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Abstract

The theme of this thesis is combinatorics, complex analysis and algebraic
geometry. The thesis consists of six articles divided into four parts.

Part A: Spectral properties of the Schrödinger equation

This part consists of Papers I-II, where we study a univariate
Schrödinger equation with a complex polynomial potential. We
prove that the set of polynomial potentials that admits solutions to
the Schrödinger equation satisfying certain boundary conditions,
is connected. We also study a similar problem for even polynomial
potentials, where a similar result is obtained.

Part B: Graph monomials and sums of squares

In this part, consisting of Paper III, we study natural bases for
the space of homogeneous, symmetric and translation-invariant
polynomials in terms of multigraphs. We find all multigraphs with
at most six edges that give rise to non-negative polynomials, and
determine which of these that can be expressed as a sum of squares.

Part C: Eigenvalue asymptotics of banded Toeplitz matrices

This part consists of Papers IV-V. We give a new and general-
ized proof of a theorem by P. Schmidt and F. Spitzer concerning
asymptotics of eigenvalues of Toeplitz matrices. We also general-
ize the notion of eigenvalues to rectangular matrices, and partially
prove the multivariate analogue of the above theorem.

Part D: Stretched Schur polynomials

This part consists of Paper VI, where we give a combinatorial proof
of the fact that certain sequences of skew Schur polynomials satisfy
linear recurrences with polynomial coefficients.
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1. Introduction and summary of
the papers

1.1 Introduction

The thesis consists of four different parts, corresponding to papers I-II,
paper III, papers IV-V and finally paper VI.

The theme of the thesis is combinatorics, complex analysis and al-
gebraic geometry. Most of the problems we consider are not a priori
combinatorial in nature, but rather of analytic character. By using
different methods, the problems are reduced to discrete combinatorial
statements. For example, the main objects in papers I-III are graphs
and multigraphs, while papers IV-VI mainly deals with Young tableaux.
The latter is a well-studied combinatorial object with many applications.

The advantage of discrete problems is that these are easier to analyze
with computer calculations, which is used extensively in the present
thesis. A vast number of computer-generated examples where created
for each article and these gave good indications on what exact statements
to prove and the technique needed in the proofs. This is an aspect of
the thesis which might not be obvious from the text.

1.2 Spectral properties of the Schrödinger equation

The first part was supervised by Andrei Gabrielov at Purdue Univer-
sity, USA, and concerns certain properties of solutions of the Schrödinger
equation. The work relies on earlier results and techniques by A. Gabrielov
and A. Eremenko, which are of a combinatorial nature.

In the first and second paper, we examine the Schrödinger-type equa-
tion −y′′ + P (z)y = 0 for an arbitrary respectively arbitrary even poly-
nomial potential P of degree n with complex coefficients. In short, only
some polynomials P admits solutions to −y′′ + P (z)y = 0 when we fix
appropriate boundary conditions. In physics, one is for example inter-
ested in the boundary conditions given by y(x) → 0 as x → ±∞ for
x ∈ R.
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We show that in the general case, the space of coefficients of P, which
admits a solution satisfying the boundary conditions, is connected. By
using previous results by A. Gabrielov and A. Eremenko, this problem is
reduced to a discrete combinatorial problem on certain types of graphs
with an extra structure. It is classically known that any solution y
of the Schrödinger equation above can essentially be described by an
ordered set of n+2 continuous parameters in C, called asymptotic values,
together with a discrete graph.

Thus, suppose we have two such solutions, y1 and y2 for two poly-
nomials P1 and P2. We may continuously change the asymptotic values
of y1 so that they match the asymptotic values of y2. The coefficients
of P1 depends continuously on the asymptotic values. Now, the only
thing that remains is the discrete graph, which we can deform by in-
terchanging the asymptotic values. This gives a braid group action on
the graphs, and in order to prove connectedness, it suffices to show that
each graph may be reached from every other using this action.

My contribution to Paper I was to analyze how the braid group acts
on these graphs. By proving that the braid group acts transitively on
the set of graphs, the result follows. The same technique was used in
Paper II, where P is restricted to be an even polynomial. In this case,
the space of parameters admitting a solution consists of two connected
components, unless we pose some very restrictive boundary conditions.

1.3 Graph monomials and sums of squares

The second part concerns homogeneous, symmetric and translation-
invariant polynomials in n variables. A polynomial P is called translation-
invariant if P (x1 + t, x2 + t, . . . , xn + t) = P (x1, x2, . . . , xn) for all t ∈ R.
We give a natural basis for the space of such polynomials in terms of
multigraphs. When degP = 2d is even, a second basis is constructed
from multigraphs. This basis consists of squares of homogeneous, sym-
metric and translation-invariant polynomials of degree d. The proofs of
linear independence in the different bases is done via a combinatorial
argument.

As an application, motivated by an interesting example found by
A. and P. Lax, see [2], we find all multigraphs with six or less edges, that
give rise to a non-negative polynomial which is not a sum of squares.
Most of this is done by computer-aided computations.

A good example of such polynomial is the discriminant of the kth
derivative of a general polynomial (t − x1) · · · (t − xn). We conjecture
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that these discriminants are always sums of squares, and provide several
examples indicating this. For the case k = 1, the representability as
a sum of squares was earlier conjectured by F. Sottile and E. Mukhin,
which is now settled, see [3].

My contribution to this paper consists of the computer calculations
and the combinatorial proofs.

1.4 Eigenvalue asymptotics of banded Toeplitz
matrices

The third part concerns a result in [4], from 1960 by P. Schmidt and
F. Spitzer, which describes the asymptotic eigenvalue distribution for
banded Toeplitz matrices. A banded n×n Toeplitz matrix has the form

(cj−i), 1 ≤ i < n, 1 ≤ j < n with sl := 0 for l > k, l < −h,

where h, k > 0 are fixed constants. The theorem by Palle Schmidt and
Frank Spitzer states that the limit set of eigenvalues (with a suitable
definition) coincides with a certain semi-algebraic curve depending on
c−h, . . . , ck. Their proof relies on Widom’s formula, see [5], which is
used to compute determinants of banded Toeplitz matrices.

In Paper IV, we give a new (and generalized) proof of Schmidt and
Spitzer’s theorem using a new recurrence for skew Schur polynomials
that we prove in the paper. We also show that Widom’s formula is a
special case of a known formula for Schur polynomials.

In Paper V, we generalize the notion of eigenvalues to any rectangular
matrix and partially prove a multivariate version of the theorem by
P. Schmidt and F. Spitzer. We also suggest a new way of how to view
certain families of multivariate orthogonal polynomials.

My main contributions to Paper V consists of the proof of compact-
ness of the conjectured limit set of generalized eigenvalues, as well as the
proof of the inclusion of the limit set of eigenvalues in the conjectured
limit set.

1.5 Stretched Schur polynomials

The final part consists of Paper VI and considerably generalizes the
combinatorial part of the recurrence for Toeplitz determinants in Pa-
per IV. There is a close connection between Toeplitz determinants and
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Schur polynomials. Schur polynomials, and skew Schur polynomials are
obtained from integer partitions, where a partition is a non-increasing
sequence (λ1, λ2, . . . , λp) of natural numbers. A sequence of stretched
partitions is obtained by multiplying the entries of a partition by an
integer factor, {(kλ1, kλ2, . . . , kλp)}∞k=1 is thus such a sequence.

We show that any sequence of stretched skew partitions yields a
sequence of corresponding skew Schur polynomials which satisfy a linear
recurrence with polynomial coefficients.

To prove this result, a new ring structure on skew Young tableaux
is introduced. In this ring, we give a combinatorial proof of a linear re-
currence which is then mapped to a corresponding linear recurrence on
Schur polynomials via a ring homomorphism. The characteristic poly-
nomials of these recurrences may be used to determine the asymptotic
root distribution of certain sequences of skew Schur polynomials. As
in Paper IV, this may be used to give descriptions on the asymptotic
eigenvalue distribution for certain matrices.

Sequences of stretched partitions and related combinatorial objects
have been studied before, see for example the famous result of A. Knut-
son and T. Tao [1] regarding Littlewood-Richardson coefficients.
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2. Sammanfattning

Denna avhandling är uppdelad i fyra delar, med sammanlagt sex ar-
tiklar. Avhandlingen tillhör de matematiska omr̊adena kombinatorik,
komplex analys samt algebraisk geometri.

Den första delen best̊ar av artikel I-II och behandlar Schrödinger-
ekvationen −y′′ + P (z)y = 0, där potentialen P är ett polynom med
komplexa koefficienter. Vi inför ocks̊a ett antal randvillkor p̊a denna
ekvation. I den första artikeln visar vi att mängden av polynom som
till̊ater en lösning med randvillkoren uppfyllda, är sammanhängande.
Detta visas genom att reducera problemet till ett kombinatoriskt prob-
lem p̊a en viss slags grafer med extra struktur. I den andra artikeln
används samma metodik för att visa ett motsvarande resultat, men där
potentialen är ett jämnt polynom.

Den andra delen utgörs av artikel III, där vi studerar polynom som
är homogena, symmetriska och translationsinvarianta. S̊adana poly-
nom dyker naturligt upp när man studerar diskriminanter. Vi stud-
erar naturliga baser för detta rum av polynom med hjälp av multi-
grafer. Vi kartlägger sedan alla multigrafer med upp till sex kanter vars
motsvarande polynom är icke-negativa men inte en summa av kvadrater.
Detta motiveras av ett exempel som gavs av A. och P. Lax.

Den tredje delen, best̊aende av artikel IV-V, behandlar det asympto-
tiska beteendet hos egenvärden till vissa Toeplitzmatriser, med ökande
storlek. Det finns ett klassiskt resultat om detta av P. Schmidt och
F. Spitzer, som vi ger ett nytt och generaliserat bevis p̊a. I den femte
artikeln definierar vi egenvärden för rektangulära matriser. Därefter s̊a
formulerar vi en motsvarighet i flera variabler till Schmidt och Spitzers
resultat, som vi delvis bevisar. Detta har en koppling till ortogonala
polynom i flera variabler.

I den sista delen, best̊aende av artikel VI, studerar vi vissa serier av
Schurpolynom. Vi visar att dessa polynom uppfyller linjära rekurrenser
med polynomiella koefficienter. Detta är en stor generalisering av ett
delresultat i artikel IV. Beviset är rent kombinatoriskt och bygger p̊a
studier av Youngtabl̊aer.
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ON EIGENVALUES OF THE SCHRÖDINGER
OPERATOR WITH A COMPLEX-VALUED

POLYNOMIAL POTENTIAL

PER ALEXANDERSSON AND ANDREI GABRIELOV

Abstract. We consider the eigenvalue problem with a complex-
valued polynomial potential of arbitrary degree d and show that the
spectral determinant of this problem is connected and irreducible.
In other words, every eigenvalue can be reached from any other by
analytic continuation.

We also prove connectedness of the parameter spaces of the po-
tentials that admit eigenfunctions satisfying k > 2 boundary condi-
tions, except for the case d is even and k = d/2. In the latter case,
connected components of the parameter space are distinguished by
the number of zeros of the eigenfunctions.

The �rst results can be derived from H. Habsch, while the case
of a disconnected parameter space is new.

1. Introduction

In this paper we study analytic continuation of eigenvalues of the
Schrödinger operator with a complex-valued polynomial potential. In
other words, we are interested in the analytic continuation of eigenvalues
λ = λ(α) of the boundary value problem for the di�erential equation

−y′′ + Pα(z)y = λy,(1)

where

Pα(z) = zd + αd−1z
d−1 + · · ·+ α1z with α = (α1, α2, . . . , αd−1), d ≥ 2.

The boundary conditions are given by either (2) or (3) below. Namely,
set n = d + 2 and divide the plane into n disjoint open sectors of the
form

Sj =

{
z ∈ C \ {0} :

∣∣∣∣arg z − 2πj

n

∣∣∣∣ < π

n

}
, j = 0, 1, 2, . . . , n− 1.

1991 Mathematics Subject Classi�cation. Primary 34M40, Secondary
34M03,30D35.

Key words and phrases. Nevanlinna functions, Schrödinger operator.
The second author was supported by NSF grant DMS-0801050.
Appeared in Computational Methods and Function Theory 12 No.1 (2012) 119�

144.
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2 P. ALEXANDERSSON AND A. GABRIELOV

These sectors are called the Stokes sectors of the equation (1). It is well-
known that any solution y of (1) in each open Stokes sector Sj satisfy
y(z) → 0 or y(z) → ∞ as z → ∞ along each ray from the origin in
Sj , see [11]. In the �rst case, we say that y is subdominant, and in the
second case, dominant in Sj . We impose the boundary conditions that
for two non-adjacent sectors Sj and Sk, i.e. for j 6= k ± 1 mod n :

y is subdominant in Sj and Sk.(2)

For example, y(∞) = y(−∞) = 0 on the real axis, the boundary con-
ditions usually imposed in physics for even potentials, correspond to y
being subdominant in S0 and Sn/2.

It is well-known that analytic continuation of eigenvalues of (1) exists,
see [11]. The eigenvalues tend to in�nity, and depend analytically on the
coe�cients of Pα. Furthermore, there are no singularities in the whole
space, except algebraic branch points, see [4].

The main theorems of this paper are:

Theorem 1. For any eigenvalue λk(α) of equation (1) and boundary
condition (2), there is an analytic continuation in the α-plane to any
other eigenvalue λm(α).

A generalization of Theorem 1 to the case where y is subdominant in
more than two sectors:

Theorem 2. Given k < n/2 non-adjacent Stokes sectors Sj1 , . . . , Sjk ,

the set of all (α, λ) ∈ Cd for which the equation −y′′+ (Pα−λ)y = 0 has
a solution with

y subdominant in Sj1 , . . . , Sjk(3)

is connected.

Remark 3. After this project was �nished, the authors found out that
Theorems 1 and 2 follows from a result in [5, p. 36].

Theorem 4. For n even and k = n/2, the set of all (α, λ) ∈ Cd for
which −y′′ + (Pα − λ)y = 0 has a solution with

y subdominant in S0, S2, . . . , Sn−2(4)

is disconnected. Additionally, the solutions to (1) with conditions (3),
have �nitely many zeros, and the set of α corresponding to a given number
of zeros is a connected component of the former set.

Nevanlinna parametrization in the study of linear di�erential equa-
tions was �rst used by Sibuya [11]. In [4] it was applied for the �rst time
to this analytic continuation problem.
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1.1. Some previous results. In the foundational paper [3], C. Bender
and T. Wu studied analytic continuation of λ in the complex β-plane for
the problem

−y′′ + (βz4 + z2)y = λy, y(−∞) = y(∞) = 0.

Based on numerical computations, they conjectured for the �rst time
the connectivity of the sets of odd and even eigenvalues. This paper
generated considerable further research in both physics and mathematics
literature. See e.g. [12] for early mathematically rigorous results in this
direction.

In this paper, we reproduce the result in [5] of two reasons. First, it
is now restated in modern language. Second, the results are needed to
prove Theorem 4.

The intermediate results in this paper are also used in a forthcoming
paper, [1], generalizing [4] to arbitrary even polynomial potentials.

2. Preliminaries

First, we recall some basic notions from Nevanlinna theory.

Lemma 5 (see [11]). For any j, there is a solution y of (1) subdominant
in the Stokes sector Sj . This solution is unique, up to multiplication by
a non-zero constant. Each solution y 6= 0 is an entire function, and
the ratio f = y/y1 of any two linearly independent solutions of (1) is a
meromorphic function, with the following properties:

(1) For any Stokes sector Sj, we have f(z) → w ∈ C̄ as z → ∞
along any ray in Sj. This value w is called the asymptotic value
of f in Sj.

(2) For any j, the asymptotic values of f in Sj and Sj+1 (index taken
modulo n) are di�erent. The function f has at least 3 distinct
asymptotic values.

(3) The asymptotic value of f is zero in Sj if and only if y is sub-
dominant in Sj . It is convenient to call such sector subdominant
as well. Note that the boundary conditions in (2) imply that the
two sectors Sj and Sk are subdominant for f when y is an eigen-
function of (1), (2).

(4) f does not have critical points, hence f : C → C̄ is unrami�ed
outside the asymptotic values.

(5) The Schwarzian derivative Sf of f given by

Sf =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

equals −2(Pα − λ). Therefore one can recover Pα and λ from f .
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From now on, f always denotes the ratio of two linearly independent
solutions of (1), with y being an eigenfunction of the boundary value
problem (1), with conditions (2), (3) or (4).

2.1. Cell decompositions. Set n = d + 2, d = degP where P is the
polynomial potential and assume that all non-zero asymptotic values of
f are distinct and �nite. Let wj be the asymptotic values of f, ordered
arbitrarily with the only restriction that wj = 0 if and only if Sj is
subdominant. For example, one can denote by wj the asymptotic value
in the Stokes sector Sj .We will later need di�erent orders of the non-zero
asymptotic values, see Section 2.3.

Consider the cell decomposition Ψ0 of C̄w shown in Figure 1(a). It
consists of closed directed loops γj starting and ending at ∞, where the
index is considered mod n, and γj is de�ned only if wj 6= 0. The loops
γj only intersect at ∞ and have no self-intersection other than ∞. Each
loop γj contains a single non-zero asymptotic value wj of f. For example,
the boundary condition y → 0 as z → ±∞ for z ∈ R for even n implies
that w0 = wn/2 = 0, so there are no loops γ0 and γn/2.We have a natural
cyclic order of the asymptotic values, namely the order in which a small
circle around ∞ counterclockwise intersects the associated loops γj , see
Figure 1(a).

We use the same index for the asymptotic values and the loops, which
motivates the following notation:

j+ = j + k where k ∈ {1, 2} is the smallest integer such that wj+k 6= 0.

Thus, γj+ is the loop around the next to wj (in the cyclic order mod n)
non-zero asymptotic value. Similarly, γj− is the loop around the previous
non-zero asymptotic value.

2.2. From cell decompositions to graphs. Wemay simplify our work
with cell decompositions with the help of the following result.

Lemma 6 (See Section 3 [4]). Given Ψ0 as in Figure 1(a), one has the
following properties:

(a) The preimage Φ0 = f−1(Ψ0) gives a cell decomposition of the plane
Cz. Its vertices are the poles of f, and the edges are preimages of the
loops γj . These edges are labeled by j, and are called j-edges.

(b) The edges of Φ0 are directed, their orientation is induced from the
orientation of the loops γj. Removing all loops of Φ0, we obtain an
in�nite, directed planar graph Γ, without loops.

(c) Vertices of Γ are poles of f, each bounded connected component of
C \ Γ contains one simple zero of f, and each zero of f belongs to
one such bounded connected component.
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wn-1

w0

wj-

wj

wj+

Γn-1

Γ0

Γj-

Γj

Γj+

¥

(a) Ψ0

wn-1

w0

wj-

wj+

wj

¥

(b) Aj(Ψ0).

Figure 1. Permuting wj and wj+ in Ψ0.

w0 = 0

w1

w2

w3 = 0

w4

w5

(a) Γ

w0 = 0

w1

w2

w3 = 0

w4

w5

(b) TΓ

w0 = 0

w1

w2

w3 = 0

w4

w5

(c) T ∗Γ

Figure 2. The correspondence between Γ, TΓ and T ∗Γ .

(d) There are at most two edges of Γ connecting any two of its vertices.
Replacing each such pair of edges with a single undirected edge and
making all other edges undirected, we obtain an undirected graph TΓ.

(e) TΓ has no loops or multiple edges, and the transformation from Φ0

to TΓ can be uniquely reversed.

An example of the transformation from Γ to TΓ is shown in Figure 2.
A junction is a vertex of Γ (and of TΓ) at which the degree of TΓ is at

least 3. From now on, Γ refers to both the directed graph without loops
and the associated cell decomposition Φ0.

2.3. Standard order. For a potential of degree d, the graph Γ has
d+ 2 = n in�nite branches and n unbounded faces corresponding to the
Stokes sectors. We de�ned earlier the ordering w0, w1, . . . , wn−1 of the
asymptotic values of f.
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If each wj is the asymptotic value in the sector Sj , we say that the
asymptotic values have the standard order and the corresponding cell
decomposition Γ is a standard graph.

Lemma 7 (See Prop 6. [4]). If a cell decomposition Γ is a standard
graph, the corresponding undirected graph TΓ is a tree.

This property is essential in the present paper, and we classify cell
decompositions of this type by describing the associated trees.

Below we de�ne the action of the braid group that permute non-
zero asymptotic values of Ψ0. This induces the corresponding action
on graphs. Each unbounded face of Γ (and TΓ) will be labeled by the
asymptotic value in the corresponding Stokes sector. For example, by
labeling an unbounded face corresponding to Sk with wj or just with the
index j, we indicate that wj is the asymptotic value in Sk.

From the de�nition of the loops γj , a face corresponding to a dominant
sector has the same label as any edge bounding that face. The label in
a face corresponding to a subdominant sector Sk is always k, since the
actions de�ned below only permute non-zero asymptotic values. We say
that an unbounded face of Γ is (sub)dominant if the corresponding Stokes
sector is (sub)dominant.

For example, in Figure 2, the Stokes sectors S0 and S3 are subdom-
inant, indicated by labeling the corresponding faces with 0. We do not
have the standard order for Γ, since w2 is the asymptotic value for S4,
and w4 is the asymptotic value for S2. The associated graph TΓ is not a
tree.

2.4. Properties of graphs and their face labeling.

Lemma 8 (see [4]). The following holds:

(I) Two bounded faces of Γ cannot have a common edge, since a j-edge
is always at the boundary of an unbounded face labeled j.

(II) The edges of a bounded face of a graph Γ are directed clockwise,
and their labels increase in that order. Therefore, a bounded face
of TΓ can only appear if the order of wj is non-standard.

(As an example, the bounded face in Figure2 has the labels 1, 2, 4
(clockwise) of its boundary edges.)

(III) Each label appears at most once in the boundary of any bounded
face of Γ.

(IV) Unbounded faces of Γ adjacent to its junction u always have the
labels cyclically increasing counterclockwise around u.

(V) To each graph TΓ, we associate a tree by inserting a new vertex
inside each of its bounded faces, connecting it to the vertices of
the bounded face and removing the boundrary edges of the original
face. Thus we may associate a tree T ∗Γ with any cell decomposition,
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not necessarily with standard order, as in Figure 2(c). The order
of wj above together with this tree uniquely determines Γ. This is
done using the two properties above.

(VI) The boundary of a dominant face labeled j consists of in�nitely
many directed j-edges, oriented counterclockwise around the face.

(VII) If wj = 0 there are no j-edges.
(VIII) Each vertex of Γ has even degree, since each vertex in Φ0 =

f−1(Ψ0) has even degree, and removing loops to obtain Γ preserves
this property.

