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SUMMARY 

 

The complex process of critically-sized load-bearing bone defect healing is poorly 

understood. The interplay between revascularization of the injured tissue and 

regeneration of a functional bone structure is critical to survival of the limb. The central 

goal for this dissertation is to establish a novel in vivo model of segmental bone defect 

repair and to assess the ability of tissue-engineered scaffolds using a growth factor co-

delivery strategy to heal these defects. 

Traditional assessment of large bone defect healing has relied entirely on 

radiography and histology/histomorphometry. The animal model designed in this thesis 

enables the investigator to use in vivo X-ray and quantitative micro-CT imaging of the 

defect to assess mineralized matrix deposition, and to easily free the defect from the 

stabilization device for mechanical testing of samples post-mortem. Additionally, a 

hindlimb vascular perfusion procedure was developed to facilitate micro-CT 

quantification of vascular structures within the defect. 

These methodologies were applied to assess functional bone repair resulting from 

co-delivery of osteogenic (BMP-2), chondrogenic (TGF-β3), and angiogenic (VEGF) 

growth factors. The dose-dependence effects of and interactions between these growth 

factors were assessed using micro-CT and mechanical testing methods. There was a dose-

dependent response to co-delivery of BMP-2/TGF-β3 in terms of mineralized matrix 

deposition and restoration of mechanical properties. An additive interaction was 

determined between the two growth factors.  
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Delivery of VEGF alone did not result in a dose-dependent beneficial effect on 

bone formation or revascularization of the defect. Modification of the implanted porous 

polymer structural scaffolds to contain a macroscopic cored center and 10% ceramic 

component enhanced revascularization of the defects. Co-delivery of VEGF with 

ΒΜΠ−2/TGF−β3 did not incur any benefit over delivery of only BMP-2/TGF-β3. 

In conclusion, this work has yielded a novel, reproducible and robust small animal 

model of osseous nonunion and quantified the ability of low dose sustained release 

growth factor co-delivery to enhance functional bone repair.  



 

1 

CHAPTER 1 

 

INTRODUCTION 

 

1.1 Motivation 

Localized bone loss due to trauma or disease is a significant cause for loss of 

patient quality of life and contributes to patient disability. In optimal situations, bone is 

recognized for its unique capability to regenerate without scar formation – given adequate 

vascularity, presence of vascular and osteoinductive growth factors, presence of 

osteoprogenitor cells, and mechanical stability. Of the roughly six million fractures that 

occur in the United States annually, 5-10% require clinical intervention in the form of a 

graft [BORRELLI 2003]. One must also account for other bone defects that require 

intervening therapy, such as those due to congenital malformations, disease, 

osteosarcoma, metabolic bone disorders, and soft tissue damage (spinal fusions).  

Although autografting (removal of morselized host tissue from a remote site – 

typically the iliac crest) is the gold standard treatment, this procedure is limited by lack of 

available donor material, an inability to obtain a structural graft, and considerable donor 

site morbidity. Thus, the allograft is the popular and facile solution to the problem of 

significant bone loss. Allografts are structural segments of bone that are removed from 

donor cadavers and then processed to devitalize the tissue and reduce the possibility for 

transfer of disease-causing agents. Despite their ready availability and ease of use, 

allografts are subject to a high rate of re-fracture within a relatively short time period (2 

years) post-engraftment [LUCARELLI 2005, WHEELER 2005, ITO 2005]. This re-
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fracture incidence is due in large part to a lack of graft integration into the remaining host 

bone [ENNEKING 2001, ITO 2005, WHEELER 2005]. Lack of porosity within the 

allograft inhibits revascularization and revitalization of the allograft tissue, resulting in a 

propensity to accumulate microdamage that may ultimately lead to catastrophic graft 

failure (25% clinical failure rate) or contribute to the 30-60% complication rate 

associated with allografts [LUCARELLI 2005, WHEELER 2005]. Complications 

frequently result in treatment of defect non-unions or delayed unions, often necessitating 

revision surgery and significantly impacting patient quality of life. 

In response to the shortcomings of the standard clinical treatments, a variety of 

experimental (tissue-engineered) strategies have been developed as potential treatments 

for large bone defects. In general, these strategies rely on a combination of a biological 

agent and a carrier for the agent. The biological agents are typically cells, bioactive 

extracellular matrix, growth factors, or gene delivery systems. The carrier materials may 

or may not have mechanical integrity, and may intrinsically carry bioactive factors, as is 

the case with active demineralized bone matrix (DBM). The driving hypothesis behind 

these treatment strategies is that augmenting the body’s natural healing processes will 

stimulate the surrounding tissue to produce viable bone within the framework of the 

defect.  

Three crucial factors in bone formation are the presence of osteoprogenitors, 

proper mechanical stimulation, and the availability of a proximal vascular supply. 

Osteoprogenitors may be delivered as part of the tissue engineering therapy or recruited 

from local reservoirs of these cells, such as the periosteum and bone marrow. Mechanical 

signals may take many forms. In osseous defect healing, the typical concern is provision 
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of adequate stability to the defect site to prevent atrophic nonunion. Although dynamic 

mechanical stimulation is known to be osteogenic at certain levels in healthy bone and at 

certain stages of bone development, too much mechanical freedom can be detrimental in 

cases of bone defect repair. Excessive micromotion in the fracture or defect site produces 

a situation in which healing does not progress beyond the formation of a soft tissue 

callus. This lack of mineralization may be partially due to disruption of vascular structure 

formation by micromotion. Bone formation is tightly linked to the availability of a 

vascular supply. Without close proximity to a blood supply (< 0.1 mm), osteocytes do not 

survive and new bone cannot form or existing bone remodel [SAADEH 2000]. Vascular 

invasion is critical for the conversion of cartilage to bone in endochondral ossification 

processes, including growth plate maturation and long bone healing, as well as for 

medullary fracture callus formation [CARLEVARO 2000, GERBER 1999]. Despite this 

knowledge of the critical relationship between the two tissue types, there are little data 

correlating the formation of mineralized tissue with the invasion or maturation of a 

vascular supply (angiogenesis and arteriogenesis, respectively) in fracture or defect 

models. 

One emerging strategy used in the treatment of bone defects is growth factor 

therapy. Use of BMP-2 on an absorbable collagen sponge has recently been approved by 

the FDA for use in spinal fusions. Further investigations are assessing the efficacy of this 

treatment in augmenting open tibial shaft fracture repair. The effects of growth factors on 

biological systems are varied, complex, and not completely characterized. However, the 

potency of growth factors such as BMP-2 and VEGF has inspired many pre-clinical 

investigations into their potential as agents for bone regeneration and targets for tumor 
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therapy. Although less widely known, TGF-β3 is under investigation as a treatment to 

reduce scarring in lacerations. Not only are the effects of growth factors important, but 

the delivery mechanism as well. Many of these proteins have a short active half-life, 

making the problem of sustained delivery difficult to address. Relying on a burst-release 

bolus dose of growth factors often requires that a large total amount of protein be 

delivered. This may be due to rapid diffusion of the protein away from the site of delivery 

and/or an inability to preserve the protein in its bioactive form. Delivery of growth factor 

that is exclusively tethered to the implant is not always beneficial, as there may be 

insufficient quantities of diffusible protein to stimulate adjacent cells to proliferate and 

migrate into the implant. In natural physiologic healing processes, a variety of 

biochemical cues act in concert. Exploiting natural interactions between two or more 

growth factors may more closely mimic the natural healing process and stimulate a 

greater response to the delivered bioactive molecules than independent delivery of any 

individual molecule would achieve. The effects of growth factor co-delivery, however, 

are largely unknown. One interesting potential application for growth factor co-delivery 

is the problem of regenerating vascularized bone in large osseous defects. 

 Characterization and modulation of vascular invasion and mineralized matrix 

formation has implications for the treatment of large or challenged osseous defects. 

Nonunion of bony defects may occur as a result of defect size, infection, micromotion, 

patient health, age, or co-morbidity with other diseases, and often results in loss of limb 

functionality. In these situations, clinical intervention is necessitated. Accelerating 

vascularized bony union using a tissue-engineering approach could provide a viable and 
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lasting treatment for a variety of bone defects, including challenged fractures, segmental 

defects, cranial-maxillofacial defects, and spinal fusions.  

 

1.2 Goal and Central Hypothesis 

The long-term goal of this work is to develop tissue engineering strategies to 

elevate and accelerate functional bone repair in patients with clinically challenging 

defects.  The overall objective of this thesis is to evaluate the effects of co-delivered 

growth factors on functional bone repair using a robust small animal bone defect model 

and quantitative evaluation of vascular ingrowth, bone formation, and functional 

integration. This objective will be addressed by establishing a critically-sized rat femoral 

defect model, quantifying mineralized tissues and vascular invasion within the defect 

sites, and examining the effects that delivery of scaffolds with osteogenic, 

chondroinductive, and angiogenic growth factors have on functional repair. The effects of 

scaffold macroarchitecture on mineralization and vascularization will be addressed as 

well.  

The central hypothesis is that by exploiting the interaction effects between growth 

factors, osseous repair tissue can be generated more quickly and with greater 

functionality than can be achieved using a single growth factor delivery at the same dose. 

Here, interactions between osteoinductive, chondroinductive, and angiogenic growth 

factors are investigated. 
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1.3 Specific Aims 

 The following three specific aims are outlined in order to test the central 

hypothesis: 

 

Specific Aim #1: Develop a critically-sized segmental femoral defect model in rats and 

test the ability of an oriented polymer scaffold to promote vascularized bone repair. 

 While the segmental femoral defect model itself is not novel, the development of 

a stable defect that is critically-sized due to the size of the defect rather than 

compounding factors such as micromotion is new. Stabilization hardware amenable to 

mechanical testing and radiography is also novel. Many groups have employed the 

segmental defect model, but the majority have used a sub-critical defect size, where 

reported spontaneous healing rates of untreated defects range from 10-50%. The fixation 

devices typically used to stabilize the femoral defects are simplistic and sometimes fail to 

provide support to the defect, resulting in collapse of the defect space. Additionally, the 

typical design involves a plate that directly abuts the defect, precluding tissue infiltration 

from that region of the implant periphery. Although perhaps more akin to clinical defect 

fixation, hardware that directly contacts the defect site may limit tissue interaction with 

the implant.  

A review of the literature regarding bone defects indicates that experimental 

treatments rely on a variety of scaffolds or delivery vehicles. One type is a ceramic or 

cement. Although one such ceramic, hydroxyapatite/tricalcium phosphate (HA/TCP) is 

naturally found in bone, the brittleness of such scaffolds frequently leads to fracture in 

vivo [BRUDER 1998 JBJS]. Ceramic or cement scaffolds are limited by a lack of 
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porosity as well as a lack of pore interconnectivity – two factors crucial to the invasion of 

new mineralized matrix and invading vascularity. The second type of scaffold is non-

structural. These scaffolds are typically hydrogels or absorbable collagen sponges, 

providing no mechanical integrity to the healing defect. One advantage of these scaffolds 

is that they are easily manipulated to conform to the defect site. These non-structural 

implants may provide biologically active factors, but lack the integrity needed to promote 

early weight bearing of the limb. The use of an absorbable polymeric scaffold with 

structural integrity has not been widely investigated for use in large load-bearing defect 

repair.  

Relying on a single scaffold type makes it difficult to achieve both structural 

integrity and controlled release of bioactive factors in a model of clinical repair. Use of a 

two-phase implant gives the researcher an opportunity to focus on both mechanical 

stability of the implant and the release of bioactive agents. In the interest of 

accomplishing both tasks, we have selected a composite system of a structural polymer 

scaffold and hydrogel. The polymer scaffold selected for use here is poly(L-lactide-co-

D,L-lactide) (PLDL) with an oriented macroporosity and random microporosity. It is 

hoped that the orientation of the longitudinal macropores would create channels to 

enhance the directionality of bone repair in the femoral defect model. The hydrogel 

chosen for co-delivery with the PLDL scaffold is alginate. It is hypothesized that the 

similarities in structure between alginate and heparin allows proteins with heparin 

binding domains to interact with alginate hydrogels, permitting sustained release of the 

molecules as the alginate matrix degrades. Use of a sustained-release system could 

potentially enable researchers to produce results similar to high-dose fast-release systems 



 8

while utilizing a lower total dose of protein. The work in this thesis evaluates the use of 

such a scaffold, including its ability to deliver biologic factors and promote healing of 

critically-sized segmental defects in varying geometries and compositions. 

The hypothesis is that an 8 mm femoral defect will not heal spontaneously in rats 

and that scaffold treatment will enhance mineralization within the defect site as compared 

to non-treatment of the defects but not restore full functionality. The outcomes of this 

Specific Aim I are discussed in Chapter 3. 

 

Specific Aim #2: Evaluate the ability of co-delivered TGF-β3 and BMP-2 to promote 

mineralization within the defect site. 

 Previous work by Simmons et al. has shown a synergistic interaction between 

TGF-β3 and BMP-2 in the presence of bone marrow stromal cells in a mouse ectopic 

model of osteogenesis. This treatment has not been tested in an orthotopic model 

[SIMMONS 2004]. Typical growth factor treatments have relied on high, 

supraphysiologic doses of growth factor to induce osteogenesis. This approach is often 

successful due to the sheer quantity of protein delivered. The use of dual growth factor 

delivery, particularly a therapy based on positive growth factor interactions, may have 

potential for clinical application in lowering the total dose of protein needed to achieve 

the same results. Optimization of growth factor delivery may enable investigators to more 

efficiently utilize the potential of bioactive factors.  

The hypothesis is that functional repair of segmental bone defects will be 

improved by co-delivery of TGF-β3 and BMP-2 in a dose-dependent manner, and that 
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the growth factors will interact to enhance the repair response. The outcomes of Specific 

Aim II are discussed in Chapter 4.  

  

Specific Aim #3: Test the effects of co-delivering angiogenic and osteogenic growth 

factors on early scaffold vascularization and subsequent segmental defect repair. 

 The processes of vascular invasion and mineralized matrix formation are tightly 

linked in all aspects of bone formation and repair (endochondral ossification, 

intramembranous ossification, fracture repair, osteocyte and osteoblast survival). Mature 

bony tissue is organized discretely around vascular structures. One of the frequent causes 

of atrophic nonunion is disruption of the developing vascular supply, either by excessive 

mechanical motion or disease. Recent literature publications indicate that the co-delivery 

of osteogenic and vascular-associated factors (such as mesenchymal stem cells and 

endothelial cells) interact to more rapidly and thoroughly heal bony defects [HUANG 

2005 JBMR, KAIGLER 2006]. 

The hypothesis is that delivery of VEGF will enhance vascular invasion into the 

defect site in a dose-dependent manner and that co-delivery of both angiogenic and 

osteogenic/chondrogenic growth factors will produce interaction effects that enhance the 

quantity and functionality of mineralized repair tissue within segmental defects as 

compared to delivery of osteogenic/chondrogenic growth factors alone. Secondarily, it is 

hypothesized that scaffold macroarchitecture will affect the quantity of mineral formed 

within the defect and the ability of the host body to vascularized the defect site. The 

outcomes of Specific Aim III are discussed in Chapter 5. 

 



 10

This work is innovative because of: the use of in vivo micro-CT to accomplish 

repeated sequential images of defects over time, the combined approach of quantifying 

bone and vasculature, the use of co-delivered growth factors in an orthotopic site, and the 

evaluation of the dose-dependent effects of these co-delivered growth factors on healing. 

Additionally, the development of a robust, reproducible small animal model compatible 

with quantitative imaging strategies both in vivo and in vitro is novel. 

 

1.4 Significance 

The limitations of traditional bone repair strategies have motivated the 

development and clinical application of tissue-engineered bone repair strategies. 

Primarily, these strategies have relied on the use of a singular protein (BMP-2) delivered 

in a non-structural, absorbable biological matrix (absorbable bovine collagen sponge). 

BMP-2-based therapies have been approved by the FDA for use only at high doses of 

protein (1.5 mg/ml) [SWIONTKOWSKI 2006, BURKUS 2002]. The development of a 

lower-dose growth-factor based strategy would potentially make this therapeutic method 

more accessible to large bone defect applications, while still employing a minimally 

involved process for preparation of the implant. Additionally, treatment of large defects 

would be benefit from the use of a delivery scaffold with structural integrity – this would 

create the potential for earlier weight-bearing and/or load-sharing between support or 

fixation device and the implant.  

One of the limitations of cell-based tissue-engineered therapies for bone 

regeneration is the lack of a viable nutrient supply to the interior of the construct. A 

vascular supply is essential to cell survival; formation, maintenance, and remodeling of 



 11

osseous tissue require the presence of a vascular supply. Vascularization must precede or 

coincide with formation of mineralized matrix in order to produce a viable tissue. This 

work seeks to develop a challenging critically-sized segmental bone defect model, to use 

this model to explore the relationship between angiogenesis and osteogenesis within the 

framework of tissue regeneration, and to investigate the ability of growth factor 

combinations to promote both angiogenesis and osteogenesis within the defect site 

thereby producing functional repair tissue.  

This work is significant because it quantifies these two processes in a challenging 

orthotopic model and promotes understanding of the necessary components to the 

generation of an efficacious tissue-engineered construct for osseous defect repair. It 

assesses the ability of sustained growth factor co-delivery to accelerate bone repair and 

revascularization of a critically-sized segmental defect over delivery of a scaffold alone. 

This project provides an improved knowledge base regarding the link between early 

vascularization and subsequent functional bone repair. This work has produced the 

following outcomes: 1) established a rigorous and reproducible small animal model 2) 

combined the animal model with quantitative measures for assessing functional repair of 

segmental bone defects 3) employed novel in vivo and in vitro imaging techniques 4) 

determined the interactions between and dose-dependent effects of co-delivering an 

osteoinductive and chondrogenic growth factor combination and 5) evaluated the 

vascular and osteogenic responses to delivery and co-delivery of an angiogenic growth 

factor alone and in combination with the osteogenic growth factor combination. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Bone Structure and Function 

Bone develops from three main lineages; the craniofacial skeleton develops from 

the neural crest, the axial skeleton derives itself from the sclerotome of the somite masses 

of the mesoderm (somite masses form in symmetrical pairs, arranged alongside the neural 

tube of the embryo, derived from the mesodermal tissue), and the appendicular skeleton 

is derived from the portion of the mesoderm that also contributes to formation of limb 

buds. Spinal patterning is determined by the regular arrangement of the somite masses. 

As the somite masses mature they produce sclerotomal cells, which migrate to surround 

the spinal cord, forming the bony vertebrae.  

There are two processes by which bone develops – endochondral ossification and 

intramembranous ossification. Endochondral ossification is the process by which long 

bones develop and grow. It is also the process by which simple fractures heal. Using long 

bone development as an example, a primary matrix of cartilage is laid down by 

chondrocytes in the general pattern of the limb. The diaphyseal region of the bone 

mineralizes, forming a primary ossification center. Secondary ossification centers form at 

either end of the long bone, and develop into growth plates.  

The endochondral ossification process in growth plates is patterned into several 

zones, representative of the overall process that occurs during fracture healing as well. 

First is the resting zone, where chondrocytes maintain normal morphology and are 
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relatively senescent. Second is the proliferative zone, where chondrocytes are 

proliferating and arranging themselves into columnar formations. This is followed by the 

pre-hypertrophic and then hypertrophic zones, in which chondrocytes grow in size and 

deposit a dense pericellular matrix. In the following zone, the chondrocytes die off and 

chondroclasts move in, disassembling the cartilaginous matrix to some extent. As the 

chondroclasts move in, vascular structures develop within the semi-cartilaginous zone, 

bringing osteoblasts into the tissue. Osteoblasts, or bone forming cells, then deposit 

mineralized matrix, resulting in the formation of calcified cartilage – a collagenous 

structure containing immature hydroxyapatite crystals. As the tissue around the 

osteoblasts becomes more dense and remodeled by osteoclast and osteoblast activity, it 

begins to resemble mature bone, and the osteoblasts become embedded in the mineralized 

matrix, maturing into osteocytes.  

In osteoid, or immature bone, the collagen fibrils are random and unorganized, 

and the hydroxyapatite crystal density is less than that of mature bone. As osteoid is 

remodeled into mature bone via the coupled process of bone resorption and deposition, 

the collagen fibrils align together in distinct units and hydroxyapatite crystal deposition 

becomes regular and organized. The osteocytes embedded in bone and osteoid are the 

mature, mechanosensitive bone cells responsible for the signaling required to maintain 

healthy bone structure.  

Intramembranous bone formation occurs as a direct result of the condensation of 

the mesenchyme. Progenitor cells contained within the mesenchymal tissue that patterns 

the flat bones of the body, such as the craniofacial skeleton, differentiate directly into 
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osteoblasts and osteocytes. Bone forms through appositional deposition of mineralized 

matrix by these differentiated progenitor cells. 

A highly organized tissue, bone is characterized by two distinct microstructures: 

cortical and trabecular bone. The dense cortical bone makes up structures such as the 

shafts of long bones, and laminates the surfaces of spongy trabecular bone. Cortical bone 

is composed of osteons – concentric rings of mineralized collagenous matrix embedded 

with osteocytes organized around a common Haversian canal. The Haversian canal is a 

vacuous space in the bone inhabited by a single vascular structure. The osteocytes inhabit 

lacunae within the Haversian system, and are connected by Volkmann’s canals and tiny 

canaliculi that permit vascular ingrowth (Volkmann’s canals) and fluid flow and growth 

of cellular processes (canaliculi) between the osteocytes and their lacunae. Bundling 

together osteons, the interior and exterior surfaces of the hollow cortical bone are covered 

by membranes. The endosteum, or inner membrane that abuts the marrow in the cavity of 

bones, and periosteum, or outer membrane covering the bony surface, provide a vascular 

supply and residence for bone progenitor cells. The periosteum is dense with osteoblastic 

precursor cells that are able to rapidly mobilize for repair of damaged bone.  

Trabecular bone, also known as spongy bone, is the other type of microstructure. 

It is composed of a combination of plate and rod-like elements. Each trabecular strut is 

composed of multiple trabecular packets – areas of bone that were formed at the same 

time as a result of local formation or remodeling. Like cortical bone, trabecular bone is 

composed of organized collagen fibrils and hydroxyapatite crystals. The osteocytes 

within trabecular bone are also connected by canaliculi. Spongy bone is typically found 

within flat bones and at the epiphyses and metaphyses of long bones. The plate to rod 
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ratio of trabecular bone, as well as the orientation of the trabecular structures, is 

modulated by the mechanical demands at that specific anatomical site. Trabecular bone 

also plays a significant role as a load distributor in the body, cushioning the mechanical 

stresses placed on the joints and skeleton by activity.  

Not only does the skeletal system serve as a structural tissue in the body, it also 

helps to keep the body biochemically balanced. Bone serves as a repository for minerals 

such as calcium, phosphorous, and magnesium. Bone provides exchangeable calcium for 

the body, a mechanism by which the body maintains its ionic homeostasis. 

Approximately 99% of the body’s calcium is stored in bones. Calcium provides structural 

integrity to the skeleton in the form of hydroxyapatite crystals. Hydroxyapatite crystals in 

bone also contain 85% of the body’s phosphorous. Magnesium, an ion that serves to link 

hydroxyapatite crystals to the fibrillar collagen network of bone, is 54% contained in 

bony tissue. Bone also contains sodium in the hydroxyapatite crystals, and plays a role in 

the maintenance of this ion as well. Bone composition is typically 60-75% mineral by 

weight, the balance being mostly organic extracellular matrix (mostly type I collagen) 

and fluid. Hematopoiesis is another critical function of bone. Marrow contained within 

the confines of the cortical bone provides the body with a constant supply of red and 

white blood cells, as well as a repository of mesenchymal progenitor cells, able to 

differentiate into multiple cell lineages.  

 Bone development, maintenance, and remodeling are processes driven by the 

mechanical forces applied to the tissue. Bone is a dynamic tissue, capable of organizing 

itself to best suit the mechanical environment to which it is exposed. Julian Wolff is 

traditionally credited with the theory that the architecture and function of bone are 
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inextricably linked, postulated in  1892. Galileo, however, had made similar observations 

in the 17th century, suggesting that the shape of a bone was related to its mechanical 

strength. In the 20th century, H.M. Frost proposed the mechanostat theory: strain 

magnitude thresholds can predict bone’s adaptive response. The mechanostat theory 

hypothesizes that in situations of disuse (bedrest, microgravity, paralysis, etc.) bone 

deteriorates, while normal physiologic use maintains the mechanical integrity of bone. 

Slight overloading can cause a shift favoring modeling over remodeling of bone, 

resulting in increased mechanical properties and quantity of mineralized tissue. Thus, 

both the physiologic and mechanical environments are critical to bone development and 

adaptation. Bone is in a constant state of damage and remodeling. Disrupting the balance 

of these two processes leads to diseases such as osteoporosis (increased bone remodeling 

and decreased bone modeling) and osteopetrosis (increased bone formation with no 

remodeling). The signaling system that correlates the activity of osteoblasts and 

osteoclasts is complex and unclear, but the intricate balance of both processes is critical 

to normal skeletal maintenance.  

 

2.2 Angiogenesis and Bone Formation and Repair 

The formation and maintenance of bone is tightly linked to the presence of a 

vascular supply. Osteoblasts and osteocytes must be within 0.1 mm of a vascular 

structure to survive and function. In fact the microstructural unit of cortical bone, the 

osteon, is organized around a vascular structure. Formation rates of trabecular bone have 

been found to have a positive correlation with blood vessel area [BAROU 2002]. 
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Vascularity and bone are tightly linked in the processes of endochondral ossification, 

callus formation, metastatic invasion, and bone regeneration [BAROU 2002].  

There are two vascular growth processes responsible for promoting new bone 

formation and repair of bone defects: angiogenesis and arteriogenesis. Angiogenesis is 

the process by which new blood vessels sprout from existing vascular structures. Various 

proteins work in concert to increase vascular permeability within an existing vessel wall. 

Following this, a tubular structure begins to develop, branching off from the existing 

vessel and extending into the adjacent hypoxic environment. This involves migration of 

endothelial cells or recruitment of circulating endothelial progenitor cells to the hypoxic 

site [RABBANY 2003]. Endothelial progenitor cells can also be derived from the bone 

marrow, and may contribute to endothelialization of a newly forming capillary.  In order 

to produce functional, non-leaky vessels, however, periendothelial cells, such as smooth 

muscle cells, must also be recruited to the growing vascular structure [CARMELIET 

2000]. During this process, mural cells stabilize the newly formed vascular structure via 

inhibition of endothelial cell migration and proliferation.  

The process of angiogenesis is followed by arteriogenesis – the maturation and 

enlargement of existing vessels. This process includes the development of a muscular 

sheath around a nascent vessel as well as increases in vessel diameter. In simple terms, 

angiogenesis is the process of vessel sprouting, while arteriogenesis is the process of 

collateral vessel growth and maturation [CARMELIET 2000]. Arteriogenesis plays a role 

in the maturation of bone repair tissue, where osteons develop around mature vascular 

structures, restoring normal morphology and functionality to the bone. The cells 

responsible for the maturation of these vessels are, unlike many of the cells involved in 
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bone repair, not derived from the bone marrow [ZIEGELHOEFFER 2004]. Rather, it 

appears that bone marrow-derived cells serve to provide paracrine signals to the 

migrating endothelial cells and pericytes, helping to create the inflammatory 

microenvironment that motivates angiogenic/arteriogenic processes [KINNAIRD 2004]. 

In the bone growth process of endochondral ossification, invasion of osteoblasts 

and deposition of mineralized matrix are facilitated by angiogenesis and arteriogenesis 

within the calcified zone of the growth plate. The newly developed vasculature permits 

migration of osteoblasts, osteoclasts, and progenitor cells to the site of the calcified 

cartilage, enabling the formation of osteoid and maturation of the woven bone into fully 

formed osteons. Fracture healing similarly relies on angiogenesis to facilitate callus 

formation and remodeling. Immediately following bony fracture, the damage to the blood 

vessels initiates the clotting cascade, and a haematoma develops. This haematoma is 

inherently angiogenic in its composition [STREET 2002]. Initially, the fracture 

haematoma suppresses endothelial cell proliferation and displays osteoblastic 

cytotoxicity, possibly by altering cell viability through a disruption in potassium channel 

function [STREET 2000 Clin Orthop Rel Res]. At later time points, however, the hypoxic 

environment and potent growth factor milieu contained within the clot encourage 

revascularization of the fracture site. Transplantation of fracture haematoma into a 

subcutaneous mouse model indicates enhanced blood vessel formation by 7 days post-

implantation. This effect is mediated by vascular-associated growth factors contained 

within the clot, and primarily by high concentrations of VEGF, with VEGF release 

peaking at 5 days post-fracture [CARANO 2003]. As the haematoma condenses and 

vascular structures develop through the interfragmentary region, the periosteal tissue 
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develops an external mineralized callus via intramembranous ossification mediated by 

progenitor cells from the marrow cavity [YU JBMR V60, GERSTENFELD 2003]. 

During this process, the fracture haematoma is resorbed and the endochondral 

ossification process begins, forming a soft internal callus. The end result of this process is 

the formation of a large, mineralized fracture callus that encompasses the fracture site 

with large quantities of disorganized woven bone [KOKUBU 2003]. With time, the 

fracture callus remodels to reveal organized, mature bone in a uniquely scar-free healing 

process. A stable fracture environment is critical to the cooperative processes of 

angiogenesis and fracture healing. Environments that are unstable in either axial or shear 

modalities will disrupt the vascular supply and delay fracture healing and callus 

remodeling, altering the tissue differentiation profile [LIENAU 2005]. Unstable fractures 

also tend more towards healing via the endochondral ossification process than stable 

fractures [FERGUSEN 1999]. Stable fractures heal by both intramembranous and 

endochondral ossification pathways. 

