THESIS

AN ECONOMETRIC MODEL OF DETERMINANTS OF VISTOR USE ON WESTERN NATIONAL FORESTS

Submitted by

Kevin Kasberg

Department of Agricultural and Resource Economics

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2012

Master's Committee:

Advisor: John Loomis

Stephen Koontz Peter Newman

ABSTRACT

AN ECONOMETRIC MODEL OF DETERMINANTS OF VISITOR USE ON WESTERN NATIONAL FORESTS

The accuracy of visitor use data from the National Visitor Use Monitoring Program (NVUM) allows for testing the relationship between public land visitation and individual site characteristics and facilities. In an attempt to predict visitation on both BLM and USFS lands, forty National Forests in the Western US were chosen for their spatial and landscape resemblance to BLM lands. Using multiple regressions, facility and landscape characteristics have a statistically significant relationship with the four recreation types in NVUM data: Day use developed sites (DUDS), Overnight use developed sites (OUDS), General Forest Area (GFA), and Wilderness. Mean absolute percentage error (MAPE) of prediction calculated using ten out of sample National Forests for Wilderness was lowest at 69%, with OUDS, DUDS and GFA higher at 93%, 103% and 115% respectively. As an alternative method to estimate the predictive power, stepwise procedures were applied to all forty observations. These resulting models were used to construct a spreadsheet calculator that provides an annual visitation prediction for a USFS or BLM land.

ACKNOWLEDGEMENTS

This thesis is not complete without recognition to John Loomis and Stephen Koontz. John has been a great mentor and I am thankful for the opportunity to work with him. Dr. Koontz allowed me to develop an econometric toolbox that brings confidence and value. They have both played a crucial role in the skills and knowledge that I will take away from Colorado State University. Thanks to Lynne Koontz for ensuring that I produce a quality product in a timely manner. Throughout the Master's program and this thesis, they have all provided guidance that I am thankful for.

I have much appreciation to those that provided data and support throughout this project. Thanks to Peter Newman for participating in this thesis. Mike Hadley and Carol Tolbert of the USFS were helpful in providing GIS layers unavailable online. Thanks to the BLM and those involved with this project- Rob Winthrop and Dave Baker. Thanks to Don English and the USFS for the National Visitor Use Monitoring data and the societal benefits that have and will come from it. Thanks to those concerned with economics and public lands management for their knowledge that all of us new to field can use and build on.

Without my parents I would be absent of the academic achievements and knowledge I have today. Thank you for the support and love I have received and will receive for a lifetime.

iii

Abstractii
Acknowledgementsiii
List of Figures vi
Introduction1
1. Visitor Use Estimation Model
1.1 Theory7
1.2 Data
1.3 Econometric Model 15
2. Out of sample Estimation
2.1 Prediction Models
2.2 Stepwise Procedures
3. Spreadsheet calculator
4. Discussion and Conclusion
Refernces
Appendix A: Variables
Appendix B: Candidate Models
Appendix C: Stepwise Procedures

TABLE OF CONTENTS

LIST OF TABLES

Table 1: Independent Variables Considered for all Models 11
Table 2: Other Potential Explanatory Variables not measured
Table 3: Out of Sample National Forests
Table 4: Initial DUDS Model 16
Table 5: Initial OUDS Model 16
Table 6: Initial GFA Model 17
Table 7: Initial Wilderness Model 17
Table 8: Performance of Initial Candidate Models
Table 9: Stepwise DUDS Model 21
Table 10: Stepwise OUDS Model 22
Table 16: Stepwise GFA Model 22
Table 17: Stepwise Wilderness Model 23

LIST OF FIGURES

Figure 1. Map of National Forests in Study	10
Figure 2. Characteristic Measurement Demonstration	12

INTRODUCTION

Federal agencies benefit from accurate visitation data through funding, budget allocation, and illustrating their contribution to local economies. Difficultly in measuring visitor use on public lands stems from resource constraints or the dispersed nature of recreation activities. Entrance stations at National Parks allow the National Park Service to most accurately measure visitation. Contrarily, Bureau of Land Management (BLM) lands are almost entirely comprised of unmonitored access locations and have limited resources to adopt a similar program to monitor visitation. The high cost of a comprehensive field monitoring program on visitation leaves the BLM to explore other methods that could estimate visitation and recreation use on their lands.

Both the United States Forest Service (USFS) and BLM lands are characterized by unmonitored access points and dispersed recreation. The difficulty in acquiring accurate visitor use data for these agencies led to the creation of the National Visitor Use Monitoring Program (NVUM) that combines on site sampling and novel statistics to produce annual visitation estimates on USFS lands. Through refinement and years of consistency, NVUM data is capable of use outside of reports. Confidence and accuracy of data on dispersed recreation opens the door to transferring this information to other lands, such as BLM, which could benefit from avoiding a comprehensive (expensive) program.

Public land planning requires sound estimates of visitor days to estimate the economic impacts across various management plans (BLM Land Use Planning Handbook, 2005). Though it is difficult for the BLM to record accurate visitor use due to the lack of staffed entrance stations, the BLM does place importance on recording accurate visitor use data, as stated in the BLM's *Priorities for Recreation and Visitor Services* (2007), also known as the Purple book.

The Purple book outlines the BLM's management direction and planning programs and obligates management to consider social and economic benefits from public lands. The first objective is to manage public lands and waters for enhanced recreation experiences and quality of life. One milestone in accomplishing this objective is to improve the accuracy and consistency of BLM's visitor use data.

The Bureau of Land Management's *A Unified Strategy to Implement "BLM's Priorities for Recreation and Visitor Services (Purple Book)" (2007)* is the framework and delivery plan of the primary objectives of the Purple Book through Benefits-based Management (BBM). BBM is a hierarchical process to evaluate management plans and the resulting benefits. The goal is to provide the settings that produce quality recreational experiences along with environmental and economic benefits. One of the main differences between BBM and previous methodologies is the incorporation of the communities and private sector in the planning process. The broader identification of stakeholders in management allows the BLM to not be the sole provider of recreation opportunity. Benefits Based Management (BBM) depends on reliable estimates of visitor use.

Acquiring accurate visitor use information is increasingly important with the expansion of protected lands managed by the BLM. Now included in the debate over public land preservation are lands in the National Landscape Conservation System (NLCS) and Areas of Critical Environmental Concern (ACEC). NLCS land managed by the BLM is comprised of 37 National Monuments and National Conservation Areas (NCA), 545 Wilderness Study Areas (WSA), and 8,000 miles of Wild and Scenic Rivers or National Historic Trails (DOI, 2010). With the 223 BLM managed Wilderness areas, the cumulative amount of land with use regulation is over 27 million acres (DOI, 2011). Designations such as ACEC, WSA, and

National Monument have gained momentum in recent years due to lacking requirement for congressional approval. Monitoring use on these land designations is important from a management stand point and could reveal how use differs from a wilderness designation.

The growth in public concern for stewardship of wilderness areas comes in part from the awareness of use and non-use values wilderness provides. *The National Survey on Recreation and the Environment (NSRE)* found that protecting ecological and existence (non-use) values may be more important to Americans than recreation use values (Cordell, Tarrant, Green, 2003; Cordell, Tarrant, McDonald, Bergstrom, 1998). Loomis (2000) estimates the non- use values of wilderness areas in the western US to be roughly seven billion dollars per year. NVUM data was used to find use values of wilderness areas to be between four and ten billion per year (Bowker, et al, 2009). Loomis notes the lack of detailed information on wilderness visitation on BLM lands with reported zero visitation on thousands of acres. Severe underestimation and uncertainty of current use makes it difficult to objectively discuss the role of existing or additional wilderness designations and collecting visitor use information should be a top priority in future research. Increased accuracy of visitation would improve estimation of these economic values from wilderness areas.

1. VISITOR USE ESTIMATION MODEL

NVUM cyclically samples each USFS site and has been applied to three BLM sites. An estimation model could reveal the relationship with site characteristics. Existing recreation demand literature directs this study to build a model around the relationship between site characteristics and visitor use. Testing the predictive power of characteristics using omitted national forests will also provide the confidence intervals around estimates. Accuracy of the USFS model will determine if transferring to BLM sites is efficient.

USFS National Visitor Use Monitoring (NVUM)

The motivation behind NVUM was to implement a consistent method to collect visitor use data with statistical accuracy. It does not report information on visitor use and demography for specific locations within a forest. Sampling methods entail identifying all points of interest and access of the national forest and constructing a calendar year of expected use for each one. Four classes of use ascribed to each site for each day are: High, Medium, Low, and Zero/Closed. Visitor use at selected proxy sites throughout the year provides the data which will be generalize to all sites. Sampling efforts at the proxy sites also includes surveying to gather demographic and trip expenditure information (English, et al., 2001).

NVUM began sampling USFS lands in the 2000. Of the 120 NF's, 1/5 are sampled each year. Therefore, all National Forests will be sampled within a five year cycle. A goal of NVUM is to estimate visitor use +/- twenty percent of total visits in a ninety percent confidence interval (USDA, Forest Service, 2006). The annual budget is about two and a half million for collection, personnel, and equipment. Per year field data collection is 5500 days, which is estimated to be one half of a percent of total visitor days nationally. Field sampling entails traffic counters, staffing at entrances/exits and fee envelope counting all which have interviewing visitors

(English presentation). Annual visitor use between 2005 and 2009 on national forest lands was estimated to be 173 million (National Summary Report).

The use of NVUM data in visitation estimation models is few and far between. Most analysis of the data has been focused on demographic characteristics of visitors, visitor expenditures, and satisfaction. Relevant analysis done by land managers using NVUM data has been on national forest recreation's impact on local economies and trail or campground closure impacts on visitation. Bowker et al 2005 used NVUM data in a benefit transfer study to estimate consumer surplus from recreation on national forest lands. Secondary information on average willingness to pay, or benefits, for each type of recreation activity (fishing, biking, rafting, etc.) was aggregated from distributions of activities reported by NVUM for each national forest. Relation of site characteristics and facilities with NVUM data has not been estimated (English Presentation).

The Bureau of Land Management

The BLM is the only Interior agency with traditional and new recreation activities that are not permitted on other public lands. Quantifying users on BLM lands is difficult due to the dispersed nature of the types of recreation taking place. The BLM's current method to estimate visitation has the ability to improve with increases in accuracy (Corey, 2007). Aggregate annual visitation comes from three different methods. The Benefits Based Management (BBM) program elicits annual surveys to collect information on the amount of trips and visitor satisfaction. Visitation estimates from fee envelope and traffic counters are published in the annual Resource Management Information System (RMIS). Few BLM Field Offices participate in both RMIS and BBM surveys, with many that do neither. This inconsistency denies the BLM a comprehensive analysis of visitation and leaves room for a supplementary estimation model to improve accuracy.

The USFS's NVUM program was conducted on three pilot BLM Field Offices: Moab, Dolores, and Roseburg. The pilot program was successful in providing accurate visitation, visitor expenditure, demography, and satisfaction. NVUM estimates for Moab were less than existing estimates, but is taken as an improvement (USFS, 2007).Roseburg and Dolores were absent of any total Field Office estimate, making NVUM a provision of new information (Corey, 2007). These two are like many BLM Field Offices in this regard, where NVUM would bring much new information to the surface. Resource constraints limit the BLM's ability to adopt this method across all field Offices.

Wilderness estimation

The majority of wilderness areas are within National Parks and National Forests so most studies do not focus on wilderness areas in BLM or FWS lands. Before NVUM, data collection on wilderness has primarily been from backcountry permits, by David Cole's data set, or the National Survey on Recreation and the Environment (NSRE). Cole's data set covers wilderness recreation use from 1965 to 1994 and has been used in multiple studies (Cole, 1996; Loomis, Richardson 2000, Loomis, 2000). The self-reported wilderness visits collected from the NSRE telephone survey started in 1994 and continues today. NSRE data has primarily been used to analyze the demographic of wilderness users and social non-use benefits. Forecasts using this data found total wilderness visitation increasing over time, but at a rate lower than population growth (Cordell, Tarrant, Green, 2003; Cordell, Tarrant, McDonald, Bergstrom, 1998). These visitation estimates go to 2050 and used visitor demography and travel distance, but did not allow for conclusion about site specific estimates. Regional wilderness demand forecasting using

GIS has shown how demography surrounding wilderness areas are related to the amount of visitation (Bowker, et al., 2007; 2006).

The USFS publication *Wilderness Recreation Use Estimation: A Handbook of Methods and Systems* (Watson, Cole, Turner & Reynolds, 2000) outlines multiple methods of estimating wilderness use. The most recommended methods are trail counters, cameras, or on-site observers. A proposed prediction method uses observable information such as number of cars in parking lots, number of permits, or environmental conditions. Examples of these predictor variables are weather, snowpack, and holidays. Statistical relationship between predictor variables and visitation could be updated which allows for time series prediction of wilderness use.

1.1 Theory

The objective to estimate visitation on both USFS and BLM lands led to picking a sample of National Forests that are similar in landscape and location and to BLM lands. Estimating NF or BLM land visitation elasticity of site characteristics fits somewhere between recreation supply and demand literature. Independent variable selection and logged dependent variable is derived from recreation demand literature, yet this is not an attempt to estimate consumer surplus (Ziemer, Musser, Hill, 1980). Recreation Supply often derives the relationship between facilities visitation, but at smaller scales (i.e. a subsection of a national forest). Interpretation of coefficient estimates in this model will be more similar to recreation supply models. The scale of the study also falls in between the two, where recreation demand is often at the national level and supply often at the site level. Estimating the relationship between site characteristics and recreation by type across multiple sites has seldom been done.

Independent variable selection was driven by theoretical relationship to recreation by type and pulled from recreation literature, natural amenities literature, and intuition. Positive relationships between site acreage and visitation are found in peer reviewed articles (Loomis 1999; Brown, 2008). Wang (2008) used GIS to map 21 types of recreation/ nature-based tourism resources in West Virginia. Resource identification was based off of natural amenity-based rural development literature and put into five categories. The five categories of natural amenities that have relationship with recreation use were parks (National Parks, National Forests), byways/trails, resorts, water resources (lakes, rivers), and other (farmland, wetlands). After quantifying the amount (acreage) of resources in each county, the author found a statistical relationship with tourism expenditure data provided by the state tourism board. Counties with higher quantities of amenities did receive more money from tourism (when casinos were excluded from expenditure data.

1.2 Data

The forty observations (National Forests) used in this study were selected from the 120 National Forests by similarity to BLM lands. The criteria included: geographic location (western US), terrain similarity to BLM lands (NF's that have contain deserts or flatlands), and NF's that neighbor BLM lands. Therefore, only National forests in regions 1-6 of were used in this study. The four Visitor Use Recreation Types (NVUM Definitions):

 Day Use Developed Sites (DUDS): includes picnic sites, developed caves, and sometimes: fishing sites, interpretive sites, and wildlife viewing sites. Must have a high level of modification and development.

- Overnight Use Developed Sites (OUDS): Campgrounds, fire lookouts available for overnight lodging, resorts, and horse camps. Must contain amenities that provide comfort and convenience.
- General Forest Area (GFA): All dispersed recreation outside of wilderness areas (hiking, fishing, driving, etc.)
- Wilderness (Wilderness): Areas of the National Forest that are designating wilderness area in the National Wilderness Preservation System.

Independent Variables

Explanatory variables were chosen for full specification by theoretical and intuitive relationship with each type of visitor use. All models share some common explanatory variables and unique explanatory variables exist for each of the different visitor use types (Table 1). General characteristics such as location, surrounding population, and region are included in each model.

Densities measurements were included for theoretical and statistical reasons. Explanatory variables were measured by paper maps and GIS layers (data sources Appendix A2). Figure 2 shows how characteristics such as road, trail and stream miles are measured strictly within the NF boundary.

