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Abstract

In the area of signal analysis and processing, the Fourier transform and wavelet trans-
form are widely applied. Empirical Mode Decomposition(EMD) was proposed as an al-
ternative frequency analysis tool. Although shown to be effective when analyzing non-
stationary signals, the algorithmic nature of EMD makes the theoretical analysis and for-
mulation difficult. Futhermore, it has some limitations that affect its performance.

In this thesis, we introduce some methods to extend or modify EMD, in an effort
to provide a rigorous mathematical basis for it, and to overcome its shortcomings. We
propose a novel diffusion-based EMD algorithm that replaces the interpolation process by
a diffusion equation, and directly construct the mean curve (surface) of a signal (image).
We show that the new method simplifies the mathematical analysis, and provides a solid
theory that interprets the EMD mechanism. In addition, we apply the new method to
the 1D and 2D signal analysis showing its possible applications in audio and image signal
processing. Finally, numerical experiments for synthetic and real signals (both 1D and 2D)
are presented. Simulation results demonstrate that our new algorithm can overcome some
of the shortcomings of EMD, and require much less computation time.
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Chapter 1

Introduction

1.1 Introduction

Time-frequency analysis is a powerful tool to analyze signals. For a complex time series,
time-frequency representation can reveal its structure and give insight to different compo-
nents within the signal, e.g., the phonemes in speech utterance, vibrations in motors and
seismic waves in earthquakes. In addition, time-frequency analysis can be extended to two
or even higher dimensions, and applied in image and video processing.

Among all the various time-frequency analysis methods, the two most popular ones
are Fourier transform and wavelet transform. Fourier transform regards all signals as a
mixture of different sinusoids. Each sinusoid is a single frequency component within the
signal. One shortcoming of Fourier transform is that it neglects the time information,
and therefore cannot represent some transient features within the signal. To solve this
problem, short-time Fourier Transform (STFT) was introduced [1]. The idea of STFT
is to perform the Fourier transform over shorter components of the signal in order to
obtain local frequency sprectra. However, the method is still limited due to the restriction
of “uncertainty principle”, which means we can have either temporal or spectral locality
regarding the information contained in the signal, but never both. Instead of treating the
signal as a mixture of sinusoids, the wavelet transform uses a self-defined function called
the mother wavelet to represent the signal. The wavelet function can be translated and
scaled to fit the signal that is being analyzed. This way, the wavelet transform can find
the localized information contained in the signal with desired resolutions.

Empirical Mode Decomposition (EMD) is another method developed for time-frequency
analysis. Proposed by Huang et al. [18] in 1998, it aims to decompose a signal as a mixture
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of components that are well-separated in the time-frequency plane. Each of the compo-
nents can be viewed as a harmonic that has a slowly-varying magnitude. When combined
with the Hilbert transform, it can output the time-varying local frequency component at
each time using phase information. EMD has been applied quite successfully in science
and engineering, for instance, engine vibration [19], earthquake analysis [18] and medical
imaging [2]. Although EMD has proved its powerfulness in signal analysis, its empirical
nature has made it difficult to analyze theoretically. The lack of theoretical background
limits the application of EMD. For instance, EMD fails to separate different frequency
components when there exist “intermittency” in the signal [32], and EMD also has limited
separation capability. All these problems require a theoretical explanation, so that we can
have a quantitative analysis and further improve the method.

EMD procedures rely on the location of local maxima and minima of a signal followed
by interpolation to find upper and lower envelope curves, which are then used to extract a
“mean curve” of a signal. These operations are not only sensitive to noise and error, but
they also present difficulties for a mathematical analysis of EMD. To solve this problem,
we propose a novel PDE-based algorithm as an alternative to EMD algorithm. Our PDE-
based approach replaces the above procedures by simply using the diffusion equation to
construct the mean curve (surface) of a signal (image). This procedure also simplifies the
mathematical analysis.

In this chapter, we will briefly introduce several methods in time-frequency analysis.
These methods, including Fourier transform, wavelet transform and Hilbert transform, are
widely applied in practice. Depending on the application scenario, each method has its
own advantages and its limitations.

The rest of the thesis is organized as follows: Chapter 2 introduces the details of the
classical EMD algorithm. In Chapter 3 are discussed related works that try to build a
theoretical framework for EMD. Chapter 4 introduces our novel method, which applies the
diffusion equation to extract Intrinsic Mode Functions from signal. In Chapter 5 we present
some extensions of the classical EMD method. In Chapter 6 we provide a 2D extension
for the new diffusion-based method. Chapter 7 is the conclusion of the thesis, where the
limitations and potential work of our proposed method are also included.

1.2 Fourier Analysis

The most widely applied method in signal processing has been Fourier analysis. Fourier
analysis decomposes a signal into sinusoids of different frequency components. A periodic
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signal can be expressed in terms of a Fourier series. A non-periodic signal over the entire
real line can be analyzed with Fourier transform.

1.2.1 Fourier Series

A signal f(t) of period T can be expressed as the following Fourier series.

f(t) =
a0

2
+
∞∑
k=1

akcos(kω0t) +
∞∑
k=1

bksin(kω0t), −
T

2
≤ t ≤ T

2
. (1.1)

Here ω0 = 2π
T

is the fundamental angular frequency. The Fourier coefficients for the series
can be obtained as follows:

a0 =
2

T

∫ T/2

−T/2
f(t)dt (1.2)

ak =
2

T

∫ T/2

−T/2
f(t) cos(kω0t)dt , k = 1, 2, 3, ... (1.3)

bk =
2

T

∫ T/2

−T/2
f(t) sin(kω0t)dt , k = 1, 2, 3, ... . (1.4)

In a Hilbert space X, let e1, e2, ..., en be an orthonormal set. Let Sn be the span of these
linearly independent elements ei, 1 ≤ i ≤ n,

Sn = {x ∈ X |x = c1e1 + c2e2 + ...+ cnen} . (1.5)

For an arbitrary element x ∈ X, we aim to find the best approximation v to x in the
subspace Sn, i.e, the closest element within Sn to x measured by the norm on X.

yn = arg min
v∈Sn
||x− v|| . (1.6)

It is well known that the best approximation of x in Sn is given by the unique element

v = c1e1 + c2e2 + ...+ cnen

=
n∑
k=1

ckek , (1.7)

where {ck}nk=1 is the unique set of “Fourier coefficients” given by

ck = 〈x, ek〉, k = 1, 2, ..., n . (1.8)

3



Furthermore, if we have an infinite sequence of orthonormal elements {en}∞n=1, and this
sequence forms a complete basis in H, the best approximation errors will go to zero in
the limit. This means we can represent any element in H with an complete orthonormal
set. The essence of Fourier series is to represent the signal by the orthonormal basis
{ 2
T

sin(mωt), 2
T

cos(nωt)}. According to the analysis above, the Fourier representation of
any signal is unique.

1.2.2 Fourier Transform

For an integrable function f defined on the real line R , the Fourier transform can be
defined as

F (ω) =
1√
2π

∫ ∞
−∞

f(t)e−iωtdt . (1.9)

Its inverse is given by:

f(t) =
1√
2π

∫ ∞
−∞

F (ω)eiωtdω . (1.10)

The discrete Fourier transform (DFT) extends the application to discrete sampled signal.
By employing the following orthonormal basis

ek[n] =
1√
N

exp(
i2πkn

N
) , n = 0, 1, ..., N − 1 , z (1.11)

The DFT of a function f is defined as

F [k] =
1√
N

N−1∑
n=0

f [n] exp(−i2πkn
N

) , k = 0, 1, ..., N − 1 . (1.12)

and the inverse DFT is

f [n] =
1√
N

N−1∑
k=0

F [k] exp(
i2πkn

N
) , n = 0, 1, ..., N − 1 . (1.13)

Fourier transform is widely applied and has become the standard technique to obtain
frequency information about a signal. Despite the success of Fourier transform, it cannot
provide any temporal information of the signal. To retain the time information of a signal,
we introduce the short time Fourier transform, in order to deal with non-stationary signals.
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1.2.3 Short-time Fourier Transform

In STFT, we apply the FFT to finite length possibly overlapping segments of input. Each
segment has a weighted window function applied. A window function is a continuous
function, close to unity at the center and approximate zero-value towards the edges. By
applying an appropriate window function, we can obtain a good localization in both time
and frequency domains. Typical window used includes trianular, raised cosine, Hanning,
etc.

When applying STFT, the signal is multiplied by the window function at a certain
segment. After Fourier transform is done on that segment, the window will be moved to
the next slice and repeat the same operation. STFT can be expressed as follows:

STFTf(ω, b) =
1√
2π

∫ ∞
−∞

f(t)g(t− b)e−iωtdt . (1.14)

where g(t) is the window function, and g(t − b) is the window that applied at location b.
A window function g(t) should be normalized and has zero value outside a certain interval
C, i.e. ∫ ∞

−∞
g(t)dt = 1

g(t) = 0, for |t| ≥ C , (1.15)

The inverse STFT can reconstruct the signal by doing:

f(t) =
1√
2π

∫ ∞
−∞

∫ ∞
−∞

STFTf(ω, b)g(t− b)eiωtdtdω. (1.16)

The shortcoming of the STFT method is that the resolution for the time-frequency spec-
trum has fixed resolution in both time and frequency axes. In frequency spectrum, some-
times high frequency region contains more information compared with low frequency region,
as high frequency components tend to vary faster. Therefore we require higher resolution
for the high frequency components and lower resolution for low frequency components.
The wavelet transform has been developed to tackle this problem.

