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ABSTRACT OF THE DISSERTATION 
Polarization Sensor Design for Biomedical Applications 

by 
Timothy York 

Doctor of Philosophy in Computer Engineering 
Washington University in St. Louis, 2015 

Professor Viktor Gruev, Chair 
 

  Advances in fabrication technology have enabled the development of compact, rigid 

polarization image sensors by integrating pixelated polarization filters with standard image 

sensing arrays. These compact sensors have the capability for allowing new applications across a 

variety of disciplines, however their design and use may be influenced by many factors. The 

underlying image sensor, the pixelated polarization filters, and the incident lighting conditions all 

directly impact how the sensor performs.  

 

In this research endeavor, I illustrate how a complete understanding of these factors can 

lead to both new technologies and applications in polarization sensing. To investigate the 

performance of the underlying image sensor, I present a new CMOS image sensor architecture 

with a pixel capable of operation using either measured voltages or currents. I show a detailed 

noise analysis of both modes, and that, as designed, voltage mode operates with lower noise than 

current mode. Further, I integrated aluminum nanowires with this sensor post fabrication, 

realizing the design of a compact CMOS sensor with polarization sensitivity. I describe a full set 

of experiments designed as a benchmark to evaluate the performance of compact, integrated 

polarization sensors. I use these tests to evaluate for incident intensity, wavelength, focus, and 

polarization state, demonstrating the accuracy and limitations of polarization measurements with 

such a compact sensor. Using these as guides, I present two novel biomedical applications that 

rely on the compact, real-time nature of compact integrated polarimeters. I first demonstrate how 
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these sensors can be used to measure the dynamics of soft tissue in real-time, with no moving 

parts or complex optical alignment. I used a 2 megapixel integrated polarization sensor to 

measure the direction and strength of alignment in a bovine flexor tendon at over 20 frames per 

second, with results that match the current method of rotating polarizers. Secondly, I present a 

new technique for optical neural recording that uses intrinsic polarization reflectance and 

requires no fluorescent dyes or electrodes. Exposing the antennal lobe of the locust Schistocerca 

americana, I was able to measure a change in the polarization reflectance during the introduction 

of the odors hexanol and octanol with the integrated CMOS polarization sensor. 
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Chapter 1: Introduction 
The path of digital polarization image sensors has seemed to mirror the path taken for 

digital color image sensors. Initial designs were based around time-multiplexed images captured 

with different optical filters. For color, these were red, green, and blue filters; for polarization 

these were different orientations of a linear polarizer. While time multiplexing proved effective 

for static scenes, it wasn’t until color filters were integrated directly onto the image sensor array 

that digital color photography became ubiquitous [1]. High-resolution, compact color sensors 

have now found tremendous use in scientific and medical applications, enabling new discoveries 

because of their reliability and ease of use. Recent advances in nanofabrication techniques have 

allowed the development of similar, compact, integrated, high-resolution polarization sensors 

[2]. These division-of-focal-plane polarization sensors mate pixelated nanowire polarization 

filters designed for operation in the visible spectrum directly to an underlying image sensor. In 

the same vein as digital color sensors, these compact polarization sensors also have the potential 

to enable new discoveries in many diverse fields due to their rigid integration, reliability, and 

ease of use. 

There are multiple considerations taken, however, when designing such polarimeters, 

perhaps none more important than the type of underlying image sensor used for capture. CCD 

image sensors have typically exemplified low noise combined with highly linear capture, and 

prove excellent candidates for scientific and industrial polarization sensors [3]. CCDs, however, 

typically have lower frame rates and higher power consumption than CMOS based image 

sensors. As new applications for integrated polarimeters develop, some of these applications may 
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require higher frame rates or lower power than CCDs can offer, thus necessitating a move 

towards CMOS based imaging arrays. 

Even among CMOS arrays, a choice remains as to which architecture to use for pixel 

readout. Sampling the pixel value as a voltage is the most common choice of CMOS pixel 

architectures [4], [5]. Alternatively, the pixel value can be output as a current [6]. The optimality 

of either mode is subject to debate, with voltage mode purporting lower noise and higher 

linearity, while current mode potentially having higher speeds and lower power consumption. 

Direct comparison of the two modes has remained difficult, as many sensors use different 

fabrication processes, pixel architectures, and readout structures. Developing a sensor capable of 

operation in either mode, at the flip of a switch would allow for a direct comparison of the 

advantages and disadvantages of either. To date, such design has not been realized leaving out a 

fair comparison between these two imaging sensor modalities. 

The recent development of compact, integrated polarimeters also leads to the challenge of 

how to accurately assess such a sensor’s performance. The direct integration of the filters with 

pixels requires understanding of both the optical performance of the filters combined with the 

electrical properties of the sensor. The performance of the filters may be limited by wavelength, 

integration alignment, nanowire grating construction, and incident viewing angle [7], [8]. The 

underlying image sensor itself will have hard limits set by the SNR at various light intensities, as 

well as the dynamic range and quantum efficiency of the photosensitive element [3]. A full 

systematic testing methodology is needed to help comprehend all of these limitations and their 

impact on the sensor’s polarization accuracy. Such a methodology can even potentially serve as a 

standard for evaluation of these types of sensors.  
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A thorough characterization of the sensor’s electrical and optical performance can also 

help guide the design of applications of the sensor’s use. Understanding the limitations of the 

sensor guides choosing the correct optics for a particular application, from incident illumination 

sources, to lenses, to any additional filters needed in the input or output path. Can we develop 

new applications that take advantage of the compact, rigid nature of the polarization sensor?  

In this dissertation I propose to address the following questions: 

1. Can we directly and fairly evaluate the advantages and disadvantages of CMOS voltage 

mode and current mode sensors? 

2. Can we design, fabricate and test a compact, integrated, division-of-focal-plane CMOS 

polarization sensor? 

3. Can we develop a systematic testing methodology for division-of-focal-plane 

polarimeters to evaluate their optical and electrical performance? 

4. Can we use division-of-focal-plane polarimeters to solve biomedical research problems 

where real-time acquisition of polarimeteric information is critical? 

1.2 Contributions of this Dissertation 
To answer the above questions,  

1) I have fabricated a custom CMOS image sensor that can operate in either voltage or 

current mode. I fabricated the sensor a 180-nanometer CMOS process specifically 

optimized for image sensors. I have evaluated the noise equations of the sensor in both 

modes, and I have tested the fabricated sensor for operation in current mode and voltage 

mode. A theoretical model has been developed to capture the various noise contributions 

in either imaging modality and is in a good agreement with experimental data. 
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2) I have realized the first CMOS polarization imaging sensor by depositing pixel-pitch 

matched, aluminum nanowire polarization filters on an array of imaging elements using 

flip chip bonding technique. 

I have developed a systematic method for evaluating the optoelectronic performance of 

the CMOS polarization sensor operating in the current mode domain. The test bench 

evaluates the performance of the polarization sensor over a large space including: 

incident illumination intensity, degree of polarization, angle of polarization, wavelength 

evaluation, and optical divergence. 

3) The first CMOS polarization imaging sensor has enabled the following novel biomedical 

applications:  

a. Measure for the first time the real-time dynamics of soft tissue using standard 

optics without requiring the use of rotating polarization elements 

b. Optically record neural activity using the intrinsic polarization reflectance without 

the use of any fluorescent probes or contact electrodes 

1.3 Organization of the Dissertation 
 The dissertation is organized as follows: Chapter 2 provides the details of the dual mode 

CMOS image sensor. It includes the full schematic of the pixel and readout structure, as well as a 

noise analysis with simulations, and finally measurements from the fabricated chip. Chapter 3 

gives a background on polarization image sensor architectures, as well as the physics of how 

light is polarized. It then includes measurements of the CMOS image sensor fabricated in 

Chapter 2 operating in current mode. Chapter 4 contains a complete measurement methodology 

for division-of-focal-plane polarimeters. The sensor is a CCD division-of-focal-plane polarimeter 

which underwent multiple optical tests to evaluate the polarization accuracy for various 



 

5 
 

intensities, wavelengths, and incident optical angles. Chapter 5 contains two biomedical 

applications using division-of-focal-plane polarimeters. The first uses a CCD division-of-focal-

plane polarimeter to measure the strength of alignment of dynamically loaded tissue in real-time. 

The second application uses the CMOS current mode image sensor to observe the intrinsic 

optical polarization change during neural activation in a locust. 
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Chapter 2: Dual-Mode CMOS Imager: 
Current vs. Voltage Mode Imaging 

2.1 Overview of Voltage and Current Mode Image Sensors 
The inception of MOS imaging sensors can be traced back to the late 1960’s, when the 

first 10 by 10 imaging array was reported in the literature [9]. The pixel’s schematic in this 

groundbreaking work was composed of five transistors: two reset transistors and two address 

transistors for individually resetting and accessing pixels in the 2-D array respectively. The fifth 

transistor was utilized as a source follower and buffered the integrated photodiode voltage on an 

output bus. Due to the large voltage threshold variations in the source follower as well as the 

large dark currents, the quality of the captured images was poor. In order to improve the image 

quality, double sampling was introduced as well huge effort into improving the fabrication 

process of CMOS circuits. 

The basic pixel circuitry of today’s imaging sensor has not changed for more than 50 

years. Cellphone manufactures are the leading force in miniaturizing the pixel size down to 

~1𝜇𝑚! primarily due to the benefits of Moore’s law – as the transistors sizes decrease with 

smaller feature technology, the pixel pitch in imaging sensors decreases as well. The challenges 

for imaging sensors fabricated in small feature technologies are maintaining high sensitivity and 

low noise performance. Some of these challenges are mitigated by optimizing the fabrication 

steps of the photodiodes, which are becoming very complex in order to preserve sensitivity, high 

quantum efficiency and high pixel well depth [10]. 

Current mode imagers have been widely recognized as computational sensors [11]–[13]. 

The pixel in a current mode imager provides a current proportional to the incident light flux on 
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the pixel and due to Kirchhoff current law and current mirrors simple arithmetic operations such 

as addition, subtraction, multiplication and division are implemented with little or no power 

consumption. Another niche for current mode imagers is higher frame rates compared to voltage 

mode imaging sensor. Due to the fact that the read-out buses in a current mode imager are kept at 

constant voltages while only currents are varied along the bus, higher frame rate can be achieved 

compared to voltage mode sensors due to minimized charging and discharging of the readout bus 

[14]. 

One of the shortcomings in current mode imagers has been higher spatial and temporal 

noise compared to voltage mode imagers. Many research efforts have been focused on reducing 

the spatial and temporal noise in current mode imaging sensors [6], [14]. Although the noise 

performance of current imagers has drastically improved over the last five years, drawing a fair 

comparison against the noise performance in voltage imagers has been difficult to do. The main 

reasons has been that voltage mode imagers are fabricated in CMOS process optimized for 

imaging sensors – they enjoy the benefits of double well process which allows for isolation of 

digital and analog circuits, pinned photodiode for CDS implementation and low noise read-out 

transistors with channel doping in order to push the channel formation away from the Si-SiO2 

interface. In this technology the photodiode coupled with a charge transfer transistor and read-

out transistor are carefully designed in order to: 1) have a complete charge transfer between the 

photodiode and the floating diffusion node and 2) maximize the capacitance on the floating 

diffusion node [15]. Since current mode imaging sensors have been implemented in a regular 

CMOS process, the noise performance will always be lower compared to voltage mode imager 

implemented in a CMOS imager optimized process. 
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In this chapter, we have designed a pixel that can operate in both current or voltage mode 

and will allow for a fair comparison between the spatial and temporal noise performance of 

voltage and current mode imagers. The pixel is implemented in 180nm CMOS process for 

imaging sensors (CIS). The pixel’s charge transfer transistor and read-out transistor are 

optimized for full charge transfer and low noise on the read-out transistor by pushing the channel 

formation away from the Si-SiO2 interface and optimizing the pixels layout.  

2.2 Dual Mode Sensor Design 
The pixel contains four transistors that enable dual mode operation. Transistor M1 is for 

charge transfer, M2 is the readout transistor, M3 is a switch to reset the photodiode, and M4 is 

the column selector. The power bus connects to analog multiplexers to choose among Vdd, 

ground, or another preset voltage. The pixels share a row-parallel output bus. 

2.2.1 Current Mode Operation 

 
Figure 2.1: Current Mode Schematic 

Operation in current mode takes place according to Figure 2.1. The M1 switch is 

connected to ground through analog multiplexer MX1. The pixel is reset by connecting the 

Output Bus to either Vdd or to another reset voltage at least one threshold below the supply 

through the analog multiplexer.  With M3 turned on, the floating diffusion node, common for 
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transistors M1, M2, and M3 is pulled to this voltage, while the charge transfer, M1, is active.  To 

enable readout, the floating diffusion is reset, while the output bus is pre-charged to a voltage 

equal to the reference voltage set on the current conveyor.  The photovoltage is then transferred 

to the floating diffusion via M1 transistor, followed by turning off transistor M1. If the reference 

voltage present on Vds is low enough, transistor M2 operates in the triode region, and the output 

current is linear with respect to the photovoltage. The row is then sampled one pixel at a time, 

after which the pixel is reset, and readout proceeds to the next column. On the periphery, the bus 

is connected to a current conveyor designed using a regulated cascode structure. The constant 

bias current fixes Vds on the mirroring transistors in the conveyor, drastically reducing channel 

length modulation. Hence, the mirrored current flowing through transistors M8 and M9 has 

minimal error compared to the current flowing through transistor M13. 

