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Abstract
The present thesis has three main topics: geometry of coamoebas, hypergeometric functions, and geometry of zeros.

First, we study the coamoeba of a Laurent polynomial  f  in n complex variables. We define a simpler object, which we 
call the lopsided coamoeba, and associate to the lopsided coamoeba an order map. That is, we give a bijection between 
the set of connected components of the complement of the closed lopsided coamoeba and a finite set presented as the 
intersection of an affine lattice and a certain zonotope. Using the order map, we then study the topology of the coamoeba. 
In particular, we settle a conjecture of M. Passare concerning the number of connected components of the complement of 
the closed coamoeba in the case when the Newton polytope of  f  has at most n+2 vertices.

In the second part we study hypergeometric functions in the sense of Gel'fand, Kapranov, and Zelevinsky. We define
Euler-Mellin integrals, a family of Euler type hypergeometric integrals associated to a coamoeba. As opposed to previous
studies of hypergeometric integrals, the explicit nature of Euler-Mellin integrals allows us to study in detail the dependence
of A-hypergeometric functions on the homogeneity parameter of the A-hypergeometric system. Our main result is a
complete description of this dependence in the case when A represents a toric projective curve.

In the last chapter we turn to the theory of real univariate polynomials. The famous Descartes' rule of signs gives
necessary conditions for a pair (p,n) of integers to represent the number of positive and negative roots of a real polynomial.
We characterize which pairs fulfilling Descartes' conditions are realizable up to degree 7, and we provide restrictions valid
in arbitrary degree.
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1. Introduction

Consider a general quintic polynomial

f (z) = x0 +x1z +x2z2 +x3z3 +x4z4 +x5z5,

with non-vanishing coefficients. The famous Abel–Ruffini theorem asserts
that one cannot express the roots ρ of f (z) as an algebraic function of the co-
efficients x = (x0, . . . , x5). It is less known that it is straightforward to express
the roots as convergent power series in x.

Notice first that, as functions of the coefficients x, the roots ρ enjoy a
double homogeneity which is captured by the matrix

A =
(

1 1 1 1 1 1
0 1 2 3 4 5

)
.

Dehomogenizing, we can fix the value of two coefficients. For example, to
set the coefficients of the constant and linear term to plus and minus one
respectively, we write A in the block form (A1, A2), where

A1 =
(

1 1
0 1

)
and A2 =

(
1 1 1 1
2 3 4 5

)
.

The columns of the matrix −A−1
1 gives the exponents of x0 and x1 in the

multiplication f 7→ x−1
0 f and the change of variables z 7→ −x0 x−1

1 z. Apply-
ing these two operations, we obtain the reduced form of f ;

f (z) = 1− z +ξ1z2 −ξ2z3 +ξ3z4 −ξ4z5,

where

ξk = xk+1xk
0

xk+1
1

, k = 1, . . . ,4.

The exponents of x0 and x1 in the expression for ξk is given by the columns
of the matrix

B =−A−1
1 A2 =

(
1 2 3 4
−2 −3 −4 −5

)
. (1.1)

The Newton polytopeN of f is the interval [0,5]. It consists of five copies
of the unit interval, one for each root of f . We associate to the matrix A1 the
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leftmost unit interval [0,1]. Furthermore, to this subinterval of the New-
ton polytope we associate the root of f of smallest modulus, i.e., the left-
most root in logarithmic scale. We will now express this root as a convergent
power series in ξ around the origin.

Firstly, let us show that such a power series exists. Restricting to the poly-
disc D defined by the inequalities |ξk | < 2−k−5, k = 1, . . . ,4, we find that

2 > 1+|ξ1|22 +|ξ2|23 +|ξ3|24 +|ξ|425.

Hence, it follows from Pellet’s theorem that for each ξ ∈ D the polynomial
f (z) has exactly one root inside of the circle |z| = 2. (In modern terminology,
one says that f is lopsided at |z| = 2 with respect to the monomial of degree
one.) In particular, the root ρ = ρ(ξ) of smallest modulus is an analytic func-
tion of ξ in the polydisc D . Following Birkeland [7], we obtain the power
series expansion of ρ(ξ);

ρ(ξ) =∑ Γ(1+2k1 +3k2 +4k3 +5k4)

Γ(2+k1 +2k2 +3k3 +4k4)

ξ
k1
1 ξ

k2
2 ξ

k3
3 ξ

k4
4

k1!k2!k3!k4!
,

where the sum is over k ∈N4. Notice that the rows of the matrix B appear as
the coefficients of the indices k in the arguments of the Gamma-functions.

The series ρ(ξ) is a multivariate hypergeometric series in the classical sense.
That is, the quotient of subsequent terms with respect to a shift in the in-
dices is a rational function of the summation index k. Hypergeometric func-
tions are ubiquitous in mathematical physics, the most prominent example
being Gauss hypergeometric function 2F1, in terms of which any solution of
a second-order linear ordinary differential equation with three regular sin-
gularities can be expressed. We wish not here to further motivate the study
of hypergeometric functions. Instead, let us find a more precise descrip-
tion of the convergence domain of the series ρ(ξ). To do so, we turn to the
theory of hypergeometric functions in the sense of Gel’fand, Kapranov, and
Zelevinsky.

Analytic extension of ρ(ξ) gives a multivalued function analytic outside
of the discriminant locus Z (∆) = {ξ |∆(ξ) = 0}. Here, ∆(ξ) is defined either as
the resultant of the polynomials f and f ′, or as the product

∆(ξ) = ξ8
4

∏
i< j

(ρi −ρ j )2,

for some enumeration ρ1, . . . ,ρ5 of the roots of f . It is well known that ∆ is a
real polynomial in ξ. We conclude that ρ(ξ) will converge up until it meets
the surface Z (∆). As convergence of the series ρ(ξ) only depends on the
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modulus |ξ|, we are lead to consider the amoeba A∆, that is, the image of
Z (∆) under the componentwise logarithmic map

Log(ξ) = (log |ξ1|, . . . , log |ξ4|).

Intuitively, the series ρ(ξ) should converge in (the inverse image of) a con-
nected component of the complement of the amoeba A∆. To give a precise
statement we need to introduce further notation.

The secondary polytopeΣA of A is a combinatorial object that stores the
information of all coherent triangulations of the Newton polytope of f with
vertices in A. In our example, when N is the interval [0,5], a coherent trian-
gulation is a subdivision of N into intervals of integer length. The set of all
such triangulations is in a bijective correspondence with the set of vertices
of ΣA . Remarkably, the Newton polytope of the discriminant ∆ coincides
with the secondary polytope ΣA .

One artifact of amoeba theory is the order map provided by Forsberg,
Passare, and Tsikh in [14]. The order map is an injection from the set of con-
nected components of the complement of the amoeba to the set of integer
points in the Newton polytope. For the discriminant ∆, we can associate to
each connected component of the complement of the amoeba A∆ an in-
teger point in the secondary polytope. Furthermore, it was proven in [43]
that the amoeba A∆ is solid. That is, the order map is a bijection between
the set of connected components of the amoeba complement and the set of
vertices of the Newton polytope ΣA . In particular, each connected compo-
nent of the complement of the amoeba has an associated triangulation of
the Newton polytope N , and vice versa.

Finally, the convergence domain of the seriesρ(ξ), as described in [45], is
the inverse image of a Reinhardt domain which contain all connected com-
ponents of the amoeba complement R4 \A∆ whose associated triangulation
of the Newton polytope N contains the leftmost unit interval [0,1].

In the aftermath of the success of amoeba theory, which begun with the
discovery of the order map, M. Passare and A. Tsikh defined the coamoeba
C f of the polynomial f . By definition, the coamoeba is the image of the
zero locus Z ( f ) under the componentwise argument mapping. The first and
foremost question regarding coamoebas, is to find its order map. This is the
main topic of Chapter 3 of this thesis. Replacing the coamoeba by a simpli-
fied object, denoted the lopsided coamoeba, we can define an order map for
the lopsided coamoeba. This order map is given in terms of a Gale dual of
A. In the example with the quintic, a Gale dual can be formed by adding a
block of a 4×4-identity matrix beneath the matrix B . We will then study the
geometry and topology of the coamoeba via the order map.
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In terms of hypergeometric functions, the transition from amoebas to
coamoebas corresponds to a shift of focus to integral representations rather
than series representations. We consider only A-hypergeometric functions,
that is, hypergeometric functions in the sense of Gel’fand, Kapranov, and
Zelevinsky. For example, the integral

Φ(β;ξ) =
∫

C

f (z)β1

zβ2

d z

z
(1.2)

defines a germ of an analytic function in the coefficients ξ provided that the
cycle C is chosen as to ensure convergence. Then, the function Φ(β;ξ) is A-
hypergeometric of homogeneity parameter β. To make this example more
familiar, consider the parameters β1 = −1 and β2 = 1, and choose C = C (ρ)
as a small positively oriented cycle encircling a simple root ρ of f (z). Then,
we obtain the residue integrals Resρ(ξ). If ξ lies outside of the discriminant
locus Z (∆), then there are five residue integrals, one for each root of f . As
we will see, these integrals span the solution space of the A-hypergeometric
system in a neighborhood of ξ. Furthermore, a standard computation shows
that, if ∆(ξ) 6= 0, then

Resρi (ξ) = 1

ξ4

∏
j 6=i

1

ρi −ρ j
.

This illustrates the role of the discriminant locus Z (∆) for A-hypergeometric
functions; it is the characteristic variety of the A-hypergeometric system,
that is, it contains the singularities of all A-hypergeometric functions.

Let us illustrate one further property of amoebas. The single-valued
function obtained as the product of the five branches of the residue inte-
grals Resρ(ξ) is given by

5∏
i=1

Resρi (ξ) = 1

ξ3
4∆(ξ)

.

Now fix a connected component E of the amoeba complement R4 \A∆. In
this component, there is a basis of that A-hypergeometric system given by
Laurent series (see, e.g., [51]). We conclude that the reciprocal of the dis-
criminant ∆ has a convergent Laurent series expansion in E . In general, if
E is a connected component of the complement of the amoeba A f , then
the reciprocal of f has a convergent Laurent series expansion in E whose
coefficients are given by integralsΦ(β;ξ) over the cycle C = Log−1(τ) for any
τ ∈ E .

Let Θ denote a connected component of the complement of the closed
coamoeba. Then, the reciprocal of f has an integral representation whose
kernel is given by the integral Φ(β;ξ) over the cycle C = Arg−1(θ) for any
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θ ∈Θ. The integral (1.2) over a cycle Arg−1(θ) will be called an Euler–Mellin
integral; they are our primary object of study in Chapter 5. In contrast to
previous studies of hypergeometric integrals, the explicitness of our cycles
allows a detailed study of the dependence of hypergeometric functions on
the parameter β. Our main result in this chapter is a complete description
of this dependence in the case when A represents a toric projective curve.

In Chapter 6 we will study of the amoebaA∆ and the coamoeba C∆ of the
discriminant ∆. Where previous authors have studied these object as con-
vergence domains of representations of A-hypergeometric functions, we fo-
cus instead on the connection to lopsidedness and colopsidedness.

In the last chapter we apply the theory developed in earlier chapters to
the theory of real univariate polynomials. The famous Descartes’ rule of
signs gives necessary conditions for a pair (p,n) of integers to represent the
number of positive and negative roots of a real polynomial. We characterize
which of the pairs that fulfills Descartes’ conditions that are realizable up to
degree 7, and we provide restrictions valid in arbitrary degree.

1.1 Contributions

• Sections 2.2 and 3.1–3.2 is joint work with P. Johansson.

• Section 5.1 is joint work with C. Berkesch Zamaere and M. Passare.

• Sections 5.2–5.3 is joint work with C. Berkesch Zamaere and L. F. Ma-
tusevich.

• Chapter 7 is joint work with V. P. Kostov and B. Shapiro.
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2. Fundamentals

This chapter consists of a brief introduction to discriminants, A-hypergeo-
metric functions, and amoebas. The main reference is the work [18] by
Gel’fand, Kapranov, and Zelevinsky. We introduce here the notation used
throughout the thesis.

2.1 Elements of the A-philosophy

Consider a point configuration A = {a1, . . . ,aN } ⊂ Zn of cardinality N . By
abuse of notation, we identify A with the (1+n)×N -matrix

A =
(

1 . . . 1
a1 . . . aN

)
. (2.1)

The codimension of A, denoted m, is the integer N−1−n. The configuration
A gives rise to a lattice (abelian group) L A =ZA ⊂Zn of index ιA = [Zn : L A].
Let Voln and VolA denote the Haar measure on Rn = R⊗L A normalized so
that a minimal simplex with vertices in Zn respectively L A has volume one.
For convenience we will write Vol(N ) = Voln(N ) and Vol(A) = VolA(N ). We
have that

Vol(N ) = ιA Vol(A).

We associate to A the family CA∗ of polynomial functions on Cn =C⊗L A

with support in A;

f (z) =
N∑

k=1
xk zak , (2.2)

where the polynomial f (z) is identified with the point f = (x1, . . . , xN ) ∈ CA∗ .
Denote by Z ( f ) the zero locus

{
z ∈Cn∗ | f (z) = 0

}
. The central idea of the “A-

philosophy” is that one should study the whole family CA∗ rather than a sin-
gle polynomial f .

We define the Newton polytope of A to be the convex polytope N =
NA = Conv(A) ⊂Rn , which equals the Newton polytope of each polynomial
f ∈ CA∗ . The face (poset) lattice of N is the set of all faces of N with the
partial order ≺ induced by inclusion.
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For each subset S ⊂ A, there is a natural projection prS : CA∗ → CS∗. We
write fS = prS( f ), and say that fS is the truncated polynomial of f with re-
spect to S. Of particular interest is the case when S = Γ∩ A for some face
Γ≺N , in which case we set fΓ = fΓ∩A .

An isomorphism ϕ : L A → L′ ⊂ Zn defines a point configuration A′ = ϕ(A),
such that L′ = L A′ . Such mappings arise, e.g., from a change of coordinates
inCn∗. The mappingϕ extends to a linear transformation ϕ̂ : R⊗L →R⊗L′. A
composition of ϕ with a translation a 7→ a+ v , for v ∈Zn , is called an integer
affine transformation. In terms of matrices, we multiply A from the left by

T =
(

1 0
v ϕ̂

)
.

Remark 2.1.1. In greater generality, one consider a family of q point con-
figurations A1, . . . , Aq , which one arranges as a matrix A in a block form by
adding a q ×q-identity matrix on top of (A1, . . . , Aq ). If Ni denotes the cardi-
nality of Ai , so that N = N1 +·· ·+Nq denotes the number of columns of A,
then the codimension m of A is defined as the integer N−n−q . We consider
here only integer affine transformations that preserve the dimension n and
the codimension m. In general, an integer affine transformation of A is a ra-
tional matrix T such that T A is an integer matrix. Applying an integer affine
transformation to reduce a configuration with q > 1 to a configuration with
q = 1 is known as a Cayley trick. We will say that two point configurations
are equivalent if they differ by an integer affine transformation preserving q ,
and we say that they are Cayley-equivalent if they differ by a general integer
affine transformation. 7

Remark 2.1.2. Notice that Vol(N ′) = det(T )Vol(N ), which in particular im-
plies the identity Vol(A′) = Vol(A) of induced volumes. 7

2.1.1. The A-discriminant. A point z ∈ Cn∗ is said to be a critical point of f
if it is a solution of the system of equations

∂1 f (z) = ·· · = ∂n f (z) = 0. (2.3)

If, in addition, z ∈ Z ( f ) then z is said to be a singular point of f . The A-
discriminant ∆( f ) = ∆A( f ) is, by definition, an irreducible polynomial with
domain CA∗ which vanishes if and only if f has a singular point in Cn∗. Of
equal importance is the principal A-determinant D A , which can be written
as a product

D A( f ) = ∏
Γ≺N

∆Γ( fΓ)kΓ , (2.4)
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where the multiplicities kΓ are positive integers, see [19].
Let B = {b1, . . . ,bN } ⊂ Zm be a point configuration, generating a lattice

LB = ZB of index ιB = [Zm : LB ]. We identify B with the matrix (b1, . . . ,bN )t ,
and say that B is a Gale dual of A if the columns of B span the kernel of A.
That is, B is a Gale dual of A if the matrix B has maximal rank and AB =
0. (Notice that we do not require that LB = Zm .) To each Gale dual B we
associate a zonotope

ZB =
{
π

2

N∑
k=1

λk bk

∣∣∣ |λk | ≤ 1

}
⊂Rm . (2.5)

For t ∈Cm , consider the polynomial

f (z) =
N∑

k=1
〈bk , t〉zak ,

which has a singular point at z1 = ·· · = zn = 1. Since B is of full rank we
obtain a parametriztion of the discriminant surface Z (∆) as

(t , w) 7→ (〈b1, t〉w a1 , . . . ,〈bN , t〉w aN
)

, (2.6)

provided that Z (∆) 6= ;. The A-discriminant∆ has n+1 homogeneities, one
for each row of A. Hence, we can reduce ∆ to a polynomial depending on m
variables. Such a reduction corresponds to a choice of Gale dual of A, and
the induced projection prB : CA∗ →Cm∗ . In coordinates,

ξ j =
N∏

k=1
x

bk j

k , j = 1, . . . ,m. (2.7)

Then, there exist a Laurent monomial M( f ) and a polynomial ∆B (ξ) such
that

∆B (ξ) = M( f )∆A( f ).

If we compose (2.7) with the parametrization (2.6), then we obtain the Horn–
Kapranov parametrization of the reduced discriminant surface Z (∆B ).

Theorem 2.1.3 (Kapranov). The mappingΦ : Pm−1 → Z (∆B ) given by

Φ[t ] =
(

N∏
k=1

〈bk , t〉bk1 , . . . ,
N∏

k=1
〈bk , t〉bkm

)
(2.8)

is a birational equivalence.

Remark 2.1.4. In general, ∆B is a Puiseux polynomial. If ιB = 1 then ∆B is a
polynomial. However, the converse is not true. As our focus lies onCA∗ , this is
a less important issue. We could, as in [44], define the reduced discriminant
surface Z (∆B ) as the image of the mapΦ. 7
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Example 2.1.5 (Circuits). A circuit is a point configuration of codimension
m = 1. A circuit is said to be nondegenerate if it is not a pyramid over a
circuit of smaller dimension. That is, if no maximal minor of A vanishes.
Since m = 1, each Gale dual B is a column vector and the zonotope ZB is an
interval.

Let Ak = A\{ak }, and let Vk = Voln(Ak ) = |det(Ak )|. If A is nondegenerate,
so that Vk > 0 for all k, then N admits exactly two coherent triangulations
with vertices in A [19]. Denote these two triangulations by Tδ for δ ∈ {±1}.
Each simplex NAk occurs in exactly one of the triangulations Tδ. That is,
there is a well-defined assignment of signs k 7→ δk , where δk ∈ {±1}, such
that

Tδ =
{
NAk

}
δk=δ, δ=±1,

where we identify a triangulation with its set of maximal simplices. As shown
in [19, Chapters 7 and 9] a Gale dual of A is given by

bk = (−1)k |det(Ak )| = δkVk . (2.9)

In particular, the zonotope ZB is an interval of length 2πVol(N ). 7

Remark 2.1.6. It can happen that the codimension of the locus of all f ∈CA∗
such that f has a singular point in Cn∗ is greater than one. In such cases we
set ∆A = 1 and say that A is dual defect. Combinatorial criteria of dual de-
fectiveness have been discussed in, e.g., [12]. However, the map (2.6) para-
metrizes the discriminant locus for arbitrary A. Hence, if A is dual defect,
then each maximal minor of the Jacobian matrix of the map (2.6) vanishes
for all t and w . Evaluating these maximal minors for a specific choice of a
Gale dual (see (3.11)), one obtains algebraic equations in the entries of A
such that A is dual defect only if it is contained in the corresponding alge-
braic set, see [10] 7

2.1.2. The A-hypergeometric system. A favorite saying of M. Passare was
that though the aim Gelf’and, Kapranov, Zelevinsky, and their coauthors,
was to unify the theory of multivariate hypergeometric functions, the book
[19] does not contain the word “hypergeometric”. 1 For the definition of the
A-hypergeometric system one should instead consult either one of [17; 18;
20; 21].

Let D denote the Weyl algebra in the variables xk and the partials ∂k =
∂/∂xk for k = 1, . . . , N , and write ∂ = (∂1, . . . ,∂N ). Denote the components
of the matrix A by a j k , for j = 0, . . . ,n and k = 1, . . . N . For a vector u ∈ ZN ,

1A claim which is not entirely true; the word “hypergeometric” appears on eight
out of totally 506 pages.
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let u+ and u− be the unique vectors in NN with disjoint support such that
u = u+−u−. Define the differential operators �u and E j by

�u = ∂u+ −∂u− and E j =
N∑

k=1
a j k∂k .

Definition 2.1.7. For β ∈ C1+n , the A-hypergeometric ideal HA(β) of homo-
geneity parameter β is the left ideal in D generated by the operators E j −β j ,
for j = 0, . . . ,n, and �u , for u ∈ ker A. The A-hypergeometric system is the
quotient D/HA(β). 7

A solution Φ of HA(β) in a domain U ⊂ CN is a (possibly multivalued)
analytic function on U , such that P •Φ = 0 for each P ∈ HA(β). We will de-
note by SolU (HA(β)) the solution space of HA(β) over U . Solutions of the A-
hypergeometric system can be represented as series [9; 21; 51], Euler-type
integrals [18], or Barnes-type integrals [6; 35]; each representation having
different advantages and drawbacks.

The singular locus of HA(β) is the hypersurface Z (D A) defined as the
zero locus of the principal A-determinant. In particular, this set is indepen-
dent of β [20; 21].

Definition 2.1.8. By abuse of notation we denote by N also the convex hull
of the columns of A inR1+n . Let Cone(N ) ⊂R1+n denote the cone generated
by N , and let Γ≺ Cone(N ) be a proper face. A parameter β ∈C1+n is said to
be resonant with respect to Γ if β ∈ Z1+n +CΓ. Further, β is resonant if it is
resonant with respect to some proper face of Cone(N ). Let RA denote the
set of resonant parameters for HA(β). 7

Resonance is linked to the behavior of the rank of HA(β), that is, the
dimension of its solution space. If β ∉ RA , then by [1; 17; 21] rk(HA(β)) =
Vol(A). Let EA denote the set of rank-jumping parameters of HA(β), that is

EA = {β ∈C1+n | rk HA(β) > Vol(A)}.

A combinatorial description of EA is available in [5]. In particular, if C1+n is
stratified by all possible intersections of hyperplanes in RA , then the rank of
the solution space of HA(β) is constant along each stratum.

2.2 Projections of the complex torus

The complex exponential map defines a group isomorphism Cn∗ ' Rn ⊕Tn ,
with projections Log and Arg onto the first and second term respectively.
Given an algebraic set Z ( f ) ⊂ Cn∗, its images under these projections are
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known as the amoeba A f and coamoeba C f respectively. We will drop the
index f when there is no risk of confusion. It is sometimes beneficial to
consider the multivalued argument mapping, which gives the coamoeba as
a multiply periodic subset of Rn .

It is natural to also consider the projections Log and Arg as mappings
on the complex torus CA∗ . If f = fa is a monomial, then it defines an affinity
fa : Cn∗ →C∗ (i.e., a group homomorphism composed with a translation). In
this case, we obtain unique maps | fa| and f̂a such that the following diagram
of short exact sequences commutes:

0 Rn+ Cn∗ (S1)n 0

0 R+ C∗ S1 0.

| fa| fa f̂a

That is, f̂a(θ) = arg( fae i 〈a,θ〉) and | fa|(τ) = | fae〈a,τ〉|. If, however, f is not a
monomial, then there is no obvious interpretation of, for example, Log( f ),
as there is no natural algebraic identification of the map log( f (z)) with the
point (log( f1), . . . , log( fN )) ∈ RA . However, such an identification is allowed
within the framework provided by the hyperfield approach to tropical geom-
etry. In fact, one should consider Log as a hyperfield morphism. (We will
briefly discuss this aspect in Section 3.4.) For an arbitrary polynomial, let us
denote by f̂ (θ) the vector with components f̂a(θ), and denote by | f |(τ) the
vector with components | fa|(τ).

Let T be an integer affine transformation of A preserving the dimension n.
Employing the induced change of coordinates in Cn∗, we conclude the fol-
lowing relation previously described in [39].

Proposition 2.2.1. In Rn , we have that CT ( f ) (respectively AT ( f )) is the image
of C f (respectively A f ) under the linear transformation (T −1)t .

Corollary 2.2.2. In Tn , we have that CT ( f ) consists of |det(T )| copies of C f .

Proof. The transformation (T −1)t acts with a scaling factor 1/|det(T )| on
Rn . Hence, it maps |det(T )|-many copies of a fundamental domain of 2πZn

onto one fundamental domain of 2πZn .

If T is an integer affine transformation which alters n, then there are
still relations between the (co)amoeba of f and that of T ( f ). However, there
is no “equivalence” in any meaning of the word. For example, we will see
in Section 3.2.2 that the maximal number of complement components of
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coamoebas of polynomials in CA∗ and CT A∗ need not be equal. In that regard,
the maximal number of connected component of the (co)amoeba is our first
example of an “invariant” of equivalent point configurations which is not
invariant under Cayley-equivalence.

In [14] the map ordA : Rn \A→Zn , defined componentwise by

ordA(τ) j = 1

(2πi )n

∫
Log−1(τ)

z j ∂ j f (z)

f (z)

d z1 · · ·d zn

z1 · · ·zn
,

was considered. There it was proven that ordA induces an injective map
from the set of connected components of the complementRn\A to the finite
set Zn ∩N . For this reason ordA is known as the order map of the amoeba.

For a ∈ Im(ordA), the connected component of Rn \A of order a is de-
noted by Ea, and the set of all f ∈CA∗ such that a ∈ Im(ordA) is denoted by Ua.
It is known that, for any a ∈ Im(ordA), the normal cone NaN coincides with
the recession cone of the component Ea of the complement of the amoeba
A. Note that Im(ordA) need not be a subset of A; it suffices to consider
the case when f is a univariate polynomial to realize that the behavior of
Im(ordA) as a set valued function of f is nontrivial.

Evaluating ord(τ) in the univariate case corresponds, by the argument
principle, to counting zeros of f inside the circle log−1(τ). With the analo-
gous interpretation of ordA for multivariate polynomials in mind, it is not
hard to see that the vertex set vert(N ) is always contained in the image of
ordA. Furthermore, it was shown in [50] that any subset of Zn ∩N that con-
tains vert(N ) appears as the image of the order map for some polynomial
with the given Newton polytope. Thus, even though the image of ordA is
non-trivial to determine, this map gives a good understanding of the struc-
ture of the set of connected components of the complement of the amoeba
A. In particular, we have the sharp lower and upper bounds on the cardi-
nality of this set given by |vert(N )| and |Zn ∩N | respectively. (See [33] and
[46] for an overview of amoeba theory.)

The coamoeba C is in general not closed, since the map Arg is not proper.
It is natural to focus on C rather than on C, the main reason being that the
components of the complement of C in Rn are convex. To see this, we give
the following argument due to Passare. IfΘ⊂Rn is a connected component
of the complement of C, then the function g (w) = 1/ f (e i w ) is holomorphic
on the tubular domain Θ+ iRn . As it cannot be extended to a holomorphic
function on any larger tubular domain, convexity follows from Bochner’s
tube theorem [8]. It was shown in [26] and [40] that

C f =
⋃
Γ≺N

C fΓ . (2.10)
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Consider a binomial

f (z) = x1 za1 +x2 za2 ,

whose coamoeba C is the set of θ ∈Rn such that

〈θ,a1 −a2〉 =π+argπ(x2)−argπ(x1)+2πk, k ∈Z.

Hence, C consists of a family of parallel hyperplanes, whose normal vector
a1 −a2 is parallel to the Newton polytope N . By the fundamental theorem
of algebra, any polynomial whose Newton polytope is a line segment factors
into a product of binomials, and hence its coamoeba consists of a family of
parallel hyperplanes.

Now let f ∈ CA∗ . The shell H =H f of the coamoeba C is defined as the
union (2.10) taken over the set of edges of the Newton polytope N , see [25;
38]. As edges are one-dimensional, the shell H is a hyperplane arrangement
in Tn (or Rn). Its importance can be seen in the following lemma.

Lemma 2.2.3 (Fundamental lemma of the shell). Let l ⊂Rn be a line segment
with endpoints in the complement of C f , such that l intersects C f . Then l in-
tersects C fΓ for some edge Γ ≺ N . In particular, each cell of the hyperplane
arrangement H f contains at most one connected component of the comple-

ment of C f .

The polynomial f , and the point configuration A, is said to be maximally
sparse if A = vert(N ). If in addition N is a simplex, then Z ( f ) is known as a
simple hypersurface, and we will say that f is a simple polynomial.

Example 2.2.4. The coamoeba of f (z) = 1+z1+z2, as described in e.g. [40],
can be seen in Figure 2.1, where it is drawn in the fundamental domains
[−π,π]2 and [0,2π]2. The shell H f consists of the hyperplane arrangement
shown in black. In this case, the shell is equal to the boundary of C f . The
Newton polytope NA . and its outward normal vectors, are drawn in the
rightmost picture. If H f is given orientation in accordance with the out-
ward normal vectors of NA , then the interior of the coamoeba consists of
the oriented cells.

Consider now the case when N is the standard n-simplex in Rn , that is,
f (z) = 1+ z1 + ·· · + zn . Let P (A) denote the power set of A, and let Pl (A)
denote the set of all subsets of A of cardinality l . It was shown in [25], that
we have the identity

C f =
⋃

S∈P3(A)
C fS , (2.11)
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Figure 2.1: The coamoeba of f (z) = 1+z1+z2 in two fundamental regions, and
the Newton polytope NA .

which holds without taking closures if n 6= 3. As any simple polynomial can
be transformed to the above case by the action of an integer affine transfor-
mation, the identity (2.11) holds for all simple hypersurfaces.

The complement of the closed coamoeba of f (z) = 1+z1+·· ·+zn , in the
fundamental domain [−π,π)n in Rn , consists of the convex hull of the open
cubes (0,π)n and (π,0)n . In particular the complement of C f has exactly
one connected component in Tn . Thus, in this case, the number of con-
nected components of the complement of C f equals the normalized volume
Vol(N ) = 1. It follows from Remark 2.1.2 that for any simple hypersurface,
the number of connected components of the complement of its coamoeba
will be equal to Vol(N ). 7

It has been conjectured that the number of connected components of
the complement of C is at most Vol(N ).1 A proof in arbitrary dimension has
been proposed by Nisse in [38], and an independent proof in the case n = 2
was given in [16].

The remainding part of this section is devoted to the proof of Lemma 2.2.3.

Proof of Lemma 2.2.3. Part 1: Let us present a modification of the argument
given in [25, Lemma 2.10] when proving the left to right inclusion of (2.10).
Assume that N has full dimension and that the sequence {z( j )}∞j=1 ⊂ Z ( f ) is
such that

lim
j→∞

z( j ) ∉Cn
∗ and lim

j→∞
Arg(z( j )) = θ ∈ Tn .

We claim that θ ∈ C fΓ for some strict subface Γ ⊂ NA . As Z ( f ) is invariant
under multiplication of f with a Laurent monomial, we can assume that

1This conjecture has commonly been attributed to Mikael Passare, however, it
seems to originate from a talk given by Mounir Nisse at Stockholm University in
2007.
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the constant 1 is a monomial of f . We can also choose a subsequence of
{z( j )}∞j=1 such that, possibly after reordering A,

|z( j )a1 | ≥ · · · ≥ |z( j )aN |, j = 1,2, . . .

and in addition

lim
j→∞

|z( j )ak |
|z( j )a1 | → dk

for some dk ∈ [0,1]. It is shown in the proof of [25, Lemma 2.10] that Γ =
{ak | dk > 0} is a face of NA , and furthermore that θ ∈ C fΓ . With the above
ordering of A, assume that the constant 1 is the pth monomial. We need to
show that Γ is a strict subface of NA . Assuming the contrary, we find that
dk > 0 for each k, and hence

lim
j→∞

|z( j )ak | = lim
j→∞

|z( j )ak |
|z( j )a1 | |z( j )a1 | = dk

dp
,

which in particular is finite and nonzero. As NA has full dimension, this im-
plies that that lim j→∞ |z( j )m | is finite and nonzero for each m = 1, . . . ,n. As
Arg(z( j )) → θ when j →∞, we find that lim j→∞ z( j ) ∈ Cn∗, a contradiction.
Hence, dN = 0, and Γ is a strict subface of NA .

