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Abstract

Quantum Energy Teleportation provides a testbed for modern ideas involving the inter-
play between quantum correlations and energy in the quantum thermodynamical regime.
In this work, we provide a new class of Quantum Energy Teleportation protocols optimized
for harnessing maximal amounts of correlations between subsystems. We also construct
new measurement protocols for quantum fields which provide significant improvements
for entanglement harvesting. Finally, we construct an efficient formalism for computing
changes in energy due to localized interactions in quantum field theory.
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Chapter 1

Introduction

The relation between energy and information has intrigued physicists for quite some time
now. Usually, we speak of such a relation in the context of thermodynamics or black
hole physics. Recently, quite a bit of work has been interested in the thermodynamics of
spacetime itself[37, 14], and on emergent holographic spacetimes [54]. Understanding the
relation between energy, information and geometry is the 21st century holy grail of physics.

The overall focus of this thesis is just that; the interplay between energy and correla-
tions. We approach the topics from multiple different angles.

One of the common themes is the coupling of probe systems to certain subsystems of
a correlated quantum systems in order to achieve an energetic or information theoretic
gain. We will cover how measurements, entanglement harvesting, and quantum energy
teleportation affect quantum fields and harmonic lattices.

Probes are “windows” into the behaviour of a certain system. They can be very useful
to understand certain phenomena in quantum field theory, as they effectively reduce the
dimensionality (Hilbert-space-wise) of the problem. They are an indispensable tool for the
study of Relativistic Quantum Information.

Thus, because probing fields is quite important, we develop a theory for the decompo-
sition of the Hilbert space into “windows”, or rather, algebras of smeared field observables.
See sec. 5.2. One of the most useful results is the expression of the Hamiltonian of the
field with respect to such smeared obseervables. Effectively, multi-page calculations with
multivariate Gaussian and Fourier integrals simplify to taking a few simple commutators.

Once we are armed with this tool, we apply it to the study of measurement of such
smeared observables (5.3.2) using a continuous-variable adaptation of a quantum com-
puting algorithm known as phase estimation. We introduce the original algorithm in our
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quantum information background section, while the continuous-variable variant is intro-
duced in chapter 4.

In the chapter 3, we introduce the protocol of quantum energy teleportation. We cover
the basic case of the minimal QET protocol and we write down a general algoithm for QET
which uses multi-observable correlations in order to optimize the teleportation of energy.
In chapter 4, we apply this algorithm to a lattice of harmonic oscillators, and later on, in
chapter 6 we port over this same calculation to QFT, using our Hamiltonian of smeared
observables formalism.

Further on, we apply what we learned about the tensor factors of Hilbert space corre-
sponding to smeared observables to effectively coherently swap quantum information from
a probe system to a subspace of the field. We cover this for a continuous-variable probe
and also a set of qubits which effectively “digitize” a subspace of the field. We then use
this to harvest entanglement from the vacuum in section 5.4.3.

Finally, in our future works section, we consider how one could find the Schmidt basis,
i.e. the basis of a Hilbert space for an entangled state across a bipartition, for a quantum
field’s bipartition of the Hilbert space into a spherical region and its complement. By
adapting some recent litterature [37], we are able to effectively find the set of modes
for the quantum field such that the mode decomposition of the state gives the Schmidt
decomposition.
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Chapter 2

Background: Quantum Information

In this chapter we provide a brief review of a few concepts from Quantum Information
theory and Quantum Computing which are essential for understanding the contents of this
thesis.

Most of the content on quantum information theory and quantum computing covered
in this chapter can be found in Nielsen & Chuang [51] and Wilde [72]. For the Gaussian
state formalism, we mainly use work by Adesso [1]. For quantum error correction, we use
Gottesman’s work [24].

2.1 Quantum Information Theory Essentials

It will be assumed that the readers of this thesis have a good background on the basics of
quantum information theory. Thus section is mostly a collection of useful formulas which
we include for convenience.

2.1.1 Information Theoretic Measures

Shannon Entropy

Consider a random classical variable X with a certain probability distribution over out-
comes p(x) = Pr(x = X), then the measure of entropy, sometimes called the Shannon
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entropy, is defined as1

H(X) ≡
∑

x

−p(x) log(p(x)). (2.1)

In some sense the entropy is a measure of uncertainty in a random variable.

Here is a rough sketch of how this concept applies to certain situations: say we have an
alphabet X and for any given message there is a probability p(x) that a given letter X is
x. Then, if we consider how one could optimally encode this alphabet as binary, then we
can assign more bits to less likely letters, and less bits to the more frequently used letters.
If we want the same number of bits for each letter on average, since they occur at a rate of
1/p(x), and n bits can cover 2n letters, then we use n = log2(1/p(x)) bits per letter. Then,
the entropy is simply the expectation value of the number of bits,

∑
x p(x) log2(1/p(x)),

hence, asymptotically, we hit a rate of transmission of information equal to the Shannon
entropy of our variable.

Von Neumann entropy

Now, the generalization of the Shannon entropy to quantum systems is called the Von
Neumann entropy. Given some density operator ρ, defined on some Hilbert space HA, the
Von Neumann entropy is given by

S(A)ρ ≡ −tr(ρ log(ρ)). (2.2)

As the density operator is self-adjoint and positive semi-definite2, taking a logarithm
makes sense in the eigenbasis of ρ, say

ρ =
∑

x

px |x〉〈x| (2.3)

then

log ρ =
∑

x

log(px) |x〉〈x| =⇒ −ρ log ρ =
∑

x

−px log(px) |x〉〈x|

=⇒ −tr(ρ log ρ) =
∑

x

−px log(px)
(2.4)

and we recognize the Shannon entropy. Thus, the Von Neumann entropy is simply the
Shannon entropy of the spectrum of the density matrix.

1We will be using logarithm base 2 as our standard.
2We define 0 log 0 = 0 hence for null eigenvalues there is no divergence.
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Entanglement

The entanglement entropy for a bipartite pure state ρAB ≡ |ψ〉〈ψ|AB is given by the Von
Neumann entropy of either marginal

S(A)ρ = S(B)ρ. (2.5)

Note that for a bipartite pure state |ψ〉AB, because of the singular value decomposition,
there exists a choice of basis for A and for B such that we get

|ψ〉AB =
∑

j

√
pj |j〉A |j〉B (2.6)

this is called the Schmidt decomposition of the state.

We can define the coherent information [72] as

I(A〉B)ρ ≡ H(B)ρ −H(AB)ρ ≡ −H(A|B) (2.7)

it is the negative of the conditional quantum entropy, that is, the negative of the entropy
of A given B. For entangled states, the conditional quantum entropy is negative, hence
the coherent quantum information is positive. The coherent information is also a measure
of two-way distillable entanglement, where entanglement distillation is a protocol where
one gathers many copies of weakly entangled pairs and performs a projective measurement
onto a typical subspace of the ensemble. The result is a set of “distilled” pairs. Two-way
distillable means that the version of the protocol used to distill entanglement used two-way
communication.

Mutual Information

Before we get to the all-important mutual information, let us define the relative entropy
first,

D(ρ||σ) ≡ tr (ρ(log ρ− log σ)) . (2.8)

Note that the relative entropy is similar to a distance measure on the space of density
operators.

Now, we can then define the mutual information as the distance away from uncorrelated
a given state is,

I(A;B)ρ = D(ρAB||ρa ⊗ ρB) = H(A)ρ + I(A〉B)ρ = H(A)ρ +H(B)ρ −H(AB)ρ. (2.9)

5



Consider a bipartite Hilbert space HA ⊗ HB, and a density operator on this Hilbert
space, ρAB. Let ρA and ρB denote the marginal density operators A and B (e.g., ρA ≡
trB(ρAB)). Note that the mutual information [14] bounds correlations

I(A : B) = S(ρAB||ρA ⊗ ρB)

≥ 1

2
|ρAB − ρA ⊗ ρB|2

≥ 1
2‖OA‖2‖OB‖2

(tr [ρAB − ρA ⊗ ρB(OAOB)])2

=
(〈OAOB〉 − 〈OA〉 〈OB〉)2

2‖OA‖2‖OB‖2

(2.10)

where and so, for any operators on A and B, the mutual information gives a bound for the
correlation function between these operators.

Thus, as we will see, if we have a protocol which relies on correlations of observables,
then the mutual information will give us a good idea of the maximal efficacy of such a
protocol. This will be the case for QET.

2.1.2 Measurement

POVM

Consider a set of operators {Aj}j which satisfy

∑

j

A†jAj = I. (2.11)

A POVM measurement is a stochastic operation on ρ such that with a probability

tr(AjρA
†
j) (2.12)

we get an outcome j (classical information), and the collapsed quantum state

AjρA
†
j

tr(AjρA
†
j)
. (2.13)
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Stinespring and Kraus Form

If we average over measurement results of POVM’s, we get the Kraus form for a quantum
channel

ρ 7→
∑

j

AjρA
†
j. (2.14)

Note that any quantum channel can always be represented as unitary on a larger Hilbert
space, with ancillary inputs, and then some of the outputs are traced out. This is called
the Stinespring form. Note that this extension is not necessarily unique.

As we will see, we will cover the phase estimation algorithm, which effectively imple-
ments a POVM on some target system. In some cases, it is a projective PVM, but in other
case it is only projective in a certain limit (lots of qubits in the algorithm).

This is essentially what we will use for QET, instead of looking at the problem from
the POVM formalism, we will Stinespring dilate to the phase estimation algorithm.

2.2 Qudits & The Quantum Fourier Transform

2.2.1 Qudits

Qubit Paulis

Pauli matrices play a central role for qubits. They span the Lie algebra3 su(2) , and can be
seen as a set of unitary gates which form a basis for the space of 2×2 Hermitian matrices4.

Unfortunately, for higher dimensions, there is not a single set of matrices which can
play all these roles. In this section we will review some of the generalizations of the Pauli
matrices which individually accomplish these roles for Hilbert spaces of dimension d > 2.
We begin with the Heisenberg-Weyl group.

Heisenberg-Weyl

Let us consider a first set of generalized Pauli matrices, often called the Weyl (or Heisenberg-
Weyl operators [9, 70], these act on the Hilbert space H = Cd. The generalized Pauli Z

3Vector space of generators of unitary transformations; matrices M such that e−iM ∈ SU(2).
4Which is why they are used for the Bloch sphere representation of density matrices of single qubits
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matrix, also called the clock matrix, is defined as

Z =
d−1∑

j=0

υj |j〉〈j| , (2.15)

where the eigenbasis of Z, {|j〉 | j ∈ Zd} is the standard basis of Cd, and where υ is the dth

root of unity:
υ ≡ e2πi/d. (2.16)

The generalized Pauli X matrix, or shift matrix, is defined as

X =
d−1∑

j=0

|[j + 1]d〉〈j| (2.17)

where [·]d denotes the equivalence class modulo d of a given integer. We see that it cycles
through the eigenstates of Z, which is why Z is the clock; where the arrow of the clock is
pointing, while the X matrix is a clockwise tick of the clock. This tick is in contrast with
usual raising (or lowering) operators in quantum mechanics, which annihilates states that
are of the maximum eigenvalue, while this X operator makes the value wrap around.5 We
will come back to this shortly.

The shift matrix can be diagonalized by a unitary transformation called the Quantum
Fourier Transform

F †XF = Z, (2.18)

where in the above the unitary change of basis matrix F is called the quantum Fourier
transform.

This unitary operation, is the gate that maps

F : |j〉 7→ 1√
d

d−1∑

k=0

υ−jk |k〉 (2.19)

hence can be represented in matrix form in the standard basis as

F = 1√
d

d−1∑

k=0

υ−jk |k〉〈j| . (2.20)

5This is akin to how different systems in classical computing treat “integer overflow”, that is, when a
calculation exceeds the maximum number value, say d = 2n for n bits, either the computer returns an
error (like a null eigenvalue in our case) or the computer takes the number modulo d.
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The eigenstates of the X matrix are given by

|xj〉 ≡ 1√
d

d−1∑

k=0

υ−jk |k〉 = F |j〉 (2.21)

and the eigendecomposition of X is given by

X =
d−1∑

j=0

υj |xj〉〈xj| . (2.22)

We see that both matrices share the same spectrum which consists of all the dth roots
of unity, {υj = e2πij/d|j ∈ Zd}. This tells us that Xd = Zd = I, and that the clock and
shift matrices can be viewed as displacement operators on a toroidal lattice Zd × Zd [70]
whose set of points, W ≡ {e−πiab/dZaXb| a, b ∈ Zd}, forms the so-called Heisenberg-Weyl
group.

Note that, in contrast to the qubit Paulis, these are not self-adjoint (Hermitian) oper-
ators. In fact, they are unitary transformations, hence are rather the exponentials of some
Hermitian generators. In the next subsection we will see what are the Hermitian genera-
tors of these matrices, and briefly mention how these generators appear in physical systems.

A useful property is that the linear combinations of elements in the Heisenberg-Weyl
group actually span the space of d× d matrices [9], and because these matrices are trace-
less (apart from the identity) and unitary, W forms an orthonormal basis with respect to
the Hilbert-Schmidt inner product6. This means that given any matrix operation on a
qudit, such as a general set of POVM operations, say {Mj}j, we can decompose Mj and
represent it as a superposition of elements in W : Mj =

∑
k cjkWk where {Wk}k ⊂ W and

cjk ≡ tr(MjW
†
k ).

Also note that when d is a prime number, the Z eigenbasis, and the XZm, m =
0, ..., d− 1 eigenbases are all mutually unbiased [8], e.g.,

| 〈j|xk〉 |2 = 1
d
∀ j, k. (2.23)

This gives us an example of how measuring in the wrong basis can result in no information
gained about a state; measuring an X eigenstate in the Z basis gives a uniformly random
result.

6Hilbert-Schmidt inner product: 〈A,B〉 ≡ tr(AB†)
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Finally, an important feature of these matrices is that they obey the following braiding
relation

ZX = υXZ = e2πi/dXZ. (2.24)

Spin vs. spin-like generators

Now, as mentioned above, the Heisenberg-Weyl matrices are actually unitaries which are
not self-adjoint (Hermitian). Because they are unitaries, they necessarily have Hermitian
generators. As it turns out, the Z (phase) matrix is generated by a spin-like operator,

J ≡
d−1∑

k=0

k |k〉〈k| , where e2πiJ/d = Z. (2.25)

If we compare it to the spin operators we see in physics, it is like a the spin matrix of
a “spin-(d− 1)/2 particle”, i.e. a d-dimensional representation of a generator of SU(2). If
we let s ≡ (d− 1)/2, then we can write7

Jz =
s∑

k=−s

k |zk〉 〈zk| (2.26)

as the spin operator. Suppose we would like to compare the two generators, suppose we
let |zk〉 ≡ |k + (d− 1)/2〉, then

J = (d−1)
2
I + J̃ =⇒ J̃ = J − (d−1)

2
I. (2.27)

Thus, for any unitary exponentiation of J̃ instead of Z,

e2πiθJ̃/d = e2πi(d−1)θ/de2πiJ/d (2.28)

we get an extra phase. This phase is important in the case of interactions, hence, when
we will make use of a “spin-like” operator for any qudits we use, we will be referring to J̃
and not J .

Finally, to avoid confusion, note that although the z-spin operator from quantum me-
chanics, J̃ , is related to the generator of Z, note that the logarithm of the shift matrix X

7For d even, it is to be understood that the index of the of the sum are half-integer valued, and
that the sum is over the integer jumps from min to max values of the sum (e.g. d = 4, s = 3/2,∑s

k=−s k = −3/2− 1/+ 1/2 + 3/2). This is simply to have the same notation for all values of d.
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unrelated to the x-spin Jx from quantum mechanics [67]. Also note that the X operator is
not quite like the raising operator J+ =

∑s−1
m=−sCjs |zj+1〉 〈zj|, Cjs =

√
j(j + 1)− s(s+ 1),

which is like a non-cyclical shifting operator which annihilate the state of the top eigenvalue
rather than shifting it back to the lowest eigenvalue.8

2.2.2 The Quantum Fourier transform for qubits

It is well-known that the tensor product of the Hilbert spaces of n qubits results in an
exponentially large global Hilbert space, i.e. H ≡⊗n

j=1Hj
∼= C2n . Hence, one can have a

qudit Hilbert space of dimension d with only log2 d qubits.

Note that for the qudit representation, the Fourier transform mapped states as

|j〉 7→ 1√
d

d−1∑

k=0

e−2πijk/d |k〉 (2.29)

and so, for a set of n qubits isomorphically equivalent to a 2n dimensional qudit, it can be
shown [51] that,

|j〉 7→ 1√
d

d−1∑

k=0

e−2πijk/d |k〉 ∼= 2−n/2(|0〉+e−2πi0.jn |1〉)(|0〉+e−2πi0.jn−1jn |1〉)...(|0〉+e−2πi0.j1...jn |1〉)

(2.30)
where j = j12n−1 + ...+ jn20 is the binary representation of the qudit state j.

The Fourier transform for qubits can be applied in a polynomial number of gates. These
gates are mostly Hadamard gates and controlled-rotations.

To understand controlled phase gates, consider a qubit A, which will serve as the control
register, and a qubit B, which will be the target. Then consider a generator of this unitary
given by

gAB = π21−n |1〉〈1|A ⊗ |1〉〈1|B (2.31)

then

UAB(θ) ≡ e−igABθ = |0〉〈0|A ⊗ I + |1〉〈1|A ⊗ (|0〉〈0|B + e−2πiθ/2n |1〉〈1|B). (2.32)

8Colloquially, Z and X are to a clock what Jz and J+ are to a finite-length ruler, both with a total
of d ticks (picture the eigenvalues of Z and Jz in the complex plane). For d = 2 (qubits), since there are
only two points (eigenvalues ±1), then one can consider it to be like a two-tick clock or a two-tick ruler.
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By tuning the θ parameter depending on which qubit is interactng with which, we can use
such gates to achieve the quantum Fourier transform.

Essentially, a set of qubits can emulate a qudit efficiently, with sufficient control of the
qubits.

2.3 Phase estimation Algorithm

The phase estimation algorithm [51] involves performing a measurement on a certain target
system by using ancillary qubits and a unitary interaction to perform a POVM. We will use
this algorithm and its variants throughout this thesis, hence we will introduce it properly
here.

2.3.1 Algorithm

The phase estimation essentially relies on the property of qudits that F †ZF = X, that
is, a phase matrix Z =

∑d−1
j=0 e

2πij/d |j〉〈j| , gets converted to a cyclical shift of the state

X =
∑d−1

j=0 |[j + 1]d〉〈j|. Note that n qubits are isomorphic to the Hilbert space of of a 2n

dimensional qudit, and that we can perform the qudit equivalent of the Fourier transform
efficiently on a set of n qubits.

Now, consider a controlled-phase gate, like those that are used in the quantum Fourier
transform. Suppose we have t ancillary qubits, then suppose we do controlled-unitaries, but
instead of having each unitary being generated by the Pauli phase gate (σz), the unitaries
are generated by a general observable in the target register. That is, consider unitaries of
the form

U = exp
(
i2π
d
|1〉〈1| ⊗ O

)
= |0〉〈0| ⊗ I + |1〉〈1| ⊗ e−i

2π
d
O (2.33)

then, if the control register is in a uniform phaseless superposition of computational basis
states, i.e. an X eigenstate of eigenvalue 1, eigenstate; |+〉, and say the target register is
in an eigenstate |ϕ〉 of O of eigenvalue ϕ, then

U |+〉 |ϕ〉 = 1√
2

(
|0〉 |ϕ〉+ |1〉 e−i2πO |ϕ〉

)
= 1√

2

(
|0〉 |ϕ〉+ e−i2πϕ |1〉 |ϕ〉

)
(2.34)

and we see that we we get an entangled state.

Now, if we scale up this intuition, consider the unitary

Ut =
t−1∏

k=0

exp
(
−2πi2k |1〉〈1|k ⊗O

)
(2.35)

12



acting on a tensor product of |+〉 states,

Ut |+〉⊗t |ϕ〉 =
t−1∏

k=0

exp
(
−2πi2k |1〉〈1|k ⊗O

)
|+〉⊗t |ϕ〉 = 1

2t/2

2t−1∑

k=0

e−2πiϕk |k〉 |ϕ〉 (2.36)

where by |k〉 we mean its binary representation on the t control qubits. Now, for ϕ ∈ Z,
we can recognize the above state as |xϕ〉, hence if we apply the inverse quantum Fourier
transform to go back to the computational basis, we get

(F † ⊗ I)Ut |+〉⊗t |ϕ〉 = F † |xϕ〉 |ϕ〉 = |ϕ〉 |ϕ〉 . (2.37)

and so measuring the control registers gives us the binary representation of ϕ.

Figure 2.1: Circuit diagram for the quantum phase estimation algorithm. The last register
represents the target register, made of some state on m qubits. The states of the ancillary
qubits are initialize in the computational default state. Following this a transversal (many
qubits in parallel) Hadamard is applied on the probes to put them in a uniform phaseless
superposition of all bit strings. Then, the controlled-unitaries are applied, they allow for
a target-state dependent phase to “kick back” (from the target to the control). Next, the
inverse Fourier transform is applied to convert the picked up phase into bit flips. Finally,
a projective measurement in the standard basis is applied.

2.3.2 Information gain

Now, if the initial state of the target was a superposition of integer-eigenvalued eigenstates
of O, e.g.

|ψ0〉 =
∑

j

λj |ϕj〉 (2.38)

with ϕj ∈ Z ∀j, then, by linearity of unitaries, we have

(F † ⊗ I)Ut |+〉⊗t |ψ0〉 =
∑

j

λj |ϕj〉 |ϕj〉 (2.39)
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an entangled state between the control and the target, with the Schmidt decomposition
being in the eigenbasis of O. Thus, in this case we get an entanglement entropy

SAB = −
∑

j

|λj|2 log2(|λj|2), (2.40)

which is equal to the Shannon entropy of the measurement outcomes if we were to measure
the target register’s O observable by a direct projective measurement. In some sense the
ancillary system gained an amount of information about the target equal to the entangle-
ment entropy.

We considered performing the phase estimation algorithm for a certain observable O
with a discrete finite integer valued spectrum. Suppose we have a state |ϕ〉 for which the
ϕ 6∈ Z. Then, applying the phase estimation algorithm, we get

(F † ⊗ I)Ut |+〉⊗t |ϕ〉 ≈ |ϕ̃〉 |ϕ〉 (2.41)

where |ϕ̃〉 is a good approximate value to |ϕ〉. Essentially, the more bits we use, the larger
the spread over which we have our probe state, and hence when we Fourier transform it
the more spread it was (more qubits) the sharper the Fourier transform.

In order to get an accurate n-bit readout, then we need to use t qubits, for some
t > n, to run the algorithm, but we ignore the noisy t − n qubits’ readout at the end as
it is innacurate. It can be shown [51] that, to obtain an accurate n bit readout with a
probability of success > (1− ε), we need to use at least

t = n+ dlog(2 + (2ε)−1)e. (2.42)

In this thesis, we will encounter system that have infinite and continuous spectra. In
most cases we will counter the continuous with the continuous; we will use a continuous-
variable variant of the phase estimation algorithm (which we define in the lattice QET
chapter).

2.3.3 Deferred & Implicit Measurements

Note that performing a controlled gate, then projectively measuring the control register
in the standard basis, or the inverse order of these two are equivalent. this is known as
the principle of deferred measurement [51]. That is, a classical controlled gate with the
control being the result of a measurement versus a quantum control gate followed by a
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measurement yield the same final state. See figure 2.2

There is also the principle of implicit measurement [51], which states that for any
register that is not used after a certain point in the circuit, we can assume that it was
measured.

U U
=

Figure 2.2: A measurement followed by a classical controlled unitary dependent on that
measurement (left) is equivalent to a quantum controlled unitary followed by a measure-
ment (right). In other words, measurements commute with controls. Note the double line
signifies classical information (e.g. output of a measurement) while the single line means
quantum information.

Applications to QET

Thus, if we perform the phase estimation algorithm with a certain control register (the
ancillary register) and then use this register’s measurement result as the classical control
for a subsequent controlled unitary, then we can defer the measurement to the end of
the circuit, and replace the classical control with a quantum controlled unitary operation.
Furthermore, one the measurement is deferred to the end of the circuit, there is no need
to actually carry it out.

Thus, for the phase estimation followed by a controlled unitary combination, we can
let go of the measurement altogether and replace the circuit elements with their coherent
counterpart.

This is exactly what we will do for quantum energy teleportation; as we will see, this
protocol relies on a measurement, followed by a classically controlled unitary dependent
on the measurement. In this way, the protocol is LOCC; involves local operations and
classical communication.

In our treatment of quantum energy teleportation, we will use the alternate, but, as
justified above, equivalent version of the protocol, which is entirely coherent. Instead of
using a POVM, we model these measurements via phase estimation and an ancillary system.
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Following this, instead of classical information being transferred from the measurement site
to the second target site, we transfer quantum information and apply a controlled unitary,
no measurement needed.

2.4 Continuous Variable Quantum Information

We will use the concepts in this section profusely when dealing with the numerical calcu-
lations for the harmonic lattice in a later chapter.

2.4.1 Gaussian States

Gaussian states [1] get their name from the fact that their Wigner pseudoprobability func-

tion is a Gaussian ∼ e−
1
2
~XTσ−1 ~X , we see this is a Gaussian centered at the origin, which

means we are assuming that its quadrature expectation values µk ≡ 〈xk〉 = 0 are null.
Here we are using the notation ~x ≡ (q1, p1, q2, ..., pn)T . Now, since a normalized Gaussian
is uniquely specified by where it is centered and how wide it is, and that we have assumed
that our Gaussian is centered at the origin, then the so-called covariance matrix σ is single
object that specifies our state. To find the matrix elements of this σ, we compute the
so-called second moments

σ ≡ 1
2
〈xixj + xjxi〉 −���〈xi〉���〈xj〉 (2.43)

note that the commutation relations between the elements of ~x are

[xi, xj] = iΩij, Ω =
⊕

k

(
0 1
−1 0

)
. (2.44)

What is particularly nice with Gaussian states is that since they are uniquely specified
by their first and second moments, then effectively we are using a much smaller space than
the full infinite dimensional Hilbert space to describe the states. This space is known as
phase space, denoted Γ. The phase space decomposes into direct sums for operators that
commute. Thus, instead of scaling exponentially with the number of systems, like the
Hilbert space, the phase space scales linearly.
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2.4.2 Gaussian Operations

Unitaries generated by quadratic polynomials in the quadratures xj, xk, can be considered
as Gaussian operations. Gaussian unitary operations can be represented on phase space
by conjugating the covariance matrix and multiplying the first moments with the phase
space representation of the given unitary.

Thus, instead of conjugating a density matrix with a unitary, U †ρU , we conjugate the
covariance matrix with a symplectic matrix S,

σ 7→ STσS. (2.45)

Matrices S are part of the symplectic group when they preserve the symplectic form
(matrix of commutators); STΩS = Ω.

In our work in this thesis we will often have to compute transformations of expectation
values of certain contractions of quadratures, e.g. say we consider a change in expectation
value an expectation value due to a symplectic transformation

〈hjkxjxk〉 = hjk(Σ̃jk + µ̃jµ̃k), Σ̃ ≡ STΣS, µ̃ ≡ STµ (2.46)

where the first and second moments are transformed according to the symplectic transfor-
mation.

This will be particularly useful for our computation of changes in energy due to Gaussian
operations in our chapter on QET in harmonic lattices.

2.4.3 Entanglement Entropy

Now, just like for Hermitian matrices there is a theorem stating that it can be real-
eigenvalue diagonalized using unitaries, there is a theorem for symplectic diagonalization
of matrices. This theorem, Williamson’s theorem [1], states that for any covariance matrix,
there exists a symplectic transformation which “symplectically diagonalizes” the matrix,

∃S ∈ Sp(2N,R) : STσS =
⊕

k

(
νk

νk

)
. (2.47)

Now, these diagonal entries are called the symplectic eigenvalues, they can explicitly be
found by computing Eig+(iΩσ), that is, the positive eigenvalues (denoted Eig+) of the
matrix iΩσ, where Ω is the symplectic form as defined in (2.44). We can use these
symplectic eigenvalues to compute the entropy of the state as

S(ρ) =
∑

j

f(νj), where f(ν) ≡
(
ν + 1

2

)
log
(
ν + 1

2

)
−
(
ν − 1

2

)
log
(
ν − 1

2

)
. (2.48)
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2.5 Quantum Error Correction

Quantum Error correction is a mathematical theory which describes how to hide quantum
information in certain subspaces of a Hilbert space. Although we will not be treating this
topic directly in the main body of the thesis, we draw multiple parallels with concepts
underlying work that will appear later in this thesis.

2.5.1 From Hamiltonians to Subspaces

We will approach quantum error correction from an angle more familiar to physicist, that of
ground states of Hamiltonians. There are some proposed [40] implementations of quantum
computing which have been considered which effectively use the degenerate ground state
space of a certain multi-qubit Hamiltonian to encode quantum information and protect it
from noise. Such Hamiltonians look like

H = −
n−k∑

j=1

gj, [gi, gj] = 0 (2.49)

where each gj is some tensor product of n qubit Paulis; gj ∈ Pn9 operators, e.g. X ⊗
X ⊗ Z, and [gi, gj] = 0. Note that since each term is commuting, we can describe the
ground state of this Hamiltonian as the tensor product of pure +1 eigenvalue eigenstates
of each gi, tensor product with an arbitrary state for the rest of the Hilbert space |ψ〉 =
|ψcode〉

⊗n−k
j=1 |gj〉. If our Hamiltonian has n − k such commuting terms, then we have

specified n−k eigenvalues out of a maximally commuting set of observables of n Paulis, then
we effectively have k observables left to specify in order to fully specify a unique eigenstates.
The “vacant space” left in the Hilbert space is what is used to encode information, hence
in the above case there is a possibility to encode k qubits in the degenerate ground state,
which is what we express as |ψcode〉.

Such systems are part of a more general scheme for quantum error correction in quantum
computing (theory describing how to correct for decoherence in quantum systems) called
the stabilizer formalism [24]. The rough idea is that a certain class of states are eigenstates
of tensor products of Paulis on n qubits. For such states, we can specify which n-qubit
Paulis for which they are a (+1)-eigenvalue eigenstate, and the group generated by products
of powers of these Paulis is called the Stabilizer group of a given state (for any element of
the stabilizer group, the state is a +1 eigenvalue eigenstate.

9or more generally Heisenberg-Weyl
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Thus instead of working with the state in Dirac notation, we can simply work with
the operators for which a state is the +1 eigenvalue eigenstate. Since each Pauli can be
specified as ∼ XaZb, a, b ∈ Z2, then there are 2n bits to specify to describe each such state.
The set of unitary transformations which map tensor products of Paulis to tensor products
of Paulis is called the Clifford group. In this sense, the stabilizer states are very much like
Gaussian states, but for discrete variables, the Clifford group, as represented on the vector
space of 2n-bit strings (which themselves represent a state) is isomorphic to the symplectic
group on 2n bits, Sp(2n,Z2). In contrast, the group of Gaussian transformations on the
phase space of n harmonic oscillators is Sp(2n,R). We will draw many parallels between
continuous-variable Gaussian states and stabilizer states of qubits to some gain information
theoretic intuition.

2.5.2 Skew Subspaces

Now, note that the whole basic governing principle of quantum error correction is to
factorize our Hilbert space into a tensor product of skew-subspaces, that is, instead of
working in the physical factorization of the Hilbert space,

H =
n⊗

j=1

Hj (2.50)

where operators in Hj act on a single physical qubit, we work in a tensor product factor-
ization

H =
n⊗

j=1

Hgj (2.51)

whereHgj is the subspace ofH which is the eigenspace of a stabilizer generator gj, and each
stabilizer generator is usually supported on more than one qubit, hence the “skewness” of
the subspace. In either case, the factorization is based on commuting sets of observables.
Note that in the phase space representation the commutation relation between Pauli oper-
ators [P,Q] can be seen as a symplectic inner product on the phase space (p, q) [24]. Thus,
when operators are commuting, they are orthogonal with respect the symplectic inner
product. We can then construct the phase space as a direct sum of orthogonal components
Γ =

⊕
j Γgj =

⊕
j Γj.

We will come back notion of Hilbert space factorization and associated phases spaces
in our discussion of quantum field theory in section 5.2. Indeed, we will construct ways to
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deal with certain skew-subspaces10 of quantum fields which become relevant when dealing
with probes interacting with the field. In some sense, quantum error correction treats
algebras of observables which are affected by decoherence, and in this thesis we provide the
decoherence; we couple external systems and study what information and which subsystem
of the quantum field is affected.

2.5.3 Correlations and Entanglement

In this section we discuss the structure of correlations and entanglement of stabilizer states
which will give us some intuition for some of our later work.

Suppose we have a stabilizer state |ψ〉 and a stabilizer group S ⊂ Pn. Let N(S) be
the normalizer of the group, i.e. the Paulis which commute with elements of the stabilizer,
and let A(S) = Pn/N(S) be the Paulis that anti-commute with S. If we consider a
correlator 〈ψ|QR|ψ〉 then if QR ∈ A(S) then using some g ∈ S, we can show 〈ψ|QR|ψ〉 =
〈ψ|QRg|ψ〉 = 〈ψ|gQR|ψ〉 = 0. Similarly, for QR ∈ N(S), we get either 〈QR〉 = 1 or
a phase. Note that if we have no code space, i.e. when the stabilizer generators form a
maximal commuting set of observables, then correlators are non zero iff they are in the
stabilizer group. So, if we act Q say on a subset A of qubits, and R on a subset B of qubits
for A and B disjoint, and Q and R are not in the normalizer individually, then we need a
stabilizer element that “bridges” A and B.

To further understand the structure of entanglement of stabilizer states, let us cover a
theorem by Fattal et al. [19]. This will show us that to compute the entanglement entropy
of a stabilizer state, one can find a specific choice of generators for the stabilizer group of
the state. Once the right generators are found, then we can simply count the generators
that “bridge both parts of the Hilbert space, in this case, A and B.

We consider a pure stabilizer state |ψ〉, and a Hilbert space H = HA ⊗HB. The given
prescription [19] is, given a bipartition of the Hilbert space of our state into A and B = Ā,

10Why “skew”? By this we mean that if one looks at a certain subspace from a certain “angle” (Hilbert
space factorization), then the subspace looks “skewed” as it is non-orthogonal (orthogonality being defined
as commutation of observables) to multiple operators. On the other hand, when one looks at the skew-
subspace in the right factorization, then it manifestly becomes a component orthogonal to the rest of the
Hilbert space.
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there is a canonical choice for the generating set of S, given by

SA =
{
ai ⊗ IB (1 ≤ i ≤ |SA|)

SAB =

{
gAk ⊗ gBk (1 ≤ k ≤ |SAB|/2)

ḡAk ⊗ ḡBk (1 ≤ k ≤ |SAB|/2)

SB =
{
IA ⊗ bj (1 ≤ i ≤ |SB|)

(2.52)

where SA is the stabilizer subgroup which is strictly supported on A; generated by el-
ements ai ⊗ IB, 1 ≤ i ≤ |SA| the rank of the subgroup, i.e. the size of its generating
set. Similarly, SB is the stabilizer group which is strictly supported on B, generated by
IA ⊗ bj with j ≤ |SB|. Finally the the subgroup SAB is the stabilizer subgroup generated
by elements which have support on both A and B. We can further split this subgroup
into two subgroups, where the elements of the first subgroup are generated by elements
of the form gk ⊗ gk, for which the projections onto A and B each commute with elements
of their respective subgroups, i.e. [gk, ai] = 0, [gk, bj] = 0 ∀i, j, k. The rest of SAB is
generated by elements whose projections anticommute with the local stabilizer subgroups,
ḡk ⊗ ḡk such that {ḡk, ai} = 0, {ḡk, bj} = 0 ∀i, j, k. Note that the index k runs from
1 ≤ k ≤ p ≡ |SAB|/2.

The theorem from Fattal et al. states that the entanglement entropy for the bipartition
AB is given by |SAB|/2. In this paper they give a counting argument for why the entangle-
ment entropy is given by this quantity. I will give an intuitive explanation instead, related
to entanglement distillation.

First, notice that a maximally entangled state of two qubits |Φ+〉 ∼ |00〉 + |11〉 is
stabilized by 〈XX,ZZ〉. Also note that we can define any map between Paulis to Paulis,
and as long as it preserves commutation relations there will exist a unitary Clifford circuit
that implements it. Given the canonical decomposition from equation 2.52, consider the
projections of the stabilizer group onto A, call it S|A.

Let us define a specific Clifford unitary (local on A) UA, which maps S|A to some new
stabilizer group, call it S̃|A. We define this map as

UA : S|A → S̃|A (2.53)

UA : gk 7→ Zk, 1 ≤ k ≤ |SAB|/2 (2.54)

UA : ḡk 7→ Xk, 1 ≤ k ≤ |SAB|/2 (2.55)

UA : ai 7→ Zĩ, ĩ = i+ nA − |SA|, 1 ≤ i ≤ |SA|, (2.56)
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which gives us |SA| single qubits that are in a |0〉 state (stabilized by Z) and |SAB|/2
qubits that need to be stabilized by both X and Z, hence are maximally mixed states
(XIX = I, ZIZ = I). If we do the same construction for B, i.e. define a mapping
UB : S|B 7→ S̃B, we can consider the map U ≡ UA ⊗ UB, and define S̃ ≡ USU †, we get
|SAB/2| Bell pairs (pairs of qubits with stabilizers XX,ZZ) and the rest of the qubits are
tensor products of pure |0〉. Clearly, the entanglement entropy is then given by |SAB|/2,
using unitaries that are local on A and B, we were able to distill this entanglement from
the stabilizer state.

Thus as we see, given entanglement of stabilizer states due to there being a choice of
stabilizer generators which cross the bipartition of the Hilbert space, there is a certain
choice of stabilizer generators for the state which allow us to read off the entanglement
entropy, and which decomposes the state into a direct product of Bell pairs. One could
regard this decomposition as equivalent to finding the Schmidt basis of the state. Addition-
ally, we discussed that there is a Clifford transformation which takes us to this factorization.

