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The important thing is not to stop questioning. Curiosity has its own reason for existing. 
One cannot help but be in awe when he contemplates the mysteries of eternity, of life, of 
the marvelous structure of reality. It is enough if one tries merely to comprehend a little 

of this mystery every day. Never lose a holy curiosity. 
 

-Albert Einstein (1879-1955) 
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PREFACE 
 
 
I have been an inexorable dreamer my entire life, often aspiring for so many different 
ambitions that the immediate goals were frequently lost in thought.  However, with every 
phase of my life, some things never changed.  I always wanted to be just like my two 
older sisters, who could not be more disparate from one another.  One sister wanted to 
be an astronaut, and thus, I, at the ripe age of seven, announced to the entire school 
during the morning announcements that I would one day become an astronaut.  I always 
knew my forte embraced science and mathematics, quite contrary to the study of music, 
art, theatre, writing, and photography I commenced in vain.  I recognized in myself a 
curiosity so reminiscent of scientists, and my perfectionist attitude and attention to detail 
often warranted teachers to suggest engineering as a profession.  Thus, when sprinkled 
into the recipe of my life, these events led me to the Georgia Institute of Technology and 
Emory University in Atlanta, GA to write this dissertation in biomedical engineering.    
 
In the epigraph, I quote the great Albert Einstein’s thoughts on curiosity, a tenet that is 
arguably intrinsic in life.  I wholly believe science requires a balance between the innate 
curiosity to question the reasons why certain entities exist and the acquired prudence to 
accept the things to which we have no answer.  It is with this curiosity that science has 
delved into the puzzle of the human body, ascertaining the causes of pathologies that 
once evaded us and cultivating therapies to mitigate these medical maladies.   
 
In the spirit of Einstein’s words, I have completed my formal education by never losing 
my holy curiosity.  From extensive “To Do” lists to three-week-in-advance experimental 
plans, this dissertation is brought to you after four years of diligence, vigilant thought, 
and an earnest aspiration to help others.   
 

 
Mamta Patel, Ph.D. 
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Summary 
 

Musculoskeletal pathologies associated with decreased bone mass, including 

osteopenia, osteoporosis, disuse-induced bone loss, and microgravity-induced bone 

loss, affect millions of Americans annually.  According to the National Osteoporosis 

Foundation, 10 million Americans currently suffer from osteoporotic bone loss while 34 

million more are estimated to have osteopenia, or low bone mass, a strong risk factor for 

osteoporosis.  Bone loss is particularly dangerous since it is typically asymptomatic and 

can lead to fractures of any bone, most usually those in the hip, spine and wrist.  These 

fractures can greatly decrease the quality of life and often cause hospitalization.  While 

osteoporosis usually affects the elderly, it can afflict both men and women of any age.  

Additionally, bone loss occurs in spaceflight, rendering astronauts at-risk for fractures 

during long term space travel.  Despite health implications, it is still a national and 

international interest to continue and to expand human-based space exploration.  As 

such, it is imperative to develop countermeasures for bone loss in space.  On average, 

astronauts lose 1-2% of bone mass per month during spaceflight, losing 6-12% in a 

typical six month International Space Station (ISS) mission.   

While many pharmaceutical treatments have slowed osteoporosis, there is still 

no countermeasure that can effectively mitigate bone loss observed in astronauts.  The 

inadequacy of current countermeasures is at least partially due to a lack of 

understanding of the cellular and molecular mechanisms underlying bone loss caused 

by osteoporosis and microgravity.  In recent years, investigators have begun addressing 

these issues by studying changes in gene expression induced by disuse, spaceflight, 

and ground-based simulated microgravity. The assumption is that the knowledge of 

changes in key gene expression may provide means for new, target-specific therapies to 

adequately counteract bone loss due to osteoporosis, disuse, or microgravity.   
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Additionally, it has long been regarded that mechanical stimuli are anabolic to 

bone.  High magnitude, low frequency impact has been recognized to increase bone and 

muscle mass under normal but not microgravity conditions.  However, the opposite 

stimulus, a low magnitude and high frequency (LMHF) mechanical load experienced in 

activities as low impact as standing, has also been shown to be anabolic to bone and 

has never been used in spaceflight.  LMHF mechanical loading has been shown to be 

effective in treating musculoskeletal pathologies in a number of subjects during research 

and clinical trials, including animals, children with musculoskeletal diseases such as 

cerebral palsy or muscular dystrophy, young women with low bone mass, and post-

menopausal osteoporotic women.  While several preclinical and clinical trials have 

demonstrated that LMHF mechanical loading affects bone formation in vivo, the target 

tissues of the mechanical load and underlying mechanisms mediating the responses are 

not known.    

 As such, this research project focuses on understanding how a LMHF 

mechanical load mediates prevention of bone loss in vivo and developing a 

countermeasure for microgravity-induced bone loss.  The objectives of the project are 

to analyze the cellular and molecular changes induced in osteoblasts by 

simulated microgravity or disuse and LMHF loading to identify potential targets 

for therapeutic interventions and to investigate the utility of a LMHF mechanical 

load in mitigating microgravity-induced bone loss.  The central hypothesis of the 

project is that simulated microgravity or disuse conditions induce bone loss by 

inhibiting expression of genes critical in regulating bone formation, osteoblast 

differentiation, and subsequent mineralization while a LMHF mechanical load 

prevents these effects.   

In these studies, we developed an in vitro system that simulates microgravity or 

disuse conditions using the Random Positioning Machine (RPM) to study the effects of 

 xxvii



disuse on 2T3 preosteoblast cells grown in gas-permeable culture disks.  Exposure of 

2T3 cells to the RPM for up to nine days significantly inhibited alkaline phosphatase 

activity (ALP), recapitulating a bone loss response as seen in spaceflight without altering 

cell morphology or proliferation.  Next, we carried out gene expression analysis using 

DNA microarrays to determine gene expression profiles of 2T3 cells exposed to the 

RPM for three days.  Among 10,000 genes examined with the microarray, 88 were 

downregulated while 52 were upregulated statistically significantly by disuse by more 

than two-fold in comparison to the static 1g control conditions.  We then verified the 

microarray data for select genes relevant in bone biology by using real time PCR assays 

and immunoblotting.   We confirmed that disuse downregulated levels of ALP, runt-

related transcription factor 2 (runx2), osteomodulin (OMD), and parathyroid hormone 

receptor 1 (PTHR1) mRNA, upregulated cathepsin K (ctsk) mRNA, and did not 

significantly affect bone morphogenic protein 4 (BMP4) and cystatin C protein levels.   

The Rotating Wall Vessel (RWV) and the RPM are the two most commonly used 

simulators of microgravity, but these simulators have not been systematically compared 

to each other or to mechanical stimulating models.  These comparisons are vital to 

validate their use in modeling a disuse phenotype.  In the ensuing studies, we 

hypothesized that exposure to RWV inhibits differentiation and alters gene expression 

profiles of 2T3 cells, and a subset of these mechanosensitive genes behaves in a 

manner consistent to the RPM and opposite to the trends incurred by mechanical 

stimulation of mouse tibiae. Exposure of 2T3 preosteoblast cells to the RWV for three 

days inhibited ALP activity, a marker of differentiation, and downregulated 61 and 

upregulated 45 genes by more than two-fold compared to static 1g controls, as shown 

by microarray analysis.  The microarray results were confirmed by real time RTPCR 

and/or immunoblots for seven distinct genes and proteins including OMD, runx2, and 

osteoglycin (OGN).  Comparison of the RWV data to the RPM microarray study that we 

 xxviii



 xxix

previously published showed 17 mechanosensitive genes that changed in the same 

direction.  Further comparison of the RWV and RPM results to independently published 

microarray data from mechanically loaded mouse tibiae revealed three genes including 

osteoglycin that were upregulated by mechanical loading and downregulated by disuse.   

Finally, in subsequent studies, we hypothesized that direct application of LMHF 

mechanical loading to osteoblasts alters their cell responses, preventing decreased 

bone formation induced by disuse or microgravity conditions.  To test our hypothesis, 

preosteoblast 2T3 cells were exposed to a disuse condition using the RPM and 

intervened with a LMHF mechanical load (0.1-0.4g at 30Hz for 10-60 min/day).  

Exposure of 2T3 cells to the RPM decreased bone formation responses as determined 

by ALP activity and mineralization even in the presence of a submaximal dose of BMP4 

(20ng/ml). However, LMHF mechanical loading prevented the RPM-induced decrease in 

ALP activity and mineralization. Mineralization induced by LMHF mechanical loading 

was enhanced by treatment with BMP4 and blocked by the BMP antagonist noggin, 

suggesting a role for BMPs in this response.  In addition, LMHF mechanical loading 

rescued the RPM-induced decrease in gene expression of ALP, runx2, OMD, PTHR1, 

and OGN.  These findings show that osteoblasts directly respond to LMHF mechanical 

loading to induce bone formation responses, potentially leading to normalization or 

prevention of bone loss caused by disuse or microgravity conditions. The 

mechanosensitive genes identified in this project may provide potential targets for 

pharmaceutical treatments that could be used in combination with low level mechanical 

loading to better treat osteoporosis, disuse-induced bone loss, or microgravity-induced 

bone loss.   

 

 



Chapter 1  

Introduction 
 

Bone Function 
 The average, mature adult skeleton is comprised of 206 bones, forming the 

framework of the human body.  The skeleton serves four primary functions: 1) 

mechanical support and locomotion, 2) vital organ protection, 3) blood cell production, 

and 4) mineral storage (40).  Mechanical support includes supplying a shape and frame 

while providing attachment points for muscles at joints, allowing locomotion.  Vital 

organs are protected by the strength and rigidity of specific bones, including the cranium 

covering the brain, the ribs and sternum cosseting the heart and lungs, and the vertebral 

column sheltering the spinal cord.  The marrow cavities of certain bones serve as 

housing for the body’s immune cells, hematopoietic stem cells, and mesenchymal stem 

cells.  These stem cells differentiate into a multitude of critical cells for the body, 

including red blood cells responsible for oxygen delivery and osteoblasts responsible for 

bone formation.  Lastly, bone acts as a reservoir for minerals such as calcium, sodium, 

magnesium, and phosphate ions.  Bone stores 99% of the body’s calcium and regulates 

its release to tissues that need it.  These minerals are needed for various processes, 

including blood clotting, cell signaling, and neural messaging (53).   

Bone Structure and Composition 
There are four types of bone including long, short, flat, and irregular.  Long bones, 

such as the tibia and femur, are longer than they are wide.  They are characterized by a 

central cylindrical shaft called a diaphysis flanked by two extremities composed of an 

epiphysis and metaphysis (Figure 1.1).  Carpals and tarsals are types of short bones, 

which are characterized as having approximately the same dimensions in all directions.  
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Figure 1.1 Anatomy of a long bone showing various characteristic components 
of bone, including the two epiphyses flanking the long cylindrical diaphysis   
(Ref: Image adapted from www.web-books.com) 

Flat bones, such as the cranium, have one dimension distinct from the other two and are 

thin, flattened, and usually curved.  Irregular bones comprise any bones that do 

correspond to the aforementioned categories, such as the vertebrae (53).    

 Morphologically, there are two types of bone called cortical (compact) and 

trabecular (cancellous) bone as shown in Figure 1.2 (40, 53).  Each type is distinguished 

macroscopically by its location in the whole bone tissue and microscopically by the 

orientation of mineral and collagen fibers.  Cortical bone primarily comprises the 

diaphysis of long bones and forms a thin outer wall of other bones. It is a dense, 

compact material, and at the microstructural level, it is organized with parallel structural 

units called osteons.  An osteon is a set of concentric lamellae formed from packed 

collagen fibrils, resembling the rings of a tree (Figure 1.3).  Cortical bone is 

predominantly accountable for the supportive and protective functions of the skeleton.   
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Figure 1.2 Architecture of bone showing near-solid cortical bone and porous 
trabecular bone (27)   

Figure 1.3 Microstructural features of cortical and trabecular bone showing the 
osteon, the building unit of cortical bone, and a rod and plate comprising the 
trabecula, the building unit of trabecular bone (27)  
(Portion of figure also from T. Eienhorn, 1994) 
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Its structure is designed to provide a high moment of inertia to resist bending and remain 

relatively lightweight.  In contrast, trabecular bone encompasses the metaphysis and 

epiphysis of long bones, interior of short bones, and the areas between the outer 

surfaces of flat bones.  It is a loosely organized, porous solid characterized by 

interconnecting units called trabeculae, which are composed of rods and plates of bones.  

These trabeculae form a lattice-like structure with a large surface area, allowing 

absorption and dissipation of energy when joints are loaded and serving as the principal 

site of bone’s metabolic functions (53).  Bones are equipped with the appropriate 

structural integrity, strength, stiffness, and fracture resistance properties, enabling the 

human body to withstand diverse physiologic loads and changes to those loads.   

 Bone is a composite material containing three main constituents:  mineral matrix 

(inorganic phase), organic matrix, and water.  The mineral phase comprises 65% of the 

bone tissue and encompasses calcium phosphate and calcium carbonate in the form of 

hydroxyapatite mineral.  The mineral in bone gives it strength and stiffness, primarily 

resisting compressive forces.  The organic matrix makes up 30% of the bone tissue and 

contains 95% collagen fibers, primarily type I collagen, and 5% of proteoglycans and 

non-collagenous proteins such as osteocalcin (OCN), osteopontin (OPN), bone 

sialoprotein (BSP), and osteonectin (12, 40).  Collagen fibers in the organic matrix act as 

reinforcement and provide ductility, fracture toughness, and tensile strength to bone 

tissue (48).  Water constitutes the remainder of bone at approximately 5% weight and is 

located within the collagen fibers, in the pores, and bound to the mineral phase.  

Although seemingly inert, water plays a role in defining the mechanical properties of 

bone.  Dehydrated bone samples have been shown to display increased strength and 

stiffness and decreased ductility (29, 41).   
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Bone Cell Types 
 There are four main cell types in bone:  osteoblasts, bone lining cells, osteocytes, 

and osteoclasts (Figure 1.4)  (2).  Together, these cells form and maintain bone so that it 

can maintain its properties and perform its functions as previously discussed.  

Osteoblasts, osteocytes, and bone lining cells originate from local osteoprogenitor cells 

while osteoclasts differentiate from hematopoietic stem cell lineage. Osteoblasts are 

differentiated cells accountable for deposition and mineralization of the bone matrix, and 

bone lining cells are flat, elongated, and inactive while covering the bone surface.  

Osteocytes are mature osteoblasts that have become embedded into the mineralized 

matrix and are responsible for tissue maintenance.  The cytoplasmic processes of 

osteoblasts propagate through the unmineralized matrix, called the osteoid, to the 

mineralized matrix and interact with osteocytes.  A single osteocyte occupies a small  

Bone Lining Cell Osteoclast 

Osteoblast 
Preosteoblast 

Mineralized 
Matrix 

Osteoid 

Osteocyte 

Figure 1.4 Bone is composed of multiple cell types to maintain skeletal 
homeostasis (2).  
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space called a lacuna and forms long, branching processes through the canaliculus, or a 

small channel, to contact another cell, such as an osteoblast.  In this way, cell-to-cell 

communication occurs, potentially creating a diverse and intricate network that is 

hypothesized to sense deformation and instigate bone remodeling.  Osteoclasts are 

large, multi-nucleated cells that resorb bone through dissolving the inorganic mineral 

matrix and enzymatically digesting the organic matrix.  An activated osteoclast rests 

directly on the cell surface and has two distinct plasma membrane characteristics:  a 

ruffled border and a clear zone.  The ruffled border is where the bone resorption takes 

place while the clear zone is a microfilament-rich, organelle-free area that serves as a 

point of attachment to the bone matrix (2).    

Bone Remodeling  
Bone is a live, dynamic tissue undergoing constant remodeling, and 

perturbations to this process lead to bone loss. Bone remodeling occurs throughout life 

in a series of steps known as:  1) Quiescence, 2) Activation, 3) Bone Resorption, 4) 

Reversal, and 5) Bone Formation (Figure 1.5) (2, 40).  During the quiescent phase, bone 

lining cells reside in the bone in an inactive state, and when bone remodeling begins, 

these cells secrete factors to recruit preosteoclasts to begin the activation phase.  The 

activated preosteoclasts then differentiate into osteoclasts, signifying the beginning of 

the bone resorption phase.  During this phase, osteoclasts close off portions of the old 

bone into areas called the Howship’s lacunae.  The large, multinucleated osteoclasts 

pump hydrogen ions into these areas to create an acidic environment for the lysozomal 

matrix metalloproteinases (MMPs) and cathepsins. These proteins first dissolve the 

hydroxyapatite mineral in the bone and then the organic matrix (2, 40).  Once the bone is 

resorbed, the osteoclasts migrate out, and osteoblasts enter the region to begin laying 

down the extracellular matrix with type I collagen and numerous noncollagenous  
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1. Quiescence 2. Preosteoclast   Activation 

 

3. Bone Resorption

 
4. Reversal: 

 
Osteoclasts migrate 

away; preosteoblasts 
differentiate 5. Bone Formation

 

Return to 
Quiescence  

Figure 1.5 Bone remodeling occurs through a series of five steps to adapt to 
changes in environment. 
(Ref: Image adapted from International Osteoporosis Foundation) 
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proteins such as OPN, osteomodulin (OMD), and osteonectin.  The osteoid is eventually 

mineralized by deposition of calcium salts in the form of hydroxyapatite to provide bone 

with rigidity (2). The cycle returns to the quiescent phase and repeats throughout life as 

needed.  As such, the new bone is called woven bone and is replaced by mature, 

lamellar bone by the process of remodeling (53).  Woven bone is characterized by 

randomly deposited collagen fibers, which become organized in lamellar bone, giving it a 

directed mineral phase and anisotropic properties (53).  The tightly coupled processes of 

bone formation and bone resorption in skeletal remodeling ultimately make bones 

structurally stronger (2, 40).   

The process of bone formation can occur in a number of contexts, including new 

bone on existing bone (appositional bone formation), within cartilage (endochondral 

ossification), and within an organic matrix (intramembranous ossification) (53).  

Appositional bone formation ensues during enlargement of bones during remodeling and 

growth.  In this type of formation, osteoblasts align on the existing bone surface, 

synthesizing osteoid in resultant layers forming bone lamellae.  Endochondral 

ossification occurs during embryonic formation of long bones and weight-bearing bones 

through pre-existing cartilage.  The cartilage cells called chondrocytes become 

hypertrophic and cause a cascade to resorb portions of the cartilage, creating marrow 

cavities.  Preosteoblast cells invade these cavities, differentiate, and form bone matrix 

on the mineralized cartilage.  Osteoclasts resorb the calcified cartilage, and bone 

remodeling replaces the immature bone with lamellar bone.  Intramembranous 

ossification occurs in the development of flat bones without a cartilage template.  This 

bone is formed directly from mesenchymal tissue, synthesizing an organic matrix that 

contains blood vessels, fibroblasts, and preosteoblasts.  The osteoprogenitor cells 

differentiate and form an osteoid layer, and trabecular bone structures form within the 
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tissue.  As the rods fuse, forming continuous plates, the woven bone is replaced with 

lamellar bone (53).   

Bone Loss Pathologies 
Bone loss occurs when there is an imbalance in the rate of bone formation and 

bone resorption, favoring the latter (Figure 1.6).  Many different perturbations can cause 

bone loss, including alterations in hormonal balance, microgravity exposure, prolonged 

bed rest, malnutrition, or old age.  Bone loss predominantly affects post-menopausal 

women because of sharp decreases in estrogen, which plays a role in inhibiting 

osteoclast function, and progesterone, which plays a role in stimulating osteoblast 

function.  This pathology can, however, affect women and men of any age as well.  The 

onset of bone loss is regarded as a condition called osteopenia, and when the bone loss 

reaches the point of fracture vulnerability, the condition is called osteoporosis.  

Osteoporosis is defined as a disease characterized by low bone mass and structural 

deterioration of bone tissue, eventually leading to bone fragility and an increased 

susceptibility to fractures.  Osteoporotic fractures usually affect load-bearing bones such 

as those in the hip, spine, and wrist.  According to the National Osteoporosis Foundation, 

an estimated 44 million Americans, or 55 percent of the people 50 years of age and 

older, have been diagnosed with osteopenia. Currently, there are approximately 10 

million individuals in the United States already diagnosed with osteoporosis, and of 

these, eight million are women and two million are men.  Bone loss leading to hip 

fractures or collapsed vertebrae severely lower the quality of life.  Moreover, about 20% 

of those who have hip fractures die from complications incurred after the reconstructive 

surgery, such as blood clot impediments and pneumonia.  Lastly, in many aspects, bone 

loss in spaceflight has been compared to age-related osteoporosis; however, the extent 

of bone mass loss due to spaceflight occurs in a shorter span of time than age-related  
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Figure 1.6 Normal bone (A) is composed of many connections between thick 
and healthy trabeculae while osteoporotic bone (B) is characterized by fewer 
connections of thinning trabeculae.  
(Ref: Physicians Desktop Reference: PDR Health) 
 

 

one loss where astronauts lose as much bone mass in one month as post-menopausal 

omen lose in one year (6).   

Further progress in multidisciplinary studies on bone composition, structure, 

unction, and diseases has significantly changed views on bone physiology (9). It is now 

nderstood that mechanical loading is not alone in altering the skeleton.  In addition to 

echanics, the skeleton is influenced by hormones, cytokines, nutrition, and genetic 

actors.  The current observations continually trigger research to answer the questions of 

hy and how bones adapt to their mechanical environment or how they change their 

tructure to meet the demands of increased loading such as in exercise or decreased 

oading such as in spaceflight.  Despite almost 50 years of human spaceflight and 

ountermeasure efforts, researchers are still deliberating why bone loss occurs in 
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spaceflight and how to best counteract it.  To date, there are no clear answers to these 

questions, and to continue and to expand development of countermeasures, scientists 

have ventured into studying these effects in ground-based systems.  Research in this 

field could also benefit other bone pathologies such as osteoporosis.   

Cellular Sense of Gravity 
In order to develop countermeasures against bone loss in spaceflight, it is 

important to understand how a cell actually senses gravity, which is not certain and 

poses a challenge to understanding the role microgravity plays in pathology.  Much of 

what is known regarding sensing gravity is in the plant cell.  Weight causes differential 

mass displacement, due to differences in masses among disparate organelles.  The 

cytoskeleton has traditionally been regarded as a mediator in the perception of gravity 

both in animals and plants (5, 18, 19, 31, 47).  In plants, the mechanism used to sense 

gravity is most likely through the movement of statoliths, which are the suspected 

gravitropic organelle in Lepidium roots, in specialized cells when an organelle is 

displaced from its natural orientation (15).  The concept of perception time is the 

minimum duration of the stimulation interval necessary to induce gravitropic bending of 

the plant root.  Hejnowicz, et al. stated that the shortest stimulation time was one second, 

and therefore, they assumed that the perception time was less than second (15).  The 

notion of perception time is important because it implies that the perception of gravity 

involves not only the magnitude of the gravity vector but also the constant alignment of 

the gravity vector for some minimal time.   

Spaceflight is a constant state of freefall about the Earth, thereby eliminating the 

effects of gravity.  Therefore, in spaceflight, cell signaling by gravitropic organelles is 

altered because there is no force displacing them to a specific gravity-dependent target 

for gravity-sensing signaling.  Thus, a method of continually changing the direction of the 
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gravity vector faster than the cell’s perception time may inhibit gravitropic responses.  As 

such, simulating microgravity or disuse under normal ground conditions by using devices 

such as the Random Positioning Machine (RPM) that rotate and move the gravity vector 

continuously are based on the hypothesis that sensing no weight would have similar 

effects as being weightless.  These devices, described in more detail below, are known 

as gravity vector-averaging systems. 

Ground-based Simulators of Microgravity or Disuse 
Many of the known space-inflicted pathologies have been the subject of research, 

and unfortunately, to date, they have not been adequately counteracted with dietary 

supplements (3, 14, 45) or rigorous exercise (22).  Accordingly, scientists have tried to 

simulate microgravity using Earth-based models to study the mechanisms that might be 

responsible for causing pathologies such as bone loss in astronauts (1, 23, 28, 38).   

Clinostats 
A clinostat is a device that rotates around at least one axis with a platform that 

has a small enough radial distance to minimize centrifugal forces.  Gravity still exists 

around the clinostat, but the gravity vector relative to the biological species on the 

clinostat continuously changes directions with the rotation.  Over time, the gravity vector 

averages to a net zero force relative to the specimen because it does hot have enough 

time to sense it.  The 2D clinostat, RPM, and the Rotating Wall Vessel (RWV) simulate 

microgravity or disuse by continuously moving the gravity vector, a method called 

gravity-vector averaging (Figure 1.7).  The pertinent variable in the system is the speed 

of the rotation, for the gravity vector must move before the cell gravireceptors have time 

to sense it (17, 39).  The dynamic stimulation of the gravity vector seems to displace the 

statoliths in the plant cells.  Cytoskeletal elements, especially microfilaments, seem to be 

key players in the gravity-dependent change of statoliths.  As the statoliths are displaced, 
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the cytoskeletal tension is disrupted, which alters the chain of cellular events leading to 

gravity-dependent responses (19, 47).   

Hindlimb Unloading (HLU) 
 

The animal hindlimb unloading (HLU) model has been used to partially mimic 

aspects of microgravity exposure such as removal of skeletal weight-bearing loads and 

the cephalic fluid shift (Figure 1.8).  The hindlimbs are unloaded while the forelimbs 

remain loaded and used as internal controls.  The head-down tilt from raising the 

hindlimbs provides the cephalic fluid shift seen in spaceflight.  The HLU system applies 

minimal stress on the animal as noted by normal weight gain and eating habits of 

acclimated animals compared to controls (26).  In comparison to spaceflight, the HLU 

model causes skeletal changes similar to spaceflight, with a few differences.  Muscle 

atrophy occurs in both spaceflight and HLU in only load-bearing muscles, and the HLU 

model is most accurate and useful in studying the response of the skeleton to short 

duration spaceflight.  Bone formation in rats seems to correct itself back to the level of 

control during long term HLU exposure, but in spaceflight, bone formation seems to 

remain suppressed until weeks to months upon return to Earth.  It is also important to 

note that the entire body is unloaded in spaceflight whereas only the hindlimbs are 

unloaded in this model (25, 26).     

Bed Rest 
The bed rest studies are currently the only human-based ground analog to 

microgravity or disuse (Figure 1.9).  Subjects are required to remain in bed at a 6-degree 

head-down tilt from weeks to months in time.  Subjects perform all daily functions 

including eating and sleeping in bed, and cameras are placed in discreet places to 

ensure that subjects do not deviate from the protocol.  In comparison to spaceflight, 

bone and mineral loss are site-specific phenomena in both studies.   In addition, as  
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B. RPM

RR

A. RWV

Figure 1.7 Clinostats that simulate microgravity or disuse conditions shown 
here are the Rotating Wall Vessel (A) and Random Positioning Machine (B) (30) 

 

Figure 1.8 Animal hindlimb unloading (HLU) model showing a rat in a cage 
equipped with a rotary clip such that the hindlimbs are raised and forelimbs 
allow ambulation 
(Ref: www.scielo.br)  
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bone is lost, there is a risk of kidney stones from increased urinary calcium excretion.  

Furthermore, muscles in the calf shrink up to 30% within a few months accompanied by 

a 50% decrease in strength.  The headward shift of blood and other fluids mimics the 

cephalic fluid shift observed in spaceflight, and after approximately one day, the body 

adapts to the increased volume by increased urination, as also detected in spaceflight.  

Additionally, bed rest subjects develop a mild vertigo, causing nausea and dizziness.  

Microgravity is known to alter the neurovestibular system, where sensors in the ears and 

nerves in the soles of the feet are unbalanced, causing nausea and dizziness (20).    

Figure 1.9 Human bed rest with head-down tilt showing 6 degree downward 
inclination 
(Ref: Cleveland Clinic Lerner Research Institute, P. Cavanagh)  
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Countermeasures for Bone Loss: Current Status and Prospective 

Exercise 
Exercise has been the primary countermeasure to combat many of the 

pathologies induced by microgravity, including musculoskeletal alterations.  It has long 

been recognized that exercise is beneficial to both muscles and bones, increasing their 

strength and size (11, 43, 46).  When a clinical study of young, college-aged women was 

performed evaluating the effects of exercise, it was found that bone mineral density 

(BMD) of the spine increased in women who performed aerobic activity and in those who 

lifted weights.  Additionally, improvements were seen in their back and leg muscles (43).   

Exercise in spaceflight is not identical as on Earth since the loss of the force due 

to gravity yields no reaction force during movement.  Therefore, exercise in spaceflight 

has been centered mainly on elastic-type machinery to load the muscles and bones of 

the body using devices such as bungee cords as early as the Gemini flights of the 1960s.  

Exercise machinery progressed to an adapted treadmill and bicycle as early as the 

Skylab missions of the 1970s, and updated machinery is still used today on the 

International Space Station (ISS).  However, exercise has not been an adequate 

countermeasure for bone and muscle loss since astronauts continue to lose skeletal 

mass (6).  Therefore, to defy the pathological changes induced by microgravity on the 

skeleton, distinct countermeasures must be developed targeting specific changes in 

bone cell adaptation.    

Nutrition and Supplementation 
 Nutritional countermeasures have been integrated into crew meals, but the 

supplementations have not mitigated bone loss.  Despite vitamin D and multivitamin 

intake, post-flight serum levels of 25-hydroxycholecalciferol (25(OH)-D3) were lower 

than pre-flight values for astronauts from the Skylab missions (24, 42).  In another study, 

astronauts from the ISS consumed a vitamin D supplement for an average of five times 
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per week and a multivitamin for approximately three per week.  These 11 astronauts had 

approximately 25% less serum vitamin D post-flight compared to pre-flight (42).  The 

combination of calcium and vitamin D did not mitigate bone loss in astronauts because 

neither compound countered the increase in bone resorption or decrease in bone 

formation (4, 16, 54).  Another vitamin that plays a role in bone health is vitamin K, which 

is involved in forming γ-carboxyglutamic acid (GLA) proteins such as osteocalcin (OCN) 

in the extracellular matrix of bone.  An independent study showed that vitamin K 

supplementation during spaceflight increased urinary GLA excretion and lowered the 

secretion rate of undercarboxylated OCN.  These data suggest that vitamin K is altered 

by spaceflight and that supplementation with vitamin K may be useful for astronauts 

since it counteracts the decrease in bone formation marked by decreased 

undercarboxylated OCN and bone specific alkaline phosphatase (ALP) (4, 45).  However, 

vitamin K did not counteract the increased bone resorption as marked by the absence of 

an effect on type 1 collagen C-terminal telopeptide (44, 45). Although there seems to be 

promising benefits of vitamin K on bone health, there are limitations to supplementation 

of vitamin K because of its classical role in coagulation (50, 51).   

 In summary, the limited data available on nutrition show that the nutritional status 

of the astronauts changes in spaceflight.  The dietary intake of specific vitamins or a 

multivitamin alone or in combination with an exercise regime is currently unable to 

mitigate bone loss.   

Low magnitude and High Frequency (LMHF) Mechanical Loading  
Julius Wolff (1892) was the first to suggest that stress imparted to bone impacted 

its architecture (52), and Harold Frost (1987) elucidated the role of a mechanical 

stimulus to bone (10).  Frost defined a minimum effective strain that was required from a 

mechanical stimulus in order to stimulate bone adaptation, and he defined the 
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Figure 1.10 A low magnitude and high frequency (LMHF) platform (A) applies 
tiny vertical oscillations, where the magnitude of the load is characterized from 
the peak-to-peak value of each waveform (B). 

mechanostat as the biological machinery that determines bone strength (7-9).  Therefore, 

it has long been regarded that mechanical stimuli are anabolic to bone.  High magnitude, 

low frequency impact such as running has been recognized to increase bone and 

muscle mass (11, 43, 46).  However, the opposite stimulus at a low magnitude (0.3g 

where 1g is Earth’s gravitational field) and high frequency (30-90 Hz) (LMHF) is 

experienced in activities as low impact as standing (33).  Figure 1.10 shows the platform 

(A) that applies these frequent oscillating acceleration and deceleration signals (B) to the 

subject upon it.  The notion of stimulating bone formation or inhibiting bone resorption in 

patients with musculoskeletal diseases such as cerebral palsy and muscular dystrophy 

(13, 49), osteopenia (37), and post-menopausal osteoporosis (32) with a LMHF 

mechanical signal is a new, non-invasive treatment.  It has been shown through animal 

and clinical trials that a LMHF mechanical stimulation is anabolic to bone (21, 32, 34-36, 

49).  Although not yet experimented in spaceflight, this potential osteoporosis 

countermeasure may provide benefit to the musculoskeletal system in a non-invasive 

manner for microgravity-induced bone loss. 

A B 
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Chapter 2 

Specific Aims 
 

Project Significance 

Musculoskeletal pathologies associated with decreased bone mass, including 

osteopenia, osteoporosis, disuse-induced bone loss, and microgravity-induced bone loss, 

affect millions of Americans annually.  According to the National Osteoporosis 

Foundation, 10 million Americans currently suffer from osteoporotic bone loss while 34 

million more are estimated to have osteopenia, or low bone mass, a strong risk factor for 

osteoporosis.  Bone loss is particularly dangerous since it is typically asymptomatic and 

can lead to fractures of any bone, most usually those in the hip, spine and wrist (2).  In 

the US alone, there are approximately 1.5 million fractures annually due to osteoporosis 

(www.nof.org).  Additionally, bone loss occurs in spaceflight, rendering astronauts at-risk 

for fractures during long term space travel.  Despite health implications, it is still a 

national and international interest to continue and to expand human-based space 

exploration.  As such, it is imperative to develop countermeasures for bone loss in space.  

On average, astronauts lose 1-2% of bone mass per month during space missions (6), 

losing 6-12% in a typical six month International Space Station (ISS) mission.  While 

many pharmaceutical treatments have slowed osteoporosis, there is still no 

countermeasure that can effectively mitigate bone loss observed in astronauts.   

It has long been regarded that mechanical stimuli are among the many factors 

that are anabolic to bone as shown in Figure 2.1.  High magnitude, low frequency impact 

has been recognized to increase bone and muscle mass (1, 9, 10) under normal but not 

microgravity conditions.  However, the opposite stimulus, a low magnitude and high 

frequency (LMHF) mechanical load experienced in activities as low impact as standing, 
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has also been shown to be anabolic to bone but has never been used in spaceflight.  

The LMHF mechanical load has been shown to be effective in treating musculoskeletal 

pathologies in a number of subjects during research and clinical trials, including animals 

(8), children with musculoskeletal diseases such as cerebral palsy or muscular 

dystrophy (4, 11), young women with low bone mass (3), and post-menopausal 

osteoporotic women (7).  While several preclinical and clinical trials have demonstrated 

that the LMHF mechanical loading normalizes bone loss in vivo, the target tissues of the 

mechanical load and underlying mechanisms mediating the response are not known.    

 

Determinants of Skeletal Homeostasis 

Physiologic determinants

Pharmacologic 
determinants 

Figure 2.1 The determinants of skeletal homeostasis include many different 
factors, including physiologic aspects such as mechanical loads that instigate
bone formation while ageing and disuse promote bone resorption (5). 

 25



Project Objectives and Hypothesis 

This research project focuses on understanding how a LMHF mechanical load 

mediates prevention of bone loss in vivo and developing a countermeasure for 

microgravity-induced bone loss.  The objectives of the project are to analyze the 

cellular and molecular changes induced in osteoblasts by simulated microgravity 

or disuse and LMHF loading to identify potential targets for therapeutic 

interventions and to investigate the utility of a LMHF mechanical load in mitigating 

microgravity-induced bone loss.  The central hypothesis of the project is that 

simulated microgravity or disuse conditions induce bone loss by inhibiting 

expression of genes critical in regulating bone formation, osteoblast 

differentiation, and subsequent mineralization while a LMHF mechanical load 

prevents these effects.  A LMHF mechanical loading platform has counteracted bone 

loss in both animal and human clinical trials.  However, the mechanisms by which the 

low magnitude loading instigate an osteogenic response or whether it promotes an 

anabolic response in a microgravity setting has not been shown.  
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OVERALL HYPOTHESIS 
LMHF LoadingDisuse

Gene Expression

Differentiation Mineralization

Bone Formation

BONE LOSS

Figure 2.2 Project hypothesis conjecturing that microgravity or disuse causes 
bone loss through molecular alterations of osteoblasts while a low magnitude 
and high frequency (LMHF) mechanical loading intervention prevents bone loss
through promoting osteoblast function  
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Specific Aims 

The central hypothesis of this project will be tested with three specific aims, as 

follows:     

Specific Aim 1: To determine the effect of simulated microgravity or disuse on cell 

differentiation and mineralization of mouse calvarial 2T3 preosteoblasts 

Working Hypothesis: Microgravity or disuse inhibits genes necessary for preosteoblast 

cell differentiation and subsequent mineralization.     