Sample Western National Forests

National Forests in Study
All Other National Forests

Region. # within Region 1.1 Beaverhead-Deerlodge National Forest 1.2 Custer National Forest 1.3 Helena National Forest 1.4 Kootenai National Forest 1.5 Lewis and Clark National Forest 2.1 Bighorn National Forest 2.2 Black Hills National Forest 2.3 Medicine Bow-Routt National Forest 2.4 Rio Grande National Forest 2.5 Pike-San Isabel National Forest 2.6 San Juan National Forest 2.7 Shoshone National Forest 3.1 Apache-Sitgreaves National Forest 3.2 Carson National Forest 3.3 Cibola National Forest 3.4 Coronado National Forest 3.5 Gila National Forest 3.6 Kaibab National Forest 3.7 Lincoln National Forest 3.8 Prescott National Forest 3.9 Tonto National Forest 4.1 Dixie National Forest 4.2 Manti-Lasal National Forest 4.3 Pavette National Forest 4.4 Salmon-Challis National Forest 4.5 Caribou-Targhee National Forest 4.6 Humboldt-Toiyabe National Forest 5.1 Invo National Forest 5.2 Klamath National Forest 5.3 Lassen National Forest 5.4 Modoc National Forest 5.5 Plumas National Forest 5.6 Shasta Trinity National Forest 6.1 Fremont-Winema National Forest 6.2 Malheur National Forest 6.3 Ochoco National Forest 6.4 Okanogan National Forests 6.5 Umatilla National Forest 6.6 Wallowa-Whitman National Forest 6.7 Colville National Forest

FIGURE 1.MAP OF NATIONAL FORESTS IN STUDY

TABLE 1: INDEPENDENT VARIABLES CONSIDERED FOR ALL MODELS					
Variable	Description	Measurement			
NFArea	Area of National Forest	Sq. Miles			
Trails, / sq mile	Sum of Trail lengths	Miles, miles/sq mile			
Lakes, / sq mile	Number of water bodies	# count, n/sq mile			
LakeArea, / sq mile	Total Area of water bodies	Sq. miles, sq mi/sq mi			
Rivers, / sq mile	Sum of River Lengths	Miles			
NP	Proximity to a National Park (within 50 miles)	Dummy Variable			
HighPointElev	Elevation of Highest Point in NF	Feet			
StateHigh	State High Point within NF	Dummy Variable			
PG, / sq mile	NF Picnic Grounds*	# count, n/sq mile			
PGElev	Average NF Picnic Ground Elevation*	Feet			
CG, / sq mi	NF campgrounds**	# count, n/sq mile			
CGLake	NF campgrounds adjacent to a water body**	# count			
CS, / sq mi	NF Campsites**	# count, n/sq mile			
CGElev	Average NF Camp Ground Elevation**	Feet			
Interstate	Proximity to an Interstate	Miles			
Roads, /sq mi	Sum of Road Lengths [‡]	Miles, miles/sq mile			
Proxcity	Proximity to nearest City;	Miles			
Popcity	Population of nearest City;	# count			
Proxmetro	Proximity to nearest Metro*	Miles			
PopMetro	Population of nearest Metro†	# count			
NFadjacent	Shares a boundary with another NF ⁺	Dummy Variable			
R1 to R6	Dummy for six USFS regions in study [†] R1: MT; R2: CO, WY; R3: AZ, NM; R4: UT, ID, NV; R5: CA; R6: OR, WA				
* included only in DUI	DS model	•			
 ‡ included only in GFA † also included in Wild 	A model derness model				

FIGURE 2. CHARACTERISTIC MEASUREMENT DEMONSTRATION

Description	Reasoning
# of trailheads that lead into Wilderness Area	Too ambiguous to capture. Some trails cross NF boundaries and enter wilderness areas from a different NF
Distance from road to wilderness area	Summation of trail distance from road to Wilderness boundary to time consuming to calculate, replicate
# of roads entering NF	GIS did not perform measurement well. If one road crosses NF boundary multiple times, double counting occurs.
Recreation opportunity spectrum (ROS) areas	Inconsistent data across NF's ROS. Could be good measurement
NF located by a Recreation County Identified by Beale, Johnson (1998).	Further consideration required for inclusion in model specification
% of campgrounds with Fees	Lack of data
Amount of dispersed camping	Lack of data
Trailhead next to campground	Lack of data
Accessibility	Difficult to measure on GIS
Public Hot Spots	Did include state high points in study, but other attractions are too subjective
Scenic Viewpoints (skyline attributes)	Lack of data
Wildlife Species Density	Lack of data
Visible water (e.g. waterfalls along trails)	Lack of data
Noise level (See Stack,2011 and Manning 2010)	Lack of data
Crowding/ Carrying Capacity (See Newman 2005, 2001)	Lack of data
Scenic byways	Too little within Sample Forests
National Grasslands as dependent	NVUM data for grasslands is not comprehensive enough to include in this analysis.
Cultural/Historic attractions	De Vries, Lankhorst, & Buijs (2007)

TABLE 2: OTHER POTENTIAL EXPLANATORY VARIABLES NOT MEASURED

Twenty five percent of the sample was removed to measure out of sample prediction

ability. Picking ten out of sample observations was based on three stratifications of decreasing

importance: balanced proportions from each region, then at least one for each frequent

metropolitan area, and closely resembling BLM lands of the area. The range of explanatory variables is limited to variables that could be obtained from USFS maps and USFS GIS Layers. Table 2 discusses variables that would be too difficult or time consuming to measure. Sample national forests were not consistent in quality or amount of accessible data. Few additional explanatory variables could have been created using a majority of the observations.

TABLE 3: OUT OF SAMPLE NATIONAL FORESTS						
Region	State		Selection Cr	iteria	National Forest	
1	MT		Near Metro	Billings	Lewis and Clark	
2	Colorado		Near Metro	Denver	Rio Grande	
2	Wyoming		Resembles E	BLM lands	Bighorn	
3	Arizona		Near Metro	Phoenix	Tonto	
3	New Mexico		Resembles E	BLM lands	Lincoln	
4	Utah		Near Metro	Salt Lake City	Manti La Sal	
4	Idaho		Near Metro	Boise	Payette	
5	California		Near Metro	Sacramento	Klamath	
5	California	California		Sacramento	Modoc	
6	Washington		Resembles BLM lands		Colville	
6	Oregon		Resembles E	BLM lands	Malheur	
In Sample National Forests						
Beaverhead	d-Deerlodge	Medicine B	ow Cibola		Payette	
Custer		Rio Grande	•	Coronado	Salmon-Challis	
Helena		Pike-San Is	abel	Gila	Caribou-Targhee	
Kootenai		San Juan		Kaibab	Humboldt-Toiyabe	
Lewis and	Clark	Shoshone		Lincoln	Inyo	
Bighorn		Apache-Sit	greaves	Prescott	Klamath	
Black Hills	5	Carson	-	Tonto	Lassen	
Fremont-W	Vinema	Okanogan		Dixie	Modoc	
Malheur		Umatilla		Manti- La Sal	Plumas	
Ochoco	oco Wallowa-Whitman		Vhitman	Coleville	Shasta Trinity	

1.3 Econometric Model

Annual cabin, lodge, and ski lift visitation numbers included in NVUM estimates were not included in sample dependent variables. Stratification of very high, high, medium, and low use was aggregated for each NF. Correlation between independent variables and degrees of freedom required testing of multiple model specifications (Tables 5-8). The criterion for each specification was the ability to best represent factors of visitation standalone. Annual visitation for each NF provided by NVUM is an estimate and includes a confidence interval. To incorporate the accuracy of measurement by using a weight in the form of $w_i = 1/(1 +$ confidence interval) makes the estimation consider observations with small confidence intervals more than observations with large confidence intervals. The size of confidence interval determines how well the characteristics of each national forest relate to its visitation. Table B 13 provides more information on the incorporation of weights.

A top-down approach for each specification led to candidate model selection. Both linear and logged dependent OLS were tried for each specification, with logged dependent fitting better in most specifications (see Appendix B Tables B1-B8). Candidate models were chosen for each type of visitor use based on statistical significance, standard error, and explanatory power ($adjR^2$) because of small sample size. Initial models with heteroskedasticity were corrected using White's robust standards errors (see Appendix B Table B9). Detection of multicollinearity did not take place because full model specifications were compiled with only low correlated variables (r<0.2).Outliers found in DUDS, OUDS, and GFA models for Difference in Betas (Tables B15-B18) were removed and new estimates are documented in Appendix B Table B14.

TABLE 4: INITIAL DUDS MODEL						
Variable	Estimate	Std Error	P-value	Elasticity		
Constant	7.9558	0.8047	0.0000**	N/A		
National Forest Area	0.0002	0.0001	0.0416**	Δ Sq miles of NF*0.02= % Δ annual vd		
Trails per sq mile	3.2078	1.1788	0.0128**	Δ trail miles*320= % Δ annual vd		
Picnic Grounds per sq mile	98.659	62.372	0.1286	$\Delta PG/sq$ mile of NF*9866= % Δ annual vd		
Region 1	1.1592	0.7091	0.117	If in Region 1=115% increase in annual vd		
Region 2	1.9721	0.9536	0.0512*	If in Region 2=197% increase in annual vd		
Region 3	2.4715	0.7423	0.0032**	If in Region 3=247% increase in annual vd		
Region 4	0.9179	0.9139	0.3267	If in Region 4=91% increase in annual vd		
Region 5	2.2658	0.8035	0.0103**	If in Region 5=226% increase in annual vd		
* Variables are significant at the 10% level. **5% level. With White's standard errors and weighted.						
R-squared 0.4734 S.E. of regression 1.0015 Prob(F-statistic) 0.0550	Adjusted F-statistic N=30	R-squared 0.2 c 2.3600	728			

Listed as (S2ln_d) in Appendix B: Table B6

TABLE 5: INITIAL OUDS MODEL					
Variable	Estimate	Std Error	P-value	Elasticity	
Constant	6.8504	0.8067	0.0000**	N/A	
Campgrounds per sq mile	131.206	42.0783	0.0054**	ΔCG / sq mile*13,120= % Δ annual vd	
Trails per sq mile	2.1607	1.1544	0.0760**	Δ trail miles/ sqmile of NF*216= % Δ annual vd	
National Forest Area	0.0003	0.0001	0.0001**	Δ Sq miles of NF*0.03= % Δ annual vd	
Next to National Park	0.4402	0.2194	0.0585*	If Next to NP=44% increase in annual vd	
Region 1	-0.0275	0.3518	0.9385	If in Region 1=3% decrease in annual vd	
Region 2	0.7536	0.3563	0.0472**	If in Region 2=75% increase in annual vd	
Region 3	1.5991	0.5411	0.0078**	If in Region 3=160% increase in annual vd	
Region 4	-0.0238	0.3612	0.948	If in Region 4=2% decrease in annual vd	
Region 5	0.1279	0.5427	0.816	If in Region 5=13% increase in annual vd	
* Variables are significant at the 10% level. **5% level. With White's standard errors and weighted.					
R-squared 0.6949 S.E. of regression 0.5536	Adjuste F-statis	ed R-squared tic 5.0617	0.5576		
Prob(F-statistic) 0.0012	N=30				
Listed as (S2ln_c) in Appendix B: Table B8					

TABLE 6: INITIAL GFA MODEL					
Variable	Estimate	Std Error	P-value	Elasticity	
Constant	11.7215	0.8161	0.0000**	N/A	
Trails per sq mile	2.5368	1.0132	0.0206**	Δ trail miles/ sqmile of NF*253= % Δ annual vd	
National Forest Area	0.0002	0.0001	0.1021	Δ Sq miles of NF*0.02= % Δ annual vd	
Proximity to Nearest	-0.0036	0.0028	0.2112		
Metropolitan	-0.0030	0.0028	0.2112	Δ miles to NF*-0.36= % Δ annual vd	
Region 1	0.6027	0.3939	0.1409	If in Region 1=60% increase in annual vd	
Region 2	1.7358	0.4945	0.0021**	If in Region 2=173% increase in annual vd	
Region 3	0.2879	0.5871	0.629	If in Region 3=29% increase in annual vd	
Region 4	0.1695	0.5916	0.7773	If in Region 4=17% increase in annual vd	
Region 5	1.3661	0.4562	0.0069**	If in Region 5=136% increase in annual vd	
* Variables are signifi	cant at the 1	0% level. **5	% level. With	h White's standard errors and weighted.	
R-squared 0.4818	Adjust	ted R-squared	0.2843		
S.E. of regression 0.7188	F-stati	stic 2.4403			
Prob(F-statistic) 0.0485	N=30				
Listed as (S2ln_c) in Appendix B: Table B10					

TABLE 7: INITIAL WILDERNESS MODEL					
Variable	Estimate	Std Error	P-value	Elasticity	
Constant	8.7903	0.3894	0.0000**		
				N/A	
Wilderness Trail Miles	0.0015	0.0008	0.0693*		
				Δ wilderness trail miles*0.15= % Δ annual vd	
State High Point in	1.2829	0.487	0.0140**	If State High Point in Wilderness Area-128%	
Wilderness				increase in annual vd	
Wilderness Areas w/in 100	0.0129	0.0049	0.0149**	# of other Wilderness Areas w/in 100 miles	
miles				of NF* 1.3= $\%\Delta$ increase in annual vd	
* Variables are significant at the 10% level. **5% level. With White's standard errors and weighted.					
R-squared 0.2723	Adjusted	d R-squared (0.1883		
S.E. of regression 1.1244	F-statist	ic 3.2423			
Prob(F-statistic) 0.0382	N=30				
Listed as (S2ln_d) in Appendix B: Table B11					

Hypothesis Testing

Explained variance of visitation was best for OUDS at 55% and lowest for Wilderness at

18%. Low explanatory power with Wilderness may be due to difficulty in measuring a good

proxy for wilderness access (e.g. # of trailheads leading into Wilderness area, or distance to

Wilderness area from trailhead. See Table 3). These descriptive candidate models will serve as predictive models in the next section. The only modifications will be removing outliers and testing WLS, for the concern of simplicity in reapplication to other National Forests.

H₀: USFS annual visitor use by type is not related to bio-physical features of the landscape, facilities, and distance to population centers.

H_a: Visitor use by type is related to site characteristics.

Reject null hypothesis. For DUDS, the coefficients for NF Area, Trails per sq mile, Picnic grounds per sq mile, and Regions 2, 3, and 5 are statistically significant. OUDS was explained by Campgrounds per sq mile, Trails per sq mile, NF Area, Adjacent to National Park, and Regions 2-3 with statistical significance. GFA model had statistically significant coefficients for NF area, Regions 2, and 5. Wilderness had statistically significant Wilderness Trails, State High Point in wilderness, and substitutes.

The shared significant variables between DUDS, OUDS, and GFA models meet *a priori* expectations that the different types of NF visitation have similar dependencies. Nation Forest area (NFArea) is positive and significant at the 10% level in for OUDS, DUDS, and GFA. Region Two (Colorado and Wyoming) is positive and significant in those three models as well. Trails per square mile is significant at the 5% level in DUDS and OUDS, but is at the 20% confidence level for GFA. This is helpful for application of models on BLM lands. Wilderness models do not share common variables with the other three recreation types besides proxies for travel cost.

2. OUT OF SAMPLE ESTIMATION

2.1 Prediction Models

Candidate models for the four recreation types were used to estimate out of sample visitation. Multiple predictions were conducted for each candidate model due to alternative forms from weighting and outlier diagnostics. Appendix B shows the natural log of actual visitation, predicted values from each alternative model, and prediction accuracy. This study will use Mean Absolute Percentage Error (MAPE) to compare predictive power of each model (Tables B19-B22).

TABLE 8: PERFORM	ANCE OF INITIAL CANDIDATE MODELS
See Tables B 23- B 26	MAPE
DUDS	103% - 207%
OUDS	93% - 105
GFA	115% - 152%
Wilderness	68% - 76%

The interpretation of MAPE for DUDS is that on average, the absolute value of the difference between the predicted values and the actuals was lowest at 103%. MAPE does not capture if the errors are bias upward or downward and a different metric could reveal which is the case. Due to all of the predicted values being positive, it can be concluded that the predictions are biased to overestimate. If the models were typically underestimating and had a MAPE of more than 100%, negative predictions would have to be present. The range in MAPE for each recreation type comes from different predicted values of multiple versions of the initial

models. The different versions of the model were with and without potential outliers, weighted and unweighted, and with different log transformation bias correctors (See Appendix B: Tables B23-26)

Alternative Prediction opportunities

It is uncertain if the inaccuracy with out of sample prediction came from the lack of a representative sample or weak explanatory power of the independent variables. Comparing representativeness sub-samples can be found by using a program to comprehensively estimate and rank the explanatory power of all combinations that leave out 25% of the observations. This process would reveal a representative sample and the distribution of model explanatory power. Conclusions about representative sites would benefit the BLM and USFS with which sites will have more accurate predictions and which ones would require additional on-site sampling. Unfortunately, such a complex and time intense modeling effort is beyond the scope of this thesis. The stratified sampling in NVUM of low, medium, high, very high, and closed for visitation could be used when transferring this model from USFS lands to BLM lands. There is a class of literature on estimates using a stratified sample that could help if BLM visitation was assumed to be a level below USFS visitation. This method requires a much more intricate econometric model with heavy assumptions about the relationship between USFS and BLM visitation.

2.2 Stepwise Procedures

Using all 40 observations in a stepwise procedure is another approach to finding the explanatory power of the independent variables. For each recreation type there was a stepwise estimation using a full specification of their unique independent variables (see Appendix C). A

combinatorial procedure revealed which independent variable contributes the most to explaining visitation. Appendix C outlines the best models using one to five regressors, or until models had econometric issues. Collinearity became an issue in the combinatorial procedure when using more than five regressors due highly correlated variables in the pool of regressors to choose from. To deal with this, combinatorial results from one to three regressors were tested for improvements from additional uncorrelated variables. Candidate models were constructed by this method.