Relation to other work in this thesis

Now, in our future/ongoing work section 7.1, we will try to apply this construction to
understand the mode structure of the quantum field for a given bipartition of the Hilbert
space. Instead of looking at stabilizers, we will look at algebras of observables of the
field, and we will want to optimize over symplectic (Bogolyubov) transformations on A
and its complement independently to come up with a set of modes which are effectively
continuous-variable bell pairs (i.e. two-mode squeezed states). Similar to the fact that the
choice of Clifford here gave us the Schmidt basis for the AB bipartition, we will be able
to find a Schmidt basis for the Hilbert space of a quantum field given a bipartition in the
physical factorization.
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Chapter 3

Quantum Energy Teleportation
Essentials

In this chapter we introduce the protocol of quantum energy teleportation (QET), originally
introduced by Hotta [30, 29, 28, 31, 32, 33, 49, 34, 35, 31, 23, 36, 68].

3.1 Introduction to QET

Quantum Energy Teleportation (QET) is a protocol that allows the the transfer of energy
from one subsystem to another in correlated many-body quantum systems (and quantum
fields). Given a certain entangled state of an interacting many-body quantum system, say,
an eigenstate of an interacting Hamiltonian, then subsystems (A & B) usually share some
mutual information, I(A : B) due to this entanglement. This mutual information means
that there exists certain observables on A and B which are correlated. QET aims to exploit
these correlations in order to effectively transfer energy.

3.1.1 Harnessing Correlations

Correlated many body systems, as their name suggests, have correlated observables. This
means that sampling the eigenvalue of one observable should give information about cor-
related ones. As mutual information bounds correlations between observables, if there is
some mutual info one should usually have correlated observables.
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The whole protocol of QET relies on exploiting correlations in order to do what is
otherwise unlikely: extract energy from states which locally look like a ground state (or
strongly locally passive states [22]). The trick here, is to invest energy in order to get some
payback. In some sense, QET is a gambling game, where energy is the currency and one
player sacrifices earnings for another to profit.

By measuring an observable in a certain subsystem, call it A, that observable will be
correlated with some observables in subsystem B. Given an observable of B which is
correlated with our measured observable in A, if this B observable has some influence on
the energy of the system, them we will be able to use the knowledge of the eigenvalue of
A to statistically infer an expected value of B, then displace this value in a way to extract
energy. For locally passive systems, this would not be possible by acting on B on its own;
there is local uncertainty about the state at B, hence without any additional knowledge,
any attempt at locally displacing the eigenvalue of an energetically-contributing observable
would increase the energy of the system. In some sense, collapsing the state at A partially
collapses the state at B and any other region which is correlated with A. This collapse
allows us to catch the B subsystem in a conditional state which is different than the usual
marginal state, this state suddenly has some new “free energy”, i.e., the new state can be
displaced in a way to extract energy.

3.1.2 Measurement is the Key

Note that QET does not actually generate energy out of the vacuum, the gain of informa-
tion comes at a cost, an energetic one. Indeed, carrying out a projective measurement or
POVM, one breaks correlations of the ground state. These correlations served an energetic
minimization purpose, otherwise they would not have been there. Thus, correlating a sub-
system with some measurement apparatus, thereby breaking correlations of this subsystem
with its previous environment, injects energy. Thus, although measurement is the key to
unlock to ability to teleport energy, it is not free.

3.1.3 Global vs. local energy optima

The global minimum energy state is by definition the ground state. But the ground state
is not the minimal energy state if one looks only at a subsystem. In some sense, the ground
state is the global equilibrium, but locally a certain state could reduce its energy if a dif-
ferent correlated subsystem would be willing to increase its energy. As spin chains and
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quantum fields and most condensed matter systems are assumed to have spatially transla-
tionally symmetric couplings (all the couplings in a chain are often defined as identitical),
then no single subsystem wins over other subsystems, an overall energetic compromise is
reached. On the other hand, if one were to modify the coupling of the chain to favor a
certain subset, e.g. by adding quadratic quadrature terms in a Hamiltonian, thus changing
the new ground state to a squeezed state, then one could get peaks and troughs of en-
ergy instead of uniform compromise. Indeed, it is known that certain squeezed states can
have negative energy densities. Effectively, as we will show, QET is a way of performing
non-local squeezing operations via the coupling of probe systems.

3.1.4 Previous Works

There have been numerous pieces of work done on QET,[30, 29, 28, 31, 32, 33, 49, 34, 35,
31, 23, 36, 68]. In its introduction, the focus was on spin chains and many-body systems.
Following this, QET has been shown to work for scalar quantum field theories as well as
in quantum electrodynamics.

The next frontier for QET was to understand how the structure of the Hilbert space
allowed for QET, and to find the optimal measurement schemes for QET. Although some
work was done using POVM’s made to emulate interactions with higher dimensional Hilbert
spaces, the optimal measurement scheme was still elusive.

This thesis

This is where our work in this thesis begins. We propose new measurement schemes based
on generalizations of the phase estimation algorithm in order to optimize the measurement
for QET, thus allowing for better collection of information and therby greater teleportation
of energy.

Additionally, we provide fully coherent (POVM/PVM-free) versions of the QET, which,
as was discussed in the background section, is equivalent to the LOCC version of the
protocol.

Some work had shown, in the case of the simplest QET model, minimal QET, that
the key to a good QET measurement was the breaking of entanglement between the mea-
surement site and the rest of the system. To begin our study of QET and entanglement
breaking, we start with an in-depth analysis of the coherent (projective-measurement-free)
version of the minimal QET protocol.
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3.2 Coherent Minimal QET

In this section we go through how to implement a measurement-free version of minimal
QET with an ancillary qubit and two-qubit gates. We show that the energy extraction
procedure increase the entanglement of the target region, while the measurement breaks
the entanglement of its target.

3.2.1 The Global Ground State

Before we write out the ground state for minimal QET, it will be useful for our later
purposes to intuitively explain how on obtains the ground state of the minimal QET
Hamiltonian. The Hamiltonian for minimal QET is given by

H = hσzA︸︷︷︸
HA

+hσzB︸ ︷︷ ︸
HB

+ kσxAσxB︸ ︷︷ ︸
V

(3.1)

where h, k > 0. We are looking to find |g〉, the lowest energy eigenstate of H. Note that
since [HA, HB] = 0, the free Hamiltonians are simultaneously diagonalizable, and we know
that the ground state of HA + HB must be1 |11〉. So in the limit k/h → 0, we expect
|g〉 → |11〉, with an energy eigenvalue −2h. Conversely, the ground state of V is the Bell
state |Φ−〉 = 1√

2
(|00〉−|11〉), hence in the limit k/h→∞, we should have |g〉 → |Φ−〉 with

energy eigenvalue −2k.

Now, we are looking for the global ground state of H = HA + HB + V , we intuitively
could expect it2 to be some sort of convex combination of both ground states of (HA+HB)
and V , which are |00〉 and |Φ−〉 ∼ |00〉 − |11〉. Notice that this state will then be on a
Bloch-like circle |g〉 ∈ {α |00〉 + β |11〉 : α, β ∈ R, α2 + β2 = 1}. We thus can expect our
global ground state to be of the form

|g〉 = sin( θ
2
) |00〉 − cos( θ

2
) |11〉 . (3.2)

From our previous intuition, we would like θ → 0 as k/h→ 0 and θ → π
2

as k/h→∞, we
know a function that does this, the arctan function. As it turns out, the guess

θ = arctan(k
h
) (3.3)

1I follow the notation convention of quantum computing, i.e. σz |j〉 = (−1)j |j〉 for j ∈ {0, 1}, σx |±〉 =
± |±〉, σx |j〉 = |¬j〉, where ¬j is the logical negative of j; ¬ : 0↔ 1.

2This approach of convex combinations may not always work for general Hamiltonians, but in this case
it does and provides good intuition.
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is the right one. To show this, we can minimize our expectation value of the global
Hamiltonian over our θ parameter.

〈g|H |g〉 = −2h
[
cos2( θ

2
)− sin2( θ

2
)
]
− 2k sin( θ

2
) cos( θ

2
) = −2h cos(θ)− 2k sin(θ)

= −2
√
h2 + k2 cos(θ − θ0), θ0 = arctan( 2k

2h
)

(3.4)

which is clearly minimized when θ = θ0 = arctan(k/h), with ground state energy eigenvalue
−
√

(2h)2 + (2k)2.

2k

2h

p
(2h)2 + (2k)2

✓

|��i |�+i

|00i

|11i

|gi

Figure 3.1: Bloch-type circle to represent the possible ground states for various values of
h and k. Intuitively, the two σz terms (of energetic ’weight’ h each) are pushing for a
|11〉 ground state, while the interaction term V is pushing for the |Φ+〉 state (with an
energetic ’weight’ of 2k). Representing this on the Bloch ”circle”, there is a force of 2k
pushing left, and a force of 2h pushing down, the equilibrium is reached at the point of
angle θ = arctan(2k/2h), with energy −

√
(2h)2 + (2k)2.

As one can verify, we get the same answer as Hotta [34].

Preparing the ground state

As an aside, it is interesting to see how one could prepare the ground state from two
initialized qubits, as we can simply apply the inverse operations to recover two initialized
qubits from the ground state. Note that this ground state can be prepared from the |00〉
state by using two gates. First a rotation about Y of the A qubit, exp(i (θ−π)

2
σyA) ⊗ IB,

then apply CNOT with A as the control and B the target. So,

|00〉AB 7→ (sin( θ
2
) |0〉A − cos( θ

2
) |1〉A) |0〉B 7→ (sin( θ

2
) |00〉AB − cos( θ

2
) |11〉AB). (3.5)

Note that, alternatively, we can also get to the final state with a single interaction, U =
exp(i (θ−π)

2
σyA ⊗ σyB).
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3.2.2 The Protocol

Pre-Alice

Consider two qubits (A and B) with the minimal QET Hamiltonian discussed above,
suppose we have access to a pure ancillary register, call it C. For our purposes, this register
effectively acts as a measurement/control device, the value of the bit in the register acts as
a measurement pointer variable. For simplicity, we consider the control register C to have
no free Hamiltonian. Suppose the initial state of the system is

|Ψ0〉 ≡ |g〉AB |0〉C , (3.6)

for further purposes, it will be useful to express the ground state as follows:

|g〉 =
∑

j∈{0,1}

γj |jj〉AB = 1√
2

∑

±

|±〉A |ϕ±〉B (3.7)

where γ0 ≡ sin(θ/2), γ1 ≡ − cos(θ/2), and |ϕ±〉 ≡
∑

j=0,1(±1)jγj |j〉.
Let S(θ) ≡ −∑j |γj|2 log(|γj|2), the mutual information between registers A and B is

of I(A : B)Ψ0 = 2S(θ) = 2H(B)Ψ0 .

Post-Alice

Alice applied a CNOT gate with C as the control (in X basis, apply Hadamard on C first)
and A the target

|Ψ1〉 = 1√
2

∑

±

|±〉A |ϕ±〉B |±〉C . (3.8)

Note that the mutual information between A and B has been halved, I(A : B)Ψ1 = S(θ) =
H(B)Ψ1 , on the other hand the entropy of B is unaffected. This is because the interaction
converted bipartite entanglement to tripartite entanglement.

In this way, the measurement by Alice has broken the entanglement A had with its
complement, B. Entanglement breaking via measurement was pinpointed by Hotta [27] as
a sign of a good measurement for QET.
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Post-Bob

Bob applies a controlled-Y rotation on B using C as the control, U = exp(i1
2
(φ− θ)σxC ⊗

σyB) where φ ≡ arctan(2k/h) (we rotate B to the local ground state3 The final state is
given by

|Ψ2〉 = 1√
2

∑

±

|±〉A |Υ±〉B |±〉C . (3.9)

where |Υ±〉 =
∑

j=0,1 µj |j〉 with µ0 ≡ sin(φ/2), µ1 ≡ − cos(φ/2). Note that as long

as k > 0, we necessarily have | 〈ϕ+|ϕ−〉 |2 > | 〈Υ+|Υ−〉 |2, hence the states have become
more orthogonal/more distinguishable. On the other hand the entropy of B has become
H(B)Ψ2 = S(φ) > S(θ) = H(B)Ψ1 = H(B)Ψ0 so the final step of QET actually increases
the entropy of B. An option to purify B instead would be to replace Φ in our unitary by
0, that way the B register would be sent to the |1〉 state instead.

Thus, we see that we in fact increase the entanglement of the target region when we
extract energy. This is a result that we will also recover when we study the QET protocol
for a lattice of harmonic oscillators.

3.3 General Mutli-observable QET Algorithm

Now that we have covered the basic example of minimal QET in the coherent picture, we
can generalize our approach. In this section we describe our generalized QET algorithm
which is designed to optimally harness correlations between subsystems.

For ease of language, we will refer to the global system as a lattice, but it will be
applicable to quantum field theory, as we will show later.

Now, let {Qj}j∈A and {Rk}k∈B be sets of maximally commuting observables for sub-
systems A and B.

Consider a set of systems C which is of the same dimension as subsystem A; i.e.
it is isomorphic (in general we want C’s Hilbert space to be big enough to contain A’s
information, this is also achievable asymptotically with a set of qubits). Now, the algorithm
goes as follows:

3This 2k/h comes from the fact that the local Hamiltonian for B is HB + V instead of HA + HB +
V , therefore, one can mi minimize the local energy by adjusting the angle θ = arctan(2k/2h) to φ =
arctan(2k/h).
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• Perform the phase estimation algorithm, minus the measurement, to measure observ-
ables {Qj}j∈A using the systems C as the ancillary registers

• Alice transfers the control system C to Bob coherently

• Bob applies a set of control unitaries, with the C systems as the controls, with the
unitaries being the conjugate variable4 to the {Rk}k∈B. The specific choice of each
unitary rotation’s angle5 has to be optimized to maximize energy output.

This is effectively a controlled displacement of Bob’s Rk values, conditioned on the Qj’s
(whose Q information was carried by the probe).

In this way, Bob uses all of Alice’s information about her Q variables. Bob effectively
uses multipoint correlation information to infer the eigenvalue of his observables given
Alice’s information.

Note that, even with all of this optimization, Alice and Bob could further optimize
their choice of observables for the protocol. Stronger correlations are favourable, but how
each observable affects the Hamiltonian is also important.

We effectively perform this protocol in our chapter on QET with a lattice and in our
section on multipoint QET in our QET in quantum field theory chapter.

Note that, as was explained in our quantum information background section, that this
protocol still is equivalent to the LOCC version; Alice could instead measure her ancillary
registers to complete the phase estimation and send the classical data to Bob, who would
perform unitaries on his system dependent on this classical data.

4For example, if Rk = πk, then the controlled unitary is generated by φk; because [φk, πk] = i.
5determined by the coupling strength of the interaction Hamiltonian
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Chapter 4

QET on Harmonic Lattices

4.1 Introduction

In this chapter we will be covering a variant of the Quantum Energy Teleportation protocol
for linear harmonic lattices. Lattices of Harmonic oscillators offer, to a good approximation,
a model of a quantum field [15]. In particular, if one is restricted to a certain class of
states, namely, Gaussian states, then this lattice is fully and efficiently simulatable using
(classical) numerics. Using the power of the Gaussian state formalism, expectation values
of operators, Gaussian state transformations, and entropies are fairly straightforward to
compute. We will be putting this formalism to use in this chapter.

In this chapter, we first introduce the mathematical formalism for dealing with linear
harmonic lattices. Following this, we propose a novel variant of the quantum energy
teleportation protocol for harmonic chains which relies on using Harmonic Oscillators as
the measurement probe system and Gaussian unitaries to entangle the probe to the system
and effectively perform a measurement. We will cover how our specific choice of Gaussian
interactions is akin to a continuous-variable version of the phase estimation algorithm from
quantum computing.

Note that there having been previous iterations of Quantum Energy Teleportation
for linear Harmonic chains [49], however our measurement scheme and energy extracting
procedure provides and improvement over previous iterations. Indeed, via our continuous-
variable version of the phase estimation algorithm, we effectively perform near-projective
POVM measurements on the quadratures of multiple oscillators, whereas the scheme by
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Nambu and Hotta [49] used a “weaker” type of measurement1. We then use this multi-
point quadrature information and the knowledge of the correlations of the chain to predict
the quadrature values for multiple sites in the energy extraction target region, instead of
only a single site in previous iterations.

Additionally, the version of our protocol we present in this section offers a coherent
alternative to other protocols which require projective or POVM measurements. Instead
of using the POVM formalism, we use probe systems with Gaussian unitary interactions,
hence given that Alice and Bob can share quantum information, there is no need for any
measurement. We discuss how this protocol is still equivalent to the LOCC version.

Note that the numerical results in this chapter (section 4.3.4) were obtained in collab-
oration Jason Pye.

4.2 Background: Harmonic Lattices

Let us start with a slightly more concrete example of a 1-D linear periodic harmonic chain,
then we will study the formalism for a general lattice.

4.2.1 1-D harmonic chain

Let N be the number of quantum harmonic oscillators in our chain. Say we have N
independent harmonic oscillators, then the Hamiltonian of the system would be

H0 =
1

2

N∑

j=1

(φ2
j + π2

j ) =
∑

j=1

bjb
†
j + 1

2
(4.1)

where the quadratures of each harmonic oscillator are related to the ladder operator for
each site:

φj ≡
bj + b†j√

2
, πj ≡

bj − b†j√
2

(4.2)

and all of these obey the usual canonical commutation relations. In the above case, the
ground state of our system would be the product state |0〉 =

⊗
j |0j〉, which is a separable

1Their measurement is equivalent to measuring in the coherent state basis, which is an overcomplete
basis hence the POVM operators are highly non-orthogonal.
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state and is not very interesting for our purposes. What is needed for there to be correla-
tions is ground state entanglement. As we will soon see, we need correlations in order to
have any possibility of performing the quantum energy teleportation protocol. What we
need to add to our Hamiltonian are couplings between the harmonic oscillators in order to
get a ground state that is a squeezed state between the sites.

Consider the following Hamiltonian for our system, now with added couplings forming
a 1-D periodic harmonic chain [49]:

H =
1

2

N∑

i,j=1

(π2
j + φiKijφj) ≡

1

2

∑

j∈ZN

(φ2
j + π2

j − αφjφj−1), (4.3)

where the sum is over indices modulo N (hence the periodicity of our chain). Borrowing
some linear algebra from our knowledge of quantum computing, we see that K is clearly
I − αX, where X is the generalized Pauli matrix for d = N . The shift matrix appears
here because the physical topology of our set of harmonic oscillators is like that of a
N - tick clock (the topology being defined the couplings of our harmonic oscillators 2).
The way to diagonalize K = I − αX would be the discrete Fourier transform, K =
I − αX = F(I − αZ)F †. This Fourier transform gives us the Fourier (normal) modes’
ladder operators, which we will label {ak, a†k}k∈ZN . These are constructed in a way such

that they obey the usual commutation relations [ak, a
†
k′ ] = δkk′ , all the while diagonalizing

the Hamiltonian. We can express the individual sites’ quadratures in terms of these global
Fourier ladder operators

φj =
1√
N

∑

k∈ZN

1√
2ωk

(
ak + a†−k

)
e2πikj/N

πj =
−i√
N

∑

k∈ZN

√
ωk
2

(
ak − a†−k

)
e2πikj/N

(4.4)

where
ω2
k ≡ 1− α cos θk for θk ≡ 2πk

N
. (4.5)

In the above, to get the time dependence we could use the Heisenberg picture e−iHtake
iHt =

eiωktak with the diagonalized Hamiltonian H =
∑

k ωk(a
†
kak + 1

2
), but for now let us ignore

2If we consider this chain to be in analogy to a discretized quantum field theory on a lattice, one can
technically define the effective “metric” of the spacetime on which our QFT lives from the Kij matrix.
More on this later in this chapter.
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the time dependence for simplicity. Let |0〉 be the vacuum state of this Hamiltonian. If
we try to solve for ak in terms of the bj individual site operators by inverting the above
equations, we get

ak =
1

2
√
N

∑

j∈ZN

(√
2ωkφj + i

√
2
ωk
πj

)
e−2πijk/N

=
1

2
√
N

∑

j∈ZN

(
(
√
ωk + 1√

ωk
)bj + (

√
ωk − 1√

ωk
)b†j

)
e−2πijk/N

=
1√
N

∑

j∈ZN

(
cosh(γk)bj + sinh(γk)b

†
j

)
e−2πijk/N

(4.6)

where γk ≡ 1
2

ln(ωk). The above transformations between operators is known as a Bo-
golyubov transformation.

Aside: Ground State as squeezing

Although we will not use this formalism for our calculations, it is interesting to see how
one could find the way each individual oscillator is squeezed with other oscillators to form
the ground state of the chain. The ground state of our Hamiltonian is a squeezed state
that is of the form

|0〉 ∼
∏

jm

exp
(
λjmb

†
jb
†
m

)
|0〉⊗N . (4.7)

This form can be insightful, as it allows one to see exactly how each harmonic oscillator
is squeezed with each other harmonic oscillator (more on this later). Although obtaining
the above expression is non-standard practice, let us try to see how one would get the λjm
coefficients. Using an approach which works for general multimode squeezed states [60],
using block matrix notation, we can see that in our case our Bogolyubov transformation
(which we can represent as linear map in 2N dimensional phase space) gives

(
a
a†

)
≡M

(
b
b†

)
=

(
F †

F

)(
cosh(γ) sinh(γ)
sinh(γ) cosh(γ)

)(
b
b†

)
(4.8)

where υ ≡ 1
2

ln(Ω) where Ω ≡ diag(ω0, ω1, ...). We can notice that

M = (F ⊕ F †)(exp(σx ⊗Υ)) = exp(−iπ
2
σz ⊗ f) exp(σx ⊗Υ) (4.9)
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where f is the logarithm of the discrete Fourier transform [6], σx and σz are the usual 2×2
Paulis. Let us make sense of this equation, recall that the Hadamard matrix (diagonalizes
σx) is the one that takes us from (b, b†)T 7→ (φ, π)T , so partially inverting the above equation
using the Hadamard on the blocks, we have

(
Ω−1/2

Ω1/2

)
1√
2

(
1 1
1 −1

)(
F
F †
)(

a
a†

)
= 1√

2

(
1 1
1 −1

)(
b
b†

)
=

(
φ
π

)
. (4.10)

Now, we are ready to express our ground state as a multi-oscillator squeezing, let

Λ ≡ 1
2
(σZ ⊗ I) ln(M), (4.11)

since M is the product of two exponentials, one way to compute this would be using the
Baker-Campbell-Hausdorff formula3 [4]. then our squeezed ground state can be represented
as

|0〉 = S(Λ) |0〉⊗N ≡ exp

[
−
(
b†T bT

)
Λ

(
b
b†

)]
|0〉⊗N . (4.12)

The coefficients in the bottom left block of Λ would then give us the coefficients for λjm,
which tell us exactly what is entangled with what; the squeezing operator can be seen as
one that simultaneously increases the particle count of both site j and site m by an amount
dependent on the amplitude of λmk.

Covariance Matrix

Since our Hamiltonian is quadratic, its ground state is a Gaussian state, hence to fully
characterize it all we need to do is compute the first and second moments of this state.
The covariance matrix elements for the ground state of the harmonic lattice are given by
[49]

〈φiφj〉 =
1

N

∑

k∈ZN

1

2ωk
cos((i− j)θk) ≡ Gij

〈πiπj〉 =
1

N

∑

k∈ZN

ωk
2

cos((i− j)θk) ≡ Fij

〈φiπj〉 =
i

2N

∑

k∈ZN

eiθk(i−j) =
i

2
δij

(4.13)

3In general the “BCH” formula gives us an expansion for log(eXeY ) in terms of nested commutators of
X and Y .
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while the first moments are null
〈φi〉 = 〈πj〉 = 0. (4.14)

Note that because the ground state is pure, its pase space volume is minimal; it saturates
Heisenberg uncertainty. This fact is captured by the following relation:

GF =
1

4
I, (4.15)

where I is the identity matrix.

4.2.2 General lattice

We can set up the formalism for a more general lattice. We can consider a general lattice
with a Hamiltonian

H =
1

2

∑

i,j∈L

(π2
j + φiKijφj) (4.16)

where L is a general index set for our lattice sites. We have the usual commutation relations

[φi, πj] = iδij, [φi, φj] = [πi, πj] = 0. (4.17)

If we desire, we can write the ground state wavefunction, which is given [15] by

〈~φ|0〉 =
4

√
|W |
π
e−

1
2
~φTW~φ (4.18)

where W ≡
√
K. Instead of working with the wavefunction itself, we can use the Gaussian

state formalism. For this, all we have to compute are the first and second moments. The
first moments vanish, while the second moments are the symmetrized correlators, the latter
of which are given by

〈φjφk〉 ≡ Gjk = 1
2
((
√
K)−1)jk,

〈πjπk〉 ≡ Fjk = 1
2
(
√
K)jk,

〈φjπk〉 = 〈πkφj〉∗ = i
2
δjk

(4.19)

hence, if we consider the covariance matrix to be made of blocks, with σjk matrices as
blocks then

σjk = 1
2

(
(G+GT )jk 0

0 (F + F T )jk

)
= 1

4

(
(W−1 + (W−1)T )jk ⊕ (W +W T )jk

)
, (4.20)
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where, again, W =
√
K. Note that the uncertainty relations take the form

min
λ∈eig(GF )

λ ≥ 1
4

(4.21)

where we mean that the eigenvalues of the product of the correlators must exceed 1/4. For
the ground state, we have a saturation of this bound for all eigenvalues as

GF = 1
4
W−1W = 1

4
I. (4.22)

4.3 Harmonic chain QET

In this section, we will consider applying the quantum energy teleportation protocol to a
1-D linear harmonic chain of oscillators, as we have introduced in this chapter.

Although QET on a linear harmonic chain has been studied before [49], we will be
modifying the protocol to include a new measurement technique and interaction which will
substantially improve the efficacy of information collection and thus the teleported energy.
This measurement technique is inspired from the phase estimation algorithm, it will serve
as a continuous-variable version of it.

4.3.1 Continuous-variable phase estimation

Intuition: Discrete vs. Continuous Variable Phase estimation

As we have seen for the discrete-variable phase estimation algorithm, the goal is to use
the qudit as a pointer variable whose state (as measured in the standard basis) at the
end of the protocol tells us the eigenvalue of a certain observable in the target register.
Just as the X and Z eigenbases of a qudit are “conjugate”, in the sense that the Fourier
transform takes us from one basis to the other, the X and P , or φ and π eigenbases of an
oscillator’s Hilbert space are conjugate bases. Thus, as the phase estimation is essentially
a controlled-X gate for a qudit (an adder gate), we can do the same for the continuous-
variable system. For discrete-variable phase estimation, we first start our ancillary (probe)
system in the |0〉 state, and say we have the target system in a |Ψ〉T =

∑
j |oj〉T state, where

the |oj〉 states are eigenstates of an observable of interest OT =
∑

j oj |oj〉〈oj|. The usual
phase estimation algorithm starts with H⊗n for qubits, the transversal Hadamard, which
maps |0〉 7→ 1√

d

∑
j ψj |j〉. Instead, we can use the Fourier transform, which maps this
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specific initial state the same way F |0〉 = 1√
d

∑
j |j〉. Following this, a controlled-unitary

(controlled phase) between the control and target systems is applied

U = e−iOT⊗z =
∑

j

|oj〉〈oj| ⊗ Zoj , (4.23)

where4 z ≡ −∑j
2π
d

is the generator of Z. Following this, an inverse Fourier transform is

applied onto the control system, F †. At this point, the control’s system’s state as measured
in the standard basis is entangled with the system,

(I ⊗F †)U(I ⊗F) |Ψ〉T |0〉C = 1√
d

∑

j

ψj |oj〉T |j〉C (4.24)

which is the desired entangled state. Notice that we have effectively conjugated the con-
trolled by the Fourier transform for the control system, this turns the controlled-phase gate
into a controlled-adder:

(I ⊗F †)e−iOT⊗z(I ⊗F) =
∑

j

|oj〉〈oj| ⊗ F †ZojF =
∑

j

|oj〉〈oj| ⊗Xoj . (4.25)

This is the fundamental property that we will carry over to the continuous variable version
of this algorithm: the usual combination of Fourier transforms and a controlled-phase gate
can be replaced by an adder gate. When the control system is a set of qubits emulating a
qudit, it makes sense to use the controlled phase gate as its Hamiltonian decomposed into
a sum of single-qubit spin operators. The nonlocality (between qubits) is delegated to the
post-processing (Fourier transforms), rather than the interaction with the target system,
which is preferable and physically more feasible.

Now, as for the continuous-variable version of this controlled-adder gate. We can initial-
ize a control “register” (oscillator) in a near-φ-eigenstate5 (i.e. a very squeezed state), and
apply a controlled-displacement (translation of the state in phase space) which displaces
the control according to the eigenvalue of a certain observable. In practical scenarios,
the φ eigenstate is unphysical; it would require infinite energy to prepare a harmonic oscil-
lator in this state. We will thus study approximate φ eigenstates, which are squeezed states.

4We covered in our quantum information basis section what happens when the eigenvalues of the
observable are non-integers for phase estimation. We get a bit of noise but by increasing the dimensions
of the qudit we can reduce this noise.

5Here we denote φ as a quadrature of the control oscillator.
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One can think of the control register as a “meter” with a “needle” of a certain thickness
(given by the degree of squeezing of our control state) which, when the meter is coupled
to a target system, moves according to the value being measured. As one can only read
the value of the meter’s needle up to a precision given by the needle’s thickness, a sharper
needle gives more information about the system. The amount of information gained by
the control system is quantified by the post-measurement mutual information between the
target system and the control register. In the case where we have a pure state for the
target system (e.g. ground state of some system) then the mutual information will simply
be twice the entanglement entropy for the system/probe bipartition of the Hilbert space.

Finally, as there is no phase transfer and Fourier transform in the case of the continuous
variable protocol, the name “phase estimation” may not be the best choice for a description
of the inner workings of the protocol, but, as it was inspired by the discrete variable
protocol,

Using Gaussian Operations

Now, let us get more specific in our construction of this measurement procedure, sup-
pose we have an oscillator as the target register, and suppose we would like to measure
some quadrature observable of this oscillator. As a finite-energy approximation to an φ
eigenstate, we can initialise the control oscillator’s state in a Gaussian state that is highly
squeezed in π, centered at φ = 0,

|ξ〉C = exp(1
2
ξc†2 − 1

2
ξc2) |0〉C (4.26)

where c ≡ 1√
2
(φ + iπ) is the control oscillator’s ladder operator, and ξ ≡ eiϕr, is the

squeezing parameter, with r ∈ R+. Note that [4] for a single-oscillator squeezed state, the
squeezing parameter ξ = reiϕ, the quadrature variances are

〈ξ|X2
ϕ
2
|ξ〉 = 1

2
e2r, 〈ξ|X2

ϕ
2

+
π
2
|ξ〉 = 1

2
e−2r (4.27)

where

Xθ ≡
ae−iθ + a†eiθ

2
, X = X0, Xϕ

2
+
π
2

= P (4.28)

hence what we want is a ξ ∈ R−, i.e. ϕ = π and ξ = −r. In the limit of r → ∞, we
converge towards an eigenstate of the position φ with eigenvalue 0, i.e. nearing a constant
wavefunction with infinite spread in momentum. Of course any infinitely squeezed state is
unphysical, hence we will consider our parameter to be finite and see how our results scale
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with r.

Now, with this |ξ〉 state as the control, we can consider how to use it to measure a
certain observable of the target oscillator. In our protocol, the observable of interest will
be some quadrature of the harmonic oscillator, which, for this example, we assume is in
some Gaussian state with null first moments and with covariance matrix σ. Suppose we
want to measure φT of the target oscillator, then, we can apply the following Gaussian
operation to entangle the control and the target

U1 = exp (−iλ φT ⊗ πC) , (4.29)

where λ is some real constant. As the above unitary is generated, one can fairly easily
obtain a representation of this transformation on phase space using our knowledge of the
Gaussian state formalism, as discussed in the previous chapter. The effective transforma-
tion on phase space is




φT
πT
φC
πC


 7→




1 0 0 0
0 1 0 −λ
λ 0 1 0
0 0 0 1







φT
πT
φC
πC


 =




φT
πT − λπC
φC + λφT

πC


 (4.30)

and we see that for the φ quadratures, the target’s value gets added (times the coupling)
to the control’s, whereas for the π quadratures, the control’s is added to the target. In
some sense, depending on which quadrature we look at, one system can be considered the
control and the other one target, while if we look at the conjugate quadrature the role of
control register and target are inverted.

We will sometimes refer to the above as an “adder” gate for continuous variables. This
gate is akin to the controlled-NOT gate in quantum computing [51] and the controlled-X
gate for qudits.

Now, essentially, because of our choice of initial state, 〈ξ|φC |ξ〉 = 0 the expectation value
of φ for the control register is null, while the variance in φ is very small; 〈ξ|φ2

C |ξ〉 = 1
2
e−2r.

Thus, if we measured the control register’s φC eigenvalue post-interaction, we will effectively
measure λφT plus exponentially small noise.

Equivalent POVM and Entanglement Breaking

We can show that the continuous-variable adder gate defined above can be used to near-
projectively measure the φ observable of the target. Suppose our initial state of the target
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register is given by |ψ〉T , then suppose we do the interaction U1, followed by a projective
measurement of the φC . If we measure an eigenvalue φ′ for the control register, then the
effective operation is the Kraus operator

Vφ′ ≡ (〈φ′|C ⊗ IT )U1 |ξ〉C =

∫
dφ 〈φ′| e−iλφπC |ξ〉C |φ〉〈φ|T

=

∫
dφ 〈φ′ − λφ|ξ〉C |φ〉〈φ| = 4

√
π
e2r

∫
dφe−

1
2

(λφ−φ′)2e2r |φ〉〈φ|T
r→∞−→ | 1

λ
φ′〉〈 1

λ
φ′|

T

(4.31)

we see that it is a Gaussian integral of projectors, with a Gaussian of variance e−2r/λ,
which converges to a delta function centered on φ′/λ in the limit of r → ∞. Thus, we
converge exponentially fast into a projective measurement for the target register as we
increase the squeezing parameter.

Taking a projective measurement on a set of oscillators affects other oscillator’s quadra-
ture expectation value elsewhere, as is the very nature of Gaussian correlations. Consider
the wavefunction decomposition of the ground state, (4.18)

|0〉 =

∫
dn~φ |~φ〉〈~φ|0〉 =

4

√
|W |
π

∫
dn~φe−

1
2
~φTW~φ |~φ〉 (4.32)

and the fact that W =
√
K is not diagonal means that we have correlations, and ultimately

entanglement. Then, if we project some oscillators in some subsystem A, which has |A| ≡ a,

say, |~ϕ〉〈~ϕ| with ~ϕ ∈ Ra, then let ~φ⊥ ∈ Rn−a be the components of ~φ not in A, the state
becomes

|~ϕ〉〈~ϕ|0〉 =
4

√
|W |
π
e−

1
2
~ϕTWAA~ϕ |~ϕ〉⊗

∫
dn−a~φ⊥e

−1
2
~ϕTWAĀ

~φ⊥e−
1
2
~φT⊥WĀA~ϕe−

1
2
~φT⊥WĀĀ

~φ |~φ⊥〉 (4.33)

and we see that we have factorized out a chunk of the state, hence we necessarily have
broken the entanglement of A with its complement. We also see that the wavefunc-
tion on Ā is shifted by an amount dependent on the measured ~ϕ, because of the fac-
tors exp(−1

2
~ϕTWAĀ

~φ⊥) exp(−1
2
~φT⊥WĀA~ϕ), which depend on the blocks WAĀ, which are the

blocks which correlate A with it’s environment6. Note there is still some “noise” remain-
ing, manifested in the form of the term exp−1

2
~φT⊥WĀĀ

~φ⊥ which looks like the ground state
restricted to Ā and is completely independent of our measured values on A. Recall that
the correlators themselves are ∼ W±1/2, hence we see that correlations are at play here by
shifting the expectation value.

6To find the shift we could complete the square in the Gaussian
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This shift in expected value in the complement of a region for which we measure the
quadratures is exactly the principle we will use to perform quantum energy teleportation.
Given a measurement on A, we will use this information to infer the expectation value of
the quadratures in a subsystem B, and use this information advantage over the ground
state to attenuate the fluctuations in B.

4.3.2 The protocol

Let us outline our QET protocol. First, we have the system begin in the ground state of
a linear harmonic chain of the type we have been discussing in this chapter (N oscillators
with periodic boundary conditions, nearest-neighbor φ-φ couplings). We then measure,
using the continuous variable phase estimation algorithm outlined above, the φ quadra-
ture of each oscillator within a certain subsystem, call it A, of our spin chain. Supposing
there are |A| oscillators in A, to extract the quadrature information contained in these via
phase estimation, we use |A| probe oscillators. For our protocol, we send the |A| probes
coherently to B, an alternate but ultimately equivalent version of the protocol involves
projectively measuring the probe oscillators and sending that measurement information in
classical form to B. Now, subsystem B, say it is composed of |B| oscillators, is our energy
extraction target. Using the |B| probes, we couple them via a linear (Gaussian) interaction
to the target sites. We show that this interaction, if tuned correctly, can extract significant
amounts of energy from B. We assume that the whole protocol is performed on a time
scale much shorter than the timescale for perturbations to propagate within the system,
hence the energy was effectively “teleported”.

As the entire protocol involves Gaussian states and Gaussian interactions, we can cal-
culate all relevant quantities using the Gaussian state formalism.

First, let us outline the protocol using Dirac notation. We consider a subset7 A of the
lattice L on which Alice would like to perform phase estimation. To do so, she has in her
possession a set of |A| harmonic oscillators which will serve as probe systems.

The initial state of the lattice (whose Hilbert space we will label L) and collection of
probe systems (labelled C) are

|Ψ0〉LC ≡ |0〉L |~ξ〉C = |0〉L ⊗ |ξ〉
⊗|A| (4.34)

7Note when we will sometimes refer to a subsystem or its corresponding set of indicies equivalently, the
difference should be clear from context.
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notice there are as many control probes as there are sites in A, i.e. |C| = |A|. To begin the
protocol, Alice couples a probe harmonic oscillator to each target oscillator in subsystem
A. The interaction Hamiltonian is of the form δ(t)HA where

HA ≡
∑

j∈A

λjφj ⊗ Pj (4.35)

note that for quadratures of oscillators in the lattice, we denote them φj, πj, while quadra-
tures of the control system oscillators are denoted Xj, Pj. This is simply for ease of
notation and not to have to label which Hilbert space factor each operator acts on. For
example, φjPk ≡ (φj)L ⊗ (Pk)C , we drop the tensor product for convenience.