2.2.2 Voltage Mode Operation 

 
Figure 2.2: Voltage Mode Readout 

Operation in voltage mode takes place according to Figure 2.2. To reset the pixel, the 

power bus connects to ground using analog multiplexer MX2, while the output bus connects to 

the reset voltage through M3. A low RST turns off M3 to complete the reset of the floating 

diffusion, after which the power bus connects to Vdd, and the output bus connects to a bias 
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current. M1 then transfers the photovoltage to the floating diffusion node, after which it turns off 

while the row is read out. The output bus is once again connects to the reset voltage, and M1 

then turns on to reset the photodiode. Finally, M2 turns off, and readout proceeds to the next 

column. 

The doping of M1 is tightly controlled, as well as the layout of the pixel, to allow 

complete charge transfer from the photodiode to the floating diffusion node, while the floating 

diffusion itself is optimized to reduce leakage currents. The pixel’s layout was designed using 

Cadence Virtuoso tools and Taurus Medici simulation tools from Synopsys to ensure complete 

charge transfer. This allows the floating diffusion to be used essentially as a memory, holding the 

photovoltage until that row can be read.  The floating diffusion is weakly photosensitive, as 

discharge of the photodiode results in a positive bias of the TFR signal with respect to the 

photovoltage.  This, in turn, limits the capability of charge storage on the floating diffusion, as 

rows read later will have some voltage decay. 

To test the charge storage capabilities on the FD node, the floating diffusion and pixel are 

driven to the reset potential, Vreset. M1 is then turned off to allow integration, and Signal is 

connected to the output bus. After a delay, M1 transfers the photovoltage to the floating 

diffusion, which is held for another delay before the pixel is reset.  Changing the light intensity 

illustrates that the floating diffusion is light sensitive, with a different rate of change for different 

intensities. The decrease in voltage happens more rapidly as light intensity increases, however it 

shows little dependence on the reset voltage.  In terms of error, with a reset voltage of 3.3 V, the 

worst case change is -5 mV/ms, which results in an error of only 0.3 % 
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2.3 Noise Analysis 
Understanding the contributions of noise for both operations in current and voltage mode 

are key to determining the advantages or disadvantages of one mode over the other. Finding 

approximate solutions of the input referred noise during reset and readout will aid in determining 

the dominant sources, and guide the design of both the pixel and readout to minimize the noise 

contributions of either mode. 

2.3.1 Noise During Reset 

 
Figure 2.3: Small signal noise model for pixel during reset 

 
In the Dual Mode pixel, shown in Figure 2.1, the reset noise is contributed by the on 

resistance of the PMOS transmission gate MUX transistor, Rtg, and the on resistance of the reset 

transistor, Rrst. There are two capacitances, Cpix, which is the combined capacitance of the 

photodiode and floating diffusion (the transfer transistor is specially designed to allow for 

Vin + −

+
−
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complete charge transfer, and thus is assumed to contribute no noise during reset), and Cbus, 

which is the bus capacitance shared by all pixels in the row. The equivalent circuit is shown in 

Figure 2.3. To solve for the noise contribution during reset, the sources are assumed to be 

uncorrelated, and thus the total noise contribution from each source during reset is computed 

from equation (2.1), where N is the total number of noise sources, and H is the transfer function 

for vin over the ith source, with all others turned off 

( ) ( ) ( )∑
=

=
N

i
iiout fHfSfS

0

2  (2.1) 

Using (2.1) to compute the PSD and integrating the frequency from 0 to infinity, the 

approximate noise power during reset is then which is similar to the case of a 3T pixel [16],  

Vn,rst
2 ≈ π kT

Cpix

 (2.2) 

however having to include the analog multiplexer does increase the reset noise due to the 

additional internal resistance of the transmission gates. 

2.3.2 Noise During Readout – Current Mode 

 
Figure 2.4: Small signal model for current mode noise 
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Figure 2.4 shows the small signal equivalent circuit of the current mode readout. The 

current conveyor is approximated as a single pole system comprised of a resistance, Rcc, and 

capacitance Ccc. Solving for the input referred noise requires a two-step process, as illustrated in 

[14], where first the transfer function of the input voltage over the output current is computed 

using the noiseless small signal model. Next, the contribution of each noise source from the 

small signal models is referred to the output, using superposition to compute the entire output 

referred noise. The total output noise is then referred back to the input via the noiseless transfer 

function. Doing so gives the input referred noise voltage during current mode readout, shown in 

(2.3). 
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2.3.3 Noise During Readout – Voltage Mode 

 
Figure 2.5: Small signal model of voltage mode readout 

 
Figure 2.5 shows the small signal model for voltage mode readout. The noise during 

readout for voltage mode is derived from the readout source follower, select transistor, and the 
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biasing current source. Both the readout and biasing source operate in saturation, and thus the 

PSD of their noise currents is 4kT(2/3)gm.  The select switch operates in linear mode, and thus 

the PSD of its noise current is 4kT/Ron. Using an analysis similar to [16], the input referred noise 

of the readout in voltage mode is computed in (2.4). 
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2.4 Simulations and Measurements from the Fabricated 
Sensor 

Equations (2.3) & (2.4) show the output noise of the circuit in dual mode is inversely 

proportional to the intrinsic gain of the readout source follower, indicating that a readout with 

higher gain and output resistance would reduce the overall readout noise in the voltage mode. 
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Figure 2.6: Readout noise as a function of aspect ratio 

To evaluate this effect, noise simulations using Spectre were run for both the current and 

voltage mode readout circuitry from Section 2.1. The simulations show this is indeed the case 

with voltage mode, as Figure 2.6 indicates increasing the aspect ratio decreases the readout 

noise, as the larger aspect ratio increases the intrinsic gain of the readout transistor. This is not 

the case with current mode noise. While the noise in current mode sensors is a function of the 

intrinsic gain, the readout also operates in linear mode instead of saturation. This causes the 

formation of an optimal point in sizing the readout transistor of a current mode sensor. Using too 

low of an aspect ratio causes a decrease in the transconductance of the readout, resulting in an 

increase in noise. Increasing the aspect ratio increases the transconductance, however it also 

decreases the on resistance with the readout transistor operating in linear mode. From (2.3), this 

decreased on resistance will increase the readout noise. 
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Figure 2.7: Readout noise as a function of the photovoltage 

Figure 2.7 presents simulated noise from the imager. It shows the readout noise in current 

mode also depends on the input photovoltage, whereas voltage mode is relatively constant. This 

is due to the fact that gm is not constant when a transistor operates in linear mode, and thus the 

noise becomes a function of the input photovoltage. In both simulations, the input referred 

readout noise is nearly an order of magnitude higher for current mode than voltage mode. This is 

potentially due to the fact that the frequency response of the current conveyor introduces higher 

order noise components, emphasizing the importance of designing a low noise current conveyor. 

Measurements were taken with the fabricated sensor. Figure 2.8 shows the measured 

signal-to-noise ratio of the sensor operating in both voltage and current mode. The voltage mode 

SNR is indeed always higher than the current mode SNR. This is expected from both the noise 

analysis and simulations, and seems to confirm that in terms of temporal noise, voltage mode 

does perform better than current mode. In terms of fixed-pattern-noise, measurements from the 
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sensor indicate that current mode has a lower uncompensated FPN at 0.9% compared to 4.8% for 

voltage mode. 

 

Figure 2.8: Measured SNR from the dual-mode image sensor 

2.5 Conclusion/Discussion 
The debate over the comparative advantages of voltage or current mode image sensors is 

ongoing. In an attempt to resolve some aspects of this debate, we have presented an image sensor 

capable of operating in both modes. We have shown through a thorough analysis equations for 

the noise introduced during reset and readout for both modes. We have further complemented the 

analysis with simulations that confirm that voltage mode does indeed have lower temporal noise 

than current mode. Finally, we have attempted to verify the simulations with measurements 

taken from a dual-mode image sensor fabricated in a 180 nm CMOS Image Sensor process. 

These initial measurements confirm that voltage mode has a lower SNR than current mode over 

the operating range.  
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Chapter 3: CMOS Polarization Image 
Sensor[11] 

 The design of division-of-focal-plane polarimeters necessitates an understanding of the 

fundamentals of polarization. This includes how light is polarized in the environment, how it is 

mathematically modeled, and how to measure the polarization state of light. In terms of 

measurement, taking hints from biological evolution shows that integration of polarizers directly 

to the photosensitive element results in a robust, compact design. This chapter presents a 

compact, division-of-focal-plane polarimeter based on this idea. The sensor integrates aluminum 

nanowire polarization filters with a custom designed CMOS current mode image sensor. 

Measurements from the fabricated sensor are included. 

3.1 Theory of Polarization 
Polarization is a fundamental property of electromagnetic waves. It describes the phase 

difference between the x and y components of the electromagnetic field when it is viewed as a 

propagating plane wave: 

E = E0,x cos ωt − kz+δx( ) x̂+E0,y cos ωt − kz+δy( ) ŷ  (3.1) 

where E0,x and E0,y are the respective amplitudes of the x and y fields, ω is the frequency, t is the 

time, k is the wavenumber, z is the direction of propagation, and δx and δy are the respective 

phases. 

From (3.1), the type of polarization is characterized from δx – δy, because the difference 

in the phases is what shapes the wavefront of the propagating waves. If the phase difference is 

random, the light is unpolarized; if the phases are the same, the light is linearly polarized; if the 

phases are unequal but constant, the light is elliptically polarized. A special case of elliptical 



 

19 
 

polarization is observed when the phase difference is exactly π/2, which transforms the 

wavefront into a circle, and so the propagating light is termed circularly polarized. Most of the 

light waves encountered in nature are partially polarized, a linear combination of unpolarized 

light waves and completely polarized light waves. 

3.1.1 A Mathematical Treatment of Light Properties via the Stokes-Mueller 
Formalism 

The classic treatment of incoherent polarized light uses the Stokes-Mueller formalism 

[17]. The mathematical framework for polarized light is derived mostly from the seminal work 

by Sir Gabriel Stokes. From his work, the intensity of light measured through a linear polarizer at 

angle θ and a phase retarder, ϕ, can be mathematically represented by as 

I θ,φ( ) = 1
2
S0 + S1 cos2θ + S2 sin2θ cosφ + S3 sin2θ sinφ( )  (3.2) 

The terms S0 through S3 are called the Stokes parameters, and each describes a polarization 

property of the light wave. The S0 parameter describes the total intensity; S1 describes how much 

of the light is polarized in the vertical or horizontal direction; S2 describes how much of the light 

is polarized at ±45° to the x/y-axis along the direction of propagation; and S3 describes the 

circular polarization properties of the light wave. The Stokes parameters are commonly 

expressed as a vector, which relates these parameters to the electromagnetic wave equation (3.1):  
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In equation (3.3), δ is the phase difference between the two orthogonal components of the light 

wave, δx – δy. 

Treating the Stokes parameters as a vector allows for the easy superposition of many 

incident incoherent beams of light, which allows for an elegant mathematical treatment of light 

properties, ranging from unpolarized to partially polarized and completely polarized light. This is 

achieved by expressing the light as the weighted summation of a fully polarized signal and a 

completely unpolarized signal. Furthermore, Mueller matrices can be used to model the change 

in polarization from interaction with optical elements (reflection, refraction, or scattering) during 

light propagation in a medium, such as lenses, filters, or biological tissue [18]. A Mueller matrix 

is a 4-by-4 real-valued matrix that mathematically represents how an optical element changes the 

polarization of light. The change in polarization is computed from the matrix-vector product of 

an incident Stokes vector, S, with the matrix for a component M. 

Two additional parameters are typically computed from the four-element Stokes vector. 

