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Abstract

The theory of operads is a conceptual framework that has become a
kind of universal language, relating branches of topology and algebra.
This thesis uses the operadic framework to study the derived algebraic
properties of polyvector fields on manifolds.

The thesis is divided into eight chapters. The first is an introduction
to the thesis and the research field to which it belongs, while the second
chapter surveys the basic mathematical results of the field.

The third chapter is devoted to a novel construction of differen-
tial graded operads, generalizing an earlier construction due to Thomas
Willwacher. The construction highlights and explains several categori-
cal properties of differential graded algebras (of some kind) that come
equipped with an action by a differential graded Lie algebra. In particu-
lar, the construction clarifies the deformation theory of such algebras and
explains how such algebras can be twisted by Maurer-Cartan elements.

The fourth chapter constructs an explicit strong homotopy defor-
mation of polynomial polyvector fields on affine space, regarded as a
two-colored noncommutative Gerstenhaber algebra. It also constructs
an explicit strong homotopy quasi-isomorphism from this deformation
to the canonical two-colored noncommmutative Gerstenhaber algebra of
polydifferential operators on the affine space. This explicit construction
generalizes Maxim Kontsevich’s formality morphism.

The main result of the fifth chapter is that the deformation of polyvec-
tor fields constructed in the fourth chapter is (generically) nontrivial and,
in a sense, the unique such deformation. The proof is based on some
cohomology computations involving Kontsevich’s graph complex and re-
lated complexes. The chapter ends with an application of the results to
properties of a derived version of the Duflo isomorphism.

The sixth chapter develops a general mathematical framework for
how and when an algebraic structure on the germs at the origin of a



sheaf on Cartesian space can be “globalized” to a corresponding alge-
braic structure on the global sections over an arbitrary smooth mani-
fold. The results are applied to the construction of the fourth chapter,
and it is shown that the construction globalizes to polyvector fields and
polydifferential operators on an arbitrary smooth manifold.

The seventh chapter combines the relations to graph complexes, ex-
plained in chapter five, and the globalization theory of chapter six, to
uncover a representation of the Grothendieck-Teichmüller group in terms
of A∞ morphisms between Poisson cohomology cochain complexes on a
manifold.

Chapter eight gives a simplified version of a construction of a family
of Drinfel’d associators due to Carlo Rossi and Thomas Willwacher. Our
simplified construction makes the connections to multiple zeta values
more transparent–in particular, one obtains a fairly explicit family of
evaluations on the algebra of formal multiple zeta values, and the chapter
proves certain basic properties of this family of evaluations.
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CHAPTER 1

Introduction

We first give an informal introduction to the subject of the thesis. After
that follows a more technical overview of the results and of the history
of the field of research to which they belong.

1.1 Informal introduction.

“Well! I’ve often seen a cat without a grin,” thought Alice;
“but a grin without a cat! It’s the most curious thing I ever
saw in all my life!”

Lewis Carroll may have penned those lines as a humurous reference
to the tendency of mathematicians to dissociate their craft from the
natural world (according to the witty annotations of Carroll-authority
and popular mathematics and science writer Martin Gardner, in [Carroll
1999]), but we shall take them as an explanatory metaphor for what an
operad is. Operads are the main mathematical objects and tools in this
thesis, so to explain our results we need to first explain what an operad
is, and we will do this by a motivational example. Say that an associative
algebra is a space1A equipped with a multiplication operation, mapping

1The knowledgeable reader may want to insert the more specific term vector
space. We shall cheat a lot during this informal introduction and deliberately
minimize the use of such technical adjectives. Many of the things we discuss
make sense for very general notions of space anyhow.
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a pair of elements a, b in A to a product a · b (a third element) in A, and
satisfying the associativity axiom that

(a · b) · c = a · (b · c)

for all elements a, b and c of A. Anyone that has gone through primary
school has encountered the associative algebra A = Q of rational num-
bers. Now, instead of a grin without a cat, try to picture an associative
algebra without a space. To answer this puzzle, imagine the multiplica-
tion as a machine or “black box” that has two inputs (where we insert a
and b) and one output (where the final result, the product a ·b, appears),
and draw this in the following form:

a · b

a b

This is the smile of the multiplication operation onA. The multiplication
should be associative, that is, it should satisfy (a · b) · c = a · (b · c), which
translates into pictures as the statement that the following two trees are
equal:

(a · b) · c

c
a b

=

a · (b · c)

a
b c

To get the smile without A we simply draw these two pictures of trees
without any elements:

1 2

and
3

1 2

=
1

2 3

This is the grin of an associative algebra! The reason we number the
inputs of the trees is because it matters in which order we multiply. If
a · b = b ·a always holds, then the algebra is said to be commutative, and
the grin of that commutativity relation would be drawn

1 2

=

2 1

10



Thus, without numbering the inputs we would not be able to distinguish
the smile of an associative algebra from the smile of a commutative
algebra.

The pictures we have drawn are, secretely, examples of operads,
namely, the operads Ass and Com, governing associative and commuta-
tive algebras. In slightly more detail, an operad is a collection of spaces
O(n) (one for each natural number n ≥ 1) together with a collection of
so-called “partial composition” functions

◦i : O(n)× O(k)→ O(n− 1 + k),

mapping a pair of elements ϕ (in O(n)) and ψ (in O(k)), to some element
ϕ ◦i ψ in the space O(n− 1 + k). These functions have to satisfy certain
axioms, but they are not important to us during this informal treat-
ment. To define the operad of associative algebras, Ass, we let Ass(n) be
the space of all trees that, first of all, have exactly n input edges and,
secondly, have all vertices attached to exactly three edges, considered
modulu the smile of the associativity relation. For example, the tree

4
3

1 2

represents an element in Ass(4), but since everything has to be taken
modulu the smile of associativity, the tree

4
1

2 3

will represent the same element. The functions ◦i are given by grafting
trees together (at the input labelled i) and suitably renumbering the
inputs. For example,

3
1 2

◦2
1 2

=
4

1
2 3

The operad Com is defined in the completely analogous manner, except
we now regard the trees modulu also the commutativity relation.

11



Let V be a space. We can then form an operad End〈V 〉, traditionally
called the endomorphism operad of V , with End〈V 〉(n) defined as the
collection of all functions

f : V × · · · × V︸ ︷︷ ︸
n

→ V

from n copies of V to V . The partial compositions are defined by sub-
stitution of inputs, i.e., if f is as displayed above and g ∈ End〈V 〉(k),
then f ◦i g is the function with n− 1 + k inputs given by the formula

(f ◦i g)(x1, . . . , xn−1+k)

=f(x1, . . . , xi−1, g(xi, . . . , xi+k−1), xi+k, . . . , xn−1+k).

In words, we insert the output of g into the i-th input of f .

Let us say that a morphism of operads F : O→ P is

- a function Fn from O(n) to P(n), for each n ≥ 1,

- such that the collection {F1, F2, F3, . . . } respects all the partial
compositions.

Explicitly, the second point means that Fn−1+k(ϕ◦iψ) = Fn(ϕ)◦iFk(ψ),
for all ϕ in O(n) and all ψ in O(k). The reader may now like to try to
prove the following claim:

Claim. Specifying the structure of an associative algebra on a space A
(that is, equipping A with an associative multiplication operation) is the
same thing as specifying a morphism of operads

Ass→ End〈V 〉.

Giving A the structure of a commutative algebra is, analogously, the
same thing as a morphism Com→ End〈V 〉. Moreover, since all commuta-
tive algebras are, in particular, associative algebras, there is a morphism
Ass→ Com.

Backed by this claim, we can give a more formalized answer to our
puzzle: The smile of an associative algebra is the operad Ass of associa-
tive algebras.

Let us now become a little bit more technical. Based on the claim
above, let us say that a space V is an O-algebra, if we are given a mor-
phism from the operad O to the operad End〈V 〉. Thus, the claim above
says that an Ass-algebra is the same thing as an associative algebra, and
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a Com-algebra is the same thing as a commutative algebra. Many fa-
miliar kinds of algebras can be regarded in this way, not just associative
algebras and commutative associative algebras. The most important ex-
ample, apart from the two already mentioned, is probably Lie algebras.
A Lie algebra is a space L equipped with an operation (usually called
a “bracket”) mapping a pair of elements x, y to an element [x, y], and
satisfying the axioms that (i) [x, y] = −[x, y] and (ii)

[x, [y, z]] = [y, [x, z]]− [z, [x, y]]

for all x, y and z in L. Thus, we may recognize that Lie algebras are
governed by the operad Lie, whose grin is represented by

1 2

= −
2 1

and

1
2 3

=
2

1 3

−
3

1 2

One appealing quality with operads is that if you manage to prove some-
thing about an operad O, then you automatically prove some universal
statement about all O-algebras. For example, we noted in the preceed-
ing “Claim” that there is a morphism Ass → Com corresponding to the
universal fact that any commutative algebra is also an associative alge-
bra. A slightly less trivial example is the morphism Lie → Ass which
corresponds to taking an associative algebra A with product ·, and in-
stead considering it as Lie algebra with the bracket operation given by
the commutator [a, b] = a · b− b · a. This example is still rather obvious
just from the ordinary perspective of algebras – operads can hardly be
said to facilitate the realization that the commutator of an associative
multiplication satisfies the axioms of a Lie bracket. However, most of the
important results in this thesis would have been more or less impossible
to guess at without adopting an operadic perspective. We shall discuss
concrete examples from the thesis, but before doing so, let us digress on
some further preliminary considerations.