Now, the time evolution operator associated with Alice’s interaction is

UA = T exp

(
−i
∫

R
dt δ(t)HA

)
= exp(−iHA) = exp

(
−i∑j∈A λj φjPj

)
. (4.36)

Now, after this interaction, the probe system and the lattice are in an entangled post-
measurement state which we denote

|Ψ1〉LC ≡ UA |Ψ0〉LC , (4.37)

and then we can define associated density operator Ψ1 ≡ |Ψ1〉〈Ψ1|LC , then we have

S(C)Ψ1 = S(L)Ψ1 = 1
2
I(C;L) (4.38)

Since the probes were initially in a pure state and the entangling operation was a unitary,
this means that the mutual information between the probes and the lattice is twice the
probe-lattice entanglement entropy. In our numerical results subsection 4.3.4 we show the
result of calculating this entanglement entropy.

Note that at this point, Alice could measure her oscillators’ X quadratures, and relay
the information to Bob as a classical message. As was the case for our analysis of minimal
QET, the projective measurement of the probe system is not necessary for the success of
the protocol, and keeping the protocol coherent is equivalent (energetically). For simplicity,
we will consider the coherent protocol case.

43



Bob’s action

Now, after this interaction, Alice sends her probes to Bob. We assume that the time be-
tween Alice and Bob’s interaction is negligible compared to the timescale it would take
for perturbations to propagate through the system, hence we model this as instantaneous
sequence of interactions. This is feasible for condensed matter systems, as the signal be-
tween agents interacting with different parts of the system can travel much faster than the
speed of perturbations in the system.

Bob has a set of target sites B, from which he wishes to extract energy. As the
quadrature information in each oscillator he received from Alice is correlated with each
oscillator’s quadrature in his target set, he needs to use the combined information from all
the probes to best predict the quadratures of the oscillators in his target sites. In other
words, to exploit all of the correlations 〈φjφk〉 for all j ∈ A and k ∈ B, Bob has has to
couple each control oscillator to each target. Hence, Bob’s interaction Hamiltonian is of
the form δ(t− ε)HB where

HB ≡
∑

j∈A,m∈B

θmjπmXj, (4.39)

where θmj are coupling constants. The associated time evolution unitary is

UB = T exp

(
−i
∫

R
dt δ(t− ε)HB

)
= exp(−iHB) = exp

(
−i∑j∈A,m∈B θmjπmXj

)
, (4.40)

where 1� ε > 0 is there simply as a reminder that we assume this interaction takes place
right after Alice’s interaction. One may consider this nonlocal coupling between multiple
oscillators to be unphysical, but note that Bob could alternatively apply his unitary as a
sequence of two-oscillator interactions,

UB = exp
(
−i∑j∈A,m∈B θmjπmXj

)
=

∏

j∈A,m∈B

exp (−iθmjπmXj) . (4.41)

Let us label the global state after Bob’s interaction as |Ψ2〉:

|Ψ2〉 ≡ UB |Ψ1〉 = UBUA |Ψ0〉 (4.42)

We can now proceed to computing the energy cost of Alice’s action and the energetic
profit of Bob’s action. We do so in subsection 4.3.3.
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4.3.3 Energy Calculations

Some reminders before we begin the calcualtions. A, B, and L are the set of indicies for
the harmonic oscillators in subsystem A, B, and the whole lattice, respectively.
Alice’s interaction Hamiltonian and unitary is given by:

HA ≡
∑

j∈A

λjφjPj, UA ≡ e−iHA . (4.43)

While Bob’s action has a Hamiltonian and unitary given by

HB ≡
∑

j∈A,m∈B

θmjπmXj, UB ≡ e−iHB . (4.44)

For now, we keep our Hamilonian somewhat general:

H = 1
2

∑

i∈L

π2
i + 1

2

∑

i,j∈L

Kijφiφj. (4.45)

A useful identity for these calcualtions will be there Hadamard lemma:

eXY e−X = Y + [X, Y ] + 1
2!

[X, [X, Y ]] + ... (4.46)

with the next orders vanishing in the case of our calculations.

Now, the state after Alice’s interaction is |Ψ1〉 = UA |Ψ0〉, hence the change in energy
in the chain due to her measurement is

EA ≡ 〈Ψ1|H |Ψ1〉 − 〈Ψ0|H |Ψ0〉 = 〈Ψ0| (U †AHUA −H) |Ψ0〉 (4.47)

and we can use the Hadamard lemma,

U †AHUA = H + [iHA, H] + 1
2
[HA, [HA, H]]

= H +
[
i
∑

k∈A

λkφkPk,
1
2

∑

j∈l

π2
j

]
+ 1

2

[
i
∑

l∈A

λlφlPl,
[
i
∑

k∈A

λkφkPk,
1
2

∑

j∈l

π2
j

]]

= H −
∑

k∈A

λkπkPk + 1
2

∑

k∈A

λ2
kP

2
k

(4.48)

and so the energy injected by Alice is
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EA = −
∑

k∈A

λk 〈Ψ0| πkPk |Ψ0〉+ 1
2

∑

k∈A

λ2
k 〈Ψ0|P 2

k |Ψ0〉

= −
∑

k∈A

λk���
���:0〈0| πk |0〉����

��:0〈ξ|Pk |ξ〉+ 1
2

∑

k∈A

λ2
k 〈Ψ0|P 2

k |Ψ0〉︸ ︷︷ ︸
1
2
e2r

=
e2r

4

∑

j∈A

λ2
j

(4.49)

and in the case where we have the coupling constant being the same at each site, λj =
λ, ∀j ∈ A, we get

EA =
e2r|A|λ2

4
. (4.50)

We see that the energy input by Alice is given by the variance in the probe’s quadrature
which couples to the chain, in this case P . As we use a sharper and sharper squeezed state
for the phase estimation then we will have more energy injected. Notice that the energy
injection is also quadratic in the coupling constant.

Now, we can similarly compute the energy change in the chain due to Bob’s action.

∆E ≡ 〈Ψ2|H |Ψ2〉 − 〈Ψ1|H |Ψ1〉 = 〈Ψ0| (U †AU †BHUBUA − U †AHUA) |Ψ0〉 (4.51)

Let us compute the commutators which appear in the Hadamard lemma formula, using
the fact that the K matrix is symmetric K = KT . We start with the inner conjugation,
U †BHUB. To first order,

[iHB, H] = i
2

∑

ij∈L

∑

k∈B,l∈A

θklXlKij[πk, φiφj]

=
∑

i∈L,k∈B,k∈A

θklKkiXlφi
(4.52)

to second order,

[iHB, [iHB, H]] =
∑

ij∈B

∑

kl∈A

θikθjlKjiXkXl (4.53)

and higher orders vanish, giving

U †BHUB = H +
∑

i∈L,k∈B,k∈A

θklKkiXlφi + 1
2

∑

ij∈B

∑

kl∈A

θikθjlKjiXkXl. (4.54)
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Now, we need to conjugate these terms by UA,

U †AU
†
BHUBUA = U †AHUA +

∑

i∈L,k∈B,k∈A

θklKkiU
†
AXlφiUA + 1

2

∑

ij∈B

∑

kl∈A

θikθjlKjiU
†
AXkXlUA.

(4.55)

Now, we apply the same Hadamard lemma a few more times, with a bit of work we
find

U †AXlφiUA = λlφlφi (4.56)

U †AXkXlUA = XKXl + 1
2
(λkφkXl + λlφlXk) + λkλlφkφl. (4.57)

Now, taking an expectation value with respect to |Ψ0〉 (notation 〈·〉0 ≡ 〈Ψ0| · |Ψ0〉) and
ommitting terms with XjΦk since they give a product of vanishing first moments of the
initially uncorrelated state, we get

∆E = 〈U †AU †BHUBUA − U †AHUA〉0
=

∑

i∈L,k∈B,l∈A

θklKkiλl 〈φlφi〉0 + 1
2

∑

i,j∈B

∑

k,l∈A

θikθjlKji (〈XkXl〉0 + λkλl 〈φkφl〉0) . (4.58)

We would like for ∆E < 0, meaning that the lattice will have lost energy, and hence
via energy conservation Bob would have gained energy; extracted work via his action. To
make sure we do get negative energy, we can optimize the couplings (θ) for Bob. We find
the optimum in the next subsubsection.

We see that the change in energy in the lattice due to Bob’s operation depends on the
φ-φ correlations of the chain. This was the intent from the outset when designing this
protocol; to harness these specific correlations as they are the strongest for our choice of
chain (even IR divergence in the critical coupling limit).

Note that the first term is the term of interest for QET, while the other terms can be
considered as “switching costs”. Indeed, the first term depends on the correlations between
A and the rest of the lattice (including B and its neighborhood), while the last term is
simply dependent on the self-correlation within A, averaged with respect to the couplings.

Note that we loaded up “raw” quadrature information about the φ’s into the probes
and then coupled them to the target. Naturally, the signal we pick up has some variance,
as we couple the probes to the target B, that variance displaces the φ quadratures in B
and affects the energy expectation value in that region and whichever sites are coupled
to it. Some of the variance in the quadrature information from A is useful to predict
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the quadrature values in B or its neighborhood, we can consider this information to be
our “signal”, and this signal is manifested in the first term, whose negativity can give
us energy extraction. On the other hand, the last term can be considered as “noise”;
information about A that is strictly about A (self-correlation), hence counter-productive
for our prediction of the quadratures in and near B. Note that the term with the probes’
initial variance of the X quadrature can also be considered as noise, luckily in the limit of
infinite squeezing8 this term vanishes: 〈XiXj〉0 = 1

2
e−2rδij → 0.

Thus, the key to quantum energy teleportation is to be able to filter the signal from
the noise; to appropriately use the information about A to predict the configuration in B
and its neighborhood, and to use this information optimally. Bob has a choice of couplings
θ, given the knowledge he has of the correlation structure of the state of the chain, he can
optimize this choice to maximize his energetic profit.

Optimization

To find the optimal tuning of coupling parameters for energy extraction, we would like
to find the minimal value of the expression in (4.58), with respect to the θ matrix being
variable, while keeping the input couplings λj and initial squeezed state parameters. As

we will keep ~λ fixed and optimize over the θ matrix. Now, recall that the change in energy
in the lattice due to Bob’s action is given by

∆E =
∑

i∈L,k∈B,l∈A

θklKkiλl 〈φlφi〉0 + 1
2

∑

i,j∈B

∑

k,l∈A

θikθjlKji (〈XkXl〉0 + λkλl 〈φkφl〉0) . (4.59)

We can define the following matrices

Vkm ≡
∑

j∈L

λkGkjKmj, k ∈ A, m ∈ B (4.60)

Mik ≡ 〈ψ0|XiXk|ψ0〉+ λiλkGik, i, k ∈ A, (4.61)

where in the above we use the ground state correlation matrix we have defined previously,

Gjk ≡ 〈0|φjφk|0〉 . (4.62)

8This makes sense as the variance in the X quadratures for the probe initially are like the “thickness”
of our squeezed state needle, and having a sharper needle means less noise, hence less energy cost due to
noise.
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Note that, in the specific example we considered with the uniform choice of initial
squeezing r and couplings (λj = λ∀j ∈ A) for the probes, we get

Vjm = λ
∑

j∈L

GkjKmj, Mik = 1
2
e−2rδik + λ2Gik, i, k ∈ A, m ∈ B (4.63)

and in the limit of infinite squeezing, r →∞, the M matrix is simply proportional to the
correlator restricted to A, M = λ2G|A.

Now, using these newly defined matrices, we can write the change in energy as

∆E = trB(θV ) + 1
2
trB(KθMθT ). (4.64)

Note that K and M are symmetric. We will assume that M is invertible. Now, we can
“complete the square”, as we essentially have a second order polynomial for the θ matrix,

∆E = 1
2
trB(KθMθT ) + trB(θV )

= 1
2
trB(KθMθT ) + 1

2
trB(θV K−1K) + 1

2
trB(KK−1θTV T )

= 1
2
trB(K(θMθT + θV K−1 +K−1V T θT ))

= 1
2
trB[K(θ +K−1V TM−1)M(θT +M−1V K−1)]− 1

2
trB[���

�
KK−1V TM−1V K−1]

(4.65)

and we see that the first trace term has a root, while the second term has no θ dependency.
The solution to make the first term vanish is:

θ = −K−1V TM−1 ≡ θopt. (4.66)

As one can check, given K and M positive definite, then this choice of θ gives us a
minimum for the energy change (reaches its most negative value), which is given by

∆Eopt = −1
2
trB[V TM−1V K−1] = −1

2
trB[W−1V TM−1VW−1] (4.67)

where, recall, W ≡
√
K. Thus, with this optimal choice of coupling parameters for Bob,

he can extract energy from what is locally the ground state of the chain in his region.

Now, notice that we dropped indices going from (4.60), (4.61), and (4.63), to (4.64) and
onwards. This was for simplicity, but as certain matrices (Such as G and K) are defined on
the whole lattice and in certain cases we are only considering a subset of matrix elements
(e.g. indices in A or B) and we are taking inverses/transposes, it is important for us to
specify which sub-matrix we are working with in each case.
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To avoid ambiguity, we can rewrite our results while denoting over which index set for
the rows/columns we are considering each matrix (using subscripts9). For example, letting
Λ be the diagonal matrix with the λj’s on its diagonal,

VAB = ΛAAGALKLB (4.68)

MAA = 1
2
e−2rIAA + ΛAAGAAΛAA (4.69)

and the energy is then

∆E = trB(θBAVAB) + 1
2
trB(KBBθBAMAAθ

T
AB) (4.70)

the optimal choice of θ is then

θBA = −K−1
BBV

T
BAM

−1
AA (4.71)

and the optimal change in energy is then

∆E = −1
2
trB[V T

BAM
−1
AAVABK

−1
BB], (4.72)

and so M−1 and K−1 are only the inverses of the submatrices for indices restricted to A
and B respectively.

Now, suppose we take the limit r → ∞, and we insert our expressions for V and M ,
then the optimal θ is given by

θBA = −K−1
BBK

T
BLG

T
LAG

−1
AAΛ−1

AA (4.73)

which we see is inversely dependent on Λ. Now, the optimal energy,

∆E|r→∞ = −1
2
trB[K−1

BBK
T
BLG

T
LAG

−1
AAGALKLB], (4.74)

is independent of Λ, and is strictly dependent on the correlation function and the Hamilto-
nian coupling. If we want to know how fast we will converge to this energy as r increases,
note that we can Taylor expand M−1 for large r,

M−1 ≈ Λ−1G−1Λ−1 − 1
2
e−2rΛ−1G−1Λ−2G−1Λ−1 +O(e−4r) (4.75)

and we can add a correction term to

∆E ≈ ∆E|r→∞ + 1
4
e−2rtrB[K−1

BBK
T
BLG

T
LAG

−1
AAΛ−2

AAG
−1
AAGALKLB]

= ∆E|r→∞ +O(λ−2e−2r)
(4.76)

9For example, the matrix elements of KBL are Kij such that i ∈ B, j ∈ L.

50



and we see that either a stronger coupling for Alice or a stronger squeezing gives us more
energy (as we want the correction term to shrink).

Remember, the correlation function over the whole lattice was the inverse square root
of the Hamiltonian (where the inverse is taken over the set of indices for the whole lattice),

GLL = 1
2
(KLL)−1/2 (4.77)

hence the optimal energy in the limit of infinite squeezing of the probes ∆E|r→∞ only
depends on the Hamiltonian coupling matrix K. Note that in the case of Hotta’s periodic
linear harmonic 1D chain, for which we will do numerical calculations, the coupling matrix
is

Kjk = 1
2
δjk − α

4
(δj(k+1) + δj(k−1)), j, k ∈ ZN . (4.78)

4.3.4 Numerical Results

Note: these plots were generated in collaboration with Jason Pye.

In this section we present various results from numerical results for a 1-D linear har-
monic chain, as described in this chapter. Comments are provided in the captions of the
plots.

In the following plots we keep the chain length and the subsets A and B fixed, unless
otherwise specified. The chain length is of 20 oscillators, the oscillators for A have indices
[1, 2], while the oscillators in B have indices [11, 12]. Furthermore, we set the coupling
strength for Alice’s intreractions to λj = λ = 1 ∀j ∈ A. For all the plots of teleported
energy we use Bob’s optimal coupling constants which we have derived above. The values
of the squeezing parameter r and the coupling constant α can vary from plot to plot, we
specify them for each plot.
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Pre-Measurement
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(a) Plot of I(A;B) at varying α. Distance
between A and B kept fixed to standard
(|L| = 20, A = [1, 2], B = [11, 12]).
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(b) Plot of I(A;B) at varying distance be-
tween A and B, d(A,B). Coupling kept
fixed α = 0.99, A = [1, 2] fixed, B =
[3 + j, 4 + j] for j ∈ {0, ..., 16}.

Figure 4.1: Plot of mutual information I(A;B) at varying α and varying distance between
A and B d(A,B). Squeezing parameter fixed at r = 10. We see in (a) that at critically
(α = 1) the mutual information blows up. As we have seen in our calculations this is
because of the IR divergence of the φ-φ correlator, which are the correlations we exploit
for our QET protocol. In (b) we can see a power law decay of the mutual information with
the distance between A and B.
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Post-measurement
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Figure 4.2: Plot of post-measurement mutual information between probes and the lat-
tice, I(C;L) (equal to twice the entanglement probe-lattice I(C;L) = 2I(C〉L)) versus the
squeezing parameter r, fixed α = 0.99. We see that the entanglement is linear in r asymp-
totically. We will show this is the case in our QET protocol for quantum field theory (see
(5.80)). Since we also sweep over negative values of r, we see that having a greater variance
of the X qudarature for the probe is counter-productive to the gathering of information.
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Figure 4.3: Plot of energy input via measurement versus the squeezing parameter r, fixed
α = 0.99. We see the exponential energetic cost as we increase the squeezing parameter,
as was predicted in equation (4.49).
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(a) Fixed α = 0.99, sweep over r.
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(b) Fixed r = 10, sweep over α.

Figure 4.4: Entanglement breaking due to Alice’s measurement, as measured by change in
coherent information ∆I(A〉Ā), depicted with respect to varying r and α independently.
(a) We see how the squeezing parameter affects entanglement breaking, in the limit of
r → −∞, the probe is in a near-P eigenstate hence Alice’s interaction becomes a local
unitary on A, hence no entanglement is broken. On the other hand, in the limit r →∞, we
see that there is an asymptotic plateau; i.e. when all of the pre-existing A-Ā entanglement
is broken. (b) Varying the coupling parameter of the chain, keeping the squeezing high, we
see that a strongly coupled chain can get more entanglement broken; this makes sense as
the entanglement entropy of the subregion A will be higher as we have stronger coupling
and we approach criticality (α = 1).
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(a) I(A;C)
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Figure 4.5: Post-measurement mutual information between subsystem A and the probes
I(A;C), and between subsystem B and the probes, I(B;C). Plotted for α = 0.99 fixed
and sweeping over values of r. (a) We see that the mutual information between the probe
and Alice’s target region keeps increasing asymptotically linearly as we increase r. (b)
We see that the information about B that is gained through measurement of A reaches
a plateau fairly quickly. This could be interpreted as having gained all the information
there is to know about B from the knowledge of the φ quadrature in A. Thus we see that
after a certain level of squeezing there is not much more useful information gained from
increasing the squeezing, hence there are diminishing return on the information gain vs.
energetic cost past a few orders of squeezing.
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Post-Bob
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(a) α = 0.99 fixed, varying r.
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(b) r = 5 fixed, varying α

Figure 4.6: Change in energy in the lattice due to Bob’s operation EB − EA ≡ ∆E,
a negative change signifies Bob has extracted energy. (a) We see that increasing the
squeezing parameter helps with the energetic output, and that there is a plateau in the
limit of large squeezing. (b) We see that for near-critical α we get much larger teleported
energy. This makes sense as we are exploiting the φ-φ correlations and these blow up in
the limit of critical coupling constant.
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Figure 4.7: Change in lattice energy in the case of optimal energy extraction (4.74) versus
mutual information I(A;B), as α ∈ [0, 0.99] is varied, r = 5. We see that the best ∆E is
nearly linearly related to the mutual information between the measurement zone and the
target.
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(a) ∆I(B〉B̄)
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Figure 4.8: Entanglement change ∆I(B〉B̄) and entropy change ∆S(B) due to Bob’s
action. Fixed α = 0.99, sweep over r. We see that Bob’s energy extraction actually
increases the entropy of the target region, namely by increasing the entanglement of the
target region with the rest of the lattice. We can see that, with the parameters optimized,
the energy extraction is effectively linked to increasing the entanglement of the target region
with the rest of the lattice. We discuss the implications of this further in our discussion
section in this chapter.
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4.4 Other Comments

4.4.1 Equivalent Gaussian Operations

If one is interested in QET strictly for its capacity to create negative energy density (relative
to ground state) regions, instead of using a probe system as a “liaison” for information,
one could potentially couple directly subsystems A and B and perform the unitary e−iHAB

where HAB is the following

HAB =
∑

j∈A,m∈B

λjθmjφjπm. (4.79)

By the nature of our constructed protocol, when looking at the energy near the region B
(i.e. excluding the energy in A), the energy density should be the same as in the case
where our usual QET protocol with probes (in the limit of infinite squeezing). This is
because the only role of the probes is to carry the φ quadrature information from A to B,
then displace the φ quadratures in region B by an amount linearly related to the measured
quadratures from A. The direct coupling unitary achieves the same effect, although the
energy injection at A will be different (the variance in φ in B will cause displacements of
π in A). As in the case of the other unitaries in this protocol, we can decompose it into a
prodcut of unitaries,

e−iHAB =
∏

j∈A,m∈B

e−iλjθmjφjπm , (4.80)

hence this would be implementable via a sequence of pulses. The fact that the above
interactions can create states of locally negative energy densities should not come as a
surprise as it is simply a Gaussian unitary which transforms the ground state into a cer-
tain squeezed state, and squeezed states are known to admit cases with negative energy
densities10. It would be interesting to see which general squeezing (or any other Gaussian
operation) would maximize the negative energy density.

4.4.2 Digression: On Emergent Geometry and QET

In this subsection we discuss how some of the results presented in this chapter could be
interpreted in the context of some recently developed theories of emergent spacetime.

10In quantum field theory in curved spacetime, squeezed states can appear as the ground state of a
curved background as seen from the viewpoint of a non-freely-falling observer. There are known cases (e.g.
Rindler/Boulware vacua) where such squeezed states admit negative energy density regions. [10]
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Space from Hilbert Space

There has been some recent work attempting to build spacetime from quantum mechanics,
in the aim of advancing us towards a full theory of quantum gravity. One such papers on
emergent spacetime has been is the one by Cao, Carroll and Michalakis [13] (CCM). In
this paper they construct a spacetime geometry from a discrete set of finite-dimensional
Hilbert spaces, the mutual information between degrees of freedom definining the graph’s
edges and the effective distance between nodes (nodes sharing more mutual infomration are
closer). As the inspiration for this work came from the ER=EPR conjecture [65], a result
from quantum field theory in curved spacetime/quantum gravity, they define connectivity
of spacetime from entanglement of the field. The original argument for this conjecture
came from the entanglement of the ground state of eternal black holes, and subsequently
was generalized to ground states of quantum field theories. Although we will not delve
further into these theories of emergent gravity, we will highlight some possible connections
that could be made with this work.

Metric from Couplings

Looking at the work of CCM [13], they define the distance between nodes in terms of
mutual information. The intuition is that degrees of freedom that are physically closer
should be more entangled/correlated. Instead of considering finite-dimensional systems,
suppose we try to apply this intuition to our continuous-variable systems. The coupling
matrix between lattice sites, K gives, in some sense, a geometry to our lattice. Indeed for
objects that are uncoupled, the matrix elements are null, and in physical implementations
this would usually mean that the lattice sites are disconnected. The coupling strength
matters too, if we consider the lattice to be a discrete approximation to a quantum field
theory, then the couplings between lattice sites is supposed to be a nearest-neighbor type
coupling which comes from a finite-difference approximation to the derivative; ∂xφ(x) ≈
(∆x)−1(φ(xi) − φ(xj)). Since the Hamiltonian for a massless scalar quantum field theory
in curved spacetime [48] is given by

H(Φ,Π) =

∫

R3

d3x
(

Π∂0Φ− 1
2

√
|g|gµν(∂µΦ)(∂νΦ)

)
(4.81)

where Π =
√
|g| (g00∂0Φ + g0i∂iΦ). Thus we see that, if we expand all the spatial deriva-

tives into finite differences, that the metric determinant and metric components is akin to
the K coupling matrix. Since the metric multiplies the inverse length, i.e. we roughly have
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terms proportional to ∼
√
|g|gµν(∆x)−1, then changing the components of the metric or

even the scale can change the effective finite difference coupling. It is known that one can
read off the components of a metric from the coupling, or equivalently the correlations of
the ground state [61]. My point is that one could potentially go the other way around,
say, in the context of simulating emergent spacetime with some analog quantum degrees
of freedom.

Negative energy densities

Now that we have argued that ground states of harmonic oscillator lattices provide a decent
model to study emergent geometries, we can now discuss how our QET results can be
interpreted in this picture. In the CCM paper [14], for their emergent geometry they have
defined, the ground state mutual information between sites defines a certain geometry, and
perturbations about the ground state can be regarded as curvature perturbations. They
derive a relation between what they define as scalar (Ricci) curvature of a given region and
variations of entanglement entropy from that of the ground states’;

RA = −CδSA (4.82)

where C > 0 is some constant which depends on the size of the region and the number of
spatial dimensions we consider.

Thus, increases in entropy of a certain region increase the scalar curvature of that
region, which, if we look at perturbations of Einstein’s equations [37], then means we
have a postive energy perturbation δ 〈T00〉 > 0. As it turns out, our model of emergent
spacetime from a lattice of harmonic oscillators corroborates this prediction that energy
and entanglement entropy variations are anti-correlated.

Indeed, we inject energy as Alice entangles a subsystem of the lattice with probes and
breaks the intra-lattice entanglement. In figure 4.4 we plotted this entanglement breaking
due to measurement and we see that for larger r we get more entanglement breaking,
while we also get greater energy injection (fig. 4.3). Thus our result seems to corroborate
the intuition we can get from studying emergent spacetime; breaking entanglement and
entangling ancillary systems with the ground state seems to be associated with an increase
in energy, and if emergent geometry theories are right, an increase in scalar curvature.

Conversely, in the energy extraction process, Bob creates a negative energy density
region via his action, as depicted in figure 4.6. Cao et al. [14] mention that they expect
to have negative induced curvature in the case of positive variations of the entropy from
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the ground state. Now, negative curvature does not usually appear in typical sub-galactic
scale general relativity, but in the case of dark energy there are theories that allow for a
repulsive gravitational force equivalent to negative dark energy density. Thus, although
negative energy densities do not conventionally have a general relativistic interpretation, we
can consider them as a sign of negative energy density. Thus, from the emergent spacetime
theory, we would expect that we must increase the entanglement of the target region in
order to extract energy. This is exactly what we can see from our calculations, we find
that the variation in entropy is positive, and that it is due to an increase of entanglement
of B with its complement, as depicted in figure 4.8.

To summarize, our findings indicate that the measurement process for QET breaks
vacuum entanglement and injects energy, while the extraction of energy reinforces the en-
tanglement entropy of the targeted region. In the emergent spacetime picture of Cao et
al. [14], we find that positive and negative energy densities thus result in locally positively
and negatively curved geometries, respectively. Our quantum energy teleportation anal-
ysis in this chapter thus provided a quantitative testbed for this new theory of emergent
spacetime.
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Chapter 5

Probing Quantum Fields

5.1 Introduction/Overview

A great portion of relativistic quantum information is devoted to understanding the infor-
mation theoretic properties of quantum fields and exploring how one can exploit some of
these properties to accomplish certain information theoretic tasks. Examples of such tasks
include the harvesting of entanglement [56], hiding private information [12], and probing
the curvature of spacetime [45].

As the fundamental quantum theory of nature, breakthroughs in understanding quan-
tum field theory can further our knowledge in multiple connected fields, such as is the
case with the recent surge of advances in quantum gravity and holography, sparked by the
study of entanglement in quantum field theories [42, 37]. One of the difference between the
approaches of the quantum gravity community and that of relativistic quantum informa-
tion theorists is the set of tools used to probe the structure of quantum field theories. The
quantum gravity approach uses geometry, holography (e.g. Ryu-Takayanagi in AdS/CFT
[52]), and quantum error correction [54] to understand the information theoretic structure
while the relativistic quantum information community uses first-quantized systems, e.g.
Unruh-DeWitt detectors, two-level spins, as “windows” into the underlying structure of
the field. Both approaches study subsystems of quantum fields and their quantum corre-
lations, despite using different tools to do so. One of the goals of this thesis is to provide
a bridge between these formalisms.
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In this chapter, we study certain types of “windows” into the structure of quantum
fields. Just as is typical in relativistic quantum information, as the full Hilbert space of a
quantum field can be too large to wield, we restrict our study to subsystems of the field.
To peer into these subsystems, a first-quantized system, such as an spin or a harmonic
oscillator, is coupled to the field via an interaction that is localized both spatially and
temporally. The point of employing a first-quantized system is that one can apply onto it
the mathematical tools from the quantum information theory of discrete and continuous
variable systems. By studying these first-quantized “probe” systems which are coupled
to a quantum field, it is intended for the information theoretic structure of the field to
transfer over to the probe. In some sense, the probe is simply a “broker” of information
from the quantum field.

For one whose interest lies in the theory of quantum fields, the goal is to factor out the
intricacies of the probing mechanism itself, in order to have an unobstructed view into the
structure of the field. On the other end, the idealizations required for such clarity can cause
a loss of physical implementability, which is of importance to those looking into potentially
realizing a certain protocol in real experiments. Our approach in this chapter will be
somewhere in the middle ground between theoretical idealization and implementability.
More specifically, we will consider temporarily instantaneous, spatially smeared interactions
between various first-quantized probe systems and a quantum field, and consider a range
of probe systems, ranging from harmonic oscillators to spins and qubits.

In this chapter, we will explore how to tune probe-field interactions in order to opti-
mally “percolate” information about a quantum field onto a set of first-quantized probe
systems. We will see how, depending on whether one wants to gather classical or quantum
information from the field, one can tune the probe-field interactions and processing of in-
formation accordingly. In our protocols, gaining classical information about the field will
amount to estimating (approximating a projective measurement) the eigenvalue of a cer-
tain field localized observable, while gaining quantum information will come from swapping
the quantum state of the probe with the state on a subspace of the field.

In terms of which first-quantized probe systems we will be exploring, we will investigate
how to load the field’s information onto either a harmonic oscillator, a multi-level spin, a
qubit (two-level spin) or a qudit. We will also explore how to parallelize this information
gathering using an array of first-quantized systems in order to emulate the Hilbert-space
of the field’s second-quantized system and gather more information.

All the work in this chapter is original unless cited otherwise, this work was performed
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entirely independently.

5.2 Theory of Field Subsystems

We are interested in coupling probe systems to a field via some localized interaction in
order for the probe system to harvest some information about the field. Before we ven-
ture off into the description of various protocols for different tasks, we must describe what
exactly is the information about the field we are targeting. Once that we have outlined
what exactly is our target information, we can then consider different types of probes and
reason which one would be theoretically optimal and which one could be near-optimal but
more viable for implementation.

Thus, this section will be dedicated to laying the mathematical underpinning describ-
ing the class of subsystems of quantum fields that we will be encountering in our later
calculations.

Essentially, the quantum field’s Hilbert space can be decomposed into the Hilbert space
of many harmonic oscillators, the quadrature observables of these oscillators being smeared
field observables. Now, either classical information (e.g. the eigenvalue of one of the field’s
local quadratures) can be copied onto the probe, or quantum information can be swapped
(as it cannot be copied; no-cloning in quantum mechanics) onto the probe.

Using a harmonic oscillator as a probe, the information about a single quadrature of
the local field subspace can be copied onto the probe via a continuous-variable phase esti-
mation. In a later section we analyze the tradeoffs between information gain and energetic
cost for such a measurement.

In the entanglement harvesting section, we will study how to swap the state on this
subspace with the state of the probe. If we swap the states from two different subspaces
in two different regions, then for a state of the field which was entangled between these
subspaces, the probes will have inherited this entanglement.
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5.2.1 Quick Setup

Before we begin, let us setup our notation for Quantum Field Theory. We will be looking
mainly at massless Klein-Gordon Fields in 1+1 dimensions, i.e. a field Φ(x, t) such that

2Φ(x, t) = 0, (5.1)

in the canonical quantization. The canonical conjugate momentum is denoted Π(x, t) and
it obeys the usual commutation relation with the field,

[Φ(x),Πy] = iδ(x− y). (5.2)

The Hamiltonian of the field is given by

HF = 1
2

∫

R
dx
[
Π2(x) + (∂xΦ(x))2] . (5.3)

5.2.2 Maximal Commuting Sets of Field Observables

As we saw in the previous chapter, the Hilbert space of a quantum field can be decomposed
into a tensor product of the harmonic oscillator subspace1 for each frequency, each har-
monic oscillator being decomposable into the direct sum of Fock states of different particle
numbers.

We can also characterize the field in the functional picture using a complete set of
commuting observables, usually chosen to be {Φ(x)}∀x, hence, as these are commuting, we
can, roughly speaking2, consider the field’s Hilbert space to factorize into a tensor product
of the eigenspaces of the field operators at each point, i.e. if the eigenspace of Φ(x) is Hx,
then the total Hilbert space of the quantum field can be interpreted as

HF =
⊗

x

Hx, (5.4)

Colloquially, it is often said that quantum field theory is like “having a harmonic oscilator
at every point”. The maximal set of commuting observables we can choose are, for exam-
ple, either the set of field observables at every point, {Φ(x)}∀x or their respective canonical

1We will use the term subspace and subsystem very loosely, in general there is a difference between
subspaces (direct sum components) and subsystems (tensor product factor) [7]

2See Tsirelson’s problem [63] and Connes embedding conjecture for subtleties regarding the fact that
commuting observables do not necessarily imply a tensor product factorisation.
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conjugate operators {Π(x)}∀x.

Notice that at every point there exists a subalgebra of operators, i.e. any operator that
is a function of Φ(x) and Π(x) is part of a subalgebra of local (single-point) operators. The
canonical commutation relation also tells us that [Φ(x),Π(x′)] = iδ(x−x′), i.e. only the two
canonically conjugate operators part of the same single-point subalgebra do not commute.
The joint eigenstates of all the field amplitude operators are the field configuration states,
i.e.

|φ〉 ∈ HF : Φ(x) |φ〉 = φ(x) |φ〉 ∀x. (5.5)

These states are akin to having a “position eigenvector” for each harmonic oscillator at
every point. In general, any state in the Hilbert space of the field can be decomposed in
the basis of these configuration states

|Ψ〉 =

∫

φ∈L2(R)

Dφ 〈φ|Ψ〉 |φ〉 (5.6)

as these states form a complete basis forHF . Note that we denote the functional integration
measure as Dφ.

Note that, if we were to construct a maximal set of commuting observables which were
each strictly functions of the field amplitudes, e.g. OA = f(Φ), then these would also have
the |φ〉 states as eigenstates.

5.2.3 Smeared Observables

In our calculations we will be interested in smeared field observables, such as

Φλ ≡
∫

R
dxλ(x)Φ(x), (5.7)

where λ is a compactly supported real-valued function. Notice that the field configuration
eigenstates are also eigenstates of this operator

Φλ |φ〉 =

∫

R
dxλ(x)φ(x) |φ〉 = (λ, φ) |φ〉 (5.8)

where we introduce the following notation for the L2(R) inner product:

(f, g) ≡ 〈f, g〉L2 ≡
∫

R
dxf(x)g∗(x). (5.9)
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So, for a given field configuration, the eigenvalue of the smeared field operator is the L2(R)
inner product between the configuration and the smearing.

We can define the canonically conjugate variable for this smeared field operator, it will
be a smeared momentum operator

Πλ ≡
1

‖λ‖2

∫

R
dxλ(x)Π(x), (5.10)

where the norm in the above is the usual L2(R) norm, ‖λ‖ ≡ ‖λ‖2 =
√

(λ, λ). As one
can check, because of our normalization of the canonical conjugate, these two smeared
operators obey the commutation relations of a single quantum harmonic oscillator

[Φλ,Πλ] =
1

‖λ‖2

∫

R
dxλ(x)

∫

R
dy λ(y) [Φ(x),Π(y)]︸ ︷︷ ︸

iδ(x−y)

=
i

‖λ‖2

∫

R
dx |λ(x)|2

︸ ︷︷ ︸
‖λ‖2

= i. (5.11)

These new operators we have defined, {Φλ,Πλ} can thus be considered to be observables
of a “subsystem” of the quantum field which is essentially a single harmonic oscillator
subspace. The space of polynomials made from powers of Φλ and Πλ is closed under the
commutator, we can then consider this to be a closed Lie subalgebra of operators.

5.2.4 Hilbert Space Factorization for Smeared Observables

Suppose we constructed two subalgebras with two different smearings, λ and µ, then, for
these operators to commute we would need

[Φµ,Πλ] =
i

‖λ‖2

∫

R
dxµ(x)λ(x)

︸ ︷︷ ︸
(µ,λ)

= i
(µ, λ)

‖λ‖2

!
= 0 ⇐⇒ (µ, λ) = 0, (5.12)

i.e. the smearings need to be orthogonal with respect to the L2 inner product. An easy way
to achieve this is to require the smearings to have disjoint support, i.e. supp(λ)∩supp(µ) =
∅ =⇒ (λ, µ) = 0.

This will be our approach in this thesis; we will assume the spatial smearings of the
detectors are disjoint. We could, alternatively, consider spatially non-disjoint smearings,
as long as they are L2-orthogonal, then the operators will commute. Note that we could
construct a complete set of observables from a set of smearing functions which form an
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orthogonal basis for L2(R). For convenience, let us assume that we restrict ourselves to
a compact region of space, say R ⊂ R (i.e. that we have IR cutoff) in order to have
a countable basis for L2(R). Now, let B ≡ {fj ∈ L2(R), j ∈ N|(fj, fk) = δjk} and
span(B) = L2(R). Then, the set of smeared observables {Φλ}λ∈B forms a maximally
commuting set of observables. The Hilbert space factors into tensor products for each
functional basis element

HF =
⊗

λ∈B

Hλ (5.13)

where Hλ is defined as the eigenspace of Φλ. An example of a set of bases for L2(R) made
up of compactly supported orthonormal functions is the set of so-called orthonormal com-
pactly supported wavelet bases [17].

