
Abstract

The coamoeba A′V of an algebraic variety V on (C\{0})n is the image on the
real torus Tn of V under the mapping

Arg : (z1, ..., zn) 7→ (arg z1, ..., arg zn).

In this thesis we study the topology and geometry of the coamoeba. Letting
I(V ) be the ideal defining V , a general result is that the union of the coamoebas
A′ω corresponding to the initial ideals Iω, ω ∈ Rn, of I(V ), is closed, and
furthermore equals the closure of A′V when V is a complete intersection. When
V is a complete intersection, n is even and dimV = n/2, we show that there is an
integer-valued function w on Tn\

⋃
ω 6=0A′ω that is constant on each connected

component, such that θ ∈ A′V whenever w 6= 0. When V is an affine space,
we give some topological characteristics of A′V , and more careful descriptions of
the coamoeba and amoeba in the special cases when dimV = 1, dimV = n− 1
and, when n is even, dimV = n/2.

When V is a hypersurface, it is known that one can derive many striking
results on the amoeba of V by use of the Ronkin function. We define a function
ϕ for the coamoeba in a similar way as the Ronkin function is defined and give
an explicit formula for it. The function ϕ is affine outside a certain union H of
hyperplanes associated to A′V known as the shell of A′V .

When V is a hypersurface and n = 2,
⋃
ω 6=0A′ω coincide with H. The

lines of H can be given an orientation in a canonical way, and thus H can be
considered as an oriented line arrangement. We give a precise characterization of
the shells in T2 in terms of oriented line arrangements, and show that w as above
corresponds to a certain index mapping associated to these arrangements. The
connection between H and oriented line arrangements also allows us to obtain

an upper bound for the number of complement components of A′V .
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1 Introduction

The branch of mathematics that is studied in this thesis originates from the
solving of systems of polynomial equations in several variables. The set of
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solutions to such a system is known as an algebraic variety. The variables can
be thought of as coordinates of a vector space over the coefficient field. By Rn
and Cn we denote the n-dimensional vector spaces over the real and complex
numbers respectively. While Rn seems more familiar to us, it is not algebraically
closed like Cn and as a consequence, algebraic varieties in Rn do not follow the
same rules that hold for complex algebraic varieties.

For a metaphor, think of Rn as the surface of a lake. Then a real algebraic
variety can be thought of as the islands in the lake. These may be positioned in
strange formations or not exist at all; however, we know that the islands are just
the parts of the sea bed that emerges over the water. The sea bed corresponds
to the variety considered in complex space. Its precise shape may be unknown,
but at least it exists and we know that it explains the pattern of islands.

But while we actually can see the islands, we cannot see the ground beneath
the water clearly. Similarly Rn resembles physical space that we know well,
while Cn is a much less intuitive construction. How can we visualize complex
algebraic varieties?

The obvious suggestion is to study the real and the imaginary parts of
the points in the variety V separately. However we will exploit the splitting
of Cn into two real n-spaces in a different way. For w ∈ Cn, let Expw =
ew := (ew1 , ..., ewn). Then Exp maps Cn surjectively on the complex torus
(C∗)n := (C\{0})n and considered on (C/2πiZ)n, Exp is in fact a biholomor-
phism, that is a bijective complex analytic mapping. The inverse of Exp splits
into the mappings Log and Arg that map each coordinate of z ∈ (C∗)n to
the logarithm of its absolute value and its argument respectively. We get the
following diagram.

(C∗)n

(C/2πiZ)n Tn

Rn

Cn Rn

Log

Arg
Exp∼=

Re

Im

p

Re

Im

p

Here p denotes the natural projection of a space on its given quotient space
and Tn is the real n-torus (R/2πZ)n.

Let us make a minor modification of the premisses and consider V as an
algebraic variety in (C∗)n. It is then natural to let V be defined as the set
where all elements of an ideal I of Laurent polynomials vanish. A Laurent
polynomial is a function f : (C∗)n → C given by

f(z) =
∑
α∈A

aαz
α :=

∑
α∈A

aαz
α1
1 zα2

2 ...zαnn , (1.1)
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where A is a finite subset of Zn and aα is a complex non-zero number. The set

W = {w ∈ Cn;∀f ∈ I : f(ew) = 0}

is the corresponding analytic variety in Cn in the diagram above. The natural
projection of W on Rn thus equals Log V and it is called the amoeba of V and
denoted by AV . The corresponding projection of W on iRn is periodic with
period 2π in each coordinate. Its natural projection on Tn equals Arg V and
is called the coamoeba of V and denoted by A′V . Sometimes it is convenient to
consider the lifting p−1(A′V ) of the coamoeba to Rn. The relations between the
sets we have defined are given by the next diagram.

V

p(W ) A′V

AV

W p−1(A′V )

Log

Arg
Exp∼=

Re

Im

p

Re

Im

p

The amoeba was introduced in 1994 by Israel Gelfand, Mikhail Kapranov and
Andrei Zelevinsky, see [6]. The term is motivated by the typical appearance
of AV for varieties V of positive dimension, see Figure 1. Since Log is proper
on (C∗)n, that is Log−1(K) is compact whenever K ⊂ Rn is compact, AV is a
closed set.

The term coamoeba was coined by Mikael Passare in 2004, see [9], but several
mathematicians started independently of each other to study this projection in
the mid-00s, see e.g. [11] and [3], and another name that has gained acceptance
is “alga”, similarly inspired by the typical appearance of A′V , see again Figure
1. The mapping Arg is not proper, and A′V is not necessarily closed.

The overall motivation for this thesis is to describe the coamoeba geometri-
cally and topologically. We are particularly interested in analogies between the
coamoeba and the better known amoeba. That the amoeba and the coamoeba
carry enough structure to be interesting to study is particularly obvious in the
case when V is determined by a single Laurent polynomial f . The polytope ob-
tained by taking the convex hull of the index set A of f in Rn, see (1.1), is known
as the Newton polytope of f and denoted by ∆f . This polytope has established
itself as one of the key objects in algebraic geometry and its connection to the
coamoeba (and amoeba) is a central theme of this thesis.

1.1 Amoebas and coamoebas in dimension one

We begin with some words about the simplest possible amoebas and coamoebas.
Let Vg be the zero set of a Laurent polynomial g on C∗ such that g(w) =
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Figure 1: The amoeba of 1−8z1+z1z2+4z21 +z21/z2+z31/z2 in R2 (left), the coamoeba
of 1 + z1z2 + z21/z2 + z31/z2 in R2/(2πZ)2 (right) and the common Newton polygon of
the defining polynomials (middle).

h(w)/wm for some m ∈ Z and some polynomial h with h(0) 6= 0. Define the
degree of g as the degree of h. Then by the fundamental theorem of algebra we
can write Vg = {w1, w2..., wL} where the multiplicity of wj is Dj and

L∑
j=1

Dj = deg g.

Each complex number is mapped to a not necessarily unique real number under
Log. Thus

Ag := AVg = {a1, a2..., al}

and similarly
A′g := A′Vg = {b1, b2..., bl′}

for integers 1 ≤ l, l′ ≤ L. Hence in the context of amoebas (or coamoebas) the
fundamental theorem of algebra states that the number of connected compo-
nents of R\Ag (or T1\A′g) is at most 1 + deg g (or deg g).

Assume that aj < ak whenever j < k and let d1, ..., dl be positive integers
such that Log−1(aj) contains dj points in Vg counted with multiplicity. A
classical result in complex analysis is Jensen’s formula:

1

2π

∫ π

−π
log |g(ex+iθ)|dθ = log |h(0)| −mx+

M(x)∑
j=1

dj(x− aj), (1.2)

where M(x) is the maximal integer such that aM(x) < x. If we fix g, then (1.2)
is a function Ng(x) on R that can be interpreted as the mean value of log |g(ez)|
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on R + iT1 for Re z fixed. The function log |g(ez)| is subharmonic, see Section
3.2. Thus, Ng(x) is itself a subharmonic function, see e.g. [1], and as it is defined
on R, it follows that it is convex. This also follows by (1.2). In fact, letting
a0 = −∞ and al+1 = +∞ we have that Ng(x) is affine on each component
]ak, ak+1[ of the complement of Ag with

N ′g(x) = −m+

k∑
j=1

dj , x ∈]ak, ak+1[.

In the sense of distributions, the second derivative of Ng(x) is given by

N ′′g (x) =

l∑
j=1

djδaj (x),

where δaj is the dirac measure at aj . In particular, this means that the support
of N ′′g (x) equals Ag. For a survey on subharmonic functions on C including
Jensen’s formula, see e.g. [1].

As we will see later, the results we have connected to the one-dimensional
amoeba and coamoeba are reflections of general results and concepts connected
to amoebas and coamoebas of hypersurfaces. The difference is that the Newton
polygon plays a substantial role in these matters in the general case, as we will
see in Section 2 and 4 respectively. In Section 5 we make some generalizations to
algebraic varieties of arbitrary codimension and in Section 3 we pursue a certain
strategy to establish an analogue of the Ronkin function for the coamoeba. The
definition of the Ronkin function and some words about its importance for the
amoeba, can be found in Section 2.

2 The duality of Af and ∆f

In this section, we will relate the shape of the amoeba of a Laurent polynomial
f to the Newton polytope ∆f . To this end, we will consider three different
strategies, of which the first is purely algebraic and the second involves complex
analysis. The third strategy also uses complex analysis but in a more conceptual
way.

2.1 Normal cones and the complement of the amoeba

Let f be as in (1.1). Given α ∈ A, assume that x ∈ Rn is such that

∀α′ ∈ A\{α} : (α− α′) · x > r (2.1)

for some r ∈ R. If r is large enough we have that

|aα|eα·x >
∑

α′∈A\{α}

|aα′ |eα
′·x, (2.2)
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and thus f(z) 6= 0 whenever Log z = x for x as in (2.1). This means that
x /∈ Af . Let rα be the infimum the numbers r for which (2.1) implies (2.2),
given α, and let Dα be the set of x ∈ Rn satisfying (2.1) for r = rα. Then

Af ⊆

(⋃
α∈A

Dα

)c
.

