre-pubescent limb growth, and fracture healing.   This process differs 

from intramembranous bone formation in that it includes a highly complex, intermediate 

cartilaginous phase prior to mineralized matrix deposition.  Briefly, pre-chondrocytes 

within the growth plate proliferate and differentiate into mature hypertrophic 

chondrocytes, which secrete matrix and undergo apoptosis. This avascular, cartilaginous 

matrix is then infiltrated with blood vessels, calcified, and eventually remodeled by 

osteoblasts and osteoclasts to form lamellar trabecular bone.  Details of this complex 

process and the regulatory factors involved are beyond the scope of the current research 

and are discussed elsewhere30, 31. 

 

Bone Regulatory Factors  

Recent advances in bone cell biology have identified a central role for numerous 

signaling molecules during bone development and regeneration.  Differentiation of 

mesenchymal progenitor cells into an osteoblastic phenotype is tightly regulated by a 

complex spatiotemporal cascade of growth and differentiation factors, hormones, 

transcription factors, and extracellular matrix proteins.  Among these, several soluble and 

extracellular matrix proteins bind to transmembrane receptors to initiate signaling 

pathways which converge to activate osteogenic transcription factors.  These factors 

primarily have an intracellular mode of action to coordinate the expression of osteoblastic 

genes regulating the deposition of a mineralized matrix.   A mechanistic understanding of 

these signaling pathways will enable researchers to more effectively develop strategies 

for skeletal gene therapy applications.    
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Osteoinductive growth and differentiation factors 

Osteoinductive factors are typically embedded within the extracellular matrix and 

released during remodeling or injury.  These proteins bind to specific transmembrane 

receptors to initiate signaling cascades which induce osteogenesis through autocrine and 

paracrine signaling.  Among these, bone morphogenetic proteins (BMPs) have been 

identified as potent inducers of osteoblastic differentiation and ectopic and orthotopic 

bone formation8, 32, 33.  Complex expression patterns of multiple BMP isoforms have been 

observed during bone growth, as BMP-2, -4, and -7 are expressed in overlapping patterns 

during bone development34, 35 and BMP-2,-3,-4,-7, and -8 are expressed during fracture 

healing36.  Furthermore, a comparative study of 14 different human isoforms revealed 

that BMP-2, -6, and -9 potently induce osteoblastic differentiation in mesenchymal stem 

cells37.  The canonical mechanism of BMP signaling involves binding of this factor to a 

transmembrane receptor to initiate Smad-dependent and -independent signaling pathways 

that activate a cascade of osteogenic transcription factors, most notably Runx2/Cbfa1 and 

Osterix38-41.  

Insulin-like growth factors (IGF-I and IGF-II) serve as local regulators of bone 

matrix and remodeling.  These factors enhance collagen synthesis, inhibit collagen 

degradation, and stimulate proliferation of cells within the osteoblastic lineage42, 43.  

Systemic injection of IGF-I has a net anabolic effect on bone mass and enhances bone 

healing in vivo44.  However, discrepancies exist in the literature, as some studies report 

negligible effects of IGF on the skeleton45.  

Transforming growth factor-β (TGF-β) is present in high quantities within bone 

matrix and has pleiotropic regulatory effects during skeletal development and fracture 
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healing.   TGF-β stimulates osteoid formation and osteoblast proliferation, but has been 

shown to inhibit mineral deposition and osteocalcin gene expression46, 47.  Indeed, 

Opperman et al. reported that systemic TGF-β injection induces ectopic mineralization in 

vivo only after growth factor administration is discontinued48.  Alternatively, in vivo 

studies in fracture healing animal models have revealed that TGF-β enhances callus 

formation and mechanical strength compared to untreated fracture controls49, 50.  Despite 

these promising results, the use of this factor as an osteoinductive therapeutic agent may 

be significantly limited because the exceptionally large doses required to enhance bone 

repair are often toxic to the host51.   

Fibroblast growth factors (aFGF/FGF-1 and bFGF/FGF-2) function mainly as 

angiogenic agents during limb development, craniofacial bone formation, and the process 

of fracture healing.  Disruption of endogenous FGF signaling via blocking antibodies 

inhibits osteogenesis52, while mutations rendering the FGF transmembrane receptor 

constitutively active lead to enhanced osteoblast activity and premature fusion of 

craniofacial sutures53, 54.  Consistent with these results, administration of exogenous FGF 

enhances migration, proliferation, and differentiation of osteoprogenitors and ultimately 

accelerates fracture healing in long bones55-57.   

 

Osteogenic transcription factors 

Osteoinductive factors, such as BMPs, bind to the extracellular domain of 

transmembrane receptors to initiate signaling cascades which converge to activate a 

program of downstream transcriptional regulators.  Many transcription factors are 

expressed during bone development and fracture healing, including Runx2/Cbfa1, DLX-
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3, DLX-5, MSX-2, AP-1, Osterix 58.  Among these, Runx2/Cbfa1 and Osterix have been 

extensively characterized for their role in regulating the commitment of multipotent 

mesenchymal stem cells into the osteoblastic lineage.   

Runx2 is an essential transcriptional regulator of chondrocyte hypertrophy, 

osteoblast differentiation, and bone formation 59, 60.   Runx2-/- transgenic mice display an 

entirely cartilaginous skeleton with complete arrest of osteoblast activity and 

endochondral ossification 61.  Moreover, Runx2 haploinsufficiency causes the pathogenic 

skeletal phenotype cleidocranial dysplasia in mice and humans, characterized by short 

stature, hypoplastic clavicles, and dental abnormalities 62, 63.  Runx2 functions as a 

transcriptional scaffolding protein which associates with additional co-regulatory proteins 

and binds to the promoter region of skeletal target genes to regulate their expression 64, 65. 

We and others have demonstrated that forced expression of Runx2 upregulates 

osteoblast-specific gene expression and induces mineralization in a cell-type-dependent 

manner 23, 24, 59, 66, 67.  Intriguingly, both postnatal disruption of Runx2 by dominant 

negative expression and overexpression of Runx2 from the pro-� (I) collagen promoter 

induces bone fragility and osteopenia in transgenic mice 68, 69.  These studies collectively 

demonstrate that cellular regulation of Runx2 is critical for normal skeletal development 

and bone formation. 

Osterix (OSX) is a zinc-finger-containing transcription factor that acts 

downstream of Runx2 to induce the differentiation of osteoprogenitors into mature 

osteoblasts.  Homozygous deletion of Osterix inhibits osteoblast differentiation and 

activity, while chondrocyte hypertrophy proceeds normally in these transgenic mice70.  

Several reports have suggested that Runx2 directly regulates Osterix, as its expression is 
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completely absent in Runx2-null mice70 and Runx2 binding sites have been identified in 

the Osterix promoter71.  Regulation of these two osteoblastic transcription factors and 

their temporal expression with respect to each other is an active area of research. Notably, 

both Runx2 and Osterix are downstream effectors of BMP-2-activated signaling72-76. 

 

Biological and Synthetic Bone Grafts 

Conventional skeletal grafting therapies typically involve the implantation of 

autogenic bone harvested from the patient’s iliac crest or allogenic bone from cadaver 

tissue banks.  Autograft implantation is considered the gold standard in bone repair, but 

the widespread clinical success of this procedure has been hindered by variable results 

associated with the quality of the bone graft, inadequate tissue supply, and donor site 

morbidity 77.  Allografts offer advantages for off-the-shelf tissue availability, but display 

reduced biological activity and mechanical properties due to tissue processing and carry 

the risk of disease transmission 78, 79.  Synthetic materials such as metals, calcium 

phosphate ceramics, bioactive glasses, and polymers have also been explored for bone 

grafting applications, but generally display insufficient regenerative potential to warrant 

the inflammatory host reaction 80.  More recently, osteogenic devices containing 

recombinant bone morphogenetic protein-2 (BMP-2) or BMP-7 have shown efficacy in 

human clinical trials and have been approved by regulatory agencies for the treatment of 

non-healing fractures and spinal fusion 4-6, 8.  Nevertheless, the wide-spread clinical 

success of this growth-factor based approach continues to be hampered by suboptimal 

delivery vehicles, short biological half-life, and safety issues associated with aphysiologic 

dosage 7, 8.  Although several approaches to augment bone formation are presently 
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available, it is clear that their limitations leave a pressing need for alternative bone 

regeneration strategies. 

 

Gene Therapy Approaches to Bone Grafting 

Gene therapy aims to introduce exogenous nucleic acid sequences into cells in 

order to alter their endogenous protein synthesis or induce the expression of therapeutic 

proteins.  Both in vivo and ex vivo gene therapy strategies have been investigated for bone 

regeneration 20, 81.  Table 2.1 lists examples of in vivo gene delivery of osteogenic factors 

for bone repair.  In vivo strategies involve vector delivery via intravenous injection or 

direct local implantation to a selected anatomic site.  This simple, one-step process would 

promote high surgeon compliance and may be necessary for disorders requiring 

immediate treatment, but involves significant challenges associated with low transduction 

efficiency, inflammatory/immune limitations, and difficulty targeting the cell population 

of interest.  Moreover, this strategy is highly dependent on the presence and 

responsiveness of host cells and may not be effective in patients with compromised 

ability to recruit osteoprogenitors to the site of injury as a result of disease, trauma, 

radiation treatment, or age-related tissue deterioration.   Ex vivo strategies involve the 

harvest of a specific population of cells from the patient, followed by genetic 

modification of these cells under in vitro conditions and their subsequent implantation 

into the site of injury.  Tables 2.2 and 2.3 provide examples of ex vivo strategies using 

osteogenic and non-osteogenic cell sources, respectively.  Ex vivo gene delivery 

approaches allow for expansion of the target cell population prior to genetic modification 

and selection for cells expressing the transgene.  Furthermore, ex vivo gene transfer in a  
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Table 2.1.  Selected examples of in vivo gene therapy approaches for bone repair 

 
Viral Vector 

 

 
Target 
Gene 

 
Target Tissue 

 
Animal Model 

 
Reference 

Adenovirus BMP-2 Intramuscular 
injection 

SCID and 
immunocompentent 

mice 

Musgrave et al., 
1999. 

Adeno-
associated virus 

BMP-4 Intramuscular 
injection 

Immunocompetent 
rats 

Luk et al., 2003 

Adeno-
associated virus 

BMP-2 Intramuscular 
injection 

Immunocompetent 
rats 

Chen et al., 2003. 

Adenovirus BMP-2 Dorsal osseous 
nasal defect 

Athymic nude rats Lindsey et al., 
2001. 

Adenovirus BMP-2 
BMP-4 
BMP-6 

Intramuscular 
injection 

Athymic nude rats Jane et al, 2002. 

Adenovirus BMP-2 Intramuscular 
injection 

Immunocompetent 
and athymic nude 

rats 

Alden et al, 1999. 

Adenovirus BMP-4 
BMP-9 

Intramuscular 
injection 

Different 
immunocompetent 

rat strains 

Li et al., 2003. 

Retrovirus BMP-2/4 Periosteal injection 
adjacent to fracture 

Critical-sized 
femoral defect in 

immunocompetent 
rats 

Rundle et al., 
2003. 

Adeno-
associated virus 

Adenovirus 

BMP-6 Ectopic injection Immunocompetent 
and athymic nude 

rats 

Li et al., 2006. 

Adenovirus BMP-2 
BMP-6 
BMP-7 
BMP-9 

Intramuscular 
injection 

Athymic mice Kang et al., 2004. 

Adenovirus BMP-2 
TGF-β 

Critical-sized 
femoral segmental 

defect 

New Zealand white 
rabbits 

Baltzer et al., 
2000. 

Adenovirus BMP-2 Critical-sized iliac 
crest defect 

White mountain 
sheep 

Egermann et al., 
2006. 
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cell-based delivery vehicle may be safer in a clinical setting than direct injection of viral 

particles in vivo.  Although cells can be screened for tumorigenicity before implantation 

into the host, these initial steps are often labor intensive and would involve significant 

cost and complexity.   

Both in vivo and ex vivo gene therapy strategies have been investigated for bone 

regeneration 20, 81.  In vivo approaches for bone repair have predominantly utilized 

transient adenoviral vectors to avoid risks associated with retroviral-mediated insertional 

mutagenesis.  Direct injection of adenoviral vectors expressing BMP-2 led to increased 

bone formation in critical-sized rat mandibular defects 82 and rabbit femoral segmental 

defects 83.  Importantly, Baltzer et al. reported detection of transgene expression at high 

levels in muscle tissue surrounding femoral defects for at least 6 weeks, suggesting that 

muscle-derived osteoprogenitors contributed to bone formation 84.  In a separate study, 

intramuscular injection of BMP-2-expressing adenovirus induced ectopic bone formation 

in mice, but a more robust osteogenic response was observed in immunodeficient 

compared to immunocompetent animals 85.  This observation corroborated reports from 

several groups that the host immune response induced by first-generation adenoviral 

vectors is strong enough to attenuate the efficacy of adenovirus-based approaches 86-88.  

In an attempt to overcome issues associated with viral immunogenicity, Rundle et al. 

pursued an in vivo strategy based on a retroviral vector encoding a BMP-2/4 fusion 

protein 89.  Although accelerated fracture healing was observed after retroviral injection 

in a rat femoral defect at early time points, both treatment and control fractures 

eventually remodeled to comparable dimensions and mineral levels.  Nevertheless, 

evidence of vector integration into surrounding non-skeletal tissues was not observed, 
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suggesting that retroviral-based in vivo gene therapy strategies may be safe for specific 

local tissue repair applications 89. 

Ex vivo approaches based on different cell-types, gene delivery vectors, and target 

genes have been extensively explored for bone repair applications.  One strategy that has 

shown particular promise is the implantation of bone marrow stromal cells (BMSCs) 

genetically engineered to overexpress BMP-2 into critical-sized defects 90-96.  Lieberman 

et al. reported that autologous Ad-BMP-2-expressing BMSCs embedded within a 

demineralized bone matrix carrier significantly healed segmental femoral defects in 

syngeneic rats compared to carrier only and Ad-LacZ-expressing BMSC controls 92.  

Importantly, these investigators directly compared this ex vivo approach to the delivery of 

a clinical dose of rhBMP-2 protein and showed that genetically engineered cells produce 

more robust trabecular architecture than recombinant protein injection.  In an independent 

study, Tsuchida et al. investigated the bone healing capacity of allogenic BMSCs infected 

with a BMP-2 adenoviral vector in a rat femoral segmental defect 97.  BMP-2-expressing 

allogenic cells in combination with the immunosuppressant FK506 induced fracture 

repair in vivo to levels comparable to BMP-2-expressing autologous cells.  Notably, 

investigation into the cellular origin of bone formation suggested that genetically 

engineered cells secrete BMP-2 for paracrine signaling and also directly participate in 

bone formation.  In contrast to studies focused on transient adenoviral gene delivery, an 

ex vivo approach based on constitutive retroviral overexpression of BMP-4 in BMSCs 

was recently investigated by Gysin et al 96.    BMP-4-expressing BMSCs healed critical-

sized calvarial defects in rats, while untransduced BMSCs showed limited bone 

formation. Collectively, these results suggest that ex vivo genetic manipulation of 
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mesenchymal stem cells may provide a more robust strategy for bone formation than the 

direct implantation of these cells alone.   

 

Cell-based Tissue Engineering Approaches to Bone Grafting  

Bone tissue engineering has emerged as a promising alternative to conventional 

grafting strategies.98-100  The general paradigm for this approach involves the integration 

of osteogenic cells and/or bioactive growth factors into three-dimensional scaffolds to 

produce hybrid constructs for skeletal repair.101  The success of bone tissue engineering 

to date has been limited in part by inadequate availability of a mineralizing cell source 

which can be easily obtained in sufficient quantities and maintain osteoblastic phenotype 

during in vitro culture and expansion.   

 

Cell Source 

Traditional cell-based approaches typically involve the use of terminally 

differentiated osteoblasts,102, 103 osteogenic cell lines, 104, 105 unfractionated bone marrow  

stroma,106, 107 or purified mesenchymal stem cells 108-110.   Primary osteoblasts are 

difficult to isolate in sufficient quantities from calvarial or trabecular bone and display a 

limited capacity for proliferation.  Immortalized osteogenic cell-lines are clonally-derived 

and well-characterized, but exhibit abnormal regulatory mechanisms that may lead to 

tumorigenic growth in vivo.  Because of these limitations, a large number of cell 

transplantation strategies are based on primary bone marrow stromal cells (BMSCs) 14, 

108, 109, 111-113.  These cells contain a subpopulation of osteoprogenitors and mesenchymal 

stem cells (MSCs) which have shown significant mineralization capacity in vitro and in 
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Table 2.2.  Selected examples of ex vivo gene therapy approaches for bone repair in 
osteogenic cells  

 
Viral 

Vector 
 

 
Target 
Gene 

 
Target Cells 

 
Animal Model 

 
Reference 

Adenovirus BMP-9 Human 
mesenchymal stem 

cells 

Ectopic intramuscular site 
in athymic nude rats 

Dayoub et 
al., 2003. 

Adenovirus Runx2 Primary bone 
marrow stromal cells 

Ectopic subcutaneous site 
in immunocompetent mice 

Zhao et al., 
2005. 

Retrovirus Runx2 Primary bone 
marrow stromal cells 

Ectopic subcutaneous site 
and critical-sized calvarial 

defect in 
immunocompetent 

syngeneic rats 

Byers et al., 
2004. 

Byers et al., 
2006. 

Adenovirus 
Liposomes 

BMP-2 Primary bone 
marrow stromal cells 

Critical-sized mandibular 
defects in 

immunocompetent rats 

Park et al., 
2003. 

Retrovirus BMP-7 Primary periosteal 
cells 

Critical-sized cranial 
effects in New Zealand 

white rabbits 

Breitbart et 
al., 1999. 

Retrovirus BMP-4 Primary bone 
marrow stromal cells 

Critical-sized calvarial 
defect in syngeneic rats 

Gysin et al., 
2002. 

Lentivirus BMP-2 Primary bone 
marrow stromal cells 

Ectopic intramuscular site 
in SCID mice 

Sugiyama 
et al., 2005. 

Adenovirus 
Retrovirus 
Liposomes 

BMP-2 Primary bone 
marrow stromal cells 

Critical-sized calvarial 
defects in rats 

 

Blum et al, 
2003. 

Adenovirus 
Recombinant 

protein 

BMP-2 Primary bone 
marrow stromal cells 

Critical-sized femoral 
segmental defect  in 

syngeneic rats 
 

Lieberman 
et al., 1999 

Adenovirus BMP-2 Bone marrow 
stromal cell line 

Ectopic intramuscular site 
in SCID mice and critical-
sized femoral segmental 

defect in athymic rats 

Lieberman 
et al., 1998. 

Adenovirus BMP-2 Allogeneic  bone 
marrow-derived 

mesenchymal stem 
cells 

Critical-sized femoral 
segmental defect in 

immunocompetent rats 
treated with 

immunosuppresants 

Tsuchida et 
al., 2003. 
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Table 2.3.  Selected examples of ex vivo gene therapy approaches for bone repair in non-
osteogenic cell-types 

 
Viral 

Vector 
 

 
Target 
Gene 

 
Target Cells 

 
Animal Model 

 
Reference 

Retrovirus 
Adenovirus 

BMP-2 Muscle-derived stem 
cells 

Critical-sized calvarial 
defect in SCID mice 

Lee et al., 2002. 

Adenovirus LMP-1 Peripheral blood-
derived buffy coat 

cells 

Spine fusion in 
immunocompetent rabbits 

Viggeswarapu 
et al., 2001. 

Retrovirus BMP-4 and 
VEGF 

Muscle-derived stem 
cells 

Ectopic intramuscular site 
and critical-sized calvarial 

defect in immunocompetent 
mice 

Peng et al., 
2002. 

Adenovirus BMP-4 Muscle-derived stem 
cells 

Critical-sized calvarial 
defect in immunocompetent 

rats 

Wright et al., 
2002. 

Adenovirus BMP-4 Muscle-derived stem 
cells and primary 

bone marrow stromal 
cells 

Critical-sized femoral defect 
in immunocompetent rats 

Rose et al., 
2003. 

Adenovirus BMP-7 Rat dermal fibroblasts Ectopic subcutaneous site 
and critical-sized calvarial 

defect in 
immunocompromised mice 

Krebsbach et al., 
2000. 

Adenovirus BMP-2 and 
BMP-7 

BMP-4 and 
BMP-7 

Murine embryonic 
fibroblast cell line 

Ectopic subcutaneous site in 
immunocompetent mice 

Zhao et al., 
2005. 

Retrovirus Runx2 Primary dermal 
fibroblasts 

Ectopic subcutaneous site in 
immunocompetent 

syngeneic rats 

Phillips et al., 
2006. 

Retrovirus Runx2 Skeletal myoblasts Ectopic intramuscular site 
in immunocompetent 

syngeneic mice 

Gersbach et al., 
2006.  

Adenovirus BMP-2 and 
Runx2 
BMP-2 
Runx2 

C3H10T1/2 cell line Ectopic subcutaneous site in 
immunodeficient mice 

Yang et al., 
2003. 

Adenovirus BMP-2 
Runx2  

Primary dermal 
fibroblasts 

Ectopic subcutaneous site 
and critical-sized calvarial 
defect in immunocompetent 
mice 

Hirata et al., 
2003. 

Adenovirus BMP-2 Human diploid fetal 
lung cell-line and 

primary bone marrow 
stromal cells and 
primary dermal 

fibroblasts 

Ectopic intramuscular site in 
SCID mice 

Gugala et al., 
2003. 

Adenovirus BMP-2 Adipose-derived stem 
cells 

Ectopic intramuscular site in 
SCID mice 

Dragoo et al., 
2003. 

Adenovirus BMP-2 Adipose-derived stem 
cells 

Critical-sized femoral defect 
in athymic rats 

Peterson et al., 
2005. 
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vivo 13, 14, 17, 18, 114.  Although results in animal studies are promising, it is still unknown if 

BMSC transplantation will induce an osteogenic response robust enough to heal critical-

sized bone defects in humans.   

Ex vivo gene therapy strategies, such as the ones discussed above, have further 

enhanced the bone healing capacity of bone marrow-derived osteogenic cells (see Table 

2.2 for representative examples).  Yet, the clinical use of these precursors is still hindered 

by their complex and painful cell procurement process 115, potential for dedifferentiation 

during in vitro expansion, low frequency in healthy marrow 111, 116, and reduced 

mineralization capacity associated with increased age and disease-state of the donor 16, 19.  

These limitations leave a pressing need for alternative cell source options for bone 

regeneration.   

Genetic engineering strategies have been employed for the differentiation of non-

osteogenic cells, such as fibroblasts and skeletal myoblasts, into a mineralizing 

osteoblastic phenotype (see Table 2.3 for selected examples).  Rat dermal fibroblasts 

transduced with adenoviral vectors encoding for either BMP-2 or BMP-7 form significant 

amounts of bone in both ectopic implantation sites and critical sized defects 21, 24, 25.  

Furthermore, Ad-BMP-7-expressing human gingival fibroblasts induced osteogenic 

differentiation in vivo after subcutaneous implantation in immunocompromised animals 

25. Importantly, an assessment of fibroblast fate after implantation revealed that 

genetically engineered fibroblasts directly differentiate into osteoblast-like cells and 

secrete osteoinductive factors which stimulate mineral deposition by host cells.  In a 

separate study, skeletal myoblasts engineered to overexpress BMP-2 with a retroviral 

vector deposited significant amounts of ectopic mineralization after intramuscular 
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implantation into the hind limbs of immunocompetent syngeneic mice 117.  Finally, an ex 

vivo strategy based on buffy coat cells derived from peripheral blood has successfully 

induced spinal fusion in animal studies 118.  This particular approach is attractive for 

therapeutic use because cells are harvested, transected, and re-implanted during the same 

operation.  Overall, non-osteogenic cell sources have promising clinical relevance 

because they are easily obtained in large quantities by minimally invasive biopsy from 

autologous donors. 

More recently, osteocompetent stem cell populations have been isolated from 

muscle tissue and human liposuction aspirates 119-123.  Huard and colleagues showed that 

muscle-derived stem cells (MDSCs) transduced with a BMP-4 retroviral vector induce 

orthotopic bone formation in rat critical-sized calvarial and femoral defects 124, 125.  

Importantly, robust mineral production by these allogenic MDSCs was observed in 

immunocompetent animal models despite the presence of CD4+ and CD8+ lymphocytes.  

Moreover, an analysis of cell fate suggested that genetically engineered MDSCs 

differentiate down the osteogenic lineage to directly contribute to bone repair and secrete 

osteoinductive factors which promote mineral deposition by host cells.  In a separate 

approach, adipose-derived mesenchymal progenitors transduced with a BMP-2 

adenovirus formed bone in vivo after implantation into the hind limb of SCID mice 126.  

Moreover, these BMP-2-expressing cells also healed critical sized defects in 

immunodeficient rats, while unmodified liposuction aspirate control cells did not 

mineralize 127.  Adipose-derived stem cells are particularly advantageous because a large 

amount of autologous tissue can be harvested from various anatomic locations with 

minimal donor site morbidity and negligible loss of some critical function to the host.   
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The optimal cell source for gene therapy-based bone repair strategies has not been 

determined.  A comparative study conducted by Gugala et al. suggested that bone healing 

efficacy is independent of cell type 128.  In this report, no significant difference in ectopic 

in vivo mineralization capacity was observed between BMSCs, primary dermal 

fibroblasts, and a human diploid fetal lung cell line transduced with a BMP-2-expressing 

adenoviral vector.  However, these investigators did observe a marked difference in bone 

formation due to the type of viral delivery vector and the subsequent amount of the 

osteoinductive factor produced 128.  In contrast, Rose et al. reported that BMP-4-

expressing muscle-derived stem cells form significantly more bone in critical-sized 

femoral defects compared to BMP-4-expressing BMSCs  129.  It is clear from these 

conflicting results that additional comparative studies will be necessary to determine the 

relative potency of these osteoblastic and nonosteoblastic cell-types for bone 

regeneration.  Nevertheless, beyond requirements for osteoinductive potency, the ideal 

cell source for ex vivo gene therapy strategies would be easily harvested with minimal 

donor site morbidity, available in large quantities, and susceptible to genetic 

manipulation by gene transfer vectors.  In general, autologous cells would be preferred in 

order to minimize potential host immune response. Studies characterizing cell fate after 

implantation and the cellular origin of bone formation will become increasingly 

important in the clinical application of these strategies to human bone defects.   

 

Target Genes 

As evidenced by the above discussion, gene therapy strategies based on soluble 

growth factors, such as BMP-2, BMP-4, and BMP-7, have been successfully applied to 
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augment bone formation in preclinical animal models.  Despite promising results, the 

clinical feasibility of these growth factor-based gene therapy approaches may be 

hampered by complex release kinetics and unregulated, ectopic bone formation caused by 

paracrine signaling to neighboring non-osseous tissues.  The delivery of downstream 

transcriptional activators has been extensively explored to address these limitations.  In 

particular, overexpression of genes encoding LIM mineralization protein-1 (LMP-1), 

Runx2/Cbfa1, and Osterix have been explored in various cell-types for their bone 

regenerative potential 67, 118, 130, 131, 131, 132.  

 In contrast to growth factor-based therapies, which have been administered as 

recombinant proteins or genetic sequences, most attempts to utilize transcription factors 

with an intracellular mode of action have involved the use of a genetic engineering 

approach.  LMP-1 is an intracellular protein which has been shown to induce secretion of 

soluble factors such as BMP-2, BMP-4, BMP-6, and BMP-7 133.  Adenoviral 

overexpression of LMP-1 in buffy coat cells successfully induced spinal fusion in rodents 

and rabbits 118, 134.  In a different approach, we and others have demonstrated that Runx2 

overexpression directs the differentiation of a wide range of osteogenic and non-

osteogenic cell-types toward an osteoblastic lineage in vitro 59, 66, 67, 135, 136.  Both transient 

and long-term expression of Runx2 in primary BMSCs enhances in vivo mineral 

deposition compared to unmodified BMSCs 137-139.  More recently, we have demonstrated 

that primary dermal fibroblasts transduced with a Runx2 retroviral vector create 

mineralized templates in vivo after implantation in a subcutaneous, heterotopic site 131.  In 

this report, Runx2-expressing fibroblasts co-localized with mineral deposits in vivo, 

suggesting that bone formation primarily originated from transplanted donor cells.   
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Finally, Tu et al. recently observed that retroviral gene delivery of Osterix enhances the 

mineralization capacity of primary bone marrow stromal cells in vitro, suggesting that 

this strategy may lead to stimulation of bone formation in vivo 140.   