In this thesis, we will encounter calculations involving a finite set of smeared sub-
spaces of the field for which the smearings are disjointly supported e.g., L ≡ {λk, k ∈
1, ..., N |supp(λj) 6= supp(λk)} hence orthogonal (λj, λk) = 0. As these N functions are
technically orthogonal, there necessarily exists a set of functions L̄ such that L ∪ L̄ forms
an orthogonal basis for L2(R). Of course this completion of the basis is non-unique, one
has options in their choice of basis for span(L̄), but it is good to know that for any given
set of orthogonal functions L, such an extension exists. This extension tells us what would
be the Hilbert space decomposition for which the space of each λj is a tensor factor, or in
other words, given a set of smeared observables, what additional set of smeared observables
gives a maximal commuting set of observables.

A common example of smeared observables that is often used in the literature is the
(inverse) Fourier transform smearing, and the associated subspaces is called the “modes”

Φk ≡ 1√
2π

∫

R
dxe−ikxΦ(x)

Πk ≡ 1√
2π

∫

R
dxe−ikxΠ(x).

(5.14)

This Fourier transform is in some sense a complex-valued smearing, and the Fourier plane
waves form a basis for L2(R). Notice this Fourier smearing is non-local; the basis of func-
tions (plane waves) is non-compactly supported. One issue with this specific smearing is
the fact that that Φk and Πk are not self-adjoint, hence they are not technically observ-
ables, but one can consider the Hermitian and anti-Hermitian components of each mode
to be observables, e.g. (Φk + Φ†k)/2 is an observable.
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5.2.5 Energetics & Local/Nonlocal Factorization Duality

This subsection holds the key concepts to this thesis. Here we describe how the structure
of the Hamiltonian is what holds the key to both entanglement harvesting and quantum
energy teleportation. Read below for further explanation.

Hamiltonian of Smeared Observables

In the pointwise Hilbert space factorization “representation”, we usually write out the
Hamiltonian as

HF = 1
2

∫

R
dx
[
Π2(x) + (∂xΦ(x))2] . (5.15)

Now, let B be an orthogonal functional basis for L2(R) made of compactly supported
(smearing) functions. We can express the field and its canonical conjugate momentum at
a given point as

Φ(x) =
∑

λ∈B

Φλ
λ(x)

‖λ‖2
, Π(x) =

∑

λ∈B

Πλ λ(x), (5.16)

where as before Φλ =
∫

dxλ(x)Φ(x), Πλ = ‖λ‖−2
∫

dxλ(x)Π(x) are operator-valued func-
tionals. Note the above sum ranges over the basis functions B, which is our chosen orthog-
onal basis for L2(R). As in general this basis is not necessarily countable, the sum is to be
understood as an integral with an appropriate measure.

Now, we can express the Hamiltonian in terms of the smearing decomposition by plug-
ging in our expressions for Φ(x) and Π(x) into the point-wise Hamiltonian,

HF = 1
2

∑

f,g∈B

∫
dx

[
ΠfΠgf(x)g(x) + ΦfΦg

f ′(x)g′(x)

‖f‖2‖g‖2

]

= 1
2

∑

f,g∈B


ΠfΠg (f, g)︸ ︷︷ ︸

‖f‖2δ[f−g]

+ΦfΦg
(f ′, g′)

‖f‖2‖g‖2




= 1
2

∑

f∈B

Π2
f‖f‖2 + 1

2

∑

f,g∈B

ΦfΦg
(f ′, g′)

‖f‖2‖g‖2

(5.17)

where f ′(x) and g′(x) are Lagrange notation for differentiation, and δ[f − g] was meant as
a “functional delta measure”, which appeared from the orthogonality of our basis. We see
that, similarly to the pointwise case, the momenta are uncoupled whereas the amplitude
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quadratures are coupled. As we chose our basis to consist of compactly supported orthog-
onal functions, the inner product (f ′, g′) 6= 0 ⇐⇒ supp(f) ∩ supp(g) 6= ∅. This means
that a given harmonic oscillator associated to a given smearing is coupled to all the other
oscillators whose smearings’ support are overlapping.

Thus, for our real-valued compactly supported orthogonal smearings, the Hamiltonian
is still coupled between Harmonic oscillators. This means that even in our smeared ob-
servables picture, there is a sense of “locality”; only subspaces whose associated smearings
are close (in support) to a given smearing are coupling to it. Also, importantly, note that
the coupling is still quadratic (no terms with more than two oscillators coupled at a time).
This means that any ground state or thermal state of this Hamiltonian will necessarily be
a Gaussian state in our smeared observables factorization “representation” of the state.
We explore this in further detail in the next subsection.

Local vs. Nonlocal Duality

Now, as is traditional in quantum theory, to understand the dynamics of a system, one
decomposes a state of interest into superpositions of energetic eigenvectors, then time
evolution becomes simply relative phase accumulation between the energetic eigenvector
amplitudes. In quantum field theory, not only is the global energy eigenbasis important
for dynamics, but a specific state in particular, the ground state, is central to the whole
theory, partly since it is the canvas upon which other states can be constructed. For
free field quantum field theory (of interest in this thesis), the factorization of the Hilbert
space into Fourier modes decouples the harmonic oscillators in its representation of the
Hamiltonian,

HF = 1
2

∫
dk
[
Π†kΠk + k2Φ†kΦk

]
. (5.18)

where Φk and Πk are the usual Fourier mode globally smeared operators. We see that
in this factorization of the Hilbert space, we get a set of harmonic oscillators for each
frequency that are uncoupled. Hence, energetically, each frequency’s Hilbert space tensor
factor is independent. Thus, an eigenstate of the Hamiltonian, such as the ground state,
is a product state of the ground state of each frequency

|0〉 =
⊗

ω

|0ω〉 . (5.19)
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In general, instead of having a “Fourier decomposition” for the set of field observables,
for a general Hamiltonian we have a Bogolyubov transformation which diagonalizes the
Hamiltonian in the vector space of quadratures. For finite-dimensional intuition, consider
a general Hamiltonian that is quadratic in some set of ladder operators, then

H =
(
~a†T ~aT

)( A B
B∗ A∗

)(
~a
~a†

)
≡
(
~a†T ~aT

)
H

(
~a
~a†

)

=
(
~a†T ~aT

)
M †

(
D

D

)
M

(
~a
~a†

)
≡
(
~c†T ~cT

)(D
D

)(
~c
~c†

) (5.20)

where M is our Bogolyubov transformation and D is a diagonal matrix. Thus, in general
there exists a basis that diagonalizes the Hamiltonian, and the ground state of each mode
in that basis, e.g. in the above case |0〉 : cj |0〉 = 0, then is annihilated by elements of

the vector M
(
~a†T ~aT

)T
, which are mixtures of creation and annihilation operators aj’s

and a†k’s for j 6= k. This means that this ground state is a multimode squeezed state, and
we have correlations between modes; we touched upon this concept back in our QET on a
lattice chapter (see (4.12)).

Thus, in some sense, a state that is local in the “energetic factorization” of the Hilbert
space is nonlocally correlated in any other factorization. This is what we use for Quantum
Energy Teleportation and for entanglement harvesting, the natural ground state is cor-
related with respect to the usual spatial factorization or with respect to any non-Fourier
smeared observables factorization. Note that this concept is akin to our discussion of
skew-subspaces in Quantum Error Correction back in our Quantum Information Theory
background section 2.5.3.

Indeed, in the spatial factorization, the derivative term ∼ (∂xΦ(x))2 can be seen as a
“nearest neighbor” coupling (one can consider an analogous discretization onto a lattice
and the derivative coupling then becomes a finite difference term), while in the smeared
observables factorization, we see in equation (5.17) that there is effectively a coupling
between different factors. This coupling yields a ground state which is effectively multi-
mode squeezed between factors, hence entangled. We exploit this entanglement between
smeared observable subspaces for entanglement harvesting later in this chapter.

Now, as in every duality, one can use either picture to describe a certain phenomenon,
and both descriptions are equivalent, by the nature of the duality. As such, for an operation
that is local in either the spatial factorization or the smeared observable factorization, this
very same operation becomes nonlocal in Fourier space, which is the simplest picture
to understand energetics. In the next chapter, this is what we will use for Quantum
Energy Teleportation, although we act on two spatially disjoint regions of the quantum
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field, in phase space the actions overlap, hence this allows for an energetic exchange. Our
method of calculation of energy exchange reflects this overlap, as we switch to a phase
space representation of our operations (by looking at the displacements’ action on each
frequency). We will also perform the same computation using the smeared observables
factorization combined the Gaussian state formalism.

5.2.6 Phase space & Gaussian State Representation

We can define a phase space for our basis of smeared observables, just like one usually does
for Fourier space. As our smeared observables are simply a linear transformation on the
space of observables, for a Gaussian state of the quantum field, the state is also Gaussian
with respect to smeared observables. For example, for a Gaussian state of the field, any
expectation value of product of operators factorizes into sums of products of two-point
functions by Wick’s theorem [55], this property gets lifted onto the smeared observables;
as two-observable expectation values are simply doubly smeared two-point functions.

For a finite set of orthogonal smearings {λj}j, consider, for notational purposes, a vector
of observables

~Ξ = (Φλ1 ,Πλ1 ,Φλ2 ,Πλ2 , ...)
T . (5.21)

Now, given a generic Gaussian state of the field with density operator ρ, we can compute
first moments as

dj = 〈Ξj〉ρ = tr(ρΞj) (5.22)

and the second moments as

σjk = 1
2
〈ΞjΞk + ΞkΞk〉ρ − 〈Ξj〉ρ 〈Ξk〉ρ . (5.23)

We will use this in our calculations in this chapter.

5.2.7 Wave Functional Picture

In this thesis we will often encounter displacement operators which generate a coherent
state in the subspace of a certain smeared observable, that is, we will encounter operators
of the type

U = exp (−iαΞλ) , (5.24)

72



where Ξλ is a smeared subspace quadrature, e.g., Φλ or Πλ as defined before. Suppose
we have some state |Ψ〉 =

∫
Dϕ 〈ϕ|Ψ〉 |ϕ〉 of the field, it is interesting to see how such a

displacement operator will affect the wavefunctional. Suppose U = eiαΦλ , then

U |Ψ〉 =

∫
Dϕ 〈ϕ|Ψ〉 eiαΦλ |ϕ〉 =

∫
Dϕ

(
eiα(λ,ϕ) 〈ϕ|Ψ〉

)
|ϕ〉 (5.25)

and we see that the wavefunctional acquires a functionally-dependent phase, i.e. each field
configuration acquires a phase equal to its inner product with the smearing. Comparatively,
if we chose instead to exponentiate a smeared momentum operator, i.e. suppose U =
e−iα‖λ‖

2Πλ , then

U |Ψ〉 =

∫
Dϕe−iα‖λ‖2Πλ 〈ϕ|Ψ〉 |ϕ〉 =

∫
Dϕ

(
e
−α

∫
dxλ(x)

δ
δϕ(x) 〈ϕ|Ψ〉

)
|ϕ〉

=

∫
Dϕ 〈ϕ− αλ|Ψ〉 |ϕ〉 =

∫
Dϕ 〈ϕ|Ψ〉 |ϕ+ αλ〉

(5.26)

and we see that the wavefunctional is shifted, with all the configurations shifted by a
“bump” corresponding to the coupling α times the smearing function λ.

Thus, we see that overall any displacement operator that acts on the subspace of the
smeared observables {Φλ,Πλ} only affects the functional component related to the smearing
λ, i.e. added phases only depend on the inner product of configurations with λ and
functional shifts are by multiples of λ.

5.2.8 On spatial vs. temporal smearing

In this thesis our probe-field interactions are all smeared in space but instantaneous in time.
In this subsection we will see why such a choice can be advantageous from a mathematical
standpoint.

Detectors

Typically in relativistic quantum information the type of probe-field interaction that is
canonical is the Unruh-DeWitt interaction [38, 10], whose most commonly used variant is
a coupling between a probe which is spatially point-like but temporally smeared. More
specifically, in the interaction picture, the interaction Hamiltonian is of the form

Hint(t) = η(t)m(t)⊗ Φ(x, t), m(t) = eiΩσztσxe
−iΩσzt (5.27)
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where η(t) is a temporal coupling window function, m(t) is the so-called “monopole mo-
ment” of the probe, and Ωσz is the free Hamiltonian of the probe. We see that because
of the free Hamiltonian of the probe and the non-instantaneous coupling, we must con-
jugate the interaction Hamiltonian by the time evolution operator, this makes it so that
the operator which couples to the field changes with time. This continuous change in
time of the probe operator can become mathematically inconvenient, as there is a need for
time-ordered exponentiation3

U = T exp

(
−i
∫ t

0

dt′Hint(t
′)

)
=
∞∑

n=0

(−i)n
∫ t

0

· · ·
∫ t′n

0

Hint(t
′
1) · · ·Hint(t

′
n+1) dt′1 · · · dt′n+1 (5.28)

which has multiple terms at multiple orders which cannot be combined into a single ex-
ponential. This requires the use of perturbation theory, more specifically the interaction
Hamiltonian is made to have a small coupling constant; |η(t)| � 1 and then we can trun-
cate the above Dyson series at first or second order.

Instead of a temporal smearing, we use a spatial smearing of a detector.

One could alternatively consider temporarily smeared interactions between a probe and
the field for a probe having no free Hamiltonian (or alternatively, for the free Hamiltonian
to commute with the interaction), then we would have

Hint(t) = η(t)m⊗ Φ(x, t), m = σx (5.29)

and in the interaction picture we would have

U = T exp

(
−i
∫

R
dt′Hint(t

′)

)
= T exp

(
−i
∫

R
dt′ η(t′)m⊗ Φ(x, t′)

)

= T exp

(
−im⊗

∫

R
dt′ η(t′)(Φ+(x+ t′, 0) + Φ−(x− t′, 0)

)

= T exp

(
−im⊗

∫

R
dy (η(y − x)Φ+(y, 0) + η(y + x)Φ−(y, 0))

)

= exp

(
−im⊗

∫

R
dy η(y − x)Φ+(y, 0)

)
exp

(
−im⊗

∫

R
dy η(y + x)Φ−(y, 0)

)

(5.30)

and we see that a temporal smearing for a probe with no free Hamiltonian yields couplings
to spatially smeared left and right-moving component. This makes sense as at each point

3Note that unlike regular exponentiation, there is no need for a 1/n! factor, this is because at the nth

order we are integrating an n-dimensional simplex in Rn which has volume tn/n!.
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in spacetime that the detector couples, there is a lightcone emanating, with two lightfronts
(in 1 + 1D) carrying the left and right-moving components of the field. We can then cut
the lightcone-propagating smearing along a spatial slice instead of a temporal one.

In our calculations in this thesis, we use spatially smeared interactions, let J be some
operator of a first-quantized probe system (e.g. J = m as above), then we will use inter-
action Hamiltonians of the form

Hint(t) = δ(t) J ⊗ Φλ = δ(t)

∫
dx λ(x)J ⊗ Φ(x), (5.31)

which, when time-ordered exponentiated, gives

U ≡ T exp

(
−i
∫

R
dtHint(t

′)

)
= exp(−iJ ⊗ Φλ). (5.32)

Alternatively, we will sometimes use interactions with only one of the sectors of the
field, e.g. by replacing Φ(x) 7→ Φ+(x), we couple only to the left-moving sector of the
field. This means that our spatial smearing has a direct analogy to a temporally smeared
coupling as in (5.30).

5.3 Multipoint measurement

5.3.1 Types of Probe Systems

Why multiple types of probes?

Gaussian operations are spanned by quadratic unitaries, i.e. any exponential of a self-
adjoint second-degree polynomial of quadratures will preserve the Gaussianity of a given
state, and the transformation will have a linear representation on phase space, as we have
seen in our introduction to the Gaussian state formalism.

As we are interested in coupling harmonic oscillator probes to the field, any interaction
between the probe and the field that is quadratic in the quadratures of the field subspace
and the probe will preserve the Gaussianity of both systems. For example, the interactions
we will be considering will all be generated by Hamiltonians of the form λQP ⊗RA where
QP and RA are some quadratures (e.g. X or P ) of P , the probe, and A, the target subspace
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of the field, respectively.

Although the type of probe most compatible with a harmonic oscillator subspace is (as
is to be expected) another harmonic oscillator, we will explore how other types of finite-
dimensional probe systems can emulate a harmonic oscillator, and, in an asymptotic limit,
recover full accuracy. Put simply, a very large-dimensional qudit is nearly a harmonic
oscillator, and a set of multiple qubits can emulate an exponentially large (in the number
of qubits) qudit Hilbert space if one processes the lot of qubits coherently (this is one of
the main tenets of quantum computing).

By playing with these different types of probes, if our goal is measurement of a quantum
field observable, then using unitary interactions between the probe system and the field,
followed by a projective measurement of the probe system, this offers a model for a certain
POVM acting on the field.

In this subsection, we provide a set of interactions between probe systems and the field.
The time evolution operators associated to these interactions could be considered to be as
part of a phase estimation procedure, or as we will see later, could be considered to be
part of a swap procedure.

The purpose of this subsection is to offer a “catalog” of interactions for different probe
systems which are asymptotically equivalent. In what exact limit these become equivalent
will be treated in the text. Once we have covered this equivalence, we will focus on the
simplest case, i.e. harmonic oscillators, to construct our protocols, as most of the analysis
carries over to the equivalent cases. The purpose of this is to cover as many possible
implementations as possible while not having to treat every case in full detail. When some
disparities could arise between the different types of implementations, we will specify how
to adjust the protocol to a certain case.

Overview

In general, interaction Hamiltonians we will cover will be of the form

OP ⊗ Φλ (5.33)

where Φλ is as usual. This is for sampling the eigenvalue of a single smeared observable.
More generally, we can have any quadrature cos(θ)Φλ + sin(θ)Πλ instead of just Φλ.
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With multiple probes, we can generalize a “single-sample” interaction to multi-point
(multi-sample) interactions. This is if we want to sample the eigenvalue of multiple smeared
observables at once. Then we would have an interaction Hamiltonian of the form

∑

j

OPj ⊗ Φλj (5.34)

where the λj are functions of compact support with mutually disjoint support.

For the rest of this subsection, we will provide a “catalog” of interaction Hamiltonians
for a single sampling of smeared observable, and we will use Φλ as the place holder.

Spin-like Qudits

Effectively an Unruh-DeWitt-like coupling,

J ⊗ Φλ =

∫
dx λ(x)J ⊗ Φ(x). (5.35)

where J is as has been defined in previous sections:

J =
d−1∑

k=0

k |k〉〈k| . (5.36)

Qubits

We can effectively emulate spin-like qudits by coupling multiple qubits with an Unruh-
DeWitt interaction of the kind

N∑

j=1

∫

R
dx λ(x)sj ⊗ Φ(x) =

(
N∑

j=1

sj

)
⊗ Φλ (5.37)

where

sj ≡
2j

2N
(I + σ

(j)
z )

2
= 2j−N |1〉〈1|j (5.38)

the spin-like operator of the jth qubit. In the context of the phase estimation algorithm,
if we start in the state |+〉⊗N where |+〉 ≡ (|0〉 + |1〉)/

√
2, then perform an interaction

generated by the above Hamiltonian, followed by performing an inverse quantum Fourier
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transform F−1 on the N qubits as post-processing. To know the amplitude of the field,
one could then project onto the standard basis.

Note that there is exponential energetic scaling between the couplings of each qubit.
This means that although our Hilbert space may grow exponentially with the number of
qubits, to emulate a qudit of such dimensions the energetic scaling is also exponential.
Hence, if we measure the information content in terms of qubits (as happens when one
computes entropies), then the maximal information content of a single qudit made of N
qubits (as above) scales as the logarithm of the energetic cost, which will scale as ∼ 2N ,
as we will see in this chapter. As we will see in section 5.3, this logarithmic information
versus energy scaling behaviour will also be present for continuous variable registers, with
the number of qubits being instead replaced by the squeezing parameter.

Heisenberg-Weyl Qudits

We can consider an interaction between the field and a clock-like qudit. As we have
covered in the quantum information background section, the Heisenberg-Weyl operators
are generally unitaries but not Hermitian. Suppose we construct an observable of the kind
X + X†, where X is a Heisenberg-Weyl “shift” operator. Now, suppose we consider an
interaction of the form

(X +X†)⊗ Φλ (5.39)

and now suppose we split up the field into left and right-moving parts, Φ(x) = Φ+(x) +
Φ−(x) where

Φ±(x±) ≡
∫

R+

dω 1√
4πω

[
a±ωe

−iωx± + a†±ωe
iωx±

]
. (5.40)

then if we focus on the coupling to the left-moving term,

(X +X†)⊗ Φ+λ =

∫

R+

dω 1√
4πω

[
(X +X†)aωe

−iωx + (X +X†)a†ωe
iωx+

]
. (5.41)

We can then do a counter-rotating wave approximation; the clock qudit ticks one way when
it absorbs a photon and another way when it emits one:

(X +X†)⊗ Φ+λ =

∫

R+

dω 1√
4πω

[
Xaωe

−iωx +X†a†ωe
iωx+

]
. (5.42)

This is the interaction we will use in section 6.2. For more, see section 6.2 and [69].
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Harmonic Oscillator probes

We can consider sampling the field with a harmonic oscillator probe, just like we did in
our analysis of QET for harmonic lattices. To measure a smeared observable

Φλ =

∫

R
dxλ(x)Φ(x). (5.43)

the interaction Hamiltonian for Alice should be of the form δ(t)HA where

HA = P ⊗ Φλ. (5.44)

5.3.2 Continuous-Variable Multipoint Measurement

Setup

We consider how to perform continuous-variable phase estimation to sample the eigenvalue
of multiple smeared field observables at once.

The interaction Hamiltonian for Alice is of the form δ(t)HA where

HA =
L∑

j=1

∫

R
dx λj(x)Pj ⊗ Φ(x) =

∑

j∈A

Pj ⊗ Φλj (5.45)

where the λj are coupling functions, Pj is the P quadrature of the jth probe harmonic
oscillator, and |A| ≡ L.

Depending on the desired precision in the estimation of the amplitudes of the field, the
initial state of the set of L harmonic oscillator probes (Hilbert space HC =

⊗L
j=1HCj)

can be squeezed accordingly. In general, for our purposes the initial state of the harmonic
oscillator control systems (probes) will be a product state of single-mode squeezed states

|~ξ〉C =
L⊗

j=1

|ξj〉Cj (5.46)

where |ξ〉 is as defined in (4.26) and (4.27).

This is the same setup in the case of QET with a harmonic lattice, it is simply multiple
instances of the continuous-variable phase estimation procedure in parallel.

79



Energetic Cost of Measurement

The initial state of the field is in its ground state, |0〉F and the set of L probe harmonic os-
cillators are in a product state of individually squeezed states, each with the same squeezing
parameter ξ = r ∈ R. Thus for the joint system, the initial state is

|Ψ0〉 ≡ |~ξ〉C |0〉F (5.47)

where |~ξ〉 is as defined in (5.46), with constant squeezing parameters ξj ≡ −r ∀j. The
subscripts C and F are used to indicate whether the state is in the (C) control (probes’)
Hilbert space or in the quantum field’s (F ) Hilbert space.

Alice’s measurement interaction is that of (5.45), with a temporally instantaneous
coupling4, i.e. δ(t)HA where

HA =
L∑

j=1

Pj ⊗ Φλj (5.48)

where the λj are coupling functions, Pj is the P quadrature of the jth probe harmonic
oscillator. For our purposes, we will assume that the λj are disjoint.

The time evolution unitary associated with this Hamiltonian is

UA ≡ T exp

(
−i
∫

R
dt δ(t)HA

)
= exp(−iHA) = exp

(
−i∑jPj ⊗ Φλj

)
. (5.49)

Now, we are interested in the energy injected into the field by this interaction. Because
we consider the probe to have no free Hamiltonian, by energy conservation, the change in
energy in the field after versus before the interaction will necessarily come as an energetic
“switching cost” for the classical agent which controls the interaction. Indeed, introducing
time dependence into the Hamiltonian means that energy is not conserved. We can imagine
there is a classical energy reservoir which switches the interaction term. Hence, to compute
how much energy is invested in the process of measurement, we can calculate the change
in energy as follows:

∆E = 〈Ψ0|U †AHFUA |Ψ0〉 − 〈Ψ0|HF |Ψ0〉 . (5.50)

4Note that, in the above case the interaction Hamiltonian is δ(t)HA, we will sometimes refer to HA itself
as the interaction Hamiltonian (or for other interactions the interaction Hamiltonian modulo the temporal
switching function). Note that this will be an abuse of terminology done for the sake of simplicity, as
without the δ(t) this is not technically and interaction Hamiltonian (not the right units).
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Now, to facilitate this calculation, let B be an orthogonal basis for L2(R) such that λj ∈
B ∀j ∈ {1, ..., L}, i.e. B includes all the smearing functions being used here as well as the
rest of the functions necessary to make this an orthogonal basis for the square integrable
functions. From our previous construction in this chapter, given this basis, we know we
can express the Hamiltonian as:

HF = 1
2

∑

f∈B

Π2
f‖f‖2 + 1

2

∑

f,g∈B

ΦfΦg
(f ′, g′)

‖f‖2‖g‖2
. (5.51)

Now, we can compute U †AHFUA using the Hadamard lemma5, but before we do so, let us
compute the following commutators which will be of use to us:

[Φλj ,Πf ] = i
(λj, f)

‖f‖2
=⇒ [Φλj ,Π

2
f ] = [Φλj ,Πf ]Πf + Πf [Φλj ,Πf ] = 2iΠf

(λj, f)

‖f‖2
(5.52)

[Φλj , HF ] = 1
2

∑

f∈B

[Φλj ,Π
2
f ] ‖f‖2 = i

∑

f∈B

(λj, f)︸ ︷︷ ︸
‖λj‖2δ[λj−f ]

Πf = iΠλj‖λj‖2 (5.53)

Now we can proceed to computing the energy injection:

U †AHFUA = HF + i[HA, HF ]− 1
2
[HA, [HA, HF ]]

= HF + i
∑

j Pj
[
Φλj , HF

]
− 1

2

∑
j,k PkPj

[
Φλk ,

[
Φλj , HF

]]

= HF −
∑

j PjΠλj‖λj‖2 − i
2

∑
j,k PkPj‖λj‖2

[
Φλk ,Πλj

]
︸ ︷︷ ︸

iδjk

= HF −
∑

j PjΠλj‖λj‖2 + 1
2

∑
j P

2
j ‖λj‖2.

(5.54)

We see that the shift in energy has two terms: one is the product of first moments of
the oscillators (probe and field subsystems) and the other term is simply proportional
to the variance of the probes’ quadrature which couples to the field times the smearing
function norm squared. As we chose initial states for the field and probes that have
vanishing first moments, only the variance term survives. Recall that the variance in the
Pj quadratures was related to our degree of squeezing; 〈ξ|P 2

j |ξ〉 = 1
2
e2r, i.e. for stronger

squeezing parameter r there is a greater variance in the quadrature and hence in the energy

5For operators X and Y , eXY e−X = Y + [X,Y ] + 1
2! [X, [X,Y ]] + ...

81



injected:

∆E = 〈Ψ0|U †AHFUA |Ψ0〉 − 〈Ψ0|HF |Ψ0〉
= −‖λj‖2

∑
j 〈Ψ0|PjΠλj |Ψ0〉+ 1

2

∑
j‖λj‖2 〈Ψ0|P 2

j |Ψ0〉
= −‖λj‖2

∑
j��

���:
0〈ξ|Pj |ξ〉����

��: 0〈0|Πλj |0〉+ 1
2

∑
j‖λj‖2 〈ξ|P 2

j |ξ〉

=
e2r

4

L∑

j=1

‖λj‖2.

(5.55)

Now, to complete the phase estimation algorithm, Alice could projectively measure the
~X quadratures to complete the phase estimation algorithm, that is, if Alice and Bob want
to perform the LOCC version of QET.

Now, since the LOCC and LOQC versions of the protocol are equivalent, we will skip
the projective measurement step and keep the whole protocol coherent.

Information Gain

To compute the information gain, instead of considering the ancillary oscillators as the
control registers and the field as the target, we consider the field as the target and the
oscillators as the control6. Instead of using the Gaussian state formalism that we have
developed directly to get the post-interaction covariance matrix of the probe, we will
instead expand the field with respect to its wavefunctional.7

We again begin with the initial state

|Ψ0〉 ≡ |~ξ〉C |0〉F (5.56)

and interact with an interaction Hamiltonian δ(t)HA, same as before. We can expand HA

6In general in any controlled unitary gate, the role of control and target are inversed if one looks at the
conjugate quantum variables instead. In other words, Fourier transforming both registers effectively flips
the target and control. This is fairly standard in quantum computing.

7Why? Well to switch things up a bit.
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into the Φ eigenbasis this time around,

HA =
L∑

j=1

∫

R
dx λj(x)Pj ⊗ Φ(x)

=
L∑

j=1

∫

R
dx λj(x)Pj ⊗

∫
Dϕϕ(x) |ϕ〉 〈ϕ|

=

∫
Dϕ

L∑

j=1

Γj[ϕ]Pj ⊗ |ϕ〉 〈ϕ| ≡
∫
Dϕ (~Γϕ · ~P )⊗ |ϕ〉 〈ϕ| ,

(5.57)

where in the above the Dϕ integral is to be understood as an integral over field configura-
tions, i.e. an integral over the eigenstate of the field operators Φ(x) |ϕ〉 = ϕ(x) |ϕ〉 where
ϕ are real-valued functions ϕ : R 7→ R, and

~Γϕ

∣∣∣
j
≡ Γj[ϕ] ≡

∫

R
dx λj(x)ϕ(x) = (λj, ϕ) (5.58)

is a functional-valued vector we define for convenience, its components are given by the
usual L2(R) inner product of the coupling functions λj contracted with a given field con-
figuration ϕ. The time evolution operator for the above is given by

UA ≡ T exp

(
−i
∫

R
dt δ(t)HA

)
= exp(−iHA)

=

∫
Dϕ exp

(
−i~Γϕ · ~P

)
⊗ |ϕ〉 〈ϕ|

≡
∫
DϕD(~Γϕ)⊗ |ϕ〉 〈ϕ|

(5.59)

and we see that it is a multi-oscillator displacement operator dependent on ϕ averaged over
the coupling function of each oscillator. Essentially, it displaces the X quadratures of the
oscillators dependent on each field configuration. We can apply this to our initial state

|Ψ1〉 ≡ UA |Ψ0〉 =

∫
Dϕ 〈ϕ|0〉D(~Γϕ) |~ξ〉 ⊗ |ϕ〉 . (5.60)

We see that we get an entangled superposition of squeezed coherent states in the probe
oscillators entangled with the field configurations. The |~ξ〉 squeezed state approximates

83



an |~x〉 eigenstate which serves as a pointer variable, while D(~Γϕ) displaces the oscillators’
Xj quadrature by an amount

∫
λ(x)ϕ(x) dependent on the field configuration as sampled

by the coupling function. This is averaged over the quantum field’s ground state’s wave-
function. The oscillators essentially soak up information about the field configuration as
viewed from the “point of view” of their window functions (couplings).

Let us trace out the field (in the field configuration basis) to obtain the marginal density

operator for the ancillary harmonic oscillators. Let D(~Γϕ) |~ξ〉 ≡ |~Γϕ, ~ξ〉 denote the squeezed
displaced states of the oscillators.

ρC ≡ trF (|Ψ1〉〈Ψ1|) =

∫
Dϕ | 〈ϕ|0〉 |2 |~Γϕ, ~ξ〉〈~Γϕ, ~ξ| (5.61)

It clearly should be a Gaussian state of the oscillators, as our interactions were linear and
the quantum field is in its vacuum which is a Gaussian state. Let us compute the first and
second moment of our Gaussian state8. We start with the first moments

〈Xj〉ρC =

∫
Dϕ | 〈ϕ|0〉 |2Γj[ϕ] =

∫
Dϕ | 〈ϕ|0〉 |2

∫

R
dx λj(x)ϕ(x)

=

∫

R
dx λj(x)

∫
Dϕ | 〈ϕ|0〉 |2ϕ(x) =

∫

R
dx λj(x)���

��
��:0

〈0|Φ(x) |0〉 = 0

(5.62)

〈Pj〉ρC =

∫
Dϕ | 〈ϕ|0〉 |2 〈ξ|Pj |ξ〉 = 0, (5.63)

we see that the the first moments are null. We can compute the second moments, for j 6= k

〈XjXk〉ρC =

∫
Dϕ | 〈ϕ|0〉 |2 〈~Γϕ, ~ξ|XjXk |~Γϕ, ~ξ〉 =

∫
Dϕ | 〈ϕ|0〉 |2 Γj[ϕ]Γk[ϕ]

=

∫
Dϕ | 〈ϕ|0〉 |2

∫

R
dx λj(x)ϕ(x)

∫

R
dy λk(y)ϕ(y)

=

∫

R
dx λj(x)

∫

R
dy λk(y) 〈0|

(∫
Dϕϕ(x)ϕ(y) |ϕ〉〈ϕ|

)
|0〉

=

∫

R
dx

∫

R
dy λj(x)λk(y) 〈0|Φ(x)Φ(y) |0〉 .

(5.64)

8Recall these moments tell us where the Gaussian is centered in phase space and what does its variance
look like
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While, in the case of j = k, i.e. diagonal matrix elements, we get

〈XjXj〉ρC =

∫
Dϕ | 〈ϕ|0〉 |2 〈~Γϕ, ~ξ| (Xj)

2 |~Γϕ, ~ξ〉 =

∫
Dϕ | 〈ϕ|0〉 |2 〈~ξ| (Xj + Γj[ϕ])2 |~ξ〉

=

∫
Dϕ | 〈ϕ|0〉 |2

[
〈ξ| (Xj)

2 |ξ〉+ (Γj[ϕ])2]

= 1
2
e−2r +

∫
Dϕ | 〈ϕ|0〉 |2

[∫

R
dx λj(x)ϕ(x)

∫

R
dy λj(y)ϕ(y)

]

= 1
2
e−2r +

∫

R
dx λj(x)

∫

R
dy λj(y) 〈0|

(∫
Dϕϕ(x)ϕ(y) |ϕ〉〈ϕ|

)
|0〉

= 1
2
e−2r +

∫

R
dx

∫

R
dy λj(x)λj(y) 〈0|Φ(x)Φ(y) |0〉 .

(5.65)

So, in terms of covariance matrix elements, for matrix elements with two odd-number
indices

σ(2j−1)(2k−1) = 1
2
〈XjXk +XkXj〉ρC = 1

2
e−2rδjk +

∫

R
dx

∫

R
dy λj(x)λk(y)G(1)(x, y) (5.66)

where G(1)(x, y) is called the Hadamard elementary function [10], which is the ground state
expectation value of the anti-commutator of the field operators

G(1)(x, y) ≡ 〈0| {Φ(x),Φ(y)} |0〉 = 〈0|Φ(x)Φ(y) + Φ(y)Φ(x) |0〉 . (5.67)

So essentially, the correlations of the ancillary oscillators’ target quadrature are that of the
quantum field’s correlation function averaged with respect to the coupling functions of the
respective oscillators. We have a few more covariance matrix elements to compute:

〈PjPk〉 =

∫
Dϕ | 〈ϕ|0〉 |2 〈~Γϕ, ~ξ|PjPk |~Γϕ, ~ξ〉 = 〈~ξ|PjPk |~ξ〉 = δjk

1
2
e2r (5.68)

and

〈XjPk〉 =

∫
Dϕ | 〈ϕ|0〉 |2 〈~Γϕ, ~ξ|XjPk |~Γϕ, ~ξ〉

=

∫
Dϕ | 〈ϕ|0〉 |2 〈~ξ| (Xj + Γj[ϕ])Pk |~ξ〉

=���
���

�:0
〈~ξ|XjPk |~ξ〉+

∫
Dϕ | 〈ϕ|0〉 |2 Γj[ϕ]���

���:0
〈~ξ|Pk |~ξ〉 = 0

(5.69)
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so the covariance matrix has the following even-number indexed elements:

σ(2j)(2k) = 1
2
〈PjPk + PkPj〉ρC = δjk

1
2
e2r (5.70)

while the mixed (one odd, one even) indices are null,

σ(2j−1)(2k) = 0 = σ(2j)(2k−1) ∀j, k ∈ {1, ..., L}. (5.71)

Now that we have calculated the full set of covariance matrix elements after the inter-
action, we would like to find the symplectic eigenvalues in order to compute the entropy
of the apparatus. As we started with pure states for the field and the probe oscillators
and made these systems interact in a way that would entangle them, the post-interaction
entropy of our ancillary system is directly proportional to the mutual information between
the probes and the quantum field as a whole. As our goal with this measurement is to
estimate a field quadrature’s value (smeared over a certain region).

To compute the entanglement entropy of the ancillary oscillators, we must first find the
symplectic eigenvalues of the matrix σ. To find the symplectic eigenvalues [3], we want

Eig+(iΩσ) where Ω =
L⊕

j=1

(
0 1
−1 0

)
(5.72)

where we want to find the positive eigenvalues (denoted Eig+) of the matrix iΩσ. Remem-
ber our covariance matrix σ written in block matrix form looks like

σ = G+
L⊕

j=1

σξ, G ≡




G11 G12 · · · G1L

G21 G22 · · · G2L
...

...
. . .

