
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

January 2013

Effectiveness of Propensity Score Methods in a
Multilevel Framework: A Monte Carlo Study
Aarti P. Bellara
University of South Florida, aartibellara@gmail.com

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the Educational Assessment, Evaluation, and Research Commons, and the Statistics and
Probability Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Bellara, Aarti P., "Effectiveness of Propensity Score Methods in a Multilevel Framework: A Monte Carlo Study" (2013). Graduate
Theses and Dissertations.
http://scholarcommons.usf.edu/etd/4635

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F4635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F4635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F4635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F4635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F4635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F4635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/796?utm_source=scholarcommons.usf.edu%2Fetd%2F4635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarcommons.usf.edu%2Fetd%2F4635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarcommons.usf.edu%2Fetd%2F4635&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


 

 

 

Effectiveness Of Propensity Score Methods In A Multilevel Framework:  

A Monte Carlo Study 

 
 

by 

 
 
 

Aarti P. Bellara  
 
 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of  

Doctor of Philosophy 
Department of Educational Measurement and Research  

College of Education  
University of South Florida 

 
 
 
 
 

Major Professor: Jeffrey D. Kromrey, Ph.D. 
John M. Ferron, Ph.D. 
Eun Sook Kim, Ph.D. 

Zorka Karanxha, Ed.D. 
 
 

Date of Approval:  
May 15, 2013 

 
 
 

Keywords: educational evaluations, hierarchical linear modeling, observational studies, causality, 
simulation research   

 
Copyright © 2013, Aarti P. Bellara 



 

 

 

DEDICATION  

 I would like to dedicate this dissertation to several very important people.  First, this 

dissertation is dedicated in loving memory of my grandparents.  I am forever indebted to you for 

blessing me with such amazing parents.  May you continue to rest in peace and as you look down 

on me, feel proud to call me your granddaughter.   

 Second, this dissertation is dedicated to my parents, Partab and Hiru Bellara.  There are 

simply not enough words to truly capture my emotions and gratitude to them; thank you seems so 

insufficient for all they have done.  Nothing could have been accomplished without their 

unconditional love, support, and prayers.  The sacrifices and struggles they have made for our 

family have not gone unnoticed.  Thank you for being the biggest fan of my life.  I hope I have 

made you proud.   

 Finally, this dissertation is dedicated to my brother, Amar Bellara.  Thank you for 

teaching me how to take the challenges of life and turn them into fun, and for always being my 

best friend.   

 

 

 

What can you do to promote world peace? Go home and love your family. 

      Mother Teresa 

 

 

 

 



 

 

 

ACKNOWLEDGMENTS 

 First and foremost, I thank God for all the blessings in my life.  Thank you for providing 

me with the perseverance, courage, and wisdom to embark and complete this journey.    

The creation and completion of this dissertation would have occurred without the support 

of my doctoral committee.  My major professor and mentor, Dr. Jeffrey D. Kromrey, provided me 

with the guidance and support I needed to envision, conduct, and complete this study.  It was his 

supportive and encouraging nature that helped me make the decision to pursue my doctoral 

studies at the University of South Florida, and it was he who mentored me through the very end.  

Thank you for taking me under your wing, sculpting me into the scholar I have become, and 

helping me realize my own potential.   

Heartfelt thanks to the other members of my doctoral committee.  Dr. John M. Ferron 

stuck by my side throughout my entire doctoral academic career, and constantly challenged me to 

find my own path.  He is an outstanding professor and mentor and I strive to emulate his 

philosophy to teaching and research.  Dr. Eun Sook Kim, joined me as I began this dissertation 

and not only supported me, but also challenged me to continue to learn and grow through this 

process.  Your expertise in the field was an invaluable asset to me.  Dr. Zorka Karanxha, provided 

me with my first research experience and taught me countless lessons throughout this process, 

including how to be an accomplished, respected, and compassionate researcher.   

In addition to my doctoral committee, the whole Department of Educational 

Measurement and Research has impacted my journey through doctoral studies from our office 

manager, Jody Duke, to the rest of the faculty, both current and former (Drs. Constance Hines, 

Christopher DeLuca, Liliana Rodriguez-Campos, Robert Dedrick, Yi-Hsin Chen, Jeanine 

Romano, and Jennifer Wolgemuth).  Several students and graduates have played a major role 



throughout my doctoral journey; we started off as classmates and continue to be colleagues and 

friends: Susan Hibbard, Merlande Petit-Bois, Elly Baek, Connie Walker, Corina Owens, Heather 

Scott, Jennie Farmer, and Bethany Bell.  Special thanks to Patricia Rodriguez de Gil, Diep 

Nguyen, Thanh Pham, for all your help and support during my data collection phase.   

 Without the loving support of family, nothing would be possible.  Thanks to my parents 

for teaching me about the value of education and sacrificing so much so that I could accomplish 

my goals, to my aunt, Dr. Jyoti Chandiramani for being my mentor, friend, and academic 

colleague, and to the rest of my extended family and friend for providing encouragement 

throughout my journey.  Lastly, from the bottom of my heart, thanks to those within the Indian 

community of the greater Tampa Bay area who took care of me and made me a part of your own 

families throughout the past five years.   

 

 

A small body of determined spirits fired by an unquenchable faith in their mission can alter the 

course of history.  

      Mahatma Gandhi  



i 
 

 
 
 
 
 

TABLE OF CONTENTS 
 
 

List of Tables .................................................................................................................................. iv 
 
List of Figures ................................................................................................................................. vi 
 
Abstract ......................................................................................................................................... viii 

 
Chapter One: Introduction ............................................................................................................... 1 
 Causal Inference ................................................................................................................. 1 
 Propensity Scores ................................................................................................................ 3 
 Problem Statement .............................................................................................................. 5 
 Study Purpose ..................................................................................................................... 7 
 Research Questions ............................................................................................................. 8 
 Overview of the Study ........................................................................................................ 8 
 Delimitations ..................................................................................................................... 11 
 Significance of the Study .................................................................................................. 11 
 Limitations ........................................................................................................................ 13 
 Definition of Terms .......................................................................................................... 13 

  
Chapter Two: Literature Review ................................................................................................... 16 
 Theoretical Framework ..................................................................................................... 16 
  Rubin's Causal Model .......................................................................................... 17 
   Strongly ignorable treatment assignment assumption ............................ 18 
   Stable unit treatment value assumption .................................................. 19 
  Campbell's Validity Framework .......................................................................... 20 
  Causal Inference in Non-Randomized Studies .................................................... 22 
 The Logic of Propensity Scores ........................................................................................ 23 
  Covariate Selection .............................................................................................. 24 
  Estimation Methods ............................................................................................. 24 
  Conditioning Methods ......................................................................................... 26 
   Matching ................................................................................................. 27 
   Stratification ........................................................................................... 28 
   Covariance adjustment ............................................................................ 29 
   Weighting ............................................................................................... 30 
  Evaluating the Accuracy of the Propensity Score Model .................................... 31 
 Practical Concerns with Propensity Score Analysis ......................................................... 33 
  Covariate Selection .............................................................................................. 33 
  Estimation Methods ............................................................................................. 40 
  Conditioning Methods ......................................................................................... 45 
  Evaluating the Accuracy of the Propensity Score Models ................................... 48 
  The Overall Effectiveness of Propensity Score Methods .................................... 50 
 Multilevel Modeling ......................................................................................................... 54 
  Propensity Score Analysis with Multilevel Modeling ......................................... 56 



ii 
 

   Multilevel research designs .................................................................... 56 
   Estimation Models .................................................................................. 57 
   Conditioning Methods ............................................................................ 59 
  Research on Propensity Scores in Multilevel Contexts ....................................... 60 
 Chapter Summary ............................................................................................................. 67 

 
Chapter Three: Method .................................................................................................................. 68 
 Study Purpose ................................................................................................................... 68 
 Research Questions ........................................................................................................... 68 
 Design ............................................................................................................................... 69 
  Samples ................................................................................................................ 70 
  Sample Characteristics ......................................................................................... 73 
   Sample size ............................................................................................. 73 
   Relationship between covariates and treatment assignment ................... 74 
   Relationship between covariates and outcome ....................................... 76 
   Population treatment effect ..................................................................... 77 
  Analytical Procedures .......................................................................................... 77 
   Step one: Propensity score estimation .................................................... 79 
   Step two: Evaluating the region of common support .............................. 85 
   Step three: Propensity score conditioning............................................... 86 
   Step four: Assessment of balance ........................................................... 89 
   Step five: Estimate treatment effects ...................................................... 92 
   Step six: Final comparative analysis ....................................................... 93 
 Chapter Summary ............................................................................................................. 94 

 
Chapter Four: Results .................................................................................................................... 95 
 Overview of the Study ...................................................................................................... 95 
 Description of Samples  .................................................................................................... 96 
  Propensity Score Estimation Models  .................................................................. 96 
  Common Support ............................................................................................... 101 
  Propensity Score Conditioning  ......................................................................... 104 
  Data Analysis ..................................................................................................... 108 
  Balance  .............................................................................................................. 110 
  Treatment Effects ............................................................................................... 122 
 Answers to Research Questions ...................................................................................... 135 

Research Question 1: To what extent do balance estimates vary across 
PS methods (PS estimation models and PS conditioning strategies)? ............... 135 
Research Question 2: To what extent do data factors (sample size, 
covariate relationship to treatment and outcome, and population effect 
size) affect the balance achieved by the PS methods (PS estimation 
models and PS conditioning strategies)? ........................................................... 136 
Research Question 3: To what extent do treatment effect estimates vary 

across PS methods (PS estimation models and PS conditioning 
strategies)? ......................................................................................................... 137 
Research Question 4: To what extent do data factors (sample size, 
covariate relationship to treatment and outcome, and population effect 
size) affect the treatment effects achieved by the PS methods (PS 
estimation models and PS conditioning strategies)? .......................................... 138 
 
 



iii 
 

Research Question 5: What is the direction and strength of the 
relationships between balance and both the accuracy and precision of the 
treatment effect estimates? ................................................................................. 139 

 Chapter Summary ........................................................................................................... 141 
 

Chapter Five: Discussion ............................................................................................................. 142 
 Summary of the Study .................................................................................................... 142 
  Purpose .............................................................................................................. 142 
  Research Questions ............................................................................................ 142 
  Method ............................................................................................................... 143 
 Discussion of the Study Results ...................................................................................... 144 
  Balance .............................................................................................................. 144 
  Treatment Effects ............................................................................................... 146 

The Relationship Between Balance and the Accuracy and Precision of 
Treatment Effects ............................................................................................... 149 

Limitations of the Study ................................................................................................. 150 
Implications .................................................................................................................... 153 
 Implications for Researchers Conducting PS Analysis with MLM ................... 153 
 Implications for Methodologists ........................................................................ 154 

 
References .................................................................................................................................... 156 

 
Appendices  .................................................................................................................................. 170 
 Appendix A: Equation for Data Generation ................................................................... 170 
 Appendix B: Population R2 Values Simulated ............................................................... 173 
 Appendix C: Equations for Propensity Score Estimation ............................................... 174 

 
 

   
 
 

  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iv 
 

 
 
 
 
 
 
 

 
LIST OF TABLES 

 
Table 1:   Design Features ....................................................................................................... 10 
 
Table 2:   Conditioning Methods ............................................................................................. 11 
 
Table 3:   Covariate Relationship to Assignment and Outcome .............................................. 35 
 
Table 4:   Data structure for Lee and associates (2010) simulation study ............................... 42 
 
Table 5:   Average Distributions of the Propensity Scores for each Estimation Model 

for Treatment and Control Groups........................................................................... 96 
 
Table 6:   Descriptive Statistics for Mean Correlations between Propensity Score 

Estimates  ................................................................................................................ 97 
 
Table 7:   Descriptive Statistics for Mean Non-Positive Definite Matrix Rates for each 

Multilevel PS Estimation Model by Level 1 Sample Size ..................................... 101 
 
Table 8:   Mean Propensity Score Range Before and After Trimming .................................. 101 
 
Table 9:   Mean Percent of Data Trimmed for Covariate Relationship to Treatment by 

PS Model  .............................................................................................................. 104 
 
Table 10:   Mean Proportion of Potential Matches for Covariate Relationship to 

Treatment by PS Model ......................................................................................... 107 
 
Table 11:   Descriptive Statistics by Design Factors Associated with Mean Balance 

Score ...................................................................................................................... 112 
 
Table 12:   Mean Number of Unbalanced Covariates by Level-1 Sample Size and 

Conditioning Method ............................................................................................. 116 
 
Table 13:   Descriptive Statistics for the Mean Number of Unbalanced Covariates by 
   Level-2 Sample Size .............................................................................................. 118 
 
Table 14:   Descriptive Statistics for the Proportions of Samples Balanced by Level 
   1 Sample Size, Level-2 Sample Size and Conditioning Method ........................... 122 
 
Table 15:   Descriptive Statistics by Design Factors Associated with Bias ............................. 124 
 
Table 16:   Root Mean Squared Error by Level 1 Sample Size Across the Clusters ............... 127 



v 
 

 
Table 17:   Confidence Interval Coverage by Level 1 Sample Size Across the Clusters ........ 130 
 
Table 18:   Confidence Interval Coverage Estimates by Conditioning Method, 

Estimation Model and Level-2 Sample Size .......................................................... 132 
 
Table 19:   Confidence Interval Width Averages and Distributions By Sample Size 
   Interaction Effect Across Propensity Score Models .............................................. 135 
 
Table 20:   Correlations between balance score and absolute value of bias estimates for 
   PS estimation models across PS conditioning methods ......................................... 139 
 
Table 21:  Correlations between balance score and RMSE estimates for PS estimation 
   models across PS conditioning methods ................................................................ 140 
 
Table 22:   Correlations between balance score and confidence interval coverage 
   estimates for PS estimation models across PS conditioning methods ................... 141 
 
Table 23:   Correlations between balance score and confidence interval width for PS 
   estimation models across PS conditioning methods .............................................. 141 
 
Table A1:    R2 values for the different confounder magnitudes ............................................... 173 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vi 
 

 
 
 
 
 
 
 
 

LIST OF FIGURES 
 

Figure 1:  Propensity score methodology framework ................................................................ 5 
 

Figure 2:  Analytical procedures with corresponding outcome measures ................................ 78 
 

Figure 3:   Mean non-convergence distributions by propensity score estimation model .......... 98 
 
Figure 4:   Mean non-convergence distributions by level 1 sample size across the 

number of clusters for each PS model ..................................................................... 99 
 
Figure 5:   Mean non-positive definite matrix rates by propensity score estimation 

model ..................................................................................................................... 100 
 
Figure 6:   Mean percent of data trimmed by propensity score estimation model .................. 102 
 
Figure 7:  Mean Percent of Data Trimmed by level-1 sample size across level 2- 

sample size for each propensity score model ......................................................... 103 
 
Figure 8:   Distributions of mean proportion of potential matches across PS models ............ 106 
 
Figure 9:   Proportion of samples dropping strata by propensity score estimation model ...... 107 
 
Figure 10:  Proportion of Samples Dropping Strata by the Sample Size Interaction 

across the Four Propensity Score Models .............................................................. 109 
 
Figure 11:  Absolute average standardized mean difference in covariates by 

conditioning method across the four PS models .................................................... 111 
 
Figure 12:   Distributions of the absolute average standardized mean difference in 

covariates by conditioning method across the four PS models for each 
level-1 sample size level ........................................................................................ 113 

 
Figure 13:  Absolute average standardized mean difference in covariates by 

conditioning method across the four PS models for each level-2 sample size 
level ....................................................................................................................... 114 

 
Figure 14:  Mean number of unbalanced covariates by conditioning method across the 

four PS models ....................................................................................................... 115 
 
Figure 15:  Distributions in mean number of unbalanced covariates by level-1 sample 

size across conditioning methods .......................................................................... 116 



vii 
 

 
Figure 16:  Distributions in mean number of unbalanced covariates by level-1 sample 

size across conditioning methods by propensity score estimation model .............. 117 
 
Figure 17:   Distributions of mean number of unbalanced covariates by conditioning 

method across the four PS models for each level-2 sample size level ................... 119 
 
Figure 18:   Proportion of samples balanced by conditioning method across PS  
  models .................................................................................................................... 120 
 
Figure 19:  Proportion of samples balanced by conditioning method and level-1  
  sample size interaction across the level-2 sample size .......................................... 121 
 
Figure 20:  Distributions of estimated bias in point estimates by conditioning  
  methods across PS models ..................................................................................... 123 
 
Figure 21:   Distributions of the average bias in point estimates by conditioning  
  method across the four PS models for each level-1 sample size level ................... 125 
 
Figure 22:   Distributions of the RMSE for each conditioning method across the PS 

estimation models .................................................................................................. 126 
 
Figure 23:   Root mean squared error for the level 1 sample size across the number of 

clusters ................................................................................................................... 127 
 
Figure 24:   Distributions of 95% confidence interval coverage rates for each 

conditioning method across the four PS estimation models. ................................. 128 
 
Figure 25:   Distributions of 95% confidence interval coverage rates by level-1  
  sample size across the number of clusters ............................................................. 129 
 
Figure 26:   Distributions of 95% confidence interval coverage rates by PS estimation 

models and conditioning methods across the number of clusters .......................... 131 
 
Figure 27:   Distributions of confidence interval width by conditioning methods across 

PS estimation models. ............................................................................................ 132 
 
Figure 28:   Distributions of the confidence interval width by propensity score 

estimation model and level-1 sample size interaction across the level-2 
sample size ............................................................................................................. 134 

 

 

 

 

 



viii 
 

 

 

 

 

ABSTRACT 

 Propensity score analysis has been used to minimize the selection bias in 

observational studies to identify causal relationships.  A propensity score is an estimate of an 

individual’s probability of being placed in a treatment group given a set of covariates.  Propensity 

score analysis aims to use the estimate to create balanced groups, akin to a randomized 

experiment.  This study used Monte Carlo methods to examine the appropriateness of using 

propensity score methods to achieve balance between groups on observed covariates and 

reproduce treatment effect estimates in multilevel studies.  Specifically, this study examined the 

extent to which four different propensity score estimation models and three different propensity 

score conditioning methods produced balanced samples and reproduced the treatment effects with 

clustered data.  One single-level logistic model and three multilevel models were investigated.  

Conditioning methods included: (a) covariance adjustment, (b) matching, and (c) stratification.  

Design factors investigated included: (a) level-1sample size, (b) level-2 sample size, (c) level-1 

covariate relationship to treatment, (d) level-2 covariate relationship to treatment, (e) level-1 

covariate relationship to outcome, (f) level-2 covariate relationship to outcome, and (g) 

population effect size.  The results of this study suggest the degree to which propensity score 

analyses are able to create balanced groups and reproduce treatment effect estimates with 

clustered data is largely dependent upon the propensity score estimation model and conditioning 

method selected.  Overall, the single-level logistic and random intercepts models fared slightly 

better than the more complex multilevel models while covariance adjustment and matching 

methods tended to be more stable in terms of balancing groups than stratification.  Additionally, 
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the results indicate propensity score analysis should not be conducted with small samples.  

Finally, this study did not identify an estimation model or conditioning method that was 

consistently able to create adequately balanced groups and reproduce treatment effect estimates.   
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CHAPTER ONE: INTRODUCTION  

Causal Inference  

Identifying causal relationships in social settings has been and continues to be a 

challenge.  Educational researchers often seek to identify causal relationships between programs, 

interventions, and/or treatments (herein "treatments") on various student outcomes, such as 

academic achievement (Austin, 2011; Chatterji, 2008; Slavin, 2002, 2008).  Experiments 

investigate treatment effects of manipulable causes using statistical models to draw causal 

inferences.  Manipulable causes are ones that can be deliberately altered or manipulated by the 

researcher, for example, participation in a program, method of teaching, or dosage amount.  In 

contrast, non-manipulable agents such as gender cannot be deliberately altered and therefore, are 

not causes in experiments (Shadish, 2010; Shadish, Cook, & Campbell, 2002).  Consequently, 

identifying causal relationships among non-manipulable variables becomes challenging (Shadish 

et al., 2002).   

Causal relationships exist between two variables when the following hold true: (a) the 

cause precedes the effect, (b) the cause is related to the effect, and (c) no plausible alternative 

explanations for the effect exist other than the cause (Shadish et al., 2002).  Treatment effects are 

estimated by a counterfactual model, or simply, the difference between what did happen after an 

individual received a treatment versus what would have happened if the same individual did not 

receive the treatment (Campbell & Stanley, 1963; Holland, 1986; Rubin, 2010; Shadish et al., 

2002).  Theoretically, causal effects can be precisely estimated if a unit was assigned to the 

treatment condition and the control condition at the same time in the same context. This would 
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allow outcome values for each unit under both of the conditions to be observed (Rubin, 1974, 

1978).   

In most field based settings, units can be assigned to one condition; therefore, only one 

outcome is observed —the outcome of the condition to which the individual was assigned.  The 

unobserved or missing outcome is considered the counterfactual.  For example, to investigate the 

effectiveness of a new reading program, an individual cannot be assigned to the new reading 

program and the old reading program simultaneously.  The impossibility of observing both 

treatment and control outcomes for each individual is often referred to as the "Fundamental 

Problem of Causal Inference" (Holland, 1986, p. 947; Rubin, 1978).  

Randomized controlled trials (RCTs), or randomized experiments, are considered the 

"gold standard" for estimating treatment effects (Austin, 2011; Cook, 2006; Donaldson & 

Christie, 2004; Education Sciences Reform Act [ESRA], 2002; Scriven, 2008; United States 

Department of Education [USDOE], 2003, 2005).  In a randomized experiment, individuals are 

randomly assigned to treatment conditions.  Random assignment allows groups to be 

probabilistically similar, supporting a counterfactual inference; therefore, any measured 

differences in the outcome may be attributed to treatment effect (Campbell & Stanley, 1963; 

Games, 1990; Holland, 1986; Shadish, et al., 2002).   

The process of randomization guarantees the two groups, on average, will be balanced at 

the beginning of the experiment, except for treatment assignment, and thus able to yield estimates 

of the average treatment effect (ATE).  Estimates are considered to be unbiased because the 

randomization process ensures no plausible alternative explanation exists.  Accordingly, well 

executed RCTs are able to produce unbiased estimates of treatment effects and are, therefore, the 

preferred method when investigating causal relationships.  However, random assignment is often 

unethical or impractical in social and behavioral research.  For example, to investigate the 

effectiveness of private school education on student achievement, the researcher is generally 
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unable to randomly assign students to private (treatment) or public (control) schools.  

Consequently, non-randomized studies are often used to estimate treatment effects (Austin, 

2011).   

In contrast, experiments which do not employ random assignment techniques, yet aim to 

explore causation, provide “less compelling support for counterfactual inferences” (Shadish, et al, 

2002, p. 14) because groups are not probabilistically similar.  In addition, causal relationships 

from non-manipulable variables may also be identified.  Rubin (1979, 2001, 2007, & 2008) uses 

the term "observational studies" to refer to all studies aiming to explore causal relationship that 

do not incorporate the randomization process.  Both non-randomized-experiments and 

observational studies (herein non-randomized studies) lack the desired properties for causal 

inference and subsequently the validity of inferences are subject to various threats.  These threats 

introduce sources of alternative explanations of the treatment effects which are thus considered to 

be potentially biased and less precise (Campbell & Stanley, 1963; Shadish, 2000; Shadish, et. al., 

2002).  

There are two basic approaches to addressing the estimation of causal effects in non-

randomized studies: alternative design features (e.g. regression discontinuity, interrupted time-

series) and applied statistical methods (e.g. ordinary regression, covariance adjustment analysis, 

structural equation modeling, selection models, and matching methods) (Gall, Gall, & Borg, 

2007; Shadish, 2000; Shadish, et al., 2002; Stuart, 2010).  Throughout the 20th century, 

methodologists have worked to develop, refine, and evaluate these approaches.  One of the more 

recent developments, introduced by Rosenbaum and Rubin (1983) is propensity score adjustment, 

a statistical method which aims to achieve balance between groups on a set of observed 

covariates with a single number (Stuart, 2010). 
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Propensity Scores 

A propensity score (PS) is the “conditional probability of assignment to a particular 

group, given a vector of covariates” (Rosenbaum & Rubin, 1983 p. 42).  The purpose of the PS is 

to improve the quality of estimates from non-randomized experiments by attempting to mimic the 

balance between groups that occurs through the randomization process (Rosenbaum & Rubin, 

1984; Shadish & Steiner, 2010; Stuart, 2010).  The PS predicts an individual's probability for 

being assigned to the treatment group, thus ranges from 0 to 1.  The closer the individual’s PS is 

to 1, the stronger the prediction for being in the treatment group; conversely, the closer the score 

is to 0, the stronger the prediction for being in the comparison group.  When units from the 

treatment and control group have the same propensity score, it is assumed that the probability of 

being assigned to the treatment group is the same for each of these individual units, conditional 

upon the observed covariates. When there is no overlap in PSs between the groups, it is believed 

that the unobserved covariate(s) are accounting for the difference in groups (Stuart, 2010).   

In randomized experiments, when treatment and control group samples have the same 

number of participants, the probability of being placed in treatment or control is equal (each 

participant’s PS = .50), and the two groups are considered to be comparable with differences 

being attributable to chance (Shadish & Steiner, 2010; Steiner & Cook, 2013).  When 

randomization is not possible, the probability of being placed in treatment or control is unknown 

but can be estimated.  Equation 1 represents Rosenbaum and Rubin's (1983) formulation to 

represent an individual, i's probability of receiving the treatment, P (Zi=1), given a set of 

observed covariates, X.  The resulting probability, e(X), is the estimated PS: 

( ) ( )1|i i i ie X P Z X= =        (1)  

Estimating treatment effects using PSs is a multistep decision-based process that 

commonly includes the following procedures: (a) selecting the appropriate covariates related to 

both assignment and treatment to include in the model, (b) estimating the PSs, (c) conditioning on 
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the PS, (d) assessing the accuracy of the PS estimation model, (e) adjusting the model if 

necessary, and finally, (f) estimating treatment effects (Rosenbaum & Rubin, 1983; Shadish & 

Steiner, 2010; Stuart, 2010) (see Figure 1).   

  
Figure 1.  Propensity score methodology framework. 
Note: Figure is derived from Thoemmes, 2009, p. 150 
 

Since Rosenbaum and Rubin’s seminal work in 1983, the study and application of PS has 

grown in popularity.  Researchers have investigated the performance of PS techniques using 

Monte Carlo simulation studies (e.g. Austin, 2009; Gu & Rosenbaum, 1993) as well as existing 

databases (e.g. Michaelopoulos, Bloom, & Hill, 2004; Stuart & Green, 2008).  Additionally, PSs 

have been applied to non-randomized studies across various fields including medicine (e.g. 

Murphy, Law, Whooley, Alexandrou, Chu, & Wong, 2003), business (e.g., Dehejia & Wahba, 

1999), and social sciences (e.g. Hong & Yu, 2008).   

Problem Statement 

While RCTs may yield unbiased estimates of treatment effects, they are often difficult to 

implement in educational settings.  Therefore, causal relationships in educational research are 

likely to be drawn from non-randomized studies which lack the desired properties to support 

counterfactual inferences and are highly vulnerable to threats to validity (Shadish et al., 2002).  

Identify covariates to 
include in the model  

Estimate propensity 
scores  

Condition on the 
propensity scores 

Assess the PS model 
and check balance  

Possible revision and 
reassessment of PS 

model  
Estimate treatment 

effects  
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Because PSs aim to mimic certain characteristics of random assignment, their application is 

rapidly increasing.  Historically, PS analysis has been used extensively in the medical field; 

however, recently it has begun to receive attention in other fields (Hahs-Vaugh & Onwuegbuzie, 

2006; Pruzek, 2011; Thoemmes & Kim, 2011).  Weitzen and colleagues (2004) investigated the 

PS estimation models considered by medical researchers, limiting their analysis to studies 

published during 2001 only.  A total of 47 studies were ultimately included in their analysis.  

Similarly, Austin (2008a) also reviewed 47 studies published within the medical literature during 

1996-2003.  Austin (2008a) limited his analysis to applications employing only one conditioning 

method, matching.  Reviews of PS applications in the social sciences have reported comparable 

numbers; however, these reviews did not impose strict criteria for inclusion and included a wider 

range of years across multiple disciplines.  For example, Hahs-Vaugh & Onwuegbuzie (2006) 

searched the Education Resources Information Center (ERIC) database for educational studies 

applying PS techniques and identified a total of 25 applications of PS in education.  Similarly, 

Thoemmes and Kim (2011) searched three large databases (ERIC, PsycINFO, and Web of 

Science), for PS applications in social science fields.  Their search generated 111 studies 

published from 1991-2008, of which, 86 met their inclusion criteria, and 34 were from education.   

The gradual adoption of PSs in the social sciences may be associated with the fact that 

there still remains a plethora of research situations for which there is a paucity of empirical 

evidence justifying the appropriateness of PSs (Shadish & Steiner, 2010).  For example, 

investigations of the behavior and application of PSs with nested data has received relatively little 

attention.  Much of the research on PSs assumes observations to be independent (Arpino & 

Mealli, 2011; Hahs-Vaughn & Onwuegbuzie, 2006; Lingle, 2009); however, many systems, 

especially those in education, include a hierarchical structure where individuals are nested in 

multiple levels (e.g., students nested within classrooms; classrooms nested within schools; 

schools nested within districts) a violation of the independence assumption.   
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Hierarchical linear modeling (HLM), also referred to as multilevel modeling (MLM), is 

often employed when analyzing data with a nested or hierarchical structure (Raudenbush & Bryk, 

2002).  Estimating treatment effects within a nested context is complex because outcomes often 

depend upon contextual factors of the various levels.  Additional challenges for drawing causal 

inferences within a MLM framework include implications associated with different hierarchical 

designs (Hong & Raudenbush, 2003).  Currently, there is little guidance provided on how to 

incorporate statistical methods, such as PSs to draw causal inferences with nested structures 

(Thoemmes & West, 2011).   

Recently, PS methods have been applied to studies conducted in multilevel settings (e.g., 

Hong & Raudenbush, 2005; Hong & Yu, 2008; Kim & Seltzer, 2007).  Additionally, few studies 

have also recently begun to evaluate the performance of different PS methods with hierarchical 

data (Arpino & Mealli, 2011; Lingle, 2009; Rodriguez de Gil et al., 2012; Thoemmes, 2009; 

Thoemmes & West, 2011).  While these studies have contributed to the body of knowledge, the 

literature on PSs with MLM remains sparse.  Given the steady increase of PSs, coupled with the 

desire to investigate causal relationships in educational settings, further examination of the 

performance of PSs with MLM is warranted and timely.  

Study Purpose 

The purpose of this study was to further examine the appropriateness of using PS 

methods to achieve balance between groups on observed covariates and to yield unbiased 

treatment effect estimates in multilevel studies.  Specifically, this study examined the extent to 

which different PS approaches (PS estimation models and PS conditioning techniques) and 

sample characteristics (sample size, covariate relationship to treatment and outcome, and 

population effect size) achieved balance and reproduced the population treatment effect.  

PSs were estimated using four different logit models (a) single level model, (b) fixed 

slopes with random intercepts ignoring cluster-level predictors (random intercepts), (c) random 
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slopes and intercepts ignoring the cluster-level predictors (random coefficients) and, (d) random 

slopes and intercepts with cluster-level predictors added (cross-level).  For each of the four PS 

estimation models, three different PS conditioning strategies were also investigated and included: 

(a) matching, (b) stratification, and (c) covariance adjustment.  PS methods (estimation models 

and conditioning strategies) fully crossed with the sample characteristics were examined to 

evaluate the quality of balance achieved as well as the accuracy and precision of treatment effect 

estimates produced.   