In order to more closely mimic the signaling pathways involved in natural bone 

formation, several investigators have pursued strategies based on simultaneous delivery 

of multiple regenerative molecules.  Franceschi and colleagues investigated a 

combinatorial gene therapy approach based on the overexpression of multiple genes 

encoding osteoinductive growth factors.  Co-infection of murine embryonic fibroblasts 

with BMP-2/BMP-7 adenoviral vectors synergistically enhanced in vivo bone formation 

compared to overexpression of individual molecules alone 22.  Peng et al. investigated the 

ability of an angiogenic factor to promote blood vessel infiltration and cartilage formation 

during BMP-induced endochondral ossification 141.  Genetic modification of muscle-

derived stem cells with a combination of BMP-4 and vascular endothelial growth factor 

(VEGF) synergistically enhanced ectopic and orthotopic bone formation compared to 

BMP-4-expressing or VEGF-expressing cells alone.  Finally, the osteogenic potential of a 

combinatorial strategy based on co-expression of a soluble factor with a transcription 

factor has been recently evaluated.  Yang et al. reported that the C3H10T1/2 fibroblastic 

cell-line expressing Ad-BMP-2 and Ad-Runx2 synergistically induced subcutaneous 

bone formation compared to BMP-2-expressing or Runx2-expressing cells alone 23.  

Taken together, these results highlight the potential of combinatorial factor delivery as a 

strategy to enhance in vivo bone formation. 

Preliminary evidence suggests that BMP-2-based genetic engineering strategies 

may have a more potent osteoinductive effect in vivo than those based on Runx2 23, 24.  



 26

This heightened osteogenic response is likely due to paracrine signaling by BMP-2 cells, 

which may be absent or attenuated in Runx2-expressing cells.  As these strategies move 

forward, further characterization of the protein release profile and the threshold of factor 

delivery necessary to achieve efficacy in each scenario will be necessary.  In general, it is 

unlikely that one single target gene will be universally appropriate for the treatment of the 

numerous orthopaedic conditions requiring bone grafting.   

 

Rationale for Genetic and Tissue Engineering Strategies 

It is evident from the preceding discussion that the natural processes of skeletal 

development and fracture healing involve a complex spatiotemporal cascade of local and 

systemic factors.  These highly regulated signaling pathways result in an intricately 

designed osseous tissue containing multiple cell-types and extracellular matrix proteins 

woven together into a precise three-dimensional structure.  It is not currently well 

understood whether the optimal bone regenerative strategy must perfectly mimic the 

precise architecture and biochemical properties of native bone.  Indeed, it is likely that 

the degree of native tissue recapitulation will be dependent on the anatomic location of 

the defect and the level of damage to vasculature and progenitor cell populations within 

the host tissue bed surrounding the repair site.  For example, one could postulate that 

healing could be induced in certain applications by transplants which serve only as 

bridging scaffolds to support mechanical function temporarily, to initiate the endogenous 

healing response, and then be eventually remodeled and replaced by endogenous bone.  

Nevertheless, it is likely that the complex biomolecular organization of endogenous 

skeletal tissue cannot be achieved by the delivery of a single dose of recombinant protein 

to the repair site in a poorly-controlled manner.  Even after the development of an 
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optimal protein delivery vehicle has been realized, recombinant growth factor-based 

approaches may still be insufficient to induce an adequate osteogenic response in patients 

with compromised tissue beds because they require the presence of an endogenous cell 

population capable of osteogenic differentiation.  Gene transfer technologies may enable 

the design of therapies which result in bone tissue that more closely mimics the complex 

spatial and temporal cascade of proteins involved in bone formation.  In theory, the 

temporally-regulated delivery of genetic sequences encoding a combinatorial group of 

osteoinductive factors would be capable of an enhanced osteogenic response compared to 

a single bioactive factor or cell-based approach alone. Furthermore, combinatorial gene 

therapy strategies would have advantages over combinatorial protein delivery strategies 

because they may avoid issues such as high cost, toxic protein doses, short factor half-

life, and suboptimal delivery vehicles.  Finally, it is important to note that the biomaterial 

delivery vehicle or matrix supporting cell delivery/activity plays an important role in 

modulating the efficacy of these genetic engineering approaches and providing a 

structural role in the healing response.  A thorough discussion of these biomaterial-

related considerations is beyond the scope of the present literature review.    

 

Biological and Synthetic Ligament Grafts  

Ligaments are densely organized, fibrous connective tissues that are primarily 

responsible for the attachment of two or more bones across a joint.  The ligaments which 

connect the femur to the tibia stabilize the knee against abnormal translational and 

rotational motion and are particularly susceptible to sports-related traumatic injury 142.  

Partial tears or full rupture of the anterior cruciate ligament (ACL) and/or the medial 
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collateral (MCL) ligament account for over 90% of all knee ligament injuries 143.  The 

MCL has a propensity for spontaneous repair due to its high vascularity 144, 145.  However, 

the biochemical composition and extracellular matrix organization of this healing tissue 

is significantly different than native MCL, resulting in suboptimal mechanical properties 

for up to 2 years after injury 146, 147.  In contrast, surgical intervention is typically required 

to restore ACL function, which has limited healing capacity because it is poorly 

vascularized and surrounded by synovial fluid 148.   

Over 100,000 ACL reconstructions are performed each year in the United States 

with an estimated cost totaling over $5 billion dollars 149, 150.  Autologous hamstring 

tendon or patellar tendon grafts with bony attachments on the proximal and distal ends 

represent the most common reconstruction materials.   Procedures based on these 

autografts are considered the gold standard in ligament repair, but are associated with 

side effects such as donor site morbidity, pain, tendonitis, arthritis, and the formation of 

restrictive scar tissue 151.  Allogenic tissue derived from the achilles tendon has shown a 

comparable clinical outcome to autogenic tendon in some cases, but has disadvantages 

for the risk of disease transmission, limited tissue supply, and inadequate mechanical 

properties 152.  Finally, approaches based on engineered synthetic grafts (e.g. Leeds-Keio 

polyethylene terephthalate, polypropylene-based Kennedy ligament augmentation device 

(LAD), polyester (Dacron), polytetrafluoroethylene (Gore-Tex), and multifilament or 

braided collagen fibers have also been explored 149, 153.  Many of these synthetic grafts 

have shown a high rate of mechanical failure when used for primary ACL repair.  This 

tissue failure has been attributed to multiple factors, including suboptimal tissue 

anchorage to bone, inability to support tissue ingrowth and remodeling, and generation of 
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particulate matter due to prostheses abrasion and wear 144.   Beyond the selection of a 

grafting template, even reconstructions which fully restore tissue function involve an 

extensive rehabilitation process that can take from 4 months up to 3 years 142, 154. 

 

Ligament Anatomy and Biochemistry 

Human ligaments display complex time- and history-dependent viscoelastic 

behavior that is highly dependent on the biochemical composition and microstructure of 

the extracellular matrix.  Most ligament tissues consist of 65-80% water and 20-35% 

solids such as collagen, decorin, elastin, and fibronectin 148.  The majority of collagen 

within this matrix is the type I isoform, but types II, III, V, IX, X, XI, and XII have also 

been detected depending on the species, age, and disease state of the animal model 155.  

Collagen fibrils are densely packed into a crimped pattern within fasicular subunits, 

which are arranged in parallel to the long axis of the ligament into a higher order 

structure of functional bands.  Heterogeneous zones of ligament, fibrocartilage, 

mineralized fibrocartilage, and bone are found at the transitionary region between bone 

and soft tissue.  The collagen structure shifts toward a more helical and/or non-parallel 

orientation in this bone-ligament interface in order to avoid the formation of stress 

concentrations that may lead to failure during loading.  Populations of fibroblasts are 

interspersed throughout the matrix and function in tissue remodeling, adaptation, and 

healing.  Ultimately, the structural arrangement of these biochemical constituents gives 

the human ACL an average tensile strength of 1730 N, an average linear stiffness of 182 

N/mm, and an average energy absorbed at failure of 12.8 N-m.  It is the inability of most 
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grafting templates to mimic the complex geometry and stress-strain behavior of native 

ligament tissue that eventually leads to mechanical failure 149.   

 

Growth and Differentiation Factors in Ligament Repair 

Specific growth factors, including platelet derived growth factor (PDGF), 

epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), transforming 

growth factor beta (TGF-β), and insulin-like growth factor (IGF-I), have altered 

expression levels following ligament injury 156-158.  Furthermore, in vitro studies have 

demonstrated that many of these proteins specifically modulate migration, proliferation, 

and/or matrix deposition by ligament fibroblasts 159.  In particular, fibroblast proliferation 

is stimulated by EGF, IGF-I, bFGF, or PDGF-BB, while TGF-β regulates collagen 

deposition by these cells 160-162.  Additionally, both PDGF-BB and TGF-β are 

chemoattractants which stimulate fibroblast migration through ligament tissue 163.  Direct 

administration of recombinant PDGF has been reported to significantly improve the 

mechanical properties of healing ligament tissue 164.  In contrast, conflicting reports exist 

regarding local delivery of TGF-β, which has shown isoform- and concentration-

dependent enhancement in the healing of rabbit MCL tissue 165-167.  More recently, 

combinatorial delivery of both TGF-β1 and EGF has been shown to improve MCL 

healing in canines 168.  Despite promising results in preclinical animal models, these 

recombinant protein-based therapies are limited by suboptimal delivery vehicles, rapid in 

vivo protein degradation, and cost-prohibitive supraphysiologic concentrations.  Because 

of these complications, gene therapy and tissue engineering strategies have been pursued 
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as an alternative strategy for the sustained delivery of therapeutic proteins to the 

compromised tissue site 155, 169. 

 

Gene Therapy Approaches to Ligament Repair 

Reporter Gene Delivery to Ligament and Tendon 

The feasibility of both in vivo and ex vivo gene transfer to ligament and/or tendon 

tissue has been investigated in a variety of animal models 170.  Because the signaling 

pathways involved in ligament healing are poorly understood, the majority of these 

approaches have focused on proof-of-principle studies involving delivery of a reporter 

gene.  Gerich et al. isolated fibroblasts from ACL, PCL, MCL, patellar tendon and 

semitendinosus tendon tissue harvested from New Zealand white rabbits 171, 172.  All five 

cell types were reported to be susceptible to transduction in vitro with both a first 

generation adenoviral vector and a retroviral vector encoding for the β-galactosidase 

(LacZ) gene.  In vivo gene delivery of this LacZ adenovirus via direct injection into the 

patellar tendon of New Zealand white rabbits resulted in a limited level of LacZ 

expression adjacent to the site of delivery 171, 173.  In a separate approach, Huard and 

colleagues genetically engineered an autologous semitendinosus tendon graft with 

adenovirus-LacZ or adenovirus-luciferase in vitro 174.  Reporter genes were detected 

around the periphery of this tissue for 6 weeks in vitro, suggesting that fibroblasts could 

be genetically modified in situ within the native three-dimensional environment 175.   

Finally, Lou et al. found that in vivo transduction efficiency after injection into chicken 

tendon and tendon sheath was highly dependent on the titer of LacZ adenovirus 176.  

Positive staining was observed for up to 75 days in vivo, suggesting that the host immune 
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response against adenoviral vectors may not be as robust in certain connective tissues 

compared to most highly vascularized tissues.  Moreover, the observed confinement of 

the virus to the tissue periphery suggested that the collagenous composition and structure 

may serve as a barrier against plasmid penetration into the center of certain connective 

tissues 177.   

An ex vivo approach was explored by Gerich et al. in which allogenic primary 

tendon fibroblasts were genetically engineered with a LacZ retroviral vector and 

implanted directly into the patellar tendon of healthy New Zealand White rabbits171.  

Notably, a significantly higher number of LacZ-expressing fibroblasts were detected after 

6 weeks in vivo with this cell-based approach compared to direct injection of virus 171.  

These results were corroborated by a study by Menetrey et al. where myoblasts and ACL-

derived fibroblasts were infected with an adenoviral vector encoding LacZ and 

transplanted into healthy ACLs of adult rabbits.  Transgene expression was detected for 

up to 21 days with this ex vivo approach, while direct injection of adenoviral particles 

resulted in marker gene expression through 42 days 178.  In order to determine if this 

strategy would be technically feasible for the healing of injured ligaments, Woo and 

colleagues implanted allogenic LacZ-expressing fibroblasts into a ruptured MCL in 

skeletally mature rabbits, while the contralateral controls received saline injections 179.  

Importantly, LacZ expression was upregulated at comparable levels in both ruptured and 

unruptured MCL tissue compared to control tissue, suggesting that transduction is 

independent of the injury state of the ligament.  Results from this study indicate that 

natural ligament healing process may not disrupt expression of an exogenously delivered 

transgene. 
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 In Vivo Gene Therapy for Ligament and Tendon Repair 

The studies discussed above demonstrated that in vivo and ex vivo techniques can 

be used to maintain expression of an exogenous transgene for up to 8 weeks in preclinical 

animal models.   Techniques optimized in these proof-of-concept studies have been 

utilized by some investigators to study the effects of therapeutic molecules gene delivery 

on ligament and/or tendon healing 180.  Lou et al. used an in vivo gene transfer strategy 

based on direct injection of adenoviral vectors encoding for sense and antisense focal 

adhesion kinase (FAK) into the tendon and tendon sheath of White Leghorn chickens.  

Tendons overexpressing FAK showed an increase in adhesion formation compared to 

unmodified and antisense FAK-expressing controls, suggesting that this molecule may 

have a critical role in regulating the formation of restrictive tendon adhesions during 

tissue healing 181.   More recently, Manske and colleagues reported that adenovirus-

mediated gene delivery of BMP-12 into primary chicken tendon cells increased type I 

collagen synthesis in vitro 182.  Ad-BMP-12 was directly injected into a completely 

lacerated toe tendon in White Leghorn chickens.  Tendons expressing BMP-12 displayed 

a two-fold increase in tensile strength and stiffness compared to controls expressing a 

reporter gene, suggesting that BMP-12 enhances mechanical properties of healing 

tendons in vivo 183.  Finally, Nakamura et al. investigated the direct injection of 

hemagglutinating virus of Japan (HVJ)-conjugated liposomes containing PDGF-BB 

cDNA into injured patellar ligament in Wistar rats 184.  PDGF expression was detected 

around the wound for up to 4 weeks after injection.   Overexpression of this protein 

enhanced angiogenesis at early time points (7 days) and stimulated collagen I matrix 

deposition and organization at late time points (28 days) compared to control ligaments 
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expressing HVJ-liposomes without DNA 185.  Taken together, these studies suggest that 

in vivo gene transfer of a therapeutic molecule may be a promising strategy for the 

functional repair of injured ligament tissue.   

 

Ex Vivo Gene Therapy for Tendon Repair 

The use of ex vivo genetic engineering techniques for the delivery of therapeutic 

transgenes to ligament tissue has not been reported to the best of the authors’ knowledge.  

However, advances have been made in the application of ex vivo gene therapy strategies 

toward tendon repair.  Gazit and colleagues have recently reported a novel approach 

based on transient transfection of the mesenchymal progenitor C3H10T1/2 cell line in 

vitro with cDNA encoding the Smad8 transcription factor 186.  Notably, co-expression of 

Smad8 and BMP-2 inhibited osteogenesis and promoted differentiation toward a 

tenocyte-like phenotype in vitro compared to BMP-2- or Smad8-engineered cells alone.  

Importantly, in vivo implantation of these Smad8/BMP-2-expressing C3H10T1/2 

progenitor cells resulted in the formation of ectopic tendon tissue in mice and the 

induction of tissue repair in an Achilles tendon partial defect in rats 187.  This landmark 

study highlights the potential of ex vivo gene therapy for repair of tendon/ligament 

connective tissue.  Future advances in the understanding of the signaling pathways 

involved in this healing process will likely drive the identification of novel therapeutic 

targets for ligament regeneration.   

 

 Antisense Gene Therapy for Connective Tissue Repair 
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Previous research has demonstrated that healing ligaments often develop scar 

tissue with different biochemical constituents and inferior mechanical properties to native 

tissue.  More specifically, scar tissue has been reported to have elevated content of the 

proteoglycan decorin, enhanced fibronectin and type III collagen expression, decreased 

type I collagen levels, decreased collagen fibril diameter, and abnormal collagen 

organization and cross-linking compared to native tissue 188-192.  The presence of this scar 

tissue increases the probability of ligament re-injury and/or the development of arthritis 

within the knee joint.  Notably, reports have shown that the diameter of collagen fibrils is 

directly proportional to ligament tissue mechanical properties and may be negatively 

regulated by decorin and type V collagen 193, 194.  Nakamura et al. developed an in vivo 

gene therapy method based on HVJ-liposome-mediated delivery of inhibitory antisense 

oligodeoxynucleotides (ODNs) against decorin to specifically block mRNA and protein 

expression of this proteoglycan in a rabbit MCL gap injury model 195-197.  Overexpression 

of decorin antisense increased the mechanical properties and collagen fibril diameter of 

MCL scar tissue compared to sense and empty HVJ-liposome treated ligaments.  In 

addition, Woo and colleagues investigated a similar approach for reducing scar tissue 

formation based on antisense ODNs against type III collagen and the type V procollagen 

alpha1 chain 198, 199.  These investigators identified sequences which would efficiently 

suppress types III or V collagen in human patellar tendon fibroblasts in vitro and have 

proposed experiments to test these sequences in vivo 200.  Taken together, these 

preliminary studies indicate that antisense gene therapy may improve the biochemical 

and mechanical properties of healing ligament tissue.   
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Tissue Engineering Approaches for Ligament Repair 

          Tissue engineering has recently emerged as a promising alternative strategy to 

address the limitations associated with conventional ACL reconstruction procedures.  In 

this approach, cells and/or bioactive growth factors are combined with polymeric 

scaffolds to produce ligament grafting templates. Because the ligament serves as a 

structural tissue, research efforts to date have focused heavily on the development and 

optimization of scaffolds based on collagen, silk, synthetic polymers, and/or a composite 

blend 149, 201-204.  More recently, investigators have discovered that the cellular phenotype 

and extracellular matrix organization also play an essential role in mimicking the 

complex structure-function relationship of native tissue.  For this reason, cellular 

therapies based on bone marrow-derived mesenchymal stem cells (MSCs) have also been 

investigated for their ligament healing capacity in preclinical animal models 15, 149, 159, 205-

210.  Mechanical loading regimes and tissue bioreactors have also been developed for the 

manipulation of matrix organization in vitro211-214.   

 

Genetic and Tissue Engineering for Enhanced Soft Tissue Graft Osseointegration 

        Investigators have also pursued gene therapy and tissue engineering strategies to 

improve the integration of autologous tendon grafts into the surrounding bone at the 

bone-tendon interface.  Huard and colleagues reported an ex vivo approach based 

replacement of the ACL in New Zealand white rabbits with an autologous double-bundle 

semitendinosus tendon graft 215.  These grafts were explanted and genetically engineered 

in vitro with adenoviral vectors encoding BMP-2, luciferase, or LacZ before in vivo 

implantation.  Histological analysis of Ad-BMP-2-transduced grafts revealed evidence of 
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mineral, mineralized cartilage, and nonmineralized fibrocartilage tissue at the tendon-

bone interface, while control grafts (unmodified, LacZ-expressing, luciferase-expressing) 

deposited a dense matrix resembling Sharpey fibers.  BMP-2-expressing grafts also 

displayed enhanced mechanical properties compared to control tendons 216.  This study 

demonstrated that gene delivery of BMP-2 can enhance osseointegration of tendon grafts 

used for ACL reconstruction.  More recently, alternative strategies based on the design of 

multi-phase scaffolds or the integration of multiple cell types (i.e. osteoblasts, fibroblasts, 

chondrocytes) into a single scaffold have been explored for the generation of interfacial 

bone-soft tissue zones 217-219.     Overall, the tissue engineered ligament grafts which are 

currently available continue to be limited by failure at the bone-tendon insertion site and 

inadequate mechanical properties, suggesting that genetic engineering techniques could 

add significant value to the currently available cell-based tissue engineering strategies.   
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CHAPTER 3 

RUNX2-GENE THERAPY IN COMBINATION WITH 
DEXAMETHASONE TREATMENT SYNERGISTICALLY INDUCES 

OSTEOGENESIS IN PRIMARY DERMAL FIBROBLAST 
MONOLAYER CULTURES* 

 

Introduction 

It is well documented that adenoviral and retroviral gene delivery of Runx2 

upregulates osteogenic gene expression in osteoblastic and non-osteoblastic cell types 59, 

66, 67, 137.   However, we and others have reported that forced Runx2 expression induces 

matrix mineralization in a cell type-dependent manner and is insufficient to direct 

significant in vitro nodule formation in NIH3T3 and IMR-90 fibroblasts, primary murine 

fibroblasts, and the C3H10T1/2 pluripotent fibroblastic cell line 23, 24, 66.  These results 

suggested that Runx2-mediated mineralization requires additional cofactors, which may 

not be endogenously expressed in certain nonosteoblastic cells.    In this study, primary 

dermal fibroblasts were genetically engineered to constitutively express the Runx2 type II 

isoform and cultured in differentiation media supplemented with and without 10 nM 

DEX.  We hypothesized that the putative signaling pathways necessary for mineralization 

in this non-osteogenic cell source can be activated by DEX.  

 

 

 
 
 
 
*Modified from 
J.E. Phillips, C.A. Gersbach, A.M. Wojtowicz, and A.J. Garcia, Glucocorticoid-induced osteogenesis is 
negatively regulated by Runx2/Cbfa1 serine phosphorylation. Journal of Cell Science, 2006. 119:581-591. 
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Materials and Methods  

Cell Culture and Reagents 

Primary fibroblasts were harvested from 8- to 16-week-old male Wistar rats by  

enzymatic digestion of the dermal skin layer 220.  Cells were expanded in growth media 

consisting of DMEM, 10% fetal bovine serum, and 1% penicillin-streptomycin.  

Antibiotics and cell culture media were obtained from Invitrogen (Carlsbad, CA), fetal 

bovine serum was purchased from Hyclone (Logan, UT), and all other cell culture 

supplements and reagents were acquired from Sigma Chemical Company (St. Louis, 

MO).   

 

Retroviral Transduction 

The Runx2 retroviral vector utilizes the promoter activity of a 5’ long terminal 

repeat to express a single, bicistronic mRNA encoding the murine cDNA for the type II 

MASNSLF Runx2 isoform, followed by an internal ribosomal entry site and a Zeocin 

resistance-enhanced green fluorescent fusion protein.  Plasmid DNA was purified from 

transformed E. coli using Megaprep kits from Qiagen (Valencia, CA).  Retroviruses were 

packaged by transient transfection of helper-virus free ΦNX amphotropic producer cells 

with plasmid DNA as described elsewhere 66.  ΦNX cells were cultured in growth media 

(DMEM, 10% fetal bovine serum, 100 U/ml penicillin G sodium, 100 µg/ml 

streptomycin sulfate) in a humidified 5% CO2 atmosphere at 37 °C and plated 9 x 104 

cells/cm2 24 h prior to transfection. Cells were transfected with 0.5 µg/cm2 of plasmid 

DNA, either Runx2 or empty vector (no Runx2 insert), using calcium phosphate 

coprecipitation and 25 µM chloroquine for 8-12 h prior to refeeding with fresh growth 

media. Twenty-four hours after the start of the transfection, media was replaced with 
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fresh growth media and dishes were transferred to a humidified 5% CO2 atmosphere at 

32 °C for enhanced stability of retroviral particles.  Retroviral supernatants were 

collected at 48, 60, and 72 h post-transfection, filtered through a 0.45 µm cellulose 

acetate filter, aliquoted, snap frozen, and stored at -80 °C until use.  

Passage four primary fibroblasts were plated on 6-well tissue culture polystyrene 

plates coated with 0.1% type I collagen (Vitrogen, Palo Alto, CA).  Cells at 50-70% 

confluence were transduced with retroviral stocks and maintained in differentiation media 

consisting of DMEM, 10% fetal bovine serum, 100 U/ml penicillin G sodium, 100 µg/ml 

streptomycin sulfate, 50 µg/ml L-ascorbic acid, 2.1 mM sodium β-glycerophosphate, and 

with or without 10 nM DEX 66.   Tissue culture media was changed every 2 days until 

end-point assay.  No differences were observed between empty vector retrovirus 

(negative control) and unmodified cells in all experiments.  Runx2-transduced cells were 

analyzed for transduction efficiency by quantification of eGFP expression via flow 

cytometry.  High levels of eGFP were detected in ≥ 65% of primary dermal fibroblasts at 

72 hours post-transduction.   

 

Real Time RT-PCR 

Total RNA was isolated at 1, 3, and 7 days post transduction using the RNeasy 

RNA isolation kit (Qiagen). cDNA synthesis was performed on DNaseI-treated (27 

Kunitz units/sample) total RNA (1 µg) by oligo(dT) priming using the Superscript™ First 

Strand Synthesis System for RT-PCR (Invitrogen). Real-time PCR using SYBR Green 

intercalating dye was performed with the ABI Prism 7700 Sequence Detection System 

(Applied Biosystems, Foster City, CA, 40 cycles, melting: 15 sec at 95ºC, annealing and 
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extension: 60 sec at 60ºC)24. Real-time PCR oligonucleotide primers (Table 3.1) were 

designed using ABI Primer Express software and purchased from IDTDNA (Coralville, 

IA). Primer specificity was confirmed by agarose gel electrophoresis and ABI Prism 

7700 Dissociation Curve Software. Standards for each gene were amplified from cDNA 

using real-time oligonucleotides (Table 3.1), purified using a Qiagen PCR Purification 

kit, and diluted over a functional range of concentrations. Transcript concentration in 

template cDNA solutions was quantified from a linear standard curve, normalized to 1 µg 

of total RNA, and expressed as femtomoles of transcripts per µg of total RNA. Detection 

limits for each gene were determined by reactions without cDNA and were at least an 

order of magnitude below the most dilute sample. 

 

Western Blotting 

Cells were washed with PBS and lysed in cold radioimmunoprecipitation assay 

(RIPA) buffer (1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 150 mM NaCl, 

150 mM Tris-HCl pH 7.2, 350 µg/ml phenylmethylsulfonyl fluoride, 10 µg/ml leupeptin, 

10 µg/ml aprotinin, and 1 mM sodium orthovanadate) for 20 min.  Lysates were pipetted 

up and down ~25 times to shear the DNA and then clarified by centrifugation at 10,000g 

for 10 min.  Protein concentration was then determined using a Micro BCA protein assay 

kit (Pierce, Rockford, IL).  Equal amounts of protein (25 µg) were boiled in Laemmli 

sample buffer (2% SDS, 10% glycerol, 100 mM DTT, 60 mM Tris-HCl pH 6.8, and 

0.001% bromophenol blue) for 10 min and separated by SDS-PAGE.  Proteins were 

transferred by electrophoresis onto nitrocellulose membranes and blocked with Blotto 

(5% non-fat dry milk, 0.02% sodium azide, 0.2% Tween 20 in PBS w/o Ca2+/Mg2+) 
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overnight at 4ºC.  Membranes were then incubated with 1 µg/ml anti-AML3 (Oncogene, 

San Diego, CA) or 9 µg/ml anti-GAPDH (Chemicon, Temecula, CA) in Blotto for 1 h at 

room temperature under gentle rocking.  Membranes were washed in TBS-Tween (20 

mM Tris HCl pH 7.6, 137 mM NaCl, 0.1% Tween 20) for 30 min and incubated in 

secondary antibody (biotin-conjugated anti-rabbit/mouse IgG, 1:20,000 dilution in Blotto, 

Jackson ImmunoResearch, West Grove, PA) for 1 h at room temperature.  Membranes 

were washed again in TBS-Tween for 30 min and incubated in tertiary antibody (alkaline 

phosphatase-conjugated anti-biotin IgG, 1:10,000 dilution in Blotto, Sigma) for 1 h at 

room temperature. After antibody incubation, membranes were washed in TBS-Tween 

for 30 min and immunoreactivity was detected using ECF fluorescent substrate 

(Amersham Bioscience, Piscataway, NJ) and a Fuji Image Analyzer. 