Part 2: We now claim that if n ≥ 2, then the set

P = {z ∈ Z ( f ) | Arg(z) ∈ N (l )∩C f },

where N (l ) is an arbitrarily small neighborhood of l inRn , is such that Log(P )
is unbounded. To see this, consider the function g (w) = f (ew ), where wk =
xk + iθk . Notice that the w-space Cn is identified with the image of the z-
space Cn∗ under the multivalued complex logarithm. That is, the coamoeba
C f and the line l are considered as subsets of Rn , which is the image of the
w-space Cn under taking coordinatewise imaginary parts.

We can assume that l is parallel to the θ1-axis and, by a translation of the
coamoeba, that there are ρ1, . . . ,ρn > 0 such that the set

S = [−ρ1,ρ1]×·· ·× [−ρn ,ρn]

fulfills l ⊂ S ⊂ N (l ). Furthermore we can choose 0 < r < ρ1 such that, with

S̃ = [−r,r ]× [−ρ2,ρ2]×·· ·× [−ρn ,ρn],

the set S \ S̃ consists of two n-cells that are neighborhoods of the endpoints
of l . Hence, we can assume that S \ S̃ ⊂ (Rn \C f ). If we assume that Log(P ) is
bounded, then there exists a sufficiently large R ∈R such that if

D = {x ∈Rn | |x| > R},
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then g (w) has no zeros in D+i S ⊂Cn . Let w ′ denote the vector (w2, . . . , wn),
and let (D + i S)′ be the projection of D + i S onto the last n −1 components.
Then in particular, g (w) has no zeros when w ′ ∈ (D + i S)′ and w1 lies in the
domain given by {w1 |r < |ℑ(w1)| < ρ1}∪ ({w1 | |ℜ(w1)| > R}∩ {w1 | |ℑ(w1)| <
ρ1}), see Figure 2.2. Consider a curve γ as in Figure 2.2, and the integral

k(w ′) = 1

2πi

∫
γ

g ′
1(w1, w ′)

g (w1, w ′)
d w1, w ′ ∈ (D + i S)′.

By the argument principle, for a fix w1, the integral k(w ′) counts the num-
ber of roots of g (w) inside the box in Figure 2.2. As it is continuous in w ′ in
the domain (D + i S)′, it is constant. By considering w ′ with |x ′| > R (here it
is essential that n ≥ 2) we conclude that it is zero. However, this is a contra-
diction to the assumption that l intersects C f . Hence, Log(P ) is unbounded.

-ρ

ρ

- r

r

-R R

γ

Figure 2.2: The curve γ⊂C.

Part 3: We will now prove Lemma 2.2.3 by induction on the dimension
d of N . If d = 1, then there is nothing to prove. Assume that d > 1, and
that the statement is proven for all smaller dimensions. Notice that f has
n−d homogeneities, and hence it is essentially a polynomial in d variables.
Dehomogenizing f corresponds to a projection pr: Tn → Td such that C f =
pr−1(Cpr( f )). The line segment pr(l ) will intersect the shell Hpr( f ) if and only
if l intersects the shell H f . Hence, it is enough to prove the statement under
the assumption that d = n. In particular, n ≥ 2.

Choose a decreasing sequence {ε(k)}∞k=1 of positive real numbers, such
that limk→∞ ε(k) = 0, and consider the family of neighborhoods of l given
by

N (l ,k) =
{
θ ∈Rn

∣∣∣ inf
x∈l

|θ−x| < ε(k)
}

,

where | · | denotes the Euclidean norm on Rn . Define

P (k) = {z ∈ Z ( f ) | Arg(z) ∈ N (l ,k)∩C f }.
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As n ≥ 2, Part 2 shows that for each k, the set Log(P (k)) is unbounded. That
is, for each k, we can find a sequence {z(k,m)}∞m=1 such that z(k,m) ∈ Z ( f ),
with

Arg(z(k,m)) ∈ N (l ,k)∩C f ⊂ N (l ,k)∩C f ,

but limm→∞ z(k,m) ∉ Cn∗. Since N (l ,k)∩C f is compact, we can choose a

subsequence such that Arg(z(k,m)) converges to some θ(k) ∈ N (l ,k)∩C f

when m →∞. Then, Part 1 gives a strict subface Γ(k) of NA such that θ(k) ∈
C( fΓ(k)). Since NA has only finitely many strict subfaces, we can choose
a subsequence of {θ(k)}∞k=1 such that Γ = Γ(k) does not depend on k. As

{θ(k)}∞k=1 ⊂ N (l ,1), which is compact, we can also choose this subsequence

such that θ(k) converges to some θ ∈ N (l ,1) when k →∞. On the one hand,
we have that θ ∈ l by construction of the sets N (l ,k). On the other hand, that
θ(k) ∈ C( fΓ) implies that θ ∈ C( fΓ). In particular, θ ∈ l ∩C fΓ .

The identity (2.10) shows that the endpoints of l are contained in the
complement of C fΓ . As the dimension of Γ is strictly less than the dimension
of N , the induction hypothesis shows that l intersects the coamoeba of an
edge of Γ. As each edge of Γ is an edge of NA , the lemma is proven.
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3. Pellet’s criterion

The following corollary of Rouche’s Theorem was published by Pellet in 1881
[47]. Let f ∈ CA∗ be a univariate polynomial and consider the auxiliary real
polynomial

Fκ(z) = |xκ|zaκ − ∑
k 6=κ

|xk |zak .

If Fκ has two positive roots z1 and z2, with z1 ≤ z2, then f has exactly κ roots
inside the circle |z| ≤ z1 and no roots in the annulus z1 < |z| < z2. Notice that
Fκ has two positive roots, counting multiplicities, if and only if there exist a
z ∈Cn∗ such that ∣∣xκzaκ

∣∣≥ ∑
k 6=κ

∣∣xk zak
∣∣ . (3.1)

With f fixed, the fulfillment of (3.1) only depends on τ = log |z|. Further-
more, the conclusion of Pellet’s Theorem is equivalent to that

(τ1,τ2) ⊂ Eκ ⊂R\A f .

The n-variate version of Pellet’s Theorem was given by Rullgård in [50],
and reads as follows. If z is such that (3.1) holds, then τ= Log |z| ∈ Eκ. Later,
Purbhoo [48] named (3.1) the lopsidedness criterion, and defined the lop-
sided amoeba L = L f as the set of all τ ∈ Rn such that (3.1) does not hold
for any z ∈ Log−1(τ) and any κ. The name can be misleading as the lopsided
amoeba is not, per se, an amoeba. It is, however, equal to the intersection of
the amoeba of the (N +n)-variate polynomial

F (w, z) =
N∑

k=1
wk zak (3.2)

and the affine space (in logarithmic coordinates) defined by the equations
Log |w | = Log | f |.

Pellet’s Theorem implies that there is an inclusion A⊂L. This inclusion
allows us to define a map ordL by

ordL(τ) = ordA(τ), τ ∈Rn \L.

Then, Rullgårds Theorem implies that

ordL : Rn \L→ A.
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Furthermore, as the connected components of the complement of L are
convex, a fact which follows from the convexity of the dittos of the amoeba
of F (w, z), we find that ordL induces an injective map on the set of con-
nected components of L. For this reason we call ordL the order map of the
lopsided amoeba.

The criterion (3.1) has made several appearances throughout history.
Most notable is its applications within the analysis of of local growth of power
series, which is known as Wiman–Valiron Theory, see [24] and the references
therein. Generalizations of Pellet’s Theorem for univariate polynomials can
be found in, e.g., [30].

3.1 Colopsidedness

Definition 3.1.1. The polynomial f is said to be colopsided at θ ∈Rn (or Tn)
if there exist a phase ϕ such that

ℜ
(
e iϕ fa(e iθ)

)
≥ 0, ∀a ∈ A, (3.3)

with at least one of the inequalities (3.3) being strict. We define the lopsided
coamoeba, denoted D =D f , as the set of all θ such that (3.3) does not hold
for any ϕ. 7

The main result of this section is the following proposition, describing
the relation between D and C.

Proposition 3.1.2. Each connected component of the complement of C con-
tains at most one connected component of the complement of D.

We will begin with a number of lemmas describing equivalent defini-
tions of colopsidedness.

Lemma 3.1.3. Consider C ' R2 as an R-vector space. Then, the polynomial
f is colopsided at θ if and only if there exist a nonzero vector n ∈R2 such that
f̂ (θ) is contained in the halfspace H = {z | 〈n, z〉 ≥ 0} but it is not contained in
the vector subspace `= {z | 〈n, z〉 = 0}.

Proof. If (3.3) is fulfilled at θ, then we can choose n = (cos(ϕ),−sin(ϕ)). Con-
versely, if ζ ∈ ` with ζ 6= 0, then (3.3) is fulfilled at θ for either ϕ = arg(ζ) or
ϕ= arg(−ζ).

Let Cone f̂ (θ) denote the open cone consisting of all positive linear com-
binations of the points f̂k (θ), k = 1, . . . , N .

Lemma 3.1.4. We have that θ ∈D if and only if 0 ∈ Cone f̂ (θ).
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Proof. If θ ∈ Tn \D, then Cone f̂ (θ) ⊂ int(H), where H ⊂ C is a halfspace
from Lemma 3.1.3. Conversely, if 0 ∉ Cone f̂ (θ) then the fact that Cone f̂ (θ)
is convex implies that there exists a halfspace H containing Cone f̂ (θ) in its
interior.

Corollary 3.1.5. We have the inclusion C ⊂D.

Proof. If f (r e iθ) = 0 then 0 ∈ Cone f̂ (θ).

Corollary 3.1.6. If A is simple, then C =D for all f ∈CA∗ .

Proof. By applying an integer affine transformations we can reduce to the
case when N is the standard n-simplex in Rn . That is, it is enough to prove
the statement for the polynomial f (z) = 1+ z1 + ·· · + zn . We have that 0 ∈
Cone f̂ (θ) if and only if we can find positive numbers r0, . . . ,rn such that r0+
r1e iθ1 +·· ·+ rne iθn = 0, which is equivalent to that θ ∈ C.

Remark 3.1.7. There are non-simple polynomials for which the identity C =
D holds. Take, for example, any polynomial f such that C = Tn . Such ex-
amples can be constructed by taking products of polynomials, which corre-
sponds to taking unions of coamoebas. We will encounter less trivial exam-
ples in Section 4.3. 7

Lemma 3.1.8. We have that

D f =
⋃

g∈RA+· f
Cg ,

where RA+ · f denotes the orbit of f under the action of RA+ on CA∗ .

Proof. If θ ∈ Cg for g ∈ RA+ then 0 ∈ Cone ĝ (θ) = Cone f̂ (θ). Conversely, if
0 ∈ Cone f̂ (θ), then there exists an r ∈RA+ such that r · f (e iθ) = 0.

Lemma 3.1.9. Let f ∈ CA∗ , and let F (w, z) be as in (3.2). Then, the lopsided
coamoeba D f is equal to the intersection of the coamoeba CF with the affine
space in TN+n defined by Arg(w) = Arg( f ).

Proof. We have that Cone f̂ (θ) = Cone F̂ (Arg( f ),θ). Since F is a simple poly-
nomial, the statement follows from Corollary 3.1.6 and Lemma 3.1.4.

Proposition 3.1.10. Let n ≥ 2. Then,

D f =
⋃

S∈P3(A)
C fS . (3.4)
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Figure 3.1: Above: the coamoeba and lopsided coamoeba of f (z1, z2) = z3
1 +

z2 + z2
2 − z1z2. Below: dittos of f (z1, z2) = 1+ z1 + z2 + i z1z2.

Proof. By Lemma 3.1.9 we have that D f = CF ∩ H , where H is the sub n-
torus of TN+n defined by Arg(w) = Arg( f ). Since F is a simple polynomial,
the identity follows from (2.11).

As was the case for (2.11), the identity (3.4) holds without taking closures
if N 6= 4. Lopsided coamoebas first appeared under this disguise in [25].
Proposition 3.1.10 is the motivation for the following definition, in which
we consider the union of the shells of the coamoebas appearing in the right
hand side of (3.4).

Definition 3.1.11. The shell K f of the lopsided coamoeba D f is defined as
the union

K f =
⋃

S∈P2(A)
C fS .

That is, K f is the union of all coamoebas of truncated binomials of f . 7

Proposition 3.1.12. The shell K contains the boundary of D.

Proof. If θ ∈ Tn \D, then we can choose ϕ such that

ℜ
(
e iϕ fa(e iθ)

)
> 0, ∀a ∈ A.

30



We conclude that the boundary ofD is contained in the hyperplane arrange-
ment consisting of all θ such that two components of f̂ (θ) are antipodal.
That is, it is contained in K.

We are now ready to prove the main result of this section.

Proof of Proposition 3.1.2. It suffices to show that any line segment l ⊂ Rn

that intersect D and has its endpoints in Tn \D also intersect C.
Consider first the case when f (z) is a univariate polynomial. Let l =

[θ1,θ2] ⊂ R, and assume that there exist a θ ∈ (θ1,θ2) such that θ ∈ D. By
Lemma 3.1.4 there exists an r ∈RA+ such that θ ∈ Cr · f . Let γ be the path

γ(t )k = r 1−t
k xk , t ∈ [0,1],

from r · f to f in CA∗ , and let ft denote the polynomial with coefficients
γ(t ). By Lemma 3.1.4 it holds that C ft ⊂ D f for all t ∈ [0,1]. In particular,
θ1,θ2 ∉ C ft . Let z ∈ C∗ denote a root of f0(z) = (r · f )(z) such that arg(z) = θ.
By continuity of roots, there is a continuous path t 7→ z(t ) ∈C∗ such that z(t )
is a root of the polynomial ft (z). We conclude that the path t 7→ arg(z(t )) is
continuous, which in turn implies that arg(z(t )) ∈ (θ1,θ2) for all t . In partic-
ular, arg(z(1)) ∈ (θ1,θ2), which proves the proposition in this case.

Consider now the case when N ⊂ Rn is one-dimensional. To dehomog-
enize f corresponds to a projection pr: Tn → T such that, if g denotes the
dehomogenization of f , then C f = pr−1(Cg ). As such a projection maps a
line segment to a line segment, this case follows from the univariate case.

Now consider an arbitrary multivariate polynomial f (z). By Lemma 3.1.4
there exists an r ∈ RA+ such that the line segment l intersects the coamoeba
of r · f , whose closure is contained in D. It follows that the endpoints of
l are contained in the complement Rn \Cr · f . By Lemma 2.2.3, there is an
edge Γ≺N such that l intersects the coamoeba of the truncated polynomial
(r · f )Γ. It follows that l intersects the lopsided coamoeba of (r · f )Γ, which
coincides with the lopsided coamoeba of fΓ. Furthermore, we can conclude
from (2.10) that the endpoints of l are contained in the complement of the
lopsided coamoeba of fΓ. Since Γ is one dimensional, we conclude from the
previous case that l intersects coamoeba of fΓ. Finally, we conclude from
(2.10) that the line segment l intersects C f .

Let us end this section with a characterization of colopsidedness that in
its phrasing is similar to lopsidedness.

Lemma 3.1.13. Let σ ∈SN be such that the points f̂σ(k)(θ), k = 1, . . . N , are
cyclically ordered in S1. Define

ψk = arg2π

(
f̂σ(k)(θ)

f̂σ(k−1)(θ)

)
,
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so that ψk denotes the kth intermediate angle of adjacent points. Then, f is
colopsided at θ if and only if there exists a unique index κ such that

ψκ ≥
∑

k 6=κ
ψk . (3.5)

Proof. We have that
∑

k ψk = 2π. Hence, the inequality (3.5) holds if only if κ
is the unique index such that ψκ ≥π. We find that ψκ ≥π if and only if (3.3)
is fulfilled for

ϕ= arg
(

f̂σ(κ−1)(θ)
)

.

Furthermore, one inequality of (3.3) is strict if and only if the index κ is
unique.

Remark 3.1.14. Using the construction from Lemma 3.1.13, we can define
a (in general nonconvex) polytopal complex in Tn as the set of all θ such
that the maximum maxk ψk is attained at least twice. In several examples,
this definition yields the dimer model related to the coamoeba C that was
defined ad hoc in, e.g., [13] and [56]. For generic polynomials f , computing
this polytopal complex is notoriously difficult, however, they deserve further
attention. 7

3.2 The order map of the lopsided coamoeba

The aim of this section is to define the order map for the lopsided coamoeba.
Let f ∈ CA∗ , and fix both an index κ and a Gale dual B . For each index k,
consider the function pk

κ : Rn →R defined by

pk
κ(θ) = argπ

(
xk e i 〈ak ,θ〉

xκe i 〈aκ,θ〉

)
−argπ(xk )+argπ(xκ)−〈ak −aκ,θ〉.

We let the functions pk
κ, k = 1, . . . , N , be the components of a vector valued

function
pκ(θ) = (

p1
κ(θ), . . . , pN

κ (θ)
)

.

Finally, we define the map ordD : Rn →Rm by

ordD(θ) = (
Argπ( f )+pκ(θ)

)
B. (3.6)

Theorem 3.2.1. Assume that ιA = 1. Then, (3.6) defines a map

ordD : Tn \D→ int(ZB )∩ (Argπ( f )B +2πLB ) (3.7)

which does not depend on κ. Furthermore, the map (3.7) induces a bijec-
tive map between the set of connected components of the lopsided coamoeba
complement Tn \D and the finite set int(ZB )∩ (Argπ( f )B +2πLB ).
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Definition 3.2.2. The map ordD from Theorem 3.2.1 is called the order map
of the lopsided coamoeba D. 7

Remark 3.2.3. In general, when considered as a map from the set of con-
nected components of the complement of the closed coamoeba, the map
ordD will be ιA to one. Thus, if one considers ordD as a map from the set of
components of the complement of D into the full affine lattice Argπ( f )B +
2πZm , then injectivity is measured in terms of ιA , while surjectivity is mea-
sured in terms of ιB . 7

Lemma 3.2.4. For each k = 1, . . . N , the map pk
κ is locally constant on the

complement of the coamoeba of the binomial xκzaκ+xk zak . Furthermore, its
image is contained in the lattice 2πZ.

Proof. We have that

argπ

(
xk e i 〈ak ,θ〉

xκe i 〈aκ,θ〉

)
= argπ(xk )−argπ(xκ)+〈ak −aκ,θ〉+2π j (θ),

where j (θ) ∈ Z. Hence, pk
κ(θ) = 2π j (θ), proving the last claim. Finally, the

function j (θ) is locally constant on the complement of the locus where

argπ

(
xk e i 〈ak ,θ〉

xκe i 〈aκ,θ〉

)
=π,

and this locus is equal to the coamoeba of the binomial xκzaκ +xk zak .

Corollary 3.2.5. The map pκ(θ) is constant on each cell of the hyperplane ar-
rangement K⊂Rn . In particular, it is constant on each connected component
of the complement Rn \D.

Lemma 3.2.6. Let ordD : Rn →Rm denote the map (3.6). Then,

i) ordD maps Rn into the affine lattice Argπ( f )B +2πLB ,

ii) ordD is well-defined on Tn , i.e., it is periodic in each θi with period 2π,

iii) ordD is invariant under multiplication of f by a Laurent monomial, and

iv) if θ ∈ Tn \D, then ordD(θ) ∈ int(ZB ).

Proof. The first claim follows from the definition of ordD and Lemma 3.2.4.
To prove the second and third claim, we note that Argπ( f )+pκ(θ) equals(

argπ

(
x1e i 〈a1,θ〉

xκe i 〈aκ,θ〉

)
, . . . ,argπ

(
xN e i 〈aN ,θ〉

xκe i 〈aκ,θ〉

))
+ (argπ(xκ)〈aκ,θ〉,θ1, . . . ,θn)A,
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where A is the matrix (2.1). It follows that

(
Argπ( f )+pκ(θ)

)
B =

(
argπ

(
x1e i 〈a1,θ〉

xκe i 〈aκ,θ〉

)
, . . . ,argπ

(
xN e i 〈aN ,θ〉

xκe i 〈aκ,θ〉

))
B. (3.8)

We conclude that ordD is well-defined on Tn , and that it is invariant under
multiplication of f by a Laurent monomial.

Let us now turn to the last claim. Given a point θ in the complement
of D, the components of f̂ (θ) are contained in an open half-space H ⊂ C.
As ordD is invariant under multiplication of f with a Laurent monomial, we
can assume that κ= 0 and that H = H0 is the right half space. That is

argπ

(
xk e i 〈ak ,θ〉

)
= π

2
µk , k = 1, . . . , N ,

where µk ∈ (−1,1). Since argπ(ζ1ζ2) = argπ(ζ1)+ argπ(ζ2) for any two ele-
ments ζ1,ζ2 ∈ H0, we find that

pk
0 (θ) = argπ

(
xk e i 〈ak ,θ〉

)
−argπ(xk )−〈ak ,θ〉.

Thus, the following identities hold.
argπ(x1)+〈a1,θ〉+p1

0(θ) = π
2µ1

...
argπ(xN )+〈aN ,θ〉+pN

0 (θ) = π
2µN .

(3.9)

Hence,(
Argπ( f )+pκ(θ)

)
B =

(π
2
µ− (0,θ1, . . . ,θn)A

)
B = π

2
µB ∈ int(ZB ).

Lemma 3.2.7. The map ordD from (3.7) is independent of the choice of κ.

Proof. Let θ ∈ Tn \D. Since ordD is invariant under multiplication of f with
a Laurent monomial we can assume that a1 = 0, and that the right half space
H = H0 contains f̂ (θ). Then, the difference

pk
1 (θ)−pk

κ(θ) = argπ

(
xκe i 〈aκ,θ〉

)
−argπ(xκ)−〈aκ,θ〉

is independent of k, and hence
(
p1(θ)−pκ(θ)

)
B = 0.

For convenience, let us impose assumptions on the matrix A and the
Gale dual B . After multiplication with a Laurent monomial, an operation
with leaves both the map ordD and the lopsided coamoeba D unaffected,
we can assume that A is of the form

A =
(

1 1 1
0 A1 A2

)
, (3.10)
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where A1 is a nonsingular n ×n matrix. We can also assume that x0 = 1, i.e.,
that the constant 1 is a monomial of f . Any Gale dual of A can be presented
in the form

B =
 b0

−A−1
1 A2

Im

T, (3.11)

where b0 ∈Qm is such that each column of B sums to zero, and T ∈ GLm(Q).

Lemma 3.2.8. Let A be under the above imposed assumptions. Let x1 and x2

denote the vectors (x1, . . . , xn) and (xn+1, . . . , xn+m) respectively, and use simi-
lar notation for l ∈ZN and µ ∈RN . Consider the system

Argπ(x1)+θA1 +2πl1 = π

2
µ1

Argπ(x2)+θA2 +2πl2 = π

2
µ2.

(3.12)

Then, θ ∈ Tn \D if and only if θ solves (3.12) for some integers l and some
numbers µ0, . . . ,µn+m such that µ0,µ1 +µ0, . . . ,µn+m +µ0 ∈ (−1,1).

Proof. Let θ ∈ Tn \D. Then, there is a halfplane Hϕ containing f̂ (θ). As the
constant 1 is a monomial of f , we can chooseϕ ∈ (−π/2,π/2). It follows that
there are numbers λ1, . . . ,λn+m ∈ (−1,1) and integers l1, . . . , ln+m such that

argπ(xk )+〈θ,ak〉+2πlk = π

2
λk +ϕ, k = 1, . . . ,n +m.

This shows that θ fulfills (3.12) with l as above, µ0 = −2ϕ/π and µk = λk +
2ϕ/π for k = 1, . . . ,n+m. Conversely, if θ fulfills (3.12) for such l and µ, then
f̂ (θ) ⊂ Hϕ, where ϕ=−πµ0/2.

Proof of Theorem 3.2.1. It follows from Lemma 3.2.6 that the map ordD from
(3.6) induces a well defined map on Tn \D, whose image is contained in
the finite set (Argπ( f )B +2πLB ). Furthermore, by Lemma 3.2.7 we find that
the given map is independent of κ. It only remains to prove that ordD is a
bijection.

Let A be under the above imposed assumptions. Solve the first equation
of (3.12) for θ by multiplying from the left with A−1

1 , and proceed by elimi-
nation of θ in the second equation. After multiplication by T , we arrive at
the equivalent system

θ = π

2
µ1 A−1

1 −Arg(x1)A−1
1 −2πl1 A−1

1

Argπ( f )B +2π(0, l1, l2)B = π

2
(0,µ1,µ2)B.

(3.13)
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To see that ordD is a surjection, consider a point Argπ( f )B + 2πlB =
πλB/2 ∈ int(ZB ). We can assume that l0 = 0. Define µ by µk = λk −λ0 for
k = 0, . . . ,n + m. It follows that the pair (l ,µ) fulfills the second equation
of (3.13). Let θ ∈ Rn be defined by the first equation of (3.13). It then fol-
lows that the triple (θ, l ,µ) fulfills (3.12), and thus by Lemma 3.2.8 we have
that θ ∈ Tn \D. By tracing backwards we find that the order of the connected
component of the complement ofD containing θ is Argπ( f )B+2πl B . Hence,
the map ordD is surjective.

To see that ordD is an injection, consider a point p ∈ int(ZB ). The set of
all µ ∈ RN such that 2πµB = p, is an affine space, hence convex. It follows
that the set of all µ ∈ (−1,1)N such that 2πµB = p, being the intersection of
two convex sets, is also convex. This implies that for fix integers l , the set of
θ ∈ Rn such that (3.12) is fulfilled with µ0,µ1 −µ0, . . . ,µN −µ0 ∈ (−1,1) is in
turn also convex, as it is the image of a convex set under an affine transfor-
mation. As the right hand side of (3.6) is constant on each cell of K, this set
is exactly one connected component of the complement of D in Rn . Thus,
if we consider two points θ and θ̃ in Rn which both maps to Arg( f )B +2πlB ,
then we can assume that θ and θ̃ fulfills (3.12) for the same numbers µ, how-
ever possibly for different integers l . Under this assumption there are inte-
gers s1, . . . , sN such that

〈ak ,θ〉 = 〈ak , θ̃〉+2πsk , k = 1, . . . , N .

Since ιA = 1, we have that L A =Zn , and hence for each vector ei of the stan-
dard basis there are integers ri = (ri 1, . . . ,ri N ) such that ei =∑

k ri k ak . Hence,

θi = 〈ei ,θ〉 =
N∑

k=1
ri k〈ak ,θ〉 =

N∑
k=1

ri k〈ak , θ̃〉+2πri k sk = θ̃i +2π〈ri , s〉,

which shows that θ = θ̃ in Tn .

Remark 3.2.9. To evaluate the order of a component Θ of the complement
of D it is convenient to use the right hand side of (3.8). In particular, if a0 = 0
and x0 = 1, then

ordD(θ) = Argπ
(

f̂ (θ)
) ·B ,

where θ ∈Θ is arbitrary. 7

Example 3.2.10. Let us determine the map ordD explicitly in the first ex-
ample shown in Figure 3.1, that is we consider the polynomial f (z1, z2) =
z3

1 + z2 + z2
2 − z1z2. We have that

A =
 1 1 1 1

3 0 0 1
0 1 2 1

 ,
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and a Gale dual of A is given by

B = (−1,−1,−1,3)t .

The zonotope ZB is the interval [−3π,3π]. As the translation Argπ( f )B =
3argπ(−1) = 3π, the image of the map ordD will be the doubleton {−π,π}.
We find that

ordD(θ1) = (0,−2π,−2π,−π)B = π

ordD(θ2) = (0,2π,2π,π)B = −π,

where θ1 = (−2π/3,0) and θ2 = (2π/3,0). 7

Example 3.2.11. Let us also consider a univariate case of codimension 1,
namely

f (z) = 1+ z3 + i z5.

A Gale dual of A is given by B = (2,−5,3)t . Hence, the zonotope ZB is the
interval [−5π,5π]. We have that Argπ( f )B = (0,0,π/2)B = 3π/2, and hence
the image of ordD is the set {−9π/2,−5π/2,−π/2,3π/2,7π/2}. The lopsided
coamoeba D can be seen in Figure 3.2. We choose one point from each

Figure 3.2: D in the fundamental domain [−π,π].

connected component of its complement, namely

θ1 =−7π

8
, θ2 =−π

2
, θ3 = 0, θ4 = 5π

16
, θ5 = 3π

4
,

and find that

ordD(θ1) = (0,−5π/8,π/8)B = 7π/2

ordD(θ2) = (0,π/2,0)B = −5π/2

ordD(θ3) = (0,0,π/2)B = 3π/2

ordD(θ4) = (0,15π/16,π/16)B = −9π/2

ordD(θ5) = (0,π/4,π/4)B = −π/2.

Note that the orders does not reflect the (circular) ordering of the connected
components of T \C. 7
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3.2.1. Cayley configurations. The image of the order map ordD depends
only on a Gale dual B of A. As Gale duals are invariant under general inte-
ger affine transformations, we expect also the number of connected com-
ponents of the complement of a lopsided coamoeba to be invariant under
such transformations. To formulate such a statement in a precise manner,
we need to extend the definition of the order map to an arbitrary Cayley
configuration. That is, we consider a polynomial

f (z) = f1(z) · · · fq (z) ∈CA1∗ ×·· ·×CAq
∗ .

We define the lopsided coamoeba of f by

D f =
q⋃

i=1
D fi .

To define the map ordD, fix a point a = (a1, . . . ,aq ) ∈ A1×·· ·×Aq . For each ai

we obtain a vector valued function pai : Rn →RNi , through which we define
the function pa : Rn →RN by

pa(θ) = (
pa1 (θ), . . . , paq (θ)

)
.

Finally, we define ordD as in (3.6).

Theorem 3.2.12. Let A be a Cayley configuration, and assume that ιA = 1.
Then, all claims of Theorem 3.2.1 holds.

Proof. Compare the two Cayley equivalent configurations

A =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

A1 A2 . . . Aq

 and Ã =


1 1 · · · 1
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

A1 A2 · · · Aq

 ,

whose kernels coincide. The first configuration is associated to products
f (z), while the second configuration is associated to polynomials

F (z, w) = f1(z)+w1 f2(z)+·· ·+wq−1 fq (z).

We have that θ ∈ Tn \D f if and only if there exist ϕ1, . . . ,ϕq such that f̂i (θ) ⊂
Hϕi . This is equivalent to that F̂ (θ,ϕ1 −ϕ2, . . . ,ϕ1 −ϕq ) ⊂ Hϕ1 . Further more
we have that ordF (θ,ϕ1 −ϕ2, . . . ,ϕ1 −ϕq ) = ord f (θ), where ordF and ord f

denotes order maps for DF and D f respectively. Thus, we have reduced to
the case covered by Theorem 3.2.1.
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3.2.2. On the number of components of Tn \C. In this section we will dis-
cuss the current status of the conjectures regarding the number of connected
components of the complement of a closed hypersurface coamoeba C. Our
first result is based on the theory of Mellin–Barnes integrals, which we will
touch upon in Section 5.1.2.

Corollary 3.2.13. Let A be a Cayley configuration. Then, the number of con-
nected components of the complement Tn \D is at most Vol(N ).

Proof. It is enough to give the proof in the case when ιA = 1, so that Vol(N ) =
Vol(A). Choose a Gale dual B such that ιB = 1. It was proven in [6] that the set
int(ZB )∩ (Argπ( f )+2πZm) is in a bijective correspondence with a family of,
for sufficiently generic parameters β, linearly independent Mellin–Barnes
hypergeometric integrals. As the rank of Solx (HA(β)) is equal to Vol(A) for
generic parameters, the result follows.

