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Sammendrag

Avhandlingen best̊ar av fire artikler i matematisk logikk og én formalis-
eringdel. De fire artiklene er arbeider innenfor omr̊adet typeteori. De to
første artiklene er arbeider internt i typeteorien, og formaliseringen av
disse er skrevet i Agda – et bevissjekkingssystem basert p̊a Martin-Löfs
type teori.

Den første artikkelen omhandler multimengder i typeteori. Multi-
mengder er et kjent begrep fra omr̊ader som kombinotarikk og infor-
matikk. Kort beskrevet er multimengder samlinger av elementer hvor et
element kan forekomme et vilk̊arlig antall ganger i samlingen. Form̊alet
med artikkelen er å beskrive et hierarki av iterative multimengder, og
utforske aksiomer for disse som ligner de man kjenner fra konstruktiv
mengdelære. Homotopitypeteori og Voevodskys univalensaxiom spiller
en sentral rolle, ettersom hierarkiet av multimengder bygges relativt til
et univalent univers.

Den andre artikkelen tar ibruk hierarkiet av iterative multimengder
fra den første artikkelen, og utvikler en modell for mengdelæren i ho-
motopitypeteori. Dette gjøres ved å definiere mengder som de multi-
mengder hvor hvert element forekommer høyst én gang. Vi viser at
denne modellen tilfredstiller aksiomer for konstruktiv mengdelære, og
at den er ekvivalent til en allerede kjent modell for mengdelæren. En
av attraksjonene ved denne formuleringen er at den kan uttrykkes uten
s̊akalte høyere induktive typer.

De to artikklene om multimengder og mengder er formalisert i Agda,
og bevisene er sjekket ved hjelp av datamaskin. Kildekoden for formalis-
eringen er gjengitt, sammen med en kort diskusjon, som en separat del
i denne avhandlignen.

De to siste artikklene omhandler semantikk for typeteori fra et kate-
goriteoretisk perspektiv. Først diskuteres en mulig kobling mellom type-
teori og databaseteori, ved å konstruere en modell for typeteorien basert
p̊a simplisialkomplekser. Vi utforsker hvordan ulike typeteoretiske kon-
septer, slik som Σ-typer, Π-typer og univers kan oversettes via denne
modellen til databaseteoretiske termer. For eksempel viser det seg at
naturlig join er et spesialtilfelle av Π-typen i denne modellen.

Den siste artikkelen diskuterer to ulike m̊ater å beskrive avhengighet-
srelasjoner mellom termer i avhengige typesystemer. Den første m̊aten er
en variant av kategorier med attributter, som er en vellstudert m̊ate å gi
kategoriteoretisk semantikk til typeteori. Den andre er en videreutvikling
av Makkai’s s̊akalte enveiskategorier, til å inkludere termer i tillegg til
typer.
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Preface

This text has been written as a doctorate thesis in the subject of math-
ematical logic, and is a collection of papers. The thesis is based on
research carried out during the years 2012–2016, and consists of five
parts. The parts A, B, D and E are individual research papers, while
Part C is a formalisation of Part A and Part B in the Agda language.
Each part is equipped with an abstract and more careful introduction.
We will here give a bit of context for each part.

Part A. Having studied containers for my Master Thesis at The
University of Oslo, 2011, it was natural to continue to study polyno-
mial functors and W-types in the context of Martin-Löf type theory
when I arrived in Stockholm, January 2012. Through reading Egbert
Rijke’s master thesis, and attending the 4th Formal Topology Workshop
in Ljubljana, June 2012, I became aware of what is now called Homo-
topy Type Theory, and the novel interpretation of the identity type as
paths in a space.

In late 2013 I was studying the W-types of groupoids and their iden-
tity type when I considered the W-type, Wa:UT a for a universe T . Erik
Palmgren, my advisor, quickly pointed me to Aczel’s 1977 paper, which
uses this exact type to model set theory. Applying what homotopy the-
ory tells us about the identity type of the universe, I arrived at the
conclusions found in Part A.