 

Alkaline Phosphatase Biochemical Activity 

As a marker of osteoblastic enzyme activity, alkaline phosphatase (ALP) activity 

was quantified at 7 days post-transduction as previously described24. Cells were rinsed 

and scraped into ice-cold 50 mM Tris·HCl, pH 7.4. Following sonication and 

centrifugation, total soluble protein concentration was quantified using the MicroBCA 

Protein Assay Kit. Equal amounts of protein (2.5 µg) were added to 60 µg/mL 4-

methylumbelliferyl-phosphate fluorescent substrate in diethanolamine buffer (pH 9.5).  

Following incubation for 60 min at room temperature, the fluorescence was read at 360 

nm excitation/465 nm emission on an HTS 7000 Plus BioAssay Reader (Perkin Elmer, 

Norwalk, CT). Enzymatic activity was standardized using purified calf intestinal alkaline 

phosphatase (Sigma) and normalized to total protein concentration. 
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von Kossa Histochemical Analysis 

Cultures were fixed in 70% ethanol at 14 and 21 days and examined 

histochemically for mineralized matrix by von Kossa staining for phosphate deposits.  

Plates were stained with 5% AgNO3 under uniform light exposure for 30 min, fixed in 

5% Na2SO3 for 2 min, and air-dried. Mineralized surface area was quantified by 

automated capturing and averaging of twenty-four representative 2X images using Image 

Pro analysis software. 

 

FTIR Spectroscopy 

Cell culture samples at 21 days post-transduction were fixed in 100% ethanol, 

craped from the culture dish, and dried at 50ºC overnight. Bone samples were scraped 

from a lyophilized rat cranium. Bulk samples were mixed with KBr (Sigma) and pressed 

into pellets. Samples were analyzed with a Nicolet Nexus 470 FTIR spectrometer 

ThermoNicolet, Madison, WI) equipped with a DTGS detector. 64 scans were acquired at 

4 cm-1 resolution under N2 purge. 

 

Data Analysis 

Unless otherwise stated, experiments were performed at least three times in 

triplicate, each with unique Runx2 retroviral supernatant preparations, and two 

independent fibroblast isolates.  No differences were observed between unmodified and 

empty vector transduced cells in all assays.  Data are reported as mean ± standard error of 

the mean (SEM), and statistical comparisons using SYSTAT 8.0 were based on an 
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analysis of variance (ANOVA) and Tukey’s test for pairwise comparisons within 

timepoints, with a p-value < 0.05 considered significant.  In order to make the variance 

independent of the mean, statistical analysis of real-time PCR data was performed 

following logarithmic transformation of the raw data 66. 

 

Results 

Dex enhances Runx2-induced osteoblastic gene expression 

In order to assess the effects of DEX on Runx2-mediated osteogenesis in the 

absence of native osteoblastic signals, primary dermal fibroblasts were genetically 

engineered to constitutively express the Runx2 type II isoform and cultured in 

differentiation media supplemented with and without 10 nM DEX.  We hypothesized that 

a combination of forced Runx2-expression and DEX supplementation would induce 

osteoblastic differentiation in primary dermal fibroblasts.  Skeletal gene expression was 

investigated at 1, 3, and 7 days post-transduction by quantitative RT-PCR (Fig. 3.1).  

Runx2 mRNA levels were upregulated by 2 orders-of-magnitude in transduced cultures 

compared to control cells at day 3, and this relative difference decreased to one order-of-

magnitude as cells reached confluence at day 7.  eGFP transgene expression was 

detectable by flow cytometry through 21 days, demonstrating integrated and sustained 

expression of the Runx2 transgene.  Runx2 primers utilized in this study 137 were 

designed to detect both type I and type II Runx2 isoforms 221, 222.  Thus, the absence of 

Runx2 mRNA transcripts in untransduced cultures indicates that the Runx2 type II 

isoform is the predominant isoform expressed in transduced cultures.  Osteocalcin (OCN) 

is the most abundant non-collagenous extracellular matrix protein in bone and a marker  
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Figure 3.1.  DEX enhances Runx2-induced osteoblastic gene expression.   Primary 
dermal fibroblasts were transduced with Runx2 or empty vector retrovirus and cultured in 
osteogenic media with and without 10 nM DEX.  mRNA expression was investigated by 
quantitative RT-PCR at 1, 3, and 7 days post-transduction (Mean + SEM, n=16; 
ANOVA: p<1E-11; * different from empty vector control, ** different from empty 
vector and DEX controls, and †different from Runx2 (p< 0.05)).  Relative gene 
expression is expressed on a logarithmic scale.  Detection limits for each gene were 
determined by reactions without cDNA and are shown as dotted lines.   
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of mature osteoblasts 223.  Bone sialoprotein (BSP) and osteopontin (OPN) are 

extracellular matrix glycoproteins implicated in the regulation of mineralized nodule  

nucleation 224.  BSP mRNA levels were upregulated by 3 orders-of-magnitude in Runx2-

transduced cells, while OCN and OPN demonstrated a 10-fold increase at 7 days post-

transduction compared to control cultures.  Notably, addition of DEX to Runx2- 

expressing cultures resulted in significant enhancements in OCN, BSP, and OPN mRNA 

levels at days 3 and 7 compared to untreated Runx2-expressing cultures.  DEX 

supplementation alone significantly increased OPN mRNA compared to untreated 

controls, but had no effect on Runx2, OCN and BSP mRNA levels.  These results 

demonstrate that sustained expression of Runx2 upregulates osteoblastic gene expression 

and treatment with DEX enhances this effect.     

 

Runx2 and DEX synergistically induce osteoblastic differentiation 

 Alkaline phosphatase (ALP) is a membrane-bound enzyme that hydrolyzes 

phosphate esters, thereby making inorganic phosphate available for incorporation into 

mineral deposits 224.  The activity of this enzyme was examined at 7 days post-

transduction (Fig. 3.2A).  Runx2-overexpression stimulated a 15-fold increase in ALP 

activity compared to control cultures.  Moreover, addition of DEX to Runx2-transduced 

cultures resulted in a synergistic increase in ALP activity.  Matrix mineralization was 

assessed at 14 and 21 days post-transduction by von Kossa staining and image analysis 

(Fig. 3.2B,C).  Notably, co-treatment with Runx2 and DEX synergistically induced 

matrix mineralization in primary dermal fibroblasts, while Runx2-expressing cultures 

alone displayed minimal staining and sparse nodule formation.  No mineral was detected 
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in empty vector or DEX-treated control cultures.  FTIR spectroscopy was utilized to 

analyze the chemical composition of the mineral phase because osteogenic culture 

conditions can lead to non-biological calcium phosphate precipitation 225, 226.  (Fig. 3.2D).  

Runx2 and cranial bone samples displayed amide I and II peaks indicative of 

extracellular matrix proteins, an enhanced phosphate peak at 1100 cm-1, a doublet split 

phosphate peak at 560 and 605 cm-1, and a carbonate peak at 870 cm-1, which represent 

the characteristic bands of a carbonate-containing, poorly crystalline hydroxyapatite 227.  

These bands were absent in empty vector and DEX-only control cultures.  Collectively, 

these results demonstrate that a combination of constitutive Runx2 overexpression and 

DEX supplementation synergistically induces osteoblastic differentiation in primary 

dermal fibroblasts.   

 

Discussion 

Forced expression of Runx2 upregulates osteogenic gene expression in a variety 

of osteoblastic and non-osteoblastic cell types 59, 66, 67.  However, we and others have 

demonstrated that Runx2 overexpression induces matrix mineralization in a cell type-

dependent manner and is insufficient to produce significant levels of nodule formation in 

primary murine fibroblasts and fibroblastic cell-lines 66.  This suggests that Runx2-

mediated mineralization requires additional cofactors, which may not be endogenously 

expressed in non-osteoblastic cells.  In this study, dermal fibroblasts were analyzed for 

their osteogenic potential following retroviral gene delivery of Runx2.  We hypothesized 

that the putative signaling pathways necessary for mineralization in this non-osteogenic 

cell source can be activated by DEX.  We demonstrate that sustained expression of 
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Runx2 was necessary but not sufficient to promote terminal osteogenic differentiation in 

primary dermal fibroblasts and that DEX is required for robust matrix mineralization in 

this model system.  DEX synergistically enhanced BSP gene expression, ALP activity, 

and mineralization in Runx2-expressing cells, while hormone-only treated cultures 

exhibited minimal expression of these markers.  The absence of osteogenic phenotype 

expression in DEX-only treated cultures makes it unlikely that distinct subpopulations of 

DEX-responsive and Runx2-responsive cells cause the synergistic effect of DEX 

supplementation and Runx2-overexpression.  Overall, this data suggests that DEX 

induces osteogenesis by a Runx2-dependent molecular mechanism, but does not rule out 

the possibility of a Runx2-independent mode of action in this model system.     

Overall, these results demonstrate that a combination of constitutive retroviral 

Runx2-expression and treatment with the steroid hormone dexamethasone synergistically 

induces osteogenic differentiation in primary dermal fibroblasts cultured in monolayer.  

This surprising result suggests that Runx2-engineered primary dermal fibroblasts have 

the capacity to create mineralized templates for bone repair and may still have potential 

as a cell source for bone tissue engineering applications if exposed to the appropriate 

osteogenic cues.  Furthermore, the absence of osteoblastic phenotype in hormone-only 

treated cultures suggests that Runx2-transduced fibroblasts may represent a robust 

experimental model system for the investigation of Runx2-dependent molecular 

pathway(s) involved in glucocorticoid-induced osteogenesis. 
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Figure 3.2.  DEX and Runx2 synergistically induce osteoblastic differentiation.  
Primary dermal fibroblasts were transduced with Runx2 or empty vector retrovirus and 
cultured in osteogenic media with and without 10 nM DEX.   (A) ALP activity was 
examined by a biochemical assay at 7 days post-transduction (Mean ± SEM, n=12; 
ANOVA: p<1E-8; ** different from empty vector and DEX controls, and †different from 
Runx2 (p< 0.05)).  (B) Mineralized matrix deposition was assessed via von Kossa 
staining for phosphate-positive regions and (C) quantified by image analysis at 14 and 21 
days post-transduction (Mean ± SEM, n=12; ANOVA: p<1E-9, ** different from empty 
vector and DEX controls, and †different from Runx2 (p< 0.05)).  Scale bar 2 cm.  (D) 
Chemical composition of the mineral phase was analyzed by Fourier transform infrared 
spectroscopy.  Bone samples scraped from a lyophilized rat cranium served as a positive 
control.   
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CHAPTER 4 

GLUCOCORTICOID-INDUCED OSTEOGENESIS IS NEGATIVELY 
REGULATED BY RUNX2/CBFA1 SERINE PHOSPHORYLATION* 

 

Introduction 

Glucocorticoids (GCs) are steroid hormones secreted by the adrenal cortex that 

play a pivotal role in the regulation of a variety of developmental, metabolic, and immune 

functions.  The classic mechanism of GC action is primarily at the level of transcription, 

where the hormone forms a transcriptionally active complex with its cognate intracellular 

receptor.  This complex can either enhance or attenuate gene expression by binding to 

GC response elements in the promoter region of target genes or by non-covalently 

associating with additional co-regulatory proteins 228. 

Synthetic GC derivatives, such as dexamethasone (DEX), have complex 

stimulatory and inhibitory effects on skeletal metabolism and bone formation 229.  DEX is 

widely utilized at pharmacological doses for the treatment of inflammatory and 

autoimmune diseases.  However, long-term administration of this hormone has adverse 

side effects on the skeleton, inducing osteoporosis by impairing osteoblast activity 230.  

The mechanism(s) by which pharmacological doses of DEX induce bone loss include:  

(a) attenuated osteoblast proliferation 231, 232, (b) impaired collagen synthesis 233, (c) 

increased osteoblast apoptosis 234, (d) inhibition of osteogenic growth factors 230, 235, 236,  

 
 
 
 
*Modified from 
J.E. Phillips, C.A. Gersbach, A.M. Wojtowicz, and A.J. Garcia, Glucocorticoid-induced osteogenesis is 
negatively regulated by Runx2/Cbfa1 serine phosphorylation. Journal of Cell Science, 2006.  119:581-591. 
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and (e) downregulation of osteogenic gene expression 237.  In contrast to these catabolic 

effects, physiologic levels (10 nM) of DEX promote osteoblastic differentiation in vitro 

238, 239.  Furthermore, it has been recently demonstrated that GC signaling is required for 

normal bone volume and architecture in transgenic models, suggesting that endogenously 

expressed GCs may have an anabolic effect on skeletal metabolism and bone formation 

in vivo 240.  The mechanism(s) by which DEX promotes osteogenesis remain poorly 

understood, largely due to conflicting results associated with the various species and 

differentiation states of the model systems used to study this hormone in vitro 228, 241-246.   

Runx2/Cbfa1 (Osf2/AML3/PEBP2αA) is an essential transcriptional regulator of 

osteoblast differentiation and bone formation.  Homozygous deletion of Runx2 arrests 

osteoblast maturation, resulting in the absence of endochondral and intramembranous 

ossification 247.  Moreover, Runx2 haploinsufficiency causes the pathogenic skeletal 

phenotype cleidocranial dysplasia in mice and humans, characterized by short stature, 

hypoplastic clavicles, and dental abnormalities 62, 63.  Runx2 directs osteogenic 

differentiation by binding to OSE2 cis-acting elements in the promoter region of skeletal 

target genes and regulating their expression 59.  We and others have demonstrated that 

forced expression of Runx2 upregulates osteoblast-specific genes expression and induces 

mineralization in a cell type-dependent manner 24, 59, 66, 248.  Intriguingly, both postnatal 

disruption of Runx2 by dominant negative expression and overexpression of Runx2 from 

the pro-α (I) collagen promoter induces bone fragility and osteopenia in transgenic mice 

68, 69.  These studies collectively demonstrate that cellular regulation of Runx2 is critical 

for normal skeletal development and bone formation. 
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Runx2 is regulated at multiple levels by a complex spatiotemporal cascade of 

growth factors, hormones, transcription factors, and cell-matrix interactions 65, 221, 249, 250.  

In particular, DEX has differential effects on Runx2 mRNA transcript expression, protein 

levels, and DNA-binding activity depending on the species, osteogenic cell type, and 

culture conditions used to study this hormone in vitro 237, 243, 244.  These conflicting results 

suggest that DEX may regulate Runx2 by modulating its post-translational modification.  

The mitogen activated protein kinase (MAPK) pathway has been shown to phosphorylate 

Runx2 on residues within the C-terminal proline-serine-threonine-rich (PST) domain 64, 

251.  This increase in phosphorylation strongly correlates with enhanced Runx2 

transactivation and is stimulated by signaling via extracellular matrix, fibroblast growth 

factor-2, and mechanical loading 252-254.   In contrast, Wee and colleagues have reported 

that the activity of the human Runx2 type I isoform is negatively regulated by 

phosphorylation of two serine residues, Ser104 and Ser451 (corresponding to Ser125 and 

Ser472 in the murine type II Runx2 isoform) 255.  The putative signaling cascades or 

effector molecules that regulate these inhibitory phosphorylation events, as well as the 

functional significance of these residues, remain poorly understood.   

In the present study, we investigated the effect of DEX on Runx2 serine 

phosphorylation and the functional role of this phosphorylation state during osteoblastic 

differentiation.  Runx2-transduced primary dermal fibroblasts were utilized as the 

experimental model in order to investigate the Runx2-dependent molecular pathway(s) 

involved in DEX-mediated osteogenesis. This reconstituted model system allowed for the 

direct examination of DEX and Runx2 interactions in the absence of native osteoblastic 

components, such as endogenous Runx2 isoforms or Runx2-independent signaling 
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pathways, which may confound the analysis. We show that DEX induces osteogenesis, at 

least in part, by modulating the phosphorylation state of a negative regulatory serine 

residue (Ser125) on the Runx2 type II isoform.  We demonstrate that the phosphorylation 

state of this specific serine residue plays a critical role in both early osteoblastic 

differentiation and late stage mineralization induction.  Interestingly, the mutation of 

Ser125 to arginine, which possibly mimics the steric hindrance caused by phosphorylation 

of this residue, has been identified in a human patient with cleidocranial dysplasia 256.  

Thus, this work assists in elucidating a mechanism of GC-mediated osteogenesis and 

provides insights into the functional importance of Runx2 phosphorylation during 

skeletal pathogenesis.    

 

Materials and Methods 

Cell Culture and Reagents 

Primary fibroblasts were harvested from 8- to 16-week-old male Wistar rats by 

enzymatic digestion of the dermal skin layer 220.  Primary bone marrow stromal cells 

(BMSC) were harvested from the femora of 8- to 16-week-old Wistar rats as described 

previously 137.    Cells were expanded in growth media consisting of DMEM (fibroblasts) 

or α-MEM (BMSC), 10% fetal bovine serum, and 1% penicillin-streptomycin.  

Antibiotics and cell culture media were obtained from Invitrogen (Carlsbad, CA), fetal 

bovine serum was purchased from Hyclone (Logan, UT), and all other cell culture 

supplements and reagents were acquired from Sigma (St. Louis, MO).   

 

Retroviral Transduction 
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The Runx2 retroviral vector utilizes the promoter activity of a 5’ long terminal 

repeat to express a single, bicistronic mRNA encoding the murine cDNA for the type II 

MASNSLF Runx2 isoform, followed by an internal ribosomal entry site and a Zeocin 

resistance-enhanced green fluorescent fusion protein 66.  Plasmid DNA was purified from 

transformed E. coli using Megaprep kits from Qiagen (Valencia, CA).  Retroviruses were 

packaged by transient transfection of helper-virus free ΦNX amphotropic producer cells 

with plasmid DNA as described elsewhere 66.  

Passage four primary fibroblasts and passage two BMSC were plated on 6-well 

tissue culture polystyrene plates coated with 0.1% type I collagen (Vitrogen, Palo Alto, 

CA).  Cells at 50-70% confluence were transduced with retroviral stocks and maintained 

in differentiation media consisting of DMEM (fibroblasts) or α-MEM (BMSC), 10% 

fetal bovine serum, 100 U/ml penicillin G sodium, 100 µg/ml streptomycin sulfate, 50 

µg/ml L-ascorbic acid, 2.1 mM sodium β-glycerophosphate, and with or without 10 nM 

DEX.   Culture media was changed every 2 days until end-point assay.  No differences 

were observed between empty vector retrovirus (negative control) and unmodified cells 

in all experiments.  Runx2-transduced cells were analyzed for transduction efficiency by 

quantification of eGFP expression via flow cytometry.  High levels of eGFP were 

detected in ≥ 65% of primary dermal fibroblasts and ≥ 45% BMSC at 72 hours post-

transduction.   

 

Site-Directed Mutagenesis  

Single amino acid mutations were performed on the Runx2 plasmid with the 

QuikChange site-directed mutagenesis kit (Stratagene, La Jolla, CA).  The codon, AGT, 
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encoding Ser125 of the Runx2 Type II isoform was mutated to glycine and glutamic acid.  

The codon, TCT, encoding Ser472 of the Runx2 Type II isoform was mutated to alanine 

and a glutamic acid.  The forward primer 5’-CCGCACCGACGGTCCCAACTTCCTG-3’ 

(mutation underlined) and reverse primer 5’-CAGGAAGTTGGGACCGTCGGTGCGG-

3’ were used to mutate Ser125 to Gly125, while the forward primer 5’-

TGGTCCGCACCGACGAGCCCAACTTCCTGTGCT-3’ and reverse primer 5’-

AGCACAGGAAGTTGGGCTCGTCGGTGCGGACCA-3’ were used to mutate Ser125 to 

Glu125.  The forward primer 5’-GGGGGAGACCGGGCACCTTCCAGGATGGT-3’ and 

reverse primer 5’-ACCATCCTGGAAGGTGCCCGGTCTCCCCC-3’ were used to 

mutate Ser472 to Ala472, while the forward primer 5’-

CGGGGGAGACCGGGAGCCTTCCAGGATGGTC-3’ and reverse primer 5’-

GACCATCCTGGAAGGCTCCCGGTCTCCCCCG-3’ were used to mutate Ser472 to 

Glu472.  The Runx2 gene was sequenced to verify the presence of the desired mutation 

(Seqwright, Houston, TX). 

 

Osteoblastic Differentiation Assays  

Osteoblastic differentiation assays were performed as described previously 66, 67.  

Gene expression was investigated at 1, 3, and/or 7 days post-transduction by quantitative 

RT-PCR using rat-specific primers 137.  Primers used for the analysis of MKP-1 

(NM_053769) were 5’-AGTTTCACGTGCCACCGG-3’ (forward) and 5’- 

GTTATTGCATTGCTCCTCCCA -3’ (reverse).  Alkaline phosphatase (ALP) activity 

was quantified at 7 days post-transduction using 4-methyl-umbelliferyl-phosphate 

substrate and normalized to total protein.  Matrix mineralization was assessed at 14 and 
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21 days post-transduction by von Kossa histochemical staining for phosphate deposits.  

Mineralized surface area was quantified by automated image analysis of twenty-four 

representative 2X images.  FTIR spectroscopy was performed on ethanol-fixed cultures 

pressed into KBr pellets using a Nexus 470 FTIR spectrometer (ThermoNicolet, 

Madison, WI).   

 

Immunoprecipitation and Western Blot Analysis   

Cells were lysed in 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.5% (v/v) NP-40, 

350 µg/ml PMSF, 10 µg/ml leupeptin, 10 µg/ml aprotinin, 1 mM Na3VO4, and 50 mM 

NaF after 7 days in culture.  Whole cell extracts (150 µg protein) were 

immunoprecipitated with 5 µl of anti-Runx2 antibody (Santa Cruz Biotechnology, Santa 

Cruz, CA) and 20 µl protein A agarose beads.  Immune complexes were resolved on 12% 

SDS-PAGE gels, transferred to nitrocellulose, and blotted with anti-AML3 (Oncogene, 

San Diego, CA) and anti-phosphoserine (ab9335, Abcam, Cambridge, MA or 7F12, 

Biomol, Plymouth Meeting, PA), followed by sequential incubation in biotin-conjugated 

anti-IgG and alkaline phosphatase-conjugated anti-biotin antibodies.  Immunoreactivity 

was detected using ECF substrate (Amersham Bioscience, Piscataway, NJ) and a Fuji 

Image Analyzer.  Similar trends were observed for both phosphoserine antibodies.  

Western blot analysis of whole cell lysates was performed with anti-AML3, anti-ERK 

(Santa Cruz Biotechnology, Santa Cruz, CA), anti-phosphoERK (Cell Signaling 

Technology, Beverly, MA), anti-MKP-3 (C-20: Santa Cruz Biotechnology), anti-MKP-1 

(M-18 or C-19: Santa Cruz Biotechnology), and anti-GAPDH (Chemicon, Temecula, 
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CA) antibodies.  Adobe Photoshop image analysis software was used to quantify the 

intensity of the Western blot bands.   

 

Data Analysis  

Experiments were performed at least three times in triplicate, each with unique 

Runx2 retroviral supernatant preparations, and two independent fibroblast isolates.  No 

differences were observed between unmodified and empty vector-transduced cells in all 

assays.  Data are reported as mean ± standard error of the mean, and statistical 

comparisons using SYSTAT 8.0 were based on an analysis of variance and Tukey’s test 

for pairwise comparisons within timepoints, with a p-value < 0.05 considered significant.  

In order to make the variance independent of the mean, statistical analysis of real-time 

PCR data was performed following logarithmic transformation of the raw data 66. 

 

Results  

DEX decreases Runx2 serine phosphorylation 

Because DEX treatment did not alter Runx2 gene expression, we examined the 

effects of this hormone on Runx2 total protein and phosphoserine levels by 

immunoprecipitation and Western blot analysis.  Significant amounts of Runx2 protein 

were detected in Runx2-transduced samples compared to unmodified control cells (Fig. 

4.1A,B).  Surprisingly, addition of DEX to Runx2-transduced cells significantly 

decreased Runx2 serine phosphorylation, while total Runx2 protein levels remained 

unchanged (Fig. 4.1C,D).  Omission of immunoprecipitation antibody or cell lysates in 

negative controls demonstrated the stringency and specificity of the immunoprecipitation 
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procedure.  These findings indicate that DEX regulates Runx2 phosphorylation, with no 

net effect on Runx2 mRNA or protein levels.  This DEX-mediated decrease in Runx2 

serine phosphorylation correlates with and may be functionally linked to DEX-mediated 

synergistic induction of osteoblastic differentiation.   

 

Mutation of Ser125 decreases Runx2 serine phosphorylation 

Several serine phosphorylation sites have been identified on the Runx2/Cbfa1 

type I isoform;  however, Ser104 (corresponding to Ser125 on Runx2 type II) was the only 

residue that exhibited changes in phosphorylation during BMP-2 induced osteogenesis in 

C2C12 cells 255.  Furthermore, phosphorylation of this serine negatively regulated the 

transcriptional activity of Runx2.    In order to assess whether Ser125 is involved in the 

observed net decrease in Runx2 serine phosphorylation following DEX-treatment, site-

directed mutagenesis was performed on this residue in the full-length Runx2 construct 

(Fig. 4.2A).  Mutation of Ser125 to glutamic acid (125Glu) mimics constitutive 

phosphorylation of this residue by placing a bulky, negatively charged group at the site in 

the same manner as the presence of phosphoserine 257.  Mutation of Ser125 to glycine 

(125Gly) leads to constitutive dephosphosphorylation by preventing post-translational 

modification of this residue.  Primary dermal fibroblasts were transduced with wild-type 

Runx2 (Runx2-WT), Runx2-125Gly, or Runx2-125Glu retrovirus and cultured in 

osteogenic media with or without DEX.  Retroviral transduction efficiency was 

approximately 65% for all retroviral stocks (Fig. 4.2B).  Runx2 mRNA expression was 

upregulated by 2 orders-of-magnitude at 3 days post-transduction with Runx2-WT, 

Runx2-125Gly, and Runx2-125Glu retroviral vectors compared to control cells (Fig.  
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Figure 4.1.  DEX decreases Runx2 serine phosphorylation.  Primary dermal 
fibroblasts were transduced with Runx2 or left unmodified for controls and cultured in 
osteogenic media with and without 10 nM DEX.  (A) Runx2 protein levels were 
examined at 7 days post-transduction by Western blotting of whole cell lysates with a 
polyclonal antibody against Runx2.  GAPDH was used as a loading control.  (B) 
Quantification of Runx2 band intensities (Mean + SEM, n=9; ANOVA: p<0.05; ** 
different from unmodified and DEX only controls (p< 0.05)).  (C) Runx2 phosphoserine 
levels were assessed by immunoprecipitation of whole cell lysates with an antibody 
against Runx2 and Western blotting with antibodies against Runx2 and phosphoserine.  
(D)  Quantification of Runx2 phosphoserine band intensities (Mean ± SEM, n=9; 
ANOVA: p<0.05; ‡ different from Runx2+DEX (p< 0.05)).   
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Figure 4.2.  Site directed mutagenesis of the Runx2 retroviral vector.  (A) Schematic 
diagram of the Runx2 retroviral expression vector and its mutated derivatives, including 
(a) Runx2-WT control, (b) Runx2-125Gly (mimicking constitutively dephosphorylation), 
and (c) Runx2-125Glu (mimicking constitutively phosphorylation). Primary dermal 
fibroblasts were transduced with Runx2-WT, Runx2-125Gly, or Runx2-125Glu 
retrovirus and cultured in osteogenic media with (+) and without (-) 10 nM DEX.   (B) 
Retroviral transduction efficiency was determined at 3 days post-transduction by flow 
cytometry detection of eGFP expression.  Unmodified cells were used to detect 
autoflourescence.  (C) Runx2 mRNA expression was assessed by quantitative RT-PCR at 
3 days post-transduction and expressed on a logarithmic scale (Mean + SEM, n=12; 
ANOVA: p<1E-11; ** different from unmodified and DEX only controls (p< 0.05)). 
Detection limit was determined by reactions without cDNA is shown as a dotted line.  
(D) Runx2 protein levels were examined at 7 days post-transduction by Western blotting 
of whole cell lysates with a polyclonal antibody against Runx2.  GAPDH was used as a 
loading control.  Blot is representative of data from two separate experiments in 
triplicate.    
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4.2C).  Moreover, equivalent levels of Runx2-WT, Runx2-125Gly, and Runx2-125Glu 

protein were detected at 7 days post-transduction (Fig. 4.2D).  Overall, there were no 

differences in Runx2 mRNA or protein levels between transduced samples, excluding the  

possibility that experimental results obtained with these retroviral vectors were skewed 

by differences in Runx2 protein levels and/or transduction efficiencies.    

