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SAMMANFATNNING

I denna avhandling analyserar vi olika typer av additiva uppdelningar
av homogena polynom. Dessa problem kallas vanligen vara av Waringtyp,
och deras historia går tillbaka till mitten av 1800-talet. Nyligen har de
uppmärksammats av en stor grupp matematiker och ingenjörer på grund
av de många tillämningar de har. Samtidigt har de anknytning till grenar
av Kommutativ algebra och Algebraisk geometri.

Det klassiska Waringproblemet handlar om uppdelning av homogena
polynom som summor av potenser av linjärformer. Via s.k. Apolarity The-
ory, är studiet av uppdelningen för ett givet polynom F relaterad till studiet
av punkter "apolära" till F , nämligen konfigurationer av punkter vars
ideal är innehållna i "perpidealet" till F . Speciellt analyserar vi vilka min-
imala punktmängder som kan vara apolära till ett givet polynom i fall av
låg grad och litet antal variabler. Detta tillåter oss introducera begreppet
Waring loci för homogena polynom.

Från en geometrisk synpunkt kan frågor om additiva uppdelningar av
polynom beskrivas med hjälp av sekantvarieteter av projektiva varieteter.
Speciellt är vi intresserade av dimensionen av dessa varieteter. Genom
att använda ett gammalt resulatat av Terracini, kan vi bestämma dessa
dimensioner genom beräkna Hilbertserier för homogena ideal.

Hilbertserier är viktiga invarianter för homogena ideal. För det klas-
siska Waringproblemet måste vi titta på s.k. power ideals, d.v.s. ideal gener-
erade av potenser av linjärformer. Via Apolarity Theory är deras Hilbert-
serier relaterade till Hilbertserier för ideal till "fat points", d.v.s. ideal för
konfigurationer av punkter med multiplicitet. I avhandlingen betraktar vi
några speciella konfigurationer av feta punkter. Hilbertseries till ideal av
feta punkter är ett mycket aktivt forskningsområde. Vi förklarar hur det
är relaterat till Fröbergs kända förmodan om Hilbertseries till generiska
ideal, vilken är öppen sedan 1985.

Dessutom använder vi Fröbergs förmodan till att härleda dimensionen
av flera sekantvarieteter av projektiva varieteter, för att sedan härleda
resultat om speciella problem av Waringtyp för polynom.

I avhandlingen arbetar vi för det mesta över komplexa talen. Emeller-
tid analyserar vi också klassiska Waringdekompositioner över de reella
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talen. Speciellt klassificerar vi för vilka monom den minimala längden av
uppdelningen i summor av linjärformer är oberoende av om kroppen är
den komplexa eller den reella.
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PREFACE

Classical Waring problem investigates additive decompositions of homoge-
neous polynomials as sums of powers of linear forms. This is the symmetric
version of a problem about additive decompositions of tensors. Recently,
these kinds of problems attracted the attention of a large community of
mathematicians and engineers. They have several applications in differ-
ent fields, such as: Algebraic Statistics (in statistical models with hidden
variables), Phylogenetic (in reconstructions of evolutionary trees of DNA),
Signal Processing (in decompositions of signals) and others.

In the present thesis we analyze different types of additive decompo-
sitions of homogeneous polynomials. We also see how these problems are
related to questions in Commutative Algebra and Algebraic Geometry.

OVERVIEW

CHAPTER 1: INTRODUCTION. First, we give a historical introduction of
the topic. We also explain how questions about additive decompositions of
polynomials can be described geometrically in terms of secant varieties.

CHAPTER 2: APOLARITY THEORY AND POINT CONFIGURATIONS. In this
chapter, we introduce the basic notions of apolarity theory. In particular,
we see how the Waring decompositions of a homogeneous polynomial F as
sums of of powers of linear forms are related to set of points apolar to F ,
i.e., to configurations of points contained in the “perp” ideal of F (Apolarity
Lemma 2.1.13). In Section 2.3, we study which kinds of minimal set of
points can be apolar to particular families of homoegeneous polynoimals
(quadrics, monomials, binary forms and plane cubics). This is part of a joint
work with Carlini and Catalisano [CCO] where we introduce the notion of
Waring loci of homogeneous polynomials.

In the second part of the chapter, we describe a more general version of
Apolarity Lemma which allows us to relate power ideals (i.e., ideals gen-
erated by powers of linear forms) and ideals of configurations of fat points
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(i.e., configurations of points considered with certain multiplicity). In Sec-
tion 2.7, we study Hilbert series and Betti numbers of special configura-
tions of fat points. These computations have been already presented in
[One14; BO15].

CHAPTER 3: FRÖBERG’S CONJECTURE AND DIMENSIONS OF SECANT VA-
RIETIES. The aim of this chapter is to view Fröberg’s conjecture on the
Hilbert series of generic ideals in relation to more recent problems. In Sec-
tion 3.2, we analyze the relation between power ideals that fail to have the
Hilbert series prescribed by Fröberg’s conjecture and linear systems of hy-
persurfaces in projective spaces which are linearly special with respect to
the definition given by Brambilla, Dumitrescu and Postinghel [BDP15a].

In Section 3.3, we relate Fröberg’s conjecture to the computation of the
dimensions of secant varieties of varieties of powers, i.e., varieties whose
points are d-th powers of homogeneous polynomials of degree k. In partic-
ular, we review computations already explained in [One14] by formulating
a general conjecture on the dimensions of these secant varieties. Such a
conjecture has been suggested in private communication by Ottaviani.

In Section 3.4, we study secant varieties of varieties of µ-power, i.e.,
varieties whose points are µ-powers of linear forms; namely, homogeneous
polynomials of type Lm1

1 · · ·Lmss , where µ = (m1, . . . ,ms) is a partition of a
positive integer d. This is part of a joint work with Catalisano, Chiantini
and Geramita [CCGO15]. This questions have been already considered in
the literature for special partitions as µ = (1, . . . , 1) and µ = (d− 1, 1).

CHAPTER 4: DECOMPOSITIONS OF MONOMIALS. In this chapter, we study
special additive decompositions of monomials.

In Section 4.1, we consider the classical Waring decompositions as sums
of powers of linear forms over the fiels of real numbers instead of the field
of complex numbers. In particular, we characterize for which monomials
the smallest lenght of such a decomposition does not depend on the ground
field. This is a joint work with Carlini, Kummer and Ventura [CKOV16].

In Section 4.2, we study decompositions of monomials as sums of pow-
ers of degree k forms over the complex numbers. We get partial results in
case of small degrees and small number of variables. This is a joint work
with Carlini [CO15], already presented in [One14].
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CHAPTER 1

INTRODUCTION

After a historical introduction, in this chapter we explain what kinds of ad-
ditive decompositions of homogeneous polynomials we want to consider. In
particular, we see how these explicit problems fit into several other inter-
esting topics. We relate them to geometric questions about the secant va-
rieties of projective varieties, on one side, and to algebraic questions about
Hilbert functions of homogeneous ideals, on the other side.

SECTION 1.1

ADDITIVE DECOMPOSITIONS OF INTEGERS

In 1770, the English number theorist E. Waring (1736–1798), in his paper
Meditationes Algebraicae, stated, with no proof, that

every natural number is a sum of at most 9 cubes;

every natural number is a sum of at most 19 fourth powers;

and so on...

Apparently, he believed that, for every natural number d ≥ 2, there exists
a number N(d) such that every positive integer n can be written as

n = ad1 + . . .+ adN(d), ai ∈ Z>0.

The smallest number with that property is denoted by g(d). We had to wait
more than a century for a proof of this statement.

Theorem 1.1.1 (Hilbert, 1909). For any d ≥ 2, g(d) exists.
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In fact, from the famous Lagrange’s four-square Theorem (1770), we
know that g(2) = 4; later, Wieferich and Kempner showed that g(3) = 9
[Wie08; Kem12]. In 1986, Balasubramanian, Dress and Deshouillers es-
tablished that g(4) = 19 [BDD86]. In general, we have the conjectured for-
mula 1 g(d) = 2d+

[
(3/2)d

]
−2. As a consequence of the work of many math-

ematicians, it is known that this is true when 2d
{

(3/2)d
}

+
[
(3/2)d

]
≤ 2d.

In [Mah36], Mahler proved that there are only finitely many counterex-
amples to the inequality. Due to massive computer checking, it is believed
that it is always true and that the value of g(d) conjectured is correct.

In [Dav39], Davenport proved that any sufficiently large integer can
be written as the sum of at most 16 fourth powers. Hence, for any d ≥ 2,
we define G(d) as the least integer such that all sufficiently large integers
can be expressed as sum of at most G(d) d-th powers of integers. Clearly,
G(d) ≤ g(d). Gauss observed that every number congruent to 7 mod(8) is a
sum of four squares, which proves that G(2) = g(2) = 4; but the inequality
can be strict. Indeed, it has been shown, for example, that G(3) ≤ 7 and
G(4) = 16. However, only little is known about numbers G(d) and this
problem is currently a very active area of research in number theory.

SECTION 1.2

ADDITIVE DECOMPOSITIONS OF POLYNOMIALS

A standard result of linear algebra is that, given a quadratic homogeneous
polynomial, or form, Q in n variables over a field K of characteristic differ-
ent from two, we can find a symmetric matrixMQ such thatQ(x) = xMQx

t,
where x ∈ Kn. Then, after a suitable change of coordinates, we can diag-
onalize the matrix MQ and we can represent Q as a sum of s squares of
linear forms if and only if the matrix MQ has rank smaller than or equal
to s. We consider similar decompositions for higher degree polynomials.

Since the 19-th century, geometers and algebraists seek for normal
forms of (homogeneous) polynomials. For example, Hilbert, in his famous
list of 23 problems posed in 1900, asked the following.

HILBERT’S 17TH PROBLEM. Is it true that any multivariate complex
polynomial that takes only non-negative values over the reals can be written
as a sum of squares of rational functions?

An affirmative answer was given by Artin in 1927 [Art27].

During the last decades, due to practical needs to decompose homo-
geneous polynomials and tensors, these types of questions again attracted
the attention of many researchers, from pure mathematicians to engineers.

1If x ∈ Q, we denote with [x] and {x} the integral and fractional part of x, respectively.
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1.2.1 CLASSICAL WARING DECOMPOSITIONS

Due to the nature of the question and its similarity with the problems for
integers formulated by Waring, these problems about additive decomposi-
tions of polynomials are called Waring problems for polynomials.

We work over the field of complex numbers, except for Section 4.1,
where we consider Waring decompositions over the field of real numbers.

Definition 1.2.1. Given a homogeneous polynomial F of degree d in n+ 1
variables, we define the Waring rank of F as the smallest number of linear
forms needed to decompose F as a sum of their powers, i.e.,

rk(F ) := min{s | ∃L1, . . . , Ls linear forms s.t. F = Ld1 + . . .+ Lds}.

We refer to decompositions of F as sums of powers of linear forms of length
equal to the rank as Waring decompositions of F .

In the projective space P(Sd) of degree d homogeneous polynomials2, we
consider the set of polynomials of rank r, i.e.,

Ud,r := {[F ] ∈ P(Sd) | rk(F ) = r}.

Observe that these sets are not necessarily closed as in the following.

Example 1.2.2. Consider M = xy2 ∈ C[x, y]3. It is a straightforward com-
putation to check that rk(M) cannot be two. However, we can easily see
that M is contained in the closure of U3,2. Indeed

xy2 = lim
t→0

1

3t

(
y3 + (tx− y)3

)
.

Definition 1.2.3. Fixing positive integers n, d as above, we define:

1. the generic rank, i.e., the rank of the generic form in Sd, namely the
rank that occurs in a Zariski open subset3 of P(Sd).
We denote it by rk◦(n+ 1, d).

2. the maximal rank, i.e., the maximal rank among all forms in Sd.
We denote it by rkmax(n+ 1, d).

Consideration of Waring problems for homogeneous polynomials was
initiated by Sylvester who considered the case of two variables.

Theorem 1.2.4 (Sylvester [Syl51]). A generic binary form of degree d can
be written as a sum of

⌈
d+1

2

⌉
powers of linear forms, i.e., rk◦(2, d) =

⌈
d+1

2

⌉
.

2Given any K-vector space V of dimension N + 1, we define the associated N -dimensional projective
space, denoted P(V ), as the space of lines in V ; more precisely, as the quotient of V r0 by the equivalence
relation given by v ' w if and only if there exists λ ∈ K r 0 such that v = λw. A vector basis for V , is
called a set of coordinates of V and we denote it by PN when there is no confusion about the coordinates
we are using. In the case of the space of homogeneous forms of degree d, we consider the monomial basis.

3We consider PN equipped with the Zariski topology, namely the closed sets are defined as the zero
loci of homogeneous polynomials with respect to the coordinates used. Closed sets are also called varieties
and when non-empty, their complements are always dense.
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Decompositions of homogeneous polynomials as sums of powers of lin-
ear forms were the first natural kind of additive decompositions under
consideration. Since the mid-19th century, they attracted a lot of atten-
tion especially due to their connections with the classic geometry of secant
varieties. However, we had to wait until 1995 when a substantial gener-
alization of Sylvester’s result was proven. After a series of enlightening
papers [AH92a; AH92b; AH95], Alexander and Hirschowitz obtained the
Waring rank of generic forms in any degree and any number of variables.

Theorem 1.2.5 (Alexander–Hirschowitz [AH95]). The Waring rank of the

generic degree d form in n+1 variables is rk◦(n+1, d) =

⌈
(n+d
n )

n+1

⌉
, except for:

1. d = 2, any n, where rk◦(n+ 1, 2) = n+ 1;

2. n = 2, d = 4, where rk◦(3, 4) = 6 and not 5 as expected;

3. n = 3, d = 4, where rk◦(4, 4) = 10 and not 9 as expected;

4. n = 4, d = 3, where rk◦(5, 3) = 8 and not 7 as expected;

5. n = 4, d = 4, where rk◦(5, 4) = 15 and not 14 as expected.

When the problem concerning generic forms was solved, pure mathe-
maticians celebrated the result, but the community coming from the ap-
plied world was not yet satisfied. Indeed, the challenge is to compute the
Waring rank of a given explicit polynomial and then to find a Waring de-
composition. This question is much more difficult and, in full generality,
is still open. Only a few special cases are solved. Comas and Seiguer in
[CS11] describe a simple and beautiful algorithm to determine the rank of
a given binary form; such algorithm, in some cases, can also provide the
Waring decomposition, see Section 2.3.3. In 2012, Carlini, Catalisano and
Geramita found a complete solution in the case of monomials in any num-
ber of variables and sums of pairwise coprime monomials, see [CCG12].

Theorem 1.2.6 (Carlini–Catalisano–Geramita). If M = xd0
0 · · ·xdnn , with

d0 ≤ . . . ≤ dn, then,

rk(M) =
1

(d0 + 1)

n∏
i=0

(di + 1).

Theorem 1.2.7 (Carlini–Catalisano–Geramita). If F =
∑s
i=1Mi where the

Mi’s are degree d monomials in pairwise different sets of variables, then

rk(F ) =

s∑
i=1

rk(Mi).

The case of sums of forms in different sets of variables is of particular
interest. A lot of work in this direction has been done in the last years.
The so-called Strassen’s conjecture claims that, under this assumption, the
Waring rank is additive. We will return to this in Section 2.4.
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Conjecture 1.1 (Strassen’s conjecture). If F =
∑s
i=1 Fi where the Fi’s are

degree d forms in different sets of variables, then

rk(F ) =

s∑
i=1

rk(Fi).

Several other algorithms to compute Waring rank and Waring decom-
positions of specific polynomials have been proposed, see [OO13; BGI11;
BCMT09; CGLM08]. However, they often require additional assumptions
on the input polynomial in order to work efficiently.

Concerning the maximal rank of homogeneous polynomials in n+1 vari-
ables and degree d, a brilliant and surprisingly elementary observation by
Blekherman and Teitler in [BT14] states that the maximal rank is always
at most twice the generic rank. Some better upper bound has been found
in cases of low degree [BDP13; Jel14]. However, the precise answer to this
problem is known in very few cases.

Theorem 1.2.8. The following maximal ranks are known:

1. (Sylvester) The maximal rank of degree d binary forms is d;

2. (Classical result) The maximal rank of degree 2 and 3 ternary forms
is 3 and 5, respectively;

3. (Kleppe, [Kle99]) The maximal rank of degree 4 ternary forms is 7;

4. (De Paris, [DP15]) The maximal rank of degree 5 ternary forms is 10.

1.2.2 d-TH WARING DECOMPOSITIONS

In 2012 [FOS12], Fröberg, Ottaviani and Shapiro suggested an additive
decomposition of forms that generalizes the original Waring problem.

Definition 1.2.9. Given a homogeneous polynomial F of degree kd in n+1
variables, we define the d-th Waring rank of F as the smallest number of
degree k forms needed to decompose F as sums of their d-th powers, i.e.,

rkd(F ) := min{s | ∃G1, . . . , Gs degree k forms s.t. F = Gd1 + . . .+Gds}.4

Clearly, if k = 1, then rkd(F ) is the classical Waring rank. We denote with
rk◦d(n+1, kd) the d-th Waring rank of a generic degree kd form in n+1 vari-
ables and we refer as d-th Waring decomposition of F for decompositions
as sums of d-th powers of minimal length. The main result is the following.

Theorem 1.2.10 (Fröberg–Ottaviani–Shapiro [FOS12]). For a given d ≥ 2,
the generic form of degree kd in n + 1 variables can be written as a sum of
at most dn d-th powers of forms of degree k.

4In the original paper [FOS12] the roles of d and k are inverted. We use this notation here to conform
with the notation used in the classical Waring problem.
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Remark 1.2.11. This result is surprising for two remarkable reasons.
At first, this result is independent of k. Because of that, we have that

such an upper bound on the rank is sharp for k � 0. Indeed, by a simple
count of parameters, there is a natural lower bound

rk◦d(n+ 1, kd) ≥

⌈(
n+kd
n

)(
n+k
n

) ⌉

which, when k →∞, tends to dn.
The second surprising fact comes from the proof. The authors exhibit dn

linear forms such that their linear combinations cover a Zariski open sub-
set of forms of degree kd. In other words, even if our intuition might expect
that considering d-th powers of degree k forms would give us more flexibil-
ity, whenever k is large enough, we cannot do better than by considering
kd-th powers of linear forms.

In the present thesis, we conjecture the following solution to the problem,
suggested by Ottaviani (private communication).

Conjecture 1.2. The d-th Waring rank of a generic degree kd form in n+ 1
variables is

rk◦d(n+ 1, kd) =


min

{
s
∣∣ s(n+k

n

)
−
(
s
2

)
≥
(
n+2k
n

)}
for d = 2;⌈

(n+kd
n )

(n+k
n )

⌉
for d ≥ 3.

This conjecture holds in two variables as presented by Reznick, [Rez13b].
In Section 3.3, we will see a different proof of this. A large number of other
cases in low degrees and low number of variables has been checked numer-
ically with the help of the Computer Algebra software Macaulay2 [GS].

Concerning the d-th Waring rank of specific polynomials, in [CO15] we
started to analyze the case of monomials. So far, we have complete results
only in case of low number of variables and/or low degree. Unfortunately,
our approach cannot be generalized, but, as far as we know, there are no
other results in the literature about this problem.

1.2.3 WARING-LIKE DECOMPOSITIONS

Other kinds of generalizations of Waring decompositions have been con-
sidered in the last decade. For example, in [AB11; Shi12; Abo14; CGG+15],
the authors consider decompositions as sums of split forms or completely
decomposable forms, namely decompositions of a degree d homogeneous
polynomial F as

∑s
i=1 Li,1 · · ·Li,d, where the Li,j ’s are linear forms. In

[CGG02; Bal05; BCGI09], the authors consider decompositions of the type∑s
i=1 L

d−1
i,1 Li,2. In the recent paper [CCGO15], together with Catalisano,

Chiantini and Geramita, we collect all these decompositions under the
more general term of Waring-like decompositions.
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Definition 1.2.12. Given any partition µ = (m1 ≥ . . . ≥ mr) ` d, we define
the µ-Waring rank of a homogeneous degree d polynomial as the minimal
number of what we call µ-powers of linear forms5 needed to decompose F
as their sum, i.e.,

rkµ(F ) := min
{
s
∣∣∣ ∃Li,j linear forms,
i=1,...,s, j=1,...,r s.t. F = Lm1

1,1 · · ·L
mr
1,r + . . .+ Lm1

s,1 · · ·Lmrs,r
}
.

This problem generalizes both Waring problems mentioned above. In-
deed, the classic Waring problem corresponds to the case of the trivial par-
tition µ = (d). Instead, if we consider the partition µ = (km1 ≥ . . . ≥ kmr) `
kd, then we have that, for any form F of degree kd, rkd(F ) ≤ rkµ(F ). We
give the complete solution for any partition µ ` d for generic binary forms.

Theorem 1.2.13 (Catalisano–Chiantini–Geramita–Oneto [CCGO15]). For
any partition µ = (m1 ≥ . . . ≥ mr) of d, the µ-Waring rank of the generic
binary form of degree d is

rk◦µ(2, d) =

⌈
d+ 1

r + 1

⌉
.

We will explain this in more details in Section 3.4.

1.2.4 REAL WARING DECOMPOSITIONS

Due to possible applications, it is also useful to consider the decompositions
of forms over the real numbers. When it will not be clear from the context,
in order to distinguish complex and real ranks, we add C or R as a subscript
to the symbols defined above. Given a degree d form F ∈ R[x0, . . . , xn], we
define a Waring decomposition of F over R as an expression

F = c1L
d
1 + . . .+ csL

d
s , with , ci ∈ R and Li’s are linear forms.

The Waring rank of F over R is the smallest length s of such a decomposi-
tion. We denote it by rkR(F ) and clearly, rkC(F ) ≤ rkR(F ).

If we consider complex coefficients, i.e., S = C[x0, . . . , xn], and we fix the
degree d, then the set Ud,r = {[F ] ∈ P(Sd) | rk(F ) = r} ⊂ P(Sd) has non-
empty interior for a unique value of r, which is what we called the generic
rank rk◦(n + 1, d). This is true both in Euclidean and Zariski topology. If
we consider real coefficients, i.e., S = R[x0, . . . , xn], and we fix the degree
d, then the set Ud,r is semialgebraic and can have non-empty interior, with
the Euclidean topology, for several values of r. Those are called the typi-
cal ranks. It is known that the minimal typical real rank coincides with
generic complex rank [BT14].

The case of binary forms has been completely settled. Indeed, Comon
and Ottaviani conjectured in [CO12] that typical ranks of degree d bi-
nary forms take all integer values between

⌊
d+2

2

⌋
and d; later, Blekherman

5In the original paper, we use a different terminology. In this thesis, we want to use this notation
because µ-powers of linear forms will appear again from a different perspective.
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proved this conjecture in [Ble13]. For larger degrees the problem is open.
Recent results are given in [BBO15; MMSV16].

In [BCG11], Boij, Carlini and Geramita considered the Waring rank of
binary monomials over the real numbers.

Theorem 1.2.14 (Boij–Carlini–Geramita, [BCG11]). Let M = xd0
0 x

d1
1 , then

rkR(M) = d0 + d1.

In particular, we can observe that Theorem 1.2.14 implies that in case
of binary monomials the rank over the real and over the complex numbers
coincide if and only if d0 = 1. In a recent paper, we prove the following. We
will come back to this in Section 4.1.

Theorem 1.2.15 ([CKOV16]). Given a monomial M = xd0
0 · · ·xdnn , we have

that rkR(M) = rkC(M) if and only if di = 1 for some i = 1, . . . , n.

SECTION 1.3

GEOMETRIC INTERPRETATION

We can interpret our Waring problems for polynomials in terms of geome-
try of secant varieties of projective varieties. Here is the general set-up.

1.3.1 SECANT VARIETIES

Definition 1.3.1. Let X ⊂ PN be a projective variety6. We define the s-th
secant variety of X as the Zariski closure7 of the union of the linear spans
of all s-tuples of points in X, i.e.,

σs(X) :=
⋃

P1,...,Ps∈X
lin. independent

〈P1, . . . , Ps〉
Zariski

⊂ PN .

Definition 1.3.2. Given any point Q ∈ PN , we define the X-rank of Q as
the minimal number of points in X whose linear span contains Q, i.e.,

rkX(Q) = min{s | ∃P1, . . . , Ps ∈ X, Q ∈ 〈P1, . . . , Ps〉}.

Remark 1.3.3. It is important to notice that, since secant varieties are
defined as Zariski closures, the fact that Q ∈ σs(X) does not imply that

6We define a variety in the affine space An+1
C as the zero locus of polynomials in a radical ideal

I ⊂ C[x0, . . . , xn]. If the ideal is homogeneous, we view the zero locus up to scalar multiplication as being
inside the projective space Pn and we call it a projective variety. We denote it by Z(I). Given a variety, we
call the quotient C[x0, . . . , xn]/I by an ideal (homogeneous ideal, resp.) the coordinate ring (homogeneous
coordinate ring, resp.).

7The Zariski topology of the affine space (projective space, resp.) is defined as the topology where the
closed set are varieties (projective varieties, resp.).

10



rkX(Q) = s. For example, let X ⊂ P3 be the twisted cubic parametrized by

ν1,3 : P(S1) → P(Sd);

[a : b] 7→ [a3 : a2b : ab2 : b3].

If x0, . . . , x3 are the homogeneous coordinates in P3, then X is defined by
the 2× 2 minors of the matrix

M =

[
x0 x1 x2

x1 x2 x3

]
.

Set Q = [0 : 0 : 1 : 0]. This point is not on X and rkX(Q) ≤ 3. Indeed,
Q ∈ 〈[1 : 0 : 0 : 0], [1 : 1 : 1 : 1], [1 : −1 : 1 : −1]〉. On the other hand, it is
easy to check that rkX(Q) cannot be equal to 2 since, if we assume that Q
is collinear with the two points ν1,3([a : b]) and ν1,3([c : d]), we get

rk

 0 0 1 0
a3 a2b ab2 b3

c3 c2d cd2 d3

 = 2,

which implies ad − bc = 0. However, even if rkX(Q) = 3, we have that Q ∈
σ2(X). Indeed, if we consider the line between the points [0 : 0 : 0 : 1] and
[−t3 : t2 : −t : 1], described by the Cartesian equations (x0 − t2x2, x1 − tx2),
then, the limit as t→ 0 is the tangent line to the rational normal curve at
the point [0 : 0 : 0 : 1], described by (x0, x1). Since the point Q lies on this
line, it is contained in the second secant variety of X; see Figure 1.1.

It is is an easy exercise to check that whenever σs(X) = σs+1(X), then
σs(X) = σs+h(X), for any h ≥ 1, and σs(X) is a linear subspace of PN . It
follows that, whenever we start with a non-degenerate projective variety
X, we have a natural filtration of the ambient space, i.e.,

X ( σ2(X) ( . . . ( σs(X) = PN .

It follows that the X-rank of a generic point in PN can be described geo-
metrically as the smallest s such that σs(X) fills the ambient space, i.e.,

rk◦X := min{s | σs(X) = PN}.

Hence, in order to compute the X-rank of a generic point, it is enough to
compute the dimensions of the secant varieties of X. Due to a simple count
of parameters, we have an expected dimension for the s-th secant variety,

exp.dimσs(X) = min{sdim(X) + s− 1, N}.

In terms of generic X-rank, we expect

exp.rk◦X =

⌈
N + 1

dim(X) + 1

⌉
.
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[-t :t :-t:1]

[0:0:0:1]

[0:0:1:0]

t   0

3 2

Figure 1.1: The point [0 : 0 : 1 : 0] is contained in the second secant variety
of the twisted cubic in P3.

Definition 1.3.4. We say that a projective variety X ⊂ PN is s-defective
whenever the actual dimension of its s-th secant variety is smaller than
the expected one. If so, we call the difference

δs := exp .dimσs(X)− dimσs(X)

the s-defect of X.

Problems about additive decompositions of homogeneous polynomials
can be described by using secant varieties of the projective varieties that
parametrize the type of summands that we require.

1.3.2 CLASSICAL WARING PROBLEM:
VERONESE VARIETIES

The varieties parametrizing powers of linear forms are the Veronese vari-
eties which are defined as the images of the following embeddings.

Definition 1.3.5. The d-th Veronese embedding of Pn is

νn,d : Pn −→ PNn,d , [a0 : . . . : an] 7→ [ad0 : ad−1
0 a1 : . . . : adn],

where Nn,d :=
(
n+d
n

)
−1. We call Veronese variety its image Vn,d := νn,d(Pn).

If we consider the basis of the vector space Sd of forms of degree d in
n+ 1 variables given by the monomials

Xi0,...,in :=

(
d

i0, . . . , in

)
xi00 · · ·xinn , for any i0 + . . .+ in = d, ij ∈ N,

12



we can describe the Veronese embeddings as

νn,d : P(S1) −→ P(Sd), [L] 7→ [Ld].

In other words, the Veronese varieties parametrize powers of linear forms,
namely

Vn,d := {[Ld] | L ∈ S1} ⊂ P(Sd).

It follows, that given a degree d form F , the rank of the point [F ] ∈ P(Sd)
with respect to the Veronese variety Vn,d is the Waring rank of F , i.e.,

rkd(F ) = rkVn,d([F ]).

 

[L ] [L ] [L ]d d d
1 2 3++

[L ] [L ]
[L ]

d d

d

1 2
3

Vn,d

Figure 1.2: The third secant variety of Vn,d.

Example 1.3.6. From this description, we have that the twisted cubic
curve parametrizes the third powers of linear forms in two variables. Hence,
the geometric description given in Example 1.3.3 tells us that the mono-
mial xy2 ∈ S3, which corresponds to the point [0 : 0 : 1 : 0] ∈ P(S3) with
respect to the standard monomial basis, can be written as the limit

xy2 = lim
t→0

1

3t

(
y3 + (tx− y)3

)
,

as we have already observed in Example 1.2.2.

As explained above, if we want to find the rank of generic forms, we
need to compute the dimensions of secant varieties and find the small-
est secant variety which coincides with the ambient space. Unfortunately,
Veronese varieties can be defective.
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Example 1.3.7. Let V2,2 ⊂ P5 be the surface given by the degree two
Veronese embedding of P2 in P5. Then, the expected dimension of σ2(V2,2)
is equal to 2 · 2 + 2 − 1 = 5, namely we expect that σs(V2,2) fills the ambi-
ent space. However, V2,2 parametrizes the squares of linear forms in three
variables which can be identified with the rank one symmetric 3 × 3 ma-
trices. Consequently, its second secant variety corresponds to the rank two
symmetric 3× 3 matrices. It follows that σ2(V2,2) is contained in, and actu-
ally equal to, the hypersurface described by the equation det = 0. Hence, it
is 4-dimensional and, therefore, V2,2 is 2-defective.

Secant varieties of Veronese varieties were studied by the classical ge-
ometers like Clebsch, Terracini, Bertini, Severi, Palatini since the end of
the 19-th century and by many other mathematicians during the last cen-
tury. A list of defective Veronese varieties was classically well-known, how-
ever, we had to wait until 1995 to get a proof that it was the complete list of
exceptions and a complete classification of defective Veronese varieties. In-
deed, in [AH95], Alexander and Hirschowitz obtained the following result
which implies Theorem 1.2.5.

Theorem 1.3.8 (Alexander–Hirschowitz [AH95]). The secant varieties of
Veronese varieties σs(Vn,d) have the expected dimension, i.e.,

dimσs(Vn,d) = min{s(n+ 1)− 1, Nn,d},

except for

1. d = 2, any n, with defect
(
s
2

)
;

2. n = 2, d = 4, with defect 1;

3. n = 3, d = 4, with defect 1;

4. n = 4, d = 3, with defect 1;

5. n = 4, d = 4, with defect 1.

1.3.3 d-TH WARING PROBLEM: VARIETIES OF POWERS

We want to construct the variety inside the space of forms of degree kd that
parametrizes the d-th powers of degree k forms.

Definition 1.3.9. We denote the variety of d-th powers of degree k forms as

Vn,k,d := {[Gd] | G ∈ Sk} ⊂ P(Skd).

These varieties have not been studied that much in the literature. In
the recent paper [AC12], Abdesselam and Chipalkatti computed the equa-
tions of these varieties in connection with the invariant theory which goes
back to Hilbert. We can describe them as linear projections of appropriate
Veronese varieties. We start with an example.
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Example 1.3.10. We want to describe V1,2,2, i.e., the variety of squares of
quadratic forms in S = C[x, y]. We consider the monomial basis of S2

X20 := x2, X11 := xy, X02 := y2.

We can view any quadratic binary form F = a0x
2 + a1xy + a2y

2 ∈ S2 as a
linear form lin(F ) := a0X20 + a1X11 + a2X02 ∈ Sym1(S2) 8. At this point,
we can describe V1,2,2 simply as the image of the map

ν1,2,2 : P(S2)→ P(S4), [F ] 7→ [F 2].

On the other hand, we can consider the degree two Veronese embedding

ν2,2 : P(Sym1(S2))→ P(Sym2(S2)), [lin(F )] 7→ [lin(F )2].

We have a natural immersion of S4 inside Sym2(S2) and, then, we can con-
struct the projection from P(Sym2(S2)) onto P(S4) given by the multiplica-
tion map. In particular, we consider the basis of Sym2(S2) given by all the
monomials of degree two in the X ’s, i.e.,

Z20;20 := X2
20, X20;11 := X20X11, . . . , Z02;02 := X2

02.

Then, our projection is given by the substitutions Xij 7→ xiyj ; namely,

π : P(Sym2(S2))→ P(S4),

π ([a0Z20;20 + a1Z20;11 + . . .+ a5Z02;02]) =[
a0x

4 + a1x
3y + (a2 + a3)x2y2 + a4xy

3 + a5y
4
]
.

in coordinates,

π : P5 → P4, [a0 : . . . : a5] 7→ [a0 : a1 : a2 + a3 : a4 : a5].

Geometrically, π is the projection from the point [0 : 0 : 1 : −1 : 0 : 0]. Since
the form X2

11 −X20X02 is not a square, the point [0 : 0 : 1 : −1 : 0 : 0] does
not lie on the Veronese variety V2,2. Therefore, we have that π is a regular
map on V2,2 whose image is precisely V1,2,2.

We can make this construction general, for any triple n, k, d. Consider
the following basis:

1. monomial basis of Sk:{
XI := xi00 · · ·xinn

∣∣∣ I = (i0, . . . , in) ∈ Nn+1, |I| := i0 + . . .+ in = k
}

;

8Given a K-vector space V , we can construct the tensor algebra associated to V as the graded algebra
T (V ) =

⊕
i∈N V

⊗i. Then, we can define the associated symmetric algebra, Sym(V ) =
⊕
i∈N Symi(V )

as the quotient of the tensor algebra by the symmetrizing ideal generated by all elements of type v ⊗w−
w ⊗ v, v, w ∈ V . If V is N -dimensional and we fix a basis, we can see the symmetric algebra as the
polynomial ring on N variables with coefficients in K.
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2. monomial basis of Symd(Sk):{
ZI1;...;Id := XI1 · · ·XId

∣∣∣ |Ij | = k, for all j
}
.

Given multiindices I := (I1, . . . , Id), with Ih = (ih,0, . . . , ih,n) ∈ Nn+1, denote

Il := i1,l + . . .+ id,l, for any l = 1, . . . , d.

and
I• := (I0, . . . , In) ∈ Nn+1.

We want to describe the variety Vn,k,d of d-th powers given by the image of

νn,k,d : P(Sk)→ P(Symd(Sk)), [F ] 7→ [F d].

We can view any element of Sk as a linear form lin(F ) ∈ Sym1(Sk) in the
X ’s and, then, we consider the degree d Veronese embedding

νM,d : P(Sym1(Sk))→ P(Symd(Sk)), [lin(F )] 7→ [lin(F )d].

We have a natural embedding of Skd inside Symd(Sk). Thus, we can con-
struct the linear projection from P(Symd(Sk)) onto P(Skd) given by multi-
plication map. The projection is given by the substitutions XI 7→ xi00 · · ·xinn ;
namely,

π : P(Symd(Sk))→ P(Skd), P = [aI1;...;Id ] 7→ [LJ(P )],

where,

LJ :=
∑

(I1,...,Id)•=J

ZI1;...;Id , for any J ∈ Nn+1, |J | = kd.

