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SUMMARY 

 
Cells are able to function and survive due to a delicate orchestration of the 

expression of genes and their downstream products at the genetic, transcriptomic, 

proteomic, and metabolic levels. Since metabolites, the end products of gene expression, 

are ultimately the causative agents for physiological responses and responsible for much 

of the functionality of the organism, a comprehensive understanding of cell functioning 

mandates deep insights into how metabolism works. However, the regulation and 

dynamics of metabolic networks are often too complex to allow intuitive predictions, 

which thus renders mathematical modeling necessary as a means for assessing and 

understanding metabolic systems.  

The construction of mathematical models for metabolic pathways is challenging, 

and a particularly complicated task is the estimation of model parameters and the 

identification of network structure. Recent advancements in modern high-throughput 

techniques are capable of producing time series data that characterize dynamic metabolic 

responses and enable us to tackle estimation and identification tasks using “top-down” or 

“inverse” approaches. However, extracting information regarding the structure and 

regulation of the system described by these data is difficult. The challenges can be 

generally categorized in four problem areas, namely: data related issues, model related 

issues, computational issues, and mathematical issues. 

To develop improved methods for inverse modeling that are effective, fast, and 

scalable, this work proposes two novel algorithms namely Alternating Regression (AR) 

and Eigenvector Optimization (EO), both applied to S-systems in Biochemical Systems 

Theory (BST). The AR method employs a decoupling technique for systems of 



 xix

differential equations and dissects the complex nonlinear parameter estimation task into 

iterative steps of linear regression by utilizing the fact that power-law functions are linear 

in logarithmic space. AR is very fast in comparison to conventional methods and works 

well in many applications. In cases where convergence is an issue, the fast speed renders 

it feasible to dedicate some computational effort to identifying suitable start values and 

search settings. AR is beneficial for the identification of system structure in S-systems as 

well. 

 A modification of the AR algorithm is 3-way Alternating Regression (3-AR), 

which was applied here to parameter estimation in S-distributions that form a statistical 

distribution family motivated by S-systems. 3-AR preserves the properties of AR but 

iterates the algorithm between three phases of linear regression. The 3-AR algorithm is 

very fast and performs well for artificial, error-free and noisy datasets, as well as for 

random samples generated from traditional statistical distributions and for observed raw 

data. 

 The EO method is an extension of AR that is based on a matrix formed from 

multiple regression equations of the linearized decoupled S-systems. In contrast to AR, 

EO operates initially only on one term, whose parameter values are optimized completely 

before the complementary term is estimated. It was demonstrated that the EO algorithm 

converges fast and can be expected to converge in most cases, without necessarily 

requiring knowledge of the network structure. Furthermore, EO is easily extended to the 

optimization of network topologies with stoichiometric precursor-product constraints 

among equations. 



 xx

To integrate all existing techniques and make inverse modeling more effective, 

this work proposes an operational “work-flow” that guides the user through the 

estimation process, identifies possibly problematic steps, and suggests corresponding 

solutions based on the specific characteristics of the various available algorithms. A 

significant consequence and advantage of the combined approach is that the result often 

consists of multiple parameter sets that are all consistent with the data and that can lead to 

hypotheses for further theoretical and experimental investigation. Finally, the work 

described here discusses a recent Dynamic Flux Estimation (DFE) approach, which 

resolves open issues of model validity and quality beyond residual errors. The necessity 

of fast solutions to biological inverse problems is discussed in the context of concept map 

modeling, which allows the conversion of hypothetical network diagrams into 

mathematical models. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Overview 

A key to understanding how living cells function is to understand how genes and 

their products carry out their functions at the genetic, transcriptomic, proteomic, and 

metabolic levels in a global context. The components at the most downstream level, the 

metabolites or, collectively, the metabolome, are the end products of gene expression; 

they actually yield much of the utility to the organism and permit instantaneous 

physiological responses. For instance, metabolism is responsible for the generation of 

energy, synthesis of building blocks for the assembly of functional biomolecules, 

degradation of toxic substrates, and transduction of external signals to the genome. 

Therefore, it is quite evident that a good understanding of cell functioning is closely 

related to how metabolism works. 

The cell’s metabolic network is the collection of all metabolic pathways, each of 

which is composed of a series of biochemical reactions catalyzed by enzymes, and 

requires other cofactors in order to function properly. The metabolic pathways are not 

independent of each other. Instead, metabolites within one pathway may serve as 

precursors or regulate steps in another pathway. Hence, because metabolic pathways 

usually consist of many components which are coupled through multiple reactions and 

regulatory interactions, metabolic networks are complex and highly interrelated. Even if 

we take a step backward and look at only one part of the network, a single metabolic 

pathway may still be too complex to allow intuitive predictions. As an example, consider 

glycolysis, the first metabolic pathway, discovered back in 1859 when Pasteur found that 

certain cell extracts can cause fermentation. After almost one and half centuries of 
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extensive research on glycolysis, we may say that this pathway is well understood but 

there are still many open questions regarding the regulation of these pathways remain 

unsolved (Teusink et al., 2000; Hynne et al., 2001; Voit et al., 2006a; Voit et al., 2006b).  

The identification of the structure of metabolic networks has been the emphasis of 

intense research for several decades and led to a substantial knowledge of the processes 

that determine the biochemical and physiological properties of an organism. The 

challenges of truly understanding the functioning of metabolite pathways may be 

characterized by two aspects (Voit and Schwacke, 2007). First, the biological systems are 

usually nonlinear, which makes predictions difficult even for simple unbranched 

pathways that are regulated by a few inhibitory signals. The cell typically regulates its 

metabolic pathway in two ways: (1) metabolites within a pathway can directly regulate 

each other at the metabolic level; (2) metabolites may also affect the expression of genes 

or modification of proteins per signaling. The regulation within the metabolic level is 

much faster than regulatory mechanisms based on gene expression. Therefore, even 

though most metabolic pathway studies account only for regulation within the metabolic 

level, the coordination of regulation at different levels is ultimately unavoidable. 

However, multi-level controls are not well understood and further increase the 

complexity of metabolic systems and increase the necessity of modeling.  

Second, cells tend to maintain homeostasis or “find their way out of problems,” 

such as the undue accumulation of unneeded metabolites. For instance, all organisms 

have control mechanisms that easily adapt to their environment or to changes of states. 

This adaptation is realized by the fact that the same components in the cell may have 

different functions and many of the important cellular control functions exhibit 

considerable redundancy. As a result, some unexpected pathways may branch out and 

lead metabolites to other fates, or change the proportion of fluxes between routes. These 

variations make the dynamics of metabolism complicated and render it clear that 
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mathematical modeling is necessary for understanding the regulation of metabolic 

networks. 

The typical approach to mathematical model construction of metabolic pathways 

consists of five phases: collection of information on network structure and regulation, 

mathematical model framework selection, parameter values estimation, model 

diagnostics, and model application. The first phase is dedicated to developing hypotheses 

regarding network structure. In this phase we need to identify what components and 

interactions of the system are to be included in the model. The results are usually 

visualized as diagrams with nodes denoting the components and arrows representing 

interactions between them. The second phase includes the choice of a mathematical 

modeling framework and the formulation of suitable equations. The process usually starts 

with converting the “wire-diagram” or “network topology” obtained from the first phase 

into equations. These typically form a set of ordinary differential equations that represent 

the velocities or fluxes in symbolic forms based on the mathematical framework of 

choice. After the symbolic modeling equations are formulated, the third phase is to 

determine the appropriate numerical parameter values that make the model consistent 

with experimental observations. Once the initial model is obtained, the fourth phase is 

dedicated to diagnostics of the model, before we can rely on it for applications in the last 

phase, such as making predictions, generating hypotheses, or designing additional 

biological experiments. The modeling process may look quite straightforward. However, 

in most cases it is not linear but a cyclic process which may require the return to earlier 

phases.  

Among these phases, the most challenging task is the estimation of parameter 

values. This task has attracted scientists from all over the world who dedicate 

considerable efforts on this aspect, and it is also the focus of my work in this dissertation. 

One should keep in mind that parameter estimation is not an isolated task, but closely 

related to the other phases in the modeling process. For instance, the size and accuracy of 
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the hypothetic model obtained in the first phase may alter the difficulty of parameter 

estimation and also affect later analyses and the interpretation of the results. Furthermore, 

the choice of a modeling framework naturally influences the degree of simplicity, 

feasibility, and practicability in parameter estimation.  

The development of parameter estimation methods is driven by the availability of 

experimental data. The methods for analyzing varied types of data are distinctly different, 

and, conversely, the nature of suitable data for variant estimation methods is rather 

different. Traditionally, the kinetic properties of a single step within metabolic pathway 

have been presented in the terminology of enzyme kinetics, and predominantly as a 

Michaelis-Menten rate law. Using these types of “local” descriptions of model 

components and merging them into one comprehensive model is referred to as a “bottom-

up” approach.  

Steady-state data are also used in parameter estimation. This type of analysis is 

generally based on experiments that measure the responses of a biological system after a 

small perturbation around the steady state.  

Recent advancements in experimental tools of biology enable us to tackle the 

parameter estimation task using a “top-down” approach in a more comprehensive 

manner. These tools are able to generate time series data or “global” data of metabolites, 

sometimes even under different conditions, such as initial concentrations or upon various 

gene knock-outs. The detailed processes and issues of the traditional methods and newly 

developed techniques in parameter estimation will be addressed in the following sections.  

Based on the general flow of the modeling process, as described above, the 

parameter estimation methods are employed together with a symbolic model that is 

constructed after the first phase of the modeling process. In other words, before the 

parameter estimation step is started, the topology of the network and its corresponding 

symbolic model are set up and they are assumed to be correct with relatively high 

confidence. However, in reality sometimes the true topology of the metabolic pathway is 
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not fully understood or it is even far from complete. Under these circumstances the task 

consists of the inference of the metabolic network topology and its regulation from 

metabolic data. Generally speaking, this general structure identification task is much 

more difficult than parameter estimation, which is already very hard. One should note in 

this context that there is no clear boundary between parameter estimation and structure 

identification. Indeed, parameter estimation is a component of structure identification. 

Conversely, a good structure prediction reduces the complexity of parameter estimation. 

The top-down approach described before may also use time series data to identify 

pathways with structures that are not fully known or whose regulation is obscure.  

To further discuss the issues related to the inference of metabolic network 

connectivity and the determination of parameter values that describe the dynamics of a 

network model from metabolic data, key sub-topics are briefly outlined here and will be 

elaborated in the subsequent sections. 

I. Modeling approach: To construct the mathematical model of a metabolic 

pathway, an important step is to select a mathematical form which can capture the 

phenomenon of interest. In Section 1.2 I will review the rationale and special 

demand of mathematical models for metabolic pathway modeling and introduce 

some of the representative modeling frameworks, such as stoichiometric model, 

the law of mass action, the Michaelis-Menten rate law, and canonical models. The 

goal of this phase is to choose a suitable kinetic model to represent the dynamics 

of a metabolic pathway.  

II. Kinetic model construction: After the kinetic modeling framework has been 

decided, the next step is to determine the parameter values in the model. In 

Section 1.3 I will review some approaches for parameter estimation, including 

forward (bottom-up) modeling, using steady-state data, and inverse (top-down) 

modeling. The challenges of inverse modeling and some current optimization 

strategies will also be reviewed briefly in this section.  
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III. Parameter estimation techniques in the top-down modeling approach: As an 

extension of Section 1.3, some details of pertinent algorithms will be reviewed in 

Section 1.4. The methods include those that are used to attack the main problem 

of optimizing parameter values against the observed time series data, as well as 

others that circumvent the costly integration of differential equations, smooth 

noisy data and estimate slopes, constrain the parameter search space, or reduce the 

complexity of the inference task.  

IV. Inference of network structure: In Section 1.5 I introduce some of the most 

relevant structure identification methods, namely the determination of the 

Jacobian matrix, direct observations, correlation-based approaches, simple-to-

general and general-to-specific modeling, and time series data analysis using the 

framework of Biochemical Systems Theory (BST). 

1.2 Modeling approach 

1.2.1 Model requirements 

In the previous sections I have briefly shown the necessity of using mathematical 

and computational methods for analyzing and understanding the regulation of metabolic 

networks. The question thus shifts toward the search for the most useful mathematical 

frameworks and tools. Mathematical modeling and control theory have a long history in 

engineering. However, the demands and specific requirements in modeling biological 

systems are quite different and require the adaptation and extension of present methods 

and also the development of additional tools in order to be suited for modeling biological 

phenomena. The peculiarities of biological system modeling can be generally described 

in five aspects (Voit and Schwacke, 2007). First, the biological processes and interactions 

are highly nonlinear and complex. Thus, a mathematical structure is needed that can 

capture nonlinearities and does not a priori exclude relevant biological phenomena. 
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Second, dynamic responses of biological systems are particularly interesting. Therefore, a 

suitable mathematical model will have to be time dependent, which almost always 

requires formulation as a set of differential equations. Third, real biological systems are 

usually composed of different levels of components and interactions with relatively large 

numbers. The ability to scale a mathematical framework to handle increasingly larger 

biological models is necessary. Fourth, biological systems may have stochastic features 

when there are only few molecules involved. Under this condition, the fundamental laws 

of kinetics and thermodynamics are no longer applicable and the biological behavior 

becomes difficult to predict. Thus, in addition to grasping a deterministic phenomenon, 

the mathematical model should also be able to capture stochastic behaviors when these 

dominate the process. And fifth, biological reactions rarely happen in a homogeneous 

environment but are restricted to organelles or compartments. This feature is sometimes 

important, and therefore the ability of handling spatial process is necessary for a 

comprehensive mathematical analysis. 

By now it has been made clear that biological systems are complex and this may 

give the impression that one should include every feature and every detail when it comes 

to modeling. However, it is impossible to be complete and decisions must be made as to 

what types of simplifications and approximations are necessary. Besides, the aim of 

developing a model is not just finding a valid description of the system, but also 

maintaining some degree of convenience for analysis and manipulation. Therefore, the 

decisions on simplifications and approximations constitute a compromise between 

several factors, such as the validity of describing the system, mathematical convenience, 

and importantly, the goal of modeling.  

One has to decide what kind of model is suitable for the objectives and the 

experimental data by considering four properties: dynamic or static, continuous or 

discrete, deterministic or stochastic, and spatial or homogeneous (Veflingstad et al., 

2008). In metabolic pathway modeling, we are usually interested in the dynamic and 
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continuous changes of metabolites. Therefore, a dynamic and continuous model is 

typically preferred over a static and discrete model. In addition, if we are primarily 

interested in average model responses rather than extreme or highly unlikely cases, the 

stochastic aspect is usually ignored and a deterministic model will be sufficient. 

Typically stochastic phenomena are more eminent in gene regulatory networks than in 

metabolic networks because there are only a few molecules involved in gene interactions. 

Furthermore, if the spatial aspects are not particularly important, we can ignore them and 

assume the environment is homogenous.   

Thus, if a dynamic, continuous, deterministic, and homogenous model is chosen 

to represent the behavior of a metabolic pathway, the temporal changes of metabolites 

can be formulated as a generic set of ordinary differential equation of the form 

1 1( , , ) ( , , ), 1, , ,i i i i n i nX V V V X X V X X i n                          (1.1)  

where Xi denotes the concentration of a metabolite or metabolite pool and n is the number 

of metabolites in the system. The functions iV   and iV   represent the reaction rates or 

fluxes coming in and going out of the metabolite pool Xi. This general framework has 

numerous alternatives and applications in metabolic pathway modeling depending on the 

functions used to describe iV   and iV  . I will briefly review some of the modeling 

approaches in the following sections. 

1.2.2 Stoichiometric models 

Mathematical models describing metabolic pathways can be constructed with a 

focus either on stoichiometry or kinetics. The stoichiometric property itself is time 

invariant. It is a simple translation of the wire diagram that describes the network 

topology into a matrix which represents how metabolites are converted into other 

metabolites. There are two important features of the elements in a stoichiometry matrix, 

the sign and the value. The sign represents the direction of material flow, for instance, 
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whether the reaction increases or decreases the concentration of a certain metabolite pool. 

If a metabolite and a reaction are unrelated, the corresponding element is zero. The value 

indicates the stoichiometric relationship and must be an integer. For instance, if one unit 

of substrate molecules breaks down into two product molecules, the gain in product is 

coded as +2. Stoichiometric models thus use the stoichiometry matrix N, multiplied with 

a vector of fluxes v, to describe the dynamics of the metabolite concentrations in a vector 

S using a set of ordinary differential equations. Each of the equations represents a 

biochemical reaction and the set taken together expresses the dynamics of the metabolite 

concentrations as 

dS v
dt

 N .             (1.2) 

Detailed description of stoichiometric models can be found in a number of journal 

articles and books (Gavalas, 1968; Heinrich and Schuster, 1996; Stephanopoulos et al., 

1998; Palsson, 2006).  

The main application of stoichiometric models is to determine the rates of the 

fluxes v in the metabolic network. The flux determination methods can be generally 

divided into three categories depending on the type of experimental data. First, in most 

analyses, stoichiometric models are studied in the steady state, where all material flow 

into the pool equals the material flow out the pool, by assuming that the flux rates are 

constant. Under this assumption, the left hand sides of the equations in Eq. (1.2) become 

zero and the system of differential equations becomes a set of linear algebraic equations. 

If the stoichiometric matrix is full rank, it is straightforward to calculate the fluxes. 

However, it is usually the case that there are more unknown fluxes than equations, so that 

the system of linear equations is underdetermined. 

Flux balance analysis (FBA) inherits the properties of stoichiometric approach but 

adds some features like imposing mathematical constraints to find the feasible or optimal 

distribution of fluxes. The background of FBA is reviewed in Palsson (Palsson, 2006) 
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and the development of variations is summarized in Kauffman et al. (Kauffman et al., 

2003). The modeling process in FBA consists of four steps: system identification, mass 

balance, defining measurable fluxes, and optimization. Mass balance is the application of 

conservation of mass which is a distinctive property in metabolic pathways and not 

applicable to gene regulatory networks. For instance, the total number of moles of carbon 

in the system is conserved during the time of reaction. Therefore, by accounting for 

material flows entering and leaving each metabolite pool in the pathway, one can 

determine the material distribution and also identify some flows which might have been 

unknown or difficult to measure in the experiment. In the optimization step an objective 

function is proposed, for instance, to maximize the yield of certain metabolites of interest 

while minimizing nutrient utilization. Then, the objective function is obtained using 

standard algorithms such as linear programming. The main advantages of both the 

stoichiometric model and FBA are their matrix representation and linearity at the steady 

state, which make the analysis relatively easy since there are numerous well-established 

analytical methods that support this kind of analysis. Several examples have shown that 

FBA is capable of assessing the theoretical capabilities and operative modes of metabolic 

systems in the absence of kinetic information (cf. (Selkov et al., 1997; Bono et al., 1998; 

Edwards and Palsson, 2000; Forster et al., 2003; Palsson, 2006)). 

Stoichiometric models are sometimes studied under the pseudo-steady-state (PSS) 

assumption in cases where the concentrations of metabolites rapidly adjust to new levels 

(Yang et al., 2002; Okamoto, 2008; Teixeira et al., 2008). This PSS approximation was 

shown to be valid for most intracellular metabolites (Vallino and Stephanopoulos, 1993). 

Under this assumption, it is reasonable to neglect the instantaneous changes of 

metabolites and set the rate of change to zero.  

When the complete time course of metabolite changes is available, the flux 

distribution at each time point can be determined under the PSS assumption (Vallino and 

Stephanopoulos, 1993) or without (Goel et al., submitted). Different from the standard 
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application where only the steady state data are used, the metabolite change rates in the 

latter case are not necessary zero and can be deduced by slope determination or direct 

measurements (Goel et al., submitted). Once the left-hand sides of Eq. (1.2) are 

substituted by instantaneous changes, the fluxes at each time point can be determined 

directly if the stoichiometric matrix is full rank. However, similar to the standard steady-

state application, in many cases the system is underdetermined.  

Mahadevan and coworkers (Mahadevan et al., 2002) extended traditional FBA to 

account for dynamics and presented two different formulations for dynamic FBA: the 

dynamic optimization approach (DOA) and the static optimization approach (SOA). 

DOA involves optimization over the entire time period of interest to obtain time profiles 

of fluxes and metabolite levels. SOA involves dividing the batch time into several time 

intervals and solving the instantaneous optimization problem at the beginning of each 

time interval. By testing the methods in the analysis of diauxic growth in Escherichia 

coli, the authors concluded that SOA was computationally simpler to implement provided 

all of the constraints were linear, whereas DOA was more flexible and suitable for the 

incorporation of experimental data.  

By now I have shown that using the stoichiometric property together with the rate 

changes of metabolites is successful in studying the flux distribution in metabolic 

pathways. There are other applications of stoichiometric models, such as the inclusion of 

regulation by multiplication of stoichiometric matrices with binary regulation matrices, 

which represent the turning on and off of additional (regulatory) processes (Palsson, 

2006). However, the main advantage of the approaches above is that they focus almost 

exclusively on the connectivity structure of the system and the fluxes distribution and do 

not require kinetic information. Therefore, the predictive power is limited due to the lack 

of nonlinearity such as regulatory signals and other nonlinear dynamic interactions, 

which can only be included in the formulation of a kinetic model.  
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1.2.3 Kinetic models of pathway steps 

When detailed information is available about the kinetics of the specific metabolic 

reaction, it is possible to describe its dynamics by incorporating kinetic properties with 

the known stoichiometry of metabolic pathways (Gombert and Nielsen, 2000). A first 

step toward combining the stoichiometric property with kinetic features is to investigate 

the appropriate functions to represent the simple flux quantities 
iV  and 

iV  in Eq. (1.1). 

Many functional forms of have been proposed, but the most prevalent are formulations 

based on the law of mass action, Michaelis-Menten rate laws, and different types of 

canonical models.  

Mass action systems 

Models based on the law of mass action are typically used to describe reaction 

networks consisting of elementary reactions. The rate of a given elementary reaction is 

proportional to the product of concentrations of all variables reacting in the elementary 

process and is generally formulated as the basis function 

1

i

n
g
i

g

v k X


  , i = 1, 2,…, n,          (1.3) 

where k is the rate constant which is always positive and gi are kinetic orders which are 

non-negative integer numbers that reflect the numbers of molecules involved in the 

reaction. The advantage of models based on the law of mass action is that it can be 

determined directly from the elemental reactions and their stoichiometry, if the 

information is known. However, in most realistic cases the reactions are not elemental 

but catalyzed by enzymes, not well understood, or experimentally inaccessible in detail. 

Therefore, the equations are hard to set up and the parameters of the model are difficult to 

obtain. 
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Michaelis-Menten and similar rate laws 

The Michaelis-Menten model (Michaelis and Menten, 1913) and its variations are 

among the most commonly used representations for kinetic modeling in metabolic 

pathways. The model is based on the concept that a substrate and an enzyme form a 

transient complex which either dissolves to return the two or leads to the formation of a 

product and the release of the enzyme. The modeling of enzyme reactions in this type of 

approach is simplified considerably under the quasi-steady-state approximation 

assumption, which states that the intermediate complex does not change appreciably over 

time. Even though the Michaelis-Menten based rate laws are straightforward to set up, 

complete description of more complex enzyme mechanisms may become massive if 

several substrates or reactions are involved, even in moderately large biochemical 

systems (Schulz, 1994). As the result, the mathematical analyses become very complex 

and the parameter estimation requires an undue amount of experimental data (Veflingstad 

et al., 2008). In addition to issues caused by technical problems, the model results are 

difficult to interpret and thus useful information is hard to extract to understand the 

underline biological system (Heinrich and Rapoport, 1974). 

Canonical models 

As discussed in the previous sections, the predictive ability of stoichiometric 

models is limited because nonlinearities due to regulation are not included in the model. 

To improve the model, detailed kinetic information of the pathway is needed. However, if 

we incorporate the dynamic information using the ad hoc models such as those based on 

traditional kinetic rate laws to describe the flux rates, the task quickly becomes 

cumbersome mathematically and impractical in reality. Therefore, to find a good 

compromise which can capture the dynamics while keeping the mathematics simple, it is 

often beneficial to search for a “canonical” nonlinear model whose structure is fixed and 

whose individuality comes from its parameter values. Besides, these homogeneous 
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structures are more or less size independent and therefore allow the same types of 

analyses and diagnostics. I will present some details of canonical models in the next 

section.  

1.2.4 Canonical models 

Arguably the most promising canonical nonlinear models in metabolic modeling 

are S-system and Generalized Mass Action (GMA) system structures within Biochemical 

Systems Theory (BST) (Savageau, 1969b; Savageau, 1969a; Savageau, 1976; Voit, 

2000a; Torres and Voit, 2002). These models are constructed by approximating fluxes 

with products of power-law functions, which are mathematically grounded in the well-

established approximation theory of Taylor. In the S-system formalism, each equation 

has a particularly simple format: The change in system variables is given as one set of 

influxes minus one set of effluxes, and each set is collectively written as one product of 

power-law functions as 





n

j
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n

j
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
 
 , i = 1, 2,…, n,        (1.4) 

where X represents the variable (metabolite) and n denotes the number of variables in the 

system. The non-negative numbers i and i are rate constants which quantify the 

turnover rate of the production or degradation, respectively. The real numbers gij and hij 

are kinetic orders which reflect the strengths of the effects that the corresponding 

variables Xj have on a given flux term. A positive value signifies an activating or 

augmenting effect exerted by Xj, a negative value signifies an inhibitory effect. A kinetic 

order of zero implies that the corresponding variable Xj does not have an effect on a given 

flux. 

In the GMA formalism, instead of aggregating all influxes and all effluxes into 

one term each, all influxes and effluxes are approximated individually with power-law 

terms such that  
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  , i = 1, 2,…, n,        (1.5) 

where the rate constants ip are non-negative and the kinetic orders fipj may have any real 

values as in the S-system form. It should be noted that differences between these two 

formulations only exist at branch points, whereas all other steps are identical. 

BST models have a number of important advantages which have been discussed 

in detail (Savageau, 1969b; Savageau, 1969a; Savageau, 1976; Voit, 1993; Voit, 2000a). 

Among the beneficial features, four are particularly crucial here. First, these systems are 

rich enough in structure to capture virtually any nonlinearity including complex 

oscillations and chaos. Second, symbolic BST models can be set up without mechanistic 

information on the underlying system, but if information is available, it can be used to 

simplify the symbolic representation. Third, the highly structured format facilitates 

mathematical and numerical analyses. These analyses include computations associated 

with steady states, sensitivity, stability, as well as dynamic features. Fourth, BST models 

are characterized by a one-to-one relationship between parameters and structural features. 

Thus, if structural features are known, it is explicitly clear where they will appear in the 

BST models. Conversely, if a parameter has been identified, its interpretation in terms of 

structural properties is immediate. This feature is especially crucial for structure 

identification and parameter estimation of metabolic model. The reasons will be 

discussed in detail in Section 1.4.4. The power-law models were initially used to model 

metabolic pathways, but this formalism is also shown to be satisfied in modeling several 

other kinds of biological systems, including genetic networks, multi-level systems, and 

cell signaling (Savageau, 2001; Atkinson et al., 2003; Vera et al., 2007). 

An alternative canonical form is “lin-log approximation” which was introduced 

by Hatzimanikatis and Bailey (Hatzimanikatis and Bailey, 1996) and expanded by Visser 

and Heijnen (Visser and Heijnen, 2002). This form is based on taking the logarithm of 

each metabolite concentration and enzyme activity in relationship to a corresponding 
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reference value. The lin-log model constitutes an extension of Metabolic Control 

Analysis (MCA), a theoretical framework for analyzing control and regulation in 

metabolic networks close to their steady state (Kacser and Burns, 1973; Fell, 1997).  

Another recently proposed canonical form is the Saturable and Cooperative 

Formalism (SC formalism) (Sorribas et al., 2007), which is derived based on Taylor 

approximation in a special transformation space defined by power-inverses and 

logarithms of power-inverses. The SC formalism is shown to have the properties of 

cooperativity and saturation, which are absent in other canonical formalisms. In addition, 

unlike the other formalisms where the approximation is valid only around small enough 

deviations from the operating point, the SC formalism is expected to be accurate over a 

wider range around the operating point if the approximated functions are saturated. 

The choice of an S-system, GMA, lin-log, or SC formalism depends on the 

information available and on the purpose of modeling. For instance, GMA systems are 

basically stoichiometric models that incorporate kinetic information using power-law 

approximation. Therefore, GMA systems are often closer to biochemical intuition, 

compared to S-system formalism. However, the GMA format does not allow the 

algebraic calculation of steady states, which is important for certain analyses. The SC 

formalism may be seen as a good tool in numerical simulations since it provides greater 

accuracy. However, similar to the GMA models, the straightforward algebraic analysis 

which can easily be done in S-system models is lacking in models based on the SC 

formalism. The lin-log model shares the advantage with the GMA format that the sum of 

terms is close to biochemical intuition and also has the benefit of the S-system format by 

allowing algebraic calculations of its steady states. However, it can not represent certain 

nonlinear behaviors since the structure is essentially linear (Savageau, 1998). The BST 

representations become more inaccurate for very high substrate concentrations, while the 

lin-log approximation results in greater errors for substrate values close to zero (Wang et 

al., 2007; del Rosario et al., 2008a). One should keep in mind that both BST and lin-log 
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approximations have one aspect in common, namely that both approaches are local 

approximations and guaranteed to perform well as long as the variables stay within a 

reasonable range.  

1.3 Kinetic model construction  

After we collect the information of network structure and choose the 

mathematical model framework to describe the metabolic system, a symbolic model 

which is described as a set of ordinary equations can be derived. The next step is to 

assign numerical values to all parameters in the model. There is no unique recipe for the 

task of parameter estimation. In fact, the estimation problem is in general complicated 

and it continues to be the bottleneck of biomathematical modeling.  

  In this section, I will review some of the recent methods developed for parameter 

estimation: the forward (bottom-up) approach, estimation from steady-state data, and 

inverse (top-down) modeling using time-series data. The nature of suitable data for each 

type of estimation is rather different, and so are the methods of analysis. One should note 

that none of these approaches will be completely replaced by the others. Instead, they will 

and should complement each other. In the future, a combined strategy may become the 

standard, because it has much greater potential leading to suitable models than either 

approach by itself. 

1.3.1 Forward or bottom-up modeling 

Before the rapid development of high-throughput experimental tools, essentially 

all metabolic models were developed from “local” kinetic information of biochemical or 

physiological responses in a reductionist manner. Specifically, biologists around the 

world worked on characterizing one particular enzyme or transport step at a time in the 

traditional manner. They purified the enzyme, studied its characteristics, determined 

optimal temperature and pH ranges, and quantified cofactors, modulators, and secondary 
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substrates. Isolated from these laboratory experimenters, modelers converted this 

information into a mathematical rate law. Once enough information had been collected of 

all rate laws, the modeler attempted to merge all this information into an integrative 

mathematical model. If done right this “forward” or “bottom-up” process might lead to a 

model representation of the pathway that exhibits the same features as reality, at least 

qualitatively, if not quantitatively (Voit, 2004; Goel et al., 2006; Mao et al., 2008). Some 

recent studies that used this forward approach in BST include: the TCA cycle in 

Dictyostelium discoideum (Shiraishi and Savageau, 1992); the citric acid cycle (Torres, 

1994; Torres et al., 1996); fermentation in Saccharomyces cerevisiae (Cascante et al., 

1995; Curto et al., 1995; Sorribas et al., 1995); purine metabolism (Curto et al., 1997; 

Curto et al., 1998a; Curto et al., 1998b); the Maillard-glyoxylase network with formation 

of advanced glycation end products (Ferreira et al., 2003); the trehalose cycle (Voit, 

2003); the ferredoxin system with information from protein structure for model 

identification (Alves et al., 2004); and sphingolipid metabolism in Saccharomyces 

cerevisiae (Alvarez-Vasquez et al., 2004; Alvarez-Vasquez et al., 2005; Alvarez-

Vasquez et al., 2007). In almost all of these cases, the strategy consisted of setting up a 

symbolic model, estimating local parameters, studying the integration of all individual 

rate laws into a comprehensive model, testing the model, and making refinements to 

some of the model structure and the parameter values.  

While theoretically straightforward, there are several disadvantages of this 

approach. The main issue is that a considerable amount of local kinetic information is 

needed and that this information is often obtained from different organisms, different 

species, and collected under different experimental conditions. Therefore, more often 

than not the “integrated result” is not consistent with biological observations. 

Furthermore, this process of construction and refinement is very labor intensive and 

requires a combination of biological and computational expertise that is still rare (Goel et 

al., 2006; Mao et al., 2008). 
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1.3.2 Using steady-state data 

If a system operates preferentially at a steady state, the parameters of the model 

can be estimated using steady-state data, including steady-state concentrations, fluxes of 

material flows at steady state, and logarithmic gains. Estimations of parameter values 

from steady-state data are generally based on observing how a biochemical system 

responds to (infinitesimally) small perturbations around the steady state. There are 

basically two approaches can be taken. First, parameter values can be obtained by direct 

experimental measurements of how a variable affects the fluxes coming in and going out 

of the metabolite pool. Suppose the flux rate and metabolite concentrations in steady state 

of one particular biochemical process are known. One can then slightly alter the 

concentration of a variable systematically while keeping the other variables constant. The 

result of these experiments can be plotted as flux rate versus metabolite concentrations in 

logarithm coordinate. Thus, in the case of power-law systems, the kinetic order of the 

variable can be measured easily as the slope of the line in the logarithmic plot obtained 

by linear regression (e.g., (Wanders et al., 1984; Curto et al., 1997; Curto et al., 1998a; 

Curto et al., 1998b)). Under ideal circumstances, sufficient experimental measurements 

can be collected to allow the regression analysis. However, the data usually contain noise 

and consist of only a few measurements, which make the regression more vulnerable to 

experimental uncertainties. Second, parameter values can be estimated by experimental 

measurements of logarithmic gains (e.g. (Kacser and Burns, 1979; Sorribas and Cascante, 

1994)). This approach is based on perturbing variables in the interesting portion of the 

pathway and recording the corresponding changes after perturbations. The information 

about modulation including flux rates and concentrations is collected to calculate the 

kinetic orders. 
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1.3.3 Inverse or top-down modeling 

Much of the information necessary for parameter estimation depends not only on 

steady-state measurements or simple perturbations around the steady-state, but on 

measurements for all metabolites at sequential points in time that may include 

considerable deviations from the steady state. Modern high-throughput techniques of 

biology are capable of producing this type of time series data and have begun to offer 

distinct alternative options for modelling metabolic systems, namely the “top-down” or 

“inverse” approach. The experimental tools which allow the generation of dynamic 

metabolite concentration profiles presently include nuclear magnetic resonance (NMR), 

mass spectrometry (MS), high performance liquid chromatography (HPLC), and flow 

cytometry (see review in (Voit, 2004)). In contrast to the “local” data obtained from 

traditional experiments, the clear advantages of using “global” data are that the 

information is collected within the same organism, obtained under the same experimental 

condition, and sometimes even in vivo. These data contain enormous information on the 

structure and regulation of the biological system they describe. However, this information 

is mostly implicit, and it is very challenging to extract it from these data because the 

complexity and nonlinearity of biological networks. There are several distinct challenges 

of this approach, some of which are readily anticipated, while others are surprising and 

puzzling. I describe these challenges in detail in the next section. 