The effect of Ser125 on Runx2 phosphoserine levels was investigated at 7 days 

post-transduction by immunoprecipitation and Western blotting (Fig. 4.3).   Mutation of 

Ser125 to glycine significantly reduced total Runx2 serine phosphorylation in the absence 

of DEX, suggesting that this serine residue is a major phosphorylation site on 

exogenously-expressed Runx2 in primary dermal fibroblasts.  Furthermore, no apparent 

net change in Runx2-125Gly serine phosphorylation was observed upon addition of 

DEX, while the hormone significantly reduced phosphoserine levels in Runx2-WT.  

Mutation of Ser125 to glutamic acid had similar effects on Runx2 phosphoserine levels as 

those observed upon mutation of this residue to glycine (unpublished data).    These 

results indicate that Runx2 is phosphorylated at a basal level in untreated cultures, 

particularly on Ser125, and suggest that DEX modulates the phosphorylation state of 

Runx2 Ser125 in parallel with the stimulation of osteogenesis.   

Runx2-Ser125 phosphorylation regulates DEX-induced osteoblastic differentiation 

Phosphorylation of Ser125 has been reported to negatively regulate Runx2 

transactivation in NIH3T3 cells transfected with an OCN promoter-driven reporter gene 

255.  However, the direct effects of wild-type Runx2 and its mutated derivatives on 

osteoblastic differentiation have not been examined.  We hypothesized that the  
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Figure 4.3.  Mutation of Ser125 decreases Runx2 serine phosphorylation.  Primary 
dermal fibroblasts were transduced with Runx2-WT or Runx2-125Gly retrovirus and 
cultured in osteogenic media with (+) and without (-) 10 nM DEX.  (A) Runx2 
phosphoserine levels were assessed by immunoprecipitation of whole cell lysates with an 
antibody against Runx2 and Western blotting with antibodies against Runx2 and 
phosphoserine.  (B)  Quantification of normalized Runx2 phosphoserine band intensities 
(Mean ± SEM, n=3; ANOVA: p<0.05; ‡ different from Runx2 + DEX, ¥ different from 
125Gly - DEX, and ## different from 125Gly + DEX (p< 0.05); representative data from 
three separate experiments in triplicate).   
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phosphorylation state of Runx2-Ser125 plays a critical role in DEX-induced osteogenesis.   

Primary dermal fibroblasts were transduced with Runx2-WT, Runx2-125Gly, or Runx2-

125Glu retrovirus and cultured in osteogenic media supplemented with or without 10 nM 

DEX.  Mutation of Ser125 to glycine, mimicking constitutive dephosphorylation, 

significantly upregulated OCN, BSP, and OPN mRNA transcript expression compared to 

Runx2-WT in the absence of DEX (Fig. 4.4).  Treatment of Runx2-125Gly-expressing 

cultures with DEX had no significant effect on OCN gene expression, but enhanced BSP 

and OPN gene expression.  In contrast, mutation of Serine125 to glutamic acid, mimicking 

constitutive phosphorylation, inhibited Runx2 transactivation of all three osteoblastic 

genes, while DEX partially recovered the effect of Runx2-125Glu on OCN and BSP gene 

expression only.  These results corroborate the observations of Wee et al. that Ser125 

phosphorylation inhibits Runx2 transactivation of an OCN-driven reporter gene.   

Consistent with alterations in osteoblastic gene expression, mutation of Ser125 to 

glycine stimulated ALP activity to levels significantly higher than Runx2-WT cultures 

and comparable to Runx2-WT + DEX treated cultures (Fig. 4.5A).  DEX had no 

additional effect on ALP activity in Runx2-125Gly-expressing cultures.  Mutation of 

Ser125 to glutamic acid diminished ALP activity to levels comparable to unmodified 

control cultures and DEX treatment partially recovered this activity.  Furthermore, 

mutation of Ser125 to glycine also significantly enhanced matrix mineralization compared 

to Runx2-WT-expressing cultures in the absence of DEX (Fig. 4.5B,C).  DEX treatment 

synergistically enhanced mineralization in both Runx2-WT and Runx2-125Gly 

expressing cells.  Conversely, mutation of Ser125 to glutamic acid completely blocked 

mineralization of these cultures in the absence and presence of DEX.  The mineral phase  
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Figure 4.4.  Constitutive Ser125 phosphorylation negatively regulates Runx2-
mediated expression of osteoblastic genes.  Primary dermal fibroblasts were transduced 
with Runx2-WT, Runx2-125Gly, or Runx2-125Glu retrovirus and cultured in osteogenic 
media with (+) and without (-) 10 nM DEX.  mRNA levels were investigated by 
quantitative RT-PCR at 7 days post-transduction (Mean + SEM, n=6; ANOVA: p<1E-6;  
† different from Runx2 - DEX, ¥ different from 125Gly - DEX, § different from 125Glu - 
DEX and 125Glu + DEX, and £ different from 125Glu - DEX (p< 0.05)).   Relative gene 
expression is expressed on a logarithmic scale.   
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in Runx2-WT and Runx2-125Gly cultures displayed FTIR spectrograms similar to those 

shown in Fig. 3.2D with the characteristic bands of a carbonate-containing, poorly 

crystalline hydroxyapatite (data not shown).   

Finally, these experiments were repeated in primary bone marrow stromal cells 

(BMSCs) in order to ensure that results were not an artifact of the non-osteogenic cell 

source used in this study (Fig. 4.6A,B).  DEX treatment alone stimulated osteoblastic 

differentiation in BMSCs, including ALP activity and matrix mineralization, compared to 

untransduced controls.  Moreover, co-treatment with Runx2-WT and DEX enhanced 

osteogenic differentiation in BMSCs compared to Runx2-WT overexpression or DEX 

treatment alone.  Mutation of Ser125 to glycine stimulated ALP activity and mineralized 

nodule formation to levels significantly higher than Runx2-WT cultures and equivalent to 

Runx2-WT + DEX treated cultures.  DEX treatment showed no additional effect on 

osteogenesis in Runx2-125Gly-expressing cultures.   Mutation of Ser125 to glutamic acid 

antagonized ALP activity and mineralization to similar levels as untransduced BMSC 

controls with or without DEX.  Overall, these results demonstrate equivalent functional 

effects of Runx2-Ser125 during DEX-induced osteogenesis in primary BMSCs and 

Runx2-engineered primary dermal fibroblasts.  We speculate that the low levels of ALP 

activity and mineralization observed in untransduced and Runx2-125Glu-expressing 

BMSCs may be due to interactions between DEX and endogenously-expressed Runx2 or 

additional Runx2-independent pathways.   
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Figure 4.5.  Constitutive phosphorylation of Runx2 Ser125 inhibits osteoblastic 
differentiation.  Cells were transduced with Runx2-WT, Runx2-125Gly, or Runx2-
125Glu retrovirus and cultured in osteogenic media with (+) and without (-) 10 nM DEX.  
(A) ALP activity was examined by a biochemical assay at 7 days post-transduction 
(Mean ± SEM, n=6; ANOVA: p<1E-11; ** different from unmodified and DEX only 
controls, † different from Runx2 - DEX, Φ different from 125Gly - DEX, § different 
from 125Glu - DEX and 125Glu + DEX, and Ω different from 125Glu (p< 0.05)).  (B) 
Mineralized matrix deposition was assessed by von Kossa staining for phosphate-positive 
regions and (C) quantified by image analysis at 14 days post-transduction (Mean ± SEM, 
n=6; ANOVA: p<1E-11, ** different from unmodified and DEX only controls, † 
different from Runx2 - DEX, ¥ different from 125Gly - DEX, § different from 125Glu - 
DEX and 125Glu + Dex, and £ different from 125Glu - DEX (p< 0.05)).  Scale bar 2 cm.  

No Dex Dex

Control

Runx2

125Gly

125Glu

B

0

5

10

15

20

25

30

R
el

at
iv

e 
St

ai
ne

d 
A

re
a

- +           - +           - +           - +
Runx2 125Gly 125GluControl

Dex

A

0
5

10
15
20
25
30

A
LP

 A
ct

iv
ity

(n
m

ol
e/

m
in

/u
g

pr
ot

ei
n)

- +           - +           - +           - +
Runx2 125Gly 125GluControl

Dex

**§

§†
**

§†
**

§†
**

£

**§

§†
**

§†¥
**§†¥

**

CNo Dex Dex

Control

Runx2

125Gly

125Glu

B

0

5

10

15

20

25

30

0

5

10

15

20

25

30

R
el

at
iv

e 
St

ai
ne

d 
A

re
a

- +           - +           - +           - +
Runx2 125Gly 125GluControl Runx2 125Gly 125GluControl

Dex

A

0
5

10
15
20
25
30

A
LP

 A
ct

iv
ity

(n
m

ol
e/

m
in

/u
g

pr
ot

ei
n)

- +           - +           - +           - +
Runx2 125Gly 125GluControl

Dex

**§

§†
**

§†
**

§†
**

£

A

0
5

10
15
20
25
30

0
5

10
15
20
25
30

A
LP

 A
ct

iv
ity

(n
m

ol
e/

m
in

/u
g

pr
ot

ei
n)

- +           - +           - +           - +
Runx2 125Gly 125GluControl

Dex

**§

§†
**

§†
**

§†
**

£

**§

§†
**

§†¥
**§†¥

**

C



 67

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6.  Runx2 phosphorylation regulates osteoblastic differentiation in primary 
bone marrow stromal cells.  BMSC were transduced with Runx2-WT, Runx2-125Gly, 
or Runx2-125Glu retrovirus and cultured in osteogenic media with (+) and without (-) 10 
nM DEX.  (A) ALP activity was examined by a biochemical assay at 7 days post-
transduction (Mean ± SEM, n=3; ANOVA: p<1E-4; * different from unmodified cell 
control, ** different from unmodified and DEX only controls, † different from Runx2 - 
DEX, and £ different from 125Glu - DEX (p< 0.05)).  (B) Mineralized matrix deposition 
was assessed by von Kossa staining for phosphate-positive regions and image analysis at 
14 days post-transduction.  Image represents data from two separate experiments in 
triplicate.  Scale bar indicates 2 cm.   
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DEX upregulates MKP-1 through a GC receptor-mediated transcriptional mechanism 

As a first step toward elucidating the DEX-mediated mechanism(s) involved in 

the regulation of Runx2 phosphorylation, we examined the ability of DEX to activate 

components of the mitogen-activated protein kinase (MAPK) signaling pathway.  In 

particular, MAPK phosphatase-1 (MKP-1) is a dual specificity phosphatase that 

dephosphorylates and inactivates MAPKs such as extracellular signal-regulated kinase 

(ERK1/2), c-Jun N-terminal kinase (JNK), and p38 protein kinase 258-261.  

Pharmacological doses of DEX (≥ 100 nM) have been shown to upregulate MKP-1 in a 

variety of cell types 261-264.  We postulated that MKP-1 may be stimulated by physiologic 

concentrations of DEX during osteoblastic differentiation in our experimental model.  

Primary fibroblasts transduced with Runx2 retrovirus or left unmodified as controls were 

cultured in osteogenic media supplemented with or without DEX.  MKP-1 mRNA and 

protein levels were evaluated at 1, 3, and 7 days post-transduction by quantitative RT-

PCR and Western blot analysis, respectively.  DEX treatment stimulated MKP-1 gene 

(Fig. 4.7A) and protein (Fig. 4.7B) expression in unmodified and Runx2-expressing 

cultures relative to untreated controls.  MKP-1 was upregulated after 3 days and remained 

elevated through 7 days in culture, which correlates with the decrease in Runx2 serine 

phosphorylation observed after treatment with DEX for 7 days.  Overexpression of 

Runx2 significantly inhibited MKP-1 mRNA and protein levels at 3 and 7 days post-

transduction compared to unmodified controls and addition of DEX to Runx2-transduced 

cultures restored MKP-1 to basal expression levels.  Moreover, the induction of MKP-1 

mRNA by DEX was abrogated by treatment with the partial GC receptor-

agonist/antagonist RU486 (100 nM) for 72 hours (Fig. 4.7C).  18S gene expression  
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Figure 4.7.  DEX upregulates MKP-1 through a GC receptor-mediated 
transcriptional mechanism. Primary dermal fibroblasts were transduced with Runx2 
retrovirus or left unmodified for controls and cultured in osteogenic media with (+) and 
without (-) 10 nM DEX.   (A) MKP-1 mRNA expression was investigated by quantitative 
RT-PCR at 1, 3, and 7 days post-transduction and expressed on a logarithmic scale (Mean 
+ SEM, n=12; ANOVA: p<1E-11; * different from unmodified cell control, † different 
from Runx2, and ‡ different from Runx2+DEX (p< 0.05)). (B) MKP-1 protein levels 
were examined at 1, 3, and 7 days post-transduction by Western blot analysis.  GAPDH 
was used as a loading control.  Blots are representative of data from three separate 
experiments in triplicate.   (C)  MKP-1 mRNA expression was investigated by 
quantitative RT-PCR at 3 days post-Runx2 transduction after treatment with vehicle 
(ethanol), DEX (10 nM) or concomitant DEX/RU486 (100 nM) for 72 hours.  Fold 
induction is shown relative to control samples without (-) DEX treatment (Mean + SEM, 
n=3; ANOVA: p<0.05; # different from Runx2+DEX+RU486 (p< 0.05)).   
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remained unchanged for all treatment groups in this experiment.  Finally, no differences 

in p38 MAPK, protein phosphatase 5, and protein tyrosine phosphatase type D expression 

were observed among experimental groups, suggesting that the observed shifts in 

expression were specific for MKP-1.  Taken together, this data demonstrates that DEX 

induces MKP-1 in Runx2-expressing fibroblasts through a GC receptor-mediated 

mechanism.   

 

Inhibition of MKP-1 attenuates the DEX-mediated decrease in Runx2 serine 

phosphorylation 

Sanguinarine has recently been identified as a potent and selective inhibitor of 

MKP-1 activity, exhibiting at least a 3-fold selectivity for MKP-1 over dual specificity 

phosphatases such as MKP-3, VH-1-related phosphatase, Cdc25B, and protein-tyrosine 

phosphatase 1B 265.   We utilized this inhibitor to assess the role of MKP-1 during the 

DEX-mediated modulation of Runx2 serine phosphorylation.  Primary dermal fibroblasts 

were transduced with Runx2 retrovirus or left unmodified for controls and cultured in 

osteogenic media with (+) and without (-) 10 nM DEX.  After 7 days in culture, cells 

were treated with vehicle (ethanol), vehicle+DEX (10 nM), sanguinarine (50 µM), or 

sanguinarine (50 µM) + DEX (10 nM) for 30 minutes.  Protein expression for MKP-1, 

MKP-3, phospho-ERK, ERK, and GAPDH was assessed by Western blotting (Fig. 4.8A).  

MKP-1 protein levels were markedly decreased by sanguinarine in unmodified and 

Runx2-expressing fibroblasts.  Consequently, the decrease in ERK phosphorylation 

caused by DEX-induction of MKP-1 was reversed upon treatment with sanguinarine.  

ERK and GAPDH total protein levels remained unchanged for all experimental 
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conditions.  Notably, MKP-3 protein levels were not significantly altered by 

sanguinarine, suggesting that the inhibitor was selective for MKP-1 over this closely 

related dual specificity phosphatase.  Runx2 phosphoserine levels were then examined by 

immunoprecipitation and Western blot analysis (Fig. 4.8B).  Sanguinarine treatment 

blocked the DEX-mediated decrease in Runx2 serine phosphorylation, suggesting that 

DEX modulates the inhibitory phosphorylation of Runx2 via MKP-1.   

 

Discussion 

We demonstrate that a combination of DEX supplementation and constitutive 

Runx2 overexpression synergistically induced osteoblastic differentiation in primary 

dermal fibroblasts, as characterized by enhanced OCN and BSP gene expression, alkaline 

phosphatase activity, and biological mineral deposition.  DEX treatment decreased Runx2 

phosphoserine levels, particularly on Serine125. Mutation of Ser125 to glutamic acid, 

mimicking constitutive phosphorylation, inhibited Runx2-induced osteogenic 

differentiation, which was not rescued by DEX treatment.  Conversely, mutation of Ser125 

to glycine, mimicking constitutive dephosphorylation, markedly increased osteogenic 

differentiation, which was enhanced by but did not require additional DEX 

supplementation.  The DEX-induced decrease in Runx2 phosphorylation correlated with 

upregulation of MKP-1 through a GC-receptor-dependent mechanism.  Furthermore, 

inhibition of MKP-1 abrogated the effect of DEX on Runx2 phosphoserine levels.  To 

our knowledge, this is the first time that DEX-activated MKP-1 expression has been 

implicated in the regulation of Runx2 phosphorylation.  Collectively, these results 

suggest that DEX induces osteogenesis by modulating the phosphorylation state of a 
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Figure 4.8.  Inhibition of MKP-1 attenuates the DEX-mediated decrease in Runx2 
serine phosphorylation.  Primary dermal fibroblasts were transduced with Runx2 
retrovirus or left unmodified for controls and cultured in osteogenic media with (+) and 
without (-) 10 nM DEX.  After 7 days in culture, cells were treated with vehicle 
(ethanol), vehicle+DEX (10 nM), sanguinarine (50 µM), and sanguinarine (50 µM) + 
DEX (10 nM) for 30 minutes.  (A) Western blot analysis of whole cell lysates after 7 
days in culture was conducted with antibodies against MKP-1, MKP-3, pERK, and ERK.  
GAPDH was used as a loading control.  Blot is representative of data from three separate 
experiments in triplicate.  (B) Runx2 phosphoserine levels were assessed by 
immunoprecipitation of whole cell lysates with an antibody against Runx2 and Western 
blotting with antibodies against Runx2 and phosphoserine. Blot is representative of data 
from two separate experiments in triplicate.    
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negative regulatory serine residue (Ser125) on Runx2/Cbfa1 via MKP-1.  This work offers 

important insights into the role of Runx2 during hormone-regulated skeletal development 

and maintenance.    

Primary dermal fibroblasts engineered to express elevated and sustained levels of 

Runx2 were utilized for the investigation of the effects of DEX on osteoblastic 

differentiation.  A major advantage of this model system is that it allows for direct 

analysis of the Runx2 type II isoform and its mutants during GC-induced osteogenesis in 

the absence of endogenous Runx2 and DEX-responsive, osteoblast-specific pathways.  

Notably, DEX stimulation of Runx2-expressing fibroblasts induced several important 

components of the osteoblastic differentiation program, including osteocalcin and bone 

sialoprotein gene expression, ALP activity, and matrix mineralization, whereas DEX 

treatment alone did not significantly influence any of these osteoblastic markers.  This 

enhancement in osteogenesis is consistent with the effects of DEX on several osteoblastic 

systems, including rat calvarial cells, rat and human bone marrow stromal cells, and chick 

periosteal cells 137, 238, 239, 241, 242, 266.  While these model systems have been instrumental 

in the elucidation of numerous DEX-responsive signaling pathways, they are limited 

because they prevent the isolation of Runx2-dependent from Runx2-independent 

pathways.  Finally, in order to ensure that these results were not an artifact of the non-

osteogenic cell source, we analyzed the effects of Runx2-WT and Runx2-Ser125 mutants 

during DEX-induced osteoblastic differentiation in primary bone marrow stromal cells.  

This osteoblastic model exhibited equivalent functional responses during DEX-induced 

osteoblastic differentiation compared to Runx2-engineered fibroblasts.  Based on these 
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results, we hypothesized that the anabolic effects of GCs in vitro occur through a Runx2-

dependent mechanism involving the post-translational modification of Runx2.   

We demonstrate that DEX decreases Runx2 phosphoserine levels, particularly on 

Serine125, in parallel with osteoblastic differentiation.  In contrast, Shui et al. reported that 

phosphorylation of Runx2 on tyrosine, threonine, and serine residues increases during 

DEX-induced osteoblastic differentiation in human bone marrow stromal cells 246.    

However, this report did not include a “No DEX” condition to isolate the effects of DEX 

from alternative pathways activated during the onset of osteogenesis.  Thus, beyond this 

correlative evidence, a direct link between DEX and Runx2 phosphorylation has not been 

established prior to this work.  Previous analyses have also shown that collagen, 

fibroblast growth factor-2, and mechanical loading enhance Runx2 transcriptional 

activity via the MAPK pathway 252-254.  Moreover, protein kinase A (PKA) also 

phosphorylates Runx2, and parathyroid hormone enhances Runx2 transactivation of the 

collagenase-3 promoter through a PKA-dependent pathway 267, 268.  These pathways 

stimulate Runx2 phosphorylation on putative residues within the C-terminal PST domain 

251, 268, but the specific residues targeted have not been identified.  Interestingly, while 

these stimulatory phosphorylation sites were found in the PST domain, Ser125 is located 

within the N-terminal runt domain, suggesting that phosphorylation at different regions 

within the Runx2 protein may play different functional roles in osteoblastic 

differentiation.  Finally, it is important to note that our results do not rule out the 

possibility that additional Runx2 phosphorylation sites are altered during DEX-induced 

osteogenesis.   
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The mutagenesis analysis conducted in this study demonstrates that the 

phosphorylation state of Runx2-Ser125 plays a critical role during DEX-induced 

osteoblastic differentiation.  These results offer important insights into skeletal 

pathogenesis, as mutation of this residue to arginine has been documented in one patient 

with cleidocranial dysplasia 256.   Ito and colleagues recently identified Ser14, Ser104, 

Ser451, Ser485, and Ser489 as potential phosphorylation sites on the human Runx2/Cbfa1 

type I isoform.  Of these residues, Ser104 and Ser451 were implicated in the negative 

regulation of Runx2 transcriptional activity.  Mutation of Ser104, corresponding to Ser125 

on the murine Runx2 type II isoform, to both glycine and glutamic acid inhibited Runx2 

transactivation of an OCN promoter-driven reporter gene 255.  These results are consistent 

with our observations for Runx2-mediated differentiation, but contradict reports that 

mutation of Runx1/AML1c Ser94, analogous to RUNX2 Ser125, had no effect on 

transcriptional activity 269.  Wee and colleagues also reported that the phosphorylation 

state of Ser451, corresponding to Ser472 on the murine Runx2 type II isoform, has a critical 

role in the transcriptional activity of Runx2  255.  However, the phosphorylation state of 

Ser472 had no apparent effect on Runx2-induced osteogenic gene expression, alkaline 

phosphatase activity, or mineralization in the present study (unpublished data).  Similarly, 

mutation of Runx1/AML1c Ser424, corresponding to Runx2 type II Ser472, did not alter 

transcriptional activity of this runt domain protein family member 269.    Overall, it is 

evident that disparities exist in the phosphorylation pattern of Runx protein family 

members, suggesting that the phosphorylation state of Ser125 and Ser472 may be isoform-

specific, cell type-specific, or regulated by independent signaling pathways.   
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       The present analysis supports a mechanism by which DEX induces 

osteoblastic differentiation by modulating the phosphorylation state of a negative 

regulatory serine on Runx2.  The ability of DEX to partially recover osteogenic gene 

expression and ALP activity in cultures expressing Runx2-125Glu suggests that the 

hormone may also have auxiliary modes of regulating Runx2 beyond the mechanism 

detailed in this study.  Indeed, GCs may also mediate osteogenesis by a Runx2-

dependent mechanism involving the physical association of the transcription factor 

with co-regulatory proteins.  Recent evidence suggests that Runx2 serves as a 

molecular scaffold, which facilitates the assembly of co-regulatory proteins and 

accessory transcription factors into a macromolecular transcriptional regulatory 

complex 65.  Runx2 contains specific functional regions that physically interact with a 

number of accessory factors 270.  In particular, the runt domain is a 128 amino acid 

conserved region, which is essential for DNA binding and heterodimerization with 

transcription factors such as Cbfβ/PEBP2β 271, 272, LEF-1 273, and c-Fos/c-Jun 267, 274, 

275.  The C-terminal PST domain contains a nuclear localization signal, a 

transcriptional activation region, and a repressor region, and has been shown to co-

localize with SMADs 276, 277, CCAAT/Enhancer-binding proteins (C/EBPβ and δ) 278, 

HES-1, and Groucho/TLE proteins 279.  Osteogenic agents, such as PTH and BMP, 

regulate the association of Runx2 with several of these factors, but the role of DEX in 

these protein-protein interactions is poorly understood.  Interestingly, Wee et al. 

found that the mutation of Ser104 to glutamic acid, which decreased Runx2 

transcriptional activity, also appeared to destabilize the protein and inhibit the 

heterodimerization of Runx2 with CBF-β.  Thus, it is possible that the DEX-mediated 
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regulation of Runx2 phosphorylation alters the interaction of this transcription factor 

with accessory proteins, which may have downstream effects on Runx2 

transcriptional activity.  Finally, these results do not rule out the possibility GCs may 

mediate osteogenesis by Runx2-independent signaling pathway(s), which may 

cooperatively act with Runx2-stimulated gene products to synergistically induce 

matrix mineralization.   

     In summary, we have demonstrated that DEX induces osteogenesis, at least in 

part, by modulating the phosphorylation state of a negative regulatory serine residue 

(Ser125) on Runx2 through an MKP-1 dependent mechanism. While this particular 

mechanism is likely not the sole signaling pathway activated by DEX during 

osteogenic differentiation, it provides significant insights toward the role of Runx2 

phosphorylation during GC-regulated skeletal development. 
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CHAPTER 5 

DERMAL FIBROBLASTS GENETICALLY MODIFIED TO 
EXPRESS RUNX2 AS A MINERALIZING CELL SOURCE FOR 

BONE TISSUE ENGINEERING* 
 

Introduction 

Over 600,000 bone grafting procedures are performed annually in the United 

States to treat non-healing skeletal defects caused by traumatic injury, osteodegenerative 

diseases, and cancer.3, 80  Autograft implantation is considered the gold standard in bone 

repair, but is limited by donor site morbidity, pain, and inadequate supply of tissue.77 

Because of these complications, allogenic bone and synthetic materials have been 

increasingly utilized as bone graft substitutes.80  However, allografts suffer from reduced 

bioactivity and poor mechanical properties due to tissue processing, while synthetic 

materials typically incite an inflammatory response in the host.78, 79  Synthetic materials 

such as metals, calcium phosphate ceramics, bioactive glasses, and polymers have also 

been explored for bone grafting applications, but generally display insufficient 

regenerative potential to warrant the inflammatory host reaction 80.  More recently, 

osteogenic devices containing recombinant bone morphogenetic protein-2 (BMP-2) or 

BMP-7 have shown efficacy in human clinical trials and have been approved by 

regulatory agencies for the treatment of non-healing fractures and spinal fusion.4, 6   

 

 
 
 
*Modified from 
J.E. Phillips, R.E. Guldberg, and A.J. Garcia, Dermal fibroblasts genetically modified to express 
Runx2/Cbfa1 as a mineralizing cell source for bone tissue engineering. Tissue Engineering, 2007, 
13(8):2029-2040. 
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Nevertheless, the clinical success of this growth-factor based approach continues to be 

hampered by suboptimal delivery vehicles, short biological half-life, and safety issues 

associated with aphysiologic dosage.7, 8  

Bone tissue engineering has emerged as a promising alternative to conventional 

grafting strategies.99, 280, 281  In this approach, osteogenic cells and/or bioactive growth 

factors are integrated into three-dimensional scaffolds to produce hybrid constructs for 

skeletal repair.101  The success of bone tissue engineering to date has been limited in part 

by inadequate availability of a mineralizing cell source which can be easily obtained in 

sufficient quantities and maintain osteoblastic phenotype during in vitro culture and 

expansion.  Traditional cell-based approaches typically involve the use of terminally 

differentiated osteoblasts,102, 103 osteogenic cell lines,105, 282 unfractionated bone marrow 

stroma,106, 107 or purified mesenchymal stem cells.108, 109, 283  Marrow-derived progenitors, 

in particular, have been successfully utilized to repair orthotopic bone defects in animal 

models.13, 14, 17, 18, 114  However, the widespread use of these precursors remains limited by 

their low frequency in healthy marrow,116 complex and painful cell procurement 

process,284 and reduced mineralization capacity associated with the age and disease-state 

of the donor.16, 19   Overall, the identification of a sustained, autologous mineralizing cell 

source would be significant toward development of mechanically robust bone grafts 

which genetically match the patient and are capable of healing large, critical sized 

defects.      