 

2.3 Bone Trauma and Clinical Repair 

 Bone trauma takes many forms. There are multiple modes of long bone fracture 

that can lead to a variety of defects, ranging from a simple transverse fracture caused by 

excessive tension, to a more complicated spiral fracture, caused by extreme torsional 

force. Extreme trauma can induce shattering of the bone such that traditional fracture 

reduction techniques are non-applicable. Bone loss due to traumatic injury or disease 

poses a challenge for orthopaedic treatment. Delayed union or nonunion are common 

results of traumatic bone damage in which a significant defect is created [BORRELLI 
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2003, WERNTZ 1996]. Such defects must be treated with a graft to promote union. 

Disease, such as bone tumors, can also force an osteotomy. Osteotomies of any critical 

size must be treated with grafts, typically an allograft, to ensure bony union and 

restoration of limb functionality. Osteomyelitis, or chronic bone infection, is a 

notoriously difficult condition to treat. Despite surgical intervention (osteotomy and/or 

debridement of the afflicted bones), nonunion in this case is a frequent occurrence 

[CHEN X 2006].  

 The gold standard treatment for osseous defects is the autograft. Autografts are 

not subject to rejection by the immune system since they are derived from the patient’s 

own body. The use of autografts, however, is limited due to three critical factors. First, 

there is a lack of available material for use. The only real source for autograft material is 

the iliac crest of the pelvis, which provides only a small amount of tissue. Second, there 

is no means to obtain a structural graft from this tissue source. The iliac crest can provide 

only morselized bone chips without any mechanical integrity. Use of these bone chips 

requires containment and support from an outside device, such as a titanium chamber. 

Although this treatment is successful in certain specific procedures, such as spinal 

fusions, it is unsuitable for repair of long bone defects. Third, the use of autograft 

material is subject to significant donor site morbidity and chronic pain. These are factors 

which greatly diminish patient quality of life, defeating the purpose of the treatment. 

 The facile and de facto standard treatment for substantial bony defects is the 

allograft. Allografts are derived from processed cortical cadaver bone. The processing of 

the material, designed to ensure sterility and prevent disease transmission, devitalizes the 

tissue. The resulting graft, devoid of all living material and many of the bioactive factors 
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stored in viable bony matrix, is then implanted into the defect site as a structural support. 

Although effective to some extent, the allograft is constrained by two critical factors: 

Low porosity of the allograft severely limits graft revascularization and revitalization, 

which leads to slow remodeling of the allograft by the host body. Lack of remodeling 

leads to an accumulation of microdamage within the graft, a major contributor to 

catastrophic graft failure. Together, these factors lead to the 25% clinical failure rate and 

contribute to the 30-60% complication rate associated with allografts [LUCARELLI 

2005, WHEELER, 2005]. Complications occur rapidly – within 1-2 years post-

engraftment – and frequently result in defect non-unions or delayed unions, significantly 

impacting patient quality of life [ITO 2005]. 

 One potential alternative for addressing the associated limitations of autografts 

and allografts is development of tissue-engineered bone graft replacements. Recently the 

first steps towards employing this technique have been taken with FDA approval of the 

Infuse spinal fusion system (Medtronic Sofamor Danek). Tissue engineering has been 

described as a three-fold strategy. First, there must be a matrix, substrate, delivery 

vehicle, or support for the delivery of the bioactive factors. Secondly, there must be a 

presence of bioactive factors; for example, growth factors, genes, or signaling molecules. 

Third, there must be a cellular component. This component may be delivered as a part of 

the therapy, or rely on recruitment of host cells from the treatment recipient. This tissue 

engineering strategy may combine biological factors as well as synthetics to create a 

porous, cell-friendly microenvironment that will enhance bone and vascular infiltration 

into the defect site. The work presented in this thesis represents one model strategy for a 

tissue-engineered bone replacement. We have developed a porous polymer scaffold with 
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mechanical integrity that can be co-delivered with biological agents to promote 

osseointegration of the scaffold into a bony defect site and enhance functional repair of 

the osseous defect. 

 

2.4 Bone Defect Models  

 There are many models of osseous non-union. These include the cranial defect, 

mandibular defect, radial defect, tibial or fibular defect, and femoral defect. Cranial 

defects are relatively easy to generate, and require no fixation device. The major 

limitation of these defects, however, is that they have a high rate of spontaneous healing 

[BYERS 2006]. It is difficult to achieve a true critically-sized defect in the cranial model, 

although short-term studies have been able to detect differences in early mineralization 

between treatment groups [SAKATA 2006]. This is due primarily to the proximity of 

cranial bones to the dura mater, an excellent and ready source of vascularity, and the 

large quantity of periosteum surrounding the defect – an excellent source of 

osteoprogenitors. One must note that the marrow within the cranial bones also contains 

osteoprogenitor cells. These three sources of cells and vascularity are readily available to 

the defect site. The immediate formation of a haematoma within the defect site is often 

enough to initiate spontaneous fusion of the defect. Scaffolds implanted into this model 

rapidly facilitate bony healing when acting as osteoconductive structures. 

 Mandibular defects come in a variety of geometries. The most common is the 

circular defect in the ramus of the rat mandible, which is somewhat more challenging 

than the cranial defect [SAADEH 2001]. Implantation of non-porous scaffolds has been 

known to impede wound healing in this model, while untreated defects achieve 
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spontaneous union in 11% of samples [AROSARENA 2003, SROUJI 2005, SHAH 

2003]. Like the cranial defect, the mandibular defect occurs in a flat bone formed by 

intramembranous ossification. Periosteal tissue surrounding the intact bone provides a 

reservoir of osteoprogenitor cells that may contribute to bone healing. Mandibular defects 

must be fairly large in order to be critically-sized, and the typical surgical model employs 

sub-critical defect sizes [SPECTOR 2001]. This model, like the cranial defect model, is 

suitable for evaluation of cranial-maxillofacial treatment strategies, but is not 

representative of a long bone defect. Results from these models should not be 

extrapolated to treatment of long bone defects, which tend to be more challenging. 

 Defects of the radius, ulna, or tibia are popular because the presence of the 

proximal load-sharing bone may negate the need for implantation of a fixation device, 

and the defects are partially load-bearing. A consistent size for these defects has not been 

agreed upon, and reports of what constitutes “critically-sized” vary widely, although 

ulnar defects tend to be larger than their radial counterparts (ranging from 0.5 cm to 2 

cm) [SHELLER 2004, GIARDINO 2006, KOKUBO 2003, TUOMINEN 2001]. The 

presence of the intact ulna, radius, or fibula, however, also contributes a readily available 

source of osteoprogenitor cells and vascularity, via the periosteum, to the defect site. 

Because of this, these defects tend to be less challenging than the femoral defect model. 

The presence of the intact periosteum on the ulna of a 1 cm radial defect model in rabbits 

provides a source of osteoprogenitors that readily populate the surface of implants and 

contribute to partial bridging of untreated controls [GOGOLEWSKI 2000, 

YAMAMATO 2006].  Use of intramedullary Kirshner wires to stabilize the defect and 

graft seems to inhibit part of the healing response [TUOMINEN 2000]. Adding stability 
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in the form of a bone plate partially stabilizes the defects, but also provides a site for 

excess mineralization to occur on [ITOH 1998]. The use of ulnar defect models makes 

mechanical testing of the samples difficult, due to the presence of synostosis between the 

radius and the ulna, which occurs even in untreated control defects [BOSTROM 1996]. 

Murine tibial defects heal in the presence of an unaugmented collagen sponge [ENDO 

2006].  Like radial defects, the size of tibial defects ranges considerably – 5 mm defects 

are employed in both rat and rabbit models; and mechanical fixation is required to 

achieve stabilization [ENDO 2006, KOMAKI 2006]. Tibial defects are a popular 

research model clinically as well as experimentally because the mode of fracture tends to 

be complex, requiring multiple stage clinical interventions [JONES 2006, ATTIAS 

2006]. 

 Femoral defects are perhaps the most challenging model of osteotomy available in 

the body. Beyond the cut ends of the defect site, there is no proximal periosteum to 

contribute vascularity or osteoprogenitors to the osteotomy. It is easy to achieve a 

critically-sized femoral defect due to the length of the bone. Stable fixation of these 

defects, however, is challenging. Typical fixation relies on a simple polyethylene bar that 

directly abuts the femur and implant, secured in place with four smooth pins. This 

fixation method is highly unstable, permitting excessive micromotion, and is prone to 

defect collapse. Additionally, the placement of the plate directly against the implant in 

the defect site prohibits invasion of cells from that portion of the circumference of the 

implant. This direct abutment of the plate against the defect site also predisposes the limb 

to formation of ectopic mineralized matrix along the length of the plate [KADIYALA 

1997]. In the literature the typical defect length is 5 mm. This defect, however, is not 
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critically-sized, as the untreated 5 mm defects are prone to spontaneous healing. 

Published spontaneous union rates range from 10-50%. [WERNTZ 1996, 

NOTTEBAERT 1989] Without a truly critically-sized defect, stringent evaluation of 

large bone defect treatment strategies is not possible. The robust 8 mm defect in rat 

models is critically-sized, unlike the more commonly used 5 mm defect. Pilot work for 

the studies presented here included an attempt at the 5 mm defect using the standard 

block-and-pin fixation strategy widely employed in the literature. That pilot study was 

compromised by frequent collapse of the defects and spontaneous union in multiple 

untreated defects. Given a larger defect (8 mm) and a more stable fixation system such as 

the one employed in the work presented here, however, a secure, robust, and challenging 

defect model can be established. The stable 8 mm defect is not subject to spontaneous 

healing, and fits the criteria for a critically-sized defect as established by Hollinger 

[BRUDER JOR 1998, FEIGHAN 1995, KADIYALA 1997, LIEBERMAN 1999 JBJS, 

STEVENSON 1994, HOLLINGER 1990].  

 

2.5 Experimental Treatments 

 Experimental treatments for large osseous defects are wide-ranging in their 

specific components, but consist of two fundamental elements – a delivery vehicle 

(scaffold) and a stimulus intended to evoke a biologic response (cells, growth factors, or 

genes).  

 Scaffolds may serve a variety of purposes. Some investigators choose to use 

materials with structural integrity that may provide mechanical support to the bony 

defect; others select materials with little to no mechanical strength, serving primarily as 
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delivery vehicles for biologics. The typical structural scaffold implanted into defects is 

hydroxyapatite/tricalcium phosphate (HA/TCP). This ceramic scaffold is composed of 

naturally occurring minerals in bone tissue. However, it is limited by low porosity, lack 

of interconnected porosity, and brittleness that predisposes it to fracture when exposed to 

mild loading in vivo [BRUDER 1998 JBJS]. Implantation of a plain HA scaffold in vivo 

does not promote union of an osseous defect, and results in formation of fibrous tissue 

within the defect site [BRUDER 1998 JOR, KADIYALA 1997]. The healing response to 

implantation of HA/TCP is not elevated by augmentation with bone marrow. The result 

of this treatment is minimal bone fill into the scaffolds by 8 weeks post-op. However, 

addition of mesenchymal stem cells (MSCs) to the HA/TCP scaffold substantially 

improved formation of new mineralized matrix, resulting in the formation of a periosteal 

callus around the implant [KADIYALA 1997]. This strategy has even been attempted 

clinically; in four patients ranging from 16 to 41 year of age autologous BMSCs were 

harvested and seeded onto porous HA blocks implanted in vivo. The results showed 

improved functionality of the affected limbs and incorporation of the graft into the host 

bone over the first year in vivo, but relied heavily on mechanical stabilization of the limb 

and implant [MARCACCI 2007]. Augmentation of HA scaffolds with demineralized 

bone matrix (DBM) enhances mineralization somewhat, but does not restore mechanical 

integrity. In a study involving rat femurs, samples were so brittle and grossly unstable 

that mechanical testing post mortem was impossible [FEIGHAN 1995].  

 DBM itself has also been delivered to segmental defects in varying formulations. 

In a rat model utilizing 8 mm femoral defects, human demineralized bone matrix 

(hDBM) was delivered in one of two carriers – hyaluronic acid or glycerol. While 
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delivery of the carrier alone did not encourage mineral formation, a small number of 

hDBM-treated groups achieved bony union (8/48) by 16 weeks post-op [OAKES 2003]. 

These results point to the potential osteoconductive properties of DBM, but a lack of 

osteoinductivity.  

 Although limited by a lack of mechanical integrity, a number of gel-consistency 

materials have been used as experimental treatments for bone regeneration. Collagen is a 

popular matrix due to its inherent biocompatibility. Because of its lack of bioactivity, 

collagen matrices must be combined with other biologically active factors in order to 

promote osseous union. A popular use of this delivery method is the clinically-approved 

delivery of bone morphogenetic protein-2 (BMP-2) in an absorbable bovine collagen 

sponge to produce spinal fusions. This method is also being clinically investigated as a 

means of accelerating open tibial shaft fracture repair [SWIONTKOWSKI 2006, 

BURKUS 2002]. Delivery of BMP-2 in an absorbable collagen sponge may also aid 

allograft incorporation into the host bone [ZABKA 2001]. The bovine collagen sponge 

has also been used experimentally in animal models to deliver morselized autogenous 

bone chips and cell culture extracts in an attempt to promote healing. The use of 

autogenous bone chips in a rat segmental defect model failed to heal the defect; rather, it 

resulted in formation of fibrous tissue [HUNT 1996]. Conversely, autogenous bone chip 

treatments have been used clinically to produce spinal fusions and met with success in 

producing radio-opaque mineralized tissue in a critically-sized canine femoral defect 

model [SWIONTKOWSKI 2006, KRAUS 1999]. Mechanical integrity, however, was 

not restored in the canine model by 16 weeks post-op.  
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BMPs are also a popular choice for gene therapy in a variety of delivery systems. 

Delivery of BMP-9 by intramuscular adenoviral injection induces ectopic mineralization 

in vivo and stimulates in vitro ALP production by human MSCs [LI 2003]. Direct transfer 

of adenoviral BMP-2 locally to a tibial fracture in an osteoporotic ovine model enhances 

the bending strength, callus area, and callus density over untransfected controls 

[EGERMANN 2006]. Thus, gene therapy has potential for application even in 

challenging fracture models [EGERMANN 2005]. Local injection of adenoviruses 

encoding BMP-2 to a stabilized lapine femoral defect of 1.3 cm significantly improved 

the bending strength and stiffness over treatment with adenoviral luciferase (control 

vector). Bony bridging of the defect was apparent in both treatment groups [BALTZER 

2000]. A parallel study in a 5 mm rat femoral defect model showed enhanced mineralized 

matrix in BMP-2 gene-treated defects versus luciferase cDNA treated defects. However, 

the incidence of bony union in the BMP-2 treated defects hovered around 75%, although 

50% of these defects still contained islands of cartilaginous tissue by 8 weeks post-op 

[BETZ 2006]. Mechanical integrity was not restored. Delaying the delivery of adenoviral 

BMP-2 until day 5 or 10 post-op slightly increased the incidence of bony union to 86% 

[BETZ 2007]. Delivery of condensed plasmid BMP-4 to murine cranial defects in PLGA 

enhances bone fill by 4.5 fold over delivery of a scaffold or non-condensed plasmid 

[HUANG 2005]. This study illustrates that the delivery method for gene-based therapies 

is of great importance, similar to the observations made regarding protein therapies. 

However, when the correct titre of virus is delivered, delivery of genes such as caALK2, 

VEGF, and RANKL have been shown to revitalize even cortical allografts [AWAD 

2007].  
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 Regional gene therapy for bone defects is also commonly achieved via 

implantation of pre-transfected cells [BALTZER 2004]. Local delivery of BMP-2-

transfected BMSCs in an alginate hydrogel enhances late bone formation in a rabbit 

cranial defect model [CHANG 2004]. Both delivery of BMP-2-producing BMSCs and 

delivery of BMP-2 protein (both in guanidine-extracted DBM) produce similar results in 

terms of radiographically-defined bony union in an 8 mm rat femoral defect model or a 6 

mm defect (BMP-2 transfected MSCs on a collagen scaffold) [LIEBERMAN 1999, 

TSUCHIDA 2003]. However, histomorphometric analysis showed an increase in total 

bone area in the gene therapy group over the protein delivery group. This increase in 

bone area did not correlate to an increase in mechanical though, indicating that bone 

quality may be more critical than bone quantity for restoration of limb functionality. 

Transduction of BMSCs with BMP-4 enhances mineralized tissue deposition in sub-

critical rabbit femoral defects over delivery of unaltered BMSCs [SAVARINO 2007]. 

Delivery of the BMSCs alone enhanced tissue invasion into the defect site, but did not 

impact mineralization to the degree that implantation of transfected BMSCs did. 

Transduced mesenchymal cell lines (BMP-2/β-galactosidase) have been used in vivo as a 

type of engineered periosteum to enhance incorporation of allografts into a murine 

segmental defect model [XIE 2007].  

 Gene therapy can also be used to induce osteogenic gene expression in non-

osteoblastic cells, such as fibroblasts and muscle-derived cells [KREBSBACH 2000, 

PHILLIPS 2006, SHEN 2004]. BMP-7 (OP-1)-producing fibroblasts have been shown to 

produce mineralized tissue when implanted in vivo (subcutaneous rat model) on Gelfoam 

sponges. This approach also enhances healing of murine cranial defects over delivery of 
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untransfected fibroblasts [KREBSBACH 2000]. Primary muscle-derived cells (preplate 

isolation technique) can be transfected to express BMP-4 and, upon implantation into a 

murine femoral defect, produce radiographically apparent union and partially restore limb 

functionality [SHEN 2004]. Adipose-derived MSCs modified to produce BMP-2 have 

also been shown to have osteoregenerative potential with results similar to those 

produced by high dose BMP-2 (20 µg in a 6mm rat femoral defect) [PETERSON 2005].  

However, the ability of non-osteoblastic cells transfected with gene constructs, such as 

Runx-2, to mineralize has been shown to be highly scaffold-dependent [PHILLIPS 2006].  

Cell-based therapies without genetic modification have also been investigated. In 

a canine parietal bone defect model, delivery of BMSCs has been shown to have 

osteoregeneration potential similar to delivery of autologous bone chips [UMEDA 2007, 

NIEDZWIEDZKI 1993]. Similar results were achieved in an ovine metatarsal defect 

model [VIATEAU 2007]. The reported ability of simple cellular therapies to regenerate 

large defects varies widely, but when the degradation properties of the delivery scaffold 

are adequately matched to the rate of mineralized matrix deposition, this approach can be 

successful [BENSAID 2005, BRUDER Clin Orthop Rel Res 1998, BRUDER JOR 1998]. 

Although whole bone marrow has occasionally been used in combination with ceramic 

scaffolds to attempt osseous defect regeneration, there is evidence supporting the 

hypothesis that selecting a specific population or populations of cells from the marrow 

cavity may be more advantageous [KADIYALA 1997]. Although autogenous bone 

marrow-derived cells are optimal as they do not activate the host immune system, 

allogeneic stem cell populations may by immunologically inert enough to successfully 

engraft in the recipient [LIVINGSTON 2003]. The key factor present in bone marrow 
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necessary to potentiate this regenerative capacity appears to be the living cells, not the 

inherent growth factor milieu [WERNTZ 1996].  

Combining cellular therapies with growth factor or gene therapy can also 

accelerate the process of bone regeneration. In a rat radial defect model, addition of basic 

fibroblast growth factor (bFGF or FGF-2) to BMSCs accelerated deposition of bone 

repair tissue [LISIGNOLI 2002]. Co-delivery of condensed plasmid DNA encoding 

BMP-4 and VEGF with BMSCs on a PLGA scaffold significantly improved the ability of 

the cells to induce ectopic osteogenesis and implant vascularization [HUANG 2005]. The 

role of VEGF in bone defect repair models is a complex problem, and reports on the 

efficacy of VEGF as a treatment are varied. Delivery of high-dose VEGF (10 µg) in 

protein form to a stabilized but challenged (periosteal stripped) mouse fracture model 

stimulated an increase in the percent of the callus that was calcified [STREET 2002]. 

Systemic treatment with soluble VEGF receptor of animals that had received a stabilized 

fracture resulted in dramatic impairment of new bone formation and an overall decrease 

in callus mineral content [STREET 2002]. The same results were seen in a cortical bone 

defect model of intramembranous bone healing. In a segmental defect of the radius in 

rabbits, VEGF was continuously delivered via an osmotic pump over the first 7 days 

post-op. VEGF treatment at a dose of 250 µg stimulated significant filling of the defect 

site with new bone, while non-treatment resulted in a lack of bony bridging [STREET 

2002]. In a murine cortical defect model, delivery of VEGF in gene form intramuscularly 

to the defect location resulted in a moderate increase in the bone mineral content at an 

early time point (2 weeks) [TARKKA 2003]. By week 4 the control group (LacZ-treated) 

and VEGF groups were comparable in bone mineral content and histological appearance. 
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VEGF gene therapy decreased the quantity of cartilage at 2 weeks post-op; it is unclear if 

VEGF therapy accelerated endochondral ossification or simply forced direct ossification, 

circumventing the cartilaginous period. In exercise-induced models of anabolic bone 

formation, blocking VEGF signaling attenuates the modeling response that occurs in 

untreated animals. Gene therapy using VEGF and RANKL enhances revascularization, 

resorption, and mineralization of processed cadaveric allografts in a mouse model [ITO 

2005]. Similarly, co-delivery of BMP-4 and VEGF condensed plasmid DNA along with 

BMSCs into a subcutaneous location induced local bone formation [HUANG 2005]. 

Continuous delivery of VEGF or VEGF-inhibitor to a lapine tibial segmental defect, 

however, failed to induce an osteogenic response. Delivery of VEGF in this model did 

enhance vascular invasion [ECKHARDT 2003]. Delivery of 3 µg of VEGF to a 3.5 mm 

diameter calvarial defect enhanced defect vascularization in both irradiated and non-

irradiated samples. Bony bridging was enhanced by delivery of VEGF-containing 

scaffolds in both groups [KAIGLER 2006]. Collectively, these studies point to the 

potential for a highly dose-dependent and injury-dependent efficacy of delivering VEGF 

for bone regeneration therapy.  

The therapies described above relied largely on delivery vehicles or scaffolds with 

suboptimal mechanical properties. In addition to exploiting the chemoresponsive stimuli 

to regenerate bone, one can design a treatment strategy that incorporates the 

mechanosensitive nature of the tissue. Because mechanical stimulation is known to 

potentiate increases in bone quantity and quality, it may be advantageous to design a 

tissue-engineered construct that can load-share with the mechanical stabilization 

apparatuses. Structural polymer scaffolds can be produced with sufficient elasticity and 
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integrity to achieve these goals. The use of structural polymer scaffolds as treatments for 

large load-bearing defects, however, has not been widely investigated. For segmental 

defect repair in load-bearing sites, HA/TCP is the typical scaffold delivered if structural 

stability of the implant is a factor for consideration [BRUDER 1998 JBJS, FEIGHAN 

1995, BRUDER 1998 JOR, KADIYALA 1997]. There are few instances of polymer 

implantation [OEST 2007, RAI 2007, CHU 2007]. However, this strategy has been 

explored for reconstruction of craniofacial defects [SCHANTZ 2003, ROHNER 2003, 

GOMEZ 2006, KAIGLER 2006]. The inert nature of the simple polymer scaffold 

necessitates combination with biologically active agents, such as marrow cells and/or 

growth factors. Incorporation of VEGF into a PLGA scaffold enhanced both angiogenesis 

and mineralized matrix formation in an irradiated murine calvarial defect model 

[KAIGLER 2006]. Polycaprolactone (PCL) has been investigated by several research 

groups. Combination of autologous bone marrow with a porous PCL scaffold 

significantly improved bony fill in a porcine orbital defect model over delivery of a naked 

PCL scaffold. Non-treatment of the defect resulted in fibrous tissue formation [ROHNER 

2003]. Use of a lapine calvarial defect model was applied to the investigation of marrow 

progenitor cell- and osteoblast-seeded PCL scaffold abilities to regenerate osseous tissue. 

The PCL scaffolds used here were similar to those investigated by Rohner et al.  The 

cells were seeded in a fibrin glue suspension into the PCL scaffolds with a 3 day 

preculture period prior to implantation. Incorporation of cells into the scaffold 

significantly enhanced bony fill and push-out strength within the calvarial defects (by 

approximately 60%). The type of cell delivered did not significantly impact bone 

regeneration or mechanical integrity [SCHANTZ 2003].  
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The results of the various treatment strategies reviewed here attest to the complex 

nature of the bone regeneration problem. Without a biologically active component, 

delivery of a bare scaffold is insufficient to induce osteogenesis in vivo. Although simple 

cell-based therapies meet with some success, their efficacy can be improved upon by co-

delivery with active proteins or genetic modification. Provision of grafted cells on the 

scaffold is not necessary to produce an osteogenic response, as scaffold modification with 

gene-encoding vectors or growth factors is suitable to elicit a response from the 

surrounding host cells. The current limitation of these acellular therapies is largely based 

on the sheer quantity of vector or protein that must be delivered. Transfection rates for 

viral vectors remain relatively low, and many investigators may overdose the quantity of 

growth factor in order to induce a positive response. The work presented here rigorously 

evaluates the potential to efficiently generate consistent bony union in a large femoral 

defect model using low-dose growth factor co-delivery. 

 

2.6 Growth Factor Selection 

 In order to promote vascularized bone healing within the segmental defect, three 

growth factors (osteogenic, chondrogenic, and angiogenic) have been selected for use in 

these studies.  

BMP-2 (bone morphogenetic protein-2) was selected for its potent osteoinductive 

activity both in vivo and in vitro, and is essential for fetal skeletal development (deficient 

phenotypes of BMPs -2, -4, and -7 are embryonic lethal) [SCHMITT 1999]. BMPs play 

roles not only in calcified tissue development, but also in cartilage and skeletal 

connective tissue formation [WOZNEY 1998]. BMP-2 is capable of inducing progenitor 
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cells to adopt an osteoblastic phenotype when implanted both ectopically and 

orthotopically in vivo [RILEY 1996]. Endogenous BMP-2 is heavily implicated in 

fracture healing and bone induction [REDDI 1998]. The key steps in the bone induction 

cascade -- chemotaxis, mitosis, and differentiation -- are all promoted by BMP-2 at 

varying doses, although BMP production during fracture healing seems to be restricted to 

the initial phases of healing [REDDI 1998, EINHORN 1998]. BMP-2 is known to induce 

osteoblast migration in vitro, and is involved in the differentiation of progenitor cells 

derived from both bone marrow and periosteum to the osteoblastic phenotype [MAYR-

WOLFHART 2002]. Chondrogenic differentiation of progenitor cells is also partially 

regulated by BMP-2 expression [EINHORN 1998, RILEY 1996, WOZNEY 1998]. Peak 

BMP-2 expression occurs during early stages of fracture healing, where the growth factor 

plays an important role in initiating and directing the formation of new bone by 

progenitor and osteoblastic cells in vivo. 

BMP-2 is also known to play a role in the regulation of angiogenesis in both soft 

tissues and bone [LANGENFELD 2004]. BMPs can induce production of VEGF by 

osteoblastic cells and placental growth factor (PlGF) in mesenchymal cells [DECKERS 

2002, MARRONY 2003]. Although osteoblastic differentiation occurs independently of 

VEGF production, the dual effects of BMP-2 on angiogenesis and osteogenesis suggest 

an important bifunctional role for the protein in vivo. The final connection in this circular 

regulation is the ability of endothelial cells to secrete BMP-2 and thereby attract 

osteoblasts and osteoblastic progenitor cells.  

The specific osteogenic activity of BMP-2 has prompted extensive in vivo 

evaluation of the peptide for bone regeneration. Administration of BMP-2 to segmental 
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defect sites has been shown to promote bony union in defects at extremely high 

concentrations (up to 20 micrograms per defect), but not at lower concentrations (1.4 

micrograms per defect) [ISOBE 1999, LEE 1994, YASKO 1992, PETERSON 2005]. 

BMP-2 administration has been approved for clinical use in spinal fusions, and has been 

extensively tested in bone defect models and ectopic implantations in a wide range of 

animals [WOZNEY 1998]. The proposed growth factor dose for the studies in specific 

aims II and III is significantly lower than the effective dose used by Yasko et al. and 

Peterson et al. in accordance with the hypothesis that co-delivery of BMP-2 with another 

protein may lower the concentration of BMP-2 required to promote union. 

The growth factor selected for co-delivery with BMP-2 was TGF-β3 

(transforming growth factor beta-3). TGF-βs are typically associated with 

chondrogenesis, but have been shown to act synergistically with BMP-2 to form 

mineralized matrix in an ectopic mouse model of osteogenesis, and TGF-β1 is known to 

synergize with BMP-7 to enhance angiogenesis [SIMMONS 2004, RAMOSHEBI 2000]. 