TABLE 9: STEPWISE DUDS MODEL						
Variable	Estimate	Std Error	P-value	Elasticity		
Constant	11.63	0.3528	0.0000**	N/A		
Miles of Rivers	0.000043	0.0000	0.0349**	Δ river miles in NF*0.0043= % Δ annual vd		
Picnic Grounds	0.03	0.0102	0.0175**	Δ # of PG in NF*3= % Δ annual vd		
R1	0.37	0.3791	0.3380	If in Region 1=37% increase in annual vd		
R2	0.89	0.3398	0.0130**	If in Region 2=89% increase in annual vd		
R3	0.47	0.4266	0.2742	If in Region 3=47% increase in annual vd		
R4	0.38	0.4633	0.4156	If in Region 4=38% increase in annual vd		
R5	0.69	0.5314	0.2042	If in Region 5=69% increase in annual vd		
* Variables are significant at the 10% level. **5% level.						
R-squared 0.4200		Adjusted	R-squared	0.2931		
S.E. of regression	0.7215	F-statistic	3.3098			
Prob(F-statistic)0.0092		N=40				

TABLE 9: STEPWISE DUDS MODEL

TABLE 10: STEPWISE OUDS MODEL							
Variable	Estimate	Std Error	P-value	Elasticity			
Constant	9.6502	0.3581	0.0000**	N/A			
Campsites	0.0012	0.0003	0.0002**	Δ # of CS in NF*0.12= % Δ annual vd			
Area of National Forest	0.0001	0.0001	0.0878*	Δ Sq miles of NF*0.01= % Δ annual vd			
R1	-0.3643	0.4358	0.4094	If in Region 1=36% decrease in annual vd			
R2	-0.2142	0.4109	0.6058	If in Region 2=21% decrease in annual vd			
R3	0.8111	0.3743	0.0378**	If in Region 3=81% increase in annual vd			
R4	-0.2725	0.4434	0.5431	If in Region 4=27% decrease in annual vd			
R5	-0.3684	0.4494	0.4184	If in Region 5=37% decrease in annual vd			
* Variables are significant at the 10% level. **5% level							
R-squared 0.5575		Adjusted R-	squared	0.4608			
S.E. of regression 0.	6452	F-statistic	5.7605				
Prob(F-statistic)0.0002		N=40					

TABLE 11: STEPWISE GFA MODEL							
Variable	Estimate	Std Error	P-value	Elasticity			
Constant	11.5091	0.5213	0.0000**	N/A			
Miles of Rivers	0.0001	0.0000	0.0158**	Δ river miles in NF*0.01= % Δ annual vd			
Trails per sq mile	1.0777	1.0324	0.3043	Δ trail miles/ sqmile of NF*107= % Δ annual vd			
R1	0.4710	0.5050	0.3580	If in Region 1=47% increase in annual vd			
R2	0.8433	0.4886	0.0940*	If in Region 2=84% increase in annual vd			
R3	0.6870	0.4391	0.1275	If in Region 3=69% increase in annual vd			
R4	0.6420	0.5083	0.2157	If in Region 4=64% increase in annual vd			
R5	0.8801	0.4887	0.0812*	If in Region 5=88% increase in annual vd			
* Variables are significant at the 10% level. **5% level. With White's standard errors.							
R-squared 0.339 S.E. of regression Prob(F-statistic)0.047	Adjusted R- F-statistic N=40	Adjusted R-squared 0.1948 F-statistic 2.3475 N=40					

TABLE 12: STEPWISE WILDERNESS MODEL						
Variable	Estimate	Std Error	P-value	Elasticity		
Constant	7.6519	0.4605	0.0000**	N/A		
Miles of Wilderness Trails	0.0012	0.0007	0.0866*	Δ wilderness trail miles in NF*0.12= % Δ annual vd		
Number of Wilderness Areas in the National Forest	0.1276	0.0477	0.0118**	# of other Wilderness Areas in NF* 13=%Δ increase in annual vd		
State High Point in Wilderness Area	0.6766	0.5364	0.2165	If State High Point in Wilderness Area=68% increase in annual vd		
R1	1.2005	0.6471	0.0731*	If in Region 1=120% increase in annual vd		
R2	1.7642	0.6059	0.0066**	If in Region 2=176% increase in annual vd		
R3	1.7782	0.5525	0.0030**	If in Region 3=177% increase in annual vd		
R4	0.8278	0.6058	0.1816	If in Region 4=83% increase in annual vd		
R5	0.9927	0.6149	0.1166	If in Region 5=99% increase in annual vd		
* Variables are significant at the 10% level. **5% level. With White's standard errors. R-squared 0.5821 Adjusted R-squared 0.4742 S.E. of regression 0.9257 F-statistic 5.3965 Prob(F-statistic)0.0003 N=40						

3. SPREADSHEET CALCULATOR

A National Forest and BLM land visitation calculator that uses the stepwise models (Tables 14-17) is available upon request. Uses of the calculator vary from estimating visitation on a yet to be sampled land, double checking recently estimated visitation, or conducting marginal analyses on changes in visitation from a change in facilities.

4. DISCUSSION AND CONCLUSION

Elasticity of visitation with respect to site characteristics is calculated by multiplying beta estimates in the semi-log models by 100. For example, the elasticity of day use developed visitation with respect to picnic grounds in the stepwise models is 3, meaning a new additional Picnic ground will increase annual visitation by 3%. Very interesting is the difference in regional elasticities across the different recreation types. Furthermore, the difference in regional elasticities between the initial models and the stepwise is significant. Interpretation of modifiable characteristics such as campground, trail, and other facility elasticities are relevant to planners and managers. The spreadsheet calculator can help quantify visitation change from a new campground by looking at the difference in estimates with the current number of campgrounds and the proposed new ones. Effects on annual visitation from land sales or purchases can be estimated. Supplemental information beneficial to planners may be differences in elasticities between regions and USFS or BLM sites that may predict better than others.

Explanatory power of the initial models (n=30) and stepwise models (n=40) were similar for some recreation types, with two out of four improving. DUDS models did not change much between the sample sizes, with the initial model having an adjusted R^2 of 0.27 and stepwise improving to 0.29. OUDS also saw little change, changing from 0.55 to 0.46. GFA lowered from 0.28 to 0.19. Wilderness saw a substantial improvement between the two sample sizes, going from 0.18 to 0.47. Those than improved gained from estimating with a full sample, while those that worsen had ambiguous information gains.

The weak to moderate explanatory and predictive power in these models should give some caution in the applicability of this type of visitor use estimation. The statistically significant site characteristics provide optimism in continued development of this method. A recommended next step in this research would be revisiting variable selection or getting more out of the current dataset with the above mentioned testing of all out of sample combinations. Removing the uncertainty in the change in significant variables between 30 and 40 observations may or may not be worth the effort. Time series analysis is not feasible with NVUM data until 2015 but would provide valuable insight to changes in facility elasticities and visitation over time. Nonetheless, these models provide a cost effective, objective and systematic approach to estimating visitation on BLM lands until on-site sampling can be conducted on all BLM lands.

These models also provide estimates of the statistical accuracy of the visitation predictions as well as upper and lower ranges in visitation that can be used for sensitivity analysis.

Assigning sampling points of interest similar to NVUM on non-sampled BLM lands could be another transfer method. This method could be especially bountiful for BLM lands that share borders with sampled NF's. The study shows the mathematical and data requirements to estimate visitor use in watershed within a national forest and if that watershed was spread across two national forests. Estimating visitation for an entire forest is much easier than estimating a sub region, especially if NVUM did not sample within that sub region. (White et al 2007) The model is also capable of estimating visitation in a "new forest" where NVUM sampling has not occurred.

Other research ideas for visitor use estimation methods are incorporating choice experiments on recreation factors with NVUM data. Fredman and Lindberg (2006) combined stated preferences on facilities and other site characteristics with visitor counts at multiple cross country skiing sites in Sweden. This method allows for better variable creation and improved explanation of the variance. To apply this on NF or BLM lands would be feasible and would improve the understanding of what drives recreation at a finer scale than this project. Substitute data for this method could come from existing hotspot studies in the United States.

REFERNCES

- Bowker, J. M., Askew, A., Seymor, L., Zhu, J.P., English, D.B.K., & Starbuck, C.M. (2009).
 Wilderness Recreation Demand: A Comparison of Travel-Cost and On-site Models. In:
 Zinkhan, C. & Stansell, B.(eds.) Southern Forest Workers: proceedings of the annual meeting; 2009. Chapel Hill, NC: The Forestland Group. 156-164
- Bowker, J. M, Murphy, D., Cordell, H.K., English, D.B.K., Bergstrom, J.C., Starbuck, C. M.,
 Betz, C. J., Green, G.T., & Reed. P. (2007). Wilderness Recreation Participation:
 Projections for the Next Half Century. USDA Forest Service Proceedings RMRS-P-49.

Bowker, J.M., Murphy, D., Cordell, H.K., English, D.B.K., Bergstrom, J.C., Starbuck, C.M.,

Betz, C.J., & Green, G.T. (2006). Wilderness and Primitive Area Recreation Participation and Consumption: An Examination of Demographic and Spatial Factors. Journal of Agricultural and Applied Economics. 32,2. p 317-326.

- Bowker, J.M., English, D.B.K., Bergstrom, J.C., & Starbuck, C.M. (2005). Valuing National
 Forest Recreation Access: Using a Stratified On-Site Sample to Generate Values across
 Activities for a Nationally Pooled Sample. Selected Paper from 2005 AAEA Meetings.
 Providence, Rhode Island: July 24-27.
- Brown, G. (2008). A Theory of Urban Park Geography. Journal of Leisure Research. 40, 4. 589-607.
- Brown, G. & Alessa, L. (2005). A GIS-based Inductive Study of Wilderness Values. International Journal Of Wilderness. 11, 1.

Cole, D. N. (1996). Wilderness Recreation Use Trends, 1965 through 1994. United States
 Department of Agriculture, Forest Service Intermountain Research Station. Ogden, UT.
 INT-RP-488

- Cordell, H.K., Tarrant, M. A., McDonald, B. L., & Bergstrom, J. C. (1998). How the Public Views Wilderness: more results from the USA survey on recreation the environment. International Journal of Wilderness. 4,28-31.
- Cordell, H.K., Tarrant, M. A., Green, G.T. (2003). Is the Public Viewpoint of Wilderness Shifting? International Journal of Wilderness. 9, 2.
- De Vries, S. & De Boer, T.A. (2006). Recreational Accessibility of Rural Areas: Its Assessment and Impact on Visitation and Attachment. Presented at Planning and managing forests for recreation and tourism. Wageningen: May 30.
- De Vries, S., Lankhorst, J. R. & Buijs, A. E. (2007). Mapping the attractiveness of the Dutch countryside: a GIS-based landscape appreciation model. Forest, Snow and Landscape Research. 81,43-58.
- Dumont, B. & Gulinck, H. (2004). Push and pull assemblages for modeling visitor's flows in complex landscapes. Working Papers of the Finnish Forest Research Institute 2.
 Retrieved (January 2012) from www.metla.fi/julkaisut/workingpapers/2004/mwp002-57.pdf
- English, D.B.K., Kocis, S.M., Zarnoch, S.J., & Arnold, J.R. (2002). Forest Service National Visitor Use Monitoring Process: Research Method Documentation. USFS Southern Research Station. Asheville, North Carolina. Research Paper SRS-57.

English, D.B.K. (unknown). National Visitor Use Monitoring (NVUM). Presentation at Colorado State University.

Fredman, P. & Lindberg, K. (2006). Swedish Mountain Tourism Patterns and ModellingDestination Attributes. In: Gossling, S. & Hultman, J. (eds.) Ecotourism in Scandanavia:Lessons in Theory and Practice. CAB International.

- Loomis, J. (1999). Do Additional Designations of Wilderness Result in Increases in Recreation Use? Society & Natural Resources: An International Journal. 12,5. P 481-491.
- Loomis, J. (2000). Counting on Recreation Use Data: A Call for Long-Term Monitoring. Journal of Leisure Research.32, 1. P 93-96.
- Loomis, J. (2000). Economic Values of Wilderness Recreation and Passive Use: What We Think We Know at the Beginning of the 21st Century. USDA Forest Service Proceedings. RMRS-P: 15,2.
- Loomis, J. & Richardson, R. (2000). Economic Values of Protecting Roadless Areas in the United States. Prepared for The Wilderness Society and Heritage Forests Campaign. Accessed October 2011 from http://wilderness.org/files/Economic%20Values%20of%20Protecting%20Roadless%20A reas%20in%20US.pdf
- Manning, R.E., Newman, P., Fristrup, K. Stack, D.W., & Pilcher, E. (2010). A program of research to support soundscape management at Muir Woods National Monument. Park Science. 26,3. P 54-57.

Newman, P., Manning, R., & Dennis, D. (2005). Informing Social Carrying Capacity Decision Making in Yosemite National Park, Using Stated Choice Modeling. Journal of Parks and Recreation Administration. 21,3. P 43-56.

- Newman, P., Marion, J, & Cahill, K. (2001). Integrating resource, social, and managerial indicators of quality into carrying capacity decision making. The George Wright Forum. 18,3. P 28-40.
- Stack, D.W., Newman, P., & Manning, R. (2011). Protecting Soundscapes in our National Parks: An Adaptive Management Approach in Muir Woods National Monument. Journal of the Acoustic Society of America. 129,3. P 1375-1380.
- Stynes, D.J., Peterson, G. L., & Rosenthal, D. H. (1986). Log Transformation Bias in Estimating Travel Cost Models. Land Economics. 62,1. P 94-103.
- United States Department of the Interior, Bureau of Land Management. (2003). The BLM's Priorities for Recreation and Visitor Services: BLM Workplan, Fiscal Year 2003-2007 (BLM Purple book). Washington, D.C.
- United States Department of the Interior, Bureau of Land Management. (2005). BLM Land Use Planning Handbook. H-1601-1. Washington, D.C.
- United States Department of the Interior, Bureau of Land Management . (2010). Annual Performance Report: FY 2010. Washington, D.C.

United States Department of the Interior, Bureau of Land Management . (2011). Budget

Justifications and Performance Information Fiscal Year 2012. Washington, D.C.

United States Department of Agriculture, Forest Service. (2010). National Visitor Use

Monitoring Results: National Summary Report. Accessed October 2011 from http://www.fs.fed.us/recreation/programs/nvum/nvum_national_summary_fy2009.pdf

- United States Department of Agriculture, Forest Service. (2007). National Visitor Use Monitoring Results for Moab Field Office. National Visitor Use Monitoring Program. Moab, UT.
- United States Department of Agriculture, Forest Service (2006). National Visitor Use Monitoring Definitions. Accessed October 2011 from http://www.fs.fed.us/recreation/programs/nvum/reference/prework_definitions.pdf
- Wang, J. (2008). Development of Outdoor Recreation Resource Amenity Indices for West Virginia. (Master's Thesis). West Virginia University. Morgantown, West Virginia.
- Watson, A.E., Cole, D.N., Turner, D.L., & Reynolds, P.S. (2000). Wilderness Recreation Use Estimation: A Handbook of Methods and Systems. Rocky Mountain Research Station. Ogden, UT. RMRS-GTR-56.
- White, E. M., Zarnoch, S. J., & English, D.B.K. (2007). Area-Specific Recreation Use Estimation Using the National Visitor Use Monitoring Program Data. USFS Pacific Northwest Research Station. Corvallis, Oregon. Research Note PNW-RN-557.
- Wooldridge, J. M. (2000). Introductory Econometrics: A Modern Approach. Cincinnati: South-Western College Pub.
- Zarnoch, S.J., English, D.B.K., & Kocis, S. M. (2005). An Outdoor Recreation Use Model With Applications to Evaluating Survey Estimators. United States Forest Service, Southern Research Station. Athens, Georgia. Research Paper SRS-37.
- Ziemer, R.F., Musser, W. N., & Hill, R.C. (1980). Recreation Demand Equations: Functional Form and Consumer Surplus. American Journal of Agricultural Economics. 62, 1. P 136-141.

APPENDIX A: VARIABLES

A 1:VISITATION SUMMARY STATISTICS (VD/YEAR) OF SAMPLE FORESTS							
	DUDS	OUDS	GFA	Wilderness			
Mean	253708.1	105389.5	756580.3	54092.35			
Std. Dev	308100.4	168136.0	983786.3	88236.1			
Min	5383.0	7422.0	62180.0	785.0			
Max	1107342.0	945678.0	5635543.0	488463.0			
Obs	30	30	30	30			

A 2: DATA SOURCES AND COLLECTION TIME REQUIREMENT						
Time requirements are in an ordinal ranking with $1 = Little$ to no time, $5 = 10-20$ minutes per NF.						
Variable	Source	Time				
NFArea	Individual NF website/ Land and Resources Management/	2				
NFadjacent	Geospatial data http://www.fs.fed.us/maps/forest-maps.shtml	2				
R1, R2, R3, R4, R5,		1				
R6						
NP		2				
Interstate	Google Maps	2				
Proxcity		3				
Proxmetro		2				
Popcity	2010 US Census	3				
PopMetro	http://2010.census.gov/2010census/	2				
Trails, /Sq mi	-USFS FSGeodata Clearinghouse/ Western Transportation	4				
Roads, /Sq mi	Layer	4				

WildTrails, /Sq mi	http://fsgeodata.fs.fed.us/vector/index.html	3				
Lakes, /Sq mi	-Individual NF website/ Land and Resources Management/	3				
LakeArea, /Sq mi	Geospatial data http://www.fs.fed.us/maps/forest-maps.shtml	3				
Rivers, /Sq mi		3				
WildLakes, /Sq mi		3				
WildLakeArea, /Sq mi		3				
WildRivers, /Sq mi		4				
PG, /Sq mi	Individual NF website/ Land and Resources Management/	5				
PGElev	Geospatial data http://www.fs.fed.us/maps/forest-maps.shtml	5				
CG, /Sq mi	Individual NF SBS Maps:	5				
CGLake	http://fsgeodata.fs.fed.us/visitormaps/	5				
CS, /Sq mi	Paper Maps for each NF were also used for CG count	5				
CGElev		5				
HighPointElev	Individual NF Maps,	3				
StateHigh	Peakbagger List of state High Points	2				
WildHighPoint	http://www.peakbagger.com/list.aspx?lid=1825	3				
WildStateHigh		2				
WildArea	Wilderness Boundaries GIS Layer	2				
Wilderness Dummy	http://nationalatlas.gov/mld/wildrnp.html	2				
Wilderness count		2				
Wilderness w/in 100		2				
mi						
More Links:						
Region GIS Database:						
R1: http://www.fs.fed.us	s/r1/gis/ThematicTables.htm					

R2: http://www.fs.fed.us/r2/gis/datasets_unit.shtml

R4: http://www.fs.fed.us/r4/maps/gis/index.shtml

R5: http://www.fs.fed.us/r5/rsl/clearinghouse/VisitorMaps.shtml

R6: http://www.fs.fed.us/r6/data-library/gis/index.html

NVUM Annual Visitation Page http://apps.fs.usda.gov/nrm/nvum/results/

Special thanks to Mike Hadley, USFS Geospatial services and Technology Center, UT for help with Maps

APPENDIX B: CANDIDATE MODELS

B 1: DUDS FULL						
SPECIFICATIONS						
Specification	Specification					
1 (S1)	2 (S2)					
NF Area	NF Area					
PG/ Sq mi	PG/ Sq mi					
PG Elev	PG Elev					
Pop Metro	Pop Metro					
Prox Metro	Prox Metro					
Interstate	R1-R5					
State High	High Point					
Point						
Trails	Interstate					
Lake Area	Lake Area					
River/ Sq mi	River/ sq mi					

B 2: OUDS FULL SPECIFICATIONS					
Specification 1 (S1)	Specification 2 (S2)				
CG	CG/ sq mi				
CG Elev	CS/ sq mi				
CS	Interstate				
Interstate	River/ Sq mi				
Trails	Trails/ sq mi				
NF Area	NF Area				
NP Adjacent	NP Adjacent				
Pop Metro	Pop Metro				
R1-R5	R1-R5				