1.3 Wavelet Transform

Developed by Grossman and Morlet [16], wavelet analysis is a powerful tool which provides
different resolutions for different frequency regions. The purpose of wavelet transform is
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to provide a tool to analyze the non-stationary signal. In wavelet transform, signal will be
decomposed into a series of wavelet basis. A wavelet basis function generally has compact
support, so that it is localized in time and frequency to serve as the basis function. The
essence is wavelet transform is that we form a set of orthonormal basis functions by suitable
scaling and translating the wavelet basis. Therefore using wavelet basis we can represent
frequency spectrum with different resolution.

1.3.1 Continuous Wavelet Transform

Continuous Wavelet transform (CWT) can operate at different scales and positions. Like
the name, the CWT is continuous and can be shifted smoothly over the domain of the
analyzed signal.

The mother wavelet is denoted as ψ(t), and all other wavelets can be expanded by
scaling and translating as follows:

ψa,b =
1√
a
ψ(
t− b
a

). (1.17)

The continuous wavelet transform has the following form:

Wψfa,b =
1√
a

∫ ∞
−∞

f(t)ψ(
t− b
a

)dt, (1.18)

where a, b ∈ R, a 6= 0 is the parameter that controls the scaling, b defines the translation,
and 1√

a
is the normalization factor. After scaling parameter and translating parameter are

chosen, a group of wavelets will be generated according to the a’s and b’s. In this way the
function f(t) is multiplied by the mother wavelet at different locations and scales. The
inverse wavelet transform is given by:

f(t) =
1

2πCψ

∫ ∞
−∞

∫ ∞
−∞

Wψfa,b
a2

ψa,b(t) da db , (1.19)

where

Cψ =

∫ ∞
−∞

|ψ̂(w)|2

|ω|
dω , (1.20)

and ψ̂(ω) is the Fourier transform of ψ(t). Most commonly used wavelets include Haar,
Daubechies [7], Morlet, Mexican Hat. Properly chosen wavelets can decompose signals into
well-behaved signal spaces.
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1.3.2 Discrete Wavelet Transform (DWT)

In contrast to CWT, the discrete wavelet transform (DWT) of a discrete signal employs
discrete frequencies and is more efficient. The major difference between CWT and DWT
is that DWT uses frequency only in the octave. Specifically a and b will be replaced by
aj = 1

2j
and b = kaj for some j, k ∈ Z,

DWTψf [n] =
1
√
aj

∑
k

f [k]ψ(
n− kaj
aj

) . (1.21)

In practice, DWT implementation will introduce pairs of high-pass and low-pass filters at
each scaling stage of the transform. DWT is computationally less expensive, and has been
widely applied in signal compression.

Wavelet makes it possible to have a good resolution in both time and frequency domain,
However, the performance highly depends on the mother wavelet that we choose. It is hard
to select the most appropriate wavelet for the specific signal, and sometimes it requires
prior knowledge of the frequency component to find the best wavelet.

1.4 Hilbert Transform

The Hilbert transform of a function u(x), x ∈ R, is defined as follows

H(u)(x) =
1

π

∫ ∞
−∞

u(s)

x− s
ds . (1.22)

Note that H(x) may be viewed as a convolution between u(x) and the so-called “Cauchy
kernel” h(x) = 1

πx
. Hilbert transform is a transform that have a simple representation

of frequency components, and it preserves the positive frequency component and negate
the negative frequency component. In addition, it has a relationship with the Fourier
transform. Following the discussion in [3, 29], suppose we have two functions

f(x) =

∫ ∞
0

[a(t) cosxt+ b(t) sinxt]dt

g(x) = −
∫ ∞

0

[b(t) cosxt− a(t) sinxt]dt .

7



Refer to Section 1.2.1, expansion functions a(t) and b(t) can be expressed as,

a(t) =
1

π

∫ ∞
−∞

f(u) cos tu du

=
1

2π
[

∫ ∞
−∞

f(u)eitudu+

∫ ∞
−∞

f(u)e−itudu]

=
1√
2π

[F (−t) + F (t)] , (1.23)

where F (t) is the Fourier transform of f(t). Similarly,

b(t) =
1

i
√

2π
[F (−t)− F (t)] . (1.24)

Then substitute the result into the expansion of g(x),

g(x) = − 1√
2π

−1

i

∫ ∞
0

[F (u)− F (−u)] cosux+
1√
2π

∫ ∞
0

[F (u) + F (−u)] sinux

= − i√
2π

∫ ∞
0

F (u)[cosux+ i sinux]du+
i√
2π

∫ ∞
0

F (−u)[cosux− i sinux] du

= − i√
2π

∫ ∞
0

F (u)eiuxdu+
i√
2π

∫ ∞
0

F (−u)e−iux du

= − i√
2π

∫ ∞
−∞

F (u)sgn(u)eiuxdu . (1.25)

Here sgn(x) function is defined as

sgn(x) =

{
−1 x < 0,

1 x ≥ 0.
(1.26)

Let G(u) be the Fourier transform of g(x), then in the frequency domain Equation (1.25)
becomes

G(u) = −iF (u)sgn(u) . (1.27)

We know the inverse Fourier transform of −isgn(u) is
√

2
π

1
x
, therefore we arrive at conclu-

sion that g(x) is the Hilbert transform of f(x) using the Convolution theorem,

g(x) =
1

π

∫ ∞
−∞

f(s)

x− s
ds . (1.28)
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From Equation (1.27) we can conclude the relationship between Hilbert transform and
Fourier transform. Hilbert transform has the effect of shifting phase of the negative fre-
quency components by π

2
, and positive frequency components by −π

2
. With the help of

Hilbert transform, we can transform the signal to a analytical form.

1.4.1 Analytic Signals and Instantaneous Frequency

Hilbert transform can be used to derive the analytic representation of the signal. Specifi-
cally,

sa(t) = s(t) + jŝ(t) , (1.29)

where sa is the analytic signal, and ŝ(t) = H[s(t)] is the Hilbert transform of s(t). We can
express analytic form of the signal in the standard polar form as follows,

sa(t) = A(t)ejφ(t) , (1.30)

where A(t) is amplitude as a function of time (also called envelope signal of s(t)), and φ(t)
contains the phase information.

φ(t) = arctan[
ŝ(t)

s(t)
] . (1.31)

Bendar and Pierson [3] defines the instantaneous frequency f0 of a signal at time t as
follows,

f0(t) =
1

2π

dφ(t)

dt
, (1.32)

and the instantaneous angular frequency of s(t) is defined as

ω(t) =
dφ(t)

dt
. (1.33)

1.4.2 Hilbert Huang Transform (HHT)

To obtain instantaneous frequencies with physical meaning, signals need to obey some re-
strictions. For instance, signals cannot contain any intermittency, and the frequency com-
ponents should be well-separated. For multi-components signals, we need to pre-process
the signals to separate several parts that is applicable to Hilbert Transform. Empirical
mode decomposition (EMD) is proposed by Huang, et al. [18] to solve this problem. The
EMD and Hilbert transform are referred as Hilbert-Huang transform (HHT).
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HHT provides a novel data-driven method to analyze the non-stationary signals in the
time-frequency domain. It has proved its great precision for mono-component signals. Sig-
nals will first be decomposed by the EMD into several Intrinsic Mode Functions (IMFs).
Then we apply the Hilbert transform to each IMF to calculate the instantaneous frequen-
cies. We can then present the time-frequency analysis result in the Hilbert spectrum. The
detail of this algorithm will be introduced in the next chapter.
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Chapter 2

Empirical Mode Decomposition

2.1 EMD Introduction

Huang et al. [18] introduced the empirical mode decomposition (EMD) in 1998 as a tool
to analyze linear and non-stationary signals. EMD has been applied quite successfully in
science and engineering. It treats a signal as a mixture of components and applies a sifting
process to separate different modes of oscillation which are referred to as Intrinsic Mode
Functions (IMF). EMD is essentially a decomposition algorithm that extracts the highest
local frequency components from the signal for each IMF. A repeated application produces
decomposition of a signal into of components with decreasing frequency. The Hilbert
transform is then applied to each component to determine instantaneous frequencies. The
results can then be combined to produce a local time-frequency analysis of the signal
(Hilbert Spectrum) .

EMD allows us to process transient signals more accurately than Fourier-based meth-
ods. Fourier analysis is limited by the uncertainty principle, which means we can only get
limited precision on time and frequency. Instantaneous frequency can present the transient
signal with precise locality, but the problem of instantaneous frequency is, as shown in the
previous chapter, that we can only obtain one single IF value for each time frame. EMD
enables us to decompose signals into IMFs, so that we can obtain multiple instantaneous
frequencies for different IMFs. Furthermore, EMD provides an alternative approach to the
signal analysis. It can adaptively decompose signals and it is able to reveal the physical
nature behind it.
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2.1.1 Algorithm Description

The details of the EMD algorithm are described below. First of all, we need to detect
the local maxima and minima as the local identity of the signal. Then we interpolate the
local extrema with a cubic spline, thus, we obtain two curves: upper envelope and lower
envelope. By taking the average of these two envelopes, we have the “mean envelope”,
which can reflect the oscillation of the low frequency components. The mean envelope
will be subtracted from the initial signal, and the same process will be repeated on the
remainder until it satisfies stop criterion of IMF. This procedure is called “sifting process”.
The stop criterion of IMF defined in the classic EMD is two-fold [18]:

1. The local mean of the envelopes obtained from local maxima and minima should be
zero, implying the IMF is supposed to have zero local mean.

2. The number of local extrema and the number of zero-crossings must differ by at most
one.

We will decompose the a signal s(x) into several IMFs by iterating the sifting process.
The result is as follows,

s(x) = rk(x) +
K∑
k=1

IMFk(x) , (2.1)

where rk(x) represents the residual, and IMFk represents the kth order IMF. The classical
EMD algorithm may be summarized as follows:

1. Find all local maximal and minimal points of the signal S(x).

2. Interpolate between maximal points to obtain upper envelope function
Eupper(x) and between minimal points to obtain lower envelope function Elower(x).