1.3.4 Challenges of the top-down modeling approach 

The challenges of model identification from time series data are both on the 

biological and the computational sides. They can be generally categorized in four 

problem areas, namely: data related issues, model related issues, computational issues, 

and mathematical issues (Voit, 2004; Voit et al., 2005; Voit et al., 2006b).  
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Data related issues 

Typical biological datasets usually contain noise, measurement errors, and are 

seldom complete. Consider a biological dataset containing the concentration 

measurements of variables (metabolites) of interest over time. For example, n variables 

(metabolites) X1, X2,…, Xi,…, Xn are measured and for each metabolite a time series 

consisting of m time points t1, t2,…, tk,…, tm has been observed. Therefore, the dataset can 

be represented as an mn matrix where n denotes the total variables and m denotes the 

total time points. There are several scenarios regarding missing data points. First, the data 

points are sparsely missing. Second, the measurements of all variables at a certain time 

point tk are missing, which corresponds to the missing of a whole row in the matrix. The 

situation can happen when the experimentalists miss the collection of sampling at a 

certain time point. Third, the entire traces of some known variables are missing due to 

technical limitations or simply undetectable because the concentrations are too low. This 

situation corresponds to the missing of the whole column in the matrix. Fourth, 

potentially important system components are not measured or the investigators are not 

even aware of these components. Therefore, those variables are not measured nor been 

included in the model. This is typically the cause of “leakage” or some unexpected 

phenomena seen in the profile or the model. Among these scenarios, the first and second 

situations are relatively easy to tackle but last two are rather difficult.  

Even if the time series are complete, they are usually noisy. Furthermore, another 

problem of the data is uncertainties about the particular experimental conditions at the 

time of observation. For instance, external influences like temperature may perturb the 

reaction mechanism. Therefore, it is very important that the temperature is carefully 

monitored. Besides, a good understanding of all sources of inaccuracy inherent in the 

experimental apparatus and measurement is needed. These uncertainties should be taken 

into account as these will affect the parameter estimation and predictive accuracy of the 

resulting model. The other potential problems in the dataset are that the data matrix is ill-
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posed, which may be caused by collinearity between time series data, or that the time 

series is non-informative, e.g., consists essentially of constant time profiles. 

Model related issues 

The inverse problem requires a mathematical model that captures the dynamics of 

the data in a suitable fashion. However, there is an unlimited variety of nonlinear 

structures and mathematical formulations that could be potential candidates for the 

optimal data representation. I have introduced some of the modeling frameworks and 

their pros and cons in Section 1.2. Here I highlight the specific challenges in model 

selection in top-down modeling approaches.  

It seems that there are good reasons for selecting particular model formalisms 

which are proposed as representations of the underlying chemical reactions. However, 

this mechanistic approach is not always appropriate. The reasons are, first, that it is 

usually not the case that the high-throughput time series data are of sufficient quality to 

be able to suggest the underlying reaction mechanism. Second, sometimes the underlying 

mechanisms which generate the data are little known. Third, traditional kinetic rate 

functions, such as the Michaelis-Menten rate law, are not necessary the best choice for in 

vivo data (Savageau, 1995). In this case, the aim of nonlinear modeling is somewhat 

different; it may be more appropriate to take a generic approach. That is, to choose 

models which are more or less crude abstractions of reality based on criteria like: ability 

to capture certain mathematical features of a data set, simplicity of representing the data, 

mathematical tractability, interpretability of mathematical results within the biological 

realm. Such criteria may practically more important than deep theory. It is clear that this 

selection is supported by rational considerations but that it also involves abstractions, 

assumptions, arbitrariness and, to some degree, personal taste.  
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Computational issues 

The estimation process itself is very challenging computationally. The first typical 

problem is computational capacity, which is characterized by the size and complexity of 

the system and usually translates into the number of equations and variables in the model. 

In addition, because the describing models are usually nonlinear and typically formulated 

as systems of differential equations, the optimization of their parameters is far more 

complex than in linear regression and there is seldom an analytical solution (Mendes and 

Kell, 1998). Corresponding nonlinear methods are usually not straightforward and lead to 

challenging issues, such as slow algorithmic progress toward the error minimum and 

lacking convergence or convergence to local minima due to the complicated error 

surfaces. Furthermore, the integration of differential equations is usually needed during 

the optimization process. The integration may be very consuming especially when the 

system is stiff. Other computational challenges include the distinction between direct and 

indirect effects, characterization of intermediate steps and time delays, consideration of 

heterogeneity, and stochasticity of biological systems, which is seldom addressed in 

nonlinear models.  

Mathematical issues 

A further source of problems comes from issues of mathematical redundancy in 

the models. These derive from the fact that different sets of parameter values can produce 

responses that fit the experiment data about equally well, for instance, due to numerical 

compensation between a rate constant and the kinetic orders in a particular data fit (Berg 

et al., 1996; Sands and Voit, 1996). Other issues include: distinctly different, yet 

numerically equivalenti solutions (Voit, 1992a); non-equivalent solutions with similar 

error; invalid assumptions regarding the chosen process descriptions; error compensation 

                                                 
i  Here ‘equivalence’ of different mathematical solutions means that there exist transformation groups under 

whose action the solutions remain unchanged.  
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within and among flux descriptions and within and among equations. I will describe some 

of these issues in greater detail in Chapter 6 (Section 6.1). 

Despite these challenges, the inverse approach based on in vivo time series data is 

certainly worthwhile, because these data are the most accurate reflections of what cells 

and organisms really do, in a global manner. Therefore, the development of methods to 

overcome these challenges is extremely important.  

1.3.5 Current solution strategies of top down modeling 

Responding to the challenges outlined above, the development of modeling 

techniques using global dynamic data has focused on the following tasks: (1) The 

development of strategies for the pre-handling and diagnosis of input time series data; (2) 

the choice of symbolic models that capture the dynamics of biological systems and are 

mathematically tractable; (3) the actual algorithmic development of methods for 

extracting information from (often noisy) biological time series data sets; and (4) the 

creation of diagnostic tool to avoid mathematical compensation within or between terms 

in order to find more valid model. I will briefly describe some of the current 

achievements in these tasks as following.  

Data preprocessing 

One of the most frequent data related issues in top-down modeling is that 

biological time series data are incomplete or not even available for some of the molecular 

species. An extreme case in this category is concept map modeling, which our group 

recently proposed as a useful link between experimental biology and biological systems 

modeling and analysis (Goel et al., 2006). Concept map modeling leads to very uncertain 

time series on which inference and hypothesis generating schemes are based. Concept 

map modeling requires the collaboration between biologist and modeler. Based on the 

known or hypothesized connectivity and regulatory information regarding a static 

concept map, the biologist designs a regulated connectivity diagram of processes 
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comprising the biological system of interest and also provides semi-quantitative 

information on stimuli and measured or expected responses of the system. The modeler 

converts this information through methods of forward and inverse modeling into a 

mathematical construct that can be used for simulations and to generate and test new 

hypotheses. Then the biologist-modeler team collaboratively interprets the results and 

devises improved concept maps. Our group is presently developing a Matlab based 

software package BSTBox, to support this concept and various other modeling activities 

(Goel, 2008). 

Symbolic models selection 

The S-system and GMA models in BST framework have been shown to be a 

promising representation for biological systems modeling (see Section 1.2.4 for review). 

Therefore, throughout this chapter I will primarily focus my discussions on BST 

representations and their parameter estimation algorithms. 

Optimization algorithms 

As a consequence of the pressing needs and high rewards, many groups around 

the world have begun to develop optimization algorithms for inverse tasks of parameter 

estimation. However, so far none of these methods is perfect, or even sufficiently 

effective, for the majority of realistic cases. The computational solutions to biological 

inverse problems typically require a combination of techniques that include methods to 

attack the main problem of optimizing parameter values as well as supporting algorithms, 

such as methods for circumventing the costly integration of differential equations, 

smoothing overly noisy data, constraining the parameter search space, or reducing the 

complexity of the inference task. These techniques will be reviewed in detail in Section 

1.4. 
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Diagnostic tools for mathematical redundancy 

Mathematical redundancies in the model may occur within or between fluxes and 

equations. The compensation between fluxes can be partially avoided if each of the fluxes 

in the model is obtained. These techniques will be reviewed in detail in Chapter 6 

(Section 6.2). 

1.4 Parameter estimation techniques in top-down modeling approach 

In this section I review some of the recently developed techniques in top-down 

parameter estimation for BST models.  

1.4.1 Repeatedly solving differential equations 

Most prominently, solving inverse problems requires the development of efficient 

algorithmic methods for determining optimal estimates. Many of the standard methods 

involve solving the differential equations directly, which requires a lot of computational 

effort. As an example indicative of the problem at hand, consider a direct attempt to 

estimate the parameters of a five-variable system of ordinary equations from noise-free 

time series data with a genetic algorithm (Kikuchi et al., 2003). This group used a cluster 

of 1,040 CPUs, which ran for ~10 hours for each loop of the estimation program. 

Needing 7 loops, the entire estimation time thus was roughly 70,000 PC-hours.  

Analyzing this dire situation, the distinct tasks within the optimization were 

clocked in detail with the result that parameter searches involving differential equations 

are very time consuming because easily 95% of the time spent is used on integrating the 

equations, while relatively little time is used to compute gradients toward the optimal 

estimates (Voit and Almeida, 2004). In fact, if the underlying model is stiff, the 

computation time may increase to almost 100%, and even if the model is not stiff, the 

likelihood is high that some trial solutions during the algorithmic process could make it 
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stiff (Voit and Almeida, 2004). Therefore, it is very important to speed up the evaluation 

of differential equations. 

Slope estimation and decoupling of the differential equations significantly 

alleviate the problem. An early implementation of this method was accomplished by 

manually estimating slopes from observed time series data and substituting them for the 

derivatives in the differential equations (Voit and Savageau, 1982a; Voit and Savageau, 

1982b; Voit, 2000a). This substitution entirely eliminates the need to integrate 

differential equations, because the estimation is now executed on systems of algebraic 

equations. Furthermore, the equations become uncoupled so that they can be assessed in 

parallel or one at a time. Voit and Almeida (Voit and Almeida, 2004) used this slope-

estimation-decoupling strategy for improving efficiency to avoid the need for solving the 

differential equations in S-system format. The set of equations was then used with a 

nonlinear search method to estimate parameter values. The slope-estimation-decoupling 

idea has subsequently been combined with various methods such as genetic algorithms, 

simulated annealing, swarm methods, interval analysis, and a number of hybrid methods. 

One drawback of this approach is that, if the data are noisy, it may not be easy to obtain 

good measurements or estimates of the slopes. The slope estimation methods will be 

reviewed in detail in Section 1.4.2. However, it may still be advantageous to use this 

approach, since the roughly obtained estimates may be used as good initial guesses for 

standard nonlinear optimization methods. Other advantages of the decoupling approach 

are reviewed in Voit and Almeida (Voit and Almeida, 2004). An application of the slope-

estimation-decoupling strategy is described in detail in Chapter 2 (Section 2.2.2). 

In a different implementation, the decoupling allowed solving and fitting of one 

differential equation at a time instead of solving the entire system. Maki et al. (Maki et 

al., 2002) proposed this “step-by-step” strategy and Kimura et al. (Kimura et al., 2004; 

Kimura et al., 2005) introduced a similar concept called “decomposition,” which 

decomposes the large network inference problem into sub-problems. In both methods, the 
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variables contributing to the single differential equation being integrated are substituted 

with the actual observed time series data or with smoothed analogues and thus used as 

off-line inputs to the decoupled system. This approach significantly reduced the 

computation time. For instance, using the same artificial five-variable datasets as Kikuchi 

et al. (Kikuchi et al., 2003) did, Kimura and co-workers ran the algorithm on a single 

CPU with far less computing time requiring only about 59 minutes to optimize each 

subproblem. 

A drawback of decoupling and decomposition approaches is that each subproblem 

is solved independently, a procedure which does not allow the exchange of information 

between subproblems. For instance, the variables serving as off-line data in one equation 

are actually solved in another equation. Thus, if the value of one variable is updated 

during optimization, the information should be incorporated into optimization processes 

of the other subproblem. This feature is especially important when there is considerable 

noise. Kimura et al. (Kimura et al., 2005) proposed to solve the decomposed 

subproblems simultaneously using a cooperative coevolutionary algorithm. Since the 

decomposed subproblems interact with each other through their calculated time series 

data, the inferred model is more likely to represent the dynamics.  

 In order to reduce the number of numerical integration steps, Matsubara et al. 

(Matsubara et al., 2006) proposed to use a radial basis function network (RBFN) for 

parameter estimation. RBFN is a type of artificial neural network (ANN) that uses radial 

basis functions as activation functions; it has been shown to be able to approximate 

nonlinear time series data effectively (Rank, 2003). In order to examine the performance 

of RBFN, Matsubara and co-workers proposed two schemes: one is using a simple 

genetic algorithm (SGA) with numerical integration, and the other is RBFN with simple 

GA included in the input data selection phase. Both schemes were examined in metabolic 

pathways using Michaelis-Menten equations. While SGA improves the fitness between 

parameterized model and time series data and integrates every time during optimization, 
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RBFN predicts the optimal parameter values by learning the relationship between 

parameters and fitness values using slopes to replace derivatives and integrates the 

system only once at the last step. Therefore, numerical integrations used to evaluate the 

fitness are reduced from many to one. The results indicated that the RBFN scheme halved 

the computation time and increased the optimization successful rate. 

An alternative approach avoiding numerical integration is a modified collocation 

method, which converts ordinary differential equations into algebraic equations which 

directly adopt the measured data to approximately yield dynamic profiles at sampling 

points. This approximation not only reduces computation time, but also decouples the 

equations so that parallel computation is allowed for the parameter estimation. This 

modified collocation method was combined with hybrid differential evolution (HDE) to 

determine the global solution of an estimation task (Tsai and Wang, 2005). Again, 

applying this type of “uncoupling” strategy in combination with other estimating methods 

reduced the computation time dramatically. 

1.4.2 Slope estimation 

As a crucial part of the slope-estimation-decoupling strategy, decent estimates of 

the slopes are required, but they are not always easy to obtain. If the data are more or less 

noise-free, simple linear interpolation, splines (de Boor, 1978; de Boor et al., 1993; 

Green and Silverman, 1994), B-splines (Seatzu, 2000), the so-called three-point method 

(Burden and Faires, 1993), or even hand fitting (Voit and Savageau, 1982b) is effective. 

If the data are noisy, it is useful to smooth them, because the noise tends to be magnified 

in the slopes. Established smoothing methods again include splines, as well as different 

types of filters. Artificial neural networks (ANNs) have been shown to be useful in a 

number of applications of biochemical pathways modeling (Almeida, 2002). Voit and 

Almeida (Almeida and Voit, 2003; Voit and Almeida, 2004) proposed the data 

preprocessing with a “universal function” that is computed by training an ANN. The 
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main advantage of using ANN to smooth the time traces is that the resulting universal 

function can be made to fit the data arbitrarily closely and that it has an algebraic format 

for which the slope can be computed straightforwardly (Mendes and Kell, 1996; 

Almeida, 2002). Furthermore, the universal output function provides an unlimited 

number of interpolated data points within the time interval of interest. Other advantages 

of ANN are reviewed in Almeida (Almeida, 2002) and Voit and Almeida (Voit and 

Almeida, 2004). The ANN method was shown to determine the smoothed traces very 

efficiently even if the data contained considerable noise, as long as the true trend was 

well represented. However, the interpolating function resulting from the ANN solution is 

a superposition of sigmoidal functions and has the tendency to lead to artifacts in the 

derivatives, which cause slight, but undesirable bias during the smoothing process, even 

when the deviations are not visually obvious in the smoothed traces. 

Another popular filter is the Savitzky-Golay or Whittaker filter which was 

proposed over eighty years ago (Whittaker, 1923). Much more recently, Eilers presented 

a matrix form of this older implicit method call a “perfect filter” (Eilers, 2003). Vilela 

and co-workers further explored the use of Rényi’s second-order entropy of the cross-

validation error entropy as optimization criterion for configuring the Whittaker-Eilers 

smoother (Vilela et al., 2007). The filter, implemented in the software AutoSmooth, can 

be used to extract signals and derivatives from time series with non-stationary noise 

structure. 

1.4.3 Constraining the parameter searching space 

To ensure that the results of a parameter estimation fall within reasonable ranges, 

constraining the maximally permitted values of parameters is usually needed throughout 

the optimization processes, or even for guessing the initial values. The simplest way of 

constraining a parameter value is to restrict the range of each parameter in the model. For 

instance, in BST representations, the structural features of a system are mapped onto 
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parameters of models in a unique fashion as described in Section 1.2.4. Therefore, if the 

network structure is known, whether the kinetic order of a variable Xj is positive, 

negative, or zero, could be determined immediately by characterizing its influence 

(activation, inhibition, or no effect) on variable Xi. Furthermore, the rate constants in BST 

are always non-negative. Particularly in metabolic pathway, the kinetic orders are real 

numbers with typical values between -1 and +2. 

 Parameter values could also be constrained by other values in the equations. For 

instance, the values of production and degradation term in S-system models (Eq. (1.4)) 

could be constrained by the derivatives (or slopes) to some degree after decoupling. Since 

these two terms on the right hand side of Eq. (1.4) are always non-negative, if the slopes 

are negative, the values of degradation term must be greater than or equal to the absolute 

value of slopes in order to make production terms non-negative. Inversely, if the slopes 

are positive, the values of production term must be greater than or equal to the value of 

slopes to ensure the degradation term positive. Detail description of this application will 

be reviewed in Chapter 2 (Section 2.3.2). 

 Some other supporting techniques aim to reduce the parameter searching space 

including: Kutalik et al. (Kutalik et al., 2007) characterized a one-dimensional basin of 

attraction containing the true optimum with minimal error; Tucker and Moulton (Tucker 

and Moulton, 2006) proposed a method based on interval analysis which allows 

exhausting searches of the entire set of parameter values with a finite number of steps; 

Tucker et al. (Tucker et al., 2007) used constraint propagation to find the possible ranges 

of parameter values, thus significantly constraining the parameter search space.  

1.4.4 Reducing the complexity of the inference task  

The typical approach of modeling is to collect network information and translate 

the wire-diagram to a symbolic model, where there is only limited number of parameters 

since the biological systems are usually sparsely connected (cf. (Jeong et al., 2000) and 
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see Section 1.5 for detail description). However, when the topology of the system is 

unknown or only partially known, one can only derive a full symbolic model with all free 

parameters. When the system is relatively small, it is feasible to explore all possibility to 

find the optimum. When the number of variables and parameters grows, all methods of 

parameter estimation eventually run into problems caused by “combinatorial explosion,” 

which makes the estimation process extremely difficult and the solutions problematic. 

This explosion can be tamed to some degree by constraining the connectivity within the 

system by systematically identifying the network structure or gradually “pruning” 

unlikely connection during optimization process. The structure identification techniques 

will be reviewed in detail in Section 1.5. In this section, I focus only on the parameter 

pruning methods.  

The rationale behind the pruning techniques is closely related to the characteristic 

of BST models. As briefly mentioned in Sections 1.2.4, structure identification tasks can 

be translated into parameter estimation problems if the parameter values directly map to 

the network, as it is the case with BST representations. To recall this mapping, the kinetic 

orders gij and hij for S-systems quantify the regulatory effect of variable Xj on the 

production or degradation of variable Xi. If the magnitude of the corresponding kinetic 

orders are very small or close to zero, the connection between variable Xj and the 

dynamics of Xj is likely to be negligible. Therefore, these low intensity connections can 

be purged during optimization, which not only helps to detect a reasonable and 

parsimonious model of the true pathway structure, but also reduces the parameter search 

space for further optimization.  

The simplest manner of “pruning” a possibly highly connected network is to 

define a threshold for the absolute value of each type of parameter, below which values 

are set to zero (Voit and Almeida, 2004; Vilela et al., 2008). In addition, since the 

likelihood that a variable exists in both the production and degradation terms with non-

zero values in the S-system model is low, the smaller of the kinetic orders is more likely 
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to be zero and the value of the other one is adjusted accordingly (Voit and Almeida, 

2004).  

Some authors have suggested more sophisticated methods for this pruning 

process. As an extension of the objective functions described before, various articles have 

applied sums of the absolute values of kinetic orders as a penalty term in the cost 

function. Thus, this basic pruning method for BST models penalizes all small kinetic 

orders and prevents the model from finding false-positive interactions that unrealistically 

inflate the model (Kikuchi et al., 2003; Voit and Almeida, 2003). To improve this 

condition further, Kimura and co-workers (Kimura et al., 2004; Kimura et al., 2005) 

introduced a different penalty term by rearranging kinetic orders in ascending order based 

on their absolute values. Furthermore, accounting for the observation that very few 

factors modulate both the production and degradation of a specific variable, Noman and 

Iba (Noman and Iba, 2005b) proposed an alternative representation of the penalty term.  

No matter what kind of penalty term is chosen, pruning approaches have a 

common drawback. Namely, the weighted coefficient in the penalty term needs to be 

carefully tuned since it affects the results of the structure identification task. So far there 

is no clear guidance about how to set suitable penalty weights. Stochastic ranking may be 

used to alleviate this difficulty since it aims to balance the error and penalty term in the 

objective function (Runarsson and Yao, 2000). However, this method requires an 

additional parameter to define the probability of the error term for comparisons in 

ranking. Cho et al. (Cho et al., 2006) proposed a distinctly different way to retain the 

sparseness feature in biological pathways without adding extra terms to the objective 

function, namely the S-tree representation. The S-tree is a tree representation of the S-

system, where the number of sub-trees corresponds to the number of ordinary differential 

equations in the system. Each sub-tree is divided into two parts; the left part represents 

the production term and right part represents the degradation term. The depth of the S-

tree is always three and the root node at depth zero. Since S-tree modeling is intrinsically 
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suitable for representing sparse networks, an S-tree together with genetic programming 

has the potential to infer network topology and find parameter values in a more efficient 

way without any a priori knowledge or adding penalty term. To avoid assigning a 

coefficient weight to the penalty term, Liu and Wang recently proposed an alternative 

method based on multi-objective optimization (Liu and Wang, 2008). Instead of 

minimizing the residual error using a single objective function either in concentrations or 

slopes, they minimized the concentration error, slope error, and interaction measure 

simultaneously. The authors proved that the algorithm guarantees the minimum solution 

for the constrained problem to achieve the minimum interaction network for the inference 

problem. The approach avoided assigning a penalty weight for sums of magnitude of 

kinetic orders. 

The pruning methods are used in the optimization problem that determine the 

parameter values, as described in the next section. 

1.4.5 Algorithms for determining optimal parameter estimates 

The parameter estimation task is traditionally formulated as a function 

optimization problem that minimizes an objective function measuring a generalized 

distance between experimental data and model predictions. The Euclidean distance is the 

most commonly used and often refers to a least-squares error criterion. Other fitness 

evaluation methods include information based criteria (Shin and Iba, 2003; Noman and 

Iba, 2006). Two objective functions are typically used for parameter estimation in BST 

models: a concentration error based objective function and a slope error based objective 

function (e.g. (Tsai and Wang, 2005)). The concentration error based objective function 

is a straightforward calculation of the sum of squared distances between the metabolite 

measurements and the predictions. The simulation profiles are usually obtained by 

applying a numerical integration method to solve the differential equations like Eq. (1.1). 

The integration process can be computational costly, especially if the system is stiff (see 
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Section 1.4.1). As an alternative, the slope error based objective function employs the 

decoupling technique as described in Section 1.4.1 and uses the slope information for 

evaluating fitness of the function. That is, it calculates the sum of squared errors between 

the measured slopes from the raw data (or upon smoothing) and the predicted slopes. 

In Section 1.4.4 I review some pruning methods which improve the objective 

function and constraining the connectivity during the optimization process. Independent 

of pruning, the most prominent methods for parameter estimation from time series data 

can generally be grouped as: gradient-based methods, stochastic search algorithms, and 

others that do not belong to the first two groups. Several articles have been published in 

the recent literature describing computational methods for the inverse problem of 

extracting information from time series data using BST, but no method so far has risen to 

the top as the clear general winner in terms of efficiency, robustness and reliability. I will 

review some of these optimization methods in the following paragraphs and summarized 

in Table 1.1. 

Gradient-based Algorithms 

Some of the commercial gradient-based methods have been applied in a novel 

fashion for finding the parameter values using BST models. Marino and Voit (Marino 

and Voit, 2006) proposed an algorithm which comprises three modules: model 

generation, parameter estimation or model fitting, and model selection. The initial 

plausible models are generated in a step-by-step manner upon decoupling and limiting 

connectivity (see Section 1.5.5 for detail). After the set of ODEs is decoupled, each 

differential equation is fitted separately using the Levenberg-Marquardt while replacing 

the other variables with raw data of smoothed traces.  

Kutalik et al. (Kutalik et al., 2007) proposed a Newton-flow optimization method 

for parameter estimation in S-system models. The method starts with decoupling the 

differential equations and setting up an objective function for each equation. The next 
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step is to select suitable start guesses and bounds for parameters and run a Newton 

method to obtain several points in the parameter space that correspond to reasonable 

solutions. The authors found that the solution space contains a one-dimensional attractor. 

Thus standard regression allowed them to estimate the parameters of this attractor. 

Afterward, the Newton method was performed again using the initial guesses lying on the 

estimated attractor to find the true optimal of the parameter values. The interesting 

feature of this method is that most (or maybe even all) good parameter solutions seem to 

lie on one-dimensional manifolds within the high-dimensional parameter space. 

Optimization along this curve is comparatively easy. A potential problem of the method 

is that the original initial guesses for the parameters must lie within the basin of attraction 

of the one-dimensional manifold. Otherwise, each run may lead to disjoint sections of the 

parameter space.  

Because biological systems are usually nonlinear, the problem of parameter 

estimation can be stated as a nonlinear programming problem (NLP) subject to nonlinear 

differential-algebraic constraints (Moles et al., 2003). Because of its nonlinear and 

constrained nature, this inverse problem is usually non-convex. Therefore, most of the 

traditional nonlinear algorithms involving gradient methods run the risk of getting 

trapped in local optima, depending upon the degree of system nonlinearity and the initial 

starting point (Mendes and Kell, 1998). Polisetty et al. (Polisetty et al., 2006) employed a 

branch-and-bound algorithm to convert the inverse problem in the GMA formalism into a 

convex optimization problem in order to obtain a global solution.   

Stochastic search algorithms 

There are many different kinds of stochastic methods for global optimization. 

They include evolutionary computation (EC), simulated annealing (SA), adaptive 

stochastic methods, clustering methods, and other meta-heuristics, such as ant colony 

optimization (ACO) and particle swarm optimization (PSO). These algorithms have been 
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applied to parameter estimation tasks with the goal of finding global solutions, especially 

in the context of identifying the structures of gene regulatory networks (Moles et al., 

2003).  

 Evolutionary computation techniques, also known as biological inspired methods, 

include genetic algorithms (GAs), evolutionary programming (EP), evolution strategies 

(ES), genetic programming (GP), as well as many of their variants. They are attractive 

because they have an increased potential of finding global optima. Genetic algorithms 

(GAs) have been shown to be useful and practical in parameter estimations of biological 

systems (e.g. (Mendes and Kell, 1996; Park et al., 1997; Moles et al., 2003; Voit and 

Almeida, 2003)). Using the conventional simple genetic algorithm (SGA), Tominaga et 

al. inferred parameter values of a small network, but only with a very limited number of 

parameters and the convergence rate was low (Tominaga et al., 2000). The SGA typically 

has two problems: early convergence in the fast stage of the search and evolutionary 

stagnation in the last stage. Kikuchi et al. (Kikuchi et al., 2003) enhanced the SGA by 

using a more robust real coded genetic algorithm (RCGA) and improved the conventional 

cost function by adding a penalty term to prune unlikely connections in the system using 

the S-system formalism. In addition, they employed a novel crossover method and 

introduced a gradual optimization strategy in the procedure. The results showed the 

algorithm successfully inferred the network structure with faster convergence rate, 

optimization speed, and with more predictable parameters compare to the traditional GA. 

However, the approach turned out to be computationally very costly because of 

numerical integration of the entire differential equations (see Section 1.4.1).  

 Other modifications were made to improve the efficiency of SGA using time 

series data in S-system form. Examples include: a hybrid algorithm of SGA with 

Modified Powell method (Okamoto et al., 1998); a hybrid algorithm of SGA for static 

Boolean networks applied to an S-system with steady state and temporal data (Maki et 

al., 2001); and a combination of RCGAs with unimodal normal distribution crossover 
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(UNDX) and minimal generation gap (MGG) to optimize parameters in S-systems (Ueda 

et al., 2001; Ueda et al., 2002; Nakatsui et al., 2003). Daisuke and Horton optimized an 

S-system model with a distributed genetic algorithm (DGA) with “scale-free” properties 

(Daisuke and Horton, 2006). Ho et al. (Ho et al., 2007) proposed an intelligent two-stage 

evolutionary algorithm (iTEA), which used an intelligent GA (IGA) to solve decomposed 

ODEs independently, then combined all solutions from each subproblem and used an 

orthogonal experimental design-based simulated annealing algorithm (OSA) to refine the 

solution. 

Spieth and co-worker (Spieth et al., 2004b; Spieth et al., 2004a) proposed a 

memetic algorithm (MA) consisting of two parts: a local search (LS) with an 

evolutionary strategy (ES) for parameter estimation, and a global GA based search (GS) 

framework for structure identification, where the former is embedded within the later 

part. They tested the algorithm in an S-system model and the results showed that MA was 

better suitable for inferring genetic networks than a standard ES or GA. In follow-up 

work, they showed that the feedback coordination from LS to GS can even improve the 

performance of MA (Spieth et al., 2005).   

Kimura et al. (Kimura et al., 2004) used an evolutionary algorithm called Genetic 

Local Search with distance independent Diversity Control (GLSDC) combined with the 

decomposition strategy using the S-system formalism. The proposed method included an 

estimation technique for the initial gene expression level and enabled the reconstruction 

of medium-scale genetic networks with noisy data. They also showed that the 

combination with a cooperative coevolutionary algorithm can further improve the 

accuracy of prediction (Kimura et al., 2005). Okamoto’s group also proposed 

evolutionary search techniques, such as the Network-Structure-Search Evolutionary 

Algorithm (NSS-EA) and its variant, the Grid-Oriented Genetic Algorithm Framework 

(GOGA Framework). They employed an S-system as the underlying mathematical model 
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and used a GA as search engine to infer network structure (Morishita et al., 2003; Ono et 

al., 2004; Imade et al., 2005).  

Noman and co-workers recently incorporated their previously developed 

techniques and presented a memetic algorithm for inferring gene regulatory networks 

(Noman and Iba, 2005b; Noman and Iba, 2005a; Noman and Iba, 2005c; Noman and Iba, 

2006; Noman and Iba, 2007). They used differential evolution (DE) along with a hill-

climbing local-search method in their evolutionary algorithm. An information criterion-

based fitness evaluation was introduced instead of the conventional least squared error 

approach.  

Tsai and Wang (Tsai and Wang, 2005) used hybrid differential evolution (HDE) 

for estimating a satisfactory, though not optimal solution, and then used the solution as 

the initial value for a gradient-based optimization method to obtain refined solutions. As 

described in Section 1.4.1, they used a modified collocation method to avoid direct 

numerical integration. In their recent work, they also implemented HDE combined with a 

multiple-objective optimization approach (see Section 1.4.4 for review) to inferring 

biochemical networks in S-system format (Liu and Wang, 2008). 

Genetic programming (GP) has also been employed to find the topology of 

metabolic pathway from time-series data (e.g. (Koza et al., 2001)). The ordinary GP is 

not always effective in finding the parameter values because the method relies mainly on 

the combination of randomly generated constants. Sagamoto and Iba (Sakamoto and Iba, 

2001) therefore used a least mean square (LMS) method along with ordinary GP to 

improve the situation, using an S-system as one example. Their results showed that the 

fitness values decreased faster in the early phase with the LMS method compared to the 

non-LMS method, since the former seemed to provide a better seeds for GP search. In 

contrast to GA algorithms, which usually require defining equations before optimization, 

GP provides a general approach for finding arbitrary equations from time series data 

without any knowledge of the equation.  
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Table 1.1. Comparison of representative algorithms for inverse problems in BST models.  

