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ABSTRACT 

BONDED ANCHORS IN CONCRETE UNDER SUSTAINED LOADING 
 

MAY 2015 

 

DOUGLAS D. DROESCH, B.S., WORCESTER POLYTECHNIC INSTITUTE 
 

M.S., MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 
 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Scott A Civjan 

 

 

 Post installed anchors come in either mechanical anchors that develop their strength 

purely through mechanical interlock with the base concrete, or bonded anchors that develop 

their strength by bonding anchor rod to the base concrete. Bonded anchors are either grouted, 

typically cementitious material, or adhesive, typically a chemical material.   This thesis presents 

a current literature review of post-installed bonded anchors, preliminary testing of adhesive 

bonded anchors, and details of short term and long term test setups for future testing.  The 

purpose of this thesis was to develop the test setups that will be used for future testing on 

anchors.  
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CHAPTER 1 

INTRODUCTION 

Concrete is a material used extensively in structural applications across the world, 

creating a need to anchor other materials.  Anchorage to concrete can be accomplished through 

a piece of steel, such as a threaded rod, bolt, or proprietary anchor, partially embedded in the 

base concrete and used to connect additional members.  Anchorage of this type can be 

categorized as either cast in place or post installed.  Cast in place anchors are embedded in the 

concrete before it hardens.  Advantages of cast in place anchors are their predictable and more 

reliable behavior and failure modes, but require a high level of accuracy in their placement to 

ensure proper alignment as they cannot be moved after the concrete hardens.  Post installed 

anchors typically use proprietary methods to attach to hardened concrete. This allows for 

freedom in placement to ensure proper alignment, but can be subject to much more variability 

in performance and capacity of the anchor. Post installed anchors can be categorized as either 

mechanical or bonded anchors as seen in Figure 0.1.  Mechanical post installed anchors use 

friction and mechanical interlock to transfer their load from the anchor rod to the concrete.  ACI 

318-02 Appendix D was the first edition of anchor design standards in the ACI Building Code 

Requirements for Structural Concrete.  It covered cast in place anchors and post installed 

mechanical anchors and gave design standards for both.  Bonded anchorage systems generally 

comprise of a steel anchor rod, either threaded or dowel (rebar), and a bonding material.  

Bonding materials are loosely defined as either adhesive or grouted depending on hole diameter 

(Zamora et al. 2003 p. 222).  Grouted anchors have a hole diameter greater than 1.5 times the 

anchor diameter where adhesive anchors are less, but there is no published standard by a 

governing body, such as ASTM, to define a grouted anchor vs an adhesive anchor (Cook et al. 

2013 p. 5). Defining anchor systems strictly by their hole diameter allows for the same material 
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to be used as a grouted anchor system and as an adhesive anchor system.  One example is a 

polymer grouted anchor system that uses the same bonding material as a polymer adhesive 

anchor system.  The difference is the polymer grout uses a fine aggregate to fill the larger hole.  

Generally, grouted anchors can include either polymer or cementitious materials while bonded 

rely on polymer materials. Due to the larger diameter hole, grouted anchor systems can be 

installed with either headed or non-headed rod.  The headed anchor rod changes the possible 

failure modes and can reach capacity at a lower embedment depth.  More on anchor system 

failure modes is available in Chapter 2. ACI 355.4 (2011) provides the most comprehensive 

standard definition for adhesives used in adhesive anchor systems: 

Any adhesive comprised of chemical components that cure when blended together. 

Adhesives are formulated from organic polymers, or a combination of organic polymers 

and inorganic materials. Organic polymers used in adhesives can include, but are not 

limited to, epoxies, polyurethanes, polyesters, methyl methacrylates and vinyl esters. 

(ACI 355.4 2011) 

Bonded anchors, both adhesive and grouted, are generally installed the same way.  A hole is 

drilled in base concrete using a rotary impact hammer or a diamond bit core drill.  The hole is 

then cleaned with a brush, compressed air, and/or water jet.  The bonding material then fills the 

hole and the anchor rod is inserted to the bottom of the hole.  This process varies greatly by 

manufacturer.  Adhesive anchors are generally installed with a caulking type gun or by a glass 

capsule that mixes the components in the hole, while cementitious anchors are mixed like 

concrete in the field or come ready to use from the manufacturer.  The bonding material is then 

allowed to cure based a manufactures’ recommendations, generally between 24 hours and 28 

days, and load can then be applied. 
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Figure 1.1  Anchor Systems (Cook and Burtz, 2003) 

 Post installed anchors allow contractors the freedom to put anchors in the proper 

position after the concrete base member is cast, but their behavior is less predictable and more 

susceptible to changes in environmental conditions.  Both adhesive and grouted anchors can 

creep, deform or displace over time due to sustained stress.  Creep over a period of sustained 

load can cause failure in adhesive anchors at loads lower than their short term static capacity.   

Adhesive anchor research has recently been summarized in two National Cooperative 

Highway Research Program (NCHRP) reports, Cook et al. (2009) and Cook et al. (2013).  These 

reports differed from Cook and Burtz (2003) and Zamora et al. (2003) by focusing only on 

adhesive anchors and specifically creep characteristics of adhesive anchors.  Adhesive anchors 

are known to creep, but their specific capacity under sustained tensile loads is not clearly 

understood.  Cook et al. (2009) proposed a new American Association of State Highway 

Transportation Officials (AASHTO) Provisional Standard AASHTO TP-84 (AASHTO TP-84 2010) 

which provides a stress versus time-to-failure test for adhesive anchors.  This test provides a 
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guide criterion for designers showing maximum load of an adhesive anchor system when 

subjected to sustained tensile load under varying environmental conditions such as elevated 

temperature and humidity.  The tests are conducted to failure at three separate sustained load 

levels.  The guide  uses the maximum load found from a static pull out test, known as the mean 

static load (MSL) or static capacity, as a reference for applying sustained tensile loads (Cook et 

al. 2009).  Cook et al. (2013) expanded upon Cook et al. (2009) by investigating additional 

environmental parameters that can affect bond strength, eventually leading to additional 

recommended changes, such as using three sustained load levels instead of two for developing a 

stress vs. time to failure plot.  ACI 355.4 (2011) presents pass/fail standards for adhesive anchors 

based on displacement after 42 days at 55% of MSL.  More information on AASHTO TP-84 (2010) 

and ACI 355.4 (2011) is available in Chapter 6. 

1.1 Motivation for the Study 

 The Massachusetts Department of Transportation (MassDOT) has used post installed 

anchors in a variety of projects, such as connecting new construction to existing structures, 

fitting two hardened pieces of concrete after forms are removed, and hanging structural or 

architectural features from concrete.  The latter led to a catastrophic failure of adhesive anchors 

in the I-90 connector tunnel of Boston on July 10, 2006 shown in Figure 0.2. The anchor failure 

caused precast ceiling units to drop into the roadway causing one fatality, one person with 

minor injuries, and additional financial damage. This failure led to a permanent change in the 

allowance of post installed anchors by MassDOT, precluding all applications subject to creep 

load. Anchor creep was a major factor in the I-90 tunnel failure: 

Contributing to the accident was the failure of Powers Fasteners, Inc., to determine that 

the anchor displacement that was found in the high‑occupancy vehicle tunnel in 1999 
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was a result of anchor creep due to the use of the company’s Power‑Fast Fast Set 

epoxy, which was known by the company to have poor long-term load characteristics 

(NTSB 2007 p. 1) 

After the accident, inspections were conducted on the remaining anchors and 78 of 198 

in the westbound tunnel, 57 of 248 in eastbound tunnel, and 26 of 188 in the high 

occupancy vehicle (HOV) tunnel displaced.  Displacement ranges were from less than 0.1 

in (0.25 cm) to more than 1.0 in (2.54 cm).  State and local authorities chose to close the 

tunnel while inspections and corrective actions occurred (NTSB 2007). 

 

Figure 1.2 Adhesive Anchor Failure in I-90 Tunnel Failure.  Figure 1 (NTSB 2007 p. 1) 

The creep characteristic of adhesive anchors and bonded anchors in general requires further 

understanding and acceptance criteria for use of anchors to avoid such failures in the future. 

MassDOT has funded this project to determine acceptance criteria for anchorage 

systems to be listed as a “Qualified Construction Material” on MassDOT projects. The purpose of 

this thesis is to develop the test capabilities to meet AASHTO TP-84 (2010) criterion at UMass 
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Amherst and provide initial test results for the project. This project will expand on Cook et al. 

(2013), research conducted at the University of Florida and the University of Stuttgart, and 

investigate if these newly developed standards, AASHTO(2010) and ACI 355.4 (2011), have merit 

in determining if materials are acceptable for use in MassDOT projects.  The MassDOT project 

will be conducted in two phases.  Phase I consists of 15 static tests and 30 creep tests in 

accordance with AASHTO TP-84 to evaluate comparatively a series of different anchor material 

types.  This phase will include an in depth literature review, purchase of materials, construction 

of environmental chambers, construction of test samples, and calibration of laboratory 

equipment.  This phase will end with a stress versus time-to-failure graph for each selected 

adhesive anchor system on the MassDOT Qualified Materials Construction List and preliminary 

conclusions for the sensitivity of grouted anchors to sustained loads.  Additional environmental 

factors may be considered during Phase I and additional testing will be implemented in Phase II 

based on the outcomes from Phase I.  Phase I will end with recommendations for further testing 

of Phase II.  Phase II will consists of additional static and long-term tests based on the outcome 

of Phase I.  This thesis covers the initial tasks of Phase I. 
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CHAPTER 2 

BEHAVIOR MODELS AND FAILURE MODES 

 This chapter discusses five potential failure modes of bonded anchors and the stress 

behavior of a bonded anchor.  This information comes from a literature review of published 

articles on the subject. 

2.1 Failure Modes 

 Several studies on bonded anchors have been undertaken in the past fifteen years.  

Cook and Burtz (2003) provide a model for predicting bond strength under static load and 

validated pull-out capacities under varying conditions.  While focusing mainly on grouted 

anchors, this project provides information that is valid for all bonded anchors.  Additionally, this 

research defined four types of bonded anchor failure modes, as shown in Figure 2.1.  Failure of 

the anchor rod is a fifth failure mode, but is not included because this failure mode is precluded 

in the research by the use of high strength steel and failure was defined as not reaching the 

capacity of the anchor rod.  The four failure modes investigated in this project and most 

literature are concrete breakout failure, adhesive (or grout)/concrete interface bond failure, 

steel/adhesive (or grout) interface bond failure, and partial adhesive (or grout)/concrete and 

partial steel/adhesive (or grout) interface bond failure.  The latter three failure modes are 

accompanied by a secondary shallow concrete cone failure plane for both adhesive and grouted 

anchors.  Use of a headed anchor rod in grouted anchors precludes the grout/steel interface 

bond failure allowing for only three possible failure modes of headed grouted anchor systems 

(Cook et al. 2003). 
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Figure 2.1  Bonded Anchor Failure Modes (Zamora et al. 2003) Authorized Reprint from Mar-Apr 

2003 ACI Structural Journal Vol. 100 No. 2 

 Concrete breakout failure is predicted using the Concrete Capacity Design (CCD).  The 

three bond failure modes are predicted using a uniform bond stress model.  The CCD model was 

developed for cast in place and mechanical anchors, but is applicable to grouted anchors that 

fail with a full concrete breakout cone.  The three bond failure modes are exclusive to bonded 

anchors. 

2.2 Concrete Capacity Design (CCD) 

 Failure with a full concrete breakout cone is predicted using the CCD model.  The CCD 

model was first incorporated in ACI 318-02 (ACI Committee 318, 2002 p. 409).  This model was 

developed for cast in place and mechanical anchors that fail with a full concrete breakout cone.  

CCD was developed by Eligenhausen et al. (1987) and was first compared with existing ACI 

standards by Fuchs et al. (1995).  It assumes that the base concrete fails in tension and a 35° full 

cone is formed from the end of the embedded head to the concrete surface, Figure 2.2.   This 

design method was validated for headed cast in-place anchors and post-installed mechanical 

anchors and has been the model used by ACI for headed anchors that fail in tension or shear 

(cast in place or mechanical), but is applicable to post installed anchors that preclude bond 
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failure modes.   Equation 1 shows the design equation from ACI (ACI Committee 318, 2002).  

 

Nb = Basic concrete breakout strength in tension of a single anchor in cracked concrete (lbs) 

k = Coefficient for basic concrete breakout strength in tension  

(24 for Cast in Place Anchors, 16 for Mechanical Post-Installed Anchors) 

f′c = Specified Compressive Strength of Concrete (psi) 

hef = Effective anchor embedment depth (in) 

 

 

𝑵𝐛 = 𝐤�𝒇′𝒄𝐡𝐞𝐞
𝟏.𝟓  Equation 1 
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Figure 2.2  Full Concrete Cone Break Out as Predicted by CCD (Fuchs et al. 1995)Authorized 

reprint from Jan.-Feb. 1995 ACI Structural Journal Vol. 92 No. 1 

2.3 Uniform Bond Stress 

 The uniform bond stress model was first recommended as the standard design model by 

Cook et al. (1998) and is summarized in Zamora et al. (2003) and Cook et al. (2013).  Adhesive 

anchors experience a hyperbolic tangent stress distribution at low load levels with stresses 

being smallest at the end of the anchor in the concrete and highest where the anchor rod exits 

the concrete, left picture in Figure 2.3.  Above 30% of mean static load (MSL), the higher stress 

portions experience plastic behavior and load begins redistributing across the adhesive.  At 

approximately 70% MSL, the entire adhesive is in the plastic range and a uniform stress is 

achieved throughout, right picture in Figure 2.3.  This later stress distribution is the basis for 
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using the uniform bond stress model to predict the capacity of an anchor at failure.  Figure 2.4 

shows the stress distribution along the length of an adhesive anchor at different percentages of 

MSL.  It can be seen that stress at the bottom of the anchor varies from the middle and top of 

the anchor for all load levels, showing that the uniform bond stress model is only an 

approximation.  This model is valid with the following assumptions:  

“For adhesive-bonded anchors where the hole diameter does not exceed 1.5 times the 

anchor diameter and with an embedment depth to anchor diameter ratio not exceeding 

20, the uniform bond stress model shown in Figure 8 [Figure 2.3] and given by Equation 

1 [Equation 2] has been shown to be a valid behavioral model both experimentally and 

numerically” (Cook et al. 2013 p. 4) 

 

Figure 2.3  Hyperbolic Tangent Stress (Left) and Uniform Bond Stress (Right) (Cook, et al., 2013) 

The Uniform Bond Stress Model is defined as: 

𝐍�𝛕 = 𝛕�𝛑𝛑𝐡𝐞𝐞  Equation 2 
 

N�τ = mean failure load, lb  

τ� = mean bond strength, psi  

d = anchor diameter, in  

hef = embedment depth, in  
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 For Load and Resistance Factor Design (LRFD), τ� = 𝜏′𝛼1𝛼2𝛼3 where 𝜏′ is the 5% lower 

fractile of mean bond strengths and α1, α2, α3 are reduction factors determined by comparing 

bond strength of different conditions to baseline bond strengths.   The 5% lower fractile is 

generally determined through confined laboratory tests.  These tests force bond failure.  While 

this gives a valid value of bond stress of the bonding material, it does not give an accurate 

description of anchor strength because of capacity lost to shallow concrete breakout cone 

(Cook, et al., 2013).  ACI 355.4 (2011) uses a reduction ratio of 0.75 when bond shear stress is 

determined through confined testing.  Cook et al. (2013) found the reduction value to be 

between 0.37 and 0.53.  Detailed information on Cook et al. (2013) can be found in Chapter 3. 
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Figure 2.4  Stress Distribution Along Length of Adhesive Anchor for hef/d0=8.00 (Cook, et al., 

2013) With permission from ASCE.  This material may be downloaded for personal use only. Any 

other use requires prior permission of the American Society of Civil Engineers. 

 Zamora et al. (2003) presents validated models of grouted anchor behavior in tension.  

Non-headed grouted anchors generally exhibit the same failure modes as adhesive anchors.  