Geometrically, we get that π is the linear projection from the linear space
E defined by the ideal generated by the LJ ’s. Since the Veronese variety
VM,d doesn’t intersect E, we have that the projection π is regular on the
Veronese variety and, moreover, its image π(VM,d) coincides with the va-
riety of powers Vn,k,d. Even if this is a very natural description of our va-
rieties, these projections are not easy to study. Very little is known about
these varieties and their secants. As far as we know, the only reference re-
lated to these varieties is [AC12] where the authors describe the equations
of varieties V1,k,d of powers of binary forms in terms of Hilbert covariants.
In this thesis, we conjecture a formula for the dimensions of all secant
varieties of varieties of powers.

Conjecture 1.3. The secant varieties σs(Vn,k,d) of varieties of powers are:
1. defective for d = 2, with s-defect equal to

(
s
2

)
, if they do not fill the

whole ambient space;

2. non-defective for d ≥ 3.
In Section 3.3, we relate this conjecture to the computation of Hilbert se-
ries of some particular homogeneous ideals. We prove it in the case of two
variables and up to four variables in the case of d = 2. We present massive
numerical support for Conjecture 1.3. Moreover, Conjecture 1.2 about the
d-th Waring rank of a generic form follows from Conjecture 1.3.
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1.3.4 WARING-LIKE PROBLEMS: VARIETIES OF µ-POWERS

Given any partition µ = (m1 ≥ . . . ≥ ms) of d, we consider the variety
whose points are µ-powers of linear forms.

Definition 1.3.11. We define the variety of µ-powers as

Vn,µ := {[Lm1
1 · · ·Lmss ] | Li ∈ S1} ⊂ P(Sd).

Also in this case we can see Vn,µ as the projection of a classical variety.

Definition 1.3.12. We define the Segre variety Segn,s as the image of

P(S1)× . . .× P(S1)︸ ︷︷ ︸
r times

→ P(S1 ⊗ . . .⊗ S1),

([L1], . . . , [Ls]) 7→ [L1 ⊗ . . .⊗ Ls].

We define the Segre-Veronese variety Segn,s(m1, . . . ,ms) as the image of

P(S1)× . . .× P(S1)︸ ︷︷ ︸
r times

→ P(Sm1 ⊗ . . .⊗ Sms),

([L1], . . . , [Ls]) 7→ [Lm1
1 ⊗ . . .⊗ Lmss ].

Then, given a partition µ = (m1 ≥ . . . ≥ ms), we can consider the
Segre-Veronese variety Segn,s(m1, . . . ,ms) inside P(Sm1 ⊗ . . . ⊗ Sms). We
have a natural immersion of Sd inside Sm1

⊗ . . .⊗ Sms and we consider the
projection given by the multiplication map, namely

π : P(Sm1 ⊗ . . .⊗ Sms)→ P(Sd), π([Lm1
1 ⊗ . . .⊗ Lmss ]) = [Lm1

1 · · ·Lmss ].

Hence, we get that our variety Vn,µ can be seen as the projection of the
Segre variety Segn,s(m1, . . . ,ms).

Remark 1.3.13. The study of Segre varieties and their secant varieties is
of particular interest in terms of Waring problems for tensors. Indeed, given
K-vector spaces V1, . . . , Vs, we can define for any tensor T ∈ V1 ⊗ . . . ⊗ Vs
its tensor rank as the minimal number of decomposable tensors needed to
decompose T as their sum, i.e.,

rk(T ) := min

{
r
∣∣∣ T =

s∑
i=1

v1,i ⊗ . . .⊗ vs,i, with vj,i ∈ Vj

}
.

This set-up is of particular interest in applications. Waring decompositions
of tensors appear in Algebraic Statistics (in statistical models with hid-
den variables), Phylogenetic (in reconstructions of evolutionary trees of
DNA), Signal Processing (in decompositions of signals) and many others;
for a more detailed exposition see for example [Lan12; DSS08]. In this
case, the varieties parametrizing decomposable tensors are Segre vari-
eties. Their secant varieties have been largely studied, see e.g. [CGG05;
CGG08; AOP09], but in general the corresponding problem is still open.
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The case of varieties of split or completely reducible forms, i.e., when µ =
(1, . . . , 1), has been actively studied in the last decades. After the first work
[AB11], Shin found in [Shi12] the dimension of the second secant variety
in the ternary case and, in [Abo14], Abo determined the dimensions of
higher secant varieties. All these cases are non-defective. It is conjectured
that varieties of split forms are never defective. Some new cases have been
recently proved in [CGG+15].

The case of (d − 1, 1)-powers is known as the tangential variety Tn,d
of Vn,d, which is the union of all the tangent spaces to Vn,d. In [CGG02],
Catalisano, Geramita and Gimigliano conjectured that secant varieties of
tangential variety σs(Tn,d) are never defective except for d = 2, 2 ≤ 2s ≤ n
and d = 3, s = n = 2, 3, 4. Abo and Vannieuwenhoven proved it in [AV15].

In [CCGO15], we collect these particular cases in the more general
framework of varieties of µ-powers. We will come back to this work in Sec-
tion 3.4. Our main results are the following.

Theorem 1.3.14 (Catalisano–Chiantini–Geramita–Oneto [CCGO15]).

1. for any partition µ, σs(V1,µ) is non-defective;

2. the second secant variety σ2(Vn,µ) is never defective, except for n = 2
and µ = (2, 1), where the defect is equal to one.

1.3.5 TERRACINI’S LEMMA

Whenever we want to compute the dimension of a variety, it is enough to
look at the dimension of the tangent space at a generic (smooth) point.

In 1911, A. Terracini described the tangent space to secant varieties.

Lemma 1.3.15 (Terracini’s Lemma [Ter11]). Let X be a projective variety,
P be a generic point of σs(X) such that P ∈ 〈P1, . . . , Ps〉, with Pi ∈ X; then,

TPσs(X) = 〈TP1
X, . . . , TPsX〉.

Using Terracini’s Lemma, we can first compute the tangent space of the
varieties described above at s generic points and then look at their span.
For the varieties mentioned above, we additionally have that the tangent
spaces to their secant varieties can be given as a homogeneous part of some
particular families of ideals. In this way, we reduce the problem of compu-
tation of the dimension of the secant varieties to an algebraic question.

VERONESE VARIETIES AND POWER IDEALS. As described above, we can
see the d-th Veronese embedding of Pn as the image of the map

νn,d : P(S1) −→ P(Sd), [L] 7→ [Ld].

Hence, the computation of the tangent space at the point [Ld] ∈ Vn,d be-
comes an easy exercise in differential geometry. We consider all parametric
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curves passing through [Ld], obtained by mapping the lines in P(S1) pass-
ing through [L], and then we compute the span of their tangent vectors at
[Ld]. Namely, considering a parametric line rM (t) := {[L+ tM ] | t ∈ [−1, 1]},
for any M ∈ S1, we compute

d

dt

∣∣∣∣
t=0

νn,d(rM (t)) =
d

dt

∣∣∣∣
t=0

(L+ tM)d = dLd−1M ;

thus,
T[Ld]Vn,d = {[Ld−1M ] |M ∈ S1} ⊂ P(Sd).

By Terracini’s Lemma, it follows that given a generic point [F ] ∈ σs(Vn,d)
lying on the span of s generic points of Vn,d, i.e., [F ] ∈ 〈[Ld1], . . . , [Lds ]〉, then

T[F ]σs(Vn,d) = 〈T[Ld1 ]Vn,d, . . . , T[Lds ]Vn,d〉 =

= P
([

(Ld−1
1 , . . . , Ld−1

s )
]
d

)
⊂ P(Sd).

Now, we give a geometric explanation of the defectiveness of the Veronese
surface in P5, see Example 1.3.7.

Example 1.3.16. Consider the tangent space to σ2(V2,2) ⊂ P5 at a generic
point. By Terracini’s Lemma, we look at the span of the tangent planes to
the surface at two generic points [L2], [M2] ∈ V2,2. Then, we would expect
that these two planes do not intersect in P5 and then, by Grassmann’s
formula, we expect that the dimension of the tangent space to the secant
variety is equal to five and it fills the ambient space. However, it is easy to
check that the intersection of the two tangent planes is not empty; indeed,

[LM ] ∈ T[L2]V2,2 ∩ T[M2]V2,2.

Thus, the dimension is at most four.

We have reduced the problem of computing the dimension of secant
varieties of Veronese varieties to the problem of computing the dimension
of the d-th homogeneous part of an ideal generated by (d− 1)-th powers of
generic linear forms.

These ideals are known as power ideals and they have been inten-
sively studied during the last decades, especially due to their relation with
other branches of Algebraic Geometry, Commutative Algebra and Combi-
natorics; see [AP10] for a complete survey.

VARIETIES OF POWERS AND GENERALIZED POWER IDEALS. Given pos-
itive integers n, k, d, we parametrize the variety of powers Vn,k,d as the
image of the embedding

νn,k,d : P(Sk) −→ P(Skd), [G] 7→ [Gd].

As before, we compute the tangent space at a generic point [Gd] ∈ Vn,k,d
by considering the parametric lines rH(t) := {[G+ tH] | t ∈ [−1, 1]}, for any
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Figure 1.3: The Veronese surface of degree 2 in P5 is 2-defective.

H ∈ Sk; the tangent vectors to the images are given by

d

dt

∣∣∣∣
t=0

νn,k,d(rH(t)) =
d

dt

∣∣∣∣
t=0

(G+ tH)d = dGd−1H;

thus,
T[Gd]Vn,d = {[Gd−1H] | H ∈ Sk} ⊂ P(Skd).

By using Terracini’s Lemma, we have that

TPσs(Vn,k,d) = P
([

(Gd−1
1 , . . . , Gd−1

s )
]
kd

)
⊂ P(Skd).

VARIETIES OF µ-POWERS. Given any partition µ = (m1 ≥ . . . ≥ mr) ` d
of a positive integer d, we parametrize the variety of µ-powers Vn,µ as the
image of the map

νn,µ : P(S1)× · · · × P(S1) −→ P(Sd), ([L1], . . . , [Lr]) 7→ [Lm1
1 · · ·Lmrr ].

For short, we will use the notation L := (L1, . . . , Lr) ∈ S1 × · · · × S1 and
Lµ := Lm1

1 · · ·Lmrr ∈ Sd. Then, we consider the image of a line through a
generic point ([L1], . . . , [Lr]) in the direction of ([M1], . . . , [Mr]) whose points
are parametrized by

νn,µ
(
r([M1],...,[Mr])(t)

)
= [(L1 + tM1)m1 · · · (Lr + tMr)

mr ] , t ∈ [−1, 1].

Hence, the tangent vector to this curve at t = 0 equals

d

dt

∣∣∣∣
t=0

νn,µ(r([M1],...,[Mr])(t)) =
d

dt

∣∣∣∣
t=0

(L1 + tM1)m1 · · · (Lr + tMr)
mr =

=
Lµ

L1
M1 + . . .+

Lµ

Lr
Mr;
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In other words, we have that the tangent space to the variety of µ-powers
is given by

T[Lµ]Vn,µ = P
([(

Lµ

L1
, . . . ,

Lµ

Lr

)]
d

)
⊂ P(Sd).

In this case, we can use Terracini’s Lemma as before, but in order to de-
scribe the tangent space of secant varieties we need more work that we
postpone to Section 3.4 for the moment.

In conclusion, by using Terracini’s Lemma we reduce the computations
of dimensions of secant varieties to a purely algebraic question about the
dimension of specific homogeneous parts of particular homogeneous ide-
als. In this way, we connect our problems of additive decompositions of
polynomials to the computation of Hilbert functions and Hilbert series of
particular families of homogeneous ideals. We refer to Appendix A for the
basic notions about these algebraic invariants.
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CHAPTER 2

APOLARITY THEORY AND
POINT CONFIGURATIONS

In this chapter, we focus on ideals of configurations of points. We first con-
sider configurations of reduced points and, via Apolarity Theory, we see
how these can be used to find Waring decompositions of a given homoge-
neous polynomial. Later, we look at ideals of fat points and we see how
they are related to secant varieties of Veronese varieties and power ideals.

SECTION 2.1

APOLARITY THEORY

For the material in this section we refer mostly to [IK99; Ger96].

APOLARITY ACTION. Take two polynomial rings with the same number of
variables over the complex numbers equipped with the standard grading,
i.e.,

S = C[x0, . . . , xn] =
⊕
i∈N

Si and S = C[X0, . . . , Xn] =
⊕
i∈N
Si;

where Si (resp. Si) is the C-vector space of degree i homogeneous polynomi-
als in S (resp. S). We introduce an action of S over S as partial derivatives1.

Definition 2.1.1. We define the apolarity action of S on S as, for any F ∈ S
and H ∈ S,

H ◦ F := H

(
∂

∂x0
, . . . ,

∂

∂xn

)
F (x0, . . . , xn) ∈ S.

1Over fields of positive characteristic, we can develop apolarity thory, but we need to be more careful.
We should consider divided powers rings instead of polynomial rings and we should consider the action
given by contraction; see [IK99].
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Example 2.1.2. Let F = x4
0 + 2x3

0x2 + x2
1x

2
2 ∈ S4 and H = X2

0 +X1X2 ∈ S2.
Then,

H ◦ F =

(
∂2

∂x2
0

+
∂2

∂x1∂x2

)
F = 12x2

0 + 12x0x2 + 4x1x2 ∈ S2.

Definition 2.1.3. Let I be a homogeneous ideal in S, then we define its
inverse system I−1 ⊂ S as the annihilator of I, i.e., as the S-module

I−1 := {F ∈ S | H ◦ F = 0, for all H ∈ I}.

Remark 2.1.4. The inverse system of a homogeneous ideal is a graded
S-module, but, in general, I−1 is not an ideal since it is not closed under
multiplication. E.g. X2 ◦ x = 0, but X2 ◦ x2 6= 0.

For any i ∈ N, the apolarity action induces a non-degenerate bilinear pair-
ing2 Si×Si → C. Hence, for any homogeneous ideal I ⊂ S, we can consider
the C-vector space Ii and construct the orthogonal space

I⊥i = {F ∈ Si | H ◦ F = 0, for any H ∈ Ii}.

By construction, [I−1]i ⊂ I⊥i , but actually equality holds.

Proposition 2.1.5. Given a homogeneous ideal I in S, for any i ∈ N,

[I−1]i = I⊥i .

Proof. Let F ∈ I⊥i . We have to prove that H ◦ F = 0, for any H ∈ I.
If degH > i, H ◦ F = 0 because the degree of H is bigger than the

degree of F . Assume that degH < i and let xα := xα0
0 · · ·xαnn be a monomial

of degree i−degH. Hence, xαH ◦F = 0. By basic properties of differentials,
we have that xα◦(H◦F ) = 0, for any monomial of degree i−degH. Since the
apolarity action gives a non-degenerate pairing, we have thatH◦F = 0.

One motivation behind the study of inverse systems is that they can be
helpful for computations of Hilbert functions of homogeneous ideals.

Given a homogeneous ideal I in S, observe that both I and the quotient
ring S/I inherit the graded structure. Namely, we denote with Ii the C-
vector space of homogeneous polynomials of degree i in I and similarly, we
denote with [S/I]i the quotients of C-vector spaces Si/Ii.

2Given vector spaces M,N,L over a field K, a bilinear pairing is a map f : M ×N −→ L such that,

1. f(km, n) = f(m, kn) = kf(m,n), for any m ∈M,n ∈ N, k ∈ K;

2. f(m1 +m2, n) = f(m1, n) + f(m2, n), for any m1,m2 ∈M,n ∈ N ;

3. f(m,n1 + n2) = f(m,n1) + f(m,n2), for any m ∈M,n1, n2 ∈ N.

We say that f is non-degenerate if fm := f(m,−) : N −→ L and fn := f(−, n) : M −→ L are
isomorphisms.
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Definition 2.1.6. Given a homogeneous ideal I, we define the Hilbert func-
tion of the quotient ring S/I as

HFS/I : N −→ N, HFS/I(i) := dimC[S/I]i;

we define the Hilbert series of the quotient ring S/I as the power series

HSS/I(t) :=
∑
i∈N

HFS/I(i)t
i ∈ C[[t]].3

Due to Proposition 2.1.5, we have the following relation between the
inverse system of I and the Hilbert function of S/I:

dim[I−1]i = dim I⊥i = dimSi − dim Ii = HFS/I(i), for any i ∈ N.

“PERP” IDEALS AND MACAULAY’S THEOREM. Another useful application
of Apolarity Theory is a characterization of Artinian Gorenstein graded
algebras.

Definition 2.1.7. Let F ∈ Sd be a homogeneous polynomial. We define the
perp ideal of F as

F⊥ := {G ∈ S | G ◦ F = 0} ⊂ S.

Example 2.1.8. Let M = xd0
0 · · ·xdnn ∈ Sd with d0 ≤ . . . ≤ dn. It is obvious

from the properties of differentials that the perp ideal of a monomial has
to be a monomial ideal; moreover, it is easy to observe that a monomial is
contained in M⊥ if and only if it doesn’t divide M . In other words,

M⊥ = (Xd0+1
0 , . . . , Xdn+1

n ).

We say that a quotient algebra S/I is Artinian if it is a finitely dimen-
sional C-vector space; namely, there exists a degree i ∈ N where the ideal
generates the whole ring S, i.e. Ih = Sh for any h ≥ i.

It is easy to observe that the quotient algebra AF := S/F⊥ is Artinian.
Indeed, if F ∈ Sd, we have that F vanishes under the action of any polyno-
mial of higher degree; then we have that [AF ]i = 0, for any i > deg(F ).

Definition 2.1.9. We say that an Artinian algebra A = S/I has socle de-
gree equal to l if A = A0 ⊕ . . .⊕Al, with Al 6= 0. The socle of A is

soc(A) := (0 : m) = {G ∈ A | Gm = 0},

where m = (x0, . . . , xn) is the irrelevant maximal ideal.
We say that an Artinian algebra A = S/I of socle degree l is Gorenstein

if the dimension of its socle is equal to one.

In other words, since we have a trivial inclusion Al ⊂ soc(A), we have
that A is Gorenstein if and only if Al = soc(A) and dimCAl = 1.

3See Appendix A for more details and basic properties of Hilbert functions and Hilbert series.
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Lemma 2.1.10. Let F ∈ Sd, then AF is Artinian Gorenstein algebra.

Proof. We have already observed that AF is Artinian.
Let 〈F 〉 denote the one-dimensional vector space in Sd spanned by F .

We have that [F⊥]d = 〈F 〉⊥, where 〈F 〉⊥ denotes the orthogonal of the
one dimensional vector space 〈F 〉 with respect to the non-singular pairing
Sd × Sd → C induced by the apolarity action. Hence, dim[AF ]d = 1. In
order to conclude the proof, it is enough to show that the socle of AF is
concentrated in degree d.

Take G ∈ Si, with i < d, such that G /∈ F⊥ and assume that GXi ∈ F⊥,
for any i = 0, . . . , n. Then, G ◦ F ∈ Sd−i with d − i > 0; hence, there is at
least one Xi such that 0 6= Xi ◦ (G ◦ F ) = GXi ◦ F ; contradiction.

For an Artinian algebra to be Gorenstein one needs strong restrictions in
terms of the Hilbert function.

Lemma 2.1.11. The Hilbert function of an Artinian Gorenstein algebra A
is symmetric; namely, if soc(A) = l, then

HFA(i) = HFA(l − i), for all t = 0, . . . , l.

Idea of the proof. From the assumptions on A, it follows that the pairing
induced by multiplication Ai ×Al−i −→ Al ' C is perfect.

In 1919, Macaulay gave a complete characterization of Artinian Goren-
stein algebras. We don’t give here a proof of this theorem, but refer to the
lecture notes by Geramita [Ger96] for a modern presentation.

Theorem 2.1.12 (Macaulay’s Theorem [Mac19]). An Artinian algebra A
of socle degree d is Gorenstein if and only if there exists a homogeneous
polynomial F of degree d such that A ' AF .

APOLARITY LEMMA. The study of perp ideals of homogeneous polynomi-
als is also related to the study of their Waring decompositions, namely to
the decompositions as sum of powers of linear forms. The key point is the
following lemma, due to Iarrobino and Kanev.

Lemma 2.1.13 (Apolarity Lemma [IK99]). Let F ∈ Sd. Then, the following
are equivalent:

1. F = Ld1 + . . .+ Lds , where Li ∈ S1;

2. F⊥ ⊃ IX, where X is the set of reduced points {[Ľ1], . . . , [Ľs]} ⊂ P(S1),
where Ľi = Li(X1, . . . , Xn) ∈ S1.

Definition 2.1.14. We say that a set of reduced points X ⊂ P(S1) is apolar
to F if IX ⊂ F⊥.
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Example 2.1.15. Consider the monomial M = xyz ∈ C[x, y, z].
We have seen that M⊥ = (X2, Y 2, Z2); hence, we can find the ideal

I = (X2 − Y 2, X2 − Z2) ⊂ M⊥ corresponding to the set of four reduced
points X = {[1 : ±1 : ±1]}. Thus,

M =
1

24

[
(x+ y + z)3 − (x− y + z)3 − (x+ y − z)3 + (x− y − z)3

]
.

In other words, the study of Waring decompositions of a given homoge-
neous polynomial F is related to the study of sets of reduced points apolar
to F . Although Apolarity Theory has been largely developed, it is very dif-
ficult to describe efficiently the perp ideal of F and to find ideals of reduced
points contained in it. This is a major obstruction in the computation of
the rank of a given homogeneous polynomial.

Algorithm 2.1.16. We give a Macaulay2 function to compute the perp
ideal of a homogeneous polynomial F . The idea is to construct the ideal
degree by degree via simple linear algebra. Indeed, in each degree d ≤
deg(F ), the perp ideal of F is, by definition, the kernel of the linear map

− ◦ F : Sd −→ Sdeg(F )−d, G 7→ G ◦ F.

perpId := method();
perpId (RingElement) := F -> (

if (not isHomogeneous(F)) then
error "expected homogeneous polynomial";

R := ring(F);
D := first degree F;

L := for j from 0 to D list (
basis(j,R) *

mingens kernel
transpose diff(transpose basis(j,R),

diff(basis(D-j,R),F))
);

return trim ideal L;
)

SECTION 2.2

HILBERT FUNCTIONS OF
CONFIGURATIONS OF REDUCED POINTS

We recall some useful properties of the Hilbert functions of ideals of con-
figurations of reduced points.
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Lemma 2.2.1. The Hilbert function of a set of reduced points in Pn is
strictly increasing until it becomes constant.

Proof. If IX is the ideal defining a reduced set of points, we have that S/IX
is Cohen-Macaulay4 of dimension one. Then, by [BH98, Theorem 4.1.3], it
follows that HFS/IX is eventually constant.

Lemma 2.2.2. Let X be a set of s reduced points in Pn, then

HFS/IX(i) = s, for all i� 0.

Idea of the proof. Let X be the set of s distinct reduced points. The Hilbert
function of S/IX in degree i is the dimension of the vector space of hyper-
surfaces of degree i in Pn passing through the points in X; hence, each
simple point impose at most one condition on the vector space of degree i
hypersurfaces. It follows that,

dimC[IX]i ≥ dimC Si − s;

i.e.,
HFS/IX(i) ≤ s.

Set X = P1 + . . . + Ps. For any i = 1, . . . , s, we can consider the hyper-
planes Hi such that Pi ∈ Hi and Pj /∈ Hi, for any j 6= i. Then, we define
Fi =

∏
j 6=iHj . It is not difficult to check that Fi’s are linearly independent

and HFS/IX(s− 1) = s. Lemma 2.2.1 concludes the proof.

The Hilbert function of a configuration of reduced points can also tell
us about the position of these points.

Example 2.2.3. Consider the three standard coordinate points

X = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]} ⊂ P2.

Then, IX = (xy, xz, yx) ⊂ C[x, y, z]. It follows that [S/IX]i = 〈xi, yi, zi〉, for
any i ≥ 1. Hence,

HFS/IX : 1 3 3 3 · · ·

On the other hand, if we consider a set of three distinct collinear points,
we have one extra linear form in the ideal IX, namely the one correspond-
ing to the line on which the points lie. Hence,

HFS/IX : 1 2 3 3 · · ·

From the previous lemmas, we have that the set of the three coordinate
points considered in the example have the maximal possible Hilbert func-
tion. In [GO81], Geramita and Orecchia introduced this as a definition of
points in generic position.

4A finite S-module M is Cohen-Macaulay if depthM = dimM , where the depth is defined as the
length of the longest regular sequence in M . Then, it directly follows from this definition that any reduced
S-module of dimension 1 is Cohen-Macaulay.
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Definition 2.2.4. We say that s points are in generic position if the Hilbert
function of the associated quotient ring S/IX is the maximal possible, i.e.,

HFS/IX = min

{
s,

(
n+ i

n

)}
, for all i ≥ 0.

Remark 2.2.5. This definition of points in generic position implies the
notion of general points in modern Algebraic Geometry. Indeed, in [GM84],
Geramita and Maroscia proved the following.
Claim: the space of configurations of s distinct reduced points in generic
position accordingly to Definition 2.2.4 is a Zariski open subset of (Pn)s.

Proof of the claim. Let X = P1 + . . .+ Ps. For any i ∈ N, let

Bi = {M1, . . . ,MNn,i}

be the standard monomial basis of Si, where Nn,i = dimC Si =
(
n+i
n

)
.

Let F =
∑Nn,i
j=1 cjMj be a general form of degree i. Requiring that F

passes through a point Pl, we impose a linear equation on the vector space
Si given by

M1(Pl)c1 + . . .+MNn,i(Pl)cl = 0.

Hence, the dimension of [IX]i coincides with the dimension of the solu-
tion space of the linear system

Mi;P1,...,Ps · c =

M1(P1) · · · MN(n,i)(P1)
...

. . .
...

M1(Ps) · · · MN(n,i)(Ps)

 ·
 c1

...
cNn,i

 = 0;

namely,
HFS/IX(i) = rkMi;P1,...,Ps .

It follows that the space of configurations of s distinct reduced points which
are in general position is the locus of configurations X = P1 + . . .+ Ps such
thatMi;P1,...,Ps have maximal rank for any i ≥ 0. Since to require maximal
rank for each i is a Zariski closed condition in the space of configurations
of s points in Pn. More precisely, it is defined by the maximal minors of
Mi;P1,...,Ps , we can conclude the claim.

SECTION 2.3

WARING LOCI OF HOMOGENEOUS POLYNOMIALS

In this section, we introduce the concept of Waring locus and forbidden
points for a given homogeneous polynomial. Of particular interest are the
cases when the minimal Waring decomposition is unique, called in the lit-
erature the identifiable cases [CC06; BCO14; COV15]. Since finding a min-
imal Waring decomposition is often not doable in practice, we want to study
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properties of all minimal Waring decompositions of a given form at once.
This section is based on joint work with Carlini and Catalisano [CCO].

Definition 2.3.1. Given a form F ∈ Sd, we define the Waring locus of F
as the set of linear forms which appear in a Waring decomposition of F ,
namely

WF := {[L] ∈ P(S1) | ∃L2, . . . , Lr ∈ S1, F = Ld + Ld2 + . . .+ Ldr , r = rk(F )}.

We call forbidden points the linear forms in the complement WF ; namely,
the set of linear forms that cannot appear in a Waring decomposition of F ,

FF := P(S1) \WF .

In [BC13], using a different kind of approach, the authors started to
point out the importance of understanding which linear forms are in the
Waring locus of a given homogeneous polynomial. In particular, they show
that WF has no isolated points for any non identifiable form of degree d
and Waring rank strictly smaller than 3d

2 .
As described by the Apolarity Lemma, if we want to find a Waring de-

composition of a homogeneous polynomial F , we might look at minimal
sets of points apolar to F . In other words, we can rephrase the definition
of Waring locus of a homogeneous polynomial F as the locus of the points
that appear in a set of reduced points of cardinality equal to the rank of
the polynomial and apolar to F ; namely,

WF := {P ∈ P(S1) | P ∈ X, IX ⊂ F⊥ and |X| = rk(F )}.

Before getting into the results, we should be more careful with our def-
initions in order to avoid confusion. Indeed, it can be the case that a ho-
mogeneous polynomial in a certain number of variables, after a suitable
change of coordinates, can actually be expressed in fewer variables. Hence,
we should be more precise about where we are looking at the Waring loci.

Definition 2.3.2. We say that a homogeneous polynomial F ∈ C[x0, . . . , xm]
essentially involves n + 1 variables if dim[F⊥]1 = m − n. In other words, if
there exist linear forms y0, . . . , yn ∈ C[x0, . . . , xm] such that F ∈ C[y0, . . . , yn].

The following result, also mentioned in [BL13] in the case of tensors,
allows us to study Waring decompositions of a homogeneous polynomial F
in the ring of polynomials with its essential number of variables.

Proposition 2.3.3. Let F ∈ C[x0, . . . , xn, xn+1, . . . , xm] be a degree d homo-
geneous polynomial such that (F⊥)1 = (Xn+1, . . . , Xm). If

F = Ld1 + . . .+ Ldr

where r = rk(F ) and the Li are linear forms in C[x0, . . . , xn, xn+1, . . . , xm],
then

Li ∈ C[x0, . . . , xn] ⊂ C[x0, . . . , xn, xn+1, . . . , xm]

for all i, 1 ≤ i ≤ r.
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Proof. We proceed by contradiction. Assume that L1 = xn+1 +
∑
i 6=n+1 aixi,

i.e. assume that L1 actually involves the variable xn+1. By assumption
rk(F − Ld1) < r = rk(F ). However, since L1 is linearly independent with
x1, . . . , xn we can apply the following fact (see [CCC15a, Proposition 3.1]):

if y is a new variable, then

rk(F + yd) = rk(F ) + 1.

Hence, rk(F − Ld1) = rk(F ) + 1 and this is a contradiction.

As a corollary, we have that if F ∈ C[x0, . . . , xm] essentially involves n+1
variables, there exists an n-dimensional linear space H ⊂ Pm, such that all
the minimal sets of points apolar to F are contained in H. In conclusion,
we always consider the Waring locus of a form F inside the space of linear
forms in the essential number of variables of F .

Now, we compute the Waring loci of classes of homogeneous polynomi-
als for which we have a very explicit description of their perp ideals.

2.3.1 QUADRICS

We first study homogeneous polynomials of degree two, i.e. quadrics. We
recall that, given a quadric Q in m + 1 variables, we can associate a sym-
metric (m + 1) × (m + 1) matrix MQ. Moreover, if Q essentially involves
n + 1 variables, after diagonalizing the matrix MQ, we may assume that
Q = x2

0+. . .+x2
n. Namely, in this case, the Waring rank ofQ equals the rank

of MQ and the number of essential variables. We have that the forbidden
points of a quadric are given by the quadric itself.

Proposition 2.3.4. If Q ∈ S2 essentially involves n+ 1 variables, then

FQ = Z(Q̌) ⊂ Pn,

where Q̌ = Q(X0, . . . , Xn) ∈ S2.

Proof. After a change of variables we may assume that Q = x2
0 + . . .+x2

n. A
point P = [a0 : . . . : an] is a forbidden point for Q if and only if rk(Q−L2

P ) =
n+ 1 where LP =

∑n
i=0 aixi. Thus, P is a forbidden point for Q if and only

if the symmetric matrix corresponding to the quadratic form Q − L2
P has

non-zero determinant and therefore, P is a forbidden point if and only if
the symmetric matrix ML2

P
corresponding to L2

P only has zero eigenvalues.
Since ML2

P
is a rank one matrix, ML2

P
has at most one non-zero eigenvalue.

Note that

( a0 . . . an )ML2
P

= (a2
0 + . . .+ a2

n)( a0 . . . an ).

Also note that, if
∑n
i=0 a

2
i = 0, then M2

L2
P

= 0 and thus zero is the only
eigenvalue. Thus

∑n
i=0 a

2
i is the only possible non-zero eigenvalue of ML2

P
.

Hence, P is a forbidden point if and only if
∑n
i=0 a

2
i = 0 and we conclude

the proof.
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2.3.2 MONOMIALS

We consider now the case of monomials. In [CCG12], Carlini, Catalisano
and Geramita gave an explicit formula for their Waring rank. Here is their
result. We want to recall also the proof since we will use the same idea.

Theorem 2.3.5 (Carlini–Catalisano–Geramita, [CCG12]). Consider M =
xd0

0 · · ·xdnn ∈ C[x0, . . . , xn], with 0 < d0 ≤ . . . ≤ dn. Then,

rk(M) =
1

d0 + 1

n∏
i=0

(di + 1).

Proof. As observed in Example 2.1.8, we can easily compute its perp ideal

M⊥ = (Xd0+1
0 , . . . , Xdn+1

n ).

Generalizing Example 2.1.15, we may observe that

IX = (Xd1+1
0 −Xd1+1

1 , . . . , Xdn+1
0 −Xdn+1

n ) ⊂M⊥,

with
X = {[1 : ξi1d1

: . . . : ξindn ] | ij = 0, . . . , dj − 1, j = 1, . . . , n}, (2.1)

where ξdj represents a dj-th primitive root of unity. By the Apolarity Lemma,
it follows that

rk(M) ≤ 1

d0 + 1

n∏
i=0

(di + 1).

On the other hand, let X be a set of s reduced points apolar to M . In
order to conclude our proof, it is enough to show that s ≥ 1

d0+1

∏n
i=0(di+ 1).

Let IX′ = IX : (X0) be the ideal of the set of points X′ ⊂ X which are
outside the linear space X0 = 0. Say |X′| = s′ ≤ s. Hence, X0 is a non-zero
divisor for S/IX′ and then,

HSS/(IX′+(X0))(t) = (1− t) HSS/IX′ (t).
5

By Lemma 2.2.2, the Hilbert function of S/IX′ is strictly increasing until
it stabilizes at the value s′; hence,

s′ ≥
∑
i≥0

HFS/(IX′+(X0))(i).

Since

IX′ + (X0) = (∂X0
M)⊥ + (X0) = (X0, X

d1+1
1 , . . . , Xdn+1

n ),

we have that ∑
i≥0

HFS/(IX′+(X0))(i) =
1

d0 + 1

n∏
i=0

(di + 1).

5Basic property of Hilbert series; see Example A.1.4
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We may observe that the set of points (2.1) apolar to a general mono-
mial M is a complete intersection. This is not a lucky coincidence for this
particular choice. In [BBT13], Buczyńska, Buczyńsky and Teitler proved
that it is the case for any minimal set of points apolar to M .

Theorem 2.3.6 ([BBT13, Theorem 1]). Let M = xd0
0 x

d1
1 . . . xdnn with 0 <

d0 ≤ d1 ≤ . . . ≤ dn. Then, any ideal IX of a set of rkC(M) points apolar to M
is a complete intersection of the form

(Xd1+1
1 − F1X

d0+1
0 , . . . , Xd1+1

n − FnXd0+1
0 ),

where the forms Fi’s have degrees di − d0.

Using the idea behind the proof of Theorem 2.3.5, we get the following.

Proposition 2.3.7. Let M = xd0
0 · · ·xdnn ∈ S with 0 < d0 = . . . = dm <

dm+1 ≤ . . . ≤ dn, then

Z(X0 · · ·Xm) ⊂ FM ⊂ Pn.

Proof. Let X be a minimal set of apolar points for M . From the proof of the
previous theorem, it follows that the cardinality of the set of points X′ ⊂ X
which lie outside the hyperplane X0 = 0 equals

s′ =
1

d0 + 1

n∏
i=0

(di + 1) = |X|,

In other words, there are no points of X lying on the hyperplane X0.
The same computations work for any hyperplaneXi = 0, for i = 0, . . . ,m.

Remark 2.3.8. Apart from the algebraic technicalities required in the
proof, we can explain the previous result with a easier argument in the
case d0 ≥ 2. Given a Waring decomposition M =

∑r
j=1 L

d
j , by differentiat-

ing both sides we get a Waring decomposition of the derivative,

∂xiM =

r∑
j=1

cj(∂xiLj)
d−1, cj ∈ C. (2.2)

If d0 = . . . = dm ≥ 2, from the formula given by Theorem 2.3.5, we have
that rk(M) = rk(∂xiM), for any i = 0, . . . ,m. Hence, every summand in
(2.2) must be non-zero; equivalently, it has to be [Lj ] /∈ Z(X0 · · ·Xm), for
any j = 1, . . . , r.

Actually, we also prove the opposite inclusion by constructing, for any
P /∈ Z(X0 · · ·Xm), a minimal set of apolar points for M containing P .