Authors Year Main Methods Model Format Examples 

Kikuchi et al. 2003 
 Simple genetic algorithm (SGA)  
 Penalty term 
 Numerical integration 

S-system (a) 

Voit and 
Almeida 2004 

 Decoupling 
 ANN smoothing 
 Slope approximation 

S-system (b) 

Kimura et al. 2004 

 Decomposition method (Maki et al. 2002 
proposed similar idea) 

 Numerical integration with local linear 
regression  

S-system (a) (c) 

Kimura et al. 2005  Decomposition 
 Cooperative coevolutionary algorithm 

S-system (a) (c) (d) 

Tsai and Wang 2005 
 Modified collocation method (converted 

to algebraic equation) 
 Decoupling 

S-system 
 (a) (e) 

Marino and 
Voit 2006 

 Decoupling 
 Limit connectivity 
 Gradient-based method 

S-system (b) 

Daisuke and 
Horton 2006  Distributed genetic algorithm (DGA) 

 Scale-free property S-system (a) (f) 

Cho et al. 2006  S-tree based genetic programming (GP) S-system (a) (g) (h) 

Kim et al. 2006  Genetic programming to estimate slopes 
and avoid numerical integration S-system (b) 

Tucker and 
Moulton 2006  Interval analysis S-system (a) (b) (i) 

Polisetty et al. 2006  Branch-and-bound strategy GMA (j) (k) 

Noman and 
Iba 2007 

 Information criteria-based fitness 
evaluation 

 Differential evolution (DE) along with 
local search heuristics 

S-system (a) (l) (m) 

Gonzalez et al. 2007  Simulated annealing (SA) S-system (b) (n) 
Kutalik et al. 2007  Newton-flow method S-system (b) (c) 

Tucker et al. 2007  Constraint propagation S-system 
GMA 

(b) 
(j) 

Marin-
Sanguino et al. 2007  GMA optimizer 

 Geometric programming 
GMA (k) 

(o) 

Liu and Wang 2008  Modified collocation and slope 
   approximation for each subsystem S-system (a) (c) (p) 

(q) (r) 

(a) Five variables gene regulatory network (Hlavacek and Savageau, 1996); (b) Four variables didactic 
system (Voit and Almeida, 2004); (c) Thirty variables system (Maki et al., 2001); (d) cDNA microarray 
data of Thermus thermophilus HB8 strains; (e) Cascade three variable system (Tsai and Wang, 2005); (f) 
Experimental data (GDS404) (Daisuke and Horton, 2006); (g) Yeast anaerobic fermentation pathway (Vera 
et al., 2003); (h) SOS DNA repair system in E. coli (Sutton et al., 2000); (i) Three variable system (Voit, 
2000a); (j) Branched pathway with several feedback inhibition (Voit, 2000a); (k) Anaerobic fermentation 
pathway in Saccharomyces cerevisiae (Curto et al., 1995); (l) Twenty variable system (Noman and Iba, 
2007); (m) Yeast cell-cycle microarray data (Cho et al., 1998); (n) cadBA in E. coli (Kuper and Jung, 
2005); (o) Tryptophan operon in E. coli (Xiu et al., 2002); (p) Kinetics model of ethanol fermentation 
(Wang et al., 2001); (q) Circadian oscillations of period protein in drosophila (Ingalls, 2004); (r) 
Embryonic gene regulatory network in zebrafish (Huang et al., 2006). 
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Sugimoto and co-workers (Sugimoto et al., 2005) implemented GP along with 

adding a penalty term to the cost function and introducing numeric mutations to the 

conventional procedure. They tested this method by predicting two equations of 

metabolic reaction regarding adenylate kinase and phosphofructokinase in Michaelis-

Menten formation, the equation of which is hard to derive if the underlying mechanism is 

not known. While their results showed that the algorithm can predict the equations which 

have relatively simple forms, the method is still very time consuming.  

Kim et al. (Kim et al., 2006) adopted a pre-processing symbolic regression step in 

GP to avoid time consuming numerical integration, since the estimation of slopes for 

each time series data point can be obtained from the results of GP. Cho and co-workers 

(Cho et al., 2006) took advantage of the fact that GP has an evolving tree structure for 

given data and proposed S-tree based genetic programming for parameter estimation and 

structural identification in S-system models. As introduced in Section 1.4.4, this approach 

intrinsically accounts for the sparseness of the biological network. Therefore, even 

though no a priori knowledge about the network is known, the S-tree based GP can still 

identify the underlying structure rather efficiently without adding a penalty term in the 

objective function.  

As seen in the previous paragraphs, a considerable number of recently published 

papers applied evolutionary algorithms to tackle the inverse problem using BST models. 

However, so far there is no clear comparison among these algorithms regarding their 

efficiency, robustness, and accuracy. Moles et al. (Moles et al., 2003) compared some 

stochastic global optimization methods using the case study of a biochemical model, 

which consisted of 36 parameters and was formulated as a set of eight ODEs. 

Nevertheless, the model was formulated as Michaelis-Menten type equations, not in BST 

representations. Spieth et al. (Spieth et al., 2006) compared six evolutionary algorithms 

in three model frameworks: linear weight matrices, S-systems, and H-systems, where one 
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fitness function was used to evaluate the convergence of algorithms. A comprehensive 

comparison of EAs is still needed.  

Simulated annealing (SA), colony optimization (ACO), and particle swarm 

optimization (PSO) are also stochastic optimization methods. Simulated annealing, a 

physically inspired method, is created in a way to simulate the cooling process of metal 

or glass. SA can behave as a global or local optimization search and automatically 

switches from a global to a local search when the “temperature” goes down. Gonzalez et 

al. (Gonzalez et al., 2007) adapted SA for S-systems parameter estimation from time 

series data. They tested the algorithm using three artificial datasets under the assumption 

that the structure was known or unknown, by solving the entire set of ODEs or upon 

decoupling. They also applied the algorithm to a real biological system.  

Ant colony optimization (ACO) was inspired by the behavior of ants in finding 

short paths from their colony to food sources. ACO is a probabilistic technique for 

solving computational problems which can be reduced to finding good paths through 

nodes in a graph. Zuñiga et al. (Zuñiga et al., 2008) adapted ACO for S-system models 

by treating each metabolite as a node in a graph and inferring how other nodes were 

connected to it. Their preliminary results showed that ACO was able to reduce the 

connectivity of the network. They also proposed an enhanced aggregation pheromone 

system (eAPS), which is an extension of ACO, for parameter estimation tasks.  

Particle swarm optimization (PSO) is a stochastic, population-based evolutionary 

computation algorithm. The original form of PSO algorithm, which is motivated by 

social-psychological principles such as bird flocking and fish schooling, was first 

described by Eberhart and Kennedy (Eberhart and Kennedy, 1995). In PSO, each 

potential solution is represented as a particle. A collection of potential solutions is called 

a swarm which consists of particles that fly around in a multidimensional search space. 

During flight, each particle adjusts its position according to its own experience and also 

collaborates with its neighboring particles through communication. When a particle 
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encounters a promising solution, the surrounding area of the solution is further explored 

by the swarm. Therefore, PSO combines local search methods with global search 

methods. Naval et al. (Naval et al., 2006) further adapted PSO to scan the parameter 

space of a BST model  

Other algorithms 

 Some methods that aim to reduce the parameter search space using BST 

formalisms are described in Section 1.4.3 (Tucker and Moulton, 2006; Kutalik et al., 

2007; Tucker et al., 2007). Specifically for linear parts of pathways, a technique of 

“peeling” terms (Lall and Voit, 2005) can be applied to models in BST to convert the 

nonlinear parameter estimation task into a series of linear regression tasks. 

 Some other methods which were developed recently for inverse problems in 

biological systems are (Stelling et al., 2002; Yeung et al., 2002; Liao et al., 2003; Rank, 

2003; Thomas et al., 2004; Tran et al., 2005; Srividhya et al., 2007). However, these 

methods are not yet implemented for BST applications. 

Among these parameter estimation methods, so far no single method has risen to 

the top and can be declared the clear winner. A cursory comparison of parameter 

estimation algorithms in biochemical pathways has been published, but only two 

networks were considered and both of them were not yet implemented for BST 

applications (Moles et al., 2003). del Rosario and co-workers (del Rosario et al., 2008b) 

recently proposed a benchmarking framework for comparing current parameter 

estimation algorithms using BST frameworks. The details of the framework will be 

described in Chapter 5 (Section 5.1).  

1.5 Inference of network structure 

As mentioned in Sections 1.1, the traditional approach of modeling is to collect 

network information and build up a stoichiometric model by converting the “wiring 

diagram,” which describes the metabolic pathway, into a set of equations. The translation 
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can more or less reflect the real system as long as the diagram is more or less complete. 

However, in reality, the information on network connectivity is sometimes only partially 

known and seldom fully understood. Therefore, the identification of components and 

interactions of the system that need to be included in the model and to develop 

hypotheses regarding the network structure is a crucial step in the modeling process 

(Veflingstad et al., 2008).  

The need for valid system identification can be described in three aspects. First, 

wrong hypotheses regarding variables and interactions to be included in the model may 

lead to wrong interpretations of the results. Second, overly complex models may provide 

good approximations to the time series data used for estimation but are unlikely to 

perform as well when tested on new datasets, due to over-fitting. Third, the inclusion of 

too many components and interactions in the model eventually run into problems caused 

by combinatorial explosion, which means that any computational techniques will 

eventually be overwhelmed by the rapidly increasing number of equations, variables, and 

interactions between variables in large systems.  

 Fortunately, biology offers a counteracting and very beneficial feature: namely 

the likelihood that a real biochemical networks is fully connected is very low, because 

most metabolites are connected only to a limited number of other metabolites, and 

usually through fewer than four or five reactions (Jeong et al., 2000; Wagner and Fell, 

2001; Milo et al., 2002). To take advantage of this fact of nature, it must therefore be our 

goal to precede any estimation attempt with a concerted effort to limit objectively the 

number of candidate (structural and functional) connections within a system, thereby a 

priori reducing the parameter space that must be searched. This feature is crucial since 

structure identification and parameter estimation are closely related tasks which 

complement each other. In this section, I review some of the structure identification 

techniques, namely the determination of the Jacobian matrix after small perturbations 

around operating points, direct observation of time profiles, a correlation-based approach, 
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a “simple-to-general and general-to-specific” modeling strategy, and various additional 

methods using time series data within the BST framework. 

1.5.1 Methods based on the Jacobian matrix 

Much of the information necessary for identifying network structure depends on 

dynamic experiments. One type of these experiments is the measurement of transient 

responses of the system after a small perturbation from steady state. When the 

perturbation is close enough to the equilibrium, the system behaves roughly linearly. 

Thus, the Jacobian matrix of the corresponding linearization can be determined and 

reveals the connectivity of the network. In the past two decades, several attempts have 

been made to obtain the Jacobian matrix from experimental observations. Chevalier and 

co-workers (Chevalier et al., 1993) solved the Jacobian by applying multilinear least-

square fitting to perturbed data. This approach is straightforward but very sensitive to 

noise and missing data points, because the crucially important differencing procedure is 

prone to generating large errors.  

To avoid instabilities due to numerical differentiation, Chevalier and co-workers 

suggested using an integral representation, which expressed this solution in terms of 

eigenvectors and eigenvalues and solved the equation using nonlinear regression 

(Chevalier et al., 1993). The advantage of this approach is that no differentiation is 

needed and hence the slopes do not need to be estimated. However, the drawback of this 

method is that the fit to a sum of exponentials with undetermined exponents is sometimes 

numerically problematic, and the nonlinear regression does not necessarily provide a 

solution which fits the data.  

To overcome this difficulty, Sorribas et al. (Sorribas et al., 1998) suggested to 

reformulate the integral representation of the target function by reducing it to a 

multilinear regression problem. As the result, the eigenvalues of the Jacobian in the 

previous method can be easily calculated. However, the computation of eigenvalues is 
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very sensitive to noise and rounding error, making the method unreliable unless the 

multiplicities of the eigenvalues are exactly known. In order to avoid this problem, Díaz-

Sierra and co-workers (Díaz-Sierra et al., 1999) proposed a variation to the previous 

methods, in which they directly obtained the Jacobian by expanding it in its Taylor-series 

without searching for eigenvalues. This methods yielded faster convergence. 

All methods mentioned in the previous paragraphs are based on linear 

approximation, which is valid as long as the perturbation from steady state remains 

relatively small. On one hand, the range of deviation needs to be small enough to yield a 

sufficiently accurate representation. However, on the other hand, the perturbation must be 

large enough to generate measurable responses. To alleviate this dilemma, Veflingstad et 

al. (Veflingstad et al., 2004) suggested using the entire time course and fit the data in a 

piecewise linear fashion, using as an example an S-system within BST. In this case, the 

time series is subdivided into appropriate time intervals and within each subset, 

linearization is computed about a chosen operating point. Therefore, instead of focusing 

on one operating point, most reference states are different from the steady state. The 

results show the piecewise approach is more likely to capture the relationship between 

variables in the system and can tolerate larger perturbations. The authors also showed that 

the collection of estimated coefficients resulting from different variations of linearization 

provided very strong clues about which variables were likely to be involved in a given 

equation and which were not. These clues reflect likely parameter ranges or likely 

constraints on parameter values of the true model. However, this method does not 

identify parameter values per se. For instance, as shown in Eqs. (6)-(8) of their paper 

(Veflingstad et al., 2004), it does not allow a distinction between various combinations of 

gij and hij in the S-system form because only their difference is being assessed as a single 

parameter. However, with this formation, if information of the Jacobian matrix and both 

the concentration and fluxes at steady state are known, the difference between gij and hij 

can be directly calculated (Kitayama et al., 2006). If the difference has a magnitude that 
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is significantly different from 0, it is likely that one of the kinetic orders is zero, because 

it is rare that a variable influences both production and degradation of the same variable. 

Therefore, if one can detect which connection may be omitted, the kinetic order can be 

computed straightforwardly. 

Hatzimanikatis, Floudas and Bailey  (Hatzimanikatis et al., 1996b; Hatzimanikatis 

et al., 1996a) indirectly contributed to the topic of structure identification per 

linearization by optimizing not only the production of yield in an S-system at steady 

state, as it has been done many times (e.g. (Voit, 1992c; Torres and Voit, 2002)), but by 

also optimizing its regulatory structure. This numerical and structure optimization task 

led to a mixed integer linear programming (MILP) approach, for which standard software 

is available. 

1.5.2 Direct observation 

Unlike the previous methods for determining the Jacobian matrix by examining 

the linear properties on small amplitude perturbation near one or more operating points, 

the network connectivity can be deduced to some degree from direct observations on 

responses to perturbations of arbitrary amplitude made at different locations in the 

network. Vance and co-workers (Vance et al., 2002) proposed a strategy based on 

perturbing different components in a network and showed that relationships between the 

perturbed component and the remaining components may be deduced by observation of 

features in the response profile. These features include the order and size of the extreme 

values of the unperturbed components in response to the perturbed component, and the 

initial slopes of the time series at the perturbation. The former reflects the topological 

distances among the perturbed components and the remaining components in the 

network, while the latter reveals whether the components are directly affected by the 

perturbed one or not. This distinction is accomplished by checking if the initial slopes are 

nonzero or zero upon perturbation. Vance et al. showed that this approach works well in 
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some artificial networks including branching, feedback, and regulatory interactions. This 

method was also applied to an in vitro experiment with a glycolysis system, where the 

authors measured concentration changes in the reactor following impulse changes of 

different reaction metabolites (Torralba et al., 2003). From the experimental time series 

data the authors were able to identify some of the causal connectivities among the 

metabolites in the reaction pathway. Even though the method performed well in the 

synthetic time series and with experimental data from relatively small systems, this 

approach may not be applicable to more complicated networks, where the interpretation 

of profiles and the network reconstruction must be expected to be much harder.  

1.5.3 Correlation-based approach 

Some other approaches have been suggested for the reconstruction of chemical 

reaction networks. Arkin and co-workers (Arkin and Ross, 1995; Arkin et al., 1997) 

showed how correlations among components measured in the system may be used to 

infer or reconstruct a chemical reaction pathway. The approach, termed correlation metric 

construction (CMC), is based on the calculation and analysis of a time-lagged 

multivariate correlation function of time series data that are subjected to a series of 

random, large amplitude changes in the input concentration. The correlation information 

is used to construct the distance matrix and interpreted using a two-dimensional graph 

obtained with a projection technique called multidimensional scaling (MDS). The graph 

represents the connectivity and the strength of interactions among the species in the 

network. For instance, the shorter distances in the graph imply stronger connections and 

longer distance represent weaker interactions. The approach was also tested 

experimentally on a part of an in vitro glycolysis system containing eight enzymes and 

fourteen metabolites (Arkin et al., 1997). Along the same lines, Samoilov and 

collaborators (Samoilov et al., 2001) proposed methods, named entropy metric 

construction (EMC) and entropy reduction method (ERM), for the analysis of 
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correlations between species from time series data and the inference of their underlying 

network. 

1.5.4 Simple-to-general and general-to-specific modeling 

As briefly mentioned in the introduction of this section, overly complex models 

may fit the data very well since increasing the complexity of the model naturally allows 

more freedom to provide a better fit to the data, for instance, in terms of the sum of 

squared errors. However, an over-inflated model typically does not perform well when 

tested on new data. This problem is known as over-fitting. One approach for restricting 

model complexity and to find the optimal model size is to add a penalty term to the cost 

function that is minimized. The optimal model can then be determined by finding the one 

that minimizes the aggregate cost function (Akaike, 1974). The consequent problem of 

using this approach is how to proceed with convergence with respect to model 

complexity. One approach, namely “simple to general,” calls for starting with a simple 

model and adding one term at a time until a minimal cost function is found (e.g. (Judd 

and Mees, 1995)). In the opposite direction, the “general to specific” strategy initially 

includes everything possible in the model and then gradually eliminates terms until the 

minimum in the cost function is found (Hendry and Krolzig, 2003). Crampin and co-

workers (Crampin et al., 2004b; Crampin et al., 2004a) used these two approaches of 

model constriction to extract kinetic information from time series data. Although their 

result suggested that the general-to-specific algorithm outperforms the simple-to-general 

approach, they indicated that when the number of chemical species included in the model 

is large (~10), the numbers of possible elementary reactions are massive thus making the 

computation difficult. Therefore, it is desirable to limit the size of the basic set below a 

reasonable upper bound using knowledge of the network connectivity, because metabolic 

networks are generally sparsely connected (Jeong et al., 2000). 
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1.5.5 Using time series data 

So far I have reviewed the methods of structure identification mainly based on the 

temporal data obtained from perturbations around the operating point or changes 

correspond to randomly inputs. In this section, I review methods of structure 

identification using time series data. The parameter estimation from time series data 

usually requires considerable computational effort, especially when the structure is 

unknown. Therefore, in addition to the task of inferring the topology itself, one important 

benefit of developing good structure identification strategies is to ameliorate the problem 

in parameter estimation by limiting the analysis to the most likely connections in advance 

and thus reduce the search space and providing good initial guesses.  

For the identification of structure from time series data, the BST models seems 

particularly useful, especially if not much additional information about the metabolic 

network is available. The advantages and features of BST representations have been 

reviewed in Sections 1.2.4 and 1.4.4 and need no more description here. 

In addition to the pruning techniques reviewed in Section 1.4.4, pruning can also 

be achieved based on biological insight. Almeida and Voit (Almeida and Voit, 2003) 

suggested making maximal use of other a priori biological information that might be 

available in addition to the time series data. As an example, Voit and Savageau (Voit and 

Savageau, 1982a) analyzed a yeast fermentation system in several variations that 

corresponded to hypotheses regarding the existence of specific processes and regulatory 

signals and studied the improvement in error with statistical methods.  

In a more generic fashion of “inverse pruning,” and pursuing the “specific to 

general” strategy, Marino et al. (Marino and Voit, 2006) proposed an algorithm based on 

reconstructing equations in a gradual progress manner. First the set of differential 

equations is decoupled into single differential equations. The model generation scheme is 

then applied separately to each differential equation, starting from the minimal (and most 

parsimonious) model, and increasing the number of variables step by step automatically 
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in the equations using the S-system representation, until a maximally allowed level of 

connectivity is reached. By choosing a modest connectivity index, the combination of 

plausible models is greatly reduced. Arguing that the vast majority of metabolites is 

involved in only a few reactions (Jeong et al., 2000), this algorithm terminates much 

sooner than one might expect. In some sense, this method is similar to the “simple-to-

general” approach described in the previous section. 

Daisuke and Horton (Daisuke and Horton, 2006) also utilized the “scale-free” 

property of networks (Barabási et al., 2000; Podani et al., 2001) to restrict the 

connectivity in biological systems during optimization procedure. Their results showed 

that the restriction increased the conversion ratio while reducing the average number of 

generations and reducing both false positive and false negative estimations of links in the 

network. Zuñiga et al. (Zuñiga et al., 2008) recently proposed to apply ant colony 

optimization (ACO) on the network inference problem using the S-system formalism. 

Their preliminary results showed that, starting with a fully connected network, ACO was 

able to recover the connectivity of the network.  

 

1.6 Dissertation overview 

In spite of the considerable amount of methods that have been proposed regarding 

the inverse modeling problem recently, every method has its pros and cons, and so far 

none of them can be declared as the clear general winner in terms of efficiency, 

robustness and reliability, for the majority of realistic cases. There are still challenges and 

open questions in the data related issues, model related issue, computational issues, and 

mathematical issues. Therefore, to develop improved methods for inverse modeling that 

are effective, fast, and scalable, this work proposes two novel algorithms, Alternating 

Regression (AR) and Eigenvector Optimization (EO), for parameter estimation and 

structure identification in metabolic pathways. A novel 3-way Alternating Regression (3-

AR) is also proposed here to parameter estimation in S-distributions. To integrate all 
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existing techniques and make inverse modeling more effective, this work proposes an 

operational “work-flow” that guides the user through the estimation process, identifies 

possibly problematic steps, and suggests corresponding solutions based on the specific 

characteristics of the various available algorithms. Finally, the work described here 

discusses a recent Dynamic Flux Estimation (DFE) approach, which resolves open issues 

of model validity and quality beyond residual errors. The overview of corresponding 

chapters and appendices are shown in Table 1.2.  

Table 1.2. Dissertation overview. 

Chapter Content Related appendixes 

2i Parameter estimation in biochemical systems 
models with alternating regression 

A: Additional documentation of 
parameter estimation using alternating 
regression in S-systems  

3ii Parameter estimation of S-distributions with 
alternating regression 

 

4iii Parameter optimization in S-system models 
using eigenvector optimization 

B: Additional documentation of 
parameter estimation using 
eigenvector optimization in S-systems 

5iv Inverse modeling approach and parameter 
estimation strategies 

 

6v Conclusions and future work  

i.  Adapted from: Chou, I-C., Martens, H., and Voit, E. O. (2006) Parameter estimation in biochemical 
systems models with alternating regression. Theor. Biol. Med. Model., 3, 25. 

ii.  Adapted from: Chou, I-C., Martens, H., and Voit, E. O. (2007) Parameter estimation of S-distributions 
with alternating regression. Stat. Operations Res. Transactions (SORT), 31(1), 55-74. 

iii. Adapted from: Vilela, M., Chou, I-C., Vinga, S., Vasconcelos, S. T. R., Voit, E. O., and Almeida, J. S. 
(2008) Parameter optimization in S-system models. BMC Syst. Biol., 2,35. 

iv. Some of the material was presented at International Conference on Molecular Systems Biology 2008 
(ICMSB08) in the Manila, Philippines (Chou et al., 2008). 

v. Some of the material are adapted from: Goel, G., Chou, I-C., Voit, E. O. (submitted) System estimation 
from metabolic time series data. 
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CHAPTER 2 

PARAMETER ESTIMATION IN BIOCHEMICAL SYSTEMS 

MODELS WITH ALTERNATING REGRESSIONii 

 

2.1 Introduction 

Novel high-throughput techniques of molecular biology are capable of producing 

in vivo time series data that are relatively high in quantity and quality. These data 

implicitly contain enormous information about the biological system they describe, such 

as their functional connectivity and regulation. The hidden information is to be extracted 

with methods of parameter estimation, if the structure of the system is known, or with 

methods of structure identification, if the topology and regulation of the system are not 

known. The S-system format within BST (see Chapter 1 (Section 1.2.4) for review) is 

recognized as a particularly effective modeling framework for both tasks, since it has a 

mathematically convenient structure and because every parameter has a uniquely defined 

meaning and role in the biological system. Due to the latter feature, the typically complex 

identification of the pathway structure reduces to a parameter estimation task, though in a 

much higher-dimensional space. Still, like most other biological models, S-system 

models are nonlinear, so that parameter estimation is a significant challenge. In this 

chapter, I discuss a novel method called alternating regression (AR), which is 

particularly effective in combination with a previously described decoupling technique 

(Voit and Almeida, 2004). AR is fast and rather stable, and performs structure 

identification tasks between 1,000 and 50,000 times faster than methods that directly 

estimate systems of nonlinear differential equations (cf. (Kikuchi et al., 2003)). 

                                                 
ii This chapter is adapted from: Chou, I-C., Martens, H., and Voit, E. O. (2006) Parameter estimation in 

biochemical systems models with alternating regression. Theor. Biol. Med. Model., 3, 25. 
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2.2 Methods 

2.2.1 Modeling framework 

As modeling framework for AR I use the S-system formulation within BST, 

which is especially suitable for AR, because each equation contains at most two terms.  

The significance of this fact will become evident later in this chapter. For the purposes of 

estimation, I assume that all independent variables, which are typically constant, are 

merged with the rate constants, so that the system contains as many equations as 

variables. Thus, the form to be parameterized is 

1 1

, ij ij
n n

g h
i i j i j

j j

X X X i = 1,2,...,n 
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.         (2.1) 

The notation and parameters in this system were discussed in Chapter 1 (Section 1.2.4). 

2.2.2 Decoupling of differential equations 

Suppose the S-system consists of n metabolites X1, X2,…, Xi,…, Xn, and for each 

metabolite, a time series consisting of m time points t1, t2,…, tk,…, tm has been observed. 

If one can measure or deduce the slope Si(tk) for each metabolite at each time point, one 

can reformulate the system as n sets 
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          (2.2) 

Thus, for the purpose of parameter estimation, the original system of n coupled 

differential equations can be analyzed in the form of nm uncoupled algebraic equations 
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(Voit and Savageau, 1982b; Voit, 2000a). The uncoupling step renders the estimation of 

slopes a crucial step. Methods of slope estimation from raw data or upon smoothing have 

been reviewed in Chapter 1 (Section 1.4.2). In order to keep our illustration of AR as 

clean as possible, I initially assume that true slopes are available and elaborate on issues 

of experimental noise in Section 2.3. 

2.2.3 Alternating regression 

The decoupling of the system of differential equations permits the estimation of 

S-system parameters i, gij, i, and hij (i, j=1,2,…,n) one equation at a time, using slopes 

and concentration values of each metabolite at time points tk. The proposed method, 

called alternating regression (AR), has been used in other contexts such as spectrum 

reconstruction and robust redundancy analysis (Karjalainen, 1989; Oliveira et al., 2004), 

but, to the best of my knowledge, not for the purpose of parameter estimation from time 

series. Adapted to our task of S-system estimation, AR works by cycling between two 

phases of multiple linear regression. The first phase begins with guesses of all parameter 

values of the degradation term in a given equation and uses these to solve for the 

parameters of the corresponding production term. The second phase takes these estimates 

to improve the prior parameter guesses or estimates in the degradation term. The phases 

are iterated until a solution is found or AR is terminated for other reasons. 

In pure parameter estimation tasks, the structure of the underlying network is 

known, so that it is also known which of the S-system parameters are zero and which of 

the kinetic orders are positive or negative. Thus, the search space is minimal for the 

problem. Nonetheless, the same method of parameter estimation can in principle also be 

used for structure identification (see Chapter 1 (Sections 1.2.4 and 1.4.4) for review). In 

this case, the estimation is executed with an S-system where no parameter is a priori set 

to zero and all parameters are estimated. As an intermediate task, it is possible that only 

some of the structure is known. This information can again be used to reduce the search 
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space. If it is known, for instance, that variable Xj does not affect the production or 

degradation of Xi, the corresponding parameter value gij or hij is set equal to zero, or Xj is 

taken out of the regression. One can thus reduce the regression task either by constraining 

the values of some g’s or h’s throughout the AR or by selecting a subset of regressors at 

the beginning, i.e., by taking some variables out of the regression. Similarly, if a kinetic 

order is known to represent an inhibiting (activating) effect, its range of possible values 

can be restricted to negative (positive) numbers. This constraining of kinetic orders, while 

not essential, typically improves the speed of the search. It is imaginable that a kinetic 

order is constrained too tightly. In this case, the solution is likely to show the kinetic 

order at the boundary, which is subsequently relaxed. 

2.2.3.1 Steps of the AR algorithm 

To estimate the parameters of the ith differential equation, the steps of the AR 

algorithm are as follows: 

{1} Let L1 denote an m(n+1) matrix of logarithms of regressors Xi, defined as 

        
        

        

        

1 1 1 1

1 2 2 2

1

1

1 log log log

1 log log log

1 log log log

1 log log log

i n

i n

k i k n k

m i m n m

X t X t X t

X t X t X t

X t X t X t

X t X t X t

 
 
 
 
 
 
 
 
 
 

1L

 

 

     
 

     
 

.       (2.3) 

L1 is used in the first phase of AR to determine the parameter values of the 

production term. Additional information on the system, if it is available, reduces the 

width of L1. For instance, if X2 and X4 do not affect the production of X1 in a four 

variable system, Eq. (2.3) reduces to 
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     
     

     

     

1 1 3 1
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1 log log
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X t X t

X t X t
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 
 
 
 
 
 
 
 
 

1L   

  

.                (2.4) 

Analogous to L1, let L2 denote the m(n+1) matrix of regressors used in the second 

phase of AR to determine the parameter values of the degradation term. L1 and L2 

are the same when the variables used in two phases of AR are identical. 

{2} Compute the matrices 

 -1T T=1 1 1 1C L L L ,            (2.5) 

 -1T T=2 2 2 2C L L L ,                   (2.6) 

which are invariant throughout the iterative process. 

{3} Select values for i and hij in accordance with experience about S-system parameters 

(cf. (Voit, 2000a): Ch. 5) and make use of any available information constraining 

some or all hij. 

{4} For all tk, k = 1, 2,…, m, compute 
1

ij
n

h
i j

j

X

 , using values Xj(tk) from the observed or 

smoothed time series measurements. 

{5} Compute the m-dimensional vector 
1

log ( ) ( )ij
n

h
i k i j k

j

S t X t


 
  

 
1y  (k = 1, 2,…, m) 

containing transformed “observations” on the degradation termiii.  

{6} Based on the multiple linear regression model 

ˆ= +1 1 1 1y L b  ,                        (2.7) 

                                                 
iii It is possible to compute y1 for all n traces simultaneously so that Y1 becomes an mn matrix with 

columns y1. 
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estimate the regression coefficient vector   T

1 2
ˆ ˆ ˆ ˆ ˆ= log i i i ing g g  1b   by 

regression over the m time points. In other words, this step leads to an estimation of 

parameters in sets of equations of the type    1, ,
1

ˆ ˆlog log ( )
n

k i ij j k i k
j

y g X t 


   . 

Specifically, compute ˆ
1b as 

 -1T Tˆ 1 1 1 1 1 1 1b = L L L y C y ,            (2.8) 

according to Eqs. (2.3-2.5). 

{7} Constrain some or all ˆijg , if outside information on the model suggests it. 

{8} Using the observed values of Xj(tk), compute ˆ

1

ˆ ij
n

g
i j

j

X

  for all tk, k = 1, 2,…, m. 

{9} Compute the m-dimensional vector ˆ

1

ˆlog ( ) ( )ij
n

g
i j k i k

j

X t S t


 
  

 
2y  containing the 

transformed “observations” associated with the production term. 

{10} Based on the multiple linear regression model 

ˆ= +2 2 2 2y L b                                   (2.9) 

and in analogy to step {6}, estimate the regression coefficient vector 

  T

1 2
ˆ ˆ ˆˆˆ = log i i i inh h h 

 2b   by regression over the m time points as 

ˆ =2 2 2b C y .                 (2.10) 

{11} Constrain some or all îjh , if outside information on the model suggests it. 

{12} Iterate Steps {4} – {11} until a solution is found or some termination criterion is 

satisfied. 

At each phase of AR, lack-of-fit criteria are estimated and used for monitoring the 

iterative process and to define termination conditions. For the purposes here I use the sum 
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of squared y-errors (SSE1 and SSE2) as optimization criteria for the two regression phases, 

i.e. one computes 

 2

1

ˆ( ) -
m

k
log SSE log



 
  

 
 k ky y ,           (2.11) 

where ˆˆ = y L b , L equals L1 or L2, and b̂  is the solution vector ˆ
1b  or ˆ

2b , estimated 

through regression and modified by constraints reflecting structural information. I use the 

logarithm of SSE because it is superior in illustrating small changes in the residual error. 

The overall flow of the method is shown in Figure 2.1. 

It is known that collinearity may affect the efficiency of multivariate linear 

regressions. I therefore also implemented methods of principal component regression 

(PCR), partial least squares regression (PLSR) and ridge regression (Martens and Naes, 

1989). For the cases analyzed here, these methods did not provide additional benefit. 

2.2.3.2 Matrix computation representation of AR algorithm 

The AR algorithm can be reformulated using the matrix computation 

representation. For the first phase of AR, L1 is a  1m n   matrix and y1 is a 1m  

vector. The values of βi and hij in the first iteration are guessed to obtained y1. The 

problem of finding the estimates then becomes a minimization problem 

2
min 1 1 1L x - y ,                   (2.12) 

where ˆ1x  can be computed as in Step {6} 

 -1T Tˆ1 1 1 1 1x = L L L y .                (2.13) 

However, this approach augments numerical error cause by floating point errors. As an 

alternative, QR decomposition can be used to avoid this situation as 

 
 
 

1
1 1

R
L = Q

0
,                (2.14) 

 Tˆ (1: 1)n 1 1 1 1R x = Q y ,                    (2.15) 
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 Tˆ = \ (1: 1)n  1 1 1 1x R Q y ,               (2.16) 

where   T

1 2ˆˆ ˆ ˆ ˆ= log i i i ing g g  1x  . Use the estimates ˆ1x  as the initial guess for 

the second phase of regression, y2 can be computed as in Step {9}. The least square 

problem can be formulated as in Eq. (2.12) and computer in the same fashion as Eqs. 

(2.14-2.16) 

2
min 2 2 2L x - y ,               (2.17) 

2
2 2=

 
 
 

R
L Q

0
,            (2.18) 

 T
2 2 2 2ˆ = (1: 1)n R x Q y ,                    (2.19) 

 T
2 2 2 2ˆ = \ (1: 1)n  x R Q y ,                 (2.20) 

where the estimates of β-term are obtained   T

1 2
ˆ ˆ ˆˆˆ = log i i i inh h h 

 2x  . The 

matrices L1 and L2 generally are identically which include the measurements of all 

variables. However, since all or part of the structure information is known before the 

parameter estimation step, some of the variables are excluded from the regression to 

constrain the search space as described in Step {1}. 
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Figure 2.1. Logistic flow of parameter estimation by alternating regression. 
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2.3 Results and Discussion 

For illustration purposes, I use a didactic system with four variables that is 

representative of a small biochemical network (Voit and Almeida, 2004). A numerical 

implementation with typical parameters is 

 
 
 
 

0.8 0.5
1 3 1
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2 1 2

0.75 0.5 0.2
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2 6                0.4

1 0
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X X X X t

X X X X t

X X X X X t

X X X X t

  

  

  

  









.         (2.21) 

The system is first used to create artificial datasets that differ in their initial conditions 

(Table 2.1). In a biological setting, these may mimic different stimulus-response 

experiments on the same system. For example, they could represent different nutrient 

conditions in a growth experiment. Figure 2.2 shows the branched pathway and the 

symbolic model representation, along with a selection of time course data and slopes. 