3. Compute the mean envelope: m(x) = 1
2
(Eupper(x) + Elower(x)).

4. Extract mean from signal: c(x) = S(x)−m(x).

5. If c(x) is not an IMF, iterate Step 3 and 4 until it is.

6. After finding IMF, subtract it from S(x) and repeat Step 2 to obtain the
residual.

Figure 2.1 demonstrates how the mean envelope is obtained from the extrema. After
obtaining the IMFs, we analyze the IMF by using its Hilbert transform. Recall that

12



Figure 2.1: Mean envelope demonstration
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Hilbert transform on a real function u(t), H(u)(t), is defined as

H(u)(t) =
1

π

∫ ∞
−∞

u(τ)

t− τ
dτ, (2.2)

With Hilbert transform, we can have the analytic form of the signal Z(t)

Z(t) = u(t) + iH(u)(t) = A(t)eiθ(t) (2.3)

where {
A(t) = [u2(t) +H2(u)(t)]1/2

θ(t) = arctan(H(u)(t)
u(t)

),
(2.4)

Refer to Equation (1.33) instantaneous angular frequency is ω = dθ
dt

. For any function to
have a meaningful instantaneous frequency, the real part of its Fourier transform has to be
a positive frequency. A simple example is a pure tone signal:

u(t) = sin(ωt). (2.5)

Its Hilbert transform is simply cos(ωt). So that the analytical form is that

Z(t) = sin(ωt) + i cos(ωt) = eiωt (2.6)

The instantaneous frequency of this pure tone is d(ωt)
dt

= ω, as expected.

Next step we construct the Hilbert Spectrum(HS) with the instantaneous frequencies
[22]. HS will represent the frequency energy distribution as a function of time and frequency
H(l, t). To construct the HS, we divide the frequency into L equally spaced bins (L can
be anything up to Nyquist limit). The overall HS is expressed as the superposition of the
HSs of all the individual IMFs. Hence, every element in H(l, t) is defined as the weighted
sum of the instantaneous amplitudes at lth frequency bin, i.e.

H(l, t) =
K∑
k=1

Ak(t)B
l
k(t) , (2.7)

where K is the number of IMFs, Am(t) is the instantaneous amplitude of kth IMF, and
Bl
k(t) is the weighting factor. Bl

k(t) takes value 1 if the instantaneous frequency falls into
the lth frequency bin. After this computation, we will construct the HS H(l, t) as a 2D
matrix with same time resolution as the sampling rate and frequency resolution decided
by L (up to Nyquist limit).
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The marginal Hilbert spectrum is the cumulated frequency energy over the whole time
span. It can be calculated by

Hms =
T∑
t=1

H(l, t) , (2.8)

where T is the time length. Marginal Hilbert spectrum (MHS) is a different spectrum rep-
resentation compared with Fourier spectrum. As in Fourier transform, energy in frequency
bin means there exist a sinusoid; however in MHS, the existence of energy in a particular
frequency bin only means that, over the entire data span, there is higher likelihood for
such a wave to appear locally.

2.2 Drawbacks/Disadvantages

In application, the frequency analysis tool EMD can adaptively process transient signals.
However, it suffers from several problems which need further exploration. In this section
we state some of the open problems that exist in EMD method. Our discussion is based
partly on the work of Huang [17, 32].

2.2.1 Lack of Mathematical Interpretation

Because most of the work on EMD has focused on algorithms as opposed to mathematical
analysis, there has been little work on developing a rigorous theoretical basis for EMD
as well as an understanding of why it fails for certain kinds of signals. The need for a
mathematical model which explains the principle of EMD and provides a description of
the region where it can work effectively has been the motivation for this work. One major
obstacle for mathematical modelling of EMD is the interpolation process employed by
the algorithm. A rather large number of variables are involved during the interpolation
process, and the mathematical expression we obtain during the interpolation is actually
piecewise. Since there are multiple intervals between extrema, it is difficult to reveal the
mathematical relationship hidden behind the scenes. This, plus the fact that iteration is
involved, make it difficult to arrive at an accurate expression in the model.

2.2.2 Vague Definition

The vague definition of IMF brings obstacles in its implementation. In the definition
of a IMF, the number of extrema and zero-crossings cannot differ by more than one.
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Additionally, the “local mean” of the IMF should be close to zero. The lack of a rigorous
definition of IMF makes it difficult to optimize EMD method. Different criteria may
generate slightly different sets of IMFs. Moreover, the vague definition makes the sifting
process hard to control. We do not know which set of sifting parameters can generate
the best IMF set, and we cannot guarantee the uniqueness of IMF. Most of the time, the
stopping criterion is chosen empirically, therefore the IMF obtained may vary depending on
the parameters. Although such problems exist, they do not affect the analysis considerably,
since the results produced by different parameter sets are quite similar.

2.2.3 Boundary Effects

Unavoidably, all data-driven signal analysis methods have boundary effects. In terms of
the EMD method, since the interpolation is applied on the global data, interruption of
part of the signal can propagate into other parts, and therefore affect the entire output
[20]. The the problem is severe when we process short signals.

Proper boundary conditions need to be considered in order to minimize error. Otherwise
the mean envelope obtained by EMD is perturbed at the border. If the iteration number
is large, the error near the border may be propagated throughout the entire signal. One
possible solution is to add a window frame to extend data beyond the existing range [18],
so that the interpolation process can extract some information from all the data available.
In practice, the extension of data, however, is difficult. Most of the time the signal is
non-stationary, and it is difficult to estimate the accuracy of our prediction. Therefore,
the problem is still a challenging one, and a satisfactory solution needs further exploration.
Figure 2.2 shows the error propagation in the IMF extraction process.

2.2.4 Sampling Effect

In practice signals are discrete, and EMD is generally applied to signals that are “well-
sampled” (oversampling). As mentioned in [23], if the sampling rate fs is not sufficiently
large, sampling effects will make the analysis much more complicated and cause a loss of
accuracy. The natural requirement of sampling is that the discrete signal has to preserve
extrema as they play a significant role in EMD algorithm. Suppose the minimal distance
between extrema is ∆, then the sampling frequency has to satisfy the condition

fs > 2/∆ . (2.9)
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Figure 2.2: EMD decomposition on signal x(t) and its boundary effect. Adapted from
“Elimination of end effects in empirical mode decomposition by mirror image coupled with
support vector regression”, by D. C. Lin and Z. L. Guo and F. P. Ang and F. L. Zeng, 2012,
Mechanical Systems and Signal Processing, 31 , p. 13–28. Copyright (2018) by Elsevier.
Adapted with permission.

17



2.2.5 Mode Mixing

There are some kinds of signals, however, for which the sifting process fails to separate into
different oscillatory modes. “Mode mixing”, a consequence of signal intermittency, first
noticed by Huang et al. [32], is one such case. Specifically, portions of signal components
are distributed over multiple IMFs. The intermittency contained in the signal can cause
serious aliasing in the time-frequency representation, and make the IMF obtained by EMD
devoid of physical meaning. Whenever the signal contains riding waves, some frequency
components will vanish after performing EMD. This phenomenon results from the interpo-
lation process of the EMD algorithm as it depends on solely extrema. Different frequency
components that are concatenated in a piece of signal can have extrema of approximately
the same amplitude level, so these different frequency components can be falsely recognized
as one in EMD algorithm. Figure 2.3 shows the mode mixing phenomenon that existed
in EMD algorithm. To solve this problem, Huang introduced a new method called ensem-
ble empirical mode decomposition (EEMD) [32]. It is using noise-assisted data analysis,
which defines the true IMF as the mean of an ensemble of signal adding white noise of
finite amplitude. The details of the EEMD method is discussed in Section 5.1.

2.2.6 Frequency Resolution

As studied by Flandrin et al. [25], for combination of two pure tones, the signals relation
af 2 < 1 is necessary in order to obtain a reasonable decomposition result. Here a and
f represent the amplitude and frequency ratios of the corresponding tones. That ratio
limits the separation capability of EMD when dealing with different frequency components.
Therefore, it is necessary to improve the separation ability so that EMD can have a better
resolution for frequency analysis.

2.3 EMD Application and Demonstration

In this section, we will present a demonstration of the EMD algorithm [18] along with the
Hilbert spectrum analysis.
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Figure 2.3: Mode-mixing demonstration. From top to bottom are: the signal, IMF1 of the
signal, IMF2 of the signal and the residual.
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2.3.1 EMD Demonstration on a Synthetic Signal

This example uses a simple synthetic signal that consists of three monotone sinusoids of
the expression:

x(t) = 0.5 cos(20πt) + 2 cos(8πt) + 0.8 cos(0.5πt) (2.10)

It is clear from the Figure 2.4 that EMD decomposes the signal from higher to lower
frequency components. The separation ability of the EMD will be discussed in the later
chapters using this signal sample.

Figure 2.4: IMF demo of three oscillating monotones in Equation (2.10)
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2.3.2 Hilbert Spectrum Demonstration

In Figure 2.5, we represent the pure tone (90 Hz with 1kHz sampling rate) by marginal
spectra. This figure shows the difference between Fourier and marginal Hilbert spectra. It
is apparent that Hilbert spectrum introduce less amount of cross-spectral energy, compared
with the STFT based spectra representation. Due to the end effect and frequency leakage
phenomenon in Fourier based TF representation, it cannot represent the proper frequency
localization. On the contrary, the frequency representation in marginal Hilbert spectrum
is still sharp, and define the carrier frequency more clearly. Therefore Hilbert spectrum
may better reflect the spatial and frequency information.