Theorem 2.3.9. TakeM = xd0
0 · · ·xdnn ∈ S with 0 < d0 = . . . = dm < dm+1 ≤

. . . ≤ dn, then
FM = Z(X0 · · ·Xm) ⊂ Pn.
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Proof. Consider any point P = [p0 : . . . : pn] /∈ Z(X0 · · ·Xm); with no loss
of generality, we may assume p0 = 1. For any i = 1, . . . , n, we construct
the following hypersurfaces in Pn, given by union of di + 1 hyperplanes,
respectively,

Hi :=


Xdi+1
i − pdi+1

i Xdi+1
0 if pi 6= 0;

Xdi+1
i −XiX

di
0 if pi = 0.

The ideal I = (H1, . . . ,Hn) is contained in M⊥ and the zero locus of I is the
set of reduced points [1 : q1 : . . . : qn], where

qi ∈


{ξji pi | j = 0, . . . , di}, if pi 6= 0, where ξdi+1

i = 1;

{ξji | j = 0, . . . , di − 1} ∪ {0}, if pi = 0, where ξdii = 1.

Thus, we have a set of rk(M) distinct points apolar to M and containing
the point P ; hence, by definition, P ∈ WM .

2.3.3 BINARY FORMS

In this section we deal with the case n = 1, that is the case of forms in two
variables. In this case, the knowledge on the Waring rank of binary forms
goes back to Sylvester [Syl51]. Comas and Seiguer [CS11] presented a de-
tailed description in terms of secant varieties of rational normal curves.
We refer to [Rez13a] for a complete survey about Waring decompositions
of binary forms. The generic rank for binary forms is given by

rk◦(2, d) =

⌈
d+ 1

2

⌉
.

Let’s recall the well-known algorithm to compute the Waring rank of any
binary form by studying its perp ideal.

Lemma 2.3.10. If F ∈ C[x, y] be a binary form of degree d, then,

F⊥ = (G1, G2), with degG1 + degG2 = d+ 2.

Proof. In codimension two, we have that Gorenstein rings are also com-
plete intersections6; hence, F⊥ = (G1, G2). The sum of the degrees has to
be equal to d+ 2 because the Hilbert function of S/F⊥ has to be symmetric
by Lemma 2.1.11. In particular, it is given by

HFS/F⊥(i) =


i+ 1 for i = 0, . . . ,degG1 − 1;

degG1 for i = degG1, . . . ,degG2 − 1;

degG1 − (i+ 1− degG2) for i = degG2, . . . , d+ 1.

6In general, complete intersections are Gorenstein, but the opposite implication is not always true.
There are counterexamples also of ideals of 0-dimensional schemes.
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Proposition 2.3.11 ([CS11]). Let F ∈ C[x, y] be a binary form with F⊥ =
(G1, G2) and degGi = di, respectively. Assume d1 ≤ d2. Then, we have that

rk(F ) =

{
d1 if G1 is square free;

d2 otherwise.

Proof. If G1 is square-free, i.e. G1 = L1 · · ·Ld1 and then

d1⋂
i=1

(Li) = (L1 · · ·Ld1) ⊂ F⊥,

where the left hand side is the ideal of a set of d1 reduced distinct points.
Otherwise, it is easy to check that we have a square-free polynomial of
degree exactly d2, and not smaller, inside F⊥.

Having this explicit description of the perp ideal of binary forms, we
can compute the Waring loci and the forbidden points of binary forms.

Theorem 2.3.12. Let F be a degree d binary form and let G ∈ F⊥ be an
element of minimal degree inside the perp ideal. Then,

1. if rk(F ) < dd+1
2 e, thenWF = Z(G);

2. if rk(F ) > dd+1
2 e, then FF = Z(G);

3. if rk(F ) = dd+1
2 e and d is even, then FF is finite and not empty;

if rk(F ) = dd+1
2 e and d is odd, thenWF = Z(G).

Proof. (1) In this numerical case, we have that G is (up to scalar multipli-
cation) the generator of F⊥ of minimal degree and it is also square-free.
Hence, the Waring decomposition of F is unique and is precisely Z(G).

(2) In this case we have F⊥ = (G1, G2) with d1 = deg(G1) < deg(G2) =
d2, d1 + d2 = d + 2, G1 is not square-free, and rk(F ) = d2. In particular,
G1 is an element of minimal degree in the perp ideal. We first show that
FF ⊇ Z(G1). Let P = Z(L) ∈ Z(G1) for some linear form L, i.e. L divides
G1. We want to show that there is no set of points apolar to F containing
P . Thus, it is enough to show that there is no square-free element of F⊥
divisible by L. Since G1 and G2 have no common factors, and L divides
G1, it follows that the only elements of F⊥ divisible by L are multiple of
G1. Thus they are not square-free. Hence, P ∈ FF . We now prove that
FF ⊆ Z(G1) by showing that, if P = Z(L) 6∈ Z(G1), then P ∈ WF . Note
that L does not divide G1 and consider

F⊥ : (L) = (L ◦ F )⊥ = (H1, H2),

where c1 = deg(H1), c2 = deg(H2) and c1 + c2 = d+ 1. Since G1 is a minimal
degree element in F⊥ and L does not divide G1, we have H1 = G1 and
c2 = d2 − 1. Thus rk(F ) = rk(L ◦ F ) + 1. Let H be a degree d2 − 1 square
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free element in (L ◦ F )⊥ = F⊥ : (L). Hence, P ∈ Z(LH) and Z(LH) is a set
of d2 points apolar to F .

(3) Let F⊥ = (G1, G2), d1 = deg(G1), and d2 = deg(G2). If d is odd, then
d2 = d1 + 1 and rk(F ) = d1; thus G1 is a square-free element of minimal
degree and F has a unique apolar set of d1 distinct points, namely Z(G1).
This proves the case of odd d. If d is even, then d1 = d2 = rk(F ) and F
has infinitely many apolar sets of rk(F ) distinct points. However, for each
P ∈ P1 there is a unique set of rk(F ) points (maybe not distinct) apolar
to F and containing P . That is, there is a unique (up to scalar) element
G ∈ (F⊥)d1 vanishing at P . Thus, P ∈ FF if and only if G is not square-
free. There are finitely many not square-free elements in (F⊥)d1 since they
correspond to the intersection of the line given by (F⊥)d1

in P(Sd1
) with the

hypersurface given by the discriminant. Note that the line is not contained
in the hypersurface since

[
F⊥
]
d1

contains square-free elements.

We can improve Part (3) of Theorem 2.3.12, when d is even by adding a
genericity assumption.

Proposition 2.3.13. Let d = 2h. If F ∈ Sd is a generic form of rank h + 1,
then FF is a set of 2h2 distinct points.

Proof. Let D ⊂ Ph+1 be the variety of degree h + 1 binary forms having
at least a factor of multiplicity two. Note that forms having higher degree
factors, or more than one repeated factor, form a variety of codimension at
least one in D. In particular, a generic line L will meet D in degD distinct
points, each point corresponding to a form of the type B2

1B2 . . . Bh, where
Bi is not proportional to Bj for i 6= j.

Note that F⊥ = (G1, G2), where deg(G1) = deg(G2) = h + 1. Since the
Grassmannian of lines in Ph has dimension 2h, the form F determines a
generic line and viceversa. The non square-free elements of (F⊥)h+1 corre-
spond to L ∩ D, where L is the line given by (F⊥)h+1. By genericity, L ∩ D
consists of exactly degD points each corresponding to a degree h+1 form Fi
having exactly one repeated factor of multiplicity two. For each degree one
form l, there exists exactly one element in (F⊥)h+1, thus gcd(Fi, Fj) = 1 if
i 6= j. Hence,

FF =
⋃
i

Z(Fi)

is a set of hdegD distinct points and the result is now proven.

We can iterate the use of Theorem 2.3.12 to construct a Waring decom-
position for a given binary form. Take F ∈ Sd with rank r larger than
the generic one, so that the Waring decomposition of F is not unique. The
idea is to construct a Waring decomposition of F step-by-step, choosing one
summand at a time. From our result, we know that in this case the forbid-
den locus is a closed subset FF = Z(G), where G is an element in F⊥ of
minimal degree; hence, we can pick any point [L1] in the open set P1rZ(G)
to start our Waring decomposition of F . Consider now F1 = F − Ld1. If
the rank of F1 (which is simply one less than the rank of F ) is still large
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enough not to have a unique decomposition, we can proceed in the same
way as before. We may observe that FF1

= FF ∪ [L1]. Indeed, by Theorem
2.3.12, FF1

= Z(G1), where G1 is an element of minimal degree of F⊥1 .
Since rk(F1) = rk(F )− 1, we have that deg(G1) = deg(G) + 1. In particular,
it has to be G1 = GL⊥1 , where L⊥1 is the linear differential operator annihi-
lating L1. Hence, we can continue to construct our decomposition for F by
taking any point [L2] ∈ P1rZ(G1) and then looking at F2 = F−Ld1−Ld2. We
can continue this procedure until we get a form Fi with a unique Waring
decomposition; namely, until i = r − dd+1

2 e, if d is odd, and i = r − bd+1
2 c, if

d is even. In other words, we get the following result.

Proposition 2.3.14. Let F be a degree d binary form of rank r ≥ dd+1
2 e.

For any choice of distinct L1, . . . , Ls /∈ FF , where s = r − dd+1
2 e, if d is

odd, and s = r − bd+1
2 c, if d is even, there exists a unique minimal Waring

decomposition of F involving Ld1, . . . , Lds .

2.3.4 PLANE CUBICS

In this section we describe Waring loci and forbidden points for n = 2 and
F ∈ S3, that is for plane cubics. For simplicity, we denote S = C[x, y, z] and
S = C[X,Y, Z]. In this case, we have that the generic rank is equal to four
and the maximal rank is equal to five. In particular, we have the following
characterization of plane cubics given in [LT10].

Normal form Waring rank Computation ofWF

(1) x3 1 Theorem 2.3.9
(2) xy(x+ y) 2 Theorem 2.3.12
(3) x2y 3 Theorem 2.3.9
(4) x3 + y3 + z3 3 Proposition 2.4.5
(5) xyz 4 Theorem 2.3.9
(6) x(yz + x2) 4 Theorem 2.3.18
(7) xyz − (y + z)3 4 Theorem 2.3.19
(8) x3 − y2z 4 Theorem 2.4.8
(9) x3 + y3 + z3 + axyz, 4 Theorem 2.3.21

with a3 6= −27, 0, 63

(10) x(xy + z2) 5 Theorem 2.3.24
Note. In case (9), a3 6= 0, 63 so that the rank is actually three and
a3 6= −27 for smoothness of the Hessian canonical form, [Dol12].

Remark 2.3.15. Some of these families can be treated in different classes
of homogeneous polynomials:

(1),(3),(5): they are monomials, the results follow from Theorem 2.3.9;
(2): they are in two variables, the result follows from Theorem 2.3.12;
(4),(8): smooth plane cubics and plane cuspidal cubic can be seen as

examples of sums of pairwise coprime monomials. We treat them later in
Section 2.4 in connection with Strassen’s conjecture. The computations of
their Waring loci are in Proposition 2.4.5 and Theorem 2.4.8, respectively.
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We now study plane cubics of rank four.

Lemma 2.3.16. Let F be a plane cubic of rank four and let X be a set of
four distinct points apolar to F . If X has exactly three collinear points, then
F is a cusp, that is F is of type (8).

Proof. After changing coordinates, we may assume that the three collinear
points lie on the line defined by X and that the point not on the line is
[1 : 0 : 0]. Thus, XY,XZ ∈ F⊥ and F = X3 + G(Y, Z). By [CCC15a, Propo-
sition 3.1] we have that rk(F ) = 1 + rk(G) and thus rk(G) = 3. Since all
degree three binary cubics of rank three are monomials, we get that, after
a change of variables, G can be written as L1L

2
2, with Li ∈ C[Y,Z]1. Hence,

F = X3 + L1L
2
2 and this completes the proof.

We focus on families (6),(7) and (9). Due to Lemma 2.3.16, we can study
these families with the same strategy, explained in the following.

Remark 2.3.17. Let F be a rank four plane cubic which is not cuspidal.
Hence, first of all, we have that F essentially involves three variables and
cannot be written as a binary form; therefore, since S/F⊥ is Artin Goren-
stein, we have that its Hilbert function is forced to be

HFS/F⊥ : 1 3 3 1 −

It follows that L =
[
F⊥
]
2

is a net of conics, say L = 〈C1, C2, C3〉. Since
we assume that F is not cuspidal, by Lemma 2.3.16, all sets of four points
apolar to F are complete intersections of two conics. Thus, when we look
for minimal Waring decompositions of F , we only need to look at pencils of
conics contained in L with four distinct base points. In particular, fixing a
point P ∈ P2, we can consider the pencil L(−P ) of plane conics in L passing
through P . If L(−P ) has four distinct base points, then P ∈ WF ; otherwise,
we have that the base locus of L(−P ) is not reduced and P ∈ FF .

We recall that a pencil of conics L′ has four distinct base points, no three
of them collinear, if and only if the pencil contains exactly three reducible
conics; see Figure 2.1. In conclusion, given a point P ∈ P2, we consider
the line P(L(−P )) ⊂ P(L): if the line is a proper secant line of the degree
three curve ∆ ⊂ P(L) of reducible conics in L, then we have that P ∈ WF ;
otherwise, FF . Thus, we have to study the dual curve ∆̌ ⊂ P̌(L) of lines not
intersecting ∆ in three distinct points7.

An equation for ∆̌ can be found with a careful use of elimination theory.
Hence, to explicitly find a FF , we consider the map

ϕ : P(S1) −→ P̌(L), ϕ([a : b : c]) = [C1(a, b, c) : C2(a, b, c) : C3(a, b, c)].

Note that ϕ is defined everywhere and it is generically 4-to-1. In particular,

FF = ϕ−1(∆̌).

7Given a projective space Pn = P(V ) associated to a vector space V of dimension n + 1, we can
consider the dual projective space as P̌n as the projective space P(V ∗) associated to the dual vector space.
This can be identified with the space of hyperplanes of Pn.
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Figure 2.1: The three reducible conics in a pencil of plane conics with four
distinct base points, with no three of them collinear.

Theorem 2.3.18. If F = x(yz + x2), then FF = Z(XY Z(X2 − 12Y Z)).

Proof. Let L = (F⊥)2 and let C1 : X2−6Y Z = 0, C2 : Y 2 = 0, and C3 : Z2 = 0
be the conics generating L. In the plane P(L) with coordinate α, β and γ, let
∆ be the cubic of reducible conics in L. By computing we get the following
equation for ∆:

det

α 0 0
0 β −3α
0 −3α γ

 = αβγ − 9α3 = 0.

In this case, ∆ is the union of the conic C : 9α2 − βγ = 0 and the secant
line r : α = 0. The line r corresponds to L(−[1 : 0 : 0]) and then, by Remark
2.3.17, we have that [1 : 0 : 0] ∈ FF .

By Remark 2.3.17, in order to completely describe FF , we have to study
two families of lines in P(L): the tangents to the conic C and all the lines
passing through the intersection points between the line r and the conic
C, i.e., all the lines through the points [0 : 0 : 1] and [0 : 1 : 0]. More
precisely, the point P = [X : Y : Z] belongs to FF if and only if the line
l : αC1(P ) + βC2(P ) + γC3(P ) = 0 ⊂ P(L), i.e., the line

l : α(X2 − 6Y Z) + βY 2 + γZ2 = 0,

falls in one of the following cases:

(1) l is tangent to the conic C : βγ − 9α2 = 0;

(2) l passes through the point [0 : 1 : 0];

(3) l passes through the point [0 : 0 : 1].

In the cases (2) and (3) we get that Y 2 = 0 and Z2 = 0, respectively. So
V (Y Z) ⊂ FF . Now, assume that P /∈ {Y Z = 0}. By direct computation, we
get that the line l is tangent to the conic C if X2(X2 − 12Y Z) = 0.

It follows that FF = V (XY Z(X2 − 12Y Z)); see Figure 2.2.
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•

•

•
[1:0:0][0:1:0]

[0:0:1]

X = 0

Z = 0

Y = 0X2 − 12Y Z = 0

Figure 2.2: The forbidden points of F = x(yz + x2).

We now consider family (7), that is the family of nodal cubics.

Theorem 2.3.19. If F = y2z − x3 − xz2, then

FF = Z(G1G2),

where G1 = X3 − 6Y 2Z + 3XZ2 and G2 = 9X4Y 2 − 4Y 6 − 24XY 4Z −
30X2Y 2Z2 + 4X3Z3 − 3Y 2Z4 − 12XZ5.

Proof. Take L = (F⊥)2 = 〈C1, C2, C3〉 with

C1 = XY, C2 = X2 − 3Z2, C3 = Y 2 +XZ.

In the plane P(L) with coordinates α, β, and γ let ∆ be the cubic of reducible
conics in L. By computing we see that ∆ is defined by

det

 β 1
2α

1
2γ

1
2α γ 0
1
2γ 0 −3β

 =
3

4
α2β − 3β2γ − 1

4
γ3 = 0.

In this case, we have that ∆ is an irreducible smooth cubic; hence,

FF = {P ∈ P2 : P(L(−P )) is a tangent line to ∆ ⊂ P(L)}. (2.3)

Thus, we are looking for points P ∈ P2 such that the line

l : C1(P )α+ C2(P )β + C3(P )γ = 0 (2.4)

is tangent to ∆. We consider two distinct cases if C1(P ) = 0 and C1(P ) 6= 0.
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If C1(P ) 6= 0, we compute α from the equation (2.4) and we substitute
in the equation of of the cubic ∆. Then, it is enough to compute the dis-
criminant of the following form in β and γ

3(C2β + C3γ)2β − 12C2
1β

2γ − C2
1γ

3

and we get D = 27C4
1G

2
1G2. Thus, if C1(P ) 6= 0, we have that P ∈ FF if and

only if P ∈ Z(G1G2). If C1(P ) = 0, by direct computation, we check that
FF ∩ Z(C1) = Z(G1G2) ∩ Z(C1). Hence, the proof is completed.

Remark 2.3.20. The description of the forbidden locus for a plane cubic
given in (2.3) reminds one of an old observation of De Paolis. He gave an
algorithm to construct a decomposition of a general plane cubic as a sum
of four cubes of linear forms whenever starting with a linear form which
defines a line intersecting the Hessian of the plane cubic in precisely three
points. This algorithm has been recently recalled in [Ban14].

Now, we consider the case of cubics in family (9) and we use the map ϕ
defined in Remark 2.3.17.

Theorem 2.3.21. If F = x3 + y3 + z3 + axyz belongs to family (9), then

1. if
(
a3−54

9a

)3

6= 27, then FF is the dual curve to the smooth plane cubic

α3 + β3 + γ3 − a3 − 54

9a
αβγ = 0;

2. otherwise, FF is the union of three lines pairwise intersecting in three
distinct points.

Proof. Take L = (F⊥)2 = 〈C1, C2, C3〉 with

C1 = aX2 − 6Y Z, C2 = aY 2 − 6XZ, C3 = aZ2 − 6XY.

In the plane P(L) with coordinates α, β, and γ let ∆ be the cubic curve
consisting of reducible conics. An equation for ∆ is given by

det

 aα −3γ −3β
−3γ aβ −3α
−3β −3α aγ

 = (a3 − 54)αβγ − 9aα3 − 9aβ3 − 9aγ3 = 0.

In the numerical case
(
a3−54

9a

)3

6= 27, ∆ is a smooth cubic curve. Hence,

FF = {P ∈ P2 | P(L(−P )) is a tangent line to ∆ ⊂ P(L)}.

Hence, we get FF as described in Remark 2.3.17 by using the map ϕ.
Otherwise, ∆ is the union of three lines intersecting in three distinct

points Q1, Q2 and Q3. Hence,

FF = {P ∈ P2 | Qi ∈ P(L(−P )), for some i}.
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Example 2.3.22. Consider F = x3 +y3 +z3−6xyz, thus we are in the case
(1) of Theorem 2.3.21 for a = −6. We can compute FF using the following.

Algorithm 2.3.23. This algorithm is written with the language of the
Computer Algebra Software Macaulay2 [GS].

R = QQ[x..z,a..c];
S = R[A..C];

-- x..z : parameters of a point in P^2;
-- a..c : parameters of a point over Delta;
-- A..C : in place of alpha, beta and gamma;

-- input: generators of linear system L corresponding to
-- the degree 2 part of perp ideal of F;
-- (give them in the variables x,y,z)
C1 = ;
C2 = ;
C3 = ;

-- web of conics in L and through the point P=[x:y:z];
LP = C1*A+C2*B+C3*C;

-- equation for a point Q=[a:b:c] over Delta;
D = det (1/2*

diff(transpose matrix{{x,y,z}},
diff(matrix{{x,y,z}},LP))

);
DD = sub(D,{A => a,B => b,C => c});

-- tangent to Delta in the point Q=[a:b:c];
TT = diff(a,DD)*A+diff(b,DD)*B+diff(c,DD)*C;

-- we impose that LL define a line tangent to Delta by
-- imposingthat LP is equal to the line TT and that the
-- point Q is on Delta;
I = ideal((coefficients(TT-LP))_1,DD);

-- elimination of the extra variables: the result is the
-- locus of points P=[x:y:z] such that the corresponding
-- net of LP gives a tangent line to Delta, hence the
-- complement of the Waring locus;
II = sub(I,R);
radical eliminate({a,b,c},II);

Hence, in this specific example, we get that FF = Z(G1G2), where G1 =
x3 +y3−5xyz+z3 and G2 = 27X6−58X3Y 3 +27Y 6−18X4Y Z−18XY 4Z−
109X2Y 2Z2 − 58X3Z3 − 58Y 3Z3 − 18XY Z4 + 27Z6.
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We conclude with family (10), that is cubics of rank five.

Theorem 2.3.24. If F = x(xy + z2), then FF = {[1 : 0 : 0]}.

Proof. Let L be a linear form. The following are equivalent:

(1) [L] ∈ Ff ;

(2) rk(F − λL3) = 5, for all λ ∈ C;

(3) F − λL3 = 0 is the union of an irreducible conic and a tangent line,
for all λ ∈ C;

(4) F and L3 must have the common factor L, that is, the line L = 0 is
the line x = 0.

It easy to show that (1) and (2) are equivalent. For the equivalence
between (2) and (3), see the table at the beginning of this section on the
classification of plane cubics.

If (3) holds, then all the elements in the linear system given by F and
L3 are reducible. Thus, by the second Bertini’s Theorem, the linear system
has the fixed component {x = 0}. On the other hand, to see that (4) implies
(3), note that for all λ ∈ C, the cubic x(xy+ z2 + λx2) = 0 is the union of an
irreducible conic and a tangent line.

SECTION 2.4

WARING LOCI AND THE STRASSEN CONJECTURE

The standard algorithm to calculate the product of two 2 × 2 matrices in-
volves 8 multiplications. LetA = (ai,j) andB = (bi,j), then C = AB = (ci,j),
where

c1,1 = a1,1b1,1 + a1,2b2,1;

c1,2 = a1,1b1,2 + a1,2b2,2;

c2,1 = a2,1b1,1 + a2,2b2,1;

c2,2 = a2,1b1,2 + a2,2b2,2.

In general, we have that the multiplication of two n × n matrices uses
n3 multiplications and n3 − n2 additions, namely we have on the order of
n3 arithmetic operations that are needed by the standard algorithm. In-
deed, it has been proven in [BCS13], that the exponent on the order of the
required arithmetic operations equals the one about the number of multi-
plications needed. Hence, the challenge is to reduce the number of multi-
plications in the algorithm, see [BCS13; Lan12] for a complete description.
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In 1969, Strassen managed to give an algorithm for the multiplication
of two 2× 2 matrices, using only seven multiplications. Namely,

I = (a1,1 + a2,2)(b1,1 + b2,2);

II = (a2,1 + a2,2)b1,1;

III = a1,1(b1,2 − b2,2);

IV = a2,2(−b1,1 + b2,1);

V = (a1,1 + a1,2)b2,2;

VI = (−a1,1 + a2,1)(b1,1 + b1,2);

VII = (a1,2 − a2,2)(b2,1 + b2,2);

then,

c1,1 = I + IV −V + VII;

c2,1 = II + IV;

c1,2 = III + V;

c2,2 = I + III− II + VI.

Since the multiplication of two n × n matrices can be made in blocks,
Strassen’s algorithm can be generalized to multiplication of bigger ma-
trices. As a consequence, we have that matrix multiplication can be per-
formed by using on the order of n2.81 arithmetic operations. 8

After Strassen’s result, it became clear that even natural procedures
might require fewer operations than the expected. In 1973, Strassen for-
mulated the following conjecture for bilinear maps:

let φ, ψ be two bilinear maps and consider two pairs of matrices A,B
and C,D, then, the computational complexity of simultaneously computing
φ(A,B) and ψ(C,D) is the sum of the complexities of φ and ψ.

The conjecture is still open. In [Lan12], it is explained how to interpret
the Strassen conjecture in terms of tensors and their tensor rank. We are
interested in its symmetric version which is also still largely open.

Conjecture 2.1 (Strassen additive conjecture). If F ∈ C[x0, . . . , xn] and
G ∈ C[y0, . . . , ym] are degree d forms, with d ≥ 2, then

rk(F +G) = rk(F ) + rk(G).

Throughout this section, we use the following notations. We denote

S = C[x1,0, . . . , x1,n1
, . . . , xm,0, . . . , xm,nm ];

S[i] = C[xi,0, . . . , xi,ni ], for any i = 1, . . . ,m.

Steps towards a proof of the Strassen conjecture have been done recently
in [CCC+15b]. The most complete result is the following.

8More recent results have brought the number of operations required closer to n2.
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Theorem 2.4.1 (Carlini–Catalisano–Chiantini–Geramita–Woo). Let F =
F1 + . . . + Fm ∈ S be a homogeneous polynomial of degree d with Fi ∈ S[i].
If for every i = 0, . . . ,m, Fi is one of the following types:

1. monomial;

2. form in one or two variables;

3. Fi = xa0(xb1 + . . .+ xbn), with a+ 1 ≥ b;

4. Fi = xa0(xb1 + xb2);

5. Fi = xa0(xb0 + . . .+ xbn), with a+ 1 ≥ b;

6. Fi = xa0(xb0 + xb1 + xb2);

7. Fi = xa0G(x1, . . . , xn), where G⊥ = (g1, . . . , gn) is a complete intersec-
tion with a < deg(gi), for any i = 1, . . . , n;

8. Fi is a Vandermonde determinant;

then
rk(F ) = rk(F1) + . . .+ rk(Fm).

A stronger version of the Strassen conjecture can be rephrased in terms
of minimal Waring decompositions. Indeed, we might expect that Waring
decompositions of F are always constructed as sums of Waring decompo-
sitions of the Fi’s. Unfortunately, this is not always the case and, as often
happens, quadrics have unexpected behaviors.

Example 2.4.2. Take F = x2 − 2yz. By Theorem 2.4.1, the rank of F is
three. However, we can find a Waring decomposition of F that doesn’t in-
volve x2, i.e.,

F = (x+ y)2 + (x+ z)2 − (x+ y + z)2.

We believe that this is an exceptional case which happens only for
quadrics and we conjecture the following.

Conjecture 2.2. Let F = F1 + . . .+ Fm ∈ S be a homogeneous polynomial
of degree d with Fi ∈ S[i]. If d ≥ 3, then any minimal Waring decomposition
of F is a sum of minimal Waring decompositions of the Fi’s; that is,

F =

m∑
i=1

rk(Fi)∑
j=1

Ldi,j ,

where Fi =
∑rk(Fi)
j=1 Ldi,j and Li,j ∈ S[i].

From Conjecture 2.2, it is natural to interpret the Strassen conjecture
in terms of the concept of Waring loci of homogeneous polynomials. More
precisely, we want to describe the Waring locus of a sum of homogeneous
polynomials, which are pairwise in different sets of variables, as the union
of the Waring loci of the single summands.
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Conjecture 2.3. Let F = F1 + . . .+ Fm ∈ S be a homogeneous polynomial
of degree d with Fi ∈ S[i]. If d ≥ 3, then

W(F ) =
⋃

i=1,...,r

W(Fi) ⊂ P(S).

We always assume that each Fi ∈ S[i] is written in the essential number
of variables and then, as explained in Proposition 2.3.3, we look at each
W(Fi) inside the linear subspace P(S[i]) ⊂ P(S).

Example 2.4.3. We can view Example 2.4.2 in terms of Waring loci. Let
F = F1 +F2 with F1 = x2 and F2 = 2yz. The union of the two Waring loci is

W(F1) ∪W(F2) = {[1 : 0 : 0]} ∪
(
P1
y,z r {[0 : 1 : 0], [0 : 0 : 1]}

)
⊂ P2

x,y,z.

Then, since we have rank equal to three, we look for ideals of three reduced
points inside F⊥ = (xy, xz, y2, z2, x2 + yz). We can find the ideal

IX = (y(x− y), z(x− z), x2 − y2 + yz − z2) ⊂ F⊥;

which cut out the set of points X = {[1 : 1 : 0], [1 : 0 : 1], [1 : 1 : 1]} which is
not contained inW(F1) ∪W(F2).

Lemma 2.4.4. Conjecture 2.2 and Conjecture 2.3 are equivalent and they
imply the Strassen additive conjecture (Conjecture 2.1) for d ≥ 3.

Proof. The fact that Conjecture 2.2 implies Conjecture 2.3 and the Strassen
conjecture is obvious. Assume that Conjecture 2.3 is true. If X is a mini-
mal set of points apolar to F , then we have that X ⊂ W(F ). Let Xi :=
X ∩W(Fi) ⊂ P(S[i]), for any i = 1, . . . ,m, say Xi = {Pi,1, . . . , Pi,ri}. Then,

F =

m∑
i=1

ri∑
j=1

Ldi,j ,

where Li,j is the linear form corresponding to the point Pi,j , for any i, j,
respectively. Restricting this identity to the linear space P(S[i]), we get a
Waring decomposition Fi =

∑ri
j=1 L

d
i,j . Hence, ri ≥ rk(Fi) and then rk(F ) =

|X| ≥
∑
i=1,...,m rk(Fi). Since the opposite inequality is holds, it follows that

rk(F ) =
∑
i=1,...,m rk(Fi) and ri = rk(Fi). Thus, Conjecture 2.2 holds.

The following preliminary result is our main tool to prove that Conjecture
2.2 and Conjecture 2.3 hold for some specific families of polynomials.

Proposition 2.4.5. Let F =
∑s
i=1 Fi ∈ S be a form such that Fi ∈ S[i] for

all i = 1, . . . , s. If the following conditions hold

1. for each 1 ≤ i ≤ s, there exists a linear derivation ∂i ∈ T [i]
1 such that

rk(∂iFi) = rk(Fi),
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2. the Strassen conjecture holds for F1 + . . .+ Fs,

3. the Strassen conjecture holds for ∂1F1 + . . .+ ∂sFs,

then F satisfies Conjecture 2.2 and Conjecture 2.3.

Proof. Consider the linear form t = α1∂1 + . . . + αs∂s ∈ T , with αi 6= 0, for
all i = 1, . . . , s. With no loss of generality, we may assume that ∂i = Xi,0.

Let IX ⊂ F⊥ be the ideal of a set of points giving a Waring decompo-
sition of F , i.e., the cardinality of X is equal to rk(F ). Thus, IX : (t) is the
ideal of the points of X lying outside the linear space t = 0. Then,

IX : (t) ⊂ F⊥ : (t) =

(
∂F

∂t

)⊥
=: F̃⊥.

By our assumptions, we get that rk(F ) = rk(F̃ ). Therefore, the set of points
corresponding to IX : (t) has cardinality equal to rk(F ); it follows that X
does not have points on the hyperplane t = 0.

Claim. If P = [a1,0 : . . . : a1,n1 : . . . : as,0 : . . . : as,ns ] belongs to W(F ),
then in the set {a1,0, . . . , as,0} there is exactly one non-zero coefficient.

Proof of the Claim. The claim follows from the first part, since if we have
either no or at least two non-zero coefficients in the set {a1,0, . . . , as,0} it is
easy to find a linear space {t = 0} containing the point P and contradicting
the assumption that it belongs to the Waring locus of F .

Let’s consider Xi := Xr {Xi,0 = 0}, for all i = 1, . . . , s. As above, from

IXi = IX : (Xi,0) ⊂ F⊥ : (Xi,0) =

(
∂Fi
∂xi,0

)⊥
,

we can conclude that the cardinality of each Xi is at least rk(Fi). Moreover,
by the claim, we have that the Xi’s are all distinct. By additivity of the
rank, we conclude that

X =
⋃

i=1,...,r

Xi, with Xi ∩ Xj = ∅, for all i 6= j, and

|Xi| = rk(Fi), for all i = 1, . . . , s.

Hence, we have that the sets Xi give minimal Waring decompositions of the
forms ∂iFi’s and, by Proposition 2.3.3, they lie in PniXi,0,...,Xi,ni , respectively.
Since X gives a minimal Waring decomposition of F , specializing to zero the
variables not in S[i] we see that Xi gives a minimal Waring decomposition
of Fi. Hence,W(F ) ⊂

⋃
i=1,...,sW(Fi). The other inclusion is trivial.

Now, we can prove that Conjecture 2.2 and Conjecture 2.3 hold for some
family of polynomials for which the assumptions of Proposition 2.4.5 hold.
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Lemma 2.4.6. If F ∈ Sd is one of the following degree d forms

1. a monomial xd0
0 . . . xdnn with di ≥ 2 for 0 ≤ i ≤ n;

2. a binary form F 6= LMd−1;

3. xa0(xb1 + . . .+ xbn) with b, n ≥ 2 and a+ 1 ≥ b;

4. xa0(xb0 + xb1 + . . .+ xbn) with b, n ≥ 2 and a+ 1 ≥ b;

5. xa0G(x1, . . . , xn) such that G⊥ = (g1, . . . , gn), a ≥ 2, and deg gi ≥ a+ 1.

then there exists a linear derivation ∂ ∈ T1 such that

rk(∂F ) = rk(F ).

Proof. (1.) Take F = xd0
0 · · ·xdnn with d0 ≤ . . . ≤ dn. Then, we know by

[CCG12] that rk(F ) = (d1 + 1) · · · (dn + 1). If we let ∂ = X0, then rk(F ) =
rk(∂F ).

(2.) We know that F⊥ = (G1, G2) with deg(Gi) = di, d1 ≤ d2 and d1+d2 =
d+ 2. We have to consider different cases.

a) If d1 < d2 and G1 is square-free, then rk(F ) = deg(G1). Consider any
linear form L ∈ T1 which is not a factor of G1. Fix ∂ := L ∈ T1 to
be the corresponding linear derivation. Then, (∂F )⊥ = F⊥ : (L) =
(H1, H2), with deg(H1) + deg(H2) = d+ 1. Since L is not a factor of G1,
then we have that G1 = H1 and, since it is square-free, we have that
rk(∂F ) = rk(F ).

b) If d1 < d2 and G1 is not square-free, say G1 = Lm1
1 · · ·Lmss , with m1 ≤

. . . ≤ ms, then we have rk(F ) = deg(G2). Fix ∂ = L1 ∈ T1. Then, we
have that (∂F )⊥ = F⊥ : (L1) = (H1, H2) with deg(H1) + deg(H2) =
d + 1. Since Lm1−1

1 · · ·Lmss ∈ (∂F )⊥, but not in F⊥, it has to be H1 =
Lm1−1

1 · · ·Lmss . In particular, rk(∂F ) = deg(H2) = deg(G2) = rk(F ).

c) If d1 = d2, we can always consider a non square-free element G ∈[
F⊥
]
d1

. Indeed, if both G1 and G2 are square-free, then it is enough
to consider one element lying on the intersection between the hy-
persurface in P(Sd1

) defined by the vanishing of the discriminant of
polynomials of degree d1 with the line passing through [G1] and [G2].
Say G = Lm1

1 · · ·Lmss , with m1 ≤ . . . ≤ ms. Fix ∂ = L1 ∈ T1. Hence, we
conclude the proof as in b).

(3.) If F = xa0(xb1 + . . . + xbn) with b, n ≥ 2 and a + 1 ≥ b, then we have
that rk(F ) = (a + 1)n, by [CCC15a]. If we set ∂ := X1 + . . . + Xn, then
∂F = xa0(xb−1

1 + . . .+ xb−1
n ) and the rank is preserved.

