
City University of New York (CUNY)
CUNY Academic Works

Dissertations, Theses, and Capstone Projects Graduate Center

2-2016

Toward a Kripkean Concept of Number
Oliver R. Marshall
Graduate Center, City University of New York

How does access to this work benefit you? Let us know!
Follow this and additional works at: https://academicworks.cuny.edu/gc_etds

Part of the Epistemology Commons, History of Philosophy Commons, Logic and Foundations
of Mathematics Commons, Philosophy of Language Commons, and the Philosophy of Mind
Commons

This Dissertation is brought to you by CUNY Academic Works. It has been accepted for inclusion in All Dissertations, Theses, and Capstone Projects
by an authorized administrator of CUNY Academic Works. For more information, please contact deposit@gc.cuny.edu.

Recommended Citation
Marshall, Oliver R., "Toward a Kripkean Concept of Number" (2016). CUNY Academic Works.
https://academicworks.cuny.edu/gc_etds/703

https://academicworks.cuny.edu?utm_source=academicworks.cuny.edu%2Fgc_etds%2F703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://academicworks.cuny.edu/gc_etds_all?utm_source=academicworks.cuny.edu%2Fgc_etds%2F703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://academicworks.cuny.edu/gc/
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/gc_etds/703
https://academicworks.cuny.edu/gc_etds?utm_source=academicworks.cuny.edu%2Fgc_etds%2F703&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/527?utm_source=academicworks.cuny.edu%2Fgc_etds%2F703&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/531?utm_source=academicworks.cuny.edu%2Fgc_etds%2F703&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/532?utm_source=academicworks.cuny.edu%2Fgc_etds%2F703&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/532?utm_source=academicworks.cuny.edu%2Fgc_etds%2F703&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/534?utm_source=academicworks.cuny.edu%2Fgc_etds%2F703&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/535?utm_source=academicworks.cuny.edu%2Fgc_etds%2F703&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/535?utm_source=academicworks.cuny.edu%2Fgc_etds%2F703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://academicworks.cuny.edu/gc_etds/703?utm_source=academicworks.cuny.edu%2Fgc_etds%2F703&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:deposit@gc.cuny.edu%3E


!
 

 

 

TOWARD A KRIPKEAN CONCEPT OF NUMBER 

 

by 

 

Oliver R. Marshall 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A dissertation submitted to the Graduate Faculty in Philosophy in partial fulfillment of the requirements 

of the degree of Doctor of Philosophy, The City University of New York.  
2016. 

 
 
 



! ii!

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2016 
Oliver R. Marshall 

All Rights Reserved 
 
 
 

 



! iii!

This manuscript has been read and accepted for the Graduate Faculty in Philosophy to satisfy the 
dissertation requirement for the degree of Doctor of Philosophy. 

 
 
 
 
 
 
 
   Jesse Prinz 
   
______________ ___________________________________________________ 
Date   Chair of Examining Committee 
 
 
 
 

Iakovos Vasiliou 
   
______________ ___________________________________________________ 
Date   Executive Officer 
 
 
 
 
Supervisory Committee: 
 

Gary Ostertag, Advisor 
 
Saul Kripke 
 
Nathan Salmon 
 
Jesse Prinz  
 
Michael Levin 
 

 
 
 
 

THE CITY UNIVERSITY OF NEW YORK 
 
 
 
 



! iv!

Abstract 
 

TOWARD A KRIPKEAN CONCEPT OF NUMBER 
 

By 
 

Oliver R. Marshall 
 
 Saul Kripke once remarked to me that natural numbers cannot be posits inferred from 

their indispensability to science, since we’ve always had them. This left me wondering whether 

numbers are objects of Russellian acquaintance, or accessible by analysis, being implied by 

known general principles about how to reason correctly, or both. To answer this question, I 

discuss some recent (and not so recent) work on our concepts of number and of particular 

numbers, by leading psychologists and philosophers. Special attention is paid to Kripke’s theory 

that numbers possess structural features of the numerical systems that stand for them, and to the 

relation between his proposal about numbers and his doctrine that there are contingent truths 

known a priori. My own proposal, to which Kripke is sympathetic, is that numbers are properties 

of sets. I argue for this by showing the extent to which it can avoid the problems that plague the 

various views under discussion, including the problems raised by Kripke against Frege. I also 

argue that while the terms ‘the number of F’s’, ‘natural number’ and ‘0’, ‘1’, ‘2’ etc. are partially 

understood by the folk, they can only be fully understood by reflection and analysis, including 

reflection on how to reason correctly. In this last respect my thesis is a retreat position from 

logicism. I also show how it dovetails with an account of how numbers are actually grasped in 

practice, via numerical systems, and in virtue of a certain structural affinity between a geometric 

pattern that we grasp intuitively, and our fully analyzed concepts of numbers. I argue that none 

of this involves acquaintance with numbers.  
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Introduction 

 Saul Kripke once remarked to me that natural numbers cannot be posits inferred from 

their indispensability to science, since we’ve always had them. This left me wondering whether 

numbers are objects of Russellian acquaintance, or grasped by conceptual analysis (being 

implied by known general principles such as those of logic or set theory), or both, or indeed 

neither, perhaps being grasped by an understanding of numerical concepts that is not achieved by 

analysis. The question is pressing, since a full account of human knowledge must include an 

account of mathematical knowledge, and here we should begin with numbers, since these are a 

prerequisite of other mathematics. Happily, my interest in this topic has coincided with a 

resurgence of work in the area, with leading psychologists and philosophers, including Kripke 

himself, staking out positions corresponding to the aforementioned options. Given this 

resurgence, a dissertation on the topic seems overdue.  

 I begin, in chapter 1, by discussing recent attempts to explain how we actually grasp 

numbers, using the resources of cognitive science. First I consider the influential view that we 

are acquainted with numbers via the innate sense of quantity known in the psychological 

literature as our “number sense.” Having rejected this proposal, I turn to attempts by Tyler Burge 

and others to use it —as well as other proposals from cognitive science— as part of an account 

that purports to explain our grasp of numbers in terms of our acquisition of numerical concepts. 

In essence, my criticism is that such accounts of acquisition are either insufficient to explain our 

grasp of numbers, or presuppose too much about what they purport to explain, with the result 

that they are uninformative. I’ll now say a little more about this, so that the reader can appreciate 

the dialectic that unfolds in the following chapters. 
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 According to Burge, numbers are not implied by our knowledge of known general 

principles, since propositions about numbers are “underived from general principles” (2000: 40). 

Further, while Burge claims that such propositions are “irreducibly singular” (ibid), he also 

claims that this is not because numbers are grasped by acquaintance, but because they are 

grasped by an immediate, non-discursive and elementary kind of understanding that he calls 

“comprehension.” I’ll now say a bit about comprehension of propositions about the smallest 

natural numbers.  

 According to Burge, learning to count with numerals gives us the ability to deploy the 

corresponding numerical concepts, in the context of applied arithmetical propositions like there 

are 2 houses of Congress. Further, we can immediately perceptually apply these concepts to 

small concrete pluralities without counting (perhaps using our number sense). Furthermore, once 

we can do all this, it helps us to immediately assign these numerical concepts to numerals in the 

context of other applied statements of number, of the form ‘there are m F’s.’ This is 

comprehension. Moreover, given this comprehension and the ability to calculate, we can then 

assign the correct content to unapplied arithmetical statements like ‘2 + 2 = 4’ immediately 

without calculation. 

 Crucial to all this is that we understand a numerical system, which according to Burge 

requires the ability to count, which he glosses as putting the objects counted in one-to-one 

correspondence with numbers. But it is also his view that that we cannot represent numbers prior 

to acquiring concepts of them. So if this account is to avoid circularity, it must assume that we 

can already represent numbers via propositions containing non-numeral-like concepts, and can 

use the latter in our counting experience, through which we come to understand propositions 
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containing numeral-like concepts. But in the present context this is a significant assumption 

about what is to be explained, one that needs spelling out.  

 One way to break this circularity would be to remove reference to numbers from the 

requirements for counting, by stating them as follows. Firstly, the words in the count list must be 

recited in a stable-order. Secondly, a one-to-one correspondence must be established between the 

words in the count list and the objects counted. Thirdly, one must be able to give the final word 

of the count in answer to the question ‘how many F’s?’ Then the problem is that it is possible to 

meet all of these requirements without grasping the cardinal significance of counting or grasping 

which cardinals are denoted by the members of the count list. To show this, I describe a stage 

during development when children can recite a short list of numerals in a stable order, put them 

in one-to-one correspondence with the F’s, and recite the last numeral in the count when asked 

‘how many F’s?’ And yet, when instructed to give the experimenter m F’s —where m is the last 

numeral recited— they give the experimenter a random number of F’s. 

 This problem about concept acquisition does not arise for logicism, since according to it 

numbers are already available to us prior to counting, being deducible from general principles 

and concepts that are already understood. In a little more detail, the idea is that because we can 

understand count nouns, and can understand “one-to-one correspondence,” and can reason with 

higher-order logic, we understand of sentences of the form “the F’s are in one-to-one 

correspondence with the G’s.” From this, using the resources of higher-order logic, we can, in 

principle, deduce a version of the so-called “Frege-Russell numbers.” In my view, while it is 

through counting that we are first taught about finite cardinal numbers, an initial segment is 

already in principle accessible to us, by the deductive route just described. 
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 Now we can say that while the infants can establish a one-to-one correspondence 

between numerals and objects, they do not understand the conceptual connection between 

counting, equinumerosity and cardinal numbers, and in particular do not understand that the last 

numeral of the transitive count —with which they answer “how many”— expresses a Frege-

Russell number. This is why, when instructed, after counting, to ‘Give me m F’s’ —where m is 

the last numeral used in the transitive count— they give the experimenter a random number of 

F’s. Were they to understand that ‘m’ expresses the relevant Frege-Russell number, and that the 

set they have counted thereby has that number, then they would be able to give the experimenter 

the requisite number of F’s. 

 Since I find the aforementioned feature of logicism very attractive, in chapter 2 I begin 

my survey of its various incarnations, with the aim of finding a relatively plausible retreat 

position from this discredited doctrine. However, since logicism is not traditionally concerned 

with how we actually grasp numbers, one of the main challenges faced by one advocating any of 

its incarnations, is to establish its relevance to arithmetic as this is actually practiced. To this end, 

I begin with Frege’s project of deriving the correspondents of the axioms of arithmetic from 

(allegedly) logical general principles, using logical definitions of the arithmetical primitives. I 

argue —against Patricia Blanchette— that the relevance of Frege’s project to actual arithmetic is 

supposed to be established by the synonymy of the axioms of arithmetic with Frege’s derived 

correspondents. Further, I show that synonymy is supposed to be achieved because Frege’s 

definitions of the arithmetical primitives are intended to express our actual arithmetical concepts; 

for example, his definition of “the number belonging to the concept F” is intended to express the 

way that numbers are used in practice, by competent arithmeticians, who, despite their 

competence, may not have engaged in sufficient reflection to realize what exactly numbers are. 
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Although I find a lot to agree with in Frege’s work, I conclude that his analysis of the 

arithmetical primitives cannot be correct. The most interesting reason is that the aforementioned 

definition of number is subject to a modal objection, which reflects Kripkean developments in 

semantics that are, to my knowledge, usually ignored in the philosophy of mathematics.  

 The dialectic of chapter 3 is too complex to admit of an informative summary. Suffice to 

say that Richard Heck has recently attempted to establish the relevance of the neo-logicist project 

—of deriving correspondents of the axioms of arithmetic from the Hume-Cantor Principle— to 

actual arithmetic, by attempting to show the relevance of this project to our actual concept of 

number. I argue that Heck’s attempt fails, in part via an argument that leads me to the topic of set 

theory. 

 Chapter 4 is concerned with Kripke’s proposal to establish the relevance of set-theoretic 

logicism to actual arithmetic, by representing our actual concept of number in set theory. A key 

ingredient of this proposal is Kripke’s claim that one should in mathematics, whenever possible, 

use a notation that is “structurally revelatory” – one that has a structural affinity with the subject 

matter it represents. Partly under Kripke’s influence, I conjecture that numbers are first grasped 

intuitively, by visualizing something like what psychologists call “the number line.” In my view 

this is the accumulation of discrete units in a direction, and is a structurally revelatory 

representation of a progression of Frege-Russell numbers. 

 Kripke points out that any such Frege-Russell analysis of number will make our familiar 

decimal notation highly structurally unrevelatory, because decimal notation is not cumulative. 

Rather, decimal multi-digit numerals are finite sequences of one or more of the digits ‘0’ – ‘9’, 

ordered by length and then lexicographically. To ensure that decimal notation is structurally 

revelatory, Kripke amends Benacerraf’s famous proposal, so that the numbers are any 
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progression of finite sequences consisting of one or more of the ten objects referred to by ‘0’ – 

‘9’, where these sequences are ordered by length and then lexicographically, and where 

sequences of two or more starting with 0 are excluded. 

 Kripke argues that this proposal is a plausible analysis of our concept of number. This is 

because those of us who are trained in the decimal system learn to impose the aforementioned 

structure on the numbers. That is, we learn to parse, or identify and individuate numbers as finite 

sequences that make decimal notation structurally revelatory. Kripke then uses this claim to 

explain why decimal numerals acquaint us with numbers – in his parlance, why it is 

“immediately revelatory.” The explanation is that our identification of numbers as finite 

sequences provides a standard for knowing which number we are confronted with, while decimal 

numerals present numbers as such sequences. 

 Although I accept neither the above explanandum —that decimal numerals acquaint us 

with numbers— nor Kripke’s proposed explanation of it, my own proposal to explain our special 

facility with our preferred decimal notation is indebted to Kripke’s. This is one reason why I call 

my counter-proposal “Kripkean.” I start with the fact that decimal notation is structured to be 

read and visualized, which I claim helps us to overcome the limitations of our parsing ability. My 

proposal is then that a notation should be visually revelatory: it should reveal structural features 

of its subject matter visually, by helping one to see or visualize them. There may be some tension 

between the demands of having a visually revelatory notation and the demands of having a 

structurally revelatory one, with the result that a trade-off between the two is required. For 

example, decimal notation is visually revelatory, because we can visualize the decimal numerals 

in order, and this reveals, visually, the ordering of a progression of numbers. Thus decimal 

notation is somewhat structurally revelatory. But as a result of also being visually revelatory, and 
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so structured to be read and visualized, it is not as structurally revelatory as it might otherwise 

be. For example, it is not as structurally revelatory as stroke notation, which is not structured to 

be read and visualized. Thus there are grounds for insisting that decimal notation has structure 

that is not shared by the Frege-Russell numbers, despite Kripke’s reason for saying otherwise. 

Finally, my proposal can also explain why decimal notation seems immediately revelatory. This 

is because in addition to understanding numerals, we can also parse them with little conscious 

effort. 

 Chapter 5 concerns the relation between Kripke’s proposal about numbers and his 

controversial doctrine that there are contingent truths known a priori. This discussion contains a 

lengthy digression on the topic of context-sensitive semantics, the morals of which are applied 

again in the following chapter, to the topic of count nouns. This discussion is inspired by 

Kripke’s criticisms of certain applications of contextualism. I also propose to explain our special 

facility with our preferred measurement system in a way analogous to the above proposal about 

decimal numerals. 

 In chapter 6 I offer a proposal about what the Frege-Russell numbers are, to which 

Kripke is sympathetic: that numbers are properties of sets. I show how this proposal can be 

developed into a system of definitions of the arithmetical primitives, against the logical 

background of the simple theory of types. I also argue for the proposal by showing the extent to 

which it can avoid the problems that plague the various other views under discussion, including 

the problems raised by Kripke against Frege. Finally, I argue that the general principles of the 

theory of types, from which the axioms of arithmetic are derived, should be accepted as the cost 

of deriving what are arguably synonyms of the axioms of arithmetic, because the definitions of 

the arithmetical primitives express our actual arithmetical concepts. The result is that the axioms 
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are justified not only by the theorems that follow from them, but also by how these theorems are 

derived.  

 In the course of all this, I also show how the above retreat position from logicism 

dovetails nicely with an account of how numbers are actually grasped in practice: that is, via 

numerical systems, geometric intuition, and a partial understanding of what numbers are 

according to my analysis. To summarize the answer to my original question, numbers are not 

objects of Russellian acquaintance. Rather, numbers are in principle accessible by analysis, and 

in practice grasped by a visually revelatory notation, as well as by visual intuition of a number 

line that is structurally revelatory of the Frege-Russell numbers. 
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Chapter 1: Our intuitive grasp of number 

1. Introduction 

Some branches of mathematics concern a given subject matter: a subject matter of which 

most of us have an intuitive grasp, prior to receiving mathematical training. For example the 

axioms of geometry in Euclid’s Elements concern space, or at least how space appears to us. This 

is a subject matter about which we have a stock of intuitions. The axioms of a ring, by contrast, 

do not concern a given subject matter, but instead concern the algebraic structures that they 

define. Unlike geometry, arithmetic was not originally developed from axioms. However, it too 

concerns a given subject matter, namely the natural numbers, so there is a question regarding 

how we are able to grasp these intuitively.  

The topic of this chapter is the view that I call “cognitive scientism.” This is the view that 

cognitive science can explain our intuitive grasp of numbers and capacity for arithmetical 

thought more generally. This view comes in various forms. In its more radical form, cognitive-

scientism purports to tell the whole story about how we come to know arithmetical truths, and so 

supplant the work on these issues that is done in the philosophy of mathematics. In its less 

radical form, cognitive-scientism purports to be distinct from but related to the philosophy of 

mathematics in ways that will become clear, and in particular to be necessary for answering the 

question of how we actually acquire mathematical beliefs.1  

I begin with radical cognitive-scientism. In sections (2) – (6) I consider, as a stand-alone 

proposal, the theory that we grasp numbers using the innate perceptual faculty known as our 

“number sense” (Dehaene, 1997). Then, in subsequent sections, I turn to various attempts to use 

this proposal, as well as others from cognitive science, as ingredients in more philosophical 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Burge (2007, 2009, 2010), Giaquinto (2001a, b, 2007).!
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accounts of our grasp of numbers. Here I begin by discussing Russell’s doctrine of acquaintance, 

before criticizing Marcus Giaquinto’s attempt to use the number sense hypothesis to explain how 

we are acquainted with small numbers. Next I turn to Tyler Burge’s criticisms of the doctrine of 

acquaintance, and his attempt to explain our intuitive grasp of numbers in terms of an 

epistemically immediate kind of understanding he calls “comprehension.” Then I return to 

Giaquinto and his theory of our intuitive grasp of the number structure. Finally, I conclude by 

drawing a methodological moral about how to proceed in the coming chapters. A recurring 

theme is that the authors under discussion are vulnerable to objections rather like Frege’s 

objections to psychologism, because they focus on the theory of mental representations rather 

than on the representational properties of language.  

 
2. The number sense hypothesis  

Most of us experience the phenomena of being able to estimate, visually, that there are 

between twenty and forty people in the room, and of being able to look at much smaller 

pluralities, such as three cows in a field, and see how many there are, apparently without 

counting. Further to these reflections, there are many disparate empirical studies in support of the 

hypothesis that humans, including pre-linguistic infants and people with a reduced numerical 

lexicon, have the ability to sense the cardinal size of pluralities. More specifically, it is 

hypothesized that even prior to learning numerical concepts we are able to:  

(a) Perceptually estimate the cardinal size of a given plurality, and perceptually 

discriminate different pluralities in terms of approximations of their cardinal 

size. 
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(b) Perceive the exact cardinal size of pluralities of up to three or four members at 

a much faster rate than that required by discursive counting, an ability known 

as “subitizing.”  

These abilities are claimed to be innate, since, as I will explain, they are also found in animals. 

That we possess these abilities has come to be widely accepted in the psychological literature, in 

no small part due to the work of Dehaene, who refers to them jointly as our “number sense” 

(ibid). According to Dehaene, this innate sense is what constitutes our ability to think about 

numbers intuitively. It is this rather than our ability to count that is supposed to explain how 

numbers first entered human culture.2  

Before this claim can be assessed, it is necessary to distinguish between counting —

which requires putting objects in one-to-one correspondence with discrete symbols or numbers— 

and summation, which requires only the accumulation of a continuous variable such as a physical 

magnitude.3 For example, an egg timer does not count minutes discretely, but simply 

accumulates a quantity of sand. Likewise, the pedometer in an iPod does not literally count your 

steps, but accumulates a physical magnitude in response to hip movement. The reason that this 

distinction is important is that Dehaene hypothesizes that the number sense is an analog system 

that represents numbers —despite the fact that numbers are discrete— by summation, using what 

he calls “a continuous quantitative internal representation” (1997: 220). I will now describe some 

of the evidence for the claim that the number sense is analog. First I will describe some evidence 

that exists for the hypothesis that the estimative abilities of animals are analog. Then I will 

describe some evidence that our corresponding abilities are analog too. Doing this will require 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Dehaene (1997: 102). 
3 Franks et al. (2006).!
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describing some experiments and experimental paradigms, so I ask for the reader’s patience in 

this regard. 

Desert ants are hypothesized to navigate their environment using path integration, 

keeping track of their changing position in space. Doing so requires them to reliably correlate 

information they possess with direction, and, more importantly for our purposes, with distance. It 

is hypothesized that the information they correlate with distance is accumulated using a 

pedometer. This is suggested by an experiment in which the stride length of ants is manipulated 

between their journeys from and to their nest. Ants that take longer strides, because their legs are 

lengthened with stilts before their return journey, overestimate the distance of their return 

journey in proportion to the change in their stride length. Further, ants that take shorter strides, 

because their legs are shortened before their return journey, underestimate the distance of their 

return journey in proportion to the change in their stride length. This can be explained by the fact 

that the ants accumulate and navigate with information that correlates with the number of steps 

taken on their outward journey, explaining why they take the same number of steps on their 

return journey, thus the pedometer hypothesis.4 Unsurprisingly, the ants appear to do this by 

analog summation rather than counting,5 most likely by using stress receptors in their joints to 

accumulate a continuous physical magnitude that varies in proportion to the number of steps they 

take.6! 

To give another example, rats can learn to press a leaver repeatedly before pressing a 

second lever to get a reward. Having learned to do this, they soon learn to respond with roughly 

the required number of presses on the first lever, before pressing the second and searching for the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 Wittlinger, Wehner and Wolf (2006). 
5 Franks et al. (ibid), Wittlinger, Wehner and Wolf (ibid).!
6 Thanks to Haim Gaifman for introducing me to this experiment. 
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reward. The accuracy of their estimative capacities can then be measured by the probability of 

search after the wrong number of presses (the confounding quantity of duration having been 

controlled for). For each number of presses required by the experimenter, the mean of the 

distribution of the rat’s responses is slightly higher than is required. Further, the standard 

deviation around the mean increases as a constant ratio of the mean, from which it follows that 

greater magnitudes must differ more than smaller ones in order for the rat to discriminate them. 

This accords with Weber’s law,7 which is that the discriminability of any two magnitudes is a 

function of their ratio, i.e. that the ratio of the minimum change (required to discriminate two 

magnitudes) to the initial magnitude is constant. Weber’s law applies to representations of 

continuous variables such as length, area, loudness, and so conformity to it is evidence of analog 

summation rather than discrete counting. 

Further experiments show that rats can also accumulate information concerning 

magnitude while ignoring other confounding properties of the stimuli in question. For example, 

they learn to press one lever in response to two flashes and another lever in response to four, 

before learning to press the first lever in response to two sounds and the second in response to 

four. Surprisingly, when presented with a flash synchronized with a sound, they press the lever 

corresponding to 2, and when presented with two flashes synchronized with two sounds they 

press the lever corresponding to 4. This suggests that they learn to associate different levers with 

different magnitudes, rather than with different perceptual modalities. There is also evidence that 

in addition to ants and rats, birds, honeybees and cicadas can accumulate a variable that reliably 

correlates with the cardinal size of a given plurality rather than with its other properties.8  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 Platt & Johnson (1971). 
8 Butterworth (1999), Burge (2010), Carey (2009), Dehaene (ibid), Giaquinto (2001a, b, 2007). 
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 Both of the aforementioned experiments on rats have been replicated on humans. For 

example, in order to replicate the lever experiment, subjects are told to press a computer key 

until a required number is reached, at a rate too fast for the presses to be counted verbally. The 

accuracy of the subject’s estimative capacities is measured by the probability of her stopping 

after the wrong number of presses. Results have been obtained that conform to Weber’s law in a 

way that is strikingly similar to those obtained in the lever experiment on rats.9 According to 

Dehaene, what the similarity between the data gathered from human and animal behavior 

suggests is that “inasmuch as the approximate perception of numerosity is concerned, humans 

are no different from rats or pigeons” (1997: 61).10 

 But why should we think that our analog number sense is still of use to numerate human 

adults? Because there is evidence that various other abilities depend on it. It is to this evidence 

that I now turn. 

 
3. The use of number sense by numerate human adults  

 I begin with our ability to distinguish numbers during comparison tasks, an ability that is 

subject to two consequences of Weber’s law: the distance and magnitude effects. The distance 

effect is that the smaller the difference between two inputs the longer it takes to distinguish them. 

For example, it takes longer to distinguish the first pair of magnitudes than it does the second: 

__   ___  __  ______ 

The magnitude effect is that the greater the magnitude of two inputs the longer it takes to 

distinguish them, given a fixed difference in magnitude. Again, it takes longer to distinguish the 

  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9 Whalen et. al (1999). 
10 Further evidence of this sort is described in Butterworth (1999), Dehaene (ibid), Gallistel 
(1996), Gallistel et al. (2005), and Carey (ibid).!
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 first pair of magnitudes than it does the second: 

 _____  ______   __   ___ 

Dehaene reports that human performance on number comparison tasks is subject to the distance 

and magnitude effects. As regards the former, it takes longer for adult humans to distinguish 

pluralities of 15 from pluralities of 10 than it does for them to distinguish pluralities of 15 from 

pluralities of 3. As regards the magnitude effect, it takes longer to distinguish pluralities of 15 

from pluralities of 10 than it does to distinguish pluralities of 10 from pluralities of 5.  

 Both of these effects are also manifest by adult humans when they are asked to compare 

pairs of digits rather than pluralities. Furthermore, the distance effect is manifest when subjects 

are asked to compare pairs of two-digit numerals. For example, it takes longer for adult humans 

to decide whether 71 is greater than 65 that it does for them to decide whether 79 is greater than 

65.11  

Dehaene also reports that digital mechanisms are not ordinarily subject to these effects. 

For example, modern computers that represent numbers in binary code are not subject to the 

distance effect, since it actually takes longer for them to distinguish the pair {82, 102} than it 

does for them to distinguish the closer pair {72, 82}. This is because distinguishing the former 

pair requires comparing the second to last digit of binary ‘1000’ with that of ‘1010’, while 

distinguishing the latter pair only requires comparing the first digit of ‘111’ with that of ‘1000’. 

Neither are modern computers subject to the magnitude effect, since it takes longer for them to 

distinguish the pair {62, 72} than it does for them to distinguish the pair {72, 82}. This is because 

distinguishing the former pair requires comparing the last digit of ‘110’ with that of ‘111’, while, 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11 Dehaene (ibid), Giaquinto (2007).  
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as we have seen, distinguishing the latter pair only requires comparing the first digit of ‘111’ 

with that of ‘1000’.  

Dehaene argues from this that the brain does not perform these tasks like an ordinary 

digital computer. Rather, he claims, it should be modeled using some sort of analog accumulator, 

since such machines are themselves subject to these effects:  

The peculiar way in which we compare numbers thus reveals the original principles 

used by the brain to represent parameters in the environment, such as number. Unlike 

the computer, it does not rely on digital code, but on a continuous quantitative 

internal representation. The brain is not a logical machine, but an analog device 

(1997: 220). 

Paraphrasing Gallistel (1991) approvingly, Dehaene continues:  

Instead of using number to represent magnitude, the rat [like the Homo Sapiens!] uses 

magnitude to represent number (ibid). 

I will return to this claim in due course.  

 Further evidence that our number sense is still of use is found in studies of clinical 

patients who lack number sense, as shown by the fact that they can’t look at a plurality of e.g. 

nine things and say that there are nine of them, without counting. For example, one patient with a 

good education, and a high IQ but no number sense is unable to acquire normal arithmetical 

abilities.12 Furthermore, patients with far more severe brain damage (“CBS” and “PCA”) who 

also lack number sense but are largely linguistically unimpaired, have great difficulty 

understanding count nouns and cardinal quantifiers (such as ‘at least 3 cows’) although they 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
12 Butterworth (ibid), Giaquinto (2007). 
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seem to understand logical quantifiers (such as ‘all’ and ‘some’).13 Still other patients with very 

severe brain damage (“CBD”) who lack number sense have difficulty understanding logical 

quantifiers in addition to cardinal quantifiers.14 This is consistent with the claim that 

understanding count nouns and quantifiers requires number sense. 

Here I will register the first of many complaints. While these clinical studies are 

ingenious and suggestive, suitable patients are few and far between, and so the clinical evidence 

that the aforementioned abilities depend on our number sense is limited. Further, the evidence 

that can be gleaned from these studies is difficult to interpret, since, despite the best efforts of the 

authors of this work, some other confounding impairment cannot be ruled out as the explanation 

for the difficulties faced by these patients. The problem is that while the CBS and PCA sufferers 

can recite the numerals up to 20 in order and answer questions like ‘are there 3 dots?’ by reciting 

a numeral for each dot, this can be overlearned and is consistent with a failure to fully understand 

counting and its cardinal significance.15 Therefore, the difficulties faced by CBS and PCA 

sufferers can instead be explained as follows. Understanding count nouns and quantifiers 

requires understanding one or more of the conditions for counting that these patients fail to 

understand.  

Another proposed reason to think that an innate number sense is still of use to numerate 

human adults, is that its integration with our culturally acquired abilities to represent numbers 

precisely can explain why decimal users have a good idea of how many members a given 

plurality has on being given a decimal numeral, even though they have little or no idea of this on 

being given a binary numeral. To explain this phenomenon, Giaquinto suggests that there is “a 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13 Morgan et al. (2011).  
14 McMillan et al. (2006). 
15 See section 13 of this chapter.!
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strong association of number size representation and decimal numerals” (2007: 92).16 For 

example, if a decimal user counts that there are 327 students in the room, he thereby has a good 

idea of how many students there are because his approximate sense of 327 is associated with the 

corresponding decimal numeral.  

Here I will register another complaint. While the above may be true, it cannot be the 

whole story, for the following reason. By hypothesis, we are only able to subitize (in the sense of 

p. 3 (b)) the exact size of pluralities of up to three or four members, and have to figure out the 

exact number of even slightly larger pluralities by more discursive means. So our approximate 

sense of 327 could only help facilitate knowledge of approximately how many students there are. 

It could not explain why, when we count that there are three hundred and twenty-seven guests, 

we thereby know exactly how many guests there are. 

 
4. The triple code model 

Of course there is no need to claim that all arithmetical tasks are performed by the 

accumulation and mental manipulation of quantities. For example, according to Dehaene’s 

“triple code model,” numerate adults have two other kinds of mental representations at their 

disposal. Firstly, they have the mental correspondents of number words stored in a “verbal word 

frame.” Secondly they have the correspondents of positional numerals stored in “a visual arabic 

number form, in which numbers are represented as strings of digits on an internal visuo-spatial 

scratchpad” (Dehaene & Cohen, 1995: 85). According to the triple code model, while number 

comparison and subtraction are performed by manipulating quantities, some arithmetical facts 

such as multiplications are simply learned by rote and stored in the verbal word frame, and still 

others are computed using a mixture of such learned facts and the manipulation of quantities. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
16 This claim is also endorsed by Carey (ibid: 337-338). 
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Finally, calculations with larger numbers are performed mentally using positional numerals. 

Nevertheless, according to Dehaene, it is our number sense —with its accumulated analog 

representation of number— that gives content to these other kinds of representation: 

Under the assumptions of the triple-code model, neither the arabic number form not 

the verbal word frame contain any semantic information. The meaning of numbers is 

represented only in the third pole of the model, the analogical magnitude 

representation” (ibid). 

I will now say some more about how the analog representation of number is supposed to be 

embodied, and how it is supposed to sharpened by these other kinds of representation.  

The accumulator is a metaphor for a neural network, in which each object in a perceived 

plurality is allocated a quantity of neural activity, which is then normalized to an approximately 

constant quantity in case more activity is initially assigned to larger objects. The normalizations 

allocated to each object are then summed by what Dehaene calls “accumulation neurons,” and 

the resulting total is divided by the constant quantity, to yield an estimate of the size of the 

plurality as output, analogous to the final quantity accumulated. “Detector neurons” are disposed 

to fire when the estimates they receive are within fixed intervals. They reach a firing peak for the 

estimates they are “tuned” to, and show decreased firing activity on receipt of estimates that are 

larger or smaller than the ones they are tuned to, in a way that is normally distributed around the 

peak.17  

According to Dehaene, the interval around the peak is the same for almost every detector 

neuron. The only exceptions are the neurons tuned to one, two and three, which show much 

smaller intervals, modeling the fact that we can perceive the cardinal size of very small 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
17 Dehaene (ibid: 20-23, 250-251; 1993: 394-395), Dehaene and Changeux (1993). Dehaene 
reports that there is evidence for the existence of detector neurons in the primate brain. 
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pluralities with great accuracy. For estimates of above three, the interval around the peak is fixed 

at about plus or minus 30%, so the range of estimates for which the various detector neurons fire 

increases with the estimate they are tuned to. For example, a detector neuron tuned to five will 

fire less frequently on receipt of an estimate of approximately four but not at all for an estimate 

of approximately one; on the other hand a detector neuron tuned to an estimate of fifty will still 

fire on receipt of an estimate of approximately forty. So, as the mean of the numbers presented in 

the comparison task increases, so does the inaccuracy of the corresponding detector neurons as 

they begin to fire more frequently for estimates they are not tuned to. Thus the inaccuracy of the 

model in performing comparison tasks conforms to the magnitude effect, as a result of the 

distribution around the mean increasing as a constant ratio of a growing mean.18 As for the 

model’s being subject to the distance effect, according to Dehaene this is also a result of the 

distribution of neuronal activity.19 

Finally, to account for the fact that we can represent numbers precisely with numerals 

and number words, Dehaene proposes that our analog representation of number is integrated with 

language in a way that gives content to the latter while making the former more precise: 

“Symbols tune neurons much more sharply, thus allowing them to encode a precise quantity” 

(1997: 271). Thus a perceived plurality “evokes broad and fuzzy activation in the parietal 

neurons, while symbols induce firing in a smaller but highly selective subgroup” (ibid).20  

 
  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
18 Dehaene (ibid), Dehaene and Changeux (ibid). 
19 Dehaene (ibid: 251). 
20 The relation between our analog representation and language remains unclear to this day. See 
Dehaene and Brannon (eds.) (2011).!
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5. Why the triple code model cannot explain our intuitive grasp of numbers  

Frege warned us to be careful “always to separate sharply the psychological from the 

logical, the subjective from the objective” (1884: x). In the light of this, we need to separate two 

questions. Firstly, there is the question of what sorts of mental representations must be posited by 

cognitive scientists in order to explain the relevant data. Secondly, there is the question of 

whether these representations represent numbers, or some other kind of quantity. This brings me 

to the first problem for the triple code model, which is that the accumulator does not represent 

the following constitutive properties of numbers: (I) discreteness, (II) potential infinity and (III) 

general applicability.21 I will now discuss each of (I) – (III) in turn. 

(I) The natural numbers are as a constitutive matter discrete. In contrast, the variable 

accumulated by an analog accumulator is continuous. For this reason, as Burge points out, while 

an analog “representation” can be correlated approximately with number, it cannot be accurate 

or inaccurate based upon whether or not it reflects the right discrete properties. For example, it 

cannot accurately represent 327 as opposed to 328. But if it does not have accuracy conditions 

concerning discrete properties, then it cannot represent these properties at all. But then it cannot 

represent natural numbers, since these are as a constitutive matter discrete.  

One might try and meet this objection by appeal to the hypothesis that the accumulator 

accumulates a fixed unit of quantity, rather like an egg timer that is filled by pouring in cups of 

sand.22 But this hypothesis is also subject to the previous objection, since the neural analogue of 

one cup of sand will still be approximately one cup, and so for example will not be able to 

represent 1 as distinct from 1.00001. Further, the claim that the accumulator is integrated with 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
21 Burge and Carey both discuss (I) and (II). See Burge (2010: ch. 10) and Carey (2001, 2008, 
2009). 
22 See Dehaene (ibid) and Galistel and Gellman (ibid).!
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numerals and number words is of no help either, since the resulting smaller intervals around the 

“firing peak” are still fuzzy rather than discrete.  

 (II) The assumption that there are potentially infinitely many sentences of English is a 

constraint on linguistic theorizing among cognitive scientists; further, the corresponding 

assumption about numbers is an equally reasonable constraint on cognitive accounts of our 

arithmetical capacities. But the accumulator embodies a perceptual, pre-linguistic capacity, and 

as such lacks the recursive or iterative capacity for potential infinity. For example, it does not 

have the potential to repeat the step of accumulating a fixed unit of quantity indefinitely.  

 (III) Because the accumulator embodies a perceptual, pre-linguistic capacity, it can only 

detect the sizes of concrete pluralities. But as Frege pointed out, number is not simply a property 

of concrete pluralities, since almost anything that can be conceptualized in terms of a suitable 

kind-concept can also be numbered.23  

To be clear, I do not deny that the variable accumulated by our accumulator represents 

something than can be correlated approximately with number. But I do take these three 

objections to show, conclusively, that the accumulator does not represent natural numbers. 

Furthermore, it does not represent rational numbers either. This is because while it is constitutive 

of the rational numbers that between any two of them there is another, the states of the 

accumulator do not possess this structural feature.  

My next objection to the triple code model follows from the forgoing, together with the 

fact that Dehaene appears to identify numbers with neural outputs of his model (call this 

“reductionism”). For example, we are told: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
23 Frege (ibid: §14). 



! 23!

Numbers, like other mathematical objects, are mental constructions whose roots are 

to be found in the adaption of the human brain to the regularities of the universe (ibid: 

233). 

My proposal is that the brain evolved a number system to capture a significant 

regularity of the outside world, the fact that at our scale, the world is largely 

composed of solid physical objects that move and can be grouped according to the 

laws of arithmetic (2001: 12). 

Reductionism, taken together with the fact that the posited reducing mental constructions fail to 

reflect the properties described in (I) – (III), commits Dehaene to what I will call “Revisionism,” 

the view that numbers themselves do not have these properties. In which case he is guilty of just 

the sort of absurd revisionist psychologism that Frege ridiculed.  

 My final objection is that Revisionism in turn commits Dehaene to a fallacy. The 

problem is that if the mechanisms in Dehaene’s brain were as he describes them, then he would 

not be able to argue for the conclusions he does, since doing so requires reasoning with numbers 

that are discrete, while the mechanisms that Dehaene describes are not discrete. In particular, 

Dehaene argues for the existence of detector neurons by using psychophysical bridging laws to 

derive the magnitude and distance effects from distributions of simulated neuronal activity, 

distributions that are then hypothesized to model the neurons in question.24 Clearly this relies on 

statistical argumentation, and in particular presupposes a distribution function, which assigns 

rational numbers to events. 

 I think that these objections show, conclusively, that Dehaene’s triple code model does 

not explain how we represent numbers. But perhaps one can still salvage something from it, by 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
24 Dehaene (ibid: 250; 2007). 
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abandoning the claim that our analog accumulator provides the numerical content of arabic 

numerals and number words. It is to this that I now turn. 

 
6. Digital models 

An analogue accumulator model is not the only way of explaining why our estimative 

abilities are subject to the distance and magnitude effects, since these effects have also been 

simulated in a digital “thermometer” model due to Zorzi and Butterworth, which is claimed to 

represent the number of a given plurality discretely.25 In this model too, neural input is first 

normalized. Then a detector neuron is activated once this normalized neural input breaches a 

precise threshold. The detector neurons are activated incrementally and ordered by magnitude, so 

if the threshold of a given neuron is breached, it will activate along with all other neurons with 

smaller thresholds. For example, the neural representations of 4 and 6 can be pictured as follows: 

4:  !!!!������ 

6:  !!!!!!�����

Thus according to this model cardinal numbers are represented by the number of detector 

neurons or neural units activated (Zorzi et al. 2005: 74). As a result, the model can easily 

represent discreteness, while explaining the distance and magnitude effects during comparison 

tasks. For example, here is Giaquinto’s description of how to explain the distance effect:  

[C]onsider for example the pairs {6, 8} and {2, 8}. There is a difference of two nodes 

in the representations of 6 and 8 and a difference of six nodes in the representations of 

2 and 8. This means that there is a greater difference of input activity to the response 

nodes for the pair {2, 8} than to the response nodes for {6, 8}, and so the competition 

between the response nodes for {2, 8} is resolved more quickly. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
25 Zorzi and Butterworth (1999). Zorzi et al. (2005). 
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Unfortunately, this model is still vulnerable to two of the objections leveled against the 

accumulator model, since it fails to reflect the properties described in (II) and (III): it lacks the 

recursive capacity to reflect potential infinity and can only detect the sizes of concrete pluralities.  

 Furthermore, when taken together with Dehaene’s doctrine of Reductionism, the model 

contains an obvious circularity, since according to it numbers are represented by numbers of 

neural units. This is because the neural units activated by a plurality will represent the number of 

that plurality only if the units have the property of being equinumerous with the plurality, which 

is to say the right number. Further, the fact that the right number of units is activated also 

presupposes that the units are ordered by magnitude. So both ordering and cardinality are 

presupposed. This objection is reminiscent of another of Frege’s arguments: that on pain of 

circularity numbers cannot be defined as numbers of units.26 In the present context, the point is 

that on pain of circularity numbers cannot be reduced to numbers of neural units, since it is 

illegitimate for a proposed reduction to assume what is to be reduced in the reducing discourse. 

So whatever the other merits and demerits of the thermometer model, it cannot provide the basis 

for Dehaene’s doctrine of Reductionism. 

 Another approach would be to attempt to explain how we represent number by claiming 

that the brain behaves like a digital information processor such as a Turing machine. This, it will 

be recalled, is a mathematical model of computation visualized as a machine, consisting of 

inputs, outputs, and instructions for deriving the latter from the former, which together make up 

its program. The machine is fed a potentially infinite tape that is divided into discrete cells, one 

of which is being scanned at any moment. Its inputs are ordered sequences constituting the 

present configuration of the machine. Its outputs consist of the configuration that is derived from 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
26 Frege (ibid: §38). 
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the inputs according to the instructions. Of course our brains do not contain infinite tapes. 

Nevertheless, one might claim, something similar simulated in the brain would still be able to 

count up to large numbers. This, it would seem, is the closest that a model of the brain can come 

to representing the properties described in (I) and (II).  

 It is instructive to compare this model with a blatantly unsatisfactory explanation of our 

ability to count, that the brain contains a homunculus who is able to count. Obviously the latter 

explanation is circular, unless one can discharge the assumption about the abilities of the 

homunculus. Similarly, the claim that the brain is an implementation of a Turing machine 

contains mathematical assumptions that need to be discharged, since a Turing machine is based 

on the assumptions of discrete infinity, an ordered sequence (the generalization of an ordered 

pair) and the derivation of one configuration from another. It is because of these assumptions that 

something similar simulated in the brain would appear to be able to count up to large numbers. 

For these assumptions to be discharged, one must actually build such a machine, say by 

implementing it in a neural network. But this requires programming the machine to follow the 

instructions for counting, which it can only do if it already has the native mathematical resources 

to scan a digit, write a digit, and move, which are arguably essential to intransitive counting.  

In any case, the Turing machine model is at odds with the aforementioned evidence that 

the brain does not perform number comparison tasks like an ordinary digital computer. For these 

reasons alone, I conclude that the Turing machine model does not constitute a satisfactory 

explanation of our ability to count. 
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7. Philosophical applications of cognitive science 

Burge, and Giaquinto are more cautious than Dehaene in their claims about what can be 

explained by cognitive science.27 They are of the view that logico-philosophical considerations 

can tell us what numbers are and what is logically required to grasp them, while explanations 

from cognitive science can tell us how we actually come to do so. For example, Giaquinto 

endorses the view that “cardinals are properties of sets, but they might also be properties of 

concept extensions, collections, pluralities, nonmereological aggregates, or some other kind of 

collective, provided collectives of one or zero items are not excluded” (2001a: 7). Nevertheless, 

he also claims that answering the question of how we acquire arithmetical knowledge requires 

finding out how creatures with brains such as ours “actually acquire arithmetical beliefs and 

skills, a clearly empirical matter” (2001b: 57). He is also at pains to offer a possible account of 

our intuitive grasp of numbers that posits no abilities beyond those countenanced by cognitive 

science.  

As such, Burge and Giaquinto are not subject to the charges of revisionist psychologism 

or reductionism. Nevertheless, I will argue that in their attempts to explain how we grasp 

numbers, these in authors presuppose too much about what they purport to explain, with the 

result that their proposed explanations are uninformative. I begin with Giaquinto’s attempt to 

deploy the number sense hypothesis as part of an explanation of how we are able to think about 

numbers intuitively, via a kind of acquaintance.  

 
  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
27 Burge (2007, 2009, 2010), Giaquinto (2001ab, 2012). Both are writing under the influence of 
Carey (2009). I am convinced that Carey’s account of how we come to understand numerical 
concepts is subject to similar objections to those leveled against Burge, but for reasons of space I 
must omit my discussion of Carey’s view. 
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8. Acquaintance 

Russell introduces the term of art “acquaintance” for an immediate epistemic relation of 

private, subjective awareness that completely reveals the nature of the entity with which one is 

acquainted. I will refer to these doctrines as “Immediacy,” “Privacy” and “Complete 

Revelation.” I will now describe, briefly, each doctrine and its prima face relevance to the 

question of how we grasp numbers intuitively. 

Beginning with Immediacy, this is the doctrine that acquaintance is not mediated by 

“inference or any knowledge of truths” (1912: 43). In this respect, acquaintance contrasts with 

the more indirect relation in which a knowing subject stands to an object, when she thinks about 

it via her understanding of a description that it uniquely satisfies. For example, Russell claims, 

while we are acquainted with ourselves immediately via introspection, we are not acquainted 

with the center of mass of the solar system, a point at the center of the sun that is inaccessible to 

acquaintance and so can only be thought about via a description. As regards our intuitive grasp 

of numbers, I have already noted that this can be contrasted with the descriptive way in which we 

think about more abstract structures, such as the family of structures satisfying the axioms of a 

ring. Because of this contrast, it is prima face worth considering whether our intuitive grasp of 

numbers is a kind of acquaintance. 

 Turning to Privacy, Russell claims that we have private awareness of among other things 

our own thoughts, our sense data, and our perceptually remembered experiences. Furthermore, 

he claims that based on our awareness of sense data, we become acquainted with their sensory 

properties by abstraction. For example, regarding sense data and their color properties, he says:  
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by seeing many white patches, we easily learn to abstract the whiteness that they all 

have in common, and in learning to do this we are learning to be acquainted with 

whiteness (1912: 101).  

What I want to emphasize about this example is that we are not supposed to be acquainted with 

properties in virtue of grasping inter-subjectively accessible, shareable concepts of these things, 

but in virtue of abstracting them from sense data of which we are privately aware. This threatens 

to run afoul of Frege’s warning about the need to separate the subjective from the objective. In 

the present context, the point is that we should be wary of the possibility that our private visual 

intuitions of numbers are different from our objective concepts of them, and that the former are 

as a result an imperfect guide to the latter. (More on this in the following section.) 

 Russell’s doctrine of Complete Revelation is that when one is acquainted with an entity 

one grasps it entirely, rather than in a certain limited way. This is also exemplified in his 

characterization of acquaintance with sensory properties: 

The particular shade of colour that I am seeing may have many things said about it... 

But such statements… do not make me know the colour itself any better than I did 

before: so far as concerns knowledge of the colour itself [by acquaintance], as 

opposed to knowledge of truths about it, I know the colour perfectly and completely 

when I see it, and no further knowledge of it itself is even theoretically possible (ibid: 

emphasis added). 

This has some appeal as a doctrine about our intuitive grasp of numbers, since knowledge of 

arithmetical truths about numbers is arguably unnecessary for having an intuitive grasp of them.  

 With that said, I now turn to Giaquinto’s theory of acquaintance and the extent to which 

his view accords with Russell’s doctrines. 
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9. Giaquinto on acquaintance 

Like many contemporary philosophers, Giaquinto rejects Russell’s theory of perception, 

according to which we are directly aware of sense data but not the objects that cause them. 

Rather, he is of the view we are directly aware of perceptible public objects, which is tantamount 

to a rejection of Russell’s doctrine of Privacy. Furthermore, Giaquinto rightly emphasizes 

Russell’s tendency —on display in the above quotation— to characterize being acquainted with 

an entity as knowing an entity or possessing revelatory knowledge of it. Taken together with the 

rejection of Privacy, this raises a problem, because one can be directly aware of public objects 

without possessing revelatory knowledge of them. For example, one can be directly aware of 

Manhattan on seeing it for the first time, without being said to know it at all, let alone perfectly 

and completely.  

To resolve this problem, Giaquinto proposes that in order to know an entity by 

acquaintance, one must come to know it via one’s experiences of it, or, in the case of sensory 

properties, by one’s experience of its instances. Turning to sensory properties in particular, 

Giaquinto claims that a Russellian account of our acquaintance with properties is to be found in 

the psychological theory of category acquisition, which he claims can explain how, for example, 

French infants learn the phoneme ‘u’ in ‘tu’ as distinct from ‘ous’ in ‘vous’: 

Initial category acquisition results from the automatic and unconscious operation of 

cognitive mechanisms activated by repeated experience of instances. That fits 

Russell’s formulation of learning to abstract whiteness from seeing many white 

patches, provided that we ignore the suggestion of intention and effort that the word 

‘learn’ carries (2012: 505). 
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According to Giaquinto, one is acquainted with a sensory property F if one has (i) perceived 

instances of it and, as a result, (ii) abstracted a category C such that (iii) one can apply C 

exclusively to instances of F and so discriminate these from non-instances. This is not yet 

sufficient for completely revelatory knowledge of a sensory property, which is what Russell is 

after. However, Giaquinto claims that one must also be able to (iv) recognize instances of F as 

instances, (v) search for instances of F and (vi) imagine instances at will in sensory 

imagination.28  

To what extent does this view accord with Russell’s doctrines about acquaintance? As 

regards Privacy, the notion of acquiring and applying a category is no part of a public practice. 

Further, for simple properties such as colors and sounds, it is not unreasonable as an account of 

Complete Revelation. As for Immediacy, Giaquinto can also claim to have captured the grain of 

truth in this doctrine, since the process of acquiring and applying categories is supposed to be 

perceptual and sub-personal, and is not supposed to involve conscious inference or any 

knowledge of truths. 