Specific Aim 1 
 

 2T3 
Preosteoblasts ALP 

Gene Expression 
Mineralization 

Figure 2.3 General experimental layout for specific aim 1  
(Ref: Picture of Opticell from Opticell, Inc) 
 

As shown in Figure 2.3, preosteoblast cells plated in Opticells will be exposed to 

simulated microgravity or disuse conditions using the Japanese-designed and 

European-manufactured Random Positioning Machine (RPM) and assessed for markers 

of bone formation.  Alkaline phosphatase (ALP) is an enzyme that is expressed early in 

osteoblast differentiation while mineralization is a late in vitro marker of bone formation.  

Several genes also are expressed during osteoblast differentiation, including parathyroid 

hormone receptor 1 (PTHR1), osteomodulin (OMD), and runt homology domain 

transcription factor 2 (runx2).  In this aim, various markers will be evaluated to determine 

if the decreased bone formation observed in spaceflight can be recapitulated using the 

RPM system.  Most importantly, a high throughput DNA microarray will be performed to 

evaluate alterations in gene expression in 2T3 cells due to RPM exposure, providing the 

first systemic gene expression study performed under disuse conditions.    
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Specific Aim 2:  To compile a list of selected genes that change upon exposure to 

simulated microgravity or disuse conditions 

Working Hypothesis:  Microgravity or disuse alters gene expression profiles of 2T3 

preosteoblasts consisting of critical genes regulating osteoblast differentiation and 

mineralization.   
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Comparative Studies

2.4 General experimental layout for specific aim 2  
ure of cells on microcarriers from Solohill Engineering) 

There are many simulators of microgravity used in the field, although the validity 

obtained from them is often rigorously questioned.  The most substantial criticism 

er the simulators accurately replicate changes observed in spaceflight or disuse.  

 is difficult to currently perform scientific experiments in actual spaceflight, it is 

 to compare the various ground-based simulators to each other and to the small 

 of gene expression available from past spaceflight experiments.  The NASA-

d simulator of microgravity called the Rotating Wall Vessel (RWV) is employed 

ntly in the United States in studying various pathologies and tissue engineering.  

icted in Figure 2.4, 2T3 preosteoblast cells plated on microcarriers will be 

d to RWV simulated microgravity, and the results will be compared to those of the 

The critical information gained here will be a confined list of genes that change 

two models of simulated microgravity or disuse conditions.  This confined list of 

will provide a group of target genes from which to continue molecular-based 
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Specific Aim 3:  To determine whether LMHF mechanical loading prevents 

microgravity- or disuse-induced decrease in bone formation 

Working Hypothesis: LMHF mechanical loading prevents decreased bone formation 

responses caused by the RPM.   

Specific Aim 3 
2T3 

Preosteoblasts ALP 

± Mineralization 
Gene Expression

Figure 2.5 General experimental layout for specific aim 3  
(Ref: Picture of Opticell from Opticell, Inc) 

It is classically recognized that high magnitude and low frequency signals such 

as in exercise benefit the musculoskeletal system by maintaining bone density.  

However, a LMHF mechanical loading, which characterizes the load that muscles apply 

to the skeleton during activities such as standing, has also been shown to slow bone 

loss in post-menopausal women, young women with low bone mass, and various animal 

models.  However, the mechanism by which LMHF mechanical loading elicits an 

anabolic response is not known because cellular and molecular studies have not been 

performed.  As illustrated in Figure 2.5, 2T3 cells plated in Opticells will be exposed to 

the RPM and intervened with a daily LMHF loading treatment.  Markers of bone 

formation such as ALP, mineralization, and gene expression will be evaluated to assess 

the utility of the LMHF platform in alleviating microgravity-induced bone loss.  More 

importantly, in vitro experiments will provide the means to begin studying molecular 

changes induced by a LMHF mechanical loading, and future therapies may be 

developed by combining the platform with pharmaceutical treatments based on 

molecular targets from this research to better treat bone loss due to osteoporosis, disuse, 

or microgravity.   
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Chapter 3 

Evidence of Bone Loss and Alterations in Gene 
Expression in Spaceflight and Disuse 

 

Summary 
Significant evidence of bone loss in microgravity is available from early 

spaceflight experiments and from observations on current astronauts and cosmonauts. 

However, spaceflight is infrequent and expensive to study the biomedical effects of 

microgravity on the human body. Thus, it is critical to have adequate in vitro and in vivo 

ground-based models to simulate the effects of microgravity or disuse environments.  

Currently, the most commonly used in vitro simulators of microgravity or disuse are 

clinostats while in vivo simulators include the human-based bed rest studies and animal-

based hindlimb unloading experiments.  Despite the numerous studies that have marked 

a bone loss phenotype in wide ranges of multiple crew members, this pathology remains 

in astronauts without any effective countermeasures.  Development and implementation 

of adequate countermeasures is hampered because little is known regarding the 

molecular changes regulating bone loss in microgravity.   Recently, researchers have 

begun to investigate the molecular alterations in response to both spaceflight, simulated 

microgravity, and disuse, and it is believed that future prophylactic and therapeutic 

approaches may be directed towards specific molecular targets.  In this chapter, we 

review data showing a bone loss phenotype in spaceflight, bed rest, hindlimb unloading, 

and clinostats.  Additionally, we review the limited data on gene expression changes in 

each of these environments.   
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Bone Loss Response in Microgravity or Disuse 

Spaceflight  
It is well documented that spaceflight induces a decrease in bone mass in 

animals and humans after prolonged stay in space.  In rodent animal studies, it has been 

shown that 17 days of spaceflight altered the biomechanics of femur bones, mostly 

concentrated on tissue properties rather than bone structure (47).  Spaceflight did not 

affect maximum stress capability of the femur but did decrease the flexural rigidity 

compared to ground controls (47).  There was no change in cortical bone mass, but 

endocortical bone resorption was decreased along with a trend towards decreased bone 

formation (47).   To test whether changes in bone due to spaceflight exposure could 

impact ossification of new bone, growing rats were exposed to 11 days of spaceflight.  

There was no change in the width or longitudinal growth rate of the tibial growth plate 

(43).  Other studies have shown that 16 days of spaceflight decreased mineral content in 

the distal section of the femur diaphysis, which correlated to reduced type I collagen (1).  

In some of the earliest observations of spaceflight, it was found that after nearly 20 days 

in space, rats suffered a drastic decrease in periosteal bone formation with no change in 

bone resorption (36).  After 26 days of post-flight, the loss of bone mass was regained 

(36).  This phenomenon was observed in another flight where rats exposed to nearly 19 

days of spaceflight experienced an inhibition of periosteal bone formation in the tibial 

and humeral diaphyses and subsequent correction post-flight (53).  These results 

suggest that spaceflight alters bone remodeling in animal models.   

There is a vast amount of individual variation among the data available in human 

studies because of a relatively small sample size, leaving it difficult to draw definitive 

conclusions.  However, a few patterns remain fairly consistent through the years of 

human-based spaceflight, namely an increase in bone resorption and decrease in bone 

formation.  In the Mir missions, one cosmonaut experienced a 7.74% decrease in bone 
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mass of the calcaneus by one month as well as 2.27% in the tibial trabecular bone, as 

measured by broadband ultrasound attenuation (BUA) (14). After six months exposure 

to microgravity, another cosmonaut lost 4.5% of trabecular bone and 2.9% of cortical 

bone in the tibia compared to measurements before launch (14).  After six months of 

return to Earth’s gravitational field, there was no difference between pre-flight and post-

flight bone mass in the cortical bone and still a 2.55% decrease in the trabecular bone 

mass, suggesting a site-specific partial recovery (14).  Both cosmonauts showed a trend 

toward decreased bone formation markers, including osteocalcin (OCN), bone alkaline 

phosphatase (ALP), and the C-terminal peptide of pro-collagen type 1 (PICP) during 

spaceflight.  There was an increase in PICP and a decrease in OCN post-flight (14).  

Additionally, there was a trend towards an increase in two bone resorption markers 

during flight (14). One of the Mir missions consisting of four European astronauts 

showed no change before, during, and after launch in stress-related hormones insulin 

growth factor 1 (IGF-1) and cortisol in three astronauts while one experienced an 

increase in cortisol before launch (11).  Figure 3.1 shows a summary of bone mineral 

density (BMD) data for over 17 astronauts in various locations of the skeleton (27).  In 

another study, parathyroid hormone (PTH) decreased during flight compared to pre-flight 

levels in one astronaut (Figure 3.2). Initially during post-flight, PTH remained within the 

normal range and then sharply increased for a short time, eventually returning to normal 

levels.  In another astronaut, PTH did not change during flight but increased above 

normal range after flight and returned to normal levels after one week (11).  Additionally, 

bone resorption can be marked by the breakdown of collagen, including the products N-

telopeptide (NTX), pyridinium (PYD), and deoxypyridinoline (DPD).  In these astronauts, 

bone resorption markers were increased, with the exception of pyridinium, during flight 

compared to pre-flight.  These markers decreased post-flight, with the exception of one 

astronaut who experienced a sharp, unexplainable increase in pyridinium (11).  In more 
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Figure 3.1 Average BMD and lean muscle data for over 16 astronauts for 
various locations of the musculoskeletal system (27).    
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Figure 3.2 Spaceflight decreased various bone formation markers in two 
astronauts (45).   
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 recent spaceflight missions aboard the International Space Station (ISS), seven of eight 

cosmonauts experienced decreased BMD in the range of 2.5-10.6% in the lumbar 

vertebrae.  All eight cosmonauts experienced a loss of total BMD in the range of 3-10% 

in the femur and four of the eight had 1.7-10% loss in the femoral neck (26).  In another 

study on astronauts from the Skylab missions, there was an increase in bone resorption 

markers due to exposure to spaceflight for 28-84 days.  As shown in Figure 3.3, there 

was a steady increase in urinary excretion of collagen breakdown products during 

spaceflight and a recovery after landing (45).   

N-telopeptide cross-links Pyridinium (PYD) cross-links 

Deoxypyridinoline (DPD) cross links 

N-telopeptide cross-links Pyridinium (PYD) cross-links 

Deoxypyridinoline (DPD) cross links 
Figure 3.3 Spaceflight increased various bone resorption markers during long 
term spaceflight missions (45).   

While long term spaceflight poses the most imminent danger to astronauts, some 

short term spaceflight missions have also induced changes in skeletal remodeling.  A 

mission of 8-15 days induced a 3% decrease in the lumbar vertebrae BMD while the 
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BMD increased in the calvarius post-flight compared to pre-flight (32).  Both astronauts 

experienced urinary calcium excretion after flight compared to pre-flight, which 

eventually corrected itself, but calcium regulators such as PTH, calcitriol, and calcitonin 

did not change (32).  Elevated bone resorption markers were observed in the urine, and 

bone formation, as marked by total and bone-specific ALP, decreased in both astronauts 

one week after flight (32).  There was no significant change in total BMD over the whole 

body by x-ray measurements in both astronauts, but a trend towards a decrease in 

lumbar spine and increase in the calvarius BMD were observed (32).  Perhaps, these 

observations could be due to redistribution of bone formation due to microgravity and 

may be related to the cephalic fluid shift associated with spaceflight.    

These reported results suggest that regardless of significant individual variability 

in the astronauts’ physiological response to microgravity, there is a pattern of an 

increase in bone resorption and a decrease in bone formation, leading to site-specific 

loss of bone mineral density.   

Bed Rest Studies 
Bed rest studies are currently the only human-based ground analog to 

microgravity.  Subjects are required to remain in bed at a 6-degree head-down tilt from 

weeks to months in time.  Subjects perform all daily functions including eating and 

sleeping in bed, and cameras are placed in discreet places to ensure that subjects do 

not deviate from the protocol.   

A potential countermeasure for microgravity-induced alterations in the 

cardiovascular system consists of treadmill exercise in a lower body negative pressure 

(LBNP) chamber.  A LBNP environment creates a hypergravity load on the lower body, 

causing both mechanical and cardiovascular adaptation, and it is used to simulate 

orthostatic stress by unloading of the arterial and cardiopulmonary baroreceptors (9).  
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This countermeasure has recently been evaluated on bone response in identical twins.  

In one study using male identical twins, collagen cross-links and serum and urinary 

calcium concentrations, both measurements marking bone resorption, increased during 

30 days of bed rest in non-exercise control subjects compared to the LBNP group as 

shown in Figure 3.4 (44).  There was a smaller increase in pyridinium collagen cross-

links above pre-bed rest levels in the LBNP group compared to the increase in the 

control group.  In this study, there was no change in the markers of bone formation in 

both groups (44).  They concluded that LBNP exercise partially mitigated bone loss as 

marked by decreased bone resorption (44).  In a follow up study, female identical twins 

were subjected to similar conditions.  Bone resorption markers were excreted in both 

control and LBNP groups throughout the 30 days of bed rest, and bone formation 

markers showed either no significant change or a tendency towards decreased 

expression (60).  The exercise group showed less urinary calcium and helical peptide 

excretion than the control group, and the BMD in the femoral shaft and total hip was not 

different in the exercise group after bed rest compared to their pre-bed rest values while 

the control group had decreased BMD (60).  Therefore, LBNP had a smaller protective 

effect on bone mass loss in women than men, signifying that the impact of disuse may 

be gender-specific.  In another study, ten healthy males were exposed to 35 days of bed 

rest and five additional males were control subjects.  In this study, subjects experienced 

decreased muscle strength in the knee and hip, and bed rest caused atrophy in the 

extensor muscles of the gluteus, thigh, calf, and knee.  Bone density was decreased in 

the proximal tibia and was not recaptured after four weeks of recovery time that included 

exercise.  However, muscle mass and strength was partially recovered by exercise after 

four weeks (4).   
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Figure 3.4 Effects of bed rest and LBNP on urinary excretion of bone resorption 
markers after 30 days exposure.    Bed rest control (square) group showed higher 
levels of excretion than LBNP (triangle) group (44).   
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          In comparison to spaceflight, mineral loss and regional bone loss is similar in both 

environments.  As bone is lost, there is a risk of kidney stones from the increased urinary 

calcium excretion in both bed rest and spaceflight (23).  The headward shift of blood and 

other fluids mimics the puffy faces seen in spaceflight, and after approximately one day, 

the body adapts to the increased volume by increased urination, as also observed in 

spaceflight.  Additionally, bed rest subjects develop a mild vertigo, causing nausea and 

dizziness.  Spaceflight microgravity is known to alter the neurovestibular system, where 

sensors in the ears and nerves in the soles of the feet are unbalanced, causing nausea 

and dizziness (23).    

Hindlimb Unloading (HLU) 
The rodent hindlimb unloading (HLU) animal model has been used to partially 

mimic aspects of microgravity exposure such as removal of skeletal weight-bearing 

loads and cephalic fluid shift.  The hindlimbs are unloaded while the forelimbs remain 

physiologically loaded and used as internal controls.  The head-down tilt from raising the 

hindlimbs provides the cephalic fluid shift, mimicking the situation observed in 

spaceflight.  The HLU system applies minimal stress on the animal as noted by normal 

weight gain and eating habits of acclimated animals compared to controls (34).   

One HLU study showed a small increase in serum calcium and a decrease in 

1,25-dihydroxyvitamin D, and the levels returned to control after 5-15 days of unloading 

(19).   There was no change in PTH in the serum in response to unloading (17, 19).  The 

changes in fat-free bone mass depended on the type of bone, where unloading reduced 

the weights of both the tibia and vertebrae in the lumbar spine but not the humerus or 

vertebrae of the cervical spine (18).  These findings suggest a decrease in calcium 

content of the bone (18, 49), and the mineralized matrix of the unloaded bones appeared 

to be more immature than control bones based on density-gradient fractionation studies 
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(5). The decrease in bone mass was most likely due to a combination of changes in both 

bone formation and bone resorption.  An indicator of bone formation is the radius of the 

periosteum, and this marker decreased with HLU.  However, in these HLU studies, the 

radius of the endosteum did not change, marking the absence of a change in bone 

resorption (17, 48).  HLU decreased the number of osteoblasts in the metaphysis of the 

tibia after five days, but this change was normalized by 14 days (19, 29, 52).  

Subsequently, there was a decrease in trabecular bone volume by 14 days of HLU in 

multiple independent studies as represented in Figure 3.5 (8, 19, 30, 50, 52).  These 

data suggest that HLU-related changes in rodents are partially due to changes in 

osteoblast function.  However, after 14 days of unloading, there was no change in ALP 

activity (29), but the mRNA levels for transforming growth factor β-2 (TGFβ2), insulin-like 

growth factor 2 (IGF2), and osteopontin (OPN), all markers of bone formation, 

decreased in an independent study (58).  There have been conflicting reports regarding 

HLU effects on osteoclast regulation and activity, depending on animal weight changes.  

If there was no difference between control and HLU animal weight, there was no change 

in bone resorption (19, 28, 30).  However, if there was a change in weight, osteoclast 

activity increased (49, 50, 52).   

Taken together, despite the variability among independent studies, these data 

show a pattern of bone loss induced by animal HLU.  Comparison with spaceflight data 

shows that the HLU model causes skeletal changes similar to spaceflight, with few 

differences (6, 7, 50).  The model is most accurate and useful in studying the response 

of bone in short duration spaceflight.  Spaceflight and HLU both decrease bone strength 

(31, 46), and reloading triggers bone formation rates to return to control both after 

stimulus exposure.  Additionally, the model induces a similar cephalic fluid shift as 

observed in spaceflight.  Although there is a significant similarity in the functional and 
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structural changes in spaceflight and in HLU, it is important to note that spaceflight 

unloads the entire body whereas this model only unloads the hindlimbs (34, 35).     

Figure 3.5 Effects of HLU on BMD in the cortical and trabecular (cancellous) 
bone in the tibia (A), humerus (B), and femoral neck (C).  *HLU (gray bar) 
significant compared to 0 day control (black bar), +HLU (gray bar) significant 
compared to 28 day control (black bar) (8) 

Clinostats 
A clinostat is a device that rotates around at least one axis with a platform that 

has a small enough radial distance to minimize centrifugal forces.  Gravity still exists 

around the clinostat, but the gravity vector relative to the biological specimen on the 

clinostat is changing directions with the rotation.  Over time, the gravity vector averages 

to a net zero force (20, 22), a method called gravity-vector averaging.   The Random 
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Positioning Machine (RPM) and the Rotating Wall Vessel (RWV) are the two most 

commonly utilized clinostats for ground-based studies.   

Both the RWV (38, 40, 51, 57) and the RPM (37, 39, 40) have been previously 

used by various groups to assess the effects of microgravity or disuse on bone cells as 

well as on other cells and tissue constructs.  Various markers of bone formation have 

been assessed using the two simulators, including ALP, osteocalcin (OCN), matrix 

mineralization, and runt homology domain transcription factor (runx2).  ALP, OCN, and 

matrix mineralization have been shown to decrease after exposure to the RWV in 

primary mouse calvariae (57), and ALP, runx2, and OCN decreased in human 

mesenchymal stem cells (hMSC), MC3T3 mouse pre-osteoblasts, and 2T3 mouse pre-

osteoblasts compared to static controls (38, 40, 57).  In contrast, in ROS.SMER #14 rat 

osteoblast cells, RWV induced an increase in ALP and OCN expression (41), signifying 

the dependence of clinostat results on species and cell type.  Many of these results are 

comparable to findings obtained with the three dimensional (3D) clinostat.  For example, 

ALP, runx2, and mineralization have been shown to decrease with exposure to the 3D 

clinostat compared to static controls as represented in Figure 3.6 (37, 39, 56).   There 

are a limited number of studies on bone resorption and clinostats.  One study exposed 

preosteoclasts to the RPM and found an increase in apoptosis and differentiation into 

osteoclast-like cells due to RPM exposure compared to static control (33).  Using 

reverse transcriptase polymerase chain reaction (RTPCR), they found elevated 

expression of osteoclast markers, including receptor activator of the nuclear factor κB 

(RANK) and its ligand (RANKL) (33).   

Despite conflicting results, these studies show that the ground-based simulators 

closely mimic changes observed in astronauts after spaceflight by showing an inhibition 

of osteoblast differentiation and matrix mineralization and increased differentiation into 

osteoclast-like cells.  These investigations partially validate the use of the clinostat 
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experimental systems for studying changes associated with the exposure to microgravity. 

In general, accumulated knowledge from spaceflights and experiments on Earth 

demonstrate certain patterns of skeletal tissue response to real and modeled 

microgravity that constitute a specific bone loss phenotype, implying possible changes at 

the genomic level.   

Figure 3.6 The 3D clinostat (Group CL) decreased ALP and mineralized nodules 
compared to control (Group C) in human osteoblasts.  Cells were enlarged and 
bulged in the clinostat group (E vs A) on day 1, and bone nodules formed by day 12 
in the control (C and D) but not clinostat group (G and H).  ALP activity was detected 
by day 7 in control (B) but not in the clinostat group (F) until day 20 (H) (56). 
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Alterations in Gene Expression in Microgravity or Disuse 

Spaceflight 
Although it is extremely difficult to design and conduct gene expression studies 

on humans and animals in space, there is some evidence of gene alterations in animal 

and cell culture after spaceflight.  However, there has been no large-scale gene 

expression study performed on samples from spaceflight exposure.   

In animal studies, after 11 days of spaceflight, there was a significant reduction in 

the mRNA levels for aggrecan and a trend towards reduced type II collagen, both 

members of the skeletal extracellular matrix, in rat tibia (43).  Additionally, spaceflight 

transiently increased mRNA expression of IGF-1, insulin-like growth factor receptor 1 

(IGF-1R), ALP, and decreased OCN (7).  The rise in ALP countered with the decrease in 

OCN may suggest decreased bone maturation over time.  The changes in IGF-1 and its 

receptor may indicate compensation by the animal to decreased bone formation.  Here, 

the authors concluded that spaceflight altered the pattern of gene expression in rat, 

resulting in a less mature genomic profile (7).  In an independent spaceflight study, after 

ten days of exposure, there was no change in ribosomal RNA or glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), and after four days, there was decreased actin in 

the muscles of growing rats (2).  In the long bone and calvarial periosteum, both four day 

and ten day spaceflight decreased OCN and type I pro-collagen (2).  In another 

spaceflight study for 14 days, there was a decrease in mRNA levels for GAPDH and 

OCN in the proximal metaphysis and in osteonectin and type I collagen in the distal and 

proximal metaphysis compared to ground controls (16).  There was no change in any of 

these proteins in the diaphysis or distal epiphyses (16).  This study shows that 

spaceflight induces a decrease in bone formation markers in a site-specific manner.   

In cellular studies, MC3T3 preosteoblast cells were exposed to spaceflight for 

nine days and examined for the effects of microgravity with or without a centrifugal 1g 
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field on the expression of 24 genes (21).  In this study, there was a significant reduction 

in expression of genes such as cyclooxygenase 2 (cox-2), TGFβ1, fibroblast growth 

factor 2 (fgf-2), apoptosis regulators bcl2 and bax, proliferating cell nuclear antigen 

(PCNA), OCN, cpla2, and c-myc compared to ground controls (21).  An in-flight control 

was used to investigate the ability of a 1g field to normalize the changes in gene 

expression, and c-myc, cox-2, TGFβ1, bcl2, bax, and fgf-2 were normalized after 1g 

exposure (21).  Spaceflight did not alter cyclin A, cyclin E, actin, 18s, or fibronectin (21). 

In another study, MG-63 osteosarcoma cells flown for nine days showed no change in 

total protein or DNA content in ground unit-gravity, in-flight 1g gravity, or microgravity 

groups.  With vitamin D and TGFβ2 treatment, cells showed a reduced response to in 

ALP activity increase in microgravity compared to ground controls, and microgravity did 

not affect the response of type I collagen protein production to vitamin D and TGFβ2 

treatments.  However, there was decreased gene expression of type 1 collagen, ALP, 

and OCN genes with the largest change in the OCN gene (13).  Perhaps most 

interesting, this study showed the time-dependent sequence of protein expression, 

where type I collagen production occurred before ALP activity and then was trailed by 

moderate OCN expression.  Additionally, the study found that gene expression for ALP 

and OCN preceded protein changes; however, conflicting results were found for type I 

collagen message and protein levels (12, 13).  These data suggest that differentiation is 

thwarted by microgravity as matrix maturation leads into matrix mineralization.   

These investigations highlight the vast number of changes induced by spaceflight 

in the genetic profiles of the skeleton and bone cells.  Perhaps, it would be useful to 

further explore these changes to advance our knowledge of the mechanisms underlying 

bone loss in spaceflight microgravity.   
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Hindlimb Unloading (HLU) and Mechanical Loading 
The HLU system is a widely accepted model of animal-based simulated 

microgravity. To date, there has not been a large scale gene expression study 

performed from bones of animals exposed to HLU.  However, there have been a limited 

number of small scale studies investigating specific gene expression.  After four days of 

HLU of BALB mice, two independent studies found decreased expression of type I 

collagen, osteonectin, osterix, and matrix metalloproteinase 2 (MMP-2) (24, 59).  In the 

Judex, et al. study, each of these genes was corrected to the level of control by day 21 

of HLU, and there was no change observed in cathepsin K (ctsk) and runx2 expression 

(24).  Moreover, Zhong, et al. showed that ALP expression decreased in BALB mice 

after four days of HLU exposure (59).   

Mechanical loading to the skeleton is beneficial to maintain musculoskeletal 

health.  Various types of loading have been applied to animal models, and gene 

expression was evaluated.  In the Judex, et al. study, HLU-exposed mice were treated 

with a low magnitude and high frequency (LMHF) mechanical load.  LMHF mechanical 

loading increased gene expression of inducible nitric oxide synthase (iNOS), MMP-2, 

and RANKL after 21 days of treatment (24).  These evaluated genes are involved in 

bone remodeling.  For example, RANKL is expressed by osteoblasts and is essential for 

osteoclastogenesis.  RANKL attaches to the RANK receptor expressed on osteoclasts to 

stimulate cell proliferation and differentiation to begin bone resorption (3).  In another 

study, mechanical loading by four-point bending was applied in the tibia of mice at 9 

Newtons and 2 Hz, simulating loading incurred during exercise.  After four days of 

exposure to mechanical loading, RNA was extracted from the loaded region, and DNA 

microarrays were used to evaluate gene expression (55).  Many osteogenic genes were 

increased in expression due to mechanical loading, such as pleiotrophin, osteoglycin 

(OGN), and legumain.   
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Although no systemic gene evaluation data is available, smaller scale studies 

provide evidence that there are molecular alterations in vivo caused by simulated 

microgravity or disuse.  Additionally, mechanical loading ranging from low impact to high 

impact has also been shown to alter gene expression.  These studies suggest that 

molecular changes may be pertinent in the development of adequate countermeasures 

for bone loss due to disuse, microgravity, or osteoporosis.     

Clinostats 
The RPM and RWV have been used for small scale studies evaluating 

alterations in gene expression of bone cells.  There are conflicting data regarding RWV 

effects on ALP mRNA and activity.  Rucci, et al. found that ALP mRNA and activity 

expression increased when exposed to the RWV for two days using a rat osteoblast-like 

cell line that was grown in aggregate suspension (41).  In contrast, Klement, et al. 

showed that exposure to the RWV for up to 14 days blunted ALP activity and bone 

matrix mineralization of mouse embryonic pre-metatarsal tissue explants (25).  Similarly, 

Patel, et al. showed a decrease in ALP mRNA and activity after three days of exposure 

to the RWV (40).  Additionally, an independent study using MC3T3-E1 preosteoblasts 

found that expression of runx2 and downstream target genes OCN and type I collagen 

did not change while ALP was decreased in cells exposed to simulated microgravity for 

five days (10).  In another study, the RWV had no effect on ALP, runx2, OCN, OPN, or 

type 1collagen mRNA expression (42).  In human osteoblasts, exposure to the 3D 

clinostat blunted expression of both cbfa1/runx2 (Figure 3.7) and OCN (56).   

Additionally, it is known that the mitogen activated protein kinase (MAPK) 

pathway regulates runx2 and the expression of its target genes type I collagen and OCN 

(54).   A limited number of studies that have examined the effects of the simulators on 

MAPK, but the data are conflicting.  The 3D clinostat and the RWV both did not alter c-
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jun N-terminal kinase (JNK) phosphorylation (42, 56, 57), and the 3D clinostat inhibited 

p38 phosphorylation (Figure 3.8) (56) while the RWV enhanced it (57) or did not alter it 

(42).  The RWV has been shown to enhance extracellular signaling-regulated kinase 

(ERK) activity (42) and to repress it (57) while the 3D clinostat did not alter it (56).  As 

well, TGFβ1 expression was downregulated by the RWV, comparable to spaceflight data, 

but it was upregulated by the RPM.  Prostaglandin E1 (EP1) was not altered in 

spaceflight, corroborating with the RPM data, but the RWV upregulated its expression 

(21, 39, 40).  In another study, AKT and ERK 1/2 were decreased after three days of 

clinostat exposure (15).  Additionally, growth factors, including IGF1 and basic 

fibroblastic growth factor (bFGF), stimulated bone marrow stem cell proliferation in 

control conditions but only had a moderate effect under simulated microgravity (15).  

These data suggest that there is likely an inhibitory effect induced by the clinostat 

simulators of microgravity or disuse on osteoblast function depending on culture 

conditions, recapitulating a bone loss phenotype similar to spaceflight.  Despite apparent 

differences among experiments due to distinct simulators, cell type, or culture conditions 

used, these ground-based systems allow for molecular studies utilizing gene 

manipulation.    

 

Conclusion and Future Directions: Possible Impact of Gene Expression 
Studies on Countermeasure Development 

In general, the reviewed studies from spaceflight, HLU studies, and clinostat 

investigations confirmed that there is a certain pattern of genomic response to 

microgravity or disuse that could create a foundation for development of molecular-

based countermeasures.  Studies in animal and cellular models indicate the significance  
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Figure 3.7 The 3D clinostat (Group CL) decreased cbfa1/runx2 compared to 
control (Group C) in human osteoblasts (56). 

Figure 3.8 The 3D clinostat (Group CL) decreased p38 compared to control 
(Group C) in human osteoblasts (56). 
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of the gravitational vector and gravity sensing for cellular regulatory processes involving 

the genomic level. This is likely due to specific conditions of the evolution of life on Earth.   

It is perhaps these gravity-sensitive regulatory processes and genes that should be used 

as potential molecular targets for future therapeutic interventions to mitigate bone loss in 

astronauts.  Although data from the different astronauts are not completely consistent, 

patterns have emerged depicting an obvious bone loss phenotype.  Despite almost 50 

years of human-based spaceflight, there is still no effective countermeasure available, 

hindering the possibility of pursuing longer term spaceflight mission such as those to 

Mars. It seems convincing that current studies investigating the molecular changes 

induced by spaceflight and ground-based simulators will provide targets for therapeutic 

interventions to mitigate bone loss in spaceflight, disuse, and osteoporosis.  In the next 

decade, targeting molecular changes induced by microgravity or disuse could provide 

new, exciting, and feasible molecular countermeasures for bone loss.  
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Chapter 4  
 

The Effects of Disuse on Osteoblast Gene Expression*  
 

Summary 

The goals of specific aim 1 are to determine the effects of simulated microgravity 

or disuse using the Random Positioning Machine (RPM) on 2T3 pre-osteoblast function, 

creating an in vitro system that can recapitulate the effects of spaceflight microgravity on 

bone formation.  An in vitro system would provide the means to study the cellular and 

molecular alterations caused by disuse, potentially yielding molecular targets for 

pharmaceutical treatments for bone loss.  To achieve this aim, we investigated the 

effects of disuse on preosteoblast cells by evaluating various bone formation markers 

and, for the first time, systemic gene expression through microarrays.   

Exposure to microgravity causes bone loss in humans, and the underlying 

mechanism is believed to be at least partially due to a decrease in bone formation by 

osteoblasts.  Here, we examined the hypothesis that microgravity alters osteoblast gene 

expression profiles, resulting in decreased bone formation.  For this study, we developed 

an in vitro system that simulates microgravity or disuse conditions using the RPM to 

study the effects of disuse on 2T3 preosteoblast cells grown in gas-permeable culture 

disks.  Exposure of 2T3 cells to the RPM for up to nine days significantly inhibited 

alkaline phosphatase activity (ALP) and up to 15 days blunted mineralization, 

recapitulating a bone loss response as seen in spaceflight.  Next, we carried out gene 

expression analysis using DNA microarrays to determine gene expression profiles of  

 

 
*Adapted and printed with permission from Pardo, SJ and Patel, MJ, et al., Simulated 

Microgravity Using the Random Positioning Machine Inhibits Differentiation and Alters Gene 
Expression Profiles of 2T3 Pre-osteoblasts, American J Physio Cell Physiology, 2005, 

288(6):C1211-21 
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2T3 cells exposed to the RPM for three days.  Among 10,000 genes examined with the 

microarray, 88 were downregulated while 52 were upregulated significantly by disuse by 

more than two-fold in comparison to the static 1g control conditions.  We then verified 

the microarray data for select genes relevant in bone biology by using real time RTPCR 

assays and immunoblotting.   We confirmed that microgravity downregulated levels of 

ALP, runt-related transcription factor 2 (runx2), osteomodulin (OMD), and parathyroid 

hormone receptor 1 (PTHR1) mRNA, upregulated cathepsin K (ctsk)  mRNA, and did not 

significantly affect bone morphogenic protein 4 (BMP4) and cystatin C protein levels.  

The identification of these mechanosensitive genes provides useful insight in generating 

further hypotheses regarding their roles not only in microgravity-induced bone loss but 

also in the general population of patients with similar pathologic conditions such as 

osteoporosis.   

 

Introduction 

 Musculoskeletal pathologies such as osteoporosis and muscular dystrophy affect 

millions of Americans.  Bone loss incurred by osteoporosis, disuse, or microgravity 

renders the skeleton at risk for bone fractures.  The underlying mechanisms regulating 

bone formation are still largely unknown.  Additionally, there is an increasing interest for 

manned space exploration, including extensive trips to deep space planets such as 

Mars.  Microgravity conditions in space have been shown to cause decreased bone 

mass (6, 7, 10, 16), bone demineralization (8, 35, 38), skeletal muscle atrophy (20, 25), 

cardiovascular deconditioning (2, 39), and immune dysfunction (32).  Many of these 

pathological changes cannot yet be counteracted adequately by physical exercise (20) 

or nutritional supplementation alone (7, 13, 36).  Therefore, it is imperative to understand 

the mechanisms of microgravity-induced pathologies so that manned space exploration 

can continue with minimal negative effects on astronauts.  Furthermore, the knowledge 
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of the mechanisms inducing spaceflight-dependent bone loss may also provide insight 

into the understanding of pathologies occurring in the general population, including 

osteoporosis and muscle atrophy.   

Unfortunately, it is difficult and impractical to conduct well controlled and large 

numbers of in vitro studies in a microgravity environment due to the limited and 

expensive nature of spaceflight missions.  Thus, to investigate pathologies that occur 

during spaceflight, several ground-based systems, including the 2D and 3D clinostats 

and the Rotating Wall Vessel (RWV), have been developed to simulate microgravity or 

disuse using cultured cells and tissues (1, 21, 26, 31).  The RPM is a 3D clinostat that 

simulates disuse by continuously moving the gravity vector relative to the cells in three 

dimensions before the cells have enough time to sense it, which is a method called 

gravity-vector averaging (14, 15).     

Previous studies have indicated that spaceflight-induced bone loss may be due 

in part to decreased osteoblastic function with or without enhancing osteoclastic bone 

resorption (9).  Simulated microgravity has been shown to inhibit markers of bone 

formation such as ALP activity and runx2 expression (26, 43).  While these studies 

examined only a few candidate genes that are likely to be involved in bone mass 

regulation, systematic and unbiased characterization of gene expression profiles 

scanning the majority of genes has not been carried out.  Here, we hypothesized that 

bone loss due to simulated microgravity or disuse is due to an inhibition of preosteoblast 

differentiation and alterations of gene expression critical in maintaining bone formation.     

To test this hypothesis, we have 1) developed and characterized an in vitro cell 

culture system using 2T3 preosteoblast cells exposed to simulated microgravity or 

disuse conditions produced by the RPM, 2) examined cell proliferation, ALP activity, and 

mineralization of 2T3 cells, 3) performed gene expression analysis using DNA 
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microarrays, and 4) validated the microarray data using quantitative real time RTPCR 

and immunoblotting. 