Following the direction of the j-edges, the �rst vertex that is connected
to an edge labeled j+ is the vertex where the j-edges and the j+-edges
meet. The last such vertex is where they separate. These vertices, if they
exist, must be junctions.

De�nition 9. Let Γ be a standard graph, and let j ∈ Γ be a junc-
tion where the j-edges and j+-edges separate. Such junction is called a
j-junction.

There can be at most one j-junction in Γ, the existence of two or more
such junctions would violate property (III) of the face labeling. However,
the same junction can be a j-junction for di�erent values of j.

There are three di�erent types of j-junctions, see Figure 3.
Case (a) only appears when wj+1 6= 0. Cases (b) and (c) can only ap-

pear when wj+1 = 0. In (c), the j-edges and j+-edges meet and separate
at di�erent junctions, while in (b), this happens at the same junction.

De�nition 10. Let Γ be a standard graph with a j-junction u. A struc-
ture at the j-junction is the subgraph Ξ of Γ consisting of the following
elements:

• The edges labeled j that appear before u following the j-edges.
• The edges labeled j+ that appear after u following the j+-edges.
• All vertices the above edges are connected to.

If u is as in Figure 3(a), Ξ is called an I-structure at the j-junction. If
u is as in Figure 3(b), Ξ is called a V -structure at the j-junction. If u
is as in Figure 3(c), Ξ is called a Y -structure at the j-junction.

Since there can be at most one j-junction, there can be at most one
structure at the j-junction.

A graph Γ shown in Figure 4 has one (dotted) I-structure at the
1-junction v, one (dotted) I-structure at the 4-junction u, one (dashed)
V -structure at the 2-junction v and one (dotdashed) Y -structure at the
5-junction u.

Note that the Y -structure is the only kind of structure that contains
an additional junction. We refer to such junctions as Y -junctions. For
example, the junction marked y in Figure 4 is a Y -junction.
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Figure 3. Di�erent types of j-junctions.

u

v y

w0 = 0

w1
w2

w3 = 0

w4 w5

Figure 4. Graph Γ with (dotted) I-structures, a
(dashed) Y -structure and a (dotdashed) Y -structure.

2.5. Describing trees and junctions. Let Γ be a graph with n
branches, and Λ be the associated tree with all non-junction vertices re-
moved. The dual graph Λ̂ of Λ, is an n-gon where some non-intersecting
chords are present. The junctions of Λ is in one-to-one correspondence
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with faces of Λ̂ and vice versa. Two vertices are connected with an edge
in Λ̂ if and only if the corresponding faces are adjacent in Λ.

The extra condition that subdominant faces do not share an edge,
implies that there are no chords connecting vertices in Λ̂ corresponding
to subdominant faces. For trees without this condition, we have the
following lemma:

Lemma 11. The number of n + 1-gons with non-intersecting chords is
equal to the number of bracketings of a string with n letters, such that
each bracket pair contains at least two symbols.

Proof. See [10, Thm. 1]. �

The sequence s(n) of bracketings of a string with n + 1 symbols
are called the small Schröder numbers, see [10]. The �rst entries are
s(n)n≥0 = 1, 1, 3, 11, 45, 197, . . . .

The condition that chords should not connect vertices corresponding
to subdominant faces, translates into a condition on the �rst and last
symbol in some bracket pair.

3. Actions on graphs

3.1. De�nitions. Let us now return to the cell decomposition Ψ0 in
Figure 1(a). Let wj be a non-zero asymptotic value of f . Choose non-
intersecting paths βj(t) and βj+(t) in C̄w with βj(0) = wj , βj(1) = wj+
and βj+(0) = wj+ , βj+(1) = wj so that they do not intersect γk for k 6=
j, j+ and such that the union of these paths is a simple contractible loop
oriented counterclockwise. These paths de�ne a continuous deformation
of the loops γj and γj+ such that the two deformed loops contain βj(t)
and βj+(t), respectively, and do not intersect any other loops during
the deformation (except at ∞). We denote the action on Ψ0 given by
βj(t) and βj+(t) by Aj . Basic properties of the fundamental group of a
punctured plane, allows one to express the new loops in terms of the old
ones:

Aj(γk) =


γjγj+γ

−1
j if k = j,

γj if k = j+,

γk otherwise ,

A−1
j (γk) =


γj+ if k = j,

γ−1
j+
γjγj+ if k = j+,

γk otherwise.

Let ft be a deformation of f . Since a continuous deformation does not
change the graph, the deformed graph corresponding to f−1

1 (Aj(Ψ0))
is the same as Γ. Let Γ′ be this deformed graph with labels j and
j+ exchanged. Then the j-edges of Γ′ are f−1

1 (Aj(γj+)) = f−1
1 (γj),

hence they are the same as the j-edges of Aj(Γ). The j+-edges of Γ′

are f−1
1 (Aj(γj)). Since γj+ = γ−1

j Aj(γj)γj , (reading left to right) this
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(c) A1(Γ)

Figure 5. The action A1. All sectors are dominant.

means that a j+-edge of Aj(Γ) is obtained by moving backwards along
a j-edge of Γ′, then along a j+-edge of Γ′, followed by a j-edge of Γ′.

These actions, together with their inverses, generate the Hurwitz (or
sphere) braid group Hm, where m is the number of non-zero asymptotic
values. For a de�nition of this group, see [7]. The action Aj on the loops
in Ψ0 is presented in Figure 1(b).

The property (4) of the eigenfunctions implies that each Aj induces
a monodromy transformation of the cell decomposition Φ0, and of the
associated directed graph Γ.

Reading the action right to left gives the new edges in terms of the
old ones, as follows:

Applying Aj to Γ can be realized by �rst interchanging the labels j
and j+. This gives an intermediate graph Γ′. A j-edge of Aj(Γ) starting
at the vertex v ends at a vertex obtained by moving from v following
�rst the j-edge of Γ′ backwards, then the j+-edge of Γ′, and �nally the
j-edge of Γ′. If any of these edges does not exist, we just do not move.
If we end up at the same vertex v, there is no j-edge of Aj(Γ) starting
at v. All k-edges of Aj(Γ) for k 6= j are the same as k-edges of Γ′.

An example of the action A1 is presented in Figure 5. Note that A2
j

preserves the standard cyclic order.

3.2. Properties of the actions.

Lemma 12. Let Γ be a standard graph with no j-junction. Then
A2
j (Γ) = Γ.

Proof. Since we assume d > 2, Lemma 8 implies that the boundaries of
the faces of Γ labeled j and j+ do not have a common vertex. From the
de�nition of the actions in subsection 3.1, the graphs Γ and Aj(Γ) are
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the same, except that the labels j and j+ are permuted. Applying the
same argument again gives A2

j (Γ) = Γ. �

Theorem 13. Let Γ be a standard graph with a j-junction u. Then
A2
j (Γ) 6= Γ, and the structure at the j-junction is moved one step in the

direction of the j-edges under A2
j . The inverse of A2

j moves the structure
at the j-junction one step backwards along the j+-edges.

Proof. There are three cases to consider, namely I-structures,
V -structures and Y -structures respectively.
Case 1: The structure at the j-junction is an I-structure and Γ is as in
Figure 6(a). The action Aj �rst permutes the asymptotic values wj and
wj+ , then transforms the new j- and j+-edges, as de�ned in subsection
3.1. The resulting graph Aj(Γ) is shown in Figure 6(b). Applying Aj to
Aj(Γ) yields the graph shown in Figure 6(c).
Case 2: The structure at the j-junction is a V -structure and Γ is as in
Figure 7(a). The graphs Aj(Γ) and A2

j (Γ) are as in Figure7(b) and in

Figure 7(c) respectively.
Case 3: The structure at the j-junction is a Y -structure and Γ is as in
Figure 8(a). The graphs Aj(Γ) and A2

j (Γ) are as in Figure 8(b) and in

Figure 8(c) respectively. The statement for A−2
j is proved similarly. �

Examples of the actions are given in Appendix, Figures 16, 17 and 18.

3.3. Contraction theorems.

De�nition 14. Let Γ be a standard graph and let u0 be a junction of Γ.
The u0-metric of Γ, denoted |Γ|u0 is de�ned as

|Γ|u0 =
∑
v

(deg(v)− 2) |v − u0|

where the sum is taken over all vertices v of TΓ. Here deg(v) is the total
degree of the vertex v in TΓ and |v−u0| is the length of the shortest path
from v to u0 in TΓ. (Note that the sum in the right hand side is �nite,
since only junctions make non-zero contributions.)

De�nition 15. A standard graph Γ is in ivy form if Γ is the union of
the structures connected to a junction u. Such junction is called a root
junction.

Lemma 16. The graph Γ is in ivy form if and only if all but one of its
junctions are Y -junctions.

Proof. This follows from the de�nitions of the structures. �

Theorem 17. Let Γ be a standard graph. Then there is a sequence of
actions A∗ = A±2

j1
A±2
j2
· · · such that A∗(Γ) is in ivy form.
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Figure 6. Case 1, moving an I-structure.

Proof. Assume that Γ is not in ivy form. Let U be the set of junctions
in Γ that are not Y -junctions. Since Γ is not in ivy form, |U | ≥ 2. Let
u0 6= u1 be two junctions in U such that |u0 − u1| is maximal. Let p be
the path from u0 to u1 in TΓ. It is unique since TΓ is a tree. Let v be
the vertex immediately preceeding u1 on the path p. The edge from v
to u1 in TΓ is adjacent to at least one dominant face with label j such
that wj 6= 0. Therefore, there exists a j-edge between v and u1 in Γ.
Suppose �rst that this j-edge is directed from u1 to v. Let us show that
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Figure 7. Case 2, moving a V -structure.

in this case u1 must be a j-junction, i.e., the dominant face labeled j+
is adjacent to u1.

Since u1 is not a Y -junction, there is a dominant face adjacent to u1

with a label k 6= j, j+. Hence no vertices of p, except possibly u1 may
be adjacent to j+-edges. If u1 is not a j-junction, there are no j+-edges
adjacent to u1. This implies that any vertex of Γ adjacent to a j+-edge
is further away from u0 that u1.

Let u2 be the closest to u1 vertex of Γ adjacent to a j+-edge. Then
u2 should be a junction of TΓ, since there are two j+-edges adjacent
to u2 in Γ and at least one more vertex (on the path from u1 to u2)
which is connected to u2 by edges with labels other than j+. Since u2

is further away from u0 than u1 and the path p is maximal, u2 must be
a Y -junction. If the j-edges and j+-edges would meet at u2, u1 would
be a j-junction. Otherwise, a subdominant face labeled j + 1 would
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Figure 8. Case 3, moving a Y -structure.

be adjacent to both u1 and u2, while a subdominant face adjacent to a
Y -junction cannot be adjacent to any other junctions.
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Hence u1 must be a j-junction. By Theorem 13, the action A2
j moves

the structure at the j-junction u1 one step closer to u0 along the path p,
decreasing |Γ|u0 at least by 1.

The case when the j-edge is directed from v to u1 is treated similarly.
In that case, u1 must be a j−-junction, and the action A−2

j− moves the

structure at the j−-junction u1 one step closer to u0 along the path p.
We have proved that if |U | > 1 then |Γ|u0 can be reduced. Since it is

a non-negative integer, after �nitely many steps we must reach a stage
where |U | = 1, hence the graph is in ivy form. �

Remark 18. The outcome of the algorithm is in general non-unique,
and might yield di�erent �nal values of |A∗(Γ)|u0 .
Lemma 19. Let Γ be a standard graph with a junction u0 such that u0

is both a j−-junction and a j-junction. Assume that the corresponding
structures are of types Y and V , in any order. Then there is a se-
quence of actions from the set {A2

j , A
2
j− , A

−2
j , A−2

j− } that interchanges the
Y -structure and the V -structure.

Proof. We may assume that the Y - and V -structures are attached to
u0 counterclockwise around u0, as in Figure 9, otherwise we reverse the
actions. By Theorem 13, the action A2k

j moves the V -structure k steps in
the direction of the j-edges. Choose k so that the V -structure is moved
all the way to u1, as in Figure 10. Then u1 becomes both a j−-junction
and j-junction, with two V -structures attached. Proceed by applying
A2k
j− to move the V -structure at the j−-junction u1 up to u0, as in Figure

11. �

Lemma 20. Let Γ be a standard graph with a junction u0, such that u0 is
both a j−-junction and a j-junction, with the corresponding structures of
type I and Y, in any order. Then there is a sequence of actions from the
set {A2

j , A
2
j− , A

−2
j , A−2

j− } converting the Y -structures to a V -structure.

Proof. We may assume that the I- and Y -structures are attached to u0

counterclockwise around u0, as in Figure 12, otherwise, we just reverse
the actions. By Theorem 13, we can apply A−2

j− several times to move

the I-structure down to u1. (For example, in Figure 12, we need to do
this twice. This gives the con�guration shown in Figure 13.) Now u1

becomes a j−-junction and a j-structure, with the I- and V -structures
attached. Applying A2k

j , we can move the V -structure at u1 up to u0.

(In our example, this �nal con�guration is presented in Figure 14.) Thus
the Y -structure has been transformed to a V -structure. �

Theorem 21. Let Γ be a standard graph with at least two adjacent dom-
inant faces. Then there exists a sequence of actions A∗ = A±2

j1
A±2
j2
· · ·

such that A∗(Γ) have only one junction.
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Figure 10. Intermediate con�guration: two adjacent
V -structures.

Proof. By Theorem 17 we may assume that Γ is a graph in ivy form
with the root junction u0. The existence of two adjacent dominant faces
implies the existence of an I-structure. If there are only I-structures
and V -structures, then u0 is the only junction of Γ. Assume that there
is at least one Y -structure. By Lemma 19, we may move a Y -structure
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so that it is counterclockwise next to an I-structure. By Lemma 20, the
Y -structure can be transformed to a V -structure, and the Y -junction
removed. This can be repeated, eventually removing all junctions of Γ
except u0. �

Lemma 22. Let Γ be a standard graph with a junction u0, such
that u0 is both a j−-junction and a j-junction, with two adjacent
Y -structures attached. Then there is a sequence of actions from the set
{A2

j , A
2
j− , A

−2
j , A−2

j− } converting one of the Y -structures to a V -structure.

Proof. This can be proved by the arguments similar to those in the proof
of Theorem 21. �
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Theorem 23. Let Γ be a standard graph such that no two dominant faces
are adjacent. Then there exists a sequence of actions A∗ = A±2

j1
, A±2

j2
, . . . ,

such that A∗(Γ) is in ivy form, with at most one Y -structure.

Proof. One may assume by Theorem 17 that Γ is in ivy form, with
the root junction u0. Since no two dominant faces are adjacent, there
are only V - and Y -structures attached to u0. If there are at least two
Y -structures, we may assume, by Lemma 19, that two Y -structures are
adjacent. By Lemma 22, two adjacent Y -structures can be converted to
a V -structure and a Y -structure. This can be repeated until at most one
Y -structure remains in Γ. �

Lemma 24. Let Γ be a standard graph such that no two dominant faces
are adjacent. Then the number of bounded faces of Γ is �nite and does
not change after any action A2

j .

Proof. The bounded faces of Γ correspond to the edges of TΓ separating
two dominant faces. Since no two dominant faces are adjacent, any two
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dominant faces have a �nite common boundary in TΓ. Hence the number
of bounded faces of Γ is �nite. Lemma 12 and Theorem 13 imply that
this number does not change after any action A2

j . �

4. Irreducibility and connectivity of the spectral locus

In this section, we obtain the main results stated in the introduction.
We start with the following statements.

Lemma 25. Let Σ be the space of all (α, λ) ∈ Cd such that equa-
tion (1) admits a solution subdominant in non-adjacent Stokes sectors
Sj1 , . . . , Sjk , k ≤ (d + 2)/2. Then Σ is a smooth complex analytic sub-

manifold of Cd of the codimension k − 1.

Proof. Let f be a ratio of two linearly independent solutions of (1), and
let w = (w0, . . . , wd+1) be the set of asymptotic values of f in the Stokes
sectors S0, . . . , Sd+1. Then w belongs to the subset Z of C̄d+2 where
the values wj in adjacent Stokes sectors are distinct and there are at
least three distinct values among wj . The group G of fractional-linear
transformations of C̄ acts on Z diagonally, and the quotient Z/G is a
(d− 1)-dimensional complex manifold.

[2, Thm. 7.2] implies that the mapping W : Cd → Z/G assigning to
(α, λ) the equivalence class of w is submersive. More precisely, W is
locally invertible on the subset {αd−1 = 0} of Cd and constant on the
orbits of the group C acting on Cd by translations of the independent
variable z. In particular, the preimage W−1(Y ) of any smooth subman-
ifold Y ⊂ Z/G is a smooth submanifold of Cd of the same codimension
as Y .

The set Σ is the preimage of the set Y ⊂ Z/G de�ned by the k−1 con-
ditions wj1 = · · · = wjk . Hence Σ is a smooth manifold of codimension

k − 1 in Cd. �

Proposition 26. Let Σ be the space of all (α, λ) ∈ Cd such that equation
(1) admits a solution subdominant in the non-adjacent Stokes sectors
Sj1 , . . . , Sjk . If at least two remaining Stokes sectors are adjacent, then
Σ is an irreducible complex analytic manifold.

Proof. Let Σ0 be the intersection of Σ with the subspace Cd−1 = {αd−1 =
0} ⊂ Cd. Then Σ has the structure of a product of Σ0 and C induced by
translation of the independent variable z. In particular, Σ is irreducible
if and only if Σ0 is irreducible.

Let us choose a point w = (w0, . . . , wd+1) so that wj1 = · · · = wjk = 0,
with all other values wj distinct, non-zero and �nite. Let Ψ0 be a cell
decomposition of C̄ \ {0} de�ned by the loops γj starting and ending at
∞ and containing non-zero values wj , as in Section 2.1.
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Nevanlinna theory (see [8, 9]), implies that, for each standard graph
Γ with the properties listed in Lemma 8, there exists (α, λ) ∈ Cd and
a meromorphic function f(z) such that f is the ratio of two linearly
independent solutions of (1) with the asymptotic values wj in the Stokes
sectors Sj , and Γ is the graph corresponding to the cell decomposition
Φ0 = f−1(Ψ0). This function, and the corresponding point (α, λ) is
de�ned uniquely up to translation of the variable z. We can choose
f uniquely if we require that αd−1 = 0 in (α, λ). Conditions on the
asymptotic values wj imply then that (α, λ) ∈ Σ′. Let fΓ be this uniquely
selected function, and (αΓ, λΓ) the corresponding point of Σ′.

Let W : Σ′ → Y ⊂ Z/G be as in the proof of Lemma 25. Then Σ′

is an unrami�ed covering of Y . Its �ber over the equivalence class of w
consists of the points (αΓ, λΓ) for all standard graphs Γ. Each action
A2
j corresponds to a closed loop in Y starting and ending at w. Since

for a given list of subdominant sectors a standard graph with one vertex
is unique, Theorem 21 implies that the monodromy action is transitive.
Hence Σ′ is irreducible as a covering with a transitive monodromy group
(see, e.g., [6, �5]). �

This immediately implies Theorem 2, and we may also state the fol-
lowing corollary equivalent to Theorem 1:

Corollary 27. For every potential Pα of even degree, with degPα ≥ 4
and with the boundary conditions y → 0 for z → ±∞, z ∈ R, there is
an analytic continuation from any eigenvalue λm to any other eigenvalue
λn in the α-plane.

Proposition 28. Let Σ be the space of all (α, λ) ∈ Cd, for even d, such
that equation (1) admits a solution subdominant in the (d+ 2)/2 Stokes
sectors S0, S2, . . . , Sd. Then irreducible components Σk, k = 0, 1, . . . of
Σ, which are also its connected components, are in one-to-one corre-
spondence with the sets of standard graphs with k bounded faces. The
corresponding solution of (1) has k zeros and can be represented as

Q(z)eφ(z) where Q is a polynomial of degree k and φ a polynomial of
degree (d+ 2)/2.

Proof. Let us choose w and Ψ0 as in the proof of Proposition 26. Repeat-
ing the arguments in the proof of Proposition 26, we obtain an unrami�ed
covering W : Σ′ → Y such that its �ber over w consists of the points
(αΓ, λΓ) for all standard graphs Γ with the properties listed in Lemma
8. Since we have no adjacent dominant sectors, Theorem 23 implies
that any standard graph Γ can be transformed by the monodromy ac-
tion to a graph Γ0 in ivy form with at most one Y -structure attached at
its j-junction, where j is any index such that Sj is a dominant sector.
Lemma 24 implies that Γ and Γ0 have the same number k of bounded



ON EIGENVALUES OF THE SCHRÖDINGER OPERATOR 21

faces. If k = 0, the graph Γ0 is unique. If k > 0, the graph Γ0 is com-
pletely determined by k and j. Hence for each k = 0, 1, . . . there is a
unique orbit of the monodromy group action on the �ber of W over w
consisting of all standard graphs Γ with k bounded faces. This implies
that Σ′ (and Σ) has one irreducible component for each k.

Since Σ is smooth by Lemma 25, its irreducible components are also
its connected components.

Finally, let fΓ = y/y1 where y is a solution of (1) subdominant in the
Stokes sectors S0, S2, . . . , Sd. Then the zeros of f and y are the same,
each such zero belongs to a bounded domain of Γ, and each bounded
domain of Γ contains a single zero. Hence y has exactly k simple zeros.
Let Q be a polynomial of degree k with the same zeros as y. Then
y/Q is an entire function of �nite order without zeros, hence y/Q = eφ

where φ is a polynomial. Since y/Q is subdominant in (d+ 2)/2 sectors,
deg φ = (d+ 2)/2. �

The above proposition immediately implies Theorem 4.

5. Alternative viewpoint

In this section, we provide an example of the correspondence between
the actions on cell decompositions with some subdominant sectors and
actions on cell decompositions with no subdominant sectors. This corre-
spondence can be used to simplify calculations with cell decompositions.
We will illustrate our results on a cell decomposition with 6 sectors, the
general case follows immediately.

Let C6 be the set of cell decompositions with 6 sectors, none of them
subdominant. Let C03

6 ⊂ C6 be the set of cell decompositions such that
for any Γ ∈ C03

6 , the sectors S0 and S3 do not share a common edge
in the associated undirected graph TΓ. De�ne D

03
6 to be the set of cell

decompositions with 6 sectors where S0 and S3 are subdominant.

Lemma 29. There is a natural bijection between C03
6 and D03

6 .

