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SUMMARY

Thanks to pioneering scientists and clinicians, prosthetic devices that are con-

trolled by intra-cortical electrodes recording one’s ‘thoughts’ are a reality today, and

no longer merely in the realm of science fiction. However, widespread clinical use of

implanted electrodes is hampered by a lack of reliability in chronic recordings, in-

dependent of the type of electrodes used. The dominant hypothesis has been that

astroglial scar electrically impedes the electrodes. However, recent studies suggest

that the impedance changes associated with the astroglial scar are not high enough

to interfere significantly impair neural recordings. Furthermore, there is a time delay

between when scar electrically stabilizes and when neural recordings fail (typically

>1 month lag), suggesting that scar, per se, does not cause chronic recording unre-

liability. In this study, an alternative hypothesis was tested in a rat model, namely,

that chronic inflammation surrounding microelectrodes causes a local neurodegener-

ative state. Chronic inflammation was varied in three ways: 1) stab wound control,

2) age-matched control, and 3) inter-shank spacing of a multishank electrode. The

results of this study suggest that chronic inflammation, as indicated by activated

microglia and reactive astrocytes, is correlated with local neurodegeneration, marked

by neuron cell death and dendritic loss. Surprisingly, axonal pathology in the form of

hyperphosphorylation of the protein Tau (the hallmark of many tauopathies, includ-

ing Alzheimer’s Disease) was also observed in the immediate vicinity of microelec-

trodes implanted for 16 weeks. Additionally, work is presented on a fast, non-invasive

method to monitor the astrocytic response to intra-cortical electrodes using electrical

impedance spectroscopy. This work provides a non-invasive monitoring tool for in-

flammation, albeit an indirect one, and fills a gap which has slowed the development

xxii



of strategies to control the inflammatory tissue response surrounding microelectrodes

and thereby improve the reliability of chronic neural recordings. The results of these

experiments have significance for the field of neuroengineering, because a more accu-

rate understanding of why recordings fail is integral to engineering reliable solutions

for integrating brain tissue with microelectrode arrays.
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CHAPTER I

INTRODUCTION

1.1 Statement of Problem

A variety of modalities for brain-computer interfaces (BCIs) have been proposed, in-

cluding functional magnetic resonance imaging (fMRI), near-infra red (NIR) imaging,

electroencephalography (EEG), intracranial electrodes, and intracortical electrode ar-

rays. Among these, intracortical electrode arrays have several advantages for restoring

voluntary motor control [59]. First, because the recordings are typically taken from

the same brain center used to control voluntary limb movement prior to paralysis

or amputation, prosthetic control can occur more naturally, without the need for

extended training to learn new techniques. Second, this aspect also allows for the

control to be performed independently of other activities, such as eating or talking.

Finally, and particularly true for motor neuroprostheses, control signals from variables

such as position, velocity, and force might all be used. However, the promise of intra-

cortical electrodes has yet to be fully fulfilled due to their unreliability in providing

stable chronic recordings. While the feasibility of long-term recordings from intracor-

tical electrodes such as those from non-human primates has been demonstrated [135],

the issue of recording reliability and chronic recording stability continues to thwart

widespread clinical application of microelectrode recording technology.

The dominant hypothesis has been that astroglial scar electrically impedes the

electrodes. However, recent studies suggest that the impedance changes associated

with the astroglial scar are not high enough to interfere significantly impair neural

recordings. Furthermore, there is a time delay between when scar electrically stabi-

lizes and when neural recordings fail (typically >1 month lag), suggesting that scar,
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per se, does not cause chronic recording unreliability.

1.2 Hypothesis

The primary hypothesis of this dissertation is that local chronic inflammation, due

to electrode presence, causes local neurodegeneration.

Partly because of the dominant hypothesis involving astroglial scar-induced iso-

lation of electrodes, most groups studying compatibility of neural electrodes have

focused on characterizing and modulating glial scar with end points of 4 weeks [31, 7,

8, 127] with a few important exceptions looking at glial scar after 6 weeks [128, 131]

and 12 weeks [142, 139, 79]. The rationale has been that there is little change in the

composition or electrical properties of glial scar beyond this time point. Indeed in

our group as well we have taken this approach and have successfully modulated scar

formation at the end of 4-6 weeks [54, 55, 93].

However, we propose that scar tissue is ‘chronically inflammatory’ via its mi-

croglial and astrocytic constituents, although it may appear ‘static’ from an electrical

impedance perspective. It is critical, therefore, to focus on evaluating neuronal state

around the electrodes after at least 12 weeks for the important reason that recording

loss often happens 8 weeks post-implantation or later, whereas scar stabilizes, from

an electrical standpoint, within a period of 2-4 weeks. Moreover, it is critical that the

fundamental molecular basis for recording loss be uncovered so appropriate strategies

to prevent recording loss and enable stable recordings can be adopted.

1.3 Objectives

The goal of this work is to test the hypothesis that local chronic inflammation, due

to electrode presence, causes local neurodegeneration. An outline of the work is as

follows.

First, we establish a method for modulating the degree of chronic inflammation.
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In Chapter III, we present data showing that narrowing the tip-to-tip spacing of mul-

tishank microelectrodes amplifies the chronic inflammatory response (after 4 weeks).

We develop a means to control the degree of inflammation to microelectrode arrays

through control of the intershank spacing of multi-shank silicon microelectrode ar-

rays. We quantitatively study reactive microglia and reactive astrocytes, in relation

to the electrode location, using immunohistochemical markers at 1 hour, 1 week and

4 weeks post-implant.

Second, in Chapter IV, we use the methods developed in Chapter III to evaluate

the effect of the degree of inflammation on the neurodegenerative state. We inves-

tigate the level of inflammation, using a more extensive set of markers than that of

Chapter III, at 2 weeks, and the more chronic time points of 8 weeks, and 16 weeks

post-implant. At the most chronic time point of 16 weeks, we vary chronic inflamma-

tion in three ways: 1) stab wound control, 2) age-matched control, and 3) inter-shank

spacing. We show that increased local inflammation results in increased local neu-

rodegeneration through quantifying neurodegenerative markers (including neuronal

viability, dendritic loss, and axonal pathology). As the primary goal of this thesis

was to test for a correlation between chronic inflammatory markers and local neu-

rodegeneration, non-functional electrodes were used to minimize variability between

conditions. The functional effects of local neurodegeneration will be important to

fully understand the contribution of these findings on recording failure.

Third, in Chapter V, we present results from an in vivo study developing a non-

invasive method to monitor scar using electrical impedance spectroscopy. It is unde-

sirable to wait until neurodegeneration occurs to monitor inflammation. While the

ideal measurement would be to non-invasively probe pro-inflammatory mediators, i.e.

cytokines, at the molecular level, this is very difficult to do non-invasively. An eas-

ier target for non-invasive monitoring is astrogliosis, due to the large contribution

to the electrical impedance properties of these cells in response to the implant (cell
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proliferation and hypertrophy). Therefore, we characterize impedance spectra using

bioimpedance modeling methods, and correlate these modeled parameters with cellu-

lar density and astrogliosis, as an indirect measure of activated microglia (the primary

cellular contributors to inflammation).

Figure 1 shows our hypothesis for how inflammation relates to neurodegenera-

tion and neural recording failure, as well as how extraction force (Chapter III) and

electrical impedance (Chapter V) relate to the primary hypothesis.

Microgliosis

Astrogliosis

Pro-Inflammatory Factors
(i.e. IL-1β, TNFα, NO, O -)

Neurodegeneration

Neural Recording Failure Electrical
Impedance

Mechanical mismatch Persistent presence

Extraction
    Force

Inflam
m

ation

2

Figure 1: Cartoon showing our hypothesized relationship between inflammation,
neurodegeneration, and recording failure. The relationship between electrode ex-
traction force and astrogliosis is discussed in Chapter III, the relationship between
inflammation and neurodegeneration is discussed in Chapter IV, and the relationship
between electrical impedance and astrogliosis is discussed in Chapter V. While the
dominant hypothesis in the field has been that astrogliosis leads to an increase in
electrical impedance, which then leads to recording failure, we propose an alternative
hypothesis. This cascade is indicated by the red arrows, where microgliosis results in
the production of pro-inflammatory mediators, which in turn cause neurodegeneration
leading to recording failure.
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CHAPTER II

RELEVANT BACKGROUND

2.1 Chronic Neural Recordings have the Potential to Im-
prove the Quality of Life for Paralyzed Persons

A major application of chronic neural recording is neural prosthetics. Electrodes

implanted in the primary motor cortex can record motor commands from neurons;

the commands are then decoded into electrical signals that bypass injured or damaged

nerves to re-animate paralyzed muscles or to control artificial limbs and/or external

devices, such as a robotic arm [125]. With chronic neural recording, paralyzed patients

and amputees can turn their thoughts into actions, dramatically improving their

mobility and interaction with the environment [125]. For example, with electrode

arrays implanted in the brain, a paralyzed patient was able to control a cursor to

perform computer tasks by thoughts alone [60]. The ability to stably record with

implantable electrodes in the CNS will have profound implications for the field of

neuroprosthetics. Figure 2 shows an example of a Si-based electrode, the ‘Michigan

probe’, implanted in a rat brain.

2.2 Chronically Implanted Electrodes Trigger a Persistent
Glial Scar and Inflammatory State

The initial insertion of the electrodes causes a natural inflammatory response in the

brain tissue. However, this initial, acute injury is superseded by a chronic response,

which is attested to by studies showing that in stab wounds the electrode tracks could

not be located after several months [161, 116, 29], and that inflammation appeared to

have subsided after several weeks using silicon microelectrode arrays [7]. In contrast

to stab wounds, glial scar surrounding chronic implants persist, suggesting that in
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Figure 2: Micrograph of a Michigan electrode implanted in motor cortex.

addition to the initial inflammatory response upon electrode insertion, a foreign body

response persists. In chronic inflammation, reactive microglia migrate to the insertion

site in an attempt to degrade the foreign body, and activated astrocytes form a

tightly interwoven network around the electrodes [142, 139]. This persistent response

by microglia has been referred to as “frustrated phagocytosis” and is not unique to

microelectrode arrays, but is common to chronic implants in general, and is perhaps

analogous to persistent inflammation observed around senile plaques in Alzheimers

disease (AD) [148]. The persistent inflammatory response to microelectrodes in non-

human primates, shares many similarities with that in rodents. In a study by Griffith

and Humphrey, where two rhesus macaques with chronic electrode implants were

observed at 3 and 36-month time points [48], there is clear demonstration of a chronic

inflammatory response around the electrodes.

The response to implants in the CNS is a complex response involving interplay

between at least 4 primary cell types: macrophages (brain and blood-borne), astro-

cytes, meningeal fibroblasts, and neurons (see Figure 3). Microglia are the resident

macrophages of the CNS, and respond to an injury by a change in both phenotype

and function, a response commonly referred to as “activation”. Pro-inflammatory

cytokines released by activated microglia in turn activate astrocytes, which respond
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with increased expression of glial fibrillary protein (GFAP) and a change in mor-

phology [41]. Although, the astroglial scar effectively seals off the implant, it is

also known to block neurite growth and axonal regeneration both chemically and

physically [130]. It has been shown that one class of molecules, chondroitin sulfate

proteoglycans (CSPGs), are up-regulated by reactive astrocytes and are one of the

main inhibitory molecules in astroglial scar [41].

Astrogliosis is vital for normal tissue repair in the CNS. This has been powerfully

demonstrated by a study which investigated the response to spinal cord injury after

selective ablation of dividing, reactive astrocytes ( [40]). In both stab and crush

injuries the absence of reactive astrocytes resulted in inability to repair the blood brain

barrier, increased infiltration of leukocytes, along with neurodegeneration and motor

deficits. Increased neurodegeneration in hippocampus, which spread to thalamus, of

GFAP-KO mice has also been reported ( [104]). These results indicate that astrogliosis

is an essential mechanism in restricting inflammation and preserving neuronal health

(and function) after injury.

In this thesis, inflammation is used to refer to the response of both microglia

and astrocytes to the electrode (see Figure 1). However, it is microglia that have

been shown to be the primary source for pro-inflammatory factors, such as pro-

inflammatory cytokines and reactive oxygen species, after CNS injury ( [11, 12]).

2.3 Strategies to Improve Chronic Recording Stability

Given the inconsistency observed in the literature, along with the strict demands on

long-term performance for clinical efficacy which neural interfaces must meet, sev-

eral strategies have been adopted to improve the stability of chronically implanted

MEAs [110]. Szarowski et al. studied the effect of electrode shape, size, texture

and tip geometry and observed no difference in astroglial scar between any conditions
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Figure 3: Cartoon showing the primary cell types involved in the tissue response
to implanted microelectrodes. Phenotypic changes in microglia occur in response
to the implant, from an on guard, “resting” state to a so-called “activated” state
characterized by ameboid shape and release of pro-inflammatory factors. Astrocyte
phenotypic changes also occur characterized by hypertrophy and an increase in GFAP
expression (shown by darker red color). Reproduced, with permission, from [53].
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tried after 6 and 12 weeks post-implant [139]. This study suggests that more than me-

chanical methods must be tried in order to minimize astrogliosis. Two recent studies

have reported an attenuated astroglial scar through systemic doses via subcutaneous

injections of dexamethasone [128, 132]. However, systemic drug administration in-

duces undesirable side-effects, along with a large quantity of drug needed for efficacy.

One strategy for improving the interface is to lower the electrode impedance. The

Martin lab has published several reports on electroplating using conducting polymers

including polypyrrole [30, 31] and PEDOT [158, 159, 157, 156]. Another strategy is

the use of bioactive coatings to modulate cell interactions; examples which have been

developed include a dextran monolayer [92] and alginate gel [67]. Another approach

which is being developed is local release of anti-inflammatory drug controlled by elec-

trical stimulation [145, 1]. None of these strategies effects on neural recordings have

yet been published.

Our lab has demonstrated the feasibility of coatings for Si microelectrode arrays

with several approaches tried including the local slow release of the anti-inflammatory

drug dexamethasone [166] (a similar approach used by [66]) and neuropeptide α-

MSH [165] and layer-by-layer assembly of laminin designed to improve cell attach-

ment [52, 54]. Each of these coatings has been shown to mitigate astroglial scar in

vivo, however, the effect of the coatings on chronic recording stability have not been

studied.

2.4 The Relationship Between Inflammation and Neurode-
generative Disease

A growing number of studies support the hypothesis that neuroinflammation plays a

pivotal role in the etiology of many neurodegenerative diseases, including AD, Parkin-

sons disease (PD), and Amyotrophic Lateral Sclerosis (ALS) [47, 164, 11]. Although

there are a range of factors that can initiate neuronal damage in neurodegenera-

tive diseases, there is substantial evidence that activation of neuroinflammatory cells
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exacerbates neurodegeneration [153]. One piece of evidence includes the observa-

tion of elevated levels of IL-1 (Interleukin-1) and TNF-α (Tumor Necrosis Factor),

pro-inflammatory cytokines released by activated microglia, in patients with neu-

rodegenerative disease [42]. To further support the hypothesis, numerous studies

have shown that people with early-life brain injuries are more likely to develop PD,

implying that inflammation in the brain plays a crucial role in the pathogenesis of

neurodegenerative disorder [82]. The final piece of evidence for the involvement of

inflammation in the neurodegenerative disease is derived from its regiospecificity. It

is well known that the primary cause of PD is degeneration of neurons in the central

nervous system, specifically in the substantia nigra. According to studies, substan-

tia nigra is heavily populated with microglia, and therefore, more vulnerable to the

inflammation caused by activated microglia, providing further proof of a mechanis-

tic link between inflammation and neurodegenerative disorders [68, 111]. We further

hypothesize that similarities in many features of neurodegenerative diseases exist

between diffuse neurodegenerative diseased tissue and the local tissue surrounding

chronic microelectrodes.

2.5 Markers of Inflammation: Microglia are Mediators of
Inflammation via Cytokine Production

Inflammation, a specialized immune response of the organism, is crucial and necessary

if the invading agent is a pathogen or a dying cell [155]. However, an aggressive acti-

vation of immune cells can lead to scarring and damage of the tissue, often destroying

host cells in its wake [155]. Unlike normal cells, neurons in the brain tissue lack

the ability to divide and to recover, becoming more susceptible to auto-destructive

immune and inflammatory process [45]. This inflammatory process is mainly caused

by the activation of microglia, the resident immune cells in the brain [45]. Microglia

are sensitive to alteration in their surroundings, activating in response to even the
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slightest infection or injury [82, 11]. Additionally, activated microglia produce pro-

inflammatory and neurotoxic cytokines such as IL-1, TGF-β, TNF-α, and IL-6, result-

ing in inflammation and degeneration of neurons ([45, 11, 98]. We hypothesize that

microglia in a sustained active state at the electrode interface generate the molecular

stimuli for a local neurodegenerative state.

2.6 Markers of Inflammation: NADPH induced Oxidative
Stress Exacerbates Inflammation-Induced Neurodegen-
eration

Reactive oxygen species (ROS) act both directly and indirectly to promote neurode-

generation. Extracellular ROS is neurotoxic directly, while intracellular ROS am-

plifies pro-inflammatory cytokine production in microglia. Recent studies demon-

strated that ROS production is attributable to activation of microglial nicotinamide

adenine dinucleotide phosphate (NADPH) oxidase [106, 154]. Evidence for oxida-

tive stress in Alzheimers diseased brains has suggested a mechanistic link with neu-

rodegeneration [163]. Additionally, microglia-derived oxidative stress has also been

suggested to mediate dopaminergic toxicity in PD, with NADPH oxidase playing a

key role [45]. Dopaminergic neurons in the substantia nigra are more susceptible

to microglia-mediated neurotoxicity than other cell types [85]. Therefore, evidence

of reactive oxygen species is consistent with a) an inflammatory condition and b)

neurodegeneration.

2.7 Molecular Markers of Neurodegeneration: Tau Protein
Hyperphosphorylation is Neurotoxic and is a Hallmark
of Neurodegenerative Diseases

Tau proteins, microtubule-associated proteins, are primarily located in neurons where

they function to maintain cell shape and act as tracks for axonal transport [15].

Pathological hyperphosphorylation and ensuing aggregation is a feature of many neu-

rodegenerative diseases, called “tauopathies”, including AD [2]. Tau is vital to normal
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axonal transport, and hyperphosphorylation of tau has been shown to “clog” synapses,

prior to their aggregation into tangles, leading to abnormal synaptic function and en-

hanced oxidative stress [90] as well as functional synaptic loss [120, 36]. While the

cause of tau tangles is still unknown, recent work has suggested that neuroinflamma-

tion, particularly microglial activation, may play a critical role in the progression of

tauopathies. Synaptic pathology and microglial activation occur prior to the forma-

tion of tau tangles in a P301S tauopathy mouse model [160]. When the mice were

immunosuppressed by F506, tau progression was significantly reduced, suggesting an

interaction between activated microglia and tau pathology. Additionally, Melov et

al. have reported that tau hyperphosphorylation is induced by oxidative stress and

can be prevented by antioxidants [95]. Tau hyperphosphorylation is therefore a fea-

ture of neurodegenerative disease which is consistent with both persistent microglial

activation and oxidative stress, features present at the chronic electrode interface.

2.8 Summary

The feasibility of thought-controlled prosthetic devices has within the last decade

been powerfully demonstrated [149, 126, 141, 16, 76, 60]. However, for these im-

portant scientific and technological breakthroughs to affect a wider population and

influence their quality of life, an important emphasis must be placed on gaining a bet-

ter understanding of the factors that influence their success or failure, especially those

that impact the reliability of chronically implanted intracortical microelectrodes.

A careful review of the literature suggests that a) it is unlikely that changes in

electrical impedance due to glial scar are the primary cause of chronic recording fail-

ure of intracortical electrodes; b) implanted electrodes cause a persistent and chronic

inflammation; c) chronic inflammation is strongly linked to neurodegenerative states;

d) chronic inflammation is marked by local expression of pro-inflammatory cytokines,
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NADPH-mediated reactive oxygen species and nitric oxide (NO); and e) neurodegen-

eration is likely to significantly influence long-term recordings.