Figure 2.5: Comparison of Marginal Hilbert spectrum (solid line) and STFT (dashed line)
based TF representation
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2.3.3 EMD Applications

EMD has been widely applied in signal analysis areas, one great example is the application
in the field of geophysics, especially when dealing with seismic signals. As it is mentioned
in [18] by Huang et al, the Hilbert spectral representation for an earthquake can reveal
the physical nature (both linear and nonlinear) of the phenomenon. They showed that
Fourier based method underrepresented low-frequency energy for highly non-stationary
signal. This is a problem when analyzing the earthquake phenomenon, as seismic waves
are definitely non-stationary, and their low-frequency components contain more physics
information. By applying the Hilbert-Huang transform, geophysicists can investigate the
seismic waves at different scales. They reported success for applying EMD to reflected
seismic waves [30] and seismic waves propagation [33].

Other applications include fault diagnosis in rotating machinery [19], short-term wind
speed forecasting [31]. Also in the medical field, like EEG seizure detection[2] and EEG
synchronization detection[28]. It should be noted that the mentioned examples are only a
fraction of the application scenario that EMD can do.

22



Chapter 3

EMD Related Theoretical Framework

3.1 Backward Heat Equation

As mentioned earlier, interpolation is the major obstacle in the mathematical modelling
of EMD. A PDE approach was proposed in [10, 11] to overcome this obstacle. Here, for a
prescribed δ > 0, the upper and lower envelopes of a function h(x) are defined as follows,

Uδ(x) = sup
|y|<δ

h(x+ y)

Lδ(x) = inf
|y|<δ

h(x+ y) . (3.1)

Assume that h(x) is sufficiently differentiable, Taylor expansions are applied to the en-
velopes so that the mean envelope is defined as

mδ(x) =
1

2
(Uδ(x) + Lδ(x)) ≈ h(x) +

δ2

2
h

′′
(x) . (3.2)

The sifting process – the process to obtain the Intrinsic Mode Function (IMF) – is then
defined as follows,

hn+1(x) = hn(x)−mδ(x)

h0(x) = S(x) . (3.3)

For a ∆t > 0, the following Taylor expansion in t is employed,

hn+1 = hn(x, t+ ∆t) = hn + ∆t
∂h

∂t
+O(∆t2) . (3.4)
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The authors finally arrive at the following PDE,

∂h

∂t
+

1

δ2
h+

1

2

∂2h

∂x2
= 0

h(x, 0) = S(x) , (3.5)

which is a backward heat equation since the diffusivity constant is negative. (Note that the
initial condition, h(x, 0), to this PDE is the original signal S(x).) Unfortunately, there are
several drawbacks for this approach:

1. The parameter δ, which is chosen empirically, has a significant influence on the result.
For a generalized signal s =

∑
k Ak cos(ωkx+ φk), the solution is

h(x, T ) =
∑
k

e(
ω2k
2
− 1
δ2

)TAk cos(ωkx+ φk) . (3.6)

As T increases, the amplitudes of components with lower frequencies ω <
√

2
δ

will
be decreased at each step and therefore vanish at the end of the algorithm. Only
the higher frequencies ω ≥

√
2
δ

survive. Therefore, choosing δ requires an additional
knowledge of the signal.

2. Even if we extract the desired frequency component from the signal, we cannot
guarantee that the amplitude of the component is correct. The amplitude of the
frequency signals will change according to their frequencies. In order to distinguish
two frequency components, one sometimes has to decrease their amplitudes to very
small values.

3. As mentioned earlier, Equation (3.5) is a backward heat/diffusion equation. Because
the diffusivity parameter is negative, the evolution of a signal will be opposite to that
of a signal under the standard (forward) diffusion PDE – signals become less smooth
and local amplitudes grow exponentially. Especially for sampled signal that is not
smooth enough, the backward diffusion equation will cause the signal to lose the
physical meaning during the “backward diffusion” process. As expected, numerical
methods of this PDE also suffer from instability, and sometimes the output explodes
exponentially.

3.2 Long-ranged Diffusion

Interpolation makes it hard to express the sifting process mathematically. As in inter-
polation, excessive number of variables are introduced, thus making it hard to find their
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relationships. In 2005, Niang et al. [9] proposed a new way that tries to solve this prob-
lem. They use a fourth-order non-linear equation as the interpolator to simulate the spline
interpolation of upper and lower envelope. By controlling the nonlinear terms, the authors
use the envelopes obtained by diffusion to replace the ones obtain by interpolation in the
classical EMD algorithm. The equation – a long-ranged diffusion (LRD) equation – they
use is as follows:

∂h(x, t)

∂t
=

∂

∂x
[g±(x, t)

∂3h(x, t)

∂x3
]

h(x, 0) = S(x) , (3.7)

where g(x, t) is the nonlinear diffusivity function that depends on positions and derivatives
( characteristics of extrema ). The stopping functions depend on first and second order
signal derivatives. The stopping function that selected by the author is

g±(x) =
1

3
[|sgn(δ1

xs0(x))| ± sgn(δ2
xs0(x) + 1]. (3.8)

The sign function is not differentiable, so we need a function to approximate the sign
function. A possible expression is given by a regularized version.

sgn(z) =
2

π
arctan(πz/a) (3.9)

We know that at extrema, the first derivative is zero, and the second derivative is positive
for maxima (negative for minima). The stopping function is designed to use derivatives such
that, g+(x) is set to be zero at maxima, and g− = 0 at minima of the signal. So the PDE
solution will diffuse everywhere except on the extrema of the signal. The solution of this
fourth-order PDE will converge to the asymptotic solution s+

∞(x) (similarly s−∞(x)), which
is the polynomial interpolation of the successive maxima(or minima) of a signal. Therefore
we can replace the interpolation process by this PDE. We can obtain the envelopes by a
coupled PDE:

∂h+(x, t)

∂t
=

∂

∂x
[g+(x, t)

∂3h+(x, t)

∂x3
]

∂h−(x, t)

∂t
=

∂

∂x
[g−(x, t)

∂3h−(x, t)

∂x3
] . (3.10)

The asymptotic solutions h+
∞(x) and h−∞(x) are the upper and lower envelopes for this

method. Therefore the mean envelope here:

h∞ =
1

2
[h+
∞(x) + h−∞(x)] . (3.11)

25



The rest of the process is similar to the classic EMD. Mean envelopes are calculated through
the proposed PDE, and then are subtracted from the original signals until the residue satisfy
the IMF condition. The process will be repeated iteratively until we decompose the signals
into numerous IMFs.

3.3 Synchrosqueezed Wavelet

Daubechies [8] proposed an EMD-like wavelet transform as an alternative way to under-
stand the EMD algorithm. The synchrosqueezed wavelet works as a powerful tool for
time-frequency representation with solid theory. This method has rigorously expressed
the IMFs with clear mathematical expressions. It reveals that only when the signal satis-
fies certain conditions, the mixture of different frequency components can be separable .
This algorithm employs wavelet analysis and reallocation method and provides a precise
mathematical expression for a series of separable harmonic components in the signal. The
synchrosqueezed method will estimate the FM-demodulated frequency from the wavelet
representation before performing reassignment. Essentially, the algorithm is designed to
decompose signals into time-varying oscillations. Signal s(t) is assumed to have the general
form

s(t) =
K∑
k=1

Ak(t)cos(2πφk(t)) + e(t) . (3.12)

Here e(t) represents the error or the residual. The synchrosqueezed wavelet transform will
manage to recover each oscillation component (both the amplitude Ak and the instanta-
neous frequency φ′(k)). The synchrosqueezed transform mainly consists of three steps [4],
First take CWT Ws of the signal s(t), then give an initial estimate of the FM-demodulated
frequency by differentiation. Finally, we use that estimate to squeeze Ws via assignment.
For the first step we take the CWT,

Ws(a, b) =

∫
s(t)a−1/2ψ(

t− b
a

)dt , (3.13)

where ψ is an appropriately chosen wavelet. Here Ws(a, b) are the coefficients represent-
ing the time-frequency spectrum. Following the idea of EMD algorithm, we reallocate
the Ws(a, b) to “sharpen” the frequency representation. Take derivative of the wavelet
representation to obtain the instantaneous frequency.

ωs(a, b) =

{
−i∂bWs(a,b)
Ws(a,b)

, |Ws(a, b)| > 0

∞, |Ws(a, b)| = 0 .
(3.14)
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This transform is called the synchrosqueezed transform.

Consider the following simple example of a pure tone harmonic signal

s(t) = A cos(ωt) , (3.15)

with the Fourier transform of ŝ(t)

ŝ(t) = πA[δ(ξ − ω) + δ(ξ + ω)] . (3.16)

By Plancherel’s Theorem, we can rewrite the CWT of s(t) as :

Ws(a, b) =
1

2π

∫
ŝ(ξ)a1/2φ̂(aξ)eibξdξ (3.17)

=
A

4π

∫
[δ(ξ − ω) + δ(ξ + ω)]a1/2φ̂(aξ)eibξdξ (3.18)

=
A

4π
a1/2φ̂(aω)eibω , (3.19)

where φ̂(aξ) is the Fourier transform of φ(aξ) The instantaneous frequency ωs(a, b) can
be computed as the derivative of the CWT at any point (a,b) with respect to b, for all
Ws(a, b) 6= 0. The result is ω as desired.