Proof. Let Γ ∈ C03
6 be a cell decomposition, and let TΓ be the associated

undirected graph, see section 2.2. Then consider TΓ as the (unique)
undirected graph associated with some cell decomposition ∆ ∈ D03

6 .
This is possible since the condition that the sectors 0 and 3 do not share
a common edge in Γ, ensures that the subdominant sectors in ∆ do not
share a common edge. Let us denote this map π. Conversely, every cell
decomposition ∆ ∈ D03

6 is associated with a cell decomposition Γ ∈ C03
6

by the inverse procedure π−1. �

We have previously established that H6 acts on C6 and that H4 acts
on D03

6 . Let B0, B1, . . . , B5 be the actions generating H6, as described in
subsection 3.1, and let A1, A2, A4, A5 generate H4. Let H03

6 ⊂ H6 be the
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Γ
B1 //

π

��

B1(Γ)

π

��

Γ
B−1

3 B2B3//

π

��

B−1
3 B2B3(Γ)

π

��
∆

A1 // A1(∆) ∆
A2 // A2(∆)

Γ
B4 //

π

��

B4(Γ)

π

��

Γ
B−1

0 B5B0//

π

��

B−1
0 B5B0(Γ)

π

��
∆

A4 // A4(∆) ∆
A5 // A5(∆)

Figure 15. The commuting actions

subgroup generated by B1, B2B3B
−1
2 , B4, B5B0B

−1
5 , and their inverses.

It is easy to see that H03
6 acts on elements in C03

6 and preserves this set.

Lemma 30. The diagrams in Figure 15 commute.

Proof. Let (a, b, c, d, e, f) be the 6 loops of a cell decomposition Ψ0 as
in Figure 1, looping around the asymptotic values (w0, . . . , w5). Let Ψ′0
be the cell decomposition with the four loops (b, c, e, f), such that if
Γ ∈ C03

6 is the preimage of Ψ0, then π(Γ) is the preimage of Ψ′0. That is,
the preimages of the loops a and d in Ψ0 are removed under π.
Bj acts on Ψ0 and Aj acts on Ψ′0. (See subsection 3.1 for the de�ni-

tion.) We have

(5) A1(b, c, e, f) = (bcb−1, e, f), A4(b, c, d, e) = (b, c, efe−1, e).

and

B1(a, b, c, d, e, f) = (a, bcb−1, d, e, f),

B4(a, b, c, d, e, f) = (a, b, c, efe−1, e, f).
(6)

Equation (5) and (6) shows that the left diagrams commute, since ap-
plying π to the result from (6) yields (5). We also have that

(7) A2(b, c, e, f) = (b, cec−1, c, f), A5(b, c, e, f) = (f, c, e, fbf−1).
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We now computeB−1
3 B2B3(a, b, c, d, e, f).Observe that we must apply

these actions left to right :

B−1
3 B2B3(a, b, c, d, e, f) = B2B3(a, b, c, e, e−1de, f)

= B3(a, b, cec−1, c, e−1de, f)

= (a, b, cec−1, c(e−1de)c−1, c, f)

(8)

A similar calculation gives

(9) B−1
0 B5B0(a, b, c, d, e, f) = (f(b−1ab)f−1, f, c, d, e, f, b, f−1),

and applying π to the results (8) and (9) give (7). �

Remark 31. Note that B−1
j Bj−1Bj(Γ) = Bj−1BjB

−1
j−1(Γ) for all Γ ∈

C6, which follows from basic properties of the braid group.

The above result can be generalized as follows: Let Cn be the set of cell
decompositions with n sectors such that all sectors are dominant. Let
Cl
n ⊂ Cn, l = {l1, l2, . . . , lk} be the set of cell decompositions such that

for any Γ ∈ Cl
n, no two sectors in the set Sl1 , Sl2 , . . . , Slk have a common

edge in the associated undirected graph TΓ. Let D
l
n be the set of cell

decompositions with n sectors such that the sectors Sl1 , Sl2 , . . . , Slk are

subdominant. Let {Aj}j /∈l be the n − k actions acting on Cl
n indexed

as in subsection 3.1. Let {Bj}n−1
j=0 be the actions on Cn. Let π : Cs

n →
Ds
n be the map similar to the bijection above, where one obtain a cell

decomposition in Ds
n by removing edges with a label in l from a cell

decomposition in Cs
n. Then

(10)

{
π(Bj(Γ)) = Aj(π(Γ)), if j, j + 1 /∈ l,

π(B−1
j Bj−1Bj(Γ)) = Aj(π(Γ)), if j /∈ l, j + 1 ∈ l.

Remark 32. There are some advantages with cell decompositions with
no subdominant sectors:

• An action Aj always interchanges the asymptotic values wj and
wj+1.
• Lemma 8(II) implies TΓ have no bounded faces if and only if order
of the asymptotic values is a cyclic permutation of the standard
order.
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6. Appendix

6.1. Examples of monodromy action. Below are some speci�c ex-
amples on how the di�erent actions act on trees and non-trees.
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Figure 16. Example action of A−1
4 and A−2

4 in case 1.
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Figure 17. Example action of A5 and A2
5 in case 2.

0

12

3

4 5

0

1

2

3

4

5

0

12

3

4 5

Figure 18. Example action of A−1
5 and A−2

5 in case 3.
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ON EIGENVALUES OF THE SCHRÖDINGER
OPERATOR WITH AN EVEN COMPLEX-VALUED

POLYNOMIAL POTENTIAL

PER ALEXANDERSSON

Abstract. In this paper, we generalize several results in the arti-
cle �Analytic continuation of eigenvalues of a quartic oscillator� of
A. Eremenko and A. Gabrielov.

We consider a family of eigenvalue problems for a Schrödinger
equation with even polynomial potentials of arbitrary degree d with
complex coe�cients, and k < (d + 2)/2 boundary conditions. We
show that the spectral determinant in this case consists of two com-
ponents, containing even and odd eigenvalues respectively.

In the case with k = (d + 2)/2 boundary conditions, we show
that the corresponding parameter space consists of in�nitely many
connected components.

1. Introduction

We study the problem of analytic continuation of eigenvalues of the
Schrödinger operator with an even complex-valued polynomial potential.
In other words, analytic continuation of eigenvalues λ = λ(α) in the
di�erential equation

−y′′ + Pα(z)y = λy,(1)

where α = (α2, α4, . . . , αd−2) and Pα(z) is the even polynomial

Pα(z) = zd + αd−2z
d−2 + · · ·+ α2z

2.

The boundary conditions are as follows: Set n = d + 2 and divide the
plane into n disjoint open sectors

Sj =

{
z ∈ C \ {0} :

∣∣∣∣arg z − 2πj

n

∣∣∣∣ < π

n

}
, j = 0, 1, 2, . . . , n− 1.

The index j should be considered mod n. These are the Stokes sectors
of the equation (1). A solution y of (1) satis�es y(z) → 0 or y(z) → ∞

1991 Mathematics Subject Classi�cation. Primary 34M40, Secondary 34M03,
30D35.

Key words and phrases. Nevanlinna functions, Schroedinger operator.
Appeared in Computational Methods and Function Theory 12 No. 2 (2012) 465�
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2 P. ALEXANDERSSON

as z →∞ along each ray from the origin in Sj , see [10]. The solution y
is called subdominant in the �rst case, and dominant in the second case.

The main result of this paper is as follows:

Theorem 1. Let ν = d/2 + 1 and let J = {j1, j2, . . . , j2m} with jk+m =
jk + ν and |jp − jq| > 1 for p 6= q. Let Σ be the set of all (α, λ) ∈ Cν
for which the equation −y′′ + (Pα − λ)y = 0 has a solution with with the
boundary conditions

y is subdominant in Sj for all j ∈ J,(2)

where Pα(z) is an even polynomial of degree d. For m < ν/2, Σ consists
of two irreducible connected components. For m = ν/2, (which can only
happen when d ≡ 2 mod 4), Σ consists of in�nitely many connected
components, distinguished by the number of zeros of the corresponding
solution of (1).

1.1. Previous results. The �rst study of analytic continuation of λ in
the complex β-plane for the problem

−y′′ + (βz4 + z2)y = λy, y(−∞) = y(∞) = 0

was done by Bender and Wu [3]. They discovered the connectivity of the
sets of odd and even eigenvalues and rigorous results was later proved in
[11].

In [4], the even quartic potential Pa(z) = z4 + az2 and the boundary
value problem

−y′′ + (z4 + az2)y = λay, y(∞) = y(−∞) = 0

was considered.
The problem has discrete real spectrum for real a, with λ1 < λ2 <

· · · → +∞. There are two families of eigenvalues, those with even index
and those with odd. If λj and λk are two eigenvalues in the same family,
then λk can be obtained from λj by analytic continuation in the complex
α-plane. Similar results have been found for other potentials, such as
the PT-symmetric cubic, where Pα(z) = (iz3 + iαz), with y(z) → 0, as
z → ±∞ on the real line. See for example [5].

2. Preliminaries on general theory of solutions to the

Schrödinger equation

We will review some properties for the Schrödinger equation with a
general polynomial potential. In particular, these properties hold for an
even polynomial potential. These properties may also be found in [4, 1].

The general Schrödinger equation is given by

−y′′ + Pα(z)y = λy,(3)
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where α = (α1, α2, . . . , αd−1) and Pα(z) is the polynomial

Pα(z) = zd + αd−1z
d−1 + · · ·+ α1z.

We have the associated Stokes sectors

Sj =

{
z ∈ C \ {0} :

∣∣∣∣arg z − 2πj

n

∣∣∣∣ < π

n

}
, j = 0, 1, 2, . . . , n− 1,

where n = d+ 2, and index considered mod n. The boundary conditions
to (3) are of the form

y is subdominant in Sj1 , Sj2 , . . . , Sjk(4)

with |jp − jq| > 1 for all p 6= q.
Notice that any solution y 6= 0 of (3) is an entire function, and the

ratio f = y/y1 of any two linearly independent solutions of (3) is a
meromorphic function with the following properties, (see [10]).

(i) For any j, there is a solution y of (3) subdominant in the Stokes
sector Sj , where y is unique up to multiplication by a non-zero
constant.

(ii) For any Stokes sector Sj , we have f(z) → w ∈ C̄ as z → ∞ along
any ray in Sj . This value w is called the asymptotic value of f in
Sj .

(iii) For any j, the asymptotic values of f in Sj and Sj+1 (index still
taken modulo n) are distinct. Furthermore, f has at least 3 distinct
asymptotic values.

(iv) The asymptotic value of f in Sj is zero if and only if y is subdomi-
nant in Sj .We call such sector subdominant for f as well. Note that
the boundary conditions given in (4) imply that sectors Sj1 , . . . , Sjk
are subdominant for f when y is an eigenfunction of (3), (4).

(v) f does not have critical points, hence f : C → C̄ is unrami�ed
outside the asymptotic values.

(vi) The Schwartzian derivative Sf of f given by

Sf =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

equals −2(Pα − λ). Therefore one can recover Pα and λ from f .

From now on, f denotes the ratio of two linearly independent solutions
of (3) and (4).

2.1. Cell decompositions. As above, set n = degP +2 where P is our
polynomial potential and assume that all non-zero asymptotic values of
f are distinct and �nite. Let wj be the asymptotic values of f with an
arbitrary ordering satisfying the only restriction that if Sj is subdomi-
nant, then wj = 0. One can denote by wj the asymptotic value in the
Stokes sector Sj , which will be called the standard order, see Section 2.3.
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wj-
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wj+

Γn-1

Γ0

Γj-

Γj

Γj+

¥

(a) Ψ0
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w0

wj-

wj+
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¥

(b) Aj(Ψ0).

Figure 1. Permuting wj and wj+ in Ψ0.

Consider the cell decomposition Ψ0 of C̄w shown in Figure 1(a). It
consists of closed directed loops γj starting and ending at ∞, where
the index is considered mod n, and γj is de�ned only if wj 6= 0. The
loops γj only intersect at ∞ and have no self-intersection other than ∞.
Each loop γj contains a single non-zero asymptotic value wj of f. For
example, for even n, the boundary condition y → 0 as z → ±∞ for
z ∈ R implies that w0 = wn/2 = 0, so there are no loops γ0 and γn/2.We
have a natural cyclic order of the asymptotic values, namely the order in
which a small circle around ∞ traversed counterclockwise intersects the
associated loops γj , see Figure 1(a).

We use the same index for the asymptotic values and the loops, so
de�ne

j+ = j + k where k ∈ {1, 2} is the smallest integer such that wj+k 6= 0.

Thus, γj+ is the loop around the next to wj (in the cyclic order mod n)
non-zero asymptotic value. Similarly, γj− is the loop around the previous
non-zero asymptotic value.

2.2. From cell decompositions to graphs. Proofs of all statements
in this subsection can be found in [4].

Given f and Ψ0 as above, consider the preimage Φ0 = f−1(Ψ0). Then
Φ0 gives a cell decomposition of the plane Cz. Its vertices are the poles of
f and the edges are preimages of the loops γj . An edge that is a preimage
of γj is labeled by j and called a j-edge. The edges are directed, their
orientation is induced from the orientation of the loops γj . Removing
all loops of Φ0, we obtain an in�nite, directed planar graph Γ, without
loops. Vertices of Γ are poles of f, each bounded connected component
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of C \Γ contains one simple zero of f, and each zero of f belongs to one
such bounded connected component. There are at most two edges of Γ
connecting any two of its vertices. Replacing each such pair of edges
with a single undirected edge and making all other edges undirected, we
obtain an undirected graph TΓ. It has no loops or multiple edges, and
the transformation from Φ0 to TΓ can be uniquely reversed.

A junction is a vertex of Γ (and of TΓ) at which the degree of TΓ is at
least 3. From now on, Γ refers to both the directed graph without loops
and the associated cell decomposition Φ0.

2.3. The standard order of asymptotic values. For a potential P of
degree d, the graph Γ has n = d+ 2 in�nite branches and n unbounded
faces corresponding to the Stokes sectors of P . We �xed earlier the
ordering w0, w1, . . . , wn−1 of the asymptotic values of f.

If each wj is the asymptotic value in the sector Sj , we say that the
asymptotic values have the standard order and the corresponding cell
decomposition Γ is a standard graph.

Lemma 2 (See [4], Proposition 6). If a cell decomposition Γ is a standard
graph, then the corresponding undirected graph TΓ is a tree.

In the next section, we de�ne some actions on Ψ0 that permute non-
zero asymptotic values. Each unbounded face of Γ (and TΓ) will be
labeled by the asymptotic value in the corresponding Stokes sector. For
example, labeling an unbounded face corresponding to Sk with wj or
just with the index j, indicates that wj is the asymptotic value in Sk.

From the de�nition of the loops γj , a face corresponding to a dominant
sector has the same label as any edge bounding that face. The label in
a face corresponding to a subdominant sector Sk is always k, since the
actions de�ned below only permute non-zero asymptotic values.

An unbounded face of Γ is called (sub)dominant if the corresponding
Stokes sector is (sub)dominant.

2.4. Properties of graphs and their face labeling.

Lemma 3 (See Section 3 in [4]). Any graph Γ have the following prop-
erties:

(i) Two bounded faces of Γ cannot have a common edge, (since a j-edge
is always at the boundary of an unbounded face labeled j.)

(ii) The edges of a bounded face of a graph Γ are directed clockwise, and
their labels increase in that order. Therefore, a bounded face of TΓ

can only appear if the order of wj is non-standard.
(iii) Each label appears at most once in the boundary of any bounded

face of Γ.
(iv) The unbounded faces of Γ adjacent to a junction u, always have the

labels cyclically increasing counterclockwise around u.
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(v) The boundary of a dominant face labeled j consists of in�nitely
many directed j-edges, oriented counterclockwise around the face.

(vi) If wj = 0 there are no j-edges.
(vii) Each vertex of Γ has even degree, since each vertex in Φ0 = f−1(Ψ0)

has even degree, and removing loops to obtain Γ preserves this prop-
erty.

Following the direction of the j-edges, the �rst vertex that is connected
to an edge labeled j+ is the vertex where the j-edges and the j+-edges
meet. The last such vertex is where they separate. These vertices, if they
exist, must be junctions.

De�nition 4. Let Γ be a standard graph, and let u ∈ Γ be a junc-
tion where the j-edges and j+-edges separate. Such junction is called a
j-junction.

There can be at most one j-junction in Γ, the existence of two or more
such junctions would violate property (iii) of the face labeling. However,
the same junction can be a j-junction for di�erent values of j.

There are three di�erent types of j-junctions, see Figure 2.

•
j+

��•u
j+

**kk
j

•

•��
j

(a) I-structure.

•
j+

��

•

•u

j+

::ttttttttttt
dd

j JJJJJJJJJJJ wj+1 = 0

•��
j

•
(b) V -structure.

•
j+

��

•

•u
j+

**kk
j

• •

j+

::uuuuuuuuuuu
dd

j IIIIIIIIIII wj+1 = 0

•��
j

•
(c) Y -structure.

Figure 2. Di�erent types of j-junctions.
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u

v y

w0 = 0

w1
w2

w3 = 0

w4 w5

Figure 3. Graph Γ with (dotted) I-structures, a
(dashed) Y -structure and a (dotdashed) Y -structure.

Case (a) only appears when wj+1 6= 0. Cases (b) and (c) can only ap-
pear when wj+1 = 0. In (c), the j-edges and j+-edges meet and separate
at di�erent junctions, while in (b), this happens at the same junction.

De�nition 5. Let Γ be a standard graph with a j-junction u. A struc-
ture at the j-junction is the subgraph Ξ of Γ consisting of the following
elements:

• The edges labeled j that appear before u following the j-edges.
• The edges labeled j+ that appear after u following the j+-edges.
• All vertices the above edges are connected to.

If u is as in Figure 2(a), Ξ is called an I-structure at the j-junction. If
u is as in Figure 2(b), Ξ is called a V -structure at the j-junction. If u
is as in Figure 2(c), Ξ is called a Y -structure at the j-junction.

Since there can be at most one j-junction, there can be at most one
structure at the j-junction.

A graph Γ shown in Figure 3 has one (dotted) I-structure at the
1-junction v, one (dotted) I-structure at the 4-junction u, one (dashed)
V -structure at the 2-junction v and one (dotdashed) Y -structure at the
5-junction u.
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Note that the Y -structure is the only kind of structure that contains an
additional junction. We refer to such additional junctions as Y -junctions.
For example, the junction marked y in Figure 3 is a Y -junction.

2.5. Braid actions on graphs. As in [1], we de�ne continuous defor-
mations Aj of the loops in Figure 1(a), such that the new loops are given
in terms of the old ones by

Aj(γk) =


γjγj+γ

−1
j if k = j,

γj if k = j+,

γk otherwise,

, A−1
j (γk) =


γj+ if k = j,

γ−1
j+
γjγj+ if k = j+

γk otherwise.

These actions, together with their inverses, generate the Hurwitz (or
sphere) braid group Hm, where m is the number of non-zero asymp-
totic values. (For a de�nition of this group, see [7].) The action of the
generators Aj and Ak commute if |j − k| ≥ 2.

The property (v) of the eigenfunctions implies that each Aj induces
a monodromy transformation of the cell decomposition Φ0, and of the
associated directed graph Γ.

3. Properties of even actions on centrally symmetric

graphs

3.1. Additional properties for even potential. In addition to the
previous properties for general polynomials, these additional properties
holds for even polynomial potentials P (see [4]). From now until the end
of the article, ν = (deg(P ) + 2)/2.

Each solution y of (1) is either even or odd and we may choose y and
y1 such that f = y/y1 is odd.

If the asymptotic values w0, w1, . . . , w2ν−1 are ordered in the standard
order, we have that wj = −wj+ν .

We may choose the loops centrally symmetric in Figure 1(a) which
implies that Φ0 and Γ are centrally symmetric.

3.2. Even braid actions. De�ne the even actions Ej as Ej = Aj◦Aj+ν .
Assume that Γ is a graph with the property that if wj is the asymptotic

value in Sk, then wj+n is the asymptotic value in Sk+ν . (For example,
all standard graphs have this property, with j = k.) It follows from the
symmetric property of Ej that Ej preserves this property. To illustrate,
we have that Ej(Ψ0) is given in Figure 4.

Lemma 6. If Γ is centrally symmetric, then Ej(Γ) and E−1
j (Γ) are

centrally symmetric graphs.

Proof. We may choose the deformations of the paths γj and γj+ν being
centrally symmetric, which implies that the composition Aj ◦Aj+ν pre-
serves the property of Γ being centrally symmetric, see details in [4]. �
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w H j+ΝL+

w j+Ν

w H j+ΝL-

w j-

w j+

w j

¥

Figure 4. Ej(Ψ0)

Lemma 7. Let Γ be a centrally symmetric standard graph without a
j-junction. Then E2

j (Γ) = Γ.

Proof. Since Aj and Aj+n commute, we have that E2
j = A2

jA
2
j+ν , and

the statement then follows from [1, Lemma 12]. �

Theorem 8. Let Γ be a centrally symmetric standard graph with a
j-junction u. Then E2

j (Γ) 6= Γ, and the structure at the j-junction is

moved one step in the direction of the j-edges under E2
j . The inverse of

E2
j moves the structure at the j-junction one step backwards along the

j+-edges.
Since Γ is centrally symmetric, it also has a j + ν-junction, and the

structure at the j + ν-junction is moved one step in the direction of the
j + ν-edges under E2

j . The inverse of E2
j moves the structure at the

j + ν-junction one step backwards along the (j + ν)+-edges.

Proof. Since E2
j = A2

jA
2
j+ν , the result follows from [1, Theorem 13]. �

4. Proving Main Theorem 1

Notice that each centrally symmetric standard graph Γ has either a
vertex in its center, or a double edge, connecting two vertices. This
property follows from the fact that ΓT is a centrally symmetric tree.

Lemma 9. Let Γ be a centrally symmetric graph. Then for every action
Ej , Γ has a vertex at the center if and only if Ej(Γ) has a vertex at the
center.

Proof. This is evident from the de�nition of the actions, since an action
only changes edges, and preserves the vertices. �
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Corollary 10. The spectral determinant has at least two connected com-
ponents.

Each centrally symmetric standard graph Γ is of one of two types:

1. Γ has a central double edge. The vertices of the central double edge
are called root junctions.

2. Γ has a junction at its center. This junction is called the root junction
ur.

De�nition 11. A centrally symmetric standard graph Γ is in ivy form
if Γ consists of structures connected to one or two root junctions.

De�nition 12. Let Γ be a centrally symmetric standard graph.
The root metric of Γ, denoted |Γ|r is de�ned as

|Γ|r =
∑
v∈Γ

(deg(v)− 2) |v − ur|

where the sum is taken over all vertices v of Γ1. Here deg(v) is the total
degree of the vertex v in TΓ and |v−ur| is the length of the shortest path
from v to the closest root junction ur in TΓ.

Lemma 13. The graph Γ is in ivy form if and only if all but its root
junctions are Y -junctions.

