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Abstract

In this thesis, we describe various algorithms for the construction of tubular networks in
an arbitrary three-dimensional region that possesses a principal direction along which the
cross-section varies. The region can be digitized into a series of blocks Bi, each of which
exhibits no variation in the principle direction. Tubular networks with one inlet and one
outlet are constructed by connecting the series of blocks packed with parallel cylindrical
tubes.

Packing tubes into a block Bi can be simplified to packing circles into its cross section Ci

which is approximated by a polygon. Building upon the basic method from [12], a set of
novel circle-packing algorithms are developed to possess the following desirable features.
Firstly, circles are first packed into an interior region which is common to several or all
blocks and the remainder of the unpacked region are packed afterwards. Secondly, larger
circles are placed primarily in the central part of the region. Lastly, at a certain stage of
circle-packing, all the packed circles are moved towards the center of mass by a fictitious
force so that as much empty space as possible is left along the boundary.

Three fundamental connections are used to construct a tubular network with one inlet and
one outlet: (i) endcap connection–two 90-degree bends that connect two adjacent tubes at
their ends, (ii) a merge operation in which a tube flows into an adjacent tube, and (iii) a
shift operation in which a tube is shifted into an adjacent position. Tubes at the extreme
ends of a network must be connected by endcaps and the other tubes can be connected via
any one of the above connections. A set of algorithms are developed to generate all the
possible solutions of constructing tubular networks and to check the feasibility of solutions
to make sure there is no dead end or isolated loop.

Among all the feasible networks, an optimal network should be chosen with respect to a
certain measure. Obviously, enumerating all the possible solutions of constructing feasible
networks is extremely time-consuming and sometimes it can take millions of years. There-
fore, a genetic algorithm with only mutation is applied here to randomly search for the
best network. In this genetic algorithm, every fundamental connection could mutate to
any other fundamental one. Thus every network could mutate to any other one and genetic
algorithm could find the globally best network.
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Chapter 1

Introduction

In this thesis, we consider the problem of constructing tubular networks in arbitrary three-
dimensional regions. Such a problem has a wide spectrum of industrial applications, e.g.,
fluid transfer, heat transfer. This particular study has been inspired, in part, by the
so-called “redneck barbecue pool heater” [1], which is shown below.

Figure 1.1: The redneck barbecue pool heater

As its name suggests, the barbecue pool heater is designed to heat water in an outdoor
pool. Water from the pool is pumped into the barbecue via an inlet pipe. As the water
travels through the network inside the barbecue, it is heated. The heated water exits
through an outlet pipe and travels to the pool. The two most important elements of the
barbecue pool heater are respectively a physically valid network with one inlet and one
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outlet and tubes tightly packed in the envelope of the pool heater.

In this thesis, we generalize the barbecue pool heater problem in the following ways:

a). Generalize the envelope to an arbitrary 3D region and pack as many tubes into it as
possible.

b). Construct a physically valid network with more branchings.

The following 3D image is an example of a generalized tubular network which is produced
by a series of algorithms developed for this problem.

Figure 1.2: An example of the generalized tubular network

As shown in the above figure, this tubular network is constructed for a 3D region with
shape similar to a saddle bag. Tubes are tightly packed and there are branchings resulted
from merge and shift operations on tubes. Note that in the generalized barbecue pool
heater problem, tubes are packed touching each other, which is different from the actual
barbecue pool heater. However, one can narrow down the diameters of tubes packed in
the constructed tubular network in order to construct an actual pool heater.

In the general case, given a 3D region, we first set a principal direction and discretize
the region into several blocks along this direction. Each of these blocks exhibits no varia-
tion in cross section along the principal direction. An example is shown in Figure 1.3.
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Figure 1.3: Discretizing a 3D region into blocks along its principle direction

Now the problem of constructing tubular networks in the 3D region can be divided into
two parts:

Part 1. Pack tubes into each block as compactly as possible.

Part 2. Connect all the tubes packed in the 3D region to construct a feasible tubular
network with one inlet and one outlet.

In general, a huge number of solutions to this problem will exist. An optimal solution
or solutions can be chosen according to the application being considered. For instance, a
solution can be chosen to be optimal in terms of maximum internal volume, or heat flux
(if applied to heat transfer problem) or characteristics of the flow of a fluid through the
network, etc. More details of the application in the heat transfer problem are to be found
in the paper [17].

Because of the assumed longitudinal symmetry, the problem of packing tubes into each
block is reduced to the packing of circles into the two-dimensional cross section of the
block. This is the well-known problem of circle packing in the plane, an NP-hard combina-
torial optimization problem, i.e., no procedure is able to solve it in deterministic polynomial
time [15]. The “simplest” cases of packing uniform sized circles inside a square or inside a
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circle are provably solved to theoretical optimality only for a few instances (up to tens of
circles), in spite of the significant effort spent on variants of the problem in recent decades
[5]. Fraser and George [10] focused on the stocking of cylindrical paper-rolls, in other
words, putting a number of identical circular bins into a given rectangular box. Dowsland
[7] treated the problem from a different perspective, i.e., finding the most suitable box
in order to contain a given number of cylindrical objects. Szabó et al. [27] proposed
new approaches to circle packing in a square. Wang et al. [16] discussed an improved
algorithm for the packing of unequal circles within a larger containing circle. Addis et
al. [2] also studied how to efficiently pack unequal disks in a circle. However, very few
researchers have worked on the problem of packing different-sized circles into an arbitrary
polygon. We investigate such algorithms and more details are to be found in the paper [18].

Connecting tubes packed in the 3D region can be considered as finding a partner or part-
ners for each tube because some tubes can be connected to only one tube while some other
tubes can get connected to multiple tubes by various connection operations.

In the situation where a tube is allowed to be connected to only one tube, the connec-
tion problem can be converted to one of finding maximum matchings in a graph, i.e.,
pairing as many nodes in the graph as possible. Numerous studies have been conducted
by researchers. The maximum matching problem is one of the most studied problems in
the area of graph algorithms. The first polynomial time algorithm to solve this problem
was devised by Edmonds in 1965 and runs in time O(|V |4) [9]. Over the years, many im-
provements have been made [19]. Micali and Vazirani [23] devised an algorithm for finding
maximum matching running in time O(|E|

√
|V |). The algorithm of Mucha and Sankowski

[25] runs asymptotically faster on dense graphs–its runtime is O(|V |ω) where ω < 2.38 is
the exponent needed to perform fast matrix multiplication.

However, our goal is not to find a maximum matching for one pass. Instead, the goal
is to enumerate all the maximum matchings of a given graph. We can use the Minimum
Degree Matching Algorithm, which is a greedy algorithm that repeatedly connects tubes
with the highest priority of getting connected. If combined with Depth-first Search it can
enumerate all the maximum matchings efficiently.

In the situation where tubes are allowed to be connected to multiple tubes by various
connection operations, we modify the Minimum Degree Matching Algorithm and intro-
duce a new concept of “connectivity value” to enable tubes to be connected to multiple
tubes.
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Solutions generated by the above algorithms are not guaranteed to be physically valid.
Therefore, some invalid solutions must be eliminated algorithmically. A tubular network
is physically valid if and only if there is no isolated loop or dead end. An isolated loop is
a group of self-connected tubes with no connection with other tubes and a dead end is a
group of self-connected tubes with only one path to the other part of the tubular network.
These two invalid groups can be algorithmically identified by some graph algorithms for
identifying “disconnected graph” and a “bridge” respectively.

Enumerating all the feasible solutions is impractical due to the huge number of solu-
tions. Therefore, we explore a genetic algorithm to efficiently obtain a good or optimal
solution. A genetic algorithm (GA) is a search heuristic that mimics the process of natural
selection. This metaheuristic is routinely used to generate useful solutions to optimization
and search problems. In a genetic algorithm, a population of candidate solutions to an
optimization problem is evolved towards better solutions. The evolution usually starts
from an initial population of randomly generated individuals (solutions) and is an iterative
process, with the population in each iteration called a generation [24]. A new generation
is formed by generating new offspring by altering and/or recombining existing individuals
that are stochastically selected and eliminating unsatisfying individuals. Commonly, a ge-
netic algorithm terminates when either a given number of generations has been produced,
or a satisfactory fitness level has been reached for the population. In our problem, the
genetic algorithm has only the mutation operator which generates new individuals and it
is capable of altering an existing solution to any other solution in the entire solution space.

The thesis is organized in the following manner. In Chapter 2, we first describe an existing
algorithm for packing different-sized circles into a rectangular region [12]. Then we extend
this algorithm to packing circles into an arbitrary polygon. We also introduce and describe
a set of novel circle-packing algorithms. In Chapter 3 are described various algorithms
for building connections based on a circle-packing in the 3D region. We also present two
algorithms for verifying the feasibility of each potential solution based on a series of theo-
rems in graph theory. In Chapter 4, we discuss a genetic algorithm with only a mutation
operator to generate new individuals.
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Chapter 2

Circle-packing algorithms

In this chapter, we describe various algorithms of packing different-sized circles into an
arbitrary region approximated by a polygon, maximizing the covered area. In Section
1, we describe an existing algorithm proposed by George, George and Lamar [12] which
packs different-sized circles into rectangular regions. For convenience, we shall refer to this
algorithm throughout the thesis as the “GGL algorithm”. An extension of this algorithm
to packing circles into arbitrary polygons is discussed in Section 2. However, this type
of algorithm does not meet our specific needs. Therefore, a series of novel circle-packing
algorithms are developed in order for the ultimate circle-packing to possess the following
features:

1. Larger circles are situated primarily in the interior of the region.

2. As much of the remaining empty space as possible is along the boundary.

2.1 GGL Circle-Packing Algorithm

In this section, we describe the GGL algorithm of packing different-sized circles into a rect-
angular region. The GGL algorithm was designed for packing pipes of different diameters
into a shipping container and by the heuristics of this algorithm it starts packing circles
at corners and develops both upwards and to the right with the assistance of sides and
two-circle packing. Its basic method of placing circles by position numbers will be used in
the algorithms described in the next few sections.
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2.1.1 Problem description

The rectangular region in the xy-plane is R = [0,A] × [0,B], i.e., 0 ≤ x ≤ A, 0 ≤ y ≤ B,
where A,B > 0 define the lengths of the sides of the rectangle. The sides of the rectangle
are numbered in the counterclockwise direction:

(a) Side 1: the left vertical boundary line, denoted by the variable s = 1.

(b) Side 2: the bottom horizontal boundary line, denoted by the variable s = 2.

(c) Side 3: the right vertical boundary line, denoted by the variable s = 3.

(d) Side 4: the upper horizontal boundary line, denoted by the variable s = 4.

Figure 2.1: Numbering of the sides of a rectangle

A set of N candidate circles are given, each of which has a prescribed radius Ri, 1 ≤ i ≤ N .
The problem is to pack this set of candidate circles with prescribed radii into a prescribed
region and to maximize the area covered by the packed circles.

An “occupancy variable” δi is used to denote whether the ith circle is used in the packing:

δi =

{
1 if ith circle is used in the packing

0 otherwise
(2.1)

If the ith circle is used, i.e., δi = 1, then the coordinates of its center are denoted by (xi, yi).

The circles employed in the packing must satisfy two sets of constraints:

1. They must be situated inside the rectangle or at most tangent to the boundaries, i.e.,

Ri ≤ xi ≤ A−Ri, Ri ≤ yi ≤ B −Ri (2.2)

2. Any pair of circles employed in the packing can intersect at most at one point, i.e.,
the distance between the centers of the two circles must be greater that or equal to
the sum of their radii, i.e.,√

(xi − xj)2 + (yi − yj)2 ≥ Ri +Rj (2.3)
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2.1.2 Rules and formulas for packing circles

Suppose that the kth circle of radius Rk, k ≥ 1, is being considered for packing. The three
types of possible positions for it are as follows:

1. Placed at the corners touching two sides.

(a) Lower left corner. This position is denoted as p = 1. The coordinates of the
center of circle k, if packed, are (xk, yk) = (Rk, Rk).

Figure 2.2: Position No. 1, p = 1

(b) Lower right corner. This position is denoted as p = 2. The coordinates of
the center of circle k, if packed, are (xk, yk) = (A−Rk, Rk).

Figure 2.3: Position No. 2, p = 2

2. Placed touching one side and one previously packed circle i.

Consider a circle of radius Ra with center at (xa, ya)–this is the circle that is
already packed. We now determine the three possible positions of a circle of radius
R. Let (x, y) be the coordinates of the center of this circle if it is successfully packed.
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(a) Tangent to the ith circle and touching side 1 at one point:

Figure 2.4: Side No. 1

For a solution to exist, the following inequality must be satisfied,

xa ≤ 2R +Ra. (2.4)

In this case, x = R and there are two solutions for y:

y = ya ±
√

(Ra + xa)(2R +Ra − xa). (2.5)

Since the GGL algorithm packs circles both upwards and to the right, the solu-
tion with negative sign should be discarded.

(b) Tangent to the ith circle and touching side 2 at one point:

Figure 2.5: Side No. 2

This is a π/2-rotated version of the previous one. For a solution to exist, it
must have that

ya ≤ 2R +Ra. (2.6)

In this case, y = R and there are two solutions for x:

x = xa ±
√

(Ra + ya)(2R +Ra − ya) (2.7)
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The solution with negative sign should be discarded since the packing must
proceed to the right by GGL algorithm.

(c) Tangent to the ith circle and touching side 3 at one point:

Figure 2.6: Side No. 3

This is a an inverted version of the Side No. 1 Problem. For a solution to exist,
we must have

xa ≥ A− 2R−Ra. (2.8)

In this case, x = A−R and there are two solutions for y

y = ya ±
√

(Ra +R)2 − (xa − (A−R))2. (2.9)

Again, the solution with negative sign should be discarded since the packing
must proceed upwards by GGL algorithm.

Note that only Sides No. 1, 2 and 3 are used for packing, which is a consequence
of the physical motivation for the algorithm development of packing pipes into a
container. Of course Side No. 4 can be used for packing, which will be discussed in
Section 2.2.

3. Placed touching two previously packed circles i and j.

To solve for the coordinates of the center of kth circle if successfully packed,
let us consider the following general problem shown in Figure 2.7: Given two fixed
circles with radii Ra and Rb and centers at (xa, ya) and (xb, yb), respectively, find the
coordinates of the center of a circle of radius R that is tangent to the two circles.

Assume that xa ≤ xb. To solve this problem, consider the following associated
triangle in the xy-plane along with angles as identified in Figure 2.8.
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Figure 2.7: Two-Circle Problem Figure 2.8: Triangle of Two-Circle Problem

L in the figure is the distance between the two fixed centers,

L =
√

(xa − xb)2 + (ya − yb)2. (2.10)

For a solution to exist, it must be satisfied that

L < Ra + 2R +Rb. (2.11)

By cosine law for triangles,

(Rb +R)2 = (Ra +R)2 + L2 − 2(Ra +R)L cos β, (2.12)

so that

cos β =
L2 + (Ra +R)2 − (Rb +R)2

2(Ra +R)L
. (2.13)

Note also that

cos θ =
xb − xa
L

, sin θ =
yb − ya
L

, (2.14)

and
(Ra +R) cos (β + θ) = x− xa
(Ra +R) sin (β + θ) = y − ya,

(2.15)

which could be rearranged to solve for x and y,

x = xa + (Ra +R) cos (β + θ)

y = ya + (Ra +R) sin (β + θ).
(2.16)

By the Sum Formula for trigonometric functions,

cos (β + θ) = cos β cos θ − sin β sin θ

sin (β + θ) = sin β cos θ + sin θ cos β.
(2.17)

11



All the terms on the right-hand-side of equation 2.16 now can be expressed in terms
of the parameters Ra, Rb and L. While converting sin β to cos β,

sin β = ±
√

1− cos2 β, (2.18)

the two possible solutions correspond to positions above and below the circles in the
diagram. By the GGL algorithm, the solution with negative sign should be discarded
because the packing proceeds upwards.

2.1.3 Placing circles by position numbers

In order to pack circles more quantitatively and to keep track of them, position numbers are
used to represent the possible positions of a circle to be packed. At this point, it is ignored
whether a position is valid for the circle, i.e., at this stage all the constraints imposed by
the sides and previously packed circles are not being considered for the enumeration of
possible positions.

• Circle No. 1 The first circle should be placed at Position No. 1, i.e., the lower left
corner. Therefore there is only one position available to the first candidate circle.

• Circle No. 2 Assume Circle No. 1 is already packed. There are five possible positions
for placing the second candidate circle.

1. Position No. 1, the lower left corner.

2. Position No. 2, the lower right corner.

3. Position No. 3, tangent to Circle No. 1 and touching Side No. 1.

4. Position No. 4, tangent to Circle No. 1 and touching Side No. 2.

5. Position No. 5, tangent to Circle No. 1 and touching Side No. 3.

• Circle No. 3 Assume Circles No. 1 and 2 are successfully packed. Obviously the five
positions available to Circle No. 2 are also available to Circle No. 3. But now Circle
No. 3 can also be packed somewhere tangent to Circle No. 2 and any one of Sides No.
1, 2 and 3, adding three to the number of possible positions for Circle No. 3. Moreover,
Circle No. 3 can also be packed tangent to both Circles No. 1 and 2. As such the total
number of positions is nine.
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In general, let fk denote the number of positions available to circle k, assuming k−1 circles
have already been packed. Then fk must satisfy the following recursion relation:

fk = fk−1 + 3 + (k − 2) = fk−1 + k + 1. (2.19)

The term fk−1 comes from the fact that the positions that were available to Circle No.
k−1 must be available to Circle No. k. With Circle No. k−1 packed, Circle No. k can be
packed tangent to Circle No. 2 and any one of Sides No. 1, 2 and 3, and hence 3 appears
as the second term. In addition, there are k− 2 pairings between Circle No. k− 1 and the
k − 2 previously packed circles, producing the additional k − 2 positions.