With Corollary 3.2.13 in mind, we suggest the following sharpened ver-
sion of the Vol(N )-bound on the number of connected components of the
complement of a closed coamoeba.

Conjecture 3.2.14. Lat A be a Cayley configuration with ιA = 1. Then, the
number of connected components of the complement Tn\C is at most Vol(A).

The number of connected components of the complement of a closed
lopsided coamoeba is invariant under integer affine transformations. There-
for it might, at a first glance, seem like the statement of Conjecture 3.2.14 is
merely a reformulation of the Vol(N )-bound. However, the number of con-
nected components of the complement Tn \C is not invariant under general
integer affine transformations.

Example 3.2.15. Let N be the three-dimensional unit cube. That is,

A =


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 ∼


1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 .

We associate to A the family of generic multiaffine trivariate polynomials

f (z1, z2, z3) = 1+ z1 + z2 + z3 +x3z1z2 +x2z1z3 +x1z2z3 +x0z1z2z3.

In particular, we have that Vol(A) = 6. Note that A is Cayley equivalent the
point configuration associated to the product of two bivariate multiaffine
polynomials

f1(z1, z2) = 1+ z1 + z2 +x3z1z2 and f2(z1, z2) = 1+x2z1 +x2z2 +x0z1z2.
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By examining the lopsided coamoeba of the product f1 f2, one can conclude
that its complement has at most four connected components. Hence, the
number of connected components of the complement of the closed lop-
sided coamoeba of f is at most four.

A computer aided computation performed in [15] showed that the com-
plement T3 \C f has at most four connected components. However, this is
not the case for the product f1 f2, as seen in Figure 3.3. 7

Figure 3.3: The coamoeba of f (z1, z2) = (1+z1+z2+ i z1z2)(1−z1−z2+ i z1z2).

Let us now turn to the question of whether a lopsided coamoeba D with
Vol(A)-many connected components of its complement can be constructed.

Theorem 3.2.16. Let A be a circuit. Then, the complement of the lopsided
coamoebaD, and hence also the complement of the coamoeba C, has Vol(N )-
many connected components for generic coefficients.

Proof. It is enough to give the proof under the assumption that ιA = 1, so
that Vol(N ) = Vol(A). Choose B such that ιB = 1. We noted in Example 2.1.5
that the zonotope ZB is an interval of length 2πVol(A). Thus, the image of
the order map ordD is of cardinality Vol(A) for generic coefficients.

It was conjectured by Passare [29, Conjecture 8.1] that if A is maximally
sparse, then the maximal number of connected components of the comple-
ment of the closed coamoeba is obtained for generic coefficients. In general
this conjecture is false, with counterexamples given already in the text [29].
However, we can conclude that the conjecture is true in the following special
case.

Corollary 3.2.17. If the Newton polytope N has n+2 vertices, then the upper
bound Vol(N ) on the number of connected components of the complement of
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the coamoeba C is obtained for maximally sparse polynomials with generic
coefficients.

Proof. Using the Theorem 3.2.16, it is enough to show that if f is maximally
sparse, then A = supp( f ) is a non-degenerate circuit. Indeed, as all points
in A are vertices of N , we find that any choice of n + 1 points will span a
simplex of full dimension, implying that the corresponding determinant is
nonvanishing.

3.3 The intersection theorem

The main theorem of [48], where the term “lopsidedness” was coined, is the
existence of a sequence of polynomials { fK }∞K=0 ⊂ 〈 f 〉 such that the lopsided
amoebas of fr converges to the amoeba A f in Hausdorff distance as r →∞.
In particular, we have that

A f =
⋂

g∈〈 f 〉
Lg .

In particular, the approximation ofA f by lopsidedness is fine enough for ap-
plications. This section is devoted to the corresponding problem for coamoe-
bas. Our main theorem is the following.

Theorem 3.3.1. Let N be a simplex. Then, for any f ∈CA∗ , it holds that

C f =
⋂

g∈〈 f 〉
Dg .

In our proof of Theorem 3.3.1 we will, for each θ ∈ Tn \C f , construct an
explicit sequence {g θK }∞K=0 ⊂ 〈 f 〉 such that g θK is colopsided at θ for K suffi-
ciently large.

Let us consider a homogenous real polynomial

F (z) = ∑
a∈A

xa
za

a!

of degree d and such that NF is a dilation (by a factor of d) of the standard
n-simplex in R1+n . Let L ⊂Z1+n be a lattice, and define the monoid

L+ = L∩R1+n
≥0 .

The homogenous part of L+ of degree k is, by definition,

L+
k = {β ∈ L+ | |β| = k}.
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Theorem 3.3.2. Let F (z) be a homogenous real polynomial whose Newton
polytope N is a dilation of the standard n-simplex. Let A and d denote the
support and degree of F respectively. Assume that F (z) is positive on z ≥ 0
and

∑
z > 0. Let L by any lattice containing L A , and define the polynomials

Gk (z) = (dk)!
∑

β∈L+
dk

zβ

β!
= ∑
β∈L+

dk

(
dk

β

)
zβ.

Then, there exists a positive integer K such that, for each k ≥ K , all non-zero
coefficients of the polynomial GK (z)F (z) are positive.

If we choose L as the full lattice L =Zn+1, then Gk (z) is the dk-fold prod-
uct (z0 + z1 +·· ·+ zn)dk . In this version, Theorem 3.3.2 is due to Pólya, with
roots tracing back to Poincaré and Meissner. Our proof of Theorem 3.3.2 is
based on Pólyas proof, as presented in [23].

Proof of Theorem 3.3.2. The region z ≥ 0 and
∑

z = d , coincides with the
Newton polytope N . By assumption, F is positive and continuous on this
region. Thus, since N is compact, the polynomial F obtains its minimum µ,
which is positive, in this region. For t > 0, consider the function

ϕ(z; t ) = t d
∑

a∈A
xa

n∏
j=1

(
z j t−1

a j

)
,

where
(z j t−1

a j

)
denotes the generalized binomial coefficient. That is,

(
z j t−1

0

)
= 1 and t a j

(
z j t−1

a j

)
= z j (z j − t ) · · · (z j − (a j −1)t )

a j !
.

Notice that if γ = (γ1, . . . ,γn), with |γ| = dk, then γ/k = (γ1/k, . . . ,γn/k) is
contained in N , and

kd ϕ

(
γ

k
;

1

k

)
= ∑

a∈A
xa

(
γ

a

)
.

We have that ϕ(z, t ) → F (z) as t → 0. Hence, writing ϕ(z;0) = F (z), the
function ϕ(z; t ) is continuous in the region given by z ∈ N and 0 ≤ t ≤ 1.
Therefor, there is an ε such that ϕ(z; t ) is strictly positive for each z ∈N and
0 ≤ t < ε.

Consider the product

Gk−1(z)F (z)

(d(k −1))!
= ∑
β∈L+

d(k−1)

∑
a∈A

xa
za+β

a!β!
.

42



Write γ= a+β, so that γ ∈ L+
kd . We find that

Gk−1(z)F (z)

(d(k −1))!
= ∑
γ∈L+

kd

∑
a∈A(γ)

xa
zγ

(γ−a)!a!
= ∑
γ∈L+

kd

zγ

γ!

∑
a∈A(γ)

xa

(
γ

a

)
. (3.14)

The index set A(γ) consist of all a ∈ A such that γ− a ∈ L+
d(k−1). Since L

contains L A , we have that γ− a ∈ Ld(k−1). Hence, we will only have that
γ− a ∉ L+

d(k−1) if one component of γ− a is negative. If so, then the bino-

mial coefficient
(γ

a

)
vanishes. Hence, the above expression is unaltered if the

second sum is taken over A instead of A(γ). We conclude that

Gk−1(z)F (z)

(d(k −1))!
= ∑
γ∈L+

kd

zγ

γ!

∑
a∈A

xa

(
γ

a

)
= ∑
γ∈L+

kd

zγ

γ!
ϕ

(
γ

k
;

1

k

)
,

where the coefficients of the polynomial in the right hand side are positive
if 1/k < ε. In particular, we can choose K as any integer greater than 1/ε.

Proof of Theorem 3.3.1. Let us first assume that NA is a dilation of the stan-
dard n-simplex in Rn . Let f ∈ CA∗ , and let θ ∈ Tn \ C f . By (2.10) we find
that f is nonvanishing on the closure of Arg−1(θ). Consider the polynomial
fθ(z) = f (e iθz), which is nonvanishing on the closed positive orthant. Let
f̄θ(z) denote the polynomial whose coefficients are the conjugates of those
of fθ(z). It follows that the real polynomial

f̂θ(z) = f̄θ(z) fθ(z)

is positive on the closed positive orthant. Notice that f̂θ(z) has support in
L A . Let Fθ(z) denote the homogenization of f̂θ(z), that is

Fθ(z) = z2d
0 f̂θ

(
z

z0

)
.

Then Fθ(z) fulfills the requirement of Theorem 3.3.2. In particular, we find
a polynomial Gk (z) such that Gk (z)Fθ(z) has positive coefficients. Let gk (z)
be the dehomogenization of Gk (z), obtained by setting z0 = 1. It follows that
all non-vanishing coefficients of gk (z) f̂θ(z) are positive. We conclude that

gk (e−iθz) f̄θ(e−iθz) f (z) ∈ 〈 f 〉

is colopsided at θ, proving the theorem in this case. Notice that we can
choose L so that gk (z) has support in L A .

Now consider the case when N is an arbitrary simplex. Let f ∈ CA∗ and
θ ∈ Tn \C f . Let T be an integer affine transformation mapping A to a point
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configuration A′, the latter being a dilation of the standard n-simplex in Rn .
Let f ′ = T ( f ) denote the image of f in CA′

∗ , and let θ′ ∈ Tn \C f ′ denote the
corresponding image of θ. By the previous case we find a polynomial g ′(z),
with support in L A′ , such that g ′(z) f ′(z) is colopsided at θ′. Since g ′(z) has
support in L A′ there is a polynomial g (z) with support in L A such that g ′(z) =
T (g (z)). It follows that the polynomial g (z) f (z) is colopsided at θ.

3.4 Hyperfields

Multigroups and hyperfields have appeared on several occasions through-
out history, but seem to be easily forgotten. In the context of tropical ge-
ometry, they were introduced by Viro in [57], in an effort to put tropical
geometry on firm algebra-geometric foundations. We will not here give an
introduction to this rather unknown field, but we refer instead to Viro’s sur-
vey [57] and the references therein. We will relate the (co)lopsidedness cri-
terion to the theory of hyperfields, for two reasons. Firstly, we claim that
(co)lopsidedness is tropical geometry. Secondly, this is the setting in which
lopsidedness can be generalized to arbitrary fields.

Definition 3.4.1. A pair (X ,⊕) of a set X and a multivalued binary operation
⊕ on X is said to be a commutative multigroup if

i) the operation ⊕ is associative and commutative,

ii) X contains an element 0 such that 0⊕x = x ⊕0 = x for all x ∈ X , and

iii) for each x ∈ X there is a unique element −x ∈ X such that 0 ∈ x ⊕ (−x).

Definition 3.4.2. A map ϕ : X1 → X2 between multigroups is said to be a
homomorphism if ϕ(0) = 0 and ϕ(x1 ⊕x2) ⊂ϕ(x1)⊕ϕ(x2).

The following three remarks are meant to emphasize some difficulties
encountered when working with multigroups. We refer the reader to [57] for
details.

Remark 3.4.3. Let (X ,⊕X ) be a multigroup, and let Y be a subset of X such
that, firstly, y ∈ Y if and only if −y ∈ Y and, secondly, y1⊕X y2 meets Y for all
y1 and y2. Consider the multivalued binary operation on Y defined by

y1 ⊕Y y2 = (y1 ⊕X y2)∩Y .

The multigroup (Y ,⊕Y ) is said to be a submultigroup of (X ,⊕X ). It is impor-
tant to note that, in difference to groups, the sum y1⊕y2 depend on whether
we consider the operation to be ⊕Y or ⊕X . In particular, that we require in
Definition 3.4.2 inclusion instead of equality, is motivated by that we wish
the inclusion map of Y into X to be a multigroup homomorphism. 7
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Remark 3.4.4. Even though, in a multigroup, we have the notion of inverse,
we cannot cancel terms of an identity by adding to an element its inverse. In
particular, if Y is a subset of a multigroup X , then the condition that x⊕Y =
Y ⊕x for all x ∈ X is not equivalent to that x⊕Y ⊕(−x) = Y for all x ∈ X . Thus,
we get two distinct notions of normal subgroups. 7

Remark 3.4.5. A multigroup homomorphism ϕ can have trivial kernel even
if ϕ is not injective. For example, the sign function sgn: R→ {−1,0,1} is a
multigroup homomorphism from the reals to the sign multigroup. 7

Definition 3.4.6. A triple (X ,⊕,⊗) of a set X , a multivalued binary operation
⊕ on X , and a binary operation ⊗ on X , is said to be a hyperfield if

i) (X ,⊕) is a commutative multigroup with identity 0,

ii) (X∗,⊗) is a commutative group with identity 1,

iii) 0⊗x = 0 for all x ∈ X ,

iv) ⊗ distributes over ⊕ in the sense that x ⊗ (y ⊕ z) ⊂ (x ⊗ y)⊕ (x ⊗ z) for all
x, y, z ∈ X .

Example 3.4.7. The real tropical hyperfield is the setR∪{−∞} with the mul-
tiplication x1 ⊗x2 = x1 +x2 and the addition

x1 ⊕x2 =
{

max(x1, x2) if x1 6= x2

[−∞, x1] if x1 = x2.

We will now describe how hyperfields naturally arise from group homo-
morphisms of the multiplicative subgroup of a field, e.g., from projections
of the complex torus C∗.

Theorem 3.4.8 (Krasner1). Let k be a field, and let ϕ : k∗ → H be an epimor-
phism of multiplicative groups. Extend ϕ to a surjection ϕ̂ : k→ Ĥ , where
Ĥ = H t{0}. Extend the multiplication in H to Ĥ by 0⊗h = h⊗0 = 0 for all h.
Then Ĥ is a hyperfield with the addition

h1 ⊕h2 = ϕ̂
(
ϕ̂−1(h1)+ ϕ̂−1(h2)

)
.

Proof. Since ϕ̂ is surjective, the operation ⊕ is well-defined. Associativity
and commutativity follows from the corresponding properties of the field
k. The additive unit is 0. Furthermore, if h = ϕ̂(x) then −h = ϕ̂(−x) fulfills
that 0 ∈ h ⊕ (−h), and this inverse is clearly unique. Note also that ϕ̂ is a
multigroup homomorphism from k to Ĥ .

1According to O. Viro, this construction is due to M. Krasner.
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It remains to prove only that ⊗ distributes over ⊕. Let xk ∈ ϕ̂−1(hk ) for
k = 1,2,3. It suffices to show that

ϕ̂(x1)⊗ ϕ̂(x2 +x3) ⊂ (
ϕ̂(x1)⊗ ϕ̂(x2)

)⊕ (
ϕ̂(x1)⊗ ϕ̂(x3)

)
, (3.15)

for any choices of xk . If xk = 0 for some k, then equality holds in (3.15). If
x2 =−x3, then the left hand side of (3.15) equals 0, while the right hand side
evaluates to

ϕ(x1x2)⊕ϕ(x1x3) =ϕ(x1x2)⊕ϕ(−x1x2) 3 0.

Finally, if also x2 +x3 6= 0, then

ϕ̂(x1)⊗ ϕ̂(x2 +x3) =ϕ(x1(x2 +x3)) ⊂ϕ(x1x2)⊕ϕ(x1x3),

since ϕ̂ is a multigroup homomorphism. As the right hand side in the last
display is equal to the right hand side of (3.15), the proof is finished.

Example 3.4.9. The ultratriangle hyperfield is the setR∪{−∞} with the mul-
tiplication ⊗ given by usual addition, and the addition ⊕ given by

h1 ⊕h2 =
[

log |eh1 −eh2 |, log |eh1 +eh2 |
]

.

It is the hyperfield obtained from C∗ by the epimorphism log: C∗ →R. 7

Example 3.4.10. The phase hyperfield is the set S1t {0} ⊂Cwith multiplica-
tion ⊗ being usual complex multiplication, and the addition ⊕ being

h1 ⊕h2 =


h1 if h1 = h2 or h2 = 0,
{h1,0,−h1} if h1 =−h2,
the smallest open arc from h1 to h2 otherwise.

.

It is the hyperfield obtained from C∗ by the epimorphism arg: C∗ → T.

Let H be a hyperfield, and let H A∗ be a torus of polynomial functions
on H n with support A. Further, let ϕ : H → X be a hyperfield homomor-
phism. We denote by ϕ also the induced map of H-modules (in the hyper-
field sense) ϕ : H n → X n and ϕ : H A → X A acting componentwise by ϕ. The
following theorem follows immediately from the definitions.

Theorem 3.4.11. The lopsided amoeba L is the tropical variety of Log( f ) in
the ultratriangle hyperfield. The lopsided coamoeba D is the tropical variety
of Arg( f ) in the phase hyperfield.

46



Let ϕ : H → X be a hyperfield morphism. Furthermore, let f ∈ H A and
let z ∈ H n . Then,

ϕ
(

f (z)
)⊂ϕ( f )

(
ϕ(z)

)
,

where ϕ( f ) ∈ X A . In particular,

ϕ
(
ZH ( f )

)⊂ ZX (ϕ( f )).

We conclude that A⊂L and that C ⊂D.

Remark 3.4.12. There is no hyperfield morphism between the complex num-
bers and the real tropical hyperfield. However, the identity map on R∪{−∞}
is a hyperfield morphism from the real tropical hyperfield to the ultratrian-
gle hyperfield. We will investigate further this link between classical tropical
geometry and lopsidedness in Chapter 6.

Let us end with a construction that allows us to recover the tropical semi-
field from the real tropical hyperfield.

Definition 3.4.13. Let x denote a finite sum x1 ⊕·· ·⊕xm . The set

[x] :=
∞⋃

n=1
n(x ⊕ (−x)), (3.16)

where
ny = y ⊕·· ·⊕ y︸ ︷︷ ︸

n times

,

is called the inverter of x. The set of all inverters, as x runs over all finite
sums of elements in X , is called the inverter semifield of X , denoted by
Inv(X ). An element x ∈ X such that [x] = 0 is known as a scalar, see [41],
and the set of all scalars in X will be denoted by Scal(X ).

By abuse of notation, we will use [x] to denote both the subset of X de-
fined by (3.16) and the corresponding element of Inv(X ). Inverters are sim-
ilar to commutators of non-commutative algebra; a hyperfield is a field if
and only if Scal(X ) = X .

Lemma 3.4.14. We have that [x] = [x ⊕x] = [x ⊕ (−x)].

Proof. As X is commutative, [x ⊕ x] = [x ⊕ (−x)]. Both of these sets consists
of the union (3.16) taken only over even numbers n. Thus the result follows
from that n(x ⊕ (−x)) ⊂ (n +1)(x ⊕ (−x)).

In many cases, however not for the ultratriangle hyperfield, it holds that
x ⊕ x ⊕ (−x)⊕ (−x) = x ⊕ (−x), which is equivalent to that [x] = x ⊕ (−x). Let
us now motivate the name "inverter semifield" used above.

47



Theorem 3.4.15. The addition [x]+[y] = [x⊕ y] and the multiplication [x]×
[y] = [x ⊗ y] defines a semifield structure on Inv(X ).

Proof. Let us first prove that the addition is well-defined. That is, that [y] =
[z] implies that [x⊕y] = [x⊕z], as subsets of X . Let a ∈ [x⊕y]. Then a ∈ n(x⊕
y⊕(−x)⊕(−y)) = n(x⊕(−x))⊕n(y⊕(−y)). That is, there exists ax ∈ n(x⊕(−x))
and ay ∈ n(y ⊕ (−y)) such that a ∈ ax ⊕ay . As [y] = [z], and ay ∈ [y], we find
that there exist an m ∈N+ such that ay ∈ m(z ⊕ z̄). Hence,

a ∈ ax ⊕ay ⊂ n(x ⊕ (−x))⊕m(z ⊕ z̄) ⊂ max(n,m)(x ⊕ (−x)⊕ z ⊕ z̄) ⊂ [x ⊕ z].

Thus, [x⊕y] ⊂ [x⊕z]. The other inclusion follows by symmetry. The identity
element is for addition is [0].

To see that the multiplication is well-defined, we note that if [y] = [z],
then, as subsets of X ,

[x]× [y] = [x ⊗ y] = x ⊗ [y] = x ⊗ [z] = [x ⊗ z] = [x]× [z].

The multiplicative identity is [1] and the multiplicative inverse of [x] is [x−1].
The distributive law [x]× ([y]+ [z]) = [x]× [y]+ [x]× [z] is straightforward to
check from the definitions.

It is clear that Inv(X ) is not a group; as 0 ∈ [y] for each y , we find that
[x] ⊂ [x ⊕ y] for every x and y . Hence, no nonzero element of Inv(X ) has an
additive inverse. The set Inv(X ) has a natural partial order, defined by that
[x] ≤ [y] if and only if [x ⊕ y] ⊂ [y], which is equivalent to that [x ⊕ y] = [y].
With this ordering, the inverter [0] is a global minimum.

Theorem 3.4.16. Assume that x ∈ [x] for each x ∈ X , then each hyperfield ho-
momorphism ϕ : X → Y induces a homomorphism Inv(ϕ) : Inv(X ) → Inv(Y )
of semifields, defined as

Inv(ϕ) ([x]) = [ϕ(x)].

Proof. We note first thatϕ([x]) ⊂ [ϕ(x)] as subsets of Y . To see that the given
map is well-defined, note that if [x] = [z], then x ∈ [x] = [z] by assumption.
Hence, ϕ(x) ⊂ ϕ([z]) ⊂ [ϕ(z)]. As each inverter is a strong submultigroup,
we find that [ϕ(x)] ⊂ [ϕ(z)]. (A strong submultigroup is a submultigroup
such that, in the notation of Remark 3.4.3, ⊕Y = ⊕X , see [57].) The reverse
inclusion follows by symmetry.

To see that Inv(ϕ) is a homomorphism of semifields, note first that

Inv(ϕ)([x]+[y]) = [ϕ(x⊕y)] ⊂ [ϕ(x)⊕ϕ(y)] = Inv(ϕ)([x])+Inv(ϕ)([y]). (3.17)

On the other hand, as x ∈ [x] ⊂ [x⊕ y], we find that ϕ(x) ∈ϕ([x⊕ y]) ⊂ [ϕ(x⊕
y)]. Using once more that each inverter is a strong submultigroup, we find
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that [ϕ(x)⊕ϕ(y)] ⊂ [ϕ(x ⊕ y)]. Thus the inclusion in (3.17) is an equality. It
remains to show that Inv(ϕ) is compatible with the multiplication. We find
that

Inv(ϕ)([x]× [y]) = Inv(ϕ)([x ⊗ y]) = [ϕ(x ⊗ y)]

= [ϕ(x)⊗ϕ(y)] = Inv(ϕ)([x])× Inv(ϕ)([y]).
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4. Coamoebas of polynomials
supported on a circuit

In this chapter we study coamoebas of polynomials supported on a circuit
A. Our main tool is the order map ordD from the previous chapter. As seen
in Theorem 3.2.16, it is particularly suitable when A is a circuit. We will index
the points of A by k = 0, . . . ,n +1. Furthermore, we partition the set of cir-
cuits into two classes; simplex circuits, for which N is a simplex, and vertex
circuits, for which A = vert(N ).

4.1 Real polynomials and the A-discriminant

We will say that f is real at θ if there is a real subvector space ` ⊂ C such
that f̂a(θ) ∈ ` for all a ∈ A. (Here, f̂ is the function from Section 2.2.) If such
a θ exists, then f is real. That is, after a change of variables and multipli-
cation with a Laurent monomial, f ∈ RA∗ . Our first lemma is valid for any
polynomial f . However, we will only use it in the case when A is a circuit.

Lemma 4.1.1. Assume that the polynomial f is real at θ0 ∈ Rn . Then, f is
real at θ ∈Rn if and only if θ ∈ θ0 +πL∗

A , where L∗
A is the dual lattice of L A .

Proof. Applying an integer affine transformation, we can assume that 0 ∈ A.
Multiplying f with a constant we can assume that `0 = R, and that the con-
stant monomial has coefficient equal to 1. Furthermore, by a translation in θ
we can assume that θ0 = 0. That is, all coefficients of f are real, in particular
proving if -part of the statement. To show the only if -part, notice first that
f̂ (θ) ⊂ ` implies that ` contains both the origin and 1. That is, ` = R. Fur-
thermore, f̂ (θ) ⊂R only if for each a ∈ A there is a k ∈Z such that 〈a,θ〉 =πk,
which concludes the proof.

The following characterization of the coamoeba of the A-discriminant of
a circuit is an immediate consequence of the Horn–Kapranov parametriza-
tion. Our proof is instead based on properties of the function f̂ (θ). As it is
more cumbersome, we remark that the lemmas of this section are of equal
importance.
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Proposition 4.1.2. Let A be a nondegenerate circuit, and let δk be as in (2.9).
Then, Arg( f ) ∈ C∆ if and only if, after possibly multiplying f with a constant,
there is a point θ ∈Rn such that f̂k (θ) = δk for all k.

The A-discriminant ∆ of a nondegenerate circuit A has been described
in [19, Proposition 9.1.8], where they obtained the formula

∆( f ) = ∏
δk=1

bbk

k

∏
δk=−1

x−bk

k − ∏
δk=−1

b−bk

k

∏
δk=1

xbk

k . (4.1)

In particular,∆ is a binomial. We see from the proof of Theorem 3.2.16 that if
the complement Tn \C does not have Vol(A)-many connected components
then

Argπ( f )B ≡ 2πVol(A) mod 2π. (4.2)

Lemma 4.1.3. Let Aκ be as in Example 2.1.5. For each κ= 0,1, . . . ,n+1, there
are exactly Vol(Aκ)-many points θ ∈ T such that

f̂k (θ) = δk , ∀k 6= κ. (4.3)

Proof. After applying an integer affine transformation we reduce to the case
when Aκ consists of the vertices of the standard simplex, a case in which the
statement is obvious.

Lemma 4.1.4. Fix κ ∈ {0, . . . ,n + 1}. For each θ fulfilling (4.3), let ϕθ ∈ T be
defined by the criterion that if argπ(xκ) =ϕθ then

f̂κ(θ) = δκ. (4.4)

Assume that L A =Zn . Then, the numbers ϕθ are distinct.

Proof. We can assume that a0 = 0 and that x0 = 1. Assume that ϕθ1 = ϕθ2 .
Then,

〈a,θ2〉 = 〈a,θ1〉+2πr, ∀a ∈ A.

After a translation in θ, we can assume that θ1 = 0. Hence, since 1 is a mono-
mial of f , all coefficients are real. Consider the lattice L consisting of all
points θ ∈ Rn such that f is real at θ. Since L A = Zn , Lemma 4.1.1 implies
that L =πZn . However, we find that〈

a,
θ2

2

〉
=πr,

and hence θ2
2 ∈ L. This implies that θ2 ∈ 2πZn , and hence θ2 = 0 in Tn .
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Proof of Proposition 4.1.2. Assume first that there is a θ as in the statement
of the proposition, where we can assume that θ = 0. Then, arg(xk ) = arg(δk ).
It follows that the monomials∏

δk=1
bbk

k

∏
δk=−1

x−bk

k and
∏

δk=−1
bbk

k

∏
δk=1

x−bk

k

are equal in sign. We find that ∆ vanishes for xk = δk |bk |, implying that
Arg( f ) ∈ C∆.

Conversely, fix an index κ, and reduce f to a univariate polynomial by
setting xk = δk |bk | = bk for k 6= κ. Let I denote the set of points θ ∈ Tn

such that f̂k (θ) = δk for k 6= κ, which by Lemma 4.1.3 has cardinality Vκ.
By Lemma 4.1.4, the set I is in a bijective correspondence with values of
arg(xκ) such that f̂κ(θ) = δκ. Therefor, we find that ∆ vanishes at xκ =Vκe iϕ

for each ϕ ∈ I . However, the discriminant ∆ specializes, up to a constant, to
the binomial

∆κ(xκ) = x |bκ|
κ −b|bκ|

κ = xVκ
κ −bVκ

κ ,

which has exactly Vκ-many solutions in C∗ of distinct arguments. Hence,
since ∆( f ) = 0 by assumption, and comparing the number of solutions, it
holds that f̂κ(θ) = δκ for one of the points θ ∈ I .

4.2 The space of coamoebas

Let Uk ⊂CA∗ denote the set of all f such that the number of connected com-
ponents of the complement of C is Vol(A) − k. Describing the sets Uk is
known as the problem of describing the space of coamoebas of CA∗ . In this
section, we will give explicit descriptions of the sets Uk in the case when A
is a circuit. As a first observation we note that the cardinality of the image of
the map ordD is at least Vol(A)−1, implying that

CA
∗ =U0 ∪U1,

and in particular Uk =; for k ≥ 2. Hence, it suffices for us to give an explicit
description of the set U1. Our main results are the following two theorems,
which elucidate the difference between vertex circuits and simplex circuits.

Theorem 4.2.1. Assume that A is a nondegenerate simplex circuit, with an+1

as an interior point. Choose B such that δn+1 = −1, and let ∆ be as in (4.1).
Then, f ∈U1 if and only if Arg( f ) ∈ C∆ and

(−1)Vol(A)∆
(
δ0|x0|, . . . ,δn+1|xn+1|

)≤ 0. (4.5)
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Theorem 4.2.2. Assume that A is a vertex circuit. Then, f ∈U1 if and only if
Arg( f ) ∈ C∆.

The article [54] describes the space of amoebas in the case when A is a
simplex circuit in dimension at least two. In this case, the number of con-
nected components of the amoeba complement is either equal to the num-
ber of vertices of N or one greater. One implication of [54, Theorems 4.4
and 5.4] is that, if the amoeba complement has the minimal number of con-
nected components, then

(−1)Vol(A)∆
(
δ0|x0|, . . . ,δn+1|xn+1|

)≥ 0.

Furthermore, this set intersect U1 only in the discriminant locus ∆( f ) = 0.
The space of amoebas in the case when A is a simplex circuit in dimension
n = 1 has been studied in [55], and is a more delicate problem. On the other
hand, if A is a vertex circuit then the fact that maximally sparse polynomials
have solid amoebas implies that the number of connected components of
the amoeba complement does not depend on f . From Theorems 4.2.1 and
4.2.2 we see that a similar discrepancy between simplex circuits and vertex
circuits occur for coamoebas.

Example 4.2.3. The reduced family

f (z) = 1+ z3
1 + z3

2 +ξz1z2.

was considered in [50, Example I.6], where the study of the space of amoebas
was initiated. We have drawn the space of amoebas and coamoebas jointly
in the left picture in Figure 4.1. The light gray region, whose boundary is
a hypocycloid, marks values of ξ for which the amoeba complement has
no bounded component. The set U1 is seen in dark gray. The black dots
is the discriminant locus ∆(ξ) = 0, which is contained in the circle |ξ| = 3
corresponding an equality in (4.5). 7

Example 4.2.4. The reduced family

f (z) = 1+ z1 + z3
2 +ξz3

1 z2

is a vertex circuit. In this case, the topology of the amoeba does not depend
on the coefficient ξ. The space of coamoebas is drawn in the right picture
in Figure 4.1. The set U1 comprises the three dark gray lines emerging from
the origin. The black dots is the discriminant locus ∆(ξ) = 0. It might seem
like the set U0 is disconnected, however this a consequence of that we con-
sider f in reduced form. In CA∗ the set U0 is connected, though not simply
connected. 7
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Figure 4.1: The amoeba and coamoeba spaces of Examples 4.2.3 and 4.2.4.