While the influence of persistent inflammation in neurodegenerative diseases is a

heavily researched topic, the relationship of persistent inflammation on the health

of target neurons surrounding chronically implanted microelectrodes has not been

explored.
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CHAPTER III

CHRONIC INFLAMMATION SURROUNDING

INTRA-CORTICAL MICROELECTRODE ARRAYS CAN

BE MODULATED BY ELECTRODE SHANK SPACING

Parts of the following chapter is reproduced, with permission, from [93]. �2007 IEEE

3.1 Abstract

Micromotion of implanted silicon multielectrode arrays (Si MEAs) is thought to in-

fluence the inflammatory response they elicit. The degree of strain that micromotion

imparts on surrounding tissue is related to the extent of mechanical integration of the

implanted electrodes with the brain. In this study, we quantified the force of extrac-

tion of implanted four shank Michigan electrodes in adult rat brains and investigated

potential cellular and extracellular matrix contributors to tissue-electrode adhesion

using immunohistochemical markers for microglia, astrocytes and extracellular matrix

deposition in the immediate vicinity of the electrodes. Our results suggest that the

peak extraction force of the implanted electrodes increases significantly from the day

of implantation (day 0) to the day of extraction (day 7 and day 28 post-implantation)

(1.68 ± 0.54 g, 3.99 ± 1.31 g, and 4.86 ± 1.49 g, respectively; mean SD;n = 4). For an

additional group of four shank electrode implants with a closer intershank spacing we

observed a significant increase in peak extraction force on day 28 post-implantation

compared to day 0 and day 7 post-implantation (5.56 ± 0.76 g, 0.37 ± 0.12 g and 1.87

± 0.88 g, respectively;n = 4). Significantly, only glial fibrillary acidic protein (GFAP)

expression was correlated with peak extraction force in both electrode designs of all
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the markers of astroglial scar studied. For studies that try to model micromotion-

induced strain, our data implies that adhesion between tissue and electrode increases

after implantation and sheds light on the nature of implanted electrode-elicited brain

tissue reaction.

3.2 Introduction

Neural electrode technology holds the exciting potential of allowing direct communica-

tion between nervous tissue and external electronics. This burgeoning technology has

already significantly enhanced the quality of life for many patients with sensory and/or

motor deficits as is evident from both the prosthetic cochlear implant, commonly used

for treatment of deafness [4, 112] and deep brain stimulation, which has been used

to reduce motor symptoms associated with Parkinson’s Disease [140, 83, 108]. Sili-

con multielectrode arrays (Si MEAs) have been a driving force in the advancement

of neural interface technology with several advantages over competitive devices in-

cluding high density recording sites, batch fabrication, highly reproducible geometry,

and user-customizable dimensions [58]. These micromachined neural prosthetic de-

vices have been used to stimulate and record from the central and peripheral nervous

systems [118, 13, 70, 143, 60].

However, the long-term functionality of MEAs, especially in the recording mode,

is compromised by the formation of scar tissue surrounding the devices [117, 152, 84,

100, 119]. This is presumably due to implant induced astrogliosis, a process which

electrically and mechanically isolates the prosthesis from the nervous system [142, 139]

and causes neuronal cell loss in close proximity of the electrode surface [7, 37].

Tissue response to implants is commonly described in terms of an acute response

caused by the trauma of implantation and a chronic response [142, 139]. The acute

response is due to the rapid adsorption (within a millisecond) of a layer of proteins

on the material upon contact with blood. This protein layer promotes attachment
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of platelets, neutrophils and macrophages which stimulate astrogliosis and ultimately

lead to fibrous encapsulation. The chronic response is persistent due to the continued

presence of the electrode: astrogliosis due to a stab wound injury is nearly absent

after four weeks post-injury [7].

The response to implants in the CNS is a complex process involving interplay be-

tween at least four primary cell types: microglia/macrophages, astrocytes, meningeal

fibroblasts, and neurons. Microglia are the resident macrophages of the CNS, and

respond to an injury by a change in both phenotype and function, a response com-

monly referred to as “activation”. Pro-inflammatory cytokines released by activated

microglia in turn activate astrocytes, which respond with increased expression of the

intermediate filament proteins vimentin and glial fibrillary acidic protein (GFAP),

along with a change in morphology [41]. The astroglial scar effectively seals off the

implant, blocks neurite growth and/or axonal regeneration, and presumably excludes

neural cells by its presence immediately next to the electrode surface [130].

It has been suggested that micromotion, caused by the mechanical mismatch

between Si and brain tissue, is a major factor in the chronic tissue reaction to these

devices [110]. Recently, finite element modeling has been used to map the strain

fields in brain tissue adjacent to Si MEAs [77, 133]. These studies concluded that the

degree of electrode-tissue integration strongly influences both the distribution and

magnitude of interfacial strain levels. In the bonded condition, in which tissue tightly

adheres to the Si MEA, peak strain levels were lower by several orders of magnitude

compared to the slip condition, in which tissue poorly adheres to the Si MEA. One

study predicted regions of compression and delamination at the Si MEA tip in the case

of poor adhesion between the electrode and brain tissue [133]. However, experimental

data on the degree of mechanical integration of brain tissue with chronically implanted

Si MEAs does not exist to inform modeling studies.

Previous studies have reported an increase in the attachment of muscle tissue
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to intramuscular electrodes after 7d using extraction force measurements [5, 6]. We

hypothesized that with increasing implantation time, brain tissue surrounding a Si

MEA would similarly anchor the MEA, even in the absence of integrative coatings.

In this study, we test this hypothesis by quantifying the force along the longitudinal

axis while extracting chronically implanted Si MEAs from brain tissue <5h (0d) post-

implant (p.i.), 7d p.i., and 28d p.i. Care was taken to ensure that the measured force

was from electrode-cortical tissue integration, and not from dural reestablishment

around the electrode. Dura regrowth was not observed in close proximity to the

bondpad for all of the implanted electrodes at the time of extraction. Peak extraction

forces were then tested for correlations with state-of-the-art markers of astroglial

scar at the corresponding times to investigate a potential mechanism by which the

electrodes were anchored (if at all).

3.3 Materials and Methods

3.3.1 Surgical Procedures for Chronic Implants

”Michigan probes” with four shanks were used in this study (NeuroNexus Technolo-

gies). A total of six rats, two rats per time point, were implanted with electrodes

with thickness of 15μm, length of 4mm, shank width of 60-100μm, and tip spacing

of 200μm (abbreviated 4mm 200). Two electrodes were implanted in each animal at

different hemipheres for a total of 12 microelectrodes used. To determine the effect

of inter-shank distance on astrogliosis and peak extraction force an additional six

rats, two rats per time point, were implanted with electrodes with thickness of 15μm,

length of 3mm, shank width of 30-100μm, and tip spacing of 125μm (abbreviated

3mm 125). Figure 4 shows the layout of the two probe designs.

Adult male Sprague-Dawley rats (275-299grams) were anesthetized for 5min with

a mixture of 5% isoflurane and 1L/min O2 prior to surgery. Each rat was positioned
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a

b

Figure 4: Dimensions of electrodes used in in vivo studies of Chapter III and
Chapter IV. Probe design (b) elicited greater chronic inflammation compared with
probe design (a). Schematics were obtained from NeuroNexus Technologies (http:
//www.neuronexustech.com/).
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into a stereotactic frame (Kopf) where anaesthesia was maintained to effect (∼1-

3% isoflurane and 0.3L/min O2) during surgery by monitoring the rat’s breathing.

The rat’s head was shaven over the incision area and the skin was disinfected with

isopropyl alcohol and chlorohexaderm using a slight scrubbing motion before making

the incision. Ophthalmic ointment was applied to the eyes to prevent drying. A

midline incision was made along the scalp, the skin retracted, and the periosteum

cleared to expose the bregma. A dental drill was used to create a 3.2mm hole at

+0.2mm anterior and +3.0mm lateral to the bregma with a custom trephine (24

tooth x 3mm O.D.) fabricated from stainless steel tubing (Small Parts). In order

to minimize iatrogenic damage, room temperature saline was applied liberally to the

spinning drill bit at the bone interface. The bone plug was carefully removed and the

dura was gently pierced and retracted using a 28 gauge needle with the tip bent at a

45�angle. The bond-pad region of the microelectrode was grasped with Teflon-coated

microforceps and the penetrating shanks were inserted by hand through the pia mater

into the cortex. Care was taken to minimize bleeding by avoiding insertion through

large surface blood vessels. The electrode was inserted to the point where only the

bond-pad region was visible outside of the cortical surface. After the insertion, the

bond-pad region of the electrode and the craniotomy was covered with 1% SeaKem

Agarose (Cambrex) gel in phosphate buffered saline (PBS). A craniotomy of identical

diameter was made over the contralateral location (+0.2mm anterior to the Bregma

and -3.0mm lateral to the midline suture) where an additional electrode was inserted

and protected with agarose the same way as described above. The craniotomies were

further sealed and protected using dental acrylic anchored to the skull with bone

screws (Plastics One, Inc.). The skin was closed with wound clips and the rats were

monitored until recovery from anesthesia. To minimize variability associated with

the surgery, all implants were performed by the same surgeon. All procedures were

approved by Georgia Tech Institutional Animal Care and Use Committee.
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3.3.2 Measurement of Extraction Force

A ±30g force sensor with an accuracy of 0.015g (GSO Series Load Cell, Transduc-

erTechniques) was mounted to a micromanipulator (Pi MP-235.5DG), which was

stationed on an anti-vibration table. The micromanipulator was controlled via serial

port from a computer. The output of the force sensor was low-pass filtered with a

cut-off set at 150Hz (6dB/octave) and amplified with a gain of 2000 (Model TMO-2

Amplifier, Transducer Techniques). A 14-bit analog to digital I/O interface (USB

6009, National Instruments) was used to record the amplifier/conditioner signal out-

put to a computer with a sampling rate of 1000Hz. The force sensor load point was

attached with a smooth banana clip; the clip was protected using Teflon tape to

avoid breaking the electrode. A schematic of the setup used to measure force while

extracting the electrodes is given in Figure 5a.

Rats were prepared for force extraction and subsequent immunohistochemistry

<5h (0d), 7d, and 28d after device insertion. The longest time point of 28d was

chosen because previous data suggests that a compact glial sheath is fully organized

by this time [139]. Each rat was anesthetized with ketamine (45.65mg/kg), xylazine

(9.13mg/kg), and acepromazine (1.52mg/kg). Rats were then perfused intracardially

with PBS prewash followed by 4% paraformaldehyde in PBS. The brains were removed

by carefully cutting along the sides and anterior to the craniotomy sites and lifting

off the top of the skull. Because the dura had not regrown around the implanted

electrodes, when the top of the skull was lifted the electrode was not touched and

remained in the brain. The brains, with electrodes in place, were postfixed for a

maximum of 24h (4 �) in 4% paraformaldhyde in PBS followed by 2h in PBS (4 �).

One brain at a time was then removed from the PBS and the bottom surface was dried

and fixed to an aluminum plate using cyanoacrylate (LocTite). The glue was applied

to the plate surface and the brain was held onto the aluminum surface for ∼30s while

the glue dried. The plate was then positioned under the micromanipulator-mounted
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Figure 5: (a) Schematic of the setup used to measure force while simultaneously ex-
tracting implanted probes. A computer-controlled micromanipulator (A) is mounted
to a 30g force sensor (B). A banana clip (C), coated with Teflon at the tip (D),
established a connection with the exposed bond pad of the implanted electrode im-
mediately prior to extraction of the electrode. (b) Force extraction data obtained
from an electrode extracted 28d p.i.
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force sensor.

Under visual magnification, the micromanipulator was lowered to the level of

the bondpad and the clip was held open while the plate was adjusted such that

the bondpad was between the teeth of the clip. The clip was then carefully closed,

connecting the electrode to the force sensor. LabVIEW (National Instruments) was

used to visualize and record the data collected from the force sensor. Once acquisition

was started from the force sensor, the micromanipulator was raised at a constant

velocity of 1mm/s. When it was observed that the electrode was completely removed

from the brain, the micromanipulator and digital data acquisition was stopped.

3.3.3 Analysis of Extraction Force

Post processing of the force measurement data consisted of low-pass filtering, baseline

subtraction and identification of the maximum force using custom routines written

in MATLAB. Data sets were first truncated to contain only the first 30s of data.

Including longer data sets caused errors due to inaccurate baseline calculations and/or

detecting false peaks. Data were digitally filtered using a linear phase, low-pass filter

(FIR1 function in MATLAB) with cutoff at 5Hz to remove high frequency noise while

the micromanipulator was moving. Data were then baseline subtracted by subtracting

the mean force during the last 100ms of the data set from the entire data set. The

maximum force within each data set was identified, which we refer to as the peak

extraction force. An example force-displacement recording is shown in Figure 5b

following digital filtering and baseline subtraction. The peak extraction force, in this

case, was identified as 5.32g.

3.3.4 Brain Tissue Preparation for Immunohistochemistry

Following the retrieval of the electrodes, rat brains were placed into 30% sucrose (4

�) until they sunk to the bottom. A tissue dye was then carefully applied to the left-

posterior hemisphere to later identify the orientation of the brain sections and align
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images with the same electrode orientation. The brains were then cryoprotected with

Optimal Cutting Temperature (O.C.T.) compound (Tissue-Tek). Horizontal tissue

sections were cut to a final depth of ∼2mm from the surface of the cortex for all brains.

Serial sections were cut 30μm in thickness with the exception of every 13th section,

which was cut 14μm in thickness. The 14μm sections were mounted directly to glass

slide and stained with Hematoxylin and Eosin (H&E) using a Leica Autostainer XL,

while the 30μm sections were serially stored in two six-well plates at 4 �in PBS with

0.01% sodium azide to minimize bacterial contamination. H&E was used to visualize

general tissue morphology, while immunohistochemistry was used to visualize specific

cellular and extracellular matrix (ECM) markers.

3.3.5 Immunohistochemistry of Brain Sections

To study brain tissue response, sections taken from all brains were stained simultane-

ously for the antibody of interest. Sections from adjacent wells, with six sections per

well, were used to double-stain GFAP/vimentin, Collagen Type I (Coll I)/ED-1, and

Laminin (LN)/Reca-1 respectively. These stains were used to visualize the presence of

astrocytes (GFAP+, GFAP+/vimentin+), microglia (ED-1+, vimentin+), blood ves-

sels (Reca-1+, LN+, vimentin+), fibroblasts (Coll I+, GFAP−/vimentin+), and ECM

deposition of LN. The six sections per well ranged from ∼200μm to ∼2mm below

the surface of the cortex and were spaced at uniform intervals of 374μm. Sections

were blocked in 4% normal goat serum (GIBCO) with PBS containing 0.5% Triton

X-100 (Sigma) for 1h at room temperature. Sections were then immediately incu-

bated overnight at 4�with primary antibody prepared in blocking solution. Primary

antibodies used are shown in Table 1. After washing in 0.5% triton in PBS, sections

were incubated in secondary antibodies for 1h at room temperature. Secondary an-

tibodies were diluted at a ratio of 1:220 in 0.5% triton in PBS, and included goat

anti-rabbit IgG (H + L) Alexa 594 (Molecular Probes) and goat anti-mouse IgG1
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Table 1: Primary antibodies used in this study

Primary Host Dilution Isotype Vendor Specificity

GFAP rb 1:2000 IgG Dako astrocytes

Vimentin ms 1:500 IgG1 Sigma

immature & reactive
astrocytes, microglia,
endothelial cells and
fibroblasts

Coll I rb 1:250 IgG Chemicon ECM marker

CD68 (ED-1) ms 1:1000 IgG1 Serotec
activated mi-
croglia/macrophages

LN rb 1:500 IgG Sigma ECM marker

Reca-1 ms 1:500 IgG1 Serotec endothelial cells

Alexa 488 (Molecular Probes). All sections were counterstained by incubation with

the nuclear dye DAPI (Molecular Probes) that labels all cell nuclei. An additional

cortical section from each rat brain was used to control for non-specific secondary

antibody labeling, by omitting the primary incubation step (primary control). Tis-

sue sections were mounted on glass microscope slides with Fluoromount-G (Southern

Biotechnology Associates).

3.3.6 Quantitative Analysis of Coll I/ED-1 and GFAP/vimentin Expres-
sion

Fluorescent and brightfield images were acquired using a Microfire digital camera and

a Zeiss Axioskop2 Plus upright microscope with a 10X objective, with the electrode

sites centered in the camera field. Three sections approximately 200μm, 600μm and

1mm below the brain surface were imaged for quantification due to similarities in

the cortical tissue response of this region. All tissue sections were imaged in a single

session to minimize variability. The exposure time was consistent within each marker

and was set below saturation of the digital camera.

Fluorescent intensity as a function of distance from the electrode-tissue interface

was calculated for GFAP/vimentin and Coll I/ED-1 stained sections using MATLAB

(with Image Processing Toolbox, Mathworks). Briefly, images were first rotated such
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that the four insertion sites were aligned vertically. An ellipse was computed from

five or more user-specified points around each of the four insertion sites using the

brightfield image to easily delineate the electrode-tissue interface and the location of

the ellipses were then saved to file. Saved ellipse points were then used in the corre-

sponding immunostained images (either GFAP/vimentin or Coll I/ED-1) to segment

rectangular regions from the middle of each ellipse to a distance of 500μm away for

both the left and right sides. The intensity values of each of the boxed regions were

then averaged along the y-axis to create two mean intensity profiles for each insertion

site. The mean of the eight line profiles was then computed. To correct for back-

ground differences due to non-specific secondary antibody binding (particularly in

the immediate vicinity of the insertion sites), mean profiles of identical length from

primary control sections were subtracted within each group. The integral of the mean

intensity profile at three different distances along the electrode (0-100μm, 100-300μm,

and 300-500μm for GFAP/vimentin and 0-25μm, 25-50μm, and 50-100μm for Coll

I/ED-1) was also calculated for each image. Figure 6 shows an example image with

corresponding fluorescent intensity line profile.

In addition to the quantification of ED-1 intensity as a function of distance from

the electrode site, ED-1 images were also quantified by estimating the number of

microglia. DAPI images, which stain all cell nuclei, were used to aid in validating the

presence of microglia. Images were processed with the end goal being to count only

colocalized, segmented regions of ED-1 and DAPI signal indicative of microglia. ED-1

staining of microglia is highly irregular and therefore difficult to quantify by segmen-

tation. DAPI staining of cell nuclei is more regular and thus simple, by comparison,

and was segmented using a marker-based watershed algorithm. For the ED-1 im-

ages, primary controls from every condition were analyzed to estimate the common

background signal. The background intensity was then subtracted from all of the

ED-1 positive images. Most sections incubated with Alexa 488 secondary antibody
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Figure 6: Quantification of fluorescent intensity as a function of distance from the
interface. (a) Example Vimentin-stained image after delineating probe sites (red
ellipses) and regions of interest (white rectangles). White boxes outline the region up
to 500 μm away from interface. (b) Mean ± SD fluorescent intensity of eight white
boxed regions in (a).

suffered from non-specific binding at tissue edges. In order to remove the background

illumination in the immediate vicinity of the insertion site, top-hat transformation

was performed. Top-hat transformation is a process which involves an estimation

of background illumination followed by its subtraction from the original. The ED-1

image was then converted to a labeled image. The image of a single ED-1 label was

compared with the entire segmented DAPI image. Groups of pixels with area above a

pre-determined size, common in both DAPI and ED-1 images were counted as ED-1+

cells.

3.3.7 Statistical Analysis

All statistical inferences were made between differing time points using one-way stan-

dard analysis of variance. When we found a significant difference between groups, we

performed the Tukey’s Honest Significant Difference (HSD) post-hoc test to identify

pairwise differences. Correlations were tested using Pearson’s correlation coefficient

and the significance was tested using Student’s t-test. For all tests, p < 0.05 was
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considered significant.

3.4 Results

3.4.1 Extraction Force

We defined the peak extraction force as the maximum force within each data set

acquired during electrode extraction. In both probe designs, peak extraction force

increased from the day of implantation (0d p.i.) to the longest time point studied

of 28d p.i. (Figure 7). For the 4mm 200 implants, baseline corrected raw peak

extraction forces for 0d, 7d, and 28d p.i. were 1.68 ± 0.54g, 3.99 ± 1.31g, and 4.86

± 1.49g (mean ± SD). The peak extraction force for both 7d p.i. and 28d p.i. was

significantly higher than for 0d p.i. (p < 0.05). No significant difference was observed

between 7d p.i. and 28d p.i. forces (p = 0.57).