B 3:GFA FULL SPECIFICATIONS					
Specification 1	Specification 2				
(S1)	(S2)				
High Point	State High Point				
Interstate	Interstate				
Lake Area	Lake Area				
River/ sq mi	River/ sq mi				
Road/ sq mi	Road/ sq mi				
Trail/ sq mi	Trail/ sq mi				
NF Area	NF Area				
Pop Metro	Pop Metro				
R1-R5	Trails				

Variable	ariable Description	
WildArea	Area of Wilderness Area(s)	Sq. Miles
WildTrails, / sq mile	Total Length of Wilderness Trails	Miles, miles/sq mi
WildHighPoint	NF high point within Wilderness Boundary	Dummy Variable
WildStateHigh	NF high point is State high point and within Wilderness Boundary	Dummy Variable
WildLakes, / sq mile	Number of water bodies in Wilderness Boundary	# count, n/sq mile
WildLakeArea, / sq mile	Total Area of water bodies in Wilderness Boundary	Sq. Miles
WildRivers, / sq mile	Sum of River Lengths in Wilderness Boundary	Miles, miles/sq mile
WildArea/sqmi	Sq mile of Wilderness Area per sq mile of NF	Sq mile/ sq mile
Wilderness Dummy	=1 if there is more than one wilderness in NF, =0 if there is only one wilderness area <i>within</i> NF	Dummy Variable
Wilderness count	# of wilderness areas <i>adjacent</i> to NF. Includes NPS, BLM, FWS wilderness areas	# count

Wilderness substitutes	# of wilderness areas within 100 miles of NF. Includes NPS,	# count
w/in 100 mi	BLM, FWS wilderness areas	# count

B 5: LINEAR DUDS MODELS						
	S1_a	S1_b	S1_c	S2_a	S2_c	
HighPointElev	(0.1927)	(0.0538)*	(0.0162)**	(0.0783)*	(0.0275)**	
Nfarea	(0.4390)	(0.9041)	(0.9029)	(0.6977)	(0.6899)	
Np						
Pg						
Pg_sq_mi	(0.0717)*	(0.0655)*	(0.0583)*	(0.0510)*	(0.0437)**	
Pgelev	(0.5656)	(0.8173)		(0.8226)		
Popmetro				(0.3718)	(0.3579)	
Proxmetro						
R1	(0.5704)					
R2	(0.7648)					
R3	(0.1928)	(0.0651)*	(0.0426)**	(0.0471)*	(0.0300)**	
R4	(0.5239)					
R5	(0.2426)					
River_sq_mi	(0.5353)					
Trails_sq_mi	(0.3484)	(0.7332)		(0.7127)		
	k=12	k=7	k=5	k=8	k=6	
	adjR ² =0.1221	adjR ² =0.1776	adjR ² =0.2376	adjR ² =0.1715	adjR ² =0.2339	
	Se(Y)=300872.6	Se(Y)=291195.2	Se(Y)=280370	Se(Y)=292270	Se(Y)=281052	
	F=1.366	F=2.044	F=3.26	F=1.85	F=2.77	
	P=(0.2686)	P=(0.1004)	P=(0.0278)	P=0.1260	P=0.0410	

B 6: LOG-LINEAR DUDS MODELS							
	S1ln_c S1ln_d S2Ln S2LN_d S2LN				S2LN_b		
				(Candidate)			
HighPointElev							
Interstate			(0.4483)				
Lakearea			(0.1594)		(0.0636)*		
Nfarea	(0.2229)	(0.1653)	(0.8634)	(0.1653)	(0.0449)**		
Pg_sq_mi	(0.1254)	(0.1249)	(0.0750)*	(0.1249)	(0.0363)**		
Pgelev			(0.2707)				
Popmetro			(0.5337)				
Proxmetro	(0.7373)		(0.7001)				
R1	(0.1611)	(0.1413)		(0.)	(0.1422)		
R2	(0.0159)**	(0.0134)**		(0.1596)	(0.0267)**		
R3	(0.0031)**	(0.0014)**		(0.0442)**	(0.0067)**		
R4	(0.2974)	(0.3042)		(0.9413)	(0.6994)		
R5	(0.0077)**	(0.0053)**		(0.0020)**	(0.0017)**		
River_sq_mi			(0.5548)				
Rivers							
Statehp			(0.7491)				
Trails			(0.7586)				
Trails_sq_mi	(0.0891)*	(0.0873)*	(0.9304)	(0.0873)*	(0.0561)*		
	k=10	k=9	k=12	k=9	k=10		
	adjR ² =0.2451	adjR ² =0.2769	adjR ² =-0.0959	adjR ² =0.2769	adjR ² =0.3635		
	Se(Y)=1.1473	Se(Y)=1.1229	Se(Y)=1.3825	Se(Y)=1.1229	Se(Y)=1.05		
	F=2.04	F=2.388	F=0.769	F=2.388	F=2.840		
	P=(0.08746)	P=(0.0525)	P=(0.6653)	P=(0.00525)	P=(0.0248)		

B 7:OUDS LEVEL EXPLANATORY VARIABLES						
	S1	S1_a	S1_b	S1_Ln	S1_Ln_a	S1_Ln_b
CG	(0.6694)	(0.5421)		(0.5791)		
CG Elevation	(0.6243)	(0.5694)		(0.2728)	(0.2176)	(0.2623)
Campsites	(0.0292)**	(0.0051)**	(0.000)**	(0.6832)	(0.0038)**	(0.0010)**
Interstate	(0.7061)			(0.0999)**	(0.4671)	
NF Area	(0.9357)			(0.9670)		
NP	(0.8744)			(0.2693)	(0.1948)	(0.3343)
PopMetro	(0.9091)			(0.9797)		
ProxMetro	(0.4232)	(0.2311)	(0.2306)	(0.5949)	(0.3719)	
R1	(0.8581)	(0.8566)	(0.9596)	(0.7390)	(0.5466)	(0.3692)
R2	(0.6641)	(0.5540)	(0.2536)	(0.3947)	(0.2862)	(0.4514)
R3	(0.0586)*	(0.0234)**	(0.0219)**	(0.0363)**	(0.0232)**	(0.0173)**
R4	(0.9347)	(0.9535)	(0.7924)	(0.7788)	(0.8728)	(0.8967)
R5	(0.5367)	(0.3275)	(0.3442)	(0.8072)	(0. 8246)	(0.6832)
Trails	(0.8818)			(0.4087)	(0.0891)*	(0.0897)*
	k=15	k=10	k=8	k=15	k=8	k=9
	adjR ² =0.408	adjR ² =0.5485	adjR ² =0.5728	adjR ² =0.4743	adjR ² =0.5501	adjR ² =0.5700
	Se(Y)=84685.6	Se(Y)=73969.4	Se(Y)=71947.2	Se(Y)=0.6808	Se(Y)=0.6298	Se(Y)=0.6157
	F=2.429	F=4.915	F=6.55	F=2.86	F=4.22	F=5.27
	P=(0.049630)	P=(0.00147)	P=(0.00029)	P=(0.0259)	P=(0.000345)	P=(0.000962)

	B 8: OUDS DENSITY EXPLANATORY VARIABLES						
	S2 (Full Specification)	S2_a	S2_b	S2Ln (Full Specification)	S2Ln_b	S2Ln_c (Candidate)	
CG/sqmi forest	(0.2626)	(0.2566)	(0.3100)	(0.1802)	(0.0031)**	(0.0052)**	
CS/sqmi of forest	(0.1660)	(0.0736)*	(0.0347)**	(0.4644)			
Interstate	(0.9601)			(0.8198)			
Mi Trails/ sqmi of forest	(0.3750)	(0.2001)	(0.1303)	(0.0815)*	(0.0442)**	(0.0325)**	
NF Area	(0.0277)**	(0.0110)**	(0.0055)**	(0.0087)**	(0.0006)**	(0.0027)**	
NP	(0.8769)			(0.2068)	(0.0825)*	(0.0580)*	
PopMetro	(0.8618)			(0.8639)			
ProxMetro	(0.6321)			(0.5466)		(0.3758)	
R1	(0.6999)	(0.7694)		(0.9130)	(0.9265)	(0.0605)*	
R2	(0.9178)	(0.7588)		(0.2953)	(0.0896)*	(0.0024)**	
R3	(0.0446)**	(0.0320)**	(0.0219)**	(0.0329)**	(0.0011)**	(0.9909)	
R4	(0.7631)	(0.7909)		(0.7707)	(0.8933)	(0.7377)	
R5	(0.5992)	(0.5227)		(0.9790)	(0. 7694)	(0.8910)	
	k=14	k=10	k=6	k=14	k=10	k=11	
	adjR ² =0.3310	adjR ² =0.4430	adjR ² =0.503	adjR ² =0.4769	adjR ² =0.5425	adjR ² =0.5384	
	Se(Y)=90039.8	Se(Y)=82157.6	Se(Y)=77599.6	Se(Y)=0.6791	Se(Y)=0.6351	Se(Y)=0.6379	
	F=2.10	F=3.563	F=6.87	F=3.034	F=4.822	F=4.38	
	P=(0.0800)	P=(0.008594)	P=(0.000414)	P=(0.01910)	P=(0.0016)	P=(0.0027)	

	B 9: GFA LEVEL EXPLANATORY VARIABLES							
	S1_a (Full Specification)	S1_b	S1_c	S1_Ln_a	S1_Ln_b	S1_Ln_c		
NFarea	(0.3763)	(0.4185)	(0.5262)	(0.4491)	(0.7427)			
Interstate	(0.5813)							
Roads				(0.3321)				
PopMetro	(0.2565)	(0.2966)	(0.1171)					
ProxMetro	(0.0388)**	(0.0229)**	(0.0077)**	(0.4225)	(0.3196)	(0.1826)		
Lake Area				(0.7332)	(0.8550)			
State High Point	(0.3781)	(0.4382)	(0.3750)					
Trails	(0.2727)	(0.2727)	(0.2094)	(0.2686)	(0.2427)			
R1	(0.5971)	(0.5348)		(0.5358)	(0.4492)	(0.1183)		
R2	(0.1131)	(0.0659)*	(0.0151)**	(0.1651)	(0.0251)**	(0.0074)**		
R3	(0.7094)	(0.07994)		(0.8580)	(0.8892)	(0.8322)		
R4	(0.6849)	(0.7363)		(0.9225)	(0.8207)	(0.6511)		
R5	(0.9162)	(0.7623)		(0.1957)	(0. 0542)*	(0.0426)**		
	k=12	k=11	k=7	k=11	k=10	k=8		
	adjR ² =0.322	adjR ² =0.3466	adjR ² =0.4121	adjR ² =0.1499	adjR ² =0.1503	adjR ² =0.222		
	Se(Y)=839256	Se(Y)=823996	Se(Y)=781633	Se(Y)=0.90185	Se(Y)=0.901	Se(Y)=0.8623		
	F=2.25	F=2.538	F=4.388	F=1.511	F=1.57	F=2.188		
	P=(0.0608)	P=(0.0386)	P=(0.00426)	P=(0.2102)	P=(0.1914)	P=(0.0759)		

B 10: GFA DENSITY EXPLANATORY VARIABLES							
	S2_a	S2_c	S2_d	S2Ln_a	S2Ln_b	S2Ln_c (Candidate)	
NF Area	(0.1999)	(0.0576)*	(0.0493)**	(0.3162)	(0.2901)	(0.1455)	
Interstate	(0.6950)			(0.6557)			
River/ sqmi	(0.2347)			(0.5822)	(0.5888)		
Lake Area	(0.8819)			(0.8727)	(0.7999)		
Road/ sqmi forest	(0.6696)			(0.4232)	(0.3570)		
Trails/ sqmi forest	(0.0985)*	(0.1285)	(0.1353)	(0.0975)*	(0.0869)*	(0.0650)*	
PopMetro	(0.6625)	(0.3002)	(0.1216)				
ProxMetro	(0.0240)**	(0.0175)**	(0.0056)*	(0.2100)	(0.2183)	(0.2232)	
State High Point	(0.5832)	(0.2704)	(0.2431)				
R1	(0.9912)	(0.4639)		(0.4983)	(0.5666)	(0.3135)	
R2	(0.0790)*	(0.0538)*	(0.0130)**	(0.0697)*	(0.0701)*	(0.0079)**	
R3	(0.5600)	(0.8754)		(0.7927)	(0.8714)	(0.6959)	
R4	(0.4670)	(0.5959)		(0.8942)	(0.8568)	(0.8640)	
R5	(0.5549)	(0.6523)		(0.1173)	(0. 1221)	(0.0249)**	
	k=15	k=11	k=7	k=13	k=12	k=9	
	adjR ² =0.3095	adjR ² =0.3845	adjR ² =0.4289	adjR ² =0.1551	adjR ² =0.1924	adjR ² =0.2648	
	Se(Y)=847056	Se(Y)=799726	Se(Y)=770347	Se(Y)=0.8991	Se(Y)=0.8790	Se(Y)=0.8387	
	F=1.92	F=2.812	F=4.63	F=1.44	F=1.628	F=2.305	
	P=(0.1096)	P=(0.0251)	P=(0.00318)	P=(0.2378)	P=(0.1730)	P=(0.0598)	
		1	1				

B 11: WILDERNESS LEVEL EXPLANATORY VARIABLES							
	S1ln	S1ln_a	S2ln	S2Ln_b	S2Ln_c	S2Ln_d (Candidate)	
Wild Area	(0.3904)	(0.2377)					
Pop City	(0.8156)						
Prox City	(0.4692)						
WState High	(0.4043)	(0.3930)	(0.1748)			(0.0549)*	
R1	(0.5082)	(0.6610)					
R2	(0.5281)	(0.3488)	(0.3180)				
R3	(0.5089)	(0.3773)	(0.5974)				
R4			(0.9132)				
R5	(0.9280)	(0.8387)	(0.7382)				
R6	(0.3732)	(0.3580)	(0.5044)				
Wild Trail			(0.0454)**			(0.0682)*	
Pop Metro			(0.6878)				
Wild HP			(0.6922)				
WLake Area			(0.3209)				
Wild Subs						(0.1756)	
	k=10	k=8	k=11			k=4	
	adjR ² =0.089	adjR ² =0.149	adjR ² =0.1810			adjR ² =0.1938	
	Se(Y)=1.38	Se(Y)=1.335	Se(Y)=1.309			Se(Y)=1.299	
	F=1.316	F=1.72	F=1.64			F=3.324	
	P=(0.2892)	P=(0.1545)	P=(0.1693)			P=(0.0351)	

B 12: WILDERNESS DENSITY EXPLANATORY VARIABLES						
	S3ln	S3ln_a	S4	S4Ln_a	S4Ln_b	S4Ln_c
Wild Area	(0.1522)	(0.1559)				
WTrail/sq mi	(0.3508)	(0.5023)				
Wild Trail			(0.2934)	(0.1927)	(0.1932)	(0.1883)
WLkArea/sq mi	(0.2190)		(0.8623)	(0.1285)	(0.2093)	(0.3792)
WRiver/sq mi	(0.3743)	(0.5556)	(0.9477)	(0.3598)	(0.2242)	(0.3742)
Prox Metro	(0.5979)	(0.7745)	(0.5449)	(0.7541)	(0.6190)	(0.8894)
R1	(0.7270)	(0.9652)				
R2	(0.5076)	(0.3991)	(0.6859)	(0.4134)		(0.5860)
R3	(0.7516)	(0.5237)	(0.3486)	(0.7185)		(0.8818)
R4			(0.8580)	(0.9655)		(0.7350)
R5	(0.7551)	(0.8592)	(0.7646)	(0.9380)		(0.8650)
R6	(0.2758)	(0.3312)	(0.7675)	(0.1855)		(0.2005)
Wild Subs						(0.3356)
	k=11	k=10	k=10	k=10	k=5	k=11
	adjR ² =0.102	adjR ² =0.0751	adjR ² =0.00	adjR ² =0.1441	adjR ² =0.0869	adjR ² =0.1431
	Se(Y)=1.37	Se(Y)=1.39	Se(Y)=100000	Se(Y)=1.339	Se(Y)=1.38	Se(Y)=1.33
	F=1.33	F=1.26	F=0.56	F=1.54	F=1.69	F=1.48
	P=(0.2828)	P=(0.3154)	P=(0.8080)	P=(0.2003)	P=(0.1837)	P=(0.2200)

B 13: DUDS HETEROSKEDASTICITY TESTS								
For S2ln_d :	Coefficient	Estimate	SE	p-value	White's	White's P-		
BPG test:					SE	Value		
TT 1 1 1 1	NF Area	0.00021	37.91	(0.1653)	0.0001	(0.0502)*		
Heteroskedasticity	Trail/ sqmi	3.1818	1.02	(0.0873)*	1.1825	(0.0137)**		
Not present	PG/ Sq mi	104.2363	0.00008	(0.1249)	61.55	(0.1052)		
Whites test: N/A	R1	1.819	0.249	(0.1413)	0.7247	(0.1178)		
Park Test	R2	2.0265	0.436	(0.0134)**	0.9557	(0.0461)**		
Tark rest.	R3	2.5007	0.424	(0.0014)**	0.7599	(0.0035)**		
Heteroskedasticity	R4	0.9536	0.402	(0.3042)	0.9418	(0.3228)		
Not Present	R5	2.2781	0.531	(0.0053)**	0.8166	(0.0110)**		
	White's robust standard errors are shown to note any changes. Two Variables improved to the 5% confidence level. Will use White's correction.							