If A is a simplex circuit, with an+1 as an interior point, then

b0 +·· ·+bn =−bn+1 = Vol(A),

and in particular Vn+1 = Vol(A). By Lemma 4.1.3 there is a set I of cardi-
nality Vol(A) consisting of all points θ such that f̂0(θ) = ·· · = f̂n(θ) = δk = 1
In particular, f is colopsided at θ ∈ I unless f̂n+1(θ) = −1. We claim here
that I is an index set of the complement of C. That is, that each connected
component of Tn \C contains exactly one point of I .

Proposition 4.2.5. Let A be a simplex circuit. Assume that Arg( f ) ∈ C∆, i.e.,
that there exists a point θ ∈ I such that f̂n+1(θ) = δn+1. Then, the complement
of C has Vol(A)-many connected components if and only if it contains θ.

Proof. We can assume that θ = 0. To prove the if -part, assume that 0 ∈Θ for
some connected component Θ of the complement of C. We wish to show
that f is never colopsided in Θ, for this implies that the complement of
C has Vol(A)-many connected components. Assume, to the contrary that,
there exists a point θ̂ ∈Θ such that f is colopsided at θ̂. Then, ordD(θ̂) = mπ

for some integer m with |m| < Vol(A). Let f ε = (x0, . . . , xn , xn+1e iε), and let
Cε and Dε denote the coamoeba and lopsided coamoeba of f ε respectively.
We have that f ε is colopsided at 0 for ε ∉ 2πZ. By continuity of roots, for
ε > 0 sufficiently small, the points 0 and θ̂ are contained in the same con-
nected component of the complement of Cε. Hence, by Proposition 3.1.2,
they are contained in the same connected component of the complement
of Dε. However, if ordε denotes the order map for Dε, then

ordε(0) = Vol(A)(π−ε) 6= m(π−ε) = ordε(θ̂),

contradicting that ordε is constant on connected components of the com-
plement of Dε.
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To prove the only if -part, assume that there exists a connected compo-
nent Θ of the complement of C in which f is never colopsided. We wish
to prove that 0 ∈ Θ. As f ε is colopsided at 0 for ε > 0 sufficiently small, we
find that 0 ∈Θ. Indeed, if this was not the case, then the complement of Cε
has (Vol(A)+1)-many connected components, a contradiction. As 0 6∈H f , it
follows from Lemma 2.2.3 that there exists a disc D0 centered at 0 such that

D0 ∩ (Tn \C) = D0 ∩Θ.

Furthermore, D0 ∩Θ 6= ;, since 0 ∈Θ. Let θ ∈ D0 ∩Θ. Since f is a real poly-
nomial, conjugation yields that −θ ∈ D0 ∩Θ. However, Θ ⊂ Rn is convex,
implying that 0 ∈Θ.

Proof of Theorem 4.2.1. If Arg( f ) 6∈ C∆ then the image of ordD is of cardinal-
ity Vol(A), and hence f ∈U0. Thus, we only need to consider a polynomial
f ∈ CA∗ such that Arg( f ) ∈ C∆, for which can assume that f̂ (0) = δk for all
k. In particular, f is a real polynomial. By Proposition 4.2.5, it holds that
the complement of C has Vol(A)-many connected components if and only
if it contains 0. Keeping x0, . . . , xn and arg(xn+1) fixed, let us consider the
dependence of f on |xn+1|. As f is a real polynomial, it restricts to a map
f : Rn

≥0 →R, whose image depends nontrivially on |xn+1|. Notice that 0 ∈ C if
and only if f (Rn

≥0) contains the origin. Since f̂k (0) = δk = 1 for k 6= n +1, and
since an+1 is an interior point of A, the map f takes the boundary of Rn

≥0 to
[1,∞). In particular, if 0 ∈ f (Rn

≥0), then 0 ∈ f (Rn+). The boundary of the set
of all |xn+1| for which 0 ∈ f (Rn

≥0) is the set of all values of |xn+1| for which
f (Rn+) = [0,∞). Furthermore, f (Rn+) = [0,∞) holds if and only if there exists
an r ∈ Rn+ such that f (r ) = 0 and f (r ) ≥ 0 in a neighborhood of r , implying
that r is a critical point of f . That is,

∆
(
δ0|x0|, . . . ,δn+1|xn+1|

)= 0.

Since ∆ is a binomial, there is exactly one such value of |xn+1|. Finally, we
note that 0 ∈ C if |xn+1|→∞, which finishes the proof.

Proof of Theorem 4.2.2. If Arg( f ) 6∈ C∆, then the image of ordD is of cardinal-
ity Vol(A) and hence f ∈U0. Assume that Arg( f ) ∈ C∆, and that f̂k (0) = δk for
all k. It holds that 0 ∈H f since there exists two adjacent vertices a0 and a1

of A such that δ0 = 1 and δ1 =−1. Let

H = {θ | 〈a0 −a1,θ〉 = 0}
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be the hyperplane of H f containing 0. Assume that exists connected com-

ponent Θ of the complement of C in which f is nowhere colopsided. As in
the proof of Proposition 4.2.5, we conclude that 0 ∈Θ, for otherwise we can
construct a coamoeba with (Vol(A)+1)-many connected components of its
complement. As H ⊂ C, we find thatΘ is contained in one of the half-spaces

H± = {θ | ±〈a0 −a1,θ〉 > 0},

say that Θ ⊂ H+. Let f ε = (x0e iε, x1, . . . , xn+1), and let Hε denote the corre-
sponding hyperplane

Hε = {θ | 〈a0 −a1,θ〉 =−ε}.

For |ε| sufficiently small, continuity of roots implies that there is a connected
componentΘε ⊂ Hε+ in which f ε is never colopsided. However, by choosing
the sign of ε, we can force 0 ∈ Hε−. This implies that the coamoeba Cε has
(Vol(A)+1)-many connected components of its complement, a contradic-
tion.

4.3 The maximal area of planar circuit coamoebas

In this section, we will prove the following upper bound on the area of a
planar circuit coamoeba.

Theorem 4.3.1. Let A be a planar circuit, and let f ∈CA∗ . Then Area(C) ≤ 2π2.

Note that we calculate area without multiplicities, in contrast to [31].
However, the relation between (co)amoebas of maximal area and Harnack
curves is made visible also in this setting.

Theorem 4.3.2. Let A be a planar circuit. Then, there exists a polynomial
f ∈CA∗ such that Area(C) = 2π2 if and only if A admits an equimodular trian-
gulation.

Example 4.3.3. Let f (z) = 1+z1+z2−r z1z2 for r ∈R+. Notice that A admits
a unimodular triangulation. The shell H consists of the families θ1 = k1π

and θ2 = k2π for k1,k2 ∈ Z. Hence, H divides T2 into four regions of equal
area. At least two of these regions are contained in the coamoeba, which
implies that Area(C) = 2π2. See the left picture of Figure 4.2. 7

Example 4.3.4. Let f (z) = 1+zw2+z2w−r zw for r ∈R+. As in the previous
example, A admits a unimodular triangulation. Notice that Arg( f ) ∈ C∆. The
complement of the coamoeba of the trinomial g (z) = 1+zw2+z2w has three
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connected components, of which f is colopsided in two. We have that H f =
Hg . Thus, if T2 \C f has two connected components, i.e., if r ≥ 3, then one of

the three connected components of T2 \Cg is contained in C f . This implies
that Area(C f ) = 2π2, see the right picture of Figure 4.2. 7

Figure 4.2: The coamoebas of Examples 4.3.3 and 4.3.4.

Let us compare to the case of a planar circuit amoeba. It was shown in
[50, Theorem I.12] that the sharp upper bound on the number of connected
components of the complement of the amoeba is #A. In [34], a bound on
the area of the amoeba was given as π2 Vol(A), and it was shown that max-
imal area was obtained for Harnack curves. For coamoebas, to roles of the
integers Vol(A) and #A are reversed. The upper bound on the number of
connected components of the coamoeba complement is given by Vol(A).
While, at least for codimension m ≤ 1, the maximal area of the coamoeba is
π2(m+1) =π2(#A−n). Note also that the coamoebas of Examples 4.3.3 and
4.3.4 are coamoebas of Harnack curves.

Consider a bivariate trinomial f , with one marked monomial. Let Σ =
Σ( f ) denote the quadruple of polynomials obtained by flipping signs of the
unmarked monomials. Furthermore, let

HΣ =
⋃

g∈Σ
Hg ,

which is a hyperplane arrangement in R2 (or T2). Let PΣ denote the set of all
intersection points of distinct hyperplanes in HΣ.

Proposition 4.3.5. Let f (z) be a bivariate trinomial. Then, the union

CΣ =
⋃

g∈Σ
Cg ,

covers R2. To be specific, PΣ is covered thrice, HΣ \PΣ is covered twice, and
R2 \HΣ is covered once.
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Proof. After applying an integer affine transformations, we reduce to the
case when A consist of the vertices of the standard simplex. This case fol-
lows, e.g., from the description in [40]. See also Figure 2.1.

Corollary 4.3.6. If f (z) is a bivariate trinomial, then Area(C) =π2.

Proof. The coamoebas appearing in the union CΣ, when considered in R2,
are merely translations of each other. Hence, they have equal area. As they
cover the torus once a.e., and Area(T2) = 4π2, the result follows.

Let fk̂ denote the image of f under the projection prk : CA∗ →C
Ak∗ .

Lemma 4.3.7. Let A be a planar circuit, and let f ∈ CA∗ . Assume that θ ∈ T
is generic in the sense that no two components of f̂ (θ) are antipodal, and as-
sume further that f is not colopsided at θ. Then, exactly two of the trinomials
f1̂, . . . , f4̂ are colopsided at θ.

Proof. Fix an arbitrary point a1 ∈ A, and let `⊂ C denote the real subvector
space containing f̂1(θ). As f is not colopsided at θ, both half spaces relative
` contains at least one component of f̂ (θ). There is no restriction to assume
that the upper half space contains the two components f̂2(θ) and f̂3(θ), and
that the latter is of greatest angular distance from f̂1(θ). Then, f4̂ is colop-
sided at θ. Furthermore, we find that f2̂ is not colopsided at θ, for if it where
then so would f . As a1 ∈ A4 and a1 ∈ A2, there is at least one trinomial ob-
tained from f containing a1 which is not colopsided at θ, and at least one
which is colopsided at θ. As a1 was arbitrary, it follows that exactly two of
the trinomials f1̂, . . . , f4̂ are colopsided at θ, and exactly two are not.

Proof of Theorem 4.3.1. By containment, it holds that Area(C f ) ≤ Area(D f ),
and thus it suffices to calculate the area of D f . By Proposition 3.1.10, we
have that

D f =
4⋃

k=1
C fk̂

. (4.6)

For a generic point θ ∈ D f , Lemma 4.3.7 gives that θ (and, in fact, a small
neighborhood of θ) is contained in the interior of exactly two out of the four
coamoebas in the right hand side of (4.6). Hence,

Area(D f ) = 1

2

(
Area(C f1̂

)+·· ·+Area(C f4̂
)
)= 2π2.

Proof of Theorem 4.3.2. To prove the if part, we will prove that A admits an
equimodular triangulation only if, after applying an integer affine transfor-
mation, it is equal to the point configuration of either Example 4.3.3 or Ex-
ample 4.3.4. Assume that a1,a2, and a3 are vertices of NA . After applying an
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integer affine transformation, we can assume that a1 = k1e1, that a2 = k2e2

with k1 ≥ k2, and that a3 = 0. Notice that such a transformation rescales A,
though it does not affect the area of the coamoeba C. Let a4 = m1e1 +m2e2.

If A is a vertex circuit, then each triangulation of A consist of two sim-
plices, which are equal in area by assumption. Comparing the areas of the
subsimplices of A, we obtain the relations

|k1k2 −k1m2 −k2m1| = k1k2 and k1m2 = k2m1.

In m, this system has (k1,k2) as the only nontrivial solution, and we con-
clude that A is the unit square, up to integer affine transformations.

If A is a simplex circuit, then A has one triangulation with three sim-
plices of equal area. Comparing areas, we obtain the relations

3k1m2 = 3k2m1 = k1k2.

Thus, 3m1 = k1 and 3m2 = k2, and we conclude that A is the simplex from
Example 4.3.4, up to integer affine transformations.

To prove the only if -statement, consider f ∈ CA∗ . Let S = {a1,a2} ⊂ A
be such that the line segment [a1,a2] is interior to N . Denote by CS the
coamoeba of the truncated polynomial fS . Applying an integer affine trans-
formation, we can assume that [a1,a2] ⊂ Re1, and that a3 and a4 lies in the
upper and lower half space respectively. Then, the hyperplane arrangement
CS ⊂ T consists of Length[a1,a2]-many lines, each parallel to the θ2-axis. If
a3 = m31e1 +m32e2 and a4 = m41e1 +m42e2, then f̂3(θ) and f̂4(θ) takes m32

respectively m42 turns around the origin when θ traverses once a line of CS .
Notice that CS ⊂ D, as f̂1(θ) and f̂2(θ) are antipodal for θ ∈ CS . That is, for
such θ, there is a real subvector space `θ ⊂ C containing all components of
f̂S(θ).

Assume that f is colopsided for some θ ∈ CS , so that in particular θ 6∈ C.
If θ ∈ H f , then at exactly one of the points f̂3(θ) and f̂4(θ) is contained in
`θ, for otherwise f would not be colopsided at θ. By wiggling θ in CS we can
assume that θ 6∈H f . Under this assumption, we find that θ ∉ C. Thus, there

is a neighborhood Nθ which is separated from C. As θ ∈D, the intersection
Nθ∩D has positive area, implying that Area(C) < Area(D).

Thus, if f is such that Area(C) = 2π2, then f can never be colopsided in
CS . In particular, for θ ∈ CS such that f̂3(θ) ∈ `, it must hold f̂4(θ) ∈ `, and
vice versa. As there are 2m32 points of the first kind, and 2m42 points of
the second kind, it holds that m32 = m42. Hence, the simplices with vertices
{a1,a2,a3} and {a1,a2,a4} have equal area.

If A is a vertex circuit, this suffices to conclude that A admits an equimod-
ular triangulation. If A is a simplex circuit, then we can assume that a1 is
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an interior point of NA . Repeating the argument for either S = {a1,a3} or
S = {a1,a4} yields that A has a triangulation with three triangles of equal area.
That is, it admits an equimodular triangulation.

4.4 The set of critical arguments

Let C ( f ) denote the set of critical points of f , that is, the variety defined
by (2.3). Let I = Arg(C ( f )) denote the coamoeba of C ( f ). We will say that
I is the set of critical arguments of f . In this section we will prove that,
under certain assumptions on A, the set I is an index set of the coamoeba
complement. That is, each connected component of the complement Tn \C
contains exactly one point of I . This settles a conjecture used in in [27]
when computing monodromy in the context of dimer models and mirror
symmetry. That it is necessary to impose assumptions on A is related to
the fact that an integer affine transformation acts nontrivially on the set of
critical points.

Let A be a circuit, with the elements a ∈ A ordered so that it has a Gale
dual B = (B1,B2)t such that B1 ∈ Rm1+1

+ and that B2 ∈ Rm2+1− . That is, B1

has only positive entries, while B2 has only negative entries. We have that
m1 +m2 = n. Let A = (A1, A2) denote the corresponding decomposition of
the matrix A. We will say that A is in orthogonal form if

A =
 1 1

Ã1 0
0 Ã2

 , (4.7)

where Ã1 is an m1 × (m1 + 1)-matrix and Ã2 is an m2 × (m2 + 1)-matrix. In
particular, the Newton polytopes NA1 and NA2 has 0 as a relatively interior
point, and as their only intersection point.

With A in the form (4.7), we can act by integer affine transformations
affecting Ã1 and Ã2 separately. Therefor, if A is in orthogonal form, then we
can assume that

Ãk = (−p1e1, . . . ,−pmk emk ,amk+1), (4.8)

where p1, . . . , pmk are positive integers and amk+1 has positive coordinates.
We will say that A is in special orthogonal form if (4.8) holds. The main re-
sults of this section are the following lemma and theorem.

Lemma 4.4.1. Each circuit A can be put in (special) orthogonal form by ap-
plying and integer affine transformation.

Theorem 4.4.2. Let A be in special orthogonal form. Then, for each f ∈ CA∗ ,
the set of critical arguments is an index set of the complement of C.
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Remark 4.4.3. The conditions of Theorem 4.4.2 can be relaxed in small di-
mensions. When n = 1, it is enough to require that 0 is an interior point of
N . When n = 2, for generic f , it is enough to require that each quadrant Q
fulfills that Q \ {0} has nonempty intersection with A. 7

Proof of Lemma 4.4.1. Let u1 . . . ,um2 be a basis for the left kernel of A1, and
let v1, . . . ,vm1 be a basis for the left kernel of A2. Multiplying A from the left
by

T = (
e1,v1, . . . ,vm1 ,u1, . . . ,um2

)t ,

it takes the desired form. We need only to show that det(T ) 6= 0.
Notice that ker(A1)∩ker(A2) = 0, since A is assumed to be of full dimen-

sion. Assume that there is a linear combination

λ0e1 +
m1∑
i=1

λi vi +
m2∑
j=1

λ j u j = 0.

Then, since B is a Gale dual of A,

0 =
(

m2∑
j=1

λ j u j

)
AB = (0, . . . ,0,−λ0, . . . ,−λ0)B =−λ0

∑
a∈A2

ba =λ0 Vol(A),

which implies that λ0 = 0. Therefor,
∑m1

i=1λi vi = −∑m2
j=1λ j u j ∈ ker(A2). As

ker(A1)∩ker(A2) = 0, we can conclude that
∑m1

i=1λi vi = 0. Thus, λi = 0 for all
i by linear independence of the vectors v. Then, linear independence of the
vectors u j imply that λ j = 0 fo all j .

Proof of Theorem 4.4.2. We find that

zi∂i f (z) =−pi xi zai +〈amk ,ei 〉xm1 zam1 , i = 0, . . . ,m1

z j∂ j f (z) =−p j x j za j +〈an+1,e j 〉xn+1zan+1 , j = m1 +1, . . . ,n.

Hence, for each θ ∈ I , it holds that

f̂0(θ) = ·· · = f̂m1 (θ) and f̂m1+1(θ) = ·· · = f̂n+1(θ). (4.9)

In particular, f is colopsided at θ unless, after a rotation, f̂k (θ) = δk for all k.
In the latter case, we refer to Theorems 4.2.1 and 4.2.2.

To see that the points θ ∈ I for which f is colopsided at θ are contained
in distinct connected components of the complement of D, consider a line
segment ` in Rn with endpoints in I . Not all identities of (4.9) can hold
identically along `. Since the argument of each monomial is linear in θ, this
implies that for a pair such that the identity in (4.9) does not hold identically
along `, there is an intermediate point θ ∈ ` for which the corresponding
monomials are antipodal, and hence θ ∈D.
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4.5 On systems supported on a circuit

In this section we will consider a system

F1(z) = F2(z) = 0 (4.10)

of two bivariate polynomials. We will write f (z) = 0 for the system (4.10).
The system is said to be generic if it has finitely many roots in C2∗, and it
is said to be supported on a circuit A if the supports of F1 and F2 are con-
tained in, but not necessarily equal to, A. That is, we allow coefficients in
C rather than C∗. By the Bernstein–Kushnirenko theorem, a generic system
f (z) = 0 has at most Vol(A)-many roots in C2∗. However, if f is real, then
fewnomial theory states that a generic system f (z) has at most three roots
in R2+ = Arg−1(0). We will solve the complexified fewnomial problem, i.e., for
f (z) with complex coefficients we will bound the number of roots in each
sector Arg−1(θ). Our intention is to offer a new approach to fewnomial the-
ory. We will restrict to the case of simplex circuits, for the following two rea-
sons. Firstly, it allows for a simpler exposition. Secondly, for vertex circuits
our method recovers the known (sharp) bound, while for simplex circuits we
obtain a sharpening of the fewnomial bound.

Theorem 4.5.1. Let f be supported on a planar simplex circuit A ⊂Z2. Then,
each sector Arg−1(θ) contains at most two solutions of f (z) = 0.

A generic system f (z) is, after taking appropriate linear combinations,
equivalent to a system of two trinomials whose support intersect in a duple-
ton. That is, we can assume that f (z) is in the form{

F1(z) = x1za0 + za2 + x2za3 = 0
F2(z) = x3za1 + za2 + x4za3 = 0.

(4.11)

From now on, we will assume that f (z) is in the form (4.11). We will use the
notation

A =
(

1 1 1 1
a0 a1 a2 a3

)
and Â =

 1 0
0 1

A1 A2

 ,

where Ak denotes the support of Fk (notice that this differs from the nota-
tion used in previous sections). We can identify a system f (z) in the form
(4.11) with its coefficient vector in CÂ∗ .

When reducing f (z) to the form (4.11) by taking linear combinations,
there is a choice of which monomials to eliminate in F1 and F2 respectively.
In order for the arguments of the roots of f (z) = 0 to depend continuously
on the coefficients, we need to be careful with which choice to make.
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Lemma 4.5.2. Let ` denote the line containing a2 and a3, and let γ be a com-
pact path in CÂ∗ . If ` intersects the interior of NA , then the arguments of the
solutions to f (z) = 0 vary continuously along γ.

Proof. It is enough to show that along a compact path γ, the set⋃
f ∈γ

A f =
⋃
f ∈γ

Log(Z ( f )) (4.12)

is bounded, for it implies that for f ∈ γ, the roots of f are uniformly sepa-
rated from the boundary of C2∗.

We first claim that our assumptions imply that the normal fans of NA1

and NA2 have no common one-dimensional cone. Indeed, these fans have
a common one-dimensional cone if and only if the Newton polytopes NA1

and NA2 have facets Γ1 and Γ2 respectively with a common outward normal
vector n. As A is a circuit, it holds thatΓ1 = Γ2 = [a2,a3] ⊂ `. Since the normal
vector n is common for NA1 and NA2 , we find that Γ1 (and Γ2) is a facet of
NA . But then ` contains a facet of NA , and hence it cannot intersect the
interior of NA , a contradiction.

Consider a point f ∈ CÂ∗ . Since the normal fans of NA1 and NA2 has no
common one-dimensional cones, the intersection of the amoebas AF1 and
AF2 is bounded (this follows, e.g., from the fact the amoeba has finite Haus-
dorff distance from the Archimedean tropical variety, see [4]). Thus, the
amoeba A f is bounded, say that A f ⊂ D(R f ), where D(R f ) denotes the disk
of radii R f centered around the origin. By continuity of roots, A f̃ ⊂ D(R f )

for all f̃ in some small neighborhood of f . Finally, as γ is compact, we need
only to consider finitely many of the sets D(R f ). Then, we can take R to be
the maximum of R f .

In order for the assumptions of Lemma 4.5.2 to be fulfilled, for a simplex
circuit A, we need that a0 and a1 are vertices of NA , see Figure 4.3.

Figure 4.3: The Newton polytopes NA , NA1 , and NA2 .

Proposition 4.5.3. If f is nonreal at θ, then there is at most one zero of f (z) =
0 contained in the sector Arg−1(θ).
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Proof. If Fk is nonreal, then the fiber in Z (Fk ) over a point θ ∈ CFk is a sin-
gleton. Hence, if the number of roots of f (z) = 0 in Arg−1(θ) is greater than
one, then both F1 and F2 are real at θ.

One implication of Proposition 4.5.3 is that the complexified fewnomial
problem reduces to the real fewnomial problem. However, our approach
is dependent on allowing coefficients to be nonreal. In fact, we will con-
sider a partially complexified problem, allowing x1, x3 ∈ C∗ but requiring
that x2, x4 ∈R∗.

We define the lopsided coamoeba of the system f (z) by

D f =DF1 ∩DF2 = CF1 ∩CF2 ,

where the last equality follows from that F1 and F2 are simple polynomials.
That is, f is said to be colopsided at θ if either F1 or F2 is colopsided at θ. We
will say that f is real at θ if both F1 and F2 are real at θ.

The lopsided coamoeba D f consists of a number of polygons in T2, pos-
sibly degenerated to singletons. The following two lemmas will allow us to
count the number of such polygons.

Lemma 4.5.4. Assume that f is nonreal. Let g be a binomial constructed by
choosing two monomials from (4.11), possibly alternating signs. If x2 and x4

are of opposite signs, then Cg ⊂ T2 \D f . If x2 and x4 are equal in sign, then
Cg ⊂ T2 \D f except for g (z) =±(x1za0 −x3za1 ).

Proof. If, for θ ∈ T2, two components of F̂1(θ) is contained in a real subvector
space ` ⊂ C, then either F1 is colopsided at θ or F̂1(θ) ⊂ `. However, the
latter implies that two components of F̂2(θ) are contained in `. Repeating
the argument yields that f is either real or colopsided at θ.

Thus, the only binomials we need to consider is g±(z) = x1za0 ± x3za1 .
For each θ ∈ Cg+ the vectors F̂1(θ) and F̂2(θ) differ in sign in their first com-
ponent, and hence at least one is colopsided at θ unless f is real. For each
θ ∈ Cg− , the vectors F̂1(θ) and F̂2(θ) differ in sign in the the last component
only if x2 and x4 differ in sign. If this is the case, then at least one is colop-
sided at θ unless f is real.

Lemma 4.5.5. Let θ ∈ Cg1 ∩Cg2 for truncated binomials g1 and g2 of F1 and
F2 respectively. If the Newton polytopes (i.e., line segments) of g1 and g2 are
nonparallel, then θ ∈D f .

Proof. If F1 and F2 are both real at θ, then θ ∈D f . If F1 is nonreal at θ, then
for a sufficiently small neighborhood Nθ ⊂R2, it holds that

CF1 ∩Nθ = {ϕ | 〈ϕ,n〉 > 〈θ,n〉}∩Nθ,
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where n is a normal vector of N (g1). Since connected components of the
complement of CF2 are convex, either CF2 intersect CF1 in Nθ, or the bound-
ary of CF2 is contained in the line ` = {ϕ | 〈ϕ,n〉 = 〈θ,n〉}. As the boundary
of CF2 contains Cg2 it holds, in the latter case, that Cg2 ⊂ `. Hence, in this
case, n is a normal vector of N (g2), a contradiction to the assumptions of
the lemma. We conclude that CF2 ∩CF1 ∩ Nθ 6= ;. Since this holds for any
sufficiently small neighborhood Nθ, the result follows.

Example 4.5.6. Consider the system

f (z) =
{

x1z1z2
2 +1+x2z1z2

x3z2
1 z2 +1+x4z1z2.

We have that Vol(A) = 3. Hence H divides T2 into three cells. The lop-
sided coamoeba D f , and the hyperplane arrangement H , can be seen in
Figure 4.4. In the upper two pictures is the generic respectively real situa-
tion when x2 and x4 differ in sign. In lower two pictures is the generic re-
spectively real situation when x2 and x4 are equal in sign. In the generic
case, the lopsided coamoeba D f consists of three polygons. When passing
from the generic to the real case, we observe the following behavior. Some
polygons of D f deform into single points. These points are necessarily the
center of mass of the cells of H . Some pairs of polytopes of D f deform to
nonconvex polygons, typically with a single intersection point. Our proof of
Theorem 4.5.1 is based on the observation that, when passing from a generic
to a real system, at most two polytopes of DF deform to a nonconvex poly-
gon intersecting H . 7

Proof of Theorem 4.5.1. Let us consider the auxiliary binomials

g1(z) = x1za0 − za2 , g2(z) = x3za1 − za2 ,
h1(z) = x1za0 + za2 , and h2(z) = x3za1 + za2 .

The vectors a2 −a0 and a2 −a1 span the simplex NA , hence the hyperplane
arrangement H = Cg1 ∪Cg2 divides T2 into Vol(A)-many parallelograms with
the points P = Ch1 ∩Ch2 as their centers of mass.

If f is nonreal, then we conclude from Lemma 4.5.4 that H ⊂ T2 \D f ,

and from Lemma 4.5.5 that P ⊂ D f . By Lemma 4.5.2 we find that D f has
at most Vol(A)-many connected components. Hence, D f has at exactly one
connected component in each of the cells of H , and the number of roots
of f (z) = 0 projected by the argument map into each such component is
exactly one.
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Figure 4.4: The lopsided coamoebas from Example 4.5.6.

Consider now the real case when x2 and x4 differ in sign. Then, at least
one of F1 and F2 are colopsided at each point in the intersection Cg1 ∩Cg2 .
Thus, if Arg−1(θ) contains a root of f (z) = 0, then each sufficiently small
neighborhood Nθ of θ intersect at most two of the cells of the hyperplane
arrangement H . Hence, using Lemma 4.5.2, and wiggling the arguments of
coefficients of f by ε, we find that Nθ intersect at most two of the polygons
of D f ε . Hence, there can be at most two roots contained in Arg−1(θ).

Consider now the case when f real with x2 and x4 equal in sign. In this
case, a point θ ∈ Cg1 ∩ Cg2 can be contained in D f . See the left picture of
Figure 4.5, where the hyperplane arrangement H is given in black, and the
shells HF1 and HF2 are drawn in dotted respectively dashes lines, with indi-
cated orientation. (The dash-dot line is contained in both shells.) Wiggling
the arguments of coefficient x1 and/or x3 by ε, we claim the we obtain a sit-
uation as in the right picture of Figure 4.5. That is, at most two polygons of
D f ε intersect a small neighborhood Nθ of θ. Let us prove this last claim.

Let f be generic, with x2 and x4 real and equal in sign. The hyperplanes
Cg1 and Cg2 locally divide the plane into four regions. We can assume that
a2 = 0. Then, Cg1 consists of all θ such that f̂1(θ) = 1, and Cg1 consists of all θ
such that f̂3(θ) = 1. Thus, locally, the cells of H can be indexed by the signs
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Figure 4.5: To the left: the coamoeba D f close to a point of Cg1 ∩Cg2 when x2

and x4 have equal in signs and x1 and x3 are real. To the right: the same picture
after wiggling the argument of x1 or x3.

of the imaginary parts of f̂1(θ) and f̂3(θ). Assume that θ̃ ∈ D f ∩ Nθ. Then
neither F1 nor F2 is colopsided at θ̃. Observe that f̂2(θ̃) = f̂4(θ̃), since x2 and
x4 are equal in sign. We find that

sgn(ℑ( f̂1(θ̃))) =−sgn(ℑ( f̂2(θ̃))) =−sgn(ℑ( f̂4(θ̃))) = sgn(ℑ( f̂4(θ̃))),

where the first and the last equality hold since neither F1 nor F2 is colop-
sided at θ̃. This implies that each polygon of D f that intersects a small
neighborhood of θ is necessarily contained in one of the cells of H which
correspond to that the imaginary parts of f̂1(θ̃) and f̂4(θ̃) are equal in sign.
As there are two such cells, we find that there are at most two polygons of
D f that intersect a small neighborhood of θ.
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5. Hypergeometric functions

In this chapter, we study solutions of the A-hypergeometric system HA(β)
from Definition 2.1.7. For convenience, we assume that ιA = 1. We will focus
on the dependence of A-hypergeometric functions on the parameter β. In
particular, a function Φ(β; x) that is analytic in β in a domain V ⊂ Cq+n

∗ is
said to be A-hypergeometric ifΦ(β; x) ∈ Solx (HA(β)) for all β ∈V . We take in
this chapter the more general approach that A is a Cayley configuration of q
sets A1, . . . , Aq . Our primary tool will be Euler type hypergeometric integrals;

MC (β; x) :=
∫

C

f (z)β1

zβ2

d z1 ∧·· ·∧d zn

z1 · · ·zn
, (5.1)

where f ∈ CA∗ and C is some n-cycle. Notice that we employ multi-index
notation both in the numerator and in the denominator. We collect the two
vectors β1 = (β1, . . . ,βq ) and β2 = (βq+1, . . . ,βq+n) in the parameter vector
β= (β1,β2).

Theorem 5.0.7 (Gelf’and, Kapranov, and Zelevinsky, [18]). If the integral
(5.1) converges and defines a germ of an analytic function in the variables
x, then it represents a solution to the A-hypergeometric system HA(β).

If C is compact then the convergence of (5.1) is immediate. The main
theorem of [18] states that if β is a non-resonant parameter then one can
find compact cycles Ci ⊂ Cn∗ \ Z ( f ), for i = 1, . . . ,Vol(A), such that the corre-
sponding integrals (5.1) is a basis of Solx (HA(β)).