Research Questions 

1. To what extent do balance estimates vary across PS methods (PS estimation models and PS 

conditioning strategies)?  

2. To what extent do data factors (sample size, covariate relationship to treatment and outcome, 

and population effect size) affect the balance achieved by the PS methods (PS estimation 

models and PS conditioning strategies)?  

3. To what extent do treatment effect estimates vary across PS methods (PS estimation models 

and PS conditioning strategies)?  

4. To what extent do data factors (sample size, covariate relationship to treatment and outcome, 

and population effect size) affect the treatment effects estimated by the PS methods (PS 

estimation models and PS conditioning strategies)?  

5. What is the direction and strength of the relationship between balance and both the accuracy 

and precision of treatment effect estimates?  

Overview of the Study 

This study incorporated Monte Carlo simulation methods to examine the performance of 

PS methods with MLM.  Simulation methods allow for the control and manipulation of specific 

design and data factors to investigate the behavior of statistical methods (Guo & Fraser, 2010).  

This current study included nine design factors (see Table 1) related to either PS technique or 
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sample characteristics.  These factors are (a) PS estimation models (single level, random 

intercepts, random coefficients, and cross-level); (b) PS conditioning strategies(matching, 

stratification, and covariance adjustment); (c) number of clusters (small [n=30], moderate [n=50], 

and large [n=100]); (d) within-cluster sample size (small [n =01-09], moderate [n =10-19], and 

large [n =20-29]); (e) relationship between level-1 covariates and treatment assignment (small 

[βxz=.10], and moderate[βxz =.20 ]); (f) relationship between level-1 covariates and outcome 

(small [βxy =.10], and moderate [βxy=.20 ]); (g) relationship between level-2 covariates and 

treatment assignment (small [γwz =.20 ], and moderate [γwz =.40]); (h) relationship between level-

2 covariates and outcome (small [γwy =.20 ], and moderate [γwy =.40]); and (i) population effect 

size (δ = small [0.2] and moderate [0.5]).  All levels of all the factors were fully crossed with one 

another for a total of 288 data conditions (see Table 1).  For each of the 288 data conditions, 

twelve different combinations of propensity score methods were conducted yielding a total of 

3,456 conditions.  For 254 out of 288 data conditions, 1000 datasets were simulated using SAS 

IML (SAS Institute Inc., 2008).  The remaining 36 conditions, where the number of clusters was 

100 and the number of level 1 units within these 100 clusters was large (20-29), 500 datasets were 

simulated using SAS IML (SAS Institute Inc., 2008).  

Two specific aspects of PS methodology within a MLM framework were of interest in 

this study: the quality of the balance achieved and the accuracy and precision of the treatment 

effect estimates.  The standardized differences for the estimated PSs and the observed covariates 

after conditioning were used to estimate balance.  Outcome measures associated with effective 

treatment effect estimates included bias, standard error, 95% confidence interval coverage and 

width.   

This study incorporates multiple analytical steps.  First, PSs were estimated for each of 

the four models.  Next, the PS estimates and samples were evaluated and trimmed to include only 

the common support areas.  Then, each of the four PS model's trimmed samples were conditioned 
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Table 1 
Design Features 

Sample Characteristics PS Methods 
  

    PS estimation models 
           

       Single 
level 

Random 
intercepts 

Random- 
coefficients  

Cross-
level 

Sample size 
Covariate 

relationship to 
treatment 

Covariate 
relationship to 

outcome 

Population 
effect size PS conditioning strategies* 

Number 
of clusters 

Sample 
size within 

cluster 
Level 2 Level 1 Level 2 Level 1 

 M 
S 
C 

M 
S 
C 

M 
S 
C 

M 
S 
C 

30 
01-09 
10-19 
20-29 

γ0S=.20 
γ0S=.40 

β=.10 
β=.20 

γ0S=.20 
γ0S=.40 

β=.10 
β=.20 

δ=.2 
δ=.5 

    

50 
01-09 
10-19 
20-29 

γ0S=.20 
γ0S=.40 

β=.10 
β=.20 

γ0S=.20 
γ0S=.40 

β=.10 
β=.20 

δ=.2 
δ=.5 

    

100 
01-09 
10-19 
20-29 

γ0S=.20 
γ0S=.40 

β=.10 
β=.20 

γ0S=.20 
γ0S=.40 

β=.10 
β=.20 

δ=.2 
δ=.5 

    

M= Matching  
S= Stratification  
C= Covariance Adjustment  
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three different times.  Lastly, treatment effects were estimated using MLM, and balance on the 

conditioned samples was assessed.  General Linear Models (GLM) procedures were conducted to 

address the research questions and draw inferences about the variability in balance and treatment 

effect estimates across PS methods and sample characteristics. 

Delimitations  

In addition to the manipulated factors, several design factors were held constant 

throughout this study.  Data simulated included 27 continuous and 3 dichotomous level 1 

covariates (X), 9 continuous and 1 dichotomous level 2 covariates (W), 1 binary assignment 

variable (Z) and 1 continuous outcome variable (Y).  Data were generated so that the correlation 

between covariates within each level is approximately 0.2.  Specific details regarding the three 

conditioning methods are presented in Table 2.  

Table 2   
Conditioning Methods  
1. Matching - 1:1 Nearest neighbor caliper matching without replacement  

2. Stratification- Five strata distributed evenly 

3. Covariance Adjustment-including the estimated PS as varying level-1 covariate 

 

Significance of the Study 

Since the early 80's researchers have studied PS methods as well as multilevel models 

with respect to their ability to estimate effectiveness, individually.  Many social and behavioral 

studies employ non-randomized studies in hierarchical settings to estimate treatment effects.  

Given that non-randomized studies lack the desirable properties of RCTs, it is imperative for 

methodologists to examine and improve methods used to identify causal relationships.  The PS is 

a fairly recent statistical approach, and examinations of this method within MLM have received 

little attention.  By examining the performance of PS in MLM, this study aimed to contribute to 

an important gap in the ongoing dialogue on causal inference in social and behavioral field 

settings.   
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Although recently researchers have begun to investigate the behavior of PSs with MLM 

through simulation studies, these studies have not considered conditions often found in applied 

educational settings.  For example, previous studies have included relatively few level 1 

predictors (e.g. less than 10) to balance groups (e.g. Arpino & Mealli, 2011; Lingle, 2009; 

Thoemmes & West 2011).  In their review of PS applications in social science fields, Thoemmes 

and Kim (2011) reported an average of 31.3 covariates used in 79 studies.  Inferences drawn 

based on investigations using ten covariates should be considered tentative when generalizing 

results to applications using more than ten.   

The simulated samples in this study aimed to represent current applications of PS 

analyses in social science research and common attributes of educational data, specifically, 

focusing on research situations where units nested in clusters are assigned to treatment group with 

conditioning occurring across clusters.  Several aspects distinguish the current study from 

previous ones, particularly in sample complexity and PS methods investigated.  Specifically the 

following characteristics induce a degree of complexity to the samples and have not previously 

been investigated within this context: (a) larger number of level-1 and level-2 predictors, (b) 

correlations among the predictors, and (c) dichotomous covariates.  In addition, this study 

investigated a broad range of PS methods.  For example, three different PS conditioning 

techniques were examined in order to introduce and extend additional PS methods to a multilevel 

framework. Currently, little empirical evidence exists on which PS conditioning method work 

best under certain situations. Only a few studies compare the conditioning techniques using single 

level, non-nested data.  No previous investigation of PS methods comparing three different 

conditioning techniques using MLM could be located.  Lastly, the majority of methodological 

studies of PSs focus on the degree to which the PSs are able to remove bias in treatment effects; 

balance estimates are often a secondary outcome if and when included.  Consequently, balance 

estimates are not consistently reported in applied studies incorporating PS methods (Thoemmes, 



13 
 

& Kim, 2011).  Balance indicates the PSs' ability to create comparable groups that would mimic a 

random sampling design, an important, albeit overlooked purpose of PS models.   

The findings from this study build upon the current literature and offer multiple avenues 

for future research.  While this study's significant contributions are primarily methodological, 

current trends in social and behavioral research suggest the timely nature and opportunity for this 

study to provide applied researchers across disciplines additional information on the nature of 

causal inference with non-randomized nested data.  

Limitations 

Although this study contributes to the methodological literature on causal inference of 

non-randomized studies, specifically the use of propensity scores in multilevel contexts it is not 

without limitations.  There are numerous combinations and permutations of potential design 

factors that may be considered.  Data in this study was based on the specific aforementioned 

conditions and delimitations.  While simulation studies are intended to provide evidence and 

rationale for empirical application, findings from this study can only be generalized to studies 

with similar conditions.  

Definition of Terms 

 Assignment- binary variable that determines whether an individual or cluster receives 

treatment or control. 

Balance- met when the distribution of observed covariates is equal between treatment and 

control groups. 

Bias- the difference between a known parameter estimate and the estimated parameter 

estimate 

Common Support- the region of overlap in estimated PSs across treatment groups 

Conditioning Strategies- methods employed to apply the propensity scores to balance the 

groups on the observed covariates.  
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Confidence Interval Coverage- the proportion of 95% confidence intervals that includes 

the estimated parameter. 

Confidence Interval Width- the difference between the upper and lower limits of the 95% 

confidence intervals for the estimated parameter.  This statistic will be aggregated across 

replications within each condition and represent the Average confidence interval width.  

Confounding variable- a variable that is related to both treatment assignment and 

outcome.  

Control- the group not receiving or exposed to a specific condition under investigation of 

its effectiveness.  This group is often known as the referent group.  

Counterfactual- the missing value that is estimated used by taking the differences in 

observed outcomes in causal analysis. 

Effectiveness -The change in a dependent variable that is attributed to a specific cause or 

treatment.  

Experiment- studies that investigate treatment effects of manipulable causes on specific 

outcomes to provide evidence for causality. 

Hierarchical Linear Modeling (HLM) - commonly referred to as multilevel modeling, 

HLM is an analytic technique that is useful to examine data that are nested within one another 

such as students in classrooms, or teachers in schools.  

Manipulable causes- Causes deliberately altered by the researcher when investigating the 

effectiveness of treatments. 

Non-manipulable variables- variables that cannot be controlled by the researcher and are 

often included in as predictor or control variables.     

Observational studies- studies that investigate causal relationships between non-

manipulable causes such as demographic variables and outcomes.  

Percent non-overlapping data (PND) - the percentage of data for which the estimated PS 

falls outside of the region of common support 
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Propensity score- the “conditional probability of assignment to a particular group, given 

a vector of covariates” (Rosenbaum & Rubin, 1983 p. 42) 

Randomization- the process of using a random mechanism to assign subjects to treatment 

conditions. This process ensures that groups are balanced on all observed and unobserved 

covariates and any differences are random. 

Root Mean Squared Error- the square root of the average sums of squares of the errors. 

Treatment- the group receiving or exposed to a specific condition under investigation of 

its effectiveness.  
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CHAPTER TWO: LITERATURE REVIEW 

This study investigated the behavior and performance of PS methods in multilevel 

settings.  Accordingly, the review focuses on causal inferences using PS methods, and their 

appropriateness in multilevel studies.  To provide a foundation the literature on causal inference, 

the theoretical framework for this study, is presented first.  Included is a description of two 

distinct perspectives on the nature of causality.  What follows is a discussion about the logic and 

use of PSs.  Included here is a synthesis of current recommendations for applying PS methods 

within a single level context and a review of several empirical studies.  Next, an overview to the 

theory and logic behind MLM is introduced.  Lastly, research on PS in MLM will be discussed, 

empirical gaps will be identified, and a rationale for the proposed study will be offered.   

Theoretical Framework 

Originating as early as the 16th and 17th centuries, the concepts of causation and 

experimentation have influenced the development of Western Science in philosophy.  Two 

distinct perspectives regarding the nature of causality and research are discussed within the 

literature: Rubin's Causal Model (RCM) and Campbell's validity framework.  These two 

perspectives correspond to the two approaches to the estimation of causal effects in non-

randomized studies (applied statistical methods and alternative research features), respectively.  

RCM presents a framework for defining causal relationships and estimating treatment 

effects based on the counterfactual, sometimes referred to as potential outcomes (Holland, 1986).  

In contrast, Campbell's validity framework focuses on the inferences made from experiments and 

the potential threats to the validity of these inferences caused by various design related factors.  

Although often presented in isolation and operated independently rather than mutually (Shadish, 

2010), these two perspectives are quite complimentary and share many common underlying 



17 
 

features (Rubin, 2010).  RCM provides the foundation guiding the logic behind PSA while 

Campbell's commitment to improving causal inferences in non-randomized studies parallels the 

impetus of this study.  Their unique perspectives provide a robust description of the theory of 

causality; thus, jointly serve as the theoretical framework for this study.   

Rubin's Causal Model  

RCM focuses on the precise mathematical and statistical properties related to causal 

inference, specifically the concept of potential outcomes (Rubin, 2010; West & Thoemmes, 

2010). In RCM, treatment effects are determined by comparing the potential outcomes that would 

have been observed for an individual under different conditions.  These outcomes are considered 

"potential" as each individual cannot be observed under various conditions simultaneously.  In the 

simplest application of this model, there are two possible conditions (e.g. treatment and control) 

and each individual, i, has a potential outcome for each condition: Yi (0) for control and Yi (1) for 

treatment.  For each individual, the treatment effect, τ1, is defined as the difference between the 

two outcomes: 

τ1 = Yi (1) - Yi (0)                                                          (2) 

Given this definition, it becomes impossible to observe both outcomes for the same 

individual.  For each individual in the experiment, one of the two outcome variables will be 

observed, while the other one will be missing.  Subsequently, it is impossible to find the 

difference between the two outcomes for an individual, and the treatment effect for an individual 

can never be observed —the "Fundamental Problem of Causal Inference" (Holland, 1986, p. 947; 

Rubin, 1978).   

RCM combats the fundamental problem using a statistical solution to estimate the ATE 

based on the expected value of the difference in outcomes, or a counterfactual model.  Consider 

an experiment with two treatment levels, t (treatment) and c (control), where Z=1 when treatment 

is administered to an individual and Z=0 when the individual receives the control.  Let Y 

represent the outcome variable of interest in this scenario.  Each individual is assigned to one 
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condition, and therefore only one outcome is observed; the outcome for the condition the 

individual was assigned. The unobserved outcome, or missing outcome, is considered the 

counterfactual.  Equation 3 represents the observed outcome, Yi for an individual: 

  Yi = Zi Yi (1) + (1- Zi) Yi (0)       (3) 

In the counterfactual model, each individual will have one observed outcome Y, 

dependent upon Z, and the counterfactual will be missing.  Observed outcomes for each condition 

can be averaged, as these averages from the sample also correspond to the population average.  

The ATE of the population, U can be estimated from sample, u outcomes.  The two distributions 

of observed outcomes Yz1 and Yz0 are formed by separate individuals and these distributions 

represent hypothetical distributions of the population, had all individuals received treatment and 

control, respectively (Lunceford & Davidian, 2004).  Consequently, the differences between the 

aggregated outcomes represent the ATE. 

This solution to the fundamental problem allows causal inferences to be drawn using 

outcome measures observed from different individuals (Holland, 1986).  In some situations, it is 

not the ATE that is of interest but rather the average treatment effect on the treated (ATT).  For 

example, if students were able to elect to participate in an intensive dropout prevention program, 

the real interest here may not be the average effect, but rather the program's effect on those who 

participated.  This is theoretically understood as the difference in outcomes with and without 

treatment for only those who were treated (Caliendo & Kopening, 2008; Holland, 1986; Rubin, 

1973a, 1973b).  Since outcomes for all treatment conditions cannot be observed for all units, 

RCM operates under several key assumptions discussed below (Rosenbaum & Rubin, 1983, 

1984; Rubin, 2010).   

Strongly ignorable treatment assignment assumption. Causal analysis and 

counterfactual models rely heavily on the assumption of strongly ignorable treatment assignment, 

which when satisfied suggests alternative explanations have been accounted for and there is no 

hidden bias in treatment effects.  This assumption refers to the mechanism or process used to 
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assign individuals to conditions and requires the assignment to condition be independent and not 

associated with the outcome or other factors.  When satisfied, causal inferences can be drawn for 

population U using the average observed outcomes for all u in U exposed to t and c only 

(Holland, 1986).   

  When u units are randomly assigned to conditions it is assumed that the cause of 

assignment mechanism Z, is statistically independent from the outcomes Yz1 and Yz0.   This 

assumption is considered to be satisfied through the randomization process; however, when 

randomization is not employed satisfying this assumption becomes complex as differences in 

observed outcomes may be attributed to alternative variables related to the assignment 

mechanism.  Accordingly, well executed RCTs are able to produce unbiased estimates of 

treatment effects and are, therefore, the preferred method when investigating causal relationships.  

The strongly ignorable treatment assignment assumption becomes a key factor regarding the 

quality of estimates in non-randomized studies.  Ignorability of treatment assignment can be 

assumed if all the covariates that affect the treatment assignment have been accounted for, so that 

there are no unobserved covariates that may influence the estimates.  If ignorability holds, one 

can obtain unbiased treatment effect estimates. 

Stable unit treatment value assumption.  Since outcomes for all treatment conditions 

cannot be observed for all units the outcomes from different units are compared.  Therefore, 

experiments operate under the stable unit treatment value assumption (SUTVA), a strong 

independence assumption.  More formally, SUTVA is defined as an "a priori assumption that the 

value of Y for unit u when exposed to treatment t will be the same no matter what mechanism is 

used to assign treatment t to unit u and no matter what treatments the other units receive" (Rubin, 

1986, p. 961).  Simply, SUTVA assumes the outcomes from two individuals, irrespective of 

treatment assignment, are independent from one another.  When operating under SUTVA, 

statistical solutions can be applied to estimate the ATE over a population (Holland, 1986).  
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Campbell's Validity Framework 

Non-randomized studies lack desired properties for causal inference and when causal 

inferences are incorrect or invalid, there are several potential reasons for this imprecision, 

referred to as "threats to validity" (Shadish et. al., 2002).  Campbell's work focused on identifying 

the potential threats which often materialize in field settings and subsequently designing methods 

to account for them (Maxwell, 2010; Rubin, 2010; Shadish, 2010; West, & Thoemmes, 2010).  A 

central focus of Campbell’s framework was his distinction of the two inferences made though 

experimentation.  The first one being whether the independent variable or manipulable cause can 

produce a significant effect (internal validity), and the second one being the identification of the 

different populations, settings, variables, and conditions to generalize the significant effect 

(external validity) (Campbell, 1957).   

The term internal validity has been adopted in the social sciences and psychological 

literature with meanings that vary from Campbell’s original definition (Shadish et al., 2002).  In 

this context, internal validity refers to the extent to which the approximate truth is captured in an 

inference (Shadish et al., 2002).  Validity can be considered a “property of the inferences” made, 

rather than a property of the design or methodology, because one design may yield more or less 

valid inferences in various circumstances (Shadish et. al 2002, p. 34).  Cook and Campbell (1979) 

refined the distinction between internal and external validity and created a taxonomy of four 

different validity types to classify the different threats: (a) statistical conclusion validity, (b) 

internal validity, (c) construct validity and (d) external validity.   

Statistical conclusion validity refers to the validity of the inferences about the covariation 

between treatment and outcome and answers the question regarding the strength, magnitude, and 

reliability of the covariation between the presumed cause and effect.  Internal validity includes 

the threats associated to the validity of the inferences about whether the observed covariation 

between the treatment and the outcomes reflect a causal relationship from the treatment to the 
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outcome.  Internal validity helps researchers understand whether the relationship was indeed 

causal or whether the outcome would have occurred regardless of exposure to the treatment.  

Construct validity is defined as the validity of the inferences about the higher order constructs 

representing sampling particulars such as the observed persons, the settings, and the cause and 

effect operations (Shadish et al., 2002).  Construct validity allows researchers to identify the 

general constructs involved in the persons, settings, treatments and observations used in the 

experiment.  Threats to construct validity identify a mismatch between the operations of the 

various particulars by the study and the constructs used to describe those operations.  Lastly, 

external validity refers to whether the causal relationship holds over variation in persons, settings, 

treatment variables and measurement variables, or in other words the interaction effects.  External 

validity specifically answers questions regarding the generalizability of the causal relationship 

over variation on the various sampling particulars.   

The identification of specific potential threats within each of the four validity types has 

provided researchers with various sources that may be the culprit for the potential imprecision of 

the estimates generated from non-randomized studies.  This process of ruling out threats to 

validity has been described as a “falsificationist enterprise” (Shadish et al., 2002, p. 41) where the 

purpose is to "reduce the number of plausible rival hypotheses" (Campbell & Stanley, 1963 p. 36) 

which would increase the "degree of confirmation" (p. 36) in the inferences.  Arguably, 

Campbell's most significant contribution was his quest to identifying the threats and developing 

research features to include in the study design in order to logically rule out plausible 

explanations when conducting field based research (Rubin, 2010; Shadish, 2010; Shadish et al., 

2002;West & Thoemmes, 2010) and provide a greater amount of trust for the causal inference in 

non-randomized experiments.  Campbell and Stanley (1963) introduced the term quasi-

experiment, a designation for such research design features.   
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Causal Inference in Non-randomized Studies  

Various statistical methods and procedures have been applied to adjust the data from 

observational studies to estimate causal relationship.  Traditional matching methods, such as 

simple mean matching, pair matching (Rubin, 1973a) and multivariate matching (Rubin, 1976, 

1979) are statistical methods that aim to equate the groups.  Matching methods can be used to 

estimate both causal effects as well as non-causal relationships (Stuart, 2010).  Traditional 

matching of individuals on relevant variables is complex. 

As the number of related variables used to match increases, the number of combinations 

for individual matches between groups also increases exponentially (Cochran, 1965).  For 

example, if there are 10 dichotomous covariates, there are 1,024 combinations to match on.  Thus, 

historically these methods allow for matching to be done on a limited number of covariates.  

Additionally, with traditional matching methods there is a potential to lose a lot of data.  For 

example, in a study with 671 individuals assigned to treatment and 523 assigned to control; only 

23 pairs were able to be matched on six categorical variables (Stuart, 2010).  When few 

covariates are used to match, estimates of treatment effects may seem unbiased (Cochran, & 

Rubin, 1973).  However, the likelihood that one or two variables can account for the total 

variance explained by the treatment assignment is slim, and differences in treatment effects may 

be attributed to systematic differences between groups on variables not included.   

In 1983, Rosenbaum and Rubin introduced the PS, a major advancement in causal 

analysis, specifically due to its ability to balance groups using a set of covariates reduced to a 

single score virtually eliminating the challenges with traditional matching (Shadish & Steiner, 

2010).  The ability to include many variables increases the likelihood of satisfying the strong 

ignorability assumption.  When the assumption of strongly ignorable treatment assignment holds 

PSs can yield unbiased treatment effects (Stuart, 2010; Shadish & Steiner, 2010).   
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The Logic of Propensity Scores 

Rosenbaum and Rubin (1983) introduced the concept of using balancing scores to group 

treatment and control units in non-randomized studies. A balancing score is defined as the 

"function of observed covariates, such that the conditional distribution of these observed 

covariates is the same for treated and control units" (Rosenbaum & Rubin, 1983, p. 42).  For 

example, balancing score, b(x), is a function of the observed covariates, x (Rosenbaum & Rubin, 

1983).  Individual units assigned to different conditions with the same, b(x), are assumed to be 

comparable, therefore using balancing scores may mimic the properties of a randomized 

experiment, where groups are considered to be probabilistically similar.  In other words, balance 

implies that the variables x, are statistically independent of treatment assignment; therefore 

cannot be a confounding influence and unbiased estimates of the treatment effect are possible, 

assuming no other confounders exist.  Rosenbaum and Rubin (1983) introduced the PS, as a 

specific and coarse type of balancing score that collapses a set of covariates into a single score to 

balance the groups.   

Rosenbaum and Rubin (1983) proved that if the PSs are balanced between the two 

groups, then all the covariates used to estimate the PS are also balanced on average in large 

samples.  Therefore, when conditioning on the balanced PS estimates, the covariates are 

statistically independent of treatment assignment, thereby mimicking the expected properties of 

randomized experiments potentially producing unbiased treatment effect estimates.  A key 

assumption of PSs and their capability for producing unbiased estimates is that x, the vector of 

covariates, contains all variables that may potentially bias the treatment effect estimate.  More 

simply, PSs rely heavily on the strongly ignorable treatment assignment assumption (Rosenbaum 

& Rubin, 1983).  The process of applying PS to estimate treatment effects requires multiple 

decision-based steps.  These steps are described in detail below.  
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Covariate selection  

The selection and inclusion of appropriate covariates is an integral component in PS.  The 

quality of the estimated PS depends upon its ability to remove hidden bias which is a function of 

the covariates included in the model.  PS relies heavily upon the assumption of ignorable 

treatment assignment; therefore, in order to satisfy the ignorable assumption all variables related 

to treatment and outcome need to be included (Rubin & Thomas, 1996; Stuart, 2010).  There is no 

statistical test for this assumption; its satisfaction is inferred through substantive knowledge of the 

possible confounding variables in the applied context (Shadish & Steiner, 2010; Stuart, 2010; 

Steiner, Cook, Shadish, & Clark, 2010).  Therefore, even if a large number of covariates are 

included, there is no way to tell whether a confounding variable has been excluded, or 

overlooked.  Bias from unobserved covariates is known as hidden bias (Guo & Fraser, 2010; 

Rosenbaum, 1987, 2002).  The researcher is confronted with the responsibility of selecting the 

appropriate variables to satisfy the strongly ignorable treatment assumption.  If important 

covariates related to treatment assignment are omitted, then there is potential for the PS to be 

biased, thus the resulting treatment effect estimates will also be biased (Rubin, 1997; Shadish & 

Steiner, 2010).  The exclusion of potential confounding variables impacts the treatment effect 

estimates and consequently threatens the validity of the inferences (Rosenbaum & Rubin, 1983; 

Shadish & Steiner, 2010; Steiner, Cook, & Shadish, 2011; Stuart, 2010).   

Estimation Methods  

There are two basic methods for estimating propensity scores: binomial regression 

models and statistical learning algorithms (Shadish & Steiner, 2010).  Binomial regression 

models, such as logistic regression models or probit models, belong to the large family of models 

known as generalized linear models and are currently the most common method of PS estimation 

(Shadish & Steiner, 2010).  Generalized linear modeling (GLM) is a technique for modeling data 

with non-normally distributed response variables, such as binomial distributions (Agresti, 1996; 

McCullough & Nelder, 1989; Nelder &Wedderburn, 1972; Quinn & Keough, 2001).   
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GLM's, specifically logistic models, consist of three components.  First is a random 

component, which is the response variable and its probability distribution, second is the 

systematic component which is represented by the predictors or covariates used to specify the 

model, and third is the link function which is used to connect the random and systematic 

components (Agresti, 1996; Quinn & Keough, 2001).  The most common link function for binary 

data and logistic regression is the logit link which transforms the predicted probabilities into 

logits or the natural log of the odds.  Thus, in multiple logistic regression a set of k predictors for 

a binary response Y is modeled so that the logit of the probability, π, that Y=1 can be generalized 

using the following equation:  

[ ]
10 1logit log ...

1 n nx xππ β β β
π

 = = + + − 
     (4) 

Here, β0 is the average PS for the sample or the average probability in logit units of 

receiving treatment across individuals assuming all the covariates are centered and normally 

distributed.  The parameter β1 refers to the effect of X1 on the log odds that Y=1 controlling for 

the other Xs (Agresti, 1996, Hosmer & Lemeshow, 2000).  The logit link is considered favorable 

because the probabilities are modeled as a linear function of the covariates and the outcome, the 

natural log of the odds is a continuous, normally distributed variable (O'Connell & Rivet Amico, 

2010).  In the context of PS analysis, logistic regression models estimate the probability of being 

assigned to the treatment, conditional on the covariates specified.   

With logistic regression models, least squares estimation for the model parameters are not 

optimal, because the variance of the binary outcome for each individual is not constant across all 

predictors, but rather depends on the probability for each predictor (Agresti, 1996).  With the non-

constant variance, maximum likelihood (ML) estimates can yield smaller standard errors than 

least squares estimates; therefore, ML estimation is used in logistic models (Agresti, 1996; 

O'Connell & Rivet Amico, 2010; Quinn & Keough, 2010).   
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Statistical learning algorithms also known as machine learning or ensemble methods refer 

to techniques such as classification or regression trees, boosting, bagging, or random forests 

(Shadish & Steiner, 2010).   These methods try to iteratively minimize imbalance in covariates, 

while taking into account any nonlinear relationship between covariates and treatment assignment 

(McCaffrey, Ridgeway, & Morral, 2004).  For example, a classification tree uses a recursive 

algorithm to estimate a function describing the relationship between a multivariate set of 

independent variables and a single dependent variable, for example treatment assignment.  Using 

one variable as its basis, the tree fitting algorithm splits the dataset into two regions.  The chosen 

split is the one that minimizes the prediction error.  Within a region defined by its splits, the 

estimated function is equal to the sample mean of the outcome variable for all observations that 

based on the value of their covariate are included within the region.  The regions are each 

subsequently partitioned and this process occurs iteratively until the number of allowable splits is 

reached (McCaffrey et al., 2004).   

Since PSs are meant to create comparable groups, after PSs have been estimated, it is 

good practice to assess the two groups based on their estimated PSs.  One method is to examine 

the distribution of the estimated PSs between the groups, known as the region of overlap or 

common support region (Shadish & Steiner, 2010; Stuart, 2010; Thoemmes & Kim, 2011).  A 

broad region of common support allows for causal effect estimates to be based on the full range 

of PSs in the sample, whereas a small common support region restricts the effect estimates.  Often 

individuals who have estimated PSs that fall outside the common support region are dropped 

from the analysis.  These individuals are usually located in the tails of the distribution, with 

estimated PSs close to 1 and 0.  If PSs yield insufficient overlap then it may be that the model to 

estimate the PSs needs to be adjusted.  

Conditioning methods 

Once PSs are estimated, the next step is to utilize, or condition on them to balance the 

treatment and control groups.  There are four general conditioning techniques: matching, 
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stratification, covariance adjustment, and weighting.  The first three techniques were introduced 

with the PS in 1983 by Rosenbaum and Rubin while the last technique was introduced a few 

years later (Rosenbaum, 1987).  There are multiple decisions to be made within each conditioning 

method.   

Matching. Propensity score matching involves the formation of new data sets which 

include only those individuals matched.  Individuals from treatment and control groups who share 

a similar propensity score are matched to balance the groups (Guo & Fraser, 2010; Rosenbaum, 

& Rubin, 1983, 1985; Steiner & Cook, 2013; Thoemmes, & Kim, 2011).  There are four major 

factors to consider when creating a matched data set: the matching algorithm, matching with or 

without replacement, number of control units and the distance criteria.  Often these decisions are 

made collectively, rather than independently.   

There are several matching algorithms to select from such as kernel, greedy, or optimal 

(Austin, 2011; Steiner & Cook, 2013; Gu & Rosenbaum, 1993; Hill, Weiss, & Zhai, 2011; Stuart, 

2010).  Kernel matching uses weighted averages of all cases in the control group to estimate 

counterfactual outcomes. The weight is calculated by the propensity score distance between a 

treatment case and all control cases.  The closest control cases are given the greatest weight 

(Smith & Todd, 2005).  Greedy matching considers the individual scores to match on based on 

the best control unit matched to each individual treatment unit (Gu & Rosenbuam, 1993).  