	B 14: OUDS HETEROSKEDASTICITY TESTS							
For S2ln_b:	Coefficient	Estimate	SE	p-value	White's	White's P-		
					SE	Value		
DDC	CG/ sqmi	127.70	37.91	(0.0031)**	43.89	(0.0087)**		
BPG test:	Trail/ sqmi	2.1934	1.02	(0.0442)**	1.169	(0.0753)*		
Heteroskedasticity	NF Area	0.000342	0.00008	(0.0006)**	0.00006	(0.0000)**		
Not present (0.0673)	NP	0.4557	0.249	(0.0825)*	0.220	(0.0522)*		
	R1	-0.0407	0.436	(0.9265)	0.343	(0.9067)		
	R2	0.7574	0.424	(0.0896)*	0.362	(0.0495)**		
Whites test: N/A	R3	1.535	0.402	(0.0011)**	0.554	(0.0119)		
	R4	-0.068	0.531	(0.8993)	0.369	(0.8556)		
Park Test:	R5	0.1461	0.491	(0.7694)	0.549	(0.7930)		
	White's robust st	tandard errors	are shown to	note any chang	es. P values fr	rom tests are		
Heteroskedasticity	close to rejection	n and these te	sts are genera	l, so it may be w	vise to conside	er robust		
Not Present (0.0868)	standard errors. variables.	White's corre	ection changes	s significance ou	t of 5% confi	dence for two		

	B 15: GFA HETEROSKEDASTICITY TESTS							
For S2ln_c:	Coefficient	Estimate	SE	p-value	White's	White's P-Value		
BPG test:					SE			
	Trails/ Sqmi	2.633	1.352151	(0.0650)*	1.054061	(0.0209)**		
Heteroskedasticity	NF Area	0.00016	0.000112	(0.1455)	0.000101	(0.1070)		
present	ProxMetro	-0.003	0.002857	(0.2232)	0.002896	(0.2293)		
Whites test: Not	R1	0.585	0.566827	(0.3135)	0.406337	(0.1644)		
Drasant	R2	1.704	0.580950	(0.0079)**	0.512015	(0.0032)**		
Tresent	R3	0.209	0.529439	(0.6959)	0.590673	(0.7259)		
Park Test:	R4	0.118	0.682253	(0.8640)	0.620011	(0.8505)		
Heteroskedasticity	R5	1.333	0.551804	(0.0249)**	0.476334	(0.0107)**		
Present	White's robust	standard erro	ors improved	one variable fro	om 10% to 59	% significance level.		
	Two out of three tests fail to reject presence of heteroskedasticty. Will use White's							
	correction.							

B 16: WILDERNESS HETEROSKEDASTICITY TESTS								
For S4:	Coefficient	Estimate	SE	p-value	White's SE	White's P-Value		
BPG test: Not	WildTrails	0.0015	0.0007	(0.0682)*	0.0007	(0.0593)*		
present	WildStateHigh	1.2867	0.6400	(0.0549)*	0.4728	(0.0114)**		
Whites test	WildSubstitutes	0.0130	0.0093	(0.1756)	0.0049	(0.0133)**		
wintes test.	w/in 100mi							
Not Present	White's robust standa	ard errors ar	e shown to	note any change	es. The three te	ests for		
Park Test:	heteroskedasticity are general, so it may still be present. White's correction changes two of							
Not present	three variables. Robu	ıst standard	errors will	be used.				
1	1							

Weighted Least Squares (WLS) and Outliers

Weighting variable (w) : 90% confidence level that actual visitation is within w percentage of estimate. Eg. Y_1 = 217953, w_1 = 0.227. USFS is 90% confident that annual visitation at NF₁ is 217,953 ± 49,475

$$\begin{split} \text{LnDUDS Visitation}_{i} &* (1 - w_{i}) \\ &= \beta_{0} * (1 - w_{i}) + \beta_{1} \text{NFArea}_{i} * (1 - w_{i}) + \beta_{2} \text{Trails_sqmi}_{i} * (1 - w_{i}) \\ &+ \beta_{3} PG_sqmi_{i} * (1 - w_{i}) + \beta_{4} R1 * (1 - w_{i}) + \beta_{5} R2 * (1 - w_{i}) + \beta_{6} R3 * (1 - w_{i}) + \beta_{7} R4 * (1 - w_{i}) + \beta_{8} R5 * (1 - w_{i}) + e \end{split}$$

***Note: made new weighting variable 1/(1+w), and included in model similar way. Software allows choice of multiplying by weight or inverse of weight.

	17: DUDS WLS ANALYSIS								
LnDUDS Visitation	LnDUDS Visitation _i								
$=\beta$	$= \beta_0 + \beta_1 NFArea_i + \beta_2 Trails_sqmi_i + \beta_3 PG_sqmi_i + \beta_4 R1 + \beta_5 R2 + \beta_6 R3 + \beta_7 R4$								
$+ \beta_8 R5 + e_i$									
	Variable	Estimate	SE	p-value					
OLS w/ Whites	NFArea	0.00021	0.0001	(0.0502)*					
Correction	Trails/sqmi	3.1818	1.1825	(0.0137)**					
	Picnic/sqmi	104.2363	61.55	(0.1052)					
	R1	1.819	0.7247	(0.1178)					
	R2	2.0265	0.9557	(0.0461)**					
	R3	2.5007	0.7599	(0.0035)**					
	R4	0.9536	0.9418	(0.3228)					
	R5	2.2781	0.8166	(0.0110)**					
WLS (2)	NFArea	0.0002	0.00014	(0.1495)					
Weight var=	Trails/sqmi	3.20	1.779	(0.0859)*					
1/(w+1)	Picnic/sqmi	98.65	65.66	(0.1479)					
	R1	1.159	0.773	(0.1491)					
adjR: 0.272	R2	1.972	0.755	(0.0163)**					

p: (0.0549)	R3	2.471	0.673	(0.0014)**				
	R4	0.9178	0.891	(0.3151)				
	R5	2.265	0.731	(0.0054)**				
WLS (2) whites	NFArea	0.0002	0.000099	(0.0416)**				
Weight var=	Trails/sqmi	3.20	1.178	(0.0128)**				
1/(w+1)	Picnic/sqmi	98.65	62.37	(0.1286)				
	R1	1.159	0.709	(0.1170)				
adjR: 0.272	R2	1.972	0.953	(0.0512)*				
p: (0.0549)	R3	2.471	0.742	(0.0032)**				
	R4	0.9178	0.913	(0.3267)				
	R5	2.265	0.803	(0.0103)**				
Weighting variable (w)	Weighting variable (w) : 90% confidence level that actual visitation is within w percentage of estimate							

18: DUDS OUTLIER DIAGNOSTICS

Two Outlier Diagnostics were completed for Candidate DUDS model (WLS S2ln_d w/ Whites).

Leverage Plots (see next page) did not reveal any

	Variable	Estimate	SE	p-value
WLS (2) whites	NFArea	0.0002	0.000099	(0.0416)**
Weight var=	Trails/sqmi	3.20	1.178	(0.0128)**
1/(w+1)	Picnic/sqmi	98.65	62.37	(0.1286)
	R1	1.159	0.709	(0.1170)
adjR: 0.272	R2	1.972	0.953	(0.0512)*
p: (0.0549)	R3	2.471	0.742	(0.0032)**
	R4	0.9178	0.913	(0.3267)
	R5	2.265	0.803	(0.0103)**
Dropping obs 26	NFArea	0.000287	0.0001	(0.0388)**
(Plumas NF)	Trails/sqmi	3.419	1.557	(0.0424)**
	Picnic/sqmi	104.11	58.79	(0.0272)**
WLS (2)	R1	1.332	0.732	(0.0838)*
Weight var=	R2	2.233	0.716	(0.0054)**
1/(w+1)	R3	2.767	0.642	(0.0003)**
	R4	1.008	0.838	(0.2430)
adjR: 0.4614	R5	2.554	0.689	(0.0014)**
p: (0.0065)				
Dropping obs 30	NFArea	0.0001	0.0001	(0.1788)
(Wallowa-Whitman	Trails/sqmi	2.896	1.71	(0.1070)
NF)	Picnic/sqmi	120.37	64.26	(0.0757)*
	R1	1.524	0.77	(0.0626)*
WLS (2) whites	R2	2.389	0.76	(0.0054)**
Weight var=	R3	2.868	0.68	(0.0005)**
1/(w+1)	R4	1.443	0.91	(0.1284)
	R5	2.63	0.73	(0.0018)**

adjR: 0.3545 p: (0.0246)				
Dropping obs 26 &	NFArea	0.0002	0.0001	(0.0545)*
30	Trails/sqmi	3.256	1.579	(0.0532)*
WLS (2) whites	Picnic/sqmi	150.81	59.43	(0.0201)**
Weight var=	R1	1.623	0.778	(0.0508)*
1/(w+1)	R2	2.55	0.775	(0.0038)*
adiD: 0.4616	R3	3.072	0.701	(0.0003)**
n: (0.0071)	R4	1.402	0.913	(0.1411)
p. (0.0071)	R5	2.842	0.738	(0.0011)**

Conclusions:

Dropping observation 26 (Plumas NF) increased the significance of the model to the 5% level (p-(0.0065)). As well, explanatory variables: PG/sqmi and R1 became statistically significant at the 5% level; R2 went from 10% to 5%. Adjusted R increased as well.

Dropping obs 26 seems to significantly improve the model. Whether or not we will continue with this observation is to be discussed with Dr. Loomis and Dr. Koontz.

]	3 19: DUDS DIFFER	ENCE IN BET	AS RES	ULTS			
Obs.	С	NFAREA	TRAILS_SQ_MI	PG_SQ_MI	R1	R2	R3	R4	R5
1	0.048	-0.055	-0.047	0.002	-0.062	-0.002	-0.009	0.034	-0.012
2	0.177	-0.142	-0.180	-0.055	0.187	-0.028	-0.040	0.092	-0.042
3	0.069	-0.102	-0.037	-0.026	0.187	0.010	-0.003	0.056	-0.009
4	0.159	-0.125	-0.116	-0.136	-0.264	-0.016	-0.025	0.074	-0.021
5	0.181	-0.302	-0.333	0.413	-0.091	0.424	-0.060	0.206	-0.110
6	-0.012	-0.003	0.022	0.001	0.002	-0.022	0.006	-0.001	0.005
7	-0.131	0.206	0.073	0.031	-0.013	0.210	0.005	-0.113	0.019
8	-0.122	-0.028	0.311	-0.156	0.063	0.364	0.085	-0.026	0.084
9	-0.162	0.159	-0.037	0.388	-0.090	-0.864	-0.015	-0.066	-0.030
10	-0.132	0.055	0.132	0.106	-0.011	0.035	0.189	-0.040	0.026
11	-0.188	0.153	0.181	0.075	-0.007	0.027	-0.158	-0.097	0.041
12	0.313	0.224	-0.386	-0.551	0.053	-0.202	0.430	-0.086	-0.056
13	-0.065	0.004	0.029	0.149	-0.026	0.017	0.134	-0.001	-0.002
14	0.059	-0.154	-0.065	0.119	-0.019	0.021	-0.176	0.090	-0.025
15	-0.129	0.130	0.096	0.074	-0.014	0.005	-0.192	-0.076	0.020
16	0.071	0.050	-0.106	-0.090	0.003	-0.050	-0.215	-0.016	-0.019
17	0.094	-0.310	0.182	-0.259	0.090	0.112	0.070	0.375	0.055
18	-0.139	-0.016	0.044	0.380	-0.068	0.039	0.021	-0.462	-0.013
19	-0.126	-0.037	0.040	0.371	-0.065	0.042	0.022	0.271	-0.013
20	-0.038	0.325	-0.192	0.081	-0.057	-0.128	-0.077	0.093	-0.046
21	-0.165	0.106	0.196	0.029	0.006	0.039	0.047	-0.077	0.491
22	-0.076	0.077	-0.007	0.161	-0.037	-0.011	-0.005	-0.034	-0.482
23	0.017	-0.016	-0.026	0.014	-0.004	-0.004	-0.006	0.011	0.041
24	-0.031	0.052	0.048	-0.052	0.011	0.000	0.008	-0.034	-0.175
25	-0.053	0.092	0.057	-0.049	0.009	-0.005	0.008	-0.055	0.195
26	-0.280	-0.469	0.103	-0.394	0.893	0.912	0.935	0.878	0.858
27	0.333	-0.162	-0.209	-0.108	-0.159	-0.211	-0.240	-0.041	-0.226
28	0.097	-0.016	0.028	-0.042	-0.127	-0.133	-0.149	-0.115	-0.137
29	0.033	-0.031	-0.129	-0.155	0.173	0.116	0.137	0.158	0.140
30	0.328	0.145	0.178	-0.331	-0.496	-0.579	-0.612	-0.589	-0.533
Observ	vations 26	(Fremont-Win	nema NF) and 30 (Wal	lowa-Whitman N	NF) may t	be probler	natic and	models w	vill be

reestimated without them. Due to only region dummies being affected these observations may not be considered

outliers.

	B 20: OUDS DIFFERENCE IN BETA RESULTS									
Obs.	С	CG_SQ_ MI	TRAILS_SQ _MI	NFARE A	NP	R1	R2	R3	R4	R5
1	-0.028	0.005	0.023	0.030	0.027	0.034	0.001	0.007	-0.021	0.003
2	0.116	0.183	-0.328	-0.172	-0.082	0.321	-0.039	-0.018	0.197	-0.162
3	-0.202	0.130	0.048	0.240	0.119	-0.351	-0.020	0.048	-0.102	-0.052
4	0.000	-0.040	0.044	0.020	-0.028	0.092	0.003	-0.006	-0.024	0.029
5	0.058	-0.010	-0.068	-0.077	0.064	0.002	0.081	-0.011	0.033	-0.010
6	0.255	-0.185	-0.209	-0.023	-0.180	-0.073	0.243	-0.132	0.004	0.049
7	-0.100	0.094	0.015	0.118	-0.049	0.008	0.105	0.024	-0.022	-0.042
8	0.113	-0.039	-0.192	-0.010	0.089	-0.019	-0.235	-0.059	-0.001	-0.020
9	-0.041	0.133	-0.054	0.051	-0.261	-0.004	-0.354	0.009	0.067	-0.077
10	-0.477	0.502	0.219	0.204	-0.163	0.097	0.098	0.597	0.065	-0.204
11	0.042	-1.210	1.098	0.369	0.422	-0.129	0.088	-1.056	-0.777	0.837
12	-0.026	0.027	0.026	-0.023	0.024	0.012	0.018	-0.030	0.014	-0.009
13	-0.109	0.060	0.050	-0.054	0.478	0.062	0.037	0.461	-0.038	-0.020
14	0.017	0.163	-0.135	-0.207	0.113	0.044	0.028	-0.193	0.154	-0.112
15	-0.182	0.195	0.076	0.183	-0.308	0.008	0.011	-0.211	0.014	-0.080
16	0.210	-0.393	0.372	-0.328	-0.295	-0.046	0.135	0.487	0.041	0.270
17	0.063	-0.127	0.156	-0.197	0.033	0.006	0.076	0.016	0.190	0.093
18	-0.034	0.039	-0.004	-0.007	0.103	0.017	0.006	0.020	-0.104	-0.020
19	0.067	-0.123	0.017	0.025	-0.042	-0.029	-0.018	-0.043	-0.167	0.066
20	-0.030	0.028	-0.161	0.254	0.077	-0.022	-0.105	-0.048	0.069	-0.044
21	-0.248	0.249	0.047	0.124	0.188	0.063	0.024	0.103	-0.017	0.075
22	-0.297	0.408	-0.098	0.159	0.255	0.085	-0.007	0.121	0.024	-0.600
23	0.069	-0.062	-0.043	-0.052	0.074	-0.007	-0.011	-0.024	-0.002	0.108
24	0.033	-0.110	0.053	0.012	0.055	-0.014	-0.002	-0.021	-0.057	-0.031
25	0.016	-0.137	0.110	0.099	-0.126	-0.035	-0.007	-0.034	-0.086	0.300
26	-0.116	0.079	0.013	-0.074	-0.145	0.190	0.217	0.221	0.232	0.121
27	1.118	0.007	-0.867	-0.617	-0.426	-0.825	-0.903	-1.025	-0.133	-0.853
28	-0.022	-0.033	-0.020	-0.008	-0.098	0.103	0.114	0.107	0.110	0.118
29	-0.042	-0.057	-0.198	-0.002	0.149	0.260	0.215	0.240	0.209	0.235
30	-0.011	0.001	-0.010	-0.009	0.014	0.029	0.028	0.030	0.027	0.022
Observa without outliers	ations 11 them. Du	(Carson NF le to only re) and 27(Ocho gion dummies	co NF) ma being aff	ay be pro ected the	blematic se observ	and mode ations ma	els will be ay not be	e reestima considere	ated ed