The resulting formula for fk is

fk =

{
1 k = 1,
1
2
(k2 + 3k) k ≥ 2.

(2.20)

Now suppose that k circles have been packed into the prescribed rectangle and the (k+1)st
circle is being considered for packing. The first three position numbers available to (k+1)st
circle are as follows:

• Touching Circle i and Side No. 1: position number p = 1.

• Touching Circle i and Side No. 2: position number p = 2.

• Touching Circle i and Side No. 3: position number p = 3.

More generally, the position numbers available for Circle k with Circles i and j already
packed are tabulated in table 2.1. Note that position numbers 1 and 2 respectively repre-
sent the lower left corner and lower right corner and s is the variable for side numbers.

According to table 2.1, the position number of the circle placed touching Circle i and
Side s ∈ {1, 2, 3} is:

p = fi + s

=
1

2
(i2 + 3i) + s.

(2.21)

The position number of the circle placed touching Circle i and Circle j, 1 ≤ j < i:

p = fi + 3 + j

=
1

2
(i2 + 3i) + j + 3.

(2.22)

With the position numbers corresponding to actual positions and coordinates, candidate
circles can be packed by assigning a position number to it.
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Table 2.1: Position numbers for GGL algorithm for rectangles

i s = 1 s = 2 s = 3 j = 1 j = 2 j = 3 j = 4 j = 5

1 3 4 5

2 6 7 8 9

3 10 11 12 13 14

4 15 16 17 18 19 20

5 21 22 23 24 25 26 27

6 28 29 30 31 32 33 34 35

2.1.4 Position strings

Now suppose that k circles have been packed and the (k + 1)st circle is being considered
for packing. There are

fk+1 =
1

2
[(k + 1)2 + 3(k + 1)] (2.23)

possible positions. One strategy is to try different position numbers starting from p = 1
until the (k + 1)st circle could be packed here satisfying all the constraints. However, it
is not desirable to always start at Position No. 1. Therefore, GGL introduces the idea of
“position strings”

P = (p1, p2, . . . , pN) (2.24)

where N is the number of candidate circles. The element pk denotes the initial position to
be examined when the kth circle is being considered for packing.

Because the first circle is automatically packed at Position No. 1 in this algorithm, we
have p1 = 1. An example for position string is

p1 = 1, p2 = 2, p3 = 14, p4 = 10, p5 = 21, · · · , pN = 34. (2.25)

In the GGL algorithm, the value of each pk is randomly assigned or prescribed. For a given
1 < k ≤ N , the number of available positions is fnk

, where nk is the number of circles that
have already been packed in the rectangle when Circle k is being considered. Of course nk

cannot be known ahead of time.

Once a position string P has been defined, it must be decoded in order to determine the
initial position of the circle being packed. The following scheme has been used to decode
a position number pk for the placement of Circle No. k.

14



• If pk ≤ fnk
, consider Position pk for the placement of the kth circle. If pk > fnk

,
randomly or schematically assign another value for pk and proceed.

• If Circle k may be packed at Position pk, i.e., it satisfies all the constraints, then it
is placed there and start considering the next candidate circle, i.e., Circle k + 1.

• If Circle k cannot be packed at Position pk, then we examine the next position pk +1,
etc.. If we reach the final possible position fnk

without being able to pack this circle,
then we go to Position No. 1 and proceed either until Circle k is packed or, if it
cannot be placed in any position then it is concluded that Circle k cannot be packed
and we can proceed to pack Circle k + 1.

To obtain an “optimal” circle-packing in terms of covered area or some other measure, one
needs to run this algorithm for a certain number of times and keep track of the best one. If
the values of position strings are randomly assigned, the resulted circle-packings would be
probabilistically different from each other. Therefore, probabilistically speaking, the more
iterations the algorithm is implemented, the better the generated circle-packing would be.

2.1.5 Experimental results

In this subsection we show some experimental results. In Experiments No. 1 and 2, the
values of position strings are prescribed while in Experiments No. 3 and 4 the values are
randomly assigned at the beginning.

Experiment No. 1 The rectangle has dimensions A = B = 1, and there are a total
number of N = 30 candidate circles with identical radii Ri = R = 0.1. We set the position
numbers p(k) = k. As shown in Figure 2.9, the rectangle is filled up with 25 circles and
the packing ratio is 0.7854, which means 78.54% of the rectangle’s area is covered by the
packed circles.

Figure 2.9: GGL Experiment 1 on rectangle Figure 2.10: GGL Experiment 2 on rectangle
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Experiment No. 2 The rectangle still has dimensions A = B = 1, and there are a total
number of N = 72 candidate circles with radii arranged as follows:

R1 = R2 = · · · = R18 = 0.1

R19 = R20 = · · · = R72 = 0.5R1

(2.26)

We set the position numbers p(k) = k. The result is shown in Figure 2.10, where 46 circles
have been packed in the rectangle and the packing ratio is 0.7854.

Experiment No. 3 Same rectangle, and there are a total number of N = 72 candi-
date circles with radii arranged as follows: (α = 1/

√
3)

R1 = R2 = · · · = R18 = 0.1

R19 = R20 = · · · = R72 = αR1

(2.27)

We assigned a random integer to each p(k) and ran the algorithm for 50 iterations. The
best one is shown in Figure 2.11. 35 circles are packed in the rectangle and the packing
ratio is 0.7435.

Figure 2.11: GGL Experiment 3 on rectangle Figure 2.12: GGL Experiment 4 on rectangle

Experiment No. 4 Still the same rectangle, and there are a total number of N = 105
candidate circles with radii arranged as follows: (α = 1/

√
3)

R1 = R2 = · · · = R15 = 0.1

R16 = R17 = · · · = R45 = αR1

R46 = R47 = · · · = R105 = α2R1

(2.28)

Again, we assigned a random integer to each p(k) and ran the algorithm for 50 iterations.
The best one is shown in Figure 2.12. 63 circles are packed in the rectangle and the packing
ratio is 0.8063. Among the 50 iterations, the lowest packing ratio is 0.7715.
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This is actually random sampling from the solution space and some other strategies, e.g.,
genetic algorithm, can also be employed. If allowed enough time, as many iterations as
possible should be run in order to obtain an optimal circle-packing.

The GGL algorithm of packing circles into a rectangular region provided the method of
placing circles by position numbers and this method will be extended for packing circles
into arbitrary polygons.

2.2 GGL-based Algorithm of Packing Circles Into an

Arbitrary Polygon

In this section, we extend the GGL algorithm of packing circles into a rectangle, using the
same scheme and the basic method of position strings employed by the GGL algorithm.
Packing different-sized circles into an arbitrary polygon is much more complicated due to
the constraints imposed by all the sides and corners.

2.2.1 An arbitrary polygon

Let D ⊂ R2 denote the region enclosed by the prescribed polygon with the number of sides
denoted by the variable ns. The coordinates of the vertices are ci = (cix, ciy), which are
also the coordinates of the corners of the polygon denoted by Ci, 1 ≤ i ≤ ns. Note that the
vertices are numbered in the counterclockwise direction and, for convenience, the first ver-
tex of the region D is always at the point (0, 0). Also, a dummy variable cns+1 = (c1x, c1y)
is set for the convenience of representation.

Further, the displacement vectors vi = (vix, viy) represent the movement from the ver-
tex (0, 0) along the boundary ∂D and back to (0, 0) in the counterclockwise direction so
that region D is always to the left of the curve. The displacement vectors can be easily
calculated using the coordinates of the vertices:

vi = ci+1 − ci, 1 ≤ i ≤ ns. (2.29)

In component form, {
vix = ci+1,x − cix
viy = ci+1,y − ciy

, 1 ≤ i ≤ ns. (2.30)
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Of course, the net vectorial displacement is 0:

ns∑
k=1

vix = 0,
ns∑
k=1

viy = 0. (2.31)

Let us look at an example in Figure 2.13.

Figure 2.13: Demonstration of vertices and displacement vectors of a polygon

In Figure 2.13 the displacement vectors are as follows:

v1 = (1, 0), v2 = (0, 1), v3 = (1, 0), v4 = (0, 1),

v5 = (−3, 0), v6 = (0,−1.5), v7 = (1, 0), v8 = (0,−0.5).
(2.32)

The equation of each side can also be determined by the coordinates of the vertices:

yi = mix+ bi, x ∈ [cix, ci+1,x]; (2.33)

where mi and bi, 1 ≤ i ≤ ns, are respectively the slope and the y-intercept which can be
easily computed by ci. Note that if side i is a vertical line, then the equation should be
x = cix.

In order to calculate the packing ratio, one must know the area of the region D first.
The area of the region of an arbitrary polygon can be determined by Green’s Theorem in
the plane.

Assume the region D is simply connected and the boundary ∂D is piecewise smooth,
then for a C1 planar vector field F(x, y) = (F1(x, y), F2(x, y)),∮

C

F · dr =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y
)dA. (2.34)
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To compute the area of D, to be denoted as A(D), the integrand of the double integral
on the right-hand-side must be 1. Here we use the convenient vector field F = (0, x). The
line integral on the left may be written as∮

C

F · dr =
ns∑
i=1

∫
Li

F · dr

=
ns∑
i=1

∫
Li

F1dx+ F2dy

=
ns∑
i=1

∫
Li

xdy.

(2.35)

Here the Li are the piecewise line segments comprising the region D. The net result is the
following formula:

A(D) =
1

2
[(c2x+c1x)(c2y−c1y)+(c3x+c2x)(c3y−c2y)+ · · ·+(c1x+cnsx)(c1y−cnsy)]. (2.36)

Returning to the example in Figure 2.13, the area of region D is computed to be

A(D) =
1

2
[(2)(1) + (4)(1) + (−2)(−1.5) + (0)(0.5)]

=
1

2
(2 + 4 + 3)

= 4.5.

(2.37)

2.2.2 Packing corners and position numbers

In Figure 2.13, among all the corners, of course there are some “packing corners” which can
hold a circle; and there are some ”non-packing corners” which are cusps that cannot hold
any circle. As in the GGL algorithm, we shall consider these packing corners as possible
positions for placing candidate circles.

Packing corners can be algorithmically distinguished from non-packing corners by means
of the displacement vectors. In Figure 2.14 are the packing corners.

Figure 2.14: Packing corners
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Also, in Figure 2.15 are the non-packing corners, indicating the local position of the region
D with respect to the line segments.

Figure 2.15: Non-packing corners

It can be concluded that the condition for a packing corner pk is that

vk−1 × vk = Ak, where A > 0, (2.38)

which translates to the condition

vk−1,xvky − vk−1,yvkx > 0. (2.39)

Returning to the previous example in Figure 2.13 with ns = 8 sides, it can been seen that
there are 6 packing corners, as identified and labeled below:

Figure 2.16: An example of packing corners of a polygon

We now have the ingredients of GGL-based algorithm of packing circles into an arbitrary
polygon.

1. Packing corners: denoted as pk, 1 ≤ k ≤ npc ≤ ns. These will define npc fundamental
positions in the algorithm.

2. Sides: denoted as s, 1 ≤ s ≤ ns.
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The above ingredients enable us to construct a table of position numbers similar to Table
2.1. Different from GGL algorithm, the first circle can be packed at any packing corner
instead of only at the first corner. Suppose that k circles have already been packed into
the region, the possible positions to be considered for packing the (k + 1)st circle are as
follows:

1. At the packing corners. Positions at these corners correspond to the position numbers
1 to npc.

2. Touching Circle i and Side s, 1 ≤ s ≤ ns.

3. Touching two previously packed Circles i and j, 1 ≤ j < i.

Again, let fk denote the number of positions available to Circle k. As before, fk must
satisfy the following recursion relation,

fk = fk−1 + ns + k − 2. (2.40)

The resulting formula is

fk = npc + ns(k − 1) +
1

2
(k − 1)(k − 2). (2.41)

Generally, the position numbers available for Circle k with Circles i and j already packed
are tabulated in Table 2.2. Note that position numbers from 1 to npc represent the packing
corners and s is the variable for side numbers.

Table 2.2: Position numbers for GGL-based algorithm for polygons

Circle i s = 1 ... s = ns j = 1 j = 2 j = 3

1 npc + 1 ... npc + ns

2 npc +ns +1 ... npc + 2ns npc+2ns+1

3 npc+2ns+2 ... npc+3ns+1 npc+3ns+2 npc+3ns+3

4 npc+3ns+4 ... npc+4ns+3 npc+4ns+4 npc+4ns+5 npc+4ns+6

According to table 2.2, the position number of the circle placed touching Circle i and Side
s is:

p = fi + s

= npc + ns(i− 1) +
1

2
(i− 1)(i− 2) + s.

(2.42)
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The position number of the circle placed touching Circle i and Circle j, 1 ≤ j < i:

p = fi + ns + j

= npc + nsi+
1

2
(i− 1)(i− 2) + j.

(2.43)

With the position numbers corresponding to actual positions, circles could be packed by
assigning a position number to it. For the implementation of this GGL-based algorithm of
packing circles into an arbitrary polygon, we again use the position strings and of course
the same process described in Section 2.1.4.

2.2.3 Constraints imposed by boundary segments

The circles employed in the packing must satisfy two sets of constraints:

1. They must lie inside the region D, which can be divided into two parts:

(a) The circle cannot intersect with any side of the polygon at more than one point.

(b) The center of a circle must lie inside the region D.

Note that sometimes constraint 1(a) can be satisfied without constraint 1(b) being
satisfied. The following figure is an example in which circle c is packed outside the
region D but it is tangent to circles a and b and two sides of the polygon.

Figure 2.17: A circle lying outside the region satisfying constraint 1(a)

2. The distance between the centers of the two circles must be greater than or equal to
the sum of their radii. i.e.,√

(xi − xj)2 + (yi − yj)2 ≥ Ri +Rj. (2.44)
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Constraints 1(a) and 1(b) are nontrivial and need some detailed explanation. Let us con-
sider the segment with endpoints at Ci = (cix, ciy) and Ci+1 = (ci+1,x, ci+1,y) as sketched
in Figure 2.18. Now assume that we are considering packing circle C of radius R centered
at point P with coordinates (x, y). To examine Constraint 1(a), one has to determine
the relative position of the center of circle C with respect to the segment. There are two
types of relative positions. The first one is that the center (x, y) lies in the ribbon-like
region as shown in Figure 2.18. In this situation, it must be satisfied that the distance be-
tween the center of circle C and the segment must be greater than or equal to the radius R.

The distance d between a point (x, y) and a non-vertical line y = mx+ b is

d =
|y −mx− b|√

1 +m2
. (2.45)

For the line segment CiCi+1,

m =
ci+1,y − ciy
ci+1,x − cix

, b = ciy −mcix. (2.46)

To check if the point P = (x, y) lie in the ribbon-like region, one only needs to check if the
following relations are simultaneously satisfied:

−−→
CiP ·

−−−−→
CiCi+1 ≥ 0,

−−−→
Ci+1P ·

−−−−→
Ci+1Ci ≥ 0. (2.47)

Thus checking the first situation of Constraint 1(a) is complete. The second situation is
that the center (x, y) does not lie in the ribbon-like region as shown in Figure 2.19.

Figure 2.18: One segment and its ribbon-like
region

Figure 2.19: The center of circle C outside the
ribbon-like region.

In this situation, it is required that the distance between the center P = (x, y) and any
one of the endpoints should be no less than the radius R. This condition can be easily

23



examined and hence checking Constraint 1(a) is complete.

Constraint 1(b) is the famous Point-in-Polygon problem in computational geometry. With
Constraint 1(a) satisfied, the center of a circle can only lie either inside or outside the re-
gion, indicating that the center cannot be on the boundary. Here we describe an algorithm
from the book Algorithms in combinatorial geometry [8].

Crossing number algorithm. Given a point P and a polygon, draw a ray starting
at P in any direction. If there is an odd number of crossings of the ray with the polygon’s
edges, then the point P lies inside the polygon; otherwise, the point P lies outside the
polygon. An example is shown in Figure 2.20. For simplicity, one can use a vertical or
horizontal ray.

Figure 2.20: A point with odd crossing number

With all the ingredients and methods of examining various constraints, this algorithm can
be implemented by a computer program.

2.2.4 Experimental results

Experiment No. 1 The region is the same as in Figure 2.21 and there are a total number
of N = 140 candidate circles with radii arranged as follows:(α = 1/

√
3)

R1 = R2 = · · · = R20 = 0.2

R21 = R22 = · · · = R60 = αR1

R61 = R62 = · · · = R140 = α2R1

(2.48)

The value of each element of the position string is randomly assigned and we ran this
algorithm for 50 iterations. The best one is shown in Figure 2.21 where 62 circle have been
packed into the region and the packing ratio is 0.8005.
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Figure 2.21: GGL-based algorithm Experiment 1

Experiment No. 2 The coordinates of the vertices of the polygon are as follows:

c1 = (0, 0), c2 = (1, 0), c3 = (1, 1)

c4 = (2, 1), c5 = (2, 2), c6 = (0, 2).
(2.49)

The total number of N = 105 circles with radii arranged as follows: (α = 1/
√

3)

R1 = R2 = · · · = R15 = 0.17

R16 = R17 = · · · = R45 = αR1

R46 = R47 = · · · = R105 = α2R1

(2.50)

Again we used randomly assigned position strings and ran the algorithm for 50 iterations.
The best one is shown in Figure 2.22 where 58 circle have been packed into the region

Figure 2.22: GGL-based algorithm Experiment 2 Figure 2.23: GGL-based algorithm Experiment 3

Experiment No. 3 The coordinates of the vertices of the polygon are as follows:

c1 = (0, 0), c2 = (1, 0), c3 = (1.2, 1.2), c4 = (−0.2, 1.2) (2.51)
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The total number of N = 100 circles with radii arranged as follows:

Rk = 0.1− 0.0006(k − 1), 1 ≤ k ≤ N. (2.52)

Again we used randomly assigned position strings and ran the algorithm for 50 iterations.
The best one is shown in Figure 2.23 where 56 circle have been packed into the region and
the packing ratio is 0.8057.