(4.) If F = xa0(xb0 + . . . + xbn) with b, n ≥ 2 and a + 1 ≥ b, then we have
that rk(F ) = (a + 1)n, by [CCC15a]. If we set ∂ := X1 + . . . + Xn, then
∂F = xa0(xb−1

1 + . . .+ xb−1
n ) and the rank is preserved.

(5.) If F = xa0G(x1, . . . , xn) with G⊥ = (g1, . . . , gn), a ≥ 2, and deg gi ≥
a+ 1, we know that rk(F ) = d1 · · · dn, by [CCC15a]. If we consider ∂ := X0,
then we have that ∂F = xa−1

0 G(x1, . . . , xn) and the rank is preserved.
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Theorem 2.4.7. Let F =
∑s
i=1 Fi ∈ S be a form such that Fi ∈ S[i], for all

i = 1, . . . , s. If each Fi is contained in one of the following families:

1. a monomial xd0
0 · . . . · xdnn with di ≥ 2 for 0 ≤ i ≤ n;

2. a binary form F 6= LMd−1;

3. xa0(xb1 + . . .+ xbn) with b, n ≥ 2 and a+ 1 ≥ b;

4. xa0(xb0 + xb1 + . . .+ xbn) with b, n ≥ 2 and a+ 1 ≥ b;

5. xa0G(x1, . . . , xn) such that G⊥ = (g1, . . . , gn), a ≥ 2, and deg gi ≥ a+ 1.

then Conjecture 2.2 holds for F .

In [CCO], we prove Conjecture 2.2 in a few more cases without using
Proposition 2.4.5. Note, for example, that Proposition 2.4.5 cannot be ap-
plied if one of the summands is a monomial with lowest exponent equal to
one, since Lemma 2.4.6 does not hold.

Theorem 2.4.8. Conjecture 2.2 is true for a form F of degree d ≥ 3

F = x0x
a1
1 . . . xann + yb00 y

b1
1 . . . ybmm ∈ C[x0, x1, . . . xn, y0, y1, . . . ym],

with d = 1 +
∑n
i=0 ai =

∑m
i=0 bi and b0 ≤ bi (i = 1, . . . ,m).

SECTION 2.5

APOLARITY LEMMA:
POWER IDEALS AND FAT POINTS

In the previous sections, we have seen how to relate Waring decomposi-
tions of homogeneous polynomials to ideals of configurations of reduced
points. The key point was the Apolarity Lemma (Lemma 2.1.13). In this
section, we describe a more general version of the Apolarity Lemma that
allows us to relate configurations of non-reduced points with power ideals,
namely ideals generated by powers of linear forms.

2.5.1 IDEALS OF FAT POINTS

Using our geometric intuition, we already have a naïve concept of non-
reduced points. For example, consider a line intersecting a plane conic in
two distinct points and let’s imagine that we move the secant line to a tan-
gent position as in Figure 2.3. Since high school, we are used to say that
the tangent meets the conic twice since the associated system of equations
have one double root. Algebraic geometers describe this more rigorously by
using the notion of a scheme. Roughly speaking, the idea is to generalize
the notion of algebraic variety to include also nilpotent elements, namely to
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consider also non-radical ideals. Let’s go back to the example of the inter-
section between a conic and a tangent line in order to describe it in more
detail.

Figure 2.3: Example of non-reduced point: the intersection of a conic and a
tangent line.

Example 2.5.1. Let C : y−x2 = 0 be a conic in the affine plane A2
x,y and r :

y = 0 be the tangent line at the origin O. Their intersection is described by
the ideal I = (x2−y, y) = (x2, y). As a variety, we have that the intersection
is simply one point, the origin O, given by the radical of I,

√
I = (x, y). The

coordinate ring is a one-dimensional vector space C[x, y]/(x, y) ' C.
On the other hand, if we consider the ideal I, we have that the quotient

ring is given by C[x, y]/(x2, y) ' C⊕Cxwhich is a vector space of dimension
two. Heuristically, we imagine the scheme as two points infinitesimally
close and supported at the origin along the direction of the x-axis. Indeed,
consider the lines r(t) : y = t, with t ∈ (0, 1], intersecting the conic at the
two distinct points (±

√
t, t). For t→ 0, both points tends to the origin O.

Another way of thinking is as follows. The ideal
√
I = (x, y) ⊂ C[x, y]

is the ideal of homogeneous polynomials vanishing at the point O = (0, 0).
Instead, the ideal I = (x2, y) is given by the homogeneous polynomials
F ∈ C[x, y] that vanish at the origin O and such that also their partial
derivative ∂xF vanishes at O. For this reason, we can imagine the scheme
given by the intersection of the conic and the tangent line as a simple point
together with a tangent vector.

Since in this thesis we only need the concept of multiple points, we don’t
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give details about scheme theory. For that, see [EH00; Har77]. We give an
ad hoc definition for the 0-dimensional9 schemes we are interested in.

Definition 2.5.2. A fat point of multiplicity d in Pn is a 0-dimensional
scheme associated to the d-th power ℘d of a prime ideal ℘ of height n. It
is denoted by dP . The reduced point P , defined by ℘, is called its support.
The quotient S℘/℘dS℘, where S℘ is the graded localization of S at ℘, is a
finite dimensional vector space whose dimension is called the degree of dP .

In general, we define a scheme of fat points, or a configuration of fat
points, as X = d1P1 + . . . + dsPs ⊂ Pn, where P1, . . . , Ps are distinct points,
with corresponding ideals ℘1, . . . , ℘s, respectively and d1, . . . , ds are posi-
tive integers; namely, X is the 0-dimensional scheme defined by the ideal
IX = ℘d1

1 ∩ . . . ∩ ℘dss . The degree of X is the sum of the degrees of the diPi’s.

Remark 2.5.3. In the case d1 = . . . = ds = d, let Xd = dP1 + . . . + dPs,
for any d ≥ 1. Then, we have that IXd = ℘d1 ∩ . . . ∩ ℘ds is the d-th symbolic
power10 of the ideal IX1

= ℘1 ∩ . . . ∩ ℘s. We denote it by I(d)
X1

.
The study of the behavior between symbolic and regular powers of ho-

mogeneous ideals involved many mathematicians and different areas. By
definition, we always have the inclusion Id ⊂ I(d), but the equality is not
always true. Consequently, people started to study containment problems,
see e.g. [ELS01; HH02]. In [BH10], the authors showed that for any c < n,
there exists an ideal of points in Pn such that I(d)�⊂Ir for some d > cr. In
[BCH14], there is a list of open conjectures about containment problems.

2.5.2 INVERSE SYSTEMS OF IDEALS FAT POINTS.
In particular, we are interested in studying the Hilbert series of ideals of
fat points. This is a sort of interpolation problem. Indeed, if ℘ is the prime
ideal defining a point P ∈ Pn, we have that

F ∈ [℘d]m if and only if Z(F ) is singular of multiplicity d at P.

Therefore, HFS/℘d(m) equals the codimension of the vector space of hyper-
surfaces of degree m in Pn which are singular at P with multiplicity d. As
we have explained previously, one way to study Hilbert functions of ho-
mogeneous ideals is to look at their inverse systems. In [EI95], Emsalem
and Iarrobino started to study inverse systems of ideals of fat points and
it continued in the famous book by Iarrobino and Kanev [IK99]. However,
our exposition refers to the lecture notes by Geramita [Ger96].

9The dimension of a scheme associated to an ideal I ⊂ C[x0, . . . , xn] is given by n − ht(I), where
the height of an ideal I is defined as

ht(I) := max{s | ∃℘1, . . . , ℘s prime ideals s.t. I = ℘1 ⊂ . . . ⊂ ℘s ⊂ C[x0, . . . , xn]}.

10For any prime ideal ℘ ⊂ S in a Noetherian ring, we define ℘(d) as ℘dS℘∩S, namely the contraction
of the extension of the d-th power power via the localization map S → S℘. Given an ideal I ⊂ S, we
define the d-th symbolic power I(d) as the contraction of the extension via the localization map S → SΛ,
where Λ = S r

⋃
℘∈Ass(I) ℘. In case of a radical ideal with minimal primes ℘1, . . . , ℘s, we have that

I(d) = ℘
(d)
1 ∩ . . . ∩ ℘(d)

s . If ℘ is the ideal of a simple point, then we additionally have ℘(d) = ℘d.
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Example 2.5.4. Let P0 = [1 : 0 : . . . : 0] ∈ Pn be the coordinate point associ-
ated to ℘0 = (x1, . . . , xn). We consider the fat point dP0 defined by the ideal
℘d0. Since ℘d0 is the monomial ideal generated by all degree d monomials in
the variables x1, . . . , xn, we have that

[(℘d0)−1]i =

{
Si for all i < d;

Xi−d+1
0 Sd−1 for all i ≥ d.

In general, given any point P = [p0 : . . . : pn] ∈ Pn and its defining ideal
℘, with no loss of generality, we may assume that p0 6= 0. Hence, after a
linear change of coordinates, we may assume P = P0. Using the previous
case and after that performing the inverse change of coordinates, we get

[(℘d)−1]i =

{
Si for all i < d;

Li−d+1Sd−1 for all i ≥ d;
(2.5)

where L = p0X0 + . . .+ pnXn.

Theorem 2.5.5 (Apolarity Lemma [IK99; Ger96]). Let P1, . . . , Ps be dis-
tinct points in Pn with coordinates Pi = [p

(i)
0 : . . . : p

(i)
n ], respectively. Con-

sider the corresponding linear forms, Li = p
(i)
0 X0 + . . . + p

(i)
n Xn, for any

i = 1, . . . , s. Given positive integers d1, . . . , ds, we consider the scheme of fat
points X = d1P1 + . . . + dsPs defined by the ideal I = ℘d1

1 ∩ . . . ∩ ℘dss , where
the ℘i’s are the defining ideals of the Pi’s, respectively. Then,

[I−1]i =

{
Si for all i ≤ max{di − 1};

Li−d1+1
1 Sd1−1 + . . .+ Li−ds+1

s Sds−1 for all i ≥ max{di};

Idea of the proof. It follows directly from (2.5) and the following fact.

Claim. Let I, J be two homogeneous ideals I and J ,

(I ∩ J)−1 = I−1 + J−1.

Remark 2.5.6. The weaker version of the Apolarity Lemma used in the
previous section (Lemma 2.1.13) is a special case of Theorem 2.5.5. Indeed,
in the same notation as above, let i = d1 = . . . = ds = d. By Theorem 2.5.5,
we have that a homogeneous polynomial F of degree d can be expressed as
the sum of Ld1, . . . , Lds if and only if F is contained in the inverse system of
I = ℘1 ∩ . . .∩℘s. Since [I−1]⊥i = Ii, it is equivalent to say that the ideal I is
contained in the perp ideal of F .

As explained in Section 2.1, the dimensions of the homogeneous parts of
the inverse system I−1 are related to the Hilbert functions of S/I.
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Corollary 2.5.7. Let X = d1P1 + . . . + dsPs be a scheme of fat points in Pn
with defining ideal I = ℘d1

1 ∩ . . . ∩ ℘dss . Let L1, . . . , Ls be the linear forms
defined as in Theorem 2.5.5. Then,

HFS/I(i) =

{
dimC Si, for all i ≤ max{di − 1};
dimC[(Li−d1+1

1 , . . . , Li−ds+1
s )]i, for all i ≥ max{di}.

Moreover, in Section 1.3.1, we saw that, given a generic point P ∈ σs(Vn,d)
on a secant variety of a Veronese variety lying on the linear span of s points
[Ld1], . . . , [Lds ] ∈ Vn,d, we have that the tangent space of σs(Vn,d) at P is

TPσs(Vn,d) = P(
[
Ld−1

1 , . . . , Ld−1
s

]
d
) ⊂ P(Sd).

Combining this description with Corollary 2.5.7, we get a relation between
Hilbert functions of ideals of double points and the dimensions of secant
varieties of Veronese varieties.

Corollary 2.5.8. Let IX = ℘2
1 ∩ . . . ∩ ℘2

s be the ideal of a scheme X of s fat
points of multiplicity d in Pn, then

HFS/IX(d) = dimσs(Vn,d).

SECTION 2.6

HILBERT FUNCTIONS OF
CONFIGURATIONS OF FAT POINTS

Similarly as in Section 2.2, we have the following result on the structure
of the Hilbert functions of configurations of points.

Lemma 2.6.1. Let X be a 0-dimensional scheme of degree D in Pn, then the
Hilbert function of the associated quotient ring S/IX is strictly increasing
until it becomes constant; moreover, HFS/IX(i) = D, for i� 0.

Example 2.6.2. Consider again the point P = [1 : 0 : . . . : 0] defined by the
prime ideal ℘ = (x1, . . . , xn). From Corollary 2.5.7, we have that

HFS/℘d(i) =

{
dimC Si =

(
n+i
n

)
, for all i ≤ d− 1;

dimC[(Xi−d+1
0 )]i =

(
n+d−1
n

)
, for all i ≥ d.

This coincides with the Hilbert function of
(
n+d−1
n

)
simple points in generic

position, see Lemma 2.2.1 and Lemma 2.2.2. Note that
(
n+d−1
n

)
coincides

with the degree of the fat point dP . Therefore, we can visualize a fat point
of multiplicity d in Pn as

(
n+d−1
n

)
simple points collapsed at the point P .
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Now, let X = d1P1 + . . . + dsPs. The degree of X is D =
∑s
i=1

(
n+di−1

n

)
.

Then, similarly to the case of reduced points, if the Pi’s are in generic po-
sition, we expect that the Hilbert function of S/IX is the largest possible,
i.e., that X behaves as D distinct points in generic position,

exp .HFS/IX(i) = min

{(
n+ i

n

)
, D

}
, for all i ≥ 0.

This is equivalent to expect that, in each degree i ≥ 0, the vanishing of all
derivatives of order ≤ dj − 1 at each point Pj , respectively, impose inde-
pendent conditions on the linear system Γ(Pn,OPn(j)) of hypersurfaces of
degree j in Pn. If the latter assumption holds, we say that X imposes in-
dependent conditions on OPn(j). Unfortunately, this is not always the case
and we can easily find examples when the Hilbert function of a scheme X
of fat points in generic position is not the expected one.

Example 2.6.3. Consider two distinct double points X = 2P1 + 2P2 in the
projective plane P2 defined by the ideal IX = ℘2

1 ∩ ℘2
2. The space of conics

in P2 has (affine) dimension 6 and each double point imposes exactly 3 con-
dition. Hence, we expect to have no conic with two distinct singular points
and therefore the Hilbert function of the quotient ring S/IX in degree 2
should be equal to 6, i.e.,

exp .HFS/℘2
1∩℘2

2
: 1 3 6 6 6 · · ·

However, the double line passing through the two points gives a reducible
conic with two singular points. By Bezout’s Theorem, we can see that the
double line is also the unique conic in IX and, in fact,

HFS/℘2
1∩℘2

2
: 1 3 5 6 6 · · ·

Example 2.6.4. Consider five general double points X = 2P1 + . . . + 2P5

in P2 defined by the ideal IX = ℘2
1 ∩ . . . ∩ ℘2

5. The space of quartics in P2

has (affine) dimension
(

2+4
2

)
= 15 and each double point imposes 3 condi-

tions. Hence, we expect to have no quartics with five singular points and
therefore

HFS/℘2
1∩...∩℘2

5
: 1 3 6 10 15 15 15 · · ·

However, there exists a unique conic passing through five points in generic
position; thus, the double conic is a quartic inside the ideal ℘2

1∩ . . .∩℘2
5. By

Bezout’s theorem, it is also unique and we have that

HFS/℘2
1∩...℘2

5
: 1 3 6 10 14 15 15 · · ·

From these two examples, it is clear that the study of the Hilbert func-
tions of ideals of configurations of fat points is far from being obvious.
Apart from the case of double points in generic position and some special
configurations, this problem is still largely open.
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2.6.1 DOUBLE POINTS: THE ALEXANDER–HIRSCHOWITZ
THEOREM

In 1995, after a series of brilliant articles [AH92a; AH92b], Alexander and
Hirschowitz gave the solution of the problem regarding the Hilbert func-
tion of double points in generic position. This is the precise formulation of
Alexander–Hirschowitz Theorem. From this, due to Corollary 2.5.8, we get
the dimension of all secant varieties of Veronese varieties (Theorem 1.3.8)
and then, from the geometric description of the classical Waring problem,
we also get the Waring rank of generic forms in any number of variables
and any degree (Theorem 1.2.5).

Theorem 2.6.5 (ALEXANDER–HIRSCHOWITZ THEOREM, [AH95]). Con-
sider P1, . . . , Ps distinct general points of Pn, with defining ideals ℘1, . . . , ℘s,
respectively. Then, the scheme of double points X = 2P1 + . . . + 2Ps defined
by the ideal ℘2

1 ∩ . . . ∩ ℘2
s has the expected Hilbert function, i.e.

HFS/℘2
1∩...∩℘2

s
(d) = min

{
s(n+ 1),

(
n+ d

n

)}
,

except for the following cases,

1. d = 2; 2 ≤ s ≤ n; where it must be reduced by
(
s
2

)
;

2. n = 2; d = 4; s = 5; where it must be reduced by 1;

3. n = 3; d = 4; s = 9; where it must be reduced by 1;

4. n = 4; d = 4; s = 14; where it must be reduced by 1;

5. n = 4; d = 3; s = 7; where it must be reduced by 1.

For ideals of fat points with higher multiplicity not much is known.
Even the case of triple points in generic position is solved only up to three
variables, see [Dum13]. We come back to this problem about the Hilbert
function of ideals of fat points with higher multiplicity in Section 3.2 where
we relate it with the Fröberg Conjecture.

SECTION 2.7

SPECIAL CONFIGURATIONS OF FAT POINTS

In this section we compute Hilbert functions and Betti numbers of some
special configurations of fat points. As we said above, given a scheme of
general fat points X = d1P1 + . . .+dsPs in Pn, the expected Hilbert function
is given by

exp .HFS/IX(i) = min


(
n+ i

n

)
,

s∑
j=1

(
n+ dj − 1

n

) , for all i ≥ 0.
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If we specialize the points P1, . . . , Ps, the number of conditions imposed by
X can only decrease, hence the Hilbert function of S/IX can only increase.
Moreover, the property of having the smallest expected Hilbert function
is an open condition, then it follows that it is enough to find one explicit
specialization of X with the expected Hilbert series in order to prove that
the generic configuration have the smallest Hilbert function.

2.7.1 8 GENERIC FAT POINTS IN P3

Here, we describe a special configuration of fat points studied in [One14].
We consider eight fat points in generic position with the same multiplicity
in P3, say Xd = dP1 + . . .+ dP8 ∈ P3. Then, the defining ideal IXd is the d-th
symbolic power I(d)

X1
of the radical ideal IX1

= ℘1 ∩ . . . ∩ ℘8. Thus, we have

exp .HFS/IXd (i) = min

{(
i+ 3

3

)
, 8

(
d+ 2

3

)}
.

In order to prove that this is the correct Hilbert function, we specialize the
Pi’s to the following configuration:

P1 = [1 : 0 : 0 : 0], P2 = [0 : 1 : 0 : 0], P3 = [0 : 0 : 1 : 0], P4 = [0 : 0 : 0 : 1],

P5 = [1 : 1 : 1 : 0], P6 = [1 : 1 : 0 : 1], P7 = [1 : 0 : 1 : 1], P8 = [0 : 1 : 1 : 1].

Let I = ℘1 ∩ . . . ∩ ℘8 be the ideal defining such a configuration.

Lemma 2.7.1. The d-symbolic power I(d) is:

1. empty in degree < 2d;

2. of dimension d+ 1 in degre 2d.

Proof. For any possible pairs of our variables, we define the hyperplanes:

H01 = {x0 − x1 = 0}, . . . ,H23 = {x2 − x3 = 0}.

Among such hyperplanes, we choose an independent 4-tuple, say

H01, H02, H13, H23.

We can easily check the following two properties:

• every hyperplane passes through exactly 4 of our points, e.g.,

{P1, P2, P7, P8} ∈ H23;

• there are two pairs of such a 4-tuple which do not intersect at the Pi’s.

Considering these two pairs, i.e. {H01, H23} and {H02, H13}, we can con-
struct the following two quadrics

C1 = H01H23, C2 = H02H13.
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From the above mentioned properties of our hyperplanes, we may observe
that each of the two quadrics passes through all the P ′is exactly once and
then, each power Cmi has singularities of degree m at each point; in other
words, Cmi belongs to I(m) for any positive integer m. Hence, the following
polynomials are inside the degree 2d part of the ideal I(d),

Gi,d−i := Ci1 · Cd−i2 , for i = 0, . . . , d.

We want to show that these are the generators of the ideal in degree 2d.
Firstly, we may observe that such polynomials are linearly independent.
We proceed by induction on the degree d. Base of induction: consider a
linear combination αC1 + βC2 = 0. By intersecting with the hyperplane
H01 = {x0 − x1 = 0}, we get β = 0 and, consequently, α = 0. Similarly,
given a linear combination αC2

1 + βC1C2 + γC2
2 = 0, we get α = 0, by in-

tersecting with the hyperplane H01, and γ = 0, by intersecting with H02;
consequently, β = 0. With these two base steps, we can do the step of induc-
tion. Consider a linear combination

∑
i=0,...,d αiGd−i,i = 0. By intersecting

with the planes H01 and H02, we get α0 = 0 and αd = 0, respectively. Con-
sequently, we get a linear combination,

C1C2 ·
d−2∑
j=0

αj+1Cd−2−j
1 Cj2 = 0;

by induction, we are done.
After showing that the above polynomials are linearly independents,

we now have to prove that they are enough to generate the whole degree
2d part of the ideal, namely that the dimension of the linear system L2d(Xd)
is equal to d+ 1 and not bigger. We proceed by induction on the degree d.

The case d = 1 is trivial. For the general case, we look at the linear
system L2d(Xd + P ) of hypersurfaces of degree 2d through our scheme Xd
plus one extra simple point P .

Claim: the dimension of L2d(Xd + P ) is equal to d.

Proof of Claim. The aim is to show that, choosing a point P in a clever way,
the quadric given by the two plane H01 and H23 is a fixed component for all
the surfaces of degree 2d through the scheme Xd +Q; thus, by induction,

dimC L2d(Xd +Q) = dimC L2d−2(Xd−1) = d.

The symmetry of the problem suggests that we choose the point Q on the
intersection line l = {H01 = H23 = 0} between the two planes. Let’s take,
for example, a point on the line with coordinates Qm := [2m + 1 : 2m + 1 :
2m+ 3 : 2m+ 3] for some m ≥ 0. On the plane H01 we consider the coordi-
nates {x0, x2, x3} and we consider the general conic given by the equation

α1x
2
0 + α2x0x2 + α3x0x3 + α4x

2
2 + α5x2x3 + α6x+ 32 = 0;
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imposing the passage through the points P3, P4, P5, P6 on the plane, we get
the following conditions

α4 = α6 = 0, α1 + α2 = α1 + α3 = 0,

thus, we get the pencil of conics

α1x
2
0 − α1x0x2 − α1x2x3 − α5x2x3 = 0.

Imposing the passage through the point Qm, we get the condition

α5 =
2(2m+ 1)(2m+ 3)− (2m+ 1)2

(2m+ 3)2
α1 =

(2m+ 1)(2m+ 5)

(2m+ 3)2
α1,

and then the unique conic

Q = (2m+ 3)2x2
0− (2m+ 3)2x0x2− (2m+ 3)2x0x3 + (2m+ 1)(2m+ 5)x2

3 = 0.

Intersecting Q with the intersection line l, i.e., imposing x2 − x3 = 0, we
get the equation

(2m+ 3)2x2
0 − 2(2m+ 3)2x0x2 + (2m+ 1)(2m+ 5)x2

3 = 0

=⇒ [(2m+ 3)x0 − (2m+ 1)x3] [(2m+ 3)x0 − (2m+ 5)x3] = 0.

Thus, the conic Q intersects the line l also at two distinct points: the point
Qm and also Rm = [2m+ 5 : 2m+ 5 : 2m+ 3 : 2m+ 3].

We play the same game on the plane H23 considering the point Rm.
Imposing the passage through the points P1, P2, P7, P8 to the conics in the
variables {x0, x1, x2}, we get the pencil of conics

β2x0x1 − β6x0x2 − β6x1x2 + β6x
2
2 = 0.

Imposing the passage through the point Rm, we get the condition

β2 =
2(2m+ 5)(2m+ 3)− (2m+ 3)2

(2m+ 5)2
β6 =

(2m+ 7)(2m+ 3)

(2m+ 5)2
β6.

Thus, we get a unique conic intersecting the line l at the two distinct points
Rm and Qm+2. Hence, we come back to the plane H01 and we continue the
same game starting from the point Qm+2, and so on.

In this way, on the two planes we can find infinitely many conics which
have to be fixed component for our linear system; thus, the two planes are
fixed components and the Claim is proven.

From the Claim, we have that the linear system L2d(X) has the right
dimension; indeed,

d
Claim

= dimC L2d(Xd + P ) ≥ dimC L2d(Xd)− 1 ≥ (d+ 1)− 1.

To complete the proof of the theorem, we just need to prove that there
are no elements in the degree 2d− 1 part of the ideal I(d). Indeed, assume
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F ∈ I(d) of degree 2d − 1; thus, x0F ∈ I(d). Consequently, there exists a
linear combination between x0F and the Gi’s which is identically zero. By
specializing to the hyperplane x0 = 0 and using the linear independence of
the Gi’s, we are done.

Theorem 2.7.2. Let P1, . . . , P8 be general points in P3 with defining ideals
℘1, . . . , ℘8, respectively. For any d ≥ 1, let I(d) = ℘d1 ∩ . . .∩ ℘d8 be the defining
ideal of the scheme of fat points Xd = dP1 + . . .+ dP8. Then,

HSS/Id(t) =
∑

0≤i≤2m−1

(
i+ 3

3

)
ti +

∑
i≥2m

8

(
m+ 2

3

)
ti.

Proof. From the first part of Lemma 2.7.1, we have that there are no gen-
erators in degree ≤ 2d− 1. Hence HFS/I(d)(i) = dimC Si, for i ≤ 2d− 1.

Moreover, we know that the Hilbert function S/I(d) is weakly increasing
and eventually equals to 8

(
d+2

3

)
. Hence, in order to conclude, it is enough

to observe that

HFS/I(d)(2d) =

(
2d+ 3

3

)
− (d+ 1) = 8

(
d+ 2

3

)
,

where the first inequality follows from the second part of Lemma 2.7.1.

BETTI NUMBERS. Set Rd = S/I(d). We have proved in Theorem 2.7.2 that

HSRd(t) =

2d−1∑
j=0

(
3 + j

j

)
tj + 8

(
d+ 2

3

)
t2d

1− t
.

Since Rd is a Cohen-Macaulay ring of dimension one, we can take a non-
zero divisor L of degree 1. Consequently, from the exact sequence given by
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the multiplication by L (see Example A.1.4), we have that

HSRd/(L)(t) = (1− t) HSRd(t) =

= (1− t)
2d−1∑
j=0

(
3 + j

j

)
tj + 8

(
d+ 2

3

)
t2d.

In particular, [Rd/(L)]2d+1 = 0 and, since L is a non-zero divisor of Rd,

βi,j = dim TorSi,j

(
R(d),C

)
= dim TorSi,j

(
R(d)/(L),C

)
.

In order to compute the last Tor, one can start from the resolution of
C ' S/(x0, . . . , xn) given by the Koszul complex K•, and then tensoring
by Rd/(L). We denote it by

K• = K• ⊗S Rd/(L).

By definition of the Koszul complex, which is given by the exterior algebra∧
C4, we have that Ki = 0, for all i ≥ 5. Otherwise, we have that the

elements of the graded part Ki,j of Ki consist of linear combinations of
elements of type f · tj1 · · · tji , where deg(f) = j − i and where {t1, . . . , t4} is
a basis of C4. Thus, since [Rd/(L)]2d+1 = 0, by looking at the homology,

TorSi,j(Rd/(L),C) = 0, for all j ≥ i+ 2d+ 1.

Thus, we can only have a few (possibly) non-zero Betti numbers, namely

0 1 2 3 4 5
0 1 - - - - -

2d− 1 - β1,2d β2,2d+1 β3,2d+2 β4,2d+3 -
2d - β1,2d+1 β2,2d+2 β3,2d+3 β4,2d+4 -

2d+ 1 - - - - - -

Lemma 2.7.3. There are no linear syzygies among the generators of our
ideal I(d) in degree 2d, i.e. β2,2d+1 = 0.

Proof. Since the vanishing of a Betti number is equivalent to the vanishing
of the corresponding Tor, it is given by the surjectivity or the injectivity of
some linear map, i.e. by the maximality of the rank of some matrix. Hence,
it is an open condition and, then, it is enough to show that such condition
holds for a specific example in order to get the result for the generic case.

Let’s consider the same arrangement of eight fat points as in Theorem
2.7.2. We have proved that the corresponding ideal has d+ 1 generators in
degree 2d, i.e.

Gi,d−i := Ci1Cd−i2 , for i = 0. . . . , d,

where C1 = (x0 − x1)(x2 − x3) and C2 = (x0 − x2)(x1 − x3). We proceed
by induction over d. First, assume that there is a linear syzygy, i.e. there
exists linear forms L0, L1 such that

L0C1 + L1C2 = L0(x0 − x1)(x2 − x3) + L1(x0 − x2)(x1 − x3) = 0.
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Thus, all the third order derivatives of such polynomial should be equal to
zero. Since the monomials x0x2 and x1x3 appear only in C1 and not in C2,
the derivatives ∂x2

0x2
, ∂x2

1x3
, ∂x0x2

2
, ∂x1x2

3
give us L0 = 0. Similarly, by using

the monomials x0x1 and x2x3, we get L1 = 0.
Let’s now assume that there is a linear syzygy in the case d = 2, namely

there exist linear forms L0, L1 and L2 such that

L0G2,0 + L1G1,1 + L2G0,2 = 0.

Again, monomials x2
0x

2
2 and x2

1x
2
3 appear only in G2,0, thus, imposing that

the degree 5 derivatives ∂x3
0x

2
2
, ∂x3

1x
2
3
, ∂x2

0x
3
2
, ∂x2

1x
3
3

vanish, we get L0 = 0.
Similarly, by considering monomials x2

0x
2
1 and x2

2x
2
3, which appear only in

G0,2, and derivatives ∂x3
0x

2
1
, ∂x2

0x
3
1
, ∂x3

2x
2
3
, ∂x2

2x
3
3
, we get L2 = 0. Consequently,

L1 = 0. In general, assuming that we have a linear syzygy

d∑
i=0

LiGd−i,i =

d∑
i=0

LiCd−i1 Ci = 0,

we can consider the monomials xdzd and ydtd which appear only inGd,0. By
imposing the vanishing of all the derivatives ∂xd+1

0 xd2
, ∂xd+1

1 xd3
, ∂xd0x

d+1
2

, ∂xd1x
d+1
3

,
we get L0 = 0. Similarly, we can use the monomials xd0xd1 and xd2xd3 to con-
clude Ld = 0. Thus, we can rewrite the linear syzygy as

C1C2 ·
d−2∑
j=0

lj+1Cd−2−j
1 Cj2 = 0,

and then use induction.

Now, since there are no linear syzygies among the generators of degree
2d, we have that β2,2d+1 = 0 and consequently, by a basic property of Betti
numbers, also β3,2d+2 = β4,2d+3 = 0. Thus, we can read the remaining Betti
numbers directly from the Hilbert series of Rd, which is of the form

1− β1,2dt
2d − β1,2d+1t

2d+1 + β2,2d+2t
2d+2 − β3,2d+3t

2d+3 + β4.2d+4t
2d+4

(1− t)4
.

From Theorem 2.7.2, we get

(1− t)4 HSRd(t) = (1− t)4
2d−1∑
j=0

(
3 + j

j

)
tj + (1− t)38

(
d+ 2

3

)
t2d. (2.6)

From that, we already can see that β4,2d+4 = 0. Now, one can show that

(1− t)4
2d−1∑
j=0

(
3 + j

j

)
tj = 1 +

3∑
j=0

(−1)j+1

(
3

j

)(
3 + 2d

2d

)
2d

2d+ j
t2d+j .
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The idea to prove such an equality is to show that both sides have the
same derivatives, see [FL02, Proposition 5.2] for a similar computation.
Thus, we can continue from equation (2.6), getting

(1− t)4 HSRd(t) = 1 +

3∑
j=0

(−1)j+1

(
3

j

)[(
3 + 2d

2d

)
− 8

(
d+ 2

3

)]
t2d+j .

By direct computations, we finally get

(1− t)4 HSRd(t) = 1− (d+ 1)t2d−4

(
d+ 1

2

)
t2d+1 +d(4d+ 5)t2d+2−4

(
d+ 1

2

)
.

Hence, the Betti diagram of Rd is as follows

0 1 2 3 4
0 1 - - - -

2d-1 - d+ 1 - - -
2d - 4

(
d+1

2

)
d(4d+ 5) 4

(
d+1

2

)
-

2d+1 - - - - -

2.7.2 CONFIGURATIONS OF ξ-POINTS

In 2012, Fröberg, Ottaviani and Shapiro started the study of d-th Waring
decompositions. Namely, decompositions of homogeneous polynomials of
degree kd as sums of d-th powers of forms of degree k. As explained in Sec-
tion 1.3.3, these decompositions can be interpreted geometrically in terms
of secant varieties of varieties of powers. In particular, the d-th Waring
rank of generic forms of degree kd corresponds to the first of such secant
varieties that fills the whole ambient space, i.e.,

rk◦d(n+ 1, kd) = min{s | σs(Vn,k,d) = P(Skd)}.

Via Terracini’s Lemma, we can describe the tangent space at a generic
point P ∈ σs(Vn,k,d) as

TP (σs(Vn,k,d)) = P
(
[Gd−1

1 , . . . , Gd−1
s ]kd

)
,

where the Gi’s are generic forms of degree k. In [FOS12], the authors
proved that, for s = dn, there exists a choice of the Gi’s such that the
ideal generated by their d-th powers coincides with the whole polynomial
ring in degree kd. Their idea was to fix a primitive d-th root of unity and
then consider the power ideal In,k,d generated by all the dn forms

(x0 + ξg1x1 + . . .+ ξgnxn)k(d−1), where 0 ≤ gi ≤ d− 1, for all i = 1, . . . , n.

Theorem 2.7.4 (Fröberg–Ottaviani–Shapiro, [FOS12]). Given positive in-
tegers n, k, d, in the same notation as above,

[In,k,d]kd = Skd.
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As a consequence, they get the following.

Theorem 2.7.5 (Fröberg–Ottaviani–Shapiro, [FOS12]). Fixed positive in-
tegers n, k, d, we have that

rk◦d(n+ 1, kd) ≤ dn.

In this section, based on [BO15], we compute the Hilbert function of
these power ideals and the corresponding ideals of fat points; namely, the
schemes of fat points supported on the configuration of ξ-points

Xn,k,d = {[1 : ξg1 : . . . : ξgn ] ∈ Pn | 0 ≤ gi ≤ d− 1, for all i = 1, . . . , n}.

The key idea is to refine the standard grading.

MULTICYCLE GRADING

Let Zk = {[0]d, [1]d, . . . , [d − 1]d} be the cyclic group of integers modulo d.
Let ξ be a primitive dth-root of unity and observe that, for any ν ∈ Zd, the
complex number ξν is well-defined. We will usually use a small abuse of
notation denoting a class of integer modulo d simply with its representative
between 0 and d− 1; e.g. when we will consider the scalar product between
two vectors g,h ∈ Zn+1

d , denoted by 〈g,h〉, we will mean the usual scalar
product considering each entry of the two vectors as the smallest positive
representative of the corresponding class.

Consider, for each g = (g0, . . . , gn) ∈ Zn+1
d , the polynomial

φg :=

(
n∑
i=0

ξgixi

)D
, where D := k(d− 1).

Hence, In,k,d is by definition the ideal generated by all φg, with g ∈ 0 ×
Znd . It is homogeneous with respect to the standard grading, but it is also
homogeneous with respect to the Zn+1

d -grading we are going to define.
Consider the projection πd : N −→ Zd given by πd(n) = [n]d. For any

vector a = (a0, . . . , an) ∈ Nn+1, we define the multicyclic degree as follows.
Given a monomial xa := xa0

0 . . . xann , we set

mcdeg(xa) := πn+1
d (a) = ([a0]d, . . . , [an]d).