That is, full concrete cone break out, failure of the grout/concrete interface bond, failure of the 

grout/steel interface bond, and partial failure of grout/concrete bond with partial failure of the 

grout/steel bond.  The uniform bond stress model for adhesive anchors applies to grouted 

anchors with one exception.  Grouted anchors have a bond stress for the grout/steel interface 

(τ) and a bond stress for the grout/concrete interface (τ0). Equation 2 is modified and the lower 

of Equation 2 or  

Equation 3 is used to predict the mean failure load or mean static load of non-headed grouted 

anchors for the two different bond failures. 
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N�τ = τ0� πd0hef  
 
Equation 3 

  

N�τ = mean failure load, lb  

τ0� = mean bond strength, psi  

d0 = anchor diameter, in  

hef = embedment depth, in  

Headed grouted anchors will not experience a grout/steel bond failure due to the presence of 

the head, but can experience a bond failure at the grout/concrete interface or a full concrete 

breakout cone.   Failure of the bond at the grout/concrete interface can be predicted by  

Equation 3. (Zamora et al. 2003)  Failure of the grout is not mentioned in the literature, but is a 

possible failure mode that should be investigated. 
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CHAPTER 3 

ADHESIVE ANCHOR SYSTEMS LITERATURE REVIEW 

An adhesive anchor system has a hole less than 50% of the anchor rod diameter as 

defined by Zamora et al. (2003) and adopted by Cook and Burtz (2003), Cook et al. (2009), Cook 

et al. (2013), and El Menoufy et al. (2014).  The material used in these anchors is defined by ACI 

355.4 (2011) as “Organic polymers used in adhesives can include, but are not limited to, epoxies, 

polyurethanes, polyesters, methyl methacrylates and vinyl esters; or inorganic polymers.” Most 

of the organic polymer adhesives are contain two parts that require mixing just prior to 

application.  This is typically done with a caulking type gun that mixes the two components as 

they are installed into the hole.  Inorganic adhesive anchors allows for the use of cementitious 

products, typically reserved for grouted anchor applications with a hole diameter of greater 

than 1.5 times the anchor diameter.  Adhesive anchor manufacturers provide a table listing 

allowable load and ultimate load for their anchor system based on anchor rod diameter, 

embedment depth, and concrete compressive capacity.  Separately they provide a list of hole 

diameters to use with each acceptable anchor rod diameter.   

Creep of adhesive anchors has been a known problem, but the long term capacity of the 

anchors under different conditions has only been heavily researched within the past ten years 

following the 2006 I-90 tunnel failure.  Published research at the time of the accident showed 

the poor creep performance of adhesive anchors including a warning from James et al. (1989) “It 

should be emphasized that resins used in structural applications can exhibit significant 

viscoelastic response to long-term loadings, especially at elevated temperatures.”  As with most 

engineering failures, additional guidelines were published in response to the failure. An NTSB 

report on the accident recommended to the Federal Highway Administration to prohibit the use 

of adhesive anchors under sustained load conditions until test standards were established (NTSB 
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2007).  Additionally, MassDOT introduced Engineering Directive E-10-001 on April 20th, 2010 

providing guidance to designers to always specify non-adhesive anchors unless the designer 

provides necessary dimensions for coring or drilling holes, including hole diameter and depth, 

spacing between dowels or anchors and edge distance; or when used in crash tested anchor bolt 

applications (MassDOT 2010). Since the publishing of the MassDOT directive, ACI and AASHTO 

have both developed standard tests for use of adhesive anchors under a variety of conditions, 

including sustained tensile loading.  Cook et al. (2013) include an extensive review of standards 

of testing, behavior models, and parameters that affect capacity of adhesive anchors.  A brief 

synopsis of this material is presented in the rest of this chapter. 

Cook et al. (2009) discuss the creep resistance of adhesive anchors and provide a basis 

for AASHTO TP-84 (2010) and Cook et al. (2013).  The main purpose of this research program 

was to develop a standard test procedure for AASHTO to qualify adhesive anchor systems for 

use in Federal Highway Projects.  Stress vs. time to failure was compared with a pass/fail 

method from the existing ICC-ES AC308 (2008).  This project tested three adhesives for short 

term capacity and only two of those for long term capacity due to budget and time constraints.  

6 short term tests were conducted per adhesive to determine a mean static load, MSL.  Three 

long term tests each were conducted per adhesive per load level for a total of 12 long term 

tests.  Loads for long-term sustained loads in this test were 75% and 62% of MSL.  Failure in 

creep was defined as the onset of tertiary creep per ASTM D299 (2009), Figure 3.1. 
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Figure 3.1  Tertiary Creep (ASTM D2990, 2009).  Reprinted, with permission, from D2990-09 

Standard Test Methods for Tensile, Compressive, and Flexural Creep and Creep-Rupture of 

Plastics, copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A 

copy of the complete standard may be obtained from ASTM International, www.astm.org. 

These loads generally cause failures within four months of application.  The project concluded 

with a draft AASHTO test method, now AASHTO TP-84 (2010), and a recommendation that a 

stress vs time to failure approach is superior to the pass/fail method of ICC-ES AC308 (2008).  

(Cook et al. 2009) 

The literature review of Cook et al. (2013) provides a thorough understanding of 

adhesive anchor research as of its publishing in 2013.  This report had two goals: 

• Investigate the influence of various parameters (e.g., type of adhesive, 

installation conditions, and in-service conditions) on the sustained-load 

performance of adhesive anchors 

• Develop recommended test methods, material specifications, design 

guidelines, design specifications, quality assurance guidelines, and construction 

specifications for AASHTO for the use of adhesive anchors in transportation 

structures. (Cook et al. 2013 p. 3) 
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The report includes a research program of 17 test series with each series investigating the 

sensitivity of an adhesive anchor’s creep capacity to a specified parameter, Table 3.1.  Series 1-

16 all started with five short term tests to establish a parameter mean static load (MSL).  Each 

test series then ran a number of sustained load tests on the adhesive that showed the most 

sensitivity to a given parameter in the short term test in accordance with AASHTO TP-84 

(2010),specifics can be seen in Table 3.1, to develop a stress vs time to failure plot of each 

parameter.  Further information about AASHTO TP-84 (2010) and the stress vs time to failure 

plot can be found in Chapter 6.  These tests were compared against the baseline tests, series 1 

and 2, to develop an alpha reduction ratio (parameter MSL/baseline MSL).  The alpha reduction 

ratios for the short term and the long term tests were then compared with each other to 

determine if a given parameter had more of an impact on long-term performance than short 

term performance.  The alpha short term was divided by the alpha long term to determine an 

influence ratio.  If this influence ratio was greater than 1 then the parameter had a negative 

effect on creep.  Adhesive only tests were conducted to determine validity in their use to 

predicted anchor pullout strength.  An adhesive only test was also conducted to determine an 

adhesive’s sensitivity to loading before manufacturers recommended cure time.  Alpha 

reductions were taken at a minimum of 1 because it is not recommended to increase design 

capacity above a baseline level. For example, the baseline mean static load (MSL) for adhesive B 

(an epoxy system) was 22.9 kips.  The MSL for elevated service temperature (>120°F) was 23.1 

kips.  This correlates to an alpha reduction factor of 1.01, signifying that there is no statistical 

difference between the baseline MSL and the elevated temperature MSL.  Cook et al. (2013) 

conclude that the elevated temperature does not affect the short term capacity of adhesive B.  

Similarly, the alpha reduction factor calculated between baseline and elevated temperature long 

term tests was 0.83.  The calculated influence ratio was then 1.01/0.83=1.22 showing that 
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elevated temperature had more of an effect on long-term performance than could be predicted 

by a short term test for the epoxy adhesive anchor system tested.  (Cook et al. 2013) 

Table 3.1  Proposed Test Matrix (Cook et al. 2013) 

 

Cook et al. (2013) found that, of the tested parameters, only two adversely affected the 

sustained loading capacity.  Those parameters were in service temperatures above 120°F and 

manufacturers’ cure time.  ACI 355.4 (2011) mandates long term tests at category A 

temperatures of 110°F and an optional category B test above 110°F.  Detailed information about 

ACI 355.4 (2011) can be found in Chapter 6.  Designers can select a product that passes ACI 

355.4 (2011) temperature category B temperature rated tests.  The other major factor found by 

Cook et al. (2013) to significantly reduce the creep resistance of the tested adhesives was 

loading before manufacturers’ minimum cure times.  Manufacturers’ recommendations should 

be followed closely for all adhesive anchor products and additional curing time is recommended.  
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The second goal of Cook et al. (2013) was to recommend changes to AASHTO TP-84 (2010). 

Those recommendations are to include at least three sustained load levels (instead of two), and 

to not include the short term test when constructing the stress versus time-to-failure graph.  

Separately, the report made an observation on design values from ACI 355.4 (2011) which uses a 

reduction factor of 0.75 to relate unconfined tests to confined tests.  Cook et al. (2013) found 

that their unconfined tests compared to confined tests resulted in a reduction factor between 

0.37 and 0.53 (Cook et al. 2013). 

El Menoufy et al. (2014) investigated the effects of standard temperatures, moisture, 

and freeze/thaw on adhesive anchors.  This research tested three types of adhesives, a fast 

setting acrylic based (Named Type A), fast setting epoxy based (Named Type B), and a standard 

setting epoxy based (Named Type C).  The anchors used in this test were 15M deformed steel 

bars with 0.63 in diameter (16 mm) installed at 4.9 in (125mm).  Static tests were conducted in 

accordance with ASTM E488 (2010).  Detailed information on ASTM E488 (2010) can be found in 

Chapter 6.  72 total pull out tests were conducted (27 Static and 45 Sustained).  Static failure 

was defined as yielding of the 15M bar.  This yielding caused a decrease in cross section that 

caused the adhesive to expand and bond failure began to occur.  Table 3.2 shows the four 

testing phases and the three environmental parameters considered (normal conditions 73°F ± 

7°F (23°C ±4°C), in-service moisture, and freeze/thaw).  Test procedures were conducted in 

accordance with ICC-ES AC308 (2009) for in-service moisture and freeze/thaw.  For freeze/thaw 

and moisture tests, the test specimens’ top surfaces were covered with 0.47 in (12mm) deep 

2.99 in (76mm) radius volume of water.  For freeze/thaw, the sustained load was applied and 50 

cycles were conducted by thawing for eight hours at  +68°F ±3.6°F (+20°C ±2°C) and freezing for 

16 hours at 4°F ±3.6°F (-20°C ±2°C).   Most specimens in this research failed after the anchor bar 

began yielding and results were normalized against the known yield strength of the anchor bar.  
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Type A adhesives experienced a decrease in tensile capacity under sustained loading.  When 

compared to the room temperature results of a sustained load at 40% of anchor yield, both 

moisture and freeze/thaw almost doubled the creep displacement at 90 days.  Type B adhesives 

did not experience a significant difference in creep behavior when compared to normal 

condition tests due to freeze/thaw.  Variable results were achieved under moisture conditions 

tests with Type B adhesives.  Type C experienced little to no creep at room temperature with 

only slight increase in long term displacements due to moisture.  The displacements from the 

long term freeze/thaw tests on Type C adhesives were variable, but overall, greater than both 

room temperature and moisture creep test displacements.  The project concluded that epoxy 

type adhesives exhibited higher ultimate capacities than the acrylic based and that moisture and 

freeze/thaw has some negative effect on creep capacity. (El Menoufy et al. 2014) 

Table 3.2  Test Matrix (El Menoufy et al. 2014) With permission from ASCE.  This material may 

be downloaded for personal use only. Any other use requires prior permission of the American 

Society of Civil Engineers. 

 

McDonald (1998) reported pull out capacities of three anchor systems: a polyester resin, 

an epoxy resin, and a cementitious grout under dry and submerged conditions with both short 

term and long term (creep) loads applied.  This project was specifically concerned with 

submerged application of anchor systems for use below water level in dams.  Submerged tests 

were conducted by ponding water for 2 weeks then installing the anchors into a completely 
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submerged hole.  144 anchor systems were tested in static pull out tests and 24 were tested in 

creep tests.  Each anchor system was static tested 18 times dry and 18 times submerged except 

for adhesive D which was tested 18 times dry and adhesive E which was tested 18 times 

submerged.  Three dry and three submerged creep tests were conducted for each anchor 

system except for D that was only tested three time dry and E that was only tested three times 

submerged.  No. 6 A36 reinforcement steel bars were used for anchor rods.  Five types of 

bonding materials were tested (A, B, C, D, and E) and the nomenclature is independent for this 

research. The research reported them all as adhesives even though one of them was a 

cementitious material.  All hole sizes were less than 1.5 times the anchor rod diameter, which 

equates to adhesive anchors by the most current definitions available.  Adhesive A, Epcon 

manufactored by ITW, was a two part ceramic filled epoxy adhesive.  Adhesive B, Anchor-It 

manufactured by Adhesive Technology Incorporated, was “a light paste epoxy adhesive filled 

with superfine aggregates and hardener component” (McDonald 1998 p. 8).  Adhesive C, HEA 

capsule/C100 manufactured by Hilti Corporation, was a combined application of two vinylester 

resins mixed together with a caulking type gun.  Adhesive D was a two-component vinylester 

resin packed in a two-chambered plastic cartridge and was also the C100 portion from Adhesive 

C.  Adhesive D was only used for dry testing due to a strong recommendation from the 

manufacturer to avoid submerged applications with the product.  Adhesive E, Lokset 

manufactured by Forsoc International Unlimited, was a cementitious compound in a plastic 

wrapping that, when submerged, allowed a controlled wetting to cure the grout.  The hole size 

for this grouted anchor was 1in (25mm) and the anchor was No. 6 rebar with 0.75in (19mm) 

diameter.  Details about adhesive E can be found in Chapter 4.  Static tests were conducted after 

cure times of 1 day, 3 days, 7 days, 28 day, and 365 days for both dry and submerged conditions.  

Average tensile capacity of adhesives A, B, and C at 0.2in (5mm) displacement can be seen in 
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Figure 3.4 for the different anchor cure times.  Creep tests were conducted at 60% of the anchor 

rod’s yield strength for 6 months.  Results can be seen in Figure 3.2 and Figure 3.3.  Adhesive B 

experienced a pullout failure before the end of the creep test of the submerged installation and 

its results were not included in the plot.  The project concluded that Adhesives C and E showed 

the best performance in submerged applications in static tests and creep tests.  (McDonald 

1998) 
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Figure 3.2 Creep Tests for Dry Installation (McDonald 1998) 
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Figure 3.3  Creep Test Submerged Anchor Installation (McDonald 1998) 
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Figure 3.4  Average load at 0.2in (5mm) displacement static tests for Adhesives A (top), B 

(middle), and C (Bottom) (McDonald 1998) 
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CHAPTER 4 

GROUTED ANCHOR SYSTEMS LITERATURE REVIEW 

The second type of bonded anchor is grouted.  A grouted anchor system has a hole 

larger than 50% of the anchor rod diameter as defined by Zamora et al. (2003) and adopted by 

Cook and Burtz (2003), Cook et al. (2009), Cook et al. (2013), and El Menoufy et al. (2014).  

These anchors can be classified as either cementitious or polymer based. Cementitious anchors 

are a mixture of sand, cement, water, and other additives.  Most structural applications of 

cementitious anchors use non-shrink grout products that conform to ASTM C1107 which tests 

for compressive strength and shrinkage over time.  Polymer grouts consist of small aggregates 

(i.e. sand), a resin, and a curing agent.  The inclusion of small aggregates allows polymer grouts 

to fill larger holes, differentiate polymer grouted anchors from polymer adhesive anchors.  

Anchor manufacturers provide a table listing allowable load and ultimate load for their anchor 

system based on anchor rod diameter, embedment depth, and concrete compressive capacity.  

Separately they provide a list of hole diameters to use with each acceptable anchor rod 

diameter.  Grouted anchor manufacturers generally provide a minimum oversize dimension for 

the hole based on anchor diameter.  For example, Sakrete, 2014 recommends a hole 1 in (25 

mm) diameter larger than the anchor being used and lists pull out data for a 1 in (25 mm) bolt at 

14,000 lbs (62.3 kN).  Anchor rods used in grouted anchors can be either headed or non-headed, 

Figure 4.1.  Headed anchor rods include either an integrated head or a nut threaded on the end 

of the rod.  All grouted anchors can experience the same failure modes as adhesive anchors, 

Figure 2.1, except headed anchors eliminate a grout/steel interface failure (Zamora et al. 2003).  

Grouted anchors can be more difficult to use as they are typically, but not always, more fluid, 

making overhead and horizontal applications very difficult due to possible sagging of grout 

material prior to curing. 
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Figure 4.1  Examples of Headed and Non-headed Anchors (Cook et al. 2003) 

Grouted anchor systems were used in design prior to the development of polymers for 

adhesive anchor systems and continue to be used today although a greater variety of grout 

materials have been developed.  Conard (1969) reported results from 24 static pull out tests of 

three types of grout.  The anchors were 0.5 in (12.7 mm) and 0.75 in (19.8 mm) diameter 

unfinished hex head bolts installed at an embedment depth of 3 in (7.6mm) Each test was 

conducted on one test slab.  Dimensions for the slabs were not reported, but some of them 

failed in flexure before the anchor failed in tension.  The author concludes this does not 

invalidate the results because the deformation of the anchor was large at failure or the tension 

load on the bolt was greater than the indicated maximum load.  Failure was arbitrarily chosen as 

0.05 in (1.27 mm) for the sake of comparison to mechanical anchors and cast-in-place anchors.  