Obviously, in the circle-packings produced by this GGL-based algorithm for arbitrary
regions, larger circles are everywhere, i.e., at the corners and the interior. In order for
the circle-packings to possess the feature of larger circles being situated primarily in the
interior region, we have to explore other strategies of packing circles.

2.3 Reversed-GGL Circle-Packing Algorithm

In the attempt to satisfy the feature of larger circles being situated primarily in the interior
region, we now explore a quite different circle-packing algorithm from the GGL-based
one, which we call the Reversed-GGL algorithm. Recall that the GGL-based algorithm
starts packing circles at packing corners and proceed towards the inside. In Reversed-GGL
algorithm, we start packing from the interior of the region and let it proceed towards the
boundary. Also, corners and sides are no longer used to assist the packing. Instead, after
the first two circles are packed at the interior, the packing proceeds by only “two-circle
packing” where a circle must be placed somewhere tangent to two circles.

2.3.1 Scheme and position numbers

Since this algorithm starts packing at the central region of a polygon, it may be desirable
to place the first circle at the centroid of the polygon. There are some formulas for calculat-
ing the centroid of a polygon in the paper Calculating the area and centroid of a polygon [4].

The centroid of a non-self-intersecting closed polygon defined by n vertices (c1x, c1y), · · ·,
(cnx, cny) is the point (Cx, Cy), where

Cx =
1

6A

n∑
i=1

(cix + ci+1,x)(cixci+1,y − ci+1,xci,y) = 0,

Cy =
1

6A

n∑
i=1

(ciy + ci+1,y)(cixci+1,y − ci+1,xci,y) = 0.

(2.53)
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The formula of computing the area A is given in Equation 2.36 and the vertices are num-
bered in counterclockwise direction. For convenience of representation, a dummy variable
is set to help: (cn+1,x, cn+1,y) = (c1,x, c1,y).

The main idea of this algorithm:

1. Start with a set of large circles of radius R. Unless otherwise indicated, pack the first
circle at the centroid of the region (Cx, Cy) and the next circle immediately to the
right and touching it, i.e., centered at (Cx + 2R,Cy). Then use two-circle packing to
pack as many of these large circles as possible into the region.

Figure 2.24: Reversed-GGL: First two circles placed near centroid.

2. When Step 1 is completed, pack a set of smaller circles of radius αR, where 0 < α < 1.
Again use two-circle packing to pack as many of these circles as possible into the
region.

3. Repeat Step 2 with even smaller circles until no more circles could be packed.

To quantitatively pack the candidate circles, we still use position numbers in this algo-
rithm. Suppose that k circles have already been packed, k ≥ 2, then there is only one
type of positions for the (k+ 1)st circle, i.e., somewhere tangent to two circles. Recall that
for the two-circle packing scheme, if a solution exists, then generally two solutions exist.
In the GGL-based algorithm, only one solution has been considered, usually the one that
packed upwards. However, in the Reversed-GGL algorithm, both solutions are considered
for packing and this is reflected in Table 2.3.

It can be seen that there are two position numbers for each j value. An odd number
represents a position above two circles while an even number represents the one below two
circles. For example, position number 17 represents the position tangent to and above
circles 5 and 3.
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Table 2.3: Position numbers for Reversed-GGL algorithm

i j = 1 j = 1 j = 2 j = 2 j = 3 j = 3 j = 4 j = 4

2 1 2

3 3 4 5 6

4 7 8 9 10 11 12

5 13 14 15 16 17 18 19 20

It is easy to deduce that the total number of positions available to Circle k ≥ 3, with
circles 1 to k − 1 having been packed, is

fk = (k − 1)(k − 2). (2.54)

Also, the position number of the circle placed tangent to and above Circles i and j is:

p = fi + 2(j − 1) + 1

= (i− 1)(i− 2) + 2(j − 1) + 1

= i(i+ 3) + 2j + 1.

(2.55)

Similarly, the position number of the circle placed tangent to and below Circles i and j is:

p = i(i+ 3) + 2j + 2. (2.56)

Note that in this algorithm the constraints imposed by boundary segments are exactly the
same as described in Section 2.2.3. Now with the steps and the position numbers, we can
implement the Reversed-GGL algorithm by means of the position strings and of course the
same process described in Section 2.1.4.

2.3.2 Experimental results

In all experiments, the values of position strings are randomly assigned and the algorithm
is run 50 iterations.

Experiment No. 1 The coordinates of the vertices of the triangle are as follows:

c1 = (0, 0), c2 = (2, 0), c3 = (0.8, 1). (2.57)
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The total number of N = 105 circles with radii arranged as follows: (α = 1/
√

2)

R1 = R2 = · · · = R15 = 0.08

R16 = R17 = · · · = R45 = αR1

R46 = R47 = · · · = R105 = α2R1

(2.58)

The best one is shown in Figure 2.25 where 72 circle have been packed into the region and
the packing ratio is 0.7389.

Experiment No. 2 The coordinates of the vertices of the polygon are as follows:

c1 = (0, 0), c2 = (2, 0), c3 = (1.7, 0.8), c4 = (0.8, 1). (2.59)

The total number of N = 105 circles with radii arranged as follows: (α = 1/
√

2)

R1 = R2 = · · · = R15 = 0.1

R16 = R17 = · · · = R45 = αR1

R46 = R47 = · · · = R105 = α2R1

(2.60)

The best one is shown in Figure 2.26 where 58 circle have been packed into the region and
the packing ratio is 0.7500.

Figure 2.25: Reversed-GGL algorithm Experi-
ment No. 1

Figure 2.26: Reversed-GGL algorithm Experi-
ment No. 2

Experiment No. 3 The coordinates of the vertices of the polygon are as follows:

c1 = (0, 0), c2 = (1.5, 0), c3 = (1.3, 1.3), c4 = (0.3, 1.8), c5 = (−0.4, 0.9). (2.61)

The total number of N = 105 circles with radii arranged as follows: (α = 1/
√

3)

R1 = R2 = · · · = R15 = 0.15

R16 = R17 = · · · = R45 = αR1

R46 = R47 = · · · = R105 = α2R1

(2.62)
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The best one is shown in Figure 2.27 where 68 circle have been packed into the region and
the packing ratio is 0.7966.

Experiment No. 4 The coordinates of the vertices of the polygon are as follows:

c1 = (0, 0), c2 = (1, 0) c3 = (1.2, 1), c4 = (2, 1.4),

c5 = (1, 2.5), c6 = (−1, 2), c7 = (−0.6, 0.5).
(2.63)

The total number of N = 140 circles with radii arranged as follows: (α = 1/
√

3)

R1 = R2 = · · · = R20 = 0.2

R21 = R22 = · · · = R60 = αR1

R61 = R62 = · · · = R140 = α2R1

(2.64)

The best one is shown in Figure 2.28 where 72 circle have been packed into the region and
the packing ratio is 0.7953.

Figure 2.27: Reversed-GGL algorithm Experi-
ment No. 3

Figure 2.28: Reversed-GGL algorithm Experi-
ment No. 4

Experiment No. 5 In this experiment we approximated an ellipse by a polygon with 32
segments. The radius of the major axis of the ellipse is 5 and the minor radius is 4. The
parametric equation can be written as{

x = 5 + 5 cos θ

y = 4 + 4 sin θ
, θ ∈ [0, 2π]. (2.65)
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Evenly divide the interval [0, 2π] into 32 parts:

θi = 2πi/32, 0 ≤ i < 32, (2.66)

and hence the coordinates of the 32 vertices as follows:{
x = 5 + 5 cos θi

y = 4 + 4 sin θi
, 0 ≤ i < 32. (2.67)

The total number of N = 140 circles with radii arranged as follows: (α = 1/
√

3)

R1 = R2 = · · · = R20 = 0.7

R21 = R22 = · · · = R60 = αR1

R61 = R62 = · · · = R140 = α2R1

(2.68)

The best one is shown in Figure 2.29 where 80 circle have been packed into the region and
the packing ratio is 0.8110. Note that the cluster of the largest circles is mostly at the
right part of the ellipse and the upper left part is devoid of the largest circles. The reason
is that all the 20 largest circles with radius 0.7 have been used. Apparently, if more large
circles were given, the upper left part would be filled with big circles.

Figure 2.29: Reversed-GGL algorithm Experiment No. 5

Experiment No. 6 In this experiment, the limitation of Reversed-GGL algorithm occurs
in this polygon with “needle-like” regions. The coordinates of the vertices of the polygon
are as follows:

c1 = (0, 0), c2 = (0.5, 0) c3 = (0.5, 2), c4 = (5, 2),

c5 = (5, 2.5), c6 = (3.5, 2.5), c7 = (3.5, 4), c8 = (0, 4)
(2.69)
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The total number of N = 105 circles with radii arranged as follows: (α = 1/
√

3)

R1 = R2 = · · · = R15 = 0.3

R16 = R17 = · · · = R45 = αR1

R46 = R47 = · · · = R105 = α2R1

(2.70)

The best one is shown in Figure 2.30 where 64 circle have been packed into the region and
the packing ratio is 0.6750.

Figure 2.30: Reversed-GGL algorithm Experi-
ment No. 6

Figure 2.31: Limitation of Reversed-GGL algo-
rithm.

It can be seen in Figure 2.30 that there are some unpacked empty space at the two needle-
like regions where obviously more circles with the smallest radius could be placed. This
limitation is due to the rule in which only two-circle packing is allowed, which means a
circle can only be placed somewhere touching two circles. In Experiment No. 6, the circle-
packing in the region could not proceed to reach the needle-like regions because the solid
red circles, shown in Figure 2.31, would be partially outside the region if they were packed.

2.4 Reversed-GGL Algorithm with One-Circle Pack-

ing

In this section, we add the rule of “one-circle packing” to Reversed-GGL algorithm in order
for the packing to reach the needle-like regions. By one-circle packing, a candidate circle
is allowed to be placed tangent to only one previously packed circle.
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2.4.1 Degree and position numbers

In one-circle packing, a circle can be packed tangent to only one previously packed circle
and another variable degree, to be denoted by dg, is needed to specify the position of the
candidate circle involved in one-circle packing. Draw dg rays starting at the center of a
previously packed circle so that the area of this circle is evenly divided into dg parts, then
the center of the candidate circle being considered for packing must lie on one of these
rays. Note that the first ray is always horizontal extending to the right. An example is
shown in Figure 2.32.

Figure 2.32: Degree of one-circle packing; dg = 6.

In general, suppose the center of a previously packed circle of radius Ra is at (xa, ya), the
candidate circle has radius R and the degree for one-circle packing is dg. If the candidate
circle is packed at the qth position around the packed circle, then the coordinates of the
center of the candidate circle are:{

x = xa + cos βq(Ra +R)

y = ya + sin βq(Ra +R)
, 1 ≤ q ≤ dg, (2.71)

where
βq = 2π(q − 1)/dg. (2.72)

With one-circle packing, only the first circle needs to be placed at a prescribed position,
e.g., at the centroid. The second circle can be placed by means of one-circle packing and
the next candidate circles can be packed by either one-circle packing or two-circle packing,
which is different from Reversed-GGL algorithm.

Again, we use position numbers to quantitatively pack the candidate circles. The po-
sition numbers available to Circle k with Circle i and Circle j already packed are tabulated
in Table 2.4.
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Table 2.4: Position numbers for Reversed-GGL algorithm with one-circle packing

i q = 1 · · · q = dg j = 1 j = 1 j = 2 j = 2

1 1 · · · dg

2 dg + 1 · · · 2dg 2dg+1 2dg+2

3 2dg+3 · · · 3dg+2 3dg+3 3dg+4 3dg+5 3dg+6

In Table 2.4, the position numbers to the left of the double vertical lines represent positions
produced from one-circle packing; otherwise, it is from two-circle packing.

The number of positions available to Circle k ≥ 2 is

fk = dg + (k − 2)(dg + k − 1), (2.73)

and the position of a circle placed tangent to circle i and at the qth position around it is

p = fi + q. (2.74)

Also, the position number of the circle placed tangent to and above circles i and j is:

p = fi + dg + 2(j − 1) + 1

= 2dg + (i− 2)(dg + i− 1) + 2j − 1.
(2.75)

Similarly, the position number of the circle placed tangent to and below circles i and j is:

p = 2dg + (i− 2)(dg + i− 1) + 2j. (2.76)

Again, in this algorithm the constraints imposed by boundary segments are exactly the
same as in Section 2.2.3. Now we can implement the Reversed-GGL algorithm with one-
circle packing by means of the position strings and of course the same process described
in Section 2.1.4.

2.4.2 Experimental results

In all experiments, the values of position strings are randomly assigned and the algorithm
is run for 100 iterations. Also, the degree for one-circle packing is 6 in all experiments,
which corresponds to the case in Figure 2.32
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Experiment No. 1 In this experiment we show the advantage of one-circle packing.
The polygon and the set of candidate circles are exactly the same as in Experiment No. 6
of Reversed-GGL algorithm in Section 2.3.2. The best one is shown in Figure 2.33 where
71 circles are packed and the packing ratio is 0.7073.

Figure 2.33: Reversed-GGL with one-circle packing Experiment No. 1

As shown in the figure, the needle-like regions are filled with circles due to one-circle pack-
ing, which is in contrast with the one in Figure 2.30 generated by Reversed-GGL algorithm
with only two-circle packing.

Experiment No. 2 In this experiment we show that this algorithm still cannot re-
strict big circles in the central region of a polygon. The polygon and the set of candidate
circles are exactly the same as in Experiment No. 1 of Reversed-GGL algorithm in Section
2.3.2. The best one is shown in Figure 2.34 where 70 circles are packed and the packing
ratio is 0.7289.

Figure 2.34: Reversed-GGL with one-circle packing Experiment No. 2

As shown in the figure, some of the largest circles are placed very close to the boundary,

35



which is unsatisfying. However, this problem is easy to fix by adding a set of constraints
on the distance between the center of a larger circle and the boundary.

A disadvantage of one-circle packing is that it is less compact than two-circle packing,
which means probabilistically much more iterations are needed to generate a circle-packing
as good as the ones generated by algorithms employing only two-circle packing.

2.5 Additional constraints

In order to restrict larger circles in the central region of the polygon, the distance from the
center of a circle to the boundary of the polygon, to be denoted by d, should be restricted.
Suppose a large circle has radius R and a smaller circle has radius αR where 0 < α < 1.
The following constraints are imposed:

d ≥ R + 2αR (2.77)

The desired effect of these constraints is that at least one smaller circle can be packed
between the boundary and a larger circle or that there is simply some distance between
a larger circle and the boundary. Of course the right-hand-side of the inequality can be
adjusted for higher packing efficiency or other purposes and this set of constraints can be
applied to any other circle-packing algorithms. Some experiments with these set of con-
straints are shown below. Note that the degree for one-circle packing is still 6.

Experiment No. 1 Again, the polygon and the set of candidate circles are exactly the
same as in Experiment No. 6 of Reversed-GGL algorithm in Section 2.3.2. The constraints
in Equation 2.77 are imposed to the circles with radius R1 and αR1, where α = 1/

√
3. The

best packing after 100 iterations is shown in Figure 2.35 where 83 circles are packed and
the packing ratio is 0.7238.

Figure 2.35: Reversed-GGL with one-circle packing and additional constraints Experiment No. 1
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As shown in Figure 2.35, the largest circles are all in the central region of the triangle,
no medium-sized circle is touching the boundary and the smallest circles are close to or
touching the boundary. In contrast, the result in Figure 2.25 does not have this desired
feature due to the lack of the additional constraints.

Experiment No. 2 This algorithm is applied to an approximated ellipse in this exper-
iment. The ellipse and its approximation and the set of candidate circles are exactly the
same as in Experiment No. 5 of Reversed-GGL algorithm in Section 2.3.2. The constraints
in Equation 2.77 are imposed to the circles with radius R1 and αR1, where α = 1/

√
3. The

best packing after 200 iterations is shown in Figure 2.35 where 109 circles are packed and
the packing ratio is 0.7699 which is much lower than 0.8110 in Figure 2.29 produced by
Reversed-GGL algorithm with 50 iterations, which is due to the disadvantage of one-circle
packing discussed at the end of last section.

Figure 2.36: Reversed-GGL with one-circle packing and additional constraints Experiment No. 2

As expected, the result in the Figure 2.36 has the desired feature of larger circles being
situated in the central part of the region, which is in contrast with the result in Figure
2.29 which is produced by Reversed-GGL algorithm.