Proof. This follows from the de�nitions of the structures. �

Theorem 14. Let Γ be a centrally symmetric standard graph. Then
there is a sequence of even actions E∗ = E±2

j1
, E±2

j2
, . . . , such that E∗(Γ)

is in ivy form.

Proof. Assume that Γ is not in ivy form.
Let U be the set of junctions in Γ that are not Y -junctions. Since Γ

is not in ivy form we have that |U | ≥ 3. Let ur 6= u1 be two junctions
in U such that |ur − u1| is maximal, and ur is the root junction closest
to u1. Let p be the path from ur to u1 in TΓ. It is unique since TΓ is a
tree. Let v be the vertex preceding u1 on the path p. The edge from v
to u1 in TΓ is adjacent to at least one dominant face with label j such
that wj 6= 0. Therefore, there exists a j-edge between v and u1 in Γ.
Suppose �rst that this j-edge is directed from u1 to v. Let us show that
in this case u1 must be a j-junction, i.e., the dominant face labeled j+
is adjacent to u1.

Since u1 is not a Y -junction, there is a dominant face adjacent to u1

with a label k 6= j, j+. Hence no vertices of p, except possibly u1 can
be adjacent to j+-edges. If u1 is not a j-junction, there are no j+-edges
adjacent to u1. This implies that any vertex of Γ adjacent to a j+-edge
is further away from ur than u1.
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Let u2 be the closest to u1 vertex of Γ adjacent to a j+-edge. Then
u2 should be a junction of TΓ, since there are two j+-edges adjacent
to u2 in Γ and at least one more vertex (on the path from u1 to u2)
which is connected to u2 by edges with labels other than j+. Since u2

is further away from ur that u1 and the path p is maximal, u2 must be
a Y -junction. If the j-edges and j+-edges would meet at u2, u1 would
be a j-junction. Otherwise, a subdominant face labeled j + 1 would
be adjacent to both u1 and u2, while a subdominant face adjacent to a
Y -junction cannot be adjacent to any other junctions.

Hence u1 must be a j-junction. By Theorem 8, the action E2
j moves

the structure at the j-junction u1 one step closer to ur along the path
p, and similarly happens on the opposite side of Γ, decreasing |Γ|r by at
least 2.

The case when the j-edge is directed from v to u1 is treated similarly.
In that case, u1 must be a j−-junction, and the action A−2

j− moves the

structure at the j−-junction u1 one step closer to ur along the path p.
We have proved that if |U | > 1 then |Γ|r can be reduced. Since it is

a non-negative integer, after �nitely many steps we must reach a stage
where U consists only of the root junctions. Hence there exists E∗ such
that E∗(Γ) is in ivy form. �

The above theorem shows that for every centrally symmetric standard
graph Γ, there is a sequence of actions that turns Γ into ivy form. A
graph in ivy form consists of one or two root junctions, with attached
structures. These structures can be ordered counterclockwise around
each root junction. These observations motivates the following lemmas:

Lemma 15. Let Γ be a centrally symmetric standard graph, and let
ur ∈ Γ be a root junction of type j− and of type j. Let S1 and S2 be the
corresponding structures attached to ur.

(1) If S1 and S2 are of type Y resp. V, then there is a sequence of
even actions that interchange these structures.

(2) If S1 and S2 are of type I resp. Y, then there is a sequence of even
actions that converts the type Y structure to a type V structure.

(3) If S1 and S2 are both of type Y, then there is a sequence of even
actions that converts one of the Y -structures to a V -structure.

Proof. By symmetry, there are identical structures in Γ attached to a
root junction of type ν + j− and ν + j, with attached structures S′1 and
S′2 of the same type as S1 resp. S2.

Lemma 19, 20 and 22 in [1], gives the existence of a non-even sequence
of actions, that only acts on S1 and S2 in the desired way.

In all these cases, the sequence is of the form

A∗ = A±2
k1
A±2
k2
· · ·A±2

km
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where k1, k2, . . . , km ∈ {j, j−}. It follows that the action
B∗ = A±2

k1+νA
±2
k2+ν · · ·A±2

km+ν

do the same as A∗ but on S′1 and S′2.
Now, E∗ = A∗ ◦B∗ is even, since by commutativity1, it is equal to

(A±2
k1
A±2
k1+ν)(A±2

k2
A±2
k2+ν) · · · (A±2

km
A±2
km+ν)

which easily may be written in terms of our even actions as

E±2
k1
E±2
k2
· · ·E±2

km
.

This sequence of actions has the desired property. �

Corollary 16. Let Γ be a centrally symmetric graph, with two adjacent
dominant faces. Then there is a sequence of even actions E∗ such that
E∗(Γ) has either one or two junctions.

Proof. We may apply even actions to make Γ into a standard graph,
and then convert it to ivy form. The condition that we have two dom-
inant faces, is equivalent to existence of I-structures. If there are no
Y -structures, then the only junctions of Γ are the root junctions, and we
are done. Otherwise, we may interchange the Y - and V -structures, so
that a Y -structure appears next to the I-structure. By using the second
part of the above lemma, we decrease the number of Y -structures of Γ
by two. After a �nite number of actions, we arrive at a graph in ivy form
without Y -structures. �

Lemma 17. Let Γ be a centrally symmetric graph, with no adjacent
dominant faces. Then there is a sequence of even actions E∗ such that
E∗(Γ) is in ivy form, with at most two Y -structures.

Proof. By Theorem 14, we may assume that Γ is in ivy form. Since there
are no adjacent dominant sectors, the only structures of Γ are of Y and
V type. These are attached to the one or two root junctions.

Assume that there are more than two Y -structures present. Two
of these must be attached to the same root junction, ur. By repeat-
edly applying part one of Lemma 15, we may interchange the Y - and
V -structures attached to ur such that the two Y -structures are adja-
cent. Applying part three of Lemma 15, we may then convert one of the
two Y -structures to a V -structure.

By symmetry, the same change is done on the opposite side of Γ and
total number of Y -structures of Γ have therefore been reduced by two.
We may repeat this procedure a �nite number of times, until the number
of Y -structures is less than three. This implies the lemma. �

1We have at least 4 structures, 2 of them are Y or V structures. Hence ν ≥ 3 and
we have commutativity.



ON EIGENVALUES OF THE SCHRÖDINGER OPERATOR 13

Lemma 18 (See [1]). Let Γ be a standard graph such that no two domi-
nant faces are adjacent. Then the number of bounded faces of Γ is �nite
and does not change after any action A2

j .

Corollary 19. The number of bounded faces of Γ does not change under
any even action E2

j = A2
jA

2
j+ν .

Lemma 20. Let ν = n/2 = d/2 + 1 and let Σ be the space of all
(α, λ) ∈ Cν−1 such that equation (1) admits a solution subdominant in
non-adjacent Stokes sectors

Sj1 , Sj2 , . . . , S2m(5)

with jk+m = jk + ν and 1 ≤ m ≤ ν/2. Then Σ is a smooth complex
analytic submanifold of Cν−1 of the codimension m.

Proof. We consider the space Cν−1 as a subspace of the space Cn−2 of
all (α, λ) corresponding to the general polynomial potentials in (3), with
α = (α1, . . . , αd−1). Let f be a ratio of two linearly independent solutions
of (3), and let w = (w0, . . . , wn−1) be the set of the asymptotic values of
f in the Stokes sectors S0, . . . , Sn−1.

Then w belongs to the subset Z of C̄n−1 where the values wj in ad-
jacent Stokes sectors are distinct and there are at least three distinct
values among wj . The group G of fractional-linear transformations of
C̄ acts on Z diagonally, and the quotient Z/G is a (n − 3)-dimensional
complex manifold.

Theorem 7.2, [2] implies that the mappingW : Cn−2 → Z/G assigning
to (α, λ) the equivalence class of w is submersive. More precisely, W is
locally invertible on the subset {αd−1 = 0} of Cn−2

For an even potential, there exists an odd function f. The correspond-
ing set of asymptotic values satis�es ν linear conditions wj+ν = −wj
for j = 0, . . . , ν − 1. For (α, λ) ∈ Σ, we can assume that Sj1 , . . . , Sjm
are subdominant sectors for f . This adds m linearly independent con-
ditions wj1 = · · · = wjm = 0. Let Z0 be the corresponding subset of Z.
Its codimension in Z is ν + m. The one-dimensional subgroup C∗ of G
consisting of multiplications by non-zero complex numbers preserves Z0,
and gZ0 ∩ Z0 = ∅ for each g ∈ G \ C∗. The explanation is as follows:

Since we have at least two subdominant sectors, only fractional linear
transforms that preserves 0 are allowed. Furthermore, there exists a
sector Sk with the value wk di�erent from 0 and ∞ (otherwise we would
have only two asymptotic values). There is a unique transformation,
multiplication by w−1

k , preserving 0 and sending ±wk to ±1. This implies
that the only transformation preserving 0 and sending ±wk to another
pair of opposite numbers is multiplication by a non-zero constant.

Hence GZ0 is a G-invariant submanifold of Z of codimension ν+m−2,
and its image Y0 ⊂ Y is a smooth submanifold of codimension ν +m−
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2. Due to Bakken's theorem, W−1(Y0) intersected with the (n − 3)-
dimensional space of (α, λ) with αd−1 = 0 is a smooth submanifold of
codimension ν+m−2, dimension ν−m−1. Accordingly, it is a smooth
submanifold of codimension m of the space Cν−1. �

Proposition 21. Let Σ be as in Lemma 20. If at least two adjacent
Stokes sectors are missing in (5), then Σ consists of two irreducible com-
plex analytic manifolds.

Proof. Nevanlinna theory (see [8, 9]), implies that, for each symmetric
standard graph Γ with the properties listed in Lemma 3, there exists
(α, λ) ∈ Cn−1 and an odd meromorphic function f(z) such that f is the
ratio of two linearly independent solutions of (1) with the asymptotic
values wj in the Stokes sectors Sj , and Γ is the graph corresponding to the
cell decomposition Φ0 = f−1(Ψ0). This function, and the corresponding
point (α, λ) is de�ned uniquely.

Let W : Σ → Y0 be as in the proof of Lemma 20. Then Σ is an
unrami�ed covering of Y0. Its �ber over the equivalence class of w ∈ Y0

consists of the points (αΓ, λΓ) for all standard graphs Γ. Each action A2
j

corresponds to a closed loop in Y0 starting and ending at w.
It should be noted that Y0 is a connected manifold: Since for a given

list of subdominant sectors the standard graph with one junction is
unique. Lemma 9 then implies that the monodromy group has two or-
bits; odd and even eigenfunctions cannot be exchanged by any path in
Y0, while any odd (even) can be transferred into any other odd (even)
eigenfunction by a sequence of E±2

k , by Theorem 15.
Hence Σ consists of two irreducible connected components (see, e.g.,

[6]). �

This immediately implies Theorem 1, for m < ν/2. The following
proposition implies the case where m = ν/2.

Proposition 22. Let Σ be the space of all (α, λ) ∈ Cν−1, for even ν, such
that equation (1) admits a solution subdominant in every other Stokes
sector, that is, in S0, S2, . . . , Sn−2.

Then irreducible components Σk, k = 0, 1, . . . of Σ, which are also
its connected components, are in one-to-one correspondence with the
sets of centrally symmetric standard graphs with k bounded faces. The
corresponding solution of (1) has k zeros and can be represented as

Q(z)eφ(z) where Q is a polynomial of degree k and φ a polynomial of
degree (d+ 2)/2.

Proof. Let us choose w and Ψ0 as in the proof of Proposition 21. Repeat-
ing the arguments in the proof of Proposition 21, we obtain an unrami�ed
covering W : Σ → Y0 such that its �ber over w consists of the points
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(αΓ, λΓ) for all standard graphs Γ with the properties listed in Lemma
3.

Since we have no adjacent dominant sectors, Lemma 17 implies that
any standard graph Γ can be transformed by the monodromy action to
a graph Γ0 in ivy form with at most two Y -structures attached at the
root junction(s) of type j and j + ν.

Lemma 18 implies that Γ and Γ0 have the same number k of bounded
faces. If k = 0, the graph Γ0 is unique. If k > 0, the graph Γ0 is
completely determined by k. Hence for each k = 0, 1, . . . there is a unique
orbit of the monodromy group action on the �ber ofW over w consisting
of all standard graphs Γ with k bounded faces. This implies that Σ has
one irreducible component for each k.

Since Σ is smooth by Lemma 20, its irreducible components are also
its connected components.

Finally, let fΓ = y/y1 where y is an odd solution of (1) subdominant
in the Stokes sectors S0, S2, . . . , Sn−2. Then the zeros of f and y are
the same, each such zero belongs to a bounded domain of Γ, and each
bounded domain of Γ contains a single zero. Hence y has exactly k simple
zeros. Let Q be a polynomial of degree k with the same zeros as y. Then
y/Q is an entire function of �nite order without zeros, hence y/Q = eφ

where φ is a polynomial. Since y/Q is subdominant in (d+ 2)/2 sectors,
deg φ = (d+ 2)/2. �

5. Illustrating example

We will now give a small example on how to apply the method given in
Theorem 14 and Lemma 15. Let Γ be as in Figure 5(a). From subsection
2.4, we have that a dominant face with label j have j-edges as bound-
aries. Hence the faces 0 and 4 are subdominant. Also, the direction of
the edges are directed counterclockwise in each of the dominant faces.
Applying E2

1 , moves the I-structure at the 1-junction one step to the
right, following the 1-edges. Similarly, the I-structure at the 5-junction
moves one step to the left. Therefore, E2

1(Γ) is given in Figure 5(b).
The graph E2

1(Γ) is now in ivy form, it consists of a center junction con-
nected to four I-structures and two Y -structures. We proceed by using
the algorithm in Lemma 15, and apply E2

1 two times more. These steps
are given in Figure 6. The next step in the lemma is to move the newly
created V -structures to the center junction. We therefore apply E2

3 two
times. These �nal steps are presented in Figure 7, and we have reached
the unique graph with only one junction.



16 P. ALEXANDERSSON

w0 = 0

w1

w2

w3

w4 = 0

w5

w6

w7

(a)

w0 = 0

w1

w2

w3

w4 = 0

w5

w6

w7

(b)

Figure 5. The graphs Γ and E2
1(Γ)
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Figure 6. The graphs E4
1(Γ) and E6

1(Γ)
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DISCRIMINANTS, SYMMETRIZED GRAPH

MONOMIALS, AND SUMS OF SQUARES

PER ALEXANDERSSON AND BORIS SHAPIRO

Abstract. Motivated by the necessities of the invariant theory of
binary forms, J. J. Sylvester constructed in 1878 for every graph
with possible multiple edges but without loops, its symmetrized
graph monomial, which is a polynomial in the vertex labels of
the original graph. We pose the question for which graphs this
polynomial is a nonnegative or a sum of squares. This problem is
motivated by a recent conjecture of F. Sottile and E. Mukhin on
discriminant of the discriminant of the derivative of a univariate
polynomial and by an interesting example of P. and A. Lax of a
graph with four edges whose symmetrized graph monomial is non-
negative but not a sum of squares. We present detailed information
about symmetrized graph monomials for graphs with four and six
edges, obtained by computer calculations.

1. Introduction

In what follows, by a graph we will always mean a (directed or undi-
rected) graph with (possibly) multiple edges but no loops. The classical
construction of [13, 8] associates to an arbitrary directed loopless graph
a symmetric polynomial as follows.

De�nition 1. Let g be a directed graph with vertices x1, . . . , xn and ad-
jacency matrix (aij), where aij is the number of directed edges connecting
xi and xj . De�ne its graph monomial Pg as

Pg(x1, . . . , xn) :=
∏

1≤i,j≤n
(xi − xj)aij .

The symmetrized graph monomial of g is de�ned as

g̃(x) =
∑
σ∈Sn

Pg(σx), x = x1, . . . , xn.

Observe that if the original g is undirected, one can still de�ne g̃ up
to a sign by choosing an arbitrary orientation of its edges. Symmetrized
graph monomials are closely related to SL2-invariants and covariants

Key words and phrases. polynomial sums of squares, translation-invariant polyno-
mials, graph monomials, discriminants, symmetric polynomials.
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and were introduced in 1870s in an attempt to �nd new tools in invariant
theory. Namely, to obtain an SL2-coinvariant from a given g̃(x), we have
to perform two standard operations. First, we express the symmetric
polynomial g̃(x) in n variables in terms of the elementary symmetric
functions e1, . . . , en and obtain the polynomial ĝ(e1, . . . , en). Second, we
perform the standard homogenization of a polynomial of a given degree
d,

Qg(a0, a1, . . . , an) := ad0ĝ

(
a1
a0
, . . . ,

an
a0

)
.

The following fundamental proposition apparently goes back to A. Cay-
ley; see [9, Theorem 2.4].

Theorem 1.

(i) If g is a d-regular graph with n vertices, then Qg(a0, . . . , an) is
either an SL2-invariant of degree d in n variables, or it is identically
zero.

(ii) Conversely, if Q(a0, . . . , an) is an SL2-invariant of degree d and
order n, then there exist d-regular graphs g1, . . . , gr with n vertices
and integers λ1, . . . , λr such that

Q = λ1Qg1 + · · ·+ λrQgr .

Remark 1. Recall that a graph is called d-regular if each of its vertices
has valency d. Observe that if g is an arbitrary graph, then it is natural
to interpret its polynomial Qg(a0, . . . , an) as the SL2-coinvariant.

The question about the kernel of the map sending g to g̃(x) (or to Qg)
was discussed already by J. Petersen, who claimed that he has found
a necessary and su�cient condition when g belongs to the kernel; see
[9]. This claim turned out to be false. (An interesting correspondence
among J. J. Sylvester, D. Hilbert and F. Klein related to this topic can
be found in [10].) The kernel of this map seems to be related to several
open problems such as the Alon-Tarsi conjecture [3] and the Rota basis
conjecture [14]. (We want to thank Professor A. Abdesselam for this
valuable information; see [1].)

In the present paper, we are interested in examples of graphs with a
symmetrized graph monomial that is nonnegative or a sum of squares.
Our interest in this matter has two sources.

The �rst one is a recent conjecture by F. Sottile and E. Mukhin formu-
lated on the AIM meeting 'Algebraic systems with Only Real Solutions'
in October 2010. This conjecture is now settled; see [11, Corollary 14].

Theorem 2. The discriminant Dn of the derivative of a polynomial p
of degree n is the sum of squares of polynomials in the di�erences of the
roots of p.
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Based on our calculations and computer experiments, we propose the
following extension and strengthening Theorem 2. We call an arbitrary
graph with all edges of even multiplicity a square graph. Observe that
the symmetrized graph monomial of a square graph is obviously is a sum
of squares.

Conjecture 1. For every nonnegative integer 0 ≤ k ≤ n − 2, the dis-
criminant Dn,k of the kth derivative of a polynomial p of degree n is a
�nite positive linear combination of the symmetrized graph monomials,
where all underlying graphs are square graphs with n vertices. The ver-
tices x1, . . . , xn are the roots of p. In other words, Dn,k lies in the convex
cone spanned by the symmetrized graph monomials of the square graphs
with n vertices and

(
n−k
2

)
edges.

Observe that degDn,k = (n − k)(n − k − 1) and is therefore even.
The following examples support the above conjectures. Below we use
the following convention. If a displayed graph has fewer than n vertices,
then we always assume that it is appended by the required number of
isolated vertices so that there are n vertices altogether.

Example 1. If k = 0, then Dn,0 is proportional to g̃, where g is the
complete graph on n vertices with all edges of multiplicity 2.

Example 2. For k ≥ 0, the discriminant Dk+2,k equals

k!(k + 1)!
∑

1≤i<j≤k+2

(xi − xj)2.

In other words, Dk+2,k =
(k+2)!

2 g̃ where the graph g is given in Figure
1 (appended with k isolated vertices).

Figure 1. The graph g for the case Dk+2,k

Example 3. For k ≥ 0, we conjecture that the discriminant Dk+3,k

equals

(k!)3
[
(k + 1)3(k + 2)(k + 6)

72
g̃1 +

(k + 1)3k(k + 2)

12
g̃2

+
(k − 1)k(k + 1)2(k + 2)(k − 2)

96
g̃3

]
,

where the graphs g1, g2 and g3 are given in Figure 2. (This claim is
veri�ed for k = 1, . . . , 12.)
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Figure 2. The graphs g1, g2 and g3 for the case Dk+3,k.

Example 4. The discriminant D5,1 is given by

D5,1 =
19

6
g̃1 + 14g̃2 + 2g̃3

where g1, g2, g3 are given in Figure 3.

Figure 3. The graphs g1, g2 and g3 for the case D5,1.

Example 5. Finally,

D6,2 = 19200g̃1 + 960g̃2 + 3480g̃3 + 3240g̃4 +
3440

3
g̃5 + 2440g̃6,

where g1, . . . , g6 are given in Figure 4. (Note that this representation as
sum of graphs is not unique.)

It is classically known that for any given number n of vertices and d
edges, the linear span of the symmetrized graph monomials coming from
all graphs with n vertices and d edges coincides with the linear space
PSTn,d of all symmetric translation-invariant polynomials of degree d
in n variables.

We say that a pair (n, d) is stable if n ≥ 2d. For stable (n, d), we sug-
gests a natural basis in PSTn,d of symmetrized graph monomials that
seems to be new; see Proposition 7 and Corollary 4. In the case of even
degree, there is a second basis in PSTn,d of symmetrized graph mono-
mials consisting of only square graphs; see Proposition 9 and Corollary
5.

The second motivation of the present study is an interesting example
of a graph whose symmetrized graph monomial is nonnegative but not
a sum of squares. Namely, the main result of [6] shows that g̃ for the
graph given in Figure 5 has this property.

Finally, let us present our main computer-aided results regarding the
case of graphs with four and six edges. Observe that there exist 23 graphs
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Figure 4. The graphs g1, . . . , g6 for the case D6,2.

Figure 5. The Lax graph, i.e., the only four-edged
graph that yields a nonnegative polynomial that is not
SOS.

with four edges and 212 graphs with six edges. We say that two graphs
are equivalent if their symmetrized graph monomials are nonvanishing
identically and proportional. Note that two graphs do not need to be
isomorphic to be equivalent; see, for example, the equivalence classes in
Figure 6.

Proposition 3.

(i) Ten graphs with four edges have identically vanishing symmetrized
graph monomial.

(ii) The remaining 13 graphs are divided into four equivalence classes
presented in Figure 6.

(iii) The �rst two classes contain square graphs, and thus their sym-
metrized monomials are nonnegative.

(iv) The third graph is nonnegative (as a positive linear combination
of the Lax graph and a polynomial obtained from a square graph).
Since it e�ectively depends only on three variables, it is SOS, see
[5].

(v) The last graph is the Lax graph, which is thus the only nonnegative
graph with four edges not being a SOS.

Proposition 4.