Optimal matching does not consider the best matches for individual treatment units, but rather 

matches are made to minimize the overall distance for all units in the matched sample 

(Thoemmes, & Kim, 2011).  Matching with replacement allows controls matched to be placed 

back into the control group to be matched to other treatment units.  Therefore, control units may 

be matched with multiple treatment units.  Matching without replacement does not allow a 

control unit previously matched to a treatment unit to be considered for matching again (Austin, 

2011).   
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Several different options regarding the number of control units (k) to match with each 

treatment are available and include: 1:1, k:1, or full matching.  The number of matches for each 

of the treated units has some theoretically based implications regarding the precision and 

efficiency of the estimators (Steiner & Cook, 2013).  When using a 1:1 matching strategy, one 

treatment unit is matched to the most similar control unit.  Unmatched control cases are then 

discarded and there is potential for a loss of data when estimating treatment effects.  The k:1 

strategy allows one treatment unit to be matched to multiple control units, where the number of 

control units is a constant k for all treatment units.  Full matching divides the total sample into 

non-overlapping subgroups where each subgroup has at least one treatment and one control unit 

in an attempt to minimize the distance between units (Hill et al., 2011).   

There are generally two primary methods to determine closeness in propensity scores: 

nearest neighbor matching, and nearest neighbor matching with a specified caliper distance.  

Nearest neighbor matching simply matches the treatment and control units based on the nearest 

PS, while nearest neighbor matching with a specified caliper distance sets limits for what will be 

considered tolerable range around individual treatment unit's propensity score within which 

acceptable matches to a control may be made (Rosenbaum & Rubin, 1985).  Nearest neighbor 

matching with a specified caliper distance includes identifying a distance metric, (dij) to 

determine the criteria for close matches for a unit i. The distance metric quantifies the 

dissimilarity between pairs of observations from alternative assignment conditions (Steiner & 

Cook, 2013).  When (dij = 0) then the two units are identical on all observed covariates.  When 

the distance metric is nonzero, then there is a difference between the two units on at least one of 

the covariates.  The larger the difference the more covariates are not identical.  Calipers are 

generally defined as standard deviation units on the original covariate (Steiner & Cook, 2013; 

Lingle, 2009; Rosenbaum & Rubin, 1985; Thoemmes, & Kim, 2011).  

Stratification.  Stratification, also referred to as subclassification, divides or classifies 

the sample into strata based on their estimated PS.  Cochran (1968) found that stratifying a 
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sample based on one continuous variable into five subgroups or quintiles eliminated 90% of the 

bias due to that one confounding variable.  Rosenbaum and Rubin (1984) extended Cochran's 

findings to PS.  Similar to Cochran's findings, Rosenbaum and Rubin found that stratifying the 

data into quintiles based on the estimated PSs eliminates approximately 90% of the bias due to 

the observed covariates that are confounders when estimating a linear treatment effect 

(Rosenbaum & Rubin, 1984).  Stratification yields a series of subsamples of individuals with 

estimated PSs from both treatment and control group.  The individuals' PS estimates within a 

subsample are much closer in range than the full sample (Rosenbaum, & Rubin, 1984).   

Stratification is similar to full matching in that a series of smaller subsamples are created; 

except with full matching the number of subsamples are automatically selected and assigned 

while in stratification the researcher manually stratifies the sample into subsamples, or strata.  

The effects of each stratum are pooled across the strata to estimate the ATE (Rosenbaum & 

Rubin, 1984).  Austin, (2011) likens this procedure to that of a "meta-analysis of a set of quasi-

RCT's" (p. 408) because within each stratum the effect of treatment on outcomes is estimated by 

comparing the outcomes of the treated and untreated subjects.   

Covariance adjustment.  Using this approach to estimate treatment effects, the outcome 

of interest is regressed on an indicator variable denoting the assignment status (e.g., Z) and the 

estimated PS (Austin, 2011).  This is similar to an Analysis of Covariance (ANCOVA) model.  

ANCOVAs are regression models that allow for both continuous and categorical predictors to be 

modeled simultaneously and test whether certain factors have an effect on the outcome of interest 

after removing the variance for which covariates account.  The regression model used would 

reflect the nature of the outcome variable; for a continuous outcome an ordinary least squares 

(OLS) regression model would likely be used, while a logistic regression model would be used 

for a dichotomous outcome.  This technique allows for all the treatment and control units to be 

retained; thus, there is no subsequent loss of data after conditioning (Steiner & Cook, 2013).   
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Covariance adjustment using the PS is a conditioning method that differs in three 

important aspects from the other conditioning methods.  First, conditioning and estimating the 

treatment effect occur as a single step, unlike all other conditioning techniques, where the 

treatment effects are not estimated within the conditioning process.  Second covariate adjustment 

is the only conditioning method that uses a regression model relating the outcome to the treatment 

status and the PS.  Lastly, there are several regression assumptions that apply when using 

covariate adjustment with PS.  First a linear relationship is required between the PS and the 

outcome; second, the linear relationship should be modeled correctly when estimating the PSs; 

and third, the regression model should be free from violations to collinearity (Austin, 2011; 

Thoemmes & Kim, 2011). 

Weighting.  First introduced by Rosenbaum (1987), weighting on the PS is conducted to 

ensure samples are representative of the population of interest.  Weighting is often used in survey 

research, test equating, and norming to draw inferences from non-representative samples to a 

population (Hahs-Vaughn & Onwuegbuzie, 2006; Morgan & Todd, 2008; Rosenbaum, 1987).  

Rosenbaum (1987) introduced weighting as a PS conditioning method as an extension of 

poststratification, a method of standardization, where samples are divided into strata or 

subclasses, and the means of the strata are reweighted using population frequencies.  In PS 

analysis, individual units are weighted based on their estimated PSs.   

Inverse propensity weighting or inverse probability of treatment weighting (IPTW) 

assigns an individual's weight wi as the inverse of the probability of receiving the treatment that 

the subject actually received, (1-Z).  This process accounts for the misrepresentation of the 

sample to the population in that, individual units underrepresented in the treatment or control 

group are up-weighted while units overrepresented are down-weighted.  Weights are defined as a 

function of the estimated PS, ei and the assignment status, Zi:  

( )( / ) 1 /1i i i i iw Z e Z e= + − −         (5) 
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Weighting of the individual units is dependent upon the inference of interest (Hirano & Imbens, 

2002; Hirano, Imbens, & Ridder, 2003; Lunceford & Davidian, 2004; Morgan & Todd, 2008; 

Steiner & Cook, 2013).  If the ATE is of interest, then the inverse-propensity weights for the 

treated Z1 and for the untreated Z0 can be factored out using Equation 6.  The difference in the 

weighted means for the treatment and control groups is the estimate of the ATE:  
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When the ATT is needed, only those in the untreated or control group receive a weight.  Units in 

the treatment group receive a weight of 1 and units in the control group are weighted based on the 

ratio of their estimated PS to the inverse of their PS: This is also referred to as weighting by the 

odds.   

 ( )0 0 0
/ 1z i z i z iW e e= −         (7) 

A single formula to weight both treatment and control units when estimating the ATT, similar to 

Equation 5 can be expressed as:  

( )1(1 ) / 1i i i iW Z Z e e= + − −        (8) 

Using the weights based calculated in Equation 8, the ATT can be estimated similarly to the ATE 

using Equation 6.  

Evaluating the Accuracy of the Propensity Score Model 

The quality of an estimated PS score relies on two aspects: to include the important and 

relevant covariates in the model and to correctly specify the functional form of the covariates in 

the model (Guo & Fraser, 2010).  Correctly specified PSs are able to successfully remove bias; 

whereas misspecified PSs do not capture all of the covariates' potential for removing bias (Steiner 

& Cook, 2013).  Although there are no statistical tests to provide guidance on model specificity, 

two central properties of the PS model can be examined to assess the accuracy of the model: the 
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balance property and the common support region.  The balance property refers to the idea that in 

order to mimic the properties of a randomized experiment, the estimated PSs and covariates 

should be balanced between the two groups.  As described above, the common support region 

provides a good descriptive measure regarding model accuracy.  If the region of common support 

is small, then it could mean the groups are not comparable, the model used to estimate the PSs 

was not properly specified, or the covariates measured do not adequately satisfy the strong 

ignorability assumption.   

Assessing balance can be done by comparing the distributions of the covariates and the 

estimated PSs before and after conditioning using standardized mean differences, statistical tests, 

or graphical representations.  The most common method to assess balance is to compare the 

standardized mean differences for each covariate and the estimated PS before and after 

conditioning between groups (Austin, 2011; Harder, Stuart, & Anthony, 2010; Rosenbaum & 

Rubin, 1985; Rubin, 2001; Stuart, 2010).  Alternative methods to assess balance include 

inferential tests of mean differences such as factorial ANOVA (Rosenbaum & Rubin, 1984), 

cumulative density functions, visual analysis, or bivariate correlations (Steiner & Cook, 2013).  

Additionally, multiple measures may be triangulated to assess balance such as the standardized 

differences of means of the PS, the ratio of the variances of the PS in both groups, and for each 

covariate the ratio of the variance of the residuals, orthogonal to the propensity score in both 

groups (Rubin, 2001).  Once the researcher is comfortable with the model, PS analysis officially 

ends and the researcher continues on to analyze the treatment effect estimates using the newly 

adjusted dataset.   

To summarize, the PS is a single number balancing score estimated using a large number 

of variables.  The PS is a relatively new statistical method that can assist in reducing bias of 

treatment effect estimates in non-randomized studies.  The quality of PS estimates and the 

success of the approach to balance groups and reduce bias rely on several key assumptions, 
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especially the strongly ignorable treatment assignment assumption and the correct specification of 

the PS model.   

Practical Concerns with Propensity Score Analysis 

Since the introduction of the PS as a statistical method to account for plausible alternative 

explanations of treatment effects in non-randomized studies, researchers have empirically 

examined the behavior, performance, and efficiency of specific PS methods in order to identify 

best methodological practices during each PS step through a variety of means such as simulation 

methods (e.g. Austin, 2009; Gu & Rosenbaum, 1993), within-study comparisons (e.g. Steiner, 

Cook, Shadish & Clark, 2010), and analyses of existing databases (e.g. Stuart & Green, 2008).  

Unfortunately, consensus on what constitutes best practices does not yet exist.  Therefore, current 

discussions and perspectives for each PS step are presented.  

Covariate Selection  

Causal analysis and counterfactual models rely heavily on the assumption of strongly 

ignorable treatment assignment.  Accordingly the ability of the PS to produce accurate estimates 

of the treatment effect also relies on this assumption.  Ignorability of treatment assignment can be 

assumed if all the covariates that affect the treatment assignment have been accounted for, so that 

there are no unobserved covariates that will affect the estimates.  Therefore, the choice of 

variables can impact the overall performance of PS.  This step is crucial as there are no tests to 

assess whether this assumption has been satisfied.  One criticism of the literature is the lack of 

guidance as to which variables to include or exclude (Heckman & Navarro-Lozano, 2004).   

Theoretically, the best practice would be to simply include all possible confounders; 

however, in practice researchers are generally unable to identify all potential confounders 

(Austin, 2011).  Rubin (2007, 2008) recommends conducting a PS analysis using a prospective 

approach, where potential confounders are identified during the design phase allowing 

researchers the ability to use substantive theory to plan to measure all necessary covariates.  
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However, PS analysis is most commonly applied retrospectively, during the analysis phase, 

where only measured and available covariates can be considered.   

Selecting covariates based on statistical model building approaches, (e.g. backwards, 

forwards, or stepwise regression), or t ratios of treatment group differences has been criticized 

(Kelcey, 2011; Rubin, 2008).  The purpose of the PS is not to optimize an information criterion, 

or to maximize the correct prediction parsimoniously, (Rosenbaum & Rubin, 1984; Shadish & 

Steiner, 2010; Stuart, 2010); therefore, such statistical techniques will more than likely not 

include the important observed covariates needed to achieve balance and remove bias.  These 

techniques focus on predicting the treatment and run the risk of excluding or removing potentially 

confounding variables due to a lack of power rather than a lack of balance which may ultimately 

fail to remove bias (Greenland, 2008).   

Perhaps the most commonly applied method is to consider all available covariates.  

Including a large set of covariates would maximize the likelihood of satisfying the assumption, or 

conversely, minimize the chances of inadvertently omitting a potential observed confounder 

(Stuart, 2010).  Often a large number of covariates are included in the PS estimation model.  

When comparing smokers to non-smokers, Rubin (2001) included 146 covariates in the PS 

model.  Thoemmes and Kim (2011) reported as many as 238 covariates were used in substantive 

PS applications.  The discussion on covariate selection extends beyond a number, to the quality of 

the covariates and the degree to their confoundedness.   

A number of simulation studies have examined the impact of selecting different types of 

covariates on the performance of the PS.  For example, one study examined the relationship 

between covariate selection and the overall performance of PSs by manipulating the magnitude of 

the association with Z and Y and the estimation models (Austin, Grootendorst, & Anderson, 

2007).  Using simulation methods, 1000 datasets of N=10,000 were generated with nine binary 

covariates with varying associations to assignment and outcome (see Table 3).   
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Table 3  
Covariate relationship to assignment and outcome 
 Strongly associated 

with assignment 
Moderately associated 

with assignment 
Not associated with 

assignment. 
Strongly associated 
with outcome 
 

X1 X2 X3 

Moderately associated 
with outcome 
 

X4 X5 X6 

Not associated with 
outcome 

X7 X8 X9 

Note: Table adapted from Austin, Grootendorst, & Anderson (2007) 

To understand how variable selection affects the performance of PS estimates, 20 

different PS models were considered.  Unbiased estimates of the treatment effect were observed 

when the PSs were specified by the following models: the true propensity score model (X1, X2, 

X4, X5, X7, X8), the potential confounder model (X1, X2, X3, X4 X5, X6), the true confounder 

model (X1, X2, X4, X5), and the non-parsimonious model (all nine variables).  However, the model 

with only true confounders yielded a larger matched sample and the lowest bias estimate and 

MSE, while the potential confounders model produced the lowest bias and MSE when 

stratification was used.  Additionally, findings indicated when either all measured variables or all 

variables related to selection were entered in the PS model balance was achieved on these 

variables.  When a covariate was not included in the PS estimation then balance on this covariate 

was not achieved.  Therefore, if balance on all observed covariates is desired then PS estimates 

need to be specified with all the observed covariates (Austin, Grootendorst, & Anderson, 2007).   

This study empirically supports including all covariates in the model; however other 

studies indicate that including unrelated variables, and/or instrumental variables that is, variables 

related to assignment only (Wooldridge, 2009), may amplify bias and increase noise to the PS as 

well as the correlation between the PS and the assignment mechanism (Brookhart, et al., 2006; 

Pearl, 2010).  For example, Wooldridge (2009) proved that including instrumental variables may 

asymptotically lead to a greater bias, and when no bias exists to begin with, the overall precision 

is reduced.  Pearl (2010) refers to instrumental variables as "bias-amplifying" variables.  Pearl 
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extended the discussion of covariate selection to nonlinear models and asserts that inclusion of 

instrumental variables will not reduce selection-induced bias in either linear and nonlinear models 

and found that including these variables in nonlinear models may introduce new bias (Pearl, 

2010).    

In a pair of simulation studies, Brookhart and colleagues (2006) investigated the 

performance of various PSs to estimate exposure effects.  The first simulation study examined 

whether specifying PSs using different types of covariates impacted the overall estimate of the 

exposure effect.  The second study manipulated the strength of the confounder's relationship to 

outcome as well as exposure to examine whether the inclusion of a single confounder altered the 

bias and variance of the estimated exposure.  Researchers considered three covariates: a true 

confounder, a variable related to outcome but not exposure, and a variable related to exposure but 

not outcome.   

In the first study, seven different PSs were estimated, each corresponding to the different 

combinations of covariate specification (3 single covariate models, 3 double covariate models and 

1 triple covariate model).  The bias, variance, and MSE of the exposure estimate, from all seven 

possible combinations of covariate inclusion were compared to a crude log relative rate estimate 

(c-statistic).  Results indicated PSs specified by the confounder variable and the variable related 

to the outcome performed the best.  This model yielded unbiased estimates with the smallest 

variance for both study samples.  Additionally, results demonstrated an increase in variance with 

no additional decrease in bias when including variables related to assignment but unrelated to 

outcome.  The authors assert the following three conclusions: (a) including such a variable within 

the PS model adds noise to the estimate of the PS and increases the correlation between the 

estimated PSs and the assignment mechanism, (b) variables related to outcome are empirical 

confounders and regardless of their association to exposure should be included in the model, and 

(c) caution against including all available covariates in the model as the specification strategy 

(Brookhart, et al., 2006).   
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The second simulation study found consistent results regarding the relationship between 

covariates and the performance of PSs.  Results demonstrated increasing the strength of the 

association between a variable and exposure increased the variability of the estimated exposure 

effect, independent of the variable's associated strength to outcome.  Researchers conclude that if 

one wishes to minimize the MSE then in studies with a small N, it may be beneficial to omit a 

true confounder from the PS model, when the confounder is strongly associated to exposure and 

weakly associated to the outcome.  This conclusion is strongly underscored by the small study 

characteristic because the researchers noted as the study size increases the variance of the 

estimator decreases at a rate of 1/n, while the bias due to the omitted confounder remains 

(Brookhart, et al., 2006).   

Logically, and empirically, the best combination of covariates would be a parsimonious 

model that included only confounders (Austin, Grootendorst, & Anderson, 2007; Steiner, Cook, 

Shadish, & Clark, 2010).  However, the loss of precision does not seem to be as much of a 

concern as does the potential omission of a confounding variable (Austin, Grootendorst, & 

Anderson, 2007; Shadish, Clark, & Steiner, 2008; Steiner et al., 2010; Stuart, 2010).  One method 

to avoid is to rely solely on demographic variables to estimate the PS (Shadish et al., 2008; 

Shadish & Steiner, 2010; Steiner et al., 2010; Stuart, 2010; Thoemmes & Kim, 2011).  Using a 

doubly randomized preference trial, a within-study analysis found that the PSs specified by 

demographic covariates only performed poorly, even worse than the estimates from the 

unadjusted quasi-experiment, as measured by the absolute bias, percent bias reduction, and MSE 

(Shadish et al., 2008).  

Research has identified the importance and substantial impact on the PS regarding 

covariate selection, specifically, considering the strength of relationship with assignment and 

outcome.  Effectively including covariates associated to the observed outcomes requires either a 

solid foundation of the theory related to the outcome, or the use of the observed outcomes when 

considering which covariates to use to estimate the PSs (Kelcey, 2011).  However, Rubin (2008) 
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asserts the potential benefits of using observed outcomes to construct PSs are negated by the 

various consequences capable of diminishing the quality of the inferences, such as omitting key 

variables that influence treatment assignment.  Recently, Kelcey (2011) examined the use of 

outcome proxies as a method to systematically consider covariates related to the outcome, 

without compromising the efficiency of the effect estimates by including a census of covariates or 

the diminishing the quality of the inferences by using the observed outcomes.   

A set of Monte Carlo simulation studies was conducted to examine the extent to which 

observed outcome proxies and cross validation methods to approximate covariate's relationship 

with potential outcomes were similar to those using the observed outcomes and how the 

inclusions of different types of covariates in a PS model affected the treatment effect estimator 

and the covariate balance under different conditions.  Four types of covariates with differing 

magnitudes were considered: covariates related to both outcome and assignment, covariates 

related to outcome but not assignment, covariates related to assignment not outcome, and 

covariates unrelated to outcome and assignment.   

Several covariate combinations were considered when constructing the PS models: 

predictors of proxy only, union of predictors of the proxy and treatment, intersection of predictors 

of the proxy and treatment, predictors of treatment only, union of predictors of the outcome and 

treatment and using cross validation, intersection of predictors of the outcome and treatment 

using cross validation, and all possible covariates (Kelcey, 2011).  Covariates were deemed 

proxy, treatment, or outcomes based on their ability to predict proxy, treatment, or outcome 

measured by information criteria such as Akaike Information Criteria (AIC) and Bayesian 

information criteria (BIC) garnered through stepwise procedures.  To determine the effectiveness 

of estimating covariates' relations to the potential outcomes using an outcome proxy, the outcome 

proxies and cross validation estimates were compared to those using the observed covariate 

associations.  Specifically, a pretreatment outcome proxy correlated to the true outcome at the 

0.7, 0.5, and 0.3 levels and a 50% cross validated subsample were considered (Kelcey, 2011).   
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Findings indicated PS methods within a correlation condition tended to yield comparable 

results, however this was not the case across correlation conditions.  Consistent with the previous 

studies, the MSE and the bias were lowest when covariates strongly related to the outcome were 

included— either related to treatment and outcome or related to the outcome only.  Specifically, 

PSs using only the important predictors of the observed outcomes yielded similar MSE between 

the proxy approach and the observed outcome approach.  This held true with small proxy 

outcome correlations and small sample size (n=500). Conversely, the cross validation approach 

produced a higher MSE in the small sample size and a comparable MSE in the large sample 

(n=2500).  However, this relationship was not the same when examining the bias estimates.   

The cross validated approach yielded bias estimates comparable to those of the observed 

outcomes while the proxy approach generated higher levels of bias. Similar findings were noted 

when using the intersection of covariates related to treatment and outcome were considered.  

When the union of the covariates predicting treatment and assignment were used in the model, the 

proxy approach estimates, both MSE and bias, were very similar to the observed outcomes, 

especially when the sample size was large or when the proxy-outcome correlations were high 

(Kelcey, 2011).   

When comparing the selection methods across conditions results were not as 

homogenous.  Methods that included predictors of outcome proxy only or in union or intersection 

with the predictors of treatment produced lower MSE and comparable bias than the methods 

considering only the covariate treatment associations.  Conversely, methods using the cross 

validated observed outcomes tended to produce lower bias estimates with the MSE dependent 

upon how the treatment predictors were combined (Kelcey, 2011).  In terms of covariate balance, 

differences among the approaches were quite clear.  Approaches focusing only on the covariates 

predicting the observed outcomes, or those including the intersection of the observed outcome 

and treatment predictors (true confounders), demonstrated large imbalances on the predictors 

related to assignment.  Specifically, when more variables were specified, models tended to 
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provide a coarser balance on many covariates, while parsimonious models yielded a more precise 

balance on selected covariates only (Kelcey, 2011). 

Currently, based on the literature the best method to use would be to include all available 

and measured covariates and to avoid relying solely on demographic variables to remove bias.  

The assumption of strong ignorability is extremely crucial to the reduction in bias estimates.  

Researchers found including poorly measured confounders result in better performing PSs than 

PS estimates that were specified with perfectly measured covariates but omitted one confounding 

variable (Steiner, Cook, & Shadish, 2011).  Therefore, researchers should include covariates that 

allow them to confidently assume strong ignorability.  

Estimation Methods  

Currently, almost exclusively, binomial regression models, more specifically, parametric 

linear logistic regression with observed covariates as predictors for a binary treatment assignment 

(Luellen, Shadish, & Clark, 2005) are used to estimate the PS (Shadish & Steiner, 2010).  One of 

the criticisms' for using logistic regression models to estimate PS scores is their sensitivity when 

the relationship between the covariates and the assignment function is nonlinear (Shadish 

&Steiner, 2010).  In contrast, statistical algorithmic approaches automatically consider and 

account for nonlinear terms within the estimation model (Luellen, et al., 2005; McCaffery, 

Ridgeway, & Morral, 2004; Shadish & Steiner, 2010; Thoemmes & Kim, 2011), yet are rarely 

used.   

Shadish and Steiner (2010) offer four reasons as to why binomial regression techniques 

are favored.  First, PSs can easily be estimated by researchers using logistic regression, while 

understanding the basis of the learning algorithms is more complex and challenging (Shadish & 

Steiner, 2010).  Second, since statistical learning algorithms are rarely used little empirical 

evidence on their relative ability to eliminate bias exists. Third, when the initial PS estimates do 

not yield balance for groups based on the covariates, using logistic regression researchers can 

easily adjust and re-specify the model.  In contrast, with statistical learning algorithms, it is 
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unknown how to recalibrate the algorithmic procedures to garner better balance.  Lastly, 

statistical learning algorithms may seem advantageous with regard to identifying the best 

prediction of assignment membership; however, these methods tend to favor the best fit or the 

information criteria of the estimation method rather than focusing on achieving balance on the 

covariates.  Consequently, these methods may produce less optimal estimates of the PS (Shadish 

& Steiner, 2010). 

Understanding the linear nature of logistic regression modeling, Dehejia and Wahba 

(1999, 2003) were one of the first to specify models with higher order terms such as polynomials 

and quadratic interactions.  Results demonstrated estimates generated from models regressing a 

more non-linear function, were less biased than their linear counterparts.  Researchers assert the 

importance of specifying models sufficiently in order to maximize the PSs' ability to remove bias 

(Dehejia & Wahba, 1999).   

A handful of studies have compared the effectiveness of different statistical learning 

algorithms to logistic regression techniques.  These studies indicate PSs generally perform better 

when estimated using various statistical algorithmic procedures over logistic regression; however 

upon critical analysis results tend to prompt more speculative questions rather than offer 

definitive solutions. 

For example, Setoguchi and associates (2008) investigated the performance of various PS 

estimation methods for estimating exposure effects through simulation methods.  Researchers 

considered seven different scenarios for data generation crossing various combinations 

corresponding to the degree of linearity and additively for the associations between the exposure 

and covariates.  For each of seven scenarios, PSs were generated using four different estimation 

methods.  Specifically, logistic regression models, classification trees with and without pruning 

and neural network methods were examined.  Additionally researchers examined whether model 

c statistics predict bias and efficiency of the exposure estimates in the outcome model.  Results 

indicated the PS models created using neural networks yielded the least biased estimates for many 
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scenarios, while the logistic regression models were robust to model misspecifications.  However, 

other than stating "neural networks with 1 layer and 10 hidden nodes" (Setoguchi et al., 2008, p. 

3) no other description of this method or citation was provided, rendering the replicability of this 

study difficult.   

 Lee and associates (2010) examined the performance of various PS estimation methods 

when conditioning using PS weights.  The researchers simulated data similar to Setoguchi and 

colleagues (2008) only slightly modifying the structure.  A binary exposure A with the exposure 

probability at the average of covariates was ≈ 0.5, a continuous outcome Y with a population 

exposure effect γ = -0.4, and 10, covariates, 5 continuous and 5 binary with varying associations 

to exposure and outcome as well as between variables were modeled (see Table 4).   

Table 4  
Data structure for Lee and associates (2010) simulation study 
  Type of Covariate Between variable 

correlation 

Binary 

W1 True confounder rpbW5 =0.2 
W3 True confounder 

8
0.2WrΦ =

 

W6 Exposure predictor  rpbW2=0.9 
W8 Outcome predictor  

3
0.2WrΦ =

 

W9 Outcome predictor rpbW4=0.9 

Continuous 

W2 True confounder rpbW6=0.9 
W4 True confounder rpbW9=0.9 
W5 Exposure predictor rpbW1= 0.2 
W7 Exposure predictor -- 
W10 Outcome predictor -- 

 

Samples of n=500, n=1000, and n=2000 were replicated 1000 times for seven different scenarios 

that varied the degrees of linearity and additivity, specified with quadratic and interaction terms 

(Lee, Lessler, & Stuart, 2010).  Specific properties for each of the scenarios were described as: 

additive and linear (main effects only), mildly non-linear (one quadratic term), moderately non-

linear (three quadratic terms), mildly non-additive (three two-way interaction terms), mildly non-
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additive and non-linear(three two-way interaction terms and one quadratic term, moderately non 

additive (10 two-way interaction terms) and moderately non-additive and non-linear (10 two-way 

interaction terms and three quadratic terms) (Lee et al.,  2010, p. 339).  PSs for each of the seven 

scenarios were generated using six different estimation procedures: logistic regression with a 

main effect for each covariate, basic classification tree, pruned classification tree with a cost-

complexity parameter, bagged classification tree with 100 bootstrap replicates, random forests, 

and boosted regression trees (Lee et al., 2010).   

 Results indicated that as sample size increased the covariate balance increased under all 

scenarios, thus resulting in less biased effect estimates for all estimation methods.  Consequently, 

the logistic regression, classification tree, and pruned classification tree methods produced poor 

confidence interval coverage when n=2000 as error terms shrink with larger sample sizes yielding 

more precise estimates.  Overall the logistic regression model consistently and adequately 

balanced covariates with main effect terms; however when the models did not account for 

interactions and nonlinearities, the estimates were substantially biased.  Alternatively, bagging, 

random forests, and boosted methods demonstrated consistently favorable estimates regardless of 

sample size or the extent of non-additivity or non-linearity (Lee et al., 2010).  Additional studies 

comparing estimation methods also tended to favor algorithmic procedures over logistical 

regression models (e.g. Luellen et al, 2005; McCaffery et al, 2004).  However, while findings 

indicated algorithmic methods performed better, the process by which the logistical regression 

models were specified were questionable and conclusions may be biased.   

 One study compared the treatment effects of a drug rehabilitation program using a 

generalized boosted model (GBM) and two logistic regression models (McCaffery et al, 2004).  

Statistical significant tests were used to select covariates for the logistic regression models.  The 

first model included covariates with significant (p<.05) bivariate relationships with assignment 

and the second one with a more relaxed association (p<.20).  Overall, the GBM model yielded 

smaller prediction errors, smaller absolute effect sizes, and balance groups compared with the 
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logistic regression models (McCaffery et al., 2004).  All 41 pretreatment variables were 

automatically included by the GBM procedure.  However, the number of statistically significant 

covariates was not provided for the logistic regression models; therefore it is assumed that all 

three estimation methods included a different number and combination of covariates.  Since 

statistical algorithmic methods automatically select the covariates and model the functional form 

of the estimation procedure it can be assumed that the significance test may have omitted a 

potential confounder variable.  Thus, if a potential confounder was omitted in either logistic 

regression model, especially one with a high association to outcome, the model would not 

perform as well as one where the covariate was included.  It would be interesting to compare the 

relative performance when specifiying logistic regression or probit models similar to automatic 

specification of algorithmic procedures.   

Similarly, Luellen and associates (2005) used secondary data to compare the relative 

effectiveness of estimating PS using logistic regression, classification trees, and bagging 

bootstrap replicates.  These estimates were compared to estimates from the randomized 

experiment.  To estimate the logistic regression models, a backward stepwise logistic regression 

approach was used.  All 25 covariates were included and researchers retained those covariates 

that significantly predicted group membership at p< .50.  For participants with missing data, the 

pattern of the missing data was consistent therefore only 8 of the 25 covariates were retained in 

the model.  Conversely, two classification tree models, and three bootstrap replicates all used the 

complete set of 25 covariates to estimate the PSs.  Additionally, using classification trees, balance 

was not obtained according to the criteria set by the researchers who noted "we are aware of no 

other advice in the literature about how to refine the classification tree model to further obtain 

balance" (p. 542).  Findings were inconsistent across PS models and conditioning strategies for 

the two different treatment effect outcomes being estimated (Luellen et al. 2005).  Given the 

inconsistent findings researchers caution against using PS as a method altogether; however, the 



45 
 

argument could be made that findings were as inconsistent as the comparability among the 

models.  

Preliminary research indicates algorithmic estimation methods may perform better than 

logistic regression methods when the functional form for the model is not linear.  Conversely, 

logistic regression models can be easily adjusted and refined if balance is not achieved.  