Part B. The work on constructing a model of constructive set the-
ory from the multisets of Part A started while I was visiting Carnegie
Mellon University in Pittsburgh, Pennsylvania, late January and early
February of 2014. At the seminar there, I presented my ideas, and Steve
Awodey raised the question of how to turn this into a model of set the-
ory. Answering this question then became the focus of Part B of this
thesis.

Part C. While in Pittsburgh, I also started formalising my results
on multisets in Agda. Having experimented with Agda since the very
first weeks of coming to Stockholm, I was happy to find that my work
on multisets was very amendable to formalisation. The work on formal-
ising these results continued for more than a year, coming to essential
completion in August 2015, after a quiet month of focused effort in the
pleasant Stockholm summer. It is now collected in Part C.

Part D. The fourth part is based on previous work by co-author
David I. Spivak on the connections between simplicial complexes and
databases. Along with Henrik Forssell, who initiated the cooperation,
we worked out the details of a model of type theory based on simplicial

xi



complexes (which form a locally cartesian closed category), and made
connections back to notions in databases such as natural join. In Jan-
uary 2016 I presented this at Logical Foundations of Computer Science
(LFCS16), and a shorter version of the article was printed in the pro-
ceedings of the conference. The full version of Part D is submitted for
the post-conference special volume of Annals of Pure and Applied Logic.

Part E. During the spring term 2013 I took a course on the Theory of
Operads, taught by Sergei Merkulov. Inspired by the operad approach to
algebras, and Makkai’s one-way categories, I wanted to study dependent
type theory from a more combinatorial perspective. Some small progress
on this topic was made in the following couple of years and presented
in various forms at the Stockholm Logic Seminar. This work has now
been collected into Part E.

Organisation of the thesis

The thesis is divided into five parts, referred to by the Latin letters
A, B, C, D and E. Each part contains a number of sections, numbered
1, 2 etc. The sections are sometimes subdivided into subsections: 3.1,
3.2, etc. Definitions, lemmas, propositions and theorems are collectively
numbered within each part. For instance, Lemma A:6 is followed by
Definition A:7. The parts each start with an abstract and the first
section of each part is an introduction. The list of references are found
at the end of each part.

The mathematical notation varies slightly between the parts, reflect-
ing that these are individual works of mathematics here collected. Hope-
fully, the reader will find that each part introduces its notation clearly.

Acknowledgements

The list is long of people whose discussions and encouragements have
helped form and motivate the work presented here. Special thanks go to
my advisor Erik Palmgren, who patiently has supported my work, and
contributed his immense experience and knowledge.

Henrik Forssell and David I. Spivak, my coauthors on Part D, I would
like to thank for their cooperation. Henrik has furthermore been the co-
advisor of my thesis work. I would like to thank him for including me
and inviting me to cooperate with him on several research projects, and
for his office door always being open when I have needed someone to
discuss with.

The logic group at the Mathematical Department of Stockholm Uni-
versity has been a really great environment to do research in. Erik and

xii



Henrik I have already mentioned. Many thanks to them and the rest of
the group: Per, Peter, Christian, Jacopo, Johan and Anna — you have
been great colleagues and your own research has greatly inspired mine.

During my time at Stockholm University, I have also been fortunate
enough to visit many other institutions in Europe and North America.
Thanks go to all the wonderful researchers I have had the honour to
meet, for their questions, comments and discussions — in particular to
Steve Awodey of Carnegie Mellon University whose questions inspired
what would become Part B of this thesis.

Last, but not least, I would like to thank my family for their support
and help — Inna for her loving support, Yngvar for his kindness and
good mood, Ingrid for long talks and proof-reading and my parents for
always being there for me and from an early age allowing me to pursue
my interests in mathematics. No research could have been done without
such a great home support team.

—H̊akon Robbestad Gylterud
Stockholm, 2017

xiii



xiv



Introduction to the thesis

Each part of the thesis has an individual section devoted to introduction.
This part is intended as a quick introduction, focusing on the ideas
behind each part.

Type theory

Martin-Löf’s intuitionistic type theory serves as foundation of construc-
tive mathematics. For a complete introduction we refer the reader to
Nordström, Petersson, and Smith 2000. We will here give a high level
overview of the aspects relevant to the articles of this thesis.