 Turning to numbers, we have already seen that Giaquinto believes that cardinal numbers 

are properties of pluralities (or of something very similar). Further, he proposes that they are 

sensory properties that we can perceive with our number sense.29 Furthermore, he claims that it 

is sufficient to be acquainted with a cardinal number m that one has (i’) detected instances of m 

with one’s number sense and (ii’) acquired a numerical concept of m, such that (iii’) one can 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
28 Giaquinto (2012: 506). 
29 This would address Benaceraff’s epistemological problem, that we lack a plausible account of 
our cognitive and epistemic access to numbers on the assumption that they are abstract objects. 
See Benaceraff (1973). Maddy (1990) claimed we are able to see very small sets with something 
like a number sense, but subsequently retracted her indispensability argument for the claim that 
what we see are sets as opposed to collections, pluralities etc. Furthermore, her account of our 
number sense predates much empirical work on the topic. 
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apply this concept exclusively to its instances and so discriminate these from adjacent non-

instances.30 To meet (i’) – (iii’) it is claimed that we use our innate number sense to detect 

cardinal size. Then, once we have acquired cardinal concepts —which are not supposed to be 

innate— during development, we use our number sense to guide our application of these 

concepts to very small pluralities. So we are claimed to meet a sufficient condition for being 

acquainted with very small cardinals.  

 As for how numerical concepts are acquired, Giaquinto suggests that children may learn 

them in part by associating number sense representations with small numeral-like numerical 

concepts. But, as we have seen, while this may be of help, it cannot be the whole story, since the 

number sense does not itself represent discrete cardinal numbers. He also suggests —citing 

Cantor— that what may be required is to abstract from one’s counting experience “a category 

representation of sets of a given size, one for each set-size from 1 to 3” (2001a: 13). (In which 

case, condition ii’ above would be a special case of condition ii.) Since, on Cantor’s view, such 

abstraction requires abstracting away from the nature of the elements of a plurality and the order 

in which they are given,31 the result will be a multitude of units, for example | |. Then, Giaquinto 

continues, these might “serve as representations of those cardinal numbers and get mapped onto 

the initial numerosity [number sense] representations” (ibid).  

Does this account of acquaintance with cardinal numbers accord with Russell’s doctrines 

about acquaintance? In certain respects it accords with Immediacy, since the detection of 

numbers and application of concepts is supposed to be facilitated by our perceptual number sense 

rather than discursive counting. Further, the acquisition of small numerical concepts is supposed 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
30 Giaquinto (2001a). In this paper Giaquinto only proposes conditions (i)-(iii) as a sufficient 
condition for acquaintance with properties. I am not sure whether he would also claim that we 
meet his expanded set of conditions viz. cardinal properties.!
31 Cantor (1895) 
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to result from sub-personal category acquisition from early counting experience. However, the 

account fails with regards to Complete Revelation of numbers, since —to repeat— the number 

sense represents magnitude, not discrete numbers. To address this problem, Giaquinto might 

instead appeal to his account of how we abstract category representations consisting of small 

multitudes of units, since these are discrete and so more plausible candidates to represent 

numbers. But this raises several problems. 

Firstly, the number sense then drops out of the picture as a source of acquaintance with 

numbers. Secondly, Giaquinto cites no evidence whatsoever for the claim that a sub-personal 

analogue of Cantorian abstraction is how we in fact come to represent small numbers; rather, this 

claim is a speculation based on philosophical reflection about what is required for doing so. 

Further, the speculation does not help as stated, since as Frege argues, numbers cannot be 

represented by multitudes of units, unless the units are differentiated in some way.32 Later in this 

chapter I will discuss whether this last objection can be met. However, for the moment I will rest 

with my first objection, that we are not acquainted with numbers via our number sense.  

Next I want to examine a related proposal, due to Tyler Burge. I begin with Burge’s 

discussion of acquaintance. 

 
10. Burge on acquaintance 

Burge charges that Russell only counts our grasp of sensory properties as acquaintance, 

because he conflates how we grasp properties with how we think about objects, namely by 

standing in a referential relation to them:  

Russell counted grasp of universals an acquaintance relation. I believe that this 

position resulted from his characteristic conflation of understanding with referential 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
32 Frege (ibid: §39). 
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relations to objects. In predicating a concept of an object in the thought that man is a 

great pianist, we think the concept is a great pianist as part of thinking the thought. 

Thinking the concept is not a representational relation to the concept (2009: 66, 

emphasis in the original). 

The first thing to note is that Russell is not always guilty of conflating understanding with 

reference. For example, he famously distinguishes two ways in which the entities that he called 

“relations” can occur in propositions. They can either occur as terms (or objects to be referred 

to), or they can occur in their relating role: 

The verb, when used as a verb, embodies the unity of the proposition, and is thus 

distinguishable from the verb considered as a term, though I do not know how to give 

a clear account of the precise nature of the distinction (1903: §54). 

To give another example, at this point in his development, Russell has a doctrine about entities 

that he calls “denoting concepts.” These are propositional constituents —rather like Fregean 

senses— which are grasped by thinking and most certainly do not occur in propositions as the 

objects that those propositions are about: 

A concept denotes when, if it occurs in a proposition, the proposition is not about the 

concept, but about a term connected in a certain peculiar way with the concept. If I 

say “I met a man,” the proposition is not about a man: this is a concept which does 

not walk the streets, but lives in the shadowy limbo of the logic-books. What I met 

was a thing, not a concept, an actual man with a tailor and a bank-account or a public-

house and a drunken wife (ibid: §56). 

However, Burge has more objections up his sleeve. 
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 Burge’s second objection concerns Russell’s doctrine of Complete Revelation, that when 

one is acquainted with an entity, one grasps it completely, rather than in a certain limited way. 

Burge’s rejection of this last requirement is emphatic: 

I think it would be absurd to think that finite beings can perceive or think about 

ordinary objects or properties neat. We cannot perceive or think about them without 

doing so in some representational, perspectival, cognitively limited way (ibid: 251).  

Burge’s conviction that the contents of perception and thought are both perspectival and 

cognitively limited can also help us understand why, in the case of sensory properties, we should 

be suspicious of Privacy. This is because if Burge’s conviction is correct, then we must 

distinguish the way a property is presented in perceptual experience from the property itself. But 

this is what Privacy does not do. Rather, it conflates public, inter-subjectively accessible 

properties of objects with private aspects of the way one perceives them. As Burge puts it:  

The qualitative elements in consciousness [such as how white patches look to me] are 

not objects of reference in perception. They are aspects of ways of referring; they are 

part of the perspectival framework of perceptual reference (2010: 121).  

Further, Burge objects, Russell mistakes our ability to think about these qualitative elements of 

consciousness —as in when one deploys the concept what white looks like, while imagining a 

white patch— for our ability to perceive and refer to the properties that these elements are 

perspectives on: 

Qualitative elements of consciousness are one thing. Singular representation of them 

(as referents or objects) in thought is another. Treating them as data for perceptual 

belief is a third. Russell runs these three things together in his notion of sense data. 
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Russell took universals both as properties of objects and as perspectives of the mind 

on objects. I believe that this is another fundamental conflation (2009: fn 3). 

As a result of these mistakes together, Burge alleges, we get the view that we are privately 

acquainted with sensory properties. In the light of all this, I return to the question of whether 

Russell is guilty of conflating understanding and reference. Concerning the primitive notions of 

logic, he writes: 

The discussion of indefinables… is the endeavour to see clearly, and to make others 

see clearly, the entities concerned, in order that the mind may have that kind of 

acquaintance with them which it has with redness or the taste of a pineapple. Where, 

as in the present case, the indefinables are obtained primarily as the necessary residue 

in a process of analysis, it is often easier to know that there must be such entities than 

actually to perceive them; there is a process analogous to that which resulted in the 

discovery of Neptune, with the difference that the final stage—the search with a 

mental telescope for the entity which has been inferred—is often the most difficult 

part of the undertaking (1903: Preface). 

Here Russell seems to say that we can become acquainted with primitive notions, as a result of 

having performed an analysis. Further, this acquaintance appears to be equated with 

understanding; this is why it is so difficult to obtain: the point is that indefinables like Russell’s 

notion of a propositional function cannot be given a complete analysis in the form of a definition. 

Furthermore, this acquaintance is described as “seeing,” “perceiving” and looking through “a 

mental telescope.” The analogy with qualia also suggests that Russell is confusing public, inter-

subjectively accessible logical notions with the way in which they are grasped while thinking. 

For it is one’s way of grasping the logical primitives, not the primitives themselves, that are as 
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easily available and as much a part of one’s experience of thinking as qualia are part of our 

subjective experience of perceiving. All this sounds like just the kind of conflation of which 

Burge accuses Russell. 

 Given his criticisms of Privacy and Complete Revelation, the only doctrine of Russell’s 

that Burge accepts is Immediacy. Thus his account takes 

as key to the de re—de dicto distinction Russell’s idea that de re states and attitudes 

involve a capacity for referring to entities that is essentially nondescriptive, 

noninferential, and epistemically immediate (2009: 314).  

Burge’s proposal is that for a thought to be de re, it suffices for it to single out a re by a capacity 

other than the means to describe it, and for it to involve “ ‘a not completely conceptual’ relation 

to a re” (2007: 69). The point is that “not completely conceptual” encompasses both de re 

thoughts which are caused by the relevant re, and de re thoughts which are not so caused; that is, 

the latter  

involve other sorts of not completely conceptual relations between attitude and object 

—sorts other than those involved in perceptual belief (ibid).  

Next I will describe Burge’s account of how we are related to numbers.  

 
11. Burge on de re thoughts about numbers 
 
  As we have seen from Burge’s criticism of Complete Revelation, his view is that most 

thought contents are composed of concepts, which type shareable perspectives on, or ways of 

thinking of, subject matters. Concepts can be semantically singular or semantically general, and 

individual concepts are semantically singular. This means that they refer to particular entities, in 

the way that the individual concept 3 refers to a particular number. (I now follow Burge’s 
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convention of using underlining to refer to individual concepts, including 2nd level individual 

concepts of concepts.)  

 Burge claims that Frege “was correct in thinking of numbers as having a certain second-

order status” (2007: 71). He also follows Frege by claiming that numbers are grasped not by 

acquaintance but “only through understanding arithmetical propositions” (2009: 315). 

Presumably Burge has in mind applied arithmetical propositions like there are 2 houses of 

Congress. Here I take the idea to be that we understand concepts such as 2 and 4 by 

understanding such propositions, and only then form unapplied arithmetical propositions such as 

2 + 2 = 4. Furthermore, Burge claims, such discursive understanding can be combined with three 

other capacities to place one in a not completely conceptual and so de re relation to numbers: 

Being able to apply a canonical (numeral-like) concept for the number 3 in an 

immediate perceptual way, seems to me to constitute a ‘not completely conceptual’ 

relation to the number (2007: 72).  

This requires more unpacking. Firstly, one must possess canonical individual concepts of 

numbers. These are the conceptual counterparts of numerals belonging to the decimal system, 

rather than descriptions of numbers in the conceptual counterpart of for example successor 

notation, such as successor(successor(successor(0))). Secondly, canonical concepts 

corresponding to the digits must form the base of mental computation, so that they determine 

small numbers in a way that is computationally simple, rather than determining them as the 

results of recursive computation. Regarding the difference between computationally simple and 

complex concepts, Burge has this to say:   

Embedded in the content of a complex numeral individual concept (547) are simple 

individual concepts (5, 4, 7) that involve de re application… 
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Canonical concepts for larger numbers are built by simple recursive rules from the 

simplest ones…  

Understanding what larger numbers are derives from this immediate hold on the 

applicability of the smaller ones (ibid). 

Finally, one must be able to apply these simple individual concepts in a way that is guided by the 

aforementioned ability to subitize or perceive the exact size of very small pluralities at a much 

faster rate than that required by discursive counting. (In this respect, the account is reminiscent 

of Giaquinto’s condition (iii’).) 

Burge claims that  

Subitizing in adults may be an aspect of the same system of perceptual tracking that 

occurs in infants, primates, other mammals, and birds (2010: 485).  

However, he endorses a different theory of subitizing than that already discussed:  

The tracking of two bodies can be through a perception or perceptual memory that 

contains two representational contents as of different particular bodies separated in 

space (ibid: 486). 

He continues that this might be  

a representational content containing two object files for bodies, each of which has 

the semantics of a place-holder rather than a singular content with a definite 

referent.... As particular bodies are shown, the standing place-holder content could 

temporarily take on reference to particular bodies (ibid).33  

Let me give an example. Suppose Ralph is shown two books on a table. Burge’s proposal is that 

Ralph can then form a representation that abstracts from the kind book, and instead consists of 

indexed place-holder files for different bodies in space, such as: this1 body, that2 body. When 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
33!See!also!Carey!(ibid),!Trick!and!Pylyshyn!(1993,!1994).!
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Ralph encounters two bodies of a different kind, such as cows in a field, he can then token and 

demonstratively apply this representation of bodies to the plurality of cows. Further, Burge 

claims, if Ralph also understands numerical concepts, then the aforementioned ability can guide 

his application of the concept of 2 to this plurality. Although Burge does not say this, I presume 

it is his view that by perceptually applying the concept of 2 to a given plurality, Ralph thereby 

applies the number 2 to that plurality, because on Burge’s view concepts are ways of thinking of 

their referents. Thus the application of the number 2 to a plurality is also guided by perception 

rather than counting.  

This account of subitizing as perceptual tracking posits production and deletion of 

placeholder files for bodies. This is similar in certain respects to counting, since the placeholder 

files are supposed to be discrete. So it raises the question of whether perceptual tracking enables 

us to represent discrete natural numbers (individually rather than as a progression), and 

arithmetical operations on them. Burge’s answer to these questions is a resounding ‘No’. For the 

account appeals to the ability to perceive objects and attribute one of their first-order properties, 

but does not appeal to the ability to perceive cardinal number: “Subitizing is not perception of 

abstract objects, the numbers” (2009: 313). Further: “The ground for not taking specific numbers 

to be represented is a straightforward inference to the best explanation” (2010: 488). That is, a 

theory of subitizing that appeals to the ability to perceive objects and attribute one of their first-

order properties is simpler, and so, by inference to the best explanation more plausible than one 

that posits the ability to perceive numbers.  

According to Burge, the temptation to think of perceptual tracking as representing 

numbers and arithmetical operations is an example of “the individual representationalist 

syndrome” of taking the subject of one’s theory to represent what makes representation possible 
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(ibid). I begin with the case of numbers. Obviously the number of files in the representation this1 

body, that2 body must be of the same number as the bodies represented, and the subject must be 

sensitive to this at the sub-personal level, otherwise the representation would not be an accurate 

guide to number. As Burge puts it “The quick enumeration of up to four bodies is apparently 

carried out by an automatic sensitivity to the number of activated indexes” (ibid: 485). What I 

take Burge to mean is that the subject’s “sensitivity” to or ability to keep track of number 

consists of the ability to successfully put files and bodies in one-to-one correspondence by the 

demonstrative application of files to bodies. But although the principle of one-to-one 

correspondence is thus used to explain perceptual tracking, it is not supposed to be represented 

by the files, and neither is number.  

Further, according to Burge, a system that produces and deletes placeholder files does not 

thereby represent operations like addition, because there is “a low upper bound on the number of 

indexes available for perceptual tracking” (ibid: 487). As we have already seen, no such 

representations are hypothesized to exist for pluralities of more than four members, at which 

point estimation is thought to take over. It follows that unlike the numbers, the production of 

placeholder files is not closed under addition or successor.  

 Having argued that perceptual tracking does not give us perceptual access to numbers, 

Burge conjectures that 

Genuine arithmetical capacities seem to be decidedly propositional and conceptual. 

They emerge, at least in performance, only after the advent of language (ibid: 491).  

Further, it is only  
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in individuals who have an understanding of a numerical system, [that] the primitive 

subitizing capacities join with conceptual abilities to support noninferential, 

noncomputational numerical assignments in thought to small groupings (2009: 313).  

I now turn to Burge’s theory of de re understanding. 

 
12. Burge on de re understanding 

 I begin with the propositions through which we grasp numbers, such as there are 2 houses 

of Congress. Burge claims that these can be “comprehended” immediately as well as understood 

discursively, because of the three aforementioned capacities: 

[C]omprehending the thoughts that canonically specify the smallest natural numbers 

through numerals is essentially linked to a noninferential representational ability—the 

conceptualized successor of subitizing. This is recognition of numbers and 

application of numbers without calculation or description. It is recognition through 

singular understanding (2009: 315-16)  

It is not clear exactly what Burge intends by “comprehension.” However, I believe that he is 

trying to describe a more restrictive theoretical correspondent of what we would intuitively 

characterize as “knowing what content is expressed:” a kind of understanding that has the 

epistemic immediacy of acquaintance but not its privacy: 

Comprehension in the third-person way is understanding that is epistemically 

immediate, unreasoned, and non-inferential and that carries no presumption that the 

comprehended material is one’s own. It may be one’s own. But it is comprehended 

without relying on taking it as one’s own immediate or remembered product (1999: 

350). 
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This requires some more unpacking. Before I say what Burge means by “third-person,” I begin 

with the question of what he means by “immediacy,” which he elaborates on as follows: 

Comprehension is at least as direct and noninferential, psychologically and 

epistemically, as perceptual relations. Comprehending a representational content is 

exercising an ability that is constitutively associated with inference. But it is not itself 

inferential or descriptive (2009: 312). 

The reason that comprehension is “constitutively associated with inference” is that 

comprehension entails what Burge calls “competence understanding,” and this in turn requires 

being able to engage in inference. For example, competence understanding of that all men are 

created equal requires competence understanding of the concept all, which in turn requires the 

ability to make certain logical inferences. But given that one already has this ability, one can 

understand all immediately —this is required for comprehension. In short, comprehension is a 

type of immediate understanding, despite being associated with inference, because it requires 

that one can already engage in the discursive reasoning that constitutes competence 

understanding.34   

 I now turn to the challenging interpretive question of what Burge means by “the third-

person.” It is clear that comprehension is supposed to be distinct from the minimal kind of 

competence understanding that consists of being able to think or express first-order propositions 

about the world. For while comprehension entails competence understanding:  

The ability to think thoughts—competence understanding—does not count as 

comprehension unless it is accompanied by third-person comprehension (2011: 366) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
34 See also Burge (2009: 316) 
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Thinking thoughts does not itself entail comprehending them —in the sense of having 

a capacity for a third-person perspective on them (ibid: 366-7). 

Here we should contrast third-person comprehension with introspective acquaintance.35 To be 

introspectively acquainted with the content of one’s own thought, one must rely on the fact that 

the act of thinking it takes place in one’s own mind, for otherwise one could not access it 

introspectively. But as we have already seen from a previous quote (1999: 350), third-person 

comprehension of the contents of one’s thoughts is not supposed to rely on an act of thinking 

being one’s own. So what does it rely on? According to Burge it involves: 

correctly assigning a thought content of one’s own thinking to an expression or 

expressive event that causes that thinking (2011: 366). 

This suggests that Burge intends to explicate ‘third-person perspective’ in terms of being correct 

rather than incorrect, and so in terms of the possibility of a mistake occurring as one assigns a 

thought content to an expression or expressive event, something that is impossible on 

paradigmatic accounts of first-person access. In conclusion, Burge’s proposal appears to be that 

one comprehends a thought content just in case one can immediately, correctly and fallibly 

assign that content to an expression or expressive event. 

 Now I return to the thoughts that canonically specify the smallest natural numbers 

through numerals. How is it that we comprehend these? Here the proposal may be that learning 

to count gives us competence understanding of the concept 2 through propositions like there are 

2 houses of Congress. Further, we can count to 2 at the drop of a hat, and immediately 

perceptually apply 2 to small pluralities without counting. Finally, these abilities allow us to 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
35 Kripke argues that one’s introspective acquaintance with a given concept is one’s canonical 
concept of that concept. See Kripke (2011). 
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immediately but fallibly assign 2 to ‘2’ in the context of other statements of the form ‘there are 2 

F’s.’ This suffices for comprehension. 

 Burge also claims that being able to apply canonical concept of numbers in an immediate 

perceptual way, is required for comprehension of unapplied arithmetical propositions like 2 + 2 

= 4. Here the idea appears to be that learning to engage in discursive calculation gives us 

competence understanding of 2 + 2 = 4. Further, given that one already has this ability and can 

perceptually apply the concepts 2 and 4, one can then assign the correct content to ‘2 + 2 = 4’ 

immediately without calculation. This would serve to explain the intuition that such propositions 

seem in Burge’s words to be “underived from general principles and irreducibly singular from an 

epistemic point of view” (2000: 40). For example, comprehending 2 + 2 = 4 does not seem to 

require understanding the corresponding proposition expressed in descriptive successor notation.  

 The considerations in the previous paragraph involve an application of Burge’s 

transcendental argument for de re thought.36 The argument is that the capacity for de re thought 

is required to think any thoughts with definite representational content, because to do so one 

must possess some concepts that are immediately related to their subject matter, which requires 

the capacity for de re thought. In particular:  

[A] condition on having attitudes in pure mathematics is an ability to apply it, or at 

any rate to be able to apply other attitudes in perceptual or practical de re ways…. 

[P]ure mathematics almost surely requires supplemental singular abilities if it is to 

have genuine, autonomous, representational content… 

De re relations to the numbers hinge on further de re relations to objects that one 

counts with the numbers. The perception-based counting is a necessary condition for 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
36 Burge (1977, 2007). 
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both the de re relations to the numbers and the comprehension of pure mathematics 

(2007: 78). 

 
13. Problems for Burge’s account 

 My first objection is that if we allow Burge the assumption that there are de re thoughts 

about numbers, then his theory is too restrictive, since according to it we can have such thoughts 

about only the smallest few numbers. This is because we are only able to subitize the exact size 

of pluralities of up to three or four members, and have to figure out the exact number of even 

slightly larger pluralities by more discursive means. Creatures with some mathematical training 

can do this by first factoring such pluralities into smaller ones they can subitize, then applying 

the relevant numerical concepts to these smaller pluralities, and then adding. And perhaps being 

able to do this places one in a relation to a number that is neither entirely immediate, nor quite as 

discursive as discovery by counting or calculation, but somewhere in between. But while it 

seems plausible to say that we can do this for 9 by factoring it into three groups of three and then 

adding, most of us are, presumably, unable to do this for pluralities of 547 or even 47. And in 

any case, Burge’s requirement of computational simplicity still rules out that we can have 

suitably immediate thoughts about these slightly larger numbers. 

 Burge is aware that this aspect of his theory makes it questionable, and is willing to grant 

that theories according to which multi-digit numerals facilitate de re thought about numbers are 

also “tenable” (2007: 74). However, he has a clear preference for the very strict theory of 

epistemic immediacy described above, arguing that it is preferable to the less restrictive theory 

due to Kripke, according to which decimal numerals including multi-digit ones are suitably 

epistemically immediate. Kripke’s theory is motivated by consciously accessible, intuitive 

evidence, in particular the intuition that decimal numerals —including multi-digit ones— are 
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“immediately revelatory” (forthcoming).37 By this Kripke means that if a decimal user counts or 

is told that the number of guests is 547, he thereby knows how many guests there are; likewise, if 

a decimal user calculates that the factorial of 5 is 120, he thereby knows what number the 

factorial of 5 is; no further inference or fact-finding is needed.  

 The issue here is whether we should characterize epistemic immediacy intuitively, as 

Kripke does, or in Burge’s more restrictive theoretical terms. Burge’s complaint is that Kripke’s 

intuitive notion ignores “evidence from psychology” that 547 is understood inferentially, by 

performing sub-personal, recursive computations on its psychologically basic, perceptually 

applicable elements, and that such evidence suggests we are immediately related to 4 but not to 

547. But there are various reasons to resist these claims.   

 Firstly, there is the aforementioned worry that Burge’s criterion is too restrictive. Is it a 

consequence of Burge’s view that no one really knows how many F’s there are or what number 

they are thinking about, by grasping a multi-digit numeral? If so, then the view has an absurd 

consequence. Of course Burge will respond that from the point of view of cognitive science this 

consequence is not absurd. However, it is not clear why the point of view of cognitive science is 

of relevance here. This is because in ordinary arithmetical practice we reason from consciously 

accessible thoughts to others, and resolve computations with multi-digit numerals. So evidence 

from cognitive science about unconscious human effort —the time taken by sub-personal mental 

processes— is of questionable relevance to understanding arithmetical practice. It should also be 

noted that the point of view of our practice is the one from which the mathematical apparatus 

assumed in cognitive science was set up.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
37 I discuss Kripke’s theory in chapter 4. 
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 Further, Burge does not offer any actual evidence that 547 is understood inferentially by 

performing sub-personal computations on its perceptually applicable components. Rather, this 

claim appears to be based on the theory that the subject’s understanding of multi-digit numerals 

requires recursion,38 which, since the publication of Hauser, Chomsky and Fitch’s influential 

paper, has been invoked widely in cognitive science as a requirement for our knowledge of both 

language and arithmetic.39 Recursion is the capacity for iterating the step of taking the previous 

value of an applied function as an argument, as in:  

 a, f(a), f(f(a)), f(f(f(a)))….  

A special case of this is the capacity for iterating a step, as exemplified by 

  |, | |, | | |….   

What this makes clear, I hope, is that Hauser et al. intend to argue that recursion is a logical 

prerequisite of grasping both numbers and language. To this claim, they add the speculation that 

recursion is also a neurologically realized sub-personal computational capacity. These claims do 

not constitute evidence that we are immediately related to 4 but not to 547, even when taken 

together.  

 I now turn to problems with another aspect of Burge’s criterion of immediacy: the 

perceptual applicability of understood, numeral-like numerical concepts. Recall that for Burge it 

is only  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
38 Burge (2007: 73-74). 
39 Hauser et al. (2002). Their view seems to be that natural selection did not select for the 
capacity of recursion, since this is simple enough not to be an adaptation, was largely unused and 
is not (to our knowledge) found in other animals. Instead they hypothesize that the capacity is an 
innate by-product of other human traits that were selected for.!!
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in individuals who have an understanding of a numerical system, [that] the primitive 

subitizing capacities join with conceptual abilities to support noninferential, 

noncomputational numerical assignments in thought to small groupings (2009: 313). 

This raises the question of what is required to understand canonical numerical concepts. 

Burge’s proposal is that understanding such concepts requires understanding applied arithmetical 

propositions, which in turn requires the ability to count:   

Understanding ‘3’ involves understanding ‘there are 3 F’s’, which in turn requires 

being able to count the F’s —put them in one-one relation to the numbers up to 3 

(2007: 72).  

Obviously this gloss of counting presupposes a grasp of numbers, and, as earlier quotes show, it 

is Burge’s view that that we cannot represent numbers prior to acquiring concepts of them. So if 

this account is to avoid circularity, it must assume that we can already represent numbers via 

propositions containing non-numeral-like concepts, and can use the latter in our counting 

experience, through which we come to understand propositions containing concepts like 3. But 

in the present context this is a significant assumption about what is to be explained, one that 

needs spelling out. (In my view, Frege and Alonzo Church together provide the resources to 

break this circularity. More on this in the final chapter.) 

 One can remove reference to numbers from the requirements for counting, by stating 

them as follows. Firstly, the words in the count list must be recited in a stable-order. Secondly, a 

one-to-one correspondence must be established between the words in the count list and the 

objects counted. Thirdly, one must be able to give the final word of the count in answer to the 

question ‘how many F’s?’ However, as Burge himself realizes,40 it is possible to meet all of these 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
40 Burge (2010: 491). 
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requirements without grasping the cardinal significance of counting or grasping which cardinals 

are denoted by the members of the count list. To see this, consider that there is a stage during 

development when children can recite a short list of numerals in a stable order, put them in one-

to-one correspondence with the F’s, and recite the last numeral in the count when asked ‘how 

many F’s?’ And yet, when instructed to give the experimenter m F’s —where m is the last 

numeral recited— they give the experimenter a random number of F’s. This result is due to 

Karen Wynn, who summarizes:  

In all cases, children could successfully count larger sets of items than they could 

give when asked… Thus children’s ability to correctly give a certain number of items 

lags well behind their ability to successfully count that same number of items (1992: 

234). 

This suggests that meeting the above requirements on counting does not suffice for 

understanding the cardinal significance of numerical concepts; in Burge’s terminology, it does 

not suffice for full competence understanding. So what does suffice? Burge does not say.  

 To conclude this discussion, in purporting to explain de re thoughts about numbers in 

terms of the conceptualized successor of subitizing, Burge’s account is too restrictive, 

unsupported by evidence, and based on a significant assumption about what it purports to 

explain, one that cannot be spelled out in terms of meeting the above conditions on counting. 

Further, since Burge’s theory of pure arithmetical comprehension also appeals to the 

conceptualized successor of subitizing, it too faces all of these problems. This in turn undermines 

Burge’s application of his transcendental argument for de re thought, that a condition on having 

attitudes in unapplied arithmetic is an ability to apply arithmetical concepts de re.   
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14. Giaquinto on our intuitive grasp of the number structure 

In section 9 I criticized Giaquinto’s attempt to deploy the number sense hypothesis as 

part of an explanation of how we are acquainted with very small cardinal numbers, and also 

criticized his appeal to Cantorian abstraction of undifferentiated units. I now turn to his theory of 

how we grasp simple mathematical structures intuitively, and whether this can help explain how 

we can represent a progression of numbers. 

According to Giaquinto, we are acquainted with simple mathematical structures via (a) 

our visual capacities together with (b) the aforementioned capacity to abstract category 

representations, which in the case of structures are abstracted from experienced configurations: 

In the same way [as the visual system can acquire category representations], the 

visual system can acquire a representation for a category of visual configurations of 

marks that provide instances of a common structure… I have called these 

representations category specifications (2007: 220). 

We can recognize a perceived configuration of marks as an instance of a certain 

structure, by activation of an appropriate visual category specification. Thus, I 

suggest, we can have a kind of visual grasp of structure that does not depend on the 

particular configuration we first used as a template for the structure. We may well 

have forgotten that configuration altogether. Once we have stored a visual category 

specification for a structure, we have no need to remember any particular 

configuration as a means of fixing the structure in mind. We can know it without 

thinking of it as ‘the structure of this or that configuration’ (ibid: 221).  

But what exactly are we claimed to have stored? Giaquinto claims that in the case of numbers, 

the category specification abstracted is a visual representation of points marked on a line 



! 52!

extending in a direction. This is not implausible, since there is evidence that the direction of this 

line is associated with increasing magnitude representations (of our number sense), and with 

reciting numerals in culturally specific ways.41 Indeed, the association of numerals with direction 

may explain why the latter is also associated with magnitude, since numerals are associated with 

magnitude. Further, direction is associated with progressions of names of months and letters of 

the alphabet, suggesting that it is associated with ordering independently of its association with 

magnitude.42   

Above I described the category specification as a visual representation. However, 

according to Giaquinto, our category specification of the numbers is not a visual image of points 

marked on a line extending in a direction. Rather, it is a set of stored sub-personal 

representations of visual features of such a line (such as its direction), the activation of which 

allows us to visually imagine the line in a way that is dependent on parameter values 

corresponding to viewpoint, distance and orientation, which themselves act on the image,  

continuously changing the image in a way that is subjectively like perceptual 

scanning. A momentary image generated by activation of that category specification 

will represent only a finite portion of the line; but the specification that the line has no 

right end ensures that rightward imagistic scanning will never produce an image of a 

right-ended line. In this way the category specification is a visual representation for a 

line that extends infinitely in one direction (2008: 55). 

In addition to generating a continuously changing visual image, our category specification of the 

numbers is also supposed to have abstract conceptual content, in that it is supposed to represent a 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
41 Shaki et al. (2012).  
42 Gevers et al. (2003, 2004).!
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kind of set. To my mind, the most valuable aspect of Giaquinto’s proposal is his claim about how 

we discover this conceptual content:  

[A]s a result of having the category specification, we have a number of dispositions 

which, taken together, give some indication of the kind of structured set it represents. 

These are dispositions to answer certain questions one way rather than another. For 

example: 

 Given any two marks, must one precede the other? Yes. 

 Do the intermark spaces vary in length? No. 

 Is the precedence of marks transitive? Yes. 

 Can any (non-initial) mark be reached from the initial mark by scanning to 

 the right at a constant speed? Yes. 

But some questions will have no answer:  

 Is the intermark length more than a centimetre? 

These answers tell us something about the nature of the mental number line as 

determined by the features specified in the category specification. The answers entail 

that no mark has infinitely many predecessors; as the marks form a strict linear 

ordering, this entails that they form a well-ordering. So we can say that the structure 

of the mental number line is that of a well-ordered set with a single initial element 

and no terminal element (2007: 227-6). 

To unpack the last two sentences, I will call the set that Giaquinto describes ‘X.’ A relation < 

(strictly) linearly orders X if the following conditions are met: 

Irreflexivity: For every x, ~x<x 

Trichotomy: For every x and y either x < y, or x = y, or y < x. 
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Transitivity: For every x and y and z, if x < y and y < z, then x < z. 

Assuming that Y is a non-empty subset of X, an <-least element in Y is an x such that for any y in 

Y, x<y. Further, an <-greatest element in Y is an x such that for any y in Y, y<x. (As Giaquinto 

might say, for example, a least element is an x such that x is to the left of everything; further, a 

greatest element is an x such that everything is to the left of x.) Now I can say that < well-orders 

X because the following conditions are met: 

(i) < linearly orders X  

(ii) Every non-empty subset of X has an <-least element. 

Since Giaquinto says that X has no terminal element, I add: 

(iii) X has no <-greatest element. 

(As Giaquinto might say, for example, X contains no element x such that everything is to the left 

of x.) The statement that X exists and satisfies (i) and (iii) is an axiom of infinity. 

 It seems to me that Giaquinto’s account of mathematical intuition of structure captures 

something that can be overlooked in the philosophical literature, namely that mathematical 

intuition is an ability to ask and answer natural questions about a subject matter, which arises 

from familiarity with that subject matter. In the case of more abstract structures, this familiarity 

has to be acquired through training; but in the case of the numbers it is already available. 

According to Giaquinto’s account, this is because it is gained through abstraction of a category 

specification that disposes us to ask and answer questions: 

We have to gather the nature of a number line from our inclinations to answer certain 

questions about it; although visual experience plays some role in this process, our 

answers are not simply reports of experience. In becoming aware in this indirect way 

of the content of a visual category specification for a mental number line, we acquire 
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a grasp of a type of structured set [a set of number marks on a line endless to the right 

taken in their left-to-right order of precedence], and we can then know the structure N 

as the structure of structured sets of this type (2008: 57). 

Obviously this account would also help explain why we accept the axioms of arithmetic. 

 Although Giaquinto does not say this, it is worth noting that if the direction of the line 

was also associated with multitudes of units —of the sort he claims are acquired by Cantorian 

abstraction— then this could help with the problem of undifferentiated units that I raised earlier 

(see section 9). For if discrete units were accumulated one-by-one in a direction, then each 

accumulated unit could be individuated by its relative position on the number line. If so, then 

Giaquinto’s proposal about how we represent simple mathematical structures can help with his 

proposal about how we represent individual small cardinals. 

 However, Giaquinto’s account is an unsatisfactory explanation of our grasp of the 

number structure, since his description of the relevant category specification presupposes too 

much about what it purports to explain. To see this, first recall the three constitutive properties of 

numbers identified in section 5: (I) discreteness, (II) potential infinity and (III) generality. 

Beginning with potential infinity, Giaquinto offers no explanation for “the specification that the 

line has no right end, which ensures that rightward imagistic scanning will never produce an 

image of a right-ended line” (ibid: 55). How is the pre-conceptual representation of this visual 

feature possible? We are not told. Further, no explanation is offered for why the points on the 

line are discrete. The only thing of relevance I can find in Giaquinto’s description of the category 

specification is the following: 

One possibility is a set of evenly spaced vertical marks on a horizontal line, with a 

single leftmost mark, continuing endlessly to the right such that every mark, however 
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far to the right, is reachable by constant rate scanning from the leftmost mark (ibid: 

53). 

But this seems to me to assume the discrete infinity of the line, rather than explaining it.  

 Turning to generality, a potential problem is Frege’s objection that if we did have to 

discriminate numbers by their positions in space, then, like a measurement system, they would 

only apply to things that existed in space. In which case, it would remain to explain how it is that 

numbers are generally applicable, in that they can be used to number abstract things that do not 

do not exist in space, as well as spatially located ones.43  

 There is a response that Giaquinto can avail himself of here, since he is of the view that 

numbers themselves are not inherently spatial, and that in addition to our visual category 

specification: 

We pick up algorithms for generating the number-words/numerals, and we think of a 

number as what such an expression stands for. The number system thus has the 

structure of the number-word system and the numeral system. So we can grasp the 

structure of the set of natural numbers under their natural ‘less-than’ ordering as the 

structure of the set of number-words (or numerals) under their order of precedence 

(ibid: 56). 

In which case, there is arguably no more need to discriminate numbers by their positions in 

space. But then the worry is that (I) – (III) are satisfied in virtue of the representational properties 

of language, and not in virtue of specific representational properties of the hypothesized category 

specification.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
43 Frege (ibid: §40). 
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 Furthermore, the details of the category specification do not appear to explain anything 

that cannot also be explained by our grasp of the numeral system, or simply by our ability iterate 

the step of accumulating discrete units in a direction. Consider for example Giaquinto’s 

explanation of how we succeed in grasping a unique number structure – the so-called “standard 

model.” He appeals to the idea invoked above: that a unique number structure can be determined 

by grasping  

the structure of the set of natural numbers under their natural ‘less-than’ ordering as 

the structure of the set of number-words (or numerals) under their order of 

precedence (ibid).  

Obviously this faces the objection given at the end of the previous paragraph. So what role is 

there for the category specification of numbers? Giaquinto claims that because it disposes us to 

say that no mark has infinitely many predecessors, that precedence is transitive, and that one of 

any two marks on the line must precede the other,  

the category specification determines that the number marks are well-ordered by their 

relation of precedence. This suffices to determine a unique structure. So we can grasp 

the structure of the natural number system as the structure of the set of number marks 

of the mental number line under their order of precedence (ibid: 57). 

Notice, however, that Giaquinto assumes that the category specification disposes us to give the 

right answers —those that philosophical reflection tells us are sufficient to pick out the structure 

of the natural number system— without giving a cognitive explanation of why the category 

specification does this.44 To give another example, he writes: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
44 This is an application of a more general criticism due to Jeremy Avigad. See Avigad (2009). 
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Non-standard models are ruled out by the category specification, as it dictates that 

any non-initial mark can be reached from the initial mark by scanning to the right at a 

constant speed, and that inter-mark spaces do not vary. Of course certain second-

order assumptions are built into the underlying conceptions of space, time and motion 

here; but these are our natural conceptions (2007: 237: fn. 13). 

Again, no cognitive explanation is given of why the right assumptions are “built in,” so that the 

right answers are delivered. Rather, all the work is done by the assumption that this is so. But 

given this assumption, we can surely grasp the standard model based on our visual acquaintance 

with an instance of the following pattern: |, | |, | | |, | | | |…, so long as it is assumed that we are 

somehow disposed to say the right things about this pattern too. The point is that all the work is 

done by the assumption that the right answers are delivered, and so it is not clear what 

philosophical ground is gained by translating this idea into the theory of category specifications.  

 I conclude that some aspects of Giaquinto’s proposal constitute a promising philosophical 

description of our intuitive grasp of the natural numbers. However, his notion of a category 

specification presupposes too much about what it purports to explain, and is as a result 

uninformative. Further, the details of his theory of category specifications do not appear to 

explain anything that cannot also be explained by our grasp of the numeral system, or simply by 

our ability to ask and answer natural questions about a pattern.  

 
15. A methodological moral  

I hope to have convinced the reader that the authors I have discussed have not provided 

an informative explanation of our intuitive grasp of numbers. I think the source of the problem is 

that because Dehaene’s radical cognitive scientism allows him to ignore philosophical 

considerations relating to language and meaning, his explanation misses its target; this, together 
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with his other assumptions and the indispensability of numbers, commits him to a fallacy. On the 

other hand, because philosophers like Burge and Giaquinto take into account so many 

philosophical considerations about what numbers are and what is logically required to grasp 

them, there is little left for their psychological theories to explain. This suggests that we should 

continue to focus for the most part on philosophical considerations rather than those from 

cognitive science – especially considerations relating to the representational properties of 

language. 
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Chapter 2: Frege’s logicism 
 
1. Introduction 

 I previously argued that a major stumbling block for cognitive scientism is to explain the 

infinity and general applicability of numbers. In this chapter I turn to Frege’s attempt to explain 

these phenomena, by showing that the axioms of arithmetic can be derived in logic from 

generally applicable logical axioms. Based on Frege’s remarks I lay out the necessary criteria for 

assessing the philosophical significance of this derivation – criteria regarding both axioms and 

definitions. I also argue that Frege accepts his logical axioms on the basis of their fruitfulness as 

well as their self-evidence, and that he could and should argue that one aspect of their 

fruitfulness is that they help him to discover the senses of the axioms of arithmetic. This brings 

me to Frege’s views on sense, analysis and synonymy. Here I offer an interpretation of Frege on 

the basis of which I defend him against recent criticism from Patricia Blanchette. In my view, her 

criticism is based on overly anthropocentric conceptions of analysis and synonymy, and a failure 

to distinguish between different degrees and kinds of understanding. The present chapter thus 

continues the criticism of overly anthropocentric theories of mathematics, which began with the 

discussion of Burge et al. in chapter 1.  

 After that, I assess Frege’s definitions according to the aforementioned criteria. I show 

that while there is more than a grain of truth in Frege’s definitions, there are also conclusive 

objections to them, including two that are made by Kripke. This discussion sets the stage for the 

discussion in chapter 6, in which I amend Frege’s definitions in a way that takes account of 

Kripke’s objections. 
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2. Frege’s philosophical goals and their precedents 

 The idea that mathematical thinking proceeds from basic assumptions is almost as old as 

mathematics itself, as is the partitioning of such assumptions into basic propositions and 

primitives, and the further partitioning of basic propositions into the common and the particular. 

For example, the basic propositions in Euclid’s Elements are partitioned into “postulates,” which 

must be assumed to think about a particular subject area such as geometry, and “common 

notions,” which are not concerned with a particular subject area.45 For instance, Euclid’s fourth 

postulate that all right angles are equal to one another concerns geometric figures in particular. 

In contrast, the common notions that the whole is greater than the part and that any two things 

equal to the same thing are equal to each other can be taken to apply to everything, not just to 

figures in geometry. In addition to postulates and common notions, Euclid also provides a list of 

definitions expressing his analyses of the mathematical primitives of particular subject areas, 

such as his definitions of a line as a length without breadth, and of number as a multitude of 

units.46! 

 Similar ideas to Euclid’s are found in Aristotle’s discussion of first principles in the 

Posterior Analytics:  

I call an immediate basic truth of syllogism a “thesis” when, though it is not 

susceptible of proof by the teacher, yet ignorance of it does not constitute a total bar 

to progress on the part of the pupil: one which the pupil must know if he is to learn 

anything whatever is an axiom (AnPo: Book I, Part 2, emphasis mine). 

Aristotle repeatedly characterizes certain axioms as common among the sciences, in a way that 

echo’s Euclid’s idea of a common notion. For example: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
45 See Euclid (Elements: Book I) 
46 See Euclid (Elements: Book I, VII).!
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The axioms which are premises of demonstration may be identical in two or more 

sciences (AnPo: Book I, Part 7). 

In virtue of the common elements of demonstration —I mean the common axioms 

which are used as premises of demonstration, not the subjects nor the attributes 

demonstrated as belonging to them— all the sciences have communion with one 

another (AnPo: Book I, Part 11).  

However, since Euclid and Aristotle were writing prior to the development of algebra, neither 

appreciated that there is a general method of demonstration that can be applied to both arithmetic 

and geometry. Nor did Aristotle conceive of logic as such a method, but instead conceived of it 

as a particular rational science concerned with the activity of reasoning, rather like how he 

conceived of arithmetic as a particular science of numbers and of geometry as a particular 

science of figures. 

 In contrast, Frege of course appreciates that algebra is a general method of 

demonstration, and this in turn influences his view of logic. For he conceives of the latter as 

entirely general in its application and forming the common core on which all of science is based, 

since everything is in the range of its variables. For example, Euclid’s fourth postulate can now 

be stated using general logic and the geometric notion expressed by ‘Right Angle’ as follows: 

∀x ∀y (Right Angle x /\ Right Angle y " x = y) 

Continuing with the idea of generality, I have already noted that Frege thinks that arithmetic 

shares some of the generality of logic, since numbers are applicable to kind-concepts and almost 

anything can be bought under a suitable kind-concept:  

[T]he only barrier to enumerability is to be found in the imperfection of concepts. 

Bald people for example cannot be enurmerated as long as the concept of baldness is 
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not defined so precisely that for any individual there can be no doubt whether he falls 

under it (1882: 164). 

In addition to the requirement that a suitable kind-concept be precise rather than vague, Frege 

adds: 

Only a concept which isolates what falls under it in a definite manner, and which does 

not permit any arbitrary division of it into parts, can be a unit relative to finite 

Number (1884: §54). 

Thus a suitable kind-concept F must permit of division into F’s, but permit no arbitrary division 

of F’s into further F’s. For example, the concept dog does not permit division of the members of 

its extension into more dogs. Moreover, while the concept sandwich does permit division of the 

members of its extension into more sandwiches, not everything that results from dividing a 

sandwich is itself a sandwich, and so this concept permits no arbitrary division. In contrast, the 

concept sand does permit of arbitrary division into more sand, assuming that everything that 

results from dividing some sand is also sand.47  

 Because numbers are generally applicable, Frege is convinced that contrary to 

appearances the axioms (or “laws”) of arithmetic more closely resemble general or common 

axioms than ones that are particular to a subject matter: 

As a matter of fact, we can count just about everything that can be an object of 

thought: the ideal as well as the real, concepts as well as objects, temporal as well as 

spatial entities, events as well as bodies, methods as well as theorems; even numbers 

can in their turn be counted. What is required is really no more than a certain 

sharpness of delimitation, a certain logical completeness. From this we may 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
47 This assumption is questionable. I return to the topic of count nouns in chapter 6.  
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undoubtedly gather at least this much, that the basic propositions on which arithmetic 

is based cannot apply merely to a limited area whose peculiarities they express in the 

way in which the axioms of geometry express the peculiarities of what is spatial; 

rather, these basic propositions must extend to everything that can be thought. And 

surely we are justified in ascribing such extremely general propositions to logic 

(1885: 1, emphasis added). 

This is a slight elaboration on an argument from the Grundlagen: 

The truths of arithmetic govern all that is numerable. This is the widest domain of all; 

for to it belongs not only the actual, not only the intuitable, but everything thinkable. 

Should not the laws of number, then, be very intimately connected with the laws of 

thought? (1884: §14). 

As Frege says, immediately after making the above-quoted remarks about vagueness: 

Thus the area of the enumerable is as wide as that of conceptual thought, and a source 

of knowledge more restricted in scope, like spatial intuition or sense perception, 

would not suffice to guarantee the general validity of arithmetical propositions (1882: 

164). 

Clearly then, Frege thinks not only that the laws of arithmetic are general, but also that their 

generality is explained by logicism, the view that they are analytic. Further, if the conclusion of 

this argument is to be established beyond all doubt, the laws of arithmetic must be derived from 

the laws of logic together with the purely logical notions expressed by Frege’s definitions of ‘0’, 

‘predecessor’ and ‘number’, without appeal to intuition or any other non-logical source of 

knowledge: 



! 65!

The problem becomes, in fact, that of finding the proof of the proposition, and of 

following it up right back to the primitive truths. If, in carrying out this process, we 

come only on general logical laws and on definitions, then the proposition is an 

analytic one, bearing in mind that we must take account also of all propositions upon 

which the admissibility of any of the definitions depends. If, however, it is impossible 

to give the proof without making use of truths which are not of a general logical 

nature, but belong to the sphere of some special science, then the proposition is a 

synthetic one (1884: §3). 

 Unlike the material that was discussed in the previous chapter, Frege’s derivation is not 

supposed to explain how arithmetical knowledge is actually acquired. Rather, all that is required 

to establish logicism is that the laws of arithmetic can be derived from logical laws:48  

We are concerned here not with the way they [the laws of arithmetic] are discovered 

but with the kind of ground on which their proof rests; or in Leibniz’s words, “the 

question here is not one of the history of our discoveries, which is different in 

different men, but of the connexion and natural order of truths, which is always the 

same” (ibid: §17). 

Nevertheless, Frege’s definitions are supposed to ensure that his derivation demonstrates the 

analyticity of arithmetic —the subject studied by mathematicians throughout history— as 

opposed to demonstrating the analyticity of another logically equivalent theory. For while the 

latter demonstration would be a significant achievement, it would be of questionable relevance to 

the doctrines of prior mathematicians and philosophers such as Kant, whose doctrines 

presumably concern arithmetic rather than its logical equivalents. Before I can explain how 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
48 This anticipates Reichenbach’s distinction between the logic of discovery and that of 
justification. See Reichenbach (1938).  
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Frege intends to achieve this, I must first describe some of the essential features of this 

methodology in more detail.  

 
3. Frege’s methodology 

 Frege takes for granted that language is the bearer of what, in his early writings, he calls 

“meaning” or “content” (1879, 1884), which is grasped by understanding language. He 

emphasizes that achieving full understanding may require reflection and analysis, because we 

often use language competently but unreflectively: 

Often it is only through enormous intellectual work, which can last for hundreds of 

years, that knowledge of a concept in its purity is achieved, by peeling off the alien 

clothing that conceals it from the mind’s eye (1884: vii). 

However, in Frege’s view, this is not the only route to understanding. For he is especially 

interested in the aspect of content that is relevant to logical entailment, and so discoverable by 

what can be inferred from it; thus, in his early writings at least, he is not interested in any 

difference between the contents of ‘The house is above the river’ and ‘The river is below the 

house’. Frege calls the aspect of content that is relevant to logical entailment “conceptual 

content:”49 

I remark that the contents of two judgments may differ in two ways: either the 

consequences derivable from the first, when it is combined with certain other 

judgments, always follow also from the second, when it is combined with these same 

judgments, [and conversely,] or this is not the case. The two propositions “The 

Greeks defeated the Persians at Plataea” and “The Persians were defeated by the 

Greeks at Plataea” differ in the first way. Even if one can detect a slight difference in 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
49 Compare the notion of “logical content” in Salmon (1992). 
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meaning, the agreement outweighs it. Now I call that part of the content that is the 

same in both the conceptual content. Since it alone is of significance for our 

ideography, we need not introduce any distinction between propositions having the 

same conceptual content (1879: §3). 

Assuming conceptual contents are individuated by their entailments, a necessary condition for 

understanding a sentence fully is to discover what it entails. Thus one of Frege’s goals is to show 

which true conceptual contents —henceforth “truths”— entail which:  

The aim of proof is, in fact, not merely to place the truth of a proposition beyond all 

doubt, but also to afford us insight into the dependence of truths upon one another. 

After we have convinced ourselves that a boulder is immovable, by trying 

unsuccessfully to move it, there remains the further question, what supports it so 

securely (1884: §2, emphasis mine). 

But the aforementioned condition is not sufficient for full understanding, assuming that one 

accepts Frege’s later distinction between the two aspects of content that he calls “sense” and 

“reference” (1892a). For as we will see, the sense expressed by a sentence—which Frege calls a 

“thought”— is individuated more finely than by its entailments.  