		B 21:0	GFA DIFFE	ERENCE IN BI	ETA RES	ULTS			
Obs.	С	TRAILS_SQ_	NFARE A	PROXMETR	R1	R2	R3	R4	R5
1	-0.229	0.181	0.254	0.078	0.270	-0.010	0.057	-0.156	0.062
2	-0.433	0.409	0.372	0.154	-0.449	0.024	0.137	-0.246	0.132
3	0.006	-0.012	-0.023	0.012	0.053	0.000	0.003	0.013	-0.001
4	-0.019	0.049	0.030	-0.026	0.122	0.012	0.002	-0.021	0.008
5	0.002	-0.228	-0.117	0.240	0.011	0.135	0.032	0.082	-0.015
6	-0.055	0.050	0.005	0.043	0.009	-0.069	0.029	-0.010	0.020
7	0.352	0.349	0.154	-0.906	-0.075	0.695	-0.240	-0.100	-0.073
8	0.262	-0.259	-0.059	-0.171	-0.041	-0.287	-0.127	0.065	-0.094
9	0.063	0.006	-0.014	-0.096	-0.009	-0.169	-0.032	0.009	-0.016
10	-0.005	0.007	0.002	0.001	0.001	0.002	0.011	-0.002	0.002
11	0.229	-0.190	-0.195	-0.103	-0.016	-0.002	0.160	0.126	-0.067
12	-0.072	0.218	-0.212	0.049	0.043	0.108	-0.273	0.084	0.059
13	-0.413	-0.047	0.062	0.648	0.061	-0.112	0.805	-0.042	0.104
14	0.185	-0.075	-0.260	-0.091	0.001	0.046	-0.251	0.147	-0.038
15	-0.122	0.208	0.211	-0.086	-0.004	0.029	-0.423	-0.133	0.039
16	0.161	0.206	-0.196	-0.313	0.001	0.148	0.208	0.086	-0.008
17	-0.013	-0.055	0.070	0.028	-0.008	-0.036	-0.010	-0.091	-0.007
18	-0.111	-0.025	-0.070	0.230	0.028	-0.022	0.080	-0.649	0.034
19	-0.029	-0.007	-0.077	0.091	0.015	0.003	0.037	0.258	0.013
20	-0.233	-0.838	1.290	0.353	-0.141	-0.590	-0.205	0.335	-0.122
21	-0.135	0.076	0.083	0.105	0.013	-0.008	0.052	-0.055	0.267
22	0.185	0.045	-0.055	-0.296	-0.024	0.064	-0.088	0.030	-0.474
23	0.185	-0.180	-0.154	-0.065	-0.014	-0.013	-0.060	0.103	0.297
24	-0.210	0.019	0.155	0.229	0.016	-0.058	0.075	-0.089	-0.208
25	-0.025	0.027	0.042	-0.005	-0.001	0.000	0.002	-0.025	0.084
26	0.042	0.142	-0.301	-0.369	0.390	0.543	0.353	0.476	0.370
27	0.362	-0.253	-0.197	-0.054	-0.250	-0.254	-0.322	-0.059	-0.313
28	0.149	0.077	0.013	0.107	-0.441	-0.441	-0.434	-0.400	-0.434
29	-0.073	-0.114	0.025	0.073	0.127	0.079	0.135	0.109	0.122
30	-0.093	-0.076	-0.045	0.069	0.184	0.154	0.201	0.181	0.179
Observati reestimate considere	ions 26 (H ed withou d outliers	Fremont- Winem at them. Due to o S.	a NF) and 2 only region	28 (Okanogan N dummies being	NF) may t affected	be problem these obs	matic and ervations	models may not	will be be

	B 22: W	ILDERNESS DIFFE	ERENCE IN BETA RES	ULTS WILDERNESS
Obs.	С	WILDTRAILS	WILDSTATEHIGH	WILDSUBSTITUTES_WI100M
1	-0.0903	0.0082	0.0544	0.0261
2	-0.0107	0.0088	-0.0335	0.0073
3	-0.1656	0.1097	0.0681	0.0247
4	0.1275	-0.0654	-0.0418	-0.0635
5	0.2889	-0.2253	0.5500	-0.2066
6	0.2028	-0.1366	-0.0763	-0.0446
7	-0.0671	0.1998	-0.0885	0.1217
8	0.0395	0.0430	-0.0658	0.0388
9	0.0565	-0.2835	-0.5097	0.1958
10	-0.0867	0.0745	0.0849	-0.1202
11	0.0042	-0.0188	0.0650	0.0124
12	0.1846	-0.0441	-0.1128	-0.0218
13	0.0182	0.3234	-0.1796	0.0542
14	0.0364	-0.2895	0.0572	0.0994
15	0.0144	-0.0103	-0.0097	0.0075
16	0.0303	-0.0869	-0.0410	0.1312
17	-0.0864	0.0561	0.0330	0.0200
18	0.1226	-0.7966	0.0999	0.3677
19	0.2439	-0.1425	-0.1052	-0.0446
20	0.3150	0.0154	0.0114	-0.6084
21	0.0925	-0.0451	-0.1338	-0.0929
22	-0.0392	-0.1019	0.0712	0.0089
23	-0.0504	0.0431	0.0210	-0.0033
24	-0.0663	0.0470	0.0231	0.0164
25	0.0802	0.1573	-0.0950	-0.0839
26	-0.4439	0.3451	0.2223	-0.0797
27	-0.3982	0.3367	0.1550	0.0046
28	0.0093	0.0481	-0.0165	-0.0277
29	-0.1094	-0.0075	0.0545	0.0766
30	0.0365	0.1292	-0.0443	-0.0951
No Outliers	are Identifie	ed		

Comparing Forecast Accuracy Amongst Models

Two adjustment methods to address log transformation bias were compared for their ability to improve predictive power. θ adjustment assumes normally distributed error terms, where α does not and is known as a smearing estimate. The following derivations to correct for log transformation bias come from *Introductory Econometrics: A Modern Approach* (Wooldridge, 2000 p. 212).

1.
$$\hat{y} = \hat{\alpha} \exp(i\hat{n}y)$$
 where $\hat{\alpha} = n^{-1} \sum_{i=1}^{n} \exp(\hat{u}_i)$

2.
$$\hat{y} = \hat{\theta} \exp((\widehat{lny}))$$
 where $\hat{\theta} = \exp(\sigma^2/2)$

		B 23: WIL	DERNESS MOD	ELS		
Candidate Model	Estimate	α transformation	θ transformation	No Transformation	Actual	MAPE
	9.71	34046.58	38246.98	16436.9	44371	
	9.09	18410.68	20682.05	8888.26	6192	
	10.36	65546.06	73632.62	31644.1	225223	
	9.17	19933.18	22392.38	9623.28	28218	a 0 6023
α=2.0713	10.41	68961.84	77469.81	33293.2	151837	0.0923
θ=2.3269	9.10	18492.12	20773.54	8927.57	3515	0,0.0012
	10.13	51842.53	58238.45	25028.4	32380	110, 0.708
	9.24	21356.70	23991.52	10310.5	6285	
	9.11	18670.07	20973.44	9013.49	5160	
	8.84	14306.65	16071.70	6906.92	1402	
Candidate WLS	Estimate	a transformation	θ	No	Actual	ΜΔΡΕ
Model	Listillate	u transformation	transformation	Transformation	Actual	
	9.73	34124.77	31601.60	27576.85	44371	
	9.13	18712.94	17329.31	3017.38	6192	
	10.37	64961.88	60158.64	193252.68	225223	
$\alpha = 2.0310$	9.21	20249.74	18752.49	18252.30	28218	a 0 6961
A = 1.8817	10.42	68381.49	63325.40	118183.76	151837	0.0001
0-1.0017	9.14	18858.37	17464.00	5765.95	3515	0, 0.7023
	10.14	51301.05	47507.88	7132.71	32380	110, 0.7082
	9.28	21737.73	20130.46	4413.00	6285	
	9.14	19010.04	17604.45	4195.60	5160	
	8.88	14645.96	13563.05	5805.86	1402	

		В	24: DUDS MOD	ELS		
Candidate	Estimate	α	θ	No	A	MADE
Model	Estimate	transformation	transformation	Transformation	Actual	MAPE
	11.590	159602	203088	22371	85736	
	13.021	667329	849154	136731	315290	
	12.884	582152	740770	385248	9077	
-1 476	12.735	501549	638205	201425	138303	α, 1.65
$\alpha = 1.4/6$	12.951	622229	791767	378769	800242	θ, 2.07
$\theta = 1.8/8$	11.970	233318	296890	144315	13725	no, 1.171
	12.631	451697	574769	292779	13181	
	11.995	239261	304452	129263	32802	
	9.3523	17015	21651	3166	14692	
	9.9704	31571	40174	13688	35074	
Candidata and 20	Estimate	α	θ	No	Actual	MADE
Candidate wo 50		transformation	transformation	Transformation		MAPE
	11.39	127130	157973	88538	85736	
	13.12	717248	891258	499520	315290	
	12.7	506533	629422	352770	9077	
	12.88	564877	701919	393402	138303	
	13.028	653338	811842	455010	800242	
	12.20	285995	355379	199178	13725	α,1.745
α=1.43	12.79	517781	643398	360603	13181	θ,2.14
θ=1.784	12.14	271347	337177	188976	32802	no,1.26
	8.970	11299	14040	7869	14692	
	9.68	23196	28823	16154	35074	
					4 . 1	
Candidate wo26	Estimate	α	θ	No	Actual	MAPE
Model	11 200 65	transformation	transformation	Transformation	05726	
	11.38065	122846	14/853	8/610	85736	
	12.9/17/	603079	725845	430097	315290	
	12.72682	472059	568155	336658	9077	
	12.77791	496799	597930	354302	138303	
α=1.402191	13.13176	70/717	851785	504722	800242	α,1.529
$\theta = 1.687629$	11.89134	204714	246387	145996	13725	θ.1.895
	12.63061	428756	516036	305775	13181	no,1.146
	12.14483	263777	317473	188118	32802	,
	9.854071	26691	32125	19035	14692	
	10.56925	54572	65681	38919	35074	
Candidate wo	Estimate	α	θ	No	Actual	MADE
both		transformation	transformation	Transformation		MAPE
	11.26478	108551	129623	78024	85736	
	13.05117	647813	773568	465638	315290	
	12.66786	441552	527267	317381	9077	
-1 201226	12.87856	545118	650937	391822	138303	α, 1.529
$\alpha = 1.391236$	13.16241	724043	864595	520431	800242	θ, 1.895
0=1.001305	12.07021	242900	290052	174593	13725	no, 1.146
	12.74996	479333	572382	344537	13181	
	12.23572	286618	342257	206017	32802	
	9.507715	18730	22366	13463	14692	
	10.28286	40662	48555	29227	35074	

Candidate WLS Model	Estimate	α transformation	θ transformation	No Transformation	Actual	MAPE
Model	11.62193	164212	184135	111516	05506	
	12.95658	623792	699473	423616	85736	
	12.87064	572419	641867	388729	315290	
	12.69253	479028	537146	325307	9077	1.500
α=1.472539	12.92978	607294	680973	412412	138303	α, 1.589
θ=1.651193	11.91783	220757	247540	149915	800242	θ, 1.764
	12.59038	432515	484989	293720	13725	no, 1.129
	11.97279	233229	261525	158386	13181	
	9.377129	17398	19508	11815	32802	
	9.965727	31342	35144	21284	14692	
					35074	
Candidate wo 30	Estimate	α	θ	No	Actual	MADE
WLS Model	Estimate	transformation	transformation	Transformation	Actual	MALE
	11 41647	130135	143001	00805		
	13.06700	678033	750222	473111	85736	
	12 75894	498222	551267	3/76/5	315290	
	12.73094	544234	602178	270750	9077	
$\alpha = 1.422126$	12.04727	639157	707207	<i>445085</i>	138303	α, 1.69
$\mu = 1.433130$ $\mu = 1.585710$	12 17473	277782	307357	103828	800242	θ, 1.85
0-1.363719	12.17473	506805	560762	252622	13725	no, 1.231
	12.77002	266165	294503	185722	13181	
	8 000555	11607	1284303	8000	32802	
	0.604604	23261	25738	16231	14692	
	9.094094		25758	10231	35074	
Can di data ana			0	Na		
Candidate wo	Estimate	a transformation	U transformation	NO Transformation	Actual	MAPE
20 W LS Model	11 41000	127872	transformation	Transformation		
	11.41909	560780	138272	91043	95726	
	12.91331	J09780 460735	616120	405674	315200	
	12.72022	409733	507938	334443	0077	
	12.75007	686147	516359	339988	138303	a 1/12
α=1.404528	11 86860	200464	741950	488525	800242	0, 1.412 A 1 510
$\theta = 1.518756$	12 61284	<i>1</i> 21905	216767	142727	13725	0, 1.519
	12.01204	256256	456218	300389	13181	110, 1.05
	9 855502	250250	277097	182450	32802	
	10 53818	52991	28951	19062	1/692	
	10.55010	52771	57301	37728	35074	
					55071	
Candidate wo	E.C.	α	θ	No	A . 1	MADE
bothWLS Model	Estimate	transformation	transformation	Transformation	Actual	MAPE
	11.29661	112169	120779	80547	05726	
	13.00009	616151	663448	442453	85/50	
	12.65914	438142	471774	314626	315290	
	12.84382	527013	567467	378444	9077	a 1 501
α=1.392578	13.13316	703849	757878	505428	136303	0, 1.301
θ=1.499475	12.06339	241480	260017	173405	000242	0, 1.009
	12.74557	477693	514362	343028	13/23	110, 1.12
	12.21131	279978	301469	201050	13181	
	9.513612	18859	20307	13542	32002	
	10.26133	39834	42892	28604	14092	
					33074	

		B 25: C	OUDS MODELS			
Candidate Model	Estimate	α	θ	No	Actual	MAPE
		transformation	transformation	Transformation		
α= 1.140189	10.51713	42122.03	45198	36943.03	59660	
$\theta = 1.223452$	11.94533	175697.7	188528.1	154095.3	30097	
	11.91346	170187.3	182615.2	149262.3	51723	
	11.11221	76374.3	81951.56	66983.9	32621	α, 0.986
	11.37112	98944.02	106169.4	86778.62	945678	θ, 1.001
	9.935017	23534.22	25252.82	20640.63	56491	no, 0.964
	10.30826	34182.06	36678.22	29979.3	10966	
	9.277416	12192.91	13083.3	10693.76	16991	
	9.542793	15898.62	17059.62	13943.85	54984	
	10.19468	30512.06	32740.21	26760.53	31251	
Candidate wo 10	Estimate	α	θ	No	Actual	
Model		transformation	transformation	Transformation		MAPE
α= 1.138298	10.45343	39457	41937	34663	59660	
$\theta = 1.20984$	11.74021	142878	151858	125519	30097	
	11.87257	163098	173349	143282	51723	0.0.00
	11.03621	70668	75109	62082	32621	α, 0.960
	11.23399	86122	91535	75659	945678	$\theta, 0.973$
	9.917357	23084	24535	20279	56491	no,0.939
	10.29961	33832	35958	29721	10966	
	9.50762	15324	16287	13462	16991	
	9.605941	16907	17969	14853	54984	
	10.26372	32639	34690	28673	31251	
Candidate wo 27	Estimate	α	θ	No	Actual	MADE
Model		transformation	transformation	Transformation		MAL
α= 1.117	10.65	47186	50284	42247	59660	
$\theta = 1.190$	11.99	180079	191900	161230	30097	
	12.21	224993	239762	201443	51723	
	11.10	73571	78401	65871	32621	α, 1.048
	11.34	93730	99883	83919	945678	θ,1.063
	9.66	17504	18653	15672	56491	no, 1.022
	10.20	29982	31950	26843	10966	
	9.04	9431	10050	8444	16991	
	9.00	9041	9635	8095	54984	
	9.77	19551	20834	17504	31251	
Candidate wo both	Estimate	α	θ	No	Actual	
WLS Model	_~	transformation	transformation	Transformation		MAPE
α= 1.116	10.587	44188	46691	39607	59660	
θ= 1.179	11.800	148716	157139	133300	30097	
	12.162	213543	225637	191406	51723	α, 1.018
	11.026	68592	72476	61481	32621	θ, 1.030
	11.213	82683	87366	74112	945678	no, 0.996
	9.656	17420	18406	15614	56491	
	10.195	29861	31552	26765	10966	
	9.263	11761	12427	10542	16991	
	9.082	9809	10364	8792	54984	
	9.853	21210	22412	19012	31251	

Candidate WLS	Estimate	α	θ	No	Actual	MAPE
Model		transformation	transformation	Transformation		
$\alpha = 1.130$	10.61	45701	47137	40440	59660	α, 1.018
θ= 1.166	11.83	154755	159619	136943	30097	θ, 1.024
	12.13	210186	216792	185993	51723	no, 0.993
	11.06	71547	73795	63311	32621	
	11.25	86881	89612	76881	945678	
	9.69	18208	18780	16112	56491	
	10.21	30689	31653	27157	10966	
	9.23	11580	11944	10247	16991	
	9.08	9957	10270	8811	54984	
	9.85	21337	22008	18881	31251	
Candidate wo 10	Estimate	α	θ	No	Actual	MAPE
WLS Model		transformation	transformation	Transformation		
α= 1.131	10.45	39248	40138	34696	59660	α, 0.956
$\theta = 1.157$	11.77	145568	148869	128683	30097	θ, 0.961
	11.84	156515	160064	138360	51723	no, 0.938
	11.07	72467	74111	64062	32621	
	11.27	89040	91059	78711	945678	
	9.96	23873	24415	21104	56491	
	10.32	34300	35078	30322	10966	
	9.49	14913	15252	13184	16991	
	9.61	16858	17240	14902	54984	
	10.25	32112	32840	28387	31251	
Candidate wo 27	Estimate	α	θ	No	Actual	MAPE
WLS Model		transformation	transformation	Transformation		
α= 1.105	10.67	47623	49197	43100	59660	α, 1.042
$\theta = 1.141$	12.02	182566	188598	165226	30097	θ, 1.050
	12.19	216562	223717	195992	51723	no, 1.020
	11.13	75401	77892	68239	32621	
	11.38	96316	99498	87167	945678	
	9.69	17841	18431	16147	56491	
	10.21	30005	30997	27155	10966	
	9.01	9060	9359	8199	16991	
	9.00	8964	9260	8112	54984	
	9.77	19271	19908	17441	31251	
Candidate WLS	Estimate	α	θ	No	Actual	MAPE
Model		transformation	transformation	Transformation		
$\alpha = 1.106$	10.52	40847	41882	36921	59660	α, 0.979
$\theta = 1.134$	11.97	174544	178967	157768	30097	θ, 0.983
	11.88	159661	163707	144316	51723	no, 0.962
	11.15	77029	78981	69625	32621	
	11.41	100139	102677	90515	945678	
	9.97	23740	24341	21458	56491	
	10.33	33740	34595	30497	10966	
	9.25	11558	11851	10447	16991	
	9.55	15475	15867	13987	54984	
	10.19	29399	30144	26574	31251	