At the core of Martin-Löf’s type theory are ideas such as

• propositions as types, sometimes referred to as the Curry—Howard
correspondence,
• defining inductive structures through introduction and elimination

rules, and
• collecting types into universes, in a way similar to Grothendieck

universes do in set theory.

The way these three are accomplished is by having dependent types.
A dependent type is a type which takes parameters in other (possibly
themselves dependent) types. A typical first example is the type of
vectors over some base type, say A. The vectors have different length
and thus one can see vectors as a type VecA n in the context (n : N),
meaning that n for each natural number n there is a type VecA n of
vectors of length n, of elements of A. One sometimes use the term
“family of types” to denote dependent types.

Often, one can express dependent types as functions into a type of
types. For instance, if Type is the type of small types, then a family of
small types parameterised by a type A can be represented by a function
A→ Type.

Propositions as types

Perhaps the most appealing aspect of dependent type theory is that
one does not need a separate framework for logic. Instead the type
theory comes equipped with a logical framework — where types play
the role of propositions, and in particular dependent types play the role
of predicates. For instance, a unary predicate on a type A is simply a
dependent type P : A→ Type. A binary predicate can be seen either as
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a dependent type A×A→ Type or, more conveniently, A→ A→ Type
— by currying.

The beauty of representing propositions by types is that it turns out
that the logical connectives can be expressed by the usual type forma-
tions, such as dependent products and sums. For instance the existen-
tial quantification of a binary predicate P : A → Type is expressed by∑
a:A P a. The elements of

∑
a:A P a are pairs (a, p) where a : A and

p : P a, which is exactly a witness of the existential quantification there
is a : A such that P a holds (i.e. has a witness p : P a). The table below
summarises the correspondence.

Logical connective Type formation

∀a : AP a
∏
a:A P a

∃a : AP a
∑
a:A P a

P → Q P → Q ≡
∏
p:P Q

P ∧Q P ×Q ≡
∑
p:P Q

P ∨Q P +Q
⊥ 0, the empty type
> 1, the unit type

Since a type may have more than one element, logic as presented
above is called proof-relevant logic. The idea is that each element of the
type representing a proposition represents a proof of that proposition.
An added benefit of having an element of a type representing a proof
of a proposition is that the element may be normalised — an impor-
tant property of type theory. This means that one can often extract
algorithms from proofs in type theory.

Proof-relevance is especially interesting in the case of equality. There
are several ways to represent equality in type theory. One way, rooted in
the ideas of Errett Bishop, is to equip the type with a separate equality
predicate to form what is called a setoid. A second way is to represent
equality by what is called the identity type. Given any type A, the
identity type, IdA is inductively defined as the least reflexive relation on
the type.

An amazing fact, first established by Hofmann and Streicher1 by
their groupoid interpretation of type theory, is that the identity type
may have more than one element. Thus, two elements of a type may
be equal in more than one way. This has become the foundation of
what is called Homotopy Type Theory — where types are interpreted as

1Hofmann and Streicher 1998.
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a space and the identity type is the path space. For a comprehensive
introduction to this field, see the book “Homotopy Type Theory”2.

One of the deeper notions which has been brought to attention by
Homotopy Type Theory is the notion of equivalence of types. We refer
to the book, “Homotopy Type Theory”, for the definition, but we will
use the notation A ' B to denote that A and B are equivalent types.

Introduction and elimination rules

In the previous subsection we mentioned different type constructors,
such as Π-types and Σ-types. In Martin-Löf’s type theory these are
primitive operations on types, presented each by a set of rules. For
each type there is a formation rule, none or more introduction rules,
an elimination rule, and none or more computation rules. We will not
display these rules here, but rather give some intuition as to what they
express.

In short, the formation rules tell us how to construct types, and in-
troduction rules how to construct elements of types. Elimination rules
give sufficient conditions to carry out a construction with a free variable
in the type. For instance, the elimination rule of N corresponds to math-
ematical induction by propositions as types. Computation rules tell us
the result of applying the a construction specified by an elimination rule
to an element constructed by an introduction rule. We refer the reader
to Nordström, Petersson, and Smith 2000 for a complete description of
these concepts.