 In order to show which truths can be inferred from which, Frege represents truths with 

formulae in an unambiguous formal language that he calls “Begriffsschrift.” This requires all 

inferentially relevant aspects of content to be given syntactic representatives, which in turn must 

be given explicit definitions. Then, once the axioms, definitions and inference rules of the 

language are laid out, the network of logical relations among truths can be demonstrated, by 

showing how formulae of Begriffsschrift can be derived from others. In particular, Frege’s aim is 

to demonstrate that the laws of arithmetic are inferable from his definitions together with the 
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laws of logic, by deriving formulae of Begriffsschrift representing the former from those 

representing the latter.  

 Although Frege’s ambition is first and foremost to demonstrate the relationship of 

arithmetic to logical laws and notions, it seems to me that the methodological approach to 

understanding arithmetic that I have just described can be applied even in the absence of this 

particular logicist ambition. For one might argue that a correct analysis of arithmetic can be 

derived from laws, which although not purely logical, are nevertheless sufficiently general to 

explain arithmetic’s general applicability. For example, one might make this argument about the 

axioms of set theory, or about Euclid’s common notions, or towards some version of the Hume-

Cantor Principle (more of which later). Since the topic of general laws or axioms will be a major 

issue in this chapter, I will now look at Frege’s doctrines regarding these in more detail. 

 
4. Frege’s doctrine of the primitive truths 

 Regarding the laws of logic, Frege’s stated aim is to  

arrive at a small number of laws in which, if we add those contained in the rules, the 

content of all the laws is included, albeit in an undeveloped state (1879: §13).  

These are claimed to be “general laws, which themselves neither need nor admit of proof” (1884: 

§3). Frege characterizes these as “primitive truths:” 

Science demands that we prove whatever is susceptible to proof and that we do not 

rest until we come up against something unprovable. It must endeavor to make the 

circle of unprovable primitive truths as small as possible, for the whole of 

mathematics is contained in these primitive truths as a kernel (1914: 221). 

Frege also emphasizes that there is more than one way of logically systematizing Begriffsschrift, 

and as a result more than one set of primitive truths that can be taken as axioms: 
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Now it must be admitted, certainly, that the way followed here is not the only one in 

which the reduction can be done. That is why not all relations between the laws of 

thought are elucidated by means of the present mode of presentation. There is perhaps 

another set of judgments from which, when those contained in the rules are added, all 

laws of thought could likewise be deduced (1879: §13). 

And again: 

Whether a truth is an axiom depends therefore on the system, and it is possible for a 

truth to be an axiom in one system but not in another (1914: 222). 

Clearly then, the requirement that the primitive truths are unprovable has to be distinguished 

from their being underivable, since one or another of them may have to be derived in a given 

systematization of Begriffsschrift. So what does Frege mean by “unprovable?” Burge suggests a 

plausible answer: 

[B]asic truths are unprovable in the sense that they cannot be grounded or given a 

justification by being derived from other truths. They can be derived, according to 

logical rules, from other truths within certain systems. But the derivations would not 

be justifications, groundings, or proofs in this epistemically fundamental sense…  

… although some basic truths might be expressed as theorems in a formal system, 

they are not, from the point of view of the natural order of justification or proof, 

essentially derivative. They are essentially basic. But in the relevant system, they 

would not be axioms. Thus not all basic truths that are candidates for being axioms 

are, relative to a given system, in fact axioms (2005: 314). 

Assuming this is correct, then how are we to discern that a truth is unprovable, if not by the fact 

that it is underivable? 
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 Clearly Frege does not think that the primitive truths must be obviously self-evident. For 

even assuming that he believes that primitive truths are somehow self-evident or self-justifying, 

he is clearly skeptical of our ability to recognize this unreflectively: 

Proof is now demanded of many things that formerly passed as self-evident (1884: 

§1). 

Another route to the discovery of the primitive truths that Frege appears to harbor doubts about, 

is conceptual analysis of the notions they concern, as is shown by his prophetic discussion of 

Basic Law V governing extensions of concepts:  

extension(Φ) = extension(Σ) ↔ ∀x (Φx ↔ Σx) 

Concerning extensions (which in his later work are value-ranges of functions) Frege says: 

A dispute can break out here, so far as I can see, only with regard to my fundamental 

law concerning value-ranges (V), which has not yet perhaps been expressly 

formulated by logicians, although one has it in mind, for example, when speaking of 

extensions of concepts (1893: vii). 

Frege also says in retrospect that he adopted Basic Law V on the basis of considerations of 

fruitfulness (or productivity), not self-evidence: 

I have never disguised from myself its lack of self-evidence that belongs to the other 

axioms and that must properly be demanded of a logical law… I should gladly have 

dispensed with this foundation if I had known of any substitute for it. And even now I 

do not see how arithmetic can be scientifically established and brought under review; 

unless we are permitted – at least conditionally – to pass from a concept to its 

extension (ibid: appendix). 
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What this example shows is that if one wants to argue for a primitive truth based on its 

fruitfulness, one must be careful to establish that this is not just wishful thinking. In order to do 

this one must, in Frege’s words, 

obtain a clear insight into the network of inferences that support our conviction. Only 

in this way can we discover what the primitive truths are, and only in this way can a 

system be constructed (1914: 221). 

That is, one must explore Frege’s system and different variants of it, in order to realize what they 

entail, and to realize that all such variants must be founded on subsets of the same set of 

consistent truths. This set should therefore be accepted as the set of primitive truths.  

 I believe that Frege could and should supplement this with the following argument. One 

should accept his truths as primitive because doing so allows one to make what promises to be a 

highly non-trivial discovery, namely what we would call “the right modeling” of arithmetic. That 

is, one should accept truths as primitive because Frege’s derivation allows us, for the first time, 

to fully grasp the senses of the axioms of arithmetic, by fully analyzing terms like ‘number’ and 

‘predecessor’, as well as demonstrating the relation of these axioms to the axioms of logic.  

 This argument from fruitfulness raises a very important question. Do Frege’s definitions 

ensure that the formulae he derives really express the senses of the axioms of arithmetic? Or do 

these formulae express truths that are logically equivalent to the axioms while differing in sense? 

This question is not only of relevance to assessing whether we should accept Frege’s axioms. For 

as we saw at the end of section 2, it is also of broader relevance to assessing whether Frege has 

any reasonable claim to have achieved his goal of demonstrating the analyticity of arithmetic —

the subject studied by mathematicians throughout history— as opposed to demonstrating the 

analyticity of another logically equivalent theory. A similar question is also relevant when 
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assessing any attempt —logicist or otherwise— to derive arithmetic from purportedly primitive 

truths.  

 Next I will describe the definitions that Frege uses in his derivation, before turning to his 

criterion for preserving the senses of the axioms of arithmetic.  

 
5. Frege’s definitions 

 Frege distinguishes between two kinds of definitions. The first kind requires the 

introduction of a new simple expression of Begriffsschrift and the stipulation of its definiens. The 

second kind requires the introduction of a simple expression of Begriffsschrift corresponding to 

another simple expression, such as ‘predecessor’, that is already in use. In this kind of case, the 

definiens is not simply stipulated but discovered by conceptual analysis, before being assigned to 

the expression of Begriffsschrift by stipulation. This is especially important, since the 

inferentially relevant content of ‘predecessor’ may not be evident from its surface simplicity. Of 

this kind of definition Frege remarks that one can only assert its correctness after analysis “when 

this is self-evident,” and so “what we should here like to call a definition should really be 

regarded as an axiom” (1914: 227). Both stipulated and axiomatic definitions assign sense and 

reference to their definienda. 

 In what follows I use ‘=’ and Frege’s symbol ‘≡’ subscripted to indicate identity of sense, 

even though Frege may not have had sense, as distinct from conceptual content, explicitly in 

mind in his earlier writing. I begin by giving Frege’s definitions of ‘equinumerous’, ‘the number 

which belongs to the concept F’, ‘0’, ‘predecessor’ and ‘natural number’.50 Frege’s definition of 

‘equinumerous’ is: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
50 Of course Frege also needs logical definitions of the relevant arithmetical operations.  
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there exists a relation [R] which correlates one-to-one the objects falling under the 

concept F with those falling under the concept G (1884: §72). 

We can represent this in modern notation as follows: 

Equinumerous(F, G) ≡df ∃R[∀x∀y∀z∀u (Rxy /\ Rzu " x = z ↔ y = u ) /\"∀x (Fx"""∃z 

(Gz /\ Rxz)) /\"∀z (Gz ""∃x (Fx /\ Rxz))] 

Next I turn to ‘the number which belongs to the concept F’. For this I introduce a variable-

binding operator ‘#’ that attaches to an open formula ‘Fx’ to form a term ‘#x: Fx’, which is then 

defined so as to refer to a certain kind of logical object, namely the extension of a second-level 

concept, where the concept in question is that of being equinumerous with a given first-level 

concept (ibid, §68): 

#x: Fx =df the extension of the concept equinumerous with the concept F 

Frege does not define the notion of an extension of a concept, since he believes it to be a well-

understood part of logic that like the notions of a function and an argument, cannot be defined in 

more basic terms, but only “elucidated.”  

 Having defined ‘#x: Fx’ I follow Frege in defining ‘0’ as follows (ibid: §74): 

0 =df #x: x ≠ x 

Frege’s definition of ‘m immediately precedes n in the number sequence’ is: 

there exists a concept F, and an object falling under it x, such that the Number which 

belongs to the concept F is n and the Number which belongs to the concept ‘falling 

under F but not identical with x’ is m (1884: §76). 

For this I introduce ‘P(m, n)’ and define it as follows: 

P(m, n) ≡df  ∃F ∃x (Fx /\ [#y: Fy] = n /\ [#y: Fy /\ y ≠ x] = m) 
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To define the general term ‘natural number’, Frege begins with the notion of a sequence (or 

ordering), the members of which are related by an arbitrary binary relation R, such that y follows 

x in the R-sequence just in case y can be reached from x by finitely many iterations of R (1879: 

§24). Given that Frege’s aim is to establish logicism, it is absolutely crucial to introduce a 

symbol corresponding to ‘y is the same as x, or follows x in the R-sequence,’ and define it 

without using ‘reached from x by finitely many iterations’, or any other intuitive notion. This 

symbol will be ‘R*=(x, y)’. But first Frege defines the notion of a concept G being hereditary in a 

sequence with respect to R (1879: §24): 

Her(G, R) ≡df ∀x(Gx " ∀y(Rxy " Gy)) 

Since R is an arbitrarily chosen relation and the first-order variables x and y range over all 

objects, Frege will be able to define the natural numbers in terms of something more general 

(something a little bit like the modern set-theoretic notion of an inductive set). The ancestral 

relation R* of R is then defined as relating x to y just in case y falls under every hereditary 

concept that x does (ibid: §26):  

R*(x, y) ≡df ∀G(Her(G, R)"" (∀z(Rxz " Gz) "Gy)) 

The weak ancestral relation R*= of R can then be introduced and defined in terms of the ancestral 

of R as follows (ibid: §26): 

R*= (x, y) ≡df R*(x, y) \/ x = y 

Since Frege has defined ‘0’ and the immediately preceding relation ‘P(m, n)’, we can introduce 

‘Natural number(n)’ and define it in terms of the weak ancestral of the immediately preceding 

relation, such that n is a natural number just in case n is the same as 0, or follows it in the P-

sequence (1884: §83): 

Natural Number(n) ≡df  P*= (0, n) 
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By these definitions, each natural number falls under every concept under which 0 falls and 

which is hereditary with respect to the immediately preceding relation. So we see that Frege has 

defined the numbers in such a way that a version of mathematical induction is true of them. 

Frege then sketches how he can use the aforementioned version of induction to derive formulae 

representing the axioms of arithmetic, such as that every number has a successor (ibid: §78-83).  

 
6. Frege’s views on analysis 
 
 At the end of section 4 I raised the question of whether Frege’s definitions ensure that the 

formulae he derives really express the senses of the axioms of arithmetic. Patricia Blanchette 

separates this into two related questions.51 Firstly, what are the conditions under which two 

sentences express the same thought? Secondly, how are the analysandum and analysans of a 

successful analysis related? Following the order of Blanchette’s discussion, I begin with her first 

question. 

 Blanchette discerns two candidates to be Frege’s condition for when two sentences 

express the same thought. Firstly, Frege sometimes endorses the view that two sentences to 

express the same thought if and only if they are in his words “equipollent:” 

If both the assumption that the content of A is false and that of B true, and 

assumption that the content of A is true and that of B false lead to a logical 

contradiction, and if this can be established without knowing whether the content of 

A or B is true or false, and without requiring other than purely logical laws for this 

purpose, then nothing can belong to the content of A as far as it is capable of being 

judged true or false, which does not also belong to the content of B (1906: 70). 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
51 Blanchette (2012: Ch. 2 & 4). 
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 According to this proposal, two sentences express the same thought just in case it can be 

shown by logic that the assumption that the content of one is false and the other true leads to a 

contradiction. In other words, they express the same thought just in case they are logically 

equivalent, standing in exactly the same derivational relationships to all other sentences. This 

would explain why intellectual work is still needed to see that two sentences express the same 

thought; it is because one would have to undertake the logical work necessary to appreciate that 

they stand in exactly the same derivational relationships with all other sentences.52 Nevertheless, 

this criterion cannot be correct, since it threatens to collapse all logical equivalents into the same 

thought, and is incompatible with Frege’s oft repeated view that for example ‘24 = 42’ and ‘4 · 4  

= 42’ express different thoughts.53 

The other criterion of Frege’s that Blanchette considers is one she calls the “cognitive criterion:”  

[T]wo sentences to express the same thought iff a speaker who understands both of 

them and assents to one must, on pain of incoherence, also be disposed to assent to 

the other (2012: 33)  

She rejects this on the grounds that it is in tension with Frege’s reason for believing that there are 

objective and publicly graspable thoughts, which is that this doctrine explains how it is possible 

for scientific knowledge —such as that of the Pythagorian Theorem— to be transmitted from 

generation to generation. She writes: 

The picture of temporally distant scientists investigating the same thoughts fits well 

with Frege’s remarks concerning the possibility of a common science and of his 

repeated claims that the theorems of a science are a determinate collection of 

thoughts. The difficulty with this approach from a Fregean point of view is that it 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
52 Blanchette (ibid: 45). 
53 See for example Frege (1891, 1893).!
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doesn’t sit neatly with the fine-grained individuation of thoughts given by the 

cognitive criterion. For on that criterion, Newton and Weierstrass’s sentences express 

the same thoughts only if they are something like easily recognizable synonyms, 

sentences with respect to which it would be obviously incoherent to affirm one 

without affirming the other. And this strong kind of semantic equivalence is, it seems, 

considerably too demanding: whatever mathematicians aim for over the course of 

mathematical development, obvious synonymy with their predecessor’s sentences is 

clearly not it (ibid: 34-5).  

In a moment I will show that there is another strong kind of semantic equivalence that does not 

require such equivalence to be obvious. But first I turn to Blanchette’s discussion of the relation 

between the analysandum and analysans of a successful analysis.  

 As Blanchette notes, Frege’s view is that speakers often understand language imperfectly, 

hence his talk of the enormous intellectual work that is required to acquire knowledge of a 

concept in its purity (1884: vii). Given this, it is tempting to ascribe to Frege the following two 

views: (a) that the relation between the analysandum and analysans should be synonymy, and (b) 

that synonymy need not be obvious to speakers whose understanding of the analysandum is 

imperfect. As Blanchette points out, this fits nicely with Frege’s view that conceptual refinement 

in some areas of mathematics proceeds in part by analysis, through which mathematicians gain 

an increasingly clear understanding of the same stock of thoughts. Despite this, Blanchette offers 

three reasons for thinking that (a) and (b) are jointly incompatible with the cognitive criterion: 

Firstly, there is the implausibility of the idea that ordinary speakers fail to understand 

what is meant by such simple sentences as “3 is greater than 2.” Secondly, this picture 

makes it entirely mysterious how the sentences of arithmetic could have come to 
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express the senses they do, if these senses had been, prior to Frege’s work, grasped by 

nobody. Finally… if the criterion of a successful analysis is thought identity, but the 

identity… is not something that can be straightforwardly assessed by those who have 

an ordinary grasp of what those sentences say (when this falls short of the rarefied 

level of “understanding” suggested by Frege…), then the criterion is of no use for 

assessing the correctness of a given analysis (ibid: 81). 

I will now respond to each of these points in turn.  

 Firstly, Frege is not committed to the view that ordinary speakers fail to understand 

arithmetical sentences. For he can say that such speakers have what Burge calls “competence 

understanding,” which is the kind of minimal understanding required to use expressions correctly 

(see chapter 1, section 12). That is, ordinary speakers can have enough consciously accessible 

knowledge of the sense or objective condition to be the referent of an expression, to use it 

correctly, without thereby having reflective understanding of this condition, such that they can 

articulate it in an analysis.54 For example, a mathematician can have perfect competence 

understanding of particular numerals and of the general term ‘natural number’ —including 

competence that extends to numbering “the ideal as well as the real, concepts as well as objects” 

(Frege: 1885: 1)— without being able to articulate in an analysis the condition that numbers 

apply to kind-concepts. For this reason, as Frege is fond of pointing out, competent 

mathematicians often speak falsely when they try to articulate what they understand ‘natural 

number’ to mean.55 The reason that they lack reflective understanding may simply be that they 

have not performed the necessary analysis of how particular numerals and ‘natural number’ are 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
54 See Burge (2013). 
55 The corresponding point can be made in defense of Frege’s definition of ‘P(m, n)’ as well, but 
doing so is harder. I will return to it in section 7. 
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used, and so are unable to define these terms so as to articulate the condition that numbers apply 

to kind-concepts. Or, as is the case with some ancient mathematicians like Euclid, it may also be 

that the post-algebraic conception of generality that is necessary for logical analysis is not 

available at the time (see section 2).56  

 To Blanchette’s second point, if the distinction between competence understanding and 

reflective understanding is accepted, then there is arguably no problem for Frege about how 

arithmetical expressions come to express senses that are “grasped by nobody” (ibid). For by 

being used in ordinary arithmetical practice, arithmetical expressions come to express senses, of 

which ordinary speakers have competence understanding. For example, because the expression 

‘one-to-one correlation’ is used by people who have some knowledge of logic, understand count 

nouns and can correlate the members of their extensions one-to-one, it comes to express the 

sense of ‘Equinumerous(F, G)’, of which said people have competence understanding. 

Admittedly it is somewhat unclear how, on Frege’s account, we can deduce from this 

understanding an understanding of particular numerals. But I believe that an account of this is in 

prospect, as I will explain in the final chapter.  

 Finally, one can agree with Blanchette that thought identity is not something that can be 

straightforwardly assessed by those who have an ordinary grasp of what the relevant sentences 

say, while disagreeing with her claim that the cognitive criterion is of no use for assessing the 

correctness of a given analysis. For, in my view, an “ordinary grasp” of what a sentence ‘S’ says 

is competence understanding of ‘S’, when it is reflective understanding that is needed to assess 

the correctness of a given analysis by the cognitive criterion. One cannot assess an analysis 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
56 The case of Newton and Weierstrass is harder. It may be that Newton not only lacked the 
theoretical tools to articulate Weierstrass’ analysis of the concept of the derivative, but also 
lacked full competence understanding of the concept itself. I have yet to give this case the 
attention it deserves.!!
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anthropologically, by asking ordinary speakers whether the analysis is correct. Rather, as I have 

already indicated, one must instead reflect on how expressions are correctly used in 

mathematical practice, so that one can articulate, in an analysis, the conditions that guide their 

correct usage. It is only after such analysis has been performed that the cognitive criterion should 

be applied. In Frege’s words: 

The fact is that if we really do have a clear grasp of the sense of the simple sign, then 

it cannot be doubtful whether it agrees with the sense of the complex expression. If it 

is open to question although we can clearly recognize the sense of the complex 

expression from the way it is put together, then the reason must lie in the fact that we 

do not have a clear grasp of the sense of the simple sign, but that its outlines are 

confused as if we saw it through a mist. The effect of the logical analysis of which we 

spoke will then be precisely this —to articulate the sense clearly (1914: 228). 

This suggests the following condition that I will call “the strict cognitive criterion of synonymy 

for simple expressions:” 

Two expressions express the same sense iff one is syntactically simple and a speaker 

who fully reflectively understands both of them, cannot, on pain of incoherence, 

doubt that they express the same sense. 

While I am sympathetic to the strict cognitive criterion, I do not accept the corresponding version 

for sentences: 

Two sentences to express the same thought iff a speaker who fully reflectively 

understands both of them and assents to one must, on pain of incoherence, also be 

disposed to assent to the other. 
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This will not do for the following reason. Consider a speaker who understands the recursive 

definitions of the arithmetical operations, including the definition of exponentiation in terms of 

repeated multiplication. Suppose this speaker fully reflectively understands both ‘24 = 42’ and ‘4 

· 4  = 42’. It seems reasonable to say that she cannot assent to one without being disposed to 

assent to the other. Yet on Frege’s mature view these express different thoughts. So we are still 

in need of a Fregean criterion for when two sentences are synonymous.  

 A proposal that Blanchette does not consider is the one that I call “the strict Fregean 

criterion for sentences:” 

Two sentences to express the same thought iff one sentence can be obtained from the 

other by the substitution of synonyms for synonyms, in accordance with the strict 

cognitive criterion of synonymy for simple expressions.57  

Obviously this criterion accords closely with Frege’s remarks about definition and analysis. 

Further, and putting analysis to one side for a moment, it can explain why ‘24 = 42’ and ‘4 · 4  = 

42’ express different thoughts. Since ‘24’ and ‘4 · 4’ are both syntactically complex, no 

substitution of one for the other is allowed by the strict cognitive criterion of synonymy for 

simple expressions. Rather, the senses that they express are determined by the senses of their 

parts and how these are combined. These senses are in turn conditions to be the referents of these 

parts. Further, the condition to be the referent of the expression ‘__4’ is not the same as the 

condition to be the referent of the expression ‘__· __’; and, correspondingly, these expressions 

are not used correctly in the same way. So one cannot simply replace one with the other. The 

strict Fregean criterion for sentences reflects that this fact remains, even in the event that a 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
57 This is closely related to Alonzo Church’s Alternative (0). According to Church alphabetic 
change of bound variables is also allowed. See Church (1946). See also Salmon (2010). I am 
grateful to Salmon for teaching me about Church’s work on the topic of sense identity. 
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speaker who fully reflectively understands both ‘24 = 42’ and ‘4 · 4  = 42’, and assents to one, 

must, on pain of incoherence, also be disposed to assent to the other. The criterion thus yields 

more insight into the theory of sense than does the cognitive criterion for sentences. (By the way, 

the above story about ‘24’, ‘4 · 4’ etc. provides —as it must— a solution to the most interesting 

examples of Frege’s puzzle (those concerning the content of mathematical equations), since it 

can explain why ‘24 = 42’ and ‘4 · 4  = 42’ are both true and informative.) 

 Returning to the topic of analysis, I will now illustrate how two non-trivial Fregean 

analyses can be argued to preserve the thought expressed according to the strict Fregean 

criterion. First of all I use the example of the transitivity of following in the R-sequence: 

i. ∀xyz [(y follows x in the R-sequence /\ z follows y in the R-sequence) "         

z follows x in the R-sequence] 

ii. ∀xyz [(R*(x, y) /\ R*(y, z)) "R*(x, z)]                  (Symbol!of!Bgr) 

iii. ∀xyz [(∀G(Her(G, R)"" (∀u(Rxu " Gu) "Gy))) /\ (∀G(Her(G, R)"" 

(∀u(Ryu " Gu) "Gz))) " (∀G(Her(G, R)"" (∀u(Rxu " Gu) "Gz)))] 

            (Def!of!R*(x,#y))!

This allows debate to focus on whether ‘∀G(Her(G, R)"" (∀u(Rxu " Gu) "Gy))’ expresses a 

correct analysis of ‘y follows x in the R-sequence’ by the strict cognitive criterion. If it does, then 

Frege can reasonably claim to be refining our understanding of the same thought about 

transitivity that was grasped but not reflectively understood by prior mathematicians.  

 The second example is Frege’s analysis of ‘0 is the predecessor of 1’, which Blanchette 

claims does not preserve the thought expressed.58 Here it will be helpful to recall that  

P(m, n) ≡df  ∃F ∃x (Fx /\ [#y: Fy] = n /\ [#y: Fy /\ y ≠ x] = m) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
58 Blanchette (ibid: 100). 
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and that 

#x: Fx =df the extension of the concept equinumerous with the concept F.  

In what follows I will represent the definiens of ‘#x: Fx’ as ‘ext(≈F)’: 

1. P(0, 1) 

2. ∃F ∃x (Fx /\ [#y: Fy] = 1 /\ [#y: Fy /\ y ≠ x] = 0)                                  (Def!of!P) 

3. ∃F ∃x (Fx /\ ext(≈F) = 1 /\ [#y: Fy /\ y ≠ x] = 0)             (Def!of!#y:!Fy) 

4. ∃F ∃x (Fx /\ ext(≈F) = ext(≈identical with ext(≈non-self-identical)) /\ [#y: Fy /\     

y ≠ x] = 0)                               (Def!of!1) 

5. ∃F ∃x (Fx /\ ext(≈F) = ext(≈identical with ext(≈non-self-identical)) /\    

ext(≈falling under F but not identical with x) = 0)              (Def!of!#y:!Fy!/\!y!≠!x) 

6. ∃F ∃x (Fx /\ ext(≈F) = ext(≈identical with ext(≈non-self-identical)) /\              

ext(≈ (falling under F but not identical with x) = ext(≈non-self-identical)  

                               (Def!of!0) 

Thus the Fregean analysis of ‘0 is the predecessor of 1’ can be shown to preserve the thought 

expressed by its analysandum, assuming that Frege’s definitions are synonymous with the 

corresponding ordinary notions in accordance with the strict cognitive criterion of synonymy for 

simple expressions.   

 A potential obstacle to accepting the strict Fregean criterion of synonymy for sentences is 

that it is precludes the two sides of an abstraction principle from being synonymous. Consider for 

example the Hume-Cantor principle known as “HP:”  

#x: Fx = #x: Gx ↔ Equinumerous(F, G).  

The problem is that ‘#x: Fx = #x: Gx’ is syntactically complex, and so its sense —relative to an 

assignment of concepts to ‘F’ and ‘G’— is determined by the senses of its parts and how these 
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are combined; therefore, by the strict Fregean criterion, it cannot be synonymous with the 

following:  

∃R [∀x∀y∀z∀u (Rxy /\ Rzu " x = z ↔ y = u ) /\"∀x (Fx"""∃z (Gz /\ Rxz)) /\"∀z (Gz ""

∃x (Fx /\ Rxz))] 

However, the objection continues, the two sides of an abstraction principle must be synonymous, 

since this is required for Frege to give an implicit contextual definition of ‘#x: Fx’ that 

supplements his failed attempt at a recursive definition of ‘number’ at Grundlagen §56.  

 This objection results from the tendency to think of (consistent) abstraction principles 

like HP as implicit definitions,59 and of their role in Frege’s project as definitions of the second 

kind discussed in section 5, the kind that Frege claims should really be regarded as axioms but 

nevertheless assign sense and reference to their definienda.60 But, as Nathan Salmon argues, this 

view of abstraction principles is not a view that is shared by Frege, being at odds with his very 

clear remarks on definitions, in which he requires that definienda be simple. Further, Salmon 

argues, HP cannot define ‘#x: Fx’ because of the Caesar problem properly understood. 

According to Salmon, the Caesar problem is not that HP fails to provide a criterion of identity 

and individuation for numbers, but that, like all improper definitions, HP together with the non-

semantic facts fails to specify the sense and reference of  ‘#x: Fx’. On this reading of Frege, he is 

as opposed to HP qua definition by abstraction as he is to the improper definition offered at 

Grundlagen §56, and for the same reason: neither determines sense and reference.61 This 

explains why he raises the Caesar problem in both instances. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
59 See for example Linnebo (2004), Wright (1983). 
60 See for example Blanchette (ibid: 91), Beaney (1997: 316, fn 9).  
61 See Frege (1893, vol II: §66; 1914: 224-7). See also Salmon (forthcoming). 
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 So what does Frege suppose the role of HP to be? In my view, abstraction principles like 

HP place constraints on how Begriffsschrift is to be extended, by requiring that the new terms on 

the left hand side be defined so as to refer to things that are identical if and only if the entities 

indicated on the right hand side stand in the relevant equivalence relation. For example, HP 

requires that ‘#x: Fx’ and ‘#x: Gx’ be defined so as to refer to things that are identical if and only 

if Equinumerous(F, G). If I am correct about this, then HP is merely a condition that any 

acceptable definition of ‘#x: Fx’ must be shown to satisfy, by substituting the definition into HP 

and deriving the resulting sentence as a theorem, just as Frege tries to do at Grundlagen §73. 

Finally, to return to the main point of contention, laying down such a condition does not require 

that the two sides of HP be synonymous, given that the right hand side is not supposed to assign 

sense and reference to the left hand side. 
 To take stock, I can see no obstacle to saying that if Frege’s analyses of the arithmetical 

primitives are correct, then derived sentences of Begriffsschrift can be synonymous with their 

corresponding ordinary arithmetical sentences, without this being easily recognizable or obvious 

to someone who has not yet undertaken an analysis of the ordinary arithmetical sentences. 

Further, if such synonymy is achieved, then Frege can claim to have demonstrated the analyticity 

of arithmetic —the subject studied by mathematicians throughout history— as opposed to 

demonstrating the analyticity of another logically equivalent theory. 

 Now we have a clearer view of what Frege’s aims and methods are, I propose to evaluate 

his derivation by asking the following questions: 

(Q1) Which axioms are needed to derive the formulae of Begriffsschrift necessary to 

demonstrate that arithmetic is analytic? 

(1.a) Are these really primitive truths of pure logic? 
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(1.b) Are they self-evident, like Frege’s like Basic Law I: Q → (P → Q)? 

And recalling the discussion of fruitfulness in section 4: 

(1.c) If the axioms are not self-evident but fruitful, why should we accept them as 

primitive truths? 

Turning to Frege’s definitions of the arithmetical primitives: 

(Q2) Do the definitions in Begriffsschrift explicate the senses of their ordinary 

arithmetical correspondents accurately? 

(2.a) Do the definiens include anything arbitrary or ad hoc? 

(2.b) Do the definiens omit anything?62 

I begin with Frege’s definitions. 

 
7. Assessing Frege’s definition of number 

 Beginning with (Q2), the first issue is whether we should accept Frege’s claim that the 

notion to be defined is ‘the number which belongs to the concept F’. In this regard, Frege argues 

persuasively that a statement of number is an assertion about a concept (1884: §46). He then 

supplements his argument for this conclusion by pointing out that it also explains the generality 

of or “extensive applicability of number” (ibid: §48). This analysis of the use of number-

expressions in ordinary language is persuasive.  

 Matters are complicated by Frege’s conviction that numbers are objects, not concepts. 

This conviction is partly based on his observation that numbers are referred to with definite 

descriptions like ‘the number 1’, as well as in arithmetical statements like ‘2 is prime’ and ‘1 + 1 

= 2’ (ibid: §57). But it is also based on a consideration relating to the general applicability of 

numbers, since it is in part because numbers themselves can be counted that Frege believes that 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
62 The distinction between (2.a) and (2.b) is emphasized helpfully by Burgess (2005). 
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they are objects. Further, since the need to account for this fact is one of the reasons that Frege 

introduces extensions, the next question we must answer is then, whether his definition of ‘the 

number which belongs to the concept F’ as 

the extension of the concept equinumerous with the concept F,  

explicates the sense of its target notion accurately.  

 A point in Frege’s favor is that according to his definition, 0 does not have “second-rate” 

status as a pseudo-number, but is the extension of the concept equinumerous with the concept not 

identical with itself. Another point in Frege’s favor is that his definition of ‘P(m, n),’ preserves 

the thought that the predecessor of n is the number belonging to a concept under which falls 

exactly one less thing than falls under a concept to which n belongs. For example, since 5 

belongs to the concept surviving members of White Rhinoceros species as of June 2015, the 

predecessor of 5 belongs to the concept surviving members of White Rhinoceros species as of the 

present day, under which falls exactly one less rhino, due to the recent death of Nabire at a zoo 

in the Czech Republic.  

 However, the following questions still need to be addressed: 

(2.a) Do the definiens include anything arbitrary or ad hoc?  

(2.b) Do they omit anything? 

Beginning with (Q2.a), the obvious worry is that Frege’s definitions of ‘the number which 

belongs to the concept F’, ‘0’ and ‘P(m, n)’ do include content that is ad hoc. Firstly there is the 

notion of an extension, the use of which Frege says explicitly is something to which he “attaches 

no decisive importance” (ibid: §107). Secondly, there is the fact that instead of defining ‘#x: Fx’ 

so as to refer to the extension of the concept equinumerous with F, one could instead define it to 
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refer to the extension of the concept equinumerous with F or some sub-concept of F.63 This 

proposal is incompatible with Frege’s, and yet there would seem to be no reason to favor one 

over the other. But this shows that the choice between the proposals is arbitrary and to this extent 

ad hoc. 

 I think that the following response is open to Frege. The sense of an expression is the 

objective condition to be its referent, which is discovered by analyzing how that expression is 

used in scientific discourse. Analysis does not reveal a condition that uniquely determines the 

referent of ‘the number belonging to the concept F’, but it does reveal a conjunction of 

conditions that all acceptable definitions must meet if they are to be sufficiently faithful to 

ordinary usage:  

(i) Numbers are objects which belong to kind-concepts 

(ii) For any number n, the predecessor of n is the number belonging to a concept under 

which falls exactly one less thing than falls under a concept to which n belongs 

(iii) HP 

My proposal is that so long as Frege’s definition meets these conditions, he can adopt a 

mathematician’s indifference regarding exactly which definition he chooses. This proposal is 

analogous to the one in section 4 about how to establish which truths are primitive, which, it will 

be recalled, is that all acceptable variants of Frege’s system must be founded on some subset of 

the same set of consistent truths, which are therefore understood to be the primitive truths. The 

analogy is that while there is some flexibility regarding the choice of both primitive truths and 

definitions, analysis reveals that there are conditions that all acceptable choices must satisfy.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
63 Benaceraff (1965), Fine (2002).  
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 I now turn to a more serious objection to Frege’s definition, which is that it is in tension 

with his other theoretical commitments, as can be seen in the following way. The extension of 

the concept equinumerous with the concept F is the extension of a second-level concept, 

containing exactly those first-level concepts that are equinumerous with F. This presupposes that 

one can collect concepts into extensions, which in turn requires treating them as objects. The 

same presupposition is also made when Frege argues for the general applicability of number, by 

using the example of “counting concepts as well as objects” (1885: 1). But the claim that one can 

count concepts and collect them into extensions is at odds with Frege’s claims that anything that 

one can denote with a complete expression is an object.64 The problem is that if one can count 

concepts or collect them into extensions, then one can also denote them with a complete 

expression. But in that case, according to Frege, one treats them as objects, and so counts or 

collects the corresponding extensions instead. This is why, according to Frege’s later proposal, 

‘#x: Fx’ refers to the extension of the first-level concept containing exactly those extensions that 

are equinumerous with F.  

 By making this move, Frege encounters another problem relating to the general 

applicability of numbers.65 Numbers themselves can be counted, as Frege is fond of illustrating 

with the example of how many roots a given equation has. Suppose that 3 is a root of an equation 

E. Then 3 is included in the extension of the concept being a root of E. Further, since numbers 

can be counted, suppose that the number of roots of equation E is 3. By this supposition and by 

definition, the extension of the concept being a root of E is included in 3, since 3 is by definition 

the extension that includes all and only three-membered extensions. But then later Frege’s 

extensions are non-well-founded in the most elementary way: one can have two extensions x and 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
64 Frege (1892b). This is the notorious “concept horse” problem. I will return to this in chapter 6. 
65 I learned of this objection from Kripke (forthcoming). I am not sure to whom it is due.!
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y such that x is included in y and y is included in x. So later Frege must either give-up the claim 

that numbers can be counted, or the well-foundedness of extensions. This is not a problem for 

early Frege, since by definition his extensions contain concepts not extensions. But then early 

Frege must tell us how it is that we can count and collect concepts rather than their 

corresponding extensions.  

 Matters are complicated further by the fact that early Frege concedes that relational 

predicates that apply to extensions —such as ‘is wider than’ and ‘is included in’— do not apply 

to numbers (ibid: §69). This is especially clear in the case of 0, which is most certainly not 

included in 1. Since Frege concedes this point, and yet nevertheless proposes to identify numbers 

with things he calls “extensions,” it is somewhat tempting to conclude that he is using this term 

to indicate something that is not subject to the inclusion relations that logicians ordinarily 

associate with extensions, and thus should not be called “extensions.” Instead they might be 

labeled “extension#.” Could later Frege use this to block the inference, from the definition of ‘3’, 

to the conclusion that the extension of the concept being a root of E is included in 3? I don’t 

think so, since numbers, being members of extensions of concepts like being a root of E, must be 

included in other numbers, for otherwise they could not be counted and numbered. I will say no 

more about this objection for the moment, and will instead discuss a set-theoretic response to it, 

as well as the topic of well-foundedness, in chapter 4.  

 There is yet another argument showing that Frege’s definition is incorrect, by invoking 

modal considerations, which reflect Kripkean developments in semantics that are, to my 

knowledge, usually ignored in the philosophy of mathematics. These considerations make 

trouble for Frege, when taken together with the fact that for Frege, the referent of a numeral such 
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as ‘1’ is an extension, and this extension contains either extensions or concepts with extensions, 

that in turn contain contingently existing objects.66 The argument can be stated as follows: 

(1) Extensions of concepts are individuated by their members. 

(2) Extensions of concepts contain the same members in every possible world in which they 

exist. (By 1.) 

(3) Extensions of concepts do not contain non-existent objects.  

(4) Actual extensions of concepts only exist in other possible worlds in which all of their 

actual members also exist (By, 2, 3.) 

(5) There is a possible world w in which Richard Carpenter does not exist.  

(6) The actual extension of the concept surviving member of the Carpenters does not exist in 

w. (By 4, 5.) 

(7) The actual extension containing all and only one-membered extensions (which I will refer 

to as ‘C’) contains the actual extension of the concept surviving member of the 

Carpenters. 

(8) C does not exist in w. (By 4, 6, 7.) 

(9) The number 1 exists in w. (Assumption.) 

(10) The number 1 is not identical with C in w. (By 8, 9.) 

Thus, on Frege’s definition, different entities are identical with 1 in different possible worlds. 

This is excessively implausible, since 1 surely does not vary from world to world. Moreover, 

together with Frege’s doctrine that the sense of ‘1’ is the condition to be its referent, it commits 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
66 This argument is a slight modification of one due to Hambourger (1977). Salmon discovered a 
version of this argument independently, but has not published it.  
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him to the equally implausible consequence that ‘1’ refers to different entities in different 

possible worlds, and is consequently a non-rigid designator.67  

 One alternative to accepting these implausible results is to identify 1 with the same 

extension in all possible worlds, while denying that (9) and (5) can be true together. This is to 

deny that there exists a world in which 1 exists and Richard Carpenter does not exist. But since 

the choice of Carpenter was arbitrary, this is to deny that there exists a world in which 1 exists 

and some contingently existing object does not exist. This result is also excessively implausible. 

Of course one could sidestep the whole issue, if one could provide a set-theoretic definition of 

number, since pure sets do not contain contingently existing objects, but only other sets. But 

discussion of such definitions will have to wait until chapter 4. 

 Turning finally to (Q2.b), one might worry that when analyzing our ordinary concept of 

number, Frege over emphasizes the cardinal aspect of numbers while neglecting their ordering. 

John Burgess responds on Frege’s behalf that given the latter’s aims and methods, he has to 

privilege either cardinality or order and define it in logical terms, before using the privileged 

notion so-defined to introduce the other notion.68 While this is certainly true, the fact is that 

Frege simply cannot privilege cardinality, by using his definitions, while also establishing 

logicism, because of the assumptions that he needs to derive that every number precedes some 

number, using his definitions. I will now remind the reader why at least one of these goals must 

be given up. 

 
  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
67 A rigid designator is a term which designates the same object x with respect to every possible 
world in which x exists. See Kripke (1980). 
68 Burgess (ibid) 
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8. The need for a non-logical axiom 

 Recall that Frege defines ‘#x: Fx’ and ‘P(m, n)’ in such a way that if the number which 

belongs to the concept F is n, then its predecessor is the number which belongs to the concept 

falling under F but not identical with some x that is F: 

P(m, n) ≡df  ∃F ∃x (Fx /\ [#y: Fy] = n /\ [#y: Fy /\ y ≠ x] = m) 

Let me give an example, using “being an F” as a more succinct abbreviation of Frege’s “falling 

under F.” For 7 to precede 8, there must exist a concept F such that there is an F, which we will 

call a, and the concept being an F but not identical with a has 7 objects falling under it. This 

requires that there are 8 F’s. For example, there must exist a concept such as solar planet, such 

that there exists a solar planet, e.g. Neptune, and the concept being a solar planet but not 

identical with Neptune has 7 objects falling under it. And happily, there are indeed 8 solar 

planets. The problem is that if every finite number m is to precede some number m+1, then there 

must exist a concept G that has m+1 objects falling under it. But this requirement may not be 

fulfilled, because there may not be enough objects in the world, but only finitely many, and so 

not enough to meet this requirement. One option is to simply assume that there exist infinitely 

many objects by accepting an axiom of infinity, from which it would follow that there exists a 

concept G under which m+1 objects fall.69 But accepting this axiom is an admission of defeat for 

logicism, since it is not an axiom of logic. By using this axiom to derive that every finite number 

m precedes some number, one simply raises the question of what non-logical source of 

knowledge justifies the assumption that there exist infinitely many objects. 

 According to Frege’s Basic Law V 

extension(Φ) = extension(Σ) ↔ ∀x (Φx ↔ Σx) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
69 This observation is due to Russell (1911, 1919: Ch XIII). 
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every concept has an extension. In particular, the concept G to which m+1 belongs, which is 

required for a finite number m to precede some number, allegedly has an extension. But as is 

well known, Basic Law V is not an axiom of logic, since it leads to Russell’s paradox in Frege’s 

system. This is because we can form the concept being an extension of a concept that is not true 

of its own extension, and ask whether this concept is true of its own extension, since if it is, it 

isn’t, and if it isn’t, it is.  

 To this various people have responded that Frege doesn’t need to use Basic Law V in his 

sketch of how to derive formulae representing the axioms of arithmetic.70 Rather, it is argued that 

the axioms are derivable from HP together with Frege’s definitions, a fact known in the literature 

as Frege’s Theorem. I will discuss this claim in the following chapter, but for now it will suffice 

to remind the reader that HP is not considered by Frege to be an axiom of logic (nor is it by 

Boolos), but a condition that any acceptable definition of ‘#x: Fx’ must be shown to satisfy, by 

substituting the definition into HP and deriving the resulting sentence as a theorem. However, in 

order to do this Frege uses Basic Law V.71   

 Since this exhausts Frege’s options, the answer to (Q1.a) is that he must accept an axiom 

that is not a primitive truth of pure logic. Again, Frege cannot privilege cardinality, by using his 

definitions, while also establishing logicism. It follows that at least one of these goals must be 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
70 See Boolos (1998: Ch. 11-13), Heck (2011), Parsons (1965) and Wright (1983).!
71 After Frege substitutes his definition of number into HP, he tries to prove that if the F’s and 
the G’s are equinumerous, then the extension of equinumerous with F = the extension of 
equinumerous with G. (He!does not prove the left to right direction but mentions that it can be 
proven.) Frege proceeds by assuming that the F’s and the G’s are equinumerous, and then 
picking an arbitrary concept H, to show that H is a member of the extension of equinumerous 
with F ↔ H is a member of the extension of equinumerous with G. This assumes that to show 
that the extension of equinumerous with F = the extension of equinumerous with G, it suffices to 
show that these extensions have the same members, i.e that ∀X (FX ↔ GX), where X is a 
variable ranging over first-level concepts. But this is just an application to extensions of second-
level concepts of Basic Law V: extension(F) = extension(S) ↔ ∀x (Fx ↔ Sx). See Frege (ibid: 
§73). 
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given up. But it still leaves open the possibility that one can continue Frege’s progress while only 

giving up the goal of establishing logicism, by attempting to explain arithmetic’s general 

applicability in terms of something non-logical but still sufficiently general. This is the line that I 

will pursue in the following chapters. 

 I will close by recapping the objections to Frege’s definition of ‘#x: Fx’. Firstly, early 

Frege’s proposal, that ‘#x: Fx’ refers to the extension of the second-level concept containing 

exactly those first-level concepts that are equinumerous with F, is undermined by the fact that 

counting concepts and collecting them into extensions forces one to treat concepts as objects, and 

so to count and collect the corresponding extensions. Secondly, later Frege’s proposal, that ‘#x: 

Fx’ refers to the extension of the first-level concept containing exactly those extensions that are 

equinumerous with F, is undermined by the fact that such extensions are non-well founded. 

Thirdly, Frege’s doctrine that the sense of ‘#x: Fx’ is the condition to its referent, commits him 

to the implausible view that ‘#x: Fx’ refers to different entities in different possible worlds. 

Finally, the view that numbers are essentially quantifiers is in tension with the goal of 

establishing logicism, since it requires that there are infinitely many individuals. 
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Chapter 3: Frege’s theorem 
 
1. Introduction 

 Second-order logic is an augmentation of first-order logic that quantifies over properties 

and relations as well as objects. What is sometimes called “Frege Arithmetic” is an augmentation 

of second-order logic with HP as a non-logical axiom. Second-order arithmetic is a formal 

theory that characterizes the natural numbers as any progression satisfying the usual Dedekind-

Peano axioms. Here I follow Richard Heck’s presentation,72 using ‘P’ to facilitate comparison 

with Frege’s ‘P(m, n)’, and using ‘N’ for ‘natural number’. The axioms are then:  

(1) N0  

(2) Nx /\ Pxy " Ny  

(3)"∀x∀y∀z (Nx /\ Pxy /\ Pxz " y = z) 

(4)"∀x∀y∀z (Nx /\ Ny /\ Pxz /\ Pyz " x = y) 

(5) ~∃x (Nx /\ P(x,0)) 

(6)"∀x (Nx " ∃y Pxy) 

(7)"∀F (F0 /\ ∀x∀y (Fx /\ Pxy ! Fy) " ∀x (Nx " Fx)) 

Frege’s Theorem is that correspondents of these axioms can be derived, in Frege Arithmetic, 

using the following definitions of the arithmetical primitives (due to Frege):73 

0 =df #x: x ≠ x 

P(m, n) ≡df  ∃F ∃x (Fx /\ [#y: Fy] = n /\ [#y: Fy /\ y ≠ x] = m) 

Natural Number(n) ≡df  P*= (0, n) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
72 Heck (2011). Heck’s work is a refinement of work by Boolos and others. See for example 
Boolos (1998) and Wright (1983). 
73 Regarding the following definitions, it will be recalled from the previous chapter that P*= is 
the weak ancestral of P.!
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Note that ‘#x: Fx’ is an undefined primitive in Frege Arithmetic, because no specific definition 

of it can be given by means of HP, given that we accept Frege’s constraints on definitions (see 

section 6 of the previous chapter). For this reason, Heck attempts to argue for the philosophical 

significance of Frege’s Theorem by establishing the relevance of HP to our ordinary concept of 

number, rather than arguing from the accuracy of a proposed definition of ‘#x: Fx’.  

 After discussing the status of HP as a primitive truth, I will argue that Heck fails in his 

attempt, in part because he falls into the same anthropological trap as Blanchette, of basing his 

views on an overly anthropological approach to conceptual analysis, and a failure to distinguish 

between different degrees and kinds of understanding. Turning to the comprehension axioms of 

Frege Arithmetic, I will show that the cost of deriving Frege’s Theorem using predicative 

comprehension is that Heck has to take ‘P(m, n)’ as well as ‘#x: Fx’ as primitive. This further 

undermines the philosophical significance of his derivation. The alternative that I think Heck 

should pursue is to use impredicative comprehension. However, I argue, impredicative 

comprehension axioms are not primitive truths of pure logic, since they presuppose concepts 

from combinatorics and set theory.  

 
2. Is HP a primitive truth? 

 I begin with the question of whether HP is a plausible candidate to be a primitive truth. 

Following the presentation of the previous chapter, the questions to be addressed are as follows: 

(Q1.a) Is HP a primitive truth of pure logic? 

(Q1.b) Is it self-evident? 

(Q1.c) If it is not self-evident, why should we accept it as a primitive truth? 
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Regarding (Q1.a), George Boolos argues, convincingly, that while logical truths are true in all 

models, HP is false in a model with a finite domain, and so is not a logical truth.74 With that said, 

I turn to the question of whether HP is self-evident. There is a temptation to say that it is, 

because it can be accepted on the basis of being fully understood, which seems sufficient for a 

proposition to be self-evident. However, as I will show, the requirements for fully understanding 

HP are high enough to make one worry that it is not self-evident. This, I will claim, together with 

the mathematical considerations that recommend HP, suggest that it is better thought of as 

justified by the method of reflective equilibrium.  

 The issue is that Frege is following Cantor, whom he cites, in intending HP to be true of 

the sizes of infinite sets as well as finite ones. However, if HP is construed in this way, then the 

requirements for fully understanding it are high enough that it cannot be fully understood by the 

folk. This is because the folk, prior to being taught otherwise, accept Euclid’s fifth common 

notion that the whole is greater than the part,75 and, correspondingly, expect the number of rooms 

in an infinite hotel to be greater than the number of even-numbered rooms, because the latter set 

is a proper part of the former. But by HP, the set of natural numbers is of the same cardinality as 

the set of even numbers, because the natural numbers and the even numbers are equinumerous. 

More generally, by HP, an infinite set can be of the same as cardinality as one of its proper 

subsets. Further, given that HP has this consequence, if one is to fully understand it, one must 

understand that an infinite set can be of the same as cardinality as its proper subsets, and so make 

a significance conceptual advance in one’s understanding of the concept of cardinal number.76 

(Of course the same point applies to the axiom of infinity, since to understand it one must 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
74 Boolos (ibid) 
75 Euclid (ibid, Book I)!
76 I now use ‘concept’ in accordance with modern usage to mean something like ‘sense.’ 
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understand that the number of rooms in an infinite hotel is of the same cardinality as the number 

of even-numbered rooms. I will return to this axiom in chapters 4 and 6.) 

 It is helpful here to contrast the folk’s partial understanding of Cantor’s concept of 

number with their understanding of ‘finite number.’ In the latter case they are competent to 

number “the ideal as well as the real, concepts as well as objects” (Frege: 1885: 1), but merely 

unable to articulate the condition that explains this. In contrast, prior to learning about Cantor’s 

insights into the concept of number, they are not competent to apply it correctly to all cases, as 

shown by their expectation about the infinite hotel.  