For a face Γ of the Newton polytope ∆f , the normal cone NΓ of Γ is defined
as

NΓ = {x ∈ Rn;∀y ∈ Γ, y′ ∈ ∆ : (y − y′) · x ≥ 0}.
It is easy to check that NΓ is a cone of dimension n−dim Γ in the normal space
of Γ, directed outwards from ∆f when its vertex is placed at Γ. Furthermore,
if x ∈ Dα, then the translation of NΓ by x is contained in Dα whenever α ∈ Γ.
In particular, if α is a vertex of ∆f , then Dα is clearly non-empty and thus
contains a translate of the n-dimensional cone Nα. This explains the shape of
the complement components of Af as in Figure 1. In [14], this approach to a
description of the amoeba is thoroughly investigated.

2.2 The tentacles and vacuoles of the amoeba

We will now define, given a Laurent polynomial f as in (1.1), certain associated
Laurent polynomials that are of great importance in this work. For a face Γ of
∆f , let

fΓ(z) =
∑

α∈Γ∩A
aαz

α.

If Γ is an edge, that is a one-dimensional face, let α, α′ be its two vertices.
Furthermore, let

β = (α′ − α)/d, (2.3)

where d is the maximal integer for which the right hand side of (2.3) becomes
an integer vector. Thus d is the integer length of Γ and we set |Γ| = d. One can
write

A ∩ Γ = {α, α+ k1β, ..., α+ klβ},
where 0 < k1 < ... < kl = d. Furthermore,

fΓ(z) = zαg(zβ) (2.4)

for some polynomial g on C. Using the notation from Section 1.1 connected to
g, we have that

AfΓ
=

l⋃
j=1

{x ∈ Rn;β · x = aj}, (2.5)

that is, AfΓ
equals a union of l hyperplanes orthogonal to Γ.

For two sets S,U ⊂ Rn and a scalar λ, let

S + U := {s+ u; s ∈ S, u ∈ U}, λS = {λs; s ∈ S}.

The former operation is called the Minkowski sum of S and U .
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Lemma 2.1. Given M > 0 large enough and ε > 0, there is a set Dε
M ⊂ Rn

that approximates {sβ; |s| < M}+NΓ and a finite-to-one branched covering

ψ : Vf ∩ Log−1Dε
M → VfΓ

∩ Log−1Dε
M

such that

1. the multiplicity of z ∈ VfΓ
equals the sum of the multiplicities in Vf of the

points in ψ−1(z) ,

2. for z ∈ Vf , Log z − Logψ(z) = sβ for some s ∈ R with |s| < ε.

Lemma 2.1 is a consequence of Rouché’s theorem and Lemma 4.6 in [i], where
the exact meaning of the approximation is specified. Note however that Dε

M as
used here corresponds to a translate of the equally denoted set in [i]. In view of
(2.5), the second point of Lemma 2.1 implies the existence of the “tentacles” of
Af stretching out in the normal directions of the edges of ∆f , see Figure 1.

In [4], Forsberg, Passare and Tsikh showed that the complement of Af is a
union of pairwise disjoint connected components {Eα}α∈A such that Dα ⊆ Eα,
thus also putting the “vacuole” in Figure 1 into context. The next theorem is
an immediate consequence of this result (see Theorem 2.8 in [4]).

Theorem 2.2 (Forsberg, Passare, Tsikh). The number of components of the
complement of Af is at most |∆f ∩ Zn|.

This bound was later shown to be sharp in a very strict sense by Rullg̊ard,
see [16], Corollary 6. Note that since

|∆g ∩ Z| = 1 + deg g

when g is a Laurent polynomial in one variable, Theorem 2.2 is a generalization
to arbitrary dimension of the amoeba version of the fundamental theorem of
algebra from Section 1.

2.3 The spine of the amoeba

The suggested duality in Figure 1 is elegantly uncovered to an even larger extent
by use of a somewhat surprising tool. The function Ng(x) that we defined in
Section 1 is naturally generalized to Rn when viewed as the mean value of the
function log |f(z)| for Log z ∈ Rn fixed:

Nf (x) =
1

(2π)n

∫
Tn

log |f(ex+iθ)|dθ,

where dθ = dθ1 ∧ ...∧ dθn. This is known as the Ronkin function corresponding
to f . The following theorem is essentially due to Ronkin, see [15], but translated
to amoebas by Passare and Rullg̊ard in [13].

Theorem 2.3 (Ronkin). The function Nf is convex on Rn and it is affine on an
open set U if and only if U is contained in a component Eα of the complement
of Af . The gradient of Nf at an arbitrary point x ∈ Eα equals α.
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The indexation of the components of the complement of Af can be viewed
as just one aspect of an even stronger duality between Af and ∆f implied by
the Ronkin function. Note that we can approximate Nf by a piecewize affine
function

S(x) = max{cα + α · x;∃ component of Acf of order α},

where cα = Nf (x) − α · x for any x ∈ Eα. The function S(x) is an example
of what is known as a tropical polynomial, see e.g. [18]. Let Sf ⊂ Rn be the
set where S is non-smooth. Then Sf is a polyhedral complex, or a tropical
hypersurface, that is known as the spine of Af . The term is motivated by the
next result.

Theorem 2.4 (Passare, Rullg̊ard). The spine Sf is contained in, and is a
deformation retract of, the amoeba Af .

For a deeper investigation of the structure of the spine of the amoeba, see
[13].

3 Ronkin type functions

We hinted at in the previous section that many properties of the amoeba that
appear to be ad hoc when studied by straightforward methods, are put into con-
text by the introduction of the Ronkin function. This motivates us to establish
the frameworks of plurisubharmonic functions and closed positive currents. For
details, see, e.g., [8]. Thereafter we will investigate the possibility to define a
function similar to Nf that corresponds to the coamoeba.

3.1 Differential calculus in Cn

We start with some words about differential calculus in the complex coordinates
zj = xj + iyj and z̄j = xj − iyj . By definition we have that

dzj = dxj + idyj ,

dz̄j = dxj − idyj .
(3.1)

Furthermore the transition between derivatives of complex and real coordinates
are given by the formulas

∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂z̄j
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
.

(3.2)

A (p, q)-form on Cn is a sum of terms

ϕIJ(z)dzI ∧ dz̄J := ϕIJ(z)dzj1 ∧ ... ∧ dzjp ∧ dz̄k1
∧ ... ∧ dz̄kq
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where I = {j1, ..., jp}, J = {k1, ..., kq} and ϕIJ ∈ C∞. The differential operators
∂ and ∂̄ act on each term of a (p, q)-form as follows.

∂(ϕIJdzI ∧ dzJ) =

n∑
j=1

∂ϕ

∂zj
dzj ∧ dzI ∧ dzJ ,

∂̄(ϕIJdzI ∧ dzJ) =

n∑
j=1

∂ϕ

∂z̄j
dz̄j ∧ dzI ∧ dzJ .

(3.3)

Thus if u is a (p, q)-form, then ∂u is a (p + 1, q)-form and ∂̄u is a (p, q + 1)-
form. Set d = ∂ + ∂̄ and dc = (∂ − ∂̄)/(2πi). Then d is the standard exterior
differential operator and we say that a (p, q)-form u is closed if du = 0. One
can verify that ∂2 = ∂̄2 = 0. This implies that ddc = (πi)−1∂̄∂. The case when
ϕ ∈ C∞ is independent of Im z, is of particular interest in this work. Then we
have by (3.1) and (3.2) that

ddcϕ =
1

2π

∑
1≤j,k≤n

∂2ϕ

∂xj∂xk
dxj ∧ dyk. (3.4)

3.2 Plurisubharmonic functions

Let ϕ be an upper semicontinuous function on C. Then ϕ is said to be subhar-
monic if

ϕ(z) ≤ 1

2π

∫ 2π

0

ϕ(z + reiθ)dθ

for r > 0 small enough. Subharmonicity of functions in one complex variable is
a central concept in complex analysis that can be thought of as the notion cor-
responding to convexity of functions in one real variable. Plurisubharmonicity
is the corresponding notion for upper semicontinuous functions ϕ in arbitrar-
ily many complex variables. Similarly to the definition of convexity in several
real variables, we say that ϕ is plurisubharmonic if its restriction to any com-
plex line is subharmonic. The analogy to convexity is quite concrete: If ϕ is
plurisubharmonic and independent of Im z, then ϕ is a convex function on Rn.

A typical example of a plurisubharmonic function is log |f |, where f is a
holomorphic function on Cn. One can use Fubini’s theorem to show that for a
compact subset K of Rn, the function

z 7→
∫
r∈K

ϕ(z + ir)dr

is plurisubharmonic whenever it is upper semicontinuous and ϕ is plurisubhar-
monic. Letting ϕ = log |f(ez)| for a Laurent polynomial f and K =] − π, π]n,
we have in particular that the Ronkin function Nf is plurisubharmonic, if con-
sidered as a function on Cn that is independent of Im z. Thus the convexity of
the Ronkin function follows, see Theorem 2.3.
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3.3 Closed positive (1, 1)-currents

A (p, q)-test form ξ on Cn is a (p, q)-form with compact support. The space of
(p, q)-test forms is denoted by Dp,q. Given a non-empty compact set K ⊂ Cn
and k ∈ N we can define the seminorm

skK(ξ) = max
z∈K

max
|I|=p
|J|=q

max
α,β∈Nn,
|α|+|β|≤k

∣∣∣∣∣ ∂α1

∂zα1
1

...
∂αn

∂zαnn

∂β1

∂z̄β1

1

...
∂βn

∂z̄βnn
ξIJ(z)

∣∣∣∣∣
on Dp,q and consider the topology on Dp,q induced by the union of all such
seminorms.

A (p, q)-current is a continuous linear functional T : Dn−p,n−q → C that
acts like a distribution TIJ on ξIJ for every monomial ξIJdzI ∧ dz̄J of the test
form ξ ∈ Dn−p,n−q. This means that the space D′p,q of (p, q)-currents is the dual
vector space of Dn−p,n−q. The space D′p,q is equipped with the weak topology:

Tj → 0 if ∀ξ ∈ Dn−p,n−q : Tj .ξ → 0.