However, logistic regression methods are sensitive to assumption of selection on observed 

covariates (Dehejia & Sadek, 1999), specifically when the association between assignment and 

covariates are nonlinear.  When logistic regression models are specified correctly, the differences 

in methods are marginal and are overshadowed by the ability to control and adjust the logistic 

regression models as opposed to the black box nature of algorithmic methods.  Currently, the 

empirical evidence supports using logistic regression models and to consider including selected 

interaction and polynomials terms within the model when using PSs to adjust for group 

differences in applied studies.  In addition, there is a need for researchers to continually 

investigate the relative performance of various estimation methods and models.  

Conditioning Methods 

Theoretically, if the assumption of strongly ignorable treatment assignment is satisfied, 

conditioning by matching, stratification or covariance adjustment would all produce unbiased 

estimates of the treatment effects (Rosenbaum & Rubin, 1983).  However, given the impossibility 

of empirically testing this assumption, different conditioning methods have produced different 

estimates in practice.  Shadish and Steiner (2010) criticize the lack of empirical work comparing 

the relative effectiveness of the different PS conditioning methods to be able to confidently 

promote one conditioning method over another for various data conditions.   

Matching, as a conditioning strategy has received a substantial amount of attention.  As 

evidenced by Thoemmes and Kim's (2011) and Austin's (2008a) review of PS applications, 

matching is the most common and widely used conditioning method.  In fact, Austin's (2008a) 

review focused solely on the variants of matching applied in the medical literature. Consequently 
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matching is by far the most examined conditioning strategy specifically the different factors to 

matching (e.g. algorithm, number of control units, replacement, and criteria).  

Early research by Gu and Rosenbaum (1993) found that optimal matching generally 

outperforms any greedy matching algorithm.  Greedy matching pairs each treatment with the 

nearest control; however, the best possible match may not be made across units.  Optimal 

matching uses an algorithm to iteratively find a solution which will minimize the average PS 

distance across all pairs to obtain the highest degree of balance for the sample.  

When considering how many control units to match, Imbens (2004) suggests "using only 

a single match leads to the most credible inference with the least bias, at most sacrificing some 

precision" (p.14).  Ming and Rosenbaum (2001) reported that when using multiple control 

matches, selecting up to 3 matches can decrease bias, but little efficiency is gained when selecting 

more than 5 matches.  Austin (2010) found similar results which indicated an increase in the 

number of untreated subjects matched to treated subjects increased the bias of the treatment effect 

as well as the overall precision and recommends matching be done with 1 or 2 untreated subjects.  

Using 1 untreated subject will minimize bias, where using 2 may result in improved precision 

without impacting the bias greatly (Austin, 2010).  Additionally, Ming and Rosenbaum (2001) 

found that optimal matching with multiple controls cannot be obtained by appending the best 

available matches to an optimal pair matching.  In contrast, 1:1 matching results in a loss of data, 

while full matching allows multiple matches for both treatment and control group members, 

which allows for the most possible number of cases retained in the sample.  When using k:1, the 

efficiency can be increased, but the precision is decreased because with the increase in the 

number of matches less similar cases are matched (Steiner & Cook, 2013).   

Matching with replacement has the potential to decrease bias because controls chosen are 

based on the individual unit's most similar match.  In contrast, matching without replacement 

matches individual units to the most similar match from the pool of those not already matched.  

One drawback to matching with replacement is that treatment effects may be potentially 
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estimated using a small select group of control units, subsequently distorting the generalizability 

of the inferences (Stuart, 2010). 

In an effort to avoid making poor matches, restrictions or criteria can be imposed on the 

distance measures.  Austin (2009) investigated the relative performance of several matching 

distance measures: matching using calipers of 0.2 and 0.6 of the standard deviation of the logit of 

the propensity score, matching on the PS using calipers of 0.005, 0.01, 0.02, 0.03, and 0.01, and 

finally 5 to 1 digit matching where the treated subjects are matched to untreated subjects on the 

first five digits of the PS.  Results indicated that using calipers of 0.6 of the standard deviation of 

the logit of the propensity score yielded the greatest percentage of matched pairs, while the lowest 

percentage of matched pairs were found in models using calipers of 0.005, both regardless of 

prevalence of exposure.  Balance measures were all comparable across prevalence of exposures 

and methods.  The relative bias was the largest when using calipers of 0.6 of the standard 

deviation of the logit of the propensity score, and increased as the prevalence of exposure 

increased.  Using a caliper of 0.2 of the standard deviation of the logit of the propensity score 

resulted in less bias, but the lowest bias was observed when calipers of 0.05, 0.01, 0.02, and 0.03 

were used (Austin, 2009). Additionally, some advise combining conditioning methods such as 

regression adjustment with matching (Rubin & Thomas, 2000).   

Although matching is the most frequently used conditioning method, other methods also 

have both favorable and less than desirable qualities.  For example, with stratification, covariance 

adjustment, or weighting, exact matches do not need to be estimated.  Additionally, for 

covariance adjustment and weighting the full sample may be retained.  Several studies have 

recently reported the results when using multiple conditioning methods.  Findings indicate some 

conditioning methods perform better in reducing the bias, while other methods yield smaller error 

variances in the treatment effect estimates, increased statistical power, and smaller confidence 

intervals (Austin & Mamdani, 2005).  Two additional studies found, on average, the different 

conditioning methods produced comparable results (Cook & Steiner, 2010; Steiner et al., 2010).  
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In contrast, some studies revealed differences in estimates of the treatment effect among the 

conditioning methods (Harder, Stuart, & Anthony, 2010; Kurth, Walker, Glynn, Chan, Gaziano, 

Berger, Robins, 2005; Lunceford & Davidian, 2005).   

When comparing the performance of stratification to weighting with simulated data, 

where the assignment was generated using a Bernoulli distribution such that lower response on 

the covariates indicated a higher probability to be treated, weighting consistently produced 

unbiased estimates while stratification estimates were inconsistent (Lunceford & Davidian, 2005).  

Kurth and associates (2005) found including units with a very small probability impacted overall 

results and results were more trustworthy when those units were removed.  This would align with 

the original intent to stratify the sample with the units who fell within the common support 

region; however in practice many studies stratify across the entire PS range which may be the 

reason why stratification seems to yield unbiased estimated in some studies.  Lastly, Harder and 

associates (2010) did not find one conditioning strategy to outperform others, but found the 

interaction of the estimation method, model specification, and conditioning strategy seemed to 

matter.  

Evaluating the Accuracy of the PS models  

Accurately specifying PS models by including relevant covariates to satisfy the strongly 

ignorable treatment assumption and modeling their form properly is important to the quality of 

the PS estimates (Guo & Fraser, 2010).  Unfortunately, there are no statistical tests to prove 

whether the ignorable assignment assumption has been satisfied.  Rubin (1997) recommends 

conducting a sensitivity analysis to test whether the model is sensitive to potential violations of 

this assumption.  A sensitivity analysis does not check to see whether you have correctly 

specified the model and selected the correct covariates, instead it is concerned with the "bias that 

results from not observing all the relevant covariates" (Imbens, 2003, p 126.).  More specifically, 

this is testing if a potential unobserved confounder was omitted whether the overall estimates 
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would be impacted.  However, currently the literature is not clear as to how to efficiently and 

confidently conduct a sensitivity analysis.   

Currently PS models are evaluated against their ability to achieve balance.  Few studies 

have examined the different methods for assessing model accuracy or balance.  Consequently, 

applied studies often do not report balance estimates (Austin, 2008a; Thoemmes & Kim, 2011).  

Rosenbaum and Rubin (1984) suggested using a factorial ANOVA to assess balance.  However, 

in his review of the applied matching methods Austin (2008a) asserts a strong criticism against 

using significance tests to assess the balance.  He argues that significance testing is meant to test a 

null hypothesis against the population and whether the sample represents the population is 

irrelevant in balance testing.  In addition, the reduction in sample size with matched data, may 

impact the significance of the imbalances even if they remain the same in absolute terms.  For 

example, Imai, King, and Stuart (2008) randomly discarded control individuals which seemed to 

lead to an increase in balance, but this increase was masked simply because of a reduction in 

power.   

Furthermore, studies have assessed whether different statistical tests were helpful in 

adequately evaluating model accuracy and balance and found that both the goodness of fit and c-

statistic were not able to consistently identify models where a confounder variable was 

deliberately omitted (e.g. Brookhart et al., 2006; Weitzen et al., 2005).  Austin (2008a) chastised 

using statistical significance tests as these tests are used to generalize to a population and balance 

is sample dependent.  Currently, the most common and accepted method for assessing balance is 

to estimate the standardized difference in means for the groups on the covariates (Shadish & 

Steiner, 2010; Stuart, 2010). 

Cohen's d is the most common measure of the standardized difference in means and is 

interpreted similar to an effect size.  Equation 9 denotes the standardized difference in means d of 

a continuous covariate, where X  is the mean and 2
is is the variance for a particular group i and 
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averaging the group variances prior to taking the square root results in a pooled standard 

deviation (Stuart, 2008).  This method assumes the groups are equal size.    

 ( )2 2( ) / / 2treatment control treatment controld X X s s = − +       (9)
 

To calculate the standardized difference in means for a dichotomous variable, Austin (2009) 

suggests taking the difference in proportions, p between treatment and control groups will be 

comparable to the standardized difference for a continuous group.  

( ) ( ) ( )/ 1 1 / 2treatment control treatment treatment control controld p p p p p p= − − + −    (10) 

Finally, currently, there are no rules of thumb regarding what constitutes balance between the 

groups.  The smaller the standardized difference the better, but at what point is a difference 

considered imbalanced is not yet clear (Ho, Imai, King, Stuart, 2007; Sekhon, 2007).  Some 

suggest d< 0.20 or 0.25, while others recommend achieving as close to zero as possible (Shadish 

& Steiner, 2010).   

 Regardless, the ability of PS estimates to reduce bias is dependent upon whether or not 

the PS estimates are able to adequately balance the groups, in other words, mimic the properties 

of a randomized experiment, where group differences are a result of sampling error.  Some posit 

that if balance is not achieved, and there is a lack of overlap between treatment and control group, 

then the sample may not be adequate for removing bias and estimating treatment effects (Shadish 

& Steiner, 2010; Stuart, 2010).   

The Overall Effectiveness of Propensity Score Methods 

Much of the literature on causal inference discusses the quality and behavior of various 

statistical and research design methods used to estimate causal relationships.  Specifically within 

the PS literature, research compares the performance of PS methods against alternatives such as 

regression adjustment models, or regression discontinuity designs.  Shadish and Steiner (2010) 
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claim that currently there is not enough conclusive evidence to suggest PS methods work better 

than alternative ones.   

There has been quite a bit of discussion within the field of econometrics regarding the 

ability of propensity score methods to replicate experimental results.  Lalonde (1986) examined 

the extent to which nonexperimental estimators could replicate the unbiased experimental 

estimate of the treatment impact when applied to a composite dataset of experimental treatment 

and nonexperimental comparison units.  His seminal study estimated the impact of the National 

Supported Work (NSW) Demonstration on post intervention income levels.  He found that 

nonexperimental estimators were not able to produce accurate estimates relative to the 

experimental benchmarks and were sensitive to the specification (Lalonde, 1986).   

Dehejia and Wahba (1999) used Lalonde’s (1986) data to evaluate whether PS methods 

are able to yield unbiased estimates of the treatment impact by comparing the results with his 

experimental and nonexperimental treatment effect estimates.  Their comparative analysis 

indicated that while PS methods are not applicable in every setting, when the range of PS 

estimates overlap between treatment and control groups, estimates of the treatment effect may be 

comparable to those estimated under experimental conditions.  However, these findings were not 

accepted without criticism.  Smith and Todd (2001, 2005) asserted that alternative econometric 

methods perform better than PS methods and Dehijia and Wahba's (1999) findings are heavily 

affected by the exclusion of over 40% of the Lalonde's (1986) original data.  In addition, Smith 

and Todd (2001, 2005) extended the PS methods and specifications to additional samples to 

compare the overall resulting bias and found PS methods were unable to replicate desirable 

findings across samples.  

In 2005, Dehejia replied to Smith and Todd's (2001, 20015) critique of their findings by 

asserting two major points.  The first point being that Dehijia and Wahba (1999) never insinuated 

PS methods were optimal or better than other methods, rather their work emphasized the 

conditions for which estimates may be made and discuss the methods ability to evaluate the 
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quality of comparison groups.  Second, Dehijia (2005) posits that PS methods, specifically the 

specification models (i.e. the covariates selected and the functional form modeled) to estimate the 

PSs are sample dependent and are not meant to generalize to a population; therefore, the 

conclusions made by Smith and Todd (2001, 2005) are expected.  Motivated to further investigate 

PS methods using Lalonde's (1986) data set, Michaelopolous, Bloom and Hill (2004), compared 

treatment effect estimates when controls were taken from different sites.  This analysis found that 

PS methods work less well when comparing treatment and control groups from different social 

contexts or settings.  Similarly, in their within study experiment, Shadish and others (2008) found 

that when controlling for all the covariates in a regression equation without estimating a PS, 

effect estimates were just as effective in removing bias as were PS methods.  However, some 

studies have found that alternative methods behave in a more optimal manner than PS methods 

for certain treatment effect outcome measures.   

In 2005, researchers conducted a systematic review of studies that used both PSA and 

traditional regression analysis of their observational data to examine whether different methods 

gave different results when adjusting for confounder bias (Shah, Laupacis, Hux, & Austin, 2005).  

A total of 43 studies were included and from these studies 78 assignment-outcome associations 

were found and odds or hazard ratios for each association under both methods were compared.  

Only eight of the 78 associations differed statistically between the two methods where the 

traditional regression method yielded statistical significance with the exposure-outcome 

association while the PS methods did not.  Authors conclude that each method produced similar 

results when trying to adjust for the confounding and while PS methods produced slightly weaker 

associations, it was noted that some of the studies included did not incorporate PS methods 

adequately (Shah et al., 2005).  A similar review of published studies found results comparable to 

Shah and associates (2005); however, the perspective offered regarding these findings was quite 

the opposite (Sturmer, Joshi, Glynn, Avorn, Rothman, & Schneeweiss, 2006).  This study found 
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that while the applications of PS methods were increasing, the estimates were not substantially 

different than traditional methods and questioned the increased use of this method.   

Several studies have compared the performance of PS methods with different outcome 

measures (Austin 2007, 2008b; Austin, Grootendorst, Normand, & Anderson, 2007).  Results 

varied, indicating in some instances certain PS methods are not appropriate to measure certain 

outcome measures, and with other outcome measures, optimal results were produced with certain 

PS conditioning techniques.  For example, in one study, researchers considered how the four 

different PS conditioning techniques behaved when estimating conditional odds ratio, hazard 

ratio, and rate ratios (Austin, Grootendorst, Normand, & Anderson, 2007).  Results suggest PSs 

may not be the best statistical method to use when the treatment effects are measured in odds 

ratios or hazard ratios estimates.  Specifically, researchers found when there was a true non-null 

treatment effect for either of these outcome measures, then PS methods produces biased estimates 

of the true conditional treatment (Austin, Grootendorst, Normand, & Anderson, 2007).  For these 

measures, regression adjustment models yielded unbiased estimates of the treatment effect.  

Conversely, when rate ratio was the outcome measure for count data, PS methods did not 

introduce bias; however, neither did regression adjustment methods.  Additional research 

indicates special considerations need to be taken when estimating marginal odds (Austin, 2007) 

and relative risks (Austin, 2008b)   

Overall, the empirical research on PSs can be summarized into three concluding points.  

First, a great deal of research has been dedicated to examining the different conditions for which 

various PS methods work well.  Second, paradoxically, the plethora of research on PS methods 

has provided many inconclusive findings.  Lastly, there continues to be a need to empirically 

investigate PS methods in order to confidently accept or reject this method when identifying 

causal relationships from non-randomized studies or observational data.   

Rubin (1997) stated that PSs cannot adjust for unobserved covariates, work better with 

larger samples, and do not behave in the same manner to a covariate associated to assignment but 
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not to outcome as it would to a covariate with the same relation to assignment but heavily 

associated to the outcome.  Results from the empirical studies above not only support these three 

caveats but also give way to the emergence of additional questions regarding the strengths and 

limitations to PS analysis.  Much of the empirical research presented thus far aimed to identify 

effective methods or best practices to apply PSs as a method for adjusting non-experimental data 

when drawing casual inferences.  However, currently these goals are pending continual research.  

Multilevel Modeling 

Thus far, the discussion of causal inference and the PS has been limited to single-level 

settings.  However many settings are multilevel, especially those where causal inferences are 

often drawn from non-randomized experiments or observational studies.  Analyses that ignore the 

nested structure of data can result in misleading or inaccurate results because the assumption of 

independence is violated.  Often in educational settings, certain schools, demographic areas, or 

neighborhoods have differing student achievement levels, and arguably certain settings are 

predisposed to offer advantageous learning environments over others (Oakes, 2004).  

Additionally, assignment to condition may be a result of the contextual factors of the cluster.  

This is where causal inference is complicated as each single unit potential outcome is not only 

dependent on treatment assignment but also on cluster membership and any cluster level 

contextual factors —a violation of SUTVA (Thoemmes, 2009). 

MLM is a family of statistical analyses used to evaluate nested data (Raudenbush & 

Bryk, 2002).  MLM models improve the estimation of individual effects in nested data by 

accounting for the dependencies among the units, adjusting the standard error properly, and 

partitioning the variance at all levels (Raudenbush & Bryk, 2002).  Additionally, MLM allows for 

cross-level interactions, which explain how variables measured at one level affect the associations 

occurring at another level (Raudenbush & Bryk, 2002).  In other words, using MLM with nested 

data allows researchers to investigate how much variability in an outcome is associated to 

treatment and control group differences for individuals both within and between clusters and the 
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extent to which different various within and between group factors account for the variability 

(Ferron, Hogarty, Dedrick, Hess, Niles, & Kromrey, 2008).  

Consider an example where individual students are nested in classrooms and the effect of 

a new teaching program on student achievement is being evaluated.  Equation 11 represents the 

relationship between student achievement, Y, for an individual in classroom j and the average 

student performance,β0, for classroom j.  

0i j ijY eβ= +
         (11) 

Here, β0j is the average student achievement for each classroom with σ2 as the variance of eij, the 

error term.  A level-2 model can represent how the 0 jβ varies across classrooms, or whether the 

average student achievement is different among the classrooms:   

0 00 0j jβ γ µ= +          (12) 

In this equation, γ00  is the average of all the classroom averages and τ0j is the variance of the μ0j.  

A combined model can be formed by combining the level 1 and level 2 models.  

00 0 0ij j jY eγ µ= + +         (13) 

In MLM, both level 1 and level 2, predictors can be included in the model, where the 

intercepts or slopes of these predictors can vary across levels.  Deciding whether to constrain or 

allow the level-1 and level -2 predictors to vary across clusters is an important aspect to MLM 

specification (Hong & Raudenbush, 2006; Lingle, 2009; Raudenbush & Byrk, 2002).  For 

example, when data are nested, adjustment needs to be made for the cluster to ensure that 

individuals in very different clusters are not compared or matched to one another (Rosenbaum, 

1986).   

As individual units within a cluster tend to be similar, an intraclass coefficient (ICC) is 

used to assess the degree of dependency within a data set (O'Connell & McCoach, 2008).  The 

ICC is calculated by decomposing the total variance into its within and between components and 
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results in a measure of the proportion of variance between the clusters (O'Connell & McCoach, 

2008; Raudenbush & Bryk, 2002). 

00
2

00

ICC τ
τ σ

=
+

        (14) 

One way to resolve the challenges associated with multilevel data would be to consider 

the causal inference at the cluster level, where the clusters are treated as individual units.  For 

example, Stuart (2007) investigated the effects of school-level data, by estimating the PSs using 

school level variables and aggregated individual student variables.  However, the interpretation of 

findings from this method need to be clear as this method cannot be used to interpret relationships 

at a lower level.  Often, some are inclined to erroneously apply relationships at a higher level to 

the lower level, also known as the “ecological fallacy” (Hox, 2002; Stuart, 2007).  It would be 

inappropriate to assume if a new curriculum is shown to be effective at increasing the overall 

achievement of the school, that the curriculum will be effective for individual students.   

Propensity Score Analysis with Multilevel Modeling 

Multilevel research designs. The nature of the multi-level research design and structure 

of the assignment mechanism are important factors to consider in order to satisfy the assumptions 

of causal research.  Hong and Raudenbush (2003) considered three different cross-sectional 

multi-level research designs: multi-site designs, cluster designs, and joint multi-level designs.  

Multi-site designs suggest that individuals within each cluster may be exposed to either treatment 

or control.  In contrast, entire clusters are assigned to conditions in cluster designs.  Lastly, in a 

joint multi-level design, clusters are assigned to a set of treatments, and within each cluster the 

level-1 units are assigned to a set of different treatments (Hong & Raudenbush, 2003).   

Cluster level designs treat the organization or classroom or school as a single unit 

assigned to a treatment or control condition and the individuals within the cluster can be 

considered repeated measures of the cluster’s response to the treatment (Donner & Klar, 2000; 

Hong, 2004).  Since the entire cluster is assigned to either treatment or control, potential bias is 
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associated with the observed cluster level covariates, W, and unobserved cluster level covariates, 

Uw (Hong & Raudenbush, 2003).  Accordingly, treatment assignment at the cluster level, D, is 

independent of X, (level 1 covariates), UX, (level 1 unobserved covariates) and the potential 

outcome, Y, given W and the UW (Hong & Raudenbush, 2003).  The conditional probability of 

assigning cluster j to the experimental condition is: 

,Pr( 1| )j j j wjQ D W U= =        (15) 

Therefore, Q is the probability that a cluster will be assigned to the treatment, which is constant 

for all individuals within said cluster (Hong, 2004; Hong & Raudenbush, 2003).  

Estimation models.  Given that the outcome is a probability, basic hierarchical models 

cannot be used; instead hierarchical generalized linear models (HGLM) need to be applied 

(O'Connell, Goldstein, Rogers, & Peng, 2008).  As implied by its name, HGLMs are parallel to 

GLMs( e.g. logit models), within a hierarchical framework.  Many of the implications regarding 

the nature and interpretation of single level logistic regression models apply to hierarchical 

logistic regression.  

When estimating a binary outcome, such as a propensity score, in MLM, the level-1 

residual is absent.  The variance at the individual-level is determined by the mean of Z, which is 

equal to the probability of being in the treatment group.  Thus, it is not a free parameter.  

However, within a hierarchical generalized linear framework several modeling choices can be 

made.  That is, level-1 predictors can be assumed to be fixed across clusters or allowed to vary.  

Additionally, level-2 variables can be included to affect intercepts only or intercepts and slopes.  

Different models carry different levels of restrictions and implications regarding the assumptions 

about the selection process.  An extremely restrictive MLM would be one in which the PSs are 

estimated with fixed slopes and no level 2 variables.   
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Here, the logit(Zij) represents the estimated PS, or the conditional probability of individual i in 

cluster j of receiving treatment.  The γ00 represents the mean propensity score across classrooms 

while the γ10 is the mean contribution across classrooms of the individual-level predictor X1 to the 

PS.  By fixing the slopes, it is assumed the effect of Xi on treatment assignment is constant across 

schools (Hong & Raudenbush, 2006).  Additional models include allowing for cross-level 

interactions where the slopes and intercepts vary freely across clusters and allowing level 2 

variables to effect intercepts and slopes.  The decision on how to specify the level-1 and level-2 

variables should be made based on the nature by which the cluster membership impacts the 

assignment mechanism is theorized (Hong& Raudenbush, 2003; Hong, 2004; Thoemmes & West, 

2011).  

Thoemmes and West (2011) introduced the idea of narrow and broad inference space, 

where narrow inference space aims to estimate PSs that mimic a randomized multisite trial while 

the broad inference space estimates PSs that mimic a randomized individual trial with incidental 

clustering and advise considering whether subject level or population wide inferences are desired 

when considering the estimation models.  Specifically, if the narrow inference space is desired, 

researchers suggest including a full MLM model with fixed and random effects:  
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combined as,  
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00 01 10 11 1 1 0logit( ) ( )ij j j j ij jZ W W Xγ γ γ γ µ µ= + + + + +      

Conversely, if the broad inference space is required then the model will be similar to that in 

Equation 16, omitting the random effects as these effects yield PSs based on different equations 

for each cluster (Thoemmes & West, 2011).   

 Conditioning methods.  In MLM, PSs can be conditioned either within a cluster or 

across clusters.  Often the nature of the research design and the estimation model dictates how the 

conditioning should occur.  For example, in both multi-site and joint multi-level studies PSs may 

be conditioned within a cluster or between clusters, while cluster designs restrict conditioning of 

the estimated PSs between clusters.   

Generally, conditioning within clusters is ideal (when feasible) as the variability between 

clusters is not integrated within the inferences (Lingle, 2009; Thoemmes, 2009; Thoemmes & 

West, 2011) and the original multilevel structure of the data is preserved which can be helpful 

when examining the variation of treatment effects across clusters (Kim & Seltzer, 2007).   

However, conditioning within clusters may potentially yield different results for the clusters, 

especially when cluster level variables are not included in the estimation model or are considered 

fixed (Thoemmes & West, 2011).  Although the variability between clusters is introduced when 

conditioning across clusters, this method can be useful in certain designs when the clusters 

contain a small number of individuals (Arpino & Mealli, 2011).  Thoemmes and West (2011) 

point out that when using a narrow inference estimation method, the estimated PSs will be based 

on different equations and therefore conditioning across clusters will most likely not yield 

balanced estimates.  When conditioning across clusters, balance may not be achieved on 

individual covariates within each cluster, but rather the balance is on average achieved on the 

entire sample of covariates on all levels (Thoemmes & West, 2011).  This difference can be 

likened to the differences between optimal matching and greedy matching, where optimal 
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matching considers the overall best set of matches for the entire sample, and greedy matching 

considers the best matches for each individual (Stuart, 2010).   

Lastly, there are currently four methods to condition the PS within a single level context 

(matching, stratification, covariance adjustment, and weighting).  However, in MLM, weighting 

is a bit more complicated (Pfeffermann, Skinner, Holmes, Goldstein, & Rasbash, 1998).  In a 

single level context, data are considered independent and therefore a simple weighting of the 

sample observations can be conducted.  However, in MLM, the observations are no longer 

independent and therefore the method of weighting needs to be altered.  Several researchers (e.g. 

Asparaouhov, 2004; Chantala, Blanchette,& Suchindran, 2011; Pfefferman et al., 1998) have 

considered different methods of weighting in MLM; however these methods are still novel and 

under development; therefore, integrating their application to PSs is  premature.  

Research on Propensity Scores in Multilevel Contexts 

PS methods in hierarchical settings have received limited attention from both a 

methodological as well as an applied perspective.  Rosenbaum (1986) recognized the challenges 

in applying PS methods to nested data and limited the PS estimation to individual variables and 

the matching of treatment and control individuals within clusters only.  Specifically, he 

considered two estimation approaches for conditioning within clusters:  including individual 

covariates and a binary covariate for each school, and ignoring school membership completely.  

The first approach was troublesome in Rosenbaum’s (1986) study because as the number of 

clusters’ increases the degrees of freedom would decrease and the dataset included 1,015 clusters.  

Hong (2004) pointed out similar issues with regard to the degrees of freedom may arise when 

trying to estimate the fixed effect of each school in cases where the number of individuals 

receiving treatment per cluster is small.   

The second approach estimated the PSs without considering school membership.  

According to Rosenbaum, (1986) the between-cluster components of the variability were 

controlled by limited the matching to within clusters, and that both observed or unobserved fixed 
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cluster-level characteristics that affected treatment assignment would be balanced.  Therefore, the 

treatment effects could be estimated without accounting for the clustering in the propensity score 

(Rosenbaum, 1986).   However, this approach is limiting as in some cases matches may not be 

possible within clusters, or in cluster level designs where entire clusters receive the same 

condition.   

More recently a select group of scholars have begun to apply PS methods to estimate the 

effects of different educational programs.  For example, to estimate the effects of kindergarten 

retention on academic achievement and compare units across clusters, Hong and Raudenbush 

(2005, 2006), estimated the propensity of being retained using a hierarchical logistic model with 

random cluster effects (schools) and fixed slopes for 207 individual and 238 school level 

predictors.  The fixed slopes assumed the effect of those individual predictors on treatment 

assignment was constant for individuals across schools (Hong & Raudenbush, 2006), which 

becomes an issue if cross-level interactions are present (Kim & Seltzer, 2007; Raudenbush & 

Bryk, 2002).   

Kim and Seltzer (2007) compared PS estimation methods for a non-randomized multisite 

setting, where such a context may potentially lead to a large variability in the assignment 

mechanism between clusters.  Using data from the Early Academic Outreach Program (EAOP) 

four multiple logistic regression estimation models were compared: a. single-level logistic 

regression model where only individual level predictors were included; b. multilevel logistic 

regression model with fixed slopes and random cluster level intercepts; c. multilevel logistic 

regression model with random intercepts and random slopes including both individual and cluster 

level predictors; and d. a multilevel logistic regression model with random intercepts and random 

slopes where cluster level predictors were not included (Kim & Seltzer, 2007).  The second 

model explored Hong and Raudenbush’s (2005, 2006) propensity score model using within 

cluster matching while the third and fourth models assumed cross level interactions of the 
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predictors.  Allowing the intercepts and slopes to vary across clusters investigates whether the 

effects of the level-1 covariates differ across schools.   

  Individuals who participated in the EAOP were matched to individuals within their 

school not participating.  Specifically, nearest neighbor matching without replacement with a 

caliper of ± 0.1(standard deviation of the entire sample's PSs) was used.  Overall, findings 

suggested that when conditioning within clusters, random effects with fixed slopes performed 

well.  When considering random intercepts and random slopes, the omissions of level 2 

predictors, or the random effects of the slopes had a significant impact upon the balance and the 

matched pairs.  In contrast, including the random effects of the slopes, significantly improved the 

overall balance of the matched pairs (Kim & Seltzer, 2007).  Both of the aforementioned studies 

used multilevel models to estimate PSs in applied settings.  Since then, several researchers have 

begun to investigate the utility of PS estimation methods with MLM using Monte Carlo 

simulation methods (e.g. Arpino & Mealli, 2011; Lingle, 2009; Thoemmes, 2009; Thoemmes & 

West, 2011).   

As their doctoral dissertations, both Lingle (2009) and Thoemmes (2009) examined the 

behavior of PS methods with hierarchical structures.  Extending Kim and Seltzer’s (2007) work 

these studies considered multi-site research contexts.  Lingle’s (2009) study evaluated three PS 

estimation models in their ability to achieve covariate balance across the sample as a whole and 

within each cluster, while Thoemmes (2009) evaluated the different PS estimation methods in 

their ability to estimate treatment effects. 

To evaluate the balance achieved when using PSs with nested data, Lingle (2009) 

estimated random slopes and random effects MLM (see equation 18) and compared its results to 

the results from two single level models. 
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The first single level model included all three level-1 predictors and the level-2 predictor 

which was collapsed to the individual level and the second single level model included all three 

predictors with no cluster level components (Lingle, 2009).  The estimated PSs were conditioned 

using nearest neighbor matching within and between clusters and stratification.  Specific data 

characteristics that were controlled included: individual and cluster level sample sizes, ratio of 

treatment to control group members, variable relationship to treatment assignment.  The PS 

methods were fully crossed with the specific data characteristics.  Subsequently, the methods 

simulated were applied to data available from the 2002 Educational Longitudinal Study and 

findings were compared to the simulation results to evaluate their applicability.   

The performance of the propensity score models was determined across the sample as a 

whole and within each cluster.  Covariate balance from each propensity score model and 

conditioning method per sample were compared.  Balance was determined across the sample as a 

whole using the γ10 and the standardized mean differences of the pretreatment variables.  Within 

each cluster balance was measured by determining the variance in β1j using the values of τ11.  By 

removing the relationship between the treatment assignment and each covariate, a MLM that 

yields a non-significant relationship between the variables in treatment and control group implies 

the groups are balanced on the variable (Lingle, 2009).  