 To one who is inclined to accept both HP and Euclid’s fifth common notion, the situation 

appears paradoxical, since both principles seem acceptable and yet they cannot be accepted 

together.77 The solution is to recognize that one is missing something significant by cleaving to 

the latter principle, and to consequently reject it while continuing to accept HP, and thus that an 

infinite set can be put in one-to-one correspondence with one of its proper subsets. Phillip 

Kitcher argues that the reward for doing so is  

an explanatory generalization of finite arithmetic. Note first that the ordinary notions 

of order among numbers, addition of numbers, multiplication of numbers, and 

exponentiation of numbers are extended in ways which generate theorems, analogous 

to those of finite arithmetic… By contrast, because he cleaves to the intuitive idea 

that a set must be bigger than any of its proper subsets, Bolzano is unable to define 

even an order relation on infinite sets. The root of the problem is that, since he is 

forced to give up the thesis that the existence of one-to-one correspondence suffices 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
77 Galileo was one of the first to note this. See (1638/1954). 
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for identity of cardinality, Bolzano has no way to compare sets with different 

members (1984: 211). 

Thus, by abandoning Euclid’s fifth common notion for HP, we discover something about the 

concept of cardinal number of which prior mathematicians were unaware. Further, while this 

appears to be in tension with Frege’s picture of temporally distant mathematicians investigating 

the same senses or concepts, Cantor’s concept of number remains continuous with the one that 

was studied by prior mathematicians, while being more generally applicable. In particular, it 

extends Frege’s observation that anything can be numbered, since by Cantor’s denumerability 

results this observation applies not only to discrete collections of objects of a given kind, but also 

to subsets of real numbers. This provides theoretical reason to accept HP. Crucially, however, 

this theory can be bought into accord with our intuitive judgments somewhat, since it is an 

extension of Frege’s intuitively plausible observation.  

 Having said all that, is HP self-evident? I suppose there are grounds for insisting that it is, 

because it should be accepted on the basis of being fully understood. However, since this in turn 

requires a full understanding of our concept of cardinal number and how it generalizes, which is 

acquired via the line of reasoning described in the previous few paragraphs, I am more inclined 

to say that HP is justified by the method of reflective equilibrium.78 That is, HP should be 

accepted because of the above theoretical considerations, which can be bought into accord with 

our intuitive judgments. 

 Another response suggests itself. Arguably a restricted version of HP is self-evident, 

because it can be accepted without making the conceptual advance that is required of us by 

Cantor. This response has been developed by Heck, who appeals to our practice of counting in 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
78 Goodman (1955). 
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order to restrict HP, so that it only applies to the sizes of finite sets and does not have the 

aforementioned counter-intuitive consequence. Heck argues that such a restriction can be 

discovered by reflection on the practice of counting, because, intuitively, finite sets are just those 

that can be counted:  

[T]he intuitive notion of a finite concept is that of one the objects falling under which 

can be counted, i.e., enumerated by a means of some process which eventually 

terminates (2011: 248). 

Further, Heck claims, counting so conceived is governed by an application of HP. To show this, 

Heck appeals to an argument given by Frege in response to Husserl, whom Frege characterizes 

as advocating a theory of counting which he believes gets the cart before the horse: 

The simplest criterion for equality of number is just that the same number results 

from our counting the sets to be compared.” Naturally; Just as the simplest test 

whether for a right angle is to use a set square! The author forgets that this very 

counting depends on a one-one correlation —namely between the numerals 1 to n and 

the objects in the set. Each of the two sets has to be counted. This makes the matter 

less simple than it is if we consider a relation that correlates the two sets with one 

another without numerals as intermediaries (1894: 319) 

According to Heck, Frege’s point is as follows. The F’s and the G’s are assigned the same 

numeral and so the same number by counting, if and only if they are equinumerous - a clear 

application of HP. For if the F’s and the G’s are both assigned the same number by counting, 

then they are equinumerous with the same segment of numbers and so equinumerous with each 

other. And if the F’s and the G’s are equinumerous, then each collection is equinumerous with a 

segment of the numbers; and since the collections themselves are equinumerous, so are these 
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segments, which are thereby identical. Further, Heck reasons, since no infinite plurality can be 

assigned a number by a process which eventually terminates, the principle governing counting is 

really Finite HP (FHP): 

Finite(F) \/ Finite(G) " #x: Fx = #x: Gx ↔ equinumerous(F, G) 

Heck then proceeds to prove a version of Frege’s Theorem, by deriving the axioms of second-

order arithmetic from a formalization of FHP in second-order logic. It is crucial to note however, 

that this version of Frege’s Theorem will not establish that the axioms can be justified without 

appeal to intuition, and thereby explain the general applicability of numbers, unless the 

aforementioned intuitive notion of ‘finite’ can be defined without appeal to any other intuitive 

notion.  

 In the next section I want to discuss why Heck, in response to the objection that HP is not 

self-evident, eventually opts to pursue a different line than this one. 

 
3. Just as many  

 Heck, in more recent work, distinguishes between HP in its original unrestricted form, 

which he holds to be a non-self-evident truth about cardinality generally, and another logically 

equivalent principle, which he claims is self-evident. Once again, the latter principle is claimed 

to be self-evident because it can be understood by reflection on our ordinary concept of cardinal 

number. But crucially, Heck argues that unlike FHP, neither the principle nor the ordinary 

concept of cardinal number to which it corresponds, have any conceptual connection to counting 

or to one-to-one correspondence. Before I describe this proposal, it will be helpful to remind the 
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reader of the various conditions that have been proposed to be requirements for transitive 

counting.79  

 The first condition is that the symbols in the count list must be recited once and only once 

in a stable-order. The second is that a one-to-one correspondence must be established between 

the symbols in the count list and the objects counted. The third is that the order in which the 

objects are correlated one-to-one with the symbols must not affect the outcome of the count, 

where the outcome is the last symbol correlated with the objects counted. The fourth is that one 

must be able to give the final symbol correlated in answer the question ‘how many?’. And the 

fifth condition is that anything that can be bought under a kind-concept (in accordance with 

Frege’s usage of ‘concept’) can be counted. With these conditions in mind, I now turn to Heck’s 

proposal. 

 Heck argues that although counting depends logically on one-to-one correspondence, it 

does not depend conceptually on this. What he appears to mean by this is that although counting 

requires establishing one-to-one correspondence, it does not require “understanding of one-to 

one correspondence and its bearing upon questions of cardinality” (2011: 166). To motivate this 

claim, Heck points to the fact that one can count the F’s by establishing a one-to-one 

correspondence, without having to think of numerals as objects that are being corresponded with 

the F’s, or having to understand that a one-to-one correspondence between the numerals and the 

F’s is what one is establishing. Rather, Heck claims, establishing such a correspondence simply 

requires understanding that one should recite each numeral once and only once in a stable order, 

while looking at or demonstrating the objects counted. Heck is explicit that the relevant kind of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
79 Gallistel and Gelmann (1978). 
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understanding is supposed to be conscious, rather than unconscious but consciously accessible 

by reflection.80 

 Heck also claims that counting does not depend conceptually on our concept of cardinal 

number, by which he means that counting does not require understanding its cardinal 

significance. To motivate this claim, Heck points to the evidence cited in chapter 1, that there is a 

stage during development when children can be said to count small pluralities in the sense of 

meeting the above four conditions, without understanding the cardinal significance of what they 

have done. This is shown by the fact that when instructed to ‘Give me m F’s’ after counting, 

where m is the last numeral recited, children give the experimenter a random number of F’s.81 

Heck thinks this shows that “mastery of the practice of (transitive) counting is compatible with 

one’s having no concept of cardinality at all” (ibid: 169). 

 Having argued that counting does not depend conceptually on one-to one correspondence 

or on our concept of cardinal number, Heck goes on to argue that our concept of cardinal number 

does not depend conceptually on counting, by which he appears to mean two things (ibid: 168-

71). Firstly, that counting by meeting the aforementioned conditions is not necessary for 

assigning specific cardinals to pluralities, because in the case of small pluralities this can be done 

by subitizing: by immediately recognizing how many there are without counting (as discussed at 

length in chapter 1). Secondly, he claims that counting as characterized by Frege is neither 

necessary nor sufficient for assigning specific cardinals to pluralities. To see what Heck has in 

mind here, consider again another of Frege’s remark on counting, from the Grundgesetze:  

[W]hen we count the objects falling under a concept Φ(ξ), we correlate these with the 

number-signs, one after the other, beginning with ‘One’ up to that number-sign ‘N’ 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
80 See Heck (ibid: fn. 16, 20 & 22).  
81 Wynn (1992).!
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which is determined by the correlating relation mapping the concept Φ(ξ) into the 

concept “member of the series of number-signs from ‘One’ to ‘N’ and the converse 

relation mapping the latter into the former. ‘N’ then designates the desired cardinal 

number; i.e., N is that cardinal number (1893: §108). 

As Heck reads him, Frege is arguing as follows (I will use ‘F’ for ‘Φ(ξ)’). Assume the objects 

falling under F are in one-to-one correspondence with the numerals ‘1’ through ‘n’. Then, by 

HP, the number of F’s = the number of numerals ‘1’ through ‘n’. Further, the number of 

numerals ‘1’ through ‘n’ = the number denoted by ‘n’. So, by transitivity of ‘=’, the number of 

F’s = the number denoted by ‘n’. 

 According to Heck, counting so characterized is not necessary for the assignment of 

cardinals to pluralities, because “it presupposes a conception of numerals as objects that the 

ability to count, and even to make judgments of cardinality, does not require” (ibid: 175). To 

reiterate an earlier point in a slightly different context, one can understand ‘there are n F’s’ 

without having to think of the numerals as objects that are being correlated one-to-one with the 

objects falling under F, and without having to think that the number of numerals ‘1’ through ‘n’ 

= the number denoted by ‘n’. 

 Further, Heck argues, counting so characterized is not sufficient for assigning specific 

cardinals. To support this claim, Heck appeals to an argument due to Kripke —to be discussed at 

length in the following chapter— which Heck characterizes as follows. Assume one is able to 

recite the binary numerals in order, and is able to put the objects falling under F in one-to-one 

correspondence with the binary numerals ‘1’ through ‘11011’. Then, by HP, the number of F’s  

= the number of binary numerals ‘1’ through ‘11011’. Further, the number of binary numerals 

‘1’ through ‘11011’ = 110112. So, by transitivity, the number of F’s  = 110112. Now repeat the 
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same reasoning with decimal. It simply cannot be that knowing how many F’s there are is, as 

Frege claims, knowing that the number of F’s  = the number of decimal numerals ‘1’ through 

‘27’, for then one would also have knowledge of how many F’s there are by counting with 

binary numerals. The problem, according to Heck, is that counting, as Frege characterizes it, 

does not explain the apparent epistemic difference between assigning cardinals with the decimal 

system and doing so with other numerical systems like binary that we may also be well practiced 

at reciting in order. (One might object that there is no genuine epistemic difference, while 

attempting to explain the apparent epistemic difference in other terms. I will return to this in the 

next chapter.) 

 To take stock, Heck argues that counting does not depend conceptually on one-to one 

correspondence or on our concept of cardinal number, and that our concept of cardinal number 

does not depend conceptually on counting. So what else could our ordinary concept of cardinal 

number depend on, if not counting? Heck claims that it depends conceptually on something 

coextensive with but conceptually distinct from one-to-one correspondence, namely a relation he 

calls just as many: 

One will understand answers to how many questions as answers to how many 

questions —as ascriptions of number, rather than statements about the results of 

countings— only if one grasps the concept just as many and its relation to ascriptions 

of number (ibid: 172). 

To motivate this, Heck argues that this relation is plausibly part of the conscious conceptual 

apparatus of children. For supposing that there are just as many cookies as children: 

Then it follows that there are just enough cookies for each child to have one. From a 

logical point of view, that means that there is a one-one correspondence between the 
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cookies and the kids; but from the child’s point of view, it need mean no more than 

that, if you start giving cookies to children, and you’re careful not to give another 

cookie to anyone to whom you’ve already given one, then you won’t run out, though 

you won’t have any left (ibid: 171). 

Heck codifies his claim that our concept of number depends conceptually on just as many using 

the following coextensive modification of HP, which he calls HPJ: 

#x: Fx = #x: Gx ↔ there are just as many F’s as G’s.  

One might think that the distinction between this and HP is one without a difference. However, 

regarding HPJ, Heck claims that unlike FHP or HP:  

An appreciation of the connection between sameness of number and equinumerosity 

that [HPJ] reports is essential to even the most primitive grasp of cardinal number 

(ibid: 176). 

But exactly what is supposed to have been accomplished by supplementing HP with the 

coextensive HPJ?  

 For Heck, the interest of Frege’s Theorem is that a theory that characterizes the natural 

numbers as any progression satisfying (1) – (7), is second-order logically entailed by HP and 

Frege’s definitions, which characterize numbers as cardinals that apply to kind-concepts and that 

are identified in terms of equinumerosity. Heck also wants to show that HP explains why the 

axioms hold. Further, for it to do this he acknowledges that HP  

does need to be more fundamental, in some significant way, than the axioms of PA if 

Frege’s Theorem is to have any explanatory force, for not every derivation of a 

conclusion from premises counts as explaining, in terms of the premises’ holding, 
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why the conclusion holds: And if HP itself were less fundamental than the axioms of 

PA, the explanatory value of Frege’s Theorem would be nil (ibid: 179). 

But the problem is that due to Cantor’s influence, the concepts of number and of one-to-one 

correspondence contained in HP is “very sophisticated” (ibid: 170). Further, the supposition that 

FHP governs counting cannot ameliorate this problem in Heck’s view, since he has argued that 

counting is conceptually independent of our ordinary concept of number. However, he thinks 

that the concept of there being just as many is conceptually necessary to our most elementary 

concept of number. Thus HPJ, in addition to being both logically equivalent to and similar in 

content to HP, is argued to be self-evident, since it can be understood by reflection on our most 

elementary concept of number. So it is supposed to be “more fundamental” than axioms of 

arithmetic. Putting axiom (6) to one side, since it can be derived from axiom (3), Heck 

concludes: 

What I have argued here is that recognition of the truth of something very much like 

HP is required if one is even to have a concept of cardinality. If so, then what Frege’s 

Theorem shows is that the fact that the finite cardinals form an initial segment of an 

ω-sequence [i.e. satisfy the axioms (1) – (5) and (7)] is implicit in our very concept of 

cardinal number—‘implicit’ in the sense that their forming such a sequence is 

logically required by the character of our concept of cardinal number (ibid: 179). 

Thus, Frege’s Theorem is argued to offer a philosophical explanation of why the finite cardinals 

satisfy axioms (1) – (5) and (7), and so form an initial segment of an ω-sequence. They do so 

because these axioms follow from a self-evident principle that the finite cardinals also satisfy, 

HPJ being a self-evident principle about our ordinary concept of cardinal number.  
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 I now turn to my criticisms of Heck’s line of reasoning. In what follows I will not address 

Heck’s complaint that counting as Frege characterizes it does not suffice to assign specific 

cardinals to pluralities because its results are not, in Kripke’s words “immediately revelatory,” 

since this will be discussed in the next chapter. Rather, I will focus on his argument that our 

ordinary concept of number depends conceptually on HPJ rather than FHP. As will become 

clear, the essence of my disagreement with Heck is similar to the essence of my disagreement 

with Blanchette. I believe that Heck’s judgments regarding what is overly sophisticated, and so 

inessential to our ordinary concept of number, are based on an overly anthropological approach 

to conceptual analysis.   

 First of all, I do not accept Heck’s argument that counting does not depend conceptually 

on either one-to-one correspondence or our concept of number. Here once again is it helpful to 

distinguish between competence understanding —the minimal, consciously accessible 

knowledge of the sense of an expression that is required to use that expression correctly— and 

reflective understanding, as well as between partial and full competence understanding (see 

chapter 1 section 12 and chapter 2 section 6). Of course children and many adults do not have 

reflective understanding of ‘counting’, being neither conscious of nor able to articulate all of the 

requirements for counting. Further, children and some adults only have partial competence 

understanding of ‘counting,’ for example by knowing that they should obey the once-and-only-

once rule, but not knowing that they should also obey the one-to-one correspondence rule. If so, 

then partial competence understanding of ‘counting’ does not require knowledge of the one-to-

one correspondence rule. But this is only a stage in the development of full competence 

understanding, which does require one to have consciously accessible, although not conscious 

knowledge of the one-to-one correspondence rule. If so, then one may agree with Heck that we 
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need not be consciously aware of there being a one-to-one correspondence between numerals 

and objects, while also insisting that one-to-one correspondence is an essential conceptual 

ingredient of the concept of counting, one that is found not in what we are conscious of but by 

reflection on our practice. 

 For the same reason I do not accept Heck’s argument that counting does not depend 

conceptually on our concept of cardinal number, i.e. does not require understanding its cardinal 

significance. For the fact that infants —and the clinical patients mentioned in chapter 1— can 

count in an overlearned fashion without understanding the cardinal significance of what they 

have done, does not show that “mastery of the practice of (transitive) counting is compatible with 

one’s having no concept of cardinality at all” (ibid: 169). Rather, partial competence 

understanding of ‘counting’ is compatible with having no concept of cardinality or of the 

cardinal significance of counting, while full competence understanding does require this. 

 Nor do I accept either of Heck’s arguments that counting is not necessary for our concept 

of cardinal number. One of these was that counting, as characterized by Frege in terms of one-to-

one correspondence, presupposes thinking of numerals as objects in a way that assigning 

cardinals does not require. But once again, one may agree with Heck that we need not be 

consciously aware of the status of numerals as objects, while also insisting that this status is an 

essential conceptual ingredient of the concepts of counting and cardinality.  

 I now turn to Heck’s other argument that counting is not necessary for our concept of 

cardinal number: that cardinals can be assigned by immediately recognizing how many things 

there are in a plurality without counting. The problem with this argument is that, as I showed in 

chapter 1, this sort of recognition only guides the assignment of cardinals to pluralities on the 
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assumption that the subject already has concepts of specific cardinals, and it remains to be 

shown that acquiring such concepts does not require counting.  

 A related problem is that Heck’s argument that our ordinary concept of number satisfies 

HPJ but not FHP, involves a fallacious inference to a conclusion about our concept of number 

from evidence about how we acquire it. This is because Heck appeals to evidence concerning 

children, who may still be in the process of learning the concept of number, with the result that 

what they have learned so far is not sufficient to understand the concept that is understood by 

adults. The point is that even if the connection between sameness of number and just as many 

that HPJ reports is something that the child consciously recognizes, while the connection 

between sameness of number and one-to-one correspondence is not, the latter connection may 

nevertheless be essential to the adult conception. Obviously this objection is reminiscent of 

Frege’s polemic against Mill’s “pebble or gingerbread arithmetic” (1884: v). 

 The conclusion that I draw from the previous four paragraphs is that Heck has not 

succeeded in establishing that HPJ is a self-evident principle about the ordinary concept of 

number that is understood by adults; so he is not justified in appealing to HPJ to ensure the 

explanatory value of Frege’s Theorem. Further, he has not succeeded in undermining the view to 

which I am sympathetic, that counting requires the establishment of a one-to-one correspondence 

between numbers and objects counted, and that one-to-one correspondence is fundamental to our 

concept number as well as of counting. I will say more about this view in the final chapter. 

 As we will see in the next section, there are further objections to the claim that Frege’s 

Theorem has the kind of explanatory value that Heck claims for it. Before I turn to these 

objections, I must describe the other axioms of Frege Arithemtic, namely those of second-order 
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logic, and summarize which of the axioms are needed to derive axioms (1) – (7) of second-order 

arithmetic.  

 
4. Comprehension axioms 

 The expressive power of second-order logic is obtained by laying down comprehension 

axioms, which are axioms stating that a formula Φ defines a second-order entity such as a 

relation, concept or class in the domain of second-order variables. Comprehension axioms have 

the following form: 

∃P ∀x1…xn [Px1…xn ↔"Φ(x1…xn)] 

A comprehension axiom is impredicative just in case Φ contains at least one bound second-order 

variable, and predicative otherwise. To give an example of an impredicative axiom, consider the 

relation of identity expressed by ‘x = y’, which can be defined using Leibniz’s law of the identity 

of indiscernibles in the following axiom: 

∃R ∀x ∀y [Rxy ↔ ∀X (Xx → Xy)] 

Since ‘X’ ranges over all properties and relations, X can have the value is identical with y. So the 

relation expressed by ‘x = y’ is defined by quantifying over a totality that includes the relation to 

be defined. To give another example, consider Frege’s definition of ‘natural number’ in terms of 

the weak ancestral of the immediately preceding relation: 

Natural Number(n) ≡df  P*= (0, n) 

By this definition, a natural number is something that falls under every hereditary concept that 0 

falls under (using ‘concept’ as Frege does). Further, natural number is itself a hereditary concept 

that 0 falls under. So ‘natural number’ is defined by quantifying over a totality that includes the 
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entity to be defined. This is the essential feature of impredicative definitions, informally 

speaking.82  

 Full second-order logic has an axiom for every formula containing at least one bound 

second-order variable. At the other end of the spectrum, predicative second-order logic has an 

axiom for every formula containing no bound second-order variables. Suppose Φ is such a 

formula; then Φ is called a Σ1
0 formula. Further, a formula in which Φ occurs, of the form  

∃X1…XnΦ, 

with all its occurrences of second-order quantifiers occurring in a block at the beginning of the 

formula is called a Σ1
1 formula. (In general, if ψ is Σ1

n, then  

∃X1…Xnψ 

is Σ1
n+1.) So-called Σ1

1 second-order logic has a comprehension axiom for every Σ1
1 formula, 

and is thus impredicative. (Corresponding definitions can be given for universal quantifiers by 

replacing ‘Σ’ with ‘Π’.) 

 I now turn to the question of which axioms of Frege Arithmetic are needed to derive 

axioms (1) – (7) of second-order arithmetic (for these axioms see section 1 of this chapter). Heck 

reports that axioms (1) and (2) follow from Frege’s definitions using only predicative 

comprehension, and that axioms (3), (4) and (5) follow from HP, also using only predicative 

comprehension. However, according to Heck, Σ1
1 comprehension is required to derive axiom (6) 

that every number precedes some number, from axiom (3). It is also required to derive 

concerning the operations of addition (and multiplication) that every pair of numbers has a sum 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
82 Another point that the second example brings out is that one will accept an impredicative 
definition of an entity more readily, if one is already a realist about that entity. 
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(product) that is a number.83 This is because one must derive these propositions by induction on 

predicates containing suitably Fregean definitions of ‘P(m, n)’, ‘+’ and ‘ . ’. These in turn contain 

occurrences of second-order existential quantifiers at the beginning and so are expressed by 

Σ1
1 formulae.84 For example, recall that Frege’s definition of ‘P(m, n)’ as it occurs on the right 

hand side of the relevant comprehension axiom is: 

∃F ∃x (Fx /\ [#y: Fy] = n /\ [#y: Fy /\ ~(y = x)] = m) 

To give another example, Frege’s informal definition of ‘the sum of k and m is n’ must be 

something like: 

There exist concepts F and G such that the number which belongs to the concept F is 

k, and the number which belongs to the concept G is m, and no object falls under both 

F and G, and the number which belongs to the concept F or G is n. 

Using modern notation, this will have to be formalized in something like the following way:  

∃F ∃G ([#x: Fx] = k /\ [#y: Gy] = m /\ ~∃z(Fz /\ Gz) /\ [#u: Fu \/ Gu] = n) 

Clearly these are both Σ1
1 formulae, requiring impredicative Σ1

1 comprehension. Finally, Frege’s 

definition of the ancestral relation is also Π1
1, with the result that the derivation of the induction 

axiom (7) requires Π1
1 comprehension. 

 
5. Does Frege’s theorem require predicative or impredicative comprehension? 

 I am puzzled by Heck’s claim that axioms (3), (4) and (5) follow from HP using only 

predicative comprehension, given that the right hand side of HP quantifies over a relation:  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
83 Heck (2011: 162-3).  
84 Burgess shows that one can get these results using only the resources of predicative 
comprehension, but doing so requires one to adopt the kind of ad hoc definition of ‘number’ that 
we are trying to avoid. See Burgess (ibid). 
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Equinumerous(F, G) ≡df ∃R [∀x∀y∀z∀u (Rxy /\ Rzu " x = z ↔ y = u ) /\"∀x (Fx"""∃z 

(Gz /\ Rxz)) /\"∀z (Gz ""∃x (Fx /\ Rxz))] 

Heck does not have anything to say about this fact. However, Øystein Linnebo —with whom 

Heck shares the credit for establishing how much second-order arithmetic can be derived using 

predicative comprehension— makes the following remark: 

It may seem problematic that this theory allows the N-operator to occur in 

comprehension formulas that are supposed to be predicative. For the implicit 

definition of this operator relates it to [the above] formula that quantifies over 

relations. However, the restriction to predicative comprehension is compatible with a 

stepwise extension of the language in which the comprehension formulas are given as 

we come to understand new expressions. Now, on the view in question, HP is solely 

responsible for fixing the meaning of the N-operator. It therefore makes sense to 

allow the operator to occur in predicative comprehension formulas (2004: fn. 9).   

I find this argument unclear. Why is the restriction to predicative comprehension compatible 

with such an extension of the language? In any case, what is clear is that Linnebo is assuming 

that HP fixes the meaning of ‘#x: Fx’. However, in my view        ‘#x: Fx’ is an undefined 

primitive in the system under discussion, because no specific definition of it can be given by 

means of HP, assuming that we accept Frege’s constraints on definitions. Rather, HP only places 

constraints on how the language is to be extended (as I argued at the end of section 6 of the 

previous chapter). In which case, HP does not justify the occurrence of ‘#x: Fx’ in predicative 

comprehension formulae in the way that Linnebo claims. For this reason, I am suspicious of the 

claim that axioms (3), (4) and (5) follow from HP (or from FHP or HPJ) using only predicative 
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comprehension. That said, I will now argue that a similar problem afflicts Heck’s attempt to 

avoid using impredicative comprehension to derive axiom (6).  

 Heck is prompted to argue that (6) is derivable using only predicative comprehension in 

response to a criticism due to Linnebo, who argues that Frege’s definition of ‘P(m, n)’ cannot be 

accurate, given that induction on it requires Σ1
1 comprehension, since 

it is hard to see why [second-order induction axioms] talking about such a basic 

arithmetical relation as succession should depend on impredicative comprehension… 

In contrast, on the alternative view that regards the natural numbers as ordinals, the 

successor relation is primitive, and addition and multiplication are predicatively 

defined in terms of it by the standard recursion axioms. So on this view we trivially 

get induction on formulas talking about succession, addition, and multiplication 

without invoking impredicative comprehension (ibid: 172-3). 

As Heck reads it, Linnebo’s objection concerns the logical complexity of Frege’s definition. 

Heck writes: 

Øystein Linnebo (2004: 172-3) suggests that there is something seriously wrong with 

Frege’s definition of predecession. It simply does not seem reasonable to suppose that 

a notation as simple as that of predecession should be logically so complex (2011: 

271). 

In my view, if Linnebo’s objection is read this way, then it has no force, because it is based on 

the overly anthropological approach to conceptual analysis that I have already criticized in 

section 3. (But of course Heck himself takes this anthropological approach, so it is unsurprising 

that he takes Linnebo’s objection so seriously.) To see this, it will be helpful to recall my partial 

defense of Frege’s definitions. In my view, the sense of an expression is discovered by analysis 
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of how that expression is used in scientific discourse. In the case of ‘P(m, n)’, such analysis 

reveals a condition that all acceptable definitions must meet if they are to be sufficiently faithful 

to ordinary usage: that for any number n, the predecessor of n is the number belonging to a 

concept under which falls exactly one less thing than falls under the concept to which n belongs. 

This is the condition of which the folk have competence understanding, without thereby being 

able to articulate it in an analysis. Furthermore, Frege’s definition of ‘P(m, n)’ meets this 

condition. Finally, even though the surface simplicity of ‘P(m, n)’ makes it hard to see why 

induction on this definition should require impredicative comprehension, this is not sufficient 

reason to say that the definition is too complex to be faithful to ordinary usage. In Frege’s words: 

We often need to use a word with which we associate a very complex sense. Such a 

sign seems, so to speak, a receptacle for the sense, so that we carry it with us, while 

being always aware that we can open this receptacle should we have need of what it 

contains. It follows from this that a thought, as I understand that word, is in no way to 

be identified with a content of my consciousness. If therefore we need such signs —

signs in which, as it were, we conceal a very complex sense as in a receptacle— we 

also need definitions so that we can cram this sense into the receptacle and also take it 

out again (1914: 226).  

If Frege is correct, then one cannot infer that a sense is simple (complex), based on the surface 

simplicity (complexity) of language. For the surface properties of language may be adapted to 

our practical limitations. If so, then Linnebo’s objection to Frege’s definition of ‘P(m, n)’ does 

not succeed, since it assumes that one can infer the simplicity of a sense from the surface 

simplicity of language. 
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 Another way of developing Linnebo’s objection is that although there is nothing 

intrinsically wrong with the complexity of Frege’s definition of ‘P(m, n)’, it nevertheless 

undermines the explanatory significance of Frege’s Theorem. This is because proof by induction 

on Frege’s definition requires impredicative comprehension, which in turn requires prompts us to 

ask: what are the possible values of the second-order variables in the aforementioned 

comprehension axioms, under their classical extensional interpretation? To which the usual 

answer is that any given second-order variable ‘F’ ranges over all sub-sets of the domain of first-

order objects that ‘F’ is true of. This threatens to undermine the explanatory significance of 

Frege’s Theorem, for the following reason. Linnebo writes: 

I claim that our understanding of the notion of an arbitrary subcollection is based on 

the combinatorial idea of running through the domain, making an independent choice 

about each element whether or not it is to be included in the subcollection being 

defined… To see why the claim is plausible, it is useful to imagine that you are 

explaining the notion of an arbitrary subcollection to someone entirely innocent of the 

notion. It won’t do to explain to your pupil that he is to divide the collection in two. 

For this will either fall short of the idea of an arbitrary subcollection or presuppose it. 

Rather, you will need to explain to your pupil that, given any collection, he is to make 

a series of steps, each involving the consideration of one element of the collection and 

a decision whether or not to include this element in the subcollection. 

[Further] I claim that the combinatorial idea of running through a domain step by step 

presupposes an ordinal counterpart of the Successor Axiom (ibid: 170). 

Here the idea appears to be that in order to understand the content of ‘all sub-sets of a domain’, 

one must understand that one can check each object in the domain, to verify whether or not it is 
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to be included in a given sub-set, as determined by the property or relation that defines that sub-

set. But this requires understanding that for every element checked, there is another that can be 

checked. And this in turn requires understanding the more general claim that for every step 

performed, there is another iteration that can be performed. Further, it is not enough that one has 

the basic logical ability to iterate a step; rather, to understand the content of ‘all sub-sets of a 

domain’, one must understand that for every step performed, there is another iteration that can be 

performed. This undermines the explanatory significance of Frege’s Theorem, because its raison 

d’etre is the derivation of axioms (1) – (7); but the derivation of axiom (6) turns out to assume a 

proposition about indefinite iteration – one that, as Linnebo points out, is essential to the claim 

that every ordinal number has a successor. 

 I will offer my own response to Linnebo’s argument in the next section. For the moment I 

want to discuss Heck’s response, which is to give up Frege’s definition of ‘P(m, n)’ Heck 

writes:85  

Although the definition of predecession is undeniably Σ1
1 in form, it is not, I want to 

suggest, Σ1
1 in spirit. The definition one would really like to give is this one: 

(P-lite)  P(#x:Gx, #x:Fx) ≡ ∃y(Fy /\ #x:Gx = [#x: Fx /\ x ≠ y]). 

To be sure, (P-lite) is not a proper definition. It does not tell us when P(m, n) but only 

when P(#x:Gx, #x:Fx): Nothing in (P-lite) tells us whether Julius Caesar, that same 

familiar conqueror of Gaul, precedes 0 or not (2011: 271-2). 

(P-lite) is not a definition of ‘P(m, n)’, but merely defines the relation that relates two concepts 

iff one has one fewer things in its extension than the other. Further, it is not a proper definition of 

‘P(m, n)’ for the by now familiar reason that ‘#x: Fx’, which occurs in the definiens, is an 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
85 I have taken the liberty of replacing Heck’s ‘N’ and ‘Pab’ with ‘#’ and ‘P(m, n)’ respectively. 
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undefined primitive in Heck’s system. Further, since ‘#x: Fx’ and ‘#x: Gx’ occur in both the 

definiendum and the definiens, (P-lite) is also circular. In all these respects it resembles the 

failed attempt at a recursive definition of ‘number’ at Grundlagen §56, against which Frege first 

raises the Julius Caesar problem. Nevertheless, Heck insists that if the Caesar problem can be 

solved: 

Then (P-lite) tells one everything one needs to know about predecession. How would 

that allow the Neo-logicist to avoid appealing to comprehension? Well, the Neo-

logicist might regard predecession as primitive and regard (P-lite) as analytic of that 

notion (ibid: 272). 

What I take Heck to be proposing is that (P-lite) should be elevated to the status of a non-logical 

axiom, along with HP. The upshot of this would be that Heck has two undefined primitives in his 

system: ‘#x: Fx’ and ‘P(m, n)’. This would surely undermine the philosophical significance of 

his results, unless he can correctly diagnose and solve the Caesar problem. Further, I think that it 

is unwise to pin the explanatory significance of the project on his ability to do this. For the 

Caesar problem may simply be that improper definitions, including the proposed ones based on 

axioms like HP and (P-lite), fail to specify sense and reference for their definienda.86 If so, then 

the problem would be fatal to (P-lite).  

 To take stock, I think that Heck fails to show that axiom (6) can be derived using only 

predicative comprehension; further, I doubt that (3), (4) and (5) can be derived in this way either. 

For the cost of doing so is that Heck has to take ‘#x: Fx’ and ‘P(m, n)’ as primitive. Furthermore, 

all parties are agreed that deriving axiom (7) requires impredicative comprehension. Assuming 

that all this is correct, it follows that impredicative comprehension is crucial to the establishing 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
86 See Salmon (forthcoming), as discussed in chapter 2 section 6.  
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Frege’s Theorem in a philosophically significant way. Given this, my next task is to evaluate 

whether the requisite comprehension axioms are general primitive truths.  

 
6. Are impredicative comprehension axioms primitive truths? 

 Without further ado, I turn to my three questions: 

(Q1.a) Are these axioms primitive truths of pure logic? 

(Q1.b) Are they self-evident? 

(Q1.c) If they are not self-evident, why should we accept them as primitive truths? 

 Regarding (Q1.a), I will begin by revisiting Linnebo’s argument that the content of ‘all 

sub-sets of a domain’ assumes a proposition about indefinite iteration that is essential to the 

claim that every ordinal number has a successor. I do not propose to take issue with his claim 

that  

the combinatorial idea of running through a domain step by step presupposes an 

ordinal counterpart of the Successor Axiom (ibid: 170).  

Rather, my objection is to his claim that 

our understanding of the notion of an arbitrary subcollection is based on the 

combinatorial idea of running through the domain, making an independent choice 

about each element whether or not it is to be included in the subcollection being 

defined (ibid). 

I will argue that our understanding of the concept of an arbitrary subcollection is not based on 

this idea. Then I will argue that it is based on another idea that is also combinatorial.  

 Despite the impression engendered by the comprehension axioms, the concept of a set or 

collection is not that of a collection of things having some common feature or satisfying a 

condition. Rather, it is simply the concept of a collection of things, which may or may not share 
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anything in common. Further, one should not understand the concept of an arbitrary 

subcollection as the product of a process of choosing elements from a given collection. For 

thinking of things in that way encourages what I have just claimed is a false view, whereby the 

elements of a subcollection are chosen on the basis of some common feature (and so not chosen 

arbitrarily). Furthermore, one need not understand the concept of an arbitrary subcollection as 

the product of a process of choosing elements from a given collection. For one can instead think 

of a subcollection as a collection that exists independently of any collection of which it is 

happens to be a subcollection (other than itself). One can then simply compose the resulting 

concept of subcollection with the concept of arbitrariness to obtain the concept of an arbitrary 

subcollection.87 

 However, there is no way to understand the concept of a collection, and so the concept of 

a subcollection, other than through its relation to its elements. How then can the concept of a 

collection be understood, without recourse to a process of choosing the elements that form it? 

The answer lies in the fact that whereas a collection is one thing formed out of many elements, 

these elements are a plurality, where a plurality is many things, not one. Further, in order to 

understand the concept of a collection through its elements, without choosing them, one 

quantifies over them as a plurality. Explaining this further will require a very brief excursion into 

plural logic.  

 The vocabulary of plural logic contains plural variables ‘xx’ and plural quantifiers ‘∃∃xx’ 

and ‘∀∀xx’ (for brevity I will write ‘∃xx’ and ‘∀xx’). These are read as “there are some objects, 

the x’s” and “for any objects, the x’s.” For example: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
87 Thanks to Nathan Salmon for setting me straight on this issue. 
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There are some Bostonians who speak only to one another.88 

The vocabulary also contains a two-place logical relation symbol ‘≺’, the first and second 

argument-places of which are, respectively, singular and plural, and where ‘u ≺ xx’ is read as “u 

is one of the x’s.” For example, relative to an assignment of values to free variables, we get 

constructions such as  

Serena Williams is one of the Williams Sisters. 

Finally, there is the symbol ‘==’: 

xx == yy ≡df ∀u(u ≺ xx ↔ u ≺ yy)! 

Using this apparatus, one can obtain a collection, without recourse to a process of choosing the 

elements that form it. Rather, one simply quantifies over these elements, by saying “some 

elements xx of the domain.” One then “lassos” them into a collection, this being one thing 

formed out of a plurality of many. Since all of the elements of the resulting collection are 

elements of the domain, they form a subcollection of it.  

 Before I proceed with my argument I will recap. The case of second-order logic 

prompted me to ask after the possible values of the second-order variables in the impredicative 

comprehension axioms, under their classical extensional interpretation. Having used plural logic 

to understand what these values are, I am now prompted to ask after the values of the 

plural variables in axiom of plural comprehension: 

∃xx ∀u1…un (u1…un ≺ xx ↔ Φu1…un)  

As Linnebo himself points out, the answer is surely that ‘xx’ ranges over all pluralities, where a 

plurality is many things, not one collection.89 This raises the question of what is required to 

understand the concept of all pluralities. It seems to me that this requires —in addition to an 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
88 Boolos (1998: 57). 
89 Linnebo (2003). 
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understanding of ‘all’— an understanding of the concept of combinations of individuals. Further, 

while this is not the same as the idea of a process of choosing, it is nevertheless not logical but 

combinatorial, in the sense of concerning unordered arrangements of objects. If Linnebo and I 

are correct about this, then non-logical content is assumed in the impredicative comprehension 

axioms. 

 My analysis also appeals explicitly to the idea of “lassoing” elements xx of the domain 

into a set or collection, since I make no claim to have dispensed with sets by appealing to 

pluralities.90 So an assumption governing the operation of set-formation is required. So is an 

assumption governing power-set formation, since the domain is itself a set of all subsets. (More 

on set theory in the next chapter.) Thus, my answer to (Q1.a) is that in the final analysis, the 

impredicative comprehension axioms, under their classical extensional interpretation, are not 

primitive truths of pure logic, since they presuppose concepts from plural logic and thus from 

combinatorics, as well as from set theory. However, and contrary to what Linnebo claims, they 

do not presuppose a proposition about indefinite iteration that is essential to the claim that every 

ordinal number has a successor. Moreover, I would add that the aforementioned concepts are still 

suitable candidates to explain the general applicability of arithmetic, since abstract as well as 

concrete objects can be combined into pluralities and sets.  

 I now turn to (Q1.b): are the impredicative comprehension axioms self-evident primitive 

truths? In answer to this, my analysis of ‘all sub-sets of a domain’ suggests that these axioms are 

not self-evident primitive truths of arithmetic. For even if they can be accepted on the basis of a 

full understanding of the concept of a set or collection, and of a powerset, such understanding is 

surely not required to accept that every number is the predecessor of some number.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
90 Contrast this with Boolos (ibid: ch 4-5). 
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 Turning to (Q1.c), why else should we accept the comprehension axioms? One might 

instead appeal to the argument from fruitfulness (see chapter 2, section 4), to justify accepting as 

primitive axioms that are not self-evident. The argument is that one should accept axioms if 

doing so allows one to discover what we would call “the right modeling” of arithmetic; that is, if 

doing so allows one to derive correspondents of axioms (1) – (7) which preserve the thoughts 

expressed by the latter axioms. However, this argument is hostage to the accuracy of one’s 

definitions, and as such is undermined by the fact that Heck has no definition of ‘#x: Fx’, which 

he has to take as primitive. 

 Another argument that Heck could deploy is that the propositions to be derived when 

establishing Frege’s Theorem are, in the final analysis, so sophisticated, that it is of no concern 

that the comprehension axioms required to derive these propositions are not self-evident. Heck 

writes: 

[T]he concept of a natural number—that is, the concept of finitude—is really very 

sophisticated. I am not at all sure that most of the undergraduates I have been 

privileged to teach have had more than a very tenuous grasp of it. Sure, they can wave 

their hands, but what do they really know about finitude? The fact that the existence 

of sums and products is (probably) un-provable in any predicative form of Frege 

arithmetic thus leaves me unfazed (2014: 28). 

This response may be correct as regards knowledge of the existence of sums and products. But 

there remains the problem that axiom (6) –the existence of successors– is also underivable, in a 

philosophically significant way, in predicative Frege Arithmetic (see the end of section 6). 
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Chapter 4: Set-theoretic logicism 

1. Introduction   

 In this chapter I turn to Kripke’s proposal to represent numbers in set theory, which 

promises to avoid the problems that plague Frege’s analysis, as well as those that plague other 

attempts to represent numbers in set theory. My discussion of Kripke’s proposal draws on his 

forthcoming Whitehead Lectures, at the beginning of which he announces his intention to 

proceed as he did in Naming and Necessity, by alternating between discussions of apparently 

unrelated topics in a way that allows each discussion to shed light on the others. For the most 

part I will avoid this strategy, and will present the material in a rather more linear fashion. 

Kripke also explains that his approach will be “dialectical,” in the sense that his proposal will be 

a “synthesis” of various the grains of truth he sees in views that his has otherwise rejected in the 

course of his philosophical development. The first such view is logicism. Since I have already 

discussed Frege’s logicism and Kripke’s objections to it in chapter 2, I will now focus on set-

theoretic logicism.  

 The aim of the set-theoretic logicist program is to represent arithmetic in set theory, not 

just for the sake of representing it within a comprehensive deductive framework, but also for the 

sake of gaining some insight into the nature and/or justification of arithmetical propositions.91 In 

section 3 I will expand on this characterization, and show why Kripke’s proposal to represent 

numbers in set theory is intended as a contribution to the set-theoretic logicist program. But 

before doing this, I will remind the reader of some basic facts about the textbook way of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
91 It is arguable that in addition to thinking that sets are all that is needed for a comprehensive 
deductive system, Zermelo thinks they are the only basic assumption of mathematical thinking, 
in terms of which all others should be explicated. See Zermelo (1909ab in Zermelo 2010). 
Another example of a set-theoretic logicist is Quine (1969). Set-theoretic logicism is discussed at 
length but not endorsed by Potter (2004: Ch. 2). 
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representing arithmetic in set theory, and make some brief remarks about the status of the 

axioms, so that the issues surrounding the set theoretic variant of logicism can be made clear.   

 
2. The derivation of arithmetic in ZF 

 A set is one object, formed from many, on which operations can be performed. The 

industry standard theory of sets is ZF, which is a comprehensive, rigorous deductive framework 

for mathematics.92 Every object in the domain of the variables of ZF is a set, the only primitive 

non-logical symbol being ‘∈’, which represents the two-place relation x is an element of y. The 

Axiom of Extensionality then tells us that any sets with the same elements are identical: 

 ∀x (x ∈ y ↔ x ∈ z) → y = z 

The presumed consistency of ZF in part due to the Axiom Scheme of Separation. This says that 

given there is already a set z, then for any condition Φx that can be stated using classical logic 

together with ‘=’ and ‘∈,’ there exists a set y of members of z that satisfy Φx:93 

 ∃y ∀x!(x ∈ y ↔ x ∈ z & Φx) 

Assuming that we want as much set theory as we can get without falling prey to Russell’s 

paradox, this axiom scheme represents the grain of truth in Frege’s Axiom V, which from a set-

theoretic perspective is that anything subject to conceptual thought can be collected into a set y, 

so long as one already has a set z from which to separate y.  

 The textbook derivation of arithmetic in ZF proceeds by developing various ideas that are 

originally due to Dedekind.94 One of these is to provide a set-theoretic representation of a 

progression ω satisfying the usual Dedekind-Peano axioms. These are that zero is a member of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
92 I will elaborate on this statement later. 
93 y is a subset of z iff every member of y is a member of z. Thus Separation is also known as 
Subset: there exists a set y of any subset of z one can describe.!
94 See Dedekind (1888). Some of these ideas were refined by Zermelo. See Zermelo (2010). 
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ω, that every member of ω has a successor, that different members of ω have different 

successors, and that zero is not a successor. Finally, there is the induction axiom scheme that if 

zero has some definite mathematical property, and for any member n, the successor of n also has 

that property whenever n does, then all members of ω have that property: 

 P(0) ∧ ∀n[P(n) → P(S(n))] → ∀n P(n)  

The requisite progression satisfying these axioms is usually represented using a proposal due to 

von Neumann, by defining each number m as a set with m members, each of which are 

themselves sets. This requires one to accept the Null Set Axiom, that there exists a set with no 

members: 

 ∃x ∀y (y ∈!x ↔ y ≠ y) 

Since only the null set Ø has no members, 0 is defined as the null set. Then for each number m, 

the successor of m is defined as the union of m and its singleton. Note that, for reasons that will 

be discussed presently, the subscript of ‘=’ does not indicate identity of sense as it did in the 

previous chapters: 

 0 =df  Ø  

 S(m) =df  U{m, {m}} 

Since this proposal requires us to form U{m, {m}}, it must appeal to the Union Axiom that for 

any set x there exists a set z of members of members of x: 

 ∀x ∃z (y ∈!z ↔ ∃u (y ∈!u & u ∈!x)) 

In the present application of this axiom, x = {m, {m}}, and z = U{m, {m}}. Further, since the 

existence of singletons follows from the axiom of pairing,  

 ∃y!∀x (x ∈ y ↔ x = u \/ x = v), !

we must assume this axiom too. 
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 Given how 0 and the successor of m are defined, 1 is U{Ø, {Ø}}. Since Ø has no 

members, U{Ø, {Ø}} —which is the set of members of members of {Ø, {Ø}}— is simply {Ø}. 

2 is then defined as U{{Ø}, {{Ø}}}, which is {Ø, {Ø}}. 3 is defined as U{{Ø, {Ø}}, {{Ø, 

{Ø}}}}, which is {Ø, {Ø}, {Ø, {Ø}}}. Thus by applications of the above definitions and the 

Union Axiom we obtain the progression: 

 0 = Ø,  

 1 = {0} = {Ø},  

 2 = {0, 1} = {Ø, {Ø}},  

 3 =  {0, 1, 2} = {Ø, {Ø}, {Ø, {Ø}}}…. 

Clearly each member m of this progression is a set with m members. 

 Another proposal due to Zermelo, is to define each number m as the singleton of its 

unique predecessor, which is also a set: 

 0 =df  Ø  

 S(m) =df {m} 

Given how 0 and the successor of m are defined, 1 is {Ø}, 2 is {1}, which is {{Ø}}, and 3 is {2}, 

which is {{{Ø}}}. Thus we obtain the progression: 

 0 = Ø,  

 1 = {Ø},  

 2 = {{Ø}},  

 3 = {{{Ø}}}…. 

 The next requirement is to show how the numbers can serve as a measure of cardinality, 

and so serve to answer ‘how many?’ by counting. To do this we appeal to the fact that if we 

count the F’s by putting them in one-to-one correspondence with the members of a progression, 
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then the last member that corresponds with an F will be as Cantor puts it, the same “in every 

arrangement of its [the set of F’s] elements as a ‘well-ordered set’ ” (1885). But if the last 

member that corresponds with an F will be the same in every arrangement, then the last member 

that corresponds with an F does not depend on the order (or “arrangement”) in which the F’s are 

counted. Further, if the last member that corresponds with an F does not depend on the order in 

which the F’s are counted, then it must depend on something else, and the only other thing on 

which it can depend is the cardinal size of the F’s as a whole. But if the last member that 

corresponds with an F depends on the cardinal size of the F’s as a whole, then it is a measure of 

the cardinality of the F’s. Given this, and assuming that we start counting from 0, instead of ‘the 

number of F’s is m’ we can say: the number of F’s is the least member of a progression the 

predecessors of which can be put in one-to-one correspondence with the F’s, irrespective of the 

order in which the F’s are counted.  

 I now turn to the definition of ‘natural number.’ Here one first defines the notion of an 

inductive set as containing 0 as a member, as well as the successor of any of its members: 

  Inductive(x) ≡df Ø ∈!x  /\ ∀y (y ∈!x → Suc(y) ∈!x) 

If one’s ultimate goal is to derive other mathematics in ZF from the representation of arithmetic, 

it is necessary to help oneself to the Axiom of Infinity, that there exists an inductive set:95 

 ∃x (Ø ∈!x  /\ ∀y (y ∈!x → Suc(y) ∈!x)) 

One can then define the notion of a natural number as follows:  

Natural number(n) ≡df n ∈!every inductive set.96 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
95 This was first noted explicitly by Zermelo. See his (ibid). 
96 This is essentially Dedekind’s idea of defining the natural numbers as a set that is a member of 
any set closed under the successor operation, where a set Y is closed under an operation f if for 
every x in Y, f(x) is also in Y. See Dedekind (ibid). 
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Then it can be shown that the natural numbers form a set. For by Infinity there already exists an 

inductive set, that we will call ‘A’, from which to separate the numbers; and since the numbers 

are by definition members of every inductive set, by Separation they form the set: {x: x ∈!A & x 

∈!every inductive set}. But since A is inductive, by Extensionality {x: x ∈!A & x ∈!every 

inductive set} = {x: x ∈!every inductive set}.  

 Fortunately however, the Axiom of Infinity is not needed to represent arithmetic itself. 

Rather, one can define the notion of a natural number as follows: 

Natural number(n) ≡df n is a von Neumann ordinal & n ∈!every inductive set. 

If the axiom of infinity is false, then one can define the numbers as finite von Neumann ordinals 

and say that these are members of every inductive set, because statements about every inductive 

set are vacuously true.97 

 The set-theoretic correspondent of mathematical induction can also be shown to be true 

of the natural numbers, by the above definition. For if zero has some definite mathematical 

property, and for any member n, the successor of n has that property whenever n does, then the 

set of things satisfying that property is an inductive set, and so the property in question is true of 

every number. Induction can then be used to derive formulae representing the other axioms of 

arithmetic.   