 

Methods 

Cell culture–2T3 murine osteoblast precursor cells were kindly provided to us by Dr. Xu 

Cao at the University of Birmingham in Alabama (41).  The cells were cultured in growth 

medium (α-minimal essential medium) containing 10% fetal bovine serum (Atlanta 

Biologicals) with 100 units/ml of penicillin and 100µg/ml of streptomycin in a standard 

humidified incubator (37°C, 5% CO2).  For mineralization experiments, the growth 

medium was supplemented with ascorbic acid (50 µg/ml) and β-glycerolphosphate (5 

mM) with or without BMP2 or BMP4 (0-50 ng/ml) 

 

Seeding cells in OptiCells–Confluent 2T3 cells grown in T-75 flasks were trypsinized 

using 0.05% Trypsin/EDTA (Sigma), and two million cells were seeded into a gas-

permeable cell culture disk (OptiCell) according to the manufacturer’s instructions.  As 

shown in Figure 1A, an OptiCell disk is a sealed cell culture disk encapsulated by two 

optically clear and gas-permeable polystyrene membranes containing two ports, which 

allow access to the contents of the disk.  The internal disk dimensions are 74.8 x 65 x 

2.06 mm, and it can be filled with 10 to 14 ml of medium. To seed cells on each 

membrane of the Opticell, the disks were turned over every five minutes for one hour 

after seeding.  Cells were allowed to grow for three days to confluency in 14 ml of growth 

medium before exposure to the stimulus, and the day on which the OptiCells were 

mounted on the RPM was referred to as Day 0.  On Day 0, the medium was changed 

with 14 ml of fresh growth medium, and air bubbles were removed to prevent potentially 

uncharacterized mechanical perturbation during RPM exposure.   
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Random Positioning Machine–A desktop RPM described by Huijser (17) and 

manufactured by Fokker Space was used to simulate microgravity or disuse conditions. 

As shown in Figure 1B, the dimensions of the entire RPM are 30x30x30 cm with an inner 

and outer frame creating a cargo volume of 150 mm3.  The OptiCell disks were mounted 

on the center of the platform located on the inner frame, and a maximum of eight disks 

were used in each experiment.  The RPM was operated in random modes of speed and 

direction (0.1-2 radians/second) via a computer user interface with dedicated control 

software inside a humidified incubator (5% CO2 at 37oC).  Under this experimental 

condition, the cells were exposed to the RPM with a range of 0 to 0.01g centrifugal 

forces (17).   For static 1g controls, OptiCell disks seeded concurrently with the RPM 

group were placed in the same incubator as the RPM.  Samples were harvested at Days 

0, 1, 3, 5, 7 and 9.  For a three day experiment, the Opticells were exposed to the RPM 

without interruption as there was no media change necessary over this period.  

However, for experiments longer than three days, the medium was changed every three 

days (Days 3 and 6) by stopping the RPM for approximately 20 minutes before restarting 

it.   

 

Cell proliferation assay–To determine cell proliferation, attached cells were collected by 

trypsinization after experimental treatments.  Cell number was determined using an 

aliquot of cell suspension and a Coulter counter.     

 

Whole cell lysate and alkaline phosphatase (ALP) enzyme activity–After collecting the 

culture medium following the experiment, cells were scraped in 500 µl of lysis buffer 

containing 0.2% NP-40 in 1 mM MgCl2 and stored at -80ºC until needed. ALP activity 

was determined using a Diagnostics ALP assay kit (Sigma) according to the 

manufacturer’s instructions (28).  Aliquots of lysate (20 µl) and p-nitrophenol standard 
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(Sigma) were used for the assay.  ALP enzyme activity was normalized to total protein 

content as determined by a Biorad-DC protein assay and expressed in international 

enzyme activity units (µmol/min/mg protein). 
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Figure 4.1  In vitro simulated microgravity or disuse conditions using 2T3 cells 
cultured in OptiCell disks and the RPM   
 

Alizarin Red Stain—Following the experiment, cells were washed with ice-cold PBS two 

times and fixed in 70% ethanol for 15 minutes.  Cultures were stained for two minutes 

with a 1% Alizarin red solution for calcium detection.  Following the stain, cultures were 

rinsed with a 0.01%HCl-ethanol solution and dH20.  The plates were dried overnight 

before being scored for percent mineralization using ImageJ analysis software.  

Quantification graphs express mineralization as a percent of the experimental control.   

 

Codelink Gene Microarrays–Total RNA was isolated from 2T3 cells exposed to RPM or 

static 1g control conditions for three days using the RNeasy kit (Qiagen), and 
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experiments were performed in triplicate.  The total RNA was reverse transcribed, and 

the second strand was synthesized using T7 RNA polymerase and biotinylated dNTPs 

according to Amersham Biosciences instructions (29).  Each cRNA preparation was then 

hybridized to individual Uniset Mouse 1 microarrays (CodeLink) containing synthetic 

oligonucleotide probes corresponding to 10,000 unique mouse genes in the Amersham 

Biosciences facility (Piscataway, NJ) (29).  The gene expression intensity was 

determined by using streptavidin-Cy5 conjugated to the biotin.  The processed slides 

were scanned using an Axon GenePix Scanner with CodeLink Expression Scanning 

Software (29). The fluorescence intensities of individual probes that were above the 

threshold levels determined by internal controls were considered to be genes expressed 

by the cells and were further analyzed by the CodeLink Software (Amersham).  Using 

this software, the median intensity of all discovery probes in each microarray was used 

to normalize the fluorescence intensity of individual gene probes (normalized 

fluorescence intensity) in order to minimize inter-array variations.  The filtered and 

normalized data were statistically analyzed by the Student’s t-test, and the genes that 

changed in response to the RPM by more than two-fold above or below the static 1g 

controls with p-values of less than 0.05 were deemed considerable and significant. 

GoMiner software (http://www.miblab.gatech.edu/gominer) was used to sort the genes 

by biological processes and to assign some of the functions of each known gene (44).  

The entire RPM microarray can be accessed from Gene Expression Omnibus (GEO) 

with accession numbers GDS928 or GSE1367. 

 

Reverse Transcriptase and Real-Time Polymerase Chain Reaction (RTPCR)—Total 

RNA was prepared by using the RNeasy Mini Kit (Qiagen) and reverse transcribed by 

using random primers and a Superscript-II kit (Life Technology) (33).  The synthesized 

and purified cDNA was amplified using a LightCycler (Roche Applied Science), and the 
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size of each PCR product was verified by agarose gel electrophoresis as described by 

us (33). The mRNA copy numbers were determined based on standard curves 

generated with the genes of interest and 18S templates. The 18S primers (50 nM at 

61ºC annealing temperature; Ambion) were used as an internal control for real time 

RTPCR using capillaries (Roche Applied Science), recombinant Taq polymerase 

(Invitrogen), and Taq start antibody (Clontech).  The primer pairs for the quantitative real 

time RTPCR are listed in Table 1 along with their annealing temperatures, extension 

times, and base pair yields.  Real-time RTPCR for the listed genes were carried out in 

PCR buffer (20mM Tris-Cl, pH 8.4, at 25°C, 4mM MgCl2, 250µg/ml bovine serum 

albumin, and 200µM deoxynucleotides) containing SYBR green (1:84,000 dilution), 

0.05unit/µl Taq DNA polymerase, and Taq Start antibody (1:100 dilution) as described 

previously by us (33). 

 
Table 4.1 List of mouse primers used for quantitative real time RTPCR 

Accession # Gene Primers (5’-3’) bp Conditions for 
LightCycler 

NM_007431 ALP Fw CAGTATGAATTGAATCGGAACAACC 107 7 sec at 62ºC 
  Rv CAGCAAGAAGAAGCCTTTGAGG  6 sec at 72ºC 
NM_009820 runx2 Fw GACAGAAGCTTGATGACTCTAAACC 171 7 sec at 62ºC 
  Rv TCTGTAATCTGACTCTGTCCTTGT  9 sec at 72ºC 
NM_011199 PTHR1 Fw GCACACAGCAGCCAACATAA 531 7 sec at 63ºC 
  Rv CGCAGCCTAAACGACAGGAA  22 sec at 72ºC 
NM_012050 OMD Fw GACGGGCTGGTGAATGTGACTATGCTTGA 147 7 sec at 63ºC 
  Rv CCAAGGGGCATTGATTCTAATCTGTTATT  10 sec at 72ºC 
NM_007802 ctsk Fw AAGTGGTTCAGAAGATGACGGGAC 342 5 sec at 55ºC 
  Rv TCTTCAGAGTCAATGCCTCCGTTC  13 sec at 72ºC 

 

Immunoblot (Western blot)—Aliquots of cell lysate were resolved on a SDS-PAGE gel 

and transferred to a polyvinylidene difluoride membrane (Millipore) (4).  The membrane 

was incubated with a primary antibody overnight at 4°C and then incubated with a 

secondary antibody conjugated with alkaline phosphatase for one hour at room 

temperature.  Expression was detected by a chemiluminescence method and the 
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intensities of the immunoreactive bands were determined by densitometry (4).  

Antibodies specific for BMP4 and cystatin C (Santa Cruz Biotechnologies) were used.  

 

Statistical Analysis–Statistical analysis was performed by using the Student’s t-test for all 

experiments.  A significance of p<0.05 from three or more independent experiments was 

considered statistically significant.  

 

Results 

Exposure of 2T3 cells to the RPM did not alter cell morphology or proliferation. 

To examine the effects of simulated microgravity or disuse on osteoblasts, we 

developed an in vitro system to expose 2T3 cells grown in gas-permeable culture disks 

(OptiCell) to the RPM.  The morphology of 2T3 cells grown in standard tissue culture 

dishes and OptiCells were indistinguishable (data not shown).  When cells grown in 

OptiCells were exposed to RPM or static 1g conditions, the pH of the medium remained 

neutral at or near pH 7.4 (data not shown).  As shown in Figure 2A, the morphology of 

2T3 cells exposed to static 1g control and RPM conditions were not significantly different 

from each other.  

Next, we examined whether RPM exposure induced any changes in 2T3 cell 

proliferation by using cell count as a marker.  For this study, OptiCells were seeded with 

2T3 cells, and three days later (Day 0 of the experiment), the cell number reached 

approximately three million cells per disk (Figure 2B).  The cells were fed with fresh 

medium every three days during the experiment, and they continued to proliferate to a 

maximum of 13 ± 1.1 million cells (static 1g on Day 7) and 10.8 ± 0.3 million cells (RPM 

on Day 7), showing no statistical difference between the two groups (p=0.10, n=6 to 7).  

The cell number in both groups reached maximum by Day 5 and remained unchanged 

until Day 7.  The static 1g control group showed a decrease in cell number at Day 9, and 
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to determine whether this decrease was due to increased cell detachment, we counted 

the number of dead cells in the media on Day 9 by trypan blue assay.  Although the total 

number of detached cells tended to be higher in the RPM group (194,250 ± 6,475) than 

the static group (103,600 ± 33,645), there was no statistically significant difference 

(p>0.05, n=6).  These results suggest that simulated microgravity or disuse does not 

have a significant effect on cell proliferation.  

 

Static 1g RPM

A

B

Static 1g RPM

A

B

0
2
4
6
8

10
12
14
16

0 2 4 6 8 1
Experimental days

C
el

l N
um

be
r

(#
 C

el
ls

 x
 M

illi
on

)

1g

µg

0
2
4
6
8

10
12
14
16

0 2 4 6 8 1
Experimental days

C
el

l N
um

be
r

(#
 C

el
ls

 x
 M

illi
on

)

1g

µg

00

Figure 4.2 Simulated microgravity (µg) or disuse had no significant effect on 
2T3 cell morphology and cell number.   At Day 0, 2T3 cells grown in OptiCells 
were placed on the RPM or exposed to the static 1g condition for 1, 3, 5, 7 or  9 days. 
A phase contrast microscope was used to image cells after the experiment (A), and 
cell proliferation was assessed by cell number using a Coulter counter.  Data are 
represented as mean ± SEM (n=6, *p<0.05). 
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2T3 cells experienced low shear stress and strain due to fluid movement caused 

by the RPM rotation.   

The attached cells grown on the OptiCell membranes could be exposed to 

mechanical forces such as fluid shear stress and strain in addition to disuse during RPM 

rotation.  In order to visualize the dynamics of the fluid within the OptiCell, we marked a 

disk with a calibrated grid and filled it with water and colored bead markers 

(density=1.018g/ml, Amersham Biosciences).  The beads had a density close to that of 

water, allowing visualization of potential fluid movement.  Short movies were recorded 

using a digital camera mounted on the RPM to track bead movement over the calibrated 

grid, and flow velocities, v, were estimated from the recordings.  The shear stress, τ, was 

calculated using Newton’s law of viscosity as shown in Equation 4.1:  







=

h
vµτ

 

where, µ is the viscosity of water or growth medium at 37°C (6.92 x 10-4 and 7.8 

kg· m-1 · s-1, respectively) and h is half the height of the fluid within the Op

(1.028mm).  These calculations suggested that the magnitude of shear stress caus

movement of the growth medium experienced at the membrane was close to 0 dy

for 43 seconds, 0.09-0.22 dyn/cm2 for 13 seconds, and 0.22-0.44 dyn/cm2 for 4 sec

during a one minute period of random rotation by the RPM.  The maximum shear s

intensity was present at the larger radius of the OptiCell close to the rigid frame whi

center portions of the membranes experienced minimum shear stresses.   

Due to forces generated during the RPM rotation, cells in this experimental 

may experience mechanical strain.  As such, mechanical strain, ε, was calculated 
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the 1D wave equation with fixed boundary conditions at both ends of the OptiCell frame.  

We assumed that the maximum height of the stretched membrane, h, was located at half  

the membrane length, L.  The static solution to this wave equation for the first harmonic 

with the aforementioned constraints can be described by Equation 4.2: 







×=

L
x

2
πsinhf(x)

   

where f(x) is the assumed shape the membrane takes when filled with 14 ml of m

h is the differential gap height between the stretched membrane at the center

filled with medium) and the unstretched membrane (when unfilled), and L is e

Lshort, half the length of the membrane’s short side, and Llong, half the length

membrane’s long side.  To determine the length of these arcs, we used the i

formula in Equation 4.3: 

[ ]∫ ′+=
L

0

2 dx(x)f1arc

   

We calculated the arc for the filled OptiCell when the RPM is not rotating, wh

height is equal to h (arch), and then we calculated the arc at h+∆h (arch+∆h), wher

the change in gap height due to additional membrane stretch occurring during 

directional changes by the RPM rotation.  The strain, ε, of the membrane along th

and long sides was calculated using Equation 4.4: 

h

h∆hh

arc
arcarcε −

= +

   

This calculation suggests that the maximum microstrain occurs at the center

longer side of the membrane with a magnitude less than 200 microstrains.  Altho
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have not determined the time-dependent changes in the strain history, we assume that 

the maximum strain occurs only briefly during sudden directional changes of the RPM.  

 

Exposure of 2T3 cells to the RPM inhibited ALP activity and mineralization. 

Since ALP activity and mineralization are established indicators of osteoblast 

differentiation and bone mass formation (40), we determined whether exposing 2T3 cells 

to disuse using the RPM inhibited these markers.  As shown in Figure 4.3A, ALP activity 

increased during culture as expected.  ALP activity of static 1g control cells dramatically 

increased by more than eight-fold within two days of culture (Day 1 to 3).  By Day 5, ALP 

activity in control cells reached maximum (24 ± 1 µmol/min/mg protein), which remained 

maximum at Day 7.   In contrast, exposure of 2T3 cells to the RPM significantly blunted 

the culture time-dependent increase in ALP activity (Figure 4.3).  Unlike the static 1g 

control group, ALP enzyme activity of the RPM group at Day 3 did not increase 

significantly above the Day 1 level.  By Day 9, ALP activity increased by four-fold above 

the Day 1 level.   As shown in Figure 4.3, ALP enzyme activity of the static 1g group was 

2.7 times higher than that of the RPM group at Day 9.  An additional group of cells was 

exposed to the RPM for three days and restored to static 1g conditions for the remainder 

of the experiment.  As expected, the ALP activity of the restored group continued to 

increase to levels between the static 1g and RPM groups.  Additionally, as depicted in 

Figure 4.3B and D, the RPM inhibited mineralization after 15-16 days of exposure even 

in the presence of BMP4 or BMP2.  This finding that simulated microgravity or disuse 

significantly decreases ALP activity and mineralization is consistent with the inhibitory 

effects of spaceflight and disuse on osteoblast differentiation and bone formation.   

 

 70



Static RPM

B BMP4

Static RPM

D BMP2

Static RPM0

20

40

60

80

100
A

liz
ar

in
 R

ed
 Q

ua
nt

ifi
ca

tio
n 

(%
 S

ta
tic

 C
on

tr
ol

)

*

C BMP4

E BMP2 

Static RPM0

20

40

60

80

100

A
liz

ar
in

 R
ed

 Q
ua

nt
ifi

ca
tio

n 
(%

 S
ta

tic
 C

on
tr

ol
)

*

0

5

10

15

20

25

30

0 2 4 6 8

Days after confluency

A
lk

al
in

e 
P

ho
sp

ha
ta

se
 A

ct
iv

ity
(µ

m
ol

/m
in

/m
g 

pr
ot

ei
n)

static (1g) control simulated µg 3d µg restored to 1g

*

** **

0

5

10

15

20

25

30

0 2 4 6 8

Days after confluency

A
lk

al
in

e 
P

ho
sp

ha
ta

se
 A

ct
iv

ity
(µ

m
ol

/m
in

/m
g 

pr
ot

ei
n)

static (1g) control simulated µg 3d µg restored to 1g

*

** **

A

Static RPM

B BMP4

Static RPM

D BMP2

Static RPM0

20

40

60

80

100
A

liz
ar

in
 R

ed
 Q

ua
nt

ifi
ca

tio
n 

(%
 S

ta
tic

 C
on

tr
ol

)

*

C BMP4

E BMP2 

Static RPM0

20

40

60

80

100

A
liz

ar
in

 R
ed

 Q
ua

nt
ifi

ca
tio

n 
(%

 S
ta

tic
 C

on
tr

ol
)

*

Static RPM

B BMP4

RPM

B BMP4

Static RPM

D BMP2D BMP2

Static RPM0

20

40

60

80

100
A

liz
ar

in
 R

ed
 Q

ua
nt

ifi
ca

tio
n 

(%
 S

ta
tic

 C
on

tr
ol

)

*
Static RPM0

20

40

60

80

100

0

20

40

60

80

100
A

liz
ar

in
 R

ed
 Q

ua
nt

ifi
ca

tio
n 

(%
 S

ta
tic

 C
on

tr
ol

)

*

C BMP4

E BMP2 

Static RPM0

20

40

60

80

100

A
liz

ar
in

 R
ed

 Q
ua

nt
ifi

ca
tio

n 
(%

 S
ta

tic
 C

on
tr

ol
)

*

Static RPM0

20

40

60

80

100

0

20

40

60

80

100

A
liz

ar
in

 R
ed

 Q
ua

nt
ifi

ca
tio

n 
(%

 S
ta

tic
 C

on
tr

ol
)

*

0

5

10

15

20

25

30

0 2 4 6 8

Days after confluency

A
lk

al
in

e 
P

ho
sp

ha
ta

se
 A

ct
iv

ity
(µ

m
ol

/m
in

/m
g 

pr
ot

ei
n)

static (1g) control simulated µg 3d µg restored to 1g

*

** **

0

5

10

15

20

25

30

0 2 4 6 8

Days after confluency

A
lk

al
in

e 
P

ho
sp

ha
ta

se
 A

ct
iv

ity
(µ

m
ol

/m
in

/m
g 

pr
ot

ei
n)

static (1g) control simulated µg 3d µg restored to 1g

*

** **

A

10101010

Figure 4.3 The RPM inhibited ALP activity and mineralization of 2T3 cells.  Three 
days after seeding (on Day 0), 2T3 cells were exposed to the RPM or static 1g 
conditions for 1, 3 , 5 and 9 days.  ALP activity in the cell lysate was determined by a 
colorimetric Sigma assay and graphed as averaged ALP activity normalized to total 
protein.  For mineralization studies, cells were exposed to the RPM for 15-16 days 
and treated with BMP4 or BMP2 to support mineralization.  Cultures were stained 
with Alizarin Red for calcium detection.  Data are shown as mean ± SEM (n=6-10, * 
p<0.05 between Static and RPM groups). 
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The RPM altered gene expression profiles of 2T3 cells as determined by 

microarray studies. 

By performing microarray studies, we analyzed the global changes in gene 

expression profiles of 2T3 cells when exposed to simulated microgravity or disuse 

conditions.  Among 10,000 genes examined with the microarray, only 88 were 

downregulated and 52 upregulated to statistically significant levels (p<0.05) by more 

than two-fold in comparison to the static 1g control level.  Figure 4.4 shows a scatter plot 

of the averaged microarrays for both the RPM (µg) and static 1g control groups where 

each dot represents one gene.  The diagonal line represents no change in expression 

due to RPM exposure (fold change=1), and genes upregulated by the RPM are above 

the diagonal while genes downregulated by the RPM are below the diagonal line.  A heat 

map was generated (Figure 4.5) representing the data as low gene intensity (green) to 

high gene intensity (red).  The genes are identified by their accession number (accn #) 

and sorted based on fold changes induced by the RPM (µg 1-3) when compared to static 

1g conditions (st 1-3). Table 2 categorizes genes with known functions from the 

microarray study that were upregulated or downregulated by the RPM significantly 

(p<0.05) by more than two-fold above the static 1g control.  Since these genes are 

sorted based on typical cell function using the GoMiner program, genes with unknown 

functions were not included in this analysis.  Table 3 shows genes that have potential 

involvement in osteoblast differentiation and matrix mineralization regardless of the two-

fold change threshold.   

 Many osteoblast genes that have been shown to be relevant in bone formation 

were influenced by simulated microgravity or disuse.  ALP, a known marker for bone 

formation, was downregulated by the RPM by five-fold below the static 1g control.  

Runx2, a master transcription factor regulating osteocalcin levels, was downregulated by 

1.88-fold by the RPM when compared to static 1g.  PTHR1, which acts directly on the  
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Figure 4.4 Scatter plot of gene expression profiles of 2T3 cells after exposure to 
RPM or static 1g control conditions.  Total RNA was isolated from 2T3 cells 
exposed to the RPM or static 1g conditions for three days.  For each group (n=3 RPM 
and static 1g), the RNA was reverse transcribed and hybridized to probes on 
Codelink microarrays corresponding to 10,000 mouse genes.  Gene expression was 
determined by fluorescence intensity, and the scatter plot shows mean values of each 
gene as a single dot.  Genes changed by the RPM are shown in black relative to the 
diagonal line and unchanged genes in gray.
keleton to promote Ca2+ release from bone and on the kidney to enhance calcium 

absorption, was downregulated by five-fold by the RPM.  In contrast, inducers of 

steolytic activity were also upregulated by the RPM.  For example, ctsk was 

pregulated by 1.66-fold above the static 1g control.   

Although the fold changes for runx2 and ctsk fall slightly below the two-fold 

hange threshold for significance, these genes were included in the analysis because of 

eir established relevance in bone formation and resorption.   These results are 

onsistent with the notion that disuse decreases the expression of genes necessary for 

ifferentiation, matrix formation, and subsequent mineralization while increasing the 

xpression of genes that trigger osteoclast activity. 
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accn # st1 st2 st3 µg1 µg2 µg3 fold ∆ 
NM_009115       0.09 
NM_012050       0.18 
NM_011606       0.19 
NM_011199       0.20 
AK014166       0.20 
NM_007431       0.21 
AF064749       0.21 
NM_030127       0.22 
NM_053078       0.24 
NM_008604       0.24 
NM_008524       0.26 
NM_010753       0.26 
NM_007884       0.27 
NM_011253       0.27 
NM_008196       0.28 
NM_025711       0.28 
NM_011338       0.29 
NM_007729       0.29 
NM_020568       0.31 
NM_013456       0.31 
AK017110       0.31 
M58755       0.32 
AF309508       0.33 
NM_008185       0.34 
NM_013641       0.34 
NM_009128       0.35 
NM_007934       0.35 
NM_009964       0.35 
AK005141       0.35 
NM_010941       0.37 
NM_010357       0.37 
AK010249       0.37 
NM_013584       0.37 
NM_015744       0.38 
AB040819       0.38 
NM_009155       0.38 
NM_011058       0.38 
NM_016911       0.38 
NM_010354       0.38 
NM_008760       0.38 
NM_016867       0.38 
AK017798       0.38 
NM_009921       0.39 
NM_019521       0.39 
NM_009073       0.39 
AK002518       0.39 
NM_010315       0.40 
AK018128       0.40 
NM_010255       0.41 
AK004002       0.41 
NM_009144       0.41 
NM_010497       0.41 
AF422245       0.41 
AK008108       0.41 
NM_016894       0.42 
NM_007763       0.42 
NM_012043       0.42 
AK018504       0.43 
NM_008599       0.43 
AK004556       0.43 
NM_018887       0.43 
NM_009923       0.44 
NM_016757       0.44 
NM_008492       0.44 
NM_021472       0.45 
NM_008976       0.45 
AK004179       0.45 
NM_054077       0.45 
BC005529       0.45 
NM_026428       0.46 

accn # st1 st2 st3 µg1 µg2 µg3 fold ∆ 
NM_010551       0.46 
NM_026131       0.46 
AK013035       0.47 
AK003918       0.47 
W53823       0.47 
NM_026486       0.47 
NM_013888       0.48 
NM_010358       0.48 
NM_011817       0.48 
NM_010222       0.49 
NM_020010       0.49 
NM_010846       0.49 
AK017193       0.49 
AK013793       0.49 
NM_021515       0.49 
NM_010368       0.49 
NM_011985       0.49 
NM_019517       0.50 
AF321817       2.00 
NM_008654       2.00 
NM_019553       2.01 
NM_008723       2.01 
NM_025640       2.01 
AK011383       2.01 
AK010437       2.02 
NM_009138       2.04 
NM_019425       2.04 
NM_026631       2.04 
AK018113       2.08 
NM_011710       2.08 
NM_008361       2.10 
AJ002730       2.11 
AK009010       2.14 
NM_012006       2.17 
NM_011361       2.17 
AK013772       2.18 
NM_033320       2.18 
NM_008987       2.20 
NM_008462       2.21 
NM_013525       2.20 
NM_020562       2.20 
NM_009052       2.25 
NM_008519       2.28 
NM_010415       2.28 
AK011873       2.30 
NM_015774       2.30 
NM_010235       2.33 
AK008546       2.33 
NM_011670       2.35 
NM_030556       2.35 
NM_011433       2.36 
AK010138       2.37 
NM_007703       2.38 
NM_007836       2.40 
NM_029292       2.44 
NM_026633       2.44 
AK002480       2.49 
NM_009635       2.59 
NM_013490       2.60 
NM_009943       2.67 
NM_026626       2.77 
AB059565       2.80 
AK007530       2.86 
AK006554       2.89 
NM_016660       3.06 
AK011900       3.18 
NM_020013       3.22 
NM_007823       3.93 
NM_009731       4.41 
NM_009802       5.57 

Figure 4.5 The effects of the RPM on gene expression profiles of 2T3 cells.  The 
heat map was generated by converting the fluorescent intensities of the 140 
significantly changed genes to corresponding pseudo-colors.  The pseudo-color bar 
represents data as low gene intensity (green), no change (yellow), and high gene 
intensity (red).  The genes are identified by their accession number (accn #) and
sorted based on fold changes induced by the RPM (µg 1-3) when compared to static 
1g conditions (st 1-3). 
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Table 4.2 A list of selected mechanosensitive genes in 2T3 cells.  Genes are 
sorted based on typical cell functions.  

 
 
 Accession # Gene Name Fold ∆ SEM p-

value Molecular Function 

 
Cell Adhesion 
 NM_012050 osteomodulin 0.184 ± 0.031 <0.01 aka osteoadherin, may mediate 

cell attachment 
 AF064749 collagen, type VI, alpha 3 0.213 ± 0.012 <0.05 extracellular matrix structural 

constituent 
 NM_007729 procollagen, type XI, alpha 1 0.292 ± 0.013 <0.025 extracellular matrix structural 

constituent 
 NM_008462 killer cell lectin-like receptor, subfamily A, 

member 2 
2.202 ± 0.311 <0.05 binding and signal transducer 

activity 
 
Cell Cycle 
 NM_011817 growth arrest and DNA damage inducible, 

gamma (GADD45G) 
0.485 ± 0.081 <0.025 structural constituent of 

ribosome 
 NM_021515 adenylate kinase 1 0.490 ± 0.042 <0.025 nucleobase, nucleoside, 

nucleotide kinase activity 
 NM_008654 myeloid differentiation primary respose gene 116 

(MYD116) 
2.004 ± 0.187 <0.025 myeloid differentiation primary 

response gene induced by IL6 
 NM_007836 growth arrest and DNA damage inducible 45 

alpha (GADD45A) 
2.405 ± 0.193 <0.025 structural constituent of 

ribosome 
 
Development 
 NM_009964 crystalline, alpha B 0.351 ± 0.061 <0.05 chaperone and heat shock 

protein activity 
 NM_009144 secreted frizzled-related sequence protein 2 0.409 ± 0.009 <0.005 transmembrane receptor and 

signal transduction activity 
 
Metabolism 
 NM_007431 alkaline phosphatase 2, liver 0.210 ± 0.017 <0.01 essential for hydroxyapatite 

formation and matrix 
mineralization 

 NM_008196 granzyme K 0.279 ± 0.014 <0.025 hydrolase and peptidase activity 

 M58755 glucokinase 0.318 ± 0.017 <0.01 hexokinase activity 

 NM_009128 stearoyl-coenzyme A desaturase 2 0.347 ± 0.050 <0.01 metal_ion_binding and 
oxidoreductase activity 

 NM_007934 glutamyl aminopeptidase 0.350 ± 0.042 <0.005 metalloexopeptidase activity 

 NM_010941 NAD(P) dependent steroid dehydrogenase-like 0.367 ± 0.021 <0.025 oxidoreductase activity, acting 
on CH-OH group of donors 

 NM_015744 ectonucleotide 
pyrophosphatase/phosphodiesterase 2 

0.376 ± 0.087 <0.025 hydrolase activity 

 NM_010255 guanidinoacetate methyl transferase 0.406 ± 0.069 <0.05 methyltransferase activity 

 NM_018887 cytochrome p450, 39A1 0.435 ± 0.051 <0.05 oxidoreductase activity 

 NM_008976 protein tyrosine phosphatase, non-receptor type 
14 

0.451 ± 0.034 <0.01 phosphoric monoester hydrolase 
activity 

 NM_020010 cytochrome p450, 51 0.486 ± 0.011 <0.025 oxidoreductase activity 

 NM_019425 glucosamine-phosphate N-acetyltransferase 1 2.041 ± 0.077 <0.01 transferase activity 

 NM_012006 cytosolic acyl-coA thioesterase 1 2.165 ± 0.175 <0.025 CoA hydrolase activity 

 NM_033320 glucuronyl c5 epimerase 2.184 ± 0.105 <0.025 racemase and epimerase 
activity, acting on carbohydrates 

 NM_007703 cig30 or (FEN1/ELO2, SUR4/ELO3, yeast)-like 3 
(ELOVL3) 

2.377 ± 0.157 <0.025 involved in a pathway connected 
with brown fat hyperplasia 

 NM_009943 cytochrome C oxidase, subunit VI A, polypeptide 
2 

2.669 ± 0.199 <0.01 oxidoreductase activity, acting 
on heme group of donors 

 NM_007823 cytochrome P450, subfamily IV B, polypeptide 1 3.925 ± 0.241 <0.005 oxidoreductase activity 

 NM_009802 carbonic anhydrase 6 5.571 ± 1.077 <0.05 carbon-oxygen lyase and hydro-
lyase activity 
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Table 4.2-Continued 

 
 

Accession 
# Gene Name Fold 

∆ SEM p-
value Molecular Function 

 
Protein Metabolism 
 NM_010222 FK506 binding protein 7 0.485 0.073 <0.05 peptidyl-prolyl cis-trans 

isomerase activity 
 NM_011985 matrix metalloproteinase 23 0.493 0.009 <0.025 metalloendopeptidase activity 

 NM_011710 tryptophanyl-TRNA synthetase 2.080 0.085 <0.025 ligase activity, forming 
phosphoric ester & carbon-
oxygen bonds 

 NM_011361 serum/glucocorticoid regulated kinase 2.169 0.014 <0.005 serine/threonine kinase activity 

 NM_015774 ERO1-LIKE 2.305 0.108 <0.01 unknown 

 NM_011670 ubiquitin carboxy-terminal hydrolase L1 2.354 0.423 <0.05 thiolester hydrolase activity 

 
Stress or Immune Response 
 NM_010357 glutathione S-transferase, α4 0.368 0.046 <0.05 transferase activity, transferring 

alkyl or aryl groups 
 NM_008599 small inducible cytokine B subfamily, member 9 0.430 0.069 <0.025 G-protein-coupled receptor 

binding activity 
 NM_010358 glutathione S-transferase, µ1 0.482 0.085 <0.05 transferase activity, transferring 

alkyl or aryl groups 
 AF321817 LPTS1 2.001 0.293 <0.05 nucleic acid binding activity 

 NM_009635 advillin 2.588 0.308 <0.025 structural constituent of 
cytoskeleton 

 
Sensory Perception 
 NM_009073 rod outer segment membrane protein 1 (ROM1) 0.390 0.172 <0.05 G-protein-coupled 

photoreceptor activity 
 
Signal Transduction 
 NM_011338 small inducible cytokine A9 0.287 0.046 <0.005 G-protein-coupled receptor 

binding activity 
 NM_013641 prostaglandin E receptor 1 0.338 0.026 <0.005 transmembrane and G-protein-

coupled receptor activity 
 AB040819 RAC3 0.377 0.012 <0.05 GTPase activity 

 NM_011058 platelet derived growth factor receptor, alpha 
polypeptide 

0.378 0.025 <0.025 transmembrane receptor protein 
tyrosine kinase activity 

 NM_010315 guanine-nucleotide binding protein, gamma 2 
subunite 

0.404 0.041 <0.05 heterotrimeric G-protein 
GTPase activity 

 NM_016894 RAMP1 0.418 0.047 <0.025 coreceptor, soluble ligand 
activity 

 NM_009138 small inducible cytokine A25 2.038 0.117 <0.01 G-protein-coupled receptor 
binding activity 

 NM_008519 leukotriene B4 receptor 2.276 0.092 <0.025 rhodopsin-like transmembrane 
receptor activity 

 
Skeletal Development 
 NM_011199 parathyroid hormone receptor 0.198 0.010 <0.005 transmembrane receptor activity 

 NM_011606 tetranectin 0.187 0.027 <0.025 binds to plasminogen, may 
regulate matrix mineralization 

 NM_054077 proline arginine-rich end leucine-rich repeat 0.453 0.037 <0.005 extracellular matrix structural 
constituent 

 
Transcription 
 NM_010753 max dimerization protein 4 (MAD4) 0.261 0.058 <0.025 transcription regulator activity 

 NM_010497 isocitrate dehydrogenase 1 (NAP+), soluble 0.409 0.094 <0.025 oxidoreductase activity, acting 
on CH-OH group of donors 

 NM_010235 FOS-like antigen 1 2.328 0.199 <0.025 DNA binding activity 

 NM_016660 high mobility group protein I 3.060 0.442 <0.025 DNA binding activity 
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Table 4.3 The effect of the RPM on selected genes that may be involved in 
osteoblast differentiation and matrix mineralization. Genes are sorted based on 
fold changes. 