First of all, we need to introduce what people working with operads
call colored algebras. We shall consider a setup encompassing only two
colors: straight and dashed. (The reader may rightly object that those
aren’t colors! We license our abuse of language by quoting Goethe, who
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wrote that: “Mathematicians are like Frenchmen. They take whatever
you tell them and translate it into their own language – and from then
on it means something completely different.”) Briefly, a colored operad
is something constructed just like before, except that the inputs are now
not only numbered but also colored, either straight or dashed, as is the
output. Additionally, the partial compositions ◦i are only allowed to
graft together things that have the same color. Let us elucidate by an
example. Take a pair of spaces L,A and imagine L to be colored straight
and A to be colored dashed. Given two natural numbers m and n, define
End〈L,A〉(m,n | dashed ) to be the space of all functions

f : L× · · · × L︸ ︷︷ ︸
m

×A× · · · ×A︸ ︷︷ ︸
n

→ A,

and End〈L,A〉(m′, n′ | straight ) to be the space of all functions

g : L× · · · × L︸ ︷︷ ︸
m′

×A× · · · ×A︸ ︷︷ ︸
n′

→ L.

This should be a hopefully clear generalization of the endomorphism
operad End〈V 〉 discussed earlier. The only difference is that now one
has two kinds of possible inputs and outputs. Clearly, the composition
f ◦i g, inserting the output of g into the i-th input of f , only makes
sense if the color of the output matches the color of the input, i.e., it
only makes sense for i = 1, . . . ,m if the functions f and g are as displayed
above. These colored partial composition functions ◦i give us a colored
operad End〈L,A〉.

We are now ready to introduce the main object in this thesis: the
colored operad NCG.1 The letters in its name are an abbreviation for
“noncommutative Gerstenhaber.” Its basic operations are

1 2

,

1 2

= −
2 1

, and

1 2

.

The smile of relations that they satisfy is

3
1 2

=
1

2 3

,
1

2 3

=
2

1 3

−
3

1 2

,

1Beware that the definition of the operad given here is not the definition
we use in the thesis! The true definition of NCG differs from the definition
given here by a degree-suspension on the straight color. To define the proper
version of the operad one must, accordingly, introduce the notions of gradings
and chain complexes.
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and, further, also the two equations

1
2 3

=
3

1 2

+
2

1 3

and
3

1 2

=
1

2 3

−
2

1 3

Note how we have only grafted together the basic operations at colors
that match. It is a quite complicated grin, but rather charming once
acquainted. Giving an NCG-algebra

NCG→ End〈L,A〉

is the same thing as specifying all of the following:

- An associative multiplication · on A.

- A Lie bracket operation [ , ] on L.

- A function D : L×A→ A mapping a pair x, a to an element Dxa
in A, and satisfying the following two axioms:

Dx(a·b) = Dx(a)·b+a·Dx(b), and D[x,y]a = Dx(Dya)−Dy(Dxa).

The first axiom can be phrased succinctly by saying that, for each
x in L, the function Dx from A to A is a derivation of the product.
The second axiom says, in mathematically more fancy terms, that
D is a representation of the Lie algebra L: meaning that the action
D[x,y] of the bracketing [x, y] equals the commutator bracketing
[Dx, Dy] = DxDy −DyDx.

Let us now discuss the notion of algebras up to homotopy. The simplest
case is given by algebras that are associative up to homotopy, so that will
be our focus. Two functions f, g : X → Y between the same spaces X
and Y are said to be homotopic if there is a function h : [0, 1]×X → Y
such that h(0, x) = f(x) and h(1, x) = g(x). One thinks of this as a
family of functions ht(x) = h(t, x) parametrized by t, varying from the
initial function f(x) = h0(x) to the function g(x) = h1(x), or, even
better, one may think of it as a curve ht from f to g inside the space
of all functions. Now, let us consider a space A equipped with a binary
product a · b, but instead of assuming that the product is associative we
shall assume the following. Consider the two functions

m0(a, b, c) = (a · b) · c and m1(a, b, c) = a · (b · c).
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To say that the product is associative is the same as saying thatm0(a, b, c)
equals m1(a, b, c). Instead of demanding that the two functions are equal
we now demand that they are homotopic, i.e., that there is an mt(a, b, c)
interpolating between the two. If we have such a thing, then we say that
A is an associative algebra up to homotopy. Let us challenge our imagi-
nation and ask ourselves what the grin of such a thing is. The simplest
solution is to write the smile of associativity up to homotopy in the form

Instead of an equality we have displayed a line between the two, suggest-
ing a homotopy mt(a, b, c). Next, consider what happens if we now want
to multiply four elements. For example, look at the two expressions

(a · (b · c)) · d and a · ((b · c) · d).

A moment’s reflection shows that the composite mt(a, b · c, d) interpo-
lates between these two expressions. Some more serious thinking shows
that there are, in total, five different ways of multiplying four elements,
and that these are interpolated by five homotopies, as displayed in the
following picture:

(The homotopy mt(a, b · c, d) that we mentioned corresponds to the line
at the top.) One then realizes, looking at this picture, that there are
two ways of going from, say,

to ;

we can either follow the upper path along the pentagon or follow the
lower one. There is nothing to guarantee that the two options are equal,
or even related in any way. Since we have already fallen down the rabbit
hole into the homotopical world, let us imagine that we have a function
ms,t(a, b, c, d), where (s, t) is a coordinate allowed to vary inside a solid
pentagon, such that restricting it to any boundary line of the pentagon
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gives us back one of the homotopies we already have access to. In other
words, ms,t is a two-dimensional homotopy interpolating between all our
five one-dimensional homotopies.

Alas, as the reader might suspect, the fall down the rabbit hole does
not stop here. There are 14 different ways to multiply together five
elements, and these are interpolated by 21 one-dimensional homotopies
and 9 two-dimensional homotopies. These fit together as the boundary
of a three-dimensional polyhedral figure. Thus, to relate them all we
should introduce a three-dimensional homotopy ms,t,u, parametrized by
that solid figure. And the story continues indefinitely.

The mathematician James Stasheff [Stasheff 1963] was the first to
study these polyhedra, and the first to show how they can be constructed
in an arbitrary dimension. They are nowadays called the associahedra
and denoted Kn, where Kn is the polyhedron parametrizing all the ways
to multiply together n elements. Thus, K3 is a line and K4 is a solid
pentagon. In general, Kn is a polyhedron of dimension n− 2. Stasheff’s
construction then motivated Jon Peter May to invent the general notion
of an operad [May 1972].

Without going into details, the associahedra can be assembled into
the components of an operad Ass∞, with Ass∞(n) = Kn. One defines a
strong homotopy associative algebra to be an algebra

Ass∞ → End〈A〉

for this operad. Thus, apart from a product, A also has a 1-dimensional
homotopy relating the two ways of multiplying three elements, a 2-
dimensional homotopy (corresponding to the pentagon and the ways
of multiplying four elements), a 3-dimensional homotopy, etc., ad in-
finum in a hierarchy of homotopies that coherently relate all imaginable
associativity relations.

We are now ready to state the first example of an original contribu-
tion made in this thesis.

Result. We give a geometric construction of an operad NCG∞, bear-
ing the same relationship to the operad NCG as the operad Ass∞ of
associahedra has to the operad Ass of ordinary associative algebras.

Note that every associative algebra can be regarded as a strong ho-
motopy associative algebra by simply taking all homotopies to be trivial
(since there is no need for them if the algebra is already associative).
This means that there is a morphism

Ass∞ → Ass.
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For the exact same reason, we have a morphism

NCG∞ → NCG.

Both of these morphisms are what is called “equivalences,” a term which
we shall not dwell on technically here. It essentially means that the
introduction of strong homotopy algebras cuts you some slack, without
truly altering anything. Everything fits together the same way, it just fits
a little looser and more rubbery, giving you a bit more maneuverability.
Almost all the results in this thesis make significant use of this extra
maneuverability. To present a case in point from the thesis we need to
introduce the gadgets called polyvector fields.

