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Abstract

In this thesis we develop a gain-scheduled control law for the quadcopter unmanned
aerial vehicle (UAV). Techniques from linear control theory are introduced and used to
construct adaptive proportional and proportional-integral control laws for use with both
state and observer-based output feedback. The controller monitors the yaw angle of the
quadcopter and updates a gain matrix as the system evolves through operating points.
To demonstrate the effectiveness of the gain-scheduled controller, trajectories involving
significant variation in the yaw angle are tracked by the quadcopter, including a helix and
Lissajous curve. We consider physical implementation of the controller, and offer suggestions
for improvement and future work.
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Chapter 1

Introduction

The control of nonlinear systems is a topic of great importance in the present time. Unlike
linear systems, nonlinear systems have no defined structure and so the task of using feedback
to alter the dynamics in a favourable way is not as simple. As such, mathematicians and
control engineers have developed a variety of techniques to apply to nonlinear systems
in order to control them. Commonly employed control strategies for nonlinear systems
include linearization, sliding mode control, backstepping, feedback linearization, Lyapunov
redesign, high-gain observers, control using differential flatness, passivity-based control, and
gain scheduling.

Appealing to the defined structure and desirable properties that linear systems possess,
it is often the case that control engineers will first linearize a nonlinear system to analyze
local behavior about operating points of interest to them. If local control about these points
is all that is desired, then a linear controller developed using the linearized model can be
applied to the nonlinear model to stabilize the full system. The same linear controller can
also be used to track a reference trajectory, provided that the reference does not vary too
rapidly and any parameters that appear in the linear dynamics do not vary as the reference
varies. This detail is subtle but important, and if neglected can result in the failure of the
controller. As such, the approach of developing a single linear control to guide a system
along certain desired trajectories breaks down for a lot of systems. If the controller could
adapt to this change in the linearized system as the dynamics evolved, we may be able to
preserve its linear structure. We can use gain scheduling to achieve this goal.

A gain-scheduled controller is a natural extension of the fixed-gain controller. Unlike the
aforementioned controller guaranteed to only work in a small neighbourhood of a specified
setpoint, a gain-scheduled controller can extend the linearization approach to be valid for
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a range of setpoints. This improvement is accomplished by tuning the gains, in accordance
with how the linearized dynamics are evolving, in a way that optimizes the controller for
each setpoint. In a physical sense, this technique of control is best applied to processes
that require varying amounts of effort from the controller as the system evolves. Generally,
one or more parameters called scheduling variables are chosen to monitor and are used to
determine how and when the control should be altered.

One such system in which gain scheduling control would be appropriate is the four
rotor helicopter known as a quadcopter. To control this unmanned aerial vehicle, physical
control inputs are assigned to the torque of each rotor, enabling translation in three spatial
directions, as well as rotation in three dimensions. This configuration makes the quadcopter
highly maneuverable. In particular, the quadcopter is capable of tracking a trajectory in
x, y, z space while simultaneously following an independent trajectory for its heading or
yaw angle configuration. The desired trajectory for the yaw angle to follow will contribute
to how the control inputs should vary in the tracking of a reference signal. This property is
exhibited when linearizing the nonlinear dynamics of the quadcopter about any hovering
configuration. It then becomes apparent that the linearized dynamics depend continuously
on the desired yaw angle, hence making the quadcopter an ideal candidate for the application
of gain-scheduled control.
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Chapter 2

Theory

Although the quadcopter is in fact a nonlinear system, we can still use results from linear
control theory in our efforts to control it by appealing to the linearization of the system
about its equilibrium points. As such, before we develop the various controllers, we first go
over the necessary results derived from linear control theory.

A common approach employed in the control of linear and nonlinear systems is to use
some variation of what is known as Proportional-Integral-Derivative (PID) control. Such a
controller takes the form

u = −K1e(t)−K2

∫
e(t) dt−K3

d e(t)

dt
,

where the error e(t) is the difference between the actual and desired states of the system,
and the gains, or the Ki’s, are tuned to achieve the desired performance from the system.
In the case of having a multidimensional control input where u is a vector, the gains are in
fact matrices. It is often the case that only some combination of the terms in the control law
will be used. For our purposes we will only consider the cases when K1 6= 0,K2 = K3 = 0
and K1,K2 6= 0,K3 = 0, or P and PI control. In the selection of the gains, we will be
employing a linear quadratic regulator to arrive at an “optimal” feedback control, where
we choose the criteria for optimality. The question of whether or not a suitable controller
of this form can be developed will be posed by the notion of controllability.

We also consider when the full state variable is not available for feedback, leaving us
with only a subset of the state to draw measurements from. In this case we make use of
an observer - an exogenous system that is designed to converge to the actual state of the
system. Similar to the notion of controllability, the question of whether or not a suitable
observer exists will be posed by the notion of observability.

3



2.1 Linear Control Systems

Linear control systems are attractive to mathematicians and control engineers because of
their concise algebraic structure. This feature allows them to be easily manipulated in the
case of control design. There are two main types of linear control systems, and a third type
of which we will discuss later on. We begin with a couple of definitions.

Definition 2.1.1. A linear control system is a dynamical system of the form

ẋ(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t) + D(t)u(t),

where

x(t) is the n× 1 state vector,
y(t) is the p× 1 output vector,
u(t) is the m× 1 control vector,
A(t) is the n× n plant matrix,
B(t) is the n×m control matrix,
C(t) is the p× n output matrix,
D(t) is the p×m feedforward matrix.

As seen, the matrices A,B,C,D generally depend on the time variable t. However,
we will be primarily concerned with linear systems that do not explicitly depend on time,
hence motivating the next definition.

Definition 2.1.2. A linear time invariant (LTI) control system is a dynamical system of
the form

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

where x(t) ∈ Rn,y(t) ∈ Rp,u(t) ∈ Rm are time-dependent vectors, and A ∈ Rn×n,B ∈
Rn×m,C ∈ Rp×n,D ∈ Rp×m are constant matrices.

We will concern ourselves only with autonomous linear systems, or LTI systems, of the
form in definition 2.1.2, and, unless otherwise stated, is to be understood as such when any
reference to linear systems is made henceforth. Also, we will assume that the feedforward
matrix D = 0, so that the system can now be written more concisely as

ẋ = Ax + Bu,

y = Cx.
(2.1)
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For simplicity, we will refer to a linear system of the form (2.1) as (A,B,C).

2.2 Stabilization of Linear Systems

We first discuss the problem of finding a state feedback control, where we assume that the
output of the linear system (2.1) is the entire state. That is, y = x, or C = In where In is
the n× n identity matrix. We formulate the problem as follows.

Given the linear system
ẋ = Ax + Bu (2.2)

find a feedback controller
u = γ(x)

such that the origin x = 0 is an asymptotically stable equilibrium point of the closed-loop
system

ẋ = Ax + Bγ(x).

This can be done by taking the feedback control to be

u = −Kx

for some suitably chosen gain matrix K. Substituting this control into (2.2) results in the
closed-loop system

ẋ = Ax + B(−Kx)

= (A−BK)x.

Choosing K such that the matrix A − BK is Hurwitz, where all of its eigenvalues have
negative real part, will result in the global asymptotic stability of the origin x = 0. Moreover,
the origin will be globally exponentially stable.

Often, it is the case where the entire state is not available on-line for the use of feedback,
and only a subset of the state variables can be used in the design of the controller. Here
the output vector y is of dimension less than the state x. As such, we instead consider the
problem of designing an output feedback control, which we formulate as follows.

Given the linear system

ẋ = Ax + Bu,

y = Cx
(2.3)
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find a static feedback controller
u = γ(y)

or a dynamic feedback controller

u = γ(x̂),

˙̂x = g(y,u)

such that the origin is an asymptotically stable equilibrium point of the closed-loop system.
In the dynamic feedback controller case, the origin to be stabilized is now (x = 0, x̂ = 0),
where x̂ is an estimate of the full state variable to be obtained by a suitable state observer.

A state observer is simply an external system that can be used to estimate the state
variable from the input u and output y. We will be using an observer known as the
Luenberger observer introduced by David Luenberger [1]. It takes the form

˙̂x = Ax̂ + Bu + L(y −Cx̂), (2.4)

where L is the observer gain to be suitably chosen by us. It is not difficult to show that
the error dynamics satisfy

ė = (A− LC)e,

where e = x− x̂. By choosing L such that the matrix A− LC is Hurwitz, we will have as
t→∞ that e→ 0, or equivalently x̂→ x. We can then take the control law as

u = −Kx̂,

˙̂x = Ax̂ + Bu + L(y −Cx̂)

with A−BK Hurwitz, resulting in the augmented closed-loop dynamics

(
ẋ
ė

)
=

(
A−BK BK

0 A− LC

)(
x
e

)
. (2.5)

The upper triangular matrix in (2.5) shows that the gain matrices K and L can be
designed independently1 of one another without affecting the overall stability of the system2.
Whether or not we can actually find such matrices as described above depends on the notions
of controllability and observability.

1K and L are typically chosen so that the observer converges to the state quicker than the state itself
converges to the origin.

2This is known as the Separation Principle (see, for example, [2]).
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2.3 Controllability and Observability

We now discuss two very important concepts of modern control theory introduced by Kalman
in 1960 [3], namely, controllability and observability. These concepts are the outcome of
attempting to answer the following two questions [4]:

1. Is it possible to find a control u(t) to bring the initial state x(t0) to any desired final
state x(tf ) in finite time?

2. Is it possible to determine the state of the system by measuring only the system
output over a finite interval of time?

If the answer to the first question is yes, then we say that the system is controllable. Similarly,
if the answer to the second question is yes, then we say that the system is observable.

For LTI systems, the condition for checking controllability and observability is very
simple and uses the following definitions.

Definition 2.3.1. The controllability matrix C of an LTI system is defined to be

C(A,B) =
(
B AB A2B · · · An−1B

)
.

Definition 2.3.2. The observability matrix O of an LTI system is defined to be

O(A,C) =




C
CA
CA2

...
CAn−1



.

Using these matrices we can now state the conditions required for the controllability
and observability of LTI systems.

Theorem 2.3.1. The pair (A,B) is controllable if and only if the rank of C(A,B) is equal
to n. That is, C has full row rank.