The integral (5.1) is multivalued in two senses. Firstly, analytic continu-
ation along a loop in CA∗ need not preserve the cycle C . Secondly, we need
to choose branches of the exponential functions f (z)β1 and zβ2 . Note that
the values of the integral MC (β; x) for different branches of the exponential
functions differ only by multiplication with an exponential function in the
parameters. In particular, for a fixed cycle C , the C-vector space spanned by
the integral in question is uniquely determined.

While (5.1) defines an analytic function of the parameter β, understand-
ing the behavior of the solution space Solx (HA(β)) is a more subtle ques-
tion. In general, the nth singular homology group Hn(Cn∗ \ Z ( f ),C) has rank
greater than Vol(A), and it is per se not clear that the compact cycles gen-
erating a basis of Solx (HA(β)) can be chosen independently of β. A similar
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problem occurs when using series to construct a basis of Solx (HA(β)); the
cardinality of the set of possible initial monomials of such series is greater
than expected.

An additional difficulty occurs since we wish also to include resonant
parameters in our study. In particular, at a rank-jumping parameter β ∈ EA

one cannot span the full solution space using integrals of the form (5.1). In
fact, it follows from results in Section 5.2 that at rank-jumping parameters
not all solutions are analytic in the parameters.

To overcome the latter difficulty we introduce the following stratifica-
tion of the parameter space Cq+n . The resonant arrangement RA defines a
filtration

S0 ⊂ S1 ⊂ ·· · ⊂ Sq+n =Cq+n

whose component Sd in degree d consist of the union of all intersections of
q +n −d resonant hyperplanes. In our stratification, a d-dimensional stra-
tum s is a connected component of Sd \ Sd−1, where S−1 =; by convention.
Furthermore, the set of all strata (including the empty set) has the structure
of a poset lattice by the partial order defined by that s2 ≺ s1 if s2 ⊂ s1. In a
poset lattice an element s1 is said to cover s2 if s2 ≺ s1 and for any s2 ≺ s3 ≺ s1

we have that exactly one of s3 = s1 and s3 = s2 holds. Let ŝ denote the set of
all stratum that covers s.

The computations performed in [5] implies that the rank of the solution
space Solx (HA(β)) is constant along each stratum s. Let us denote this con-
stant by rk(s). The present work suggests the following conjecture.

Conjecture 5.0.8. Let U ⊂CA∗ \ Z (D A) be a simply connected domain. In the
following statements, each functionΦ(β; x) is analytic for x ∈U .

i) For each stratum s there are functions Φi (β; x), i = 1, . . . , rk(s), analytic
in s and meromorphic on the closure s, which generate the solution
space SolU (HA(β)) for each β ∈ s.

ii) Let s′ cover s. Then, there are functionsΦi (β; x), i = 1, . . . , rk(s′), analytic
in s′ ∪ s, which for each β ∈ s′ ∪ s generate a subspace Sols′

U (HA(β)) ⊂
SolU (HA(β)) of rank rk(s′).

iii) For each s with dim(s) < q +n, and for each β ∈ s, it holds that

SolU (HA(β)) = ∑
s′∈ŝ

Sols′
U (HA(β)), (5.2)

where, for each β, the summation is understood as a sum of vector sub-
spaces of SolU (HA(β)). 7
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This chapter is organized as follows. In Section 5.1 we develop the the-
ory of Euler–Mellin integrals, a specific Euler type integral related to the
coamoeba C. In Section 5.2 we prove some general properties of solutions
of differential equations depending on parameters, in particular implying
that Conjecture 5.0.8 is true in the case that EA =;. In Section 5.3 we study
Euler–Mellin integrals for resonant parameters in detail, culminating in the
proof of Conjecture 5.0.8 in the case when A represent a monomial curve
(i.e., when n = 1).

5.1 Euler–Mellin integrals

By an Euler–Mellin integral we mean the integral (5.1) taken over a cycle
C = Arg−1(θ). In order for such an integral to converge, restrictions must a
priori be placed on both the exponent vector β and the polynomial f . After
considering the conditions for convergence, we will discuss the relation to
coamoebas and the question of whether it is possible to construct a basis of
the A-hypergeometric system using Euler–Mellin integrals.

Let Ni denote the convex hull of Ai , and let N denote the Minkowski
sum N1 +·· ·+Nq .

5.1.1. Convergence. Let us initially consider the case C = Rn+. We will now
provide a domain of convergence for the Euler–Mellin integral (5.1) as a
function of the parameter β, generalizing [37, Theorem 1].

Definition 5.1.1. The polynomial f is said to be completely nonvanishing on
a set X if for each face Γ≺N (including N itself), the truncated polynomial
fΓ has no zeros on X . 7

For a vector b1 ∈ Rq , we denote by b1N the weighted Minkowski sum∑q
i=1 b1iNi of the Newton polytopes Ni with respect to b1.

Theorem 5.1.2. If each of the polynomials f1, . . . , fq is completely nonvan-
ishing on the positive orthant Rn+, then the Euler–Mellin integral M0(β; x)
from (5.1) converges and defines an analytic function in the tube domain{

β ∈Cn+q | b1 =−ℜ(β1) ∈Rq
+, b2 =−ℜ(β2) ∈ int(b1N )

}
. (5.3)

Proof. It suffices to prove that for any β with all components of b1 positive
and b2 ∈ int(b1N ), there exist positive constants c and K such that∣∣∣ f (eτ)−β1 e〈β2,τ〉

∣∣∣= ∣∣∣ f (eτ)−β1

∣∣∣e−〈b2,τ〉 ≥ ceK |τ| for all τ ∈Rn .

In fact, it is enough to show that this inequality holds outside of some ball
B(0) in Rn .
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Since b2 ∈ int(b1N ), we can expand b2 as a sum b2 = b21 + ·· · +b2q of
q vectors such that b2i /b1i ∈ int(Ni ). It is shown in the proof of [37, Theo-
rem 1] that for each b2i ∈ int(Ni ) there are positive constants τi and Ki such
that for τ outside of some ball Bi (0),

| fi (eτ)|e−〈b1i ,τ〉 ≥ τi eKi |τ|.

Note that it is essential in [37, Theorem 1] that fi is completely nonvanishing
on the positive orthant. Thus for τ outside of B(0) =⋃q

i=0 Bi (0), we have

| f (eτ)−β1 |e−〈b2,τ〉 =
q∏

i=1

(
| fi (eτ)|e−

〈
b2i
b2i

,τ
〉)b1i ≥

q∏
i=1

τ
b1i

i eb1i Ki |τ| = ceK |τ|,

where c = τ
b11
1 · · ·τb1q

q and K = b11K1 + ·· · + b1q Kq are the desired positive
constants.

Example 5.1.3. By a classical integral representation of the Gauss hyperge-
ometric function 2F1,

∫ ∞

0

(1+ z)β1 (ξ+ z)β2

zβ3

d z

z
= G(β) 2F1

( −β2, β1 −β2 −β3

−β1 −β2
;1−ξ

)
, (5.4)

where

G(β) = Γ(β3 −β1 −β2)Γ(−β3)

Γ(−β1 −β2)
.

To ensure convergence, we need thatℜ(β1+β2) <ℜ(β1+β2−β3) < 0 and that
|argπ(ξ)| <π. The latter condition is equivalent to that f (z) = (1+z)(ξ+z) is
completely nonvanishing on R+. Since N1 =N2 = [0,1], the condition that
b2 ∈ int(b1N ) is equivalent to 0 > ℜ(β3) > ℜ(β1 +β2). We note further that
the right hand side of (5.4) is analytic in this domain. 7

As the right hand side of (5.4) is a meromorphic function in β, it pro-
vides a meromorphic extension of the corresponding Euler–Mellin integral.
On this right side, we have the regularized 2F1 as one factor, thus the polar
locus of the meromorphic extension is contained in two families of hyper-
planes given by the polar loci of the Gamma functions. That this kind of
meromorphic continuation is possible for all Euler–Mellin integrals is the
essence of Hadamard’s partie finie, as understood by Riesz [49]. We will per-
form this meromorphic extension explicitly, as it makes use of combinato-
rial data that is crucial for our description of the behavior of Euler–Mellin
integrals at resonant parameters.
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To obtain the strongest form of this result, we choose a specific presen-
tation for b1N . To begin, each Newton polytope Ni can be written uniquely
as the intersection of a finite number of halfspaces

Ni =
Mi⋂
j=1

{
b2 ∈Rn | 〈µi j ,b2〉 ≥ νi j

}
, (5.5)

where the µi j and the νi j are primitive integer vectors.
Fixing an order, let {µ1, . . . ,µM } be equal to the set {µi j | 1 ≤ i ≤ q,≤ j ≤

Mi }, where we assume that µi 6= µ j for all i 6= j . We now extend the defini-
tions of µi j from (5.5) to each µk ; namely, for each k, let νk = (ν1k , . . . ,νqk )
with

νi k = min
{〈µk ,a〉 | a ∈Ni

}
,

and set |νk | = ν1k + ·· · +νqk . By definition of the νk , we have int(b1N ) =∑q
i=1 b1i int(Ni ) and

b1N =
M⋂

k=1

{
b2 ∈Rn | 〈µk ,b2〉 ≥ 〈νk ,b1〉

}
. (5.6)

We are now prepared to state the main result of this section, which pro-
vides a meromorphic continuation of (5.1), generalizing [37, Theorem 2].

Theorem 5.1.4. If the polynomials f1, . . . , fq are completely nonvanishing on
the positive orthant Rn+ (as in Definition 5.1.1) and the Newton polytope N
is of full dimension n, then the Euler–Mellin integral M(β; x) admits a mero-
morphic continuation of the form

M(β; x) =Φ(β; x)
M∏

k=1
Γ(〈νk ,β1〉−〈µk ,β2〉), (5.7)

whereΦ(β; x) is an entire function in β and µk ,νk are given by (5.6).

Proof. By Theorem 5.1.2, the Euler–Mellin integral M(β; x) converges for β
in the domain{

β ∈Cn+q
∣∣∣b1 ∈Rq

+ and 〈µk ,b2〉 > 〈νk ,b1〉, k = 1, . . . , M
}

,

which is a domain since N is of full dimension. Our goal is to expand the
convergence domain of the integral (5.1), at the cost of multiplication by fac-
tors corresponding to the poles of the Gamma functions appearing in (5.7).
We do this iteratively, integrating by parts in the direction of a vector µk at
each step. This expands the domain of convergence in the opposite direc-
tion of µk by a distance dk , which we determine explicitly.
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To begin, we set notation for the first iteration in one direction. Fix k
between 1 and M , and let Γ be the face of Ni corresponding to µk and νk .
For a ∈ A, consider the integers

d a
k = 〈µk ,a〉− |νk |.

Since a ∈N , it follows that d a
k ≥ 0. In particular, since there is a decomposi-

tion a = ∑
i ai with ai ∈Ni , we see that d a

k = 0 if and only if 〈µk ,ai 〉 = νi k for
all i .

Let i be fixed. The polynomial ( fi )Γ has the homogeneity ( fi )Γ(λµk z) =
λνi k ( fi )Γ(z), where λ ∈ C∗ and λµk z = (λµ1k z1,λµ2k z2, . . . ,λµnk zn). Hence the
coefficients of the scaled polynomial λ−νi k ( fi )Γ(λµk z) are independent of k
and λ. In particular, we have that the Newton polytope of

f ′
i (z) = d

dλ

(
λ−νi k fi (λµk z)

)∣∣∣
λ=1

is disjoint from Γ. This fact allows us to extend the domain of convergence
of (5.1) over the hyperplane defined by 〈µk ,b2〉 = 〈νk ,b1〉 as follows. Since
M(β; x) is independent of λ, we have

0 = d

dλ

∫
Rn+

f (λµk z)β1

(λµk z)β2

d z

z
= d

dλ

(
λ〈νk ,β1〉−〈µk ,β2〉

∫
Rn+

λ〈νk ,β1〉 f (λµk z)β1

zβ2

d z

z

)
.

Differentiating with respect to λ and setting λ= 1 yields the identity

M(β; x) = 1

〈νk ,β1〉−〈µk ,β2〉
∫
Rn+

gk (z) f (z)β1−1

zβ2

d z

z
, (5.8)

where gk is the polynomial

gk =
q∑

i=1
−β1i · f1 · · · f ′

i · · · fq

and β1 −1 = (β1 −1, . . . ,βq −1). Note that supp(gk ) is contained in A. More-
over, since Γ is the face of N corresponding to µk and supp( f ′

i ) is disjoint
from Ni ∩Γ, we see that supp(gk ) is disjoint from Γ. In other words, d a

k > 0
for each a ∈ supp(gk ).

Let us rewrite (5.8) as the sum

M(β; x) = ∑
a∈supp(gk )

ha(β1)

〈νk ,β1〉−〈µk ,β2〉
∫
Rn+

f (z)β1−1

zβ2−a

d z

z
, (5.9)

for some linear polynomials ha(β1), and note that each term of (5.9) is a
translation in β of the original Euler–Mellin integral. By Theorem 5.1.2, the
term corresponding to a converges on the domain given by b1 +1 > 0 and

〈µ j ,b2 +a〉 > 〈ν j ,b1 +1〉, for j = 1, . . . , M ,
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where the latter is equivalent to

〈µ j ,b2〉 > 〈ν j ,b1 +1〉−〈µ j ,a〉 = 〈ν j ,b1〉−d a
j , for j = 1, . . . , M .

The sum (5.9) converges on the intersection of these domains, given by

b1 +1 > 0, 〈µ j ,b2〉 > 〈ν j ,b1〉 if j 6= k, and 〈µk ,b2〉 > 〈νk ,b1〉−dk ,

where dk = min{d a
k | a ∈ supp(gk )}. Since dk is positive, (5.9) has a strictly

larger domain of convergence than (5.1); we say that it has been extended
by the “distance” dk in the direction µk .

Before iterating this procedure, we set some notation. Let Gk be the
semigroup generated by the integers {d a

k | a ∈ supp( f ) and 1 ≤ k ≤ M } ⊆ N.
Let α = (a1, . . . ,ar ) be an ordered r -tuple with ai ∈ supp( f ) for each i . We
sometimes write α as an exponent of z, viewing α = a1 + ·· ·+ar . Similarly,
set dα

k = d a1

k +·· ·+d ar

k ∈Gk .
After r iterations, let µ j (i ) denote the direction of the extension in the i th

iteration. Let dαi

j (i ) = d a1
j (i ) + ·· · +d ai−1

j (i ) ∈ G j (i ) be the sum of the distances of
the first i −1 components of α in the direction µ j (i ). Then there is a rational
function of the type

Lα(β) =
r∏

i=1

hαi (β1)

〈ν j (i ),β1〉−〈µ j (i ),β2〉+dαi

j (i )

, (5.10)

where hα(β1) = (hα1 (β1), . . . ,hαr (β1)) is an ordered r -tuple of linear polyno-
mials such that M(β; x) can be expressed as a finite sum of translations of
the original Euler–Mellin integral:

M(β; x) =∑
α

Lα(β)
∫
Rn+

f (z)β1−r

zβ2−α
d z

z
. (5.11)

Fixing k, we next expand the domain of convergence of (5.11) in the direc-
tion determined by µk . This is achieved through simultaneous expansion of
the domains of convergence of all terms, arguing as above. This yields the
expression

M(β; x) =∑
α

Lα(β)
∑

a∈supp(gk )

h(α,a)r+1 (β1)

〈νk ,β1〉−〈µk ,β2〉+dα
k

∫
Rn+

f (z)β1−r−1

zβ2−α−a

d z

z

=∑
α′

Lα′(β)
∫
Rn+

f (z)β1−r ′

zβ2−α′
d z

z
, (5.12)

whereβ′ = (β,a), r ′ = r +1, and the resulting rational function Lα′(β) is given
by

Lα′(β) = Lα(β)
hα′

r ′
(β1)

〈νk ,β1〉−〈µk ,β2〉+dα
k

.
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Since the convergence domain of each term in (5.11) is extended by the
distance dk in the direction determined by µk , the convergence domain
of the sum is similarly extended. In addition, since d a

k > 0, we have that
dα+a

k > dα
k ; therefore, the products Lα(β) will never repeat factors in their

denominators. As (5.12) is in the same form as (5.11), we may iterate this
procedure to extend the domain of convergence.

Finally, note that after r iterations that have extended the domain of
convergence of M(β; x) in the direction determined by µ j for r j of the r
steps, we obtain a meromorphic function on the tube domain given by β ∈
Cn+q such that b1 +∑M

j=1 r j = b1 + r > 0 and

〈µ j ,b2〉 > 〈ν j ,b1〉−q j d j , for j = 1, . . . , M .

Continuing this process, M(β; x) can be extended to a meromorphic func-
tion in β on Cn+q as in (5.7). We note that because the denominator of the
products of the rational functions Lα(β) never has repeated terms, all poles
of the extended Euler–Mellin integral are simple. It now follows from the re-
movable singularities theorem thatΦ(β; x) in (5.7) is an entire function in β,
as desired.

Remark 5.1.5. In the proof of Theorem 5.1.4, we see that the linear form
〈µk ,b2〉−〈νk ,b1〉−d appears in the denominator of some rational function
Lα if and only if d ∈ Gk . Hence if Gk 6=N, then our meromorphic continua-
tion has introduced unnecessary zeros into the entire functionΦ(β; x). 7

Remark 5.1.6. If q = 1, then hαi (β1) = kαi (β1 − i ) for some constant kαi ,
where hαi is as in (5.10). Therefore each Lα is divisible by the Pochammer
symbol (−β1)i+1, which can thus be factored outside of the sum (5.11). In
particular, Φ̃(β; x) = Γ(−β1)Φ(β; x) is an entire function. 7

Example 5.1.7. Consider the case of q +1 linear functions of one variable,

M(β;ξ) =
∫ ∞

0

(1+ z)β0 (ξ1 + z)β1 · · · (ξq + z)βq

zβq+1

d z

z
. (5.13)

Note that we have reindexed β for this example. When q = 0, (5.13) is the
Beta-function. That is,Φ(β) = 1/Γ(−β1), or with the notation of Remark 5.1.6,
Φ̃(β) = 1. When q = 1, we showed in Example 5.1.3 that

Φ(β;ξ) = 1

Γ(−β0 −β1)
2F1

( −β1, β2 −β0 −β1

−β0 −β1
;1−ξ

)
.

This equality is obtained by the change of variables w = z/(1+ z) and appli-
cation of the generalized binomial theorem. By similar calculations in the
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case q = 2,

Φ(β;ξ) = 1

Γ(−β0 −β1 −β2)
F1

(
β3 −β0 −β1 −β2, −β1, −β2

−β0 −β1 −β2
;1−ξ1,1−ξ2

)
,

where F1 denotes the first Appell series. For arbitrary q and |ξi | < 1,

Φ(β;ξ) = 1

Γ(−|β1|)
∑

k∈Nq

(βq+1 −|β1|)|k|
(−|β1|)|k|

(−β̂1)k

k !
(1−ξ)k ,

where |β1| =β0 +·· ·+βq , and (−β̂1)k = (−β1)k1 · · · (−βq )kq . 7

Example 5.1.8. Consider the case of one linear function of n variables,

M(β) =
∫
Rn+

(1+ z1 +·· ·+ zn)β0

zβ1

1 · · ·zβn
n

d z1 ∧·· ·∧d zn

z1 · · ·zn
,

where we again have reindexed β. We claim that

M(β) = Γ(−β1) · · ·Γ(−βn)Γ(β1 +·· ·+βn −β0)

Γ(−β0)
,

and henceΦ(β) = 1/Γ(−β0). This is clear when n = 1 because we again have
the Beta-function. For n > 1 one can argue by induction, making the change
of variables given by wn = zn and wi = zi /(1+ zn) for i 6= n. To generalize
this example to an arbitrary simplex, consider the Euler–Mellin integral

M(β) =
∫
Rn+

(1+ zT1 +·· ·+ zTn )β0

zβ1

1 · · ·zβn
n

d z1 ∧·· ·∧d zn

z1 · · ·zn
,

where the exponent vectors Ti are the columns of an integer affine transfor-
mation T . We find that

M(β) = Γ(−(T −1β)1) · · ·Γ(−(T −1β)n)Γ(β0 +|T −1β|)
|det(T )|Γ(−β0)

,

after employing the change of variables wi = zTi . 7

For Theorems 5.1.2 and 5.1.4 to hold, each fi (z) must be completely
nonvanishing on the positive orthant. This is a strong restriction that many
polynomials will not fulfill. We will now relax this condition by considering
the coamoeba of f (z).

Corollary 5.1.9. For θ ∈ Tn , a polynomial f (z) is completely nonvanishing
on the set Arg−1(θ) if and only if θ ∉ C.
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Proof. The claim is equivalent to (2.10).

By Corollary 5.1.9, when polynomials f1, . . . , fq are such that the closure

of the coamoeba of f (z) =∏q
i=1 fi (z) is a proper subset of Tn , there is a θ ∉ C

for which the Euler–Mellin integral with respect to θ is well-defined:

Mθ(β; x) =
∫

Arg−1(θ)

f (z)β1

zβ2

d z

z
. (5.14)

It is immediate that θ-analogues of Theorems 5.1.2 and 5.1.4 hold as
Arg−1(θ) is a rotation of Rn+. In addition, a slight perturbation of θ does not
impact the value of (5.14).

Theorem 5.1.10. The Euler–Mellin integral Mθ of (5.14) is a locally constant
function in θ. Thus it depends only on the choice of connected component Θ
of the complement of C. We write MΘ = Mθ and accordinglyΦΘ =Φθ.

Proof. First consider the case n = 1, and suppose that θ1 and θ2 lie in the
same connected component of the complement of C; in fact, assume that
the interval [θ1,θ2] ⊆ Rn \C. In other words, f (z) has no zeros with argu-
ments in this interval, and hence f (z)β1 z−β2−1 is analytic in the correspond-
ing domain. Connecting the two rays Arg−1(θ1) and Arg−1(θ2) with the circle
section of radius r yields a closed curve, and the integral of f (z)β1 z−β2−1

over this (oriented) curve is zero by residue calculus. By the proof of Theo-
rem 5.1.2, the integral over the circle section tends to 0 as r →∞, so the two
Euler–Mellin integrals Mθ1 and Mθ2 are equal.

In arbitrary dimensions, we obtain the desired equality by considering
one variable at a time while the remaining variables are fixed.

5.1.2. Linear independence I: Mellin–Barnes integrals. In this section, we
will investigate linear independence of extended Euler–Mellin integrals. Our
main tool is so called Mellin–Barnes integrals, see [6; 35]. The main result
of this section is Theorem 5.1.13, which identifies the set of Mellin–Barnes
integral solutions of HA(β) with Euler–Mellin integral solutions from com-
ponents of the complement of the lopsided coamoeba.

We say thatβ ∈Cq+n is totally non-resonant for A if the shifted latticeβ+
Zq+n has empty intersection with any hyperplane spanned by any q +n −1
linearly independent columns of A.

Definition 5.1.11. Fix a Gale dual B of A, and let γ be such that Aγ=β. Then
for x ∈CA , the Mellin–Barnes integral has the form

L(x) =
∫

(iR)m

N∏
i=1
Γ(−γi −〈bi , w〉)xγi+〈bi ,w〉

i d w1 ∧·· ·∧d wm . (5.15)
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Given θ ∈ Tn and x ∈CA∗ , we write

Lθ(x) = L(x1e i 〈a1,θ〉, . . . , xN e i 〈aN ,θ〉),

viewed as the germ of an analytic function at x. 7

The following result on Mellin–Barnes integrals summarizes Corollary 4.2,
Theorem 3.1, and Proposition 4.3 of [6].

Theorem 5.1.12 (Beukers, [6]). Consider x, x1, . . . , xK ∈CA∗ .

i) If Arg(x)B ∈ int(ZB ), then the integral L(x) converges absolutely.

ii) If Arg(x)B ∈ int(ZB ) and γi < 0 for each i , then L(x) ∈ Solx (HA(β)).

iii) Assume that the m-tuples Arg(x1)B , . . . ,Arg(xK )B are distinct elements of
the set int(ZB )∩ (Arg(x)B +2πLB ). If β is a totally non-resonant homo-
geneity parameter then the Mellin–Barnes integrals L(x1), . . . ,L(xK ) are
linearly independent.

By choosing x1, . . . , xK as in Theorem 5.1.12, one obtains a set of linearly
independent solutions to HA(β) that are in bijective correspondence with
the set int(ZB )∩ (Arg(x)B +2πLB ), provided that β is sufficiently generic.

We now show that the order map for the set of components of Tn \D
lifts to a bijection between the set of Mellin–Barnes integrals corresponding
to points in int(ZB )∩ (Arg(x)B +2πLB ) and the set of Euler–Mellin integrals
arising from the connected components of Tn \D.

Theorem 5.1.13. For each θ ∈ Tn \D and β the tubular domain (5.3), the
Mellin–Barnes integral Lθ(x) and Euler–Mellin integral Mθ(x) satisfy the re-
lation

ιB Lθ(x) = 2πi e i 〈β1,θ〉Γ(−β1) ιA Mθ(x),

where ιA and ιB are the indices of the lattices L A and LB respectively.

Proof. As the order map ordD from Theorem 3.2.1 maps a point in Tn \D
to a point in the set int(ZB )∩ (Arg(x)B +2πLB ), the Mellin–Barnes integral
Lθ(x) is convergent by Theorem 5.1.12.

By meromorphic extension, it is enough to give the proof in the case
when the A-hypergeometric homogeneity parameter β is such that the in-
tegral expression in (5.1) converges. We may also assume that A is of the
form (3.10) namely

A =
(

1 1 1
0 A1 A2

)
,
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where A1 is a nonsingular n×n-matrix; we will use the same decomposition
for x = (x0, x1, x2). For convenience we will takeβ of the formβ= (β1, A1β2).
Let B denote a dual matrix of A of the form

B =
 ∗

A−1
1 A2

−Im

D,

where the first row is chosen so that each column of B sums to zero and D
is an integer diagonal matrix such that B is an integer matrix. It will later be
useful that

ιB

ιA
= |det(D)|

|det(A1)| . (5.16)

To see this, assume that ιA = 1. Following [35, Proposition 4.2], this implies
that A can be extended to a N ×N unimodular matrix

Ã =
 1 1 1

0 A1 A2

∗ ∗ ∗

 with inverse Ã−1 = ( ∗ B̃
)=

 ∗ b̃0

∗ B̃1

∗ B̃2

 .

It follows that B̃ is a Gale dual of A, and by the Schur complement formula,
|A1| = |B̃2|. As B = B̃T for some affine transformation T the equality (5.16)
holds.

It is enough to prove the statement with this particular Gale dual B . We
have that

Mθ(β; x) =
∫

f (z)β1

z A1β2

d z

z
(5.17)

= x1
β2

x |β2|−β1

0

∫ (
1+ za1 +·· ·+ zan +ξ1/d1

1 za1+n +·· ·+ξ1/dm
m zam+n

)β1

z A1β2

d z

z
,

where the integration takes place over Arg−1(θ) in the first integral and over
Arg−1(θ+Arg(x1)A−1

1 ) in the second. Let us denote by Mθ(β;ξ) the function

given by the integral in (5.17). By Lemma 3.1.9, that θ ∈ Tn \D is equivalent
to the convergence of the integral∫

ξw Mθ(β;ξ)
dξ

ξ
,

where the integration takes place over the domain given by the fiber of Arg
over the point Arg(ξ) = Arg(x)B and w is chosen to fulfill the requirements
of Theorem 5.1.2. However, this integral is precisely the Mellin transform
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with respect to ξ of Mθ(β;ξ) with variables w . Consequently, after making
the change of variables ξ1/di

i zai+n 7→ ξi , we find that

MMθ(β;ξ)(w) = |det(D)|
|det(A1)|

∫
(1+ z1 +·· ·+ zn +ξ1 +·· ·+ξm)β1

zβ2−A−1
1 A2DwξDw

d z ∧dξ

z ξ
.

For γ in (5.15), write γ = (γ0,γ1,γ2). Assuming that β2 j > 0 for all j , that
β1 < |β2| (note that this is in accordance with our previous assumptions on
β), and that −1 À γ2 > 0. We set γ1 = β2 − A−1

1 A2γ2 and γ0 = −|β2| −β1 +
〈b0,γ2〉. It follows that γk < 0 for all k. With this notation, evaluating the
above integral as in Example 5.1.8, we find that

MMθ(β;ξ)(w) = |det(D)|
|det(A1)|

∏N
i=1Γ(−γi −〈bi , w −γ2〉)

Γ(−β1)
,

Furthermore,
r−1∑
i=0

γi ai = Aγ=
(

β1

A1β2

)
.

Turning to the Mellin–Barnes integral, we find that

Lθ(x) =
∫

(iR)m

N∏
i=1
Γ(−γi −〈bi , w〉)xγi+〈bi ,w〉

i d w

=
∫
γ2+(iR)m

N∏
i=1
Γ(−γi −〈bi , w −γ2〉)xγi+〈bi ,w−γ2〉

i d w

= e i 〈A1β2,θ〉x−β2

1

x |β2|−β1

0

∫
γ2+(iR)m

(
N∏

i=1
Γ(−γi −〈bi , w −γ2〉)

)
d w

xw .

The bounds in the proof of Theorem 5.1.2 imply that we can apply the Mellin
inversion formula, which yields the equality

|det(D)|Lθ(ξ) = 2πi e i 〈A1β2,θ〉Γ(−β1) |det(A1)|Mθ(ξ).

Applying (5.16) thus completes the proof.

Corollary 5.1.14. If β is totally non-resonant, then when viewed as analytic
germs at some x ∈ CA∗ \ Z (D A), the extended Euler–Mellin integrals ΦΘ(β; x),
where Θ ranges over the components of Tn \D, are linearly independent so-
lutions of the A-hypergeometric system HA(β).

Proof. Let θ1, . . . ,θK be representatives for the components of Tn \D. If the
indicated set of extended Euler–Mellin integrals is linearly dependent, then
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there exist constants `1, . . . ,`K providing a vanishing linear combination of
Mθ1 (β; x), . . . , MθK (β; x), so that

ιB

K∑
j=1

` j e i 〈β2,θ j 〉 Lθ j (x) = 2πi Γ(−β1) ιA
K∑

j=1
` j Mθ j (β; x) = 0.

It then follows from Theorem 5.1.12 that `1 = ·· · = `K = 0.

5.1.3. Linear independence II: residue integrals. This section contains a
brief study of residue integrals in the case n = 1. Assume that 0 ∈ A, so that
d = Vol(A) is the degree of each polynomial f ∈ CA∗ . The integrand in (5.1)
has, for very generalβ (including all non-resonant parameters), singularities
at 0, ∞, and at each ρ ∈ Z ( f ). This yields Vol(A)+2 residue integrals

Resρ(β; x) =
∫

C (ρ)

f (z)β1

zβ2

d z

z
,

where C (ρ) is a small counterclockwise loop around ρ if ρ = 0 or ρ ∈ Z ( f ),
or it is a large clockwise oriented loop if ρ =∞.

For generic parameters, HA(β) admits only a solution space of dimen-
sion Vol(A). Thus, there are two nontrivial linear relations among these
Vol(A)+2 residue integrals.

Example 5.1.15. Let us consider the case

A =
(

1 1
0 1

)
.

Here, f (z) = x1 + x2z, so ρ = −x1/x2 is the unique solution to f (z) = 0. As-
sume that arg(ρ) 6= 0. For any θ 6= Arg(ρ), after choosing branches, a integral
formula for the Beta-function yields that∫

Arg−1(θ)

f (z)β1

zβ2

d z

z
= Γ(−β2)Γ(β2 −β1)

Γ(−β1)
xβ1−β2

1 xβ2

2 .

That is, the extended Euler–Mellin integral provides the unique (up to mul-
tiplication by scalars) nonzero A-hypergeometric function of parameter β.