Each type of grout was tested four times in tension and four times in shear.  The grouts are: 

• Type I – one part Type I portland cement and three parts fine sand by volume mixed 

with water. 

hef = embedment depth 

d0 = hole diameter 

d = anchor rod diameter 
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• Type II – one part Type I portland cement and three parts fine sand by volume mixed 

with polymer resins as liquid. 

• Type III – A premixed, nonshrink grout mixed with water.  

Type I grouts failed at the grout/concrete interface with an average maximum load of 3,250 lbs 

(14.46 kN) for the 0.5 in (12.7 mm) diameter bolts and only 825 lbs (3.67kN) for the 0.75 in (19.8 

mm) diameter bolts.  The lower pullout for the larger bolt is due to an earlier bond failure of the 

Type I grout.  Type II grouts experienced grout/concrete interface failure in half of the 

specimens and the other half failed in flexure of the test slab.  Type III was the most had the 

highest capacity with only one bond failure of the tested specimens while the rest failed in 

flexure of the slab (Conard 1969).  This experiment was conducted prior to standard pull out 

tests by ASTM so the results are not easily compared with more current research.  Today, non-

shrink grout is almost exclusively used in structural applications. 

 James et al. (1987) used finite element modeling to develop an approximate 

mathematical model to predict grouted anchor behavior.  The Concrete Capacity Design, CCD, 

Method defined in Chapter 2 and uniform bond stress models are now the accepted design 

models for grouted anchors in recent literature (Cook et al. 2003 and Zamora et al. 2003).  ACI 

Committee 318 (2002) defined a cone angle of 35° while a cone angle of 45° was predicted by 

James et al. (1987).  The majority of the load transferred from the anchor rod to the concrete 

occcured within one or two anchor diameters from the top surface of the concrete, suggesting 

that a partial concrete cone will accompany any bond failure at embedment depth to anchor 

diameter ratios of greater than 3 to 4.  This is confirmed for adhesive anchors in Cook et al. 

(1998). 

Four of five anchor systems tested by McDonald (1998) are summarized in Chapter 3.  

Adhesive E,  Lokset manufactured by Forsoc International Unlimited, was the only cementitious 
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anchor tested.  It was only tested in submerged conditions because it requires the water from a 

submerged installation to hydrate the cement.  Figure 3.4 shows adhesive E performed better 

than the other adhesives in the static tests.  Figure 3.3 shows adhesive E’s performance in the 

creep test, which is better than the other adhesives tested. (McDonald 1998) 

 Rodriquez et al. (2001) investigated the dynamic behavior of tensile anchors in concete.  

Most of the testing was conducted on cast-in-place and mechanical post-installed anchors which 

are outside the scope of this project.  Specifically of interest to this report are the effects of 

cracks on grouted anchors.  Static tests were conducted in cracked and un-cracked concrete.  

The cracks were formed with hammer driven wedges and split-bearing tubes of high-strength 

steel, Figure 4.2.  Tested anchor rods were A325 hex-head bolts, 0.75 in (19 mm) diameter by 6 

in (152 mm) long.  Cracks propagated along the grout/concrete interface for all but one test in 

cracked concrete and reduced the grouted anchor capacity by 41% when compared to the un-

cracked tests. (Rodriquez et al, 2001) 



31 

 

 

Figure 4.2  Splitting Tube for Concrete Cracking (Rodriquez et al. 2001) Authorized Reprint from 

Jul.-Aug. 2001 ACI Structural Journal Vol. 98 No. 4 

Zamora et al. (2003) conducted 237 unconfined short term static tests on grouted anchors in 

tension in order to determine behavior of grouted anchors loaded in tension and to develop 

rational design procedures.  Testing procedures of ASTM E 488-96 and ASTM E 1512-93 were 

followed.  Six cementitious and three polymer grouts were tested with both headed and non-

headed anchors.  This study varied the following parameters:  bonding agent (cementitious or 

polymer), anchor configuration (headed or non-headed), anchor and hole diameter, 

embedment depth, and concrete strength, Table 4.1 and Table 4.2 show the testing matrices.  

The main failure mode of non-headed anchors was failure at the steel/grout interface bond.  Of 

129 non-headed anchor tests only ten (7.8%) experienced a failure mode other than steel/grout 

interface bond failure.  Five of these ten experienced failure at the grout/concrete interface.  

The failures at the grout/concrete interface occurred in test series with larger diameter anchor 

rods in the same sized hole.  The author explains that the larger anchor rods allowed for a larger 
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steel/grout bond area and shifted the failure to the grout/concrete interface bond.  The 

conclusion of the non-headed grouted anchors validates the uniform bond stress model for use 

in design procedures.  The tested headed grouted anchors showed two main failure modes as 

predicted; failure at the grout/concrete interface bond and failure of the concrete with a full 

concrete breakout cone.  Of the 113 headed anchor tests using cementitious and polymer 

grouts, 65 (57.5%) experienced failure at the grout/concrete interface bond and 48 (42.5%) 

experienced a full concrete breakout cone.  Five tests were disregarded because they developed 

an exceptionally low bond stress at failure due to improperly mixed grout.  There was no 

correlation found between type of grout (polymer or cementitious), failure mode, and capacity.  

Headed anchor behavior can be predicted by the lower value of the CCD or uniform bond stress 

model at the grout/concrete interface, Equation 1 and  

Equation 3 respectively (Zamora et al. 2003).  This article represents in-depth research on the 

static pull out capacity of grouted anchors, but did not present a proposed test standard, nor did 

it investigate environmental parameters or creep.  Further research is needed in developing a 

test standard for grouted anchors as is now available for adhesive anchors.  “New research has 

led to the development of design recommendations for adhesive bonded anchors.  With design 

standards for adhesive anchors, grouted anchors are left as the only bonded fastening system 

without recommended design procedures” (Zamora et al. 2003 p. 224). 
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Table 4.1 Test Matrix for Non-Headed Grouted Anchors (Zamora et al. 2003 p. 225) Authorized 

Reprint from Mar-Apr 2003 ACI Structural Journal Vol. 100 No. 2 

 

Table 4.2 Test Matrix for Headed Grouted Anchors (Zamora et al. 2003 p. 225) Authorized 

Reprint from Mar-Apr 2003 ACI Structural Journal Vol. 100 No. 2 

 

 Cook and Burtz (2003) proposed changes to FDOT (2000) anchor testing titled “Florida 

Method of Test for Anchor System Tests for Adhesive Anchors and Dowels”.  This project tested 

the effects of hole drilling (either diamond or carbide tip), edge distance effects, and group 

spacing effects on the capacity of grouted anchors under static tensile load.  The main focus was 

investigating behavior of the grout/concrete failure mode.  For this reason, high strength 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
CA 25 15.9 19.1 25.4 - 102 127 172 - 50.8 50.8 50.8 - 35.6 35.6 50.8 -
CB 15 15.9 19.1 25.4 - 102 127 178 - 50.8 50.8 50.8 - 35.6 33.4 31.0 -
CC 20 15.9 19.1 25.4 12.7 102 127 178 76 50.8 50.8 50.8 50.8 34.0 34.1 34.1 33.4
CD 15 15.9 19.1 25.4 - 102 127 178 - 50.8 50.8 50.8 - 39.9 39.9 35.8 -
CE 14 15.9 19.1 25.4 - 102 127 178 - 50.8 50.8 50.8 - 34.4 34.4 33.6 -
CF 5 19.1 - - - 127 - - - 50.8 - - - 38.0 - - -
PA 12 15.9 19.1 25.4 - 102 152 178 - 50.8 50.8 50.8 - 33.8 34.5 34.4 -
PB 12 15.9 19.1 25.4 - 102 152 178 - 50.8 50.8 50.8 - 33.9 33.9 34.4 -
PC 5 19.1 - - - 127 - - - 50.8 - - - 37.8 - - -

Note: Products  s tarting with letter C are cementi tious  grouts ; and products  s tarting with the letter P are polymer grouts

Total 
Number 
of TestsProduct

hef, mm
Series

d0, mm
Series

f'c at test, Mpa
Series

d, mm
Series

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

CA 25
19.1 19.1 25.4 19.1 127 127 178

127
152

50.8 50.8 50.8 38.1 35.7 32.7 32.6 49.9

CB 15 19.1 19.1 25.4 - 127 127 178 - 50.8 50.8 50.8 - 34.5 34.5 32.2 -
CC 15 19.1 19.1 25.4 - 127 127 178 - 50.8 50.8 50.8 - 31.1 31.1 31.0 -
CD 15 19.1 19.1 19.1 - 114 137 127 - 38.1 38.1 38.1 - 59.2 59.2 35.8 -
CF 13 19.1 19.1 19.1 - 102 114 127 - 50.8 38.1 38.1 - 30.9 30.9 35.9 -
PA 10 19.1 19.1 - - 127 127 - - 50.8 50.8 - - 37.6 27.6 - -
PB 5 19.1 19.1 - - 127 127 - - 50.8 38.1 - - 37.6 27.6 - -
PC 10 19.1 19.1 - - 127 127 - - 38.1 38.1 - - 63.7 63.7 - -

Note: Products  s tarting with letter C are cementi tious  grouts ; and products  s tarting with the letter P are polymer grouts

Product

Total 
Number 
of Tests

d, mm hef, mm d0, mm
Series Series Series Series

f'c at test, Mpa
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concrete, headed anchors, and small diameter holes were used to promote failure at the 

grout/concrete interface.  Anchor rods were 0.625 in (15.9 mm) diameter steel rods with 

threaded ends.  A heavy hex nut was used to head the steel rod.  The rod was installed in a 1.5 

in (38.1 mm) diameter hole, just large enough to fit the head, at an embedment depth of 5 in 

(127 mm).  40 total tests were conducted and the test matrix can be seen in Table 4.3.  

Additionally, conclusions were made based on previously conducted research at the University 

of Florida including Zamora et al. (2003).  Hole drilling tests consisted of six specimens installed 

in holes drilled with a diamond core drill, and six specimens installed in holes drilled with a 

hammer drill.  One test series resulted in the hammer drilled holes have 3% more capacity than 

the diamond core drilled holes with a coefficient of variation of 0.012.  The next test series 

resulted in the hammer drilled holes have 17% less capacity than the diamond core drilled holes 

with a coefficient of variation of 0.017. A reported explanation for the varied results is the 

possible presence of dust in the rougher surface of the hammer drilled hole, even after 

following the manufacturer’s recommended cleaning procedure.   

 Cook and Burtz (2003) included results from other testing programs conducted at the 

University of Florida to make observations about behavior of grouted anchors with respect to 

strength vs curing time, threaded rod vs deformed reinforcing bar anchor rods, threaded anchor 

rods vs smooth anchor rods, regular hex nut head vs heavy hex nut head, damp hole installation, 

and elevated temperature effects on polymer grouted anchors.  These observations are 

summarized below.  Strength vs curing time was investigated by testing three different grouted 

products, one polymer grout and two cementitious grouts.  Full strengths were obtained at 

different times with the polymer grout only taking 24 hours and the cementitious grouts taking 

seven days and 14 days respectively.  Four different grouted anchor products were used to test 

bond strength to non-headed threaded rod in comparison to bond strength to deformed 
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reinforcing bar.  Three of the four grouts showed a decrease in bond strength of 9%, 4%, and 

27% when a deformed reinforcing bar was used in place of threaded rod.  The fourth showed an 

increase of 104%, but is no longer marketed for this application.  Three products, one polymer 

grout and two cementitious grouts, were used to compare bond strengths of non-headed 

threaded rod to bond strengths of non-head smooth rods.  The smooth anchor rod caused an 

decrease in capacity for all three grouts.  The two cementitious grouts experienced 91% and 

81% reductions in bond strength while the polymer grout experienced a 53% reduction in bond 

strength with the smooth rod compared to the pullout capacity of the threaded rod.  Three 

cementitious grouts and one polymer grout were used to compare regular vs heavy hex nut in 

headed anchors.  The heavy hex nut caused reductions of 15%, 19%, and 8% in the cementitious 

grout and an increase of 10% in the polymer grout when compared to the static pullout capacity 

of the headed bolt used as an anchor rod.  The report shows the coefficients of variation for 

each product are less than 20% and concludes it is not necessary to test products for use with 

different headed anchor types.  Three polymer grouts were installed in damp holes and 

compared to dry hole installations as recommended by the manufacturer.  Two of the polymer 

grouts experienced strength decreases of 17% and 27% in the wet hole compared to the dry 

hole with the third product increasing capacity 11%.  Two polymer grouts were tested at 

elevated temperatures.  Both products experienced a strength reduction of 6% when compared 

to ambient temperature tests.  These were not significant decreases, but show there could be a 

correlation between elevated temperature and capacity for polymer grouted anchor systems. 

(Cook and Burtz 2003) 

 Sustained load tests were not conducted by Cook and Burtz (2003), but creep was 

addressed as a potential issue for grouted anchors and recommended a creep test at 40% MSL 

with procedures similar to ACI 355.4, including elevated temperature (Cook and Burtz 2003).  
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According to their website (FDOT) accessed on December 30th, 2014, no updates to the test 

method, FDOT (2000), were published. 

Table 4.3  Summary of Testing Program (Cook and Burtz. 2003) 

 

 Subramanian et al. (2004) use data from Zamora et al. (2003) and Rodriquez et al. 

(2001) to make independent conclusions and  recommendations.  There were no contradictory 

conclusions made, but additional information about the behaviour of grouted anchors is 

observed.  Polymer grouted anchors, for example, experience larger deformations throughout a 

loading period with larger hole diameter.  This research also proposes a capacity reduction 

factor (ϕ) of 0.85 based on the 5% fractile observed in Zamora et al. (2003). 
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CHAPTER 5 

PARAMETERS THAT AFFECT ANCHOR CAPACITY 

Cook et al. (2013) pp. 6-10 provides an extensive review of parameters that can affect 

adhesive anchor system capacities.  This list is compiled from an extensive literature review on 

the subject.  In this chapter, all effects for adhesive anchors are consolidated and cited directly 

from Cook et al. (2013).  Grouted anchor effects are listed directly after the adhesive anchor 

effects and are compiled from various sources.   Cook et al. (2013) only addressed a few of the 

parameters discussed in this chapter (those tested in the study are shown Table 3.1).  Two ratios 

were used to compare the effect of a parameter on bond strength.  The first is an alpha 

reduction ratio.  This value is a ratio between a baseline test and a test at a specific parameter.  

For example, an adhesive with a baseline static capacity of 20 kips (89 kN) that has an elevated 

temperature static capacity of 18 kips (80 kN) would have an alpha reduction ratio of 0.9 for the 

elevated temperature parameter.  A similar alpha reduction ratio can be found for long term 

performance by comparing a baseline creep test and a creep test subjected to a specific 

parameter.  The other ratio is the influence ratio.  This is the comparison of alpha reduction 

ratios for long term and short term tests of a specific parameter.  For example, if the short term 

alpha reduction ratio is 0.9 and the long term alpha reduction ratio is 0.75, the influence ratio is 

1.2.  Influence ratios greater than 1 show a parameter has more of an effect on creep capacity 

than it does on short term capacity and short term tests will not accurately predict long term 

performance under the conditions of a specific parameter. An explanation of those testing 

procedures and results will be addressed in this section for comparison to current research on 

grouted anchors.  Parameters that were not tested were expected to be less critical by the 

authors of Cook et al. (2013).  Additionally, polymer grouted anchors may have different 
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performance from cementitious grouted anchors for certain parameters.  Those cases will be 

addressed in this chapter as well. 

PARAMETER:  Elevated In-Service Temperature - sustained elevated temperatures during a 

structure’s life. (Cook et al. 2013) 

Adhesive: Elevated temperatures are shown to greatly reduce the creep capacity of adhesive 

anchors as tested by Cook et al. (2013).  Of all the parameters tested, elevated temperature had 

the greatest effect on creep capacity of adhesive anchors, specifically, at temperatures over 

120°F. For example, baseline MSL of adhesive B in Cook et al. (2013) was 22.9 kips (101.7 kN) 

when tested at 110°F.  The MSL when tested at 70°F was 27.2 kips.  A similar comparison can be 

made with the creep tests conducted at 110°F and 70°F.  Three creep tests greater than 75% 

MSL at 110°F were run at 20.9 kips (93 kN) (81% MSL), 20.7 kips (92 kN) (81% MSL), and 19.2 

kips (85.4 kN) (75% MSL).  The respective failure times were 0.11 hours, 0.02 hours (failed 

before reaching 20.7 kips (92 kN)), and 0.04 (failed before reaching 19.2 kips (85.4 kN)).  

Compare that to three creep tests run at 70 °F at 20.4 kips (90.7 kN) (75% of 70°F MSL and 89% 

of 110°F MSL) that failed at 0.8 hours, 1.2 hours, and 2118 hours.  (Cook et al. 2013) 

Grouted:  Cementitious grouts are believed to be less sensitive to temperature than polymer 

grouts and adhesive anchors (Cook et al. 2013).  Polymer grouts would most likely be affected 

similarly to polymer adhesive anchor systems, but there is no research to validate this. 