Theorem 2.3.2. The pair (A,C) is observable if and only if the rank of O(A,C) is equal
to n. That is, O has full column rank.
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The proofs of these theorems are well known and can be found in many textbooks on linear
control theory, such as [2].

What this means for us is that the closed-loop eigenvalues in the augmented system
(2.5) can be arbitrarily assigned (with the restriction that the poles not on the real axis are
complex conjugate pairs) by choosing appropriate K and L matrices.3

2.4 Linear Quadratic Regulator

Let as assume that we have the linear system

ẋ = Ax + Bu

where the pair (A,B) is controllable. From the above discussion, we know that we can
choose a gain matrix K to arbitrarily place the eigenvalues of the matrix A−BK so that
the state feedback control u = −Kx stabilizes the origin of the corresponding closed-loop
system. The question now is how to proceed in choosing which K to use.

The method we will be using is known as an infinite horizon continuous time linear
quadratic regular. The goal is to find the corresponding control u such that the cost

J =

∫ ∞

0

(
xTQx + uTRu

)
dt (2.6)

is minimized, where Q ∈ Rn×n and R ∈ Rm×m are positive definite symmetric matrices
chosen by us. The term xTQx can be thought of as a weighted sum, with weight Q,
representing the deviation of the state value from the origin. The term uTRu can be
thought of similarly as the magnitude of the control action. Roughly speaking, increasing
elements of Q results in quicker convergence of the corresponding states, and increasing
elements of R limits the energy that can be expended by the control. Varying Q and R
consequently vary the locations of the closed-loop poles, thereby affecting the dynamic
performance of the system. See [2] for more details.

It is well known that the solution to this problem is the feedback control

u = −Kx,

3This procedure is known as pole placement. In simulation, we will use the place command in MATLAB,
which uses the algorithm discussed in [5].
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with
K = R−1BTP, (2.7)

where P in the unique symmetric positive definite matrix that solves the algebraic Ricatti
equation

ATP + PA−PBR−1BTP + Q = 0. (2.8)

In the case of observer feedback control of a system (A,B,C), where we have the
additional task of designing an observer gain L so that A− LC is Hurwitz, we can simply
use pole placement to design L such that the eigenvalues of A−LC are some factor larger
(in magnitude) than the eigenvalues of A−BK resulting from the above procedure.

2.5 Stabilization Through Linearization

We now extend our scope to that of nonlinear systems. The techniques that we developed
for linear systems guarantee global exponential stability of a desired setpoint. Unfortunately,
when we apply these techniques to nonlinear systems, we first must linearize the system so
as to approximate the local behaviour of the system about a certain point. Doing so and
applying the above techniques will result in local asymptotic stability.

We begin with outlining the procedure of designing a linear state feedback controller to
achieve local stabilization about the origin of a nonlinear system. Suppose that we have a
nonlinear system

ẋ = f(x,u), (2.9)

with f(x,u) continuously differentiable in a domain Dx × Du ∈ Rn × Rp containing the
origin (x = 0,u = 0) and f(0, 0) = 0 (so that the origin is an equilibrium point). Linearizing
(2.9) about (0, 0) give us the linear system

ẋ = Ax + Bu, (2.10)

where A and B are the Jacobians of f with respect to x and u evaluated at the origin,
namely,

A =
∂f

∂x
(x,u)

∣∣∣∣
(x,u)=(0,0)

, B =
∂f

∂u
(x,u)

∣∣∣∣
(x,u)=(0,0)

.

Then (2.10) approximates the local behaviour of (2.9) about (0, 0). Assuming that the pair
(A,B) is controllable, we can proceed as in section 2.2 to develop a linear feedback control
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u = −Kx with A−BK Hurwitz. Under this controller, the closed-loop nonlinear system
is

ẋ = f(x,−Kx). (2.11)

We note that the origin x = 0 is an equilibrium point of the closed-loop system, and
linearization about the origin results in

ẋ =
∂f

∂x
(x,−Kx)

∣∣∣∣
x=0

x +
∂f

∂u
(x,−Kx)

∣∣∣∣
x=0

∂u

∂x

∣∣∣∣
x=0

x

= Ax + B(−K)x

= (A−BK)x.

Since A−BK is Hurwitz, it follows that the origin of (2.11) is asymptotically stable. This
can be verified using a suitable Lyapunov function V = xTPx where the unique symmetric
positive definite matrix P solves the Lyapunov equation

P(A−BK) + (A−BK)TP + Q = 0,

with Q any positive definite symmetric matrix. Such a matrix P is guaranteed to exist
so long as A−BK is Hurwitz. We will then have that V̇ = −xTQx along trajectories of
(2.10), establishing asymptotic stability of the origin of (2.11). This fact is a consequence
of Lyapunov’s Indirect Method (see [6] for a proof of this). The Lyapunov function V (x)
can be used to estimate the region of attraction of the origin of the closed-loop system.

2.6 Integral Action Through Linearization

So far the only form of controller we have considered is one that applies a corrective
effort that is proportional to the error, namely u(t) = −Ke(t), or u(t) = −Kx(t), where
e(t) = x(t)−0 in the case of stabilizing the origin. This control law is known as proportional
(P) control and is suitable for use under certain design specifications. However, we may be
interested in increasing the speed of convergence without having to continuously increase
the gain K. Also, there may be the existence of an undesired steady-state error depending
on the reference we are tracking and if there are constant parameter perturbations in our
model. To deal with this, we introduce the concept of integral action. Our goal will be to
design a linear feedback controller that will ensure asymptotic regulation under parameter
perturbations for which the closed-loop system remains stable. We will follow [6] in our
approach.
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Suppose we now have the nonlinear system

ẋ = f(x,u,w), (2.12)

y = h(x,w),

where x ∈ Rn, u ∈ Rp, y ∈ Rp is the controlled output, and w ∈ Rl is a constant vector of
unknown perturbations and disturbances. We assume f and h are continuously differentiable
in x and u, and continuous in w in a domain Dx ×Du ×Dw ⊂ Rn × Rp × Rl.

Suppose we want to achieve asymptotic regulation of the output y to a constant reference
r ∈ Dr ⊂ Rp so that y→ r as t→∞. Let

v =

(
r
w

)
∈ Dr ×Dw.

Assume that for each v ∈ Dr×Dw there is a corresponding (xss,uss) depending continuously
on v and satisfying

0 = f(xss,uss,w),

0 = h(xss,w)− r.

We now implement integral action. Define the new variable σ to be the integral of the error
e = y − r, or equivalently

σ̇ = h(x,w)− r

and augment this to the state dynamics (2.12) to obtain the augmented dynamics

ẋ = f(x,u,w),

σ̇ = h(x,w)− r.
(2.13)

Our goal now is to develop the feedback controller to stabilize the system (2.13) at an
equilibrium point (xss, σss) such that σss results in the desired uss. Linearizing about
(xss, σss) results in

ẋδ = Axδ + Buδ,

σ̇δ = Cxδ,
(2.14)

where xδ = x− xss, uδ = u− uss, σδ = σ − σss, and

A =
∂f

∂x

∣∣∣∣
ss

, B =
∂f

∂u

∣∣∣∣
ss

, C =
∂h

∂x

∣∣∣∣
ss

.
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We can now define

ξδ =

(
xδ
σδ

)

so that (2.14) can be written
ξ̇δ = Aξδ + Buδ, (2.15)

where A,B are block matrices of appropriate dimension given by

A =

(
A 0
C 0

)
, B =

(
B
0

)
. (2.16)

It is now clear that choosing uδ = −Kξδ such that A − BK is Hurwitz will result in the
asymptotically stable closed-loop system

ξ̇δ = (A− BK)ξδ.

Note that in order for such aK to be guaranteed to exist we require that (A,B) is controllable.
This will be the case so long as (A,B) is controllable, and4 we have that

rank

(
A B
C 0

)
= n+ p. (2.17)

See section B.1 of appendix B for a proof of this. We will then have

ξδ → 0⇒ xδ → 0
σδ → 0

⇒ x→ xss
σ → σss

.

From (2.13) we will thus have by continuity of h(x,w) on x that

h(x,w)− r→ h(xss,w)− r→ 0

so that y→ r, as desired.

By expressing the gain matrix K as the block matrix

K =
(
K1 K2

)

we can write the control law as

uδ = −K1xδ −K2σδ,

4The condition (2.17) guarantees that the model (A,B,C) has no transmission zeros [6].
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or equivalently
u = −K1(x− xss)−K2(σ − σss) + uss. (2.18)

Note that A−BK being Hurwitz implies that K2 is nonsingular; this is shown in section B.2
of appendix B. We can then take5

σss = −K−12 uss

so that (2.18) becomes
u = −K1(x− xss)−K2σ (2.19)

which is the conventional PI controller

u(t) = −K1e(t)−K2

∫ t

0

e(τ) dτ.

The effects of implementing integral action in the control law will be seen in chapter 5.

In the case of output feedback, we now couple the control (2.19) with an observer as in
(2.4) so that the control law now takes the form

u = −K1(x̂− xss)−K2σ,

˙̂x = Ax̂ + Bu + L(y −Cx̂),
(2.20)

where L is designed such that A− LC is Hurwitz. The closed-loop augmented dynamics
are now

ẋ = f(x,−K1(x̂− xss)−K2σ,w),

˙̂x = Ax̂ + B(−K1(x̂− xss)−K2σ) + L(y −Cx̂),

σ̇ = y − r.

Linearizing about (xss,xss, σss) where σss = −K−12 uss results in

ẋδ = Axδ −BK1x̂δ −BK2σδ,

˙̂xδ = LCxδ + (A−BK1 − LC)x̂δ −BK2σδ,

σ̇δ = Cxδ,

5By using the control law in (2.19), we do not need to specify the value of σss. It comes naturally from
our pole placement procedure for the matrix A− BK.
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which we can write as



ẋδ
˙̂xδ
σ̇δ


 =




A −BK1 −BK2

LC A−BK1 − LC −BK2

C 0 0






xδ
x̂δ
σδ


 , (2.21)

where the matrix in (2.21) is Hurwitz by construction. Hence as before we will have that
y→ r as desired.
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Chapter 3

Gain Scheduling

Developing a linear control to stabilize the origin of a linear system as we have done above
guaranteed us global asymptotic (in fact exponential) stability. However, as we have seen,
the linearization about a certain point of a nonlinear system is only valid near that point.
As such, we can only guarantee local asymptotic stability. By using gain scheduling, we can
extend the region of stability to a range of operating points. This is done by allowing the
controller to vary as the system advances through operating points.