Recall that a vector is just another name for an element v ∈ Rd, but
thought of as not just a point, but, rather, as an arrow from the origin
to that point. A p-polyvector is a sequence v1v2 . . . vp consisting of p
vectors, modulu the rule that when any two neighboring vectors in the
list are exhanged one picks up a minus sign:

v1v2 . . . vivi+1 . . . vp = −v1v2 . . . vi+1vi . . . vp.

This rule has a geometric origin, linked to the idea of vectors as arrows.
Let us illustrate with a 2-polyvector uv.

u

v

Instead of thinking of it as a pair of vectors one should think of the
polyvector as the corresponding oriented parallelogram, with the orien-
tation given by going from u to v:

u

v u+ v

	

Changing the order of the two vectors flips the orientation, hence the
imposed relation uv = −vu just keeps track of how the parallelogram is
oriented. The general rule for p-polyvectors does the exact same thing,
but in a higher dimension. Define ∧p(Rd) to denote the space of all
p-polyvectors. Recall that a vector field is a function X : Rd → Rd,
assigning a vector to each point. Generalizing that, a p-polyvector field
is a function ξ : Rd → ∧p(Rd). When we speak of polyvector fields
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(without any qualifying number p) it just means that we leave p unspec-
ified. Now, note that polyvector fields can be multiplied, according to
the rule

v1 . . . vp · u1 . . . uq = v1 . . . vpu1 . . . uq.

(So the product of a p-polyvector field and a q-polyvector field is a
(p + q)-polyvector field.) This product is associative. Polyvector fields
also carry a natural structure of Lie algebra. The Lie bracket is tradi-
tionally called the Schouten bracket (after the Dutch mathematician Jan
Arnoldus Schouten) and denoted [ , ]S . This Lie bracket is an important
object in mathematics, but somewhat technical. The grit of this discus-
sion is that polyvector fields is a natural example of an NCG-algebra.

Define Tpoly(Rd) to be the space of all polyvector fields. Then the
pair

(L,A) = (Tpoly(Rd), Tpoly(Rd)),

consisting of two copies of the space of polyvector fields, is an NCG-
algebra, where:

- The product · on A = Tpoly(Rd) is the product between polyvec-
tors that we explained above.

- The Lie bracket is the Schouten bracket [ , ]S on L = Tpoly(Rd).

- The operation D is given by the formula Dxa = [x, a]S .

Call the above the standard NCG-algebra structure on polyvector fields.
We denote it

(Tpoly(Rd), Tpoly(Rd))standard.

Result. We geometrically construct an NCG∞-algebra structure on poly-
vector fields, which includes all three operations ·, [ , ]S and D given
above, but also higher homotopies.

Call the structure promised above the exotic NCG∞-algebra structure
on polyvector fields.

Result. The standard structure and the exotic structure are not equiva-
lent, meaning, intuitively, that there is no way to write down a hierarchy
of coherent homotopies between the operations of the exotic one and the
operations of the standard one. Moreover, up to equivalence the stan-
dard structure and exotic one are the only two possible NCG∞-structures
on polyvector fields: any NCG∞-structure on polyvector fields must be
equivalent to one of those two.
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For the next result we need to introduce a little more terminology.
A p-polydifferential operator is a machine C that takes p real-valued
functions

f1, . . . fp : Rd → R

and produces a new such function

C(f1, . . . , fp) : Rd → R,

in a way that satisfies some rules reminescent of the rules satisfied by
derivation (analogues of the chain rule and the product rule (fg)′ = fg′+
f ′g). Denote the space of all polydifferential operators by Dpoly(Rd). If
C is a p-polydifferential operator as above and K is a q-polydifferential
operator, then we can form a (p+ q)-polydifferential operator C ·K, by
letting

(C ·K)(f1, . . . , fp+q) = C(f1, . . . , fp)K(fp+1, . . . , fp+q).

This is an associative product on polydifferential operators. Without
going into details, polydifferential operators also have a Lie bracket,
called the Gerstenhaber bracket (after Murray Gerstenhaber), and a
so-called differential referred to as the Hochschild differential (after Ger-
hard Hochschild). Just like for polyvector fields, one can recast these
operations as an NCG-algebra structure on two copies of the space of
polydifferential operators. Call this NCG-algebra

(Dpoly(Rd), Dpoly(Rd))standard.

Result. The two NCG∞-algebras

(Tpoly(Rd), Tpoly(Rd))exotic and (Dpoly(Rd), Dpoly(Rd))standard

are equivalent, by an explicit geometric construction.

Remark. In particular, this result says that there is an equivalence of
strong homotopy Lie algebras between the algebra of polyvector fields,
with the Schouten bracket, and the algebra of polydifferential operators,
with the Gerstenhaber bracket (and Hochschild differential). This result
was proved by Maxim Kontsevich in 1997 (later published as [Kontsevich
2003]). Our result generalizes Kontsevich’s construction by extending
his strong homotopy equivalence to all the additional data that is given,
such as the associative products.

One can define polyvector fields Tpoly(M) and polydifferential op-
erators Dpoly(M) on any manifold M , not just on Rd). (A manifold
is something that can have a more intricate shape, like a sphere, or a
doughnut.)
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Result. In all of our constructions one may replace Rd by an arbitrary
manifold M .

The above result is far from evident, because our construction on Rd

relies heavily on the use of coordinates. Essentially, to obtain formulas
on a manifold one needs to add further homotopies to the construction,
homotopies that keep track of how the coordinates are used.

The next chapter, chapter 2, collects some preliminary theory. Chap-
ter 3 is devoted to proving a number of novel constructions for colored
operads, constructions that we use to prove our main results, but that
are interesting in their own regard as well. Chapters 4, 5 and 6 spell out
the details of all the results claimed in this introduction. Chapter 7 is
devoted to some related questions and deepens the study of the preceed-
ing chapter. The last chapter, chapter 8, explores a relation between the
main body of results and the algebraic study of multiple zeta values.

1.2 Technical introduction.

The language of operads was initially a by-product of research in stable
homotopy theory. James Stasheff, building on work by John Milnor,
Albrecht Dold, Richard Lashof, Masahiro Sugawara, and others, proved
an elegant criteria for when a connected space has the homotopy type
of a based loop space, in [Stasheff 1963]. It took almost ten more years
before Jon P. May coined the term operad [May 1972] but, in retro-
spect, Stasheff’s criteria can be succinctly summarized by saying that a
connected space (with the homotopy type of a CW complex and with
a nondegenerate base-point) has the homotopy type of a based loop
space if and only if it is an algebra for the topological A∞ operad of
associahedra. J. Michael Boardman and Rainer M. Vogt, and also May,
furthered Stasheff’s work to analogous statements for n-fold and infinite
loop spaces. The unifying theme in all these works is that of homotopy-
invariant structures. Topologists had by the late 1950’s and early 1960’s
proved many results about so-called H-spaces. (The terminology was
introduced in 1951 by Jean-Pierre Serre, in honor of Heinz Hopf.) An
H-space is a topological space with a continuous binary product and a
two-sided unit. One class of examples is topological groups, for which
the product additionally is associative and has inverses. Another class
is given by loop spaces, where the product is associative only up to
reparametrizing homotopies. Researchers had by the early 1960’s re-
vealed many homotopy-invariant properties about H-spaces (e.g., if a
space is an H-space then one can easily deduce that its fundamental
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group must be Abelian), but not all the premises for the deductions
had homotopy invariant characterizations. For example, a space which
is homotopy equivalent to an associative H-space need not itself be an
associative H-space, yet, by definition, it must have all the homotopical
properties shared by associative H-spaces. This assymmetry was high-
lighted by Saunders Mac Lane already in 1967 when he (according to
Vogt) said that: “The disadvantage of topological groups and monoids is
that they do not live in homotopy theory.”[Vogt 1999] Stasheff’s notion
of an A∞-space, i.e., of what we now recognize as an algebra for the topo-
logical operad of associahedra, is on the other hand a homotopy invari-
ant notion. Thus, operads were already in their prehistory (before the
general definition of an operad had been given) preeminently a means,
or tool, to describe homotopy invariant algebraic structures. With the
wisdom of hindsight we can recognize why operads are so suited for de-
scribing the homotopy theory of algebras. Algebra, broadly speaking, is
something that Mac Lane, William Lawvere and others has taught us
to phrase internal to (symmetric) monoidal categories. Homotopy the-
ory, on the other hand, is something that Daniel Quillen and others has
shown to make general sense for model categories. Homotopy theory of
algebras, accordingly, naturally finds its home in so-called closed model
categories. Operads sit well in such a context and, more importantly,
the theory of operads distils a flavor of algebra (say, associative algebras)
into a concrete object (the operad, whose algebras are, say, associative
algebras). This concrete object can then be subjected to homotopical
analysis, put into relation with other operads, etc. For example, the
operad governing topological spaces with an associative product is not
cofibrant (in the canonical model structure on topological operads), but
the operad of associahedra, which is weakly equivalent to it, is cofibrant.
This is what makes A∞ spaces a homotopy-invariant notion. The moral
for how to apply operads to do homotopy theory with algebras general-
izes this example. Start with some flavour of algebra. Find the operad
that governs it, and find a nice cofibrant replacement for that operad.
The change in perspective that comes with distilling a flavour of algebra
into a separately existing object of study is very fruitful.