Thus, combining this multicyclic degree with the standard grading, we get
the multigrading on the polynomial ring S given by

S =
⊕
i∈N

Si =
⊕
i∈N

⊕
g∈Zn+1

d

Si,g, where Si,g := Si ∩ Sg;

where, for any i1, i2 ∈ N and g1,g2 ∈ Zn+1
d , we have that

Si1,g1
· Si2,g2

= Si1+i2,g1+g2
.
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Remark 2.7.6. For 0 := (0, . . . , 0), we get obviously that S0 = C[xd0, . . . , x
d
n],

and then, for any i ∈ N,

Si,0 6= 0 if and only if i = jd for some j ∈ N,

in which case
dimC Sjd,0 =

(
n+ j

n

)
.

For any multicycle g = (g0, . . . , gn) ∈ Zn+1
d , we define:

the partition vector of g to be

part(g) := (#{gi = 0}, . . . ,#{gi = d− 1}) ;

and the weight of g as

wt(g) :=

n∑
j=0

gj .

Clearly, the weight is non-negative and

wt(g) = 0 if and only if g = 0.

Lemma 2.7.7. Let i ∈ N and g ∈ Zn+1
d . Then,

Si,g 6= 0 if and only if i− wt(g) = jd, for some j ∈ N.
In that case,

dimCSi,g =

(
n+ j

n

)
.

Proof. Given a monomial xa with i = deg(xa), consider g = πn+1
d (a). Hence,

we have that xa−g ∈ Si−wt(g),0. Furthermore,

dimC Si,g = dimC Si−wt(g),0 =

(
n+ j

n

)
.

Now, we denote with Gd,n,i the set set of all multicycles satisfying the
two equivalent conditions of Lemma 2.7.7, i.e.,

Gd,n,i := {h ∈ Zn+1
d | i− wt(h) ∈ dN} = {h ∈ Zn+1

d | Si,h 6= 0}.

Coming back to our ideal, since we can write SD =
⊕

g∈Zn+1
d

SD,g, we can
represent the generator φ0 = (x0 + . . .+ xn)D of In,k,d as

φ0 =
∑

g∈Zn+1
d

ψg, where ψg ∈ SD,g.

Clearly, if ψg 6= 0 then g ∈ Gd,n,D, but one can also check that actually

ψg 6= 0 ⇐⇒ g ∈ Gd,n,D.
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In particular, under the equivalent latter conditions, we have that,

ψg =
∑

a0+...+an=D
πn+1
d (a0,...,an)=g

(
D

a0, . . . , an

)
xa.

This example should make the reader more familiar with these notation.

Example 2.7.8. Let k = 4, n = 2, d = 2 and φ0 = (x0 + x1 + x2)4. We have

ψ(0,0,0) = x4
0 + 6x2

0x
2
1 + 6x2

0x
2
2 + x4

1 + 6x2
1x

2
2 + x4

2;

ψ(1,0,0) = ψ(0,1,0) = ψ(0,0,1) = ψ(1,1,1) = 0;

ψ(1,1,0) = 4x3
0x1 + 12x0x1x

2
2 + 4x0x

3
1;

ψ(1,0,1) = 4x3
0x2 + 12x0x

2
1x2 + 4x0x

3
2;

ψ(0,1,1) = 4x1x
3
2 + 12x2

0x1x2 + 4x1x
3
2.

We can notice that, since (1, 0, 0) 6∈ G2,2,4, we already expected ψ(1,0,0) = 0,
and similarly for (0, 1, 0), (0, 0, 1) and (1, 1, 1).

Lemma 2.7.9. For any g ∈ Zn+1
d , one has

φg =
∑

h∈Gd,n,D

ξ〈g,h〉ψh;

and, conversely,
ψg = d−n−1

∑
h∈Zn+1

d

ξ−〈g,h〉φh.

Proof. From the definition, we can write

φg =

(
n∑
i=0

ξgixi

)D
=

∑
a0+...+an=D

(
D

a0, . . . , an

) n∏
l=0

ξglalxall =

=
∑

a0+...+an=D

(
D

a0, . . . , an

)
ξ〈g,d〉xa.

Now, for each a = (a0, . . . , an), we can consider the vector πn+1
d (a) = h ∈

Zn+1
d . Since ξ is a dth root of unity, we have ξ〈g,a〉 = ξ〈g,h〉. Thus,

φg =
∑

h∈Gd,n,D

ξ〈g,h〉
∑

a0+...+an=D
πn+1
d (a)=h

(
D

a0, . . . , an

)
xa =

∑
h∈Gd,n,D

ξ〈g,h〉ψh.

For the second part of the statement, we consider the following equality
which follows from the first part already proven. For any m ∈ Zn+1

d ,∑
g∈Zn+1

d

ξ−〈g,m〉φg =
∑

g∈Zn+1
d

∑
h∈Gd,n,D

ξ〈g,h〉−〈g,m〉ψh.
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In the right hand-side, we have{
if m = h :

∑
g∈Zn+1

d
ψh = dn+1ψh;

if m 6= h :
∑

g∈Zn+1
d

ξ〈g,h−m〉ψh =
∑

g∈Zn+1
d

ξg0

0 . . . ξgnn ψh = 0.

Hence, the set {ψg}g∈Gd,n,D of nonzero polynomials has distinct multi-
cyclic degree and, consequently, is linearly independent. In other words,
we have proved the following proposition.

Proposition 2.7.10. In,k,d is minimally generated by {ψg}g∈Gd,n,D .

Theorem 2.7.11. The cardinality of Gd,n,D is given by:

|Gd,n,D| =

=
∑
i≥0

∑
ν2,...,νd−1≥0

(
n+ 1

D − di−
∑d−1
j=1 (j − 1)νj

)(
D − di−

∑d−1
j=1 (j − 1)νj

ν2, . . . , νd−1, D −
∑d−1
j=2 jvj

)
=

=
∑

i,ν2,...,νd−1≥0

(
n+ 1

ν2, . . . , νd−1, D − di−
∑d−1
j=2 jνj , n+ 1−D + di+

∑d−1
j=2 (j − 1)νj

)
.

In particular, if d = 2, then this number of generators equals
∑
i≥0

(
n+1
k−2i

)
.

Proof. For any g ∈ Gd,n,D, we can write ψg = f(xd0, . . . , x
d
n)xg where f is

a homogeneous polynomial of degree i and part(g) = (0, ν1, . . . , νd−1). To
count the number of elements of Gd,n,D, there are

( n+1

D−di−
∑d−1
j=1 (j−1)νj

)
ways

to choose the variables with nonzero exponent modulo d and, for each such
choice, there are

( D−di−
∑d−1
j=1 (j−1)νj

ν2,...,νd−1,D−
∑d−1
j=2 jvj

)
ways to distribute the exponents.

Example 2.7.12. For k = 2, d = 3, n = 4, the number of minimal genera-
tors is

(
3

0,3,0,0

)
+
(

3
0,1,2,0

)
+
(

3
1,1,0,1

)
+
(

3
2,0,1,0

)
+
(

3
0,0,1,2

)
= 16. This means that

the original generators φg are linearly independents.

Theorem 2.7.13. If d = 2, the generators {φg}g∈0×Zn2 are linearly indepen-
dent if and only if n+ 1 ≤ k.

Proof. {ψg} is linearly independent, and they are
∑
i≥0

(
n+1
d−2i

)
many. This

sum equals 2n if and only if n+ 1 ≤ k.

HILBERT FUNCTION OF THE POWER IDEALS In,k,d

In order to simplify the notation, when there will be no ambiguity, we will
denote I := In,k,d and R := Rn,k,d = S/I with the multicycling grading
described in the previous section R =

⊕
i∈N
⊕

g∈Zn+1
d

Ri,g.
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Definition 2.7.14. For 0 ≤ i ≤ k and given a vector h ∈ Zn+1
d , we define

the map

µi,h : Di,h :=
⊕

g∈Zn+1
d

Si,h−g −→ Si+D,h,

(. . . , fg, . . .) 7−→
∑

g∈Zn+1
d

fgψg.

given by the multiplication by each ψg ∈ SD,g.

Remark 2.7.15. In order to have Si+D,h 6= 0, we always assume i + D −
wt(h) ∈ dZ. Observe that, under such assumption, we have the following
equivalence

i− wt(h− g) ∈ dZ⇐⇒ D − wt(g) ∈ dZ.
In other words, using the properties of the multicyclic grading explained
in the previous section, we have

Si,h−g 6= 0⇐⇒ ψg 6= 0.

Thus, it makes sense to study the injectivity of the µi,h’s which will be the
crucial step for our computations.

Lemma 2.7.16. Given 0 ≤ i ≤ d and h ∈ Zn+1
k , if i + D − wt(h) ∈ kN and

wt(h) ≤ (k − 1)(d− i),

dim(Di,h) ≤ dim(Si+D,h);

with equality if wt(h) = (k − 1)(d− i).

Proof. Under such numerical assumptions, we have that Di,h coincides
with Si; thus,

dimCDi,h =

(
n+ i

n

)
.

Moreover, we may observe that, for some integer m ≥ 0,

dm = i+D − wt(h) ≥ i+D − (d− 1)(k − i) = di.

Hence, i+D − wt(h) = d(i+ j) for some j ≥ 0 and

dim(Si+D,h) =

(
n+ i+ j

n

)
.

For any 0 ≤ i ≤ k and h ∈ Zn+1
d , the image of the map µi,h is simply the part

of multicycling degree (i,h) of our ideal I. These maps will be the main tool
in our computations regarding the Hilbert function of I and its quotient
ring R. By Remark 2.7.23 and Lemma 2.7.16, it makes sense to ask if µi,h
is injective whenever wt(h) ≤ (d−1)(k− i) and i+D−wt(h) ∈ dZ. In these
cases, the dimension of Ii+D,h in degree i will be simply the dimension of
Di,h = Si. On the other hand, again by Lemma 2.7.16, one could hope that
µi,h is surjective in all the other cases implying, consequently, Ri+D,h = 0.
This is true for d = 2 as we are going to prove in the next section.
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CASE d = 2. In this case, D = k(d − 1) = k. Moreover, as we said in
Remark 2.7.23, we consider only the maps µi,h with i+ k − wt(h) is even.

Lemma 2.7.17. In the same notation as above, we have:

1. µk,0 is bijective;

2. µi,h is injective if wt(h) ≤ k − i;

3. µi,h is surjective if wt(h) ≥ k − i.

Proof. (1) The map µk,0 is surjective, due to Theorem 2.7.4. The map µk,0 is
also injective because we are in the limit case of Lemma 2.7.16, i.e., where
the dimensions of the source and the target are equal.

(2) Given a monomial M with M ∈ Sk+i,h, there exists a monomial M ′
such that MM ′ ∈ S2k,0. Indeed, it is enough to consider the monomial xh

to get mcdeg(xhM) = 0 and then we can multiply by any monomial of the
right degree to get total degree equal to 2d and multicyclic degree equal to
0. Hence, the injectivity of µi,h follows from (1).

(3) If wt(h) = (k − i), we are in the limit case of Lemma 2.7.16 and
then, from injectivity of µi,h, also the surjectivity follows. Instead, the case
wt(h) > k − i follows from the previous one because, given any monomial
M with M ∈ Sn,h and n− wt(h) = 2m, then M is a product of a monomial
M ′ with M ′ ∈ Sn−2m,h.

We are now able to study the Hilbert function of our class of power ideals.

Lemma 2.7.18. In the same notation as above, we have:

1. if i < k, Ii = 0;

2. if i = j + k with j ≥ 0, Ri,h 6= 0 if and only if

h ∈ Hj := {h′ | i− wt(h′) ∈ 2N, wt(h′) < k − j, wt(h′) ≤ n+ 1};

moreover, if h ∈ Hj , then

dimCRi,h = dimC Si,h −
(
n+ j

n

)
.

Proof. Since I has generators in degree k, then Ii = 0 for all i < k. Consider
now i = k + j for some j ≥ 0. Since Ri =

⊕
h∈Zn+1

d
Ri,h, we will focus on

the dimension of each summand Ri,h. Given h ∈ Zn+1
2 , we have seen that

I = (ψg | g ∈ G2,n,D); hence, Ii,h = Im(µj,h). By Lemma 2.7.17, for wt(h) ≥
k − j, we know that µj,h is surjective and then Ii,h = Si,h. Consequently,
Ri,h = 0. Moreover, by Lemma 2.7.7, we need to consider only h ∈ Zn+1

2

such that i − wt(h) ∈ 2N. Otherwise Si,h = 0 and consequently, Ri,h = 0.
Thus, we just need to consider h from the set Hj defined in the statement.
By Lemma 2.7.17, under these numerical assumptions, µj,h is injective and

dimC Ii,h =
∑

g∈Zn+1
2

dimC Sj,h−g = dimC Sj =

(
n+ j

n

)
,
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or, equivalently,

dimCRi,h = dimC Si,h −
(
n+ j

n

)
.

Theorem 2.7.19. The Hilbert function of the quotient ring R is given by:

1. if i < k, HFR(i) =
(
n+i
n

)
;

2. if i = j + k with j ≥ 0,

HFR(i) =
∑
h∈Hj

dimCRi,h =
∑

h<k−j
i−h∈2N

(
n+ 1

h

)((
n+ i−h

2

n

)
−
(
n+ j

n

))
.

Proof. The case i < k is trivial. Consider i = j+k with j ≥ 0. First, we may
observe that, by Lemma 2.7.18, whenever h ∈ Hj , the dimension of Ri,h
depends only on the weight of h. Indeed, considering h ∈ Hj and denoting
h := wt(h), we get, by Lemma 2.7.7,

dimCRi,h = dimC Si−h,0 −
(
n+ j

n

)
=

(
n+ i−h

2

n

)
−
(
n+ j

n

)
.

To conclude our proof, we just need to observe that, fixing a weight h, we
have exactly

(
n+1
h

)
vectors h ∈ Zn+1

2 with such a weight.

Corollary 2.7.20. R2k−1 = 0.

Proof. In order to get R2k−1,h 6= 0, we should have that wt(h) is odd and
wt(h) < 1, which is impossible.

In the following example, we explicit our algorithm in a particular case in
order to help the reader in the comprehension of the theorem.

Example 2.7.21. Fix n+1 = 4, i.e. S = C[x0, . . . , x3] and k = 5. We compute
the Hilbert function of the quotient R = S/I3,5,2 where

I3,5,2 =
(
(x0 ± x1 ± x2 ± x3)5

)
.

For i < 5, we have

HFR(i) =

(
3 + i

3

)
.

For i = 5 (j = 0), we have that H0 = {h | wt(h) = 1, 3}. Hence,

HFR(5) =
∑

wt(h)=1

dimCR5,h +
∑

wt(h)=3

dimCR5,h =

=

(
4

1

)
(dimC(S4,0)− 1) +

(
4

3

)
(dimC(S2,0)− 1) =

= 4(10− 1) + 4(4− 1) = 36 + 12 = 48.
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For i = 6 (j = 1), we have that H1 = {h | wt(h) = 0, 2}. Hence,

HFR(6) = dimCR6,0 +
∑

wt(h)=2

dimCR6,h =

= (dimC(S6,0)− 4) +

(
4

2

)
(dimC(S4,0)− 4) =

= (20− 4) + 6(10− 4) = 16 + 36 = 52.

For i = 7 (j = 2), we have that H2 = {h | wt(h) = 1}. Hence,

HFR(7) =
∑

wt(h)=1

dimCR7,h =

(
4

1

)
(dimC(S6,0)− 10) = 4(20− 10) = 40.

For i = 8 (j = 3), we have that H3 = {0}. Hence,

HFR(8) = dimCR8,0 = dimC(S8,0)− 20 = 35− 20 = 15.

For i ≥ 9 (j ≥ 4), we can easily see that Hj = ∅. Thus,

HFR : 1 4 10 20 35 48 52 40 15 −

Below we give a more explicit formula for the Hilbert series in cases with
small number of variables.

Theorem 2.7.22. The Hilbert series of R1,k,2 is given by

HSR1,k,2
(t) =

1− 2tk + t2k

(1− t)2
.

The Hilbert series of R2,k,2, for k ≥ 2 is given by

HSR2,k,2
(t) =

(
1− 4tk + dt2k−1 + 3t2k − kt2k+1

)
(1− t)3

=

=

k−1∑
i=0

(
i+ 2

2

)
ti +

k−2∑
i=0

((
k + i+ 2

2

)
− 4

(
i+ 2

2

))
tk+i.

The Hilbert series of R3,k,2, for k ≥ 3 is given by

HSR3,k,2
(t) =

=

(
1− 8tk +

(
k
2

)
t2k−2 + 4kt2k−1 − (k2 − 7)t2k − 4kt2k+1 +

(
k+1

2

)
t2k+2

)
(1− t)4

=

=

k−1∑
i=0

(
i+ 3

3

)
ti +

k−3∑
i=0

((
k + i+ 3

3

)
− 8

(
i+ 3

3

))
tk+i +

(
k + 1

2

)
t2k−2.
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Proof. Case n+ 1 = 2. The result follows from the fact that in this case we
have a complete intersection, see Example A.1.4.

Case n + 1 = 3. From Lemma 2.7.17, for any 0 ≤ j ≤ k − 3, we have
that [I2,k,2]k+j = Sj [I2,k,2]k, since wt(h) ≤ k − 3, for all possible h. Since
2k − 2 is even, we get that wt(h) should be even and therefore,wt(h) ≤ 2 =
k− (k− 2). Thus, we get injectivity in this degree also. Now, from Theorem
2.7.19, we get that dimC([R2,k,2]k+j) = dimC(Sk+j) − #(Hj) ·

(
n+j
n

)
. Under

our numerical assumption, it is clear that, for 0 ≤ i ≤ k − 3, Hi is exactly
the half of all possible vectors in Zn+1

2 , i.e., #(Hi) = 2n. Hence,

HSR2,k,2
(t) =

k−1∑
i=0

(
i+ 2

2

)
ti +

k−2∑
i=0

((
k + i+ 2

2

)
− 4

(
i+ 2

2

))
tk+i.

A simple calculation shows that

(1− t)3 HSR2,k,2
(t) = (1− 4tk + kt2k−1 + 3t2k − kt2k+1).

Case n + 1 = 4. Since wt(h) ≤ 4, for all possible h, we get from Lemma
2.7.17 that [I3,k,2]k+i = Si[I3,k,2]k, for all 0 ≤ i ≤ k − 4. Moreover, since
2k − 3 is odd, we get that wt(h) should be odd and consequently wt(h) ≤
3 = k− (k−3). Hence, we have injectivity also in this degree. Moreover, for
all 0 ≤ i ≤ k−3, we get thatHi is half of all possible vectors in Zn+1

2 , i.e.Hi
has cardinality equal to 2n. Now, we just need to compute the dimension of
[R3,k,2]2k−2. By definition, the vectors h ∈ Hk−2 have to be odd, since 2k− 2
is odd, and they have to satisfy the condition wt(h) < 2. Thus, we get only
the case h = 0 and #(Hk−2) = 1. Thus, by Theorem 2.7.19,

dimC([R3,k,2]2k−2) = dimC([R3,k,2]2k−2,0) = dimC(S2k−2,0)−
(

3 + k − 2

3

)
=

=

(
k + 2

3

)
−
(
k + 1

3

)
=

(
k + 1

2

)
.

Putting together our last observations, we get

HSR3,k,2
(t) =

=

k−1∑
i=0

(
i+ 3

3

)
ti +

k−3∑
i=0

((
k + i+ 3

3

)
− 8

(
i+ 3

3

))
tk+i +

(
k + 1

2

)
t2k−2.

A simple calculation shows that

(1− t)4 HSR3,k,2
(t) =

= 1− 8tk +

(
k

2

)
t2k−2 + 4kt2k−1 − (k2 − 7)t2k − 4kt2k+1 +

(
k + 1

2

)
t2k+2.
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Remark 2.7.23. From the proof of Theorem 2.7.22, we can say something
more about the Hilbert series of Rn,k,2, even for more variables. Assuming
k ≥ n, by using the same ideas as in Theorem 2.7.22, we get that, for all
0 ≤ j ≤ k − n, the (k + j)th-coefficient of our Hilbert series is equal to

HFRn,k,2(k + j) =

(
n+ k + j

n

)
− 2n

(
n+ j

n

)
.

Moreover, we get that, for any k ≥ 2, Hk−2 = {0} and consequently,

HFRn,k,2(2k − 2) = dimC([Rn,k,2]2k−2) = dimC([Rn,k,2]2k−2,0) =

= dimC(S2k−2,0)−
(
n+ k − 2

n

)
=

(
n+ k − 1

n

)
−
(
n+ k − 2

n

)
=

=

(
n+ k − 2

n− 1

)
.

Similarly, we have that, for any k ≥ 3, Hk−3 = {h ∈ Zn+1
2 | wt(h) = 1}.

Thus,

HFRn,k,2(2k − 3) = dimC([Rn,k,2]2k−3) =
∑

wt(h)=1

dimC([Rn,k,2]2k−3,h) =

= (n+ 1)

[
dimC(S2k−2,0)−

(
n+ k − 2

n

)]
=

= (n+ 1)

(
n+ k − 2

n− 1

)
.

Conjecture 2.4. Rn,k,2 is a level algebra, i.e. Soc(Rn,k,2) = [Rn,k,2]2k−2. If
so, from Remark 2.7.23, we get that Soc(Rn,k,2) has dimension

(
n+k−2
n−1

)
.

CASE d > 2. We want to generalize our results for d > 2. Inspired by
Lemma 2.7.16, we conjecture the following behavior of the maps µi,h.

Conjecture 2.5. In the same notation as in Definition 2.7.14, we have

1. µi,h is injective if wt(h) ≤ (d− 1)(k − i);

2. µi,h is surjective if wt(h) ≥ (d− 1)(k − i).

By following ideas similar to the one used in Lemma 2.7.18, we have that
Conjecture 2.5 would imply the following.

Conjecture 2.6. In the above notation, if i = j +D with j ≥ 0, then
Ri,h 6= 0 if and only if

h ∈ Hj := {h′ | i− wt(h′) ∈ dN, wt(h′) < k − j, wt(h′) ≤ (d− 1)(n+ 1)};

moreover, if h ∈ Hj , then

dimCRi,h = dimC(Si,h)−
(
n+ j

n

)
.
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Proposition 2.7.24. Conjecture 2.5 implies Conjecture 2.6.

Proof. Follow the proof of Theorem 2.7.19.

Remark 2.7.25. The above conjectures imply a direct generalization of
the algorithm to compute the Hilbert function of the quotient rings R, de-
scribed in Example 2.7.21. Trivially, we already know that, for i < D, since
the ideal I has generators only in degree D,

HFR(i) =

(
n+ i

n

)
.

For the cases i = D + j with j ≥ 0, from Conjecture 2.6, we would have

HFR(i) =
∑

h<(d−1)(k−j)
i−h∈dN

Nh

((
n+ i−h

d

n

)
−
(
n+ j

n

))
;

where Nh is simply the number of vectors h ∈ Zn+1
d of weight wt(h) = h. In

order to compute the numbers Nh, we may look at the following formula,:

(d−1)(n+1)∑
h=0

Nhx
h = (1 + x+ . . .+ xd−1)n+1 =

(
1− xd

1− x

)n+1

.

By expanding the right hand side, we get, for all h = 0, . . . , (d− 1)(n+ 1),

Nh =

bhd c∑
s=0

(−1)s
(
n+ 1

s

)(
n+ h− ds

n

)
.

Remark 2.7.26. From the conjectures, we can extend Corollary 2.7.20 to
the case d > 2, i.e.,

[Rn,k,d]kd−1 = 0.

Indeed, with the same notation as above, let’s take j = k − 1. Thus, to
compute the Hilbert function of the quotient in position kd − 1 we should
compute the set Hk−1, i.e. the set of h ∈ Zn+1

d satisfying the following
conditions:

kd− 1− wt(h) ∈ dZ, wt(h) < (d− 1)(k − k + 1) = d− 1.

From the first condition, we get that wt(h) ∈ (d−1)+dZ≥0 which is clearly
in contradiction with the second condition above. Thus, Hk−1 is empty and
HFR(kd− 1) = 0.

Example 2.7.27. Let’s give one explicit example of the computations in
order to clarify the algorithm. Consider the parameters: n = 2, k = 8, d =
4. Thus we have D = 24. Let’s compute, for example, the Hilbert function
of the corresponding quotient ring in degree i = 28, i.e., j = 4. Using a
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Computer Algebra software, as CoCoA5 by [CoC] or Macaulay2 by [GS]
and the implemented functions involving Gröbner basis, one can see that

HFR(28) = 195.

Let’s apply our algorithm to compute the same number. First, we need to
write down the vector N where, for l = 0 . . . (d − 1)(n + 1), Nl := #{h ∈
Zn+1
d | wt(h) = l}. Under our numerical assumptions, we have

N = (N0, . . . , N9) = (1, 3, 6, 10, 12, 12, 10, 6, 3, 1).

Now, we need to compute the vector H, where we store all the possible
weights for the vectors h ∈ H4, i.e. all the number 0 ≤ h ≤ 9 such that the
numerical conditions

28− h ∈ 4Z, h < (d− 1)(k − j) = 12

holds. Thus,H = (H0, H1, H2) = (0, 4, 8). Finally, we can compute HFR(28,h)
for each h ∈ H4. From our formula, it is clear that such numbers depend
only on the weight of h; thus, we just need to consider each single element
in the vector H. Assuming wt(h) = 0, we get,

R0 := HFR(28,0) = dimC S28,0 −
(
n+ j

n

)
= 36− 15 = 21;

Similarly, we get: for wt(h) = 4,

R4 := HFR(28,h) = dimC S24,0 −
(
n+ j

n

)
= 28− 15 = 13;

and, for wt(h) = 8,

R8 := HFR(28,h) = dimC S20,0 −
(
n+ j

n

)
= 21− 15 = 6.

Now, we are able to compute the Hilbert function in degree 28.

HFR(28) = NH0
RH0

+NH1
RH1

+NH2
RH2

=

= 21 + 12 · 13 + 3 · 6 = 21 + 156 + 18 = 195.

Algorithm 2.7.28. In this section we want to show our algorithm imple-
mented in CoCoA5 programming language, see [CoC]. As we have seen in
the previous section, in the case d > 2, it is just conjectured that the algo-
rithm give the correct solution. However, as we will see in Section 2.7.38,
we made several computer experiments supporting our conjectures and,
then, our algorithm. Here is the CoCoA5 script of our algorithm based on
Theorem 2.7.19 and Remark 2.7.25.

74



-- 1) Input parameters N, K, D;
N := ;
K := ;
D := ;
DD :=K*(D-1);

-- HF will be the vector representing the Hilbert
-- function of the quotient ring;
HF :=[];

-- 2) Input vector NN where NN[I] counts the number
-- of vectors in ZZ^{n+1} modulo K of weight I;
Foreach H In 0..((N+1)*(D-1)) Do

M := 0;
Foreach S In 0..(Div(H,D)) Do

M := M+(-1)^S*Bin(N+1,S)*Bin(N+H-D*S,N);
EndForeach;
Append(Ref NN,M);

EndForeach;

-- 3) Compute the Hilbert Function:
-- in degree <DD:
Foreach L In 0..(DD-1) Do

Append(Ref HF,Bin(N+L,N));
EndForeach;

-- in degree =DD,..,K*D-1:
Foreach J In 0..(K-2) Do

I:=DD+J;
H:=[];
M:=0;

Foreach S In 0..I Do
If Mod(I-S,D)=0 Then

If S<(D-1)*(K-J) Then
If S<(D-1)*(N+1)+1 Then

Append(Ref H,S);
M:=M+1;

EndIf;
EndIf;

EndIf;
EndForeach;

HH:=0;
If M>0 Then

Foreach S In 1..M Do
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HH:=HH+NN[H[S]+1]*
(Bin(N+Div(I-H[S],D),N)-Bin(N+J,N));

EndForeach;
EndIf;

Append(Ref HF,HH);
EndForeach;

-- 4) Print the Hilbert function:
HF;

Remark 2.7.29. In the case d = 2, our algorithm (which gives the correct
answer by Theorem 2.7.19) works very fast even for large values of n and
k, e.g. for n, k ∼ 300; when the Computer Algebra softwares, involving the
computation of Gröbner basis, cannot do in a reasonable amount of time
and memory. Concerning the case d > 2, with the support of Computer
Algebra software Macaulay2 and its implemented function to compute
Hilbert series of quotient rings, we have checked, for low k and d, that our
numerical algorithm produces the right Hilbert function for two and three
variables. Moreover, in Section 2.7.2, we study the schemes of fat points
related to our power ideals and our results about their Hilbert series, will
support Conjecture 2.6 in many more cases. More exactly, using combina-
torics, we check the case n + 1 = 2 and, using the Computer Algebra soft-
ware CoCoA5, we have checked that the conjectured algorithm gives the
correct Hilbert function for all n, d ≤ 20 and k ≤ 150, see Remark 2.7.40.

HILBERT FUNCTIONS OF ξ-POINTS IN Pn

As we mentioned in Section 2.5, there is a relation between power ideals
and schemes of fat points; in particular, between their Hilbert functions,
see Corollary 2.5.7. Here, we want to compute the Hilbert function of the
schemes of fat points associated to the power ideals In,k,d. More exactly, we
consider schemes of fat points with support over the dn points

Xn,k,d = {[1 : ξg1 : . . . : ξgn ] ∈ Pn | 0 ≤ gj ≤ k − 1}.

We call them ξ-points for short. In the case d = 2, from our computations of
the Hilbert functions of power ideals In,k,2, we obtain the Hilbert function
for fat points with support on the (±1)-points. Consequently, after inves-
tigating the results for the case d = 2, we have been able to compute the
Hilbert functions for any d > 2 as well.

CAE d = 2. We begin by considering our class of power ideals for d = 2,
namely the ideal Ik generated by the k-th powers

(x0 ± x1 ± . . .± xn)k.

We have described an easy numerical algorithm to compute the Hilbert
function of the quotient rings Rk = S/Ik. Thus, by the Apolarity Lemma
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(see Corollary 2.5.7), we can compute the Hilbert function of schemes of fat
points supported at the (±1)-points of Pn.

Proposition 2.7.30. Let I(m) be the ideal associated to the scheme of fat
points of multiplicity m supported on the (±1)-points of Pn. Then,

HFS/I(m)(i) =


(
n+i
n

)
for i ≤ 2m− 1,(

n+2m
n

)
−
(
m+n−1
n−1

)
for i = 2m,(

n+2m+1
n

)
− (n+ 1)

(
m+n−1
n−1

)
for i = 2m+ 1,

2n
(
n+m−1

n

)
for i ≥ 2m+ n− 2.

Proof. By Corollary 2.7.20, we know that, for all i satisfying the inequality
i ≥ 2(i−m+ 1)− 1, i.e., i ≤ 2m− 1,

HFRi−m+1
(i) = 0

Moreover, by Remark 2.7.23, we have that

HFRm+1
(2m) =

(
n+m− 1

n− 1

)
, HFRm+2

(2m+ 1) = (n+ 1)

(
n+m− 1

n− 1

)
and

HFRi−m+1
(i) =

(
n+ i

n

)
− 2n

(
n+m− 1

n

)
,

for i ≤ 2(i−m+ 1)− n, i.e., i ≥ 2m+ n− 2. By apolarity, we are done.

Remark 2.7.31. Proposition 2.7.30 tells us that the ideal I(m) is generated
in degrees ≥ 2m and, in particular, has

(
m+n−1
n−1

)
generators in degree 2m.

Thanks to the geometrical meaning of the symbolic power I(m), we can
easily find such generators.

We may observe that we have exactly n pairs of hyperplanes which split
our 2n points. Namely, for any variable except xn, we can consider the hy-
perplanes

H+
i = {xi + xn = 0} and H−i = {xi − xn = 0}, for all i = 0, . . . , n− 1.

It is clear that, for all i, half of our (±1)-points lie on H+
i and half on H−i .

Consequently, we have n quadrics passing through our points exactly once,
i.e., Qi = H+

i H
−
i = x2

i − x2
n, for all i = 0, . . . , n− 1.

Now, we want to find the generators of I(m), hence we want to find
hypersurfaces passing through our points with multiplicity m. We can
consider, for example, all the monomials of degree m evaluated at these
quadrics, i.e., the degree 2m forms

G1 := Qm0 , G2 := Qm−1
0 Q1, G3 := Qm−1

0 Q2, . . . ,GN := Qmn−1,

where N =
(
n+m−1
n−1

)
. We can actually prove that they generate the part of

degree 2m of I(m) as a C-vector space. Since the number of Gi’s is equal to
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the dimension of [I(m)]2m computed in Proposition 2.7.30, it is enough to
prove the following.

Claim. These Gi’s are linearly independent over C.

Proof of the Claim. We use double induction over the number of variables
n and the degree m. For two variables, i.e. n = 1, we have that the dimen-
sion of [I(m)]2m is equal to 1 for all m and then, G1 = Qm0 is the unique
generator. For n > 1, we consider first the case m = 1. Assume to have

α0Q0 + . . .+ αn−1Qn−1 = α0(x2
0 − x2

n) + . . .+ αn−1(x2
n−1 − x2

n) = 0.

Specializing on the hyperplane H−0 = {x0 = xn}, we reduce the linear
combination in one variable less and, by induction, we get that αi = 0 for
all i = 1, . . . , n− 1; consequently, also α0 = 0.

Assume that we have a linear combination for m ≥ 2, i.e.,

α1G1 + α2G2 + . . .+ αNGN =

= α1(x2
0 − x2

n)m + α2(x2
0 − x2

n)m−1(x2
1 − x2

n) + . . .+ αN (x2
n−1 − x2

n)m = 0.

Again, by specializing to the hyperplane H−0 = {x0 = xn}, we get a linear
combination in the same degree, but with one variable less and, by induc-
tion over n, we have that αi = 0, for all i, where the definition Gi doesn’t
involve (x2

0 − x2
n)m. Thus, the remaining linear combination is of type

(x2
0 − x2

n)
[
α0Qm−1

0 + α1Qm−2
0 Q1 + . . .+ αmQm−1

n−1

]
= 0.

We are done by induction over m.

Hence, we can consider the ideal Jm = (x2
0−x2

n, . . . , x
2
n−1−x2

n)m. It is clearly
contained in I(m) but, a priori, it could be smaller. In order to show that
the equality holds and that I(m) is minimally generated by the Gi’s, we
calculate the Hilbert series of the ideal Jm.

Lemma 2.7.32. the Hilbert series of Tm = C[x0, . . . , xn]/Jm is given by

HSTm(t) =
1 +

∑n
i=1(−1)iβit

2m+2(i−1)

(1− t)n+1
,

where βi := βi,2m+2(i−1) =
(
m+i−2
i−1

)(
m+n−1
n−i

)
, for all i = 1, . . . , n, and the

multiplicity is e(Tm) = 2n
(
m+n−1

n

)
.

Proof. The quotient Tm is a 1-dimensional Cohen-Macaulay ring and xn is
a non-zero divisor. Thus, we have that Tm and the quotient Tm/(xn) have
the same Betti numbers. Moreover,

Tm/(xn) = C[x0, . . . , xn−1]/(x2
0, . . . , x

2
n−1)m,

and the resolution of those quotients is well-known. Namely, the quotient
ring C[x0, . . . , xn]/(x0, . . . , xn−1)m has a pure resolution of type (m,m +
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1, . . . ,m + n − 1) and its Betti numbers and multiplicity are expressed by
an explicit formula, see [BH98, Theorem 4.1.5]. Thus, Tm/(xn) has a pure
resolution of type (2m, 2m+ 2, 2m+ 4, . . . , 2m+ 2(n− 1)), i.e.

. . . −→ S(−2m− 4)β3,2m+4 −→ S(−2m− 2)β2,2m+2 −→ S(−2m)β1,2m −→ 0,

where S is the graded polynomial ring C[x0, . . . , xn−1] and S(−i) is its ith-
shifting, i.e. [S(−i)]j := Sj−i. Moreover, the Betti numbers and the multi-
plicity of the quotient are given by the following formulas:

βi := βi,2m+2(i−1) = (−1)i+1
∏
j 6=i

m+ j − 1

j − i
=

=���
�

(−1)i+1m(m+ 1) · · · (m+ i− 2)

���
�(−1)i−1(i− 1)!