TGF-β family proteins are highly expressed during endochondral ossification and 

fracture healing, and serve to partially regulate the chondrogenic phenotype adopted by 

progenitor cells during fracture healing [LIEBERMAN 1999]. TGF-β synthesis may also 

be upregulated under hypoxic conditions such as those seen locally during fracture 

healing [BOULETREAU 2002, SAADEH 2000]. During the initial inflammatory phase 

reaction to bone fracture, TGF-β is released by platelets [EINHORN 1998]. TGF-β is 

involved in the regulation of late stage chondrocyte and osteoblast differentiation in 

fracture healing as well as osteoblast/osteoclast coupling and extracellular matrix 

production [CARANO 2003]. Delivery of TGF-β3 to an osseous defect may promote 
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formation of cartilaginous tissue which can be subsequently calcified and remodeled to 

form fully mineralized matrix. TGF-β3 expression can also increase VEGF production in 

osteoblastic cells, linking it to angiogenic responses [SAADEH 1999]. TGF-β family 

members, specifically TGF-β3, are crucial to reducing inflammation and promoting scar-

free healing. TGF-β3 is under clinical investigation as an agent to promote scar-free 

healing of a variety of tissue defects.  

VEGF (vascular endothelial growth factor) is the classic angiogenic growth factor 

that, at low doses, promotes formation of neovasculature both in vivo and in vitro while 

also acting to induce vascular permeability [PUFE 2002, DVORAK 2002]. VEGF 

production represents the crucial rate-limiting step in angiogenesis, inducing the 

proliferation, migration, and survival of endothelial cells both in vivo and in vitro 

[COSTA 2004]. VEGF is capable of inducing bone marrow-derived endothelial 

progenitor cells to enter the circulatory system and contribute to angiogenic processes in 

vivo [ASHARA 1999].  However, the vasculature formed by delivering high levels of 

VEGF alone has been shown to be leaky and immature in nature [McCOLL 2004]. 

Formation of functional, mature vascular tubes requires co-migration of pericytes and 

smooth muscle cells in addition to endothelial cells, emphasizing the fact that 

angiogenesis is a complex process regulated by multiple factors [KURZ 2000]. VEGF 

synthesis by endothelial and osteoblastic cells is upregulated under hypoxic conditions, 

such as those seen in ischemia and large tissue defects, via elevated expression of HIF-1α 

(hypoxia inducible factor 1-alpha), which in turn induces transcriptional activation of 

VEGF [BOULETREAU 2002, McCOLL 2004]. VEGF is chemotactic and mitogenic for 

endothelial cells (as well as osteoblasts and osteoclasts), and may also induce smooth 
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muscle cell migration [BUSCHMANN 2003, GERBER 1999, MAYER 2005]. The 

ability of the body to produce VEGF, stimulate angiogenesis, and heal wounds is known 

to decrease with age suggesting a potential regulatory mechanism for the observation of 

delayed tissue repair in elderly patients [SWIFT 1999]. 

VEGF, particularly slice variant 164 (murine) or 165 (human), has also been 

implicated in the process of bone formation by promoting angiogenesis and thereby 

facilitating bone and calcified cartilage remodeling [STREET 2002, PUFE 2002]. VEGF 

expression is increased during osteogenic differentiation, inhibiting apoptosis of 

osteoblasts and newly migrated endothelial cells and helping to maintain the viability of 

the neovasculature and osseous repair tissue [CARANO 2003, MAYER 2005]. In turn, 

VEGF treatment of endothelial cells increases BMP-2 expression [BOULETREAU 

2002]. VEGF expression in the fracture callus recapitulates the expression of VEGF seen 

in long bone development, where VEGF expression is critical to promoting chondrocyte 

cell death and mineralization of the cartilaginous tissue [CARANO 2003, GERBER 

1999]. Inhibition of VEGF may block BMP-induced angiogenesis as well as osteoblast 

differentiation and bone formation while addition of VEGF to segmental defects 

enhances bone formation [CARANO 2003, MAYER 2005]. VEGF activity in bone repair 

typically peaks around 5 days post-fracture and returns to basal levels by day 10 [PUFE 

2002]. The ability of VEGF delivery to promote fracture healing may, however, be highly 

dose-dependent as there are varying reports on the efficacy of this treatment 

[ECKHARDT 2003, STREET 2002]. 

 The effects of delivering these growth factors both individually and in 

combination were investigated in the work presented here. Traditionally growth factor 
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therapies have relied heavily on bulk doses of a single osteogenic peptide. The limitations 

of this simplistic approach are primarily found in 1) the associated cost of the treatment 

and 2) the potential for inducing ectopic osteogenesis or hyperossification of the 

treatment site. Using a more diversified therapy to treat the complex problem of 

functional bone regeneration may promote a more natural and controlled mechanism for 

healing of critically-sized defects. 

 

2.7 Methods of Growth Factor Delivery 

Non-structural scaffolds are the primary mode of growth factor delivery; 

hydrogels and gel-consistency polymers are popular choices. Both biologically-derived 

and synthetic hydrogels are commonly used in tissue engineering applications 

[KRETLOW 2007]. Although their consistency is more similar to that of cartilaginous 

tissues, hydrogels serve as effective delivery vehicles for growth factors, cells, genes, and 

other biologics [KASPER 2006, SIMMONS 2004]. Co-delivery of human MSCs with 

BMP-2 in a hyaluronic acid-based hydrogel was shown to enhance regenerative tissue 

formation in a rat cranial defect model over delivery of a scaffold alone, delivery of only 

BMP-2 on the scaffold, or delivery of only MSCs on the scaffold [KIM 2007]. The 

efficacy of synthetic matrices, such as PEG, is largely impacted by the degradability of 

the polymer and/or release and support of the biological component(s). Physical linkage 

of BMP-2 to a PEG (polyethylene glycol) matrix via a proteolytically degradable 

mechanism proved to be a suboptimal strategy for healing of murine cranial defects 

[RIZZI 2006, LUTOLF 2003]. It is likely that this delivery strategy was ineffective 

because 1) the hydrogel matrix was not easily degraded by the native host cells and 2) the 
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BMP-2 was not released into the surrounding tissue to chemotactically cue the 

surrounding cells to proliferate and/or migrate into the defect site. Use of a fibrin matrix 

with similarly incorporated BMP-2 also failed to regenerate cranial defects in both 

murine and lapine models suggesting that to some extent the BMP-2 must be soluble in 

order to induce osteoprogenitor cell proliferation and migration [SCHMOEKEL 2004]. In 

contrast, if a biodegradable hydrogel (in this case gelatin) is engineered to release BMP-2 

in a controlled fashion, a large lapine ulnar osseous defect can be effectively regenerated 

[YAMAMOTO 2006 Tissue Eng]. In vitro use of anti-adhesive hydrogels (such as 

hyaluronic acid and PEG) has proven challenging in terms of maintaining cell viability. 

This observation may also partially explain the limited efficacy of these treatments in 

vivo [KIM 2007].  

In addition to growth factors, complex naturally derived biologics can be 

employed for tissue engineering. One such example is platelet-rich plasma (PRP). 

Although initially investigated for use in dental and maxillofacial reconstructive 

applications, PRP has also recently been investigated as an agent for tissue engineering of 

other skeletal components [RAI 2007, ROLDAN 2004]. Augmenting gelatin hydrogels 

with PRP significantly improved mineralized matrix deposition in a lapine ulnar defect as 

compared to delivery of a naked matrix or free PRP. Formation of new bone was 

somewhat improved in the gelatin-PRP group as compared to a fibrin-PRP treatment 

group. This finding illustrates the importance of developing a proper interaction and 

release profile for biologically augmented matrices [HOKUGO 2005].  

In addition to controlling for release of biologics, the converse aspect of 

controlling the retention of these factors is also important. Although extremely high doses 



 41

of free, soluble growth factor (particularly BMP-2) have occasionally shown positive 

results, most studies have shown that soluble growth factor is a challenging mode of 

delivery to use [HONG 2000]. Application of gelatin hydrogels with varying water 

contents and TGF-β1 to calvarial defects in a lapine model was effective only when the 

hydrogel was able to both prevent rapid soft tissue formation in the defect (serve as a 

placeholder) and retain the growth factor long enough to stimulate mineralized matrix 

formation [YAMAMOTO 2000 J Control Release, HONG 2000]. Chimeric natural-

synthetic hydrogels are possible, although not widely used. PEGylated fibrinogen 

hydrogels can, similarly to gelatin hydrogels, serve as place holders to prevent rapid soft 

tissue invasion. When designed with a degradation rate that is roughly on par with the 

rate of appositional bone formation in a murine tibial defect model, the PEGylated 

fibrinogen hydrogel can encourage osteogenesis more effectively than if it is designed 

with a particularly rapid or slow degradation rate [PELED 2007]. Controlled release 

capsules containing BMP-2 delivered to a femoral defect site have been shown to induce 

bony bridging of the defect by 8 weeks post-op. In this case, a high dose of BMP-2 was 

used (5 mg per defect). Using PLGA particles of various sizes to deliver BMP-2, Lee et 

al. investigated the dose-dependent response of segmental defect healing [LEE 1994]. In 

terms of mechanical properties, significant differences in failure torque between defects 

treated with particles alone and particles augmented with BMP-2 were only seen at the 

highest dose (9.3 µg per defect), and not at the two lower doses (3.1 µg or 0.93 µg). High 

doses of BMP-7 (200 µg per 6 mm defect) delivered in a lyophilized collagen carrier can 

efficaciously overcome challenged (chronically infected) nonunion models when 

delivered concomitantly with antibiotics [CHEN X 2006]. What these studies point to is 



 42

the importance of properly managing growth factor release in order to elicit the desired 

biological response. Controlled and/or sustained release of proteins is a challenging 

problem to engineer. This situation may be further complicated by use of a two-phase 

system with separate components for structural support and delivery of biologics.  
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CHAPTER 3 

 

Quantitative Assessment of Scaffold and Growth Factor-Mediated Repair of 
Critically Sized Bone Defects 

 

3.1 Abstract 

 An 8 mm rat segmental defect model was used to quantitatively evaluate the 

ability of longitudinally-oriented poly(L-lactide-co-D,L-lactide) (PLDL) scaffolds  with 

or without growth factors to promote bone healing. BMP-2 and TGF-β3 combined with 

RGD-alginate hydrogel were co-delivered to femoral defects within the polymer 

scaffolds at a dose previously shown to synergistically induce ectopic mineralization. A 

novel modular composite implant design was used to reproducibly achieve stable 

fixation, provide a window for longitudinal in vivo micro-CT monitoring of 3-D bone 

ingrowth, and allow torsional biomechanical testing of functional integration. A contrast 

agent perfusion procedure was established to enable micro-CT imaging and 

quantification of vascular structures within the defect site. Sequential in vivo micro-CT 

analysis showed that bone ingrowth increased significantly between 4 and 16 weeks for 

the scaffold-treated defects with or without growth factors, but no increase with time was 

observed in empty defect controls. Post-mortem regional micro-CT analysis revealed that 

the majority of the new bone formation occurred in the proximal half of the 8 mm defect. 

Treatment with scaffold alone improved defect stability at 16 weeks compared to non-

treatment but did not achieve bone union or restoration of mechanical function. 

Augmentation of scaffolds with BMP-2 and TGF-β3 significantly increased bone 

formation at both 4 and 16 weeks compared to non-treatment but only produced bone 
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bridging of the defect region in 2 of 6 cases. Mineralization was observed to form first at 

the periphery of the scaffolds followed by more limited mineral deposition within the 

scaffold interior, suggesting that the cells participating in the initial healing response 

were primarily periosteal-derived. This study introduces a challenging segmental defect 

model that facilitates quantitative evaluation of strategies to repair critically-sized bone 

defects. Healing of the defect region was improved by implantation of structural 

polymeric scaffolds infused with growth factors incorporated within RGD-alginate, 

however, functional integration of the constructs appeared to be limited by continued 

presence of the slow-degrading scaffolds and perhaps suboptimal dose or delivery of 

osteoinductive signals.  

 

3.2 Introduction 

Large osseous defects pose a significant treatment challenge to orthopaedic 

surgeons and nonunion is common [BORRELLI 2003, WERNTZ 1996]. Although the 

gold standard treatment is autologous bone grafting, this procedure is constrained by the 

inability to obtain large structural grafts for transplantation and significant donor site 

morbidity. As a result, the clinical use of processed cadaveric allografts continues to 

increase [LUCARELLI 2005, WHEELER 2005]. However, allografts do not repair as 

quickly or completely as autografts and carry some risk of disease transmission.  The 

destruction of live cells during tissue processing is a primary factor responsible for the 

loss of osteogenic properties, and the dense nature of cortical bone allografts impedes 

revascularization and cellular invasion from the host following implantation 

[ENNEKING 2001, ITO 2005, WHEELER 2005]. This limited ability to revascularize 
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and remodel is believed to be responsible for the 25% clinical failure rate and 30-60% 

complication rate associated with allograft implantation [LUCARELLI 2005, WHEELER 

2005].   

Tissue engineering strategies that include a porous structural scaffold with or 

without delivery of biological components provide a possible approach to the 

development of effective bone graft substitutes. The critically-sized segmental defect 

model can serve as a robust test bed for tissue-engineered bone regeneration strategies, 

even in small animals such as rats [BRAUN 1992, BRUDER 1998 Clin Orthop, CHEN 

2002, LIEBERMAN 1999 JBJS, LEE 1994, OHURA 1999, WERNTZ 1996, YASKO 

1992]. Although most segmental defect repair studies have focused on radiographic 

evaluation of healing, more quantitative measures of functional integration may provide 

an improved ability to benchmark different strategies for bone regeneration.  In addition 

to biomechanical testing to quantify functional integration of bone repair constructs, in 

vitro or in vivo microcomputed tomography (micro-CT) imaging can be applied to 

quantify the ingrowth of mineralized matrix into bone defects [CASE 2003, GULDBERG 

1997].     

The composition and architecture of biomaterial scaffolds are important variables 

that strongly affect the repair response.  Although ceramic scaffolds composed of 

hydroxyapatite or tri-calcium phosphate are by composition an attractive option, they are 

typically limited by brittleness, incomplete interconnectivity, and relatively low porosity. 

When implanted in vivo, ceramics may in fact sustain enough damage under repeated 

loading to fracture [BRUDER 1998 JBJS]. In order to achieve more desirable mechanical 

properties and more controllable architecture, polymeric or composite scaffolds may be 
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custom manufactured to meet the functional requirements at the defect site [ZEIN 2002].  

However, the ability of structural polymeric scaffolds to promote the repair of large 

critically-sized defects – alone or in combination with bioactive factors – is not well 

established.  

Growth factors, such as members of the bone morphogenetic protein (BMP) 

family, are frequently used at very high doses to treat osseous defects [YASKO 1992, 

SWIONTKOWSKI 2006, BURKUS 2002]. It has been shown previously, however, that 

delivery of two growth factors together, specifically BMP-2 and transforming growth 

factor β3 (TGF-β3), can result in a synergistic interaction that promotes bone formation 

at relatively low doses of total delivered protein in the presence of bone marrow stromal 

cells [SIMMONS 2004]. This work, however, was done in an ectopic mouse model of 

osteogenesis and the potential for co-delivered growth factors to promote functional 

repair in a critically-sized segmental bone defect model has not been previously 

investigated. 

One essential element contributing to the viability of an implanted tissue-

engineered construct is the development of a vascular supply to the implant that will 

provide nourishment and biological cues for cells migrating into or previously seeded 

onto the scaffold. In order to develop an efficacious tissue-engineered bone replacement, 

it is important to understand the process of and factors affecting vascular ingrowth into 

the defect site. Although traditional methods have relied on histological methods to 

quantify vascular structure density, recent use of micro-CT coupled with perimortem 

perfusion of a radio-opaque contrast agent provides a promising and more facile 

alternative method [DUVALL 2004]. This technique was developed and characterized in 
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a mouse model, and some adaptation would be required for application to a larger rodent 

model, such as the rat.  

 The goals of this study were to establish a segmental bone defect test bed model 

that allowed in vivo micro-CT analysis, to test the ability of structural polymer scaffolds 

to promote bone repair and restore mechanical function in the rat femur, and to establish 

the feasibility of a hindlimb vascular perfusion procedure. Polymeric scaffolds having 

longitudinally oriented porosity aligned with the direction of healing were tested with and 

without augmentation by low doses of co-delivered BMP-2 and TGF-β3.  

 

3.3 Methods 

 

3.3.1 Scaffold Production 

Poly(L-lactide-co-D,L-lactide 70:30) (PLDL) cylindrical scaffolds with 

longitudinally oriented porosity (4 mm φ x 8 mm L) were created using previously 

described methods [LIN 2003].   Briefly, 100 micron removable fibers coated with a 

mixture of PLDL and the porogen azodicarbonamide were used to create oriented 

macroporosity, while decomposition of the porogen with the addition of heat produced 

random microporosity.  Prior to implantation, the PLDL scaffolds were sterilized by 

gamma-irradiation (2.5 Mrad). The scaffolds were then wetted with 70% ethanol and 

rinsed in saline prior to vacuum coating with 25 µg/ml rat plasma fibronectin (F0635; 

Sigma-Aldrich) overnight to improve cell adhesion capability. Excess fibronectin was 

diluted from the scaffolds using a sterile saline rinse.  
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3.3.2 Addition of Growth Factor to Scaffolds 

Sterile recombinant carrier-free BMP-2 and TGF-β3 (355-BM/CF and 243-

B3/CF, R&D Systems, Minneapolis, MN) were reconstituted in 4 mM HCl immediately 

prior to use. MVG sodium alginate (Pronova Biopolymers, Norway) was gamma-

irradiated at a dose of 5 Mrad to produce a short chain length alginate powder. The short 

chain alginate was then functionalized with a G4RGDSP sequence at a density of 2 RGD 

sequences per chain using carbodiimide chemistry [SIMMONS 2004]. The RGD-alginate 

was sterile filtered and lyophilized. For use in the PLDL scaffold system, RGD-alginate 

was reconstituted to a concentration of 2%, containing either BMP-2 and TGF-β3 or no 

growth factor. Fibronectin-coated PLDL scaffolds were placed into cylindrical molds 

with a CaCl2-wetted membrane on the bottom surface. A volume of 50 µl RGD-alginate 

containing either 200 ng BMP-2 and 20 ng TGF-β3 (growth factor-treated group) or no 

growth factor (scaffold only group) was pipetted into each scaffold, and a CaCl2-wetted 

membrane was placed on top of the scaffold in the cylindrical mold. After 20 minutes, 

the scaffolds were removed from the molds and placed into a sterile CaCl2 bath for an 

additional 20 minutes to allow full cross-linking of RGD-alginate within the scaffold.  

 

3.3.3 Surgical Technique 

All surgical techniques and procedures were reviewed and approved by the 

Institutional Animal Care and Use Committee at Georgia Institute of Technology 

(Protocol #A03017). The study presented here tested the effects of implanting plain or 
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growth factor augmented PLDL scaffolds on mineralized matrix formation and 

mechanical properties within an 8 mm gap defect. Female Sasco Sprague-Dawley rats 

(Charles River Labs, Wilmington, MA) aged 13 weeks were anesthetized using 

isoflurane. Taking an anterior approach, bilateral incisions were made over the length of 

the femurs. Each limb received a custom modular fixation plate secured directly to the 

femur using four miniature screws (J.I. Morris Co, Southbridge, MA). Bilateral full-

thickness diaphyseal segmental defects 8 mm in length were created using a miniature 

oscillating saw and flushed with saline (Figure 1). Defects received one of the following 

three treatments: no scaffold (empty treatment group) (n = 7), a PLDL scaffold (n = 15), 

or a PLDL scaffold augmented with 200 ng BMP-2 and 20 ng TGF-β3 co-delivered in 

RGD-alginate (n = 6). Animals were given 0.05 mg/kg buprenorphine subcutaneously 

every 12 hours for the first 48 hours post-op. Within 2-3 days post-op, the animals 

resumed normal ambulation and did not show signs of pain or distress.  
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Figure 1: Rat femur with attached fixation plate assembly and 8 mm defect.  
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3.3.4 X-ray and Micro-CT 

Two-dimensional in vivo digital X-rays (Faxitron MX-20 Digital; Faxitron X-ray 

Corporation, Wheeling, IL) were taken at five time points: 3 days post-op and 4, 8, 12, 

and 16 weeks post-op. These X-rays provided a qualitative assessment of healing and 

defect stability over time. Rates of union were assessed by two blinded observers. Union 

was considered to occur when a visible bridge of bone extended completely across the 

length of the defect site.  

Quantitative 3-D analysis of bone ingrowth in 8 mm defects was performed at 4 

and 16 weeks post-op using an in vivo micro-CT system (Viva-CT 40; Scanco Medical, 

Bassersdorf, Switzerland) at a 38.5 µm voxel resolution (in vivo scans) and 20 µm 

resolution (in vitro scans). After scanning, a constant volume of interest (VOI) centered 

over the defect site was selected for analysis of all samples. Two VOIs were analyzed; 

the in vivo VOI was 118 slices thick (approximately 4.6 mm thick) and centered over the 

defect longitudinally while the in vitro VOI was 400 slices thick (approximately 8 mm). 

A Gaussian filter (sigma = 1.2, support = 1) was used to suppress noise in the VOI prior 

to application of a consistent global threshold corresponding to 272 mg 

hydroxyapatite/cm3. The threshold was selected manually using evaluations of ten single 

tomographic slices to isolate the bone tissue and preserve its morphology while excluding 

soft tissues and polymer scaffold. The exclusion of soft tissues and polymer using this 

threshold was verified by plotting a histogram of voxel attenuation versus threshold 

values. The selected threshold of 272 mg hydroxyapatite/cm3 was consistently found to 

lie outside of the range of values corresponding to soft tissue and polymer. Applying this 

global threshold to the VOI, object (bone) volume and total volume were computed as 
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total number of voxels multiplied by voxel volume (a direct measurement that does not 

assume any particular microstructural morphology). 

For post-mortem (in vitro) micro-CT imaging only, spatial analysis of the 

mineralized matrix was conducted. Bone formation in the proximal 4 mm of the defect 

was compared to that in the distal 4 mm of the defect. The amount of mineral in the core 

2 mm of the scaffold was also compared to that in the edges of the scaffold and 

surrounding matrix (periphery). Spatial analysis wasn’t done on in vivo images due to the 

small VOI. The distribution of mineral in the proximal and distal halves of the in vivo 

VOI is generally homogeneous. Additionally, the angle at which the femur must be 

scanned in order to permit travel of the animal’s body into the bore of the Viva-CT 40 is 

such that core vs. periphery analysis is not possible – the long axis of the femur lies at a 

variable angle.  

  

3.3.5 Mechanical Testing 

After euthanasia at 16 weeks post-op, samples were harvested and wrapped in 

saline-soaked gauze for subsequent storage at -20°C. Prior to mechanical testing, the 

samples were allowed to thaw to room temperature in a saline bath before removal of the 

gauze. The samples were subjected to torsion using a servohydraulic mechanical testing 

system (858 MiniBionix II load frame; MTS, Eden Prairie, MN). The ends of the femurs 

were potted using Wood’s Metal (033218-36; Alfa Aesar, Ward Hill, MA) and pinned 

through the potting blocks. The potted femurs remained wrapped in saline-soaked gauze 

to maintain hydration of the tissues during testing. Samples were loaded into the testing 

system and the bridging components of the plates were removed along with the gauze. 
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Samples were then tested at a rate of 3°/sec to failure. Age-matched intact femurs were 

also tested for comparison.  

 

3.3.6 Vascular Perfusion 

In a small 5 mm defect pilot study, vascularization within the defect region was 

quantified at 16 weeks post-op. Animals (n=3) were anesthetized and the abdominal aorta 

was catheterized for this terminal procedure. Heparin (H0777; Sigma-Aldrich) was 

delivered via the catheter. All blood was flushed from the hindlimbs with saline and 

exited through a vent in the inferior vena cava. A 10% neutral-buffered formalin wash 

was perfused to fix the vessel walls. After a saline rinse, the vasculature was finally filled 

with a radio-opaque silicone-based contrast agent (Microfil MV122; Flowtech Inc., 

Carver MA). The contrast agent was allowed to polymerize before the femurs were 

harvested and formalin fixed.  Each femur was scanned in vitro to obtain a composite 3D 

image of mineralized matrix and vascularity.  The samples were subsequently decalcified 

and micro-CT imaged again at a 20 µm voxel size to produce a 3D reconstructed image 

of vascular ingrowth. 

 

3.3.7 Histology 

 One sample from each treatment group was selected for histological analysis. 

Stains used included von Kossa, Masson’s trichrome, and haematoxylin and eosin. 
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3.3.8 Statistics 

Analysis of variance was performed using a general linear model and Tukey 

pairwise post-hoc comparisons (Minitab).  Differences between variables measured for 

scaffold-treated and control defects were considered significant at p ≤ 0.05 and a trend at 

p ≤ 0.10.  

 

3.4 Results 

 

3.4.1 Scaffold Characterization 

The scaffolds produced were transversely isotropic with longitudinally oriented 

macropores (Figure 2). Micro-CT quantification of scaffold parameters revealed that the 

resulting scaffold porosity averaged 77%  A previously described method involving 3-D 

image inversion and discrete component labeling indicated that the porosity was over 

99% interconnected, verifying that porogen decomposition did not produce isolated 

bubbles within the polymer struts [LIN 2003]. Analysis of strut morphology showed an 

average thickness of 0.08 mm and spacing (i.e. pore size) of 0.38 mm. The mechanical 

properties of the scaffolds after irradiation included a mean elastic modulus of 63.35 ± 

5.12 MPa, and mean ultimate compressive strength of 2.87 ± 0.12 MPa. 
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Figure 2: Micro-CT and electron microscopy images of PLDL scaffolds. 
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3.4.2 X-ray Imaging 

Monthly Faxitron X-ray images beginning at week 4 were used to qualitatively 

track the progression of bone ingrowth into the defect region (Figure 3). In untreated 

(empty) control defects, the cut ends of the femurs were consistently rounded off with a 

small amount of appositional bone formation, and bridging of the defects was never 

observed.  In contrast, X-ray images showed progressive infiltration of mineralized tissue 

into scaffold-treated defects over the 16 week in vivo implantation period.  Mineral 

deposition typically initiated at the periosteal surface and the proximal end of the defect, 

forming a sheath-like structure around the ends of the scaffolds. At 16 weeks, 

mineralized tissue was observed to form within the scaffold pore space as well. However, 

PLDL treatment resulted in bridging of the defect site with mineralized tissue in only two 

cases. Augmentation of the scaffolds with 200 ng BMP-2 and 20 ng TGF-β3 resulted in 

apparently denser mineralized matrix formation within the defect site, proceeding 

similarly to PLDL only treated defects, with union occurring in 33% (2 of 6) samples as 

compared to 17% (2 of 12) for the PLDL scaffold-only group. 
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Figure 3: Digital X-ray images of femurs from each of the three treatment groups. Rates 
of bony union were: 2/6 for the 200/20 dose BMP-2/TGF-β3 augmented group and 2/12 
for the PLDL only treated group. The empty defects never achieved union (n = 6). 
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3.4.3 Micro-CT Analysis 

In Vivo Micro-CT Analysis of Bone Formation 

In vivo micro-CT imaging permits quantitative 3-D analysis of bone ingrowth into 

the central region of the defect within the same animal at multiple time points. Bone 

volume (BV) was therefore quantified within a consistent VOI centralized in the 8 mm 

defect region for each group and compared at 4 and 16 weeks post-op (Figure 4). There 

was a significant increase in BV overall with time. Within treatment groups, defects 

treated with PLDL scaffolds showed a significant increase in BV from 4 to 16 weeks, as 

did the growth factor augmented treatment group, while there was no increase in bone 

volume from week 4 to week 16 in the empty defect control group. Compared to empty 

defects, implantation of scaffold alone did not significantly increase BV at either time 

point, while the scaffold plus growth factor group significantly improved repair at both 4 

and 16 weeks.   
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Figure 4: Average bone volumes at 4 and 16 weeks post-op for the three treatment 
groups. * denotes p < 0.05 for an increase in bone volume from 4 to 16 weeks within a 
treatment group (6 ≤ n ≤ 15).  
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In Vitro Micro-CT Analysis of Bone Formation 

Micro-CT imaging done post-mortem and immediately prior to mechanical testing 

yielded similar results as were seen in the week 16 in vivo micro-CT calculations in terms 

of mature bone volume (Figures 5 and 6). The difference in bone volumes between the 

growth factor augmented group and the empty defects group was statistically significant 

(p = 0.009). Spatial analysis of the defect regions demonstrated that augmenting the 

scaffold with the 200/20 dose of BMP-2/TGF-β3 significantly improved mineralized 

matrix within the core of the scaffold as compared to delivery of the scaffold alone or 

non-treatment (empty defects) (Figure 7). The amount of bone forming within the 

periphery of the scaffold and the area immediately surrounding the scaffold was 

significantly improved in the growth factor augmented group as compared to non-

treatment (Figure 7). The bone volume fraction (BVF), or percent of the VOI filled with 

mineralized tissue, was significantly elevated in the 200/20 dose growth factor treatment 

group as compared to the empty defect group for the peripheral VOI (Figure 8). 

Additionally, the delivery of low-dose growth factors significantly improved the 

formation of bone on the proximal half of the defect as compared to empty defects. Bone 

volume on the distal half of the defect site was not significantly impacted (Figure 9).  
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Figure 5: Post mortem bone volumes (16 weeks) for the entire defect region (5 ≤ n ≤ 10). 
While implantation of a plain PLDL scaffold did not significantly enhance mineral 
deposition over non-treatment, addition of 200 ng BMP-2 and 20 ng TGF-β3 did 
significantly impact bone volume (p = 0.009).  