Non-osteogenic cells, such as skin fibroblasts, are a particularly attractive cell 

source alternative because they are easy to harvest from autologous donors and display a 

high capacity for in vitro expansion.  Genetic engineering strategies focusing on soluble 
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osteoinductive factors have been effectively applied to promote osteoblastic 

differentiation in fibroblastic cell types.20-23  Notably, dermal fibroblasts transduced with 

adenoviral vectors encoding for either BMP-2 or BMP-7 form significant amounts of 

bone in both ectopic implantation sites and critical-sized calvarial defects.24, 25  Despite 

these advances, complex release kinetics and uncontrolled paracrine signaling to 

neighboring non-osseous tissues may limit the clinical success of this approach.285  

The present work is fundamentally different from BMP-based gene therapy 

strategies because it focuses on retroviral gene delivery of the osteogenic transcription 

factor Runx2/Cbfa1 and may avoid detrimental side effects associated with unregulated 

growth factor secretion.  Runx2 is an essential transcriptional regulator of osteoblast 

differentiation and bone formation.59, 60  It functions as a transcriptional scaffolding 

protein which binds to the promoter region of skeletal target genes and regulates their 

expression.64, 65    Homozygous deletion of this transcription factor arrests osteoblast 

maturation, resulting in total absence of endochondral and intramembranous 

ossification.61  We and others have established that viral overexpression of Runx2 

upregulates osteogenic gene expression in a wide range of cell types, including the 

MC3T3-E1 osteoblastic cell line,66 primary BMSCs,137, 286, 287 and primary skeletal 

myoblasts.117, 135  In contrast, mineral deposition is induced by Runx2 gene delivery in a 

cell type-dependent manner and has been reported by several groups as insufficient to 

induce significant nodule formation in primary dermal fibroblasts and fibroblastic cell 

lines both in vitro and in vivo.23, 24, 66   However, we have recently demonstrated that a 

combination of constitutive retroviral Runx2-expression and treatment with the steroid 

hormone dexamethasone synergistically induces matrix mineralization in primary dermal 



 81

fibroblasts cultured in monolayer.136  This surprising result suggested that Runx2-

engineered primary dermal fibroblasts have the capacity to create mineralized templates 

for bone repair and may still have potential as a cell source for bone tissue engineering 

applications if exposed to the appropriate osteogenic cues.   

In the present study, we describe a hybrid ex vivo gene therapy/tissue engineering 

strategy based on retroviral gene delivery of the osteogenic transcription factor Runx2 to 

non-osteoblastic primary dermal fibroblasts.  We demonstrate that sustained expression 

of Runx2 induces osteoblastic differentiation and biological mineral deposition in 

primary dermal fibroblasts cultured on fibrous collagen scaffolds in vitro and in vivo.  

These results establish Runx2-genetic engineering as a strategy for the conversion of a 

non-osteogenic cellular phenotype into a mineralizing cell source for bone tissue 

engineering applications.  

 

Materials and Methods   

Cell Culture and Reagents 

Primary fibroblasts were harvested from 8- to 16-week-old male Wistar rats by 

enzymatic digestion of the dermal skin layer.220  Cells were expanded in growth media 

consisting of DMEM, 10% fetal bovine serum, and 1% penicillin-streptomycin.  

Antibiotics and cell culture media were obtained from Invitrogen (Carlsbad, CA), fetal 

bovine serum was purchased from Hyclone (Logan, UT), and all other cell culture 

supplements and reagents were acquired from Sigma (St. Louis, MO).   

 

Retroviral Transduction 
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The Runx2 retroviral vector utilizes the promoter activity of a 5’ long terminal 

repeat to express a single, bicistronic mRNA encoding the murine cDNA for the type II 

MASNSLF Runx2 isoform,221, 222 followed by an internal ribosomal entry site and a 

Zeocin resistance-enhanced green fluorescent fusion protein (eGFP).66  Empty vector 

control vector lacked the Runx2 insert.  Plasmid DNA was purified from transformed E. 

coli using Megaprep kits from Qiagen (Valencia, CA).  Retroviruses were packaged by 

transient transfection of helper-virus free ΦNX amphotropic producer cells with plasmid 

DNA as described elsewhere.66  

Passage four primary fibroblasts were plated on tissue culture-grade polystyrene 

coated with 1 mg/ml type I collagen (Cohesion, Palo Alto, CA).  Cells at 40-60% 

confluence were transduced with Runx2 or empty vector retroviral stocks and maintained 

in osteogenic growth media consisting of DMEM, 10% fetal bovine serum, 100 U/ml 

penicillin G sodium, and 100 µg/ml streptomycin sulfate.   Runx2-transduced cells were 

analyzed for transduction efficiency by quantification of eGFP expression via flow 

cytometry with a Vantage SE cell sorter (Becton-Dickinson, San Jose, CA).  High levels 

of eGFP were detected in ≥ 65% of primary dermal fibroblasts at 72 hours post-

transduction.  Transgene expression was still detectable at 21 days post-transduction (data 

not shown), demonstrating sustained and integrated expression of the target gene by the 

retroviral vector.  Selection of Runx2/eGFP-positive cells was not performed.   

 

Scaffold Seeding  

Fibrous collagen disks (8 mm diameter x 2 mm thick, average pore size 61.7 µm, 

93.7% pore volume, Kensey Nash, Exton, PA) were coated with 20 µg/ml fibronectin in 
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order to promote initial cell adhesion.  At sixty hours post-infection, Runx2-transduced, 

empty vector-infected, and unmodified cells were trypsinized and seeded at 5x105 

cells/scaffold in osteogenic growth media.  Constructs were transferred twenty-four hours 

post-seeding to osteogenic differentiation media consisting of DMEM, 10% fetal bovine 

serum, 100 U/ml penicillin G sodium, 100 µg/ml streptomycin sulfate, 50 µg/ml L-

ascorbic acid, 2.1 mM sodium β-glycerophosphate, and 10 nM dexamethasone.  Culture 

media was changed every 2 days until end-point assay.  No differences were observed 

between empty vector retrovirus (negative control) and unmodified cells in all 

experiments.   

 

Cell Viability  

 Scaffolds were harvested at 1, 21, and 42 days post-seeding, rinsed in complete 

Dulbecco’s phosphate buffered saline (PBS), and incubated in 4 µM calcein-AM and 4 

µM ethidium homodimer-1 (Molecular Probes, Eugene, OR) in PBS for 30 minutes under 

gentle agitation. Constructs were then rinsed (3 x 10 minutes) in PBS and analyzed with a 

Zeiss LSM 510 Confocal Microscope using Ar and HeNe lasers and a 5x objective lens.   

 

Cell Seeding Efficiency 

 Samples were harvested 24-hours post-seeding, rinsed with PBS, and frozen at -

80°C.  Scaffolds and serially diluted cell standards were thawed, lyophilized, and 

digested at 55°C in 500 µl of 0.25 mg/ml proteinase K (Fisher Scientific, Pittsburgh, PA) 

in 100 mM ammonium acetate (pH 7.0) for 24 hours.  Digested samples were assessed 

for DNA content via the PicoGreen dsDNA Quantitation Kit (Molecular Probes, Eugene, 
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OR).  Raw DNA data was converted to cell numbers using a linear standard curve and 

normalized by original seeding density (500,000 cells/scaffold) to determine cell seeding 

efficiency.      

 

Real time RT-PCR 

 Total RNA was isolated at 7 and 21 days post-seeding using the RNeasy RNA 

isolation kit with RNAlater stabilization reagent (Qiagen).  cDNA synthesis was 

performed on DNaseI-treated (27 Kunitz units/sample) total RNA (0.25 µg) by oligo(dT) 

priming using the Superscript™ First Strand Synthesis System for RT-PCR (Invitrogen, 

Carlsbad, CA).  Gene expression was assessed by quantitative RT-PCR using SYBR 

Green intercalating dye (Molecular Probes) and rat-specific primers as previously 

described.66, 137  Primer specificity was confirmed by ABI Prism 7700 Dissociation Curve 

Software. Standards for each gene were amplified from cDNA using real-time 

oligonucleotides, purified using a Qiagen PCR Purification kit, and diluted over a 

functional range of concentrations.  Transcript concentration in template cDNA solutions 

was quantified from a linear standard curve, normalized to 0.25 µg of total RNA, and 

expressed as nanomoles of transcripts per µg of total RNA.  Detection limits for each 

gene were determined by reactions without cDNA and fall below the y-axis minimum. 

 

Microcomputed Tomography 

 High resolution X-ray microcomputed tomography (micro-CT) with a Scanco 

µCT Medical CT 40 imaging system (Bassersdorf, Switzerland) was used to quantify in 

vitro and in vivo mineralization of 3-D scaffolds.  Formalin-fixed specimens were 
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scanned in 70% ethanol at 16 µm voxel resolution and evaluated at a threshold 

corresponding to a linear attenuation of 0.96 cm-1, filter width of 1.2, and filter support of 

2.0.  Reconstructed and thresholded images were evaluated using direct distance 

transformation methods to calculate mineralized matrix volume within each construct.288   

 

FTIR Spectroscopy  

 Scaffolds at 42 days post-seeding were fixed in 100% ethanol and dried at 50ºC 

overnight.  Bone samples were scraped from a lyophilized rat cranium and used as a 

positive control.  Bulk samples were mixed with KBr (Sigma) and pressed into pellets 

with a custom built apparatus.  Samples were analyzed with a Nicolet Nexus 470 FTIR 

spectrometer (ThermoNicolet, Madison, WI) equipped with a DTGS detector.  Sixty-four 

scans were acquired at 4 cm-1 resolution under N2 purge.  

 

Subcutaneous Implantation 

 Cell-seeded constructs were subcutaneously implanted into the backs of 7-week-

old syngeneic rats after 24 hours pre-culture in non-osteogenic growth media.  Two 

implants were placed in each animal, one on each side of a midline incision into 

subcutaneous pockets made by blunt dissection.  Four groups (n = 6 samples for each 

group) of constructs were implanted: (i) Runx2-engineered cells, (ii) empty vector-

infected control cells, (iii) unmodified control cells, and (iv) empty (cell-free) scaffolds.  

Constructs were explanted after 4 weeks of implantation following euthanasia by CO2 

inhalation.  All procedures were carried out according to an IACUC-approved protocol as 

previously described.138   
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Histology and Immunohistochemistry 

 Formalin-fixed constructs were paraffin embedded and sectioned at 5 µm 

thickness.  Sections were stained with hematoxylin-eosin and von Kossa to observe 

cellular distribution and matrix mineralization within 3-D constructs, respectively.  eGFP 

and Runx2 protein expression was observed by immunostaining using a colorimetric 

avidin-biotin kit (Vector Labs, Burlingame, CA).  Sections were deparaffinized, 

rehydrated, and then pretreated using heat-induced antigen retrieval in 10 mM citrate 

buffer (pH 6.0).  After pretreatment, slides were incubated in rabbit polyclonal primary 

antibodies against eGFP (Molecular Probes) or Runx2/AML3 (Oncogene, San Diego, 

CA), followed by sequential incubation in biotinylated anti-rabbit secondary antibody 

and avidin-biotin linked alkaline phosphatase.  Slides were then incubated in Vector Red 

substrate and counterstained with hematoxylin. 

 

Data Analysis 

All in vitro experiments were performed three times in triplicate, each with 

unique Runx2 retroviral supernatant preparations, and two independent isolates of 

primary dermal fibroblasts.  Data are reported as mean ± standard error of the mean 

(SEM), and statistical comparisons using SYSTAT 8.0 were based on an analysis of 

variance (ANOVA) and Tukey’s test for pairwise comparisons, with a p-value < 0.05 

considered significant.  In order to make the variance independent of the mean, statistical 

analysis of real-time PCR data was performed following logarithmic transformation of 

the raw data.66   
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Results 

Fibroblasts remain viable and colonize fibrous collagen disks in vitro 

Runx2-expressing and unmodified fibroblasts were seeded on fibrous collagen 

disks at a density of 500,000 cells/scaffold and cultured statically in vitro in osteogenic 

differentiation media.  Scaffold seeding efficiency was evaluated by quantification of 

DNA content at 1 day post-seeding (Fig. 5.1A).   Approximately 200,000 cells were 

present on both Runx2-expressing and unmodified cell-seeded scaffolds, corresponding 

to cell seeding efficiencies of 43.9 ± 6.5% and 39.6 ± 2.5%, respectively.  Scaffold 

colonization and cellular viability were assessed at 1, 21, and 42 days post-seeding by 

confocal microscopy and Live (green)/Dead (red) fluorescence staining (Fig. 5.1B).   No 

differences were observed in cell viability between Runx2-expressing and unmodified 

control cells at any time point.  After 1 day in culture, cells were evenly distributed 

throughout collagen scaffolds, with spread morphology and minimal cell-cell contact.  

Cells remained viable for the entire 42 day culture period, with confluent cell populations 

localized to the construct periphery.  Isolated necrotic regions were detected at all time 

points, but minimal cell death (<5%) was observed in the dense cellular layer at the 

construct surface.   

 

Runx2 induces osteoblastic gene expression in fibroblasts cultured on collagen scaffolds 

in vitro 

Gene expression of osteoblastic markers, including Runx2, alkaline phosphatase 

(ALP), osteocalcin (OCN), and bone sialoprotein (BSP), was investigated at 7 and 21 

days post-seeding by quantitative RT-PCR (Fig. 5.2).  ALP is a membrane-bound  
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Figure 5.1.  Primary dermal fibroblasts remain viable and populate collagen 
scaffolds in vitro.   Fibroblasts were transduced with Runx2 retrovirus or left unmodified 
for controls, seeded on fibrous collagen disks, and cultured in vitro with osteogenic 
media.  (A) Cell seeding efficiency was determined by quantification of DNA content 
and cell number present in scaffolds at 1 day post-seeding (Mean + SEM, n=6; ANOVA: 
p<0.05).  (B) Cellular viability was assessed at 1, 21, and 42 days post-seeding by 
confocal microscopy and Live (green)/Dead (red) fluorescence staining.  Scale bar 
indicates 1 mm.   
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Figure 5.2.  Runx2 upregulates osteoblastic gene expression in fibroblasts seeded on 
collagen scaffolds in vitro.   mRNA transcript levels were investigated by quantitative 
RT-PCR at 7 and 21 days post-seeding (Mean + SEM, n=3; ANOVA: p<0.05; * different 
from day 7 control, ** different from both day 7 and day 21 controls, and † different 
from day 21 Runx2 (p< 0.05)).   
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enzyme that hydrolyzes phosphate esters, thereby making inorganic phosphate available 

for incorporation into mineral deposits.224  OCN is the most abundant non-collagenous 

extracellular matrix protein in bone and a marker of mature osteoblasts,223 while BSP is 

an extracellular matrix glycoprotein implicated in the regulation of mineralized nodule 

nucleation.224  Runx2 mRNA levels were upregulated by 5 orders-of-magnitude in 

Runx2-transduced cultures compared to control cells at day 7, and this relative difference 

decreased to 2.5 orders-of-magnitude at day 21.  The temporal decrease in Runx2 

expression may be a result of the non-transduced fibroblastic population proliferating 

faster than Runx2-expressing cells or cell necrosis within the inner core of constructs due 

to mass transport limitations.  Sustained expression of Runx2 significantly upregulated 

ALP, OCN, and BSP mRNA expression compared to control fibroblasts at 7 days post-

seeding.   After 21 days, OCN mRNA levels were reduced in Runx2-expressing cells to 

levels comparable to control cultures.  ALP and BSP gene expression remained elevated 

in Runx2-expressing cells through 21 days in culture.  Moreover, an unexpected increase 

in the expression of these two osteoblastic markers was also observed in unmodified cells 

at day 21 compared to day 7.  

 

Runx2-transduced fibroblasts deposit biological matrix mineralization on collagen 

scaffolds in vitro 

Mineral deposition on fibrous collagen disks was quantified at 28 and 42 days 

post-seeding by micro-CT imaging (Fig. 5.3A+B).  Runx2-expressing fibroblasts 

deposited significantly higher amounts of mineral on collagen scaffolds cultured in vitro 

compared to unmodified cells.  Mineralized regions were localized primarily to the lateral  



 91

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.  Runx2-transduced fibroblasts deposit mineral within collagen scaffolds 
in vitro.   (A) Representative micro-CT images of Runx2-expressing and unmodified 
fibroblasts seeded on collagen scaffolds and cultured in osteogenic media for 28 and 42 
days.  Scale bar indicates 1 mm. (B) Quantification of bone volume by micro-CT image 
analysis of constructs after 28 and 42 days in vitro culture in osteogenic media (Mean + 
SEM, n=6; ANOVA: p<0.00005; * different from day 28 control, ** different from both 
day 28 and day 42 controls, and ‡ different from day 28 Runx2 (p< 0.0005)).  
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edges of these Runx2-engineered constructs after 21 days in culture, but spread to the 

upper face of disks as the magnitude of mineral increased through 42 days.  Notably, 

scaffolds seeded with unmodified cells showed a low level of radiopaque material at 28 

and 42 days.  These radiopaque regions remained confined to the construct periphery and 

appeared to have an arbitrary, disordered distribution which did not significantly increase 

with time in culture.  Furthermore, the presence of these deposits was highly dependent 

on the lot of serum (data not shown), suggesting that the in vitro culture conditions 

utilized in this study lead to precipitation of non-biological mineral.  These results are 

consistent with reports that high levels of sodium β-glycerophosphate or unidentified 

components from specific serum lots may lead to von Kossa-positive mineral deposits 

which do not resemble the chemical composition of bone mineral.225, 289    

The chemical composition of the mineral phase deposited on Runx2-engineered 

and control constructs was analyzed by Fourier Transform Infrared spectroscopy (FTIR) 

(Fig. 5.4).  Runx2-engineered mineral displayed amide I and II peaks indicative of 

proteins, an enhanced phosphate peak at 1100 cm-1, a doublet split phosphate peak at 560 

and 605 cm-1, and a carbonate peak at 870 cm-1.  This chemical signature represents the 

characteristic bands of a carbonate-containing, poorly crystalline hydroxyapatite and is 

equivalent to that of the cranial bone positive control.227  Notably, the carbonate and 

phosphate doublet peaks were absent in control samples, indicating that the radiopaque 

regions observed on these scaffolds corresponded to non-biological mineral deposits.289 

 Cellular distribution within collagen scaffolds after 42 days in vitro culture was 

visualized by hematoxylin-eosin (H&E) staining of histological sections (Fig. 5.5A).  

Runx2-expressing and unmodified fibroblasts displayed equivalent patterns of scaffold  
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Figure 5.4.  Runx2-engineered constructs display FTIR bands characteristic of 
carbonate-containing, poorly crystalline hydroxyapatite.  Chemical composition of 
the mineral phase was analyzed by Fourier transform infrared spectroscopy (FTIR) at 42 
days post-seeding.  Runx2 and cranial bone samples displayed amide I and II peaks 
indicative of proteins, an enhanced phosphate peak at 1100 cm-1, a doublet split 
phosphate peak at 560 and 605 cm-1, and a carbonate peak at 870 cm-1, which represent 
the characteristic bands of a carbonate-containing, poorly crystalline hydroxyapatite.  
Carbonate and phosphate doublet peaks were absent in control samples, indicating that 
the radiopaque regions observed on these scaffolds corresponded to non-biological 
mineral deposits. 
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colonization, with confluent cell populations localized to the outer 100-250 µm of the 

scaffold periphery.  Minimal cell growth was observed within the construct interior, 

likely due to mass transport limitations associated with static culture.290, 291  The presence 

of mineralized matrix within Runx2-engineered constructs was confirmed by von Kossa 

staining of histological sections (Fig. 5.5B).  Phosphate-positive regions were detected 

adjacent to Runx2-expressing fibroblasts and were confined to the outer 400-600 µm of 

the scaffold periphery.  von Kossa positive staining was also observed on the side borders 

of control scaffolds, likely due to detection of artifactual phosphate precipitates.  

Histological analyses were corroborated by cross-sectional micro-CT images (Fig. 5.5C).  

Mineral deposition by Runx2-transduced cells was observed on the sides and upper face 

of the scaffold circumference, co-localizing with cellular distribution.  Conversely, 

radiopaque regions detected in control samples remained confined to the side borders of 

each construct despite the presence of dense cell populations throughout the construct 

periphery.   

  

Runx2-transduced dermal fibroblasts form mineralized templates in vivo  
 

Tissue-engineered constructs were implanted into an ectopic, subcutaneous site in 

order to assess the mineralization capacity of these cells in the absence of osteoinductive 

cues and cell-types typically present in orthotopic defects.  Importantly, collagen 

scaffolds seeded with Runx2-expressing cells displayed a significant increase in mineral 

volume after 28 days in vivo, while controls (unmodified cells, empty vector cells, empty 

scaffold) showed minimal radiodense regions (Fig. 5.6A+B).   
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Figure 5.5.  Fibroblasts and mineral deposits co-localize to construct periphery in 
vitro. Histological and micro-CT analyses were conducted on cell-seeded scaffolds after 
42 days in vitro culture.  (A)  Cellular distribution within collagen disks was visualized 
by hematoxylin-eosin (H&E) staining of histological sections.  Scale bar indicates 1 mm.  
(B)  Matrix mineralization within collagen disks was assessed by von Kossa staining of 
histological sections for phosphate deposits typically present within mineralized nodules 
(M = mineral and S = scaffold).  Scale bar indicates 250 µm.  (C) Cross-sectional micro-
CT images depicting the distribution of mineralized matrix on collagen scaffolds seeded 
with Runx2-expressing and unmodified control cells.  Scale bar indicates 1 mm.   
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Figure 5.6.  Runx2-transduced primary dermal fibroblasts mineralize collagen 
scaffolds in vivo.  Primary dermal fibroblasts were transduced with Runx2 retrovirus, 
empty vector retrovirus, or left unmodified for controls, seeded on fibrous collagen disks, 
and transplanted into a subcutaneous, heterotopic site for 28 days. (A) Representative 
micro-CT images of explanted constructs after 28 days subcutaneous implantation.  Scale 
bar indicates 1 mm. (B) Quantification of bone volume by micro-CT image analysis of 
constructs. (Mean + SEM, n=6; ANOVA: p<0.01; * different from unmodified 
fibroblasts, § different from empty vector, and ¥ different from empty scaffold (p< 0.05)).  
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Histological analysis was conducted on explanted constructs after subcutaneous 

implantation for 28 days (Fig. 5.7).  Significant remodeling/degradation of collagen 

scaffolds was apparent after 4 weeks in vivo; however, no marked difference in host 

inflammatory response was detected between cell-seeded and cell-free scaffolds.  

Hematoxylin-eosin staining revealed residual collagen fibers (S) and uniform distribution 

of infiltrating host cells throughout all constructs.  After 4 weeks in vivo, punctate 

mineralized nodules (M) were detected by von Kossa staining only within Runx2-

engineered constructs.  Cells with osteoblast-like morphology were found adjacent to and 

embedded within mineralized matrix.   

 

Genetically-engineered donor fibroblasts co-localize with mineralized matrix in vivo 

Immunostaining for Runx2 and eGFP expression was performed on serial 

histological sections in order to assess the spatial distribution of Runx2-expressing 

fibroblasts and infiltrating host cells within collagen scaffolds in vivo (Fig. 5.8).  

Significant staining for both Runx2 and eGFP was visualized within the cytoplasm of 

cells adjacent to the newly formed mineral deposits.  Minimal background staining for 

both proteins was observed in unmodified cell-seeded and cell-free scaffolds (data not 

shown).   Interestingly, specific localized regions of Runx2-positive cells and mineralized 

matrix were detected which did not exhibit an eGFP-positive signal.  Collectively, these 

results suggest that mineral deposition within collagen scaffolds in vivo is primarily of 

donor cell origin, but do not rule out contributions from recipient cells.  Notably, Runx2 

and eGFP expression was maintained throughout the 28 day subcutaneous implantation  
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Figure 5.7.  Donor fibroblasts, host cells, and matrix mineralization are uniformly 
distributed throughout Runx2-engineered constructs in vivo. Histological sections 
were stained with hematoxylin-eosin and von Kossa to observe cellular distribution and 
mineralization throughout cell-seeded and cell-free collagen scaffolds after 28 days in 
vivo (M = mineral and S = scaffold).  (A) 4x micrographs. Scale bar indicates 1 mm.  (B) 
20x micrographs.  Scale bar indicates 250 µm. 
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period, ruling out the possibility that exogenous transgene expression was inactivated in 

vivo.     

 

Discussion 

In the present study, we describe a hybrid ex vivo gene therapy/tissue engineering 

approach based on retroviral gene delivery of the osteogenic transcription factor Runx2 to 

primary dermal fibroblasts.  Sustained expression of Runx2 induced osteogenic gene 

expression and mineralized matrix deposition in fibroblasts cultured on 3-D fibrous 

collagen disks in vitro.  Scaffolds seeded with unmodified control cells showed an 

unexpected low level of radiopaque, von-Kossa positive material, as assessed by micro-

CT imaging and histological analyses, respectively.  However, analysis of the chemical 

composition of the mineral phase with FTIR spectroscopy revealed that Runx2-

engineered scaffolds displayed bands characteristic of a biologically-equivalent, poorly 

crystalline, carbonate-containing hydroxyapatite, whereas this chemical signature was 

absent in control samples.  Importantly, Runx2-transduced fibroblasts produced 

significant levels of matrix mineralization in vivo after 28 days implantation in a 

subcutaneous, heterotopic site, while negligible mineral deposits were evident in control 

constructs.  Furthermore, immunohistochemical analysis revealed that Runx2-expressing 

cells co-localized with mineral deposits in vivo, suggesting that bone formation was 

primarily originated by transplanted donor cells. These results are significant toward the 

identification of a sustained mineralizing cell source for cell-based skeletal regeneration 

therapies.   
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Primary dermal fibroblasts have considerable potential as an autologous cell 

source for ex vivo gene therapy and bone tissue engineering applications, as they are 

easily obtained through minimally invasive skin biopsy and display a high capacity for in 

vitro expansion.    Conventional cell-based approaches typically involve the use of 

terminally differentiated osteoblasts,102, 103 osteogenic cell lines,105 unfractionated bone 

marrow stroma,106, 107 or purified mesenchymal stem cells.14  Immortalized osteogenic 

cell-lines are clonally-derived and well-characterized, but exhibit abnormal regulatory 

mechanisms that may lead to tumorigenic growth in vivo.  Primary osteoblasts are 

difficult to isolate in sufficient quantities from trabecular bone and display a limited 

capacity for proliferation.  Bone marrow-derived osteoprogenitors and purified MSCs 

show significant mineralization capacity in vitro and in vivo.13, 17, 18  However, the 

widespread clinical success of these precursors remains limited by their complex and 

painful cell procurement process, potential for dedifferentiation during in vitro expansion, 

and reduced mineralization capacity associated with the age and disease-state of the 

donor.292   Because of these limitations, non-osteoblastic cell-types such as dermal 

fibroblasts, gingival fibroblasts, and skeletal myoblasts have been considered for their 

clinical relevance to bone repair applications.    