Let us discuss some further problems that also motivate the study of
homotopy theory for (some flavor of) algebras. The de Rham complex of
a smooth manifold can be used to calculate the real cohomology of the
manifold. However, the de Rham complex is more than just a complex;
it is a differential graded commutative algebra, and as such it completely
specifies the real homotopy type of the manifold (at least if it is simply
connected). Thus, the real homotopy theory of manifolds is equivalent
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to the homotopy theory of their corresponding differental graded comm-
tuative de Rham algebras. The rational homotopy theory of Quillen and
Dennis Sullivan extends this to more general spaces, and rational homo-
topy groups, by using Sullivan’s piece-wise linear polynomial differential
forms. Hence the homotopy theory of differantial graded commutative
algebras is, in some technical sense whose precise formulation depends
on the context, equivalent to homotopy theory over a field for topological
spaces.

Another and more purely algebraic motivation for studying homo-
topy theory of algebras is deformation-theoretic. So-called Koszul oper-
ads (in the model category of chain complexes) have canonical minimal
cofibrant replacements. Such a replacement defines a functorial con-
struction that out of an algebra for the operad produces a differential
graded Lie algebra, called the deformation complex of the algebra, that
governs the deformations of that algebra. This unifies several classi-
cal cohomology theories for algebras, such as Hochschild cohomology,
Harrison cohomology, and Chevalley-Eilenberg cohomology. A Maurer-
Cartan element in the deformation complex of an algebra is, per defini-
tion, a deformation of the algebra. If two differential graded Lie algebras
are weakly equivalent, then their sets of Maurer-Cartan elements (mod-
ulu gauge equivalence) are isomorphic; implying that the deformation
complex of an algebra is mainly interesting only up to weak equivalence.
Thus we see homotopy theory of algebras entering in two ways: first in
defining the suitable notion of deformation, and secondly in the study of
the differential graded Lie algebras that govern those deformations. This
brings us to the works of Maxim Kontsevich and Dimitry Tamarkin, and
the field of research to which this monograph belongs.

Kontsevich conjectured in 1993 that the graded Lie algebra of polyvec-
tor fields on a manifold is weakly equivalent as a differential graded Lie
algebra to the polydifferential Hochschild cochain complex of smooth
functions on the manifold [Kontsevich 1993], a conjecture which he then
went on to prove affirmatively in a 1997 preprint, later published as
[Kontsevich 2003]. This implies that the deformation theory of smooth
functions on a manifold is governed by the graded Lie algebra of polyvec-
tor fields: in particular, any Maurer-Cartan element in polyvector fields,
that is, any so-called Poisson structure, defines an associative deforma-
tion. This settled the long-standing problem of deformation quantiza-
tion, initiated in [Bayen et al. 1977]. Kontsevich’s paper never mentions
operads but, nevertheless, it is very much based on the perspective and
techniques of operads. Shortly after, in 1998, Tamarkin gave a very
different and explicitly operad-based proof of the same result.[Tamarkin
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1998] Tamarkin’s proof at one step involves choosing a Drinfel’d asso-
ciator. The set (or scheme, rather) of Drinfel’d associators is a torsor
for the (prounipotent) Grothendieck-Teichmüller group. This group is
rather mysterious, the most important fact known concerning its struc-
ture is that it is not finitely generated (and very little is known about
it apart from that), but it has far-reaching implications in several fields
of mathematics. It therefore follows from Tamarkin’s proof that the
Grothendieck-Teichmüller group acts on the set of weak equivalences
between polyvector fields and polydifferential Hochschild cochains. Ex-
actly how this action would be visible in Kontsevich’s proof was un-
derstood only very recently, when Thomas Willwacher published his
preprint [Willwacher 2010], though definitive hints and partial answers
were given earlier, cf. the construction by Sergei Merkulov in [Merkulov
2008]. To explain Willwacher’s results, recall that a Gerstenhaber al-
gebra is a differential graded commutative algebra with a graded Lie
bracket of degree minus one, whose adjoint action is a (degree mi-
nus one) derivation of the graded commutative product. The operad
of Gerstenhaber algebras is Koszul, hence has a canonical minimal re-
oslution. Willwacher, building on work by Tamarkin, proved that the
Grothendieck-Teichmüller group is the group of connected components
of the group of automorphisms of the minimal model of the Gersten-
haber operad; and hence that it acts on the set of Maurer-Cartan el-
ements in the deformation complex of an arbitrary Gerstenhaber alge-
bra. Polyvector fields on a manifold is naturally a Gerstenhaber alge-
bra. However, the Gerstenhaber algebra-structure on polyvector fields
is in a certain universal sense non-deformable. Using this, the action of
the Grothendieck-Teichmüller group on the set of Gerstenhaber algebra
structures is, in the particular case when the algebra in question is the
algebra of polyvector fields, pushed to an action by weak automorphisms
of polyvector fields as a graded Lie algebra. Moreover, these constitute
the group of universal such automorphisms, if the word “universal” is
taken in the same sense as in the statement that polyvector fields is
universally non-deformable as a Gerstenhaber algebra. The action by
the Grothendieck-Teichmüller group on weak equivalences of differen-
tial graded Lie algebras between polyvector fields and polydifferential
Hochschild cochains is recovered by precomposing the weak equivalence
constructed by Kontsevich with the action by weak automorphisms of
polyvector fields.

The main theme in this monograph is based on a modification of the
the basic set-up discussed in the preceeding paragraph. Define a two-
colored noncommutative Gerstenhaber algebra (henceforth abbreviated
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as an NCG-algebra) to be a pair of cochain complexes, where the first is
a differential graded associative algebra, and the second is a differential
graded Lie algebra with the bracket of degree minus one which is, addi-
tionally, equipped with an representation in terms of graded derivations
of the product on the first cochain complex. For example, any Ger-
stenhaber algebra defines an NCG-algebra by taking the two cochain
complexes to be copies of the complex underlying the Gerstenhaber
algebra, but dividing the data of the Gerstenhaber structure into an
associative product (on the first copy), a Lie bracket (on the second
copy), and defining the representation to be the adjoint representation.
Thus, since polyvector fields are a Gerstenhaber algebra, two copies of
polyvector fields is an NCG-algebra. Another naturally occuring exam-
ple of an NCG-algebra is two copies of the (polydifferential) Hochschild
cochain complex, with the associative cup product on the first copy, the
Gerstenhaber bracket on the second, and the action given by the so-
called braces map. We prove that the operad governing NCG-algebras
is Koszul, hence has a canonical minimal resolution, providing a well-
behaved homotopy theory for NCG-algebras. We then prove that the
two aforementioned NCG-algebras are not weakly equivalent. Our proof
is based on an explicit construction, rather than a usual non-existence
argument. In more detail, we extend the techniques of [Kontsevich 2003]
and obtain explicit formulas for a deformation of the canonical NCG-
structure on polyvector fields, which we term the exotic NCG-structure,
together with explicit formulas for a weak equivalence from this defor-
mation to the canonical NCG-structure on polydifferential Hochschild
cochains. The deformation only involves deforming the adjoint action
of the Lie bracket: the associative (commutative, in fact) product and
the Lie bracket are not perturbed at all. Since only the adjoint action
is deformed, the explicit construction gives both a weak equivalence of
differential graded Lie algebras (which by construction coincides with
Kontsevich’s), and a weak equivalence of associative algebras (which is
a new result). We then show that the deformation of the adjoint ac-
tion is non-trivial, i.e., is not homotopic to the undeformed algebra,
implying that our two canonical NCG-structures can not be weakly
equivalent. Furthermore, we prove that the exotic deformation is (in a
certain universal sense) the unique deformation of the canonical NCG-
structure on polyvector fields. We also prove that the action of the
Grothendieck-Teichmüller group, as explicated by Willwacher, induces
an action in terms of gauge-equivalences between deformations of the
canonical NCG-structure on polyvector fields. This action by gauge-
equivalences can be regarded as a vast generalization of the Duflo auto-
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morphisms familiar from Lie theory, to the context of Poisson complexes
on manifolds. All of our explicit formulas are first constructed on Eu-
clidean space, with reference to a fixed affine structure, but we show how
to coherently modify the formulas to give them diffeomorphism-invariant
sense on an arbitrary manifold. To do this we develop a very generally
applicable framework, which combines elements of operad-theory with
formal geometry in the sense of Isreal Gel’fand and David Kazhdan.