For the 3mm 125 implants, the baseline corrected raw peak extraction forces for

0d, 7d, and 28d p.i. were 0.37 ± 0.12g, 1.87 ± 0.88g, and 5.56 ± 0.76g (mean ±
SD). The peak extraction force for 28d p.i. was significantly higher than for both

0d p.i. and 7d p.i. (p < 0.05). A striking difference between the two designs was

this significant increase in peak extraction force 28d p.i. No significant difference was

observed between 0d p.i. and 7d p.i. forces (p = 0.058).

3.4.2 Investigating the Presence of Meningeal Fibroblasts

Coll I is a component of the ECM important in structural support. In normal healthy

brain tissue Coll I is absent, but is ubiquitous in the meninges. Coll I is therefore

a useful marker for visualizing the presence of meningeal-derived fibroblasts in brain

tissue. A thin layer, approximately 20μm in thickness, of intense Coll I signal was ob-

served in 7d and 28d sections immediately adjacent to the insertion sites (Figure 8k,l).

Coll I signal was absent in 0d sections (Figure 8j).
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3.4.3 Investigating the Presence of Microglia

ED-1 is a marker specific for reactive microglia/macrophages. Immediately following

implantation, no ED-1 signal was present surrounding the insertion sites (Figure 8m).

After 7d ED-1 signal was present in the immediate vicinity of the insertion sites (Fig-

ure 8n). By 28d p.i., a decreased number of ED-1+ cells were observed in comparison

to 7d (Figure 8o). Both 7d and 28d p.i., ED-1+ signal was primarily observed within

50μm of the insertion sites.

3.4.4 Quantifying Coll I/ED-1 Expression

The intensity of Coll I and ED-1 stained sections was quantified as a function of dis-

tance from the insertion sites. Figure 9a shows the distribution of Coll I surrounding

the insertion site. The area under the intensity curve from 0-25μm, 25-50μm, and

50-100μm away from the interface are plotted as mean ± SD (Figure 9c). Compar-

atively, Coll I signal 7d p.i. was significantly higher than 0d and 28d p.i. within

0-25μm and 25-50μm (p < 0.05).

Figure 9b shows the distribution of ED-1 surrounding the insertion site. The

area under the intensity curve from 0-25μm, 25-50μm, and 50-100μm away from

the interface are plotted as mean ± SD (Figure 9d). ED-1 expression 7d p.i. was

significantly higher than 0d and 28d p.i. within 0-25μm and 25-50μm (p < 0.05).

While mean intensity profiles give an indication of ED-1 signal distribution from the

insertion sites, along with the general trend over time, cell counting is a common

method for quantification of ED-1 signal (Figure 9e). In agreement with the intensity

distribution 0-50μm from the insertion site, there was a significant increase in the

number of microglia 7d p.i. compared to 0d and 28d p.i. (p < 0.05).

3.4.5 Investigating the Presence of Astrocytes

GFAP is a commonly used marker to visualize astrogliosis, an astrocytic reaction to

injury. On the day of the implant, the insertion sites show normal resting astrocytes
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surrounding the implant (Figure 8d). After 7d there was a substantial increase in

GFAP expression in astrocytes near the insertion sites (Figure 8e). In their reactive

state, astrocytes surrounding the insertion sites became hypertrophic and elongated

with thick processes. This was in contrast to astrocytes exhibiting a stellate appear-

ance approximately >300μm away. GFAP expression was maximum immediately

adjacent to the insertion site and declined progressively as a function of distance

to the site. By 28d, the GFAP positive zone became compact around the insertion

site, approximately <100μm in radius (Figure 8f). These astrocytes exhibited an

interwoven appearance when examined at high magnification. The highly organized

structure surrounding the insertion sites was similar to that observed in the H&E

stained sections of the same time point (Figure 8c).

3.4.6 Investigating the Expression of Vimentin

Vimentin is expressed in immature and reactive astrocytes, microglia, fibroblasts, as

well as endothelial cells. On the day of the implant, vimentin expression was observed

only in vasculature primarily >100μm from the insertion sites (Figure 8g). After 7d

p.i., an amplification in vimentin expression was observed <100μm from the insertion

sites (Figure 8h). After 28d p.i., vimentin expression within 100μm from the insertion

sites had decreased compared to 7d p.i. (Figure 8i).

3.4.7 Quantifying GFAP/vimentin Expression

The intensity of GFAP and vimentin stained sections was quantified as a function

of distance from the insertion sites. Figure 10a shows the distribution of GFAP sur-

rounding the insertion site. Figure 10b shows the distribution of vimentin surrounding

the insertion site. The area under the intensity curve from 0-100μm, 100-300μm, and

300-500μm away from the interface are plotted as mean ± SD (Figure 10c-GFAP and

Figure 10d-vimentin). Differences in intensity were observed as a function of time.

GFAP intensity was greater within 100μm from the insertion site after 7d p.i. and
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Figure 9: (a)-(e) Coll I and ED-1 image quantification results (summary of sections
∼200, 600 and 1000μm below the surface of the cortex). (a) Mean ± SD intensity
profiles for Coll I. (b) Mean ± SD intensity profiles for ED-1. The integrals from the
intensity profiles were calculated 0-25μm, 25-50μm and 50-100μm from the interface
and used to compare intensity between groups as a function of distance from the
probe site (Col I-(c), ED-1-(d)). ** indicates a significant difference relative to the 0d
and 28d conditions within the same distance range (p < 0.05). (e) Segmentation and
counting of colocalized ED-1+ and DAPI+ regions. ** indicates a significant difference
relative to the 0d and 28d condition within the same distance range (p < 0.001 &
p < 0.05 respectively).
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28d p.i. compared with the 0d p.i. conditions (p < 0.01). Vimentin intensity was

greater within 100μm from the insertion site after 7d p.i. compared with both the 0d

p.i. and 28d p.i. conditions (p < 0.01). GFAP expression 7d p.i. was distributed over

a wider region as indicated by significantly higher expression 100-300μm compared

to the 0d condition (p < 0.01).
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Figure 10: (a)-(e) GFAP and vimentin image quantification results (summary of
sections ∼200, 600 and 1000μm below the surface of the cortex). (a) Mean ± SD
intensity profiles for GFAP. (b) Mean ± SD intensity profiles for vimentin. The
integrals from the intensity profiles were calculated 0-100μm, 100-300μm and 300-
500μm from the interface and used to compare intensity between groups as a function
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difference relative to the 0d condition and 28d condition within the same distance
range (all p < 0.01).
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Table 2: Results of correlation testing between integrated pixel intensity and peak
force (data shown in Figure 11).

Primary Probe design Pearson’s coefficient (r) p-value

Coll I 3mm 125 0.61 0.046*

Coll I 4mm 200 0.44 0.16

ED-1 3mm 125 0.024 0.94

ED-1 4mm 200 0.49 0.1

GFAP 3mm 125 0.96 1.33e-6*

GFAP 4mm 200 0.68 0.016*

Vimentin 3mm 125 0.66 0.028*

Vimentin 4mm 200 0.11 0.74

* indicates a significant correlation between integrated pixel in-
tensity and peak force for that particular marker (p < 0.05).
GFAP was the only marker which we studied to be significantly
correlated with peak extraction force within both electrode de-
signs.

There was a significant correlation between GFAP intensity 0-100μm from the

insertion site and peak extraction force (r = 0.67, p < 0.05; r = 0.81, p < 0.01 with

removal of one outlier greater than 2.5 SD from the mean) (Figure 11c; Table 2).

No significant correlations were observed between Coll I/ED-1/vimentin and peak

extraction force for the 4mm 200 implants (Figure 11a, Figure 11b, and Figure 11d

respectively; Table 2). The correlations between Coll I/vimentin and peak extraction

force were still not significant after the removal of one outlier from each greater than

2.5 SD from the mean (r = 0.39, p = 0.24; r = 0.44, p = 0.17 respectively).

3.4.8 Investigating the Influence of Intershank Distance on Astrogliosis
and Peak Extraction Force

To shed further light on the relationship between intershank distance, astrogliosis,

and peak extraction force, six additional rats were implanted with 12 electrodes and

subsequently extracted at identical time points as before (n = 4 per time point). It has

been reported that closer shank spacing elicits a stronger astrocytic response [102].

34



Peak force (g)

In
te

gr
al

of
m

ea
n

in
te

ns
ity

pr
of

ile

-1 0 1 2 3 4 5 6 7 8-5

0

5

10 3mm_125
y=0.02x+0.89
4mm_200
y=0.67x-0.7

ED-1 (0-25�m)

Peak force (g)

In
te

gr
al

of
m

ea
n

in
te

ns
ity

pr
of

ile

-1 0 1 2 3 4 5 6 7 8-5

0

5

10

15

20

25

30

35

40

45

50 3mm_125
y=4.11x+7.31
4mm_200
y=0.72x+10.47

Vim (0-100�m)

Peak force (g)

In
te

gr
al

of
m

ea
n

in
te

ns
ity

pr
of

ile

-1 0 1 2 3 4 5 6 7 8-5

0

5

10

15

20

25

30

35

40

45

50 3mm_125
y=5.87x+3.06
4mm_200
y=2.73x+1.46

GFAP (0-100�m)

Peak force (g)

In
te

gr
al

of
m

ea
n

in
te

ns
ity

pr
of

ile

-1 0 1 2 3 4 5 6 7 80

1

2

3

4

5 3mm_125
y=0.23x+0.63
4mm_200
y=0.28x+0.23

Coll I (0-25�m)
(a)

(c)

(b)

(d)

Figure 11: (a)-(d) Scatter plots of the integrated pixel intensity for Coll I (a), ED-
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ranges (see Figure 9c,d & Figure 10c,d). Corresponding Pearson’s coefficients, with
p-values, are given in Table 2.
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We therefore chose an electrode design with a closer shank spacing of 125μm tip-to-

tip. The data from one trial in the 0d group was not collected due to breakage of the

electrode bondpad during insertion.

Consistent with the 4mm 200 design, there was a strong correlation between

GFAP and peak extraction force (r = 0.96, p < 0.001) (Figure 11c). Also of note

was that 28d p.i., both the peak extraction forces and GFAP intensity 0-100μm from

the insertion sites were higher for the 125μm spaced electrodes than for the 200μm

spaced electrodes (p < 0.001).

Sections from the 3mm 125 implanted brains were also immunostained for Coll

I, ED-1, and vimentin and quantified using the same methods that were used for

the 4mm 200 implants. In contrast to the 4mm 200 electrode design, we observed a

significant correlation between Coll I and peak extraction force (Figure 11a; Table 2)

along with vimentin and peak extraction force (Figure 11d; Table 2). No significant

correlation was observed between ED-1 and peak extraction force for the 3mm 125

implants (Figure 11b; Table 2).

3.4.9 Investigating Involvement of Laminin in a Mechanism for Astro-
cytic Adhesiveness

LN is a major component of the ECM and is found in basal lamina. It is also

known that astrocytes produce LN and that the production of LN is amplified in

their reactive state [80]. To study the potential influence of LN on the mechanical

integration between astrocytes and the electrode, double staining of LN and Reca-1

staining was used. This method allowed detection of the presence of LN near the

electrode-tissue interface, while excluding LN found in basal lamina of endothelial

cells (Reca-1). We observed no LN around the interface in the 0d and 7d conditions,

but sporadically observed LN at the interface for the 28d case. The intense LN

signal surrounding the interface was not colocalized with Reca-1, a marker specific

for endothelial cells (Figure 12).
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Figure 12: Representative overlay of LN (red) and Reca-1 (green) staining from a
28d p.i. brain section, imaged using a 40X objective. The section was collected at a
depth of ∼600μm below the brain surface. To aid in visualization, colocalized pixels
are shown in blue. Arrows point to the strong LN+/Reca-1− signal observed at the
electrode-tissue interface in the 28d condition. Scale bar=30μm.
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3.5 Discussion

We observed an increase in peak extraction force while extracting electrodes as the

post-implant time increased. At the onset of extraction of the electrode, the ma-

jority of the bonds between the electrode and surrounding tissue are broken which

corresponds to our measurement of peak extraction force. Previous modeling re-

sults [77, 133] reported that attachment of tissue to the electrodes, as we detected

in our measurement of peak extraction force, translates to a reduction in strain due

to the anchoring of the electrode to the surrounding tissue. We hypothesized that

over time tissue integration with the electrode would result in a higher peak extrac-

tion force, with a possible mechanism being cellular processes integrated with the

surrounding ECM and the electrode. We investigated the possible cellular and ma-

trix contributors to this increase by examining several candidate cell types including

endothelial cells, microglia, astrocytes, and meningeal fibroblasts. Endothelial cells

are an unlikely contributor to this increase in peak extraction force as we observed

few blood vessels immediately adjacent to the insertion sites. This observation is in

contradiction to the interpretation of the LN+ signal observed on retrieved electrodes

from a previously reported study, and implies that the vasculature is not in direct

contact with the electrode surface [132]. This was also supported by the absence of

Reca-1 signal on retrieved electrodes (data not shown).

We examined the possibility for activated microglia being a contributor to peak

extraction force increase. These cells were observed on explants 7d and 28d p.i. and

immediately adjacent to the insertion sites in corresponding tissue sections. ED-1

staining showed a decreased number of microglia encircling the electrode at 28d p.i.

in comparison with 7d p.i. as previously reported in rats [142, 139, 7]. However, ED-1

was uncorrelated with peak extraction force in either electrode design, suggesting that

these cells are not a primary contributor to the observed force increase (Figure 11b;

Table 2).
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We also examined the likelihood for meningeal cells contributing to the increase in

peak extraction force. Meningeal cells are fibroblast-like cells found in the meninges,

including both the dura mater and pia mater. The presence of meningeal cells at

the electrode-cortical interface was evidenced by the presence of Coll I. Coll I is

the most abundant form of collagen found in the body, however, it is absent in

healthy neural tissue; Coll I is abundant in the pia mater [129]. The intense Coll I

staining around the insertion sites near the cortical surface suggest that meningeal

cells migrated, at least to some extent, along the electrode shanks into the cortical

tissue. Quantitatively, however, no correlation between Coll I and peak extraction

force or vimentin signal and peak extraction force was seen in the 4mm 200 implants

(Figure 11a,d; Table 2). This data set suggests that it is unlikely meningeal cells are

a primary contributor to peak extraction force. For the 3mm 125 implants a differing

time course for Coll I and vimentin expression was observed. The reason for the

differing response of Coll I and vimentin expression between electrode types is unclear.

Due to the significant correlation between Coll I/vimentin and peak extraction force

within the 3mm 125 implants, a contribution from fibroblasts to the peak extraction

force cannot be excluded (Figure 11a,d; Table 2).

Along with previous studies investigating the electrode-tissue interface over time,

we observed a compact layer of reactive astrocytes at the insertion site after 28d

p.i. [142, 139]. Evidence for the contribution of astrocytes to peak extraction force is

the strongest of any cell type. Qualitatively, the observed changes at the interface in

astrocytes correlate temporally with peak extraction force in both electrode designs.

Quantitatively, GFAP stained sections showed the strongest positive correlations be-

tween intensity surrounding the insertion sites and peak extraction force and was the

only marker which was significantly correlated with peak extraction force for both of

the electrode designs (Figure 11c; Table 2). We further investigated LN surround-

ing the electrode site, as a potential mechanism by which astrocytes adhere to the
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electrodes. However, we observed a high variability in the presence of LN+/Reca-1−

signal near the electrode sites. This may be due to disruption of the interface during

removal of the electrodes and may require a technique capable of imaging the intact

electrode-tissue interface.

Our observed relationship between intershank distance, astrogliosis, and peak ex-

traction force warrants further investigation. Significant differences were observed

between the different electrode designs of 125μm tip spacing and 200μm spacing with

the latter design having less astrogliosis after 28d p.i. Considering that the width of

each shank for the 4mm 200 electrodes was approximately twice that of the 3mm 125

electrodes, in the case of this study, spacing of multishank MEAs had a larger in-

fluence on the chronic astrogliotic response than shank size. Shanks spaced closer

together may induce more tissue reaction due to overlapping areas of tissue reaction

between shanks. It may also be that the tissue within these overlapping areas responds

synergistically. These observations corroborate work previously presented [102].

The electrode was not tethered to the skull in the implantation model we used.

Encasing the electrode in a hydrogel, untethered, allowed us to easily remove the

brain from the skull while leaving the the electrodes intact. This enabled the mea-

surement of extraction force in the absence of complications such as presence of the

dura matter, or clotted blood. However, the use of an untethered electrode model

likely underestimates the tissue reaction when compared to chronic electrodes which

have been tethered to the skull [7].

Due to technical challenges, we were not able to measure force contribution as

a function of distance along the electrode. Therefore we are able only to speculate

on the distribution of tissue integration contributing to peak extraction force along

the electrodes based on histology results from brain sections. Based on previous

modeling results [77, 133], the distribution of force affects interfacial strain in two

ways: in the case where 1) the force is entirely due to the pial-electrode interface
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with integration at the bondpad, the strain would be increased at the tip compared

with the case where 2) the force is largely due to the electrode-cortical interface,

with strain distributed equally along the electrode. In case 2) the strain distribution

would be reduced and more uniformly distributed along the shaft compared with

case 1). While case 2) is strongly supported from our results, regardless of these two

distribution profiles, previous modeling results [77, 133] found that the strain fields

predicted in the case where surrounding tissue is adhered to the electrode are less than

the case in which the tissue is non-adherent. In other words, attachment of tissue to

the electrodes translates to a reduction in strain due to the anchoring of the electrode

to the surrounding tissue. The results of this study combined with previous modeling

studies suggest that astrogliosis, while injurious to recording quality, may limit further

injury by stabilizing chronically implanted MEAs. How effective this stabilization is

at minimizing strain is an interesting question for future studies. Currently, the

precise levels of strain required to adversely affect glial cells are unknown.
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CHAPTER IV

CHRONIC INFLAMMATION SURROUNDING

INTRA-CORTICAL MICROELECTRODE ARRAYS

RESULTS IN NEURODEGENERATION IN TARGET

NEURONS

4.1 Abstract

Thanks to pioneering scientists and clinicians, prosthetic devices that are controlled

by intracortical electrodes recording one’s ‘thoughts’ are a reality today, and no longer

merely in the realm of science fiction. However, widespread clinical use of implanted

electrodes is hampered by a lack of reliability in chronic recordings, independent of

the type of electrodes used. The dominant hypothesis has been that astroglial scar

electrically impedes the electrodes. However, there is a time delay between when scar

electrically stabilizes and when recordings fail (∼1 month lag), suggesting that scar,

alone, does not cause recording unreliability. In this study, we test an alternative hy-

pothesis: that chronic inflammation, due to the persistent presence of the electrode,

causes a local neurodegenerative state. Through modulation of chronic inflammation

via stab wound, electrode geometry, and age-matched control, we found that after 16

weeks, animals with an increased level of chronic inflammation were associated with

increased neuronal and dendritic, but not axonal, loss. We moreover, observed in-

creased neuronal and dendritic loss 16 weeks after implantation compared to 8 weeks

after implantation, suggesting that the local neurodegenerative state is progressive.

After 16 weeks, we observed axonal pathology in the form of hyperphosphorylation

of the protein Tau in the immediate vicinity of the microelectrodes (as observed in
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Alzheimer’s Disease and other tauopathies). The results of this study suggest that

a local, progressive neurodegenerative disease-like state surrounds chronic electrodes

and is a potential cause of chronic recording failure. These results also inform strate-

gies to enhance our capability to attain reliable long-term recordings from implantable

electrodes in the CNS.

4.2 Introduction

Thanks to pioneering scientists and clinicians, prosthetic devices that are controlled

by intracortical electrodes recording one’s ‘thoughts’ are a reality today, and no

longer merely in the realm of science fiction [16, 20, 60, 76, 126, 141, 149]. However,

widespread clinical use of implanted electrodes is hampered by a lack of reliability

in chronic recordings, independent of the type of electrodes used. The dominant hy-

pothesis in the field has been that astroglial scar, formed around implanted electrodes

either due to insertion-associated injury, presence of a foreign material, and/or due

to mechanical mismatch between the stiffness of the electrode and the brain, isolates

the implanted electrodes from the brain, resulting in recording failure.

However, there are several reasons why astroglial scar, per se, may not be the

cause of recording unreliability. First, the impedance changes due to scar are not so

dramatic that it should interfere with ability to record [96]. Second, chronic recording

failure often occurs several weeks after scar has developed and stabilized from an

electrical perspective [84, 100, 115, 152]. Therefore, the observation that it is not

until several weeks after electrical impedance has stabilized that neural signals fade

implies that the electrical properties of the scar are likely not the primary reason for

recording failure/unreliability.