 

 

 

 

 

 

 

 

 

Figure 6: Micro-CT images of the defect region taken post mortem. Left, mineral in an 
empty defect shows only a small amount of appositional bone formation. Middle, some 
infiltration of mineral into the scaffold porosity is evident. Right, mineralized matrix is 
significantly more present in the 200/20 dose growth factor-augmented treatment. 
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Figure 7: Spatial distribution of post mortem bone volumes (5 ≤ n ≤ 10). Volumes of 
interest are separated as the core (central 2 mm) and periphery (external 2 mm of scaffold 
and adjacent periphery) along the 8 mm length of the defect. The treatment group 
receiving the 200/20 dose of BMP-2/TGF-β3 had significantly improved mineral 
volumes in both the core and periphery as compared to empty (untreated) defects. 
Augmentation of the PLDL scaffold with the low dose of BMP-2/TGF-β3 significantly 
increased the quantity of mineral in the core of the scaffold.  

 
 

 

 

 

 

 

 

 

Figure 8: Spatial distribution of post mortem bone volume fractions (5 ≤ n ≤ 10). 
Volumes of interest are separated as the core (central 2 mm) and periphery (external 2 
mm of scaffold and adjacent periphery) along the 8 mm length of the defect. The 
treatment group receiving the 200/20 dose of BMP-2/TGF-β3 had a significantly 
improved peripheral bone volume fraction as compared to the empty (untreated) group. 
There were no differences in core BVF between the treatment groups. 
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Figure 9: Spatial distribution of post mortem bone volumes along the long axis of the 
femur (5 ≤ n ≤ 10). There was significantly more mineral in the proximal end of the 
defect in the group treated with a scaffold and 200 ng BMP-2/20 ng TGF-β3 than in the 
empty defects.  
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In Vitro Micro-CT Analysis of Vascular Structures 

 In the 5mm defect pilot study, in vitro micro-CT was performed on three perfused 

samples before and after decalcification to isolate the vascularity and demonstrate the 

feasibility of the technique (Figure 10). The protocol for this perfusion technique was 

adopted from previously published work using a mouse model of hindlimb ischemia, and 

is described in Appendix D [DUVALL 2004]. Micro-CT done before decalcification 

gives images and quantitative information regarding the bone and vascular structures 

together. Imaging of samples after decalcification permits quantification of vascular 

structures alone (vascular volume) (Figure 11). Using a strictly defined VOI enables 

estimation of the bone volumes that can be obtained by subtracting the vascular volumes 

from the combined object volume of the bone and vasculature together. Although the 

small sample size precluded statistical analysis, a small elevation in vascular volume was 

observed in PLDL-treated defects as compared to empty defects (20.7 mm3 for PLDL-

treated defects and 16.3 mm3 for empty defects).  
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Figure 10: In vitro micro-CT quantification of vascular structures in decalcified samples. 
Statistical significance was not determined due to the small sample size (n = 3). The 
results served primarily to establish that perfusion of the hindlimb defect area was 
feasible and that the vascular volume could be quantified using micro-CT.  
 

 

 

 

 

 

 

 

 

 

Figure 11: Images taken from in vitro micro-CT quantification of vascular structures in 
decalcified samples. There appears to be somewhat more vasculature in the PLDL-treated 
defect than in the empty defect, although the sample size was not adequate to permit 
statistical analysis.  
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3.4.4 Mechanical Testing 

Torsional mechanical testing was performed on samples harvested at 16 weeks 

post-op. Even at this late time point, empty control defects were found to have negligible 

resistance to torsional deformation with both strength and stiffness below the resolution 

of the mechanical testing system.  In contrast, PLDL-treated 8 mm defects reached an 

average maximum torque of 0.0402 ± 0.019 N-m (Figure 12) and stiffness of 0.0003 ± 

0.00019 N-m/deg (Figure 13). Although most PLDL-treated samples did not achieve 

bony union across the defect, sufficient integration of the scaffold into the defect site had 

occurred to permit torsional testing of these samples. All failures occurred at the distal 

scaffold-bone interface, consistent with observation of greater bone formation at the 

proximal end.  Augmentation of the scaffolds with BMP-2 and TGF-β3 yielded a further 

increase in mechanical properties, however the differences in maximum torque and 

stiffness were not statistically significant (Figures 12 and 13, Table 1). Although scaffold 

and growth factor treatment resulted in an improvement in mechanical function over 

empty defects, maximum torque and stiffness remained approximately an order of 

magnitude lower than those measured for age-matched intact femurs (0.4932 N-m and 

0.0457 N-m/deg, respectively).  
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Figure 12: Average maximum torque for PLDL and 200/20 dose BMP-2/TGF-β3 
augmented groups at 16 weeks (5 ≤ n ≤ 10). The difference in maximum torque between 
the treatment groups is not statistically significant.  

 

 

 

 

 

 

 

 

 

 

Figure 13: Average stiffness for PLDL and 200/20 dose BMP-2/TGF-β3 augmented 
groups at 16 weeks (5 ≤ n ≤ 10). The difference in stiffness between the two treatment 
groups is not statistically significant. 
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Table 1: Average bone volumes and mechanical properties for samples from the three 
treatment groups. 
 

Sample Average 
Bone Volume 

Week 4 
(mm3) 

Average 
Bone Volume 

Week 16 
(mm3) 

Average 
Stiffness 

(N-mm/deg) 

Average 
Maximum 
Torque (N-

mm) 
Empty 1.8538 (n=7) 2.1397 (n=6) NA NA 
PLDL 5.1639 (n=15) 17.6466 (n=12) 0.3 (n=8) 40.2 (n=8) 
PLDL + 200/20 Dose 
Growth Factors 

9.8809 (n=6) 31.6099 (n=6) 0.8 (n=5) 56.9 (n=5) 
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3.4.5 Histology 

 Staining of 8 mm defects indicated that, in empty defects, the defect site was 

filled by loosely organized fibrous tissue with no indication of bony bridge formation 

(Figure 14). PLDL-treated defects showed invasion of highly cellular tissue into the 

porosity of the scaffold, with limited mineralized tissue infiltration into the scaffold 

longitudinal macropores primarily at the proximal end of the defect (Figure 15). 

Consistent with the healing response to segmental bone grafts, most bone formation 

occurred around the periphery of the scaffold. Masson’s trichrome and von Kossa 

staining of undecalcified sections confirmed formation of mineralized matrix along the 

periphery of the implanted scaffold with some bone ingrowth into the macropores, and 

that the empty defects were filled with fibrous tissue. Residual scaffold material was 

visible in PLDL-treated defects at 16 weeks post-op. The BMP-2 and TGF-β3 treatment 

group exhibited results similar to the scaffold only treatment group – mineralized matrix 

formation along the periphery of the scaffold and to a lesser extent within the porosity of 

the scaffold (Figure 16). There were no signs of an inflammatory reaction to the scaffold 

in any of the treatment groups.  
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Figure 14: Histological sections taken from an empty defect; top row H&E, lower row 
Masson’s trichrome. In H&E stains, tissue stains varying colors of pink (with mineralized 
matrix showing as bright pink at either end of the image) and the cell nuclei stain dark 
purple. In Masson’s trichrome, muscle fibers stain red, bone and other collagenous 
tissues stain blue, and cell nuclei stain dark purple. The remains of the femur at the 
cutting interface can be seen as the blue squared-off structure at the right end of the 
image. The muscle can be seen lapsing into the defect area in the upper half of the 
images. 
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Figure 15: Histological sections taken from scaffold-treated defect; top row H&E, middle 
row Masson’s trichrome, lower row von Kossa. In H&E stains, tissue stains varying 
colors of pink (with mineralized matrix showing as bright pink at either end of the image) 
and the cell nuclei stain dark purple. A hole remains where one of the screws for the 
fixation plate was placed. In Masson’s trichrome, muscle fibers stain red, bone and other 
collagenous tissues stain blue, and cell nuclei stain dark purple. The remains of the femur 
at the cutting interface can be seen as jagged bright blue structures at the ends of the 
image. In von Kossa staining, mineral is represented by black areas with a haematoxylin 
counterstain. The results parallel those of Masson’s trichrome. 



 72

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Histological sections taken from a defect augmented with 200 ng BMP-2 and 
20 ng TGF-β3; top row H&E, middle row Masson’s trichrome, lower row von Kossa. In 
H&E stains, tissue stains varying colors of pink (with mineralized matrix showing as 
bright pink at either end of the image) and the cell nuclei stain dark purple. A hole 
remains where one of the screws for the fixation plate was placed. In Masson’s trichrome, 
muscle fibers stain red, bone and other collagenous tissues stain blue, and cell nuclei stain 
dark purple. The remains of the femur at the cutting interface can be seen at the ends of 
the image. Muscle tissue is not seen in this image as the scaffold has excluded it from the 
defect region. In von Kossa staining, mineral is represented by black areas with a 
haematoxylin counterstain. The results parallel those of Masson’s trichrome. 
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3.5 Discussion 

Long-term success of clinical treatments for repair of large segmental bone 

defects relies heavily on achieving stable union and subsequent promotion of bone 

remodeling. Although increasingly used clinically because of its desirable size and 

structural properties, processed allograft bone provides a suboptimal solution due to the 

lack of living cells and low porosity, resulting in a high rate of re-fractures within one to 

two years [ITO 2005]. In these studies, a structural polymer scaffold with oriented 

porosity designed to facilitate bone ingrowth was evaluated as a bone graft substitute in a 

critically-sized rat segmental defect model.  Micro-CT based methods were established to 

quantify 3-D mineralized matrix ingrowth into the implanted scaffolds.  These 

quantitative methods in combination with biomechanical evaluation of functional 

integration provide a robust approach to evaluate and benchmark different approaches to 

segmental bone repair. 

The standard rat segmental defect model, originally used by Nottebaert et al., was 

modified to achieve highly stable fixation of a reproducible critically-sized 8 mm femoral 

segmental defects while permitting in vivo micro-CT and X-ray imaging 

[NOTTEBAERT 1989]. The custom modular fixation plates are designed with an offset 

from the bone to permit tissue infiltration from the entire periphery of the defect. The 

fixation plates are comprised of three components; two stainless steel anchor plates that 

affix directly to the bone via miniature screws and one polymer bridging plate that is 

secured to the stainless steel plates. This modular design provides a radiolucent window 

that permits in vivo micro-CT and X-ray imaging. The unique design also facilitated 

removal of the polymer bridging plate for torsional testing without causing damage to the 
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bone or repair tissue, as it was connected only to the anchor plates, which remained intact 

and fixed to the femur. The fixation plate assembly also serves as a cutting guide that 

enables the surgeon to create consistent and uniformly sized defects. The large size, 

stability, and consistency of the 8 mm defect used resulted in a highly consistent model of 

defect nonunion. The advantages of using a small animal model include the ability to use 

high-resolution in vivo imaging techniques and the potential to house larger sample sizes 

within the study than are typically used in larger animal models such as canines. Among 

the disadvantages is the possibility that certain processes, such as revascularization, may 

be less relevant and difficult to rigorously assess as the net size of the defect is 

significantly smaller than what can be achieved in larger animal models. In an attempt to 

compensate for the inherent limitations and scaling problems of a small animal model, 

the segmental femoral defect has been made as large as possible.  

The sequential imaging strategy of multiple in vivo micro-CT scans for 

quantification of bone formation facilitated direct comparisons within the same animal at 

multiple time points, reducing the number of animals required and variability within 

treatment groups. Longitudinal scanning was done at 4 and 16 weeks post-op in 8 mm 

defect samples, permitting direct study of the changes in bone volume within the same 

sample population. Although longitudinal micro-CT scanning is very useful, repeated X-

ray exposure may have an effect on the repair response.  However, the size and resolution 

of the images produced in these studies produced an estimated local dose of 0.17 Gy per 

scan. This dose is well below the dosages (4 Gy or greater) that have been shown to 

inhibit cell proliferation and growth factor production by cells in vitro [DUDZIAK 2000]. 
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Bone volume within empty defect controls was minimal and did not increase from 

4 to 16 weeks, confirming that 8 mm represents a critically-sized defect in the rat. This is 

consistent with several previous studies that have used segmental bone defects in the rat 

model ranging from 5 to 8 mm [BRAUN 1992, BRUDER 1998 Clin Orthop, BRUDER 

1998 JOR, CHEN 2002, FEIGHAN 1995, HOLLINGER 1990, ISOBE 1999, 

LIEBERMAN 1999 JBJS, NOTTEBAERT 1989, OAKES 2003, OHURA 1999, 

STEVENSON 1994, WERNTZ 1996, YASKO 1992]. Typically, 5 mm defects achieve a 

spontaneous union rate ranging from 10-50%; the 100% rate of non-union in untreated 

defects here suggests that the 8 mm defect is sufficient in size to achieve a critically-sized 

model [WERNTZ 1996, NOTTEBAERT 1989]. Bone ingrowth into PLDL scaffolds, 

with or without growth factors, increased significantly from 4 to 16 weeks. However, 

micro-CT and mechanical testing data clearly indicated that PLDL scaffold treatment was 

necessary, but alone was insufficient to consistently bridge the defect region and restore 

the functional properties of the femur. It is possible that consistent bone union could be 

achieved in this model by using different scaffold materials or architectures or by waiting 

longer than 4 months. However, in this study, Faxitron scans qualitatively suggested that 

although bone density continued to increase between 8 and 16 weeks, the extent of 

immature ingrowth was largely determined by 8 weeks. All of the defects found to be 

bridged by mineralized matrix at 16 weeks, for example, had a similar distribution of 

slightly lower density tissue ingrowth at 8 weeks. These data suggest that the presence of 

an appropriate scaffold template is necessary but not sufficient to restore long bone 

function in the 8 mm rat defect model.     
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These results were consistent with several previous studies that demonstrated the 

need for biological enhancement of porous scaffolds to repair large segmental bone 

defects. Bruder et al. implanted hydroxyapatite/tricalcium phosphate (HA/TCP) ceramic 

cylinders into defects and found healing dominated by fibrous tissue formation and 

minimal integration at the cut bone-scaffold interfaces. The addition of mesenchymal 

stem cells to the HA/TCP implants improved the bone repair response [BRUDER 1998 

JOR]. Work by Feighan et al. showed that addition of demineralized bone matrix gel to 

HA/TCP scaffolds resulted in increased bone formation as compared to the delivery of 

HA/TCP alone, with neither group achieving functional union [FEIGHAN 1995]. Isobe 

et al. treated segmental defects with PLGA capsules containing PLGA particles with or 

without BMP-2 within the defect site [ISOBE 1999]. This treatment resulted in osseous 

union only in the BMP-2 treated groups. Overall, the evidence points to the necessary 

addition of a biological component to implanted scaffolds in order to promote union of 

large bone defects [BRUDER 1998 JOR, FEIGHAN 1995, ISOBE 1999, LIEBERMAN 

1999 JBJS, LEE 1994, NOTTEBAERT 1989, OAKES 2003, OHURA 1999, 

STEVENSON 1994, YASKO 1992].  However, the optimal strategy for safe and 

effective biological enhancement of scaffolds has not yet been determined. 

The addition of low dose of co-delivered growth factors (200 ng BMP-2 and 20 

ng TGF-β3) to a scaffold induced greater mineralized matrix formation within the defect 

and a higher rate of bone bridging across the defect than non-treatment. Growth factor 

augmentation of the scaffold significantly improved bone volume within the core of the 

scaffold over core bone volumes in the other two treatment groups. Peripheral bone 

volume was significantly increased between the growth factor group and the empty 
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group, but not between the scaffold group and the growth factor group. Bone volume 

within the core 2 mm diameter of the scaffold was significantly enhanced by addition of 

BMP-2/TGF-β3 over delivery of a scaffold alone. It is possible that the scaffold provides 

a physical path down which marrow-derived osteoprogenitors can migrate, and that 

addition of physiologic doses of BMP-2 and TGF-β3 are sufficient to enhance this 

marrow cavity response. This suggests that even at very low doses, the growth factors are 

capable of encouraging more evenly-distributed mineralization than is achieved with 

scaffold delivery alone. Additionally, proximal bone volume was affected by treatment 

while distal bone volume was not. These data suggest that the periosteal response, which 

is the likely source for osteoprogenitors contributing to the peripheral bone volume, is 

stimulated by the presence of the scaffold, but that augmentation with the low dose (200 

ng BMP-2 and 20 ng TGF-β3) of growth factor is insufficient to stimulate the pre-

osteoblastic cells to regenerate a full mineralized callus around the implant. Anecdotally, 

it is known that in segmental defect models there tends to be a stronger response to 

treatment on the proximal end of the defect region. The reason for this is not known, 

although it has been hypothesized that the distal end may suffer more necrosis than the 

proximal end due to differences in the vascularity of the tissue. The reason for this 

phenomenon merits further investigation. 

The growth factor augmented constructs, however, failed to consistently produce 

bone union across the defect and did not significantly improve torsional strength relative 

to the scaffold only group. Although the low dose of co-delivered growth factors tested 

has been shown previously to induce osteogenesis in an ectopic model, this study 

suggests that a higher dose of BMP-2 and TGF-β3, or some other combination of growth 
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factors, is required to restore function to large orthotopic defects [SIMMONS 2004]. In a 

challenging environment such as the segmental defect, much higher doses of growth 

factor have traditionally been used (9-20 µg of growth factor) [YASKO 1992, 

LIEBERMAN JBJS 1999]. It is possible that requirement for these extremely high doses 

of growth factor may be decreased through combining growth factors that demonstrate 

synergistic or additive interactions or by employing sustained release strategies. The need 

to use high doses of growth factors has been one aspect of traditional investigations that 

has slowed the translation of growth factor therapy into the clinical setting. If the efficacy 

of lower doses of growth factor can be demonstrated, it may facilitate the clinical use of 

growth factor therapies for bone repair.  

The slow degradation rate of the PLDL scaffolds used in this study may have also 

impeded mineralized matrix formation into the defect region. Scaffold modifications to 

accelerate degradation such as the addition of ceramic particles that increase the surface 

area available for hydrolysis may therefore improve functional repair of segmental 

defects. Matching the degradation rate of the scaffold to the rate of mineralized matrix 

deposition is important in maintaining structural integrity of the defect while still 

promoting functional osseous union. Scaffold pore geometry may also play an important 

role. Both histological and micro-CT images showed progressive infiltration of bone into 

the longitudinal macropores of the scaffold, while radial ingrowth appeared to rely on 

scaffold degradation from the periphery inward.   

Rather than relying on histological methods, quantitative analysis of vascular 

structures was achieved using a terminal perfusion procedure coupled with 

decalcification of samples and subsequent in vitro micro-CT imaging. The sample size 
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was insufficient to conduct statistical analysis, as the pilot study was done strictly to 

demonstrate the feasibility of the technique for use in quantifying vasculature within the 

implant. Decalcification substantially improved the ability to isolate and analyze 3D 

vascular ingrowth since segmentation of mineralized bone from perfused vasculature is 

difficult (in segmenting the bone out of the image, the integrity of the continuous voxels 

representing the vascular structures is diminished). Good agreement between micro-CT 

based vessel density calculations and traditional histomorphometric measurements has 

previously been shown [DUVALL 2004]. Combining this vascular imaging method with 

in vivo micro-CT analysis of bone ingrowth allows evaluation of 3D mineralization and 

vascularization within the same defects.  However, a limitation of the combined in vivo/in 

vitro scanning technique is that the decalcification step required for vascular imaging 

precludes subsequent biomechanical testing. 

This study established a challenging rat segmental bone defect model compatible 

with in vivo micro-CT imaging to quantify longitudinal 3-D mineralized matrix ingrowth. 

Healing of the defect region was improved by implantation of structural polymeric 

scaffolds infused with growth factors incorporated within RGD-alginate, however, 

functional integration of the constructs appeared to be limited by continued presence of 

the slow-degrading scaffolds and perhaps suboptimal dose or delivery of osteoinductive 

signals. Subsequent chapters will focus on quantifying dose-dependent effects of co-

delivered growth factors on the ability of porous polymer scaffolds to restore function to 

large segmental bone defects. 
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CHAPTER 4 

 

DOSE-DEPENDENT AND INTERACTION EFFECTS OF DUAL OSTEOGENIC 
AND CHONDROGENIC GROWTH FACTOR DELIVERY 

 
 

4.1 Abstract 

 The delivery of bioactive proteins within porous biomaterial scaffolds represents a 

potential alternative treatment strategy to bone grafting.  Given the complex temporal and 

spatial expression of multiple growth factors during bone repair, an approach involving 

sustained co-delivery of proteins may be advantageous.  In this study, an oriented 

polylactide scaffold was used to provide structural support to 8 mm rat segmental bone 

defects and combined with RGD alginate containing BMP-2 and TGF-β3.  These two 

growth factors have previously been shown to interact synergistically in an ectopic model 

of osteogenesis. A previously established critically-sized femoral defect model in rats 

was employed to assess the ability of these growth factor-infused constructs to bridge 

large bone defects and restore limb functionality. A dose-dependent increase in bone 

volume and mechanical properties was seen with co-delivery of the growth factors to the 

defect site (233% increase in bone volume, 160-200% increase in mechanical properties). 

The higher dose, 2000 ng BMP-2 and 200 ng TGF-β3, was more efficacious than the low 

dose treatment (200 ng BMP-2 and 20 ng TGF-β3), particularly at increasing bone 

volume at the early (4 week) time point. These data indicate that by exploiting growth 

factor interactions, low doses of total growth factor can successfully be used to promote 

bony union and improve functional integration of a bone graft substitute into a large 

osseous defect located at a load-bearing site. 
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4.2 Introduction 

 Bone loss due to traumatic injury, disease, or fracture complications poses a 

challenge for orthopaedic treatment. Issues such as open tibial shaft fractures and spinal 

fusions require frequent surgical intervention. Use of traditional approaches to treating 

these defects has frequently required secondary revision surgeries to address nonunions 

or pseudarthrosis at the treatment site. Delayed union and nonunion are common results 

of traumatic bone damage in which a significant defect is created [BORRELLI 2003, 

WERNTZ 1996, SWIONTKOWSKI 2006]. Although autografting is the gold standard 

treatment, this procedure is constrained by the lack of available donor material, an 

inability to obtain a structural graft, and considerable donor site morbidity. Thus, the 

allograft is the popular and facile solution to the problem of significant bone loss, 

although subject to a high rate of re-fracture and gross failure within a relatively short 

time period (2 years) post-engraftment [LUCARELLI 2005, WHEELER 2005, ITO 

2005]. This re-fracture incidence is due in large part to a lack of graft integration into the 

remaining host bone [ENNEKING 2001, ITO 2005, WHEELER 2005]. Lack of porosity 

within the allograft inhibits revascularization and revitalization of the allograft tissue, 

resulting in a propensity to accumulate microdamage that may ultimately lead to 

catastrophic graft failure (25% clinical failure rate) or contribute to the 30-60% 

complication rate associated with allografts [LUCARELLI 2005, WHEELER 2005]. 

Complications frequently result in treatment of defect nonunions or delayed unions, often 

necessitating revision surgery and significantly impacting patient quality of life. 

 Increasingly, surgeons are turning to non-host biologics to address the limitations 

of allografts and the pain concomitant with use of autografts. BMP-2 – the classic 
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osteoinductive growth factor – has been used with general success in clinical trials to 

augment mechanical fixation of open tibial fractures and as a replacement for autograft 

tissue in spinal fusions.  

The strategy of combining synthetic and biological factors to create a porous, cell-

friendly microenvironment that will enhance cellular invasion, implant vitalization, and 

bone formation in the defect site holds promise, as evidenced by the general success of 

the BMP-2/absorbable collagen sponge trials [SWIONTKOWSKI 2006, BURKUS 

2002]. To this end, we have developed a porous polymer scaffold with mechanical 

integrity that can be co-delivered with biological agents to promote osseointegration of 

the scaffold into a bony defect site and enhance functional repair of the osseous defect.  

 The 8 mm critically-sized segmental femoral rat defect model used in these 

studies provides a robust model of non-union in the absence of treatment. This defect 

model has been modified by our research group to provide several advantages over 

traditional fixation methods and simple radiological assessment of healing [OEST 2007]. 

The fixation plates in our model have been custom designed to obtain highly stable 

fixation of the defect and permit creation of uniform defects centrally located along the 

diaphysis of the femur. The plates are modular; a polymer bridging component permits in 

vivo micro-computed tomography (micro-CT) and X-ray imaging of the defect site while 

still allowing the researcher to remove the bridging plate without damaging the remaining 

bone or repair tissue for mechanical testing of samples post-mortem. The large size of the 

defect permits stringent comparison of various treatments while maintaining consistent 

non-union results in untreated (empty) defects. Smaller, more commonly used defects, (5 

mm in length) have a spontaneous union rate of 10-50% [WERNTZ 1996, 
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NOTTEBAERT 1989]. Additionally, a new strategy for quantitative evaluation of the 

healing response has been generated for the segmental defect model [OEST 2007]. This 

evaluation regime consists of quantitative micro-CT determination of bone volume within 

the defect at two time points in vivo, quantitative determination of limb functionality 

using biomechanical testing, and the traditional and qualitative measures of radiographic 

assessment of union rates and histological analysis.  

 Growth factor treatment of large osseous defects has traditionally relied on a large 

dose of a single osteoinductive growth factor – typically BMP-2 [LEE 1994, YASKO 

1992, LIEBERMAN 1999]. Experimental doses in murine models may be as high as 11-

20 µg per defect [YASKO 1992, LIEBERMAN 1999]. Although this results in 

reproducible bony union of the defect as assessed by radiography, typically in 5 mm 

defects, the equivalent amount of protein required to treat a critical human defect is 

substantial. One way to reduce the quantity of protein required is to exploit interactions 

between growth factors. Previously, BMP-2 and TGF-β3 have been shown to interact 

synergistically in the presence of bone marrow stromal cells to promote mineralized 

matrix formation in an ectopic mouse model of osteogenesis at very low (physiologic) 

doses [SIMMONS 2004]. 

 The goals of this study were to assess the interaction between BMP-2 and TGF-

β3 and dose-dependent effects of the co-delivery of these growth factors in a critically-

sized femoral defect model. The outcome measures were: radiographic assessment of rate 

of union, micro-CT measurements of bone volume within the defect, torsional testing to 

determine mechanical properties of the repair tissue, and histological comparison. 
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4.3 Methods 

 

4.3.1 Scaffold Production 

Poly-(L-co-D,L-lactide 70:30) (PLDL) cylindrical scaffolds measuring 8 mm in 

length and 4 mm in diameter were produced using a fiber coating and porogen 

decomposition technique described previously [LIN 2003]. Briefly, 100 micron fibers 

were coated with a mixture of PLDL and azodicarbonamide solvated in acetone. Fibers 

were bundled, fused together, and heat treated. During heat treatment, the 

azodicarbonamide decomposes from a solid to a gaseous phase, producing random 

interconnected micropores in the scaffold. The removal of the wires revealed oriented 

longitudinal macropores with approximately 77% porosity. Scaffolds were sterilized by 

gamma irradiation (2.5 Mrad), and coated with rat plasma fibronectin (25 µg/ml, F0635; 

Sigma-Aldrich) prior to seeding with growth factor.  

 

4.3.2 Addition of Growth Factor to Scaffolds 

Sterile recombinant human BMP-2 and/or TGF-β3 (355-BM/CF and 243-B3/CF, 

R&D Systems, Minneapolis MN) were reconstituted with sterile 0.1% rat serum albumen 

in 4 mM HCl immediately prior to use. Short chain length MVG sodium alginate 

(Pronova Biopolymers, Norway) was produced by exposing the stock alginate to a 5 

Mrad dose of gamma irradiation. The short chain alginate was then functionalized with a 

G4RGDSP peptide sequence at a density of 2 RGD sequences per chain via carbodiimide 

chemistry [SIMMONS 2004]. The RGD-functionalized alginate was sterile filtered and 

lyophilized for storage at -20°C. For use in the PLDL scaffolds, the alginate was 
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reconstituted with α-MEM to a concentration of 2%, including one of the following 

growth factor doses: 200 ng BMP-2 and 20 ng TGF-β3 (200/20 dose), 2000 ng BMP-2 

and 200 ng TGF-β3 (2000/200 dose), 2000 ng BMP-2, 200 ng TGF-β3, or no growth 

factor.  Scaffold only treatment groups included a scaffold that was infiltrated with RGD-

alginate without growth factors. The 200/20 dose and 2000/200 dose groups were 

compared in one study, while the delivery of individual growth factors and dual growth 

factor delivery were compared in a second study at the 2000/200 dose. Fibronectin-

coated PLDL scaffolds were placed into molds that served to contain the alginate solution 

as it infiltrated the porosity of the scaffold. Membranes wetted with CaCl2 bounded the 

scaffold at either end, initiating crosslinking of the alginate in situ. After 20 minutes in 

the molds, the scaffolds were transferred from to a bath of CaCl2 where the crosslinking 

process was completed. As a final step, the scaffolds were rinsed and stored in α-MEM 

until implantation.  

 

4.3.3 Surgical Procedure 

 All surgical techniques were reviewed and approved by the Institutional Animal 

Care and Use Committee at Georgia Institute of Technology (Protocols A03017 and 

A05041). Female Sasco Sprague-Dawley rats aged 13 weeks were anesthetized using 

isoflurane. Bilateral anterior incisions were made over the femurs. The femurs were 

exposed using blunt dissection through the muscle. Custom modular fixation plates were 

secured directly to the bone using four miniature screws (J.I. Morris Co, Southbridge 

MA). Bilateral full-thickness 8 mm long diaphyseal defects were created using a 

miniature oscillating saw under irrigation. After flushing the defect site with sterile 
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saline, scaffolds with or without BMP-2 and/or TGF-β3 were press-fit securely into the 

defects. Incisions were closed according to anatomic layers using absorbable suture and 

wound clips. Animals were given 0.05 mg/kg buprenorphine every 8 hours 

postoperatively for the first 48 hours and 0.025 mg/kg buprenorphine every 8 hours for 

the following 24 hours. Within 2-3 days post-op, animals had resumed normal 

ambulation and did not show signs of distress or pain.  