3.1 Background

Gain scheduling as a control technique for nonlinear systems has been around for a while,
being used relatively early in military applications. Early examples of gain scheduling
include application to flight control and automotive engine control as addressed in [7].
Unfortunately, it was difficult and expensive to realize in hardware before the advent of
digital computers, hindering its implementation in commercial use. However, as digital
controllers increased in popularity, so did the use of gain scheduling.

Before the 1990s, theoretical treatments of gain scheduling as a nonlinear control tech-
nique were rare. Its use was often justified through simulations alone, ensuring the controller
maintained satisfactory performance for the desired range of system parameters. Recently,
authors have been taking to a more analytical treatment of the subject in developing a
framework for gain-scheduled control. One author in particular, Wilson J. Rugh, has made
many contributions in this time (see [7, 8, 9, 10, 11]).
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3.2 Linear Parameter-Varying Systems

Before we discuss the procedure of gain scheduling, we will first introduce the concept of
linear parameter-varying systems.

As we have seen, the stabilization via linearization approach discussed in section 2.5
works well when we are only interested in stabilizing about a specific operating point, or
tracking a reference signal with which the matrices (A,B,C) in the corresponding linearized
system do not vary. However, we may be interested in tracking a parameterized reference
signal, resulting in a linearized model that may be dependent on this parameter. These
models are known as linear parameter-varying systems. Such systems take the form

ẋ = A(α)x + B(α)u,

y = C(α)x,
(3.1)

where α is an exogenous parameter that can generally depend on time. It is this form of
linear system that we are most interested in, and is the foundation behind the modern
development of gain-scheduled control.

3.3 Procedure

The term “gain scheduling” has been associated with many different design notions. It is
sometimes simply a point of view taken by the control engineer as to whether or not their
controller is operating under some gain-scheduled procedure. The most common approach,
and the one that we will be employing in the control of the quadcopter, is summarized as
follows.

Step 1. Construct a linear parameter-varying model of the plant, usually done by
computing the Jacobian linearization of the nonlinear dynamics about a family of
equilibrium points, also known as operating or set points. The parameters that appear
in the model are typically the scheduling variables — variables whose values will be
monitored to determine how and when the controller will switch.

Step 2. Use techniques from linear control theory to develop a family of stabilizing
controllers for the linear parameter-varying model of the plant. Typically, the con-
trollers are developed so that the closed-loop linear system should exhibit the desired
performance for each frozen value of the parameter.
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Step 3. Determine how the controller will switch, or how the gains will be scheduled.
The control law can consist of a set of point designs that are linearized about the spec-
ified operating points, and will switch between these point designs as the scheduling
variable changes. Alternatively, the point designs can be interpolated in some way,
through linear interpolation of the gains or other methods (some examples are given
in [10, 11]).

Step 4. Assess the performance of the controller. Doing this in a rigorous fashion may
be simple or difficult, depending on whether or not analytical performance guarantees
were taken as part of the design process in the previous step. However, in many
situations this is not the case and further investigation is required in assessing the
local and nonlocal performance.

These are the steps as outlined by Rugh in [7]. Note that it is not obvious how to go about
implementing step 3. Certain techniques that work well for some systems may fail when
applied to others.

3.4 Advantages and Disadvantages

The main advantage that gain scheduling has over other nonlinear control methods is
that it is an application of linear design techniques to a nonlinear system, and linear
control theory is already very well understood. We can use the tools that we have for linear
control systems, including quadratic performance measures, output feedback techniques, and
frequency domain methods. Of course, their effect when applied to nonlinear systems will
be less understood. Additionally, systems operating under gain-scheduled control typically
respond quickly when faced with changing operating conditions, provided that the scheduling
variable is chosen to reflect these changes. Finally, gain scheduling is often less intensive
computationally when compared to other nonlinear control techniques.

Gain scheduling does come with some disadvantages, the biggest disadvantage being a
consequence of the main advantage stated above. The fact that linear control techniques are
applied results in stability results that are only local in nature. Though, in many physical
applications nonlinear control implementations will be local as well. Further, as mentioned
in step 3 of section 3.3, gain scheduling can be very ad hoc. Many decisions to be made are
system-dependent, including the choice of an appropriate scheduling variable and scheduling
procedure.
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3.5 Gain-Scheduled Control via Point Design

When designing a control with the linearization approach discussed in section 2.5, we
were faced with the limitation of local stabilization. That is, the controller we developed
was only guaranteed to work close to a single operating point. If we wanted to switch
to another operating point, or a sequence of operating points, we may not be able to do
so. As mentioned previously, it may be the case that the linearized dynamics vary as we
continue through our sequence of operating points, requiring the development of a sequence
of different linear controllers in order to maintain stability.

Gain scheduling can extend the stabilization through linearization approach to a wider
range of operating points by implementing new controllers as necessary. A nonlinear con-
troller is constructed for a nonlinear system by patching a series of linear controllers together.
Each linear controller is constructed for a specific value of some parameter affecting the
linearized dynamics of the nonlinear system. This parameter is known as the scheduling
variable, and the controller associated with each operating point is called a point design [7].
The choice of which linear controller to use at any given time is made by monitoring the
scheduling variable.

We illustrate this design procedure for a general nonlinear system. Suppose that we
have the system

ẋ = f(x,u), (3.2)

with f(x,u) continuously differentiable in a domain Dx × Du ∈ Rn × Rp containing the
origin (x = 0,u = 0) and f(0, 0) = 0 (so that the origin is an equilibrium point).

Now let us attempt to design a state feedback control so that x tracks a reference signal
r. Suppose that r = α0 where α0 is constant. Then the desired steady state value of x is
α0 and the desired steady state value of the control input is uss(α0) where uss(α0) satisfies

0 = f(α0,uss(α0)).

Now define
xδ = x− α0, uδ = u− uss(α0),

so that (xδ,uδ) = (0, 0) is an equilibrium of (3.2). Linearizing about this point results in

ẋδ = A(α0)xδ + B(α0)uδ (3.3)

where

A(α0) =
∂f

∂x

∣∣∣∣
(x,u)=(α0,uss(α0))

, B(α0) =
∂f

∂u

∣∣∣∣
(x,u)=(α0,uss(α0))

.
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Assuming that the pair (A(α0),B(α0)) is controllable, we can now continue to develop a
feedback control

uδ = −K(α0)xδ (3.4)

such that A(α0)−B(α0)K(α0) is Hurwitz. Applying this to (3.3) results in the closed-loop
linearized system

ẋδ = (A(α0)−B(α0)K(α0))xδ.

Hence under the control (3.4), which we can write as

u(x;α0) = −K(α0)(x− α0) + uss(α0), (3.5)

the closed-loop dynamics will be given by

ẋ = f(x,−K(α0)(x− α0) + uss(α0)) (3.6)

and we will have that xδ → 0, or equivalently x→ α0 in a neighbourhood of x = α0.

Let us denote the region of attraction of x = α0 of the closed-loop system (3.6) as
Rα0 ⊂ D. Suppose now that we wish to switch the reference signal to r = α1 at time t1,
where α0,x(t1) ∈ Rα1 . We can repeat the above procedure using the linearization around
(α1,uss(α1)) to obtain a new controller

u(x;α1) = −K(α1)(x− α1) + uss(α1)

to asymptotically stabilize the closed-loop system about x = α1.

In this fashion, we can track a reference of a sequence of operating points r = {αi}, so
long as αk−1,x(tk) ∈ Rαk

⊂ D where tk denotes the time of the kth switch. This concept is
demonstrated in figure 3.1.

We note that because we are only using the point designs in our control law, the controller
is discontinuous, which is not ideal in physical implementation. We consider the effects of
this in section 5.6.
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Figure 3.1: Conceptual illustration of the evolution of a trajectory under gain-scheduled
control. Each colour corresponds to a separate point design.

20



Chapter 4

The Quadcopter UAV

The quadcopter is a helicopter with four rotors arranged in a planar fashion. It is a dynamic
vehicle with four input forces and six output coordinates, thus having an underactuated
degree of two. The input forces are assigned to the torques of each of the rotors. Two of
the rotors opposite to each other rotate in a clockwise direction, and the other two rotate
in a counter-clockwise direction. It can be controlled by changing the rotor speeds, which
provides lift forces experienced by each rotor, as well as the overall torque experienced
by the quadcopter itself. This configuration makes the quadcopter a highly maneuverable
vehicle capable of tracking a wide range of trajectories.

4.1 Dynamic Model

Our model choice for the quadcopter follows that used by [12, 13, 14]. The primary motions
of the quadcopter can be described referring to figure 4.1.

We denote the reference frame relative to the center of mass of the quadcopter by
(xb, yb, zb), and an inertial world frame by (x, y, z). The quadcopter is controlled by supplying
four torques T1, T2, T3, T4 to the rotors of the quadcopter, which in turn produces four thrust
forces F1, F2, F3, F4 along the zb axis. As such, vertical motion can be achieved by varying
all of the rotor speeds simultaneously. Motion along the xb axis is related to a rotation
about the yb axis and is obtained by increasing (or decreasing) the speeds of rotors 1 and 2
and decreasing (or increasing) the speeds of rotors 3 and 4. Similarly, motion along the yb
axis is related to a rotation about the xb axis and is obtained by increasing (or decreasing)
the speeds of rotors 2 and 3 and decreasing (or increasing) the speeds of rotors 1 and 4.
Rotation about the zb axis is a result of the net moment produced by the spinning rotors.
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Figure 4.1: Schematic diagram of a quadcopter.

To represent the rotation configuration of the quadcopter relative to the world frame,
we choose to use the ZYX Euler angle convention. This choice results in a singularity when
θ = ±π

2
, which is not problematic for any trajectory we plan as θ will remain small.