Also, recall that there is another desired feature mentioned at the beginning of this chapter
on page 6, i.e., there should be as much empty space along the boundary as possible. Up
until now, no effort has been made for it, but another novel algorithm called “jiggling”,
which will be discussed at Section 2.7, is designed to tackle this feature. In addition, the
“jiggling” algorithm can significantly accelerate the process of obtaining a decent packing,
i.e., many fewer iterations would be needed. Before discussing the powerful “jiggling” al-
gorithm, another method of restricting larger circles in the central region is presented.
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2.6 Hybrid Circle-Packing

In this section, we introduce another method of restricting larger circles in the central
region of a polygon which can also pack circles at narrow corners which Reversed-GGL
cannot. This new algorithm is called Hybrid Circle-packing because it can be divided into
two stages where different circle-packing algorithms are employed. In this algorithm, one
first packs circles into the region with Reversed-GGL with or without one-circle packing,
then removes the outermost layer of circles containing the big circles and then continues
packing smallest circles in the candidate set into the region with GGL-based algorithm or
Reversed-GGL algorithm with one-circle packing.

2.6.1 Major steps

Step 1. Use Reversed-GGL algorithm to fill the polygon with different-sized circles and
obtain the adjacency information about which circles are adjacent to which other
circles by the relative positions of the circles with respect to each other.

Step 2. Use a circle with the smallest radius among the set of candidate circles to iden-
tify the outermost layer of circles and remove them in the packing. Specifically,
tentatively place a smallest circle Cmin at every possible position tangent to any
pair of circles Ca and Cb, if Cmin intersects with any side of the polygon at more
than one point then Ca and Cb are at the outermost layer of the packing. Figure
2.37 provides an illustration.

Figure 2.37: Identify the outermost layer of circles

Step 3. Use the adjacency information obtained in Step 1 to identify and count the num-
ber of circles at the second outermost layer of circles, i.e., circles touching circles
at the first layer and not in the first layer are in the second layer. Two example
are shown in Figure 2.38. In the figures, all the circles with an ”x” are at the
outermost layer, and circles labeled with the number 2 are at the second layer.
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Figure 2.38: Examples of first and second layers of a circle-packing

Step 4. Pack smaller circles between the boundary and the second layer of circles, using
GGL-based algorithm for polygons with some modification which will be discussed
in the next subsection.

2.6.2 Continue packing with modified GGL-based algorithm

Packing circles into the region between the the boundary and the second layer of circles is
more complicated than packing in an “empty” polygon because the boundary of the new
region is much more complicated, which is comprised of the boundary of the polygon and
the arcs of the previously packed circles.

One way is to “pretend” that no circles have been packed in the polygon and start packing
circles and check if they intersect with any previously packed circles. Obviously this scheme
would try numerous positions where intersection with previously packed circles occurs,
significantly lowering the efficiency of the algorithm and thus wasting a great amount of
time and computational resources.

A better way of doing this efficiently is to pack circles based on the circles remaining in the
polygon after the outermost layer is removed. This can be done by modifying the position
numbers.

Let nl2 denote the number of circles at the second outermost layer identified in Step 3. The
circles remaining in the polygon which are not at the second outermost layer will not assist
in packing in this algorithm. Therefore, there are nl2 useful circles in the polygon and the
next packed circle will be called the (nl2 + 1)st circle. The position numbers available to
the kth circle, k > nl2, with useful circles i and j already packed are tabulated in Table
2.5. (Recall that ns is the number of sides of the polygon and npc is the number of packing

39



corners of the polygon.)

Table 2.5: Position numbers for Modified GGL-based algorithm for polygons

i s = 1 ... s = ns j = 1 · · · j = nl2 − 1 j = nl2 − 1

1 / ... /

2 / ... / npc + 1

... ... ... ... ... ...

nl2 / ... / M1 + 1 ... M2

nl2+1 M2 + 1 ... M2 + ns M2 + ns + 1 ... ... M2 + ns + nl2

In the table, M1 = (nl2 − 1)(nl2 − 2)/2 + npc and M2 = M1 + nl2 − 1. All the slashes in
the table come from the fact that no small or medium-sized circles could simultaneously
touch a circle at the second layer and any one of the sides of the polygon.

2.6.3 Demonstration

To demonstrate how this hybrid circle-packing algorithm works, we applied this to the
polygon approximating the ellipse which is the same as the one in Figure 2.29. The
number of candidate circles is N = 210 with radii arranged as follows: (α = 1/

√
3)

R1 = R2 = · · · = R30 = 0.7

R31 = R32 = · · · = R60 = αR1

R61 = R62 = · · · = R120 = α2R1

(2.78)

First, use Reversed-GGL algorithm to pack circles in to the polygon. After only one itera-
tion the result in shown in Figure 2.39 where 57 circles are packed and the packing ratio is
0.8247. In this experiment, the reason why only one iteration is needed here for Reversed-
GGL packing is that the remaining circle-packing after removal of the outermost layer has
a somewhat fixed pattern where only 19 biggest circles are remaining in the central region.

As shown in the figure, many big circles are very close to or touching the boundary. The
outermost and the second outermost layers of circles are identified and also shown in Figure
2.39. As stated, circles with an “x” in it are at the outermost layer and the ones labeled
with the number 2 are at the second layer. After removal, there are 19 circles remaining
in the polygon as shown in Figure 2.40.
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Figure 2.39: Fill the region and identify layers

Figure 2.40: After removal of the outermost layer Figure 2.41: Re-packed by modified GGL-based
algorithm

Now there is a great amount of empty space released after removal of the first layer of
circles, which is to be packed by means of modified GGL-based algorithm described in the
last subsection. In the implementation, the following additional constraint is imposed on
medium-sized circles of radius Rm = αR1 as in Equation 2.78:

d ≥ Rm + 1.2αRm, (2.79)

In the constraint, d is the distance between the center of a medium-sized circle and the
boundary. Note that the right-hand-side has been adjusted from the one in Equation 2.77.

After 50 iterations of modified GGL-based algorithm, the best one is shown in Figure 2.41
where 108 circles in total have been packed in the polygon and the packing ratio is 0.8110.
The packing ratio would be improved if the algorithm is run for more iterations.

This hybrid circle-packing algorithm obviously can restrict larger circles in the central
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region but still more empty space need to be released along the boundary, which will be
tackled by the next novel algorithm.

2.7 Jiggling Based on A Given Circle-Packing

In this section we discuss the jiggling algorithm which can release more empty space along
the boundary and accelerate the process of obtaining an “optimal” circle-packing. The
main idea of this algorithm is to simulate the black hole effect for a given circle-packing,
i.e., impose a fictitious force field which attracts all the small and medium-sized circles to-
wards the “center of mass” of a given circle-packing. After the jiggling process there would
be more empty space released where more circles could be packed and thus the packing
ratio would rise accordingly.

First of all, the formula for computing the center of mass needs to be stated. Suppose
Npack is the number of circles packed in the polygon, each of which is centered at (xi, yi),
where 1 ≤ i ≤ Npack. Also, let each circle i packed in the region have mass mi of the same
quantity as its area. Then the center of mass, (xcm, ycm), of a given circle-packing can be
computed as follows:

xcm =

Npack∑
i=1

mixi

/
Npack∑
i=1

mi, ycm =

Npack∑
i=1

miyi

/
Npack∑
i=1

mi. (2.80)

All the small and medium-sized circles will be moved towards the center of mass by a
fictitious force imposed by the rule of two-circle packing, which means a circle can be
moved only if the new position is closer to the center of mass and if it touches two packed
circles. Of course it cannot intersect with any other circles or any side of the polygon. The
following figures can illustrate this method.

(a) before (b) after

Figure 2.42: Jiggling
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As illustrated in Figure 2.42, circle c was touching only one circle before jiggling. After
jiggling, circle c is moved towards the center and now it is touching circles a and b.

Let us apply this algorithm to a real problem. The polygon and the set of candidate circles
are exactly the same as in Experiment No.1 of Reversed-GGL algorithm in Section 2.3.2.

Step 1. Use Reversed-GGL algorithm with one-circle packing and additional constraints
to fill the polygon with different-sized circles. With one iteration, the result is
shown in Figure 2.43 where 78 circles are packed in the triangle and the packing
ratio is 0.7188.

Step 2. Calculate the center of mass of the current circle-packing and move medium
and small circles towards it. The result is shown in Figure 2.44 where the red
dot represent the center of mass. As shown in the figure, some empty space is
released and more circles could be packed.

Figure 2.43: Before jiggling Figure 2.44: After jiggling

Step 3. Use modified GGL-based algorithm to pack the smallest circles of the candidate
set into the empty space.

Step 4. Repeat Step 2 and Step 3 until no more circles could be moved.

The final result is shown in Figure 2.45 where 4 more circles are packed and the final
packing ratio is 0.7389.

To sum up, in this experiment Reversed-GGL with one-circle packing and additional con-
straints has been run for only 1 iteration and Step 2 and Step 3 are repeated 3 times.

Obviously the packing ratio 0.7389 is higher than 0.7289 in Experiment No.2 in Section
2.4.2 generated by Reversed-GGL algorithm with one-circle packing with 100 iterations.
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Figure 2.45: Final result of jiggling algorithm

With this jiggling algorithm, the process of obtaining a satisfying circle-packing is signif-
icantly accelerated. In addition, since small and medium circles are moved towards the
center of mass, more empty space along the boundary is released, which possesses the
second feature.

2.8 Summary

In this entire chapter, various novel circle-packing algorithms are described. To generate a
circle-packing that possesses the desired features, the following algorithms could be used
depending on the prescribed polygon: (additional constraints described in Section 2.5 and
the jiggling algorithm must be applied in every algorithm)

1. Reversed-GGL algorithm. (Only for polygons without needle-like regions.)

2. Reversed-GGL algorithm with one-circle packing. (For any polygon.)

3. Hybrid circle-packing algorithm. (Applicable to any polygon if there is no specific
requirement on the distance between large circles and the boundary.)

When an algorithm has generated a circle-packing, the jiggling algorithm must be applied
to in order to release as much empty space as possible along the boundary.
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Chapter 3

Algorithms for Connection

After the tubes have been packed in the blocks obtained by discretizing the prescribed
three-dimensional region, they have to be connected to construct a tubular network with
one inlet and one outlet at the extreme ends of the region.

In this chapter we consider only the connection problem for tubes with identical radii,
and the solution to the problem with different-sized tubes can be extended from this one.
From now on, the words “circle” and “tube” are used interchangeably.

We demonstrate in the first section a very simple case where only an endcap connec-
tion, composed of two 90-degree bends, is employed. Then we introduce all the operations
for connection and the rules of how to apply them in Section 2 where we also illustrate
how to construct a network for a fairly complicated case using all the operations. In the
next few sections a set of algorithms are developed to generate all the possible solutions
and to check feasibility to make sure that there is no dead end or isolated loop.

3.1 A simple tubular network

In this section a very simple case is demonstrated to provide a basic sense of what a tubular
network looks like and of how to connect those tubes packed in a prescribed region.

Consider a rectangular cuboid whose front view is as follows where 5 circles are packed:
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Figure 3.1: Cross section packed with 5 circles

The circles in the rectangle represent tubes extending through the cube, which is shown
in Figure 3.2(a). All of them can be connected by only endcap connections except for two
tubes that must be left open to serve as the inlet and outlet of this tubular network. An
example is shown in Figure 3.2(b).

(a) Before connection (b) After connection

Figure 3.2: 5 tubes in the 3D region

As shown in the figure, at the left end, the pair of tubes 2 and 3 and the pair of tubes 4
and 5 are connected by endcaps; at the right end, the pair of tubes 1 and 2 and the pair
of tubes 3 and 4 are connected. Also, tube 1 at the left end is open to serve as the inlet
(or outlet) and tube 5 at the right end is the outlet (or inlet).

In this tubular network, the flow of a fluid through the network enters at tube 1 at the
left end, travels through all the tubes and exits the network at tube 5 at the right end.
Generally, in any valid tubular networks the flow should enter at a certain tube at one
end, travel through all the tubes in the network and exit at another tube at another or the
same end.

3.2 Operations for connection

In general, there may be various cross sections after the given 3D region has been discretized
along the principal direction. In Figure 3.3 is a demonstration where Si denotes the

46



interface of two adjacent blocks except for S1 and SN which represent two extreme ends.
An extreme end or an interface will be uniformly called a side, which is different from the
“side” of a polygon.

Figure 3.3: Blocks and sides

Suppose all the blocks have already been packed with tubes, i.e., all the cross sections have
been packed with circles, then at interface Si of blocks Bi−1 and Bi:

• Circles contained in both cross sections of Bi−1 and Bi are Common circles.

• Circles contained only in the cross section of Bi−1 or Bi are Boundary circles.

In this thesis we assume that there is at least one common circle at each interface. An
example is shown in Figure 3.4. At this interface of two blocks, the bigger cross section
contains 9 circles and the smaller cross section contains only 4 circles. Apparently, circles
1, 2, 4, 5 are common circles as they are in both cross sections; circles 3, 6, 7, 8, 9 are
boundary circles as they lie only in the bigger cross section.

Figure 3.4: Common circles and boundary circles at an interface

For each side, the goal is to connect all the open tubes. Specifically, at an extreme end
all the tubes must be connected while at an interface only boundary circles need to be
connected because common circles extend through at least two adjacent blocks, leaving no
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open tubes at an interface.

A full solution of connecting these tubes in the region is formed by a connection solu-
tion at each side. Further, the interfaces are always processed before the two extreme
ends, which will be explained in Section 3.3.2.

3.2.1 Elements and connection operations

Three physical elements employed for connection are illustrated in Figure 3.5.

Figure 3.5: Three fundamental physical elements

Three basic operations can be formed by the physical elements:

a). an endcap–two 90-degree bends that connect two adjacent tubes at their ends;

b). a “merge” operation where a tube flows into an adjacent one via a 90-degree bend
into a tee; and

c). a shift operation in which a tube is shifted into an adjacent position via a pair of
90-degree bends.

Further, these three basic operations form all the actual operations needed to connect the
tubes to construct tubular networks:

1. Endcap. This operation connects two adjacent tubes as shown in Figure 3.6. It can be
used on open tubes at every side.

2. Simple merge. This operation can be used only at an interface and the effect is that two
tubes result in one. Figure 3.7 illustrates this operation: tube a merges to tube b. The
rule is that tube b must be a common circle and a must be a boundary circle.

3. Consecutive merges. This operation can only be used at an interface also and the effect
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Figure 3.6: An endcap Figure 3.7: A simple merge

is that three tubes end up with one. Figure 3.8 illustrates this operation: tube a merges
to tube b and then it merges to tube c. The rule is that tubes a and b must be boundary
circles and tube c must be a common circle.

4. Merge/shift/merge. Again, this operation can only be used at an interface and the
effect is that four tubes end up with two. An example is shown in Figure 3.9 where tube
a merges to its adjacent tube b which shifts to the position where tube c used to be, and
tube c has to merge to tube d. Note that tubes a and b must be boundary circles and
tubes c and d must be common circles.

Figure 3.8: Consecutive merges Figure 3.9: merge/shift/merge

3.2.2 A real problem

The top view and front view of the 3D region are as follows:

(a) Top view (b) Front view

Figure 3.10: The “saddle bag” region

This problem is called the “saddle bag” problem due to the resemblance in shape. This
region has 3 blocks, each of which exhibits no variation in cross section. Blocks B1 and B3
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have the same cross section which is enclosed by solid lines in Figure 3.10(b), and Block
B2 has the smaller cross section which is enclosed by dashed lines. Also, there are two
extreme ends S1 and S4 and two interfaces S2 and S3.

Now we pack circles of identical radii into the two cross sections and the results are shown
in Figure 3.11 where 28 circles are packed in the bigger cross section and the small one
contains only 8 circles (circles 8 ∼ 11 and 15 ∼ 18). Apparently the 8 circles are common
circles and all the other circles are boundary circles.

Figure 3.11: Two cross sections packed with circles

A full solution which connects these tubes in the region is formed by a connection solution
at each side. Of course there are numerous different solutions and the following is an ex-
ample. Note that an endcap between tubes i and j is denoted by an ampersand, i.e., i& j.
A merge or shift is denoted by an arrow, e.g., i→j.

Connection at side S1.

• Endcaps: 20 & 21, 28 & 27, 26 & 25, 14 & 7, 6 & 5, 24 & 23, 18 & 19, 4 & 3, 10 &
11, 17 & 9, 16 & 22, 15 & 8, 1 & 2.

Connection at side S2.

• Endcaps: 12 & 20, 21 & 28, 26 & 27, 13 & 14, 7 & 6.

• Simple merges: 22→15, 23→16, 1→8, 19→11.

• Consecutive merges: 3→2→9, 25→24→18.

• Merge/shift/merge: 5→4→10→17.

Connection at side S3. Same as S2.

Connection at side S4. All the endcaps at S1 plus an endcap 12 & 13.
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At side S1 only 26 tubes are connected and hence the remaining two tubes 12 and 13
are designated as the inlet and outlet of the entire tubular network. Note that in this full
solution the inlet and outlet of the entire network are at the same extreme end. However,
they can be situated at different extreme ends in some other solutions.

The 2D representation of these four operations are shown in Figure 3.12. The 2D rep-
resentation of this full solution is illustrated in Figure 3.13 where dashed lines represent
endcap connections at extreme ends, solid lines represent different operations at interfaces
and the arrows represent the inlet and outlet of the network.

Figure 3.12: 2D representation of all the operations

Figure 3.13: 2D representation of a full solution
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As shown in the above figure, all the tubes are connected and the flow enters the tubular
network at tube 12 at S1, traverses all the branches and exits at tube 13 also at S1.

Note that tube 12 at extreme ends S1 and S4 represents a long tube composed of 7 tubes
connected by endcap connections, and similarly tube 13 represents a long tube composed
of 5 tubes.