 
Accession # Gene Name Fold 

∆ SEM p-
value. Molecular Function  

 
NM_012050 Osteomodulin 0.184 ± 0.031 <0.01 aka osteoadherin, may mediate cell 

attachment 

NM_011606 Tetranectin 0.187 ± 0.027 <0.025 binds to plasminogen, may regulate matrix 
mineralization 

NM_011199 pararthyroid hormone receptor 0.198 ± 0.010 <0.005 transmembrane receptor activity 

NM_007431 alkaline phosphatase 2, liver 0.210 ± 0.017 <0.01 essential for hydroxyapatite formation and 
matrix mineralization 

NM_008524 Lumican 0.259 ± 0.030 <0.005 regulates collagen fibril formation in different 
extracellular matrices 

NM_007729 procollagen, type XI, alpha 1 0.292 ± 0.013 <0.025 present in cartilage 
NM_007559 bone morphogenetic protein 8B 0.337 ± 0.071 <0.1 growth factor and cytokine activity 

NM_008760 Osteoglycin 0.380 ± 0.003 <0.025 binds to TGF-beta, no GAG in bone, keratan 
sulfate in other tissues 

NM_016894 RAMP1 0.418 ± 0.047 <0.025 calcitonin signal transducer activity 
NM_007743 procollagen, type I, alpha 2 0.431 ± 0.091 <0.1 the major constituent of bone matrix 

NM_021355 Fibromodulin 0.450 ± 0.103 <0.1 binds to collagen, may regulate fibril 
formation, binds to TGF-beta 

NM_019444 RAMP2 0.500 ± 0.027 <0.005 calcitonin signal transducer activity 

AF053954 cbfa1/runx2 (osf2) 0.533 ± 0.058 <0.1 essential transcription factor for osteoblast 
differentiation and bone formation 

NM_007833 Decorin 0.562 ± 0.003 <0.005 binds to collagen and may regulate fibril 
diameter 

NM_013691 thrombospondin 3 0.581 ± 0.034 <0.01 involved in cell attachment 

NM_011607 tenascin C 0.589 ± 0.024 <0.025 noncollagenous macromolecule of cartilage 
matrix 

NM_011693 vascular cell adhesion molecule 1 0.633 ± 0.075 <0.05 cell adhesion molecule activity 
NM_008970 parathyroid hormone-like peptide 0.655 ± 0.233 >0.1 signal transduction and hormone activity 
NM_007553 bone morphogenetic protein 2 0.704 ± 0.065 <0.05 growth factor and cytokine activity 
NM_016919 procollagen, type V, alpha 3 0.716 ± 0.024 <0.1 present where there is collagen type I 
NM_011581 thrombospondin 2 0.724 ± 0.298 >0.1 involved in cell attachment 
NM_013605 mucin 1 0.733 ± 0.047 <0.05 cell adhesion receptor 

NM_011146 peroxisome proliferator activated 
receptor γ 0.734 ± 0.016 <0.1 RNA polymerase II transcription factor 

NM_007433 alkaline phosphatase 5 0.736 ± 0.108 >0.1 hydrolase activity, acting on ester bonds 
NM_010514 insulin-like growth factor 2 0.752 ± 0.077 <0.1 signal transduction and hormone activity 
NM_007737 procollagen, type V, alpha 2 0.767 ± 0.026 <0.1 present where there is collagen type I 

NM_022415 prostaglandin E synthase 0.778 ± 0.041 <0.05 intramolecular isomerase activity, other 
intramolecular oxidoreductases 

NM_010512 insulin-like growth factor 1 0.785 ± 0.190 >0.1 signal transduction and hormone activity 
NM_007644 CD36 antigen-like 2 0.833 ± 0.013 <0.025 signal transducer activity 

NM_010181 fibrillin 2 0.842 ± 0.172 >0.1 may regulate elastic fiber formation (calcium 
ion binding activity) 

NM_013731 serum/glucocorticoid regulated kinase 
2 0.848 ± 0.348 >0.1 phosphotransferase activity, alcohol group 

as acceptor 

NM_009262 osteonectin (SPOCK1) 0.853 ± 0.210 >0.1 may mediate deposition of hydroxyapatite, 
binds to growth factors 

NM_011707 Vitronectin 0.861 ± 0.297 >0.1 binds to collagen, plasminogen and heparin 
NM_008712 nitric oxide synthase 1 0.861 ± 0.025 <0.1 nitric oxide synthase activity 
L27439 protein S 0.864 ± 0.170 >0.1 calcium ion binding activity 
NM_008689 NFκB 1 0.875 ± 0.027 <0.05 transcription factor activity 

NM_011808 ETS 1 0.883 ± 0.199 >0.1 transcription factor expressed in proliferating 
preosteoblastic cells 

NM_007388 acid phosphatase 5, tartrate resistant 0.885 ± 0.180 >0.1 enzyme identified in both the ruffled border 
of the osteoclast membrane 

NM_011519 syndecan 1 0.890 ± 0.047 >0.1 binds to type 1 collagen, fibronectin, 
tenascin-C 

NM_007557 bone morphogenetic protein 7 0.905 ± 0.063 >0.1 growth factor and cytokine activity 
NM_009926 procollagen, type XI, alpha 2 0.913 ± 0.121 >0.1 present in cartilage 
NM_011347 platelet selectin 0.920 ± 0.075 >0.1 cell adhesion molecule activity 

NM_007542 Biglycan 0.920 ± 0.024 >0.1 may bind to collagen, a genetic determinant 
of peak bone mass 

M28621 interferon-γ 0.945 ± 0.161 >0.1 inhibit bone resorption 
NM_031163 procollagen, type II, alpha 1 0.947 ± 0.171 >0.1 the major constituent of cartilage 
NM_008318 integrin binding sialoprotein 0.953 ± 0.151 >0.1 noncollagenous protein in bone 
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Table 4.3-Continued 

Accession # Gene Name Fold 
∆ SEM p-

value. Molecular Function  
 

NM_013712 integrin β1 binding protein 2 0.956 ± 0.062 >0.1 muscle-specific integrin beta1-interacting 
protein 

NM_031168 interleukin 6 0.964 ± 0.065 >0.1 act as stimulators of an early stage of 
osteoclast formation 

NM_008355 interleukin 13 0.966 ± 0.345 >0.1 inhibit bone resorption 

NM_020273 glucocorticoid modulatory element 
binding protein 1 0.979 ± 0.077 >0.1 transcription factor activity 

NM_007412 adrenomedullin receptor 0.981 ± 0.125 >0.1 rhodopsin-like, G-protein coupled receptor 
activity 

NM_011346 lymphocyte selectin 0.982 ± 0.075 >0.1 cell adhesion molecule activity 
NM_009367 transforming growth factor, beta 2 1.000 ± 0.127 >0.1 growth factor and cytokine activity 

NM_009758 bone morphogenetic protein receptor 
1A 1.011 ± 0.176 >0.1 TGF-β and BMP receptor 

NM_007560 bone morphogenetic protein receptor 
1B 1.024 ± 0.144 >0.1 TGF-β and BMP receptor 

NM_008713 nitric oxide synthase 3 1.026 ± 0.151 >0.1 nitric oxide synthase activity 
NM_007424 aggrecan 1 1.026 ± 0.077 >0.1 glycosaminoglycan binding activity 
NM_007554 bone morphogenetic protein 4 1.027 ± 0.017 >0.1 growth factor and cytokine activity 
NM_007558 bone morphogenetic protein 8A 1.049 ± 0.186 >0.1 growth factor and cytokine activity 
NM_007993 fibrillin 1 1.049 ± 0.045 >0.1 may regulate elastic fiber formation 

NM_011809 ETS 2 1.078 ± 0.176 >0.1 transcription factor expressed in differentiating 
and mature osteoblasts 

NM_010927 nitric oxide synthase 2 1.086 ± 0.195 >0.1 nitric oxide synthase activity 

NM_011196 prostaglandin E receptor 3 1.102 ± 0.397 >0.1 rhodopsin-like, G-protein coupled receptor 
activity 

NM_007643 CD36 antigen 1.102 ± 0.461 >0.1 cell adhesion molecule activity 

NM_008216 hyaluronan synthase 2 1.116 ± 0.240 >0.1 with versican-like protein works to captures 
space destined to become bone 

NM_008764 osteoprotegerin 1.127 ± 0.260 >0.1 signal transducer activity 
NM_008319 intracellular adhesion molecule 5 1.136 ± 0.082 >0.1 cell adhesion molecule activity 
X97991 calcitonin 1.149 ± 0.096 >0.1 signal transducer activity 
NM_010735 lymphotoxin A 1.149 ± 0.129 >0.1 tumor necrosis factor receptor ligand activity 

NM_052994 osteonectin (SPOCK2) 1.164 ± 0.105 >0.1 may mediate deposition of hydroxyapatite, 
binds to growth factors 

NM_019511 RAMP3 1.172 ± 0.042 >0.1 calcitonin signal transducer activity 

NM_008215 hyaluronan synthase 1 1.177 ± 0.258 >0.1 with versican-like protein works to captures 
space destined to become bone 

NM_013693 tumor necrosis factor 1.256 ± 0.334 >0.1 growth factor and cytokine activity 
NM_010577 integrin α5 1.304 ± 0.251 >0.1 cell adhesion molecule 

NM_008350 interleukin 11 1.312 ± 0.379 >0.1 act as stimulators of an early stage of 
osteoclast formation 

NM_008518 lymphotoxin B 1.330 ± 0.031 <0.025 tumor necrosis factor receptor ligand activity 

NM_007761 calcitonin gene-related peptide-
receptor 1.345 ± 0.102 <0.1 calcitonin receptor activity 

NM_007588 calcitonin receptor 1.345 ± 0.225 >0.1 calcitonin G-protein coupled receptor activity 

NM_008217 hyaluronan synthase 3 1.357 ± 0.198 >0.1 with versican-like protein works to captures 
space destined to become bone 

NM_010494 intracellular adhesion molecule 2 1.362 ± 0.550 >0.1 cell adhesion molecule activity 
NM_010576 integrin α4 1.413 ± 0.448 >0.1 cell adhesion molecule 
NM_018782 calcitonin receptor-like 1.413 ± 0.242 >0.1 calcitonin G-protein coupled receptor activity 
NM_011580 thrombospondin 1 1.418 ± 0.278 >0.1 cell attachment 
NM_009627 adrenomedullin 1.426 ± 0.176 <0.1 neuropeptide hormone activity 
NM_008965 prostaglandin E receptor 4 1.445 ± 0.581 >0.1 G-protein coupled receptor_activity 
NM_008396 integrin α2 1.654 ± 0.467 >0.1 cell adhesion molecule 
NM_007802 cathepsin K (Ctsk) 1.661 ± 0.076 <0.01 in the papain family of cysteine proteases 
NM_010554 Interleukin 1α 1.875 ± 0.224 <0.1 potent stimulators of bone resorption 
NM_007556 bone morphogenetic protein 6 1.877 ± 0.161 <0.1 growth factor and cytokine activity 
NM_008361 Interleukin 1β 2.099 ± 0.176 <0.025 potent stimulators of bone resorption 

NM_011361 serum/glucocorticoid regulated kinase 2.169 ± 0.014 <0.001 transferase activity, transferring phosphorus-
containing groups 

NM_054084 calcitonin-related polypeptide β 9.548 ± 8.524 >0.1 signal transducer activity 
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The gene microarray was verified by quantitative real time RTPCR for select 

osteogenic genes. 

To verify the microarray studies by real time RTPCR, we selected genes that 

have been shown to be involved in osteoblast differentiation and bone mass regulation.  

The same samples used for the CodeLink bioarray assays were used for the real time 

RTPCR.  All real time RTPCR data shown in Figure 4.6 (A–E) was normalized to the 

internal control, 18S rRNA, and fold changes were determined by dividing the amount of 

a gene exposed to the RPM by the static 1g control (Figure 4.6F).  As evaluated by the 

Codelink microarray, 2T3 cells exposed to the RPM had decreased expression of ALP, 

runx2, PTHR1, and OMD gene expression by a fold change of 0.21, 0.53, 0.20 and 0.18, 

respectively. In addition, 2T3 cells showed an increase in ctsk by a fold change of 1.66.  

To verify these results, real time RTPCR was performed.  The gene expression fold 

changes by real time RTPCR for ALP, runx2, PTHR1, and OMD were 0.21, 0.68, 0.25 

and 0.17, respectively.  The fold change for ctsk from RTPCR was 1.67.  Additionally, 

we confirmed the expression of non-mechanosensitive genes such as BMP4 and 

cystatin C protein levels by immunoblotting.  We show that the fold changes for BMP4 

and cystatin C by Western were 1.12 and 1.13 and by Codelink were 1.03 and 0.71, 

respectively (Figure 4.6G).  The different methodologies used, the microarray assay, real 

time RTPCR, and immunoblotting, produced highly consistent results, providing a level 

of assurance regarding the validity of the microarray data.     

 

Discussion  

The novel and most significant finding of the current study is that exposure of 

preosteoblasts to simulated microgravity or disuse using the RPM partially recapitulates 

the expected changes associated with the bone loss response observed in spaceflight.   
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Figure 4.6 Verification of microarray results by real time RTPCR and 
immunoblot. Aliquots of total RNA were purified, reverse transcribed, and probed by 
real time RTPCR for ALP (A), runx2 (B), pthr1 (C), omd (D), and ctsk (E) using 18s 
rRNA as an internal control, and fold changes were compared to the microarray data 
(F).  Cell lysate from additional experiments was obtained for immunoblotting and 
probed for BMP4 and cystatin C (G) using actin as an internal control.  Data are 
shown as mean ± SEM (n=4-6, *p< 0.05).  
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The RPM induced a loss of ALP mRNA and activity, a marker of differentiation, and we 

found that this change occurred without altering cell proliferation or gross morphology of 

2T3 cells.  More importantly, the RPM inhibited mineralization, a long term marker of 

bone formation in vitro despite treatment with an osteogenic factor such as BMP2 or 

BMP4.  Furthermore, using this in vitro system, the current study generated a list of 

genes that were upregulated, downregulated, or unchanged by the RPM.  Several genes 

that are suspected to be involved in bone formation and bone resorption were found to 

change in the expected manner.  We selected 7 genes (ALP, runx2, PTHR1, OMD, ctsk, 

BMP4, and cystatin C) from the list and verified the microarray results by real time 

RTPCR or immunoblot.   

Disuse- and microgravity-induced bone loss in humans and animals has been 

shown to be mediated at least in part by osteoblast differentiation, and ALP and 

mineralization are well-known markers for it (3, 7, 22).  Our current data showing a 

decrease in ALP activity and mRNA levels as well as mineralization is consistent with 

this notion (11).  In addition, the decrease in runx2 is also indicative of a disuse-

response as runx2 mRNA levels have been previously shown to decrease in both 

spaceflight and ground-based studies (3, 27).  The current finding that 2T3 cell exposure 

to the RPM decreases ALP and runx2 expression is consistent with the spaceflight data 

obtained with osteoblasts as well as other bioreactor data using MC3T3-E1 

preosteoblast cells exposed to the Rotating Wall Vessel (RWV) (6, 8, 27).  Runx2, a 

member of the runt homology domain transcription factor family and regulator of matrix 

protein osteocalcin, is an essential transcription factor for osteoblast differentiation and 

bone formation.  We found that runx2 was downregulated by almost two-fold below the 

static 1g control.   Osteocalcin protein levels in the conditioned medium were too low to 

be detected in our studies due to a relatively short experimental duration of 9 days, and 
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this is consistent with previous findings (12).  In other studies, osteocalcin level was 

shown to be decreased in MC3T3-E1 cells by exposure to the RWV (27).  

Additionally, OMD  belongs to the small leucine-rich proteoglycan (SLRP) family 

and is thought to be involved in bone matrix formation (5).  Our current study showing 

the downregulation of OMD by the RPM supports the current hypothesis.  A decrease in 

parathyroid hormone related protein, which plays a role in calcium mobilization, has 

been linked to the decrease in bone density and bone loss in space-flown rats (34).  In 

this light, our result demonstrating that PTHR1 mRNA level was decreased by the RPM 

is also consistent with the space-flown data. In addition to the downregulated genes, 

there were several genes that were upregulated.  Ctsk, which is a member of the papain 

family of cysteine proteases, is mostly expressed in osteoclasts and plays a critical role 

in bone resorption (24, 42).  More recently, however, ctsk has been found in non-

osteoclastic cells such as thyroid epithelial cells (42).  As far as we are aware, this is the 

first time that ctsk expression has been found in osteoblasts.  At present, the biological 

and pathological implications of ctsk expression in osteoblasts are not clear.  Ctsk 

induced by the RPM could be responsible for bone loss by either directly increasing 

osteoclastic activity or through an indirect osteoblast-dependent mechanism.   

We also examined genes that were not unchanged in response to the RPM 

according to the microarray data.  For example, BMP4 and cystatin C mRNA levels in 

the RPM-exposed group showed 1.0- and 0.7-fold changes over the controls, 

respectively.  We performed immunoblot analyses to examine their protein expression 

levels with specific antibodies to BMP4, cystatin C, and actin (as a control) using lysate 

obtained from 2T3 cells exposed to three days of RPM or static 1g control conditions.  

As expected, we did not find any significant difference in their protein expression levels 

as shown in Figure 4.6F.  
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In addition to simulated microgravity or disuse conditions, cells in this in vitro 

system experienced a low level of shear stress and subsequent strain based on 

computational modeling studies.  The model predicted that a minor portion of the cells 

close to the edge of the long frame of the Opticell disk experienced significantly less 

than 1.0 dyn/cm2 of shear stress for a brief moment (less than 4.0 sec/min) and less than 

200 microstrains of mechanical strain for a fraction of the RPM exposure time.   

However, the levels of these forces are significantly lower than the reported stress or 

strain magnitudes (as low as 2 dyn/cm2 shear stress and 500 microstrains) needed to 

stimulate signaling in osteoblasts (18, 19, 23, 30).  It should be noted that it has been 

shown that 0.14 dyn/cm2 of continuous shear exposure for four hours increased 

cyclooxygenase 2 (cox-2) expression (37). Therefore, these results should be taken with 

caution that the observed RPM effects may be partially attributed to mechanical forces 

other than simulated microgravity or disuse conditions.   

In summary, we have developed a novel in vitro system using the RPM, Opticell 

disks, and 2T3 preosteoblast cells, which seems to recapitulate the bone loss-like 

response due to microgravity or disuse conditions.   The data reported here show that 

exposure to the RPM alters gene expression profiles and inhibits differentiation of 

preosteoblasts to osteoblasts, eventually leading to reduced bone formation.  At this 

point, it is not clear whether these two events, differentiation or gene expression 

changes, occur in sequence or concurrently.  However, it is likely that these two events 

are closely interrelated. In addition to having tabulated a list of known and expected 

genes altered by disuse (e.g. ALP, runx2, OMD, PTHR1, and ctsk), we have a list of 

unknown and uncharacterized genes that have dramatically changed in 2T3 cells 

exposed to the RPM.  The functional characterization of these expected and unexpected 

genes could provide critical insight into understanding the mechanisms driving disuse-

induced bone loss.  Moreover, these studies may also lead to the identification of novel 

 83



targets of therapeutic interventions to prevent bone loss not only in astronauts but also in 

the general population afflicted with metabolic bone diseases. 
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Chapter 5 

A Confined List of Mechanosensitive Genes in 
Osteoblasts by Comparative Microarray Studies* 

 

Summary 
With a list of gene expression changes due to simulated microgravity or disuse 

from specific aim 1, it is the goal of specific aim 2 to confine this list to those genes that 

may be most important in regulating bone formation in disuse conditions.  Specific aim 1 

resulted in a relatively large list of 140 genes with potential roles in bone loss due to 

disuse.  As such, to achieve this aim, we exposed 2T3 cells to a distinct simulator of 

microgravity or disuse called the Rotating Wall Vessel (RWV) and performed 

comparative microarray analyses.   

Bone loss due to disuse, microgravity, or osteoporosis is caused in part by 

decreased bone formation by osteoblasts.  There are simulators of microgravity or 

disuse used to study the mechanisms regulating bone loss in these environments at the 

in vitro level.  Thus, this research has the potential to elucidate the role of certain 

mechanosensitive genes in bone loss.  The RWV and RPM are the two most commonly 

used simulators of microgravity, but these simulators have not been systematically 

compared to each other or to mechanical stimulating models.  These comparisons are 

vital to validate their use in modeling the disuse phenotype.  Here, we hypothesized that 

exposure to the RWV inhibits differentiation and alters gene expression profiles of 2T3 

cells, and a subset of these mechanosensitive genes behaves in a manner consistent to 

the RPM and opposite to the trends incurred by mechanical stimulation of mouse tibiae.  

 
 
 

*Adapted and printed with permission from Patel, et al., Identification of Mechanosensitive Genes 
in Osteoblasts by Comparative Microarray Studies Using the Rotating Wall Vessel and the 
Random Positioning Machine,  Journal of Cellular Biochemistry, 2007, Jun 1;101(3):587-99 
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Exposure of 2T3 preosteoblast cells to the RWV for three days inhibited alkaline 

phosphatase (ALP) activity, a marker of differentiation, and downregulated 61 and 

upregulated 45 genes by more than two-fold compared to static 1g controls as shown by 

microarray analysis.  The microarray results were confirmed by real time RTPCR and/or 

immunoblots for seven distinct genes and proteins including osteomodulin (OMD), runt 

homology domain transcription factor 2 (runx2), and osteoglycin (OGN).  Comparison of 

the RWV data to the RPM microarray study that we previously published showed 17 

mechanosensitive genes that changed in the same direction.  Further comparison of the 

RWV and RPM results to independently published microarray data from mechanically 

loaded mouse tibiae revealed three genes including OGN that were upregulated by 

mechanical loading and downregulated by disuse.  These mechanosensitive genes may 

provide novel insight into understanding the mechanisms regulating bone formation and 

potential targets for countermeasures against decreased bone formation during 

spaceflight, disuse, and osteoporosis.     

Introduction 
Bone loss occurs due to a number of stimuli, including disuse due to illness or 

paralysis, microgravity in spaceflight, or ageing.  Bone loss can lead to fractures, 

causing hospitalization and potentially invasive replacement surgery.  Exposure to 

microgravity conditions induces several adaptive and pathological changes to the human 

body, posing health risks to astronauts during spaceflight.  These pathological changes 

include decreased bone mass (12, 23) at 1%-2% per month during spaceflight, and this 

bone loss may be due to either decreased bone formation by osteoblasts or increased 

osteolytic functions of osteoclasts (3, 23).  Bone loss in space may be regulated by 

similar mechanisms as bone loss due to disuse, and research in this area has the 

potential to benefit the general public.  However, the underlying molecular mechanisms 

 91



driving bone loss in various environments remain unknown, making it difficult to develop 

adequate countermeasures to mitigate it.   

Bioreactors such as the RPM and RWV provide unique environments to model 

disuse or microgravity for in vitro experiments.  However, it has become increasingly 

important to have validated in vitro ground-based models.  Whenever possible, 

comparisons of data from these systems should be made to spaceflight, in vivo models 

of disuse, and in vivo mechanical loading models to evaluate consistency of results.  The 

RWV and the RPM are the two most commonly used in vitro simulators of microgravity 

or disuse.  While the RWV models microgravity conditions by maintaining continuous 

free-fall, the RPM exposes cells and tissues to random speeds and orientation such that 

the gravity vector is randomly moved relative to the specimen (4, 22).   The RWV (Figure 

1A) is designed such that the particles within it are subjected to solid body rotation, 

which is achieved as the vessel rotates and the liquid accelerates such that the entire 

body of fluid is rotating at the same angular velocity as the vessel wall.  The RWV 

generates minimum shear forces since there is no internal mixer, and thus, the cells in 

the RWV are subjected to solid body rotation and are constantly suspended (22).  In 

contrast, the RPM (Figure 5.1B) is a three dimensional (3D) clinostat that rotates about 

two orthogonal axes.  There are two frames, an inner and an outer frame, which rotate 

about distinct axes, and the platform where the cells rest is the inner frame.  The RPM 

operates in a random mode, where rotation speeds and directions are randomized using 

software developed by the Dutch Space Agency (Leiden, the Netherlands).  The 

continuous movement of the gravity vector averages the vector to zero over time, a 

method called gravity-vector averaging (6). 

Both the RWV (18, 30) and the RPM (16, 19) have been previously used by 

various groups to assess the effects of microgravity or disuse on bone cells.  However, it 

has not been reported whether these simulators induce similar changes with regard to 
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bone loss or bone formation.  Since the RPM and RWV operate in distinct modes, it is 

imperative to compare the data produced by each simulator.  Recently, we have 

characterized gene transcript expression profiles of 10,000 genes using Codelink gene 

chips in 2T3 murine preosteoblasts exposed to the RPM (19).  We compiled a list of 140 

genes (mechanosensitive genes) that changed in response the RPM, and a subset of 

these genes may be involved in regulation of bone formation.  In contrast, a study by 

Xing et al., has characterized gene transcript profile changes induced by exposing 

mouse tibiae to mechanical stimulation, an apparent opposite of microgravity or disuse 

conditions, using a four-point bending method (29).  Therefore, we hypothesized that 

exposure to the RWV inhibits differentiation and alters gene expression profiles of 2T3 

cells, and a subset of these mechanosensitive genes behaves in a manner consistent to 

the RPM and opposite to the trends incurred by mechanical stimulation of mouse tibiae.   

To test this hypothesis, we carried out an additional gene transcript profiling 

study with 2T3 cells exposed to the NASA-developed RWV bioreactor and compared the 

results to our previous transcript database obtained with the Japanese-designed and 

European-manufactured RPM.  In addition, we compared both the RWV and RPM 

transcript databases to a database obtained from mechanically loaded mouse tibiae 

(29).  From these comparisons, we produced a confined subset of genes that was 

affected in all three studies, suggesting that these genes may be implicated in disuse-

induced decrease in bone formation.   

Materials and Methods 
Cell culture—2T3 murine osteoblast precursor cells were cultured in growth medium (α-

minimal essential medium) containing 10% fetal bovine serum (Atlanta Biologicals) with 

100 U/ml penicillin and 100 µg/ml streptomycin in a standard humidified incubator (37°C, 

5% CO2) as previously described by us (19).  For RWV experiments, trypsinized cells 
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were seeded on microcarriers (#P102-1521, Solohill, Ann Arbor, MI), which have 

polystyrene cores and no extracellular matrix coating.  The cells were allowed to grow in 

low adhesion 100 mm plates (Corning, Inc. #3262) for three days to confluency and then 

were exposed to simulated microgravity using the RWV or static 1g control conditions.   

 

Rotating Wall Vessel (RWV)–Rotation of the RWV (Figure 5.1A) maintains microbeads 

coated with attached 2T3 preosteoblasts in a continuous free-fall state, simulating a 

microgravity environment (22).  This RWV system has been shown to be an effective 

simulator of real microgravity conditions as demonstrated in comparative studies using 

blood mononuclear cells in space flight missions STS-54 and STS-56 (20).  In the 

current study, 2T3 cells were exposed to the RWV for three days so that the data could 

be directly compared to data obtained with the RPM for the same time period (19). 

 

Whole cell lysate and alkaline phosphatase (ALP) enzyme activity—Following the RWV 

or static 1g exposure, cells and beads were washed with ice-cold phosphate buffered 

saline (PBS) two times and lysed in 500 µl of a lysis buffer containing 0.1% Triton X-100 

in 1mM MgCl2, 20mM Tris-HCl, and 0.1 mM ZnCl2.  The lysate and bead mixture was 

centrifuged for three minutes at 1,500 rpm to separate the beads from the lysate.  The 

lysate was pipetted out of the mixture and stored at –20°C until needed.  A Bio-Rad DC 

protein assay and ALP activity assay (Sigma) were carried out as described previously 

(19).  

 

Immunoblotting—Aliquots of cell lysate were resolved on a SDS-PAGE gel and 

transferred to a polyvinylidene difluoride membrane (Millipore) (1).  The membrane was 

incubated with a primary antibody overnight at 4°C and then incubated with a secondary 

antibody conjugated with alkaline phosphatase for one hour at room temperature.  
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B. RPM

RR

A. RWV

Figure 5.1 Simulated microgravity or disuse using the RWV and the RPM.  The 
arrows indicate movement about the respective axis of rotation. 
 

Expression was detected by a chemiluminescence method, and the intensities of 

immunoreactive bands were determined by densitometry (1).  Antibodies specific for 

BMP4 (Santa Cruz Biotechnologies), OGN (R&D Biosciences), and peroxiredoxin I and 

peroxiredoxin IV (Lab Frontier, Seoul, Korea) were used.  

 

RNA isolation—Total RNA was prepared by using the RNeasy Mini kit (Qiagen).  Briefly, 

after two ice-cold PBS washes, 500 µl of RLT lysis buffer containing β-mercaptoethanol 

was added to the bead and cell mixture to isolate total RNA.  The bead and lysate 

mixture was centrifuged for three minutes at 1,500 RPM to separate the beads from the 

RNA, and the RNA was pipetted to the homogenizing column in the RNeasy kit.  The 

RNA was purified with the kit and stored at –80°C until needed.   
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Affymetrix Gene Microarrays— All RNA samples passed the Affymetrix test for RNA 

quality and concentration before proceeding to the gene chip study carried out in the 

Microarray Core Facility at the Baylor College of Medicine (Houston, TX).  The samples 

used for these studies were obtained from three independent biological experiments as 

follows:  We pooled cells from 3 independent RWV experiments carried out at the same 

time to obtain a single sample (total RNA) that was used for a single microarray.  This 

process minimized inter-experimental variations and provided a sufficient amount of 

RNA for each microarray.  We repeated this process three different times to obtain a 

final sample size of three microarray chips for the static control samples and three 

microarray chips for the RWV samples.  The array used was Affymetrix GeneChip® 

Mouse 430 2.0, and the data were background adjusted and normalized to median 

intensity.  The data were transformed so that fold changes were obtained by dividing the 

averaged normalized intensities of the RWV samples by the averaged normalized 

intensities of the static samples.  Thus, a fold change above 1.0 indicates a gene 

upregulated by the RWV and below 1.0 indicates a gene downregulated by the RWV.   

The data were statistically analyzed by DNA chip analyzer (dChip) as described below in 

the statistical analysis section and filtered for fold change threshold, and the genes that 

changed in response to the RWV by more than two-fold above or below the static 1g 

controls with p-values of less than 0.05 were deemed considerable and statistically 

significant.  The number of differentially expressed genes and false discovery rate (FDR) 

were calculated for each of 500 permutations, and 1,934 genes had p-values less than 

0.05 at median FDR.  Roughly, half of these genes were false positives.  GoMiner 

software (http://www.miblab.gatech.edu/gominer) was used to sort the genes by 

biological processes and to assign some of the molecular functions of each known gene 

(31).   
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Reverse Transcriptase and Real-Time Polymerase Chain Reaction (RTPCR)—Total 

RNA was reverse transcribed by using random primers and a Superscript-II kit (Life 

Technology) (24).  The synthesized and purified cDNA was amplified using a LightCycler 

(Roche Applied Science), and the size of each PCR product was verified by agarose gel 

electrophoresis as described by us (24).  The mRNA copy numbers were determined 

based on standard curves generated with the genes of interest and 18S rRNA 

templates. The 18S gene (50 nM at 61ºC annealing temperature; Ambion) was used as 

an internal control for real time RTPCR carried out with capillaries (Roche Applied 

Science), recombinant Taq polymerase (Invitrogen), and Taq start antibody (Clontech).  

The primer pairs for the quantitative real time RTPCR are listed in Table 5.1 along with 

Light Cycler conditions.  Real time RTPCR for the listed genes were carried out in 

RTPCR buffer (20mM Tris-Cl, pH 8.4 at 25°C, 4mM MgCl2, 250 µg/ml bovine serum 

albumin, and 200 µM deoxynucleotides) containing SYBR green (1:84,000 dilution), 

0.05unit/µl Taq DNA polymerase, and Taq Start antibody (1:100 dilution) as described 

previously (24).  

 

Table 5.1 Primer pairs and Lightcycler conditions for Real Time RTPCR 

Accession # Gene Primers (5’-3’) bp LightCycler 
Conditions 

NM_009820 Runx2 Fw GACAGAAGCTTGATGACTCTAAACC 171 7 sec;  62ºC 
  Rv TCTGTAATCTGACTCTGTCCTTGT  9 sec; 72ºC 
NM_007554 BMP4 Fw CTGCGGGACTTCGAGGCGACACTTCT 150 7 sec; 65ºC 
  Rv TCTTCCTCCTCCTCCTCCCCAGACTG  7 sec; 72ºC 
NM_011199 PTHR1 Fw GCACACAGCAGCCAACATAA 531 7 sec at 63ºC 
  Rv CGCAGCCTAAACGACAGGAA  22 sec at 72ºC 
NM_012050 OMD Fw GACGGGCTGGTGAATGTGACTATGCTTGA 147 7 sec; 63ºC 
  Rv CCAAGGGGCATTGATTCTAATCTGTTATT  10 sec; 72ºC 

 

 

Statistical analysis—Data are expressed as mean + SEM with n numbers representing 

biological replicates from independently repeated experiments.  Statistical analysis was 
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performed using the Student's t-test for ALP enzyme activity experiments. A significance 

level of p<0.05 was considered statistically significant.  The microarray data was 

analyzed with dChip, a program based on the Model-Based Expression Index (MBEI) 

method (14, 15).  The raw data were normalized using the invariant set normalization, 

and the average expression values were represented as model-based expression 

indices. We used the ‘PM only model’, and the expression values were expressed in 

log2 scale. Differential gene expression between two groups of samples was analyzed 

by the t-test built in dChip.  

Results 
 

The RWV inhibited ALP activity. 

Expression of ALP increases as osteoblasts mature and differentiate, and its 

enzyme activity is often used as a marker for bone formation.  Thus, we examined the 

effects of the RWV on ALP enzyme activity in 2T3 preosteoblasts.  Exposure of 2T3 

cells to the RWV for three days significantly decreased ALP activity (Figure 5.2A) and 

mRNA (Figure 5.2B) in comparison to static 1g controls.  This finding, which is 

consistent to our previously reported data with the RPM (19), suggests that the 

simulated microgravity or disuse conditions induced by either the RWV or the RPM 

result in a similar inhibitory effect on osteoblast differentiation.   

 

The RWV altered gene expression profiles of 2T3 cells.     

DNA microarray studies were performed on samples obtained from 2T3 cells 

exposed to static 1g or the RWV for three days.  Among approximately 40,000 genes  
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Figure 5.2 RWV exposure inhibited alkaline phosphatase activity and mRNA 
expression in 2T3 cells.  Confluent 2T3 cells grown on microcarriers were placed in 
the RWV or exposed to static 1g conditions for three days.  ALP activity (A) was 
determined by a colorimetric assay and normalized to total protein, and ALP mRNA 
level (B) was determined by real time RTPCR with 18S as an internal control.  Data 
are shown as mean ± SEM (n=6 for A, n=3 for B, *p<0.05).   
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Figure 5.3 The effects of the RWV on gene expression profiles of 2T3 cells.
Total RNA was isolated from 2T3 cells exposed to RWV or static 1g control conditions
for three days. The samples were reverse transcribed and analyzed by Affymetrix 
microarrays corresponding to 40,000 mouse genes.  The scatter plot shows mean 
intensities of each gene probe using the data obtained from all microarrays. 
Statistical analysis identified 61 genes upregulated (red dots) and 45 genes 
downregulated (green dots) by more than two-fold compared to static 1g control 
(p<0.05, n=3 each static 1g and RWV).  Unchanged genes are shown in black along 
the diagonal line in the scatter plot.   
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tested by the Affymetrix array, 61 were downregulated while 45 were upregulated 

statistically significantly (p<0.05) by more than two-fold above the static 1g control as 

shown in a scatter plot of the genes (Figure 5.3).  In Figure 5.3, dots aligned with the 

diagonal line represent unchanged genes while genes further from the line were either 

upregulated (above line) or downregulated (below line) by the RWV.  Additionally, Table 

5.2 provides a list of significantly changed genes from the microarray that may be 

implicated in bone formation or mineralization as determined by literature survey, and 

these genes are organized by fold change with molecular function as defined by 

GoMiner.  Table A.1 shows a larger subset of mechanosensitive genes organized by 

biological process.  Table A.2 lists genes that may be involved in osteoblast function with 

relaxed p-value stringency.  The entire RWV array data can be accessed from Gene 

Expression Omnibus (GEO) with accession number GSE4658.  The RPM microarray 

data that we previously published can be accessed with numbers GDS928 or GSE1367 

(19).   

 

Quantitative real time RTPCR and immunoblotting validated the microarray data 

for select osteogenic genes. 