(i) 102 graphs with 6 edges have identically vanishing symmetrized
graph monomial.

(ii) The remaining 110 graphs are divided into 27 equivalence classes.
(iii) 12 of these classes can be expressed as nonnegative linear combina-

tions of square graphs, i.e., they lie in the convex cone spanned by
the square graphs.

(iv) Of the remaining 15 classes, the symmetrized graph monomial of 7
of them change sign.
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Figure 6. Four equivalence classes of the 13 graphs with
four edges, whose symmetrized graph monomials do not
vanish identically.

(v) Of the remaining eight classes (which are presented on Figure 7)
the �rst �ve are sums of squares. (Observe, however, that these
symmetrized graph monomials do not lie in the convex cone spanned
by the square graphs.)

(vi) The last three classes contain all nonnegative graphs with six edges,
which are not SOS and therefore, give new examples of graphs á la
Lax.

Proving Proposition 3 is simply a matter of straightforward compu-
tation. Cases (i)-(iv) in Proposition 4 also follows from a longer calcu-
lation, by examining each of the 212 graphs. Proofs of case (v) requires
the notion of certi�cates.

It is well known that a polynomial is a sum of squares if and only
if it can be represented as vQvT , where Q is positive semide�nite and
v is a monomial vector. Such a representation is called a certi�cate.
Certi�cates for the eight classes in Proposition 4, case (v), in the form of
positive semide�nite matrices and corresponding monomial vectors can
be found in [2].

The simplest certi�cate, for the third class, is given by the vector

v3 = {x3x24, x23x4, x2x24, x2x3x4, x2x23, x22x4, x22x3, x1x24, x1x3x4,
x1x

2
3, x1x2x4, x1x2x3, x1x

2
2, x

2
1x4, x

2
1x3, x

2
1x2}

together with the positive semide�nite matrix Q3, shown as Figure 8.
Case (vi) was analyzed with the Yalmip software, which provides a

second kind of certi�cate that shows that the last three classes are not
SOS.
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Figure 7. Eight equivalence classes of all nonnegative
graphs with six edges.

Finally, notice that translation-invariant symmetric polynomials ap-
peared also in the early 1970s in the study of integrable N -body prob-
lems in mathematical physics, particularly in the famous paper [4]. A
few much more recent publications related to the ring of such polyno-
mials in connection with the investigation of multiparticle interactions
and the quantum Hall e�ect have been published since then; see e.g.,
[12], [7]. In particular, the ring structure and the dimensions of the
homogeneous components of this ring were calculated. It was shown
[12, Section IV] and [7] that the ring of translation invariant symmet-
ric polynomials (with integer coe�cients) in x1, . . . , xn is isomorphic, as
a graded ring to the polynomial ring Z[e2, . . . , en] where ei stands for
the ith elementary symmetric function in x1 − xavg, . . . , xn − xavg with
xavg =

1
n(x1 + · · ·+ xn).
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10 -6 -5 -4 3 3 -1 -5 -4 3 8 0 -2 3 -1 -2

-6 10 3 -4 -5 -1 3 3 -4 -5 0 8 -2 -1 3 -2

-5 3 10 -4 -1 -6 3 -5 8 -2 -4 0 3 3 -2 -1

-4 -4 -4 24 -4 -4 -4 8 -8 8 -8 -8 8 0 0 0

3 -5 -1 -4 10 3 -6 -2 8 -5 0 -4 3 -2 3 -1

3 -1 -6 -4 3 10 -5 3 0 -2 -4 8 -5 -1 -2 3

-1 3 3 -4 -6 -5 10 -2 0 3 8 -4 -5 -2 -1 3

-5 3 -5 8 -2 3 -2 10 -4 -1 -4 0 -1 -6 3 3

-4 -4 8 -8 8 0 0 -4 24 -4 -8 -8 0 -4 -4 8

3 -5 -2 8 -5 -2 3 -1 -4 10 0 -4 -1 3 -6 3

8 0 -4 -8 0 -4 8 -4 -8 0 24 -8 -4 -4 8 -4

0 8 0 -8 -4 8 -4 0 -8 -4 -8 24 -4 8 -4 -4

-2 -2 3 8 3 -5 -5 -1 0 -1 -4 -4 10 3 3 -6

3 -1 3 0 -2 -1 -2 -6 -4 3 -4 8 3 10 -5 -5

-1 3 -2 0 3 -2 -1 3 -4 -6 8 -4 3 -5 10 -5

-2 -2 -1 0 -1 3 3 3 8 3 -4 -4 -6 -5 -5 10

Figure 8. The positive semide�nite matrix Q3.

From this fact one can easily show that the dimension of its dth homo-
geneous component equals the number of distinct partitions of d in which
each part is strictly bigger than 1 and the number of parts is at most n.
Several natural linear bases have also been suggested for each such ho-
mogeneous component, see [12, (29)] and [7]. It seems that the authors
of the latter papers were unaware of the mathematical developments in
this �eld related to graphs.

2. Some generalities on symmetrized graph monomials

We begin with a few de�nitions.

De�nition 2. An integer partition of d is a d-tuple (α1, . . . , αd) such
that

∑
i αi = d and α1 ≥ α2 ≥ · · · ≥ αd ≥ 0.

De�nition 3. Let g be a directed graph with d edges and n vertices
v1, . . . , vn. Let α = (α1, . . . , αd) be an integer partition of d. A partition-
coloring of g with α is an assignment of colors to the edges and vertices
of g satisfying the following conditions:

• For each color i, 1 ≤ i ≤ d, we paint with the color i some vertex
vj and exactly αi edges connected to vj .
• Each vertex is painted exactly once.

An edge is called odd-colored if it is directed toward a vertex with the
same color. The coloring is said to be negative if there is an odd number
of odd-colored edges in g, and positive otherwise.
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De�nition 4. Given a polynomial P (x) and a multi-index α, we use the
notation Coeffα(P (x)) to denote the coe�cient of xα in P (x).

Note that we may view α as a partition of the sum of the exponents.

Lemma 5. Let g be a directed graph with d edges and vertices v1, . . . , vn.
Then Coeffα(g̃) is given by the di�erence of positive and negative
partition-colorings of g with α.

Proof. See [9, Lemma 2.3]. �

2.1. Bases for PSTn,d. It is known that the dimension of PSTn,d with
n ≥ 2d is given by the number of integer partitions of d in which each
nonzero part is of at least size 2; see [7]. Such integer partition will be
called a 2-partition.

To each 2-partition α = (α1, α2, . . . , αd), αi 6= 1, we associate the
graph bα consisting of a root vertex, connected to αi other vertices, with
the edges directed away from the root vertex. Since α is an integer
partition of d, it follows that bα has exactly d edges. This type of graph
will be called a partition graph.

The dimension of PSTn,d is independent of n (as long as n ≥ 2d),
and we deal only with homogeneous symmetric polynomials of degree
d. Thus, each monomial is essentially determined only by the way the
powers of the variables are partitioned. The variables themselves become
unimportant, since every permutation of the variables is present. For ex-
ample, the monomials x3zw and xy3w are always present simultaneously
with the same coe�cient, while x3z3 is di�erent from the previous two.

2.2. Partition graphs.

De�nition 5. Let P (x) be a polynomial in |x| variables. We use the
following notation

Sym(x,y)P =
∑

(τ1,τ2,...,τn)⊆x∪y

P (τ1, τ2, . . . , τn),

where we sum over all possible permutations and choices of n variables
among the |x|+ |y| variables.

The following is obviously true.

Lemma 6. Let P (x) be a polynomial. Then

Sym(x,y)P =

|y|∑
i=0

∑
σ⊆y

|σ|=i

∑
τ⊆x

|τ |=|x|−i

Sym(τ∪σ)P.

Here, the two inner sums denote choices of all subsets of a certain size.
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Corollary 1. If SymxP is non-negative, then Sym(x,y)P is nonnega-
tive.

Corollary 2. If SymxP is a sum of squares, then Sym(x,y)P is a sum
of squares.

Corollary 3. If
∑

i λiSymxPi = 0 then we have
∑

i λiSym(x,y)Pi = 0.

We will use the notation that every symmetric polynomial g̃ associated
with a graph on d edges is symmetrized over 2d variables. Corollary 3
says that if a relation holds for symmetrizations in 2d variables, it will
also hold for 2d + k variables (k ≥ 0). Therefore, each relation derived
in this section also holds for 2d+ k variables.

Proposition 7. Let bα be a partition graph with d edges, α = (α1, . . . , αd),
and let β = (β1, β2, . . . , βd) be a 2-partition.

Then

Coeffβ(b̃α) =

{
0 if β 6= α∏d
j=2#{i|αi = j}! if β = α.

Proof. We will try to color the graph bα with β. Since βi 6= 1, we may
only color the roots of bα. Hence, all edges in each component of bα
must have the same color as the corresponding root. It is clear that such
coloring is impossible if α 6= β. If α = β, we see that each coloring has
positive sign, since only roots are colored and all connected edges are
directed outward.

The only di�erence between two colorings must be the assignment
of the colors to the roots. Hence, components with the same size can
permute colors, which yields

d∏
j=2

#{i|αi = j}!

ways to color g with the partition (α1, . . . , αd). �

Corollary 4. All partition graphs yield linearly independent polynomi-
als, since each partition graph bα contributes with the unique monomial
xα. The number of partition graphs on d edges equals the dimension of
PSTd,n, and therefore, when n ≥ 2d, they must span the entire vector
space.

2.3. Square graphs. We will use the notation

α = (α1, α2, . . . , αk|αk+1, αk+1, . . . , αd)

to denote a partition where α1, . . . , αk are the odd parts in nonincreasing
order, and αk+1, . . . , αd are the even parts in nonincreasing order. (Note
that this convention di�ers from the standard one for partitions.) As
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before, parts are allowed to be equal to zero, so that α can be used as a
multi-index over d variables.

Now we de�ne a second type of graphs, which we associate with 2-
paritions of even integers: Let α = (α1, α2, . . . , αk|αk+1, . . . , αd), αi 6= 1,
be a 2-partition of d. Since this is a partition of an even integer, k must
be even.

For each even αi ≥ 2, we have a connected component of hα consisting
of a root, connected to αi/2 other vertices, with the edges directed away
from the root, and with multiplicity 2.

For each pair α2j−1, α2j of odd parts, j = 1, 2, . . . , k/2, we have a
connected component consisting of two roots v2j−1 and v2j , such that
vi is connected to bαi/2c other vertices for i = 2j − 1, 2j, with edges of
multiplicity 2 and the roots are connected with a double edge. This type
of component will be called a glued component.

Thus, each edge in hα has multiplicity 2, and the number of edges,
counting multiplicity, is d. This type of graph will be called a partition
square graph. Note that all edged have even multiplicity, so h̃α(x) is a
sum of squares.

Lemma 8. Let hα be a partition square graph such that α = (α1, . . . , αd).
Then

Coeffα(h̃) = (−1)
1
2
#{i|αi≡21}2#{i|αi=2}

n∏
j=0

#{i|αi = j}!.

Proof. Similarly to Proposition 7, it is clear that a coloring of h with d
colors require that each root must be colored.

The root of a component with only two vertices is not uniquely deter-
mined, so we have 2#{i|αi=2} choices of the root.

It is clear that each glued component contributes exactly one odd
edge for every coloring, and therefore the sign sign is the same for each
coloring. The number of glued components is precisely 1

2#{i|αi ≡2 1}.
Lastly, we may permute the colors corresponding to roots with the

same degree. These observations together yields the formula

(−1)
1
2
#{i|αi≡21}2#{i|αi=2}

n∏
j=0

#{i|αi = j}!,

which completes the proof. �

De�ne a total order on 2-partitions as follows:

De�nition 6. Let

α = (α1, . . . , αk|αk+1, . . . , αd) and α
′ = (α′1, . . . , α

′
k′ |α′k′+1, . . . , αk′)

be 2-partitions. We say that α ≺ α′ if αi = α′i for i = 1, . . . , j − 1, j ≥ 1
and one of the following holds:
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• αj > α′j and αj = α′j mod 2;

• αj is odd and α′j is even.

Proposition 9. Let hα be a square graph. Then we may write

h̃α =
∑
β

λβ b̃β, bβ is a partition graph,(1)

where λβ = 0 if β ≺ α.

Proof. Let α be the partition (α1, . . . , αq|αq+1 . . . , αd) and let β =
(β1, . . . , βr|βr+1, . . . , βd), with β ≺ α. Consider equation (1) and apply
Coeffβ to both sides. Proposition 7 implies

Coeffβ(h̃α) = λβ · Cβ, where Cβ > 0.

It su�ces to show that there is no partition-coloring of hα with β if
β ≺ α, since this implies λβ = 0.

We now have three cases to consider:
Cases 1 and 2: αi = βi for i = 1, . . . , j − 1 and βj > αj , where αj

and βj are either both odd or both even. We must color a root and βj
connected edges, since βj > αj ≥ 2. There is no vacant root in gα with
degree at least βj , all such roots having already been colored with the
colors 1, . . . , j − 1. Hence a coloring is impossible in this case.
Case 3: αi = βi for i = 1, . . . , j − 1, βj is odd and αj is even. This

condition implies that q < r.
Every component of hα has an even number of edges, and only vertices

with degree at least three can be colored with an odd color. Therefore,
glued components must be colored with exactly zero or two odd colors,
and nonglued component must have an even number of edges of each
present color. This implies that a coloring is possible only if r ≤ q, a
contradiction.

Hence, there is no coloring of hk with the colors given by β, and
therefore, Coeffβ(h̃α) = 0, implying λβ = 0. �

Corollary 5. The polynomials obtained from the partition square graphs
with d edges is a basis for PSTd,n, for even d.

Proof. Let α1 ≺ · · · ≺ αk be the 2-partitions of d. Since b̃α1 , . . . , b̃αk is a
basis, there is a uniquely determined matrix M such that

(h̃α1 , . . . , h̃αk)
T =M(b̃α1 , . . . , b̃αk)

T .

Proposition 9 implies that M is lower-triangular. Proposition 7 and
Lemma 8 imply that the entry at (αi, αi) in M is given by

(−1)
1
2
#{j|αij≡21}2#{j|αij=2},
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which is nonzero. Hence M has an inverse, and the partition square
graphs form a basis. See Figure 9 for an example of the two sets of bases
for the case d = 6. �

Figure 9. A base of partition graphs and a base of par-
tition square graphs in the stable case with six edges.

3. Final remarks

Some obvious challenges related to this project are as follows.

(1) Prove Conjecture 1.
(2) Describe the boundary of the convex cone spanned by all square

graphs with a given number of (double) edges and vertices.
(3) Find more examples of graphs á la Lax.
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SCHUR POLYNOMIALS, BANDED TOEPLITZ

MATRICES AND WIDOM'S FORMULA

PER ALEXANDERSSON

Abstract. We prove that for arbitrary partitions λ ⊆ κ, and
integers 0 ≤ c < r ≤ n, the sequence of Schur polynomials

S(κ+k·1c)/(λ+k·1r)(x1, . . . , xn)

for k su�ciently large, satisfy a linear recurrence. The roots of
the characteristic equation are given explicitly. These recurrences
are also valid for certain sequences of minors of banded Toeplitz
matrices.

In addition, we show that Widom's determinant formula from
1958 is a special case of a well-known identity for Schur polynomials.

1. Introduction

1.1. Minors of banded Toeplitz matrices. Fix a positive integer n
and a �nite sequence s0, s1, . . . , sn of complex numbers. De�ne an in�nite
banded Toeplitz matrix A by the formula

(1) A := (sj−i), 1 ≤ i <∞, 1 ≤ j <∞ with si := 0 for i > n, i < 0.

Given an increasing r−tuple α = (α1, α2, . . . , αr) and an increasing
c−tuple β = (β1, β2, . . . , βc) of positive integers with r ≤ c ≤ n, de-
�ne Dk

α,β as the k × k−matrix obtained by �rst removing rows indexed

by {αi}ri=1 and columns indexed by {βi}ci=1 from A and then selecting
the leading k × k−sub-matrix. In particular, we let Dk

c to be Dk
α,β for

α = ∅,β = (1, 2, . . . , c). We will also require s0 = 1 which is a natural
assumption1.
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1If s0 = 0, the �rst column of Dk

α,β will consist of zeros, unless β1 = 1. In the �rst

case, detDk
α,β is therefore 0 for every k > 0 and uninteresting. In the latter case,

we may just as well use the sequence s1, s2, . . . , sn and decrease all entries in β by 1
and obtain the exact same sequence. Thus, there is no loss of generality if we assume
s0 6= 0. Furthermore, we are interested on the determinants of Dk

α,β, so assuming

s0 := 1 is not a big restriction and the general case can easily be recovered.
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A great deal of research has been focused on the asymptotic eigenvalue
distribution of Dk

c as k → ∞, the most important are the Szegö limit
theorem from 1915, and the strong Szegö limit theorem from 1952.

There are many ways to generalize the strong Szegö limit theorem,
for example, the Fisher-Hartwig conjecture from 1968. Some cases of
the conjecture have been promoted to a theorem, based on the works
of many people the last 20 years, including Widom, Basor, Silberman,
Böttcher and Tracy. A possible re�nement of the conjecture is the Basor-
Tracy conjecture, [7, 2], which recently has been proved in the general
case, see [9].

Asymptotics of Toeplitz determinants arises naturally in many areas;
Szegö himself considered the two-dimensional Ising model. For a more re-
cent application in combinatorics, see [1], where the length of the longest
increasing subsequence in a random permutation is studied.

A classic result in the theory of banded Toeplitz matrices was obtained
by H. Widom [16]. We use [n] to denote the set {1, 2, . . . , n} and the

symbol
(
[n]
c

)
as the set of subsets of [n] with cardinality c. In a modern

setting, Widom's formula may then be formulated as follows:

Theorem 1. (Widom's determinant formula, [6]) Let ψ(t) :=
∑n

i=0 sit
i.

If the zeros t1, t2, . . . , tn of ψ(t) = 0 are distinct then, for every k ≥ 1,

(2) detDk
c =

∑
σ

Cσw
k
σ, σ ∈

(
[n]

n− c

)
where

wσ := (−1)n−csn
∏
i∈σ

ti and Cσ :=
∏
i∈σ

tci
∏
j∈σ
i/∈σ

(tj − ti)−1.

In 1960, by using Widom's formula, P. Schmidt and F. Spitzer gave
a description of the limit set of the eigenvalues of Dk

c as k →∞. In the
above notation, part of their theorem can be stated as follows:

Theorem 2. (P. Schmidt, F. Spitzer, [15])
Let Ik denote the k × k-identity matrix and de�ne

B =

{
v
∣∣∣v = lim

k→∞
vk, det(D

k
c − vkIk) = 0

}
,

that is, B is the set of limit points of eigenvalues of {Dk
c }∞k=0. Let

f(z) =
n∑
i=0

siz
i−c and Q(v, z) = zc(f(z)− v).

Order the moduli of the zeros, ρi(v), of Q(v, z) in increasing order,

0 < ρ1(v) ≤ ρ2(v) ≤ · · · ≤ ρn(v),
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with possible duplicates counted several times, according to multiplicity.
Let C = {v|ρc(v) = ρc+1(v)} . Then, B = C.

The Laurent polynomial f(z) is called the symbol associated with the
Toeplitz matrix Dk

c , and it is an important tool2 for studying asymp-
totics.

More recently, a newer approach using the theory of Schur polynomials
has been successfully used to further investigate the series {detDk

α,β}∞k=1,

e.g. [8]. For a recent application of Schur functions in the non-banded
case, see [5].

There is also a connection between multivariate orthogonal poly-
nomials and certain determinants of Dk

α,β, considered as functions of

(s0, s1, . . . , sn). The solution set to a system of polynomial equations ob-
tained from some detDk

α,β converges to the measure of orthogonality as
k → ∞. For example, in 1980, a bivariate generalization of Chebyshev
polynomials was constructed by K. B. Dunn and R. Lidl. Some more re-
cent applications of the theory of symmetric functions are [3, 11], where
use of Schur polynomials and representation theory gives multivariate
Chebyshev polynomials. These multivariate Chebyshev polynomials are
also minors of certain Toeplitz matrices.

For example, if n = 2 and Pj(s1, s2) := detDj
1, we have that

Tj(x) = Pj(x−
√
x2 − 1, x+

√
x2 − 1) = S(j)(x−

√
x2 − 1, x+

√
x2 − 1),

where Tj(x) is the jth Chebyshev polynomial of the second kind, and
S(j) is the Schur polynomial for the partition with one part of size j, in
two variables.

However, the close connection between multivariate Chebyshev poly-
nomials and Schur polynomials (and thus minors of banded Toeplitz
matrices) has not yet been su�ciently investigated.

1.2. Main results. We start with giving a Schur polynomial interpre-
tation of detDk

α,β.

Set si := si(x1, x2, . . . , xn) where si is the i :th elementary symmetric
polynomial. We impose a natural3 restriction on α and β, namely αi ≥
βi for i = 1, 2, . . . , r.

Proposition 3. In the above notation, for k su�ciently large, we have

(3) detDk
α,β = S(λ+kµ)/(κ+kν)(x1, x2, . . . , xn),

2Note that f has a close resemblance with ψ in Widom's formula.
3This ensures that no leading matrix of Dk

α,β is upper-triangular with a zero on

the main diagonal, which would force detDk
α,β to vanish.
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where S(λ+kµ)/(κ+kν) is a skew Schur polynomial de�ned below. Here
λ,κ,µ,ν are partitions given by

λ = (1− β1, 2− β2, . . . , c− βc), κ = (1− α1, 2− α2, . . . , r − αr)
µ = (1, 1, . . . , 1︸ ︷︷ ︸

c

), ν = (1, 1, . . . , 1︸ ︷︷ ︸
r

).

The conditions on α and β ensure that S(λ+kµ)/(κ+kν) is well-de�ned
for k ≥ max(αr−r, βc−c). (Identity (3) is proven below in Proposition 10,
a similar identity is proven in [8].)

To state our main �rst result, we need to de�ne the following. Set b :=(
n
c−r
)
and de�ne the �nite sequence of polynomials {Qi(x1, . . . , xn)}bi=0

by the identity

(4)
b∑

k=0

Qb−kt
k =

∏
σ⊆[n]

|σ|=c−r

(t− xσ1xσ2 · · ·xσc−r).

Theorem 4. Given strictly increasing sequences α,β of positive integers
of length r resp. c with c ≤ r, satisfying αi ≥ βi for i = 1, 2, . . . , r, we
have

(5)
b∑

k=0

Qb−k det(D
k+j
α,β ) = 0 for all j ≥ max(αc − c, βr − r).

(Here, we use the convention that the determinant of an empty matrix
is 1.)