...
GL1 GL2 · · · GLL


 , σξ = 1

2

(
e−2r 0

0 e2r

)
(5.73)

where

Gjk ≡
(

1 0
0 0

)(∫

R
dx

∫

R
dy λj(x)λk(y)G(1)(x, y)

)
,

G(1)(x, y) ≡ 〈0| {Φ(x),Φ(y)} |0〉 .
(5.74)
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Now, using block matrix multiplication, we can work out the following matrix:

iΩσ = iΩG+ iΩ
L⊕

j=1

σξ,≡ Ĝ+
L⊕

j=1

σ̂ξ, σ̂ξ = − i
2

(
0 −e2r

e−2r 0

)
(5.75)

where Ĝ is a matrix with blocks

Ĝjk ≡ −i
(

0 0
1 0

)(∫

R
dx

∫

R
dy λj(x)λk(y)G(1)(x, y)

)
. (5.76)

Now, if we take the positive eigenvalues of this matrix νj ∈ Eig+(iΩσ), we can perform the
following sum over these eigenvalues to obtain the Von Neumann entropy of the control
system of oscillators:

S(ρC) =
L∑

j=1

f(νj), where f(ν) ≡
(
ν + 1

2

)
log
(
ν + 1

2

)
−
(
ν − 1

2

)
log
(
ν − 1

2

)
. (5.77)

Let us compute this explicitly for L = 1, which means a single oscillator samples from
the field. For convenience, let us define

Υ ≡
∫

R
dx

∫

R
dy λ(x)λ(y)G(1)(x, y) (5.78)

and so we can compute the positive symplectic eigenvalue of our covariance matrix

iΩσ = − i
2

(
0 −e2r

Υ + e−2r 0

)
, ν ≡ Eig+(iΩσ) = 1

2

√
2Υe2r + 1. (5.79)

Now, we can use the f(ν) defined in (5.77) and the above ν eigenvalue. For large values
of Υe2r, we have

f(ν) = (1 + 1
2

log
(
Ae2r

2

)
) +O

(
A−1e−2r

)

= 1
2

log(Υ) + r +
(
1− 1

2
log(2)

)
+O

(
A−1e−2r

)
,

(5.80)

hence as r increases so does the entanglement entropy, and also as the variance of the
fluctuations Υ. We see that the entanglement entropy is thus linear in r, the squeezing
parameter, but the energetic cost, as seen in (5.55), grows exponentially with the squeezing
parameter.
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5.3.3 Discrete Variable Multipoint Measurement

Energy injection

We can consider the energy injection for a multi-point phase estimation procedure using
qubits or, equivalently, spin-like qudits. Suppose we have a set of indices A for the sample
points, and smearings {λk}k∈A ⊂ B for some orthogonal basis B of the square integrable
functions. The interaction Hamiltonian is of the form

HA ≡
∑

k∈A

J̃k ⊗ Φλk =
∑

k∈A

∫
dx λk(x)J̃k ⊗ Φ(x). (5.81)

where we used a shifted9 J , which is essentially like a d-level spin.

J̃k ≡ 1
d
(Jk − (d− 1)/2)) (5.82)

where Jk is the J operator for the kth qubit, and J is as we have defined it in previous
sections:

J =
d−1∑

k=0

k |k〉〈k| . (5.83)

while in the case of qubits emulating a qudit, we have

J 7→
N∑

j=1

sj, sj ≡
2j

2N
(I + σ

(j)
z )

2
= 2j−N |1〉〈1|j . (5.84)

The time evolution unitary associated with this Hamiltonian is

UA ≡ T exp

(
−i
∫

R
dt δ(t)HA

)
= exp(−iHA) = exp

(
−i
∑

k∈A

Jk ⊗ Φλk

)
. (5.85)

As was the case with the continuous-variable version of this protocol, we want to cal-
culate

∆E = 〈Ψ0|U †AHFUA |Ψ0〉 − 〈Ψ0|HF |Ψ0〉 , (5.86)

where

HF = 1
2

∑

f∈B

Π2
f‖f‖2 + 1

2

∑

f,g∈B

ΦfΦg
(f ′, g′)

‖f‖2‖g‖2
, (5.87)

9This is to have a null first moment in our expectation value.
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and the initial state of the field is the vacuum |0〉, and for the probes it is the superposition

|x0〉 ≡ 1√
d

∑
l∈Zd
|l〉 = F |0〉, thus |Ψ0〉 = |x0〉⊗|A| |0〉.

Now, as the algebra is the same, we can reuse our result from (5.54),

U †AHFUA −HF = −∑j J̃jΠλj‖λj‖2 + 1
2

∑
j J̃

2
j ‖λj‖2. (5.88)

Now, since the first moments of the vacuum vanish, we get

∆E = 1
2

∑
k∈A 〈J̃2

k 〉0 ‖λk‖2 = 1
d

∑
j∈Zd

(j − d−1
2

)2
∑

k∈A‖λk‖2 = d2−1
12

∑
k∈A‖λk‖2. (5.89)

Thus we see that the energy invested in the field scales at the square of the dimensions
of the qudit. Hence, for n qubits forming a 2n dimensional qudit, the energy would scale
as ∆E ∼ O(e2n). Thus, to perform phase estimation with qubits, the energy scales ex-
ponentially with the number of qubits. Note that this is very similar to the fact that the
energy injection in the continuous variable case scales as the exponential of the squeezing
parameter r.

5.4 Harvesting Quantum Information & Entanglement

In the above, we used quantum memories to store information about the quantum field.
Specifically, this was classical information about a certain observable of the field, obtained
by either continuous-variable or discrete/continuous variable hybrid versions of the phase
estimation algorithm. In this section, instead of harvesting classical information, we aim to
swap quantum information contained in a “subsystem” of the quantum field onto a certain
quantum memory. To this end, we will construct a protocol which loads quantum infor-
mation about the field onto a continuous-variable probe’s memory. We will also consider
how this protocol can be adapted to discrete-variable quantum probes, which will yield a
form of Quantum Analog-to-Digital Converter (QADC). Finally, we will explore how such
a swapping of quantum information can be used to harvest entanglement from the vacuum.
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5.4.1 Swapping Quantum Information

Continuous Variable

Let us first study a continuous-variable version of the SWAP gate [71], which can be
decomposed in various different ways:

U1↔2 = eiX1P2eiπa
†
1a1e−iP1X2e−iX1P2

= eiπa
†
1a1e−iX1P2e−iP1X2e−iX1P2

= eiπa
†
1a1ei

π
2

(X2P1−X1P2)

= eiπa
†
1a1e

π
2

(a†2a1−a†1a2),

(5.90)

we see that it is a passive Gaussian transformation10 followed by a phase rotation. Both
of these are Gaussian transformations. Using our knowledge of Gaussian transformations,
we can work out the representation of the SWAP gate on phase space. First, the transfor-

mation U ≡ e−iX1P2e−iP1X2e−iX1P2 = ei
π
2

(X2P1−X1P2) = e
π
2

(a†2a1−a†1a2), transforms the ladder
operators as

U :




a1

a2

a†1
a†2


 7→




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0







a1

a2

a†1
a†2


 =




−a2

a1

−a†2
a†1


 . (5.91)

Thus the representation on the ladder operators looks like −i(Y ⊕Y ) where Y is the usual
2× 2 Pauli matrix σy. Notice that, up to a phase correction, the information in system 2
has already been transferred to system 1, all that remains for us to obtain Following this

transformation, the phase flip eiπa
†
1a1 has the matrix representation given by −(Z ⊕ Z), Z

being the usual σz. So, the swap gate, which is the composition of the passive Gaussian
transformation and the phase flip gate, is given by

U1↔2 = eiπa
†
1a1e

π
2

(a†2a1−a†1a2) ∼= [−(Z ⊕ Z)][−i(Y ⊕ Y )] = X ⊕X =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 , (5.92)

10e.g., analogous to a beam splitter in quantum optics
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which, when acting on a vector of ladder operators, transforms it as

U1↔2 :




a1

a2

a†1
a†2


 7→




a2

a1

a†2
a†1


 . (5.93)

We see that it is indeed a gate that implements a swapping of the states in phase space.

Now, the above gate works for any two harmonic oscillators, hence, to apply this concept
to quantum fields, we must identify how to interact with a “single oscillator subsystem” of
the quantum field. Our approach will then consist of swapping the states between a probe
oscillator system an that of the quantum field.

In our above construction, we have the quadratures X1, P1, X2, P2, we can consider
the qudratures X1 and P1 to be the quadratures of the probe harmonic oscillator. As for
X2 and P2, we would like to define them in terms of some type of smeared observables of
the quantum field. as those we have covered in this chapter. We can define the following
quadratures:

X2 7→Φλ ≡
∫

R
dxλ(x)Φ(x),

P2 7→Πλ ≡
1

‖λ‖2

∫

R
dxλ(x)Π(x),

(5.94)

where, as one may recall, the norm in the above is the usual L2(R) norm, ‖λ‖ ≡ ‖λ‖2,
and the above normalization guarantees that these two operators obey the usual canonical
commutation relations [Φλ,Πλ] = i.

As we have covered, in this chapter, these new operators we have defined can be con-
sidered to be observables of a “subsystem” of the quantum field. Since they obey the
usual canonical commutation relations, we can consider this subsystem’s Hilbert space to
be effectively that of a harmonic oscillator. Thus, the state of this subsystem will have a
certain phase space representation, we can compute the first and second moments of the
the state of the quantum field in terms of the quadratures we have defined. For example,
given the initial state of the field being the ground state, an element of the covariance
matrix would be given by 〈0|ΦλΦλ |0〉 =

∫
dxλ(x)

∫
dyλ(y) 〈0|Φ(x)Φ(y) |0〉, which is the

usual Wightmann field correlator averaged with respect to the spatial coupling function.
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Before we restrict ourselves to specific cases, let us construct the sequence of interac-
tions between the probe and the field which must be executed in order to swap quantum
information between the field and the probe. Let X, P , c, c† be the quadratures and
ladder operators of the probe oscillator, while Φλ and Πλ are the field observables defined
in (5.94). Looking back at (5.95), it is clear that we want to implement the sequence of
unitaries given by:

Uswap = eiπcc
†
e−iX⊗Πλe−iP⊗Φλe−iX⊗Πλ . (5.95)

To perform the first 3 unitaries in this sequence, we can consider a sequence of instantaneous
interactions. For ε infinitesimal, we could consider the time evolution operator generated
by the interaction Hamiltonian given by

HI(t) = δ(t)X ⊗ Πλ + δ(t− ε)P ⊗ Φλ + δ(t− 2ε)X ⊗ Πλ. (5.96)

With HF being the free Hamiltonian of the field, the time evolution operation for the
interaction is given by

T exp

(
−i
∫ 3ε

−ε
dt (HI(t) +HF )

)
= e−iX⊗Πλe−iP⊗Φλe−iX⊗Πλ +O(ε) (5.97)

thus up to O(ε) corrections, we would get the correct unitary sequence for the swap gate.
For our purposes, we will consider the limit where ε→ 0; we will drop the above correction
factor from our calculations for simplicity.

Continuous to Discrete Variable

Recall that a qudit can be considered to have quadratures, i.e. the generators of the
Heisenberg-Weyl Z and X, which are given by J and FJF † respectively. That is, to gen-
erate X instead of Z, if we replace interactions in the above by spin-like interactions (J
coupling) which are conjugated by Fourier transforms, then instead of generating transla-
tions of one quadrature, we generate translations of the conjugate variable.

As we have seen, we can emulate a 2N -dimensional qudit by using N qubits. Since we
know how to perform the quantum Fourier transform in a polynomial number of gates, we
can implement the swap gate with Unruh-deWitt interactions and a polynomial number of
multi-qubit gates. For simplicity, we ignore the time evolution of the field in between the
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various operations being applied, as an idealization we consider them to be instantaneous.
The interaction Hamiltonian begins with

δ(t)
N∑

j=1

sj ⊗ Πλ = δ(t)
N∑

j=1

2j

2N
σ(j)
z ⊗ Πλ ≡ δ(t)J ⊗ Πλ (5.98)

where we defined J for convenience

J ≡
N∑

j=1

sj =
N∑

j=1

2j

2N
σ(j)
z . (5.99)

Note that here J is the generator of the Heisenberg-Weyl Z operator for the emulated
qudit, it is composed of the individual spins with different couplings.

Following the above interaction, the inverse quantum Fourier transform, F †, is applied
onto the qubits. Following this, we make an interaction of the form δ(t− t1)J ⊗Φλ where
t1 is the time at which this interaction is applied, we assume it is very close to 0 as our
idealization. Following this second interaction, we apply the Quantum Fourier transform
onto the qubits, F , then finally the third interaction δ(t− t2)J ⊗Πλ, where t2 is assumed
to be infinitesimally close to t1 for convenience. At this point, we can apply a “qudit
NOT gate” if we want to have a full swap gate. As one can check, applying the Fourier
transform twice, i.e. F2 = FF is one way to do the trick, as FFZF †F † = FXF † = Z†,
which means that a standard qudit basis vector would get mapped as |j〉 7→ |−j〉 as desired.
There are other ways to implement this gate, but for our purposes we will use the double
Fourier approach. Thus, under time evolution by the above interactions punctuated by the
transformations on the qubits described above, in the limit of instantaneous operations,
we get that the total swap gate looking like

Uswap = F2e−iJ⊗ΠλFe−iJ⊗ΦλF †e−iJ⊗Πλ . (5.100)

Note that if we really want to optimize the number of gates need for the swap, as F3 = F †,
we could instead perform

Uswap = eiJ⊗ΠλF †e−iJ⊗ΦλF †e−iJ⊗Πλ (5.101)

instead. In any case, with 3 different pulses of interactions between the field and the qubits,
and with a polynomial number of gates on the qubits, we can achieve a continuous-variable
to discrete variable swap gate.
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For large dimensions, this conversion from quantum analog (quantum field) to quan-
tum digital (qubits) should have a good level of precision, just like in the phase estimation
algorithm where increasing the number of qubits aided in adding precision to the measure-
ment. Our construction is essentially a Quantum Analog-to-Digital converter, which we
could call a QADC. The usual “quantization error” from sampling theory in this case is
bit and phase flip errors, i.e. errors caused by our attempt to take a state on an infinite
Wigner phase space and map it to a discrete Wigner function over a finite space. Geomet-
rically, this is like transferring a function which is defined on the real plane onto a toroidal
mesh, in the limit of infinitely fine mesh on the torus, any function which has compact
(or approximately compact, like a Gaussian) should be accurately represented on the mesh.

Although this QADC could be of great interest, for the purpose of our calculations we
will stick to the continuous-variable probe case, as it is mathematically cleaner while being
fully analogous to an idealized (asymptotic) case of the QADC. Additionally, the analysis
for estimating the amplitude of a wavefunction, in the context of basic quantum mechanics
rather than QFT, using a quantum analog-to-digital converter has been done previously
[62].

5.4.2 Energetic Cost of Swap

We can compute the energetic cost of a swap gate when swapping the state of a probe har-
monic oscillator with that of a subspace of the field, for an initial state of the field being
in vacuum. Instead of working in the Schrodinger picture, we can work in the Heisenberg
picture, that is, instead of transforming the states, we can transform the operators for
which we take expectation values.

Consider a harmonic oscillator with quadratures X and P , and some initial state |ψ〉.
Now, consider the set of quadratures of smeared observables, Φλ and Πλ, as in (5.94), for
a function λ compactly supported, belonging in some orthogonal basis B for L2(R). Now,
say we perform the swap unitary between these two Hilbert spaces, without the last phase
correction11, that is

U ≡ ei
π
2

(PΦλ−XΠλ) = e−iXΠλe−iPΦλe−iXΠλ . (5.102)

11In the case of applying the full swap with the phase correction, as it is at the end of the sequence of
unitaries and it commutes with the field’s Hamiltonian (as it acts strictly on the probe), the end result is the
same. Let V be the phase unitary on the probe, then [V ⊗I, I⊗H] = 0 =⇒ (V †⊗I)(I⊗H)(V ⊗I) = H.
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Now, recall that the Hamiltonian of the field can be written as

HF = 1
2

∑

f∈B

Π2
f‖f‖2 + 1

2

∑

f,g∈B

ΦfΦg
(f ′, g′)

‖f‖2‖g‖2
. (5.103)

and so if we look at how the unitary swap maps the operators in the summands, for
f, g ∈ B, it can be shown that

U †ΦfU = Xδfλ + Φf (1− δfλ), U †ΠfU = Pδfλ + Πf (1− δfλ), (5.104)

that is, the swap gate maps operators in one Hilbert space (the subspace of the field) into
corresponding operators in the other Hilbert space (that of the probe). Note in the above
we denote δfλ ≡ δ[f − λ] the delta measure with respect to an appropriate measure on B.

Now, we are ready to compute the energetic cost of performing this swap gate. Consider
an initial state |Ψ0〉 ≡ |ψ〉 |0〉 where |ψ〉 is some generic pure state of the probe12 while |0〉
is the quantum field’s vacuum. Let 〈·〉 ≡ 〈Ψ0| · |Ψ0〉,

∆E = 〈U †HU〉 − 〈H〉 = 1
2

∑

f∈B

〈(Pδfλ + Πf (1− δfλ))2 − Π2
f〉 ‖f‖2

+ 1
2

∑

f,g∈B

〈(Xδfλ + Φf (1− δfλ)) (Xδgλ + Φg(1− δgλ))− ΦfΦg〉 (f ′,g′)
‖f‖2‖g‖2

= 1
2

(
〈P 2〉+ 〈Π2

λ〉
)
‖λ‖2 + 1

2

∑

f,g∈B

(
〈X2〉 δfλδgλ + δgλ(1− δfλ)����〈XΦf〉

+ δfλ(1− δgλ)����〈XΦg〉+ (−δgλ − δfλ + δgλδfλ) 〈ΦfΦg〉
)

(f ′,g′)
‖f‖2‖g‖2

= 1
2

(
〈P 2〉+ 〈Π2

λ〉
)
‖λ‖2 + 1

2

(
〈X2〉+ 〈Φ2

λ〉
) (λ′,λ′)
‖λ‖2‖λ‖2

− 1
2

∑

f∈B

〈ΦfΦλ〉 (f ′,λ′)
‖f‖2‖λ‖2 − 1

2

∑

g∈B

〈ΦλΦg〉 (λ′,g′)
‖λ‖2‖g‖2

= 1
2

(
〈P 2〉+ 〈Π2

λ〉
)
‖λ‖2 + 1

2

(
〈X2〉+ 〈Φ2

λ〉
) (λ′,λ′)
‖λ‖2‖λ‖2 − 〈Φλ′Φλ′〉 1

‖λ‖2

(5.105)

where we use 〈XΦg〉 = 〈ψ|X|ψ〉�����〈0|Φg|0〉 = 0 the fact that the first moments vanish for
the vacuum, the fact that λ is compact to integrate by parts, and we can prove the last
equality as follows:

−
∑

f∈B

〈ΦfΦλ〉 (f ′,λ′)
‖f‖2‖λ‖2 = 1

‖λ‖2 〈
(
∑
f∈B Φff,λ

′′)

‖f‖2 Φλ〉 = −〈Φλ′Φλ′〉 1
‖λ‖2 (5.106)

12This calculation is easily extendable to mixed states of the probe.
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where the last equality can be seen from:

(
∑

f∈B Φff, λ
′′)

‖f‖2
=

∫
dxλ′′(x)

(∑
f∈B Φff(x)

‖f‖2

)

︸ ︷︷ ︸
Φ(x)

= Φλ′′
(5.107)

and from using Wightmann function 〈0|Φ(x)Φ(y)|0〉 = G+(x− y) to integrate by parts a
few more times,

〈Φλ′′Φλ〉 =

∫
dx

∫
dyλ′′(x)G+(x− y)λ(y)

= −
∫

dx

∫
dyλ′(x)G′+(x− y)λ(y)

= −
∫

dx

∫
dyλ′(x)G′+(x− y)λ′(y) = −〈Φλ′Φλ′〉 .

(5.108)

5.4.3 Entanglement Harvesting from the Vacuum

We can use our swap gate to construct a protocol for entanglement harvesting. That is, as
certain states of the quantum field can have spacelike entanglement between subsystems,
if we swap quantum information from subsystems of the field onto harmonic oscillator
probes, then initially unentangled probes become entangled.

The concept of harvesting entanglement has been around for over three decades [64],
it has been an active field of research ever since, with further advances towards imple-
mentability being recently made [56, 57]. The goal of this subsection is to contribute to
this body of literature by considering a fairly ideal case (instantaneous couplings, harmonic
oscillator probes, resulting in perfect swap gates), to see what is the limit of how much
entanglement one can harvest using only two compactly supported probes.

Consider Alice and Bob, which are spacelike separated. Suppose Alice has access to a
region A of space, while Bob has access to region B. Let λ and µ be real-valued functions
which are compactly supported on these regions, with mutually disjoint support, A =
supp(λ), B = supp(µ), and A∩B = ∅. We can use these functions to define the subsystems
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of the quantum field Alice and Bob will have access to, let

ΦA ≡ Φλ =

∫

R
dxλ(x)Φ(x),

ΠA ≡ Πλ =
1

‖λ‖2

∫

R
dxλ(x)Π(x),

ΦB ≡ Φµ =

∫

R
dxµ(x)Φ(x),

ΠB ≡ Πµ =
1

‖µ‖2

∫

R
dxµ(x)Π(x).

(5.109)

Note that, for λ and µ with disjoint support, we have that the A subsystem field quadra-
tures commute with that of the B subsystem. This again fits into the formalism of field
subsystems we ahve covered in this chapter. We consider Alice and Bob to each have in
their possession a probe harmonic oscillator, these have quadratures XA, PA, XB and PB.
Alice and Bob’s task will be to swap quantum information from the field subsystems they
have access to onto their respective probe oscillators. To do so, they can both perform
the continuous-variable swap gate as we have seen previously, and since their operations
commute, they can perform these simultaneously. So, Alice’s operations are given by

UA ≡ eiπcAc
†
Ae−iXA⊗ΠAe−iPA⊗ΦAe−iXA⊗ΠA (5.110)

where cA ≡ (XA + iPA)/
√

2 is a ladder operator for Alice’s probe oscillator. Similarly for
Bob, he applies the following sequence of unitaries on his systems:

UB ≡ eiπcBc
†
Be−iXB⊗ΠBe−iPB⊗ΦBe−iXB⊗ΠB (5.111)

where cB ≡ (XB + iPB)/
√

2 is a ladder operator for Alice’s probe oscillator. The last pulse
in the sequence is a local unitary on the probe system, although it is useful for having the
final post-sequence state of the probe be exactly that of the field subspace, as it is a local
unitary it will not affect the harvesting of entanglement.

Now, as we have seen from our previous construction of the swap gate, the state in
phase space gets swapped (completely accurately in our idealized case of instantaneous
interactions). So, effectively, the first and second moments of the quadratures get swapped
as

XA ↔ ΦA, PA ↔ ΠA, XB ↔ ΦB, PB ↔ ΠB. (5.112)

Now, let us compute the collected entanglement in the specific case where we are
collecting entanglement for a massless quantum scalar field in 1+1 dimensions. Suppose
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we start with the vacuum state of the field |0〉F and some initial states for the harmonic
oscillators, |ψ0〉AB, which, for our purposes we can assume to be a product state that is
Gaussian, |ψ0〉AB ≡ |A0〉A |B0〉B. So, overall, the initial state is given by

|Ψ0〉 ≡ |0〉F |ψ0〉AB = |0〉F |A0〉A |B0〉B . (5.113)

Let us define |Ψ1〉 as the state after Alice and Bob’s unitaries are performed

|Ψ1〉 ≡ UAUB |Ψ0〉 . (5.114)

Now, if we consider the Gaussian state representation of this state for the quadratures
XA, PA, XB, PB, ΦA, ΠA, ΦB, ΠB, we would see that the first and second moments
as they were initially have been swapped as in equation (5.112). Thus, to get the Wigner
function of the probe oscillators after the swap (i.e. for |Ψ1〉), we simply have to compute
the covariance matrix elements of the field subsystems pre-swap (i.e., for |Ψ0〉). To make
this key statement clear, let us introduce some notation, let us define the following vectors
of operators

~O ≡




XA

PA
XB

PB


 , ~R ≡




ΦA

ΠA

ΦB

ΠB


 . (5.115)

Then the first moments of the probe oscillators post-swap can be shown to be null:

dj = 〈Ψ1|Oj |Ψ1〉 = 〈Ψ0|Rj |Ψ0〉 = 0 since 〈0|Φ(x) |0〉 = 〈0|Π(x) |0〉 = 0 ∀x. (5.116)

Now, as for the second moments (using the fact that we computed the first moments as
null) are given by

σij =
1

2
〈Ψ1| {Oi, Oj} |Ψ1〉 =

1

2
〈Ψ0| {Ri, Rj} |Ψ0〉 =

1

2
〈0|RiRj +RjRi |0〉 . (5.117)

And so, as we can compute these covariance matrix elements explicitly (they are two-point
functions averaged with respect to the λ and µ coupling functions), then we know exactly
that the entanglement harvested by these oscillators is the totality of the entanglement
between the A and B subsystems of the quantum field that we have defined.

For simplicity, let us assume that the smearing functions are normalized13

‖λ‖ = ‖µ‖ = 1. (5.118)

13The same calculation is not much more difficult with the smearings unnormalized, it differs by having
factors of ‖λ‖−2 and ‖µ‖−2 for each momentum smearing. This breaks the block matrix symmetry (see
(5.119), the covariance matrix is made up of blocks doubly smearing the B matrix, the same for all four
blocks), hence for visual simplicity we have chosen to go for the normalized case.
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The covariance matrix is given by

σAB =

∫

R
dx

∫

R
dy

(
λ(x)λ(y)B(x, y) λ(x)µ(y)B(x, y)
λ(x)µ(y)B(x, y) µ(x)µ(y)B(x, y)

)
(5.119)

where B(x, y) is a matrix-valued function dependent on the field’s vacuum correlators

B(x, y) ≡ 1

2

(
〈0| {Φ(x),Φ(y)} |0〉 〈0| {Φ(x),Π(y)} |0〉
〈0| {Φ(x),Π(y)} |0〉 〈0| {Π(x),Π(y)} |0〉

)
. (5.120)

For our specific case of massless fields in 1+1 dimensions, we can compute more explic-
itly the two-point functions which make up the B matrix:

B(x, y) =
1

4π

∫

R
dk

(
|k|−1 cos(k(x− y)) sin(k(x− y))

sin(k(x− y)) |k| cos(k(x− y))

)

=
1

4π

(∫
R dk |k|−1 cos(k(x− y)) 0

0
∫

R dk |k| cos(k(x− y))

)
.

(5.121)

As we are working in 1+1 dimensions with a massless scalar field on a noncompact spatial
interval, these integrals diverge because of the well-known UV/IR divergences. There are
technically ways one can regulate these integrals by adding ultraviolet and infrared cutoffs
[59], suppose we require Υ < |k| < Ω, then :

〈0|Φ(x)Φ(y) |0〉 = 1
2π

[Ci(Ω(x− y))− Ci(Υ(x− y))] (5.122)

〈0|Π(x)Π(y) |0〉 =
cos(Ω(x− y))− cos(Υ(x− y))

2π(x− y)2
+

Ω sin(Ω(x− y))−Υ sin(Υ(x− y))

2π(x− y)
(5.123)

where Ci is known as the cosine integral function.

Note that, depending on the choice of smearing, we may not need an IR cutoff. Using
the following notation for the Fourier transform:

f̃(ω) =

∫

R
dxeikxf(x), (5.124)

we can write the following covarinace matrix block elements. Consider functions fj, fm ∈
{λ, µ}, then

∫

R
dx

∫

R
dyfj(x)fm(y)B(x, y) =

1

4π

∫

R
dk
(
f̃j(k)f̃m(−k) + f̃m(k)f̃j(−k)

)(|k|−1 0
0 |k|

)

(5.125)
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hence for compactly supported functions λ and µ, the infrared divergence is taken care of.
On the other hand, the UV divergence of the diagonal terms (j = m) remains and has to
be dealt with by using the UV-regularized Green’s function.

Thus, we have shown how to compute the elements of the joint covariance matrix σAB.
Because we should expect the state to be mixed on this subspace (indeed the region A∪B
will be entangled with its complement, hence the state on A ∪ B will be mixed) then we
cannot use a simple formula for entanglement entropy being the entropy of a marginal.
Instead, what we can use is the logarithmic negativity, which provides a bound on the
amount of distillable entanglement that was extracted [2].

To compute this measure of entanglement, we can take the “partial transpose” of the
density matrix ρTAAB, in phase space, this amounts to performing the following transforma-
tion14

σ̃AB ≡ (σz ⊕ I)σAB(σz ⊕ I), (5.126)

now, since we have shown that each matrix block B is diagonal, this gives us a covariance
matrix

σ̃AB =

∫

R
dx

∫

R
dy

(
λ(x)λ(y)B(x, y) λ(x)µ(y)C(x, y)
λ(x)µ(y)C(x, y) µ(x)µ(y)B(x, y)

)
(5.127)

where

C(x, y) = σzB(x, y) =
1

4π

∫

R
dk cos(k(x− y))

(
|k|−1 0

0 −|k|

)
. (5.128)

To compute the logarithmic negativity, denoting ν̃k as the symplectic eigenvalues of σ̃, we
compute the following [2]

EN (σ) =

{
−∑k log(ν̃k) for k : ν̃k < 1

0 if ν̃j ≥ 1 ∀j . (5.129)

As these eigenvalues depend on the specific choice of smearing, at this point one could
choose a specific set of smearings and compute the logarithmic negativity numerically.
This is left as an exercise to the reader.

14As usual, we denote the Z Pauli matrix as σz ≡
(

1 0
0 −1

)
.
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Chapter 6

QET with Quantum Fields

The protocol of QET relies heavily on the quality (and quantity) of the information col-
lected by Alice during her measurement. In this section, we model local POVMs on a
quantum field via a local interaction of the field with an measurement probe system. By
varying our measurement scheme, we can explore how QET relies on the amount of knowl-
edge gained by our agents (Alice and Bob) via measurement, and see how Bob can optimally
exploit this measurement information via his knowledge of the correlations between Alice’s
measurement results and his local field configurations.

We find the optimal QET scheme for linear interactions between a first-quantized sys-
tem and the field, for both the measurement and energy extraction steps of the protocol.
In doing so, we develop machinery that provides an operational interpretation to Shannon
sampling theory of quantum fields [59].

6.1 Multi-Sample QET with Harmonic Oscillators

6.1.1 Setup

For the quantum field, we consider a 1+1 dimensional massless Klein-Gordon field, quan-
tized in the null coordinates (x± ≡ t ± x), we consider the left and right-moving sectors
independently [30]:

Φ(x) = Φ+(x+) + Φ−(x−), (6.1)
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where

Φ±(x±) ≡
∫

R+

dω 1√
4πω

[
a±ωe

−iωx± + a†±ωe
iωx±

]
. (6.2)

The canonically conjugate momenta of these field components are given by Π±(x±) ≡
∂±Φ±(x±), or explicitly

Π±(x±) = −i
∫

R+

dω
√

ω
4π

[
a±ωe

−iωx± − a†±ωeiωx
±
]
. (6.3)

The free Hamiltonian of this field is given by a spatial integral of the above Hamiltonian
density

HF =

∫

R
dxHF (x) =

∫

R
dx
[
ε+(x+) + ε−(x−)

]

=

∫

R+

dω
ω

2

[
a†+ωa+ω + a†−ωa−ω

]
,

(6.4)

where : ∗ : denotes normal ordering and the labels +,− denote left and right-moving
components respectively.

Since the left moving (+) and right-moving (−) parts of the field are decoupled, we can
act upon them individually. In order to make it plain that the energy will be teleported
rather than transported from A to B, we will couple A and B only to the left moving
modes, while B is allowed to be to the right of A. As we will work exclusively with left
moving modes, for convenience we drop their + subscript.

6.1.2 Energy Calculation

6.1.3 Energetic Cost of Measurement

We start with an initial state of the field in its ground state, |0〉F and the set of L probe
harmonic oscillators are in a product state of individually squeezed states, each with the
same squeezing parameter ξ = r ∈ R. Thus for the joint system, the initial state is

|Ψ0〉 ≡ |~ξ〉C |0〉F (6.5)

where |~ξ〉 is as defined in (5.46), with constant squeezing parameters ξj ≡ −r ∀j. The
subscripts C and F are used to indicate whether the state is in the (C) control (probes’)
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Hilbert space or in the quantum field’s (F ) Hilbert space.

Alice’s measurement interaction is that of (5.45), with a temporally instantaneous
coupling restricted to the left-moving component of the field, i.e. δ(t)HA where

HA =
L∑

j=1

∫

R
dx λj(x)Pj ⊗ Φ+(x)

= i

L∑

j=1

∫

R
dpj |pj〉〈pj| ⊗

∫

R+

dω
(
αjωpja

†
ω − α∗jωpjaω

)
,

(6.6)

where in the above we used the eigendecomposition of each of the harmonic oscillators’ P
quadratures, Pj =

∫
R dpj pj |pj〉〈pj|, and we introduced the following parameter

αjω ≡ −i
λ̃j(ω)√

4πω
. (6.7)

In the latter equation, we used the following notation for the Fourier transformed spatial
profiles of the couplings

λ̃j(ω) ≡
∫

R
dx eiωxλj(x). (6.8)

The time evolution unitary associated to this interaction is given by

UA ≡ T exp

(
−i
∫

R
dt δ(t)HA

)
= exp(−iHA)

=
L∏

j=0

exp

(∫

R
dx λj(x)Pj ⊗ Φ+(x)

)

=
L∏

j=0

∫

R
dpj |pj〉〈pj| ⊗ exp

(∫

R+

dω
(
αjωpja

†
ω − α∗jωpjaω

))

≡
∫

RL
dL~p |~p〉〈~p| ⊗D(~p · ~α)

(6.9)
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where

D(~p · ~α) ≡ exp

(
~p ·
∫

R+

dω(~αωa
†
ω − ~α∗ωaω)

)
, (~αω)|j ≡ αjω = −i λ̃j(ω)√

4πω

≡ exp

(∑

j

∫

R+

dω
(
αjωpja

†
ω − α∗jωpjaω

)
) (6.10)

is a multi-frequency displacement operator of the field, whose displacement parameter is
dependent on the state of the control harmonic oscillators with respect to the ~P eigenbasis.
Effectively, this is like a controlled-displacement gate, with the harmonic oscillators as the
control and the quantum field as the target.

The state of the system after the interaction is given by

|Ψ1〉 ≡ UA |Ψ0〉 =

∫

RL
dL~p |~p〉〈~p|~ξ〉 ⊗ |~p · ~α〉 (6.11)

where |~p · ~α〉 = D(~p · ~α) |0〉 is a coherent state of the field.

We can compute the energy invested in the field by Alice’s interaction by computing
the difference in total energy in the field before and after the interaction,

EA = 〈Ψ1| I ⊗HF |Ψ1〉 − 〈Ψ0| I ⊗HF |Ψ0〉 = 〈Ψ1| I ⊗HF |Ψ1〉����
��:0〈0|HF |0〉 (6.12)

as we chose to consider the normal-ordered Hamiltonian, our ground state energy expec-
tation value vanishes. Thus, the energy injected by Alice is given by

EA = 〈Ψ1| I ⊗HF |Ψ1〉 =

∫

RL
dL~p

∫

RL
dL~q 〈~ξ|~q〉 〈~q|~p〉︸︷︷︸

δ(L)(~q−~p)

〈~p|~ξ〉
∫

R+

dω 〈~q · ~α|ωa†ωaω |~p · ~α〉

=

∫

RL
dL~p | 〈~p|~ξ〉 |2

∫

R+

dω ω|~p · ~αω|2

=

∫

RL
dL~p 〈~ξ|~p〉〈~p|~ξ〉

∫

R+

dω ω(~p · ~α∗ω)(~p · ~αω) =
∑

j,k∈A

〈~ξ|PjPk |~ξ〉︸ ︷︷ ︸
1
2
e2rδjk

∫

R+

dω ωα∗jωαkω

=
∑

j∈A

1
2
e2r

∫

R+

dω ωα∗jωαjω =
e2r

8π

∑

j∈A

∫

R+

dω|λ̃j(ω)|2

(6.13)
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Now, we can do a little Fourier work,
∫

R+

dω |λ̃j(ω)|2 =

∫

R+

dω λ̃j(ω)︸ ︷︷ ︸
(
∫
dxλ(x)eiωx)

λ̃j(ω)∗︸ ︷︷ ︸
(
∫
dyλj(y)e−iωy)

=

∫

R
dx

∫

R
dy λj(x)λj(y)

(∫ ∞

0

dωeiω(x−y)

)

︸ ︷︷ ︸
πδ(y−x)−i/(x−y)

=

∫

R
dx

∫

R
dy λj(x)λj(y)

(
πδ(y − x)− i

x−y

)

= π

∫

R
dx(λj(x))2 = π(‖λj‖2)2

(6.14)

where the imaginary part of the integral got cancelled by the fact that it was an odd term
(with respect to swaps x↔ y) integrated over symmetric domain.

Let us put all of this together to obtain

EA =
∑

j∈A

e2r

8π

∫

R+

dω|λ̃j(ω)|2 =
e2r

8

∑

j∈A

(‖λj‖2)2 =
Le2r

8
(‖λ‖2)2. (6.15)

Which is simply the integrated energy spectral density of the individual coupling windows
(which equals the two-norm1 of λ), times the number of coupling sites L, times the variance
of the quadratures e2r of the oscillators we couple to.

Now, if we would like to perform the LOCC version of QET, Alice could projectively
measure the ~x quadratures, and relay the classical information to Bob. Now, since the
LOCC and LOQC versions of the protocol are equivalent, we will skip the projective
measurement step and keep the whole protocol coherent.

Time evolution

We can assume that there is a certain time evolution between when Alice performs her
operations and when Bob receives the information from Alice, this gap between operations
is of a time T .

Physically, any harmonic oscillator should have a free Hamiltonian, hence so should
our system of probe oscillators. If we were to label such a Hamiltonian as HP , the probes

1The p-norm of a function f is defined as ‖f‖p ≡
(∫

Rdx|f(x)|p
)1/p
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would evolve according to a unitary free evolution operator UP = e−iHPT , this unitary
evolution could be countered by Bob by applying a local unitary U †P on the probes. As
our interactions are instantaneous, this free Hamiltonian would not affect our interactions’
time evolution operators (such as (6.10)) in the interaction picture.

Additionally, if we were to consider the probes to have a free Hamiltonian, when deal-
ing with energetics, we would have to consider the energy exchanges between the probes
systems, the field, and the classical agent which switches on and off the interactions. To
simplify our analysis, as we are mainly interested in the energetics of the field, and the
harmonic oscillators simply serve as information carriers, we can consider the probes to
have effectively no free Hamiltonian.