By differentiating TIJ in the sense of distributions, the operators ∂ and ∂̄, and
thus also the notion of closedness, can be defined on D′p,q. The support of T is
defined as the complement of the maximal open set U ⊆ Cn for which T.ξ = 0
whenever supp ξ ⊆ ∅.

If ξ ∈ Dn−1,n−1, then ξ is positive if each of its terms can be written as

λidzj1 ∧ dz̄j1 ∧ ... ∧ idzjn−1
∧ dz̄jn−1

for some non-negative test function λ. A (1, 1)-current T is positive if T.ξ ≥ 0
whenever ξ ∈ Dn−1,n−1 is positive. A plurisubharmonic function ϕ can be
considered as the (0, 0)-current

Dn,n 3 ξ 7→ ϕ.ξ :=

∫
ϕξ.

In this sense, the class of plurisubharmonic functions coincides with the class
of (0, 0)-currents ϕ for which ddcϕ is positive. In fact one can use the Poincaré
lemma to show that T ∈ D′1,1 is closed and positive if and only if T equals ddcϕ
for some plurisubharmonic function ϕ.

We will now look at two examples of corresponding positive currents and
plurisubharmonic functions. Consider the integration current

Dn−1,n−1 3 ξ 7→ [Vf ].ξ :=

∫
Vf reg

ξ,

where Vf is the zero set of a holomorphic function f . It is clear that [Vf ] is
positive, but it is harder to determine wether it is closed or not. However, if
df(z) 6= 0 whenever z is a regular point, it is known that

[Vf ] = ddc log |f |,
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and thus [Vf ] is closed. More generally, whenever f is holomorphic, ddc log |f | is
the integration current of f counted with multiplicity, that is the Lelong current,
which thus is closed.

For the second example, let f(z) := g(ez) for some Laurent polynomial g
and consider the Ronkin function Nf := Ng as a plurisubharmonic function on
Cn independent of Im z. A computation gives that the closed positive current
corresponding to Nf is given by

Dn−1,n−1 3 ξ 7→ ddcNf .ξ =
1

(2π)n

∫
[−π,π]n

T isf .ξds, (3.5)

where T tf := ddc log |f(·+ t)| for t ∈ Cn. Clearly the support of the right hand
side of (3.5) equals Ag. Hence (3.5) implies that Nf in affine on the complement
of Ag, cf. Theorem 2.3.

3.4 Ronkin type functions on the coamoeba

As above, let f = g(ez), where g is a Laurent polynomial. For convenience,
we let the amoeba Af and the coamoeba A′f refer to the real and imaginary
parts respectively of the zero set of f . This means that Af = Ag and that A′f
is a periodic subset of Rn with p(A′f ) = A′g, see Section 1. Moreover, we set
∆f := ∆g.

An intriguing question is if there exists a convex function that corresponds
to the coamoeba A′f in a similar way as the Ronkin function corresponds to Af .
Let us make this question more specific: Assume that ϕ : Rn → R is convex,

denote by Ff the set of components of the complement of A′f and set Ť = ddcϕ
where ϕ is considered as a plurisubharmonic function on Cn independent of
Re z. Then we say that ϕ is a Ronkin type function associated to the coamoeba
of f if it fulfills the following assertions.

1. The current Ť vanishes outside of A′f .

2. The gradient ∇ϕ does not take the same value in two different components
E,E′ ∈ Ff .

3. For any λ ∈ 2πZn, Ť (z + iλ) = Ť (z).

The first two points correspond to properties of the Ronkin function and
guarantee that ∇ϕ induces an injective mapping on Ff . To consider this map-

ping on the set Eg of components of the complement of A′g ⊆ Tn instead of on
Ff , see below, we will use the last point.

Before we attempt to construct a Ronkin type function as characterized
above, let us study some properties that such a function and its corresponding
closed positive current must have. It follows from (3.4) and the definition of
derivatives of distributions that

Ť =
1

2π

∑
1≤j,k≤n

∂2ϕ

∂yj∂yk
dxj ∧ dyk. (3.6)

11



Im z

Figure 2: A Ronkin type function associated to the coamoeba of f = 1 + ez. The
points on the Im z-axis marks A′f .

Let ek be the k:th vector of the standard basis of Rn and let

cjk(y) =
∂ϕ

∂yj
(y + 2πek)− ∂ϕ

∂yj
(y) =

∫ 2π

0

∂2ϕ

∂yj∂yk
(y + sek)ds. (3.7)

By (3.6) and the third point above,

∂cjk
∂yl

(y) =
∂2ϕ

∂yl∂yj
(y + 2πek)− ∂2ϕ

∂yl∂yj
(y) = 0

for every 1 ≤ l ≤ n, that is cjk is a constant. Notice that

2πcjk =

∫ 2π

0

∂ϕ

∂yj
(y + tej + 2πek)− ∂ϕ

∂yj
(y + tej)dt

=

∫ 2π

0

∫ 2π

0

∂2ϕ

∂yj∂yk
(y + tej + sek)dsdt.

(3.8)

We apply Fubini’s Theorem and then make the computation of (3.8) backwards
to show that cjk = ckj . We denote the symmetric matrix (cjk) by S.

For λ ∈ 2πZn, consider the function

hλ(y) = ϕ(y + λ)− ϕ(y).

Lemma 3.1. For some vector u ∈ Rn,

hλ(y) = λSyt + λSλt/2 + u · λ. (3.9)

Proof. If we first assume that λ = ±2πek for some k, then it follows by (3.7)
that ∂hλ(y)/∂yj = ±cjk for every j. Hence

hλ(y) = λSyt + λSλt/2± uk

12



for some uk ∈ R. Set u = (u1, ..., un) and assume that hν and hµ are given by
(3.9) for λ = ν and λ = µ respectively. Then

hν+µ(y) = hν(y + µ) + hµ(y)

= νS(y + µ)t + νSνt/2 + u · ν + µSyt + µSµt/2 + u · µ
= (ν + µ)Syt + (ν + µ)S(ν + µ)t/2 + u · (ν + µ),

that is, hν+µ is given by (3.9) for λ = ν + µ. It follows by induction that (3.9)
holds for every λ ∈ 2πZn.

We will now use Lemma 3.1 to define an injective mapping on Eg. To this
end, consider the torus Rn/Z[2πS], where Z[2πS] denotes the lattice in Rn
generated by the rows of 2πS over Z. Let kϕ : Eg → Rn/Z[2πS] be the mapping
given by

kϕ(E) = [∇ϕ(y)], y ∈ p−1(E).

Proposition 3.2. If ϕ is a Ronkin type function, then kϕ is well-defined and
injective.

Proof. We have to show that [∇ϕ(y + λ)] = [∇ϕ(y)], or equivalently that
[∇hλ] = 0 for every λ ∈ 2πZn. But this follows immediately from Lemma 3.1.
By the characterization of a Ronkin type function, ∇ϕ(y) is furthermore inde-
pendent of y ∈ p−1(E). Hence kϕ is well-defined.

It follows by the second point in the characterization of a Ronkin type func-
tion that kϕ does not take the same value on two different components in Ff .
Assume now that [∇ϕ(y)] = [∇ϕ(y′)] for y ∈ F, y′ ∈ F ′, F, F ′ ∈ Ff . Then there
is a λ ∈ 2πZn such that

∇ϕ(y′) = ∇ϕ(y) + λS = ∇ϕ(y) +∇hλ(y) = ∇ϕ(y + λ)

and thus y + λ ∈ F ′, that is, [y] and [y′] are contained in the same component
E ∈ Eg. This means that kϕ is injective.

3.5 An example of a Ronkin type function on the coamoeba

In Section 3.4 we started from the characteristic properties of the Ronkin func-
tion to set up characteristics for a Ronkin type function for the coamoeba.
To construct such a function, we will instead start from the definition of the
Ronkin function and try to find an analogous plurisubharmonic function that is
connected to the coamoeba.

Let f be as in Section 3.4. Since f is periodic in Im z with period 2π in each
coordinate, the Ronkin function Nf (x) can be considered as the mean value of
log |f(x + iy)| over y ∈ Rn. A first naive approach to construct a Ronkin type
function associated to A′f would be to take the mean value of log |f(x + iy)|
over x. However, this mean value is infinite for every y.

Let us instead see if it is possible to connect a closed positive (1, 1)-current
to A′f in a similar way as ddcNf (x) is connected to Af . Let BkR ⊂ Rk be the

13



k-dimensional ball with center in the origin and radius R, and set BR = BnR.
Furthermore, let Volk A be the k-dimensional volume of a set A of real dimension
k and set Vol = Voln. By (3.5), ddcNf is the mean value of the currents T isf
for s ∈ Rn. In order to define a corresponding “mean value” of T rf over Rn, we
need to determine the order of growth of Vol2n−2(Vf ∩ (BR + i[−π, π]n)) when
R→∞. Clearly we can here exchange BR with Af ∩BR.

To this end we make two observations. Recall the sets Dα ⊂ Acf , the con-
stants rα ≥ 0 and the concept of normal cones NΓ from Section 2.1. For an
edge Γ of ∆f and M ≥ 0, let

NM
Γ = BM +NΓ

and let
NM =

⋃
Γ edge of ∆f

NM
Γ .

Then Vol(NM ∩ BR) ≤ cVoln−1(Bn−1
R ) for some c > 0 that is independent of

R > 0. But if M = maxα∈A rα, then NM contains the complement of
⋃
α∈ADα,

that is Af ⊆ NM . Thus also Vol(Af ∩BR) ≤ cVoln−1(Bn−1
R ).

Second, the function on Rn given by

r 7→ Vol2n−2(Vf ∩ ({x; |x− r| < 1}+ i]− π, π]n)) (3.10)

is uniformly bounded by some constant, see Theorem 3.1 (ii) in [i]. We thus
have for ξ ∈ Dn−1,n−1 and M large enough that

1

Voln−1(Bn−1
R )

∫
|r|<R

T rf .ξdr =
1

Voln−1(Bn−1
R )

∫
|r|<R
r∈NM

T rf .ξdr

≤C Vol(supp ξ)

Voln−1(Bn−1
1 )

sup |ξ|
(3.11)

for some C > 0 that is independent of R > 0. Here the equality follows from
the first and the inequality from the second observation. Letting ŤRf ∈ D′1,1 be

the current defined by the left hand side of (3.11), the family {ŤRf }R>0 has by

(3.11) at least one accumulation point Ťf ∈ D′1,1. Since T rf is closed, positive

and periodic in Im z and has support on Rn + iA′f , the same is true for ŤRf for

every R > 0 and thus also for Ťf . Furthermore, since

T r.ξ(x+ iy) = T r+x−x
′
.ξ(x′ + iy),

it follows that the coefficients TIJ of Ťf are independent of x. So far Ťf seems
to be the current we are looking for.