The last chapter gives a streamlined construction of the 1-parameter
family of Drinfel’d associators that was first discovered by Willwacher
and Carlo Rossi in [Rossi and Willwacher 2013]. The subject of that
chapter has independent interest, but it also connects with the overall
theme of the monograph via a clear (but technically not yet entirely
precise) relationship between our exotic deformation and the Alekseev-
Torossian Drinfel’d associator. Conjecturally, any associator should de-
fine an exotic deformation (though they should all be gauge-equivalent,
via a Grothendieck-Teichmüller group action). Alternatively put, the
last chapter suggest a close relationship between the coefficients of our
exotic structure and the algebra of formal multiple zeta values, such that
the coefficient of the lowest order term in the exotic deformation (which
defines the cohomology class in the deformation complex) corresponds
to the (formal) zeta-value ζ(2).

26



CHAPTER 2

Preliminaries

This chapter contains no new results; its purpose is only to fix notation
and make our monograph (more) self-contained.

2.0.1 Finite sets.

Given a natural number n ≥ 1, we write [n] for the set {1, 2, . . . , n}.
The cardinality of a finite set A is written #A, e.g. #[n] = n.
Given finite sets A,B we shall write either AtB or A+B for their

disjoint union, and if B is a subset of A we will write either A \ B or
A−B for the complement of B in A.

We say that a set is ordered if it has a total ordering; that is, if it is
equipped with an antisymmetric, reflexive and total binary relation. If
A is an ordered finite set, then we say that S ⊂ A is a connected subset
and write S < A if s, s′′ ∈ S and s < s′ < s′′ ∈ A implies that also
s′ ∈ S.

The group of permutations (self-bijections) of a finite set T is denoted
ΣT , except for the groups Σ[n] which are abbreviated Σn.

2.0.2 Differential graded vector spaces.

In this section we state our conventions regarding differential graded
(hencefort abbreviated dg) vector spaces. Fix a field k of characteristic
zero.

A dg vector space is defined to be synonymous with an unbounded
cochain complex. A morphism of dg vector spaces f : (V, dV )→ (W,dW )
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is a collection f = {fp : V p → W p}p∈Z of linear maps such that fp+1 ◦
dpV = dpW ◦ fp for all p. The cohomology of a dg vector space V is the

dg vector space H(V ) with H(V )p := Im(dp−1
V )/Ker(dpV ), the space of

degree p cocycles modulu the space of degree p coboundaries, as usual.
We say a dg vector space is of finite type if it is finite-dimensional in
each degree.

The space of maps from V to W is the dg vector space Map(V,W )
with

Map(V,W )n :=
∏
p

Homk(V p−n,W p),

where Homk(V p−n,W p) denotes the vector space of all linear maps from
V p−n toW p, and differential given on φ ∈ Map(V,W )n) by dnMap(V,W )φ :=

dW ◦ φ − (−1)ndV ◦ φ. A vector φ of Map(V,W )n is called a map
of dg vector spaces of degree n. Note that a morphism from V to
W is the same thing as a cocycle of degree 0 of Map(V,W ). We ap-
ply the Koszul sign rules to maps, which says that for homogeneous
maps f, g and homogeneous vectors u, v in their respective domains,
f ⊗ g is defined by (f ⊗ g)(u ⊗ v) = (−1)|g||u|f(u) ⊗ g(v). Given dg
vector spaces V and W their tensor product is the dg vector space
V ⊗ W with (V ⊗ W )n :=

⊕
p+q=n V

p ⊗k W
q differential defined by

dV⊗W := dV ⊗ idW + idV ⊗ dW (using the Koszul sign rule for maps).
The Koszul symmetry for V ⊗W is the morphism

σV⊗W : V ⊗W →W ⊗ V

given on vectors of homogeneous degree by σV⊗W (v⊗w) := (−1)|v|·|w|w⊗
v. The tensor product, the Koszul symmetry and the tensor unit k give
Chk the structure of a symmetric monoidal category. Using the space of
maps and the Koszul sign rules for maps we can (and implicitly usually
will do) consider Chk as a category enriched in itself, because the space
of maps and the tensor product satisfy the usual adjunction.

A graded vector space is a dg vector space (V, dV ) with dV = 0.
We remark that graded vector spaces form a (full) symmetric monoidal
subcategory of the category of dg vector spaces.

2.0.3 Differential graded algebras.

By a (differential) graded algebra of some type we always mean an al-
gebra in a sense internal to the category of dg vector spaces.

A dg associative algebra is a monoid in the category of dg vec-
tor spaces. This means that it is a dg vector space A together with a
morphism µ : A ⊗ A → A, called product, satisfying the associativity
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constraint (µ⊗ id)◦µ = (id⊗µ)◦µ. A unital dg associative algebra is a
unital monoid. This means it is additionally equipped with a two-sided
unit 1 ∈ A0 of homogeneous degree 0. A morphism of dg associative
algebras is a morphism of the underlying dg vector spaces which ad-
ditionally respects the products. The free dg associative algebra on a
dg vector space V is T+(V ) :=

⊕
n>0 V

⊗n with the product given by
concatenation of tensors. The free unital dg associative algebra on V is
the full tensor space T (V ).

A (unital) dg commutative algebra is a (unital) dg associative
algebra A for which the product commutes with the Koszul symmetry,
i.e. satisfies µ ◦ σA⊗A = µ. The free dg commutative algebra on V is
S+(V ) :=

⊕
n>0(V ⊗n)Σn , the permutation invariants taken with repsect

to the action defined by the Koszul sign rules, and the free unital dg
commutative algebra is the full symmetric algebra S(V ).

A dg Lie algebra is a dg vector space L together with a morphism
[, ] : L ⊗ L → L, called the bracket, which is Koszul antisymmetric
([, ] ◦ σL⊗L = −[, ]) and satisfies the Jacobi identity∑

σ∈Z3

[, ] ◦ (id⊗ [, ]) ◦ σ = 0.

(The cyclic permutations σ act according to the Koszul symmetry rule.)
The free dg Lie algebra on V , L(V ), sits inside the free dg associa-
tive algebra T+(V ) as the subspace generated by V under the bracket
[v, v′] = v⊗ v′− (−1)|v||v

′|v′⊗ v. If V is a dg vector space then we define
gl(V ) to be the dg vector space Map(V, V ) equipped with the structure
of dg Lie algebra given by the commutator of compositions of maps of
dg vector spaces. A Maurer-Cartan element of a dg Lie algebra is
an element π ∈ V 1 satisfying the equation dπ + 1

2 [π, π] = 0. Given a
Maurer-Cartan element one can define the twisted dg Lie algebra Vπ,
with the same underlying graded vector space and the same bracket,
but with the new differential dπ := d+ [π, ].

Morphisms of dg algebras (of any kind) are defined as morphism of dg
vector spaces respecting all structure. One defines coalgebraic versions of
dg associative, commutative and Lie algebras by using maps V → V ⊗V
satisfying conditions dual to the respective algebra condition.

We also give the following ad hoc definitions (their conceptual moti-
vation will be clarified in later sections):

An A∞ algebra is a dg vector space A together with a nilsquare
degree +1 coderivation

ν : T+(A[1])→ T+(A[1])
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of the coalgebra T+(A[1]). Since the coalgebra is cofree it is defined by
its components νn : A[1]⊗n → A[2]. We require ν1 = dA. That the map
is a coderivation is the assumption

∆ ◦ ν = (ν ⊗ id+ id⊗ ν) ◦∆,

if ∆ is the coproduct. An L∞ algebra is a dg vector space L together
with a nilsquare degree +1 coderivation λ = dL + λ≥2 of the coalgebra
S+(L[1]).

2.0.4 Graphs.

Definition 2.0.4.1. A graph G is a finite set of flags FG with an
involution τ : FG → FG, a finite set of vertices VG and a function
h : FG → VG. The fixed points of τ are called legs and the orbits of
length two are called edges. Let EG denote the set of edges. Let v and
v′ be two vertices. They are said to share an edge if there exists a flag f
such that h(f) = v and h(τ(f)) = v′, and they are said to be connected
if there exists a sequence of vertices v = v0, v1, . . . , vk = v′ such that
vi and vi+1 share an edge. A graph is called connected if any two of
its vertices are connected. The valency of a vertex is the cardinality
#h−1(v).