Figure 3.14: Tube 12 composed of 7 tubes Figure 3.15: Tube 13 composed of 5 tubes

The 3D representation of this full solution is provided in Figure 3.16.

Figure 3.16: 3D representation of a full solution

3.3 Algorithm for extreme ends

As demonstrated in the “saddle bag” problem, a full solution of a connection problem is
composed of solutions at each extreme end or interface. In this section, we discuss how to
algorithmically generate solutions for each extreme end of a discretized 3D region.
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3.3.1 Maximum matching

Before introducing the algorithm, it is important to list a number of definitions, which may
be found in Chapter 5 of the book, Combinatorial Optimization [6].

Definition 3.1 (Graph). An undirected graph is a triple (V,E,Ψ) where V is the set of
vertices (nodes), E is the set of edges and Ψ is a mapping: E → {X ⊆ V : |X|= 2}.

Definition 3.2 (Matching). Given a graph G, a matching M in G is a set of pairwise
non-adjacent edges; that is, no two edges share a common vertex. A vertex is said to be
matched if it is an endpoint of one of the edges in the matching. Otherwise the vertex is
unmatched.

Definition 3.3 (Maximum matching). A maximum matching is one that contains the
largest possible number of edges.

Definition 3.4 (Maximal matching). A matching M in graph G is maximal if it is not a
proper subset of any other matching in G.

Definition 3.5 (Perfect matching). A perfect matching is one that matches all vertices of
the graph.

Figure 3.17: Graph G (left) with a maximal matching (middle) and a maximum/perfect matching (right)

Note that every maximum matching is maximal, but not every maximal matching is a
maximum matching. In the maximal matching in Figure 3.17, four vertices of the graph
are matched by the matching containing 2 edges and no more edge could be added to the
matching without sharing a vertex with one of the edges. That matching is only maxi-
mal instead of maximum because 2 vertices are still unmatched while they can be covered
by the matching at the right part of the figure. As such, the matching at the right is a
maximum matching and of course also a perfect matching since all the vertices are matched.

A circle-packing with N circles may be considered to define a graph G with N vertices
as follows. Each of the N vertices represents the center of a packed circle. The vertices
of circles adjacent to each other are then connected to form edges. We now proceed to
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construct endcap connections between tubes. Each endcap connection may be considered
to be an edge of a matching M in the graph G. As a result, the problem of connecting
tubes at an extreme end may be converted to the problem of finding a maximum matching
in the graph G.

Recall that two tubes must be left open at the two extreme ends of the 3D region to
serve as the inlet and outlet of the entire tubular network. Further, the inlet and outlet
could either lie at the same extreme end out of two or be scattered at two extreme ends.

In the situation where the numbers of tubes at two extreme ends do not possess the
same odd-even parity, it is impossible to connect all the tubes with only endcaps, except
for the inlet and outlet. An example is shown in Figure 3.18.

Figure 3.18: Different parity at two extreme ends

In the above figure, there are an even number of tubes at the left end and an odd number
of tubes at the right end. No matter how the inlet and outlet are arranged at the two
ends, there must be an extreme end where an odd number of tubes need to be connected
by endcaps, which is impossible. To resolve this, we can discard this set of circle-packings
and produce a new one which possesses the same parity at two extreme ends.

At this point, the reader may notice that an alternative way is to merge two tubes into one
at the extreme end with an odd number of tubes that need endcap connections, and then
all the open tubes can be connected by only endcaps. However, recall that we mentioned
in Section 3.2.1 that a merge operation is allowed only at an interface and thus this alter-
native way of obtaining same parity is not allowed. In addition, this method, if allowed,
could increase the complexity of the entire problem enormously and some space would be
lost due to a merge operation immediately before an endcap.

There are two situations of same odd-even parity

1. The numbers of tubes at both ends are odd. In this case, we first find a maximum
matching and one tube will be left unmatched which will serve as an inlet or outlet.
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2. The numbers of tubes at both ends are even. In this case, we first designate the
inlet and outlet and then find a perfect(maximum) matching in the graph with the
inlet and outlet removed. The reason why we do not find a maximum matching first
and then choose a pair as the inlet and outlet is that this strategy does not generate
solutions in which the inlet and outlet are not adjacent to each other. There are
some rules of designating the inlet and outlet which will be discussed in the next
subsection.

3.3.2 Minimum degree matching algorithm

We define the connectivity degree of each tube to be the number of neighboring tubes that
are available for connection, i.e., the number of tubes to which the tube may be connected.
The connectivity degree of a tube depends upon the number of adjacent tubes and the
connection solution at a neighboring interface.

Suppose A is an extreme end and B is a neighboring interface. Every operation at B
can affect the connectivity degree of a tube at A, which explains why interfaces are always
processed before extreme ends. The effects of the operations at B are listed below.

1. Endcap connection. A pair of tubes connected by an endcap at interface B cannot
be connected by an endcap at the extreme end A. The reason is that they would
form an isolated loop from other tubes and the flow cannot reach this part.

2. Simple merge. If at interface B tube a merges into tube b, then they cannot be
connected at extreme end A.

3. Consecutive merges. If at interface B tubes a, b and c are in a group of consecutive
merges as in Figure 3.8, then tubes a and b cannot be connected at extreme end A.

4. Merge/shift/merge. If at interface B tubes a, b, c and d are in merge/shift/merge
as in Figure 3.9, then tubes a and b cannot be connected at extreme end A and also
tubes c and d cannot be connected.

The reason for items 2, 3 and 4 is that the forbidden endap connection would result in
dead ends, which will be discussed in Section 3.5.2, if they were allowed.

Note that in some cases an operation at an interface could also impose constraints on
the connections at an adjacent interface. For example, in the figure below, if tubes a and
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b are connected by an endcap at interface Si, then at interface Si+1 tubes a and b cannot
be connected by an endcap since the result would be a closed loop that is not connected
to the rest of the network.

Figure 3.19: Connection at an interface imposing constraints on another one

The following is an example illustrating the connectivity degree of each tube.

The region is discretized into two blocks B1 and B2 and it has two extreme ends S1 and S3

and one interface S2. The cross section of the block B1 is larger than that of block B2. A
novel representation of the connection solution at the only interface S2 is shown in Figure
3.20.

Figure 3.20: Connection solution at the interface S2

In this method of representation, lines connecting 2 circles represent either an endcap con-
nection or a simple merge, i.e., if one of them is a common circle then the line represents a
simple merge, otherwise it is an endcap connection. Red lines connecting 3 circles represent
consecutive merges and the ones connecting 4 circles represent merge/shift/shift.

Still, the connection solution in this figure is explained: Simple merge: 7→4; Consecu-
tive merges: 9→8→5; Merge/shift/merge: 6→3→2→1;

Now the connectivity degrees of the 9 tubes at extreme end S1 can be determined. The
connectivity degrees of a few tubes are calculated below as an illustration.

• Tube 1: There are two tubes adjacent to Tube 1: Tubes 2 and 4. Since at interface
S2 Tube 2 is merging into Tube 1, these two tubes cannot be connected by an endcap
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at extreme end S1. Tube 4 can be connected to Tube 1 by an endcap and thus the
degree of Tube 1 is 1.

• Tube 2: There are three tubes adjacent to Tube 2: Tubes 1,3 and 5. As discussed
immediately above, Tube 1 cannot be connected to Tube 2. Tube 3 and Tube 5 are
available to Tube 2 and thus the connectivity degree of Tube 2 is 2.

• Tube 3: Two tubes are adjacent to Tube 3: Tubes 2 and 6. Since Tube 6 is merging
into Tube 3, it is not available. Tube 3 was already shown to be available to Tube 2,
so the reverse is true. Therefore, the connectivity degree of Tube 3 is 1.

• Tube 4: Three tubes are adjacent to Tube 4: Tubes 1,5 and 7. Tube 1 and Tube 5 are
available for endcap connection. Tube 7 is merging into Tube 4 so it is unavailable.
Therefore, the connectivity degree of Tube 4 is 2.

• Tube 5: Situated in the center, this tube has the greatest number of adjacent tubes:
Tubes 2, 4, 6 and 8, which are all available. Therefore, the connectivity degree of
Tube 5 is 4.

All the connectivity degrees are tabulated in Table 3.2.

Table 3.1: Initial availability list for tubes at side S1

Tube Available tubes Connectivity degree
1 4 1
2 3, 5 2
3 2 1
4 1, 5 2
5 2, 4, 6, 8 4
6 5, 9 2
7 8 1
8 5, 7 2
9 6 1

Now with the connectivity degrees the Minimum Degree Matching Algorithm can be de-
scribed below. Note that the steps are for finding only one matching.

Step 1. If the numbers of tubes at two extreme ends are both even, choose the inlet and
outlet and mark them as unavailable to any other tubes at the same end. If odd,
proceed to the next step.
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Step 2. Determine the available tubes and therefore the initial connectivity degree for
each tube.

Step 3. Randomly(or systematically) choose one tube with minimum connectivity degree
and one of its available tubes for connection, add this pair to the matching.

Step 4. Delete the connected tubes from the availability list and update the connectivity
degrees of relevant tubes.

Step 5. Repeat step 3 and step 4, i.e., choosing pairs and updating the list, until no more
tubes can be connected.

Returning to the example in Figure 3.20, the numbers of the tubes at both ends are odd
and hence Step 1 can be skipped. Further, the initial availability list has been made in
Table 3.2 and thus Step 2 is completed.

In Step 3, the tubes with non-zero minimum degree are 1, 3, 7, 9. Randomly choose
one, for instance, 3. Its only available tube 2 should be connected to it and now we have
a pair {3,2}.

Since tubes 2 and 3 are already connected to each other, they should not be available
to any other tubes and the availability list is updated below, which completes Step 4.

Table 3.2: Availability list for tubes at side S1 after {3,2}

Tube Available tubes Connectivity degree
1 4 1
4 1, 5 2
5 4, 6, 8 3
6 5, 9 2
7 8 1
8 5, 7 2
9 6 1

Now repeat Step 3 and Step 4 until a connection solution is obtained, for instance:
M = {{3, 2}, {1, 4}, {7, 8}, {5, 6}}. In this solution, Tube 9 is unmatched so it can be
an inlet or outlet of the entire tubular network.

The above is an example where the numbers of tubes at two extreme ends are both odd
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and the inlet and outlet do not need to be actively designated. Recall that in the case
where the numbers are both even, the inlet and outlet do need to be designated in Step 1
and there are some rules for doing this:

1. Choosing inlet/outlet should not exhaust the available tubes of any other tube. For
instance, in the example above, tubes 3 and 5 are not allowed to be chosen as inlet
and outlet because this would isolate tube 2.

2. Choosing inlet/outlet should not lead to the situation where two different tubes have
the same unique available tube for connection. For instance, in the same example
above, if 1 and 3 are chosen as inlet and outlet, tube 2 and 4 would both have tube
5 as the only available tube, which is not allowed.

Note that this algorithm only gives one matching which is not guaranteed to be a maximum
matching. However, our goal is not to find a maximum matching for one pass. Instead,
the goal is to enumerate all the maximum matchings of a given graph. Fortunately, this
Minimum Degree Matching Algorithm combined with Depth-first Search is able to enumer-
ate all the maximum matchings in a graph.

According to the paper [3] by Bert Besser, this algorithm can be implemented in lin-
ear time O(|V |+|E|) where |V | represents the number of vertices and |E| the number of
edges. Also, in experiments of Frieze et al.[11] on random cubic graphs, in which a perfect
matching is guaranteed to exist, the Minimum Degree Matching Algorithm left only 10 out
of 106 vertices unmatched. On random graphs of small constant average degree Magun[21]
observed that this algorithm produces extremely few lost edges in comparison with an
optimal solution.

Even though the algorithm can sometimes produce a maximal matching instead of a max-
imum one, it is very easy to eliminate those maximal matchings by counting the number
of edges in the resulted matching.

To sum up, the Minimum Degree Matching Algorithm is not guaranteed to produce a
maximum matching of a given graph, but it can efficiently enumerate all the maximum
matchings when combined with Depth-first Search.

3.4 Algorithm for interfaces

The problem of connecting tubes at an interface is much more complicated than connecting
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them at extreme ends. In this section, we describe the Unified Minimum Degree Match-
ing Algorithm, so named because all the four operations introduced in Section 3.2.1 will
be dealt in the same way. Recall that at an interface only boundary circles need to be
connected because common circles extend through at least two adjacent blocks, leaving no
open tubes at an interface.

The idea of the algorithm of generating connection solutions at an interface is similar
to that of the Minimum degree matching algorithm, i.e., repeatedly picking edges incident
to nodes of current minimum non-zero connectivity degree. Further, all the connections
are made in pairs and will be decoded to obtain a meaningful solution.

The steps of this algorithm are listed below and will be explained later.

Step 1. Identify the layer-rank of each tube at the interface being processed.

Step 2. Make the initial availability list, i.e., calculate connectivity degrees and connec-
tivity values.

Step 3. Randomly(or systematically) choose one tube with the highest priority, i.e., min-
imum degree or some other measure which will be discussed later. Add this tube
and one of its available tubes as a pair to the matching.

Step 4. Update the availability list based on a set of rules.

Step 5. Repeat step 3 and step 4, i.e., choosing pairs and updating the list. If all the
boundary circles are connected, one can either stop and get a solution or continue
to obtain another solution where more common circles are involved. The process
must stop when no more circles can be connected.

Step 6. Decode the raw solution and obtain a meaningful one.

3.4.1 Layer-rank and availability list

Recall that at interface Si of blocks Bi−1 and Bi, circles contained in both cross sections
of the two blocks are common circles and the ones contained only in one cross section are
boundary circles. Based on these concepts, the layer-rank of each circle, to be denoted by
Lr, is defined below:
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• First-layer boundary circle, Lr = 1: Boundary circles touching common circles. For
convenience of representation it will be called 1B circle.

• Other boundary circle, Lr = 0: Boundary circles not touching common circles. It
will be called 2B circle.

• First-layer common circle, Lr = 2: Common circles touching boundary circles. It
will be called 1C circle.

• Second-layer common circle, Lr = 3: Common circles touching 1C circles. It will be
called 2C circle.

• Other common circles, Lr = +∞, which are not involved in this algorithm because
it is unnecessary and impossible for it to be connected at an interface.

We now introduce a new concept into the availability list for this algorithm – the Con-
nectivity Value, a measure of the availability of a tube to other tubes. A 1B or 1C circle
has an initial connectivity value of 1. A first-layer circle could be at the middle of a group
of consecutive merges or merge/shift/merge, i.e., it could be connected to two tubes. For
instance, in Figure 3.8 tube b must be 1B and it can be connected to both a and c in this
form: {{a, b}, {b, c}}.

A 2B or 2C circle has an initial connectivity value of 0.5. This is because a second-
layer boundary or common circle can be connected to only one circle.

The connectivity degree in this algorithm is calculated differently. Only boundary cir-
cles are assigned a meaningful connectivity degree which is the number of adjacent circles.
A common circle does not have a meaningful connectivity degree because it does not have
to be connected at an interface. Instead, its connectivity value will be assigned a large
enough number, e.g., 1000, which means it never has the priority of getting connected
before all the boundary circles are connected.

Figure 3.21: An example for solutions at an interface
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Now the list of elements of an availability list in this algorithm is complete and an illus-
trative example is provided in Figure 3.21 which is the interface of two blocks. The larger
block has the cross section ′′ABCD′′ which contains 8 circles and the smaller one has the
cross section ′′ABFE ′′ which contains only 4 circles: 3, 4, 6, 7.

The initial availability list for the tubes at this interface is made in Table 3.3.

Table 3.3: Initial availability list for tubes at the interface

Tube Layer-rank Connectivity value Available tubes Connectivity degree
1 1 (1B) 1 2, 3, 4, 5, 8 5
2 1 (1B) 1 1, 4, 8 3
3 2 (1C) 1 1, 4, 6 1000
4 2 (1C) 1 1, 2, 3, 6, 7 1000
5 0 (2B) 0.5 1, 8 2
6 3 (2C) 0.5 3, 4, 7 1000
7 3 (2C) 0.5 4, 6 1000
8 0 (2B) 0.5 1, 2, 5 3

3.4.2 Rules for connection and updating availability list

There are a set of rules for making connections in this algorithm.

1. When there exists at least one boundary circle that is completely unconnected, the
circles with the highest priority of getting connected are the ones with the current
minimum degree.

2. If each boundary circle has been connected to at least one circle, then the circles with
the highest priority are the ones that are already connected.

3. A 1B circle has three forms of connection.

(a) Connected to only one boundary circle, which forms an endcap connection.

(b) Connected to only one common circle, which forms a simple merge.

(c) Simultaneously connected to one boundary circle CB and one common circle, which
forms a part of a group of consecutive merges or merge/shift/merge, on the con-
dition that CB is not connected to any other circle.
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4. A 2B circle can be connected to only one boundary circle. The reason is that it
is two layers away from common circles and in a group of consecutive merges or
merge/shift/merge there should be at most 2 boundary circles.

5. A 1C circle has three possible situations.

(a) Not connected at all. (A common circle does not have to get connected.)

(b) Connected to only one boundary circle, which forms a simple merge.

(c) Simultaneously connected to one boundary circle CB and one common circle CC ,
which gives a part of a group of merge/shift/merge. The condition is that CB is
already or will be connected to another boundary circle.

6. A 2C circle has two possible situations.

(a) Not connected at all.