Several growth and differentiation factor-based genetic engineering strategies 

have been employed for the induction of sustained osteogenesis in non-osteoblastic 

fibroblasts.   Adenoviral-transduction of dermal fibroblasts with genes encoding BMP-2 

or BMP-7 induces significant bone formation in both ectopic implantation sites and 

critical sized calvarial defects.21, 24  BMP-7-expressing human gingival fibroblasts also 

deposit significant amounts of mineralized matrix in vivo.25  More recently, a 
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Figure 5.8. Genetically-engineered donor fibroblasts co-localize with mineralized 
matrix in vivo.  The spatial localization of Runx2-expressing fibroblasts and mineral 
deposits within collagen scaffolds after 28 days subcutaneous implantation was 
investigated by immunohistochemical staining of serial histological sections for eGFP 
and Runx2 expression.  (A) 10x micrographs. Scale bar indicates 500 µm.  (B) 20x 
micrographs of inset in A.  Scale bar indicates 250 µm. 
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combinatorial gene therapy approach based on co-transduction of BMP-2/BMP-7 in 

murine embryonic fibroblasts synergistically enhanced in vivo bone formation compared 

to transduction of individual molecules alone.22    Despite these advances, it is unlikely 

that one single strategy will be universally appropriate for the treatment of the numerous 

orthopedic conditions requiring bone grafting procedures.   Indeed, the potential for 

ectopic bone formation as a result of paracrine signaling to neighboring non-osseous 

tissues may limit the clinical application of growth factor-based approaches.293, 294   In the 

present study, we describe retroviral gene delivery of the osteogenic transcription factor 

Runx2 as a robust strategy for the conversion of primary dermal fibroblasts into a 

mineralizing osteoblastic phenotype.  Runx2 is regulated at multiple levels by a complex 

cascade of soluble factors, hormones, and cell-matrix interactions and is a known 

downstream effector of BMP-2-activated signaling.64, 221  Thus, the use of a genetic 

engineering strategy which focuses on controlling expression of downstream 

transcriptional activator may avoid aberrant effects associated with unregulated secretion 

of soluble, osteoinductive factors.   

It is well documented that adenoviral and retroviral gene delivery of Runx2 

upregulates osteogenic gene expression in osteoblastic and non-osteoblastic cell types.59, 

66, 67, 137   However, we and others have reported that forced Runx2 expression induces 

matrix mineralization in a cell type-dependent manner and is insufficient to direct 

significant in vitro nodule formation in NIH3T3 and IMR-90 fibroblasts, primary murine 

fibroblasts, and the C3H10T1/2 pluripotent fibroblastic cell-line.23, 24, 66  These results 

suggest that Runx2-mediated mineralization requires additional cofactors, which may not 

be endogenously expressed in certain nonosteoblastic cell-types.  Indeed, we have 
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recently reported that dexamethasone treatment is required for matrix mineralization in 

Runx2-expressing fibroblasts cultured in monolayer.136  We applied these observations in 

the present work to demonstrate that primary dermal fibroblasts engineered to 

constitutively express Runx2 create mineralized templates in vitro when cultured on 

collagen scaffolds in osteogenic media supplemented with dexamethasone.  Moreover, 

we also show that Runx2-expressing fibroblasts produced mineralized templates in vivo 

after implantation in a subcutaneous, heterotopic site.   This finding is in contrast to 

previous reports indicating that transient adenoviral Runx2 expression is insufficient to 

produce significant levels of mineralization in vivo23, 24 and suggests that sustained 

expression of this transcription factor is necessary for ectopic mineral deposition by 

transplanted fibroblastic cell-types.  Notably, these results also indicate that in vitro pre-

culture in osteogenic media supplemented with dexamethasone prior to implantation138 is 

not necessary for the formation of robust mineralized templates by Runx2-expressing 

fibroblasts in vivo.     

Bone formation within collagen scaffolds in vivo may be a result of several 

different mechanisms, including: (1) the direct deposition of mineralized matrix by 

Runx2-genetically engineered fibroblasts, (2) the secretion of soluble osteoinductive 

factors by Runx2-genetically engineered fibroblasts, which initiate osteogenic 

differentiation in recipient cells via paracrine signaling, and/or (3) the conversion of a 

specific population of recipient cells into a mineralizing osteoblast-like phenotype 

through the osteoinductive surface of collagen disks.  Immunohistochemical analyses 

were performed to investigate the spatial distribution of Runx2-expressing fibroblasts and 

infiltrating host cells relative to mineral deposits within collagen scaffolds in vivo.  
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GFP+/Runx2+ cells co-localized with von Kossa-positive regions, suggesting that 

mineral formation primarily originates from genetically engineered donor fibroblasts.   

Interestingly, the presence of isolated mineralized nodules which spatially align with 

Runx2-expressing cells in the absence of GFP+ signal suggests that infiltrating host cells 

which endogenously express Runx2 may also contribute to in vivo mineral formation.  

Histological analyses revealed cells with osteoblast-like morphology adjacent to and 

embedded within mineralized matrix after 4 weeks in vivo.  In contrast to previous 

reports,23, 25 tissue morphology indicative of bone marrow, cortical bone, and/or cartilage 

was not observed, potentially because temporal changes in cellular differentiation 

throughout the implantation period (28 days) were not monitored in this work.   

In the present study, unmodified control fibroblasts seeded on fibrous collagen 

disks displayed an unexpected upregulation of ALP and BSP gene expression and 

deposition of von Kossa-positive, radiodense plaques after 21-28 days in vitro culture in 

osteogenic media.  Our observations are consistent with a recent report from Hee et al. 

demonstrating that scaffold architecture and chemical composition markedly influences 

osteoblastic gene expression in human dermal fibroblasts.295  At first glance, these results 

suggest that the conversion of a non-osteoblastic cell source into a differentiated 

osteoblastic phenotype may be partially induced by scaffold-dependent effects.  

However, it has been well documented that in vitro culture conditions can lead to non-

biologic mineral precipitation.225, 289, 296, 297  Indeed, further investigation of the chemical 

composition of the mineral phase within control constructs by FTIR spectroscopy 

revealed the absence of the chemical signature characteristic of carbonate-containing, 

poorly crystalline hydroxyapatite.227  Importantly, radiodense regions were not detected 
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on unmodified fibroblast-seeded control constructs implanted in vivo, confirming that the 

presence of non-biological mineral was an artifact of in vitro culture conditions.   Finally, 

histological analyses showed that Runx2-expressing fibroblasts and mineral deposits 

were uniformly distributed throughout constructs implanted in vivo, but remained 

preferentially localized to the periphery of constructs cultured in vitro.  Indeed, mass 

transport limitations associated with static culture are known to cause cell necrosis within 

the inner core of tissue engineered constructs135, 138 and several groups have developed 

perfusion bioreactors to mimic the dynamic environment experienced by cells in vivo.290, 

291, 298  Collectively, these results highlight the limitations of in vitro pre-culture for tissue 

engineering applications and underscore the importance of rigorous characterization of in 

vitro mineral deposits,  particularly because the chemical composition of the 

hydroxyapatite mineral phase modulates osseointegration in vivo.299-302       

In summary, we have demonstrated that sustained expression of Runx2 induces 

osteoblastic differentiation and biological mineral deposition in primary dermal 

fibroblasts cultured on fibrous collagen scaffolds in vitro and in vivo.  The conversion of 

non-osteoblastic dermal fibroblasts into a sustained mineralizing cell source is significant 

toward the development of mechanically robust bone grafts which genetically match the 

patient and are capable of healing large, critical sized defects.      
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CHAPTER 6 

MINERALIZATION CAPACITY OF RUNX2-GENETICALLY 
ENGINEERED FIBROBLASTS IS SCAFFOLD DEPENDENT* 

 

Introduction 

Conventional orthopaedic grafting templates based on autogenic bone, allogenic 

bone, or synthetic materials are widely utilized for the clinical treatment of non-healing 

skeletal defects.  Although successful in many cases, these grafts remain limited by 

inadequate osseo-integration, donor site morbidity, poor mechanical properties, and/or 

the risk of disease transmission 3, 77-80, 303.  Bone tissue engineering has emerged as a 

promising strategy to overcome complications associated with these traditional skeletal 

repair therapies 9-12.  Tissue-engineered bone substitutes have been successfully 

developed through the integration of osteoinductive growth factors and/or osteogenic 

cells into an osteoconductive scaffolding matrix.  Notably, several groups have 

demonstrated in vitro and in vivo mineralization and repair of bone defects by combining 

marrow-derived mesenchymal stem cells with three-dimensional scaffolds 13-18.  Despite 

these advances, the development of mechanically robust skeletal grafts which are 

immunoaccepted by the host and are capable of healing large, critical sized defects has 

not been realized.   

 

 

 

*Modified from 
J.E. Phillips, D.W. Hutmacher, R.E. Guldberg, and A.J. Garcia, Mineralization capacity of Runx2/Cbfa1-
genetically engineered fibroblasts is scaffold dependent. Biomaterials, 2006,  27:5535-5545. 
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Development of tissue-engineered constructs for skeletal regeneration of large 

critical-sized defects requires the identification of a sustained mineralizing cell source 

and careful optimization of scaffold architecture and surface properties.  We have 

recently reported that Runx2-genetically engineered primary dermal fibroblasts express a 

mineralizing phenotype in monolayer culture, highlighting their potential as an 

autologous osteoblastic cell source which can be easily obtained in large quantities.  One 

significant barrier toward the clinical application of tissue engineered bone grafts is the 

inadequate availability of a sustained mineralizing cell source.  In order to address this 

limitation, genetic engineering strategies have been developed for the induction of 

osteoblastic differentiation in nonosteogenic cells  20-22, 67.  In particular, gene delivery of 

soluble factors, such as BMP-2 and BMP-7, or osteogenic transcription factors, such as 

Runx2/Cbfa1, has been investigated for the conversion of fibroblastic cell lines into an 

osteoblastic phenotype 23-25, 304.  We have recently demonstrated that retroviral Runx2 

overexpression induces significant levels of mineral deposition by primary dermal 

fibroblasts cultured in monolayer 305.  These genetically modified fibroblasts have 

considerable potential as a cell source for bone tissue engineering applications because 

they are easily obtained from autologous donors through minimally invasive skin biopsy 

and have a high capacity for in vitro expansion.  

  In addition to the identification of an autologous mineralizing cell source, the 

successful development of bone grafting templates requires careful optimization of 

scaffold architecture and surface properties.  Biomaterial scaffolds typically function as a 

three-dimensional structural support which promotes cell attachment, proliferation, and 

differentiation into functional osteoblasts and facilitates functional integration into the 
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defect site.  Various classes of materials have been considered for skeletal grafting 

applications, including ceramics, natural and synthetic polymers, and their composites 306.  

Among these, scaffolds based on naturally-derived collagen and synthetic 

polycaprolactone (PCL) and polylactide-co-glycolide (PLGA) polymers were selected for 

investigation in this study because of their widespread use in tissue engineering 

applications, well-documented biodegradation profile, FDA-approval, and commercial 

availability 307-310.  These scaffolds present a broad range of architectural and surface 

properties (e.g. topography, surface chemistry, roughness) that may potentially influence 

the biological response of seeded cells 311.  The objective of the present work is to 

evaluate the ability of three commonly utilized, commercially available scaffolds to 

support in vitro matrix mineralization when seeded with Runx2-expressing fibroblasts.   

 

Materials and Methods 

Cells and Culture Reagents 

Primary fibroblasts were harvested from 8- to 16-week-old male Wistar rats by 

enzymatic digestion of the dermal skin layer 220.  Cells were expanded in growth media 

consisting of DMEM, 10% fetal bovine serum, and 1% penicillin-streptomycin.  

Antibiotics and cell culture media were obtained from Invitrogen (Carlsbad, CA), fetal 

bovine serum was purchased from Hyclone (Logan, UT), and all other cell culture 

supplements and reagents were acquired from Sigma (St. Louis, MO).   

 

Retroviral Transduction 
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The Runx2 retroviral vector utilizes the promoter activity of a 5’ long terminal 

repeat to express a single, bicistronic mRNA encoding the murine cDNA for the type II 

MASNSLF Runx2 isoform 221, 222, followed by an internal ribosomal entry site and a 

Zeocin resistance-enhanced green fluorescent fusion protein (eGFP)66.  Empty vector 

control vector lacked the Runx2 insert.  Plasmid DNA was purified from transformed E. 

coli using Megaprep kits from Qiagen (Valencia, CA).  Retroviruses were packaged by 

transient transfection of helper-virus free ΦNX amphotropic producer cells with plasmid 

DNA as described elsewhere 66, 135.  

Passage four primary fibroblasts were plated on tissue culture-grade polystyrene 

coated with 1 mg/ml type I collagen (Cohesion, Palo Alto, CA).  Cells at 40-60% 

confluence were transduced with Runx2 or empty vector retroviral stocks and maintained 

in osteogenic growth media consisting of DMEM, 10% fetal bovine serum, 100 U/ml 

penicillin G sodium, and 100 µg/ml streptomycin sulfate.   Runx2-transduced cells were 

analyzed for transduction efficiency by quantification of eGFP expression via flow 

cytometry with a Vantage SE cell sorter (Becton-Dickinson, San Jose, CA).  High levels 

of eGFP were detected in ≥ 65% of primary dermal fibroblasts at 72 hours post-

transduction.  Transgene expression was still detectable at 21 days post-transduction (data 

not shown), demonstrating sustained and integrated expression of the target gene by the 

retroviral vector.  Selection of Runx2/eGFP-positive cells was not performed.   

 

Scaffold Seeding  

The scaffolds investigated in this study were: (i) 75/25 PLGA (REGEN Biotech 

Inc., Korea, 8 mm diameter × 2 mm thick, 100-200 µm pore size, 85% porosity), (ii) 
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fused deposition-modeled PCL (8 mm diameter × 2 mm thick, 300-500 µm pore size, 

66% porosity) 312, and (iii) and fibrous collagen disks (Kensey Nash, Exton, PA, 8 mm 

diameter x 2 mm thick, average pore size 61.7 µm, 93.7% pore volume).  Scaffolds were 

coated with 20 µg/ml fibronectin in order to promote initial cell adhesion.  At sixty hours 

post-infection, Runx2-transduced, empty vector-infected, and unmodified cells were 

trypsinized and seeded at 5x105 cells/scaffold in DMEM supplemented with 10% fetal 

bovine serum, 100 U/ml penicillin G sodium, and 100 µg/ml streptomycin sulfate.  

Constructs were transferred twenty-four hours post-seeding to osteogenic differentiation 

media consisting of DMEM, 10% fetal bovine serum, 100 U/ml penicillin G sodium, 100 

µg/ml streptomycin sulfate, 50 µg/ml L-ascorbic acid, 2.1 mM sodium β-

glycerophosphate, and 10 nM dexamethasone.  Culture media was changed every 2 days 

until end-point assay.  No differences were observed between empty vector retrovirus 

(negative control) and unmodified cells in all experiments.   

 

Cell Viability  

 Scaffolds were harvested at 1, 21, and 42 days post-seeding, rinsed in complete 

Dulbecco’s phosphate buffered saline (PBS), and incubated in 4 µM calcein-AM and 4 

µM ethidium homodimer-1 (Molecular Probes, Eugene, OR) in PBS for 30 minutes under 

gentle agitation. Constructs were then rinsed (3 x 10 minutes) in PBS and analyzed with a 

Zeiss LSM 510 Confocal Microscope using Ar and HeNe lasers and a 5x objective lens.   

 

Cell Seeding Efficiency and DNA Content 
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 Samples were harvested 24-hours post-seeding, rinsed with PBS, and frozen at -

80°C.  Scaffolds and serially diluted cell standards were thawed, lyophilized, and 

digested at 55°C in 500 µl of 0.25 mg/ml proteinase K (Fisher Scientific, Pittsburgh, PA) 

in 100 mM ammonium acetate (pH 7.0) for 24 hours.  Digested samples were assessed 

for DNA content via the PicoGreen dsDNA Quantitation Kit (Molecular Probes, Eugene, 

OR).  DNA data was converted to cell numbers using a linear standard curve and 

normalized by original seeding density (500,000 cells/scaffold) to determine cell seeding 

efficiency.     

 

Real Time RT-PCR 

 Total RNA was isolated at 7 and 21 days post-seeding using the RNeasy RNA 

isolation kit with RNAlater stabilization reagent (Qiagen).  cDNA synthesis was 

performed on DNaseI-treated (27 Kunitz units/sample) total RNA (0.25 µg) by oligo(dT) 

priming using the Superscript™ First Strand Synthesis System for RT-PCR (Invitrogen, 

Carlsbad, CA).  Gene expression was assessed by quantitative RT-PCR using SYBR 

Green intercalating dye (Molecular Probes) and rat-specific primers 66, 137.  Primer 

specificity was confirmed by ABI Prism 7700 Dissociation Curve Software. Standards 

for each gene were amplified from cDNA using real-time oligonucleotides, purified using 

a Qiagen PCR Purification kit, and diluted over a functional range of concentrations.  

Transcript concentration in template cDNA solutions was quantified from a linear 

standard curve, normalized to total RNA (0.25 µg), and expressed as nanomoles of 

transcripts per µg of total RNA.  Detection limits for each gene were determined by 

reactions without cDNA and fall below the y-axis intercept. 
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Microcomputed Tomography 

 High resolution X-ray microcomputed tomography (micro-CT) with a Scanco 

µCT Medical CT 40 imaging system (Bassersdorf, Switzerland) was used to quantify in 

vitro mineralization of 3-D scaffolds.  Formalin-fixed specimens were scanned in 70% 

ethanol at 16 µm voxel resolution and evaluated at a threshold corresponding to a linear 

attenuation of 0.96 cm-1, filter width of 1.2, and filter support of 2.0.  Reconstructed and 

thresholded images were evaluated using direct distance transformation methods to 

calculate mineralized matrix volume within each construct 288.     

 

FTIR Spectroscopy 

 Scaffolds at 42 days post-seeding were fixed in 100% ethanol and dried at 50ºC 

overnight.  Bone samples were scraped from a lyophilized rat cranium and used as a 

positive control.  Bulk samples were mixed with KBr (Sigma) and pressed into pellets 

with a custom built apparatus.  Samples were analyzed with a Nicolet Nexus 470 FTIR 

spectrometer (ThermoNicolet, Madison, WI) equipped with a DTGS detector.  Sixty-four 

scans were acquired at 4 cm-1 resolution under N2 purge.  

 

Histology  

 Formalin-fixed constructs were paraffin embedded and sectioned at 5 µm 

thickness.  Sections were stained with hematoxylin-eosin and von Kossa to observe 

cellular distribution and matrix mineralization within 3-D constructs, respectively.   
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Data Analysis 

All experiments were performed three times in triplicate, each with unique Runx2 

retroviral supernatant preparations, and two independent isolates of primary dermal 

fibroblasts.  Data are reported as mean ± standard error of the mean (SEM), and statistical 

comparisons using SYSTAT 8.0 were based on an analysis of variance (ANOVA) and 

Tukey’s test for pairwise comparisons, with a p-value < 0.05 considered significant.  In 

order to make the variance independent of the mean, statistical analysis of real-time PCR 

data was performed following logarithmic transformation of the raw data 66.     

 

Results 

Cellular Viability  

Runx2-expressing and unmodified fibroblasts were seeded on collagen, PCL, and 

PLGA scaffolds at a density of 500,000 cells/construct and cultured in vitro under static 

conditions in osteogenic differentiation media.  Scaffold colonization and cellular 

viability were assessed at 1, 21, and 42 days post-seeding by confocal microscopy and 

Live/Dead staining (Fig. 6.1).   After 1 day in culture, cells displayed a fibroblastic 

morphology and were evenly distributed throughout all three scaffolds.  Marked increases 

in green fluorescent intensity were observed at 21 and 42 days, indicating that cells 

remained viable and exhibited a time-dependent increase in construct colonization 

throughout the culture period.  After 42 days in culture, confluent populations of viable 

cells and minimal necrotic regions (<5%) were observed at the periphery of all 

constructs.  Cell viability did not appear to be dependent on scaffold properties.  

Nonetheless, differential patterns of cell localization were observed among collagen,  
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Figure 6.1.  Runx2-transduced fibroblasts remain viable and populate polymeric 
scaffolds in vitro.   Fibroblasts were transduced with Runx2 retrovirus, seeded on 
collagen, PLGA, or PCL scaffolds and cultured in vitro with osteogenic media.  Cellular 
viability was assessed at 1, 21, and 42 days post-seeding by confocal microscopy and 
Live (green)/Dead (red) fluorescence staining.  Scale bar indicates 1 mm.   
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PLGA, and PCL matrices, with construct colonization directed along the structural 

architecture of each scaffold.   

 

Scaffold Colonization and Seeding Efficiency 

Scaffold seeding efficiency and changes in cell number during in vitro culture 

were evaluated by quantification of DNA content at 1, 21, and 42 days post-seeding (Fig. 

6.2A+B).  After 1 day in culture, collagen scaffolds contained the greatest number of 

Runx2-expresing fibroblasts, corresponding to a seeding efficiency of 43.9 ± 6.5%, while 

PCL and PLGA exhibited significantly lower seeding efficiencies of 11.1 ± 1.9% and 

23.6 ± 2.1%, respectively.  After 21 days in culture, collagen and PLGA scaffolds 

showed a significant decrease in cell number, which leveled off at 42 days post-seeding.  

In contrast, Runx2-expressing fibroblasts seeded on PCL scaffolds exhibited a marked 

increase in cell number at 21 days post-seeding, which also leveled off at day 42.  

Because these trends are inconsistent with the increase in cell colonization observed at 

the periphery of fibrous collagen/PLGA sponges by fluorescence microscopy (Figure 1), 

we attribute the time-dependent reduction in DNA content to cell necrosis or lack of 

colonization within the inner core of these constructs.  No differences in cell viability or 

colonization patterns were detected between Runx2-expressing and unmodified control 

cells at any time point (data not shown).   

  

Osteoblastic Gene Expression 

 Osteogenic gene expression was investigated at 7 days post-seeding by 

quantitative RT-PCR (Fig. 6.3).  Specifically, we examined expression of markers with a  
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Figure 6.2.  Tissue-engineered constructs are differentially colonized by Runx2-
expressing fibroblasts.  Fibroblasts were transduced with Runx2 retrovirus, seeded on 
collagen, PLGA, or PCL scaffolds and cultured in vitro with osteogenic media.  (A) Cell 
seeding efficiency was determined by quantification of DNA content and cell number 
present in scaffolds at 1 day post-seeding (Mean ± SEM, n=6; ANOVA: p<0.002; 
*different from Runx2-PCL (p<0.05); § different from Runx2-PLGA (p<0.05)).  (B)  
Cell numbers throughout culture period were evaluated by quantification of DNA content 
at 1, 21, and 42 days post-seeding (Mean ± SEM, n-3; ANOVA:  p<0.05). 
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Figure 6.3.  Runx2 upregulates osteoblastic gene expression in fibroblasts seeded on 
polymeric scaffolds.   Fibroblasts were transduced with Runx2 retrovirus or left 
unmodified for controls, seeded on collagen, PLGA, or PCL scaffolds, and cultured in 
vitro with osteogenic media.  mRNA transcript levels were investigated by quantitative 
RT-PCR at 7 days post-seeding (Mean + SEM, n=3; ANOVA: p<1E-3; * different from 
control-PCL only (p<0.05); **different from control-collagen and control-PCL (p< 0.05); 
#different from control-PLGA (p<0.05); † different from Runx2-PLGA (p<0.05)).   
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well-documented role during the osteoblastic differentiation program, including: Runx2, 

alkaline phosphatase (ALP), osteocalcin (OCN), and bone sialoprotein (BSP) 224.  Runx2 

mRNA was upregulated by at least one order-of-magnitude in Runx2-transduced 

fibroblasts seeded on all three scaffolds compared to unmodified control cells seeded on 

the same scaffolds (data not shown).  Sustained expression of Runx2 significantly 

enhanced ALP and BSP expression in fibroblasts seeded on collagen, PLGA, and PCL 

scaffolds.  Moreover, BSP gene expression was significantly higher on Runx2-engineered 

collagen and PCL constructs than on Runx2-engineered PLGA foams.  OCN mRNA was 

upregulated in Runx2-engineered fibroblasts relative to unmodified control cells when 

seeded on fibrous collagen disks, but not when seeded on PCL or PLGA synthetic 

matrices.  18S gene expression was used as a loading control and remained unchanged 

for all treatment groups.     

 

Mineral Deposition and Characterization 

Mineralization within tissue-engineered constructs was quantified by micro-CT 

imaging at 28 and 42 days post-seeding (Fig. 6.4A+B).  Runx2-expressing fibroblasts 

deposited significantly higher levels of mineralized matrix on collagen scaffolds cultured 

in vitro for 28 and 42 days compared to unmodified cells.  Mineral deposition was also 

increased on Runx2-engineered PLGA foams relative to constructs containing control 

cells at 42 days post-seeding only.  In contrast, Runx2-expressing fibroblasts seeded on 

PCL scaffolds showed no significant difference in mineral deposition compared to 

control cells at all time points.  Importantly, genetically engineered cells displayed a 

significantly higher capacity for mineralization when seeded on collagen foams compared  
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Figure 6.4.  Mineralization capacity of Runx2-engineered fibroblasts is scaffold-
dependent.  (A) Representative micro-CT images of Runx2-expressing and unmodified 
fibroblasts seeded on collagen, PCL, and PLGA scaffolds and cultured in osteogenic 
media for 42 days.  Scale bar indicates 1 mm. (B) Quantification of mineral volume by 
micro-CT image analysis of constructs after 28 and 42 days in vitro culture in osteogenic 
media (Mean + SEM, n=6; ANOVA: p<1E-11; *different from control-PCL, Runx2-
PCL, and control-PLGA (p<1E-5); § different from Runx2-PLGA (p<1E-5); ‡ different 
from control-collagen (p<0.05)).  
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to PCL and PLGA synthetic matrices.  A low level of radiopaque material was detected 

on all scaffolds seeded with unmodified control cells, with collagen showing significantly 

more background than PCL and PLGA.    The presence of this radiodense material was 

dependent on the lot of serum (data not shown) and did not significantly increase with 

time in culture, suggesting that in vitro culture conditions may have led to amorphous 

calcium phosphate or non-biological mineral precipitation.   

Fourier Transform Infrared spectroscopy (FTIR) was used to characterize the 

chemical composition of the mineral phase deposited within tissue-engineered constructs 

(Fig. 6.5).  Constructs containing Runx2-engineered cells displayed amide I/II peaks at 

1655 cm-1 and 1550 cm-1, an enhanced phosphate peak at 1100 cm-1, a doublet split 

phosphate peak at 560 and 605 cm-1, and a carbonate peak at 870 cm-1.  This chemical 

signature is similar to the profile for cranial bone (positive control) and represents the 

characteristic bands of a carbonate-containing, poorly crystalline hydroxyapatite 227.  

Deposition of biological mineral was observed on Runx2-engineered collagen, PCL and 

PLGA constructs.  Importantly, the carbonate and phosphate doublet bands were absent 

in all three scaffolds seeded with control cells, suggesting that the radiopaque regions 

detected by micro-CT corresponded to non-biological mineral deposits.  These 

observations are corroborated by reports from several other research groups that in vitro 

culture conditions can lead to non-biologic mineral precipitation 225, 289, 296, 297. 