When dim ∆f = 1, there is a polynomial g on C with g(0) 6= 0 such that
f(z) = eα·zg(eβ·z), where α is a vertex of ∆f and β is an integral tangent vector
of ∆f , see (2.4). Writing g(w) =

∏
j(w − aj)dj for distinct numbers aj ∈ C∗,
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we have that T rf is just the Lelong current over the hyperplanes {β · z = log aj}
with multiplicities dj . A calculation of Ťf gives us the following result, cf.
Proposition 4.3 in [i].

Proposition 3.3. If dim ∆f = 1, then for a test form ξ ∈ Dn−1,n−1,

Ťf .ξ =
∑
j

dj

∫
β·y=arg aj

ξ(x+ iy) ∧ β · dx
|β|

, (3.12)

where we consider the multi-valued function arg.

Also when dim ∆f > 1, we have an explicit formula for Ť . The next result
corresponds to Theorem 1.1 in [i].

Theorem 3.4. For an exponential polynomial f as above,

Ťf =
∑

Γ edge of ∆f

Voln−1 (NΓ ∩B1)

Vol(B1)
ŤfΓ

. (3.13)

Note that Proposition 3.3 applies for ŤfΓ
. A consequence of Proposition 3.3

and Theorem 3.4 is that the choice of Ťf does not matter, i.e., limR→∞ ŤRf
exists.

We will motivate Theorem 3.4 in a heuristic way; for a rigorous proof see
[i]. First of all we note that if Γ 6= Γ′ are edges of ∆f and Σ is the face of
lowest dimension that contains both Γ and Γ′, then Vol(NM

Γ ∩NM
Γ′ ∩BR) grows

with order Rn−dim Σ ≤ Rn−2. Since the function given by (3.10) is uniformly
bounded, this means that we can write

lim
R→∞

1

Voln−1(Bn−1
R )

∫
|r|<R
r∈NM

T rf .ξ

=
∑

Γ edge of ∆

lim
R→∞

1

Voln−1(Bn−1
R )

∫
|r|<R
r∈NMΓ

T rf .ξ.

The key step is to show that T rf can be replaced by T rfΓ
in the integral over

NM
Γ ∩ BR, cf. Proposition 4.5 in [i]. Morally, this follows from Lemma 2.1.

Assume for simplicity that Γ is parallel to the vector (0, ..., 0, 1) and that A′fΓ

is the single hyperplane {z; zn = 0}. Fix a test form ξ and denote its support
by K. Writing

ξ = ξIIdzI ∧ dz̄I + ξ3 ∧ dzn + ξ4 ∧ dz̄n (3.14)

for I = {1, ..., n− 1} and test forms ξ3, ξ4, we make the Taylor expansion

ξIIdzI ∧ dz̄I = ξ0 + znξ1 + z̄nξ2 (3.15)

in the zn-direction of ξII at 0, where ξ0 is independent of zn. Then ξ3, ξ4 have
support on K while ξ0, ξ1, ξ2 have support on {z + (0, ..., 0, s); z ∈ K, s ∈ C}.
Choose ε > 0. By Lemma 2.1 there is a set Dε

M approximating NM
Γ such that∫

Re z∈DεM
T rf .ξ0(z) =

∫
zn=0,

Re z∈DεM

ξ0(z − r) =

∫
Re z∈DεM

T rfΓ
.ξ(z) (3.16)
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and ∫
Re z∈DεM

T rf . (znξ1(z)) ≤ ε sup |ξ1|Vol (K ∩ {f(·+ r) = 0}) . (3.17)

The number sup |ξ1| is bounded by s1
K(ξ). Thus we can once again use the

boundedness of the function given by (3.10) to show that the right hand side
of (3.17) is bounded by ε times a constant that only depends on ξ and we can
obtain similar bounds for the remaining terms in (3.14) and (3.15). It remains
to show that NM

Γ and Dε
M are interchangeable in (3.16) and that regardless of

ε > 0,

lim
R→∞

1

Voln−1(Bn−1
R )

∫
|r|<R
r∈NMΓ

∫
Re z/∈DεM

ddc log |f(z + r)| ∧ ξ(z) = 0.

Since ξ has compact support and Dε
M and NM

Γ are approximatively the same
sets, this seems plausible. However the actual proof of Theorem 3.4 in [i] uses
a computation of the trace mass of Ťf to avoid these two estimates.

By (3.6), the Ronkin type functions corresponding to Ťf are straightforwardly
derived from (3.13) and (3.12). For an explicit formula, see (7.5) in [i]; here
we just note that any such function ϕ is continuous and piecewise affine, with
its non-smooth locus corresponding to the lifting of the shell of A′f to Rn, see
Section 4.

4 The duality of A′f and ∆f

We saw in Section 2 that the amoeba of fΓ is a union of hyperplanes orthogonal
to Γ whenever Γ is an edge of ∆f . Similarly we have that the coamoeba of fΓ

is a union of hyperplanes on Tn orthogonal to Γ. Let Hf be the union of all
hyperplanes L such that L ⊆ A′fΓ

for some edge Γ of ∆. We call Hf the shell
of A′f .

The shell corresponds to the spine in the obvious sense that both sets are
polyhedral complexes, or more specifically, tropical varieties. While the spine is
contained in the amoeba, the shell is contained in the closure of the coamoeba,
see e.g. Theorem 4.2 in [ii]. In particular one have that

A′f = A′f ∪Hf
whenever n = 2. In nice examples, the shell makes such a large imprint on
the appearance of the coamoeba that it can arguably be given the honor for
the alternative name alga, just like the spine explains the most striking aspect
of the amoeba. We remark that the shell is not analogous to the spine in the
sense that it tells us where the complement components of the coamoeba are
placed. However, combined with a related concept that we soon will define, it
provides a structure that at least tells us where there cannot be any complement
components. We will concentrate on the case n = 2 where this structure can be
established quite elegantly.
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4.1 The argument cycle

For the rest of Section 4, we will refer to a continuous mapping γ : [a, b] → C
for a, b ∈ [−∞,+∞], as a path. Furthermore, if γ(a) = γ(b), then we call γ a
cycle. We will also use some standard notation concerning any two-dimensional
Newton polygon that will occur if nothing else is stated: Thus Γ1, ...,Γm is an
anti-clockwise enumeration of its edges, αk is the common vertex of Γk and Γk+1,
1 ≤ k < m, and α0 = αm is the common vertex of Γm and Γ1. Furthermore we
let ak be the coefficient of the monomial in f with index αk, ωk ∈ Rn the unit
normal vector of Γk directed outward from the Newton polygon when placed
at Γk and βk the unit vector for which the pair (ωk, βk) is a positively oriented
ON-basis.

We will begin with a simple observation. Given f as in (1.1) and θ ∈ T2,
define the function Fθ on R2 by setting

Fθ(x) = f(ex+iθ)/
∑
α∈A
|aα|eα·x. (4.1)

Notice that Fθ(R2) is contained in the closure of the complex unit disc D.
Furthermore θ ∈ A′f if and only if 0 ∈ Fθ(R2).

To obtain an approximation of Fθ(R2), consider an open neighborhood U
of the origin in R2 and let Ur be the dilation of U by r ≥ 0. Let Krθ be the
oriented cycle given by

[a, b] 3 t 7→ Fθ(ρ
r(t)),

where ρr : [a, b]→ ∂Ur is an anti-clockwise parametrization of ∂Ur. We denote
the winding number of Krθ around 0 ∈ C by wrf (θ) whenever 0 /∈ Krθ. Notice

that θ 7→ wrf (θ) is constant on the connected components in T2 where it is
defined. The cycle Krθ deforms continuously to a point when r → 0 and hence

if wrf (θ) 6= 0 there must be at least one r′ < r such that 0 ∈ Kr′θ . This means

that f(ex+iθ) = 0 for some x ∈ ∂Ur′ and hence, θ ∈ A′f .

Since D is a compact set, one can show that Krθ converges to a cycle Kθ
when r →∞, see Proposition 3.5 in [ii] or see below. Let wf (θ) be the winding
number of Kθ around 0 whenever 0 /∈ Kθ. In view of the previous discussion,
the next result is not surprising.

Proposition 4.1. For a generic θ ∈ T2, the number of points z ∈ Vf that map
to θ under Arg is at least |wf (θ)|. In particular, θ ∈ A′f whenever wf (θ) 6= 0.

This is a special case of Theorem 5.1 in [ii], where the genericity condition
is specified.

We will now define Krθ and Kθ for a particular choice of neighborhood Ur

that only depends on ∆f , which we assume to have full dimension. Notice that
one can write

∆f = {x;ω1 · x ≤ r1} ∩ ... ∩ {x;ωm · x ≤ rm}
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for certain r1, ..., rm ∈ R. Hence

∆̃r
f =

m⋂
k=1

{x;ωk · x ≤ r}, r ∈ R+,

is a polygon. Furthermore int ∆̃1
f is an open neighborhood of the origin and

∆̃r
f is the dilation of ∆̃1

f by r. Since ωj · ωk < 1 whenever j 6= k, there is an

edge Γ̃rk ⊂ {ωk · x = r} of ∆̃r
f for which rωk is an interior point. Let α̃k be the

common vertex of Γ̃1
k and Γ̃1

k+1, 1 ≤ k < m, and let α̃0 = α̃m be the common

vertex of Γ̃1
m and Γ̃1

1. Then clearly

α̃k−1 · ωk = α̃k · ωk = 1 (4.2)

and
α̃k−1 · βk < 0 < α̃k · βk.

Ρ2
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Figure 3: The parametrization of ∂∆̃r
f in the case f = 1 + z1 + z2.