 In order not to confuse the features of AR with possible effects of experimental 

noise, I use true metabolite concentrations and slopes and compute the latter directly from 

Eq. (2.21) at each time point. I initially assume that there are observations at 50 time 

points, but discuss cases with fewer points and with noise later. 

 In the following sections I describe the main results of this example using the AR 

algorithm. Some additional results are shown in Appendix A. 

Table 2.1. Sets of initial concentrations used for the creation of artificial datasets. 

Dataset  1 0X t   2 0X t   3 0X t   4 0X t  

1 1.4 2.7 1.2 0.4 
2 0.4 2.0 4.5 0.1 
3 0.2 0.3 2.2 0.01 
4 2.0 2.0 2.2 0.1 
5 1.4 1 0.2 3.0 
6 4.0 1.0 3.0 4.0 
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Figure 2.2. Test system with four dependent variables.  
(a) Didactic system with four variables that represents a small biochemical network; (b) the symbolic 
model in S-system representation. The rate constants i and i are non-negative and the kinetic orders gij 
and hij are real numbers. A kinetic order of zero implies no effect of the corresponding variable Xj on Xi, 
whereas positive implies activating or augmenting and negative implies inhibiting; (c) time courses 
computed with initial values in Eq. (2.21) (use dataset 1 in Table 2.1) and its corresponding dynamics of 
slopes. Typical units might be concentrations (e.g., in mM) plotted against time (e.g., in minutes), but the 
example could as well run on an hourly scale and with variables of a different nature. 
 

2.3.1 Performance of AR  

Given the time series data of Xi and Si at every time point tk, the AR algorithm is 

performed for each metabolite, one at a time. Figure 2.3 summarizes various patterns of 

convergence observed. Generally one can classify the convergence patterns into four 
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types: (1) convergence to the true value; (2) convergence to an incorrect value; (3) no 

convergence; typically the value of i (or i) continuously increases while all gij (or hij) 

gradually approach zero, while in some other cases gij and the corresponding hij increase 

(or decrease) in a parallel manner; (4) termination during AR, due to some of the 

observations y1 (or y2) taking on complex values. 

As is to be expected, the speed of convergence depends on the initial guesses, the 

variables used as regressors, the constraints, and the data set. After a few initial iterations, 

the approach of the true value is usually, though not always, strictly monotonic. In some 

cases, the error initially decreases rapidly and subsequently enters a phase of slower 

decrease. It is also possible that convergence is non-monotonic, that the algorithm 

converges to a different point in the search space, or that it does not converge at all. 

Convergence to the wrong solution and situations of no convergence are particularly 

interesting. In the case of no convergence, the solution arrives at unreasonable parameter 

values that grow without bound; this case is very easy to detect and discard. By contrast, 

the search may lead to a solution with wrong parameter values, but a satisfactory residual 

error. Thus, the algorithm produces a wrong, but objectively good solution. It is close to 

impossible with any algorithm to guard against this problem, unless one can exclude 

wrong solutions based on the resulting parameter values themselves. This is actually 

greatly facilitated with S-systems because all parameters have a clearly defined meaning 

in terms of both their sign and magnitude, which may help spot unrealistic solutions with 

small residual error. 

Reasons for AR not to converge are sometimes easily explained, but sometimes 

obscure. For instance, the slope-minus-degradation or -production expressions in steps 

{5} and {9} of the algorithm may become negative, thereby disallowing the necessary 

logarithmic transformation. As a consequence, the regression terminates. If this happens, 

it usually happens during the first or the second iteration, and the problem is easily solved 

when the initial  or  is increased. In other cases, AR converges for one dataset, but not 
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for another, even for the same model. This sometimes happens if datasets have low 

information content, for instance, if the dynamics of a variable is affected by a relatively 

large number of variables, but the observed time course is essentially flat or simple 

monotonic. In this case, convergence is obtained if one adjusts the constraints on some of 

the parameter values or selects a different set of regressors (see below). Of importance is 

that each iteration consists essentially of two linear regressions, the process is fast. Thus, 

even the need to explore alternative settings is computationally cheap and provides for an 

effective solution to the convergence problem. 

 

 
Figure 2.3. Generic patterns of convergence of AR.  
Panel A: monotonic convergence to the true value; Panel B: non-monotonic convergence to the true value; 
Panel C: convergence to a different value; Panel D: no convergence. Row (a): rate constant ; Row (b): 
kinetic order g; Row (c): log of residual error. The asterisk represents the true value of  or g. See Section 
2.3.1 for detailed description. 
 

2.3.2 Patterns of convergence  

The speed and pattern of convergence depend on a combination of several 

features, including initial guesses for all parameters and the datasets. Overall, these 

patterns are very complicated and elude crisp analytical evaluations. This is not 

surprising, because even well-established algorithms like the Newton method can have 
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basins of attraction that are fractal in nature (e.g., (Epureanu and Greenside, 1998)). A 

detailed description of some of these issues, along with a number of intriguing color 

plates describing well over one million ARs, is presented in Appendix A (Section A.3). 

Effect of initial parameter guesses  

Figure 2.4 combines results from several sets of initial guesses of i and hij (the 

results of the second phase of AR are not shown, but are analogous). The data for this 

illustration consist of observations on the first variable of datasets 4, 5 and 6 (see Table 

2.1). These are processed simultaneously as three sets of algebraic equations at 50 time 

points. Thus, the parameters 1, g13, 1, and h11 of the equation 

13 111 1 3 1 1
g hX X X  


                                                  (2.22) 

are to be estimated. As a first example, I initiate AR with all variables (X1, …, X4) as 

regressors, but constrain the kinetic orders g11, g12, and g14 to be zero after the first phase 

of the regression, and the kinetic orders h12, h13, and h14 after the second phase, in 

accordance with the known network structure. 

Figure 2.4A(a) shows the “heat map” of the convergence, where the x- and y-axes 

represent the initial guesses of h11 and 1, respectively, and the color bar represents the 

number of iterations needed for convergence. Since I am using noise-free data, the 

residual error should approaches 0, which corresponds to – in logarithmic coordinates. I 

use –7 instead as one of the termination criteria, which corresponds to a result very close 

to the true value, but allows for issues of machine precision and numerical inaccuracies. 

Once this error level is reached, AR stops and the number of iterations is recorded as a 

measure for the speed of convergence. The unusual shape of a “martini with olive” is due 

to the following. The deep blue outside area indicates an inadmissible domain, where the 

initial parameter guess causes one or more of the terms 

1

( ) ( ), 1,2,...,ij
n

h
i k i j k

j

S t X t k m


   in step {5} to become negative, so that the logarithm, 
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y1, becomes a complex number and the regression cannot continue. The line separating 

admissible and inadmissible domains is thus not smooth but shows the envelope of 

several pieces of power-law functions where the -term is smaller than the (negative) 

slope at some time point. The “olive” inside the glass is also inadmissible. In this case, 

the chosen initial value causes the term ˆ

1

ˆ ( ) ( ), 1,2,...,ij
n

g
i j k i k

j

X t S t k m


   in step {9} to 

become negative, so that y2 becomes complex and AR terminates during the second 

phase. This type of termination usually, though not always, happens during the first 

iteration. In order to prevent it, one may a priori require that 

11
1 1 1( ) ( ) 0h

k kS t X t                                           (2.23) 

for every tk, such that the logarithm is always defined. This is possible through the choice 

of a sufficiently large value for the initial guess of . The magnitude of  should be 

reasonable, however, because excessive values tend to slow down convergence. As a 

matter of practically, one may start with a value of 5 or 10 and double it if condition in 

Eq. (2.23) is violated. 
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Figure 2.4. Summary of convergence patterns of AR. 
Panel A: all variables are initially used as regressors and constraints are imposed afterwards; Panel B: 
regression with the “union” of variables of both terms; Panel C: only those variables that are known to 
appear in the production or degradation term, respectively, are used as regressors. Row (a): speed of 
convergence; the color bars represent the numbers of iterations needed to converge to the optimum 
solution; Rows (b) and (c): 2D view of the error surface superimposed with convergence trajectories with 
different initial values of  and h; the color bars represent the value of log(SSE). The intersections of dotted 
lines indicate the optimum values of parameters  and h. 
 

Use of different variables as regressors  

Panel A in Figure 2.4 shows results where all variables are initially used as 

regressors, but where their kinetic orders are constrained to zero after each iteration, if 

they are known to be zero. As alternatives, Panels B and C show results of using different 

variable combinations as regressors under otherwise identical conditions. In Panel B, 

both phases of AR use all variables as regressors that appear in either the production or 

the degradation term of the equation. In Panel C I make full use of pre-existing 
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knowledge of the pathway structure and include in each term only the truly involved 

variables. Interestingly, this choice of regressors has a significant effect on convergence. 

Compared with the case in of Figure 2.4A(a), the speed of convergence is slower 

in Figure 2.4B(a) and much slower in Figure 2.4C(a), even though this represents the 

“best-informed” scenario. The time needed to generate the graphs in Figures 2.4A(a), 

2.4B(a), and 2.4C(a) for all shown 60,000 initial values is 72, 106, and 1,212 minutes, 

respectively. Thus, supposing that roughly half of the start points are inadmissible and 

require no iteration time, the average convergence time in Figure 2.4A(a) is 0.144 

seconds, whereas it is 0.212 seconds in Figure 2.4B(a) and 2.424 seconds in Figure 

2.4C(a). The pattern of convergence is affected by the datasets used. As another example, 

Figure 2.5 shows results of regressions with dataset 5. 

 

 
Figure 2.5. Convergence of AR for data set 5. 
(a) Use all variables as regressor with secondary constraints; (b) use “union” variables as regressors that 
appear in either the production or the degradation term of the equation; and (c) use fully informed variable 
selection and include in each term only the truly involved variables.  
 

Error surface 

Rows (b) and (c) in Figure 2.4 Panels A, B, and C show heat maps of log(SSE), 

where darker dots indicate smaller errors. The true minimal value of log(SSE) for our 

noise-free data is -∞, but for illustration propose, I plot it only to -5. Pseudo-3-D graphs 

of the error surface are shown in Figure 2.6 with views from two angles. 
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Figure 2.6. Pseudo-3D graph of the error surface for a convergence trajectory. 
The graphs in Panels A, B, and C correspond to the graphs in Figure 2.4 (Panels A, B, and C), respectively. 
Columns (a) and (b) show views from two angles. For all three panels, in just one or few iterations, the 
trajectories are close to—though not exactly in—the valley of the error surface. The asterisk indicates the 
initial guess (, h) = (40, 2). 
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Convergence trajectories 

Paths toward the correct solution may be visualized by plotting and 

superimposing the solution at every regression step onto the corresponding heat maps, 

with arrowheads indicating the direction of each trajectory (Figures 2.4A(b, c), 2.4B(b, 

c), and 2.4C(b, c)). For the first set of illustrations, four different initial values of h11 are 

chosen, while the value of 1 is always 40. For the second set of illustrations, four 

different initial values of 1 are chosen, while the value of h11 is always 2. Interestingly, 

independent of the start values, only two iterations are needed to reach a point very close 

to the valley of the error surface where the true solution is located. After the dramatic 

initial jump, all solutions follow essentially the same trajectory with small steps toward 

the true solution. One can also link the observations of Figures 2.4A(b) and A(c) to the 

result in 2.4A(a). For the same 1, a start point in the right part the graph causes AR to 

jump to a more distant location on the trajectory, thus requiring more iterations to 

converge to the true solution. 

It might be possible to speed up convergence in the flat part of the error surface, 

for instance by using history-based modeling based on conjugated gradients or partial 

least squares regression (Martens and Naes, 1989). These options have not been 

analyzed. 

Accuracy and speed of solution 

The previous sections focused on the first equation of the S-system model in Eq. 

(2.21) and Figure 2.2. I used the AR algorithm in the same manner to estimate all other 

parameters. Again, three sets of regressors were used for every variable. For simplicity of 

discussion, I describe the results from using dataset 1 of Table 2.1, always using as initial 

guesses i=15 and hij=1. The main result is listed in Tables 2.2. Additional results and 

further comments are presented in Appendix A (Section A.1) Tables A.1 and A.2. 
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Table 2.2. Estimated parameter values of the S-system model of the pathway in Figure 2.2 using 
log(SSE)<-7 as termination criterion. 
a Regressor: A: all variables used as regressors and subsequently constrained; B: use of “union” variables as 
regressors (see text in Section 2.3.2 for detail); C: fully informed selection of regressors (see text in Section 
2.3.2 for detail). b time (secs) needed to converge to the solution with log(SSE)<-7. c Convergence results 
according to AR algorithm: *: convergence to the true solution; **: convergence to different solution; ***: 
no convergence. d time after running 1,000,000 iterations. See Eq. (2.21) for optimal parameter values and 
the Appendix A (Section A.1) for further comments. 

 Regressora i gi1 gi2 gi3 gi4 i hi1 hi2 hi3 hi4 log(SSE) Timeb Notec 

 A  12.00 0.00 0.00 -0.80 -0.00 10.00 0.50 -0.00 0.00 0.00 -6.84 0.58 * 

X1 B 12.03 -0.00 0 -0.80 0 10.04 0.50 0 0.00 0 -7.00 2.39 * 

 C 12.00 0 0 -0.80 0 9.99 0.50 0 0 0 -6.95 0.17 * 

 A  44.50 -0.00 -0.02 -0.04 0.11 31.48 0.03 0.14 0.05 -0.13 0.51 1071.58 d ** 

X2 B 8.01 0.50 0.00 0 0 3.01 -0.00 0.75 0 0 -7.00 0.97 * 

 C 8.01 0.50 0 0 0 3.01 0 0.75 0 0 -7.00 69.05 * 

 A  3.00 0.00 0.75 -0.00 -0.00 5.00 -0.00 0.00 0.50 0.20 -9.44 0.03 * 

X3 B 7.29 0 0.37 -0.00 -0.00 8.76 0 -0.00 0.19 0.04 -4.04 1117.14 d ** 

 C 2.98 0 0.75 0 0 5.00 0 0 0.51 0.20 -7.01 0.50 * 

 A  96.80 0.01 0.01 -0.00 0.00 100.00 -0.00 -0.01 0.00 0.02 -3.83 4.59 *** 

X4 B 98.29 0.06 0 0 0.00 100.00 -0.00 0 0 0.01 -5.85 341.94 *** 

 C 2.016 0.50 0 0 0 5.99 0 0 0 0.80 -6.97 84.91 * 

 
For every variable, at least one of the three choices of regressors leads to 

convergence to the correct solution. Convergence is comparably fast, even if one requires 

a very high accuracy for termination (log(SSE)<-20) (see Table A.1). If one relaxes the 

accuracy to log(SSE)<-7 or log(SSE)<-4, the solution is still very good, but the solution 

time is noticeably decreased (Tables 2.2 and A.2). However, the false-positive rate 

increases slightly for log(SSE)<-4. As a compromise, I use log(SSE)<-7 as termination 

criterion for the remainder of this paper. 

Interestingly, the speed of convergence is fastest for the strategy “A” of using all 

variables as regressors; however, the failure rate in this case is also the highest. In 

contrast, the slowest speed of convergence is obtained for the correct regressors (“C”), 

where AR always converges to the right solution. The regressor set “B” is between “A” 

and “C” in terms of speed and ability to yield the correct optimum. For cases that don’t 

converge to the right solution one easily adapts the AR algorithm by choosing different 
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start values, slightly modifying constraints, or choosing different regressors in addition to 

the three types used above. The probability of finding the correct solution is increased if 

different datasets are available for sequential or simultaneous estimation. The same was 

observed for other estimation methods (e.g., (Voit and Almeida, 2004)). 

2.3.3 Structure identification 

The previous sections demonstrated parameter estimation for a system with 

known structure. Similar to this task is the identification of the unknown structure of a 

pathway from time series data, if one uses S-systems as the modeling framework (Voit 

and Almeida, 2004). The only difference is that very few or no parameters at all can a 

priori be set to zero or constrained to the positive or negative half of the search space. A 

totally uninformed AR search of this type often leads to no convergence. However, since 

each AR is fast, it is feasible to execute many different searches, in which some of the 

parameters are allowed to float, while others are set equal to zero. 

Table 2.3 shows the results of exhausting all combinations of constraints to 

determine those that yield convergence. The total time for this exhaustive search is just 

over one hour. This is furthermore reduced if some a priori information is available. As 

an alternative to an exhaustive search, one may obtain constraining information from a 

prior linearization of the system dynamics (see (Veflingstad et al., 2004) and Chapter 1 

(Section1.5.1) for detail). This method does not identify parameter values per se, but 

provides very strong clues on which variables are likely to be involved in a given 

equation and which not. In the example tested, this method provided an over 90% correct 

classification of the relevant variables in each equation (see Table 2.4). Using this 

inference information, the total time was reduced to 53 minutes. The savings with this 

method in the given example are actually only modest (about 20%). Among the possible 

reasons are that the method does not allow distinction between effects mediated through 

the -term from those mediated through the -term and that the interaction between X3 
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and X4 (represented by g34 and h34) is actually not identified correctly, even though 

Veflingstad’s method gives it 66.7% support. Forcing g24 and h24 to be zero (which is 

predicted to be the case with 83% likelihood) leads to no convergence.  

 
Table 2.3. Constraints on kinetic orders leading to AR convergence. Termination criterion is 
log(SSE)<-7. 
* Time (mins) needed for testing all 256 combinations of zero and non-zero values of kinetic orders in each 
equation. 

 Production 
constraint 

Degradation 
constraints i gi1 gi2 gi3 gi4 i hi1 hi2 hi3 hi4 

 

Time* 

X1 [0 0 g13 0]  [h11 0 0 0]  12.00 0.00 0.00 -0.80 0.00 10.00 0.50 0.00 0.00 0.00  

 [0 0 g13 0] [h11 h12 0 0] 12.00 0.00 0.00 -0.80 0.00 10.00 0.50 0.00 0.00 0.00  

 [0 g12 g13 0] [h11 0 0 0] 12.00 0.00 0.00 -0.80 0.00 10.00 0.50 0.00 0.00 0.00  

 [g11 0 g13 0] [h11 0 0 0] 12.02 0.00 -0.00 -0.80 -0.00 10.02 0.50 0.00 0.00 0.00 20.82 

X2 [g21 0 0 g24] [0 h22 h23 0] 8.02 0.50 0.00 0.00 0.00 3.00 -0.00 0.75 0.00 0.00  

 [g21 0 g23 g24] [0 h22 0 0] 8.04 0.50 -0.00 -0.00 0.00 3.01 0.00 0.75 -0.00 -0.00  

 [g21 g22 0 g24] [0 h22 0 0] 7.97 0.50 0.00 -0.00 -0.00 2.99 0.00 0.75 -0.00 -0.00 8.50 

X3 [0 g32 0 0] [0 0 h33 h34] 3.00 0.00 0.75 -0.00 -0.00 5.00 -0.00 0.00 0.5 0.2  

 [0 g32 g33 0] [0 0 h33 h34] 3.00 0.00 0.75 -0.00 -0.00 5.02 0.00 -0.00 0.50 0.20 9.21 

X4 [g41 0 0 0] [0 h42 0 h44] 2.00 0.50 -0.00 -0.00 -0.00 6.00 0.00 -0.00 0.00 0.80  

 [g41 0 0 0] [0 h42 h43 h44] 2.02 0.49 0.00 0.00 -0.00 6.02 -0.00 -0.00 0.00 0.80  

 [g41 0 0 g44] [0 0 0 h44] 2.06 0.49 -0.00 0.00 0.01 6.08 -0.00 0.00 -0.00 0.80  

 [g41 0 g43 0] [0 h42 0 h44] 2.03 0.49 0.00 -0.00 -0.00 6.03 -0.00 -0.00 -0.00 0.79  

 [g41 g42 0 0] [0 0 h43 h44] 2.01 0.50 0.00 0.00 -0.00 6.00 -0.00 0.00 0.00 0.80  

 [g41 g42 g43 0] [0 0 0 h44] 2.02 0.49 0.00 -0.00 -0.00 6.01 -0.00 0.00 -0.00 0.79 30.60 

 
Table 2.4. Collective inference of the gene network based on results from all linearization, according 
to Veflingstad et al. (2004). 
A plus sing implies a positive influence, a minus sign implies a negative influence, and a zero implies no 
influence. Bold entries denote correctly identified interactions and numbers in parentheses give the fraction 
of models that suggest positive identification. 

 X1 X2 X3 X4 

X1 - (100 %) 0 (100 %) - (83 %) 0 (83 %) 

X2 + (100 %) - (67 %) 0 (100 %) 0 (83 %) 

X3 0 (100 %) + (83 %) - (83 %) 0 (67 %) 

X4 + (100 %) 0 (100 %) 0 (100 %) - (83 %) 
 

Finally, it is possible to sort parameter combinations by their empirical likelihood 

of inclusion in an equation (see (Marino and Voit, 2006) and Chapter 1 (Section1.5.5) for 

detail). For instance, a metabolite usually affects its own degradation but usually has no 
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effect on its own production. Thus, a reasonable start is the parsimonious model 

iih
i i i iX X    with gii=0 and hii>0. In subsequent runs, free-floating variables 

(parameters) are added, one at a time. This strategy reduced the total time from one hour 

to under 3 minutes (see Table 2.5).  

 
Table 2.5. First constraint found leading to AR convergence, starting from the most parsimonious 
constraint. Termination criterion is log(SSE)<-7. 
* Time (mins) needed for testing all 256 combinations of zero and non-zero values of kinetic orders in each 
equation. a In the 4th place of the combination matrix 1; b In the 31th place of the combination matrix 2; c In 
the 20th place of the combination matrix 3; d In the 11th place of the combination matrix 4. 

 Production 
constraint 

Degradation 
constraints i gi1 gi2 gi3 gi4 i hi1 hi2 hi3 hi4 

 

Time* 

X1 [0 0 g13 0]a [h11 0 0 0]a 12.00 0.00 0.00 -0.80 0.00 10.00 0.50 0.00 0.00 0.00 0.02 

X2 [g21 g22 0 g24]
b [0 h22 0 0]b 7.97 0.50 0.00 -0.00 -0.00 2.99 0.00 0.75 -0.00 -0.00 0.95 

X3 [0 g32 0 0]c [0 0 h33 h34]
c 3.00 0.00 0.75 -0.00 -0.00 5.00 -0.00 0.00 0.5 0.2 0.49 

X4 [g41 0 0 g44]
d [0 0 0 h44]

d 2.06 0.49 -0.00 0.00 0.01 6.08 -0.00 0.00 -0.00 0.80 0.86 

 
As an illustration, and for a second, independent example, I used the strategy of 

Veflingstad et al. (Veflingstad et al., 2004) to determine the regulatory structure and 

parameter values of a gene regulatory network model (Hlavacek and Savageau, 1996) 

that has become a benchmark in the field. Kikuchi and collaborators (Kikuchi et al., 

2003) identified the structure of this model by using a genetic algorithm acting directly 

on the five differential equation of the model. Using a cluster of 1,040 CPUs, the solution 

required about 70 hours. I generated time series data from the model, using 0.5 as initial 

concentration for all five variables. The solution time needed for exhausting all constraint 

combinations for all variables and an error tolerance of log(SSE)=-7 was 81.2 min on a 

single PC. Interestingly, the false-positive rate in this case was higher in this system as 

compared to the example above. The time needed for the hierarchical strategy proposed 

by Marino and Voit (Marino and Voit, 2006) was 6.38 mins. The parameter values of 

metabolites X1, X2, X4, and X5 were found correctly, but the parameters associated with X3 

were not all identified, even though the error satisfied my termination criterion 

(log(SSE)<-7), indicating that a different solution with essentially zero-error exists in this 
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equation. This result interestingly echoes the result based on linearization, as proposed by 

Veflingstad et al. (Veflingstad et al., 2004). The reason is probably that X2 contributes to 

both the production term and the degradation term of X3 with the same kinetic order (-1) 

and that the time course is not very informative. Also similar to Veflingstad’s results, 

when I used different initial concentrations to perturb X2 and X3 more strongly, AR 

yielded the correct solution. 

2.4 Conclusions 

Biological system models are usually nonlinear. This renders the estimation of 

parameter values a difficult problem. S-systems are no exception, but I have shown here 

that their regular structure offers possibilities for restructuring the estimation problem 

that are uniquely beneficial. Specifically, the combination of the previously described 

method of decoupling with the alternating regression technique proposed here 

dramatically reduces estimation time. Since the AR algorithm essentially consists of 

iterative linear regressions, it is extremely fast. This makes it feasible to explore 

alternative settings or initial guesses in cases where a particular initiation fails to lead to 

convergence. 

Methods of parameter estimation, and the closely related task of structure 

identification, naturally suffer from combinatorial explosion, which is associated with the 

number of equations and the much faster increasing number of possible interactions 

between variables, which show up as parameters in the equations. The proposed method 

of decoupling behaves much better in this respect than most others (cf. (Voit and 

Almeida, 2004; Marino and Voit, 2006)). In practical applications, the increase in the 

number of combinations is in most cases vastly less than theoretically possible, because 

the average connectivity of a biological network is relatively small (<<O(n2); see Chapter 

1 (Section 1.5) for review). 
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The patterns of convergence are at this point not well understood. Some issues 

were discussed in Section 2.3 and others are detailed in Appendix A. From these 

numerical analyses it is clear that convergence depends in a very complicated fashion on 

the dataset, the constraints, the choice of regressors, and the structure and parameter 

values of the system. Given that even the convergence features of the very well known 

Newton algorithm are not fully understood (Epureanu and Greenside, 1998), it is unlikely 

that simple theorems will reveal the convergence patterns of AR in a general manner.  

The speed of convergence is also affected by the starting guesses, the choice of 

regressors, the constraints imposed, and the data set. From my analyses so far it seems 

that if initially more regressors are used than actually needed, and if they are secondarily 

constrained, AR converges the fastest. However, a loosely constrained selection of 

regressors also has a higher chance of convergence to a wrong solution or never to 

converge. This is especially an issue if the time series are not very informative; for 

instance, if the system is only slightly perturbed from its steady state. By contrast, when 

fewer regressors are used, the speed of convergence is slower, but the chance of reaching 

the optimal solution is increased. A possible explanation of this phenomenon is that more 

regressors offer more degrees of freedom in each regression, which results in more 

leeway but also in an increased chance for failure. If AR does not converge, choosing 

different datasets, using different regressors, or slightly relaxing or tightening the 

constraints often yields convergence to the correct solution. Most importantly, in all cases 

of convergence the solution is obtained very quickly in comparison to other methods that 

attempt to estimate parameters directly via nonlinear regression on the differential 

equations. 

At this stage I have deduced optimized solutions for each metabolite separately. 

In other words, I have not accounted for constraints among equations, such as 

stoichiometric precursor-product or branch point relationships. Also, it seems that similar 

methods should be efficacious for the estimation of Generalized Mass Action (GMA) 
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systems (see Chapter 1 (Section 1.2.4) for review). These issues will be the subject of 

further study. Some of the issues and preliminary results will be discussed in Chapter 4 

and Appendix B. I have also assumed that the data are error-free. This assumption was 

made to identify advantages and failures of the AR algorithm in a fashion as unobstructed 

as possible. Also, as raw data are typically smoothed before estimating parameter values, 

the analysis of noisy data seems to depend more on the quality of smoothing than on AR 

itself. The same is the case for data that do not stem from S-system models, where the 

quality of the estimation is driven by the accuracy of the S-system representation. Future 

studies will elucidate how sensitive to experimental error the algorithm is. 

Like any other estimation algorithm, AR is not a panacea. However, the results 

obtained so far provide strong indication that this algorithm is much faster than nonlinear 

algorithms so that one can afford to test quite a number of false starts and explore 

multiple combinations of initial guesses. 
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CHAPTER 3 

PARAMETER ESTIMATION OF S-DISTRIBUTIONS WITH 

ALTERNATING REGRESSIONiv 

 

3.1 Introduction 

 Chapter 2 introduced a novel parameter estimation algorithm for S-systems called 

alternating regression. As an extension of the methods in the previous chapter, the present 

chapter applies the AR algorithm to S-distributions which form a family of unimodal 

statistical distributions motivated by S-systems (Savageau, 1982). Although S-

distributions are not directly related to metabolic pathway modeling, they retain some of 

the mathematical properties of S-systems, and insights into estimating their parameter 

values may shed light on features of the AR algorithm that were obscure before.  

 The S-distribution was introduced in the early 1990s as a convenient univariate, 

unimodal four-parameter probability distribution that is capable of modeling a wide range 

of shapes and skewness (Voit, 1992b). Due to its rich shape flexibility and relatively 

simple mathematical format, the S-distribution has been shown to constitute a good 

general-purpose default distribution, especially for data of unknown structure. The S-

distribution may also be used in lieu of the traditional distributions, because it always has 

the same structure and, with an appropriate choice of parameter values, rather accurately 

approximates many continuous central and non-central distributions, as well as a wide 

variety of discrete distributions (Voit, 1992b; Voit and Yu, 1994; Yu and Voit, 1996). In 

addition, the S-distribution allows for combinations of parameter values that do not 

correspond to traditional distributions and permits a spectrum of distributions with long 

                                                 
iv This chapter is adapted from: Chou, I-C., Martens, H., and Voit, E. O. (2007) Parameter estimation of S-

distributions with alternating regression. Stat. Operations Res. Transactions (SORT), 31(1), 55-74. 
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or heavy tails and with skewness to the left or right. Thus, one might in many cases 

expect a better fit than is possible with traditional distributions. As a specific application 

of the combination of its flexibility and small number of parameters, the S-distribution is 

well suited for the non-trivial characterization of trends of distributions that change mean, 

variance, shape, and even skewness over time (Voit, 1996; Sorribas et al., 2000; Voit and 

Sorribas, 2000). 

The S-distribution is formulated as a differential equation, which renders the 

estimation of parameter values from data a challenge. Several methods have been 

suggested for this task, including nonlinear regression (Voit, 1992b; Sorribas et al., 

2000), a graphical method (Voit, 1992b), constrained maximum likelihood estimation 

(Voit, 2000b), and techniques based on quantiles (Voit and Schwacke, 2000; Hernández-

Bermejo and Sorribas, 2001). Here, I propose an entirely different method called 3–way 

Alternating Regression (3-AR), which was motivated by a 2-way alternating regression 

method used for the estimation of parameters in multivariate S-systems (see Chapter 2 for 

detail). The main appeal of 3-AR is its enormous speed and robustness. In this chapter, I 

discuss the method and apply it to several artificial and actual examples. 

3.2 Methods 

3.2.1 S-Distribution 

The S-distribution is a four-variable statistical distribution that emphasizes the 

cumulative density function (cdf) F, which is formulated as a differential equation with 

respect to random variable X and reads 

 g hdFf F F
dX

   ,     0 0 0,1F F X  .      (3.1) 

Because the probability density function (pdf) f is the derivative of F, the S-distribution 

can be seen as an algebraic function f(F). The first parameter of the distribution, X0, 

characterizes the location of the distribution. The second parameter, , is a positive real 
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number, which determines the scale. The remaining two parameters, g and h, may be any 

real numbers as long as g < h; they determine the shape of the distributionv. Figure 3.1 

shows two examples of S-distributions. 
 

 

Figure 3.1. S-distributions. 
Two examples show the pdf, cdf, and f-F plot (inserts) of S-distributions. Case A:  = 1, g = 0.25, h = 0.5, 
F0 = 0.01. Case B:  = 1, g = 1.2, h = 3, F0 = 0.01. 
 

3.2.2 Alternating regression 

Suppose the S-distribution is characterized through m values of the random 

variable, X1, X2,…, Xk,…, Xm, and that F(Xk) and f(Xk) are observed or obtainable for each 

k (see later sections for further discussion on the construction of pdfs and cdfs). For the 

purpose of parameter estimation, the original differential equation can then be analyzed 

in the form of m uncoupled algebraic equations as 
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f X F X F X
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





 

 

 

 





         (3.2) 

                                                 
v Throughout the paper, random variables and cdfs are represented as upper-case italics, while pdfs are 

given by the corresponding lower-case italic symbols (X, F, f). An upper-case boldface variable (L) 
represents a matrix of regressor columns and a lower-case boldface variable (y) represents a regressand 
column in a linear statistical regression model. 
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The  symbol is used because the data may only be representable in approximation by the 

S-distribution format. As a consequence of this decoupling step, substitution of the 

derivative of F with f allows us to estimate the S-distribution parameters , g, and h in a 

purely algebraic system. I propose for this estimation purpose a new method called 3-way 

alternating regression (3-AR). 

In Chapter 2, I have shown that alternating regression (AR), applied to general S-

system models and combined with methods for slope estimation and decoupling systems 

of differential equations, provides a fast tool for identifying parameter values from time 

series data. The key feature of AR is the reduction of the nonlinear inverse problem of 

parameter estimation into iterative steps of two phases of linear regression. In the first 

phase, the parameters of the β-term, βi and hij, are set to some reasonable values. Given 

measurements of all Xi at m time points and estimates slope Si(tk) at these points, the β-

term becomes a number at each time point, and this number is added to both sides of the 

equation at each time point. As result, the left-hand side becomes a numerical value, 

while the right-hand side consists exclusively of the symbolic -term. The m equations of 

this type are logarithmically transformed and subjected to multivariate linear regression. 

The resulting estimates for i and gij are used for the second phase of AR, where the -

term is subtracted from the slope values and the parameters of the -term are estimated 

and updated. The algorithm thus switches back and forth, thereby rapidly improving 

estimates of all parameters (see Chapter 2 for details). 