	B 26: GFA MODELS						
Candidate Model	Estimate	α transformation	θ	No	Actual	MAPE	
			transformation	Transformation			
a= 1.273	12.48	013705	1020603	718037	183633	a 1.416	
u = 1.273 u = 1.422	13.40	2660067	1020093	2008200	206527	0, 1.410	
0-1.422	14.30	2009907	2982003	2098200	568253	0, 1.342	
	14./1	5124415	252202	2433327	5106205	110, 1.197	
	12.09	223047	232292	177462	2104000		
	12.09	202975	228220	39/40/ 229015	3194990		
	12.38	302873	006004	238013	702604		
	13.43	000000	980804	094197	103004		
	12.57	300/80	409734	288240	122030		
	11.90	180038	208514	140080	194758		
	12.31	281415	514507	221150	215155		
Candidate WO 2	Estimate	α transformation	θ	No	Actual	MAPE	
Model			transformation	Transformation			
α= 1.272	13.65	1073593	1199861	843945	183633	α, 1.405	
θ= 1.422	14.58	2719652	3039515	2137902	306527	θ, 1.532	
	14.57	2714692	3033972	2134003	568253	no, 1.180	
	12.13	235140	262795	184842	510610	-	
	12.91	516813	577596	406264	3194990		
	12.54	354282	395950	278499	772583		
	13.55	971544	1085809	763725	703604		
	12.65	398567	445443	313311	122030		
	12.05	218466	244160	171735	194758		
	12.50	339818	379785	267129	215155		
Candidate WO	Estimate	α transformation	θ	No	Actual	MAPE	
28 Model			transformation	Transformation			
$\alpha = 1.256$	13.46	879508	981148	700307	183633	α. 1.393	
$\theta = 1.401$	14.57	2675557	2984758	2130408	306527	θ 1 510	
0 1.101	14.69	3000229	3346952	2388928	568253	no. 1.197	
	12.07	219177	244507	174520	510610		
	12.92	512735	571989	408264	3194990		
	12.52	297874	332298	237182	772583		
	13.48	895350	998821	712921	703604		
	12.56	359462	401003	286221	122030		
	11.67	147618	164677	117540	194758		
	12.11	228195	254566	181700	215155		
	12.11	220170	201000	101700	210100		
Candidate WO	Estimate	α transformation	θ	No	Actual	MAPE	
BOTH Model			transformation	Transformation			
α= 1.252	13.63	1038394	1159072	829378	183633	α, 1.372	
$\theta = 1.398$	14.59	2721579	3037869	2173756	306527	θ, 1.488	
	14.54	2578863	2878568	2059768	568253	no, 1.173	
	12.11	227929	254418	182049	510610		
	12.94	523455	584289	418090	3194990		
	12.54	350247	390951	279746	772583		
	13.58	987565	1102336	788780	703604		
	12.65	391118	436572	312390	122030		
	11.83	172600	192659	137858	194758		
	12.30	275917	307983	220378	215155		

Candidate WLS	Estimate	α transformation	θ	No	Actual	MAPE
Model			transformation	Transformation		
α= 1.264	13.45	872736	893932	690409	183633	α, 1.378
θ= 1.295	14.54	2606206	2669502	2061733	306527	θ, 1.402
	14.68	3009552	3082644	2380814	568253	no, 1.173
	12.14	235802	241529	186540	510610	
	12.95	532756	545695	421456	3194990	
	12.38	302296	309637	239142	772583	
	13.45	875802	897073	692835	703604	
	12.60	373273	382338	295291	122030	
	11.88	181848	186265	143857	194758	
	12.29	273721	280369	216537	215155	
Candidate WO 2	Estimate	α transformation	θ	No	Actual	MAPE
WLS Model			transformation	Transformation		
$\alpha = 1.262$	13.62	1035026	1060849	820362	183633	α, 1.366
$\theta = 1.293$	14.56	2652219	2718391	2102150	306527	θ, 1.392
	14.54	2605162	2670160	2064853	568253	no, 1.157
	12.18	245231	251350	194370	510610	, . <u>.</u>
	12.97	543425	556983	430719	3194990	
	12.54	354086	362921	280649	772583	
	13.55	962772	986793	763094	703604	
	12.68	406736	416883	322379	122030	
	12.04	213058	218373	168869	194758	
	12.48	330917	339174	262285	215155	
Candidate Model	Estimate	α transformation	θ	No	Actual	MAPE
Candidate Model	Estimate	α transformation	θ transformation	No Transformation	Actual	MAPE
Candidate Model $\alpha = 1.238$	Estimate 13.42	α transformation 835449	θ transformation 865935	No Transformation 674827	Actual 183633	MAPE α, 1.349
Candidate Model $\alpha = 1.238$ $\theta = 1.283$	Estimate 13.42 14.55	α transformation 835449 2586606	θ transformation 865935 2680993	No Transformation 674827 2089309	Actual 183633 306527	MAPE α, 1.349 θ, 1.385
Candidate Model $\alpha = 1.238$ $\theta = 1.283$	Estimate 13.42 14.55 14.66	α transformation 835449 2586606 2878814	θ transformation 865935 2680993 2983865	No Transformation 674827 2089309 2325337	Actual 183633 306527 568253	MAPE α, 1.349 θ, 1.385 no, 1.172
Candidate Model $\alpha = 1.238$ $\theta = 1.283$	Estimate 13.42 14.55 14.66 12.12	α transformation 835449 2586606 2878814 227687	θ transformation 865935 2680993 2983865 235995	No Transformation 674827 2089309 2325337 183912	Actual 183633 306527 568253 510610	MAPE α, 1.349 θ, 1.385 no, 1.172
Candidate Model $\alpha = 1.238$ $\theta = 1.283$	Estimate 13.42 14.55 14.66 12.12 12.97	α transformation 835449 2586606 2878814 227687 534163	θ transformation 865935 2680993 2983865 235995 553655	No Transformation 674827 2089309 2325337 183912 431466	Actual 183633 306527 568253 510610 3194990	MAPE α, 1.349 θ, 1.385 no, 1.172
Candidate Model $\alpha = 1.238$ $\theta = 1.283$	Estimate 13.42 14.55 14.66 12.12 12.97 12.38	α transformation 835449 2586606 2878814 227687 534163 295423	θ transformation 865935 2680993 2983865 235995 553655 306203	No Transformation 674827 2089309 2325337 183912 431466 238625	Actual 183633 306527 568253 510610 3194990 772583	MAPE α, 1.349 θ, 1.385 no, 1.172
Candidate Model $\alpha = 1.238$ $\theta = 1.283$	Estimate 13.42 14.55 14.66 12.12 12.97 12.38 13.47	α transformation 835449 2586606 2878814 227687 534163 295423 878298	θ transformation 865935 2680993 2983865 235995 553655 306203 910348	No Transformation 674827 2089309 2325337 183912 431466 238625 709438	Actual 183633 306527 568253 510610 3194990 772583 703604	MAPE α, 1.349 θ, 1.385 no, 1.172
Candidate Model α = 1.238 θ = 1.283	Estimate 13.42 14.55 14.66 12.12 12.97 12.38 13.47 12.59	α transformation 835449 2586606 2878814 227687 534163 295423 878298 363492	θ transformation 865935 2680993 2983865 235995 553655 306203 910348 376756	No Transformation 674827 2089309 2325337 183912 431466 238625 709438 293608	Actual 183633 306527 568253 510610 3194990 772583 703604 122030	MAPE α, 1.349 θ, 1.385 no, 1.172
Candidate Model α = 1.238 θ = 1.283	Estimate 13.42 14.55 14.66 12.12 12.97 12.38 13.47 12.59 11.69	α transformation 835449 2586606 2878814 227687 534163 295423 878298 363492 147593	θ transformation 865935 2680993 2983865 235995 553655 306203 910348 376756 152979	No Transformation 674827 2089309 2325337 183912 431466 238625 709438 293608 119217	Actual 183633 306527 568253 510610 3194990 772583 703604 122030 194758	MAPE α, 1.349 θ, 1.385 no, 1.172
Candidate Model α = 1.238 θ = 1.283	Estimate 13.42 14.55 14.66 12.12 12.97 12.38 13.47 12.59 11.69 12.12	α transformation 835449 2586606 2878814 227687 534163 295423 878298 363492 147593 226991	θ transformation 865935 2680993 2983865 235995 553655 306203 910348 376756 152979 235275	No Transformation 674827 2089309 2325337 183912 431466 238625 709438 293608 119217 183350	Actual 183633 306527 568253 510610 3194990 772583 703604 122030 194758 215155	MAPE α, 1.349 θ, 1.385 no, 1.172
Candidate Model α= 1.238 θ= 1.283 Candidate WLS	Estimate 13.42 14.55 14.66 12.12 12.97 12.38 13.47 12.59 11.69 12.12 Estimate	α transformation 835449 2586606 2878814 227687 534163 295423 878298 363492 147593 226991 α transformation	θ transformation 865935 2680993 2983865 235995 553655 306203 910348 376756 152979 235275 θ	No Transformation 674827 2089309 2325337 183912 431466 238625 709438 293608 119217 183350 No	Actual 183633 306527 568253 510610 3194990 772583 703604 122030 194758 215155 Actual	MAPE α, 1.349 θ, 1.385 no, 1.172 MAPE
Candidate Model α = 1.238 θ = 1.283 Candidate WLS Model	Estimate 13.42 14.55 14.66 12.12 12.97 12.38 13.47 12.59 11.69 12.12 Estimate	α transformation 835449 2586606 2878814 227687 534163 295423 878298 363492 147593 226991 α transformation	θ transformation 865935 2680993 2983865 235995 553655 306203 910348 376756 152979 235275 θ transformation	No Transformation 674827 2089309 2325337 183912 431466 238625 709438 293608 119217 183350 No Transformation	Actual 183633 306527 568253 510610 3194990 772583 703604 122030 194758 215155 Actual	MAPE α, 1.349 θ, 1.385 no, 1.172 MAPE
Candidate Model $\alpha = 1.238$ $\theta = 1.283$ Candidate WLS Model $\alpha = 1.231$	Estimate 13.42 14.55 14.66 12.12 12.97 12.38 13.47 12.59 11.69 12.12 Estimate 13.60	α transformation 835449 2586606 2878814 227687 534163 295423 878298 363492 147593 226991 α transformation 994083	θ transformation 865935 2680993 2983865 235995 553655 306203 910348 376756 152979 235275 θ transformation 1032693	No Transformation 674827 2089309 2325337 183912 431466 238625 709438 293608 119217 183350 No Transformation 807275	Actual 183633 306527 568253 510610 3194990 772583 703604 122030 194758 215155 Actual 183633	MAPE α, 1.349 θ, 1.385 no, 1.172 MAPE α, 1.329
Candidate Model $\alpha = 1.238$ $\theta = 1.283$ Candidate WLS Model $\alpha = 1.231$ $\theta = 1.279$	Estimate 13.42 14.55 14.66 12.12 12.97 12.38 13.47 12.59 11.69 12.12 Estimate 13.60 14.57	α transformation 835449 2586606 2878814 227687 534163 295423 878298 363492 147593 226991 α transformation 994083 2626387	θ transformation 865935 2680993 2983865 235995 553655 306203 910348 376756 152979 235275 θ transformation 1032693 2728395	No Transformation 674827 2089309 2325337 183912 431466 238625 709438 293608 119217 183350 No Transformation 807275 2132836	Actual 183633 306527 568253 510610 3194990 772583 703604 122030 194758 215155 Actual 183633 306527	MAPE α, 1.349 θ, 1.385 no, 1.172 MAPE α, 1.329 θ, 1.366
Candidate Model α = 1.238 θ = 1.283 Candidate WLS Model α = 1.231 θ = 1.279	Estimate 13.42 14.55 14.66 12.12 12.97 12.38 13.47 12.59 11.69 12.12 Estimate 13.60 14.57 14.51	α transformation 835449 2586606 2878814 227687 534163 295423 878298 363492 147593 226991 α transformation 994083 2626387 246682	θ transformation 865935 2680993 2983865 235995 553655 306203 910348 376756 152979 235275 θ transformation 1032693 2728395 2562487	No Transformation 674827 2089309 2325337 183912 431466 238625 709438 293608 119217 183350 No Transformation 807275 2132836 2003143	Actual 183633 306527 568253 510610 3194990 772583 703604 122030 194758 215155 Actual 183633 306527 568253	MAPE α, 1.349 θ, 1.385 no, 1.172 MAPE α, 1.329 θ, 1.366 no, 1.150
Candidate Model α = 1.238 θ = 1.283 Candidate WLS Model α = 1.231 θ = 1.279	Estimate 13.42 14.55 14.66 12.12 12.97 12.38 13.47 12.59 11.69 12.12 Estimate 13.60 14.57 14.51 12.16	α transformation 835449 2586606 2878814 227687 534163 295423 878298 363492 147593 226991 α transformation 994083 2626387 2466682 236299	θ transformation 865935 2680993 2983865 235995 553655 306203 910348 376756 152979 235275 θ transformation 1032693 2728395 2562487 245477	No Transformation 674827 2089309 2325337 183912 431466 238625 709438 293608 119217 183350 No Transformation 807275 2132836 2003143 191894	Actual 183633 306527 568253 510610 3194990 772583 703604 122030 194758 215155 Actual 183633 306527 568253 510610	MAPE α, 1.349 θ, 1.385 no, 1.172 MAPE α, 1.329 θ, 1.366 no, 1.150
Candidate Model α = 1.238 θ = 1.283 Candidate WLS Model α = 1.231 θ = 1.279	Estimate 13.42 14.55 14.66 12.12 12.97 12.38 13.47 12.59 11.69 12.12 Estimate 13.60 14.57 14.51 12.16 13.00	α transformation 835449 2586606 2878814 227687 534163 295423 878298 363492 147593 226991 α transformation 994083 2626387 2466682 236299 543852	θ transformation 865935 2680993 2983865 235995 553655 306203 910348 376756 152979 235275 θ transformation 1032693 2728395 2562487 245477 564975	No Transformation 674827 2089309 2325337 183912 431466 238625 709438 293608 119217 183350 No Transformation 807275 2132836 2003143 191894 441652	Actual 183633 306527 568253 510610 3194990 772583 703604 122030 194758 215155 Actual 183633 306527 568253 510610 3194990	MAPE α, 1.349 θ, 1.385 no, 1.172 MAPE α, 1.329 θ, 1.366 no, 1.150
Candidate Model α = 1.238 θ = 1.283 Candidate WLS Model α = 1.231 θ = 1.279	Estimate 13.42 14.55 14.66 12.12 12.97 12.38 13.47 12.59 11.69 12.12 Estimate 13.60 14.57 14.51 12.16 13.00 12.55	α transformation 835449 2586606 2878814 227687 534163 295423 878298 363492 147593 226991 α transformation 994083 2626387 2466682 236299 543852 347198	θ transformation 865935 2680993 2983865 235995 553655 306203 910348 376756 152979 235275 θ transformation 1032693 2728395 2562487 245477 564975 360683	No Transformation 674827 2089309 2325337 183912 431466 238625 709438 293608 119217 183350 No Transformation 807275 2132836 2003143 191894 441652 281952	Actual 183633 306527 568253 510610 3194990 772583 703604 122030 194758 215155 Actual 183633 306527 568253 510610 3194990 772583	MAPE α, 1.349 θ, 1.385 no, 1.172 MAPE α, 1.329 θ, 1.366 no, 1.150
Candidate Model α = 1.238 θ = 1.283 Candidate WLS Model α = 1.231 θ = 1.279	Estimate 13.42 14.55 14.66 12.12 12.97 12.38 13.47 12.59 11.69 12.12 Estimate 13.60 14.57 14.51 12.16 13.00 12.55 13.57	α transformation 835449 2586606 2878814 227687 534163 295423 878298 363492 147593 226991 α transformation 994083 2626387 2466682 236299 543852 347198 966830	θ transformation 865935 2680993 2983865 235995 553655 306203 910348 376756 152979 235275 θ transformation 1032693 2728395 2562487 245477 564975 360683 1004382	No Transformation 674827 2089309 2325337 183912 431466 238625 709438 293608 119217 183350 No Transformation 807275 2132836 2003143 191894 441652 281952 785144	Actual 183633 306527 568253 510610 3194990 772583 703604 122030 194758 215155 Actual 183633 306527 568253 510610 3194990 772583 510610 3194990 772583 703604	MAPE α, 1.349 θ, 1.385 no, 1.172 MAPE α, 1.329 θ, 1.366 no, 1.150
Candidate Model α = 1.238 θ = 1.283 Candidate WLS Model α = 1.231 θ = 1.279	Estimate 13.42 14.55 14.66 12.12 12.97 12.38 13.47 12.59 11.69 12.12 Estimate 13.60 14.57 14.51 12.16 13.00 12.55 13.57 12.68	α transformation 835449 2586606 2878814 227687 534163 295423 878298 363492 147593 226991 α transformation 994083 2626387 2466682 236299 543852 347198 966830 306130	θ transformation 865935 2680993 2983865 235995 553655 306203 910348 376756 152979 235275 θ transformation 1032693 2728395 2562487 245477 564975 360683 1004382 411525	No Transformation 674827 2089309 2325337 183912 431466 238625 709438 293608 119217 183350 No Transformation 807275 2132836 2003143 191894 441652 281952 785144 321607	Actual 183633 306527 568253 510610 3194990 772583 703604 122030 194758 215155 Actual 183633 306527 568253 510610 3194990 772583 510610 3194990 772583 703604 122030	MAPE α, 1.349 θ, 1.385 no, 1.172 MAPE α, 1.329 θ, 1.366 no, 1.150
Candidate Model α = 1.238 θ = 1.283 Candidate WLS Model α = 1.231 θ = 1.279	Estimate 13.42 14.55 14.66 12.12 12.97 12.38 13.47 12.59 11.69 12.12 Estimate 13.60 14.57 14.51 12.16 13.00 12.55 13.57 12.68 11.85	α transformation 835449 2586606 2878814 227687 534163 295423 878298 363492 147593 226991 α transformation 994083 2626387 2466682 236299 543852 347198 966830 396139 172601	θ transformation 865935 2680993 2983865 235995 553655 306203 910348 376756 152979 235275 θ transformation 1032693 2728395 2562487 245477 564975 360683 1004382 411525 179305	No Transformation 674827 2089309 2325337 183912 431466 238625 709438 293608 119217 183350 No Transformation 807275 2132836 2003143 191894 441652 281952 785144 321697 140166	Actual 183633 306527 568253 510610 3194990 772583 703604 122030 194758 215155 Actual 183633 306527 568253 510610 3194990 772583 703604 12030 194758 703604 122030 194758	MAPE α, 1.349 θ, 1.385 no, 1.172 MAPE α, 1.329 θ, 1.366 no, 1.150
Candidate Model α = 1.238 θ = 1.283 Candidate WLS Model α = 1.231 θ = 1.279	Estimate 13.42 14.55 14.66 12.12 12.97 12.38 13.47 12.59 11.69 12.12 Estimate 13.60 14.57 14.51 12.16 13.00 12.55 13.57 12.68 11.85 12.31	α transformation 835449 2586606 2878814 227687 534163 295423 878298 363492 147593 226991 α transformation 994083 2626387 2466682 236299 543852 347198 966830 396139 172601 274447	θ transformation 865935 2680993 2983865 235995 553655 306203 910348 376756 152979 235275 θ transformation 1032693 2728395 2562487 245477 564975 360683 1004382 411525 179305 285106	No Transformation 674827 2089309 2325337 183912 431466 238625 709438 293608 119217 183350 No Transformation 807275 2132836 2003143 191894 441652 281952 785144 321697 140166 222873	Actual 183633 306527 568253 510610 3194990 772583 703604 122030 194758 215155 Actual 183633 306527 568253 510610 3194990 772583 703604 122030 194758 215155	MAPE α, 1.349 θ, 1.385 no, 1.172 MAPE α, 1.329 θ, 1.366 no, 1.150
Candidate Model α = 1.238 θ = 1.283 Candidate WLS Model α = 1.231 θ = 1.279	Estimate 13.42 14.55 14.66 12.12 12.97 12.38 13.47 12.59 11.69 12.12 Estimate 13.60 14.57 14.51 12.16 13.00 12.55 13.57 12.68 11.85 12.31	α transformation 835449 2586606 2878814 227687 534163 295423 878298 363492 147593 226991 α transformation 994083 2626387 2466682 236299 543852 347198 966830 396139 172601 274447	θ transformation 865935 2680993 2983865 235995 553655 306203 910348 376756 152979 235275 θ transformation 1032693 2728395 2562487 245477 564975 360683 1004382 411525 179305 285106	No Transformation 674827 2089309 2325337 183912 431466 238625 709438 293608 119217 183350 No Transformation 807275 2132836 2003143 191894 441652 281952 785144 321697 140166 222873	Actual 183633 306527 568253 510610 3194990 772583 703604 122030 194758 215155 Actual 183633 306527 568253 510610 3194990 772583 703604 122030 194758 215155	MAPE α, 1.349 θ, 1.385 no, 1.172 MAPE α, 1.329 θ, 1.366 no, 1.150