The first parameter is the degree of polarization (DoP), which estimates how much of the light is 

polarized. The DoP is computed from (3.4a) and is measured on a scale from 0 to 1, with 0 being 

completely unpolarized and 1 being completely polarized. The DoP can be further expressed in 

two components, the degree of linear polarization (DoLP) and the degree of circular polarization 

(DoCP). The DoLP (3.4b) measures how linearly polarized the light is, with 0 being no linear 

polarization and 1 being completely linearly polarized. Similarly, the DoCP (3.4c) measures how 

circularly polarized the light is, with 0 being no circular polarization and 1 being completely 

circularly polarized.  
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DoP =
S1
2 + S2

2 + S3
2

S0
 (3.4a) 

DoLP =
S1
2 + S2

2

S0
 (3.4b) 

DoCP = S3
S0

 (3.4c) 

The second metric is the angle of polarization (AoP), which gives the orientation of the 

polarization wavefront. This is the angle of the plane that the light wave describes as it 

propagates in space and time and is computed as 

AoP = 1
2
tan−1 S2

S1
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#
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%

&
'

.
 (3.5) 

3.1.2 Polarization of Light Through Reflection and Refraction 
Because polarization is a fundamental property of light, many organisms have evolved 

the capability to detect it in the natural world. To understand how this capability is useful, it 

helps to understand how light becomes polarized. In nature, light becomes polarized usually 

through reflectance or refractance of light off of an object, or through scattering as it encounters 

particles as it propagates through space. The DoP of the emerging light wave, after interacting 

with a surface, is based on the relative index of refraction between the reflecting material and 

medium of propagation, as well as the angle of reflection. The Mueller matrix for light reflection 

from a surface is  



 

22 
 

Mreflect =
1
2
tanθ−
sinθ+

"

#
$

%

&
'×

cos2θ− + cos
2θ+

cos2θ− − cos
2θ+

0
0

"

#

$
$
$
$
$

cos2θ− − cos
2θ+

cos2θ− + cos
2θ+

0
0

0
0

−2cosθ+ cosθ−
0

0
0
0

−2cosθ+ cosθ−

%

&

'
'
'
'

 (3.6) 

where θ– is the incident angle, θi, subtracted from the refracted angle, θr; and θ+ is the addition of 

θi and θr. Equation (3.7) presents the Mueller matrix of the light refracted through the surface: 

Mrefract =
sin2θi sin2θr
2 sinθ+ cosθ−( )2
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The incident and refracted angles are related by Snell’s law, which relates the index of medium 1 

(n1) and the incident angle (θi) to the index of medium 2 (n2) and the refracted angle (θr): 

n1 sinθi = n2 sinθr  (3.8) 

The Stokes vector for light reflected from a surface can be computed by multiplying the incident 

Stokes vector with the Mueller matrix of reflection from the surface (3.6). Assuming an incident 

unpolarized light (i.e., Sin=[1 0 0 0]T), computing the reflected light, Sout=S·Mreflect, for all 

possible incident angles (0° to 90°) results in a graph like Figure 1, which is an example using air 

(n1 = 1) and glass (n2 = 1.5) as the two indices of refraction. In Figure 1, the black line represents 
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reflection and the gray line represents refraction of light. As can be seen in Figure 3.1, the DoLP 

for glass has a maximum value of 1 for an incident angle of 56.7°. This angle is known as the 

Brewster angle, and it is often used to determine the index of refraction of a material in 

instruments such as ellipsometers. 

 

Figure 3.1: Degree of linearly polarized light for both reflected and refracted light as a function of incident angle. In 
this example, air (n1 = 1) and glass (n2 = 1.5) are the two indices of refraction. The maximum degree of linear 
polarization occurs at the Brewster angle, information that can be used to identify the index of refraction of a 
material. 

This same concept has been utilized in nature. For example, water beetles, which are 

attracted to the horizontally polarized light that reflects off of the surface of water, typically land 

on the water surface at 53°, which is the Brewster angle of water [19]. By measuring the 

maximum polarization signatures of the reflected light as a function of incident/reflected angle, 

water beetles estimate the Brewster angle of the water surface and possibly uniquely determine 

the location of water surfaces. 
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3.1.3 Polarization of Light Through Scattering 
Light scatters when it encounters a charge or particle in free space. The charge or particle 

impacts the electric field as the field propagates through space, and this influence can affect the 

polarization state of the light. An example is the Rayleigh model of the sky In the Rayleigh 

model, light scattered from a particle in a direction orthogonal to the axis of propagation 

becomes linearly polarized. This ballistic scattering from the many particles in the atmosphere 

creates a polarization pattern in both the DoLP and AoP across the sky based on the position of 

the sun. In nature, the desert ant Cataglyphis fortis uses this polarization pattern of the sky to aid 

its navigation to and from home [20]. Honeybees also use sky polarization as part of their 

“waggle dance” to indicate the direction of food [21]. There is even increasing evidence that 

birds combine magnetic fields and celestial polarization for navigation purposes [22], [23]. 

Optical scattering is present in biological tissue as well. The scattering agents for light as 

it propagates through tissue include cells, organelles, and particles, among others. Because many 

of these components can be on the order of the wavelength of the propagating light, the Mie 

approximate solution to the Maxwell equations, which is typically referred to as the Mie 

scattering model, can be used to describe the effects of scattering on polarization. Absorption by 

tissue attenuates the intensity of light, while scattering causes a depolarization of light in the 

general direction of propagation. The density of the scattering agents in a tissue influences the 

depolarization signature of the imaged tissue. For example, high-scattering agents are typically 

found in cancerous tissue, which leads to depolarization of the reflected or refracted light from a 

tissue. Hence, there is a high correlation of light depolarization with cancerous and precancerous 

tissue, and detecting polarization of light can aid in early detection of these tissues [24]. 
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3.2 Polarization Image Sensors 
Natural biological designs have served as the motivation for many unique sensor 

topologies. Real-time (i.e., 30 frames-per-second), full-frame image sensors [4] are a simple 

approach to a visual system, capturing all visual information at a given time. However, this 

typically creates bottlenecks in data transmission, as well as non-real-time information 

processing due to the large volume of image data presented to a digital processor such as 

computer, digital signal processors (DSP), or field programmable gate arrays (FPGA). Signal 

processing at the focal plane, as it is typically performed in nature, can lead to significant 

reduction of data that are both transmitted and processed off-chip. Hence, sparse signal 

processing, as is found in the early visual processing in many species, such as the mantis shrimp, 

can serve as inspiration for efficient, low-power artificial imaging systems [25]. 

In the mid-1980s a new sensor design philosophy emerged, where engineers looked at 

biology to gain understanding in developing lower-power visual, auditory, and olfactory sensors. 

Some early designs [26] attempted a complete silicon model of the retina, using logarithmic 

photoreceptors with resistive interconnects to produce an array whose voltage at a location is a 

weighted spatial average of neighboring photoreceptors. Other designs sought to replicate neural 

firing patterns by asynchronously outputting only when detecting significant changes from each 

photosensitive pixel [27]–[29] or significant color changes from color-sensitive pixels [30], [31]. 

Some designs have even sought to directly mimic the compound eye of insects [32]. 

One of the main benefits of these systems has been a low-power and real-time realization 

of information extraction at the sensor level. These sensors have found a niche in various remote-

sensing applications where power is a major constraint for sensor development [33]. 
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Furthermore, in these applications, extracting information at the sensor level and transmitting 

preprocessed data can greatly reduce bandwidth and overall power consumption. 

3.2.1 Classical Polarization Sensors 
The polarization selectivity depends on the ability to measure the Stokes parameters. 

From (3.2), the intensity of light measured with a linear polarizer with a retarder depends on the 

angle of the linear polarizer (θ), the phase retardance (ϕ), and the four Stokes parameters. A 

unique solution for the Stokes parameters in (3.2) thus requires a number of measurements equal 

to the number of desired Stokes parameters. 

To determine all four Stokes parameters, four distinct measurements are made with linear 

polarization filters and quarter-wave retarders. Hence, the four Stokes parameters can be 

determined as follows: 
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In these equations, I(0°,0°) is the intensity of the e-vector filtered with a 0° linear polarization 

filter and no phase retardation; I(45°,0°) is the intensity of the e-vector filtered with a 45° linear 

polarization filter and no phase retardation; and so on. The fourth Stokes parameter is computed 

with a 45° linear polarization filter and a quarter-wave retarder. 

The most predominant method of Stokes measurement solves these equations by rotating 

a linear polarization filter and retarder in front of the sensor, capturing a static image at each 

rotation. This type of sensor is called a division-of-time polarimeter [34], since it requires 

capturing the same scene at multiple steps in time. This simple design suffers from a reduced 
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frame rate, as each complete set of measurements requires multiple frames. It also requires a 

static scene for the duration of the measurement, since any change in the scene between rotations 

would induce a motion blur. As this is the simplest method for measuring static scenes, Division-

of-Time polarimeters have realized a number of applications, from 3D shape reconstruction [35], 

haze reduction [36], mapping the connectome [37], and many others. 

An alternate method with static optics projects the same scene to multiple sensors. Each 

sensor uses a different polarizer and/or retarder in front of the optical sensor to solve for the 

different Stokes parameters. This type of modality is called division of amplitude [34] since the 

same optical scene is projected full frame multiple times at reduced amplitude per projection. 

The drawback to this system can be the bulk and expense of having a large array of optics and 

multiple sensors. Maintaining a fixed alignment of the optics so all sensors see the same co-

registered image also poses a challenge to this polarization architecture, which typically requires 

image registration in software. These types of instruments have found some use in UAV 

applications [38], [39], target detection in cluttered environments [40], and measuring the ocean 

radiance distribution [41]. A similar optically static method uses optics to project the same scene 

to different subsections of a single sensor. Each subsection contains a different analyzer to solve 

for the Stokes parameters. This type of sensor is called a division-of-aperture polarimeter [34], 

since the aperture of the sensor is subdivided for polarization measurement of the same scene. 

The advantage is that it requires only one sensor, but the disadvantage is that it is prone to 

misalignment and can contain a long optics train. Multiple scene sampling on the same array also 

reduces the effective resolution of the sensor, without the possibility of upsampling through 

interpolation. The system complexity, from maintaining the optical alignment to the image 

processing, have precluded them from wider use. 
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3.2.2 Bio-inspired Polarization Imaging Sensors 
Taking a cue from nature, however, would mate the polarization analyzers directly to the 

photosensitive element. Figure 3.2 (left) shows an example of how nature has evolved 

polarization-sensitive vision. The compound eye of the mantis shrimp contains a group of 

individual photocells called an ommatidium. Each ommatidium has a cornea that focuses 

external light. The focused light is filtered through a pigment cell for color sensitivity and passes 

through a series of photosensitive retinular cells (R-cells). In the mantis shrimp, these cells 

contain an array of microvilli that can act as polarization filters. The photosensitive R-cells will 

signal the brain via the optic nerve, and the brain extracts visual information based on input from 

the array of ommatidia. 

 

Figure 3.2: Left, The compound eye of the mantis shrimp, where ommatidia combine polarization-filtering 
microvilli with light-sensitive receptors. Right, a bio-inspired CMOS imager constructed with polarization 
sensitivity, where aluminum nanowires placed directly on top of photodiodes act as linear polarization filters. 
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Biomimetic approaches have also attempted to replicate the polarization sensitivity 

present in certain species. Early designs integrated liquid crystals [42] or birefringent crystals 

[43] directly to pixels. These sensors allowed for full-frame polarization contrast imaging. More 

advanced polarization sensors integrated filters at multiple orientations, which enabled capture of 

the first three Stokes parameters [7], [8], [44]. 

Further advances in nanotechnology and monolithic integration of nanowires with CMOS 

technology have enabled high-resolution versions of this paradigm [2]. The use of liquid crystal 

polymers and dichroic dyes has allowed a full Stokes polarimeter [45], [46] These sensors are 

capable of capturing polarization information at video frame rates, and their compact realization 

has allowed them to pertain to remote-sensing applications, such as underwater imaging [47]. 

Other polarization sensor designs have attempted alternate, more biologically pertinent 

designs. As octopuses are known to have polarization-sensitive vision [48], a design based on 

polarization contrast with a resistive network sought to replicate the octopus vision system in 

silicon [49]. Polarization sensor designs have been developed that utilize asynchronous address 

event mode to output only when there are large enough changes in polarization contrast [50]. In 

this work, both the ommatidia functionality and neural processing circuitry have been efficiently 

implemented in CMOS technology. 

Analogous to the microvilli in the mantis shrimp vision system [51], which function as 

polarization-filtering elements, bio-inspired polarization sensors use pixel-matched aluminum 

nanowire polarization filters at 0°, 45°, 90°, and 135°, arrayed in a 2-by-2 grid called a 

superpixel [2], [52] (see Figure 3.2, right). These filters are fabricated to be 70 nm wide and 200 

nm tall and have a horizontal pitch of 140 nm. The filters are deposited post fabrication of the 
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CMOS imager through an interference lithography process, matching the pixel pitch of the 

imager array of 7.4 µm by 7.4 µm. Maintaining an air gap between these filters allows for a 

higher extinction ratio than does embedding the filters within a layer of silicon dioxide [53]. 

With the maturity of nanofabrication techniques, many interesting optical designs have 

become feasible. For example, metamaterial surfaces acting as achromatic quarter-wave plates 

[54] or as high-extinction ratio polarization filters [55] can further advance the field of 

polarization imaging when integrated with an array of imaging elements. These advances will 

bring the complete imaging system design closer to biology in terms of sensitivity and selectivity 

to both spectral and polarization information. Foundries such as TowerJazz Semiconductor 

(Migdal Haemek, Israel), Dongbu HiTek (Bucheon, Korea), LFoundry (Avezzano, Italy), and 

TSMC (Hsinchu, Taiwan) already offer specialized CMOS fabrication processes explicitly 

optimized for image sensors. However, polarization-filtering capabilities are not included in 

regular image sensor fabrication. The key would be to integrate these emerging optical 

fabrication techniques with these specialized CMOS fabrication technologies at the foundry level 

for optimal optical performance and high yield. With such an integrated solution, future 

polarization imaging designs could incorporate low-power analog circuitry that mimics neural 

circuitry, leading to sparse on-chip computation. 

3.3 Current Mode CMOS Polarization Image Sensor 
We have designed a bio-inspired polarization imaging sensor by combining CMOS 

imaging technology with nanofabrication techniques to realize linear polarization filters. In this 

bio-inspired vision system, the photosensitive elements are monolithically integrated with 

aluminum nanowires, or microvilli, acting as linear polarization filters. The bio-inspired 

photosensitive element is based on a current-mode CMOS imaging paradigm. The signal from 
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the diode is linearly converted into a current inside the pixel, and the image is then formed from 

each of the independent pixels.  