Previous studies have suggested that chronic inflammation surrounding microelec-

trodes is persistent and is accompanied by neuronal cell death and loss of processes 4

43



weeks post implantation [7, 8]. However, little is known about the state of target neu-

rons at more chronic end points, nor whether or not degeneration of target neurons

is correlated with chronic inflammation at the electrode interface. In this study, we

investigated the tissue response to implant durations of 8 weeks and 16 weeks, long

after the astroglial scar electrically stabilized and more in line with when researchers

have reported that recording failure occurs. We hypothesized that chronic recordings

fail due to a local neurodegenerative state developing in the vicinity of chronically

implanted electrodes, and that this neurodegenerative state is characterized by neu-

ronal loss, dendritic loss, and axonal pathology in close proximity to the electrode

surface, leading to recording signal loss/degradation due to the ’unplugging’ of sur-

viving neurons close to the electrode (<200 μm from the electrode surface) from their

physiological networks. As a first step toward testing this hypothesis, in this study

we show that chronic, local inflammation due to the continuous presence of implanted

electrodes is correlated with local neurodegeneration characterized by neuronal loss,

dendritic loss, and tauopathy.

4.3 Materials and Methods

4.3.1 Surgical procedures for chronic implants

‘Michigan probes’ with four shanks were used in this study (NeuroNexus Technolo-

gies). Three end points after electrode implantation were investigated and were chosen

based on the time course of astroglial scar development: 2 weeks, 8 weeks, and 16

weeks. Rats were implanted with electrodes with thickness of 15 μm, length of 4mm,

shank width of 60-100 μm, and tip spacing of 200 μm (abbreviated 4mm 200). As

a control for the acute injury due to electrode insertion, an additional group of six

rats were inserted with electrodes and retrieved 2 min after insertion (abbreviated

S.W. for stab wound), then sacrificed 16 weeks later. In a previous study we found

that decreased shank spacing resulted in increased astrogliosis after 4 weeks [93].
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Table 3: Experimental design: Animal numbers for conditions

Duration (weeks) 4mm 200 3mm 125 4mm 200 (stab wound) No implant

2 6 0 0 0

8 5 0 0 0

16 6 6 6 2

Therefore, an additional group of animals were implanted with an electrode design of

closer inter-shank spacing, to study the influence of increased chronic inflammation

on nearby neurons. Six rats were implanted with electrodes with thickness of 15 μm,

length of 3 mm, shank width of 30-100 μm, and tip spacing of 125 μm (abbreviated

3mm 125) at only the 16 week end point (Table 3) for experimental design).

Adult male Sprague-Dawley rats (275-299 grams) were anesthetized for 5 min with

a mixture of 5% isoflurane and 1 L/min O2 prior to surgery. Each rat was positioned

into a stereotactic frame (Kopf) where anaesthesia was maintained to effect (∼1-

3% isoflurane and 0.3 L/min O2) during surgery by monitoring the rat’s breathing.

The rat’s head was shaven over the incision area and the skin was disinfected with

isopropyl alcohol and chlorohexaderm using a slight scrubbing motion before making

the incision. Ophthalmic ointment was applied to the eyes to prevent drying. A

midline incision was made along the scalp, the skin retracted, and the periosteum

cleared to expose the bregma. A dental drill was used to create a 3.2 mm hole at

+0.2 mm anterior and +3.0 mm lateral to the bregma with a custom trephine (24

tooth x 3 mm O.D.) fabricated from stainless steel tubing (Small Parts). In order

to minimize iatrogenic damage, room temperature saline was applied liberally to the

spinning drill bit at the bone interface. The bone plug was carefully removed and the

dura was gently pierced and retracted using a 28 gauge needle with the tip bent at a

45�angle. The bond-pad region of the microelectrode was grasped with Teflon-coated

microforceps and the penetrating shanks were inserted stereotaxically through the

pia mater into the cortex. Care was taken to minimize bleeding by avoiding insertion
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through large surface blood vessels. The electrode was inserted to the point where only

the bond-pad region was visible outside of the cortical surface. After the insertion, the

bond-pad region of the electrode and the craniotomy was covered with 1% SeaKem

Agarose (Cambrex) gel in phosphate buffered saline (PBS). A craniotomy of identical

diameter was made over the contralateral location (+0.2 mm anterior to the Bregma

and -3.0 mm lateral to the midline suture) where an additional electrode, of identical

design to that implanted in the contralateral hemisphere, was inserted and protected

with agarose the same way as described above. The craniotomies were further sealed

and protected using dental acrylic anchored to the skull with bone screws (Plastics

One, Inc.). The skin was closed with wound clips and the rats were monitored until

recovery from anesthesia. To minimize variability associated with the surgery, all

implants were performed by the same surgeon. All procedures were approved by

Georgia Tech Institutional Animal Care and Use Committee.

4.3.2 Brain tissue preparation for immunohistochemistry

After 2 weeks, 8 weeks, or 16 weeks, each animal was anesthetized with a mixture of

ketamine (45.65 mg kg−1), xylazine (9.13 mg kg−1) and acepromazine (1.52 mg kg−1),

then transcardially perfused with PBS prewash followed by 4% paraformaldehyde in

PBS. The brains were removed and postfixed overnight (4 �). Following the retrieval

of the electrodes, rat brains were placed into 30% sucrose (4 �) until they sunk to

the bottom. A tissue dye was then carefully applied to the left-posterior hemisphere

to later identify the orientation of the brain sections and align images with the same

electrode orientation. The brains were then cryoprotected with Optimal Cutting

Temperature (O.C.T.) compound (Tissue-Tek). Horizontal tissue sections were cut

to a final depth of ∼2 mm from the surface of the cortex for all brains. Serial sections

were cut 30 μm in thickness with the exception of every 13th section, which was cut

14 μm in thickness. The 14 μm sections were mounted directly to glass slide and
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stained with Hematoxylin and Eosin (H&E) using a Leica Autostainer XL, while the

30 μm sections were serially stored in two six-well plates at 4 � in PBS with 0.01%

sodium azide to minimize bacterial contamination.

4.3.3 Immunohistochemistry

To study brain tissue response, sections taken from all brains were stained simulta-

neously for the antibody of interest. Sections from adjacent wells, with five sections

per well, were used to stain for ED-1, MAP-2 and double-stain for GFAP/NeuN, and

NF-200/Tau-1 respectively. These stains were used to visualize the presence of ac-

tivated microglia/macrophages (ED-1), astrocytes (GFAP), neuronal nuclei (NeuN),

dendrites (MAP-2), and axons (NF-200 and Tau-1) (Table 4). The five sections per

well ranged from ∼200 μm to ∼2 mm below the surface of the cortex and were

spaced at uniform intervals of 374 μm. Sections were blocked in 4% normal goat

serum (GIBCO) with PBS containing 0.5% Triton X-100 (Sigma) for 1 hr at room

temperature. Sections were then immediately incubated overnight at 4 � with pri-

mary antibody prepared in blocking solution. Primary antibodies used are shown in

Table 4. After washing in 0.5% triton in PBS, sections were incubated in secondary

antibodies for 1 hr at room temperature. Secondary antibodies were diluted at a ratio

of 1:220 in 0.5% triton in PBS, and included goat anti-rabbit IgG (H + L) Alexa 488

(Molecular Probes) and goat anti-mouse IgG1 Alexa 594 (Molecular Probes). All

sections were counterstained by incubation with the nuclear dye DAPI (Molecular

Probes) that labels all cell nuclei. An additional cortical section from each rat brain

was used to control for non-specific secondary antibody labeling, by omitting the

primary incubation step (primary control). Tissue sections were mounted on glass

microscope slides with Fluoromount-G (Southern Biotechnology Associates).
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For hyperphosphorylated Tau staining, two additional rats were implanted with

four-shank silicon microelectrode arrays (4mm 200 design) and perfused 16 weeks

later using 4% paraformaldehyde + 0.1% glutaraldehyde. Brains were then postfixed

1 hr in the same solution and sectioned using a vibratome (thickness = 50 μm). Ad-

ditionally, human brain sections, acquired using a cryostat to 50 μm thickness, were

stored in cryoprotectant. After 5 rinses in PBS, sections were incubated for 10 min in

3% hydrogen peroxide. Sections were rinsed, and blocked for 1 hr at 4 � in blocking

solution containing 8% horse serum, avidin (10 μg/ml), and 0.1% Triton-X. Sections

were then incubated with pT231 (see Table 4), AT8 (Pierce; 1 μg/ml), or Alz50 (di-

luted 1:100) in solution with 2% horse serum and biotin (50 μg/ml). Next, sections

were incubated with biotinylated donkey anti-mouse secondary (Jackson Immuno-

chemicals; dilution 1:200 for 1 hr at 4 �, and then visualized using a VECTASTAIN

Elite ABC kit (Vector Laboratories).

4.3.4 Fluoro-Jade C staining

Sections were stained using Fluoro-Jade C, a sensitive marker for degenerating neu-

ronal cell bodies and processes, as previously described [121]. Briefly, sections were

mounted onto gelatinized slides and dried overnight at room temperature. Slides were

immersed in 100% EtOH for 3 min, followed by 70% EtOH for 1 min, and rinsed with

distilled water. Slides were placed in 0.06% KMnO4 on a shaker plate for 15 min.

After rinsing in distilled water for 1 min, slides were stained in a solution of 0.001%

Fluoro-Jade C dissolved in 0.1% acetic acid vehicle. Sections were rinsed three times

in distilled water, then dried at room temperature, cleared, and coverslipped.

4.3.5 Quantitative analysis of histological images

Fluorescent and brightfield images were acquired using a Microfire digital camera

and a Zeiss Axioskop2 Plus upright microscope with a 10X objective, with the elec-

trode sites centered in the camera field (Figure 13 and Figure 16). Four sections
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approximately 200 μm, 600 μm, 1000 μm, and 1400 μm below the brain surface were

imaged for quantification to investigate the response at different depths in the cortical

column. All tissue sections were imaged in a single session to minimize variability.

The exposure time was consistent within each marker and was set below satura-

tion of the digital camera. Fluorescent intensity as a function of distance from the

electrode-tissue interface was calculated for GFAP, ED-1, MAP-2, Tau-1, NF-200,

and Fluoro-Jade C stained sections using MATLAB (with Image Processing Toolbox,

Mathworks), as previously described [93]. Briefly, images were first rotated such that

the four insertion sites were aligned vertically. An ellipse was computed from five or

more user-specified points around each of the four insertion sites using the brightfield

image to delineate the electrode-tissue interface and the location of the ellipses were

then saved to file. Saved ellipse points were then used in the corresponding immunos-

tained images to segment rectangular regions from the middle of each ellipse to a

distance of 500 μm away for both the left and right sides. The intensity values of

each of the boxed regions were then averaged along the y-axis to create two mean

intensity profiles for each insertion site. The mean of the eight line profiles was then

computed. For normalization, the average intensity from 400-500 μm in each image

was subtracted from the intensity profile 0-500 μm. The integral of the mean inten-

sity profile at six different distance increments along the electrode (0-50 μm, 50-100

μm, 0-100 μm 100-200 μm, 200-300 μm and 300-500 μm) was also calculated for each

image. NeuN images were segmented using a marker-based watershed algorithm.

4.3.6 Statistical analysis

All statistical inferences were made between differing time points using one-way stan-

dard analysis of variance. When we found a significant difference between groups, we

performed the Tukey’s Honest Significant Difference (HSD) post-hoc test to identify

pairwise differences. For all tests, p < 0.05 was considered significant.
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B.F.
2 wks 8 wks 16 wks 16 wks (+)S.W.

ED1

GFAP

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

Figure 13: Representative brightfield (B.F.) (a1)-(e1), ED-1 (a2)-(e2), and GFAP
(a3)-(e3) stained images from all conditions. Horizontal sections contain the four elec-
trode tracks in the center of each image. S.W. = stab wound. (a1)-(e1) Hemosiderin-
laden macrophages were observed primarily in the 16 week (+) control condition.
(a2)-(e2) ED-1 was present primarily within the first one to two cell lengths away
from the electrode. (a3)-(e3) GFAP expression was most compact at the inteface
after 8 weeks and 16 weeks compared to 2 weeks. The stab wound condition showed
no positive signal for hemosiderin-laden macrophages, ED-1, or increased GFAP rel-
ative to background, indicating the acute trauma associated with the insertion of the
electrode does not result in a persistent inflammatory response.
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4.4 Results

4.4.1 Evidence for local, persistent inflammation

4.4.1.1 Activated Microglia (ED-1)

Activated microglia form a front line of defense, and their presence was primarily

at the electrode interface. Predominantly, they were found within the first 25 μm

away from the electrode (Figure 14a). Few activated microglia were observed after 2

weeks. After 8 weeks, the numbers were slightly larger, and had decreased again after

16 weeks (Figure 14b). After 16 weeks, the 125 μm spaced electrode design showed

the greatest number of activated microglia compared to any condition. In the case of

stab wound, no ED-1 (+) signal was observed.

4.4.1.2 Astrocytes (GFAP)

As expected from previous studies, GFAP expression was increased in the tissue sur-

rounding the microelectrodes [139, 142]. The characteristics of the GFAP expression

differed with distance from the electrode at the three different end points (2, 8, 16

weeks) (Figure 13 and Figure 14c). After 2 weeks, the peak of the intensity curve was

at ∼50 μm away from the electrode. After 8 weeks, the peak in GFAP expression was

even closer to the electrode. After 16 weeks, the expression levels of GFAP were next

to the electrode, but were more distant from the electrode compared to the 8 week

time point and had decreased in intensity. Any indication of increased GFAP relative

to background surrounding the electrode tracks was not observed in the case of the

stab wound. GFAP levels for the 125 μm, 16 week (+) control, electrode design had

a similar profile to that of the 8 week 200 μm spaced electrode design, both being

significantly higher than the 16 week condition (Figure 14d).
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Figure 14: Quantified ED-1 expression (for activated microglia) and GFAP expres-
sion (for astrocytes). Results are the mean of the four most superficial sections and
are spaced 374 μm through the cortical column. In (a) and (c) the mean ± SEM
(SEM indicated by gray filled area surrounding lines) are shown. Bar graphs in (b)
and (d) represent mean ± SEM. * represents significantly higher than stab wound
condition (p < 0.05). % represents significantly higher than 8 wk condition (and stab
wound). # represents significantly higher than 16 wk condition (and stab wound)
(p < 0.05). (a) ED-1(+) microglia are located primarily within the first 50 μm away
from the electrode. (b) Quantified total ED-1 fluorescent intensity 0-100 μm from
the electrode. No ED-1 (+) signal is observed 16 weeks after stab wound injury.
For groups in which the electrode remained in the brain for 16 weeks, the 125 μm
spaced electrode design had significantly more ED-1 (+) signal, compared to the 200
μm spaced electrode design (p < 0.05). (c) Differences in GFAP expression from
stab wound group were significant over the first 300 μm. (d) Quantified total GFAP
fluorescent intensity 0-100 μm from the electrode.
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4.4.1.3 Hemosiderin-Laden Macrophages

Hemosiderin is an iron-binding molecule in the blood, closely related to wüstite, an

Fe2+ iron oxide. The presence of hemosiderin indicates that the lesion was hemor-

rhagic and has been speculated to be a byproduct of oxidative stress [101]. Since

oxidative stress has been shown to lead to neurodegeneration [11, 12], we quan-

tified the presence of hemosiderin-laden macrophages next to the electrode. The

characteristic granular, olive brown appearance of hemosiderin-laden macrophages

under brightfield was used to identify the cells for counting (Figure 15a-c). The de-

posits were co-localized with ED-1 staining (Figure 13). Quantified hemosiderin-laden

macrophages are shown in Figure 15d. Hemosiderin-laden macrophages were only

present in three condition: 8 weeks, 16 weeks, and 16 weeks (+) control. These three

conditions showed variability in the number of implants surrounded by hemosiderin-

laden macrophages (8 weeks: 3/12 implants, 16 weeks: 8/12 implants, 16 weeks (+)

control: 11/12 implants). The 16 weeks (+) control condition contained significantly

greater numbers of hemosiderin-laden macrophages compared to the other conditions

(Figure 15d).

4.4.2 Evidence for local, progressive neurodegeneration

In this section we discuss markers of neuronal health, first at the anatomical level

and then at the molecular level.

4.4.2.1 Anatomical markers of neurodegeneration: Neuronal viability (NeuN,
Fluoro-Jade C)

Neuronal loss was evident for all conditions except the stab wound in the first 100

μm from the electrode Figure 17a. After 16 weeks, neuronal loss had significantly in-

creased compared to 8 weeks p.i. up to 300 μm from the electrode surface. Comparing

NeuN loss between the two electrode designs after 16 weeks, there was significantly

more loss in the case of the 3mm 125 design compared to the 4mm 200 design over

54



0

20

40

60

80

100

120
Hemosiderin−Laden Macrophages

N
um

be
r o

f c
el

ls

 
8 weeks
16 weeks
16 weeks: (+) control

d
#

c

a b

Figure 15: (a) Representative brightfield image 16 weeks post implantation showing
hemosiderin-laden macrophages. Scale bar = 50 μm. (b) Boxed region in (a) at
higher magnification. Arrows point to granular dark brown structures indicative of
hemosiderin-laden macrophages. Scale bar = 10 μm. (c)Hematoxylin and eosin-
stained section 8 weeks p.i. showing golden-brown hemosiderin granules. Scale bar =
50 μm. (d) Quantified hemosiderin-laden macrophages. Bar represents mean ± SEM.
# indicates significantly greater than 8 week and 16 week conditions (p < 0.05).

55



the 0-100 μm and 200-300 μm intervals. Fluoro-Jade C staining was confined to

processes (Figure 16c2-e2). Fluoro-Jade C staining of similar implants 1 hr and 24

hr post implantation showed staining of neuronal bodies (data not shown), however

there was no evidence of apoptosis or necrosis for the 2, 8, and 16 week end points.

Fluoro-Jade C intensity in the first 100 μm was significantly higher after 16 weeks

compared to 8 weeks (Figure 17c).

2 wks 8 wks 16 wks 16 wks (+)S.W.
NeuN

FJC

MAP2

b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a1

Figure 16: Representative NeuN (a1)-(e1), Fluorojade C (a2)-(e2), and MAP-2
(a3)-(e3) staining from all conditions. Horizontal sections contain the four electrode
tracks in the center of each image. S.W. = stab wound.

4.4.2.2 Anatomical markers of neurodegeneration: Dendrites (MAP-2)

While the Fluoro-Jade C stain suggested neuronal processes were dying back near the

electrode, it was unclear from these data whether the loss of processes was occurring

due to dendrites and/or axons dying back. To further explore where this degeneration

is occurring, we used specific immunohistochemical stains for dendrites and axons. To

investigate dendritic arborization surrounding the electrode, MAP-2 was fluorescently

labeled, while NF-200 and Tau-1 were used to investigate axonal arborization.

No loss in MAP-2 expression was observed in the case of the stab wound (Fig-

ure 17d). For the other conditions MAP-2 staining intensity generally followed an
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Figure 17: Quantified NeuN expression (for neuronal nuclei), Fluoro-jade C (for
degenerating/dying neurons), and MAP-2 (for dendrites). Results are the mean of
the four most superficial sections and are spaced 374 μm through the cortical column.
In (b) and (d) the mean ± SEM (SEM indicated by gray filled area surrounding
lines) are shown. Bar graphs in (a), (c), and (e) represent mean ± SEM. * represents
significantly higher than stab wound condition (p < 0.05). % indicates significantly
greater than 8 wk condition (and s.w.) (p < 0.05). # indicates significantly greater
than 16 wk condition (and s.w. and 8 wk) (p < 0.05). (a) Number of NeuN (+)
cells, represented as percent of cells 400-500 μm. (b) Fluoro-Jade C as a function of
distance from the electrode. (c) Integral of Fluoro-Jade C intensity 0-100 μm from the
electrode. (d) MAP-2 staining intensity as a function of distance from the electrode.
(e) Integral of MAP-2 intensity 0-100 μm from the electrode. Note: negative intensity
denotes loss relative to background intensity.
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inverse relationship with ED-1 expression (Figure 17d). The 3mm 125 electrode de-

sign had significantly less MAP-2 signal, compared to the 4mm 200 electrode design

in the first 100 μm from the electrode (Figure 17e). Dendritic loss was most promi-

nent at deeper depths of the cortical column, at depths of ∼1000 μm and ∼1400 μm

(Figure 18d).
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Figure 18: Quantified fluorescent intensity 0-100 μm from the electrode for (a) ED-
1, (b) GFAP, (c) Fluoro-Jade C, and (d) MAP-2 for sections at the four different
depths studied. On the y-axis, section 1 is ∼200 μm below the cortex, section 2 is
∼600 μm, 3 is ∼1000 μm, and section 4 is ∼1400 μm.