To confirm our microarray data, we performed real time RTPCR and immunoblot 

analyses for a select subset of genes that may be implicated in bone formation.  The 

same samples that were used for the microarrays were used for the real time RTPCR, 

and additional RWV experiments were performed to obtain protein samples for the 

Western blots.  The 2T3 cells exposed to the RWV had decreased expression of runx2, 

bone morphogenic protein 4 (BMP4), parathyroid hormone receptor 1 (PTHR1), and 

OMD genes by a fold change of 0.69, 0.40, 0.54, and 0.10, respectively, as evaluated by 

the Affymetrix microarray.  The gene expression fold changes by real time PCR for 

runx2, BMP4, PTHR1, and OMD, were 0.38, 0.26, 0.59, and 0.10, respectively (Figure  
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Table 5.2 The effect of the RWV on selected genes that may be involved in 
osteoblast differentiation and matrix mineralization. Genes are sorted based on 
fold changes.   
Accession 
# Gene Name *Fold ∆ p-value Molecular Function 

NM_012050 osteomodulin 0.10 <0.05 also called osteoadherin, may 
mediate cell attachment 

NM_008760 osteoglycin 0.23 <0.05 
binds to TGF-beta, no GAG in 
bone, keratan sulfate in other 
tissues 

NM_025711 asporin 0.28 <0.05 porin activity; cartilage 
extracellular protein 

BC002065 serine (or cysteine) proteinase 
inhibitor, clade A, member 3G 0.35 <0.05 

may be involved in osteoclast 
function with MMPs and 
cathepsins 

NM_007729 procollagen, type XI, alpha 1 0.37 <0.05 present in cartilage 
NM_011581 thrombospondin 2 0.39 <0.025 involved in cell attachment 

NM_016873 WNT1 inducible signaling 
pathway protein 2 0.39 <0.05 involved in WNT pathway, WNT 

stimulated by BMPs 
BB781435 nidogen 2 0.39 <0.005 calcium binding 

NM_007554 bone morphogenetic protein 4 0.40 <0.0025 growth factor and cytokine 
activity 

NM_011693 vascular cell adhesion molecule 
1 0.41 <0.025 cell adhesion molecule activity 

NM_012043 
immunoglobulin superfamily 
containing leucine rich repeat  
(ISLR) 

0.42 <0.05 involved in cell attachment 

NM_009144 secreted frizzled-related 
sequence protein 2 0.43 <0.05 WNT signaling pathway 

antagonist 

BB431535 matrix metalloproteinase 16 0.47 <0.05 involved in osteoclast function 
and bone resorption 

BC014690 transforming growth factor, beta 
3 0.59 <0.05 growth factor and cytokine 

activity 

AF053954** cbfa1/runx2 (osf2) 0.69 >0.05 
essential transcription factor for 
osteoblast differentiation and 
bone formation 

NM_008216 hyaluronan synthase 2 0.74 <0.05 
with versican-like protein works 
to captures space destined to 
become bone 

NM_007833 decorin 0.76 <0.025 binds to collagen and may 
regulate fibril diameter 

NM_007431 alkaline phosphatase 2, liver 0.82 <0.05 
essential for hydroxyapatite 
formation and matrix 
mineralization 

BG092290 insulin-like growth factor 2 
receptor 1.43 <0.025 signal transduction and hormone 

activity 

NM_020275 tumor necrosis factor receptor 
superfamily, member 10b 1.43 <0.05 growth factor and cytokine 

activity 

NM_010554 interleukin 1α 1.58 <0.05 potent stimulators of bone 
resorption 

BM935811 integrin α6 2.47 <0.05 cell adhesion molecule 
AK003744 cystatin E/M 3.45 <0.05 antagonist to cathepsin family 
*Fold=RWV/static 1g 
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Figure 5.4  Verification of microarray results by real time PCR and immunoblot. 
Aliquots of total RNA used for the microarray studies (n=3) were used for real time 
RTPCR for runx2 (A), BMP4 (B), PTHR1 (C), and OMD (D) using 18S rRNA as an 
internal control.  Additional experiments were performed to obtain cell lysate for 
immunoblots for BMP4 (F), PRXIV (G), OGN (H), and PRXI (I) using actin as an 
internal control.   Also shown is the comparison of the microarray fold changes to the 
real time RTPCR (E) or immunoblot results (J). Data are shown as mean±SEM (n≥3, 
* p< 0.05). 
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5.4 A-E).  Additionally, we confirmed the expression of downregulated genes BMP4, 

peroxiredoxin IV (PRXIV), and osteoglycin (OGN) and upregulated gene peroxiredoxin I 

(PRXI) by immunoblotting.  The Affymetrix fold changes for BMP4, PRXIV, OGN, and 

PRXI were 0.40, 0.66, 0.23, and 1.23.  We showed that the fold changes for the proteins 

by Western blot were 0.59, 0.68, 0.32, and 1.58, respectively (Figure 5.4 F-J).  The 

different methodologies used, the microarray assay, real time RTPCR, and 

immunoblotting, produced highly consistent results, providing a level of assurance 

regarding the validity of the microarray data.     

 

Comparison of the RPM and RWV microarrays revealed 17 genes that changed in 

the same direction. 

There was a subset of genes that demonstrated similar expression changes 

when exposed to simulated microgravity or disuse using either the RPM or RWV.  Table 

5.3 displays the genes that changed statistically significantly with p<0.05, showing 16 

downregulated genes and 1 upregulated gene in this group.  Table 5.3 organizes the 

significant genes by biological process as defined by GoMiner and associates each gene 

with a molecular function, if known.   

 

Comparison of the RWV and RPM microarrays to a mechanical loading microarray 

showed that three genes changed in opposite directions between disuse and 

mechanical loading. 

Recently, Xing, et al. published microarray data on mouse tibiae that were 

mechanically loaded (29).  Briefly, they loaded mice in a four point bending mechanical 

loading device for four days, and total RNA was obtained from the region of the 

mechanically stimulated tibia.  The untreated tibiae of the same mice were used as 

unloaded controls, and a 22,000 gene Agilent Technologies microarray was utilized for  
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Table 5.3 A list of statistically significant common genes sensitive to disuse in 2T3 
cells using both the RWV and the RPM.  Genes are sorted based on typical 
biological process (p<0.05).   
Accession # Gene Name *Fold ∆ 

RWV 
#Fold ∆ 

RPM Molecular Function 

Cell Adhesion     

NM_012050 osteomodulin  0.10 0.18 aka osteoadherin, may mediate 
cell attachment 

NM_007729 procollagen, type XI, alpha 1 0.37 0.29 extracellular matrix structural 
constituent 

NM_012043 
immunoglobulin superfamily 
containing leucine rich 
repeat  

0.18 0.42 involved in cell attachment 

AK004179 platelet-derived growth 
factor receptor-like  0.45 0.52 involved in cell attachment and 

possibly cell proliferation 
Cell Cycle     

NM_011817 growth arrest and DNA 
damage inducible, gamma  0.40 0.49 structural constituent of 

ribosome 
Development     

NM_009144 secreted frizzled-related 
sequence protein 2  0.43 0.41 transmembrane receptor and 

signal transduction activity 
Regulation of 
Cell Growth     

NM_030127 serine protease  0.74 0.22 serine-type endopeptidase 
activity 

NM_008760 osteoglycin  0.23 0.38 growth factor activity 
Protein 
Biosynthesis     

NM_026631 nucleolar protein family A, 
member 2  1.69 2.04 RNA binding; structural 

constituent of ribosome 
Transport     

AK018504 
ras association 
(RalGDS/AF-6) domain 
family 2  

0.27 0.43 protein binding 

Cell 
Differentiation     

NM_025711 asporin  0.15 0.28 porin activity; cartilage 
extracellular protein 

Metabolism     
NM_007934 glutamyl aminopeptidase  0.40 0.35 aminopeptidase activity 

%NM_007431 alkaline phosphatase 2, liver 0.82 0.21 
essential for hydroxyapatite 
formation and matrix 
mineralization 

Skeletal 
Development     

NM_054077 proline arginine rich end 
leucine rich repeat  0.43 0.45 extracellular matrix structural 

constituent 

%AF053954 cbfa1/runx2 (osf2) 0.69 0.53 
essential transcription factor for 
osteoblast differentiation and 
bone formation 

%NM_011199 parathyroid hormone 
receptor 1 0.54 0.20 transmembrane receptor activity 

Unknown     
NM_021355 fibromodulin 0.45 0.45 unknown 

*Fold= RWV/static 1g 
#Fold=RPM/static 1g 
%p<0.05 and/or fold change>2.0 as shown by RTPCR  
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the gene expression studies.  We compared the RPM and RWV microarrays to their 

published data and found that three genes changed in opposite directions with p<0.05.  

Table 5.4 lists the three genes that were upregulated in mouse tibiae by mechanical 

loading and were downregulated in cells exposed to disuse.  Since the experimental 

sample sizes (n=3 each) were relatively small, we also evaluated which genes changed 

commonly in both simulators and opposite to mechanical loading with less stringent p-

value cutoffs (p<0.1).  Under this non-stringent condition, we found that there were an 

additional 13 genes that changed in opposite directions as shown in Table A.3.    

 
 
 
Table 5.4 Comparison of gene expression changes among RWV, RPM, and 
mechanical load microarrays.  Sorted by biological process.   

Accession # Gene Name 
Fold 
∆ 

RWV 

p-value 
RWV 

#Fold 
∆ 

RPM 

p-value 
RPM 

*Fold 
∆ in 
vivo 

p-value 
 in vivo 

Molecular 
Function 

Cell Growth & 
Differentiation         

AK014259 osteoglycin 0.22 p<0.05 0.38 p<0.005 2.47 p<0.005 binds to 
TGF-Beta 

Proteolysis         

NM_008788 
procollagen C-
proteinase 
enhancer protein 

0.56 p<0.01 0.52 p<0.05 2.15 p<0.005 
nucleic 
acid 
binding 

Other         

AK004179  
platelet-derived 
growth factor 
receptor-like 

0.45 p<0.005 0.52 p<0.05 2.18 p<0.005 receptor 
activity 

#RPM data previously published (19) 
*in vivo refers to mechanical loading data previously published (29) 

 

Discussion 
We have previously shown that exposure of 2T3 cells grown in Opticell disks to 

the RPM inhibits ALP activity while gene transcript studies scanning 10,000 mouse 

genes produced a list of 52 upregulated and 88 downregulated genes altered by more 

than two-fold compared to the static 1g control (19).  Here, we used a distinct approach 

to expose 2T3 cells to simulated microgravity using the RWV, which maintains the cells 

in continuous free-fall in culture medium, mimicking a disuse condition.  The RWV is a 
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bioreactor developed by NASA and most commonly used in the United States (17, 21, 

22).  In contrast, the RPM has been developed by the Japanese and the European 

Space Agency and is used mostly by scientists outside of the United States, with the 

exception of our group (4, 6, 19).  Unlike the RPM system where the cells were attached 

to OptiCell membranes and exposed to disuse conditions, the RWV does not have a 

similar platform and adherent cells have to be grown on microcarriers for exposure to the 

RWV.  Given the need for validated ground-based microgravity simulators, it is 

imperative that these simulators be compared not only to each other but also to other in 

vivo mechanical loading and unloading systems. 

To compare the results of the RWV to those published with the RPM, we aimed 

to feasibly match the conditions between the two experiments.  Most importantly, we 

found that exposure of 2T3 cells to either the RPM or RWV produced a similar inhibitory 

effect on ALP enzyme activity.   These results suggest that the RPM and RWV inhibit 

cell differentiation of preosteoblasts, a finding that is consistent with the expected 

disuse- or microgravity-induced decrease in bone mass.  

Previously, it has been controversial whether the RWV decreased or increased 

ALP activity, but this may be due to a difference of whether the cells were grown as 

attached or suspended cultures.  In one study, Rucci, et al. found that ALP activity and 

mRNA expression increased when exposed to the RWV for two days using a rat 

osteoblast-like cell line that was grown as aggregate suspension (21).  In contrast, 

Klement, et al. showed that exposure to the RWV for up to 14 days blunted ALP activity 

and bone matrix mineralization of mouse embryonic pre-metatarsal tissue explants (10).   

It should be noted that in the Klement et al. study, the cells comprising the bone explants 

were still attached to the extracellular matrix within the embryonic bone tissues.  

Similarly, in our current RWV and the previous RPM study, preosteoblasts were grown 

as adherent cells either on microcarriers or on the OptiCell membranes before and 
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during exposure to the simulators.  These results suggest that the inhibitory effect of the 

RWV and RPM on the osteoblast function requires bone cells grown in adherent 

conditions during exposure to simulated microgravity or disuse conditions.  Additionally, 

our finding partially validates and supports the use of ground-based simulators to study 

disuse- or microgravity-induced changes in bone cell biology and pathology. 

We also performed gene microarray analysis to determine changes in gene 

expression profiles of the preosteoblasts and compared the results to our published 

findings with the RPM.  We found that 17 genes changed in the same manner, and 

many of these genes are involved in skeletal remodeling.  For example, we confirmed 

expression levels of runx2, which was downregulated by approximately 1.5-fold, and is 

believed to be a “master gene” that plays a critical role in the formation of the skeleton.  

When runx2 is genetically knocked out in a mouse model, there is a complete lack of 

skeleton formation (8, 11).  Additionally, we confirmed the downregulation of PTHR1 

levels by the RWV.  A decrease in parathyroid hormone related protein, which plays a 

role in calcium mobilization, has been linked to decreases in bone density and 

subsequent bone loss in space-flown rats (26).  OMD belongs to the SLRP family and 

may be involved in bone matrix formation (2), and simulated microgravity- or disuse-

induced decrease in OMD is consistent with our hypothesis.   

Furthermore, we confirmed the downregulated expression levels of BMP4, which 

is involved in skeleton development, including cartilage formation and various joint 

developments (27, 28).   Moreover, oxidative stress is involved in the etiology of various 

pathologies, and oxidants are produced under physiological conditions during 

phagocytosis by macrophages, mitochondrial electron transport, and bone resorption by 

osteoclasts (13).   Bone resorption is known to increase beyond normal physiological 

levels in spaceflight (23), potentially increasing the levels of oxidative stress in the 

human body.  Peroxiredoxins are a family of antioxidants that are often made by cells in 
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response to oxidant production.  It has been found that PRXI is upregulated during bone 

cell differentiation (9, 13).  We found that PRXI protein level was upregulated while 

PRXIV protein was downregulated by the RWV, corroborating with gene expression data 

from the microarray.  These peroxiredoxins may play a differential role in the cells 

attempting to compensate for changes in oxidative state.   

To further investigate the functional significance of the disuse-associated 

changes in gene expression, we compared our microarray results to independently 

published data from mechanically loaded tibiae in a mouse model (29).  When we 

compared their gene expression results to those of the RPM and RWV microarrays, we 

found three genes that were upregulated by mechanical loading and were contrastingly 

downregulated by disuse conditions.  Also, when less stringent statistical p-values were 

applied, we found 13 additional genes displaying the same trends.  For example, OGN 

was downregulated by the RPM and RWV but upregulated by mechanical loading.  OGN 

is a small leucine-rich proteoglycan found in the extracellular matrix of bone, and 

knockout mice for this gene display collagen fibril diameter abnormalities (25).  These 

comparisons suggest that a subset of the genes in 2T3 cells are mechanosensitive and 

may be implicated in microgravity- or disuse-induced decreased bone mass.  

Microgravity occurring during spaceflight is characterized as an environment in which the 

human body is no longer loaded as on Earth, and disuse due to long term illness or 

paraplegia dramatically reduces the normal loading on the body.  Therefore, it is 

interesting that many genes that are changed by increased mechanical loading are also 

changed in the opposite direction by “unloading”.   

The widely accepted model of animal-based simulated microgravity or disuse is 

the rodent hindlimb unloading (HLU) experiment.  To date, there has not been a large 

scale gene expression study performed from bones of animals exposed to HLU.  

However, there have been a few small scale studies investigating specific gene 
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expression.  After four days of HLU using BALB mice, two independent studies found 

decreases in type I collagen, osteonectin, osterix, and matrix metalloproteinase 2 

(MMP2) (7, 32).  However, in both the RWV and RPM, the expression levels of these 

genes did not reach statistical significance but did show a trend towards decreased 

expression.     Additionally, Judex et al. found no change in cathepsin K (ctsk) due to 

HLU exposure while the RPM increased it and the RWV did not alter it.  As well, Judex 

et al. showed no change in runx2, which was decreased by both the RWV and RPM (7).  

Moreover, Zhong, et al. showed that ALP expression decreased with HLU exposure, 

corroborating with the RWV and RPM results (32).  Recently, Hughes-Fulford, et al. 

examined the effects of spaceflight microgravity with or without a centrifugal 1g field 

intervention on the expression of 24 genes in MC3T3-E1 preosteoblasts (5).  In this 

study, there was a significant reduction in expression of genes such as cyclooxygenase 

2 (cox-2), transforming growth factor beta 1 (TGFβ1), fibroblast growth factor 2 (fgf-2), 

and osteocalcin (OCN) with exposure to spaceflight microgravity (5).  In comparison, 

TGFβ1 expression was downregulated by the RWV, comparable to spaceflight, but it 

was upregulated by the RPM.  Additionally, prostaglandin E1 (EP1) was not altered in 

spaceflight, corroborating with the RPM data, but the RWV upregulated its expression.  

Furthermore, spaceflight did not alter cyclin A, cyclin E, actin, or fibronectin, which 

correlates to both the RWV and RPM microarray data.   Our detailed large scale gene 

expression studies and comparisons may allow investigators the information needed to 

select specific genes on which to focus, potentially narrowing the pool of therapeutic 

targets for bone loss.   

In conclusion, we have shown that the two different simulators of microgravity or 

disuse conditions produce similar results with regard to bone cell differentiation and 

osteoblast function.  We have shown that both simulators reproduce a decreased bone 

formation response as also seen in spaceflight.  Furthermore, we have compiled a short 
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list of genes that change in response to the two different types of disuse conditions and 

to mechanical loading, which may serve as specific targets for interventions to prevent 

decreased bone mass in spaceflight, disuse, or osteoporosis.   
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Chapter 6 

Bone Adaptation to the Mechanical Environment:       
High vs. Low Impact Loading 

 

“Every change in the form and function of bone or of their function alone is followed 

by certain definite changes in their internal architecture and equally definite alteration 

in their external conformation, in accordance with mathematical laws.” 

—J. Wolff, 1892 (38) 

 

Summary 

From specific aims 1 and 2, we showed that mechanical unloading altered 

cellular and molecular responses in osteoblasts.  We established an in vitro model 

system to study disuse and provided a relatively short list of genes that may be 

significant in bone loss pathologies.  In specific aim 3, it is our goal to both to 

expound the mechanism driving in vivo bone adaptation to extremely low magnitude 

and high frequency (LMHF) mechanical loading and explore its use as a novel 

countermeasure device for bone loss in spaceflight.  In the next two chapters, we 

provide background on bone adaptation at the macroscopic and microscopic levels 

to support specific aim 3, which will be discussed in Chapter 8.   

High impact mechanical stimulation such as exercise is often classically 

regarded as an anabolic signal to instigate bone remodeling.  The theory that normal 

bone adapts to its mechanical environment dates back to Julius Wolff (1892), who 

was the first to suggest that stress imparted to bone impacted its architecture (38).  

Harold Frost (1987) elucidated the role of a mechanical stimulus to bone (8, 10) by 
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defining a minimum effective strain that was required from the stimulus in order to 

stimulate bone adaptation.  Frost defined the mechanostat as the biological 

machinery that determines bone strength (7).  In this chapter, we review bone 

adaptation to alterations in mechanical loading at the macroscopic level, focusing on 

the impact of exercise versus externally applied LMHF loading.   

General Bone Adaptation 

 One of the primary functions of bone is providing mechanical integrity for both 

protection and locomotion.  Bone adaptation is the inherent change in bone mass 

and architecture in response to strain induced by mechanical loads.  Three rules 

govern bone adaptation as follows: 1) adaptation is driven by a dynamic stimulus, 2) 

adaptation requires only a relatively short duration of loading, and 3) bone cells 

become accustomed to routine mechanical loading (35).  The response of bone to 

loading or unloading is dependent on both genetic and epigenetic factors.  While 

genetics outlines the general shape, length, and architecture, changes in mechanical 

environment elicit adaptive responses.  According to Wolff’s law, bone architecture is 

defined by mathematical laws, which state that thickness, number, and distribution of 

trabeculae must correspond to distribution of mechanical stresses, and the 

trabeculae should be loaded axially in compression and tension (35, 38).  It was later 

elucidated that strain resulting from mechanical stress itself could cause adaptive 

responses, and Frost defined a minimum effective strain that had be induced to 

instigate such a response (9).  Additionally, it was shown that bone responded to 

dynamic and not static strain (29).  These findings regarding bone adaptation have 

been formed into mathematical laws, calculating that a strain stimulus is a function of 

both strain magnitude and frequency.  Since strain loading is dynamic, the strain 

stimulus can be defined using the Fourier method as shown in equation 6.1: 

 116



    

  

where E=strain stimulus, k=proportionality constant, ε=peak to peak strain magn

and f=frequency.  This equation is critical in bone adaptation because it dictates

a static load would not cause a response since f = 0 and that adaptatio

proportional to strain magnitude.  However, it should be noted that this m

predicts a linear relationship between strain magnitude and frequency, and it is

known that biology seldom encompasses precise linearity.   

Strain is defined as a change in length relative to the object’s original le

and it is widely accepted that strain is a means by which a mechanical for

translated into a signal that can be recognized by the mechanotransdu

machinery of the body (22).  Both the intensity and duration of the load play c

roles in defining adaptation to mechanical deformation.  To avoid failure, the ap

load must not induce strain beyond the bone tissue yield, and this level has 

measured to be over 0.7% or 7000 microstrain (µε) (22).  To determine funct

strain levels in bone, strain gauges have been inserted in vivo in a host of anim

including dog, pig, turkey, sheep, and horse, and strain was measured d

physical activity such as galloping or trotting.  Remarkably, regardless of size

maximum peak strain was measured to be within the range of 2000-3000 µε f

animals, and this species-independent uniform peak strain is a concept c

dynamic strain similarity (DSS) (29).  DSS states that peak functional stra

independent of body size and species type, and evolution has defined a safety f
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of 2-3 between functional and yield strain such that activity elicits a specific strain 

level to bone tissue for homeostatic skeletal response (29).  It is possible that the 

peak strain magnitude is similar in animals of disparate size because larger animals 

have evolved such that weight-related axial stress in the bone is decreased during 

movement at the expense of decreased agility.  For example, a fish can rapidly swim 

and immediately change course of direction more simply than an elephant (29).  For 

humans, a strain of 3000 µε for a femur of approximate length of 45 cm (17.7 in) 

elicits a change in length on the order of magnitude of 1 mm (~0.039 in).  If bone 

cells are responsible for sensing and responding to this strain, which would only be 

on the order of angstroms relative to the length of a cell, the mechansensory system 

must be extremely sensitive to generate an adequate adaptive reaction.   

 In mechanical testing of bone, diverse loading conditions have been used to 

assess bone properties.  Previous studies have shown that in cortical bone tissue, 

application of 2000 µε at a frequency of 0.5 Hz maintained bone mass (31, 33).  

According to equation 1, a similar response should be observed if the frequency was 

increased to 10 Hz and strain decreased to 100 µε.  This trend bound by equation 

6.1 was observed experimentally when the frequency was increased to 1 Hz and 

only a strain of 1000 µε was needed to maintain bone mass.  Further, at a frequency 

of 30 Hz, only 70 µε was needed to inhibit bone resorption (32, 33).   Thus, bone 

response to mechanical signals seems to correlate to increased frequency, meaning 

smaller strains induced by a lower force applied more frequently is ample to 

stimulate bone formation and maintain bone mass.     

 Bone adaptation occurs at both the macroscopic and microscopic levels, 

altering bone mass and architecture to maintain mechanical integrity for posture 

control and movement.  It has been well accepted that high impact activity improves 

skeletal mass while disuse impedes it.  It is also well known that muscle strength 
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greatly impacts bone health as muscles constantly strain bone, causing adaptive 

responses within them.  In the following sections, we review the accumulating 

evidence that exercise and muscle contraction both benefit the musculoskeletal 

system, despite delivering disparate signals to bone.   

Exercise: High Magnitude and Low Frequency 

Osteopenia is a condition of decreased bone mass, and when bone mass 

has reduced to the point of fracture risk, the condition is called osteoporosis.  It is 

clear that there is an abundance of data suggesting that exercise promotes skeletal 

benefits, and the variation among studies is partially due to the type of exercise 

tested, patient population, and data analysis.  However, there remains a common 

conclusion in the vast majority of studies that exercise provides skeletal benefit, 

albeit sometimes site-specific.     

Exercise or physical activity beyond normal, daily routine exists in copious 

forms and induces distinct loads on the body.  For instance, walking imposes a load 

of 1g (1 times body weight) while running increases the load to 3-4g, and jumping 

hurdles further augments the loading to 5g (21).  Exercise can be regarded as a high 

magnitude (greater than 1g) and low frequency (1-2 Hz) impact.  The benefits of 

exercise have been inexorably tested, documented, and relayed to the general public, 

and it has been shown to increase bone and muscle mass (11, 34, 36).  The last two 

decades have provided insight into exercise intervention trials in the normal 

population, beyond that of comparing elite athletes to sedentary controls.  The 

exercise regimes in these experiments ranged from aerobic versus stretching control 

to high weight and low repetition resistance weight training versus low weight and 

high repetition weight training.  Subjects varied within a gamut of ages from a young 

10 years to post-menopausal women over 50 years old.  Studies continued for at 
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least eight months and used bone mineral density (BMD) as a marker of skeletal 

improvement.   

In one study involving young women ages 20-35, researchers investigated 

the use of exercise and calcium supplementation on peak bone mass.  These 

women were divided into an exercise group consisting of weight training combined 

with aerobic activity or a stretching control group.  After two years of exercise or 

control, there was a significant increase in BMD in the spine, femoral neck and 

trochanter, and calcaneus due to exercise, but calcium supplementation did not 

improve BMD in any tested location (5).  In another study with post-menopausal 

women, researchers explored the effects of resistance training (high load, low 

repetitions) versus endurance training (low load, high repetitions) on bone mass in 

the forearm and hip.  After one year of exercise intercession, there were significant 

increases in BMD at the femoral trochanter in the hip and the distal radius of the arm 

with resistance training while endurance training only improved mid-radius BMD.   

Using the one repeat maximum (1-RM) method, the researchers also found that 

muscle strength increased in both groups.  The study concluded that the peak load 

was more important than the number of repetition cycles to increase bone mass in 

early post-menopausal women (18).  In another study of pre-menopausal women 

(age range of 28-39 years), subjects were assigned to exercise or non-exercise 

control groups and monitored for 1.5 years.  The exercise group showed an increase 

in femur trochanter BMD by one year but no change in total, arm, or leg BMD 

compared to control.  In addition, they used the 1-RM method to evaluate muscle 

strength and found a 58% increase in the exercise group when compared to baseline 

and no increase in the control group (20).    

However, not all studies have reported increases in BMD at the femur, a site 

at which many fractures occur in osteoporotic patients.  One study explored whether 
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aerobic or weight training benefited the skeletal system in young college-aged 

women (mean age 19.9 years) over an eight month period.  They found increases in 

spine lumbar BMD in both running and weight training groups compared to a non-

exercise control group but no significant changes at the hip (34).    In another study 

evaluating the effects of jumping in pre- and post-menopausal women, the subjects 

were assigned to perform 50 vertical jumps for six times per week.  Mechanical loads 

induced to the joints were measured by ground reaction forces, amounting to 

3g/jump for pre-menopausal women and 4g/jump for post-menopausal subjects.  

After five months, there was a 2.8% increase in BMD at the femur in the pre-

menopausal group but no change in the post-menopausal women after one year or 

1.5 years (2).  Thus, there was a clear benefit for younger women but not older, post-

menopausal subjects.   

It is clear that there is an abundance of data suggesting that exercise 

promotes skeletal benefits, and the variation among the studies is probably partially 

due to the type of exercise tested.  These discrepancies allow for appreciation of the 

complex nature of mechanical loading and subsequent bone adaptation.  For 

example, during jumping, there is loading due to absorption of the impact as well as 

muscle-generated forces applied to the bone.  In gymnasts, dismounting from the 

parallel bars stimulates an immense load amounting to approximately 11g, which 

partially expounds why gymnasts encompass a hip BMD greater than other athletes 

(21, 23).  However, in the Bassey study, jumping applied no more than 4g reaction 

forces to the joints of the subjects, equivalent to forces from running (2).  Running 

has been generally shown to not improve femur BMD, and thus, in this study, the 

pre-menopausal women probably achieved increased femoral BMD because of 

strain induced by muscle-derived tension to the bone rather than impact (21).     

However, with the complexity of mechanical loading and bone adaptation, there is 
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most likely a host of other reasons as to why lower impact did not improve BMD in 

older women but did in younger women.  We can only surmise conclusions from the 

clinical data available and continue to investigate other treatment options for bone 

loss.  

It is generally well accepted that the growing skeleton is most likely to benefit 

from exercise as bone modeling and remodeling ensure optimal mechanical 

properties of bone, removing old, aged bone and replacing it with new, stronger bone.  

Exercise during childhood assists in the acquisition of bone as well as remodeling its 

architecture.  It has been shown that tennis players who began training during 

childhood had increased BMD, bone mineral content, and cortical wall thickness 

compared to players who began playing during adulthood (15).  Furthermore, a study 

investigating the effects of exercise on pre-pubertal young boys (mean age 10.4 

years) found that not only did the BMD of all boys increase over the course of the 

study as expected but also physical education intervention for eight months 

increased BMD twice that of controls in the exercise group.  The researchers 

concluded based on all parameters measured that exercise before puberty may 

increase femur volumetric BMD by increasing cortical thickness (3).     

Mounting data as summarized in Table 6.1 makes it quite lucid that exercise 

provides benefit to the musculoskeletal system, despite the variation among clinical 

trials.  There is currently no defined exercise regime that seems to be best suited for 

improving bone mass, and if the field of research can adequately compare premium 

exercise routines for various age groups, this would be beneficial to the general 

public.   
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Table 6.1 Summary of exercise studies  

uscle Contraction: Low Magnitude and High Frequency 

As humans age, the harsh effects of high impact exercise becomes a burden 

that the ailing mature skeleton can no longer efficiently tolerate.  While several 

factors dictate osteoporosis, the pathology is exacerbated by increased age, 

coinciding with decreased muscle strength and posture stability.  As ageing 

continues, there is a drastic degeneration in muscle strength (sarcopenia), leading to 

decreases in muscle-bone movement.  Thus, the elderly population is prone to 

accidental falls and subsequent injury, leading to bone fractures.  At each joint in the 

body, muscles apply forces to attached bones such that these signals are fired 

rapidly at low level movements that are imperceptible at the macroscopic level.  

Muscle contractions are constantly applied to the bone in everyday tasks such as 

maintaining posture while standing or sitting (25).  As muscle atrophies with age, 
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these signals to the skeleton also diminish.  The notion of stimulating bone formation 

or inhibiting bone resorption in patients with musculoskeletal diseases such as 

cerebral palsy (14, 37), osteopenia (33), and post-menopausal osteoporosis (24) 

with a low magnitude (0.1-0.4g) and high frequency (30-90Hz) mechanical load is a 

new, non-invasive treatment ideal for elderly patients or those with a disability that 

would inhibit them from high impact exercise.  It has been shown through animal and 

clinical trials that a LMHF mechanical stimulation is anabolic to bone (17, 24, 26-28, 

37).  Although not yet experimented in space, this potential osteoporosis 

countermeasure may provide benefit to the musculoskeletal system in a microgravity 

environment.   

While impact from exercise induces strain levels of 2000-3000 µε, muscle 

contractions inflict strains much lower in magnitude on the order of 10 µε.  With 

conventional thought, these strains would not be hypothesized to play a role in 

regulating bone adaptation, growth, or remodeling.  However, as discussed earlier, 

equation 6.1 demonstrates that a lower peak-to-peak strain fired more frequently 

could provide a strain stimulus capable of inducing an adaptive response.  Previous 

studies have been performed to log the strain history of bone in various animals, 

defining specific features such as peak magnitudes and frequencies over a specified 

time range (6).  It is classically thought that the peak strain magnitudes during high 

impact activities have the largest effect on bone response, leading to many strain 

gage analyses of bone centered on maximum strains (4, 19, 30).  These peak strains 

have been shown to be non-uniformly located over the cortex of the bone (30), 

meaning not all bone cells sense the same strain.  Moreover, these peak strains are 

only experienced for short periods of the day, leaving the majority of the strain history 

to be defined by other strain magnitudes.  In fact, in a turkey model, the maximum 

peak strain movements lasted for a total of 2 minutes/day, consisting of wing flaps or 
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body shakes.  However, turkey bones are still well adapted and strong enough to 

support flight, suggesting that other portions of the strain history must be involved in 

bone adaptation (1).    

The vast majority of the strain history of various animals encompasses low 

level st

nt contributor to the strain history 

recordi

rains from long periods of standing or sitting.  In fact, standing intervention for 

3 hours/day during bed rest prevented bone loss, suggesting that the effect of 

muscle contractions needed for postural stability aided in preventing bone loss (16).  

Studies performed in sheep showed that low magnitude strains were experienced 

frequently (Figure 6.1, left) in the range of 40 Hz (Figure 6.1, middle).  In another 

study examining the strain history in three distinct species, in vivo bone strains were 

recorded from the weight-bearing tibia of an adult dog, turkey, and sheep and non-

weight bearing ulna of turkey.    They found that over the course of 12-24 hours, the 

turkey ulnae had strains of 1000 µε once per day, 100 µε about 100 times/day, and 5 

µε thousands of times per day as seen in Figure 6.1 (right).  In the tibia, all three 

animals had one event of 1000 µε, more events at 100µε than the ulnae, and 

thousands of events at <10µε as depicted in Figure 6.1 (right).  Animals were 

videotaped to correlate the type of movement to points in the strain history, and 

walking induced the maximum strain from -1500 to 1000 µε in the turkey tibia at a 

frequency of 0.6 Hz but a continued strain history through 40 Hz.  Standing caused 

strains of ±10 µε at a frequency of 40 Hz (6).   

These studies show that a domina

ngs is non-vigorous activity, where muscle contraction is required during 

activities such as standing.  As such, the question is whether these low magnitude 

strains impact bone remodeling and adaptation.  Subsequent investigations have 

shown the utility of these low level signals in bone adaptation in a host of subjects, 

preventing or normalizing bone loss.  In growing BALB mice, 0.3g mechanical 
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Two minute clip of strain measurements 
in sheep showing frequent low 
magnitude strain signals

Strain measurements in the ulnae of turkey 
and the tibia of sheep, turkey, and dog 
showing large strain events occur less 
frequently than small strain events 

Five second clip of strain 
measurements converted and 
graphed to frequency of occurrence 
showing smaller strains occur at a 
rate on the order of 40Hz

Two minute clip of strain measurements 
in sheep showing frequent low 
magnitude strain signals

Strain measurements in the ulnae of turkey 
and the tibia of sheep, turkey, and dog 
showing large strain events occur less 
frequently than small strain events 

Five second clip of strain 
measurements converted and 
graphed to frequency of occurrence 
showing smaller strains occur at a 
rate on the order of 40Hz

Figure 6.1 Strain history recordings of various animals during normal daily 
activities.  These data show that low strain movements occur (left) in the frequency 
range of 40Hz (middle) more frequently than peak strain movements (right) (6).   
(Figure printed with permission from Journal of Biomechanics) 

  

loading at 45Hz induced strain oscillations of 10 µε on the periosteal surface of the 

tibia as measured by in vivo strain gages.  After treatment for three weeks for 15 

minutes/day, there was a decrease in osteoclast activity compared to age-matched 

controls while bone formation rates (BFR) in the trabecular bone and mid-diaphyseal 

cortical bone were unchanged (39).  However, BFR in the endocortical surface of the 

metaphysis was increased in this study (39) while cortical bone has also been shown 

to not respond to these signals in other studies (26) .  Total body mass, bone length, 

and matrix composition were not negatively altered by the LMHF load (39).  In 

another study, the left tibias of wildtype C57BL/6J mice were exposed to 0.3g or 0.6g 

loading at 45 Hz for 10 minutes/day while the right tibia acted as an internal control.  

Strain levels were as low as 3 µε, and after three weeks of 0.3g or 0.6g loading, 
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there was an increase in trabecular BFR in the metaphysis.  Bone morphology in the 

epiphysis was altered by increased cortical area and thickness (12).  Furthermore, 

the effects of LMHF loading on bone adaptation caused by disuse were investigated 

using the hindlimb unloading (HLU) model.  Adult BALB mice were exposed to 0.3g 

load at 45 Hz for 10 minutes/day for a total of four or 21 days.  There was a decrease 

in BFR due to HLU and an increase due to LMHF loading after 21 days treatment in 

both trabecular and cortical surfaces.  After four days, there were decreases in gene 

expression for several genes, including type 1 collagen, osterix, matrix 

metalloproteinase protein 2 (MMP2), and osteonectin due to HLU.  There was no 

change in expression at four days due to LMHF loading; however, after 21 days, 

there were increases in inducible nitric oxide synthase (iNOS), MMP2, receptor 

activator of the nuclear factor κB (RANKL), and type I collagen.  There were no 

changes due to HLU or LMHF loading in cathepsin K (ctsk), runt homology domain 

transcription factor 2 (cbfa1/runx2), or MMP9 gene expression after  four or 21 days 

(17).    