Circuitry on the pixel and for readout is presented in Figure 2.1. The pixel consists of a 

charge transfer transistor (M1), reset transistor (M2), transconductance amplifier (M3), and 

select transistor (M4). Through a series of switching multiplexers, the output of the pixel 

connects either to a reset voltage, Vreset, or to the readout current conveyor. This bus-sharing 

methodology eliminates the need for two separate buses to separately connect the drain of the 

readout transistor and the output current bus, which reduces the pixel pitch. The 

transconductance amplifier (M3), also known as the readout transistor, is biased to operate in the 

linear mode. This ensures a linear relationship between an output drain current and input 

photovoltage applied at the gate of transistor M3. The linearity is critical in correcting threshold 

offset mismatches between readout transistors via a technique known as correlated double 

sampling (CDS). 

Current-mode image sensors rely on current conveyors to copy currents from the pixels 

to the periphery while providing a fixed reference voltage to the input node, that is, to the drain 

node of the pixel’s readout transistor (M3). The classic current conveyor design [56] uses four 

transistors, two n-channel (NMOS) and two p-channel (PMOS) metal-oxide-semiconductor 

transistors, in a complementary configuration. The design is compact, but the output impedance 

is limited, and the transistors are subject to nonlinearity due to channel length modulation. 

Furthermore, the voltage at the input terminal of the current conveyor (i.e., the voltage at the 

drain node of the pixel’s readout transistor) can vary as much as 20% for the typical input current 

from a pixel. A single transistor design [57] improves settling time and power consumption but 

decreases linearity of the output current. 
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Because the polarization information conveyed in the S1 and S2 parameters is based on 

the linear difference in pixel intensities, pixel linearity is crucial to accurate polarization 

measurement. Alternate current conveyor designs use an operational amplifier with a transistor 

in the feedback path. The conveyor has high linearity and can be used for novel current-mode 

designs [58], but at the cost of increased power consumption and area. 

To improve the performance of the output current conveyor, a regulated cascoded 

structure for the current conveyor is used. Since all transistors in the current conveyor operate in 

the saturation mode, the potentials on the gates of transistors M13 and M14 are set by a biasing 

current. Since the gate potential of M13 (M14) and drain potential of M15 (M16) are the same, 

the channel length modulation effect is eliminated between the two branches, and the two drain 

currents are the same. Furthermore, the impedance of the output branch is increased due to the 

regulated cascode structure by a factor of (gm*ro)2, where gm is the transconductance and ro is the 

small signal output impedance. The high output impedance of the output branch is important 

when supplying a current to the next processing stage. This improved performance does come at 

a cost of increase in chip area compared with the aforementioned implementations. 

The row-parallel current conveyors set the reference voltage on the output bus and copy 

the current from the pixel to the output branch, using transistor M20 to switch along the pixels in 

the column. The current conveyors are implemented by connecting two current mirrors in a 

negative feedback configuration. Transistors M11 through M16 form a PMOS-regulated cascode 

current mirror connected with an NMOS-regulated cascode current mirror composed of 

transistors M5 through M8. Transistors M13 and M14 operate in the saturation region, and the 

gate-to-source potentials are set by a reference current source of 1 µA. Hence, the drain nodes of 

transistors M15 and M16 are at the same potential. Transistors M11 and M12 provide negative 
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feedback to transistors M13 and M14, respectively, ensuring that all transistors remain in the 

saturation mode of operation. Since transistors M15 and M16 have the same source, gate, and 

drain potential, the drain currents flowing through these two transistors are the same. 

Transistors M7 and M8 pin the drain voltage of transistors M5 and M6 because the bias 

current through these transistors sets the gate voltage on each, respectively. Since the currents are 

the same flowing through transistors M5 and M6, and since the gate and drain potentials are the 

same for these transistors, the drain potential is the same for these transistors. Therefore, the 

drain potential on transistor M5 is set to Vref. 

The readout transistor in the pixel (M3) is designed to operate in the linear current mode 

by ensuring that the drain potential of the M3 transistor is lower than the gate potential by a 

threshold during the entire mode of operation. This is achieved by setting the Vref bias potential 

to 0.2 V and resetting the pixel, which sets the gate voltage of M3 to 2.7 V. Since the threshold 

voltage of the transistor is ~0.6 V, the lower limit on the gate of M3 transistor is set to 0.7 V in 

order to operate in the linear mode. The output current from transistor M3 is described by 

I photo = µnCox
W
L

Vphoto −VTH ,M1( )Vref −
Vref
2

2

"

#
$$

%

&
''  (3.9) 

In equation (3.9), µn is the mobility of electrons, Cox is the gate capacitance and Vth is the 

threshold voltage of the transistor. The current conveyor holds Vref on the drain of the readout 

transistor M3. By keeping Vref constant, the output current is linear with respect to the 

photovoltage. 

The pixel timing is shown in Figure 3.4. During FD Reset, reset transistor M2 and select 

transistor M4 are activated. With these transistors activated, setting the voltage on the Out node 
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of the pixel to Vreset drives the floating diffusion node, Vfd, to the reset potential. After resetting 

the floating diffusion, the reset value can be read out during Reset Readout for difference double 

sampling. During the Pixel to FD stage the charge transfer transistor M1 activates, placing the 

integrated photovoltage onto the floating diffusion. After turning M1 off, readout of all the pixels 

in the row takes place. M1 reactivates during Pixel Reset, after which the Out switches back to 

Vreset, and M2 reactivates, pulling the photodiode up to the reset potential. All three switch 

transistors turn off, and the readout proceeds to the next column. 

 

Figure 3.4: Timing diagram of current mode image sensor 

The pixel’s layout is implemented in a 180-nm-feature CMOS image sensor process with 

pinned photodiode capabilities. Figure 5 shows a schematic of the pixel. The charge transfer 

transistor is highly optimized to allow full transfer of all charges from the photodiode 

capacitance to the floating diffusion, with the node heavily shielded for light sensitivity. This 

node is capable of holding electron charges with no significant losses for over 5 ms at an 

intensity of 60 µW/cm2. 
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Figure 3.5: Cross section of the pinned photodiode together with the reset, transfer, readout, and select transistors. 
The diode is an n-type diode on a p-substrate with an insulating barrier between. The readout transistor operates as a 
transconductor, providing a linear relationship between accumulated photo charges and an output current 

3.4 Electrical characterization of the CMOS image sensor 
  The current mode polarization sensor described in Section 3.3 was given a series of 

electrical and optical tests to characterize its performance. For the electrical tests, a set of 

narrowband LEDs (OPTEK OVTL01LGAGS) were placed flush to an integrating sphere 

(Thorlabs IS200). The light was then collimated with an aspheric condensing lens (Thorlabs 

ACL2520) before reaching the sensor. The intensity of the light was changed by altering the 

current through the LEDs with a DC constant-current power supply (Agilent E3631A). The 

reference optical intensity was measured at the focal plane of the sensor with a calibrated 

photodiode (Thorlabs S120VC). Figure 3.6a shows a diagram of the setup. 

 Figure 3.7 shows the output current measured as a function of the incident light intensity. 

The current shows a linear response with respect to the incident light, with 99% linearity in the 

range. This primarily results from the current conveyor. The regulated cascode structure helps 
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eliminate channel length modulation while also maintaining a steady voltage reference. Figure 

3.8 shows the signal-to-noise ratio (SNR) of the current-mode sensor. The maximum SNR for 

our sensor is 43.6 dB, consistent with the shot noise limit based on the pixel well-depth capacity. 

Figure 3.9 shows a histogram of image intensities. The fixed-pattern-noise for room light 

intensity is 0.1% from the saturated level, comparable to voltage-mode imaging sensors. Also, 

due to the low currents and small array size, bus resistance variation remains minimal. 

 

Figure 3.6: a) Setup for electrical characterization. The integrating sphere/aspheric lens combination creates a 
uniform field. b) Setup for polarization characterization, using the same water-immersion lens, submerged in saline, 
as used for neural recording experiments. 
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Figure 3.7: Measured output current from a pixel vs. number of incident photons on the photodiode. 
 

 

Figure 3.8: Signal-to-noise ratio of the current-mode imaging sensor as a function of number of incident photons. 
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Figure 3.9: Histogram of all responses of pixels in the imaging array to a uniform illumination at room light 
intensity. The fixed pattern noise of the current-mode imaging sensor is 0.1% from the saturated value 
 

3.5 Polarization characterization of the sensor 
For the polarization characterization, to better calibrate for the optics used in the neural 

recording experiments presented in Chapter 5.2 below, the same integrating sphere/LED 

combination was used as the light source. A rotating polarization element (Newport 10LP-Vis-B 
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mounted in a Thorlabs PRM1Z8 stage) was used to generate input linearly polarized light of a 

known AoP. The sensor used a 10x water-immersion lens (Olympus UMPLFLN10XW) 

submerged in a glass dish of water to view the flat field generated from the light source. Figure 

3.6b shows a diagram of the setup. 

The sensor was tested for polarization sensitivity. To improve polarization sensitivity, a 

Mueller matrix calibration approach was used [59]. Figure 3.10 shows the pixel response to 

polarized light after calibration. Malus’s law (3.10) describes the intensity of light seen through 

two polarizers offset at θi degrees: 

I = I0 cos
2θi  (3.10) 

The pixels in the polarization sensor show nearly the same response. The more uniform response 

after calibration also manifests in a more linear AoP than the raw measurement, as depicted in 

Figure 3.11. 

 

Figure 3.10: Optical response to four neighboring pixels to incident linearly polarized light. As the angle of 
polarization of the incident light is swept from 0° to 180°, the pixels follow Malus’s law for polarization. 
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Figure 3.11: Measured angle of polarization as a function of the incident light angle of polarization for our bio-
inspired polarization imager. 
 

3.6 Conclusion 
The polarization of light describes the orientation of the oscillation of light as it 

propagates through space. In nature, unpolarized sunlight becomes polarized through reflection 

and scattering. Detecting this polarized light has proved advantageous for many biological 

species. These species have shown the effectiveness of compact, integrated optics for 

polarization detection. We have mimicked their design with our own compact, division-of-focal-

plane polarimeter that uses a custom designed CMOS current mode image sensor integrated with 

aluminum nanowire polarization filters.  The sensor, fabricated in a specialized 180nm CMOS 

image sensor process, is 220x128 pixels. It demonstrates a linearity of 99%, a dynamic range of 

56 dB, a peak signal-to-noise ratio of 43 dB, and a fixed pattern noise of 0.1%. The sensor 

retains a polarization response that closely matches the theoretical after applying calibration.  
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Chapter 4: Polarization Measurement 
Methodology [60] 

Polarization is a fundamental property of the wave nature of light, describing the 

orientation of an electromagnetic wave as it oscillates through space and time. The interaction of 

light with materials can change its polarization state, from Rayleigh scattering in an atmosphere 

to Fresnel reflectance and transmission. Thus, development of many useful applications relies on 

the ability to accurately measure the polarization of light. Polarization provides a method for 

detecting skin cancers [61] and cervical cancers [62]. Observation of the polarization of light has 

also found use in material classification [63]–[65], fingerprint detection [66], and haze removal 

[36]. Detection of light’s polarization state also makes possible three-dimensional shape recovery 

[35], [67]. 

Numerous methods of measuring the polarization state of light have been demonstrated 

[34], [68] for many ranges of wavelengths. In the visible spectrum, division-of-time, division-of-

amplitude, or division-of-aperture polarimeters are commonly used. A division-of-time 

polarimeter utilizes a rotating linear polarizer in front of a standard image sensor. The sensor 

captures the scene at several orientations of the polarizer, combining them to compute a Stokes 

vector for each pixel of the sensor. A division-of-amplitude polarimeter projects the scene onto 

multiple sensors, each containing a uniquely polarized optical path [69]. The images are 

coregistered and combined from each sensor to also give a per-pixel Stokes vector representation 

of the scene. A division-of-aperture polarimeter contains optics that project an incident scene 

onto multiple locations of a single focal plane array [70], [71]. A unique polarization optic filters 

each projection, and they are then combined to compute the Stokes vector at each projected point 

in the imaged scene. 
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A division-of-focal-plane (DoFP) polarimeter is another variation. The focal plane array 

of a DoFP sensor is subdivided into blocks of superpixels, where each pixel in the superpixel 

contains a polarization optic matched to its pitch. Computation of the Stokes vector becomes 

possible at each superpixel location, much like computation of color images in a Bayer array [1]. 

Much research on this type of polarimeter, especially in the visible spectrum, is ongoing [2], 

[72]–[75] due to the promise of high resolution, real-time polarization imagery, with fixed, 

aligned optics. Analogous to color sensors, the loss of spatial resolution due to subdivision of the 

array can be mitigated through interpolation algorithms [76]–[79]. Also like color, future 

developments in the fabrication and integration of pixel matched polarization optics will lead to 

higher quality, higher resolution arrays. 

The integration of pixel matched polarization optics to charge coupled device (CCD) or 

complementary metal oxide semiconductor (CMOS) arrays poses a unique set of challenges in 

evaluation of the quality of the sensor. Both underlying pixel technologies exhibit widely varying 

noise characteristics, spectral sensitivities, and image quality [3]. Further, each pixel matched 

optic has its own unique set of properties that influence the measured polarization parameters. 

The challenge is to evaluate how well the sensor performs in terms of incident wavelength, 

intensity, and polarization state. 