4.4.2.3 Anatomical markers of neurodegeneration: Axons (Tau-1, NF-200)

Unlike MAP-2, no differences were observed between conditions for the axonal mark-

ers Tau-1 and NF-200.
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4.4.2.4 Molecular markers of neurodegeneration: Phospho-Tau (pT231)

A characteristic feature of many neurodegenerative diseases is axonal pathology man-

ifested by hyperphosphorylation of protein Tau (see Table 1 of [78] for a list of neu-

rodegenerative tauopathies). Given the association between oxidative stress and hy-

perphosphorylated Tau in neurodegenerative diseases such as Alzheimer’s Disease

(AD), several markers for hyperphosphorylated Tau were used. Tau protein, pre-

dominately located in axons, contains at least 30 epitopes which become abnormally

phosphorylated in tauopathies like AD. There was no positive staining for Alz50 or

AT8 (data not shown). PT231 staining was present only next to the electrode track,

with negative controls showing an absence of staining. Within the first 50 μm from

the electrode punctate staining was observed within neuron somas. Out to a distance

of 700 μm from the electrode pT231 (+) dystrophic neurites and neuropil threads

were observed, closely resembling those observed in an AD diseased human tissue

section stained simultaneously (Figure 19).

While DBS electrodes are mainly stimulatory, they are an example of a chronically

implanted electrode in humans. Human brain tissue was obtained from a patient

implanted with a deep brain stimulation electrode, that had remained for 5 months.

pT231 is upregulated in close proximity to the electrode (Figure 20a), but upregulated

pT231 expression was not observed surrounding recording lead tracks used to locate

the DBS electrode position (but not left in the brain) (Figure 20b).

4.5 Discussion

4.6 Discussion

While viability is a necessary condition for recordings, it is not sufficient. Not only

must neurons be alive, they must also have normal network connectivity. In this

study, we investigated neurodegeration surrounding chronically implanted electrodes

at 2 weeks, 8 weeks, and 16 weeks after implantation. We varied the degree of
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a

Figure 19: Hyperphosphorylated tau surround chronically implanted microelec-
trodes 16 weeks post implant. (a)-(c) Representative images of pT231 immunostained
pretangles. (b) Boxed region in (a) at higher magnification. Note the increased pres-
ence of pT231 staining near non-specifically stained hemosiderin-laden macrophages.
(c) Additional example from another implant showing pT231 positive signal surround-
ing electrode Arrows indicate labeled diffuse granular pretangles and arrow heads
indicate rodlike dystrophic neurites. (d) Positive control- Human Alzheimer’s case
sections contained stained processes similar to those seen around electrodes. Scale
bar = 50 μm (a) and 10 μm (b)-(d).
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a b

Figure 20: Hyperphosphorylated tau surround chronically implanted electrodes in
human. (a) Deep brain stimulation electrode was implanted in a human Parkinson’s
Disease patient ∼five months after implant. Tissue adjacent to electrode track showed
upregulated expression of pT231, an abnormally hyperphosphorylated site on the Tau
protein. Arrows indicate regions of high pT231 expression. Scale bar = 100 μm (b)
Electrode track from recording lead, a stab wound injury, did not show increased
pT231 staining relative to background levels. Dashed blue lines outline the electrode
track. Scale bar = 100 μm

chronic inflammation at the 16 week time point to test the hypothesis that chronic

inflammation associated with the presence of the electrode is correlated with a neu-

rodegenerative state. These data show that higher levels of activated microglia and

reactive astrocytes are correlated with increased neuronal loss, dendritic loss, and

tauopathy surrounding the electrodes. These data support an intriguing hypothesis

for the inconsistency commonly observed with chronic neural recordings: that the

glial scar causes recording failure indirectly through local neurodegeneration.

Edell et al. reported a ‘kill zone’ a distance of 10 μm away from the electrode [37].

Biran et al. reported neuronal death surrounding electrodes at chronic time points (2

and 4 weeks) [7]. This paper also showed loss in Neurofilament-160 within the first

100 μm from the electrode. The authors speculated that neurotoxic factors released

by microglia best explain the neuronal loss. Our data show a progressive loss in

number of neurons at chronic end points (increased loss at 16 weeks compared to 8

weeks). Furthermore, after 16 weeks there was greater neuronal loss in the case of
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the 3mm 125 electrode design, associated with more inflammation, than in the case

of the 4mm 200 electrode design. The NeuN loss we observed was ¿20% less than

that reported by Biran et al. This may be explained by our use of an untethered

model compared to a tethered model used by Biran et al., known to result in a larger

inflammatory response [8].

To further study axonal and dendritic degeneration along with neuronal viability,

we used FluoroJade C staining, a useful marker for neurodegeneration [18, 26, 39,

56]. Compared to its predecessors, Fluorojade B and Fluorojade, Fluoro-Jade C is

brighter and stains degenerating neuronal processes in addition to the soma. We

hypothesized that axonal and dendritic degeneration, would accompany neuronal

death. The staining results revealed an early degeneration of neurons within 50

μm of the electrode at 1 hr and 24 hr post-implantation, but at 8 and 16 weeks

post-implantation the marker revealed that degeneration is largely found in neuronal

processes rather than in cell bodies. These data are consistent with a feature of

neurodegenerative disease, that degeneration begins at the tip of the processes and

works back toward the soma. Using immunohistochemistry, we further specifically

labeled both dendrites (MAP-2) and axons (NF-200/Tau-1). We observed significant

loss from 8 weeks to 16 weeks in dendrites, but no significant difference in axonal

markers. Dendritic loss was most striking at deeper depths of the cortical column

(Figure 21). Dendritic loss would be expected to have significant impact on processing

of synaptic input and thus neural recordings.

No significant differences in NF-200/Tau-1 staining suggest that axons were spared,

or may indicate axonal sprouting. We further investigated axonal state by looking

for evidence of Tau pathology. Positive staining was found for the marker pT231 [63],

but not AT8 or Alz50. It is well known that there is a temporal sequence of phos-

phorylation of Tau, with certain residues of the protein phosphorylated earlier than

others. pT231 is one of the earliest sites of the Tau protein to be phosphorylated [3].
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Figure 21: Merged Map-2 and ED-1 staining from consecutive sections. Section
from 16 week (+) control condition at depth ∼1 mm below cortical surface. Scale
bar = 100 μm.
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T231 phosphorylation, occurring primarily in pre-tangles, precedes AT8, which occurs

primarily in late stage extra-neuronal tangles [3]. It has also been shown that pT231

precedes Alz50 [89], and is therefore labeled as an early marker for Tau tangles [147].

Therefore, our observation of pT231 positive signal with an absence of AT8 and Alz50

positive signal, suggests that the Tau pathology present surrounding microelectrodes

in this study after 16 weeks is in the early stages of Tau pathology. This is not to say,

however, that there would not be functional consequences to pT231 alone. pT231

plays an important functional role in synaptic health [21, 81]. While paired helical

filaments (PHFs), which are derived from hyperphosphorylation [2], are not apparent

around electrodes after 16 weeks, pT231 precedes PHFs [144] and further studies are

needed to investigate whether PHFs form >16 weeks.

The relationship between microglia and neurodegeneration has been an exciting

topic of study in the neurodegenerative disease literature [11, 12, 82]. In one study, a

single systemic injection of LPS caused chronic inflammation and progressive neurode-

generation. Other studies have investigated the relationship between inflammation

and Tau hyperphosphorylation, with oxidative stress reported to cause Tau pathol-

ogy [34, 95]. Kitazawa et al. showed that inflammation induced by LPS exacerbates

Tau pathology [71]. Microglial activation has been shown to precede Tau tangles

in a P301S tauopathy mouse model and can be diminished by non-steroidal anti-

inflammatory drugs (NSAIDs) suggesting a causative role by inflammation in the

formation of Tau tangles [160]. These studies are consistent with the human staining

from this study, where pT231 expression was only present surrounding the DBS elec-

trode, but not the stab wound injury caused by the recording lead, suggesting that

chronic inflammation is necessary for hyperphosphorylation of Tau.

Hemosiderin-laden macrophages present suggest hemorrhaging of microvascula-

ture in vicinity of the electrode. Hemosiderin is also present in the vicinity of DBS
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electrodes, as reported recently in a postmortem study of a patient 71 months after im-

plant [134]. The number of electrodes surrounded by hemosiderin-laden macrophages

increased with time. The time course indicates that local hemorrhaging occurs not

only from the acute injury, but at chronic time points as well. Vascular damage likely

exacerbates the sustained activation of microglia next to the electrodes. Additionally,

the effects of local ischemia at the electrode interface could be a cause of neurode-

generation. As mentioned previously, hemosiderin has been hypothesized as being

a product of free radicals with ferritin [101], which suggests the local presence of

reactive oxygen species (ROS) at the electrode. ROS are therefore a potential inflam-

matory mediator for the observed neurodegenerative features next to the electrode.

Indeed, persistent thrombin signaling induces oxidative stress and has been shown

to lead to Tau hyperphosphorylation and delayed neuronal death [136, 22]. In addi-

tion to ROS, the contribution of other pro-inflammatory mediators of inflammation,

including cytokines and nitric oxide, should be considered as a mechanistic link(s)

between chronic inflammation and local neurodegeneration in future studies.

The results of this study suggest that reducing inflammation through delivery of

anti-inflammatory agents would be beneficial for chronic recordings, since the conse-

quent neurodegeneration might also be slowed or halted. Experimental data suggest

that target neurons for recordings must be within 100 μm [57]. We observed increased

neuronal death, dendritic loss, and tau pathology within this critical region. Further

studies are needed to determine the functional consequences of these neurodegenera-

tive features on target neurons.
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CHAPTER V

CHRONIC INFLAMMATION SURROUNDING

INTRA-CORTICAL MICROELECTRODES CAN BE

INDIRECTLY MONITORED BY ELECTRICAL

IMPEDANCE SPECTROSCOPY

5.1 Abstract

The widespread usefulness of neural prosthetic devices is currently hindered by the

inability to reliably record neural signals from chronically implanted electrodes. The

extent to which the local tissue response influences recording failure is not well under-

stood. Impedance spectroscopy has shown promise for use as a non-invasive tool to

estimate the local tissue response to microelectrodes. We describe modeling results

of impedance spectra from chronically implanted rats using the well-established Cole

model, and results of a correlation analysis of modeled parameters with histological

markers of astroglial scar. Correlations between modeled parameters and histology

were significant for only two independent parameters studied and in both cases were

confined to the first 50 μm from the interface. These parameters were: 1) the Py

value, a parameter previously shown to be highly correlated with cell volume fraction

in cell suspensions (GFAP: r = 0.85, p < 0.01; DAPI: r = 0.92, p < 0.01) and 2)

the characteristic frequency, (fc), the frequency at which the reactive component is

maximal (GFAP: r = −0.87, p < 0.01; DAPI: r = −0.71, p < 0.05). Our experimen-

tal results, along with computer simulations, suggest that reactive astrocytes are the

predominant cellular player affecting electrical impedance spectra. The results also

suggest that the largest contribution from reactive astrocytes on impedance spectra
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occurs in the first 50 μm from the interface. These results form the basis for future

approaches where impedance spectroscopy can be used to evaluate neural implants

or related strategies aimed at minimizing the astroglial scar.

5.2 Introduction

Neural prosthetics is a burgeoning field with clinical applications in the treatment

of spinal cord injuries, Amyotrophic Lateral Sclerosis (ALS), and other debilitating

diseases/injuries [60, 124]. However, the widespread usefulness of neural prosthetics

is currently hindered by the inability to reliably record neural signals for durations

beyond several months. To assess the contribution of local tissue response to chronic

recording failure, there is an urgent need to develop tools to non-invasively determine

the extent of local tissue response surrounding microelectrodes.

The time course of the tissue response to microelectrodes is well defined, and

culminates in the formation of a glial scar, composed primarily of reactive astro-

cytes [110, 142, 139, 7, 8]. The gold standard for determining the degree of tissue

reaction surrounding microelectrodes is histology. Gross histological stains, such as

Hematoxylin & Eosin, have been complemented by the advancement of immunohisto-

chemical methods to allow the visualization of specific proteins. The disadvantages of

these methods are 1) an inability to follow the tissue reaction time course in a living

animal, 2) the large amount of time and labor required for histological work, and

3) the qualitative nature of assessment. Establishing a quantitative, non-destructive

method to assess the degree of tissue reaction surrounding microelectrodes would ex-

pedite study of the influence of tissue reaction on the reliability of microelectrode

recordings. Furthermore, such a technique would be invaluable for evaluating the

efficacy of novel strategies to improve chronic recording reliability.

The biophysics of the passive electrical properties of heterogeneous material, in-

cluding biological tissue, has been intensely studied for over 60 years [23, 24]. The
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complex permittivity of biological tissue is known to vary as a function of frequency [33,

123]. In the 10 kHz to 10 MHz frequency range, the electric field penetrates across

cellular membranes in biological tissue. This frequency range, called the β dispersion,

is useful in predicting changes in the structure of biological tissue [50].

While the magnitude of the impedance at 1 kHz is a common measure for assessing

the performance of chronic electrodes, measuring impedance at multiple frequencies

has several advantages due to the ability to then model the impedance spectra. The

advantages of multiple frequencies over one frequency has been an area of contention

in the field of body impedance analysis (BIA), however, modeling of multiple fre-

quencies using the Cole model results in more accurate predictions of total body

water [27, 33].

Pioneering work by Williams et al. showed that impedance spectra from chronic

microelectrodes display a characteristic feature for tissue reaction when plotted in

the complex plane [151]. Implants surrounded by severe tissue reactions, as assessed

using DAPI and GFAP, showed a more pronounced circular arc in the complex plane.

This circular arc locus in the complex plane is not, however, unique to chronic micro-

electrodes in the brain. Indeed, it occurs in impedance measurements of all biological

tissues [50]. The characteristic semicircle with the center depressed below the real

axis is empirically expressed in the Cole equation [23]:

Z = R∞ +
ΔR

1 + (jωτc)α
, (1)

where ΔR = Ro − R∞ and τc = 1/ωc = 1/(2πfc). In (1), Z is complex impedance at

frequency ω and j =
√−1. The impedance circular arc locus is fully defined by four

independent variables: Ro: resistance at zero frequency, R∞: resistance at infinite

frequency, α: the angle of depression ranging between 0 and 1, and fc: the charac-

teristic frequency, which defines the frequency scale. Because of the advantages of

bioimpedance modeling over measurement of a single frequency such as 1 kHz, along
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with the wide use of the Cole model to relate impedance spectroscopy with tissue

structure [87, 10, 94, 103, 17, 50, 33], we chose to study the usefulness of Cole model

parameters for estimating the tissue response to chronic microelectrode arrays. An

index derived from the Cole model parameters Ro and R∞, the Py value, was also in-

vestigated. The Py value represents the normalized extent of the β dispersion and has

been shown to be highly correlated with cell volume fraction in cell suspensions [109].

Cell volume fraction is the ratio of intracellular volume to total tissue volume (both

intracellular and extracellular volume combined). Since astrocyte proliferation and

hypertrophy are known to occur in the glial scar, both of which affect cell volume

fraction, we hypothesized that Py might be correlated with these changes.

In this study, we present our work on the application of bioimpedance modeling for

the estimation of the tissue response to chronic microelectrodes. Correlation results

of modeling parameters with histology, show that two independent parameters, Py

and fc, are well correlated with reactive astrocytes in the first 50 μm surrounding

microelectrodes.

5.3 Materials and Methods

5.3.1 Surgical procedures for chronic implants

Four adult male Sprague-Dawley rats (275-299 grams) were implanted with stainless

steel microwires, 200 μm in diameter and 300-500 kΩ impedance at 1 kHz, insulated

with Epoxylite (FHC, Inc.). All implanted materials were sterilized using ethylene

oxide at least 48 hrs prior to surgeries. Rats were anesthetized for 5 min with a

mixture of 5% isoflurane and 1 L/min prior to surgery. Each rat was positioned into a

stereotactic frame (Kopf), where anesthesia was maintained to effect (1-3% isoflurane

and 0.3 L/min) during surgery by monitoring the rat’s breathing. The rat’s head was

shaven over the incision area and the skin was disinfected with isopropyl alcohol

and chlorohexaderm using a slight scrubbing motion prior to making the incision.
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Ophthalmic ointment was applied to the eyes to prevent drying. A midline incision

was made along the scalp, the skin retracted, and the periosteum cleared to expose the

Bregma. Five stainless steel skull screws were inserted (dimensions = 0-80x(1/16);

Plastics One, Inc.). One skull screw (0 mm lateral and ∼2 mm posterior to the

Lambda) was wrapped with fine metal wire soldered to a Molex connector to serve

as the counter electrode during impedance measurements. A dental drill was used to

create a 3.2 mm hole at 0.2 mm anterior and 3.0 mm lateral to the Bregma with a

custom trephine (24 tooth 3 mm O.D.) fabricated from stainless steel tubing (Small

Parts). In order to minimize iatrogenic damage, room temperature saline was applied

liberally to the spinning drill bit at the bone interface. The bone plug was carefully

removed and, with the aid of a surgical scope, the dura was gently pierced using a

28 gauge needle with the tip bent at a 45�angle, cut using dura scissors, and then

reflected back over the skull. Two electrodes were implanted, one in each hemisphere,

of the motor cortex region (3 mm lateral and 0.2 mm anterior to the Bregma). The

microwires were implanted ∼1 mm below the surface of the cortex using a stereotaxic

apparatus at a rate of ∼0.1 mm/sec. After 5 minutes, during which the brain surface

was kept moist with saline, the craniotomy was covered with 1% SeaKem Agarose

(Cambrex) gel in phosphate buffered saline (PBS). The craniotomies were further

sealed and protected using dental acrylic, which was anchored to the skull by the

bone screws. All implants were performed by the same surgeon. All procedures were

approved by Georgia Tech Institutional Animal Care and Use Committee.

5.3.2 Impedance analysis: Impedance spectroscopy measurement

After 11 weeks, a time point long after the electrical properties of the astroglial scar

have stabilized, the electrical impedance spectra of the electrode-tissue interface were

measured. A constant voltage AC 10 mV signal was applied to the microelectrode,

and impedance magnitude and phase were measured twice at a counter electrode

70



(stainless steel skull screw), located at a fixed distance away, from 100 Hz to 1 MHz

using a logarithmic sweep of 40 points, and additionally at 1 kHz. Constant voltage,

as opposed to constant current, was used to minimize the contribution of parasitic

impedance, in parallel with the electrode-tissue impedance. The measurement setup

consisted of a lock-in amplifier (Signal Recovery Model 7280), along with a current-

to-voltage converter (Figure 22). For the current-to-voltage converter, a high-speed

op-amp, AD829 (Analog Devices), was chosen for its high gain bandwidth product

(GBWP) of 120 MHz. Impedance magnitude and phase were calculated using the

voltage measured at input A and at input B. Both inputs could not be read simulta-

neously, so two sweeps were made sequentially, one for input A and one for input B.

The tissue properties were assumed to be stable over the course of the measurement,

which is reasonable given that each sweep took ∼30 sec to complete, and sweeps were

made consecutively. Additional impedance sweeps were made after the removal of

the electrode in PBS in order to test the electrical properties of the electrode alone.

5.3.3 Impedance analysis: Estimation of Cole parameters and Py from
impedance spectra

Data points from the complex impedance locus plot, with the real part of the impedance

versus the negative imaginary part of the impedance, were selected to optimally fit to

a circle using least squares minimization [44]. The best-fit curves all had a goodness-

of-fit of r > 0.99, and impedance from a minimum of 10 frequencies were modeled.