ωs(a, b) =
−i

Ws(a, b)

∂Ws(a, b)

∂b
= ω . (3.20)

By applying the above transform to every (a, b) points, we obtain the desired information
in time-frequency space. Every point (b, a) is converted to (b, ωs(a, b)). The final step is
to reassign energy according to the map (b, a)→ (ωs(a, b), b). Follow the inverse CWT we
have

s(b) = 2R−1
ψ Re(

∫ ∞
0

Ws(a, b)a
−3/2)da) , (3.21)

where R−1
ψ =

√
2π

∫∞
0
ξ−1ψ̂(ξ)dξ is the normalizing parameter. Then we squeeze the

frequency representation using the estimate ωs. Define the frequency divisions such that
{ωl}∞0 , and ωl+1 > ωl for all l. In addition, we define Ωl as the set of points ω closer to ωl
than to any other ω′l. The Discrete Wavelet Synchrosqueezed transform of s is then defined
as,

Ts(ωl, b) =

∫
a:ωs(a,b)∈Ωl

Ws(a, b)a
−3/2da . (3.22)
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Chapter 4

Forward Diffusion EMD

In this chapter a novel forward diffusion EMD is proposed as a new theoretical framework
for EMD algorithm with the purpose of overcoming the shortcomings of EMD and provid-
ing a theoretical analysis at the same time. The modified decomposition method increases
the speed of computation. Additionally, the new method can overcome the “mode-mixing”
issue that existed in the classical EMD. We present this algorithm in both PDE imple-
mentation and convolution implementation, and apply the new method to several typical
signals to demonstrate its performance. Finally, we provide some results of this method,
along with a comparison of the computational times of different implementations.

4.1 Proposed New Work

Traditionally EMD applies the cubic spline interpolation in the sifting process. These
procedures are time-consuming and sensitive to error and noise. It also lacks concise
mathematical expressions (the expression is piecewise polynomials). Our new method
was proposed based on the backward method mentioned in the previous chapter [10]. It
is also proposed to overcome the shortcoming of the backward heat equation (numerical
instability) and provide a replacement to the cubic spline. Our method is based on the
intuition that the mean curve m(x) should pass through inflection points of the signal.
In fact, the Equation (3.2) verifies the intuition. For a signal h(x), when x is a point
of inflection the mean curve mδ(x) ≈ h(x), and the maxima and minima are pushed
downwards and upwards, respectively. This motivates an iterative procedure that is simply
driven by the second derivative term h′′(x). For a prescribed τ > 0, let

hn(x) = h(x, nτ), n = 0, 1, 2, ... , (4.1)
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similarly to backward equation derivation, we then define the iteration procedure,

hn+1 = hn + C
∂2hn
∂x2

. (4.2)

Now apply the following Taylor expansion to hn+1,

hn+1(x) = h(x, nτ + τ)

= h(x, nτ) + τ
∂h

∂t
(x, nτ) +O(τ 2)

= hn(x) + τ
∂hn
∂t

+O(τ 2) . (4.3)

Comparing Equation (4.2) and Equation (4.3), we arrive at

τ
∂h

∂t
+O(τ 2) = C

∂2h

∂x2
. (4.4)

Now assume C = aτ , divide by τ and let τ → 0 to obtain

∂h

∂t
= a

∂2h

∂x2

h(x, 0) = S(x) , (4.5)

For prescribed values of the diffusivity constant a > 0 and time T > 0 (both of which can
be adjusted and will be discussed in the later section), we define the mean function of S(x)
as

m(x) = h(x, T ) , (4.6)

which is the solution of the initial value problem in Equation (4.5) at time T . Note that
m(x) is equivalent to the convolution of S(x) with the Gaussian function with standard
deviation a when S(x) is infinitely long. Figure 4.1 demonstrates the mean envelope ex-
traction in our new method. To further explain this, we refer to the Section 2.1.1, Step 2
and 3. When extracting the envelopes, instead of taking the average of two envelopes, a
forward heat equation is introduced to construct a mean envelope. Thus we can avoid the
interpolation process in the sifting process. The forward diffusion equation will not lose
smoothness during the diffusion process. This mean envelope can be viewed as the result
of passing the signal through a smooth filter - in this case, a Gaussian filter. Figure 4.2 is
a demonstration of how diffusion will affect the shape of a square wave. The rest of the
steps are similar to the classical EMD. After extracting the mean envelope from the signal,
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Figure 4.1: Mean Envelope Obtained by Forward Heat Equation
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Figure 4.2: Diffusion effect on a square wave with different temperatures
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subtract the mean and check whether the result satisfies the IMF condition. Note that in
our new method we do not involve the extrema condition when determining IMFs. We
will only check the first condition, which states that the mean function should have a zero
local mean. . If the result is not a IMF, keep repeating the above process until it is. The
same process will be iteratively to the signal, so that the signal will be decomposed into
IMFs and residue. The modified algorithm proceeds as follows:

1. Initialize: Let n = 0 and set h0(x, 0) = S(x).

2. Find mean of hn(x, 0): Solve the PDE in Equation (4.5) for hn(x, t) for
0 ≤ t ≤ T . Then define mn(x) = hn(x, T ).

3. Extract mean: Define cn(x) = hn(x, 0)− hn(x, T ).

4. If cn is not an IMF, let hn+1(x, 0) = cn(x), n→ n+ 1 and go to Step 2.

Our method clearly differs from other EMD algorithms since it bypasses (i) the complicated
procedure of extracting local maxima and minima of a signal as well as (ii) the interpola-
tions of these points to obtain upper and lower envelopes. Instead, the mean curve m(x)
is obtained directly from the signal by means of smoothing. Unlike the backward heat
equation in Equation (3.5), the PDE employed in our EMD procedure is a forward heat
equation. As it is well known, forward diffusion is numerically more stable than backward
diffusion. Niang’s fourth-order PDE in Equation (3.7) could be viewed as quite similar to
our second-order PDE. However, as a fourth-order diffusion PDE, it will generate signif-
icantly more error when dealing with noise in image signals. As such, our second-order
PDE should capture the local features of images more effectively.
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4.2 Mathematical Explanation of EMD and Its Lim-

itations

4.2.1 Forward PDE Interpretation of EMD

Here we consider the following simple model which is sufficiently general to represent many
realistic signals in practice, a signal S(x) consists of numerous sinusoids.

S(x) =
K∑
k=1

Akcos(ωkx+ φk) + C

=
K∑
k=1

sk(x) + C . (4.7)

Solving Equation (4.5) for first mean envelope PDE, we obtain the expression for mean
envelope:

ma(x, T ) =
K∑
k=1

e−aω
2
kT sk + C (4.8)

After N iterations, our modified EMD algorithm yields the following result for the kth
cosine component sk(x),

hk,N = (1− e−aω2
kT )hk,N−1

= (1− e−aω2
kT )Nsk . (4.9)

Now suppose, without loss of generality, that ω1 < ω2 < · · · < ωK = ωmax. It is easy to
show that for N sufficiently large,

hN =
K∑
k=1

(1− e−aω2
kT )Nsk

' (1− e−aω2
KT )NsK

' sK , (4.10)

where the final approximation is valid for T sufficiently large. By choosing the appropriate
set of parameters, the IMF extracted after N iterations will be (at least approximately)
the highest-frequency component (HF) sK . This explains the behavior of the EMD, signals
will be decomposed into IMFs that contain frequency components from high to low if we
repeat the process.
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4.2.2 View of Filter

As stated by Flandrin [12, 13], by experimenting on Gaussian noise and calculate the
transfer function, the EMD algorithm is equivalent to a set of filter banks, which is justified
in our PDE method. In each iteration of our PDE approach, the mean of the signal is
obtained by passing it through a low-pass filter. Subsequent subtraction of the mean from
the signal is therefore equivalent to passing it through a high-pass filter.

4.3 Parameter Selection

4.3.1 How to Choose Parameter a

Parameter a is crucial when determining the mean envelope so it must be carefully chosen.
It controls how far we want to diffuse the signal. We want the “mean curve” obtained
by diffusion to be close to the “mean curve” obtained by extrema. We want to ensure
that the mean envelope is always within the range of the signal amplitude. Without loss
of generality, we consider a pure tone of unit amplitude s(x) = cos(ωx). Solving PDE in
Equation (4.5) yields the envelope

m(x) = −aω2 cos(ωx) .

To converge, it is necessary that a ≤ 1
ω2 . As mentioned in [23], if the sampling rate fs

is not sufficiently large, sampling effects will cause a loss of accuracy. We must assume
that fmax, the maximum frequency to be extracted, satisfies fmax <

1
2
fs. This implies that

1
π2f2s

< 1
ω2
max

. It is then safe to set a = 1
π2f2s

. Ideally the parameter a should be set to

a = 1
ω2
max

. There are two practical approach to estimate a:

1. Autocorrelation: The equation of autocorrelation for a discrete signal is

Ryy(l) =
∑
n∈z

y(n)ȳ(n− l) (4.11)

Calculate the autocorrelation of the signal, and then use the result to estimate the
highest frequency component within the signal.

2. Zero-crossing rate: Use zero-crossing rate to estimate the parameter a. Suppose the
shortest distance between zeros crossings is L for the signal, then we estimate the
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maximal frequency to be

a =
1

ω2
max

=
1

4πf 2
max

=
(2L)2

4π2
(4.12)

=
L2

π2
. (4.13)

Of course, without prior information, these approaches can only provide an approximation
to our parameter selection. But for most of the signals that contain limited number of
frequency components, these two approaches can generate reasonable results.

4.3.2 Performance Measure of the Separation Ability

As shown in [25], the capability of separation for EMD algorithm is limited. By applying
EMD to mixtures of two cosine signals, we can examine the separation capability for
different frequency component ratios. Consider a signal composed of two tones:

S(x) = s1(x) + s2(x) , (4.14)

where

s1(x) = cos(2πx) (4.15)

s2(x) = α cos(2πfx) , (4.16)

and here α is the amplitude ratio and α ∈ (10−2, 102) and f is the frequency ratio, with
the range f ∈ (0, 1). We use the following performance measure for separation capability:

PM =
||IMF1 − cos(2πx)||2
|| cos(2πx)||2

. (4.17)

Here IMF1 represents the first IMF extracted by the algorithm. A perfect separation yields
PM = 0 as the first IMF is the highest frequency component cos(2πx). In general, the
smaller the performance measure, the better is the signal decomposition quality.