4.1 Parameters of Interest 
DoFP polarimeters use a spatially local neighbor- hood of polarizers to estimate the 

Stokes vector, often neglecting the last parameter in the vector, which deals with circular 

polarization. In the DoFP sensor under testing [2], a CCD is monolithically integrated with 

aluminum nanowire polarization filters. The imaging array is arranged in two-by-two blocks of 

superpixels. The four pixels within one superpixel are composed of nanowire polarization filters 
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with the transmission axis oriented at 0°, 45°, 90°, and 135°. The nanowires are 70 nm wide, 140 

nm tall, and spaced 140 nm from center to center. A detailed description of the nanofabrication 

procedure for realizing pixelated polarization filters can be found in [2]. The intensity measured 

under each filter is modulated approximately according to Malus’s law for linear polarizers [68]. 

The combination of measured intensities allows reconstruction of the Stokes vector, as shown in 

Eq. (4.1). The first parameter in the vector, S0, describes the intensity of the superpixel, taken by 

averaging the intensity of the two orthogonal filter pairs 0° and 90°, and 45° and 135°. The 

second parameter, S1, is a measure of the vertical and horizontal polarization, with a positive 

value indicating a more horizontal orientation and a negative value a more vertical orientation, in 

reference to the sensor’s optical axis. The third parameter, S2, identifies how close the incident 

light is to 45° (positive) or 135° (negative), again respective to the sensor’s optical axis: 
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Computation of the Stokes vector in this configuration allows estimation of two other 

parameters of interest, the degree of linear polarization (DoLP), and the angle of polarization 

(AoP). The DoLP, computed in Eq. (4.2), calculates the magnitude of the incident light that is 

due to linear polarization, expressed in the S1 and S2 parameters, and divides by the total 

intensity: 

DoLP =
S1
2 + S2

2

S0
 (4.2) 
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The DoLP thus provides a normalized value from zero (no linear polarization) to 1 (all incident 

light is linearly polarized), which describes how much of the incident light contains linear 

polarization. The AoP, shown in Eq (4.3), details the orientation of the incident light with respect 

to the sensor’s optical axis: 

AoP = 1
2
tan−1 S2

S1

"

#
$

%

&
'  (4.3) 

Both values provide useful information of the contents of a scene. 

4.2 Experimental Method 
Correct estimation of the DoLP and AoP under various incident lighting states is crucial 

to evaluating the quality of a DoFP sensor. Accomplishing this requires careful optical testing 

that allows direct control of the incident intensity, wavelength, and state of polarization, since a 

typical scene contains a wide combination of these parameters. Further, as a DoFP sensor is 

commonly used with standard, off-the-shelf lenses, the effects of light divergence and the 

viewing angle need to be measured. Additionally, trying to capture a scene may involve changes 

of the integration time to maximize the dynamic range. Testing the interaction of these 

parameters is crucial to understanding the accuracy of the sensor, and thus presented here are 

three different optical experiments designed to evaluate the sensor under these changing optical 

conditions. 

4.2.1 Optical Setup for Evaluating AoP Accuracy, Field-of-View, and 
Spectral Response 

The design of the first experiment tested a sensor’s capability to accurately measure the 

AoP under controlled spectra, fields-of-view, and incident photon counts. The setup, shown in 

Fig. 4.1, used three different wavelength LEDs for incident light: 460 nm (OVG01TLGABS), 
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515 nm (OVG01TLGAGS), and 625 nm (OVG01TLGARS). The LEDs were assembled on 

custom printed circuit boards and driven by a constant current fed from a controlled power 

source (Agilent E3631A). They were fed through an integrating sphere (Newport 819D-SF-4) to 

re- move any polarization from the LED light, as well as make the input source spatially 

uniform. An adjustable iris (Thorlabs SM2D25) was placed on the output port of the integrating 

sphere and was kept at the minimum setting (0.8 mm) to approximate a pinhole. The light passed 

through an aspheric condensing lens (Thorlabs ACL 7560) to provide collimation, which is 

important for measuring a sensor’s response to divergent light. A computer controlled rotational 

stage (Thorlabs PRM1Z8) with a mounted, high extinction ratio (>350) wire-grid polarizer 

(Edmunds NT47-102) created linearly polarized light at an arbitrary incident AoP. This light 

finally impinged upon the sensor, which was mounted on a computer controlled rotating base 

that allowed changes in the orientation of the sensor with respect to the input light. Rotating the 

sensor in such a way allowed simulation in changes of the viewing angle, an important parameter 

when considering optical crosstalk. The sensor connected to a PC through a Camera Link 

interface, which provided unified control and data transfer for the camera. 
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Figure 4.1: Optical setup to measure AoPs, fields-of-view, and spectra 

For each LED wavelength, the sensor was positioned in direct line with the collimated 

input in an attempt to minimize optical crosstalk. The cur- rent through the LED boards was 

fixed, and the integration time of the sensor was altered from a shorter value to a longer value. 

The polarizer rotated from 0° to 180° in steps of 1°, with the sensor taking 1024 images at each 

orientation at each integration time. Finally, with the wavelength fixed at 625 nm, the sensor was 

moved from −5° off center to over 30° off center in increments of 2°. For each orientation, the 

linear polarizer rotated from 0° to 180° in increments of 1°. The integration time was also 

linearly cycled from low to high at each sensor orientation. The captured data are averaged over 

a 200×200 pixel window in the center of the imaging array. 

4.2.2 Optical Setup for Measuring DoLP Accuracy 
The second experiment, shown in Fig. 4.2, tested how accurately a sensor can estimate 

the DoLP of an incident light wave. The setup used a modified Thorlabs OSL1B halogen bulb 

connected directly to an Agilent N5746A DC source. This produced incoherent, broad spectrum, 

unpolarized light at an intensity adjusted by the computer controlled current through the bulb. An 
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IR blocking filter with a cutoff frequency near 700 nm (Edmund NT64-462) protected the optics 

from the heat of the bulb and attenuated any IR interference. The light was filtered spectrally by 

a Thorlabs FB450-10 for blue (450 nm), FB550-10 for green (550 nm), and FB650-10 for red 

(650 nm), each with an FWHM of 10 nm. Next, the light was linearly polarized at 45° using a 

Newport 20-LP-VISB mounted to a precision rotational stage (Thorlabs PRM1). With the light 

linearly polarized at 45°, the magnitudes of the 
!
Ex  and 

!
Ey  fields were nominally the same. The 

DoLP was then adjusted by varying the retardance of a Thorlabs LCV-1-VIS liquid crystal 

variable retarder. Adjusting the retardance to a quarter of the wavelength produced circularly 

polarized light, and thus the DoLP should be zero. Varying the voltage applied to the liquid 

crystal retarder changed the retardance, and thus the ellipticity of the incident wave. This allowed 

for the DoLP to be linearly changed from 0 (retardance = 0.25λ) to 1 (retardance = 0). 

 

Figure 4.2: Experimental setup to measure degree of linear polarization (PSA is the polarization state analyzer) 
 

The performance of the sensor must be compared to a reference measurement of the 

DoLP. This was realized through the use of a calibrated photodiode (Thorlabs S120VC) and a 

rotating linear polarizer (Newport 10-LP-VISB) mounted on a computer controlled rotational 

stage (Thorlabs PRM1Z8). Measurements were taken with the motorized stage rotating the 

polarizer to four states, 0°, 45°, 90°, and 135°, and sampling 2048 intensity measurements at 
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each orientation. The DoLP was then computed as in Section 4.2. The performance of the sensor 

was categorized as the root-mean-squared (RMS) error between the reference implementation 

with the photodiode and the measured values from the sensor. 

In order to calibrate the polarization state generator, the input linear polarizer was set to 

be exactly 45° with respect to the optical axes of the retarder and motorized polarizer. The LCD 

voltage was swept over a broad range, using the motorized polarizer to sample at 45° offsets to 

compute the DoLP. After identifying the voltage that corresponds to the mini- mum DoLP, the 

voltage at which the retardance is nearest 0.25λ, the optical axis of the retarder was adjusted until 

the measured DoLP was zero. This off- sets the optical axes of the input linear polarizer and 

retarder by 45°. To align the motor, the retardance of the LCD was set to the minimal value, 

which corresponds to the highest LCD voltage with the Thorlabs retarder. This drives the 

ellipticity to zero, making the input light linearly polarized at 45°. 

4.2.3 Measuring the Spectral Characteristics 

 

Figure 4.3: Experimental setup to measure spectral response 
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The third experiment, illustrated in Fig. 4.3, tested the sensor over the entire visible range 

at high spectral resolution. The input light source was a Princeton Instruments Acton SP2150 

monochromator. A 1200 g ⁄ mm, 500 nm blaze grating was used. The output slit was adjusted to 

2 mm, which corresponds to a FWHM of approximately 8 nm around the computer controlled 

central wavelength. To make the output of the monochromator uniform, as well as to compensate 

for any polarization, an integrating sphere was used. The input polarization state generator was a 

rotating polarizer (Newport 10-LP-VISB) on a controlled rotational stage. 

The intensity of the tungsten–halogen bulb remained constant through the experiment. 

The monochromator changed the wavelengths from 400 to 800 nm in steps of 10 nm. At each 

wavelength, the input polarizer rotated from 0° to 175° in steps of 5°. The sensor then captured 

64 images at each incident AoP and wavelength. 

4.3 Analysis 
4.3.1 Pixel Response 

The average pixel response to the rotating polarizer is shown in Fig. 4.4, using the data 

taken at 570 nm with the monochromator setup from Subsection 4.2.3. The solid curve shows the 

reconstructed cosine, using the amplitude, phase, and offset computed from the Fourier 

transform over the 0° to 175° sweep. The dots show the average measured intensity at these 

sample points, and the error bars show the spatial deviation across the whole array at this point. 

The typical pixels at each orientation, 0°, 45°, 90°, and 135°, display a response consistent with 

Malus’s law for crossed polarizers at those angles. The pixel responses are not matched across 

the array, as each orientation shows a different transmission and extinction ratio. Figure 4.5, 

computed as the phase of the Fourier transform of the input filter response, shows that 99.9% of 

all four filter orientations are within 1.5° of their expected value. 
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Figure 4.4: Average filter response across pixel array, λ = 570nm. Bars indicate spatial standard deviation. 

 

Figure 4.5: Filter orientations 
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interference lithography, and variation in the height, width, and pitch from un- even etching 

during the RIE/ICP stage of fabrication. The variations are difficult to measure using SEM or 

TEM microscopy due to the large area occupied by the microgrid. The collective variation 

affects the optical response of the array, which is seen in the data presented here. In order to 

obtain accurate polarization information from this sensor in terms of the first three Stokes 

parameters, the DoLP, and/or the AoP, the individual response of all pixels should be calibrated. 

A method for calibrating this sensor is described in [80]. 

 

Figure 4.6: Computed DoLP for incident AoPs at λ = 570 nm. 
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roughly zero, and shows the frame split according to filter orientation. The black spots in Fig. 4.7 

are dust specs that are introduced during the nanofabrication procedure of the pixelated 

polarization filter array. The filters at 45° clearly show more degradation than the other three, 

due to their fabrication. Figure 4.7 also illustrates why the sensor has more error for lower 

DoLPs, with a histogram of the measured intensities shown in Fig. 4.8. To measure a DoLP of 

zero, the four filters should show nominally the same intensity. The intensity measured with the 

135° filters is brighter than that for both 0° and 90°, which are both brighter than that for 45°, 

causing nonzero S1 and S2 terms. Figure 4.9 is taken from the data in Subsection 4.2.1. It further 

illustrates the mismatch, showing the variation of the extinction ratios even in a small 200 × 200 

pixel window. Both figures illustrate the usefulness of flat field correction for the transmission 

coefficients, a step not performed here. 

 

Figure 4.7: Captured frame at 650 nm, input DoLP at approx. 0.0. 
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Figure 4.8: Histogram of intensities at DoLP of approx. 0.0 

 

Figure 4.9: Histogram of extinction ratios in 200x200 pixel neighborhood 
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linearity error of 1.977%. The RMS error of the AoP at this wavelength is 3.56°. Equation (4.4) 

explains the source of the error and is the computed AoP using the four analyzer filters.  

AoP = 1
2

px,45
2 − px,135

2 + py,45
2 − py,135

2( )+ px,45
2 + px,135

2 − py,45
2 − py,135

2( )sin 2θ( )
px,0
2 − px,90

2 + py,0
2 − py,90

2( )+ px,0
2 + px,90

2 − py,0
2 − py,90

2( )cos 2θ( )

"

#
$
$

%

&
'
'

 (4.4) 

It assumes ideal, linearly polarized light at angle θ with no retardance, a close approximation to 

the experimental setup. The error in the computed AoP comes from the mismatch in the 

transmission coefficients of the analyzer filters. If they are matched, the px;θ and py;θ terms 

cancel, leaving the AoP of θ equal to θ. The mismatch may be corrected through the use of a 

calibration routine [80], [81], which is covered elsewhere. The AoP also shows no sensitivity to 

different light levels, as shown in Fig. 4.11, taken from the data in the experiment from 

Subsection 4.2.1.. Since Eq. (4.4) contains no intensity component, the AoP should show no 

dependence on the incident light value, up to the noise floor of the sensor. This is important, for 

as one observes the AoP of the scene, either changing the integration time to increase the 

dynamic range or decreasing the incident optical flux has virtually no impact on the estimated 

AoP. 
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Figure 4.10: Linear fit of AoP at λ = 570 nm. 