The roll, pitch, and yaw angles as they relate to rotations in the ybzb-plane, xbzb-plane,
and xbyb-plane, respectfully, can be seen in figure 4.2. From here we can arrive at the
necessary rotation matrix Γ, where

Γ =




cosψ cos θ cosψ sin θ sinφ− sinψ cosφ cosψ sin θ cosφ+ sinψ sinφ
sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− cosψ sinφ
− sin θ cos θ sinφ cos θ cosφ


 . (4.1)

As such, premultiplying a vector in the body frame by Γ will result in the same vector
expressed in the world frame. Using Γ, Newton’s Second Law and the conservation of
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Figure 4.2: Roll, pitch and yaw rotation conventions.

momentum, we arrive at the equations of motion

ẍ = u1(cosψ sin θ cosφ+ sinψ sinφ)− k1
m
ẋ,

ÿ = u1(sinψ sin θ cosφ− cosψ sinφ)− k2
m
ẏ,

z̈ = u1(cos θ cosφ)− k3
m
ż,

θ̈ = u2 −
k4`

I1
θ̇,

φ̈ = u3 −
k5`

I2
φ̇,

ψ̈ = u4 −
k6
I3
ψ̇,

(4.2)

where m is the mass of the quadcopter, g is the gravitational constant, k1, k2, k3, k4, k5, k6
are drag coefficients, I1, I2, I3 are the principle moments of inertia of the quadcopter1, and
` is half the distance between two adjacent rotors. The physical values that we use in our
simulations are taken from [12] and are listed in appendix A.

The fictitious control inputs u1, u2, u3, u4 can be thought of as the thrust, pitch input,
roll input, and yaw moment, respectfully, and are related to the Fi’s by

u1 = (F1 + F2 + F3 + F4)/m,

u2 = `(−F1 − F2 + F3 + F4)/I1,

u3 = `(−F1 + F2 + F3 − F4)/I2,

u4 = C(F1 − F2 + F3 − F4)/I3,

(4.3)

1The quadcopter is in fact a symmetrical top (cf. [15]), so that I1 = I2
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where C is the force to moment scaling factor. That is, Ti = CFi.

To put the equations of motion into state space form, we introduce the state variables

x1 = x, x2 = ẋ,

y1 = y, y2 = ẏ,

z1 = z, z2 = ż,

θ1 = θ, θ2 = θ̇,

φ1 = φ, φ2 = φ̇,

ψ1 = ψ, ψ2 = ψ̇,

so that (4.2) can be written as the 12-dimensional first order system

ẋ1 = x2,

ẏ1 = y2,

ż1 = z2,

θ̇1 = θ2,

φ̇1 = φ2,

ψ̇1 = ψ2,

ẋ2 = u1(cosψ1 sin θ1 cosφ1 + sinψ1 sinφ1)−
k1
m
x2,

ẏ2 = u1(sinψ1 sin θ1 cosφ1 − cosψ1 sinφ1)−
k2
m
y2,

ż2 = u1(cos θ1 cosφ1)−
k3
m
z2,

θ̇2 = u2 −
k4`

I1
θ2,

φ̇2 = u3 −
k5`

I2
φ2,

ψ̇2 = u4 −
k6
I3
ψ2.

(4.4)

We can write this more concisely by defining the state vector to be

x = (x1, y1, z1, θ1, φ1, ψ1, x2, y2, z2, θ2, φ2, ψ2)
T

and the control vector
u = (u1, u2, u3, u4)

T
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so that the nonlinear dynamics can be more compactly expressed as

ẋ = f(x,u) (4.5)

with f continuously differentiable and given by the right-hand side of (4.4).

4.2 Linearization of Quadcopter Dynamics

We now are interested in linearizing the nonlinear dynamics of the quadcopter given in
(4.4) about its equilibrium points in order to develop our gain-scheduled controller. To do
this, we must first find the equilibrium points of the quadcopter dynamics.

Equilibrium points of (4.4) satisfy

0 = f(xeq,ueq), (4.6)

where

xeq = (x1eq, y1eq, z1eq, θ1eq, φ1eq, ψ1eq, x2eq, y2eq, z2eq, θ2eq, φ2eq, ψ2eq)
T ,

ueq = (u1eq, u2eq, u3eq, u4eq)
T .

Solving (4.6) results in the stationary points

xeq ≡ xss = (x1ss, y1ss, z1ss, 0, 0, ψ1ss, 0, 0, 0, 0, 0, 0)T ,

ueq ≡ uss = (g, 0, 0, 0)T ,
(4.7)

where x1ss, y1ss, z1ss, ψ1ss ∈ R and we introduce the subscript ss to mean steady state. This
result should be intuitive as it corresponds to the hovering configuration of the quadcopter.

Linearizing the nonlinear dynamics (4.4) about the steady state values (4.7) results in

ẋ = A(x− xss) + B(u− uss), (4.8)

where the Jacobian matrices

A =
∂f

∂x

∣∣∣∣
(x,u)=(xss,uss)

≡ ∂f

∂x

∣∣∣∣
ss

, B =
∂f

∂u

∣∣∣∣
(x,u)=(xss,uss)

≡ ∂f

∂u

∣∣∣∣
ss

are given by

A =

(
06×6 I6

Ψ(ψ1ss) ∆

)
, (4.9)

B =

(
08×4
I4

)
, (4.10)
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where 0m×n is a m× n zero matrix, In is the n× n identity matrix, and Ψ(ψ1ss) and ∆ are
given by

Ψ(ψ1ss) =




0 0 0 g cosψ1ss g sinψ1ss 0
0 0 0 g sinψ1ss −g cosψ1ss 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



,

∆ =




−k1/m 0 0 0 0 0
0 −k2/m 0 0 0 0
0 0 −k3/m 0 0 0
0 0 0 −k4`/I1 0 0
0 0 0 0 −k5`/I2 0
0 0 0 0 0 −k6/I3



.

Thus we see that the linearization depends on the parameter ψ1ss — the steady state
value of the yaw angle. Also, we can write (4.8) in terms of the shifted variables

xδ ≡ x− xss, uδ ≡ u− uss

as
ẋδ = A(ψ1ss)xδ + Buδ (4.11)

so that the origin (xδ,uδ) = (0, 0) is an equilibrium point of (4.11).

Note that in the case of output feedback, we will be using the output

y = (x1, y1, z1, ψ1)
T ,

which we can express as
y = Cx,

where

C =




1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0


 (4.12)

so that with yδ ≡ y−yss, where yss = (x1ss, y1ss, z1ss, ψ1ss)
T , we can express the system as

ẋδ = A(ψ1ss)xδ + Buδ,

yδ = Cxδ,
(4.13)

which is a linear parameter-varying system as described in section 3.2.
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4.3 Controllability and Observability of Linearized Quad-

copter Dynamics

We now look at the controllability of the linearized dynamics of the quadcopter using the
procedure outlined in section 2.3. We denote the controllability matrix of the linearized
system (4.8) as

C(A(ψ1ss),B).

It can be verified (e.g. through row reduction) that

rank C(A(ψ1ss),B) = 12, ∀ ψ1ss ∈ R.

Since A is a 12× 12 matrix, the system is thus controllable by theorem 2.3.1.

For the purpose of output feedback control, we will use y = (x1, y1, z1, ψ1)
T as the

output variable. This is a common choice in various control laws for the quadcopter. With
this choice, we denote the observability matrix of (4.13) as

O(A(ψ1ss),C),

where C is given in (4.12). It can be verified that

rank O(A(ψ1ss),C) = 12, ∀ ψ1ss ∈ R

and so we also have that the system is observable by theorem 2.3.2. With the guarantees of
controllability and observability of the linearized dynamics, we are now prepared to develop
the gain-scheduled control law for the quadcopter.
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Chapter 5

Gain-Scheduled Control of the
Quadcopter

As discussed, the technique of gain scheduling is well suited for linear parameter-varying
systems where the varying parameter can be assigned to be the scheduling variable in
the control law. This strategy can be applied to nonlinear systems when the linearized
dynamics happen to depend on a parameter of interest to the control engineer. An example
of such a system is the quadcopter. We have seen in section 4.2 that the linearization of
the quadcopter dynamics about any of its equilibrium points results in a linear parameter-
varying system depending on the yaw angle of the vehicle. We can take advantage of this
model to develop a gain-scheduled controller that switches based on the value of the yaw
angle in order to maintain stability.

We will use the linearized dynamics of the quadcopter to develop a series of gain-
scheduled control laws that use the yaw angle as the scheduling variable. We will construct
proportional (P) and proportional-integral (PI) control laws for use with both state and
observer-based output feedback, where the output vector is chosen so that the linearized
system is observable for all values of the scheduling parameter. Simulations will be conducted
for each control law, tracking trajectories that exhibit the gain-scheduled nature of the
controller. Finally, we conclude with an overall analysis of applying the gain scheduling
technique to the quadcopter, and propositions for further development of this work.
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5.1 Fixed-Gain Control

We will begin with developing the fixed-gain controller that will be used as a basis for the
development of the full gain-scheduled controller. We will demonstrate when this controller
is appropriate for use, and conditions where gain scheduling can be applied for when it
fails.