APPENDIX C: STEPWISE PROCEDURES

C 1: DUDS STEPWISE RESULTS				
Variable	Coefficient	Std. Error	Prob.*	
С	12.182	0.4970	(0.0000)	
RIVERS	0.00007	0.0000213	(0.0018)	
PG_SQMI	102.206	35.332	(0.0064)	
ROAD_SQMI	-0.3103	0.1474	(0.0424)	
R-squared 0.4281		Number of search regr	ressors: 28	
Adjusted R-squared (0.380	Selection method: Step	Selection method: Stepwise forwards	
S.E. of regression 0.6	754	Stopping criterion:		
F-statistic 8.9835		p-value forwards/backwards = $0.1/0.1$		
Prob(F-statistic) 0.0001		Selection Summary		
		Added RIVERS		
		Added PG_SQMI		
		Added ROAD_SQMI		

C 2: DUDS COMBINATORIAL					
Number of search regressors 28	Variable	Coefficient	Std. Error	Prob.*	
	С	12.373	0.25630978	(0.0000)	
	RIVERS	0.00006	2.12E-05	(0.0031)	
	R-squared 0.207088	379			
	Adjusted R-squared (0.186222284			
1	S.E. of regression 0.7	74148774			
	Sum squared resid 22	2.77364029			
	Log likelihood -45.49	9202704			
	F-statistic 9.9246349	96			
	Prob(F-statistic) 0.00	3174001			
	С	13.232355	0.320210895	(0.0000)	
	PG	0.027051355	0.008669152	(0.0034)	
	ROAD_SQMI	-0.456296771	0.14225688	(0.0027)	
	R-squared 0.364359529				
2	Adjusted R-squared (0.330000584			
	S.E. of regression 0.70243921				
	F-statistic 10.60450299				
	Prob(F-statistic) 0.000228778				
	С	12.38900025	0.289511112	(0.0000)	
	RIVERS	6.08E-05	1.79E-05	(0.0016)	
	PG	0.031125576	0.008344384	(0.0006)	
	ROADS	-0.000113535	3.72E-05	(0.0042)	
3	R-squared 0.477				
	Adjusted R-squared 0.433				
	S.E. of regression 0.6459				
	F-statistic 10.94644827				
	Prob(F-statistic) 2.97E-05				

C 3: DUDS CANDIDATE						
Variable	Coefficient	Std. Error	Prob.			
С	12.12495489	0.348690217	2.67E-29			
RIVERS	6.01E-05	2.28E-05	0.012396924			
PG	0.025578689	0.007800103	0.002313513			
PROXCITY	-0.006447494	0.005103419	0.214577938			
Adjusted R-squared	Adjusted R-squared 0.316854369					
S.E. of regression 0.709297095						
Sum squared resid 1	8.11168527					
Log likelihood -40.91109875						
F-statistic 7.029617426						
Prob(F-statistic) 0.000770222						

C 4: OUDS STEPWISE RESULTS				
Variable	Coefficient	Std. Error	Prob.*	
С	9.139958	0.310772	2.91E-27	
CG	0.040133	0.007008	1.47E-06	
R3	1.337514	0.279935	2.80E-05	
R-squared 0.53476		Number of search regr	ressors: 28	
Adjusted R-squared ().509612	Selection method: Step	pwise forwards	
S.E. of regression 0.6	15258	Stopping criterion:	Stopping criterion:	
Sum squared resid 14	.00608	p-value forwards/backwards = $0.1/0.1$		
Log likelihood -35.76	598	Selection Summary	Selection Summary	
F-statistic 21.26446		Added CS		
Prob(F-statistic) 7.11E-07		Added R3		
		Added CG		
		Removed CS		

C 5: OUDS COMBINATORIAL				
Number of search regressors 24	Variable	Coefficient	Std. Error	Prob.*
	С	10.19543	0.226826	(0.0000)
	CS	0.00115	0.000279	(0.0001)
	R-squared 0.30881	9	•	•
	Adjusted R-squared	d 0.29063		
1	S.E. of regression ().739987		
	Sum squared resid	20.80807		
	Log likelihood -43.	.6868		
	F-statistic 16.9783	5		
	Prob(F-statistic) 0.0	000197		
	С	9.796842	0.326896	1.49E-27
	NFAREA	0.000136	8.21E-05	0.105447
	CS	0.001047	0.00028	0.000619
2	R-squared	0.356706		
2	Adjusted R-squared	10.321933		
	S.E. of regression	0.723476		
	F-statistic	10.25824		
Prob(F-statistic)0.000285				
	C	9.787052	0.323791	3.52E-27
	CS	0.001169	0.000292	0.000301
	NFAREA	0.00014	8.13E-05	0.093738
	STATEHIGH	-0.4677	0.355282	0.196349
	R-squared	0.386251		•
3	Adjusted R-squared	10.335105		
	S.E. of regression	0.716414		
	F-statistic	7.551971		
	Prob(F-statistic)	0.000482		
	С	9.894921	0.332848	2.00E-26
	CS	0.001296	0.000307	0.000167
	NFAREA	0.000127	8.14E-05	0.127453
	STATEHIGH	-0.52414	0.355517	0.149335
	LAKEAREA_SQ	-13.903	11.17546	0.221745
4	MI			
	R-squared	0.412242		
	Adjusted R-squared	10.345069		
	S.E. of regression	0.711026		
	F-statistic	6.13707		
	Prob(F-statistic)0.0	000751		

C 6: OUDS CANDIDATE					
Variable	Coefficient	Std. Error	Prob.		
С	9.807938	0.41069	2.99E-23		
CS	0.001037	0.000357	0.006381		
NFAREA	0.000139	8.48E-05	0.109703		
PROXCITY	-0.00141	0.005877	0.811999		
LAKECG	0.002585	0.022585	0.909532		
R-squared	0.358625				
Adjusted R-squared	0.285325				
S.E. of regression	0.742749				
Sum squared resid	19.30866				
Log likelihood	-42.191				
F-statistic	4.892561				
Prob(F-statistic)0.003064					

C 7: GFA STEPWISE RESULTS				
Variable	Coefficient	Std. Error	Prob.*	
С	12.35271	0.254924	0	
RIVERS	6.90E-05	2.10E-05	0.0022	
R-squared ().221385	Number of search regr	ressors: 17	
Adjusted R-squared ().200895	Selection method: Step	Selection method: Stepwise forwards	
S.E. of regression ().752566	Stopping criterion:		
F-statistic 1	0.80461	p-value forwards/backwards = $0.1/0.1$		
Prob(F-statistic) (0.002185	Selection Summary		
Added Rivers				

C 8: GFA COMBINATORIAL					
Number of search regressors 17	Variable	Coefficient	Std. Error	Prob.*	
	С	12.3527	0.2549	(0.0000)	
	RIVERS	0.0001	0.0000	(0.0022)	
	R-squared 0.	2214			
1	Adjusted R-squared 0.20)09			
	S.E. of regression 0.	7526			
	F-statistic 10).8046			
	Prod(F-statistic) 0.	0022			
	С	11.9946	0.4134	(0.0000)	
	RIVERS	0.0001	0.0000	(0.0015)	
	TRAILS SQMI	0.9909	0.9022	(0.2791)	
	R-squared 0.	2460			
2	Adjusted R-squared 0.20)52			
	S.E. of regression 0.	7505			
	F-statistic 6.	0348			
	Prob(F-statistic) 0.	0054			
	C	12 1310	0.4406	(0, 0000)	
		0.0001	0.0000	(0.0013)	
	TRAILS SOME	1.0013	0.0000	(0.0013) (0.2756)	
	PROXCITY	-0.0050	0.0055	(0.3682)	
2	R-squared 0.	2630	0.0055	(0.5002)	
3	Adjusted R-squared 0.20)16			
	S.E. of regression 0.	7523			
	F-statistic 4.	2817			
	Prob(F-statistic) 0.	0110			
	С	12.3406	0.5701	(0.0000)	
	RIVERS	0.0001	0.0000	(0.0022)	
	TRAILS_SQMI	1.0781	0.9108	(0.2445)	
	NP	0.3800	0.3059	(0.2223)	
4	PROXMETRO	-0.0025	0.0022	(0.2653)	
	R-squared 0.2877				
	Adjusted R-squared 0.20)63 7500			
	F-statistic 3	5338			
	Prob(F-statistic) 0.	0159			
	С	13.7383	1.0868	(0.0000)	
	RIVERS	0.0002	0.0001	(0.0273)	
	TRAILS_SQMI	1.2966	0.9162	(0.1661)	
	PROXCITY	-0.0078	0.0057	(0.1861)	
-	RIVER_SQMI	-0.5787	0.3583	(0.1155)	
5	NFAREA	-0.0004	0.0003	(0.1387)	
	R-squared 0.	3158			
	Adjusted K-squared 0.21	31 7459			
	$F_{\text{-statistic}}$ 5.E. 01 regression 0.	1430 1382			
	Prob(F-statistic) 0	0196			
	1100(1-statistic) = 0.	0190			

C 9: GFA CANDIDATE				
Variable	Coefficient	Std. Error	Prob.	
С	12.1359	0.4780	0.0000	
PROXCITY	-0.0050	0.0056	0.3772	
RIVERS	0.0001	0.0000	0.0018	
TRAILS_SQMI	0.9991	0.9203	0.2851	
LAKES_SQMI	-0.0099	0.3426	0.9771	
R-squared	0.2630			
Adjusted R-squared 0.1788				
S.E. of regression	0.7629			
F-statistic	3.1223			
Prob(F-statistic)	0.0269			

C 10: WILD STEPWISE RESULTS					
Variable	Coefficient	Std. Error	Prob.*		
С	9.0479	0.3497	0.0000		
WILDCOUNT	0.1795	0.0417	0.0001		
R2	1.1733	0.4808	0.0199		
R3	1.1592	0.4388	0.0123		
PROXCITY	-0.0140	0.0071	0.0566		
R-squared ().5003	Number of search regr	ressors: 27		
Adjusted R-squared ().4432	Selection method: Step	pwise forwards		
S.E. of regression ().9526	Stopping criterion:			
Sum squared resid	31.7589	p-value forwards/back	kwards = $0.1/0.1$		
Log likelihood -	52.1434	Selection Summary			
F-statistic 8	8.7599	Added WILDCOUNT			
Prob(F-statistic) (0.0001	Added WILDSTATEHIGH			
Added R3					
		Added R2			
		Removed WILDSTAT	TEHIGH		
	Added PROXCITY				
C 11: WILDERNESS COMBINATORIAL					
--------------------------------	--------------------------	-------------	------------	--------	--
Number of search regressors 17	Variable	Coefficient	Std. Error	Prob.*	
	С	9.0276	0.3021	0.0000	
	WILDCOUNT	0.1890	0.0465	0.0002	
	R-squared	0.4269	•	•	
	Adjusted R-squared	0.3613			
1	S.E. of regression	1.0202			
	Sum squared resid	36.4257			
	Log likelihood	-54.8854			
	F-statistic	6.5165			
	Prob(F-statistic)	0.0005			
	С	8.9176	0.3002	0.0000	
	WILDCOUNT	0.1837	0.0453	0.0003	
	WILDSTATEHIG	1.0191	0.5717	0.0829	
	Н				
	R-squared	0.3579	•	•	
2	Adjusted R-squared	0.3231			
	S.E. of regression	1.0502			
	Sum squared resid	40.8109			
	Log likelihood	-57.1589			
	F-statistic	10.3095			
	Prob(F-statistic) 0.0	003			
	С	8.6639	0.3019	0.0000	
	WILDCOUNT	0.1702	0.0431	0.0003	
	R3	1.1010	0.4550	0.0207	
	R2	1.1947	0.4996	0.0221	
	R-squared	0.4448			
	Adjusted R-squared	0.3985			
3	S.E. of regression	0.9901			
	Sum squared resid	35.2874			
	Log likelihood	-54.2505			
	F-statistic	9.6123			
	Prob(F-statistic) 0.0001				
4	С	9.0479	0.3497	0.0000	
	WILDCOUNT	0.1795	0.0417	0.0001	
	R3	1.1592	0.4388	0.0123	
	R2	1.1733	0.4808	0.0199	
	PROXCITY	-0.0140	0.0071	0.0566	
	R-squared	0.5003	010071	010000	
	Adjusted R-squared	0.4432			
	S.E. of regression	0.9526			
	Sum squared resid	31.7589			
	Log likelihood	-52.1434			
	F-statistic	8.7599			
	Prob(F-statistic)	0.0001			
5	С	8.4193	0.3058	0.0000	

	WILDCOUNT	0.1640	0.0478	0.0016
	WILDSTATEHIG	1.7495	0.5958	0.0059
	Н			
	R2	1.3282	0.5094	0.0135
	WILDTRAILS	0.0021	0.0007	0.0064
	WILDLAKES	-0.0013	0.0005	0.0066
	R-squared	0.5487		
	Adjusted R-squared	0.4824		
	S.E. of regression	0.9184		
	Sum squared resid	28.6805		
	Log likelihood	-50.1043		
	F-statistic	8.2682		
	Prob(F-statistic)	0.0000		
	С	8.7708	0.3791	0.0000
	WILDCOUNT	0.1815	0.0483	0.0007
	WILDSTATEHIG	1.6511	0.5883	0.0083
	Н			
	R2	1.3525	0.5002	0.0107
	WILDTRAILS	0.0019	0.0007	0.0123
	WILDLAKES	-0.0014	0.0005	0.0043
6	PROXCITY	-0.0106	0.0070	0.1386
	R-squared	0.5782		
	Adjusted R-squared	0.5015		
	S.E. of regression	0.9013		
	Sum squared resid	26.8089		
	Log likelihood	-48.7546		
	F-statistic	7.5384		
	Prob(F-statistic)	0.0000		
	С	8.6738	0.3756	0.0000
	WILDCOUNT	0.1686	0.0479	0.0013
	WILDSTATEHIG	1.4220	0.5930	0.0225
	Н			
	R3	0.7103	0.4473	0.1221
7	R2	1.4054	0.4902	0.0073
	WILDTRAILS	0.0017	0.0007	0.0269
	WILDLAKES	-0.0011	0.0005	0.0362
	PROXCITY	-0.0111	0.0068	0.1140
	R-squared	0.6090		
	Adjusted R-squared	0.5235		
	S.E. of regression	0.8812		
	Sum squared resid	24.8503		
	Log likelihood	-47.2373		
	F-statistic	7.1198		
	Prob(F-statistic)	0.0000		

	C 12: WILD CANDIDATE					
Variable	Coefficient	Std. Error	Prob.			
С	8.9504	0.4238	0.0000			
WILDTRAILS	0.0011	0.0008	0.1631			
WILDCOUNT	0.1512	0.0529	0.0071			
WILDSTATEHIGH	0.9788	0.5662	0.0927			
PROXCITY	-0.0088	0.0079	0.2706			
R-squared 0.4269						
Adjusted R-squared 0.3613						
S.E. of regression 1.0202						
Sum squared resid 30	5.4257					
Log likelihood -5	4.8854					
F-statistic 6.	5165					
Prob(F-statistic) 0.	0005					