Remark 5. For the caseDk
c , the existence of recurrence (5) was previously

shown in [14, Theorem 2], but its length and coe�cients were not given
explicitly. Also, Theorem 4 has close resemblance to a result given in
[12, Theorem 5.1]. It is however unclear whether [12] implies Theorem
4. Additionally, in contrast to [12], our proof of Theorem 4 is short and
purely combinatorial.

To formulate the second result, de�ne

(6) χ(t) =

n∏
i=1

(t− xi) = (−1)n
n∑
i=0

(−t)n−isi(x1, x2, . . . , xn).

We then have the following theorem, which is equivalent to Widom's
formula:

Theorem 6. (Modi�ed Widom's formula)
If the zeros x1, x2, . . . , xn of χ(t) = 0 are distinct then, for every k ≥ 1,

detDk
c =

∑
τ

∏
i∈τ

xki
∏
i∈τ
j /∈τ

xi
xi − xj

, τ ∈
(
[n]

c

)
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Remark 7. Below, we show that this (and therefore Widom's original
formula) follows immediately from a known identity for the Hall polyno-
mials.

Note that Theorem 4 can be veri�ed easily using Widom's original
formula. I was informed that there is an unpublished result by S. Delvaux
and A. L. García which uses a Widom-type formula for block Toeplitz
matrices to give recurrences similar to (5).

2. Preliminaries

Given two integer partitions λ = (λ1, λ2, . . . , λn), µ = (µ1, µ2, . . . , µn)
with λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0, µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0, we say
that λ ⊇ µ if λj ≥ µj for j = 1, . . . , n. Given two such partitions, one
constructs the associated skew Young diagram4 by having n left-adjusted
rows of boxes, where row j contains λj boxes, and then removing the
�rst µj boxes from row j. The removed boxes is called the skew part of
the tableau.

Example 8. The following diagram is obtained from the partitions
(4, 2, 1) and (2, 2), and it is said to be of the shape (4, 2, 1)/(2, 2):

� �
� �

(We will omit/add trailing zeros in partitions when the intended length
is known from the context.)

The conjugate of a partition is the partition obtained by transposing
the corresponding tableau. For example, the conjugate of (4, 2, 1)/(2, 2)
is (3, 2, 1, 1)/(2, 2).

Given such a diagram, a (skew) semi-standard Young tableau (we will
sometimes use just the word tableau from now on) is an assignment of
positive integers to the boxes, such that each row is weakly increasing,
and each column is strictly increasing.

We de�ne the (skew) Schur polynomial Sλ/µ(x1, x2, . . . , xn) as

(7) Sλ/µ(x1, x2, . . . , xn) =
∑

xh11 · · ·x
hn
n

where the sum is taken over all tableaux of shape λ/µ, and hj counts
the number of boxes containing j for each particular tableau. No box
may contain an integer greater than n. When µ = (0, 0, . . . , 0) we just
write Sλ. To clarify, each Schur polynomial is associated with a Young
diagram, and each monomial in such polynomial corresponds to a set

4In the case µ = (0, 0, . . . , 0), the word skew is to be omitted.
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of tableaux. We use this correspondence extensively. For example, the
tableau above yields the Schur polynomial

x31 + x32 + x33 + 2(x21x2 + x21x3 + x22x1 + x22x3 + x23x1 + x23x2) + 3x1x2x3.

The following formula express the (skew) Schur polynomials in a de-
terminant form:

Proposition 9. (Jacobi-Trudi identity [13])
Let λ ⊇ µ be partitions with at most n parts and let λ′,µ′ be their

conjugate partitions (with at most k parts). Then the (skew) Schur poly-
nomial Sλ/µ is given by

Sλ/µ(x1, x2, . . . , xn) =

∣∣∣∣∣∣∣∣∣
sλ′1−µ′1 sλ′1−µ′1+1 . . . sλ′1−µ′1+k−1
sλ′2−µ′2−1 sλ′2−µ′2 . . . sλ′2−µ′2+k−2

...
. . .

...
sλ′k−µ

′
k−k+1 . . . sλ′k−µ

′
k

∣∣∣∣∣∣∣∣∣
where sj := sj(x1, . . . , xn), the elementary symmetric functions in the
variables x1, . . . , xn. Here, sj ≡ 0 for j < 0.

It is clear that every (skew) Schur polynomial Sλ/µ(x1, . . . , xn) is sym-
metric in x1, . . . , xn.

3. Proofs

The following proposition shows that certain minors of banded Toeplitz
matrices may be interpreted as Schur polynomials.

Proposition 10. Let Dk
α,β be de�ned as above. Then,

detDk
α,β = S(λ+kµ)/(κ+kν)(x1, x2, . . . , xn)

where

λ = (1− β1, 2− β2, . . . , c− βc), κ = (1− α1, 2− α2, . . . , r − αr)

and

µ = (1, 1, . . . , 1︸ ︷︷ ︸
c

), ν = (1, 1, . . . , 1︸ ︷︷ ︸
r

).

Proof. Consider the matrix A de�ned in (1), where the indices (of s) on
the main diagonal are all 0. Now, removing the rows α will decrease the
index on row i by #{j|αj − j + 1 ≤ i}. Similarly, removing the columns
β will increase the index in column i by #{j|βj − j + 1 ≤ i}. After
removing rows and columns, the diagonal of the resulting matrix, Ã, is
given by

(#{j|βj − j + 1 ≤ i} −#{j|αj − j + 1 ≤ i})∞i=1 .
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Now, the leading k × k minor of Ã is Dk
α,β and its anti-diagonal trans-

pose has the same determinant as Dk
α,β. The main diagonal in the anti-

diagonal transposed matrix equals
(8)

(#{j|βj − j + 1 ≤ k − i+ 1} −#{j|αj − j + 1 ≤ k − i+ 1})ki=1 =

(#{j|βj ≤ k + j − i} −#{j|αj ≤ k + j − i})ki=1

Now, well-known properties of partition conjugation imply that the
partition (λ+ kµ)′ equals

(#{j|k + j − βj ≥ 1},#{j|k + j − βj ≥ 2}, . . . ,#{j|k + j − βj ≥ k}),

and (κ+ kν)′ is given by

(#{j|k + j − αj ≥ 1},#{j|k + j − αj ≥ 2}, . . . ,#{j|k + j − αj ≥ k}).

Rewriting this we obtain

(λ+kµ)′ = (#{j|βj ≤ k+j−i})ki=1, (κ+kν)
′ = (#{j|αj ≤ k+j−i})ki=1.

Finally, using (κ+kν)/(λ+kµ) in the Jacobi-Trudy identity, Proposition
9, yields a k × k−matrix with diagonal entries

(λ+ kµ)′− (κ+ kν)′ = (#{j|βj ≤ k+ j − i}−#{j|αj ≤ k+ j − i})ki=1.

This expression coincides with the expression for detDk
α,β in (8), and

now it is straightforward to see that all other matrix entries coincides as
well. �

3.1. Young tableaux and sequence insertion. To prove Theorem 4,
we need to de�ne a new combinatorial operation on semi-standard skew
Young tableaux. Namely, given a tableau T with n rows, we de�ne an
insertion of a sequence t = t1 < t2 < · · · < tc into T as follows. Each ti is
inserted into row i, such that the resulting row is still weakly increasing.
(Clearly, there is a unique way to do this.) If there is no row i, we create
a new left-adjusted row consisting of one box which contains ti. We call
this operation sequence insertion of t into T.

Lemma 11. The result of sequence insertion is a semi-standard Young
tableau.

Proof. It is clear that it su�ces to check that the resulting columns are
strictly increasing. Furthermore, it su�ces to show that any two boxes
in adjacent rows are strictly increasing. Let us consider rows i and i+1
after inserting ti and ti+1, ti < ti+1. There are three cases to consider:
Case 1: The numbers ti and ti+1 are in the same column:[

· · · a1 ti a2 · · · am · · ·
· · · b1 ti+1 b2 · · · bm · · ·

]
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Since ti < ti+1, and all the other columns are unchanged, the columns
are strictly increasing.
Case 2: The number ti is to the right of ti+1:[

· · · ti a1 a2 · · · am−1 am · · ·
· · · b1 b2 b3 · · · bm ti+1 · · ·

]
The columns where strictly increasing before the insertion. Therefore,
ti ≤ a1 < b1, am < bm ≤ ti+1 and aj < bj ≤ bj+1. It follows that all the
columns are strictly increasing.
Case 3: The number ti to the left of ti+1:[

· · · a1 a2 · · · am−1 am ti · · ·
· · · ti+1 b1 b2 b3 · · · bm · · ·

]
We have that aj ≤ ti < ti+1 ≤ bk for 1 ≤ j, k ≤ m, since the rows are
increasing. Thus, it is clear that all the columns are strictly increasing.
It is easy to see that the result is a tableau even if c 6= n. �

Notice that di�erent sequence insertions commute, i.e., inserting se-
quence s into T followed by t, yields the same result as the reverse order
of insertion.

We may extend the notion of sequence insertion to skew tableaux
as follows: First put negative integers in the skew part, such that the
negative integers in each particular row have the same value, and the
columns are strictly increasing. The result is a regular tableau, (but
with some negative entries), so we may perform sequence insertion. The
negative entries still form a skew part of the tableau, and we may remove
these to obtain a skew tableau.

Note that we may also allow negative entries in a sequence, which
after insertion, are removed. The result is a skew tableau. The following
example illustrates this:

Example 12. Here, we insert the sequence (−1, 2, 3) into a skew tableau
of shape (4, 3, 3, 2)/(2, 1, 1) :

� � 1 1
� 1 2
� 3 4
1 4

 

� � � 1 1
� 1 2 2
� 3 3 4
1 4

Lemma 13. Let Sλ/µ(x1, . . . , xn) be a (skew) Schur polynomial. Then,

for any k ≥ 0, the coe�cient of xh11 · · ·xhnn in xt1 · · ·xtcSλ/µ with 0 <
t1 < t2 < · · · < tc counts the number of (skew) tableau of shape λ/µ that
results in a (skew) tableau that has exactly hi boxes with value i, after
insertion of the sequence (−k, . . . ,−2,−1, t1, t2, . . . , tc).
Proof. This follows immediately from the de�nition of sequence insertion
and the de�nition of the skew Schur polynomials. �
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Expressing Schur polynomials and products of the form xt1 · · ·xtcSλ/µ
as a sum of monic monomials, we have a 1-1-correspondence between a
monic monomials and tableaux. Thus, in what follows, we may sloppily
identify these two objects when proving Theorem 4:

Proof of Theorem 4. We may assume that αi ≥ βi for i = 1, . . . , r. Oth-
erwise, all determinants vanish, and the identity is trivially true. With
these assumptions we may use the Schur polynomial interpretation.

Let b :=
(
n
c−r
)
and let j ≥ max(r − αr, c − βc). Rewriting (4) using

identity (3) yields

(9) S(λ+(b+j)µ)/(κ+(b+j)ν) =
b−1∑
k=0

Qb−kS(λ+(k+j)µ)/(κ+(k+j)ν).

Now, notice that the di�erence between tableaux of shape (λ +
kµ)/(κ + kν) and tableaux of shape (λ + (k − 1)µ)/(κ + (k − 1)ν)
is that the former contains an extra column of the form

�, . . . ,�︸ ︷︷ ︸
r

�, . . . ,�︸ ︷︷ ︸
c−r

.

Therefore, each tableau of shape (λ+kµ)/(κ+kν), (k > max(r−αr, c−
βc)) may be obtained from some tableau of shape (λ + (k − 1)µ)/(κ +
(k − 1)ν) by inserting a sequence of the form

(−r, . . . ,−1, t1, t2, . . . , tc−r).

Together with Lemma 13, this implies that all Young tableaux5 in
S(λ+(b+j)µ)/(κ+(b+j)ν) are also tableaux5 in

(10) Q1S(λ+(b+j−1)µ)/(κ+(b+j−1)ν).

Hence, there is almost an equality between S(λ+(b+j)µ)/(κ+(b+j)ν) and
(10), but some tableaux in S(λ+(b+j)µ)/(κ+(b+j)ν) may be obtained by us-
ing di�erent sequence insertions. Those tableaux are exactly the tableaux
that may be obtained by using

S(λ+(b+j−2)µ)/(κ+(b+j−2)ν)

using two di�erent sequence insertions.
Thus, S(λ+(b+j)µ)/(κ+(b+j)ν) is almost given by

Q1S(λ+(b+j−1)µ)/(κ+(b+j−1)ν) +Q2S(λ+(b+j−2)µ)/(κ+(b+j−2)ν).

(Multiplying with Q2 can be viewed as performing all possible pairs of
two di�erent sequence insertions, and then there is a sign.)

Repeating this reasoning using inclusion/exclusion yields (9). �

5monic monomials
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Remark 14. Note that the technical condition j ≥ max(αr − r, βc − c)
in (5) is indeed necessary. For example, with n = 2, {detDk

(),(2)}
2
k=0 do

not satisfy the recurrence but {detDk
(),(2)}

3
k=1 do:

x1x2 · 1− (x1 + x2)
∣∣1∣∣+ 1

∣∣∣∣1 x1x2
0 1

∣∣∣∣ 6= 0

but

x1x2 ·
∣∣1∣∣− (x1 + x2)

∣∣∣∣1 x1x2
0 1

∣∣∣∣+ 1

∣∣∣∣∣∣
1 x1x2 0
0 x1 + x2 x1x2
0 1 x1 + x2

∣∣∣∣∣∣ = 0.

This circumstance is a clear distinction of our result to the result in
[12], where the corresponding recurrence (for a slightly di�erent type of
objects) does not need such additional restriction.

3.2. Widom's formula. We will now show that Theorem 6 is equivalent
to Widom's formula.

Lemma 15. Theorem 6 is equivalent to Widom's formula (2).

Proof. It is clear from (6) that (−t)nψ(−1/t) = χ(t), so the roots of
these polynomials are related by ti = −1/xi. Substituting ti 7→ −1/xi in
(2) and canceling signs yields

detDk
c =

∑
σ

(
sn∏
i∈σ xi

)k(∏
i∈σ

x−ci

)∏
j∈σ
i/∈σ

(
1

xj
− 1

xi

)−1
.

Using that sn = x1x2 · · ·xn and rewriting the last product, we get

detDk
c =

∑
σ

∏
i/∈σ

xki

(∏
i∈σ

x−ci

)∏
j∈σ
i/∈σ

xj

(
xi

xi − xj

)
.

Now notice that the last product produces xcj , since |[n] \ σ| = c. Thus,

we may cancel these with the middle product. Finally, putting τ = [n]\σ
yields the desired identity. �

Thus, to prove Widom's formula, it su�ces to prove Theorem 6. How-
ever, it is a direct consequence of the following identity:

Proposition 16. (Identity for Hall polynomials, [13, p. 104, eqn. (2.2)])
The Schur polynomial Sλ(x1, . . . , xn) satisfy

Sλ(x1, . . . , xn) =
∑

w∈Sn/Sλn

w

xλ11 · · ·xλnn ∏
λi>λj

xi
xi − xj


where Sλ

n is the subgroup of permutations with the property that λw(j) =
λj for j = 1, . . . , n, and w acts on the indices of the variables.
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Proof of Theorem 6. Let λ = (k, . . . , k, 0, . . . , 0) with c entries equal to
k. Then Sλ

n is the subgroup consisting of permutations, permuting the
�rst c variables, and the last n − c variables independently. The con-
dition λi > λj will only be satis�ed if λi = k and λj = 0. Therefore
Proposition 16 immediately implies Theorem 6. �

3.3. Applications. Theorem 4 can be used to give a shorter proof a
result of Schmidt and Spitzer in [15], by using the main result in [4],
which reads as follows:

Let {Pn(z)} be a sequence of polynomials satisfying

(11) Pn+b = −
b∑

j=1

qj(z)Pn+b−j(z),

where the qj are polynomials. The number x ∈ C is a limit of zeros of
{Pn} if there is a sequence of zn s.t. Pn(zn) = 0 and limn→∞ zn = x.

For �xed z, we have roots vi, 1 ≤ i ≤ b of the characteristic equation

vb +

b∑
j=1

qj(z)v
b−j = 0.

For any z such that the vi(z) are distinct, we may express Pn(z) as
follows:

(12) Pn(z) =

b∑
j=1

rj(z)vi(z)
n.

Under the non-degeneracy conditions that {Pn} do not satisfy a re-
currence of length less than b, and that there is no w with |w| = 1 such
that vi(z) = wvj(z) for some i 6= j, the following holds:

Theorem 17. (See [4]).
Suppose {Pn} satisfy (11). Then x is a limit of zeros if and only if

the roots vi of the characteristic equation can be numbered so that one of
the following is satis�ed:

(1) |v1(x)| > |vj(x)|, 2 ≤ j ≤ b and r1(z) = 0.
(2) |v1(x)| = |v2(x)| = · · · = |vl(x)| > |vj(x)|, l + 1 ≤ j ≤ b for some

l ≥ 2.

We are now ready to prove a generalization of Theorem 2:

Theorem 18. Fix natural numbers n and 0 < c < n. Let γ1, γ2, . . . , γd
be a sequence of d integers such that c < γ1 < γ2 < · · · < γd. Set
α = (γ1, . . . , γd) and set β = (1, 2, . . . , c, γ1, . . . , γd). De�ne

B =

{
v|v = lim

k→∞
vk,det(D

k
α,β − vkIk) = 0

}
.
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Let

f(z) =
n∑
i=0

siz
i−c, Q(v, z) = zc(f(z)− v).

Order the moduli of the zeros, ρi(v), of Q(v, z) in increasing order, with
possible duplicates counted several times, according to multiplicity:

0 < ρ1(v) ≤ ρ2(v) ≤ · · · ≤ ρn(v).
Let C = {v|ρc(v) = ρc+1(v)} . Then, B = C ∪ W where W ⊂ C is a
�nite set of points.

Proof. Consider the sequence of matrices {Dk
α,β− vIk}∞k=K , K = γd−d.

It is easy to see that the main diagonal of all these matrices will be of
the form sc − v, and no other entries involve either sc or v. Now, de�ne
s′i(v) = si − δicv, where δij is the Dirac delta. Let us modify (6) and
de�ne

(13) χ(v, t) =

n∏
i=1

(t− xi(v)) = (−1)n
n∑
i=0

(−t)n−is′i(v).

Notice that χ(v, t) = (−1)nQ(v,−1/t). If we enumerate the roots of
χ(v, t) according to their magnitude,

0 < |x1(v)| ≤ |x2(v)| ≤ · · · ≤ |xn(v)|,
we have that |xi(v)| = 1/ρi(v) for 1 ≤ i ≤ n.

From Theorem 4 it follows that the series {Dk
α,β−vIk}∞k=K satisfy the

characteristic equation

(14)
∏
σ⊆[n]

|σ|=c

(t− xσ1(v)xσ2(v) · · ·xσc(v)) = 0.

It is evident that for this characteristic equation the non-degeneracy
conditions hold. All roots are di�erent, and we require all of them for
the equation to be symmetric under permutation of the xi, hence, the
recurrence is minimal. The second condition holds since the left-hand
side of the characteristic equation is irreducible, see [4] for details.

From Theorem 17, it follows that the zeros of det(Dkm
α,β − vmIkm) = 0

accumulate exactly where two or more of the largest zeros of (14) coincide
in magnitude, or when the corresponding rj(z) = 0 in (12). The latter
case can only hold for only a �nite number of points; (alternative 1
cannot be satis�ed if d = 0, equation (12) is then Widom's formula, and
all coe�cients ri(z) are non-zero since all roots xj(v) are nonzero). The
�rst case is satis�ed exactly when

|xn−c−1(v)xn−c+1(v)xn−c+2(v) · · ·xn(v)| =
|xn−c(v)xn−c+1(v)xn−c+2(v) · · ·xn(v)|
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This condition is equivalent to |xn−c−1(v)| = |xn−c(v)|, which is exactly
ρc(v) = ρc+1(v). This concludes the proof. �

The same strategy as above may be used to �nd limits of generalized
eigenvalues, as de�ned in [10].

It is also possible to generalize Theorem 4 to more general sequences
of skew Schur polynomials, {S(κ+kν)/(λ+kν)}∞k=0 for ν ⊆ µ. This may
be used to �nd asymptotics for the number of skew tableaux of certain
shapes, and asymptotics for the set of zeros of the Schur polynomials.

Acknowledgement. I would like to thank my advisor, B. Shapiro, for
introducing me to this subject, and A. Kuijlaars for the reference to
Widom's formula and the hospitality during my visit to Katholieke Uni-
versiteit Leuven. Also, many thanks to S. Alsaadi, J. Backelin, M. Duits,
M. Leander and M. Tater for helpful discussions. I would also thank the
anynomous referee, for pointing out relevant references.

References

[1] J. Baik, P. Deift, K. Johansson, On the Distribution of the Length of the Longest
Increasing Subsequence of Random Permutations, J. Amer. Math. Soc 12 (1999),
1119�1178.

[2] E. L. Basor, C. A. Tracy, The Fisher-Hartwig conjecture and generalizations,
Phys. A 177 (1991), 167�173.

[3] R. J. Beerends, Chebyshev Polynomials in Several Variables and the Radial Part
of the Laplace-Beltrami operator, Transactions of the American Mathematical
Society 328 (1991), no. 2, 779�814.

[4] S. Beraha, J. Kahane, N. J. Weiss, Limits of zeroes of recursively de�ned poly-
nomials, Proc. Nat. Acad. Sci. 11 (1975), no. 8, 4209.

[5] A. Borodin, A. Okounkov, A Fredholm determinant formula for Toeplitz deter-
minants, Integral Equations and Operator Theory 37 (2000), no. 4, 386�396.

[6] A. Böttcher, S. M. Grudsky, Spectral properties of banded Toeplitz matrices,
Siam, Philadelphia, PA, 2005.

[7] A. Böttcher, B. Silbermann, Introduction to Large Truncated Toeplitz matrices,
Springer, New York, 1998.

[8] D. Bump, P. Diaconis, Toeplitz Minors, J. Comb. Theory, Ser. A 97 (2002),
no. 2, 252�271.

[9] P. Deift, A. Its, I. Krasovsky, Asymptotics of Toeplitz, Hankel, and
Toeplitz+Hankel determinants with Fisher-Hartwig singularities, Ann. of Math.
174 (2011), no. 2, 1243�1299.

[10] M. Duits, Specta of Large Random Matrices: Asymptotic Analysis of
(Bi)orthogonal Polynomials and Toeplitz Determinants, Ph.D. thesis, Katholieke
Universiteit Leuven, 2008.

[11] D. Gepner, Fusion Rings and Geometry, Comm. Math. Phys. 141 (1991), no. 2,
381�411.

[12] Q.-H. Hou, Y.-P. Mu, Recurrent sequences and Schur functions, Advances in
Applied Mathematics 31 (2003), no. 1, 150 � 162.