 

4.3.4 X-ray and Micro-CT 

 Digital 2-D X-rays were taken every four weeks postoperatively until the 

termination of the studies. Rates of union were assessed by two blinded observers, with 

union qualified as formation of a continuous bony bridge across any region of the defect. 

In vivo 3-D micro-CT imaging was done at 4 and 12 weeks post-op using a 38.5 µm 

voxel resolution (Viva-CT 40; Scanco Medical, Bassersdorf, Switzerland). A consistent 

central diaphyseal volume of interest (VOI) was selected for all analyses. This VOI was 

approximately 4.6 mm thick. A Gaussian filter (sigma = 1.2, support = 1) was used to 

partially suppress noise in the VOI prior to application of a global threshold. The global 

thresholds corresponded to densities of 206.7 and 270.3 mg hydroxyapatite/cm3, and 

excluded all non-mineralized tissues and residual scaffold material, as verified by visual 

examination of individual 2-D slices. The lower threshold was used to assess total bone 

volume (mature + immature), while the upper threshold was used to quantify mature bone 

volume. Immature bone volume was calculated as the difference between total bone 

volume and mature bone volume. The upper threshold (mature bone) was determined by 

two methods; a histogram of the number of voxels attenuating vs the threshold was 
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plotted and used to select an approximate threshold value. This threshold value was then 

validated using visual inspection of 2-D slices. The threshold of 272 mg HA/cm3 

corresponds to the attenuation of mature cortical bone in a rat. The immature bone 

threshold was selected as the lowest value that could be analyzed without picking up 

image artifacts or distorting the bone structure.  

 

4.3.5 Mechanical Testing 

 Samples were harvested at 12 weeks post-op and wrapped in saline-soaked gauze 

prior to storage at -20°C. For mechanical testing, samples were thawed in a bath of room-

temperature saline, unwrapped, and imaged using in vitro micro-CT immediately prior to 

potting in end blocks using Wood’s metal. After potting and placement of a transverse 

stabilizing pin through the end blocks and proximal and distal ends of the femur, the 

bridging component of the stabilization plate was removed. To preserve tissue hydration, 

samples were wrapped with saline soaked gauze during handling and placement into the 

testing system. Samples were then tested to failure in torsion at a rate of 3°/second using 

a Bose ElectroForce (ELF) system (ElectroForce 3200, Bose Corporation, Eden Prairie, 

MN).  

 

4.3.6 Histology 

 One sample from each treatment group was selected for histological evaluation. 

Stains used in this evaluation included haematoxylin and eosin, Masson’s trichrome, von 

Kossa, and safranin-O.  
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4.3.7 Statistics 

 Analysis of variance was conducted using a general linear model and Tukey 

pairwise post-hoc comparisons (Minitab). Differences were considered statistically 

significant at p ≤ 0.05.  

 

4.4 Results 

 

4.4.1 X-ray Imaging 

Faxitron 2-D X-ray images were taken every 4 weeks post-op to monitor defect 

stability and bony ingrowth. In the 200/20 dose treatment group, there was some bony fill 

within the defect site, extending from the cut ends of the femur. The rate of bony union 

for this treatment group was 29% (2/7). In the 2000/200 dose treatment group there was a 

63% (10/16) incidence of bony union; no samples from the scaffold only treatment group 

achieved osseous union (0/9) (Figure 17). 
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Figure 17: Digital X-rays taken of the three treatment groups at 4, 8 and 12 weeks post-
op. Rates of bony union were as follows: scaffold only – 0/9; 200/20 ng dose of BMP-
2/TGF-β3 – 2/7, 2000/200 ng dose of BMP-2/TGF-β3 – 10/16.  
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In the scaffold only and TGF-β3 only treatment groups, there was a minimal 

amount of bony ingrowth, with a small amount of appositional bone formation 

dominating the healing process. None of the samples in either of these treatment groups 

achieved bony union. In the BMP-2 only treatment group there was an increase in the 

amount of bone formation within the defects, with some samples achieving bony union 

(38% or 3/8). Addition of TGF-β3 to the BMP-2 further increased the rate of union (55% 

or 5/9) as well as increasing the amount of bony fill within the defect site (Figure 18).  
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Figure 18: Digital X-rays taken of the three treatment groups at 4, 8 and 12 weeks post-
op. Rates of bony union were as follows: scaffold only – 0/; 200 ng TGF-β3 only – 0/7, 
2000 ng BMP-2 only – 3/8; 2000/200 co-delivery dose – 5/9. 
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4.4.2 Micro-CT Analysis 

 In vivo micro-CT analysis was conducted at 4 and 12 weeks post-op for both 

studies. In the dose response study, micro-CT analysis revealed a significant elevation in 

bone volume in the 2000/200 dose group as compared to delivery of a scaffold alone at 

both time points (p < 0.001 at week 4, p = 0.004 at week 12) (Figure 19). Additionally, at 

4 weeks post-op the 2000/200 dose group had a significantly higher bone volume than the 

200/20 dose group (p = 0.020).  Overall, treatment and time were both significant factors 

(p < 0.001, p < 0.001). Bone volume did not increase significantly between 4 and 12 

weeks in the scaffold only treatment group (p = 0.053). There was a significant increase 

in bone volume for the 2000/200 dose treatment group between 4 and 12 weeks (p = 

0.001), as well as for the 200/20 dose treatment group (p = 0.010).  

 In vitro micro-CT imaging was done on samples immediately prior to mechanical 

testing. It should be noted that in vitro micro-CT analysis is a less sensitive measure of 

defect healing, as the bone volumes are somewhat normalized by the presence of intact 

host bone at the proximal and distal edges of the defect. There was a significant increase 

in the quantity of mature bone in the 2000/200 dose group as compared to the scaffold 

only group. Similarly, there was a statistically significant increase in both total bone 

volume and immature bone volume with the addition of the 2000/200 dose of BMP-

2/TGF-β3 to the scaffold alone (Figure 20). For this group, spatial analysis of the post-

mortem samples indicated a significant increase in the quantity of bone surrounding the 

periphery of the scaffold, but not within the core of the scaffold (Figure 21). Similarly, 

the bone volume fraction in the periphery was significantly increased in the 2000/200 

dose group over the scaffold alone group. There was no significant difference between 



 93

the 200/20 dose and the scaffold or the 2000/200 dose and the 200/20 dose (Figure 22). 

Delivery of the 2000/200 BMP-2/TGF-β3 growth factor dose significantly improved the 

quantity of bone within the proximal half of the defect as compared to implantation of a 

scaffold alone, but did not impact the formation of bone on the distal aspect of the defect 

(Figure 23). Representative images from the in vitro micro-CT visually demonstrate the 

trends quantified using 3-D tomographic analysis (Figure 24). 
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Figure 19: In vivo bone volume measurements taken at 4 and 12 weeks post-op (13 ≤ n ≤ 
17). * denotes a significant increase in bone volume within the treatment group from 4 to 
12 weeks post-op. The 2000/200 ng BMP-2/TGF-β3 treatment group had significantly 
improved bone volume over both the scaffold only and 200/20 ng co-delivery treatment 
group at 4 weeks post-op. At 12 weeks post-op, the 2000/200 dose treatment group still 
had significantly improved bone volume over the scaffold only treatment group. 
 

 

 

 

 

 

 

 

 

 
Figure 20: In vitro bone volume measurements taken at 12 weeks post-op (11 ≤ n ≤ 14). 
All three measurements – total bone volume (mature + immature), immature bone 
volume, and mature bone volume – were significantly greater in the 2000/200 ng co-
delivery treatment group than in the scaffold only treatment group.  
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Figure 21: In vitro bone volume spatial distribution measurements segmented by core 
(central 2 mm diameter) vs. periphery (outer portion of scaffold and area around the 
scaffold) of the implant taken at 12 weeks post-op (11 ≤ n ≤ 14). The bone volume in the 
core of the scaffold was not impacted by growth factor augmentation, but the peripheral 
bone volume was significantly increased in the 2000/200 ng dose treatment group over 
delivery of a scaffold alone. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22: In vitro bone volume fraction spatial distribution measurements segmented by 
core (central 2 mm diameter) vs. periphery (outer portion of scaffold and area around the 
scaffold) of the implant taken at 12 weeks post-op (11 ≤ n ≤ 14). The bone volume 
fraction in the core of the scaffold was not impacted by growth factor augmentation, but 
the peripheral bone volume was significantly increased in the 2000/200 ng dose treatment 
group over delivery of a scaffold alone. 
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Figure 23: In vitro bone volume spatial distribution measurements segmented by 
proximal vs. distal regions of the defect taken at 12 weeks post-op. The bone volume in 
the proximal 4 mm of the defect was significantly increased in the group augmented with 
2000 ng BMP-2 and 200 ng TGF-β3 (2000/200 dose) as compared to the PLDL (scaffold 
only) treatment group.  
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Figure 24: In vitro micro-CT images of the 8 mm long defect regions for three treatment 
groups taken post mortem at 12 weeks. The dose-dependent increase noted in quantitative 
micro-CT measurements is also visually discernable in the images. 
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 In the study comparing bone volumes for dual vs. single growth factor delivery, 

treatment was a significant factor for both mature and immature bone volumes at 4 and 

12 weeks post-op (Figures 25 and 26) . The co-delivery treatment group was the only 

group that experienced a significant increase in mature bone volume with time (p < 

0.050). At week 4, there was a significant increase in immature bone volume in the co-

delivery group as compared to the scaffold only group (p = 0.034). There were no other 

significant differences at week 4 in terms of mature bone volume or total bone volume. 

At week 12, a significant increase in both immature and mature bone volumes was 

quantified in the co-delivery treatment group as compared to delivery of a scaffold alone. 

There was a significant increase in mature bone volume and immature bone volume in 

the 2000/200 co-delivery group over delivery of TGF-β3 alone. Immature bone volume 

was significantly elevated in the BMP-2 only group as compared to the scaffold treatment 

group as well. Overall, treatment was a significant factor for both mature and immature 

bone volumes at 12 weeks post-op.  

 In vitro micro-CT indicated a statistically significant increase in immature, 

mature, and total bone volumes for the 2000/200 dose co-delivery treatment group over 

delivery of a scaffold alone (p < 0.022) (Figure 27). The proximal and peripheral bone 

volumes were also elevated in the co-delivery group as compared to the scaffold 

treatment group (p < 0.020) (Figures 28 and 29). Peripheral bone volume fraction was 

likewise significantly higher in the co-delivery treatment group than in the scaffold 

treatment group (Figure 30).  
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Figure 25: Mature bone volume measurements taken at 4 and 12 weeks post-op using in 
vivo micro-CT (8 ≤ n ≤ 10). The co-delivery group (2000 ng BMP-2/200 ng TGF-β3) 
experienced had a significantly higher bone volume at 12 weeks post-op than either the 
scaffold only (PLDL) or TGF-β3 only treatment groups. * denotes a significant increase 
in bone volume within the co-delivery treatment group with time.  
 

 

 

 

 

 

 

 

 

Figure 26: Mature and immature bone volume measurements taken at 4 and 12 weeks 
post-op using in vivo micro-CT (8 ≤ n ≤ 10). At 4 weeks post-op, there was a 
significantly greater quantity of immature bone in the co-delivery group as compared to 
the scaffold alone group, and a strong trend towards an increase in immature bone in the 
TGF-β3 treatment group over the PLDL group. At 12 weeks post-op the quantity of 
immature and mature bone was greater in the co-delivery group than in the scaffold or 
TGF-β3 alone groups. The BMP-2 only group had significantly more immature bone at 
12 weeks post-op than the scaffold only group.  
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Figure 27: Mature and immature bone volume measurements taken at 12 weeks post-op 
using in vitro micro-CT (7 ≤ n ≤ 8). There is a significant increase in both immature and 
mature bone volumes for the co-delivery group over delivery of a scaffold alone.  
 

 

 

 

 

 

 

 

 

 

Figure 28: Proximal and distal bone volume measurements taken at 12 weeks post-op 
using in vitro micro-CT (7 ≤ n ≤ 8). The proximal bone volume in the co-delivery 
treatment group is significantly greater than the proximal bone volume in the PLDL 
(scaffold only) treatment group. There was a trend towards an increase in proximal bone 
volume in the co-delivery treatment group over the BMP-2 monotherapy group. 
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Figure 29: Core and peripheral bone volume measurements taken at 12 weeks post-op 
using in vitro micro-CT (7 ≤ n ≤ 8). Peripheral bone volume was elevated in the 
2000/200 ng BMP-2/TGF-β3 co-delivery treatment group as compared to delivery of a 
PLDL scaffold alone.  
 

 

 

 

 

 

 

 

 

 

Figure 30: Core and peripheral bone volume fraction measurements taken at 12 weeks 
post-op using in vitro micro-CT (7 ≤ n ≤ 8). The peripheral bone volume fraction was 
increased in the co-delivery treatment group as compared to the scaffold only treatment 
group (PLDL). Core bone volume fraction was not impacted by treatment.  
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Figure 31: Post mortem micro-CT images of the full defect site average responders for 
four treatment groups taken from in vitro micro-CT. The images visually confirm the 
differences in treatment determined quantitatively by micro-CT.  
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4.4.3 Mechanical Testing 

 Torsional mechanical testing was done on samples harvested at 12 weeks post-op. 

In the dose dependence study, delivery of the 2000/200 dose of BMP-2 and TGF-β3 

significantly increased stiffness over delivery of a scaffold alone (p = 0.003) and resulted 

in a nearly significant increase in the 2000/200 group over the 200/20 group (p = 0.054) 

(Figure 32). The maximum torque achieved by the 2000/200 dose treatment group was 

significantly greater than the maximum torque reached by the 200/20 dose group or the 

scaffold alone group (p = 0.031, p = 0.002 respectively) (Figure 33). Work to maximum 

torque was not significantly impacted by treatment (p = 0.116) (Figure 34).  
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Figure 32: Average stiffness values for three treatment groups (11 ≤ n ≤ 14). Stiffness 
was significantly increased by the co-delivery of 2000 ng BMP-2 and 200 ng TGF-β3 to 
the PLDL scaffold, but not by addition of the 200/20 dose. There was a nearly significant 
increase in stiffness with increasing growth factor dose (2000/200 dose over 200/20 
dose).  
 

 

 

 

 

 

 

 

 

Figure 33: Average maximum torque values for three treatment groups (11 ≤ n ≤ 14). 
Maximum torque was significantly increased in the 2000/200 ng co-delivery treatment 
group as compared to both the 200/20 ng co-delivery group and the scaffold only group. 
Delivery of the 200/20 dose did not significantly improve maximum torque over delivery 
of a scaffold alone.  
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Figure 34: Average work to maximum torque values for three treatment groups (11 ≤ n ≤ 
14). Treatment of the defects with either dose of growth factor (2000 ng BMP-2/200 ng 
TGF-β3 or 200 ng BMP-2/20 ng TGF-β3) did not impact work to maximum torque. 
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 In the study that compared single growth factor delivery to dual growth factor 

delivery, treatment was a significant factor in determining stiffness (p = 0.014) (Figure 

35). The BMP-2 and TGF-β3 co-delivery group had a significantly higher stiffness than 

the TGF-β3 only (p = 0.021) or scaffold alone (p = 0.034) groups. The co-delivery 

treatment group was not significantly different from the BMP-2 only group (p = 0.354), 

nor was the BMP-2 only group significantly different from any of the other treatment 

groups in terms of stiffness (p = 0.623 for scaffold only, p = 0.451 for TGF-β3). 

Maximum torque was also significantly affected by treatment (p = 0.005) (Figure 36). 

BMP-2 and TGF-β3 co-delivery produced an average maximum torque that was 

significantly greater than that achieved by the TGF-β3 (p = 0.009) or scaffold only (p = 

0.014) groups. The difference in maximum torque between the co-delivery group and the 

BMP-2 only group was not statistically significant (p = 0.077). The scaffold only and 

TGF-β3 only treatment groups were not significantly different (p = 0.988) in maximum 

torque, and BMP-2 only treatment was not significantly different from treatment with 

TGF-β3 alone (p = 0.728) or a growth factor-free scaffold (p = 0.878).  Calculating work 

to maximum torque did not reveal any statistically significant differences between 

treatment groups (Figure 37).  
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Figure 35: Average stiffness measurements taken post mortem at 12 weeks post-op (6 ≤ n 
≤ 8). The stiffness of the BMP-2/TGF-β3 (2000/200 ng dose) co-delivery group was 
significantly higher than that of both the TGF-β3 monotherapy and scaffold only groups. 
The difference in stiffness between the BMP-2 only and co-delivery treatment groups 
was not significant.  
 
 
 
 

 

 

 

 

 

 

 

Figure 36: Average maximum torque values obtained post mortem at 12 weeks post-op (6 
≤ n ≤ 8). Maximum torque was significantly elevated in the BMP-2/TGF-β3 (2000/200 
ng dose) co-delivery treatment group as compared to delivery of both TGF-β3 alone and 
a PLDL scaffold alone. There was a strong trend indicating an increase in maximum 
torque in the growth factor co-delivery group over delivery of BMP-2 alone.  
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Figure 37: Average work to maximum torque (6 ≤ n ≤ 8). There was a trend towards 
increased work to maximum torque in the growth factor co-delivery group as compared 
to delivery of a scaffold alone.  
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4.4.4 Histology 

 Staining of 5 µm thick sections revealed minimal mineralized matrix formation in 

both the scaffold only and 200/20 dose treated samples. New bone formation was 

constrained to appositional deposition of mineral along the cut edges of the femur (Figure 

38, Figure 39). Micro-CT analysis of these samples at the terminal time point indicated 

low bone volumes. In a representative sample of a defect treated with 2000 ng BMP-2, 

there was a substantial quantity of mineralized tissue forming within the scaffold region. 

Ingrowth of the mineralized matrix appeared to occur mainly along the longitudinal 

macropores of the scaffold (Figure 40). This sample had a bone volume of approximately 

38 mm3 by 4 weeks post-op, indicating that there is a correspondence between bone 

volume as measured by micro-CT and qualitative histological staining.  
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Figure 38: Histological sections taken from a sample treated with an unaugmented RGD-
alginate filled PLDL scaffold. Top row, von Kossa stain; lower row, Massons’ trichrome. 
Safranin-O staining did not reveal any cartilaginous tissue. The scaffold region is filled 
by primarily fibrous, unmineralized tissue. 
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Figure 39: Histological sections taken from a sample treated with 200 ng BMP-2 and 20 
ng TGF-β3. Top row, von Kossa stain; lower row, Massons’ trichrome. Safranin-O 
staining did not reveal any cartilaginous tissue. Tissue ingrowth is constrained to 
appositional bone formation along the cut ends of the femur.  
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Figure 40: Histological sections taken from a sample treated with 2000 ng BMP-2. Top 
row, von Kossa stain; lower row, Massons’ trichrome. Safranin-O staining did not reveal 
any cartilaginous tissue. Staining reveals formation of mineralized tissue throughout the 
scaffold in the defect area, with ingrowth occurring mainly through the longitudinal 
macropores. 
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4.5 Discussion 

 Treatments for osseous defects must achieve stable bony union, restore 

functionality to the limb, and promote remodeling of the repair tissue in order to 

regenerate normal bone anatomy, strength, and function long-term. Allografts are an 

easily available source of structural material with which to treat critically-sized defects, 

but are limited by the many associated complications that result from incomplete 

integration and remodeling of the graft [LUCARELLI 2005, WHEELER 1998, ITO 

2005, ENNEKING 2001]. Tissue-engineering approaches, such as those employed in the 

work presented here, may provide a viable alternative for treatment of large osseous 

defects.  

 Here, a growth factor-based tissue-engineered bone replacement construct was 

generated using a structural polymer scaffold as both a mechanical support and, 

combined with RGD-alginate, growth factor delivery vehicle. The growth factors BMP-2 

and TGF-β3 were selected based on their potent osteoinductive and chondroinductive 

properties. A dose-dependent increase in bone volume was noted particularly at the early 

(4 week) time point. Both growth factor treated groups demonstrated a significant 

increase in bone volume between weeks 4 and 12, while the scaffold only group did not. 

The delivery of the growth factors promoted accelerated and continued increases in 

mineralized matrix formation within the defect site over 12 weeks in vivo. Delivery of the 

2000/200 dose of growth factor was particularly beneficial over delivery of the 200/20 

dose of BMP-2/TGF-β3 in terms of promoting early mineralization within the central 

longitudinal region of the defect, as measured using in vivo micro-CT. Because increases 

in mineralized tissue within this volume of interest correlated to increases in stiffness and 



 114

maximum torque, it is possible that the increase in early mineralization also resulted in 

increased mechanical properties early in the post-operative in vivo period. This effect is 

mirrored by the dose-dependent increase in mechanical properties seen at 12 weeks post-

op. In addition to increased mechanical properties and bone volume, the increase in 

growth factor dose also corresponded to an increase in the rate of bony union across the 

defect site.  

It has been shown previously that BMP-2 and TGF-β3 interact synergistically to 

produce mineralized matrix in the presence of bone marrow stromal cells when delivered 

to a subcutaneous site in an ectopic mouse model of osteogenesis [SIMMONS 2004]. A 

synergistic interaction was not determined in these studies. It should also be noted the co-

delivery of both BMP-2 and TGF-β3 resulted in an increase in the incidence of bony 

union as assessed by blinded observation of digital 2-D X-rays. Taken as whole, these 

data demonstrate a beneficial effect of low dose growth factor co-delivery as compared to 

single delivery of either factor alone. The lack of synergistic response may be due in part 

to the traumatic nature of the injury and the absence of direct cell delivery to the defect. 

The subcutaneous model in which this treatment strategy was first investigated is far less 

traumatic than the segmental defect model, and may not provoke the same acute 

physiologic response. This acute response may in fact be masking the full potential of the 

growth factors due to the active proteases, inflammation, and presence of endogenous 

signaling molecules. Not delivering bone marrow cells directly with the implants may 

also be inhibiting the full response of the treatment, as it takes some time for the native 

bone marrow stromal cells to invade into the defect region and be activated by the 

residual growth factor.  
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The dose-dependent response was expected, and further, it indicates that although 

physiologic doses of growth factor are sufficient to induce ectopic osteogenesis, 

moderately higher doses of growth factor are required to regenerate bone in a critically-

sized orthotopic defect site. This is not an unexpected result, given that a critically-sized 

load-bearing osseous defect requires a far larger volume of mineral to be generated than a 

50 µl hydrogel does (the implant described by Simmons et al.), and the segmental defect 

described here requires a greater host of biological signals and agents to act in concert in 

order to functionally heal the wound [SIMMONS 2004]. However, the doses used in this 

study were still well below the dose of single growth factor that is generally applied to 

promote osseous healing of segmental defects. Here, a total of 2.2 µg of growth factor 

delivered to the defect consistently promoted osseous union and abundant mineralized 

matrix formation, as compared to other studies in which doses as high as 9-20 µg of 

various growth factors (BMP-2, VEGF, osteogenin, and BMP-7) have been used for 

similarly sized or smaller defects [LEE 1994, STREET 2002, CHEN 2002, YASKO 

1992, LIEBERMAN 1999, CHEN 2006]. Such supraphysiologic doses are frequently 

effective at promoting bony union, but produce varied results (particularly VEGF) and 

are often limited to experimental investigations partially because of the unknown 

physiologic effects of delivering such large quantities of a single protein. These high 

level doses of growth factor may also hold the potential to induce excessive bone 

formation around the defect site. On the lower end of reported dosages in this spectrum, 5 

mm defects have been treated with 3 µg BMP-2, but mechanical integrity of the treated 

defects was not investigated [ISOBE 1999]. Additionally, a 5 mm defect in the rat femur 

is not critically-sized, and is subject to spontaneous union even in the absence of 
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treatment [WERNTZ 1996, NOTTEBAERT 1989]. There is clinical indication for use of 

BMP-2, as an osteoinductive agent in some applications. The current approved dose by 

the FDA for human clinical trial use of BMP-2 is 1.50 mg/ml in an absorbable collagen 

(bovine) sponge (ACS) [SWIONTKOWSKI 2006].  This dose has been approved for use 

in spinal fusions and evaluated for repair of open tibial fractures. The equivalent dose 

used in the studies presented here is 0.02 mg/ml. Here, the growth factor-laden scaffold 

was delivered within the defect itself. The BMP-2/ACS treatment for tibial fractures is an 

overlay technique in which the matrix is simply placed over the fracture site after 

stabilization with an intramedullary nailing technique. This difference in delivery 

technique may result in limited efficacy, thereby requiring a higher dose of growth factor 

in the tibial fracture application. The use of BMP-2 in this manner is efficacious – 

patients on average bear weight on the injured tibia 32 days sooner than their counterparts 

who do not receive the BMP-2/ACS onlay. Additionally, delivery of BMP-2 to the tibial 

defect decreases the need for invasive surgical revisions [SWIONTKOWSKI 2006]. 

BMP-2/ACS is also used as a treatment for anterior lumbar interbody fusion (spinal 

fusion). Although local reaming is used to prepare the vertebral endplates for insertion of 

a spinal fusion cage when the graft is composed of autografted bone, local reaming is not 

typically used when the BMP-2/ACS graft is used placed within the cage [BURKUS 

2002]. Because there is no acute local injury in the BMP-2/ACS treated spinal fusions, 

the higher (1.5 mg/ml) dose of BMP-2 may be necessitated. In the critically-sized 

femoral defect model presented here, an acute injury is created, possibly priming the 

defect site for response to bioactive factors. This acute injury may be part of the reason 

that the low dose of BMP-2/TGF-β3 is efficacious.  
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 Delivering cells, specifically mesenchymal stem cells (MSCs) and bone marrow 

stromal cells (BMSCs), has been extensively investigated in the context of brittle ceramic 

graft implantation [BRUDER 1998 JBJS, BRUDER 1998 JOR, KADIYALA 1997, 

TSUCHIDA 2001].  While delivery of MSCs or BMSCs to the defect site significantly 

improves integration of hydroxyapatite scaffolds into segmental defects in both canine 

and murine models, cellular treatment of defects requires substantial lead time to isolate 

and expand the autogenous cells before delivering them via a scaffold to the defect site. 

This delay in treatment may be detrimental to the healing and restoration of full 

functionality to the defect site as the body’s natural healing responses, such as the phase 

that promotes angiogenesis, may have senesced by the time the defect can be treated. Use 

of a brittle ceramic scaffold is also not an optimal base for tissue engineered bone 

replacements, as fractures frequently develop in the ceramic implant as a function of time 

and use [BRUDER 1998 JBJS]. The use of cellular treatment in combination with an 

absorbable, structural polymeric scaffold as an approach to the treatment of load-bearing 

critically-sized defects has not been investigated to date.  

 In the vein of allograft treatment, use of demineralized bone matrix has been a 

popular alternative to treatment of segmental bone defects in animal models [BALDIK 

2002, CHAKKALAKAL 1999, CHAKKALAKAL 2001, FEIGHAN 1995 , GEBHART]. 

Demineralized bone, however, still bears the risk for potential disease transmission. 

Demineralized bone grafts are also unable to provide any structural support to the defect 

site. Providing a scaffold with structural integrity to the defect site may be important in 

promoting early weight-bearing – a potent stimulator of osteogenesis. In these studies, an 

absorbable porous synthetic scaffold was used to both deliver biologics incorporated with 
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a hydrogel and serve as a structural support. The approach taken here asserts two 

functions (delivery of biologics and mechanical support) as opposed to the single 

function (delivery of growth factors) of demineralized bone matrix. 

 Allograft treatment has been modified using gene delivery therapy to achieve 

somewhat better results than are seen with allograft treatment alone. Incorporation of 

allografted tissue typically is limited to new bone deposition along the host-graft 

interface, rather than formation of a complete callus. The angiogenic response is similarly 

constrained. Coating of allografts in murine models with BMP-2-transfected MSCs 

enhances the ability of the host to form a callus around the allograft [XIE 2007, 

LIEBERMAN 1999 JBJS]. Alternatively, a virus encoding a specific gene (such as 

caALK2) can be directly coated onto the allograft, also enhancing the mineralization 

surrounding the allograft [AWAD 2007]. However, the incorporation of the allograft is 

still limited by slow resorption and low porosity.  

 In conclusion, dual delivery of BMP-2 and TGF-β3 resulted in an increase in 

bony fill. Co-delivery of these growth factors at two levels indicated a dose-dependent 

effect on bone volume, stiffness, and maximum torque, with the 2000 ng BMP-2 and 200 

ng TGF-β3 co-delivery dose being most beneficial. This dose is low compared to the 

doses of growth factor typically used to treat critically-sized segmental defects in animal 

models and the FDA approved dose of BMP-2 monotherapy for clinical human use. The 

approach demonstrated here serves to deliver low dose bioactive factors and may 

promote early functional use of the limb. The last chapter focuses on co-delivery of 

osteogenic and angiogenic growth factors, as well as modifications to the scaffold to 

better accommodate the rate of bony ingrowth. 
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CHAPTER 5 

 

EFFECTS OF ANGIOGENIC GROWTH FACTOR DELIVERY AND 

SCAFFOLD DESIGN ON FUNCTIONAL REPAIR OF SEGMENTAL DEFECTS 

 

5.1 Abstract 

 Tissue-engineering strategies provide a potential alternative to the traditional 

large bone defect repair strategy that incorporates a poorly-remodeling allograft. In bone 

formation and repair, development and maintained presence of vascular structures is 

critical to survival of osteoprogenitors, osteocytes, and the tissue as a whole. VEGF has 

been investigated primarily as an agent to induce angiogenesis in in vivo models, 

although recent reports on its ability to promote osteogenesis have been published. Here, 

the osteogenic and angiogenic responses to three doses of VEGF (10 ng , 100 ng, and 

1000 ng) delivered to a critically-sized segmental femoral defect in rats are investigated. 