PARAMETER: Reduced In-Service Temperature – sustained reduced temperatures during a 

structure’s life (Cook et al. 2013) 

Adhesive:  Reduced Temperatures make adhesives more brittle, but no standard exists for 

testing adhesives at reduced in-service temperature, though ACI 355.4 ( 2011) provides a 

standard test for reduced installation temperature (Cook et al. 2013).  This parameter was not 
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tested in Cook et al. (2013) because reduced temperatures are believed to improve adhesive 

anchors creep resistance. 

Grouted:  Differences in coefficients of thermal expansion between grout and concrete could 

cause thermal induced stresses with potential tensile cracking at the interface of the materials 

and potentially reduce the bond strength, but this parameter has also not been researched. 

PARAMETER: Moisture-in-Service – presence of moisture for sustained periods of time (Cook et 

al. 2013) 

Adhesive:  Moisture in service has been shown to affect the creep characteristics of adhesives 

to almost the same level as elevated temperature.  This parameter was tested and found to 

affect bond strength, but did not affect creep capacity any more than it affected short term 

capacity. The influence ratio was calculated at 1.02 indicating some influence on long term 

performance by moisture in service, but the researchers believe this is due to the scatter of the 

data and not by the anchors reaction to the parameter.  Short term capacity was not affected in 

comparison to the baseline tests with an alpha reduction ratio of 1.07. Moisture was held high 

by wrapping the concrete specimen in plastic and periodically re-wetting it.  The anchors were 

installed dry. (Cook et al. 2013) 

Grouted: Submerged conditions did not dramatically affect pull out strengths of a cementitious 

adhesive, when compared to the other adhesives (McDonald 1998).  Cementitious grouted 

anchors would likely not be as affected by moisture in service as polymer grouted anchors or 

adhesive anchors, but research results are not available. 

PARAMETER: Freeze-Thaw – temperatures and durations of freeze/thaw cycles (Cook et al. 

2013) 

Adhesive: El Menoufy et al. (2014) tested three types of adhesive anchors under freeze/thaw 

conditions and two of the three were negatively effected by freeze/thaw in creep tests.  Only 9 
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total tests were conducted in El Menoufy et al. (2014).  ACI 355.4 (2011) oultlines test 

procedures for testing an adhesive anchor under sustained loading through 50 freeze/thaw 

cycles.  Cook et al. (2013) placed this parameter as a low priority and did not explictly test it 

based on recommendations from the NCHRP Panel. 

Grouted: Freeze-thaw cycles could cause a crack to form and propagate along the 

grout/concrete interface causing failure, but there is no research available on these effects.   

PARAMETER: Type of Adhesive – epoxy, vinylester, polyester, etc. (Cook et al. 2013); Type of 

Grout – Cementitious or Polymer 

Adhesive:  ACI 355.4 (2011) defines adhesive as any adhesive of chemical components that cure 

when blended together and contain organic polymers or a combination of organic polymers and 

inorganic materials.  The organic polymers can be epoxies, polyurethanes, polyesters, methyl 

methacrylates, and vinyl esters.  Research has shown that different chemical groups can have a 

wide array of bond strengths.  This topic is is investigated in Cook et al. (2013).  Three types of 

adhesive anchor systems were tested.  One vinylester (adhesive A for this report) and Two 

epoxy type (adhesives B and C for this report).  The MSL for adhesive A was 19.8kips (88kN), 

adhesive B was 25.7kips (114kN), and adhesive C was 26.3kips (117kN). This is inline with other 

research that shows ester type adhesivers generally have lower bond strengths than epoxy type 

adhesives.  They vinylester adhesive (adhesive A) tested in Cook et al. (2013) had worse creep 

performance than the two epoxy adhesives (adhesives B and C).  The % of MSL at 10,000 hours 

for Adhesive A was 40.66% and was 47.18% and 46.50% for Adhesives B and C respectively. 

(Cook et al. 2013) 

Grouted: Nine different grouted anchor systems were tested and manufacturer was a larger 

contributing factor to short term strength than type (polymer or cementitious) (Zamora et al. 

2003).  There is no available literature on creep characteristics of grouted anchors. 
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PARAMETER: Mixing Effort – properly combining all ingredients for bonding materials (Cook et 

al. 2013) 

Adhesive: Proper composition of the adhesive through mixing is required for proper bond 

strength.  This job is typically done on site by the installer and is subject to variability due to field 

conditions (Cook et al. 2013).  Cook et al. (2013) identified this as a low priority parameter for 

testing because proper mixing of adhesive materials is easily achieved if proper hardware is 

used and manufacturers’ instructions are followed. 

Grouted: Grouts can be mixed to different consistencies based on application and manufacturer 

recommendations.  Cementitious grouts are mixed on site prior to installation.  Installers make 

the final decision on viscosity prior to installation, leading to significant variability of in-situ 

material properties of cementitious anchors (Zamora et al. 2003).  Polymer grouts typically 

come pre-mixed and are less variable. 

PARAMETER: Adhesive Curing Time When First Loaded – time between installation and when 

first load is applied; generally between 24 hours and 28 days. (Cook et al. 2013) 

Adhesive: Previous research has shown that average bond strengths of a 24 hour cure were only 

88% of a seven day cure.  This parameter was tested using adhesive only dogbone tests on 

specimens cured for 24 hours compared to specimens cured for seven days.  While the influence 

ratio was 0.95 showing no overall influence to the parameter, the alpha reduction ratio for 

Adhesive B (epoxy) was 0.54, Adhesive A (vinyl ester) was 1.05, and Adhesive C (epoxy) could 

not be tested. The authors recommend an additional 24hour cure time over manufacturers’ 

recommendation for structural applications of adhesive anchors. (Cook et al. 2013) 

Grouted: Polymer grouted anchors were cured for 7 days and cementitious grouted anchors 

were cured for 28 days in Zamora et al. (2003).  Cook and Burtz (2003) conducted short term 

pullout tests on one polymer grouted anchor and two cementitious grouted anchors at different 
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cure times.  The polymer grout developed full strength after 24 hours while the two 

cementitious grouts developed full strength at 7 days and 14 days respectively.  Loading a 

grouted anchor prior to full cure time could cause failure at a lower than expected load.  

PARAMETER: Bond Line Thickness – distance between the drilled hole and the anchor (Cook et 

al. 2013) 

Adhesive:  Cook et al. (2013) references two reports with conflicted results. Decreased bond line 

thickness of adhesive has been shown to increase creep resistance for a study with tests in the 

1.2 to 1.8 diameter range, but additional tests in the larger range of 1.2 to 4.1 times the anchor 

diameter have shown bond line does not affect resistance (Cook et al. 2013).   

Grouted: Bond line thickness affects the grout/concrete interface failure mode for both headed 

and non-headed anchors (Zamora et al. 2003).  Headed polymer grouted anchors experience 

larger displacements within the grout with larger hole diameters (Subramanian et al. 2004). For 

headed and non-headed anchors that experience grout/concrete bond failure mode, increasing 

the bond line thickness increases the surface area of the grout/concrete interface and increases 

capacity until another failure mode governs.  Increase bone line thickness could also cause 

failure within the grout to occur.  Creep resistance of grouted anchors may be affected by bond 

line thickness just as the adhesives might.  (Cook, et al., 2013) 

PARAMETER: Fiber Content of Adhesive – type and amount of fillers in adhesive/grout (Cook et 

al. 2013) 

Adhesive:  Fiber content is shown to increase creep resistance (Cook et al. 2013).  Fiber content 

is used in bulk adhesive materials and was not explicitly tested in Cook et al. (2013) because it 

was outside the scope of the report. 
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Grouted: Fiber content of grouted anchors has not been studied.  Fiber concrete materials show 

improved resistance to cracking compared to normal concrete, but the presence of fibers on 

bond strengths at the steel/grout and the grout/concrete interface are unknown. 

PARAMETER: Hole Orientation – downward, upward, horizontal, or in between (Cook et al. 

2013) 

Adhesive:  Upward holes are difficult to fill with adhesive as most adhesives want to flow out of 

the hole and sag downward.  Horizontal holes are less susceptible but also have the potential for 

voids to develop between the adhesive and concrete or anchor rod.  These voids significantly 

decrease anchor capacity.  This is such a critical parameter that ACI 355.4 (2011) requires 

installation of adhesive anchors in horizontal to upward applications to be conducted by ACI 

certified personnel.  This parameter was tested in Cook et al. (2013) and horizontal installation 

had an influence ratio of 0.93 and vertical installation had an influence ratio of 0.86.  Hole 

orientation did not negatively affect long term performance and short term tests produced 

alpha reduction ratios greater than 1 showing no adverse affects.  Also, ACI 355.4 (2011) 

includes qualification tests for adhesive anchors to be used between horizonal and vertical 

installations.  If the product passes this test and is installed by a qualified installer, the 

parameter should not affect anchor performance. (Cook et al. 2013) 

Grouted: Cementitious grouts are especially difficult to install in overhead applications due to 

sag of the grout material.  It is recommended that both cementitious and polymer grouted 

anchors not be used in overhead applications (Cook and Burtz 2003).  

PARAMETER: Hole Drilling – rotary drill, core drill, or other drilling in accordance with 

manufacturers’ recommendations (Cook et al. 2013) 

Adhesive: Different drill bits cause different surface roughnesses on the concrete.  In general, a 

carbide tipped drill bit leaves a rougher surface and improves capacity when compared to a 
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diamond tipped core drill bit.  This parameter was tested by Cook et al. (2013) and found to not 

adversely affect long term performance more than short term performance; influence ratio of 

0.63.  Though, the diamond core drilled holes only had 73% of the hammer drilled holes’ 

capacity in short term testing. (Cook et al. 2013) 

Grouted: Cementitious grouts transfer the load from the anchor rod to the base concrete 

through mechanical interlock and friction (Zamora et al. 2003).  Cook and Burtz (2003) had a 

small (3%) increase in capacity of hammer drilled holes vs diamond core drilled holes for one 

test series, and a larger (17%) decrease in capacity of the hammer drilled holes compared to the 

core drilled holes for another test series. 

PARAMETER: Hole Cleaning – un-cleaned, partially cleaned, or fully cleaned in accordance with 

manufacturers’ recommendations (Cook et al. 2013) 

Adhesive:  Dust left behind from drilling can affect the bond strength.  This parameter was 

tested using procedures from ACI 355.4 (2011), which calls for 50% of the manufacturers 

recommended cleaning effort to be used.  This is clarified to include all types of cleaning (i.e. 

blowing, and brushing), but only done to 50% of the recommended time.  For example, if the 

manufacture calls for six blowing and six brushing operations, three blowing and brushing 

operations are used to test for sensitivity to hole cleaning.  If no cleaning instructions are 

provided, or instructions cannot be numerically reduced by 50% then no hole cleaning 

operations are used.  Hole cleaning was found to not adversely affect long term performance 

more than short term performance; influence ratio of 0.84.  Though, the half cleaned holes only 

had 81% of the fully cleaned holes’ capacity in short term testing. (Cook et al. 2013) 

Grouted:  Hole cleaning is a parameter that could adversely affect bond strength of both 

cementitious and polymer grouted anchors.  Test data on the influence of hole cleaning is 

lacking. (Zamora et al. 2003) 
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PARAMETER: Moisture at Installation – dry, damp, submerged or other moisture conditions 

specified by the manufacturer (Cook et al. 2013) 

Adhesive: Moisture can form a physical barrier between the adhesive and the concrete and can 

affect the chemical interaction of the adhesive. This parameter was tested and found to not 

adversely affect long term performance more than short term performance; influence ratio of 

0.61.  Moist holes, however, only had 82% of the dry holes’ capacity in short term testing.  

Moisture was introduced by ponding three inches of water for eight days on top of the 

specimens (Cook et al. 2013) 

Grouted: Cementitious grouted anchors are generally installed in damp holes, while polymer 

grouted anchors are generally installed in dry holes.  The presence of moisture has been shown 

to negatively affect polymer anchors’ capacities (Cook and Burtz 2003).  Damp hole installation 

is recommended for cementitious grouts to allow for proper hydration of the cement during 

curing (Cook et al. 2003).  Installing cementitious grouted anchors in a dry hole could lead to 

lower bond strength because dry hardened concrete would wick moisture away and not allow 

for full hydration of the grout.  Similarly, installing a cementitious grout in too moist of a hole 

could increase the water/cement ratio and decrease the strength of the grout. 

PARAMETER: Installation Temperature – concrete below freezing, adhesive below freezing, 

either material pre-heated. (Cook et al. 2013) 

Adhesive: Reduced temperatures affect curing time and final hardness.  There is no mention of 

installation at elevated temperature in the literature, but it is assumed to speed the curing 

process and not adversely affect the anchor unless curing time was insufficient to allow for 

complete anchor installations prior to first set.  Tests were conducted in Cook et al. (2013) on 

anchor systems installed and tested at manufacturer’s minimum temperature, and anchor 

systems installed at minimum temperature and tested at elevated (110°F; 43.3°C) temperature.    
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The researchers conjectured that an adhesive anchor installed and tested at low temperatures 

could have an increase in bond strength.  The test installed at low temperature and tested at 

high temperature did not negatively affect long term capacity with an influence ratio of 0.71, 

but short term performance was 86% of the standard installation capacity.  (Cook et al. 2013) 

Grouted: Cementitious grouts are believed to be less sensitive to temperature than polymer 

grouts and adhesive anchors (Cook and Burtz 2003).  ASTM C1107 (2013) is the test standard for 

packaged dry hydraulic cement non-shrink grouts and it requires manufacturers to state a 

maximum and minimum usable temperature for their product.  The grout must meet minimum 

standards for compressive strength and shrinkage at maximum temperatures and maximum 

workable times, but there are no minimum temperature requirements (ASTM C1107 2013). The 

requirement from ASTM to test non-shrink cementitious grouts at maximum temperatures 

shows a possible sensitivity to installation temperature. 

PARAMETER: Depth of Hole (Embedment Depth) – embedment depth can affect bond strength 

and failure mode (Cook et al. 2013) 

Adhesive: Longer embedment depth increases capacity until the assumptions of the uniform 

bond stress model are violated, beyond which embedment depth does not increase capacity.   

Cook et al. (2013) reports previous literature where this occurs at approximately 25 times the 

anchor diameter.  This is valid as long as the concrete cone failure does not occur.  The stress at 

the concrete/adhesive interface is approximately constant at failure to embedment depths of 25 

times the anchor diameter at which point load does not transfer deeper into the adhesive until 

the upper part of the anchor is failing.  This is true for adhesive/concrete interface bond failures 

and steel/adhesive interface bond failures (Cook et al. 2013).  
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Grouted: A longer embedment depth should increase the capacity of grouted anchors that 

experience grout/concrete and grout/steel interface bond failures according to the uniform 

bond stress models (Conard 1969).   

PARAMETER: Anchor Diameter – can affect bond strength (Cook et al. 2013) 

Adhesive: Bond stress is assumed independent of anchor diameter within manufacturers’ 

recommendations of hole diameter, but increased anchor diameter is shown to potentially 

decrease bond stress (Cook et al. 2013).  This parameter was not tested in Cook et al. (2013). 

Grouted:  Large anchor diameters have more area at the steel/grout interface, requiring greater 

force to achieve that failure mode per unit length of anchor, but also require more force to 

cause a steel only failure.  For grouted anchors that experience steel/grout interface bond 

failure, increasing the anchor diameter without changing the hole diameter can shift the failure 

mode from the grout/steel interface bond to the grout/concrete interface bond; increasing the 

force required to cause failure up to grout/concrete interface failure. (Zamora et al. 2003) 

PARAMETER: Type of Base Concrete – inclusion of blast furnace slag, fly ash, or other additives 

(Cook et al. 2013) 

Adhesive: Fly ash and blast furnace slag have been shown to decrease bond strength of the base 

concrete. This parameter was tested in Cook et al. (2013) and found to not adversely affect long 

term performance more than short term performance; influence ratio of 0.69 for fly ash and 

0.60 for blast furnace slag.  Fly ash base concrete had a short term alpha reduction ratio of 0.93 

and blast furnace slag had a short term alpha reduction ratio of 0.88.  The fly ash base concrete 

replaced 20% of the cement with fly ash and the blast furnace slag base concrete replaced 50% 

of the cement with blast furnace slag. (Cook et al. 2013) 

Grouted: Additives to base concrete, including fly ash and blast furnace slag, could affect the 

bond strength of grouted anchors, but further research is needed.  
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PARAMETER: Concrete Strength of Base Concrete – low or high concrete compressive strength 

(Cook et al. 2013) 

Adhesive: There is no correlation between bond strength and concrete compressive strength 

when bond failure occurs (Cook and Konz, 2001 p. 81).  If bond failure can be eliminated and 

concrete cone breakout failure occurs, anchor capacity would increase in accordance with the 

concrete capacity design (CCD) model, Equation 1.  In of previous research, a doubling of 

concrete strength caused changes in bond strength by as much as increasing 125% and 

decreasing 35%. (Cook et al. 2013) 

Grouted:  The dependency of bond strength to concrete compressive capacity has not been 

researched.  This is different than overall anchor capacity which may be governed by failure of 

the concrete, which is directly related to compressive strength. 