Universes

In the usual formulations of dependent type theory there is one kind
of types which does not have an elimination — namely the universes.
The intuition behind universes is that they are “open-ended” families of
types, closed under type formation rules such as Π-types and Σ-types.
This means that if A : U is a type in the universe3 and F : A→ U is a
family of types in U , indexed by A, then

∑
a:A F a : U , etc.

The lack of an elimination rule has the consequence that the identity
type on U is undecided. This leaves room for additional axioms spec-
ifying how to interpret the identity of the universe. The most famous

2Univalent Foundations Program 2013.
3Elements of types such as U are not themselves types, and one often speak

of a decoding family T : U → Type, when defining a universe formally. For sim-
plicity, we apply the syntactic convention which omits mention of this decoding
family, and write A : Type instead of T A : Type
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such axiom is Voevodsky’s Univalence Axiom. It states that the identity
type on the universe coincides with equivalence of types. Concretely, it
states that for each A,B : U the canonical map IdU AB → A ' B, is
an equivalence of types.

Multisets

Multisets can be simply described as collections of elements where each
element may occur any number of times. Examples, such as {1, 1,−2},
are abundant in mathematics, for instance as the roots of polynomi-
als, such as x3 − 3x + 2. One can even view polynomials with co-
efficients in natural numbers as finite multisets of finite multisets of
variables. For instance xy2 + 3xy + x + 2 could be represented by
{{x, y, y}, {x, y}, {x, y}, {x, y}, {x}, {}, {}}.

Going beyond the finite case, any function gives rise to a multiset
image, where each element in the codomain occurs the number of times
the function attains this value. For instance f : R → R, given by
f x := x3−3x+2 (see Figure 1), would have an image multiset: Im f =
(−∞, 4) ∪ [0, 4] ∪ (0,∞). Union of multisets is additive, so that the
number of times x occurs in A ∪ B is the sum of the times x occurs in
A and the times x occurs in B. Thus, Im f is the multiset in which
each element of (0, 4) occurs trice, 4 and 0 occur twice, and elements of
(−∞, 0) and (4,∞) occur once. This gives a lot more information about
the polynomial, compared to the image set — which is just R for any
polynomial of degree 3.

A multiset may also be infinite in the sense that an element may
occur infinitely main times. For instance 0 occurs countably infinitely
many times in the image of the sine function, since sin x = 0 ⇔ ∃k ∈
Z x = πk.

The first article of this thesis concerns multisets. In particular iter-
ative multisets. Quoting from the introduction of Part A:

In a flat multiset, the elements are taken from some domain
which may not consist of other multisets. The iterative mul-
tisets have elements which are multisets themselves, and the
collection iterative multisets is generated in a well-founded
manner.

The idea is to have a similar structure as in usual (iterative) set
theory, where there is a domain V of sets and a binary relation ∈ on V .
This is where the idea of propositions as types enter the picture. We
will have a domain M and a binary relation ∈ on M . However, since we
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Figure 1: Plot of f x := x3 − 3x+ 2.

will be working in type theory, x ∈ y will be a type for all x, y : M . The
natural interpretation of the elements of x ∈ y is that they represent the
occurrences of x in y, and thus proof-relevance dictates that x may occur
multiple times in y, hence they are multisets. We see that merely stating
the signature of set theory in type theory has brought us to consider the
possibility of multisets. Thus, the type M will be the type of iterative
multisets M .

Letting x ∈ y be a type is a convenient notation for multisets. For
instance, stating that 0 occurs countably many times in Im sin is simply
asserting that (0 ∈ Im sin) ' N.

We have already mentioned that any function gives rise to a multiset.
Part A, is based on the idea that this is an adequate way to represent
multisets in general, and in particular that an iterative multiset can be
seen as a type A : U and a function f : A → M . This gives rise to an
inductive definition, namely that M is the least solution to the equation
M '

∑
A:U (A→M). This is an example of a well-known inductive

construction, namely W -types. In fact this is the exact type studied by
Aczel 1978, in his construction of a model of set theory in type theory.