The effects of scaffold geometry and composition on mineralization and vascularization 

are also assessed. Finally, the potential for interactive effects between delivery of the 

osteogenic growth factor combination of 2000 ng BMP-2/200 ng TGF-β3 and 1000 ng 

VEGF in the segmental defect model is determined. There was no dose-dependent 

response to the delivery of VEGF alone in terms of either bone formation or vascular 

invasion into the defect site. Modifying scaffold geometry by removing a 1.5 mm 

longitudinal core from the central region of the scaffold and addition of 10% tricalcium 

phosphate (TCP) improved the rate of union of the defects, but did not significantly 

enhance bone volume or mechanical properties over any other scaffold design (traditional 
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PLDL, cored PLDL, traditional geometry PLDL/TCP). Coring of the scaffold improved 

vascularization within the defect site as compared to the study where no core was 

removed, but did not improve the lack of dose-dependent response to VEGF treatment. 

The presence of alginate used to deliver growth factors within the scaffold porosity did 

not impact revascularization within the core of the defect site. Addition of 1000 ng VEGF 

to the defects resulted in a significant increase in bone volume within the treatment group 

with time, although bone volume was not improved as compared to delivery of BMP-

2/TGF-β3 or BMP-2/TGF-β3/VEGF. Addition of VEGF to BMP-2/TGF-β3 did not 

affect bone volume over delivery of only BMP-2/TGF-β3. In vitro growth factor release 

studies indicated that approximately 25% of the growth factor loaded (for BMP-2, TGF-

β3, and VEGF) was readily released over 5 days incubation period. Extending the 

incubation to 21 days did not result in further growth factor release. The remaining 75% 

of the growth factor may have remained bound by the residual alginate matrix. This 

indicated that the delivery mechanism in this model system is one of extended controlled 

release, which may account for the lack of response seen with delivery of VEGF in terms 

of both revascularization and mineralization. 

 

5.2 Introduction 

 The problem of regenerating bone in large osseous defects and compromised 

fractures is non-trivial. While mechanical stabilization and placement of a cadaveric 

allograft remain the standard treatments for such clinical situations, this treatment is 

severely compromised in its efficacy due to the low porosity of the allograft. The low 

porosity and lack of bioactive factors are impediments to the revascularization, 
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revitalization, and remodeling of the allograft. Because the allograft does not fully 

incorporate into the recipient body it is subject to complications within as little as 1-2 

years post-operatively. The complication rate for allografting is 30-60%, with a 25% graft 

failure rate [ITO 2005, LUCARELLI 2005, WHEELER 2005] 

 Tissue engineering is emerging as a clinical therapy for large bone defects in both 

load-bearing and non-load-bearing applications. The simplistic strategy of combining one 

high-dose osteogenic growth factor (BMP-2) therapy with a biocompatible carrier 

(bovine absorbable collagen sponge)  is now FDA-approved for clinical use in spinal 

fusions and under investigation for use as treatment augmentation for complex tibial shaft 

fractures (Infuse technology, Medtronic Sofamor Danek) [SWIONTKOWSKI 2006, 

BURKUS 2002]. Tissue-engineered grafts have been widely investigated in experimental 

animal models. There are three fundamental treatment strategies, all relying on some type 

of delivery vehicle, scaffold, or substrate: cell delivery, bioactive peptide delivery, and 

gene therapy. The treatment strategy selected for investigation here is growth factor 

delivery. 

 Design of a biocompatible scaffold that not only permits, but is conducive to, 

functional, vascularized bony union is a complex problem. While ceramics – both natural 

(coral) and manufactured (hydroxyapatite/tricalcium phosphate) – are appealing due to 

their near physiologic mineral content, they are inherently limited by a lack of porosity 

and structural brittleness that tends toward failure under loading in vivo [BRUDER 1998 

JBJS]. Nonstructural matrices are a popular option because their morphology is 

conducive to use in geometrically challenging defects and they can be synthesized in 

nearly any composition the investigator desires [KRETLOW 2007]. Specific 
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modifications to polymers, such as adding metalloproteinase cleavage sites to link a 

growth factor to a hydrogel, can also be engineered [RIZZI 2006, LUTOLF 2003]. 

Biologically-derived nonstructural matrices can be either inherently inert, such as 

collagen, or bioactive like some formulations of demineralized bone matrix. The risk of 

using natural bioactive matrices, however, is that the level of their activity is prone to 

variability from one preparation to another. Structural polymers and polymer-ceramic 

hybrids have not been largely investigated to date for use in load-bearing defect sites, 

although some investigation into their use for intramembranous bone repair has been 

done [ROHNER 2003, SCHANTZ 2003].  

 Bone is a mechano-sensitive tissue. The structure and function of bone are tightly 

linked to not only the biological environment of the tissue, but the mechanical 

environment as well [FROST 1987]. In a feedback circuit, early load bearing (without 

excessive micromotion) of a fractured bone leads to more rapid bone formation and 

remodeling, while rapid bone formation also permits early load-bearing on the afflicted 

bone. Taking advantage of bone’s natural response to loading, developing a tissue-

engineered treatment for large or challenged osseous defects that maintains structural 

integrity under a load-sharing system with some type of fixation device may enhance not 

only the rate of bone mineral deposition, but lead to early and improved limb 

functionality.  

 Structural polymer scaffolds have not been widely used as delivery vehicles for 

bioactive factors, and may be suitable for treatment of large load-bearing defects [RAI 

2007, OEST 2007]. Sustained delivery of growth factors from a structural scaffold 

requires that the growth factors be either directly incorporated into the polymer during 
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fabrication, or that some sort of controlled-release matrix be delivered within the scaffold 

porosity. The latter method is selected for use in the studies that follow. Alginate is a 

biocompatible hydrogel that has been shown to control the release of certain growth 

factors, and in the case of VEGF, actually enhance the activity of the protein 

[SHERIDAN 2000].  

 The robust model selected here to test tissue-engineered bone regeneration 

strategies does not heal in the absence of treatment [OEST 2007]. Three growth factors, 

BMP-2, TGF-β3, and VEGF were selected for delivery into the defect. In previous 

chapters, the dose-dependent effects of BMP-2 and TGF-β3 on bone formation have been 

described. VEGF is known to induce angiogenesis in a variety of in vivo models, 

including the CAM assay, retinal vascularization, and subcutaneous implantation. Its 

reported effects on bone formation, however, vary widely [STREET 2002, ECKHARDT 

2003]. 

 The goals of these studies were to: quantify the dose-dependent effects of VEGF 

delivery on bone formation and vascular invasion in a critically-sized femoral defect 

model, determine an optimal scaffold geometry and composition for repair of femoral 

defects, and investigate the potential interaction effects of co-delivering VEGF with 

BMP-2 and TGF-β3. 
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5.3 Methods 

 

5.3.1 Scaffold Production 

 Structural lactic acid-based polymer scaffolds containing 10% tricalcium 

phosphate (PLDL/TCP) were generated using a fiber-coating porogen decomposition 

technique previously described [LIN 2003]. Briefly, 100 micron diameter stainless steel 

fibers were coated in seven sequential steps using a syringe with varying gage 

hypodermic needles to flow the solvated polymer and porogen onto the fibers. After 

coating, the wires were cut, bundled, and heat treated to fuse the bundled wires together. 

During a second heat treatment the porogen was decomposed from solid to gaseous 

phase, producing random micropores in the scaffold structure. Removal of the wires 

revealed longitudinal macropores in the scaffold. Scaffolds were cut to length (8 mm) and 

punched to size (4 mm diameter), then rinsed to remove degradation particles from the 

heat treatment. In some studies, a central 1.5 mm longitudinal core was removed using a 

biopsy punch. Sterilization was achieved by γ-irradiation at a dose of 2.5 Mrad. Prior to 

loading with growth factor, the scaffolds were coated for 16 hours in rat plasma 

fibronectin (25 µg/ml, F0635, Sigma Aldrich) using a vacuum-coating technique.  

 

5.3.2 Addition of Growth Factors to Scaffolds 

 Three growth factors were selected for delivery or co-delivery: recombinant 

human BMP-2, TGF-β3, and recombinant rat VEGF164 (355-BM/CF, 243-B3/CF, and 

564-RV, R&D Systems, Minneapolis, MN). Growth factors were reconstituted 

aseptically using 0.1% rat serum albumin fraction V in 4 mM HCl immediately prior to 
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use. MVG sodium alginate (Pronova Biopolymers, Norway) was converted to a short 

chain length form by exposing the stock alginate to a 5 Mrad dose of γ-irradiation. This 

short chain alginate was functionalized with a G4RGDSP (RGD motif) peptide sequence 

at a density of 2 sequences per chain using carbodiimide chemistry [SIMMONS 2004]. 

The resulting RGD-alginate was sterile filtered and lyophilized for storage at -20°C until 

use. The growth factor doses were chosen based on the success of previous experiments 

delivering BMP-2 and TGF-β3 described in Chapter 4, and values reported in the 

literature to induce angiogenesis and osteoblast cell migration [LEE 2003, EMAD 2006, 

MAYR-WOHLFHART 2002, PUFE 2002]. 

 

5.3.3 Quantification of Growth Factor Release Kinetics 

 Seven scaffolds were loaded with 2000 ng BMP-2, 200 ng TGF-β3, and 1000 ng 

VEGF each. The preparation of these scaffolds was consistent with those prepared for in 

vivo implantation. Scaffolds were maintained at 37°C for 21 days in serum-free α-MEM. 

Media was collected and entirely replaced to maintain sink conditions at the following 

time points: 20 minutes, 40 minutes, 6 hours, 12 hours, 24 hours, 2 days, 3 days, 4 days, 5 

days, 6 days, 7 days, 10 days, 14 days, and 21 days. The quantity of growth factor 

released to the media was quantified using ELISA kits obtained from R&D Systems 

(Minneapolis, MN). For TGF-β3, only the active form of the growth factor is quantified 

by this method. Likewise, the ELISA kits quantify only the mature dimerized forms of 

BMP-2 and VEGF. 
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5.3.4 Study Designs 

 Multiple studies were run to determine the effects of several conditions in vivo.  

Study 1: Dose-Dependent Effects of VEGF Delivery on Bone and Vascular Structure 

Formation 

 Two identical studies were run with two different outcome measures. One sample 

population went towards quantification of vascular invasion into the defect site using 

contrast agent-enhanced micro-CT. The second sample population was assayed by use of 

in vivo X-rays, in vivo and in vitro micro-CT, and post-mortem mechanical testing. For 

both studies there were four treatment groups: 0 ng VEGF (PLDL only), 10 ng VEGF, 

100 ng VEGF, and 1000 ng VEGF.  

 

Study 2: Effects of Scaffold Geometry and Composition on Bone Formation and 

Vascular Invasion 

 In the interest of improving the rate and quantity of bone deposition within the 

defect area and increasing the quantity of vasculature that forms within the core of the 

scaffold, the scaffold geometry and composition was modified. Scaffold geometry was 

modified by removing a 1.5 mm longitudinal core from the center of the scaffold. 

Composition was altered by adding 10% α-tricalcium phosphate to the polymer solution 

during the production process. The effects of these parameters were quantified by 

assessing radiographic union using digital X-rays, use of in vivo and in vitro micro-CT, 

and mechanical testing. In the interest of enhancing angiogenesis within the center of the 

scaffold, cored PLDL/TCP scaffolds were augmented with growth factor using two 

different techniques: fill the scaffold with growth factor in alginate then remove the core 
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(fill then core) or core the scaffold and then fill with growth factor in alginate (core then 

fill). The purpose of employing these two different loading regimes was to determine if 

the presence of alginate was inhibiting revascularization of the defect site.  

 

Study 3: Addition of an Angiogenic Growth Factor to the Osteogenic Cocktail BMP-

2/TGF-β3 

 Triple growth factor delivery (2000 ng BMP-2 + 200 ng TGF-β3 + 1000 ng 

VEGF) was compared to dual growth factor delivery (BMP-2 + TGF-β3), single growth 

factor delivery (VEGF), and delivery of a scaffold alone. For all groups, cored 

PLDL/TCP scaffolds filled with short chain RGD-functionalized alginate (core scaffold 

then fill with alginate method) were used. The efficacy of these treatments was 

determined using 2-D digital X-rays, 3-D quantitative micro-CT done both in vivo and in 

vitro to assess bone formation, in vitro micro-CT paired with contrast agent delivery for 

assessment of vascular structure formation, and torsional mechanical testing.  

 

5.3.5 Surgical Procedure 

 All surgical procedures were reviewed and approved by the Institutional Animal 

Care and Use Committee at Georgia Institute of Technology (Protocol A05041). Female 

Sasco Sprague Dawley-rats aged 13 weeks were used. Anesthesia was induced and 

maintained using isoflurane. Bilateral incisions were made over the anterior aspect of the 

femurs. The femurs were exposed using blunt dissection of the muscle tissue. Custom 

modular fixation plates were secured directly to the bone using miniature screws. Full-

thickness 8 mm long diaphyseal defects were created bilaterally using a miniature 
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oscillating saw cutting under irrigation. Defects were flushed with sterile saline prior to 

implantation of a scaffold. PLDL scaffolds with or without growth factors (all containing 

RGD-alginate) were press-fit into the defects. The incisions were closed according to 

anatomic layers using absorbable suture and wound clips. Analgesia consisted of 0.05 

mg/kg buprenorphine every 8 hours postoperatively for the first 48 hours and 0.025 

mg/kg buprenorphine every 8 hours for the following 24 hours. Animals resumed normal 

ambulation within 2-3 days post-op and did not show signs of pain or distress.  

 

5.3.6 X-ray and Micro-CT 

 Digital 2-D X-rays were taken every 4 weeks postoperatively until the studies 

were terminated. These X-rays were used primarily to assess defect stability. In vivo 

micro-CT was done at 4 and 12 weeks post-op in all studies where bone formation was 

assessed. For in vivo micro-CT, a resolution of 38.9 microns was used (Viva-CT 40, 

Scanco Medical, Bassersdorf Switzerland). The VOI was 4.6 mm thick. A Gaussian filter 

(sigma = 1.2, support = 1) was used to partially suppress noise in the VOI prior to 

application of a global threshold. The global thresholds corresponded to densities of 

206.7 and 270.3 mg hydroxyapatite/cm3, and excluded all non-mineralized tissues and 

residual scaffold material, as verified by visual examination of individual 2-D slices. The 

lower threshold was used to quantify total bone volume (mature + immature), while the 

upper threshold was used to assess mature bone volume. Immature bone volume was 

calculated as the difference between total bone volume and mature bone volume. The 

upper threshold (mature bone) was determined by two methods; a histogram of voxels 

attenuating vs the threshold was plotted and used to select an approximate threshold 
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value. This threshold value was then validated using visual inspection of 2-D slices. The 

threshold of 270.3 mg HA/cm3 corresponds to the attenuation of mature cortical bone in a 

rat. The immature bone threshold was selected as the lowest value that could be analyzed 

without picking up image artifacts or distorting the bone structure. 

 

5.3.7 Mechanical Testing 

 Samples were harvested at the termination of each study (12 weeks post-op), 

wrapped in saline-soaked gauze and stored at -20°C. Mechanical testing was done after 

samples were thawed in a bath of room-temperature saline, unwrapped, and immediately 

scanned using in vitro micro-CT at a 20 µm resolution. After scanning, samples were 

potted in end blocks using Wood’s metal and secured by placement of a transverse pin 

that penetrated the potting blocks and the ends of the femur. Samples were wrapped in 

saline-soaked gauze to preserve tissue hydration during transport and setup. Samples 

were then tested to failure in torsion at a rate of 3°/second using a Bose ElectroForce 

(ELF) system (ElectroForce 3200, Bose Corporation, Eden Prairie, MN). 

 

5.3.8 Histology 

 One representative sample from each treatment group was selected for 

histological evaluation. Sections were taken at a 5 µm thickness and stained using 

Masson’s trichrome, safranin-O, von Kossa, and haematoxylin and eosin.  
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5.3.9 Statistics 

 Analysis of variance was conducted using a general linear model and Tukey 

pairwise post-hoc comparisons (Minitab). Differences were considered statistically 

significant at p ≤ 0.05.  

 

5.4 Results 

 

5.4.1 Quantification of Growth Factor Release Kinetics 

 Release of growth factors was quantified using ELISAs. The ELISA kits, 

purchased from R&D Systems (Minneapolis, MN), quantified only the active form of 

TGF-β3 and the mature forms of soluble BMP-2 and VEGF. Seven scaffolds were loaded 

with the triple growth factor combination delivered in RGD-alginate: 2000 ng BMP-2, 

200 ng TGF-β3, and 1000 ng VEGF. They were maintained in media at 37°C for 21 

days. Samples were collected at the following points in the incubation period: CaCl2 bath, 

CaCl2 + NaCl + HEPES bath, 6 hours post-seeding, 12 hours, 24 hours, 1 day, 2 days, 3 

days, 4 days, 5 days, 6 days, 7 days, 10 days, 14 days and 21 days. For all three growth 

factors, the majority of the release took place over the first 5 days in culture (Figures 41, 

42, 43). About 25% of the total growth factor delivered was released in active soluble 

form over 21 days in vitro. VEGF released somewhat more quickly than BMP-2 and 

TGF-β3 did, with the majority of the release occurring within the first 2 days of culture.  
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Figure 41: Cumulative quantity of soluble active BMP-2 released to media over 21 days 
in an in vitro growth factor release study as determined by an ELISA. 
 

 

 

 

 

 

 

 

 

 

 
Figure 42: Cumulative quantity of soluble active TGF-β3 released to media over 21 days 
in an in vitro growth factor release study as determined by an ELISA. 
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Figure 43: Cumulative quantity of soluble active VEGF  released to media over 21 days 
in an in vitro growth factor release study as determined by an ELISA. 
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5.4.3 X-ray Imaging 

Study 1: Dose-Dependent Effects of VEGF Delivery on Bone and Vascular Structure 

Formation 

 Delivery of VEGF at any of the three doses (10 ng, 100 ng, 1000 ng) did not have 

a marked effect on the rate of bony union (Figure 44). Osseous union was apparent in 

only two samples over the course of this study; one sample from the 10 ng treatment 

group (1/5) and one sample from the 1000 ng treatment group (1/7). For a scaffold alone, 

no samples achieved bony union (0/5) and likewise for the 100 ng treatment group (0/7).  

  

Study 2: Effects of Scaffold Geometry and Composition on Bone Formation and 

Vascular Invasion 

 In this study, rates of bony union were assessed for four different scaffold 

designs, each delivering 2000 ng BMP-2 and 200 ng TGF-β3. In the traditional geometry 

PLDL treatment group, 5/7 sample united. When a 1.5 mm core was removed from the 

PLDL treatment group, 9/15 samples achieved bony union. Addition of 10% TCP to a 

traditional PLDL scaffold resulted in 3/9 samples achieving union. Coring of this 

PLDL/TCP scaffold containing growth factors promoted 8/8 samples to achieve bony 

union (Figure 45).  
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Study 3: Addition of an Angiogenic Growth Factor to the Osteogenic Cocktail BMP-

2/TGF-β3 

 Addition of 1000 ng VEGF to the osteogenic growth factor mix of 2000 ng BMP-

2 and 200 ng TGF-β3 did not affect the rate of bony union in cored PLDL/TCP scaffolds 

(Figure 46). For this study, rates of bony union were as follows: Scaffold only 2/7, 1000 

ng VEGF 0/5, BMP-2/TGF-β3 11/12, BMP-2/TGF-β3/VEGF 11/12.  

 



 135

 

 

 

 

 

 

 

 

Figure 44: Digital 2-D X-rays of samples from the VEGF dose study (5 ≤ n ≤ 7). Rates of 
union were: 0 ng VEGF 0/5, 10 ng VEGF 1/5, 100 ng VEGF 0/7, and 1000 ng VEGF 1/7. 
 

 

 

 

 

 

 

 

 

 

 

Figure 45: Digital 2-D X-rays of samples from the scaffold modification study (7 ≤ n ≤ 
15). In the traditional PLDL treatment group, 5/7 samples achieved union. For cored 
PLDL 9/15, 3/9 traditional PLDL/TCP, and 8/8 cored PLDL/TCP samples achieved 
union.
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Figure 46: Digital 2-D radiographs of the samples from the triple growth factor co-
delivery study (5 ≤ n ≤ 12). Of the samples that received BMP-2, TGF-β3, and VEGF 
11/12 achieved union. Co-delivery of BMP-2 and TGF-β3 promoted 11/12 samples to 
unite. Delivery of VEGF alone did not elevate the rate of union (0/5) over that achieved 
by delivering a scaffold alone (2/7). 
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5.4.4 Micro-CT Analysis 

Study 1: Dose-Dependent Effects of VEGF Delivery on Bone and Vascular Structure 

Formation 

 Quantitative in vivo micro-CT analysis was done at weeks 4 and 12 post-op. 

There were no differences in the bone volumes of these samples at either time point 

(Figure 47). Post mortem analysis at 12 weeks post-op showed results similar to the in 

vivo analysis (Figure 48). Spatial analysis of the core and peripheral VOIs as well as the 

proximal and distal VOIs revealed no differences (Figure 49, Figure 50, Figure 51). This 

in vitro micro-CT analysis revealed more bone on the distal end of the defect than on the 

proximal end. It is possible that the samples were inverted during scanning, which would 

explain this difference.  

 Combination of a contrast agent (Microfil MV122, Flowtech, Carver, MA) with 

micro-CT enabled quantification of the vascular structures within the defect site at 2 

weeks post-op. There were no differences between VEGF treatments in any of the VOIs 

assessed (scaffold and periphery, periphery, scaffold, or core) (Figure 52, Figure 53). 



 138

 

 

 

 

 

 

 

 

Figure 47: Bone volumes in the central 4.8 mm of the defect area as determined using in 
vivo micro-CT at weeks 4 and 12 post-op (5 ≤ n ≤ 8). There were no significant 
differences. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 48: Bone volumes as determined using in vitro post mortem micro-CT at 12 weeks 
post-op (4 ≤ n ≤ 7). There were no significant differences for immature, mature, or total 
bone volumes. 
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Figure 49: Bone volumes as determined using in vitro post mortem micro-CT at 12 weeks 
post-op (4 ≤ n ≤ 7). There were no significant differences for core or peripheral bone 
volumes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 50: Bone volumes as determined using in vitro post mortem micro-CT at 12 weeks 
post-op (4 ≤ n ≤ 7)There were no significant differences for proximal or distal bone 
volumes. 
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Figure 51: Micro-CT images of samples from in vitro scans at 12 weeks post-op. 
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Figure 52: Vascular volumes as determined using contrast agent-enhanced micro-CT at 2 
weeks post-op (5 ≤ n ≤ 6). There were no treatment differences in any of the VOIs 
assessed. 
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Figure 53: Micro-CT images of perfused and decalcified samples after two weeks of 
implantation in vivo.  
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Study 2: Effects of Scaffold Geometry and Composition on Bone Formation and 

Vascular Invasion 

  Altering the geometry of the PLDL scaffold (coring) or composition (addition of 

10% TCP) did not significantly affect the formation of mineralized matrix within the 

central region of the defect, as determined by in vivo micro-CT (Figure 54). Likewise, 

post mortem assessment of the entire defect region (8 mm) did not reveal any differences 

in treatment regardless of the VOI selected (Figure 55, Figure 56, Figure 57). Micro-CT 

images mirrored the improved bridging rates seen with the addition of cored PLDL/TCP 

scaffolds to the defect and the similarities in bone volume between all treatment groups 

(Figure 58). 

 The effects of alginate on the ingrowth of vasculature into scaffolds delivering 

VEGF were assessed using contrast agent-enhanced micro-CT at 2 weeks post-op. 

Although there were no significant differences between treatment groups, there was an 

increase in vascular volume in both the total (scaffold and periphery) and peripheral 

VOIs (Figure 59, Figure 60).  
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Figure 54: In vivo micro-CT data taken from scans at weeks 4 and 16 post-op (8 ≤ n ≤ 
16). There were no significant differences between any of the treatment groups. 
 

 

 

 

 

 

 

 

 

 

 

Figure 55: Data from post mortem micro-CT scans at 16 weeks post-op (5 ≤ n ≤ 14). 
There were no significant differences. 
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Figure 56: Spatial analysis of the in vitro micro-CT scans from 16 weeks post-op 
revealed no significant differences in the distribution of new bone between the treatment 
groups (5 ≤ n ≤ 14). 
 

 

 

 

 

 

 

 

 

 

Figure 57: Distribution of the mineralized matrix between proximal and distal halves of 
the defect site. There were no significant differences (5 ≤ n ≤ 14). 
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Figure 58: Micro-CT images of the samples at 16 weeks post-op. The images showed 
union rates that paralleled those seen in the 2-D digital X-ray analysis.  

Traditional PLDLTraditional PLDL Cored PLDLCored PLDL

Traditional PLDL/TCPTraditional PLDL/TCP Cored PLDL/TCPCored PLDL/TCP



 147

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 59: There were no significant differences between doses or growth factor loading 
regimes in terms of vascular ingrowth (5 ≤ n ≤ 9). There was an increased peripheral 
vascular volume in the 1000 ng core then fill group as compared to the same dose 
delivered by filling the scaffold and then removing a core.  
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Figure 60: Micro-CT images of samples from the four treatment groups at 2 weeks post-
op. No significant differences in vascularity were detectable. 
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Study 3: Addition of an Angiogenic Growth Factor to the Osteogenic Cocktail BMP-

2/TGF-β3 

 Addition of 2000 ng BMP-2/200 ng TGF-β3 to the cored PLDL/TCP scaffolds 

significantly improved bone formation within the defects at 4 and 12 weeks post-op as 

assessed by in vivo micro-CT. Addition of VEGF – with or without BMP-2/TGF-β3 – 

had no effect on bone volume. The groups that received BMP-2/TGF-β3 had 

significantly elevated mature, immature, and total bone volumes as compared to the 

scaffold only and VEGF only treatment groups at 4 weeks post-op. The BMP-2/TGF-β3-

receiving groups had elevated mature and total bone volume measurements at 12 weeks 

post-op as compared to the scaffold only and VEGF only treatment groups (Figure 61). 

The two groups with BMP-2/TGF-β3 incorporated into the scaffold also experienced 

significant increases in bone volume with time, while the scaffold only and VEGF only 

groups did not. 

 Post-mortem analysis of bone volume within the 8 mm defect revealed the same 

patterns (Figure 62). Bone volume in both the core and periphery of the scaffold was 

increased by the addition of BMP-2/TGF-β3, but not by addition of VEGF (Figure 63).  

Both distal and proximal bone volumes were elevated in the BMP-2/TGF-β3-treated 

groups as compared to delivery of a scaffold alone. The group that received all three 

growth factors (BMP-2/TGF-β3/VEGF) had elevated proximal and distal bone volumes 

as compared to delivery of VEGF alone as well. Co-delivery of only BMP-2 and TGF-β3 

significantly increased distal bone volume as compared to VEGF alone (Figure 64).  

 Delivering VEGF alone or with BMP-2/TGF-β3 did not have an effect on 

revascularization of the defect site (Figure 65, Figure 66). Treatment was not a significant 
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factor in determining vascularity within any of the VOIs assessed (peripheral and 

scaffold, periphery, scaffold, or scaffold core).  
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Figure 61: In vivo bone volumes determined using micro-CT at weeks 4 and 12 post-op 
(5≤ n ≤ 12). ** p < 0.001 for immature, mature, and total bone volumes. * p < 0.05 for 
mature and total bone volumes. † p < 0.05 for time. The addition of BMP-2/TGF-β3 
significantly increased mature and immature bone volumes at 4 weeks over delivery of 
VEGF or a naked scaffold. At 12 weeks post-op, addition of BMP-2/TGF-β3 
significantly increased mature and total bone volumes over delivery of a scaffold or 
VEGF alone. The VEGF, BMP-2/TGF-β3, and BMP-2/TGF-β3/VEGF groups all 
experienced a significant increase in bone volume between weeks 4 and 12. 
 

 

 

 

 

 

 

 

 

Figure 62: Bone volumes determined using in vitro micro-CT (4 ≤ n ≤ 12). ** p < 0.030 
for immature, mature, and total bone volumes. The groups that received BMP-2/TGF-β3 
in the treatment, with or without VEGF, demonstrated a significant increase in immature, 
mature, and total bone volumes over delivery of VEGF alone or a scaffold alone. 
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Figure 63: Core and peripheral VOIs were evaluated in the in vitro scans at 12 weeks 
post-op (4 ≤ n ≤ 12). ** denotes p < 0.050 for core and periphery VOIs. Co-delivery of 
BMP-2/TGF-β3 with or without VEGF significantly increased bone volumes in the core 
and peripheral regions over delivery of VEGF or a scaffold alone. 
 