The zero-intercepts of the curves were then calculated (Ro and R∞). From these two

parameters, Py was calculated using the formula (Ro−R∞)/Ro (see Figure 23a).The

characteristic frequency, fc, and parameter α were calculated using the “ln(u/v)”

method [123, 146] (see Figure 23b and Figure 23c).
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Figure 22: Schematic showing the setup used to measure electrical impedance spec-
tra. The setup consists of a lock-in amplifier with a constant voltage output of 10 mV
connected to the working electrode (WE) and measured at input A. The counter elec-
trode (CE) is connected to an current-to-voltage converter and the voltage measured
at input B. Physically, WE = microwire and CE = skull screw.
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Figure 23: (a) Theoretical impedance spectra of biological tissue showing the Cole
model parameters. The four Cole model parameters can be estimated geometrically
from the impedance loci plot to characterize the impedance spectra. Ro and R∞ are
the resistances at zero and infinite frequency, respectively; fc, characteristic frequency,
is the frequency at which the reactive component of impedance is maximal; α is the
angle of depression of the center of the circle below the real axis. (b)-(c) Calculation of
the Cole model parameters fc and α. (b) The chord lengths, ui and vi, are calculated
at each complex impedance value, Zi. (c) Theoretical plot showing the relationship
between chord lengths and the Cole parameters fc, where fc = 2π/ωc, and α.
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5.3.4 Tissue analysis: Brain tissue preparation for immunohistochem-
istry

Rats were perfused transcardially with 200 ml of PBS, followed by 200 ml of 4%

paraformaldehyde in PBS ∼12 hrs after impedance spectroscopy measurement. The

acrylic headcap, attached to the skull, along with the electrodes were carefully re-

moved and stored in PBS at 4 �. The brain was then extracted and left in 4%

paraformaldehyde solution overnight at 4 �. Brains were then transferred to PBS for

1 hr at 4 �, followed by 30% sucrose until they had sunk to the bottom (∼2-3 days).

Brains were then cryoembedded using OCT compound, cryosectioned to a thickness

of 30 μm, and stored sequentially to preserve cortical depth information.

5.3.5 Tissue analysis: Immunohistochemistry

Cell density and cell hypertrophy strongly influence the electrical impedance proper-

ties of tissue within the β dispersion frequency band, due to their relationship with

cell volume fraction [43]. Therefore, GFAP expression, which is upregulated in re-

sponse to injury, was used to estimate astrocyte hypertrophy. DAPI, which stains all

cell nuclei, was used to estimate cell density.

Tissue sections were incubated in blocking solution, consisting of 4% goat serum

in PBS, for 1 hr at room temperature. Sections were then incubated in primary

solution, GFAP (DAKO, 1:2000) in blocking solution, overnight at 4 �. Following

three rinses in PBS, sections were incubated in secondary solution, Alexa 488 IgG

anti-rabbit (Molecular Probes, 1:220), for 1 hr at room temperature. After three

rinses, sections were counterstained with DAPI (Invitrogen), mounted to slides and

coverslipped using Fluoromount G.

5.3.6 Tissue analysis: Quantitative analysis of histological images

Fluorescent images were captured using a Microfire digital camera attached to a Zeiss

Axioscop2 Plus upright microscope. Images were quantified using a custom program
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written in MATLAB (Mathworks) [93]. Briefly, the recording track was outlined

using GFAP-labeled images, and an ellipse was constructed to delineate the border

between the electrode track and the surrounding tissue. Rectangular regions were

drawn 500 μm away from the border on both the left and right sides of the electrode

track, with the width of the quantified region approximately equal to the diameter of

the electrode track.

5.3.7 Computer modeling

Computer simulations were constructed using software previously developed for the

study of the relationship between tissue structure and its passive electrical impedance

properties (Bioimpedance Simulator; source files are available at http://www.cnm.

es/~mtrans/BioZsim/). This software generates electrical circuit equations analyzed

using SPICE from a 2D map, representing a slice of living tissue. Each pixel of the

2D map represents electrode, extracellular medium, or intracellular medium, and

is modeled with pure resistors. At intracellular-extracellular medium interfaces, a

cell membrane is modeled as a capacitance and resistance in parallel. Simulation

parameters used were: 30 x 30 pixels, slice thickness = 50 μm, pixel size = 5 μm,

membrane capacitance = 1 μF cm2, intracellular medium resistivity = extracellular

medium resistivity = 100 Ω cm, electrode resistivity = 0.01 Ω cm, frequency range =

100 Hz - 1 MHz.

5.3.8 Statistical analysis

Correlations were tested using Pearson’s correlation coefficient and the significance

was tested using Student’s t-test. For all tests, p < 0.05 was considered significant.
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5.4 Results

5.4.1 Qualitative observations of the tissue response

There was a large variation in the tissue responses to the microwires. These ranged

from a tight network of astrocytes only a few cell layers in thickness (Figure 24a) to

reactions extending several hundred μm from the electrode (Figure 24b). Similarly,

there was a large variation in cellular density as indicated by DAPI staining.

5.4.2 In vivo impedance spectroscopy

In order to minimize the contribution of electrode polarization on the measurement

at low frequencies, the impedance contribution of the electrodes should be small

in comparison to the biological component in a two-electrode measurement system.

Impedance measurements in saline after removal of the electrodes from the brain,

demonstrated that the electrode contribution was small in comparison with the tissue

at frequencies fitted with the Cole model.

Figure 24c shows sample impedance spectra from two different electrodes corre-

sponding to the reactions imaged in Figure 24a and Figure 24b. More extensive tissue

reactions were associated with a more pronounced circular arc in the loci plots.

5.4.3 Quantitative correlation of impedance parameters with histology

Table 5 presents the correlations of Py with the total intensity of GFAP and DAPI

labeled images for incremental radial distances away from the electrodes. This table

shows that the data are significantly correlated only in the immediate vicinity of the

electrode (0-50 μm from the interface) (see Figure 25a).

Table 5 also includes the correlations of the characteristic frequency, fc, with

the total pixel intensity of GFAP and DAPI labeled images for incremental radial

distances away from the electrodes. This table shows that, as with the Py value, the

data are significantly correlated only in the immediate vicinity of the electrode (0-50

μm from the interface) (see Figure 25b). No correlations were noted with histology
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Figure 24: Example immunostained sections showing a (a) mild and (b) severe
tissue response. (c) The corresponding impedance spectra show that severe reactions
result in broader circular arc loci. (a)-(b) ‘E’s indicate the locations of the electrode
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Table 5: Results of Pearson’s correlation between independent model parameters Py
and fc with GFAP intensity and DAPI intensity as a function of distance away from
the microelectrode. Immunostaining of sections with the primary antibody omitted
were not significantly correlated with Py or fc at any distance, suggesting that the
significant correlation between Py and fc with GFAP at 0-50 μm away from the
electrode is not due to non-specific binding. Bold text indicates conditions at which
the Pearson’s correlation was significant (p < 0.05).

Astrogliosis (GFAP) Cell Nuclei (DAPI) 2�Antibody Only
Distance
from Pearson’s p-value Pearson’s p-value Pearson’s p-value
Interface (μm) coefficient (r) coefficient (r) coefficient (r)

0-50Py 0.85131 0.00733 0.91805 0.00129 0.26299 0.52916
0-50Fc −0.8665 0.0054 −0.7111 0.048 −0.2146 0.6098
50-100Py 0.67771 0.064766 0.63465 0.09095 −0.56756 0.14227
50-100Fc −0.5497 0.1582 −0.2099 0.6179 0.4561 0.2561
0-100Py 0.83086 0.01062 0.86273 0.00582 −0.03516 0.93412
0-100Fc −0.7876 0.0203 −0.5428 0.1645 0.0259 0.9514
100-200Py 0.47008 0.23983 0.46 0.25145 −0.30123 0.5173
100-200Fc −0.3796 0.3537 −0.299 0.4719 0.6313 0.0932
200-300Py 0.36199 0.37822 0.44631 0.26766 −0.35478 0.4815
200-300Fc −0.3558 0.387 −0.3033 0.4652 0.5845 0.1281
300-500Py 0.30648 0.46032 0.26334 0.52859 −0.46245 0.2486
300-500Fc −0.3689 0.3685 −0.0909 0.8305 0.4809 0.2277
0-500Py 0.70565 0.050509 0.58464 0.12798 −0.53081 0.17588
0-500Fc −0.6619 0.0738 −0.3495 0.3961 0.4775 0.2315

Py Correlation with Py.
Fc Correlation with fc.
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Figure 25: (a) Scatter plot of Py versus GFAP pixel intensity and Py versus DAPI
pixel intensity 0-50 μm from the tissue-electrode interface. Black lines show the linear
regression for GFAP (solid; r = 0.85) and DAPI (dashed; r = 0.92). (b) Scatter plot
of fc versus GFAP pixel intensity and fc versus DAPI pixel intensity 0-50 μm from
the tissue-electrode interface. Black lines show the linear regression for GFAP (solid;
r = -0.87) and DAPI (dashed; r = -0.71).
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for Ro, R∞, α, or |Z|1kHz at any distance away from the electrode up to 500 μm (data

not shown).

5.4.4 Computer modeling

To provide further insight into the mechanisms of cell density and cell hypertrophy

on impedance spectra, computer simulations were carried out. Figure 26 shows the

constructed modeled tissue slices with corresponding impedance spectra for increasing

cell density (a)-(d) and cell hypertrophy (e)-(h). These simulations show that an

increase in cell volume fraction, occurring as a result of either increased cell density

or cell hypertrophy, produces an increase in the Py value and characteristic frequency,

fc, in the resulting impedance spectra (see Table 6).

80



a
b

c

e
f

g

d h

R
es

is
ta

nc
e

(Ω
)

-Reactance(Ω)

2.
0E

+0
4

3.
0E

+0
4

4.
0E

+0
4

5.
0E

+0
4

6.
0E

+0
4

0.0
E+0

0

5.0
E+0

3

1.0
E+0

4

1.5
E+0

4

2.0
E+0

4

2.5
E+0

4

lo
w

de
ns

ity
m

ed
iu

m
de

ns
ity

hi
gh

de
ns

ity

R
es

is
ta

nc
e

(Ω
)

-Reactance(Ω)

5.
0E

+0
4

1.
0E

+0
5

1.
5E

+0
5

2.
0E

+0
5

2.
5E

+0
5

0.0
E+0

0

2.0
E+0

4

4.0
E+0

4

6.0
E+0

4

8.0
E+0

4

1.0
E+0

5

1.2
E+0

5

lo
w

hy
pe

rtr
op

hy
m

ed
iu

m
hy

pe
rtr

op
hy

hi
gh

hy
pe

rtr
op

hy

F
ig

u
re

2
6
:

C
om

p
u
te

r
si

m
u
la

ti
on

s
d
em

on
st

ra
te

th
e

eff
ec

t
of

an
in

cr
ea

se
in

ce
ll

d
en

si
ty

(l
ow

(a
)

m
ed

iu
m

(b
),

an
d

h
ig

h
(c

))
an

d
th

e
eff

ec
t

of
an

in
cr

ea
se

in
ce

ll
h
y
p
er

tr
op

h
y

(l
ow

(e
),

m
ed

iu
m

(f
),

an
d

h
ig

h
(g

))
on

im
p
ed

an
ce

sp
ec

tr
a

((
d
)

an
d

(h
)

re
sp

ec
ti

ve
ly

).
(a

)-
(f

)
G

re
en

p
ix

el
s

in
d
ic

at
e

th
e

in
tr

ac
el

lu
la

r
m

ed
iu

m
,
ye

ll
ow

p
ix

el
s

in
d
ic

at
e

th
e

ex
tr

ac
el

lu
la

r
m

ed
iu

m
,
an

d
b
lu

e
p
ix

el
s

in
d
ic

at
e

th
e

el
ec

tr
o
d
e.

T
h
e

el
ec

tr
ic

al
im

p
ed

an
ce

is
ca

lc
u
la

te
d

b
et

w
ee

n
th

e
tw

o
re

d
p
ix

el
s.

T
h
e

si
m

u
la

te
d

im
p
ed

an
ce

d
at

a
w

er
e

ch
ar

ac
te

ri
ze

d
u
si

n
g

th
e

sa
m

e
m

et
h
o
d
s

u
se

d
fo

r
ex

p
er

im
en

ta
l
d
at

a
(s

ee
T
ab

le
6)

.

81



Table 6: Results of Cole model parameters, Py, and impedance magnitude at 1 kHz
(|Z|1kHz) for computer simulated data with varying cell density and cell hypertrophy
(see Figure 26). An increase in cell volume fraction due to increasing either cell
density or cell hypertrophy results in an increase in complex impedance, particularly
at low frequencies. The parameters most sensitive to changes in cell density and cell
hypertrophy are Ro, |Z|1kHz, fc, and Py, while R∞ and α show slighter changes.

Cole Model Parameters

Ro R∞ fc α Py |Z|1kHz

low 41854 18960 179750 0.9307 0.547 41811
Cell density medium 51006 19033 149690 0.9308 0.627 50939

high 59901 19144 136580 0.9389 0.680 59823

low 77272 19241 82098 0.9497 0.751 77164
Cell medium 127160 19510 47394 0.9500 0.847 126930
hypertrophy high 229270 19813 25232 0.9466 0.914 228680

5.5 Discussion

In this study we present data supporting the use of impedance spectroscopy to non-

invasively quantify cellular concentration in the immediate vicinity of the electrode.

The predominant cell type was identified to be astrocytes using immunohistochem-

istry. Impedance spectroscopy was used to monitor chronically-implanted microwire

electrodes and two independent parameters, Py and fc, of the well-established Cole

model were found to strongly correlate with cellular density and GFAP expression.

Modeling studies show that not only cell density, but astrocyte hypertrophy as well,

has a large influence on the impedance spectra, and the Py and fc parameters in

particular.

It is likely that astrocytes are the largest cellular contributor to the electrode

impedance locus, because of the tight interstitial spaces that these cells form within

the astroglial scar, which entirely encapsulates the electrode. The astroglial scar

restricts the flow of current through the extracellular space, since cell membranes

impede current flow at low frequencies. Several studies have investigated the diffusion
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properties of the extracellular space in the CNS, and in astroglial scar there is an

increase in tortuosity [114, 137, 138]. Our results corroborate previously reported

correlations between impedance spectroscopy and histology [151]. Particularly, our

results show along with Williams et al. that more reactive response to microelectrodes

result in a more pronounced circular arc in the impedance spectra. In this paper,

we additionally characterize the circular arc in the impedance spectra using well-

established modeling methods in the bioimpedance literature. This then, along with

quantitative histology, allowed us to investigate which features of the impedance

spectra best correlate with the tissue response.

Traditionally, the impedance magnitude measured at 1 kHz has been used as an

estimate of chronic recording electrode performance [88, 96, 143]. Our observation

of no correlation between impedance magnitude at 1 kHz and GFAP or DAPI (data

not shown) can best be explained by variation in the electrode impedances. Using a

two-electrode impedance measurement configuration, electrode polarization is mea-

sured in addition to the surrounding tissue. The effect of electrode polarization on

impedance measurements is significant up to 1 kHz [97]. These results, therefore, il-

lustrate an advantage of a multiple frequency modeled approach over a measurement

at a single frequency such as 1 kHz, since the model is based on higher frequency

measurements where the effect of electrode polarization is greatly decreased. The

normalization in the calculation of Py eliminates the electrode cell constant, which

is dependent on electrode geometry, giving a relative index for estimating cell vol-

ume fraction across multiple electrodes. In a previous study using the Utah electrode

array, SNR and |Z|1kHz were negatively correlated within each rat, but not across

rats [135]. One potential explanation for the lack of correlation across animals is

impedance differences in the electrodes themselves and not the surrounding tissue.

Impedance measurement at multiple frequencies across a wide frequency range is nec-

essary to separate the impedance contribution of the electrode alone from that of the
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surrounding tissue.

The frequency at which the impedance reactance is maximal, fc, has been cited as

being more stable than either the complex or real impedance values alone [10, 94, 103].

Cole parameters have previously been used to characterize ischemia [17]. In this study,

Ro and fc were the two parameters that best characterized ischemia.

A disadvantage of any two-electrode measurement system is that the contribu-

tion of the electrode impedance may be larger than the contribution of the tissue

impedance at low frequencies (<1 kHz). Future systems using three- or four-electrode

designs to minimize or eliminate the contribution of electrode polarization from the

measurement may open the possibility for simpler measurements such as |Z|1kHz and

Ro to be useful parameters for predicting tissue response. Without the influence of

electrode polarization, simulations suggest that these parameters are correlated with

cell density and hypertrophy (Figure 6). R∞ changes little, since the resistance at high

frequencies is independent of cell membranes and intra- and extra-cellular resistances

are comparable. The disadvantage of the three- and four-electrode measurement se-

tups are the increased complexity of the measurement procedure and calculations.

The modeled parameters Py and fc were only correlated with astroglial scar im-

mediately adjacent to the microelectrode (up to 50 μm away), shedding light on the

spatial resolution for this application of bioimpedance spectroscopy. This suggests

that the bulk of the impedance measured is due to tissue in this region. Earlier

reports of the tissue response to microelectrodes identified astroglial scar as span-

ning 50-100 μm away from the electrode-tissue interface [25, 54, 93, 122, 128, 142],

consistent with our findings. This experimental data validates earlier finite element

modeling studies that predicted the contribution of impedance to be 90% within the

first 50 μm away from the electrode surface in an heterogeneous media like astroglial

scar [150].

The measurement setup, consisting primarily of a lock-in amplifier, is a relatively
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inexpensive alternative to commercially available impedance measurement systems

previously used to measure impedance at multiple frequencies between chronic elec-

trodes and a skull screw [65, 105, 151]. Commercial systems do have the advantage,

however, that they can be used “out of the box”, minimizing the temporal cost of

building this system. For future electrode design, the simplified measurement system

used in this work is amenable to miniaturization. On-chip lock-in amplifiers, such as

that designed by Moe et al. [99], could be used to integrate a tissue reaction sensor

on the implanted electrode.

For human use, this technique has potential for the real-time monitoring of chronic

tissue response to microelectrodes. The technique allows the capability to non-

invasively follow the same implant at multiple time points, a necessity for human

use. The small currents applied at the electrode are well-below thresholds for elicit-

ing neural activity, and allow the tissue to be probed without the risk of damaging

the electrode or the tissue.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

Neuroprosthetics offer the hope of restoring native limb movement to paralyzed in-

dividuals. While the feasibility of the technique has been demonstrated [149, 126,

141, 16, 76, 60], the unreliability of chronic neural recordings remains a significant

obstacle to clinical applications. The long-term goal is to enable extraction of mean-

ingful neuronal activity from interfaces which are reliable for a remaining lifetime of

use (on the order of decades). In this dissertation, in contrast to the long-held view

that astrogliosis alone is responsible for recording failure, we propose an alternative

hypothesis for the inconsistency seen in chronic neural recordings: that neurodegen-

eration, mediated by chronic inflammation, leads to the silencing of activity of target

neurons on some recording sites (see red arrows of Figure 1). In developing this idea,

we are indebted to the neurodegenerative disease research community, particularly

in Parkinson’s Disease and Alzheimer’s Disease, where the relationship between in-

flammation and neurodegeneration has been most thoroughly explored [12]. As the

primary goal of this thesis was to test for a correlation between chronic inflammatory

markers and local neurodegeneration, non-functional electrodes were used to mini-

mize variability between conditions. Future studies will be important to further test

the consequences of neurodegeneration on chronic recording failure.

Testing the effect of chronic inflammation on neurodegeneration required a re-

liable way of varying the degree of inflammation. In Chapter III, we demonstrate

that inter-shank spacing modulates the degree of inflammation to microelectrode ar-

rays. We used this to study the ‘stickiness’ of tissue to the electrode in order to

better understand the role of micromotion in the chronic inflammatory response to

86



microelectrodes. Previous modeling studies suggested that interfacial strain is in-

creased in the case of no adhesion between tissue and electrode in comparison to

the case of the tissue and electrode being ‘glued’ together [77, 133]. We found that

adhesion increased with implant duration, and we further investigated the potential

cellular contributors to tissue-electrode adhesiveness through correlation analysis of

the peak force of electrode extraction with immunohistochemical markers of the tissue

response. We found that astrogliosis as indicated by GFAP was the only marker cor-

related to extraction force in both electrode designs (see Figure 1). These results pro-

vide computational modelers with experimental data for modeling the micromotion

of Si microelectrode arrays in the brain tissue, since ‘stickiness’ of scar is proportional

to interfacial strain. The contribution of micromotion to chronic inflammation is an

area that the Bellamkonda Laboratory is currently studying, using cells cultured on

stretchable membranes and studying how the cells respond to small levels of strain.