A morphism of graphs φ : G → G′ is a function φ∗ : FG′ → FG,
which is required to be bijective on legs and injective on edges, together
with a function φ∗ : VG → VG′ , such that φ∗ is a coequalizer of the two
functions h, h ◦ τ : FG \ φ∗(FG′)→ VG.

A graph is called a tree if it is connected and #VG −#EG = 1. A
rooted tree is a tree T together with a distinguished leg outT , called the
root. The legs not equal to the root are called the leaves of the (rooted)
tree. We denote the set of leaves of a rooted tree T by InT . Given a
rooted tree T , let v′ denote the unique vertex such that h(root) = v′.
For every vertex v of T there exists a unique v = v0, v1, . . . , vk = v′

of miminal length k that displays v and v′ as connected. Call this the
distance from v to the root. Say that f ∈ h−1(v) is outgoing if the
distance from h(τ(f)) to the root is less than the distance from v to the
root. The outgoing flag at any vertex is necessarily unique. Call a flag
which is not outgoing incoming. Define Inv to be the set of incoming
flags at v and outv to be the outgoing flag at v.

Any morphism of graphs can (up to isomorphisms) be regarded as
given by contracting the connected components of a subgraph into ver-
tices. Specifically, let φ : G→ G′ be a morphism of graphs which is not
an isomorphism.
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Lemma 2.0.4.2. Up to isomorphisms any morphism of graphs can be
written as a sequence of edge contractions.

Proof. Assume φ : G → G′ is a morphism of graphs. Recall that, in
particular, φ∗ : F ′ → F is bijective on legs and injective on edges. If
it is bijective on edges then φ is an isomorphism. Assume it is not an
isomorphism and define F ′′ := F \ φ∗(F ′), τ ′′ := τ |F ′′ , h′′ := h|F ′′ and
V ′′ := h(F ′′). This defines a new graph G′′ without legs (since φ∗ is bi-
jective on legs), naturally pictured as a subgraph of G. Contracting each
connected component of G′′ into a new vertex produces a graph G/G′′

equipped with a morphism G → G/G′′ and we can factor φ through
G→ G/G′′ via an isomorphism G/G′′ ∼= G′.

If φ∗ is not an isomorphism then we can remove some edge e =
{f, τ(f)} of G′′ from F to get a new set of flags FG/e = F \ e and factor
φ∗ through FG/e ⊂ F . Writing the details down one gets a factorization
of φ through the “edge contraction”G→ G/e. Hence we can factor G→
G/G′′ through G → G/e. Iterating the procedure gives a factorization
of φ as a sequence of edge-contractions and isomorphisms.

2.1 Colored operads.

Fix a symmetric monoidal category (V,⊗, I) for the remainder of this
section. We assume it to be cocomplete (by convention this includes
existence of an initial object since that should be an empty colimit), to
have finite limits, and that the tensor product is cocontinuous.

Definition 2.1.0.3. Fix a countable set S. An S-colored rooted tree is
a rooted tree T together with a coloring, that is, together with a function
ζT : FT → S such that ζT ◦ τ = ζT . We make S-colored rooted trees into
a category TS by declaring a morphism of S-colored rooted trees to be
a morphism of the underlying graphs that maps the root leg to the root
leg and commutes with colorings, ζT ◦ φ∗ = ζT .

Definition 2.1.0.4. Let S o Σ be the category whose objects are func-
tions s· : I → S, where I can be any finite (possibly empty) set, and
whose morphisms from s· : I → S to s′· : J → S are bijections σ : J → I
such that s· = s′· ◦ σ. An S-colored Σ-module in V is a functor

E : S o Σ× S → V.

An element ϕ ∈ E(s· | s) for s : I → S is said to have arity #I.
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For an S-colored rooted tree (T, ζT ) and vertex v ∈ VT , define sT· :=
ζT |InT , sT := ζ(outT ), sv· := ζT |Inv , sv := ζ(outv). Note that these are
objects of the form (s· | s) ∈ S oΣ×S. Given an S-colored Σ-module E
we then define

E(T ) :=
⊗
v∈VT

E(sv· | sv).

Together with the permutation actions on E this defines a functor

Iso TS → V, E 7→ E(T )

from the category of S-colored rooted trees and isomorphisms between
them. An object of S oΣ× S is equivalent to a colored rooted tree with
a single vertex. Using this identification, define

F(E)(s· | s) := colim
(
Iso(TS ↓ (s· | s))

E−→ V
)
.

This defines an endofunctor on the category of colored Σ-modules in V.
If T is a colored rooted tree and for every vertex u ∈ VT we have some
Tu → (su· | su), then we can build a tree T ′ that contains each Tu as a
subtree and has the property that contracting all the Tu subtrees of T ′

produces the original tree T . In particular, VT ′ =
⋃
u∈VT VTu , giving a

canonical morphism⊗
u∈VT

⊗
v∈VTu

E(sv· | sv) 7→
⊗
w∈VT ′

E(sw· | sw).

These maps assemble to a natural transformation F ◦ F → F. The
definition as a colimit gives a natural transformation id→ F. Together
these two natural transformations give F the structure of a monad.

Definition 2.1.0.5. An S-colored pseudo-operad in V is an algebra for
this monad. Morphisms of pseudo-operads are morphisms of F-algebras.

Remark 2.1.0.6. The above definition means that a pseudo-operad is
an S-colored Σ-module Q together with morphisms

µT : Q(T )→ Q(sT· | sT ),

for every T , called compositions, satisfying certain equivariance and as-
sociativity conditions. The formula for the free pseudo-operad func-
tor F can be phrased as saying that F(E) is the left Kan extension of
E : Iso TS → V along Iso TS → TS . Thus F(E) is a functor TS → V. It
follows by naturality that any pseudo-operad also defines such a func-
tor. (But it is not true that any such functor is a pseudo-operad.) This
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can be used to argue that the operations µT are completely determined
already by those corresponding to trees with two vertices, using that
any morphism of rooted trees can be written as a composition of edge-
contractions, cf. 2.0.4.2.

Given s· : [n] → S, s′· : [n′] → S, s, s′ ∈ S and 1 ≤ i ≤ n, satisfying
si = s′, define

(s· ◦i s′·) : [n+ n′ − 1]→ S

by

(s· ◦i s′·)k =


sk if 1 ≤ k < i
s′k−i+1 if i ≤ k < i+ n′

sk−n′ if k ≥ i+ n′.

Define T to be the tree with two vertices v and v′, set of leaves [n+n′−1],
v adjacent to the root, and colorings defined by sT· := s· ◦i s′·, sT = s,
Inv′ = {i, . . . , i + n′ − 1}, svi = s′ and sv

′
k = s′k−i+1. If Q is an operad,

then T defines a morphism

◦i := µT : Q(s· | s)⊗ Q(s′· | s′)→ Q(s· ◦i s′· | s).

These operations are called the partial compositions.

Definition 2.1.0.7. An S-colored operad in V is a pseudo-operad Q
together with morphisms

es′ : I→ Q(s | s)

for each s′ ∈ S, called units, such that for all (s· | s) with si = s′, the
compositions

Q(s· | s) ∼= Q(s· | s)⊗ I
id⊗es′−→ Q(s· | s)⊗ Q(s′ | s′) ◦i→ Q(s· | s)

and

Q(s· | s) ∼= I⊗ Q(s· | s)
es⊗id−→ Q(s | s)⊗ Q(s· | s)

◦1→ Q(s· | s)

both equal the identity. Morphisms of operads are morphisms of pseudo-
operads respecting the units.

Definition 2.1.0.8. Let M and N be two S-colored Σ-modules. Given
s· : I → S, define M ◦N by

(M◦N)(s̃· | s̃) :=
⊔

p:I→[k],s·:[k]→S

M(s· | s̃)⊗ΣkIndΣI
ΣI1×···×ΣIk

k⊗
i=1

N(si· | si),
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with Ij := p−1(j) and sj· := s̃·|Ij . This defines a monoidal structure
◦, called plethysm, on the category of S-colored Σ-modules in V. The
Σ-module I with I(s | s) = I for all s ∈ S, and all other components
equal to the initial object 0, is a unit for the plethysm.

Remark 2.1.0.9. An operad can be concisely defined as a (unital)
monoid in the category of Σ-modules for the plethysm product. The
monoid product γ : Q ◦ Q → Q of an operad is related to the partial
compositions ◦i by (s· : [k]→ S, φ ∈ Q(s· | s))

φ ◦i ψ = γ(φ; es1 ⊗ · · · ⊗ esi−1 ⊗ ψ ⊗ esi+1 ⊗ · · · ⊗ esk).

The disadvantage of defining operads as monoids for the plethysm prod-
uct is that it makes it difficult to describe the free operad functor in
concrete terms.