· (m+ i) · · · (m+ n− 1)

(n− i)!
=

=

(
m+ i− 2

i− 1

)(
m+ n− 1

n− i

)
;

e(Tm) =
1

n!

n∏
i=1

(2m+ 2(i− 1)) = 2n
(
m+ n− 1

n

)
.

Therefore, we easily get the following Hilbert series of Tm = S/Jm,

HSTm(t) =
1 +

∑n
i=1(−1)iβit

2m+2(i−1)

(1− t)n+1
.

Corollary 2.7.33. Let Tm = C[x0, . . . , xn]/(x2
0 − x2

n, . . . , x
2
n−1 − x2

n)m. Then,

HFTm(i) =


(
n+i
n

)
for i ≤ 2m− 1(

n+2m
n

)
−
(
m+n−1
n−1

)
for i = 2m(

n+2m+1
n

)
− (n+ 1)

(
m+n−1
n−1

)
for i = 2m+ 1

2n
(
n+m−1

n

)
for i� 0

Proof. The values of the Hilbert function for i ≤ 2m + 1 follow directly by
extending the Hilbert series computed in Lemma 2.7.32, by recalling that

1
(1−t)n+1 =

∑
j≥0

(
n+j
n

)
tj . Since Tm is a 1-dimensional CM ring, we have that

its Hilbert function is eventually constant and equal to the multiplicity.

Now, we complete our study of the ideal of fat (±1)-points in Pn.

Theorem 2.7.34. Let I(m) be the ideal associated to the scheme of fat points
of multiplicity m and supported on the 2n points [1 : ±1 : . . . : ±1] ∈ Pn.
The generators are given by the monomials of degree m evaluated at the n
quadrics Qi = x2

i − x2
n, for all i = 0, . . . , n− 1, and the Hilbert series is

HSS/I(m)(t) =
1 +

∑n
i=1(−1)iβit

2m+2(i−1)

(1− t)n+1
,
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where the Betti numbers are given by

βi := βi,2m+2(i−1) =

(
m+ i− 2

i− 1

)(
m+ n− 1

n− i

)
, for i = 1, . . . , n.

Proof. Let’s write I(m) = Jm + J , where Jm = (Q0, . . . ,Qn−1)m. By Lemma
2.7.32, it is enough to show that J = 0. We consider the quotient Tm =
S/(I(m)+(xn)) = C[x0, . . . , xn−1]/((x2

0, . . . , xn)m+J̄) and the exact sequence

0 −→ Ann(xn) −→ S/I(m) ·xn−→ S/I(m) −→ Tm −→ 0.

Consequently, we get

HSTm(t) = (1− t) HSS/I(m)(t) + HSAnn(xn)(t).

Since S/I(m) is 1-dimensional ring, we have that HSS/I(m)(t) = h(t)
(1−t) and

the multiplicity is e(S/I(m)) = h(1). Thus, the multiplicity of Tm is

e(Tm) = h(1) + HSAnn(xn)(1) ≥ e(S/I(m)) = 2n
(
m+ n− 1

n

)
. (2.7)

Moreover, the equality holds if and only if xn is a non-zero divisor of Tm.
On the other hand, we have that Tm = C[x0, . . . , xn−1]/(x2

0, . . . , xn−1)m + J̄
and consequently, by Lemma 2.7.32, we have

e(Tm) ≤ e
(
C[x0, . . . , xn−1]/(x2

0, . . . , xn−1)m
)

= 2n
(
m+ n− 1

n

)
, (2.8)

where the equality holds if and only if J̄ = 0. From (2.7) and (2.8), we can
conclude that

• xn is a non-zero divisor for Tm = S/I(m);

• J̄ = 0.

Now, assume that J 6= 0 and take a non-zero element f ∈ J of minimal
degree. Then, since J̄ = 0, we get that f = xn · g, for some g, thus we have
xn · g = 0 in Tm. This contradicts the fact that xn is a non-zero divisor in
Tm, since g /∈ J because of minimality of f in J and g /∈ Jm because f is
not.

Corollary 2.7.35. Let I be the ideal defining the set of reduced (±1)-points
of Pn and let I(m) be its m-th symbolic power, i.e. I(m) is the ideal of fat
points of multiplicity m supported on the (±1)-points of Pn. Then,

I(m) = Im.

Moreover, for any monomial ordering such that xn � xi for all i = 0, . . . , n−
1, the set of generators given in Theorem 2.7.34 is a Gröbner basis for I(m).
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Proof. The first part follows directly from Theorem 2.7.34, since

I = (x2
0 − x2

k, . . . , x
2
n−1 − x2

n).

Let {G1, . . . ,GN} be the generators of Im, namely the degree m forms ob-
tained by evaluating all the possible monomial of degree d at the quadrics
xi − xn, for all i = 0, . . . , n − 1. We have that their leading terms generate
the initial ideal, i.e. they are a Gröbner basis. Indeed, we clearly have the
inclusion

(in{G1, . . . ,GN}) ⊂ in(I);

but, we also have that the left hand side is exactly

(in{G1, . . . ,GN}) = (x2
0, . . . , x

2
n−1)d,

which has the same Hilbert function as I, see Theorem 2.7.34. Conse-
quently the same Hilbert function of in(I). Hence, equality holds.

CASE d > 2. Let ξ be a dth-root of unity and consider the ideal I(m)
d cor-

responding to the scheme of fat points of multiplicity m and supported on
the dn ξ-points of type [1 : ξg1 : . . . : ξgn ] ∈ Pn with 0 ≤ gi ≤ d − 1, for all
i = 1, . . . , n. Previously, we have considered the power ideals In,k,d gener-
ated by all possible

(x0 + ξg1x1 + . . .+ ξgnxn)
k(d−1)

, with 0 ≤ gi ≤ d− 1, for all i = 1, . . . , n.

Since the considered powers were only multiples of (d− 1), we cannot hope
to completely get the Hilbert series of our scheme of fat points of multiplic-
ity m directly from the Hilbert series of Rn,k,d = S/In,k,d. However, we can
easily observe that

HFI(k)(kd− 1) = HFRn,k,d(kd− 1),

by Remark 2.7.26, we conjecture that the ideal I(k)
d should be generated at

least in degree kd. Thus, inspired by the case d = 2, we can actually claim
that I(k)

d is nonzero in degree kd. Indeed, we have that, for any variable
x0, . . . , xn−1, we can consider the d hyperplanes

H0
i = {xi − xn = 0}, H1

i = {xi − ξxn = 0}, . . . , Hd−1
i = {xi − ξd−1xn = 0};

such hyperplanes divide the dn points in d distinct groups of dn−1 points;
thus, their products give a set of degree d forms which vanish with multi-
plicity 1 at each point, i.e.

Qi = H0
i ·H1

i · · ·Hd−1
i = xdi − xdn, for all i = 0, . . . , n− 1.

Consequently, we get

Jk,d = (Q0,Q1, . . . ,Qn−1)d ⊂ I(k)
d .

Now, by using the same ideas as for the case d = 2, we can get the analogs
of Lemma 2.7.32 and Theorem 2.7.34, for all d ≥ 2. Therefore, we get the
following general result.
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Theorem 2.7.36. Let I(m)
d be the ideal associated to the scheme of fat points

of multiplicity m and supported on the dn ξ-points [1 : ξg1 : . . . : ξgn ] ∈ Pn
for 0 ≤ gi ≤ d − 1. The generators are given by the monomials of degree m
evaluated at the n forms of degree d Qi = xdi −xdn, for all i = 0, . . . , n−1 and
the Hilbert series is

HS
S/I

(m)
d

(t) =
1 +

∑n
i=1(−1)iβit

dm+d(i−1)

(1− t)n+1
,

where the Betti numbers are given by

βi := βi,dm+d(i−1) =

(
m+ i− 2

i− 1

)(
m+ n− 1

n− i

)
, for i = 1, . . . , n.

Remark 2.7.37. Moreover, similarly to Corollary 2.7.35, we have that

• I
(m)
d = Imd ;

• the set of generators given in Theorem 2.7.36, is a Gröbner basis.

Remark 2.7.38. Since we have explicitly computed the Hilbert series of
ξ-points in Pn, we can go back to the Hilbert series of the power ideals
In,k,d by using apolarity. In particular, we can check that our Conjecture 2.6
holds in several special cases. We have seen that, since In,k,d is generated
in degree k(d− 1) and generate the whole polynomial ring in degree kd− 1,
the Hilbert function of Rn,k,d has to be computed only in degrees i = (k −
1)d+ j, with j = 0, . . . , d− 2. In these degrees, by apolarity, we get

HFRn,k,d(i) = HF
I

(j+1)
d

(i).

By Theorem 2.7.36, we can explicitly compute such Hilbert function, for all
j = 0, . . . , d− 2, i.e.,

HFRn,k,d(i) = (2.9)

=
∑
s∈N

s≤ d−1
d (k−j)

(−1)s+1

(
n+ (d− 1)(k − j)− ds

n

)(
j + s− 1

s− 1

)(
j + n

n− s

)
.

We also conjectured the following formula: for all j = 0, . . . , k − 2,

HFRn,k,d(i) =
∑

h<(d−1)(k−j)
i−h∈dN

Nh

((
n+ i−h

d

n

)
−
(
n+ j

n

))
, (2.10)

where Nh is the number of vectors h ∈ Zn+1
d of weight wt(h) = h, see

Remark 2.7.25. In order to show that formula (2.10) is correct and therefore
to prove Conjecture 2.6, we should show that the right-hand side of such
formula is equal to the right-hand side of formula (2.9).
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Proposition 2.7.39. Assuming n = 1, i.e. in the binary case, formulas (2.9)
and (2.10) are equal and Conjecture 2.6 is true.

Proof. For any k and d, the unique non-zero summand is the one for s = 1;
thus,

(2.9) = 1 + (d− 1)(k − j)− d.

Now, we look at formula (2.10). At first, we may observe that, for n = 1, the
number of vectors in Z2

d with fixed weight h can be computed very easily,
indeed

Nh =

{
h+ 1 for 0 ≤ h ≤ d− 1;

2d− (h+ 1) for d ≤ h ≤ 2(d− 1).

Thus, any i = (d−1)k+ j can be written as cd+r for some positive integers
c, r with 0 ≤ r ≤ d− 1 and then, we get

(2.10) = Nr(1 + c− (j + 1)) +Nr+d(1 + (c− 1)− (j + 1)) =

= (r + 1)(1 + c− (j + 1)) + (d− r − 1)(1 + (c− 1)− (j + 1)) =

=��
��(r + 1)c+ r + 1−((((

(((r + 1)(j + 1) + dc−����(r + 1)c− dj − d+((((
(((r + 1)(c+ 1).

Moreover, recalling that i = cd+ r = (d− 1)k + j, we finally get

(2.10) = 1 + (d− 1)k + j − dj − d = 1 + (d− 1)(k − j)− d.

Remark 2.7.40. With similar, but longer and more intricate arguments
as for Proposition 2.7.2, we have also been able to check the case n+ 1 = 3.
Unfortunately, we have not been able to prove that the two expressions
given in (2.9) and (2.10) give the same answer for all possible triples of
parameters (k, n, d). Implementing such formulas in the CoCoA5 language,
we have been able to check all cases n, d ≤ 20, k ≤ 150. Here is the imple-
mentation of formula (2.9) in CoCoA5 language. Concerning formula (2.10),
we have used the Algorithm 2.7.28.

-- 1) Input of the parameters K, N, D;
K := ;
N := ;
D := ;
DD := (K-1)*D;

-- HF will be the vector containing the relevant part of
-- the Hilbert function, i.e. from (K-1)D to KD-2;
HF := [];

-- 2) Compute the Hilbert function;
Foreach J In 0..(K-2) Do
B := 0;
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KK := (D-1)*(K-J)/D;
Foreach S In 1..N Do
If S <= KK Then
B := B+(-1)^(S+1)*Bin(N+(D-1)*(K-J)-D*S,N)*

Bin(J+S-1,S-1)*Bin(J+N,N-S);
EndIf;
EndForeach;

Append(Ref HF , B );
EndForeach;

-- 3) Print the Hilbert function;
HF;
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CHAPTER 3

FRÖBERG’S CONJECTURE AND
DIMENSIONS OF SECANT VARIETIES

In this chapter, we focus on Fröberg’s conjecture about the Hilbert series of
generic ideals. In particular, we relate that to the study of secant varieties
of the projective varieties introduced in the previous sections.

SECTION 3.1

FRÖBERG’S CONJECTURE

In 1985, Fröberg was studying the Hilbert series of generic ideals I ⊂ S =
C[x0, . . . , xn], i.e., of ideals generated by generic forms. More precisely, an
ideal I = (F1, . . . , Fg) can be viewed as a point in AN1 × · · · × ANg , where
Ni = dimSdi =

(
n+di
n

)
. Fröberg was interested in the Hilbert series that

occurs in some Zariski open dense subset of this affine space. Whenever
we fix the number of the generators to be less than the number of the
variables, we have that generic ideals are complete intersection. Therefore,
if g ≤ n+ 1, then the Hilbert series of a generic ideal I = (F1, . . . , Fg), with
degFi = di, is given by

HSS/I(t) =

∏g
i=1(1− tdi)
(1− t)n+1

, (3.1)

see Example A.1.4. When the number of generators is higher than the
number of the variables, it is easy to check that the power series in (3.1)
has negative coefficients and, then, it cannot be the Hilbert series of some
homogeneous ideal. However, Fröberg conjectured the following.

Conjecture 3.1 (Fröberg’s conjecture, [Frö85]). Let I = (F1, . . . , Fg) be a
generic ideal with degFi = di, for any i = 1, . . . , g. Then,

HSS/I(t) =

[∏g
i=1(1− tdi)
(1− t)n+1

]
, (3.2)
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where [·] denotes the truncation of the power series at the first non positive
coefficient; namely, [

∑
i ait

i] :=
∑
j bjt

j with bj = ai, if ai > 0 for any i ≤ j,
and bj = 0, otherwise.

As we said, the conjecture is true for g ≤ n+ 1, since generic ideals are
complete intersections. Moreover, it has been proven for:

1. g = n+ 2, by Stanley, see [Frö85, Example 3.2];

2. n = 1, by Fröberg [Frö85];

3. n = 2, by Anick [Ani86].

In [FL91], Fröberg and Löfwall proved that, fixing the number of gen-
erators and their degrees, there exists a Zariski dense open subset of the
affine space AN1 × · · · × ANg where the coefficient-wise smallest Hilbert
series is attained. Moreover, in [Frö85], Fröberg proved the following.

Theorem 3.1.1 ([Frö85]). Let I = (F1, . . . , Fg) be a generic ideal with
degFi = di, for any i = 1, . . . , g. Then,

HSS/I(t) �Lex

[∏g
i=1(1− tdi)
(1− t)n+1

]
,

where the inequality is in the lexicographic sense.

From these remarks, we have that, fixing the parameters (n; d1, . . . , dg),
it is enough to exhibit one ideal with the Hilbert series as in the formula
(3.2) in order to prove Fröberg’s conjecture. An ideal with Hilbert series as
in (3.2) is called Hilbert generic. For example, Stanley’s proof of Fröberg’s
conjecture was by showing that the ideal (xd0

0 , . . . , x
dn
n , Ldn+1) is Hilbert

generic, for any generic choice of a linear form L. In particular, this tells
us the generic power ideals with g ≤ n + 2 generators are Hilbert generic.
Unfortunately, generic power ideals are not always Hilbert generic, as we
see in the next section.

SECTION 3.2

POWER IDEALS AND
FRÖBERG–IARROBINO’S CONJECTURE

Since the 1990s, the interest around the Hilbert series of power ideals
increased a lot, especially due to their connections with several differ-
ent branches of Commutative Algebra, Algebraic Geometry and Combi-
natorics. See [AP10] for a recent survey on the topic.
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3.2.1 FRÖBERG–HOLLMAN LIST OF EXCEPTIONS

In [FH94], Fröberg and Hollman produced a list of cases in which generic
power ideals fail to be Hilbert generic. Here, we consider generic power ide-
als with generators of same degrees, i.e., of type (Ld1, . . . , L

d
g) ⊂ C[x0, . . . , xn].

(d,n,g) Computed Hilbert series
(Fröberg’s conjecture formula (3.2))

(2,4,7) 1 + 5t+ 8t2 + t3

(. . .+ 0 · t3)
(2,6,9) 1 + 7t+ 19t2 + 213 + t4

(. . .+ 0 · t4)
(2,7,10) 1 + 8t+ 26t2 + 40t3 + 16t4

(. . .+ 15t4)
(2,8,11) 1 + 9t+ 34t2 + 66t3 + 55t4 + t5

(. . .+ 0 · t5)
(2,9,12) 1 + 10t+ 43t2 + 100t3 + 121t4 + 32t5

(. . .+ 22t5)
(2,10,13) 1 + 11t+ 53t2 + 143t3 + 221t4 + 144t5 + t6

(. . .+ 143t5 + 0 · t6)
(2,10,14) 1 + 11t+ 52t2 + 132t3 + 168t4 + 14t5

(. . .+ 0 · t5)
(3,2,5) 1 + 3t+ 6t2 + 5t3 + t4

(. . .+ 0 · t4)
(3,3,9) 1 + 4t+ 10t2 + 11t3 + t4

(. . .+ 0 · t4)
(3,4,7) 1 + 5t+ 15t2 + 28t3 + 35t4 + 21t5 + t6

(. . .+ 0 · t6)
(3,4,14) 1 + 5t+ 15t2 + 21t3 + t4

(. . .+ 0 · t4)
(3,5,8) 1 + 6t+ 21t2 + 48t3 + 78t4 + 84t5 + 43t6

(. . .+ 42t6)
(3,5,9) 1 + 6t+ 21t2 + 47t3 + 72t4 + 63t5 + 3t6

(. . .+ 0 · t6)
(3,6,9) 1 + 7t+ 28t2 + 75t3 + 147t4 + 210t5 + 204t6 + 85t7 + t8

(. . .+ 78t7 + 0 · t8)
(3,7,10) 1 + 8t+ 36t2 + 110t3 + 250t4 + 432t5 + 561t6 + 492t7 + 171t8

(. . .+ 135t8)

We can easily explain some of these exceptions by using the relation be-
tween power ideals and ideals of fat points given by Apolarity Lemma
(Lemma 2.5.5). Some of them are very classical geometrical constructions.

ALEXANDER–HIRSCHOWITZ CASES. We consider the cases

(d, n, g) = (2, 4, 7), (3, 3, 5), (3, 4, 9), (3, 5, 14).
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From the Fröberg–Hollman list, we have that they fail to be Hilbert generic
in one specific degree. Hence, by using the Apolarity Lemma, we are inter-
ested in the following cases:

1. for (2, 4, 7): we want to compute HFS/IX(3), where X is the scheme of
seven double points in P3 in general position;

2. for (3, 3, 5): we want to compute HFS/IX(4), where X is the scheme of
five double points in P2 in general position;

3. for (3, 4, 9): we want to compute HFS/IX(4), where X is the scheme of
nine double points in P3 in general position;

4. for (3, 5, 14): we want to compute HFS/IX(4), where X is the scheme of
fourteen double points in P4 in general position.

These are exceptional cases in the Alexander–Hirschowitz Theorem about
the Hilbert series of double points in general position (Theorem 2.6.5). In
particular, we have already considered the case 2 in Example 2.6.4.

Example 3.2.1. Case 3: the scheme of nine double points in P3 has multi-
plicity 9 · 4 = 36, while the dimension of the space of quartics in P3 is 35.
Hence, we expect to have no quartics with nine singular points in general
position. On the other hand, there is always a quadric passing through
nine generic points in P3 and, then, the double quadric gives us the unex-
pected quartic singular at the nine points.

Case 4: the scheme of fourteen double points in P4 has multiplicity 14 ·
5 = 70, which equals the dimension of the space of quartics in P4. Hence,
we expect to have no quartics with fourteen singular points in general
position. On the other hand, there is always a quadric passing through
fourteen generic points in P4 and, then, the double quadric gives us the
unexpected quartic singular at the fourteen points.

The case 1 is different.

Example 3.2.2. In this case, we have that the multiplicity of seven double
points in P4 is 7 · 5 = 35 which is equal to the dimension of cubics in P4.
Hence, we expect to have no cubics with seven singular points in general
position. However, we have the following classical result; e.g. see [Har92].

Theorem 3.2.3. For any n+3 points in general position in Pn there exists a
unique Rational Normal Curve Cn of degree n passing through these points.

Rational Normal Curves are very classical and well studied geometrical
objects. In particular, they are determinantal varieites, namely they can be
set-theoretically described as the zero locus of the 2×2 minors of the matrix

M =



x0 x1 x2 . . . xh
x1 x2 . . . . xh+1

x2 . . . . .
...

...
...

...
. . .

...
xn−h . . . . . xn


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Moreover, also their secant varieties are determinantal.

Proposition 3.2.4. The s-th secant variety σs(Cn) is the zero locus of the
(s+ 1)× (s+ 1) minors of the matrix M .

Coming back to our example, we have a unique Rational Normal Curve
C4 of degree 4 passing through the seven general points. Hence, we have
that the 2-nd secant variety σ2(C4) is the cubic hypersurface of P4 given by

det

x0 x1 x2

x1 x2 x3

x2 x3 x4

 = 0.

Since, this determinant can be defined as a combination of the 2×2 minors,
it is easy to see that it also singular along all the Rational Normal Curve
and, in particular, at the seven points. Thus, σ2(C4) is an unexpected cu-
bic hypersurface singular at the seven points in general position. One can
prove that this is the unique cubic surface singular at the 7 given points.

OTHER CASES WITH n + 3 POINTS. The construction explained in the
Example 3.2.2 can be used to describe several other exceptions.

1. (2,6,9): we want to compute HFS/IX(4), where X is the scheme of nine
triple points in P6 in general position;

2. (2,8,11): we want to compute HFS/IX(5), where X is the scheme of
eleven points of multiplicity four in P8 in general position;

3. (2,10,13): we want to compute HFS/IX(6), where X is the scheme of
thirteen points of multiplicity five in P10 in general position;

4. (3,4,7): we want to compute HFS/IX(6), where X is the scheme of seven
points of multiplicity four in P4 in general position;

5. (3,6,9): we want to compute HFS/IX(8), where X is the scheme of nine
points of multiplicity six in P6 in general position;

In all these cases we have that an unexpected hypersurface singular at
the prescribed points is given by a secant variety of the unique Rational
Normal Curve Cn of degree n passing through the given n+ 3 points in Pn.
In particular, we have:

1. σ3(C6) is a quartic hypersurface of P6 with nine generic points of mul-
tiplicity three;

2. σ4(C8) is a quintic hypersurface of P8 with eleven generic points of
multiplicity four;

3. σ5(C10) is a sextic hypersurface of P10 with thirteen generic points of
multiplicity five;
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4. the double σ2(C4) is a sextic hypersurface of P4 with seven generic
points of multiplicity four;

5. the double σ3(C6) is an octic hypersurface of P6 with nine generic
points of multiplicity six;

OTHER EXCEPTIONS: (2, 2m, 2m+ 3). Consider the cases

(d, n, g) = (2, 2m, 2m+ 3), for any m ≥ 0.

From some numerical properties of the Fröberg’s conjecture formula 3.2,
we have that the first 0 term of the series is in degree m + 1. Thus, we
need to look at HFS/IX(m + 1) where X is the scheme of 2m + 3 points of
multiplicity m in P2m. Thus, we expect to have no hypersurfaces of degree
m in P2m passing through 2m+3 points in general position and singular at
them with multiplicity m. On the other hand, consider the unique Rational
Normal Curve C2m of degree 2m inside P2m passing trough the given 2m+3
points. The mth-secant variety is the hypersurface given by the equation

det


x0 x1 · · · xm
x1 x2 · · · xm+1

...
...

. . .
...

xm xm+1 · · · x2m

 = 0.

Thus, σm(C2m) is an unexpected hypersurface showing that generic power
ideals with (d, n, g) = (2, 2m, 2m+ 3) are not Hilbert generic.

Unfortunately, we can not analyze all the exceptions listed by Fröberg
and Hollman in this way. In the cases just described, we were expecting
to have no hypersurfaces with some prescribed singulartities and, then, it
was enough to exhibit one of such unexpected hypersurfaces. In all the
other cases, we already expect to have several hypersurfaces with pre-
scribed singularities and we should exhibit more than the expected ones.
This is much more difficult. For example, it is not easy to write down 171,
instead of the expected 135, octics in P7 with ten points of multiplicity six.

3.2.2 LINEAR SPECIALITY

In [BDP15a], Brambilla, Dumitrescu and Postinghel suggested a new di-
rection in order to study dimensions of linear systems. Let Ln(m, dg) be the
linear system of hypersurfaces of degree m in Pn with g base points of mul-
tiplicity d in general position1. Considering the notation used previously, if
X is the scheme of g points in Pn, of multiplicity d and in general position,
we have that Ln(m, dg) is the homogeneous part [IX]m. Naïvely, we have
that, since a fat point of multiplicity d in Pn has degree

(
n+d−1
n

)
, we expect

exp .dimLn(m, dg) = max

{
0,

(
n+m

n

)
− g
(
n+ d− 1

n

)}
. (3.3)

1similarly as for the general version of Fröberg’s conjecture, in [BDP15a], the authors do not require
that the points have the same multiplicity. We are assuming that for the sake of simplicity.
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However, this expected dimension takes in consideration only the multiple
base points. In [BDP15a], Brambilla, Dumitrescu and Postinghel started
to consider also linear spaces contained with multiplicity in the base locus.
In particular, they observe that a linear space of dimension r, contained in
the base locus of Ln(m, dg) with multiplicity d, gives an obstruction of

(−1)r+1

(
n+ [(r + 1)d− rm]− r − 1

n

)
, (3.4)

where we set
(
a
b

)
= 0, whenever a < b. Thus, they refine the expected

dimension given with the formula (3.3).

Definition 3.2.5. In the same notation as above, the linear virtual dimen-
sion of Ln(m, dg) is

vdim Ln(m, dg) =

g−1∑
r=−1

(−1)r+1

(
g

r + 1

)(
n+ [(r + 1)d− rm]− r − 1

n

)
.

Hence, the expected linear dimension is

exp .ldim Ln(m, dg) = max {0, vdim Ln(m, dg)} .

A linear system with dimension different than the linear expected dimen-
sion is called linearly special.

A priori, we don’t know if the actual dimension of a linear system is
always at least its expected dimension. However, it is conjectured that this
is always the case.

Conjecture 3.2 (Weak Fröberg–Iarrobino’s conjecture, [Cha05]). With the
same notation as above,

dim Ln(m, dg) ≥ exp .ldim Ln(m, dg).

This expected linear dimension is precisely the geometric version of the
formula (3.2) prescribed by Fröberg’s conjecture. Before motivating this
claim in detail, we start by explain it with an easy example.

Example 3.2.6. Consider once again the case of two double points in P2

from Example 2.6.3. In the previous chapter, we described that as a defec-
tive case. Indeed, two double points give six conditions and, then, we were
expecting to have no conics with two distinct singular points; although, we
could easily find one by considering the double line through the two points.
On the other hand, the expected linear dimension takes in consideration
the fact that the double line is contained in the base locus of L2(2, 22):

exp .ldim L2(2, 22) = max
{

0, vdim L2(2, 22)
}

= max{0, 6− 2 · 3 + 1} = 1.

Thus, we can now say that this example was not really an exception. From
the point of view of power ideals, by Apolarity Lemma (Theorem 2.5.5), we
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know that the dimension of L2(2, 22) coincides with the Hilbert function in
degree 2 of the quotient ring with respect to the ideal I = (L1, L2) ⊂ S =
C[x0, x1, x2], where L1, L2 are generic linear forms. This is a trivial case,
since it is a complete intersection. In particular, the formula 3.1 holds:

HSS/I(t) =
1

1− t
=⇒ HFS/I(2) = 1.

Hence, also from the perspective of the Fröberg–Hollman list, this case
was not an exceptional case. In general, the claim is that:

power ideals which fail to be Hilbert generic correspond to
linear systems that are linearly special.

Indeed, consider the power series given by the formula (3.2) in Fröberg’s
conjecture:

Hn,d,g(t) =
(1− td)g

(1− t)n+1
.

Now, it is an easy exercise to check that

coefftmHn,d,g(t) =

g∑
s=0

(−1)s
(
g

s

)(
n+ (m− sd)

n

)
. (3.5)

The linear system Ln(m, dg), by Apolarity Lemma (Theorem 2.5.5), corre-
sponds to the degree m homogeneous part of a power ideal with g genera-
tors of degree m− d+ 1. Hence, the formula 3.5 becomes:

coefftmHn,m−d+1,g(t) =

g∑
s=0

(−1)s
(
g

s

)(
n+m− s(m− d+ 1)

n

)
. (3.6)

By substituting r = s− 1,

coefftmHn,m−d+1,g(t) =

g−1∑
r=−1

(−1)r+1

(
g

r + 1

)(
n+ [(r + 1)d− rm]− r − 1

n

)
,

which is precisely the virtual linear dimension of Ln(m, dg). In other words,
the expected obstructions obtained by looking at linear spaces contained
with certain multiplicity in the base locus of a linear system Ln(m, dg)
corresponds to the expected Koszul syzygies that we always have in the
power ideal. In [BDP15b], Brambilla, Dumitrescu and Postinghel contin-
ued their analysis of base loci of linear systems with prescribed multiple
base points. In particular, they conjecture that a linear system with n + 3
points are linearly special only if it contains in the base locus, with certain
multiplicity, secant varieties to the Rational Normal Curve of degree n and
their joins with linear subspaces spanned by some of the base points. More-
over, they give a new definition of expected dimension, called secant linear
dimension, which extends the expected linear dimension given in Defini-
tion 3.2.5. In particular, they claim that the obstructions given by one of
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such rational varieties equal the obstructions given by a linear space of
the same dimension and multiplicity, see formula (3.4). This would give a
geometrical justification of all the cases with n + 3 and n + 4 points of the
Fröberg–Hollman list.

Linear system linear virtual dimension computed dimension
L4(3, 27) 0 1 (gap = 1)
L6(4, 39) −6 1 (7)
L7(4, 310) 15 16(1)
L8(5, 411) −33 1(34)
L9(5, 412) 22 32(10)
L10(5, 413) 143 144(1)
L10(5, 414) 0 14(14)
L2(4, 25) 0 1(1)
L4(6, 47) −14 1(15)
L5(6, 48) 42 43(1)
L5(6, 49) −6 3(9)
L6(8, 69) −147 1(148)
L7(8, 610) 135 171(36)

Here is the heuristic justification, based on the analysis on secant lin-
ear dimension suggested by [BDP15b], of the difference between the com-
puted dimension and the linear virtual dimension.

– L4(3, 27): the Rational Normal Curve is contained inside the base lo-
cus with multiplicity 2 (= 2 · 7− 3 · 4) and, then, gives an obstruction of(

4 + 2− 2

4

)
= 1.

– L6(4, 39): the Rational Normal Curve is contained inside the base lo-
cus with multiplicity 3 (= 3 · 9− 4 · 6) and, then, gives an obstruction of(

6 + 3− 2

6

)
= 7.

– L7(4, 310): the Rational Normal Curve is contained inside the base
locus with multiplicity 2 (= 3 · 10− 4 · 7) and, then, gives an obstruction of(

7 + 2− 2

7

)
= 1.

– L8(5, 411): the Rational Normal Curve is contained inside the base
locus with multiplicity 4 (= 4 · 11− 4 · 8) and, then, gives an obstruction(

8 + 4− 2

8

)
= 45.

Moreover, any line connecting one of the base points with any other point of
the Rational Normal Curve is contained in the base locus with multiplicity
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3 (= 4 + 4 − 5). Hence, any of the 11 cones, with one of the base points
as vertex and with the Rational Normal Curve as base, is contained in
the base locus of the linear system with multiplicity 3 and, then, gives an
obstruction of

−
(

8 + 3− 3

8

)
= −1;

thus, in total, we have
45− 11 · 1 = 34.

– L9(5, 412): the Rational Normal Curve is contained inside the base
locus with multiplicity 3 (= 4 · 12− 5 · 9) and, then, gives an obstruction of(

9 + 3− 2

9

)
= 10.

– L10(5, 413): the Rational Normal Curve is contained inside the base
locus with multiplicity 2 (= 4 · 13− 5 · 10) and, then, gives an obstruction of(

10 + 2− 2

10

)
= 1.

– L10(5, 414): each one of the 14 Rational Normal Curves defined by a
choice of 13 of the base points is contained inside the base locus with mul-
tiplicity 2 (= 4 · 13− 5 · 10) and, then, all together, they give an obstruction
of

14 ·
(

9 + 2− 2

9

)
= 14.

– L2(4, 25): the Rational Normal Curve is contained inside the base lo-
cus with multiplicity 2 (= 2 · 5− 2 · 4) and, then, gives an obstruction of(

2 + 2− 2

2

)
= 1.

– L4(6, 47): the Rational Normal Curve is contained inside the base lo-
cus with multiplicity 4 (= 4 · 7− 4 · 6) and, then, gives an obstruction of(

4 + 4− 2

4

)
= 15.

– L5(6, 48): the Rational Normal Curve is contained inside the base lo-
cus with multiplicity 2 (= 4 · 8− 5 · 6) and, then, gives an obstruction of(

5 + 2− 2

5

)
= 1.
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– L5(6, 49): each one of the 9 Rational Normal Curves defined by a choice
of 8 of the base points is contained inside the base locus with multiplicity
2 (= 4 · 8− 5 · 6) and, then, gives an obstruction of

9 ·
(

5 + 2− 2

5

)
= 9.

– L6(8, 69): the Rational Normal Curve is contained inside the base lo-
cus with multiplicity 6 (= 6 · 9− 6 · 8) and, then, gives an obstruction of(

6 + 6− 2

6

)
= 210.

Moreover, any line connecting one of the base points with any other point of
the Rational Normal Curve is contained in the base locus with multiplicity
4 (= 6 + 6 − 8). Hence, any of the 9 cones, with one of the base points
as vertex and with the Rational Normal Curve as base, is contained in
the base locus of the linear system with multiplicity 4 and, then, gives an
obstruction of

−
(

6 + 4− 3

6

)
= −7.

Finally, any secant line to the Rational Normal Curve is contained in the
base locus with multiplicity 4 (6 + 6 = 8). Hence, the 2-nd secant variety
is also contained in the base locus of the linear system with multiplicity 4.
Since it is a threefold, it gives an obstruction of(

6 + 4− 4

6

)
= 1.

Therefore, in total, we have

210− 9 · 7 + 1 = 148.

– L7(8, 610): the Rational Normal Curve is contained inside the base
locus with multiplicity 4 (= 6 · 10− 7 · 8) and, then, gives an obstruction of(

7 + 4− 2

7

)
= 36.

This work about linear speciality pursued by Brambilla, Dumitrescu
and Postinghel goes in the direction of trying to give a complete answer
to the general question about the Hilbert series of ideals of fat points in
general position. In [Cha05], the following conjecture is suggested. Observe
that, as explained above, this conjecture can rephrased in terms of powers
ideals that might not be Hilbert generic.

Conjecture 3.3 (Strong Fröberg–Iarrobino’s conjecture, [Cha05]). In the
same notation as above, the linear system Ln(m, dg) has dimension equal
to the linear expected dimension except perhaps when one of the following
conditions hold:
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1. g = n+ 3;

2. g = n+ 4;

3. n = 2 and g = 7, 8;

4. n = 3, g = 9 and m ≥ 2d;

5. n = 4, g = 14 and m = 2d, d = 2, 3.

SECTION 3.3

SECANT VARIETIES OF VARIETIES OF POWERS

In this section, we use Fröberg’s conjecture to conjecture the dimension of
all secant varieties of varieties of powers, see Conjecture 1.3. As explained
in Section 1.3.3, this conjecture would imply Conjecture 1.2 about the d-th
Waring rank of generic forms. We defined the variety of powers Vn,k,d as

Vn,k,d = {[Gk] | G ∈ Sd} ⊂ P(Skd).