Results did not indicate one method to outperform others given the set of conditions 
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simulated.  Stratification across quintiles led to the largest number of treatment units retained 

followed by between group matching and then within group matching (Lingle, 2009).  While 

within group matching retained the smallest number of treatment individuals, on average this 

method resulted in the fewest number of significant parameters.  This could mean that the balance 

was greatest when matching within clusters, or that the loss of sample size and power made it 

difficult to elicit significant differences (Lingle, 2009).  Additionally, between-cluster matching 

using propensity scores that are estimated using a logistic model, with or without the inclusion of 

a cluster-level predictor, resulted in very few significant differences across sample-size 

conditions.  The variability across all conditions was the smallest with between group matching, 

and the greatest with stratification.  Lastly, within cluster matching showed little differences 

among the three different estimation methods.   

 Similarly, Thoemmes (2009) and later Thoemmes and West (2011) explored the 

differences between the estimation and conditioning choices for estimating treatment effects in 

multisite randomized experiments under specific data characteristics.  Thoemmes (2009) 

conducted a series of simulation studies in an attempt to identify the best MLM estimation model 

to use in multi-site studies.  Compelling findings were later published in a special edition of 

Multivariate Behavior Methods (Thoemmes & West, 2011).   

Specifically, four estimation models were examined: a. a single level model; b. fixed 

effects model; c. multilevel model with narrow inference space; and d. a multilevel model with 

broad inference space.  Conditioning was conducted both within and across clusters.  These PS 

techniques were fully crossed with two sample factors, (sample size and ICC of individual 

variables).each with two individual levels.  Overall results indicated that single level models 

performed the worst, especially as the values of the ICC for the level 1 predictors increased 

(Thoemmes & West, 2011).   With regard to bias, the multilevel model with narrow inference 

space conditioning within clusters performed marginally the best.  Regardless of conditioning 

technique, the single levels models performed the worst and the remaining models were all 
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comparable with slightly larger bias in the models that conditioned across clusters.  Models 

yielded similar results regarding the balance estimates.  Overall these studies support 

conditioning within cluster when feasible. 

To investigate the bias of the ATT estimators when using PS matching with unobserved 

cluster-level covariates Arpino and Mealli (2011) conducted a series of simulation studies 

investigating the specification of PSs with multilevel data structures common to large-scale 

survey research, where the size of the cluster is generally small.  The purpose of this study was to 

investigate how a potentially relevant but unobserved cluster level variable can influence the 

overall results.  Four different PS estimation models were considered, and results were compared 

when the cluster level variable was included as well as omitted.  Specifically a benchmark single 

level logistic regression model with three level-1 predictors and the cluster level variable, a single 

level logistic regression model with three level-1 predictors, a MLM random intercepts model 

with three level-1 predictors, and a single level logistic regression model with dummy coded 

vectors to represent cluster membership.  In addition each of these models was considered with a 

cluster mean of the level-1 variables as a substitute for the unobserved cluster variable (Arpino & 

Mealli, 2011).  These simulations were repeated to compare different cluster sizes, different 

levels of potential outcome effects with and without the presence of cross level interactions and 

largely unbalanced data structures (Arpino & Mealli, 2011).  Results indicated that when cluster 

level covariates are not collected, a fixed effects model may be the best method to exploit the 

hierarchical structure of the data as this model performed best across conditions (Arpino & 

Mealli, 2011).   

Overall results showed omitting the cluster information did not perform as well as the 

model that included the cluster- level information with regard to the bias and MSE.  In addition, 

the model with the cluster level dummy vectors achieved a high degree of balance.  However, a 

high level of imbalance was found with the MLM model with the random intercepts.  Overall, 
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researchers recommend using random and fixed effects models to capture any unobserved 

heterogeneity when a cluster level variable is unobserved (Arpino & Mealli, 2011).  

In conclusion, the research on PS with MLM while continuing to thrive and develop is 

still fairly novel.  The studies above focused on cross sectional clustered data, where individuals 

are nested within a second level.  Additional studies, which are not of relevance to this 

dissertation, have examined PS methods with longitudinal data, where the hierarchical structure is 

based on a repeated measures design (Hughes, Chen, Thoemmes, & Kwok, 2010), complex 

samples (Hahs-Vaughn & Onwuegbuzie, 2006)  and even incorporated measurement models into 

a three level analysis to assess the different sources of data (Hong & Yu, 2008). 

The previously described preliminary studies introduced the challenges as well as the 

importance of considering the nested nature of the data structure when drawing casual inferences.  

While these studies have provided fruitful information, the body of knowledge regarding the 

performance of PSs within a multilevel framework remains sparse.  Currently the focus of the 

work has been on multisite designs or designs where the clustering may be incidental.  More 

empirical evidence for how to handle designs where the nested nature is deliberate needs some 

attention.  Furthermore, the inclusion of larger numbers of individual and cluster covariates is 

needed to apply findings to educational data where large numbers of pretreatment variables are 

collected.  Current research has based the performance of PSs methods on either balance 

estimates (Lingle, 2009) or the treatment effect estimates (Thoemmes & West, 2011).  Examining 

these two outcomes mutually rather than exclusively may be worthwhile.  Additionally, current 

investigations have examined a limited breadth of the PS conditioning methods.    Finally, 

additional work comparing the differences among more of these conditions would be helpful to 

see if in different contexts certain techniques are more appropriate than others.   

This dissertation aims to extend the empirical research on multisite designs by exploring 

various multilevel models to estimate PSs and multiple strategies to condition the estimated PSs 

across clusters, as well as increasing the complexity of the sample characteristics.  The 
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performance of the different estimation models, conditioning strategies, and sample 

characteristics will be evaluated based on their ability to balance groups as well as estimate the 

treatment effect.   

Chapter Summary 

This literature review presented a myriad of theoretical and empirical literature regarding 

causal inference and PS.  What is interesting to note is the empirical literature on PS in a single 

level is relatively far more advanced and includes many studies from the medical literature 

compared to the empirical literature on PS in hierarchical structures which is almost all based on 

educational or social and behavioral settings.  With the continuous trend towards examining the 

effectiveness of educational programs additional generalizable and applicable evidence for this 

method is needed.  This study aimed to investigate the performance of PS methods (both 

estimation models and conditioning methods) extended to a 2-level hierarchical context.  
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CHAPTER THREE: METHOD  

This chapter outlines the proposed methodology for this study and includes a description 

of the purpose, research questions, design, sample characteristics, data generation methods, 

analytical procedures, and outcome measures.  

Study Purpose 

The purpose of this study was to further examine the appropriateness of using PS 

methods to achieve balance between groups on observed covariates and to yield unbiased 

treatment effect estimates in multilevel studies.  Specifically, this study examined the extent to 

which different PS methods (PS estimation models and PS conditioning strategies) and sample 

characteristics (sample size, strength of covariate associations to assignment and outcome, 

parameters predicting treatment assignment, and population effect size) achieve balance and 

reproduce the population treatment effect.  PSs were specified using four different logistic 

regression models and subsequently conditioned using three different strategies across clusters.   

PS estimation models included both a single level model and three multilevel models: (a) 

single level (b) random intercepts, (c) random coefficients and, (d) cross level.  For each of the 

four PS estimation models, three different PS conditioning strategies were investigated and 

included: (a) matching, (b) stratification, and (c) covariance adjustment. PS methods (estimation 

models and conditioning strategies) fully crossed with several sample characteristics were 

compared to evaluate the quality of balance achieved and the accuracy and precision of treatment 

effect estimates produced.   

Research Questions 

1. To what extent do balance estimates vary across PS methods (PS estimation models and PS 

conditioning strategies)?  
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2. To what extent do data factors (level 1 and level 2 sample sizes, strength of covariate 

associations to assignment and outcome, and population effect size) affect the balance 

achieved by the PS methods (PS estimation models and PS conditioning strategies)?  

3. To what extent do treatment effect estimates vary across PS methods (PS estimation models 

and PS conditioning strategies)?  

4. To what extent do data factors (level 1 and level 2 sample sizes, strength of covariate 

associations to assignment and outcome, and population effect size) affect the treatment 

effects estimated by the PS methods (PS estimation models and PS conditioning strategies)?  

5. What is the direction and strength of the relationship between balance and both the accuracy 

and precision of treatment effect estimates?  

Design  

This study incorporated a 4 x 3 x 3 x 3 x 2 x 2 x 2 x 2 x2 factorial design.  The following nine 

independent variables were included: (1) PS estimation models (single level, random intercepts, 

random coefficients, and cross-level); (2) PS conditioning strategies(matching, stratification, and 

covariance adjustment); (3) number of clusters (small [n=30], moderate [n=50], and large 

[n=100]); (4) within-cluster sample size (small [n =01-09], moderate [n =10-19], and large [n 

=20-29]); (5) relationship between level-1 covariates and treatment assignment (small [βxz=.1], 

and moderate[βxz =.2 ]); (6) relationship between level-1 covariates and outcome (small [βxy =.1], 

and moderate [βxy=.2 ]); (7) relationship between level-2 covariates and treatment assignment 

(small [γwz =.2 ], and moderate [γwz = 0.4]); (8) relationship between level-2 covariates and 

outcome (small [γwy =0.2 ], and moderate [γwy =0.4]); and (9) population effect size (δ = small 

[0.2] and moderate [0.5]).  All levels of all the factors were fully crossed with one another for a 

total of 3,456 conditions.  Data were generated using SAS software (version 9.2 and 9.3; SAS 

Institute, 2008) through the IML procedure.  For 256 of the 288 design cells, 1000 datasets were 

generated, for the 32 conditions where the number of level 1 units was 20-29 and the number of 

clusters was 100, 500 datasets were generated.  Given the complexity of the various analytical 
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procedures, the conditions with the large number of units within a large number of clusters 

proved to be both very computer and time intensive; therefore fewer datasets were generated for 

these conditions.  A total of 272,000 datasets were generated using the IML procedure in SAS 

and subsequently analyzed using different PS estimation models and conditioning methods. 

Samples  

The samples for this study were based on a two-level hierarchical model in which 

individuals units, i, are nested in clusters, j.  At the first level, a continuous outcome (Y) was 

generated as a linear function of 30 (27 continuous and 3 dichotomous) predictors, X and one 

binary assignment variable, Z (see equation 19). The cluster level was simulated with 10 (9 

continuous and 1 dichotomous) level-2 predictors W. The intercepts and slopes of five X (4 

continuous and 1 dichotomous) level 1 predictors varied randomly across clusters.  In addition 1 

continuous cluster level variable interacted with three level 1 continuous fixed variables.  For 

brevity, common statistical notations are used to present the equations at each level.  The 

expanded version, specifying each parameter individually can be found in Appendix A. 
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combined as; 
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The large numbers of individual and cluster level predictors were intended to mirror 

common educational data structures.  Previous simulation studies have incorporated only a few 

covariates (e.g. Arpino & Mealli, 2011; Lingle, 2009, Thoemmes, 2009; Thoemmes & West, 

2011). However, in their review of the studies applying PS methods, Thoemmes & Kim (2011) 

found that researchers often use many covariates to estimate PSs.  Specifically, for the 88 studies 

analyzed, a mean of approximately 30 covariates was reported (Thoemmes & Kim, 2011).  The 

major benefit for utilizing PS methodology over traditional matching methods/statistical 

adjustments is the ability to reduce a large number of pretreatment covariates to a single scalar.  

Rarely are few covariates adequate to satisfy the assumption of strongly ignorable treatment 

assignment.  When only a few covariates are used, it may be prudent to match using the actual 

covariates as they function as a much finer balancing score than the PS which is the coarsest 

balancing score (Rosenbaum & Rubin, 1983).  Thus, the inclusion of a large number of predictors 

intended to simulate data commonly found in applied research.  

Allowing the level-2 variables to influence the slopes and intercepts of five level-1 

predictors builds upon prior research.  Lingle (2009) modeled one level-2 predictor to influence 

the intercepts and slopes of all three of the level-1 variables.  All variance and covariance 

parameters in the matrix of random effects were estimated.  In contrast, Thoemmes (2009) most 
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complex model included nine level-1 continuous variables, of which the slopes and intercepts for 

two predictors varied across level-2 units.  No level-2 predictors were included.  Additionally, 

modeling dichotomous variables at either level has not previously been considered.   

In order to adequately evaluate the simulated conditions, several simplifying assumptions 

were imposed on the samples.  First, all continuous predictors were standardized with a mean of 0 

and a variance of 1.0.  Dichotomous predictors were generated from a binomial distribution 

where the population mean is approximately 0.5, which translates to an odds ratio of 1, or an 

equal probability for each group.  Next, assignment to treatment, Z, is a binary grouping variable 

generated at the individual level using the RANUNI random number generator in SAS version 

9.2, where 25% of the individuals in the cluster were assigned to treatment and the remaining 

75% to the control group.  This imposed a 1:3 treatment to control ratio. This ratio was used by 

Gu and Rosenbaum (1993) and Lingle (2009) and represents moderate difficulty when matching 

on the PS is used (Gu & Rosenbaum, 1993).   

The fixed effects for the intercepts were set to 1.0.  The level-1 errors were generated 

from a normal distribution with a variance of 1.0 using the RANNOR random number generator 

in SAS version 9.2 (SAS Institute, 2008).  The level-2 errors were also generated from a normal 

distribution with a variance of .25 to produce conditional ICCs of .20 for the predictors with 

varying slopes.  An ICC of .20 is substantially large and implies a great deal of dependency in the 

data; however, is not out of the range of typical ICCs found in school effects research (McCoach, 

2010).  The correlations among the predictors at each level were held constant at 0.2.  The 

variables in both Lingle (2009) and Thoemmes (2009) study were assumed to be uncorrelated, 

which is fairly unrealistic in social science research.  Lastly, similar to Thoemmes (2009) 

samples, data were generated using a variance components covariance structure where all 

covariance parameters in the random effects matrix were fixed to 0.  This was done to reduce the 

number of parameters to estimate in a true-confounders model.  The current study incorporated 

several complex data factors (i.e. the increased number of covariates, the use of correlated 
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variables, the inclusion of level 2 predictors, the addition of dichotomous variables and the 

different sample size conditions which produce smaller samples) that had not been addressed in 

the literature, yet are common characteristics found in social science research.  In light of the 

infancy of empirical investigations of this nature it seems prudent to first begin to understand the 

behavior of the methods under only a few complex factors maintaining some simplifying 

conditions.   

The data generation approach for producing correlation matrices and values for variables 

was empirically driven for each individual sample based on the eigenvalues of the population 

correlation matrices.  When positive eigenvalues are found, the sample was generated using the 

Cholsky decomposition approach; however, if one or more non-positive eigenvalues are present, 

the sample was generated using the Principle Component Analysis (PCA) approach (Fan, 

Felsovalyi, Sivo, & Keenan, 2002).   

These aforementioned assumptions and procedures remained constant across the different 

combinations of sample characteristics simulated.  These sample characteristics function as the 

independent variables for this study and are described in detail below.  

Sample Characteristics  

Sample size.  Three different values for the total number of clusters were examined (30, 

50, and 100).  These cluster sizes were chosen to align with Lingle's (2009) clusters and are 

consistent with applications of MLM in educational research (Dedrick et al., 2009).  The sample 

size within each cluster varied and was assigned from a uniform distribution.  This design results 

in datasets with clusters varying in size, which is what would realistically be found in substantive 

research.   

The number of individuals nested within each cluster varies to represent small, moderate, 

or large clusters.  Small clusters ranged from 01-09, moderate from 10-19, and large from 20-29.  

These samples sizes were randomly generated and uniformly distributed.  Clusters of only 01-09 

individuals are smaller than the general guidelines set regarding level-1 sample size; however 
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clusters with few members is not uncommon in social science research (Bell, Ferron, & Kromrey, 

2008).  For example, clusters with less than 10 individuals would not be uncommon in cases 

where treatment may be rare or conducted on special populations.  Often the estimation of causal 

effects for different subpopulations is of interest in educational research (NCLB, 2002).  

Therefore if treatment is administered to special populations at each cluster, a smaller sample size 

within cluster would be anticipated.  In contrast, the larger cluster size was chosen to 

accommodate studies of whole classrooms as well as other programs such after-school tutoring 

programs where assignment to treatment may be self-selected.  In addition, these sample sizes are 

comparable to those examined by Lingle (2009) Thoemmes (2009) (i.e. 10, 30, 25, 50 and 100 

clusters).  One extension from the previous research was the use of a range of sample sizes to 

represent small, moderate, and large clusters of individuals to increase the generalizability to 

educational settings where the sizes of clusters will likely vary.  

 Relationship between covariates and treatment assignment.  To satisfy the strongly 

ignorable treatment assignment assumption, predictors associated with assignment mechanism 

should be controlled.  Previous research suggests that predictors that are marginally associated or 

unassociated with assignment can tend to increase the variance and reduce the efficiency of the 

estimates (Austin, Grootendorst, & Anderson, 2007; Austin, Grootendorst, Normand, & 

Anderson 2007; Brookhart, et al., 2006; Pearl, 2010; Wooldridge, 2009).  Therefore, values 

representing small and moderate relationships were considered.  Given the unrealistic nature of 

having a completely uncorrelated predictor, a magnitude of 0 was not chosen.  Thoemmes (2009) 

simulated the data sets based on values representing the explained variability of all the covariates.  

Given that the predictors were uncorrelated the resulting path coefficients could be interpreted as 

correlations.  This study resulted in slopes of .047 and .169 representing small and large effects 

(Thoemmes, 2009).  In contrast, Austin and associates' studies (2007a, 2007b) as well as Lingle's 

(2009) simulation used varying magnitudes representing the strength of the covariate relationship 
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to treatment including 0.  None of these studies included either correlated or dichotomous 

predictors.  

In order to select realistic values to represent small and moderate relationships between 

predictors and treatment assignment preliminary exploratory simulations were conducted using 

brute force techniques to obtain population parameters.  A sample of 1000 clusters containing 

between 500 and 1000 units was simulated based on the assumptions described above.  True 

propensity scores for the individual units were calculated using different values as the regression 

weights.  Covariates were generated from a normal distribution, where the odds of receiving 

treatment is a function of each covariate, and the conditional likelihood for all the covariates 

combined,  producing a probability of .25.  This was done by setting the log odds, or the intercept 

value for the probability equation to -1.108.  A correlation of .2 was induced among the variables 

at each level.  The individual units in the clusters were assigned to either treatment or control 

based on their true propensity scores.  Next, both correlation matrices and tolerance values were 

examined to ensure the magnitude of the slopes were realistic.   

Values of .1 and .2 yielded small correlations between treatment assignment and the level 

1 and level 2 predictors respectively, while values of .2 and .4 produced moderate correlations.  

The correlations among the predictors at each level remained approximately .2 with some slight 

variations for the dichotomous variables.  The relationship between variables across levels stayed 

very close to 0 and any non-zero estimate did not seem to pose a concern.   

One significant contribution of this study is the use of correlated predictors.  Previous 

studies have examined the behavior of PS estimates with perfectly uncorrelated predictors—an 

unlikely and rare phenomena.  However, correlated independent variables have the potential to 

adversely impact regression estimates to the extent that they are no longer interpretable 

(Pedhauzer, 1997).  Pedhauzer (1997) illustrates how the variance of a regression coefficient can 

become inflated when correlated independent variables exist.  In addition, when multiple 

independent variables are present, simply assessing the collinearity based on the zero-order 
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correlations is insufficient as the variance inflation factor may still be high with relatively lower 

zero-order correlations. 

To assess the degree of collinearity among the variables, R2 values for fitted ordinary 

least squares (OLS) regressions based on the four combinations of population correlation matrices 

were computed for each predictor.  Each predictor was modeled against the remaining predictors 

to obtain its individual R2 value.  For the purpose of obtaining R2 values to examine each 

predictor's unique contribution , dichotomous variables (including Z)  were treated as continuous 

and were fitted using OLS rather than a logit or probit models as they do not produce comparable 

R2 values.  Tolerance, is defined as 1- 2
pR , for each predictor against remaining predictors.  Small 

tolerance values suggest greater adverse effects due to the collinearity among the variables.  

While there is no agreement as to what constitutes acceptable tolerance, general guidelines do 

exist (Pedhauzer, 1997).  Some statistical programs use a default value of .01, and variables with 

tolerance levels less than .01 are excluded from the analysis.  R2 values ranged from .0940 to 

.488.  None of these values suggest questionable tolerance values; therefore the magnitude of the 

regression weights predicting treatment assignment were simulated using values of .1 and .2 for 

the level 1 predictors and .2 and .4 for the level 2 predictors.   

Although this study intended to deliberately impose a relationship among the predictors, 

higher tolerance values suggest each variable contributes uniquely to the variance in Y.  While 

the goal of estimating PSs is not to maximize the proportion of explained variance 

parsimoniously (Shadish & Steiner, 2010), including variables that are not highly tolerable may 

increase noise with regards to the treatment effects (Brookhart et al., 2006; Wooldridge, 2009).   

 Relationship between covariates and outcome.  Previous research on PS in a single 

level found that including variables related to outcome influenced the estimates (e.g. Austin, 

Grootendorst, & Anderson, 2007; Brookhart, et al., 2006; Kelcey, 2011; Wooldridge, 2009).  

Therefore, varying magnitudes representing small and moderate relationships between each 
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variable and the overall outcome were considered.  In order to maintain consistency within the 

study, the same regression weights used to represent the relationship between covariate and 

treatment were also used to represent the relationship between covariate and the outcome.  Thus, 

values of .1 and .2 represented small and moderate values for the level 1 regression coefficients, 

γS0, while values of .2 and .4 represented small and moderate values for the level 2 regression 

coefficients, γ0S.  Analogous to the estimation models, these values were also investigated using 

preliminary simulation research.  Previously, R2 values were assessed for each of the individual 

predictors.  To test the regression weights for the outcome model, covariance algebra was applied 

based on the four population correlation matrices to produce population OLS R2 values, or, the 

overall proportion of variability explained by all the predictors and treatment assignment.  These 

values, which can be found in Appendix B, were used to evaluate whether the values for γS0, and 

γ0S, were pragmatic with respect to educational research and did not consider the nested nature of 

the data.  Therefore, they should be interpreted as approximations.   

Population treatment effect.  Two population treatment effect values were considered, 

representing situations where the treatment has small (δ=0.2) and moderate (δ=0.5) effects on the 

outcome (Cohen, 1988).   

Analytical Procedures 

This dissertation aimed to explore the performance of both PS estimation models and PS 

conditioning techniques within a MLM framework.  Crossing four PS estimation models with 

three PS conditioning techniques, a total of 12 PS approaches was examined under each of the 

288 combinations of sample characteristics thereby yielding 3,456 simulated conditions.  Of 

particular interest, was the degree to which different PS methods were able to create balanced 

groups and reproduce the population treatment effect.  To answer the research questions and draw 

inferences regarding the application of PS in MLM several sequential analytical procedures were 

conducted on the generated samples.  Samples were created in IML using SAS version 9.2 or 9.3 

and sent to Base SAS version 9.2 or 9.3 (SAS Institute, 2008) for all subsequent analysis.   
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Throughout the analysis, various descriptive measures and outcomes related to balance and treatment effects were collected and 

aggregated across samples.  Details of these procedures and outcomes are illustrated in Figure 2. 

 

 
Figure 2. Analytical procedures with corresponding outcome measures 
 

 

 

Step 1: Estimate 
propensity scores  

non-
convergence  

non-positive 
definite 
matrices 

relationships 
between 

propensity scores  

Step 2: Evaluate 
region of 
common support  

non-
overlapping 
data  

distributions of 
samples  

Step 3: Condition 
on the propensity 
score  

number of 
matched pairs  

proportion of 
samples 
dropping strata 

Step 4: Evaluate 
balance   

standardized 
differences in 
covariate  
means  

number of 
unbalanced 
variables  

proportion of 
samples 

unbalanced  

Step 5: Estimate 
treatment effects  

bias  

root mean 
squared error 
(RMSE) 

confidence 
interval width  

 
confidence 
interval 
coverage 
 

Step 6: Final 
comparative 
analysis 

Effect size (η2) 
from full 
factorial 
ANOVA 

Descriptive 
Statistics  



79 
 

Step one: Propensity score estimation.  For each of the 288 combinations of sample 

conditions, four different logistic regression models estimated the propensity scores on each 

replication using either the LOGISTIC or GLIMMIX procedure in SAS version 9.2 or 9.3  (SAS 

Institute Inc., 2008).  The GLIMMIX procedure offers many useful options for fitting GLMs, 

including HGLMs (Dai, Li, & Rocke, 2006; Schabenberger, 2005).  The four models chosen to 

estimate the PSs in this study paralleled the models Kim and Seltzer (2007) tested.  Each model 

built upon the previous model and is presented in order of complexity using statistical notations 

to summarize the parameters.  Expanded versions, including all parameters for each of the PS 

estimation models are appended (see Appendix C).  

The first model, represented by equation 20, is a single-level logistic regression and 

represents situations where the nested of the data are ignored when estimating individual 

propensity scores.  This model provided information regarding the utility of PS methodology for 

research applications which do not consider the effects of clustering.  In order to adhere to best 

practices of PS methodology all level-1 and level 2 covariates were included.  This model is 

referred to as the single level logistic or SLL model and is defined as follows:  



00 1 1 2 2 30 30 31 1 40 10LogitPS =ij X X X W Wβ β β β β β+ + + + +     (20) 

The second model, equation 21, estimates the propensity score using a basic hierarchical 

random intercepts model. Here the multilevel nature of the data is accounted for by adding design 

variables to the single level model so that each cluster has its own unique intercept in the model.  

The cluster intercepts (subject-specific intercepts) are measured by the random intercepts, 0 jβ , 

which is a linear combination of the grand intercept, 0 0γ , the effects of the level-2 predictors 

(W1j -W10j) and a deviation, 0 jµ  from that intercept.  The random intercepts are used to measure 

the differences between clusters, controlling for the effects of the individual predictors, X, which 

are considered fixed across clusters.  Such a model, explored the performance of PSs in situations 
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where the clustering may be considered incidental.  This model is referred to as the random 

intercepts model, or RI model.  



0 1 1 30 30logitPS = j j ij j ijij X Xβ β β+ +  

where,  
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combined as,  
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~ (0, )
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j
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N

γ γ γ γ γ µ

µ τ
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 The third model, referred to as the random coefficient model, allowed the slopes of five 

predictors to vary across clusters along with the random intercepts.  Here, the effect of clustering 

is accounted for by allowing each level-2 unit to have its own unique intercept as well as its own 

unique slope for five of the level 1 predictors.  As in the previous model, in this model the cluster 

intercept is a linear combination of the grand intercept, 0 0γ , the effects of level-2 predictors (W1j 

-W10j), and a deviation, 0 jµ  from that mean.  Similarly, the random slopes, such as 1 jβ  is 

specified as a linear combination of the overall average slope, 10γ  and the cluster specific 

deviation from the overall average slope, 1 jµ (see equation 22).  This model aimed to replicate 

situations that consider all the substantive effects of the clustering at the individual level.  This 

model is vital in order to address whether subject-specific effects (i.e. random intercepts and 

random slopes) adequately absorb the impact of the omitted cross-level predictors.  This model 

represents scenarios where the model is correctly specified in terms of the covariate selection, but 
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the functional form of the model is incorrect (i.e. no cross-level interactions).  This model is 

referred to as the random coefficients model or the RC model.  



0 1 1 30 30logitPS = j j ij j ijij X Xβ β β+ +  

where,  
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combined as,  
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Finally the last model, referred to as the cross-level model, includes all the true 

confounders at both levels, as specified by the data generation process.  This model, (equation 23) 

builds upon model 3 the random coefficients model, by including the three cross- level 

interactions.  This cross level model is identical to the random coefficients model, which included 
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random intercepts and five random slopes but included three additional fixed cross-level 

interaction effects.  This model is referred to as the cross-level model or the CL model.   



0 1 1 2 2 30 30LogitPS j ij j ij j ijij X X Xβ β β β= + + +  

where, 
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combined as,  
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The cross-level interaction model explored the performance of propensity score methods 

in situations where all the potential confounders are included in the model and is crucial in 
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assessing the utility of extending the current recommended methods of propensity score 

methodology to multi-level models.  This model was the closest to the data generation model.  

When using regression models to predict outcomes, one goal is to estimate models 

parsimoniously using the best set of predictors (Recchia, 2010; Shadish & Steiner, 2010).  This is 

true for all predictive analyses, including least squares estimation or generalized linear model in 

both single and multi-level contexts (Recchia, 2010).  However, when extending these models to 

estimate PSs, parsimony is no longer a goal, but rather viewed as a potential limitation.  As 

previously mentioned, the inclusion of many and all predictors is necessary to estimate a single 

score representative of all confounders (Rosenbaum & Rubin, 1983; Shadish & Steiner, 2010; 

Steiner, Cook, & Shadish, 2011; Stuart, 2010).  However, estimation issues often arise in multi-

level models with random effects (i.e. random intercepts or random coefficients). 

One concern for the PS estimation models, specifically the three multi-level models was 

whether these models would successfully converge and produce PS estimates.  Both multi-level 

models as well as GLM's estimate effects using ML estimation (Agresti, 1996; Hox, 2002; 

O'Connell & Rivet Amico, 2010; Quinn & Keough, 2010).  ML estimation incorporates an 

iterative procedure to estimate effects, and there is no guarantee that the iteration procedure will 

stop (Hox, 2002).  If no solution is found before the computer program's set limit, then the model 

has not converged.  The maximum number of iterations can be increased, but generally, after a 

large number of iterations if convergence has not occurred, it is possible that it may never find a 

solution.  In multi-level modeling non-convergence is a usually a sign of a poorly specified 

model, a very small sample size, or when many random variance components that are actually 

close to zero are being estimated (Hox, 2002).  Although none of the estimation models try to 

estimate random variance components for fixed effects, convergence was still a valid concern; 

therefore non-convergence rates were tracked across models and sample conditions. 

Thoemmes (2009) included a random intercepts model, and two random coefficients 

models, one with one random slope and the second with two random slopes.  None of those 
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models encountered any convergence issues; however, in addition to the increased number of 

random slopes, the data in the current study have different characteristics that may lead to some 

sample non-convergence.  Some major differences include the use of correlated variables, the 

inclusion of level 2 predictors, and the different sample size conditions which produce smaller 

samples.  Therefore, the convergence status option was requested for each estimation model in 

order to gather descriptive information.  The proportion of non-convergence for each condition 

was calculated and included as a descriptive statistic.  Additionally, all subsequent calculations 

and comparisons were adjusted to represent the results based on the number of converged 

samples and not the number of samples generated.  Finally, all interpretations and conclusions are 

limited to the samples successfully converging.  

In addition, since all PS estimation models specify a variance components covariance 

structure, where all the covariance elements in the τ matrix are set to zero and only the variance 

components are estimated (Kincaid, 2005), it is likely to experience samples with non-positive 

definite matrices (Thoemmes, 2009).  Even though eigenvalues were evaluated during data 

generation and negative variance estimates will be set to small positive values, the variance 

estimates may fall below zero when estimating PSs.  In PROC GLIMMIX, when SAS encounters 

a negative variance, it replaces the value for a zero and issues a warning.  Replacing the negative 

variance with a zero is common and seldom problematic if the estimated negative variance is 

small (Thoemmes, 2009).  One way to potentially avoid issues with non-positive definite matrices 

would be to specify a different covariance structure (Kincaid, 2005); however, given the lack of 

empirical investigations for using PS methods in MLM, and the potential for issues of non-

convergence, this option was not pragmatic for the current study.   