We are now ready to construct an anti-clockwise parametrization of ∂∆̃r
f .

For k = 1, ...,m and r > 0, let prk : R→ R2 be given by

prk(s) = sβk + rωk

and let {ρrk}∞r=1 be a sequence of orientation-preserving diffeomorphisms such
that ρrk maps [k−1, k] onto [rα̃k−1 ·βk, rα̃k ·βk] in such a way that limr→∞ ρrk(x)
converges for every x ∈]k−1, k[. Notice that in view of (4.2), and since (βk, ωk)
is an ON-basis,

prk ◦ ρrk(k) = (rα̃k · βk)βk + (rα̃k · ωk)ωk = rα̃k,

and similarly prk ◦ ρrk(k − 1) = rα̃k−1. Hence we have the parametrization

[0,m] 3 t 7→


pr1 ◦ ρr1(t) if 0 ≤ t ≤ 1,

...

prm ◦ ρrm(t) if m− 1 ≤ t ≤ m.
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of ∂∆̃r
f that we suggestively will denote by ∂∆̃r

f (t). Notice that ωk ·α = ωk ·αk
whenever α ∈ Γk. Hence for s ∈ R and θ ∈ T2,

fk(exp(sβk + rωk + iθ)) = erωk·αkfk(exp(sβk + iθ)).

where fk = fΓk . Letting Fkθ correspond to fk as Fθ corresponds to f , we thus
have that

Fkθ ◦ prk(s) =
erωk·αkFkθ(sβk + iθ)

erωk·αk
∑
α∈A∩Γk

|aαesβk |
= Fkθ(sβk), (4.3)

that is, Fkθ ◦ prk is independent of r. The maximum of ωk · α for α ∈ ∆ is
attained if and only if α ∈ A∩Γk. In view of this, it is straightforward to verify
that for every s ∈ R,

Fθ ◦ prk(s)→ Fkθ(sβk), r →∞.

Hence the two paths Fkθ ◦prk◦ρrk and Fθ ◦prk◦ρrk converges uniformly on [k−1, k]
to the same path Kkθ ⊂ D when r goes to infinity and we may define the cycle

Kθ(t) = lim
r→∞

Fθ

(
∂∆̃r

f (t)
)
.

Clearly Proposition 4.1 holds for Kθ. We call Kθ the argument cycle of f at θ.
The next lemma follows by the construction of Kθ.

Figure 4: The image of the argument cycle Kθ (left) and the set Fθ(R2) (right) when
f = 1 + 2iz1 + −1−i√

2
(z21 + 3z21z2 + 3z21z

2
2 + z21z

3
2) and θ = (0, 2π/3). The winding

number of Kθ around the origin is two and consequently the multiplicity of θ in A′f is
by Proposition 4.1 at least two. One have that (αk−α) · α̃k > 0 for every α ∈ A\{αk}
and hence it is a general fact that Kθ(k) = exp(i(arg ak + αk · θ)). One can also
check that if fk is a binomial, then Kkθ([k − 1, k]) is always the line segment between
exp(i(arg ak−1 + αk−1 · θ)) and exp(i(arg ak + αk · θ)).

Lemma 4.2. For every θ ∈ T2 we have, for k−1 ≤ t ≤ k, that Kθ(t) = Kkθ(t).
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Lemma 4.2 is the connection between the coamoeba and its shell. Since βk,
ωk is a basis for R2, it follows from (4.3) that

Fkθ(R2) = Fkθ(βR) = Kkθ(]k − 1, k[).

Hence Lemma 4.2 implies that θ ∈ Hf if and only if 0 ∈ Kθ. This means
that wf (θ) is constant on each component E of the complement of Hf . By
Proposition 4.1 one thus obtain an approximation of the coamoeba just by
checking wf for one point in every component of the complement of Hf . But
we can say more than so, as we soon will see.

Remark 1. It should be possible to obtain all important results in this thesis
connected to the argument cycle without defining the mappings Fθ that may
look unnecessarily complicated, but I choose this approach since this is what I
did in [ii] and since winding numbers are intuitive to work with.

4.2 Balanced arrangements on T2

With an arrangement we will refer to a finite setH of oriented lines with integral
slope on the torus T2, where every L ∈ H is equipped with a weight µ(L) ∈ Z+.
The set of components of the complement of the union of lines L ∈ H is denoted
by E . For two paths γ, σ on T2, we say that γ intersects σ positively (negatively)
at θ if both paths are smooth at θ and the pair (∇σ(θ),∇γ(θ)) of tangent vectors
is positively (negatively) oriented. Given an arrangement H and a smooth path
γ that only intersects H transversely, we define the following function over the
lines in H and the intersection points of H and γ:

kγ(L, x) =

{
1 if γ intersects L positively at x

−1 if γ intersects L negatively at x.

We say that H is balanced if∑
L∈H

∑
x∈L∩γ

kγ(L, x)µ(L) =
∑
L∈H

∑
x∈L∩σ

kσ(L, x)µ(L) (4.4)

whenever γ, σ are paths as above with starting points in the same component
E and endpoints in the same component F of the complement of H. Thus if H
is balanced, we may define an integer-valued mapping i on E in the following
way: Fix i(E) ∈ Z for some E ∈ E . For every F ∈ E set i(F ) as the sum of
i(E) and either side of (4.4) for any γ with starting point in E and endpoint in
F . Such a mapping i is called an index mapping on E .

A Newton polytope ∆ in R2 of dimension 2 has an infinite class of dual
arrangements, see [iii]. Such an arrangement consists of lines orthogonal to the
edges Γ of ∆ and with tangent vectors pointing outward from ∆ when placed
at Γ. The criterion on the weights µ(L) is that the sum of these over the lines
correspondning to a fixed Γ, must equal |Γ|, see Section 2.2.

Proposition 4.3. An arrangement is dual to some Newton polygon if and only
if it is balanced.
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Proposition 4.3 implies that every balanced arrangement has a dual Newton
polygon. For a complete proof of Proposition 4.3 we refer to Proposition 2.2
in [iii]. Note here that the equivalent property for balancy of an arrangement
given by Proposition 4.3 was chosen as the definition for balancy in [iii]. The
key to Proposition 4.3 is Poincaré duality, see e.g. [7].

Let f be a Laurent polynomial on (C∗)2 with dim ∆f = 2 and let fk be as
in Section 4.1. With the multiplicity of a line {βk · θ = v} ⊆ A′fk , we refer to
the sum of the multiplicities of the points in the fiber over v ∈ A′g, where g is
as in (2.4). The shell Hf is generally a dual arrangement of ∆f , if we orient the
lines in A′Γk as described above and let µ(L) be the multiplicity of L in A′Γk .
However, there is a subtlety here: If there are two parallel edges Γ and Σ, there
might be a line L that is contained both in A′Γ and in A′Σ. In this case, let
dΓ and dΣ be the multiplicity of L in A′Γ and A′Σ respectively. If dΓ − dΣ = 0
we exclude L from Hf . If say dΓ > dΣ, we orient L so that its tangent points
outwards from ∆f when placed at Γ and set µ(L) = dΓ − dΣ.

By shortening Γ and Σ appropriately whenever this happens, it follows re-
cursively that H either is the empty set or still has a dual polygon, even if it
does not equal ∆f , cf. Figure 5.

0

0

0

0

1

-1

1

-1

Figure 5: The Newton polygon ∆f , the shell Hf and the dual polygon of Hf con-
sidered as an arrangement, for f = 1 − z − 3w + w2 + iz2w − zw2. The numbers in
the cells of the complement of Hf denote the values of the index mapping of Hf with
weighted mean value zero. The dashed line is contained in Hf considered as a shell,
but not in Hf considered as an arrangement; thus the dual polygon of Hf does not
equal ∆f . The other lines in Hf have weight one, except for the horisontal line which
has weight two.

With the weighted mean value of an index mapping i, we refer to the number∑
E∈E

i(E) Area(E).

If i and i′ are index mappings on E , it is easy to check that i − i′ is constant.
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Thus there is at most one index mapping with a specified weighted mean value,
given H.

Theorem 4.4. A balanced arrangement H is the shell Hf of A′f for some
Laurent polynomial f if and only if there is an index mapping i on E with
weighted mean value zero. In this case, i(E) is given by wf (θ) for any θ ∈ E.

This result is not included in [i]-[iv] or any other paper of which I know,
and thus we will go through the proof carefully in Section 4.3 and Section 4.6,
although the second part is more or less a computation.

The next result is an immediate consequence of Theorem 4.4 and Proposition
4.1.

Corollary 4.5. Assume that Hf is a non-empty arrangement. Then the number
of points in Vf that map to θ ∈ E ∈ Ef under Arg, is generically at least
|if (E)|, where if is the index mapping on Ef with weighted mean value zero. In
particular, E ⊂ A′f whenever if (E) 6= 0.

4.3 The index mapping with mean value zero and wf

In this section, we will show that wf induces an index mapping on Ef of weighted
mean value zero, that is one of the implications of Theorem 4.4. To this end,
fix θ ∈ Tn\Hf . Considering arg as a multi-valued function, let argγ : [a, b]→ R
be the branch of arg ◦γ(t)− arg ◦γ(a) along the path [a, b] 3 t 7→ γ(t) ⊂ C\{0}
chosen so that argγ(a) = 0. Furthermore we let from now on arg (without
subscript) take values in ]− π, π].

Consider a polynomial g =
∑M
k=0 akw

k on C , where aM = 1 and a0 6= 0.
For fixed t ∈ R we can define the mappings gt : R≥0 → C and Gt : R≥0 → D
by setting gt(r) = g(reit) and

Gt(r) = g(t)/

(
M∑
k=0

|ak|rk
)
, (4.5)

cf. (4.1). It is straightforward to verify the limit

Gt(+∞) := lim
s→+∞

Gt(s) = eiMt,

and hence we may consider Gt as a path over [0,+∞]. For R > 0, let gRt
be the path given by the restriction of gt to the interval [0, R]. Whenever
0 /∈ Gt ([0,+∞]), we have that

argGt(R) = arggRt (R) = Im
(
log ◦g(reit)− log ◦g(0)

)
= Im

∫ R

0

dg(reit)

g(reit)
,

(4.6)

if we consider the appropriate branch of the function log.
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Lemma 4.6. The following assertions are true.