The fact that the above Euler–Mellin integral is independent of θ might
cause the misconception that the residue integral at ρ vanishes. In fact, to
write the residue integral as a difference of Euler–Mellin integrals, we cannot
choose branches of the latter so that they coincide. Actually,

Resρ(β; x) = (1−e2πiβ1 )Mθ(β; x),
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where Mθ denotes some branch of the Euler–Mellin integral. As the coeffi-
cient is nonvanishing for generic β1, we find that residue integral at ρ span
the solution space for such parameters.

The present example is special in the sense that a change of variables
takes the residue at the origin to the residue at ρ. Thus, also the residue at
the origin span the full solution space for generic β. 7

We use the following convention. Let ρ1, . . . ,ρd denote the zeros of f
with indices considered modulo d , ordered by their arguments. Similarly,
label the components of the complement of C by Θi , where the indexing is
chosen so that the sector Arg−1(Θi ) contains ρi−1 and ρi in its boundary.

Theorem 5.1.16. Let β be a non-resonant parameter. Then, the residue inte-
grals Resρ(β; x), for ρ ∈ Z ( f ), span the solution space Solx (HA(β)).

Proof. Let U ⊂CA∗ be a domain such that

max(|x2|, . . . , |xN−1|) ¿ min(|x1|, |xN |)

for all x ∈ U . It is enough to prove the proposition under the assumption
that x ∈U . Let ` denote a loop in CA∗ such that its induced permutation of
the roots ρ1, . . . ,ρd is the d-cycle (12 · · · d). Since x ∈U , such a loop can be
explicitly constructed as follows. The loop {(x1,e2πi t xN ) | t ∈ [0,1]} permutes
the roots of the polynomial x1+xN zd ; hence, by continuity of roots, we may
choose ` to be

`=
{

(x1, x2, . . . , xN−1,e2πi t xN ) | t ∈ [0,1]
}

.

Let ηd = e2πiβ2 . We can choose branches of the residue integrals so
that analytic continuation along the loop ` takes Res j (β; x) to ηRes j+1(β; x),
where Res j (β; x) denotes the residue integral at the root ρ j . In particular,
traversing d times the loop ` is equivalent to multiplying each residue in-
tegral by ηd 6= 1. The benefit of this choice of branches lies in the following
fact. If x̂ is obtained by letting x1, . . . , xN−1 → 0, which is possible in U , then

η j Res j (β, x̂) = Res1(β, x̂).

Assume that there is a linear relation

d∑
j=1

c jη
j Res j (β; x) = 0. (5.18)
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By performing analytic continuation along the loop`we obtain Vol(A)-many
relations, captured by the coefficient matrix

C =


c1η c2η

2 c3η
3 · · · cdη

d

cdη
d+1 c1η

2 c2η
3 · · · cd−1η

d

cd−1η
d+1 cdη

d+2 c1η
3 · · · cd−2η

d

...
...

...
. . .

...
c2η

d+1 c3η
d+2 c4η

d+3 · · · c1η
d

 .

Since the number non-trivial relations among the Vol(A)+2 residue integrals
is 2, the rowspan of C is of rank at most 2. Assuming that the rank is positive,
we will obtain a contradiction.

Case 1: Assume first the the rowspan of C has rank two. Taking linear
combinations we can eliminate one coefficient, and then perform analytic
continuation along ` once more. Thus, we can assume that c1 = 0. Note that,
if two consecutive coefficients vanish, then the fact that all 3×3-minors of
C vanishes implies that all coefficients vanish.

If cd−1 does not vanish, then we can eliminate the first coefficient of the
second row using the third row. In the resulting difference, either all coeffi-
cients vanish, or we obtain two consecutive coefficients that vanish. Assum-
ing the former, we find that c2 vanishes, that is, two consecutive coefficients
vanish.

Hence, we can assume that cd−1 vanishes. Repeating the argument, we
find that every second coefficient vanishes. In particular, we can assume
that d is even. Under this assumption, that the row span of C is of rank
two implies that every second row of C defines the same linear relation. In
particular, we have a well-defined quotient

ε= c2

cdηd
= c4

c2
= ·· · = cd

cd−2
.

Then,

ε= c2

cdηd
= 1

ηd

c2

c4
· · · cd−2

cd
= 1

ηd
ε1− d

2 ,

and hence ε = η−2. Normalizing, we can assuming that c2 = η−2, implying
that c2 j = η−2 j . In particular, also taking the limit as |x1|, . . . |xN−1| → 0, we
find that

0 = Res1(β; x̂)

d
2∑

j=1
η2 j .

In the right hand side, the first factor is not identically vanishing (it is a
change of variables away from the residue integral of Example 5.1.15). Hence,
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we can conclude that η2 is a d/2th root of unity. In particular, η is a dth root
of unity, implying that e2πiβ2 = 1, a contradiction.

Case 2: Assume now that the rows of C span a linear space of rank 1.
Introducing the quotient

ε= c1

cdηd
= c2

c1
= ·· · = cd

cd−1
,

we proceed as in Case 1 only to conclude that η is a dth root of unity, con-
tradicting that β2 is generic.

Theorem 5.1.17. Let U ⊂ CA∗ be a domain such that the roots of f are sepa-
rated in argument. Then, the Euler–Mellin integrals MΘ(β; x), whereΘ ranges
over the set of connected components of T \B provide a basis for the solution
space SolU (HA(β)) for each non-resonant parameter β.

Proof. Considering first a domain V for which the original Euler–Mellin in-
tegrals converges. It is clear that the set of Euler–Mellin integrals span the
space of residue integrals, and hence they span the full solution space for
each non-resonant parameter.

If A is a circuit, then for each totally non-resonant parameter there exists
a Mellin–Barnes, and hence also an Euler–Mellin, basis of solutions. How-
ever, we saw in Section 3.2.2 that it is in general not possible to construct
neither a Mellin–Barnes nor an Euler–Mellin basis of solutions, as one can-
not always find a coamoeba with sufficiently many connected components
of its complement. In general Tn \C has more connected components than
Tn \D. In many cases, it is possible to construct a basis of Euler–Mellin inte-
gral solutions even though Mellin–Barnes integrals do not suffice.

Example 5.1.18. Consider the point configuration

A =
(

1 1 1 1
0 2 3 6

)
.

By [36], since the coamoeba of the A-discriminant covers T4, the maximal
number of points in the set int(ZB )∩ (Arg(x)B +2πLB ) is five. Hence there
is not a basis of solutions of HA(β) represented by Mellin–Barnes integrals.
However, for a generic polynomial f ∈ CA∗ the coamoeba C has six compo-
nents in its complement. Thus by Theorem 5.1.17, at each non-resonant β,
this set of components provide a basis of solutions of HA(β) represented by
extended Euler–Mellin integrals. 7
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5.1.4. An A-hypergeometric rank-jumping example. We conclude this
section with an example first studied in [9], where it was shown that some
parameters β admit a higher-dimensional solution space for HA(β) than the
expected dimension of Vol(A). The point configuration that we consider is

A =
(

1 1 1 1
0 1 3 4

)
,

for which there is a unique parameter β = (1,2) for which the dimension of
the solution space of HA(β) is one larger than expected.

Let θ ∈Θ for a fixed connected component of T2 \C. In order to calculate
the corresponding functionΦΘ at the rank-jumping parameter β= (1,2), we
first expand the Euler–Mellin integral MΘ five times in different directions
to obtain convergence. Upon expansion,

MΘ(β; x) = (−β1)2

−β2

∫
z−β2 h1(z)

f (z)2−β1

d z

z
+ (−β1)3

−β2

∫
z−β2 h2(z)

f (z)3−β1

d z

z

+ (−β1)4

−β2

∫
z−β2 h3(z)

f (z)4−β1

d z

z
+ (−β1)5

−β2

∫
z−β2 h4(z)

f (z)5−β1

d z

z
, (5.19)

where all integrals are taken over Arg−1(θ) and (−β1)n denotes the Pochham-
mer symbol. This shows that whenβ= (1,2), the entire functionΦΘ falls into
the situation noted in Remark 5.1.6, and we thus ignore the factor (β1+1) in
(5.19). To be explicit,

h1(z) = 3x2x3z4

1−β2
+ 3x2x3z4

3−β2
+ 4x2x4z5

1−β2
+ 4x2x4z5

4−β2
,

h2(z) = 36x1x2
3 z6

(3−β2)(β2 −4β1 +2)
+ 48x1x3x4z7

(3−β2)(β2 −4β1 +1)
+ 48x1x3x4z7

(4−β2)(β2 −4β1 +1)

+ 64x1x2
4 z8

(4−β2)(β2 −4β1)
+ x3

2 z3

(1−β2)(2−β2)
+ 3x2

2 x3z5

(1−β2)(2−β2)

+ 4x2
2 x4z6

(1−β2)(2−β2)
+ 27x2x2

3 z7

(3−β2)(β2 −4β1 +2)
+ 36x2x3x4z8

(3−β2)(β2 −4β1 +1)

+ 36x2x3x4z8

(4−β2)(β2 −4β1 +1)
+ 48x2x2

4 z9

(4−β2)(β2 −4β1)
+ 9x3

3 z9

(3−β2)(β2 −4β1 +2)
,

h3(z) = 48x1x2
3 x4z10

(3−β2)(β2 −4β1 +1)(β2 −4β1 +2)
+ 48x1x2

3 x4z10

(4−β2)(β2 −4β1 +1)(β2 −4β1 +12)

+ 64x1x3x2
4 z11

(4−β2)(β2 −4β1 +1)2 + 36x2x2
3 x4z11

(3−β2)(β2 −4β1 +1)(β2 −4β1 +2)

+ 36x2x2
3 x4z11

(4−β2)(β2 −4β1 +1)(β2 −4β1 +2)
+ 48x2x3x2

4 z12

(4−β2)(β2 −4β1)(β2 −4β1 +1)

+ 12x3
3 x4z13

(3−β2)(β2 −4β1 +1)(β2 −4β1 +2)
+ 12x3

3 x4z13

(4−β2)(β2 −4β1 +1)(β2 −4β1 +2)
,
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and

h4(z) = 64x1x2
3 x2

4 z14

(4−β2)(β2 −4β1)(β2 −4β1 +1)(β2 −4β1 +2)

+ 48x2x2
3 x2

4 z15

(4−β2)(β2 −4β1)(β2 −4β1 +1)(β2 −4β1 +2)

− 16x3
3 x2

4 z17

β2(4−β2)(β2 −4β1)(β2 −4β1 +1)(β2 −4β1 +2)
.

Each term in (5.19) is a translation in β of the original Euler–Mellin integral
which converges at β= (1,2). In addition, the lack of a degree 2 term in f is
manifested in that no term of any hi (z) has both (2−β2) and (β2−4β1+2) as
factors in its denominator. Thus, there are entire functions Φ1, Φ2, and Φ3

in β such that

ΦΘ = (β2 −4β1 +2)Φ1 + (2−β2)Φ2 + (2−β2)(β2 −4β1 +2)Φ3.

From this expression we see that while ΦΘ(1,2; x) = 0 independently of x
and Θ. We also obtain two functions Φ1 and Φ2 that are solutions of HA(β)
at β= (1,2). Explicit calculation reveals that

Φ1(1,2; x) = 2
x2

2

x1
and Φ2(1,2; x) = 2

x2
3

x4
,

for any choice of Θ. These span the Laurent series solutions of the system
HA(1,2), which has dimension two only at this parameter [9].

5.2 Constructing solutions at resonant parameters

In this section we discuss how one can construct solutions at resonant pa-
rameters from linearly independent solutions at non-resonant parameters.
We will use classical techniques, applicable in a wider setting than the A-
hypergeometric environment. The crucial property of the system HA(β) is
the fact that the resonant arrangement is a (locally finite) hyperplane ar-
rangement.

Theorem 5.2.1. Let Φ1, . . . ,ΦM be germs of analytic functions in x depending
continuously on a parameter β. If, for a fixed β̂, they are linearly indepen-
dent (over C), then there is a neighborhood N (β̂) such that they are linearly
independent for any β ∈ N (β̂).
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Proof. Assume the contrary. Then, there is a sequence of parameters {βk }∞k=0

such that βk → β̂ as k →∞, and, furthermore, for all βk there exists a linear
combination

M∑
j=1

ck jΦ j (βk ; x) = 0.

Let ck = (ck1, . . . ,ckM ). We can consider {ck }∞k=0 as a sequence in the compact
spacePM−1. In particular we we can choose a convergent subsequence with
limit c ∈ PM−1, which we identify with a representative c ∈ CM . By continu-
ity, we find that

M∑
j=1

c jΦ j (β̂; x) = lim
k→∞

M∑
j=1

ck jΦ j (βk ; x) = 0,

contradicting that the functionΦ j are linearly independent for β̂.

Let P1(x,∂), . . . ,PK (x,∂) be linear partial differential operators in D[β],
the Weyl algebra on CA with additional commuting variables β. Let ϕi (β),
for i = 1, . . .K , be analytic functions of β ∈ Cq+n . Consider the system H(β)
of linear partial differential equations, depending on the parameter β,

Pi (x,∂)•Φ(β; x) =ϕi (β)Φ(β; x), i = 1, . . . ,K . (5.20)

We view H(β) as a left ideal in D[β] defined by the operators Pi (x,∂)−ϕi (β).
Assume further that Φ(β; x) is analytic for x in a domain U ⊆ CA∗ and β

in a domain V . For γ ∈Cq+n , denote by ∇γ the differentiation operator with
respect to β in the direction of γ. Applying ∇γ to both sides of (5.20) yields

Pi (x,∂)•∇γΦ(β; x) =∇γϕi (β) ·Φ(β; x)+ϕi (β) ·∇γΦ(β; x), i = 1, . . . ,K .

Thus, if β ∈V is such thatΦ(β; x) ≡ 0 for x ∈U , then it follows that ∇γΦ(β; x)
solves (5.20) at β. 1 We say that ∇γΦ(β; x) has been constructed from Φ(β; x)
by taking parametric derivatives.

If the function ∇γΦ(β; x) happens to vanish identically at β, then the
parametric derivative procedure can be iterated. We now state a sufficient
condition for this algorithm to terminate after a finite number of steps.

Proposition 5.2.2. Let Φ(β; x) be a nontrivial solution to (5.20) which is an-
alytic for x in a domain U ⊂ Cn∗ and β in a domain V . Assume further that
Φ(β; x) vanishes identically when restricted to a hyperplane L ⊂ Cq+n in the
parameters. Then, for each β ∈ L and γ ∉ TL(β) the above process terminates
after a finite number of steps. That is, for each β ∈ L, there is an integer

1This argument was shown to the author by P. Kurasov.
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p = p(β,γ) such that ∇(p)
γ Φ(β; x) 6≡ 0 for β ∈ L ∩V . Furthermore, the num-

ber p does not depend on γ, and thus it defines a function β 7→ p(β), which in
turn is upper semicontinuous in the analytic topology of Cq+n .

Proof. Let v1, . . . , vq+n−1 be a basis of TL(β), which we extend to a basis of
Cq+n by adding v0 = γ. Then

∇(p)
vi
Φ(β; x) ≡ 0 for i ∈ {1, . . . , q +n −1}, p ≥ 0, and β ∈ L∩V.

If, in addition, ∇(p)
γ Φ(β; x) = 0 for all p and β ∈ L ∩V , then all mixed deriva-

tives∇(pi )
vi

∇(p)
γ Φ(β; x) vanish. Hence, Taylor’s formula implies thatΦ(β; x) = 0

in a neighborhood of β, a contradiction. That p does not depend on γ

follows by a change of variables fixing v1, . . . , vq+n−1. To see that the map

β 7→ q(β) is upper semicontinuous, it suffices to note that ∇(p)
γ Φ(β; x) 6≡ 0 for

β ∈ L ∩V implies that ∇(p)
γ Φ(β; x) 6≡ 0 for β in some (analytic) open neigh-

borhood of β.

Proposition 5.2.3. With the hypotheses of Proposition 5.2.2, assume further
that the function Φ(β; x) is not identically vanishing in x for any fixed β ∈
V \ L. Then ∇(p)

γ Φ(β; x) is not identically vanishing in x at β.

Proof. We can assume that γ is the normal vector for the hyperplane L, so
that L is defined by a linear equationγ·β= κ. By l’Hôpital’s rule, forβ ∈V ∩L,

∇(p)
γ Φ(β; x) =Φ(β; x)((γ ·β)−κ)−p .

Hence for β ∈V ∩L, the function ∇(p)
γ Φ(β; x) can be replaced by the analytic

extension to L of the quotient

Φ(β; x)((γ ·β)−κ)−p ,

which gives a solution of HA(β) which is analytic in V .
The vanishing locus of Φ(β; x)((γ ·β)−κ)−p is an analytic subvariety of

L of codimension at least one. Thus, by assumption, this vanishing locus
is a subvariety of Cq+n

∗ of codimension at least two, which implies that it is
empty.

A spanning tree T of the stratification of the parameter spaceCq+d (con-
sidered as a poset lattice), is a function associating to each stratum s of pos-
itive codimension an element T (s) in its set of covering strata ŝ.

Theorem 5.2.4. Let U ⊂ CA∗ \ Z (D A) be a simply connected domain, and let
T be a spanning tree of the stratification poset lattice. Then, for each stratum
s, there are Vol(A)-many functions Φi (β; x), for i = 1, . . . ,Vol(A), constructed
from the solutions along T (s), which span a subspace of SolU (HA(β)) of rank
Vol(A) for each β ∈ s.
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Proof. We use induction over the codimension of the stratum s. The basis
of the induction is the full-dimensional stratumCq+n \RA , for which we can
use the residue integrals of [18] to define the functionsΦi (β; x).

Assume now that we have proven the existence of the functionsΦi (β; x)
for each stratum of codimension m, and let s be a stratum of codimension
m + 1. In particular, the statement is proven for the stratum T (s). Using
Proposition 5.2.2 repeatedly, we construct Vol(A)-many linearly indepen-
dent solutions along s from the solutions along T (s). By Proposition 5.2.3,
the constructed solutions can, considered as meromorphic functions on s,
only be linearly dependent at strata of higher codimension. A similar argu-
ment yields that they can only have singularities at strata of higher codimen-
sion. In particular, they are analytic in s and span a subspace of Sol(HA(β))
of rank Vol(A) for each β ∈ s.

Corollary 5.2.5. If EA =;, then all claims of Conjecture 5.0.8 holds.

Proof. The first and the third claim follows from Theorem 5.2.4. To see that
the second claim is true, choose a spanning tree of the stratification poset
lattice such that s′ = T (s).

5.3 Projective toric curves

We now aim to prove Conjecture 5.0.8 in the case when A represent a pro-
jective toric curve. Without loss of generality, the A-hypergeometric system
associated to a projective monomial curve is determined by a matrix

A =
(

1 1 1 · · · 1 1
0 d2 d3 · · · dN−1 d

)
(5.21)

where 0 = d1 < d2 < ·· · < dN−1 < dN = d and such that ιA = 1. The curve
alluded to above is the one obtained by taking the Zariski closure in PN−1

C
of

the image of the map

C2
∗ →CA

∗ given by (s, t ) 7→ (s, st d2 , . . . , st dN−1 , st d ).

In the case of curves, the article [9] carried out a series of computations
to show that

EA = [(NA+ZΓ0)∩ (NA+ZΓd )] \NA, (5.22)

and that rk(HA(β)) = Vol(A)+ 1 for β ∈ EA . The solutions computed in [9]
are specific to integer parameters. An alternative proof of these facts can be
found in [51, Section 4.2].
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Figure 5.1: The polar lines (left) and resonant lines (right) when The opposites
of the points of A are highlighted. The shaded region is the domain of conver-
gence of MΘ(β; x).

Recall the monoids

G0 =N {d −dN−1, . . . ,d −d2,d} and Gd =N {d2, . . . ,dN−1,d} (5.23)

which appeared in the meromorphic extension of the Euler–Mellin integral
Mθ(β; x).

Definition 5.3.1. We define the polar locus of A, denoted by PA , as the
union in C2 of the zero loci of the linear polynomials (γ0 ·β)+κ, for κ ∈ G0

and (γd ·β)+κ, for κ ∈Gd . 7

In other words,

PA = ⋃
κ∈G0

Z ((γ0 ·β)+κ) ∪ ⋃
κ∈Gd

Z ((γd ·β)+κ). (5.24)

Note that PA is strictly contained in the set of resonant parameters RA ,
see Figure 5.1. It contains the poles of all Euler–Mellin integrals MΘ(β; x) by
Theorem 5.1.2.

The meromorphic extension (5.12) is in the case of curves given by the
expressions

MΘ(β; x) = −β2

γ0 ·β
N∑

i=1
di xi MΘ(x,β−ai ) (5.25)

and MΘ(β; x) = −β2

γd ·β
N∑

i=1
(d −di ) xi MΘ(x,β−ai ). (5.26)

When extending the convergence domain of Mθ(β; x), choices must be
made as to the order in which the two types of extensions are performed.
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We focus on the two orderings given by either first extending over lines res-
onant with respect to the face Γ0, and then extending over lines resonant
with respect to the face Γd , or vice versa.

If β is contained in a polar line L with defining equation (γ j ·β)+κ =
0, then restricting the entire function ΦΘ(β; x) in β to L, the only terms in
the iterated expansion of MΘ(β; x) that do not vanish are those for which
the linear form (γ j ·β)+κ appears in the denominators of their coefficients.
Thus, in order to explain the behavior of ΦΘ at such resonant parameters,
it is necessary to carefully track the combinatorics of the coefficients in the
expansion process of MΘ(β; x). This is of particular importance when the
parameter β is contained in the intersection of two polar lines.

5.3.1. Polar resonant lines. Let us now study the behavior of Euler–Mellin
integrals at parameters that are resonant with respect to precisely one facet
of A. We obtain an explicit understanding of how these solutions behave
along a line in PA , while the behavior along nonpolar lines seems to be
fundamentally different.

We first consider the case thatβ is polar, where the behavior is illustrated
by the following example. A series solution

∑
v∈Cn cv xv of HA(β) is said to

have finite support if the set {v ∈Cn | cv 6= 0} is finite.

Example 5.3.2. For any A as in (5.21), consider the supporting line of the
cone (5.3) given by β2 = 0, which is contained in PA . In order to evaluate
ΦΘ, we must expand MΘ(β; x) once in the direction of µ0, which yields

MΘ(β; x) = β1

β2

∫
Arg−1(θ)

f ′(z) f (z)β1−1

zβ2−1

d z

z
,

for θ ∈Θ. Hence, along the line β2 = 0, the Euler–Mellin integral forΘ evalu-
ates, after applying an extension formula once, as

MΘ(β; x)

Γ(β2)

∣∣∣∣
β2=0

=β1

∫
Arg−1(θ)

f ′(z) f (z)β1−1 d z =β1 f (0)β1 =β1xβ1

1 .

Most notably,ΦΘ(β1,0; x) is independent ofΘ and equal to a series solution
of HA(β) with finite support. 7

Theorem 5.3.3. Let L be a line contained in PA . Then all extended Euler–
Mellin integrals ΦΘ(β; x) coincide and evaluate to a finitely supported series
solution of HA(β). After possibly removing a factor which is constant with
respect to x, this series is nonvanishing in x for eachβ and defines an analytic
function on each domain U in CA∗ \ Z (D A).
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Proof. It is enough to consider a domain U as in Theorem 5.1.17. We first
consider the caseβ2 = M , for some integer M , so that L = L0(M) is an integer
translate of the span of the face Γ0. From (5.23), since L ⊆ PA , there exists
a partition of M using only d2, . . . ,dN . Let P (A, M) denote the set of all or-
dered partitions p of M with parts d2, . . . ,dN . Let mi (p) denote the number
of times di appears in p, and set m(p) = (m1(p), . . . ,mN (p)), so that |m(p)| is
the length of p. Furthermore, for each i ∈ {1, . . . , |m(p)|}, let si = si (p) denote
the i th partial sum of p. Now parameterize the line L0(M) = {β ∈ C2 | β2 =
M } by

λ 7→ (λ, M) for λ ∈C.

We claim that, for each connected component Θ of the complement of C,
the restriction of the Euler–Mellin integral MΘ(β; x)/Γ(β2)

∣∣
L0(M) equals

xλ1
∑

p∈P (A,M)

(|m(p)|−1∏
i=1

λ− i

M +β1i (p)

)(
N∏

i=2
d mi (p)

i

(
xi

x1

)mi (p)
)

. (5.27)

Indeed, the only terms in the expansion of MΘ(β; x) that are relevant at
β2 = M are those containing the factor β2 −M in the denominators of their
coefficients. This is the case only for terms corresponding to ordered parti-
tions of M , and the term corresponding to p ∈ P (A, M), when restricted to
L0(M), is the one given in (5.27), including the monomial xm(p). The integral

of this term evaluates, in the manner of Example 5.3.2, to xβ1−|m(p)|
1 .

By symmetry, a similar formula can be given when dβ1−β2 = M , so that
L = Ld (M) is a translate of the span of the face Γd . In this case, consider the
parameterization of Ld (M) given by

λ 7→ (λ,dλ+M) for λ ∈C.

The analog of (5.27), for this line is, is that MΘ(β; x)/Γ(dβ1 −β2)
∣∣
Ld (M) equals

xλN
∑

p∈P (Ā,M)

(|m(p)|−1∏
i=1

λ− i

M +β1i (p)

) (
M−1∏
i=1

(d −di )mi (p)
(

xi

xN

)mi (p)
)

. (5.28)

The coefficient of a monomial in (5.27) or (5.28) is a sum of positive mul-
tiples of the product

|m(p)|−1∏
i=1

(λ− i ), (5.29)

and hence it is a positive multiple of (5.29); in particular, the coefficient of
a monomial vanishes only if the product (5.29) vanishes. Thus a function
of the form (5.27) or (5.28) is nontrivial unless λ is such that all the coef-
ficients vanish, which is equivalent to λ being a positive integer such that
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every p ∈ P (A, M) has more thanλ terms. However, this vanishing can be re-
moved, as it is caused by a factor (λ−i ) appearing in all coefficients of (5.27)
or (5.28). Removing such factors, (5.27) and (5.28) provide everywhere non-
trivial solutions that are analytic inλ along L0(M) or Ld (M), respectively.

Corollary 5.3.4. If β ∈PA , then Resρ(β; x) = 0 for each ρ ∈ Z ( f ).

Proof. This follows Theorem 5.3.3 and the fact that each residue integral can
be written as a difference of Euler–Mellin integrals. Notice that there is no
ambiguity of branches for resonant parameters.

The behavior of extended Euler–Mellin integrals along nonpolar reso-
nant lines is more difficult to track. Focusing instead on the residue inte-
grals, we observe a behavior that is different than that along polar lines.

Proposition 5.3.5. If β ∈ RA \ PA is resonant with respect to Γ0, then the
residue Res0(β; x) vanishes identically in x. If β is resonant with respect to
Γd , then Res∞(β; x) vanishes identically in x.

Proof. Consider the case β2 = M for some M ∈Z, so that β is resonant with
respect to the face Γ0. If M is a negative integer, then the integrand of (5.1) is
analytic in a neighborhood of z = 0. Thus the only case to consider is when
M is positive, which corresponds to a gap in the set PA of polar lines.

The residue integrals, being evaluated over a compact cycle, converge
for every β. However, by uniqueness of meromorphic extension, the identi-
ties (5.25) and (5.26) hold. Hence

Res0(β; x) = β1

β2

∫
C (0)

f ′(z) f (z)β1−1

zβ2−1

d z

z
,

where f ′(z) denotes the derivative of f (z) with respect to z. By applying this
formula repeatedly, we conclude that it is enough to show that each term of
f ′(z) which corresponds to di >β vanishes. Indeed, this term equals

β1

β2

∫
C (0)

di zdi−1
i f (z)β1−1

zβ2−1

d z

z
,

whose integrand has a zero at the origin of order di −β1−1 ≥ 0. The case that
β is resonant with respect to the other facet of A follows similarly. The van-
ishing Res∞(β; x) of for non-polar resonant lines with respect to the other
facet Γd follows from a change of variables.

Remark 5.3.6. It is not clear if any further dependencies of the residue in-
tegrals exist at nonpolar resonant parameters. Thus, the implications of
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Proposition 5.3.5 for extended Euler–Mellin integrals also remain unclear.
Computational evidence suggests that at nonpolar resonant parameters, the
analytic continuations of the extended Euler–Mellin integrals remain lin-
early independent. If such a statement was proven, the the stratification
induced by the resonant arrangement RA could be exchanged for the strat-
ification induced by the polar arrangement PA . 7

5.3.2. Intersections of polar resonant lines. In this section, we explain the
behavior of extended Euler–Mellin integrals at parameters β that lie at the
intersection of two resonant lines, so that β is resonant with respect to both
faces of A, see Definition 2.1.8. The subdivision of the resonant arrangement
into polar and nonpolar lines gives a natural subdivision of these parame-
ters into three cases.

At intersections of two nonpolar lines, and also at intersections of one
polar and one nonpolar line, the rank of HA(β) is Vol(A) = d . As discussed
in Remark 5.3.6, it not clear how (or if) the extended Euler–Mellin integrals
form linear dependencies at such parameters.

Thus for now, we consider only the third case, when a parameter β is
contained in the intersection of two polar lines, which, in particular, in-
cludes all rank-jumping parameters. Associated to these two lines, respec-
tively, are the two finitely supported series as described in Theorem 5.3.3.
Before we (possibly) remove unnecessary (vanishing) coefficients at the end
of the proof of Theorem 5.3.3, these two series are evaluations of the same
integral and therefore coincide. However, after removing such coefficients,
the resulting two series may or may not coincide. For β ∈Z2, this is decided
by whether or not β is rank-jumping.

Theorem 5.3.7. Suppose that β is at the intersection of two resonant lines,
both of which are contained in PA .

i) If β ∉Z2 or β ∈ EA , then the two solutions obtained in Theorem 5.3.3 at β
are finitely supported and linearly independent.

ii) Ifβ ∈Z2\EA , then for x ∈ (Cn \Z (D A)), then the two solutions obtained in
Theorem 5.3.3 at β coincide and equal a single finitely supported series.

If β ∈ NA, [51, Lemma 3.4.10] (or [9, Proposition 1.1]) show that HA(β)
has a unique (up to multiplication by a constant) polynomial solution. By
Theorem 5.3.7, this solution is given by an extended Euler–Mellin integral.

Proof of Theorem 5.3.7. If β ∉ Z2, then the series solutions (5.27) and (5.28)
of HA(β) have disjoint supports. In particular, they are linearly independent.
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Figure 5.2: The left diagram shows PA , while the right shows P∆, mimicking
Figure 5.1.

To handle the case β ∈Z2, consider the matrix ∆= T A, where

T =
(

d −1
0 1

)
.

Since T ∈ GL2(Q), it induces an isomorphism of A-hypergeometric systems
for any β ∈C2:

HA(β) ∼= H∆(γ) where γ= Tβ.

Figure 5.2 illustrates the change of coordinates induced by T on the param-
eter space. LetN∆ denote the monoid spanned by the columns of ∆.

With this notation, whenβ ∈Z2 is contained in two lines of PA , consider
all quadruples (if any) (δi , j ∈ N∆ | 1 ≤ i , j ≤ 2) such that, with γ = Tβ, all of
the following hold:

δ1,1
1 = γ1, δ1,1

2 +δ1,2
2 = γ2, δ1,2 6= 0, (5.30)

δ2,1
2 = γ2, δ2,1

1 +δ2,2
1 = γ1, δ2,2 6= 0. (5.31)

The conditions (5.30) and (5.31) are necessary for the equations of the polar
lines containing β to appear in the coefficient of some term after the Euler–
Mellin integrals have been expanded either first over the face Γ0, or first over
the face Γd respectively. From this, we immediately conclude that if there is
no quadruple (δi , j ∈ N∆ | 1 ≤ i , j ≤ 2) such that (5.30) and (5.31) hold, then
all extended Euler–Mellin integrals vanish.