 

 

 

 

 

 

 

 

Figure 64: Proximal and distal halves of the 8 mm defect region were analyzed using in 
vitro micro-CT (4 ≤ n ≤ 12). ** denotes p ≤ 0.042 for proximal and distal VOIs. Addition 
of BMP-2/TGF-β3 to the defects significantly increased bone volume in both the 
proximal and distal regions over delivery of a scaffold alone.  
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Figure 65: Vascular volumes quantified within the defect site at 2 weeks post-op (n = 8). 
Treatment was not a significant factor in determining the angiogenic response.  

0

10

20

30

40

50

60

PLDL VEGF BMP-2/TGF-b3 BMP-2/TGF-b3/VEGF

scaffold and periphery VOI
periphery VOI
scaffold VOI
core VOI

V
as

cu
la

r V
ol

um
e 

(m
m

3 )

0

10

20

30

40

50

60

PLDL VEGF BMP-2/TGF-b3 BMP-2/TGF-b3/VEGF

scaffold and periphery VOI
periphery VOI
scaffold VOI
core VOI

V
as

cu
la

r V
ol

um
e 

(m
m

3 )



 154

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 66: Micro-CT images of perfused, decalcified samples at 2 weeks post-op. No 
differences in vascularity were detectable.  
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5.4.5 Mechanical Testing 

 

Study 1: Dose-Dependent Effects of VEGF Delivery on Bone and Vascular Structure 

Formation 

 The delivery of VEGF at any dose did not significantly impact mechanical 

properties. Stiffness and maximum torque were unaffected by delivery of VEGF (Figure 

67, Figure 68). Work to maximum torque was similarly unaffected.  
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Figure 67: Stiffness measured at 12 weeks post-op (4 ≤ n ≤ 7). VEGF delivery had no 
effect on stiffness. 
 

 

 

 

 

 

 

 

 

Figure 68: Maximum torque values at 12 weeks post-op (4 ≤ n ≤ 7). Delivery of VEGF at 
any dose did not impact maximum torque. 
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Study 2: Effects of Scaffold Geometry and Composition on Bone Formation and 

Vascular Invasion 

 Modification of the scaffold geometry (removal of a 1.5 mm longitudinal core) 

and composition (addition of 10% TCP) did not significantly impact stiffness or 

maximum torque (Figure 69, Figure 70).  
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Figure 69: Stiffness was not significantly impacted by scaffold modification (7 ≤ n ≤ 14). 

 

 

 

 

 

 

 

 

 

 

Figure 70: Maximum torque was not significantly impacted by scaffold modification (7 ≤ 
n ≤ 14). 
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Study 3: Addition of an Angiogenic Growth Factor to the Osteogenic Cocktail BMP-

2/TGF-β3 

 Delivery of BMP-2/TGF-β3 significantly increased stiffness (p = 0.004). Taken 

individually, there were no significant differences between treatment groups, although 

treatment was a significant factor (p = 0.004) (Figure 71). Similarly, treatment was a 

significant factor in determining maximum torque (p = 0.041); delivery of BMP-2/TGF-

β3 significantly increased maximum torque (p = 0.004) (Figure 72).  
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Figure 71: Stiffness measurements taken at 12 weeks post-op (5 ≤ n ≤ 12). 
Treatment was a significant factor (p = 0.040). Collectively, delivery of 2000 ng 
BMP-2/200 ng TGF-β3 significantly increased stiffness over defects that did not 
receive BMP-2/TGF-β3 (p = 0.004). 

 

 

 

 

 

 

 

 

 

Figure 72: Maximum torque measured at 12 weeks post-op (5 ≤ n ≤ 12). 
Treatment was a significant factor (p = 0.041). Collectively, delivery of 2000 ng 
BMP-2/200 ng TGF-β3 significantly increased maximum torque over defects that 
did not receive BMP-2/TGF-β3 (p = 0.004). 
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5.4.6 Histology 

 Staining of samples with Masson’s trichome and von Kossa methods revealed 

minimal ingrowth of mineralized tissue into the porosity of a traditional geometry 

PLDL/TCP construct augmented with 2000 ng BMP-2 and 200 ng TGF-β3 (Figure 73). 

Micro-CT analysis of this group also indicated a somewhat decreased bone volume as 

well. The cored PLDL/TCP growth factor augmented scaffold showed mineral deposition 

throughout the longitudinal macropores of the scaffold (Figure 74). Similarly, a 

representative cored PLDL/TCP scaffold augmented with BMP-2, TGF-β3, and VEGF 

demonstrated mineralized matrix formation throughout the scaffold pores (Figure 75). 

Higher magnification images of H&E stained sections showed that the mineralized tissue 

was cellular in nature. Multinucleated cells resembling osteoclasts were visible on the 

surfaces of the newly deposited bone (Figure 76). Cells with single nuclei were also 

apparent on the newly formed bone surfaces (Figure 77).  
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Figure 73: Histological sections taken from a sample treated with a traditional geometry 
PLDL/TCP construct augmented with 2000 ng BMP-2 and 200 ng TGF-β3. Consistent 
with micro-CT quantification of bone volumes, this sample shows little mineralized 
tissue invasion. Upper row, von Kossa staining; lower row, Masson’s trichrome.  
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Figure 74: Histological sections taken from a sample treated with a cored PLDL/TCP 
construct augmented with 2000 ng BMP-2 and 200 ng TGF-β3. Consistent with micro-
CT quantification of bone volumes, this sample shows invasion of mineralized tissue into 
the construct. Upper row, von Kossa staining; lower row, Masson’s trichrome.  
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Figure 75: Histological sections taken from a sample treated with a cored PLDL/TCP 
construct augmented with 2000 ng BMP-2, 200 ng TGF-β3, and 1000 ng VEGF. 
Consistent with micro-CT quantification of bone volumes, this sample shows significant 
invasion of mineralized tissue into the construct. Upper row, von Kossa staining; lower 
row, Masson’s trichrome.  
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Figure 76: Histological sections stained with H&E indicate that the mineralized matrix 
formed in the tissue-engineered constructs is cellular in nature, and undergoing active 
remodeling. Up arrows indicate osteocytes embedded in the mineralized matrix. 
Sideways arrow indicates the presence of a multinucleated osteoclast.  



 166

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 77: Histological sections stained with H&E indicate that the mineralized matrix 
formed in the tissue-engineered constructs is cellular in nature, and undergoing active 
remodeling. Down arrows indicate cells on the surface of the maturing mineralized 
matrix.  
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5.5 Discussion 
 

Although the potency of VEGF as an angiogenic growth factor is well 

documented, its effects on bone formation are widely varied and may be highly dose-

dependent [STREET 2002, ECKHARDT 2003]. Use of VEGF in a large segmental 

defect has only been investigated in one other study; a rabbit radial defect model was 

treated with 0-1000 µg of VEGF. Delivery of high dose VEGF did enhance the callus 

volume of these defects [STREET 2002]. Delivery of VEGF protein has also been 

reported to enhance bone formation in irradiated calvarial defects [KAIGLER 2006]. The 

studies presented here noted two things; delivery of VEGF at doses that may cause 

angiogenic responses in various in vivo models are ineffective at promoting new bone 

formation in this model, and elevation of early vascular structure development was not 

enhanced by the delivery method of VEGF used in this model. Delivery of as little as 10 

ng/ml of VEGF has been shown to induce chemotaxis of osteoblastic cells [MAYR-

WOHLFHART 2002]. VEGF concentrations in a standard rat tibial fracture model peak 

at 5 days post-fracture at a concentration of approximately 100 pg/ml [PUFE 2002]. The 

equivalent doses delivered in the studies here range from 1-10 µg/ml, well above the 

threshold of physiologic values. Application of 1.25 µg of VEGF to a 10 x 5 mm cranial 

defect in conjunction with demineralized bone matrix grafts enhanced bone regeneration 

over control samples [EMAD 2006]. Delivery of 20-50 µg VEGF per gram of alginate 

(50 ug/g equates to 36 ng VEGF per implant) to a subcutaneous model of angiogenesis 

resulted in a significant increase in the number of blood vessels formed [LEE 2003]. 

Implants used here contained 10-1000 ng VEGF each. Delivery of 2-4 µg of VEGF has 

been shown to induce extensive angiogenesis in an in vivo model as well [ELCIN 2001]. 
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The dose-dependence of VEGF’s effects on angiogenesis vary widely in reports 

[STREET 2002]. The quantity of growth factor actually delivered to these defects was 

significantly less than that which was intended. In a similar alginate system, VEGF 

release was reported to reach 40% of the growth factor incorporated by 21 days of in 

vitro incubation [SILVA 2007]. The release of only ~25% here suggests that perhaps the 

PLDL scaffold is binding up some of the growth factors as the alginate releases them, 

resulting in inefficient delivery of the intended dose. One other probable explanation for 

these results is that the dose of VEGF used in this model is simply too low to accelerate 

the bone repair process or further stimulate angiogenesis in the model. Clearly, based on 

the growth factor release kinetics, the dose of VEGF that was actually released is far 

lower than that which was intended to be delivered. Recently published studies indicate 

that the dose of VEGF required to enhance mineral formation in certain models may be 

around 3 µg [HUANG 2005, HAO 2007, KAIGLER 2006, STREET 2002]. The quantity 

of bioavailable growth factor may also be lower due to the complex signaling and activity 

that takes place in traumatic injury. Removal of a large section of tissue activates 

proteases, which may be degrading the growth factors as they are released from the 

implant. Sequestering the growth factors in the alginate may also prevent some 

percentage of the protein from being released in active form; it is possible that the growth 

factors are not in an active conformation or orientation when contained in the alginate.  

It is, however, also possible that the animal’s angiogenic response is already at its 

maximum capacity to respond due to the acute injury; this would leave no room for 

elevation of vascular structure development to improve. It is also possible that in such a 

small total defect size (8 mm), that revascularization is not the rate-limiting step. Without 
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delivery of VEGF, scaffolds become vascularized throughout. Work by Rai et al. 

indicates that there is a potential to enhance vascularity within the defect site at 3 weeks 

post-op in this model; delivery of platelet-rich plasma resulted in a trend towards elevated 

vascular volume at 3 weeks post-op as compared to delivery of a scaffold alone [RAI 

2007]. The delivery of PRP was shown to enhance mineralization over delivery of a 

scaffold alone at 12 weeks, but not at 4 weeks post-op. The timing of VEGF release in 

the model system presented here may be suboptimal. Delivery at a later time point when 

the acute physiologic reactions have subsided may be more effective at generating an 

angiogenic response.  

Alternatively, the alginate matrix may be binding the VEGF, inhibiting release of 

the protein into the surrounding tissue. Residual alginate matrix within the scaffold, as 

well as chains that have been freed from the matrix due to crosslink degradation, may be 

bound to VEGF, inhibiting detection of the molecule. Delivery of VEGF from an alginate 

matrix has been shown to enhance the bioactivity of the growth factor [SHERIDAN 

2000]. Sustained release of VEGF has been shown to enhance angiogenesis over a longer 

period of time (8 weeks), while damping the initial response [ELCIN 2001]. If the release 

of VEGF is delayed in the PLDL/alginate system used here, it may be that the 

angiogenesis was quantified at a time point (2 weeks) too early to capture the physiologic 

response. Yet another possible explanation is that the VEGF is bound by the scaffold in 

an inactive form as the alginate degrades, resulting in delivery of a far lower dose of 

VEGF than was intended.  

The in vitro experiment quantifying growth factor release from the scaffolds put 

the cumulative release of growth factors at about 25% of the quantity loaded, with the 
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majority of the release occurring over the first 2-5 days in culture. There are a variety of 

possible explanations for the fate of the remaining ~75% of growth factor. The simplest 

explanation is that the remainder of the growth factor is bound up in the residual alginate 

matrix. Because of the large osteogenic response seen with implantation of the BMP-

2/TGF-β3-containing constructs, it is probable that the bound growth factor is released or 

exerts its effect as cells invade the construct. Another possibility is that the remainder of 

the growth factor is actually released from the matrix, but in denatured or inactive form. 

Although this may be the case, it might be unlikely; the delivery of low doses of BMP-2 

in other segmental bone defect repair models does not stimulate osseous union [LEE]. 

Alternatively, the growth factors could be released still bound to the alginate fragments, 

or be binding to the PLDL scaffold itself as they are released from the alginate. If the 

growth factors are still bound to alginate fragments, they may be active, but unable to be 

detected by the antibodies used in the ELISAs as the alginate could be blocking the 

detection epitopes. The PLDL scaffolds were pre-coated with fibronectin prior to growth 

factor seeding. Although the stability of fibronectin may have occluded open binding 

sites for the growth factors, inhibiting their adhesion to the scaffold, fibronectin itself has 

been known to bind proteins.  

It is difficult to determine how well the sustained delivery mechanism selected for 

use here correlates properly to the physiologic response to fracture repair. Expression of 

TGF-β3 typically peaks during the endochondral bone formation/periosteal response 

phase, and is sustained through primary bone formation during fracture healing. 

Histological evaluation of samples did not show evidence of endochondral bone 

formation, although a periosteal response to the injury was activated sometime during the 
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first four weeks in vivo. BMP-2 expression during fracture healing peaks in the early 

stages of injury and inflammation, with continued lower level expression throughout 

fracture healing [GERSTENFELD 2003]. It may be that the efficacy of BMP-2 in this 

model is due in part to early delivery of soluble active growth factor with sustained low-

level delivery through later time points, somewhat paralleling the natural fracture healing 

response. VEGF expression during fracture healing is not as great in magnitude as that of 

BMP-2, but appears to be more active during the primary bone formation stage of 

fracture healing. This suggests that evaluating vasculature at a later time point may 

enable differences between treatment groups to be determined.  

Scaffold architecture and composition plays an important role in the vitalization 

of the implant. This is apparent as the lack of porosity in allografts and many ceramic 

implants impedes tissue ingrowth. Although treatment differences between sample 

groups were not apparent in terms of bone volume or mechanical properties, the union 

rate of the cored PLDL/TCP constructs was higher than that of any other group. For this 

reason, the cored PLDL/TCP scaffolds were selected for investigation in the studies that 

followed. Despite the lack of significant differences between treatment groups in the 

study assessing the growth factor loading regimes, it should be noted that between studies 

1 and 2, there was a 2-fold increase in the vascularity. This may be due to the removal of 

the core from the center of the scaffold (the perfusion and imaging techniques remained 

constant between the two studies). The addition of 10% TCP to the scaffold was done 

under the hypothesis that accelerating the scaffold degradation process in vivo such that it 

would more closely match the rate of bone ingrowth. The long residence time of the 
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scaffold in the host body, however, means that 12 weeks may be too short of a time 

period to determine the effects of adding a ceramic on degradation of the PLDL scaffold.  

 The addition of VEGF to the osteogenic growth factor cocktail of BMP-2/TGF-β3 

had no beneficial effect on bone formation or vascular invasion. It has been previously 

reported that co-delivery of DNA encoding BMP-4 and VEGF enhances bone formation 

in a synergistic manner when delivered subcutaneously in the presence of bone marrow 

stromal cells [HUANG 2005]. Data presented in the work described here does not show 

an interactive effect with co-delivery of BMP-2 and VEGF protein. This may be due to 

the low doses of total protein used, the rate of growth factor release from the alginate 

matrix within the scaffold, or a combination of both factors. The work by Huang et al. 

describes the synergistic interaction between BMP-4 and VEGF gene delivery to occur 

only when BMSCs were co-delivered in the scaffold as well. The time required for 

osteoprogenitor cells to infiltrate the alginate-filled PLDL scaffolds may be such that the 

majority of the freely diffusible growth factor is gone by the time the cells populate the 

defect region. The remainder of the VEGF and BMP-2 protein, bound to the residual 

alginate and/or PLDL, could be sequestered in manner that prevents a single cell from 

interacting with both growth factors in the means necessary to induce a synergistic 

response.  

 The rate of delivery and mechanism of growth factor delivery may be critical to 

the success of the therapy. Scaffold geometry also plays an important role in enabling the 

invasion of vascular structures into the defect site, particularly within the bounds of the 

scaffold itself. Co-delivery of VEGF with BMP-2 and TGF-β3 provided no additional 

benefit over delivery of the two osteogenic growth factors alone in terms of 
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revascularization of the defect site or regeneration of functional bone. Delivery of VEGF 

at doses that may induce neovascularization in a variety of models was unsuccessful in 

elevating the angiogenesis over the innate, unaugmented response of the host body to 

creation of the defect. These doses of VEGF were also unsuccessful in promoting new 

bone formation. In the third study, however, it should be noted that the VEGF-treated 

defects did experience a significant increase in bone volume between weeks 4 and 12 

post-op. 

 The co-delivery of 2000 ng BMP-2 and 200 ng TGF-β3 demonstrated continued 

bone formation over 12 weeks in vivo and resulted in significantly improved mechanical 

properties over groups that did not receive BMP-2/TGF-β3 as a treatment (VEGF only or 

scaffold only). The maximum torque of the BMP-2/TGF-β3-treated samples approached, 

and in some cases reached, that of intact age-matched femurs. Studies described in 

previous chapters met with similar success in terms of bone volume and rate of bony 

union, but had marginally less success in reaching intact femur mechanical properties. 

The third study done in the chapter presented here used a new batch of fixation plates that 

turned out to be structurally compromised; approximately 50% of the plates in the VEGF 

only and scaffold only treatment groups fractured between weeks 8 and 12 in vivo. This 

reduction in mechanical integrity of the fixation plates might have resulted in increased 

load-sharing with the scaffold in the defect site. In defects without BMP-2/TGF-β3, there 

was inadequate mineralized matrix invasion to support load. Defects that did receive 

BMP-2/TGF-β3 had adequate integration with the host bone and mineralization within 

the central region of the implant to support this load. The increase in bone volume could 

also be due to delivery of a more potent lot of growth factor.   
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 In conclusion, addition of VEGF at any of the three purportedly angiogenic doses 

– 10 ng, 100 ng, and 1000 ng – did not improve mineralization or revascularization of the 

defect site over delivery of a PLDL scaffold alone. Although scaffold geometry did not 

affect the bone volume or mechanical properties for defects treated with BMP-2/TGF-β3-

augmented PLDL scaffolds with cored geometries and/or 10% TCP added. The rate of 

bony union was higher, however, in the cored PLDL/TCP group. Based on this 

observation, the cored PLDL/TCP scaffold was selected for use in the remaining studies. 

The manner in which the growth factors were added and the longitudinal core of the 

scaffold removed did not significantly affect vascular volume, although there was a 

strong trend towards increased peripheral vascular volume in the group treated with 1000 

ng VEGF delivered in PLDL/TCP scaffolds that were pre-cored and then loaded with 

growth factor-containing alginate. This observation, along with ease of use for the 

surgeon, prompted the use of pre-cored PLDL/TCP scaffolds for the triple growth factor 

study. Delivery of VEGF alone or with BMP-2/TGF-β3 did not significantly enhance 

mineralization or mechanical properties of the samples over co-delivery of only BMP-2 

and TGF-β3. The VEGF-treated group did experience a significant increase in bone 

volume with time though, suggesting that controlled release of VEGF may enhance bone 

formation long-term (beyond the 12 week scope of these studies). The complex problem 

of the release of the BMP-2, TGF-β3, and VEGF from the scaffolds merits further 

investigation. The simplest explanation for the fate of the unreleased growth factors is 

that they are sequestered in the remaining alginate, and exert their bioactivity only when 

cellular invasion forces degradation of the alginate structure and the progenitor cells take 

up the bound growth factor.  
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

6.1 Segmental Defect Model and Analysis Techniques 

  The development of a reproducible and robust critically-sized defect model 

described in Aim I was central to the work in this thesis. The hardware and techniques 

used to stabilize and create these defects improves upon that of other researchers in 

several ways. Firstly, the hardware enables stable fixation of the defects, limiting 

confounding factors such as micromotion. Micromotion in a defect site compromises the 

body’s ability to heal and may make subcritically sized defects appear critical in nature. 

Stabilization of bone defects is critical to healing. Early experimentation with 5 mm 

defects (data not included in this thesis) revealed that 5 mm segmental defects were 

subcritical in size; they healed randomly and spontaneously in the absence of treatment. 

Attempts at defect fixation using the standard polyethylene block and four Kirshner wires 

method revealed gross instabilities in the defects. Many of the defects treated with this 

fixation technique collapsed over the duration of a 12 week study. The novel hardware 

developed here not only provides stability to the defect, but also serves as a guide for the 

surgeon. Two notches designed into the underside of the plate serve as guides for 

placement of the miniature oscillating saw, enabling the surgeon to reproducibly generate 

8 mm long defects. The stainless steel anchor plates secure directly to the bone using four 

miniature screws, providing a solid base to which the polysulfone bridging plate is 

affixed. This polymer plate allows in vivo X-ray and micro-CT imaging of the defect site, 
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enabling the researcher to do longitudinal studies and thereby reducing the number of 

animals and variability within each study. Removal of the plate is easy and can be 

achieved without damaging the bone or repair tissue, as the polymer plate is affixed to the 

stainless steel anchor plates, not the bone itself. Facile removal of the bridging plate is 

critical to maintaining the integrity of the repair tissue for mechanical testing post 

mortem.   

  The image analysis techniques used in the work described here have been shown 

to match histomorphometric techniques for quantifying vasculature, and exceed 

conventional techniques in reproducibility [DUVALL 2004]. One aspect of the vascular 

perfusion/micro-CT method that would benefit from further analysis is the determination 

of the proper resolution at which samples should be scanned. A resolution of 20 µm was 

most reasonable in terms of the scan time and computational power required to analyze 

the data. Analysis of samples at a higher resolution (10 µm) does not significantly alter 

the vascular volume, but does impact other parameters such as connectivity (see 

Appendix A). The increase in image detail obtained with higher resolution comes at the 

cost of time, data storage capacity, and computational power. Another aspect of this 

imaging technique that would benefit from improvement is the contrast agent used. Use 

of the Microfil silicone-based contrast agent requires termination of the animal. If a high-

contrast agent suitable for delivery in vivo that is also capable of being segmented from 

the bone could be developed, longitudinal studies of vascular development in defects 

would be possible.  

 It was hoped that by correlating mechanical properties with bone volume data 

through the studies presented here, a means of estimating stiffness and maximum torque 
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form in vivo or in vitro micro-CT scans would be developed. Several VOIs were analyzed 

in an attempt to establish this correlation – the central 4.5 mm long region of the defect, 

the entire defect (8 mm), the proximal half of the defect, and the distal half of the defect. 

Although statistically significant correlations between stiffness and all VOIs and 

maximum torque and all VOIs emerged, the R-squared value ranged form 41.6% to 65%. 

The distal, proximal, and central VOIs did not correlate with maximum torque or 

stiffness in an increasing linear manner for bone volumes of less than approximately 50 

mm3. Similarly, use of the entire 8 mm VOI did not result in a positive linear correlation 

for bone volumes of less than 100 mm3. These findings indicate that there may be some 

critical bone volume that must be achieved before increases in maximum torque or 

stiffness occur. Further work into establishing this threshold value would be of interest in 

attempting to use in vivo scans to assess mechanical integrity of the defects. 

 

6.2 Growth Factor Delivery and Release 

 The delivery mechanism for VEGF, BMP-2, and TGF-β3 used in these studies is 

simple in conception and implementation, but challenging to characterize. Based on 

findings in the literature and the data obtained from the in vivo studies here, it is clear that 

the alginate-filled PLDL scaffold results in controlled release of the growth factors over 

an 2-5 day period of time. In vitro characterization of the growth factor release kinetics 

indicated that only a quarter of the total protein delivered is freely diffusible from the 

scaffold in its active form. Studies investigating delivery of VEGF from an alginate 

hydrogel system have put the total release of growth factor at about 40% of the quantity 

incorporated into the alginate over 21 days in vitro [SILVA 2007]. Comparison of the 
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studies presented here and those in the literature suggest that remainder of this growth 

factor might be bound within the remaining alginate and PLDL scaffold, exerting its 

effect only as cells migrate through the construct. The ability of the implant to release 

bioactive factors to the host tissue may be critical to the success of the tissue-engineered 

treatment strategy. If the growth factor is delivered exclusively as a molecule tethered to 

the scaffold, there is no diffusible signal to the surrounding host cells that would 

potentitate cellular proliferation and/or migration to the implant site [RIZZI 2006, 

LUTOLF 2003]. On the other hand, if the growth factor is too readily diffusible, there is 

inadequate sustainment of the signal to achieve a substantial biological response unless a 

large quantity of bioactive agent is delivered [OHURA 1999, HONG 2000]. Further 

investigation of the growth factor release from the alginate-PLDL system could be 

accomplished by dissolving the residual alginate matrix as a means of releasing bound 

growth factor, although it is possible that the growth factors remain secured to the 

alginate polymer chains themselves. Radiolabeling the growth factors and tracing their 

release from the matrix would provide a more accurate description of the location of the 

growth factors with time. Engineering a well-controlled release strategy for growth 

factors is difficult. In most hydrogel and polymer systems, the microstructure of the 

delivery vehicle changes with time as the growth factor is released and the matrix of the 

delivery system degrades, gains water content, or becomes more porous. Use of 

controlled-release microspheres with varying degradation rates delivered in a stable 

hydrogel would be one option for controlling growth factor release in a minimally 

changing matrix.  
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6.3 Growth Factor Co-Delivery and Interactions 

 While co-delivery of BMP-2 and TGF-β3 significantly improved bone formation 

in a dose-dependent manner and improved the mechanical properties of the repair tissue 

over delivery of a scaffold alone, there was a marked absence of synergistic interaction. 

Co-delivery of physiologic doses of BMP-2 and TGF-β3 with BMSCs in an ectopic 

mouse model has been shown to produce a synergistic interaction that enhances 

osteogenesis by 6 weeks post-implantation [SIMMONS]. In the segmental defect model, 

delivery of the same physiologic dose of growth factor elicits no response above that seen 

with delivery of a scaffold alone. Co-delivery of the two growth factors at a dose one 

order of magnitude greater did, however, induce a significant increase in both early (4 

weeks) and late (12 weeks) bone formation. The delicate balance of BMP-2 and TGF−β3 

that produces the synergistic effect seen ectopically may be altered by scaling up the 

dosage in a linear manner, or by the presence of the growth factor milieu released by the 

resorption of the fracture haematoma, influencing the interactions between the proteins. 

The acute and traumatic nature of the segmental defect model may activate a significant 

early inflammatory response and produce active proteases within the injury site. This, 

combined with the many endogenous signaling molecules, may result in decreased or 

altered signaling as compared to the less acute subcutaneous model. Additionally, the 

segmental defect model used here relied on the proliferation and migration of endogenous 

osteoblastic cells to vitalize the implanted scaffold, whereas the subcutaneous study 

directly co-delivered the BMSCs with the growth factors. This delay in the presence of 

cells within the matrix may be partially responsible for the lack of a synergistic response, 



 180

as some of the freely diffusible growth factor had dissipated from the implant or lost its 

bioactivity by the time cells populated the scaffold.  

 Similarly, co-delivery of BMP-4 and VEGF in gene form has been shown to 

produce synergistic interactions in the presence of BMSCs in the murine subcutaneous 

implantation model [HUANG]. In the studies presented here, BMP-2 rather than BMP-4 

was selected, and the BMP/VEGF combination was delivered in protein form. Because of 

this, one would not necessarily assume that a synergistic interaction between BMP-2 and 

VEGF would result, although it does make a reasonable hypothesis. Although the same 

potential explanations for the lack of positive interaction between the BMP-2 and VEGF 

as were delineated previously for the BMP-2/TGF-β3 system, there is also the strong 

possibility that not enough VEGF was released to interact properly with the BMP-2. 

Alginate is known to bind VEGF when used as a hydrogel delivery system, although this 

interaction has been reported to enhance the bioactivity of the protein when it is released 

[SILVA 2007].  

 One future direction for consideration if the growth factor delivery system is 

selected for further use would be the determination of growth factor interactions in a 

more controlled model, such as in vitro tissue culture or subcutaneous or intramuscular 

implantations. A model system with fewer confounding factors – here the complex 

microenvironment created by induction of a severe defect – could potentially make it 

easier to tease out interactions between the growth factors. However, this approach is 

limited in its relevancy; the initial motivation for the use of growth factor co-delivery in 

the critically sized segmental femur defect model came from the finding that BMP-2 and 

TGF−β3 interacted synergistically in the subcutaneous implantation model.  
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 In most animal models of osteogenesis, the results of treatments are highly 

dependent on the type of scaffold used. It is possible that the PLDL scaffolds selected for 

use in these studies limited bone formation due to the small diameter of the macropores 

and relatively slow degradation rate. Use of a collagen sponge in this model would 

provide a means of assessing the effects of delivering slow vs. fast-degrading implants. It 

would also provide some comparison to the clinical BMP-2/ACS spinal fusion treatment. 

Another control group that is important in evaluating the efficacy of the growth factor 

treatment is the allograft. This is the clinical standard treatment, and direct comparison of 

the growth factor strategy tested here with the traditional allograft treatment would 

provide a measure to assess the potential advantages to using a tissue-engineered implant 

for functional bone repair.  