 Defining the natural numbers, explaining their application in counting, and deriving the 

correspondents of the axioms is only part of the project of representing arithmetic in ZF. For one 

must also define the arithmetical operations of addition, multiplication and exponentiation. Once 

again this can be done using ideas originally due to Dedekind, by defining these operations 

implicitly, by specifying a function using the following pairs of recursion equations, where in 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
97 Parsons (1987) discusses this and other ways of representing arithmetic without Infinity.!!
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each case the first equation gives the value of the function for 0 as argument, and the second 

gives the value of the function for S(y) in terms of the value for y. To define addition we have: 

 (i)   x + 0 = x 

 (ii)  x + S(y) = S(x + y) 

To define multiplication: 

 (iii)  x . 0 = 0 

 (iv)  x . S(y) = (x . y) + x 

And to define exponentiation: 

 (v)  x0 = 1 

 (vi)  xS(y) = (xy) . x 

From these equations one can derive the relevant arithmetical laws as theorems of set theory, by 

using induction to show these laws hold for all x, y, z contained in the set of natural numbers. For 

example, consider the associative law for addition: 

 x + (y + z) = (x + y) + z 

Firstly we have to show that the set {z:  x + (y + z) = (x + y) + z} contains 0: in more familiar 

terms that x + (y + 0) = (x + y) + 0. This is done using equation i. as follows: 

    x + (y + 0)  

  = x + y   (by i) 

  = (x + y) + 0  (by i) 

Then we have to show that if the aforementioned set contains z, then it contains S(z): in more 

familiar terms that x + (y + S(z)) = (x + y) + S(z). Assuming this set contains z then: 

     x + (y + S(z))  

  = (x + S(y + z)) (by hypothesis) 
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  = S(x + (y + z)) (by ii)  

  = S((x + y) + z) (by ii) 

  = (x + y) + S(z) (by ii) 

 To take stock, the axioms used is this representation of arithmetic are Extensionality, 

Separation, Null Set, Union and Pairing, or, if one prefers, Weak Pairing, that for any objects x 

and y, there is a set z containing x and y (and maybe something else):  

 ∃z (x ∈!z /\ y ∈!z) 

The derivation of arithmetic requires no appeal to Infinity. Nor does it require appeal to the 

Powerset Axiom that for any set x, there is a set z such that y is a member of z iff y is a subset of 

x:  

 ∀x ∃z (y ∈!z ↔ y subset of x) 

However, Powerset and Infinity, along with the other axioms mentioned, are required to derive 

other mathematics in ZF from the above representation of arithmetic.  

 Plainly most of the axioms of ZF that I have described are not obviously self-evident 

primitive truths. Why else should we accept them? The comprehensiveness of ZF is the basis for 

an argument from fruitfulness for its axioms. According to this argument, one should accept the 

axioms because they provide an apparently consistent comprehensive framework for other 

mathematics. However, this way of justifying the axioms of ZF raises two problems. Firstly, it 

assumes that one already accepts other mathematics, and as such immediately calls into question 

whether the axioms can provide foundational justification for this mathematics. Secondly, as 

Geroge Boolos remarks, such a justification does not explain the presumption that ZF is 
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consistent; for in the case of a system that is justified only by its fruitfulness, such as Quine’s 

NF, the inconsistency of the system would be unremarkable. This is not the case with ZF.98   

 I have claimed that the axioms of ZF cannot be accepted as primitive based on 

considerations of obvious self-evidence, or fruitfulness. However, the possibility remains that 

they are self-evident without being obviously so, because they are entailed by primitive truths 

about an underlying conception of set that is known as “the iterative conception” (Boolos: 

1998).99 This can be summarized by the following four claims. (i) Sets are organized into stages. 

(ii) At stage 0 there are either all possible sets of ur-elements, or there is the null set (if there are 

no ur-elements). (iii) At every stage α there are all possible sets of the ur-elements and sets that 

exist at stages previous to α. (iv) This is still the case for α = n, for α = n+1, for α = ω, for α = ω 

+1, and so on; there is no last stage.  

 This conception can be argued for using the method of reflective equilibrium, as 

follows.100 Firstly, conceptual analysis leads one to the naive conception of a set according to 

which every concept determines a corresponding set. Secondly, by exploring the consequences 

of this assumption in a deductive system, one sees that it leads to paradox, showing that the 

original analysis is missing something fundamental. Thirdly, one concludes that the analysis is 

missing that a set in some sense depends on its members, an insight that can be understood and 

accepted by someone with the concept of a set as a one object formed out of many. One takes 

this insight as the basis of a new analysis of the concept of set, the iterative conception. Fourthly, 

one explicates the new conception, in this case by spelling out (i) – (iv) in an informally rigorous 

way; from this it follows that sets cannot contain themselves, because, by (iii), they contain the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
98 Boolos (1998). 
99 Boolos acknowledges that his first learned about the iterative conception from Kripke.!
100 See Goodman (1955). For the application of the method to set theory see Scanlon (2014: 
lecture 4). 
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ur-elements and sets that exist at stages previous to the stage at which they are formed. Finally, 

one derives the axioms of ZF from (i) – (iv), also using informal mathematical rigor.101 On this 

approach then, it is (i) – (iv) that are candidates to be primitive truths.  

 One reason that the iterative conception is of interest to the logicist is that, arguably, the 

analysis of the relation of dependency that it provides does not appeal to spatiotemporal 

intuition. For this relation can be argued to be transitive and irreflexive and well-founded using 

semantic analysis. I will focus on the most controversial aspect of this claim: that dependency 

can be shown to be well-founded using semantic analysis.102 To defend this claim one begins 

with the premise that conceptual content can be grasped by thinking. In Frege’s words:  

I understand objective to mean what is independent of our sensation, intuition and 

imagination… but not what is independent of reason,—for what are things 

independent of reason? To answer that would be as much as to judge without judging, 

or to wash the fur without wetting it (1884: S26). 

Secondly, the argument continues, the fact that conceptual content can be grasped by thinking 

places constraints on what it is like. One of these constraints is that no mathematical thought, or 

stock of thoughts, that successfully represents its subject matter, can fall into a backwards 

infinite-regress of contents. For if it did, then there would be no way to calculate its truth-value. 

Further, no set that is the subject of successful mathematical thought can fall into a backwards 

infinite regress of sets, since if it did, then the corresponding thought about it would fall into a 

backwards infinite regress and so be devoid of truth-value. Thus the advocate of the iterative 

conception can argue that dependency is well-founded, by appeal to an analysis of conceptual 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
101 The fact that the conception does not provide reason to accept the axiom of Replacement will 
not concern me, since my concern is a set-theoretic analysis of arithmetic, for which 
Replacement is not needed. 
102 See Potter (2004: 40), inspired by Wittgenstein (2.0211).!
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content, rather than by appeal to spatiotemporal intuition. 

 Even if dependency can be analyzed in a satisfactory way, there remains the following 

worry. By (iii) and (iv), the iterative hierarchy is as large as possible, containing at every stage α 

all possible sets of the ur-elements and sets that exist at stages previous to α, and continuing to α 

= ω +1, and so on. Why should we accept these claims as primitive? Not because of their 

fruitfulness, since, as we have already seen, this calls into question whether set theory is to 

provide foundational justification for other mathematics.  

 Once again we have to appeal to the insight that a set in some sense depends on its 

members, as follows. Suppose that x is at stage α-1. Since all elements of x are at a stage 

previous to α-1, all subsets of x are at stage α-1. So the set of all subsets of x is at stage α. To the 

extent that this argument makes (iii) seem true or more plausible, it justifies it by reflective 

equilibrium. However, it is not clear that this justification transmits to (iv). So there is the worry 

that the iterative conception cannot be accepted as primitive, and so is unsuitable to explain why 

something as basic as arithmetic is justified.  

 This objection is not supposed to be fatal, since there are various other motivations that 

one might have for representing arithmetic in ZF. Next I will describe some of these, before 

saying what I think Kripke’s motivations are. 

 
3. What are the motivations for representing arithmetic in ZF? 

 (a) Comprehensiveness and rigor: Earlier I described ZF as “a comprehensive, rigorous 

deductive framework for mathematics.” By this I mean that one can represent the axioms and 

primitives of other mathematical theories in ZF, in the way just illustrated. Not only is ZF is 

extremely comprehensive in this regard, but it is also widely thought to be consistent. For these 

reasons, a mathematician working in subject area a can appeal to theorems of a, in order to prove 
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theorems of subject area b, while being confident that he is not inadvertently appealing to 

assumptions concerning a that are inconsistent with those concerning b. Representing arithmetic 

is absolutely crucial to establishing the comprehensiveness of ZF, because so much else is 

derived in ZF from the representation of arithmetic. 

 Although the comprehensiveness and rigor of ZF are in themselves sufficient to ensure its 

centrality to work in the foundations of mathematics, there are even more ambitious goals that 

one might want to pursue by representing arithmetic in ZF: 

 (b) New insight: The search for rigor can yield new insights into mathematical concepts 

in the form of new definitions; and, as we saw in chapter 2, reflection on arithmetical practice at 

least suggests something like a set-theoretic definition of number. This is enough to motivate the 

search for a set-theoretic definition.  

 (c) Foundational justification: The search for rigor might lead one to want a rigorous set-

theoretic justification for arithmetic, in terms of the latter being derivable from set-theoretic 

principles and definitions. 

 (d) Explanation: If one thinks that arithmetic needs no such justification, one might still 

want a set-theoretic answer to the question of why arithmetic is justified, in terms of it being 

derivable from set-theoretic principles and definitions.  

 This brings me to the question of what Kripke himself intends to achieve by giving a 

definition of number in ZF. Some light is shed on this during the Q&A that follows the 

Whitehead Lectures, when he says in respect to his own set theoretic definition of number, that 

if we look for a set-theoretic foundation as revelatory of our practice, the numbers I'm 

talking about have significant advantages over the traditional numbers... 



! 138!

… there is a set-theoretic representation that, within the limits of such [set theoretic] 

statements, arguably captures our actual practice with the decimal system. Now, in 

what sense of “captures?”   

To this Kripke responds that he is 

trying to show whether a given ordinary concept can be put in some way into a 

framework as nearly as possible. That is the kind of claim that can sort of weakly be 

made here.  

These remarks suggest that Kripke believes that the senses —or conceptual contents— of the 

arithmetical notions cannot be preserved entirely by set-theoretic definitions, but that one should 

nevertheless try to preserve as much as possible. Where does this leave us regarding (a) – (d)? As 

a philosopher-mathematician who is also a set-theorist, Kripke is surely in pursuit of (a) and (b). 

Further, although he does not say that he is in pursuit of (c), he does, as we will see, rebut 

Wittgenstein’s objection to (c), which constitutes progress on behalf of one in pursuit of (c). 

Given all this, I think it is reasonable to conclude that his intention is to make some progress in 

the pursuit of (a) - (c). So, even though I can find no reference to (d) in the Whitehead Lectures, 

they count as a contribution to set-theoretic logicism, by my lights. With that said, I now turn to 

two objections to the usual set-theoretic definitions of number, to which Kripke responds in the 

course of developing his synthesis. 

 
4. Benacerraf’s dilemma again 

 The set-theoretic definitions of number that were described in section 2 contain artificial 

content that is extraneous to the task of defining our ordinary concept of number. To see this, 

consider that it is a consequence of von Neumann’s definition but not Zermelo’s that each 

number includes all of its predecessors as both members and subsets, so that 0 is both a member 
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and a subset of 1 which is both a member and a subset of 2, and so on. On the other hand, it is a 

consequence of Zermelo’s definition but not von Neumann’s that each number includes its only 

immediate predecessor as a member (although not a subset). But neither of these consequences is 

part of our ordinary concept of number. To make this vivid, Benacerraf points out that if an 

advocate of von Neumann’s definition were to insist that 0 is both a member and a subset of 2, 

while an advocate of Zermelo’s definition were to insist that 0 is neither, there would be no basis 

in mathematical practice for deciding who is right. Further, the definitions are incompatible, 

since if 2 = {{Ø}} and 2 = {Ø, {Ø}}, then by transitivity it would follow that {{Ø}}= {Ø, {Ø}}. 

Benacerraf concludes that since we cannot reasonably say from the point of view of 

mathematical practice which of these incompatible set-theoretic definitions is correct, neither of 

them can be, and this is because both contain unnecessary content.  

 Of course neither definition is intended to describe our ordinary concept of number, only 

to represent a progression. So Benacerraf’s dilemma is not supposed to embarrass them. 

However, the dilemma does serve to remind us that these definitions are artificial, and that 

consequently the resulting set-theoretic derivation does not preserve sense, and so does not help 

us in the pursuit of the goals described in section 3 by (b) – (d).  

 In response to his dilemma, Benacerraf —using ideas that are once again essentially due 

to Dedekind— proposes to define the natural numbers in the following way. Ordered sets or 

“structures” are isomorphic just in case there is an isomorphism between them, where an 

isomorphism is a one-to-one correspondence between the members of the sets that accords with 

the ordering on them. For example, consider a set A under an ordering <a, and another set B 

under an ordering <b. There is an isomorphism between A and B just in case: (i) there is a one-to-

one correspondence between their members such that (ii) if x and y ∈ A correspond with u and v 
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∈ B, then x<ay iff u<bv. For instance, consider the following sets of positive integers and of even 

numbers, both under the ordering <: 

 {1, 2, 3, 4…} 

 {2, 4, 6, 8…} 

There is an isomorphism between these two structures, because there is a one-to-one 

correspondence between their members such that, for example, 1<2 iff 2<4. Yet another result 

due essentially to Dedekind is that all structures that satisfy the following conditions are 

isomorphic: 

Trichotomy: For every x and y either x < y, or x = y, or y < x. 

Transitivity: For every x and y and z, if x < y and y < z, then x < z. 

Zero: There is a least element x such that for every y other than x, x < y. 

Successor: For every x there is a next element y such that x < y, but there exists no z 

such that x < z and z < y. 

Induction: For any set X of elements, if the least element belongs to X and 

the next element after any element belonging to X belongs to X, then all elements 

belong to X. 

Call any such structure “a progression.” Benacerraf’s proposal is then to define the numbers as 

any progression rather than as a particular progression, with the caveat that the progression must 

be useable for counting. 

 An objection to Benacerraf’s proposal is that it neglects features of the numbers that, 

although unnecessary for number theory, are evident in ordinary arithmetical practice. As will 

become clear, Kripke is sympathetic to this objection, being of the view it is part of our ordinary 

practice that some progressions are privileged. However, before I can explain why Kripke thinks 
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this, I must first discuss a Wittgensteinian objection to the claim that arithmetic can be justified 

in set theory, as well as a response due to Mark Steiner. 

 
5. Wittgenstein’s objections  

 First a word about exegesis is in order. In what follows I will talk as though 

Wittgenstein’s objections are intended to apply to ZF, rather than to Russell’s Principia 

Mathematica as Wittgenstein intended. Also, while Wittgenstein makes a number of objections 

to justifying arithmetic in Principia, I will focus on the ones attributed to him by Steiner,103 since 

they anticipate the previous chapter’s discussion of the need to preserve the sense of ordinary 

arithmetic. In order to justify this treatment, and to avoid further questions of Wittgenstein 

exegesis, I will attribute views to an imaginary philosopher called “Wittgensteiner,” rather than 

to Wittgenstein himself. Finally, although Wittgensteiner’s objections may appear to the reader 

to be based on confusion and so unworthy of serious consideration, they are nevertheless worth 

stating and engaging with, in order to extract the grain of truth that Kripke sees in them.  

 The first of Wittgensteiner’s objections to be considered proceeds from the claim that the 

set-theoretic representation of arithmetic is not “surveyable.” By this Wittgensteiner means that 

the set-theoretic representatives of the propositions of arithmetic are, in some cases, so hard to 

discern, that creatures subject to our limitations cannot know whether we have valid proofs of 

these propositions in set theory. In this regard, Wittgensteiner says: 

 [C]ould we also find out the truth of the proposition 7034174 + 6594321 = 

 13628495 by means of a proof carried out in [set theoretic] notation? — Is there such a 

 proof of this proposition? — The answer is: no (1956: II, 3). 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
103 Steiner (1975: 16-18, 41-54) 
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Further, Wittgensteiner continues, a proof should convince us that a proposition is true. 

Furthermore, since some set-theoretic proofs fail this criterion, one must introduce non set-

theoretic content into them, so that they become surveyable enough to produce conviction. In 

particular, Wittgensteiner claims, positional notation must be used, and addition must be defined 

in terms of repeated succession, multiplication in terms of repeated addition, and exponentiation 

in terms of repeated multiplication. Then we can prove that each unsurveyable proof, with all 

such definitions eliminated, is equivalent to a surveyable one. However, Wittgensteiner 

continues, this proof of equivalence must thereby draw on notions from outside of set theory. In 

which case, he concludes, the justification for the propositions of arithmetic cannot be provided 

by set theory alone.  

 Wittgensteiner is simply wrong that the aforementioned definitions require notions from 

outside of set theory. This is because the aforementioned implicit definitions can be supplanted 

with explicit ones, which show that there exist unique functions for which the aforementioned 

recursion equations hold. Equivalently, as Steiner points out, we can define the operations by 

showing there exist unique sequences representing each operation. For example, we can define ‘x 

. y’ by showing that there exists a unique sequence whose first member is 1, of length y+1, in 

which each member is x plus the previous one; likewise, we can define exponentiation by 

showing there exists a unique sequence whose first member is 1, of length y+1, in which each 

member is x multiplied by the previous one. The upshot is that we need not treat the occurrence 

of ‘y’ in ‘x + y’ as a metalinguistic symbol abbreviating y-many iterations of successor. Nor need 

we treat its occurrence in ‘x . y’ as abbreviating y-many iterations of x plus itself; nor need we 

treat ‘x y’ as abbreviating y-many iterations of x multiplied by itself, as Wittgensteiner intimates 

that we must. One might worry about the appeal to the notion of a sequence in this explanation, 
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but as will become clear later, this notion can be defined in set theory without presupposing 

numbers. 

 Armed with these set-theoretic definitions of arithmetical operations, we are now in a 

position to understand Steiner’s response to Wittgensteiner’s claim that the set-theoretic 

representation of number is not surveyable. Steiner’s response —adjusted slightly to fit the 

present context— is that as well as representing a progression in set theory as per von Neumann, 

Zermelo et al., one can also represent descriptions of numbers as polynomial descriptions. To 

return to Wittgensteiner’s example, rather than representing ‘7034174’ by producing the 

corresponding numeral in Zermelo’s notation, we can instead first translate ‘7034174’ into the 

corresponding polynomial: 

7 .  106  +  0 . 105  +  3 . 104  +  4 . 103  +  1 . 102  +  7 . 101  +  4 

Next we help ourselves to Zermelo’s notation for the progression 0, 1, 2 …10: 

0 = Ø,  

1 = {Ø},  

2 = {1} = {{Ø}}, 

3 = {2} = {{{Ø}}}, …. 

Finally, we can represent the above polynomial in the following way:104  

{6} . {9}{5}  +  Ø . {9}{4}  +  {3} . {9}{3}   +  {3} . {9}{2}  +  {Ø} . {9}{1}  +  {6} . {9}{Ø}  

+  {3} 

There is of course the obvious objection that we have not here used primitive notation to 

represent the polynomial in question. To this Steiner responds that there can be no objection to 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
104 Or using superscripted numerals to abbreviate iterations of singleton:  
{7 Ø} . {10 Ø}{6 Ø}  +  Ø . {10 Ø}{5 Ø}  +  {3 Ø} . {10 Ø}{4 Ø}   +  {4 Ø} . {10 Ø}{3 Ø}  +                     
{Ø} . {10 Ø}{2 Ø}  +  {7 Ø} . {10 Ø}{Ø}  +  {4 Ø}!
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appealing to the operations of addition, multiplication and exponentiation, since we have already 

shown that these can be defined in set theory. Further, he claims that although unpacking the 

numerals in, for example 

 {6} . {9}{5}   

as the primitive 

 {{{{{{{Ø}}}}}}}  .  {{{{{{{{{{Ø}}}}}}}}}}{{{{{{Ø}}}}}}   

is inconvenient, it does not prevent the notation from being surveyable: 

 Even if we replaced such signs [in the way indicated], the reader will note, the result 

 would be surveyable since the primitive symbols would form a pattern (1975: 45).  

 
6. Problems with Steiner’s proposal    

 Steiner is surely correct that we can represent arithmetical operations and descriptions of 

numbers directly in set theory. However, because the claim made in the last quote seems to be 

false, it is open to Wittgensteiner to insist that positional notation cannot be eliminated from 

Steiner’s representation of polynomial descriptions, while also preserving surveyability. So, 

Wittgensteiner will continue, there is still reason to think that we have to prove the 

correspondence between arithmetical calculations on the one hand, and unsurveyable set-

theoretic derivations on the other, using resources from outside of set theory.  

 The next problem is that Steiner’s set-theoretic representation of numerals is incorrect, 

because numerals are not polynomial descriptions, as shown by the fact that one cannot quantify 

into them. For example, from  

70 = 70 

one may not infer the ill-formed 

∃x (x0  = 70). 
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In contrast, from the description 

7 . 101  = 70 

one may infer the well-formed  

∃x (x .101  = 70).  

 I now turn to Kripke’s objection to Steiner’s proposal, which is that Steiner neither 

provides a set-theoretic representation of a progression of numerals, nor accounts for the way 

that numerals are used in mathematical practice. According to Kripke, it is part of our practice 

that numerals are not just surveyable, but immediately revelatory or buck-stopping. For example, 

if a decimal user calculates with decimal notation that the sum of two numbers is 70, he thereby 

knows what number is the sum in question – no further calculation or inference is necessary. 

Similarly, if he counts that there are 70 apples in the box, he thereby knows how many apples 

there are. Further, Kripke claims, the analysis of number should reflect the fact that numerals are 

immediately revelatory. However, Kripke argues, Steiner’s proposal does not meet the latter 

requirement. For even if numerals and symbols of operation are represented in set theory in the 

way that Steiner suggests, the results of calculations will not be immediately revelatory. There 

are two reasons for this.  

 Firstly, Steiner’s proposal, to represent polynomial descriptions in set theory, gives the 

impression that when one is given such a description one has to ask ‘which set is that?’ But, as 

Kripke points out, this is almost the opposite of our ordinary practice, in which polynomial 

descriptions are much closer to being immediately revelatory of numbers than are representations 

of sets. For example, in practice ‘7 . 101’ is much closer to being immediately revelatory of 70 

than the corresponding Zermelo or von Neumann numeral. This is one reason to think that 

Steiner’s proposal does not capture the way that numerals are used in arithmetical practice. 
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Secondly, Kripke claims, although polynomial descriptions are much more revelatory than are 

representations of sets, they not immediately revelatory either, because further calculation is 

required to know what they denote, by reducing them to numerals. Further, as already noted, 

Steiner makes no provision for reducing them to numerals in set theory. 

 As Kripke notes, the relevant difference between immediately revelatory numerals, and 

expressions such as polynomial descriptions, is anticipated by Felicia Ackerman, who 

characterizes it as follows: 

The position of what a numeral refers to can be known directly simply by 

understanding the numeral, without having any mathematical knowledge beyond 

what is necessary to understand the numeral (1978: 151). 

She proposes to explain this feature of numerals in the following way: 

‘75’ can be understood only in the context of a system of numbers [she means 

“numerals”], and knowing and understanding a system of numerals seems to be a 

matter of knowing how to generate in order the progression of numerals and knowing 

how to count transitively (e.g. to count marbles) in accord with the progression 

(ibid).105 

This dovetails nicely with the proposal due to Benacerraf, which was discussed at the end of 

section 4, and can now be amended as follows: our concept of number is of any progression 

satisfying the axioms that one knows how to generate in order and use for transitive counting. I 

now turn to Kripke’s counterexample to this amended proposal. 

 
  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
105 Assuming that one equates having a de re attitude towards a number with being immediately 
revelatory, as Ackerman appears to, one might also view this proposal as a condition for having a 
de re attitude towards a number. 
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7. Kripke’s counterexample 

 Kripke offers a counterexample to this proposal, using an invented base-26 positional 

notation, in which the letter ‘z’ denotes zero, and the letters ‘a’ – ‘y’ in alphabetical order serve 

as digits denoting the numbers one through twenty-five. After the digits have been exhausted, 

‘az’ denotes twenty-six. The rest of the numerals are generated by ordering letters into sequences 

by length and then lexicographically (in dictionary order), while disallowing sequences starting 

with ‘z’. Thus ‘aa’ denotes twenty-seven, ‘ab’ denotes twenty-eight, ‘ay’ denotes fifty-one, ‘by’ 

denotes seventy-seven and so forth. Using table 1 (appended at the end of this chapter), the 

reader can now easily train herself to recite these numerals in order and use them for counting.  

 In order to appreciate Kripke’s counterexample, it will help to recall that because we are 

trained in decimal notation, we can answer the question ‘what is 106?’ without the tedium of 

multiplying 10 by itself. Following the conventions of positional notation with ‘0’, in which ‘0’ 

functions as a placeholder for each power of the base, we simply write ‘1’ followed by six 

occurrences of ‘0’. So we can conclude that the answer is ‘1,000,000’.106 This answer is 

immediately revelatory, in that it makes no sense to think I know that 106 is 1,000,000, but what 

number is that? But notice that the reader who has trained herself in Kripke’s notation can also 

answer the question ‘what is 266?’ with great ease, since by the conventions of this notation she 

knows that 266 must be ‘a’ followed by six placeholders, i.e. ‘a,zzz,zzz.’ Further, like ‘1,000,000’ 

this numeral belongs to a progression that the reader knows how to recite in order and use for 

counting. So, by the proposal under consideration, ‘a,zzz,zzz’ should be immediately revelatory. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
106 This is because we know that b0 = 100 = 1, and that for any multi-digit numeral ao…ak, each 
subsequent position k-1, k-2 etc. represents a higher power of b = 10. Finally, we know that 0 
must be used as a placeholder for each power. So we can conclude that 106 must be 1,000,000. 



! 148!

But it is not, since it remains to compute the answer in decimal. So the proposal does not give a 

sufficient condition for a numeral to be immediately revelatory.  

 As Kripke sees it, such examples present us with a dilemma. The first horn is Charybdis, 

which is to say that our familiar decimal ciphered-positional numerals are the only ones that are 

immediately revelatory. The second horn of the dilemma is Scylla, which is to say that any 

progression of numerals that one knows how to generate in order and use for counting is 

immediately revelatory, so long as one is also accustomed to or interested in that progression, in 

the way that we are accustomed to decimal notation. Kripke characterizes the dilemma as 

follows: 

Scylla is sort of cultural relativism, but many people may think Scylla is fine, see, and 

that there really is no difference.  It’s just a matter of our interests, our training and so 

on, but we are no closer to the numbers in one way than another.  Charybdis would 

seem to have to be what? That the decimal system is privileged.  But that is 

preposterous.  What, we have hit on the right thing, and those other guys are wrong?   

Thus Charybdis is supposed to be false, because members of other cultures presumably do 

succeed in using their notations to represent the results of counting and calculation in a way that 

is immediately revelatory.107 

 At one point Kripke characterizes this dilemma as concerning acquaintance. In this 

regard, he says: 

But how can a mere notation get me better acquainted with an object or not, 

especially if I conceded that I might just as well have been brought up in another one?  

How can that really be? 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
107 Ackerman describes the view Kripke calls Charybdis as “preposterous.” See Ackerman (ibid). 
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Putting the problem this way, Charybdis is the view that only the decimal system can acquaint us 

with numbers, while Scylla is the view that no notation acquaints us with numbers, because 

immediate revelation is just a matter of 

an attitude we have, that we don't know the number.  There's no such real thing as 

genuine acquaintance, sort of an objective thing, as Russell would have called it, 

acquaintance with the object, or [being] en rapport or what have you.   

I will eventually propose a version of Scylla. But for now I will simply assume, for the sake of 

exposition, that neither horn of the dilemma is acceptable, so I may turn to Kripke’s proposed 

middle way between Scylla and Charybdis.  

 
8. Kripke’s proposal  

 According to Kripke, for the purposes of set theory and other mathematics, one should, 

whenever possible, use a notation that is “structurally revelatory” – one that has a structural 

affinity with the subject matter it represents. Consider, for example, the hereditarily finite sets 

(‘HF’), each of which are finite and contain all possible sets that have already been formed.108 

These can be represented using the following notation: 

 {Ø,  {Ø},  {{Ø}},  {Ø, {Ø}}…} 

 {Ø, {Ø}}  

 Ø 

Plainly it is easier to discern the content of this notation for HF, than it is to discern the content 

of a notation that works on the opposite principle, such that ‘{Ø, {Ø}, {{Ø}}, {Ø, {Ø}}…}’ 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
108 Compare the iterative conception of set, discussed at the end of section 2. It is an interesting 
question whether Kripke thinks that the iterative conception is chosen in order to make the 
standard notation for sets structurally revelatory. If so, does he also think that having the 
conception revealed to us in this way makes it self-evident to someone sufficiently trained in the 
notation, in a way that would help justify the axioms of set theory? 
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denotes the null set, and ‘Ø’ denotes the set of all possible sets of sets that have already been 

formed. This is because the standard notation unlike the reversed notation is structurally 

revelatory. But what exactly does this require? 

 This example shows that isomorphism is not necessary for a notation to be structurally 

revelatory, because the standard notation not quite isomorphic with HF. To see this, recall that 

there is an isomorphism between A and B just in case: (i) there is a one-to-one correspondence 

between members of A and B such that (ii) if x and y ∈ A correspond with u and v ∈ B, then x<ay 

iff u<bv. In the present case, let A be the set of symbols of the standard notation (which I will 

now represent in bold rather than in quotes), and let B be HF, where A and B are under the partial 

orderings Ea and Eb respectively: 

{Ø,  {Ø, {Ø}},  {Ø, {Ø}, {{Ø}}, {Ø, {Ø}}…}} 

{Ø,  {Ø, {Ø}}, {Ø, {Ø}, {{Ø}},{Ø, {Ø}}…}}  

There would be an isomorphism between these two structures if there were a one-to-one 

correspondence between their members such that, for example: (i) Ø and {Ø, {Ø}} corresponded 

with Ø and {Ø, {Ø}}, and (ii) ØEa{Ø, {Ø}} iff ØEb{Ø, {Ø}}. However, there cannot be a one-

to-one correspondence, since there is more than one order in which the same set can be 

represented in the standard notation. For example, recalling that by the axiom of extensionality 

{Ø, {Ø}} = {{Ø}, Ø}, both {Ø, {Ø}} and {{Ø}, Ø} can denote {Ø, {Ø}} and so be corresponded 

with it. So there is not quite an isomorphism.  

 Nevertheless, there is a clear structural affinity between the two structures that is not 

present between HF and the reversed notation. For even if the symbols of the reversed notation 

{Ø, {Ø}} and Ø were in one-to-one correspondence with the HF sets Ø and {Ø, {Ø}} (which 

they are not, for the reason just given), it would not follow that ØEaR{Ø, {Ø}} iff ØEb{Ø, {Ø}}, 
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where ‘EaR’ is the partial ordering on the reversed notation. Rather, by the conventions of how 

the reversed notation represents HF, {Ø, {Ø}}EaR Ø iff ØEb{Ø, {Ø}}. To take stock, 

isomorphism is not necessary for a notation to be structurally revelatory. What is necessary is 

that the notation is ordered in the same way as the subject matter represented.  

 I now turn to the relationship between being structurally revelatory and immediately 

revelatory. Here it is important to note that the former is not sufficient for the latter. This is 

evident from the fact that the standard structurally revelatory notation for HF is not immediately 

revelatory, since one can ask which set is denoted by {Ø,  {Ø},  {{Ø}},  {Ø, {Ø}}}}. The point 

can also be seen from the example of prefix (or Polish) notation. Consider again the set theoretic 

representations of the arithmetical operations of addition, multiplication and exponentiation, as 

they are given implicitly by recursion equations. These are usually stated in infix notation, as in: 

i.   x + 0 = x 

ii.  x + S(y) = S (x + y) 

But they can also be stated in prefix notation. For example, the following are the prefix 

equivalents of equations i. and ii.: 

i.a.  f+(x, 0) = x 

ii.a.  f+(x S(y)) = S f+(x, y)) 

I am surely not alone in finding the meaning of these equations much harder to discern than that 

of their infix equivalents. This is also the case with the infix and prefix statements of the 

associative law for addition: 

 x + (y + z) = (x + y) + z  

  f+(f+(x, y) z) = f+(x, f+(y, z)) 
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Infix notation is thus much closer to being immediately revelatory than prefix notation – at least 

for me, and I suspect for my readers as well. Yet both notations are structurally revelatory of 

what they represent, since they have isomorphic parsing trees, with the same roots, labels and 

orderings. 

 So far I have given an idea of what is required for being structurally revelatory, and 

distinguished this from being immediately revelatory. I will now explain how all this relates to 

Kripke’s proposal. Granting that being structurally revelatory is a desirable property for 

notations to have, Kripke then uses this fact to argue for his proposal as follows: 

On other theories of what the natural numbers are, our conventional decimal notation 

is not particularly structurally revelatory. The idea of a Frege-Russell number being 

by abstraction from the cardinality of any set is just best represented structurally by a 

corresponding number of strokes. The idea of an abstract progression, with no other 

structure to the progression, is similarly best represented by zero followed by a 

number of strokes…. The conventional decimal notation would be a highly 

structurally unrevelatory notation for either of these concepts. 

A brief digression: The above quote indicates that Kripke regards the Frege-Russell numbers as 

equivalence-types —or the corresponding equivalence classes— that are abstracted from the 

equivalence relation of equinumerosity between sets. However, the problem of decimal notation 

being unrevelatory does not, to my mind, depend on their being abstracted in this way. For the 

problem also arises if they are identified with the extensions of what Salmon calls “numerically 

definite quantifier[s]: nothing, exactly one more thing than nothing, exactly one more thing than 

exactly one more thing than nothing; etc.” (forthcoming: 31). This is because a structurally 

revelatory notation for this numeric progression is a cumulative notation consisting of a symbol 
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for the extension of ‘nothing’, followed by a corresponding number of strokes: 0, 0|, 0| |…. 

Further, as Kripke points out, the notion of a progression of ordinals can be reflected in the same 

way.  

 Returning to the main line of argument, Kripke’s point is that decimal notation is neither 

structurally revelatory of the Frege-Russell numbers, nor of a progression with no other structure 

to the progression, because the notation is not cumulative stroke notation, but ciphered, 

positional and in dictionary order. That is, multi-digit numerals are finite sequences of one or 

more of the digits ‘0’ – ‘9’, ordered by length and then lexicographically —so that ‘2’ < ‘22’ < 

‘23’— where it is stipulated that sequences cannot start with ‘0’. How then can decimal notation 

be structurally revelatory? Kripke is sympathetic to Benacerraf’s proposal that the natural 

numbers are any progression that can be used for counting. However, to ensure that decimal 

notation is structurally revelatory, he amends Benacerraf’s proposal so that the numbers are any 

progression of finite sequences consisting of one or more of the ten objects referred to by ‘0’ – 

‘9’, where these sequences are ordered by length and then lexicographically, and where 

sequences of two or more starting with 0 are excluded. Like the notation, each sequence has a 

unique successor and predecessor, except for the first sequence, which has no predecessor. 

Further, the infinite sequence of all these sequences, under their lexicographical ordering, is a 

progression.  

 Kripke argues that while this proposal is cooked up to ensure that decimal notation is 

structurally revelatory, it is also a plausible analysis of our ordinary concept of number. This is 

because those of us who are trained in the decimal system learn to impose the aforementioned 

structure on the numbers. That is, we learn to parse, or identify and individuate numbers as finite 

sequences; for example, we come to identify and individuate 547 as the finite sequence 
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consisting of the numbers 5, 4, and 7. To be clear, Kripke’s claim is not that we are consciously 

aware of identifying of numbers as finite sequences of small numbers. Rather, he appears to 

share the Fregean view endorsed in the previous chapter, that our ordinary concept of number is 

discovered by reflection on arithmetical practice: 

[W]hether or not someone can come up with such a definition, in fact we are so 

trained that when we are given a number and we get asked a number, we immediately 

can say it as such a sequence. You see, the most primitive thing is just reading off the 

sequence; that is sufficient to generate the numerals themselves… And if you ask 

what number this is, what is its first digit, you should be able to say, right? You 

know, “What is the first digit of this number?” The person in the street can give an 

answer to that. To eliminate redundancies, the first digit is never zero… And so this is 

what I mean by saying that we think of numbers as finite sequences of such objects, 

which themselves are numbers less than ten: I mean that we can parse a number as 

such a sequence, and that if we have done that sufficiently, then if we're given the 

digit ‘526’, then we’ve been given the number. If we don't know what the middle 

digit is, we don't know what number it is. And this I think is a very natural 

conception.    

In this way, having argued that we identify and individuate numbers as finite sequences that 

make decimal notation structurally revelatory, Kripke uses this claim to explain why decimal 

numerals are immediately revelatory. The explanation is that our identification of numbers as 

finite sequences provides a standard for knowing which number we are confronted with, while 

decimal numerals present numbers as such sequences. Further, Kripke’s proposal also provides a 

response to Wittgensteiner’s claim that the set-theoretic representation of arithmetic is not 



! 155!

surveyable, since finite sequences of ten digits grow at a much slower rate than Zermelo’s or von 

Nuemann’s notation, or, for that matter, than stroke notation for the Frege-Russell numbers. 

 As Kripke notes, it is a consequence of his proposal that members of cultures that use 

numerical systems with different bases, will thereby identify and individuate numbers differently 

than we do: 

Now, consider the person trained in another culture, say with another base... Such a 

person also identifies numbers with sequences, but they identify numbers with a 

different system of sequences. See, no wonder they will differ from us, then, by what 

is the sufficient condition for numbers to be given to them, because I mean it's as 

simple as the fact that they have a different thing in mind (though both are useable, of 

course) as the natural numbers. 

For example, a culture that uses the base-26 notation described in the previous section, will 

thereby identify and individuate numbers as finite sequences of any of 26 objects, where these 

sequences are ordered by length and then lexicographically, excluding sequences starting with 

‘z’. This is how Kripke proposes to steer a middle way between Scylla and Charybdis: Members 

of cultures, who use systems with different bases, will find numerals from different systems to be 

immediately revelatory, because their respective systems refer to different numbers, in virtue of 

the users of these systems identifying and individuating numbers differently, as different finite 

sequences. 

 
9. Kripke’s acquaintance theory  

 At the end of section 7 I pointed out that Kripke characterizes the above dilemma as 

concerning our acquaintance with numbers. Now I want to look at how his solution to the 

dilemma fares as a theory of acquaintance. This will be important in what follows, because I will 
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use the fact that Kripke’s theory is to a significant extent a theory of Russellian acquaintance, in 

order to contrast his proposal with my alternative account of immediate revelation. 

 The reader will recall from chapter 1 that I characterize acquaintance in terms of 

Russell’s doctrines of Immediacy, Privacy and Complete Revelation. Immediacy, it will also be 

recalled, is Russell’s doctrine that acquaintance is not mediated by “inference or any knowledge 

of truths” (1912: 43). Obviously this is part of the grain of truth that Kripke sees in Russell’s 

doctrines about acquaintance, and, as such, is part of the motivation for the distinction between 

being revelatory and immediately revelatory. I think it fair to say that in proposing to explain 

why a decimal user finds decimal numerals immediately revelatory, Kripke is thereby proposing 

to explain why the user satisfies Immediacy.109  

 Next I turn to Privacy, Russell’s doctrine that we are not acquainted with entities in virtue 

of grasping inter-subjectively accessible, shareable concepts of these things, but by being 

privately aware of them. In my view this doctrine should not be congenial to Kripke, for the 

following reasons. According to Kripke, we find numerals immediately revelatory because we 

are trained to use decimal notation. Further, decimal notation has an objective structure. For this 

reason, the question of how the numbers are to be identified and individuated, so that the 

notation is structurally revelatory, is an objective question. Further, its answer is inter-

subjectively accessible and shareable, since the notation is a public language. Thus the objective 

nature of numbers is revealed to users of a notation through training in a public language, not 

through private awareness. 

 Finally, I turn to Complete Revelation, Russell’s doctrine that when one is acquainted 

with an entity one grasps it completely, and without the help of knowledge of truths concerning 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
109 In this respect Kripke is in agreement with Burge, although the two disagree about the 
conditions that are required to satisfy Immediacy. See chapter 1, section 13. 
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that entity. Regarding such knowledge of truths, Kripke is of the view that knowledge of 

arithmetical truths about numbers is unnecessary for immediate revelation. This is because 

though the child doesn't understand the ideas of addition and multiplication, the child 

still may know in some sense what the number after twenty-six is and know something 

about how many people are in the room if told that there are twenty-seven people in 

the room. No particular further requirements seem to be reasonable (emphasis added). 

The hedges that I have emphasized in the above statement suggest to me that Kripke would 

prefer to allow that the child’s grasp of immediately revelatory numerals can be partially rather 

than completely revelatory. However, Kripke is committed to saying that as the child becomes 

fully numerate, she will, in addition to meeting Ackerman’s requirements, eventually come to 

identify and individuate numbers as finite sequences that make decimal notation structurally 

revelatory. Further, according to Kripke’s theory, if this last requirement is met, then it has been 

revealed to the numerate subject what numbers are, in so far as: (a) she thinks of numbers as 

finite sequences of ten objects ordered by length and then lexicographically, and (b) numbers 

themselves are such sequences. Together with the assumption that (b) describes what numbers 

are completely, it would follow that a numerate subject who meets Kripke’s requirement thereby 

satisfies Complete Revelation.  

 This assumption is questionable, for the following reason. It will be recalled that part of 

Kripke’s proposal is that the numbers are any progression of finite sequences consisting of one 

or more of the ten objects referred to by ‘0’ – ‘9’. The point to which I want to draw the reader’s 

attention, is that Kripke remains silent about what these ten objects are. For all that has been 

said, they could be ordinal numbers, cardinal numbers, or, more specifically, Frege-Russell 
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numbers, etc. It follows that (b) in the previous paragraph does not describe what numbers are 

completely, but only partially. Correspondingly, we have Partial rather than Complete Revelation 

 However, at one juncture Kripke considers making an amendment to his proposal, 

according to which numbers are finite sequences of the first ten Frege-Russell numbers, rather 

than finite sequences of any ten objects. The reason in favor of making this amendment is as 

follows. Suppose that we were to switch from our decimal notation to a decimal version of 

Kripke’s invented alphabetic notation (for which see section 7), and thereby come to identify and 

individuate numbers as finite sequences of any of ten objects denoted by ‘z’, ‘a’ – ‘i’. In this 

scenario, these digits would not be immediately revelatory, since we would still have to ask, for 

example, ‘what number is f?’. According to Kripke, what explains this is that, in the case 

described, we have failed to associate small Frege-Russell numbers with the digits. To do this, 

Kripke claims that we can associate with each digit a “picture” of a surveyable sample set of the 

requisite cardinality. This picture is immediately revelatory of and so acquaints us with the 

corresponding small Frege-Russell number. It may even satisfy Privacy, if by “picture” Kripke 

means a visual image.  

 As Kripke explains in the second of the Whitehead Lectures, it would follow from this 

amendment to his proposal that our identification of larger numbers isn’t as 

sequences of any old objects but sequences of the first ten, that is, the numbers from 

zero through nine, Frege-Russell numbers, ordered in the same way as I was saying 

before.  

This amendment to Kripke’s view would yield the following “two stage” Russellian 

epistemology. Firstly, we are acquainted with small Frege-Russell numbers because we can 

picture them in the way just described. Secondly, this acquaintance, together with our training in 
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the decimal system, leads us to identify and individuate —and so acquaints us with— larger 

numbers as finite sequences of small Frege-Russell numbers that make decimal notation 

structurally revelatory. Assuming that this characterizes what numbers are completely, it would 

follow that we thereby satisfy Complete Revelation.  

 However, Kripke has strong reservations about making the above amendment, because 

the Frege-Russell numbers cannot be represented in ZF. For they would have to be represented 

as sets of equinumerous sets, these being the modern set-theoretic correspondents of Frege’s 

extensions containing equinumerous extensions. But as noted in the previous chapter, such sets 

are non-well-founded, and as a result are disallowed in ZF by the axiom of foundation. 

Moreover, even if they were not explicitly disallowed by an axiom, there would still be 

something very strange about the relation of non-well-founded sets to their members, since the 

latter are not logically prior to the former. Kripke also notes another reason why the Frege-

Russell numbers cannot be represented in ZF as sets of equinumerous sets, which is that the set 

of all sets equinumerous with a given non-empty set can be proved not to exist, because its union 

will be the universal set. For these reasons, Kripke seems inclined, although reluctantly, to rest 

with his claim that numbers are finite sequences of the ten objects referred to by ‘0’ – ‘9’, where 

what these objects are is left unspecified. This brings me to the next aspect of Kripke’s proposal, 

which is his explicit definition of the natural numbers in ZF.  

 
10. The representation of Kripke’s proposal in ZF 

 The proposal to be explicated is that the natural numbers are any progression of finite 

sequences consisting of one or more of the ten objects referred to by ‘0’ – ‘9’, where these 

sequences are ordered by length and then lexicographically. There is also the condition that the 

progression must be usable for counting, but this will not concern me for the moment, since I 
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have already shown (in section 2) how counting with a progression is supposed to be explained 

in set theoretic terms. Rather, my first concern is to explain what Kripke means by “finite 

sequence.” During the Q&A period that follows the Whitehead Lectures, Kripke indicates how 

he could define this notion in ZF: 

[A] finite sequence without repetitions is a linear ordering which is a well-ordering in 

both directions. Now, that sounds fancier than it really is. I mean, it just means that, 

well, putting it more simply, every subset has a first and a last element. And so you 

never go further and further out in either of the two directions, which is the idea of 

infinity.  

To unpack this, first we say that a relation < linearly orders a set X if the following conditions 

are met: 

Irreflexivity: For every x, ~x<x 

Trichotomy: For every x and y either x < y, or x = y, or y < x. 

Transitivity: For every x and y and z, if x < y and y < z, then x < z. 

Assuming that Y is a non-empty subset of X, an <-least element in Y is an x such that for any y in 

Y, x<y. Further, an <-greatest element in Y is an x such that for any y in Y, y<x. Now we can say 

that < well-orders a set X if the following conditions are met: 

(i) < linearly orders X  

(ii) Every non-empty subset of X has an <-least element. 

Further, we can say that < conversely well-orders X if instead of (ii) being met: 

(iii) Every non-empty subset of X has an <-greatest element. 
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Furthermore, if all three conditions are met, then we can say that < doubly well-orders X. Next, 

following Kripke’s suggestion, we can say that a set is finite if it is doubly well-ordered.110 

Moreover, we can say that a finite sequence is a set that is doubly well-ordered.  

 Kripke’s definition of a finite sequence must be amended to allow that the elements of a 

given sequence can occur repeatedly in it. This must be so, because digits are abstract types of 

expressions, which can occur repeatedly in multi-digit numerals; for example the expression-type 

‘2’ occurs repeatedly in ‘227’. Correspondingly, on Kripke’s proposal, the object to which ‘2’ 

refers also occurs repeatedly in the sequence referred to by ‘227’. Kripke addresses this point 

with the following remark:  

Now, this [definition of a finite sequence] really just defines finite ordering without 

repetitions, because that’s a linear ordering of distinct objects. But then we could say 

that a finite sequence allowing repetitions is something indexed on such a thing, with 

a function that is allowed to repeat.   

Taking a step back for a moment, the basic idea of indexing is to label or index the elements of 

one set using the elements of another, by defining a function f, also called an “indexed system of 

sets,” whose domain is the indexing set I, and whose range is the indexed set J. In that case we 

say that J is “indexed by” or “indexed on” I. (We can also say that J is indexed by the function f 

whose domain is I.) For example, if we were not trying to define the natural numbers or allow for 

repetitions, then {0…25} could be our indexing set, the letters of our alphabet {‘a’….‘z’} could 

be our indexed set, both under their usual orderings. The resulting indexed system of sets would 

be a set of distinct ordered pairs, for example: 

 {(0, ‘a’), (1, ‘b’), (2, ‘c’)…(25, ‘z’)} 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
110 This definition is also found in Weber (1906), Staeckel (1907), and Zermelo (2010). There are 
yet more definitions of “finite set.” See Hrbacek and Jech (1999: 72-3). 
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In this example the letters of our alphabet are indexed by numbers, but not in a way that allows 

for repetitions.  

 For this purpose, f must be (non-trivially) surjective or onto. That is, for every element 

z in the indexed set J, there is a corresponding element x in I such that f(x) = z, but there is not 

necessarily a unique z corresponding to every x in I. So f may map more than one element of I to 

the same element of J. In that case, there will be a z that is indexed by more than one element of 

I, allowing repeated occurrences of z in the resulting set of distinct ordered pairs. To expand on 

the previous example, if we were not trying to define the natural numbers, then {0…n-1} could 

be our indexing set, and the first ten letters of our alphabet {‘a’….‘j’} could be our indexed set. 

Then for every letter, there is a corresponding number such that f(0) = ‘a’, f(1) = ‘b’ etc., but not 

necessarily a unique letter corresponding to every number. So f may map more than one number 

to the same letter, and in that case the same letter will be indexed by more than one number. 

Supposing that this is the case for each letter, one resulting system might be the set of distinct 

ordered pairs: 

 {(0, ‘a’), (1, ‘b’), (2, ‘c’)…(9, ‘j’), (10, ‘a’), (11, ‘b’)…} 

In this example the letters of our alphabet are indexed in a way that allows them to occur 

repeatedly.  

 Since Kripke’s task is to define ‘Natural number(n)’ using the notion of a finite sequence 

allowing repetitions, he of course cannot use the natural numbers as his indexing set. Rather, as 

the above quote suggests, he proposes to use the more general idea of a doubly well-ordered and 

so finite set without repetitions as the indexing set. One might still think that a doubly well-

ordered set is sufficiently similar to the natural numbers for circularity to threaten. However, this 

is to overlook a crucial difference between numbers and well-ordered sets more generally, which 
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is that not every element of a well-ordered set must have a unique predecessor. For example, in 

the following well-ordered set, the singleton of the null set, {Ø}, does not have a unique 

predecessor: 

{Ø, {{Ø}}, {{{{Ø}}}}…. {Ø}, {{{Ø}}}, {{{{{Ø}}}}}…} 

This well-ordered set can be used to index a linearly ordered set in a way analogous to the 

previous example, thus allowing for repetitions. Further, since the resulting ordered pairs will 

themselves be used to obtain the finite sequences that make decimal notation structurally 

revelatory, the indexed elements of each pair must be one of ten objects, for which I will use ‘z’ 

followed by the first nine letters of our alphabet {‘z’, ‘a’….‘i’}. The resulting system is then the 

following set of distinct ordered pairs: 

{(Ø, ‘z’), ({{Ø}}, ‘a’), ({{{{Ø}}}}, ‘b’)….} 

Following notational convention for indexed systems of sets, I will denote this system with 

‘⟨(S(i), <) | i ∈!I⟩’. ‘⟨(S(i)) | i ∈!I⟩’"is intended to"indicate a function"whose domain is the indexing 

set I, and ‘<’ to indicate that I is doubly well-ordered. 