Let us now show that when β ∈ Z2, all extended Euler–Mellin integrals
vanish at β if and only if β is rank-jumping for A. We first claim that, as
β ∈Z2 is contained in the intersection of two lines in PA , there exists a pair
(δ1,1,δ1,2) such that (5.30) holds if and only if there exists a pair (δ2,1,δ2,2)
such that (5.31) holds. To see this, recall that ∆ = T A and γ = Tβ, for T as
above, so β ∈ NA if and only if γ ∈ N∆. Further, by symmetry, it is enough
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to show that (5.30) is equivalent to γ ∈ N∆. Notice that each δ ∈ N∆ fulfills
that δ1 +δ2 ∈ dl , for some l ∈ N. This implies that if δ and δ̃ are such that
δ1 = δ̃1, then δ1 = δ2 +h(0,d)t for some h ∈ Z. If (δ1,1,δ1,2) satisfies (5.30),
then δ1,1

1 = γ1 and δ1,1
2 ≤ γ2. Hence, γ = δ1 +h(0,d)t for some h ≥ 0. Since

(0,d)t ∈∆, γ ∈N∆. Conversely, if γ ∈N∆, then because (d ,0)t ∈∆, δ1 = γ and
δ2 = (d ,0)t satisfies (5.30). This establishes the proof of the claim.

From the above calculation, it also follows that the failure of (5.30) is
equivalent to β belonging to (ZΓ0 +NA) \NA. Similarly, the failure of (5.31)
is equivalent toβ belonging to (ZΓd +NA)\NA. Thus the desired conclusion
for β ∈Z2 \EA follows from (5.22).

Finally, if β ∈ EA , we must show that the two finitely supported solu-
tions recovered from (5.27) and (5.28) are linearly independent. Expressions
for the two Laurent polynomial solutions at rank-jumping parameters are
known from [9], and they are identified by the negative supports of their
monomials. One solution, which by necessity is obtained from (5.27), con-
tains negative powers only of x1. The other, by necessity is obtained from
(5.28), contains negative powers only of xN , establishing the result.

5.3.3. The solution space of a projective toric curve. In this section, we
aim to prove Conjecture 5.0.8 in the case when A represents a projective
toric curve. To complete the proof, we need the following result, which we
include without proof.

Theorem 5.3.8 (Matusevich). Let β ∈ Z2 be an integer parameter, and let V
be a small domain containing β. Let U be as in Theorem 5.1.16. Then, there
are seriesΦi (β; x), for i = 1, . . . ,Vol(A)−1, that converge uniformly in U , such
that

i) each series is analytic in the variables β in V ,

ii) for each β ∈ V they span a subspace of the solution space Sol(HA(β)) of
rank Vol(A)−1, and

iii) no series solution of HA(β) in their span has finite support.

Proof of Conjecture 5.0.8 in the case of a curve. Applying the methods of Sec-
tion 5.2, it only remains to prove that the third claim holds at rank-jumping
parameters. By Theorem 5.3.7 we have two finitely supported solutions in
HA(β), each of which can be viewed as the restriction of a function that is
analytic along one of the resonant lines containing β. We need only to show
that each of these two finitely supported solutions is not contained in the
linear span of the Vol(A)-many solutions obtained along the other resonant
line. However, this follows from Theorem 5.3.8. Indeed, we find that along
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each of the resonant lines there is a unique solution which is finitely sup-
ported at β.
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6. Discriminant amoebas

In [43], the amoeba of the principal A-determinant was related to domains
of convergence of hypergeometric series. The main result of that article is
that the amoeba of the principal A-determinant is solid. That is, that the
connected components of its complement is in a bijective relation with the
vertices of its Newton polytope (which equals the secondary polytope ΣA).

In [36], the coamoeba of the A-discriminant, in the case m = 2, was stud-
ied in relation to the zonotope ZB . On the one hand, by Theorem 5.1.12,
this relates the coamoeba of the A-discriminant to domains of convergence
of Mellin–Barnes integrals. On the other hand, by the order map ordD, this
relates the A-discriminant from to colopsidedness.

In this chapter, we will study the amoeba and coamoeba of the principal
A-determinant D A in relation to lopsidedness and colopsidedness respec-
tively, completing the picture of [43].

6.1 The amoeba of D A

Let f ∈CA∗ . If, for each connected component Ea of the complement ofAwe
are given a point τa ∈ Ea, then the coefficients sa of the tropical polynomial
defining the spine of A can be computed. However, to find such a set of
points is a highly nontrivial matter, and often includes ad hoc knowledge of
the spine. Let us consider instead the tropicalization of f , which in this text
denotes the tropical polynomial

trop( f )(τ) = max
a∈A

(
log | fa|+〈a,τ〉) .

Let us denote the tropical variety Ztrop(trop( f )) by S = S f . If we consider S
as a polyhedral cell complex inRn , then we can index each cellσby the set of
elements a of A such that for each τ ∈σ the maximum of trop( f ) is attained
by the monomial of index a. In this notation, a cell σ is full-dimensional
if and only if σ = σa for some singleton a ∈ A. The dual triangulation of S
is the triangulation whose simplices are precisely the (convex hulls of the)
index sets of S .

In accordance with the previous notation we will denote by Ûa the set of
all f ∈ CA∗ such that the complement of L has a component of order a. The
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inclusion Êa ⊂ Ea implies that Ûa ⊂Ua.

Proposition 6.1.1. The set Êa is contained in the interior of the cell σa of S .

Proof. If | fa|e〈a,τ〉 > ∑
β 6=a | fβ|e〈β,τ〉 then log | fa| + 〈a,τ〉 > log | fβ| + 〈β,τ〉 for

each β 6= a.

We will say that S is a pseudo-spine of the lopsided amoeba L, the pre-
fix being added as, in general, not all full dimensional cells of S contain a
component of the complement of L. The main theorem of this section is
the following.

Theorem 6.1.2. Let Log( f ) ∈ TA \AD , with Log( f ) ∈ E = E(T ) for a coherent
triangulation T of N . Then, Im(ordL) = vert(T ).

The contour B =B f of the amoeba A is defined as the image of the set of
critical points of Log, when restricted to the hypersurface Z ( f ). See [32] and
[46] a more detailed description of the contour and, e.g., [43] for the relation
to A-hypergeometric series.

Proposition 6.1.3. The set-valued map f 7→ Im(ordL) is locally constant out-
side of Log−1(BD ).

Proof. It suffices to prove that for each a ∈ A, the characteristic map of the
set Êa is locally constant outside of Log−1(BD ).

If a is a vertex of A, then a ∈ Im(ordL) for all f , hence there is nothing to
prove in this case. Assume now that a is an interior point of some face Γ of
N . We first claim that (3.1) holds at some point τ if and only if there exists
an τΓ ∈Rn such that

| fa|e〈a,τΓ〉 > ∑
β∈Γ\a

| fβ|e〈β,τΓ〉.

The “only if” direction follows from choosing τΓ = τ. For the “if” direction,
we need only to consider the case when Γ is a proper face of N , in which
case there is a nonempty set of linearly independent vectors µ1, . . . ,µk ∈Zn ,
such that β ∈ Γ if and only if β minimizes 〈µ j ,β〉 over A for each j = 1, . . . ,k.
Let d j (β) = 〈µ j ,β− a〉, so that there exists a j with d j (β) > 0 if and only if
β ∉ Γ. For any real number t , we find that

| fβ|e〈τΓ+
∑k

j=1 tµ j ,β〉

e〈
∑k

j=1 tµ j ,a〉 = | fβ|e〈τΓ,β〉e(t
∑k

j=1 d j (β),

which tends to 0 as t →−∞ unless β ∈ Γ. Hence, as A is finite, by choosing t
sufficiently large and negative, we find that a fulfills (3.1) at τ= τΓ+t

∑k
j=1µ j .
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The fact that the logarithmic Gauss map is a birational isomorphism
[28], the Horn–Kapranov parametrization, and the description of the con-
tour of the amoeba of ∆A∩Γ given in [32, Lemma 4.3] and [46], implies that
the contour of the amoeba of ∆A∩Γ contains the image of the locus of all
real coefficients f ∈ CA∩Γ∗ such that f has a singular point in Rdim(Γ). By re-
duction of variables, we only need to consider the case when A ∩Γ is of full
dimension. In this case, that a is an interior point of Γ implies that the given
map is locally constant outside of the set of all f such that there exists a
τ ∈Rn with

| fa|e〈τ,a〉 = ∑
β∈Γ\a

| fβ|e〈τ,β〉

and | fa|e〈τ̃y,a〉 ≤ ∑
β∈Γ\a

| fβ|e〈τ̃,β〉,

for each τ̃ in some small neighborhood of τ. Set f̃a = −| fa| and f̃β = | fβ| for
β ∈ Γ \ a. It follows that f̃ (z) is a real polynomial which has a singular point
in Rn , and hence

Log( f ) = Log( f̃ ) ∈B∆A∩Γ .

Proposition 6.1.4. Let E be a component of the complement of AD , with re-
cession cone C =C (E). If Log( f ) ∈ int(E ∩C ), then S is a spine of L, i.e., S is
a strong deformation retract of L.

Proof. We only have to show that if σ = σa is a full dimensional face of S ,
then a ∈ Im(ordL). If Log( f ) ∈ int(E∩C ), then so does r Log( f ) for each r ≥ 1.
By Proposition 6.1.3, the image of the order map of the lopsided amoeba is
constant on each connected component of the complement of LD . Hence,
it suffices to show the statement for some r . If there exists τ ∈Rn such that

Log | fa|+〈a,τ〉 > max
β 6=a

(
Log | fβ|+〈β,τ〉) ,

then for r big enough we find that

| f r
a |e〈a,rτ〉 > ∑

β 6=a
| f r
β |e〈β,rτ〉,

which proves the proposition.

It follows from (2.4) that the Newton polytope of∆A is a Minkowski sum-
mand of the secondary polytope ΣA . As noted in the introduction, the sec-
ondary polytope ΣA is closely related to the set of coherent triangulations of

101



A. Let us describe this relation in some detail. Consider a triangulation T of
N , with vertices in A. The characteristic function ϕT : A →R is the function

ϕT (a) = ∑
a∈vert(τ)

Vol(τ),

where the sum is taken of all simplices τ ⊂ T such that a is a vertex of τ.
Then, ΣA is the convex hull in RA of the vectorsϕT (A) = (ϕT (a1), . . . ,ϕT (aN ))
as T runs over all triangulations of N with vertices in A. The vertices of ΣA

are precisely the pointsϕT (A) given by coherent triangulations T [19, Theo-
rem 7.1.7b]. The normal cone ofΣA atϕT (A) consists of all linear formsψ on
RA such thatψ(ϕT (A)) = maxϕ∈Σ(A)ψ(ϕ). This cone coincides with the cone
C (T ) consisting of all functions ϕ : A →R such that the dual triangulation of
the tropical variety

trop(ϕ)(τ) = max
a∈A

(ϕ(a)+〈τ,a〉)

is T [19, Theorem 7.1.7c].

Proposition 6.1.5. Let E and C =C (E) be as in the previous proposition, and
let T be the (coherent) triangulation of N corresponding to E. If Log( f ) ∈
int(E ∩C ), then T is the dual triangulation of S .

Proof. If we denote the dual triangulation of S by T ′, then the function
ψ : A → RA given by a 7→ Log( fa) belongs to the cone C (T ′). Therefor, the
function ψ : RA → R given by ϕ 7→ 〈ϕ,Log( f )〉 attains its maximum at the
vertex ϕT ′(A). Hence Log( f ) is contained in the normal cone NϕT ′Σ(A).
However, Log( f ) is contained in the interior of the normal cone NϕTΣ(A)
by assumption, which implies that T = T ′.

Example 6.1.6. Both previous propositions fail if we replace the criterion
that Log( f ) ∈ int(E ∩C ) by the criterion that Log( f ) ∈ E . For example, if
f (z) = 1+ξz+z2, so that∆B (ξ) = ξ2−4, then the complement of A∆ has two
connected components, namely E0 = (−∞, log(2)) and E2 = (log(2),∞). The
former of these intervals is not contained in the corresponding recession
cone, given by (−∞,0). Thus, if log(ξ) ∈ (0,Log(2)), then S will have three
full-dimensional faces, while the complement of L has only two connected
components. 7

Proof of Theorem 6.1.2. Note first that E ∩C is nonempty. If Log( f ) ∈ E ∩
C , where C = C (E) is the recession cone of E , then Propositions 6.1.4 and
6.1.5 implies that Im(ordL) = vert(T ). The general case now follows from
Proposition 6.1.3.
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Example 6.1.7. Consider the point configuration

A =
 1 1 1 1 1

0 1 0 2 0
0 0 1 0 2

 ,

which is associated to the family polynomials of the (reduced) form

f (z1, z2) = 1+ z1 + z2 +ξ1z2
1 +ξ2z2

2 .

The principal A-determinant is given by

∆B (ξ) = (4ξ1ξ2 −ξ1 −ξ2)(1−4ξ1)(1−4ξ2).

Its amoeba can be seen in Figure 6.1, where the full-dimensional set is the
amoeba of the A-discriminant. In each connected component of the com-
plement R2 \AD is the corresponding coherent triangulation of A. Note that
the set of connected components of R2 \A∆ is neither in a bijective corre-
spondence with triangulations of A, nor in a bijective correspondence with
vertex sets of such triangulations. 7

Figure 6.1: The amoeba of the principal A-determinant from Example 6.1.7,
with corresponding triangulations of A.

6.2 The coamoeba of D A

In [36], L. Nilsson and M. Passare proved the following statement. Let A
be of codimension two, and let f ∈ CA∗ . Reduce f with respect to a Gale
dual B , and let ξ be the coordinates of Cm∗ , so that Arg(ξ) = Arg( f )B . Then,
counting on the one hand the number of points of the affine lattice Arg(ξ)+
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2πLB contained in the interior of the zonotope ZB , and on the other hand
the (finite) number of preimages over Arg(ξ) in the discriminantal variety
Z (∆B ), these two integers sums up to Vol(A). However, it should be noted
that they prove this granted some generically satisfied conditions, i.e., under
the assumption that A is not dual defect. Removing this assumption, the
statement is not true.

Example 6.2.1. If A is a pyramid, i.e., if there is a strict face Γ⊂N contain-
ing all but one element a of A, then ∆A = 1. In this case, ba = 0. Hence, the
zonotope ZB does not depend on ba. Deleting the row ba from B we obtain
a Gale dual of the point configuration A ∩Γ. Notice that A ∩Γ is of codi-
mension 2 as a subset of Zn−1. In particular, the Nilsson–Passare theorem is
applicable to A∩Γ. Hence, ZB need not cover T2. Furthermore, the fiber in
the variety Z (D A) over a point θ ∈∆A∩Γ is not finite, since the Newton poly-
tope of A ∩Γ is not of full dimension in Zn . Hence, in general, we cannot
count multiplicities as in [36]. 7

In [44], the Nilsson–Passare theorem was reproved with a different ap-
proach. Starting from the matrix B , they defined the variety Z (∆B ) in ques-
tion through the Horn–Kapranov parametrization (2.8). Our suggestion is
that one should instead focus on the principal A-determinant. If, for exam-
ple, ∆A = 1, then the relevant information is contained in the factors of D A

that correspond to strict faces of A. Notice that the criterion that ∆A = 1 is
not equivalent to the criterion, appearing in loc. sit., that B has parallel rows.
See, for example, any Gale dual of the point configuration A from Example
6.1.7. The following two theorems provide a weaker version of the Nilsson–
Passare theorem. For the latter statement we have only obtained a complete
proof in the case n = 1.

Theorem 6.2.2. Assume that B is a Gale dual of A, and that f is such that the
set int(ZB )∩(Arg( f )B +2πLB ) is of cardinality Vol(A). Then Arg( f ) ∈ TA \CD .

Theorem 6.2.3. Assume that n = 1. Let f ∈ CA∗ , and assume that Arg( f ) ∈
TA \CD . Let B be a Gale dual of A. Then, the set int(ZB )∩(Arg( f )B +2πLB ) is
of cardinality Vol(A).

Before we turn to the proofs of Theorems 6.2.2 and 6.2.3, let us give the
Nilsson–Passare theorem for principal A-determinants.

Lemma 6.2.4. We have that H(DB ) = prm(∂ZB ), where prm : Rm → Tm de-
notes the natural projection.

Proof. Assume that θ belongs to some facet Γ of the zonotope ZB . Then
there is a rational linear transformation T , and a rational (n + 1)× (n + 1)-
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matrix B1, such that

B = MT =
(

B1

Im

)
T,

where Im is the m ×m identity matrix, and where Γ has the normal vector
T −1em , see (3.11). Thus, θ belongs to the boundary of the zonotope ZB ′ ,
where B ′ is the Gale dual of the point configuration defined by removing all
elements a ∈ A such that the row of M corresponding to a has vanishing mth
coordinate. As B ′ is a column vector, it is the Gale dual of a subcircuit of A
(of dimension two less than the number of rows of M with nonvanishing last
coordinate). However, the edges of ΣA correspond to subconfigurations, of
some dimension, that has exactly two triangulations. Hence, they are pre-
cisely the set of subcircuits of A.

Theorem 6.2.5 (Nilsson–Passare theorem for D). If A is of codimension two,
then the set int(ZB )∩ (Arg( f )B +2πZ2) is of cardinality Vol(A) if and only if
Arg( f ) is contained in the complement of CD .

Proof. If∆A 6= 1, then A is not a pyramid, and hence each strict face of A is at
most a circuit. Hence, the theorem follows from the usual Nilsson–Passare
theorem and Lemma 6.2.4 in this case.

Assume now that ∆A = 1. It was shown in [11] that, if ιB = 1, then B can
be subdivided into sets of parallel rows such that each family sums to zero
individually. This implies that all vertices of the zonotope ZB are contained
in 2πZ2. Furthermore, a classical formula for the area of a zonotope, [53],
yields that

Area(ZB ) = 4π2
∑
i< j

|det(bai ,ba j )| = 4π2 Vol(A),

where the last equality is contained in [11] (see also [36, Theorem 3]). These
two facts implies that the zonotope ZB covers the torus T2 precisely Vol(A)-
many times.

Proof of Theorem 6.2.2. By assumption, there is a Mellin–Barnes basis of so-
lutions for totally non-resonant parameters. In particular, for totally non-
resonant parameters, there is no A-hypergeometric function with singular-
ities in Arg−1( f ), as the Mellin–Barnes integrals converges and defines ana-
lytic functions in this domain. However, the singular locus Z (D A) of HA(β)
is is independent of β [20; 21]. Hence, Arg( f ) ∈ TA \CD . Since the number of
points of the affine lattice Arg( f )B+2πZm contained in the zonotopeZB is a
lower semi-continuous function of f , we conclude that Arg( f ) ∈ TA \CD .

To prove Theorem 6.2.3 we will introduce further notation. Let us con-
sider the affine situation, i.e., we consider any phase to be an element of R.
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For a pair of distinct elements {ai ,a j } ⊂ A, choose ζi , j
0 ∈R as some argument

such that f̂i (θ) and f̂ j (θ) are antipodal for θ = ζi , j
0 . Define

ζ
i , j
k = ζi , j

0 + 2πk

|ai −a j |
,

so that {ζi , j
k }k∈Z is the set of all points such that f̂i (θ) and f̂ j (θ) are antipodal,

with the ordering induced by the index setZ in agreement with the ordering
inherited from R. For any fix θ ∈R, we define

ζ
i , j
+ = ζi , j

+ (θ) = min
{
ζ

i , j
k |ζi , j

0 ≥ θ
}

,

and ζi , j− = ζi , j− (θ) = max
{
ζ

i , j
k |ζi , j

0 ≤ θ
}

.

Lemma 6.2.6. Let A = {a0,a1,a2}, with the coordinates of f̂ (θ) counter-clock-
wise ordered as f̂0(θ), f̂1(θ), f̂2(θ) in S1 ⊂ C. Assume that f is not colopsided
at θ.

i) If a0 < a1 < a2, then f is not colopsided in
[
ζ0,2− , θ

]
.

ii) If a0 < a2 < a1, then f is not colopsided in
[
θ, ζ0,1

+
]
.

Proof. Let θ(t ) = θ + t , and let θ j k (t ) denote the (smallest) intermediate
angle of the points f̂ j (θ(t )) and f̂k (θ(t )). Then, |θ′j k (t )| = |ak − a j |. The
two parts of the lemma follows from that non-colopsidedness ensures that
π−θ02 < min(θ01,θ12) and that π−θ01 < min(θ02,θ12) respectively.

f
`
0

f
`
1

f
`
2

Θ01

Θ12

Θ02

Figure 6.2: Lemma 6.2.6.i: decreasing θ, the intermediate angle θ02 is the only
one increasing. Non-colopsidedness, i.e. that f̂2(θ) lies between the dotted
half-lines, ensures that θ02 will reach π before θ01 decrease to 0.

Proof of Theorem 6.2.3. Assume that Arg( f ) ∈ TA \C∆. We will give an ele-
mentary proof by induction over m. To spare space we note that the cases
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m = 1 and m = 2 are solved by Lemma 6.2.4 and by the Nilsson–Passare the-
orem respectively. We can assume that

A =
(

1 1 . . . 1
0 a1 . . . am+1

)
,

where 0 = min(aκ) and am+1 = max(aκ). Define

Iκ1,κ2

k = [
ζ
κ1,κ2

k , ζκ1,κ2

k+1

]
, k ∈Z. (6.1)

If the coefficients f1, . . . , fm are sufficiently small in moduli, then the ze-
ros of f (z) will have arguments close to the numbers ζ0,m+1

k . Thus, by conti-

nuity of roots, we find that TA \D has at most one connected component in
the interior of each interval I 0,m+1

k , and we need to show that it has exactly
one component in each such interval.

That Arg( f ) ∈ TA\C∆ implies that Arg( fκ̂) ∈ TAκ̂\C∆κ̂ for eachκ= 0, . . . ,m+
1. In particular, with k fixed, it follows from the induction hypothesis that
for each κ = 1, . . . ,m there is an open subinterval Iκk ⊂ I 0,m+1

k in which fκ̂
is colopsided, and furthermore there is a subinterval I m+1

k ⊂ I 0,m
k in which

f �m+1 is colopsided.
Fix an integer k, and consider the interval I 0,m+1

k . Assume that the end-
point θ of I 1

k is minimal among the set of endpoints of the intervals Iκk for
κ = 1, . . . ,m. Notice that θ = ζ

κ2,κ3

k for some κ2,κ3 6= 1. The index κ = 1
need not be unique with this property. We can assume that argπ( fκ2〈θ〉) = 0,
that argπ( fκ3〈θ〉) = π, and that ℑ( f̂κ(θ)) ≥ 0 fore each κ 6= 1. There cannot
be a third component of f̂ (θ) contained in R, for any choice of three ele-
ments of A defines a circuit, whence it would follow from Lemma 6.2.4 that
Arg( f ) ∈ C(∆A). Hence, it suffices to show that ℑ( f̂1(θ)) ≥ 0, as this implies
that ℑ( f̂1(θ)) > 0, which in turn implies that f is colopsided at θ− ε for ε
sufficiently small and positive.

If there is some κ ∉ {0,1,κ2,κ3,m +1}, then by minimality, θ is also the
endpoint for Iκ̂, which in turn implies that ℑ( f̂1(θ)) > 0. The only case in
which this does not occur, is when m = 3 (so that m + 1 = 4) and κ2,κ3 ∉
{0,4}. We will consider this case separately, still under the assumptions of
the induction hypothesis, writing κ2 = 2 and κ3 = 3.

Let us initially impose the further assumption that

0 = argπ( f̂2(θ)) < argπ( f̂0(θ)) ≤ argπ( f̂4(θ)) < argπ( f̂3(θ)) =π.

It follows that a3 > a2, as θ is the endpoint of I1̂. Assuming that ℑ( f̂1(θ)) < 0,
there are three cases.

Case 1: Consider the case that

argπ(− f̂1(θ)) ∈ [
argπ( f̂2(θ)), argπ( f̂0(θ))

]= [
0, argπ( f̂0(θ))

]
.
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Then f3̂ is not colopsided at θ. Thus, by minimality of θ, we find that f3̂ is
colopsided for some θ̃ > θ in the interval I 0,4

k .
If a1 > a2, then Lemma 6.2.6.ii applied to {0,a1,a2} implies that f3̂ is not

colopsided in the interval
[
θ,ζ0,1

+
]
. If ζ0,1

+ ≥ ζ0,4
+ , this implies that f3̂ is not

colopsided in the interval
[
θ,ζ0,4

+
]
. If ζ0,1

+ < ζ0,4
+ , then Lemma 6.2.6.ii applied

to {0,a1,a4} at ζ0,1
+ implies that f3̂ is not colopsided in the interval

[
ζ0,1
+ ,ζ0,4

+
]
,

again implying that f3̂ is not colopsided in the interval
[
θ,ζ0,4

+
]
. However,

this contradicts the existence of θ̃.
Thus, we must have that a2 > a1. Since a3 > a2, Lemma 6.2.6.ii applied

to {0,a2,a3} implies that f4̂ is not colopsided in the interval
[
θ,ζ0,3

+
]
. Further-

more, Lemma 6.2.6.i applied to {0,a1,a2} yields that f4̂ is not colopsided in[
ζ0,2− ,θ

]
. Since a3 > a2, we have that

argπ( f̂3(ζ0,2
− )) < argπ( f̂0(ζ0,2

− )).

Hence, applying Lemma 6.2.6.ii to {0,a2,a3} at ζ0,2− shows that f4̂ is not colop-
sided in

[
ζ0,3− , ζ0,2−

]
. All in all, we conclude that f4̂ is never colopsided in the

interval
[
ζ0,3− , ζ0,3

+
]= I 0,3

k , a contradiction.
Case 2: Consider now when

argπ(− f̂1(θ)) ∈ [
argπ( f̂0(θ)), argπ( f̂4(θ))

]
.

Then f3̂ is not colopsided at θ. Hence, since θ was minimal, it has to be
colopsided for some larger θ̃ > θ in I 0,4

k . However, Lemma 6.2.6.i applied to

{0,a1,a4} shows that f3̂ is not colopsided in the interval
[
θ, ζ0,4

+
]
, a contradic-

tion since ζ0,4
+ is the endpoint of I 0,4

k .
Case 3: The case

argπ(− f̂1(θ)) ∈ [
argπ( f̂4(θ)), argπ( f̂3(θ))

]
is similar to Case 1.

Finally, the situation

0 = argπ( f̂2(θ)) < argπ( f̂4(θ)) ≤ argπ( f̂0(θ)) < argπ( f̂3(θ)) =π

is shown analogously, with the only difference that one should consider f0̂
instead of f4̂ in cases 1 and 3. All in all, we conclude that ℑ( f̂1(θ)) ≥ 0, which
finishes the induction step in this special case.
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7. Descartes pairs

In what follows we consider real univariate polynomials with non-vanishing
coefficients. The famous Descartes’ rule of signs claims that the number
of positive roots of such a polynomial does not exceed the number of sign
changes in its sequence of coefficients. An arbitrary ordered sequence σ =
(σ0,σ1, ...,σd ) ∈ {±1}d+1 is called a sign pattern. Given a sign pattern σ, we
call by its Descartes pair (pσ,nσ) the pair of non-negative integers count-
ing sign changes and sign preservations of σ. We have that pσ +nσ = d .
The Descartes pair of σ gives the respective upper bounds on the number
of positive and negative roots of any polynomial of degree d whose signs of
coefficients are given by σ.

To any polynomial f (z) we associate the pair (p f ,n f ) giving the num-
bers of its positive and negative roots, counted with multiplicities. Then,
(p f ,n f ) satisfies the restrictions

p f ≤ pσ, p f ≡ pσ mod 2, n f ≤ nσ, and n f ≡ nσ mod 2. (7.1)

We call pairs (p,n) satisfying (7.1) admissible for σ. In general, given a sign
patternσ, not all of its admissible pairs are realizable by polynomials f with
sign pattern sgn( f ) =σ.

Problem 7.0.7. For a given sign pattern σ, which admissible pairs (p,n) are
realizable by polynomials f such that sgn( f ) =σ?

In this section we will denote by Pold the (affine) space of all real monic
univariate polynomials of degree d . We define the standard real discrimi-
nant ∆d ⊂ Pold as the subset of all polynomials having a real multiple root.
Detailed information about a natural stratification of ∆d can be found in,
e.g., [52]. It is a well-known and simple fact that Pold \∆d consists of bd/2c+1
components distinguished by the number of real simple roots. Moreover,
each such component is contractible. Strangely enough analogous state-
ments in the case when one imposes additional restrictions on the signs of
coefficients seems to be unknown.

To formulate our results we need to introduce some notation. For any
pair (d ,k) of non-negative integers with

d ≥ k and d −k ≡ 0 mod 2, (7.2)
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denote by Pold ,k , the set of all real polynomials of degree d with k real simple
roots. Denote by Polσd ⊂ Pold the set (orthant) of all polynomials f ∈ Pold

with sign pattern sgn( f ) =σ. Finally, set Polσd ,k = Pold ,k ∩Polσd . We have the

natural action of Z3
2 on the space of polynomials and on the set of all sign

patterns. It is generated by

f (z) 7→ − f (z), f (z) 7→ f (−z), and f (z) 7→ zd f (1/z).

We will refer to this action as the standard action. The properties we will
study below are invariant under the standard action.

We start with the following simple result.

Theorem 7.0.8. We have the following characterization of when the set Polσd ,k
is nonempty.

i) If d is even, then Polσd ,0 is nonempty if and only if σ0 =σd .

ii) For any pair of positive integers (d ,k) fulfilling (7.2) and any sign pattern
σ, the set Polσd ,k is nonempty.

Observe that in general, the intersection Polσd ,k is not necessarily con-
nected. The total number k of real zeros can be distributed between p pos-
itive and n negative in different ways satisfying (7.1). See examples below.
On the other hand, some concrete intersections have to be connected. In
particular, the following holds.

Theorem 7.0.9. We have the following results concerning when the set Polσd ,k
is contractible.

i) For any d and σ, the sets Polσd ,d and Polσd ,0 are contractible. (The latter is
empty for d odd.)

ii) For the sign pattern +̂ = (+,+, . . . ,+) consisting of all pluses, the intersec-
tion Pol+̂d ,k is contractible for any (d ,k) fulfilling (7.2).

In addition, we provide the following result concerning the connected-
ness of the sets Polσd ,k .

Theorem 7.0.10. For any sign pattern σ and integer k, the union

Polσd ,≥k = ⋃
m≥k

Pol
σ

d ,m (7.3)

is simply connected.
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While working on the project, we noticed a recent paper [2] dealing with
the same problem and giving complete description of non-realizable pat-
terns and pairs (p,n) for polynomials up to degree 6. This paper contains
interesting historical material as well as references [3; 22] to the earlier re-
search in this topic. The main result of [2] is as follows.

Theorem 7.0.11. In degree d ≤ 6, the only nonrealizable pairs of a sign pat-
tern σ and a Descartes pair (p,n) are those appearing in Table 7.1. In partic-
ular, in degree d ≤ 3, all admissible pairs are realizable.

Trying to extend Theorem 7.0.11, we obtained a computer-aided classi-
fication of all non-realizable sign patterns and pairs for d = 7 and almost all
for d = 8, see below.

Theorem 7.0.12. For d = 7, among the 1472 possible combinations of a sign
pattern and a pair (up to the standard Z3

2-action), there exist exactly 6 which
are non-realizable. They are listed in Table 7.1.

Theorem 7.0.13. For d = 8, among the 3648 possible combinations of a sign
pattern and a pair (up to the standard Z3

2-action), there exist 13 which are
known to be non-realizable. They are listed in Table 7.1.

Remark 7.0.14. For d = 8, there exist 7 (up to the standard Z3
2-action) com-

binations of a sign pattern and a pair for which it is unknown whether they
are realizable or not. They are listed in Table 7.2. 7

Based on the above results, we formulate the following conjecture.

Conjecture 7.0.15. For an arbitrary sign pattern σ, the only type of pairs
(p,n) which can be non-realizable has either p or n vanishing.

Rephrasing the above conjecture, we say that the only phenomenon im-
plying non-realizability is that "real roots on one half-axis force real roots on
the other half-axis". At the moment this conjecture is verified by computer-
aided methods up to d = 10.