Thoemmes (2009) encountered a substantial amount of non-positive definite matrices in 

models, especially conditions with small samples and random slopes.  To ensure the results were 

not impacted by the presence of non-positive definite matrices, additional tests were conducted.  

For one condition a subsample of replications were re-estimated to examine the actual negative 



85 
 

variance values by removing the zero lower bound.  The values for the negative variances for the 

sub-sample were quite small and were found to be within the 95% confidence interval; therefore 

it did not seem prohibitive to allow SAS to set the non-positive variances to 0.  The estimated 

treatment effects between samples with and without non-positive definite matrices were then 

compared graphically as well as statistically.  Overall results indicated estimates on average were 

not systematically different; in some instances significant differences were present, but small in 

magnitude.  Additionally, these differences were not consistent across conditions.  Findings were 

based on highly unbalanced samples, therefore it was tentatively concluded that setting a non-

positive variance to zero would not influence the overall results (Thoemmes, 2009).   

Given these provisionally favorable results all samples were generated with positive 

definite matrices, and any non-positive variance values estimated was automatically set to zero.  

Additionally, the proportion of samples producing non-positive definite matrices was computed 

across the different sample conditions for each estimation model.   

Step two: Evaluating the region of common support. The region of common support, 

defined as the region of overlap between the estimated PS distributions for treatment and control 

units, provides a good measure for assessing and describing model accuracy (Shadish & Steiner, 

2010; Stuart, 2010; Thoemmes & Kim, 2011).  It is implied that causal effect estimates are to be 

considered for the units whose estimated PSs fall in the common support region (Shadish & 

Steiner, 2010; Stuart, 2010); thus a small region of common support is considered restrictive 

while a broad region of common support is preferred (Thoemmes & Kim, 2011).   

Small common support regions could be due to a number of factors including model 

misspecification or violations to the strongly ignorable treatment assignment assumption.   

In accordance with the implications regarding casual effect estimates and the region of 

common support, it is suggested that individuals with PSs outside of the region of common 

support be dropped from the analysis (Shadish & Steiner, 2010; Steiner & Cook, 2013; Stuart, 

2010); however, this step is often overlooked or has been unreported in both the applied and 
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methodological investigations of PSs.  For example, Lingle’s (2009) study focused solely on the 

ability of PS methods to remove the selection bias by creating balance in treatment and control 

groups, yet there was no evidence to suggest the distributions of the PS were assessed let alone 

used to retain finer samples.  Additionally, Thoemmes (2009) examined the distributions, but did 

not report any measures describing the region of common support, nor were out of bounds units 

dropped from the analysis.   

In order to add to the current research, and adhere to the suggested guidelines provided in 

the literature, data were trimmed so that cases with estimated PSs that fall outside of the region of 

common support were dropped.  The resulting data sets are thought to yield more comparable 

treatment and control groups at the expense of data reduction.  To assess the degree to which 

trimming helped to create finer groups, the proportion of non-overlapping data were examined 

and the distributions in the samples before and after trimming were computed.   

Step three: Propensity score conditioning.  Current investigations of PS in MLM has 

incorporated either matching (Arpino & Mealli, 2011) or stratification techniques (Thoemmes, 

2009; Thoemmes & West, 2011), with little emphasis towards comparing different conditioning 

methods (Lingle, 2009).   Asymptotically, all conditioning methods should yield similar results 

(Rosenbaum and Rubin, 1983; Abadie and Imbens, 2006); however, currently there is not enough 

evidence to render judgments regarding which conditioning methods will yield the most favorable 

results for different data conditions when PS methods are applied in a single level (Shadish & 

Steiner, 2010; Steiner & Cook, 2013).  Preliminary analyses suggests sample size may influence 

which conditioning method to use, and currently the literature describes the choice in 

conditioning method as a trade-off between bias and standard errors (Brookhart, et al., 2006; 

Caliendo & Kopenining, 2008; Pearl, 2010; Wooldridge, 2009).   

In addition to technique, conditioning PSs in MLM modeling is also dependent upon 

whether or not the conditioning was conducted within clusters or across clusters.  Current 

research favors conditioning within cluster to avoid introducing the variability across clusters, as 
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well as to ensure the units are all estimated using the same estimation equation (Lingle, 2009; 

Thoemmes, 2009; Thoemmes & West, 2011); yet all acknowledge that under certain models and 

sample conditions conditioning across clusters cannot be avoided and in certain contexts will not 

yield appreciably different results.  Often in educational research, conditioning across clusters is 

preferred.  For example, if the effects of an intervention conducted on special populations are 

desired, conditioning within cluster may not be feasible.  Additionally, conditioning within 

clusters restricts the generalizabilty of the intervention to the cluster level while conditioning 

across clusters increases the external validity.  Variations of three different conditioning 

techniques were conducted on each sample’s estimated PSs.  Recall each sample estimated four 

different PSs, one for each of the estimation models; thus each of the estimated PSs was 

conditioned three times.  Specifically, each sample was conditioned across clusters using (a) 

nearest neighbor matching algorithm without replacement which produced 1:1 matched pairs with 

a caliper, or difference in estimated PSs no greater than .25, (b) ranks to stratify the distribution of 

estimated PSs into five sub-samples or strata, and (c) the estimated PS as a covariate in the multi-

level outcome model.   

This matching method was chosen for its feasibility with simulation research as opposed 

to the other more computer intensive algorithms and its common use in applied and simulation 

research (Gu & Rosenbaum, 1993; Ming & Rosenbaum, 2001; Thoemmes & Kim, 2011).  

Stratifying samples on quintiles was chosen as this is the most commonly advised number of 

subsamples to create (Rosenbaum & Rubin, 1984).  While in practice, some studies have 

stratified finer subsamples (e.g. Hong & Yu, 2008), quintiles have been shown to at a minimum 

remove 90% of the bias in the variables used to estimate the PS (Rosenbaum & Rubin, 1983).  

Since, both Lingle (2009) and Thoemmes (2009) stratified samples into quintiles; findings can be 

compared across studies to determine the degree of consistency for this conditioning method.   

Lastly, previous studies have not considered utilizing the estimated PS as a covariate in a 

hierarchical linear model as the sole conditioning strategy.  For example, the PS was included as a 
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level-1 predictor variable for stratified sub-samples (Thoemmes, 2009).  With this technique, the 

conditioning and treatment effect estimation occur simultaneously.  A random coefficients model, 

with group membership (Z) and the estimated PS varying randomly across clusters (see Equation 

24) was estimated.  Z, a dummy coded variable, represented group membership and units in 

treatment group received a value of 1.  
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 Under both the matching and stratification techniques there is a potential for loss of data.  

In this study, one control unit was matched to each treatment unit to create matched pairs, 

therefore, unmatched control units were dropped which resulted in a balanced sample.  During 

this step the total number of matched pairs retained was recorded to understand the sample size of 

the outcome model under different conditions.  The total number of matched pairs was converted 

into a proportion of potential matches for a given sample size condition in order to make fairly 

assess this conditioning method across the different design factors.  

When stratifying the sample into subsamples, in this case, quintiles, each stratum needed 

to contain at least one unit in treatment group and one unit in control group.  The absence of 

either renders that particular stratum futile as neither balance nor treatment effects can be 

estimated with units from only one group, and therefore that stratum should be dropped from the 

analysis; therefore, the proportion of samples creating fewer than five functional strata for each 

condition was reported.   
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Step four: Assessment of balance. One way to evaluate the estimation model and 

conditioning method is to examine estimates of balance between treatment and control groups. 

Successful estimation models and conditioning strategies remove the relationship between 

treatment assignment (Z) and each covariate.  While some scholars attribute covariate balance to 

non-significant relationships, the use of null hypothesis significance testing to measure balance 

between groups after PS conditioning has received criticism (Austin, 2008a; Stuart, 2008).  Often, 

and more commonly accepted, is to use a measure of effect size, such as the standardized mean 

difference to represent estimates of balance between groups (see equation 9).  Here, the difference 

between the mean of the covariate for the control group is subtracted from the mean value of the 

covariate for the treatment group.  This specific method assumes the groups are equal in size.  

When the groups are unequal, a pooled standard deviation, Sp, should be estimated and used as 

the divisor (see equation 25).  
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      (25) 

Here, the pooled standard deviation adjusts the sample size of each group, by subtracting the 

number in each group by one and multiplying by its respective variance.  When assessing 

balance, the direction of the differences is not of substantive importance therefore often the 

absolute difference values are used to avoid potential bias when aggregating measures.  One 

drawback to using standardized mean differences with MLM is that they do not account for the 

clustering of data.  However, since conditioning was not restricted within clusters this limitation 

did not impose severe prohibitive implications for this study.  

For each sample, the method used to assess balance and calculate standardized mean 

difference scores was determined based on the conditioning method.  Since units were matched 

across clusters, the matched pair data sets were no longer nested hierarchically, but were clustered 

in a cross classified manner.  Rather than individuals units nested in clusters only, we have 
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individual units nested in clusters and pairs (Raudenbush & Bryk, 2002).  The following 

multilevel model was used to assess balance on the continuous covariates for the matched pairs.   

0 1

2~ (0, )
ijk jk jk ijk ijk

ijk

X Z e

e N

π π

σ

= + +
       (26) 

Here, ijkX  is the score on a particular covariate for the individual in cluster j and matched pair k, 

0 jkπ  is the intercept, Zijk indicates the group for the student (treatment versus control) and 1 jkπ  is 

the regression coefficient relating Zijk to ijkX , or the mean difference between the matched pair.  

Balance for the matched pairs was conducted in SAS using the MIXED procedure for the 

continuous variables and the GLIMMIX procedure for the dichotomous variables.   

Because conditioning across clusters was employed balance estimates on cluster level 

predictors was also estimated.  When conditioning was restricted within clusters, balance on the 

cluster level predictors is fixed.  With certain conditions such as large clusters with a small 

number of clusters, units from the same cluster may be paired.  This within cluster pairing can be 

considered incidental.  When this was the case, balance for this matched pair on the cluster 

predictors was considered perfectly balanced.  

With regression coefficients, values closer to 0 indicate no differences; however with 

odds ratios, a value of 1 indicates that the event is equally likely to occur in groups.  In order to 

consistently interpret balance for all the covariates, the log odds were rescaled to compute 

standardized difference scores comparable across covariates regardless of their scale of measure.  

Since the standard logistic distribution has a variance of π2/3, standardized difference scores can 

be estimated by dividing the ln(odds) by π/√3, or 1.81(Chinn, 2000).   

 For the stratified samples, the following multilevel model was used to estimate the 

balance on the continuous covariates for treatment and control groups within each individual 

stratum.  The absolute standardized differences were pooled across strata on each covariate to 

provide an overall estimate of balance on the entire sample.   
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Specifically, the 10γ represents the average difference on the covariates between treatment and 

control group within the stratum.  Pooling across strata resulted in a value interpreted as the 

average difference on the covariate between treatment and control groups after controlling for the 

strata.  Similarly, standardized mean differences were estimated per stratum and aggregated 

across stratum for each sample.  As with the matched pairs, the same adjustments in SAS were 

made, to estimate odds ratios before they were converted to standardized difference scaled scores.   

Finally, for covariate adjustment, balance was estimated for the continuous predictors 

using by the following model: 
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Here, γ10 represents the average mean difference between treatment and control groups on the 

covariate controlling for PS, while γ00 represents the average mean on the covariate for the control 

group controlling for PS.  Standardized differences were estimated on the full sample.  Again, 

adjustments and conversions were made to estimate balance for the dichotomous predictors.   
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 For this study, a covariate was considered imbalanced when differences between groups 

were larger than 0.25.  This criterion may be considered liberal however, because previous 

studies focused on conditioning within clusters, there is no empirical evidence to suggest what 

constitutes a reasonable criterion in this context.  Additionally, conditioning across clusters 

introduces cluster variability accordingly setting a smaller criterion does not seem pragmatic.  

Literature suggests entire samples be considered imbalanced if more than 10% of the covariates 

are imbalanced (Ho, Imai, & King, & Stuart, 2007; Rubin, 2001, Shadish & Steiner, 2010).  

Using this criterion, an entire sample would be classified as unbalanced if standardized 

differences greater than .25 are present in 5 or more covariates.  In addition to this nominal 

classification an estimate of the degree of balance will be computed across all covariates for each 

sample and aggregated across replications.   

Step five: Estimate treatment effect.  In order to further assess the quality of the 

estimation methods and conditioning strategies different outcome models corresponding to the 

different conditioning strategies were used to estimate the treatment effects and provide 

information regarding the bias, RMSE, 95% confidence interval coverage, 95% confidence 

interval width.  The outcome models used to estimate the treatment effects for matching and 

stratification were identical to those used to estimate balance on the continuous covariates, 

replacing the continuous covariate X, for the continuous outcome Y (see equation 26 for 

matching and equation 27 for stratification).  For covariance adjustment, the outcome model is 

the conditioning model and is represented by equation 24.   

Bias was calculated as the average difference between the known parameter and the 

estimated parameter value across all replications for each condition sampled and reported across 

the 12 PS approaches.  The RMSE of the estimated treatment effects was calculated for the entire 

set of N replications for each condition.   
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The confidence interval width was calculated as the difference between the upper and 

lower limit of the 95% confidence interval around the estimated treatment effect for each 

replication and aggregated over the entire set of replications per condition.  The confidence 

interval coverage was defined as whether a 95% confidence interval included the true treatment 

effect for each replication and a coverage proportion will be calculated for each condition.   

Step six: Final comparative analysis.  To investigate the performance of the different 

PS methods, defined by estimates of balance and treatment effects, and answer the research 

questions a factorial ANOVA including all the design factors was computed for each dependent 

variable, where the PS estimation methods and PS conditioning techniques were considered 

within-subjects factors and the sample characteristics represented between-subjects factors.   

The results of the simulation were analyzed using PROC GLM in SAS 9.3 for both the 

balance and treatment effect estimates such that the dependent variables were balance score, 

number of unbalanced covariates, proportion of samples balanced, bias, RMSE, confidence 

interval coverage, and confidence interval width and the independent variables were the two PS 

method factors and the seven data factors.  Models were built with the purpose of finding effects 

whose eta-squared values were .0588 or greater, which according to Cohen’s (1988) standards 

would be considered a moderate effect.  The effect size, or eta-squared (η2) values were 

calculated to determine the proportion of variability associated with each effect.  Each model was 

created using all main effects and first order interactions.  If this model explained more than 90% 

of the total variability, then no further models were investigated.  However, if less than 90% of 

the total variability was explained then all three way and at times four way interactions were 

included in the models.  These models were compared with the original models to see if any 

additional interaction effects explained at least 5.8% of the variability, or had eta-squared values 
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of at least 0.588.  If no additional interactions were significant, then the simplest model with 

significant interactions was interpreted. Finally, to investigate the relationship between balance 

and treatment effects, and answer research question 5, a series of correlations were computed 

between the estimates of balance and treatment effects.   

Chapter Summary 

This chapter outlined the proposed methodology for this study and describing the 

purpose, research questions, design, sample characteristics, data generation methods, analytical 

procedures, and outcome measures.  One goal of this chapter was to illustrate the lack of 

empirical evidence available to guide methodologists let alone applied researchers seeking to use 

propensity scores as a method to adjust for selection bias in educational or other multilevel 

contexts, to ultimately justify the need for not only this current study but for many investigations 

within this framework.  
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CHAPTER FOUR: RESULTS 

This chapter presents the results of the study organized in order of analytical procedures.  

First, the purpose and research questions are presented followed by a description of the samples 

after PS estimation, trimming and conditioning.  Next, the analytical procedures are described and 

organized by outcome variable.  Finally, the results from the analytical procedures are used to 

answer the study's research questions.  

Overview of the Study 

The purpose of this study was to examine appropriateness of using PS methods to achieve 

balance between groups on observed covariates and to yield unbiased treatment effect estimates 

in multilevel studies.  Specifically, this study examined the extent to which different PS 

approaches (PS estimation models and PS conditioning techniques) and sample characteristics 

(sample size, covariate relationship to treatment and outcome, and population effect size) 

achieved balance and reproduced the population treatment effect.  To meet this goal, five 

different research questions were posed: 

1. To what extent do balance estimates vary across PS methods (PS estimation models and PS 

conditioning strategies)?  

2. To what extent do data factors (sample size, covariate relationship to treatment and outcome, 

and population effect size) affect the balance achieved by the PS methods (PS estimation 

models and PS conditioning strategies)?  

3. To what extent do treatment effect estimates vary across PS methods (PS estimation models 

and PS conditioning strategies)?  
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4. To what extent do data factors (sample size, covariate relationship to treatment and outcome, 

and population effect size) affect the treatment effects estimated by the PS methods (PS 

estimation models and PS conditioning strategies)?  

5. What is the direction and strength of the relationship between balance and both the accuracy 

and precision of treatment effect estimates?  

Description of Samples  

Propensity Score Estimation Models 

For each sample, four different PS models, (one single level and three multilevel) were 

estimated and examined.  In order to compare the PS distributions across the models the mean PS, 

variance of the PS in the sample, and the inter-quartile range for the treatment and control groups 

were calculated for each sample and aggregated across all replications and presented in Table 5.  

The single level logistic model and the random intercepts model produced nearly identical PS 

distributions for treatment and control groups.  Similarly, the PS distributions for treatment and 

control groups were nearly identical for the random coefficients model and the cross level model.   

Table 5  
Average Distributions of the Propensity Scores for each Estimation Model for Treatment and 
Control Groups  
 Mean Variance Inter-quartile range 

PS 
Model Treatment Control Treatment Control Treatment Control 
SLL .70 .21 .04 .05 .37 .27 
RI .70 .20 .04 .05 .37 .26 
RC .75 .17 .03 .04 .31 .22 
CL .75 .17 .03 .03 .31 .22 

 

Next, for each sample generated, correlations between the estimated PSs were computed 

using Pearson product-moment correlation coefficient estimates and averaged across replications.  

The data show a strong positive relationship across the models.  The strength of the relationship 

between the single level model and the multi-level models decreases as the model becomes more 

complex.  Mean correlations are presented in Table 6.  
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The distribution of non-convergence rates for each estimation model is illustrated in 

Figure 3.  The average proportion of samples not converging across all models was close to zero, 

with average rates increasing with model complexity.  The single level model had an average 

non-convergence rate of .03 (SD=.09) and a range of average rates from 0.0 to .48.  The random 

intercepts and random coefficients model had similar non-convergence rates with the average 

values of .07 (SD=.20) and .08 (SD=.21) respectively.  The range of mean non-convergence 

values was larger for the multilevel models as compared to the single level model.  The random 

intercepts model had a range of mean rates from 0.0 to .88 and the random coefficients model had 

a range of mean rates from 0.0 to .92.  Finally the cross-level model had an average non-

convergence rate of .10 (SD=.25) and a range of average rates from 0.0 to .97.   

Table 6  
Descriptive Statistics for Mean Correlations between Propensity Score Estimates 
PS Models Mean Sd Min Max 
corr(SLL,RI) .985 .008 .944 1.0 
corr(SLL,RC) .948 .028 .849 .993 
corr(SLL,CL) .938 .032 .756 .992 
corr(RI,RC) .967 .018 .869 .988 
corr(RI,CL) .957 .028 .647 .998 
corr(RC,CL) .993 .004 .942 .999 

 

 The variation in mean non-convergence rates was explored by modeling the 

proportions with eight main effects (number of clusters, within cluster sample size, relationship 

between level-1 covariates and treatment assignment, relationship between level-1 covariates and 

outcome, relationship between level-2 covariates and treatment assignment, relationship between 

level-2 covariates and outcome, population effect size, and PS estimation method), and all 

possible two-way interactions.  The eta squared values ( 2η ) values were examined, and those 

values exceeding Cohen's (1988) medium effect size criteria of 2η = .0588 or greater were 

considered significant and were further explored through box plots.  This criterion was used for 

this model and all subsequent models in order to explain any differences in variables as a function 

of the PS models, conditioning methods and sample characteristics.   
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Figure 3. Mean non-convergence distributions by propensity score estimation model  
 

The model with main effects and all possible two-way interactions explained more than 

94% of the variability in mean non-convergence rates.  Both the level 1 sample size (η2=.24) and 

the level 2 sample size (η2=.16) emerged as major factors related to non-convergence.  The 

interaction between the level 1 and level 2 sample size factors was also associated with the 

variability in non-convergence rates (η2=.33).  On average, more than half of the samples with 

few level 1 units within a cluster (1-9) and a small number of clusters (30) did not converge.  

Specifically, the mean non- convergence rate for this interaction level was .56 (SD=.29).  When 

increasing the number of clusters from 30 to 50, with few level 1 units, the mean non-

convergence rate decreased to .07 (SD=.11).  All other levels of the interaction had an average 

non-convergence rate less than .003.  The distributions of the mean non-convergence rates for this 

interaction are presented in Figure 4 by PS estimation model.  Noteworthy in this figure is the 

increasing pattern of non-convergence rates for the two interaction levels (1-9 and 30; 1-9 and 50) 

as the PS model grew in complexity. 
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Figure 4. Mean non-convergence distributions by level 1 sample size across the number of clusters for each PS model 
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The distribution of non-positive definite matrix rates for each estimation model is 

illustrated in Figure 5.  Estimating non-positive definite matrices is an issue that may occur with 

multi-level models.  The random intercepts model had a mean non-positive definite matrix rate of 

.05 (SD=.05) and a range of mean rates from 0.0 to .27.  The random coefficients model had the 

largest mean non-positive definite matrix rate of .71(SD=.26) and a range of mean rates from .12 

to .985.  Finally, the cross-level model had a mean non-positive definite matrix rate of .70 

(SD=.26) and a range of mean rates from .12 to .995.    

 
Figure 5. Mean non-positive definite matrix rates by propensity score estimation model 
 

 The variation in non-positive definite matrix rates was further explored using the same 

model described above.  The mean proportions were modeled with the eight main effects and all 

first order interactions.  The model accounted for more than 98% of the variation in the non-

positive definite matrix rates.  Factors related to the non-positive definite matrix rates included 

estimation model (η2=.77), level 1 sample size (η2=.09) and the interaction between estimation 

model and the level 1 sample size (η2=.07).  The mean non-positive definite matrix rates 

associated with this interaction are presented in Table 7.  The random coefficients and cross-level 

models had high mean rates of non-positive definite matrices across all levels of the level 
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1sample size factor.  As the sample size level increased the mean proportion samples estimating 

non-positive definite matrices decreased.   

Table 7  
Descriptive Statistics for Mean Non-Positive Definite Matrix Rates for each  Multilevel PS 
Estimation Model by Level 1 Sample Size  
 Level 1 Sample Size 
 1-9 10-19 20-29 
PS 
Model Mean Sd Min Max Mean Sd Min Max Mean Sd Min Max 
RI  .08 .06 .03 .26 .04 .03 0 .11 .017 .02 0 .07 

RC  .96 .02 .91 .99 .72 .14 .40 .91 .43 .19 .12 .75 

CL .96 .019 .91 .99 .71 .14 .39 90 .43 .19 .12 .74 
 

Common Support 

After the propensity scores were estimated, the samples were trimmed to retain only the 

region of common support for the treatment and control units.  Table 8 compares the average 

extreme values for the treatment and control groups before trimming against the distributions of 

the trimmed sample for each PS estimation model.  After trimming, the range of the PSs was still 

quite large, getting marginally smaller as the model grew in complexity.  

Table 8  
Mean Propensity Score Range Before and After Trimming   
 Before After 
 Control Treatment Retained Sample 
PS Model Low High Low High Low High 
SLL .001 .93 .051 .995 .051 .93 
RI .0009 .92 .047 .995 .05 .92 
RC .0005 .86 .10 .997 .10 .84 
CL .0006 .86 .10 .998 .11 .83 
 

The distribution of the mean percent of data trimmed by PS estimation model is 

illustrated in Figure 6.  As the model became more complex, the mean percent of non-

overlapping data increased.  The single level logistic model had an overall mean percent of data 

trimmed of 20.55 (SD= 15.64) with mean percents ranging from 2.44 to 96.  The random 

intercepts model had an overall mean percent of data trimmed of 24.11 (SD= 18.42) ranging from 
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3.03 to 100.  The random coefficients and cross-level models had nearly identical distributions 

with an overall mean percent of data trimmed of 37.21 (SD= 24.25) and 37.75 (SD= 23.83) 

respectively.  For the random coefficients model the mean percent of data trimmed ranged from 

9.02 to 100, and for the cross level model the mean percents ranged from 0 to 100.   

 
Figure 6.  Mean percent of data trimmed by propensity score estimation model 
 

The variation in mean percent of data trimmed was further explored across the eight main 

effects and all first order interactions.  The model explained nearly 96% of the variability in the 

mean percent of data trimmed.  Several factors impacted the mean percent of data trimmed: level 

1 sample size (η2=.43), level 2 sample size (η2=.18), estimation model (η2=.14), the interaction 

between level 1 sample size and level 2 sample size (η2=.07), and the level 1 covariate 

relationship to treatment (η2=.06).  Figure 7 displays the interaction between level-1 sample size 

and level-2 sample size for each PS Model.  As the level-1 sample size increased the percent of 

data trimmed decreased.  This pattern was consistent across the different cluster values for each 

PS model.  A large percent of data was trimmed for the conditions with 1-9 units within 30 

clusters and grew as the models became more complex (see Figure 7).  

Finally, the level-1 covariate relationship to treatment also impacted the percent of data 

trimmed.  As the strength of the relationship between the level-1 covariates and treatment 
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Figure 7. Mean Percent of Data Trimmed by level-1 sample size across level-2 sample size for each propensity score model 
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assignment increases the greater percentage of data were trimmed.  When the level-1 covariate 

relationship to treatment was small (βxz =.10), the overall mean percent of data trimmed was 

25.11(SD=22.05) with mean percents ranging from 2.4 to 100.  When the level-1 covariate 

relationship to treatment was moderate (βxz =.20), the overall average mean increased 

34.64(SD=21.22) with mean percents ranging from 0 to 100.  Table 9 explores these means 

across PS Model and the same pattern holds true across all models with the percent in data 

trimmed increasing with the complexity in the model.   

Table 9 
Mean Percent of Data Trimmed for Covariate Relationship to Treatment by PS Model  
 PS Model  
Parameter SLL RI RC CL  
βxz     

.10 14.93 18.49 32.59 34.53 

.20 26.17 29.85 41.99 41.17 
Note. βxz = strength of relationship between level-1 covariates and treatment assignment  
 
Propensity Score Conditioning 

 After the samples were trimmed three different PS conditioning techniques were 

conducted (covariance adjustment, matching, and stratification).  Both matching and stratification 

methods may result in the loss of data.  When matching units, a caliper width of .25 between the 

units estimated PS was imposed.  If a control unit whose estimated PS was not within .25 of a 

treatment unit it was not matched.  Likewise, if there were not adequate matches for treatment 

units it was not matched.  All unmatched cases were dropped from the sample.  When stratifying 

the samples, strata that did not have at least 2 treatment units and 2 control units were considered 

incomplete and were dropped from the analysis.  To investigate if certain design factors impacted 

non-matched cases and empty strata the mean proportion of potential matches and the proportion 

of samples dropping strata were explored.   

  The mean proportion of potential matches was calculated by taking the ratio of the mean 

number of matches and the mean number of treatment units in the sample post trimming.  At 

times, this proportion was larger than 1.0 when the mean number of matches was larger than the 
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mean number of units in treatment group post trimming.  This occurred when level-1 sample size 

was 1-9 and the number of clusters was 30 across all four PS estimation models.  For example, 

for one of these conditions the mean number of treatment units was 2.00 and for the same 

condition the mean number of matched cases was 3.91, resulting in a mean proportion of matched 

cases of 1.96.  Additionally, since the number of units (1-9) was uniformly distributed and there 

was a 1:3 treatment to control ratio, samples may have had specific clusters with no treatment 

units or very few treatment units which may have been dropped after trimming; thus impacting 

the mean number of treatment units post trimming.  Samples with proportions greater than 1 were 

removed from this analysis only.   

Figure 8 displays the distributions of the mean proportion of potential matches by PS 

Model.  In general, the typical value for the mean proportion of potential matches was 

comparable across PS estimation models dropping slightly as the model complexity increased.  

The single level logistic model had an overall mean proportion of potential matches of .62 

(SD=.09) with values ranging from .50 to .80.  The mean proportions of potential matches 

dropped slightly as compared to the single level model for the random intercepts and random 

coefficients model, but the range of values got larger.  The random intercepts model had an 

overall mean proportion of potential matches of .60(SD=.10) with values ranging from .31 to .90.  

Similarly, the random coefficients model had an overall mean proportion of potential matches of 

.60(SD=.10) with values ranging from .01 to .97.  Samples with a .97 mean proportion of 

potential matches suggests that on average almost all of the treatment units remaining in the 

sample after trimming were matched.  The range in values decreased for the cross level model 

which had an overall mean proportion of potential matches of .54(SD=.10) ranging from 0 to .67.  

A mean proportion of potential matches of 0 indicate on average none of the treatment units in 

the sample after trimming were matched.   

Variation in the mean proportion of potential matches was explored across the eight main 

effects and all first order interactions.  This model explained 84% of the variability in the mean 
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proportion of potential matches.  Factors impacting the mean proportion of potential matches 

included the level-1 covariate relationship to treatment (η2=.47); the level-2 covariate relationship 

to treatment (η2=.16), and the estimation model (η2=.08).   

 
Figure 8. Distributions of mean proportion of potential matches across PS models 
 

When the level-1 covariate relationship to treatment was small (βxz =.10), the overall 

mean proportion of potential matches was .65(SD=.08) with mean proportions ranging from .53 

to .97.  When the level-1 covariate relationship to treatment was moderate (βxz =.20), the overall 

mean proportion of potential matches was .51 (SD=.06) with mean proportions ranging from 0 to 

.59.  When the level-2 covariate relationship to treatment was small (γ0W =.20), the overall mean 

proportion of potential matches was .62(SD=.11) with mean proportions ranging from .0 to .97.  

When the level-2 covariate relationship to treatment was moderate (γ0W =.40), the overall mean 

proportion of potential matches was .54 (SD=.07) with mean proportions ranging from 0 to .64.  

Mean proportions of potential matches for both the level-1 covariate relationship to treatment and 

the level-2 covariate relationship to treatment by PS model are presented in Table 10.  The 

proportion of potential matches was greater when the strength of the relationship between 

covariates and assignment was small.  This pattern was consistent for both the level-1 and level-2 
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covariates.  The proportion of matches decreased marginally as the PS model became more 

complex.  

Table 10 
Mean Proportion of Potential Matches for Covariate Relationship to Treatment by PS Model 
 PS Model  
Parameter SLL RI RC CL  
βxz     

.10 .70 .68 .63 .60 

.20 .54 .52 .49 .48 
     

γ0W     
.20 .66 .65 .60 .57 
.40 .58 .55 .52 .51 

Note. βxz = strength of relationship between level-1 covariates and treatment assignment  
γ0W= strength of relationship between level-2 covariates and treatment assignment 
 

When stratifying the samples, strata that did not have at least 2 treatment units and 2 

control units were considered incomplete and were dropped from the analysis.  The distributions 

of the proportion of samples dropping at least one stratum by propensity score model are 

presented in Figure 9.  The average proportion of samples dropping strata was similar for the 

single level logistic (M=.10, SD=.21) and random intercepts (M=.08, SD=.15) model.  Likewise, 

the random coefficients and cross-level models performed similarly.  The average proportion of 

samples dropping strata for the random coefficients model was .16 (SD=.23) and was 

.15(SD=.22) for the cross-level model.  