As discussed in chapter 4, let
ẋ = f(x,u)

be the nonlinear dynamics of the quadcopter, and let

ẋδ = Axδ + Buδ

be the linearization about the equilibrium point (xss,uss), where

xss = (x1ss, y1ss, z1ss, 0, 0, ψ1ss, 0, 0, 0, 0, 0, 0)T ,

uss = (g, 0, 0, 0)T

and xδ = x− xss,uδ = u− uss. The matrices A = A(ψ1ss) and B are given by (4.9) and
(4.10), respectively. As done in section 2.5, we can use the controller

u = −K(x− xss) + uss

to stabilize the quadcopter at xss, where K is designed so that A−BK is Hurwitz. Note
that the linearized dynamics do not depend on the spatial coordinates (x1ss, y1ss, z1ss) of
the steady state. As such, the gain matrix K only depends on the yaw angle configuration
ψ1ss of the quadcopter, and so we can use this controller to track a reference

r(t) = (x1ref (t), y1ref (t), z1ref (t), ψ1ss)
T ,

where ψ1ss is a constant yaw angle. For any frozen value of the reference signal r we want
to stabilize the quadcopter at the steady state

xss = CT r,

with C given by (4.12). Figure 5.1 gives a block diagram of the control scheme. This
controller can be used to track trajectories in which there is little variation in the yaw
angle of the quadcopter. Figure 5.2 illustrates the tracking of a circular trajectory in the
x1y1-plane with a constant yaw angle ψ1ss = 0.
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Figure 5.1: Block diagram of the proportional fixed-gain controller.
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Figure 5.2: Tracking of circular trajectory with constant yaw under fixed-gain control.
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We now consider what happens if we use this controller to track a reference in which
the yaw angle deviates away from the value about which the linearization was taken. The
controller is only valid in a neighbourhood of ψ1ss, and so if the difference |ψ1(t)− ψ1ss|
becomes too large we will no longer be guaranteed stability. We illustrate this in figure 5.3
by repeating the tracking of the circular trajectory under the fixed-gain controller using
the linearization about ψ1ss = 0, but this time we prescribe the yaw angle ψ1(t) to remain
tangential to the curve so that the quadcopter is always facing in the direction it is moving.
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Figure 5.3: Attempt to track the circular trajectory with varying yaw angle under fixed-gain
control. The heading of the quadcopter is set to be tangential to the reference curve for all
time.

We can see that the quadcopter begins to lose stability after completing 30% of the
trajectory, and becomes unstable after the yaw angle has deviated away from ψ1ss by ap-
proximately 2π/3 radians. Clearly the fixed-gain controller cannot be relied upon when
undergoing trajectories in which ψ1(t) substantially varies. To correct this issue, we can
switch to a new controller that has been developed for the current yaw angle of the quad-
copter before the dynamics become unstable. This is the idea behind the gain-scheduled
controller.
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5.2 Gain-Scheduled Proportional Control with State

Feedback

We are now ready to develop the gain-scheduled controller. We begin by assuming that the
entire state x is available on-line for feedback.

To determine how frequently the controller will switch, we decide on a tolerance ψtol for
the yaw angle. In most of the simulations we conduct, we will be using ψtol = π/6 simply to
illustrate that a smaller tolerance is not required, although can certainly be implemented.

We next use the linearization of the quadcopter dynamics about the initial yaw angle
ψ1(0) ≡ ψ∗0 to develop the control law

u(x;ψ∗0) = −K(ψ∗0)(x−CT r(t)) + uss,

which will serve to track the reference signal r(t) near ψ∗0. Once the yaw angle has deviated
away from the specified tolerance, or

|ψ1(t)− ψ∗0| > ψtol,

we switch to the control

u(x;ψ∗1) = −K(ψ∗1)(x−CT r(t)) + uss,

where ψ∗1 is the value of the yaw angle at the time of the switch. We repeat this procedure
as often as necessary and in this manner construct a sequence of control laws

u(x;ψ∗i ) = −K(ψ∗i )(x−CT r(t)) + uss,

which together comprise the gain-scheduled control law. The control scheme is illustrated
in figure 5.4

At each step, the gain matrix K(ψ∗i ) is designed to render the matrix A(ψ∗i ) − BK
Hurwitz. This is done by solving the algebraic Ricatti equation (2.8) as discussed in section
2.4 in order to find the control with associated gain matrix K that minimizes the performance
cost (2.6). The matrices Q and R which we will use for simulation purposes are diagonal
and of the form

Q = diag(wx1, wy1, wz1, 1, 1, wψ1, 1, 1, 1, 1, 1, 1), (5.1)

R = diag(wu1, wu2, wu3, wu4),
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Figure 5.4: Block diagram of the proportional gain-scheduled controller.

where wx1, wy1, wz1, wψ1, represents the amount of effort to be applied to the states x1, y1, z1, ψ1,
in the linear quadratic regulator (2.6). Similarly, wu1, wu2, wu3, wu4 represent the efforts to
be applied to each of the control inputs u1, u2, u3, u4. In most of the simulations we will be
using wui = 0.001 for each i, so that

R = diag(0.001, 0.001, 0.001, 0.001).

These small weightings correspond to little restriction on the actual control inputs. If we
were interested in restricting the amount of effort that could be applied by the control
inputs we could increase these values. The effect of doing so is considered in section 5.6.

To demonstrate how this control law is superior to the fixed-gain controller developed
in section 5.1 we repeat the circular trajectory in which the yaw angle remains tangential
to the curve at all times. Figure 5.5 shows the results of the quadcopter operating under a
gain-scheduled controller with tolerances on the yaw angle set to ψtol = π/2, π/3, and π/6.
The switching of the controller is depicted by the different colours along the trajectory.

We can see that the performance of the controller increases as ψtol decreases, or the
switching becomes more frequent. The quadcopter does a much better job of tracking the
trajectory when ψtol is decreased from π/2 to π/3, however the improvement from the latter
is less noticeable when it is decreased to π/6.

One advantage that the quadcopter has over other UAVs is its ability to vary its yaw
angle separately from the desired motion in x, y, z space. We have seen this already in figures
5.2 and 5.5, where a circular trajectory was followed while constantly facing one direction
under the fixed-gain controller and facing its direction of travel under the gain-scheduled
controller.
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(b) ψtol = π/3
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(c) ψtol = π/6

Figure 5.5: Tracking of the circular trajectory using gain scheduling with various switch
tolerances. The colour of the trajectory changes when the controller switches.

We will further exhibit this feature using the gain-scheduled controller by following a
helix trajectory, where the quadcopter will complete 3 counter-clockwise rotations in the
x1y1-plane while traveling upwards in the z1 direction with a constant velocity. However,
we will prescribe the quadcopter itself to rotate 6 times about the zb axis, so that ψ1(t)
varies from 0 to 12π. Figure 5.6 illustrates the trajectory along with the switching of the
controller, and figure 5.7 compares the performance of the states x1(t), y1(t), z1(t), ψ1(t)
against the reference signal.

As can be seen, the controller succeeds in tracking the reference. However, we can see
from the plots that there does exist steady state error when the input is linear. This is to
be expected as we have only applied a corrective effort that is proportional to the error.

Finally, to get a full appreciation for the effectiveness of the gain-scheduled controller
over the fixed-gain controller, we will conduct a simulation in which the quadcopter is to
track a Lissajous curve in the x1y1-plane. Such curves can be parameterized as

x1(t) = A sin(at+ δ),

y1(t) = B sin(bt),

for A,B, a, b, δ ∈ R.1 In our simulations, we will use A = 10, B = 5, a = 2, b = 3, δ = 0.

1When a/b is rational, the resulting trajectory will be a closed curve. Otherwise, it will be a plane-filling
curve.
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Figure 5.6: Tracking of a helix trajectory using gain scheduling. The quadcopter is prescribed
to complete 6 rotations about its zb axis during this time. Colours are used to indicate the
switching of the controller.
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Figure 5.7: Comparing values of the state (solid blue) to the reference (dashed green) of
the helix trajectory using gain scheduling.

36



As the quadcopter tracks the trajectory, we will require that the yaw angle remains
tangent to the curve at all times. In such a trajectory, the rate at which the controller must
switch is no longer constant. We further subject the quadcopter to multiple step-inputs in
the z1 direction to observe its response.
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Figure 5.8: Tracking of the Lissajous trajectory using gain scheduling, while simultaneously
being subjected to step inputs in the z1 direction. The heading of the quadcopter is set to
remain tangential to the curve for all time.

Figure 5.8 depicts the Lissajous curve tracked by the quadcopter. It is clear that along
parts of the trajectory where there is little change in the yaw angle, the controller does
not need to switch. An update of the gain matrix K only occurs when the yaw angle has
deviated away from the previous value upon which the dynamics were linearized about
by the specified value of ψtol, in this case ψtol = π/6. Similarly, switching is much more
frequent when the yaw angle varies more significantly, such as around the corners of the
Lissajous curve.

In figure 5.9 we can see how well the quadcopter tracks the individual reference inputs. In
particular, we see that it responds well to the step inputs. In the simulation, the quadcopter
undergoes step sizes of 4 meters and 8 meters and is able to maintain stability under state
feedback.
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Figure 5.9: Tracking of Lissajous trajectory using gain scheduling.

5.3 Gain-Scheduled Proportional-Integral Control with

State Feedback

We now extend the proportional gain-scheduled controller with state feedback developed
in section 5.2 by implementing integral action as outlined in section 2.6. To do this, we
introduce the integrator

σ̇ = y − r, (5.2)

where y = (x1, y1, z1, ψ1) is a subset of the measurable state vector x and has the same
dimension as the control vector u ∈ R4. Note that we can write y = Cx, with the matrix
C given by (4.12). We now augment (5.2) with the dynamics of the quadcopter and aim to
develop a feedback control u to stabilize the augmented system

ẋ = f(x,u,w),

σ̇ = Cx− r
(5.3)

at the steady state (xss, σss), where σss produces the desired uss. Here w ∈ Rl is a constant
vector of unknown perturbations and disturbances, and it is assumed that for each pair
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(r,w) ∈ Dr ×Dw there is a corresponding pair (xss,uss) satisfying

0 = f(xss,uss,w),

0 = Cxss − r

for any frozen value of the reference signal r(t).

As shown in section 2.6, we can use the control

u = −K1(x− xss)−K2σ

or since at any particular moment in time we have that xss = CT r,

u = −K1(x−CT r)−K2σ

to stabilize (5.3) at (xss, σss) where K1 ∈ R4×12,K2 ∈ R4×4, and

K =
(
K1 K2

)

is designed so that A(ψ1ss)− BK is Hurwitz, with

A =

(
A(ψ1ss) 0

C 0

)
, B =

(
B
0

)

and the matrices A,B,C given by (4.9),(4.10),(4.12), respectfully. The control scheme with
integral action is represented in figure 5.10.
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Figure 5.10: Block diagram of the gain-scheduled controller with integral action.

Note that in the case of integral action, we are now dealing with the augmented state
vector

ξ =

(
x
σ

)
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so that when using the LQR approach discussed in section 2.4 to obtain a suitable gain
matrix K, we can write the cost (2.6) as

J =

∫ ∞

0

(
ξTQξξ + uTRu

)
dt, (5.4)

with the block matrix Qξ given by

Qξ =

(
Qx 0
0 Qσ

)
.