1. If v ∈ A′g and ε > 0, then argGv−ε(+∞)− argGv+ε
(+∞) converges to 2π

times the multiplicity of v in A′g when ε→ 0.

2. The mean value of t 7→ argGt(+∞) over ]− π, π]\A′g is zero.

Proof. Let w1, ..., wL be an enumeration of the distinct zeroes of g where the
multiplicity of wk is Dk. Let −π < v1 < ... < vl ≤ π be the images of w1, ..., wL
under arg. The multiplicity dk of vk is the sum of multiplicities Dj over j such
that argwj = vk.

To show the first point, fix 1 ≤ k ≤ l and let ε > 0 be such that |vk−vj | > ε
for every j 6= k and v1 + π − vl > ε. Let C be the circular sector in C of the
disk of radius R whose boundary is given by the union of the sets

C1 = {rei(vk−ε); r ∈ [0, R]},
C2 = {rei(vk+ε); r ∈ [0, R]},
C3 = {Reit; t ∈ [vk − ε, vk + ε]}.

Then for R large enough,

2πdk = Im

∫
∂C

dg

g
= argGvk−ε

(R)− argGvk+ε
(R) + Im

∫
C3

dg

g
, (4.7)

where the first equality follows from the argument principle and the second
equality follows from (4.6). The last term of (4.7) is uniformly bounded by ε
times a constant that is independent of R. Hence the first point of the lemma
follows if we let R→∞ and ε→ 0.

Figure 6: The cycle Gt for t = 3π/4 and t = 4π/5, where g = 1 + 3z + 4z2 + z3. The
values of argGt(+∞) are 9π/4 and 2π/5 respectively, meaning that the integers p in
the proof of Lemma 4.6 are 0 and −1 respectively.

For the second point we first notice that

arg(Gt(+∞)) = Mt+ 2qπ
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for some integer q, whenever t /∈ {v1, ..., vl}. We have that argGt(+∞) is con-
gruent to arg(Gt(+∞)) − arg(Gt(0)) modulo 2π. Thus, for each connected
component C of ]− π, π]\A′g there is a p ∈ Z such that

∀t ∈ C : argGt(+∞) = − arg a0 + 2πp+Mt.

In particular, | argGt(+∞)| is uniformly bounded on ]− π, π]\A′g. Furthermore
there is an R > 0 such that |Gt(+∞) − Gt(r)| < 1 for every t ∈ T1 whenever
r > R, cf. rα in Section 2.1. Since |Gt(+∞)| = 1, this means that | argGt(r)|
is uniformly bounded for r > R and t ∈ T1\A′g. Thus it follows by dominated
convergence that the mean value of argGt(+∞) over ] − π, π]\A′g is given by
(2π)−1 times ∫ π

−π
argGt(+∞)dt = lim

R→+∞

∫ π

−π
argGt(R)dt. (4.8)

To prove the second point of the lemma, it suffices to show that the integral on
the right hand side of (4.8) is zero for any R ≥ 0. To this end we will use the
following equality that is verified straightforwardly.

dg(reit)

g(reit)
∧ dt = id log |g(reit)| ∧ (

dr

r
− idt). (4.9)

Using (4.6) in the first step and (4.9) in the second, we have that∫ π

−π
argGt(R)dt =

∫ π

−π
Im

∫ R

0

dg(reit)

g(reit)
∧ dt

=

∫ π

−π
Im

∫ R

0

id log |g(reit)| ∧ (
dr

r
− idt)

=

∫ π

−π

∫ R

0

d log |g(reit)| ∧ dr
r

=

∫ R

0

∫ π

−π

∂

∂t
log |g(reit)|dt ∧ dr

r

=

∫ R

0

(log |g(−r)| − log |g(−r)|) ∧ dr
r

= 0.

(4.10)

Recall from Section 4.1 the paths Kkθ : [k − 1, k]→ D, where 0 /∈ Kkθ([k −
1, k]) if and only if θ /∈ A′fk . We will now reformulate Lemma 4.6 for these
paths.

Lemma 4.7. For 1 ≤ k ≤ m the following points hold.

1. If ε > 0, L is a line contained in A′fk and θ ∈ L, then argKk(θ−εβk)
(k) −

argKk(θ+εβk)
(k) converges to 2π times the multiplicity of L in A′fk when

ε→ 0.

24



2. The mean value of θ 7→ argKkθ (k) over T2\A′fk is zero.

Proof. Assume for convenience that βk ∈ Zn with integer length one. First
notice that since ρrk converges pointwise on ]k − 1, k[ while ρrk(k − 1) and ρrk(k)
converges monotonously to −∞ and +∞ respectively, we may as well consider
Kkθ as the path r 7→ Fkθ(log rβk) over [0,+∞], where we set

Kkθ(0) := lim
r→−∞

Fkθ(rβk) = exp(arg ak−1 + αk−1 · θ),

Kkθ(+∞) := lim
r→+∞

Fkθ(rβk) = exp(arg ak + αk · θ).

Second one can check that the division of fk by a monomial does not affect
argKkθ (+∞). Thus we may assume that αk−1 = 0 and ak = 1. Finally notice
that in this case Fk(sω+tβk) is independent of s ∈ R. Thus, setting g(w) =

fk(wβk), we have that

Kk(sωk+tβk) = Kk(tβk) = Gt,

where Gt corresponds to a monic polynomial g with non-zero constant term as
in (4.5). Clearly A′g = {t; tβk ∈ A′fk}. By letting s vary over ]−π, π], the result
hence follows from Lemma 4.6.

We are now ready to show that the mapping given by E 7→ wf (θ) for any
θ ∈ E, is an index mapping on Hf with weighted mean value zero.

Partial proof of Theorem 4.4. We have by Lemma 4.2 and induction over m
that for θ /∈ A′f ,

wf (θ) = argKθ (m)/2π =

m∑
k=1

argKkθ (k)/2π.

That the mean value of wf over T2\H is zero, follows from the second point
in Lemma 4.7. To show that wf is an index mapping on Ef , let γ be a path
on T2 that intersects L ⊆ A′fk transversely, or equivalently orthogonally, and
negatively at x. Then L has the same slope and orientation as βk at x. Since
µ(L) is defined as the multiplicity of L in A′fk , the first point in Lemma 4.7 is
hence the exact criterion for wf to be an index mapping.

Remark 2. A tiling of T2 is a subdivision of T2 into polygons or tiles. Thus
a shell defines a tiling of T2. A Dimer model is a special type of tiling that
includes the tilings defined by shells. A dimer model has a certain dual graph
or quiver. This quiver can be considered as an alternative representation of the
argument cycle. The connection between the coamoeba and the shell considered
as a dimer model and its dual quiver was observed by Feng, He, Kennaway and
Vafa in [3].
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4.4 A bound for the number of components of the com-

plement of A′
f

An arrangement H is called degenerate if some θ ∈ T2 is contained in more than
two lines in H or µ(L) > 1 for some L ∈ H. Assuming that H is non-degenerate
and balanced, fix some index mapping i on H and let E0 be the set of cells in
the complement of H for which i vanishes. The key result (Theorem 2.4) of [iii]
can be formulated as follows.

Theorem 4.8. For H as above, |E0| ≤ 2 Area ∆, where ∆ is a dual polygon of
H.

Assume that f is a Laurent polynomial with dim ∆f = 2 for which Hf is
a non-degenerate (balanced) arrangement dual to ∆f . Furthermore, let E0 be
defined as above when i is the index mapping with weighted mean value zero

and let Cf be the set of components of the complement of A′f . Then by Corollary
4.5, there is a mapping from Cf to E0 taking C ∈ Cf to the cell E ∈ E0 that
contains C. In [5] (Lemma 2.3) it was shown that this mapping is injective, and
thus |E0| is an upper bound for |Cf |. This means that Theorem 4.8 implies an
analogue of Theorem 2.2 for coamoebas as well as an analogue for dimension
two of the “coamoeba version” of the fundamental theorem of algebra given in
Section 1.

Theorem 4.9. For f as above, |Cf | ≤ 2 Area ∆f .

Actually, one can show by continuity arguments that the only necessary
criterion on f for this result to hold is that dim ∆f = 2, see Theorem 1.2 in [iii].

We will now outline the proof of Theorem 4.8. What is the connection be-
tween the number of certain cells in the complement of a balanced arrangement
and the area of its dual polygon? The answer is: Angles. Let us give some defi-
nitions: On one hand there are internal and external angles of a convex polygon
E, where the internal angle at a vertex x of E is the angle on the “inner” side of
E between the edges meeting at x, and the external angle is its supplementary
angle. It is well-known that the sum of external angles of E equals 2π. In
particular

|E0| = 1

2π

∑
E∈E0

∑
v external
angle of E

v. (4.11)

On the other hand, we can define inner and outer angles at the intersection
point of two oriented line segments, where the outer angle is the non-oriented
angle between outgoing (or ingoing) lines and the inner angle is its supplemen-
tary angle. It is possible to express the area of ∆ as a weighted sum of inner
angles of all pairs (βj , βk) of tangent vectors of the edges of ∆, see Lemma 3.1
in [iii]. This formula is in Lemma 3.2 in the same paper, by use of Poincaré
duality, translated to inner angles at the intersection points of H:

Lemma 4.10. The area of ∆ equals 1/2π times the sum of the inner angles of
H (counting one per vertex).
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Thus the external angles of the cells in E0 are by (4.11) tied to the number
of cells in the complement of H, while the inner angles of H by Lemma 4.10 are
connected to the area of ∆. The main part of the proof of Theorem 4.8 is the
establishing of a relation between these two sets of angles.

-1

1

0 0

0

2

1 1

Figure 7: To the left a vertex of H whose inner angle is the external angle of two
different cells in E0 and to the right a vertex of H whose outer angle is the external
angle of a unique cell in E0. The two vertices are included in V0 and V1 respectively.