 Here we encounter a further issue concerning the exact nature of the desired finite 

sequences. On the one hand, if the sequences in question contain the above ordered pairs, then 

they will be unsurveyable, due to the inclusion of the first element of each pair from the indexing 

set. But on the other, if the finite sequences contain only the indexed elements of each pair, then 

some reason is needed to think that these elements remain indexed, after their indices have been 

excluded. Of course, in practice we do allow expression types to repeat without indexing them 

explicitly. But how can we justify this practice in set theory? 

 An answer may lie in how the aforementioned finite sequences are ordered 

lexicographically: Because they are well-ordered by <, they can first be compared and ordered 



! 164!

by their length, since it is a textbook theorem of set theory that if a relation well-orders V, and a 

relation well-orders W, then either V and W are isomorphic or one of them is isomorphic to an 

initial segment of the other.111 In the event that sequences are of the same length, then they are 

compared and ordered lexicographically using the linear ordering <J on the indexed set J. For 

example, suppose that we want to compare the sequences referred to by ‘11’ and ‘12’, which I 

will refer to as ‘Y’ and ‘Z’ respectively. To do this we have to form the Cartesian product Y X Z 

of the two sequences. However, as already noted, the elements of these sequences are themselves 

ordered pairs. To deal with this, we can form Y X Z from the second element of each pair – the 

indexed element. This provides a motivation for excluding indices from sequences: their 

lexicographically ordered products do not contain indices. Y X Z is then, as usual, the set of all 

ordered pairs whose first element is from Y and second is from Z: 

{(y1, z1), (y2, z2)} 

To fix ideas we can pretend that these pairs contain numerals (although of course the elements of 

the pairs are really sets, as explained above): 

{(1, 1), (1, 2)} 

The lexicographic ordering of Y X Z is the relation <L defined by:  

(y1, y2) <L (z1, z2) ≡ y1 <J z1 or (y1 = z1 and y2 <J z2) 

This ordering can then be generalized to products of finite sequences. For suppose that some k 

such that 1 < k < n-1 is the position of the first element such that yk ≠ zk. Then 

 (y1…. yn-1) <L (z1… zn-1) ≡ yk <J zk 

Now ‘Natural number(n)’ can be defined as follows: 

Natural Number(n) ≡df n ∈!the lexicographic ordering on ⟨(S(i) , <) | i ∈!I⟩"

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
111 See Hrbacek and Jech (ibid: 105). 
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The immediately preceding relation can be defined as: 

P(m, n) ≡df m <L n and there exists no p such that m <L p and p <L n. 

Further, ‘zero’ can be defined as the least element: "

0 =df the <L-least element z ∈!the lexicographic ordering on ⟨(S(i) , <) | i ∈!I⟩ 

Now we can see why, on Kripke’s proposal, the numbers form a progression. Recall that a 

progression is a structure that satisfies the following conditions: 

Trichotomy: For every x and y either x < y, or x = y, or y < x. 

Transitivity: For every x and y and z, if x < y and y < z, then x < z. 

Zero: There is a least element x such that for every y other than x, x < y. 

Successor: For every x there is a next element y such that x < y, but there exists no z 

such that x < z and z < y. 

Induction: For any set X of elements, if the least element belongs to X and 

the next element after any element belonging to X belongs to X, then all elements 

belong to X. 

It is easily seen that the ordering described by Kripke’s definition of number satisfies a special 

case of these conditions. Since his finite sequences are linearly ordered, they satisfy trichotomy 

and transitivity. Further, since they are length-and then-lexicographically ordered they satisfy the 

successor condition. Furthermore, since they are well-ordered they contain an <-least element, so 

they satisfy Zero. Finally, since they are well-ordered they also satisfy induction, since this is 

true of any well-ordered set. To see this, let Y be well-ordered, and let X be a subset of Y. We 

want to show induction: that if the least element belongs to X and the next element after any 

element belonging to X belongs to X, then all elements belong to X. It will suffice to suppose that 

((∀u < x: u ∈!X) " x ∈!X), to show (∀x: x ∈!X). Assume for reductio that a subset of Y, U = {x: ~ 
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x ∈!X} is non-empty. Then, since Y is well-ordered, there is a least element x ∈!U. So (∀u < x (~u 

∈!U)). Then, by the definition of U, (∀u < x: u ∈!X). Then, by our supposition, x ∈!X. This 

contradicts our assumption that x ∈!U. 

 Based on this last result, I think it is fair to say that Kripke’s proposal —like Frege’s, and 

like the textbook set-theoretic one stated earlier— is to define the natural numbers in such a way 

that induction is true of them. Moreover, the proof just given does not appeal to induction. 

 The time has come to assess Kripke’s proposal. Following the presentation of the 

previous chapters, I propose to do so by asking the following questions: 

(Q1) Do Kripke’s definitions of the arithmetical primitives explicate the senses of 

their ordinary arithmetical correspondents as accurately as possible? 

(1.a) Do the definiens include anything arbitrary or ad hoc? 

(1.b) Do the definiens omit anything? 

 
11. Assessing Kripke’s definition of number 

 Beginning with question (1.b), the reader will recall that an objection to Benacerraf’s 

proposal is that it neglects features of the numbers that are part of our ordinary arithmetical 

practice, even if they do not need to be considered when doing number theory, for which the 

concept of an arbitrary progression will suffice. It should now be clear that, according to Kripke, 

what Benaceraff neglects is that it is part of the practice of decimal users that the numbers are not 

just any old progression, but any progression of finite sequences of ten objects that are ordered 

by length and then lexicographically, and usable for counting.  

 In what other respects does Kripke’s proposal improve on Benacerraf’s? One criticism 

that Kripke makes note of, which is applicable to Benacerraf, is that the notion of a progression 
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is not necessary for our ordinary concept of number, because one can have concepts of particular 

numbers without thinking of them in terms of their position in a progression:  

I should say, in addition, if one took numbers to be just any old progression, in a way 

one seems false to our ordinary concept of cardinality, because, after all, someone 

could and some people do and sometimes we’re told that some cultures do have the 

concept of five without correspondingly having the concept of an arbitrary 

progression.   

To support this claim one might cite studies of small children, who for a period during 

development are able to recite the numerals up to 10 in a stable order, give you one F when 

instructed, and distinguish a picture of one F from a picture of any other number of F’s by 

indicating which is which; however, they cannot do this with any other number. For example, 

when asked to give you two F’s they respond by giving a random number of F’s other than 1. 

Further, they cannot distinguish three F’s from two F’s, although they can distinguish these from 

one.112 These so-called “one-knowers” appear to have a concept of the particular number denoted 

by “one,” without thinking of it in terms of its position in a progression. Similar experiments 

provide evidence for the existence of “two-knowers” and “three-knowers.”113 And as Kripke 

says, it has been alleged that there are entire “one-knowing” (or “one-many”) cultures, such as 

the Pirahã, who have a concept of the number we denote by “one,” without thinking of it in terms 

of its position in a progression. 

 I do not believe that this objection can be sustained on the basis of the research just cited, 

which is subject to the same response that I offered in chapter 3, to Richard Heck’s appeal to 

studies of children. According to this response, the explanation for the phenomenon of one-

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
112 Wynn (1992). 
113 Lecorre and Carey (2007).!
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knowing is that the subjects in question are either still in the process of learning the concept of 

number, or simply lack it, with the result that what they know is not relevant to the content of the 

modern adult conception. Similarly, the claim that the Pirahã have any concepts of numbers at all 

is hotly disputed.114 What the proponent of this objection needs to refute Benacerraf and Kripke 

then, is an example of adults in a numerate culture, who have concepts of particular numbers 

without thinking of those numbers in terms of their position in a progression. 

 There is a related and more damaging objection to Benacerraf, which also poses a 

conundrum for Kripke. It will be recalled from previous chapters that there is evidence for a 

stage during development when children meet the conditions on counting small pluralities 

transitively with numerals —including giving the last numeral in answer to the question “how 

many?”— without understanding the cardinal significance of what they have done. This is shown 

by the fact that when instructed to ‘Give me m F’s’ after counting, where m is the last numeral 

recited, they give the experimenter a random number of F’s.115 Rather than drawing erroneous 

conclusions about our concept of number from what these children know, the problem, in my 

view, is to explain what they don’t know. To put the point more theoretically, the fact that infants 

can count transitively, without understanding the cardinal significance of what they have done, 

shows that they still lack full competence understanding of numerals. But what is it that they 

don’t understand? It is tempting to say that they do not understand that the last numeral recited 

denotes a particular cardinal number, perhaps the Frege-Russell number. However, as we have 

already had occasion to note, Kripke has strong reservations about claiming that the digits refer 

to the Frege-Russell numbers, because these cannot be represented in ZF (see the end of section 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
114 Carey (2009: 302-4). 
115 Wynn (1992).!
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9). So there is a tension between the concept needed to explain ordinary practice and the one 

discovered by attempting to represent numbers using set theoretic rigor. 

 Regarding (1.a) and the charge of introducing ad hoc content, Kripke explicitly contrasts 

his proposal with what he calls the “artificial constructions” of Zermelo and von Neumann, 

pointing out that, unlike these proposals, his is motivated by reflection on our ordinary practice. 

However, it can still be objected that his claim that numerical systems with different bases refer 

to different number systems is excessively counter-intuitive. Of course this aspect of Kripke’s 

view is not ad hoc, since it is proposed to solve a philosophical problem. But, at least in my 

experience, philosophers baulk at the fact that on Kripke’s view the following constructions 

come out false: 

Erastothenese believed 17 to be prime  

2710 = 110112  

I will now explain why Kripke nevertheless finds his proposal acceptable. 

 Firstly, one should not make too much of the intuitive hunch that different numerical 

systems refer to the same number system, or make too much of the corresponding hunch that the 

above constructions are true, if, like Kripke, one holds the view that competent speakers need not 

be unreflectively aware of the content of scientific language. In particular, Kripke will say, such 

speakers need not be unreflectively aware of identifying the numbers as finite sequences of small 

numbers. Further, this response continues, the aforementioned hunches may be explained away 

as unreflective prejudices, which fail to be a reliable guide to our concept of number, which in 

turn has to be discovered by reflection on the use of arithmetical language in our practice.  

 Secondly, Kripke argues that his proposal that different numerical systems refer to the 

different number systems accords with the way in which “different” is applied elsewhere in 
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mathematical practice. In the Whitehead Lectures, Kripke defends this aspect of his view as 

follows:  

Now, we may think, as the mathematician does, that when one thinks of isomorphic 

structures, when one is considering them only as structures exemplifying a certain 

structure, one might say that elements across the structures are the same, or can be 

identified.  And so here too we would think of this Frege-Russell number as the same 

number as this decimal number when these are actually different objects.  We could 

even think of the decimal as denoting the Frege-Russell number corresponding to the 

decimal number also, since that is really the more primitive concept.  But, on the 

other hand, looking at it another way, these are different set-theoretic objects.  So I 

suggest the same thing in the cross-cultural case too, or the case of a different base.  

“Do these people who use the base twelve, are they thinking of the same numbers as 

we are?”  Well, yes, because they are thinking of a structure where the important 

thing for counting, arithmetic and so on, is that it has a zero, a successor operation, 

and the same plus and times, satisfying the same recursion equations as ours.  In that 

sense, these are the same numbers and their symbols are just two symbols for the 

same number.  In another sense, however, they are thinking of different objects.  That 

is, if one thinks of the structure as a different structure, not the structure of natural 

numbers but a set-theoretic structure of sequences, they are indeed given a different 

structure.  There is a certain double-think here and Geach's philosophy of relative 

identity might be suggested, but we don't necessarily have to go so far.  And it is a 

rather conventional mathematical form of double-think, which I think it is not really 

fair to press one too far on.   
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Here the idea appears to be that different number systems are in certain respects the same, in that 

they are isomorphic progressions on which the same operations can be performed. However, they 

are ultimately different, due to the extra structure that each has, in virtue of making numerical 

systems with different bases structurally revelatory. One may ignore these differences, and speak 

figuratively, as if there is such a thing as the progression of natural numbers, in the event that one 

is interested in the question of which operations can be performed and the identity of these 

operations. But if one is interested in the identity of objects rather than of operations, then one 

must attend to their differences. 

 I now turn to the question of what Kripke means by describing this form of double-think 

as “rather conventional.” I suspect that he is alluding to the practice of treating entities that are at 

some level of structure distinct, as if they were identical, in the event that any statement about 

one entity can be reinterpreted, harmlessly, to be about the other. For example, it is customary to, 

so to speak, identify the unordered pair (a, a) with the doubleton of a, {{a}}, because any 

statement in set theory about the former can be reinterpreted to be about the latter. And yet for 

one who is interested in the identity of objects, these entities must be distinguished, because each 

has structure that the other does not; for example, the unordered pair contains a recurrence that 

the doubleton does not. Further, it is customary to identify a binary relation with the set of 

ordered pairs that are related by that relation, even though relations and sets are distinct. 

Furthermore, one can identify the following set-theoretic representations of ordered pairs: 

{{x}, {x, y}} 

{{x, Ø}, { y, {Ø}} 
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And yet for one who is interested in the identity of objects, these pairs are distinct, since the 

latter but not the former represents the notion of two objects one of which comes first.116 To give 

two numerical examples, it is customary identify a given real number with the partition or ‘cut’ 

that it makes among rationals, by partitioning them into the set of all rationals that are less than 

the real in question, and the set of all rationals that are not less. But for one who is interested in 

the identity of objects, the real number must be distinguished from the cut that it makes. It is also 

customary to identify the integers and the positive integers, because one can reinterpret 

statements about negative integers to be about pairs of positive integers. Finally, it is customary 

to identify the equivalence class of objects related by an equivalence relation, with so-called 

“abstracts” that are posited with respect to that equivalence relation. To use Frege’s familiar 

example, lines that are related by the equivalence relation x is parallel to y, thereby have in 

common their direction. This is the posited abstract, which is then identified with the 

corresponding equivalence class of lines, because any statement about the former can be 

reinterpreted to be about the latter. John Burgess describes this practice as follows: 

The abstract with respect to an equivalence may be identified with the set of 

equivalents. The direction of a line may be taken to be the set of lines parallel to it. 

Similarly, extensions of second-level concepts can be used to serve any purpose that 

would be served by abstracts with respect to equivalences on first-level concepts 

(2005: 23). 

And yet there is an irresistible temptation to say that such posited abstracts —the entities that 

equivalent objects allegedly have in common— are not identical to the corresponding classes of 

equivalent objects. Returning to Kripke’s proposal, I believe that his intention is to adopt this 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
116 The former is the textbook Wiener-Kuratowski definition, while the latter is due to Hausdorf. 
I am grateful to Kripke for explaining the latter notion. 
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pervasive attitude, regarding the identity of mathematical entities, towards natural number 

systems. They are distinct, because at some level of detail they differ in structure, but can be 

treated as identical, because statements about each system can be reinterpreted to be about any of 

the others.  

 To resist Kripke’s line of thought, one could try and argue that he is pushing this 

pervasive attitude too far, by adopting it in the case of different numerical notations, in which the 

reinterpretation is almost trivial, and in which mathematicians are not interested in the identity of 

objects.  

 Another objection, which Kripke himself concedes, is that his proposal is not sufficient 

for arbitrary numerals to be immediately revelatory, because very long numerals in decimal 

ciphered-positional notation are not immediately revelatory. To this Kripke responds that this 

problem will arise for any notation sooner or later: 

There is no notation for natural numbers that will be exempt from this.  The 

advantage of the positional notation is that this problem arises much later than it does 

arise for the stroke notation, the Frege-Russell numbers, where the problem sets in 

much quicker. 

What has always struck me about this problem is that it is overcome by finding other methods 

for representing very large numbers, such as exponentiation, new symbols, lexical symbols, and 

mixtures of lexical and numerical symbols. From this, together with the assumption that these 

other symbols are immediately revelatory, it follows that having a notation that is structurally 

revelatory of finite sequences is not necessary to explain how we represent numbers in a way that 

is immediately revelatory. This in turn suggests that there may be another way of explaining the 
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phenomenon of immediate revelation – albeit one that is deeply indebted to Kripke’s proposal. It 

is this line of thought that I will pursue for the remainder of the chapter. 

 The most obvious reason that having a notation that is structurally revelatory of finite 

sequences is not necessary, is that lexical numerals such as “three-hundred and twenty-seven” 

are immediately revelatory —as well as being part of a system that we know how to generate in 

order and use for counting— without being structurally revelatory of finite sequences. Kripke is 

presumably aware of this fact, and even remarks on the relationship between lexical numerals 

and decimal positional ones: 

Someone in one of my seminars, an anthropologist in fact, emphasized, and certainly 

correctly, that of course people had the idea of tens, hundreds, thousands, before the 

invention of decimal, that is, positional, notation.  And this was part of the verbal 

system of many languages.  Now, what is this idea?  That is really that, I mean, one is 

given an enormous set.  It may be too large, but we know it better grouped in tens.  

And we can say, “Oh, the set is seven tens and a five.”  This process can be iterated.  

You know, then how many tens are there can also be measured in tens and we call 

that hundreds, and so on.  So that is another feature of – I think, I mean it's really sort 

of a way of measuring this by putting some structure in it, grouping it into tens, and it 

doesn't matter the order in which the grouping goes.  One might represent this by a 

certain structural tree diagram, with the tens or some other representation.  That this 

corresponds, as far as it goes anyway, to the positional notation is an important 

theorem, part of the original motivation of the thing.  And it isn't really exactly the 

same thing as the powers of ten, explicit polynomial representation.  But a leap 

forward is made when we see that all of this can be put in our notation by mere 
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position and that was the discovery of the Indian mathematicians, transmitted by the 

Arabs to Western culture. 

This requires some unpacking. Here Kripke describes the structure of the decimal lexical system 

as carving up finite cardinals into powers of 10. These powers are then counted, as in the 

example he gives of “seven tens and a five,” i.e. seventy-five (assuming that the suffix ‘ty’ 

denotes 10). Then the symbol for how many powers there are is juxtaposed with the symbol for 

the power in question. As for the structural tree diagram that Kripke has in mind, this may be 

something like the following: 

    Phrase  

 Phrase      Digit 

Digit Power  

SEVEN TY     FIVE 

Here I am assuming the following oversimplified grammar:117 

Phrase " {Phrase, Digit, Power} 

Digit " {ONE – NINE} 

Power " {TY, HUNDRED, THOUSAND, MILLION, BILLION} 

The number denoted can be determined by multiplying the values of the juxtaposed digits and 

powers, and then adding the resulting products, together with the value of any remaining digits. 

Following the taxonomy of the anthropologist Stephen Chrisomalis, I will call this structure 

“multiplicative-additive” (2010: 11-12). In principle, multiplicative-additive lexical systems can 

be used to represent indefinitely large numbers, by iterating “million” or “billion.” However, this 

is not done in practice (except humorously), and part of the leap forward to which Kripke refers, 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
117 One way in which this is oversimplified is that it makes no provision for ELEVEN, 
TWELVE, or the TEENs. 
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is that ciphered-positional notational systems avoid the need for such iteration, in addition to 

using a single digit for each power of 10. 

 Despite the leap forward that ciphered-positional notational systems represent, the fact 

remains that some multiplicative-additive lexical numerals are immediately revelatory. Further, 

numerals from such systems might be thought to be immediately revelatory in cases in which 

positional numerals are not, since both lexical and mixtures of lexical and numerical numerals 

are more concise than positional numerals, in cases of very large numbers that are reached before 

one has to start iterating ‘million’ or ‘billion.’ For example, ‘six-hundred trillion’ and ‘600 

trillion’ might be thought to be immediately revelatory while ‘600,000,000,000,000’ is not. 

 I now turn from multiplicative-additive lexical systems to multiplicative-additive 

numerical notations. One example is the Babylonian “common” system, so-called because it was 

used for over a period of more than fifteen hundred years (from roughly 2000 BC), for common 

purposes, including the recording of commercial information and dates.118 I will now describe 

this system, as well as the positional system that was also used by a more select group of 

Babylonians, before discussing whether either constitutes a counterexample to Kripke’s 

proposal. This will lead me to an alternative explanation of immediate revelation.119  

 
12. Babylonian notation 

 The Babylonians represented numbers using accumulations of cuneiform symbols for 1 

(a vertical wedge) and 10 (a corner wedge). These symbols, together with further ones for 60, 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
118 See Chrisomalis (2010), Neugebauer (1927) and van der Waerden (1963). 
119 I have chosen to focus on Babylonian notation, rather than on Greek or Roman, because 
educated Greeks and Romans apparently knew Babylonian mathematics. See Chrisomalis (ibid: 
117). Obviously this complicates matters. 
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100 and 1000, formed the alphabet of their common system. This system was decimal and non-

positional, instead being multiplicative-additive:120  

  

Although this notation may seem unwieldy to us, and far from immediately revelatory, the 

following facts should be noted. The complex symbol for 60 is identical to the written lexical 

numeral for that number, and the symbol for 100 is an abbreviation of the corresponding written 

lexical numeral; on the other hand, the symbol for 1000 is a multiplicative combination of the 

symbols for 10 and 100.121 The upshot of all this is that the system contained only five distinct 

signs, two of which (the symbols for 60 and 100) were closely related to the lexical system, and 

one of which (the vertical wedge) was in itself immediately revelatory. This surely would have 

made long numerals containing these symbols easier to parse than might seem to be the case to 

us. Further, the system’s decimal base and multiplicative-additive structure resembled that of the 

lexical numerals in the Semitic languages that were spoken at the time, which also had a 

multiplicative-additive structure.122 This too would have made numerals belonging to the system 

easier to parse, since the system resembled another with which the user would already have been 

familiar. Notice, in this regard, how easy it is for one to say the corresponding English lexical 

multiplicative-additive numeral-phrase “three-hundred and five-thousand four-hundred and 

twelve,” as one reads the numeral in the above table. Moreover, I see no reason why it would not 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
120 Table reproduced with permission from table 7.13 in Chrisomalis (ibid). 
121 Chrisomalis (ibid: 247).! 
122 Chrisomalis (ibid: 248). The shift to the common system corresponded with the political 
ascendance of Semitic speakers. See Chrisomalis (ibid: 409). 
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Table 7.13 (Ifrah 1998: 139). In theory, this system could be extended as far as one 
wished by juxtaposing signs for 100 and 1000 repeatedly, even though there was no 
sign for zero. Furthermore, unlike the Sumerian system, in which the signs for 1 
and 60 were identical, this system presented no ambiguities to the reader. 

While this system was sometimes called “Akkadian” (3 ureau-Dangin 1939), it 
was rarely used during the period of Akkadian control of Mesopotamia and began 
to predominate only during the Old Babylonian period. It originated in response 
to the increased power of Semitic peoples in Mesopotamia in the latter part of the 
third millennium bc: Akkadians, to be sure, but also Eblaites, Babylonians, and 
others. Its structure re5 ects the decimal lexical numerals of the Semitic languages 
rather than Sumerian lexical numerals, although the continued use of a special 
sign for 60 gives testament to its descent from the Sumerian numerals. All of the 
administrative, commercial, literary, and religious texts of the Babylonians and the 
Assyrians were written using this set of numerals. 

Perhaps the greatest signi6 cance of the Assyro-Babylonian common system is 
the large number of descendant systems it produced. Earliest among these is the 
system used at the city-state of Mari around 1800 bc, which blends features of this 
system and the Babylonian positional system. In the middle of the second millen-
nium bc, both the Ugaritic and the Hittite cuneiform scripts began using numer-
als based on the Assyro-Babylonian ones, in the context of Mesopotamian trade 
with these polities. 3 e Ugaritic texts written between the 6 fteenth and twelfth 
centuries bc at Ugarit on the Mediterranean coast use the cuneiform ideograms 
for 1 (f) and 10 (g); however, numerals in Ugaritic were normally written lexically 
(Gordon 1965: 42). 3 is was likely borrowed from the Assyro-Babylonian system, 
but we have no idea whether higher numbers could be expressed through numeri-
cal notation. 3 e Old Persian cuneiform numerical notation system, developed in 
the sixth century bc (by which time Mesopotamia was under Persian rule), also 
derived from the Assyro-Babylonian system rather than from any of the numerous 
other systems then used in the region. Finally, as I argued in Chapter 3, the earliest 
Levantine systems (Phoenician and Aramaic) developed around 800 bc as a blend 
of Egyptian hieroglyphic (or perhaps Hittite) and Assyro-Babylonian in5 uences. 

Table 7.13. Assyro-Babylonian common numerals

1 10 60 100 1000

f g f or : i gi

305,412 = 3i5gi4ia2 
               ((3 × 100 + 5) × 1000) +  (4 × 100) + 10 + 2
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have been equally easy to say the corresponding Semitic numeral-phrases as well, since the 

Semitic languages also contained words for “ten,” “hundred,” and “thousand,” as well as “ten 

thousand.”123 Finally, the following developments from the earlier Sumerian notation would 

have helped with surveyability:124 

  

The fact that the notation is structured in part for surveyability implies that one should not 

overemphasize its resemblance to the lexical system. For example, the Babylonians did not say 

“ten ten ten ten” for 40.  

 The Babylonian common system must be distinguished from their sexagesimal 

cumulative-positional system, which was used by a select few working in astronomy and 

mathematics. In the latter system, numbers up to and including 59 were represented through the 

accumulation of the aforementioned cuneiform symbols for 1 and 10 (so the system had a sub-

base of 10). The number 60 was the first number represented as a power of the base, by the 

occurrence of the cuneiform symbol for 1 in the second place, which represents 60. The 

positional principle continued to be used to represent multiples of powers of 60 (that is, 602 = 

3600, 603 = 216,000, etc.): 

159, 614 =     
       

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
123 Lipinski (2001: 299-300). 
124 Table reproduced with permission from table 7.14 in Chrisomalis (ibid). 
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+ e Assyro-Babylonian additive system , ourished despite enormous political 
changes. It was the system used for administration and commerce by both the 
Babylonians and the Assyrians until the Persian conquest of Babylon in 539 bc. 
Afterward, it began to be supplanted by the Old Persian cuneiform system and, 
more importantly, by the Aramaic system that then became the principal Mesopo-
tamian administrative and commercial system. Both these systems were indebted 
greatly to their Assyro-Babylonian ancestor. It is unclear when the Assyro-Baby-
lonian system disappeared entirely, but it was used at least to a limited extent 
throughout the period of Achaemenid rule (539–332 bc). + e latest cuneiform 
tablets date to the 3 rst century ad.

Babylonian Positional

+ e Babylonian positional numeral system is assigned such great importance 
by many historians of mathematics that one could easily get the impression 
that it was the only noteworthy form of Mesopotamian numeration. Despite 
Neugebauer’s (1957: 17) warning that the positional numerals are a relatively minor 
part of the body of Babylonian numerals, these sexagesimal positional numerals, 
used for mathematics, have been assigned priority over much more widespread 
systems (Sumerian and Assyro-Babylonian). In fact, positional numerals were 
used in only a limited set of mathematical and astronomical contexts and over a 
much shorter period, serving primarily as a means of easing certain computations 
(Robson 2008: 75–6).

+ e system uses only two basic numeral-signs, the vertical wedge f for 1 and 
the corner-wedge or Winkelhaken g for 10, to write any number between 1 and 
59. + us, small numeral-phrases were usually identical to those of the Sumerian 
cuneiform system. Nevertheless, certain graphic changes (shown in Table 7.14) 
were made to the numeral-phrases for 4, 7, 8, 9, and 40, so that, instead of group-
ing signs in at most two rows of up to 3 ve signs, three rows of no more than three 
signs were used. + is shift eliminated any phrases that placed four or 3 ve signs side 
by side, and may have increased the system’s legibility (Powell 1972a: 16). 

Unlike the earlier cumulative-additive Mesopotamian systems, this system was 
cumulative-positional, combining the two basic signs in multiple positions to 

Table 7.14. Graphic changes in numeral-phrases

4 7 8 9 40

Sumerian p q s r t
Babylonian 4 7 8 9 d
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express powers of 60. It was thus a base-60 system with a sub-base of 10. It had an 
additive structure within each power, because of the way that 10-signs and 1-signs 
combine together, but a positional structure among di/ erent powers. Just as in 
the Sumerian and Assyro-Babylonian systems, subtractive notation was frequently 
used to write numbers such as 9 (10 lal 1) and 19 (20 lal 1) (2 ureau-Dangin 1939: 
106). According to the rules of the system, 4,252,914 would be written as a9 
d4 b a4 = (19 × 603) + (44 × 602) + (20 × 60) + 14. In addition to expressing 
integers, positional numerals could be used to express fractional powers of 60: 
1/60, 1/3600, 1/216,000, and so on. 

During the Old Babylonian period, the positional numerals did not have any 
sign for zero to indicate an empty position within a numeral-phrase, nor was there 
any way to distinguish an integer from a fraction (i.e., there was no “sexagesimal 
point”). However, many texts list numbers in columns in which the positional 
values of all the numbers are lined up with one another, making misinterpretation 
less likely (Powell 1976: 421). When numbers are embedded in the middle of a 
text or occur alone, the lack of a zero leads to ambiguity; there is no way, except 
through contextual information, to determine which positional value expressed 
which power, and thus a single numeral-phrase could have an in7 nite number of 
readings. 2 e simple phrase a2 3 could mean 723 (12 × 60 + 3), 43,380 (12 × 
3600 + 3 × 60), 12.05 (12 + 3/60), and so on, depending on which positional values 
we assume are indicated. When the empty position was both preceded and fol-
lowed by numerals, this di9  culty was sometimes obviated by using a large empty 
space to indicate the empty position (Neugebauer 1957: 20). 2 us, 1 b (80) could 
be distinguished from 1    b (3620). Yet this technique was not used univer-
sally, and in some texts what looks to be a large space does not bear any numeri-
cal signi7 cance. Unless numeral-signs were arranged in columns, there was no 
way during the Old Babylonian period to distinguish numbers where the empty 
position came at the end or beginning of the numeral-phrase. Nevertheless, by 
organizing numbers in columns, and through commonsense interpretations of 
texts, Babylonian mathematicians would not have experienced insurmountable 
di9  culties in reading numbers despite these ambiguities.

 2 e Babylonian positional notation probably developed, in fact, in the twenty-
7 rst century bc, during the Ur III (Neo-Sumerian) period. 2 e late Sumerian 
system of weight units is purely sexagesimal and notated in a way that could be 
ancestral to positional notation (Powell 1972a: 14). Powell (1976: 420) also found 
positional numerals on several early texts, which led him to assert that the devel-
opment of positional numerals occurred in the twenty-7 rst century bc at the very 
latest. Robson (2007: 78–79) discusses twenty-7 rst-century texts from the cities of 
Umma and Girsu that clearly depict sexagesimal place-value numerals. 2 e devel-
opment of the notation may have resulted from Ur III administrative reforms, 
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express powers of 60. It was thus a base-60 system with a sub-base of 10. It had an 
additive structure within each power, because of the way that 10-signs and 1-signs 
combine together, but a positional structure among di/ erent powers. Just as in 
the Sumerian and Assyro-Babylonian systems, subtractive notation was frequently 
used to write numbers such as 9 (10 lal 1) and 19 (20 lal 1) (2 ureau-Dangin 1939: 
106). According to the rules of the system, 4,252,914 would be written as a9 
d4 b a4 = (19 × 603) + (44 × 602) + (20 × 60) + 14. In addition to expressing 
integers, positional numerals could be used to express fractional powers of 60: 
1/60, 1/3600, 1/216,000, and so on. 

During the Old Babylonian period, the positional numerals did not have any 
sign for zero to indicate an empty position within a numeral-phrase, nor was there 
any way to distinguish an integer from a fraction (i.e., there was no “sexagesimal 
point”). However, many texts list numbers in columns in which the positional 
values of all the numbers are lined up with one another, making misinterpretation 
less likely (Powell 1976: 421). When numbers are embedded in the middle of a 
text or occur alone, the lack of a zero leads to ambiguity; there is no way, except 
through contextual information, to determine which positional value expressed 
which power, and thus a single numeral-phrase could have an in7 nite number of 
readings. 2 e simple phrase a2 3 could mean 723 (12 × 60 + 3), 43,380 (12 × 
3600 + 3 × 60), 12.05 (12 + 3/60), and so on, depending on which positional values 
we assume are indicated. When the empty position was both preceded and fol-
lowed by numerals, this di9  culty was sometimes obviated by using a large empty 
space to indicate the empty position (Neugebauer 1957: 20). 2 us, 1 b (80) could 
be distinguished from 1    b (3620). Yet this technique was not used univer-
sally, and in some texts what looks to be a large space does not bear any numeri-
cal signi7 cance. Unless numeral-signs were arranged in columns, there was no 
way during the Old Babylonian period to distinguish numbers where the empty 
position came at the end or beginning of the numeral-phrase. Nevertheless, by 
organizing numbers in columns, and through commonsense interpretations of 
texts, Babylonian mathematicians would not have experienced insurmountable 
di9  culties in reading numbers despite these ambiguities.

 2 e Babylonian positional notation probably developed, in fact, in the twenty-
7 rst century bc, during the Ur III (Neo-Sumerian) period. 2 e late Sumerian 
system of weight units is purely sexagesimal and notated in a way that could be 
ancestral to positional notation (Powell 1972a: 14). Powell (1976: 420) also found 
positional numerals on several early texts, which led him to assert that the devel-
opment of positional numerals occurred in the twenty-7 rst century bc at the very 
latest. Robson (2007: 78–79) discusses twenty-7 rst-century texts from the cities of 
Umma and Girsu that clearly depict sexagesimal place-value numerals. 2 e devel-
opment of the notation may have resulted from Ur III administrative reforms, 
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Both systems can in theory be used to generate infinitely many numerals. In the case of the 

positional system, this can be done in the usual way, and in the case of the common system by 

iterating symbols multiplicatively, in the way that one could extend our decimal lexical system 

by iterating “million” or “billion.” However, there is, to my knowledge, no evidence that either 

system was used for this purpose in practice. What is clear is that the positional system was used 

to allow the introduction of fractions, which, perhaps not coincidentally, the Babylonians never 

represented as infinitely recurring sexagesimal expansions, noting instead that the relevant 

numbers did not divide.125 Having said that, it may have been obvious to users of the positional 

system that it could be extended by repeatedly placing symbols in a new column before the 

highest power. However, the lack of a symbol for zero, which can be concatenated with a 

numeral repeatedly in an obvious way, may have obscured this fact.  

 A final point is worth noting. The impressive competence understanding of numbers that 

the Babylonians must have possessed, in order to discover positional notation, fractions, proto-

algebra, compound interest and astronomy,126 was presumably developed largely by practice at 

calculating. But there is no actual evidence of calculation being performed with numerals, only 

of results being recorded using numerals. This may be because calculation was done with 

numerals on scratch-pads, which were then erased. But the fact remains that we do not know 

whether the Babylonians used numerals in calculation, or whether this was done only on tables, 

fingers and in the head. 

 I now turn to the question of whether either of their notations constituted a 

counterexample to Kripke’s proposal, being immediately revelatory without being structurally 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
125 See Neugebauer (ibid: 33). The number 60 has 12 divisors, being divisible by 1, 2, 3, 4, 5, 6, 
10, 12, 15, 20, 30, and itself. It thus has more divisors than any number below it. Such numbers 
are now called “highly composite.” 
126 See Neugebauer (ibid) and van der Waerden (ibid). 
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revelatory of finite sequences. Since neither notation was ciphered-positional, neither could have 

been structurally revelatory of finite sequences of objects, in the way that Kripke claims that our 

decimal notation is (see section 9). That is, internalizing the notation would not have lead them 

to identify numbers as sequences of objects corresponding to sequences of digits in dictionary 

order, since the notations contained no such sequences. So the question is whether either of their 

notations was immediately revelatory. Beginning with the positional system, this surely was not 

immediately revelatory, since understanding it required multiplying by powers of a base of 60; it 

also would have been harder to parse that the common system, since it did not resemble the 

lexical numerals as closely, being cumulative-positional rather than multiplicative-additive. But 

there is evidence that the scribes who used the positional system were also familiar with the 

common system, since they dated mathematical texts containing position numerals using 

common numerals.127 Being familiar with both, they could have translated numerals from the 

positional into the common one as required.  

 As for the common system, it seems reasonable to say that a Babylonian merchant or 

scribe was able to look at the numeral for 412, and find it immediately revelatory: 

 

Although this would have become harder to do as the numerals grew, I see no reason why they 

could not have done the same for 305, 412: 

 

I say this because, given the facts about this system that I have described in the first paragraph of 

this section, it is reasonable to say that in addition to knowing how to generate numerals from the 

common system in order, and use them in counting, they could also parse these numerals, and 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
127 Neugebauer (ibid: 17), Chrisomalis (ibid: 251). 
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Table 7.13 (Ifrah 1998: 139). In theory, this system could be extended as far as one 
wished by juxtaposing signs for 100 and 1000 repeatedly, even though there was no 
sign for zero. Furthermore, unlike the Sumerian system, in which the signs for 1 
and 60 were identical, this system presented no ambiguities to the reader. 

While this system was sometimes called “Akkadian” (3 ureau-Dangin 1939), it 
was rarely used during the period of Akkadian control of Mesopotamia and began 
to predominate only during the Old Babylonian period. It originated in response 
to the increased power of Semitic peoples in Mesopotamia in the latter part of the 
third millennium bc: Akkadians, to be sure, but also Eblaites, Babylonians, and 
others. Its structure re5 ects the decimal lexical numerals of the Semitic languages 
rather than Sumerian lexical numerals, although the continued use of a special 
sign for 60 gives testament to its descent from the Sumerian numerals. All of the 
administrative, commercial, literary, and religious texts of the Babylonians and the 
Assyrians were written using this set of numerals. 

Perhaps the greatest signi6 cance of the Assyro-Babylonian common system is 
the large number of descendant systems it produced. Earliest among these is the 
system used at the city-state of Mari around 1800 bc, which blends features of this 
system and the Babylonian positional system. In the middle of the second millen-
nium bc, both the Ugaritic and the Hittite cuneiform scripts began using numer-
als based on the Assyro-Babylonian ones, in the context of Mesopotamian trade 
with these polities. 3 e Ugaritic texts written between the 6 fteenth and twelfth 
centuries bc at Ugarit on the Mediterranean coast use the cuneiform ideograms 
for 1 (f) and 10 (g); however, numerals in Ugaritic were normally written lexically 
(Gordon 1965: 42). 3 is was likely borrowed from the Assyro-Babylonian system, 
but we have no idea whether higher numbers could be expressed through numeri-
cal notation. 3 e Old Persian cuneiform numerical notation system, developed in 
the sixth century bc (by which time Mesopotamia was under Persian rule), also 
derived from the Assyro-Babylonian system rather than from any of the numerous 
other systems then used in the region. Finally, as I argued in Chapter 3, the earliest 
Levantine systems (Phoenician and Aramaic) developed around 800 bc as a blend 
of Egyptian hieroglyphic (or perhaps Hittite) and Assyro-Babylonian in5 uences. 

Table 7.13. Assyro-Babylonian common numerals

1 10 60 100 1000

f g f or : i gi

305,412 = 3i5gi4ia2 
               ((3 × 100 + 5) × 1000) +  (4 × 100) + 10 + 2
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translate them into lexical numerals, all with little or no conscious effort. It is also reasonable to 

say that they were able to meet the equivalent conditions for lexical numerals as well.  

 My claim is that here we have a plausible example of an immediately revelatory notation 

that is not structurally revelatory of finite sequences, and whose immediately revelatory nature is 

instead explained in terms of the user’s ability to parse the notation, with little or no conscious 

effort. Next I will propose that the immediately revelatory nature of our decimal system can be 

explained in similar terms, without making a claim about how we identify and individuate 

numbers. But before I continue with this line of thought, I want to address two objections that 

may have occurred to the reader.  

 The first objection is that because the Babylonians were still in the process of developing 

an understanding of the concept of number, what they knew is irrelevant to the modern concept, 

which Kripke’s proposal concerns. My response to this objection is that the Babylonians must 

have possessed an impressive degree of competence understanding of the concept of number —

as well as of particular numbers— in order to discover positional notation, fractions, proto-

algebra, compound interest and astronomy. This also shows that their numerals play a similar —

although more limited— role in scientific language to ours. Given all this, the claim that what 

they knew is irrelevant to the modern concept of number requires further argument. Further, this 

argument must be independent of Kripke’s doctrine that different notational systems denote 

different number systems, since this doctrine follows from the view that notations are structurally 

revelatory of finite sequences, which is at issue here. 

 The second objection is that I have here explained immediate revelation in terms of the 

user’s ability to parse lexical and notational systems, rather than in terms of their immediate 

epistemic relation to numbers. It seems then, that I have failed to explain part of what is to be 
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explained. My response to this objection, which I will state baldly now, in advance of further 

elaboration, is that according to the version of Scylla that I endorse, the numerals that were 

understood by the Babylonians did not acquaint them with numbers. However, they found their 

common numerals immediately revelatory because, in addition to understanding them, they had a 

parsing facility with their familiar language and common numerals. This is the line that I will 

continue to elaborate in regards to our decimal system. 

 
13. Decimal notation 

 In my view, ordinary speakers have competence understanding of lexical and decimal 

numerals (see chapter 2, section 6), for which it is sufficient to know how to recite numerals in 

order and use them in counting. (In my view full competence understanding of counting 

presupposes a grasp of numbers, so I will say how we can grasp numbers without acquaintance 

in the final chapter.) Further, ordinary speakers have a partial understanding of the 

multiplicative-additive structure of the decimal lexical system (see this chapter, section 11). In 

addition to all this, a mathematically competent user also understands a polynomial descriptive 

rule, the germ of which is contained in the multiplicative-additive structure of the lexical system. 

This rule describes the referent of each numeral as the sum of the place-values of its digits 

(where the place-value of a digit α is the product of α’s referent and the number b of the base to 

the nth power, where n is the number of other digits between α and the decimal point): 

∀α0 ∀α1 ∀α2 …∀αk Ref((αk… α2 α1 α0
)) = Ref(αk) · bk  …+ Ref(α2) · b2  + Ref(α1) · b1 + 

Ref(α0) · b 0 

This rule suffices to fix the reference of each numeral. For example, it fixes the reference of ‘70’ 

as follows:  
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Ref(70) = Ref(7) · 101 + Ref(0) · 100 

Crucially, however, this rule determines the content of each multi-digit numeral, without itself 

being a part of that content, and is in this respect somewhat analogous to Kaplan’s notion of 

character. Returning to the case of ordinary rather than mathematically competent speakers, it 

may seem miraculous that they are competent to perform calculations, given that they do not also 

understand the above rule. However, I claim, their ability to perform simple calculations can be 

explained by their being competent at pen and paper arithmetic, by writing out numerals in 

columns and stacking them. 

 Since our lexical system is multiplicative-additive (‘three-hundred and twenty-seven’), 

while our decimal notation is ciphered-positional (‘327’), there is a significant structural 

difference between the two systems. I claim that this difference exists because each system is 

structured for a different modality. On the one hand, the lexical system is structured for speech 

and hearing. (This seems to be true of lexical systems generally. It may be why, for example, 

cultures like the Babylonians and the Romans, with notations that accumulate symbols for 1, 5 or 

10, do not have lexical systems with which they say “one one one,” or “ten ten ten.”) Decimal 

notation, on the other hand, is structured in such a way that they can easily be read and 

visualized. The number of digits is small enough to be well within the bounds of what we can 

remember easily, while still being large enough for the notation to remain so concise that we can, 

up to a point, survey and visualize multi-digit numerals. Then there is the fact that powers can be 

represented by position of a single digit. It is because of these structural features that decimal 

notation helps us to overcome the limitations of our parsing ability.  

  My next proposal is that a notation should be visually revelatory: it should reveal 

structural features of its subject matter visually, by helping one to see or visualize them. This 
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provides some grounds for resisting Kripke’s claim that, whenever possible, we should ensure 

that a notation is structurally revelatory (see section 8). The reason is that there may be some 

tension between the demands of having a visually revelatory notation and the demands of having 

a structurally revelatory one, with the result that a trade-off between the two is required. For 

example, decimal notation is visually revelatory, because we can visualize the decimal numerals 

in order, and this reveals, visually, the ordering of a progression of numbers. Thus decimal 

notation is somewhat structurally revelatory. But as a result of also being visually revelatory, and 

so structured to be read and visualized (as described in the previous paragraph), it is not as 

structurally revelatory as it might otherwise be. For example, it is not as structurally revelatory as 

stroke notation, which is not structured to be read and visualized. This trade-off can explain why 

decimal notation is neither structurally revelatory of the Frege-Russell numbers nor of a 

progression. Thus there are grounds for insisting that decimal notation has structure that is not 

shared by the numbers, despite Kripke’s reason for saying otherwise.  

 Notice that on this view, while numerals are finite sequences that allow us to represent 

numbers (in virtue of being visually revelatory), we are not required to conceptualize this feature 

of them in order to represent numbers, as we are on Kripke’s view, by identifying and 

individuating numbers as finite sequences of objects (see section 8). I regard this as a positive 

feature of my theory, since it is perhaps overly intellectualized to say that we must have concepts 

of finite sequences of objects, in order to represent numbers. In other words, my theory is 

simpler, and so by an inference to the best explanation more plausible than the more 

intellectualized alternative.128 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
128 This general form of argument is indebted to Burge, who used it to argue against various 
theories that take the knowing subject to represent the conditions that make representation 
possible. See Burge (2010). 
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 As an aside, a visually revelatory notation can also improve upon a structurally revelatory 

one, without the need for a trade-off between the two. For a structurally revelatory notation that 

is hard to read, is improved upon by an equally structurally revelatory notation that is also 

visually revelatory, and so read more easily. For example, the reader will recall (from section 8) 

that both infix and prefix notation are structurally revelatory of the recursion equations and the 

associative law for addition, since the relevant infix and prefix statements have isomorphic 

parsing trees. But because we are accustomed to parsing blackboard arithmetic and natural 

language in infix, not prefix, we find infix considerably easier to read, and can visualize repeated 

successions and additions in infix without conscious effort. We can also visualize these features 

by reading prefix notation, but only with more conscious effort. 

 I now turn to my explanation of why decimal notation is immediately revelatory. This is 

because in addition to having competence understanding of decimal numerals, in virtue of being 

able to recite them in order and use them in counting, we can also parse them with little 

conscious effort. I separate this into two empirical claims. Firstly, we have a tacit understanding 

of the dictionary rule that gives the ordering of our decimal notation, which we can apply, in 

order to locate numerals in relation to one another, without conscious inference. Secondly, we 

are also able to visualize the decimal numerals in their dictionary order, with relatively little 

conscious effort. Of course I concede that these abilities can be exercised for numerals from 

other systems that we are well practiced at reciting in order. The point is that doing so requires 

more conscious effort. For example, to return to Kripke’s counterexample to Ackerman, even 

after some training in Kripke’s base-26 notation, one has to discover where a,zzz,zzz occurs in 

relation to many other sequences in the ordering by reciting or calculating; this cannot be known 

in virtue of being able to apply understood rules and visualize the numerals without discursive 
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effort. Even after one is so familiar with base-26 notation that the question ‘which numeral is 

between yyy,yyy and a,zzz,zza?’ is entirely trivial, there will be many other numerals that one 

cannot locate in relation to a,zzz,zzz without calculation. It is worth noting that my claim that 

these abilities can be exercised with little or no conscious effort receives some support from 

brain imaging studies of children. Subjects who are learning our decimal notation show high 

levels of prefrontal activity, which is indicative of effort. This activity then vanishes during 

development, as the notation is mastered.129 

 I have tried to explain why decimal notation has structure that is not shared by the 

numbers, and to explain why it is immediately revelatory without being structurally revelatory of 

finite sequences. If I have succeeded, then there is no good reason to say that as a result of being 

trained in decimal notation, we identify and individuate numbers in a way that reveals what they 

are. Returning to Russell’s theory of acquaintance (see section 9), it follows that a person who is 

trained in decimal notation does not satisfy Complete Revelation. Further, in my view such a 

person does not satisfy Privacy either. This is because they acquire competence understanding of 

numerals through being trained in a public language, not through private awareness. As for 

Immediacy, I have explained this in terms of our relative facility in parsing our familiar decimal 

notation, not in terms of an immediate relation to numbers. For these reasons, I take my proposal 

to be a version of Scylla, according to which numerals do not acquaint us with numbers. 

Moreover, if the distinction between an understood notation that is immediately revelatory and 

one that is not, is simply a matter of our relative facility in parsing decimal notation, then this 

distinction does not justify drawing a corresponding distinction in conceptual content, of the sort 

that should be reflected in a logicist or set-theoretic logicist system of definitions.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
129 Dehaene (1997: 269-70). 
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Chapter 5: Another application of Kripke’s theory 
 

1. Introduction 

In this chapter I discuss another application of Kripke’s theory of structural and 

immediate revelation, which he uses to defend his doctrine that a certain truth, known by the 

person who sets up the metric system, is both contingent and a priori. Then I begin to develop a 

version of Scylla, which can explain why users of the metric system find it to be immediately 

revelatory, without the claim that the system is also structurally revelatory. I also defend the 

view that the person who sets up the metric system knows how long S a posteriori, is in virtue of 

his facility with the name ‘meter’. Defending this view requires a lengthy digression on the topic 

of context-sensitivity, so I ask for the reader’s patience in this regard, especially since the morals 

that are drawn from this discussion will also be applied in the following chapter, to the topic of 

count nouns. 

 
2. The contingent a priori 

 While Kripke’s doctrine that there are necessary truths known a posteriori is widely 

accepted as a major insight, his claim that there are contingent truths known a priori is among 

the most disputed of his doctrines. (In my experience, even philosophers who don’t regard it as 

false are unsure what to say about it.) Kripke’s most famous example of a contingent truth 

known a priori is of the truth known by the person who sets up the metric system, by stipulating 

(1) The length of stick S at t0 is exactly one meter.  

Kripke’s claim is that the person who sets up the metric system (call him ‘Ralph’) can fix 

reference of ‘meter’ —without giving its meaning— by stipulating that it is to be a rigid 
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designator of the length that is in fact the length of stick S at t0.130 (For brevity’s sake I will 

suppress the qualification ‘at t0’ and will assume that S exists.) According to Kripke, fixing the 

reference of ‘meter’ in this way is sufficient for Ralph to know (1) a priori. During his 

discussion of this example, it is clear that by ‘a priori’ a Kripke means simply in virtue of 

stipulation.131  

 Note that in (1) ‘exactly’ modifies ‘one meter.’ This accords with an assumption that I 

will make throughout this discussion, that ‘exact’ does not modify the expression ‘length’, but 

expressions of our attempts to measure or otherwise represent length.  

 Another example Kripke gives is that of Leverrier, who is imagined to have fixed the 

reference of ‘Neptune’ by stipulating that it is to be a rigid designator of the planet causing 

perturbations in the orbit of Uranus. (Again, I simply assume that such a planet exists.) 

According to Kripke, this allows Leverrier to know the contingent truth expressed by (2) a 

priori: 

(2) Neptune is the planet causing perturbations in the orbit of Uranus. 