 

Figure 4.11: AoP RMS error for various photon counts. 
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4.3.2 Spectral Characteristics 
Another property of the sensor is the extinction ratio of the polarizing filters, used here as 

the ratio of the maximum intensity (ǁ‖ polarized) over the minimum intensity (⊥ polarized). The 

higher the extinction ratio, the greater the range of contrast of the sensor, up to the limits of the 

pixel technology, mainly the dynamic range and signal-to-noise ratio (SNR). The extinction 

ratios of a wire-grid polarizer are dependent on the pitch and dimensions of the wire grid [53] 

and, thus, have a dependence on the incident wavelength of the light. Figure 4.12, taken from the 

monochromator experiment in Subsection 4.2.3, illustrates this effect for visible wavelengths. At 

lower wavelengths, near the UV regime (≤400 nm), the extinction ratios are roughly 10 or less. 

They nearly double as the wavelength increases to around 500 nm, and show a slight continued 

increase until 700 nm. The de- crease at 700 nm results from an antireflective coating applied as 

part of the filter fabrication, which attenuates IR wavelengths. 

 

Figure 4.12: Extinction ratio versus wavelength 
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The extinction ratio sets a direct upper bound on the measured DoLP. Equation (4.5) 

shows a method to compute the DoLP of an individual filter, using the maximum and minimum 

intensities for crossed and parallel polarized light. A lower extinction ratio reduces the difference 

in the measured Imax and Imin, thus reducing the maximum attainable DoLP: 

DoLP = Imax − Imin
Imax+ Imin

 (4.5) 

Figure 4.13 illustrates this phenomenon, showing the average computed DoLP at each 

wavelength, as per the dotted line in Fig. 4.6. The error bars indicate the spatial standard 

deviation across the sensor. As the extinction ratios decrease with wavelengths roughly below 

450 nm and roughly above 700 nm, so to does the DoLP. The RMS error of the measured AoP, 

shown in Fig. 4.14 for the swept wavelengths, also indicates that the AoP exhibits a spectral 

dependence. Since the transmission coefficients depend on the wavelength [53], Eq. (4.4) 

explains how the AoP has this dependence. 
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Figure 4.13: Degree of linear polarization over the visible spectrum. Bars indicate spatial standard derviation 

 

Figure 4.14: RMS error of AoP for visible wavelengths. 
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Figure 4.15: RMS error of DoLP for different wavelengths and intensities. Bars indicate spatial standard deviation. 

In addition to the extinction ratio, the incident intensity can also impact the computed 

DoLP. Figure 4.15, taken from the data in the retarder experiment described in Subsection 4.2.2, 
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Figure 4.16: DoLP sensitivity, λ = 650 nm. 

 

Figure 4.17: SNR of array, split by pixel orientation, λ = 650 nm. Bars indicate spatial standard deviation. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

Incident DoLP

M
ea

su
re

d 
D

oL
P

y = 0.815*x + 0.118

 

 

Measured
Fit

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

5

10

15

20

25

30

35

40

S0/S0,max

SN
R

 (d
B)

 

 

0°

45°

90°

135°



 

61 
 

4.3.3 Impact of Divergent Light 
The experiment described in Subsection 4.2.1 allows investigation of the effects of 

divergent light on the sensor. These effects have a great impact on the selection of a lens used in 

real world imaging. Shorter focal length lenses typically have wider fields-of- view, which 

means increased incident angles on the focal plane. For example, a lens with a field-of- view of 

30° would introduce incident angles of ±15° on the periphery of the focal plane. Based on Figs. 

4.18 and 4.19, such an orientation has appreciable error in both the DoLP and AoP. These effects 

mean the measured DoLP and AoP near the periphery are less reliable than those closer to the 

optical center. The aperture opening may also play a part, with smaller apertures leading to less 

divergent light. The reason for this degradation is primarily due to optical crosstalk, where light 

passes through the filter of one pixel but is registered by an adjacent pixel. Under these 

conditions, the intensity measured by a pixel is no longer modulated by a single filter, violating 

the assumption made in Eq. (4.1). Two fabrication techniques could work to mitigate this 

problem in the future. Backside illuminated pixels reduce the space between the filter and the 

photodiode and would therefore reduce the likelihood of crosstalk. Pixel matched microlenses 

[3], common in many current focal plane arrays, also reduce crosstalk by focusing more 

divergent light toward the photodiode. 
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Figure 4.18: DoLP as sensor changes orientation with regard to incident light. 

 

Figure 4.19: AoP error as sensor changes orientation with regard to incident light. 
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Further, due to mixing from optical crosstalk, the effective extinction ratios decrease. 

Figure 4.20 shows the average extinction ratios of the four filter orientations, as well as their 

spatial standard deviation, as the incident light enters at steeper angles. The rapid drop, even after 

5° of divergence, clearly shows the impact of optical crosstalk. 

 

Figure 4.20: Extinction ratio as a function of camera orientation. Bars indicate spatial standard deviation. 
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of the DoLP and AoP estimation. They show how the estimations are functions of the spectrum 

of incident light, performing worse for shorter wavelengths but remaining relatively constant 

over the broader visible range. They also demonstrate how important collimation is to reducing 

optical crosstalk, showing that light divergence is a key limitation to DoLP and AoP estimation. 

They measured that this degradation from divergence directly impacts the choice of lens, with 

narrower fields-of-view contributing less error. Finally, they show that the sensor is less accurate 

for lower intensities, due to a lowered SNR. The experiments presented here allow for an 

objective means to evaluate and compare DoFP polarimeters. Table 4.1 summarizes the tested 

sensor’s performance. 

Number of pixels 1000 x 1000 
Pixel Pitch 7.4 µm x 7.4 µm 
Frames/s 40 
Extinction Ratios 30 (λ = 460 nm) 

47 (λ = 515 nm) 
58 (λ = 625 nm) 

Field-of-view ±ie° 
DoLP RMS error 0.120 (λ = 450 nm) 

0.077 (λ = 550 nm) 
0.067 (λ = 650 nm) 

AoP linearity 96.89% (λ = 450 nm) 
98.01% (λ = 550 nm) 
98.01% (λ = 650 nm) 

Signal-to-noise ratio 40 dB 
Dynamic range 65 dB 
Well depth 20000 e- 
Readout noise 16 e- 
Fill factor 60 % 
Table 4.1.Performance Summary of Tested DoFP Sensor 
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Chapter 5: Biomedical Applications of 
Polarization Sensors 

The emergence of compact, fully integrated polarization imaging sensors has enabled 

rapid advancements in several biomedical areas. In this section, two biomedical applications are 

covered, soft tissue stress analysis and label-free optical neural recordings. 

5.1 Real-time High-resolution Measurement of Collagen 
Alignment in Dynamically Loaded Soft Tissue [82] 

The study of the biomechanics of tissue is an active area of research [83], [84]. Collagen 

fibers are the primary component providing structural support for most soft tissues, so 

observation of collagen alignment can provide insight to how tissues will behave under load and 

can yield clues to the overall health of the tissue [85], [86]. Such observations lead to a greater 

understanding of how tissues function in normal loading regimes and throughout damage/failure, 

knowledge that can be used to help speed recovery, and may even be used to guide the 

development of engineered replacement tissues. Further, measuring the microstructural 

arrangement of tissues during periods of loading and rest will lead to a better understanding of 

the structure-function relationships of a variety of tissue types across many different organisms. 

A common method for evaluating collagen fiber alignment in soft tissues observes the 

change and direction of birefringence under different loading conditions.  By illuminating thin, 

semi-translucent tissue sections between two rotating crossed polarizers, sets of images can be 

captured and analyzed to produce maps of the direction (i.e., orientation angle) and strength (i.e., 

relative birefringence) of collagen orientation in these tissue sections [87]–[89]. Alternately, the 

input light through the tissue may be circularly polarized, with observation through a rotating 

polarizer providing similar alignment and strain information [90]–[92].  While both techniques 
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create high resolution strain maps, they are unable to capture the dynamics of tissue alignment 

with high temporal resolution.  Higher speed rotation of the filters increases the speed of image 

capture, however the tissue must remain static during each rotation period to negate any 

misregistration error.  Further, rotating analyzer polarized light techniques require careful 

alignment of the rotating filters, which can be a time consuming process.  In addition, current 

techniques are unable to perform real-time assessment of collagen alignment, as they require 

post-hoc analysis of image sets in order to generate maps of collagen fiber orientation and 

corresponding angle distributions. 

We propose here a new method for measuring the microstructural organization in tissues 

that does not suffer from these shortcomings.  Our method requires only circularly polarized 

input light, and we use a 1 megapixel, division of focal plane polarimeter to make our 

observations in real-time, i.e. at 30 frames-per-second.  We show that this type of sensor allows 

real-time capture of collagen alignment dynamics at high spatial resolutions, which will be an 

extremely useful tool for further studies of tissue biomechanics.  Our method is quick, simple, 

requires no moving optics, and thus does not require a static field of view during measurement. 

5.1.1 Birefringence of Soft Tissue 
Thin sections of collagen tissue show greater alignment when placed under strain.  Since 

tissue is birefringent along the direction of strain, it can be approximated as a linear retarder 

whose fast axis is aligned in the direction of strain.  The retardation of the tissue is also 

proportional to the amount of strain.  A simple way to measure the birefringence is to observe the 

tissue through crossed linear polarizers [88].  Any birefringent part of the tissue introduces a 

phase delay between the x and y electric field components.  This introduces an ellipticity in the 

polarization state, and thus illumination will appear through the set of crossed linear polarizers.  
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This illumination through crossed polarizes disappears when the polarizers are aligned with the 

major or minor axis of the birefringent portions of the tissue.  Thus to find the true direction of 

alignment requires a rotation through 180 degrees to solve the ambiguity of which rotation angle 

corresponds to the major and minor axis.  Using circularly polarized light as input requires 

rotation of only one linear polarizer (called the analyzer) and is sometimes used as an alternative 

[90]. 

Mathematically, we can describe this phenomena using the Mueller calculus shown in 

Eq. 5.1.1, 
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 (5.1.1) 

where Mrot is the Mueller matrix for a rotation of θ with respect to the analyzer, and Mret is the 

Mueller matrix for a retarder with retardance ϕ when aligned with the analyzer. In this equation, 

the optical properties of the tissue retardance are captured by the Mret matrix.  The rotation of the 

tissue with respect to the fast transmission axis is encapsulated by the two rotation matrices, 

which are used to transform the co-ordinate system of the retarder with respect to the observer’s 

co-ordinate system.  A polarization sensitive imaging sensor will capture the Stokes vector that 

emerges from this tissue (or a waveplate with retardance ϕ) and the goal is thus to solve for this 

rotation angle, θ, and for the retardance, ϕ.  Solving for these two parameters, namely θ and ϕ 

requires multiple measurements of the Stokes parameters S1 or S2, which is typically 

accomplished by rotating an analyzer. 
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If both S1 and S2 are known, then this leads to computation of the Angle of Polarization 

(AoP), which describes the major axis of rotation of the polarized light.  Equation 5.1.2 presents 

the necessary mathematical equations exploring the relationship between the measured angle of 

polarization and the angle of alignment, θ. 
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The alignment of the tissue’s fast axis is exactly 45 degrees off of the measured AoP 

angle.  Further, Eq. 5.1.3 shows that the Degree of Linear Polarization (DoLP) is the sine of the 

retardance.  This is because circularly polarized light has a DoLP of zero, so when the retardance 

is zero, the DoLP will be zero. 
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Conversely, if the retardance is exactly 90 degrees of phase, then since the input phase 

difference between the x and y components of the electric field are 90 degrees apart (the 

definition of circular polarization), the output phase difference will be 0 degrees (or 180), which 

makes the output light completely linearly polarized.  Figure 5.1.1 provides an illustration of the 

optics used for light generation and analysis. 

Since the inverse sine of the DoLP is the retardance, the change in DoLP is 

proportionally related to the changes in alignment placed on the tendon, as shown in Eq. 5.1.4. 

As the tendon is  
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stretched, the organization of the fibers becomes more uniformly aligned in the direction of the 

stretching.  This causes a change in both the refractive indices (Δn) and the thickness (b) of the 

tissue sample.  The increased organization will also manifest itself as a decrease in the angular 

standard deviation. 

 

Figure 5.1.1: Optics to measure collagen alignment. The collagen retards the incident circularly polarized light along 
the direction of fiber alignment. 
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frame simultaneously, this necessitates at least three measurements using three different 
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orientations of linear polarizers.  A Division-of-Focal-Plane (DoFP) polarimeter accomplishes 

this using pixelated linear polarization filters monolithically integrated with an array of CCD 

imaging elements [2].  The sensor has a two by two neighborhood of pixel matched aluminum 

nanowire polarizers at 0, 45, 90, and 135 degree orientations.  The polarizers are fabricated using 

interference lithography and reactive ion etching, and the nanostructures in the filter have a 

width of 70 nm, a pitch of 140 nm, and a thickness of 200 nm.  Each of the filters is matched to 

the sensor pixel size of 7.4 µm2 pixels, and have extinction ratios on the order of 50 to 60 [2].  

Because of this architecture, the sensor captures all the necessary information to measure the 

DoLP (Eq. 5.1.3) and AoP (Eq. 5.1.2) in a single frame. This is due to the Stokes equation (Eq. 