The S-distribution is obviously a special case of an S-system, with the notable 

feature that by definition = . This feature is important for AR methods, because  and 

 are no longer independent of each other, and it turns out to be inconvenient to constrain 

 to be the same in both phases of the regression. Furthermore, as discussed in Chapter 2, 

AR tends to encounter problems if the same variable is present in both the  and  terms 

of the same equation. In general S-systems, this situation is rather rare. By contrast, it is 
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the normal occurrence in S-distributions, and preliminary studies indeed confirmed that 

the direct application of AR was problematic. Therefore, I propose here to modify the 2-

way AR approach here into a three-cycle 3-AR method specifically for S-distribution 

estimation. It might be useful in the future to explore 3-AR in general S-system equations 

that contain the same variables in both terms. 

Similar to the original AR, 3-AR works by iteratively cycling between phases of 

linear regression. The first phase begins with guesses of the values of g and h and uses 

these to solve for the value of parameter . Experience has shown that it is more 

expedient to start the algorithm with g and h, rather than g and  or h and , presumably 

due to the fact that the typical ranges of g and h are much smaller than that of  and 

because h is per definition constrained by g. The second phase takes estimates of  and h 

to solve for g, while the third phase takes estimates of  and g to solve for h and thus 

improve the parameter guesses or estimates from the previous phases. The phases are 

iterated until a solution is found or AR terminates for other reasons. The overall flow of 

the method is shown in Figure 3.2, and specific steps of the 3-AR algorithm are detailed 

in the next section. 

3.2.3 Steps of the 3-AR algorithm 

{1} Define Lf and LF as m2 matrices of logarithms of regressors f and F, respectively: 

  
  

  

  

1 log

1 log

1 log

1 log

1

2

k

m

f X

f X

f X

f X

 
 
 
 
 
 
 
 
 
 

fL  

 

,          (3.3) 
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 
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 
 
 

FL  

 

.          (3.4) 

Lf is used in the first phase of AR to determine , and LF is used in the second and 

third phases of AR to determine g and h. 

{2} Select values for g and h in accordance with experience about S-distribution 

parameters (see (Voit, 1992b) for relationships between parameter values and 

distributional shape). 

{3} For all Xk, k = 1, 2,…, m, compute    ˆĝ h
k kF X F X , using values F(Xk) from the 

data distribution. Here ĝ  and ĥ  denote the estimators of g and h after the 2nd 

iteration, while during the 1st iteration, ĝ  and ĥ  are the initial guesses for g and h, 

respectively. Determine the index I of all positive quantities    ˆĝ h
k kF X F X .  

The number of qualified points then becomes N, where N is the length of I. 

Quantities restricted to N instead of all N points are identified in the following with 

an additional subscript . Theoretically  g
kF X  should always be greater than 

 h
kF X , because g < h, or at most equal, for F = 0 and F = 1. However, because of 

noise, this may not always be true, suggesting temporary exclusion of some data 

points. 

{4} After logarithmic transformation and rearrangement, Eq. (3.1) can be written as 

 log log g hf F F

    
 

. Therefore, compute the N-dimensional vector 



 85

 ˆˆlog g hF F  αy  for N points, as well as 
αf

L , where the subscript  limits the 

computation to qualified points. 

{5} Based on the linear regression model 

ˆ
αα f α αy = L b +  ,           (3.5) 

estimate the regression coefficient vector 
1 2

Tˆ ˆˆ b b 
   αb  over the N qualified 

points, to obtain an estimate of . In other words, this equation may be written as 

 1log log
ˆα α αy f 

    
 

 so that 
1

b̂ is equivalent to 1log
̂
 
 
 

 and 
2

b̂  is the 

coefficient of  log f , which is expected to converge to 1. Thus, ˆ
αb  is estimated 

with any of the methods of linear regression, e.g., by ordinary least squares 

regression (OLSR) as 

 -1T Tˆ =
α α αα f f f αb L L L y .            (3.6) 

As an alternative to OLSR, weighted or robust estimators could be used. If 
αf

L  does 

not have full column rank, i.e., if T
α αf fL L  has a small eigenvalue, one could also use a 

small ridge regression constant  for stabilization and compute ˆ
αb  as 

 T Tˆ 
α α α

-1

α f f f αb = L L I L y .          (3.7) 

{6} For the estimation of g, reformulate Eq. (3.1) as h gf F F

  . Thus, using values of 

f(Xk) and F(Xk) that are directly obtained from the data (see later sections), compute 

   ˆ

ˆ
k h

k

f X
F X


  for all Xk, k = 1, 2,…, m. Here ĥ  denotes the estimator of h after 

the 2nd iteration, while during the 1st iteration, ĥ  is the initial guess for h. Find the 
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index Ig of positive quantities    ˆ

ˆ
k h

k

f X
F X


 . The number of qualified points for 

this step becomes Ng, where Ng is the length of Ig. 

{7} Compute the Ng-dimensional vector ˆlog
ˆ
g h

g

f
F


 

  
 

gy  for Ng points and 
gFL . 

{8} Based on the linear regression model 

ˆ= +
gg F g gy L b  ,           (3.8) 

and in analogy to step {5}, estimate the regression coefficient vector 

1 2

Tˆ ˆˆ
g gb b   gb  by regression over the Ng time points as 

 -1
T Tˆ =

g g gg F F F gb L L L y ,           (3.9) 

or with an alternative regression method. The estimator 
2

ˆ
gb  is the parameter of 

interest, ĝ ; estimator 
1

ˆ
gb  is expected to be zero in the model. 

{9} For the estimation of h, reformulate Eq. (3.1) as g hfF F


  and compute 

   ˆ

ˆ
kg

k

f X
F X


  for all Xk, k = 1, 2,…, m, again using the values of f(Xk) and 

F(Xk). Determine the index Ih of positive quantities    ˆ

ˆ
kg

k

f X
F X


 . The number 

of qualified points for this step becomes Nh, where Nh is the length of Ih. 

{10} Compute the N-dimensional vector ˆlog
ˆ

g h
h

fF


   
 

hy  for Nh points and 
hFL . 

{11} Based on the linear regression model 

ˆ= +
hh F h hy L b  ,             (3.10) 

and in analogy to steps {5} and {8}, estimate the regression coefficient vector 

1 2

Tˆ ˆˆ
h hb b   hb  by regression over the Nh time points as 
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 T Tˆ =
h h h

-1

h F F F hb L L L y ,           (3.11) 

or with an alternative regression method. The estimator 
2ĥb  is the parameter of 

interest, ĥ ; estimator 
1ĥb  is expected to be zero in the model. 

{12} Iterate steps {3} – {11} until a solution is found or some termination criterion is 

satisfied. 

 
Figure 3.2. Flow of parameter estimation by 3-way alternating regression. 

 

During each phase of 3-AR, lack-of-fit criteria are estimated and used for 

monitoring the iterative process and to define termination conditions. I use here 
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specifically the logarithm of the sums of squared y-errors (SSE, SSEg, and SSEh) as 

optimization criteria for the three regression phases. Upon convergence, we also compute 

the residual error SSE of the fit and the standard deviation  . . -S D SSE N p =  of the 

pdf, as well as the cdf and f-F plots, where p is the number of estimated parameters, 

which in all cases here is 3. 

The location parameter X0 is not explicit in the method, because it does not appear 

in the algebraic formulation of the pdf as a function of the cdf. However, it is easily 

estimated directly as the observed or estimated median or by optimizing the horizontal 

position of the distribution with parameters ̂ , ĝ , and ĥ  (Voit, 2000b). 

3.3 Results 

I tested the 3-AR method with a large number of representative cases, including 

estimations based on “data” from error-free distributions, artificial noisy data obtained as 

random samples generated from S-distributions with known parameters, traditional 

statistical distributions (using Matlab), and from actual observation data. Representative 

details of each case are discussed in this section. 

3.3.1 Fitting the distribution without noise  

In order not to confuse the features of 3-AR with possible effects of noise in the 

data, I begin the exploration of convergence properties by using true S-distribution cdfs 

and pdfs, which are evaluated directly from Eq. (3.1) at a number of values for the 

random variable. Specifically, I choose 50 equally spaced instances of the random 

variable and compute the corresponding f and F values from Eq. (3.1) to obtain the “true” 

pdf and cdf. Figure 3.3 shows an example of a typical convergence pattern. Starting from 

the (essentially arbitrary) initial guesses g = 3 and h = 6, it takes the 3-AR algorithm just 

51 iterations to converge to the true solution, requiring 0.0742 seconds on a Pentium® D 

(~3.4GHz) machine. Since I am using noise-free data, the residual error should approach 
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0, which corresponds to – in logarithmic coordinates. I use –9 instead as one of the 

termination criteria, which corresponds to a result very close to the true value, but allows 

for issues of machine precision and numerical inaccuracies. The low error tolerance 

causes the algorithm to need 51 iterations. However, as Figure 3.3 indicates, the estimates 

are already very close to the true optimum after just a few initial iterations. Big jumps in 

the beginning do not negatively affect convergence time. For instance, using the same 

error tolerance and initial guesses g = 10, h = 10.5 or g = 100 and h = 120, respectively, 

the algorithm needs 57 iterations (0.0535 second) or 63 iterations (0.0567 second) to 

converge to the true parameter values. Thus, somewhat different from results for general 

S-systems (see Chapter 2 (Section 2.3)), the speed of convergence here does not depend 

much on initial guesses. Also in contrast to observations with S-systems, the convergence 

patterns for , g, and h are often not monotonic, and each parameter may temporarily 

increase or decrease during the initial iterations.  

While convergence is almost always extremely fast, as in the example described 

above, some initial values cause 3-AR not to converge at all. In such rare cases, the value 

of  typically increases without bound, while g and h converge toward each other and 

ultimately become the same. This case corresponds to the trivial solution 

hg FFf
 0


 in Eq. (3.1) and is easy to detect and discard. 

Figure 3.4 combines results for several noise-free S-distributions and essentially 

exhaustive sets of initial guesses for g and h satisfying g < h, as required. The selected 

distributions are representative for different shapes and skewness, which are reflected in 

different categories of parameter values (cf. (Voit, 2000b)): 

(1) g > 0 and h > 0: as exemplified in Figure 3.4A and 3.4B; 

(2) g < 0 and h > 0: as exemplified in Figure 3.4C; 

(3) g < 0 and h < 0. 

In addition, samples from all categories must by definition satisfy the condition g < h. 



 90

 
Figure 3.3. Convergence pattern of 3-AR.  
For this example, 50 instances of the random variable were chosen from a parent distribution with 
parameters  = 20, g = 2, h = 3, and F0 = 0.01. Initial guesses were chosen as g = 3 and h = 6, but do not 
affect convergence much. No initial guess for  is needed in 3-AR. 

 

The left panels in Figure 3.4 exhibit the cdf and pdf of each distribution. Inserts 

show the so-called f-F plots, where the pdf is plotted against the corresponding cdf. These 

plots are important because they are the basis for 3-AR and many other estimation 

methods for S-distributions. The right-hand panels present “heat maps” of convergence: 

the x- and y-axes represent the initial guesses of h and g, respectively, and the gray bar 

represents the logarithm (base 10) of the number of iterations needed for convergence. 

Once the predetermined error level is reached, 3-AR stops and the number of iterations is 

recorded as a measure for the speed of convergence. In each case shown here, 25 

instances of the random variable were chosen and the corresponding noise-free f and F 

values were obtained according to the selected random variables. Black areas represent 

divergence to the trivial solution   , g  h. 

As discussed above, the convergence time for a given distribution does not vary 

much with different initial guesses, and the basin of convergence within each heat map is 

therefore almost monochrome. However, the heat maps of different distributions are quite 
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different. For instance, the times needed to generate the heat maps in Figures 3.4A, 3.4B, 

and 3.4C for a total of 57,600 initial values shown are 14,957, 1,197, and 1,094 seconds 

on a single PC, respectively, thus yielding average convergence times of 0.26, 0.021, and 

0.019 seconds per case. While reasons for the wide variations in convergence times 

among distributions are unclear, the convergence patterns are similar in all cases: 3-AR 

takes big steps during the first few iterations, already coming very close to the true 

solution, and then spends many iterations on fine-tuning. The convergence area in each 

case is relatively large, and it seems to be a good general strategy to choose rather large, 

similar initial values for g and h, such as 10 and 10.5, to avoid divergence. Of importance 

is that each iteration consists essentially of three linear regressions, which are very fast. 

Thus, even if one encounters a rare case of divergence, the choice of alternative initial 

settings is computationally cheap and provides for effective estimation results. 

Examples with g < 0 and h < 0 or with different  values are not shown in Figure 

3.4, but 3-AR performed in a similar fashion for all cases tested. Most of the estimation 

tasks were solved very effectively, except for cases where the difference between g and h 

is large, for instance, g = 0.1 and h = 6. In such cases, the algorithm sometimes converges 

to sets of values between the true g and h and oscillates between them. A possible reason 

for this behavior may be that in the 3rd phase of regression (estimation of h), the slope of 

the regression line in the -
hh Fy L  plot (which is reflected in the high value of h) is large 

and greatly affected by small errors, especially when f and F values are small so that their 

logarithms dominate the regression. In this case, the algorithm may not converge to 

exactly the right solution, but the oscillation happens within a reasonable range of 

parameter values. If it is desirable to obtain only one g and h, instead of ranges of 

oscillation that bound these values, a possible solution is to exclude some of the small F 

values. In the cases I tested, this omission heuristically resulted in the algorithm 

converging to the true optimum. 
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Figure 3.4. Summary of convergence patterns of 3-AR.  
Panels on the left show the pdf, cdf, and f-F plot (insert) of each distribution. Panels on the right present 
heat maps of convergence as functions of starting values of g and h, with gray bar indicating the logarithm 
(base 10) of the number of iterations needed for convergence. Each asterisk represents the true value of g or 
h. Case A:  = 1, g = 0.25, h = 0.5, F0 = 0.01. Case B:  = 1, g = 1.2, h = 3, F0 = 0.01. Case C:  = 1, g = -
0.2, h = 0.5, F0 = 0.01. Twenty-five instances of the random variable were chosen in each case. 
 

3.3.2 Fitting distributions with noise  

The preceding section discussed 3-AR for error-free samples from S-distributions. 

In this section I analyze finite random samples from S-distributions, which result in 
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artificial datasets that appear noisy. To create these data, I use the quantile method, as 

discussed in (Voit, 2000b). Specifically, I consider the inverted cdf equation 

 
1

g h

dX
dF F F




,  F(0.5) = median        (3.12) 

and draw random numbers Ri from the uniform distribution over (0,1), which are used as 

quantiles. Solving Eq. (3.12) numerically upwards or downwards from the median to F = 

Ri yields in Xi the desired S-distributed random number. The S-distributed random 

numbers are collected and form the equivalent of an observed data sample, whose “noise” 

depends on the sample size. 

The performance of 3-AR in fitting these artificial data is shown in Figure 3.5 

with an example, where five hundred random numbers were generated from an S-

distribution and categorized into 21 bins of a relative frequency histogram (Figure 3.5a). 

The pdf was constructed from the resulting histogram without smoothing and easily 

yielded the cdf (Figure 3.5b). The 3-AR algorithm converged within 47 iterations from 

the initial guesses g = 10 and h = 10.5 to the estimated solution. Interestingly, the fit with 

this solution is associated with a lower SSE than a fit with the parent S-distribution, from 

which the “data” were sampled, which confirms similar earlier observations (e.g., 

(Sorribas et al., 2000)). To assess dependence on sample size, I also tested the algorithm 

with smaller sample sizes, e.g., n = 100, and 3-AR performed similarly well. 

 To explore the flexibility of the S-distribution, I repeated the example shown in 

Figure 3.5 several times with 500 points each. The results (Figure 3.6) show slightly 

different fits with SSEs around 0.0045-0.0047 (Fig. 5A), 0.0054-0.0057 (Fig. 3.5B), and 

0.0096 (Fig. 3.5C), which are driven by the degree with which each random sample truly 

represents the underlying distribution. Within each class, the relationships between the 

estimates , g, and h are similar, again confirming earlier results (Sorribas et al., 2000), 

where classes of quasi-equivalent S-distributions with quite similar SSEs were produced 

by fixing the value of  and fitting g and h. In each class, g and h exhibit an almost linear 
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relationship between each other and with log() and converge to each other when  

becomes larger. Even though the parameter sets within each class are clearly different, 

the resulting distributions are essentially indistinguishable. 

 In some cases, the 3-AR algorithm does not converge to a single value. Instead, it 

oscillates between reasonable candidate solutions. This is probably due to noise in the 

data, causing 3-AR to find the best “local” fit for each phase, which however is not the 

best fit for other phases. This behavior is commonly seen in nonlinear algorithms. It is 

easy to find a suitable solution by choosing from among the candidate solutions, based on 

their SSEs. 

 
Figure 3.5. Fitting distributions with noise. 
Data sampled from an S-distribution with parameter values  = 1, g = 0.75, h = 1.5 and fits with the parent 
S-distribution (dashed lines) and with an S-distribution obtained with 3-AR and initial guesses g = 10 and h 
= 10.5 (solid lines). Optimal parameter estimates are obtained as  = 0.80, g = 0.78, h = 1.87. (a) pdfs; (b) 
cdfs; (c) f-F plot showing the pdf as algebraic function of the cdf. SSE of the 3-AR optimized distribution is 
0.0041 (S.D. = 0.0151), while SSE for the parent S-distribution is 0.0064 (S.D. = 0.0189). 
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Figure 3.6. Quasi-equivalent S-distributions.  
Parameters are estimated for different samples randomly generated from a given distribution ( = 1, g = 
0.75, h = 1.5). The residual errors SSEs are recorded and classified into three classes based on the value of 
SSE. The plots of g or h versus log() and of g versus h are generated in each class. A: SSE between 0.0045 
and 0.0047; B: SSE between 0.0054 and 0.0057; C: SSE equal to 0.0096. 
 

3.3.3 Fitting traditional statistical distributions 

The selection of a traditional distribution for fitting data is often difficult because 

the “true” parent distribution is typically not known. Testing candidate distributions one 

by one is cumbersome, and all-encompassing distribution families (e.g., (Savageau, 

1982)) often contain so many parameters that over-fitting and redundancy become 

complicating issues. Instead, the S-distribution may be used as an inclusive model that is 

capable of representing many traditional statistical distributions in sufficiently close 

approximation. The strategy thus becomes to fit data of unknown structure with an S-

distribution and to identify which traditional distributions have similar shapes (Voit, 

1992b; Voit and Yu, 1994; Yu and Voit, 1996). This section explores how well 3-AR 

identifies S-distributions for random samples from traditional distributions. 
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The S-distribution contains only two classical distributions as special cases: the 

exponential distribution for g = 0 and h = 1 and the logistic distribution for g = 1 and h = 

2. Fitting these two distributions yield SSEs equal to 0 (results not shown). All other 

classical distributions incur some unavoidable approximation error when modeled as S-

distributions. Figure 3.7 shows the results of 3-AR fitting of three examples that are not 

special cases, namely a noncentral t-distribution, an F-distribution, and a 2-distribution; 

the initial guesses were again chosen as g = 10 and h = 10.5. As before, 3-AR converges 

to a solution within a few iterations for these and many other examples. The only 

convergence problems occurred when fitting traditional distributions requiring g  h (see 

(Voit, 1992b) for these uncommon cases). A possible reason is presumably that the S-

distribution is not a very good model for such distributions. 

 

 
 
Figure 3.7. Fitting traditional distributions.  
The gray dots represent data used in the regressions, while the solid curves represent the estimated S-
distributions. The SSEs are calculated for the f-F plot. A: noncentral t8,8-distribution, SSE = 0.00007, S.D. = 
0.0032; B: F10,100-distribution, SSE = 0.00066, S.D. = 0.0097; C: 2

4 -distribution, SSE = 0.00026, S.D. = 
0.0045. 
 



 97

3.3.4 Fitting observed data 

The ultimate measure of success of any fitting algorithm is the modeling of actual 

data. Figure 3.8 shows the performance of 3-AR in fitting an S-distribution to weight data 

of males ages 20 to 29 (data from NHANES III (National Center for Health Statistics, 

1996)). The observed distribution contains 574 males, classified into bins of 3 kg. The 

pdf and cdf histograms were constructed in the same fashion as in Section 3.3.2. The SSE 

of the fit is similar to the result of using a constrained maximum likelihood estimator 

(Voit, 2000b), although the parameter values are somewhat different, exhibiting again the 

flexibility and quasi-redundancy inherent in S-distributions. Visually, and judged by the 

SSE, the fit obtained here is satisfactory and obtained in less than a second. 

3.4 Discussions and Conclusions 

The S-distribution is a four-variable distribution that combines mathematical 

simplicity with superior flexibility in modeling data. A crucial prerequisite for using the 

distribution in practical applications is the availability of effective methods for estimating 

optimal parameter values from observed frequency data. Addressing this issue, I 

introduced here a method called 3–way alternating regression (3-AR) that is extremely 

fast and robust. The 3-AR method constitutes a modification of a 2-way alternating 

regression method that was recently proposed for parameter estimation in S-systems, of 

which S-distributions are special cases.  

The 3-AR method performs well in all typical scenarios, namely for estimating 

parameters from error-free distributions, from random samples generated from S- 

distributions, from traditional statistical distributions, and from actual data. The basin of 

convergence is rather large, and convergence speed is essentially independent of initial 

guesses that are selected to start the 3-AR algorithm. Therefore, even if one selects initial 

guesses quite far away from the true optimum, the algorithm only takes a few iterations to 

converge to points very close to the true solution and refines this solution with a 
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relatively small number of further cycles. An exception is the situation where 3-AR 

converges to the trivial solution where  increases without bound and g approaches h. 

This scenario is easy to spot and the choice of another initial guess typically remedies the 

situation. A second exception to rapid convergence may occur if the true g and h are very 

different. In this rather unusual case, the algorithm sometimes converges to values 

between the true g and h and oscillates between them. In this case, one may select values 

from within the oscillation range or redo the estimation by omitting some of the very 

small values of the pdf and cdf. 

The 3-AR fitting of data from traditional distributions works well in most cases, 

except for distributions that are not well approximated by S-distributions and where the 

relatively best fit requires g  h, as described in Section 3.3.3. 

For finite random samples, the estimated solution is also obtained very quickly, 

but its parameters depend on the particular sample. As a consequence, the computed 

estimates may be rather different, even though the SSEs are very similar and the shapes of 

the resulting distributions are essentially indistinguishable. This finding is a manifestation 

of the shape flexibility and quasi-redundancy of S-distributions and confirms similar 

observations in the literature (e.g., (Sorribas et al., 2000)). 

The 3-AR algorithm provides a strategy for parameter estimation with S-

distributions that is genuinely different from all other published methods. While some 

issues associated with the basin of convergence should be investigated further, my results 

shown here provide strong indication that this algorithm is much faster than the currently 

available alternatives. 
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Figure 3.8. Fitting observed data.  
Observed distribution (bars and dots) of weights of 574 males, ages 20-29 (National Center for Health 
Statistics, 1996) and S-distribution fit (lines) obtained with 3-AR and initial guesses g = 10, h = 10.5. 
Estimated parameter values:  = 0.270, g = 0.958, h = 1.328, X0.5 = 74.37. (a) pdf (SSE = 0.000143, S.D. = 
0.0023); (b) cdf (SSE =0.009629, S.D. = 0.0189); (c) f-F plot (SSE = 0.000187, S.D. = 0.0026). 

 

An issue that seems generic to S-distributions and has been observed in other 

contexts is the covariance among the parameters , g, and h (e.g., (Sorribas et al., 2000)). 

While each set of these parameters determines a unique distribution, the covariance 

permits distinct sets leading to solutions that are so similar that their differences are often 

smaller than the noise in the data. This quasi-equivalence will require future work. For 

instance, it might be possible to specify the theoretical uncertainty variances of the 

estimated parameters or analytically study the uncertainty variance by principal 

component analysis or linear series expansion of the model around the convergence point 

(, g and h). 
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Quasi-equivalence also poses problems when it is necessary to determine the 

uncertainty in the estimated parameters, for instance in the context of significance testing. 

The quasi-equivalent different parameter sets, which yield essentially indistinguishable 

distributions, are not arbitrary, but form slightly curved, essentially one-dimensional 

manifolds in the parameter space, as our group and others have discussed in the literature 

several times. These manifolds may be similar to quasi-solution sets recently derived 

from Newton flow methods (see (Dedieu and Shub, 2005)). Whatever the structure of the 

quasi-solution sets may be, it is quite evident that equivalence tests focusing on one 

parameter at a time will not be useful. Instead, one will have to compare solutions 

globally, for instance based on Hellinger or Kullbach-Leibler distances (see (Balthis, 

1998)) or on some measure of maximal distance, such as Q2 = supX | F1(X) - F2(X) |. To 

calculate a confidence interval for these distances, one would probably use the bootstrap. 

One could similarly use bootstrap methods to calculate p-values for the null hypothesis 

that two S-distributions are the same, although the bootstrap sampling for hypothesis 

testing would be slightly different than that used for confidence intervals. Furthermore, 

one could use Monte Carlo simulation methods to construct power curves for the 

alternative significance tests, under different true scenarios. 

A related issue needing future attention will be the characterization of the intrinsic 

features of the 3-AR estimator, including its biasedness, consistency, and efficiency. 

These characterizations appear to be complex and may have to be postponed until the 

convergence behavior of 3-AR is more fully understood. 

Finally, a future extension of 3-AR might be its generalization to the more 

comprehensive GS-distribution (Muiño et al., 2006), which is characterized by increased 

flexibility in shape, in particular, for symmetric distributions, at the cost of one additional 

parameter. The inclusion of this additional parameter will require modifications to the 3-

AR algorithm that need to be investigated in detail. 
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CHAPTER 4 

PARAMETER OPTIMIZATION IN S-SYSTEMS WITH 

EIGENVECTOR OPTIMIZATIONvi 

 

4.1 Introduction 

Chapter 2 introduced alternating regression (AR) as a fast deterministic method 

for parameter estimation in S-systems and showed that this method is genuinely different 

from traditional, much more expensive direct estimation methods. AR was shown to 

converge in most of the cases when the network structure is known, either by directly 

introducing topology constraints or by applying auxiliary structure identification 

algorithms (see Chapter 2 (Section 2.3.3) for details). However, AR sometimes leads to 

divergence when no structure information is applied. In this chapter, we propose a new 

method called eigenvector optimization (EO), which was inspired by AR and based on 

multiple linear regression and sequential quadratic programming (SQP) optimization. EO 

addresses the S-system parameter identification problem when no information about the 

network topology is known. In contrast to AR, EO operates initially only on one term 

(production or degradation), whose constant rate (α or β) and kinetic orders (g's and h's) 

are optimized completely before the complementary term is estimated. In many cases, the 

method provides alternative candidate models that fit the time series both in the 

decoupled and the fully integrated forms. Furthermore, the EO algorithm is extended to 

the optimization of network topologies with stoichiometric precursor-product constraints 

among equations. 

                                                 
vi This chapter is the result of a collaboration between Marco Vilela and me, therefore I will use the 

pronoun ‘we’ in this chapter. This chapter is adapted from: Vilela, M., Chou, I-C., Vinga, S., 
Vasconcelos, S. T. R., Voit, E. O., and Almeida, J. S. (2008) Parameter optimization in S-system models. 
BMC Syst. Biol., 2,35. 
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4.2 Methods 

4.2.1 Eigenvector optimization 

The EO algorithm was inspired by AR method and is also based on decoupling 

and the substitution of differentials with estimated slopes. In contrast to AR, which 

estimates the parameter values by iterating between two phases of linear regression, the 

EO algorithm estimates one term (production or degradation term) per equation with high 

accuracy and then computes the other term through one step of linear regression ensuring 

that the new term will fall into the feasible space. Analogous to AR, EO is applied to S-

system models of the format 

1 1

, ij ij
n n

g h
i i j i j

j j

X X X i = 1,2,...,n 
 

  


.         (4.1) 

Suppose the S-system consists of n metabolites X1,…, Xi,…, Xn, and for each metabolite, a 

time series consisting of m time points t1,…, tk,…, tm has been observed. Let ( )i kS t  denote 

the estimated slope of metabolite i at time tk. As shown in Chapter 2, we can reformulate 

the system as n sets 

1 1

( ) ( ) ( ), 1, 2, ,ij ij
n n

g h
i k i j k i j k

j j

S t X t X t k m 
 

     .         (4.2) 

Thus, the original system of n coupled differential equations can be analyzed in the form 

of nm uncoupled algebraic equations. In simplified notation, we denote the production 

term and degradation term in Eq. (4.2) as ( )i kPT t  and ( )i kDT t , respectively. As the result, 

Eq. (4.2) is given as 

( ) ( ) ( ), 1,2, ,i k i k i kS t PT t DT t k m    .        (4.3) 

If we move the degradation term to the left hand side, Eq. (4.3) can be rearranged as 

( ) ( ) ( ), 1,2, ,i k i k i kS t DT t PT t k m    .        (4.4) 

Because PTi must be positive, Eq. (4.4) can be rewritten as 
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   log logi i iS DT PT  ,          (4.5) 

where we omit the time argument for simplicity. As described in the introduction to AR, 

if the parameter values of the DTi are guessed, Eq. (4.5) becomes a linear regression 

problem. The regression coefficient vector ˆ
ib  contains the parameter values of PTi and is 

obtained from 

 -1T Tˆ
i ib = L L L y ,             (4.6) 

where L denotes an m(n+1) matrix of logarithms of regressors Xi, defined as 

        
        

        

        

1 1 1 1

1 2 2 2

1

1

1 log log log

1 log log log

1 log log log

1 log log log

i n

i n

k i k n k

m i m n m

X t X t X t

X t X t X t

X t X t X t

X t X t X t

 
 
 
 
 
 
 
 
 
 

L

 

 

     
 

     
 

,       (4.7) 

and yi is an m-dimensional vector  log i iS DT iy . Based on the multiple linear 

regression model ˆ= +i i iy Lb  , the predicted yi values are  

ˆˆ =i iy Lb .            (4.8) 

Substituting ˆ
ib  with the result in Eq. (4.6) directly yields  

 -1T Tˆ =i iy L L L L y .           (4.9) 

The result will be the same if we substitute yi with ˆ iy  

 -1T Tˆ ˆ=i iy L L L L y .            (4.10) 

Let  -1T TH L L L L , thus Eq. (4.10) becomes 

ˆ ˆ=i iy Hy .             (4.11) 
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Recall that vector ˆ iy  is a function of the degradation parameters i and hij, which is the 

only set of parameter values in the equation, while information regarding the production 

parameters i and gij is embedded in matrix H. Specifically, ˆ iy  must be an eigenvector of 

the matrix H with an eigenvalue equaling 1. As described in Chapter 2 (Section 2.2.3.2), 

QR decomposition can be used to avoid augmentation of numerical error caused by 

floating point errors and will be described in detail in Section 4.2.2.   

We used several standard algorithms to calculate the eigenvector of the matrix H 

directly, but none of them returned a satisfactory result. The presumed reason is that any 

vector which belongs to the eigenspace of H corresponding to eigenvalue 1 satisfies the 

Eq. (4.11). We therefore forced the eigenvector ˆ iy  to be in the form  ii DTS log  and 

reformulated the task as a minimization problem for the logarithm of the squared 

residuals between the right and left side hands in Eq. (4.11) and defined this problem in 

matrix form with the cost function  

           TTˆ ˆ ˆ ˆ ˆ ˆlog logF      i i i i i iHy y Hy y H I y H I y .    (4.12)  

The gradients of this function with respect to the degradation parameters i and hij can be 

obtained as 

       
T

1

1

2 logij
n

h
j i i i i

ji

F X S DT S DT
 





   
                

H I H I . 

  (4.13) 

         
T

1

1

2 log logij
n

h
i j j i i i i

jij

F X X S DT S DT
h








   
                

H I H I  . 

               (4.14) 

Here, the symbol   represents the Hadamard product between vectors and    1 1
 iv v  

is the Hadamard inverse operation for a given vector (Magnus and Neudecker, 1999), and 
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φ is the logarithm of the argument of the right-hand side of the Eq. (4.12). The algorithm 

avoids infeasible solutions by satisfying the constraints 

1

( ) ( ) 0 , 1,2, ,ij
n

h
i k i j k

j

S t X t k m


    .         (4.15) 

We used the fmincon routine in Matlab® (MathWorks) with built-in Sequential Quadratic 

Programming to execute the cost function constrained minimization.  

After the parameters of the degradation term i and hij are estimated with high 

accuracy, the parameter values of the production term i and gij can be computed through 

one step of linear regression as in Eq. (4.6). The EO algorithm can also start with 

estimating the parameters of the production term, where the constraints for i and gij must 

applied as 

1

( ) ( ) 0, 1,2, ,ij
n

g
i j k i k

j

X t S t k m


    .              (4.16) 

The parameter values of the degradation term are then computed with one linear 

regression after the production term is obtained. 

4.2.2 Matrix computation representation of EO algorithm 

As described in Chapter 2 (Section 2.2.3.2) Eqs. (2.14-2.20), QR decomposition 

can be used to avoid numerical error augmentation due to floating point errors. Therefore, 

matrix H in Eq. (4.11) can be reformulated in the following steps: 

 
 
 

R
L = Q

0
,                      (4.17) 

   T T T T T   
   
   

R R
L L = R 0 Q Q = R 0 = R R

0 0
,        (4.18) 
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   

   

 

-1T T T

1 T T T

T

T



 
 
 
 
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 
 

  
 
 
 
 

-

R
H = Q R R R 0 Q

0

R
= Q R R R 0 Q

0

I
Q I 0 Q

0

I 0
= Q Q

0 0

.          (4.19) 

The first n+1 vectors in Q are the eigenvectors of H. Therefore, ˆ iy  is the linear 

combination (or the span) of  2 1n1q q q : 

 
1

2
2 1

1

ˆn

n










 
 
  
 
 
 

1 iq q q y


.               (4.20) 

The problem of eigenvector optimization in Eq. (4.11) can be formulated as a 

minimization problem 

ˆ ˆi i 2
min Hy - y .            (4.21) 

Since QT within norm has no effect, Eq. (4.21) can be written as 

 T

T T T

T T

T

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ

  
   

  

 
  

 

   
        

i i 2

i i

2

i i
2

i

2

min Q Hy - y

I 0
min Q Q Q y Q y

0 0

I 0
min Q y Q y

0 0

I 0
min I Q y

0 0

.       (4.22) 

Let T  
   

  

I 0
W I Q

0 0
, the cost function thus becomes 

  Tˆ ˆlogF i i= Wy Wy ,              (4.23) 
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where ˆ iy  has the format 
1

ˆ log ( ) ( )ij
n

h
i k i j k

j

S t X t


 
  

 
iy  (k = 1, 2,…, m). Throughout the 

chapter we will mainly base our computation on the algorithm steps described in Section 

4.2.1.   