The use of BMSCs or MSCs delivered with or without angiogenic and/or 

osteogenic growth factors is also an interesting direction for research to expand using the 

model system established here. Although the host’s body provides adequate quantities of 

progenitor cells to regenerate the mineralized matrix and restore a certain level of 

mechanical integrity, augmentation of the implant with autogenous or syngeneic marrow 

progenitor cells may provide a means of accelerating the repair process. This approach 

has been widely investigated, but the survival of the delivered cells after implantation is 

sometimes compromised by the lack of a functional vascular supply to the defect site 

[KADIYALA, MARCACCI 2007]. Augmentation of a cellularized scaffold with 

bioactive factors that promote a rapid autogenous vascular and mineral deposition 

response could provide a means of maintaining the graft viability. In a similar vein of 

thought, modification of grafted cells to produce specific osteogenic genes has enhanced 
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the healing response [SAVARINO 2007, XIE 2007]. Although bone marrow progenitor 

cells have been the typical choice for these cell-based therapies, alternative cell sources 

have been investigated for use after genetic modification, including muscle-derived cells 

and fibroblasts [KREBSBACH 2000, PHILLIPS 2006, SHEN 2004]].  

Regeneration of bone in a segmental defect model requires the presence of cells, a 

scaffold or delivery vehicle, and a bioactive agent (such as a protein or gene). There is an 

unknown critical balance that must be achieved between these three components. The 

response described in the previous chapters may be limited by the availability of host 

cells as well as the delivery mechanism chosen for the growth factors. Conversely, 

delivery of cells alone has been somewhat limited by the lack of a biological stimulus 

that invokes a host response that will promote development of a nutrient supply to the 

engrafted tissue.  

 

6.4 Potential Modifications to the Model 

The use of the critically-sized femoral defect model described in the previous 

chapters has been constrained to immediate treatment after creation of the defect. 

Clinically, this aspect of the model may be irrelevant. In treatment of bone trauma, the 

ability of the host body is frequently compromised due to a variety of factors, including 

delayed treatment, radiation, infection, chronic nonunion, and smoking. A research model 

that mimics these confounding factors inherent to clinical treatment could potentially 

provide the opportunity to evaluate the full potential of delivered cytokines to augment 

the healing process. Induced chronic infection in a rat segmental defect model has 

indicated that, in conjunction with antibiotic therapy, delivery of only high doses (200 
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µg) of BMP-7 can induce bony repair [CHEN 2006]. Similarly, irradiation of bony 

defects has been shown to compromise the body’s ability to heal the defect. Radiation 

treatment provides a more relevant model for developing treatments for osteosarcoma. 

Patients who smoke tend to have longer bone healing times as well, although the reasons 

for this are not fully understood. Chronic nonunions may be more difficult to heal than an 

acute injury because the body’s natural sequence of healing reactions may have senesced. 

Reactivating these inherent phases of healing, such as haematoma formation, 

angiogenesis, and cartilaginous callus formation, may prove difficult. All of these 

modifications to the segmental defect model would provide a scenario more relevant to 

certain clinical conditions and possibly a more challenging defect to heal. 

 

6.5 Conclusions 

 In starting this work it was hypothesized that by exploiting growth factor 

interactions, osseous repair of segmental bone defects could be generated more quickly 

and with greater functionality than could be achieved by delivery of a single growth 

factor at the same dose. The data presented here does not support that hypothesis. 

Although a dose-dependent increase in bone formation and mechanical properties was 

seen with co-delivery of BMP-2 and TGF-β3, co-delivery of these growth factors at the 

higher dose did not provide significant benefit over delivery of BMP-2 alone. Addition of 

VEGF to the osteogenic combination of BMP-2 and TGF-β3 provided no benefit over 

delivery of these two factors alone.  

 The work presented here has established a revised and improved model for large 

bone defect repair and quantitatively analyzed the biological response to co-delivered 
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growth factor therapies in terms of angiogenesis, osteogenesis, and functionality of the 

repair tissue. The effects of scaffold geometry and composition on bone and vascular 

ingrowth were also investigated. Comparison of BMP-2 and TGF-β3 co-delivered at two 

doses indicated a positive dose-dependent response. The hypothesized benefit of adding 

TGF-β3 to BMP-2 was not supported. Altering the scaffold geometry by removing a 1.5 

mm diameter core and composition by addition of 10% TCP improved the rate of bony 

union and enabled more extensive revascularization of the defect site than was achieved 

with un-cored scaffolds. Delivery of VEGF alone to the defect site had no impact on bone 

formation or vascular invasion. Addition of VEGF to the BMP-2/TGF-β3 osteogenic 

cocktail had no beneficial effect over co-delivery of the osteogenic growth factors alone. 

The groups that received VEGF, BMP-2/TGF-β3, or BMP-2/TGF-β3/VEGF 

demonstrated a significant increase in bone volume between weeks 4 and 12 post-op, 

suggesting possible sustained release of the growth factors. The sustained release 

hypothesis could be supported by the only partial release of the growth factors in an in 

vitro protein release kinetics study. 

The acute injury caused by creating a critically-sized segmental defect activates a 

complex biological response beginning with haematoma formation and the angiogenic 

reaction. This immediate response is believed to be critical for inducing revascularization 

of the defect site. In many trauma situations, segmental defects are not immediately 

treated via surgical intervention. In these cases, delivery of VEGF might be more 

efficacious as the body’s natural angiogenic response may have senesced, giving room 

for a pro-angiogenic cytokine to exert its influence.   
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 This work sheds light on some of the critical factors for repair of large bone 

defects, motivates further investigation and modification of existing growth factor-based 

therapies, and opens the door for investigation of cellular-based tissue-engineered 

therapies in a robust osseous defect model. Further investigation into both combining 

growth factor and cell-based or growth factor and mechanically-oriented therapies would 

be interesting areas for further research.  
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APPENDIX A 
 
 

EFFECTS OF VOXEL RESOLUTION ON MICRO-COMPUTED 
TOMOGRAPHY ANALYSIS OF PERFUSED RAT HINDLIMB VASCULATURE 

 
 

 

 The utility of micro-CT as a quantitative imaging tool is limited by two 

incompatible factors: time and resolution. A high-resolution image requires significantly 

more time to generate and analyze, as well as more storage space, than a medium- or low-

resolution image does. In certain applications, however, the improved resolution of the 

image merits the use of more costly imaging. For the studies described here, a medium 

resolution of 20 µm was selected. This voxel size permitted timely analysis of a large 

quantity of specimens while still providing the capacity to detect quantitative differences 

in vasculature. A subset of perfused decalcified samples was analyzed at high resolution 

(voxel size of 10 µm) for purposes of comparison. The changes in quantitative 

parameters were generally consistent with what one would expect to occur by increasing 

the resolution of the image: connectivity and vessel number drastically increased, while 

the average vessel thickness and spacing decreased. Vascular volume experienced a 

moderate increase in switching to high resolution (Table 3). These changes in parameters 

suggest that at a higher resolution, the micro-CT imaging technique is better able to 

separate and detect small vascular structures that blended together or were undetectable at 

medium resolution.  
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Table 2: Micro-CT parameters obtained at high and medium resolution in the VOI 
containing only the implanted scaffold for perfused hindlimbs in the rat segmental defect 
model treated with VEGF. 
 

SCAFFOLD VOI 

Parameter High 

Resolution 

Value 

Medium 

Resolution 

Value 

Mean 

Difference 

(H-M Res) 

Standard 

Deviation 

Average % 

Change 

Vascular Volume 

(mm3) 

6.8321 
 

5.6018 
 

1.2304 
 

1.2024 
 

18.0086 
 

Connectivity  

(1/mm3) 

26.1258 
 

2.8766 
 

23.2493 
 

17.6091 
 

88.9896 
 

Vessel Number 

 (1/mm) 

3.5957 
 

1.1505 
 

2.4452 
 

0.5231 
 

68.0041 
 

Vessel Thickness 

 (mm) 

0.1067 
 

0.1338 
 

-0.0271 
 

0.0133 
 

-25.3808 
 

Vessel Spacing 

 (mm) 

0.2921 
 

0.9051 
 

-0.6130 
 

-0.6256 
 

-209.8919 
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Table 3: Micro-CT parameters obtained at high and medium resolution in the VOI 
containing only the core 2 mm of the implanted scaffold for perfused hindlimbs in the rat 
segmental defect model treated with VEGF. 

 

SCAFFOLD CORE VOI  

Parameter High 

Resolution 

Value 

Medium 

Resolution 

Value 

Mean 

Difference 

(H-M Res) 

Standard 

Deviation 

Average % 

Change 

Vascular Volume 

(mm3) 
1.6390 

 
1.2096 

 
0.4294 

 
0.5388 

 
26.1970 

 

Connectivity  

(1/mm3) 
10.3973 

 
2.8751 

 
7.5222 

 
7.2962 

 
72.3474 

 

Vessel Number 

 (1/mm) 
1.7938 

 
1.2034 

 
0.5905 

 
0.2258 

 
32.9154 

 

Vessel Thickness 

 (mm) 
0.1336 

 
0.1276 

 
0.0060 

 
0.0265 

 
4.5219 

 

Vessel Spacing 

 (mm) 
0.5905 

 
0.8649 

 
-0.2744 

 
0.0929 

 
-46.4641 
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Table 4: Micro-CT parameters obtained at high and medium resolution in the VOI 
containing the implanted scaffold and periphery for perfused hindlimbs in the rat 
segmental defect model treated with VEGF. 

 

SCAFFOLD AND PERIPHERY VOI 

Parameter High 

Resolution 

Value 

Medium 

Resolution 

Value 

Mean 

Difference 

(H-M Res) 

Standard 

Deviation 

Average % 

Change 

Vascular Volume 

(mm3) 
31.3566 

 
28.5370 

 
2.8197 

 
2.9163 

 
8.9923 

 

Connectivity  

(1/mm3) 
12.7035 

 
2.1735 

 
10.5300 

 
12.2348 

 
82.8907 

 

Vessel Number 

 (1/mm) 
3.5957 

 
0.8917 

 
2.7041 

 
0.6473 

 
75.2023 

 

Vessel Thickness 

 (mm) 
0.1067 

 
0.1513 

 
-0.0446 

 
0.0316 

 
-41.8170 

 

Vessel Spacing 

 (mm) 
0.2921 

 
1.1457 

 
-0.8536 

 
0.1194 

 
-292.2651 
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 The pattern in relative change between parameters was slightly different for the 

scaffold core VOI. In this VOI, the vascular volume increased, connectivity, vessel 

number, and vessel thickness increased, and vessel spacing decreased by only about 50% 

with increasing resolution. The percent decrease in vessel spacing was dramatically less 

for the core VOI than for the scaffold or scaffold and periphery VOIs. This can be 

explained by the relatively sparse distribution of vascular structures within the core of the 

scaffold as compared to the abundance of vascular structures surrounding the scaffold. 

 The increase in resolution improved the ability of micro-CT to isolate vascular 

structures. One phenomenon that was not affected by the increase in resolution is the 

presence of mysterious “blobs” in the images (Figure 78). These rounded blob structures 

appeared in both medium- and high-resolution images. It is unclear if the structures are 

simply very dense beds of small capillaries that appear as a single globular structure due 

to the limited ability of the micro-CT to distinguish between extremely small structures, 

or if they are in fact pools of contrast agent that occur due to the inherent leakiness of 

immature vessels. If it were manageable to do histology on the perfused samples, it is 

theoretically possible that the blobs could be isolated and identified using 

histomorphometric techniques paired with immunostaining. 
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Figure 78: Micro-CT images of the same sample at medium and high resolutions. Note 
the presence of the apparently solid amorphous globular structures in both images. 
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APPENDIX B 

 

FABRICATION OF POLY(L-LACTIDE-CO-D,L-LACTIDE) ORIENTED 

POLYMER SCAFFOLDS 

 

 

Materials: 

• Polymer (PLDL, PLGA, PTMC, P(TMC-L-DL), etc.) (PLDL = Resomer LR 706, 

Boehringer Ingelheim) 

• Azodicarbonamide (Aldrich, cat # 123-77-3) 

• α-Tricalcium phosphate, ground to a fine powder 

• Media bottle, 100ml size 

• 316 stainless steel wire (0.004” diameter stress relieved wire, California Fine 

Wire) 

• Syringes -- 5ml and 1ml 

• Syringe needles – ga sizes 22, 20, and 16 (grey, yellow, and purple respectively) 

• Heat shrinkable tubing (1/8” – 3/16”, GB electrical from Home Depot) 

• Beakers 

• Acetone (Aldrich) 

• Hexanes (Aldrich) 

• Peanut oil 

• Scotch or autoclave tape 

• Ruler 
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• Razor blades 

• Biopsy punches (4mm diameter for rat seg gap scaffolds) 

• Oven 

• Long-handled hemostats. 

• Resin reaction flask, power controller, heating mantle, heat/stir plate, 

thermometer setup in fume hood. 

 

Procedure: 

Polymer solution preparation 

1. Combine dry polymer and azo compound powder in desired concentration in the 

media bottle 

30% azo = 5.6 g PLDL, 100 ml acetone, 2.4 g azo 

To make 10% TCP, add 1 g TCP to 100 ml PLDL/azo solution. 

2. Add approximately 10x by weight acetone (density ~ 0.79 g/ml) 

3. Allow the polymer to dissolve and reach a uniform solution. This step may take a 

few days, and may require addition of extra solvent or heat (37ºC water bath for a 

few minutes is ok). 

4. Solution should be viscous but still flow and maintain a single phase. 

 

Wire coating procedure 

1. String up lengths of wire (10 to 15 feet long) across the room, securing the ends 

with tape. 

2. Partially fill a 5 ml syringe with polymer solution. 
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3. Thread the wire into the 1 ml syringe (from the back so the wire tip comes out the 

small end of the syringe). If this is difficult, thread the wire through a sewing 

needle and bend the wire, then drop the needle through the syringe, or slightly 

bend the wire to eliminate its natural curvature. 

4. Thread the end of the wire through the 22 ga syringe needle, attach the needle to 

the syringe, and retape the wire to the wall or shelf. 

5. With the 1 ml syringe tilted slightly upwards, inject the solution from the 5 ml 

syringe into the 1 ml syringe. 

6. Pull the 1 ml syringe along the wire slowly so that a coating of solution is 

deposited on the wire. Remove any blobs of polymer solution with the tip of the 5 

ml syringe (or your finger) carefully. 

7. To begin the next wire, either rethread the wire on a new syringe or needle or 

rethread the ones you used for the first wire.  

8. You only coat once with the 22 ga needle.  

9. Allow this coating to dry for approximately 30 minutes, or until dry to the touch. 

10. Repeat this coating step twice more on each wire using the 20 ga needles. Allow 

these coats to dry 2 hours each or until dry to the touch. 

11. Repeat this coating four times with the 16 ga needle. For these coatings, you may 

need to refill the 1 ml applicator syringe with solution from the 5 ml syringe as 

you move along the wire. To do this, drip a little solution at a time in the 

applicator syringe as you continue to pull it along the wire. This allows the wire 

motion to carry the solution to the tip without producing backpressure and making 

too much of a mess. Allow these coats to dry 2 hours or overnight. 
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12. The next day, cut the wires into 8 cm lengths using a ruler and a razor blade. 

 

Preparing scaffold equipment 

1. Turn the oven on and heat to 125ºC. 

2. Resin reaction flask should sit on the heating mantle, which should sit on top of a 

stir plate. The heating mantle is controlled with a power controller. A 

thermometer should be clamped and suspended in the flask.  

3. Fill the flask ~half way with peanut oil. Remember – oil expands when it is 

heated. Make sure the thermometer tip is in the oil and you can read the 

graduations. 

4. Turn the stir bar on 

5. Turn the power controller that controls the heating mantle on. It should be set at 

the 82 rating so that the oil heats quickly without overheating. The maintenance of 

proper temperature will also depend on the flow rate of the fume hood. It will take 

about 45-60 minutes to heat to 260ºC. 

6. Fill the 250 ml beaker with water and place it near the stir plate. 

 

Heat treating the coated wires 

1. Count out wires to bundle them. This can be done one of two ways: 

a. Either by weighing out 10 wires, and subtracting 65.5 mg (for the bare 

wire) to determine how much polymer coating per meter of wire there is. 

Then calculate the polymer coating mass per 1 wire. Divide 424.4 mg by 

the mass of polymer per one wire (mg/wire) to get the number of wires 
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you need – this produces the scaffold size that Angela used to test the 

mechanical properties. This typically enbds up being 55-65 wires. 

b. Usually, i bundle 110 wires together, and measure them out by counting 

the number of wires. This provides a large enough diameter scaffold to 

punch out 4 mm scaffolds later. 

2. Pile the wires together and push them into the heat shrink tubing. You may have 

to cut the tubing. 

3. Pull out one wire on each end longer than the others – this will give you 

something to hold on to while frying the scaffolds. 

4. Place the heat shrink bundles in the oven on a piece of foil for 25 minutes at 

125ºC. 

5. Remove the bundles from the oven and cut in half using wire cutters. 

6. Unsheath the heat shrink tubing using a razor blade. The individual coated wires 

should not be clearly distinguishable at this time. 

 

Azodicarbonamide decomposition 

1. Verify that the peanut oil is at 260ºC. 

2. Clamp onto the one wire that’s sticking out of the uncut end of the coated wire 

bundle with the long-handled hemostats. 

3. Quickly dip the sample into the peanut oil such that it is completely covered. 

4. Gas will begin to escape the structure.  

5. When the gas effervescence stops (20-30 seconds), quickly remove the sample 

and submerge it in a beaker full of water to quench it. Sometimes the wires will 
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start to separate from each other during the procedure. If this occurs, you may lose 

your sample, so remove it quickly before full decomposition and quench in water. 

I find that for bundles of 110 wires, the scaffolds puff up and are on the verge of 

coming apart when the effervescence ceases. 

6. Repeat for the second half of the fused scaffolds. 

 

Final steps 

1. Blot the fried scaffolds with a paper towel. 

2. Dip the fried scaffolds in hexane to remove any excess oil. You should be able to 

see the oil perfuse out of the pores. 

3. Remove the wires with hemostats. Hold on to any wires you can find without 

damaging the ends and pull along the long axis of the scaffold. The wires should 

come out with a little resistance. 

4. Cut the scaffolds to size. The diameter can be sized using a biopsy punch. 

5. Wash the scaffolds again in new hexane to remove any remaining oil. 

6. Soak the scaffolds in water for a few hours to ensure any degradation products are 

leached out (the degradation compounds are water soluble). 

 

Sterilization 

1. Wash the scaffolds in 70% ethanol, then DI water, three times each, ending with a 

water wash. I usually do this by putting all of the scaffolds into a 50 ml conical 

and shaking them with the liquid. Then place them (using forceps) into eppendorf 

tubes and allow them to dry with the lids open overnight. Then close the tubes and 
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number the scaffolds (best = 1, worst = highest #), place 2 scaffolds per 

sterilization pouch, and place in a box to be shipped to the γ-irradiation facility. 

2. The dose for sterilization is 25 kGy (or 2.5 Mrad) at a standard dose rate. This 

takes about 4 hours to do. Ask for a dose confirmation sheet for the scaffolds. 
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APPENDIX C 

 

RAT SEGMENTAL DEFECT SURGERY PROTOCOL 

 

 

1.1 Supplies 

Autoclave on trays, duplicate for two-table setup 

Tray 1 

� surgery drill 

� surgery saw 

� saw hex tool 

� jacobs chuck attachment and chuck keys 

� # 65 uncoated drill bits (1 per rat + extra = ___________) 

� 5.5 x 12 x 0.4 mm micro oscillator saw blade (1 per rat + extra  = ____________) 

Tray 2 (double this for 2 table surgeries) 

� scalpel handles (2) 

� hemostats (2 curved mosquito) 

� needle holders/suture cutters (2) 

� small sharp scissors (1) 

� blunt scissors to cut drapes (1) 

� pickups (brown-adson forceps) (2) 
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� small pointed forceps (2 curved, 2 straight) 

� hex wrench for bone clamp (1) 

� russian forceps (2) 

� wound clip applicator (1) 

� wound clip remover (1) 

� retractors (3) 

� plate and bone holding clamp (1) 

� miniature screws, #00-90, ¼” length (eight per animal + extra = ________) 

� miniature screws, #000-120, 3/32” length (eight per animal + extra = ________) 

� bone plate assemblies, 1 polysulfone and 2 steel components per animal = 

___________ps & ___________ss) 

� small screw drivers – 2 of each size, larger and smaller tips (4) 

Tray 3 

� sterile surgery towels for draping over animal and on table 

Ethylene oxide- or gas plasma-sterilized materials 

� ioban film (1 small size per table) 

Gamma-irradiation sterilized materials 

� polymer scaffolds for implantation (quantity = _________) 

Autoclave separately in pouches 

� sterile bowls (2) (double for 2 table surgeries) 

� blunt square-ended bovie tips (2) 
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� white bovie cords (2) 

� hoses for surgery drill (2) and surgery saw (1) 

� extra wound clips 

� surgery lamp handles (2 sets) 

Other materials 

� 4-0 vicryl suture (1 per rat = _______) 

� #10 scalpel blades (2 per rat + extra = _______) 

� sterile 4x4 gauze (1 package per rat = _______) 

� small sterile drapes (at least one package of 2 per rat, + extra = ________) 

� half-drapes for surgery table (1 per table = ________) 

� table drape for table with tools (1 per table) 

� surgical gowns for each sterile person 

� sterile gloves (one pair per person per rat) 

� glass bead sterilizer (1 per table) 

� sterile water for rinsing tools, and sterile water for irrigation (in bottle, 500 ml per 

table) 

� sterile needles for irrigation (gavage or 16g, 1 per table = ________) 

� sterile 10 ml syringes for irrigation (1 per table= ________) 

� extra nitrogen tank for second power saw 

 

Procedure 

• Turn on glass bead sterilizer 
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• Prewarm the surgery table and cover with a drape.  

• Clip hair from around the entire leg and hip area on the dorsal and ventral sides, 

including the lower abdomen (above where the rat’s waist would be if it had one) 

and down to the ankles. 

• Sterilize the entire shaved area, including the foot (the foot cannot be completely 

sterilized). 

• Transfer the rat to the surgery table, insert the rat’s nose into the nose cone, and 

elevate the feet so that they do not contact the tail. Secure the rat to the table with 

Ioban or a loop of suture running over the animal’s incisors and through the 

isoflurane face mask. 

• Holding the ankles with forceps, wrap Ioban around the animal’s feet. Cut a hole 

into the sterile drape for each foot and pull the feet through the hole. Or 

alternately arrange drapes around the leg to leave only one leg at a time exposed. 

• Place another sterile drape over the nonsterile areas of the rat’s torso and 

anesthesia nose cone. 

• Assemble the plate components on the instrument table. Secure the blade into the 

oscillating saw. Prepare the drill as well. 

• Make a long incision from the knee to above the hip on the anterior side of the 

femur. Retract the skin away. 

• Using blunt dissection, separate the quadriceps muscles on the anterior side of the 

femur, slightly lateral of the femur midline (at the first lateral muscle bundle). 

There should be a visible split in the muscle bundles that can serve as a guide. be 
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careful to avoid the femoral artery and the large cutaneous vein to the medial side 

of the quadriceps. 

• Loosen and retract the soft tissues from around the femur. Muscle tissue must be 

separated from the defect area to allow the plate & bone holding clamp to grip 

around the femur. 

• Place the fixation plate on the anterior side of the femur and hold in place with the 

plate & bone holding clamp. Drill through the bone using the screw holes on the 

plate as a guide. Start on the distal end and insert a threaded screw. Then place a 

proximal screw in the same manner. 

• Place the remaining two screws.  

• Using the oscillating saw, cut through the middle section of the diaphysis as 

indicated by the notches on the fixation plate, removing the central 8 mm of the 

femur. These cuts should be made perpendicular to the long axis of the femur and 

parallel to each other. Cool the site while cutting by irrigating with sterile water. 

Flush out the site after cutting to remove any debris and resdiual bone chips. 

• If a scaffold is being placed, press-fit it into the defect site using a lateral 

approach. If necessary, snip off excess lengths on the screws. 

• Close the soft tissues with 4-0 vicryl suture. 

• Close the skin incision using 4-0 vicryl suture and then apply wound clips. 

• Paint new-skin mixed with finely ground metronidazol over the incisions to 

discourage the animals from chewing on the sutures. 

• Remove the Ioban from the animal’s feet and body, and cradle the rat in a dark 

washcloth until it begins to move and regains sternal recumbency. 
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• Administer analgesics (buprenorphine) and return the animal to its cage. Begin 

observations. An Elizabethan collar may be placed if necessary to prevent the 

animal from chewing at its incisions. If possible, however, this should be avoided 

as the collar causes the animal additional stress. 

 

• Observations: each animal must be observed daily for ambulation. 

typical notes on ambulation: 

 1) the animal is walking normally. 

 2) the animal is weight-bearing on the operated leg(s), but lame. 

 3) the animal is not bearing weight on the operated leg(s). 

 4) the animal is dragging the operated leg(s).  

If an animal is not bearing weight on the operated leg(s), or is dragging the 

operated leg(s) for three consecutive days, consult the staff veterinarian. The 

protocol calls for the animal to be euthanized in such a scenario. 
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APPENDIX D 

 

RAT VASCULAR PERFUSION PROTOCOL 

 

Materials: 

• 0.9% normal saline 

• 1000 u/ml heparin 

• Microfil MV-122 (yellow color lead chromate compound) (http://www.flowtech-

inc.com) 

• 10% neutral buffered formalin  

• properly labeled waste bottles for formalin waste 

• 1 pair small surgical scissors, 1 pair large scissors, 2 hemostats, 1 small curved 

pair of forceps 

• 22 gage (blue) 1” long catheters 

• needles 

• pipettes and pipette aid 

• 1ml and 20ml syringes  

• peristaltic pump set at 15 ml/min flowrate 

• luer lock connectors as needed 

• diapers/chucks/absorbent plastic-backed workbench pads 

• 50 ml conicals for storage of femurs 

• gauze and cotton swabs 
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Scale-up is based on 2 ml blood/25 g mouse, assumes rats have a blood volume of ~64 

ml/kg 

 

Procedure: 

Prepare solutions 

• 0.9% normal saline (~450 ml/rat) 

9 g sodium chloride 

1000 ml DI water 

• contrast agent (make 18 ml/rat) 

do not add catalyst until immediately before perfusing animal 

mix 5% catalyst, 95% MV (yellow) compound:   

do not add diluent 

do not heat MV compound  

• 10% neutral buffered formalin (~300 ml/rat) 

 

Perfusion 

1. Set up the peristaltic pump, check the flow, and bleed all air out of the line using 

the saline solution. You may have to start flow by siphoning the saline through 

the tubing using a syringe. 

2. Induce anesthesia at 5% isoflurane in an induction chamber. 

3. Switch animal over to the face mask at 2% isoflurane. 
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4. Check for pedal withdrawal reflex using the toe pinch.  When this reflex is not 

seen, the animal has reached a deep surgical plane and the procedure can begin. 

5. Using scissors, cut through the skin on the lower abdomen above the junction of 

the legs with the body. Then elevate the muscle tissue and cut through the muscle 

wall, exposing the internal organs. 

6. Move the internal organs aside and out of the abdominal cavity (to the animal’s 

left). 

7. Locate the abdominal aorta and inferior vena cava by feeling for a pulse. The 

aorta is the smaller vessel to the animal’s left side. The vena cava is the larger, 

darker vessel to the right side. 

8. Using a cotton swab, carefully rub away the fatty tissue covering the aorta and 

vena cava. 

9. Clamp off one of the renal veins if you can see it (on the animal’s left side, 

running towards the vena cava).  

10. Tunnel under the aorta and vena cava using a pair of curved forceps. Then spread 

the tips of the forceps and route a pair of curved hemostats through the tunnel. Do 

not clamp down yet with the hemostats. 

11. Place a 22g (blue) 1” long catheter into the abdominal aorta going towards the 

hindlimbs. The aorta is the smaller, whitish-looking vessel that is left of the 

animal’s midline. The insertion point should be just above the point where the 

animal’s left renal vein joins the vena cava. The catheter should be inserted with 

the needle bevel facing up. When the catheter is placed correctly, blood will be 

drawn up into the hub of the catheter. 
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12. Administer 250 units (0.25 ml of 1000u/ml) heparin through the catheter and 

allow it to circulate for approximately one minute. 

13. Clamp down across the vena cava and aorta with the curved hemostats. 

14. Verify that the catheter has not descended down one of the branches of the aorta 

that lead to the legs. The bifurcation point is located just below the junction of the 

renal veins with the inferior vena cava. If the catheter has moved preferentially 

down one branch, back it out until the end is above the branching point. 

15. Attach the tubing from the peristaltic pump. 

16. Cut  a vent in the vena cava to allow fluid to exit 

17. Optional step -- tie the catheter in place using a single loop of suture. 

18. Start the pump and deliver saline. 

19. Carefully expose and examine the femoral arteries and veins to see if the blood is 

clearing out. 

20. When ~200 ml of saline has been delivered, move the animal to 5% isoflurane 

and cut the diaphragm and aortic arch to euthanize the animal.  

21. After the animal is dead and ~300 ml of saline has been delivered, switch off the 

pump and move the tubing to the formalin reservoir. 

22. Perfuse the animal with approximately 300 ml of formalin, until the feet and tail 

become stiff. The limbs may appear to dance as the formalin moves through. Hold 

the legs in an outstretched position while the fixing step occurs. 

23. Stop the pump and rinse through the vasculature again with ~100 ml saline. 

24. Stop the pump and place a diaper under the animal. 

25. Prepare the Microfil (17.1 ml contrast agent, 0.9 ml catalyst). 
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26. Using a syringe connected to the catheter hub, deliver 15 mls of Microfil into the 

vasculature. You should see the femoral veins and arteries fill with yellow, and 

the feet should yellow as well. 

27. Allow the Microfil to polymerize for about an hour. 

28. Remove the hindlimbs and store in formalin for at least two weeks to fix the 

tissue. 
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