Regardless of the contribution of micromotion to chronic inflammation, important

to our primary hypothesis is that activated microglia and reactive astrocytes surround

the electrode interface for several months in primates [48], as we have observed in rats,

and that this response can be modulated by electrode geometry. In Chapter IV, we

investigated the effect of chronic inflammation on neurodegeneration. We evaluated

three time points (2 weeks, 8 weeks, and 16 weeks) to test whether neurodegeneration

is progressive. One important aspect of this study was the extended implant dura-

tion in comparison with previous studies. At the 16 week time point, we modulated

inflammation by 1) stab wound control, 2) age-matched control, and 3) inter-shank

spacing. In the case of a stab wound, we could no longer identify the original insertion,

as there were no longer any indications of an inflammatory response or neurodegen-

eration. This finding demonstrates the importance of the persistent presence of the

electrode and not only the initial trauma due to insertion. The age-matched control

87



group also did not show any indication of inflammation or markers of neurodegen-

eration, indicating that the changes we observed were due to the electrode presence

and were not a consequence of aging. In the case of a closer shanked microelectrode,

previously shown in Chapter III to elicit a larger inflammatory response, we observed

increased neuronal death and dendritic loss after 16 weeks post implantation. Since

the largest pyramidal neurons, and therefore strongest electrical signals for record-

ings, are found in layers IV and V they are commonly used for cortical recordings.

Our analysis of depth suggests that neurons at lower cortical depths (∼ layers IV and

V) are strikingly more susceptible to dendritic loss than depths closer to the surface

such as layers I and II, and suggests differences in susceptibility to degeneration of

different neuronal types in the cortical column.

Lastly, in Chapter V, we present an investigation of bioimpedance modeling to

monitor the astrocytic response to chronically implanted electrodes, as an indirect

means of monitoring chronic inflammation. While a more direct, non-invasive mea-

surement of activated microglia or pro-inflammatory mediators would likely be a

better predictor of neurodegeneration, astrogliosis was a much easier target for non-

invasive monitoring via impedance spectroscopy. It is important to note here our

assumption that astrogliosis is an indicator of microgliosis, which is based on the

knowledge that microglial activation precedes the astrogliotic response to intracor-

tical electrodes and the pro-inflammatory cytokines TNF-α and IL1-β released by

activated microglia are known to influence astrogliosis. Furthermore, activated mi-

croglial activation and astrogliosis were correlated in our Si MEA studies, supporting

monitoring astrogliosis as an indirect measure of chronic inflammation. In this study,

we measured impedance spectroscopy over a frequency range known to be largely

influenced by cell membranes [50]. We modeled the electrical impedance spectra us-

ing the Cole model, since previous studies have shown a relationship between the

parameters of this model and cell density and hypertrophy [109, 17, 10, 103, 94],

88



parameters which are known to increase with the extent of astrogliosis. By correlat-

ing the parameters of the model with fluorescent markers of cell density and GFAP

expression we were able to identify features of the model that might be useful in mon-

itoring surrounding tissue of microelectrodes. Our results suggest that the use of two

parameters, fc and Py, are well correlated with both DAPI and GFAP expression.

This correlation was observed only within the first 50 μm away from the electrode

interface, providing insight into the spatial resolution of this technique.

In summary, the results of this thesis support an intriguing hypothesis which sheds

light on the inconsistency observed from long-term recordings. The hypothesis holds

that it is not the astro-glial scar, per se, that is causing recording unreliability, but

rather a local, neurodegenerative state. Neurodegenerative features, such as neuronal

death, dendritic loss and tauopathy, present as far away as 500 μm from the electrode

surface, suggest that neurodegeneration plays a significant role in recording unrelia-

bility. Importantly, these data also suggest that mitigating the inflammatory response

would be beneficial to attain stable neural recordings. With an accurate understand-

ing of the biological problem and a non-invasive technique for monitoring the root

of the problem (inflammation), a closed-loop system can be envisioned to monitor

inflammation at the electrode interface and control the delivery of anti-inflammatory

drugs (i.e. dexamethasone, methylprednisolone) or coatings (see Appendix A) to mit-

igate this inflammation, before neurodegeneration can occur. In this way, it seems

possible to maintain stable neural recordings and realize more fully the quality-of-

life-enhancing potential of cortical neuroprosthetics.
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6.1 Future Work

This work suggests that activated microglia are the primary cell type responsible for

the observed local neurodegenerative state. The mechanistic link between chroni-

cally activated microglia and neurodegeneration, in the context of implanted micro-

electrodes is unclear, but, based on the neurodegenerative disease literature, pro-

inflammatory cytokines and reactive oxygen species would be prime targets for fur-

ther studies investigating the mechanism. From the literature on chronic electrode

implants, little is known about the expression of pro-inflammatory cytokines, such

as IL-1, IL-6, and TNF-α at the tissue electrode interface. Biran et al. showed

that microglia cultured from retreived microelectrodes release monocyte chemotactic

protein-1 (MCP-1) and TNF-α. A study from our lab supports the release of pro-

inflammatory cytokines by activated microglia [55]. In this study, after one week,

the pro-inflammatory cytokine TNF-α mRNA expression was detected using in situ

hybridization at the electrode interface. The TNF-α mRNA was located at the same

location as activated microglia visualized with ED-1, suggesting that activated mi-

croglia express at least TNF-α after one week implant. TNF-α mRNA levels after

four weeks were not observed. ED-1 expression, however, was still present after four

weeks. Since TNF-α is known to be important especially in the acute phase, it

remains to be seen what, if any, chronic pro-inflammatory cytokines are released by

activated microglia. Future work should investigate cytokine expression of fresh tissue

across several early (days) and late (months) time points at the electrode interface.

Work in the Bellamkonda Lab is currently underway to use laser cutting microscopy

(LCM) to microdissect tissue surrounding the microelectrode interface and analyze

the homogenized tissue with cytokine antibody arrays.

We do not currently know the relative importance of scar vs. neurodegeneration in

long-term recording failure and future experiments will be necessary to tease out the
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relative importance of each of these factors. Alternative ways of modulating inflam-

mation to test the effects on neurodegeneration surrounding electrodes may provide

clearer insight into the relationship between inflammation and neurodegeration sur-

rounding chronic electrodes. Local delivery of minocyline, which blocks microglia

activation, is one example of delivery of a drug with more specific effects than probe

geometry. Systemic delivery of NSAIDs is another possibility for targeting inflam-

mation more specifically. Our work on anti-inflammatory coatings for neural probes,

including LN (Appendix A) and α-MSH [55], may also be useful in further studying

the effects of modulation of microglial response on local neurodegeneration. Longer

time points will be needed to investigate whether or not further progression of neu-

rodegeneration occurs beyond 16 weeks. Earlier time points before 2 weeks will be

necessary to further elucidate when neuronal loss occurs, since we only observed

dead/dying neurons with Fluoro-Jade C at 1 hr and 24 hr time points, suggesting

the loss occurs prior to 2 weeks. Inflammation is a double-edged sword, and future

work will be necessary to develop methods for harnessing the beneficial effects of in-

flammation, while mitigating the neurotoxic effects. Indeed, our study of LN coating

of neural probes suggests that a controlled, early activation of microglia results in a

mitigated chronic microglial and astrocytic response (Appendix A).

In addition to the role of pro-inflammatory mediators in local neurodegeneration,

future studies should also investigate the effect of inflammation and neurodegenera-

tion surrounding chronic implants on the activity of nearby neurons. To the best of

my knowledge, there are no peer-reviewed studies to date in vivo that have assessed

both neural recordings and the tissue response. Recordings in conjunction with good

histology would likely require cross-collaboration, since so few groups have the ex-

pertise necessary to recording neural signals and assess tissue response well. Recent

training initiatives, such as a summer course offered by the Center for Neural Commu-

nication Technology (CNCT) at the University of Michigan, Ann Arbor, are seeking
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to provide the training necessary to successfully perform the important studies that

will combine these disparate techniques.
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APPENDIX A

NANOSCALE LAMININ COATING MODULATES

CORTICAL SCARRING RESPONSE AROUND

IMPLANTED SILICON MICROELECTRODE ARRAYS

The following article is reproduced, with permission, from [54]. �2006 IOP Publish-

ing Ltd (www.iop.org/journals/jne/)

A.1 Abstract

Neural electrodes could significantly enhance the quality of life for patients with sen-

sory and/or motor deficits as well as improve our understanding of brain functions.

However, long-term electrical connectivity between neural tissue and recording sites

is compromised by the development of astroglial scar around the recording probes.

In this study we investigate the effect of a nanoscale laminin (LN) coating on Si-

based neural probes on chronic cortical tissue reaction in a rat model. Tissue re-

action was evaluated after 1 day, 1 week, and 4 weeks post-implant for coated and

uncoated probes using immunohistochemical techniques to evaluate activated mi-

croglia/macrophages (ED-1), astrocytes (GFAP) and neurons (NeuN). The coating

did not have an observable effect on neuronal density or proximity to the electrode

surface. However, the response of microglia/macrophages and astrocytes was altered

by the coating. One day post-implant, we observed an ∼60% increase in ED-1 expres-

sion near LN-coated probe sites compared with control uncoated probe sites. Four

weeks post-implant, we observed an ∼20% reduction in ED-1 expression along with an

∼50% reduction in GFAP expression at coated relative to uncoated probe sites. These
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results suggest that LN has a stimulatory effect on early microglia activation, acceler-

ating the phagocytic function of these cells. This hypothesis is further supported by

the increased mRNA expression of several pro-inflammatory cytokines (TNF-α, IL-1

and IL-6) in cultured microglia on LN-bound Si substrates. LN immunostaining of

coated probes immediately after insertion and retrieval demonstrates that the coating

integrity is not compromised by the shear force during insertion. We speculate, based

on these encouraging results, that LN coating of Si neural probes could potentially

improve chronic neural recordings through dispersion of the astroglial scar.

A.2 Introduction

Neural interface technology holds the exciting potential of allowing direct communi-

cation between nervous tissue and external electronics. This technology has already

significantly enhanced the quality of life for many patients with sensory and/or mo-

tor deficits as is evident from both the prosthetic cochlear implant, commonly used

for treatment of deafness [4, 112], and deep brain stimulation, which has been used

to reduce motor symptoms associated with Parkinsons Disease [108, 14, 86]. Sili-

con microelectrode arrays (Si MEAs) have been a driving force in the advancement

of neural interface technology with several advantages over competitive devices in-

cluding high-density recording sites, batch fabrication, highly reproducible geometry

and usercustomizable dimensions [58]. These micromachined neural prosthetic de-

vices have been used to stimulate and record from the central and peripheral nervous

systems [60, 70, 13, 118]. In order to further advance the clinical applications for

silicon microelectrode technology, several issues need to be addressed, one of which is

improving the reliability of longterm recordings from single units [38]. The underpin-

ning reason for the unreliability is still being investigated. One speculated cause is

adverse tissue response induced by the implant. Therefore, the effectiveness of these

neural implants could decrease with time following their implantation, either due to
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implant-induced astrogliosis, a process which electrically and mechanically isolates

the prosthesis from the nervous system [139, 142], and/or due to neuronal cell loss

surrounding these devices [7, 37].

Considering that neural interfaces must meet strict demands on long-term per-

formance for clinical efficacy, several strategies have been undertaken to improve the

biocompatibility of these devices [110]. One approach to improve the neuron-implant

interface is to coat the microelectrode surface with molecules which promote tissue

integration [30, 31, 91, 62]. We have previously reported an ultrathin coating of

laminin-1 (LN) on Si/SiO2 surfaces using surface modification by electrostatic layer-

by-layer (LbL) self-assembly [52]. The advantage of this technique is its versatility

and fine control over layer thickness, which has ramifications on both the stability

and impedance characteristics of the coatings. As shown in the previous work, the

impedance magnitude at 1 kHz for the coating-modified microelectrode was not sta-

tistically different from bare microelectrodes.

The biological contribution to degradation in recording quality over the duration

of an implant is currently unknown. Neuronal-related hypotheses generally relate

to the physical distance between neurons and recording sites being increased. This

may be due to glial cells pushing neurons away and/or neuronal death in the im-

mediate vicinity of the electrode. It has also been suggested that the glial cellular

response plays a critical part in recording quality by increasing electrode impedance

and creating shunt pathways for current to travel away from recording sites [48].

In this study, we investigate the cortical response, including glial and neuronal

cells, to chronically implanted coated Si MEAs compared to uncoated controls in a

rat model. We demonstrate that ultrathin LN coatings significantly decrease chronic

immunoreactivity, specifically, the gliosis response around coated probes after 4 weeks

compared to uncoated bare Si probes.

95



A.3 Materials and Methods

A.3.1 Preparation of nanoscale LN coatings by LbL

Polyethyleneimine (PEI, Aldrich, MW 25,000) was dissolved in Ultrapure water (MilliQ-

plus system, Millipore) with a resistivity of 18.2 MΩ cm to a final concentration of

3 mg ml−1 and pH adjusted to 7.4. The solution was then sterilized by filtration

through a 0.2 μm sterile filter in a laminar flow hood. Laminin-1 (LN) was purchased

from BD Bioscience and diluted to a concentration of 0.2 mg ml−1 with phosphate

buffered saline (PBS) solution at pH 7.4. Single shank neural probes were obtained

from NeuroNexus Technologies. Shank dimensions were 5 mm in length, 33-200 μm

wide and 15 μm thick.

LbL surface coatings on the neural probes were prepared according to the method

described previously [52]. Briefly, a PEI layer was adsorbed for 30 min onto the

neural probes as a precursor layer to initiate the LbL self-assembly. The build-up of

the multilayer was accomplished by consecutive adsorption of the oppositely charged

polycations PEI and polyanions LN onto the probes. Between each step, the excess

polyelectrolyte was removed by rinsing the sample surface with sterile water. For

each layer, an incubation time of 20 min and a rinsing time of 1 min were used. A

total of eight bilayers of PEI-LN were built on the neural probes.

A.3.2 Evaluation of surface structure and coating integrity

Scanning electron microscopy (SEM) was performed on probes with or without the

coating. Images were taken using a LEO 1530 thermally-assisted field emission (TFE)

scanning electron microscope at a 5 kV accelerating voltage. In order to determine

whether the insertion procedure disrupts the coating integrity, coated probes (n =

4) were inserted into a PBS-perfused rat brain, and subsequently retrieved. The

retrieved probes were stained for LN using primary antibody rabbit anti- LN (1:500;

Sigma) and secondary antibody goat anti-rabbit IgG Alexa 594 (1:220; Molecular
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Probes).

A.3.3 Surgical procedures for chronic implants

Animal procedures adhered to the National Institute of Health (NIH) guidelines and

followed a protocol approved by the Institutional Animal Care and Use Committee

(IACUC) at Georgia Institute of Technology. Adult male Sprague-Dawley rats were

used in this study. This animal model is relevant for the study of chronic tissue

reaction to cortical implants, as the glial response has been reported to be similar

between rat and non-human primate models [48]. Adult male rats (275-299 g) were

anesthetized for 5 min with a mixture of 5% isoflurane and 1 L min-1 O2 prior to

surgery. Each animal was positioned into a stereotactic frame (Kopf) where anesthesia

was maintained at 2-3% isoflurane during surgery (with 0.3 L min−1 O2). The animals

head was shaven over the incision area and the skin was disinfected with isopropyl

alcohol and chlorohexaderm using a scrubbing motion before making the incision.

Ophthalmic ointment was applied to the eyes to prevent drying. A midline incision

was made along the scalp, the skin retracted, and the periosteum cleared to expose the

bregma. A dental drill was used to create a 3.2 mm hole at +0.2 mm anterior and +3.0

mm lateral to the bregma with a custom trephine (24 tooth 3 mm O.D.) fabricated

from stainless steel tubing (Small Parts). In order to minimize iatrogenic damage,

room temperature saline was applied liberally to the spinning drill bit at the bone

interface. The bone plug was carefully removed and the dura was gently pierced and

retracted with fine microforceps. The bond-pad region of the coated microelectrode

was grasped with Teflon-coated microforceps and the penetrating shank was inserted

by hand through the pia into the cortex (Figure 27(A)). Electrode insertion by hand,

used in this study,was shown by the previous work [139] to make little difference in

tissue reaction around the electrode compared to the automated insertion method.

The probe was inserted to the point where only the bond-pad region was visible
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outside the cortical surface. A craniotomy of identical diameter was made over the

contralateral location (+0.2 mm anterior to the Bregma and -3.0 mm lateral to the

midline suture) where the control probe was inserted the same way as described above

(Figure 27(B)). Variations were minimized between rats by having both the control

and treated probes within the same animal. Variations in insertion depth between

the two hemispheres were minimized by inserting the shanks up to the bond-pad, as

opposed to estimating a more shallow insertion. After insertion, the bond-pad regions

of the probes and the holes were covered with 1% SeaKem Agarose (Cambrex) gel.

The craniotomy was further sealed using dental acrylic anchored to the skull using

bone screws (Plastics One, Inc.). The skin was sutured shut with 4-0 monofilament

nylon and the animals were monitored carefully until full recovery.

A.3.4 Brain tissue preparation for immunohistochemistry

Animals were prepared for immunohistochemistry 1 day, 1 week and 4 weeks after

device insertion (n = 3 animals per time point). Each animal was anesthetized with a

mixture of ketamine (45.65 mg kg−1), xylazine (9.13 mg kg−1) and acepromazine (1.52

mg kg−1). Animals were then perfused intracardially with PBS prewash followed by

4% paraformaldehyde in PBS. The brains were removed and postfixed for 24 h (4

�). The implanted neural probes were then carefully pulled out of the tissue and

the brains were placed into 30% sucrose (4 �) until they sank to the bottom. The

brains were then cryoprotected with optimal cutting temperature (OCT) compound

(Tissue-Tek). In order to differentiate between hemispheres, tissue dye was applied to

one hemisphere posterior to the insertion sites. Horizontal 30 μm thick tissue sections

were cut through the cortex of all brains and the sections were stored at 4 �in PBS

with 0.01% sodium azide. While the recording sites were located below the cortex,

probe width decreases toward the tip (the location of the recording sites). It was

therefore assumed that cortical tissue reaction would be overestimated in comparison
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(A)

(B)

Figure 27: (A) Micrograph of surgical field of view prior to inserting probes. Back-
ground: two craniotomy sites and three stainless-steel bone screws. Foreground:
probe grabbed with Teflon coated microforceps. (B) Schematic of insertion locations
for uncoated (UC) and coated (C) probes (+0.2 mm Bregma, ±3 mm Lateral). Two
vertical lines represent probes inserted through the cortex and striatum. Coronal
section of adult rat brain adapted from Paxinos and Watson [107].
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to the case where recording sites are located in the cortex.

A.3.5 Immunohistochemistry

To study brain tissue response in the cortical region, cortical sections taken from

all brains from each group were stained simultaneously for the antibody of interest.

Sections were blocked in 4% normal goat serum (GIBCO) with PBS containing 0.5%

Triton X-100 (Sigma) for 1 h at room temperature. Sections were then immediately

incubated overnight at 4 �with primary antibody prepared in blocking solution.

Antibodies for the following molecules were used: ED-1 (marker of reactive microglia

and macrophages; CD 68 monoclonal mouse IgG1, 1:1000; Serotec); GFAP (specific

to astrocytes; polyclonal rabbit IgG, 1:2000; Dako); NeuN (specific to neurons; mouse

IgG1, 1:500; Chemicon). After washing in 0.5% triton in PBS, sections were incubated

in secondary antibodies for 1 h at room temperature. Secondary antibodies were

diluted at a ratio of 1:220 in 0.5% triton in PBS, and included goat anti-rabbit IgG (H

+ L) Alexa 594 (Molecular Probes) and goat anti-mouse IgG1 Alexa 488 (Molecular

Probes). All sections were counterstained by incubation with the nuclear dye DAPI

(Molecular Probes) that labeled cell nuclei. Tissue sections were mounted on glass

microscope slides with Fluoromount-G (Southern Biotechnology Associates).

A.3.6 Quantitative analysis of immunohistochemical data

All fluorescent images were acquired using a Microfire digital camera and a Zeiss

Axioskop2 Plus upright microscope, with the probe site centered in the camera field.

In order to minimize unequal illumination, all the images for each marker of inter-

est, i.e. ED-1, GFAP and NeuN, were collected under the same exposure settings

within the same day. Image analysis was performed using custom software developed

in MATLAB (Image Processing Toolbox included). GFAP intensity as a function

of distance from the probe-tissue interface was calculated based on a method used

previously [69]. An example is given in Figure 28(A). For each image a point was
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manually selected within the probe site and an edge detection algorithm was used to

locate the probe-tissue interface (zero-crossing method). This functioned as the zero

point for all further distance calculations. Equidistant, equiangular radial lines (n =

120) were drawn around the edge-detected interface and the mean vector was calcu-

lated for each image. The average integrals of the ‘mean intensity versus distance

from probe site vectors for all images were also used in comparing coated and control

conditions.