PARAMETER: Type of Course Aggregate in Base Concrete – hole roughness due to mineralogy, 

absorption, and hardness (Cook et al. 2013) 

Adhesive: Results from previous tests show that harder course aggregates can produce higher 

bond strengths, and aggregates high in calcium, such as limestone, exhibit lower bond strengths.  

This parameter was not tested directly in Cook et al. (2013), but one test series used a standard 

DOT mix with granite aggregate (instead of river stone), fly ash, water reducer, and air 

entrainment.  The results of using a different mix design are not applicable specifically to this 

parameter, but the concrete mix did not affect long term performance more than short term 

performance with an influence ratio of 0.53 and a short term alpha reduction ratio of 0.84. 

(Cook et al. 2013) 

Grouted: Bond strength of grouted anchors depends on surface roughness (Zamora et al. 2003).  

Grouted anchors could show sensitivity to this parameter, but further research is needed. 
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PARAMETER: Cracked or Un-cracked Base Concrete – cracks in base concrete can significantly 

reduce bond strength (Cook et al. 2013) 

Adhesive: Previous research has shown that cracked concrete can reduce bond strengths from 

33% to 70% of bond strength in un-cracked concrete (Cook et al. 2013).  This parameter was not 

tested in Cook et al. (2013). 

Grouted: A 41% reduction in strength of grouted anchors was experienced in cracked concrete 

tests. Crack propagation occurred along the grout/concrete interface leading to a 

grout/concrete interface bond failure. (Rodriquez et al. 2001) 

PARAMETER:  Age of Base Concrete – anchors installed and/or loaded in early age base 

concretes (Cook et al. 2013) 

Adhesive: High moisture content in young concrete could cause a decrease in bond failure.  ICC-

ES AC308 (2011) requires anchors to be installed in concrete after 21 days of curing.  One test 

series with concrete younger than 21 days was performed.  Bond strengths were generally 

similar beyond concrete age of 7 days. (Cook et al. 2013) 

  Grouted: Properly cured grouted anchors are not likely to be loaded in early age concrete 

because they require longer cure times than adhesive anchors.  General manufacturers’ 

recommendations are polymer grouted anchors to cure for seven days and cementitious 

grouted anchors to cure for 28 days prior to application of load compare this to adhesive cure 

times of 24 hours to seven days.  Properly cured grout will be in concrete that is at least 7 days 

old for polymer grout and at least 28 days old for cementitious grout.  The bond between grout 

and early age concrete has not been tested. 

PARAMETER: Type of Anchor Rod – threaded, smooth, heavy hex nut head, normal hex nut head, 

headed stud. (Cook and Burtz, 2001) 
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Adhesive: Manufacturers’ generally include both threaded rod and deformed reinforcing bar in 

their recommendations.  There is no research to compare the use of threaded rod and 

deformed reinforcing bar in adhesive anchors.  El Menoufy et al. (2014) used 15M deformed 

reinforcing bar in testing and found that yielding of the anchor rod led to onset of bond failure. 

Grouted:  Headed anchor rods eliminate failure at the grout/concrete interface bond and 

generally increase overall capacity. The use of deformed reinforcing bar in three different 

grouted materials showed a reduction in strength when compared to threaded rod of 9%, 4% 

and 27%. (Cook and Burtz 2003) 
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CHAPTER 6 

TESTING STANDARDS FOR BONDED ANCHORS 

This chapter discusses current test standards and methods for bonded anchors.  Test 

standards for bonded anchors are published by multiple agencies. American Society of Testing 

and Materials (ASTM), American Concrete Institute (ACI), International Code Council – 

Evaluation Services (ICC-ES), and American Association of State Highway Transportation Offices 

(AASHTO) provide the most current and widely accepted testing standards for bonded anchors 

in the U.S.A.  Most of the test standards are intended to apply only to adhesive anchors.  This 

chapter specifically outlines four test methods:  ASTM E488 (2010) “Test Methods for Strength 

of Anchors in Concrete Elements”, ASTM E1512 (2007) “Test Methods for Testing Bond 

Performance of Bonded Anchors”, ACI 355.4 (2011) “Qualification of Post-Installed Adhesive 

Anchors in Concrete,” and AASHTO TP-84 (2010) “Evaluation of Adhesive Anchors in Concrete 

under Sustained Loading.” 

ASTM E488 (2010) Standard “Test Methods for Strength of Anchors in Concrete 

Elements” provides a procedure for static testing all types of concrete anchor systems (cast-in-

place, mechanical post-installed, and bonded post-installed).  This test “provides the 

fundamental test procedures to determine the static, seismic, fatigue, and shock, tensile, and 

shear strengths of concrete and masonry anchors” (Cook et al. 2013 p. 10).  The test gives 

standards for seismic, fatigue, shock, freezing and thawing, moisture, decreased and elevated 

temperatures, and corrosion.  1996 was the first year this test was published and was 

reapproved in 2003.  The test only provides standards for calculating mean static loads (MSL).  It 

is also the only standard that is universal to bonded anchor systems.  ASTM E1512 (2007), ACI 

355.4 (2011), and AASHTO TP-84 (2010) all directly reference the static pullout test procedures 

from ASTM E488 (2010) to calculate MSL. 
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 ASTM E1512 (2007) Standard “Test Methods for Testing Bond Performance of Bonded 

Anchors” is similar to E488 but is specifically for bonded anchors.  ASTM E1512 (2007) defines 

bonded anchor in Chapter 3: Terminology as “a fastener placed in hardened concrete or 

masonry that derives its holding strength from a chemical compound placed between the wall 

of the hole and the embedded portion of the anchor.” (ASTM E1512 2007), but clarifies this in 

the scope: 

The adhesive-bonded anchor system refers to a smooth or deformed steel bar or 

threaded rod, set in a predrilled hole containing chemical bonding compounds.  Loads 

are transferred mainly by the bond of the adhesive both to the anchor and the 

surrounding elements along the sides of the hole.  For anchoring systems made of 

significantly different materials, these tests methods shall be taken as a guideline. 

(ASTM E1512 2007 p. 1) 

ASTM E1512 (2007) provides testing procedures for the following environmental conditions: 

fire, radiation, freeze/thaw, dampness, elevated temperature on cured samples, reduced 

temperature on curing, and creep test.  A major difference between ASTM E1512 (2007) and 

ASTM E488 (2010) (beyond the parameter testing noted) is the inclusion of creep load testing.  

This test qualifies adhesive anchors by testing an anchor at 40% of MSL for 42 days at 110°F 

(43.3°C).  The criterion of 40% MSL was chosen based on ASD factor of safety of 4 and a 1.6 

multiplier for maximum expected sustained load.  The 42 day requirement comes from a 

database study that showed most anchor failures occurred within 21 days and those that did not 

fail were ended at 120 days.  That number was doubled to be conservative.  The 110°F (43.3°C) 

was chosen from the study of a bridge in the California desert showing the average maximum 

peak temperature of the bridge to be 110°F (43.3°C).  The last 20 days (20 data points) from the 

test are used to construct a logarithmic trend line using a least square’s fit, Equation 4.  This 
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trend line is extrapolated out to 600 days and the 600 day displacement is compared with static 

test displacement.  The 600 day requirement is based on a bridge in California that experienced 

temperatures between 110°F (43.3°C) and 115°F (46.1°C) during 10% of a typical summer day.  

Summer is assumed to last four months long meaning a 50 year bridge would experience 600 

days at or near 110°F (43.3°C).  ASTM E1512 (2007) does not provide acceptance criterion for 

anchor systems to pass the test.  It only provides standard testing procedures.  ICC-ES AC308 

(2013) and ACI 355.4 (2011) both use methods similar to ASTM E1512 for calculated 

displacement of an adhesive anchor system at the life span of a 50 year structure. (Cook et al. 

2013) 

∆= 𝒂 𝐥𝐥 𝒕 + 𝒃  Equation 4 (Cook, et al., 2013) 
 

∆= projected displacement  

𝑡 = time  

𝑎, 𝑏 = constants evaluated by regression analysis  

ACI 355.4 (2011) Qualification of Post-Installed Adhesive Anchors in Concrete is the 

most comprehensive qualification test available.  This test was developed directly from ICC-ES 

AC308 (2009), and the two tests can be explained as one.  ACI 355.4 underwent an extensive 

research and review process prior to publication leading to the below statement from Cook et 

al. (2013): 

“Due to the tremendous research and development invested into ICC-ES AC308, 

and the consensus review process conducted by ACI, it is suggested that ACI 

355.4 serve as the basis for the testing program and specifications for AASHTO.” 

(Cook et al. 2013 p. 15) 
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ACI 355.4 (2011) has four types of tests: identification, reference, reliability, and service 

conditions.  For an anchor to be ACI 355.4 approved it must be tested for identification by three 

of the following methods: 

• Infrared absorption spectroscopy per ASTM E1252; 

• Bond strength per ASTM C882 or equivalent; 

• Specific gravity per ASTM D1875; 

• Gel time per ASTM C881; 

• Viscosity per ASTM D2556, ASTM F1080, or equivalent; and 

• Other appropriate tests to positively identify the material. 

After the adhesive is identified, reference tests are conducted in accordance with ASTM E488 

(2010) in dry concrete at standard temperature.  Reliability tests determine an adhesive 

anchor’s sensitivity to adverse installation conditions: 

• Hole Cleaning Procedures – manufacturers’ instructions provide number of times for 

standard procedures of vacuuming, blowing, or brushing. 

• Drilling Methods – default test is rotary hammer drill with carbide tip with options for  

core drill or rock drill 

• Hole Orientation – downward, horizontal, or overhead 

• Installation Temperature – default temperatures are 50°F to 80°F (10°C to 27°C) with an 

option for lower tests 

• Embedment Depth and Anchor Diameter – Specified by manufacturer within limits ACI 

355.4 (2011) (embedment depths must be less than 20 times the anchor diameter) 

• Type of Anchor – carbon or stainless steel, various strengths and geometries (threaded 

rod, deformed bar) 
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• Environmental Conditions of Use – dry and wet environment and temperatures ranging 

from 32°F to 104°F (0°C to 40°C).  Optional tests for freeze/thaw and elevated 

temperature are provided. 

• Chemical Exposure – Default condition of high alkaline moist condition with an optional 

test for sulfur dioxide condition. 

• Concrete Condition – non-cracked or both cracked and non-cracked 

• Load – static or sustained load with an optional test for seismic load 

• Member Thickness – minimum member thickness to avoid spalling on opposite side of 

the anchor 

All conditions are tested as short term tests and used to determine an alpha reduction ratio (α).  

The reduction ratio is used by designers to calculate a design capacity.   

Sustained tension (creep) tests are only conducted for nominal conditions (no reliability test 

parameters included) under standard temperature and elevated temperature.  This test differs 

from ASTM E1512 by changing sustained load from 40% to 55% of MSL, testing sustained loads 

at both room and elevated temperatures, and by conducting a static test at the end of the 42 

day long-term test.  A trend line is constructed with the last 20 data points using the Findley 

Power Law, Equation 5.  The Findley Power Law provides a more conservative estimate of long 

term creep displacement.  Static failure is defined as either pullout of the rod, rupture of the 

rod, or concrete breakout cone.  Acceptance by ACI 355.4 for long term testing is defined as: 

• The projected displacement at ten years is less than the mean displacement at failure of 

the reference (MSL) elevated temperature tests. 

• The projected displacement at 50 years is less than the mean displacement of the 

reference (MSL) standard temperature tests. 

• The residual capacity from the static test is greater than 90% of the MSL. 
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∆(𝒕) = ∆𝒕=𝟎 + 𝒂𝒃𝒕  Equation 5 
 

∆(𝑡) = total displacement at time 𝑡  

∆𝑡=0= initial displacement under sustained load  

𝑡 = time corresponding to recorded displacement  

𝑎, 𝑏 = constants evaluated from regression analysis  

 AASHTO TP-84 (2010) “Evaluation of Adhesive Anchors in Concrete under Sustained 

Loading” defines a specific test to evaluate anchors under sustained load. This test is a 

provisional standard in the process of becoming a permanent standard.  AASHTO standards are 

only applicable to transportation structures.  This test method differs from the sustained load 

procedures in ACI 355.4 (2011) and ASTM E1512 (2007) in that it develops a stress versus time 

to failure graph for tested adhesive anchor systems based on sustained load (creep) failures at 

different percentages of MSL (five tests at 60%-70% MSL and five tests at 70%-80% MSL).  Cook 

et al. (2013) recommended dividing these specimens into a third test series at a different 

percentage of MSL (between 60% and 80%) to better refine the data, but this has not been 

incorporated into AASHTO TP-84 (2010).  The stress versus time to failure graph can then be 

used by designers to determine the life of an adhesive anchor system under a specified 

sustained load.  For each long term anchor test the onset of tertiary creep, Figure 3.1, defines 

failure of adhesive anchors by AASHTO TP-84.  Onset of tertiary creep is determined by 

analyzing the graph of displacement vs. time between 80% and 100% of the time to rupture.  

The slope of the line fluctuates slightly between negative and positive.  Onset of tertiary creep is 

the last point at which the slope of the line becomes positive before rupture.  For each test 

specimen, the load at on-set of tertiary creep is normalized against the mean static load and 

plotted on a stress versus log of time-to-failure graph.  A linear trend line is then drawn through 

the data points plotted and that line is used as the stress versus time-to-failure graph (Cook et 
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al. 2013).  An example of this graph can be seen in Figure 6.1.  The advantage of this criteria is 

that rather than providing a pass/fail result that is meant to apply to any design life and load up 

to the ACI 355.4 (2011) test criteria, AASHTO TP-84 (2010) results in a plot that allows for a 

designer or agency to specify an allowable load factor and design life and directly relate this to 

the test results. Therefore a design life of 50 years versus 100 years explicitly requires a different 

anchor capacity due to creep effects over the additional time of load. 

 

Figure 6.1  Example Stress Vs Time-To-Failure Graph (Cook et al. 2013) 

 ACI 355.4 (2011) and AASHTO TP-84 (2010) provide two methods of determining creep 

resistance of adhesive anchors.  ACI 355.4 (2011) provides the most comprehensive testing 

program that is used to provide designers with reduction factors for varying conditions.  

AASHTO TP-84 (2010) provides a long term capacity graph for adhesive anchors based on known 

failures, as opposed to the pass/fail requirements of ACI 355.4 (2011) based on extrapolating 

displacement data.  Cook et al. (2013) and Cook et al. (2009) argue that the stress versus time to 
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failure method of AASTHO TP-84 is a better method for calculated long term resistance to 

sustained load.  Cook et al. (2013) also recommend that ACI 355.4 (2011) be used as the basis 

for testing programs and specifications for AASHTO.  Grouted anchors are not covered by ACI 

355.4 (2011), but AASHTO TP-84 (2010) explicitly allows cementitious materials and hole 

diameters over 1.5 times the anchor diameters.  
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CHAPTER 7 

 TEST METHODS AND PROCEDURES 

7.1 Research Plan 

 The experimental plan for this project is to develop test capabilities at UMass Amherst 

and conduct tests on bonded anchors. This thesis will provide initial test results and a validate 

test setup.  Three trial test series were run for this MS research project to provide 

troubleshooting for the overall test program and initial data at room temperatures. A test matrix 

can be found in Table 8.1.  Details of each test series setup and results can be found in Chapter 

8.  The environmentally controlled chamber was not built for these tests, and they were run at 

unregulated ambient air temperature and humidity.  Aside from these modifications, AASHTO 

TP-84 was followed for the testing.  Initial experiments were designed to replicate results from 

tests in Cook et al. (2009) and Cook et al. (2013) conducted at the University of Florida.  Test 

apparatus for both short term and long term tests were designed and fabricated for this project 

and final test setups are detailed in this chapter.  The short term set ups conformed to ASTM 

E488 (2010), and, by definition, to AASHTO TP-84 (2009) and ACI 355.4 (2011).  The long term 

set ups conformed to ASTM E1512 (2007), AASHTO TP-84 (2009), and ACI 355.4 (2011).  Detailed 

description of components common to both short term and long term tests can be found in 

Section 7.4.  The test set ups detailed in this chapter are the final designs to be used for future 

testing.   