At a first glance, this connection does not look very far-fetched. Let Vk be
the set of vertices of H with two adjacent cells of index k and let ux be the inner
angle and vx the outer angle at x. If x ∈ V0, then ux is the external angle of
two different cells E,E′ ∈ E0, see Figure 7. If x ∈ V±1, then vx is the external
angle of exactly one cell E ∈ E0, and if x ∈ Vk for |k| > 1, then neither ux
nor vx is an external angle such a cell. Thus it seems favorable for the number
of complement components, that there are no cells of indices other than −1, 0
or 1. Note that in this case it follows from (4.11) and Lemma 4.10 that the
inequality of Theorem 4.8 is an equality. However the equality can be attained
also in other situations, see e.g. Figure 7 in [iii].

At least, we have reduced the problem to the following: Show that∑
x∈V−1∪V1

vx ≤ 2
∑
|k|>0

∑
x∈Vk

ux.

A way to establish this inequality is to construct certain oriented cycles
σ1, ..., σl on H whose union contains V±1, that only intersect each other trans-
versely, and turn monotonously and only at vertices in V±1. Then

∑
x∈V−1∪V1

vx =

k∑
j=1

∑
x∈σj

vx = 2π

l∑
j=1

dj ,

where dj is the winding number of σ, see Section 4 in [iii]. It then suffices to
show that

2πdj ≤ 2
∑

x∈σj∩V±1

ux +
∑
|k|>1

∑
x∈σj∩Vk

ux,

since x ∈ V±1 means that x is contained in a unique cycle σj and x ∈ Vk for
|k| > 1 means that x is contained in at most two cycles σi, σj . To see how this
can be done, see Section 4 in [iii].
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4.5 Ronkin type functions revisited

By Theorem 2.3, the Ronkin function is affine exactly on the complement of
the amoeba. The function ϕ as defined in Section 3.5 is instead affine exactly
on the complement of the shell. Furthermore it follows from Theorem 3.4 and
Proposition 3.3 that ddcϕ is not affected by the orientation of the shell, and
thus a given ϕ may correspond to two very different coamoebas.

For an example, consider the two polynomials

f = (1− z1)(1 + z1)(1 + z2),

g = (1− z1)2 + (1 + z1)2z2.
(4.12)

We have that ∆f = ∆g and that

Hf = Hg = {θ1 = 0} ∪ {θ1 = π} ∪ {θ2 = π} =: L1 ∪ L2 ∪ L3.

By Theorem 3.4 and Proposition 3.3, the multiplicity of the integral over Lj
is two for j = 1, 2, 3 both in Ťf and in Ťg, and thus ϕf = ϕg. However,
considered as oriented lines, see Section 4.2, the multiplicities of L1 and L2 are
zero in Hf and plus minus two in Hg. One can check, using Corollary 4.5, that
the coamoeba of g covers the whole torus, possibly except for Hg, while the
coamoeba of f clearly equals Hf .

A challenge would be to refine ϕ in some way so that it depends on the
orientation of Hf , and thereby link the results in this section to the results of
Section 3.

4.6 The remaining part of the proof of Theorem 4.4

We will now prove the remaining direction of Theorem 4.4, that is the impli-
cation that H is a shell of some Laurent polynomial whenever E has an index
mapping of weighted mean value zero. To this end, consider a fixed balanced
arrangement H given by

H =

m⋃
k=1

mk⋃
j=1

Lkj ,

Lkj ={θ ∈ T2; pkθ1 + qkθ2 ≡ νkj mod 2π}

(4.13)

for some νkj ∈ R, where
mk∑
j=1

µ(Lkj) = |Γk| (4.14)

and pk, qk are the relatively prime integers for which

αk−1 + |Γk|(pk, qk) = αk (4.15)

for k = 1, 2, ...,m, where α0 := αm. We begin with a lemma.
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Lemma 4.11. The balanced arrangement H has an index mapping with weighted
mean value zero if and only if

m∑
k=1

mk∑
j=1

(1− νkj/π)µ(Lkj) ≡ 0 mod 2. (4.16)

Proof. Introduce a coordinate system on T2 such that 0 /∈ H and construct an
index mapping on T2\H in the following way: fix a line Lkj , let θ ∈ T2\H
and let p(θ) be the shortest line segment between the origin and θ, oriented
towards θ. Now let ikj(θ) be the number of positive intersections of the line
Lkj by p(θ) minus the number of negative ones. Letting mv denote the mean
value of a function on T2\H, one can verify that mv(ikj) = (1 + νkj/π)/2. Set
i =

∑
k,j µ(Lkj)ikj . Then i must be a balanced index mapping. Furthermore

we have

mv(i) =

m∑
k=1

mk∑
j=1

µ(Lkj) mv(ikj) =

m∑
k=1

mk∑
j=1

(1 + νkj/π)µ(Lkj)/2. (4.17)

The right hand side of (4.17) is an integer if and only if (4.16) holds. Since any
balanced index mapping of H is attained by adding an integer to i and vice
versa, the result follows.

Remaining proof of Theorem 4.4. One can verify that the inner union in (4.13)
coincide with the coamoeba of

gk(z) =

mk∏
j=1

(1− e−iνkjz(pk,qk))µ(Lkj).

Fix a dual polygon ∆ of H with vertices α0, α1, ..., αm where α0 = αm = 0. We
can assume that the indices of the integers pk, qk are chosen so that the Newton
polygon of zαk−1gk(z) equals the face Γk with vertices αk−1 and αk. Set

f(z) =

m∑
k=1

exp

i k−1∑
l=1

ml∑
j=1

(π − νlj)µ(Llj)

 zαk−1(gk(z))− 1). (4.18)

When 2 ≤ k ≤ m, we have that f truncated to Γk equals the k:th term on the
right hand side of (4.18) plus

exp

i k−2∑
l=1

ml∑
j=1

(π − νlj)µ(Llj)

 zαk−2

·
mk−1∏
j=1

exp
(
(i(π − ν(k−1)j)µ(L(k−1)j)

)
zµ(L(k−1)j)(pk−1,qk−1)

= exp

i k−1∑
l=1

ml∑
j=1

(π − νlj)µ(Llj)

 zαk−1 ,

(4.19)
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that is a constant times zαk−1gk(z). The equality in (4.19) follows from (4.14)
combined with (4.15). Furthermore, Lemma 4.11 implies that

1

π

m∑
l=1

ml∑
j=1

(π − νlj)µ(Llj) ≡ 0 mod 2,

meaning that f truncated to Γ1 similarly equals zα0(g1 − 1) + zαm = zα0f1.
Hence A′fk = A′gk for 1 ≤ k ≤ m, that is Hf = H. The theorem follows.

5 Generalizations to higher codimension

In the previous sections, our results on the coamoeba are to a large extent built
around the Newton polytope. An algebraic variety of codimension greater than
one does not correspond to a Newton polytope in the same way as a hypersurface
and demands a new framework. For our purposes, initial ideals will work well.

Given a Laurent polynomial f on (C∗)n and a vector ω ∈ Rn, let fω be the
sum of all monomials aαz

α of f for which α · ω is maximal. Then fω is called
the initial form of f with respect to ω. Given an ideal I we can now define the
initial ideal Iω by setting

Iω = 〈fω; f ∈ I〉, (5.1)

see [17] p. 4. If V is the set of points for which every polynomial in I vanishes,
then we write Vω for the initial variety of V , that is the set of points where
every polynomial in Iω vanishes.

For f and ω are as above, let Γ be the face of ∆f of maximal dimension for
which ω ∈ NΓ. Then fω = fΓ and in particular f0 = f . If V is a hypersurface
determined by the Laurent polynomial f , it follows that for every ω ∈ Rn,

A′Vω = A′fΓ

for some face Γ of ∆f . Thus the natural generalization of Theorem ?? in the
context of initial ideals would be the formula

A′V =
⋃
ω∈Rn

A′Vω . (5.2)

where we note that since V0 = V , A′V is contained in the union on the right
hand side.

To see if (5.2) has credibility, let f1, ..., fp be Laurent polynomials that define
V . We generalize the definitions of Fθ and Fkθ from Section 4 by letting

Fωθ : Rn → D
p

equal F jωθ in its j:th coordinate, where F jωθ is obtained from f jω as Fθ from f
in (4.1). Set Fθ = F0θ. Clearly we have that θ ∈ A′V if and only if 0 ∈ Fθ(Rn).
Furthermore,

Fθ(Rn) =
⋃
ω∈Rn

Fωθ(Rn). (5.3)
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This formula, that is relatively straightforward to verify (see the proof of Propo-
sition 3.5 in [ii]), mirrors (5.2) in a striking way. For the inclusion ⊆ in (5.2),
(5.3) is indeed useful as we will now see.

Given V , it is well-known that we can choose f = (f1, ..., fp) such that
f1
ω, ..., f

p
ω determines Vω for every ω ∈ Rn – such a set of Laurent polynomials

is called a universal Gröbner basis, see e.g. [17]. Let Fθ be obtained from such
a mapping f . It is straightforward to verify that any partial derivative of the
function θ 7→ |Fθ(x)| is uniformly bounded by some constant C > 0 that does
not depend on x.

Assume that θ ∈ A′V and let {θk} be a sequence in A′V converging to θ with
Fθk(xk) = 0 for some xk ∈ Rn. Then

|Fθ(xk)| = |Fθ(xk)− Fθk(xk)| < C|θ − θk|.

The right hand side converges to zero as k → ∞, and hence 0 ∈ Fθ(Rn). By
(5.3), this means that 0 ∈ Fωθ(Rn) for some ω ∈ Rn. Since the components of
f is a universal Gröbner basis, the desired inclusion follows.

Also the other inclusion of (5.2) holds, but we will not go further into this.
Both directions are shown by Nisse and Sottile in [12] and the ⊇-inclusion is
also shown for complete intersections in [ii]. All four single-directed proofs use
quite different techniques.

5.1 Complete intersections of codimension n/2

Assume that n is even and that V is an n/2-dimensional complete intersection of
hypersurfaces cut out by f = (f1, ..., fn/2). Then a generalization Kθ : Sn−1 →
D
n/2

of the argument cycle from Section 4.1 is given by

Kθ(x) := lim
R→∞

Fθ(Rx).