7.1 Realizability

In this subsection we will prove a number of results concerning realizabil-
ity of Descartes pairs (p,n), including Theorems 7.0.12 and 7.0.13. We will
begin with a class of pairs whose realizability is implied by the lopsidedness
criterion.
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Degree Sign pattern Descartes pairs

4 + - - - + (0,2)

5 + - - - + + (0,3)

6 + - - - - - + (0,2) and (0,4)

+ - - - - + + (0,4)

+ - - - + - + (0,2)

7 + - - - - - - + (0,3) and (0,5)

+ - - - - - + + (0,5)

+ + - - - - + + (0,5)

+ - - - - + + + (0,5)

+ - - - - + - + (0,3)

8 + - - - - - - - + (0,2), (0,4), and (0,6)

+ - - - - - - + + (0,6)

+ + - - - - - + + (0,6)

+ - - - - - + + + (0,6)

+ - - - - + + + + (0,6)

+ - - - - - + - + (0,2) and (0,4)

+ - - - + - - - + (0,2) and (0,4)

+ - - - + - + - + (0,2)

+ - + - - - + - + (0,2)

Table 7.1: Nonrealizable Descartes pairs in degree d ≤ 8.
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Degree Sign pattern Descartes pairs

8 + - - + - - - - + (0,4)
+ + + - - - - + + (0,6)
+ + - - - - - - + (0,4)
+ - - - - + + - + (0,4)
+ + - - - - + - + (0,4)
+ - - - - + - + + (0,4) and (4,0)

Table 7.2: Descartes pairs in degree d = 8 for which it is unknown whether they
are realizable or not.

Lemma 7.1.1. For a given sign pattern σ consider all possible sign patterns
σ̃ obtained fromσ by removing an arbitrary subset of its entries except for the
first and the last. (On the level of polynomials this corresponds to requiring
that the corresponding coefficient vanishes.) For any such σ̃, let (p̃, ñ) be its
Descartes’ pair, i.e., the number of its sign changes and the number of sign
changes of the coefficients of f (−z). Then (p̃, ñ) is realizable for σ.

Proof. A sign-independently real-rooted polynomial is a real univariate poly-
nomial such that it has only real roots and the same holds for an arbitrary
sign change of its coefficients, see [42]. A polynomial is sign-independently
real rooted if and only if for each monomial k, the lopsidedness criterion
(3.1) is fulfilled for k and at zk ∈ R+. Let f (z) be a sign-independently real-
rooted polynomial with the given sign pattern σ. For each σ̃, let g (z) denote
the polynomial obtained by deleting those monomials from f (z) which cor-
respond to components of σ deleted when constructing σ̃. Clearly the in-
equality (3.1) holds also for g (z), since we are removing monomials from its
right-hand side. Therefore, the sign of g (z) at z = zk equals that of xk zk

k .
Since z0 < z1 < ·· · < zd , we conclude that g (z) has at least p̃ sign changes
in R+. Similarly, we find that g (z) has at least ñ sign changes in R−. Fur-
thermore, by Descartes’ rule of signs, this is the maximal number of positive
and negative roots respectively of g (z). Hence, this is the number of positive
and negative roots of g (z), and in particular each such root is of order one.
Therefore, a perturbation of the coefficients does not change the number of
real roots. Finally, by arbitrary small perturbations of the vanishing coeffi-
cients of g (z), we can construct a polynomial with the sign pattern σ.

Next, we consider how realizable pairs for sign patterns σ and σ̃ yields
realizable pairs for a concatenation of σ and σ̃.
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Lemma 7.1.2 (Concatenation Lemma). Take polynomials

f (z) =
d1∑

k=0
xk zk and g (z) =

d2∑
k=0

yk zk

of degrees d1 and d2 respectively and with non-vanishing coefficients. Assume
that their sign patterns σ and σ̃ are such that σ̃0 =σd1 , and that they realize
the pairs (p,n) and (p̃, ñ). Then, for ε> 0 small enough, either the polynomial

h(z) =
(

1

xd1

d1−1∑
k=0

xk zk

)
+ zd1 + zd1

y0

(
d2∑

k=1
yk (εz)k

)

or the polynomial −h(z) realizes the pair (p + p̃,n + ñ) for the sign pattern

(σ0, . . . ,σd1 , σ̃1, . . . , σ̃2). (7.4)

Proof. We can assume that σd1 = σ̃0 = 1, in which case the polynomial h(z)
has the sign sequence (7.4) for all ε > 0. Notice that, pointwise (and uni-
formly on compact subsets),

h(z) → f (z)

xd1

, ε→ 0, and εd1 h(z/ε) → g (z)

y0
, ε→ 0.

Therefore, for ε sufficiently small, h has at least p + p̃ positive roots, and at
least n + ñ negative roots.

It remains to show that for ε small enough, the number of non-real roots
of h(z) is equal to the sum of the number of non-real roots of f and g . By
continuity of roots, for each neighborhood Nw of a non-real root w of f of
multiplicity mw , there is a t = t (w) > 0 such that h(z) has mw roots in Nw

if ε < t (w). Similarly, for each neighborhood Nw̃ of a non-real root w̃ of
g of multiplicity mw̃ there is a t = t (w̃) > 0 such that h(z/ε) has mw̃ roots
in Nw̃ . This implies that h(z) has mw̃ roots in the dilated set εNw̃ , for ε <
t (w̃). For each non-real root w of f , choose its neighborhood Nw such that
all Nw ’s are pairwise disjoint and do not intersect the real axis. Choose the
neighborhoods Nw̃ of the non-real roots w̃ of g similarly. If f and g has
a common non-real root, then we cannot choose the neighborhoods Nw ’s
and Nw̃ ’s as above so that Nw is disjoint from Nw̃ for every pair w and w̃ .
However, for ε sufficiently small, the dilated sets εNw̃ are disjoint from Nw

for any pair w and w̃ . Indeed, since the open sets Nw do not meet R, there
is a neighborhood N0 of the origin disjoint from each Nw ; and for ε small
enough we have that εNw̃ ⊂ N0, implying the latter claim.

The fact that Nw̃ ∩R=;, implies that εNw̃ ∩R=; as well. Therefore, we
can conclude that, for ε small enough, all roots of h(z) contained in any of
the sets εNw̃ or Nw , are non-real, which finishes the proof.
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Let us, as a first application of the above lemmas, give a proposition with
a flavor of Conjecture 7.0.15.

Proposition 7.1.3. Given an arbitrary sign pattern σ, any of its admissible
pair (p,n) satisfying the criterion that

min(p,n) >
⌊

d −4

3

⌋
is realizable.

Proof. Notice first that, if d ≤ 3, then b(d −4)/3c < 0. Thus we claim that any
admissible pair is realizable in this case, which follows from Theorem 7.0.11.

For arbitrary d , let us decompose σ in the following manner. Let

τk = (σ3k+1, . . . ,σ3k+4), k = 0, . . . ,

⌊
d −4

3

⌋
,

where we use slight abuse of notation as the last pattern is not necessarily of
length four. Then, for each τk , the admissible pairs are among the pairs

(1,0), (1,2), (3,0), (0,1), (2,1), and, (0,3),

and for each τk all admissible pairs are realizable as τk is of length at most
four, and hence correspond to the case d ≤ 3.

For each τk , associate initially an admissible pair uk = (1,0) or uk = (0,1)
depending on whether τk admits an odd number of positive roots and an
even number of negative roots, or vice versa. By assumption,∑

k
uk ≤ (p,n)

(where the inequality should be understood componentwise). If this is not
an equality, then the difference is of the form (2a,2b), where a +b ≤ b(d −
4)/3c, since the original pair (p,n) is admissible. Define

vk = uk + (2,0), k = 0, . . . , a −1,
vk = uk + (0,2), k = a, . . . , a +b −1,
vk = uk , k = a +b, . . . ,b(d −4)/3c .

Then, vk is an admissible pair for τk , and in addition∑
k

vk = (p,n).

Applying Lemma 7.1.2 repeatedly to the patterns τk , we can conclude Propo-
sition 7.1.3.
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Proposition 7.1.4 (Kostov’s Lemma). Consider a sign pattern σ consisting of
a consecutive pluses followed by b consecutive minuses and then by c consec-
utive pluses, where a +b + c = d +1. Then

i) for the pair (0,d −2), this sign pattern is not realizable if

κ= d −a −1

a
· d − c −1

c
≥ 4; (7.5)

ii) any admissible pair of the form (2,n), with n > 0, is realizable.

iii) if d is even, then (2,0) is realizable if and only if σk =−1 for some odd k.

Remark 7.1.5. Inequality (7.5) provides only sufficient conditions for non-
realizability of the pattern σ with the pair (0,d −2). One can ask how sharp
this condition is. At the moment we do not have examples with (7.5) violated
when the pair (0,d −2) is not realizable. 7

Proof of Proposition 7.1.4. To prove the first claim, we show that the three-
part sign pattern σ satisfying the assumptions of the proposition is not real-
izable by a polynomial f (z) having d−2 negative and a double positive root.
By a linear change of z the latter can be assumed to be equal to 1, that is
f (z) = (z2 −2z +1)g (z), where

g (z) = zd−2 +x1zd−3 +·· ·+xd−2.

Here, x j > 0 since the factor g (z) has d −2 negative roots. The coefficients of
f (z) are equal to

1, x1 −2, x2 −2x1 +1, . . . ,

xd−2 −2xd−3 +xd−4, −2xd−2 +xd−3, xd−2.

We want to show that it is impossible to have both inequalities:

xa −2xa−1 +xa−2 < 0 (7.6)

and xa+b−1 −2xa+b−2 +xa+b−3 < 0 (7.7)

satisfied.
Consider a polynomial having d −2 negative roots and a complex con-

jugate pair. If the polynomial has at least one negative coefficient, then its
factor having complex roots must be of the form z2 − 2βz +β2 +γ, where
β > 0 and γ > 0. A linear change of variables brings the polynomial to the
form

h(z) = (z2 −2z +1+δ)g (z),
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for some δ > 0. The coefficients of h(z) are obtained from that of f (z) by
adding the ones of the polynomial δg (z). If inequality (7.7) fails, then the co-
efficient of zd−a−b+1 in Q(z) is positive (it equals xa+b−1−2xa+b−2+xa+b−3+
δxa+b+1 > 0). So the sign pattern of h(z) is different from σ. If inequality
(7.7) holds, then inequality (7.6) fails and the coefficient of zd−a in h(z) is
non-negative, so that h(z) does not have the sign pattern σ.

The polynomial g (z), having all roots negative and real, its coefficients
satisfy the Newton inequalities:

x2
k(d−2

k

)2 ≥ xk−1xk+1(d−2
k+1

)(d−2
k−1

) , k = 1, . . . ,d −3.

Here,

κ=
(d−2

a

)( d−2
a+b−3

)(d−2
a−1

)( d−2
a+b−2

) = d −a −1

a
· d − c −1

c
.

I.e., xa xa+b−3 ≥ κxa−1xa+b−2. Inequalities (7.6) and (7.7) imply respectively

xa < 2xa−1 and xa+b−3 < 2xa+b−2.

Thus xa xa+b−3 ≥ κxa−1xa+b−2 > κxa xa+b−3/4, which is a contradiction since
κ≥ 4 by assumption.

To prove the second and third claim, we use Lemma 7.1.1. Firstly, con-
sider the sign pattern σ̃ obtained by keeping only the constant and leading
terms and, in addition, one terms with negative coefficient. By assumption,
we can choose the latter term such that the pair (p̃, ñ) related to σ̃ (in the no-
tation of Lemma 7.1.1) is of the form (2, ñ), where n and ñ are of equal parity
and ñ ≤ n. Adding any further terms to σ̃ does not alter the number of pos-
itive roots p̃. However, adding a single term to sigma, either ñ is unaltered,
or it is increased by two. Since ñ ≤ n, we can add terms until eventually we
have equality, implying realizability by Lemma 7.1.1.

Turning towards Theorem 7.0.12, we have the following lemma concern-
ing odd degrees.

Lemma 7.1.6. Let d be odd. Consider a sign pattern σ such that

i) σ0 =σd =+1,

ii) all other entries at even positions are −1,

iii) there is at most one sign change in the group of signs at odd positions.

Then, of all admissible pairs (0, s), only (0,1) is realizable.
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Proof. Let us decompose a polynomial f (z) with the sign pattern σ as the
sum of the polynomials fo(z) and fe (z), containing only odd respectively
even monomials. Then, each of fe , fo and f ′

o have exactly one positive root,
which we denote by ze , zo , respectively z ′

o . We first claim that z ′
o < zo < ze .

To prove the claim, assume initially that ze ≤ zo . Then both fo and fe are
non-positive on the interval [ze , zo]. Therefore, also f (z) is non-positive on
the same interval, which contradicts to the assumption that f (z) is positive
for all positive z.

We now prove that z ′
o < zo . Present fo(z) as a sum f +

o (z)− f −
o (z), where

f +
o (z) is the sum of all odd degree monomials with positive coefficients and

f −
o (z) is the negative of the sum of all odd degree monomials with negative

coefficients. Observe that the degree of the smallest monomial in f +
o (z) is

larger than δ= deg f −
o by assumption. If fo(z) ≥ 0, i.e., z ≥ zo then

( f +
o )′(z) > δ f +

o (z) ≥ δ f −
odd (z) > ( f −

o )′(z),

which implies that f ′
o(z) > 0, and hence zo > z ′

o .
Finally, we show that f (z) has at most one negative root. Consider the

interval [0, zo]. Since ze > zo ,, we have that fe (z) > 0 in [0, zo]. Additionally,
fo(z) is non-positive in this interval, implying that f (−z) = fe (z)− fo(z) is
positive in the interval [0, zo]. In the interval [z ′

o ,+∞), the polynomial f ′
o(z)

is positive which together with the fact that f ′
e (z) is negative implies that

f ′(−z) = f ′
e (z)− f ′

o(z) is negative. Thus, being positive in [0, zo] and mono-
tone decreasing to −∞ in [z ′

o ,+∞), we conclude that f (−z) necessarily has
exactly one positive root.

Lemma 7.1.7. Let σ be a sign sequence such that σ0 = σd . Assume that it is
possible to delete components ofσ, other than the constant and leading term,
so that the obtained sequence σ̃ (in the notation of Lemma 7.1.1) has length
four and fulfills that

i) σ̃ has two sign changes

ii) the flip of σ̃ (i.e., the sign sequence obtained by f (z) 7→ f (−z)) has three
sign changes.

(Notice that d is necessarily odd.) Then, the pair (0,3) is realizable for sigma.

Proof. The assumptions is, after applying the standard action, equal to that
we can delete terms of a polynomial f (z) with sign sequence sgn( f ) =σ to a
polynomial

f̃ (z) = x0 −xa za +xb zb +xd zd ,
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where a and b are even and each xi is positive. Choose x0, xa , and xb so
that the auxiliary polynomial x0 − xa za + xb zb has a positive root of multi-
plicity two. Then, with xd sufficiently small, we obtain a polynomial with no
positive roots and three negative roots. By Descartes’ rule of sign, there are
at most three negative roots. Hence, all real roots are simple, implying that
small perturbations of the vanishing coefficients does not alter the number
of real roots.

Proof of Theorem 7.0.12. The fact that the patterns given in degree 7 in Table
7.1 are non-realizable follows from Proposition 7.1.4 and Lemma 7.1.6. It
remains to show that all other admissible patterns and pairs are realizable.

Using Lemma 7.1.1 and a Mathematica script, 1 the question is reduced
to checking the cases:

Sign pattern Pair

+ - - - + + + - (1,4)
+ + + - - - + + (0,5)
+ + + + - - - + (0,5)
+ - - + - - - + (0,3)
+ - + - - - + + (0,3)
+ - - - - - + + (0,3)
+ + - + - - - + (0,3)
+ - + + - - - + (0,3)

The realizability of the first four cases follows from Lemma 7.1.2, by con-
catenation of the following realizable patterns and pairs;

(+, −, −), (1,1) and (−, −, +, +, +, −), (0,3),
(+, +), (0,1) and (+, +, −, −, −, +, +), (0,4),
(+, +), (0,1) and (+, +, +, −, −, −, +), (0,4),
(+, −, −, +), (0,3) and (+, −, −, −, +), (0,0).

The realizability of the remaining four cases follows from Lemma 7.1.7, delet-
ing all monomials except those with indices {0,4,6,7} in the first two cases
and {0,3,5,7} in the last two cases.

We have the following version of Lemma 7.1.6 for even degrees.

Proposition 7.1.8. For d even, consider a sign pattern σ such that

i) σ0 =σd =+1,

ii) the signs of all odd monomials are +1,

1Which, as of this writing, is not available on the author’s website.
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iii) among the remaining signs of even monomials there are a ≥ 1 minuses
(at arbitrary positions).

Then, the pairs (p,0) with p > 0, and only they, are non-realizable.

Proof. Firstly, to see that no pairs (p,0) with p ≥ 0 is realizable for σ, note
that f (−z) < f (z), that f (0) > 0, and that f (z) →∞ as z →∞. Hence, if f (z)
has a positive root, then it has a negative root.

To prove realizability for any other pair (p,n), let us first prove that of
σ̃ is a sign pattern for even degree such that minuses appear only for odd
monomials, then all admissible pairs are realizable. Indeed, this follows by
induction on the degree using Lemma 7.1.2; we view σ̃ as the concatenation
of the sequence τ1 consisting of its first three entries, and τ2 consisting of all
but the first two entries.

Now, let (p,n) be an admissible pair for σ such that n ≥ 2. Then, the pair
(p,n −2) is realizable for the sign pattern σ̃ obtained from σ by deleting the
first and the last entry. Using Lemma 7.1.2, concatenating once from the left
and once from the right with the sign pattern (+,+), we conclude that (p,n)
is realizable.

Proof of Theorem 7.0.13. The fact that the patterns given in degree 8 in Table
7.1 are non-realizable follows from Proposition 7.1.4 and Lemma 7.1.8. It
remains to show that all other admissible patterns, except those appearing
in Table 7.2, are realizable.

Using Lemma 7.1.1 and the above mentioned Mathematica script this
reduces to checking 22 distinct pairs of a sign sequence and a Descartes pair.
We refer from writing them all explicitly. As in the proof of Theorem 7.0.12,
we now apply Lemma 7.1.2, which reduces seven cases consisting of the six
cases in Table 7.2 and the additional case

(+, −, −, −, +, +, −, −, +) and (0,4).

To see that this pair is realizable, consider a polynomial

f (z) = x0 −x2z2 +x4z4 −x6z6 +x8z6,

with each xi positive and such that f (z) has two distinct positive roots of
order two. Adding the monomial z5 with a positive coefficient that is suf-
ficiently small, we obtain a polynomial that has no positive roots but four
negative real simple roots. Now perturb the vanishing coefficients.
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7.2 Contractibility

We now turn to the statements concerning connectedness and contractibil-
ity of the sets Polσd ,k .

Proof of Theorem 7.0.8. To prove the first claim, note first that Descartes’
rule of signs implies necessity. Conversely, of σ0 =σd , let σ̃ be the sign pat-
tern obtained by deleting all other entries of σ, and apply Lemms 7.1.1.

To prove the second claim, let us begin with the case k = 1. Then, d
is necessarily odd, and the same construction as in the case k = 0, using
Lemma 7.1.1, gives realizability of either (0,1) or (1,0).

To prove the general case, let us use induction over d , with the case k = 1
as the basis of the induction. That is, let k > 1. Let σ̃ be the sign pattern
obtained by deleting the last entry of σ, for which there is a polynomial re-
alizing σ̃ with k −1 real roots by the induction hypothesis. Let σ̂ be the sign
patter consisting of the last two entries of σ. The, Lemma 7.1.2 implies that
we can construct a polynomial with sign pattern σ and k real roots by con-
catenation of σ̃ and σ̂.

To prove Proposition 7.0.9, we need the following lemma having an in-
dependent interest.

Lemma 7.2.1. For any σ̄, the intersection Polσd ,d is path-connected.

Proof. Recall that a real polynomial f (z) is called sign-independently real-
rooted if every polynomial obtained from f (z) by an arbitrary sign change
of its coefficients is real-rooted. It is shown in [42] that the logarithmic im-
age of the set of all sign-independently real-rooted polynomials is convex.
Hence the set of all sign-independently real-rooted polynomials itself is log-
arithmically convex and in particular, it is path-connected. As noted earlier,
sign independent real-rootedness is equivalent to that for all k there exists a
real point zk such that (3.1) holds.

Using induction on the degree d , we will now prove that, for any poly-
nomial f ∈ Polσd ,d , there is a path t 7→ ft such that

i) f0 = f ,

ii) f1 is sign-independently real-rooted, and

iii) ft ∈ Polσd ,d for all t = [0,1].

Since the set consisting of all sign-independently real-rooted polynomials is
path-connected, this claim settles Lemma 7.2.1. The case d = 1 is trivial, as
any linear polynomial is sign-independently real-rooted.
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Let f be a real-rooted polynomial of degree d . Then, g = f ′ is a real-
rooted polynomial of degree d−1. Hence, by the induction hypothesis, there
is a path t 7→ g t as above. Furthermore, since f is real-rooted, so is its polar
derivative f ′

α(z) := f (z)+ z
α f ′(z) for all α ∈R+.

For each t ∈ [0,1], let αt > 0 be such that ht ,α(z) := f (z)+ z
αg t (z) is real-

rooted for any 0 < α < αt . By continuity of roots, h t̂ ,αt
is real-rooted for

t̂ in a small neighborhood of t . Since [0,1] is compact, we can find a fi-
nite set αt1 , . . . ,αtN such that ht ,α(z) is real-rooted for all t ∈ [0,1] if α <
min(αt1 , . . . ,αtN ).

Since zg1(z) is sign-independently real-rooted, for all k and all mono-
mials xk zk of zg1(z), there exists a point zk such that (3.1) holds. Since the
signs of f (z) are equal to the signs of zg1(z), there exists an αk > 0 such
that (3.1) holds for h1,α(z) for k at zk . However, since (3.1) always holds for
the constant term with z0 sufficiently small, we conclude that h1,α is sign-
independently real-rooted when α< mink=1,...,d−1αk .

Now fix a positive number α∗ < min(αt1 , . . . ,αtN ,α1, . . .αd−1) and con-
sider the path composed of the two paths

α 7→ f ′
α, α ∈ [∞,α∗] and t 7→ ht ,α∗ , t ∈ [0,1].

By construction, this path is contained in Polσd ,d . Its starting point is f (z)
and its endpoint h1,α∗ is sign-independently real-rooted. This concludes
the induction step.

Proof of Proposition 7.0.9. To prove the first claim, notice firstly that the set
Pold ,0 of all positive monic polynomials is a convex cone. Therefore its in-
tersection with any orthant is convex and contractible (if nonempty).

Secondly, consider the set Polσd ,d . Take a real-rooted polynomial f (z) re-
alizing a given pattern. Consider the family f (z)+λza , a = 0,1, . . . ,n−1. Poly-
nomials in this family are real-rooted and with the given sign pattern until
either there is a confluence of roots of the polynomial, or its a-th deriva-
tive vanishes at the origin. In both cases further increase or decrease of the
parameter λ never brings us back to the set of real-rooted polynomials.

Thus the set Polσd ,d has what we call Property A: each of its connected
components intersected with a line parallel to any coordinate axis in the
space of coefficients is either empty, or a point, or, finally, an interval whose
endpoints are continuous functions of other coefficients. (Indeed, they are
values of the polynomial or of its derivatives at roots of the polynomial or its
derivatives; therefore these roots are algebraic functions depending contin-
uously on the coefficients.)

Maxima and minima of such functions are also continuous. Therefore
the projection of each connected component of Polσd ,d on each coordinate
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hyperplane in the space of the coefficients also enjoys Property A. (It suffices
to fix the values of all coefficients but one and study the endpoints of the
segments as functions of that coefficient).

Now replace Polσd ,d by a smaller set obtained as follows. Choose some
coefficient and, for fixed values of all other coefficients, substitute every
nonempty intersection of Polσd ,d with lines parallel to the axis correspond-
ing to the chosen coefficient by the half-sum of the endpoints, i.e., substitute
the intersection segment by its middle point. This operation produces the
graph of a continuous function depending on the other coefficients. The
projection of this graph to the coordinate hyperplane of other coefficients
is a domain having Property A, but belonging to a space of dimension n −1.
Continuing this process one contracts each connected component of the
set Polσd ,d to a point. Using Lemma 7.2.1 we conclude that Polσd ,d is path-
connected and therefore contractible.

To prove the second claim, let us show that any compact subsubset of
Pol+̂d ,k can be contracted to a point inside Pol+̂d ,k . Observe that for any poly-
nomial f (z) with positive coefficients the family of polynomials f (z + t ) for
a positive parameter t consists of polynomials with all positive coefficients
and the same number of real roots all being negative. Given a compact set
K ⊂ Pol+̂d ,k , consider its shift Kt obtained by applying the above shift to the
left on the distance t , for t sufficiently large. Then all real roots of all poly-
nomials in the compact set Kt will be very large negative numbers and all
complex conjugate pairs will have very large negative real part. Therefore
one can choose any specific polynomial p̃ in Kt and contract the whole Kt

to f̃ along the straight segments, i.e., τ f̃ + (1−τ) f for any f ∈ Kt . Obviously
such contraction takes place inside Pol+̂d ,k .

Proof of Theorem 7.0.10. We will follow the steps of the proof of Lemma 7.2.1.
For any polynomial f , the set K f consisting of all exponents k such that
there exists a zk ∈ R+ for which (3.1) holds, provides a lower bound on the
number of real roots of f . This lower bound is called the number of lopsided
induced zeros of f . Fixing an arbitrary set of exponents K , let us denote by
SK the set of all polynomials such that K ⊆ K f . We saw in Section 6.1 that
SK is logarithmically convex. Consider the family Fm consisting of all expo-
nent sets K such that the number of lopsided induced zeros of polynomi-
als in SK is at least m. The set Sm = ∪K∈Fm SK is a union of logarithmically
convex sets, whose intersection contains the set of all sign-independently
real-rooted polynomials. In particular, Sm is path-connected.

As in the proof of Lemma 7.2.1, for any polynomial f which has at least
m real roots, all polynomials in the path

α 7→ f (z)+ z

α
f ′(z), α ∈ [∞,α∗]
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have at least m real roots. The same argument as in the proof of Lemma
7.2.1 gives path-connectedness of the set (7.3) of polynomials with at least
m real roots.

Let us now prove simply connectedness of the set (7.3) by induction on
the degree d . Consider a closed loop in Polσd ,≥m , i.e., a path ` given by θ 7→
fθ(z), θ ∈ [0,1], such that f0(z) = f1(z), and such that fθ(z) has at least m real
roots for all θ.

Consider the induced loop `′ given by θ 7→ f ′
θ

(z), where we use the no-

tation f ′
θ

(z) = d
d z fθ(z). It is contained in the set Polσ̂d−1,≥m−1, where σ̂ is ob-

tained from σ by deleting its first entry. By the induction hypothesis, the
loop `′ can be contracted to a point within the set of all polynomials of
degree d − 1 with at least m − 1 real roots. In other words, we have a map
(θ,ϕ) 7→ f ′

(θ,ϕ), for (θ,ϕ) ∈ [0,1]2, satisfying the conditions:

i) f ′
(θ,0)(z) = f ′

θ
(z),

ii) f ′
(θ,1) is independent of θ, and

iii) f ′
(θ,ϕ) has at least m −1 real roots for all θ and ϕ.

The last property implies that z f ′
(θ,ϕ) has at least m real roots for all θ and

ϕ. Define g(θ,ϕ) by the conditions that d
d z g(θ,ϕ) = f ′

(θ,ϕ) and that the constant
term of g(θ,ϕ) is independent of ϕ.

Since the loop `′ is compact, we can find an α∗ ∈R+ such that the polar
derivative

f ′
(θ,ϕ,α)(z) := g(θ,ϕ)(z)+ z

α
f ′

(θ,ϕ)(z)

has at least m roots for each α<α∗ and all (θ,ϕ) ∈ [0,1]2. Thus, similarly to
the proof of Lemma 7.2.1, the composition of the maps

α 7→ f ′
(θ,0,α), α ∈ [∞,α∗] and ϕ 7→ f ′

(θ,ϕ,α∗), ϕ ∈ [0,1]

provides a contraction of the loop ` in the set Polσd ,≥m .
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Sammanfattning

Denna avhandling behandlar tropiska aspekter av polynom över de reella
talen och av hypergeometriska funktioner. Avhandlingen omfattar sju
kapitel. Efter en kort inledning, behandlar vi i det andra kapitlet grundläg-
gande begrepp som återkommer genom hela avhandlingen.

I de efterföljande två kapitlen studerar vi koamöban C f av ett Laurent-
polynom f i flera variabler. Denna utgörs, per definition, av bilden av den
algebraiska nollställemängden Z ( f ) ⊂ Cn∗ under den projektion som ges av
den komponentvisa argumentavbildningen. Koamöbor introducerades av
M. Passare och A. Tsikh som duala objekt till amöbor. Vi introducerar i
denna avhandling en förenklad version av koamöban, kallad den sidotunga
koamöban, och betecknad D f . Den sidotunga koamöban har en associerad
avbildning

ordD : Tn \D f → 2πZm ,

där T betecknar kvoten R/2πZ. Avbildningern ordD är lokalt konstant, och
definierar därför en avbildning, också betecknad ordD, från mängden be-
stående av alla sammanhängande komponenter av komplementet till den
sidotunga koamöbans tillslutning. Vi kommer här bevisa, för det första, att
denna avbildning är injektiv och, för det andra, att dess bild består av de
gitterpunkter vilka befinner sig i det inre av en viss zonotop. På grundval
av detta kallar vi ordD för den sidotunga koamöbans ordningsavbildning.
Med hjälp av ordningsavbildningen studerar vi sedan koamöbans topologi.
Särskilt så besvarar vi positivt en förmodan av M. Passare gällande antalet
sammanhängande komponenter av komplementet till koamöbans tillslut-
ning, under antagandet att polynomets Newton-polytop N f har få hörn. Vi
fokuserar sedan på koamöbor av polynom vars stöd består av en krets. För
sådana familjer erhåller vi en komplett beskrivning av koamöba-rummet.
Vidare så besvarar vi positivt en förmodan gällande argumenten av de kri-
tiska punkterna till ett polynom.

I det fjärde kapitlet studerar vi hypergeometriska funktioner i Gel’fands,
Kapranovs och Zelevinskys bemärkelse. Vi definierar Euler–Mellin integraler,
en familj av Eulerska hypergeometriska integraler vilken är nära associerad
till koamöban C f . Vi visar sedan att den sidotunga koamöbans ordnings-
avbildning ger en identitet mellan Euler–Mellin integraler och så kallade



Mellin–Barnes integraler. Till skillnad från tidigare utförda studier av
hypergeometriska integraler så gör den explicita formen av Euler–Mellin in-
tegraler att dessa kan nyttjas för att i detalj studera hur A-hypergeometriska
funktioner beror på homogenitetsparametern β. Vårt huvudsakliga resul-
tat i detta kapitel är en komplett beskrivning av detta beroende i fallet då A
representerar en projektiv torisk kurva.

I femte kapitlet så studerar vi amöban och koamöban av den principala
A-determinanten. Där tidigare studier har relaterat dessa objekt till kon-
vergensområden för serie- repsektive integralrepresentationer av hyperge-
ometriska funktioner, kommer vi istället att fokusera på deras respektive re-
lation till sidotunghet.

I det avslutande kapitlet applicerar vi resultaten från tidigare kapitel på
teorin kring envariabelpolynom över de reella talen. Descartes teckenregel
ger nödvändiga, men inte tillräckliga, villkor för att ett par (p,n) av heltal ska
motsvara antalet positiva och negative nollställen till ett sådant polynom.
Vi ger här ett antal tillräckliga villkor, och erhåller som en följd en komplett
karakterisering av vilka par uppfyllande Descartes teckenregel som är realis-
erbara för polynom upp till grad sju.
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