By using Terracini’s Lemma, we have seen that the generic tangent space
to the s-th secant variety to the variety of powers is given by

TPσs(Vn,k,d) = P
([

(Gd−1
1 , . . . , Gd−1

s )
]
kd

)
,

where G1, . . . , Gs are generic forms of degree k. Thus, in order to compute
the dimension of all secant varieties of varieties of powers, we have to
compute the Hilbert function in degree kd of the ideal (Gd−1

1 , . . . , Gd−1
s ).

We call these ideals generalized power ideals.

3.3.1 BINARY CASE

First, we consider the case of binary forms (n = 1).

Lemma 3.3.1. Let I = (Gd1, . . . , G
d
g) be a generalized power ideals where Fi

is a generic binary forms. Then, I is Hilbert generic.

Proof. The idea is to specialize the Gi’s to be linear forms. Then, we are re-
duced to the case of power ideals in two variables. They are Hilbert generic
by [GS98, Corollary 2.3].

Proposition 3.3.2. The secant varieties σs(V1,k,d) are never defective.

Proof. For d = 2, it is easy to see that σ2(V1,k,2) fills the whole ambient
space. Indeed, if F ∈ S2d, we can decompose it as F = XY , where X,Y are
homogeneous polynomials of degree d; hence,

F = XY =
1

4

[
(X + Y )2 − (X − Y )2

]
.
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Assume now d ≥ 3. By Lemma 3.3.1, we know that the Hilbert function of
a generalized power ideal, whose generators are powers of generic forms,
equals the formula (3.2) prescribed by Fröberg’s conjecture. Hence,

codim σs(V1,k,d) = coeffkd

[
(1− tk(d−1))s

(1− t)2

]
= max{0, (kd+ 1)− s(k + 1)}.

As a corollary, we get the d-th Waring rank of generic binary forms. This
result has been proved by Reznick in [Rez13b] with a different approach.

Corollary 3.3.3. The generic d-th Waring rank of binary forms is

rk◦d(2, dk) =

⌈
kd+ 1

k + 1

⌉
.

3.3.2 SUM OF SQUARES

In this case (d = 2), we get rid of the powers in the ideal and, then, we are
precisely under the assumptions of Fröberg’s conjecture. Thus, we have
that, assuming that Fröberg’s conjecture holds,

codim σs(Vn,k,2) = max

{
0, coeff2k

(1− tk)s

(1− t)n+1

}
=

= max

{
0,

(
n+ 2k

n

)
− s
(
n+ k

n

)
+

(
s

2

)}
.

Theorem 3.3.4. If Fröberg’s conjecture holds, then the secant varieties
σs(Vn,k,2) are defective, with defect

(
s
2

)
, until they fill the ambient space.

Remark 3.3.5. The fact that these cases are defective is not unexpected.
Indeed, similarly as for the case of degree 2 Veronese embeddings, we
can explain the defectiveness by Terracini’s Lemma. Indeed, the tangent
spaces to the variety of powers at two generic points, [F 2][G2] ∈ Vn,k,2, has
a non-empty intersection

[FG] = T[F 2]Vn,k,2 ∩ T[G2]Vn,k,2.

Hence, the dimension of the span of s generic tangent spaces to the variety
of powers Vn,k,2 is at most s

(
n+k
n

)
−
(
s
2

)
.

Corollary 3.3.6. If Fröberg’s conjecture holds, then the 2-nd Waring rank
of a generic form of degree 2k in n+ 1 variables is

rk◦2(n+ 1, kd) = min

{
s
∣∣∣ s(n+ k

n

)
−
(
s

2

)
≥
(
n+ 2k

n

)}
.

In the case of three variables, we know that Fröberg’s conjecture holds by
the result of Anick [Ani86]. Then, we get the following.
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Theorem 3.3.7. The 2-nd Waring rank of a generic ternary form is

rk◦2(3, 2k) =

⌈(
2k+2

2

)(
k+2

2

) ⌉ ,
except for

d = 1, 3, 4 where rk◦d(2, 2k) =

⌈(
2k+2

2

)(
k+2

2

) ⌉+ 1.

In the case of four variables, we have that the generic 2-nd Waring rank is
less or equal than 8, by Theorem 2.7.5. Moreover, we have that the lower
bound, given by a simple parameter count, is equal to 8 for d ≥ 21. Thus,
in order to have a complete description of the 2-nd Waring rank also in the
case of four variables, it is enough to check with the support of the Com-
puter Algebra software Macaulay2 [GS] that Fröberg’s conjecture holds
for d ≤ 21; see [One14] for details. Therefore, we have the following.

Theorem 3.3.8. The 2-nd Waring rank of a generic quaternary form is

rk◦2(4, 2k) =

⌈(
2k+3

3

)(
k+3

3

) ⌉ ,
except for

d = 1, 2 where rk◦2(4, 2k) =

⌈(
2k+3

3

)(
k+3

3

) ⌉+ 1.

3.3.3 GENERAL CASE

Assume now d ≥ 3. Supported by massive computer experiments with
Macaulay2 [GS], we have the following conjecture; see [Nic15].

Conjecture 3.4. Generalized power ideals generated by powers of generic
forms of degree at least 2 are Hilbert generic.

Thus, similarly as above we get the following.

Theorem 3.3.9. If Conjecture 3.4 holds, then, for d ≥ 3, the secant varieties
σs(Vn,k,d) are never defective.

Proof. If Conjecture 3.4 holds, we can use the formula given by Fröberg’s
conjecture. Therefore,

codim σs(Vn,k,d) = max

{
0, coeffkd

(1− t(k(d−1))s

(1− t)n+1

}
=

= max

{
0,

(
n+ kd

n

)
− s
(
n+ k

n

)}
.
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Corollary 3.3.10. If Conjecture 3.4 holds, then the d-th Waring rank of a
generic form of degree kd in n+ 1 variables is

rk◦d(n+ 1, kd) =

⌈(
n+kd
n

)(
n+k
n

) ⌉ .
SECTION 3.4

SECANT VARIETIES OF DECOMPOSABLE FORMS

Generalizing classical ideas coming from Segre, Spampinato, Bordiga and
Mammana, in [CGG+15], the authors considered, for any partition µ =
(m1, . . . ,mr) ` d, the variety of µ-reducible forms; namely,

{[F ] ∈ P(Sd) | F = F1 · · ·Fr, for some 0 6= Fi ∈ Smi}.

In particular, they are interested in computing the dimensions of all their
secant varieties. The particular case µ = (1, . . . , 1) was first considered
by Arrondo and Bernardi [AB11]; followed by the work of Shin [Shi12],
who computed the dimension of all the 2-nd secant varieties in the three
variable case. More recently, Abo [Abo14] completed the three variable case
for all higher secant varieties. In all these cases, secant varieties are never
defective and it is conjectured that this is always the case.

In [CGG+15], the authors give a conjectural formula for the dimensions
of all secant varieties, for any partition µ. They also observe that, in the
case of partitions µ = (m1,m2), such a formula is implied by Fröberg’s
conjecture.

Now, we want to report on recent results obtained in [CCGO15], where
we started to study a special case of varieties of decomposable forms. Fixed
a partition µ as above, we define the variety of µ-powers2 as

Vn,µ = {[F ] ∈ P(Sd) | F = Lµ1

1 · · ·Lµss , Li ∈ S1}.

This is related to the computation of the µ-Waring rank of generic forms
of degree d, introduced in Section 1.2.3. Apart from the case µ = (1, . . . , 1),
also the special partition µ = (d − 1, 1) has been considered in the liter-
ature. Indeed, in that case Vn,µ is the tangential variety of the Veronese
variety Vn,d, namely the union of all tangent spaces to Vn,d. Catalisano,
Geramita and Gimigliano conjectured in [CGG02] that secant varieties
to the Vn,(d−1,1) are never defective, except for d = 2, 2 ≤ 2s ≤ n and
d = 3, s = n = 2, 3, 4. Abo and Vannieuwenhoven proved it in [AV15].

In our work, we look at the problem for any arbitrary partition µ. More-
over, since the cases r = 1 and d = 1, 2 have been already considered in
previous works, we assume r ≥ 2 and d ≥ 3.

2In the original paper, we use a different terminology. In this thesis, we want to use this notation
because µ-powers of linear forms appear from several different perspective.
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We have already seen in Section 1.3.5, that the generic tangent space to
the variety of µ-powers at the point [Lµ] = [Lm1

1 · · ·Lmrr ] ∈ Vn,µ is given by

T[Lµ]Vn,µ = P
([(

Lµ

L1
, . . . ,

Lµ

Lr

)])
⊂ P(Sd).

This can also be written as(
Lµ

L1
, . . . ,

Lµ

Lr

)
= (Lm1

1 · · ·Lmrr ) ·
(

L
L1
, . . . ,

L
Lr

)
, (3.7)

where L = L1 · · ·Lr. We give a more practical description of these ideals.

Proposition 3.4.1. (for binary forms) Let S = C[x, y] and µ = (m1, . . . ,mr) `
d. If L1, L2, . . . , Lr are general linear forms, P = [Lm1

1 · · ·Lmrr ] ∈ V1,µ and we
set I ′ to be the principal ideal

I ′ := (Lm1−1
1 · · ·Lmr−1

r )

then we have
TP (V1,µ) = P(I ′d).

Proof. In view of equation (3.7) above, we first consider the ideal

J := (L2L3 · · ·Lr, L1L3 · · ·Lr, . . . , L1L1 · · ·Lr−1).

Claim. J = (x, y)r−1.

Proof of the Claim. We proceed by induction on r. The claim is obvious for
r = 2, so let r > 2. Since

J = (Lr · (L2L3 · · ·Lr−1, L1L3 · · ·Lr−1, . . . , L1L2 · · ·Lr−2), L1L2 · · ·Lr−1),

we have, by the induction hypothesis, that

J = (Lr · (x, y)r−2, L1L2 · · ·Lr−1).

The form L1L2 · · ·Lr−1 is a general form in Sr−1, hence not in the space
Lr(x, y)r−2. This last implies that dim Jr−1 = r. Since the ideal J begins in
degree r − 1, we are done with the proof of the claim.

Now, using the Claim and equation (3.7), we have that

I = (Lm1−1
1 · · ·Lmr−1

r )(x, y)r−1 ⊆ (Lm1−1
1 · · ·Lmr−1

r ).

Since (x, y)r−1 =
⊕

j≥r−1 Sj , we have that

Id = (Lm1−1
1 · · ·Lmr−1

r )d.
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Proposition 3.4.2. Let S = C[x0, . . . , xn] and µ = (m1, . . . ,mr) ` d. If
L1, L2, . . . , Lr are general linear forms and Lµ = Lm1

1 · · ·Lmrr , then

(
Lµ

L1
, . . . ,

Lµ

Lr

)
=
(
Lm1−1

1 · · ·Lmr−1
r

)
∩

 ⋂
1≤i<j≤r

(Li, Lj)
mi+mj−1


Proof. By equation (3.7), we need to prove that the two ideals

I = (Lm1−1
1 · · ·Lmr−1

r ) · (L2L3 · · ·Lr, . . . , L1 · · ·Lr−1)

and

J =
(
Lm1−1

1 · · ·Lmr−1
r

)
∩

 ⋂
1≤i<j≤r

(Li, Lj)
mi+mj−1


are equal. Since each generator of I is in J , we have I ⊆ J .

Now, let H = Lm1−1
1 · · ·Lmr−1

r , and suppose that F = HG ∈ J , for some
homogeneous polynomial G. Since the Li are general linear forms, we have

H ∈ (Li, Lj)
mi+mj−2 for every 1 ≤ i < j ≤ r,

but
H /∈ (Li, Lj)

mi+mj−1 for every 1 ≤ i < j ≤ r,

so G ∈
√

(Li, Lj)mi+mj−1 = (Li, Lj), for all 1 ≤ i < j ≤ r.
Since

⋂
1≤i<j≤r(Li, Lj) = (L2 · · ·Lr, . . . , L1 · · ·Lr−1), we are done.

3.4.1 BINARY CASE

For binary forms, we can cover all cases. First, we observe the following.

Lemma 3.4.3. Let S = C[x, y] and µ = (m1, . . . ,mr) ` d. For i = 1, . . . , s,
let Lµi = Lm1

i,1 · · ·L
mr
i,r , where Li,j ’s are generic linear forms. Then, the ideal

(Lµ1 , . . . ,Lµs ) is Hilbert generic.

Proof. For any i = 1, . . . , s, we can specialize all the Li,j ’s to be equal. In
that case, we are reduced to the case of power ideals in two variables. They
are Hilbert generic by [GS98, Corollary 2.3].

Theorem 3.4.4. Let S = C[x, y] and µ = (m1, . . . ,mr) ` d. Then, σs(V1,µ) is
never defective, for any s; i.e.,

dimσs(V1,µ) = min{sr + s− 1, d}.

Proof. Since every form of degree d in S splits as a product of linear forms
and the general form of degree d is square-free, we conclude that, for r = d,
i.e., µ = (1, . . . , 1), we have V1,µ = P(Sd). Then, assume r < d.
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By Proposition 3.4.1 and Terracini’s Lemma 1.3.15, we get the following
description of the generic tangent space to secant varieties of V1,µ. Let Pi =
[Lµi ] = [Lm1

i,1 · · ·L
mr
i,r ] ∈ V1,µ and P ∈ 〈P1, . . . , Ps〉 be generic points. Then,

TPσs(V1,µ) = P
([(

Lµ−11 , . . . ,Lµ−1s

)]
d

)
,

where µ − 1 = (m1 − 1, . . . ,mr − 1). By Lemma 3.4.3, we can compute
the dimension of such a tangent space by using the formula (3.2) given by
Fröberg’s conjecture and we conclude the proof.

Corollary 3.4.5. For any partition µ = (m1, . . . ,mr) ` d, the µ-Waring
rank of a generic binary form is

rk◦µ(2, d) =

⌈
d+ 1

r + 1

⌉
.

Remark 3.4.6. In general, we call µ-power ideals the ideals generated by
µ-powers (Lµ1 , . . . ,Lµs ), with Lµi = Lm1

i,1 · · ·L
mr
i,r , where Li,j ’s are linear forms,

for any i = 1, . . . , s. These ideals clearly generalize the definition of power
ideals, which are the µ-power ideals for µ = (d). Supported by massive
computer experiments, we conjecture the following.

Conjecture 3.5. Let S = C[x0, . . . , xn]. For any µ 6= (d), generic µ-power
ideals are Hilbert generic.

3.4.2 2-ND SECANT VARIETIES

In this section, we find all the dimensions of 2-nd secant varieties, for any
partition µ and for any number of variables.

Theorem 3.4.7. Let S = C[x0, . . . , xn] and µ = (m1, . . . ,mr). Assume n ≥
2, r ≥ 2, d ≥ 3. Then, σs(Vn,µ) is not defective, except for

µ = (2, 1), n = 2, where the defect is equal to 1.

Proof. We always have r ≤ d. The case r = d is covered by [Shi12, Theorem
4.4], so we may assume that r < d. By Terracini’s Lemma, we need to find
the vector space dimension of

[I[Lµ1 ] + I[Lµ2 ]]d,

where the [I[Lµi ]]’s define the tangent spaces at two generic points Lµ1 =

[Lm1
1 · · ·Lmrr ] and Lµ2 = [Nm1

1 · · ·Nmr
r ] of V1,µ, where i’s and Ni’s are generic

linear forms. Namely, by Proposition 3.4.2,

I[Lµ1 ] = (Ld1−1
1 · · ·Ldr−1

r ) ∩

 ⋂
1≤i<j≤r

(Li, Lj)
di+dj−1

 ,
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I[Lµ2 ] = (Nd1−1
1 · · ·Ndr−1

r ) ∩

 ⋂
1≤i<j≤r

(Ni, Nj)
di+dj−1

 .

By the exact sequence

0 −→
[
I[Lµ1 ] ∩ I[Lµ2 ]

]
d
−→

[
I[Lµ1 ] ⊕ I[Lµ2 ]

]
d
−→

[
I[Lµ1 ] + I[Lµ2 ]

]
d
−→ 0, (3.8)

and the fact that dim
[
I[Lµi ]

]
d

= rn + 1, for i = 1, 2, it is enough to find

dim
[
I[Lµ1 ] ∩ I[Lµ2 ]

]
d
. Recall that the expected dimension of σ2(Vn,µ) is

exp .dimσ2(Vn,µ) = min

{
2rn+ 1,

(
d+ n− 1

n− 1

)
− 1

}
.

Note that, if dim
[
I[Lµ1 ] ∩ I[Lµ2 ]

]
d

= 0, then, by (3.8), the dimension of σ2(Vn,µ)

is as expected.
Let V be the subscheme of Pn defined by I[Lµ1 ] ∩ I[Lµ2 ] and let F be a form

of degree d I[Lµ1 ] ∩ I[Lµ2 ]. Clearly

F = Lm1−1
1 · · ·Lmr−1

r ·Nm1−1
1 · · ·Nmr−1

r ·G,

where G is a form of degree d− 2(d− r) = 2r − d.
If 2r− d < 0, there are no forms of this degree, hence

[
I[Lµ1 ] ∩ I[Lµ2 ]

]
d

= 0

and we are done. So assume 2r − d ≥ 0.
The form G vanishes on the residual scheme W of V with respect to the

2r multiple hyperplanes {Li = 0} and {Ni = 0} (1 ≤ i ≤ r). It is easy to see
that W is defined by the ideal

(∩1≤i<j≤r(Li, Lj)) ∩ (∩1≤i<j≤r(Ni, Nj)).

The form G cannot be divisible by all the Li’s and Nj ’s. Then, it has degree
at least 2r.

Without loss of generality assume that G is not divisible by L1, and let
H be the hyperplane defined by L1. The form G cuts out on H a hypersur-
face Q of H having degree 2r − d, and containing the r − 1 hyperplanes of
H cut out by L2, . . . , Lr. Hence, in order for G to exist, 2r − d has to be at
least r− 1. That is, d ≤ r+ 1. Since we are assuming d ≥ r+ 1, we get that
d = r + 1.

It follows that Q has degree r − 1, contains the r − 1 hyperplanes of H
cut out by L2, . . . , Lr, and contains the trace on H of the schemes defined
by the ideals (Ni, Nj). Since the Ni are generic with respect to H and to
the Li’s, the only possibility is that the schemes Yi,j defined by the ideals
(Ni, Nj) do not intersect H. Since H ' Pn−1 ⊆ Pn and Yi,j ' Pn−2 ⊆ Pn,
then H ∩ Yi,j = ∅ only for n ≤ 2.

Recalling that n > 2, 2 ≤ r ≤ n and d = r + 1, we are left with the
following cases:
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(1) n = 2, r = 3, d = 4;

(2) n = 2, r = 2, d = 3.

(1). In this case, µ = (2, 1, 1), the form G has degree 2r − d = 2 and the
scheme W is the union of 6 general points of P2. Hence, G does not exist,
and so

[
I[Lµ1 ] ∩ I[Lµ2 ]

]
d

= 0.
(2). In this case, µ = (2, 1), the form G has degree 2r − d = 1 and the

scheme W is the union of 2 points of P2. Hence, G exists and describes the
line through the two points. It follows that dim(IP1

∩ IP2
)3 = 1. So, we get

dim
[
I[Lµ1 ] ∩ I[Lµ2 ]

]
3

= 9,

that is, dimσ2(V2,(2,1)) = 8, while exp .dimσ2(V2,(2,1)) = 9. Thus, we have
that V2,(2,1) has 2-defect equal to 1.
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CHAPTER 4

DECOMPOSITIONS OF MONOMIALS

In this chapter we focus on additive decompositions of monomials. In Sec-
tion 2.3.2, we discussed classical Waring decompositions over the complex
numbers. In Section 4.1, we describe recent results about Waring ranks of
monomials over the real numbers. In particular, we classify the monomials
whose real Waring rank coincides with the complex rank. In Section 4.2,
we begin to investigate d-th Waring decompositions of monomials over the
complex numbers. As far as we know, this is the state of the art of these
decompositions of monomials.

SECTION 4.1

REAL WARING RANK OF MONOMIALS

We consider Waring decompositions of monomials over the real numbers.
We introduced them in Section 1.2.4. Here, we want to explain recent
results from [CKOV16], where, in particular, we classify the monomials
whose real rank coincides with the complex rank; see Theorem 4.1.8.

4.1.1 BINARY CASE

In [BCG11], Boij, Carlini and Geramita computed real rank of binary mono-
mials. Their result surprisingly rely on the following straightforward ap-
plication of the well-known Descartes’ rule of signs.

Lemma 4.1.1 ([BCG11, Lemma 4.1 – 4.2]). Consider a real polynomial

F = xd + c1x
d−1 + . . .+ cd−1x+ cd ∈ R[x],

Then,
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1. for any i < d, there is a choice of cj ’s such that F has distinct real roots
and ci = 0;

2. if ci = ci+1 = 0 for some 0 < i < d, then F has a non real root.

We recall the proof of the result about the real rank of binary monomials
since we will generalize the same idea in the case of more variables.

Proposition 4.1.2 ([BCG11, Proposition 4.4]). Consider M = xd0
0 x

d1
1 ,

then rkR(M) = d0 + d1.

Proof. We use Apolarity Lemma 2.1.13. We have thatM⊥ = (Xd0+1
0 , Xd1+1

1 ).
In this case, ideals of reduced points in two variables are principal ideals
whose generator is square-free. Hence, we seek for square-free homoge-
neous polynomials inside M⊥. Let F = Xd0+1

0 G0 +Xd1+1
1 G1 ∈M⊥ a homo-

geneous polynomial of degree D, namely degGi = D − di − 1.
If D = d0 + d1, then the only missing monomial in F is Xd0

0 Xd1
1 . There-

fore, by Lemma 4.1.1(1), there exists a choice of the Gi’s such that F has
only distinct real solutions. In particular, rkR(M) ≤ d0 + d1. On the other
hand, if D < d0 + d1, we have several consecutive zero coefficients in F .
Therefore, by Lemma 4.1.1(2), for any choice of the Gi’s we have a non-real
solution. In particular, rkR ≥ d0 + d1 and we are done.

As a corollary of Theorem 2.3.5 and Proposition 4.1.2, we get the following.

Corollary 4.1.3. Consider M = xd0
0 x

d1
1 , with 0 < d0 ≤ d1. Then, we have

that rkC(M) = rkR(M) if and only if d0 = 1.

4.1.2 MORE VARIABLES

We give an upper bound for the real rank of monomials in more variables.

Theorem 4.1.4. If M = xd0
0 · · ·xdnn with 0 < d0 ≤ . . . ≤ dn, then

rkR(M) ≤ 1

2d0

n∏
i=0

(di + d0).

Proof. We know that M⊥ = (Xd0+1
0 , . . . , Xdn+1

n ). Let us consider

Fi = Xa0+1
0 Gi(X0, Xi) +Xai+1

i Hi(X0, Xi),

where degGi = ai − 1 and degHi = a0 − 1, for every i = 1, . . . , n.
Each Fi is a binary form of degree d0 +di where the monomial Xd0

0 Xdi
i does

not appear. Thus, by Lemma 4.1.1(1), there exists a choice of Gi’s and Hi

such that Fi has d0 + di distinct real roots; say pi,j , with j = 1, . . . , a0 + ai.
Therefore, the ideal (F1, . . . , Fn) ⊂ M⊥ is the ideal of the following set of
distinct real points:

X =
{

[1 : p1,j1 : . . . : pn,jn ]
∣∣∣ 1 ≤ ji ≤ d0 + di, for i = 1, . . . , n

}
.

By the Apolarity Lemma 2.1.13, we are done.
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However, we have to observe that such upper bound is not always sharp.

Proposition 4.1.5. Let M = x2
0 · · ·x2

n. Then rkR(M) ≤ (3n+1 − 1)/2.

Proof. We explicitly give an apolar set of points for M as follows. For any
i = 0, . . . , n, let us consider the set

Xi =
{

[p0 : . . . : pi−1 : 1 : pi+1 : . . . : pn] ∈ Pn | pi ∈ {0,±1}
}
.

We can easily determine the cardinality of X =
⋃n
i=0 Xi. From all (n + 1)-

tuples (p0, . . . , pn) with pi = 0,±1, we need to discard (0, . . . , 0), since it
does not correspond to any point in the projective space. We are double
counting, since (p0, . . . , pn) and (−p0, . . . ,−pn) define the same point in the
projective space. Thus, |X| = (3n+1 − 1)/2. For each P ∈ X, let LP denote
the corresponding linear form p0x0 + . . . + pnxn and n(P ) the number of
entries different from zero. For each i = 1, . . . , n+ 1, we set

Ri =
∑
P∈X
n(P )=i

L2n+2
P .

By direct computation, we obtain

(2n+ 2)!

2
x2

0 · · ·x2
n =

n+1∑
i=1

(−2)n+1−iRi.

Thus, X is apolar to M and this concludes the proof.

Example 4.1.6. We have the following real decomposition of M = x2
0x

2
1:

12x2
0x

2
1 = R2 − 2R1 = (x0 + x1)4 + (x0 − x1)4 − 2(x4

0 + x4
1).

For n = 2, we have rkC(x2
0x

2
1x

2
2) = 9 and rkR(x2

0x
2
1x

2
2) ≤ 13:

360x2
0x

2
1x

2
2 = R3 − 2R2 + 4R1 =

= (x0 + x1 + x2)6 + (x0 + x1 − x2)6 + (x0 − x1 + x2)6 + (x0 − x1 − x2)6+

−2[(x0 +x1)6 + (x0−x1)6 + (x0 +x2)6 + (x0−x2)6 + (x1 +x2)6 + (x1−x2)6]+

+4(x6
0 + x6

1 + x6
2).

Since the complex rank is always a lower bound for the real rank, by The-
orem 2.3.5 and Theorem 4.1.4, we get the following result.

Corollary 4.1.7. If M = x0x
d1
1 . . . xdnn , then rkC(M) = rkR(M).

107



4.1.3 COMPLEX RANK VS. REAL RANK

We characterize monomials whose real rank coincides with the complex
rank by generalizing Corollary 4.1.3 in more variables.

Theorem 4.1.8. Let M = xd0
0 · · ·xdnn be a degree d monomial with 0 < d0 ≤

. . . ≤ dn. Then,

rkR(M) = rkC(M) if and only if d0 = 1.

We present two proofs. The first one relies on elimination theory. This
makes it more explicit, but it works only in three variables. Instead, the
second one will prove the theorem in full generality.

THREE VARIABLES CASE: VIA ELIMINATION THEORY. The idea is to use
elimination theory in order to reduce our problem to the case of two vari-
ables and use again Lemma 4.1.1. Hence, we recall some facts about elim-
ination theory; for more details we refer to [CLO92, Chapter 3].

Consider two homogeneous polynomials in n+ 1 variables written as

F =

s∑
i=0

Aix
i
n and G =

t∑
i=0

Bix
i
n, where Ai, Bi ∈ C[x0, . . . , xn−1].

We define the resultant Res(F,G, xn) of F ad G with respect to xn as the
determinant of the (s+ t)× (s+ t) Sylvester matrix

Syl(F,G, xn) =



A0 0 0 0 B0 0 0
A1 A0 0 0 B1 0 0
...

...
. . . 0

...
. . . 0

As As−1 A0 Bt−1 B0

0 As A1 Bt B1

0 0
. . .

... 0
. . .

...
0 0 0 As 0 0 Bt


. (4.1)

Resultants are fundamental tools in elimination theory. As explained in
[CLO92, Section 3.6], in the monic case A0 = 1, it is straightforward to
show that the roots of resultants lift to solutions of the system of polyno-
mial equations F = G = 0.

Proposition 4.1.9. Let c = (c0, . . . , cn−1). If A0 = 1, then there exists
cn ∈ C such that F (c, cn) = G(c, cn) = 0 if and only if H(c) = 0, where
H(x0, . . . , xn−1) = Res(F,G, xn).

We are now ready to prove our theorem in the case of three variables.

Proof of Theorem 4.1.8 in three variables. If d0 = 1, then the real rank is
equal to the complex rank by Corollary 4.1.7. If d0 ≥ 2, we give a proof by
contradiction. Let X be an apolar set of real points to M . If the cardinality
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of X is rkC(M), then its defining ideal IX ⊂ M⊥ = (Xd0+1
0 , Xd1+1

1 , Xd2+1
2 ) is

a complete intersection by Proposition 2.3.6. Hence, IX = (F,G) where

F = Xd1+1
1 +Xd0+1

0 · F ′ and G = Xd2+1
2 +Xd0+1

0 ·G′.

Here F ′, G′ ∈ C[X0, X1, X2] are forms of degrees d1 − d0 and d2 − d0 respec-
tively. Let us consider the Sylvester matrix of F and G with respect to X2

as in (4.1). Thus, the monomial Xd1+1
1 appears in A0 and Bd2+1 = 1. The

monomial X(d1+1)(d2+1)
1 appears in the resultant. On the other hand, since

X0 has exponent at least d0 + 1 in all the entries of the Sylvester matrix
(4.1), we conclude that

H(X0, X1) =

(d1+1)(d2+1)∑
i=0

ciX
i
0X

(d1+1)(d2+1)−i
1 ,

where c1 = . . . = cd0
= 0. Therefore, since d0 ≥ 2, by Lemma 4.1.1, H(1, X1)

has some non real root. Thus, there exists c1 ∈ C\R such that H(1, c1) = 0.
By Proposition 4.1.9, there exists c2 such that F (1, c1, c2) = G(1, c1, c2) = 0.
Hence, [1 : c1 : c2] ∈ X and it is not real. This is a contradiction.

GENERAL CASE: VIA LINEAR ALGEBRA. We need to recall some fact about
trace bilinear form of finite K-algebras; we refer to [PRS93] for details.

Let A = K[X0, . . . , Xn]/I be a finite K-algebra. For any element F ∈ A,
we define the endomorphism mF ∈ End(A) to be the multiplication by
F . Since A is a finite dimensional K-vector space, we have a trace map
TrA/K : End(A) → K, which is the trace of the corresponding matrix. We
define a symmetric bilinear form

B(F,G) : A⊗A→ K,

by
B(F,G) = Tr(mF ·mG) = TrA/K(mF ·G).

The following result is featured in [PRS93, Theorem 2.1]; we give an ele-
mentary proof for the sake of completeness.

Proposition 4.1.10. Let A be a reduced finite R-algebra of dimension N .
If SpecA consists only of R-points, then the bilinear form

B : A⊗A→ R, (F,G) 7→ TrA/R(mF ·G)

is positive definite.

Proof. The R-algebra A is isomorphic to R × · · · × R because A is reduced.
The representing matrix of the R-linear map A → A given by multiplica-
tion by F = (F1, . . . , FN ) ∈ A is the diagonal matrix with diagonal entries
F1, . . . , FN . Thus, we have B(F, F ) = TrA/R(mF 2) = F 2

1 + . . . + F 2
N ≥ 0 and

B(F, F ) = 0 if and only if F = 0. Hence B is positive definite.
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Now, we can give a result on the number of real solutions of some family
of complete intersections, which has a similar flavour of the result given in
Lemma 4.1.1, based on Descartes’ rule of signs.

Theorem 4.1.11. Let 2 ≤ d0 ≤ . . . ≤ dn. Let F1, . . . , Fn ∈ R[X1, . . . , Xn]
be polynomials of degree at most di − d0, respectively. Then the system of
polynomial equations defined by

G1 = Xd1+1
1 + F1 = 0;

... (4.2)
Gn = Xdn+1

n + Fn = 0,

does not have
∏n
i=1(di + 1) real distinct solutions.

Proof. We proceed by contradiction. Assume that the number of real dis-
tinct solutions is

∏n
i=1(ai + 1). Let I = (G1, . . . , Gn) ⊆ R[X1, . . . , Xn] and

consider the R-algebra A = R[x1, . . . , xn]/I. We define the bilinear form

B : A⊗A→ R, (H,K) 7→ TrA/R(mH·K).

Since the system has
∏n
i=1(ai + 1) real distinct solutions, B is positive defi-

nite by Proposition 4.1.10. The residue classes of the monomialsXα1
1 · · ·Xαn

n

with 0 ≤ αi ≤ di form a basis of A as a vector space over R. We want to
show that the representing matrix M of the R-linear map

ϕ : A→ A, H 7→ X2
1 ·H

with respect to this basis has only zeros on the diagonal. This would imply
B(X1, X1) = TrA/R(mX2

1
) = 0, which, in turn, would imply that B is not

positive definite. For 0 ≤ αi ≤ di, we have

ϕ(Xα1
1 · · ·Xαn

n ) = Xα1+2
1 ·Xα2

2 · · ·Xαn
n .

If α1 + 2 ≤ d1, then the column of M corresponding to the basis element
Xα1

1 · · ·Xαn
n has its only nonzero entry at the row corresponding to the

basis element Xα1+2
1 ·Xα2

2 · · ·Xαn
n . If α1 + 2 > d1, then

ϕ(Xα1
1 · · ·Xαn

n ) = −F1 ·Xα1+1−a1
1 ·Xα2

2 · · ·Xαn
n .

It follows from our assumptions on the degrees of the Fi’s, that the ele-
ment ϕ(Xα1

1 · · ·Xαn
n ) is in the span of all basis elements corresponding to

monomials of degree smaller than
∑n
i=1 αi. In both cases, the correspond-

ing diagonal entry of M is zero and we conclude the proof.

With this result, we can give a proof of Theorem 4.1.8.

Proof of Theorem 4.1.8. If d0 = 1, Corollary 4.1.7 proves the statement.
Viceversa, suppose that rkR(M) = rkC(M) and let X be a minimal set of real
points apolar toM . Assume by contradiction that d0 ≥ 2. By Theorem 2.3.6,
we know that X is a complete intersection and we may dehomogenize by
X0 = 1. The set X gives the solutions to a system of polynomial equations
of the form (4.2) in Theorem 4.1.11. This is a contradiction and we conclude
the proof.
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SECTION 4.2

MONOMIALS AS SUMS OF d-TH POWERS

In this section, we consider the d-th Waring decompositions introduced
by Fröberg, Ottaviani and Shapiro in [FOS12]. Here, we work again over
complex numbers. Given a form F ∈ Skd, we define its d-th Waring rank as

rkd(F ) := min{s | ∃G1, . . . , Gs ∈ Sk, F = Gd1 + . . .+Gds}.

In Section 3.3, we analyzed the d-th Waring rank of generic forms. Here,
we explain the recent results obtained in [CO15] where we considered d-th
Waring decompositions of monomials. As far as we know, this is the only
work in the literature about these type of decompositions for specific forms.

4.2.1 BASIC TOOLS

We introduce the elementary tools that we are going to use.

Remark 4.2.1. Consider a monomial M of degree kd in the variables
{x0, . . . , xn}. We say that a monomial M ′ of degree k′d in the variables
{X0, . . . , Xm} is a grouping of M if there exists a positive integer l such
that k = lk′ and M can be obtained from M ′ by substituting each variable
Xi with a monomial of degree l in the x’s, i.e. Xi = Ni(x0, . . . , xn) for each
i = 1, . . . ,m with deg(Ni) = l. Then,

rkd(M
′) ≥ rkd(M).

Indeed, given a decomposition of M ′ as sum of d-th powers

M ′ =
r∑
i=1

Gi(X0, . . . , Xn)d, with deg(Fi) = d′,

we can write a decomposition for M by using the substitution given above,
i.e.,

M =

r∑
i=1

Gi(N0(x0, . . . , xn), . . . , Nm(x0, . . . , xn))d.

Remark 4.2.2. Consider a monomial M of degree kd in the variables
{x0, . . . , xn}. We say that a monomial M ′ of the same degree is a special-
ization of M if M ′ can be found from M after a certain number of identifi-
cations of the type xi = xj . Then,

rkd(M) ≥ rkd(M
′).

Indeed, given a decomposition of M as sum of r d-th powers, we can write
a decomposition for M ′ with the same number of summands applying the
identifications between variables to each addend.
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Remark 4.2.3. Consider a monomial M of degree kd and N a monomial of
degree k′. We can look at the monomial M ′ = MNd. Clearly the degree of
M ′ is also divisible by d; again, it makes sense to compare the d-th Waring
rank of M and M ′. The relation is

rkd(M) ≥ rkd(M
′).

Indeed, given a decomposition as M =
∑r
i=1 F

d
i , with Fi ∈ Sk, we can find

a decomposition for M ′ with the same number of summands, i.e.,

M ′ = MNd =

r∑
i=1

(FiN)d.

The inequality on the d-th Waring rank in Remark 4.2.3 can be strict.

Example 4.2.4. Consider d = 3 and the monomials

M = x1x2x3 and M ′ = (x2
0)3 ·M = x6

0x1x2x3.