7.2 Short Term Tests 

 Short term test apparatus conforms with ASTM E488 (2010) standard and is replicated 

from Cook et al. (2013).  A maximum load of 40 kips (178 kN) was assumed when designing the 
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test apparatus.  Plans can be seen in Figure 7.1 and Figure 7.2 and the coupler details are in 

Figure 7.3.  The 5/8 in (16mm) anchor rod being tested passes through the confining sheet, the 

steel confining plate, and through an 11/16 in (17.5 mm) diameter hole at the bottom of the 

non-rigid coupler where it is secured with a ASTM A194 2H heavy hex nut.  Two ASTM A500 

grade B HSS8x3x1/4 x 8 in (203mm) long are placed on either side of the non-rigid coupler 

parallel to each other.  The loading rod is secured to the top of the non-rigid coupler with a 

ASTM A194 2H heavy hex nut, passing between the HSS sections, through a 10 in x10 in x1 in 

thick (254 mm x 254 mm x 25 mm thick) steel plate with a 2-3/4in (70mm) diameter hole, 

through the center hole hydraulic jack, and through the center hole load cell and secured with 

an ASTM A194 2H heavy hex nut.  A tensile load of 5% of the estimated anchor strength is 

initially applied in order to bring all members into full bearing.  The load is then increased at a 

rate that causes failure after one minute, but before three minutes.  A constant load rate is 

applied within the limits of the hydraulic pump.  Data (load, line pressure and displacement 

readings) is collected at a sampling rate of one sample every 0.5 seconds, exceeding ASTM E488 

(2010) section 7.7.  Load and displacement are measured for all short term tests.  Variations for 

Test Series 0a, 0b, and 0c are described in Chapter 8. 
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Figure 7.1 Short Term Setup Section A-A 
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Figure 7.2  Short Term Setup Section B-B 
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Figure 7.3  Coupler Details 
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7.3 Long-Term Tests 

 Long-term tests conform to AASHTO TP-84 (2010) and are replicated from Cook et al. 

(2013).  Three long-term test setups are on loan from the University of Florida and were used to 

start this project.  An additional 20 long term test set ups were ordered for the remainder of the 

project.  Plans can be seen in Figure 7.6 and Figure 7.7 and the non-rigid coupler details in Figure 

7.3.  The anchor rod passes through the confining sheet and confining plate the same as the 

short term tests.  On top of the confining plate is a steel frame that contains a set of Standard 

Car Truck Company D2 inner and D2 outer springs used to maintain load.  Initial testing was 

conducted on springs on loan from University of Florida.  The two railroad car suspension wire 

steel springs (large and small) seat within each other and are wound opposite to avoid torsion 

during loading.  The small spring (D2 inner) fits inside the large spring (D2 Outer) when used in 

parallel, Figure 7.5.  The large springs are approximately 5.5 in (140 mm) in diameter by 8.25 in 

(209 mm) in uncompressed length with a 1-7/32 in (40 mm) wire diameter, maximum load of 

15.959 kips (70.99 kN) at 6-5/8in (168 mm) height, and 9.8 kips/in (17.2 kN/cm) stiffness.  The 

small springs are approximately 3in (76mm) in diameter by 8.25 in (209 mm) in uncompressed 

length with an 11/16in (17.5mm) wire diameter, maximum load of 5.386 kips (23.96 kN) at 6-5/8 

in (168 mm) height, and 3.3 kips/in (5.8 kN/cm) .  When used in parallel the maximum load is 

21.345 kips (94.95kN) and stiffness is 13.1 kips/in (22.9 kN/cm).  The stiffness of each spring 

individually and both in parallel will be measured as part of future testing prior to using in a 

sustained load test.  An example spring calibration is shown in Figure 7.4.  This spring has a 

stiffness of 12.56 kips/in (22kN/cm); lower than the listed spring stiffness of 13.1 kips/in (22.9 

kN/cm).  The springs are housed in a two piece spring retainer unit, Figure 7.3.  The top piece is 

a 1/2 in x 10 in x 10 in (12.7 mm x 254 mm x 254 mm) plate with 1.5 in (31.8 mm) center hole 

and four 1 in (25.4 mm) corner holes spaced 7 in (177.8 mm) center to center welded to a 2.5 in 
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(63.5 mm) tall section of round HSS 6.625x0.25.  The bottom is the same as the top with two 

C7x12.25 channels welded to the plate on a 45 degree angle.  
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Figure 7.4  Example Spring Stiffness Calibration. 

 

Figure 7.5  Spring Photos 

 The 5/8 in (16mm) anchor rod being tested passes through the confining sheet, the steel 

confining plate, and through an 11/16 in (17.5 mm) diameter hole at the bottom of the non-rigid 
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coupler where it is secured with a ASTM A194 2H heavy hex nut. The loading rod is secured to 

the top of the non-rigid coupler with a ASTM A194 2H heavy hex nut, passes through the springs 

in a steel frame, through the center hole hydraulic jack, through the center hole load cell and 

secured with an ASTM A194 2H heavy hex nut on top.  A tensile load of 5% of the creep load is 

initially applied in order to bring all members into full bearing.  The load is then increased at a 

rate that reaches the creep load after one minute, but before three minutes.  A constant load 

rate is applied within the limits of the hydraulic pump.  Data (load, line pressure and 

displacement readings) is collected at a sampling rate of one sample every 0.5 seconds during 

loading, exceeding ASTM E488 (2010) section 7.7.  Load is measured during compression of the 

spring and displacement is measured at rate that starts at 0.5 seconds per sample during 

loading, then every one minute for the next 24 hours, then every hour until failure.  Variations 

for Test Series 0a, 0b, and 0c are described in Chapter 8.  In order to pre-load the springs and 

bring them up to the calibrated tension for the long term applied load, a load system is placed 

above the top plate of the spring retainer unit. A jack chair, center hole hydraulic jack and load 

cell are stacked to allow for tensioning of the springs.  The springs are compressed with the 

hydraulic jack to the desired force measured by the load cell (and cross referenced to hydraulic 

pressure and load cell calibration factor).  An ASTM A194 2H heavy hex nut within the jack chair 

secures the springs at the compressed distance and the hydraulic jack and load cell are removed 

for pre-loading the other long-term specimens.  Sustained load is maintained through the 

compression of the spring.  The sustained load does not need to be monitored if the load lost at 

maximum anchor creep displacement is less than one percent of the sustained load according to 

AASHTO TP-84.  For example, a maximum creep displacement of 0.1 in (2.54 mm) causes a loss 

of 1.1 5kips (5.11 kN) in a spring with stiffness of 11.5 kips/in (14 kN/m).  This is a loss of 5% if 

the sustained load was 23 kips (28 kN); requiring the spring to be recompressed every .02 in (.25 



68 

 

mm) during the test.  The compression of the spring would be measured by the displacement of 

the anchor system (displacement of the anchor-strain of the anchor rod = change in spring 

compression) daily. 
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Figure 7.6  Long Term Test Setup Section A-A 
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Figure 7.7 Long Term Test Setup Section B-B 
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7.4 Test Set Up Components 

 Some components are used both in the long and short term test and are described in 

this sections.  This section gives descriptions of components that are consistent in both sets of 

tests and can be used as a reference for understanding both the short term and long term test 

set apparatus which are discussed in Sections 0 and 7.3 respectively. 

7.4.1 Steel anchor rod, bonding materials and concrete specimens 

Anchor Rods 

 ASTM A354 Grade BD 11 threads per in threaded rod (yield stress of 130 ksi (896 MPa), 

ultimate tensile stress of 150 ksi (1034 MPa), yield strength of 29.4 kips (130.7 kN), and ultimate 

strength of 33.9 kips (150.8 kN)) was chosen to preclude steel failure.  Anchor rod diameter of 

5/8 in (15.875 mm) is recommended by AASHTO TP-84 (2009) and was chosen to match 

research conducted in Cook, et al. (2009), and Cook, et al. (2013) to allow for direct comparison 

of data.  Minimum embedment depth allowed by AASTHO TP-84 (2009) is 3-1/8 in (79 mm).  

Initial testing at this embedment depth produced a strong enough bond to cause failure in a 

ASTM A 193 Gr B7 threaded rod.  This minimum embedment depth was chosen for this project 

to allow ensure bond failure.  ASTM A 193 Gr B7 threaded rod (ultimate tensile stress of 125 ksi 

(862 MPa) and ultimate strength of 28.25 kips (125.6 kN)) is the minimum strength anchor 

allowed by AASHTO TP-84 (2009), but initial testing induced failure of the B7 threaded rod and 

the ASTM A354 Grade BD was chosen.  Anchor rods for testing were cut to 6 in (152 mm) 

lengths from 24 in (609 mm) stock and were stored in a plastic bucket filled with oil soaked 

paper to prevent corrosion. Immediately prior to installation, rods were cleaned with acetone 

and allowed to dry.  Test series 0c used anchor rods cut to 9 in (229 mm) to allow for a deeper 
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embedment depth at the recommendation of the manufacturer to get less variation in pullout 

capacity.  B7 threaded rod was not available for Test Series 0a and available 5/8 in (15.875mm) 

diameter threaded rod with a yield stress of 36 ksi (248 MPa) was used as the anchor rod. 

 

Figure 7.8  Anchor Rod 

Concrete Specimens 

 AASHTO TP-84 (2009) requires that the specimen edge be at least two times the 

embedment depth from the center of the anchor in order to avoid edge effects.  This project 

uses a 5/8 in (15.875 mm) diameter anchor rod at an embedment depth of 3-1/8 in (79 mm), 

the minimum depth recommended by AASHTO TP-84 (2009).  In order to account for possible 

variation in specimen preparation, it was decided that 16 in (406 mm) should be the minimum 

width of the specimen.  AASHTO TP-84 (2009) requires the depth of the specimen to be 1.5 

times the embedment depth.  Due to concerns about cracking during drilling, the minimum 

specimen depth was chosen to be 8 in (203 mm), over two times the embedment depth.  

Preliminary specimens matching Cook et al. (2013) were cast and used in Test Series 0c.  These 

specimens were difficult to handle due to their weight and size.  In order to make casting easier 

and improve handling, 16 in (406 mm) diameter cylinders with 8 in (203 mm) depth were chosen 

for final specimens.  These specimens weigh approximately 140lbs (0.6 kN) and can be handled 

without casting any additional supports into the block.  These blocks are similar in size to tests 

conducted at the University of Stuttgart in Cook et al. (2013).  The forms were 16 in (406 mm) 
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diameter 12 ft (3.66 m) Sonotube round concrete cardboard form tubes cut to 8 in (203 mm) 

height on a table saw.  The forms were sealed to a standard 4 ft x 8 ft (1219 mm x 2438 mm) 

sheet of plywood with Sikaflex Construction Sealant along the inside of the tube.  One sheet of 

plywood can fit 15 specimens and 30 specimens were cast at one time with 15 test cylinders 

made from the same batch out of a 1.5 yd3 (1.14 m3) concrete delivery.  These specimens were 

cast as part of this Thesis as a proof of concept for the smaller specimens, but testing will be 

future work.  Thirty specimens were cast from concrete provided by a local ready mix company.  

The concrete mix is a standard 4000 psi (27.6 MPa) MassDOT mix design and was allowed to 

cure for at least 28 days prior to testing.  The thirty day compressive strength was 5190 psi 

(35.78 MPa).  It was found that due to the material properties these forms were disposable and 

could not be re-used. However, they were easier to assemble, used much less space and are 

recommended for the future testing. 
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Figure 7.9  Concrete Samples 

Bonding Materials 

 Final tests will be conducted on three adhesives.  All three adhesives meet ICC-ES 308 

standards. 

Adhesive A – Adhesive A is the same adhesive used in test series 0b.  This adhesive is a 

combination of Bisphenol A and Bisphenol F epoxy resins with fillers and m-xylene diamine and 

aliphatic polyamine hardeners.   

Adhesive B – Adhesive B is a BisphenolA/Epichlorohydrin (Epoxy Resin) with a Dimethaneamine 

hardener.   

Adhesive C – Bisphenol A and Bisphenol F epoxy resins with amine hardeners.  The listed 

uncracked bond stress is 2,148 psi (14.7MPa) and should have a static capacity of 13 kips (58 kN) 

for this research. 
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Table 7.1  Bonding Materials Used per Test Series 

Test 
Series 

Bonding 
Material Description 

0a Adhesive Two Part FRP Epoxy, 2 years past expiration date 

0b Adhesive Bishphenol A and Bisphenol F Epoxy Resin with 
Amine Hardeners 

0c Grouted Calcium Aluminate Cement, Aggregates, Fillers and 
Additives in a permeable capsule (cartridge) sock  

 

Loading Rod 

 Capacity of the loading rod needs to be greater than the capacity of the anchor.  The 

loading rod used for initial testing was #6 DYWIDAG THREADBAR® Reinforcing Steel ASTM A615 

(Grade 75).  Yield strength of these bars is 33 kips (147 kN) before application of a reduction 

factor.  Maximum anticipated failure loads is 30 kips (133 kN) and close to the elastic limit of the 

loading rod used.  Future testing will use 7/8 in (22.2 mm) diameter ASTM A193 Grade B7 

Threaded Rod (yield strength of 48.5 kips (215.7 kN) without a reduction factor) to ensure no 

yielding of the loading rod. 

Non-Rigid Coupler 

 A steel non-rigid coupler is used to connect the anchor rod to the loading rod.  Details of 

this coupler can be seen Figure 7.3.  This coupler has a 11/16 in (17.5 mm) diameter hole at the 

bottom that the anchor rod passes through and a 1 in (25.4mm) diameter hole at the top where 

the loading rod passes through.  Both the anchor rod and the loading rod are secured with a 

A194 2H heavy hex nut.  The use of the coupler is to reduce bending moments being applied to 

the anchor by allowing rotation at the connection points.  The coupler is two 1 in (25.4mm) thick 

plates with an 11/16 in (17.5 mm) diameter center hole at the bottom and 1 in (25.4 mm) 

diameter center hole on top held apart by 0.5 in (12.7 mm) thick plate sides.  The full capacity of 
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all the plates is required to carry loads of up to 40 kips (178 kN), so full penetration welds were 

used to connect the top and bottom plates to the side plates.  A 0.25 in (6.35 mm) thick plate is 

tack welded to the bottom of the coupler for mounting the LVDT’s that measure the anchor 

displacement.  

Confining Plate 

 A 5/8 in (15.875 mm) thick 8 in x 10 in (203mm x 254mm) steel plate with a 1.25 in 

(31.75 mm) diameter center hole was used to confine the tests.  AASHTO TP-84 requires the 

confining plate to be greater than or equal to the nominal anchor diameter ± 1/16in (±1.5mm).  

Confining the tests prevents concrete failure. This is done to allow for a more consistent 

measurement of bond failure. 

Confining Sheet 

 A confining sheet was used between the concrete sample and the confining plate.  This 

sheet is required by AASHTO TP-84 (2009).  A 0.03 in (0.76mm) thick sheet of 

polytetrafluoroethylene (PTFE) the same dimensions as the confining plate, 8 in x 10 in (203mm 

x 254mm) with a 1.25 in (31.75 mm) diameter center hole, was placed between the concrete 

and the steel confining plate to account for surface irregularities.  This sheet was not available 

for Test Series 0a. 

Hydraulic Jack/Pump 

 The load is applied to the loading rod with an SPX Power Team RH-202 20 ton (178 kN) 

center hole hydraulic jack, Figure 7.10 (Left).  The pressure is applied to the jack with an SPX 

Power Team P460d Hydraulic Hand Jack, Figure 7.10 (Right).  Future purchase of an SPX Power 

Team E173-PC pump with a 9609 pressure compensated valve will allow for an electronically 

controlled application of the load; allowing for less variability in load rates and failure times of 

short term tests. 



77 

 

  

Figure 7.10  SPX Power Team RH202 Jack (Left) and SPX Power Team P460d Pump(Right) 

7.4.2 Instrumentation and Data Acquisition 

Load Cell/Strain Gauges 

 Load is measured at the top of the jack with a Transducer Techniques THD-50K-Z 

through hole donut 50kip (222.4kN) load cell with a through hole diameter of 1.281 in (32.53 

mm).  The loading rod passes through the load cell that sits on top of the jack. Test Series 0a was 

run with an Interface Force LW 2594-20K-327 20 kip (89 kN) load cell with a through hole 

diameter of 0.983 in (24.96 mm).  Load for the long term tests is measured indirectly as 

displacement of the anchor equal to extension of the spring equal to change of applied load.  

Reloading of the spring is allowed to keep the force within 1% of desired load. 

LVDT Linear Potentiometers 

 BEI Duncan 9610 Linear Variable Differential Transformer (LVDT) linear potentiometers 

are used to measure anchor displacement.  These LVDTs are secured to the bottom of the non-

rigid coupler using small bolts, washers, nuts, and aluminum angles.  Future researchers are 

investigating ways to measure displacement from the top of the anchor rod instead of at the 



78 

 

non-rigid coupler.  Final testing with be conducted with two LVDTs per specimen and the 

average will be used as the final displacement.  Both potentiometers will measure the distance 

between the bottom of the non-rigid coupler and the top of concrete specimen.  The distance 

between the top of concrete and top of the anchor is minimized to avoid the strain of the 

anchor affecting displacement readings.   