Studies involving LMHF loading then advanced to rat models, and in one 

study, adult rats were subjected to control, LMHF mechanical stimulation, disuse by 

HLU, HLU intervened by LMHF loading for 10 minutes/day, or HLU intervened with 

normal weight bearing for 10 minutes/day.  After 28 days, there was an increase in 

BFR in the proximal tibia with exposure to LMHF loading.  HLU inhibited BFR while 

intervention with normal weight bearing slightly increased BFR.  However, LMHF 

loading normalized BFR in the HLU group compared to age-matched controls (28).  

There have also been investigations in larger animal models such as turkey and 

sheep.  In one study, the hindlimbs of adult sheep were exposed to approximately 5 

µε induced by 0.3g loading for 20 minutes/day.  After one year of treatment, 

trabecular bone were evaluated with micro-computed tomography (µ-CT) and 
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mechanically tested.  Mechanical loading increased mineral content and trabecular 

number while trabecular spacing decreased, displaying increased trabecular quantity 

and thickening.  There was an increase in stiffness and mechanical strength in the 

longitudinal direction of weight bearing.  This study was critical because it showed 

that not only does LMHF loading increase bone mass but also the quality of the 

trabecular bone, and these effects were observed in a larger animal at a 

considerably longer time point than previous findings (27).   

While animal studies were imperative in moving toward testing this device in 

human

muscular signals were replaced by the LMHF loading device.   

s, the most critical information supporting the hypothesis that such low 

magnitude mechanical signals can induce bone mass and adaptation were obtained 

as studies advanced to humans.  LMHF mechanical loading has been shown to 

benefit various groups, including children with disabilities, young women with low 

bone mineral density (BMD), and post-menopausal women with osteoporosis.  In a 

pilot clinical trial, children with disabilities affecting muscular strength such as 

cerebral palsy and muscular dystrophy were treated with mechanical loading at 0.3g 

at 90 Hz for 10 minutes/day for 5 days/week for a total of six months.  There was a 

6.3% increase in tibia volumetric trabecular bone mineral density (vTBMD) with 

treatment compared to placebo control after brief exposure to LMHF loading, which 

was remarkable since compliance in this study was fairly low at 44% or about 4.4 

minutes/day of treatment.  However, there was no effect on vTBMD in the spine (37).  

The disabilities endured by these children results in poor muscular strength and 

limited mobility.  Therefore, it is possible that these physiological signals of muscle 

contraction to the bone are also diminished in these patients.  Since LMHF loading 

mimics the signals outputted by the musculature to the bone, it is possible that the 

children had increased BMD, at least in specific sites, because the diminished 
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There have also been clinical trials investigating the effects of LMHF loading 

on young women, and in one study, 48 women (age range of 15-20 years) with low 

BMD a

studies.  

The de

Conclusion 

There is overwhelming evidence that exercise creates large magnitude strain 

e tissue and bone cells, leading to increased bone mass and bone 

adapta

nd a history of at least one skeletal fracture were exposed to either control or 

treatment conditions for 10 minutes/day at 0.3g and 30 Hz for one year.  There was 

an increase in trabecular bone in the lumbar vertebrae and cortical bone of the femur 

midshaft compared to controls.  Moreover, there was an increase in muscle cross 

section area, and these beneficial results were dependent on compliance level (13).  

Furthermore, clinical trials in post-menopausal women have been performed, and in 

one study, treatment at 0.2g at 30 Hz for two 10 minutes/day treatments for one year 

increased BMD in the femur compared to placebo control.  The women in the 

placebo control group lost 2% BMD over the experimental time frame.  There was 

less bone loss in the spine in the treated group compared to controls, and these 

effects were dependent on compliance.  As such, those who complied with the 

treatment protocol most stringently had the greatest beneficial effects (24).   

Thus, LMHF mechanical loading as summarized in Table 6.2 has been 

shown to benefit the musculoskeletal system despite some variation among 

vice has recently been approved for treatment of osteoporosis, but long term 

studies will provide the most beneficial information as to its safety and efficacy in 

preventing or normalizing bone loss.   

sensed by bon

tion.  These large strains are on the order of 1000 µε and only represent a 

small part of the strain history of normal daily activities, such as when humans 

exercise or horses trot.  The larger portion of strain history is encompassed by  
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Table 6.2 Summary of LMHF studies 

 

 

GarmanBoth loads increased trabecular BFR in 
metaphysis; increase in cortical area and 

thickness of epiphysis

3 weeks0.3g or 0.6g, 45Hz, 
10min/day

C57 WT 
mice

Ward6.3% increase in tibia volumetric BMD; no 
change in spine BMD

6 mos.0.3g, 90Hz, 10min/dayChildren with 
disabilities

RubinIncrease in mineral content and trabecular 
number, decrease in spacing, and 
increase in stiffness and strength

1 year0.3g, 20min/dayAdult sheep

GilsanzIncrease in trabecular bone BMD at 
lumbar spine, cortical bone of femur 

midshaft, and in muscle area

1 year0.3g, 30Hz, 10min/dayWomen, 15-
20 yr, pre-

menopausal

1 year

3 weeks

RubinIncrease in BMD in femur; less bone loss 
in spine

0.2g, 10Hz, two 10min/dayWomen, 
post-

Menopausal

JudexIncrease in trabecular and cortical bone 
surface area; after 4 days, decrease in 
genes due to disuse; after 21 days of 
loading, increase in gene expression

0.3g, 45Hz, 10min/day
Disuse +/- intervention

BALB mice

endocortical surface

GarmanBoth loads increased trabecular BFR in 
metaphysis; increase in cortical area and 

thickness of epiphysis

3 weeks0.3g or 0.6g, 45Hz, 
10min/day

C57 WT 
mice

Ward6.3% increase in tibia volumetric BMD; no 
change in spine BMD

6 mos.0.3g, 90Hz, 10min/dayChildren with 
disabilities

RubinIncrease in mineral content and trabecular 
number, decrease in spacing, and 
increase in stiffness and strength

1 year0.3g, 20min/dayAdult sheep

GilsanzIncrease in trabecular bone BMD at 
lumbar spine, cortical bone of femur 

midshaft, and in muscle area

1 year0.3g, 30Hz, 10min/dayWomen, 15-
20 yr, pre-

menopausal

1 year

3 weeks

RubinIncrease in BMD in femur; less bone loss 
in spine

0.2g, 10Hz, two 10min/dayWomen, 
post-

Menopausal

JudexIncrease in trabecular and cortical bone 
surface area; after 4 days, decrease in 
genes due to disuse; after 21 days of 
loading, increase in gene expression

0.3g, 45Hz, 10min/day
Disuse +/- intervention

BALB mice

endocortical surface

extremely low signals on the order of 10 µε, and it has been shown that these signals 

hen applied at a high frequency induce an adaptive response.  However, while 

Length

XieDecrease in osteoclast activity; No 
change in BFR in trabecular bone and 

mid-diaphysis; Increase in BFR at 
microstrain

RefResultStimulationSubjects

3 weeks0.3g, 45Hz, 15 min/day, 10 BALB mice 3 weeks0.3g, 45Hz, 15 min/day, 10 BALB mice

Length

XieDecrease in osteoclast activity; No 
change in BFR in trabecular bone and 

mid-diaphysis; Increase in BFR at 
microstrain

RefResultStimulationSubjects

w

systemic loading of an entire animal has shown beneficial effects of low magnitude 

mechanical loading, it is unknown whether bone cells can actually sense and 

respond in an anabolic manner.  Previous evidence suggests that bone cells would 

not be able to sense such low level strains.  In fact, stretch-activated channels, one 

potential mechanosensory molecule, have been shown to detect strains only as low 

as 30 µε (6).  Another potential path of mechanotransduction from the tissue to the 

cellular level is through fluid flow produced when bone is mechanically loaded in vivo 

during movement.  In some studies, it has been shown that shear stresses similar to 

in vivo levels can be produced when 1000-2000 µε is applied at 1-2 Hz or if 100-200 

µε is applied at 20-30Hz.  Thus, a 10 µε signal applied at 30 Hz would only amount 
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to stresses on the order of 0.1 dyn/cm2, still below the range of 6-30 dyn/cm2 known 

to induce intracellular calcium in vitro.  However, the modeled shear stress depends 

on many factors, such as the assumed canalicular annular space, which if reduced 

would increase the shear stress prediction (6).  Mechanical loading induces many 

changes and deformation to the tissue and cells that it is possible to construe the 

hypothesis that low level signals can be sensed by the skeletal system through the 

cellular network.  If this is true, it would be of further interest to determine how these 

signals, as low as they may be, are sensed and used to elicit a bone formation 

promoting or bone resorption inhibiting response.  Thus, it was our goal to expound 

this question by applying LMHF loading to an isolated osteoblast system as 

discussed in Chapter 8.   
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Chapter 7 

Bone Adaptation to the Mechanical Environment: 
Cell Signaling in Osteoblasts 

 

Summary 

The various bones of the skeleton are surrounded by a microenvironment 

controlled by local signals and systemic hormones, and the cells present in bone 

regulate homeostasis by maintaining the tightly regulated process of bone remodeling.  

In the previous chapter, we reviewed the macroscopic level of bone adaptation to 

changes in the mechanical environment, focusing on high and low impact loading.  Here, 

we delve into the microscopic level of cellular adaptation to alterations in mechanical 

loading conditions.  The human body is exposed to a multitude of forces and their 

resulting effects on the tissue and cellular structure, including mechanical strain 

magnitude and rate, pressure, fluid shear stress, compression, tension, and electric 

streaming currents.  The process by which the body senses these signals at various 

levels, either the whole body, organ, tissue, or cell, is still largely not understood.   

Bone adaptation occurs at the cellular level, where cells secrete a multitude of 

growth factors and cytokines, instigating cell signaling cascades leading to cell 

differentiation, osteoid formation, and mineralization in response to alterations in the 

mechanical environment.  In this chapter, we partially review bone cell adaptation by 

covering mechanotransduction and gravity, fluid flow-induced shear stress, and the bone 

morphogenic protein (BMP) signaling pathway.  It is known that the human body has 

adapted to the gravitational field of Earth, as observed in the vast number of changes 

instigated in the body by spaceflight.  Among these changes, bone loss remains one of 

the most critical pathologies hindering the expansion of human-based, long term 

missions.  In developing countermeasures for bone loss in astronauts, few studies have 
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elucidated the cellular and molecular changes impressed upon the skeletal 

microenvironment.  These changes could be essential in understanding general 

principles such as how cells sense mechanical signals, including gravity, and perhaps 

can lead to the development of more efficient methods to mitigate bone loss both in 

spaceflight and other bone pathologies.  Additionally, the cellular environment consists 

of various mechanical loads, including the resultant shear stress from interstitial fluid 

flow.  Mature osteoblasts that are responsible for maintaining the mineralized matrix are 

called osteocytes, which occupy spaces within the bone and are exposed to interstitial 

fluid flow and subsequent shear stress.  It is widely hypothesized that this shear stress 

acts as a signal to osteocytes, which stimulates inactive bone lining cells and 

preosteoblasts to begin the bone formation cascade (15, 20, 37).  With these various 

micro-signals, bone remodeling sustains a healthy balance between bone formation and 

bone resorption through a gamut of cellular control, including local feedback 

mechanisms, intracellular signaling cascades, and growth factor binding.  Perturbations 

to the bone remodeling cycle lead to an imbalance between bone formation and bone 

resorption, ultimately triggering skeletal pathologies.  Thus, bone loss occurs when bone 

resorption outweighs bone formation, as observed in osteoporosis, disuse, and 

spaceflight (6, 63, 67, 85).  Lastly, the bone morphogenic proteins (BMPs) comprise a 

portion of the factors cultivated by osteoblasts, directly influencing cell differentiation and 

proliferation as well as regulating osteoclastogenesis (9). In this chapter, we partially 

review osteoblast cell signaling as relevant to the broad picture of this research.  We 

include mechanotransduction and gravity, fluid shear-induced responses in osteoblasts, 

and the BMP signaling cascade as it relates to bone formation, including the 

downstream canonical smad pathway and the mitogen-activated protein kinase (MAPK) 

pathway. 
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General Mechanotransduction  

 Mechanotransduction is the intricate way in which individual cells comprising 

whole tissues and organs sense mechanical loads and convert the signals into useful 

biochemical information.  This biochemical information is required for seemingly simple 

commands such as wiggling a toe or daunting tasks such as preventing cancer.  

Mechanotransduction is still not completely understood, although many critical 

components have been implicated for their roles in sensing a signal and instigating 

subsequent pathways to induce a physiological response.  Among these identified 

mechansensory components are stretch-activated ion channels, integrins, cadherins, 

caveolae, growth factor receptors, cytoskeletal filaments, and the extracellular matrix 

(Figure 7.1) (31).  Figure 7.2 shows mechanisms by which some of these 

mechanosensors work such as stretch activated ion channels (A) altering their 

conformation and changing their opening and closing rate when the membrane is 

distorted or a channel that experiences tension from the cytoskeleton (B).  Also, Figure 

7.2 shows mechanotransduction through tension applied to enzymes (C) or other 

proteins (D) and the chemical potential of these proteins when under either compression 

or tension (E).  These mechanically sensitive cellular components can be activated by a 

host of signals, including external forces such as gravity, fluid flow-induced shear stress, 

and impact from exercise.  Many organs and tissues in the human body are 

mechanosensitive, including bone, cartilage, muscle, heart, and the gastrointestinal tract 

(32).  Mechanical signals play an essential role in maintaining homeostasis as observed 

in tissue degradation and atrophy due to disuse or microgravity.  For example, 

immobilization during bed rest or paralysis results in a large absence of mechanical 

stimulation such as walking, leading to acute and rapid bone and muscle loss (5, 68, 85).   

There have been common signaling molecules established to play roles in 

mechanotransduction by various cell types.  In general, integrins are one class of 
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Figure 7.1 Mediators of cellular mechanotransduction (31) 
(Figure printed with permission from FASEB Journal) 
 

 

 

Figure 7.2 Molecular mechanism of conversion from mechanical signal to
chemical information (31) 
(Figure printed with permission from FASEB Journal) 
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universal mechanoreceptors, and the interaction of integrins with the extracellular matrix 

mediates an increase in intracellular calcium (Ca2+) and subsequent activation of the 

MAPK pathway.  The MAPK cascade involves the activation of extracellular signaling-

regulated kinases 1/2 (ERK1/2) by phosphorylation and an ensuing activation of the 

activator protein 1 (AP-1) family of transcription factors.  This signaling cascade leads to 

pro-growth responses in a variety of cells (32).  In particular, the osteocyte, which is the 

mature bone cell responsible for bone maintenance and hypothesized bone 

mechanosensor, responds to mechanical signals by extracellular Ca2+ influx through 

stretch-activated ion channels, leading to increases in intracellular Ca2+ (32).    

Additionally, osteocytes are unique cells because they create long processes, which are 

believed to be their means of communication to other bone cells such as bone lining 

cells and osteoblasts.  As such, osteocytes use these cell-cell connections to transmit 

signals through gap junctions leading to biological responses.   

There have been detailed investigations performed to elucidate the pathways 

ensuing after a mechanical signal is detected, revealing individual molecules responsible 

for mediating specific responses.  Because of the breadth of detailed knowledge 

available, it is not the goal of this chapter to provide a comprehensive review of signaling 

pathways involved in skeletal maintenance.  However, we provide insight into key cell 

signaling pathways, including mechanotransduction and gravity, fluid flow-induced shear 

stress on bone formation, and the role of the BMP family in bone formation.   

 

Mechanotransduction and Gravity 

The structure-function relationship of bone has evolved over the course of human 

life, and it is well known since the time of Julius Wolff (1892) that bone adapts to its 

mechanical environment.  As such, it is no surprise that the skeleton has adapted to the 

gravitational field on Earth, and the launch of the space program in the 1960s confirmed 

 140



that the human body, when exposed to long term, near-zero gravitational impact, 

endures harsh biomedical alterations such as cardiovascular deconditioning and 

musculoskeletal atrophy (67, 76).  The unique environment of spaceflight most likely 

alters the skeleton at the whole organ, tissue, and cellular levels.  However, the details 

of such changes are only partially understood.  In particular, the mechanosensory 

machinery cells use to sense mechanical loading, such as gravity, is still largely 

unidentified.  Bone adaptation to changes in the mechanical environment depends at 

least partially on the transduction of mechanical signals to chemical information.  

It is fairly well understood how the human body perceives gravity to maintain 

orientation, and in most invertebrates and vertebrates, there is some type of specialized 

organ that allows maintenance of equilibrium with respect to gravity and movement.  In 

humans, the otolith organs called the utricle and saccule, which are located in the inner 

ear, are responsible for the perception of gravity and maintenance of balance.  Hair cells 

in the inner ear are activated by movement and transmit signals through nerve fibers to 

the brain, signifying changes in position, acceleration, and gravity.  As observed in 

spaceflight, there is an abrupt loss of constant linear acceleration due to gravity, and the 

otolith stimulus responsible for maintaining vertical orientation is removed, leading to 

abnormal spatial orientation and movement control.  These effects are diminished over 

time as the neurovestibular system adapts to microgravity, which results in the need for 

readaptation when astronauts return to Earth (8, 55).   

However, the question at hand is whether individual cells of various organs and 

tissues in the human body themselves sense gravity, leading to the pathologies induced 

by spaceflight such as site-specific rather than systemic loss of bone. For instance, it is 

reasonable to conjecture that without gravity, the body no longer walks as on Earth.  As 

such, there is no cyclic motion, which regulates the fluid movement in the skeletal 

system.  Without this ensuing oscillatory flow, there could be a lack of a bone formation 
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signal to the mechanosensing cell, leading to decreased bone formation and inevitable 

bone loss.  Likewise, it is reasonable to surmise that without a mechanical load as 

essential as gravity, there is a change in mechanotransduction, impeding the expression 

of signals imperative for genes regulating bone formation.  However, to test these 

hypotheses, we must have ways to study isolated cell systems in a microgravity system, 

and as spaceflight has become more sporadic, scientists have turned to simulators of 

microgravity.   

Much of what is known regarding how cells sense gravity has been studied in the 

plant cell.   Weight causes differential mass displacement, due to differences in masses 

among different organelles.  The cytoskeleton has traditionally been regarded as a 

mediator in the perception of gravity both in animals and plants (11, 29, 30, 62, 77).  In 

plants, the mechanism used to sense gravity is most likely through the movement of 

statoliths.  A statolith is a specialized form of an amyloplast, which are plant organelles 

responsible for storing and converting sugar into energy, found in the root tip cells called 

statocytes of higher order plants.  Statoliths are more dense than the cell cytoplasm and 

sediment with exposure to gravity, and they are entangled with the cytoskeleton actin 

filaments.  It is widely hypothesized that sedimentation of statoliths emanates a 

mechanosensory pathway leading to reorientation of the cytoskeleton and a cellular 

response such as turning of the root in response to a change in motion (27).   

Additionally, there has been research performed to understand whether there are 

temporal effects of plant responses to gravity.  The concept of perception time is the 

minimum duration of the stimulation interval necessary to induce gravitropic bending of 

the root.  Hejnowicz, et al. stated that the shortest stimulation time was one second, and, 

therefore, they assumed that the perception time is shorter than one second (27).  The 

notion of perception time is important because it implies that the sensitivity to gravity 

involves not only exposure to the magnitude of the gravity vector but also constant 
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alignment of the vector to the subject for some minimal time.  In spaceflight, cell 

signaling by gravitropic organelles is altered because there is no force displacing them to 

a specific gravity-dependent target for gravity-sensing signaling.  Thus, a method of 

continually changing the direction of the gravity vector more rapidly than the cell’s 

perception time may inhibit gravitropic responses.  Consequently, simulating 

microgravity under normal ground conditions by using devices such as the Random 

Positioning Machine (RPM) or the Rotating Wall Vessel (RWV) bioreactor, which 

continuously rotate and move the gravity vector relative to the subject, are based on the 

hypothesis that sensing no weight would have similar effects as being weightless.  

These gravity vector-averaging systems have enabled scientists to advance knowledge 

in both microgravity-based science and general mechanotransduction.   

 There has been some research performed on the effects of spaceflight and 

simulated microgravity on mammalian cells, namely changes in gene expression as 

covered previously in Chapters 3, 4, and 5.  However, how cells sense gravity is a 

continually evolving field because statoliths do not account for how all mechanosensitive 

cells in the body perceive gravity as there is no evidence of statoliths in bone cells, 

muscle cells, or other tissue cells of the human body.  It is well accepted that individual 

cells must be able to detect changes in mechanical load as evidenced by bone 

remodeling by osteoblasts and osteoclasts.  It is hypothesized that mammalian cells 

sense gravity through the cytoskeleton, whereby movement distorts the cell surface and 

its connections to the cytoskeleton (30).  Cells are attached to their extracellular matrix 

(ECM) through special proteins called integrins, whose receptors form clusters called 

focal adhesions.  The focal adhesions are physically connected to the actin cytoskeleton 

by interactions between the cytoplasmic tail of integrin receptors and actin-associated 

molecules in the cytoplasm like vinculin (30).  Thus, it has been shown that activation of 

many of the signaling molecules with exposure to a mechanical load is mediated through 
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integrins and subsequent mitogenic receptors, and moreover, these molecules are not 

floating about in the cell but rather are connected to the cytoskeleton in the focal 

adhesion complex.  As such, it seems that cells are “hardwired” such that the 

cytoskeletal filaments form the physical connections between the cell surface, which is 

exposed to mechanical loads, and the nucleus, where gene programming takes place.  

This theory is called the tensegrity model, a bridged word describing tensional integrity, 

depicting that the cell is pre-stressed to gives cells mechanical stiffness.  Thus, with its 

physical connections, perturbations to the cell environment alters the cell surface, 

modifies its connection to the ECM, and causes resultant changes to the nucleus (30).   

 Although it is well understood how the whole body senses gravity and how plant 

cells respond to changes in gravity, it is only partially understood how mammalian cells 

react to microgravity.  Future studies may elucidate this mechanosensory pathway, 

which would not only lead to advanced spaceflight but also general improved 

understanding of mechanotransduction.   

 

Fluid Shear Signaling* 

 Bone cells are among the most mechanically sensitive cells in the body, and their 

response to mechanical loading is an important factor in bone formation.  Mechanical 

loading, as shown through in vitro studies using fluid flow (44), results in highly adaptive 

responses of bone-forming and bone-resorbing cells that together maintain homeostasis 

in bone tissue (64). Mechanical unloading of bone causes disruptions to these 

mechanisms, resulting in pathological changes that lead to increased bone resorption 

and subsequent bone loss (5).  For example, studies have previously suggested that  

 
*Adapted from Vadoothker, SV and Patel, MJ, et al., Fluid Shear Stress Induces Differential 

Responses of Bone Formation Proteins in Preosteoblast Cells, 2007, In preparation 

 144



astronauts and bed-ridden patients experience unloading due to a decrease in 

osteoblast function (33, 56).  It is widely hypothesized that fluid flow in bone may signal 

osteoblast differentiation (15, 20, 37) and induce osteoblasts to secrete key bone 

formation markers and matrix proteins (66).  Mechanical loading as a result of fluid flow 

is known to result in a dynamic and oscillatory flow profile in bone tissue, and, thus, 

oscillatory fluid flow is hypothesized to be the most likely flow profile present in bone 

during physical activity (61, 64, 79). When bone is loaded (foot strike to ground), a 

hydrostatic pressure gradient is created, and interstitial fluid is forced into the canalicular 

network of bone. Unloading (time in between foot strikes) induces an adverse pressure 

gradient causing reversal of fluid flow.  Together, loading and unloading create the 

bidirectional and oscillatory fluid flow inside bone tissue (41, 48, 79).  Because 

microgravity or bed rest results in the lack of a loading and unloading cycle, it is possible 

that the detrimental effects to the musculoskeletal system are due to an absence of 

signals normally induced by cyclic fluid flow.   

 

Shear Sensitive Proteins in Osteoblasts 

Several studies have linked changes in osteoblast morphology and protein 

expression to fluid flow exposure.  Oscillatory fluid flow upregulates various proteins 

involved in bone formation, including prostaglandin E2 (PGE2), cyclooxegenase-2 (cox-

2), osteopontin (OPN), alkaline phosphatase (ALP), and osteocalcin (OCN) (44, 48, 61).  

Ponik, et al. and Malone, et al. determined that both osteoblasts and osteocytes 

elongated and actin stress fibers increased in response to a unidirectional fluid flow 

stimulus, similar to how endothelial cells lining the blood vessel wall react to constant 

blood flow (69).   ALP is found in bone cells prior to cell differentiation and matrix 

mineralization (17), and fluid flow and the resulting shear stress have been found to 

increase levels of ALP (19, 28, 57, 60).  Fluid shear has also been shown to temporally 
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activate signal transduction pathways involving cox-2 and OPN, both proteins necessary 

for bone mechanotransduction (61, 83). Specifically, primary bone cells with no 

mechanical stimulation experienced great decreases in OPN production, suggesting that 

inactivity may decrease the emergence of an osteoblastic phenotype (40). Other 

proteins of interest studied through fluid flow exposure include nitric oxide (NO), PGE2, 

receptor activator of nuclear factor kappa B ligand (RANKL), and osteoprotegerin (OPG). 

Signaling molecules NO and PGE2 were upregulated by fluid flow in osteoblasts and 

were found to be active in actin cytoskeleton disruption (50). Furthermore, bone cells 

have been shown to release prostaglandins in response to fluid flow and have 

contributed to either bone growth or bone resorption depending on G-protein coupled 

receptors (GPCR) activated by fluid flow (13). An increase in NO production has also 

been shown to decrease osteoclastogenesis and bone resorption (45), allowing for the 

continued maintenance of bone tissue. Similarly, RANKL, a marker for bone resorption 

and osteoclastogenesis, is competitively blocked by OPG in response to oscillatory fluid 

flow (39), and a decrease in RANKL production as a result of a mechanical stimulus has 

been shown to increase levels of NO in bone tissue, reducing bone resorption (45). 

Correspondingly, when bone cells were subjected to tensile mechanical stress, the cells 

increased OPN expression, suggesting that OPN may also play a role in mediating bone 

cell mechanotransduction (51). Studies of these and other proteins involved in bone 

formation as a result of fluid flow allow a greater understanding of how bone cells 

respond to mechanical stimuli to maintain skeletal homeostasis.   

 

Two Novel Shear Sensitive Proteins in Osteoblasts 

While the previously mentioned markers have been studied greatly in depth, 

many more markers exist that have never been studied in response to shear stress.  

These proteins could enhance the knowledge regarding bone mechanotransduction in 
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response to fluid flow and ultimately how bone formation occurs.  New insight into the 

cellular and molecular events leading to bone formation provides the necessary 

information for expanding the development of pharmaceutical treatments targeting 

formation since most drugs target bone resorption (www.nof.org).  An increase in the 

expression of bone morphogenic protein 4 (BMP4), an osteogenic marker of bone 

formation present since skeletogenesis (74), has been found in vitro in endothelial cells 

as a result of shear stress from oscillating fluid flow (69).  BMP4, when studied in bone, 

has also been shown to be an osteoinductive growth factor that regulates signaling in 

osteoblasts (54).  Studies have also determined that if BMP4 is delivered through gene 

therapy, ectopic endochondral bone formation occurred in skeletal muscle (43).  

Similarly, an increase in exposure to BMP4 improved bone healing in vivo when BMP4 

was delivered to the appropriate osteoprogenitor cells (46, 58). Thus, various reports 

have established BMP4 as an important bone formation marker with a key role in 

osteoblast differentiation and proliferation; however, to date, no studies have examined 

the effects of fluid flow on BMP4 in bone cells.  Additionally, osteoglycin (OGN), another 

osteogenic marker, is understudied in bone formation but has been shown to regulate 

collagen fibrillogenesis (24). Patel et al. and Xing et al. have both also found through 

microarray studies that mechanical unloading or loading regulates OGN.  However, its 

response to fluid shear stress has never been reported.     

Most bone cell mechanotransduction studies have exposed cells from 

approximately 5 dyn/cm2 to 20 dyn/cm2 (39, 42, 48, 50, 73), although models have 

predicted that osteocytes experience anywhere from 8 to 30 dyn/cm2 of shear stress in 

vivo depending on the activity performed (79).  While both unidirectional (laminar) and 

bidirectional (oscillatory) fluid flow profiles have been employed through in vitro studies 

to gain a better understanding of mechanotransduction in bone cells, few studies have 

directly compared the response of osteoblasts to both fluid flow profiles (28, 35, 61).  
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Thus, we have shown that oscillatory shear stress induces the expression of alkaline 

phosphatase (ALP) activity, BMP4, and OGN while laminar shear stress inhibits these 

same markers.  In our studies, 2T3 cells were exposed to laminar shear stress at 15 

dyn/cm2 and oscillatory shear stress at ±5 dyn/cm2.  The cells responded to mechanical 

stress by aligning in the direction of unidirectional, laminar fluid flow but not in response 

to oscillatory fluid flow (Figure 7.3). Additionally, laminar shear stress blunted ALP 

activity in comparison to static and oscillatory shear stress conditions (Figure 7.4).  This 

phenomenon has been shown by others, but more importantly, we report that this effect 

is independent of the shear magnitude and rather depends on the direction of the flow.  

As shown in Figure 7.5, ALP activity was decreased by laminar shear at varying 

magnitudes of shear stress between 5-15 dyn/cm2 compared to both static and 

oscillatory shear stress conditions.   

Both BMP4 and OGN have not been studied under shear stress, but our studies 

show they may be highly shear-sensitive bone formation proteins.  Laminar shear stress 

at 15 dyn/cm2 decreased BMP4 and OGN expression compared to oscillatory shear 

stress at ±5dyn/cm2 (Figure 7.6).  Since both the magnitude and direction of the shear 

stress differed in this experiment, we sought to evaluate whether this effect remained 

when the magnitude of the shear stress was held constant.  As a result, we found that 

the direction of the flow was indeed the key player in regulating both BMP4 and OGN 

since the decreased expression of both proteins was exhibited at all magnitudes of 

shear stress (Figure 7.7).  Furthermore, we show the effects of shear stress on BMP4 

and OGN expression are dose-dependent (Figure 7.8) where at least 10 dyn/cm2 of 

laminar shear stress is required to decrease BMP4 expression.  For OGN, laminar shear 

stress at 5 or 10 dyn/cm2 is sufficient to induce decreased expression.  In this figure, the 

laminar sample at 15 dyn/cm2 was mistakenly left out of the gel for the Western blot; 

however, previous data (Figure 7.7) shows that laminar shear stress at 15 dyn/cm2 also  
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A. Static B. Laminar    C. Oscillatory 

 

Figure 7.3 2T3 cells aligned in the direction of unidirectional laminar fluid flow. 
Confluent 2T3 cells were exposed to static (A), laminar (15 dyn/cm2) shear stress (B), 
or oscillatory (± 5 dyn/cm2) shear stress (C) for 24 hours.  Cells were 
photomicrographed with a phase contrast microscope at the end of the experiement. 
Arrows indicate fluid flow direction.  (n ≥ 13)  
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Figure 7.4 Oscillatory shear stress increased ALP activity in 2T3 cells. Cells 
were exposed to static, laminar (Lam), or oscillatory (Osc) shear stress conditions as 
in Figure 7.1.  Cell lysate was obtained after 24 hours, and ALP activity was 
measured using a colormetric assay and normalized to total protein.  Data are 
represented as mean ± SEM and graphed as a % of control (* p < 0.05, n ≥ 13). 
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Figure 7.5 Oscillatory shear stress increased ALP in a dose-dependent manner 
compared to laminar shear stress.  Cells were exposed to static, laminar (Lam), or 
oscillatory (Osc) shear stress conditions at varying magnitudes.  Cell lysate was 
obtained after 24 hours, and ALP activity was measured using a colormetric assay 
and normalized to total protein.  Data are represented as mean ± SEM and graphed 
as a % of control (* p < 0.05, n=3-9). 
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Figure 7.6 Oscillatory shear stress increased expression of BMP4 and OGN 
compared to laminar shear stress. Cells were exposed to static, laminar (Lam), or 
oscillatory (Osc) shear stress conditions as in Figure 7.1.  Cell lysate was obtained 
after 24 hours, and specific antibodies against BMP4 (A) and OGN (B) were used to 
detect protein expression by Western blot.    Data are represented as mean ± SEM 
and graphed as a % of control (* p < 0.05, n=3-9) 
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Figure 7.7 Oscillatory shear stress increased BMP4 and OGN compared to 
laminar shear stress at identical magnitudes.  Cells were exposed to static, 
laminar (Lam), or oscillatory (Osc) shear stress conditions at a constant magnitude of 
15 dyn/cm2.  Cell lysate was obtained after 24 hours, and specific antibodies against 
BMP4 (A) and OGN (B) were used to detect protein expression by Western blot. 
Data are represented as mean ± SEM and graphed as a % of control (*p<0.05, n = 6)
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Figure 7.8 Oscillatory shear stress increased BMP4 and OGN in a dose-
dependent manner compared to laminar shear stress.  Cells were exposed to 
static, laminar (Lam), or oscillatory (Osc) shear stress conditions at varying 
magnitudes.  Cell lysate was obtained after 24 hours, and specific antibodies against 
BMP4 (A) and OGN (B) were used to detect protein expression by Western blot. 
Data are represented as mean ± SEM and graphed as a % of control (*p<0.05, n=3-
9).  
151



decreased OGN expression compared to the appropriate oscillatory shear conditions.            

OGN has been shown to play a role in collagen fibril regulation and is a member of the 

small leucine-rich proteoglycan (SLRP) family, whose members are hypothesized to play 

roles in bone matrix mineralization (72).  In our studies, both BMP4 and OGN expression 

were regulated by shear stress exposure, suggesting that the expression of both 

proteins is controlled by a mechanically sensitive pathway.  Changes in shear magnitude 

did not affect the increased expression of BMP4.  When laminar and oscillatory shear 

stress magnitude were held constant, oscillatory flow still increased expression of both 

proteins compared to laminar flow, suggesting that the flow direction plays a role in 

regulating BMP4 and OGN expression.   These findings are consistent with previous 

work showing that oscillatory fluid flow is the physiological flow naturally present in bone 

(79), and it suggests that oscillatory shear stress may cause an osteogenic response 

while distinctly differing flow profiles such as laminar flow inhibit bone formation.   

Fluid flow inevitably induces signaling cascades, regulating diverse sets of 

proteins, cytokines, and growth factors responsible for maintaining appropriate cellular 

function and ultimately bone remodeling.  Fluid-induced shear stress is one of the many 

mechanical signals to which bone cells must respond, and the reviewed molecules are 

only a small fraction of the numerous factors involved in maintaining the highly complex 

process of skeletal homeostasis.   

  

Bone Morphogenic Protein (BMP) Signal Transduction  

There are a number of cell signaling pathways altered by mechanical loading, 

leading to a multitude of anabolic responses.  Here, we aim to review the signaling 

cascades induced by the BMPs, which are members of the Transforming Growth Factor 

Beta (TGF-β) superfamily and have been shown in numerous studies to instigate potent 

osteogenic effects such as stimulating the differentiation of mesenchymal stem cells to 
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osteoblast lineage (7, 38, 59, 82).  While BMPs were first identified in the context of 

bone and cartilage formation (75), they have since been implicated in various processes 

including neural development (47, 65) and cardiovascular pathogenesis (12, 14).  They 

are multi-functional growth factors whose cellular and molecular mechanisms of action 

have recently been ascertained and utilized in the development of clinical applications 

for bone and cartilage regeneration (16, 21, 53).     

 

BMP Structure and Function 

To date, there have been approximately 15-20 BMPs identified (7, 26, 81), and 

each BMP has a precursor and a cleaved, secreted mature form (81).  There is a 

conserved seven cysteine-rich region, where six of these cysteines form a knot while the 

seventh is involved in dimerization.   The large precursor protein, at an approximate 

weight of 50 kDa, contains a signal peptide, a pro-domain, and a mature domain.  Once 

the signal peptide is cleaved, the precursor protein undergoes glycosylation and 

dimerization.  To secrete the active BMP, the cell proteolytically cleaves the pro-domain 

at a dibasic site, rendering the C-terminal active domain available for release (81).  

BMPs can form active homodimers and heterodimers, both composed of polypeptide 

chains connected by disulfide bonds (26).   

As the name suggests, BMPs are morphogenes, those regulating the shape of 

the organism, whereas the TGFβ proteins are classified as cytokines, which are small 

biological factors that have specific effects on cell-cell interactions and communication.  