By Theorem 2.3.5, we know that rk3(M) = rk3(x1x2x3) = 4. On the other
hand, we can consider the grouping M ′ = (x3

0)2(x1x2x3) = X2
0X1. Thus, by

Remark 4.2.1 and Theorem 2.3.5, we have rk3(M ′) ≤ rk3(X2
0X1) = 3.

As a straightforward application of these remarks, we get the following.

Lemma 4.2.5. Given a monomial M = xd0
0 x

d1
1 · · ·xdnn of degree kd, then

rkd(M) ≤ rkd([M ]),

with [M ] := x
[a0]d
0 · · ·x[an]d

n , where [di]d is the smallest positive representative
of the equivalence class of di modulo d, for any i.

Proof. We can write di = dαi+[di]d for each i = 0, . . . , n. Hence, we get that
M = Nd[M ], where N = xα0

0 · · ·xαnn . Obviously, d divides deg([M ]) and, by
Remark 4.2.3, we are done.

Remark 4.2.6. With the above notation, we have that [d0]d + · · ·+ [dn]d is
a multiple of d and also, it has to be at most (d− 1)(n+ 1) = dn− n+ d− 1.
This observation will be useful to restrict the cases to be considered when
we will seek for upper bounds for the d-th rank.

4.2.2 GENERAL CASE

First, we get some general result on the d-th Waring rank of monomials.

Remark 4.2.7. Using the idea of grouping variables, we get a complete
description of the d = 2 case. Given a monomial M of degree 2k which is
not a square, we have rkd(M) = 2. Indeed,

M = XY =

[
1

2
(X + Y )

]2

+

[
i

2
(X − Y )

]2

,

where X and Y are two monomials of degree k.
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In the following result, we give a general upper bound on the d-th rank of
monomials. Moreover, we see that the case d = 2 is the only one in which
the d-th Waring rank of a monomial can be equal to two.

Theorem 4.2.8. If M is a monomial of degree kd, then rkd(M) ≤ 2d−1.
Moreover, rkd(M) = 2 if and only if d = 2 and M is not a square.

Proof. Any monomial M ∈ Skd is a specialization of x1 · · ·xkd. Now, we can
consider the grouping given by

X1 = x1 · · ·xd, . . . , Xk = x(k−1)d+1 · · ·xkd.

Thus, by Remark 4.2.2, Remark 4.2.1 and Theorem 2.3.5, we get the bound

rkd(M) ≤ rkd(X1 · · ·Xd) = 2d−1.

Now, suppose that d > 2 and rkd(M) = 2. Hence, we can writeM = Ad−Bd,
for suitable A,B ∈ Sk. Factoring we get

M =

d∏
i=1

(A− ξiB),

where the ξi are the d-th roots of 1. In particular, the forms A − ξiB are
monomials. If M is not a d-th power, from A− ξ1B and A− ξ2B, we get that
A and B are not trivial binomials. Hence, a contradiction since A − ξ3B
cannot be a monomial. Remark 4.2.7 concludes the proof.

Remark 4.2.9. For n ≥ 2 and d small enough, we may observe that our re-
sult gives an upper bound for the d-th Waring rank of monomials of degree
kd smaller than the general result of [FOS12]. Indeed, if we look for which
d the inequality 2d−1 ≤ dn holds, we get: for n = 2, d ≤ 6 and, for n = 3,
d ≤ 9. Increasing n, we go even further, e.g. for n = 10, we get d ≤ 59.

4.2.3 TWO VARIABLES

For binary monomials (n = 1), we can improve the upper bound in Theo-
rem 4.2.8.

Proposition 4.2.10. Let M = xd0
0 x

d1
1 be a binary monomial of degree kd.

Then,
rkd(M) ≤ max{[d0]d, [d1]d}+ 1.

Proof. By Lemma 4.2.5, we know that rkd(M) ≤ rkd([M ]); hence, we con-
sider the monomial [M ] = x

[d0]d
0 x

[d1]d
1 . Now, we observe that, as we said in

Remark 4.2.6, the degree of [M ] is a multiple of k and also ≤ 2d− 2; hence,
deg([M ]) is either equal to 0, i.e. [M ] = 1, or d. In the first case, it means
that M was a pure d-th power, and the d-th Waring rank is

rkd(M) = 1 = max{[d0]d, [d1]d}+ 1.
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If deg([M ]) = d, we can apply Theorem 2.3.5 to [M ] and we get

rkd(M) ≤ rkd([M ]) = max{[d0]d, [d1]d}+ 1.

Remark 4.2.11. As a consequence of Proposition 4.2.10, for binary mono-
mials we have that rkd(M) ≤ d. We observe that this upperbound is sharp
by considering rkd(x0x

d−1
1 ) = d.

We may observe that, in view of Theorem 1.2.14, with the same proof
of Proposition 4.2.10, we can give the following upper bound on the d-th
Waring rank of binary monomials over the real numbers.

Proposition 4.2.12. Let M = xd0
0 x

d1
1 be a binary monomial of degree kd.

Then,
rkd,R(M) ≤ [d0]d + [d1]d.

As a corollary of Theorem 4.2.8, we solve the d = 3 case.

Corollary 4.2.13. Given a binary monomial M of degree 3k, we have

1. rk3(M) = 1 if M is a pure cube;

2. rk3(M) = 3 otherwise.

Proof. By Remark 4.2.11, we have that the 3-rd Waring rank can be at
most three; on the other hand, by Theorem 4.2.8, we have that, if M is not
a pure cube, then the rank has to be at least three.

For d ≥ 4, we can get only partial results by performing a case by case
analysis as the following one for the d = 4 case.

Remark 4.2.14. We consider the d = 4 case for binary monomials. From
our previous results, we can only have 4-th Waring ranks equal to 1, 3 or 4.

Let M = xd0
0 x

d1
1 be a binary monomial of degree 4k. By Remark 4.2.5,

we can consider the monomial [M ] obtained by considering the exponents
modulo 4. Since [M ] has degree divisible by 4 and less or equal to 6, we have
to consider only three cases with respect the remainders of the exponents
modulo 4, i.e.

([d0]4, [d1]4) ∈ {(0, 0), (1, 3), (2, 2)}.
The (0, 0) case corresponds to pure fourth powers, i.e. monomials with 4-th
Waring rank equal to 1. In the (2, 2) case we have

rk4(M) ≤ rk4(x2
0x

2
1) = 3;

since the 4-th Waring rank cannot be two, we have that binary monomials
in the (2, 2) class have 4th-rank equal to three. Unfortunately, we can not
conclude in the same way the (1, 3) case. Since rk4(x0x

3
1) = 4, a monomial

in the (1, 3) class may have rank equal to 4. For example, by using the Com-
puter Algebra software CoCoA, we have computed rk4(x0x

7
1) = rk4(x3

0x
5
1) =

4.
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4.2.4 d = 3 CASE IN THREE AND MORE VARIABLES

In this section we consider the case d = 3 with more than two variables. By
Theorem 4.2.8, 3-rd Waring ranks can only be equal to 1, 3 or 4. This lack
of space allows us to give a complete solution for ternary monomials.

Proposition 4.2.15. Given a monomial M = xd0
0 x

d1
1 x

d2
2 of degree 3k, we

have that

1. rk3(M) = 1 if M is a pure cube;

2. rk3(M) = 4 if M = x0x1x2;

3. rk3(M) = 3 otherwise.

Proof. By Lemma 4.2.5, we consider the monomials [M ] with degree divis-
ible by 3 and less or equal than 6. Hence, we have only four possible cases,
i.e.

([d0]3, [d1]3, [d2]3) ∈ {(0, 0, 0), (0, 1, 2), (1, 1, 1), (2, 2, 2)}.

The (0, 0, 0) case corresponds to pure cubes and then to monomials with
3-rd Waring rank equal to one. In the (0, 1, 2) case we have, by Theorem
2.3.5,

rk3(M) ≤ rk3(x1x
2
2) = 3;

since, by Theorem 4.2.8, the rank of monomials which are not pure cubes
is at least 3, we get the equality. Similarly, we conclude that we have rank
three for monomials in the (2, 2, 2) class. Indeed, by using grouping and
Theorem 2.3.5, we have

rk3(M) ≤ rk3(x2
0x

2
1x

2
2) ≤ rk3(XY 2) = 3.

Now, we just need to consider the (1, 1, 1) class. By Theorem 2.3.5, we have
rk3(x0x1x2) = 4. Hence, we can consider monomials M = xd0

0 x
d1
1 x

d2
2 with

d0 = 3α+ 1, d1 = 3β + 1, d2 = 3γ + 1 and where at least one of α, β, γ is at
least one, say α > 0. By Remark 4.2.3, we have

rk3(M) = rk3

(
(xα−1

0 xβ1x
γ
2)3 · x4

0x1x2

)
≤ rk3(x4

0x1x2).

Now, to conclude the proof, it is enough to show that rk3(x4
0x1x2) = 3. In

fact, we can write

x4
0x1x2 =

[√
1

6
x2

0 + x1x2

]3

+

[
−1

6
x2

0 + x1x2

]3

+
[

3
√
−2x1x2

]3
,

and therefore, we are done.

With similar analysis, we produce partial results in four and five variables.
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Remark 4.2.16. Given a monomial M = xd0
0 x

d1
1 x

d2
2 x

d3
3 with degree 3dk,

we consider the monomial [M ] which has degree divisible by 4 and less or
equal than 8. Hence, we need to consider only the following classes with
respect to the remainders of the exponents modulo 3

([a0]3, [a1]3, [a2]3, [a3]3) ∈ {(0, 0, 0, 0), (0, 0, 1, 2), (0, 1, 1, 1), (0, 2, 2, 2), (1, 1, 2, 2)}.

The (0, 0, 0, 0) case corresponds to pure cubes and we have rank equal to
one. Now, we use again Lemma 4.2.5, grouping and Theorem 2.3.5.

In the (0, 0, 1, 2) class, we have

rk3(M) ≤ rk3(x2x
2
3) = 3;

in the (0, 2, 2, 2) class, we have

rk3(M) ≤ rk3(x2
1x

2
2x

2
3) ≤ rk3(XY 2) = 3;

in the (1, 1, 2, 2) class, we have

rk3(M) ≤ rk3(x0x1x
2
2x

2
3) ≤ rk3((x0x1)(x2x3)2) = rk3(XY 2) = 3.

Again, since the 3-rd Waring rank has to be at least three by Theo-
rem 4.2.8, we conclude that in these classes the 3-rd Waring rank is equal
to three. The (0, 1, 1, 1) class is a unique missing case because the upper
bound with rk3(x1x2x3) = 4 is not helpful to give a complete classification.

Remark 4.2.17. Given a monomial M = xd0
0 x

d1
1 x

d2
2 x

d3
3 x

d4
4 with degree 3k,

we consider the monomial [M ] which has degree divisible by 4 and less
or equal to 10. Hence, we need to consider only the following classes with
respect to the remainders of the exponents of M modulo 3.

The (0, 0, 0, 0, 0) class corresponds to pure cubes and 3-rd Waring rank
equal to one. By using Lemma 4.2.5, grouping, previous results in three or
four variables and Theorem 2.3.5, we get the following results.

In the (0, 0, 0, 1, 2) case, we have

rk3(M) ≤ rk3(x3x
2
4) = 3;

in the (0, 0, 2, 2, 2) case, we have

rk3(M) ≤ rk3(x2
1x

2
2x

2
3) = 3;

in the (0, 1, 1, 2, 2) case, we have

rk3(M) ≤ rk3(x0x1x
2
2x

2
3) = 3;

in the (1, 2, 2, 2, 2) case, we have

rk3(M) ≤ rk3(x0x
2
1x

2
2x

2
3x

2
4) = rk3

(
(x0x

2
1) · (x2x3x4)2

)
≤ rk3(XY 2) = 3.

Hence, by Theorem 4.2.8, in these cases we have 3-rd Waring rank is equal
to three. There are only two missing cases: the (0, 0, 1, 1, 1) case, which can
be reduced to the missing case in four variables, and the (1, 1, 1, 1, 2) case.
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APPENDIX A

ALGEBRAIC INVARIANTS

Let S = C[x0, . . . , xn] be the polynomial ring in n + 1 variables with com-
plex coefficients. We consider S equipped with the standard grading, i.e.,
we present S =

⊕
i∈N Si, where Si denotes the C-vector space of homo-

geneous polynomials of degree i. Any homogeneous ideal I ⊂ S inherits
such grading and the associated quotient algebra R = S/I is graded as
R =

⊕
i∈NRi where Ri = Si/Ii.

Given a homogeneous ideal I, we introduce the corresponding projec-
tive algebraic set defined as the zero locus of the forms in I. In order to
study such an algebraic set, we consider invariants associated to I.

SECTION A.1

HILBERT FUNCTIONS

Definition A.1.1. Given a graded S-module M =
⊕

i∈NMi, we define its
Hilbert function as

HFM (i) := dimCMi, for all i ∈ N.

Using this function, we also define the Hilbert series of M as

HSM (t) :=
∑
i∈N

HF(M ; i)ti ∈ Z[[t]].

Example A.1.2. Let I = (x3
0, x

2
1, x

2
2) ⊂ C[x0, x1, x2]. Then, the quotient ring

R = C[x0, x1, x2]/I is generated as a C-vector space by

deg = 0 : 1,
deg = 1 : x0, x1, x2,
deg = 2 : x2

0, x0x1, x0x2, x1x2

deg = 3 : x2
0x1, x2

0x2 x0x1x2,

=⇒

HFR(0) = 1;
HFR(1) = 3;
HFR(2) = 4;
HFR(3) = 3;
HFR(i) = 0, for all i ≥ 4.

and the Hilbert series equals HSR(t) = 1 + 3t+ 4t2 + 3t3.
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Before going further, let’s recall that a grading can be defined over any
monoid, for example over all integers. In particular, we can consider the
standard grading as defined over Z by setting Si = 0, for any i < 0. In this
way, it makes sense to define the shifting of an S-module.

Definition A.1.3. Let M =
⊕

i∈ZMi be a graded S-module. For any inte-
ger j ∈ Z, we define the shifted module M(j) as the S-module M with the
graded structure given by

[M(j)]i := Mi−j , for all i ∈ Z.

In the category of graded modules, the maps are morphisms of S-modules
preserving the grading. In other words, given two graded S-modulesM and
N , we say that a morphism of S-modules f : M −→ N is graded of degree j
if,

f(Mi) ⊂ Ni+j , for all i ∈ Z.

One of the reasons for introducing shifting of modules is that, among the
graded morphisms, the ones which we like most are of course the ones of
degree 0. For example, given a short exact sequence of graded S-modules
with degree 0 maps

0 −→M −→ N −→ P −→ 0,

we obtain induced short exact sequence of C-vector spaces for each degree
i ∈ Z. Therefore,

HFN (i) = HFM (i) + HFP (i), for any i ∈ Z.

Example A.1.4. (COMPLETE INTERSECTIONS) Given an S-module M , we
say that a non-zero element f ∈ S is M -regular if f is a non-zero divisor
on M (for short NZD), i.e. if fg = 0 for g ∈ M then g = 0. In general, a
sequence (f1, . . . , fg) of elements in S is called an M -regular sequence, or
simply an M -sequence, if the following conditions are satisfied:

1. fi is M/(f1, . . . , fi−1)M -regular element for all i = 1, . . . , g;

2. M/(f1, . . . , fg)M is non zero.

A quotient ring R = S/I is called a complete intersection if I is a homoge-
neous ideal generated by an S-sequence (f1, . . . , fg). Under these assump-
tions, the computation of the Hilbert series of R is an easy exercise. We
proceed by induction on the number of generators. Assuming g = 1 and
deg f1 = d1, we get the following exact sequence with degree 0 maps:

0 // S(−d1)
·f1 // S // S/I // 0.

Hence, we get that HF(S/I; i) = HF(S; i)−HF(S; i+ d1), for all i ∈ Z. Thus,
looking at their Hilbert series, we get

HSS/I(t) = (1− td1) HSS(t) = (1− td1)
∑
i∈N

(
n+ i

n

)
ti =

1− td1

(1− t)n+1
.
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Now, let I = (f1, . . . , fg) with g > 1. By induction, from the exact sequence
of degree 0 maps

0 // S/(f1, . . . , fg−1)(−dg)
·fg
// S/(f1, . . . , fg−1) // S/I // 0.

Hence, similarly to the case g = 1, we get

HSS/I(t) = (1− tdg ) HSS/(f1,...,fg−1)(t) =

∏g
i=1(1− tdi)
(1− t)n+1

. (A.1)

SECTION A.2

RESOLUTIONS AND BETTI NUMBERS

Given a finitely generated S-module M , there exists a finitely generated
free S-module F0 and a surjective homomorphism ϕ0 mapping the genera-
tors of F0 to a set of generators of M . The kernel of such homomorphism
is again a finitely generated S-module and we have an exact sequence of
S-modules

0 // kerϕ0
// F0

ϕ0 // M // 0

Now, we can find another surjective homomorphism ϕ1 mapping the gen-
erators of a free finitely generated S-module F1 to the generators of kerϕ0,
i.e., the relations among the generators of F0. Such relations are called the
syzygies of the module. We continue this procedure by considering the ker-
nel of ϕ1 and so on. Hence, we get a free resolution of our S-module M , i.e
a long exact sequence

F• : . . . // F2
// F1

// F0
// M // 0.

By Hilbert’s syzygy theorem, we also know that, for any finitely generated
module M over a polynomial ring S, there is a finite free resolution, i.e.,
there exist finitely generated free S-modules F1, . . . , Fn such that

F• : 0 // Fn // . . . // F1
// F0

// M // 0.

Of course, if we want to optimize this construction, we can start by con-
sidering a minimal set of generators of our module M and then, at each
step, a minimal set of generators for the module of syzygies. In that way,
we get a minimal free resolution F• for our module M . The length of the
minimal free resolution n is called the projective dimension of M and de-
noted by pdim(M). Moreover, if we also have a graded structure on M , we
can additionally assume to have graded maps of degree 0 in such a mini-
mal resolution. In this way, we get a set of invariants for the module M .
Indeed, considering a minimal free resolution with degree 0 maps, we can
write, for all i = 1, . . . , n,

Fi =
⊕
j∈Z

S(−j)βi,j .
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Integers βi,j are called the graded Betti numbers of M . Such numbers can
be seen as homological quantities since one can prove that

βi,j = dim[TorSi (M,C)]j .

this fact shows that such numbers depends only on the module M and not
on the minimal resolution.

Often, the Betti numbers are represented as Betti table as

β(M) =

. . . i . . .
...

...
j . . . βi,i+j . . .
...

...

Remark A.2.1. The entry (i, j) of the table is the Betti number βi,i+j .
Moreover, the minimality of the resolution gives us another piece of use-
ful information about the Betti numbers and the shape of the Betti table,
namely

min{j | βi+1,j 6= 0} > min{j | βi,j 6= 0}.

Moreover, because of the relation between the exact sequences of S-modules
with degree 0 maps and the Hilbert function of the modules in the se-
quence, the Betti numbers allow us to write the Hilbert series of a module
M in a more explicit way. Hence, given an S-module M and its Betti num-
bers (βi,j), we obtain

HSM (t) =

∑pdim(M)
i=0

∑
j∈Z(−1)iβi,jt

j

(1− t)n+1
.
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[BL13] J. Buczyński and J.M. Landsberg. Ranks of tensors and a generalization of secant varieties.
Linear Algebra and its Applications, 438(2):668–689, 2013. 30

[Ble13] Grigoriy Blekherman. Typical real ranks of binary forms. Foundations of Computational
Mathematics, 15(3):793–798, 2013. 10

[BO15] J. Backelin and A. Oneto. On a class of power ideals. Journal of Pure and Applied Algebra,
219(8):3158–3180, 2015. 10, 63

[BT14] G. Blekherman and Z. Teitler. On maximum, typical and generic ranks. Mathematische
Annalen, pages 1–11, 2014. 7, 9

[CC06] L. Chiantini and C. Ciliberto. On the concept of k-secant order of a variety. Journal of the
London Mathematical Society, 73(02):436–454, 2006. 29

[CCC15a] E. Carlini, M.V. Catalisano, and L. Chiantini. Progress on the symmetric Strassen conjecture.
Journal of Pure and Applied Algebra, 219(8):3149–3157, 2015. 31, 38, 48

[CCC+15b] E. Carlini, M.V. Catalisano, L. Chiantini, A.V. Geramita, and Y. Woo. Symmetric tensors:
rank, Strassen’s conjecture and e-computability. arXiv preprint arXiv:1506.03176, 2015. 44

[CCG12] E. Carlini, M.V. Catalisano, and A.V. Geramita. The solution to the Waring problem for
monomials and the sum of coprime monomials. Journal of Algebra, 370:5–14, 2012. 6, 32, 48

[CCGO15] M.V. Catalisano, L. Chiantini, A.V. Geramita, and A. Oneto. Waring-like decompositions of
polynomials - 1. arXiv preprint arXiv:1511.07789, 2015. 10, 8, 9, 18, 99

[CCO] E. Carlini, M. V. Catalisano, and A. Oneto. Waring loci and the strassen conjecture. in
progress. 9, 30, 49

[CGG02] M.V. Catalisano, A. Geramita, and A. Gimigliano. On the secant varieties to the tangential
varieties of a Veronesean. Proceedings of the American Mathematical Society, 130(4):975–985,
2002. 8, 18, 99

[CGG05] M.V. Catalisano, A.V. Geramita, and A. Gimigliano. Higher secant varieties of the Segre
varieties P1 × . . .× P1. Journal of Pure and Applied Algebra, 201(1):367–380, 2005. 17



[CGG08] M.V. Catalisano, A.V. Geramita, and A. Gimigliano. On the ideals of secant varieties to certain
rational varieties. Journal of Algebra, 319(5):1913–1931, 2008. 17

[CGG+15] M.V. Catalisano, A.V. Geramita, A. Gimigliano, B. Harbourne, J. Migliore, U. Nagel, and Y.S.
Shin. Secant varieties of the varieties of reducible hypersurfaces in Pn. arXiv preprint
arXiv:1502.00167, 2015. 8, 18, 99

[CGLM08] P. Comon, G. Golub, L.H. Lim, and B. Mourrain. Symmetric tensors and symmetric tensor
rank. SIAM Journal on Matrix Analysis and Applications, 30(3):1254–1279, 2008. 7

[Cha05] K. Chandler. The geometric interpretation of Froberg-Iarrobino conjectures on infinitesimal
neighbourhoods of points in projective space. Journal of Algebra, 286(2):421–455, 2005. 91,
95

[CKOV16] E. Carlini, M. Kummer, A. Oneto, and E. Ventura. On the real rank of monomials. arXiv
preprint arXiv:1602.01151, 2016. 10, 105

[CLO92] David Cox, John Little, and Donal O’shea. Ideals, varieties, and algorithms, volume 3.
Springer, 1992. 108

[CO12] P. Comon and G. Ottaviani. On the typical rank of real binary forms. Linear and multilinear
algebra, 60(6):657–667, 2012. 9

[CO15] E. Carlini and A. Oneto. Monomials as sums of k-th powers of forms. Communications in
Algebra, 43(2):650–658, 2015. 10, 8, 111

[CoC] CoCoATeam. CoCoA: a system for doing Computations in Commutative Algebra. Available at
http://cocoa.dima.unige.it. 74

[COV15] L. Chiantini, G. Ottaviani, and N. Vannieuwenhoven. On generic identifiability of symmetric
tensors of subgeneric rank. arXiv preprint arXiv:1504.00547, 2015. 29

[CS11] G. Comas and M. Seiguer. On the rank of a binary form. Foundations of Computational
Mathematics, 11(1):65–78, 2011. 6, 34, 35

[Dav39] H. Davenport. On Waring’s problem for fourth powers. Annals of Mathematics, pages 731–
747, 1939. 4

[Dol12] I.V. Dolgachev. Classical algebraic geometry: a modern view. Cambridge University Press,
2012. 37

[DP15] A. De Paris. Every ternary quintic is a sum of ten fifth powers. International Journal of
Algebra and Computation, pages 1–25, 2015. 7

[DSS08] M. Drton, B. Sturmfels, and S. Sullivant. Lectures on algebraic statistics, volume 39. Springer
Science & Business Media, 2008. 17

[Dum13] O. Dumitrescu. Plane curves with prescribed triple points: a toric approach. Communications
in Algebra, 41(5):1626–1635, 2013. 55

[EH00] D. Eisenbud and J. Harris. The geometry of schemes. Springer New York, 2000. 51

[EI95] J. Emsalem and A. Iarrobino. Inverse system of a symbolic power, I. Journal of Algebra,
174(3):1080–1090, 1995. 51

[ELS01] L. Ein, R. Lazarsfeld, and K.E. Smith. Uniform behavior of symbolic powers of ideals. Invent.
Math, 144:241–252, 2001. 51

[FH94] R. Fröberg and J. Hollman. Hilbert series for ideals generated by generic forms. Journal of
Symbolic Computation, 17(2):149–157, 1994. 87

[FL91] R. Fröberg and C. Löfwall. On Hilbert series for commutative and noncommutative graded
algebras. Journal of pure and Applied Algebra, 76(1):33–38, 1991. 86

[FL02] R. Fröberg and C. Löfwal. Koszul homology and Lie algebras with application to generic forms
and points. Homology, Homotopy and applications, 4(2):227–258, 2002. 62

[FOS12] R. Fröberg, G. Ottaviani, and B. Shapiro. On the Waring problem for polynomial rings. Pro-
ceedings of the National Academy of Sciences, 109(15):5600–5602, 2012. 7, 62, 63, 111, 113



[Frö85] R. Fröberg. An inequality for Hilbert series of graded algebras. Mathematica Scandinavica,
56:117–144, 1985. 85, 86

[Ger96] A.V. Geramita. Inverse systems of fat points: Waring’s problem, secant varieties of Veronese
varieties and parameter spaces for Gorenstein ideals. In The Curves Seminar at Queen’s,
volume 10, pages 2–114, 1996. 23, 26, 51, 52

[GM84] A.V. Geramita and P. Maroscia. The ideal of forms vanishing at a finite set of points in Pn.
Journal of Algebra, 90(2):528–555, 1984. 29

[GO81] A.V. Geramita and F. Orecchia. On the Cohen-Macaulay type of s lines in An+1. Journal of
Algebra, 70(1):116–140, 1981. 28

[GS] D.R. Grayson and M.E. Stillman. Macaulay2, a software system for research in algebraic
geometry. Available at http://www.math.uiuc.edu/Macaulay2/. 8, 42, 74, 98

[GS98] A.V. Geramita and H. Schenck. Fat points, inverse systems, and piecewise polynomial func-
tions. Journal of Algebra, 204(1):116–128, 1998. 96, 101

[Har77] Robin Hartshorne. Algebraic geometry, volume 52. Springer Science & Business Media, 1977.
51

[Har92] J. Harris. Algebraic geometry: a first course, volume 133. Springer, 1992. 88

[HH02] M. Hochster and C. Huneke. Comparison of symbolic and ordinary powers of ideals. Inven-
tiones mathematicae, 147(2):349–369, 2002. 51

[IK99] A. Iarrobino and V. Kanev. Power sums, Gorenstein algebras, and determinantal loci. Springer,
1999. 23, 26, 51, 52

[Jel14] J. Jelisiejew. An upper bound for the Waring rank of a form. Archiv der Mathematik,
102(4):329–336, 2014. 7

[Kem12] A. Kempner. Bemerkungen zum Waringschen Problem. Mathematische Annalen, 72(3):387–
399, 1912. 4

[Kle99] J. Kleppe. Representing a homogeneous polynomial as a sum of powers of linear forms. Uni-
versity of Oslo, 1999. 7

[Lan12] J.M. Landsberg. Tensors: Geometry and applications, volume 128. American Mathematical
Soc., 2012. 17, 43, 44

[LT10] J.M Landsberg and Z. Teitler. On the ranks and border ranks of symmetric tensors. Founda-
tions of Computational Mathematics, 10(3):339–366, 2010. 37

[Mac19] F.S. Macaulay. The algebraic theory of modular systems. Bull. Amer. Math. Soc. 25 (1919),
276-279 DOI: http://dx. doi. org/10.1090/S0002-9904-1919-03189-9 PII, pages 0002–9904,
1919. 26

[Mah36] K. Mahler. Note on hypothesis K of Hardy and Littlewood. Journal of the London Mathemat-
ical Society, 1(2):136–138, 1936. 4

[MMSV16] M. Michałek, H. Moon, B. Sturmfels, and E. Ventura. Real rank geometry of ternary forms.
arXiv preprint arXiv:1601.06574, 2016. 10

[Nic15] L. Nicklasson. On the Hilbert series of ideals generated by generic forms. preprint
arXiv:1502.06762, 2015. 98

[One14] A. Oneto. Power ideals, Fröberg conjecture and Waring problems. 2014. 10, 56, 98

[OO13] L. Oeding and G. Ottaviani. Eigenvectors of tensors and algorithms for waring decomposition.
Journal of Symbolic Computation, 54:9–35, 2013. 7

[PRS93] P. Pedersen, M.F. Roy, and A. Szpirglas. Counting real zeros in the multivariate case. pages
203–224, 1993. 109

[Rez13a] B. Reznick. On the length of binary forms. In Quadratic and Higher Degree Forms, pages
207–232. Springer, 2013. 34



[Rez13b] B. Reznick. Some new canonical forms for polynomials. Pacific Journal of Mathematics,
266(1):185–220, 2013. 8, 97

[Shi12] Y.S. Shin. Secants to the variety of completely reducible forms and the hilbert function of the
union of star-configurations. Journal of Algebra and its Applications, 11(06):1250109, 2012.
8, 18, 99, 102

[Syl51] J.J. Sylvester. Lx. on a remarkable discovery in the theory of canonical forms and of hyper-
determinants. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 2(12):391–410, 1851. 5, 34

[Ter11] A. Terracini. Sulle vk per cui la varietà degli sh (h+1) seganti ha dimensione minore
dell’ordinario. Rendiconti del Circolo Matematico di Palermo (1884-1940), 31(1):392–396,
1911. 18

[Wie08] A. Wieferich. Beweis des Satzes, daß sich eine jede ganze Zahl als Summe von höchstens
neun positiven Kuben darstellen läßt. Mathematische Annalen, 66(1):95–101, 1908. 4





STOCKHOLM DISSERTATIONS IN MATHEMATICS

Dissertations at the Department of Mathematics Stockholm University

1-22. 2005-2008.
23. Strohmayer, Henrik: Prop profiles of compatible Poisson and Nijenhuis structures. 2009.
24. Rökaeus, Karl: Grothendieck rings and motivic integration. 2009.
25. Nilsson, Lisa: Amoebas, discriminants, and hypergeometric functions. 2009.
26. Lundqvist, Samuel: Computational algorithms for algebras. 2009.
27. Lindell, Andreas: Theoretical and practical applications of probability. 2009.
28. Geli Rolfhamre, Patricia: From penicillin binding proteins to community interventions: mathemat-

ical and statistical models related to antibiotic resistance. 2009.
29. Zusmanovich, Pasha: Low-dimensional cohomology of current Lie algebras. 2010.
30. Bojarova, Jelena: Toward sequential data assimilation for numerical weather prediction (NWP)

models using Kalman filter tools. 2010.
31. Granåker, Johan: Wheeled operads in algebra, geometry, and quantization. 2010.
32. Xantcha, Qimh: The theory of polynomial functors. 2010.
33. Emtander, Eric: Chordal and complete structures in combinatorics and commutative algebra. 2011.
34. Grünewald, Maria: Design and analysis of response selective samples in observational studies.

2011.
35. Samieinia, Shiva: Digital geometry, combinatorics, and discrete optimization. 2011.
36. Björkwall, Susanna: Stochastic claims reserving in non-life insurance: Bootstrap and smoothing

models. 2011.
37. Waliullah, Shoyeb: Topics in nonlinear elliptic differential equations. 2011.
38. Andersson, Patrik: Four applications of stochastic processes: Contagious disease, credit risk, gam-

bling and bond portfolios. 2011.
39. Tadesse, Yohannes: Tangential derivations, Hilbert series and modules over Lie algebroids. 2011.
40. Al Abdulaali, Ahmad Khalid: On the extension and wedge product of positive currents. 2012.
41. Lindenstrand, David: Stochastic epidemic models in heterogeneous communities. 2012.
42. Lundqvist, Johannes: On amoebas and multidimensional residues. 2013.
43. Jost, Christine: Topics in computational algebraic geometry and deformation quantization. 2013.
44. Alexandersson, Per: Combinatorial methods in complex analysis. 2013.
45. Höhna, Sebastian: Bayesian phylogenetic inference: Estimating diversification rates from recon-

structed phylogenies. 2013.
46. Aermark, Lior: Hardy and spectral inequalities for a class of partial differential operators. 2014.
47. Alm, Johan: Universal algebraic structures on polyvector fields. 2014.
48. Jafari-Mamaghani, Mehrdad: A treatise on measuring Wiener–Granger causality. 2014.
49. Martino, Ivan: Ekedahl invariants, Veronese modules and linear recurrence varieties. 2014.
50. Ekheden, Erland: Catastrophe, ruin and death: Some perspectives on insurance mathematics.

2014.
51. Johansson, Petter: On the topology of the coamoeba. 2014.
52. Lopes, Fabio: Spatial marriage problems and epidemics. 2014.
53. Bergh, Daniel: Destackification and motivic classes of stacks. 2014.
54. Olsson, Fredrik: Inbreeding, effective population sizes and genetic differentiation: A mathematical

analysis of structured populations. 2015.
55. Forsgård, Jens: Tropical aspects of real polynomials and hypergeometric functions. 2015.
56. Tveiten, Ketil: Period integrals and other direct images of D-modules. 2015.
57. Leander, Madeleine: Combinatorics of stable polynomials and correlation inequalities. 2016.
58. Petersson, Mikael: Perturbed discrete time stochastic models. 2016.
59. Oneto, Alessandro: Waring-type problems for polynomials: Algebra meets Geometry. 2016.

Distributor
Department of Mathematics

Stockholm University
SE-106 91 Stockholm, Sweden


	1 Introduction
	1.1 Additive decompositions of integers
	1.2 Additive decompositions of polynomials
	1.2.1 Classical Waring decompositions
	1.2.2 d-th Waring decompositions
	1.2.3 Waring-like decompositions
	1.2.4 Real Waring decompositions

	1.3 Geometric interpretation
	1.3.1 Secant varieties
	1.3.2 Classical Waring problem: Veronese varieties
	1.3.3 d-th Waring problem: varieties of powers
	1.3.4 Waring-like problems: varieties of -powers
	1.3.5 Terracini's Lemma


	2 Apolarity theory and points configurations
	2.1 Apolarity theory
	2.2 Hilbert functions of configurations of reduced points
	2.3 Waring loci of homogeneous polynomials
	2.3.1 Quadrics
	2.3.2 Monomials
	2.3.3 Binary forms
	2.3.4 Plane cubics

	2.4 Waring loci and the Strassen conjecture
	2.5 Apolarity Lemma: power ideals and fat points
	2.5.1 Ideals of fat points
	2.5.2 Inverse systems of ideals fat points.

	2.6 Hilbert functions of configurations of fat points
	2.6.1 Double points: the Alexander–Hirschowitz Theorem

	2.7 Special configurations of fat points
	2.7.1 8 generic fat points in P3
	2.7.2 Configurations of -points


	3 Fröberg's conjecture and  dimensions of secant varieties
	3.1 Fröberg's conjecture
	3.2 Power ideals and Fröberg–Iarrobino's conjecture
	3.2.1 Fröberg–Hollman list of exceptions
	3.2.2 Linear speciality

	3.3 Secant varieties of varieties of powers
	3.3.1 Binary case
	3.3.2 Sum of squares
	3.3.3 General case

	3.4 Secant varieties of decomposable forms
	3.4.1 Binary case
	3.4.2 2-nd secant varieties


	4 Decompositions of monomials
	4.1 Real Waring rank of monomials
	4.1.1 Binary case
	4.1.2 More variables
	4.1.3 Complex rank vs. Real rank

	4.2 Monomials as sums of d-th powers
	4.2.1 Basic tools
	4.2.2 General case
	4.2.3 Two variables
	4.2.4 d=3 case in three and more variables


	A Algebraic invariants
	A.1 Hilbert functions
	A.2 Resolutions and Betti numbers

	References