As before, the matrix Qx ∈ R12×12 can be thought as a weighting for the components of
the state vector x taking the same form as (5.1), and the matrix Qσ ∈ R4×4 a weighting
for the integral part of the controller. For simulation purposes, we will use

Qσ = wσ · I4

so that each component of the integrator receives equal weighting wσ ∈ R. The performance
cost (5.4) can then be expressed

J =

∫ ∞

0

(
xT σT

)(Qx 0
0 Qσ

)(
x
σ

)
+ uTRu dt

=

∫ ∞

0

xTQxx + σTQσσ + uTRu dt,

from which we can obtain the desired gain matrix K as discussed in section 2.4.

To illustrate the effect of the implementation of integral action, we repeat the tracking of
the helix and Lissajous curves as done in section 5.2. Figure 5.11 shows the result of tracking
the helix trajectory using the same parameters and yaw tolerance ψtol = π/6 as before but
under the gain-scheduled PI controller. Comparing this to the results in figure 5.7, we can
see that the integral component of the control successfully eliminates the steady state error
in tracking the linear reference signals that we saw with the gain-scheduled P controller.
However, even with a relatively small weight of wσ = 0.1 as used in the simulation, it does
result in overshoot as can be seen in the plots for x1(t) and y1(t).

Figure 5.12 shows the results of using the control to track the Lissajous trajectory.
In this case we increase the weight of the integrator to wσ = 1. Comparing this with
figure 5.9, we can again see the controller’s effort to eliminate the steady state error when
the trajectory is roughly linear. We can also clearly observe overshoot in the tracking of
the step inputs to z1(t) but settling with no steady state error.
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Figure 5.11: Tracking of helix trajectory using gain scheduling with integral action.
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Figure 5.12: Tracking of Lissajous trajectory using gain scheduling with integral action.
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5.4 Gain-Scheduled Proportional Control with Out-

put Feedback

The controllers developed in sections 5.2 and 5.4 work well, however they rely on the
entire state vector being available on-line. When using the control algorithm on an actual
physical system, it may not be the case that we are capable of measuring all 12 states of
the quadcopter at each time step. Additionally, even if we could measure each state, we
would be faced with measurement noise which could affect the performance of the controller
which was designed around a nominal model. As such, we may want to only use an output
which is a subset of the state. Specifically, we would like to use an output from which we
can both reliably obtain accurate measurements and deduce information about the other
states.

A natural choice for the output y would be the position and the yaw angle of the
quadcopter, so that y = (x1, y1, z1, ψ1)

T . Using appropriate sensors, it is easy to obtain
accurate measurements of these state components. Further, as shown in section 4.3, the
linearized model of the quadcopter is observable under this output. That is, we can introduce
an exogenous variable x̂ which will converge to the actual state x and use it in our control
law. Further, using ψ1 in our measured output allows us to maintain accuracy in our gain
scheduling algorithm which relies on accurate measurements of the yaw angle.

Using this output, our system now takes the form

ẋ = f(x,u),

y = Cx,

where C is given by (4.12). We can no longer use the entire state vector in our control
algorithm, and so introduce an observer x̂ to estimate the state x. In section 2.2 we used
the linearized dynamics of the nonlinear system in our model for the observer. Here, we
will extend the observer to include a copy of the full nonlinear dynamics of the quadcopter.
Thus, we choose our observer to be

˙̂x = f(x̂,u) + L(y −Cx̂),

where f(x̂,u) is the non-linear quadcopter dynamics evaluated at the estimate x̂. Augment-
ing this with the state equation gives

ẋ = f(x,u),

˙̂x = f(x̂,u) + LC(x− x̂).
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Linearizing about the desired steady state values (x, x̂) = (xss,xss) results in

ẋδ = Axδ + Buδ,

˙̂xδ = Ax̂δ + Buδ + LC(xδ − x̂δ).

Notice that we recover the same structure as the linear observer in (2.4).

We can not choose uδ = −Kxδ as we have done before since we do not have on-line
access to full state feedback in the case of output feedback. As such, we instead use the
estimate and choose

uδ = −Kx̂δ.

The closed-loop linearized system then takes the form

ẋδ = Axδ −BKx̂δ,

˙̂xδ = (A−BK)x̂δ + LC(xδ − x̂δ).

As done in section 2.3, we can introduce the error in our estimate e = x− x̂, or equivalently
e = xδ − x̂δ, transforming the closed-loop dynamics into the form

ẋδ = (A−BK)xδ + BKe,

ė = (A− LC)e,

which we can write as
(

ẋδ
ė

)
=

(
A−BK BK

0 A− LC

)(
xδ
e

)
. (5.5)

Since the matrix above is upper-triangular, we can design K and L so that the matrices
A−BK and A− LC are Hurwitz. As such, the matrix in (5.5) will have eigenvalues with
negative real part and so we will have that e→ 0 and xδ → 0, or equivalently x̂→ x and
x→ xss.

As such, our output feedback controller is

u = −K(x̂− xss) + uss

coupled with the observer. Then, with xss = CT r for tracking of the reference r(t) =
(x1ref (t), y1ref (t), z1ref (t), ψ1ref (t))T , and y = Cx to emphasize the use of output feedback,
the controller takes the form

u = −K(x̂−CT r(t)) + uss,

˙̂x = f(x̂,u) + L(y −Cx̂).
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Figure 5.13: Block diagram of the gain-scheduled controller under output feedback.

We illustrate the control law in figure 5.13.

We now repeat the simulations conducted for the gain-scheduled controllers using state
feedback and compare the results. We first have the quadcopter track the helix trajectory.
To see the effect of the observer, we initialize the simulation with an initial condition for
the estimate that is different from that of the state. Results for this simulation are shown
in figure 5.14

Comparing with figure 5.6, we can see that the plots are almost identical. The only
difference in the trajectories is near the beginning. In the case of output feedback, we are
relying on values produced from the observer which will converge to the state as time
increases. We can demonstrate this by plotting the value of the estimate as well as the
value of the true state as shown in figure 5.15.

We can see that the observer does a good job at converging to the state. In theory, placing
the closed-loop poles assigned to the observer farther left in the open left-hand plane will
increase the rate of convergence of the observer to the state. However, placing them too far
can result in the “peaking” phenomenon, which can be unsafe in physical implementation
of the controller and lead to instability [16]. Further, too high of a gain L will amplify
any unmodeled noise that the system experiences which can also lead to instability [6].
To account for this uncertainty resulting from noise, we may wish to implement another
observer such as the Kalman filter [3], which takes noise into account in finding an optimal
gain.
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Figure 5.14: Tracking of helix trajectory using gain scheduling under output feedback.

Finally, we repeat the tracking of the Lissajous trajectory. The results of using the
proportional gain-scheduled controller with output feedback are shown in figure 5.16. Again,
we observe similar behaviour as seen in the previous simulation. That is, there is a small
amount of deviation from the desired trajectory at the beginning of the simulation, but as
time increases we recover the results in the full state feedback simulation in figure 5.9. We
can see how the observer successfully tracks the state in figure 5.17.

5.5 Gain-Scheduled Proportional-Integral Control with

Output Feedback

We now aim to improve the controller developed in the previous section by implementing
integral action into the control law. We saw in section 5.3 that implementing integral action
eliminated the steady state error when the quadcopter was subjected to linear reference
signals. We expect to see the same result in the case of observer-based output feedback.

As before, we take the controlled and measured output to be y = (x1, y1, z1, ψ1)
T and
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Figure 5.15: Comparing the observer x̂ (dashed green) with the actual state x (solid blue)
from t = 0 to t = 3 for tracking of the helix trajectory.
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Figure 5.16: Tracking of Lissajous trajectory using gain scheduling under output feedback.

we augment the state model of the quadcopter

ẋ = f(x,u),

y = Cx,

with the integrator
σ̇ = y − r

so that the augmented dynamics can be written

ẋ = f(x,u),

σ̇ = y − r.

Further, to compensate for the lack of having the full state available for feedback we
introduce the observer

˙̂x = f(x̂,u) + L(y −Cx̂).

Augmenting the observer with the state and integrator then gives

ẋ = f(x,u),

σ̇ = y − r,

˙̂x = f(x̂,u) + L(y −Cx̂).
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Figure 5.17: Comparing the observer x̂ (dashed green) with the actual state x (solid blue)
from t = 0 to t = 3 for tracking of the Lissajous trajectory.
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As before, for any frozen value of the reference signal r we wish to stabilize the above
system at the operating point (x, σ, x̂) = (xss, σss,xss) where σss produces the desired uss.
Linearizing the system about this steady state configuration gives

ẋδ = Axδ + Buδ,

σ̇δ = Cxδ,

˙̂xδ = Ax̂δ + Buδ + LC(xδ − x̂δ).

(5.6)

As before, we introduce

ξ =

(
x
σ

)
(5.7)

so that (5.6) can be written

ξ̇δ = Aξδ + Buδ,

˙̂xδ = Ax̂δ + Buδ + LC(xδ − x̂δ),

where

A =

(
A 0
C 0

)
, B =

(
B
0

)
.

In the case of state feedback, we would let uδ = −K1xδ−K2σδ, or equivalently uδ = −Kξδ
where K = (K1 K2). Since we are dealing with output feedback, we instead replace the
appearance of the state xδ in the controller with our estimate x̂δ and take

uδ = −K1x̂δ −K2σδ, (5.8)

which results in the closed-loop system

ẋδ = Axδ −BK1x̂δ −BK2σδ,

σ̇δ = Cxδ,

˙̂xδ = (A−BK1)x̂δ −BK2σδ + LC(xδ − x̂δ).

Introducing the error e = xδ − x̂δ allows us to rewrite this as



ẋδ
σ̇δ
ė


 =




A−BK1 −BK2 BK1

C 0 0
0 0 A− LC






xδ
σδ
e


 ,

or by using (5.7), we can write it as the upper triangular block matrix
(
ξ̇δ
ė

)
=

(
A− BK BK1

0 A− LC

)(
ξδ
e

)
.
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Now it is clear that by designing K = (K1 K2) and L such that the matrices A−BK and
A− LC are Hurwitz, we will achieve the desired result under the controller in (5.8). Note
that, as done previously, we can take σss = −K−12 uss which results in

u = −K1x̂δ −K2σ.