The results are presented in Figure 4.3. It should be noted that the performance of
our PDE approach is similar to that of the classical EMD method. Our new proposed
method still has the difficulty extracting two closely spaced frequency components when
the lower frequency component dominates in the signal. A natural solution (compensation)
to this problem is to attenuate the lower frequency component, so that two tones will have
comparable amplitudes and can be separated by the EMD-based method. On the other
hand, if one tone dominates the other, it is acceptable for us to ignore the one with relatively
low amplitude, as we can regard it as the noise of the signal.
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Figure 4.3: Top: Performance Measure Regarding α and f for classical EMD. Bottom:
Performance Measure Regarding α and f for forward-PDE approach.
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4.3.3 The Pair of Parameters T and N

The parameters a and T determine the shape of the mean curve, and N represents the
number of iterations. As shown in Section 4.3.2, the frequency resolution depends on the
separation capability of the algorithm. In order to control the separation performance of
our algorithm, we impose the variable δ to represents the amplitude ratio between the
target frequency component and undesired frequency component. Suppose our target is
the frequency component with angular frequency ω, and the undesired component is the
one with rω, where 0 < r < 1 denotes the ratio between two frequency components
(lower/higher). Refer to Equation (4.9), after being decomposed by our algorithm, δ can
be expressed as follows,

δ =

[
1− e−ar2ω2T

1− e−aω2T

]N
. (4.18)

Assume that e−aω
2

= ε, where ε should be a value close to zero. δ can be simplified as,

δ =

[
1− εr2T

1− εT

]N
. (4.19)

and we aim to adjust our parameter set T,N such that (i) δ is close to zero (meaning we
can separate the desired target frequency component). (ii) r should be close to 1 (meaning
we can separate the target even the two frequency components are very close).

We define r0 as the cutoff-frequency ratio: the algorithm may fail to separate the
components r > r0, i.e. if the two components are too close to each other. When r < r0, the
ratio of the norms of the lower- and higher-frequency components will satisfy || Slower

Shigher
|| < δ,

i.e. the frequency components are separable. With the restrictions δ ≈ 0 and ε ≈ 0, we
can assume δ = ε, and finding the optimal parameters reduces to the following problem,

r2
0 =

[
log(1− ε 1

N (1− εT ))

log ε

]
. (4.20)

Here we seek to maximize r0. The results of one numerical experiment, with N = 100.0 and
T = 10.0, are shown in Figure 4.4. We can conclude from the figure that for this particular
parameter set, theoretical cutoff-frequency ratio should be r0 ' 0.7. If we want to increase
the cutoff-frequency ratio (to 0.9 for example), we can choose parameters set to be N =
4000.0 , T = 15.0, but this will increase the computational cost considerably. Figure 4.4
provides a guidance when selecting the parameter set T and N . In order to obtain really
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Figure 4.4: cutoff-frequency ratio r0 with various parameter values T and N

high cutoff-frequency ratio (which means strong separation capability), the product of T
and N needs to be big enough; however, the corresponding computational cost will increase.
Therefore, there is a trade-off between decomposition quality and the computational cost
when choosing the parameters. The parameter set should vary according to our needs.

4.4 Numerical Results

4.4.1 PDE implementation Scheme

The diffusion process is implemented by the explicit finite difference scheme.

un+1
j − unj

∆t
= a(

unj+1 − 2unj + unj−1

∆x2
) . (4.21)

We use the simplest computational method – the Forward Euler scheme – a forward differ-
ence at time tn and a second order central difference at position xj . In order to guarantee
a reasonable mean envelope shape, we introduce the Neumann boundary condition to this
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PDE solver, with zero derivative at both boundaries.

u′(xl, 0) = 0

u′(xr, 0) = 0 . (4.22)

Here xl and xr represent the left and right end points, respectively.

4.4.2 Convolution Equivalence

Since we are solving a diffusion equation, it is possible to use a convolution to replace
the finite difference/finite element approach. In fact, this method is preferred since it is
computationally faster. For infinite long signal, the forward diffusion equation is equivalent
to a Gaussian Convolution. For a function u(x, t), the diffusion can be written as:

∂u

∂t
= a

∂2u

∂x2

u(x, 0) = f(x), for−∞ < x <∞, 0 < t <∞ . (4.23)

To solve this equation, we regard u(x, t) as a function of x and do the Fourier transform.
The result is a function U(s, t) that depends on the wave number s and time t. In the
Fourier domain, the diffusion equation becomes,

∂U

∂t
= a

∂2U

∂x2
(4.24)

We know that based on the properties of Fourier transform

∂2U

∂x2
= −4π2ω2U , (4.25)

and substitute into Equation (4.24),

∂U

∂t
= −4aπ2ω2U , (4.26)

and we have the initial condition when t = 0, U(s, 0) = F (s). F (s) is the Fourier transform
of f(t). Thus, we have

U(s, t) = F (s)e−4aπ2s2t . (4.27)

This solution can be written as the convolution of two functions. If we have a function
wt(x) such that its Fourier transform satisfies Wt(s) = e−4aπ2s2t, then

u(x, t) = (f ∗ wt)(x) . (4.28)
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Here the wt(x) = 1√
4πat

e−
x2

4at is the Gaussian kernel. Since we are solving a diffusion

equation, it is possible to use a convolution to replace the finite difference / finite ele-
ment approach (much faster). As for infinite long signal, the solution is equivalent to a
convolution with a Gaussian function.

ma(x) =
1√

4πat
e−

x2

4at ∗ u(x, 0) . (4.29)

Convolution implementation can also carry the boundary condition of the PDE. The “sym-
metric” scheme convolution, i.e. convolution padded with mirror reflections of itself. is
equivalent to the forward PDE with zero-derivate Neumann boundary condition. The
“replicate” scheme convolution, i.e. convolution padded by repeating border elements of
array, is equivalent to the forward PDE with Dirichlet boundary condition.

4.4.3 Two-mode Mixing

This experiment addresses the mode-mixing separation problem. The signal s(x) with
length L is built by concatenating two sinusoids with different frequencies,

s(x) =

{
0.6 sin(2π2x), 0 < x < L/2

1.0 sin(2π12x), L/2 < x < L

as shown in Figures 4.5 to 4.7, the signal and its Hilbert spectrum are displayed. It is
clear that unlike classical EMD, the forward-PDE approach can distinguish the two modes
and produce a reasonable separation. The corresponding Hilbert frequency spectrum can
represent the frequency change correctly. As such, it can extract features from mode-mixed
signals and obtain better instantaneous frequency details. Classical EMD, however, fails
to separate these different modes. Due to the extrema-based nature of classic EMD, for
two modes with different frequencies but same amplitude, the classic EMD will treat two
modes as just one single frequency component.

4.4.4 Nonlinear Oscillations

Although we have proved our method’s capability when dealing with sinusoid-like signals,
it remains to be shown that our method can separate the nonlinear oscillations like the
EMD does. Figure 4.8 shows a nonlinear signals, we apply our method on the nonlinear
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Figure 4.5: Experiment on mode-mixing signal by classical EMD (Top) and forward-PDE
approach (bottom)
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Figure 4.6: Hilbert Spectrum (left) and Marginal Hilbert Spectrum (right) for mode-mixing
signal using classical EMD approach.

Figure 4.7: Hilbert Spectrum (left) and Marginal Hilbert Spectrum (right) for mode-mixing
signal using forward-PDE approach.
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signal mentioned in [26] and obtain similar results. The nonlinear signal is composed of
three components, a sinusoid of period T superimposed to 2 triangular signals with periods
smaller and larger than T ,

s(x) = sin(0.06πx) + 0.4(1− 10|nint(1/5x)− 1/5x|) + 0.4(1− 352|nint(1/176x)− 1/176x|) ,
(4.30)

where nint is the nearest integer function.

Figure 4.8: Nonlinear oscillations experiment. From top to bottom: the signal, IMF 1 to
3 and the residual.

4.4.5 ECG Signal

In Figure 4.10, we use an electrocardiogram(ECG) signal to test the robustness of forward
PDE approach. The data is obtained from MIT-BIH Normal Sinus Rhythm [14]. The
decomposition of ECG signal has shown that though the PDE approach can detect the
mode, it is not robust to noise.

4.4.6 Computational Time Comparison

In this section, we compare the computational time of the classic EMD and our new
method. For our method, we provide the results of two different implementations: PDE
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Figure 4.9: Hilbert Spectrum (left) and Marginal Hilbert Spectrum (right) for nonlinear
oscillation experiment.

Figure 4.10: Experiment on ECG data. From top to bottom: the signal, IMF 1 to 3 and
the residual.
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Figure 4.11: Hilbert Spectrum (left) and Marginal Hilbert Spectrum (right) for ECG signal.

and Gaussian convolution.

Traditional EMD methods rely on finding local maxima and minima along with in-
terpolation to find upper and lower envelope. This is computationally expensive. Recall
that these procedures are bypassed in our PDE-based approach and replaced by a simple
diffusion procedure. As such, our method could potentially require less computational
time. To test this conjecture, we have determined the computational times required for a
number of iterations of the sifting process for the classical BEMD method as well as our
PDE-based BEMD method. (The code based on Flandrin’s toolbox [24] was implemented
for the classical BEMD method.) The results that obtained by experimenting on a piece of
piano signal, presented in the first two columns of Table 4.1, show that our diffusion-based
method can decompose a given piece of signal into its IMFs much faster than traditional
EMD.