Temperature Sensors 

 QTI Sensing Solutions QTSSP-14F-48 Thermistors were purchased to monitor the 

internal temperature of concrete specimens.  These thermistors will be installed in a dry hole 

1/2 the embedment depth and held in place with a rubber stopper.  Thermistors will also 

monitor temperature of the environmental chamber through the data acquisition system. 

Spring Displacement Sensors 

 The stiffness of each spring will be calibrated using four string potentiometers and the 

load cell and loading rod described above.  The string potentiometers were used in some of the 

tests to determine how uniformly the spring compressed during loading of a creep test.   

Data Acquisition 

 Data for Test Series 0a and 0b was collected using an HP 3852 data acquisition system.  

AASHTO TP-84 (2009) recommends sampling every 3 seconds during loading, every minute for 

the first hour following loading, every 10 minutes for the next 9 hours, then every hour until the 

test is complete.  Load sampling will be every 0.5 seconds to give instant feedback to the 

operator of the hydraulic pump during loading. Then AASHTO recommended sampling is 

followed. 

 Future testing will be complete using a National Instruments’ data acquisition system.  

This system consists of an NI 3100 Industrial Controller connected to an NI cDAQ 9188 chassis 
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with NI 9206 modules to measure voltage.  This system will be programmed and calibrated by 

future researchers. 

Data Interpretation 

 Displacement measurement will be a combination of bonding material displacement 

and anchor rod displacement.  Cook, et al. (2013) uses a correction factor to subtract out the 

displacement of the anchor rod, Equation 6 and Equation 7.   

𝒅𝒅𝒅𝒅𝒂𝒂𝒂 = 𝒅𝒅𝒅𝒅 − 𝑵 × 𝜹𝒄𝒄𝒄  Equation 6 (Cook, et al., 2013) 
 

Where,  

 

dispadj = displacement adjusted for strain in anchor, 

disp = unadjusted displacement, and 

N = load. 

𝛅𝐜𝐜𝐜 = 𝐥
𝐀𝐞𝐄

  Equation 7 (Cook, et al., 2013) 

Where, 

l = distance between top of concrete and coupler, 

Ae = effective area of anchor, and 

E = modulus of elasticity of anchor steel. 

7.5 Environmental Chamber 

 A temperature and humidity controlled chamber is required to conduct controlled 

elevated temperature tests in accordance with AASHTO TP-84, between 110°F and 120°F (43°C 

to 48°C,) and humidity, less than 40%, tests.  An 8ft tall x 5.5ft wide x 17ft long (2.44m tall x 

1.68m wide x 5.18m long) box made of 2x4 dimensional lumber, 3/4 in (19mm) plywood, and 2 

in (50.8 mm) rigid foam insulation houses up to twenty five 16 in diameter x 4ft-6in tall (0.406m 
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diameter x 1.372m tall) long term test specimens and ten 16 in diameter x 2 ft tall (406 mm 

diameter x 610 mm tall) short term specimens, Figure 7.11 and Figure 7.7.  Two Dimplex 

CUH05B31T heaters will provide heat.  Internal air temperature will be monitored and the 

heaters will be automatically switched on/off when the internal air temperature reaches a 

minimum/maximum temperature.  Humidity will be controlled with a dehumidifier set to keep 

the relative humidity below 40%.  Specimens tested at elevated temperature will be conditioned 

for at least 24 hours at the test temperature prior to applying load.  Additional thermistors will 

be placed around the chamber to evaluate consistency of temperature.  Baffles and heaters will 

be adjusted to ensure uniformity of temperature throughout the room. 
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Figure 7.11  Environmental Chamber Plan 
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Figure 7.12  Environmental Chamber 
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CHAPTER 8 

PRELIMINARY TEST SPECIMENS AND RESULTS 

8.1 Test Series 

 Test Series 0a, 0b, and 0c were preliminary tests and did not necessarily follow the 

procedures or use materials listed in Chapter 7.  These tests lead to the development of 

materials and procedures listed in the rest of this chapter.  Test Series 0b was conducted on 10 

anchors installed in one concrete block and was used to validate procedures and methods 

detailed in this chapter.  Test Series 0c was a cementitious bonding material to compare with 

the epoxy bonding material of Test Series 0b.  These tests are not to be considered valid test 

series, but provide insight into changes made to the test specimens or setups based on initial 

testing.  A summary of these test series is presented in Table 8.1.  Due to issues with data 

acquisition and anchor rods, test series 0b and 0c were incomplete. 

Table 8.1  Test Series Matrix 

Test 
Series 

Test 
Description 

Installation 
Conditions 

Anchor 
Rod Type 

Bonding 
Material Hole Size Embedment 

Depth 
Static 
Tests 

Sustained 
Load Tests 

0a Preliminary 
Testing 

Summer 
Time 

Outdoor 

F1554 
Grade 36 

Expired Two 
part Epoxy 

3/4 in 
(19mm) 

3.125 in 
(79mm) 2 2 

0b Validation 
Tests Indoor 

B7 
Threaded 

Rod 

Two Part 
Anchoring 

Epoxy 

3/4 in 
(19mm) 

3.125 in 
(79mm) 2 0 

0c Cementitious Indoor 
B7 

Threaded 
Rod 

Cementitious 1 in 
(25.4mm) 

6in 
(152mm) 0 0 

8.1.1 Test Series 0a 

 Test series 0a was the first test series conducted for this research.  A summary of 

experiments from this test series is found in Table 8.2.  The purpose of this test series was to 

gain experience with anchor installation and test capability of existing equipment at UMass.  The 
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anchors used for this test series were 5/8 in (15.9mm) nominal diameter, 6 in (152mm) long 

threaded rod with a yield stress of 36 ksi (248 MPa) cut from 96 in (2438mm) stock.     

Table 8.2 Test Series 0a Matrix 

Experiment Description Conditions 
Anchor 
cure 
time 

Load Failure 

0a-1 Static Test 
Summer 

time 
Outdoor 

24hr 8 kips 
(35.6 kN) Bond 

0a-2 Static Test 
Summer 

time 
Outdoor 

7 days 12 kips 
(53.4 kN) Steel 

0a-3 Creep Test 
Summer 

time 
Outdoor 

11 days 11.5kips 
(51 kN) None 

0a-4 Creep Test Indoor 78 days 8 kips 
(35.5 kN) None 

 

 Experiments 0a-2 and 0a-3 used the same type of steel for the loading rod as the anchor 

rod.  The non-rigid coupler for experiments 0a-1 through 0a-3 was on loan from the University 

of Florida and was the design listed in Cook, et al. (2009) and Cook, et al. (2013).  This non-rigid 

coupler required the use of a 1 in (25.4mm) loading rod.  The loading rod had to be threaded 

directly into the coupler and the anchor rod was secured to the coupler with a nut, Figure 8.1.  

This coupler was not compatible with the Interface Force LW 2594-20K-327 20 kip (89 kN) load 

cell with a through hole diameter of 0.983 in (24.9mm).  Initially, two non-rigid couplers were 

combined to reduce the loading rod from the 1 in (25.4mm) diameter threaded rod to 5/8 in 

(15.9mm) diameter threaded rod, Figure 8.5.  After experiment 0a-3, the non-rigid coupler 

described in Chapter 7.2 was designed and used for future testing.  
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Figure 8.1  Non-Rigid Coupler of Experiments 0a-1 through 0a-3 

 Installation of these anchors was accomplished by assuming a generalized procedure 

from other adhesive anchors.  First a 3/4 in (19mm) diameter hole was drilled to a 3-1/8 in 

(9.5mm) depth using a Hilti TE72 rotary impact hammer with a 3/4in (19mm) drill bit.  A vertical 

hole was achieved by aligning the drill bit with two vertical reference lines created by placing 

two pieces of rectangular HSS on their ends and attaching a magnetic level to one piece for 

reference, Figure 8.2.  Issues with keeping the drill vertically aligned with the HSS lead to the 

development of the steel section used to install Test Series 0b and 0c. 

Non-Rigid Coupler used in 

Cook, et al. (2009)  

     

1 in (25.4mm) 

Loading Rod 

 

5/8 in (15.9mm)  

Anchor Rod 
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Figure 8.2  Hole Drilling Series 0a 

The holes were cleaned using compressed air.  A stiff bristled plastic brush combined with the 

use of compressed air is the preferred method for hole cleaning, but a brush was not available 

for series 0a and only compressed air was used to clean the hole.  Compressed air was blown 

into the hole to remove the majority of dust, and then the nozzle was sprayed directly against 

the sides of the hole to remove as much dust as possible.  A brush was purchases for Test Series 

0b and 0c installations.   
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Figure 8.3  Hole Cleaning with Compressed Air 

After the hole was cleaned, the two part epoxy was mixed.  This epoxy was not designed for use 

in anchoring steel rods to concrete.  It is a two part epoxy for use in attaching FRP sheet to 

concrete and was 2 years past its expiration date.  The two parts were in separate buckets and 

were mixed manually in accordance with the manufacturer’s recommendations and poured into 

the cleaned hole.  The holes were filled 67% full with adhesive and the anchor rod was placed in 

the hole.  Excess epoxy flowed out of the hole and created a thin puddle on the surface of the 

concrete around the anchor and can be seen in Figure 8.4.  Duct tape was used to mark the 3-

1/8 in (9.5 mm) embedment depth.   The adhesive cured for 24 hours before the first test, 0a-1, 

was run.  Subsequent tests were run after longer adhesive cure times. 
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Figure 8.4  Mixed Epoxy (Left)  and Installed Anchor (Right) 

 Experiment 0a-1 was the first experiment conducted for this research.  It was conducted 

on adhesive that only cured for 24 hours was no measurements were taken.  The purpose of this 

first experiment was to determine if a valid static test could be conducted with the designed test 

setup. Pressure of the hydraulic pump was manually monitored with an analog gauge for this 

test and that was correlated to an applied force.  The 24 hour cure time on this test was also less 

than the manufacturer’s recommended 7 day cure time.   

 Experiment 0a-2 was the first experiment where force and displacement were digitally 

recorded for anchor pull out.  It was a static test to further verify the test setup and tested short 

term bond stress of the FRP epoxy.  This experiment used two non-rigid couplers coupled 

together and a 5/8 in (15.9mm) diameter loading rod.  Measurements were taken with an HP 

3852a data acquisition system.   
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Figure 8.5  Two Non-Rigid Coupler Design 

 Experiment 0a-3 was the first creep test and run in order to verify the spring loading and 

application of load to an anchor.  The concrete specimen was outdoors and the experiment 

could only be run during business hours of one day.  In order to achieve a possible creep failure, 

a load close to the ultimate load of the anchor rod was chosen, 11.5 kips (51kN).  Available steel 

pieces were stacked to achieve proper standoff between the two coupler design.  This stacking 

caused the spring to bend during loading. The loading rod was bent by the spring, and the 

experiment was allowed to run for a few hours before it was terminated.  The 5/8in (15.9mm) 

diameter loading rod was replaced with a #6 DYWIDAG THREADBAR® for subsequent 

experiments and a new non-rigid coupler was built. 

 Experiment 0a-4 was the longest running test for series 0a.  This experiment used a #6 

DYWIDAG THREADBAR® Reinforcing Steel ASTM A615 (Grade 75) loading rod and the short term 

Non-Rigid 

Coupler 2 

Non-Rigid 

Coupler 1 

1 in (25.4mm) 

Threaded Rod 

5/8in (15.9mm) 

diameter loading rod 

5/8in (15.9mm) diameter 

anchor rod secured to non-

    LVDT 
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set up described in Section 7.2.  An Interface Force LW 2594-20K-327 20 kip (89 kN) load cell 

was below the jack chair to monitor the force applied by the spring over time.  An initial long 

term load of 7.6kips (33.8kN) was applied.  After 7 days, minimal displacement had occurred.  To 

further evaluate the test system the load was increased to 9.8kips (43.6kN) and after ten days 

total, the load was increased again to 10.2 kips (45.3kN) where it was held for the remainder of 

the 25 day test.  The test was ended to allow installation of test series 0b. 

8.1.2 Test Series 0b 

 Test Series 0b consisted of ten experiments.  A matrix of these experiments can be 

found in Table 8.3.  Short term apparatus as described in Section 7.2 was used.  An initial load of 

1.2 kips (5.34kN) was applied to bring the system into bearing for each test.  Adhesive A detailed 

in section 7.4.1 was used in this test series.  The epoxy was installed in accordance with the 

manufacturer’s recommendations.  First, a 3/4 in (19mm) diameter hole was drilled to a 3-1/8 in 

(9.5 mm) depth using a Hilti TE72 rotary impact hammer with a 3/4 in (19 mm) drill bit.  A steel 

section with two vertically aligned holes was used to drill a hole perpendicular to the concrete 

surface and a piece of tape was placed on the drill bit to mark 3-1/8 in (19.4mm), Figure 8.6.  

The holes were then initially cleaned with compressed air.  After initial cleaning, the hole was 

brushed, Figure 8.6, and cleaned with air again.  The process was repeated three more times in 

conformance with manufacturer recommendations.  Each hole was cleaned individually and 

covered with tape while the next holes were cleaned, Figure 8.7.   
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Figure 8.6  Brush Cleaning Hole (Left) and Alignment guide for Test Series 0b an 0c (Right) 

 

Figure 8.7  Cleaned Hole with Tape (Left) Cleaning Subsequent Hole (Right) 
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After the holes were cleaned, a depth gauge was used to ensure proper embedment depth of 

the anchor.  The depth gauge was created from plastic cylinder molds cut into shorter sections.  

These provided standoff from the excess adhesive that flowed from the hole during installation 

and ensured the proper embedment depth was reached.  A nut was placed on top of the anchor 

where the bottom of the anchor was 3-1/8 in (15.9mm) below the bottom of the depth gauge, 

Figure 8.8. 

 

Figure 8.8 Test Series 0b depth gauge 

Once the anchors were prepared with depth gauges, the adhesive was prepared.  The two part 

adhesive required use of a special applicator that mixed the parts.  This applicator was similar to 

a standard caulking gun with two compartments, one for each part of the adhesive.   This 

applicator was specifically designed for use with this adhesive product, Figure 8.9 (far left).  

Three beads of adhesive were dispensed onto cardboard for immediate disposal to ensure 

proper mixing for the first anchor, Figure 8.9 (middle left).  The anchor hole was then filled to 

approximately 50% to 70% full, Figure 8.9 (middle right), and the anchor rod was placed directly 
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in with the depth gauge for proper alignment.  Excess adhesive was allowed to cure and 

hardened adhesive was left around the anchor rod, Figure 8.9 (far right).  This adhesive was later 

chipped away using a hammer and putty knife, but future installations will not use a depth 

gauge and excess adhesive will be wiped away. 

   

Figure 8.9  Adhesive Application 
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Table 8.3  Proposed Test Series 0b Matrix of Experiments  

Experiment Description Conditions 
Anchor  

Cure 
Time 

Load 
% 

Static 
Load 

Failure 

0b-1 Static Test Indoor 7 days 25.5 
kips   Steel 

0b-2 Static Test Indoor 7 days 28.5 
kips   Steel 

0b-3 Static Test Indoor      

0b-4 Static Test Indoor     

0b-5 Creep Test Indoor     90%  

0b-6 Creep Test Indoor     90%  

0b-7 Creep Test Indoor     80%  

0b-8 Creep Test Indoor     80%  

0b-9 Creep Test Indoor     70%  

0b-10 Creep Test Indoor     70%  

 

8.1.3 Test Series 0c 

 Test series 0c was a grouted anchor with a cementitious bonding material.  This test 

series was installed into preliminary concrete specimens chosen that were rectangular prisms 16 

in x 16 in x 12 in deep (406 mm x 406 mm x 305 mm deep) created with fabricated wood 

removable forms, Figure 8.10.  This specimen size was used in Cook, et al. (2013) and Cook, et al. 