If 0 /∈ Kθ(Sn−1), then Kθ can be considered as a continuous mapping between

the (n − 1)-sphere Sn−1 and D
n/2\{0}. As such a mapping, it has a degree,

namely a number dθ such that the image of Sn−1 under Kθ is homologous to
dθS

n−1. For further reading, see e.g. [2].

Theorem 5.1. The multiplicity of θ ∈ Tn in A′V is at least |dθ|. Furthermore,
|dθ| is constant on each component of the complement of

⋃
ω 6=0A′ω.

This is the correct statement of Theorem 5.1 in [ii] and a generalization of
Proposition 4.1. Notice that if 0 ∈ Kθ, then it follows from Proposition 3.5 in
the same paper that θ ∈

⋃
ω 6=0A′ω. Hence the mapping θ 7→ dθ is constant on

every component of the complement of
⋃
ω 6=0A′ω.

5.2 The affine case

Let m ≤ n and let C = (C0, C1, ..., Cn) be an m× (n+ 1)-matrix of rank m for
which every column is contained in the linear span of the remaining columns.
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Then the linear system C(1, z1, ..., zn)t = 0 defines a non-empty variety, or an
affine space, L on (C∗)n.

Given θ ∈ Tn and 1 ≤ j ≤ n, consider the real 2m×(n+1)-matrix Cθ whose
odd and even rows are given by

Re (C0, e
iθ1C1, ..., e

iθnCn)

and
Im (C0, e

iθ1C1, ..., e
iθnCn)

respectively. Notice that θ ∈ A′L if and only if there is an r ∈ (R+)n such that
Cθ(1, r1, ..., rn)t = 0. Thus Cθ and Fθ are related concepts and if Fθ was our
main tool earlier in Section 5, our results in this section will largely be built
upon the study of Cθ.

Consider the n:th unit simplex

∆n = {x ∈ [0,∞[n+1;

n∑
j=1

xj = 1}

and set
Lθ = {s ∈ ∆n;Cθs = 0}.

Then Lθ is the fiber over θ in the compactified amoeba of L, see e.g. [6]. Indeed,
consider the diffeomorphism ψ : int ∆n → Rn given by

ψ(s) = (log(s1/s0), ..., log(sn/s0)).

It is easy to verify that for every θ ∈ Tn, the fiber in AL over θ is given by
ψ(intLθ). Since furthermore ∆n ∩ K is a polygon of dimension dimK − 1
whenever K is a subspace of Rn+1 that intersects the interior of ∆n, we have
the following result.

Proposition 5.2. The fiber in AL over θ ∈ A′L is diffeomorphic to the interior
of a polygon of dimension n− rankCθ. In particular, the fiber is a single point
whenever rankCθ = n.

5.3 The contour in the affine case

In Section 1 we declared that giving a description of the coamoeba was the main
motivation for this thesis. So far, this description has been made in terms of
the shell and the coamoebas of the initial varieties, but there is another object
that is equally crucial in this matter. It is called the contour of the coamoeba.

If z is a singular point of an algebraic variety V or if z is a regular point but
the Jacobian of Arg : V → Tn does not have full rank at z, then z is called a
critical point of V with respect to Arg. The contour C′V of A′V is the image of all
critical points of V under Arg. When m ≤ n/2, the intersection of the coamoeba
and its boundary is contained in the contour. In view of (5.2), this means that
the coamoeba can be sketched whenever the proper initial coamoebas and the
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contour is known. See Theorem 6.4 in [iv] for an example of what role the
contour could play when m > n/2.

There are several distinctive types of critical points (e.g. singular points or
points where Arg “folds” the variety. See [10] for the related situation of the
amoeba) and thus C′V is not a suitable object for general statements. However,
when the variety is an affine space, there is essentially just one type of critical
points, which is indicated by the following result.

Proposition 5.3. Let θ ∈ A′L. When 2m ≥ n, θ ∈ C′L if and only if Cθ has
rank strictly less than n. When 2m ≤ n, θ ∈ C′L if and only if the rank of Cθ is
not maximal.

The proof of this is rather straightforward in view of Proposition 5.2. See the
proof of Proposition 3.3 in [iv] for details. Also note that the second statement
is a special case of Proposition 2.2 in [ii].

The initial varieties, or initial spaces, of L, are of certain interest for the
contour of L as we soon will see. But first we give a characterization of the initial
spaces. The faces of ∆n can be indexed by the proper subsets of {0, 1, ..., n},
letting

ΓN = {s ∈ ∆n; sj = 0, j ∈ N}.

Let Γ̃N be the image of ΓN under the projection (s0, s1...sn) 7→ (s1...sn). Then
the Newton polygon of a generic affine polynomial is given by Γ̃∅. Indeed, every
initial form of a affine polynomial f is given by fΓ̃N

for some N ⊂ {0, 1, ..., n}.
This fact can be transferred to ideals generated by affine polynomials: Let
CN be the matrix obtained by setting all entries to zero in the columns of C
with indices in N ⊂ {0, 1, ..., n}. In view of e.g. Proposition 1.6 in [17] it is
straightforward to verify that any initial space of L is given by

LN := {CN (1, z)t = 0}

for some N . Furthermore any space LN is an initial space of L if L satisfies a
certain genericity condition, see Lemma 4.1 in [iv].

Let us look at the relation between C′L and the coamoebas A′LN . It is easy

to verify that θ ∈ A′LN , that is CθNs = 0 for some s ∈ int ∆n, if and only if

Cθs′ = 0 for some s′ ∈ int ΓN . Notice that the faces of Lθ are precisely the
sets Lθ ∩ ΓN that are non-empty. Hence we can use the indices N also for the
corresponding faces of Lθ, and obtain the following result, cf. Lemma 4.2 in [iv].

Lemma 5.4. The faces Γθ of the (n− rankCθ)-dimensional polygon Lθ can be
indexed with subsets of {0, 1, ..., n} such that

1. if M and Nare indices of faces and M ⊂ N , then ΓθM ⊃ ΓθN ,

2. one has that θ ∈ A′LN if and only if N is an index of some face of Lθ.

Lemma 5.4 lies behind the most general results on coamoebas of affine spaces
that we prove in this thesis. A consequence of the second point follows here (for
a more specific statement, see Corollary 4.4 in [iv]).
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Figure 8: The polygon Lθ equals the intersection of the subspace {Cθs = 0} and the
unit simplex ∆n. In the picture, the two facets of Lθ correspond to the two faces Γ{0}
and Γ{1} of ∆2.

Proposition 5.5. The contour C′L is given by a union of sets
⋂
N∈N A′LN ,

where
⋃
N∈N N = ∅ and |M |, |N | > max{0, n− 2m}.

Sketch of proof. We will concentrate on the case when 2m ≥ n, noting that
the other case is shown in a similar way. Assume that θ ∈ C′L. Then by
Proposition 5.3, rankCθ ≤ n − 1, that is dimLθ ≥ 1. We check the case when
equality holds, that is when Lθ has 2 vertices. Let ΓM , ΓN be the faces of ∆n

of smallest dimension containing these vertices. Since θ ∈ A′L, Lθ intersects the
interior of ∆n and hence M ∩ N = ∅. Furthermore it follows by the second
point of Lemma 5.4 that θ is contained in A′LM ∩ A

′
LN

.
If θ′ is contained in the intersection above, then there are points sM ∈ int ΓM ,

sN ∈ int ΓN such that Cθ
′
sM = Cθ

′
sN = 0. The convex hull of {sM , sN} is a

line segment that is contained in Lθ
′

and intersects the interior of ∆n. Thus
θ′ ∈ A′L and rankCθ

′ ≤ n − 1, that is, by Proposition 5.3, θ′ ∈ C′L. The
proposition follows.

If C′L is contained in the closure of the non-critical values of Arg, then A′L can
be considered as a closed, differentiable manifold of real dimension min{n, 2m}.
Notice that according to Proposition 5.5 and Lemma 5.4, all values of Arg
considered on LN are critical if |N | > max{0, n− 2m}. However, letting KN ⊂
(C∗)n−|N | be the projection of LN on the coordinates of which it is dependent,

A′LN is given by the Cartesian product of A′KN and a subtorus of Tn. One

can thus check that A′LN is a closed manifold of dimension at most min{2n −
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2m− 1, n− 1)}. One can also check that for Lgeneric, A′LM and A′LN intersects
transversely almost everywhere when also |M | > max{0, n − 2m}. In view of
Proposition 5.5, the following result is expected.

Theorem 5.6. For a generic affine spaces L, there is no open set U such that
U ∩ ∂A′L ⊆ A′L.

This result is part of Theorem 4.8 in [iv], where also a genericity condition
is given.

We conclude this section with some examples of how the contour can affect
the appearance of the coamoeba of an affine space.

Example 5.7. Assume that L is a hyperplane. Then by Proposition 5.5, the
contour of A′L is given by intersections of n transversal hyperplanes, and is hence
a set of points. These hyperplanes are clearly the hyperplanes of the shell H
of A′L and it is easy to check that the boundary of A′L is contained in H. We

conclude that A′L is a polyhedral complex. For details, see Section 5 in [iv].

Example 5.8. Assume that L is a line, that is m = n − 1. The initial space
L{k} of L is just the Cartesian product of (C∗)n−1 and a point, given that it
is non-empty, and thus A′L{k} is a line. If n > 2, then two such lines generally

do not intersect, and thus by Proposition 5.5, C′L = ∅. This means that A′L
is homeomorphic to L, which in turn is homeomorphic to the Riemann sphere
minus a finite number of points.

However we may choose entries of C such that the coamoebas of two distinct
proper initial spaces of L intersect. In this case, which is called the real case,
all such coamoebas intersect pairwise, and the projection of A′L on any three
coordinates equals the coamoeba of a line in (C∗)2. For details and pictures in
the case n = 3, we refer to Section 6 in [iv].

Example 5.9. Assume that L is a plane in (C∗)4. Generally, the contour of A′L
is given by ten disjoint components C′jk := A′L{j}∩A

′
L{k}

, j 6= k ∈ {0, 1, ..., n}, cf.

Proposition 5.5. But for certain so called real planes L, C′L is instead connected.
For more details, see Example 7.4 in [iv].
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