(b) Connected to only one common circle CC only when CC is the common circle of a
group of consecutive merges. The resulted operation is a merge/shift/merge.

Based on the rules of making connections, the rules for updating the availability list are
listed below:

7. Deduct 0.5 from the connectivity value if a tube is connected. If the connectivity value
becomes zero then delete this tube from the list, i.e., mark this tube as unavailable to
any other tubes and deduct 1 from the degree of relevant boundary circles that are not
connected.

8. If a tube is connected, set its degree to 1000 so that it does not have the priority before
all the boundary circles have been connected.

9. Updating the availability list should conform to the rules of making connections.

Now let us apply these rules to the example in Figure 3.21 with the initial availability list
displayed in Table 3.3.

Pair 1. In the initial availability list, tube 5 has the minimum degree 2. Randomly
choose a tube between tubes 1 and 8 we have the first pair: {5,1}.
Set the degrees of tubes 1 and 5 to 1000. Deduct 0.5 from the connectivity value of each
tube and now tube 5 has zero connectivity value. Therefore tube 5 should be deleted from
the list.
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According to rule 3(a), tube 1 can no more be connected to any other boundary circles.
Therefore, tubes 2 and 8 should be deleted from its available tubes and vice versa. The
updated availability list is shown below.

Table 3.4: Availability list for tubes at the interface after {5,1}

Tube Layer-rank Connectivity value Available tubes Connectivity degree
1 1 (1B) 0.5 3, 4 1000
2 1 (1B) 1 4, 8 2
3 2 (1C) 1 1, 4, 6 1000
4 2 (1C) 1 1, 2, 3, 6, 7 1000
6 3 (2C) 0.5 3, 4, 7 1000
7 3 (2C) 0.5 4, 6 1000
8 0 (2B) 0.5 2 1

Pair 2. Now tube 8 has the minimum degree 1 so the second pair is {8,2}.

Set the degrees of tubes 8 and 2 to 1000. Decrease connectivity values and tube 8 should
be deleted from the list. The updated availability list is shown below.

Table 3.5: Availability list for tubes at the interface after {8,2}

Tube Layer-rank Connectivity value Available tubes Connectivity degree
1 1 (1B) 0.5 3, 4 1000
2 1 (1B) 0.5 4 1000
3 2 (1C) 1 1, 4, 6 1000
4 2 (1C) 1 1, 2, 3, 6, 7 1000
6 3 (2C) 0.5 3, 4, 7 1000
7 3 (2C) 0.5 4, 6 1000

Note that now all the boundary circles have been connected and there are two pairs in
the solution: M = {{5, 1}, {8, 2}}. This is a solution at this interface, i.e., two endcap
connections. One can either stop here and accept this solution or continue to obtain a
longer solution involving more tubes as demonstrated below.

Pair 3. As all the boundary circles have been connected by now, all the tubes that
are connected have the same priority of getting connected to one more tube.

Currently in the list, tubes 1 and 2 are connected. Randomly choose a tube between 1 and
2 and one of its available tubes we have the next pair: {1,3}.
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Decrease connectivity values and tube 1 should be deleted from the list. The updated
availability list is shown below.

Table 3.6: Availability list for tubes at the interface after {1,3}

Tube Layer-rank Connectivity value Available tubes Connectivity degree
2 1 (1B) 0.5 4 1000
3 2 (1C) 0.5 4, 6 1000
4 2 (1C) 1 2, 3, 6, 7 1000
6 3 (2C) 0.5 3, 4, 7 1000
7 3 (2C) 0.5 4, 6 1000

Now the solution is M = {{5, 1}, {8, 2}, {1, 3}} which is a raw solution that needs to be
decoded. The steps of decoding a raw solution are described below.

Step 1. Put a pair {L,R} in a group. For instance, {5,1} is now a group.

Step 2. Scan through the next pairs {Li, Ri}.
If one of Li and Ri equals L, add the other one to the left of L in the group.

If one of Li and Ri equals R, add the other one to the right of R in the group.

Otherwise, put {Li, Ri} in a new group and repeat this step until all the pairs
are processed.

For example, the pair {8,2} will be a new group and the pair {1,3} will be
integrated in the group {5,1} and the resulted group is {5,1,3}.

Step 3. Interpret each group and obtain meaningful connection solutions.

a) A group {a, b} represents a simple merge if there is exactly one boundary
circle and one common circle. For instance, if a is a common circle then this
group represents a simple merge: b→a.

b) A group {a, b} represents an endcap connection if a and b are both boundary
circles. Note that it is impossible that a and b are both common circles.

c) A group {a, b, c} represents a group of consecutive merges. If a is a common
circle the connection is c→b→a; Otherwise the connection is a→b→c.

d) A group {a, b, c, d} represents a group of merge/shift/merge. If a is a
common circle the connection is d→c→b→a; Otherwise the connection is
a→b→c→d.
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In the example, there are two groups: {5,1,3} and {8,2} which respectively rep-
resent consecutive merges 5→1→3 and an endcap 8&2.

Currently there are three pairs in the solution, i.e., M = {{5, 1}, {8, 2}, {1, 3}}, and one
can either stop here and accept this solution or continue to obtain a longer one.

Pair 4. Currently in the list, tubes 2 and 3 are connected. Randomly choose a tube
between 2 and 3 and one of its available tubes we have the next pair: {2,4}.

Decrease connectivity values and tube 2 should be deleted from the list.

Also, since tube 4 is now connected to a boundary circle, according to rule 5(b) it cannot
be connected to any other boundary circles. Therefore, tubes 3 and 4 are not available to
each other any more. The updated availability list is shown below.

Table 3.7: Availability list for tubes at the interface after {2,4}

Tube Layer-rank Connectivity value Available tubes Connectivity degree
3 2 (1C) 0.5 6 1000
4 2 (1C) 0.5 6, 7 1000
6 3 (2C) 0.5 3, 4, 7 1000
7 3 (2C) 0.5 4, 6 1000

Now there are two groups: {5,1,3} and {8,2,4} which respectively represent consecutive
merges 5→1→3 and consecutive merges 8→2→4.

Again this process can stop or continue making connections according to those rules and
the demonstration stops here.

3.5 Verifcation of feasibility

Connection solutions at each side together form a full solution whose feasibility needs to
be verified. Some knowledge in graph theory is applied to complete this. There are three
steps of checking feasibility of a potential solution.

Step 1. Construct a graph of the potential solution.

Step 2. Check if this graph is connected, i.e., there should be no isolated loop.
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Step 3. Check if there is a bridge in the graph, i.e., there should be no dead end.

If the graph is disconnected or there is a bridge in it, then the solution is infeasible and
should be discarded.

3.5.1 Constructing the graph

Given a full solution, the first thing to do is construct a graph according to the connections
on each side.

Let us first look at a graph in a sample problem. The top view and front view of the
3D region are shown below.

Figure 3.22: Top view of the region–small “sad-
dle bag”

Figure 3.23: Front view and cross sections
of the small “saddle bag”

Blocks B1 and B3 have the same cross section which contains 9 circles and Block B2 has
the smaller cross section which contains only four circles: 1, 2, 4, 5.

We call this problem “9-4-9” problem which will be discussed again later. One of many
solutions is provided here:

Connection at side S1. Endcaps: 1 & 4, 3 & 2, 7 & 8, 5 & 6.

Connection at side S2.

• Simple merges: 7→4.

• Consecutive merges: 9→8→5.

• Merge/shift/merge: 6→3→2→1.

Connection at side S3.

• Endcaps: 7 & 8.
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• Simple merges: 3→2.

• Merge/shift/merge: 9→6→5→4.

Connection at side S4. Endcaps: 3 & 6, 7 & 4, 1 & 2, 9 & 8.

The 2D representation and the graph of this solution are shown in Figure 3.24. There
are 28 nodes in total and all the lines between nodes, in whatever form, represent edges of
the graph.

Figure 3.24: 2D representation and the graph of a sample solution for the 9-4-9 problem

In general cases, assume the discretized region has S sides, each of which contains Ni

circles, 1 ≤ i ≤ S. The following is the method of constructing the graph of a solution.

• Add and number nodes for tubes at each side, which gives (N1 +N2 + · · ·+NS) nodes.

• Add an edge for each tube, i.e., add the edge connecting two endpoints of a tube. An
example is the edge {17,24} in the figure above.

• Add an edge for an endcap connection {a,b} at any side Si: Find the corresponding
node numbers of tubes a and b at side Si, to be denoted by anum and bnum, and add the
edge {anum, bnum}.

For example, in the graph shown above, at side S3 tubes 7 and 8 are connected by
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an endcap and their corresponding node numbers at side S3 are respectively 17 and 18.
Therefore, the edge {17,18} is added.

• For a simple merge a→b, set node anum to the junction point of the merge operation,
which is shown in Figure 3.25.

Then break the edge {x2, x3} into two edges, i.e., delete {x2, x3} and add {x2, anum} and
{anum, x3}.

Note that x1, x2 and x3 are the node numbers of tubes a and b at adjacent sides and
they can be found by connection solutions and previously added nodes and edges.

Figure 3.25: Nodes and edges for a simple merge

• For consecutive merges a→b→c, set nodes anum and bnum to the first and second junction
points, which is shown in Figure 3.26.

Then break the edge {x3, x4} into two edges, i.e., delete {x3, x4} and add {x3, bnum} and
{bnum, x4}. Also, add edges {x2, anum} and {anum, bnum}.

Again, all the x are node numbers of tubes in this group of consecutive merges at
adjacent sides and they can be found.

Figure 3.26: Nodes and edges for consecutive merges

• For merge/shift/merge a→b→c→d, set nodes anum and bnum to the first and second
junction points, which is shown in Figure 3.27.

Delete edge {x2, bnum}, add {x2, anum} and {anum, x5}.
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Delete edge {x4, x6}, add {x4, bnum} and {bnum, x6}.

Figure 3.27: Nodes and edges for merge/shift/merge

With all the rules of assigning nodes and adding edges for the graph of a solution, one can
store the graph by its incidence matrix, which will be discussed later.

Note that the total number of nodes in the graph of a solution never changed and it
is always N1 +N2 + · · ·+NS, which makes it convenient to build the incidence matrix.

3.5.2 Isolated loop and dead end

A tubular network is physically valid if and only if there is no isolated loop or dead end,
which are defined below.

An isolated loop is a group of self-connected tubes with no connection to other tubes,
and it may or may not contain an inlet or outlet. Two examples are shown in Figure 3.28.

Figure 3.28: Two examples of isolated loop

In graph theory, a connected component of an undirected graph G is a subgraph G1 in
which any two vertices are connected to each other by paths, and which is not a proper
subset of any other subgraphs of G.
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Therefore, if the graph G constructed from a full solution has more than one connected
component, then the solution is infeasible and should be discarded. An example of a graph
with two connected components is provided in Figure 3.29.

Figure 3.29: A graph with two components Figure 3.30: A graph with a bridge

A dead end is a group of self-connected tubes with only one path to the other part of
the network. An example is shown in Figure 3.31 where the dead end is enclosed, by red
dashed lines.

Figure 3.31: An example of dead end

In graph theory, a cycle is a circuit in which no vertex except the first (which is also the
last) appears more than once. A bridge in an undirected graph is an edge whose removal
increases the number of connected components of the graph. Most importantly, a bridge
does not lie in any cycle in a graph. An example of a graph with a bridge is shown in
Figure 3.30 in which edge e7 is a bridge.

Note that when checking the existence of a bridge, the edge {inlet, outlet} must be added
to the constructed graph. Otherwise, many edges would be mistakenly identified as bridges.
An example is shown in Figure 3.32. If the edge {v1, v6} connecting the inlet and outlet is
not added to the graph, then every edge in it is a bridge, which is misleading.

To algorithmically determine if the number of connected components is greater than 1 and
determine if there is any bridge in the graph, some tools and theorems in graph theory are
needed.
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Figure 3.32: Inlet and outlet not connected by an edge

Definition 3.6 (Incidence matrix). Let G be a graph with n vertices, m edges and without
self-loops. The incidence matrix A of G is an m× n matrix whose n columns correspond
to the n vertices and the m rows correspond to the m edges such that

aij =

{
1, if ith edge is incident to jth vertex

0, otherwise
(3.1)

It is also called vertex-edge incidence matrix and is denoted by A(G).

Remark. The matrix A has been defined over a field, Galois field modulo 2 or GF (2),
that is, the set {0,1} with operation addition modulo 2 written as “+” such that 0+0 = 0,
0+1 = 1, 1+1 = 0 and multiplication modulo 2 written as “·” such that 0 ·0 = 0, 0 ·1 = 0,
1 · 1 = 1.

The incidence matrices of the graphs shown in Figures 3.29 and 3.30 can be written as

v1 v2 v3 v4 v5 v6

A1 =

e1
e2
e3
e4
e5
e6


1 1 0 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 1 0 1

 ,

v1 v2 v3 v4 v5 v6

A2 =

e1
e2
e3
e4
e5
e6
e7



1 1 0 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 1 1 0 0


(3.2)

The following theorem provides the basis of the algorithm of checking if a graph has more
than one connected components.

Theorem 3.7. Let A(G) be an incidence matrix of a graph G with n vertices and m edges.
If rank(A(G)) < n− 1, then the graph G must have at least two connected components.
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Proof. Let f be a locally constant function on the vertices of G, i.e., for any two adjacent
vertices i 6= j we have f(i) = f(j). Let C = {f : f is locally constant } be the space of
functions which are locally constant. Then, by the definition of the incidence matrix A it
is clear that C ⊂ ker(A). Conversely, if f ∈ ker(A) then clearly f(i) = f(j) for any two
adjacent vertices i, j and thus f ∈ C and so C = ker(A).

Now, suppose that rank(A) < n−1 so that dim(ker(A)) ≥ 2. Then there are two nonzero
f, g ∈ ker(A) with f 6= λg for any constant λ. Choose a vertex i with f(i) 6= 0 and
set λ = g(i)/f(i). Then we have h = g − λf 6= 0 (the zero function) but h(i) = 0 and
h ∈ ker(A) = C. This means that h takes on at least two distinct values. Let G1 = h−1(0)
and G2 = G\G1. The two sets G1 and G2 are disconnected in G (since h is locally constant
but takes on different values on G1 and G2) and thus G is disconnected with at least two
components.

Returning to the two incidence matrices in Equation 3.2 and the corresponding graphs, by
computing the rank with modulo 2 arithmetic, we have that the ranks of A1 and A2 are
respectively 4 and 5, indicating that the graph at the left is disconnected and the one at
the right is connected.

Now suppose that the graph G constructed from solution Si has n vertices and m edges,
the following steps are used to check if the graph G is disconnected, i.e., if it has more
than one connected components.

Step 1. If m ≤ n − 2, it can be concluded, without computation of the rank, that the
graph is disconnected. Discard solution Si and continue to check the feasibility
of solution Si+1.

Step 2. If m ≥ n − 1, compute the rank of the incidence matrix A(G) using modulo 2
arithmetic. If rank(A(G)) < n− 1, discard solution Si and continue to check the
feasibility of solution Si+1; Otherwise, the graph G is connected, indicating that
solution S has no isolated loop.

The following theorem will be used later, whose proof is similar to that of Theorem 3.7
and thus omitted here.

Theorem 3.8. If G is a disconnected graph with k connected components, then the rank
of its incidence matrix A(G) is n− k.

A connected graph may still have a bridge in it. The following tools and theorems are
needed to build the algorithm of checking the existence of a bridge in a graph.
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Definition 3.9 (Cycle matrix). Let G be a graph with m edges and q different cycles in
G. The cycle matrix B of G is a q × m matrix whose m columns correspond to the m
edges and the q rows correspond to the q cycles such that

bij =

{
1, if ith cycle contains jth edge

0, otherwise
(3.3)

An example in provided below.

Figure 3.33: An example graph illustrating cycles

The graph in the figure above has three different cycles: Z1 = {e1, e2, e5}, Z2 = {e3, e4, e5},
Z1 = {e1, e2, e3, se4}. The cycle matrix can be written as follows.

e1 e2 e3 e4 e5

B =

Z1

Z2

Z3


1 1 0 0 1

0 0 1 1 1

1 1 1 1 0

 (3.4)

Note that adding the first two rows by modulo 2 arithmetic gives the third row, which
means the first and second cycles can form the third cycle by linear combination.

Definition 3.10 (Basis cycle). A basis cycle in a graph is a cycle that cannot be obtained
by linear combination of other cycles in the graph. All the cycles in a graph can be obtained
by the set of basis cycles in it.

Obviously, the rank of a cycle matrix is the number of basis cycles. For instance, the graph
in Figure 3.33 has two basis cycles Z1 and Z2, and the rank of its cycle matrix is 2.

Theorem 3.11. Suppose a graph G has n vertices, m edges and k connected components,
then the number of basis cycles in graph G is m − n + k. If B is a cycle matrix of graph
G then rank(B) = m− n+ k.
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Proof. This theorem comes from Corollary 4.6.7 in [14].

A column of all zeros corresponds to a bridge which does not belong to any cycle. For
example, in Figure 3.30 there are two cycles Z1 = {e1, e2, e3} and Z1 = {e4, e5, e6} and the
cycle matrix can be written as follows.

e1 e2 e3 e4 e5 e6 e7

B =
Z1

Z2

[
1 1 1 0 0 0 0

0 0 0 1 1 1 0

]
(3.5)

Note that the last column has only zeros, indicating edge e7 does not belong to any cycle,
i.e., it is a bridge.