ED-1 response was characterized by calculating the total intensity of each image.

Since ED-1 fluorescent intensity was primarily localized to the region directly sur-

rounding the probe site, total fluorescent intensity reflected the degree of macrophage

reaction close to the probe-tissue interface. Therefore, a decrease in ED-1 intensity

would indicate a lower number of macrophages and activated microglia at the probe-

tissue interface.

Our objectives in analyzing the NeuN images were to quantify the number of

neuronal nuclei and their proximity to the probe-tissue interface (Figure 28(C)). RGB

images were first converted to black and white. The area and centroid position of

each contiguous white region was then calculated, wherewhite regions represented cell

bodies. Contiguous white regions with an area less than two standard deviations from

the mean area were excluded from further analysis. Four endpoints were manually

selected at the four corners of the remaining hole left after removal of the probe.

From these four endpoints two lines were calculated which outlined the longest edges

of the probe-tissue interface. White contiguous regions with centroids located less

than or equal to 200 m perpendicular to the drawn interface lines were included in

further processing. The following features were stored for further analysis: distance

to nearest centroid, total number of centroids, mean perpendicular distance of probe-

tissue interface to centroids, and density (no. of centroids/area).

All statistical inferences were made between coated and uncoated conditions using
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Figure 28: (A) Representative black and white sample image immunostained for
GFAP with sampling lines (n=120). Scale bar = 200 μm. (B) Average fluorescent
intensity profile plotted as a function of distance from the probe site. The area under
the curve is the average total GFAP intensity. (C) Representative sample image
immunostained for NeuN with probe site and distances to neuron centroid locations
outlined in red. Scale bar = 200 μm.
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Students t-test analysis (two-tailed) between like parameters. A minimum of four

sections per cortical region was used to obtain the average for a particular marker.

A.3.7 In vitro primary microglial culture

To examine the response of microglia to the LN coating, in vitro microglial cell cul-

ture was studied. Primary mixed glial cell cultures were prepared from brains of

newborn Sprague-Dawley rats on postnatal day 1 or day 2 as described by Giulian

and Baker [46]. Briefly, the cerebral cortices of the animals were isolated aseptically

and the meninges were carefully removed. The cleaned cortices were placed in a

droplet of L15 medium (GIBCO) and mechanically dissociated using a fine dissecting

knife. The tissue was further dissociated in 0.25% trypsin-EDTA (Invitrogen) at 37�C

for 20 min. Following digestion, an equal volume of DMEM-F12 medium (GIBCO)

with 10% fetal bovine serum was added to stop the reaction. After a brief centrifu-

gation, the cells were resuspended and plated in 75 cm2 tissue culture flasks (Fisher)

coated with poly-L-lysine at a density of one brain per flask in culture medium con-

sisting of DMEM-F12 media supplemented with 10% fetal bovine serum and 1%

penicillin/streptomycin. After 7-10 days, flasks were lightly shaken and the medium

containing detached microglial cells were collected and centrifuged into a pellet. The

cells were resuspended in DMEM-F12 medium with 10% fetal bovine serum, counted,

and plated at a density of 150,000 cells/cm2 on sterile LN-coated and uncoated 1 X

1 cm Si wafers, which were placed in individual wells of a 24-well culture plate and

cultured for 24 h in 5% CO2 atmosphere at 37�C.

A.3.8 Real-time PCR

The relative expressions of the targeted genes from the above microglial culture were

measured using reverse-transcription ‘real-time’ quantitative polymerase chain reac-

tion (RT-qPCR). The mRNA extraction was carried out using the materials and

protocol provided in the RNeasy Mini Kit (Qiagen). Total RNA concentration and
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purity were determined by spectrophotometry at 260 and 280 nm. After isolation, the

mRNA (0.5 μg) of each sample was reverse-transcribed with 20 μl of iScript cDNA

Synthesis Kit (Bio-Rad) containing random hexamer primers, oligo-(dT) and reverse

transcriptase. The cDNA products were stored at -20�or used immediately for PCR.

Real-time RT-PCR reactions were performed under each cytokine-specific condi-

tion to amplify three kinds of inflammatory cytokines, tumor necrosis factor alpha

(TNF-α), interleukin-1 (IL-1) and interleukin-6 (IL-6) (Figure 29). These cytokines

were chosen based on the compelling evidence of the pivotal roles they play in influenc-

ing CNS response to injury [64]. For each of the primer sets, nonspecific amplification

was confirmed absent after electrophoresis and ethidium bromide staining of agarose

gels. PCR was carried out using the QuantiTect SYBR Green RT-PCR Kit and pro-

tocol. All RT-PCR experiments were performed using the iCycler (Bio-Rad). The

protocol utilizes the following thermal parameters: activation step, 3 min at 95 �;

three-step cycling (35 cycles): denaturation, 30 s at 95 �, annealing, 30 s at either

60.5 �(TNF-α) or 55 �(IL-1 and IL-6), extension, 1 min at 72 �. A melt curve

was subsequently performed to confirm that there was no primer dimer in the PCR

products, which began at 55 �and increased to 95 �in 0.4 �increments. Relative

standard curves for the candidate genes were performed each time the genes were an-

alyzed and used for all the samples to obtain the relative quantity from the RT-qPCR

of the targeted gene expression of each sample.

Optimal condition Accession number
Cytokine Size (bp) Primers Tm (°C) MgCl2 (mM)

TNF-α F (5’) 76 TGCCTCAGCCTCTTCTCATT 60.5 1.5 NM_012675
TNF-α R (5’) CAATCACCCCGAAGTTCAGT
IL-1 F (5’) 103 TGAAGAAGAGACGGCTAAGTTTC 55.0 1.5 NM_017019
IL-1 R (5’) TGAGGTGCTGATCTGGGTTG
IL-6 F (5’) 162 CCACCAGGAACGAAAGTC 55.0 1.5 NM_012589
IL-6 R (5’) GGTATCCTCTGTGAAGTCGT

Figure 29: Oligonucleotide primers and optimal condition for real-time RT-PCR.
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A.4 Results

A.4.1 Surface characterization and coating integrity

SEM was used to examine the surface of the LN-coated probe. As shown in Fig-

ure 30(A), little difference was observed between surfaces of uncoated and coated

probes. The surface appeared to be smooth and the coating was homogeneous, both

on and around the recording site. A common concern with coating is the risk of

delamination upon device insertion. Using an antibody against LN, we evaluated the

coating integrity after the probe was subjected to insertion process. LN-positive anti-

body binding was observed along the shank and on the recording sites (Figure 30(B)),

suggesting that the insertion step did not disrupt the distribution of the coating on

the probe surface.

Coated probeUncoated probe
(A) (B)

Figure 30: (A) SEM images of the uncoated and coated probes. Scale bar in the
images is 2 μm. (B) Montage image of LN staining on probe that was subjected to
insertion test. Inset is a higher magnification image showing detail of the recording
sites. To aid in visualization, the corresponding pseudocolor image is shown.

A.4.2 ED-1 immunoreactivity

Activated microglia and macrophages were identified via ED- 1 staining. One day

after surgery, the uncoated probe site was characterized by a faint diffusive ED-1

staining with a few labeled cells (Figure 31). On the coated probe site, the staining

showed a significant increase in the number of small, ameboid ED-1 positive cells
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surrounding the area. The intensity of the ED-1 staining for the coated probe was

∼60% higher than that of the uncoated probe (p < 0.05).

One week after insertion, the responses were very similar between the uncoated

and coated probes (Figure 31). The majority of the ED-1+ cells had the appearance

of large, round, blood-borne monocytes/macrophages. Smaller, processbearing mi-

croglia were also seen at various distances from the injury site. However, differences

in ED-1 staining were seen 4 weeks post-surgery. Lower ED-1+ staining was observed

for the coated probe: ∼20% less than that of the uncoated probe (p < 0.05). The

ED-1+ cell layer was more compact (shown by the arrow) in contrast to the observa-

tion of 1 week, and only phagocytic ameboid microglia/macrophage cells were seen

around the insertion site.

A.4.3 GFAP immunoreactivity

GFAP is a commonly used marker to evaluate reactive gliosis as an astrocytic reaction

to injury. One day after surgery, both coated and control insertion sites were charac-

terized by appearance of elevation in GFAP intensity (Figure 32(A)), compared to the

normal cortical tissue far away from the insertion site. Such elevation was observed

up to 400 μm from the site.

After 1 week, in both control and LN-coated cases, the insertion sites showed

a substantial increase in GFAP reactivity (Figure 32(A)). The staining revealed as-

trocytes surrounding the insertion sites became hypertrophic, elongated with thick

processes as compared to those in the intact brain region, which were more stellate in

appearance. GFAP immunoreactivity was maximum in the immediate border zones

of the insertion site and declined progressively as a function of distance from the site,

extending up to 300 μm either side. There was little difference in terms of GFAP

intensity between the coated probe and uncoated probe at the 1 day and 1 week post-

implantation, as demonstrated by the average intensity line profile (Figure 32(B) and
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Figure 31: (A) Representative images of ED-1 staining for both uncoated and coated
conditions at one day, one week and four weeks post insertion. (B) The percentage
of ED-1 fluorescent intensity of coated compared to uncoated was plotted. At day
one, the coated probe showed significantly higher ED-1 intensity than the uncoated
probe (p < 0.05). No significant difference was observed between conditions at the
one-week time point. Intensity was significantly reduced for coated probes at the
four-week time point (p < 0.05). Scale bar = 50 μm.
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Figure 32: (A) GFAP immunohistochemistry of tissue sections from brains im-
planted with uncoated probes and LN coated probes at one day, one week and four
weeks post insertion. One day after surgery, elevation of GFAP intensity started to
emerge surrounding the insertion site. By one-week post surgery, hypertrophic astro-
cytes with intense GFAP labeling were observed around probe sites (see inset). The
response was similar between the uncoated and coated probes. However, by week four,
a less intense GFAP staining was located around the coated than the uncoated probe
site. (B) Quantitative comparison of GFAP immunoreactivity between the uncoated
and coated probes was made via GFAP intensity profiles as a function of distance
from the probe site. SEM bars from 20% of the data points were displayed. (C) Total
GFAP intensity for the coated probe, defined as the integral of each intensity line
profile shown in (B), was normalized to that of the uncoated probe. As shown in the
plots, no statistical difference in mean fluorescent intensity profile was observed at
the one-day and one-week time points. At the four-week time point, GFAP intensity
was higher for uncoated than coated (p < 0.01), in other words, the percentage of
coated GFAP fluorescent intensity compared to uncoated was significantly reduced
(p < 0.01). Scale bar = 100 μm.
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(C)).

By week 4, the GFAP positive zone became compact around the uncoated probe

insertion site, approximately 100 μm in radius (Figure 32(A)). These astrocytes ex-

hibited an interwoven appearance. For the coated probe, the GFAP intensity within

the vicinity of the insertion site decreased even more dramatically and was compa-

rable to that in the intact region. The average intensity line profiles indicated a

significant GFAP reduction for the coated probe (∼50% less than the uncoated probe

(p < 0.01), Figure 32(B) and (C)).

A.4.4 Immunostaining of neurons

Neuronal response to the probes was characterized via NeuN staining (Figure 33),

which is specific to neuronal nuclei. One day post-surgery, a decrease in the number of

neurons immediately adjacent to the insertion site was observed for both the uncoated

and coated probes. By the end of 1 week, a neuron-depleted zone approximately 30

μm away from the probe site was developed for both uncoated and coated probes. At

the end of 4 weeks, little change was seen for the zone. NeuN quantitative analysis

did not reveal any statistical differences between coated and uncoated conditions.

This was the case in all of the parameters we investigated, including distance to

nearest neuron, total number of neurons, mean perpendicular distance of probe-tissue

interface to neurons, and density (no. of neurons/area). This may imply that a

coating employing a diffusible pharmacological agent, e.g. nerve growth factor, is

necessary to modulate neurons beyond the glial scar.

A.4.5 Real-time PCR

Real-time RT-PCR analysis of cytokine production indicated that there were signif-

icant, quantitative differences in microglial responses to bare silicon and LN-coated

silicon samples (Figure 34). Overall, the pro-inflammatory cytokine expression was

significantly higher (p < 0.01) for microglia cultured on the LN-coated silicon sample.
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Figure 33: Immunostaining of neurons with NeuN at one day, one week and four
weeks post insertion. The distribution of NeuN positive cells around the probe site
was similar for both probes at all three time points. Scale bar = 100 μm.
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Cells had a more than three-fold increase in TNF-α expression, 14-fold increase in

IL-1 expression, and 11-fold increase in IL-6 expression. Regardless of the substrate

type, TNF-α expression was higher than IL-1, and IL-6 expression was lowest.
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Figure 34: Gene expression of pro-inflammatory cytokines TNF-α, IL-1 and IL-6
after 24 h microglial culture quantified by real time RT-PCR. There was statistic
difference for each gene between microglia grown on the bare Si and on LN coated Si
(p < 0.01).

A.5 Discussion

The main objective of this study was to evaluate in vivo brain tissue response to

micromachined Si neural probes modified with nanoscale coating of LN. Several stud-

ies have investigated CNS response to LN in vitro including isolated neurons [61],

neurons and astrocytes in co-culture [28], and microglia [19]. However, the effect of

LN on microglia/macrophage and astrocyte function in vivo, to our knowledge, has

not been explored. In this study, local presence of neurons, macrophages/activated

microglia and reactive astrocytes at the implantation site of Si probes were compared

between bare and LN-coated probes 1 day, 1 week and 4 weeks post-implantation.

Studies have shown that following a penetrating injury to the central nervous

system (CNS), a complex cellular event occurs which usually leads to reactive glio-

sis [41, 130]. Given the high vascular density in the brain, inserting the micromachined

silicon probe into the brain inevitably ruptures blood vessels. Recently, Bjornsson et
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al [9] have demonstrated the vascular damage generated by the neuroprosthetic device

insertion. As a result of vascular damage, macrophages derived from the bloodstream

are recruited to the injury site and microglia, the resident immune cell of the brain,

become activated. One indication of microglial activation is their transformation

in morphology from ramified to ameboid configuration [72]. In our study, ED-1+

microglia/macrophages were observed immediately next to the insertion site, indi-

cating that these cells form the front line of defense against the implanted probes.

Although little difference between LN-coated and uncoated probes was observed in

microglia/macrophage response after 1 week, differences were noted in both the earlier

acute phase (1 day) and later chronic phase (4 weeks). The coated probe induced a

considerably higher ED-1 staining at 1 day postimplantation, suggesting that the LN

coating initiated a greater response frommicroglia/macrophages. In vitro real-time

PCR results have shown that microglia cultured on the LN surface had substantial

upregulation of pro-inflammatory cytokines, namely, TNF-α, IL-1 and IL-6 mRNA

expression. Our observation ofmicroglia activation by LNis consistent with the obser-

vation of Chamak and Mallat [19]. Studies have shown that these pro-inflammatory

cytokines secreted by activated microglia can further activate adjacent microglia and

astrocytes, via autocrine and paracrine pathways, leading to propagation and en-

hancement of the acute inflammatory response [51, 73]. These findings suggest that

LN may have an acute stimulatory effect on microglia, which is further supported by

the observed higher ED-1 response for coated probes after 1 day. Significantly lower

ED-1 staining observed after 4 weeks for the coated probe implies that the coating

evoked less microglia activation in the long term.

One possible mechanism for the beneficial attenuation in astrogliosis at 4 weeks

with LN-coated probes is that LN triggers a boosted, well-coordinated, clean-up re-

sponse from microglia/macrophages of the necrotic debris after injury. Mitigation
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of astrogliosis by activation of microglia/macrophages is supported by several rele-

vant studies. Using a microlesion model which resulted in minimal necrotic debris,

Davies et al reported that ameboid microglia appeared 1 day after injury and quickly

disappeared [32]. The disappearance of microglia was likely due to their successful

removal of the debris resulting from the microlesions. Schwartz et al have investigated

treatment strategies for tissue repair in the injured spinal cord using the approach of

stimulating, as opposed to suppressing, the CNS immune system through activated

macrophages [75, 74, 162].

Besides microglia, astrocytes play an important role in response to injury. In

our study, the response patterns of astrocytes to injury caused by probe insertion

were qualitatively comparable to that observed by Szarowski et al [139]. Initially,

a broad zone of reactive astrocytes, characterized by their larger size, longer and

thicker processes, and increased GFAP expression, surrounded both uncoated and

LN-coated probe insertion sites. This broad band of reactive astrocytes indicated

that astrocytes started to form a barrier between the injury site and the surrounding

tissue. After 4 weeks post-implantation, the zone had evolved into a narrow sheath

of tightly interwoven astrocyte layer encircling the uncoated probe. In contrast, a

mild astrocytic response, as characterized by disconnected segments of relatively low

GFAP expression, was seen after 4 weeks for the coated probe.

The observed correlation between ED-1 immunoreactivity and GFAP immunore-

activity chronically is interesting as it indicates intercellular crosstalk between mi-

croglia/macrophages and astrocytes. As mentioned above, upon activation, microglia

release cytokine products, such as IL-1, IL-6 and TNF-α, which can mediate astroglio-

sis [51]. It is possible that the diminished astrocytic response for the coated probe in

the chronic phase resulted from the reduced number of activated microglia present at

the injury site, which induced a lower cytokine production. The lack of difference in

astrocyte response 1 day following surgery between the uncoated and coated probes
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may be due to a sub-threshold concentration of the produced cytokines required for

astrocyte activation in vivo at this time point.

The high-density cellular sheath surrounding Si MEAs has been suggested as be-

ing a significant cause in the electrical isolation of implants in the brain [142]. At

least three hypotheses for how the glial scar degrades signal quality over time have

been proposed: (1) by promoting a chemically inhibitory environment for neural

processes [41], (2) by increasing the distance between recording site and nearest neu-

rons [84], and (3) by insulating the probe from surrounding neurons, thus increasing

impedance [142, 41].

Neuronal proximity to electrode recording sites, neuronal density, and current

flow between neurons and electrode sites are three primary factors affecting recording

quality. Differences in neuronal proximity to electrode recording site and neuronal

density between bare and LN-coated probeswere not observed. This finding sheds

light on the cellular audience of immobilized and diffusion-based coating strategies.

A coating based on protein/drug immobilization to the electrode surface is perhaps

not well suited for targeting neurons, since the cellular layers ofmicroglia and reactive

astrocytes separate neurons from ‘seeing’ the electrode surface. A coating based on

the diffusion of a pharmacological agent(s) might be a better method to influence

neurons beyond the glial scar. While a diffusion-based coating has the potential for

modulating neuronal and glial cells, immobilized coatings affect those cells in contact

with the electrode surface, namely, microglia and astrocytes. Although neuron-to-

recording site distance is a critical factor in neural recordings, it is not sufficient. It

has been suggested that glial cells are a major cause of these phenomena by obstruct-

ing pathways for current flow between neurons and recording sites [113]. It follows

that a tightly woven glial sheath between electrode and neuron would block any low

resistance paths between recording site and nearby neurons. This line of reasoning is
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supported by a study reporting that regions in and around glial scar have less per-

missible diffusion [114]. As with molecules, glial scars impede current flow between

electrodes and nearby neurons by a combination of a decrease in extracellular fluid

volume between astrocytes and an increase in resistivity due to the tissue compo-

sition itself [49]. The intimate relationship between extracellular fluid volume and

electrode impedance has been studied in the cochlea [35]. A mitigated glial scar with

extracellular clefts between astrocytes may significantly improve recording reliabil-

ity by sustaining low resistance channels for current flow between firing neurons and

recording sites. Since a complete analysis of chronic recording data was beyond the

scope of this study, we are at this time unable to correlate our histological results to

recording quality over time.

In summary, the surface modification of Si MEAs with PEI-LN LbL coating is able

to mitigate the long-term tissue response to chronic implants. Long-term reduction of

glial scar surrounding the coated implant was correlated with an initial amplified local

activation of resident and blood-borne macrophages induced by LN. These findings

suggest that LN may be useful in mitigating astrogliosis in other neural-related chronic

applications as well. We suggest that the addition of diffusible neurotrophic factors

may further facilitate the active ‘management of the interface to promote long-term

recording stability.
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