 
Figure 9. Proportion of samples dropping strata by propensity score estimation model 
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Variation in the proportion of samples dropping strata was explored across the eight main 

effects and all first-order interactions.  This model explained 60% of the variability in the 

proportion of samples dropping strata.  Variation was further explored across the eight main 

effects, all first-order interactions, and all second-order interactions.  This model explained 84% 

of the variability in the proportion of samples dropping strata.  Factors impacting the proportion 

of samples dropping strata included level-1 sample size (η2=.31), the second-order interaction of 

the level-1sample size, the level-2 sample size and the PS estimation model (η2=.14), the first-

order interaction between the level-1 sample size and the level-2 sample size (η2=.12) and the 

level 2 sample size (.08).  Figure 10 illustrates the second-order interaction effect displaying the 

PS estimation model by level-1 sample size interaction across the three cluster levels.  A larger 

proportion of strata were dropped when the level 1 sample size was small and as the model grew 

in complexity.  These patterns were fairly consistent across the cluster levels.   

Data Analysis  

This study intended to be a fully crossed and balanced factorial design with seven 

between-subjects factors fully crossed with two within-subjects factors (i.e. propensity score 

estimation models and propensity score conditioning methods) resulting in a total of 3,456 

conditions.  Due to the PS estimation method non-convergence rates, the trimming of the 

samples, the dropping of cases during matching and stratification, and lastly the non-convergence 

of the final treatment effect models, there were quite a few conditions when the level 1 sample 

size was 1-9 and the level-2 sample size was 30, with missing outcome variables.  In a balanced 

design, if convergence and loss of data were not an issue, each of the 9 sample size levels (level 1 

crossed with level 2) would have 384 observations, as there would be 32 unique levels per sample 

size interaction level and 12 observations per unique factor (four PS models crossed with the 

three conditioning methods).  Given the convergence issues, and the data loss attributed to 

trimming and PS conditioning, the smallest sample size interaction level, where there were 1-9 

level 1 units and 30 clusters, returned 100 observations on the outcome variables of interest.   
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Figure 10. Proportion of Samples Dropping Strata by the Sample Size Interaction across the Four Propensity Score Models  
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Each of the remaining 8 levels had all 384 observations.  What follows below, is a discussion on 

the three outcome measures associated with balance followed by a discussion on the four 

outcome measures associated with the treatment effect estimates.   

Balance  

 Three different outcome measures were used to operationalize balance in this study.  The 

first, the absolute value of the standardized mean difference between groups on the covariates, 

was used as the overall balance score, with smaller standardized mean differences indicating the 

samples were approaching a state of balance.  There are no general guidelines that suggest what 

the cut off score should be to indicate the differences were so small that the groups were 

balanced.  Given that 0.25 was used as the matching caliper in this study and that this was one of 

the seminal studies assessing PS balance using MLM and that there were both continuous and 

dichotomous covariates included 0.25 was used as the general guideline for what constituted 

acceptable balance.  Although some may consider this a liberal index, it is still within the 

acceptable range.  Additionally, with the three dichotomous covariates at level-1 and one at level-

2, as well as the conversion of their log odd estimates to standardized mean differences, this index 

is fair.   

The absolute value of the standardized mean difference between treatment and control 

groups for each variable was calculated and combined to provide the sample with an overall 

balance score.  Figure 11 displays the distributions of the mean balance score for each PS factor 

(conditioning methods and estimation models).  Notable in this figure is the overall poor 

performance of stratification across all PS models, with typical values approaching the 

unbalanced index of .25 for the single level logistic and random intercepts models, and greater 

than .25 for the random coefficients and cross-level models.  In contrast, covariance adjustment 

and matching provide adequate balance estimates across all PS models.  As the models became 

more complex the typical balance score increased for all the conditioning methods.  Covariance 

adjustment performed slightly better under the single level logistic and random intercepts model 
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while matching performed slightly better as the model became complex, specifically the random 

coefficients and the cross level model.   

 
Figure 11. Absolute average standardized mean difference in covariates by conditioning method 
across the four PS models  

 

Variation in the mean balance score was explored across the nine main effects and all 

first-order interactions.  This model explained 92% of the variability in the average balance score.  

Main effects for conditioning method (η2=.40), level-1 sample size (η2=.19), estimation method 

(η2=.09), and level-2 sample size were (η2=.07) were all associated with the variability in mean 

balance score.  Descriptive statistics for the mean balance estimates for these related factors are 

presented in Table 11.  Overall, stratification on average performed poorly.  Additionally, when 

level-1 sample size was 1-9, the typical mean balance score and range were both quite large.  It is 

not clear to what extent the mean balance score when level-1 sample size was 1-9 would be 

comparable to the other two sample size levels (10-19 and 20-29) had all the samples converged.  

What is interesting to note are the range of values for some design factors.  The typical values for 

the different PS models were comparable, but the range of mean balance scores increased 

tremendously as the models became more complex.  The cross-level model produced mean 
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balance values as high as .93.  Finally, as the number of clusters increased the typical mean 

balance score as well as range of values decreased.   

Table 11  
Descriptive Statistics by Design Factors Associated with Mean Balance Score 
Design Factor  Mean SD Min Max 
Conditioning Method      

Covariance adjustment   0.07  0.09 0 0.93 
Matching 0.08 0.08 0.03 .72 
Stratification 0.23 .10 .08 .53 

     
Level-1 Sample Size      

1-9 .21 .16 0 .93 
10-19 .11 .86 .005 .34 
20-29 .09 .06 .004 .25 

     
PS Estimation Model      

SLL .09 .09 .004 .43 
RI  .10 .09 .014 .50 
RC .16 .12 .04 .72 
CL .17 .12 0 .92 

     
Level-2 Sample Size     

30 .15 .13 0 .93 
50 .15 .13 .006 .53 
100 .09 .08 .004 .32 

 
Figure 12 displays the distributions of the level-1 sample size main effect across all PS factors 

(conditioning methods and estimation models) and Figure 13 displays the distributions of the 

level-2 sample size main effect across all PS factors.   

The second outcome measure used to evaluate balance in the study was the mean number 

of variables not balanced.  For each variable, the absolute standardized mean difference score 

between treatment and control groups was calculated.  The number of covariates with absolute 

standardized mean difference scores greater than 0.25 was counted.  Figure 14 displays the mean 

number of unbalanced covariates for each conditioning method across the four PS models.  A 

sample was considered unbalanced if more than 10% of the covariates (five covariates) had 

absolute standardized mean difference scores greater than .25.  Evident in this figure is the overall 

poor performance of stratification.  Across all PS models, the typical mean number of unbalanced 

 



113 
 

 
 

Level -1 Sample Size =1-9 

 
Level -1 Sample Size =10-19 

 
Level -1 Sample Size =20-29 

 
Figure 12.  Distributions of the absolute average standardized mean difference in covariates by 
conditioning method across the four PS models for each level-1 sample size level 
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Number of Clusters=30 

 
Number of Clusters=50 

 
Number of Clusters=100 

 
Figure 13. Absolute average standardized mean difference in covariates by conditioning method 
across the four PS models for each level-2 sample size level 
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covariates with stratification was larger than the 10% cut off.  In contrast, the median values for 

covariance adjustment and matching were all below the cutoff.   

 
Figure 14. Mean number of unbalanced covariates by conditioning method across the four PS 
models 
 

The variability in mean number of unbalanced covariates was further explored across the 

nine main effects and all first-order interactions.  This model explained 93% of the variability in 

the mean number of unbalanced covariates.  Factors associated with the variability in mean 

number of unbalanced covariates included conditioning method (η2=.36), level-1 sample size 

(η2=.21), the interaction between the conditioning method and the level-1 sample size (η2=.10), 

and level-2 sample size (η2=.08).  Figure 15 displays the distributions associated with the 

interaction effect.  This figure illustrates the impact small samples had on the mean number of 

covariates balanced.  The stark contrast in the covariance adjustment and matching distributions 

between the small sample size level (1-9) and the other two levels is remarkable.  The difference 

in distributions for covariance adjustment and matching may have been less drastic had all the 

samples for that level (1-9) converged.   
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Figure 15. Distributions in mean number of unbalanced covariates by level-1 sample size across 
conditioning methods  
 

The means and standard errors associated with this interaction effect are presented in 

Table 12.  Stratification performed relatively poorly regardless of the level-1 sample size.  

However, when the level-1 sample size was 20-29, typical value of mean number of unbalanced 

covariates decreased and approached the threshold (M=5.14).  Evidenced in Figure 15 and 

reiterated in Table 12 is the strikingly similar markedly impressive performance of covariance 

adjustment and matching on these data.  On average, for moderate and large samples, both of 

these conditioning methods had almost no unbalanced covariates.  Figure 16 displays the 

distributions of this interaction effect for each PS estimation model. 

Table 12  
Mean Number of Unbalanced Covariates by Level-1 Sample Size and Conditioning Method 
 Conditioning Method 
 Covariance Adjustment  Matching  Stratification  
Level 1 Sample Size Mean SD Mean SD Mean SD 

01-09 4.4 6.7 6.3 8.8 25.64 7.38 
10-19 .12 .22 .30 .55 11.64 8.20 
20-29 .004 .01 .05 .09 5.14 4.8 
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Single-Level Logistic  Random Intercepts 

 
 

Random Coefficients  Cross-Level 

  
Figure 16. Distributions in mean number of unbalanced covariates by level-1 sample size across conditioning methods by propensity score 
estimation model  
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Descriptive statistics associated with the level-2 sample size main effect are presented in 

Table 13.  These data indicate that as the number of clusters increases the typical mean number of 

unbalanced covariates decreases and the dispersion also decreases.  For this main effect, when the 

number of clusters was 30, on average produced lower mean number of unbalanced covariates 

than when the number of clusters was 50.  The large number of missing data due to the 

convergence issue only occurred when the number of clusters was 30; therefore it is likely that 

the missingness contributed to the smaller average and less likely that a smaller number of 

clusters would produce on average fewer unbalanced covariates.  Figure 17 provides the 

distributions for this main effect across all PS methods (conditioning methods and estimation 

models).   

Table 13  
Descriptive Statistics for the Mean Number of Unbalanced Covariates by Level-2 Sample Size 
Level-2 Sample Size Mean SD Min Max 

30 6.79 9.53 0 32.79 
50 7.05 10.52 0 37.72 
100 2.65 6.06 0 26.04 

 

The third and final outcome measure used to evaluate balance in the study was the 

proportion of samples balanced.  The previous variable counted the number of individual 

covariates yielding a balance score of greater than 0.25.  A sample was considered unbalanced if 

more than 10% of the covariates were not balanced.  Therefore, if the sample had 5 or more 

variables with a balance score of greater than 0.25 it was not considered balanced.  Conversely, if 

the sample had 0, 1, 2, 3 or 4 variables that yielded a balance score of 0.25 or greater than it was 

considered balanced.  Figure 18 displays the proportion of samples balanced for each 

conditioning method across the four PS estimation models.  This figure highlights two distinct 

patterns.  First, is the consistently large distributions and overall small proportion of samples 

balanced when data were stratified.  Second, are the similarities in the distributions for the single 

level logistic model and the random intercepts model and the same similarities are seen with the 

random coefficients and cross-level models.   
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Figure 17.  Distributions of mean number of unbalanced covariates by conditioning method 
across the four PS models for each level-2 sample size level 
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Figure 18. Proportion of samples balanced by conditioning method across PS models 
 

The variability in the proportion of samples balanced was explored across the nine main 

effects and all first-order interactions.  This model explained 85% of the variability in the 

proportion of samples balanced.  The variability was further explored by including all second-

order interactions.  This model explained 97% of the variability in the proportion of samples 

balanced.  Factors that were associated with this variability included conditioning method 

(η2=.46), level-1 sample size (η2=.14), level-2 sample size (η2=.08), and the interaction across all 

the aforementioned factors (η2=.07).  Figure 19 displays this second-order interaction effect 

associated with the variability in the proportion of samples balanced.  This figure depicts the 

consistent patterns with matching and covariance adjustment sharply contrasted with the 

inconsistency with stratification.  There is drastic improvement with regard to the proportion of 

samples balanced when stratifying when level-1 sample size is 20-29 and the level-2 sample size 

is 100.  Both matching and stratification produce large proportions of balanced samples when the 

level-2 sample size is 100, regardless of the level-1 sample size. 
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Figure 19. Proportion of samples balanced by conditioning method and level-1 sample size interaction across the level-2 sample size 
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Descriptive statistics for the second-order interaction associated with the variability in the 

proportion of samples balanced are presented in Table 14.  As seen in this table, the data highlight 

the extreme performance of stratification, notably how when level 1 sample size was 1-9 and the 

cluster size was 50, no samples were balanced when stratifying.  This is rather surprising as the 

convergence issue only occurred when level-1 sample size was 1-9 and the cluster size was 30; 

thus there were no missing data or a lack of samples for this cell.  Covariance adjustment and 

matching performed remarkably well for seven out of the nine sample size interaction levels.  

Additionally all samples were balanced when using covariance adjustment when the level 1 

sample size was 20-29 and the cluster size was 50 and 100.  

Table 14 
Descriptive Statistics for the Proportions of Samples Balanced by Level-1 Sample Size, Level-2 
Sample Size and Conditioning Method 
  Conditioning Method 
Level 2 Sample 

Size 
Level 1 Sample 

Size 
Covariance 
Adjustment Matching Stratification 

  Mean SD Mean SD Mean SD 
 01-09 .49 .45 .29 .27 0 0 

30 10-19 .98 .02 .96 .05 .002 .006 
 20-29 .99 .0002 .99 .0001 .17 .22 
        
 01-09 .60 .40 .49 .40 0 0 

50 10-19 .99 .003 .99 .0005 .15 .22 
 20-29 1.0 0 ,99 .003 .64 .27 
        
 01-09 .97 .04 .97 .03 .01 .03 

100 10-19 .99 .0002 .99 .001 .76 .21 
 20-29 1.0 0 .99 .003 .97 .04 

 

Treatment Effects 

 Four different variables were used to examine the effectiveness of the treatment effects 

estimates in the outcome model: statistical bias in the point estimates, the root mean squared error 

(RMSE), the 95% confidence interval coverage, and the 95% confidence interval width.   

 Bias in this study was calculated as the differences between the estimated treatment effect 

and the corresponding population parameter (δ=.2 or δ=.5) for each sample.  The bias estimates 

were aggregated across replications and the distributions of the mean bias in the point estimates 
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are presented by conditioning method across the four PS models in Figure 20.  Overall, the 

estimates across all conditioning methods and PS models were not very biased.  The distributions 

got larger as the PS models became more complex consistently for all conditioning methods.  For 

the single level logistic model, the typical values and dispersion of data were very small.  

Extremely biased values were seen in some conditions with the random coefficients and cross-

level models for all conditioning methods.  

 
Figure 20. Distributions of estimated bias in point estimates by conditioning methods across PS 
models 
  

The variability in bias was examined across all main effects and first- order interactions.  

This model only explained 67% of the variability, therefore all second -order interactions was 

included.  The model with all main effects, first and second-order interactions explained 77% of 

the variability.  Finally, a third model which included all main effects, first, second, and third-

order interactions was considered.  This final model explained a total of 87% of the variability in 

estimated bias.  Neither the second nor the third model identified any additional factors related 

substantially to the variability in bias.  Factors associated with the variability in bias included PS 

estimation model (η2=.36), conditioning method (η2=.08), and level-1 sample size (η2=.06).  

Descriptive statistics for the three factors associated with the variability in bias are presented in 

Table 15.  
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Table 15  
Descriptive Statistics by Design Factors Associated with Bias 
Design Factor  Mean SD Min Max 
PS Estimation Model      

SLL -0.16 .12 -0.53 0.05 
RI  -0.06 .20 -3.72 1.12 
RC 0.43 .50 -3.79 6.55 
CL 0.49 .55 -3.79 6.49 

     
Conditioning Method      

Covariance adjustment  0.33 .44 -0.09 5.81 
Matching -0.001 .50 -3.79 6.49 
Stratification 0.20 .40 -0.33 6.56 

     
Level-1 Sample Size      

1-9 0.37 .76 -3.79 6.55 
10-19 0.13 .31 -0.51 0.94 
20-29 0.07 .29 -0.53 0.85 

 

As the PS model became more complex the dispersion of the mean bias estimates 

increased.  On average, the single level logistic and random intercepts model slightly 

underestimated the treatment effect while the random coefficients and cross -level models 

overestimated the treatment effect.  With regard to the different conditioning methods, on average 

the mean bias estimate was very negligible for the matched samples.  However, the range of bias 

estimates was the largest for this method.  On average both stratification and covariance 

adjustment overestimated the treatment effect.  The overall mean bias estimate decreased as the 

level-1 sample size increased.  All three levels tended to on average overestimate the treatment 

effect.  The range of bias estimates was largest when the level-1 sample size was 1-9.  The range 

of bias estimates decreased tremendously for the remaining two level-1 sample size factors.  

Distributions for the level-1 sample size main effect across all PS methods (conditioning methods 

and estimation models) are provided in Figure 21.  

The second outcome variable used to evaluate the effectiveness of the treatment effects 

estimates in the outcome model was the root mean squared error (RMSE).  The RMSE was 

calculated by taking the square root of the sum of the differences between the estimated treatment 

effect and the corresponding population parameter divided by the total number of  
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Level -1 Sample Size =1-9 

 
Level -1 Sample Size =10-19 

 
Level -1 Sample Size =20-29 

 
Figure 21.  Distributions of the average bias in point estimates by conditioning method across the 
four PS models for each level-1 sample size level 
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samples converged.  The distributions of RMSE estimates by conditioning methods across the 

four PS estimation models are presented in Figure 22.  

 
Figure 22. Distributions of the RMSE for each conditioning method across the PS estimation 
models 
 

 The distributions in RMSE values were quite consistent across conditioning methods for 

each PS estimation model.  For the random coefficients and cross-level models relatively larger 

RMSE estimates are present, especially when using covariance adjustment.  To explore the 

variability in RMSE estimates across the design factors two different models were considered.  

First the RMSE estimates were examined across all nine main effects and first-order interactions.  

This model explained 88% of the variability in RMSE values.  The second model included all 

nine main effects, first and   second-order interactions.  This model explained 95% of the 

variability; however this second model did not identify any additional effects substantially 

associated with the variability in RMSE estimates.  Factors associated with the variability in 

RMSE estimates included; level-1 sample size (η2=.41), level-2 sample size (η2=.20) and the 

interaction between the level-1 sample size and level-2 sample size.  Distributions related to this 

interaction effect are presented in Figure 23.   



127 
 

 
Figure 23. Root mean squared error for the level 1 sample size across the number of clusters 
 

The RMSE was greater and more disperse when the level 1 sample size was small 

regardless of the number of clusters.  The RMSE estimates were the largest when the level 1 

sample size was 1-9 and the number of clusters was 30 or 50.  The distributions of the RMSE 

estimates were quite small for all other sample size levels.  Descriptive statistics for the RMSE 

estimates associated with this interaction effect are provided in Table 16.  As the level-1 sample 

size increases the mean values of the RMSE estimates decrease consistently across level-2 sample 

size.  Additionally, the same pattern is observed when the number of clusters increases across 

each level-1 sample size. 

Table 16  
Root Mean Squared Error by Level 1 Sample Size Across the Clusters  

Number of Clusters 
 30 50 100 
Level 1 
Sample Size 

M SD M SD M SD 

01-09 .89 .42 .51 .16 .27 .04 
10-19 .29 .05 .21 .03 .14 .02 
20-29 .21 .02 .15 .02 .10 .01 

 

The third outcome variable used to evaluate the effectiveness of the treatment effects 

estimates in the outcome model was the 95% confidence interval coverage.  The 95% confidence 
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interval coverage is the proportion of samples in which the population parameter specified (δ=.2 

or δ=.5) fell within the 95% confidence interval.  The distributions of coverage estimates across 

the conditioning methods for each PS estimation model are displayed in Figure 24.  On average 

all the conditioning methods across all the PS estimation models under covered.  As can be seen 

in the figure there are several conditioning methods where the upper quartile meets the threshold, 

and had adequate coverage rates.  Across all PS estimation models, this was consistent with 

matching.   

 
Figure 24. Distributions of 95% confidence interval coverage rates for each conditioning method 
across the four PS estimation models.  
 

To explore the variability in the coverage rates across the design factors two different 

models were considered.  First the coverage rates were examined across all nine main effects and 

first-order interactions.  This model explained 67% of the variability in coverage rates.  The 

second model included all nine main effects, first and second-order interactions.  This model 

explained 85% of the variability.  Factors associated with the variability in coverage estimates 

included level-2 sample size (η2=.22), the level-1 sample size (η2=.17), the interaction between 

the two aforementioned factors (η2=.11), and the second -order interaction for conditioning 

method, estimation model, and level-2 sample size (η2=.06).   
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The distributions illustrating the interaction between the level-1 sample size and the 

level-2 sample size factors are displayed in Figure 25.  As the sample size increased, the 

distributions of coverage rates increased.  This pattern was not consistent across all cluster levels.  

For example, when the level-1 sample size was 1-9 and the cluster size was 30, the median value 

of coverage rates showed adequate coverage; however, the convergence issues experienced likely 

contribute to the smaller distribution for this particular interaction level.   

 
Figure 25. Distributions of 95% confidence interval coverage rates by level-1 sample size across 
the number of clusters.  
 

 The mean interval coverage estimates by the level-1 and level-2 sample size interaction 

effect are presented in Table 17.  The data indicate the impact of the number of clusters is greater 

as the level-1 sample size increases.  Across all three cluster values, the average coverage rate 

decreased substantially when increasing the level-1 sample size from 10-19 to 20-29.   

 The distributions illustrating the second-order interaction effect of the conditioning 

methods, PS estimation models, and level-2 sample size are presented in Figure 26.  Evident in 

this figure is the increasing dispersion of coverage estimates as the number of clusters increased 

as well as the variability in coverage estimates for each conditioning method and PS estimation 

model.  For example, with 100 clusters, the cross-level and random coefficients model both had 

wide distributions when using covariance adjustment with 100 clusters.  The single level and 
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random intercepts model performed similarly when using matching with 100 clusters.  In 

contrast, the distributions of the single level and random intercepts model were less dispersed 

when using covariance adjustment with 100 clusters.  Additionally, the more complex models 

(random coefficients and cross-level) had smaller distributions of coverage estimates with 

matching for 100 clusters.  The distributions of coverage estimates were fairly consistent across 

the estimation models and conditioning methods with 30 clusters. 

Table 17  
Confidence Interval Coverage by Level 1 Sample Size Across the Clusters  

Number of Clusters 
 30 50 100 
Level 1 
Sample Size 

M SD M SD M SD 

01-09 .88 .14 .77 .19 .90 .11 
10-19 .93 .05 .80 .10 .56 .25 
20-29 .80 .10 .60 .12 .46 .22 

 

The mean interval coverage estimates by conditioning method, estimation model, and 

level-2 sample size are presented in Table 18.  These data indicate that the impact of level-2 

sample size is dependent upon the estimation model and conditioning method selected.  For 

example, with covariance adjustment, mean coverage estimate increased when the clusters 

increased from 50 to 100 when using the single level or random intercepts models.  However, the 

mean coverage estimates decreased from .68 to .46 and from .67 to .44 for the random 

coefficients and cross-level models respectively.  

The fourth and final variable used to evaluate the effectiveness of the treatment effects 

estimates in the outcome model was the confidence interval width.  The confidence interval width 

was calculated as the difference between the 95% confidence interval upper and lower limits.  

The distributions of confidence interval widths across the conditioning methods for each PS 

estimation model are displayed in Figure 27.  The distributions suggest that the differences in  
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Figure 26. Distributions of 95% confidence interval coverage rates by PS estimation models and conditioning methods across the number 
of clusters.  
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Table 18 
Confidence Interval Coverage Estimates by Conditioning Method, Estimation Model and Level-2 
Sample Size  
  Level-2 Sample Size  

  30 50 100 
PS Estimation Model  Conditioning Methods  Mean SD Mean SD Mean SD 

SLL 
Covariance .85 .11 .77 .17 .79 .18 
Matching .87 .10 .76 .18 .52 .30 

Stratification .81 .12 .73 .16 .62 .22 
        

RI 
Covariance  .86 .11 .77 .16 .80 .18 
Matching .87 .10 .76 .15 .62 .26 

Stratification .82 .12 .72 .13 .72 .20 
        

RC 
Covariance  .88 .09 .68 .17 .46 .32 
Matching .90 .11 .76 .14 .79 .17 

Stratification .87 .10 .68 .15 .60 .24 
        

CL 
Covariance  .87 .11 .67 .19 .44 .33 
Matching .90 .07 .73 .17 .75 .18 

Stratification .87 .10 .66 .17 .54 .46 
Note. Covariance refers to the covariance adjustment conditioning method.  

average widths of the intervals across all conditioning methods for each model are very small.  

Additionally, the variability in estimated confidence interval widths for each method is also 

relatively small, increasing with covariance adjustment for complex estimation models.  

 
Figure 27.  Distributions of confidence interval width by conditioning methods across PS 
estimation models.  
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To explore the variability in confidence interval widths three different models were 

considered.  First, the variability in the confidence interval widths was examined across all main 

effects and first-order interactions.  This model explained 48% of the variability in confidence 

interval widths.  The second model included all main effects, first and second-order interactions.  

This model explained 67% of the variability.  Finally, a third model was considered and included 

all main effects, first, second, and third-order interactions.  Factors associated with the variability 

in confidence interval widths included: level-1 sample size (η2=.15), the interaction between the 

level-1 and level-2 sample sizes(η2=.11), the level-2 sample size (η2=.08), and the second-order 

interaction of level-1 sample size, level-2 sample size and estimation model (η2=.07).  The 

distributions of confidence interval widths for this second-order interaction are displayed in 

Figure 28.   

The distributions for the second-order interaction displayed in Figure 28 reveal that the 

differences in the average widths across the different levels was extremely small and the 

variability in the widths for each level was also small.  The distributions of the cross-level and 

random coefficients models when level-1 sample size was 1-9 was relatively larger with 30 and 

50 clusters.  When the number of clusters was 100, there were almost no differences across the 

estimation method and level-1 sample sizes.  Table 19 provides the means and deviations for each 

of the levels.  The data revealed similar patterns for each PS estimation model.  For example, the 

random coefficients and cross-level models had greater dispersion than the single level and 

random intercepts models.   
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Figure 28. Distributions of the confidence interval width by propensity score estimation model and level-1 sample size interaction across 
the level-2 sample size 
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Table 19  
Confidence Interval Width Averages and Distributions By Sample Size Interaction Effect Across 
Propensity Score Models  
  SLL RI RC CL 

Number of 
Clusters 

Level 1 Sample 
Size 

M SD M SD M SD M SD 

30 
01-09 2.12 .67 2.27 .77 6.67 4.87 6.46 6.12 
10-19 .98 .05 .99 .04 .86 .24 .83 .27 
20-29 .93 .07 .94 .05 .74 .26 .68 .29 

          

50 
01-09 1.54 .22 1.7 .26 2.88 3.62 2.81 .99 
10-19 .93 .07 .96 .03 .65 .31 .59 .33 
20-29 .81 .16 .84 .14 .60 .31 .55 .33 

          

100 
01-09 .97 .04 .97 .05 .77 .33 .74 .37 
10-19 .59 .13 .62 .13 .54 .19 .54 .20 
20-29 .54 .25 .57 .23 .40 .27 .40 .27 

 

Answers to Research Questions 

The presentation above described the analysis procedures used to answer the first four 

research questions in this study.  Presented below is a summary of how each of the analytical 

procedures provide answers to each of the first four research questions followed by a separate 

discussion regarding the final research question.  

Research Question 1: To what extent do balance estimates vary across PS methods (PS 

estimation models and PS conditioning strategies)?   

Recall, the three balance variables: the average absolute standardized mean difference for 

all 40 covariates, the average number of unbalanced variables, and the proportion of samples 

balanced.  With regard to the first outcome measure, the average absolute standardized mean 

difference for all 40 covariates, the single level logistic model and random intercepts model 

performed better than the random coefficients and cross-level models.  The performance of 

covariance adjustment and matching were similar.  Covariance adjustment seemed to work better 

with the single-level logistic and random intercepts model, which matching outperformed 

covariance adjustment for the more complex PS estimation models.  Stratification performed the 
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worst across all four PS estimation models with regard to average absolute standardized mean 

difference in covariates.   

The second balance variable examined the number of unbalanced covariates in each 

sample.  The PS estimation models all performed similarly as did covariance adjustment and 

matching across the four models.  Stratification performed poorly across all four models and the 

average number of unbalanced covariates increased with model complexity.   

The third variable examined the proportion of samples balanced.  The single level logistic 

and random intercepts model performed better than the random coefficients and random 

intercepts model.  Covariance adjustment and matching performed better than stratification.  The 

performance of stratification was poor across all PS estimation models and progressively got 

worse as the PS estimation model became more complex.   

Overall, the results revealed, the simpler PS estimation models may outperform the more 

complex PS estimation models marginally in terms of creating balanced groups.  Additionally, 

the results indicate stratification does not do a good job creating balanced groups.   

Research Question 2: To what extent do data factors (sample size, covariate relationship to 

treatment and outcome, and population effect size) affect the balance achieved by the PS 

methods (PS estimation models and PS conditioning strategies)? 

  Sample size had an impact on all three estimates of balance.  In general, larger samples 

outperformed the smaller ones.  Smaller average absolute balance score estimates were seen with 

the larger level-1 sample size, as well as with a greater number of clusters.  The small level-1 

sample size (1-9) had a large impact on the mean number of unbalanced covariates, especially 

with the more complex estimation models.  Simply adding more level-1 cases decreased the mean 

number of unbalanced covariates substantially.  The same was seen with the level-2 sample size.  

With 100 clusters, the difference in the mean number of unbalanced covariates was nearly 

identical across PS estimation models.   
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Finally, as the number of units within a cluster increased and the number of clusters 

increased, the proportion of balanced samples increased substantially.  When the level-1 sample 

size was 20-29 and the number of clusters was 100, the majority of samples were balanced when 

using stratification.  It was under this condition only that stratification performed comparably to 

covariance adjustment and matching.   

Research Question 3: To what extent do treatment effect estimates vary across PS methods 

(PS estimation models and PS conditioning strategies)?   

 Recall, four different variables were used in this study to describe the treatment effect 

estimates, the bias in the point estimates, RMSE, the 95% confidence interval coverage, and the 

95% confidence interval width.  With regard to the bias in point estimates, the PS estimation 

models all performed similarly.  The bias estimates tended to increase as the model became more 

complex.  The conditioning methods also all performed very similarly.  Matching performed the 

best, with the overall mean bias being the lowest, followed by stratification and finally covariance 

adjustment.  The differences in conditioning methods were more pronounced as the model grew 

in complexity.  For the single-level logistic and random intercepts models the differences in 

conditioning methods were almost negligible.   

 Neither propensity score estimation models nor conditioning methods had an impact on 

the RMSE estimates.  However, more extreme values of RMSE were found across all 

conditioning methods for the random coefficients and cross-level models.  However, with regard 

to the 95% confidence interval coverage estimates, both PS estimation models and PS 

conditioning strategies were related to their variability.  Coverage rates dropped as the model 

became more complex.  The decrease in coverage was greatest between the random coefficients 

and the cross-level model.  Matching seemed to perform consistently with the random 

coefficients and cross-level models, where covariance adjustment performed better with the 

single-level logistic and random intercepts models.  These were more pronounced as the level-2 

sample size increased.  Finally, there was very little variability in the estimates of confidence 



138 
 

interval width.  Extreme values were present across all three conditioning methods with the 

random coefficients and cross-level models.  The most extreme confidence interval width values 

were seen with covariance adjustment.   