Trad. EMD PDE-based EMD PDE EMD with GC
1 IMF 0.09445s 0.01776s 0.01692s
2 IMFs 0.16419s 0.02238s 0.01169s
3 IMFs 0.24388s 0.03807s 0.01277s
4 IMFs 0.32565s 0.04747s 0.01047s
5 IMFs 0.40616s 0.05584s 0.01334s

Table 4.1: Comparison of computational times for (i) traditional EMD, (ii) diffusion-based
EMD and (iii) diffusion-based EMD using Gaussian convolution (GC) in terms of total
number of IMFs computed
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4.4.7 Music Signal

In Figures 4.12, 4.14, 4.16 and 4.18, we display the decomposition results of our method
on music signals. By sequence, we experiment on piano, oboe and flute signals. Music
has relatively fewer harmonic components, so that the decomposition results can display
different levels of harmonic structure within the signal pieces.

Figure 4.12: Experiment on piano signal. From top to bottom: the signal, IMF 1 to 3 and
the residual.

Figure 4.13: Hilbert Spectrum (left) and Marginal Hilbert Spectrum (right) for the piano
signal.
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Figure 4.14: Experiment on oboe signal. From top to bottom: the signal, IMF 1 to 3 and
the residual.

Figure 4.15: Hilbert Spectrum (left) and Marginal Hilbert Spectrum (right) for the oboe
signal.
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Figure 4.16: Experiment on flute signal. From top to bottom: the signal, IMF 1 to 3 and
the residual.

Figure 4.17: Hilbert Spectrum (left) and Marginal Hilbert Spectrum (right) for flute signal.
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Figure 4.18: Experiment on bendir signal. From top to bottom: the signal, IMF 1 to 3
and the residual.

Figure 4.19: Hilbert Spectrum (left) and Marginal Hilbert Spectrum (right) for the bendir
signal.
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Chapter 5

EMD Extension

There are various extensions to the classical EMD method. Some try to overcome the
shortcomings of the EMD methods, and some try to extend the EMD to multi-dimensional
cases. Here we select three representative methods and present a brief introduction for each
of them.

5.1 Ensemble Empirical Mode Decomposition

As it is mentioned in Section 2.3.5, EMD fails to decompose signal when there is “mode-
mixing”. Ensemble Empirical Mode Decomposition (EEMD) was proposed to solve this
problem. EEMD was developed by Huang et al. [32], and they utilize the noise to help
assist the data analysis in the decomposition of EMD. They added white noise to the
signal, since white noise can fill whole time-frequency space uniformly. With uniformly
distributed white noise background, different frequency components within the signal are
projected onto the reference of white noise frequency components. Although it is apparent
that adding noise will cause the decomposition results to consist of noise, we can decrease or
even cancel the noises by applying white noise for numerous trials. Each trial will produce
different results, and statistically, by taking the ensemble mean of enough trials, the noises
will cancel out. IMFs in EEMD are defined as the mean of white noise ensembles. This way
we can get the persistent decomposition result from the ensemble, and we can significantly
reduce the change of mode mixing problem within EMD. Therefore EEMD is more robust
to the noise. Figure 5.1 is a comparison of the decomposition results of classic EMD and
EEMD.
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Figure 5.1: (a) A simulation signal, (b) IMFs c1 and c2 decomposed by EMD and (c) IMFs
y1 and y2 decomposed by EEMD. Adapted from “A review on empirical mode decomposi-
tion in fault diagnosis of rotating machinery”, by Y. Lei and J. Lin and Z. He and M. J.
Zuo, 2013, Mechanical Systems and Signal Processing, 35 , p. 101–126. Copyright (2018)
by Elsevier. Adapted with permission.
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5.2 Pseudo EMD, Row-wise and Column-wise

In signal processing, EMD can be extended into a multiple-dimensional signal so that
it can be applied to areas like image processing. Proposed by Chen et al. [6], pseudo-
BEMD algorithm extends the 1D EMD to Bi-dimensional (BEMD) by translating the
sifting process to each dimension and combine them together. For example, we have a 2D
signal X(i, j) of the size (i, j). First we perform EMD in one direction (like row-wise),
apply the EMD on each row. Collecting the decomposed components of the same level m,
we have m sets of 2D matrix, denoted as RX(m, i, j). We have the following relationship

X(i, j) =
m∑
k=1

RX(k, i, j) . (5.1)

The next step, naturally, is to decompose each column following the similar procedure as
the previous step. This process will generate a 4D matrix CRX(m,n, i, j), in which the
m and n indices indicate the number of components from the row and then the column
decomposition. We will then combine the components that of the same scale to generate
2D features with the best physical significance. The pseudo-BEMD method will then
decompose the signal to be

C2DL =
m∑
k=1

crxk,l +
n∑

k=l+1

crxl,k . (5.2)

The last component is called the residue of the EMD. Although we only discusses the 2D
case in this section, by following the similar process EMD can actually be extended to even
higher dimensions.

5.3 Fast and Adaptive Bidimensional EMD

Fast and adaptive bidimensional EMD (FABEMD) was proposed in order to accelerate
the EMD calculation [21], and now it has been applied in many areas like medical image
analysis, texture analysis and so on. In the sifting process of EMD, calculating cubic spline
requires solving a traditional matrix-vector equation. With a large number of iterations,
it might take a long time to compute the IMFs. For 2D case BEMD will use surface
interpolation, and it will cost even more computational resources. FABEMD is based
on the algorithm of BEMD, but it modifies the interpolation step into a direct envelope
estimation method and restricts the iterations to 1.
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The details of the FABEMD method is discussed below: The first step of FABEMD
is to detect the local maximum and minimum. Suppose we have a 2D matrix Aij of the
size M ×N . We can obtain the maximum and minimum value by sliding a window of size
ωex × ωex.

A =


a11 a12 . . . a1N

a21 a22 . . . a2N
...

... . . .
...

aM1 aM2 . . . aMN

 , (5.3)

where amn is the element of A in the mth row and nth column. Let the window size be
ω × ω. Then the local maximum and local minimum will be extracted within the window
for the given 2D data. After we obtain the maxima and minima maps, two order statistics,
including MAX and MIN, will be used to approximating the upper and lower envelope.
Order statistics filters are spatial filters whose response is based on the ordering of the
elements contained within the data area encompassed by the filter. We then obtain the
size of the window for the order-statistic filter. We define dadj−max and dadj−min to be the
maximum and minimum distance in the array. Then we will build our square window, with
the gross window width as the maximum of value of maxdadj−max,maxdadj−min The next
step is that, we will apply the MAX and MIN filter form to the 2D matrix to extract upper
and lower envelopes using the parameters. With the determination of window size for
envelope construction, MAX and MIN filters will then be applied to build upper and lower
envelopes. To obtain smooth continuous surfaces, an averaging smoothing operation will be
carried out on both envelopes. The rest of the procedure is similar to the classical BEMD
algorithm. Simulation result of FABEMD shows that it can accelerate the computation by
almost 10 times.
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Chapter 6

2D Forward Diffusion Extension

In this chapter, we extend our new diffusion-based method to 2D, and show applications
of the new method in image analysis.

6.1 Proposed Diffusion-based EMD Algorithms

As discussed briefly in Section 2, most EMD algorithms obtain the mean function from
upper and lower envelopes which, in turn, are obtained by interpolating local maxima and
minima of a function S(x). All of these procedures are time-consuming and sensitive to
error and noise.

In 2D case, our diffusion-based EMD method, on the other hand, is based on the the
intuition that the “mean surface” of a signal can be constructed by the diffusion process.
Instead of taking the average of two envelope surface functions of a signal S(x) to produce
a mean – Step 3 of the classical EMD algorithm in Section 2 – we directly diffuse the 2D
signal to obtain the mean surface.

Recall that for the 1D case, we have to solve the following initial value problem (IVP)
for the heat/diffusion equation,

∂h

∂t
= a

∂2h

∂x2

h(x, 0) = S(x) . (6.1)

For prescribed values of the diffusivity constant a > 0 (which can be adjusted) and time
T > 0 we now define the mean function of S(x) as m(x) = h(x, T ), i.e., the solution of
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the IVP in Equation (4.5) at time T . In other words, the mean function m(x) is obtained
from S(x) by a Gaussian filtering.

We extend the above PDE-based EMD method to the two-dimensional case by simply
adding another spatial variable to the PDE in Equation (4.5), i.e.,

∂h

∂t
= a(

∂2h

∂x2
+
∂2h

∂y2
)

h(x, y, 0) = S(x, y, 0) . (6.2)

The mean function of S(x, y) will be defined as m(x, y) = h(x, y, T ).

In the 2D case, the motivations for this definition is that the time rate of change of
h(x, y, t) is zero at spatial inflection points of h. By connecting these spatial inflection
points we can obtain the “mean surface”. This is the basis of the following PDE-based
BEMD algorithm applied to an image function S(x, y):

1. Initialize: Let n = 0 and set h0(x, y, 0) = S(x, y).

2. Find the mean of hn(x, y, 0): Solve the PDE in Equation (6.2)) for hn(x, y, t)
for 0 ≤ t ≤ T . Then define mn(x, y) = hn(x, y, T ).