Thus, for our purposes, we can consider the harmonic oscillators to have no free Hamil-
tonian, while the field has the free Hamiltonian given by

HF =

∫

R+

dω ωa†ωaω (6.16)

hence we have the time evolution operator

UF = I ⊗ e−iHFT (6.17)

which, when applied to our post-Alice state |Ψ1〉, gives

UF |Ψ1〉 =

∫

RL
dL~p |~p〉〈~p|~ξ〉 ⊗ e−iHFT |~p · ~α〉 =

∫

RL
dL~p |~p〉〈~p|~ξ〉 ⊗ |~p · ~Λ〉 (6.18)

where Λj|ω = e−iωTαjω; the coherent state has been translated to the left:

|~p · ~Λ〉 = D(~p · ~Λ) |0〉 = e
∑L
j=1

∫
Rdx λj(x+T )Pj⊗Φ+(x) |0〉 . (6.19)

As the field is left-moving, the region Alice has targeted moves to the left. Hence, this will
affect the effective distance between Alice’s measurement and Bob’s target site; if Alice
and Bob are both stationary and initially at a distance L apart, then the distance between
Alice’s positive energy coherent state blob and Bob’s energy extraction site is going to be
L + T . This will factor into the output energy, as the output depends on the strength of
the correlations between the subsystem of the field Alice measured and the subsystem Bob
targets.
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6.1.4 Energy extraction

Bob’s action

Bob receives the L probe harmonic oscillators from Alice. Now, the information contained
in each harmonic oscillator is that of a local smeared observable specific to each oscilla-
tor. Similarly to Alice’s measurement targeting multiple regions, Bob’s action will involve
multiple interaction sites. As each of these sites could use the information from each of
Alice’s oscillators, there needs to be a way to replicate the information contained in Alice’s
oscillators. As the information of interest is classical (eigenvalue of an observable) this will
is possible.

Suppose Bob has M interaction sites, he has received L oscillators from Alice, then
he could could copy the ~X ∈ RL quadrature information onto M oscillators by using the
continuous-variable analog of a CNOT (adder) gate, which we described in (4.30), applied
to near-X eigenstates2, which for simplicity we can assume to be infinitely squeezed.

For our purposes, we can assume that the CNOT target states were infinitely squeezed.
For discrete-variable probes, all we would need is a qudit C-X gate to spread the quadrature
information from one qudit to multiple.

In the LOCC version of the protocol, he would receive classical information about the
value of the X quadratures of Alice’s oscillators, Bob could then prepare near-eigenstates of
X using highly squeezed states, similar to the initial squeezed states of the probe harmonic
oscillators.

To keep our calculations simple, we will assume a non-local interaction designed to
mimic the effect of the information replication protocol from above. Alternatively, as we
described in our chapter on QET on a lattice, we could separate Bob’s interaction into a
sequence of many pulses, as depicted in equation (4.41).

Consider Bob to have the interaction δ(t)HA where

HB =
∑

j∈A

∑

m∈B

θmjXj ⊗
∫

R
dx µm(x) Π+(x)

= i
∑

j∈A

∫

R
dxj |xj〉〈xj| ⊗

∫

R+

dω
(
βjωxja

†
ω − β∗jωxjaω

)
,

(6.20)

2or very squeezed states, if they are not infinitely squeezed then there will be a bit of noise in the
replication
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where A = {1, ..., L}, B = {1, ...,M} and θmj is the coupling between the jth harmonic
oscillator and the mth target site, µm(x) is the smearing function for the mth target site,
and we define the parameters

βjω ≡
∑

m∈B

θmjµ̃m(ω)

√
ω

4π
, µ̃m(ω) =

∫

R
dxeiωxµm(x). (6.21)

The time evolution operator operator associated with

UB ≡ T exp

(
−i
∫

R
dt δ(t)HB

)
= exp(−iHB)

≡
∫

RL
dL~x |~x〉〈~x| ⊗D(~x · ~β)

(6.22)

where

D(~x · ~β) =
∑

j∈A

∑

m∈B

∫

R+

dω
(
βjωxja

†
ω − β∗jωxjaω

)
. (6.23)

Applying this evolution operator onto the |Ψ2〉 state, we get

|Ψ3〉 ≡ UB |Ψ2〉 =

∫

RL
dL~x

∫

RL
dL~p |~x〉〈~x|~p〉〈~p|~ξ〉 ⊗D(~x · ~β) |~p · ~Λ〉 . (6.24)

We can compute the energy extracted by Bob, it is given by the change in the total energy
in the field caused by his action,

EB = 〈Ψ3| I ⊗HF |Ψ3〉 − 〈Ψ2| I ⊗HF |Ψ2〉 . (6.25)
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Let us compute the energy of the field after Bob’s interaction,

〈Ψ3| I ⊗HF |Ψ3〉

=

∫

RL
dL~y

∫

RL
dL~q

∫

RL
dL~x

∫

RL
dL~p 〈~y|~x〉︸ ︷︷ ︸

δ(L)(~x−~y)

〈~ξ|~q〉〈~q|~y〉〈~x|~p〉〈~p|~ξ〉

×
∫

R+

dω ω 〈~q · ~Λ|D†(~y · ~β)a†ωaωD(~x · ~β) |~p · ~Λ〉

=

∫

RL
dL~q

∫

RL
dL~x

∫

RL
dL~p 〈~ξ|~q〉〈~q|~x〉〈~x|~p〉〈~p|~ξ〉

× 〈~q · ~Λ|~p · ~Λ〉
∫

R+

dω ω
(
~q · ~Λ∗ω + ~x · ~β∗ω

)(
~p · ~Λω + ~x · ~βω

)

=

∫

RL
dL~q

∫

RL
dL~x

∫

RL
dL~p 〈~ξ|~q〉〈~q|~x〉〈~x|~p〉〈~p|~ξ〉 〈~q · ~Λ|~p · ~Λ〉

×
∫

R+

dω ω
(

(~q · ~Λ∗ω)(~p · ~Λω)︸ ︷︷ ︸
I

+(~x · ~β∗ω)(~x · ~βω)︸ ︷︷ ︸
II

+(~x · ~β∗ω)(~p · ~Λω)︸ ︷︷ ︸
III

+(~q · ~Λ∗ω)(~x · ~βω)︸ ︷︷ ︸
IV

)

(6.26)

where in the above (~βω)j ≡ βjω and (~Λω)j ≡ Λjω, and we split up our computation into
four sets of terms for tractability. Starting with the first term, we have,

I =

∫

RL
dL~q

∫

RL
dL~p 〈~ξ|~q〉〈~q|

(∫

RL
dL~x |~x〉〈~x|

)
|~p〉〈~p|~ξ〉 〈~q · ~Λ|~p · ~Λ〉

∫

R+

dω ω(~q · ~Λ∗ω)(~p · ~Λω)

=

∫

RL
dL~q

∫

RL
dL~p 〈~ξ|~q〉 〈~q|~p〉︸︷︷︸

δ(L)(~p−~q)

〈~p|~ξ〉 〈~q · ~Λ|~p · ~Λ〉
∫

R+

dω ω(~q · ~Λ∗ω)(~p · ~Λω)

=

∫

RL
dL~p 〈~ξ|~p〉〈~p|~ξ〉

∫

R+

dω ω(~p · ~Λ∗ω)(~p · ~Λω) =
∑

j,k∈A

〈~ξ|PjPk |~ξ〉︸ ︷︷ ︸
1
2
e2rδjk

∫

R+

dω ωΛ∗jωΛkω

=
∑

j∈A

1
2
e2r

∫

R+

dω ωα∗jωαjω = EA,

(6.27)

and we see that we have a term corresponding to to the energy Alice injected in the field.
This is to be expected as this term is conserved by free time evolution and is associated
with the left-moving positive energy packet Alice injected, as Bob’s action is local it cannot
affect this packet’s energetic contribution. Now, before we compute the second term, let
A and B be (Hermitian) matrices whose elements are defined as

Ajk ≡
∫

R+

dωΛ∗jωΛkω (6.28)
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Bjk ≡
∫

R+

dω ωβ∗jωβkω. (6.29)

Notice that the inner product between coherent states can be written as

〈~q · ~Λ|~p · ~Λ〉 = exp
(
~qTA~p− 1

2
~qTA~q − 1

2
~pTA~p

)
(6.30)

which is a Gaussian function. Now, let us compute the second term,

II =

∫

RL
dL~q

∫

RL
dL~p

∫

RL
dL~x 〈~ξ|~q〉〈~q|~x〉〈~x|~p〉〈~p|~ξ〉 〈~q · ~Λ|~p · ~Λ〉

∫

R+

dω ω(~x · ~β∗ω)(~x · ~βω)

=

∫

RL
dL~q

∫

RL
dL~p

∫

RL
dL~x 〈~ξ|~q〉〈~q|~x〉〈~x|~p〉〈~p|~ξ〉 e~qTA~p−

1
2
~qTA~q−1

2
~pTA~p ~xTB~x

=
1

2L
√
π

3L
eLr

∫

RL
dL~x

∫

RL
dL~q

∫

RL
dL~p ~xTB~x ei(~p−~q)·~xe−

1
2

(~p·~p+~q·~q)e−2r

e~q
TA~p−1

2
~qTA~q−1

2
~pTA~p

(6.31)

which is a Gaussian integral in 3L dimensions. As these integrals and the answer itself is
somewhat unwieldy, the calculation is presented in appendix A.1.

As for the final two terms, these will form the “teleported” energy term, notice that
III = IV∗, so III + IV = 2Re(III) where Re denotes the real part of a complex number.
Before we compute this third term, let us define a new matrix, Q, which has elements
defined as

Qjk =

∫

R+

dω ωβ∗jωΛkω. (6.32)

Now, let us compute the third term, we can take the real part later,

III =

∫

RL
dL~q

∫

RL
dL~p

∫

RL
dL~x 〈~ξ|~q〉〈~q|~x〉〈~x|~p〉〈~p|~ξ〉 〈~q · ~Λ|~p · ~Λ〉

∫

R+

dω ω(~x · ~β∗ω)(~p · ~Λω)

=

∫

RL
dL~q

∫

RL
dL~p

∫

RL
dL~x 〈~ξ|~q〉〈~q|~x〉〈~x|~p〉〈~p|~ξ〉 〈~q · ~Λ|~p · ~Λ〉 ~xTQ~p

=
1

2L
√
π

3L
eLr

∫

RL
dL~x

∫

RL
dL~q

∫

RL
dL~p ~xTQ~p ei(~p−~q)·~xe−

1
2

(~p·~p+~q·~q)e−2r

e~q
TA~p−1

2
~qTA~q−1

2
~pTA~p

(6.33)

which is another Gaussian integral we can compute, and we do so in appendix A.1.

The answer is presented in appendix A.1, overall, the answer depends on the A, B,
and Q matrices, we can examine what exactly these expressions are.

Let us look back at what exactly the matrix elements of A are
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Ajk =

∫

R+

dωΛ∗jωΛkω

=
1

4π

∫

R+

dω
1

ω
λ̃j(ω)∗︸ ︷︷ ︸

(
∫
dyλj(y)e−iωy)

λ̃k(ω)︸ ︷︷ ︸
(
∫
dxλk(x)eiωx)

=
1

4π

∫

R
dx

∫

R
dy λj(y)λk(x)

(∫ ∞

0

dωω−1eiω(x−y)

)

︸ ︷︷ ︸
−γ−log |x−y|−iπ

2
sgn(x−y)

=
1

4π

∫

R
dx

∫

R
dy λj(y)λk(x) 〈0|Φ+(y)Φ+(x)|0〉

(6.34)

where γ ≈ 0.57721 is the Euler-Mascheroni constant and 〈0|Φ+(x)Φ+(y)|0〉 is like the
Wightmann function for the left-moving sector. We see this is effectively the self-correlator
for the subspaces of A.

Now, as for the B matrix,

Bjk ≡
∫

R+

dω ωβ∗jωβkω =
∑

n,m∈B

θmjθnk
1

4π

∫

R+

dω ω2µ̃∗m(ω)µ̃n(ω)

=
∑

n,m∈B

θmjθnk
1

4π

∫

R
dx

∫

R
dy µm(y)µn(x)

(∫ ∞

0

dωω2eiω(x−y)

)

︸ ︷︷ ︸
−πδ′′(x−y)+ 2i

(x−y)3

=
∑

n,m∈B

θmjθnk
1

4π

∫

R
dx

∫

R
dy µm(y)µn(x)(−i)∂y 〈0|Π+(y)Π+(x)|0〉

(6.35)

which is the correlator of momentum. The switching cost (the term associated with B) is
thus dependent on the noise of the smeared momenta in the target region.

Finally, we can consider the matrix Q, which is associated with the energetic exchange

111



term (see appendix A.1)

Qjk =

∫

R+

dω ωβ∗jωΛkω = −i
∑

m∈B

θmj
1

4π

∫

R+

dω ωµ̃∗m(ω)e−iωT λ̃j(ω)

= −i
∑

m∈B

θmj
1

4π

∫

R
dx

∫

R
dy µm(y)λj(x+ T )

(∫ ∞

0

dωωeiω(x−y)

)

︸ ︷︷ ︸
− 1

(x−y)2
+iπδ′(x−y)

=
∑

m∈B

θmj
1

4π

∫

R
dx

∫

R
dy µm(y)λj(x+ T )∂y 〈0|Π+(y)Π+(x)|0〉

= i
∑

m∈B

θmj
1

4π

∫

R
dx

∫

R
dy µm(y)λj(x+ T )

1

(x− y)2

(6.36)

thus we see3 that the exchange term goes as the distance square between Alice’s left-
propagated smearing and Bob’s smearing.

Now, theoretically, to make sure to extract energy, Bob has to optimize over his coupling
parameters θjk. Instead of repeating this optimization, we can reuse our result from our
QET on a lattice protocol, we will do so in the next subsection 6.1.5.

Before we move on, let us see what the teleported energy looks like for a single probe
protocol case; i.e., L = 1. In appendix A.1, we derive that for L = 1, i.e. for our matrices
of smeared correlators to become scalars, A 7→ A, B 7→ B, Q 7→ Q,

∆E = B
(
A+ e−2r

2

)
− Im(Q) (6.37)

where

B = −θ2 1

4

∫

R
dx

∫

R
dy µ(y)µ(x)δ′′(x− y) =

θ2

4
‖µ′‖2 (6.38)

A =
1

4π

∫

R
dx

∫

R
dy λ(y)λ(x) 〈0|Φ+(y)Φ+(x)|0〉 (6.39)

− Im(Q) = −θ 1

4π

∫

R
dx

∫

R
dy µ(y)λ(x+ T )

1

(x− y)2
(6.40)

3Note we used the assumption that Bob is not on the left-moving lightfront from Alice.
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As we will see later, this expression exactly matches4 what we obtain in the case where
we couple to both the left and right moving modes (6.60) and use our lattice energy
calculation technique.

6.1.5 Alternate Calculation: Field as a Lattice

Using the formalism we have developed in the previous chapter, we can port over our
calculation of QET on a lattice to QFT. The protocol will be slightly different: we will
ignore the time evolution between Alice and Bob’s operations, and we will couple to both
left and right moving modes. Apart from these two changes the protocol remains the same.

Consider B to be an orthonormal basis for L2(R), that is, (f, g) = δ[f − g]∀f, g ∈ B
(note that previously we only assumed orthogonality rather than orthonormality), we can
express smeared observables for f ∈ B as

Φf ≡
∫

R
dxf(x)Φ(x), Πf ≡

∫

R
dxf(x)Π(x), (6.41)

and the expansion of the Hamiltonian with respect to these operators is

HF = 1
2

∑

f,g∈B

[
Π2
f + (f ′, g′)ΦfΦg

]
. (6.42)

We can see the similarity with the Hamiltonian for a lattice, e.g. as in (4.16), but with the
K matrix being equivalent to (f ′, g′). In some sense, we can define a coupling “matrix”
over the index set of functions in B instead of an index set for lattice sites. Now, let us
construct the protocol, suppose we have Alice’s smearings be some subset BA ⊂ B, and
that for all f ∈ BA, we have f be of compact support. Now, suppose Alice couples to the
field with respect to certain (unnormalized) orthogonal smearing functions {αj}j∈A, for
some set of indices j ∈ A. Then, let us define the following for notational ease,

Λj ≡
αj
‖αj‖

, λj ≡ ‖αj‖, BA = {Λj}j∈A , (6.43)

the set of normalized smearing functions for Alice.

Now, similarly to our previous protocol described in this section, Alice has an interaction
Hamiltonian δ(t)HA where

HA =
∑

j∈A

λjPj ⊗ ΦΛj =
∑

j∈A

∫

R
dx αj(x)Pj ⊗ Φ(x). (6.44)

4Up to factors of 2, which are normal since we couple to both the left and right moving modes, and in
the limit T = 0.
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Similarly to Alice, Bob has a set of smearing functions {βm}m∈B for which the normal-
ized versions of these functions lie in a subset of our choice of orthonormal basis for L2(R),
i.e.

µm ≡
βm
‖βm‖

, {µm}m∈B ≡ BB ⊂ B. (6.45)

Now, the interaction for Bob is given by

HB =
∑

j∈A,m∈B

θmjXj ⊗ Πµm =
∑

j∈A,m∈B

θmj
‖βm‖Xj ⊗

∫

R
dx βm(x) Π(x). (6.46)

Now, notice that the above interactions for Alice and Bob are akin to equations (4.43) and
(4.44). Indeed, as the smeared field operators obey the same commutation relations as the
lattice, that is

[Φf ,Πg] = iδ[f − g], for f, g ∈ B (6.47)

with other commutators vanishing, our calculations from the lattice carry over.

Thus, consider the initial of the field and the probes |Ψ0〉 to be as in equation (5.47).
We define Alice’s unitary action as UA = e−iHA , and Bob’s action as UB = e−iHB . We
ignore the free evolution of the field between Alice and Bob’s actions5.

We can compute Alice’s energy injection, using our previous analogous lattice results
(4.49),

EA = 〈Ψ0| (U †AHFUA −HF ) |Ψ0〉 = 1
2

∑

j∈A

λ2
j 〈ξ|X2

j |ξ〉 =
e2r

4

∑

j∈A

λ2
j . (6.48)

In the particular case where λj = λ ∀j ∈ A, we get EA = e2r|A|λ2/4, where |A| denotes
the number of sites in A. We can compare the above result to our previous result in (6.15),
we get twice as much energy injected into the field, this makes sense as we are coupling to
both the left and the right moving sectors in this calculation.

Now, we can also use our previous lattice QET formulas to compute the energy ex-
tracted by Bob. In order to port over all of our results, we need to translate the notation
a bit. As the index set for the smearings which are part of A and B is countable/finite in

5As we saw, considering only the left-moving part of the field, the teleported energy is dependent on the
distance between Bob’s smearing and the left-moving lightfront coming from Alice’s smearing. In general
the QET term will depend on the distance to the lightcone emanating from Alice’s interaction. Note that
for our calculation without free time evolution, we can simply factor in this difference; we can consider
the distance between Alice and Bob in this case to be that of the distance of Bob to Alice’s lightcone in a
realistic scenario.
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this setting, those pose no issue. The main challenge is to address sums which run over all
the lattice indices, as these become sums over all of our basis functions for L2(R). Let us
define the following matrix, inspired from their lattice counterparts

Vjm ≡
∑

f∈B

λj 〈0|ΦΛjΦf |0〉 (f ′, µ′m), (j ∈ A, m ∈ B)

I.B.P.
=
∑

f∈B

λj 〈0|ΦΛjΦf |0〉 (f,−µ′′m) = −λj 〈0|ΦΛj

(∑

f∈B

(f, µ′′m)Φf

)
|0〉

= −λj 〈0|ΦΛjΦµ′′m|0〉
I.B.P.
= −

∫

R
dx

∫

R
dy αj(x)µm(y) ∂2

y 〈0|Φ(x)Φ(y)|0〉

(6.49)

where in the above we used the fact that we assume that the smearing functions for Bob
are of compact support in order to integrate by parts and swap derivatives around. What
we get in the end is the second derivative of the Green’s function as an integral kernel
mediating the functional inner product between the smearing functions. We can make the
above expression even more explicit, notice

〈0|Φ(x)Φ(y)|0〉 =

∫

R

dk

4π|k|e
−ik(x−y) =⇒ ∂2

y 〈0|Φ(x)Φ(y)|0〉 = −
∫

R

dk k2

4π|k|e
−ik(x−y) (6.50)

and so, when integrated against Alice and Bob smearings (we assume they are disjoint)

Vjm = −
∫

R
dx

∫

R
dy αj(x)µm(y) ∂2

y 〈0|Φ(x)Φ(y)|0〉

=

∫

R
dx

∫

R
dy αj(x)µm(y)

∫

R

dk k2

4π|k|e
−ik(x−y)

= − 1

4π

∫

R
dx

∫

R
dy

αj(x)µm(y)

(x− y)2
.

(6.51)

We see that we have a second order power law decay with the distance between Alice and
Bob. Note that in the case where we would time evolve and/or couple only to the left-
moving or right-moving part of the field, the above would instead be two terms dependent
on the distance of Bob’s smearing to the lightcone originating at Alice’s interaction location.
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Another matrix we can define that is analogous to the lattice case is6

Mjk = 〈ξ|XjXk|ξ〉+ λjλk 〈0|ΦΛjΦΛk |0〉 (j, k ∈ A)

= 1
2
e−2rδjk +

∫

R
dx

∫

R
dy αj(x)αk(y) 〈0|Φ(x)Φ(y)|0〉

= 1
2
e−2rδjk −

1

2π

∫

R
dx

∫

R
dy αj(x)αk(y) (γ + log |x− y|)

(6.52)

and in the limit of infinite squeezing r →∞, the first term vanishes.

Finally, we already defined the matrix θ in (6.45), let us define on last matrix:

Kjk ≡ (µ′j, µ
′
k) =

∫

R
dxµ′j(x)µ′k(x), j, k ∈ B (6.53)

which is the representation of the Hamiltonian couplings restricted to the subspace of Bob’s
smearings. Note that, if we assume that Bob’s smearings are disjoint, then we get

Kjk = (µ′j, µ
′
k) = δjk(µ

′
j, µ
′
j) = δjk‖µ′‖2 =

∫

R
dx(µ′j(x))2, j, k ∈ B (6.54)

Now, given all these matrices we have defined, we can express the energy difference in
the field due to Bob’s operation,

∆E = 〈Ψ0|U †AU †BHUBUA − U †AHUA|Ψ0〉 (6.55)

using our previous result (4.70),

∆E = tr(θV ) + 1
2
tr(KθMθT ) (6.56)

where the trace is over the indices in B. Now, recall that we found the optimal tuning of
Bob’s coupling constants for a given set of coupling constants for Alice, the optimal matrix
of couplings is given by

θ = −K−1V TM−1 (6.57)

and the optimal (most negative) change in energy of the field due to Bob’s operations
is

∆Eopt = −1
2
tr[V TM−1V K−1]. (6.58)

6γ is the Euler-Mascheroni constant.
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Single-probe case

We can expand these formulas for the teleported energy more explicity in the single-probe
case, i.e. if |A| = |B| = 1. Let

M [α, r] ≡ 1
2
e−2rδjk +

∫

R
dx

∫

R
dy αj(x)αk(y) 〈0|Φ(x)Φ(y)|0〉 , (6.59)

and now the energy change due to Bob is

∆E = − θ

4π

∫

R
dx

∫

R
dy

α(x)µ(y)

(x− y)2
+
θ2‖µ′‖2M [α, r]

2
. (6.60)

We see that the QET exchange term goes as the distance between Alice and Bob to the
second power ∆−2

AB, ∆AB being the distance between Alice and Bob. Now, we can pick the
optimal coupling parameter for Bob,

θ =

∫
Rdx
∫

Rdy
α(x)µ(y)
(x−y)2

4π‖µ′‖2M [α, r]
. (6.61)

Now, the optimal energy change (hence maximal energy extraction for Bob), in the infinite
squeezing limit, is

∆E = −

(∫
Rdx
∫

Rdy
α(x)µ(y)
(x−y)2

)2

32π2‖µ′‖2M [α, r]

r→∞−→ −

(∫
Rdx
∫

Rdy
α(x)µ(y)
(x−y)2

)2

32π2‖µ′‖2
∫

Rdx
∫

Rdy α(x)α(y)G+(x, y)
,

(6.62)

where
G+(x, y) = 〈0|Φ(x)Φ(y)|0〉 (6.63)

is a Wightmann function [10]. We see that for the maximal energy output goes as ∆−4
AB

the inverse fourth power of the distance between Alice and Bob.

6.2 Asymptotically Limitless QET

Note that this section contains verbatim excerpts from (the arXiV version of) [69], for
which I was the lead author. I included only the sections which I wrote independently
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with minor edits from the co-authors. I am responsible for essentially all of the technical
contributions, I mention in the text where co-authors’ technical contributions appear.

In this section, we consider performing QET with a set of interaction Hamiltonians
that are not strictly local, that is, they effectively have a power law decay smearing. We
show that, in a certain limit, one can have arbitrary amounts of energy teleported, even
accounting for the nonlocal energy injection.

6.2.1 Setup

For the quantum field, we consider a 1+1 dimensional massless Klein-Gordon field, quan-
tized in the null coordinates (x± ≡ t ± x), we consider the left and right-moving sectors
independently [30]:

Φ(x) = Φ+(x+) + Φ−(x−), (6.64)

where

Φ±(x±) ≡
∫

R+

dω 1√
4πω

[
a±ωe

−iωx± + a†±ωe
iωx±

]
. (6.65)

The canonically conjugate momenta of these field components are given by Π±(x±) ≡
∂±Φ±(x±), or explicitly

Π±(x±) = −i
∫

R+

dω
√

ω
4π

[
a±ωe

−iωx± − a†±ωeiωx
±
]
. (6.66)

The Hamiltonian density of this field is given by

HF (x) ≡ 1
2

: Π+(x)2 : +1
2

: Π−(x)2 :

≡ ε+(x) + ε−(x)
(6.67)

where : ∗ : denotes normal ordering and the labels +,− denote left and right-moving
components respectively. Explicitly, the left-moving modes’ energy density is given by

ε+(x) =

∫

(R+)2

dωdω′
√
ωω′

8π

[
2a†+ωa+ω′e

i(ω−ω′)x

− a†+ωa†+ω′ei(ω+ω′)x − a+ωa+ω′e
−i(ω+ω′)x

]
.

(6.68)
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The free Hamiltonian of this field is given by a spatial integral of the above Hamiltonian
density

HF =

∫

R
dxHF (x) =

∫

R
dx
[
ε+(x+) + ε−(x−)

]

=

∫

R+

dω
ω

2

[
a†+ωa+ω + a†−ωa−ω

]
,

(6.69)

Since the left moving (+) and right-moving (−) parts of the field are decoupled, we can
consider acting upon each individually. In order to make it plain that the energy will be
teleported rather than transported from A to B, we will couple A and B only to the left
moving modes, while B is allowed to be to the right of A. As we will work exclusively with
left moving modes, for convenience we drop their + subscript.

6.2.2 The Protocol

Sender’s Action on the Field

We assume that the field begins in the vacuum state |0〉, hence the expectation of the
renormalized stress energy tensor vanishes everywhere. At t = 0−, A is in an arbitrary
initial state |A0〉 ∈ HA ≡ Cd. To perform QET, A’s qudit is then at t = 0 coupled for an
instant to the field via an interaction Hamiltonian δ(t)HA, which is a spatial smearing of a
Hamiltonian density with respect to a compactly supported smearing function λ : R→ R,
i.e., HA ≡

∫
R dx λ(x)HA(x), where

HA(x) ≡ −i
∫

R+

dω
√

ω
4π

(
X ⊗ aωe−iωx−X† ⊗ a†ωeiωx

)
(6.70)

becomes the Hamiltonian density when multiplied by λ(x). Later on, it will be useful for us
to write the spatial coupling factor as the product of the coupling strength times a spatial
profile (with dimensions of inverse length) of unit L1(R) norm, i.e.

λ(x) = λ0Fa(x) (6.71)

where

‖Fa‖1 ≡
∫ ∞

−∞
dxF (x) = 1 (6.72)

Note that in the d = 2 qubit case, X = X† and we simply obtain HA(x) = X ⊗Π+(x),
which is the Unruh-DeWitt (UdW) detector model [18], similar to conventional QET [33].
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Notice that for d > 2, X 6= X† and therefore the Hamiltonian (6.70) cannot be written
as a tensor product of a qudit observable and a field observable. In fact, the form of
(6.70) resembles a counter-rotating wave interaction Hamiltonian, as seen in the context of
quantum optics. The subtleties regarding the locality of such an interaction model (pointed
out in [43]), will be discussed in full detail in section 6.2.6.

Using the eigendecomposition of the X operator, X =
∑

j Υj |xj〉〈xj| (where Υ ≡
e2πi/d), and Fourier transforming the spatial profile, λ̃(ω) ≡

∫
R dx eiωxλ(x), we obtain

HA = i

d−1∑

j=0

|xj〉〈xj| ⊗
∫

R+

dω
(
ζjωa

†
ω − ζ∗jωaω

)
, (6.73)

where ζjω ≡ Υ−jαω, αω =
√

ω
4π
λ̃(ω) ∈ C. In effect, HA is a multi-mode generator of

vacuum displacement where the amounts of displacement depend the state of the probe.
This is similar to a controlled quantum gate, the control being our qudit probe in this case.
The time evolution operator generated by the above interaction Hamiltonian reads

UA ≡ T exp

(
−i
∫

R
dt δ(t)HA

)
= exp(−iHA)

=
d−1∑

j=0

|xj〉〈xj| ⊗D(ζj)

(6.74)

where D(ζj) ≡ exp
(∫

R+ dω
(
ζjωa

†
ω − ζ∗jωaω

))
is a multi-frequency displacement operator

acting on the Fock space of the field F . Given the initial state |Ψ0〉 ≡ |A0〉 ⊗ |0〉, we can
compute the state after A’s interaction,

|Ψ1〉 ≡ UA |Ψ0〉 =
d−1∑

j=0

〈xj|A0〉 |xj〉 ⊗ |ζj〉 , (6.75)

where |ζj〉 ≡
⊗∞

ω=0 |ζjω〉 =
⊗∞

ω=0 |e−2πij/dαω〉, the boldface is used to indicate that it is a
multi-frequency coherent state. The expectation value of the energy EA ≡ 〈Ψ1| I⊗HF |Ψ1〉
of this state reads

EA=
1

2

∫

R+

dω ω|αω|2 =〈α|HF |α〉=
1

8

∫

R
dx (λ′(x))2, (6.76)

where the λ′(x) ≡ ∂xλ(x), appeared from applying an inverse Fourier transformation
(proof of the above can be found in appendix A.2). We find that it is the same as that of a
single coherent state, whose energy depends on the 2-norm of the derivative of the spatial
coupling λ. Note that we assume A’s qudit to have no free Hamiltonian, i.e., that it is a
gapless qudit.
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Receiver’s Action on the Field

A now sends her ‘measurement’ information to B. To do so, she sends her probe qudit
directly to B via a quantum channel. We assume that the quantum channel preserves the
qudit as is, whereas the field evolves according to its free Hamiltonian during the time of
qudit transmission, T . The state of the field and A’s qudit after this time evolution is
given by

|Ψ2〉 ≡ UF(T ) |Ψ1〉 =
d−1∑

j=0

〈xj|A0〉 |xj〉 ⊗ |Λj〉 (6.77)

where UF(T ) ≡ (I⊗e−iHFT ), |Λj〉 ≡
⊗∞

ω=0 |Λjω〉, and Λjω ≡ e−iωT ζjω. Note that by energy
conservation in the field during free evolution, EA = 〈Ψ2| I ⊗HF |Ψ2〉.

Now, at time T , B couples the probe he received from A with the field according to
an interaction Hamiltonian δ(t)HB, similar to A’s. It has again a spatial smearing of
a Hamiltonian density HB ≡

∫
R dx µ(x)HB(x), with respect to a compactly supported

function, µ : R→ R, where

HB(x) ≡
∫

R+

dω 1√
4πω

(
Z ⊗ aωe−iωx+Z† ⊗ a†ωeiωx

)
. (6.78)

Notice the difference with (6.70), here we use Z instead of X and µ(x) instead of λ(x),
otherwise, (6.78) is to Φ+(x) what (6.70) is to Π+(x); in the d = 2 case, the above becomes
Z ⊗ Φ+(x). Same as in (6.71), it will be useful to write µ(x) as the product of a coupling
strength and a smearing function (with dimensions of inverse length) of unit L1(R) norm:
µ(x) ≡ µ0Fb(x), where ‖Fb‖1 = 1. Note that because A and B’s couplings are of different
nature (in the limit d = 2 they constitute respectively field and momentum UdW coupling),
the coupling strengths µ0 and λ0 have differing dimensions, as is clear also from the different
powers of ω in (6.70) and (6.78). Similarly to (6.74), the time evolution operator associated
to B’s interaction is a controlled field displacement, given by

UB ≡ Texp

(
−i
∫

R
dt δ(t)HB

)
=

d−1∑

i=0

|zi〉〈zi| ⊗D(ξi), (6.79)

where D(ξi) ≡ exp
(∫

R+ dω
(
ξiωa

†
ω − ξ∗iωaω

))
, ξiω ≡ Υ−iβω, βω ≡ −i√

4πω
µ̃(ω). The final state

of the protocol, |Ψ3〉 ≡ UB |Ψ2〉 = UBUF(T )UA |Ψ0〉, immediately after B’s interaction, is
given by

|Ψ3〉 =
d−1∑

i,j=0

(〈zi|xj〉〈xj|A0〉) |zi〉 ⊗D(ξi) |Λj〉 . (6.80)
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6.2.3 Energy Extraction

To show that B can extract an average positive net work from the field through his instan-
taneous local interaction, we compute the expectation value of the energy of the field in
the final state, and compare it to the energy right before B’s operation,

∆E ≡ 〈Ψ3| I ⊗HF |Ψ3〉 − EA = 1
2

∫
R+dω ω |βω|2 (6.81)

+Re
[(∫

R+dω ωeiωTα∗ωβω
)
〈A0|XZ† |A0〉 e(Υ−1)‖α‖2

]

where
‖α‖2 ≡

∫
R+dω |αω|2 =

∫
R+dω ω

4π
|λ̃(ω)|2. (6.82)

Note that the key property used in the computation of the above was the braiding relation
(2.24), a proof of the above is provided in appendix A.2. Since this ∆E is the change in the
energy in the field caused by B’s local interaction, then any energy gained/lost in the field
is necessarily lost or gained by B, i.e., by the classical agent which drives the switching of
the interaction Hamiltonian (6.78).

Classical Communication

So far, we assumed that A and B used a quantum channel for communication, i.e., that A
sends her qudit to B. Here we outline how an equivalent classical communication version
of the protocol can be obtained. After A’s interaction (6.75), A performs a projective
measurement in the Z basis (or more generally in the qudit’s eigenbasis for B’s interaction
Hamiltonian). Given an observed outcome i, the (pre-normalized) state of the field is then
given by

|φi〉√
d
≡ (〈zi| ⊗ I) |Ψ1〉 =

d−1∑

j=0

〈xj|A0〉 〈zi|xj〉 |ζj〉 , (6.83)

where the 1/
√
d factor to normalize |φi〉 comes from the fact that Z and X are mutually

unbiased bases [8]. Following this projective measurement, A then would transmit this
measurement result; the value i ∈ Zd, to B via a log2(d) bit string. After a free evolution
of the field for a time T , B then applies the D(ξi) unitary (as defined in (6.79)), dependent
on the string received. The state of the field then becomes

|φ′i〉√
d
≡(〈zi| ⊗D(ξi)) |Ψ2〉=

d−1∑

j=0

〈xj|A0〉〈zi|xj〉D(ξi) |Λj〉 , (6.84)
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one can notice the similarity with (6.80); indeed |φ′i〉 =
√
d(〈zi| ⊗ I) |Ψ3〉. Hence, taking

an expectation value of HF for the above state while averaging over the possible values of
i (d measurement outcomes) yields the first term from (6.81),

〈Ψ3| I ⊗HF |Ψ3〉 =
1

d

d−1∑

i=0

〈φ′i|HF |φ′i〉 . (6.85)

We conclude that the quantum and classical communication versions of the protocols yield
the same outcome in terms of average teleported energy.

For illustration, in the classical communication version of the new protocol, let us
assume A begins with an initial qudit state |A0〉 that is a basis state mutually unbiased
to the X and Z eigenbases (e.g. an XZm eigenstate for d prime, m ∈ Zd). Then after
A’s interaction through (6.70) and projective measurement on the qudit, the field is in
a uniform superposition of d coherent states in the field, i.e., a Cat state, akin to those
depicted in Fig.6.1.

Figure 6.1: Single-mode Wigner pseudoprobability distribution for the cat state (〈0| ⊗
I) |Ψ1〉, i.e., the phase space representation of a single mode of the field if A measured her
qudit in the |0〉 state after her interaction. The initial qudit state |A0〉 chosen here was an
XZ† eigenstate. The parameter α = 2.5 is fixed and we plot for various probe dimensions,
labelled d. As the dimensions grow, the distribution loses some of its isotropy, allowing for
energy extraction when displaced along an appropriate direction.

Setup for Optimal Extraction

Let us now analyse in what circumstances B was able to extract work from the field, that
is, ∆E < 0. We notice that the first term in (6.81) is positive and is the energy that B
invests in the field by switching on his coupling, similar to the energy A invested in (6.76).
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The second term of (6.81) is the one of interest, since it may become negative and
overcome the positivity of the first term. The Fourier integral, I ≡

∫
R+dω ωeiωTα∗ωβω,

using [46], can be rewritten as

I=−1

4

∫

R
dxλ(x)µ′(x−T )+

i

4π

∫

R2

dx dy
λ(x)µ(y)

(y−x+T )2
. (6.86)

We see that the real part is non-vanishing strictly on the left-moving light-front, while the
imaginary part is non-vanishing everywhere. Hence, only the imaginary part can allow B
to extract work even if he is not light-like separated and to the left of A; this is the term
that gives us the “teleportation” aspect of QET. Notice that the second term in (6.81) is
comprised of the real part of the product I · Γ where

Γ ≡ 〈A0|XZ† |A0〉 e(e2πi/d−1)‖α‖2 (6.87)

is a functional dependent on the coupling profile and strength of A, the dimensions of the
probe, and the initial qudit state. In general, we will have |Γ| ≤ 1. Looking back at (6.81),
one sees that to maximize the teleported energy, the imaginary part of Γ needs to be as
large as possible.