4.2.3 Initial parameters guesses 

Like all numerical optimization algorithms, the proposed method requires initial 

guesses. Satisfying the constraints in Eq. (4.15), the proposed algorithm calculates initial 

guesses for the kinetic order hij, given a user-supplied value βi; specifically, hij and a 

small buffer value ε are chosen such that  

1

ij
n

h
i j i

j

X S  



  ,             (4.24) 

where iS   represents all negative slope values from the time series of Xi. A simple linear 

regression step in logarithmic space thus suffices to determine admissible initial guesses 

for the kinetic orders hij. In this fashion, for a given βi, small values of kinetic orders hij 

are provided to the optimization algorithm. As a technical note, it is easier to keep a null 

parameter value than to bring it to zero during the optimization. If the slope vector 

contains no negative values, the procedure is performed without ε. A flowchart of the 

proposed algorithm is shown in Figure 4.1. 
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Figure 4.1. Flowchart of the EO algorithm. 
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4.2.4 Refining solutions 

Differently parameterized S-systems can exhibit quite similar temporal dynamics. 

This behavior is due the fact that S-systems are composed of production and degradation 

terms that may compensate for each other through different kinetic orders and constant 

rates that ultimately produce very similar time courses. As one consequence, it is quite 

common that optimization schemes identify non-zero values for parameters that should in 

truth be zero. Moreover, it is unlikely that any algorithm based on gradients will obtain 

parameters values exactly equal to zero. For these reasons, our algorithm automatically 

checks parameter values and forces kinetic orders below a quite arbitrary threshold of 

(0.009) to be zero; a new optimization process is initiated in which the parameter is 

constrained to be zero.  

4.2.5 Extension to constrained topologies  

To address linear pathway sections, constraints are imposed in accordance with 

the structure of the system when the parameter optimization is performed. For instance, 

for the linear system with precursor-product relationships (Figure 4.5; see Section 4.3.4 

for a detailed description of the system), the optimization is performed with the 

degradation term of the precursor metabolite, which is forced to be equal to the 

production term of the product. In such a case, the Eq. (4.11) is formulated for each state 

variable 

1 1 1 1 1 1

2 2 2 2 2 2

ˆ ˆ( , , ) ( , , ),
ˆ ˆ( , , ) ( , , ),

ˆ ˆ( , , ) ( , , ).

j j

j j

n n j n n n j n

h S h S
g S g S

g S g S

 

 

 







1 1

2 2

n n

Hy y
Hy y

Hy y


         (4.25) 

and the sum of the equations returns the eigenvector problem 

1 1

ˆ ˆ
n n

i i 

 
 

 
 i iH y y .            (4.26) 
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A cost function similar to Eq. (4.12) can be formulated using the Eq. (4.26), and the same 

optimization procedure is used. For instance, to force flux conservation in the example 

system, the following constraints are imposed on the optimization algorithm 

2 1 2 1, , 1, 2,..,j jg h j n              (4.27) 

to impose  

2 1PT DT ,             (4.28) 

and the production term of X3 is forced to be equal the degradation term of X2 

3 2PT DT .             (4.29) 

Therefore, PT3 can be computed as 

3
3 2 2

1

j
n

g
j

j

X PT S


  .           (4.30) 

Applying logarithms on both sides of the Eq. (4.30) and solving the equation by multiple 

linear regression, the final constraints are found as 

  1

3 2 2
1

( ) ( ) k
m

C
k k

k

PT t S t


  ,           (4.31) 

and 

 3 1, 2 2
1

log ( ) ( ) , 1,2,..,
m

j j k k k
k

g C PT t S t j n


   ,        (4.32) 

where   1T T
C L L L . The constraints can be rewritten in a general form as 

    1

1 1
1

( ) ( ) k
m

C
n n k n k

k

PT t S t  


  ,          (4.33) 

and 

 1, 1 1
1

log ( ) ( ) , 2,..,
m

n j j k n k n k
k

g C PT t S t j n  


   .        (4.34) 

Analogous optimization routines were used for other constraints.  
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4.3 Results 

In the following sections I describe the main results related to this example using 

the EO algorithm. Some additional results are shown in Appendix B. 

4.3.1 Synthetic time series 

The EO method was tested on synthetic time series generated by reference test 

models of 2, 4, and 5 state variables. The 2-dimensional system (Kutalik et al., 2007) 
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


            (4.35) 

exhibits oscillatory behavior that is challenging for estimation purposes, leading to  

difficulties of standard algorithms in finding good solutions. The reason is that even small 

shifts in the oscillation phase between the dynamics of the estimated system and the true 

target system result in significant cumulative errors. By contrast, the 4-dimensional 

system (also see Chapter 3 (Section 2.3)) 
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           (4.36) 

is relatively well behaved and will be used to identify problems that are likely to emerge 

even for the inference of less complicated dynamic models. The 5-dimensional system 

(Hlavacek and Savageau, 1996) 
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           (4.37) 

describes an artificial gene regulatory network and has been used as a benchmark for S-

system inference algorithms. For each test system, three different data sets, each with 100 
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data points, were created using different initial conditions in order to imitate different 

biological stimulus-response experiments (Appendix B (Section B.1.1)). These three data 

sets allowed us to assess the ability of the algorithm to deal with different time series 

dynamics. Using each data set, we performed 10 trials with the EO method for each 

variable (Xi) of the system. The runs differed in the random initial guess for β which was 

chosen from the range [0.1, 12] and the kinetic order values were initialized accordingly 

(see Section 4.2.3 for detail). The search space for kinetic orders was limited to a 

reasonable range of [-2, 3], which is consistent with collective experience in the field (see 

Chapter 5 in (Voit, 2000a)). In addition, no knowledge about the pathway was assumed 

and all parameters were considered freely variable in all three case studies.  

The results demonstrate that the EO method retrieves the correct parameter values 

and network topology in most of the cases using noise-free time series. The procedure is 

computationally efficient, requiring 3 minutes to perform 40 optimizations for the 4-

dimensional system (10 optimizations for each state variable corresponding to 

approximately 5 seconds per case), on a personal computer with a 2.00 GHz processor 

and 1GB RAM. Thanks to the numerical decoupling, the complexity of the algorithm is 

of the order O( n m ) where n is the number of state variables and m is the number of 

data points used in the optimization.  

As an example result, the experiment with the 5-dimensional system performed 

on the first data set illustrates the success rate of the algorithm: the exact parameter 

values were found for all variables in all trails except for variable X5 in one of the trials. 

Furthermore, the EO algorithm overcame the problematic identification of the kinetic 

orders g32 and h32 of the state variable X3 presented by most algorithms in the literature. If 

a stop criterion is defined as a value of 1e-12 for the sum of the squared errors between 

the slopes of the optimized system and the true slopes, the time required to identify the 

system parameters for the 5-dimensional system is 23 sec on the machine described 

above. Similar results were achieved with the optimization of the 2-dimensional system. 
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An experiment with a 10-dimensional system was also performed and the total time 

consumed was 75 sec (see Appendix B (Section B.1.2)). 

 Issues encountered in finding the correct solutions appeared to be caused by a 

combination of different features of the system, such as the position of the optimal point 

within the feasible parameter space, an error surface with multiple local minima, as well 

as the particular choice of initial parameter guesses. These peculiarities of the algorithm 

and the problem itself lead to different parameter values, although the errors of the 

decoupled and integrated system are still small (typically about at the order of 1e-5). 

 The proposed algorithm calculates the initial guesses for the kinetic orders as 

close to zero as possible, given an initial β value (see Section 4.2.3 for detail). However, 

in a specific case study of the 2-dimentional system (Eq. (4.35)), near-zero values of the 

kinetic orders h11 and h12 for the constant rate β1=1 fall into the infeasible parameter 

region, which complicates the parameter optimization. For instance, the smallest feasible 

value for h12 is 0.8636. The proposed algorithm overcomes this initial problem by 

adjusting itself and subsequently returns correct solutions when the system is rescaled in 

time (Voit, 1992a). This is most easily achieved by multiplying the alphas (α1 and α2) and 

betas (β1 and β2) with a positive factor, which increases the feasible parameter space. This 

step is, in fact, equivalent to multiplying the slope vector by a positive number. Thanks to 

the modularity of the decoupled system, this scaling can be performed separately for each 

state variable without affecting the kinetic order values. Only the values of the rate 

constants are changed, but they are easily recovered by dividing them by the positive 

number used for scaling. It was observed that this strategy often, but not always, 

enhances the algorithmic performance. It appears to improve performance most if the rate 

constants have small values.  

 The EO algorithm was not only performed with noise-free time series, but also 

tested in noisy data sets. Because the EO algorithm uses the decoupled, algebraic form, a 

signal extraction procedure was employed for the noisy data to provide smooth time 
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series and slopes (Vilela et al., 2007). The results show that the combination of smoother 

and the EO algorithm generate accurate dynamical responses for the cases studies used in 

our investigation (see Appendix B (Section B.1.3) for part of the results).  

4.3.2 Error surfaces of decoupled S-systems 

To explore the results of the proposed algorithm visually and to investigate 

patterns of convergence, we performed a grid search on the parameters of the 2-

dimensional system as in Eq. (4.35). Specifically, we searched a 100×100 grid where 

each point represented the kinetic orders h11 and h12 over the range [-2.5, 2.0]. 

Correspondingly, 100 time points for X1 and X2 and its correspondent slopes S1 and S2 

were generated by numerical integration of the 2-dimensional system with X1(t0) =3 and 

X2(t0) =1 as initial conditions. As described in Section 4.2.1, the time series of X1 and X2 

were used to calculate the regression matrix L, and for each given initial value of the rate 

constant β1 (uniformly spaced over the interval [1, 6]) and for each point of the grid, the 

error surface for the variable X1 was constructed. The algorithm started with the 

degradation term ( 1211
2111
hh XXβDT  ) for the first grid point using a given value for β1 

and the time series points for X1 and X2. Subsequently, the parameter vector of the 

production term (   T

1 2
ˆ ˆ ˆ ˆ ˆ= log i i i ing g g  1b  ) was obtained from the slope vector 

S1, the regression matrix L, and the degradation term DT1 in Eqs. (4.5)-(4.6). Once all 

parameter values for variable X1 in the production and degradation vectors were 

determined, the estimated slopes were calculated ( 111
ˆ DTPTS  ) and the logarithm of 

the sum of the squared errors between these slopes and the target solutions was computed 

as    2
11 )ˆ(log SSerror . This process was repeated for all points on the grid such 

that an error surface resulted for each β1 value. In this manner, ten surfaces were 

constructed using different β values; they are shown superimposed in Figure 4.2.  
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The first observation is that most of the search region is not feasible (unfilled X-Y 

space), even though there is a priori no hint that solutions in the open range should not 

converge. It turns out in retrospect that these are regions where the argument of the 

logarithm on left side of Eq. (4.5) is negative, due to negative slope values. Also worth 

noting is that for each β a similarly shaped surface (“bowl”) was found, but that not all 

surfaces have the same minimal point (Figures 4.2 and 4.3). This information will be of 

critical importance in the discussion of the convergence profile of the proposed method. 

The same strategy was applied to noisy time series resulting in a new set of 

surfaces (data not shown). Gaussian noise with 15% variance was added to the X1 and X2 

time series and a refined Whitaker’s filter (Vilela et al., 2007) was used to smooth the 

data and estimate slopes. The error surfaces obtained using noisy data (Figure 4.4) 

present the same shapes as seen for the noise-free data except that the error average is 

higher and points to a different global minimum, which however is essentially 

indistinguishable in value from the local optima (see Appendix B (Section B.2) for 

details).  
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Figure 4.2. Error surfaces. 
a) Ten error surfaces associated with variable X1 of the 2-dimensional system were obtained using an 
exhaustive grid search covering 10 different initial guesses. b) Zooming in shows the composite contour 
map (level sets) of the error surfaces.  
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Figure 4.3. Multiple minima. 
Z-Y projection of the error surfaces in Figure 4.2a. Different minima are found for different β values. 
 

 
 
Figure 4.4. Error surfaces from noisy time series. 
Ten error surfaces of the variable X1 of the 2-dimensional system obtained from noisy time series after 
signal extraction and slope estimation. 
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4.3.3 Convergence problems 

It would be unreasonable to assume that the algorithm converges to the global 

optimum under all imaginable conditions and initial settings: no estimation algorithm for 

nonlinear systems can—or should be expected to—measure up to such high a standard. 

For instance, if the ranges of initial guesses are changed or if the number of initial 

guesses is reduced, the algorithm may converge to an acceptable local minimum which, 

however, is not global. This is not surprising, given the complicated nature of the error 

surface of realistic systems and the fact that nonlinear systems often exhibit almost flat, 

banana-shaped or ellipsoid valleys in which the minimum is centered (Berg et al., 1996; 

Sands and Voit, 1996; Gutenkunst et al., 2007). At this point, a comprehensive picture of 

potential obstacles to convergence is not available.  

 One prominent reason for lacking or faulty convergence is that some problems are 

ill-posed, for instance, because of collinearity between columns of the regression matrix 

L. This situation occurs when two or more metabolites have similar dynamics or when at 

least one variable is essentially constant and is therefore collinear with the first column of 

the L matrix. In these and some other cases, the regression matrix L has a high condition 

number, which the proposed procedure flags. It might be possible to remedy some of 

these ill-posed problems with a regularization algorithm for multiple linear regression 

and through redesigning the algorithm with the regularized solution. It seems advisable in 

any event to remove model redundancies, for instance by pooling or eliminating collinear 

variables or merging essentially constant variables with the rate constants of the term. 

4.3.4 Parameter estimation of constrained networks 

The proposed method was extended to address the parameter identification for 

systems with topological constraints. This extension allows the algorithm to account for 

precursor-product relationships problems, which mandate that the degradation term of the 

precursor is equivalent to the production term of the product (Voit et al., 2006a). Thus, 
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instead of optimizing the parameters for each metabolite separately, a set of terms is 

optimized simultaneously, consisting of one of the parameter vectors (production or 

degradation vector) of each metabolite. As an illustrative, simple example, consider a 

linear pathway with feedback, where we have to account for constraints between the 

production and degradation terms of subsequent metabolites (Figure 4.5). Specifically in 

the example system, the efflux from X1 is identical to the influx into X2, and the efflux 

from X2 is identical to the influx into X3. Consequently, the degradation term of X1 is 

exactly the same as the production term of X2, and the degradation term of X2 must be the 

same as the production term of X3. The amendment of the proposed method toward 

simultaneous estimation readily satisfies these types of constraints.  

 The extended algorithm was applied to the 3-dimensional linear pathway system 

in Figure 4.5. The detail steps have been described in Section 4.2.5. The EO algorithm 

found the correct parameter set, and all 10 optimizations, in which the EO algorithm now 

performs a single, combined optimization for all variables simultaneously, thereby 

accounting for constraints, were completed in 37sec on a 2.00 GHz processor with 1GB 

RAM. 

 

 
 
Figure 4.5. Linear system topology.  
Linear pathway with precursor-product constraints. 
 
 

4.3.5 Software application 

An open source Matlab toolbox and a stand-alone compiled Graphical User 

Interface (GUI) application were developed as an exploratory tool (see Appendix B 

(Section B.3) for availability). The application was developed as a modular extension of 
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previous work from our labs and constitutes a critical component within our long-term 

effort of advancing a data processing pipeline for S-system estimation from metabolomic 

time series (Almeida and Voit, 2003; Vilela et al., 2007). 

4.4 Discussion 

There are many reasons why it may be desirable to reverse engineer a biological 

network without making assumptions about the underlying processes. The most obvious 

reason is that no reliable information may be available about the processes. Another 

situation occurs when several network topologies are a priori possible and the reverse 

approach is employed to prioritize alternative hypotheses. The eigenvector optimization 

(EO) proposed here is an extension of alternating regression (AR) that in many cases 

shows improved convergence behavior.  

 The EO algorithm was exhaustively tested on diverse time series (see Section 4.3 

and Appendix B). In all of these tests, the convergence followed the same pattern: the 

error slowly decreased during the first few iterations and then suddenly dropped to a 

significant lower plateau, from where it gradually decreased again. This pattern repeated 

until one of the stop conditions (maximal number of iterations, minimal gradient value or 

minimal cost function value) was reached. The error drop points coincided with 

significant changes in the beta gradient and appear to correspond to transitions to a 

“bowl” with a lower error surface (cf. Figures 4.2 and 4.4). As shown in Figures 4.3b and 

4.4, most “bowls” have different minimal points, corresponding to good, yet local 

minima. Because the proposed algorithm is computationally very efficient, it allows the 

exploration of the parameter space in a reasonable amount of time (within seconds to 

minutes). Such an exploration with new initial  values is recommended, if very precise 

solutions or alternative parameter sets are needed. Because alternative parameter 

combinations may correspond to different topological and regulatory structures (e.g., 
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(Voit, 2000a)), estimations with different initial values in fact constitute explorations of 

the structure and functionality of the biological space in which the pathway operates. 

4.5 Conclusion 

S-systems present a unique balance between proven biological relevance and 

validity on one hand, and mathematical convenience and tractability on the other. For this 

reason, the recent years have seen numerous methods for matching S-system models to 

measured biological time series data. In the relatively simpler scenario of this type, the 

topology and regulatory structure of the biological system is known, and the extraction of 

information from the data constitutes a parameter estimation task. In the more difficult 

situation, at least some of the structure is unknown, and in the extreme situation no 

information about the topology of the interactions between variables is available. In this 

chapter we propose a new algorithm that efficaciously identifies the correct topology of a 

system from time series. The only true assumptions made are that all important variables 

are accounted for and that the S-system model is capable of modeling the data. The first 

assumption is presently unavoidable, at least in the generality presented above. The 

second assumption has been found to be true in very many cases, as a rich body of 

publications on S-systems demonstrates. The EO algorithm was conceived as a critical 

piece of an emerging data processing “pipeline” that will eventually accept time series 

and other data characterizing biological pathways and more or less automatically propose 

topological and regulatory structures that are consistent with the input data. This 

algorithm will be a valuable tool for analysis and hypothesis generation in systems 

biology.  



 122

CHAPTER 5 

INVERSE MODELING APPROACH AND PARAMETER 

ESTIMATION STRATEGIESvii 

 

5.1 Introduction 

As described in Chapter 1, many methods have been developed recently that 

attempt to solve parameter estimation and structure identification problems through 

inverse modeling using the BST formalism. Most of the methods were developed to 

address the main problem of optimizing parameter values against observed time series 

data; they used gradient base methods, regression algorithms, or evolutionary approaches. 

Other methods were proposed as support algorithms including, for instance, methods for 

avoiding the time consuming integration of differential equations, smoothing noisy data 

and estimating slopes, restricting the parameter search space, excluding unlikely 

connections within the network, or reducing the number of parameters to be estimated 

(see Chapter 1 (Section 1.4) for details).  

Many of the published papers used a combination of several methods to solve the 

inverse problem. For instance, they used decoupling techniques along with various 

optimization algorithms, tried to reduce the number of parameters before estimating their 

values, or included several objective functions to constrain the solution space. The 

algorithms that were proposed in Chapter 2 and 4 respectively, namely alternating 

regression (AR) and eigenvector optimization (EO), also merge several methods for 

solving inverse problems in BST models. I will briefly summarize and compare the 

features of AR and EO methods in Section 5.2.  
                                                 
vii Some of the material in this chapter was presented at International Conference on Molecular Systems 

Biology 2008  (ICMSB08) in the Manila, Philippines (Chou et al., 2008). 
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In spite of a considerable number of methods that have been proposed for inverse 

modeling using BST models, each method has its pros and cons and there is currently no 

algorithm which is perfect, or even sufficiently effective, for the majority of realistic 

cases. Before applying the algorithm on the real experimental data, synthetic time series 

data are typically used first to test the robustness and efficacy of the algorithms and 

examine if the inverse algorithm can correctly find the true optimum when noise does not 

exist. However, to some extent, it is still hard to tell from the published results which 

algorithms are superior to the others.  

 The reasons for these difficulties can be categorized into five aspects. First, 

different biochemical systems were used to demonstrate the usefulness of the algorithms. 

It is clear that different systems generate distinct synthetic time series which comprise the 

data matrices for subsequent computation. These matrices may be intrinsically different. 

For instance, the matrix may be ill-conditioned or exhibit collinearity between rows or 

columns which may affect the correctness and efficacy of the tested algorithms. 

Therefore, it is difficult to compare the methods and distinguish the influence of tested 

system from the algorithm itself.  

 Second, the numbers of time series points included for computation are different 

or unstated. Thus, the effect of data point inclusion on the algorithm is unclear and it can 

change the fitness score of the information criteria.  

 Third, the objective functions set up for the optimization problems are various 

which prevents direct comparisons among algorithms.  

 Fourth, the upper and lower limits or constraints of the parameter values are often 

different. Thus, it is hard to tell if the algorithm converges since the boundaries are 

relatively close to the true optimum or because of the efficiency of the algorithm.  

 Fifth, in addition to testing the methods using noise-free data, errors are 

introduced to exam if the algorithms can still find the correct parameter values. However, 

the way and extent of adding noise and the methods used for data smoothing often differ, 
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which makes the comparison harder. To avoid the problems indicated above, del Rosario 

and co-workers (del Rosario et al., 2008b) recently proposed a project called MADMan 

(Munich, Atlanta, DiliMAN (Philippines)), which aims to compare the published 

parameter estimation algorithms using BST formalisms in a systematically way, 

including the testing of the algorithms with the same variety of networks, uniform 

benchmarking bases, and standardized evaluation criteria. The goal of the benchmarking 

framework is to develop a strategy for choosing a set of candidate algorithms given a 

biochemical network and experimental data. MADMan is an ongoing project. It 

constitutes a huge task, which requires a lot of effort and the cooperation between 

different groups. Our group is and will be involved in MADMan. 

 The direct comparison of various optimization algorithms will ultimately be the 

least biased strategy to determine which algorithms are better than the others. However, 

speed (or lack) of convergence and unsatisfactory performance in terms of fitness, are 

merely some of the issues that need to be analyzed for each optimization algorithm or 

computational software. Other sources may contribute to the problem as well, such as 

data related issues, model related issues, and mathematical issues, as reviewed in Chapter 

1 (Section 1.3.4). Therefore, with the same goal of developing methods for effective, 

robust, and scalable estimation, I have been working toward a streamlined “work-flow” 

strategy for estimating parameter values in models within BST. Instead of suggesting 

which algorithm(s) should be used, the flow diagram proposes a decision process which 

indicates the possibly problematic steps and suggests relevant diagnostic tools or 

corresponding solutions. The details of the flow diagram will be introduced in Section 

5.3. 

5.2 Comparison of algorithms 

The details of alternating regression (AR) and eigenvector optimization (EO) have 

been reviewed in Chapters 2 and 4, respectively. In this section, I will summarize the 
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features of both methods and compare their similarities and differences. In addition, their 

pros and cons and applicability under different conditions will be reviewed briefly.  

The general algorithm flow of AR and EO is shown in Figure 5.1. For simplicity, 

the flow chart shows the steps of parameter estimation of the ith equation in the model. 

High-throughput technologies enable measurements of biological components, such as 

metabolites, at a series of time points in vivo after defined stimuli from the same 

organism. The time series contain the data from n variables (metabolites), and for each 

variable there are m measurements (Step ). The slope at each time point of the time 

series is measured (or estimated) directly or upon smoothing, if the time series data are 

more or less noisy (Step ). After the slopes are deduced, the differentials are substituted 

with slopes, which replaces the n original differential equations with n sets of m algebraic 

equation (Step ). At the same time, a symbolic S-system model is derived, where all 

variables are involved and fully connected with each other (Step ). So far the steps are 

identical for both AR and EO methods. As described in Chapter 2, the AR algorithm 

works better when the network topology is known. Therefore, given a concept map of a 

network whose structure and regulation are fully or partially known, a symbolic S-system 

model can be generated by directly translating the network structure into equations by 

hand or with the aid of supporting network identification techniques (Step ). The 

symbolic model is fitted to the time series data by means of the AR algorithm, which 

reduces the nonlinear estimation problem into iterative steps of linear regression, starting 

with guesses for all i and hij values for each set of algebraic equations (Step ). These 

guesses are used to obtain the parameters of the i-term by multivariate linear regression. 

The resulting estimates for i and all gij are used for the next iteration and the parameters 

of the i-term are estimated. The method thus switches back and forth, thereby improving 

estimates of all parameters (Step ).  

Different from AR, EO method does not necessary require the knowledge of 

network topology, and thus the full symbolic S-system model is used in data fitting. In 
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analogy with the AR method, the initial guess of i is needed (Step ), however, the 

initial values of hij are computed according to i and other constraints (Step ). Given 

the initial values of i and hij, the EO algorithm optimizes the i-term using a distinct 

objective function which involves finding an eigenvector of the matrix in which the 

information of the i-term parameters. Unlike the AR algorithm which iteratively 

switches back and forth between two phases of linear regression, the EO method 

estimates the i-term completely and uses the result to estimate the i-term parameters in 

just one step of linear regression (Step ). 

Both AR and EO algorithms are designed for the S-system format and 

demonstrate good convergence speed compared to other traditional optimization 

methods. They both incorporate decoupling techniques to avoid the integration of 

differential equations. As the result, data smoothing and slope estimating are required for 

both methods. Several smoothers and slope estimation techniques have been reviewed in 

Chapter 1 (Section 1.4.2) and need no further discussion here. Furthermore, the 

parameters of each equation are estimated separately after decoupling. Therefore, the 

development of methods to account for constraints among equations, such as 

stoichiometric precursor-product or branch point relationships, is needed for both 

methods. The EO method was shown to be able to find the correct parameter values by 

simultaneously optimizing the objective functions of all equations in a simple linear 

pathway (see Chapter 4 (Section 4.2.5) for detail).  

It is clear that for both AR and EO, the data matrix L is an essential constituent 

component in either the linear regression or the computation of the H matrix. Therefore, 

the characteristics and quality of the matrix must be expected to be crucial in the 

parameter estimation process. I have shown with test cases that an ill-conditioned matrix 

may cause problems for both algorithms. It might be possible to remedy some of these ill-

posed problems, such as the collinearity, by pooling variables or merging essentially 
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constant variables with the rate constants of the term. Another problem with the data 

matrix may be caused by time series data with very small values (~zero), since the L 

matrix contains the logarithmic values of the measurements. The problem may be 

alleviated to some extent by time domain subdivision or some weighting schemes. 

In addition to the differences described in the previous paragraph regarding the 

flow diagram of the two methods, the convergence patterns are quite different in AR and 

EO. As shown in Chapter 4 (Figure 4.4) with a cascaded attractor, the EO method finds 

the true optimum as long as the initial guesses are within the range of the attractor that 

contains the global minimum. If the initial guesses are outside that attractor, the 

algorithm will lead to other local minima, even though the error is still small and the 

fitting is visually good. This is possibly so because the EO method does not include the 

information of network topology in the symbolic model initially and thus keeps all the 

parameter freely adjustable. As the result, the parameters in the production term and the 

degradation term are compensating each other, which may generate perfect fitting with 

small error, but the model may not have much meaning and have little predictive power.  

The problem can be partially alleviated by pruning parameters when the values 

are smaller than a threshold or using other pruning methods (see Chapter 1 (Section 

1.4.4) for review). In contrast to EO, Figure 2.4 in Chapter 2 shows quite a different 

convergence attractor for the AR algorithm. Testing on the synthetic time series, if AR 

converges, it converges to the global optimum no matter how far away the initial guesses 

are, as long as the initial values are within the basin of attraction. In other word, the AR 

method breaks the boundaries of the cascaded attractor as shown in Chapter 4 Figure 4.4 

and gradually approaches the true optimum. However, for some cases when AR does not 

converge, the convergence patterns and basins are complex and need further 

investigation. 
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Figure 5.1. Flow chart of alternating regression (AR) and eigenvector optimization (EO) algorithms. 
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In summary, AR and EO methods are both fast. The AR method works well when 

the network topology is known and when the connectivity is sparse. The EO method can 

be used when the network structure is barely known. However, the results need to be 

evaluated carefully since the model might not have much meaning because of 

compensation between terms. Good smoother and slope estimating algorithms are needed 

for both AR and EO methods. Both algorithms are negatively affected by ill-posed 

problems and small numerical values in the data matrix. Data matrix preprocessing is 

needed when such conditions exist. 

5.3 Toward a Streamlined “Work-Flow” 

The comparison of AR and EO in the previous sections clearly demonstrates that 

each algorithm has its pros and cons and that there are conditions and situations where 

one works well and the other not so. While the MADMan project is attempting to clarify 

the applicability of methods under a wide range of conditions, I propose in this section a 

streamlined “work-flow” strategy for estimating parameter values in models within BST 

using a more general approach instead of naming the specific winning algorithm, which 

so far does not exist. The work-flow diagram consists of a decision process based on 

possible problems that are often encountered. These include issues related to the time 

series data, model of choice, computational efficiency, and mathematical redundancy 

during the inverse modeling process. The work-flow also suggests relevant diagnostic 

tools or corresponding solutions. One can safely anticipate that there is no unique recipe 

for solving the inverse problem in absolute generality. In many cases, a mixture of 

various methods, consisting of a main optimization algorithm and other supporting 

methods, augmented by diagnostic techniques along with some assumptions or educated 

guesses, will be required to estimate all parameter values of a system with realistic size. 

Before I go into the detail of the flow diagram, the goal of this approach will be first 

discussed in the next Section (5.3.1). 
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5.3.1 Goal of work-flow strategy 

The ultimate goal of inverse modeling is to find a mathematical model that can 

describe the biological phenomenon and predict situations that had not been used for 

model identification or data fitting with correctness, robustness, and also, efficiency. 

These standards may not be fulfilled at the same time, or only partially satisfied with 

some compromise. For instance, the algorithm that finds the optimal solution may cost 

more computational time, whereas some of the fast algorithms may only be able to find 

coarse solutions.  

The decision of the algorithms to be used is relatively easy when testing with 

synthetic time series since the “correctness” is easy to assess by checking the fitness and 

comparing the estimates with the true model parameters. However, in reality, the 

“correct” model is not known and the goodness of fit cannot always guarantee the 

reliability and applicability of the model. A model with the “smallest” fitting error is 

mathematically the “best” model in terms of goodness of fit. However, it does not 

necessarily imply that the model is the best model to describe the biological system. In 

many actual cases, the “best model” cannot be extrapolated toward untested conditions 

when no extra constraints are introduced, and the model tends to have over-fitting 

problems (see Chapter 1 (Section 1.5) for review). Furthermore, the solution that fits the 

observed time series quite well is not necessarily determined uniquely. Other solutions 

may exist which yield fits with similar quality and all solutions should be considered as 

candidate models. Therefore, instead of aiming to find one model with as small a fitting 

error as possible using a costly algorithm, the goal of inverse modeling strategy I propose 

here is to use a combination of approaches, starting with fast algorithms, to find a set of 

coarse candidate models that are all consistent with the data. The candidate set of 

parameters scattered in the search space is helpful to explore the discrepancies between 

models and data and to propose the possible causal relationship among the network 

components. These coarse models can be used to test stability, sensitivity, logarithmic 
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gains, or other diagnostic tools to study the features of the models (Voit, 2000a; Goel et 

al., 2006). These features show whether the coarse model has a chance to be correct and 

has predictive power, because lack of stability or high sensitivity are often unrealistic in 

biological systems. Furthermore, the model can be used to do various simulations, which 

are cheap to execute and usually quickly reveal some of the potential problems of the 

model and its assumptions. These models can then be experimentally validated and used 

for guiding further experimental designs. 

5.3.2 Flow diagram of inverse modeling strategy 

The proposed flow diagram of inverse modeling is shown in Figure 5.2. Given 

global time series data (Step ), the data matrix is processed by specific diagnostic tools. 

For instance, if the variable traces have similar dynamics or are essentially constant, the 

traces are (approximately) collinear with each other. The calculation of the condition 

number or correlation coefficient can point out the possible collinearity in the data matrix 

(Step ). If the time traces are collinear, one may remove the model redundancy by 

pooling collinear variables or merge constant variables with the rate constant (Step ). If 

there is no collinearity, a symbolic mathematical model of the system can be derived 

based on the model of choice, without numerical specification of parameter values (Step 

). It has been shown that S-system and GMA representations in BST are good 

candidates for this propose. After setting up the full model, if the network topology is 

known, a revised symbolic model can be formulated directly based on the network 

diagram (Step ). If there are ubiquitous metabolites in the system, partial modeling 

techniques may be applied, which further refine the symbolic model. Since fast 

optimization methods are recommend for the initial stage, most of the algorithms require 

the decoupling technique, which converts the differential to algebraic equations. The 

decoupling step involves the measurement of slopes directly or upon smoothing (Step 

). Once the symbolic model is decoupled, the parameters of each equation can be 
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estimated by some fast optimization algorithms (Step ). Alternating regression (AR) is 

shown to be one of the algorithms that works quite well in most of the cases under this 

condition. If AR converges, a coarse model is generated for further analysis and 

evaluation. If the initial guesses lead to inadmissible areas or lack of convergence, the 

fast speed enables the algorithm to start with different set of initial guesses. However, if 

the topology is not known or only partially known, algorithms or techniques for finding 

the network connectivity are applied, such as prior linearization of the system dynamics 

or sorting of parameter combinations by their empirical likelihood of inclusion in an 

equation (Step ; see Chapter 1 (Section 1.5) for detail). Another choice under the 

condition when the network topology is not known is to choose an optimization 

algorithm where the topological information is not necessary required, such as 

eigenvector optimization (EO) with decoupling (Steps  and ). These algorithms are 

usually embedded with pruning methods which eliminate unlikely connections between 

network components and reduce the number of parameters during the process of 

estimation. If the fast algorithms are not able to yield acceptable fittings, some other, 

more expensive algorithms such as genetic algorithm or evolutionary approaches are 

applied (Step ). The estimation results from the previous algorithms can be used as 

initial guesses for the subsequent algorithms, although this approach may not always be 

effective, if the initial fitting is far from acceptable. However, if the candidate estimates 

which are obtained very quickly during a coarse parameter estimation using fast methods 

are more or less acceptable, the solution can then be refined toward a very good local or 

even global minimum afterwards. A significant consequence and advantage of the 

combined approach is that the result often consists of multiple parameter sets that are all 

consistent with the data and that can lead to hypotheses offering guidance for further 

theoretical and experimental investigation (Step 12 ). It may also be useful to resample the 

data with jackknife or bootstrap methods (Voit, 2000a) and to redo the analysis in order 

to explore possible alternative solutions.  
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Figure 5.2. Flow diagram of inverse modeling strategy.  
See text for detail description. 