 

Cell and Mineral Distribution 

The distribution of mineral within Runx2-engineered constructs was visualized by 

cross-sectional analysis of micro-CT images (Fig. 6.6A).   Mineral deposits were  
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Figure 6.5.  Runx2-engineered constructs display FTIR bands characteristic of 
carbonate-containing, poorly crystalline hydroxyapatite.  Chemical composition of 
the mineral phase deposited on (A) collagen, (B) PCL, and (C) PLGA scaffolds was 
analyzed by Fourier transform infrared spectroscopy (FTIR) at 42 days post-seeding.  All 
Runx2-engineered constructs and cranial bone samples displayed amide I and II peaks 
indicative of proteins, an enhanced phosphate peak at 1100 cm-1, a doublet split 
phosphate peak at 560 and 605 cm-1, and a carbonate peak at 870 cm-1, which represent 
the characteristic bands of a carbonate-containing, poorly crystalline hydroxyapatite.  
Carbonate and phosphate doublet peaks were absent in all control constructs, indicating 
that the radiopaque regions observed on these scaffolds corresponded to non-biological 
mineral deposits. 
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confined to the outer 800 µm and 400 µm periphery of Runx2-engineered collagen and 

PLGA scaffolds, respectively.  In contrast, mineral deposits were distributed throughout 

the interior of Runx2-engineered PCL scaffolds and remained confined to a 50-200 µm 

circumference surrounding polymeric struts.  Cell and mineral distribution within tissue-

engineered constructs was also examined by histological analyses (Fig. 6.6B).  von Kossa 

staining for phosphate deposits confirmed the presence and orientation of mineral 

deposits observed by micro-CT imaging.  All control scaffolds showed a low level of 

background von Kossa staining, likely caused by detection of the phosphate component 

within non-biological mineral deposits. Hematoxylin-eosin (H&E) staining revealed that 

cellular distribution was highly dependent on scaffold properties.  Dense cell populations 

were confined to the outer face and edges of matrices with highly porous, sponge-like 

morphology (collagen and PLGA).  Among these, a markedly thicker layer of cell growth 

was observed at the periphery of collagen compared to PLGA, and minimal cell growth 

was observed in the interior of both constructs.  In contrast, a thin layer of cells were 

observed around all PCL microfilaments, including those within the construct interior.  

Notably, mineralization was co-localized with and adjacent to cell growth on all three 

scaffolds.  No difference in cell distribution was detected in scaffolds seeded with control 

cells relative to Runx2 cells.   

 

Discussion 

We demonstrate that the osteogenic potential of Runx2-expressing fibroblasts is 

highly dependent on the architecture and surface properties of polymeric scaffolds.  

Micro-CT imaging revealed that genetically-modified fibroblasts deposit significantly  
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Figure 6.6.  Scaffolds differentially modulate distribution of fibroblasts and matrix 
mineralization. (A)  Cross-sectional micro-CT images depicting the distribution of 
mineralized matrix within Runx2-engineered constructs 42 days post-seeding.  Scale bar 
indicates 1 mm.  (B)  Cellular distribution and mineral deposition within tissue-
engineered constructs was visualized by staining histological sections with hematoxylin-
eosin (H&E) and von Kossa, respectively. Scale bar indicates 200 µm.   
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higher levels of mineral on fibrous collagen disks relative to constructs based on PCL and 

PLGA.  The chemical composition of the mineral phase on all three Runx2-engineered 

scaffolds was verified by FTIR spectroscopy to display the characteristic bands of 

carbonate-containing, poorly crystalline hydroxyapatite.  This chemical signature was 

absent in control samples seeded with unmodified fibroblasts.  Moreover, differential 

patterns of cell proliferation and gene expression were observed on tissue-engineered 

constructs, but these trends did not correlate with scaffold-directed mineral deposition.  

Histological analyses revealed that matrix mineralization co-localized with cellular 

distribution, which was confined to the periphery of fibrous collagen and PLGA sponges 

and around the circumference of PCL microfilaments.  Collectively, this work 

underscores the importance of scaffold parameters on the capacity of Runx2-engineered 

primary dermal fibroblasts to differentiate into a mineralizing osteoblastic phenotype for 

bone tissue engineering applications.   

 An ideal biomaterial scaffold for bone grafting applications would satisfy several 

essential design criteria, including: (1) highly porous architecture to ensure cell survival 

and rapid vascular infiltration, (2) easily processed into anatomically-relevant shapes, (3) 

biocompatible to minimize host inflammatory response, (4) well-characterized 

biodegradation profile to enable persistence of bioactive factors at the implantation site, 

(5) surface chemistry/topography which promotes cell adhesion, proliferation, 

differentiation, and (6) mechanical properties which approximate native skeletal tissue 

and are tailored to  the specific load-bearing application 313, 314.   A wide variety of 

polymers have been explored for their ability to satisfy these material requirements.  
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Among these, scaffolds manufactured from naturally-derived collagen and synthetic 

polymers, such as PLGA and PCL, have shown significant promise in numerous grafting 

and cell-transplantation applications 315.  Collagen is biodegradable, osteoconductive, and 

contains biological recognition sequences which may specifically influence cell behavior 

316.  Yet, scaffolds produced with this natural polymer are limited by inadequate 

mechanical properties and batch-to-batch inconsistency.  PCL and PLGA are aliphatic 

polyester polymers used to reproducibly manufacture scaffolds in large-scale with a 

highly controlled degradation profile and architecture 307, 317.  Despite these advantages, 

the hydrophobic surface chemistry and acidic by-products from the degradation of these 

synthetic polymers may create a microenvironment which is suboptimal for cell 

growth/differentiation.  In addition, selection of a fabrication technique also plays an 

important role in defining the biological and mechanical properties of polymeric 

scaffolds.  Conventional fabrication methods (solvent casting, melt molding, gas 

foaming) yield foam-like structures with variable control of pore size, distribution, and 

interconnectivity 314.   More recently, highly reproducible scaffolds with an 

interconnected network of honeycomb-like pores have been fabricated by fused 

deposition modeling 309, 310, 318-320.  Overall, it is clear that many of the specified design 

requirements for scaffold optimization are contradictory, making 

prioritization/reconciliation of these components a challenging step in the development of 

tissue-engineered bone grafts.     

In the present work, we investigated the ability of three polymeric matrices with 

highly divergent properties to support osteoblastic differentiation and mineral deposition.  

The biological response of cells seeded within these matrices may be influenced by 
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scaffold architecture, surface properties (e.g. chemistry, roughness/topography), and/or 

surface chemistry-dependent differences in protein adsorption 311.  Numerous studies 

have shown that biomaterial surface properties, including chemistry and hydrophobicity, 

will modulate the type, quantity, conformation, and activity of adsorbed serum-derived 

proteins 321-325.  These substrate-dependent differences in protein adsorption have distinct 

effects on cellular adhesion and phenotype expression directed by biomaterial substrates 

325-330.  All constructs in this study were pre-coated with the adhesive glycoprotein 

fibronectin and cultured for 42 days in osteogenic media containing serum.  Thus, it is 

possible that scaffold surface chemistry modulated the conformation/activity of adsorbed 

fibronectin or other serum-derived proteins, which in turn may have regulated 

osteoblastic differentiation and mineralization 331, 332.  Furthermore, scaffold architecture 

(porosity, pore size, interconnectivity) has also shown a marked effect on bone formation 

and tissue in growth in vivo 333-336.  However, the effect of pore size on osteoblastic 

proliferation and function in vitro is highly variable depending on the substrate material, 

fabrication method, and the seeded osteogenic cell-type 309, 337-340.  Finally, biomaterial 

surface roughness has been reported to have a marked effect on proliferation, 

metabolism, and differentiation of osteoblastic cell-types 341, 342.  Overall, it is important 

to note that the optimization of scaffold architecture and surface properties would require 

the systematic isolation of each design parameter and the correlation of these parameters 

to osteogenic outcome variables.  This work was intended to serve as a global assessment 

of the osteogenic capacity of Runx2-expressing fibroblasts when seeded on various 

scaffolds and cannot be used to draw direct correlations between individual construct 

parameters and osteogenic differentiation.   
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Scaffold-dependent modulation of cell numbers and colonization patterns within 

tissue-engineered constructs was observed in the present study.  Runx2-expressing 

fibroblasts showed significantly higher seeding efficiency on fibrous collagen disks 

relative to PLGA and PCL matrices.  Notably, this initial cell adhesion showed a strong 

inverse correlation with scaffold pore size (collagen (61.7um) > PLGA (100 um) > PCL 

(500um)), suggesting that a microporous architecture promotes better cell retention than 

an open macroporous network.  Nevertheless, after 42 days in culture, DNA content 

decreased on collagen/PLGA foams and increased on PCL networks.  We speculate that 

the time-dependent reduction in DNA content is due to cell necrosis within the inner core 

of constructs as a result of mass transport limitations associated with the porous, sponge-

like architecture of collagen and PLGA foams 290, 291, 298.  This hypothesis is supported by 

the enhanced cell numbers observed on PCL, where the scaffold’s macroporous, fully 

interconnected channel network may have led to improved diffusion of nutrients/oxygen 

and removal of waste products.  Furthermore, histological analyses revealed that cell 

infiltration and mineral deposition was limited to the outer periphery of scaffolds with a 

fibrous foam-like geometry (collagen, PLGA).  Despite similarities in geometry, collagen 

disks contained a markedly thicker cell layer than PLGA foams at the construct 

periphery, possibly because naturally-derived polymers more closely resemble the 

chemical composition of the cells’ native environment.  In contrast, tissue growth was 

directed along the circumference of interconnected microfilaments of PCL and 

distributed throughout the construct interior.  Collectively, these results suggest that cell 

distribution is predominantly guided by scaffold architecture.   
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Runx2-expressing fibroblasts show the highest capacity for mineralization in vitro 

when seeded on fibrous collagen sponges.  This enhanced cellular phenotype is likely a 

function of the porous scaffold architecture and the biological recognition sequences 

found within type I collagen, which are known to induce osteoblastic differentiation via 

α2β1 integrin-mediated signaling cascades 80, 252, 343, 344.  Overall, trends in mineral density 

did not correlate with scaffold-dependent changes in DNA content, suggesting that 

enhanced mineral deposition is not a simple function of increased cell numbers.  Indeed, 

minimal deposition of mineral was detected on PCL, despite the significant cell numbers 

within these scaffolds, highlighting the importance of the construct’s material properties 

during osteoblastic differentiation. Runx2-engineered PLGA constructs showed 

significantly enhanced mineral deposition compared to PCL scaffolds containing Runx2-

engineered fibroblasts, corroborating reports that PLGA-coated surfaces are more 

osteoconductive than those coated with PCL 345.  Finally, all constructs showed 

upregulation of osteoblastic genes when seeded with Runx2-transduced fibroblasts 

compared to unmodified control cells, but the magnitude of this expression was only 

slightly modulated by scaffold properties.  Trends in gene expression also did not mirror 

mineral deposition, showing that cell function can be differentially modulated by scaffold 

properties despite minimal changes in early phenotypic markers.  Further insights into the 

relative contributions of scaffold architecture and surface chemistry toward osteogenic 

differentiation would be obtained by culturing Runx2-expressing cells on collagen-, 

PLGA-, and PCL-coated two-dimensional surfaces.    

In conclusion, we have demonstrated that the osteogenic potential of Runx2-

expressing fibroblasts is highly dependent on scaffold properties, with fibrous collagen 
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disks exhibiting significantly higher mineral deposition than gas-foamed PLGA sponges 

and fused deposition modeled PCL.  These results highlight the importance of scaffold 

optimization in the development of tissue engineered bone constructs.   
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CHAPTER 7 

ENGINEERING HETEROGENEOUS BONE-LIGAMENT 
INTERFACES WITH A THREE-DIMENSIONAL SPATIAL 

DISTRIBUTION OF RUNX2 RETROVIRUS 
 

 

Introduction 

Interfacial zones between tissues provide specialized, transitional junctions 

central to normal tissue function.  These interfaces usually consist of multiple cell-types 

and spatially-graded matrix components arranged in a complex hierarchical structure to 

fulfill specific functional roles.  One example in human anatomy of this important 

structure-function relationship is found in the bone-soft tissue interfaces of the 

musculoskeletal system 346, 347.  In particular, the insertion site between the anterior 

cruciate ligament and the tibia consists of a heterogeneous interface with four distinct 

regions, including: ligament, fibrocartilage, calcified fibrocartilage, and bone 348-350. This 

graded transitional zone facilitates the transmission of complex mechanical loads across 

the knee joint by minimizing stress concentrations at the junction of two tissue types 155, 

351.  Conventional soft tissue autografts typically fail at this insertion site due to 

inadequate tissue integration, further highlighting the physiologic importance of these 

heterogeneous structures 149, 352, 353.  

The lack of robust, functional interfaces between bone and soft tissues severely 

limits the functional integration and biological performance of conventional orthopaedic 

grafting strategies 156.  Tissue engineering principles have been pursued to create these 

heterogeneous interfaces 218.  The general paradigm for this approach, in which 

phenotype-specific cells and/or bioactive growth factors are integrated into polymeric 



 131

matrices, has been successfully applied in recent years toward the development of bone, 

ligament, and cartilage tissues in vitro and in vivo 142, 148, 156, 354.  Yet, beyond the basic 

evidence of tissue formation, the regeneration of complex tissue structures which 

recapitulate the microarchitecture and function of native tissue has not been realized.  

Overall, the development of graded/transitional interfacial tissue zones represents a 

significant challenge in current tissue engineering and regenerative medicine strategies.   

Emerging themes in early embryonic development provide insights into natural 

biological mechanisms for complex tissue formation 355, 356.  One widely-accepted 

concept is that diffusion of small signaling molecules (i.e. morphogens) from a source to 

a sink leads to concentration gradients which specify spatial cues to specific cells 357.  

Extracellular morphogen gradients often direct cell fate by activating intracellular 

transcription factors via concentration thresholds 358, 359.  Furthermore, the extracellular 

matrix has been found to aid in gradient formation by presenting binding sites for soluble 

morphogens via heparin sulfate proteoglycans 360.  Alternatively, morphogens can also be 

transcription factors with an intracellular mode of action 361-363.  Taken together, these 

principles suggest that the recapitulation of nature-inspired gradients may enable the 

organization of cell fates into specific three-dimensional patterns.   

Current technologies to create gradients of bioactive molecules in vitro involve 

the encapsulation of growth factors within 3-D polymeric matrices or covalent/non-

covalent immobilization of peptide sequences to patterned biomaterial surfaces 364-368.  

These protein-based approaches are limited by suboptimal delivery vehicles, poor 

spatiotemporal dosage control, short protein half-life, and the cost-prohibitive 

supraphysiologic concentrations required to initiate a cellular response 369, 370.  In order to 
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circumvent these issues, we leveraged biomaterial-mediated retroviral gene transfer as a 

novel strategy to create a spatial distribution of genetic material encoding for a tissue-

specific transcription factor within 3-D polymeric networks.  We have previously 

reported that retroviral overexpression of the osteogenic transcription factor Runx2 using 

conventional ex vivo gene transfer techniques in fibroblasts will reprogram this non-

osteoblastic cell into a mineralizing, osteoblastic phenotype in vitro and in vivo 131, 132, 136.  

In the present study, we demonstrate that zonal organization of bone and soft tissue-

mimetic tissue can be engineered by a simple, one step seeding of autologous fibroblasts 

onto polymeric scaffolds containing spatially-defined regions of the Runx2 retroviral 

vector.  This approach is fundamentally different from current strategies used to create 

heterogeneous tissues, which use co-culture of multiple cellular phenotypes and/or multi-

phase scaffolds with pore-size or compositional gradients 217, 371-373.  Overall, this 

research is significant toward the regeneration of transitional interfacial zones which 

mimic the cellular and micro-structural characteristics of native tissue. These strategies 

were developed in the context of the bone-ligament enthesis as a model system, but are 

broadly applicable to a wide variety of heterogeneous biological tissues. 

 

Materials and Methods 

Cell Culture and Reagents 

Primary fibroblasts were harvested from 8- to 16-week-old male Wistar rats by 

enzymatic digestion of the dermal skin layer 220.  Cells were expanded in growth media 

consisting of DMEM, 10% fetal bovine serum, and 1% penicillin-streptomycin.  

Antibiotics and cell culture media were obtained from Invitrogen (Carlsbad, CA), fetal 
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bovine serum was purchased from Hyclone (Logan, UT), and all other cell culture 

supplements and reagents were acquired from Sigma (St. Louis, MO).   

 

Retrovirus Production 

The Runx2 retroviral vector utilizes the promoter activity of a 5’ long terminal 

repeat to express a single, bicistronic mRNA encoding the murine cDNA for the type II 

MASNSLF Runx2 isoform,221, 222 followed by an internal ribosomal entry site and a 

Zeocin resistance-enhanced green fluorescent fusion protein (Fig. 7.1A) 66.  Empty vector 

control plasmid lacked the Runx2 insert.  Plasmid DNA was purified from transformed E. 

coli using Megaprep kits from Qiagen (Valencia, CA).  Retroviruses were packaged by 

transient transfection of helper-virus free ΦNX amphotropic producer cells with plasmid 

DNA as described elsewhere 66.  

 

Scaffold Coating and Seeding 

Scaffolds were coated with 0.01% poly-L-lysine (70,000-150,000 MW), as this 

concentration and charge/molecule ratio has been shown to yield high levels of virus 

particle adsorption and transduction efficiency 374.  In order to test the feasibility of 

biomaterial-mediated retroviral gene transfer, rectangular fibrous collagen scaffolds (3 

mm wide x 8 mm long x 2 mm thick, average pore size 61.7 µm, 93.7% pore volume, 

Kensey Nash, Exton, PA) were uniformly coated with poly-L-lysine (PLL) for 30 

minutes followed by incubation in Runx2 or empty vector retroviral supernatant for 4.5 

hours in a humidified 5% CO2 atmosphere at 32 °C.   Virus-only control scaffolds were 

uniformly coated with water followed by incubation in Runx2 retrovirus, while PLL-only 
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control scaffolds were uniformly coated with PLL followed by incubation in PBS 

supplemented with 10% fetal bovine serum.  All constructs were washed 1-2x with PBS 

and seeded at a density of 2x105 cells/scaffold in osteogenic growth media.   

 In order to generate constructs with a spatial distribution of retrovirus,  collagen 

scaffolds (5 mm wide x 20 mm long x 2 mm thick) were partially coated on the proximal 

end with 0.01% PLL for 30 minutes and incubated in Runx2 or empty vector retroviral 

supernatant for 4.5 hours.   Virus-only control scaffolds were partially coated with water 

followed by incubation in Runx2 retrovirus, while PLL-only control scaffolds were 

partially coated with PLL followed by incubation in PBS supplemented with 10% fetal 

bovine serum.  These gradient constructs were washed 1-2x with PBS and seeded at a 

density of 1x106 cells/scaffold in osteogenic growth media.   

All constructs were transferred twenty-four hours post-seeding to osteogenic 

differentiation media consisting of DMEM, 10% fetal bovine serum, 100 U/ml penicillin 

G sodium, 100 µg/ml streptomycin sulfate, 50 µg/ml L-ascorbic acid, 2.1 mM sodium β-

glycerophosphate, and 10 nM dexamethasone.  Culture media was changed every 3 days 

until end-point assay.  No differences were observed between empty vector retrovirus 

(negative control) and unmodified cells in all experiments.   

 

Cell Viability  

 Scaffolds were harvested at 21 and 42 days post-seeding, rinsed in complete 

Dulbecco’s phosphate buffered saline (PBS), and incubated in 4 µM calcein-AM and 4 

µM ethidium homodimer-1 (Molecular Probes, Eugene, OR) in PBS for 30 minutes under 
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gentle agitation. Constructs were then rinsed (3 x 10 minutes) in PBS and analyzed with a 

Zeiss LSM 510 Confocal Microscope using Ar and HeNe lasers and a 5x objective lens.   

 

DNA Content 

 Samples were harvested at 1, 21, and 42 days post-seeding, rinsed with PBS, and 

frozen at -80°C.  Scaffolds and serially diluted cell standards were thawed, lyophilized, 

and digested at 55°C in 500 µl of 0.25 mg/ml proteinase K (Fisher Scientific, Pittsburgh, 

PA) in 100 mM ammonium acetate (pH 7.0) for 24 hours.  Digested samples were 

assessed for DNA content via the PicoGreen dsDNA Quantitation Kit (Molecular Probes, 

Eugene, OR).  Raw DNA data was converted to cell numbers using a linear standard 

curve. 

 

Real time RT-PCR 

 Total RNA was isolated at 7 days post-seeding using the RNeasy RNA isolation 

kit with RNAlater stabilization reagent (Qiagen).  cDNA synthesis was performed on 

DNaseI-treated (27 Kunitz units/sample) total RNA (0.25 µg) by oligo(dT) priming using 

the Superscript™ First Strand Synthesis System for RT-PCR (Invitrogen, Carlsbad, CA).  

Gene expression was assessed by quantitative RT-PCR using SYBR Green intercalating 

dye (Molecular Probes) and rat-specific primers as previously described 66, 137.  Primer 

specificity was confirmed by ABI Prism 7700 Dissociation Curve Software. Standards 

for each gene were amplified from cDNA using real-time oligonucleotides, purified using 

a Qiagen PCR Purification kit, and diluted over a functional range of concentrations.  

Transcript concentration in template cDNA solutions was quantified from a linear 
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standard curve, normalized to 0.25 µg of total RNA, and expressed as nanomoles of 

transcripts per µg of total RNA.  Detection limits for each gene were determined by 

reactions without cDNA and fall below the y-axis minimum. 

 

Microcomputed Tomography 

 High resolution X-ray microcomputed tomography (micro-CT) with a Scanco 

µCT Medical CT 40 imaging system (Bassersdorf, Switzerland) was used to quantify in 

vitro and in vivo mineralization of 3-D scaffolds.  Formalin-fixed specimens were 

scanned at a 16 µm voxel resolution.  Uniformly coated scaffolds cultured in vitro were 

evaluated at a threshold corresponding to a linear attenuation of 1.04 cm-1, Gauss filter 

sigma of 1.2, and filter support of 2.  The inner volume of partially coated scaffolds 

cultured in vitro was manually segmented to eliminate edge effects and evaluated 

between lower and upper thresholds corresponding to linear attenuations of 2.08 cm-1 and   

3.2 cm-1, respectively.  Partially coated scaffolds implanted in vivo were evaluated at a 

threshold corresponding to a linear attenuation of 1.20 cm-1.   Reconstructed and 

thresholded images were evaluated using direct distance transformation methods to 

calculate mineralized matrix volume within each construct.   

 

Mechanical Testing 

  Fresh specimens were washed in PBS, cut in half (gauge length and width of 10-

mm and 5-mm, respectively), placed into soft-tissue clamps of an ELF 3200 mechanical 

testing system (EnduraTEC / Bose, Eden Prairie, MN), and pulled to failure at a rate of 

0.2 mm/sec. Force was recorded using a 11-lb load cell (Interface, Scotsdale, AZ) and 
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displacement recorded via computer acquisition interface (WinTest, EnduraTEC).  Stress 

and strain were calculated from the force and displacement data by adjusting for the 

tissue’s cross-sectional area and gauge length, respectively.  

 

Subcutaneous Implantation 

 Heterogeneous constructs were subcutaneously implanted into the backs of 7-

week-old syngeneic rats after 24 hours culture in osteogenic growth media (n=3 for each 

treatment group).  Two implants were placed in each animal, one on each side of a 

midline incision into subcutaneous pockets made by blunt dissection.  Constructs were 

explanted after 2 weeks of implantation following euthanasia by CO2 inhalation.  All 

procedures were carried out according to an IACUC-approved protocol as previously 

described 131, 138.   

 

Histology and Immunohistochemistry 

 Formalin-fixed constructs were paraffin embedded and sectioned at 5 µm 

thickness.  Sections were stained with hematoxylin-eosin and von Kossa to observe 

cellular distribution and matrix mineralization within 3-D constructs, respectively.  eGFP 

expression was observed by immunostaining using a colorimetric avidin-biotin kit 

(Vector Labs, Burlingame, CA).  Sections were deparaffinized, rehydrated, and then 

pretreated using protease-induced antigen retrieval in 1 µg/mL proteinase K.  After 

pretreatment, slides were incubated in a rabbit polyclonal primary antibody against eGFP 

(Molecular Probes) followed by sequential incubation in biotinylated anti-rabbit 
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secondary antibody and avidin-biotin linked alkaline phosphatase.  Slides were then 

incubated in Vector Red substrate and counterstained with hematoxylin. 

 

Data Analysis 

Unless otherwise stated, all in vitro experiments were performed two times in 

triplicate, each with unique Runx2 retroviral supernatant preparations, and two 

independent isolates of primary dermal fibroblasts.  Data are reported as mean ± standard 

error of the mean (SEM), and statistical comparisons using SYSTAT 8.0 were based on 

an analysis of variance (ANOVA) and Tukey’s test for pairwise comparisons, with a p-

value < 0.05 considered significant.  In order to make the variance independent of the 

mean, statistical analysis of real-time PCR data was performed following logarithmic 

transformation of the raw data 66. 

 

Results 

Biomaterial-mediated retroviral gene transfer approach 

  As a first step toward creating a heterogeneous interface, we explored the 

feasibility of delivering genetic material to fibroblasts via a biomaterial-mediated 

retroviral gene transfer approach.  We exploited the ability of cationic polymers (e.g. 

poly-L-lysine (PLL), polybrene) to neutralize charge and aggregate retroviral particles in 

order to immobilize retrovirus onto collagen scaffolds 374, 375.  Scaffolds were uniformly 

coated with 0.01% PLL incubated for 4.5 hours in retroviral supernatant, and seeded with 

primary dermal fibroblasts.  Cells were enzymatically digested from collagen scaffolds 

and analyzed for transduction efficiency by quantification of eGFP expression via flow 
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cytometry with a Vantage SE cell sorter (Becton-Dickinson, San Jose, CA).  eGFP 

expression was detected in ≥ 20% of primary dermal fibroblasts after 14 days in culture 

in osteogenic growth media, demonstrating sustained and integrated transgene expression 

by the retroviral vector (Fig. 7.1B).  Quantitative RT-PCR analysis revealed that viral 

uptake of virus is dependent on pre-treating scaffolds with PLL, as eGFP gene expression 

was upregulated on PLL+R2RV-coated scaffolds compared to virus-only controls (Fig. 

7.1C).  These results were corroborated by immunohistochemical staining for eGFP 

expression. eGFP co-localized with fibroblasts only on scaffolds co-treated with 

PLL+R2RV (Fig. 7.1D, E).  Finally, confocal image analysis of live/dead fluorescent 

staining (Fig. 7.1F) and quantification of DNA content (Fig. 7.1G) indicated that 

fibroblasts remain viable throughout the 42 day culture period and equivalently colonize 

collagen scaffolds independent of treatment group.  

 

Biomaterial-mediated gene transfer of Runx2 retrovirus promotes osteogenesis in 

fibroblasts 

 Osteogenic gene expression within uniformly coated constructs was quantified by 

real time RT-PCR after 7 days culture in osteogenic differentiation media (Fig. 7.2A).  

Biomaterial-mediated delivery of the Runx2 retroviral vector upregulated osteoblastic 

gene expression compared to PLL-only and virus-only control constructs.   This response 

was specific to osteogenic markers, as type II collagen expression remained unchanged.  