5.1.5), which relates the intensity I, measured by an analyzer that has a linear polarizer at rotation 

θ  

( ) ( )φθφθθφθ sin2sincos2sin2cos
2
1, 3210 SSSSI +++=   (5.1.5) 

degrees and retardance ϕ.  Thus for the 0, 45, 90, and 135 degree filters in the DoFP sensor used 

in this design, the first three Stokes parameters are computed as S0 = I(0,0)+I(90,0), S1 = I(0,0)-

I(90,0), S2=I(45,0)-I(135,0).  Once the first three Stokes parameters are computed, the DoLP and 

AoP are calculated, according to Eqs. 5.1.2 and 5.1.3, and thus tissue alignment is quantified 

within each two by two neighborhood of filters, called a super-pixel.  Our sensor is comprised of 

a symmetric grid of 500 by 500 of these super-pixels.  To improve polarization accuracy, we use 

a per super-pixel calibration Mueller matrix [59].  Since each super-pixel is comprised of four 

different pixelated polarization filters, interpolation methods are employed to regain the lost 

spatial resolution and improve polarization accuracy [79], [93].  Bicubic methods measurably 

improve the modulation transfer function to detect spatial features up to 75% of the full sensor 
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resolution, while maintaining a low DoLP and AoP error when compared to an unpixelated 

image. 

 

Figure 5.1.2: Experimental setup to measure collagen alignment. 

To experimentally measure fiber orientation, we used the DoFP imager with a 16mm, 

fixed focus lens (Fujinon HF16HA-1B) to view a bovine flexor tendon mounted on a computer 

controlled actuator and six degrees-of-freedom (DoF) sensor stage in the setup shown in Figure 

5.1.2.  We input circularly polarized light using a linear polarizer aligned at 45 degrees (Gray 

Polarizing Film 38-491, Edmund Optics, Barrington,NJ) with the fast axis of an achromatic 

quarter wave plate (AWQP3, Bolder Vision Optik, Boulder, CO).  We imaged a thin (~300 µm) 

section of bovine flexor tendon aligned with the camera, at -45 degrees to the camera, and 
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orthogonal to the camera.  Figure 5.1.3 shows the DoLP on top (a-c), and the alignment (AoP) on 

the bottom (d-f).  The images illustrate that with a single capture, the sensor is easily capable of 

accurately measuring the direction and strength of alignment in the tendon specimen. 

 

Figure 5.1.3: Tendon under load at different orientations to the sensor, DoLP (top,a-c) AoP (bottom, d-f).  The 
DoLP color bars indicate linear polarization on a scale from 0 (blue) to red (0.5), while the AoP uses a cyclic color 
scheme to indicate the alignment angle with respect to the sensor. 

To validate the new method, we conducted a second experiment comparing our sensor to 

the standard method of a rotating polarization filter (i.e. an analyzer) in front of a CCD camera 

with the same pixel pitch as the polarization CCD camera.  (Newport 20LP-VIS-B mounted on a 

Thorlabs NR360 stage, imaged with an Imperx IGV-B1920W image sensor).  Starting with a 

bovine flexor tendon sample subjected to a nominal pre-load, a step strain of 2.5% was applied 

and held for the duration of the measurements, where the displacement magnitude was computed 

relative to the gauge length of the sample (measured via digital calipers).  We first imaged the 
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tendon using the rotating polarizer in 15 degree increments and computed the DoLP and AoP 

(top row, Fig. 5.1.4).  While applying the same strain, we then repeated the measurement using 

our DoFP polarization sensor (bottom row, Fig. 5.1.4).  Both image sensors have the same pixel 

size (7.4 µm by 7.4 µm), and we used the same lens.  The results are very similar, except for the 

DoLP, which is lower for the rotating polarizer.  This is due to the error in using a rotating 

element to measure a non-static scene.  Because of significant stress-relaxation of tendon under 

step-strains, the force is never constant, even over small time periods.  Figure 5.1.5 shows an 

example, where the measured force (shown in black) is not constant in the tissue over time.  

Using the DoFP sensor, complete measurements of the first three Stokes parameters take place at 

each green time point, whereas the rotating polarizer only samples an individual angle at each 

red time point.  At a minimum, this requires three separate rotation angles, however significant 

changes in the force take place during the time of polarizer rotation.  The constant downward 

drift results in differences that are contributed by changes in force, and not by the optical 

properties of the tissue.  Our sensor, with its fixed optics and simultaneous capture of four 

polarization orientations, does not suffer from this error.  This also gives our sensor the ability to 

sample the dynamics of sudden changes in tissue strain, as in the rapid ramping of the force at 

the start of the test. 
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Figure 5.1.4: Measured DoLP (a,d), AoP (b,e), and spread in alignment (c,f)  using (top row) a rotating polarizer, 
(bottom row) division-of-focal-plane polarimeter.. The rotating polarizer measured a dominant alignment of 118.9 
degrees, with a spread of 7.05 degrees, with the DoFP sensor measuring a dominant alignment of 122.9 degrees and 
spread of 6.78 degrees. 

Using the same tendon, we then used the DoFP sensor to further investigate measurement 

of these rapid dynamics, placing the tissue under cyclic loading conditions.  We conducted three 

experiments, cyclically loading the tendon between 2-3% strain at rates of 0.5 Hz, 1 Hz, and 2 

Hz.  We computed the average DoLP and spatial angular deviation of the AoP over the area of 

the tendon.  The results show that our sensor does very well at picking up the dynamics during 

loading and relaxation.  Figure 5.1.6a compares the retardance and force at 0.5Hz, and Fig. 

5.1.6b shows how the spread in the AoP changes during the cyclic load.  Under conditions of 

high strain, the retardance is at the maximum, while the spread of the AoP cycles to the 

minimum, with the converse happening during periods of low strain.  This behavior is expected 

as the fibers are more aligned when pulled.  Figure 5.1.7 shows the same experiment at 2Hz, 
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demonstrating that our sensor also captures the fiber alignment dynamics at higher loading 

speeds.  In Video 1, we have included a sample of our system capturing the cyclic load at 2Hz.  

The measurement speed is constrained only by the frame rate of the sensor (maximum frame rate 

of 30 frames per second), which places an upper bound on the frequency dynamics that the 

sensor can capture.  The real-time nature of the sensor allows for a more thorough frequency 

analysis of the loading signals.  Figure 5.1.8 shows the frequency spectrum of the force (a) and 

measured DoLP (b) at 2 Hz, and illustrates that our sensor captures the same frequencies as the 

reference up to the noise floor.  In this case of cyclic loading, the frequency dynamics are fairly 

simple, but this illustrates the ability of our sensor to enable frequency analysis of more complex 

loading protocols which have not been possible with the utilization of division of time 

polarimeters.  These could be protocols with more time variance, like higher speed step forces, 

rapid ramps to failure, and higher rates of cyclic loading, or different directions of loading, such 

as biaxial tension, compression and shear. 
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Figure 5.1.5: Timestamped sampling of measured force sampled by the DoFP sensor (green) and rotating polarizer 
(red).  The DoFP sensor can compute the first three Stokes parameters at every green sample point, while the 
rotating polarizer method requires at a minimum three red sample points.  The tissue load is not static during the 
time taken for these samples, introducing error in measurements using a rotating polarizer. 
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Figure 5.1.6: Measurement of cyclic loading at 0.5 Hz showing the change in retardance (a) and alignment spread 
(b) measured by our sensor for the tendon compared to the reference force measurement.  The retardance is maximal 
when the strain is maximal, while the spread in the alignment is minimal at the maximum applied strain, due to 
higher alignment of the fibers under strain. 
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Figure 5.1.7: Measurement of cyclic loading at 2 Hz showing the change in retardance (a) and alignment spread (b) 
measured by our sensor for the tendon compared to the reference force measurement 
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Figure 5.1.8: Frequency spectrum of measured force (a) and retardance (b) of cyclic loading at 2Hz. 

 

5.1.3 Conclusion 
We have presented an imaging modality that measures the direction and strength of fiber 

alignment in soft tissues with both high spatial and temporal resolution.  Our system uses a new 

type of polarimeter designed with stationary optics, which, combined with circularly polarized 
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input, measures the retardance and alignment of tissue on a frame-by-frame, pixel-by-pixel basis.  

We successfully demonstrated our method on thin sections of bovine flexor tendon, and showed 

that our sensor compares favorably with the current methodology, while providing significant 

additional capabilities and metrics for future analysis. 

5.2 In-Vivo Optical Neural Recordings Using Polarization 
Reflectance [11] 

Imaging sensors have greatly advanced the field of neuroscience, especially through the 

use of fluorescent imaging techniques. These techniques have enabled the in vivo capture of 

neural activity from large ensembles of neurons over wide spatial areas. With Ca2+ probes or 

voltage-sensitive dyes, neuronal action potentials trigger a corresponding optical change. This 

may change the optical intensity, as when a photon is released upon a transition from an excited 

state to a ground state. It may also change the spectrum of light during neural activation [94]. 

Although fluorescent imaging has enabled a tremendous success in the neuroscience field, a 

number of problems impede further elucidation of neural activity. Many calcium markers require 

input excitation in the high-energy UV spectrum, which can cause cell damage over time. 

Additionally, fluorescent dyes may be directly toxic to the cell, or indirectly toxic by interacting 

with nearby molecules during excitation [95]. Fluorescent dyes also decrease in intensity over 

time, after repeated excitation and emission cycles, a process called photobleaching. Further, 

some structures in the cell intrinsically fluoresce, overwhelming the measurement of any weaker 

desired signals. 

Two-photon excitation techniques mitigate some of these deficiencies. This technique 

requires the simultaneous excitation of two low-energy photons to produce a higher-energy 

fluorescent photon. Two-photon excitation typically focuses a high-power pulsed laser at the 
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recording image plane. Doing so reduces the background, as a signal requires the simultaneous 

excitation of two photons, thus increasing the signal-to-noise ratio (SNR) of the neural recording. 

Additionally, tightly focusing the input beam to increase spot intensity also significantly reduces 

background photobleaching. Since the excitation wavelength is usually in the near infrared, two-

photon techniques allow imaging deeper into tissue than single photon techniques that require 

UV. These fluorescent techniques, however, can still result in photobleaching over time, 

reducing the potential for long-term recording experiments. 

Alternate optical techniques exist for measuring neural activity. These methods capture 

the intrinsic changes of light scattered from neural cells without the use of molecular reporters. 

Because these techniques rely only on intrinsic signals, they will not result in photobleaching 

after repeated stimulus cycles, allowing for the possibility of long recording periods. Since the 

signals are optical, they also do not require the introduction of potentially destructive 

electrophysiology probes for measurement. 

State-of-the-art techniques for using polarization to measure neural activity are based on 

in vitro observation of the birefringence change during stimulus. Isolated neural cells are placed 

between two crossed polarizers and are given an electrical stimulus while optical changes are 

recorded. During an action potential, the birefringence of the neuron changes, thus causing an 

intensity change through the crossed polarizer. Initial experiments were performed on squid giant 

axons, with the SNR of early detection methods limiting them to cultured neurons [96], [97]. 

More recent experiments have been able to go beyond cultured neurons and use those extracted 

from lobster (Homarus americanus) and crayfish (Orconectes rusticus) to show birefringence 

change during action potentials [98]. Further experiments on the lobster nerve show that the 

reflection of s-polarized light off the nerve through a p-polarized filter also exhibits an optical 
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intensity change during an action potential propagation [99]. Since the birefringence changes, it 

is also possible to use circularly polarized light [100] to detect action potentials. However, all of 

these in vitro methods have relied on isolated nerves, with most of these methods employing 

only a single photo detector. A polarization sensor that has multiple detectors, like the one 

presented here, could simultaneously capture populations of neurons in vivo. 

5.2.1 Model of Label-free Neural Recording Using Polarization Reflectance 
From the theory covered in section II-B, unpolarized light reflecting off of an object or 

tissue becomes polarized based on the incident angle and index of refraction. Therefore, if the 

incident lighting conditions remain the same but the index of refraction changes, this change 

manifests as a change in the reflected polarization state of light. Neurons during an action 

potential show a change in the index of refraction [101] and thus should also show a change in 

the reflected polarization. 

Detection of this change can be hindered in the presence of scattering, which causes a 

decrease in intensity in the direction of propagation. Since neurons typically lay within tissue, the 

small intrinsic changes in optical intensity that accompany an action potential can be lost. 

Polarization signals can be more robust to scattering, as evidenced by the use of polarization to 

see farther in hazy environments [36]. This can be true in tissue as well, with the polarization 

signal persisting longer through multiple scattering events [102]. This means that detection of the 

intrinsic polarization signal change might be possible. 

If a neuron resides in tissue, then unpolarized light will scatter on entrance to the tissue, 

reflect off of the neuron, and scatter back toward the camera. The light will be partially polarized 

upon reflection, and although this polarized reflection will scatter during propagation back to the 
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sensor, as a polarized reflection it will be less affected by the scattering, making detection 

possible with a real-time polarimeter. 

5.2.2 Optical-based Neural Recording with the Bio-Inspired Polarization 
Imager 

 

Figure 5.2.1: Experimental setup for in vivo polarization-based optical neural recording. 