(2009) and was chosen as the starting point for this research.  These specimens weighed 

approximately 270lbs (1.2 kN). For transport, 1/2 in (12.7 mm) inner diameter PVC pipe was cast 

4 in (102 mm) from the bottom of the specimens. This allowed for handling using #3 reinforcing 
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bars.  Three of these blocks were cast for initial testing and used in test series 0c using Sakrete 

High Strength Concrete Mix, a ready mix product, and each 80 lb bag (0.355 kN) was mixed with 

3.5 quarts (3.3 L) of water.  Two 4 in (101 mm) diameter cylinders were tested and the average 

28 day compressive strength was 4,561 psi (31.44 MPa).  Five anchors were installed into one of 

the blocks for use in determining static capacity.  The other two blocks had only one anchor 

each for creep tests.  The 5/8 in (15.9 mm) diameter B7 threaded anchor rod was used for this 

test series.  The embedment depth was 6 in (152.4 mm) by suggestion of the manufacturer 

because previous testing with this product has yielded high variation at embedment depths less 

than 6 in (152.4 mm).  The hole diameter for this test series was 1 in (25.4 mm) because 1 in 

(25.4 mm) samples were donated and require installation in a hole with at least 1 in (25.4 mm) 

diameter hole.  Hole drilling methods described in test series 0b were followed.  Hole cleaning 

for this product required initially removing most of the dust with compressed air.  After the dust 

was removed, the holes were filled with water and allowed to sit for 10 minutes, Figure 8.11 (far 

left).  After 10 minutes, the water was removed with compressed air, Figure 8.11 (middle left).  

The compressed air was sprayed along the sides of the hole for the entire depth to remove as 

much excess water as possible.  The cementitious bonding material is contained in a permeable 

capsule (cartridge) sock.  The sock was soaked in water for 1.5 minutes, and then placed into the 

hole with excess material to the side.  The anchor rod was pushed through the sock, Figure 8.11 

(middle right), to the bottom of the hole and excess cementitious bonding material was wiped 

away, Figure 8.11 far right photo. 



96 

 

 

Figure 8.10  Concrete Specimens for Test Series 0c 

    

Figure 8.11  Test Series 0c Installation Photos. 

The anchors were allowed to cure for a minimum of 28 days before testing.  The results from 

the five static tests were averaged and creep tests were conducted at 90% of the static capacity.   
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8.2 Test Series Results 

 Three preliminary test series were run as part of this thesis.  The purpose of these test 

series was to validate equipment and procedures for future testing.  Test Series 0a resulted in a 

final design for the non-rigid coupler and the height of the short term and long term tests to 

account for the non-rigid coupler.  Test series 0b resulted in improved installation techniques 

and higher capacity threaded rod.  Test series 0c resulted in experience with cementitious 

anchor.  Chapter 9 has recommended future work based on results from these three test series.   

8.2.1 Test Series Results Test Series 0a 

 Experiment 0a-1 was the first experiment run in the series and for this project.  This 

experiment resulted in a bond failure at the concrete/adhesive bond line with a shallow 

concrete cone.  These results were exactly what was expected and were promising for future 

testing.  The load for this test was not measured directly, but an analog pressure gauge was 

monitored during loading.  The pressure reached approximately 2,000psi (13.8MPa) before 

failure.  This equates to 8 kips (35.6 kN) of force.  This test series showed that the FRP epoxy was 

capable of developing high enough bond stresses for testing and that the short term test 

apparatus could apply loads properly.  Figure 8.12 shows the bond failure.  This failure only 

occurred because the adhesive was tested prior to fully curing.  Test 0a-2 was a static test on 

fully cured adhesive and resulted in steel failure of the anchor rod, Figure 8.13. 
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Figure 8.12  Experiment 0a-1 failure photos 

 

Figure 8.13  Experiment 0a-2 plot 
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 Figure 8.13 shows the total displacement (average of two LVDTs) which is the combined 

displacement of the anchor rod and the displacement of the adhesive.  A correction factor from 

Equation 6 (Cook, et al., 2013)and Equation 7 (Cook, et al., 2013)and was determined.  This 

correction factor was applied to data from elastic portion of experiment 0a-2 to determine how 

much of the displacement was from the adhesive.   

For experiment 0a-2: 

l = 3 in (50.8mm), 

Ae = 0.307 in (7.8mm) 

E = 29,000 ksi (199,947MPa) 

δcor = 0.0003369 in/kip (0.0001924 cm/kN) 

For experiment 0a-2, the adjusted displacement, the averaged measured displacement, and the 

calculated steel displacement are shown in Figure 8.14 only for the elastic range of the anchor 

rod.  The horizontal distance between the corrected displacement and the total displacement is 

the calculated elastic deformation of the anchor rod.  Yield of the exposed anchor occurred at 

0.0036 in (0.0914 mm) and 10.4 kips (46.3 kN) from Figure 8.15.  It is unclear from Figure 8.14 if 

the adhesive began failing before the steel yielded, or if the steel yielded prior to any bond 

failure.  It is clear, however, measured displacement is a combination of elastic anchor rod 

displacement and adhesive displacement.  This test showed the need for high strength steel to 

properly determine static capacity.  Total averaged displacement was calculated from two LVDTs 

attached to the bottom of the non-rid coupler.  One of the LVDTs recorded positive 

displacements while the other recorded negative displacements.  For this test, positive 

displacement is an increase in distance between the bottom of the non-rigid coupler and the top 

of the confining sheet.  One negative displacement and one positive displacement shows the 

non-rigid coupler was rotating as well as moving vertically.  Data from the two LVDTs and the 
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average of the two are shown in Figure 8.15.  This same phenomenon was experienced in test 

0a-3 and 0a-4.  This rotation is attributed to improper alignment and will be corrected in future 

testing by ensuring proper alignment of test apparatus. 

 

Figure 8.14 Test 0a-2 Anchor Rod Elastic Displacements and Adhesive Displacements 
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Figure 8.15  Test 0a-2 Individual LVDT displacements and Average displacement 

 In order to continue testing the adhesive in test series 0a, creep tests were conducted at 

loads close to the yield strength of the anchor rod.  Test 0a-3 was conducted over a short period 

of time due to the specimens being outdoors and data is not presented because of the short 

experiment time.  Figure 8.16 shows displacement vs time from after loading to 9.8 kips (43.6 

kN). A small increase in displacement at 862,000 seconds is elastic deformation from increasing 

the load from 9.8 kips (43.6 kN) to 10.2 kips (45.3kN).  This displacement was averaged from two 

LVDTs attached to the bottom of the non-rigid coupler.  Total creep displacement from day 7 to 

termination of the experiment on day 25 was 0.0056 in (0.142 mm).  This includes subtracting 

the elastic deformation from the load increase at 862,000 seconds.  Figure 8.17 shows the total 

force vs average displacement as measured by the load cell and the two LVDTs for test 0a-4.  

Horizontal lines on the plot show displacement under sustained load.  All three lines show creep 

at the three sustained load rates.  The large decreases in load with no change in displacement 
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are from releasing the jack and the loading nut coming into bearing on top of the spring. Figure 

8.18 shows the two LVDTs and their average plotted against time.  Periods of loading are vertical 

lines on this plot and creep is the increase in displacement over time.  Both Figure 8.17 and 

Figure 8.18  show the rotation of the non-rigid coupler, causing one of the LVDTs to measure 

negative displacement and the other to measure positive displacement.  The creep 

displacements from both LVDTs are increasing positive with time.   

 

 

Figure 8.16  Experiment 0a-4 Creep Displacement 
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Figure 8.17  Test 0a-4 Force vs Displacement LVDT-1, LVDT-2, Average 
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Figure 8.18  Test 0a-4 LVDT 1, LVDT 2, and Average Displacements vs. Time 

 The final results to show from test 0a-4 are from the spring displacements, Figure 8.20.  

Four string potentiometers were used to measure the spring displacement in four corners, 

Figure 8.19. This gives a representation of the deformation of the spring in three planes.  These 

results show the spring is bending as in test 0a-3.  It is believed putting the load cell on the 

spring caused some of this rotation, as well as possible misalignment of the entire set up.  This 

test shows that care must be taken when aligning the test set up.  
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Figure 8.19  String Potentiometer Placement 

String 
Potentiometers in 
four corners 



106 

 

 

Figure 8.20  Test 0a-4 Measured Spring Displacements 

8.2.2 Test Series Results Test Series 0b 

 Two static tests were conducted in this test series.  Both of these tests resulted in 

tensile failure of the steel, one at 27 kips (120 kN) and one at 29 kips (129 kN), Figure 8.21.  The 
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washers were used to step down the hole size for the 5/8 in (15.88 mm) diameter anchor rod.  

These washers deformed significantly at the failure load, Figure 8.21.  The washer deformation 

caused displacement of the non-rigid coupler that was measured by the LVDTs.  This additional 

displacement from the washers made the displacement data from these tests invalid.  This steel 

failure was an unexpected result based on previous results from Cook et. al (2013).  Originally, 
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static tests were cancelled.  The bond strength of this adhesive is greater than the tensile 

capacity of the threaded rod.  Future testing will use ASTM A354 GR BD threaded rod with a 

capacity of 33.9 kips (150.8 kN) compared to the ASTM A 193 GR B7 threaded rod with a 

capacity of 28.25 kips (125.7 kN) used in this test. 

 

Figure 8.21  Test Series 0b anchor failure and washer deformation 

One long term test was conducted as part of test series 0b.  This test was loaded to the 

maximum capacity of the springs, 21 kips (93.4 kN) on December 13th, 2014.  As of February 16th, 

2015 this test was still running.  The data acquisition system used for this experiment stopped 

working shortly after this test was loaded, so no displacement data is available. 

8.2.3 Test Series Results Test Series 0c 

 Tests on the cementitious anchors were planned, but not conducted as part of this MS 

Research Project.  Testing of this series will be conducted as future work. 
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8.3  Conclusions 

 Many lessons were learned from Test Series 0a.  The data from this test series is not 

valid for comparing performance of adhesive anchor systems, but it is valid to show the 

functionality of the designed test apparatus.  It also led to changes in testing procedures for Test 

Series 0b and 0c.  Test 0a-1 shows that the short term test set up is capable of applying a failure 

load to an anchor.  Tests 0a-2 and 0a-3 led to a new design for the non-rigid coupler.  Test 0a-4 

shows that a sustained load can be applied to an anchor and that the load and displacement can 

be measured.  Test 0a-4 also shows the need to take care when aligning a long-term test set up 

to avoid non-vertical displacements of the spring.  Overall, Test series 0a shows that sustained 

load experiments produce expected results.  Lessons from this test series were applied to Test 

Series 0b and 0c. 

 Test Series 0b lead to a re-design of the non-rigid coupler with a hole 1/16 in (1.59 mm) 

larger than nominal anchor diameter used in testing.  The failure of the B7 threaded rod lead to 

future research using the higher capacity ASTM A354 GR BD threaded rod.  This test series also 

showed a potential need to measure displacement of the anchor from a different point than the 

non-rigid coupler.  Future researches will investigate methods of measuring displacement from 

the top of the anchor rod instead of at the non-rigid coupler. 

 Test set ups discussed in Chapter 7 are a result of a thorough literature review and 

preliminary experiments and represent the main conclusion of this MS research project. 
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CHAPTER 9 

RECOMMENDED FUTURE WORK 

 Future work on this project is already scheduled.  Table 9.1 provides a matrix of future 

testing for the next phase of this project.  These tests will be conducted on three adhesives.  All 

three adhesives have been tested to ICC-ES 308 standards. 

Adhesive A 

 Adhesive A is the same adhesive used in test series 0b.  This adhesive is a combination 

of Bisphenol A and Bisphenol F epoxy resins with fillers and m-xylene diamine and aliphatic 

polyamine hardeners.  The manufacturer lists an uncracked bond stress of 2,140 psi (14.75 MPa) 

for 5/8 in (15.9 mm) diameter threaded rod.  This would equate to a static capacity of 13.1 kips 

(58.2kN). 

Adhesive B 

 Adhesive B is a BisphenolA/Epichlorohydrin (Epoxy Resin) with a Dimethaneamine 

hardener.  It lists an uncracked bond stress of 2,075 psi (14.3 MPa) which should cause bond 

failure at 12.7 kips (56.5 kN) for these tests. 

Adhesive C 

 Adhesive C is Bisphenol A and Bisphenol F epoxy resins with amine hardeners.  The 

listed uncracked bond stress is 2,148 psi (14.7MPa) and should have a static capacity of 13 kips 

(58 kN) for this research. 
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Table 9.1  Proposed Test Matrix for Follow On Testing 

 

 Future work beyond Table 9.1 would be to continue exploring the creep characteristics 

of cementitious anchors.  Other future testing should look at the combined effects of 

parameters.  Currently, tests of just one parameter are used to find a reduction factor and 

individual reduction factors are applied.  Testing an anchor under multiple parameters to 

determine if effects are additive would be worthwhile.  For example, an anchor could be 

installed in moistened concrete, cured in a moist environment for the minimum manufacturer’s 

recommendation, and then tested under sustained load at high heat.  This final sustained load 

test could be compared to individual tests of moisture during installation, moisture during 

curing, minimum cure time of adhesive, and sustained loading to determine if testing one 

parameter at a time is a valid way to predict performance under combined conditions. 

9.1 Tasks required to complete MassDOT Project Phase I 

 Future researchers will be completing all work required for the larger MassDOT project.  

This section represents a checklist for future researchers to complete tasks required prior to 

initiating the first formal test series. 

• Cut and fit confining sheets 

Test 
Series 

Test 
Procedure 

Installation 
Conditions 

Anchor Rod 
Type Adhesive Hole 

Size 
Embedment 

Depth 
Static 
Tests 

85% 
MSL 

80% 
MSL 

75% 
MSL 

70% 
MSL 

65% 
MSL 

60% 
MSL 

1a AASHTO TP-
84 Indoor 

A354 BD 
Threaded 

Rod 
Adhesive A 3/4 in 

19mm 
3.125 in 
(79mm) 5 1 2 2 2 2 1 

1b AASHTO TP-
84 Indoor 

A354 BD 
Threaded 

Rod 
Adhesive B 3/4 in 

19mm 
3.125 in 
(79mm) 5 1 2 2 2 2 1 

1c AASHTO TP-
84 Indoor 

A354 BD 
Threaded 

Rod 
Adhesive C 3/4 in 

19mm 
3.125 in 
(79mm) 5 1 2 2 2 2 1 
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• Label each set of springs and determine spring stiffness for each set of springs both 

individual and in parallel.   

• Design and install heat and humidity control system for the environmental chamber. 

• Calibrate environmental chamber by installing thermistors on a three dimensional grid 

to determine heat distribution within the chamber.  Adjust heater location and control 

system until all thermistors are within the specified temperature range. 

• Drill holes and install anchor rods for first two test series. 

• Program and calibrate data acquisition system. 

9.2 Step by Step procedure for each adhesive tested 

 The remainder of this chapter is devoted to a generalized step by step procedure to 

follow for each test from casting of the concrete through data analysis. 

Step 1:  Cast concrete samples in at least one batch per test series.  Each test series should 

consist of at least 18 specimens to allow for at least 5 static tests and at least 10 creep tests and 

up to three extras in case of cracking during curing.  After specimens are cast, they should be 

kept moist to allow for proper hydration of the cement and allowed to cure for 28 days before 

holes are drilled. 

Step 2:  Test specimen should be 75 ± 10°F (24 ± 5°C) and 50 ± 10% relative humidity prior to 

anchor installation.  Holes should be drilled in accordance with manufacturer recommendations.  

Holes should be perpendicular to the surface of the concrete.  Holes should be drilled to the 

desired embedment depth.  Insert a rod marked at the embedment depth periodically while 

drilling to ensure proper depth. 
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Step 3:  Clean holes in accordance with manufacturer’s recommendations.  All anchors of a test 

series should be installed on the same day.  All holes should be drilled and cleaned prior to the 

first hole being filled with bonding material. 

Step 4:  Fill one hole with bonding material, then place the anchor rod, then remove excess 

adhesive before moving onto the next anchor hole.  Cleaned holes should be kept covered until 

adhesive is ready to be placed. 

Step 5:  Cure bonding material according to the manufacturer recommendations, and then place 

the specimens into the environmental chamber until they reach proper temperature. Creep 

tests should be placed in the chamber with the steel apparatus attached, but no load applied.  

Ensure apparatus is centered around anchor rod at this point.  Tighten a nut on the loading rod 

over the spring housing frame to keep everything aligned while moving into the chamber.  

Measure the exposed anchor rod length from the top of the concrete to the center of the nut 

holding the anchor rod to the non-rigid coupler.  Record this number for use in calculating 

elastic displacement of the exposed anchor rod. 

Step 6:  Once specimens have reached proper temperature and maintained this condition for a 

minimum of 24 hours, conduct five static tests.  Average the static capacity from these tests to 

get the MSL as a basis for creep test load. 

Step 7:  Systematically load all sustained load anchor setups to the predetermined percent of 

MSL, keeping them in the environmental chamber.  Specimens with the lower percentage of 

MSL should be placed toward the back of the chamber, while higher percentage of MSL are 

placed near the front of the chamber. 

Step 8:  Monitor the displacement of the anchor rods during the creep tests.  Only remove 

specimens from the environmental chamber if additional space in the chamber is needed.  Keep 

doors of the chamber closed when possible. 
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Step 9:  Record final displacement, initial applied load, final applied load (based on displacement 

and spring stiffness), and time at rupture for each specimen.  Build a stress vs. time to failure for 

each adhesive.  
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