Now it is clear that one can determine if there is a bridge in a graph by checking if
there is a column of all zeros in a cycle matrix. One way is to build the cycle matrix of a
graph constructed from a solution, which is not difficult. A better way is to convert this
problem to checking the incidence matrix of the graph.

Theorem 3.12. If G is a graph without self-loops, with incidence matrix A and cycle
matrix B whose columns are arranged using the same order of edges, then every row of B
is orthogonal to every column of A, i.e., ATBT = BA ≡ 0.

Proof. For any vertex vi and any cycle Zj in G, either vi ∈ Zj or vi /∈ Zj.

In the case vi /∈ Zj there is no edge of Zj which is incident on vi and in the case vi ∈ Zj

there are exactly two edges of Zj which are incident on vi.

Consider the ith column of A and the jth row of B. Since the edges are arranged in the
same order, the rth entries of the column and row are both nonzero if and only if the edge
er is incident on the ith vertex vi and is also in the jth cycle Zj.

We have [ATBT ]ij = Σ[AT ]ir[B
T ]rj = Σ[A]ri[B]jr == Σaribjr.

For each er of G, we have one of the following cases.

a. er is incident on vi and er /∈ Zj. Here ari = 1, bjr = 0.

b. er is not incident on vi and er ∈ Zj. Here ari = 0, bjr = 1.

c. er is not incident on vi and er /∈ Zj. Here ari = 0, bjr = 0.
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All these cases imply that the ith vertex is not in the jth cycle Zj and we have [ATBT ]ij =
0 ≡ 0 (mod 2).

d. er is incident on vi and er ∈ Zj.

Here we have exactly two edges, say er and et incident on vi so that ari = 1, ati = 1,
bjr = 1, bjt = 1. Therefore, [ATBT ]ij = Σaribjr = 1 + 1 = 0 (mod 2).

We illustrate the above theorem with the example in Figure 3.30.

BA =

[
1 1 1 0 0 0 0
0 0 0 1 1 1 0

]


1 1 0 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 1 1 0 0


=

[
2 2 2 0 0 0
0 0 0 2 2 2

]
≡ 0 (mod 2) (3.6)

Theorem 3.13. Let A and B respectively be an incidence matrix and a cycle matrix of
graph G with n vertices and m edges and k connected components. The dimension of the
null space of AT is equal to the rank of B.

Proof. By Rank-Nullity Theorem([22]), we have dim(N(AT )) = m−rank(A). By Theorem
3.8, rank(A) = n− k. Thus dim(N(AT )) = m− n+ k = rank(B) by Theorem 3.11.

Combining Theorem 3.12 and Theorem 3.13, it follows that the null space(mod 2) of AT

is the row space of B, which is also called the cycle space of graph G.

Recall that if there is a column of all zeros in a cycle matrix B(G) then there is a bridge
in G. Based upon this idea, the algorithm is described as follows.

Step 1. Compute a set of basis vectors using modulo 2 arithmetic for the null space of
AT . Denote the basis vectors as b1, b2, · · · , bm−n+k, which are column vectors.

Step 2. Form a matrix C = [b1 b2 · · · bm−n+k] whose order is n× (m− n+ k).

Step 3. If the matrix C contains a row of all zeros, there must be a bridge.
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Remark. When computing the basis for the null space of AT , Gaussian elimination is
inevitable, which can also give the rank of the incidence matrix A. In other words, the
number of basis vectors for null(AT ) = dim(ker(AT )) = m−rank(AT ) = m−rank(A), and
so we can know rank(A). Therefore, checking isolated group can be done simultaneously
with checking dead end.

An example: The matrices formed by the basis vectors of the null spaces of AT
1 and AT

2 in
Equation 3.2 are respectively

C1 =


1 0
1 0
1 0
0 1
0 1
0 1

 , C2 =



1 0
1 0
1 0
0 0
0 1
0 1
0 1


. (3.7)

In matrix C1, there is no row of all zeros so there is no bridge in the graph in Figure 3.29.
In matrix C2, the 4th row has all zeros so edge e4 is a bridge in the graph in Figure 3.30.

3.6 9-4-9 problem

In this section we apply all the algorithms for building solutions at each side and verifying
feasibility to the 9-4-9 problem which was introduced in Section 3.5.1.

Step 1. We first use Unified Minimum Degree Matching Algorithm together with Depth-
first Search to enumerate all the solutions at interface S2.

All the following steps are in the loop of i which indexes the solutions at S2.

Step 2. Based on the ith solutions at side S2, enumerate all the solutions at side S3. Since
solutions at side S2 cannot affect the connection at S3 and they have the same
interface, these two sides have the same set of connection solutions.

All the following steps are also in the loop of j which indexes the solutions at S3.
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Step 3. Based on ith solution at S2 and jth solution at S3, use Minimum Degree Matching
Algorithm together with Depth-first Search to enumerate all the solutions at S1.

Whether the solutions at S3, which is not adjacent to S1, affect the connec-
tions at S1 depends on the solutions at S2. For the moment, we do not propagate
constraints caused by solutions at non-adjacent sides.

Solutions at side S2 do affect the connections at side S1.

For example, the first solution at S2 has one endcap 9&6 and three simple merges:
8→5, 7→4, 3→2.

Propagating constraints to extreme end S1, these pairs cannot be connected at
S1: {9,6}, {8,5}, {7,4}, {3,2}.

The following step is also in the loop of k which indexes the solutions at S1.

Step 4. Based on ith solution at S2, jthe solution at S3, kth solution at S1, enumerate
all the solution at S4.

Step 5. Check feasibility of the full solution composed of the ith, jth, kth, lth solutions
respectively at S1, S2, S3, S4.

If feasible, store this full solution; Otherwise, discard it and proceed.

A few steps are demonstrated below:

• By enumeration, there are 22 connection solutions at both side S2 and S3.

• Based on the first solution at S2 and the first solution at S3, i.e., i = 1 and j = 1,
there are 4 connection solutions at S1.

• Given i = 1, j = 1 and k = 1, there are 4 connection solutions at S4, which give four
full potential feasible solutions. Verify the feasibility of each solution.

• Given i = 1, j = 1 and k = 2, there are again 4 connection solutions at S4, which give
another four full potential feasible solutions. Verify the feasibility of each solution.

• Continue the enumeration.
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The 3D images of two solutions are provided below:

Figure 3.34: 3D images of two solutions to the 9-4-9 problem

This set of algorithms of enumerating all the feasible solutions based upon a given circle-
packing in a prescribed region has been run on this 9-4-9 problem. It turns out that there
are a total number of 6798 feasible solutions, which is a huge number for such a small
sample problem.

As for the inlet and outlet of each tubular network generated by this set of algorithms,
they are not specified individually in the form where tube a is the inlet and tube b is the
outlet. Instead, the algorithm only designate a pair (a, b) as the inlet and outlet, which
are exchangeable. Therefore, the number of feasible solutions should be doubled for asym-
metric regions.

The region of the 9-4-9 problem happens to be symmetric because the two blocks B1

and B3 at two ends are exactly the same, show in Figure 3.22. However, if one of them is
different, then this problem would have 6798× 2 = 13596 feasible solutions.

3.7 Summary

In this chapter we have presented a series of algorithms for building connection solutions
at each side of the discretized 3D region with tubes already packed and also presented a
set of algorithms for verifying feasibility of a full solution.

For connecting the packed tubes, we only considered the situation in which all the tubes
have the same radius. This set of algorithms are also applicable to the problem in which
tubes have two radii if we introduce a new physical element, i.e., a bend with different
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radii at two ends. Then there are three basic connection operations: an endcap, a merge
and a shift operation with 2 radii can be adjust accordingly, as shown below.

Figure 3.35: The new physical element and basic operations with 2 radii

Based on these three basic operations, the four connection operations can be constructed:
an endcap, a simple merge, consecutive merges and merge/shift/merge. With these four
operations, we can apply the same algorithms to generate feasible solutions. An example
is provided below.

The 3D region is also a “saddle bag”. The block at the middle of the saddle bag has
the smaller cross section with only 16 circles packed. The two blocks at two ends have the
bigger cross section with 17 more circles packed based on the circle-packing in the smaller
cross section.

(a) Small cross section (b) Large cross section

Figure 3.36: Cross sections of blocks packed with tubes with two radii

Based on this set of circle-packing, one of many feasible solutions is provided below: Con-
nection at side S1.

80



• Endcaps: 24 & 19, 28 & 26, 33 & 32, 31 & 29, 25 & 20, 22 & 18, 21 & 23, 27 & 17,
16 & 3, 15& 2, 14 & 4, 12 & 11, 13 & 10, 7 & 6, 1 & 5, 8 & 9.

Connection at side S2.

• Endcaps: 22 & 25, 33 & 31, 23 & 17, 24 & 21, 28 & 27, 30 & 18.

• Simple merges: 20→8, 29→16, 26→14.

• Consecutive merges: 32→19→15.

• Merge/shift/merge: None.

Connection at side S3.

• Endcaps: 28 & 26, 23 & 27, 24 & 21, 32 & 19, 33 & 31, 30 & 18, 25 & 22.

• Simple merges: 17→14, 29→16, 20→8.

• Consecutive merges: None.

• Merge/shift/merge: None.

Connection at side S4.

• Endcaps: 24 & 19, 30 & 29, 25 & 20, 28 & 27, 22 & 18, 31 & 32, 26 & 14, 23 & 21,
17 & 2, 16 & 15, 12 & 4, 13 & 11, 10 & 7, 6 & 5, 1 & 3, 8 & 9.

Tube 30 at side S1 and tube 33 at side S2 are not connected and hence designated as the
inlet and outlet of the entire tubular network.

Of course this set of algorithms can be applied to the problems with more than 2 di-
ameters if no new connection operations will be introduced, i.e., use only an endcap, a
simple merge, consecutive merges and merge/shift/merge.

Among all the solutions of a problem, the best one can be obtained by evaluating all
the solutions and choosing the best one. However, for bigger problems with more tubes
packed in a region with more interfaces, it is not practical to enumerate all the feasible
solutions in that this algorithm has factorial time complexity.

Therefore, we need to explore other approaches.

81



Chapter 4

Genetic Algorithm Approach

In this chapter, we discuss a simplified genetic algorithm (GA) approach to obtain a good,
and hopefully optimal tubular networks for a given circle-packing.

Usually there are two important GA operators that generate new offspring:

• A crossover operator that combines existing solutions into others.

• A mutation operator that alters existing solutions into others.

In a genetic algorithm, the fitness value of an individual (solution) is a measure of how
good it is in terms of the objective function of the optimization problem. More details on
GAs and their applications may be found in [24].

A tubular network solution is extremely unstable in the sense that a small change in
any connection operation in an existing solution Sol0 may result in a dramatic change in
the altered solution Sol1 in order for it to remain feasible. Sometimes Sol0 and Sol1 are
completely different solutions. Therefore, no desired property can be preserved or com-
bined. As such, it is very difficult to imagine a crossover operator in our problem.

A mutation operator is indeed applied and it must be capable of altering an existing
solution, whether in one step or in multiple steps, into any other solution in the entire
solution space of the problem.

Here are the basic steps for the mutation-only genetic algorithm developed for our tubular
network problem, each of which will be explained in the next few sections.
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Step 1. Randomly generate N0 solutions as the initial population of this genetic algorithm
and evaluate the fitness of each individual in the population.

Step 2. Use fitness proportionate selection with mutation probability Pm to select Nm =
Pm ×N0 individuals to which the mutation operator will be applied.

Step 3. Apply the mutation operator to the Nm selected individuals to obtain Nm new
individuals and evaluate the fitness of each of them.

Step 4. Now the population size is N0 + Nm. Probabilistically eliminate Nm solutions
according to fitness values to keep the population size fixed at N0.

Step 5. Repeat Steps 2 to 4 until the termination condition is satisfied. Choose the
individual with the highest fitness value that ever appeared in all generations.

Note that the encoding of a solution is the solution itself, i.e., the list of all types of
connection operations and the involved tubes at each side.

4.1 Initial population and fitness value

Recall that the algorithms for generating connection solutions at each side of the discretized
region are combined with depth-first search in order to enumerate all the potential solu-
tions. In this case, adjacent solutions in the full set may be very similar to each other, e.g.,
differ in only two endcaps, because they were produced in a certain order.

However, similarity of solutions in the population reduces its diversity, which might ad-
versely impact the performance of genetic algorithm. One way to increase the diversity of
the initial population is to randomly generate connection solutions on each side.

Randomly generating a connection solution at an extreme end is straightforward: ran-
domly choose one whenever there are multiple options.

Randomly generating a connection solution at an interface is somewhat more complicated
because the length of each raw solution might be different. The following steps are applied
in order to obtain a solution of random length.

Step 1. Randomly make connections whenever there are multiple options until each bound-
ary circle has been connected to exactly one circle. Denote this raw solution by
M0 which contains nmin boundary circles.
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Step 2. Use depth-first search to find out the longest possible raw solution based on this
shortest solution M0. Denote the max length by nmax.

Step 3. Randomly choose an even integer nr within the interval [nmin, nmax].

Step 4. Randomly generate a raw solution with length nr.

In the problem in Figure 3.21, we have M0 = {{5, 1}, {8, 2}}. It is easy to determine
the longest raw solution based on M0 is Mmax = {{5, 1}, {8, 2}, {1, 3}, {2, 4}, {3, 6}, {4, 7}}
which represents two groups of merge/shift/merge operations: 5→1→3→6 and 8→2→4→7.

Randomly choose an even integer within the interval [4, 12], e.g., 8, then randomly generate
a raw solution with length 8, i.e., 4 pairs. An example would be M = {{5, 1}, {8, 2}, {1, 3},
{3, 6}}, which represents a group of merge/shift/merge 5→1→3→6 and an endcap 8&2.

Evaluation of each solution can be customized depending on the specific application of
the tubular networks. Note that it is possible that no feasible solution can be constructed
based on an existing solution with the mutation operator already applied. In this case, we
still consider it as a new “solution” whose fitness value is zero, regardless of the evaluation
function.

4.2 Selection and mutation operator

4.2.1 Roulette-wheel selection

The roulette-wheel selection is fitness proportionate, in which an individual with a higher
fitness value has a greater probability of getting selected.

Suppose each individual in the population has a fitness value fi, 1 ≤ i ≤ N0 and the
mutation probability is Pm. The steps for roulette-wheel selection are described below:

Step 1. Sum all the fitness values: F =
∑N0

i=1 fi.

Step 2. Obtain the selection probability of each individual: wi = fi/F .

Step 3. Calculate the sum of first i fitness values of the individuals: Si =
∑i

j=1wi.
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Step 4. Independently generate Nm = Pm × N0 random numbers ti from a uniform dis-
tribution on the interval [0, 1]. For each ti, 1 ≤ i ≤ N0, find the smallest Sk that
is greater than or equal to ti, and then select individual k.

An example is provided in Table 4.1 where the population size is 10.

Table 4.1: An example of roulette-wheel selection

Individual i 1 2 3 4 5 6 7 8 9 10

Fitness value fi 29 27 23 19 17 14 12 10 8 5

Selection probability wi 0.18 0.16 0.14 0.12 0.10 0.09 0.07 0.06 0.05 0.03

Sum Si 0.18 0.34 0.48 0.60 0.70 0.79 0.86 0.92 0.97 1.00

Suppose the mutation probability is Pm = 0.4 and 4 random numbers have been inde-
pendently generated: 0.35, 0.86, 0.63, 0.12. The corresponding selected individuals are
respectively 3, 7, 5, 1.

4.2.2 Mutation operator

The mutation operator in this algorithm must be capable of altering an existing solution,
whether in one step or in multiple steps, into any other solution in the entire solution space
of the problem.

Suppose the discretized region has a total number of S sides. The steps of mutating a
full solution of the entire connection problem are as follows.

Step 1. Randomly generate a side number s within the interval [1, S]. Recall that side
numbers 1 and S represent the two extreme ends and the other side numbers
represent the interfaces.

Step 2. Let Nt be the number of tubes at an extreme end or the maximum number of
circles in the two cross sections contained in an interface. For example, in the
9-4-9 problem, Nt is 9 at all four sides.

Randomly generate an integer T within the interval [1, Nt] and find which group
G of connection tube T is involved in, e.g., an endcap, a group of consecutive
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merges. Mutate this group G: First remove all the connections and propagated
constraints at the chosen side s except for G and then mutate tube T in one of
the following three ways in order to form a new group of connections:

• Replace T with another tube, which leads to a new valid group of connections.

• Add a tube to group G to form a longer group of connections, e.g., from an
endcap to consecutive merges.

• Delete a tube from group G to form a shorter one, e.g., from consecutive merges
to a simple merge.

Restriction: At an interface, all these three ways of mutating tube T cannot
lead to the situation where another boundary circle has a connectivity degree of
zero.

The mutation of tube T in different cases and one common rule that applies to every case
are described below:

Recall that a “1C” circle represents a first-layer common circle, a “1B” circle represents
a second-layer boundary circle, further explanation and the definitions of “2C” and “2B”
circles were discussed in Section 3.4.1.

Common rule. If there exists a tube Q that has the same layer-rank as that of T and
that is available to all the tubes that are connected to tube T in the found group of connec-
tions, then T can be replaced by Q as a mutation. (Note that all the other connections and
propagated constraints are now removed so that any tube with the properties described
above can replace T .) For example, suppose that tube T is found in a group of consecutive
merges: X→T→P . If there exists a 1C circle Q that is available to both X and P , then
tube T can be replaced by Q to form a new group of consecutive merges: X→Q→P .

All the possible mutations in addition to this common rule in every case are described
below, some of which might be inapplicable depending on the specific T and G. Note that
in some cases applying the common rule is the only possible mutation.