3. Extract mean: Define cn(x, y) = hn(x, y, 0)− hn(x, y, T ).

4. If cn(x, y) is not a BIMF, let hn+1(x, y, 0) = cn(x, y), n → n + 1 and go to
Step 2.

6.2 2D Mathematical Interpretation

As mentioned in Flandrin’s paper [12, 13], traditional EMD operates as a successive filter
when experimenting on Gaussian noise. In fact, we claim that traditional EMD operates
as an iterative, frequency-overlapping, contrast-sensitive filter bank. This is also the case
with our modified EMD and BEMD methods. In each iteration, the mean of the signal is
obtained by passing it through a low-pass filter. Subsequent subtraction of the mean from
the signal implies that the net procedure is equivalent to a high-pass filter. To illustrate,
we consider the following special two-dimensional case,

S(x, y) =
∑
i,j

[Aij sin(ωix+ ωjy + φij)] , (6.3)
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where each (i, j) pair represents a single sinusoidal grating basis function. Equation (6.2))
is solved for the first mean function,

ma(x, T ) =
∑
i,j

e−aΩ2
ijT [Aij sin(ωix+ ωjy + φj)] , Ωij =

√
ω2
i + ω2

j . (6.4)

The magnitudes Ωij are now sorted in increasing order and denoted as Ωk. We denote
the sum of all components with the same Ωk-value as sk. After N iterations, our modified
EMD algorithm yields the following result for sk(x),

hk,N = (1− e−aΩ2
kT )hk,N−1

= (1− e−aΩ2
kT )Nsk . (6.5)

Now suppose, without loss of generality, that Ω1 < Ω2 < · · · < ΩK = Ωmax. It is easy to
show that for N sufficiently large,

hN =
K∑
k=1

(1− e−aΩ2
kT )Nsk

' (1− e−aΩ2
KT )NsK

' sK , (6.6)

where the final approximation is valid for T sufficiently large. By choosing the appropriate
set of parameters, the IMF extracted after N iterations will be (at least approximately) the
highest-frequency component, sK . Our EMD algorithm, however, does not distinguish the
direction of a frequency component (i.e., a particular sine grating) because the diffusion
is radial. Instead, it will filter a group of frequency components Ωij that have the same
“angular magnitude” Ωk.

6.3 Experimental Results

We now show some results obtained by applying our diffusion-based EMD algorithm to
some synthetic images [5], and some real images [15], A comparison of execution times
between our method and classical BEMD is also presented.

6.3.1 PDE Implementation Scheme

Our current algorithm employs the simple explicit finite difference scheme for solving PDEs.
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un+1
i,j − uni,j

∆t
= a(

uni,j+1 − 2 ∗ uni,j + uni,j−1

∆x2
+
uni+1,j − 2 ∗ uni,j + uni−1,j

∆y2
) . (6.7)

There are two options for boundary conditions (BCs): For an image whose edges are part
of the background and of the same amplitude level, we have used Dirichlet BCs.

u(xl, yt, 0) = s(xl, yt)

u(xr, yb, 0) = s(xl, yt) , (6.8)

where xl, xr are the left and right end points, and yt, yb are the top and bottom end points,
respectively. For an image with irregularly-shaped boundaries, we have used Neumann
BCs.

u′(xl, yt, 0) = 0

u′(xr, yb, 0) = 0 . (6.9)

The algorithm can also be implemented by convolution. Since we are solving a diffusion
equation, it is possible to use a convolution to replace the finite difference / finite ele-
ment approach (much faster). As for infinite long signal, the solution is equivalent to a
convolution with a Gaussian function.

ma(x) =
1√

4πat
e−

x2

4at ∗ h0(x, y) . (6.10)

As discussed in section 4.4.1. Using zero-padded (corresponds to the Dirichlet BC.) or the
replicate scheme (corresponds to the Neumann BC.) Gaussian function to convolve with
the signal.

6.3.2 Simple Sine Gratings Image

In Figure 6.1, we display results for a 512× 512-pixel synthetic image which consists of a
mixture of two sine gratings. It has the form,

S(x, y) = sin(0.1πx+ 0.1πy) + sin(−0.4πx+ 0.8πy) . (6.11)

The second (higher frequency) component is extracted as the first BIMF and the first
component comprises the residual. The two sine gratings have been separated.
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Figure 6.1: Simple sine gratings separation. Top row: Sine gratings mixture and its
Fourier spectrum. Middle row: First BIMF and its Fourier spectrum. Bottom row:
Residual and its Fourier spectrum.
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6.3.3 Texture Image

In Figure 6.2 are shown the BIMF and residual when our diffusion-based BEMD algorithm
is applied to a 512 × 512-pixel texture image selected from [5]. Successive BIMFs are
comprised of lower frequency components of the texture.

6.3.4 Contrast-sensitive Image

The contrast sensitivity function (CSF) is an image which demonstrates the sensitivity of
an observer to sine wave gratings of differing spatial frequencies [27]. Different frequency
components are amplified to degrees which depend on their frequencies. The results ob-
tained by applying our method to the CSF image are presented in Figure 6.3. Once again,
the first BIMF contains the highest (horizontal) frequency components of the CSF which
appears in the lower right of the image. The next BIMF contains slightly lower (horizontal)
frequency components. Our method is seen to perform well in the separation of different
(spatially-dependent) frequency components.

6.3.5 Blurred Mean Surface

In Figure 6.4 is shown the result of one application of the mean surface extraction method
to the 512 × 512-pixel, 8 bits-per-pixel Boat image, using the parameter values a = 4/π2

and T = 50.

6.3.6 Real Image

In Figure 6.5 are shown the results obtained by applying our algorithm to the 256× 256-
pixel, 8 bpp Lena image. Recalling that the sifting process of EMD/BEMD extracts IMFs
with successively lower frequencies at each iteration, we note that the major contributions
to the first two IMFs produced from the Lena image come, as expected, from its edges.
Higher-order BIMFs contain lower-frequency features which are centered around the edges.

6.3.7 Comparison of Computational Costs

Traditional EMD and BEMD methods rely on finding local maxima and minima along
with interpolation to find upper and lower envelope. This is computationally expensive,
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Figure 6.2: Example for texture decomposition. Top two rows: Raffia texture image
from Brodatz [5] and its BIMFs. Bottom row: Residual.
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Figure 6.3: Contrast sensitive function (CSF) and corresponding BIMFs. Top row: CSF,
first BIMF. Middle row: Second and third BIMFs. Bottom row: Fourth BIMF and
residual.
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Figure 6.4: Left: Original Boat image. Right: Mean image ma(x, y). Bottom: Residual.
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Figure 6.5: Lena image and its BIMFs. Top row: Lena image and the first BIMF. Middle
row: Second and third BIMFs. Bottom row: fourth BIMF and the residual.
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especially in the case of two dimensions, i.e., images. As such, our method could potentially
require less computational time. To test this conjecture, we have determined the compu-
tational times required for a number of iterations of the sifting process for the classical
BEMD method as well as our PDE-based BEMD method. (The code based on Flandrin’s
toolbox [24] was implemented for the classical BEMD method.) The results that obtained
by experimenting on the Lena image, presented in the first two columns of Table 6.1, show
that our diffusion-based method can decompose a given image into its BIMFs much faster
than traditional BEMD.

Trad. BEMD PDE-based EMD PDE EMD with GC
1 BIMF 4.18s 1.18s 0.13s
2 BIMFs 7.83s 2.24s 0.15s
3 BIMFs 11.16s 3.38s 0.27s
4 BIMFs 13.48s 4.48s 0.28s
5 BIMFs 15.29s 5.52s 0.49s

Table 6.1: Comparison of computational times for (i) traditional BEMD, (ii) diffusion-
based BEMD and (iii) diffusion-based BEMD using Gaussian convolution (GC) in terms
of total number of BIMFs computed

An even greater (on the order of tenfold) reduction in computational time is achieved
if the finite difference computations involved in the determination of the mean surfaces
ma(x, y) using Equation (6.2) are replaced by a single Gaussian convolution, as seen in the
final column of Table 6.1. Technically, the solution of Equation (4.5) or Equation (6.2) is
expressible as Gaussian convolution only in the case that the domain of definition is infinite,
i.e., R or R2. By using convolution, we are essentially ignoring image boundary effects. In
general, the differences between BIMFs obtained by finite differences and convolution are
negligible except possibly near the image boundaries.
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Chapter 7

Summary

In this thesis, we review the EMD signal analysis and discuss the advantages of our new
proposed EMD modification. At the same time, we extend the discussion by describing
some limitations of the current method and future potential.

7.1 Research Summary

EMD is a useful tool in signal processing, it decomposes signals into a subsequent sequences
of frequency components. The major contribution of EMD is that it can extract the features
adaptively, and is a pure data-driven method. The feature extraction steps of classic EMD
unavoidably need the usage of interpolation, which increases the computational cost, as well
as adding instabilities when processing noisy signals. Furthermore, a lack of a theoretical
framework is the bottleneck of this analysis method. Engineers need to know the effective
range of the application and why it fails for certain kinds of signals.

This thesis proposes a new diffusion-based EMD algorithm to tackle the problems
mentioned above. The mean curve(surface) of a signal is obtained by evolving the signal
with the heat/diffusion equation, therefore avoiding any complicated methods of extracting
local maxima and minima and interpolating them. Our approach provides a mathematical
interpretation of the EMD algorithm as well as its limitations. The parameters in the
diffusion PDE can be adjusted according to the properties of the signal or image being
analyzed. Our algorithm is considerably faster than traditional BEMD. Moreover, it is
possible to accelerate the algorithm by using Gaussian convolution. A number of examples
have shown that our method can extract multiscale features of images effectively. It has
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been shown that, with a solid mathematical framework, our method can output similar
separation performance compared with the traditional method. At the same time, robust
to the mode-mixing signals (without noised assisted processing like EEMD). Finally, in
experimentation, our method is 10-100 times faster when decomposing the same signals
compared with EMD,

7.2 Further Exploration

Our method is adaptive and we have provided a way for parameter estimation. In order
to extract the perfect features of a signal, however we need to have the prior knowledge.
A possible solution is that we prefer a few trial experiments on the signals first, and then
decide on the best parameter set or analysis method. Moreover, as shown in the separation
performance section, the separation capability of the new method is limited just like the
classic one. Even if we put huge computational resource, we cannot perfectly separate
close frequency component. Realistic signals, most of the time, do not contain pure tones.
Therefore EMD may output decomposition that does not fit the physical meaning of the
original signals, and it might need further improvement on its robustness.
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