While BMPs are members of the TGFβ superfamily and share 40-50% structural 

similarity with TGFβ, they can have drastically disparate effects on osteoblast 

differentiation markers (26).  BMP-2 has been shown to enhance ALP activity and OCN 

expression, but TGFβ has also been shown to inhibit these same markers (70).    One of 

the most critical functions of the BMPs for clinical applications is their ability to induce 
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ectopic bone and cartilage, rendering them useful for joint defects and injuries.  Among 

the many BMPs, the ones with the immense osteogenic capabilities are BMP2, BMP4, 

and BMP7 (9, 81).  Currently, only BMP2 and BMP7 have been shown clinically to 

provide an in vivo induction of bone for fracture healing, spinal fusion, and other skeletal 

deformations (16, 36).   

 

SMAD Pathway 

The canonical BMP pathway begins with a BMP binding to its cell surface 

receptor (Figure 7.9) (9).  It has been shown that when BMP2 binds to a pre-formed 

heteromeric receptor complex, it activates the smad pathway.  If, however, BMP2 binds 

to a receptor complex induced by BMP2 itself, the MAPK pathway is instigated, as 

discussed later (52).  The BMP receptors are serine/threonine kinase receptors, and 

there are two groups of BMP receptors distinguished as type I and type II.  There are 

two subclasses of type I receptors called type IA or activin receptor-like kinase (ALK)-3 

and type IB or ALK-6.  The first receptor to which a BMP binds is BMP receptor II 

(BMPRII), and this ligand-receptor complex initiates a cascade of events starting with the 

recruitment of and dimerization to BMP receptor I (BMPRI).  Once BMPRII binds to 

BMPRI, the constitutive kinase activity of type II activates type I and commences the 

smad cascade.  It begins with the phosphorylation of smads 1, 5, 8 by the 

BMPRII/BMPRI heterodimer.  Once phosphorylated, smads 1, 5, 8 can induce many 

different responses, including signaling to smad 4 and its translocation to the nucleus to 

act as a transcription factor for downstream BMP signaling targets (9).  Osteoblast 

differentiation depends on interactions of smads with runt homology domain transcription 

factor 2 (runx2), as shown in the differentiation of mesenchymal cells.  If runx2 is 

mutated yielding a truncated runx2 protein, there is no interaction with smads 1, 2, 3, 

and 5, halting osteoblast differentiation even in the presence of smads or BMPs 
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Smad 
1,5,8 

 

Figure 7.9 BMP signaling pathway showing smad phosphorylation and 
translocation of smad 4 to nucleus for transcriptional regulation and alternative 
MAPK pathway  
(Ref: Norwegian Radium Hospital) 
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(84).  Thus, smad proteins play an essential role in relaying signals from the cell surface 

to the nucleus for gene transcription, some of which are critical to bone formation.   

 

Mitogen Activated Protein Kinase (MAPK) Pathway  

 Both BMP and TGFβ activate smad-independent pathways, namely the 

Ras/MAPK pathway (Figure 7.10).  There have been three major subclasses of MAPKs 

identified in mammalian cells including the extracellular signaling-regulated kinases 

(ERK), the c-Jun N-terminal kinases (JNK), and the p38 family (71).  In osteoblast cell 

culture, there have been reports of ERK activation in response to growth factors that act 

through receptor tyrosine kinases (RTKs).  These RTKs include platelet-derived growth 

factor (PDGF), insulin-like growth factor-1 (IGF-1), basic fibroblast growth factor (bFGF), 

and GPCRs such as prostaglandin F2α (71).  ERK activation has been linked to collagen 

cross-linking with integrins and interleukin-6 as well as increased cell proliferation and 

bone cell differentiation (71).  It has been shown that BMP2 stimulates Ras activity and 

downstream ERK and p38 (3, 80).  This signaling cascade results in downstream 

effects, including increased expression of Fos/Jun family members and activating 

transcription factors 2 (ATF2).  Activation of p38 MAPK is essential for BMP2-induced 

increases in type I collagen, ALP, and OCN while induction of fibronectin and OPN 

requires both p38 and ERK (9).  It has additionally been shown that p38 incites ALP 

activity, marking the role of MAPKs in cell differentiation and bone formation (71).  Many 

signaling cascades regulate various bone cell responses, and MAPKs are only one 

group that controls bone remodeling.  However, it is established that MAPKs play an 

essential role in maintaining cellular adaptation.   
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Figure 7.10 Summary of general MAPK pathway showing activation by growth 
factor such as a BMP and subsequent activation of a MAPKKK (first MAP 
activated) to MAPK (last MAPK activated) and eventual transcriptional 
regulation 
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BMP Antagonists 

 Cellular control of the BMP pathway is performed by both intracellular and 

extracellular antagonists.  These control systems that inhibit BMP activity include 

blocking the smad pathway by inhibitory smads 6/7, smad degradation or intracellular 

blocking, and blocking of BMPs by extracellular binding proteins such as noggin, 

chordin, and DAN.  Smad 6 and 7 interfere with smad 1 and 5 phosphorylation and 

subsequent dimerization with smad 4.  They are activated by phosphorylation by type I 

BMP or TGFβ receptors, and smad 6 is a more specific BMP inhibitor than smad 7 (9).  

It has been shown that BMP2, TGFβ, and activin can induce the expression of smad 6 in 

stromal and muscle cells (34).   Since smads are modulated by BMPs, it is possible that 

osteoblast cells exposed to rBMPs may increase smad 1, 5, 8 complex in the short term 

but also increase smad 6 and 7 over longer periods of exposure for endogenous BMP 

signaling control by negative feedback (9).  Smads themselves are regulated by various 

factors, including intracellular binding proteins such as ski, an oncogene that blocks 

BMP, activin, and TFGβ signaling by corepressor activity.  Ski mutations result in failure 

to bind to signaling smads and to inhibit the BMP pathway (78).  Additionally, there are 

smad ubiquitination regulatory factors (smurf) 1 and 2 that are specific to activated 

smads and consequently regulate their degradation (9).  There are many extracellular 

antagonists that are secreted polypeptides tempering BMP signaling by prohibiting 

binding to cell surface receptors.  Table 7.1 shows the various antagonists and whether 

they are expressed and/or induced by BMPs.   
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*Table 7.1 Selected extracellular BMP antagonists  

Antagonist Expressed Induced by BMPs 

Noggin Yes Yes 

Chordin Yes No 

Dan Yes No 

Twisted Gastrulation (Tsg) Yes No 

Follistatin Yes No 

Gremlin Yes Yes 

  (*Modified from Canalis, et al., 2003) (9) 

 

In our studies, noggin was used to inhibit BMP activity, and we focus on it in this 

section.  Noggin was originally identified for its actions in the development of the 

Spemann Organizer, a region of the central nervous system which blocks BMP4 to allow 

neural folding and eventual formation of the spinal cord and brain.  Noggin, like the other 

extracellular antagonists, binds BMPs and prevents them from binding to their cell 

surface receptors.  It binds to BMP2, 4, 5, 6, and 7 and does not seem to have any 

effects independent of BMP signaling (9).  In cell culture, osteoblasts express noggin, 

and expression of it is enhanced by treatment with rBMP 2, 4, and 6.  Noggin blocks 

BMPs in differentiated and undifferentiated osteoblast cells, preventing BMP effects 

such as collagenous and non-collagenous protein expression, ALP activity, and 

mineralization (23, 59).  It has been shown that stromal cells from noggin overexpresser 

mice do not undergo osteoblastic differentiation (18, 22), which in turn also prevents 

osteoclastogenesis since osteoblasts express necessary signals such as RANKL, the 

ligand for receptor activator of NF-κB (RANK) essential for osteoclast differentiation (1).  

In vivo, noggin prevents chondrogenesis, membranous ossification, and development of 

limbs (2, 10).  Noggin overexpresser mice develop osteopenia and suffer fractures (18), 

and human heterozygous mutations in the noggin gene results in joint lesions  (25).  
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Chordin is also secreted by the Spemann Organizer and blocks BMP activity similarly to 

noggin.  It is specific to BMPs, and double noggin/chordin mutations lead to diverse 

abnormalities, including disrupted mesoderm development and patterning (4).  Follistatin 

was identified as a binding protein to activin but also binds to BMP4, repressing BMP 

signaling (9).  Follistatin knockouts endure neonatal death, a result of varying 

deficiencies including those to the skeleton (49).  The Dan family of secreted 

glycoproteins has the capability to bind BMPs, in particular BMP2 and 4 with varying 

affinity.  However, dan knockout mice display modest phenotypic changes compared to 

other BMP antagonist knockout models (9).   

BMPs play a critical role in a sundry of processes, including development and 

skeletal maintenance.  There are inherent feedback mechanisms in play to balance BMP 

signaling by intracellular and extracellular antagonists.  Skeletal homeostasis depends 

on this control to maintain osteoblast function and bone remodeling.   

 

Conclusion 

Bone adaptation occurs at the cellular level where cells such as osteoblasts and 

osteocytes sense deformation due to mechanical loading or unloading, instigating a cell 

signaling cascade leading to changes in cell proliferation, death, or differentiation.  Bone 

cells are among the most mechanically sensitive in the body, and there are many 

different ways in which mechanical loads, including gravity, are sensed.  The means by 

which gravity is sensed by cells still evades science, but there is continuing research in 

this field.  There have been many studies using simulated microgravity to study changes 

in cellular architecture and gene expression, illuminating some insight into downstream 

effects due to alterations in the gravitational field.  Additionally, other bone pathologies 

such as osteoporosis, depend on our knowledge on how the skeletal system adapts to 

changes in hormones, decreased exercise and subsequent fluid flow, and muscle 
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atrophy.  Fluid flow-induced cell signaling plays a critical role in instigating bone 

remodeling, which is regulated by a multitude of factors.  Among the many proteins that 

play roles in cell signaling leading to bone formation, osteoblasts secrete BMPs, which 

cause signaling cascades mediated by either smad proteins or MAPKs.  Through 

numerous means, bone adaptation to changes in mechanical environment occurs not 

only at the macroscopic level but also at the cellular level.   
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Chapter 8 

The Effects of Disuse and Low Magnitude Mechanical 
Loading on Osteoblast Function* 

 
 

Summary 
From specific aims 1 and 2, we developed an in vitro disuse system to study 

cellular alterations in osteoblasts caused by disuse.  We evaluated system gene 

expression, providing insight into how osteoblasts respond through molecular 

transformations to unloading.  In specific aim 3, it is our goal to explore a 

countermeasure device and its cellular and molecular effects in osteoblasts.   

Bone loss due to osteoporosis or disuse such as in paraplegia or microgravity is 

a significant health problem.  As a treatment for osteoporosis, brief exposure of intact 

animals or humans to low magnitude and high frequency (LMHF) mechanical loading 

has been shown to normalize and prevent bone loss.  However, the underlying 

mechanisms and the target cells by which LMHF mechanical loading alleviate bone loss 

are not known.  Here, we hypothesized that direct application of LMHF mechanical 

loading to osteoblasts alters their cell responses, preventing decreased bone formation 

induced by disuse or microgravity conditions.  To test our hypothesis, preosteoblast 2T3 

cells were exposed to a disuse condition using the Random Positioning Machine (RPM) 

and intervened with a LMHF mechanical load (0.1-0.4g at 30Hz for 10-60 min/day).  

Exposure of 2T3 cells to the RPM decreased bone formation responses as determined 

by alkaline phosphatase (ALP) activity and mineralization even in the presence of a  

 
 
 

*Adapted and printed with permission from Patel, MJ, et al., Low Magnitude Mechanical Loading 
Prevents Decreased Bone Formation Responses of Osteoblasts by a Bone Morphogenic Protein-

Dependent Mechanism, American Journal of Physiology Cell Physiology, 2008, In Review 
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submaximal dose of bone morphogenic protein 4 (BMP4, 20ng/ml). However, LMHF 

mechanical loading prevented the RPM-induced decrease in ALP activity and 

mineralization. Mineralization induced by LMHF mechanical loading was enhanced by 

treatment with BMP4 and blocked by the BMP antagonist noggin, suggesting a role for 

BMPs in this response.  In addition, LMHF mechanical loading rescued the RPM- 

induced decrease in gene expression of ALP, runt homology domain transcription factor 

2 (runx2), osteomodulin (OMD), parathyroid hormone receptor 1 (PTHR1), and 

osteoglycin (OGN).  These findings show that osteoblasts directly respond to LMHF 

mechanical loading to induce bone formation responses, potentially leading to 

normalization or prevention of bone loss caused by disuse or microgravity conditions. 

The mechanosensitive genes identified here provide potential targets for pharmaceutical 

treatments that may be used in combination with LMHF mechanical loading to better 

treat osteoporosis, disuse-induced bone loss, or microgravity-induced bone loss.   

 

Introduction 
Musculoskeletal pathologies associated with decreased bone mass, including 

osteopenia, osteoporosis, disuse-induced bone loss, and microgravity-induced bone 

loss, affect millions of Americans annually.  Bone loss is particularly dangerous since it is 

at first asymptomatic and leads to severe fractures of bones, typically those in the hip, 

spine, and wrist (3).   While osteoporosis usually affects the elderly, it can afflict both 

men and women of any age.  Additionally, bone loss occurs in spaceflight, rendering 

astronauts at-risk for fractures during long term space travel.  On average, astronauts 

lose 1-2% of bone mass per month during space missions (14), and there are no known 

countermeasures that can effectively mitigate this bone loss.   
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It has long been regarded that mechanical stimuli are anabolic to bone.  High 

magnitude, low frequency impact such as running has been recognized to increase bone 

and muscle mass (2, 31, 34).  However, the opposite stimulus, a low magnitude and 

high frequency (LMHF) mechanical load experienced in activities as low impact as 

standing, has also been shown to be anabolic to bone (24).  This type of signal is 

transmitted by the musculature to the skeleton during the majority of each day, assisting 

in maintenance of posture and other non-strenuous activities.  If it is true that muscle 

atrophy (sarcopenia) parallels ageing (15, 16, 22), then these intrinsic, LMHF 

mechanical signals would diminish with it, leaving the musculoskeletal system without 

potentially key signals critical to the regulation and retention of skeletal mass and 

morphology.   

Recently, a LMHF mechanical loading device has been developed to treat bone 

loss by applying a low magnitude mechanical signal at a high frequency to the whole 

animal or human. The LMHF mechanical load has been shown to be effective in treating 

musculoskeletal pathologies in a number of subjects during research and clinical trials, 

including animals (26), children with musculoskeletal diseases such as cerebral palsy or 

muscular dystrophy (7, 35), young women with low bone mass (6), and post-

menopausal osteoporotic women (23).  While several pre-clinical and clinical trials have 

demonstrated that the LMHF mechanical loading affects bone formation in vivo, the 

target tissues of the mechanical load and underlying mechanisms mediating the 

responses are not known.   Here, we hypothesized that a LMHF mechanical loading 

applied directly to osteoblasts would prevent decreased bone formation responses in 

osteoblasts by altering gene expression and cell function. 

To test our hypothesis, pre-osteoblast 2T3 cells were exposed to the RPM to 

model a decreased bone formation response (20) and intervened with the LMHF 

mechanical signals (0.1-0.4g acceleration at 30Hz frequency) for 10-60 min per day.  We 
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developed an in vitro method to apply LMHF mechanical loading to osteoblast cells, 

examined various bone formation markers, and performed BMP inhibitor studies.  We 

found that vibration stimulated an osteogenic response in a BMP-dependent manner, 

inducing alkaline phosphatase (ALP) activity, enhancing subsequent mineralization, and 

increasing osteogenic gene expression.   

Materials and Methods 
Cell culture – 2T3 murine osteoblast precursor cells were kindly provided to us by Dr. 

Steve Harris, University of Texas Health Science Center at San Antonio.  The cells were 

cultured in a growth medium (α-minimal essential medium) containing 10% fetal bovine 

serum (Atlanta Biologicals) with 100 units/ml of penicillin and 100µg/ml of streptomycin 

and grown in a standard humidified incubator (37°C, 5% CO2) as previously described 

by us (20, 21).   For mineralization experiments, the growth medium was supplemented 

with ascorbic acid (50 µg/ml) and β-glycerolphosphate (5 mM) with or without BMP2 or 

BMP4 (0-50 ng/ml) and/or noggin (100 ng/ml).   

 

Random Positioning Machine (RPM) – A desktop RPM manufactured by the Dutch 

Space Agency was used to simulate disuse or microgravity conditions as previously 

described by us (20).  Briefly, OptiCell disks seeded with cells were mounted on the 

center of the platform located on the inner frame, and the RPM was operated in random 

modes of speed and direction via a computer user interface with dedicated control 

software inside a humidified incubator (5% CO2 at 37oC).   

 

Low Magnitude and High Frequency (LMHF) Mechanical Loading Platform—LMHF 

mechanical loading was delivered to the cells using a vertically oscillating platform 

custom manufactured by Juvent, Inc (Figure 8.1A). The magnitude of mechanical 
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loading is defined as a peak-to-peak load (Figure 8.1B), and cells were exposed to 0.1-

0.4g acceleration (where 1g is Earth’s gravitational field) at 30 Hz frequency for 10-60 

minutes per day for 3-21 days (Figure 8.1C).  The loading platform dimensions are 

17”X17”, and the loading conditions were controlled through a program installed on a 

laptop.  

 

xperimental Design— Confluent 2T3 cells grown in OptiCells were exposed to static 
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Figure 8.1 LMHF mechanical loading using a custom built platform.  Confluent 
2T3 cells grown in OptiCell chambers were exposed to LMHF loading using a 
platform (A) designed to produce dynamic, vertical oscillations, where the peak to 
peak acceleration is the magnitude of the load (B).  Cells were exposed to five 
different experimental conditions (C) with varying g-loads as shown on the y-axis 
using the LMHF platform and/or the RPM.   
 

E

(1g) or RPM conditions with or without a brief, daily LMHF mechanical load inside a 

humidified incubator (5% CO2 at 37oC).  As shown in Figure 1C, 2T3 cells were exposed 

to five different conditions: 1) Static: cells were exposed to control 1g conditions 

continuously throughout the experimental duration, 2) Static+LMHF:  cells were exposed 
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to static 1g conditions and treated once with LMHF mechanical loading for 10-60 

minutes/day,  3) RPM: cells were continuously rotated on the RPM, simulating a disuse 

or microgravity environment,  4) RPM+LMHF: cells were exposed to the RPM and 

removed once from the RPM and mechanically loaded daily as in the Static+LMHF 

group, and  5) RPM+Static:  Since the RPM+LMHF group not only was treated with the 

LMHF mechanical loading but also was returned to static 1g conditions briefly, we 

employed the RPM+Static group as a control.  This group of cells was exposed to the 

RPM and intervened with the static 1g conditions daily (10-60 min/day).  

 

Whole cell lysate and alkaline phosphatase (ALP) enzyme activity—Following the 

lizarin Red Stain—Following the experiment, cells were washed with ice-cold PBS two 

ourier Transform Infrared (FTIR) Spectroscopy— After 15-21 days of exposure to 

experiment, cells were washed with ice-cold phosphate buffered saline (PBS) two times 

and lysed in 500 µl of a lysis buffer containing 0.5% Triton X-100, 1 mM MgCl2, and 10 

mM Tris-HCl.  Samples were stored at -80ºC until needed. Alkaline phosphatase (ALP) 

activity was determined using a Diagnostics ALP assay kit (Sigma) as previously 

described by us (20, 21). 

 

A

times and fixed in 70% ethanol for 15 minutes.  Cultures were stained for two minutes 

with a 1% Alizarin red solution for calcium detection.  Following the stain, cultures were 

rinsed with a 0.01%HCl-ethanol solution and dH20.  The plates were dried overnight 

before being scored for percent mineralization using ImageJ analysis software.  

Quantification graphs express mineralization as a percent of the experimental control.   

 

F

stimulus, cells were scraped in 100% ethanol and dried at 50°C overnight. Samples 

were mixed with potassium bromide (Sigma), pressed into pellets, and analyzed with a 
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Nexus 470 FTIR spectrometer (ThermoNicolet, Madison, WI), which was equipped with 

a deuterated triglycine sulfate (DTGS) detector. A nitrogen purge was performed, and 

sixty four scans were acquired (4).     

 

Reverse Transcriptase and Real Time Polymerase Chain Reaction (RTPCR)–Total RNA 

tatistical analysis—Data are expressed as mean ±  SEM with n numbers representing 

Results 
 

MHF mechanical loading did not alter cell morphology or cell number of 2T3 

xposed to Static, Static+LMHF, RPM, or RPM+LMHF conditions for 

three days showed no apparent change in cell morphology after stimulus exposure as 

was prepared and amplified as previously described by us (20, 21).  Briefly, total RNA 

was prepared using the RNeasy Mini Kit (Qiagen) and reverse transcribed by using 

random primers and a Superscript-II kit (Life Technology).  The synthesized and purified 

cDNA was amplified using a LightCycler (Roche Applied Science), and mRNA copy 

numbers were determined based on standard curves generated with the genes of 

interest and normalized against 18S ribosomal RNA. The primer pairs for quantitative 

real time RTPCR for ALP, runx2, BMP4, OMD, and PTHR1 were previously published 

by us (20, 21) and for OGN by others (37).  Real time RTPCR for the listed genes were 

carried out in RTPCR buffer as described previously by us (20, 21). 

 

S

biological replicates pooled from independent experiments.  Statistical analysis was 

performed using the Student's t-test. A significance level of p<0.05 was considered 

statistically significant. 

L

preosteoblasts.   

2T3 cells e
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Figure 8.2 LMHF mechanical loading did not alter morphology or cell number of 
2T3 cells.  Confluent 2T3 cells were exposed to Static, Static+LMHF, RPM, or 
RPM+LMHF conditions for 3 days.  LMHF loading was applied to the appropriate 
groups at 0.3g for 10 min/day.  Cultured cells were photomicrographed with a phase 

Static StatA Static StatA Static StatStaticStatic StatStatA

in Figure 8.2A.  Additionally, cell number did not change between static and 

experimental groups with exposure to LMHF mechanical loading or RPM (Figure 8.2B).  

These results suggest that the RPM or LMHF mechanical loading did not significantly 

affect cell shape and growth.  
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LMHF mechanical loading increased ALP activity in a magnitude- and time-

ependent manner. 

marker, in a magnitude-dependent manner.  LMHF mechanical 

loading

 

 

 

 

 

microscope at the end of the experiment (A), and cell proliferation was assessed by 
counting cells using a Coulter counter and graphed as % of static control.   Data are 
expressed as mean ± SEM (n=5-11, p>0.15). 
 
 

d

Here, we examined whether LMHF mechanical loading regulated ALP activity, an 

early bone formation 

 applied to 2T3 cells for 10 min/day for three days induced an increase in ALP 

activity in a magnitude-dependent manner, where 0.3g and 0.4g induced significant 

changes compared to static control (Figure 8.3A).  Next, we investigated the time-

dependent effects of LMHF mechanical loading.  Exposure to 0.3g LMHF mechanical 
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Figure 8.3 LMHF loading increased alkaline phosphatase (ALP) activity in a 
magnitude- and time-dependent manner.  2T3 cells were exposed to Static or 
Static+LMHF conditions at varying loading magnitudes (A) or varying treatment-
time/day (B), and cell lysates were obtained.  After 3 days exposure, ALP activity was 
determined using a colorimetric assay, normalized to total protein, and graphed as a 
% of static control.  Data are expressed as mean ± SEM (n=6,  *p<0.05).   
 

loading for as few as 10 minutes/day for three days was sufficient to increase ALP 

activity in 2T3 cells.  Exposure for 30 minutes or one hour per day did not further 

increase ALP activity compared to 10 minutes/day (Figure 8.3B).   These results suggest 

that LMHF mechanical loading increases ALP activity in a magnitude- and time-

dependent manner. 

 

LMHF mechanical loading prevented inhibition of ALP activity induced by RPM.  

Previously, we have shown that exposure of 2T3 cells to either the RPM or RWV 

e 

examin

induces bone loss responses as determined by ALP activity (20, 21).  Here, w

ed whether LMHF mechanical loading prevents ALP activity inhibition induced by 

exposing 2T3 cells to RPM.  As expected, RPM exposure (three days) decreased ALP 

activity by 30% of static control (Figure 8.4).  This RPM-induced decrease was 

completely normalized to the static level by exposing cells to LMHF mechanical loading 
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(RPM+LMHF) at either 0.3g (Figure 8.4A) or 0.4g (Figure 8.4B) for 10 min/day. In 

contrast, exposure to static conditions for 10 min/day (RPM+Static) was not able to 

prevent RPM-inhibition of ALP activity (Figure 8.4B), suggesting a specific effect of the 

mechanical loading and not the static 1g conditions.  In addition, LMHF mechanical 

loading (Static+LMHF) for 10 min/day at both 0.3g and 0.4g increased ALP activity by 

30% above static control as shown in Figure 8.4.  These results are consistent with the 

following mineralization studies. 

 

Figure 8.4 LMHF mechanical loading prevented inhibition of alkaline 
phosphatase activity caused by RPM. 2T3 cells were exposed to Static, 
Static+LMHF, RPM, RPM+LMHF, and RPM+Static conditions for 3 days.  LMHF was 
applied to the appropriate groups at 0.3g (A) or 0.4g (B) for 10 min/day.  ALP activity 
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was measured using a colormetric assay, normalized to total protein, and graphed as 
a % of static control.  Data are expressed as mean ± SEM (n=6-9  *p<0.01, **p<0.05).
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LMHF mechanical loading stimulated mineralization in a magnitude-dependent 

manner.  

2T3 cells show no apparent mineralization in an experimental time frame of 15-

21 days unless osteogenic factors such as BMP2 or BMP4 are added to the culture 

medium (5).  Here, we examined whether LMHF mechanical loading stimulates 

mineralization of 2T3 cells without supplementing the culture medium with exogenous 

BMPs.   As expected, the static cells cultured for 21 days in the absence of added BMPs 

(Static) did not show any significant calcium deposits as identified by Alizarin Red 

staining (Figure 8.5A and B). Also as expected, supplementing the media with 20 ng/ml 

of BMP4 (Static+BMP4) induced a dramatic increase in calcium deposits (Figure 8.5A 

and B). Exposure of 2T3 cells to LMHF mechanical loading alone (without exogenously 

added BMP4) significantly increased calcium deposits by 10 to 40-fold over the static 

conditions (Static+LMHF).  Additionally, the effect of LMHF signals was magnitude-

dependent, as calcium deposition significantly increased when cells were loaded at 

levels as low as 0.1g up to 0.4g.  To further demonstrate whether LMHF loading induced 

physiologically relevant mineralization in 2T3 cells, FTIR analysis was performed. Figure 

8.5C is a representative FTIR analysis showing adsorption bands at 1650 cm−1 (Amide I, 

C=O) and 1530 cm−1 (Amide II, N-H and C-N), which represent bonds in the extracellular 

matrix and lipid content (4).  Additionally, mineral samples had peaks at 1030 cm−1 (P-

O), at 870 cm−1 (C-O), and a split peak at 600 cm−1 (P-O).  These bands are 

characteristic of  carbonate-containing, poorly crystalline hydroxyapatite (4).  These 

results suggest that LMHF loading alone can stimulate mineralization of 2T3 cells 

without requiring exogenously added BMPs. 
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Figure 8.5 LMHF mechanical loading induced mineralization in a magnitude-
dependent manner.  Confluent 2T3 cells were exposed to Static, Static+BMP4, or 
Static+LMHF conditions at varying loading magnitudes (0.1-0.4g for 10 min/day) for 
21 days and stained for calcium deposition using Alizarin Red and analyzed with 
FTIR for chemical composition (C).  The Opticell membrane was scanned (A), and 
quantification (B) was determined using imaging software and graphed as a % of 
static control.  Data are expressed as mean ± SEM (n=6-10, *p<0.01, **p<0.05).     
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LMHF mechanical loading stimulated and RPM inhibited mineralization in 2T3 

cells in a BMP4 concentration-dependent manner. 

We next investigated the effects of LMHF loading and the RPM on 2T3 cell 

mineralization in a BMP4 concentration-dependent manner.  We carried out experiments 

for a shorter duration of 15 days (rather than the 21 day experiments in Figure 8.5) to 

detect differences among BMP4-treated groups.  2T3 cells were exposed to Static, 

Static+LMHF, or RPM conditions and treated with or without recombinant BMP4 in 

concentrations varying from 0-50 ng/ml (Figure 8.6).  BMP4 alone induced mineralization 

in static cultures at 20 or 50 ng/ml treatment, while 10 ng/ml showed a moderate but not 

statistically significant increase.  The LMHF loading significantly augmented the BMP4 

effect (Static+LMHF) at 20 ng/ml of BMP4 by more than two-fold above the 

corresponding static group.  We also found that the LMHF loading tended to enhance 

the effect of 10 ng/ml BMP4 above that of the corresponding static group, although it did 

not reach statistical significance.  The RPM prevented mineralization at submaximal 

concentrations of BMP4 (1 to 20ng/ml) compared to those of both the Static and 

Static+LMHF groups.  This anti-osteogenic effect of RPM in the presence of submaximal 

BMP4 concentrations was also observed when cells were treated with 20 ng/ml BMP2 

(data not shown).  However, when treated with a higher concentration of BMP4 (50 

ng/ml), 2T3 cells showed maximal mineralization in all three groups (Static, 

Static+LMHF, and RPM), and no differences were observed among them.  These results 

suggest that BMP4 and LMHF provide pro-mineralization effects in an additive manner, 

and the RPM completely prevents the pro-mineralization effect of submaximal 

concentration of BMPs (up to 20 ng/ml).  However, treating cells with a supermaximal 

BMP4 concentration (50 ng/ml) saturates the RPM and LMHF effects, suggesting a key 

role for BMPs as a mediator of mineralization in response to either mechanical condition.  
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Figure 8.6  LMHF loading induced and RPM inhibited mineralization in 2T3 cells 
in a BMP4 concentration-dependent manner.  Confluent 2T3 cells were exposed to 
Static, Static+LMHF, or RPM conditions in the presence of varying concentrations of 
BMP4 for 15 days.  LMHF was applied to the appropriate groups at a magnitude of 
0.4g for 10 min/day.  Cell cultures were stained with Alizarin Red (A), and the 
intensity was quantified (B) as in Figure 3.  Data are expressed as mean ± SEM (n=4, 
*p<0.05).   
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LMHF mechanical loading prevented RPM-induced inhibition of 2T3 cell 

mineralization.  

Previously, we have shown that exposure of 2T3 cells to either the RPM or RWV 

induces bone loss responses as determined by ALP activity, mineralization, and 

osteogenic gene expression (20, 21). Here, we examined whether daily LMHF loading of 

2T3 cells could prevent the inhibition of mineralization induced by the RPM.  For this 

study, 2T3 cells were exposed to Static, Static+LMHF, RPM, RPM+LMHF, and 

RPM+Static conditions in the presence of BMP4 (20 ng/ml) for 15 days and stained with 

Alizarin Red.  As shown in Figure 8.7, LMHF loading of static cells (Static+LMHF) 

increased mineralization by 50% above the Static group, while the RPM dramatically 

inhibited mineralization by ~90% of the Static group.  This RPM-induced inhibition was 

completely normalized to the level of the Static+LMHF group by exposing the cells to 

LMHF loading for 10 min/day (RPM+LMHF).  However, exposure of the RPM group to 

static conditions for 10 min/day (RPM+Static) could not rescue the inhibition of 

mineralization by the RPM (Figure 8.7), suggesting a specific effect of LMHF loading and 

not the static 1g conditions.  However, osteocalcin (OCN), a downstream target protein 

of runx2, was not changed with LMHF loading or RPM exposure (Figure 8.7C).  These 

results suggest that RPM inhibits mineralization of 2T3 cells, which can be completely 

rescued by exposure to brief, daily LMHF loading. 

 

LMHF mechanical loading induced mineralization in a BMP-dependent manner.   

The result in Figure 8.6 suggested that the osteogenic effect of LMHF may be 

mediated by a BMP-dependent mechanism.  To further test this hypothesis, we 

examined whether the specific BMP antagonist noggin (8) could block the osteogenic 

response induced by LMHF loading.  As shown in Figure 8.8, LMHF loading, BMP4 (20 

ng/ml), and BMP4+LMHF loading significantly increased mineralization compared to the 
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Figure 8.7 LMHF loading prevented inhibition of mineralization caused by RPM.
2T3 cells were exposed to Static, Static+LMHF, RPM, RPM+LMHF, and RPM+Static 
conditions in the presence of BMP4 for 15 days.   LMHF was applied to the 
appropriate groups at 0.3g for 10 min/day.  Alizarin Red staining was quantified and 
data are expressed as mean ± SEM (n=6, *p<0.005, **p<0.05).   
 

Static group. However, treatment with noggin (100 ng/ml) completely blocked 

mineralization in all groups (Static, Static+LMHF, Static+BMP4, and 

Static+BMP4+LMHF). This result suggests an essential role of BMPs in the 

mineralization response induced by LMHF.  

 

LMHF mechanical loading rescued RPM-induced decrease in osteogenic gene 

expression.   

We have previously identified genes in 2T3 cells that change in response to the 

RPM and the RWV (20, 21).  Here, we investigated alterations in a subset of osteogenic 

genes induced by LMHF loading.  Consistent with our previous findings (20, 21), real  
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Figure 8.8  LMHF loading induced mineralization in a BMP-dependent manner. 
2T3 cells were exposed to Static, Static+LMHF, Static+BMP4, and 
Static+LMHF+BMP4 with or without noggin for 18-21 days. LMHF loading was 
applied to the appropriate groups at 0.4g for 10 min/day.  Alizarin Red staining was 
quantified and data are expressed as mean ± SEM (n=6-10, *p<0.005, **p<0.05). 
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time RTPCR data (Figure 8.9) showed that RPM exposure for three days significantly 

inhibited the expression of ALP, runx2, OMD, PTHR1, and OGN. LMHF loading 

significantly increased the expression of all the tested genes except for osteoglycin in 

the Static+LMHF group (Figure 8.9).  Moreover, LMHF prevented the RPM-induced 

decrease in expression of ALP, runx2, OMD, PTHR1, and OGN (RPM+LMHF). Unlike 

other genes studied here, regulation of BMP4 mRNA level was unique.  RPM exposure 

did not decrease BMP4 mRNA level compared to static control, which is consistent with 

our previous findings (20). However, LMHF loading of static cells (Static+LMHF) 

increased BMP4 level by ~two-fold above Static control and increased BMP4 level by 

~2.5-fold in RPM-exposed cells (RPM+LMHF) compared to the RPM (Figure 8.9).   

These data demonstrate that LMHF regulates expression of osteogenic genes, providing 

a potential molecular mechanism by which LMHF stimulates bone formation responses 

in 2T3 cells.   

Discussion 
One of the most significant findings of the current study is that cultured 

osteoblasts can directly sense and respond to an extremely low magnitude mechanical 

stimulus when applied at a high frequency, leading to osteogenic changes.   The data 

presented here suggest that osteoblasts are partially responsible for the anabolic effects 

of LMHF loading observed in vivo in both animals and humans (7, 26, 35).  These 

results are significant because they suggest that low impact loading in intact animals and 

humans may directly stimulate osteoblasts and stimulate bone formation responses.  It is 

widely accepted that bone is responsive to signals that create peak strain magnitudes of 

2,000-3,500 microstrains (µε), such as those created from physical activities like running 

(19, 27, 30).  However, muscle contractions during standing impose strains in the 

spectral range of 10-50 Hz of at least two orders of magnitude lower than high impact or  
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Figure 8.9 LMHF loading rescued RPM-induced decrease in osteogenic gene 
expression.  Confluent 2T3 cells were exposed to Static, Static+LMHF, RPM, and 
RPM+LMHF conditions for 3 days.  LMHF loading was applied to the appropriate 
groups at 0.3g for 10 min/day.  Total RNA was obtained from the cell lysates, purified, 
and reverse transcribed to obtain cDNA.  Quantitative real time PCR was performed 
for ALP (A), runx2 (B), osteomodulin (C),  parathyroid hormone receptor 1 (D), and 
osteoglycin (E) using 18s rRNA as an internal control.  Data are expressed as mean ± 
SEM (n=3-10, *p<0.05). 
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strenuous activities (30) and have recently been shown to normalize bone loss (23, 25, 

26).  Previous studies have shown that in cortical bone tissue, application of 2,000 µε at 

a frequency of 0.5 Hz (high magnitude and low frequency) maintained bone mass (28, 

30).  When the frequency was increased to 1 Hz, only a strain of 1,000 µε was needed to 

maintain bone mass, and at 30 Hz, only 70 µε (low magnitude, high frequency) was 

needed to inhibit bone resorption (29, 30).   Thus, bone response to mechanical loading 

appears to correlate with the product of frequency and load magnitude, meaning small 

strains induced by a low force could stimulate bone formation and maintain bone mass if 

applied at a high frequency.  However, the underlying molecular mechanisms regulating 

how such a low level signal can be anabolic to bone tissue and which cells or tissues 

sense and mediate the response are unknown.  