Example 2.1.0.10. Assume given a set of objects V = {Vs}s∈S of V
and assume that V has an internal hom-functor Map. There is then an
S-colored operad End〈V 〉 in V with

End〈V 〉(s· | s) := Map(
⊗
i∈I

Vsi , Vs),

for s· : I → S. The maps ◦i are defined mimicking the compositions for
multilinear maps, i.e.

φ ◦i ψ := φ ◦ (ids1 ⊗ · · · ⊗ idsi−1 ⊗ ψ ⊗ idsi+1 ⊗ · · · ⊗ idsn)

if φ :
⊗n

j=1 Vsj → Vs. The units are given by es = idVs . This operad is
called the endomorphism operad of V .

Definition 2.1.0.11. A S-colored pseduo-cooperad in V is the struc-
ture defined by reversing all arrows, i.e. it is an S-colored pseudo-operad
in Vop. Thus, for each tree T it has a morphism

∆T : Q(sT· | sT )→ Q(T )

in V, and these satisfy certain coassociativity and equivariance condi-
tions. Dualizing further, a pseudo-cooperad C is said to be a cooperad
if it has counits εs : I→ C(s | s) satisfying the conditions dual to those
for operadic units.

34



2.2 Colored dg operads.

Global references for this section are the book [Loday and Vallette 2012]
and the thesis [Laan 2004].

Definition 2.2.0.12. An S-colored dg Σ-module is an S-colored Σ-
module in Chk. For S-colored dg Σ-modules M and N we denote the
set of natural transformations from M to N by HomΣ(M,N). The
internal mapping space on dg vector spaces defines a dg vector space
MapΣ(M,N), such that HomΣ(M,N) is the set of degree zero cocycles
in MapΣ(M,N). In more detail,

MapΣ(M,N) = lim(Map(M,N) : (S o Σ× S)op × (S o Σ× S)→ Chk).

A dg operad is a an operad in Chk.
For a dg Σ-module E and an integer r, define E{r} to be the Σ-

module with

E{r}(s· | s) := E(s· | s)[r(1− n)]⊗ sgn⊗rn .

for s· : I → S, n := #I. This is called operadic suspension, since if
E has a dg (co)operad structure, then so will E{r}.

Remark 2.2.0.13. Operadic suspension satisfies the adjunction

MapΣ(M{r}, N) ∼= MapΣ(M,N{−r}).

It also satisfies End〈V 〉{r} ∼= End(V [r]) for any collection V = {Vs}s∈S
of dg vector spaces, where V [r] := {Vs[r]}s∈S .

Definition 2.2.0.14. The Σ-module I with I(s | s) = k for all s ∈
S and all other components equal to 0 has both a unique dg operad
structure and a unique dg cooperad structure. A dg operad O is said
to be augmented if it is equipped with a morphism of operads Q→ I.
A dg cooperad C is said to be coaugmented if it is equipped with a
morphism of cooperads I→ C.

A dg (pseudo-co)operad Q is said to be reduced if is trivial in artiy
zero. In other words, if Q(∅ | s) = 0 for all s, or, equivalently, if Q(T ) = 0
for all colored trees that have a univalent vertex.

The unit of an augmented dg operad must be a split inclusion so
augmented dg operads are equivalent to dg pseduo-operads. Explic-
itly, the augmented dg operad Q is equivalent to the dg pseudo-operad
Ker(Q→ I). Similarly, coaugmented dg cooperads are equivalent to dg
pseudo-cooperads.
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Convention 2.2.0.15. From now on all dg (co)operads except endo-
morphism operads will be assumed (co)augmented and reduced. This
means we can with little risk of confusion drop the distinction between
dg (co)operads and dg pseudo-(co)operads, something we will do when-
ever convenient.

Definition 2.2.0.16. We write dgOpS for the category of reduced and
augmented S-colored dg operads and dgCoOpS for the category of re-
duced and coaugmented S-colored dg cooperads.

The category dgOpS has a model structure induced by that on dg
vector spaces. A morphism f : Q→ Q′ in dgOpS is

- a weak equivalence, also referred to as a quasi-isomorphism, if each

f(s·|s) : Q(s· | s)→ Q′(s· | s)

is a quasi-isomorphism of dg vector spaces.

- a fibration if each f(s·|s) is a fibration of dg vector spaces.

- a cofibration if it satisfies the lifting property.

For a detailed account of this model structure, see [Hinich 1997].

2.2.1 The (co)bar construction.

Definition 2.2.1.1. Let O be a dg operad. A homogeneous derivation
of O of degree q is an endomap v of the Σ-module O, satisfying

v(ϕ ◦i ϕ′) = v(ϕ) ◦i ϕ′ + (−1)q|ϕ|ϕ ◦i v(ϕ′),

for homogeneous ϕ ∈ O(s· | s), ϕ′ ∈ O(s′· | s′).

Given a (coaugmented) dg cooperad C, denote by C the cokernel of
the coaugmentation. The free dg pseudo-operad F(C[−1]) has a filtration
F(C[−1])(k) given by the number of vertices in a tree. The cocomposi-
tions of the cooperad structure defines

δ : C[−1]→ F(C[−1])(2)

of degree 1. Extend these by the Leibniz rule with respect to the ◦i-
products, to a derivation

δ : F(C[−1])(k) → F(C[−1])(k+1).

The coassociativity of the cocomposition of C translates to the statement
that δ squares to 0.
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Definition 2.2.1.2. Let C be a (coaugmented) dg cooperad. The co-
bar construction C(C) on C is the augmented dg operad defined as fol-
lows. The underlying graded operad is that corresponding to the graded
pseudo-operad F(C[−1]). The differential is that given by the differential
on C, together with the differential δ defined by the cooperad structure.

Definition 2.2.1.3. Define the cofree cooperad functor Fc by

Fc(E)(s· | s) := lim
(
Iso(TS ↓ (s· | s))

E−→ V
)
.

The Σ-module Fc(E) has a canonical cooperad structure, but it is actu-
ally only cofree for a restricted class of cooperads. The cobar construc-
tion has a dual construction, given as follows. Let P be an augmented
dg operad and let P be the kernel of the augmentation. The composition
on P defines a nilsquare coderivation ∂ on Fc(P[1]). The bar construc-
tion on P is the coaugmented dg cooperad B(P) corresponding to the
pseudocooperad Fc(P[1]) and with the extra differential ∂.

Lemma 2.2.1.4. [Hinich 1997] If C ∈ dgCoOpS is such that either each
component C(s· | s) is concentrated in non-negative degrees, or it has a
complete filtration F1C ⊂ F2C ⊂ . . . compatible with differentials in the
sense that d(Fp) ⊂ Fp and compatible with cooperad structure in the
sense that δ(Fp) ⊂ Fc(Fp−1), then C(C) is cofibrant in dgOpS .

It follows that CB(P) is cofibrant for every P ∈ dgOpS , because B(P)
has a filtration as required, defined by the number of vertices in deco-
rated trees.

Lemma 2.2.1.5. The bar and cobar constructions are adjoint functors.

A particular case of the bar-cobar adjunction is a canonically defined
morphism CB(P)→ P, for every dg operad P.

Corollary 2.2.1.6. For every dg operad P, there is a canonically defined
quasi-isomorphism CB(P)→ P.

2.2.2 Koszul duality theory.

Definition 2.2.2.1. A dg operad P is called quadratic if it admits a
presentation as a quotient P = F(E)/I, for I an operadic ideal generated
by some R ⊂ F(E)(2). Since R is homogeneous of degree 2 with respect
to the grading by the number of vertices, P will inherit an additional
grading P(k) = Im(F(E)(k) → P).
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The Koszul dual of a quadratic dg operad P is the cooperad

P¡ := Ker(∂ : Fc(P(1)[1])→ B(P)).

A quadratic dg operad is called Koszul if the canonical morphism
C(P¡)→ P is a quasi-isomorphism.

For a Koszul dg operad P we define P∞ := C(P¡). The operad P∞ is
always cofibrant, by the lemmata at the end of the previous subsection.

2.2.3 Deformation complexes.

Let O be a dg operad and C be a dg cooperad. Let MapΣ(C,O) denote
the internal mapping space of Σ-modules. Take f, g ∈ MapΣ(C,O).
Then define

(f ◦i g)(s·|s) :=
∑

s1· ◦is2·=s·

◦i(f(s1· |s1) ⊗ g(s2· |s2))δs1· ◦is2· : C(s· | s)→ O(s· | s).

In the above δs1· ◦is2· denotes a partial cocomposition of C. These opera-
tions define a dg Lie algebra structure on MapΣ(C,O), by

[f, g] := −
∑
i

f ◦i g + (−1)|f ||g|
∑

g ◦j f.