[13] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University
Press, 1979.



14 P. ALEXANDERSSON
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AROUND MULTIVARIATE SCHMIDT-SPITZER

THEOREM

PER ALEXANDERSSON AND BORIS SHAPIRO

Abstract. Given an arbitrary complex-valued in�nite matrixA =
(aij), i = 1, . . . ,∞; j = 1, . . . ,∞ and a positive integer n we intro-
duce a naturally associated polynomial basis BA of C[x0, . . . , xn].
We discuss some properties of the locus of common zeros of all
polynomials in BA having a given degree m; the latter locus can
be interpreted as the spectrum of the m× (m+ n)-submatrix of A
formed by itsm �rst rows and (m+n) �rst columns. We initiate the
study of the asymptotics of these spectra when m→∞ in the case
when A is a banded Toeplitz matrix. In particular, we present and
partially prove a conjectural multivariate analog of the well-known
Schmidt-Spitzer theorem which describes the spectral asymptotics
for the sequence of principal minors of an arbitrary banded Toeplitz
matrix. Finally, we discuss relations between polynomial bases BA
and multivariate orthogonal polynomials.

1. Introduction

The approach of this paper is motivated by the modern interpretation
of the Heine-Stieltjes multiparameter spectral problem as presented in
[9] and [10]. Let us recall some relevant results in the matrix set-up.

Given integers m > 0 and n ≥ 0 consider the space Mat(m,m+n) of
complex-valued m × (m + n)-matrices. For s = 0, . . . , n de�ne the s-th
unit matrix

Is := (δs+i−j) ∈Mat(m,m+ n).

(In what follows the sizes of matrices can be in�nite.)

De�nition 1 (see [10]). Given a matrix A ∈ Mat(m,m + n) de�ne its
eigenvalue locus EA as

EA :=

{
(x0, x1, . . . , xn) ∈ Cn+1 : rank

(
A−

n∑
s=0

xsIs

)
< m

}
.

2000 Mathematics Subject Classi�cation. Primary 15B07; Secondary 34L20,
35P20.

Key words and phrases. asymptotic root distribution, square and rectangular
Toeplitz matrices.
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For n = 0, EA coincides with the usual set of eigenvalues of a square
matrix A.

Proposition 2 (Lemma 1 of [10]). For arbitrary A ∈Mat(m,m+n) the
eigenvalue locus EA consists of

(
m+n
n+1

)
points counting multiplicities. In

other words, counting multiplicities there exist
(
m+n
n+1

)
eigenvalue tuples

(x0, x1, . . . , xn) such that A−
∑n

s=0 xsIs has rank smaller than m.

Remark 3. Notice that for n > 0, the locus EA is not a complete in-
tersection since it is given by the vanishing of all maximal minors of A.
(A similar phenomenon can be observed for common zeros of multivari-
ate Schur polynomials, since Schur polynomials are given by determinant
formulas.)

Notation 4. Given an in�nite matrix A = (aij), i = 1, . . . ,∞; j =
1, . . . ,∞, an integer n ≥ 0, and an m-tuple of positive integers I =
(i1, i2, . . . , im) satisfying 1 ≤ i1 < i2 < · · · < im ≤ m + n, consider
the submatrix AI of A −

∑n
s=0 xsIs formed by the �rst m rows and m

columns indexed by I. De�ne

(1) P IA(x0, x1, . . . , xn) := detAI .

Evidently, P IA(x0, . . . , xn) is a maximal minor of the principalm×(m+
n) submatrix of A −

∑n
s=0 xsIs formed by its m �rst rows and m + n

�rst columns. Therefore P IA(x0, . . . , xn) is a polynomial in x0, . . . , xn.

Proposition 5. In the above notation the following holds:

(i) for any multiindex I with |I| = m, degP IA(x0, . . . , xn) = m;

(ii) all
(
m+n
m

)
polynomials P IA(x0, ..., xn) ∈ C[x0, . . . , xn] with |I| =

m are linearly independent which implies that the totality of all
polynomials P IA(x0, ..., xn) is a linear basis of C[x0, . . . , xn];

(iii) the set E(m)
A of common zeros of all P IA(x0, ..., xn) with |I| = m

is a �nite subset of Cn+1 of cardinality
(
m+n
n+1

)
counting multiplic-

ities.

Remark 6. Notice that for
(
m+n
m

)
randomly chosen polynomials in

C[x0, x1 . . . , xn] of degree m, the set of their common zeros is typically
empty.

Proposition 5 together with our numerical experiments motivate the
following question.

Given an arbitrary in�nite matrix A as above, associate to each E(m)
A

its �root-counting� measure µ(m)
A supported on E(m)

A ⊂ Cn+1 by assigning
to every point p ∈ E(m)

A the point mass κ(p)/
(
m+n
n+1

)
where κ(p) is the

multiplicity of p. (Obviously, µ(m)
A is a discrete probability measure.)
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Main Problem. Under which assumptions on A does the weak limit
µA = limm→∞ µ

(m)
A exists? In case when µA exists, is it possible to

describe the support and density of the measure?

In the classical case n = 0, the above problem was intensively studied
by many authors. The main focus has been when A is either a Jacobi or a
Toeplitz matrix (or their generalizations such as block-Toeplitz matrices
etc.), see e.g. [4, 3, 11, 12].

The main goal of this note is to present a multivariate analogue of the
well-known theorem by P. Schmid and F. Spitzer [8], where they describe
µA for an arbitrary banded Toeplitz matrix A in the case n = 0.

Namely, let A = (ci−j), with i, j = 1, 2, . . . be an in�nite, banded
Toeplitz matrix, where ci = 0 if i < −k or i > h. Fixing n ≥ 0 as above,
we obtain for each positive integer m the eigenvalue locus E(m)

A of the
principal m× (m+ n) submatrix A(m) of A.

De�ne the limit set BA of eigenvalue loci as

(2) BA =
{
x ∈ Cn+1 : x = lim

m→∞
xm,xm ∈ E(m)

A

}
, x = (x0, . . . , xn).

In other words, BA is the set of limit points of the sequence {E(m)
A }.

Thus BA is the support of the limiting measure µA if it exists. (For a
general in�nite matrix A as above, its limit set BA might be empty.)

Set

Q(t,x) = tk

 h∑
j=−k

cjt
j −

n∑
j=0

xjt
j

 ,(3)

and let α1(x), α2(x), . . . , αk+h(x) be the roots of Q(t,x) = 0, ordered
according to their absolute values, i.e. |αi(x)| ≤ |αi+1(x)| for all 0 < i <
k + h. Let CA be the real semi-algebraic set given by the condition:

(4) CA = {x ∈ Cn+1 : |αk(x)| = |αk+1(x)| = · · · = |αk+n+1(x)|}.
Our main conjecture is as follows.

Conjecture 7. For any banded Toeplitz matrix A, if BA is de�ned by
(2) and CA de�ned by (4) then BA = CA.

By Conjecture 7 the set BA is a real semi-algebraic (n+1)-dimensional
subset of Cn+1. In the classical case n = 0, Conjecture 7 is settled by
P. Schmidt and F. Spitzer in [8]. Another important case when Conjec-
ture 7 has been proved follows from some known results on multivari-
ate Chebyshev polynomials, which is is presented in Example 8 below.
Namely, when k = 1 and h = n+ 1 with c−1 and cn+1 non-zero, we may
do a a�ne change of the variables and a scaling of A. This reduces to
the latter case to c−1 = cn+1 = 1 and all other ci = 0.
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For these particular values, the family {P IA(x)} becomes the multi-
variate Chebyshev polynomials of the second kind, see e.g. [5, 7, 2, 13].
These polynomials also have a close connection to another well-known
family of polynomials, namely the Schur polynomials.

Example 8. For the above matrices corresponding to the multivariate
Chebyshev polynomials the eigenlocus E(m)

A can be described explicitly,
see for example [6].

More precisely, the points in E(m)
A lie on a real, n-dimensional surface

CA ⊂ Cn+1 which is naturally parametrized by an (n + 1)-dimensional
torus Tn+1. This parametrization is given by

CA =
{
x ∈ Cn+1|xj = −ej+1(exp(iθ1), . . . , exp(iθn+1), exp(iθn+2))

}(5)

where (θ1, . . . , θn+1) lie on Tn+1,
∑n+2

j=0 θj = 0, and ej is the j-th ele-
mentary symmetric function in n+ 2 variables.

Notice that for x ∈ CA,

Q(t,x) = 1 + x0t+ x1t
2 + · · ·+ xnt

n+1 + tn+2

=
∏
j

(t+ eiθj )

by the Vieta formulas. Thus, for x ∈ CA, all roots of Q, (as a polynomial
in t) have absolute value equal to 1 when the xj are parametrized as in
(5).

Furthermore, the points in E(m)
A are also expressed by (5), with the pa-

rameters (θ1, . . . , θn+2) being certain rational multiples of π, distributed
in a regular lattice. The mapping from the 2-torus to the eigenlocus is
illustrated in Figure 1.

Another interesting aspect of Example 8 is that all the points x =

(x0, . . . , xn) in the sets E(m)
A satisfy the conditions xj = xn−j , j =

0, 1, . . . , n, which explains why we can draw CA ⊂ C2 in Figure 1a as a
2-dimensional set. For larger n, CA is a (n+ 1)-dimensional analogue of
the two-dimensional deltoid, shown in Figure 1a.

For general A, we do not have the inclusion E(m)
A ⊆ CA for arbitrary

�nite m. However, if A has an additional extra symmetry, this seems to
be case.

De�nition 9. A banded Toeplitz matrix such that its Q(t,x) in (3) sat-
is�es

Q(t, x0, x1, . . . , xn) = t
h+k−1

Q(1/t, xn, xn−1, . . . , x0)

is called multihermitian of order n.
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Conjecture 10. If A is multihermitian of order n, then each point x =

(x0, x1, . . . , xn) ∈ E(m)
A satis�es xj = xn−j for j = 0, 1, . . . , n.

Conjecture 10 obviously holds for the case n = 0, as it reduces to the
fact that hermitian matrices have real eigenvalues. It is also straight-
forward to check that Conjecture 10 is true for the Chebyshev case of
Example 8 above.

We have extensive numerical evidence for this conjecture. Another
strong indication supporting Conjecture 10 is that ifA is multi-hermitian,
then every point x ∈ CA (which by Conjecture 7 is in the limit eigenlo-
cus) satis�es the required symmetry xj = xn−j for j = 0, 1, . . . , n.

Figure 1. The eigenvalue locus E(20)2 and its pull-back
to T 2. The torus T 2 is covered with a hexagon, where
each triangle is mapped to the eigenlocus. The 6-fold
symmetry is due to the S3-action by permutation of the
arguments θ1, θ2, θ3 in (5). (Notice θ1 + θ2 + θ3 = 0 and
this is the subspace which is illustrated in the �gure to
the right.)

The next group of examples are bivariate analogues of special univari-
ate cases originally studied in [8], and later in [3], where they are referred
to as �star-shaped curves�:

Example 11. The bivariate case whenQ(t,x) = 1+tdx0+td+1x1+t2d+1,
d ≥ 1 gives sets in C2 where x0 = x1, by Conjecture 10. They correspond
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Figure 2. 5-edged star, when d = 2 and 7-edged star,
when d = 3

to Toeplitz matrices of the form
x0 x1 1 0 0 · · ·
1 x0 x1 1 0 · · ·
0 1 x0 x1 1 · · ·
...

...
...

...
. . .

 ,


x0 x1 0 1 0 0 · · ·
0 x0 x1 0 1 0 · · ·
1 0 x0 x1 0 1 · · ·
...

...
...

...
...

. . .

 , . . .

The above two matrices represent d = 1 and d = 2.
Figures 2 and 3 present the distributions of x0 ∈ C, for d = 2, 3, 4.

(Recall that x1 = x̄0.) The points shown on these �gures belong to E(m)
A

for m = 13, 14, 15, and the curves are certain hypocycloids, parametriz-
ing the boundary of CA. More explicitly, for a given integer d ≥ 1 the
hypocycloid boundary for x0 ∈ C is given by

x0 = (−1)de−i(d+2)θ
(

(d+ 2)ei(2d+3)θ + d+ 1
)

where θ ∈ [0, 2π],

which is one of the implications of Conjecture 7.

Finally, the main result of this note is as follows;

Theorem 12. For any banded Toeplitz matrix A, where BA is de�ned
by (2) and CA is de�ned by (4), one has BA ⊆ CA.

2. Proofs

Proof of Proposition 5. We shall prove items (i) and (ii) simultaneously
by calculating the leading homogeneous part of P IA(x0, ..., xn). Let us
order the set of all admissible indices I = (1 ≤ i1 < . . . < im ≤ m + n)
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Figure 3. 9-edged star, when d = 4.

lexicographically. We can also order lexicographically all monomials of
degree m in x0, . . . , xn. By equation (1) P IA(x0, ..., xn) = detAI where
the columns of AI are indexed by I. Let P̃ IA(x0, ..., xn) be the homo-
geneous part of P IA(x0, ..., xn) of degree m. One can easily see that the
product of all entries on the main diagonal of AI contains the monomial
mI of degree m given by mI =

∏m
j=1 xij−j+1. Moreover it is straight-

forward that P̃ IA(x0, ..., xn) = mI + . . . where . . . stands for the linear
combination of monomials mI′ of degree m coming other I ′ which are
lexicographically smaller than I. In other words, the matrix formed by
P̃ IA(x0, ..., xn) versus monomials is triangular in the lexicographic order-
ing with unitary main diagonal which proves items (i) and (ii).

Item (iii) is just a reformulation of Proposition 2 above. �

Throughout the rest of the paper, we put α = (α1, . . . , αh+k). We
will also assume that ch = 1, which corresponds to a rescaling of the
original matrix A. This is equivalent to the assumption that Q(t,x) is
monic. By shifting the variables in x, we may also assume, without loss
of generality, that c0 = c1 · · · = cn = 0 in A.

In the above notation, it is convenient to work with the roots of
Q(t,x). This motivates the following de�nitions. Let Γj ⊂ Ch+k, j =
k, . . . , k+ n denote the real semi-algebraic hypersurface consisting of all
α = (α1, . . . , αh+k) such that when the αj are ordered with increasing
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modulus, |αj | = |αj+1|. Similarly, let Gj be de�ned as the real semi-
algebraic set

{x ∈ Cn+1 : Q(t,x) = (t− α1) · · · (t− αh+k) where α ∈ Γj}.

Then, by de�nition, CA =
⋂k+n
j=k Gj .

Proposition 13. For any banded Toeplitz matrix A and any non-negative
n < h, the set CA de�ned by (3)-(4) is compact.

Proof. As discussed above, we may without loss of generality assume
that ch = 1 and c0 = c1 = · · · = cn = 0. Since Q may be assumed to
be monic, we have cj = eh−j(−α) for −k ≤ j < 0 and n < j ≤ h, and
xj = −eh−j(−α) when 0 ≤ j ≤ n. Thus, it su�ces to show that the
set of α ∈ Ch+k that satis�es the conditions (3)-(4), is compact. It is
also evident that the set CA is closed, so we only need to show that it is
bounded. We show this fact by contradiction.

Assume we have a sequence of roots {αm}∞m=1 of (3) such that ‖αm‖ →
∞ where (4) is satis�ed for each αm.We assume that the modulus of the
roots are always ordered increasingly. There are two cases to consider.

Case 1: Assume that for some 0 ≤ b < k, a sequence of individual
roots satis�es the condition |αmb+1| → ∞ but |αmj | are bounded for all
m and j ≤ b. Then consider eh+k−b(α). Since b < k, in our notation
eh+k−b(α) equals the coe�cient cb−k. Notice that eh+k−b contains the
term αb+1αb+2 · · ·αh+k which grows quicker than all other terms in the
expansion of eh+k−b(α). This contradicts the assumption eh+k−b(α) =
cb−k.

Case 2: Assume that for some b with k + n ≤ b < h + k, we have a
sequence of individual roots |αmb+1| → ∞ but |αmj | are bounded for all m
and j ≤ b. Consider

eb(α) = eb(α1, . . . , αh+k) =
∑

σ∈([h+k]
b )

e0
ασ1ασ2 · · ·ασb

.

This contains an expression with the denominator α1α2 · · ·αb, i.e. the
product of all bounded roots. Now, since h+k− b roots among all h+k
roots grow in absolute value, and the product α1 . . . αh+k equals ch, it
follows that |α1α2 · · ·αb| → 0 as m → ∞, and this term converges to 0
quicker than any other product ασ1ασ2 · · ·ασb . Thus, |eb| should grow.
This contradicts the assumption eb(α) = ch−b.

Notice that under our assumptions, the above cases cover all possible
ways for a sequence of roots to diverge. Since both cases yield a contra-
diction, it follows that any sequence of roots of (3) satisfying (4) must
be bounded. Thus, CA is compact. �
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The following result is multivariate analog of a known fact in the case
n = 0, see [4, Prop. 11.18 and 11.19].

Proposition 14. In the notation of (3)�(4), for any x belonging to the
boundary ∂CA of CA, at least one of the following three conditions is
satis�ed:

(i) the discriminant of Q(t,x) with respect to t vanishes, i.e. Q(t,x)
has (at least) a double root in t.

(ii) |αk−1(x)| = |αk(x)| = |αk+1(x)| = · · · = |αk+n+1(x)|.
(iii) |αk(x)| = |αk+1(x)| = · · · = |αk+n+1(x)| = |αk+n+2(x)|.

Proof. We need the following two simple statements.

Lemma 15. Let Pold be the set of all monic polynomials of degree d
with complex coe�cients. Let Σp,q ⊂ Pold be the subset of polynomials
satisfying

(6) |αp| = |αp+1| = · · · = |αq|,

where 1 ≤ p < q ≤ d and α1, α2, . . . , αd being the roots of polynomials
ordered according to their increasing absolute values. Then Σp,q is a real
semi-algebraic set of codimension q − p whose boundary is the union of
three pieces: Σp−1,q, Σp,q+1 and the intersection of Σp,q with the standard
discriminant in Pold, i.e. the set of polynomials having multiple roots.
(Notice that if p = 1 then Σp−1,q is empty, and if q = d then Σp,q+1 is
empty by de�nition.)

Proof. Σp,q is obtained as the image under the Vieta map of an obvious
semi-algebraic set |α1| ≤ |α2| ≤ · · · ≤ |αp| = |αp+1| = · · · = |αq| ≤
|αq+1| ≤ · · · ≤ |αd|. Notice that the Vieta map is a local di�eomor-
phism outside the preimage of the standard discriminant. Therefore the
boundary of Σp,q must either belong to the standard discriminant or to
one of Σp−1,q or Σp,q+1. The former is the common boundary between
Σp,q and Σp−1,q−1 and the latter is the common boundary between Σp,q

and Σp+1,q+1. �

Given a closed Whitney strati�ed set X (for example, semi-analytic)
we say that X is a k-dimensional strati�ed set without boundary if

(i) the top-dimensional strata of X have dimension k;
(ii) for any point x lying in any stratum of dimension k − 1, one

can choose orientation of the (germs of) k-dimensional strata of
a su�ciently small neighborhood of x in X so that ∂X = 0.

Lemma 16. The boundary of the intersection of any closed semi-algebraic
set Γ with any closed algebraic set Θ is included in the intersection of
the boundary ∂Γ with Θ.
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Proof. Observe that any real algebraic variety X of dimension k is a
strati�able set without boundary. Indeed, the fact we are proving is
local, and it su�ces to prove it for generic x on (k − 1)-dimensional
strata.

Consider an embedding of X in some high-dimensional linear space,
take the Whitney strati�cation with x on its stratum Y ⊂ B of dimension
k − 1, and a transversal to Y of codimension k − 1 at x.

Therefore, we may now assume that the germ of X near x is topo-
logically a product of a germ of algebraic curve and a germ of a smooth
manifold of dimension k − 1. Furthermore, a germ of any real algebraic
curve Γ can be always oriented so that ∂Γ = 0 which follows from the
existence of Puiseux series for an arbitrary branch of algebraic curve.
This argument shows that any point in the intersection Γ ∩ Θ which
does not belong to the boundary of Γ can not lie on the boundary of this
intersection which settles Lemma 16. �

Lemmas 15 and 16 immediately imply Proposition 14 since every CA
is the intersection of an appropriate Σp,q with an appropriate a�ne sub-
space in Polk+h. �

Proof of Theorem 12. In our notation, let Dm
j (x) be the determinant of

the m×m-matrix AI with I = {j+ 1, j+ 2, . . . , j+m} for 0 ≤ j ≤ n. It
is evident that E(m)

A is a subset of the set Ẽ(m)
A of solutions to the system

of polynomial equations

Dm
0 (x) = Dm

1 (x) = · · · = Dm
n (x) = 0.(7)

We will show a stronger statement that, in notation of Theorem 12,

lim
m→∞

Ẽ(m)
A ⊆ CA.

Although each individual Ẽ(m)
A (considered as a points set with multi-

plicities) is strictly bigger than E(m)
A the limits BA = limm→∞ E(m)

A and
limm→∞ Ẽ(m)

A seem to coincide as in�nite sets.
The next proposition accomplishes the proof of Theorem 12. �

In Theorem 4 of [1] it was shown that each sequence of determinants
{Dm

j (x)}∞m=1 as above satis�es a linear recurrence relation with coe�-
cients depending on x. The characteristic polynomial χj(t) of the j-th
recurrence can be factorized as

χj(t,x) =
∏
σ

(t− rjσ), where rjσ = (−1)k+j(ασ1 · · ·ασk+j
)−1,(8)

and σ is a k + j-subset of [k + h].
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Proposition 17. Suppose that {xm}∞1 , is a sequence of points in Cn+1

satisfying the system of equations:

Dm
j (xm) = 0 for j = 0, 1, . . . , n and m = 1, 2, . . .(9)

and such that the limit limm→∞ xm =: x∗ exists. Then for all j =
0, . . . , n |αk+j(x∗)| = |αk+j+1(x

∗)| when the αi are indexed with increas-
ing order of their modulus.

Proof. Provided that all the roots of χj(t,x) are distinct, by using a
version of Widom's formula, (see [1, 4]) we have

(10) Dm
j (x) =

∑
σ

∏
l∈σ,i/∈σ

(
1− αl(x)

αi(x)

)−1
· rjσ(x)m.

We may assume that for x∗ and �xed j, the rjσ(x∗) are ordered decreas-
ingly with respect to their modulus (for some ordering σ = 1, 2, . . . ). The
goal is to prove that |rj1(x∗)| = |rj2(x∗)| since this implies |αk+j(x∗)| =
|αk+j+1(x

∗)|. We show this fact by contradiction.