To this end, we note that the spectrum of the unitaryXZ† is spec(XZ†) = {−eπi(2j+1)/d|j ∈
Zd} ⊂ C. The convex hull, S, of this spectrum is a regular d-gon inscribed in the unit
circle, and in the limit d→∞, S converges to the unit disk. For any point s ∈ S, there is
a state |A0〉 such that 〈A0|XZ† |A0〉 = s. This is because, decomposing |A0〉 into XZ†’s
eigenbasis, 〈A0|XZ† |A0〉 yields the convex combinations of the eigenvalues. Therefore, for
any χ ≡ e(Υ−1)‖α‖2 we can choose a |A0〉 such that

|Im(Γ)| = |Im[χ 〈A0|XZ† |A0〉]| ≥ cos(π
d
)|χ|. (6.88)

Now assuming B is off of A’s left-moving lightfront, the total work extracted by B, in terms
of both A and B’s spatial couplings, is given by

∆E =
µ2

0

8

∫

R
dx(Fb(x))2−Im(Γ)

λ0µ0

4π

∫

R2

dx dy
Fa(x)Fb(y)

(y−x+T )2
, (6.89)

where we used that λ(x) = λ0Fa(x), µ(x) = µ0Fb(x) as defined above. There are two ways
to make the second term dominate: one can scale down µ0, as in conventional QET [33],
but this eventually decreases the amount of energy that can possibly be teleported. Let
us consider the remaining option, to scale up λ0. Since Γ depends on λ0 and d, we must
optimize the scaling of both variables.
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6.2.4 Dimensions vs. Energy Scaling

Suppose A linearly increases the strength of her interaction in a spatially uniform manner
i.e., for θ ∈ R+, λ0 7→ θλ0, Fa(x) 7→ Fa(x) (recall λ(x) ≡ λ0Fa(x), λ0 ≡ ‖λ‖1), causing
‖α‖2 7→ θ2‖α‖2. Meanwhile, suppose that A also superlinearly increases the dimensions
of the measurement probe d 7→ dθ1+εed, for some ε > 0. Using the bound in (6.88), we
obtain

|Im(Γ)| ≥ cos( π
ddθ1+εe)e

(
cos

(
2π

dθ1+εed

)
−1

)
θ2‖α‖2

. (6.90)

In the large θ limit, we have

|Im(Γ)| ≥ 1− 2π2‖α‖2
θ2εd2 +O(θ−2−2ε)

θ→∞−→ 1. (6.91)

Finally, from (6.89), we see that the extracted energy is then linearly increasing with the
scaling, ∆E ∼ −θ. Note that a linear scaling of the dimensions (ε = 0) suffices, but in
that case |Im(Γ)| ' e−2π2‖α‖2/d2

as θ →∞.

We conclude from the above protocol that there so far seems to be no upper bound
to the total energy recoverable by B, independently of the shape or spread of his spatial
coupling. This is in contrast to the d = 2 case in previous descriptions of QET [33]. The
main limiting factor in the d = 2 case, where we have |χ| = e−2‖α‖2 , is the exponential
decay with respect to the number expectation value ‖α‖2 =

∫∞
0

dω |αω|2 ∼ λ2
0. Our new

protocol circumvents this problem by countering the exponential decay via scaling of the
probe dimensions. We further elaborate on this advantage over traditional UdW-type
detectors below.

6.2.5 Discussion

6.2.6 Asymptotic Locality

Flanagan’s quantum inequalities [20] establish a finite upper bound for any QET protocol
over the field vacuum where A and B use strictly local operations [36]. However, the
protocol proposed in this paper may seem to overcome the limitations of such bound. The
reason for this is related to the degree of localization of A and B’s Hamiltonians (6.70) and
(6.79).

As mentioned previously, we will see in this section that A and B’s interaction Hamil-
tonians are not strictly local. This may seem problematic given that in order to be able to
draw the conclusion that all energy extracted by B has been teleported one would have to
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assume that A and B only use strictly local operations. While indeed, generally not all of
the energy that B extracts will have been teleported, we will now show that in a suitable
scaling limit the interaction Hamiltonians become approximately local (to an arbitrary
degree) when the distance between A and B increases, while still allowing for limitless
quantum energy teleportation.

A first way of characterizing the non-locality of our Hamiltonian is to express it in terms
of the field operator and its canonical conjugate momentum. To do that we first decompose
the qudit’s Weyl operators into Hermitian and anti-Hermitian parts, let C = (X +X†)/2,
S = i(X −X†)/2, then we can rewrite (6.70) as

HA(x) =
C

2
Π+(x)+

S

8π

∫

R
dy

(
Φ+(y)

(x− y)2
+

Π+(y)

(x− y)

)
. (6.92)

We see that the anti-Hermitian component corresponds to a power-law decay smearing of
local observables. Notice that the non-local term vanishes in Hotta’s original QET protocol
[33] i.e., when d = 2 (the Hamiltonian is simply the usual Unruh-DeWitt Hamiltonian).

As a consequence, to label the proposed protocol as legitimate QET with such non-local
interaction, it is necessary that, as the distance between A and B increases, the non-local
contribution to the field energy due to A’s field interaction decays faster than the amount
of teleported energy retrieved by B from the field. This would recover a clean QET protocol
in the asymptotic limit of large teleportation distances.

To study this, we must compute the energy density in the field after by A’s interaction,
that is, EA(x) ≡ 〈Ψ1| I ⊗ ε+(x) |Ψ1〉, giving

EA(x) =
1

16
(1 + Re 〈X2〉)(λ′(x))2

+
1

16π2
(1− Re 〈X2〉)

(∫

R
dy

λ(y)

(x− y)2

)2

− 1

8π
(λ′(x))

(∫

R
dy

λ(y)

(x− y)2

)
Im 〈X2〉 ,

(6.93)

where 〈X2〉 ≡ 〈A0|X2 |A0〉. Notice that the second term causes the energy density to be
non-zero outside the support of A’s smearing. We can see that this is not the case for d = 2
where 〈X2〉 = 1 and only the first term of the above survives. However, for d > 2 the
second term gives a non-local contribution to the energy density. This is, A’s action puts
energy outside of her instantaneous support. While this may seem not reasonable from
the point of view of the causality of the interaction model [43], we note that the energy
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that A deposits in the field non-locally decays with the fourth power of the distance to A’s
support. This means that, in the large teleportation distance limit, the interaction model
becomes approximately causal with as much accuracy as desired. Most importantly, the
teleported energy (6.89) decays slower than this non-locality.

Indeed, comparing the second term of (6.93) to the second term of (6.89), we notice
that the non-locality of (6.93) scales as O(L−4) (where L is the spatial distance to the
support of λ, the spatial smearing of A’s coupling) while the teleportation term of (6.89)
scales as O(L−2). This means that for L sufficiently large, we have O(L−2) � O(L−4),
i.e., our teleported energy outweighs the energy leaked by the non-locality of A’s action on
the field. Therefore, we see that it is in principle possible to recover a proper QET scheme
in the asymptotic limit. To have a genuine energy teleportation scheme in this asymptotic
limit, we should be able to compensate for the distance decay of B’s ability to teleport
energy with an increase of A’s coupling strength, all while keeping the non-local term of
the interaction much smaller. From equations (6.89) and (6.93) (and appendix A.5) these
two conditions translate into

µ0

σB
� λ0

L2
� 1, (6.94)

where σB is B’s detector smearing support lengthscale (the size of his detector). Note that
we assume d is sufficiently large so that |Im(Γ)| ≈ 1 (discussed in 6.2.4) in the above.

These two conditions guarantee that we can do QET (the second summand of (6.89)
is larger in magnitude than the first) and that the QET scheme is not due to non-locality
of the interaction Hamiltonian. We can now see whether we can scale our setup so that
unbounded QET is possible, if at least in the asymptotic limit. For this, we need the
second summand in (6.89) to be able to scale unboundedly as we scale the rest of the
parameters, being careful that at the same time the size of B’s detector, σB, scales slower
than the separation between detectors.

Note: the scaling relation, equations (6.95) to(6.98), was derived by Eduardo Martin-
Martinez.

For illustration, let us rescale the problem parameters so that all of them are expressed
in terms of the dimensionless rescaling parameter η so that L ∼ η. If now λ0 ∼ η2−ε,
µ0 ∼ η2ε, σB ∼ η4ε both inequalities can be expressed as

η−ε � 1 (6.95)

which is true for any ε > 0 for large enough η. Now, for this particular choice of scaling
the teleported energy scales as

λ0µ0

L2
∼ ηε (6.96)
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which means it can be made arbitrarily large increasing η. At the same time if we choose
0 < ε < 1/4 we get that

σB ∼ η4ε < η (6.97)

for large enough η, so, in other words, we can scale up the separation between the detectors
by a factor η if we scale up at the same time the coupling strengths of A and B by a factor
η2−ε and η2ε respectively while at the same time scaling the width of B’s detector σB as
η4ε. For the separation between the detectors to scale up faster than the length of detector
B we need to demand that ε < 1/4. As a result, the teleported energy scales as ηε which
in the asymptotic limit where locality is recovered exactly, η →∞, is unbounded.

Note that in the above analysis, we would also need to scale up the dimensions d of
the probe at least as fast as the scaling of λ0 to get a value of Γ→ 1, as was discussed in
section 6.2.4. To be sure that this factor does not affect the above analysis, we require the
scaling d ∼ η2 > η2−ε ∼ λ0, hence for sufficiently large η, we have |Im(Γ)| ≈ 1.

Notice that, in this asymptotic limit, one can teleport an arbitrarily large amount energy
from A to B. Since the initial field state was the vacuum, this implies that, asymptotically,
B deposits an arbitrary large amount of negative energy in the field in and near his spatial
support. However, the density of this negative energy does in fact scale down as we scale
up the teleported energy, namely

λ0µ0

L2σB
∼ η−3ε. (6.98)

Indeed, if the initial field state is the vacuum, in the asymptotic regime where the QET
protocol becomes local (i.e., where the non-localities of the interaction are sufficiently
suppressed), it is still not possible to deposit an arbitrarily negative energy density in the
field, as expected from Flanagan’s quantum inequality [20]. This shows that teleporting
arbitrarily large amounts of energy through QET is compatible with Flanagan’s theorem
in a suitable asymptotic regime.

For completeness, we can calculate the energy density after B’s interaction. B’s state
after his interaction is given by,

|Ψ3〉 =
∑

ij

〈zi|xj〉〈xj|A0〉 |zi〉D(ξi) |Λj〉 (6.99)

and we can calculate the energy density in the field for this state, with some work we get

EB(x) ≡ 〈Ψ3| I ⊗ ε+(x) |Ψ3〉 =

EA(x+T )︷ ︸︸ ︷
|IA|2 − Re

[
Γ20 I2

A

]

+ |IB|2 − Re
[
Γ02 I2

B

]
− 2Re [Γ11 IAIB]

− 2Re
[
Γ1(−1) IAI∗B

]
(6.100)
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where

IA ≡ 1√
4π

∫

R+

dω
√
ωα∗ωe

iω(x+T ) (6.101)

IB ≡ 1√
4π

∫

R+

dω
√
ωβ∗ωe

iωx (6.102)

Γmn ≡ e(e
−2πin/d−1)‖α‖2 〈A0|XmZn |A0〉 , (6.103)

where m,n ∈ Zd (recall that the Weyl operators are unitary; X−1 = X†, Z−1 = Z†). the
spatial representation our integrals are

IA = − i
4
λ′(x+ T )− 1

4π

∫

R
dy

λ(y)

(x− y + T )2
(6.104)

IB = − i
4
µ(x) +

1

4π

∫

R
dy

µ(y)

(x− y)
. (6.105)

The first two terms of (6.100) give us A’s energy density, translated to the left by T . The
third and fourth terms are B’s investment in the field from switching his detector, similar
to A’s. The fifth and sixth terms are the interesting ones since they can create negative
energy densities. The sixth term is our teleportation term from our usual calculation,
before being spatially integrated. The fifth term is similar to our teleportation term. In
the appropriate scaling limit (discussed above), the last two terms will dominate in the
vicinity of B’s support, creating a locally negative energy density in the field.

6.2.7 Information Theoretic Considerations

Information Redundancy

We have shown that by scaling up the amount of information exchanged between A and
B along with the amount of energy injected in the field it is possible to obtain arbitrarily
large teleported energies.

One might wonder what would happen if we leave A’s coupling strength fixed (and the
smearing) while scaling up the dimensions, i.e. keep λ(x) fixed while increasing d. Our
bound for the teleportation term’s coefficient (6.88) becomes

|Im(Γ)| ≥ cos(π
d
)e

(
cos
(

2π
d

)
−1
)
‖α‖2 d→∞−→ 1. (6.106)

We see that simply increasing the dimensions has diminishing returns. As d � ‖α‖,
adding more dimensions to our probe does not yield much of an advantage in terms of
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energy extracted. In other words, increasing the number of potential outcomes of our
measurement does not necessarily mean that it will yield more information about the field
state that is useful for QET.

Although an increase in the dimensions of the probe without a corresponding increase
in coupling strength has a diminishing advantage in terms of energy teleported, it can still
be useful to consider higher dimensions for a given fixed coupling strength to counter the
effects of noise in the communication channel. Say that the quantum channel between A
and B were to have quantum noise in the form of Weyl operators, i.e., with a probability
p(a, b), ZaXb is applied onto the qudit in (6.77), then on average our teleportation term
in (6.81) would pick up a factor of

∑
a,b∈Zd

p(a, b) cos(2πb/d). If most errors have b � d,
then we are still capable of fairly efficient QET. The analogous statement for the classical
communication scenario would be that the new QET protocol can withstand noise as long
as it only causes small shifts relative to the size of the alphabet. This fault tolerance further
highlights that increasing the dimensions of the probe without scaling other parameters
causes our measurement information to increase its ’redundancy’ (in the sense of error
correction).

Information Harvesting

A possible explanation for this redundancy would be that since A’s energy injected into
the field is related to the amount of entanglement acquired between her probe and the
field by her measurement, keeping that energy fixed imposes a bound to the amount of
probe-field entanglement that can be achieved by the probe-field interaction. Increasing the
dimensions of the probe would then simply allow for the approach to that bound. Below
we provide some mathematical and geometrical intuition to support the above explanation.

Looking at equation (6.75), we see that the probe and the field are nearly in a Schmidt
decomposition; if the {|ζj〉 = |e2πij/dα〉 : j ∈ Zd} were orthogonal, then the probe would be
maximally entangled with the field. Note that these coherent states are the ones superposed
in figure 6.1. Note that the inner product between any two of these states is 〈ζm|ζk〉 =

e(e2πi(m−k)/d−1)‖α‖2 . The smaller these inner products are, the closer to maximally entangled
the probe is. These inner products increase when increasing d or decreasing ‖α‖2. This
supports our intuition that a more entanglement requires greater energy injected and that
increasing the dimensions while keeping the energy fixed only worsens the sub-maximality
of the entanglement.

Geometrically, looking at figure 6.1, since each coherent state has a fixed variance in
phase space (saturating Heisenberg uncertainty), then a limited number of coherent states
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can be resolved for a fixed radius when these are placed at the vertices of a regular d-gon
(of said radius). As manifested in (6.75), the probe’s state is perfectly correlated with each
coherent state, hence these need to be well discernible in order for measurements of the
probe to transitively give us accurate knowledge of the field’s phase. To fit more minimally
overlapping coherent states, the radius (|α|, analogous to ‖α‖) needs to be increased. If we
were to increase the radius, we would intuitively expect the maximum number of minimally
overlapping coherent states to scale as the perimeter of a circle, hence linearly in the radius.
We thus have geometrically justified our linear scaling result in (6.91).

6.2.8 Energy Conditions

Flanagan’s theorem [20] sets limits to the amount of energy that can be teleported by a
local QET protocol. In our protocol we overcome the limitation imposed by the theorem
by allowing for a non-local interaction between the field and A and B’s probes. In the
asymptotic limit where A and B are far apart and the support of B is scaled up, the non-
locality contribution to the energy extracted by B becomes arbitrarily small as compared
to the teleported energy.

As discussed above, we calculated that the field admits a locally negative energy density
near B, i.e., averaged over B’s locale, supp(µ), we have 〈: T++ :〉 < 0. Although this is
locally a violation of the pointwise Null Energy Condition (NEC) [26], which is not uncom-
mon for quantum fields, the Averaged Null Energy Condition (ANEC) [39] (integrated over
a complete light sheet) is respected. This is because the energy recovered by B is less than
or equal to A’s measurement energy investment, ∆E ≤ EA. In terms of bounds related
to the spatial profile, QET obeys Ford’s quantum inequalities [21]. A bound potentially
relevant to our new protocol is the Quantum Null Energy Condition [11], since it provides
a pointwise lower bound for the stress energy tensor which is related to the entanglement
entropy of the field.

It would be interesting to verify if this bound can be saturated via the new qudit-QET
approach.

6.2.9 Conclusions

We have shown that two distant agents A and B equipped with qudit probes which interact
with a massless scalar field on a compactly supported region of space, can teleport an
arbitrary amount of energy from one to another in a suitable asymptotic regime, without
any energy flowing from A to B, and by means of only localized operations on the field and
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classical or quantum communication. The scaling up of the amount of teleported energy
is achieved by scaling protocol parameters, and in particular by scaling up the amount of
information about the field obtained by A and sent to B.

Remarkably, in order for A to be able to harvest increasingly more information from the
field that is useful to teleport an arbitrarily large amount of energy, it is not sufficient to
simply increase the dimension of the usual Unruh-DeWitt detector keeping the interaction
local, as this would contradict Flanagan’s theorem. Instead, we overcome this limitation
by introducing a weak non-locality in the interaction Hamiltonian. The non-locality is
such that a) it allows us to circumvent the constraints of Flanagan’s quantum inequality,
and b) it is such it becomes negligible in a suitable asymptotic regime.

Our results are of interest not only in this asymptotic regime. There are setups where
non-localities in the interaction Hamiltonian appear naturally. An obvious example is solid-
state physics where the speed of sound can be much smaller than the speed of light, which
implies that there can be interactions with effective non-localities similar to (6.70) and
(6.78). Additionally, Hamiltonians with exactly the same degree of non-locality appear
in quantum-optical setups whenever the rotating-wave approximation is used [43]. Our
results may therefore be useful in the context of quantum information processing. Another
scenario where non-locality is expected to appear is Planck-scale physics.

For experimental realizations, our modified protocol for QET requires qudit systems.
Qudits have various experimental realizations, e.g., in quantum optics, often involving the
orbital angular momentum states of photons [47, 53, 50]. There have also been theoretical
proposals for quantum error corrected realizations of stable qudits and their logical Weyl
operators, either using a stabilizer subspace of harmonic oscillator states [25], or using a
topological quantum memory employing abelian anyons [73].
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Chapter 7

Ongoing & Future Work

This chapter contains ideas in various stages of development which could be seen as po-
tential extensions to the work presented in this thesis. Some of the content discussed in
this chapter relies on concepts not covered by the background sections of this thesis, e.g.,
the basics of QFT in curved spacetime. If need be, please refer to standard references on
the topic: [10, 48].

7.1 Optimal Measurement of a Quantum Field

This section features ongoing work, we will explore the underlying motivation and some
prototypical calculations.

7.1.1 Compressed Sampling Information

In our analysis of QET, we have seen that a good measurement for QET breaks ground
state entanglement, the more broken entanglement, the better. One may then wonder
what would an optimal measurement for QET be? As we have constructed in this thesis,
there are ways to probe subspaces of locally smeared observables of the field. In a certain
limit, one may consider what happens when one measures “all of the information” available
in a certain region of space which tells us about its complement. In other words, say we
consider a region of space, call it A, then some of information in A is correlated with
degrees of freedom contained in A, while some information in A tells us about the state
on Ā, the complement (outside of A). Intuitively, one may think that measuring the field
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everywhere1 in A would yield all of the information in A. Although that may be the case,
because information about the field amplitude at a certain point tells us mostly about the
field configuration at neighboring points (correlations fall off quickly with distance), then
sampling a set of points (or sharply smeared field observables) that lie in A yields a lot
of redundant information. In this thesis, more specifically in our exploration of QET, we
saw how to harness the information of a multi-point measurement efficiently to infer the
field configuration at each energy extraction target point. We achieved this by having Bob
receive all the “raw” information from Alice’s measurements, then optimizing the couplings
in order to filter out intra correlations in Alice’s sampled values. In other words, there is a
potential for this information to be compressed, and instead of filtering out the noise as a
post-processing operation, what if we could measure directly a “compressed observable”?
That is, what if there were a local observable at A (or a set of observables) for which
knowledge of the eigenvalue of this observable would tell us all of the available information
about Ā that is in A (and only that)? We will now see how we can construct such an
observable.

7.1.2 Schmidt Basis Measurement

Maximal Entanglement Breaking

We are looking for observable(s) in A for which knowledge of its eigenvalue(s) could contain
all of the information in A which is mutual with Ā. If we consider the ground state of a
quantum field |0〉 as our state on A ∪ Ā, then we know it is a pure state. Hence, globally,
there is no uncertainty in the state, but locally, say we restrict ourselves to A, by the
nature of entanglement, the state restricted to A, ρA = trĀ(|0〉〈0|), has some nonzero Von
Neumann entropy, equal to the entanglement entropy. As a rough mathematical sketch,
we have the Schmidt decomposition2:

|0〉 =
∑

j

√
pj |ψj〉A |ψ̄j〉Ā , ρA =

∑

j

pj |ψj〉〈ψj|A , S(A)ρ =
∑

j

−pj log(pj). (7.1)

The observable whose probability distribution of measurement outcomes has the Shan-
non entropy equal to that of the Von Neumann entropy of ρA is the observable which

1or, given a UV cutoff, according to sharp localized smearings (e.g. sinc-like functions which are
essentially like a delta measure with a UV cutoff) such that the density of samplings is greater than the
Nyquist rate (at least a sample point per half cutoff wavelength) [58].

2We will give the proper Schmidt decomposition of the ground state later on in this section.
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shares the same eigenbasis as ρA, as we know simply from the way we define the Von Neu-
mann entropy. In other words, using our notation from the above equation, the Schmidt
basis vectors for A must be the eigenvectors of the observable of interest; for example, an
observable

OA ≡
∑

j

λj |ψj〉〈ψj|A (7.2)

where the index j runs over the whole spectrum of ρA and the λj are distinct. Notice that
if we performed a type of phase estimation algorithm on such an observable, say UA is
the entangling unitary between A and some control/probe system C, then the probe-field
state would get transformed as

UA :
∑

j

√
pj |ψj〉A |ψ̄j〉Ā |0〉C 7→

∑

j

√
pj |ψj〉A |ψ̄j〉Ā |j〉C . (7.3)

We see that the bipartite entanglement between A and Ā has been converted to tripartite
GHZ-like AĀC tripartite entanglement. Let us denote the state of the field after this
probe-field interaction as |Ψ1〉 ≡ UA |0〉AĀ |0〉C , then if we trace out the probe system (C),
we get the state

ρ̃AĀ ≡ trC(|Ψ1〉〈Ψ1|) =
∑

j

pj |ψj〉〈ψj|A ⊗ |ψ̄j〉〈ψ̄j|Ā (7.4)

which we can recognize as a separable state with only classical correlations left between A
and Ā. In other words, the measurement process broke all of the entanglement between A
and Ā. As we saw in our analysis of QET, it seems that a greater amount of entanglement
breaking at the point of measurement is a sign that more information about the field
has been collected. In the above Schmidt picture, the advantage of such a measurement
is made clear; mutual information between A and Ā comes from bipartite entanglement,
measuring A in the Schmidt basis for this bipartition yields a probe which has as much
mutual information with A as it has with Ā;

I(A;C)Ψ1 = I(Ā;C)Ψ1 = S(A) = S(Ā) = S(C) = S(AĀ). (7.5)

Hence, a measurement in the Schmidt basis does yield what we were aiming at: a mea-
surement of A which yields information that is strictly that which is mutual with Ā.
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7.1.3 Modular Hamiltonian

Now, the question is, what is an observable which shares the same eigenbasis as the reduced
density matrix on A? Well, suppose we have an operator K such that

ρA ∼ e−K (7.6)

then K would have the same eigenbasis as ρA, as an operator and its (real) exponential
share the same eigenspace. It turns out, there exists such an operator, which is called the
modular Hamiltonian.

In certain Quantum Field Theories, e.g., CFT’s (conformal field theories;, massless
scalar field theories are an example), the modular Hamiltonian is in fact a local operator
[37]. Thus the modular Hamiltonian in such theories could be considered as a local ob-
servable. The reduced density matrix for the state of the field on a certain region A can
then be written as

ρA =
1

Z
e−βK , Z ≡ tr(ρA) (7.7)

where K is the modular Hamiltonian, and by convention, we can3 set β = 2π. The modular
Hamiltonian is often used in calculations of entanglement entropy, as it is linearly related
to the logarithm of the reduced density matrix, log ρA = −βK − logZ, which pops up in
the expression for the von Neumann entropy:

S(A)ρ = −tr(ρ log ρ) = tr (ρ(βK + logZ)) = β 〈K〉ρ + Z logZ. (7.8)

Modular Hamiltonian Flow

An alternative way of computing the entropy is the replica trick,

− lim
n→1

log(tr(ρn))

n− 1
= − lim

n→1

log(tr(en log ρ))

n− 1
= − lim

ε→0

log(tr(e(1+ε) log ρ))

ε

= − lim
ε→0

log(tr(ρeε log ρ))

ε
= − lim

ε→0

log(tr(ρ(1 + ε log ρ)))

ε

= − lim
ε→0

log(��
�* 1

tr(ρ) + εtr(ρ log ρ))

ε
= − lim

ε→0

���
�: 0

log(1) + εtr(ρ log ρ))

ε
= −tr(ρ log(ρ)) = S(ρ)

(7.9)

3The reason for this convention will be discussed shortly, it is related to the fact that the modular
Hamiltonian generates a rotational(-like) flow in the Euclidean plane (imaginary time) picture. In this
picture the modular Hamiltonian is like angular momentum, and since a circular flow has a 2π periodicity,
we can absorb this factor into the β.
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which is roughly related to the rate of change of the partition function of ρn at n = 1, as
one can rewrite

− lim
n→1

log(tr(ρn))

n− 1
= [∂n log(tr(ρn))]n=1. (7.10)

In some sense this is related to how much the partition function changes as we multiply
“copies” of ρ together. One could argue that log ρ is the “generator of copies” of ρ (as
en log ρ = ρn). As the modular Hamiltonian is linearly related to the logarithm of the den-
sity matrix, then we can consider it to be a generator of copies of the state.

To use the replica trick in quantum field theory, one usually employs the Wick-rotated
path integral picture, as we have briefly covered in our QFT background chapter. In the
path integral picture, to compute the partition function [41] for ρn, one makes a “cut”
along region A, so as to create the state ρA = trĀ(|0〉〈0|). We will consider A to be a
ball of a certain radius l on a spacelike surface, hence in the traditional 2D sketches of the
Euclidean plane, region A is an interval. To have multiple copies of ρA, one takes mul-
tiples Euclidean plane path integrals with cuts on A and “joins” the cuts by connecting
them in a cyclical fashion, joining the “out” edge to the “in” edge of the next one, and
connecting the last one back to the first one. These connections are supposed to mimic the
contraction of operators ρA · ρA · ... and the last contraction gives us a trace, hence tr(ρnA).
The resulting multi-sheeted surface is called a Riemann surface, it is a bit like a “double”
spiral staircase, which winds clockwise for one pole (edge of a cut) and counter-clockwise
for the other. To go along this staircase, one flows along these spirals, hence by following
a rotation about the poles. There is a resulting vector field of “flow” down this “staircase”
(as another analogy: it looks like the magnetic field lines wrapping around a loop current).
This flow is the one which, in some sense, generates more copies of ρA, more particularly,
it brings change to tr(ρnA), hence we can use it for replica trick.

Thus the flow of the modular Hamiltonian in the Euclidean path integral picture is
that of a vector field which “wraps around” the poles of a cut, hence it wraps around the
boundary of the region A. As rotations preserve their center of rotation, then the flow of
the modular Hamiltonian for the reduced density operator on a region A should preserve
the boundary of that region, ∂A. The case where the region A is half of the real line (in-
stead of an interval) is a well-known case, in this case the only boundary is a point (which
we can assume to be the origin), the modular flow is then the vector field of rotations about
the origins, that is, the modular Hamiltonian is proportional to the angular momentum
operator for rotations about the origin [66]. As a copy of ρA is given by adding a full
rotation (2π) according to the angular momentum, which is the modular Hamiltonian K,
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then we get an exponential ρA ∼ e−2πK . Going back to the real time picture, a rotation in
imaginary time (Wick rotated) corresponds to a boost in real time (Lorentzian picture).
Thus, by analytically continuing this vector field from imaginary time to real time, the
modular Hamiltonian flow goes from a rotation about the origin to a boost4. This is the a
way to recover the well-known Unruh effect. The thermal character of the density matrix
arises from periodicity in imaginary time, as prescribed by the KMS condition [10].

In the Unruh effect, according to a Rindler observer, that is, an observer whose time
coordinate corresponds to that of the modular Hamiltonian of the half line, then the field
looks locally like a thermal state. As we explained above, since the modular Hamiltonian
in imaginary time was a rotation, in real time it is a boost. For an observer to travel to
have his time coordinate be that of a boost, the observer has to be uniformly accelerated.
Thus, a uniformly accelerated observer with a constant acceleration sees a thermal state
of the field. For an acceleration a = 1, because of the periodicity of 2π in imaginary time,
the inverse temperature is β = 1/T = 2π. If the observer accelerates with a 6= 1, then the
boost operator picks up a factors a, and to get back the modular Hamiltonian one needs

to divide by a; e−2πK = e−
2π
a

(aK) hence the temperature becomes T = a/2π. Without loss
of generality we can then set the acceleration to 1.

Now, going back to the modular Hamiltonian for a ball-shaped region (finite radial
interval), then the modular Hamiltonian flow in imaginary time is essentially a rotational
flow about the boundary poles. As one gets close to the boundary it is very much like a
rotation, but as one looks further away from one edge of the boundary, since the flow has
to preserve the whole boundary, the vector field is not quite just a rotation. Going back
to real time, in the regions where the modular flow in imaginary time was like a rotation,
the modular flow should have a boost-like character. We will now explore how one would,
operationally, observe the “Unruh effect” associated to this modular Hamiltonian flow.

4For pictorial intuition for 1+1 dimensions, one can imagine a one-sheeted hyperboloid, with the radial
dimensions being space/imaginary time, and real time being the axis of (cylindrical) symmetry. One can
think of full rotations as curves wrapping around the waist of the one-sheeted hyperboloid and boosts
travelling orthogonally, hence along a hyperbolic path.
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7.1.4 Modular Modes

Unruh effect and Modular Hamiltonian eigenbasis

Rindler observers naturally couple to Rindler modes, hence “measurement” in their de-
fault basis is the Rindler mode basis. A uniformly accelerated detector that is switched
on eternally with a certain gap will then couple to a specific Rindler mode. Instead of
coupling to natural Rindler modes temporally, one could consider a Minkowski observer
which couples spatially to certain smeared observables, similarly to what has been treated
in this thesis. Instead of measuring the Fock state of a Minkowski mode by measuring the
particle number in each Fourier mode, one could measure the Fock state for a different
choice of modes, e.g. Rindler modes.

For example, a right Rindler wedge left moving mode function of Rindler frequency ω
looks like the following with respect to Minkowski coordinates [16]:

gω(V ) =
Θ(V )

4πω
e−i

ω
a

log(aV ) (7.11)

where V = x + t, Θ(V ) is the Heaviside step function. There are similar modes {ḡω}ω
for the left-moving left Rindler wedge, defined for V < 0, as well as for the right-moving
modes. Hence to measure, say the Φω for this mode, one measures

Φω =

∫

R+

dx
(
gω(x)aω + g∗ω(x)a†ω

)
. (7.12)

Where the Rindler ladder operators are related to the Minkowski operators by a well-known
Bogolyubov transformation. To get this transformation, we expand the Rindler modes in
terms of Minkowski modes:

θ(V )gω(V ) =

∫ ∞

0

dk
(
αRωkfk(V ) + βRωkf

∗
k (V )

)
(7.13)

θ(−V )ḡω(V ) =

∫ ∞

0

dk
(
αLωkfk(V ) + βLωkf

∗
k (V )

)
(7.14)

We can then compute Bogolyubov coefficients by integrating the above over V from
these equations

αRωk =
ieπω/2a

2π
√
ωk

(a
k

)−iω/a
Γ(1− iω/a) (7.15)

as for the other coefficients, we get

αRωk = αL∗ωk = −eπω/aβRωk = −eπω/aβL∗ωk . (7.16)
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Our Bogolyubov transformation for Rindler operators in terms of Minkowski operators
is then given by

b̂R+ω =

∫ ∞

0

dk
(
αR∗ωk â+k − βR∗ωk â†+k

)
(7.17)

b̂L+ω =

∫ ∞

0

dk
(
αL∗ωkâ+k − βL∗ωk â†+k

)
. (7.18)

Thus, we could imagine measuring the b̂L†+ω b̂
L
+ω operator for example, on the left Rindler

wedge. The problem with Rindler modes is that their eigenfunctions are supported on a
noncompact region, i.e. on the half-line. Nevertheless, one could imagine performing a
measurement in the Rindler basis by entangling some probe system with a Rindler mode,
or, ideally, a probe for each Rindler mode. Since the Rindler Fock basis is the Schmidt
basis for the field, such a measurement would break all of the entanglement between the
left and right Rindler wedges

|0〉F |0〉C =
⊗

ω

(
1√
Zω

∞∑

nω=0

e−πnω/a |nω〉L |nω〉R

)
|0〉C

7→
⊗

ω

(
1√
Zω

∞∑

nω=0

e−πnω/a |nω〉L |nω〉R |nω〉C

)
.

(7.19)

Thus, measuring the Rindler Fock state in the right Rindler wedge would tell us everything
one could know about the left Rindler wedge from the right Rindler wedge. Note that this
was achieved by measurement in the eigenbasis of the modular Hamiltonian, which in this
case was the generator of boosts which preserves the origin in imaginary time, which turns
out to be the time coordinate for the Rindler observer.

Now that we have intuition from the Rindler case, we can move on to the case for
a ball-shaped region. In a recent paper, Jacobson [37] constructs a time-like vector field
corresponding to the flow generated by the modular Hamiltonian of a ball-shaped region
of geodesic radius l. As we will cover below (see equation (7.24)), this field does have a
boost-like character. It is a vector field which preserves the causal diamond of the ball
region, one can consider this to be essentially like a time coordinate for the interior of the
diamond.

Now, in analogy to the Rindler case, we can imagine extending the coordinate transfor-
mation defined by Jacobson’s timelike Killing vector field in [37]. We could then find the
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set of eigenmodes which is natural to these coordinates, as one does for the Rindler coor-
dinates. This new set of mode functions will be related to the Minkowski mode functions
by a certain Bogolyubov transformation, which we could compute.

Now, unlike traditional analyses of detectors coupling to Rindler modes via acceleration,
the time-like coordinate associated with the modular Hamiltonian would be unphysical (one
would need to achieve the speed of light in a finite time), the traditional Unruh-deWitt
model would not necessarily be ideal to probe these modes. Instead, we would probe the
a spatially smeared observable corresponding to the Fock basis for each “modular mode”
(what we will call the eigenmodes of the modular Hamitonian).

Modular Modes

As the reduced density matrix on A, as argued by Jacobson, is given by a thermal density
matrix according to the Modular Hamiltonian, then, just like in the usual Unruh effect,
according to the modular Fock basis, we should get the ground state being entangled
similarly to the Rindler case:

|0〉F =
⊗

ν

(
1√
Zν

∞∑

nν=0

e−πnνi |nν〉A |nν〉Ā

)
. (7.20)

and so we want to find the modes for which the associated ladder operators cν , c
†
ν are such

that

ρA =
⊗

ν

(
1

Zν

∞∑

nν=0

e−2πnν |nν〉〈nν |A

)
=
⊗

ν

e−2πc†νcν

Zν
. (7.21)

The modular modes are then, in a sense, the functional Schmidt basis; the basis of mode
functions for the Schmidt decomposition. Thus, as was argued above, measuring the field
in this eigenbasis would yield all the information contained in a region A which is mutual
with its complement Ā.

Now, let us find these modes using Jacobson’s [37] vector field. Let the metric be

ds2 = −dt2 + dr2 + r2dΩ2 = −dudv + r2dΩ2 (7.22)

where
u = t− r, v = t+ r. (7.23)
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Jacobson defines the timelike Killing vector field defined in the causal diamond of a space-
like ball of radius l,

ζ ≡ 1

2l

[
(l2 − u2)∂u + (l2 − v2)∂v

]
=

1

2l

[
(l2 − r2 − t2)∂t − 2rt∂r

]
. (7.24)

Let us construct a time coordinate such that this killing vector field is the time derivative
vector field, i.e. let us find τ such that ∂τ = ζ. We will also construct a spatial coordinate,
ρ to go with τ . We will be doing our analysis in 1+1 dimensions for convenience5 Consider
the following change of coordinates:

τ ≡ 2 arctanh
(u
l

)
+ 2 arctanh

(v
l

)
, ρ ≡ 2 arctanh

(u
l

)
− 2 arctanh

(v
l

)
. (7.25)

As one can verify using the Leibniz rule,

∂τ =
∂u

∂τ
∂u +

∂v

∂τ
∂v =

(
∂τ

∂u

)−1

∂u +

(
∂τ

∂v

)−1

∂v

=
1

2l
(l2 − u2)∂u +

1

2l
(l2 − v2)∂v = η

(7.26)

we do effectively have ζ = ∂τ .