In his work, Aczel uses the setoid approach to equality. The Uni-
valence Axiom, however, allows us to compute the identity on M . In-
terestingly, the identity type on M is non-trivial, with several distinct
equalities even between concrete finite multisets in M . Thus, M is a
groupoid, and we can see multiset theory as a kind of categorification of
set theory.
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Sets

The idea behind Part B is that iterative sets are merely a special class of
iterative multisets, namely those in which each element occurs at most
once — and such that this property is hereditary, so that each element
again has the iterative set property. We define such a subtype of M , by
induction, and consider how various axioms of constructive set theory
apply to this model. Quoting from the introduction:

Once the notion of a multiset is defined, it is natural to study
the hereditary subtype of multisets where each element oc-
curs at most once. These are in a certain sense the most
natural representations of iterative sets from a homotopy
type theory point of view. These are namely the multisets
for which the elementhood relation is hereditarily, merely
propositional (type level −1).
In this text we explore how this type models various axioms
of constructive set theory. We also show that it is equivalent
to the higher inductive type outlined in the book “Homotopy
Type Theory”4.

Databases

While the first two articles of the thesis are completely situated inside
type theory, Part D takes a step out and considers particular a model
of type theory from a category theoretic point of view. The particular
model is based on simplicial complexes, and is intended to model certain
aspects of database theory. Quoting from the introduction:

Databases being, essentially, collections of (possibly interre-
lated) tables of data, a foundational question is how to best
represent such collections of tables mathematically in order
to study their properties and ways of manipulating them.
The relational model, essentially treating tables as structures
of first-order relational signatures, is a simple and powerful
representation. Nevertheless, areas exist in which the rela-
tional model is less adequate than in others. One familiar
example is the question of how to represent partially filled
out rows or missing information. Another, more fundamen-
tal perhaps, is how to relate instances of different schemas, as

4Univalent Foundations Program 2013.
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opposed to the relatively well understood relations between
instances of the same schema. Adding to this, an increasing
need to improve the ability to relate and map data structured
in different ways suggests looking for alternative and supple-
mental ways of modelling tables, more suitable to “dynamic”
settings. It seems natural, in that case, to try to model tables
of different shapes as living in a single mathematical struc-
ture, facilitating their manipulation across different schemas.
We investigate, here, a novel way of representing data struc-
tured in systems of tables which is based on simplicial sets
and type theory rather than sets of relations and first-order
logic.

The basic notions of databases are those of a database schema and
those of an instance of a schema. Simply put, a schema is a description
of a layout of tables: each table described by a list of attributes. It
is essential that attributes may be shared across different tables. An
instance is then an actual set of tables, filled with data, which adhere
to the layout of the schema.

Given a schema and an instance, full tuple is a tuple of data with an
entry for each attribute in the schema, such that the restriction to each
table corresponds to an existing row in the instance. Below is a simple
example.

Schema: {(A,B,C), (A,D)}
Instance:

A B C

x a 3
y b 7
x b 1

A D

x >
x ⊥
y ⊥
z >

Full tuples: (x, a, 3,>), (x, c, 1,>), (x, a, 3,⊥), (x, c, 1,>) and (y, b, 7,⊥).
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The idea we investigate in Part D is to align these three basic notions,
along with a further notion of morphism between schemas, with the
basic judgements of type theory. The following table, from the article
summarises this alignment:

Judgement Interpretation
Γ : Context JΓK is a schema
A : Type(Γ) JAK is an instance of the schema Γ
t : Elem(A) JtK is an full tuple in the instance A
σ : Γ // Λ JσK is a (display) schema morphism
Γ ≡ Λ JΓK and JΛK are equal schemas
A ≡ B : Type(Γ) JAK and JBK are equal instances of JΓK
t ≡ u : Elem(A) JtK and JuK are equal full tuples in JAK
σ ≡ τ : Γ // Λ the morphisms JσK and JτK are equal
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