As such, with xss = CT r in the case of reference tracking and y = Cx for output feedback,
we can represent the final expression for the observer-based output feedback gain-scheduled
controller with integral action as

u = −K1(x̂−CT r)−K2σ,

˙̂x = f(x̂,u) + L(y −Cx̂),

σ̇ = y − r.

The control law is represented in figure 5.18.
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Figure 5.18: Block diagram of the gain-scheduled controller with integral action under
output feedback.

We now implement this controller into the tracking of the helix and Lissajous trajec-
tories. We expect to see the same behaviour observed in the previous instances when we
implemented integral action and output feedback separately. Namely, the elimination of
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Figure 5.19: Tracking of helix trajectory using gain scheduling under output feedback with
integral action.
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steady state error when subjected to linear reference signals and improved performance as
the observer converges to the state.

We first repeat the helix trajectory simulation. Figure 5.19 compares the output values to
the reference signal. The results are very similar to the PI controller with state feedback, with
the exception of the beginning of the trajectory. The integrator modeled in the controller
successfully eliminates the steady state error that was seen in the reference signals for z1(t)
and ψ1(t). The result of the observer converging to the actual state can be seen in figure
5.20.
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Figure 5.20: Comparing the observer x̂ (dashed green) with the actual state x (solid blue)
from t = 0 to t = 3 for tracking of the helix trajectory with integral action.

Finally, we use the PI controller under output feedback to track the Lissajous trajectory,
as can be seen in figure 5.21. Again, the behaviour we see here is a combination of the
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Figure 5.21: Tracking of Lissajous trajectory using gain scheduling under output feedback
with integral action.
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simulations done in sections 5.3 and 5.4 that employed integral action and output feedback
separately. The increase in the weight for the integral component of the controller from
wσ = 0.1 to wσ = 1 results in greater overshoot in the transient response but allows for
quicker convergence to the steady state as can bee seen in the plot for z(t). For sake of
completeness, we compare the state with the observer at the beginning of the trajectory in
figure 5.22.
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Figure 5.22: Comparing the observer x̂ (dashed green) with the actual state x (solid blue)
from t = 0 to t = 3 for tracking of the Lissajous curve with integral action.
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5.6 Considerations for Physical Implementation

We have seen that by switching discretely between different point designs, the quadcopter
under the gain-scheduled controller is able to successfully track various reference signals.
However, we have not yet considered whether or not such a controller would behave in
physical applications. In the above simulations, we did not heavily restrict the effort that
could be applied by the controller. Additionally, as a result of switching discretely between
point designs, the controller is discontinuous. We will now take a closer look at these two
factors and how they could affect physical implementations of the control law.

Let us restrict our attention to the use of state feedback without integral action. Recall
that for each point design used in the control algorithm, we constructed the gain matrix
K(ψ∗i ) such that the cost

J =

∫ ∞

0

(
xTδ Qxδ + uTδ Ruδ

)
dt (5.9)

would be minimized under uδ = −K(ψ∗i )xδ. However, by using the weight matrix

R = diag(wu1, wu2, wu3, wu4)

with wui = 0.001 for each i, we put a very minimal restriction on the amount of effort
that could be expended by the controller. By doing so, the controller is likely to produce
very large signals that the actuator will not be able to realize. For example, figure 5.23
depicts the values of the control inputs u1, u2, u3, u4, corresponding to the thrust, pitch, roll
and yaw moment inputs, respectively, as the gain-scheduled controller using state feedback
without integral action tracks the Lissajous trajectory.

We can see that the amount of effort generated by the control inputs is extremely high,
especially when subjected to the two step inputs at t = 10 and t = 20. Such high and
rapid demand of effort from the controller could result in saturation of the actuator or even
failure of the hardware.

Increasing the size of the matrix R in (5.9) allows us to reduce the amplitude of the
signals generated by the controller. By using

R = diag(1, 1, 1, 1),

we scale the previous instance of the weight matrix for the control by 1000. The control
signals are reduced to those shown in figure 5.24. As we can see the amplitudes of the
control signals are reduced considerably.
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Figure 5.23: Signals generated from the controller during the tracking of the Lissajous
trajectory, resulting from the use of wui = 0.001 in R. Such large signals are unlikely to be
realized in physical application.
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Figure 5.24: Signals generated from the controller during the tracking of the Lissajous
trajectory, resulting from the use of wui = 1 in R. These signals are much more likely to
be realized in a physical actuator.
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Of course, a reduction in the control effort does not come without a cost. By increasing
R and leaving Q the same we are being less restrictive on how well the quadcopter tracks
the reference. Figure 5.25 depicts the tracking of the state to the Lissajous reference as a
result of the increase in R. By comparing to figure 5.9, we can see that the quadcopter does
not track the reference signals as well with the restriction applied to the control inputs.

0 10 20 30
−10

−5

0

5

t

x
1
(t

)

0 10 20 30
−5

0

5

t
y

1
(t

)

0 10 20 30

0

5

10

t

z
1
(t

)

0 10 20 30

−2 pi

pi

0

t

ψ
1
(t

)

Figure 5.25: Tracking of the state to the reference signal for the Lissajous trajectory, using
wui = 1. Comparing to figure 5.9, we see that the performance suffers as a result of
restricting the effort expendable by the control inputs.

We may be able to improve the tracking while at the same time taking actuator satura-
tion into account by increasing the matrix R so as to maintain satisfactory tracking of the
reference signal, and further explicitly include restrictions on the control inputs,

|ui(t)| ≤ uimax,

where each uimax depends on the physical actuator used. As such, we can directly ensure
that the actuator is able to handle the signals generated by u. In this way, only reference
trajectories that require inputs from the controller resulting in saturation of the actuator
(such as the large step inputs seen in the Lissajous trajectory) will see a similar decrease
in tracking performance as in figure 5.25.
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We now address the effect of the discontinuity in the control law. By switching at
intervals of π/6 in our simulations, we impose large fluctuations to the value of the ui’s
at every switch. Essentially, the controller has to “reset” itself each time that the gain is
rescheduled. To exploit this, we can repeat the plot of u3(t) shown in figure 5.24, but change
the colour of the plot at every instance that the control switches, while at the same time
leaving the discontinuities. The result of doing this is shown in figure 5.26.
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Figure 5.26: Plot of u3(t), using different colours to depict the scheduling of the gain. Large
discontinuities appear in the controller as a result of using ψtol = π/6.

We can decrease the size of these discontinuities by making the switching more frequent.
To do this, we decrease the size of ψtol. In figure 5.27 we see the output of u3(t) after
repeating the Lissajous trajectory, with ψtol = π/18 and π/180, making the switching 3
times and 30 times, respectively, more frequent than before.

As the switching frequency increases, the size of the discontinuities decreases. In addition,
this has the effect of reducing the amplitude of the control signal. We can visually see the
signal “converge” as ψtol becomes closer to zero. In the limit as ψtol → 0, the controller
becomes continuous. However, in physical implementation we will always have a finite ψtol,
which results in a phenomenon known as chattering. We depict the occurrence of chattering
in figure 5.28.

In physical implementation, chattering is undesired. It can lead to high heat loss in
electrical circuits as a result of the frequent switching of the controller, or can even cause
the system to destabilize in the presence of unmodeled high frequency dynamics (if, for
example, the frequency of the control switching matches that of the resonant frequencies
of the unmodeled dynamics) [6].

Chattering often appears in control techniques that are inherently discontinuous, such as
sliding mode control. In these controllers, the sgn(·) function is used to force the trajectory
to converge to a surface or subset of the dynamics on which the system has desirable
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Figure 5.27: Reducing the size of the discontinuities by increasing the frequency of the
switching. The amplitude of the control signal also decreases.
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properties. The fact that sgn(·) is discontinuous leads to chattering in these controllers. To
prevent such undesirable behaviour, continuous approximations of sgn(·) are often used (e.g.,
[12]). In the case of gain scheduling, we can make the controller continuous by interpolating
between the different point designs. Such methods are discussed in works such as [7, 10, 11].
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Chapter 6

Conclusions

In this thesis, we used techniques from linear control theory to develop a gain-scheduled
control law to apply to the quadcopter. By taking the yaw angle as the scheduling vari-
able, we used the parameter-varying linearized dynamics of the quadcopter to develop the
adaptive gain matrices in the control laws with the aid of a linear quadratic regular. We
demonstrated that a conventional fixed gain control law was inadequate for tracking refer-
ence signals that involve significant variation in the yaw angle, and that the gain-scheduled
controller successfully resolves this issue. To exemplify this, trajectory tracking simulations
were conducted which involved both constant and non-constant variation in the yaw angle.
Further, we introduced integral action into the control law which successfully eliminated
the steady state error that we observed in the tracking of linear reference signals. Finally,
we used an observer for state estimation where the output was taken to be the spatial
position and yaw angle of the quadcopter. The observer was able to successfully converge
to the state.

Although our control algorithm proved to be successful, there are many components in
the design process that can be improved upon. Here we will discuss some improvements to
the gain-scheduled controller that can be made in future work.

6.1 Establishing Region of Attraction

In the development of our control laws we have predominantly made use of the linearized
model of the quadcopter. The downfall with this approach is that the linear model is only
valid in a neighbourhood of the equilibrium point about which the linearization was taken.
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Given a desired setpoint, we need to ensure that the initial condition of the state is within
the region of attraction of the setpoint. From Lyapunov stability theory, we are guaranteed
that such a region exists, however determining a suitable region is nontrivial. Nonetheless,
techniques exist to estimate these regions of attraction. Some techniques are presented in
[17, 18, 19, 20, 21]. As discussed, we may be able to use the fact that V (x) = xTPx is a
Lyapunov function for the closed-loop system in a neighbourhood of the desired setpoint,
where P is the unique positive definite solution to the Lyapunov equation

P(A−BK) + (A−BK)TP + Q = 0,

with Q any positive definite symmetric matrix, to obtain a conservative estimate for the
region of attraction.