Mineral deposition within uniformly coated scaffolds was analyzed after 49 days culture 

in osteogenic differentiation media (Fig. 7.2B,C).  Fibroblasts deposited a significant 

amount of mineralized matrix on collagen scaffolds coated with PLL+R2RV, while virus- 
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Figure 7.1:  Biomaterial-mediated retroviral gene transfer results in efficient transduction 
and sustained transgene expression in fibroblasts. Negatively-charged Runx2 retrovirus 
(R2RV) was immobilized onto fibrous collagen scaffolds uniformly coated with the cationic 
poly-L-lysine (PLL).  Primary dermal fibroblasts were then seeded onto these scaffolds and 
statically cultured in vitro.   (A) The Runx2 retroviral vector expresses the type II Runx2 isoform 
and a Zeocin:eGFP selectable marker from a single bicistronic mRNA.   (B) Detection of GFP 
expression by flow cytometry after enzymatic digestion of cells from collagen scaffolds 
demonstrated efficient fibroblast transduction at 14 days post-seeding.   (C) eGFP mRNA levels 
were upregulated in PLL+R2RV-coated scaffolds compared to controls at 7 days post-seeding, 
demonstrating that viral uptake by fibroblasts is dependent on pre-coating scaffolds with poly-L-
lysine (Mean + SEM, n=3; ANOVA: p<0.05; * different from R2RV only control (p=0.05)). (D) 
The spatial localization of eGFP expression and cell distribution was qualitatively observed 
within histological sections by immunohistochemical staining for eGFP (pink, arrow) and 
hematoxylin and eosin counterstain (blue), respectively.  10x micrographs.  Scale bar=500 µm.  
(E) 20x micrograph of eGFP expression (pink) co-localizing with fibroblasts (blue) within a 
scaffold uniformly coated with PLL+R2RV after 21 days in culture.  Scale bar=250 µm. (F) 
Uniform cellular colonization and viability throughout the 42 day culture period was confirmed 
by confocal microscopy image analysis of live (green)/dead (red) fluorescence staining and (G) 
quantification of DNA content (Mean + SEM, n=3; ANOVA: p<0.05).   
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only controls showed negligible mineral deposits.  Notably, an unexpected low level of 

radiodense material was observed on PLL-only controls, suggesting that in vitro culture 

conditions may lead to precipitation of non-biological mineral.  This possibility was 

further supported by FTIR analysis of the chemical composition of the mineral phase. 

Retrovirus-coated scaffolds and cranial bone samples displayed the characteristic bands 

of carbonate-containing, poorly crystalline hydroxyapatite, while this chemical signature 

was absent in control samples.  In addition, immunohistochemical staining for eGFP 

expression was performed to assess the spatial distribution of transduced fibroblasts 

within uniformly coated constructs (Fig. 7.2D).  eGFP-positive cells co-localized with 

von Kossa-positive mineral deposits, indicating that mineral deposition was primarily 

originated by fibroblasts which were susceptible to biomaterial-mediated viral gene 

delivery.   

 Importantly, histological and micro-CT analyses of cross-sectional images 

revealed that cell colonization and mineral deposition patterns are differentially 

modulated by the virus delivery strategy (Fig. 7.3A,B).  Mineral deposits displayed a 

dense morphology and were confined to the periphery of scaffolds seeded with 

fibroblasts engineered with Runx2 retrovirus by conventional gene transfer techniques.  

In contrast, discrete mineralized nodules corresponding to transduced cell colonies were 

distributed throughout the interior of scaffolds that had been coated with PLL+R2RV 

prior to cell seeding.  These results are important because the clinical application of 

current tissue engineering strategies to critical-sized bone defects is significantly limited 

by the formation of a mineralized shell around the scaffold periphery which, 

consequently, causes cell necrosis within the inner construct core 290, 298.  Taken together,  
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Figure 7.2:  Biomaterial-mediated gene delivery of Runx2 retrovirus promotes 
osteoblastic differentiation in fibroblasts.  Scaffolds were uniformly coated with poly-
L-lysine (PLL) and incubated in retroviral supernatant (R2RV) prior to seeding with 
primary dermal fibroblasts. (A)  Osteogenic gene expression was upregulated within 
constructs uniformly coated with PLL+R2RV compared to virus-only and PLL-only 
controls after 7 days in vitro culture in osteogenic media. (Mean + SEM, n=3;  Runx2: 
ANOVA: p=0.002, ** different from both R2RV only (p=0.01) and PLL only (p=0.002) 
controls;  BSP: ANOVA:  p= 0.000066, ** different from both R2RV only (p=0.00009) 
and PLL only (p=0.00023) controls;  CollagenI:  ANOVA: p=0.017, * different from 
PLL only control (p=0.015). (B)  Micro-CT images showing enhanced mineral deposition 
on scaffolds uniformly coated with PLL+R2RV compared to virus-only and PLL-only 
controls. Scale bar=1 mm.   (C)  Mineral deposition within uniformly coated scaffolds 
was quantified by micro-CT image analysis after 49 days in osteogenic media. (Mean + 
SEM, n≥4; ANOVA: p<0.0001; ** different from both R2RV only (p=0.00018) and PLL 
only (p=0.05) controls).    (D) Histological analyses revealed that genetically-engineered 
eGFP-positive fibroblasts co-localized with mineral deposits, indicating that mineral 
deposition was primarily originated by fibroblasts which were susceptible to biomaterial-
mediated viral gene delivery.  Cell and mineralized matrix distribution was visualized by 
staining serial histological sections for eGFP expression (eGFP immunohistochemistry, 
pink), fibroblasts (H&E, blue), and phosphate deposits typically present within 
mineralized nodules (von Kossa, black). 10x micrographs. Scale bar indicates 500 µm.  
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Figure 7.3.  Fibroblast colonization and mineral deposition patterns are 
differentially modulated by virus delivery strategy.  (A)  Cross-sectional micro-CT 
images depicting the distribution of mineralized matrix within Runx2-engineered 
constructs.  Scale bar indicates=1 mm.   (B)  Cell and mineral distribution within collagen 
disks was visualized by hematoxylin-eosin (H&E) and von Kossa staining, respectively.  
Scale bar=250 µm.   Mineral deposits displayed a dense morphology and were confined 
to the periphery of scaffolds seeded with fibroblasts engineered by conventional ex vivo 
gene transfer techniques.  In contrast, discrete mineralized nodules corresponding to 
individual transduced cells were distributed throughout the interior of scaffolds that had 
been coated with Runx2 retrovirus prior to fibroblast seeding.   
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these results indicate that biomaterial-mediated retroviral gene delivery is a feasible 

strategy for the genetic modification and differentiation of fibroblasts into a mineralizing 

osteoblastic phenotype within 3-D matrices. 

 

Spatially-regulated genetic modification of fibroblasts in 3-D matrices  

 A spatial distribution of Runx2 retrovirus was created by partially coating the 

proximal end of scaffolds with PLL prior to incubation in retroviral supernatant (Fig. 

7.4).  These constructs were then seeded with primary dermal fibroblasts and cultured in 

vitro under static conditions in osteogenic media until endpoint assay.  

Immunohistochemical staining revealed the presence of a retrovirus-induced graded 

distribution of genetically engineered cells, with eGFP-expressing cells distributed 

throughout the scaffold interior on the proximal, PLL+R2RV-coated portion of constructs 

(Fig. 7.5B).  These Runx2-expressing cells co-localized with a graded distribution of 

mineral deposition, further demonstrating that cellular uptake of the Runx2 retroviral 

vector is highly dependent on the adsorption of the retrovirus to positively-charged PLL 

prior to cell seeding (Fig. 7.5C).  Confocal microscopy image analysis of live/dead 

fluorescent staining showed that cell distribution and viability were uniform throughout 

the scaffold, confirming that the spatial distribution of mineral was not due to differences 

in cell numbers (Fig. 7.5A).   
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Figure 7.4.  Biomaterial-mediated gene transfer approach used to spatially control 
genetic modification and differentiation of fibroblasts within 3-D matrices.  (A) A 
spatial distribution of Runx2 retrovirus was created in 3-D by coating the proximal 
portion of fibrous collagen scaffolds with positively-charged poly-L-lysine prior to 
incubation in retroviral supernatant.  These constructs were then seeded with primary 
dermal fibroblasts and cultured in vitro in osteogenic media or implanted in vivo into a 
subcutaneous, ectopic site until characterization with end point assays.  (B)  Schematic 
representation of cell-seeded constructs containing a spatial distribution of non-
covalently immobilized retrovirus.   
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Figure 7.5.   Spatially regulated genetic modification of fibroblasts in 3-D matrices 
containing a graded distribution of Runx2 retrovirus. A spatial distribution of Runx2 
retrovirus was created by partially coating the proximal portion (left side) of fibrous 
collagen scaffolds with poly-L-lysine prior to incubation in retroviral supernatant.  These 
constructs were then seeded with primary dermal fibroblasts and cultured in vitro in 
osteogenic media.  (A) Confocal microscopy image of live (green)/dead (red) 
fluorescently-stained cells showing uniform fibroblast distribution.  Scale bar=4 mm.  (B) 
Immunohistochemical staining for eGFP counterstained with hematoxylin (blue) showing 
elevated eGFP expression (pink) on the region with immobilized Runx2 retrovirus. (C) 
Cross-sectional micro-CT image of mineral deposits showing transitional mineralized 
zone co-localizing with eGFP expression. Scaffold is outlined in dashed box. 
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Zonal organization of osteoblastic and fibroblastic phenotypes within 3-D matrices in 

vitro and in vivo 

Gene expression within partially coated constructs was quantified by real time 

RT-PCR after 7 days in osteogenic differentiation media.  Fibroblasts seeded on the 

proximal, PLL+R2RV-coated portion of collagen scaffolds (sideA) exhibited significant 

upregulation of osteoblastic genes, while cells seeded on the distal scaffold portion 

(sideB) incubated in retrovirus alone expressed background levels of these osteoblastic 

markers (Fig. 7.6A). This induction in osteoblastic differentiation was due the presence 

of immobilized Runx2 retrovirus as PLL-only treated scaffolds displayed background 

levels of osteoblastic markers. 

Mineral deposition within partially coated constructs was evaluated with micro-

CT image analysis after 42 days culture in osteogenic differentiation media.  Remarkably, 

scaffolds containing a spatial distribution of immobilized retrovirus (PLL+R2RV) 

showed zonal organization of both mineral deposition and non-mineralized, fibroblastic 

extracellular matrix (Fig. 7.6B).  The magnitude of the mineral volume fraction was 

highest on the proximal end of the scaffold and decreased gradually along the length of 

the construct toward the distal end (Fig. 7.6C).  This mineral gradient was not detected on 

PLL-only and R2RV-only control constructs.    

The biomechanical properties of these heterogeneous constructs were 

characterized with tensile testing at a strain rate of 0.2 mm/s (Fig. 7.6D).  Construct 

stiffness (0.198 ± 0.038 N) and maximum force at failure (0.277 ± 0.04 N/mm) were 

significantly enhanced on the proximal, PLL-coated portion (side A) of R2RV-coated 

scaffolds when compared to control specimens.  Furthermore, the material properties of 
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R2RV-coated constructs (Young’s Modulus (0.16 ± 0.024) and maximum stress (0.03 ± 

0.004)) were also significantly upregulated compared to control samples.  Taken together, 

this data demonstrates that increases in both the structural and material mechanical 

properties of heterogeneous bone-ligament tissue constructs are localized to scaffold 

regions containing the highest amount of mineralized tissue.   

Finally, engineered scaffolds were implanted into an ectopic, subcutaneous site in 

order to assess the capacity of these constructs to mature into a bone-ligament-mimetic 

tissue in vivo in the absence of osteoinductive cues and cell-types typically present in 

orthotopic defects.   Micro-CT image analysis revealed spatial patterning of mineral 

deposition within constructs containing a graded distribution of the Runx2 retroviral 

vector after 14 days in vivo (Fig. 7.7A,B).  Negligible mineral deposits were detected on 

control constructs coated with empty vector retrovirus.  

 

Discussion   

The ultimate goal of tissue engineering is the regeneration of complex tissues 

which mimic the cellular and micro-structural characteristics of native tissue to restore 

normal function. The objective of the present study was to engineer a heterogeneous 

bone-soft tissue interface by spatially regulating the expression of a tissue-specific 

transcription factor in fibroblasts within 3-D matrices.  Toward this end, we first 

demonstrate that biomaterial-mediated retroviral gene transfer is a feasible strategy for 

the genetic modification and differentiation of fibroblasts into a mineralizing osteoblastic 

phenotype.  We then leveraged the observation that retroviral uptake from tissue 

constructs was highly dependent on PLL to create a graded distribution of Runx2  



 149

 

 

 

 

 

 

 

 

 

 

Figure 7.6.  Zonal organization of osteoblastic and fibroblastic phenotypes created 
by 3-D retroviral gradients in vitro.  A spatial distribution of Runx2 retrovirus was 
created by partially coating the proximal (left half, side A) portion of scaffolds with poly-
L-lysine (PLL) prior to incubation in retroviral supernatant and cell seeding.  (A) 
Osteogenic gene expression, including Runx2, osteocalcin, and bone sialoprotein, was 
upregulated by at least 2 orders-of-magnitude compared to controls on the proximal, 
PLL+R2RV-coated portion (side A) of a representative scaffold containing a virus 
gradient. (B)  Micro-CT images showing spatial patterning of both mineral deposition 
and non-mineralized, fibroblastic extracellular matrix in tissue engineered constructs 
containing a spatial distribution of immobilized Runx2 retrovirus. This graded mineral 
distribution was not observed on virus-only or PLL-only controls.  Scale bar=3.5mm. (C) 
Quantification of mineral volume in 2 mm segments moving lengthwise down the z-axis 
of representative constructs with micro-CT image analysis. (D) Tensile testing at a strain 
rate of 0.2 mm/s indicated that the structural and material mechanical properties were 
significantly enhanced on the proximal, PLL-coated portion (side A) of R2RV-coated 
scaffolds compared to control specimens.  Notably, this increase in mechanical properties 
corresponding to the region of these constructs containing the highest content of mineral 
deposition.  (Mean + SEM, n>10; Max Force at Failure: ANOVA: p=0.00012; *** ≠ 
EVRV sideB (p=0.000079), EVRV sideA (p=0.0437), and R2RV sideB  (p=0.0089). 
Stiffness: ANOVA: p=0.0004; *** ≠ EVRV sideB (p=0.00034), EVRV sideA (p=0.035), 
and R2RV sideB  (p=0.0122).  Young’s Modulus: ANOVA: p=0.000067; ** ≠ EVRV 
sideB (p=0.000047) and R2RV sideB  (p=0.005).  Maximum stress: ANOVA: 
p=0.000069; *** ≠ EVRV sideB (p=0.000044), EVRV sideA (p=0.049), and R2RV 
sideB  (p=0.0065 ).  
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Figure 7.7.  Runx2-induced spatial patterning of mineral deposition in vivo.  Dermal 
fibroblasts were uniformly seeded on collagen scaffolds containing a spatial distribution 
of immobilized Runx2 retrovirus (left half of scaffold was coated with poly-L-
lysine/Runx2 retrovirus).  These heterogeneous tissue engineered constructs were 
implanted into a subcutaneous, ectopic site in order to  assess the ability of these 
constructs to create a graded interface in the absence of an osteogenic environment.   (A) 
Micro-CT images of explanted constructs after 14 days in vivo showing a spatial 
organization of mineral deposition. Scale bar=3mm.  (B) Quantification of bone volume 
in 1 mm segments moving lengthwise down the z-axis of representative constructs by 
micro-CT image analysis. The magnitude of the mineral volume was highest on the 
proximal, PLL-coated portion of the scaffold and decreased gradually moving lengthwise 
down the z-axis of the construct toward the distal end. This positional mineral 
distribution was not observed on empty vector virus controls.  
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retrovirus within tissue engineered constructs.  These 3-D retroviral gradients resulted in 

spatially regulated genetic modification of fibroblasts and, consequently, zonal 

organization of osteoblastic and fibroblastic cellular phenotypes in vitro.  Furthermore, 

spatial patterns of mineral deposition and non-mineralized fibroblastic extracellular 

matrix were also observed after subcutaneous in vivo implantation.  Taken together, these 

results indicate that a continuous, biphasic bone-soft tissue interface can be developed by 

a simple, one step seeding of fibroblasts into polymeric scaffolds containing a graded 

distribution of the Runx2 retroviral vector.  Notably, the proposed work focuses on a 

single cell type to generate these heterogeneous tissue constructs; this aspect is 

fundamentally different from current approaches dealing with creating bi/tri-layered 

scaffolds via multiple steps and combining different cellular phenotypes (e.g., osteoblasts 

and fibroblasts) 217, 371, 372.   

Concentration gradients of extracellular and intracellular morphogens play a 

central role in directing cell fate and establishing tissue axes during embryonic pattern 

formation 355, 356.  Remarkably, embryonic positional fields less than 30 cells wide can be 

organized into discrete domains of gene expression with crisp borders 376.  Mechanisms 

by which these gradients are translated into precise spatial control over cellular response 

are not fully understood.  Yet, one predominant theme is that morphogen diffusion leads 

to the activation of downstream transcription factors via differential cell sensitivity to 

concentration thresholds 356, 358 .  We hypothesize that precise and robust control over 

spatial patterns of tissue-specific transcription factor expression would be amenable to 

complex tissue formation.  In support of this hypothesis, we provide evidence that a 

continuous, biphasic bone-soft tissue interface can be engineered with a 3-D gradient of 
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genetic material encoding for the osteogenic transcription factor Runx2.   This result 

represents an important step toward the development of enabling technologies for precise 

and robust control over 3-D spatial cues.  The degree to which a tissue engineered 

substitute must resemble native tissue in order to induce functional integration and 

regeneration has not been defined, but is likely dependent on the anatomic location of the 

defect.  Ultimately, spatial control at the single-cell length scale (100 µm) may be 

required to engineer complex structures which recapitulate the precise architecture and 

biochemical properties of native tissue 359.   

A central issue toward the creation of heterogeneous tissues is the development of 

technologies for spatiotemporal control over signaling molecule(s) to control cell 

phenotype.   Attempts to create morphogen gradients in vitro have predominantly relied 

on the immobilization of growth factors within 3-D polymeric matrices or covalent/non-

covalent tethering of peptide sequences to patterned biomaterial surfaces 365-368, 377.  

These protein-based approaches are limited by suboptimal delivery vehicles, poor 

spatiotemporal dosage control, short protein half-life, and the cost-prohibitive 

supraphysiologic concentrations required to initiate a cellular response 370.  In addition, it 

is exceedingly difficult to engineer precise gradients of soluble bioactive factors in vivo 

due to the complex milieu 369.  Ultimately, it is unlikely that bolus delivery of a single 

protein gradient will supply sufficiently robust/precise spatiotemporal control to induce 

the formation of complex tissues which mimic native organ function.  In this study, we 

explore the feasibility of biomaterial-mediated gene transfer to spatially pattern the 

genetic modification and subsequent differentiation of cells seeded within these 

constructs.  In contrast to conventional gene therapy techniques, this approach promotes 
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gene delivery by co-localizing the cell adhesion substrate and gene delivery vehicle 378, 

379.  This approach is more cost-effective than protein-based therapies and may allow for 

finer control over individual cell fate by providing graded positional cues within a 3-D 

substrate 380.  Furthermore, the selection of genetic material encoding for a tissue-specific 

transcription factor instead of a secreted, soluble factor, may offer more precise control 

over single-cell differentiation without dramatic consequences to the surrounding cells.  

Indeed, delivery of genes encoding for soluble factors has been problematic because 

cellular secretion of these proteins is poorly controlled and paracrine signaling to 

neighboring cells may induce undesired cellular effects7, 8.   

Gene carriers have been tethered to or encapsulated within biomaterial supports 

with a wide range of immobilization schemes 381.  These technologies have successfully 

facilitated the localized delivery of nonviral and viral vectors to cells seeded on 2-D 

biomaterial surfaces 379, 382, 383.   Furthermore, transient transfection of host cells in vivo 

was reported from 3-D scaffolds containing naked DNA plasmid and adenovirus 380, 384, 

385.  More recently, the immobilization of adeno-associated virus to allogenic bone grafts 

has shown utility in bone healing 386.  Despite these advances, these technologies are 

limited in applications that require long-term transgene expression or spatial gradients of 

factor delivery.  We expand upon these concepts with this work to create spatial gradients 

of retrovirus within three-dimensional polymeric networks. We develop a novel 

biomaterial-mediated method for retroviral gene delivery to fibroblasts by exploiting the 

ability of cationic polymers (e.g. PLL) to charge neutralize and aggregate retroviral 

particles 374, 375. Importantly, retroviral particles immobilized within 3-D scaffolds retain 

the ability to transduce cells cultured on these matrices.  Using this technique, we show 
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that a homogeneous population of fibroblasts can be locally patterned into two different 

cell fates by seeding them on three-dimensional matrices containing defined spatial 

domains of immobilized retrovirus encoding for the osteogenic transcription factor 

Runx2.   

Retroviral transduction of mammalian cells is a highly complex process which 

remains poorly understood.  The general mechanism for viral attachment involves a three 

steps, including:  (1) virus diffusion to the cell surface, (2) non-specific binding to the 

cell membrane, and (3) specific binding of viral envelope protein gp70 to its cognate 

cellular receptor 374.  Slow diffusion and rapid decay of retroviral particles have been 

identified as the primary factors limiting the efficiency of retroviral gene transfer 387.    

Cationic polymers, such as polybrene and PLL, have been shown to enhance transduction 

efficiency by altering viral adsorption kinetics 374, 388.  These positively-charged polymers 

neutralize the negatively-charged retrovirus, thereby enhancing non-specific adsorption 

to target cell surface by reducing virus-cell electrostatic repulsion and enhancing viral 

aggregation 374.   In this study, we observed that biomaterial-mediated transduction is 

highly dependent on pre-coating these scaffolds with PLL prior to incubation in retroviral 

supernatant.  We hypothesize that our approach may promote non-specific adsorption to 

target cell surface by overcoming diffusion limitations from conventional ex vivo 

techniques in suspension, enhancing virus aggregation, reducing viral degradation rate, 

and reducing cell-virus electrostatic repulsion.   

Heterogeneous zones of ligament, fibrocartilage, mineralized fibrocartilage, and 

bone are found at the transitionary region between the anterior cruciate ligament and 

bone 348, 350, 389.  In the present work, we engineer a biphasic construct containing a 
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continuous interface of osteoblastic and fibroblastic tissue by using the bone-soft tissue 

interface as a model system.   It is unlikely that static culture of these constructs in vitro 

will lead to the development of tissue that fully recapitulates the structure of this 

interface.  However, we suggest that the interplay of these heterogeneous constructs with 

the mechanical forces and biochemical cues in an orthotopic in vivo environment may 

lead higher-order tissue organization 149, 352, 353.  More specifically, we hypothesize that 

the continuous interface between fibroblasts and mineralizing Runx2-expressing 

fibroblasts may lead to a cartilage intermediate.  This hypothesis was formulated based 

on the fact that mesenchymal progenitor cells go through a highly complex, intermediate 

cartilaginous phase prior to mineralized matrix deposition during long-bone development 

and fracture healing in a process termed endochondral ossification 30, 31.  Further support 

for this idea is gathered by studies that provide evidence for a cartilage intermediate 

phase using fibroblast/osteoblast co-cultures 371. 

In summary, we demonstrate that a biphasic construct containing a continuous 

interface of osteoblastic and fibroblastic tissue can be developed by a simple, one step 

seeding of autologous fibroblasts into polymeric scaffolds containing a graded 

distribution of the Runx2 retroviral vector.  The concept of controlling expression of 

tissue-specific transcription factors to create spatial gradients of differential cell function 

within 3-D matrices may be applicable to the development of interfacial zones for a large 

number of tissue engineering applications.  Overall, these results are significant toward 

the development of autologous grafting templates containing transitional interfacial zones 

for enhanced tissue integration and biological function.   

  



 156

CHAPTER 8 
 

FUTURE CONSIDERATIONS 

 

Significant progress has been attained toward the development of retroviral, 

adenoviral, and adeno-associated viral vectors for musculoskeletal tissue repair and 

regeneration.  Recent studies in preclinical animal models suggest that virus-based 

genetic engineering strategies may provide enhanced in vivo bone formation compared to 

direct implantation of either osteogenic cells or recombinant protein therapy alone.  

Moreover, limitations associated with the administration of supraphysiologic 

recombinant protein doses may be circumvented by cells engineered to produce these 

factors in a continuous manner via natural cellular mechanisms.  These advantages 

suggest that the additional complexity associated with genetic engineering strategies may 

be warranted for bone repair applications.  However, before clinical application is 

realized, extensive preclinical studies, including experiments in larger animal models, 

will be necessary to address concerns that the therapeutic potential of targeted gene 

delivery will be counteracted by the safety risks associated with administration of viral 

vectors.  Characterization of the safety profile of these vectors is particularly important 

for non-lethal bone repair applications that are meant to improve quality of life for the 

patient.   

The optimal combination of gene transfer vector, regenerative molecule(s), and 

cell source for robust, yet highly controlled bone formation in immunocompetent patients 

has not been identified. Despite observed efficacy in animal models, the therapeutic 

dosage necessary to induce bone healing in humans without a significant humoral/cellular 
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immune response is still unknown.  Characterization of the protein release profile and the 

threshold of factor delivery necessary to achieve efficacy will be necessary for each 

individual approach based on a different regenerative molecule or combination of 

molecules.  Additional comparative studies will also be necessary to determine the 

relative potency as well as applicability of osteoblastic and nonosteoblastic cell-types in 

bone regeneration in order to select the appropriate cell source.  Moreover, studies 

characterizing cell fate after implantation and the cellular origin of bone formation will 

become increasingly important in the clinical application of these strategies to human 

bone defects.  A comparative analysis of the relative therapeutic merit of each genetic 

engineering strategy is challenging because independent investigators use a diverse range 

of vectors, cell-types, therapeutic transgenes, and in vivo animal models.  Furthermore, it 

is difficult to draw conclusions even from studies which do attempt this comparison 390 

because the mechanism of viral gene transfer is highly dependent on a number of 

variables which are difficult to control (e.g. transfection/transduction efficiency, vector 

exposure time during infection, virus titer, cell confluence, serum lot, cell proliferation 

rate, vector pseudotype, and/or infection procedure).  Overall, the pursuit of many of 

these options in parallel is important because it is unlikely that one single strategy will be 

universally appropriate for the treatment of the diverse orthopaedic conditions requiring 

grafting procedures.   

Significant progress has also been made in recent years toward the development 

of gene therapy-based strategies to improve the biochemical, mechanical, and 

histomorphological properties of healing ligament tissue.  Nevertheless, this particular 

field is still in its infancy, largely because an incomplete understanding of the molecular 
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pathways involved in ligament development/healing has significantly hindered the 

development of novel strategies for ligament repair.  The spatial and temporal cascade of 

factors that is necessary for the differentiation of stem cells into a ligament fibroblast-

specific cellular phenotype has not been identified.  In addition, no unique biochemical 

markers exist to distinguish ligament tissue from other fibroblastic tissue-types, making 

characterization difficult.  Thus, future advances in ligament cell biology will likely 

enable development of genetic engineering strategies based on novel therapeutic 

molecules alone or in combination.  Many more in vitro and in vivo studies will be 

necessary before a grafting template will be realized which recapitulates the precise 

architecture, biochemical composition, and mechanical properties of the native ligament 

tissue.   

Numerous gene therapy strategies have successfully enhanced mineral deposition 

or soft tissue repair in vivo, but the development of grafts which fully recapitulate the 

three-dimensional structure and functional characteristics of bone and/or ligament tissue 

has not been realized.  It is not currently well understood whether the optimal orthopaedic 

regenerative strategy must perfectly mimic the precise architecture and biochemical 

properties of native bone.  Indeed, it is likely that the degree of native tissue 

recapitulation will be dependent on the anatomic location of the defect, the level of 

damage to vasculature and progenitor cell populations within the host tissue bed 

surrounding the repair site, and general health/age of the patient.  Nevertheless, it is likely 

that the complex biomolecular organization of endogenous skeletal tissue cannot be 

achieved by the delivery of a single dose of recombinant protein to the repair site in a 

poorly-controlled manner.  Future studies should aim to clarify how close to native tissue 
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is “close enough” to ubiquitously induce healing in variety of bone defects with varying 

severity.  Current and emerging gene transfer technologies focusing on regulated 

expression systems (including inducible and tissue-specific systems) as well as 

combinatorial strategies may enable the design of therapies which more closely mimic 

the complex spatial and temporal cascade of proteins involved in bone formation.  These 

strategies in combination with appropriate cell sources and engineered biomaterial 

matrices represent promising avenues to the generation of structural and functional 

regenerated bone and ligament tissue. 
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