Research Question 4: To what extent do data factors (sample size, covariate relationship to 

treatment and outcome, and population effect size) affect the treatment effects estimated by 

the PS methods (PS estimation models and PS conditioning strategies)?  

 Sample size had an impact on all four treatment effect outcome measures.  When the 

level-1 sample size was small the estimates tended to be more biased for the random coefficients 

and cross-level models across all conditioning methods.  As the level-1 sample size increased to 

20-29 the estimates of bias decreased and became less disperse.   

The interaction between level-1 and level-2 sample size factors affected the estimates of 

RMSE and the 95% confidence interval coverage rates.  Samples with 1-9 units within 30 and 50 

clusters had larger and more disperse RMSE estimates.  As the number of clusters increased to 

100, the RMSE values decreased.  The pattern was not as consistent with the confidence interval 

coverage estimates.  In general, confidence interval coverage estimates were low.  As the number 

of clusters increased the average rates dropped became more disperse.  The variability in 

coverage rates increased as the sample size increased.  The largest range of coverage rates 

occurred when there were 10-19 and 20-29 units within 100 clusters.  The level-2 sample size 

impacted the coverage rates across the different PS estimation model and conditioning methods.  

The drop in the average coverage estimate was more pronounced when the number of clusters 

was 100.  This was especially true for the cross-level model with all three conditioning methods.  

Finally, the level-1 sample size and level-2 sample size impacted the estimates of confidence 

interval width for the random coefficients and cross-level models only.  With 1-9 units within 30 

and 50 clusters the confidence interval widths were much wider than across any other PS 

estimation model.   
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Research Question 5: What is the direction and strength of the relationships between 

balance and both the accuracy and precision of the treatment effect estimates?   

 The literature on PS methods states that in order for one to consider the samples 

comparable to those obtained when randomly assigning units to treatment and control groups 

(i.e., a randomized experiment) the samples must be balanced.  Previous research using Monte 

Carlo simulation methods for PSs using MLM has looked at the two independently.  To answer 

this question the absolute value of the standardized mean difference between groups on the 

covariates, was used to represent the balance score.  The results of this study were highly 

impacted by the sample size; therefore the relationships between balance and accuracy and 

precision of the treatment effect estimates were calculated controlling for both the level-1 and 

level-2 sample size.  

Tables 20-24 provide the correlations between the balance estimates and the treatment effects, 

bias, RMSE, confidence interval coverage and confidence interval width respectively, by PS 

estimation model and PS conditioning method, partially out the effects of the level-1 and level-2 

sample size. 

Table 20  
Correlations between balance score and absolute value of bias estimates for PS estimation 
models across PS conditioning methods  

 Covariance Adjustment Stratification Matching 
SLL .05 -.19 -.25 
RI .61 .34 .77 
RC .50 .17 .67 
CL .69 .45 .71 

 

 The data in Table 20 reveal that there is a strong positive relationship between balance 

score and bias estimates for the MLM and covariance adjustment and matching.  The strength of 

the relationships between balance score and bias for the MLMs was weaker for stratification than 

covariance adjustment and matching.  The relationship between balance score and bias estimates 

for the single-level logistic model was negligible for covariance adjustment.  There was a weak 
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inverse relationship between the balance score and the bias estimates for the single-level logistic 

model with the stratification and matching techniques.   

Table 21  
Correlations between balance score and RMSE estimates for PS estimation models across PS 
conditioning methods  

 Covariance Adjustment Stratification Matching 
SLL .71 .77 .78 
RI .83 .66 .44 
RC .89 .59 .55 
CL .88 .56 .59 

 

 The data in Table 21 reveal that there in general strong positive relationship between 

balance score and RMSE estimates while controlling for the level-1 and level-2 sample size.  The 

magnitude of the strength of the relationship varied across conditioning methods and PS 

estimation models.  With covariance adjustment the relationship between balance score and 

RMSE got stronger with model complexity and was similar for the random coefficients and cross-

level models.  With stratification, the exact opposite pattern occurred.  The strength of the 

relationship weakened as the model grew in complexity.  Finally for matching, the relationship 

between balance score and RMSE was strongest with the single level model and weakest with the 

random intercepts model.   

The data in Table 22 reveal, when controlling for the level-1 and level-2 sample size, 

there is an overall inverse relationship between balance score and the confidence interval 

coverage estimates, with the exception of the single-level logistic model and covariance 

adjustment.  The strength of the relationship increases with model complexity.  The differences in 

the magnitude of the strength of the relationship between the random coefficients and cross-level 

models are negligible for each conditioning method.  The strength of the relationship between 

balance and confidence interval coverage was the strongest with matching.   
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Table 22  
Correlations between balance score and confidence interval coverage estimates for PS estimation 
models across PS conditioning methods  

 Covariance Adjustment Stratification Matching 
SLL .13 -.01 -.23 
RI -.08 -.18 -.31 
RC -.29 -.43 -.56 
CL -.29 -.45 -.60 

  

Table 23  
Correlations between balance score and confidence interval width for PS estimation models 
across PS conditioning methods  

 Covariance Adjustment Stratification Matching 
SLL .54 .47 .78 
RI .77 .50 .52 
RC .52 .58 .66 
CL .79 .77 .79 

 

 Finally, the data in Table 23 identify a strong positive relationship between balance and 

confidence interval width controlling for the level-1 and level-2 sample size.  In general, the 

strength of the relationships increased with model complexity, with a few exceptions.  First, with 

covariance adjustment, the strength of the relationship decreased between the random intercepts 

and random coefficients model, before increasing again with the cross-level model.  Second, with 

matching, the relationship between balance score and confidence interval width was strong with 

the single-level logistic model then decreased with the random intercepts model before increasing 

with the random coefficients and the cross-level models.   

Chapter Summary 

 This chapter provided a description of the results of the study and answered the research 

questions.  The PS estimation models, PS conditioning methods, the level-1 sample size and the 

level-2 sample size were factors that impacted the balance and treatment effect estimates.  The 

following chapter provides an overview of the study, a discussion of these findings, the 

limitations of this study, as well as implications for future research.    
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CHAPTER FIVE: DISCUSSION  

 This chapter outlines a summary of the study and results, along with a discussion of the 

findings, limitations of the study, and implications for future research.  

Summary of the Study 

Purpose 

The purpose of this study was to further examine the appropriateness of using PS 

methods to achieve balance between groups on observed covariates and to yield unbiased 

treatment effect estimates in multilevel studies.  Specifically, this study examined the extent to 

which different PS approaches (PS estimation models and PS conditioning techniques) and 

sample characteristics (sample size, covariate relationship to treatment and outcome, and 

population effect size) achieved balance and reproduced the population treatment effect.   

Research Questions  

1. To what extent do balance estimates vary across PS methods (PS estimation models and PS 

conditioning strategies)?  

2. To what extent do data factors (sample size, covariate relationship to treatment and outcome, 

and population effect size) affect the balance achieved by the PS methods (PS estimation 

models and PS conditioning strategies)?  

3. To what extent do treatment effect estimates vary across PS methods (PS estimation models 

and PS conditioning strategies)?  

4. To what extent do data factors (sample size, covariate relationship to treatment and outcome, 

and population effect size) affect the treatment effects estimated by the PS methods (PS 

estimation models and PS conditioning strategies)?  
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5. What is the direction and strength of the relationship between balance and both the accuracy 

and precision of treatment effect estimates?  

Method 

Monte Carlo simulation methods were used to examine the appropriateness of the 

methods.  In addition to the two PS method factors (PS estimation models and PS conditioning 

methods) seven data factors were included.  These factors were: (a) number of clusters (small 

[n=30], moderate [n=50], and large [n=100]); (b) within-cluster sample size (small [n =01-09], 

moderate [n =10-19], and large [n =20-29]); (c) relationship between level-1 covariates and 

treatment assignment (small [βxz=.10], and moderate[βxz =.20 ]); (d) relationship between level-1 

covariates and outcome (small [βxy =.10], and moderate [βxy=.20 ]); (e) relationship between 

level-2 covariates and treatment assignment (small [γ0S =.20 ], and moderate [γ0S =.40]); (f) 

relationship between level-2 covariates and outcome (small [γS0 =.20 ], and moderate [γS0 =.40]); 

and (g) population effect size (δ = small [0.2] and moderate [0.5]).  The values chosen for each of 

these factors were based on applied research to create realistic samples.   

The data for this study were generated based on a cross level multilevel model (see 

Equation 19), using the PROC IML procedure in SAS (versions 9.2 and 9.3; SAS Institute, 2008).  

For each sample, four different PS models were estimated (see Appendix C) which yielded a PS 

for each unit of the sample.  Samples were then trimmed to include only units falling within the 

region of common support between treatment and control groups.  For each PS model, three 

different PS conditioning techniques were employed.  Finally, balance estimates were calculated 

for each of the 12 PS estimation model/PS conditioning method combinations, and the outcome 

models were analyzed (see Equations 24, 26 and 28).   

 The results of the simulation were analyzed using PROC GLM in SAS 9.3 for both the 

balance and treatment effect estimates such that the dependent variables were balance score, 

number of unbalanced covariates, proportion of samples balanced, bias, RMSE, confidence 
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interval coverage, and confidence interval width and the independent variables were the two PS 

method factors and the seven data factors.   

Discussion of the Study Results 

Balance  

 The extent to which samples were balanced post PS estimation, trimming, and 

conditioning as a function of the PS estimation models, PS conditioning methods, and the seven 

sample characteristics was evaluated using three different outcome measures: the absolute value 

of the standardized mean difference between groups on the covariates, the mean number of 

unbalanced covariates, and the proportion of samples achieving balance.   

 The results indicate that regardless of sample condition, stratification fared noticeably 

worse than matching or covariance adjustment.  These results are consistent with previous 

research comparing stratification and two different matching methods with nested data (Lingle, 

2009).  Lingle (2009) found that stratification did not perform as well as within cluster, or 

between-cluster matching when using significance testing to evaluate balance.  However, the 

stratified samples retained a larger sample size, and results were interpreted cautiously as the non-

significance could have been a result of balanced samples because of a reduction in sample size 

and power.  The sub-optimal performance of stratification in terms of creating balanced groups as 

measured by estimating the standardized mean difference and not significance testing further 

corroborates previous findings.  Additionally, this study found that balance was greater when 

using the single-level logistic and random intercepts model.  These results are also consistent with 

previous research.  Lingle (2009) found very few significant differences across all sample 

conditions when using a between-cluster matching approach for a single level logistic model, 

where balance was determined across the sample as a whole, rather than by each matched pair.  In 

this study, balance was estimated for each matched pair, using a cross-classified random effects 

model.  The consistency of the findings across the different methods of analysis (significance 

testing versus standardized mean differences, and whole group analysis versus matched pair) 
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suggest that stratification by quintiles may not be the best method to use in order to achieve 

balanced groups and between-cluster matching may be effective when using a single level logistic 

model to estimate PSs with nested data.   

 Previous Monte Carlo simulation studies examining PSs using MLM did not incorporate 

covariance adjustment as a conditioning method.  Covariance adjustment differs in three aspects 

from other conditioning methods.  First, conditioning and estimating the treatment effect occur in 

one step and thus does not require additional data loss (Steiner & Cook, 2013).  Second, the 

covariate adjustment is the only conditioning method that uses a regression model relating the 

outcome to the treatment status and the PS.  Finally, several regression assumptions apply when 

using covariance adjustment (Austin, 2011; Thoemmes & Kim, 2011).  The overall impressive 

performance of covariance adjustment to produce balanced groups across all four PS estimation 

models is an important finding of this study.   

 Results also indicate that balance got appreciably worse as the PS model grew in 

complexity.  That is, the single-level logistic model and the random intercepts model did 

appreciably better with regard to balance, than the random coefficients and cross-level models.  

These results were surprising considering the cross-level model was the closest to the generation 

model and previous research has found balance to be the greatest when models were specified 

accurately (Lingle, 2009; Thoemmes, 2009).  Additionally, Kim and Seltzer (2007) used data 

from the EAOP and found including random effects of the slopes significantly improved the 

balance.  These contradictory findings could be due to a number of reasons.  For example, this 

study incorporated 30 level-1 covariates, and 10 level-2 covariates where covariates were 

correlated with each other and 10% of the covariates were dichotomous.  Previous research has 

looked at a smaller number of continuous uncorrelated predictors, specifically three level-1 and 

one level-2 covariates (Lingle, 2009) and nine level-1 covariates and no cluster level predictor 

(Thoemmes, 2009).   
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 Finally, this study found that balance was greatest when sample size increased.  This 

finding is consistent with previous research (Lingle, 2009), where the significance rate dropped as 

the sample size increased, suggesting the differences between groups was minimal as the sample 

size increased.  The impact of sample size on balance in this study was greater when using 

matching or stratification with a multi-level model.  This is an important finding when trying to 

select a conditioning method for small samples that are nested.   

Treatment Effects  

 The extent to which the samples were able to reproduce the population treatment effect as 

a function of the PS estimation models, conditioning methods, and seven sample characteristics 

was evaluated using four different outcome measures, bias, RMSE, 95% confidence interval 

coverage and 95% confidence interval width.   

 Overall, the results indicated that the estimates were largely unbiased with averages close 

and clustered around zero.  The random intercepts model seemed to perform the best, in terms of 

being able to accurately reproduce unbiased treatment effect estimates with the single-level 

logistic model performing a close second.  In contrast, the bias estimates were on average larger 

with the random coefficients and cross-level models.  These results are interesting in comparison 

to previous research.  Arpino and Mealli (2011) found that when omitting a potential unobserved 

cluster level predictor from very unbalanced samples, a fixed effects model worked well.  

Thoemmes (2009) found that relative to all the models, the single level model performed the 

worst in comparison to the multilevel models, and its performance depreciated as the ICC 

increased.  The single-level models in previous research ignored the nesting structure completely 

as no level-2 covariates were included in the study.  This current study incorporated the level-2 

covariates into the single level model which may have accounted for the nested structure.  It is 

uncertain whether the single-level logistic model would have produced larger biased estimates 

had the level-2 predictors been removed from the model.  It is unclear as to why the random 

coefficients and cross-level models produced on average larger biased estimates than the random 



147 
 

intercepts model.  Perhaps the amount of confounding in treatment effects was not strong enough.  

Thoemmes (2009) found that differences in models were larger under strong confounding 

conditions.  Another reason for the random intercepts model performing better than the random 

coefficients or cross-level models would be if the random slope variance was not sufficiently 

large.  This study attempted to avoid that problem by setting the random slope variance to .25 in 

order to induce a heavily nested data structure.   

 In terms of conditioning methods, on average, samples that used matching produced 

unbiased estimates.  This is not surprising given the overwhelming support for and use of 

matching (Austin, 2008a, 2009, 2010; Imbens, 2004; Thoemmes & Kim, 2011).  Stratification 

produced an average bias estimate of .20(SD=.40), which was surprising.  Literature often 

recommends stratification on the quintiles as a proven and effective way to remove 90% of the 

bias (Cochran, 1968; Rosenbaum and Rubin, 1984).  However, previous research has not 

compared the performance of stratification in terms of reproducing the treatment effects to other 

conditioning methods using MLM.  Few studies have compared the conditioning methods in a 

single level context and found the differences between the methods to be negligible.  

Sample size was also an important contributing factor which impacted all four outcome 

measures associated with treatment effects.  As the level-1 sample size increased, the bias 

estimates decreased.  When the level-1 sample size was 20-29, estimates were, on average, 

unbiased.  Additionally, the variability in RMSE across the different PS estimation models and 

conditioning methods was small; however, the variability in the estimates was associated with 

sample size.  These findings are not surprising and are consistent with previous studies 

(Thoemmes, 2009) as well as with the broad methodological literature on sample size.   

The extent to which the confidence intervals were accurate, as measured by the 

confidence interval coverage estimates, was dependent upon the PS estimation model, 

conditioning technique, and level-2 sample size.  In general, the estimates tended to undercover.  

As the models became more complex and the samples increased in size the confidence interval 
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coverage estimates, on average, became less accurate.  This was especially true for covariance 

adjustment and stratification.  Matching performed relatively better than covariance adjustment 

and stratification with the complex models (random coefficients and random intercepts), while 

covariance adjustment performed relatively better than matching or stratification for the single-

level logistic and random intercepts models with the larger samples.  The mean proportion of 

confidence interval coverage did not hit 95% for any PS estimation model, conditioning method, 

or level-2 sample size condition.  These results are not surprising as the smaller samples tended to 

be more biased, have a larger standard error, and wider confidence intervals.  The overall poor 

coverage estimates are consistent with and slightly better than previous research, which results in 

almost 0% coverage for some models with larger samples (Thoemmes, 2009).   

Finally, the width of the confidence interval was dependent upon the PS estimation 

model, level-1 sample size, and level-2 sample size.  In general, the differences in the confidence 

interval widths across PS estimation models and conditioning methods were small.  These small 

differences were associated with an interaction between PS estimation model, level-1 sample size, 

and level-2 sample size.  When the level-1 sample size was 1-9 and the level-2 sample size was 

30 or 50, the confidence intervals were less precise for all PS estimation models.  The precision 

decreased noticeably with the random coefficients and the cross-level models.  Conversely, for all 

other sample size conditions, the random coefficients and cross-level models were more precise 

than the single-level logistic and random intercepts models.  Larger widths for smaller sample 

sizes are consistent with previous literature (Thoemmes, 2009) and the broad methodological 

literature on precision with inferential statistics.   

 The relationships between the estimated PSs were investigated through a series of 

correlations.  These correlations were very high across all models, yet there were notable 

differences in the balance and treatment effect estimates across models.  The most likely 

explanation for these seemingly paradoxical results is that the correlations were computed prior to 

the samples being trimmed and subsequently conditioned.  The proportion of data trimmed, the 
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number of cases matched, and the proportion of strata retained all varied across the PS estimation 

models.  The processes of trimming and conditioning the samples across the different estimation 

models likely led to the subsequent differences in balance and treatment effect estimates.   

The Relationship Between Balance and the Accuracy and Precision of Treatment Effects 

 One of this study's contributions to the literature was the simultaneous investigation of 

the ability of PS estimation models and conditioning methods to create balanced groups and 

reproduce estimates of the treatment effect using MLM with clustered data.  Previous literature 

examined the ability of different PS estimation models and conditioning methods either to create 

balanced groups (Lingle, 2009) or reproduce estimates of the treatment effect (Arpino & Mealli, 

2011; Thoemmes, 2009; Thoemmes & West, 2011).   

 The purpose of the PS is to improve the quality of the estimates from non-randomized 

experiments by attempting to mimic the balance between groups that occurs through the 

randomization process (Rosenabum & Rubin, 1984; Shadish & Steiner, 2010; Stuart, 2010).  By 

creating balanced groups, in theory, the bias in estimates is thought to be removed, or at least, 

decreased.  However, much of the methodological research does not investigate the nature of the 

groups as well as the quality of the estimates simultaneously.  This study evaluated both the 

balance properties as well as the quality of the estimates; therefore it was prudent to investigate 

the relationship between the balance properties and the quality of the treatment effects.  Estimates 

of bias and confidence interval coverage all indicate measures related to accuracy.  The 

confidence interval width indicates the precision of the estimates, while RMSE incorporates both 

concepts of accuracy and precision.  Since bias measures the extent to which the estimates over 

estimate or under estimate the population treatment effect, the absolute value of bias was used to 

calculate the relationship.  The absolute average standardized mean difference in covariates was 

used to measure balance.   

The results of this study were highly impacted by the sample size; therefore the 

relationships between balance and accuracy and precision of the treatment effect estimates were 
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calculated controlling for both the level-1 and level-2 sample size.  Assuming that the relationship 

between balance and the accuracy and precision of the treatment effects is strong, a strong 

positive relationship between balance and bias, balance and RMSE, and balance and confidence 

interval width, and a strong inverse relationship between balance and coverage is expected.   

Results indicate that balance was strongly related to the precision of the treatment effect 

estimates consistently across PS models and conditioning methods.  Each PS estimation model 

and conditioning method had a strong positive relationship between balance and RMSE, and 

confidence interval width.  The magnitudes of the relationships did vary across PS estimation 

models and conditioning methods; but all ranged from moderately strong to very strong.   

With regard to accuracy, the strength and direction of the relationship varied across PS 

estimation model and conditioning method.  The relationship between balance and bias for the 

single-level logistic model was interesting.  With covariance adjustment, the relationship was 

positive albeit almost negligible.  The relationship between balance and bias for the single-level 

logistic model for stratification and matching was surprisingly inverse however, not very strong.  

Additionally, the overall strength of the relationships between balance and the confidence interval 

coverage estimates were not as strong for the three MLM models as they were with balance.  The 

direction of the relationship was contradictory to what was expected with the single-level logistic 

model with covariance adjustment.  These results of this study, specifically, the analysis of the 

relationship between balance and the precision of treatment effect estimates confirm the 

theoretical framework of PSs.   

Limitations of the Study  

 Based on the design of this study, there are generalizability limitations to consider with 

regard to this research study.  This study incorporated Monte Carlo simulation methods to 

examine the performance of PS methods with MLM.  Simulation methods allow for the control 

and manipulation of specific design and data factors to investigate the behavior of statistical 

methods (Guo & Fraser, 2010); while this is a benefit to simulation research, it also limits the 
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generalizability of the findings.  Thus, the levels of the nine design factors (the two PS methods 

and the seven data factors) determine the scope to which the study’s findings can be generalized.   

First, the seven data factors play a large role in the generalizability.  These levels were 

chosen to represent realistic sample characteristics found in education research.  However, these 

levels are not exhaustive of all the possible values.  Another limitation to consider relates to the 

PS models under investigation.  Four different PS models (see Appendix C) were used to estimate 

the scores which made several assumptions.  First, all models maximized the information 

available in the covariate set.  The covariate set in this study was also very specific, with 30 

(twenty-seven continuous and three dichotomous) level-1 predictors, and 10 (nine continuous and 

once dichotomous) level-2 predictors with correlations among the predictors within a level being 

fixed at 0.2.  Continuous covariates were standardized with a mean of 0 and a variance of 1.0, 

while dichotomous predictors were generated from a binomial distribution where the population 

mean is approximately 0.5.  The fixed effects for the intercepts were set to 1.0.  The level-1 and 

level-2 errors were generated from a normal distribution with the level-1 error variance set at 1.0 

and the level-2 error variance of .25 which produced conditional ICCs of .20.  Finally, samples 

were generated using a variance components covariance structure where all covariance 

parameters in the random effects matrix were fixed to 0.  This data generation process created a 

linear relationship between infallible predictors and the outcome.  Additionally, only cross-level 

interactions were simulated in the study.  Had the relationships between predictors and outcome 

been non-linear, had there been measurement error in the predictors, had there been interactions 

between two or more level-1 predictors, or any combination of these, the results obtained from 

the four PS estimation models used in this study may have been more biased and the confidence 

interval coverage rates may have decreased.   

The performance of the PSs, especially the random coefficients and cross-level model 

may have been affected by the large number of covariates.  Previous research found the single-

level models performed poorly as compared to the multilevel models.  However, the study 
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included nine level-1 covariates, no level-2 predictors, and two random slopes.  The large number 

of covariates surely impacted the convergence problems that occurred with the small samples.  

The increase from 9 to 30 level-1 covariates, zero to ten level-2 covariates, and two to five 

random slopes may have impacted the performance of the complex models, especially the cross-

level model, which was the model closest to the data generation model.  This study did not 

include a prime facie ANCOVA model that mimicked the data generation process as a reference 

condition.   

A third limitation to the study relates to the three different conditioning methods used.  

Each conditioning method includes multiple options and the results of this study are limited to the 

specific variations delimited (see Table 2).  For example, when using matching, several different 

methods could be selected such as the type of matching algorithm, the caliper width, and with 

MLM, whether to match within or across clusters.  In addition, stratification can be done with a 

varying number of strata.  This study stratified the samples into quintiles; however including 

more strata may result in better performance, especially with regard to balance.    

Fourth, the variables used to operationalize balance can also be considered a limitation of 

this study.  With regard to PS analysis, a general guideline or cut off to determine the degree of 

balance between treatment and control groups has not been established.  While the standardized 

mean difference score is widely used measure for continuous covariates, the method to convert 

differences between dichotomous variables to a continuous scale is still under investigation 

(Kromrey & Bell, 2012).  Additionally, literature suggests that before estimating the treatment 

effects, balance should be checked and if adequate balance has not been achieved, then the PS 

estimation model should be modified, by including more or fewer covariates, considering non-

linear or non-additive models.  This study did not evaluate the balance samples prior to estimating 

the treatment effects.   
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Implications  

Since the early 80's researchers have studied PS methods as well as multilevel models 

individually with respect to their ability to estimate effectiveness.  Many social and behavioral 

studies employ non-randomized studies in hierarchical settings to estimate treatment effects.  

Both PS methods and multilevel modeling have advantages with regard to the social science 

research settings.  The results of this study suggest that the degree to which using PSs with MLM 

is appropriate to create balanced groups and estimate the treatment effects is dependent upon the 

PS methods (estimation models and conditioning methods, as well as sample size.  These findings 

led to implications for both methodologists and those who wish to conduct PS analysis with 

MLM.   

Implications for Researchers Conducting PS Analysis with MLM 

 For researchers conducting PS analysis with MLM, the results of this study provide a few 

recommendations.  First, it should be noted that the results of this study do not conclusively 

suggest that MLM PS estimation models work better than a single-level logistic regression model 

when data are clustered.  In fact, the results of this study do not conclusively identify a superior 

PS estimation model or condition method or interaction between the two.  What the results do 

suggest is that samples with fewer than 10 units nested within 30 or fewer clusters, trying to 

estimate PSs using a vector of a large number of covariates will likely not be a large enough 

sample to provide balanced samples, accurate and precise estimates, if the sample even 

converges.   

 With the PS MLM, the relationship between the precision of the estimates and the 

balance was strong and positive and therefore confirm the necessity of considering balance 

estimates when using PS methods.  When samples are unbalanced then perhaps reconsider the 

estimation model, or the covariates used.  This study maximized the information criteria for the 

covariate set for all PS estimation models, which in applied research is impossible to guarantee.   
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 Finally, PS with MLM is still a novel methodological concept which requires a great deal 

of additional research.  Conducting PS analysis using MLM when data are clustered in 

nonrandomized studies will definitely help the field, but findings from future studies using PS 

methods with clustered data should be interpreted and regarded with caution.  This study did not 

identify consistently specific conditions where the PS estimation models and conditioning 

methods worked well in creating balanced groups and estimating the treatment effects accurately 

and precisely.  At times, the single-level logistic model and random intercepts model gave the 

illusion of superiority with smaller samples (as evidenced by the higher percentage of confidence 

interval coverage estimates), but these averages are based on converged samples only.  It is 

important to apply PS methods with clustered data to compare and evaluate the estimates from a 

methodological perspective; however, at this time it is not recommended to apply PS methods 

with clustered data in order to make high stakes decisions, or draw causal inferences.    

Implications for Methodologists 

 For methodologists studying the use of PS methods with multilevel data, more research 

needs to be conducted on situations where the PS MLM model does not fully maximize the 

information of the covariate set.  For example, this could include covariates with different 

magnitudes of the relationship between treatment being omitted from the PS estimation model.  

Additional research using different PS MLM models need to be investigated.  This could include 

PS models that estimate the parameters of the covariance matrix or violate assumptions (e.g. 

nonnormality of the level-1 or level-2 errors, and heteroscedacticity of errors at all levels).  

Investigations of additional PS MLM models would allow for a better understanding of the 

applicability of the models to a variety of conditions.  

 Future research on different variations of conditioning methods should also be 

considered.  For example, using different matching algorithms, calipers, both within and across 

clusters would also add to our understanding of the nature of PS methods with MLM.  This study 

utilized a between cluster matching approach which thus made the outcome model a cross-
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classified random effects model.  Perhaps investigating the differences among the different 

variations of matching would also be worthwhile as this is a conditioning technique often 

employed in other disciplines (e.g. medicine).   

 Propensity score methods were originally created as a method to produce balanced 

groups, akin to those that occur naturally when employing the process of random assignment.  

However, much of the research on PSs within a single level context focuses on the ability of the 

methods to reproduce the treatment effect.  Lingle's (2009) study focused specifically on the 

ability of a PS MLM to balance groups using three covariates.  While that seminal research was 

necessary, it is not unheard of to use three covariates individually in the outcome model, and 

reducing three covariates to a single score may not be the most effective method.  Balance is 

important, in order to make causal inferences similar to those being made when using random 

assignment.  Stratification did not perform as well as expected with regard to creating balanced 

groups.  As previously mentioned this could have been due to the aggregation of balance 

estimates across strata.  Perhaps future research could investigate the individual strata to see if the 

scores within each stratum are comparable across all five strata.  Further research in this area is 

required even with PS in the single-level context.   

 Finally, this study focused on the appropriateness of PSs to produce balanced groups and 

reproduce estimates of the treatment effect using data that were generated based on a two level 

random effects model.  It would be interesting to investigate the appropriateness of different PS 

models and methods when data are further clustered in 3 or more levels, or even cross classified.   
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APPENDIX B 

 
Population R2 Values Simulated 

 
Table A1  
R2 values for the different confounder magnitudes 
 δ= 0.2 δ= 0.5 
SSSS .1425332 .2779931 
SSSM .2500427 .3667704 
SSMS .4831581 .4899146 
SSMM .6020114 .5890356 
SMSS .1425197 .2695686 
SMSM .2585595 .3455621 
SMMS .4903178 .4878974 
SMMM .6266342 .5841673 
MMMM .75 .5768803 
MMMS .5951017 .3568233 
MMSM .27 .3568233 
MMSS .1488168 .267808 
MSSS .1446851 .2765483 
MSMM .715 .5691231 
MSMS .5870403 .4603783 
MSSM .2585468 .3711888 
Note: S denotes small relationship and M denotes moderate relationship  
The order of the combinations=XZ, WZ, XY, WY 
Small XZ and XY=.10; Moderate XZ and XY=.20 
Small WZ and WY=.20; Moderate WZ and WY=.40 
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APPENDIX C (Continued) 
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APPENDIX C (Continued) 
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APPENDIX C (Continued) 

0 00 01 02 03 04 05 06 07

08 09 010 0

1 10 1

2 20 2

3 30 3

4 40 4

5 50 5

6 60

7 70

8 80

9 90

10 10 0

11 110

12 12 0

13 1

1 2 3 4 5 6 7

8 9 10
j j j j j j j j

j j j j

j j

j j

j j

j j

j j

j

j

j

j

j

j

j

j

W W W W W W W
W W W

β γ γ γ γ γ γ γ γ

γ γ γ µ

β γ µ

β γ µ

β γ µ

β γ µ

β γ µ

β γ

β γ

β γ

β γ

β γ

β γ

β γ

β γ

= + + + + + + + +

+ + +

= +

= +

= +

= +

= +

=

=

=

=

=

=

=

= 3 0

14 14 0

15 15 0

16 16 0

17 17 0

18 18 0

19 19 0

20 20 0

21 210

22 22 0

23 23 0

24 24 0

25 25 0

26 26 0

27 27 0

28 28 0

29 29 0

30 30 0

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

β γ

β γ

β γ

β γ

β γ

β γ

β γ

β γ

β γ

β γ

β γ

β γ

β γ

β γ

β γ

β γ

β γ

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=



178 
 

APPENDIX C (Continued) 
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APPENDIX C (Continued) 

Combined as,  
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