Figure 5.2.1 shows the setup for optical neural capture [103]. Detection of the optical 

neural activity was obtained from the antennal lobe of the locust (Schistocerca americana). The 

experiment required exposing the locust brain. To ensure the locust’s viability, a wax cup formed 

a water-tight seal around the exposed area, holding a saline solution [104]. To minimize motion 

artifacts, the locust was immobilized on a floating optical table. Odors in airflow were introduced 

to the locust through a plastic tube placed around the antenna at a constant rate of 0.75 L/min. 

The two odors used in the experiment, 1% hexanol and 1% 2-octanol, were both diluted in 

Hexanol

Octanol
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mineral oil. During the stimulation period, odors were introduced at a rate of 0.1 L/min. The 

airflow is aspirated through a charcoal filter at the same rate of flow around the antenna. 

To image in vivo the locust’s olfactory neurons, the bio-inspired current-mode CMOS 

polarization sensor was attached through a lens tube to an Olympus UMPLFLN10XW water-

immersion objective with 10× magnification. The objective was placed in the saline solution and 

was focused on the surface of the antennal lobe area of the brain closest to the odor tube. As the 

focus is on the surface, the frame rate of the sensor in these experiments (20fps) allows detection 

of the aggregate response of populations of surface neurons. The light source used for the optical 

recording was a custom circuit board containing ten 625-nm center-wavelength LEDs, powered 

by a constant-current power supply. A microcontroller synchronized the video frames and a 

trigger used for introduction of the odor stimuli. 

We used two different stimulation protocols for two different experiments. In the first 

experiment, odors were introduced for 4-s puffs at 60-s intervals. The odors were interspersed as 

two puffs of hexanol, two puffs of 2-octanol, and two puffs of both odors combined. The 

sequence was repeated five times. The second experiment used the same 4-s puffs in 60-s 

increments, but in this case the odors are introduced consecutively as ten hexanol puffs, ten 2-

octanol puffs, and ten combined puffs. 
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Figure 5.2.2: In vivo measurements from a population of neurons in the locust’s antennal lobe. The locust antenna 
was exposed to series of 10 puffs of hexanol, octanol, or both combined, with each puff lasting for 4 s, followed by 
56 s of no stimulus. 

The data were filtered using a zero-phase bandpass filter to eliminate high-frequency 

noise and low-frequency drift. To improve the SNR of the neural signal, the data were also 

spatially filtered from an 11 × 11 region of pixels within the antennal lobe. Figure 5.2.2 shows 

the results of the second, 10-puff experiment. The average change for each puff of hexanol was 

0.38% ± 0.02%; 2-octanol, 0.15% ± 0.02%; and combined odors, 0.45% ± 0.03%. The stronger 

response for hexanol over 2-octanol is consistent with electrophysiological data. This trend 

persisted even for highly interspersed sequences in the first, two-puff experiment (Figure 5.2.3): 

the average change for hexanol was 0.36% ± 0.06%; for 2-octanol, 0.16% ± 0.04%; and for the 

combined odor, 0.54% ± 0.02%. 
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Figure 5.2.3: In vivo measurements from a population of neurons in the locust antennal lobe to highly interspersed 
odors during the first experiment, comprising two puffs per odor exposure 

Figure 5.2.4 presents 2D maps of the neural activation pattern during stimulus 

presentation with the second protocol. The top row is the neural response to a hexanol puff, the 

middle row is the neural response to a 2-octanol puff, and the last row shows the neural response 

to a combination puff of both odors. The 8 different images per row depict the neural activity at a 

particular time interval indicated at the top of each image. 

The activation maps show a response that spreads from the portion of the lobe closest to 

the antenna, and the source of odor, outward through the rest of the antennal lobe. The images 

show some similarity to an electroencephalogram, which measures the local field potential near 

an electrode. The maps show the measurement of the scattering of light changes from the 

activation of populations of neurons. It has been previously shown that these changes are 

proportional to the change in voltage potential during activation [97]. 
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Figure 5.2.4: Spatial activation of neural activity across the locust’s antennal lobe. Each 2D map is a dorsal view, 
with the left as lateral, right as medial, top as caudal, and bottom as rostral. The 8 images per row represent neural 
activity at particular time intervals indicated at top of each column. 

5.3 Conclusion 
A 220 by 128 custom current mode image sensor was designed, tested, and fabricated in 

0.18 micron CMOS. The sensor has a dynamic range of 56 dB, an SNR of 43 dB, and an FPN of 

0.1 %. Post-fabrication,aluminum nanowire polarization filters were deposited on the sensor 

enabling real time capture of the first three Stokes polarization parameters. The sensor was then 

used to measure, in vivo, the neural activity of a locust (Schistocerca americana). The sensor 

optically recorded differential neural responses to Hexanol, Octanol, and combined stimuli 

across the antenna lobe without the use of toxic fluorescent markers or damaging electrode 

arrays. 

This new class of compact polarization imaging sensors is opening unprecedented 

opportunities in the advancement of the knowledge in neuroscience. The possibility of recording 
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neural activity from a large population of neurons with high temporal fidelity can help in 

understanding how information is processed in the olfactory system or other sensory systems in 

the brain. Such questions as how the primary coding dimensions, time and space, are used in 

biological signal processing can possibly be answered. These imaging sensors can ultimately 

lead to implantable neural recording devices based on measuring the optical intrinsic signals. The 

monolithic integration of optical filters with CMOS imaging arrays makes this sensor 

architecture the only viable solution for implantable devices in animal models, allowing the 

study of neural activity in awake, freely moving animals. 

Further, these types of image sensors have also shown huge potential in studying tissue 

dynamics. For the first time, real-time, high resolution measurements of tissue dynamics have 

been recorded This imaging method opens up the possibility of using even more complex 

loading protocols that require high-speed, real-time measurements (e.g., step and impulse 

forces), much faster cyclic loading, or high-speed observation of tissue failure. This can lead to 

better understanding of the mechanical properties of connective tissues, yield insight into 

structure-function relationships in health and disease, and provide guidance for novel 

development of orthopedic structures and devices. 
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Chapter 6: Conclusion 
Many modern polarimeters can easily capture the polarization state of light in a given 

scene. However, these sensors suffer from temporal or spatial resolution problems, have 

considerable bulk, and are prone to misalignment in field operations. Such issues have limited 

their usefulness to fields outside of physics and engineering. Therefore, a compact, high-

resolution, real-time polarimeter that solves these problems has been developed [2]. This style of 

polarimeter uses a repeated pattern of polarization filters integrated directly onto the sensor, 

which allows for simultaneous capture within a small (2x2) pixel area. The complete integration 

of the filters with the image sensor also ensures a rigid optical setup, with minimal chance of 

misalignment during field use. Further, as the filter array size is the same as the underlying 

sensor, this type of polarimeter can be integrated into a relatively compact system, capable of 

deployment in situations where previous polarimeters would have been infeasible for use. Such a 

device can be used by specialists and non-specialists alike, potentially opening up the field of 

polarimetry to much wider use. 

The compact, integrated polarimeter introduces new challenges both on the sensor design 

front, and the optical characterization front. The failure modes of previous polarimeter designs 

are well understood, however with the new technology comes the new need for understanding 

where integrated polarimeters fail both electrically and optically. Further, as the direct 

integration of the optics with the underlying sensor enables new compact designs, evaluation of 

the fundamental architecture of the sensor becomes a key design consideration. This dissertation 

has attempted to evaluate these shortcomings and design tradeoffs, in an attempt to develop 

sensors with the polarization sensitivity and form factor to enable new discoveries in a broad 

range of fields. 
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To explore these problems in integrated polarimeter design, this dissertation tried to first 

answer the question of which image sensor architecture is best suited for compact integrated 

polarimetry. To accomplish this, it presented a CMOS image sensor capable of operating in 

either voltage or current mode. It described the architecture of the sensor, including a detailed 

noise analysis of both reset and readout in both modes. It further illustrated the key advantages 

and disadvantages with Spectre simulations and measurements from the fabricated sensor. This 

sensor is further enhanced through the addition of pixelated polarizers, which formed a complete, 

compact, division-of-focal-plane, polarimeter that operates in current mode. 

Secondly, this dissertation presented a complete optical and electrical characterization of 

an integrated, division-of-focal-plane polarimeter. Using a series of electrical and optical tests 

derived from theory, it allowed for a complete evaluation of a division-of-focal-plane sensor’s 

performance. These tests evaluated the sensor for spectral characteristics, polarization accuracy, 

and sensitivity to crosstalk. The tests can potentially serve as standard for evaluation of division-

of-focal-plane sensors. 

Finally, with the realization of compact, real-time, integrated polarimeters comes the 

application of these sensors to new areas of research. This dissertation presented two new 

applications in the biomedical field that are enabled by such a sensor. The first detailed a new 

method to do dynamic analysis of soft tissue in real-time and at high resolution. Using active 

illumination, the division-of-focal-plane polarimeter could measure the strength of tissue 

alignment and the amount of applied strain to soft biological tissues. An example was presented 

using a bovine flexor tendon, showing how the new method reduced error compared to the 

standard method. While demonstrated on a simple tissue and load example, the method has the 

potential to greatly advance the field of tissue analysis. Researchers are no longer limited by 
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complicated optical setups and alignment issues, nor are they constrained in their selection of 

loading protocols, as the sensor allows for completely integrated real-time capture.  

Secondly, this dissertation presented a new, marker free method for optically measuring 

neural activity. The real-time nature of these types of sensors has now enabled, for the first time, 

a method for measuring the intrinsic neural activity of an organism in vivo. Using relatively 

simple optics consisting of only an immersion microscope lens and optical tubing, the sensor was 

able to detect a significant change in the reflected polarization when two stimulant odors of 

hexanol and octanol were introduced to a locust. This represents a potential new method of 

neural capture that does not require damaging electrodes or potentially toxic fluorophores. 
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Appendix  
A.1. Extended Data from Polarization Measurements 

A.1.1 Data from 460 nm LED Incident Light 

 
Figure A1.1.1 Data measured from rotating polarizer at 460nm LED board input, 3.4V, 0.25A, averaged across the 
array (bars indicate spatial standard deviation)  
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Figure A1.1.2. Data measured from rotating polarizer at 460nm LED board input, 3.4V, 1.25A, averaged across the 
array (bars indicate spatial standard deviation)  
 

 
Figure A1.1.3. Data measured from rotating polarizer at 460nm LED board input, 3.4V, 2.25A, averaged across the 
array (bars indicate spatial standard deviation) 
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Figure A1.1.4. Data measured from rotating polarizer at 460nm LED board input, 3.4V, 3.25A, averaged across the 
array (bars indicate spatial standard deviation)   
 

 
Figure A1.1.5 Data measured from rotating polarizer at 460nm LED board input, 3.4V, 4.25A, averaged across the 
array (bars indicate spatial standard deviation)   
 

Figures A1.1.1-5 show the average value across the pixel array for a rotating polarizer at 

varying LED intensities for a nominal LED wavelength of 460nm. The error bars are the spatial 
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standard deviation across the array. The filter response shows consistency with Malus’ Law for 

rotating polarizers. 

A.1.2 Data from 515nm LED Incident Light 

 
Figure A1.2.1. Data measured from rotating polarizer at 515nm LED board input, 3.4V, 1.0A, averaged across the 
array (bars indicate spatial standard deviation)  

 
Figure A1.2.2. Data measured from rotating polarizer at 515nm LED board input, 3.4V, 2.0A, averaged across the 
array (bars indicate spatial standard deviation)   
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Figure A1.2.3. Data measured from rotating polarizer at 515nm LED board input, 3.4V, 3.0A, averaged across the 
array (bars indicate spatial standard deviation)   
 

 
Figure A1.2.4. Data measured from rotating polarizer at 515nm LED board input, 3.4V, 4.0A, averaged across the 
array (bars indicate spatial standard deviation)   
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Figure A1.2.5. Data measured from rotating polarizer at 515nm LED board input, 3.4V, 5.0A, averaged across the 
array (bars indicate spatial standard deviation)   
 

Figures A1.2.1-5 show the average value across the pixel array for a rotating polarizer at 

varying LED intensities for a nominal LED wavelength of 515nm. The error bars are the spatial 

standard deviation across the array. The filter response shows consistency with Malus’ Law for 

rotating polarizers. 
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A.1.3 Data from 625nm LED Incident Light 

 
Figure A1.3.1. Data measured from rotating polarizer at 625nm LED board input, 2.3V, 1.0A, averaged across the 
array (bars indicate spatial standard deviation)   
 

 
Figure A1.3.2. Data measured from rotating polarizer at 625nm LED board input, 2.3V, 2.0A, averaged across the 
array (bars indicate spatial standard deviation)   
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Figure A1.3.3. Data measured from rotating polarizer at 625nm LED board input, 2.3V, 3.0A, averaged across the 
array (bars indicate spatial standard deviation)   
 

 
Figure A1.3.4. Data measured from rotating polarizer at 625nm LED board input, 2.3V, 4.0A, averaged across the 
array (bars indicate spatial standard deviation)   
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Figure A1.3.5. Data measured from rotating polarizer at 625nm LED board input, 2.3V, 5.0A, averaged across the 
array (bars indicate spatial standard deviation)   

 

Figures A1.3.1-5 show the average value across the pixel array for a rotating polarizer at 

varying LED intensities for a nominal LED wavelength of 625nm. The error bars are the spatial 

standard deviation across the array. The filter response shows consistency with Malus’ Law for 

rotating polarizers. 
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