Although the contingency of what (1) and (2) express is a puzzling feature of these particular 

examples, it has been noted that contingency is not required to generate similarly puzzling cases 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
130  Kripke (1980). ‘The length of stick S’ does not give the meaning of ‘meter’, since is not a 
rigid designator. A rigid designator is a term which designates the same object x with respect to 
every possible world in which x exists. With respect to a world in which S is heated sufficiently 
to expand to a greater than actual length, ‘the length of stick S’ will instead designate that length. 
So, while we can fix the reference of ‘meter’ using the description, these expressions are not 
synonymous. 
131 Kripke (1980: fn. 26; 1986: 67). What Ralph knows a priori, simply in virtue of stipulation, is 
not a trivial necessary truth but a contingent one, since it is false with respect to the world 
described in the previous footnote. For this reason, Kripke chooses not to call what (1) expresses 
an analytic truth, stipulating that analytic truths be both necessary and a priori (1980: fn. 21). For 
clarity’s sake I will follow Kripke’s terminology. 
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of knowledge in virtue of reference-fixing stipulation.132 This point is suggested by something 

Kripke himself says, when he tentatively suggests that ‘π’ is a name for an irrational number 

(rather than a rigid definite description), whose reference is fixed by stipulating that it refer to the 

ratio of the circumference of a circle to its diameter. As a result of this stipulation alone, the 

reference-fixer seems in a position to know a priori what (3) expresses, a truth that is not 

contingent: 

(3) π is the ratio of the circumference of a circle to its diameter. 

 Kripke’s doctrine that (1) – (3) can be known simply in virtue of reference-fixing 

stipulation has been met with widespread skepticism, largely due to the following objection: 

Ralph and Leverrier have not learned new facts about the physical world, a priori from their 

respective stipulations. Rather, all they have learned is that (1) and (2) express truths. Further, 

the objection goes, in order to learn what (1) and (2) express, they must engage in observation, in 

which case their knowledge is a posteriori not a priori.133  

 In his forthcoming Notre Dame Lectures, Kripke responds that the supposition that (1) 

cannot be known a priori leads to the paradoxical conclusion that no one knows how long 

anything is:  

 Our eyes are not enough to tell us whether this stick is exactly a meter long. If 

they were, we wouldn’t have to have a measuring system with rods at all, we could 

just look at a thing and tell that it’s one meter long.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
132 To my knowledge the point was first noted by Salmon (1987, 1993). See also Jeshion (2000). 
For reasons of space I cannot discuss Jeshion’s views on a priori knowledge in virtue of 
reference-fixing stipulation.!
133 To my knowledge this objection was first made in print by Michael Levin. See Levin (1975). 
See also Donnellan (1977), Salmon (1987), Schiffer (1977), Soames (2003). 



! 190!

 And if this is not sufficient, nothing ever will be; that is, if one can’t know a 

priori just by this ceremony and the fact this is in front of us (which gives an 

approximate length for it) that it’s a meter long, we will never be able to find this out. 

Nothing will ever tell us this, even on the assumption that sticks have precise lengths.  

 I think the puzzle here is something like this. All that goes on here is with our 

eyes – we’re looking at the thing. Then we go through a ceremony of baptizing the 

length of this thing ‘a meter’. Can that really give us any additional information? If 

we didn’t know how long it was just by our eyes alone (exactly), we still don’t know 

how long it is. That is Salmon’s thought. So we must need additional information to 

find out exactly how long it is. But though that thought is a very natural one, once one 

is in it, one will simply conclude that we can never know how long anything is. It’s 

not that a posteriori information is never possibly going to be of any help. How could 

it be of any help?   

Salmon has independently presented a similar argument as a paradox, which can be stated as 

follows.134 Assume, for the sake of argument, that (I) Ralph doesn’t know how long stick S is a 

priori simply by stipulation. By hypothesis, (II) Ralph doesn’t know how long stick S is a 

posteriori by measuring it, since he is hypothesized to be setting up his first measurement 

system. Further, (III) Ralph doesn’t know how long stick S is a posteriori by observing its 

length, since the accuracy with which Ralph is capable of observing and remembering the length 

of the stick is not exact enough for the purposes of setting up a measurement system. This is 

because when we observe the length of an ordinary middle-sized object, we represent it as being 

not exactly but more or less that long —within a certain range of lengths— something I take to 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
134 Salmon (1987: 210-17). 



! 191!

be an instance of the more general and uncontroversial fact that most veridical perception is only 

approximately accurate. But (IV) if Ralph doesn’t know how long stick S is a posteriori by 

measuring it or by observing it, and doesn’t know how long stick S a priori, then he doesn’t 

know how long stick S is at all. And (V) if he doesn’t know how long stick S is, then all lengths 

that are measured as a proportion of the length of S, are thereby proportions of a length we-

know-not-what. And (VI) if all such lengths are thereby proportions of a length we-know-not-

what, then no one knows how long anything is. Since this conclusion is absurd, one of the 

forgoing premises must be rejected despite its appearance of plausibility, and the mistake in our 

thinking that gives it this appearance of plausibility must be isolated. 

 As Salmon points out, an analogous puzzle arises in relation to π. Analogously to how we 

are unable to know exactly how long S is by looking at it, we also are unable to know exactly 

which number is the ratio of a circumference of a circle to its diameter. For we cannot perceive 

the ratio exactly, and neither can we calculate it, because the resulting decimal expansion fails to 

display a pattern that we know of. Should we conclude that all circumferences calculated using π 

are thereby proportions of something-we-know-not-what, with the result that nobody knows 

what the circumference of any circle is given its diameter? Surely not, since people are often 

credited with knowing such things. 

 
3. Kripke’s proposal 

 Kripke proposes to defend his doctrine that (1) can be known simply in virtue of 

reference-fixing stipulation, by showing that this doctrine can solve the above paradox. I will 

now describe and develop Kripke’s proposal, beginning with the question of how it relates to his 

doctrine of immediate revelation. 
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 In the previous chapter I characterized Kripke’s proposal about numbers in the following 

way. We users of decimal notation learn to parse, or identify and individuate, numbers as finite 

sequences that make decimal notation structurally revelatory; further, having done so, we find 

decimal multi-digit numerals to be immediately revelatory. This is because our identification of 

numbers as finite sequences provides a standard for knowing which number we are confronted 

with, and decimal numerals present numbers as such sequences. I also characterized this 

proposal in terms of the following “two-stage” Russellian acquaintance theory. At the first stage 

we are acquainted with small numbers, because we can picture them. At the second stage our 

acquaintance with small numbers, together with our training in the decimal system, makes 

decimal numerals immediately revelatory, for the reasons given above, and so acquaints us with 

larger numbers.  

 Kripke motivates his proposal about the meter by drawing an analogy with his proposal 

about numbers.135 He introduces it by discussing why we find decimal notation to be 

immediately revelatory, first describing Charybdis, Scylla, and then anticipating his proposal in 

the Whitehead Lectures, as 

an absolutist position, so that, although knowing which depends on one’s training, it’s 

that knowing which is absolute, and, the position says, if you have such-and-such 

training, you will know which number it is. Something like that might be true, or it 

might be a picture that’s in between. At any rate it depends, somehow, on the fact that 

decimal is our standard system of notation.  

He immediately goes on to draw an analogy with the metric system: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
135 This analogy is not appreciated in Steiner (2011), who was writing without knowledge of the 
Notre Dame lectures. 
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Something like that is going on in the case of a meter. If we’re going to have a 

measurement system at all that is specified within enough limits – with exact enough 

limits to go beyond our eyes – we must do it by something like a rod, or by lines on a 

spectroscope or something – but something that goes beyond our eyes. We can 

baptize, then, this length, ‘one meter’ (or whatever). How does this give us 

[immediate revelation]? Because once we’ve come to think in the metric system and 

have the sufficient minimal acquaintance given by our eyes, then to know that 

something is two meters long is to know how long it is… 

Shortly afterwards, he continues: 

The objector thinks, ‘Look there’s something magical. Just as Wittgenstein ascribed 

an extraordinary property to the stick, so does Kripke. One can know by this stick, 

without making any measurement, exactly how long it is, whereas most ordinary 

sticks are not like that. Or, certainly one can know how long it is without 

measurement within a margin of error that is much less than is given by our eyes, yet 

no ordinary stick is to be like that. And what’s so special about this stick?’ Well, 

what’s so special about this stick is that it is the basis of the measurement system we 

use. 

This material was delivered prior to that in the Whitehead Lectures, and is arguably a less 

developed version of the view stated there. With this in mind, I will now develop Kripke’s 

proposal about the meter in a way that is more clearly analogous with his later view, since this is 

consistent with how he has taught the material in seminar. 

 Kripke says that users of the metric system “come to think in the metric system” (ibid). 

As I understand him, this means that they learn to parse, or identify and individuate lengths in a 
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way that makes the metric system structurally revelatory. That is, they learn to identify and 

individuate lengths as length in meters. This is analogous to how users of the decimal system 

learn to identify and individuate numbers as finite sequences of ten objects, except that users of 

the metric system learn to identify and individuate lengths as having metric structure (not 

decimal structure), where metric structure consists of the length of S laid end-to-end. Further, as 

a result of making this identification, users of the metric system find measurements in the system 

to be immediately revelatory. Kripke says this is because “once we’ve come to think in the 

metric system and have the sufficient minimal acquaintance given by our eyes, then to know that 

something is two meters long is to know how long it is…” (ibid). On my development, this 

means that (a) the user’s identification of length as length in meters provides a standard for 

knowing exactly how long something is, and (b) a measurement of length in the metric system 

presents it as length in meters. This development, I am convinced, accords with Kripke’s intent. I 

will now discuss whether this is a “two-stage” Russellian acquaintance theory, and how 

acquaintance relates to having an identification length in meters. What follows is a slightly more 

speculative development of Kripke’s views than what came before. 

 Kripke is careful to draw a distinction emphasized by Burge (see chapter 1, section 10) 

between the way that a property is presented in perceptual experience, and the property itself. At 

the first stage, Ralph is introspectively acquainted with how the length of S is presented to him in 

perceptual experience. But such introspection of one’s own percepts does not satisfy the 

requirement of Complete Revelation (see chapter 1, section 8 and chapter 4, section 9). For 

Ralph is not introspectively acquainted with the length of S, but with how the length of S is 

presented to him in veridical perception; further, the length of S is not presented to him exactly in 

veridical perception. In order to increase precision, Ralph uses his introspective acquaintance to 
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fix the reference of ‘meter’ by use of the following definite description: ‘the length that is 

presented to me though this veridical perception of S.’  

 At the second stage, Ralph’s choice of S, and his introspective acquaintance with how the 

length of S is presented to him, lead him to parse, or identify and individuate length as length in 

meters. More precisely, Ralph has a combination of: (i) an introspective acquaintance with how 

the length of S is presented to him, and (ii) an understanding of the content of the description just 

mentioned. Together these suffice for him to have an identification of length as length in meters.  

 As a result of his having this identification, the metric system is now immediately 

revelatory for Ralph. This is because (a) his identification of length as length in meters provides 

the only standard for knowing exactly how long something is, and (b) metric measurement of 

length presents it as length in meters.  

 Another important point is that remembering how the length of S is presented —in the 

form of a approximately accurate visual image— is necessary to continue to understand ‘meter’, 

Kripke argues, for otherwise Ralph could go on to apply ‘1 meter’ to things that are an inch or a 

mile long: 

Someone who thought that a meter was a mile long or, say, ten miles long (even 

though he remembered it was the length of a certain stick but somehow got a fantastic 

idea of how long that stick was, or had never seen the stick… even though he 

remembered the definition ‘that, the length of this stick’ (and so on)) probably 

shouldn’t be said to be using the term ‘meter’ properly. ‘Oh, look, you’re asking me 

to walk a meter just to get to this place. I have to go by car’. Such a person probably 

doesn’t know what a meter is and isn’t using the term correctly even though he 

remembers the stick but somehow has gotten this wild idea of how very long it was. 
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Further, given that remembering how the length of S is presented is necessary to continue to 

understand ‘meter’, it seems to be Kripke’s view that how the length of S is presented is in some 

way a part of the semantic content of ‘meter’, as well as being used to fix its reference.   

 It remains to say how the account offered in the last four paragraphs would solve the 

paradox stated in section 2, by allowing Kripke to deny its first premise, that Ralph doesn’t know 

how long stick S is a priori simply by stipulation. To this Kripke says (of himself, rather than of 

Ralph): 

I can’t wonder, in this situation, whether it will turn out that I was under no illusion, 

had these experiences, and was looking at S, but S was not really one meter long. 

Here this idea appears to be that Ralph knows a priori the contingent proposition expressed by 

the following:  

(1’) The length that is presented to me through this veridical perception of S is 

exactly one meter. 

The proposition expressed by (1’) is contingent, because with respect to a possible world in 

which S is indiscernibly longer than it actually is, ‘the length of S that is presented to me though 

this veridical perception of S’ will designate this indiscernibly longer length. Further, this 

proposition is arguably known a priori, because although perception is required for Ralph to 

apprehend the proposition, by introspection of how S is presented in perception, Ralph’s 

justification for the proposition is his reference-fixing stipulation.  

 To spell out why this is, it will help to think of the proposition in question as containing a 

complex, demonstrative-involving individual concept of how the length of S is presented to 

Ralph (I refer to this individual concept using Salmon’s carrot quotes). On this development (1) 

expresses (P*):  
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<^=^ < ^the length that is presented to me through this veridical perception of S^ >, 

^the length of S^ > 

Now it is easy to see how, according to this view, Ralph can come to know (P*) a priori. By 

introspective acquaintance with his percepts and by his reference-fixing stipulation, he 

understands that ‘meter’ expresses ^the length that is presented to me through this veridical 

perception of S^. And by his understanding of the concept expressed by ‘veridical’, he can infer 

that the length presented to him through his veridical perception of S is indeed the length of S; so 

he can infer (P*). This conclusion is reached based on introspection, his reference-fixing 

stipulation and reflection on relations among his concepts, and so is known a priori. What is 

crucial is that although veridical perception is required to apprehend (P*), it does not justify any 

step in the above line of reasoning. 

 If I have understood Kripke correctly, then his explanation of how Ralph knows (P*) a 

priori requires attributing to Ralph grasp of concepts of the way that a property is presented in 

perceptual experience, including the concepts of veridical perception and of presentation to the 

subject. However, while veridical perception and presentation to the subject are presumably 

necessary conditions for fixing the reference of ‘meter’, it is perhaps overly intellectualized to 

say that ordinary speakers, like Ralph, must have the concepts of these conditions in order to fix 

a reference. Further, while this is not a conclusive objection to Kripke’s view, it does show that 

before we accept his view, good explanatory practice requires us to look for a simpler account 

that does not require attributing grasp of the aforementioned concepts, even if it follows from 

this account that Ralph knows (P*) a posteriori. (Compare my remarks about Kripke’s theory of 

number, in chapter 4, section 13.)  
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4. Scylla again 

Recall that in the previous chapter I developed a version of Scylla, in order to explain 

why decimal users find the decimal system immediately revelatory, without the claim that 

decimal numerals acquaint us with numbers. Now I will begin to develop an analogous version 

of Scylla about the meter. (See chapter 4, section 7 for Kripke’s description of Scylla, and 

sections 12 and 13 for my version of that doctrine.) 

The basic idea behind my version of Scylla is that immediate revelation is a matter of our 

facility with language, rather than a matter of genuine acquaintance. In particular, my version of 

Scylla about decimal notation is based on my argument that decimal notation is visually 

revelatory, and so structured to be read and visualized, and so not as structurally revelatory as it 

might otherwise be. However, there is an important disanalogy between the case of the metric 

system and the case of decimal notation, since there seems to be no basis for saying that the 

metric system is visually revelatory. On what basis then, can I develop a version of Scylla in the 

present case?  

In my view, the metric system is structured to be used in a society that already uses a 

decimal system. In particular, there is a strong analogy between the metric system and the lexical 

decimal system. For one thing, just as cultures with notations that accumulate symbols for 1, 5 or 

10 do not have lexical systems with which they say ‘one one one,’ or ‘ten ten ten,’ so users of the 

metric system who measure length by laying meter sticks end to end, do not say ‘meter meter 

meter,’ or ‘decameter decameter decameter.’ For another, the metric system carves up distances 

into powers of 10 meters (decameters, hectometers, kilometers), analogously to the way in which 

the decimal lexical system carves up finite cardinals into powers of 10 (tens, hundreds, 
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thousands, etc.; see chapter 4, section 11). For example, just as ‘seven thousand’ arguably has the 

following tree structure: 

  Phrase       

    Digit  Power  

SEVEN THOUSAND 

so ‘kilometer’ arguably has this structure: 

  Phrase       

     Unit  Power  

METER KILO 

I think that this observation is the starting point from which to develop a version of Scylla, which 

can in turn explain why metric users find the metric system to be immediately revelatory, 

without the claims that the system is structurally revelatory, and that the metric measurements 

acquaint us with length in meters. Since measurement systems are not my main topic, I will only 

offer a sketch of what my account will look like, leaving the details for further work. 

In my view, it is not that users of the metric system learn to parse, or identify and 

individuate lengths as length in meters, in a way that makes the metric system structurally and so 

immediately revelatory. Rather, they find the metric system immediately revelatory because it is 

easy to parse. (Again, compare chapter 4, sections 12 and 13.) This is because its structure 

resembles that of the decimal system, with which they are already familiar, and which makes 

converting from kilometers to meters extremely easy. In fact, because the metric system carves 

up distances into powers of 10, one can use features of decimal notation when converting from 

meters to kilometers: just add three 0’s. In contrast, while users of the imperial and U.S 

customary systems of measurement find simple measurements like ‘300 yards’ to be 
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immediately revelatory +they do not find the whole system to be so. How far is 3 furlongs? 

Answering this question requires applying a rule for conversion, because the imperial system 

does not carve up distances into powers of 12 inches, and so one is required to remember a 

hodge-podge of units and rules for converting among these. 

 I have not yet explained why users of the imperial system find simple measurements such 

as ‘300 yards’ immediately revelatory, while users of the metric system find ‘300 meters’ to be 

so. Since, in both cases, this can be partly explained by finding ‘300’ to be immediately 

revelatory, what remains to be explained is their preference for different units. Obviously this 

will be a function of their training, which in turn presupposes the introduction of a unit. Apropos 

of this, I have not yet solved the paradox about Ralph, who is supposed to set up the first system 

by introducing the term for a unit. Since the basic idea behind my version of Scylla is that 

immediate revelation is a matter of our facility with language, the basic idea behind my attempt 

at a solution to the paradox will be that Ralph knows how long S is because he understands the 

name ‘meter’ that he introduces. The challenge is then to explain how this can be so, without 

appealing to Kripke’s doctrine that Ralph identifies length as length in meters. It is to this that I 

now turn.  

 
5. A contextualist response to Kripke’s proposal 

 According to Salmon, whether one knows how long stick S is (i.e. in what amount Stick 

is long), is interest-relative, in the way that it is allegedly interest-relative whether one knows to 

whom Jones is married. Further, in Salmon’s view, to say that whether one knows to whom 

Jones is married is interest-relative, is to say that someone whose cognitive situation is 

unchanged, can be correctly described as knowing to whom Jones is married relative to some 

interests, but correctly described as not knowing to whom Jones is married relative to others, 
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because the truth conditions of such attributions vary in the context of utterance, being dependent 

on the interests and purposes of those who make them.136 And the reason for saying this is that in 

reply to a piece of identifying information φ about Jones’ spouse, such as ‘Jones is married to 

Mary Fisher, the historian’, one can always ask ‘but who is φ?’ relative to an interest in some 

other way of identifying Jones’ spouse. Call this “indexicalist contextualism,” because the truth 

conditional contribution of ‘knows wh’ is always relative to some index i. 

 As for whether Ralph can be correctly described as knowing how long S is, Salmon’s 

views on this accord well with my version of Scylla, according to which one knows how long an 

object is in virtue of one’s facility with a name: Relative to the usual interests we have when 

making ascriptions of the form ‘x knows how long y is’, Ralph is correctly described as knowing 

how long an object is, if, and only if, he can produce the standard name of the object’s length 

(e.g. ‘3 meters’), while understanding its meaning. Normally this would require measuring the 

object in question. However, in the special case under discussion in which Ralph sets up the first 

system, he can know how long S is just by (a’) knowing his own intention in introducing the 

standard name ‘meter’ for the length of S, while (b’) looking at the stick, which gives him the 

requisite understanding of the name. So, if non-philosophical interests are in play, then premise 

(III) can be denied and there is no paradox. Rather, Ralph knows how long S is a posteriori. On 

the other hand, if the interests of a skeptical philosopher are in play, then while the argument that 

generates the paradox is sound, the conclusion loses its paradoxical bite, and should not bother 

anyone who is interested in whether Ralph knows how long S is in the “ordinary” sense, but not 

interested in knowing this in the philosophical sense.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
136 See Salmon (1987). See also Boer and Lycan (1986).  
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 Similar considerations apply to the case of π. Relative to one set of interests, one is 

correctly described as knowing what number π is, if, and only if, one can produce the standard 

name ‘π’, while understanding its meaning. This will require knowing that ‘π’ designates the 

ratio of the circumference of a circle to its diameter, in which case many of us count as knowing 

what number π is. This is despite the fact that one is also correctly described as not knowing 

what number π is, relative to the interests of a skeptical philosopher. This is because there is no 

number, n, such that x can know, of n, that n is π, relative to these interests. 

 In order to explain why there appears to be a paradox in the first place, Salmon makes 

two claims. Firstly, as already noted, he claims that the truth conditions of attributions of 

knowledge-wh are sensitive to the interests of the person making the ascription in the context of 

utterance. Secondly, he claims that our interests can shift from the everyday to the philosophical 

“without our noticing it” (1987: 214). When this happens, Salmon claims, we find ourselves 

denying that Ralph knows how long S is, and denying that anyone knows what number π is, 

without realizing that we mean this in the philosophical sense but not in the ordinary sense. More 

about these claims in a moment. 

 Salmon’s view must be distinguished from another kind of contextualist view, according 

to which the interests of the speaker are part of the circumstance of evaluation with respect to 

which attributions are evaluated for truth, rather than part of the context of utterance. On this 

view, while the contents of attributions of knowledge-wh are invariant, their interest-relativity is 

captured by the fact that they are true relative to some circumstances and false relative to others, 

because some circumstances contain features that compel us to judge them true while others do 

not. Thus, on this view, their truth-value varies, in the way that the truth-value of ‘John is as tall 

as my father’ varies with the time of evaluation even when its content is held fixed. 
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 Kripke is dubious of the claim that attributions of knowledge-wh are interest-relative, and 

correspondingly unwilling to accept Salmon’s solution to the paradox. He objects that in 

response to the attributions 

(4) Ralph knows to whom Jones is married, 

(5) Ralph knows how long S is, 

(6) Ralph knows how many roots this equation has, 

the audience will not say ‘Are you sure? What are the relevant interests?’ These questions simply 

do not arise. Rather, Kripke claims, the audience will find the attributions perfectly clear.137  

Further, this point is not limited to cases where the audience already knows how to look for the 

relevant interests in the context or finds them obvious. Rather, it is that the audience does not 

have to look for interests at all to understand these reports. Against this, one might worry that 

even in cases where the indexicalist approach to epistemic paradoxes is somewhat plausible, the 

question ‘What are the relevant interests?’ would not naturally arise. For example, it would be a 

rather weak argument against David Lewis’ epistemic contextualism to observe that the same 

question cannot naturally arise in the case of ‘S knows p.’ However, Kripke’s point can be 

developed more forcefully as follows.  

 In general, we notice when the context of utterance or circumstance of evaluation shifts 

as we use context-sensitive expressions. Beginning with the context of utterance, suppose that 

somebody utters ‘it’s raining,’ first in a context in which it expresses that it’s raining in New 

York, and then in a different conversational context in which it expresses that it’s raining in 

Boston. (She could be in New York, talking on the telephone about the weather to someone in 

Boston, before telling the person sitting next to her about the weather in Boston.) In this event, 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
137 Kripke (2011a) 
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the speaker will notice the shift in the context, as well as the corresponding difference in what is 

expressed. A more specific version of this point applies to epistemology. According to Salmon’s 

proposal, (4) – (6) can express different truth conditions relative to different interests, without us 

realizing it. But this must be wrong, because we are sensitive to genuine contextual shifts in 

epistemic threshold, as is borne out by the fact that our intuitions shift. Further, since, for the 

most part, we do notice when the context of utterance shifts as we use context-sensitive 

expressions, but we very often don’t notice when the interests shift when we make the 

attributions labeled (4) – (6), these attributions cannot be context sensitive, and the standards for 

knowing how long something cannot shift with the context of utterance. Further, the same point 

applies regarding shifts in the circumstance of evaluation. For example, we do notice why the 

truth-value of ‘John is as tall as my father’ varies with even when its content is held fixed.  

 Next I will consider whether the truth conditions of attributions like (4) - (6) are absolute 

and context invariant. Then I will return to the topic of interest relativity, in order to amend 

Salmon’s proposal. 

 
6. Invariantist and ambiguity theories 

 One proponent of an invariantist view is David Braun, who claims that the truth 

conditions of attributions of knowledge-wh are invariant and extremely lax, requiring that the 

subject simply be able to produce an answer to the relevant wh-question that is not simply a 

transformation of that question. For example, suppose that Ralph asks ‘Who is Hong Oak Yun?’. 

According to Braun, if Ralph is given the answer ‘A person over three inches tall’, he thereby 

knows who Hong Oak Yun is!138 Perhaps Braun would even claim to have solved the paradox 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
138 Braun (2006).  
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posed earlier. For Ralph can produce an answer that is not simply a transformation of the 

question ‘how long is stick S?’, viz. that stick S is 1 meter long.139 

 What Braun must explain is why ordinary speakers will deny that Ralph knows who 

Hong Oak Yung is, when on the invariantist theory he can be truly said to do so.  

The usual response to this sort of objection is that speakers will refrain from asserting these 

things (e.g. ‘Ralph knows who Hong Oak Yung is’) to avoid the misleading implicature that 

Ralph knows an answer that is informative to the questioner. However, this response does not go 

far enough, since it can’t explain why we not only refrain from asserting that the subject knows 

who Hong Oak Yung is, but also deny this. In response to this, Braun proposes a radical error 

theory, claiming that speakers often deny or assert the negation of attributions of knowledge-wh 

when these attributions are literally true, because they confuse what is informative for what 

answers the question. The problem with this claim is that attributions of knowledge-wh are used 

to distinguish people with informative answers that are the basis for thought and action, from 

people who do not have such answers. But according to Braun’s theory, the meaning of such 

attributions comes apart from their use, as I have just described it, to an excessively implausible 

extent. Moreover, on Braun’s view, although the question ‘Do you know who Hong Oak Yung 

is? is meaningful, there is no reason to ask it, since upon hearing the question your interlocutor 

will automatically know the answer. But we can imagine an interrogator asking: ‘Do you know 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
139 I am not sure if Kripke has ever held an invariant and lax view. The Braunian solution to the 
paradox is obviously reminiscent of Kripke’s remarks about the meter in Naming and Necessity. 
Further, while Kripke does not commit himself to standards that are as lax as Braun’s, he does 
claim in Naming and Necessity that Ralph knows who Cicero is if he knows that Cicero is a 
famous Roman orator. See Kripke (1980: 83). 
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anything at all about who Hong Oak Yung is?’ Braun will agree that the question is meaningful, 

and yet on his theory there is no reason to ask it.140 

 I have just argued that the truth conditions of attributions of knowledge-wh are not 

invariant and lax. So if these truth conditions are invariant, then they must be to some degree 

strict. One standard of strictness, proposed by David Kaplan, requires the subject to be able to 

recognize the object in question, in the sense of being able to apply antecedently held 

information to it.141 Kripke himself is surely sympathetic to this standard of strictness in the case 

of the meter, since his proposal is that Ralph knows how long S is because he meets an 

identifiability requirement (see section 3). Ralph’s identification of length as length in meters 

provides the standard for knowing exactly how long something is, and as such is antecedently 

held information that Ralph can apply to subsequent measurements of length. 

 As regards knowing who someone is, the problem for the strict theory is to explain why 

we can say that a subject knows who someone is, even though they fail to meet this standard. For 

example, I can be said to know who Payton Manning is, even though I am unable to recognize 

and identify him in the street because I have only caught a glimpse of his face beneath his 

helmet. Further, we can deny that a subject knows who someone is in certain contexts, even 

when she is able to recognize and identify him. For example, a subject who can be said to know 

who the thief is because she can recognize him in the street when he is wearing his thief-

costume, can also be said not to know who the thief is when she fails to recognize him in the 

context of a police lineup.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
140 Thanks to Gary Ostertag for these examples. 
141 Kaplan in Almog et. al (1989).!
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 Kripke suggests, tentatively, that attributions of knowledge-wh possess a kind of 

ambiguity that is neither properly described as context-sensitivity nor as interest-relativity.142 

Anticipating this proposal, Boer and Lycan claim that such ambiguity would be “monstrous” 

(1986). This is because positing it would require a different reading for every interest, as shown 

by the fact (already noted) that in response to a piece of identifying information such as ‘Cicero 

is a Roman orator’, one’s interlocutor can always ask ‘Yes, but who is this Cicero, the Roman 

orator?’ relative to some interest.143 That is, one might already know that Cicero is a Roman 

orator without being able to identify him further. So to be told ‘Cicero is a Roman orator’ will 

fail to identify him relative to the relevant interests.  

 Kripke points out that the kind of ambiguity he is inclined to think exists in ‘knows who’ 

is “much more rare in the case of ‘knowing which’ as applied to objects in general” (Kripke, 

2011a, pp. 344-5). He also points out that a source of ambiguity is that attributions of knowing-

who can be read de re as well as de dicto, a fact that may result from a scope ambiguity.144 On its 

de re reading ‘Thelma knows who the thief is’ says that the thief is such that Thelma knows who 

he is, although Thelma does not know that he is the thief. Such an attribution may be true of, for 

example, the thief’s next-door neighbor, who may recognize and know her neighbor by name but 

have no idea that he is the thief. In what follows I confine my attention to the de dicto reading. 

 Kripke does not say exactly what form the posited ambiguity might take. If it is a 

straightforward lexical one, then we would expect the locution ‘knows wh’ to be disambiguated 

into distinct polysemes such as ‘knows wh1’ and ‘knows wh2’, expressing distinct ways of 

knowing who someone is, or which F something is. But it is doubtful that this is what Kripke has 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
142 Kripke (2011a). 
143 Boer & Lycan (ibid). 
144 Kripke (ibid). The de re/de dicto ambiguity in ‘knows who’ was first pointed out by Kvart 
(1982).!
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in mind, since the usual diagnostic tests, including ones used by Kripke himself, do not suggest 

that ‘knows wh’ is lexically ambiguous.145 Surely there are not various senses of ‘knows who’ or 

‘knows how long’ that are clear enough to be entered into a dictionary, and we would not expect 

that ‘knows wh1’ and ‘knows wh2’ translate into distinct words in some foreign language 

(although this test yields false positives).146 Further, if we form a conjunction in which each 

polyseme occurs and then elide one of them, there is usually a noticeable oddness, resulting from 

the fact that the elided polyseme has a different meaning from the unelided one that that the 

former’s meaning is recovered from. (This phenomena is known as ‘zeugma’ or ‘syllepsis’). For 

example: 

(7) While running in Pamplona, Javier was impaled on a horn. Later he performed 

‘Stormy Weather’ on one.  

But little or no oddness results in the following case, where we suppose that Ralph only knew 

that Cicero was a Roman orator: 

(9) Ralph knew who Cicero was and Catiline did too. 

This in itself is inconclusive, since some extremely clear cases of polysemy are not detected by 

this test either, as in Chomsky’s example ‘France is hexagonal and a republic.’ However, there is 

more data. If ‘knows who’ is ambiguous then, just as there is a non-contradictory reading of 

 (10) The bank of the river Hudson isn’t a bank, 

so there should be a non-contradictory reading of 

 (11) Ralph knows who Cicero is and doesn’t know who Cicero is. 

But this reading takes great effort to detect.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
145 These are found in Zwicky and Sadock (1975) and Kripke (1977, 2011a, 2011b) and are 
summarized in Sennett (2011). 
146 For example, Croatian contains different lexemes corresponding to ‘Uncle on your father’s 
side’ and ‘uncle on your mother’s side’. But ‘uncle’ is not ambiguous. See Sennett (ibid).!
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 I now turn to the question of whether the way we use hedging terms like ‘really’ and 

‘strictly speaking’ can cast any light on the semantics of attributions of knowledge-wh, and the 

question of whether these attributions are in any way interest-relative.  

 
7. Hedging 

 Immediately after his discussion of context-sensitivity and ambiguity, Kripke introduces 

his notion of a “toy-duck case,” giving an example in which a parent corrects a child by saying 

of a toy duck ‘that’s not a goose, it’s a duck’.147 Kripke’s point is that we should not conclude 

from interest-relative uses like this, that the meaning of the expression ‘duck’ is interest-relative, 

ambiguous, context-sensitive, or broad enough to encompass both toy ducks and waterfowl. 

Kripke also proposes a way of testing for such cases, the felicity of the parent’s utterance of (12) 

being a sign that the above example is a toy-duck case:  

(12) Of course it isn’t really a duck.  

Since ‘duck’ does not express something encompassing both toys and water-fowl, (12) does not 

simply cancel a previous implicature that the thing in question is a real duck, or contract the 

previously dilated extension of ‘duck’. Rather, in uttering (12) the speaker signals that ‘duck’ is 

being used in accordance with either its dictionary or technical meaning, rather than being used 

in the interest-relative way it was when uttering ‘that’s not a goose, it’s a duck’. Thus the parent 

could also have said:  

(13) Of course, technically it isn’t a duck. 

This connects Kripke’s observation about toy duck cases with another observation for which he 

is more famous, namely that we use words in a way that is deferential to our linguistic 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
147 Kripke (2011a). See also Austin (1962). Thanks to Bob Fiengo for helpful discussion of 
hedging. 
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community. I will begin by describing the relation between hedging expressions and semantic 

deference, beginning with ‘technically’, ‘strictly speaking’ and ‘truly’ before returning to the 

more complex case of ‘really’. 

 Speaking technically can involve deference to experts, as in: 

(14) Technically, nothing is flat. 

Here the speaker uses ‘technically’ to signal that what follows is spoken in a way that is 

deferential to experts, thereby hedging against the risk that what follows will be taken as false.148 

Speaking technically can also involve signaling that what follows is spoken in accordance with 

the primary meaning of an expression, of the sort that belongs in a dictionary. For example: 

(15) Technically, a whale is a mammal. 

Likewise, if John has just got divorced but is still living with his ex-wife, one can say: 

(16) Technically, John is now a bachelor. 

Speaking strictly or literally can also involve speaking in accordance with (one of) the dictionary 

meaning(s) of an expression.149 For example, 

(17) Strictly speaking/literally speaking, a comic book is a book. 

(17”) Strictly speaking/literally speaking, a stable is not a farm. 

But the speaker can also use ‘strictly speaking’ to signal that what follows is spoken in deference 

to experts. For example ‘strictly speaking’ can be substituted for ‘technically’ in (14). What is 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
148 See Kay (1983) on ‘Technically’ and semantic deference. George Lakoff claims hedging 
words are “words whose job is to make things fuzzier or less fuzzy” (Lakoff, 1973). While the 
role of hedging words in dilating and contracting the boundaries of vague terms is of great 
interest, I cannot discuss it here. Neither am I here interested in cases in which ‘really’ is used to 
intensify gradable adjectives, as in ‘John is not just tall but really tall’. Nor am I interested in 
cases in which ‘really’ and ‘literally’ are used for emphasis, as in ‘I’m literally dying to see you’, 
‘I really need you to be on time’ and ‘John is my brother but he’s really more of a friend.’  
149 Arguably ‘book’ is now ambiguous. Witness the syllepsis in: “John downloaded a book and 
then spilt coffee on it.” Further, one can easily imagine ‘book’ translating into a different foreign 
words corresponding to ‘paper-book’ and ‘e-book.’ 
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common to (13) - (17”) is that the speaker provides meta-linguistic information that is not part of 

the content asserted. Rather, this information contributes to a context, perhaps by establishing a 

register, in which the audience should interpret and evaluate what they hear in accordance with 

standards, these being entered in a dictionary or otherwise set by relevant members of the 

linguistic community.  

 ‘Real’ and ‘really’ are more complex. ‘Real’ in (18) does the same job as ‘really’ in (12), 

allowing the speaker to signal that ‘diamond’ is to be understood in terms of its dictionary or 

technical meaning (despite there being no explicit indication that meta-linguistic commentary is 

taking place): 

(18) Those white sapphires aren’t real diamonds. 

Further, ‘Real’ and ‘really’ —like ‘true’, ‘truly’ and ‘actually’— can also be used to attest to the 

fact that something is not a hoax, since one can point to a holographic diamond and say:150 

(19) That isn’t a real diamond. 

Further, ‘real’ and ‘really’ —again, like ‘true’, ‘truly’ and ‘actually’— can be used, in contrast to 

‘supposed’ or ‘alleged’, to attest that to the verified truth of what is said.151 For example: 

(20) Gettier cases are true counter-examples/really are counter-examples to the theory 

that knowledge is justified true belief. 

(21) The Liar paradox is a true/real paradox, whereas the barber paradox isn’t. 

‘Real’ and ‘really’ can also be used in a way that seems to be entirely dependent on the interests 

and purposes of speakers. For example, although ‘book’ has two dictionary meanings according 

to which a comic book is literally a book, a speaker can also say: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
150 Austin (ibid). Frege makes this point about ‘true’. See Frege (1914). 
151 My impression is that people in the south of England now use “physically” in both of these 
ways, as well as for emphasis. 
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(22) A comic book isn’t a real book, 

and in doing-so signal that the dictionary meaning of ‘book’ is not being adhered to, and that 

‘book’ is instead being used in a way determined by the speaker’s interests. So, having finished 

The Adventures of Tin Tin, I can insist that I have, literally, finished a book, even after being 

pressed to say otherwise, while conceding that I haven’t finished a real book in the sense my 

interlocutor is interested in. Likewise, one might concede that although Cambridge MA, is 

literally speaking a city, isn’t a real city. In this way the use of ‘real’ contributes to a context, 

perhaps by establishing a register, in which speakers can interpret and evaluate what they hear as 

interest-relative.  

 To take stock, hedging terms allow us to defer to the primary meanings of expressions of 

the sort that get entered in the dictionary, to meanings established by experts, and to each other’s 

interests and purposes. Further, which of these things one should defer to is a matter to be 

determined by the speaker in the context of utterance. If all this is correct, then I think the 

general moral is that the semantics of expressions should not have to account for all of the 

interest-relative uses of expressions.152 For we have seen that expressions like ‘book’, ‘city’ and 

‘diamond’ whose meanings are, intuitively, not interest-relative, can nevertheless be used in a 

special way in accordance with our interests, instead of as expressing their contextually invariant 

dictionary or technical meanings. This is because one of the things that can be achieved with 

hedging locutions is the creation of conversational contexts —perhaps even registers— in which 

the dictates of expression semantics are temporarily ignored in accordance with our interests.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
152 See Salmon (2004) for a different route to this conclusion. 
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 I will now apply this moral to the semantics of attributions of knowledge-wh. For reasons 

of space, I leave the topic of how attributions of knowing-who interact with hedging terms (as 

well as the topic of how de re attributions do so) for further work.  

 
8. Interest-relativity and hedging 

 First I want to discuss a complication that is introduced by the fact that the degree of 

exactness that we mean by ‘exactly’ varies with the interests and purposes we have when 

inquiring about a length. Perhaps then we can bite the bullet and say that while Ralph knows how 

long S is, he does not know exactly how long S is, with the result that no one knows exactly how 

long anything is. To make this strange result more palatable, one might claim that quantities are 

independently existing abstract entities, and furthermore, so is the continuum of real numbers. 

So, the response continues, it is perhaps not surprising that quantities cannot be exactly 

correlated with the real continuum, and that consequently we do not apprehend quantities exactly 

by measuring them. Then, according to this response: 

(23) Technically, no one knows exactly how long anything is. 

Unfortunately, this response does not solve the paradox. The reason is that we still speak of the 

NFL knowing exactly how long a given football field is. This is because the meaning of ‘exactly’ 

is interest-relative, and relative to the NFL’s interests and purposes, knowing the length of a 

given football field to the nearest inch is more than sufficient for knowing exactly how long the 

field is. Further, knowing this requires Ralph, who sets up the first measurement system, to know 

exactly how long the standard object is, to a degree of exactness suitable for setting up a system, 

although not to the rather technical degree of exactness described above. But this is just to say 

that Ralph must how long the standard object is.  

 With that said, consider (5) again, and compare it with (24) and (25): 



! 214!

(5) Ralph knows how long S is. 

(24) Ralph doesn’t really know how long S is. 

(25) Technically speaking, Ralph doesn’t know how long S is. 

The first and most obvious point is that ‘really’ in (24) is not used to correct a toy duck case, 

since nobody will correct (5) with (24), or say ‘Of course we never really knew how long 

anything is after all.’ Rather, according to my theory of hedging, ‘really’ in (24) is contributing 

to a context in which speakers can interpret and evaluate (24) in a special way that is more 

restrictive than what is required by literal expression meaning, and that is determined by our 

interests, or by a technical standard as in (25). On this basis, the advocate of interest-relativity 

can claim that in a context in which the interests are philosophical, or we are speaking 

technically-philosophically, and the standards for attributing knowledge-wh have been 

correspondingly restricted, the result is that (24) and (25) are true. Furthermore, in order to solve 

the paradox, the advocate of interest-relativity can argue that in this same context (5) remains 

true. This is because its univocal literal expression-meaning and truth conditions remain the 

same, and because all they require is what Salmon claims they require: that one produce the 

name of the object’s length, while understanding its meaning. Recall that in the case of reference 

fixing under discussion, Salmon says this requirement is satisfied by Ralph (a’) knowing his own 

intention in introducing the standard name ‘meter’ for the length of S, while (b’) looking at the 

stick, which gives him the requisite a posteriori understanding of the name. 

 Analogously, it could be argued that we are correctly described as knowing what number 

π is, in virtue of knowing that π is the ratio of the circumference of a circle to its diameter, 

despite the fact that we are also correctly described as not really or technically knowing what 

number π is. 
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But now consider the following. There is a debate as to whether anyone can know how 

long S is. Smith says that no one knows how long S is. And then Jones responds with (5). In that 

context, (5) can be heard as false. The reason is that the preceding discourse has restricted the 

standards in just the way that ‘really’ and ‘technically’ do. In which case, it seems, my proposal 

does not solve the paradox after all. 

This objection assumes that the literal truth-conditional contribution of ‘knows how long’ 

is supplanted by the technical standard for applying that notion. But this assumption is 

questionable. Firstly, because this does not appear to be a case like ‘mammal’, ‘diamond’ or 

‘cardinal number’, in which that the standards for applying those terms literally are the same as 

the standards for doing so technically.153 Secondly, because in my view the literal expression 

meaning of certain non-indexical, non-demonstrative expressions remains stable across contexts, 

even after we create special contexts in which we can choose to ignore their literal meaning in 

favor of something more technical. To see this, consider that it must be possible to assert the 

Moorean proposition expressed by ‘I know that I have hands’, sincerely and literally, during a 

philosophy seminar in which the standards for knowing p have been restricted; further, for this to 

be possible requires that ‘knows’ expresses something univocal, that is stable across contexts, 

including those in which ‘knows’ can be used to convey a more restrictive standard. Since hard 

cases make a bad law, we should also consider the case of ‘flat’. In this case too, it must be 

possible for me to assert, sincerely and literally, that the screen of my iMac is flat, even though I 

am aware that a strict standard has been introduced in a special conversational context via the use 

of ‘technically’. Again, this requires that ‘flat’ expresses something univocal, a notion of flatness 

that is stable across contexts. The same is true in the case of (5). That is, it is possible to make a 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
153 See chapter 3 section 2 for a discussion of ‘cardinal number’.  
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sincere and literal assertion of the proposition expressed by (5), even after a special context has 

been created in which we are debating whether anyone can know exactly how long S is. For this 

reason, I find it somewhat plausible that (5) can remain true in a conversational context in which 

(24) and (25) are true. In any case, this is the best I can do in terms of a contextualist solution to 

the paradox.154   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
154 As this chapter was nearing completion, Gary Ostertag directed me to some forthcoming 
work by Peter Ludlow, which bears some similarity to the view in the text. I have not had time or 
space to give Ludow’s view the treatment it deserves, but look forward to engaging with it in 
future work.!
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Chapter 6: A Proposal 

1. Introduction 

 In this chapter I begin by discussing the topic of count nouns, and attempting to solve a 

puzzle about them due to Nathan Salmon. This leads me to the proposal about numbers I that 

favor, which is that numbers are properties of sets. Next I show how my proposal can be spelled 

out as a proper system of definitions, using the logical background of the simple theory of types 

(STT). I also show the extent to which the proposal can avoid the problems that were shown to 

plague Frege’s analysis in chapter 2. Finally, I discuss whether the axioms of STT are general 

primitive truths.  

 
2. Count and mass nouns  

 There is a grammatical distinction between count and mass nouns (e.g. ‘dog’ vs. ‘sand’), 

and between count and mass occurrences of nouns like ‘tomato’. Beginning with count nouns, 

these sometimes occur with the plural suffix (as in ‘dogs’) and always occur within the scope of 

another expression (‘Many dogs…’, ‘John’s dogs…’). On the other hand, mass nouns never 

occur with the plural suffix, and sometimes occur without another expression having scope over 

them (‘Water is wet’). As for nouns like ‘tomato’ that can have count or mass occurrences, when 

these occur with the plural suffix or within the scope of quantifiers such as ‘many’, ‘few’ or ‘27’, 

they have a count-occurrence. When they occur in the singular without a determiner or within the 

scope of quantifiers like ‘much, ‘little’, and ‘half a pound of”, they have a mass-occurrence. 

 It will be recalled that in Frege’s view arithmetic shares some of the generality of logic, 

because numbers are applicable to sortal-kind-concepts and almost anything can be bought under 

a suitable sortal-kind-concept (see chapter 2 section 2). As for what makes such concepts 
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suitable, it will also be recalled that in addition to the requirement that they be precise rather than 

vague, Frege adds that: 

Only a concept which isolates what falls under it in a definite manner, and which does 

not permit any arbitrary division of it into parts, can be a unit relative to finite 

Number (1884: §54). 

Here we have a Fregean semantic distinction corresponding to the grammatical one between 

mass and count nouns. Putting all this together, the concept F expressed by a count noun must 

permit of division into F’s, but permit no arbitrary division of individual F’s into further F’s. For 

example, the concept dog expressed by the noun ‘dog’ does not permit division of the members 

of its extension into more dogs. Moreover, while ‘sandwich’ does permit division of the 

members of its extension into more sandwiches, not everything that results from dividing a 

sandwich is itself a sandwich, and so this concept permits no arbitrary division. In contrast, 

‘sand’ does permit arbitrary division into more sand, assuming that everything that results from 

dividing sand is also sand.  

 This last assumption is questionable, since some things that result from dividing a 

quantity of sand are not more sand; for example, at the point just before the molecular level is 

reached, what will result from division are molecules, not more sand. Moreover, a similar moral 

applies to ‘furniture’, since a part of a chair that is obtained by dividing furniture need not be 

furniture. Thus the problem is that there are mass nouns as well as count nouns that do not permit 

arbitrary division, and so this is not a sufficient condition for being a count noun, given my 

assumption about what Frege means by ‘arbitrary’.  

 Katherine Koslicki proposes the following solution. For a division to be arbitrary does 

not require that everything that results from dividing the extension of F is an F, as I assumed 



! 219!

above. Rather, for a division to be arbitrary requires that the extension of F can be divided “in a 

myriad of unprincipled ways” (1997: 420), where the extension of F can be divided in a myriad 

on unprincipled ways 

just in case many (though perhaps not all) proper parts of what falls under [F] 

themselves fall under the concept and we can pick these many proper parts randomly 

without any particular care (ibid: 421). 

Koslicki’s proposal is that the concepts expressed by count nouns permit no arbitrary division in 

this sense. This proposal gets the right results in easy cases like ‘sand’ and ‘dog’, and even in 

some hard cases; for example, sandwiches permit no arbitrary division by this criterion. But it 

gets the wrong result for ‘furniture,’ since furniture also permits no arbitrary division by this 

criterion, and yet ‘furniture’ is not a ‘count noun.’ Further, this analysis of ‘arbitrary division’ 

does not seem to capture Frege’s intent. What on earth is the notion of picking (or choosing) 

parts at random doing in a semantic analysis of count nouns, especially if the analysis proposed 

is in the service of logicism? (Compare the discussion of Linnebo’s analysis of the notion of an 

arbitrary subcollection, in chapter 3, section 7.)  

 
3. Salmon’s puzzle about count nouns 

 Frege’s analysis of count nouns raises an interesting puzzle, due to Salmon, concerning 

the following scenario: I place three oranges on the table, before cutting off and eating one half 

of an orange. Exactly how many oranges are on the table? We can all calculate the obvious 

answer:  

  There are exactly 2½ oranges on the table. 

However, there is a compelling argument that the obvious answer is incorrect. Either the half of 

an orange on the table is an orange on the table, or it is not. On the one hand, if it is an orange on 
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the table, then there are 3 oranges on the table. And on the other hand, if it is not an orange on 

the table, which it is not according to Frege’s doctrine that count nouns permit no arbitrary 

division, then there are 2 oranges on the table. Either way, the obvious answer is incorrect. 

Further, if we modify the example slightly, so that I cut off and eat ¾ of an orange, then, since 

one quarter of an orange is not an orange (again, by Frege’s doctrine), there are exactly 2 oranges 

on the table. So, instead of giving the obvious answer we must give the less obvious answer:  

  There are exactly 2 oranges on the table. 

The problem is that our intuitions (or at least Salmon’s and mine) baulk at the less obvious 

answer. Rather, it is the obvious answer that seems correct. 

 The less obvious answer is required by the logicist doctrine that numbers apply to 

extensions, classes or sets, together with Frege’s doctrine that the members of extensions of 

count nouns permit no arbitrary division. To see this, consider that according to later Frege’s 

analysis, the number 2 is the extension containing all and only those extensions with 2 members; 

further, the members of extensions do not permit of division into fractions, because they are the 

extensions of count nouns, which admit no arbitrary division. Thus there is no extension 

containing all and only two-and a half-membered extensions, and so, if we are to follow Frege, 

we have to say that there are not 2½ nor 3 but exactly 2 oranges on the table.   

 One possible answer Salmon considers is the conjunctive answer, which is as follows:  

There are exactly 2 oranges on the table, and there is exactly 1 orange-half on the 

table.  

However, as Salmon points out, according to the conjunctive answer fractions are partly non-

mathematical, since while the numerator of a fraction is a numerical quantifier (‘1 orange-half’), 

the denominator is a non-mathematical operator on count nouns (‘1 orange-half’). But it is 
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implausible that fractions are partly non-mathematical; rather, ‘½’ goes with ‘2’ not with 

‘orange’. Another problem is that for the conjunctive answer to be true, both of its conjuncts 

must be true. So the conjunctive answer entails the less obvious answer that there are 2 oranges 

on the table, and is thus incompatible with the obvious answer that there are 2½ oranges on the 

table. 