Let us define the lightlike coordinates associated with

U ≡ τ + ρ, V = τ − ρ, (7.27)

we can express these in terms of the regular lightlike coordinates

U = 4 arctanh
(u
l

)
, V = 4 arctanh

(v
l

)
(7.28)

which is an easily invertible relation,

u = l tanh

(
U

4

)
, v = l tanh

(
V

4

)
. (7.29)

We see that we have a conformal transformation; since U is strictly a function of u and V
of v, the left and right-moving lightlike coordinates are not mixed. In 1+1 dimensions, we

5I go from radial n+ 1 to 1 + 1 dimensions by (sloppily) swapping the radial coordinates to a cartesian
spatial coordinate. I still think this should work (as the important part is for the change of coordinates to
preserve the dudv term in the metric), but I will be more care careful in the full calculation.
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can easily write the mode functions associated to this change of coordinates (i.e. solving
the K-G equation in the new lightlike coordinates), we get

gν(V ) =
1√
4πν

e−iνV =
1√
4πν

e−iν4 arctanh(v/l) =
1√
4πν

e−iν4 arctanh(v/l)

=
1√
4πν

e−iν2[ln(l+v)−ln(l−v)] =
1√
4πν

(
l + v

l − v

)−2iν (7.30)

Where in the above we used the following identity which expresses the hyperbolic arctan-
gent as a sum of logs:

arctanh(θ) =
1

2
ln

(
1 + θ

1− θ

)
=⇒ V = 4 arctanh

(v
l

)
= 2 ln

(
l + v

l − v

)

= 2 ln (l + v)− 2 ln (l − v) .

(7.31)

What we see is that there is effectively a “double chirp” in the modes, very much like
the case for Rindler modes. In fact, up to normalization, the modular modes (above) of
a certain frequency are equal to the product of Rindler modes of that frequency for the
Rindler horizon at the boundaries of the causal diamond, i.e. in our case v = ±l. For
visualisation, we can plot the real part of a modular mode for t = 0 and x ∈ [−l, l].

-1.0 -0.5 0.5 1.0

-0.10

-0.05

0.05

0.10

Figure 7.1: Example of Re(gν(x)) for ν = 5, the real part of a modular mode on the t = 0
slice. The horizontal axis is in units of l. We clearly see there is divergent chirping at the
horizons.

The divergence of the frequency of the modes can be explained the same way as in the
Rindler case. For hyperbolic Rindler trajectories getting close to the origin, an observer

143



travelling along this trajectory needs to be accelerated faster to maintain the same horizon
as other trajectories which are further out. As for the modular modes, the causal diamond
has horizons emanating from the boundary, hence any trajectory that gets close to the
boundary will be highly accelerated, thus there is a blueshift; a chirp.

Note that we have yet to compute the Bogolyubov coefficients for the Bogolyubov
transformation relating the Minkowski modes to the modular modes. Additionally, we
need to construct the dual modes, i.e. the modes for Ā that are one-to-one entangled with
the modular modes of A we have constructed. Once this is done, we should be able to
replicate the derivation of the Unruh effect [16] to recover the squeezed state form as we
conjectured in equation (7.20). To compute the Bogolyubov transformation, we start with
the ansatz

Θ(V )gν(v) =

∫ ∞

0

dk
(
αAωkfk(V ) + βAωkf

∗
k (V )

)
(7.32)

where the fk are Minkowski modes. Using the orthonormality of Minkowski modes, taking
the inner product with a single-freqency Minkowski mode, then integrating over V , we
should be able to compute the coefficients. As the modular modes are proportional to a
product of Rindler modes, we can use the Unruh effect results and the convolution theorem.
Although this calculation should be straightforward, I have yet to complete it, hence why
this section is considered ongoing work.

7.1.5 Energetics & Firewalls

Cutoffs

Suppose we are given an operational UV cutoff, i.e. suppose no detector can couple to
a smeared operator whose smearing has Fourier components above a certain (Minkowski)
frequency. Since the modular modes have infinite chirp near the boundary, if we bandlimit
the modular modes’ Minkowski frequencies, this will effectively leave a “buffer” region
near the boundary where the chirped frequency exceeds the cutoff and the detectors do
not couple to the modes in this region.

This is akin to entanglement entropy calculations in QFT where a buffer region is
traced out between the region of interest (for which we want to compute the entropy)
and its complement is used to add a UV cutoff. If we do indeed add a UV cutoff, the
amount of information we can gather is finite, as we are considering a compact region with
a UV cutoff, hence there should exist a finite basis of functions which span this subspace
of bandlimited modular modes.
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Another way to possibly instill a UV cutoff is by cutting off the modular mode fre-
quency rather than Minkowski frequency. It is unclear if we get a finite set of functional
basis elements in this case as technically the index of the modular modes is continuous,
hence a UV cutoff of that index would not necessarily make this set of modes finite.

In any case, the intricacies of how to add cutoff to this measurement of modes should be
of importance for our understanding of how cutoffs can regularize entanglement entropies,
a topic of great interest [58].

Energetics

Once we have computed the Bogolyubov transformation and figured out a way to imple-
ment a UV cutoff, we can consider computing the change in energy caused by the mea-
surement process. Indeed, measuring the modular modes’ Fock number operators should
break the entanglement between A and Ā, and as the injection of energy due to entangle-
ment breaking via measurement has been of interest in this thesis, it should be interesting
to see how much energy is injected in this extreme limit. That is, if we break all of the
entanglement of a region A with its complement via our above measurement scheme (as in
(7.19)), then how much energy is injected into the field?

The energetics of broken entanglement have made an appearance in the recent literature
on black holes [5]. In these papers, some argue that the horizon of the black hole breaks all
entanglement of the interior of the black hole with its exterior, and the energetic imprint
of this creates what is known as a firewall. Indeed, if we did the same scheme as in (7.19)
but for the entangled state in, (7.20), then, tracing out the probe systems, the resulting
state of the field is

ρ̃AĀ =
⊗

ν

(
1

Zν

∞∑

nν=0

e−πnνi |nν〉〈nν |A ⊗ |nν〉〈nν |Ā

)
, (7.33)

which is a correlated but disentangled state. This is not quite the state ρA ⊗ ρĀ, which
would be more akin to what some have considered as the “firewall state” for black holes
[44]. In any case, calculating the change in energy density in the field caused by this
measurement could be insightful as to the nature of firewalls.
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7.2 Other Ideas

7.2.1 Maximal QET

We could possibly consider using the optimal measurement procedure described above to
test the limits of negative energy densities, by combining the modular modes measurement
with QET.

Given all of the information about a certain compact region A by measurign its com-
plement, Ā, then with an optimal choice of controlled unitary, we could possibly punch a
strongly negative energy hole in spacetime.

Otherwise, we could try to use the modular mode measurement for normal QET, i.e.
measure observables in a compact region A, target another compact region B 6= Ā. Note
that we would probably have to let go of our restriction to Gaussian operations.

7.2.2 QET for General Gaussian States

Much of the calculations presented in this thesis relied on the Gaussian state formalism,
which we introduced in our Quantum Information Basics background section. For the
calculations completed in this thesis, we mostly used the ground state of either a chain
of harmonic oscillators or the ground state of the vacuum in Quantum Field Theory, also
known as the Minkowski vaccum. Without the need for too much additional work, one
could extend our calculations to encompass scenarios where the initial state of the system
is a general Gaussian state, i.e. other than the vacuum state.

As squeezed states are Gaussian states, and our formalism for QFT and for lattices,
when computing changes in energies in the field/lattice due to linear coupling with a probe
all yielded gives us expectation values of correlators and first moments, then all we have
to do is compute the Green’s functions and moments of the squeezed states and we have
QET for squeezed states.

In our chapter on QET with a linear Harmonic lattice, we considered ground states of
lattices of the form

H =
1

2

∑

i,j∈L

(π2
j + φiKijφj) (7.34)

hence our calculations are valid for any lattice of that form. The ground states of lattices
of this form can be considered as squeezed states with respect to the quantization in other
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lattices. For example, if K is a nearest neighbor coupling like we had in (4.3), then the
ground state of this chain is a squeezed state, that is, each harmonic oscillator is squeezed
with another to varying degree. As an aside, in 4.2.1 we worked out the various squeezings
between oscillators of this ground state. In general, the changes in the Hamiltonian can
be any polynomial of second order of the quadratures. The resulting ground state will be
a squeezed state, but without too much more work our approach could be adapted to such
cases.

Also note that since thermal states are also Gaussian, we could compute the changes
in energy due to QET.

An interesting application of this would be to recalculate Hotta’s Controlled Hawking
Process [33] for the Hartle-Hawking vaccuum (thermal) or the Boulware vacuum (sqeezed
state).

7.2.3 Sampling Fields for Quantum Computation

It is well known that preparing the ground state for a quantum simulation is computa-
tionally hard. Using the quantum analog-to-digital converter discussed in this thesis, one
could imagine preparing a near-vacuum state in a lab and “scanning” it using the multipoint
QADC. That is, instead of simulating the adiabatic state preparation of a ground/thermal
state on the quantum computer, one prepares a system in the lab and harvests the state
structure and digitalizes a subspace of the quantum field.
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Chapter 8

Conclusion

In this work, we analyzed how probing quantum fields can be used for multiple different
endeavours, such as quantum energy teleportation, entanglement harvesting, measurement,
and entanglement breaking. We studied both the energetics and the information theoretics
of each scenario, and successfully built novel protocols for each case, by building upon
our accumulated knowledge of recurrent concepts. Thus, by exploring multiple areas of
relativistic quantum information in parallel, we reaped the rewards for our efforts in linking
different topics.

And thus concludes this thesis. Thanks for reading.
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Appendix A

Quantum Energy Teleportation
Calculations

A.1 Gaussian Integrals for Multipoint Continuous Vari-

able QET

Here is a useful formula we will be using a few times: given some matrix σ (with positive

definite Hermitian component) and vector ~J , we have

∫

Rn
dn~x e

~JT ~xe−
1
2
~xTσ~x =

√
(2π)L

|σ| exp
(

1
2
~JTσ−1 ~J

)
(A.1)

where we denote determinants of matrices as | · | ≡ det(·).

We can now attack our first integral,
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II =
1

2L
√
π

3L
eLr

∫

RL
dL~x

∫

RL
dL~qe−

1
2
~qTM~q~xTB~x e−i~x

T ~q

∫

RL
dL~p e(i~xT+~qTA)~pe−

1
2
~qTM~q

=
1

√
2
L√

π
2L
eLr
√
|M |

∫

RL
dL~x

∫

RL
dL~qe−

1
2
~qTM~q~xTB~x

× e−i~xT ~qe−
1
2
~xTM−1~xe

1
2
~qTAM−1AT ~qei

1
2
~xT (M−1AT+(M−1)TA)~q

≡ 1
√

2
L√

π
2L
eLr
√
|M |

∫

RL
dL~x~xTB~x e−

1
2
~xTM−1~x

∫

RL
dL~qe−

1
2
~qTV ~qei~x

T (K−I)~q

≡ 1
√
π
L
eLr
√
|M ||V |

∫

RL
dL~x~xTB~x e−

1
2
~xTM−1~xe−

1
2
~xT(K−I)V −1(KT−I)~x

≡ 1
√
π
L
eLr
√
|M ||V |

∫

RL
dL~x~xTB~x e−

1
2
~xTG~x

=

√
2
L

eLr
√
|M ||V ||G|

∫

RL
dL~x e

1
2

∑
jkG

−1
jk ∂j∂k~xTB~x =

√
2
L
tr (G−1B)

eLr
√
|M ||V ||G|

(A.2)

where in the above we have defined the following matrices for convenience:

M ≡ A+ e−2rI

K ≡ 1
2
(M−1 + (M−1)T )A

V ≡M −AM−1AT

G ≡M−1 + (K − I)V −1(KT − I).

(A.3)

Now, the expression we obtained here is somewhat unwieldy. The above term is associated
to the switching costs for Bob to couple to the field.

We can compute the III term, as IV is its conjugate we will only have to compute this
once.

III =
1

2L
√
π

3L
eLr

∫

RL
dL~x

∫

RL
dL~q

∫

RL
dL~p ~xTQ~p ei(~p−~q)·~xe−

1
2

(~p·~p+~q·~q)e−2r

e~q
TA~p−1

2
~qTA~q−1

2
~pTA~p

(A.4)

We will perform this integral in three parts once again. We define IIIq, IIIp and IIIx to
be the integrals over q, p and x respectively. We will separate the integral in three parts
and integrate in that order. We rewrite III in terms of IIIq, IIIp, IIIx as follows:
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III =
1

2L
√
π

3L
eLr

IIIx(IIIp(IIIq(p, x), x))

IIIq(p, x) =

∫

RL
dL~q e−i~q

T ~xe~p
TAT ~qe−

1
2
~qT ~qe−2r

e−
1
2
~qTA~q

~IIIp(IIIq, x) =

∫

RL
dL~p ~p ei~x

T ~pe−
1
2
~pT ~pe−2r

e−
1
2
~pTA~p IIIq(p, x)

IIIx( ~IIIp) =

∫

RL
dL~x ~xTQ ~IIIp(IIIq, x)

(A.5)

We tackle the first integral, IIIq by gathering the linear and quadratic terms and defining
the vector and matrix:

~J = A~p− i~x
N = e−2rI +A

(A.6)

With these definitions, we get

IIIq(p, x) =

∫

RL
dL~q e−i~q

T ~xe~p
TAT ~qe−

1
2
~qT ~qe−2r

e−
1
2
~qTA~q

=

∫

RL
dL~q e

~KT ~qe−
1
2
~qTN~q

=

√
(2π)L

|N | exp
(

1
2
~JTN−1 ~J

)

=

√
(2π)L

|N | e
1
2

(~pTAT−i~xT )N−1(A~p−i~x)

=

√
(2π)L

|N | e
− 1

2
~xTN−1~xe−

i
2
~xT (N−1+(N−1)T )A~pe

1
2
~pTATN−1A~p

(A.7)

where we have separated the quadratic terms from the linear terms. Plugging IIIq(p, x)
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into IIIp:

~IIIp(IIIq, x) =

∫

RL
dL~p ~p ei~p

T xe−
1
2
~pT ~pe−2r

e−
1
2
~pTA~p IIIq(p, x)

=

√
(2π)L

|N | e
1
2
−~xTN−1~x

∫

RL
dL~p ~p ei~x

T ~pe−
1
2
~pT ~pe−2r

e−
1
2
~pTA~p e−

i
2
~xT (N−1+(N−1)T )A~pe

1
2
~pTATN−1A~p

=

√
(2π)L

|N | e
− 1

2
~xTN−1~x

∫

RL
dL~p ~p e~x

TW T ~pe−
1
2
~pTU~p

=

√
(2π)L

|N |

√
(2π)L

|U 3| e
1
2
−~xTN−1~xW~x exp

(
1

2
~xTW TU−1W~x

)

(A.8)

where we have defined W ,U as:

W = i

(
I −ATN

−1 + (N−1)T

2

)

U = N −ATN−1A

(A.9)

Now we plug in IIIp(x) into IIIx:

IIIx( ~IIIp) =

∫

RL
dL~x ~xTQ ~IIIp(IIIq, x)

=

√
(2π)L

|N |

√
(2π)L

|U 3|

∫

RL
dL~x ~xTQW~xe−

1
2
~xTN−1~xe

1
2
~xTW TU−1W~x

=

√
(2π)L

|N |

√
(2π)L

|U 3|

∫

RL
dL~x ~xTR~xe−

1
2
~xTH~x

=

√
(2π)L

|N |

√
(2π)L

|U 3|

√
(2π)L

|H| Tr(H−1R)

(A.10)

where we defined
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H = N−1 −W TU−1W

R = QW
(A.11)

Expanding everything out we get

III =
1

2L
√
π

3L
eLr

√
(2π)L

|N |

√
(2π)L

|U 3|

√
(2π)L

|H| Tr(H−1R)

=
1

2L
√
π

3L
eLr

√
(2π)L

|N |

√
(2π)L

|U 3|

√
(2π)L

|H| Tr(H−1R)

=

√
2
L

eLr
Tr(H−1R)√
|N ||U 3||H|

(A.12)

We compute II+2Re(III) in the case L = 1. We start with III. Under this simplification,
R,U,H, L.N simplify to:

N = e−2r + A

W =
i

1 + Ae2r

U =
e−2r + 2A

1 + Ae2r

H =
2e2r

(1 + 2Ae2r)

R =
iQ

1 + Ae2r

(A.13)

Combining the simplified terms we get:

III =

√
2

er
Tr(H−1R)√
|N ||U 3||H|

=

√
2

er
R√

NU3H3

=
iQ

2

(A.14)
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Now unto II:

II =

√
2
L
tr (G−1B)

eLr
√
|MVG|

=

√
2

er
B√

MVG3

= AB +
Be−2r

2

(A.15)

where the matrices M,K, V,G have simplified to:

M = A+ e−2rI = A+ e−2r

K = 1
2
(M−1AT + (M−1)TA) =

A

A+ e−2r

V = M −AM−1AT =
2A+ e−2r

1 + Ae2r

G = M−1 + (K − I)V −1(KT − I) =
2e2r

1 + 2Ae2r

(A.16)

This gives the final result:

II + 2Re(III) = B
(
A+ e−2r

2

)
− Im(Q) (A.17)

we discuss this result back in the main text in section 6.1.4.
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A.2 Energy Calculations

We start with the calculation of A’s investment of energy into the field from her interaction,
i.e. a proof of equation (6.76).

EA = 〈Ψ2| I ⊗H |Ψ2〉 =
d−1∑

m=0

d−1∑

k=0

(〈A0|xm〉 〈xm|xk〉︸ ︷︷ ︸
δmk

〈xk|A0〉) 〈Λm|H |Λk〉

=
d−1∑

k=0

(〈A0|xk〉 〈xk|A0〉) 〈Λk|
∫ ∞

0

dω ωa†ωaω |Λk〉

=

∫ ∞

0

dω ω
d−1∑

k=0

(〈A0|xk〉 〈xk|A0〉) |Λkω|2︸ ︷︷ ︸
=|αω |2

���
��:1〈Λk|Λk〉

=

∫ ∞

0

dω ω 〈A0|
��

��
�
��

��*
I(

d−1∑

k=0

|xk〉 〈xk〉
)
|A0〉 |αω|2

=

∫ ∞

0

dω ω|αω|2 = 〈α|H |α〉

(A.18)

By conservation of energy by free evolution of the field, we know that the energy right
before B’s interaction is still given by EA. We can compute the total energy in the field
right after B’s interaction,
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EA + ∆E ≡ 〈Ψ3| I ⊗H |Ψ3〉 =
d−1∑

m=0

d−1∑

b=0

d−1∑

k=0

〈A0|xm〉 〈xm|zb〉 〈zb|xk〉 〈xk|A0〉

× 〈Λm|D†(ξb)HD(ξb) |Λk〉

=
d−1∑

m,b,k=0

〈A0|xm〉 〈xm|zb〉 〈zb|xk〉 〈xk|A0〉 〈Λm|D†(ξb)
∫ ∞

0

dω ωa†ωaωD(ξb) |Λk〉

=

∫ ∞

0

dω ω
d−1∑

m,b,k=0

〈A0|xm〉 〈xm|zb〉 〈zb|xk〉 〈xk|A0〉 〈Λm| (a†ω + ξ∗bω)(aω + ξbω) |Λk〉

=

∫ ∞

0

dω ω
d−1∑

m,b,k=0

〈A0|xm〉 〈xm|zb〉 〈zb|xk〉 〈xk|A0〉 〈Λm|Λk〉 (Λ∗mω + ξ∗bω)(Λkω + ξbω)

=

∫ ∞

0

dω ω
d−1∑

m,b,k=0

〈A0|xm〉 〈xm|zb〉 〈zb|xk〉 〈xk|A0〉 〈Λm|Λk〉 (Λ∗mωΛkω + ξ∗bωξbω︸ ︷︷ ︸
I

+ Λ∗mωξbω + ξ∗bωΛkω︸ ︷︷ ︸
II

)

(A.19)

To help ourselves in our calculation, we divide the different terms in order to better conquer
them. We have the “symmetric” and the “cross” terms (I and II respectively). Keep in
mind then that EA + ∆E = I + II. Let us start with the symmetric ones:

I =

∫ ∞

0

dω ω
d−1∑

m,b,k=0

〈A0|xm〉 〈xm|zb〉 〈zb|xk〉 〈xk|A0〉 〈Λm|Λk〉 (Λ∗mωΛkω + ξ∗bωξbω)

=

∫ ∞

0

dω ω
d−1∑

m,k=0

〈A0|xm〉 〈xm|
��

�
��

�
��*I(

d−1∑

b=0

|b〉 〈b|
)
|xk〉

︸ ︷︷ ︸
δmk

〈xk|A0〉 〈Λm|Λk〉 (Υm−k|αω|2 + |βω|2)

=

∫ ∞

0

dω ω

��
���

���
���

���
��:1(

〈A0|
(∑d−1

k=0 |xk〉 〈xk|
)
|A0〉

)
(|αω|2 + |βω|2)���

��:1〈Λk|Λk〉

=

∫ ∞

0

dω ω (|αω|2 + |βω|2) = 〈α|H |α〉︸ ︷︷ ︸
=EA

+ 〈β|H |β〉 = EA + 〈β|H |β〉 .

(A.20)

We see that these terms yield the independent energy of the coherent states generated by
A and B’s interactions. This would be the energy in the field if A and B would both do
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their interactions without being causally related. The interesting behaviour of QET hence
lies in the cross terms. Indeed, the work extracted (the negative energy) will be in the II
terms,

∆E = EA + ∆E − EA = I + II− EA = 〈β|H |β〉︸ ︷︷ ︸
≥0

+ II︸︷︷︸
?
<0

. (A.21)

Before we attack the rest of the calculation, note the following identity which we be
put to use: In general, for operators A,B and scalar γ,

AB = γBA =⇒ ABn = γnBnA =⇒ AeB = eγBA. (A.22)

Finally, before we proceed, recall our definition

‖α‖2 ≡
∫ ∞

0

dω |αω|2. (A.23)

We now compute the cross terms,

II =

∫ ∞

0

dω ω
d−1∑

m,b,k=0

〈A0|xm〉 〈xm|zb〉 〈zb|xk〉 〈xk|A0〉 〈Λm|Λk〉︸ ︷︷ ︸
exp((Υm−k−1)‖α‖2)

(Λ∗mωξbω + ξ∗bωΛkω)

=

∫ ∞

0

dω ω
d−1∑

m,b,k=0

〈A0|xm〉 〈xm|zb〉 〈zb|xk〉 〈xk|A0〉 e(Υm−k−1)‖α‖2(Υm−bα∗ω(T )βω︸ ︷︷ ︸
(i)

+ Υb−kαω(T )β∗ω︸ ︷︷ ︸
(ii)

)

(A.24)
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starting with the first one,

(i) =

∫ ∞

0

dω ω
d−1∑

m,b,k=0

〈A0|xm〉 〈xm|zb〉 〈zb|xk〉 〈xk|A0〉 e(Υm−k−1)‖α‖2Υm−bα∗ω(T )βω

= e−‖α‖
2

(∫ ∞

0

dω ωα∗ω(T )βω

)

× 〈A0|




d−1∑

m=0

Υm |xm〉 〈xm|
(
d−1∑

b=0

Υ−b |b〉 〈b|
)

︸ ︷︷ ︸
Z†

(
d−1∑

k=0

e(Υm‖α‖2)Υ−k |xk〉 〈xk|
)

︸ ︷︷ ︸
exp(Υm‖α‖2X†)



|A0〉

= e−‖α‖
2

(∫ ∞

0

dω ωα∗ω(T )βω

)
〈A0|

[
d−1∑

m=0

Υm |xm〉 〈xm|Z†eΥm‖α‖2X†
]
|A0〉

= e−‖α‖
2

(∫ ∞

0

dω ωα∗ω(T )βω

)
〈A0|

[
d−1∑

m=0

Υm |xm〉 〈xm| eΥm+1‖α‖2X†Z†

]
|A0〉

= e−‖α‖
2

(∫ ∞

0

dω ωα∗ω(T )βω

)
〈A0|

[
d−1∑

m=0

Υm |xm〉 〈xm| eΥ�m+1‖α‖2���Υ−mZ†

]
|A0〉

= e(Υ−1)‖α‖2
(∫ ∞

0

dω ωα∗ω(T )βω

)
〈A0|

(
d−1∑

m=0

Υm |xm〉 〈xm|
)

︸ ︷︷ ︸
X

Z† |A0〉

= e(Υ−1)‖α‖2
(∫ ∞

0

dω ωeiωTα∗ωβω

)
〈A0|XZ† |A0〉

(A.25)

where in the above we use the fact that Z†X† = ΥX†Z†. The second cross term is now
easy to compute since it is the complex conjugate of the first,

(ii) = e(Υ−1−1)‖α‖2
(∫ ∞

0

dω ωe−iωTαω(T )β∗ω

)
〈A0|ZX† |A0〉 . (A.26)

Thus the cross-terms end up summing up to the following,

II = (i) + (ii) = 2Re[(i)] = 2Re

[(∫ ∞

0

dω ωeiωTα∗ωβω

)
〈A0|XZ† |A0〉 e(Υ−1)‖α‖2

]
. (A.27)

Putting all of the above together we recover our results from equation (6.81).

165



A.3 Stress-Energy Tensor Calculation

The left-moving energy density of the field is given by

ε+(x+) ≡ 1

2
: Π+(x+)2 :=

1

2
:

∫

(R+)2

dωdω′
√
ωω′

4π

[
a†ωe

iωx+ − aωe−iωx
+
] [
aω′e

−iω′x+ − a†ω′eiω
′x+
]

:

=
1

2

∫

(R+)2

dωdω′
√
ωω′

4π
:
[
a†ωaω′e

i(ω−ω′)x+ − a†ωa†ω′ei(ω+ω′)x+ − aωaω′e−i(ω+ω′)x+

+ aωa
†
ω′e
−i(ω−ω′)x+

]
:

=

∫

(R+)2

dωdω′
√
ωω′

8π

[
a†ωaω′e

i(ω−ω′)x+

+ a†ω′aωe
−i(ω−ω′)x+ − a†ωa†ω′ei(ω+ω′)x+ − aωaω′e−i(ω+ω′)x+

]

=

∫

(R+)2

dωdω′
√
ωω′

8π

[
2a†ωaω′e

i(ω−ω′)x+ − a†ωa†ω′ei(ω+ω′)x+ − aωaω′e−i(ω+ω′)x+
]
.

(A.28)

For a fixed time, say t = 0, we can integrate the above over all space to obtain the total
Hamiltonian (for left-movers):

H+ ≡
∫

R
dx ε+(x) =

∫

(R+)2

dωdω′
√
ωω′

8π

[
4πa†ωaω′δ(ω − ω′)−((((((

(((
2πa†ωa

†
ω′δ(ω + ω′)−((((((

(((2πaωaω′δ(ω + ω′)
]

=

∫

(R+)2

dω
ω

2
a†ωaω,

(A.29)

we see only the first term survives. This is a standard result which is worth reiterating
since it shows that our energy density calculations and total energy calculations should be
in agreement as long as we use the above.

The state right after A’s interaction (at t = 0+) is given by |Ψ1〉. We can compute the
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value of the energy density immediately after this interaction (note x+ = x since t = 0).

EA(x) = 〈Ψ1| I ⊗ ε+(x) |Ψ1〉 =
d−1∑

j=0

d−1∑

i=0

(〈A0|xj〉 〈xj|xi〉︸ ︷︷ ︸
δji

〈xi|A0〉) 〈ζj| ε+(x) |ζi〉

=
d−1∑

j=0

(〈A0|xj〉〈xj|A0〉) 〈ζj|
∫

(R+)2

dωdω′
√
ωω′

8π

[
2a†ωaω′e

i(ω−ω′)x+ − a†ωa†ω′ei(ω+ω′)x − aωaω′e−i(ω+ω′)x
]
|ζj〉

=

∫

(R+)2

dωdω′
√
ωω′

8π

d−1∑

j=0

(〈A0|xj〉〈xj|A0〉)����〈ζj|ζj〉
[
2ζ∗jωζjω′e

i(ω−ω′)x − 2Re
(
ζjωζjω′e

−i(ω+ω′)x
) ]

=

∫

(R+)2

dωdω′
√
ωω′

4π

d−1∑

j=0

〈A0|xj〉〈xj|A0〉
[
α∗ωαω′e

i(ω−ω′)x − Re
(
e−4πij/dαωαω′e

−i(ω+ω′)x
) ]

=

∫

(R+)2

dωdω′
√
ωω′

4π

[
α∗ωαω′e

i(ω−ω′)x − Re
(∑

j e
−4πij/d 〈A0|xj〉 〈xj|A0〉αωαω′e−i(ω+ω′)x

)]

=

∫

(R+)2

dωdω′
√
ωω′

4π

[
α∗ωαω′e

i(ω−ω′)x − Re
(
〈A0|X†2 |A0〉αωαω′e−i(ω+ω′)x

)]

=

∫

(R+)2

dωdω′
√
ωω′

4π
α∗ωαω′e

i(ω−ω′)x −
∫

(R+)2

dωdω′
√
ωω′

4π
Re
(
〈A0|X†2 |A0〉αωαω′e−i(ω+ω′)x

)

=

∫

(R+)2

dωdω′
ωω′

(4π)2
λ̃∗(ω)λ̃(ω′)ei(ω−ω

′)x −
∫

(R+)2

dωdω′
ωω′

(4π)2
Re
(
〈A0|X†2 |A0〉 λ̃(ω)λ̃(ω′)e−i(ω+ω′)x

)

=
1

(4π)2

∣∣∣
∫

R+ dω ωλ̃(ω)e−iωx
∣∣∣
2

− 1

(4π)2
Re
(
〈A0|X†2 |A0〉

(∫
R+ dω ωλ̃(ω)e−iωx

)2 )

=
1

(4π)2

∣∣∣
∫

R+ dω ωλ̃(−ω)eiωx
∣∣∣
2

− 1

(4π)2
Re
(
〈A0|X2 |A0〉

(∫
R+ dω ωλ̃(−ω)eiωx

)2 )

(A.30)

The second term seems like it could admit some non-locality for d > 2, i.e. when X†2 6= I.
To see this more clearly, let

z ≡ 1
4π

∫
R+ dω ωλ̃(−ω)eiωx ≡ a+ ib, a, b ∈ R

〈X2〉 ≡ 〈A0|X2 |A0〉 ≡ g + hi, g, h ∈ R
(A.31)
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Then, we have

EA(x) = |z|2 − Re(〈X2〉 z2)

= (1− g)a2 + (1 + g)b2 + 2abh.
(A.32)

Notice that in the d = 2 case, we have 〈X2〉 = 1 = g, h = 0 and EA(x) = 2b2 = 2[Im(z)]2.
As we will see below, the imaginary part of our Fourier integral z is the local one, while
the real part is non-local. It seems that for d > 2 (qudits), we can add energy density to
the field non-locally. Before we proceed, note the following integral

∫

R+

dω ωeiωx =

∫

R
dω ωΘ(x)eiωx = − 1

x2
− iπδ′(x) (A.33)

we already see that the imaginary part is local (delta function) versus a non-local power-law
decay. Now, we can compute our z (convolution and integration by parts),

z =
1

4π

∫

R
dy λ(y)

( −1

(x− y)2
− iπδ′(x− y)

)
= − 1

4π

∫

R
dy

λ(y)

(x− y)2
+ i

λ′(x)

4
. (A.34)

Thus, as our final expression for the energy density, we have

EA(x) = 1
16π2 (1−Re 〈X2〉)

(∫
R dy

λ(y)
(x−y)2

)2

+ 1
16

(1+Re 〈X2〉)(λ′(x))2− 1
8π

(λ′(x))
(∫

R dy
λ(y)

(x−y)2

)
Im 〈X2〉 .

(A.35)
Note that the first term is what gives us non-locality, the second term is local term and the
third term is also local (since λ′ transfers it compact support property to the product). A
question arises: can we have a choice of initial state |A0〉 such that we have both efficient
QET and remove the non-locality of A? The only way to remove all non-locality is to have
〈X2〉 = 1, this means we would need to choose |A0〉 = |x0〉 the eigenstate of X of eigenvalue
1 when d > 2. Unfortunately, the teleportation term goes as ∼ 〈A0|XZ† |A0〉, so if we
have |A0〉 = |x0〉, then

〈x0|XZ† |x0〉 = 〈x0|xd−1〉 = 0 (A.36)

and we have no teleportation. Note that, our non-locality decays as the distance L−4,
which is a faster decay than the energy extracted L−2.

A.4 Hamiltonian non-locality

Our interaction Hamiltonian density (omitting the λ(x) smearing) is given by

HA(x) ≡ −i
∫

R+

dω
√

ω
4π

(
Xaωe

−iωx −X†a†ωeiωx
)
. (A.37)
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We can decompose the Weyl operators into their Hermitian and anti-Hermitian compo-
nents, let

C ≡ (X +X†)

2
, S ≡ i(X −X†)

2
,

X ≡ (C − iS)

2
, X† ≡ (C + iS)

2
.

(A.38)

Note that when d = 2, S = 0. We can rewrite our interaction Hamiltonian density (again
omitting λ(x)),

HA(x) = −i
∫

R+

dω
√

ω
8π

(
(C − iS)aωe

−iωx − (C + iS)a†ωe
iωx
)

=
C

2
(−i)

∫

R+

dω
√

ω
4π

(
aωe

−iωx − a†ωeiωx
)

︸ ︷︷ ︸
Π+(x)

−S
2

∫

R+

dω
√

ω
4π

(
aωe

−iωx + a†ωe
iωx
)

︸ ︷︷ ︸
6=Φ+(x)

.

(A.39)

The term that goes with S is not an observable that we know of; has a power of ω more than
Φ+ but not the ±i factors of Π+. We can decompose the creation/annihilation operators
into field amplitude and momentum operators:

aω =
1√
4π

∫

R
dx eiωx

[√
ωΦ+(x) + i√

ω
Π+(x)

]
,

a†ω =
1√
4π

∫

R
dx e−iωx

[√
ωΦ+(x)− i√

ω
Π+(x)

]
,

(A.40)

and plug this back into our expression for our interaction Hamiltonian density

HA(x) =
C

2
Π+(x)− S

2

∫

R+

dω
1

4π

(∫

R
dy [ωΦ+(y) + iΠ+(y)] eiω(x−y) + h.c.

)

=
C

2
Π+(x)− S

2

∫

R
dy

1

4π

([(∫

R+

dω ωeiω(x−y)

)
Φ+(y) + i

(∫

R+

dω eiω(x−y)

)
Π+(y)

]
+ h.c.

)

=
C

2
Π+(x)− S

2

∫

R
dy

1

4π

([
Re

(∫

R+

dω ωeiω(x−y)

)
Φ+(y)− Im

(∫

R+

dω eiω(x−y)

)
Π+(y)

])

=
C

2
Π+(x) +

S

8π

∫

R
dy

(
Φ+(y)

(x− y)2
+

Π+(y)

(x− y)

)
.

(A.41)
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We clearly see that the S term is non-local. Essentially, this is because the S term was “a
factor of ω off”; note the following integrals

∫

R+

dω eiω(x−y) = πδ(x− y) +
i

(x− y)∫

R+

dω ω eiω(x−y) = − 1

(x− y)2
− iπδ′(x− y)

(A.42)

which is obviously non-local.

A.5 Scaling Inequalities

Here we prove the inequality (6.94). In order to recover locality, we want the teleported
teleportation term (second term in (6.89)) to far outweigh the non-locality in EA(x) (second
term (6.93)) integrated with respect to B’s coupling to the field µ(x), which represents to
leading order in distance the energy that B could extract from the non-local part of A’s
energy injection. To extract a positive amount of work through B’s interaction, we need
the teleportation term to outweigh the positive energy injected by B from switching costs
(we want the second term to outweigh the first term in (6.89)). To both recover locality
and have positive work extracted from the field by B, we need both of the following to hold

µ2
0

∫

R
dx(Fb(x))2 � Im(Γ)λ0µ0

∫

R2

dx dy
Fa(x)Fb(y)

(y − x+ T )2
.

µ0λ
2
0

∫

R
dxFb(x)

(∫

R
dy

Fa(y)

(y − x+ T )2

)2

� Im(Γ)λ0µ0

∫

R2

dx dy
Fa(x)Fb(y)

(y − x+ T )2

(A.43)

We can assume for now that d is sufficiently large so that Im(Γ) ≈ 1. Consider L being
the distance between support of A and B’s coupling functions at time T , i.e. the distance
between supp(Fa) translated by T to the left and supp(Fb). Then, using Lp(R) norm
notation, ‖f‖p ≡ (

∫
R |f(x)|pdx)1/p, the above inequalities can be rewritten as

µ2
0‖Fb‖2

2 � λ0µ0
‖Fa‖1‖Fb‖1

L2

µ0λ
2
0

‖Fb‖1‖Fa‖2
1

L4
� λ0µ0

‖Fa‖1‖Fb‖1

L2
.

(A.44)
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Now we can use the fact that we defined Fa and Fb to have unit L1(R) norm to write,

µ2
0‖Fb‖2

2 � λ0µ0
1

L2

µ0λ
2
0

1

L4
� λ0µ0

1

L2
.

(A.45)

Cancelling common factors, we can boil these down to

µ0‖Fb‖2
2 �

λ0

L2
,

λ0

L2
� 1,

(A.46)

which can be combined into

µ0‖Fb‖2
2 �

λ0

L2
� 1. (A.47)

Now, by definition, we have ‖Fb‖1 = 1, where Fb is of compact support. Suppose we widen
the support of this function with respect to a parameter σ > 1 all the while keeping the
L1(R) norm fixed, i.e.

Fb(x) 7→ F σ
B(x) ≡ 1

σ
Fb

(
x
σ

)
. (A.48)

We can check that this still has a unit 1-norm:

‖F σ
B‖1 =

∫

R

∣∣∣∣
1

σ
Fb

(
x
σ

)∣∣∣∣ dx =

∫

R

∣∣Fb

(
x
σ

)∣∣ dx

σ
=

∫

R
Fb(u)du = ‖Fb‖1 = 1, (A.49)

where in the above we performed a integration variable substitution u ≡ x/σ. We can now
check how ‖F̂B‖2

2 scales:

‖F σ
b ‖2

2 =

∫

R

(
1

σ
Fb

(
x
σ

))2

dx =
1

σ

∫

R
F 2
b

(
x
σ

) dx

σ
=

1

σ

∫

R
F 2
b (u) du =

1

σ
‖Fb‖2

2. (A.50)

We clearly see that ‖Fb‖2
2 scales as the inverse of the support stretching parameter σ. Thus,

our double inequality becomes

µ0

σ
� λ0

L2
� 1. (A.51)
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