The current study provides insight into the potential mechanisms regarding how 

such low level mechanical loads can prevent or normalize bone loss.  To examine the 

underlying mechanisms of the observed in vivo anabolic effects in response to LMHF 

loading, we used the RPM to induce a bone loss response in vitro using 2T3 cells. As 

expected, the RPM decreased ALP activity (Figure 8.4) and mineralization (Figure 8.7), 

and LMHF treatment increased both markers in static cells (Static+LMHF) in a 

magnitude-dependent manner (Figures 8.3 and 8.5).  Moreover, LMHF prevented the 

RPM inhibition of ALP activity (Figure 8.4) and mineralization (Figure 8.7), preventing 

bone loss responses induced by the disuse or simulated microgravity conditions.  The 

effects of both the RPM and LMHF loading were much more dramatic on mineralization 

than ALP activity of 2T3 cells.  This may be because ALP activity is an early indicator of 

bone formation and is transient (17), making it a less sensitive marker of osteogenesis, 

especially in response to mechanical stimuli.  These findings show that osteoblasts can 

directly respond to the LMHF signal at least in vitro by induction of osteogenic markers, 

suggesting that bone may respond to LMHF signals in vivo through osteoblast cells.   

 190



Importantly, we found that LMHF loading alone can induce mineralization of 2T3 

cells (Figure 8.5) in a magnitude-dependent manner, and up to 20 ng/ml of BMP4 or 

BMP2 supplementation further increased this response in an additive manner (Figure 

8.6).  However, a supermaximal concentration (50 ng/ml) of BMP4 added to the cells 

was able to overcome both the RPM inhibition and LMHF increase (Figure 8.6). More 

importantly, treatment with the BMP antagonist noggin completely blocked mineralization 

induced by the LMHF stimuli. One of the limitations of this study was the range of low 

magnitude force due to physical limitations of the LMHF loading platform.  Nevertheless, 

we tested LMHF loading magnitudes of 0.1-0.4g, and observed a 10 to 40-fold increase 

in mineralization in a magnitude-dependent manner with exposure to LMHF loading. 

Together, these results clearly demonstrate a key role of BMPs in the osteogenic 

responses of osteoblasts in response to LMHF mechanical loading.  Moreover, these 

data suggest that while either BMP2/4 treatment or LMHF alone may be used, a 

combination of the mechanical and humoral stimuli may be a better therapeutic modality 

to prevent or normalize bone loss.  However, it is important to point out that chronic 

systemic supplementation of BMP4 has been shown to induce hypertension at least in a 

mouse model (18), suggesting a caution must be raised in its use.   

The current study reveals some of the osteogenic genes that are regulated by 

LMHF and/or RPM.  We have previously shown by DNA microarray analysis that the 

RPM and RWV inhibit expression of a subset of osteogenic genes (20, 21).  Here, we 

investigated ALP, runx2, PTHR1, OMD, OGN, and BMP4.  Runx2 is considered a 

“master gene” that plays a critical role in the formation of the skeleton, and without 

runx2, there is a complete lack of skeleton formation in a mouse model (12, 13).  

Parathyroid hormone related protein plays a role in calcium mobilization and has been 

linked to loss of bone density in space-flown rats (32) while OMD and OGN belong to the 

small leucine rich proteoglycan (SLRP) family, members of which have been 
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hypothesized to play roles in bone matrix formation and mineralization (1).  LMHF 

loading induced the expression of each of these genes (Static+LMHF) and prevented 

the RPM-inhibition of their expression (RPM+LMHF) (Figure 8.9).   

We found that regulation of BMP4 by the RPM and LMHF was unique compared 

to the other genes.  BMP4 is involved in the development of the skeleton, including 

cartilage formation and various joint developments (33, 36).  The RPM did not alter 

BMP4 mRNA levels, which is consistent to our previous report (20).  However, LMHF 

loading induced an increase in BMP4 mRNA in both static (Static+LMHF) and RPM-

exposed cells (RPM+LMHF).  This result suggests that the mechanism of action of the 

RPM and LMHF loading are distinct.  While the bone loss response of osteoblasts in 

response to RPM is not dependent on changes in BMP4 mRNA level, LMHF loading is 

BMP-dependent.  Together, these data suggest that LMHF regulates expression of 

osteogenic genes, providing a potential molecular mechanism by which LMHF 

stimulates bone formation responses in 2T3 cells.  The mechanosensitive genes 

identified here provide potential targets for pharmaceutical treatments that may be used 

in combination with LMHF mechanical loading to more effectively treat bone pathologies.   

In this study, we show that osteoblasts respond directly to a LMHF mechanical 

load.  It has not been reported how the LMHF may be sensed and transmitted in to the 

cells to induce the osteogenic responses. Potential mechanotransduction pathways may 

involve integrins (11), stretch-activated channels and the ensuing influx of extracellular 

calcium (11), or cell deformations and cytoskeleton (9, 10).  Elucidating the 

mechanosensors and mechanotransduction pathways would be interesting future work. 

We have revealed that LMHF mechanical loading, which has been shown to 

prevent bone loss in animals and humans, elicits cellular and molecular changes in 

osteoblasts, which may mediate bone formation responses to extremely low magnitude 

loading.  As summarized in Figure 8.10, the RPM inhibits markers of bone formation 
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such as ALP activity and mineralization as well as critical gene expression such as 

runx2. However, LMHF mechanical loading prevents these effects in a BMP-dependent 

manner.  This research provides critical insight into how such low level mechanical 

loading prevents or normalizes bone loss in animals and humans, and this mechanical 

loading platform may be also used as a novel countermeasure in spaceflight.   

 

ALP
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Bone Formation
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Mechanical Loading

Noggin BMPs
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Mineralization

Bone Formation
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Figure 8.10 Summary pathway showing mechanistic insight into RPM inhibition 
and mechanical loading induction of bone formation 
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Chapter 9 

Discussion 

Summary and Conclusions 

Musculoskeletal pathologies associated with decreased bone mass, including 

osteoporosis, disuse-induced bone loss, and microgravity-induced bone loss, affect 

millions of Americans annually. Many pharmaceutical treatments have slowed 

osteoporosis, but there is still no countermeasure for bone loss observed in astronauts.  

Additionally, high magnitude and low frequency impact such as running has been 

recognized to increase bone and muscle mass under normal but not microgravity 

conditions.  However, a low magnitude and high frequency (LMHF) mechanical load 

experienced in activities such as postural control, has also been shown to be anabolic to 

bone.  While several clinical trials have demonstrated that LMHF mechanical loading 

normalizes bone loss in vivo, the target tissues and cells of the mechanical load and 

underlying mechanisms mediating the responses are unknown.    

As such, the objectives of this project were to analyze any cellular and molecular 

changes induced in osteoblasts by LMHF loading and to investigate the utility of a LMHF 

mechanical load in mitigating microgravity-induced bone loss.  The central hypothesis of 

the project was that simulated microgravity or disuse conditions induce bone loss by 

inhibiting expression of genes critical in regulating bone formation, osteoblast 

differentiation, and subsequent mineralization while a LMHF mechanical load prevents 

these effects.  Thus, the central hypothesis of this project was tested with three specific 

aims, as follows:     
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• Specific Aim 1: To determine the effect of simulated microgravity disuse on cell 

differentiation and mineralization of mouse calvarial 2T3 pre-osteoblasts 

• Specific Aim 2:  To compile a confined list of selected genes that change upon 

exposure to simulated microgravity or disuse 

• Specific Aim 3:  To determine whether LMHF mechanical loading prevents 

microgravity- or disuse-induced decrease in bone formation 

 

To achieve these aims, we developed an in vitro disuse system using the 

Random Positioning Machine (RPM).  For the first time, we reported systemic gene 

expression studies in 2T3 preosteoblasts using the RPM disuse system showing that 

140 genes were altered by RPM exposure with over two-fold statistically significant 

changes.  Moreover, we also utilized an independent simulator called the Rotating Wall 

Vessel (RWV) to partially validate the in vitro disuse systems and to confine the list of 

genes to those most critical in regulating bone formation.  After comparative studies, we 

constricted the list to 17 commonly changed genes, three of which were not only 

decreased with disuse but also increased with mechanical loading in vivo.  Furthermore, 

we employed the RPM disuse system to evaluate the mechanism by which a LMHF load 

mitigates bone loss.  Exposure of osteoblasts to the RPM decreased bone formation 

markers such as alkaline phosphatase (ALP) activity and mineralization even in the 

presence of bone morphogenic protein 4 (BMP4), and the LMHF mechanical loading 

prevented the RPM-induced decrease in both markers.  

In conventional thought, high impact exercises instigate large strains, which 

initiate bone adaptation and remodeling.  However, these large strains are only a small 

portion of the strain history recorded over a 24 hour period of various animals.  As such, 

the dominant portion of the strain history is composed of smaller, more frequent strains.  
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The LMHF mechanical loading platform mimics these strains that are characteristic of 

physiological musculature loading on bones during activities such as postural control.   

In this dissertation, we examined the hypothesis that direct application of LMHF 

mechanical loading to osteoblasts alters their cell responses, preventing decreased 

bone formation induced by disuse as marked by ALP activity and gene expression.  

Exposure of 2T3 cells to the RPM decreased bone formation responses as determined 

by ALP activity and mineralization even in the presence of a submaximal dose of BMP4 

(20ng/ml).  However, LMHF mechanical loading prevented the RPM-induced decrease 

in ALP activity and mineralization. Mineralization induced by mechanical loading was 

enhanced by treatment with BMP4 and blocked by the BMP antagonist noggin, 

suggesting a role for BMPs in this response.  In addition, mechanical loading rescued 

the RPM-induced decrease in gene expression of ALP, runx2, osteomodulin (OMD), 

parathyroid hormone receptor 1 (PTHR1), and osteoglycin (OGN).  These genes are 

part of a larger set of mechanosensitive genes identified in this dissertation.  Additionally, 

for the first time, these findings show that osteoblasts respond directly to extremely low 

magnitude mechanical loading to induce bone formation responses, potentially leading 

to normalization or prevention of bone loss caused by disuse or microgravity conditions.  

Therefore, by achieving the three specific aims set forth, this dissertation has 

shown that LMHF mechanical loading promotes anabolic responses at the cellular and 

molecular level, partially providing mechanistic understanding by which such a low 

magnitude load prevents or prolongs bone loss in vivo in animals and humans.  In 

addition, we have shown that LMHF loading prevents simulated microgravity-induced 

decrease in bone formation response at the in vitro level, supporting use of the platform 

in spaceflight to countermeasure bone loss. Furthermore, we provided systemic gene 

expression analyses and confined the list of genes to those that may play critical roles in 

regulating bone formation in normal and disuse conditions.  In conclusion, this research 
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is significant because it sought to evaluate whether the extremely low level mechanical 

loading induced changes in an isolated osteoblast system, and if so, what the underlying 

molecular mechanisms were regulating those changes.  This information not only 

provides further understanding of how osteoblasts sense and respond to various 

mechanical loads but also imparts potential targets for pharmaceutical treatments that 

could be combined with LMHF loading to better treat bone loss due to osteoporosis, 

disuse, or spaceflight.   
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Limitations 

 There are limitations to the studies performed in this dissertation including, but 

not limited to, the following points: 

1. Simulated environments 

2. Experiments compared in Aim 2 but not performed at same time 

3. Defining “mechanosensitive” when observing gene changes 

4. Molecular effects of LMHF loading beyond BMPs 

5. Experiments performed in cell line 

6. Detailed mechanistic studies in future work 

7. LMHF loading dependent on more factors than strain magnitude and frequency 

 

The environments used for these studies with the RPM and RWV are designed 

to simulate disuse or microgravity conditions and have been shown to recapitulate some 

responses observed in vivo in isolated cells, animals, and humans.  However, it should 

be noted that the both environments are only simulations, and therefore, the results must 

be tested in actual spaceflight or disuse conditions.    

 Additionally, in aim 2, we compare the results from the RPM to the RWV; 

however, these experiments were not performed side-by-side.  This caveat must be 

noted as a limitation to the comparative studies performed.  Furthermore, the effects 

observed from the microarray gene expression analyses after exposure to both 

simulators are dependent on the definition of “mechanosensitive”.  For instance, if a 

gene was upregulated by the RPM but its downstream targets were unaffected, the gene 

could be labeled as not mechanosensitive even though its expression level changed with 

exposure to the stimulus.  An example from both microarrays is the runx2 gene, whose 

expression level was downregulated by both the RPM and RWV and upregulated by 

LMHF.  However, osteocalcin, which is a downstream target of runx2, was unchanged 
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by exposure to each stimulus.  Thus, although the gene expression level was changed, 

the activity of runx2 may not be changed.  Future work would need to perform detailed 

studies using a truncated form of the runx2 gene inserted into cells and exposed to the 

stimulus to determine if the gene is truly mechanosensitive.  However, in this dissertation, 

a gene whose expression level was changed by the stimulus was labeled 

mechanosensitive.   

 Moreover, the goal of this dissertation was to develop a method to study the 

effects of disuse at the cellular and molecular level and to investigate whether LMHF 

loading normalized bone loss in vivo by acting on osteoblasts directly.  As such, the 

project is now developed so that future work can focus on the changes noted in this 

dissertation.  Thus far, we have only partially implicated BMPs in potentially playing a 

role in the LMHF loading effects on osteoblasts, and future work should center about 

investigating the entire pathway.  Additionally, there are many other pathways 

independent of BMPs that may play roles in mediating the effects of both the RPM and 

LMHF loading, including adhesion molecules such as focal adhesion kinases (FAK) and 

integrins.  This conclusions of this dissertation were limited to the data presented here, 

which show that the effects of LMHF requires BMPs and that simulated disuse alters 

many genes, the specific roles of which should be the focus of future studies.  

Additionally, the work performed here was in an immortalized cell line that no longer 

mimics in tact in vivo osteoblasts.  The results would need to be confirmed in a primary 

cell type, which could then be used for future mechanistic work.   

 Lastly, LMHF loading depends not only on magnitude and frequency of the 

applied load, but also it depends on the effects caused at the tissue and cellular level.  

For instance, perhaps there is a role for bone microdamage, which occurs 

physiologically as part of the adaptation and remodeling cycle of bone.  Additionally, we 

showed in this dissertation that the effects of LMHF were magnitude-dependent.  
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However, we did not perform frequency dose curves.  Frequency is most likely the larger 

contributor to the osteogenic effects of LMHF loading as the strain magnitude is much 

lower than the levels needed to induce bone adaptation but is also applied much more 

frequently than the larger strain events.  Additionally, as previously discussed, there are 

most likely many changes induced by LMHF loading, including the activation of various 

mechanical signaling pathways.  This project did not evaluate the effects on specific 

mechanosensitive elements such as ion-gated channels, stretch-activated channels, 

adhesion complexes, or g-protein coupled receptors.  These studies were limited to 

gene expression and the role of BMP4/BMPs in the effects of the RPM and LMHF 

loading.  However, it should be noted that there is most likely a host of other 

downstream factors that may play roles in mediating the effects of disuse and LMHF 

loading on bone loss.   
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Future Directions  

This dissertation has set up a method by which disuse and LMHF mechanical 

loading can be tested in vitro to explore changes at the cellular and molecular level of 

osteoblasts.  To advance these experiments, the ensuing steps could revolve around 

targeting a specific gene or molecular pathway altered by both disuse and LMHF loading 

as identified in this dissertation.  To develop sophisticated cell signaling pathways, the 

next steps should revolve around functional tests by knocking down gene expression 

using pharmacological agents or siRNA and overexpressing gene expression by plasmid 

or adenovirus.  This type of functional knowledge could directly implicate a specific 

mechanosensitive gene in mediating osteoblast responses to disuse or LMHF 

mechanical loading and be specifically used for pharmaceutical treatments.   

We have begun studies involving OGN, which is a gene that is decreased by the 

RPM and RWV and increased by LMHF mechanical loading as shown in Figure 9.1.  

OGN is a small leucine-rich proteoglycan found in the extracellular matrix of bone, and 

knockout mice for this gene display collagen fibril diameter abnormalities.  Most 

investigations of OGN are in the eye extracellular matrix, and there is also an OGN 

knockout mouse available from the Tasheva lab.  An overall x-ray of the skeleton of the 

OGN-/- mouse does not show macroscopic alterations to the bones due to OGN deletion.  

However, there have not been sophisticated studies examining the mechanical 

properties of the bones of these mice.  Future work could image the bones using micro-

computed tomography (µ-CT) to assess morphological changes to the trabecular and 

cortical bone due to the gene deletion by comparing to an appropriate background 

control.  Additionally, the bones could be mechanically tested, evaluating parameters 

such as modulus of elasticity and load to failure.  Lastly, the bones could be sectioned 

and stained by immunohistochemistry for various proteins involved in bone resorption 
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and bone formation.  This type of information is unavailable and would greatly enhance 

the role of OGN in bone remodeling.   

We currently have molecular reagents targeting OGN, including a working 

antibody for Western blots (Figure 9.1A and C),   primers for real time RTPCR (Figure 

9.1B and D), and DNA plasmid for overexpression (Figure 9.2).  The plasmid 

transfection conditions are partially optimized, but cell death during transfection may still 

be too high.  Moreover, preliminary data shown in Figure 9.2 suggest that OGN may be 

linked to the BMP pathway through BMP4.  However, these results shown in two 

independent experiments (Figure 9.2 B and C) were inconsistent.  It may be of interest 

to pursue the link between OGN and BMP4 because we have previously observed that 

treatment of 2T3 cells with recombinant OGN (rOGN) protein combined with rBMP4 

increases mineralization compared to treatment with either rOGN or rBMP4 alone (data 

not shown).   

Additionally, we have tested various siRNA sequences from Dharmacon, 

including their smart pool siRNA available for OGN.  It, however, does not provide 

substantial knockdown of OGN in 2T3 cells at concentrations less than 100uM.  

However, at 100uM, there was knockdown, but this result was inconsistent (Figure 9.3).  

As such, we are currently testing additional siRNA sequences targeting osteoglycin.  

Therefore, there are ample molecular reagents available to pursue the role of OGN not 

only in osteoblast function but also in LMHF mechanical loading-induced prevention of 

decreased bone formation.   

Moreover, we have collaborations available to perform hindlimb unloading (HLU) 

studies using a mouse model.  To elevate the in vitro studies in this dissertation, OGN-/- 

mice could be used in an HLU in vivo experiment intervened with LMHF loading.  We 

have the capability to evaluate the bone morphology of these mice using µ-CT analysis  
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Figure 9.1 RPM decreased while LMHF loading increased expression of OGN
protein and transcript levels.   
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Figure 9.2 OGN plasmid induced overexpression of OGN protein compared to a 
GFP control plasmid and may be involved in regulation of BMP4.  OGN plasmid 
transfection conditions are shown in A and B.  Inconsistent preliminary results in B 
and C suggest OGN may be related to the BMP pathway through BMP4.  
(Experiments shown here were for three days for OGN plasmid and two days for siBMP4 treatment.)  
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siOGN or non-silencing control (NS) siRNA.  Transfection of siRNA occurred as noted 
by NS-labeled siRNA while multiple sequences of siOGN were not effective.  
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as shown in Figure 9.4.  Additionally, µ-CT can evaluate the morphology and properties 

of bone architecture as shown in Figures 9.5, 9.6, and 9.7.   

Additionally, although the BMP pathway as shown in Figure 9.8 is well 

established for its role in bone formation, this dissertation is the first to provide insight 

into the direct effects of LMHF loading on osteoblast function.  Thus, it is feasible and 

would be interesting to further establish the effect of LMHF loading on the BMP 

molecular signaling pathway.  We have shown by antagonist studies that the effects of 

LMHF mechanical loading require BMPs.  However, future work may surround studying 

downstream signaling molecules such as smad 1,5,8 phosphorylation and mitogen 

activating protein kinases (MAPK).  We have preliminary data suggesting differential 

regulation of some members of the BMP pathway with MAPKs in Figure 9.9 and smad-

dependent factors in Figure 9.10.  However, most of the preliminary data is inconclusive.  

The preliminary data included here was obtained from samples exposed to three days of 

RPM or LMHF loading.  Since many of the signaling proteins are phosphorylated and 

typically are activated acutely, it may be necessary to perform short time courses to 

accurately determine the molecular mechanisms regulating both responses.  If any of 

these molecules change with LMHF loading or RPM exposure, their functional roles may 

be analyzed easily because of available blocking agents.  Furthermore, there are a 

number of other genes such as OMD, PTHR1, and runx2 that may be further 

investigated for their role in how the LMHF loading prevents bone loss.   

Lastly, the effects of LMHF loading and RPM on osteoblast mineralization may 

be dependent on lots or shelf life of the recombinant BMP4 used.  As shown in Figure 

9.11, a new lot of BMP4 was shown by smad 1,5,8 phosphorylation to be much stronger 

than the lot used in these experiments presented in this dissertation.  However, we 

cannot decipher whether it was the lot or the shelf life of the BMP4 that yielded a 

stronger BMP activity response.  As such, current tests are being performed to 
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Figure 9.5 HLU for 13 days decreased bone volume in the femur metaphysis of 
BALB mice.    
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Figure 9.6 HLU for 13 days did not alter bone volume in the femur epiphysis of 
BALB mice.    
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Figure 9.7 HLU for 13 days did not alter bone volume in the tibia metaphysis of 
BALB mice.    
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Figure 9.10 Preliminary data showing effects of RPM and LMHF loading on 
Smad-dependent factors.   
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Figure 9.11 BMP4 lot test at varying concentrations    
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determine if the effects of LMHF loading and RPM are BMP-lot dependent.  If so, then 

future studies will need to repeat the BMP4 concentration-dependent experiments to 

determine the ideal concentration where the effects of the RPM and LMHF loading can 

be observed.   

If it is truly the goal of this project to understand how such low level mechanical 

loads can mediate bone adaptation, then future directions such as those discussed here 

must be considered.  This biological information will further elucidate our knowledge of 

how the skeletal system maintains its integrity to fully provide its protective and 

supportive functions to the body, and as such, it will render opportunities to develop new  

techniques to better treat bone pathologies.  Additionally, the success of clinical trials 

exploring the utility of the LMHF mechanical loading platform in mitigating osteoporotic 

bone loss combined with the research performed in this dissertation strongly support the 

use of LMHF loading as a novel countermeasure in spaceflight.   

 

 



 
 
 
 
 
 
 
 
 

Appendix A 
 
 

Chapter 5 Supplemental Tables
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Table A.1 A list of selected statistically significant RWV-mechanosensitive genes 
in 2T3 cells. Sorted based on typical biological process. 

Accession # Gene Name *Fold 
∆ 

p-
value Molecular Function 

Cell Adhesion     

NM_012050 Osteomodulin 0.10 0.04 aka osteoadherin, may mediate cell 
attachment 

NM_011581 thrombospondin 2 0.39 0.03 structural molecule activity; calcium ion 
binding 

BB781435 nidogen 2 0.39 0.004 calcium ion binding 

NM_007729 procollagen, type XI, alpha 1 0.40 0.04 extracellular matrix structural 
constituent 

NM_012043 immunoglobulin superfamily containing 
leucine rich repeat  (ISLR) 0.42 0.02 involved in cell attachment 

BB250384 
L08431 vascular cell adhesion molecule 1 0.45 0.02 protein binding 

BF225985 discoidin domain receptor family, member 1 0.49 0.04 protein kinase activity; protein 
serine/threonine kinase activity 

BC013560 procollagen, type IV, alpha 2 2.02 0.03 
structural molecule activity; 
extracellular matrix structural 
constituent 

BG073728 RGM domain family, member B 2.24 0.05 protein self binding 

BM935811 integrin alpha 6 2.47 0.01 receptor activity; protein binding 

BF158638 procollagen, type IV, alpha 1 2.59 0.002 
structural molecule activity; 
extracellular matrix structural 
constituent 

Cell Cycle     
NM_011817 
AK007410 

growth arrest and DNA damage inducible, 
gamma 0.40 0.009 structural constituent of ribosome 

AK004608 heat shock protein 8 2.27 0.04 protein binding; ATP binding 
Cell 
Differentiation     

NM_025711 Asporin 0.15 0.05 porin activity; cartilage extracellular 
protein 

Development     
NM_031258 chordin-like 1 0.16 0.03 unknown 

NM_009144 secreted frizzled-related sequence protein 2 0.43 0.03 transmembrane receptor and signal 
transduction activity 

BB549310 olfactomedin 1 2.66 0.02 unknown 
Skeletal 
Development     

NM_007554 bone morphogenetic protein 4 0.40 0.002 cytokine activity 

NM_054077 proline arginine-rich end leucine-rich repeat 0.43 0.05 extracellular matrix structural 
constituent 

NM_011641 transformation related protein 63 0.47 0.04 DNA binding; transcription factor 
activity 

Cell Growth     

NM_010516 cysteine rich protein 61 0.24 0.02 protein binding; insulin-like growth 
factor binding 

*Fold=RWV/static 1g
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Table A.1-Continued 
 

Accession # Gene Name *Fold 
∆ 

p-
value Molecular Function 

NM_016873 WNT1 inducible signaling pathway 
protein 2 0.39 0.01 phospholipase A2 activity; calcium ion binding 

BC020038 endothelial cell-specific molecule 1 0.46 0.01 insulin-like growth factor binding 
Cytoskeletal 
Regulation     

NM_008857 protein kinase C, iota 0.45 0.04 actin filament organization 

AV297945 myosin X 0.46 0.046 motor activity; actin binding 

AW491660 tubulin, alpha 4 2.42 0.007 microtubule based movement; GTPase 
activity; structural molecule activity 

Metabolism     
NM_007934 glutamyl aminopeptidase 0.40 0.03 DNA binding; protein binding 

AY057913 brain derived neurotrophic factor 0.46 0.02 mechanoreceptor differentiation; protein 
binding; growth factor activity 

NM_007436 aldehyde dehydrogenase family 3, 
subfamily A1 2.56 0.04 aldehyde dehydrogenase activity 

Proteolysis     

NM_011269 Rhesus blood group-associated A 
glycoprotein 0.36 0.01 cysteine-type endopeptidase activity 

AF282844 matrix metalloproteinase 16 0.47 0.04 metalloendopeptidase activity 

BB658835 
a disintegrin-like and metalloprotease 
(reprolysin type) with thrombospondin 
type 1 motif, 5 (aggrecanase-2) 

0.48 0.03 metalloendopeptidase activity; peptidase 
activity 

AK011596 transferrin receptor 2.40 0.05 receptor activity; transferrin receptor activity 
Signal 
Transduction     

NM_008046 follistatin 0.39 0.02 BMP signaling pathway 

Protein Folding     
NM_013560 heat shock protein 1 2.03 0.04 unknown 

NM_011020 heat shock 70kDa protein 4 like 2.06 0.02 ATP binding; unfolded protein binding 

Transport     

AK018504 ras association (RalGDS/AF-6) domain 
family 2 0.43 0.27 protein binding 

AV344473 sorting nexin associated golgi protein 1 0.48 0.008 unknown 

BB280137 RAB guanine nucleotide exchange factor 
(GEF) 1 0.48 0.02 DNA binding; zinc ion binding 

BB144704 ATP-binding cassette, sub-family A 
(ABC1), member 1 0.48 0.02 ATP binding; ATPase activity 

Chromosome 
Organization     

BB533903 histone 1, H1c 0.29 0.03 DNA binding; protein binding 
M25487  
NM_023422 histone 1, H2bc 0.44 0.03 DNA binding 

*Fold=RWV/static 1g
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Table A.1-Continued 
 

Accession # Gene Name *Fold 
∆ 

p-
value Molecular Function 

Nitric  Oxide 
Synthesis     

BF166000 high mobility group box 1 0.41 0.04 nitric-oxide synthase regulator activity 
Multidrug 
Transport     

BB291885 ATP-binding cassette, sub-family C 
(CFTR/MRP), member 4 2.35 0.003 multidrug efflux pump activity 

Endocytosis     

AI848122 low density lipoprotein receptor-related 
protein 8, apolipoprotein e receptor 2.30 0.04 receptor activity; calcium ion binding 

Stress or 
Immune 
Response 

    

NM_007705 cold inducible RNA binding protein 0.21 0.003  

D67017 heat shock protein 105 2.54 0.02 protein binding; ATP binding 

AW763765 heat shock protein 1A 3.18 0.04 ATP binding 
Regulation of 
Cell Growth     

NM_008760 osteoglycin 0.23 0.03 growth factor activity 
Negative 
Regulation of 
Cell Growth 

    

NM_009517 wild-type p53-induced gene 1 2.18 0.03 unknown 

Unknown      

BC002065 serine (or cysteine) proteinase inhibitor, 
clade A, member 3G 0.35 0.02 endopeptidase inhibitor activity 

NM_133859 olfactomedin-like 3 0.40 0.02 unknown 

NM_016753 latexin 0.44 0.01 enzyme inhibitor activity; 
metalloendopeptidase inhibitor activity 

NM_007984 fascin homolog 1, actin bundling protein 0.47 0.04 actin binding; actin filament binding 

NM_029632 protein phosphatase 1, regulatory 
(inhibitor) subunit 11 2.17 0.03 unknown 

AI266910 ceroid-lipofuscinosis, neuronal 2 2.07 0.04 serine-type endopeptidase activity 

NM_009266 selenophosphate synthetase 2 2.02 0.004 catalytic activity 
*Fold=RWV/static 1g
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Table A.2 The effect of the RWV on selected genes that may be involved in 
osteoblast differentiation and matrix mineralization. Genes are sorted based on 
fold changes with relaxed p-value stringency.   

Accession # Gene Name *Fold 
∆ 

p-
value Molecular Function 

NM_012050 osteomodulin 0.10 <0.05 aka osteoadherin, may mediate cell attachment 

NM_008760 osteoglycin 0.23 <0.05 binds to TGF-beta, no GAG in bone, keratan 
sulfate in other tissues 

NM_025711 asporin 0.28 <0.05 porin activity; cartilage extracellular protein 

BC002065 serine (or cysteine) proteinase 
inhibitor, clade A, member 3G 0.35 <0.05 may be involved in osteoclast function with 

MMPs and cathepsins 
NM_007729 procollagen, type XI, alpha 1 0.37 <0.05 present in cartilage 
NM_011581 thrombospondin 2 0.39 <0.025 involved in cell attachment 

NM_016873 WNT1 inducible signaling pathway 
protein 2 0.39 <0.05 involved in WNT pathway, WNT stimulated by 

BMPs 
BB781435 nidogen 2 0.39 <0.005 calcium binding 

NM_007554 bone morphogenetic protein 4 0.40 <0.002
5 growth factor and cytokine activity 

BM218630 protocadherin 18 0.40 0.075 calcium ion binding 
NM_011693 vascular cell adhesion molecule 1 0.41 <0.025 cell adhesion molecule activity 

NM_012043 immunoglobulin superfamily containing 
leucine rich repeat  (ISLR) 0.42 <0.05 involved in cell attachment 

NM_009144 secreted frizzled-related sequence 
protein 2 0.43 <0.05 WNT signaling pathway antagonist 

NM_021355 fibromodulin 0.45 0.051 binds to collagen, may regulate fibril formation, 
binds to TGF-beta 

BB431535 matrix metalloproteinase 16 0.47 <0.05 involved in osteoclast function and bone 
resorption 

AW412729 procollagen, type XII, alpha 1 0.48 0.072 present in collagen; extracellular matrix 
structural constituent 

NM_010511 interferon gamma receptor 1 0.52 0.087 inhibit bone resorption 

AF153440 BMP and activin membrane-bound 
inhibitor, homolog (Xenopus laevis) 0.53 0.065 antagonist to BMPs; involved in TGF-beta 

signaling pathway 
BC014690 transforming growth factor, beta 3 0.59 <0.05 growth factor and cytokine activity 

AF053954 cbfa1/runx2 (osf2) 0.69 0.086 essential transcription factor for osteoblast 
differentiation and bone formation 

NM_020273 glucocorticoid modulatory element 
binding protein 1 0.70 0.059 transcription factor activity 

NM_008216 hyaluronan synthase 2 0.74 <0.05 with versican-like protein works to captures 
space destined to become bone 

NM_007833 decorin 0.76 <0.025 binds to collagen and may regulate fibril 
diameter 

NM_007431 alkaline phosphatase 2, liver 0.82 <0.05 essential for hydroxyapatite formation and matrix 
mineralization 

BB082407 hyaluronan and proteoglycan link 
protein 4 1.22 0.082 present in articular cartilage 

BM251152 chondroitin sulfate proteoglycan 2 1.23 0.070 present in cartilage 
BG092290 insulin-like growth factor 2 receptor 1.43 <0.025 signal transduction and hormone activity 

NM_020275 tumor necrosis factor receptor 
superfamily, member 10b 1.43 <0.05 growth factor and cytokine activity 

BG069059 leucine rich repeat (in FLII) interacting 
protein 1 1.52 0.082 leucine rich repeats involved in bone 

mineralization 
NM_010554 interleukin 1α 1.58 <0.05 potent stimulators of bone resorption 

NM_011361 serum/glucocorticoid regulated kinase 1.65 0.072 transferase activity, transferring phosphorus-
containing groups 

M94967 prostaglandin-endoperoxide synthase 
2 2.05 0.062 prostaglandins important in fluid shear over 

bone cells 
BM935811 integrin α6 2.47 <0.05 cell adhesion molecule 
AK003744 cystatin E/M 3.45 <0.05 antagonist to cathepsin family 

NM_011111 serine (or cysteine) proteinase 
inhibitor, clade B, member 2 7.14 0.078 may be involved in osteoclast function with 

MMPs and cathepsins 

X75557 proliferin 14.4 0.059 involved in cell adhesion; may regulate 
cathepsin L; involved in cell proliferation 

* Fold= RWV/static 1g 
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 Table A.3 Comparison of gene expression changes among RWV, RPM, and 
mechanical load microarrays.  Genes are sorted by biological process.   

Accession # Gene Name 
Fold 
∆ 

RWV 

 p-
value 
RWV 

Fold ∆ 
RPM 

 p-
value 
RPM 

Fold 
∆ 
in 

vivo 

 p-value 
 in vivo 

Molecular 
Function 

Cell Growth & 
Differentiation         

AK014259 osteoglycin 0.22  <0.05 0.38  <0.005 2.47  <0.005 binds to TGF-
Beta 

NM_008409 integral membrane 
protein 2A 0.31 0.17 0.53  <0.05 2.85  <0.005 

marker gene of 
osteoblastic 
cells in bone 
formation 

NM_007792 cysteine and glycine-rich 
protein 2 0.65  <0.05 0.68 0.15 4.12  <0.0025 zinc ion binding 

AK011346 pleiotrophin 0.43 0.17 0.36  <0.05 4.29  <0.0025 

involved in bone 
mineralization; 
growth factor 
binding 

Cell Adhesion         

NM_015734 procollagen, type V, 
alpha 1 0.56 0.06 0.65 0.11 1.97  <0.0025 present in 

cartilage ECM 

NM_007739 procollagen, type VIII, 
alpha 1 0.57 p>0.05 0.68 p>0.1 2.56 p<0.0025 present in 

cartilage ECM 
Cell Death         

NM_008086 growth arrest specific 1 0.59  0.16 0.53  <0.01 2.26  <0.0025 protein binding 

Proteolysis         

NM_008788 
procollagen C-
proteinase enhancer 
protein 

0.56  <0.01 0.52  <0.05 2.15  <0.005 nucleic acid 
binding 

NM_011175 legumain 0.64 0.25 0.66 0.08 3.25  <0.005 
cysteine-type 
endopeptidase 
activity 

Signal 
Transduction         

NM_008809 
platelet derived growth 
factor receptor, beta 
polypeptide 

0.74 0.25 0.61 0.07 1.97  <0.01 
protein 
serine/threonine 
kinase activity 

NM_009037 reticulocalbin 0.69  <0.05 0.85 0.36 2.31  <0.005 calcium ion 
binding 

Transcription 
regulation         

NM_010351 goosecoid 0.58 0.20 0.68 0.13 2.3  <0.005 DNA binding 

NM_019791 melanoma antigen, 
family D, 1 0.54 0.14 0.55  <0.005 2.33  <0.0025 

transcription 
coactivator 
activity 

Cytoskeletal 
Movement         

NM_007392 actin, alpha 2, smooth 
muscle, aorta 0.64 p>0.1 0.85 p>0.1 1.97 p<0.0025 

structural 
constituent of 
cytoskeleton 

Other         

NM_009128 stearoyl-coenzyme A 
desaturase 2 0.4 0.28 0.35 

 
<0.002

5 
2.56  <0.0025 iron ion binding 

AK004179  platelet-derived growth 
factor receptor-like 0.45  <0.005 0.52  <0.05 2.18  <0.005 receptor activity 
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