Case 1. Side s is an extreme end, i.e., s = 1 or s = S. If tube T is an inlet or out-
let, put T in an endcap with one of its available tubes.

In the following cases side s is an interface, i.e., 2 ≤ s ≤ S − 1.

Case 2. Tube T is in an endcap with a partner P .
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2.1 If T is a 1B circle and it has an available tube Q which is an 1C circle, add Q
to the endcap to form a group of consecutive merges: P→T→Q.

2.2 If P is also a 1B circle and there is an 1C circle Q available to it, replace T with
Q and the endcap becomes a simple merge: P→Q.

Case 3. Tube T is in a simple merge: P→T . If there exists a boundary circle Q available
to P , replace T with Q and the simple merge now becomes an endcap: P&Q.

Case 4. Tube T is in a simple merge: T→P . If there exists a boundary circle Q available
to T , add Q to the simple merge to form the consecutive merges: Q→T→P .

Case 5. Tube T is in a group of consecutive merges: X→P→T .

5.1 Delete T from the group of consecutive merges, leading to an endcap: X→P .

5.2 If there exists a common circle Q available to T , add Q to the group and form
a group of merge/shift/merge: X→P→T→Q.

Case 6. Tube T is in a group of consecutive merges: X→T→P .

Case 7. Tube T is in a group of consecutive merges: T→X→P . Break T→X and
obtain an endcap X→P . Further, if there exists another tube Q available to T , boundary
or common circle, connected Q and T to obtain either another endcap Q→T or a simple
merge T→Q.

Case 8. Tube T is in a group of consecutive merges: X→Y→P→T . Delete T and
obtain a group of consecutive merges X→Y→P .

Case 9. Tube T is in a group of consecutive merges: X→Y→T→P .

Case 10. Tube T is in a group of consecutive merges: X→T→Y→P .

Case 11. Tube T is in a group of consecutive merges: T→X→Y→P .

Identify and count the number of applicable mutations of a group G of connection, and
then randomly choose one.
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After the group G of connections has been mutated to a new group Gnew, we can pro-
ceed to the next steps of mutating a full solution.

Step 3. Based on Gnew, make connections on side s and store them into Mfix, using its
corresponding algorithm, until there are multiple options of choosing the tube to
be connected, i.e., connect only all the fixed pairs which have to be connected.

Note that a tube with a connectivity degree of 1 does not necessarily belong
to a fixed pair because it is possible that another tube has the same unique avail-
able tube, giving rise to multiple options.

For example, if tube a has only one available tube c and so does tube b, then
neither {a, c} nor {b, c} is a fixed pair.

Step 4. Propagate the constraints caused by Mfix to the adjacent sides of side s that
might be affected. If the existing connection solution Madj at an adjacent side
conflicts with Mfix, i.e., they form at least an isolated loop or an dead end, then
remove it and randomly regenerate a new Madj based upon Mfix.

Step 5. Go back to complete the connection solution at side s with all the constraints
propagated from its adjacent sides.

Step 6. Verify the feasibility of the full solution obtained in the previous steps. If feasible,
accept it as a new individual and the process of mutation of a full solution should
stop here.

Step 7. If the new full solution is not feasible, regenerate a new Madj for each adjacent
side that might be affected based upon Mfix and repeat Steps 5 and 6 for a cer-
tain number of times, e.g., 10 times. If still no feasible full solution can be found,
then create a dummy full solution as the new individual and assign a fitness value
of zero to it. That dummy solution will definitely be eliminated, which will be
discussed later.

We repeat Steps 5 and 6 because there is no reason to discard the mutated new
group Gnew of connections based on one pass of randomly generating a connection
solution. However, if after a good number of times of trials still no feasible solu-
tion can be found, then it might be that Gnew is incompatible with the connection
solutions at all the other sides.
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The following is an example of mutating a full solution.

Suppose that in the 9-4-9 problem, the solution in Section 3.5.1 is selected for mutation.

• Randomly choose a side number within the interval [1, 4]: we have s = 2 which represents
an interface.

• Randomly choose a number within the interval [1, 9], we have T = 5.

In the connection solution at side 2, tube 5 is in a group of consecutive merges: 9→8→5.

• There are three possible mutations: the common rule, Case 5.1 and Case 5.2.

As for the common rule, tube 5 is the only common circle available to tube 8 and hence
it is inapplicable in this specific situation.

Case 5.1, in which tube T will be deleted to form an endcap, is always applicable.

Case 5.2, in which another tube will be added, is applicable here, and there are two
choices: tube 2 and tube 4.

Recall the restriction which states that mutation of tube T cannot lead to the situation
where another boundary circle has zero connectivity degree. Therefore tube 4 cannot be
added to the group of consecutive merges because tube 7 would have zero degree if done
so.

• Randomly choose one between the two applicable cases and apply the mutation to obtain
a new group of connections: we have a new group Gnew: 9→8→5→2.

• Connect all the fixed pairs at side 2 based on Gnew and we have Mfix = {{Gnew}, {3, 6},
{7, 4}}.

• The adjacent side(s) of side 2 that might be affected is side 1 which is an extreme end.
Also, there happens to be no conflict between Mfix at side 2 and the existing solution
at side 1.

• Go back to side 2 and complete the connection solution based on Mfix and the solution
at side 1. In fact, Mfix has already covered all the boundary circles.

• Check feasibility and repeat the steps if necessary.

Apply mutation to all the Nm = Pm×N0 selected individuals and add the new individuals
to the current population.
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4.3 Elimination and termination

After mutation, the size of the population will be N0 +Nm. In order to keep the size fixed,
Nm individuals must be eliminated probabilistically. The steps are as follows:

Step 1. Rank all the individuals by fitness values in descending order.

Step 2. Let Nf0 denote the number of individuals with zero fitness value and eliminate
all the individuals with zero fitness value. This is because individuals with zero
fitness values must be dummy solutions produced due to the failure of mutation.
(Note that a feasible solution must have a positive fitness value.)

Step 3. Start with the individual with the lowest fitness value, i.e., the fth where f =
N0 +Nm −Nf0, and choose a random integer Ir. If Ir is even then eliminate the
fth individual; Otherwise apply the same procedure to the (f − 1)th individual
and repeat until Nm individuals have been eliminated.

Note that if the size of the population is still larger than N0 after one loop of all
the individuals, then go back to the individual with the lowest fitness value.

Note that in this method of eliminating individuals, the one with the highest fitness value
might be eliminated with a very low probability, indicating the last generation may not
contain the best individual that ever appeared in the process. Therefore, we have to keep
track of the best individual.

The reason why we do not truncate all the Nm worst ones is that individuals with low
fitness value might become one with a high fitness after more mutations. Also, probabilis-
tic elimination helps maintaining the diversity of the population, which positively affects
the performance of the genetic algorithm.

There are various criteria of termination and some of them are listed below:

Type 1. Terminate after a certain number of generations.

Type 2. Terminate after a certain period of CPU time.

Type 3. Terminate when the difference in fitness values between the best and worst has
reached a certain value.

90



Type 4. Terminate when there has been no improvement in the last certain number of
generations.

Appropriate termination criteria should be chosen depending on the specific application
and its constraints.

4.4 Results and summary

In this section we apply this genetic algorithm to the 9-4-9 problem.

First, we randomly generated 20 feasible solutions as the initial population. Then we
use the internal volume of all the tubes in the network as the fitness value of each solu-
tion. When computing the internal volume the interference problem should be taken into
consideration, which is illustrated below.

Figure 4.1: Interference caused by an endcap Figure 4.2: Narrowed endcap

In Figure 4.1, if tubes a and b are connected by an endcap then the cap would block
the region enclosed by red lines, hence leading to the impossibility of extending tube c or
making connections between tube c and other tubes. To solve this problem, we can use
the strategy of narrowing down only the two 90-degree bends as shown in Figure 4.2.

Similarly, since all the tubes are tightly packed touching each other, a merge or a shift
can also result in interference. Again, we can narrow down the physical elements that
connect the tubes to reduce the interference. The internal volume of a tubular network
can be easily computed and the details are omitted here.

The genetic algorithm was run for 20 generations with a mutation probability of 0.3 and
the process of evolution of the population is shown in Figure 4.3. As shown, the average
of the fitness values of the population is improving during the evolution process and the
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Figure 4.3: Highest and average fitness value of each generation

maximum possible fitness value is reached at the second generation. In this case, the in-
ternal volume of solutions only slightly deviate from each other because all the solutions
differ only in the numbers of all types of connection operations. Further, solutions with the
same number of each type of connection operation always have the same internal volume.
One solution with the highest fitness value is given below:

Connection at side S1. Endcaps: 3 & 6, 7 & 8, 1 & 2, 4 & 5.

Connection at side S2.

• Endcaps: 9 & 6.

• Simple merges: 8→5, 7→4, 3→2.

Connection at side S3.

• Endcaps: 9 & 6.

• Simple merges: 8→5, 7→4, 3→2.

Connection at side S4. Endcaps: 3 & 6, 7 & 8, 1 & 4, 2 & 5.

The mutation-only genetic algorithm described in this chapter is able to search the en-
tire solution space of the connection problem. Every aspect of this algorithm, including
the selection strategy, elimination and termination condition, contributes to its efficacy. It
is much more efficient that the impractical method of enumerating all feasible solutions.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis we have presented a series of algorithms for constructing optimal tubular
networks in arbitrary regions in R3. Given a 3D region, we first discretize it along a
principal direction and obtain different blocks, each of which exhibits no variation in cross
section. Then the problem has been divided into two parts:

1. Pack tubes into the blocks, which reduces to packing circles into the cross sections,
approximated by polygons, of the blocks.

2. Connect the packed tubes with different operations and verify feasibility of each
solution.

5.1.1 For circle-packing

Given a set of cross sections of the blocks, we first pack circles into an interior region which
is common to several or all cross sections and the remainder of the unpacked region are
packed afterwards. We have also developed a set of novel circle-packing algorithms for
arbitrary polygons.

In chapter 2 we have presented various algorithms for packing different-sized circles into
an arbitrary polygon and the ultimate circle-packing possesses the following two features:
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a). Larger circles are situated primarily in the interior of the region.

b). As much of the remaining empty space as possible is along the boundary.

We described the GGL algorithm of packing circles into a rectangular region and then
extended this algorithm to packing circles into an arbitrary polygon. The GGL-based
algorithm starts packing circles at corners and develops both upwards and to the right.
Although a circle-packing generated by the GGL-based algorithm does not possess the
desired features, the method of placing circles by position numbers can still be employed
in other algorithms we developed.

In an attempt to have larger circles packed primarily in the interior regions, we designed
the Reversed-GGL algorithm which starts packing circles at the interior of the region and
proceeds towards the boundary. However, the Reversed-GGL algorithm has a limitation–
sometimes the circle-packing cannot reach very narrow corners, which is due to the rule
that only two-circle packing is allowed. In order to eliminate this limitation, we introduced
the rule of one-circle packing which allows a candidate circle to be packed tangent to only
one previously packed circle. As expected, the circle-packing produced by the Reversed-
GGL algorithm with one-circle packing can reach very narrow corners. A disadvantage of
one-circle packing is that it is less compact than two-circle packing, which means prob-
abilistically much more iterations are needed to generate a circle-packing as good as the
ones generated by algorithms employing only two-circle packing.

The Reversed-GGL algorithm with one-circle packing still cannot restrict large circles in
the central region of a polygon. Therefore, we imposed a set of additional constraints on
the distance between the center of a large/medium circle and the boundary. With this set
of constraints, all the large/medium circles are restricted to the central part of the polygon
and thus the first desired feature is satisfied.

We have also developed the Hybrid Circle-packing algorithm to restrict large circles to the
central region of a polygon, which is called hybrid circle-packing algorithm. It first uses
the Reversed-GGL algorithm to fill the polygon with different-sized circles, then removes
the outermost layer of circles of the circle-packing, and finally employs the GGL-based
algorithm to pack circles between the boundary and the second outermost layer. This
algorithm can indeed restrict large circles in the central region of polygon but it is compli-
cated and it does not have control over the distance between large circles and the boundary.

In order to accelerate the process of obtaining a decent or optimal circle-packing, we have
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designed the “jiggling” algorithm which imposes a fictitious force field that attracts all
the small and medium-sized circles towards the “center of mass” of a given circle-packing.
As a result, in addition to the acceleration of circle-packing, more empty space along the
boundary is released, satisfying the second feature that is desired.

In summary, constraints on the distance between large circles and the boundary should be
employed in every circle-packing algorithm. As well, jiggling should be employed in order
to improve each packing. The various circle-packing algorithms developed in this thesis
are listed below with the planar regions over which they are suitable:

1. Reversed-GGL algorithm: Only for polygons without needle-like regions.

2. Reversed-GGL algorithm with one-circle packing: For any polygon.

3. Hybrid circle-packing algorithm: Applicable to any polygon if there is no specific
requirement on the distance between large circles and the boundary.

5.1.2 For connection

As for connecting the packed tubes in the discretized region, we only allowed three physical
elements: a straight pipe, a 90-degree bend and a tee joint, from which four connection
operations have been constructed: an endcap, a simple merge, consecutive merges and
merge/shift/merge.

Using these four connection operations, we have designed a series of algorithms for enumer-
ating all the feasible solutions and for randomly generating a subset of the entire solution
space and choosing the best one. With the blocks of the 3D region, we introduced the con-
cepts of “side”, i.e., an extreme end of the 3D region or an interface of two blocks. Then
we developed algorithms that allow us to generate a connection solution for each side sepa-
rately, which composes a potentially feasible full solution for the entire connection problem.

For a connection solution at an extreme end, the problem has been converted to the
one of finding maximum matchings in the graph constructed from the circle-packing. The
Minimum Degree Matching Algorithm is an extremely efficient algorithm (linear time com-
plexity) for generating matchings that are extremely close to a maximum matching of a
graph, and in most cases it generates maximum matchings. If combined with Depth-first
Search, it is capable of enumerating all the maximum matchings in a graph, which is desired.
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For a connection solution at an interface, we have designed a novel algorithm which is
called the Unified Minimum Degree Matching Algorithm, so named because all the four
operations are dealt with in the same way. The main idea of this algorithm is similar to
that of the Minimum Degree Matching Algorithm, i.e., repeatedly picking edges incident to
nodes of current minimum non-zero connectivity degree. In this algorithm, we introduced
two new concepts of “layer-rank” and “connectivity value” that made it possible for a tube
to be connected to two other tubes. At the last step of this algorithm, a raw solution
is interpreted into a meaningful connection solution. Again, if combined with Depth-first
Search, this algorithm can enumerate all the possible connection solutions at an interface.

A potentially feasible full solution is composed of connection solutions at each side of
the discretized 3D region. A feasible tubular network does not have any isolated loop or
dead end, which involves the two concepts of “connected graph” and “bridge” in graph
theory. Therefore, some aspects of graph theory were introduced in order to algorithmi-
cally verify the feasibility of each potential solution.

We constructed a graph based upon all the connection operations of the entire tubular
network and stored it in the form of an incidence matrix. Building upon a series of the-
orems in graph matrix theory, we developed an algorithm that only needs to check the
rank of the incidence matrix A to determine if the graph is disconnected or not. Also,
we designed an algorithm that computes a set of basis vectors for the null space of AT

to determine if there is any bridge. When computing the basis for the null space of AT ,
Gaussian elimination is inevitable, which can also give the rank of the incidence matrix A.
Therefore, checking for the occurrence of both isolated groups and dead ends can be done
simultaneously.

We applied all the algorithms to a sample problem, i.e., the 9-4-9 problem, and obtained
6798 feasible solutions by enumeration. This set of algorithms can also be applied to prob-
lems where tubes have different radii by introducing a new physical element: a bend with
different radii at its two ends. Among all the solutions of a problem, the best one can be
obtained by evaluating all the solutions and choosing the best one. However, for bigger
problems with more tubes packed in a region with more interfaces, it is not practical to
enumerate all the feasible solutions. Therefore, we designed a genetic algorithm with only
a mutation operator that generates new solutions. The mutation operator in this genetic
algorithm is capable of altering an existing solution to any other solution in the entire
solution space of the connection problem and thus the algorithm can produce an optimal
solution.
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5.2 Future work

In this thesis, all the circle-packing algorithms are applicable only to regions enclosed by
simple closed curves, i.e., regions without “holes”. One possible extension is to adapt these
algorithms to pack non-simple regions similar to the one shown below.

Figure 5.1: A non-simple region

In the process of obtaining a connection solution at each side, we only propagated con-
straints between adjacent sides to immediately avoid isolated loops and dead ends. It is
desirable to propagate constraints between non-adjacent sides, which might accelerate the
algorithm and hence save computational resources.

When determining the available tubes for connection of a tube, we only considered adjacent
tubes. One may wish to consider connections between non-adjacent tubes by quantifying
the interference with other tubes caused by those connections. Accordingly, the layer-ranks
would be depending on availability for connection instead of adjacency. Another possible
extension is to add more connection operations for problems with multiple radii. For ex-
ample, one can allow an endcap that connects three tubes.

Recall that a merge or a shift operation is only allowed at interfaces. One may wish
to allow merges or shifts to occur at or near the extreme ends. This would necessitate
the modification of our existing algorithms. Moreover, a much larger number of feasible
networks would result.

Figure 5.2: Front view of a 3D region with two principal directions
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An assumption of this entire problem is that the prescribed 3D region always has one
principal direction. A direction of research could be investigating the problem in which
the 3D region has multiple principal directions.
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