Assume that |rj1(x∗)| > |rj2(x∗)| ≥ · · · ≥ |rjb(x∗)|, i.e. that the
largest root is simple and has modulus strictly larger than any other
root of the characteristic equation (8). By examining (10), it is evident
that rj1(xm)m is the dominating term for su�ciently large m, that is,
Dm
j (xm)/rj1(xm)m → L 6= 0 as m→∞.
By standard properties of linear recurrences, this holds even when

there are multiple zeros among the smaller roots; remember that our
assumption was that rj1(xm) is a simple zero of (8) when m is large
enough.

Hence, for su�ciently large m, Dm
j (xm) ≈ Lrj1(xm)m, which is non-

zero for su�ciently large m. This contradicts the condition that xm
satis�es (9). Consequently, |rj1(x∗)| = |rj2(x∗)| for j = 0, 1, . . . , n and
this implies Proposition 17. �

Proposition 17 implies that x lies in BA only if x is a limit of solutions
to (9), but such limit x must satisfy that |αk(x)| = |αk+1(x)| = · · · =
|αk+n+1(x)|. Therefore, BA ⊆ CA.

3. Further directions

1. It seems relatively easy to describe the strati�ed structure of CA
at least in case of generic A. In particular, in the Chebyshev case of
Example 8 the set CA has the same strati�cation as a simplex of corre-
sponding dimension. One can also understand the strati�ed structure of
the sets Σp,q introduced in Lemma 15. Since each CA is obtained from
a corresponding Σp,q by intersecting it with an a�ne subspace the strat-
i�ed structure of the former for generic A is also describable. On the
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other hand, our Example 11 seems to show more complicated strati�ed
structure due to the presence of additional symmetry.

2. We say that an (in�nite) complex-valued matrixA has a weak univari-
ate orthogonality property if the sequence of characteristic polynomials of
its principal minors obeys the standard 3-term recurrence relation with
complex coe�cients. There is a straightforward version of this notion for
�nite square matrices. Obviously, any Jacobi matrix has this property.
However, it seems that for any m ≥ 3 the set WOm ⊂ Mat(m,m) of
all m×m-matrices with the latter property has a bigger dimension than
the set Jacm ⊂Mat(m,m) of all Jacobi m×m-matrices.

Problem 18. Find the dimension of WOm.

3. Analogously, given a non-negative integer n, we say that an (in�nite)
complex-valued matrix A has a weak n-variate orthogonality property
if the above family {P IA(x0, x1, . . . , xn)} (see De�nition 4) satis�es the
3-term recurrence relation (2.2) of Theorem 2.1 of [13] with complex
coe�cients.

There are many similarities between families {P IA(x0, x1, . . . , xn)} and
families of multivariate orthogonal polynomials which by one of the stan-
dard de�nitions of such polynomials also satisfy (2.2) of Theorem 2.1 of
[13] with real coe�cients.

Our computer experiments show that in this aspect the case n > 0 is
quite di�erent from the classical case n = 0. In particular, we believe
that the following conjecture holds.

Conjecture 19. Given n > 0, a banded matrix A has a weak n-variate
orthogonality property if it is of the form

A =


a0 a1 a2 . . . an+1 0 0 0 . . .
d−1 d0 d1 . . . dn dn+1 0 0 . . .
0 d−1 d0 . . . dn−1 dn dn+1 0 . . .
0 0 d−1 . . . dn−2 dn−1 dn dn+1 . . .
...

...
...

. . .
...

...
...

...
. . .

 ,

where a0, . . . , an+1, d−1, . . . , dn+1 ∈ C.
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STRETCHED SKEW SCHUR POLYNOMIALS ARE

RECURRENT

PER ALEXANDERSSON

Abstract. We show that sequences of skew Schur polynomials ob-
tained from stretched semi-standard Young tableaux satisfy a linear
recurrence, which we give explicitly. We apply this to �nd certain
asymptotic behavior of these Schur polynomials and present conjec-
tures on minimal recurrences for stretched skew Schur polynomials.

1. Introduction

Stretched skew tableaux, i.e. skew semi-standard Young tableaux
(SSYTs) of shape kµ/kν for positive integers k, µ,ν partitions, appear in
many areas. For example, they appear naturally when studying Toeplitz
matrix minors, see e.g. [4]. In an earlier paper [1], we found asymptotics
of certain families of minors of banded Toeplitz matrices by examining
stretched skew tableaux. In this paper we generalize the technique used
in [1] to explicitly give linear recurrences that skew Schur polynomials
obtained from stretched semi-standard Young tableaux satisfy.

Our results appears to have close connection to systems of linear re-
currences described in [5], and this paper suggests that a generalization
of some results in [5] is possible.

As an easy consequence of this paper, it follows that the number of
SSYTs of shape kµ/kν is a polynomial in k. This is a well-known fact
which can be proved by elementary methods. However, it might be
possible to apply the methods in this paper to prove polynomiality of
stretched Kostka numbers. This is also known, but currently requires
application of non-trivial tools of di�erent areas, see [7, 6].

As a second consequence, we prove a certain asymptotic behavior of
roots of stretched skew Schur polynomials, and conjecture the asymp-
totic behavior of a general system of stretched skew Schur polynomials.
Asymptotics and root location of Schur polynomials seems to be a rather
unexplored topic, except in areas where the Schur polynomials have an
additional meaning, for example, as minors of Toeplitz matrices.

Key words and phrases. Schur polynomials, tableau concatenation, Young
tableaux, recurrence, asymptotics.
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We use multi-index notation, i.e. x = (x1, . . . , xn), x
α = xα1

1 · · ·xαn
n .

The length of a vector is considered to be n unless stated otherwise. Let
us now formulate the main theorem of the paper:

Theorem 1. Let n be a positive integer and let κ,λ,µ,ν be parti-
tions of length at most n such that µ ⊇ ν and k(µ − ν) ⊇ λ − κ
for some positive integer k. Then, for su�ciently large r, the sequence
{S(κ+kµ)/(λ+kν)(x)}∞k=r satisfy a linear recurrence with coe�cients poly-
nomial in x1, x2, . . . , xn. A characteristic polynomial for the recurrence
is given by

(1) χ(t) =
∏

T∈Tn
µ/ν

(t− xw(T ))

where Tn
µ/ν is the set of semi-standard Young tableaux of shape µ/ν

with entries in 1, 2, . . . , n and w(T ) is the weight of the tableau T. In
particular, if λ = κ = ∅ we may take r = 0.

Remark 2. Notice that (1) above does not necessary give the short-
est possible recurrence in general. In Corollary 15 below, we give a de-
scription of the minimal recurrence. In Corollary 16, we use (1) for
�nding certain asymptotics of the Schur polynomials in the sequence
{S(κ+kµ)/(λ+kν)(x)}∞k=r.

2. Preliminaries

For the sake of completeness we de�ne the basic notions in the theory
of Young tableaux and Schur polynomials. This material can be found
in standard reference literature such as [8].

De�nition 3. A partition λ = (λ1, . . . , λn) is a �nite weakly decreasing
sequence of non-negative integers;

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

The parts of a partition are the positive entries and the number of positive
parts is the length of the partition, denoted l(λ). The weight, |λ| is the
sum of the parts.

The empty partition ∅ is the partition with no parts. The partition
(1, 1, . . . , 1) with k entries equal to 1 is denoted 1k. We use the standard
convention that λi = 0 if i > l(λ). Addition and multiplication with a
scalar on partitions is performed elementwise.

De�nition 4. For partitions λ,µ we say that λ ⊇ µ if λi ≥ µi for all
i. This is the inclusion order. We also de�ne λ D µ if |λ| = |µ| and∑k

i=1 λi ≥
∑k

i=1 µi for all k. This is the domination order.
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2.1. Young diagrams and Young tableaux.

De�nition 5. Let λ ⊇ µ be partitions. A skew Young diagram of shape
λ/µ is an arrangement of �boxes� in the plane with coordinates given by

{(i, j) ∈ Z2|µi < j ≤ λi}.

Here, i is the row coordinate, j is the column coordinate. If µ = ∅ we will
just refer to the shape as λ and the diagram is a regular Young diagram.

There are at least two other ways to draw these diagrams. In this
text, the English convention is used. Notice that the diagram of shape
λ′/µ′ is the transpose of the diagram with shape λ/µ.

In this context, it will be convenient to de�ne the skew part of a skew
diagram as special boxes with coordinates {(i, j) ∈ Z2|1 ≤ j ≤ µi ≤ λi}.
We will call these boxes skew . (In Figure 1(b) there are for example
seven skew boxes and six ordinary boxes.)

(a) Diagram of shape (5, 4, 2, 2)

� � �
� �
� �

(b) Diagram of shape (5, 4, 3, 1)/(3, 2, 2)

Figure 1

De�nition 6. A semi-standard Young tableau1 (or SSYT) is a Young
diagram with natural numbers in the boxes, such that each row is weakly
increasing and each column is strictly increasing.

We denote by Tn
λ/µ the set of SSYTs of shape λ/µ with entries in

1, 2, . . . , n. For an example of an SSYT, see Figure 2.

� � � 1 1
� � 1 3
� � 2
3

Figure 2. SSYT of shape (5, 4, 3, 1)/(3, 2, 2)

1Also called column-strict tableau, or reverse plane partition
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2.2. Schur polynomials.

De�nition 7. Given an SSYT T, with entries in 1, 2 . . . , n, we de�ne the
weight w(T ) of T as a vector t = (t1, t2, . . . , tn) given by tk = #{bij ∈
T |bij = k}. Thus, tk counts the number of boxes containing the number
k.

De�nition 8. The skew Schur polynomial is de�ned as

Sλ/µ(x) =
∑

T∈Tn
λ/µ

xw(T )

where x = (x1, . . . , xn). It can be shown that these polynomials are sym-
metric in x1, x2, . . . , xn.

3. Proofs

3.1. Tableau concatenation. We now de�ne an operation on pairs of
SSYTs:

De�nition 9. Given T1 ∈ Tn
κ/λ and T2 ∈ Tn

µ/ν we de�ne the tableau

concatenation T1 � T2 as the SSYT obtained by concatenating the boxes
row-wise and then sorting each row in increasing order, with respect to
their content. The skew boxes are treated as being less than the ordinary
boxes.

We also use the same notation for the corresponding operation on di-
agram shapes.

From this de�nition, it is clear that the product � is commutative and
associative. It is however not obvious that the result of this operation is
an SSYT, so we prove this in the following proposition:

Proposition 10. If T1 ∈ Tn
κ/λ and T2 ∈ Tn

µ/ν then T1 � T2 ∈
Tn

(λ+µ)/(κ+ν) and w(T1 � T2) = w(T1) + w(T2).

Proof. From the de�nition, it is evident that the shape of T1 � T2 is
(κ+µ)/(λ+ ν). It is also clear that the rows are weakly increasing, by
construction. It su�ces to show that the columns in T1� T2 are strictly
increasing.

Given an SSYT T1, we may view its columns C1, C2, . . . , Ck as in-
dividual SSYTs. Since the rows are already ordered, it is evident that
C1 � C2 � · · ·� Ck = T1. Therefore, T1 � T2 = C1 � C2 � · · ·� Ck � T2
and it su�ces to show that C � T2 is an SSYT for a general column C.

Let C be a column with row entries t1, t2, . . . , tk where we treat skew
boxes in row i as having the value n − i. This ensures that t1 < t2 <
· · · < tk. We use the same treatment for the skew boxes in T2.
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It su�ces to show that any two boxes in a column in adjacent rows are
strictly increasing in C � T2. Let us consider rows i and i+ 1 in C � T2.
There are three cases to consider:
Case 1: The numbers ti and ti+1 are in the same column:[

· · · a1 ti a2 · · · am · · ·
· · · b1 ti+1 b2 · · · bm · · ·

]
Since ti < ti+1, and all the other columns are unchanged, the columns
are strictly increasing.
Case 2: The number ti is to the right of ti+1:[

· · · ti a1 a2 · · · am−1 am · · ·
· · · b1 b2 b3 · · · bm ti+1 · · ·

]
The columns where strictly increasing before the concatenation. There-
fore, ti ≤ a1 < b1, am < bm ≤ ti+1 and aj < bj ≤ bj+1. It follows that
all the columns are strictly increasing.
Case 3: The number ti to the left of ti+1:[

· · · a1 a2 · · · am−1 am ti · · ·
· · · ti+1 b1 b2 b3 · · · bm · · ·

]
We have that aj ≤ ti < ti+1 ≤ bk for 1 ≤ j, k ≤ m, since the rows are
increasing. Thus, it is clear that all the columns are strictly increasing.
It is easy to see that the result is an SSYT even if k 6= n. �

Remark 11. We observe that � gives a monoid2 structure on the set of
SSYTs. It is natural to construct the corresponding commutative ring Tn

R
by considering formal sums of Young tableaux with entries in 1, 2, . . . , n,
and the number of parts at most n. The operation � serves as multipli-
cation, and the empty tableau ∅ acts as multiplicative identity.

For tableaux T de�ne the map φ(T ) = xw(T ) and extend it linearly to
formal sums. It is evident that φ(T1 � T2) = φ(T1)φ(T2) so φ acts as a
ring homomorphism from Tn

R to Z[x1, . . . , xn]. It is therefore natural to
consider |w(·)| as a grading on Tn

R. Notice that the ring Tn
R is �nitely

generated for each n, a possible set of generators being all tableaux of
shape λ/µ with λi ≤ 1 and l(λ) ≤ n. In other words, any tableau can be
�factored as a product of columns�. The cancellation property also hold
in Tn

R, namely if T1 � T = T2 � T then T1 = T2.

The following de�nition and lemmas are needed for proving the exis-
tence and to determine the constant r in Theorem 1:

De�nition 12. Given two skew shapes µ/ν,κ/λ, we say that µ/ν sits
inside κ/λ if every column in the diagram of shape µ/ν can be found in
the diagram of shape κ/λ, counting multiplicities.

2Notice: this is not the plactic monoid which is a di�erent type of monoid structure.
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�

(a)

�
�

(b)

� �
� �

(c)

Figure 3. Diagram (a) do not sit inside any of the other
two diagram, but (b) sits inside (c).

Lemma 13. For every pair of skew shapes κ/λ and µ/ν there exists an
integer r ≥ 0 such that µ/ν sits inside (κ+ rµ)/(λ+ rν).

Proof. Notice that we can equivalently prove that for some r ≥ 0 µ/ν
sits inside κ/λ�rµ/rν. The boxes in κ/λ �push� the boxes in rµ/rν at
most κ1 places to the right when performing the tableau concatenation.
If we choose r > κ1, then we will have r > κ1 copies of each column in
µ/ν, and therefore a tableau concatenation with κ/λ cannot deform all
of them. This concludes the proof. �

Lemma 14. Let T ∈ Tn
κ/λ. If µ/ν sits inside κ/λ then there exists

T ′ ∈ Tn
µ/ν and T ′′ ∈ Tn

(κ−µ)/(λ−ν) such that T = T ′ � T ′′.

Proof. Since µ/ν sits inside κ/λ, we may �nd columns C1, . . . , Ck in
κ/λ such that T ′ = C1 � C2 � · · ·� Ck has shape µ/ν. The tableau T ′

is of the correct shape, and deleting corresponding columns in T yields
a tableau T ′′ ∈ Tn

(κ−µ)/(λ−ν). �

We are now ready to give a proof of Theorem 1:

Proof. We may assume that κ ⊇ λ since otherwise, choose k such
that k(µ − ν) ⊇ λ − κ and take κ′ := κ + kν and λ′ := λ + kµ.
Then κ′ ⊇ λ′ and the sequence {S(κ′+jµ)/(λ′+jν)}∞j=0 is the same as

{S(κ+jµ)/(λ+jν)}∞j=k.
Set d := |Tn

µ/ν |, which is the degree of the characteristic polynomial

χ(t). By Lemma 13, we may choose r0 such that µ/ν sits inside κ +
r0µ/λ+ r0ν. Let r ≥ r0 be arbitrary. It then su�ces to prove that the

sequence {S(κ+kµ)/(λ+kν)}r+dk=r satisfy the recurrence given by χ(t).
LetTj be the set/formal sum of the elements inTn

(κ+(j+r)µ)/(λ+(j+r)ν).

By Lemma 14, it is clear that

(2) Tj ⊂
∑

T∈Tn
µ/ν

Tj−1 � T

as multisets, (and equality as sets) for j = 1, 2, . . . , d. Some tableaux
appear multiple times on the right-hand side, and these are exactly the
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tableaux that may be decomposed as concatenations in (at least) two
di�erent ways, namely∑

T1,T2∈Tn
µ/ν

Tj−2 � T1 � T2, T1 6= T2.

De�ne the multisets/formal sums

Qj :=
∑

T1,T2,...,Tj∈Tn
µ/ν

a6=b⇒Ta 6=Tb

(−1)d−jT1 � T2 � · · ·� Tj , Q0 := ∅.

Hence, Qj is, as a set, the tableaux in Td that can be obtained from
Td−j by inserting j di�erent tableaux from Tn

µ/ν .

By using the principle of inclusion/exclusion, we obtain

(3) Q0 �Td +Q1 �Td−1 +Q2 �Td−2 + · · ·+Qd �T0 = 0.

Application of the ring homomorphism φ to this expression followed by
factoring yields the desired identity. �

4. Applications and further development

4.1. Asymptotics. The following results are corollaries of Theorem 1:

Corollary 15. The sequence {S(κ+kµ)/(λ+kν)(x)}∞k=r satisfy a linear re-
currence, with a minimal characteristic polynomial of the form χm(t) =∏

w∈W (t − xw), where W ⊂ Nn is invariant under permutations, i.e.
w ∈W ⇒ (wσ1 · · ·wσn) ∈W for every σ ∈ Sn.

Proof. Clearly, the roots of χm(t) must be a subset of the roots of (1).
The roots of χm(t) are invariant under permutation of variables, since
this holds for the Schur polynomials. This implies the invariance on
W. �

Corollary 16. Let κ,λ,µ,ν be partitions satisfying the conditions in
Theorem 1, with the additional condition that µ 6= ν. Set

Pk(z) = S(κ+kµ)/(λ+kν)(z, ξ2, . . . , ξn), ξi ∈ C, |ξi| = R for i = 2, . . . , n.

De�ne the limit set of roots A = {z ∈ C|z = limk→∞ zk, Pk(zk) = 0}.
Then A is a circle with radius R, possibly together with the point at the
origin.

Proof. This follows from Theorem 1, Corollary 15 together with the main
theorem in [3]. �

Example 17. If λn = (n, n−1, n−2, . . . , 0), then all zeros of Skλn(t,1
n)

lie on the unit circle, for every n, k.

The following conjecture is a generalization of Corollary 16:
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Conjecture 18. Let 1 ≤ j ≤ n and κi,λi,µi,νi, 1 ≤ i ≤ j, be partitions
satisfying the assumptions in Theorem 1.

Let xi ∈ C, |ξi| = R for i = j + 1, . . . , n and de�ne
(4)
P ik(z1, . . . , zj) = S(κi+kµi)/(λi+kνi)(z1, z2, . . . , zj , ξj+1, . . . , ξn), 1 ≤ i ≤ j.
Set

A = {z ∈ Cj |z = lim
k→∞

zk, P
1
k (zk) = P 2

k (zk) = · · · = P jk (zk) = 0}.

Then, under some mild non-degeneracy conditions on the partitions,

(5) A = Z ∪

{
{R(eiθ1 , eiθ2 , . . . , eiθj )|θ1, θ2, . . . , θj ∈ R} if j < n,

{R(eiθ1 , eiθ2 , . . . , eiθj )|R, θ1, θ2, . . . , θj ∈ R} if j = n.

where Z is either ∅ or the set consisting of the origin.

Remark 19. This is true in a slightly modi�ed special case. Multi-
variate Chebyshev polynomials may be de�ned as certain polynomials P ik
as above, with an appropriate change of variables. The support of the
orthogonality measure is the image of A, under the same mapping as
the change of variables. See [2] for the connection between multivariate
Chebyshev polynomials of the second kind, and Schur polynomials.

4.2. Kostka coe�cients. The recurrence (1) is in some cases not the
shortest possible. For some applications, this is not a problem but it
is not completely satisfying. Below we conjecture the shortest possible
recurrence. We need the following de�nitions:

De�nition 20. Given a partition λ, we de�ne the monomial symmetric
polynomial mλ as

(6) mλ =
∑
w

xw,

where the sum is taken over distinct permutations of λ.

Note that mkλ(x1, x2, . . . , xn) = mλ(x
k
1, x

k
2, . . . , x

k
n) by de�nition.

De�nition 21. The Kostka coe�cient Kλ/µ,w is the number of tableaux
of shape λ/µ with weight w.

It is well-known thatKλ/µ,w = Kλ/µ,w wherew is the vector obtained
from w by rearranging the elements as a partition, in decreasing order.
It is evident that Kλ/µ,w = 0 if |w| 6= |λ| − |µ|. The Kostka numbers
and the monomial symmetric polynomials are related by:

(7) Sλ/µ(x) =
∑
w

Kλ/µ,wmw(x),

where the sum is taken over all partitions w.



STRETCHED SKEW SCHUR POLYNOMIALS ARE RECURRENT 9

We now give a hands-on application of tableau concatenation and
Kostka coe�cients:

Proposition 22. If Kλ/µ,w > 0 then Kkλ/kµ,kw > 0 for any integer
k > 0.

Proof. Let T be a tableau of shape λ/µ with weight w. Then the kth
power T � · · · � T is a tableau with shape kλ/kµ and weight kw, and
hence Kkλ/kµ,kw > 0. �

Remark 23. In fact, Kλ,w > 0 ⇔ Kkλ,kw > 0 and this is known as
Fulton's K-saturation conjecture. Its proof is given in [6], which uses the
K-hive model machinery.

We now give a conjectural sharper version of Theorem 1:

Conjecture 24. Let κ,λ,µ,ν be partitions of length at most n, such
that µ ⊇ ν and k(µ− ν) ⊇ κ− λ for some positive integer k. Set

W = {w ∈ Nn|Kµ/ν,w > 0 and w D µ− ν}.

Then, for su�ciently large r, the sequence {S(κ+kµ)/(λ+kν)(x)}∞k=r satisfy
a linear recurrence with the minimal characteristic polynomial

(8) χ(t) =
∏

w∈W
(t− xw).

In Theorem 1, it is obvious how to interpret the coe�cients in the
linear recurrence as certain tableaux concatenations, mapped under the
ring homomorphism φ. However, in the conjecture above, it is not even
clear if such interpretation exists.

Remark 25. The motivation for the conjecture is that in the case ν is the
empty partition, then the conjecture reduces to a formula in [5], where a
similar recurrence is considered. Another reason is that the recurrence is
free from multiple roots, which indicates that it is minimal in some sense.
The exact form of the recurrence is supported by computer experiments.
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