 

Once the candidate solutions are obtained, the question becomes if there are any 

guidelines that one can use for judging between candidate solutions. There are several 

scenarios one can anticipate regarding the candidate models. If the resulting solutions, 

either found by different optimization methods or obtained using the re-sampling scheme, 

are clustered together in the parameter space, it means the solutions are similar and the 

networks they interpret are essentially the same or very close. In contrast, if there are 

several distinctly different solutions with essentially the same residual error, it is difficult 

to decide which one is the best model. One of our recent results showed that a single data 

set allowed multiple distinctly different numerical solutions, especially if constraints on 

kinetic orders were set loosely. This was not unexpected because even one-variable S-

systems are flexible enough to permit different parameter sets generating very similar 

graphs (e.g. Chapter 3 Figure 3.5). Without additional information, each such solution is 
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a valid solution since it fits the data essentially equally well. By requiring many data sets 

and experimentally testing the same pathway under different conditions, the problem can 

often be alleviated. Using several data sets clearly constrains the flexibility of the 

underlying model considerably. However, one has to ask how often such complete data 

are available. 

In spite of the many options outlined before, it is still possible that even a 

combination strategy cannot find an acceptable fit. Problem areas in this context and 

suggested future work will be discussed in Chapter 6. 
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CHAPTER 6  

CONLUSIONS AND FUTURE WORKviii 

 

6.1 Summary and Conclusions 

Cells function and survive by orchestrating the expression of genes and their 

downstream products at the organizational levels of genes, proteins and metabolites. 

Metabolites, the end products of gene expression, are ultimately the causative agents for 

physiological responses and responsible for much of the functionality of the organism. 

Therefore, a comprehensive understanding of how metabolism works provides much 

insight into how cells and organisms operate.  

Metabolic pathways consist of series of biochemical reactions that enzymatically 

convert metabolites into other metabolites. Several pathways collectively comprise a 

metabolic network. Typically the pathways are not only complicated themselves, but they 

are also highly interrelated since some of their metabolites are coupled with each other 

through reactions and regulatory interactions. The metabolites can either directly regulate 

other components in their own or in other pathways at the metabolic level, or affect the 

expression of genes or modification of proteins per signaling, which further increases the 

complexity of their roles. Hence, it is seldom possible to analyze or predict the behavior 

and dynamics of metabolism intuitively, and it is instead necessary to involve 

mathematical modeling as a means for assessing the functioning and regulation of 

metabolic networks. 

The typical approach to mathematical model construction of metabolic pathways 

consists of five phases, namely: (1) collection of information and development of 

hypotheses associated with network structure and regulation; (2) selection of a suitable 

                                                 
viii Some of the material are adapted from: Goel, G., Chou, I-C., Voit, E. O. (submitted) System estimation 

from metabolic time series data. 
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mathematical modeling framework (Chapter 1 (Section 1.2)); (3) estimation of parameter 

values (Chapter 1 (Sections 1.3 and 1.4)); (4) model diagnostics; and (5) model 

application. Among these phases, the most challenging task continues to be the 

estimation of parameter.  

After the symbolic model is constructed, based on the network structure diagram 

and the choice of a model format, the numerical kinetic model is obtained by estimating 

the values of all parameters. Traditionally, the parameter estimation strategies have been 

following a “forward” or “bottom-up” approach, which uses “local” descriptions of each 

step within the metabolic pathway and merges these into one comprehensive model. 

Another established approach uses steady-state data based on experiments that measure 

the responses of several metabolites after a small perturbation around the normal steady 

state. However, these approaches often do not yield an integrated model that is consistent 

with biological observations, because either input information is missing or uncertain, or 

the individually modeled pieces do not lead to a functioning model of the entire system 

(see Chapter 1 (Sections 1.3.1 and 1.3.2) for details). 

Recent advancements in modern biological high-throughput techniques enable us 

to tackle the parameter estimation task using a distinctly different option, namely the 

“top-down” or “inverse” approach. These tools are able to generate time series data from 

the same organism, under the same experimental condition, and sometimes even in vivo. 

Therefore, in contrast to the “local” data obtained from traditional experiments, the clear 

advantage of using “global” data is that the collected information is more likely to 

represent the “true” behavior of the system in a comprehensive manner. However, this 

information about the structure and regulation of the biological system described by these 

data is mostly implicit, and there are several challenging issues of extracting it from the 

time series data. These challenges of inverse modeling are both on the biological and the 

computational sides. They can be generally categorized in four problem areas (also see 

Chapter 1 (Section 1.3.4)): 
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1. Data related issues: Typical biological datasets usually contain noise and 

measurement errors, and are seldom complete. Usual scenarios of missing data 

points include that the data are sparsely missing, that data collection is lacking at 

certain time points, that entire time series are missing, or that the existence of 

relevant metabolites was not known and that the corresponding time series are 

therefore missing. Sometimes the particular experimental conditions at the time of 

observation are uncertain which further complicates the situation. Other potential 

problems in the dataset are that the data matrix is ill-conditioned, which may be 

caused by collinearity among time series data, or that the time profiles are 

essentially constant or otherwise non-informative. 

2. Model related issues: All mathematical models are more or less crude abstractions 

of reality rather than based on deep theory regarding the underlying mechanisms, 

as it is the case in physics (see Chapter 1 (Section 1.3.4) for reasons). There are 

some criteria for choosing a modeling framework, such as the ability to capture 

the dynamics of the time profile, mathematical simplicity and tractability, and 

interpretability of results within the biological realm. However, many 

mathematical formulations could be potential candidates for the optimal data 

representation. Some of the modeling frameworks and their pros and cons have 

been discussed in Chapter (Section 1.2). The selection of the model is supported 

by the criteria described above and, to some degree, personal preference.  

3. Computational issues: The computational issues associated with parameter 

estimation are very challenging and have been the focus of many recently 

published papers regarding inverse modeling. The describing biological models 

potentially contain many components, and the systems are usually nonlinear and 

formulated as a set of differential equations. Therefore, the typical computational 

problems include computational efficiency, slow algorithmic progress toward the 

error minimum, lacking convergence or convergence to local minima, and 
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substantial time requirements for integration of the differential equations. Other 

challenges are reviewed in Chapter 1 (Section 1.3.4). 

4. Mathematical issues: A further source of problems comes from issues of 

mathematical redundancy in the models. These redundancies include that different 

sets of parameter values, which fit the experiment data exactly equally well, are 

mathematically or numerically equivalent (Voit, 1992a) or that non-equivalent 

solutions exhibit similar residual errors. These mathematical redundancies may 

occur within or between the flux descriptions. The former is due to numerical 

compensation, for instance, between a rate constant and the kinetic orders within a 

single flux of a power-law model, while the latter is a consequence of 

compensation between the production fluxes and degradation fluxes. 

To address the challenges outlined above, many algorithms and mathematical 

tools have been developed in recent years. The main tasks of these algorithms include: 

development and selection of suitable mathematical models for metabolic networks; 

development of strategies for the pre-handling and diagnosis of input time series data; 

development of optimization algorithms for extracting information from biological data 

sets; and creation of diagnostic tools to avoid mathematical compensation. The current 

achievements have been briefly reviewed in Chapter 1 (Section 1.3.5). They include the 

selection of S-system and GMA models within the BST framework as a promising 

representation for biological systems modeling; employment of a decoupling and 

smoothing strategy to alleviate the problem of missing data points or time series; and 

most intensively, the development of computational solutions to deal with the parameter 

estimation problem itself. These computational solutions typically require a combination 

of techniques that include methods to attack the main challenge of parameter value 

optimization, as well as other supporting algorithms.  

The main optimization methods can generally be grouped into: gradient-based 

methods, stochastic search algorithms, and other techniques that do not belong to the first 
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two groups. The essential part of solving the parameter optimization problem is to decide 

on an objective function and to minimize its error. Most of the objective functions are 

coupled with pruning strategies to omit unlikely parameters, especially when the 

topology of the system is unknown or only partially known. Many articles have been 

published recently regarding the computational methods for the inverse problem using 

BST, and the details are reviewed in Chapter 1 (Section 1.4.5). In addition to the main 

methods, supporting algorithms include methods for circumventing the time consuming 

integration of differential equations (Chapter 1 (Section 1.4.1)), smoothing overly noisy 

data and estimating slopes of time series (Chapter 1 (Section 1.4.2)), reducing the 

complexity of the inference task (Chapter 1 (Section 1.4.3)), and reducing the parameter 

search space (Chapter 1 (Section 1.4.4)).  

As described several times throughout this dissertation, one should keep in mind 

that there is no clear boundary between parameter estimation and structure identification, 

although generally the latter task is much more difficult than the former task. Structure 

identification becomes a problem of parameter estimation if the parameter values can 

easily be translated into a specific biological role within the topology of the system. 

Conversely, a good structure prediction reduces the complexity of parameter estimation. 

Some of the most relevant structure identification methods are introduced in Chapter 1 

(Section 1.5), namely methods based on the Jacobian matrix, direct observations, 

correlation-based approaches, simple-to-general and general-to-specific modeling, and 

time series data analysis using the framework BST.  

In spite of the considerable amount of methods that have been proposed regarding 

the inverse modeling problem in the past ten years, every method has its pros and cons, 

and so far none of them has risen to the top as the perfect solution that can be declared as 

the clear general winner in terms of efficiency, robustness and reliability, for the majority 

of realistic cases. Even in terms of the published examples and results it is difficult to 

judge which algorithms are superior to the others and under what conditions (Chapter 5 
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(Section 5.1)). The MADMan (Munich, Atlanta, DiliMAN (Philippines)) project recently 

proposed by del Rosario and co-workers aims to compare these algorithms using BST 

formalisms in a systematic fashion. The ultimate goal is to develop a rational strategy for 

selecting candidate algorithms with the highest probability of success, given specific 

biochemical networks and experimental data. MADMan is still in its infancy and will 

demand concerted effort from the different groups involved. 

 In this dissertation I proposed two novel algorithms for improved inverse 

modeling within BST, namely alternating regression (AR) and eigenvector optimization 

(EO) methods. The AR method (Chapter 2) is specific to S-systems within BST and, 

combined with methods for decoupling systems of differential equations, provides a fast 

new tool for identifying parameter values from time series data that is genuinely different 

from all existing methods. The key feature of AR is that it dissects the complex nonlinear 

parameter estimation task into iterative steps of linear regression by utilizing the fact that 

power-law functions are linear in logarithmic space. I showed with several artificial 

examples that the method works well in many applications. In cases where convergence 

is an issue, it is feasible to dedicate some computational effort to identifying suitable start 

values and search settings, because the method is fast in comparison to conventional 

methods so that the search with different initial values is easily recouped. Specifically, I 

showed with an example from the literature that AR is three to five orders of magnitudes 

faster than direct structure identification methods for systems of nonlinear differential 

equations. The AR method is beneficial for the identification of system structure in S-

system modeling as well. The convergence patterns of AR are complex and will require 

further investigation. 

 As an extension of using the AR method for parameter estimation in S-systems, I 

applied the AR algorithm to statistical S-distribution families which are motivated by 

growth functions represented as S-systems. Although S-distributions are not directly 

related to my main topic in metabolic pathway modeling, they shed additional light on 
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some issues of convergence because they preserve some of the properties of general S-

system models, and it turned out that their parameter values can be estimated efficiently 

with a modified AR algorithm. Specifically, I proposed a novel 3-way Alternating 

Regression (3-AR) method (Chapter 3) as an effective strategy for the estimation of 

parameter values in S-distributions from frequency data. The 3-AR algorithm is very fast 

and performs well for artificial, error-free and noisy datasets, as well as for random 

samples generated from traditional statistical distributions and for observed raw data. In 

rare cases where the algorithm does not immediately converge, its enormous speed 

renders it feasible to select several initial guesses and search settings as an effective 

countermeasure. 

 Another method our group proposed is called eigenvector optimization (EO) 

(Chapter 4), which is inspired by AR and based on a matrix formed from multiple 

regression equations of the decoupled S-systems. In contrast to AR, EO operates initially 

only on one term (production or degradation), whose constant rate and kinetic orders are 

optimized completely by sequential quadratic programming (SQP) optimization, before 

the complementary term is estimated. The method is called eigenvector optimization 

because the objective function is based on the reformulation of simple multiple linear 

regression to a problem of finding the eigenvector with eigenvalue 1 of the estimation 

matrix. We demonstrated with several synthetic time series that the algorithm can be 

expected to converge in most cases. Furthermore, the EO algorithm is easily extended to 

the optimization of network topologies with stoichiometric precursor-product constraints 

among equations. These constraints rejoin the system in cases where it had been 

fragmented by decoupling. EO addresses specifically the S-system parameter 

identification problem when no information about the network topology is known. 

However, the algorithm tends to have problems when the data matrices are ill-posed.  

 A detailed comparison of AR and EO is presented in Chapter 5 (Section 5.2). 

Summarizing this comparison, both AR and EO are designed for S-system models and 
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incorporated with decoupling techniques to avoid the integration of differential equations. 

Because of decoupling, good smoother and slope estimating techniques are needed. Both 

AR and EO converge fast compared to other traditional optimization methods. The AR 

algorithm works best when the topology of the system is known and when the 

components are sparsely connected. It also works in some cases where the topology is 

unknown. However, in this case, the EO method typically works better. The results of 

both, AR and EO, need to be evaluated carefully since the resulting model might fit the 

data but not have much biological meaning because of compensation between terms. 

Since both algorithms are computed with the data matrix, they are negatively affected by 

ill-posed problems and small numerical values in the data set.  

Like many other published algorithms, AR and EO use a combination of several 

methods that include the core algorithm and other supporting techniques to solve the 

inverse problem. Each of these algorithms has its pros and cons, and there are conditions 

and situations where one works well and the other not so. The development of a “super” 

algorithm, which solves all inverse problems, has so far not succeeded, and it might be 

that a single algorithm, which is ideal with respect to correctness, robustness, and 

efficiency, does not even exist for all purposes (Chapter 5 (Section 5.3)).  

Hence, a more feasible strategy might be to understand in more depth the 

characteristics of the best existing algorithms and to propose a decision tree or 

operational “work-flow” that takes the specific problems of a metabolic system and the 

given data into account and suggests the best solution for the given situation. While the 

MADMan project is attempting to characterize the specific properties of all published 

algorithms, the work-flow I proposed in Chapter 5 (Section 5.3) is a rather general 

approach that is independent of specific algorithms. The goal of this work-flow is to 

efficiently find a set of coarse candidate models that are sufficiently consistent with the 

data, instead of targeting one “optimal” solution. Each coarse model can be tested using 

diagnostic tools and various simulations to show whether it has a chance to be correct and 
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has predictive power. The alternative candidate models can then be validated 

experimentally and used for guiding further experimental designs. 

6.2 Future work 

As mentioned in Chapter 1 (Section 1.3.4) and in the previous section, the 

challenges of inverse modeling can be classified into data related issues, model related 

issues, computational issues, and mathematical issues. Many recently published articles 

have acknowledged and discussed various computational issues in great detail and some 

have addressed data and model related issues. However, there has been little discussion 

of model validity and quality beyond residual errors, the conditions under which the 

models can be obtained, and diagnostic tools for non-convergence or for situations where 

models cannot even be obtained with any degree of reliability.  

These situations can be generally addressed in two ways. First, when the 

algorithms are able to find a set of candidate models, it is possible that none of these 

models is valid and that diagnoses and simulation results show that none of the models 

has predictive ability. Other problems are lack of model fit for data not used in the 

estimation and model failure in extrapolations. Second, when the algorithms are not even 

able to produce acceptable fits, the failure is usually imputed to the computational 

algorithms themselves. However, attention should be devoted to investigating other 

possible sources of problems that result from the data and/or the system under 

investigation. Even though the outcomes look different, their causes are not exclusively 

independent and both are the consequences of different sources of problems. In Chapter 5 

(Section 5.3) I proposed a work-flow strategy that suggests that the input data matrix 

should be diagnosed and handled before the main parameter estimation steps. However, 

there are still other issues that should be addressed to improve the validity of the 

estimated model. 
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To address these issues further, the four challenges associated with inverse 

modeling should be examined again in the following categories: 

1. Data related issues: Even though good smoothing techniques can solve part of the 

problems of missing data points or time series, effective diagnostic tools of 

checking the consistency within data are still needed. One special property in 

modeling metabolic networks is that the mass of metabolites is conserved during 

the reaction. Therefore, by accounting for material flows entering and leaving 

each metabolite pool, one may be able to identify flows which might have been 

unknown or difficult to measure in the experiment. Furthermore, methods for 

assessing whether residual errors are due to idiosyncrasies or noise in the data are 

needed. 

2. Model related issues: Traditionally, when a mathematical framework is chosen 

for modeling, the fluxes in the metabolic pathway are represented using the same 

basis functions, for instance, a Michaelis-Menten or power-law representation. 

However, it is possible that not all fluxes are appropriately modeled by the same 

format; an example is the glucose uptake step in Lactococcus, which we discussed 

in our recent work (Goel et al., submitted). Furthermore, most of the 

mathematical formalisms are local approximations around an operating point. If 

the metabolite concentrations do not fall within the valid range of approximation, 

the model can not properly represent the dynamics. This phenomenon typically 

becomes important when a single model is used for more than one set of time 

series, each of which represents different experimental conditions. However, good 

criteria for determining the appropriateness of the chosen mathematical 

representations are still lacking.  

3. Computational issues: Current model fitting is based on time series of the main 

components in the biological system, such as the concentrations of metabolites in 

the pathway. However, rates of material flows are usually unavailable. If 
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available, they typically refer to input and output fluxes but not to the 

intermediate fluxes. Therefore, if one could determine all fluxes, together with the 

time series of each variable in the system, the estimation of parameter values 

would become more reliable.        

4. Mathematical issues: As mentioned several times, mathematical redundancies in 

the model may occur within or between fluxes and equations. The compensation 

between fluxes can be avoided if each of the true fluxes is obtained as described 

in the previous paragraph. However, solutions for numerical compensation within 

a single flux are still needed in order to generate reliable extrapolations. The 

removal of compensation within flux seems to require data covering relatively 

wide ranges of variation, multiple datasets or additional information about some 

of the parameter values.   

Figure 6.1 summarizes the typical challenges and their corresponding tasks based on the 

problem areas, including those mentioned in the previous chapters and in this section. 

Our group recently proposed a novel approach to metabolic systems estimation, 

called Dynamic Flux Estimation (DFE), which resolves several of the issues mentioned 

above (Goel et al., submitted). This approach consists of two distinct phases. The first 

phase consists of an entirely model-free and essentially assumption-free data analysis and 

quickly reveals inconsistencies within the time series, and between data and the alleged 

system topology. The consistency check within the data leads to numerical 

representations of fluxes as functions of the variables affecting them. The second, model-

based phase addresses the mathematical formulation of the processes in the biological 

system. Different from currently available methods, this phase allows quantitative 

diagnostics of whether—or to what degree—the assumed mathematical formulations are 

appropriate or in need of improvement. The two-phased approach thus permits rigorous, 

quantitative diagnoses of the data, the model structure, the assumptions made in the 

choice of flux representations, and the causes of residual errors. 
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Our preliminary results suggest that the proposed approach is more effective and 

robust than alternatives that are presently available. Its combined model-free and model-

based analyses reduce compensation of error between equations and between flux terms 

and promise significantly improved extrapolability toward new data or experimental 

conditions. Its diagnostic tools pinpoint causes of inadequate fits between model and data 

and suggest either changes in assumptions related to model choice or the use of data as 

un-modeled “off-line data.” 

The main drawback of DFE is the requirement of rather comprehensive time 

series data, which however can be obtained in many cases with already existing 

experimental methods. Also, while DFE significantly reduces error compensation 

between equations and between fluxes, it still admits error compensation among the 

parameters within a given flux, independent of what representation is chosen. Issues 

needing further development are related to missing data, missing flux information, 

underdetermined stoichiometric matrices, and ill-characterized systems topologies.  

Finally, one should emphasize the need for obtaining reliable solutions within 

short periods of time. In some cases, only a single estimation of the system may be 

needed, and it may be acceptable if this estimation takes a few hours. However, once the 

field moves to “estimation on the fly,” solutions must be obtained within a few minutes 

or, preferably, within seconds. The need for fast solutions becomes especially pertinent if 

biologists and modelers together engage in concept map modeling Chapter 1 (Section 

1.3.5), which permits the conversion of hypothesized network diagrams into numerical 

mathematical models. Because this method is based on the biologist’s intuition and 

hypotheses, many iterations between hypothesis formulation and diagram-to-model 

conversion are needed, thus demanding fast solutions that might not be absolutely precise 

but allow the interactive exploration of complex biological systems.  
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Figure 6.1. Challenging areas and corresponding solutions of inverse modeling strategy.
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APPENDIX A  

ADDITIONAL DOCUMENTATION OF PARAMETER 

ESTIMATION USING ALTERNATING REGRESSION IN  

S-SYSTEMS 

 

A.1 Further documentation of patterns of convergence 

Accuracy and speed of solution 

The following tables (Tables A.1 and A.2) correspond to Table 2.2 in Chapter 2, 

but use different error thresholds. In all cases, convergence depends on a number of 

factors, such as the selection of data sets. If one chooses data sets 1, 2, and 5, for 

example, then AR converges quickly to the right solution for metabolite 4X . Slightly 

modifying constraints after each phase of AR is another strategy to improve the 

likelihood of convergence. For example, in the case of metabolite 2X , one could relax 

the true constraints from [g21 0 0 0] [0 h22 0 0] to more generalized combinations like [g21 

0 0 g24] [0 h22 h23 0], [g21 0 g23 g24] [0 h22 0 0], or [g21 g22 0 g24] [0 h22 0 0], where 0 

indicates exclusion of the corresponding variable. In all these cases AR converges 

quickly to the right solution. In other words, even if one doesn’t constrain some 

parameters to zero that should truly be 0, AR automatically forces them to approach zero. 

It appears that the relaxing of constraints gives the AR algorithm more space to find the 

optimal solution. Using different combinations of regressors can also help. Again, in the 

case of metabolite 4X , if one uses 1X  and 3X  to fit the model in the first phase of AR 

and then use metabolites 1X , 3X , and 4X  to fit the model in the second phase of AR, the 

algorithm successfully converges to the correct solution. This trial and error approach 
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may appear somewhat ad hoc, but exploring several combinations in troublesome cases is 

still considerably faster than any competing algorithm that I am aware of. 

 
Table A.1. Estimated parameter values of the S-system model of the pathway in Figure 2.2 using 
log(SSE)<-20 as termination criterion. 
a Regressor: A: all variables used as regressors and subsequently constrained; B: use of “union” variables as 
regressors (see Chapter); C: fully informed selection of regressors (see Chapter 2). b time (secs) needed to 
converge to the solution with log(SSE)<-20. c *: convergence to the true solution; **: convergence to 
different solution; ***: no convergence. d time after running 1,000,000 iterations. 

 Regressora i gi1 gi2 gi3 gi4 i hi1 hi2 hi3 hi4 log(SSE) Timeb Notec 

 A  12.00 0.00 0.00 -0.80 -0.00 10.00 0.50 -0.00 0.00 0.00 -19.18 0.97 * 

X1 B 12.00 -0.00 0 -0.80 0 10.00 0.50 0 0.00 0 -20.00 5.48 * 

 C 12.00 0 0 -0.80 0 10.00 0.50 0 0 0 -19.94 270.97 * 

 A  44.50 -0.00 -0.02 -0.04 0.11 31.48 0.04 0.14 0.05 -0.13 0.51 1062.83d ** 

X2 B 8.00 0.50 0.00 0 0 3.00 -0.00 0.75 0 0 -20.01 1.95 * 

 C 8.00 0.50 0 0 0 3.00 0 0.75 0 0 -20.00 103.39 * 

 A  3.00 0.00 0.75 -0.00 -0.00 5.00 -0.00 0.00 0.50 0.20 -19.79 0.05 * 

X3 B 7.29 0 0.37 -0.00 -0.00 8.76 0 -0.00 0.19 0.04 -4.04 1111.63 d ** 

 C 3.00 0 0.75 0 0 5.00 0 0 0.50 0.20 -20.00 589.97 * 

 A  96.80 0.01 0.01 -0.00 0.00 100.00 -0.00 -0.01 0.00 0.02 -3.83 3.50 *** 

X4 B 98.29 0.01 0 0 0.00 100 -0.00 0 0 0.01 -5.85 340.34 *** 

 C 2.00 0.50 0 0 0 6.00 0 0 0 0.80 -19.97 289.09 * 

 
Table A.2. Estimated parameter values of the S-system model of the pathway in Figure 2.2 using 
log(SSE)<-4 as termination criterion. 
a Regressor: A: all variables used as regressors and subsequently constrained; B: use of “union” variables as 
regressors (see Chapter 2); C: fully informed selection of regressors (see Chapter 2). b time (secs) needed to 
converge to the solution with log(SSE)<-4. c *: convergence to the true solution; **: convergence to 
different solution; ***: no convergence. d time after running 1,000,000 iterations. e false positive. 

 Regressora i gi1 gi2 gi3 gi4 i hi1 hi2 hi3 hi4 log(SSE) Timeb Notec 

 A  12.04 0.00 0.00 -0.79 -0.00 10.07 0.50 -0.00 0.00 0.00 -3.84 0.44 * 

X1 B 13.81 -0.00 0 -0.60 0 12.16 0.38 0 0.00 0 -4.00 0.94 * 

 C 12.29 0 0 -0.83 0 10.08 0.51 0 0 0 -3.92 0.06 * 

 A  44.50 -0.00 -0.02 -0.04 0.11 31.48 0.03 0.14 0.05 -0.13 0.51 1073.05 d ** 

X2 B 8.47 0.46 0.00 0 0 3.42 -0.00 0.69 0 0 -4.00 0.58 * 

 C 8.46 0.46 0 0 0 3.42 0 0.69 0 0 -4.00 59.91 * 

 A  3.00 0.00 0.75 -0.00 -0.00 5.00 -0.00 0.00 0.50 0.20 -9.44 0.06 * 

X3 B 3.81 0 0.63 -0.00 -0.00 5.60 0 -0.00 0.39 0.13 -4.65 0.03 * 

 C 2.80 0 0.83 0 0 5.56 0 0 0.63 0.31 -4.01 0.20 * 

 A  96.80 0.01 0.01 -0.00 0.00 100.00 -0.00 -0.00 0.00 0.02 -3.83 4.52 *** 

X4 B 10.08 0.06 0 0 0.00 11.98 -0.00 0 0 0.12 -3.98 1.72 *e 

 C 2.24 0.40 0 0 0 5.60 0 0 0 0.66 -3.97 29.42 * 
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Density of sampling points   

Instead of using time series with 50 sampling points, I applied AR to data sets 

with only 10 points, consisting of the same starting and end times, but larger time 

intervals. The results (Table A.3) demonstrate that the density of time points in this case 

does not affect the efficacy of AR if the data are noise free. In addition to increasing the 

intervals between data points, I also reduced the time series from 50 observations to the 

first 25 points. The results (Table A.4) show that AR still converges in most cases to the 

true solution.  

Noisy data and data from non-S-system models  

As is typical with demonstrations of new algorithms in this field, it is beneficial at 

first to concentrate on error-free data in order to investigate how well the algorithm works 

under ideal conditions. In cases of noise-corrupted (artificial or real) data, one typically 

smoothes the data with methods like the three-point method, some smoother like the 

Whitaker filter, or an artificial neural network (see discussion in (Voit and Almeida, 

2004)). If the raw data are smoothed before application of the proposed (or other) 

algorithm(s), the question of the effects of noise in truth become questions of the power, 

reliability, and efficiency of the chosen smoother. Similarly, if the data represent a model 

that is not optimally modeled with an S-system, the issue is not so much the proposed 

search algorithm as the quality of the S-system representation. I will analyze these issues 

elsewhere in greater detail. 

 

 

 

 
 
 
 
 
 
 
 



 151

 
Table A.3. Estimated parameter values of the S-system model of the pathway in Figure 2.2 using 
log(SSE)<-7 as termination criterion with 10 sampling points. 
a Regressor: A: all variables used as regressors and subsequently constrained; B: use of “union” variables as 
regressors (see Chapter 2); C: fully informed selection of regressors (see Chapter 2). b time (secs) needed to 
converge to the solution with log(SSE)<-7. c *: convergence to the true solution; **: convergence to 
different solution; ***: no convergence. d time after running 1,000,000 iterations. 

 Regressora i gi1 gi2 gi3 gi4 i hi1 hi2 hi3 hi4 log(SSE) Timeb Notec 

 A  11.99 0.00 0.00 -0.80 -0.00 9.99 0.50 -0.00 0.00 0.00 -4.66 0.45 * 

X1 B 12.07 0.00 0 -0.79 0 10.10 0.49 0 0.00 0 -7.00 1.80 * 

 C 12.07 0 0 -0.79 0 10.10 0.49 0 0 0 -6.99 14.72 * 

 A  50.56 -0.20 -0.06 -0.22 0.25 27.54 0.098 0.11 0.26 -0.30 0.72 544.03 ** 

X2 B 8.02 0.50 -0.00 0 0 3.02 -0.00 5 0 0 -7.00 0.76 * 

 C 8.02 0.50 0 0 0 3.02 0 0.75 0 0 -6.98 27.00 * 

 A  3.00 -0.00 0.75 -0.00 0.00 5.00 -0.00 -0.00 0.50 0.20 -12.84 0.02 * 

X3 B 3.07 0 0.74 -0.00 -0.00 5.06 0 -0.00 0.49 0.19 -6.81 0.49 * 

 C 3.04 0 0.75 0 0 5.08 0 0 0.50 0.20 -7.00 0.20 * 

 A  96.11 0.02 0.00 0.00 0.00 100.00 -0.00 -0.00 -0.00 0.03 -3.41 2.86 *** 

X4 B 98.28 0.01 0 0 0.00 100.00 -0.00 0 0 0.01 -6.40 87.09 *** 

 C 2.01 0.49 0 0 0 5.97 0 0 0 0.79 -6.98 34.00 * 

 
 
 
Table A.4. Estimated parameter values of the S-system model of the pathway in Figure 2.2 using 
log(SSE) < -7 as termination criterion with the first 25 points. 
a Regressor: A: all variables used as regressors and subsequently constrained; B: use of “union” variables as 
regressors (see Chapter 2); C: fully informed selection of regressors (see Chapter 2). b time (secs) needed to 
converge to the solution with log(SSE)<-7. c *: convergence to the true solution; **: convergence to 
different solution; ***: no convergence. d time after running 1,000,000 iterations. 

 Regressora i gi1 gi2 gi3 gi4 i hi1 hi2 hi3 hi4 log(SSE) Timeb Notec 

 A  100.05 -0.00 -0.01 -0.05 0.02 96.72 0.05 0.01 -0.00 -0.02 -1.44 0.55 *** 

X1 B 12.03 -0.00 0 -0.79 0 10.05 0.50 0 0.00 0 -6.93 3.73 * 

 C 12.03 0 0 -0.79 0 10.05 0.50 0 0 0 -6.92 21.53 * 

 A  73.18 4.92 -4.89 6.94 0.80 1.27 0.53 0.47 1.28 -0.37 1.96 0.03 *** 

X2 B 8.0 0.50 0.00 0 0 3.01 -0.00 0.75 0 0 -7.01 0.72 * 

 C 8.01 0.50 0 0 0 3.01 0 0.75 0 0 -7.00 36.49 * 

 A  3.00 0.00 0.75 -0.00 -0.00 5.00 -0.00 0.00 0.50 0.20 -7.06 0.08 * 

X3 B 3.02 0 0.75 -0.00 -0.00 5.00 0 -0.00 0.49 0.120 -6.3 0.19 * 

 C 3.03 0 0.74 0 0 5.00 0 0 0.49 0.19 -7.00 30.53 * 

 A  97.33 0.01 0.00 -0.00 0.00 100.00 -0.00 -0.00 0.00 0.02 -3.87 6.38 *** 

X4 B 98.49 0.00 0 0 0.00 100.00 -0.00 0 0 0.01 -6.19 196.98 *** 

 C 2.01 0.50 0 0 0 5.97 0 0 0 0.79 -6.94 71.56 * 
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A.2 Numerical characterization of AR’s basin of attraction for different datasets  

Any analytical characterization of the convergence of a nonlinear search 

algorithm for dynamical models is a very demanding task. Even for the Newton 

algorithm, which has been used and analyzed by generations of researchers in 

mathematics, computer science, and various application fields, convergence can be 

extremely complex and essentially impossible to predict. As an example, Epureanu and 

Greenside (Epureanu and Greenside, 1998), as well as numerous original papers and 

websites, review the basins of attraction for this algorithm, which even in really simple 

cases of algebraic functions can consist of very complicated fractals. The same is true for 

every other nonlinear search algorithm, including Levenberg-Marquardt, genetic 

algorithms, and simulated annealing, where it is close to impossible to predict with 

reliability whether a search will succeed in finding the true solution. 

Given this complexity and the long history of the Newton algorithm and other 

search algorithms, it is not likely that one will be able to develop crisp and general 

theorems characterizing the convergence behavior of our new algorithm. Indeed, it seems 

not possible with present mathematical means to characterize the convergence features of 

our proposed algorithm in generality. As the next best alternative, I have therefore chosen 

to pursue the topic with a comprehensive computational analysis (comprising with over 

1,000,000 alternative regressions) of two examples (Kikuchi et al., 2003; Voit and 

Almeida, 2004), which have become something like unofficial case studies for 

comparisons of algorithms in the field. In addition to the discussions in the Chapter 2, I 

describe here the effects of using different datasets from the same system, which are 

characterized by different initial values of the dependent variables. It was recently shown  

(Schwacke and Voit, 2005) with “time-dependent sensitivities” how initial values affect 

the dynamics of trajectories.  The analysis here illuminates a related issue, but from a 

different angle. 
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 In order to demonstrate the effects of initial conditions on convergence, I 

investigated in great detail dataset 1 of system in Figure 2, with initial conditions X1(t0) = 

Int1 = 1.4, X2(t0) = Int2 = 2.7, X3(t0) = Int3 = 1.2, and X4(t0) = Int4 = 0.4. To allow for a 

two-dimensional representation, I fixed Int3 and Int4 and changed Int1 and Int2 

(essentially exhaustively) in different combinations. Figures A.1, A.3 and A.5 represent 

the 2-D “dataset convergence maps” of using all variables as regressors, “union” 

variables as regressors, and variables that are known to appear in each term as regressors, 

respectively (as described in Chapter 2). Each map consists of about 160,000 alternating 

regression analyses, where each dot represents a dataset. The color of the dot codes for 

the number of iterations needed to converge to the right solution, starting with the same 

initial guesses of i and hij that I used as example in the paper. The color scales are the 

same in three figures. 