6.2 Improvement of Gain Scheduling Method

Next we consider how the gains are scheduled in the control law. While the strategy used to
schedule the controller on the yaw angle of the quadcopter was successful in our simulations,
it can certainly be improved. Our strategy was to reschedule the controller on the current
yaw angle of the quadcopter once it deviated a specified tolerance away from the value
upon which it was previously scheduled. While this technique is sufficient for simulations,
it is inefficient as a new controller must be derived on-line during each switch.

It would be much more efficient to first specify the tolerance ψtol and design the sequence
of controllers before any simulations are done. For example, in most of our simulations we
used ψtol = π/6. We can develop a controller as described above as

u(x) =





u1

(
x;

π

12

)
, 0 ≤ ψ1(t) <

π

6
;

u2

(
x;
π

4

)
,

π

6
≤ ψ1(t) <

π

3
;

...

u12

(
x;

23π

12

)
,

11π

6
≤ ψ1(t) < 2π,

where ui(x;ψ∗i ) uses the linearization of the quadcopter dynamics about ψ∗i = π
6
(i − 1

2
),

and ψ1(t) is taken mod 2π. In addition to not having to compute the control law on-line,
this choice offers the additional improvement that the yaw angle of the quadcopter will
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never be much more1 than π/12 radians away from the point at which the dynamics were
linearized about, as opposed to π/6 radians as was the case in the simulations. In general,
for a suitable ψtol such that 2π/ψtol = n ∈ N and k ∈ N, 1 ≤ k ≤ n, we can use

u(x) = uk

(
x;

(
k − 1

2

)
ψtol

)
, (k − 1)ψtol ≤ ψ1(t) < k ψtol (6.1)

so that we will maintain |ψ1(t)− ψ∗k| ≤ ψtol/2 + ε for some small positive value ε2. Using
such a controller, we can govern the switching by monitoring only the value of ψ1(t) and
not its deviation away from the value of ψ∗k upon which the linearization was taken.

Additionally, we can improve the controller by interpolating between each point design uk
given in (6.1). Numerous authors have developed different techniques for this interpolation
process, many of which use linear interpolation. These include [22] where the poles, zeros and
gains of the controller transfer functions are linearly interpolated, [23] where the solutions
of Ricatti equations are linearly interpolated while employing the use of H∞ controllers, and
[24] where the state and observer gains are linearly interpolated. For additional techniques,
we may wish to consult [7, 10] and references therein. This interpolation process will result
in a continuous gain-scheduled controller and should eliminate the chattering phenomenon
discussed in section 5.6.

6.3 Shaping of Dynamic Response

In the development of our control law, we saw that the eigenvalues in the closed-loop
system could be, at least theoretically, arbitrarily placed. This feature enables us to place
the eigenvalues in order to alter the performance in achieving different design objectives,
whether it be to achieve a desired rate of convergence, track a reference signal, reject
disturbances to the system or be robust to noise. In the designing of the controller we
obtained the gain matrices by using a linear quadratic regular as discussed in section 2.4.
However, not much consideration was given to the Q and R weight matrices that determine
how the system will be affected by the controller.

In future work, we may want to look into this further and see how the weight matrices
should be varied in order to best achieve various design objectives and shape the dynamic
response. It would be beneficial to first compare the response to simpler reference inputs

1We say “much more” because by the time the yaw angle varies enough to trigger a switch in the control
law, it will be in the next range of ψ1(t).

2See the above footnote.
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such as step inputs and analyze various performance indicators such as rise time, settling
time, overshoot, etc.

6.4 Actuator Saturation

We saw in section 4.3 that the linearized dynamics of the quadcopter were completely
controllable and observable, implying that we could, in principle, arbitrarily place the poles
of the closed-loop system to achieve the desired system response. Unfortunately, what we
can accomplish in principle may not coincide with what we can accomplish in practice.
The fact of the matter is that the physical actuators (or the power supply) may not be
able to generate the signals output from the controller resulting from our choice of pole
placement. It may be the case that the actuator saturates at the largest signal that it can
deliver, which could in turn destabilize the system.

Various papers have considered the issue of actuator saturation, such as [25, 26] in which
saturation is avoided, and [27] where controllers are developed that incorporate saturation.
To prevent this problem in the controller development for the quadcopter model, we may
wish to incorporate actuator saturation into the construction of the control law, by means of
increasing the weight matrix R in the linear quadratic regulator as we have done in section
5.6, or through other techniques. Alternatively, we could avoid saturation by explicitly
planning trajectories in which saturation will not occur. We have also seen that using a
continuous gain-scheduled controller will reduce the amplitude of the control signal, aiding
to prevent saturation from occurring.

6.5 Improved Observer Model

When we developed our gain-scheduled controllers in conjunction with output feedback, we
made use of the observer

˙̂x = f(x̂,u) + L(y −Cx̂),

in order to estimate the state. By varying the matrix L, we had the freedom to arbitrarily
place the poles of the error dynamics

ė = (A− LC)e

to achieve the desired rate of convergence of the observer to the state.
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Unfortunately, increasing the rate of convergence does not come without consequence
in practical application. Increasing the rate of convergence by placing the closed-loop poles
farther left in the open left-hand plane results in greater error in the transient response.
As mentioned in section 5.4, this peaking phenomenon can be unsafe for the physical
implementation of the system as it has the effect of amplifying noise in the system. As such,
it would be unwise to make the observer gain matrix too large. This trade-off between noise
attenuation and dynamic response can be done in an “optimal” way by using a Kalman
filter, which incorporates a model for the noise in the system in the construction of the
Kalman gain (or in our case the Kalman-Bucy filter for continuous-time systems [28]).
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Appendix A

Simulation Parameters

Symbol Value SI Units Description

g 9.8 m/s2 Gravitational constant

m 2 kg Mass of quadcopter

` 0.2 m Half of adjacent rotor distance

I1 1.25 N s2/rad Moment of inertia

I2 1.25 N s2/rad Moment of inertia

I3 2.50 N s2/rad Moment of inertia

k1 0.010 N s/m Drag coefficient

k2 0.010 N s/m Drag coefficient

k3 0.010 N s/m Drag coefficient

k4 0.012 N s/m Drag coefficient

k5 0.012 N s/m Drag coefficient

k6 0.012 N s/m Drag coefficient
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Appendix B

Proofs

B.1 Controllability of (A,B)
Let A ∈ Rn×n,B ∈ Rn×p,C ∈ Rp×n, with A and B given by (2.16). Suppose that (A,B)

is a controllable pair, and the matrix

(
A B

C 0

)
has rank n + p. Then the pair (A,B) is

controllable.

Proof. By way of contradiction, suppose that the pair (A,B) is not controllable. Then by
the Hautus criterion for controllability, ∃λ ∈ C such that

rank
(
A− λ In+p B

)
< n+ p. (B.1)

Since the matrix in (B.1) is not full rank, there is a v = (v1 v2) with v1 ∈ C1×n,v2 ∈ C1×p,
and v1,v2 not both 0, such that

(
v1 v2

)(A− λ In 0 B

C −λ Ip 0

)
= 0,

giving the three equations

v1(A− λ In) + v2C = 0, (B.2)

λv2 = 0, (B.3)

v1B = 0. (B.4)
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Case 1. λ 6= 0. Then by (B.3), v2 = 0. Taking this with v 6= 0 we must now have that
v1 6= 0. Conditions (B.2) and (B.4) with v2 = 0 imply that

v1

(
A− λIn B

)
= 0.

Since v1 6= 0 we then have that

rank
(
A− λ In B

)
< n,

contradicting the first assumption that (A,B) is controllable.

Case 2. λ = 0. Then (B.1) implies

rank

(
A 0 B

C 0 0

)
< n+ p,

or equivalently

rank

(
A B

C 0

)
< n+ p,

thereby contradicting the second assumption.

Hence we must have that (A,B) is controllable.

�

B.2 Invertibility of K2

Let A,B,C,A,B be as above, and K = (K1 K2) with K1 ∈ Rp×n,K2 ∈ Rp×p. Suppose
that K is chosen so that the matrix A− BK is Hurwitz. Then K2 is nonsingular.

Proof. We can write A− BK as(
A−BK1 −BK2

C 0

)
. (B.5)

By way of contradiction, suppose that K2 is singular. We then have that the rank of K2 is
less than p. In particular, the rank of BK2 is less than p, which would result in the matrix
in (B.5) having rank less than n+ p, contradicting the fact that it is Hurwitz.

Hence we must have that K2 is nonsingular.

�

74



References

[1] D. Luenberger, “Observing the state of a linear system,” IEEE Transactions on Military
Electronics, vol. 8, pp. 74–80, April 1964.

[2] B. Friedland, Control system design: an introduction to state-space methods. Courier
Corporation, 2012.

[3] R. Kalman, “On the general theory of control systems,” IRE Transactions on Automatic
Control, vol. 4, no. 3, pp. 110–110, 1959.

[4] D. N. Burghes and A. Graham, Introduction to control theory, including optimal control.
Horwood, 1980.

[5] J. Kautsky, N. K. Nichols, and P. Van Dooren, “Robust pole assignment in linear state
feedback,” International Journal of Control, vol. 41, no. 5, pp. 1129–1155, 1985.

[6] H. K. Khalil, Nonlinear systems. Prentice Hall, 3rd ed., 2001.

[7] W. J. Rugh and J. S. Shamma, “Research on gain scheduling,” Automatica, vol. 36,
no. 10, pp. 1401–1425, 2000.

[8] W. J. Rugh, “Analytical framework for gain scheduling,” in American Control Con-
ference, pp. 1688–1694, 1990.

[9] D. A. Lawrence and W. J. Rugh, “Gain scheduling dynamic linear controllers for a
nonlinear plant,” Automatica, vol. 31, no. 3, pp. 381–390, 1995.

[10] D. J. Stilwell and W. J. Rugh, “Interpolation methods for gain scheduling,” in Pro-
ceedings of the 37th IEEE Conference on Decision and Control, vol. 3, pp. 3003–3008,
1998.

75



[11] D. J. Stilwell and W. J. Rugh, “Interpolation of observer state feedback controllers for
gain scheduling,” IEEE Transactions on Automatic Control, vol. 44, no. 6, pp. 1225–
1229, 1999.
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