 The solution that Salmon favors is to abandon the logicist doctrine that numbers apply to 

extensions, classes or sets, and adopt a proposal that justifies giving the obvious answer to the 

question of exactly how many oranges on the table. According to this proposal, numerals are 

non-extensional numerical quantifiers. They are quantifiers because the basic form of numerical 

statements like ‘there are 2 oranges on the table’ is assumed to be: 

  There are n things x such that Fx. 

Further, they are non-extensional because they say 

something quantitative not about the class of oranges on the table, nor anything 

similar (like the characteristic function of that class), but about…well,… the oranges 

on the table—the property, if you will, of being such an orange, or better, the plurality 

(group, collective), i.e. the oranges themselves (1997: 237). 

Here the idea is that 

some properties are exemplified or possessed by individuals taken collectively, in 

concert, rather than taken individually, and rather than by the corresponding class 

(ibid).  

An example of such a property is the property of hoisting the groom into the air during the hora, 

which is usually possessed by individuals taken collectively rather than taken individually, and 

rather than by the corresponding class or set. Returning to non-extensional numerical quantifiers, 
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what they designate are properties of pluralities relative to a sortal-kind, where a sortal-kind is 

not the extension of a count noun but what is semantically expressed by it, and where the former 

semantic value does not determine the latter. In particular, in Salmon’s scenario the half of an 

orange is not one of the things that are in the extension of ‘orange on the table’, although it is 

among the plurality of things that are collectively of the sortal-kind orange on the table. ‘2½’ 

designates the numerical property that this plurality has relative to this sortal-kind. This is why 

the proposal justifies giving the obvious answer to the question of exactly how many oranges are 

on the table: there are indeed 2½ things on the table that are collectively of the kind orange, even 

though there are only 2 things on the table that are members of the extension of ‘orange’. 

 It will be recalled that a serious objection to the logicist definition of number, is that it 

has the consequence that different entities are identical with numbers in different possible worlds 

(see chapter 2, section 7). However, since, in Salmon’s view, numerals are non-extensional 

operators, his view promises to solve this problem. For according to the proposal that Salmon 

favors, numbers are numerical properties. Assuming that these properties, like all properties, 

exist in all possible worlds, then there can be no problem about identifying a given number with 

different entities in different possible worlds. Of course, one could try to solve this problem 

while adhering to the logicist definition more closely than Salmon does, by claiming that 

numbers are numerical properties of sets. I will return to this view in the following sections. 

 More recently, Salmon has floated the idea that numerals might plausibly be regarded as 

non-extensional operators, rather than as non-extensional quantifiers. In his view, they can 

plausibly be regarded as operators, because the basic form of numerical statements like ‘there are 

2 oranges on the table’ should be glossed as ‘2 oranges are on the table’, and is arguably that of a 

determiner phrase, where the basic form is:  
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  n k’s are ______ 

Further, they are non-extensional because a given numeral ‘n’ designates the function that 

assigns to any sortal-kind k the (characteristic function of the) class of all and only those 

pluralities that include exactly n k's.155 As before, k is not the extension of a count noun but the 

sortal-kind semantically expressed by it, where the former semantic value does not determine the 

latter. As a result, in Salmon’s scenario, this function assigns to the sortal-kind orange on the 

table the class of all and only those pluralities that include the 2 whole oranges and the half of an 

orange on the table. 

 As Salmon himself notes, his proposals have an odd consequence. If, in Salmon’s 

scenario, I place another half of an orange on the table, then, since 2½ + ½ = 3, by parity with the 

reasoning in support of the obvious answer given above, there are now exactly 3 oranges on the 

table. Or suppose that there are two halves of an orange on the table. Then, since ½ + ½ = 1, 

there is exactly 1 orange on the table, and so an orange on the table. Salmon claims that his 

intuitions baulk at this consequence much less strongly than they do at the less obvious answer in 

the original scenario, but admits that a solution which blocks this consequence, while respecting 

the obvious answer above, “is obviously preferable” (ibid: 240). Personally, my intuitions baulk 

strongly at this consequence. So, while I don’t think that this is a conclusive objection to either 

of Salmon’s proposals, I do think it worthwhile to investigate whether Salmon’s puzzle has 

another solution. This will be taken up in the next section.  

 
  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
155 Salmon communicated this to me in personal correspondence. This view, taken together with 
the Frege-Church theory of sense and designatum, would have it that a numeral also semantically 
expresses the corresponding concept of the designated function. 
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4. A contextualist response to Salmon’s puzzle 

 Another possible solution to the puzzle, that Salmon rejects, is to claim that the question 

‘Exactly how many oranges are on the table?’ is concerned not with how many but how much. I 

will now make the case for such a solution.  

 I have already noted that nouns like ‘orange’ and ‘tomato’ can have count and mass 

occurrences. A further point is that occurrences which by their grammatical status are count 

occurrences demanding a count reading —because they occur with the plural suffix and within 

the scope of numerals— can nevertheless require a measure reading. To see this, contrast (1) 

with (2) and (3): 

(1) The 2 tomatoes/oranges on the table cost a dollar each. 

(2) *The 2 tomatoes/oranges in the sauce cost a dollar each. 

(3) *The 2½ tomatoes/oranges in the sauce cost a dollar each. 

Since there are not 2 tomatoes in the sauce, we need the measure reading instead, according to 

which there are not 2 tomatoes in the sauce, but  

[2 tomato’s worth] of [tomato] in the sauce.  

Further, since it is hard to believe that count occurrences of ‘tomato’ are ambiguous, what seems 

plausible is that ‘2 tomatoes’ semantically expresses its count meaning, but can be used to 

convey the measure reading in certain conversational contexts.   

 Following the theory presented in chapter 5, my next claim is that in the scenario in 

which I place three oranges on the table, before cutting off and eating one half of an orange, the 

question ‘Exactly how many oranges are on the table?’ contributes to a conversational context in 

which we up the ante to a more precise but non-literal standard for knowing how many, 

according to which there are 2½ oranges on table. However, it remains the case that literally or 



! 225!

strictly speaking the obvious answer is false and the less obvious answer is true: there are 2 

oranges on the table. Thus one can try to save the logicist doctrine that numbers apply to 

extensions, classes or sets from Salmon’s objection. But what does the invoked more-precise-

but-non-literal standard for knowing how many require? On one view, it requires a measure of 

quantity, where this measure is given not in terms of a unit from some measurement system like 

the metric system, but in terms of a unit that is introduced in reference to an instance of a sortal-

kind, the quantity of which is being measured. On this view, ‘Exactly how many oranges are on 

the table?’ is somewhat like ‘Exactly how many blocks is the distance to Central Park?’, or 

‘Exactly how many weeks long is June?’. I say “somewhat” because instead of asking for a 

measure of distance in New York City blocks, or a measure of time in weeks, the first question 

asks for a measure of quantity in terms of the unit an orange’s worth of orange. This proposal 

can explain why, in Salmon’s scenario, if I place another half of an orange on the table, then, 

since 2½ + ½ = 3, there must be exactly 3 of something —albeit not oranges— on the table. It is 

because the equation applies to measurements of quantity, and on a measure reading there are 

now exactly 3 oranges worth of orange on the table. 

 However, there is a disanalogy between the case of oranges and that of New York City 

blocks. For while there is plausibly a convention that a block is a somewhat variable unit of 

measurement for the dimension of distance, no such thing holds of ‘orange’ or ‘tomato’. Rather, 

in my view, what a measure reading of a count noun gives us is a somewhat variable 

dimensionless unit that is introduced in context, in accordance with the following rule: 

Let any count noun ‘F’ designate an F’s worth of F, where the context determines 

how much an F’s worth is. 
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The remaining problem, which Salmon takes to be the main objection to the sort of view that I 

am pushing, is that my proposal will not work for all count nouns. This is because things like 

pumpkins and cakes can vary a great deal in size. So, in a context in which there many pumpkins 

in the yard of various sizes, as well as one half of a pumpkin, a speaker will have no idea how 

much pumpkin is a pumpkin’s worth. In which case, answering ‘How many pumpkins are in the 

yard’ with for example ’27½’ is not answering with a measure of quantity. 

 The case of ‘cake’ is easier to handle, because ‘cake’ has a broad literal meaning, which 

can be temporarily ignored in favor of something narrower, in accordance with the speaker’s 

interests. (In this respect it is like the cases of ‘book’ and ‘city’ discussed in section 5). Thus in a 

scenario in which I have eaten a petite fours and a chocolate sponge cake, both of which are, 

strictly speaking, cakes, we have: 

(4) Strictly speaking, I ate two cakes, I really only had one and a bit. 

In this example, the interests in the context determine what counts as a cake, and so can 

determine how much cake is a cake’s worth. However, this does not take care of the case of 

pumpkins, since there is no wiggle room in the literal meaning of ‘pumpkin.’ Rather, the 

scenario in which there many pumpkins in the yard of various sizes, as well as one half of a 

pumpkin, seems to be a degenerate case in which there is nothing stable to determine how much 

a pumpkins worth is. So the only way to size up the pumpkins in the yard accurately is by 

counting. In this case ‘pumpkin’ cannot get a measure reading, and so must get a count reading. 

In answer to the question ‘How many pumpkins are in the yard?’, ‘27½’ is strictly speaking 

false, but is heard as true because in most other cases there is a measure reading to make it true.  
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 This concludes my defense of the logicist doctrine that numbers apply to entities such as 

extensions, classes or sets against Salmon’s objection. I now return to the question of exactly 

what numbers are.   

 
5. Equinumerosity properties  

 In chapter 2 we saw that Frege defines ‘#x: Fx’ so that it designates the extension of the 

second-level concept containing exactly those first-level concepts that are equinumerous with F. 

However, we also saw that this proposal is undermined by the fact that counting concepts and 

collecting them into extensions forces one to treat concepts as objects, and so to count and 

collect the corresponding extensions. Further, we saw that later Frege’s proposal, that ‘#x: Fx’ 

refers to the extension of the first-level concept containing exactly those extensions that are 

equinumerous with F, is undermined by the fact that such extensions are non-well founded. 

Furthermore, we saw that Frege’s view has the consequence that different entities are identical 

with numbers in different possible worlds. 

 This brings me to another proposal about numbers, that Kripke mentions in the 

Whitehead Lectures but does not explore in any detail: 

I think there’s some case for a more intensional view than Frege and Russell took, in 

any case, of what [a cardinal] number is.  It might be better: a property of being a set 

that has elements x1...xn that are distinct and so on, rather than the set.   

This view, which is also endorsed by Giaquinto (see chapter 1, sections 7-9), appears to have 

been the view of Georg Cantor, who proposed that the number of a set is not itself a set of 

equinumerous sets (or a class of equinumerous classes), but the property of being equinumerous 
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with that set.156 This view is expressed in his review of Frege’s Grundlagen, where Cantor 

writes: 

I call ‘cardinality of a collection [Inbegriff] or of a set [Menge] of elements’ (where 

the latter can be homogenous or heterogeneous, simple or composite) that general 

concept under which fall all and only those sets that are equivalent to the given set. 

Here, two sets are to be called ‘equivalent’, if they can be correlated one-to-one with 

each other, element for element (1885). 

I will add the qualification that the number of a set is the property of sets of a given kind, of 

being equinumerous with that set, and will call such properties “equinumerosity properties of 

sets.” In the next two sections I will suggest one way in which this proposal can be spelled out 

into a proper system of definitions that can solve the Caesar problem, with the caveat that this 

way of spelling it out does not accord with Kripke’s intent. After that I will continue to argue for 

the proposal, by showing the extent to which it can solve the other problems that plague Frege’s 

theory.  

 
6. Church’s type-theory  

 It will be recalled from chapter 3 that second-order logic is an augmentation of first-order 

logic that quantifies over properties and relations as well as objects. In order to spell out the 

proposal mentioned in the previous section, I will now proceed beyond second-order logic, into 

higher-order logic. This is done by quantifying over not only properties, relations and functions, 

but also over higher-level entities (that take properties, relations and functions as their 

arguments), higher-higher-level entities (that take higher-level entities as their arguments), and 

so on. I will work within a version of higher-order logic known as ‘the simple theory of types’ 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
156 See also Weber (1906). 
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(or ‘STT’), originally due to Russell but subsequently formulated by Alonzo Church and his 

students Leon Henkin and Peter Andrews.157 For the most part, my presentation follows that of 

Andrews.  

 There are two basic insights behind STT, one of which accords very well with common 

sense, and the other ordinary mathematical practice. The first is that numbers, sets of numbers, 

sets of sets of numbers, functions, sets of functions, etc., are entities of different types, where 

types themselves are reflected in the language. This insight accurately reflects the practice of 

mathematicians, who already know the types of the entities that they are thinking about, when 

working in one or another particular subject area, and who will draw type distinctions when 

working in a more general framework like set theory, by using different kinds of symbols to 

designate numbers (e.g. ‘1’, ‘2’, ‘3’.., ), sets of numbers (e.g.‘N’ or ‘ ’), and sets of sets of 

numbers (e.g. ‘P(N)’). The second insight is that entities of a given type apply to entities of the 

highest type below their type, and so do not apply to entities of the same type. That this is 

common sense can be seen from the fact that while ‘Someone is over 5 feet tall’ is intelligible, 

‘Everyone Kripke’ and ‘Everyone someone’ are nonsense. Likewise, while ‘Kripke is over 5 feet 

tall’ is intelligible, ‘is over 5 feet tall is a commonplace quality to have’ is nonsense. Once these 

insights are appreciated, STT can be seen to accord well with our intuitive judgments, with the 

result that it is as least as justified by the method of reflective equilibrium as the iterative 

conception of set (see chapter 4, section 2).  

In accordance with the aforementioned insights, all expressions of STT are assigned 

types. ‘e’ designates the type of individuals, ‘v’ the type of truth-values, and if α and β are type-

symbols, then ┌(α→ β)
┐is the type-symbol designating the type of functions from entities of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
157 Russell (1903), Church (1940), Henkin (1963), Andrews (1986). 
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type α to those of type β. (Church writes this ┌(βα)
┐, but I find the arrow notation considerably 

more visually revelatory; see chapter 4, section 13.) For example, ‘(e→v)’ designates the type of 

functions from individuals to truth-values, and ‘(v→v)’ designates the type of functions from 

truth-values to truth-values. 

 Expressions are subscripted with type-symbols that indicate their type, which is to say the 

type of the entities that they designate. For example, the usual symbols for negation and 

disjunction are subscripted to indicate, respectively, the type of functions from truth-values to 

truth-values, and functions from pairs of truth-values to truth-values: 

 ~(v→v),  \/((v, v) →v) 

According to STT, statements such as ‘P’ and ‘Q’ designate truth-values, so ‘~P’ and ‘P \/ Q’ are 

written, respectively as: 

~(v→v)Pv 

Pv\/((v, v) →v)Qv  !

In what follows I will omit the types of connectives.  

Before I give the criteria for being a well-formed expression of STT, another crucial 

ingredient must be introduced. This is predicate abstraction, which allows us to build complex 

predicates and functors from formulae and open sentences. I will walk though how this is done 

slowly, first explaining things rather concretely before doing so with greater generality.  

It will be helpful to recall from chapter 3 that the expressive power of second-order logic 

is obtained by laying down comprehension axioms, which are axioms stating that a formula 

Φ defines a second-order entity in the domain of the higher-order variables, such as a property or 

class. It will also help to recall that these axioms have the following form: 

∃P"∀x1…xn [Px1…xn ↔"Φ(x1…xn)] 
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Now suppose that we want to define complex properties and functions of individuals (so we are 

staying at the second-order). To do this we introduce the variable binding λ-abstraction operator. 

Then, by the above axiom, in the case in which Φ is the formula ‘x is a Polish diplomat and x is a 

great pianist’, we can abstract the corresponding complex predicate, as follows: 

λx[x is a Polish diplomat and x is a great pianist] ↔ x is a Polish diplomat and x is a 

great pianist 

The open sentence on the right hand side expresses a conjunctive proposition (with respect to an 

assignment). In contrast, the λ-abstract on the left hand side expresses the complex monadic 

property of being a thing that is both a Polish diplomat and a great pianist. As a result, these 

expressions, although logically equivalent, are arguably not synonymous, since someone such as 

Kripke’s Peter, who is confused about the identity of Paderewski, could believe that Padereski is 

a Polish diplomat and Padereski is a great pianist, without believing that Padereski is a thing that 

is both a Polish diplomat and a great pianist.158 In addition to expressing this complex monadic 

property, the λ-abstract designates the characteristic function that maps any potential value of x 

to truth iff it is a Polish diplomat and a great pianist. Since this λ-abstract is a complex predicate 

of individuals, in STT it is written 

λxe[xe is a Polish diplomat(e→v) and xe is a great pianist(e→v)]  

In the context of STT we need to proceed beyond second-order logic, so we need a more general 

comprehension axiom scheme stating that an expression Ψβ of any type β defines a complex 

function u of type (α→ β), which does not occur free in Ψβ:  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
158 See Kripke (1979).  
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∃u(α→β) ∀yα1…yαn [u(α→β) yα1…yαn = Ψβ]159 

We designate the function whose existence is asserted directly above as 

λxα1…xαn [Ψβxα1…xαn] 

So we have the comprehension scheme 

∀yα1…yαn [λxα1…xαn [Ψβxα1…xαn]yα1…yαn = Ψβ] 

More perspicuously, we can designate the aforementioned function  

λxα [Ψβ] 

So the comprehension scheme becomes 

∀yα[λxα [Ψβ] = Ψβ] 

Corresponding to this axiom scheme, the λ-conversion rule of λ-expansion licenses the 

replacement, within a formula, of any occurrence of Ψβ  by the λ-abstract ┌λxα [Ψβ]yα

┐. The rule 

of λ-contraction licenses the reverse replacement. So, for example, from ‘x is a Polish diplomat 

and x is a great pianist’ we can infer ‘λx[x is a Polish diplomat and x is a great pianist]y’, and 

vice versa. 

 To give a more pertinent example, suppose that we allow λ-conversion in an un-typed 

language. Then we can write a formula that purports to designate the Russellian function that 

does not apply to itself: ‘λF[∼F(F)],’ which we shall call ‘R’.  Now consider the formula ‘RR’, 

which expresses that R applies to itself. By the definition of ‘R’ and λ-conversion: 

 RR!↔ λF[∼F(F)]R 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
159!Since Ψβ is of any type β, we use boldface ‘=’, which reduces to ‘↔((vv)→v)’ in case Ψ is a 
formula, and to identity, ‘=((αα)→v)’, in case Ψ is a singular term. 
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But then by an application of λ-contraction to the right hand side, RR ↔ ∼RR, which is a 

contradiction. However, if the language is typed, then this problem cannot arise. For according to 

STT, well-formed expressions are limited to: 

(i) Variables and constants of type!α,"for example ‘xe’, ‘~(v→v)’ and ‘Pv’!

(ii) Complex expressions of type!β"formed from expressions of type!α"and of type!(α→!

β), for example ‘~(v→v)Pv’!

(iii) λ-abstracts of type!(α→!β)"formed from variables of type!α"and expressions of type!β!

By (i) – (iii), ‘F(F)’ is not well-formed, since there is no type of functors that take themselves as 

arguments. For there is no type of expressions δ formed only from expressions of type δ. As a 

result, ‘∼F(F)’ is not well-formed, and neither is R. So the contradiction cannot arise. 

 Next I will show how the proposal that numbers are properties of sets can be developed 

into a proper system of definitions. I begin by explaining the basic idea behind my definitions, 

before stating the definitions properly within STT.  

 
7. Equinumerosity properties again 

 The basic idea in what follows is to amend Frege’s definitions, so as to reflect the 

proposal that numbers are equinumerosity properties of sets of entities of a certain kind (see 

section 5). This can be done by defining the relation of equinumerosity between such sets in 

terms of a one-to-one function, and then defining the notion of the cardinal number of a set in 

terms of the property of being equinumerous with a given set Z:160 

The number of Z =df λX [Equinumerous(X, Z)] 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
160 Subsequently I discovered that Carnap defines ‘the number of Z’ as I do in the text. See 
Carnap (1947: 116). 
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If ‘λ’ is the standard function abstraction operator, then the λ-abstract in the definiens designates 

the characteristic function of the set of sets that are equinumerous with Z, a function that maps X 

to truth if X is equinumerous with Z, and maps X to falsity otherwise. This λ-abstract also 

expresses the property of being equinumerous with Z. Armed with the above definition of ‘the 

number of Z’, one can then continue to amend Frege’s definitions, first by defining the empty 

set: 

the empty set =df the set of all x: x ≠ x 

Then by defining ‘0’ as: 

0 =df the number of the empty set  

   =df λX[Equinumerous(X, W)], where W = the empty set 

This abstract expresses the property of being equinumerous with the empty set, and designates 

the characteristic function of the set of sets that are equinumerous with the empty set. 

 Although I will continue to develop my proposal in terms of characteristic functions, I 

want to emphasize that these entities are not the only way of implementing the basic idea that 

numbers are equinumerosity properties. For example, one could also adopt an apparatus in which 

the number of Z is the propositional function that assigns to any class X the singular proposition 

that X is equinumerous with Z. However, I also want to emphasize that there is good reason to 

work with functions of one kind or another, rather than with higher-order logic under its classical 

extensional interpretation, for reasons I will give in the last few paragraphs of this chapter.  

 Within the framework of STT, properties or kinds, and the sets corresponding to those 

kinds, can be represented as characteristic functions, which characterize sets by mapping entities 

to truth iff they are elements of the set in question (entities of the kind in question), and to falsity 

otherwise. For this reason, while one can talk about the set of elements of type α, one might just 
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as well talk about the characteristic function of type (α→v). In particular, while one can talk 

about a set of individuals of type e, one might just as well talk about the characteristic function 

of type (e→v). I will now drop the arrow notation for functions, writing ┌(αβ)
┐ instead of ┌

(α→ 

β)
┐

, and so in the case of sets ‘(ev)’ instead of ‘(e→v)’. I will also drop the outer parentheses of 

type-symbols, for example writing ‘(ev)v’ instead of ‘((e→v) →v)’. 

 The first order of business is to define the relation of equinumerosity between any two 

sets Z and Y. Since sets are functions of type (αv), ‘Equinumerous(X, Z)’ becomes 

Equinumerous((αv)(βv))v(X(αv), Z(βv)) 

This designates a function s from pairs of functions to truth-values, that correlates one-to-one the 

arguments of X with the arguments of Z. That is to say: (1) s is one-to-one on X: it maps every 

argument of X to an argument of Z. (2) s maps X onto Z: it maps all of the arguments of X to all 

of those of Z (rather than embedding the arguments of X in those of Z). So we have: 

Equinumerous((αv)(βv))v(X(αv), Z(βv)) ≡df 

λX(αv) λZ(βv) ∃s(αβ)[∀xα (X(αv)xα  " Z(βv)(s(αβ)xα)) /\ ∀yβ [Z(βv)yβ ""∃xα (X(αv)xα  /\ (yβ = 

s(αβ)xα))]] 

Now the above definition of ‘the number of Z’ can be modified accordingly: 

The number of Z(βv) =df λX(αv)[Equinumerous((αv)(βv))v(X(αv), Z(βv))] 

This λ-abstract expresses the property of sets of the same type as Z(βv), of being equinumerous 

with Z(βv), and designates the corresponding characteristic function of the set of sets that are 

equinumerous with Z(βv). 
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The natural numbers 0, 1, 2 etc. are properties of sets of type (ev), and thus of type (ev)v. 

One can amend Frege’s definitions accordingly, first by defining the empty set: 

the empty set(ev) =df λxe: xe ≠ xe 

Then by defining ‘0’ as: 

0((ev)v) =df the number of the empty set  

=df λX(ev)[Equinumerous((ev)(ev))v(X(ev), W(ev))], where W(ev) = the empty set  

Since ‘0’ is of type (ev)v, and the successor function maps each number to its successor, it will 

be a function of type ((ev)v)((ev)v) from functions to functions. The following definition ensures 

that the successor of m is the number of a set X iff X contains exactly one more individual than 

the set of which m is the number:161 

S((ev)v)((ev)v)m(ev)v =df λm(ev)v λX(ev)∃xe[X(ev)xe /\ m(ev)v(λae [X(ev)ae /\ ae ≠ xe])] 

Glossing the above definitions, I now have: 

0 = the number of the empty set,  

S0 = the number of a set that contains exactly one more individual than the empty set,  

SS0 = the number of a set that contains exactly one more individual than a set that 

contains exactly one more individual than the empty set.... 

The semantic values respectively expressed and designated by the above λ-abstracts form a 

progression satisfying the axioms of arithmetic, so long as it is assumed that there exist infinitely 

many individuals. Of course one must say exactly how these individuals are ordered. So, 

following Andrews, I will accept the following axiom of infinity:  

Infinityorder: There is a strict partial ordering r of the individuals with respect to which 

there is no maximal element. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
161 See Andrews (ibid: 203). 
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In the context of STT, an ordering is regarded as a function r from pairs of individuals to truth-

values, and is thus of type (ee)v. A strict partial ordering is irreflexive (~rxx), transitive ((rxy /\ 

ryz) " rxz) and so asymmetric (~ (rxy /\ ryx)). So we have: 

Infinityorder: ∃r(ee)v ∀xeye ze  ∃we [r(ee)vxewe /\ ~ r(ee)vxexe /\  

((r(ee)vxeye /\"r(ee)vyeze) " r(ee)vxeze)] 

There is no requirement of trichotomy: for all individuals x and y either rxy, or x = y, or ryx. 

This is to say that there may be individuals for which none of the requirements of trichotomy 

hold, just as there may be humans who are not related by ancestry. Call such individuals 

“incomparable,” and call individuals u and v “comparable” iff ruv, or rvu. In the light of this, 

Infinityorder can be rephrased slightly more intuitively, as follows: there is a strict partial ordering 

of the individuals, with respect to which there is no individual that comes after everything with 

which it is comparable, where there is no assumption that every individual is comparable. (That 

there is no such assumption is important, so I will return to it in section 9.) 

The axiom of infinity is needed in the context of STT to prove that numbers with the 

same successors are the same:162 

∀m(ev)vn(ev)v [S((ev)v(ev)v)m(ev)v = S((ev)v(ev)v)n(ev)v " m(ev)v = n(ev)v]  

Proving this axiom requires proving that for every number, if a set X has that number, then there 

is an individual not in X: 

∀m(ev)v [m(ev)vX(ev) " (∃we ~ X(ev)we)] 

This in turn is proven from the claim that every number has the following property: if X is a set 

of that number, then there is an individual that does not come before anything in X: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
162Andrews (ibid: 207-9). 
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λm(ev)v!∀X(ev) [m(ev)vX(ev) " ∃ze ∀we (X(ev)we " ~ r(ee)vzewe)] 

The axiom of infinity ensures that there is always such an individual, since it ensures that there is 

no individual that comes after everything with which it is comparable. 

 Recalling the discussion of Hilbert’s hotel from chapter 3, another candidate to be the 

axiom of infinity is: 

Infinityset: There is a set of individuals that is equinumerous with a proper subset of 

itself. 

∃X(ev)Y(ev) [∀xe [Y(ev)xe ""X(ev)xe] /\ ∃ye[X(ev)ye /\ ~ Y(ev)ye] /\ 

Equinumerous((ev)(ev))v(X(ev), Y(ev))] 

I will discuss the philosophical ramifications of accepting the axiom of infinity in section 9. 

 It remains to imitate Frege’s strategy of defining ‘natural number’, without using 

‘reached from 0 by finitely many iterations of S’, in such a way that a version of mathematical 

induction is true of the natural numbers. One option is to begin with properties of type ((ev)v)v of 

entities of type (ev)v. Then I can define the property of properties of type ((ev)v)v of being closed 

under S, where for a property of type ((ev)v)v to be closed under S is for it to apply to the 

successor of any entity it applies to: 

Cl(((ev)v)v)vX((ev)v)v =df λX((ev)v)v∀m(ev)v[X((ev)v)vm(ev)v " X((ev)v)vS((ev)v)((ev)v)m(ev)v] 

This maps X((ev)v)v to truth if X((ev)v)v is closed under S((ev)v)((ev)v), and to falsity otherwise. Then I 

can define ‘natural number’ as expressing the property of having every property of type ((ev)v)v 

that 0 has and that is closed under S: 

Natural Number((ev)v)vm(ev)v =df  λm(ev)v!∀X((ev)v)v![(X((ev)v)v0(ev)v /\  

Cl(((ev)v)v)vX((ev)v)v) " X((ev)v)vm(ev)v]!
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These last two definitions can be more perspicuously stated by eliding the type ‘(ev)v’ of ‘m’ and 

using ‘Ψ’ for properties of type ((ev)v)v of entities of type (ev)v: 

Cl(Ψ) =df λΨ ∀m[Ψ(m) " Ψ(Sm)] 

Then ‘natural number’ can be said to express the property of having every third-level property 

Ψ that 0 has and that is closed under S: 

Natural Number(m) =df  λm!∀Ψ[Ψ(0) /\ Cl(Ψ) " Ψ(m)] 

 Another option is to define a function that maps pairs of entities of type (ev)v to truth just 

in case one can be reached from the other by finitely many iterations, by introducing 

‘<((ev)v)((ev)v)v’ and defining it as follows:  

<((ev)v)((ev)v)v l(ev)v m(ev)v  

≡df λl(ev)v λm(ev)v ∀X((ev)v)v [X((ev)v)vl(ev)v /\!∀k(ev)v [X((ev)v)vk(ev)v " 

X((ev)v)vS((ev)v)((ev)v)k(ev)v] " X((ev)v)vm(ev)v] 

≡df  λl λm!∀Ψ [Ψ(l ) /\!∀k [Ψ(k) " Ψ(Sk)] " Ψ(m)] 

This reflects Frege’s idea that m can be reached from l by finitely many iterations iff m has every 

property that l has and that all of l’s successors have. Then ‘natural number’ can be defined as 

follows: 

Natural Number((ev)v)vm(ev)v ≡df  <((ev)v)((ev)v)v 0(ev)vm(ev)v 

Using these definitions, Andrews shows that the Dedekind-Peano axioms can be derived from 

the axioms of STT and the axiom of infinity. 

 Next I will argue for the philosophical significance of this derivation, by rehearsing the 

points in favor of the above definitions, and in favor of the basic proposal which they implement: 
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that numbers are properties of sets of entities of a certain kind. Then I will return to the axioms 

of STT and the axiom of infinity. 

 
8. Assessing the above definitions 

 The first point in favor of the above system of definitions is that it arguably solves the 

Julius Caesar problem. To see this, recall from chapter 2 that in Salmon’s view, the Caesar 

problem is not to provide a criterion of identity and individuation for numbers sufficient to 

distinguish a given number from Julius Caesar; rather, it is a problem about improper definitions. 

If Salmon is correct about this, then the problem is now solved, since the above is a proper 

system of definitions which, together with the facts about Caesar, determine that ‘Natural 

Number(Caesar)’ is false.163 Moreover, it is also worth noting that the present proposal provides 

me with a sort of insurance policy. For even if the Caesar problem is to provide a criterion of 

identity and individuation for numbers sufficient to distinguish a given number from Julius 

Caesar, the basic idea behind the definitions can still help. This is because the basic idea is that 

numbers are properties, which are necessary existents, whereas Julius Caesar is not a necessary 

existent.164 However, since I have invoked characteristic functions to turn this basic idea into a 

proper system of definitions, it is obviously desirable that these functions also be necessary 

existents. I will say more about this in a moment. (I would add that Salmon could also take out 

my insurance policy (although I suspect that he feels safe without it), since numbers are also 

properties on the view he favors (see section 8).) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
163 Salmon himself proposes a system of definitions on behalf of Frege that solve the Caesar 
problem so understood. See Salmon (forthcoming). I have appropriated his strategy for 
developing such a system of definitions, although not the definitions themselves. 
164 This happy consequence of identifying numbers with necessary existents is noted by Parsons 
(1965).  
!!
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 The next point in favor of the present proposal is that since it is a modification of Frege’s, 

it enjoys many of the features that make his proposal so faithful to ordinary usage (see chapter 

2). In particular, it can explain why arithmetic shares some of the generality of logic. It is 

because numbers are properties of sets, which on the present proposal are functions, and almost 

anything can be collected into a set or taken as the argument of a function (modulo the 

considerations about count nouns discussed in the sections 2 - 4). The present proposal also 

preserves the thought that the successor of m is the number of a set containing exactly one more 

thing than the set of which m is the number. Further, it also respects a version of the Hume-

Cantor principle (see chapter 2, section 6): the property of being equinumerous with X is the 

property of being equinumerous with Z iff X and Z can be put in one-to-one correspondence. 

Furthermore, according to the above definition, 0 does not have “second-rate” status as a pseudo-

number, but is the property of being equinumerous with the empty set. There is of course the 

worry that, like Frege’s proposal, the present one focuses exclusively on the cardinal aspect of 

numbers while neglecting their ordering. However, this is mitigated by the fact that the semantic 

values of the above λ-abstracts form a numerical progression. 

 I now turn to what I consider to be another very attractive feature that the present 

proposal inherits from Frege’s. The proposal provides an account of how we can, in principle, 

deduce concepts of cardinal numbers, which can then be used in counting, from an understanding 

of count nouns and of one-to-one correspondence. Further, as we will see, this account dovetails 

nicely with an attractive view of how we grasp numbers intuitively in practice. As a result of all 

this, the proposal provides the requisite account of how it is possible to grasp numbers prior to 

using them in counting, which I argue is missing from Burge’s story (see chapter 1, section 13). 

The proposal also provides an answer to the question of what it is that infants don’t understand, 
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when they count transitively with numerals without understanding the cardinal significance of 

what they have done (again see chapter 1, section 13, and most recently chapter 4, section 11). I 

will now elaborate on these claims. 

 As regards how we can grasp cardinal numbers prior to counting, the claim is that 

because we can understand count nouns (‘F’, ‘G’ etc.), understand what it is to one-to-one 

correspond the members of their corresponding sets (X, Z etc.), and can reason with higher-order 

logic, we understand of sentences of the form ‘Equinumerous(X, Z)’. Further, using the resources 

of higher-order logic, in particular the aforementioned comprehension scheme  

∀yα[λxα [Ψβ] = Ψβ] 

we can, in principle, deduce the content of ‘the number of Z’ from the content of sentences of the 

form ‘Equinumerous(X, Z)’, by abstracting the complex property expressed by 

‘λX[Equinumerous(X, Z)]’ from the sentence ‘Equinumerous(X, Z)’. Furthermore, we can 

abstract particular cardinal numbers in a similar fashion, because we can abstract the complex 

properties 0, S0 etc., by the method indicated in the above system of definitions. Moreover, even 

without assuming an axiom of infinity (more of which in the next section), these numbers form 

an initial part of a progression that can be used in counting. In my view, while it is through 

counting that we are first taught about cardinal numbers, some of them are already in principle 

accessible to us, by the deductive route just described, without counting via some finite intuitive 

process that terminates, and without an axiom of infinity. Less prosaically, they are already 

accessible to us through reflection.  

 However, recalling the distinction between the contexts of discovery and justification 

(see chapter 2, section 2), I am not claiming that the folk actually come to grasp numbers through 

this sort of reflection. Rather, I conjecture that numbers are first grasped intuitively, by 
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visualizing the accumulation of discrete units in a direction (see chapter 1, end of section 14), 

which is a structurally revelatory representation of the progression described in the previous 

section (see also Kripke’s remarks quoted in chapter 4 section 8): 

0 = the number of the empty set,  

S0 = the number of a set that contains exactly one more individual than the empty set,  

SS0 = the number of a set that contains exactly one more individual than a set that 

contains exactly one more individual than the empty set.... 

In sum, according to the present view, numbers are accessible to us in principle by reflection, 

and in practice by visual intuition, even before we are taught to recite decimal numerals in order 

and use them in counting.  

 Now I turn to the question of what it is that infants don’t understand, when they count 

transitively with numerals without understanding the cardinal significance of what they have 

done. In my view, while these infants can establish a one-to-one correspondence between 

numerals and objects, their competence understanding does not extend to understanding the 

conceptual connection between counting, equinumerosity and cardinal numbers, and in particular 

does not extend to understanding that the last numeral of the transitive count —with which they 

answer “how many”— expresses an equinumerosity property of sets. This is why, when 

instructed, after counting, to ‘Give me m F’s’ —where m is the last numeral used in the transitive 

count— they give the experimenter a random number of F’s. Were they to understand that ‘m’ 

expresses the relevant equinumerosity property, and that the set they have counted thereby has 

that property, then they would be able to give the experimenter the requisite number of F’s. Here 

I should note that this solution only depends on ‘m’ expressing the relevant equinumerosity 

property, and does not depend on the property being a certain characteristic function.  
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 In any case, I take the availability of this solution to be a significant advantage that 

proposals in the Frege-Russell tradition enjoy over the set-theoretic proposals due to Zermelo 

and von Neumann that were discussed in the previous chapter. To take the case of Zermelo, 

suppose that the child knows both that ‘m’ designates the set of all iterations of the unit-set 

operation she performs, and that the set of F’s is one-to-one correlated with the set of all these 

iterations. This does not suffice for the child to be able to give the experimenter the requisite 

number of F’s. What she also needs to know is that ‘m’ expresses (or designates) the property of 

being equinumerous with the set of all iterations of the unit-set operation she performs, and that 

the set of F’s has this property. But this is to make the Zermelodic proposal a special case of 

Frege-Russell. (The point can also be stated in terms of von Neumann’s proposal.) 

 The present proposal also provides a response to Frege’s arguments that numbers are 

objects rather than properties. These arguments, it will be recalled, are that numbers are 

designated with definite descriptions like ‘the number 1’, as well as in arithmetical statements 

like ‘2 is prime’ and ‘1 + 1 = 2’ (1884: §57). Further, Frege argues, numbers are objects because 

they can be counted; for if one can count numbers, then one can also designate them with 

complete expressions; but in that case one treats numbers as objects, since by Frege’s lights 

anything that one can designate with a complete expression is an object.  

 The response is that on the present approach there is a clear account of how properties 

can have both an attributive role and a role as referent or designatum. To give this account we 

have to recognize a corresponding grammatical distinction, between unsaturated functional 

expressions and saturated λ-abstracts. For while unsaturated expressions such as ‘x is a horse’ 

and ‘λx[x is a horse]y’ apply to their arguments and express properties that are true of 

individuals, saturated λ-abstracts such as ‘λx[x is a horse]’ thereby designate functions, without 
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missing their target by designating the corresponding objects instead.165 λ-abstraction can thus 

explain how numbers are designated in arithmetical statements like ‘2 is prime’ and with definite 

descriptions like ‘the number 1’. For the numerals ‘1’, ‘2’ etc. are synonymous with ‘S0’ ‘SS0’ 

etc., and according to my system of definitions these in turn are synonymous with saturated λ-

abstracts designating functions. Furthermore, since there is no need to say that these expressions 

designate objects, there is no need to introduce extensions or courses of values, governed by the 

inconsistent Basic Law V (see chapter 2, section 8). Rather, one can work within STT with 

functions that need not be regarded as extensions or sets.  

 The proposal can also help with one of the most serious objections leveled against Frege: 

that numbers as Frege defines them are non-well founded (see chapter 2, section 7). Adjusted 

slightly to fit the present context, the first objection runs as follows. Supposing that 3 is a root of 

an equation E, then 3 is a member of the set of roots of E. Further, since numbers can be counted, 

we may suppose that the number of roots of equation E is 3. By this supposition and by 

definition, the set of roots of E is a member of 3, since 3 is by definition the characteristic 

function of the set of sets that are equinumerous with a class that contains exactly 3 things. But 

then the class corresponding to this characteristic function is non-well-founded: one can have 

two classes x and y such that x is included in y and y is included in x. Happily however, this 

objection does not apply in the context of STT, since 3 is a property of sets of type (ev)v, 

whereas being a root of E is a property of properties of sets of type ((ev)v)v. Clearly then, 3 

cannot take the set of roots of E as argument, since it is of a lower type. Of course the point can 

also be put set-theoretically, if we choose to speak that way, by saying that the set of roots of E 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
165 See Church (ibid), which receives endorsement in work by his students: see Kaplan (2005), 
Burge (2005: 21). 
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cannot be included in 3. But in STT we get this result while sticking more closely to Frege’s 

analysis. 

 Answering the modal objection is harder. This is because while my basic proposal is that 

numerals are properties that are invariant from world to world, I have also claimed that numerals 

designate characteristic functions, in order to turn my basic proposal into a proper system of 

definitions. Further, while these functions need not be regarded as sets, they still appear to be 

subject to the modal objection. To see why, it will be helpful to introduce the notion of the graph 

of a function f, which Frege calls a “course of values” or “value-range” (1893: vii). To identify a 

function with its graph is the usual way of identifying a function in mathematics, extensionally 

speaking. The graph of f is the set of all and only those ordered pairs whose first members are 

arguments from f’s domain, and whose second members are the corresponding values from f’s 

range. In the case of the characteristic function that, on the present proposal, is the number 1, its 

graph will be the set of ordered pairs whose first member is a set and whose second member is 

one of the two truth-values. This will lead us into modal trouble, because graphs contain sets, 

which may in turn contain contingently existing objects. With this in mind, consider the 

following adjusted version of the modal objection: 

(1) Sets are individuated by their members. 

(2) Sets contain the same members in every possible world in which they exist. (By 1.) 

(3) Sets do not contain non-existent objects.  

(4) Actual sets only exist in other possible worlds in which all of their actual members also 

exist (By, 2, 3.) 

(5) There is a possible world w in which Richard Carpenter does not exist.  

(6) The actual set of surviving members of the Carpenters does not exist in w. (By 4, 5.) 
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(7) The set (which I will refer to as ‘Y’) that actually contains all and only those sets that are 

equinumerous with a set containing exactly one member, contains the actual set of 

surviving members of the Carpenters. 

(8) The actual graph of the characteristic function of Y does not exist in w. (By 4, 6, 7, 

identity conditions for graphs.) 

(9) The number 1 exists in w. (Assumption.) 

(10) In w, the number 1 is not identical with the actual graph of the characteristic function of Y 

(By 8, 9.) 

In order to avoid the excessively implausible conclusion that different entities are identical with 

1 in different possible worlds, one might be tempted to insist that functions are intensional 

entities —such as instruction or rules— that exist apart from their graphs. For then one could 

accept (10) while also saying that in w, the number 1 is identical with the characteristic function 

of Y. However, there is good reason to think that identifying functions with intensional entities 

would lead to paradox.166 As things stand then, my system of definitions is consistent in part 

because it is extensional. So it still remains to develop my proposal into a system of definitions 

in a way that answers the modal objection. 

 
9. Are the axioms of STT primitive truths? 

If arithmetic were analytic (by Frege’s lights), then its axioms would be derivable from 

the laws of logic together with what is expressed by the definitions of the arithmetical primitives, 

without appeal to intuition or any other non-logical source of knowledge. But the axiom of 

infinity is not a logical truth. This raises the question of what non-logical source of knowledge 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
166 That is, it appears to lead to a version of the intensional paradox described in Appendix B of 
Russell (1903). This can be avoided using the apparatus of Russell (1910), but this leads to other 
serious problems.   
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justifies the assumption that there exist infinitely many individuals. After all, the assumption is 

not obviously self-evident. Why then should we accept it as a primitive truth? One could of 

course argue for the axiom based on its fruitfulness i.e. from the theorems that follow from it. 

But why is this not just wishful thinking? 

The first reason is that the axiom is justified by the method of reflective equilibrium. To 

see this we should recall Frege’s observation that any set can be numbered, so long as its 

members can be put into one-to-one correspondence with a segment of the numbers. By 

accepting an axiom of infinity we extend Frege’s observation, since by Cantor’s denumerability 

results this observation applies not only to discrete collections of objects of a given kind, but also 

to subsets of real numbers. (See the discussion of HP in chapter 3, section 2.) Crucially, this 

theory can be bought into accord with our intuitive judgments somewhat, since it is an extension 

of Frege’s intuitively plausible observation, which already shows that in practice we are counting 

relatively small sets with only an initial segment of a much larger progression of numbers.  

Here I have to mention a suggestive but to my mind inconclusive argument due to 

Thomas Nagel, who offers considerations related to those just given in the above paragraph, as 

part of an argument that we must somehow rationally grasp the axiom of infinity in order to 

explain how we discover and make sense of the evident fact that every number has a successor: 

To get that idea [that every number has a successor], we need to be operating with the 

concept of numbers as the sizes of sets which can have anything whatever as their 

elements. What we understand then, is that the numbers we use to count things in 

everyday life are merely the first part of a series that never ends (1997: 71). 

I take Nagel’s idea to be that “anything whatever” encompasses infinitely many objects of any 

kind, for this would ensure that the numbers we use in everyday life are the first part of an 
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unending series. However, Nagel does not appeal the method of reflective equilibrium to justify 

the axiom of infinity. Rather, he simply claims that the axiom’s truth must be assumed if we are 

to even make sense of the practice of counting: 

When we think about the finite activity of counting, we come to realize that it can 

only be understood as part of something infinite. The idea of reducing the apparently 

infinite to the finite is therefore ruled out: Instead the apparently finite must be 

explained in terms of the infinite (ibid). 

Perhaps then it is Nagel’s view that the axiom of infinity is self-evident to a sufficiently 

reflective person, albeit not obviously so. In any case, I suspect that I am not alone in finding 

Nagel’s claim that we must realize that the axiom of infinity is true to even make sense of our 

practice of counting rather dogmatic. So I feel obliged to augment this account with a 

justification for the axiom by reflective equilibrium. 

Another argument for the axiom of infinity is the argument from fruitfulness: that one 

should accept as primitive axioms that are not self-evident, if doing so allows one to discover the 

correct analysis of arithmetic (what we would call “the right modeling”). That is, one should 

accept axioms if doing so allows us, for the first time, to derive correspondents of the axioms of 

arithmetic which preserve the thoughts expressed by the latter axioms, in virtue of fully 

analyzing terms like ‘number’ and ‘predecessor’. (See chapter 2 section 4, and chapter 3 section 

7.) Of course this argument is hostage to the accuracy of the proposed definitions. As such, it 

draws support from the considerations offered in section 8 of this chapter. In this respect, the 

proposal can be contrasted favorably with Heck’s proposal to derive the axioms of arithmetic 

from those of Frege Arithmetic (including HP) using predicative comprehension, which, it will 

be recalled, requires taking ‘the number of F’s’ and ‘P(m, n)’ as primitive.  
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 The proposal can also be contrasted favorably with Giaquinto’s proposal about our 

intuitive grasp of the number structure. His proposal is that we grasp the numbers as discrete 

points on an endless line, taken in their left-to-right order of precedence, and thus grasp a strict 

linear ordering with no greatest element, which is also a well-ordering. (See chapter 1, section 

14). The reason that the contrast is favorable is that although Giaquinto and I both assume an 

axiom of infinity, he does so in the service of what I argue is an uninformative theory, while I do 

so in the service of an informative analysis. Further, I only assume that there is a strict partial 

ordering with no maximal element, and so assume something with significantly less structure 

than the numbers.  

 Next I turn to the comprehension axioms of STT (introduced in section 6 of this chapter). 

Here it will be helpful to recap a little bit. When discussing Frege’s Theorem (in chapter 3, 

section 6) I was prompted to ask after the possible values of the second-order variables, in the 

impredicative comprehension axioms for second-order logic, which are instances of:  

∃P"∀x1…xn [Px1…xn ↔"Φ(x1…xn)] 

I argued that if the second-order variables are thought of under a classical extensional 

interpretation, as ranging over all subsets of the domain, then one should use plural logic to 

understand what their values are. I was then lead to ask after the values of the plural variables in 

axioms of plural comprehension: 

∃xx ∀u1…un (u1…un ≺ xx ↔ Φu1…un)! !

My answer was that plural variables range over all pluralities, where a plurality is many things, 

not one collection. This raised the question of what is required to understand the concept of all 

pluralities, to which I answered: an understanding of the concept of combinations of 

individuals. Further, I claimed, this concept is not logical but combinatorial, in the sense of 
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concerning unordered arrangements of objects. Thus I argued that plural logic, and second-order 

logic under its classical extensional interpretation, both assume non-logical content in their 

comprehension axioms. 

 This argument does not apply to the comprehension axioms for λ-abstraction, in the 

context of STT. Recall that these are instances of a scheme stating that an expression Ψβ of any 

type β defines a complex function of type (αβ):  

∃u(αβ) ∀yα1…yαn [u(αβ) yα1…yαn = Ψβ] 

The reason that the above argument does not apply is that in STT one does not think of higher 

order variables under their classical extensional interpretation, as ranging over all subsets of a 

domain, but as ranging over functions of a given type. Thus second and higher-order logic have a 

greater claim to logicality when they are thought of in this way, as opposed to in terms of their 

classical extensional interpretation. 
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Table 1: 
!

!
 
 
 
 
 

Decimal Base*26 Conversion

0 z

1 a

2 b

3 c

4 d

5 e

6 f

7 g

8 h

9 i

10 j

11 k

…..

25 y

26 az 1E*E(26EtoEtheE1stEpower)E+E0E=E26

27 aa 1E*E(26EtoEtheE1stEpower)E+E1E=E27

28 ab 1E*E(26EtoEtheE1stEpower)E+E2E=E28

29 ac 1E*E(26EtoEtheE1stEpower)E+E3E=E29

30 ad 1E*E(26EtoEtheE1stEpower)E+E4E=E30

…..

51 ay 1E*E(26EtoEtheE1stEpower)E+E25E=E51

52 bz 2E*E(26EtoEtheE1stEpower)E+E0E=E52

53 ba 2E*E(26EtoEtheE1stEpower)E+E1E=E53

54 bb 2E*E(26EtoEtheE1stEpower)E+E2E=E54

….

77 by 2E*E(26EtoEtheE1stEpower)E+E25E=E77

78 cz 3E*E(26EtoEtheE1stEpower)E+E0E=E78

79 ca 3E*E(26EtoEtheE1stEpower)E+E1E=E79

….

103 cy 3E*E(26EtoEtheE1stEpower)E+E25E=E103

104 dz 4E*E(26EtoEtheE1stEpower)E+E0E=E104

105 da 4E*E(26EtoEtheE1stEpower)E+E1E=E105

….

649 xy 24E*E(26EtoEtheE1stEpower)E+E25E=E649

650 yz 25E*E(26EtoEtheE1stEpower)E+E0E=E650

651 ya 25E*E(26EtoEtheE1stEpower)E+E1E=E651

….

675 yy 25E*E(26EtoEtheE1stEpower)E+E25E=E675

676 azz 1E*E(26EtoEtheE2ndEpower)E+E0E+E0E=E676

677 aza 1E*E(26EtoEtheE2ndEpower)E+E0E+E1E=E677

….

701 azy 1E*E(26EtoEtheE2ndEpower)E+E0E+E25E=E701

702 aaz 1E*E(26EtoEtheE2ndEpower)E+E1E*E(26EtoEtheE1stEpower)E+E0E=E702

703 aaa 1E*E(26EtoEtheE2ndEpower)E+E1E*E(26EtoEtheE1stEpower)E+E1E=E703

….

308,915,776 azzzzzz 1E*E(26EtoEtheE6thEpower)E=E308915776
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