 The main result is that the “convergence maps” in Figures A.1, A.3 and A.5 are 

very complicated. They do not seem to be fractal as in the Newton case, but in some 

sense even more complicated by not revealing obvious patterns. Striped areas represent 

domains in the space where the logarithm of some slope minus one power-law term is not 

defined, as described in detail in the paper.  In a nutshell, using a dataset from within 

these areas, and again starting with the initial guess of i and hij, the expressions in steps 

{5} and {9} of the algorithm become negative, thereby disallowing the necessary 

logarithmic transformation. Shaded areas represent no-convergence areas. When using 

datasets from within these areas, the value of i (or i) typically increases continuously 

and without bound while some or all gij (or hij) gradually approach zero; in some other 

cases gij and the corresponding hij increase (or decrease) in a parallel manner. These 

situations seem to indicate low information content of the dataset. 
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Figure A.1. Pattern of convergence: Use of all variables as regressors.  
See Chapter 2 for general explanations. 
 

 
Figure A.2. Close views of Figure A.1.  
(a) Close-up of Figure A.1 ; (b) Close-up of Figure A.1 . 

 

The satellite figures around the central plots in Figures A.1, A.3, and A.5 

represent the convergence maps of particular datasets. These plots show the effects of 

changing the start guesses (i and hij) used in the alternating regression, given the 
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particular dataset indicated by a number. Figure A.2 represents close-ups of figures 

identified as  and  in Figure A.1. In these cases, the parameter values are oscillating 

near the true solutions.  Such two-cycle oscillations are not unusual in iterative searches. 

The changes in parameter values within the non-convergence (shaded) areas are similar 

in Figures A.1, A.3, and A.5. One representative example is shown in Figure A.3 . 

Figure A.1 has the largest “problem” areas. However, outside these areas 

convergence is very fast.  Intriguingly, the problem areas are substantially reduced in size 

when one uses fewer variables as regressors (i.e., if the degrees of freedom are 

decreased). For instance, Figure A.5 does not even have a “no-convergence” area.  

Interestingly, and not yet fully explained, the convergence speed in these cases is usually 

much slower than in Figures A.1 and A.3. 

 

  
Figure A.3. Pattern of convergence: Use of the “union” of variables as regressors. 
See Chapter 2 for general explanations. 
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Figure A.4. Close views of Figure A.3.  
(a) Close-up of Figure A.3 ; (b) Close-up of Figure A.3 . 
 
 

 
Figure A.5. Pattern of convergence: Use of variables that are known to appear in each term as 
regressors.  
See Chapter 2 for general explanations. 
 

The graphs in Figures A.1, A.3, and A.5 provide strong indication that it will be 

very difficult to determine the convergence areas analytically, especially when more 
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variables then necessary are used as regressors. Even for some points very close to each 

other, their convergence properties could be entirely different (see Figure A.5 (a)): One 

point may lead to convergence to the right solution, while “neighbors” may not converge 

or lead to negative arguments in the logarithmic transformations in steps {5} or {9} in 

Chapter 2 (Section 2.2.3.1). In contrast to highly symmetric fractal pictures often 

associated with the Newton method, the basin of attraction here is complicated and does 

not suggest an intuitive pattern. 

So far I only varied the values of Int1 and Int2, in order to facilitate a graphical 

representation. The question then becomes how changing Int1, Int2, Int3, and Int4 

simultaneously would affect convergence. Because of the complexity of the situation one 

can only show select results of how the initial conditions affect the number of iterations 

needed when one uses as regressors those variables that are known to appear in each 

term. 

Figure A.6 shows some results of partial least square regression (PLSR), 

elucidating this situation. In this case, Int1, Int2 and Int3 are statistically significant 

(striped areas) in predicting the number of iterations needed. Int1 and Int2 contribute 

negatively to convergence speed, while Int3 significantly increases the number of 

iterations needed; changing Int4 has no significant effect. These results have to be 

considered with caution, because they are highly dependent not only on the initial values, 

but also on the error threshold and other factors. A more comprehensive study, including 

all contributing factors will be needed. 

Finally, I designed a multiple-level full-factorial experiment to identify which 

design variable (initial condition) influences response (number of iterations needed) 

significantly and which not. Table A.5 shows that seven effects are found to be 

significant, four of them are confounded interactions. Again, these results have to be 

considered with caution. A more comprehensive study, including all contributing factors 

will be needed. 
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Figure A.6. Results of the partial least squares (PLS) analysis.  
The result shows the influence of initial values of variables X1-X4 on convergence speed. Unscrambler® 
software was used. 
 
 
Table A.5. Results of an ANOVA characterizing the influence of initial values of variables X1-X4 on 
convergence speed. Unscrambler® software was used.  

 SS DF MS F-ratio p-value 
Summary      
Model 4.820e+12 170 2.836e+10 6.444 0.0000 
Error 4.950e+12 1125 4.400e+09   
Adjusted Total 9.771e+12 1295 7.545e+09   
Variable      
Int1 5.840e+10 5 1.168e+10 2.654 0.0215 
Int2 3.924e+11 5 7.847e+10 17.834 0.0000 
Int3 1.854e+12 5 3.708e+11 84.260 0.0000 
Int4 3.248e+10 5 6.497e+09 1.476 0.1947 
(Int1)(Int2) 6.184e+11 25 2.474e+10 5.622 0.0000 
(Int1)(Int3) 2.746e+11 25 1.098e+10 2.496 0.0001 
(Int1)(Int4) 1.396e+11 25 5.585e+09 1.269 0.1695 
(Int2)(Int3) 1.072e+12 25 4.287e+10 9.742 0.0000 
(Int2)(Int4) 1.436e+11 25 5.744e+09 1.305 0.1441 
(Int3)(Int4) 2.355e+11 25 9.419e+09 2.140 0.0009 

  
Summarizing all results of Chapter 2 and Appendix A, it is very difficult to 

determine precise conditions of convergence, especially if a system has a high degree of 

freedom. 
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APPENDIX B  

ADDITIONAL DOCUMENTATION OF PARAMETER 

ESTIMATION USING EIGENVECTOR OPTIMIZATION IN  

S-SYSTEMS 

 

B.1 Numeric experiments 

In this appendix, we present some results obtained using the EO algorithm. Two 

sets of experiments were performed with the systems presented in the main manuscript, 

namely the 4-dimensional system (Eq. (4.36)) and the 5-dimensional system (Eq. (4.37)). 

In order to test the robustness of the algorithm, we also performed experiments in a 10-

dimensional system 
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B.1.1 Initial conditions 

To perform the experiments, different initial conditions for the system variables 

were chosen (Table B.1 and B.2) to generate time series by numerical integration. For 

each of these conditions, 10 runs were performed for each system’s variables. In all result 
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tables, the sums of squared errors in relation with the decoupled and numerically 

integrated system are presented as Error1 and Error2 respectively. All data sets were 

generated with the software PLAS (Ferreira, 2000; Voit, 2000a). 

 
Table B.1. Initial conditions for integration of the 4-dimensional system 

Dataset X1(t0) X2(t0) X3(t0) X4(t0) 
1 1.0 1.0 1.0 1.0 
2 1.0 3.0 1.3 1.3 
3 1.5 0.5 0.5 1.5 

 
Table B.2. Initial conditions for integration of the 5-dimensional system 

Dataset X1(t0) X2(t0) X3(t0) X4(t0) X5(t0) 
1 0.10 0.70 0.70 0.16 0.18 
2 0.70 0.12 0.14 0.16 0.18 
3 0.70 0.70 0.14 0.16 0.70 

 

B.1.2 Noise-free datasets 

4-Dimensional system results – noise-free time series 

Tables B.3-C.6 show the parameters found with the proposed algorithm for the 4-

dimensional system (Eq. (4.36)) using the first set of initial values of the Table B.1. The 

time series used in this case study for all datasets were obtained by numerical integration 

of the 4-dimensional system in the interval [0,10] with 0.1 sampling interval. 

 
Table B.3. Result of the 10 runs for the variable X1 of the 4-dimensional system with beta initial 
guesses randomly distributed in the range [1, 12]. 

Run i gi1 gi2 gi3 gi4 i hi1 hi2 hi3 hi4 Error1 Error2 

1 12.00 0.00 0.00 -0.80 0.00 10.00 0.50 0.00 0.00 0.00 1.75483E-20 1.33873E-05 

2 12.00 0.00 0.00 -0.80 0.00 10.00 0.50 0.00 0.00 0.00 1.71974E-19 1.21796E-05 

3 12.00 0.00 0.00 -0.80 0.00 10.00 0.50 0.00 0.00 0.00 5.68827E-19 1.21338E-05 

4 12.00 0.00 0.00 -0.80 0.00 10.00 0.50 0.00 0.00 0.00 1.71382E-19 1.31119E-05 

5 12.00 0.00 0.00 -0.80 0.00 10.00 0.50 0.00 0.00 0.00 9.24261E-19 1.46669E-05 

6 12.00 0.00 0.00 -0.80 0.00 10.00 0.50 0.00 0.00 0.00 4.38633E-19 1.22694E-05 

7 12.00 0.00 0.00 -0.80 0.00 10.00 0.50 0.00 0.00 0.00 5.29743E-19 1.3364E-05 

8 12.00 0.00 0.00 -0.80 0.00 10.00 0.50 0.00 0.00 0.00 3.03162E-20 1.32749E-05 

9 12.00 0.00 0.00 -0.80 0.00 10.00 0.50 0.00 0.00 0.00 6.26499E-19 1.3495E-05 

10 12.00 0.00 0.00 -0.80 0.00 10.00 0.50 0.00 0.00 0.00 1.62522E-20 1.21132E-05 
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Table B.4. Result of the 10 runs for the variable X2 of the 4-dimensional system with beta initial 
guesses randomly distributed in the range [1, 12].  

Run i gi1 gi2 gi3 gi4 i hi1 hi2 hi3 hi4 Error1 Error2 

1 8.00 0.50 0.00 0.00 0.00 3.00 0.00 0.75 0.00 0.00 4.73294E-20 9.0079E-05 

2 8.00 0.50 0.00 0.00 0.00 3.00 0.00 0.75 0.00 0.00 1.94596E-19 8.7003E-05 

3 8.00 0.50 0.00 0.00 0.00 3.00 0.00 0.75 0.00 0.00 2.42293E-18 8.6766E-05 

4 14.10 0.35 0.19 -0.03 0.02 9.10 0.11 0.53 -0.03 0.02 3.74444E-05 0.00010221 

5 16.18 0.33 0.21 -0.02 0.02 11.18 0.13 0.50 -0.03 0.02 4.24392E-05 0.00010673 

6 8.00 0.50 0.00 0.00 0.00 3.00 0.00 0.75 0.00 0.00 2.44827E-20 8.7397E-05 

7 16.47 0.33 0.22 -0.02 0.02 11.47 0.14 0.50 -0.02 0.02 4.62284E-05 0.00010031 

8 13.40 0.36 0.18 -0.01 0.01 8.40 0.12 0.54 -0.01 0.02 3.76855E-05 9.9757E-05 

9 15.86 0.33 0.21 -0.02 0.02 10.86 0.13 0.51 -0.02 0.02 4.29122E-05 0.00010555 

10 8.00 0.50 0.00 0.00 0.00 3.00 0.00 0.75 0.00 0.00 5.2642E-19 8.6676E-05 

 

Table B.5. Result of the 10 runs for the variable X3 of the 4-dimensional system with beta initial 
guesses randomly distributed in the range [1, 12].  

Run i gi1 gi2 gi3 gi4 i hi1 hi2 hi3 hi4 Error1 Error2 

1 3.00 0.00 0.75 0.00 0.00 5.00 0.00 0.00 0.50 0.20 2.43701E-18 7.6974E-05 

2 8.63 0.02 0.53 0.19 0.07 10.63 0.03 0.22 0.40 0.15 2.20633E-06 7.4771E-05 

3 10.00 0.02 0.51 0.21 0.07 12.00 0.03 0.24 0.39 0.14 2.44862E-06 7.467E-05 

4 9.99 0.02 0.51 0.21 0.07 11.99 0.03 0.24 0.39 0.14 2.42734E-06 8.1619E-05 

5 3.00 0.00 0.75 0.00 0.00 5.00 0.00 0.00 0.50 0.20 1.06429E-18 8.7564E-05 

6 7.74 0.02 0.54 0.18 0.06 9.74 0.03 0.21 0.41 0.15 2.06481E-06 7.5389E-05 

7 8.17 0.02 0.53 0.18 0.06 10.17 0.03 0.21 0.40 0.15 2.1591E-06 8.2248E-05 

8 7.28 0.02 0.55 0.17 0.06 9.28 0.02 0.20 0.41 0.15 1.92141E-06 8.0877E-05 

9 10.00 0.02 0.51 0.21 0.07 12.00 0.03 0.24 0.39 0.14 2.47521E-06 8.7686E-05 

10 10.00 0.02 0.51 0.21 0.07 12.00 0.03 0.24 0.39 0.14 2.41783E-06 7.4469E-05 

 
Table B.6. Result of the 10 runs for the variable X4 of the 4-dimensional system with beta initial 
guesses randomly distributed in the range [1, 12]. 

Run i gi1 gi2 gi3 gi4 i hi1 hi2 hi3 hi4 Error1 Error2 

1 8.00 0.36 -0.04 0.06 0.26 12.00 0.18 -0.05 0.06 0.56 8.19133E-08 1.3953E-06 

2 8.00 0.36 -0.04 0.06 0.26 12.00 0.18 -0.05 0.06 0.56 8.10149E-08 1.4304E-06 

3 8.00 0.36 -0.04 0.06 0.26 12.00 0.18 -0.05 0.06 0.56 8.16504E-08 1.4308E-06 

4 8.00 0.36 -0.04 0.06 0.26 12.00 0.18 -0.04 0.06 0.56 7.26348E-08 1.4368E-06 

5 2.00 0.50 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.80 1.14483E-19 1.3818E-06 

6 8.00 0.36 -0.04 0.06 0.26 12.00 0.18 -0.05 0.06 0.56 7.88685E-08 1.4308E-06 

7 2.00 0.50 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.80 1.97709E-19 1.3985E-06 

8 7.65 0.37 -0.04 0.06 0.26 11.65 0.18 -0.04 0.06 0.56 8.21441E-08 1.4234E-06 

9 7.83 0.36 -0.04 0.06 0.26 11.83 0.18 -0.04 0.06 0.56 7.9069E-08 1.4524E-06 

10 8.00 0.36 -0.04 0.06 0.26 12.00 0.18 -0.05 0.06 0.56 8.28791E-08 1.4294E-06 
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5-Dimensional system results – noise-free time series 

Tables B.7-B.10 show the parameters found with the proposed algorithm for the 

5-dimensional system (Eq. (4.37)) using the first set of initial values of the Table B.2. 

The time series used in this case study were obtained by numerical integration of the 5-

dimensional system in the interval [0,5] with 0.1 sampling interval. 

 
Table B.7. Result of the 10 runs for the variable X1 of the 5-dimensional system with beta initial 
guesses uniformly distributed in the range [1, 10]. 

Run i gi1 gi2 gi3 gi4 gi5 i hi1 hi2 hi3 hi4 hi5 Error1 Error2 

1 5.00 0.00 0.00 1.00 0.00 -1.00 10.00 2.00 0.00 0.00 0.00 0.00 1.22343E-21 7.99402E-21 

2 5.00 0.00 0.00 1.00 0.00 -1.00 10.00 2.00 0.00 0.00 0.00 0.00 1.32077E-21 4.59591E-21 

3 5.00 0.00 0.00 1.00 0.00 -1.00 10.00 2.00 0.00 0.00 0.00 0.00 1.32077E-21 3.6282E-21 

4 5.00 0.00 0.00 1.00 0.00 -1.00 10.00 2.00 0.00 0.00 0.00 0.00 1.32077E-21 4.03837E-21 

5 5.00 0.00 0.00 1.00 0.00 -1.00 10.00 2.00 0.00 0.00 0.00 0.00 1.32077E-21 2.72773E-21 

6 5.00 0.00 0.00 1.00 0.00 -1.00 10.00 2.00 0.00 0.00 0.00 0.00 5.15785E-22 4.19796E-21 

7 5.00 0.00 0.00 1.00 0.00 -1.00 10.00 2.00 0.00 0.00 0.00 0.00 1.05374E-20 5.19914E-21 

8 5.00 0.00 0.00 1.00 0.00 -1.00 10.00 2.00 0.00 0.00 0.00 0.00 2.22619E-21 1.58118E-20 

9 5.00 0.00 0.00 1.00 0.00 -1.00 10.00 2.00 0.00 0.00 0.00 0.00 6.3629E-22 3.98716E-07 

10 5.00 0.00 0.00 1.00 0.00 -1.00 10.00 2.00 0.00 0.00 0.00 0.00 1.83537E-21 5.99782E-21 

 
 
Table B.8. Result of the 10 runs for the variable X2 of the 5-dimensional system with beta initial 
guesses uniformly distributed in the range [1, 10]. 

Run i gi1 gi2 gi3 gi4 gi5 i hi1 hi2 hi3 hi4 hi5 Error1 Error2 

1 10.00 2.00 0.00 0.00 0.00 0.00 10.00 0.00 2.00 0.00 0.00 0.00 1.58004E-18 1.26958E-20 

2 10.00 2.00 0.00 0.00 0.00 0.00 10.00 0.00 2.00 0.00 0.00 0.00 6.21989E-19 5.93212E-21 

3 10.00 2.00 0.00 0.00 0.00 0.00 10.00 0.00 2.00 0.00 0.00 0.00 2.40218E-18 1.14226E-20 

4 10.00 2.00 0.00 0.00 0.00 0.00 10.00 0.00 2.00 0.00 0.00 0.00 3.48423E-18 1.03853E-20 

5 10.00 2.00 0.00 0.00 0.00 0.00 10.00 0.00 2.00 0.00 0.00 0.00 1.31001E-18 5.43993E-21 

6 10.00 2.00 0.00 0.00 0.00 0.00 10.00 0.00 2.00 0.00 0.00 0.00 1.31001E-18 9.8609E-21 

7 10.00 2.00 0.00 0.00 0.00 0.00 10.00 0.00 2.00 0.00 0.00 0.00 1.31001E-18 7.29945E-21 

8 10.00 2.00 0.00 0.00 0.00 0.00 10.00 0.00 2.00 0.00 0.00 0.00 6.02476E-19 8.94865E-21 

9 10.00 2.00 0.00 0.00 0.00 0.00 10.00 0.00 2.00 0.00 0.00 0.00 3.64807E-18 1.20049E-07 

10 10.00 2.00 0.00 0.00 0.00 0.00 10.00 0.00 2.00 0.00 0.00 0.00 4.91918E-18 3.01878E-20 
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Table B.9. Result of the 10 runs for the variable X3 of the 5-dimensional system with beta initial 
guesses uniformly distributed in the range [1, 10]. 

Run i gi1 gi2 gi3 gi4 gi5 i hi1 hi2 hi3 hi4 hi5 Error1 Error2 

1 10.00 0.00 -1.00 0.00 0.00 0.00 10.00 0.00 -1.00 2.00 0.00 0.00 1.28105E-20 2.16667E-22 

2 10.00 0.00 -1.00 0.00 0.00 0.00 10.00 0.00 -1.00 2.00 0.00 0.00 1.28105E-20 7.2618E-23 

3 10.00 0.00 -1.00 0.00 0.00 0.00 10.00 0.00 -1.00 2.00 0.00 0.00 1.28105E-20 2.00922E-22 

4 10.00 0.00 -1.00 0.00 0.00 0.00 10.00 0.00 -1.00 2.00 0.00 0.00 1.28105E-20 2.0588E-22 

5 10.00 0.00 -1.00 0.00 0.00 0.00 10.00 0.00 -1.00 2.00 0.00 0.00 1.28105E-20 1.62388E-22 

6 10.00 0.00 -1.00 0.00 0.00 0.00 10.00 0.00 -1.00 2.00 0.00 0.00 1.28105E-20 1.64324E-22 

7 10.00 0.00 -1.00 0.00 0.00 0.00 10.00 0.00 -1.00 2.00 0.00 0.00 1.03057E-19 1.04365E-22 

8 10.00 0.00 -1.00 0.00 0.00 0.00 10.00 0.00 -1.00 2.00 0.00 0.00 3.29855E-21 3.31941E-22 

9 10.00 0.00 -1.00 0.00 0.00 0.00 10.00 0.00 -1.00 2.00 0.00 0.00 1.82851E-21 1.44575E-09 

10 10.00 0.00 -1.00 0.00 0.00 0.00 10.00 0.00 -1.00 2.00 0.00 0.00 2.01525E-19 2.13752E-21 

 
 
Table B.10. Result of the 10 runs for the variable X4 of the 5-dimensional system with beta initial 
guesses uniformly distributed in the range [1, 10]. 

Run i gi1 gi2 gi3 gi4 gi5 i hi1 hi2 hi3 hi4 hi5 Error1 Error2 

1 8.00 0.00 0.00 2.00 0.00 -1.00 10.00 0.00 0.00 0.00 2.00 0.00 2.9075E-21 2.58337E-21 

2 8.00 0.00 0.00 2.00 0.00 -1.00 10.00 0.00 0.00 0.00 2.00 0.00 8.9608E-22 4.95432E-21 

3 8.00 0.00 0.00 2.00 0.00 -1.00 10.00 0.00 0.00 0.00 2.00 0.00 8.1267E-22 4.23046E-21 

4 8.00 0.00 0.00 2.00 0.00 -1.00 10.00 0.00 0.00 0.00 2.00 0.00 8.1267E-22 4.83447E-21 

5 8.00 0.00 0.00 2.00 0.00 -1.00 10.00 0.00 0.00 0.00 2.00 0.00 8.1267E-22 5.07495E-21 

6 8.00 0.00 0.00 2.00 0.00 -1.00 10.00 0.00 0.00 0.00 2.00 0.00 8.1267E-22 6.43373E-21 

7 8.00 0.00 0.00 2.00 0.00 -1.00 10.00 0.00 0.00 0.00 2.00 0.00 7.7966E-22 2.41294E-21 

8 8.00 0.00 0.00 2.00 0.00 -1.00 10.00 0.00 0.00 0.00 2.00 0.00 5.8343E-20 2.24091E-20 

9 8.00 0.00 0.00 2.00 0.00 -1.00 10.00 0.00 0.00 0.00 2.00 0.00 1.5997E-21 6.49168E-07 

10 8.00 0.00 0.00 2.00 0.00 -1.00 10.00 0.00 0.00 0.00 2.00 0.00 3.5062E-21 8.42201E-21 

 
 
Table B.11. Result of the 10 runs for the variable X5 of the 5-dimensional system with beta initial 
guesses uniformly distributed in the range [1, 10]. 

Run i gi1 gi2 gi3 gi4 gi5 i hi1 hi2 hi3 hi4 hi5 Error1 Error2 

1 10.00 0.00 0.00 0.00 2.00 0.00 10.00 0.00 0.00 0.00 0.00 2.00 1.0044E-18 1.64228E-21 

2 10.00 0.00 0.00 0.00 2.00 0.00 10.00 0.00 0.00 0.00 0.00 2.00 1.0044E-18 2.32214E-21 

3 10.00 0.00 0.00 0.00 2.00 0.00 10.00 0.00 0.00 0.00 0.00 2.00 1.0044E-18 2.16712E-21 

4 10.00 0.00 0.00 0.00 2.00 0.00 10.00 0.00 0.00 0.00 0.00 2.00 1.0044E-18 2.7372E-21 

5 10.00 0.00 0.00 0.00 2.00 0.00 10.00 0.00 0.00 0.00 0.00 2.00 5.1333E-19 2.84682E-21 

6 10.00 0.00 0.00 0.00 2.00 0.00 10.00 0.00 0.00 0.00 0.00 2.00 6.2861E-19 2.81858E-21 

7 10.00 0.00 0.00 0.00 2.00 0.00 10.00 0.00 0.00 0.00 0.00 2.00 3.4288E-19 1.1659E-21 

8 10.00 0.00 0.00 0.00 2.00 0.00 10.00 0.00 0.00 0.00 0.00 2.00 3.9076E-20 1.14064E-20 

9 9.15 -0.60 0.07 -0.29 2.59 0.04 10.96 0.56 -0.23 -1.00 -0.51 2.00 0.00011205 3.68627E-07 

10 10.00 0.00 0.00 0.00 2.00 0.00 10.00 0.00 0.00 0.00 0.00 2.00 6.7383E-23 3.01361E-21 
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10-Dimensional system results – noise-free data 
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Figure B.1. Simulation result of the 10-dimensional model obtained using EO algorithm.  
The dots represent the synthesis time series and the lines represent the fitting. 
 

B.1.3 Noisy time series 

4-Dimensional system results 

Tables B.12-B.15 show the parameters found with the proposed algorithm for the 

4-dimensional system (Eq. (4.36)) using noisy time series. 

 
Table B.12. Result of the 10 runs for the variable X1 of the 4-dimensional system with beta initial 
guesses randomly distributed in the range [1, 12]. 

Run i gi1 gi2 gi3 gi4 i hi1 hi2 hi3 hi4 Error1 Error2 

1 10.38 0.53 1.07 -0.61 -0.62 9.49 0.61 1.11 -0.53 -0.67 0.4762953 0.3589214 

2 10.04 0.53 1.07 -0.60 -0.62 9.15 0.61 1.10 -0.52 -0.66 0.4754111 0.3621649 

3 7.49 0.53 1.05 -0.43 -0.44 6.50 0.66 1.10 -0.32 -0.51 0.4120744 0.212672 

4 7.27 0.52 1.02 -0.44 -0.43 6.27 0.65 1.08 -0.31 -0.50 0.4005951 0.2729454 

5 6.79 0.55 0.97 -0.49 -0.56 5.83 0.69 1.03 -0.36 -0.63 0.4618373 0.321666 

6 3.80 0.59 0.61 -0.10 -0.32 2.57 0.96 0.76 0.28 -0.49 0.4082135 0.1781068 

7 10.97 0.52 1.08 -0.62 -0.63 10.08 0.60 1.12 -0.55 -0.67 0.477732 0.328733 

8 9.85 0.53 1.06 -0.60 -0.62 8.95 0.61 1.10 -0.52 -0.66 0.474871 0.244898 

9 10.02 0.53 1.07 -0.60 -0.62 9.12 0.61 1.10 -0.52 -0.66 0.475339 0.348363 

10 9.24 0.53 1.05 -0.58 -0.61 8.33 0.62 1.09 -0.49 -0.66 0.473011 0.325423 
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Table B.13. Result of the 10 runs for the variable X2 of the 4-dimensional system with beta initial 
guesses randomly distributed in the range [1, 12]. 

Run i gi1 gi2 gi3 gi4 i hi1 hi2 hi3 hi4 Error1 Error2 

1 16.87 0.09 0.19 0.00 -0.12 11.77 0.12 0.32 0.17 -0.20 0.4738779 2.5140256 

2 16.03 0.09 0.18 -0.01 -0.12 10.95 0.12 0.33 0.17 -0.21 0.4708193 3.0556242 

3 7.68 -0.16 0.39 -0.09 0.28 2.35 0.00 0.78 0.55 0.00 0.5107566 2.1002638 

4 12.04 0.06 0.20 -0.03 -0.09 6.96 0.12 0.39 0.24 -0.23 0.4966603 1.6639319 

5 9.20 0.07 0.25 -0.10 -0.04 4.27 0.13 0.54 0.24 -0.22 0.4698792 2.4678547 

6 7.67 -0.06 0.42 -0.11 0.06 2.83 0.11 0.74 0.34 -0.23 0.5198797 1.1053894 

7 10.05 0.13 0.25 -0.03 -0.08 5.12 0.19 0.51 0.25 -0.24 0.481542 2.284232 

8 8.07 -0.13 0.55 -0.09 0.08 3.30 0.06 0.82 0.33 -0.20 0.5677575 1.7613932 

9 17.05 0.09 0.19 0.00 -0.12 11.95 0.12 0.32 0.17 -0.20 0.4746868 2.6943604 

10 13.51 0.16 0.16 0.03 -0.17 8.47 0.21 0.33 0.23 -0.29 0.4833689 1.7781254 

 
 
Table B.14. Result of the 10 runs for the variable X3 of the 4-dimensional system with beta initial 
guesses randomly distributed in the range [1, 12]. 

Run i gi1 gi2 gi3 gi4 i hi1 hi2 hi3 hi4 Error1 Error2 

1 5.84 0.40 0.50 0.33 -0.60 5.50 0.39 0.41 0.32 -0.66 0.2020232 4.0742276 

2 3.45 0.44 0.44 0.39 -0.57 3.09 0.41 0.28 0.36 -0.69 0.2055951 5.705558 

3 8.55 0.37 0.56 0.34 -0.62 8.21 0.36 0.51 0.33 -0.66 0.2160534 2.6206851 

4 4.23 0.10 0.70 0.37 -0.18 3.96 0.07 0.53 0.39 -0.26 0.2222057 2.2206794 

5 4.67 0.41 0.48 0.35 -0.59 4.32 0.40 0.37 0.34 -0.67 0.2030091 4.7700925 

6 9.33 0.37 0.56 0.33 -0.62 8.99 0.36 0.51 0.33 -0.66 0.2156485 0.730108 

7 4.84 0.41 0.48 0.35 -0.59 4.49 0.39 0.37 0.33 -0.67 0.2028097 4.8496191 

8 10.35 0.36 0.57 0.33 -0.62 10.01 0.36 0.52 0.33 -0.65 0.2152312 3.1622848 

9 4.46 0.06 0.63 0.10 -0.22 4.21 0.00 0.44 0.06 -0.31 0.2010062 4.7682708 

10 4.58 0.02 0.85 0.01 -0.42 4.29 0.00 0.74 0.00 -0.49 0.2204152 2.301361 

 
 
Table B.15. Result of the 10 runs for the variable X4 of the 4-dimensional system with beta initial 
guesses randomly distributed in the range [1, 12]. 

Run i gi1 gi2 gi3 gi4 i hi1 hi2 hi3 hi4 Error1 Error2 

1 5.48 0.85 0.47 -0.95 -0.71 6.56 0.72 0.50 -1.00 -0.56 0.0291203 0.4771414 

2 5.49 0.86 0.49 -0.95 -0.69 6.57 0.73 0.53 -1.00 -0.55 0.0291989 0.4827924 

3 10.74 0.76 0.63 -0.97 -0.54 11.81 0.69 0.65 -1.00 -0.46 0.027442 0.4236371 

4 6.56 0.81 0.59 -0.95 -0.58 7.63 0.69 0.62 -1.00 -0.46 0.0275361 0.4594413 

5 9.68 0.50 0.48 -0.96 -0.43 10.92 0.42 0.50 -1.00 -0.33 0.0158422 0.44427 

6 10.16 0.44 0.84 -0.89 -0.34 11.30 0.36 0.86 -0.92 -0.26 0.0269737 0.3826479 

7 5.81 0.82 0.56 -0.95 -0.62 6.89 0.70 0.60 -1.00 -0.48 0.0278796 0.4574748 

8 6.35 0.81 0.58 -0.95 -0.59 7.42 0.69 0.62 -1.00 -0.46 0.0274093 0.4284966 

9 8.65 0.79 0.61 -0.96 -0.56 9.72 0.70 0.63 -1.00 -0.46 0.0274775 0.4720405 

10 7.91 0.79 0.60 -0.96 -0.56 8.98 0.70 0.63 -1.00 -0.46 0.0273709 0.4441718 
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B.2 Error surfaces  

In order to visually explore the results of the proposed algorithm and clarify the 

pattern of convergence, several error surfaces are presented in this section, all resulting 

from experiments with the 2- and 4-dimensional systems (Eqs. (4.35) and (4.36)). The 

surfaces were built with the same procedure described in Chapter 4 (Section 4.3.2).  

 

 
Figure B.2. Z-Y projection of the error surfaces shown in the Figure 4.4 of Chapter 4 obtained with 
noisy time series.  
The optimal point (labeled) is not conserved from the noise-free error surfaces, but it is essentially 
indistinguishable from local minimum.  
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Figure B.3. Error surfaces (for 1=10 and 1=12) of the state variable X1 of the 4-dimensional system.  
Only the kinetic orders h11 and h12 were screened (h13 and h14 were set to zero).   
 
 
 

 
 
Figure B.4. Error surfaces (for 2=2 and 2=3) of the state variable X2 of the 4-dimensional system.  
Only the kinetic orders h21 and h22 were screened (h23 and h24 were set to zero).   
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Figure B.5. Error surfaces (for 3=5 and 3=7) of the state variable X3 of the 4-dimensional system.  
Only the kinetic orders h33 and h34 were screened (h31 and h32 were set to zero). 
 
 

 
 
Figure B.6. Error surfaces (for 4=4 and 4=6) of the state variable X4 of the 4-dimensional system. 
Only the kinetic orders h43 and h44 were screened (h41 and h42 were set to zero). 
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B.3 Software availability 

The implementation of the algorithm described in this report is made publicly 

(GNU GPL) available with open source as Matlab m-code (MathWorks Inc.) at 

http://code.google.com/p/s-system-inference/. For the convenience of those without a 

MathWorks license we have also compiled the code as a stand-alone application made 

publicly available at the same site, or as a module ("Signal Extraction Toolbox") of the 

code distribution infrastructure of the Bioinformatics Station resource 

http://bioinformaticstation.org. A snapshot of the Graphical User Interface (GUI) is 

shown in Figure B.7. All computational results and graphics described in this report can 

be reproduced using this application. 

 

 
 
Figure B.7. Software application. 
Snapshot of the graphical user interface provided as a free stand-alone application. 
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