(The sums are over all compositions which make sense.)

Definition 2.2.3.1. The space MapΣ(C,O), considered as a dg Lie al-
gebra, is called the convolution dg Lie algebra of C and O.

Remark 2.2.3.2. A morphism of dg Σ-modules C(C) → O is a mor-
phism of dg operads if and only if it is a Maurer-Cartan element of the
dg Lie subalgebra MapΣ(C,O) ⊂ MapΣ(C,O).

Definition 2.2.3.3. Given a morphism f : C(C)→ O of dg operads, we
define Def(f), or in more detailed notation,

Def(C(C)
f→ O),

to be the dg Lie algebra MapΣ(C,O), twisted by the Maurer-Cartan
element f . It is called the deformation complex of f .
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2.2.4 Algebras for dg operads.

Definition 2.2.4.1. Let O ∈ dgOpS . A left O-module is a dg Σ-module
M together with a morphism O ◦M → M such that the two natural
composites

O ◦ O ◦M → O ◦M →M

agree. A right O-module is defined as a dg Σ-module together with
a morphism M ◦ O → M , satisfying the analogous condition with the
operad instead placed to the right of the plethysm.

Let C ∈ dgCoOpS . A left C-comodule is a dg Σ-module M together
with a morphism C→ C ◦M such that the two natural composites

M → C ◦M → C ◦ C ◦M

agree. A right C-comodule is defined analogously.

Definition 2.2.4.2. Let O ∈ dgOpS be a dg operad. A dg O-algebra is
a collection of vector spaces V = {Vs}s∈S and a morphism of dg operads

O→ End〈V 〉.

A dg O-algebra is also called a representation of O. Equivalently, we can
regard V as a dg Σ-module concentrated in arity zero and an O-algebra
structure on V as a module structure O ◦ V → V .

Let C ∈ dgCoOpS . A dg C-coalgebra is a V = {Vs}s∈S together
with a left comodule structure V → C⊗ V .

Remark 2.2.4.3. The above definition implies that the free O-algebra
on V is the dg vector space O(V ) = O ◦ V . More explicitly,

O(V )s :=
⊕
n≥1

⊕
s·:[n]→S

O(s· | s)⊗Σn

n⊗
i=1

Vsi .

The free dg coalgebra on a dg vector space V for a dg cooperad C,
denoted C(V ), is defined by the same formula.

Definition 2.2.4.4. Let O ∈ dgOpS be a dg operad. A morphism of
dg O-algebras f : A → B is a morphism of dg vector spaces with the
property that

O(A) A

O(B) B

O(f) f

commutes. Morphisms of coalgebras for a cooperad are defined analo-
gously.
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Definition 2.2.4.5. Let O ∈ dgOpS and let µA : O → End〈A〉 be a
O-algebra. An O-algebra derivation of A is a morphism ξ : A → A
such that

ξ ◦1 µA(φ) =

n∑
i=1

µA(φ) ◦i ξ

in End〈A〉 for all n, s· : [n] → S, s ∈ S and φ ∈ O(s· | s). The Lie
bracket on the set of P-derivations is such that it forms a Lie subalgebra
DerO(A) of gl(A).

A coderivation of a C-coalgebra is defined dually.

Definition 2.2.4.6. Let P be a Koszul dg operad and let A be a P∞-
algebra. We define the deformation complex of A to be the dg Lie
algebra

CP(A,A) := Def(P∞ → End〈A〉).
The cohomology of the deformation complex of A is denoted HP(A,A).
It is also called the P-cohomology of A with coefficients in A.

Remark 2.2.4.7. When A is a P-algebra concentrated in nonnegative
degrees, then HP(A,A) is a right derived functor of A 7→ DerP(A).
In more detail this means the following. With some extra care one
can define the notion of a module for a P-algebra A and, for any such
module M , a vector space DerP(A,M). For any cofibrant replacement
R → A of the P-algebra A we have HP(A,A) ∼= H(DerP(R,A)). Hence
we may think of the deformation dg Lie algebra CP(A,A) as the dg lie
algebra of homotopy derivations of the P-algebra A. In particular, for
A = P(V ) a free P-algebra concentrated in nonnegative degrees, the
canonical inclusion

DerP(A) ↪→ Map(I,Map(A,A)) ↪→ CP(A,A),

defined by the coaugmentation I→ P¡, is a quasi-isomorphism.

Definition 2.2.4.8. Let P be a Koszul dg operad and let A be a dg
P-algebra. The morphism C(P¡)→ P defines a degree +1 map

P¡(A) = P¡ ◦A→ P ◦A,

which by postcomposition with the algebra structure P ◦A→ A defines
a degree +1 map P¡(A)→ A. It extends uniquely to a coderivation ∂ of
degree +1 of the cofree P¡-coalgebra P¡(A). Associativity of P ◦ A→ A
implies that it squares to 0. The P-bar construction on A is the dg
P¡-coalgebra BP(A) equal to P¡(A) but equipped with the additional
differential ∂).

The P-homology of A is defined to be the cohomology of BP(A).
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Remark 2.2.4.9. It is easy to show that CP(A,A) = Map(BP(A), A)
as a complex. By cofreeness the latter space can be identified with
the space of coderivations CoderP¡(BP(A),BP(A)), which has a natu-
ral Lie bracket. If we transport that bracket to Map(BP(A), A), then
CP(A,A) = Map(BP(A), A) is an equality of dg Lie algebras.

Lemma 2.2.4.10. Let f : C(C) → P be a morphism of dg operads.
Then for every P-algebra A we get an extra differential ∂ on the cofree
coalgebra C(A). Let Bf (A) denote C(A) with the additional differen-
tial added. The morphism f is a quasi-isomorphism if and only if the
canonical map

V → Bf (P(V ))

is a quasi-isomorphism for all V .

We will not give a proof of this standard result, but will indicate the
argument. A morphism f : C(C) → P defines a twisted differential df
on the plethysm C ◦ P. The Σ-module C ◦ P with this extra differential
is called the (left) twisting composite product and is denoted C ◦f P.
One shows that Bf (P(V )) = (C ◦f P) ◦ V , whence the statement of
the lemma is equivalent to the statement that I → C ◦f P is a quasi-
isomorphism. First one proves that the map I→ C ◦id C(C) always is a
quasi-isomorphism. Then it is easy to see that id◦f : C◦idC(C)→ C◦f P
is a quasi-isomorphism iff f is.

Definition 2.2.4.11. Let P be a Koszul dg operad and let A and B
be two P∞-algebras. An ∞-morphism (of P-algebras) F : A→ B is a
morphism of P¡-coalgebras from BP(A) to BP(B).

Part of the data of an ∞-morphism F is a morphism of dg vector
spaces F(0) : A → B. We say F is an ∞-(quasi-)isomorphism if F(0)

is a (quasi-)isomorphism of dg vector spaces.

An ∞-morphism of Lie-algebras is called an L∞-morphism. An ∞-
morphism of Ass-algebras is called an A∞-morphism.

Remark 2.2.4.12. Note that an ∞-morphism of P-algebras is not the
same thing as a morphism of P∞-algebras.

2.2.5 Examples.

Let Lie denote the singleton-colored dg operad whose representations are
dg Lie algebras. It is generated by an operation

λ ∈ Lie(2) = sgn2,
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since Lie algebras are defined by a binary bracket operation. Moreover,
the operad Lie is quadratic since the Jacobi identity involves (sums of)
compositions of exactly two brackets. The Koszul dual cooperad is Lie¡ =
coCom{−1}, for coCom defined as follows. For n ≥ 1,

coCom(n) := kn

is the trivial Σn-representation with 0 differential. The morphisms

kn → kn−n′+1 ⊗ kn′ , 1 7→ 1⊗ 1

assemble to define a cooperad structure on coCom. The morphism
C(coCom{−1}) → Lie is a quasi-isomorphism, i.e. Lie is Koszul. An
L∞ algebra is thus the same thing as a representation

f : C(coCom{−1})→ End〈V 〉.

Such a representation is a Maurer-Cartan element in

MapΣ(coCom{−1},End〈V 〉 = MapΣ(coCom,End〈V 〉{1}〉

=
∏
n≥1

MapΣ(kn,Map(V [1]⊗n, V [1]))

= Map(S+(V [1]), V [1])).

One checks the Maurer-Cartan elements are the same as nilsquare degree
+1 coderivations of S+(V [1]). Assume

f : C(coCom{−1})→ End〈L〉

is an L∞ algebra. The deformation complex Def(f) = CLie(L,L) is, in
the case that f happens to be a usual Lie algebra, easily checked to be
equal to the degree-shifted and truncated Chevalley-Eilenberg cochain
complex;

CLie(L,L) = C+
CE(L,L)[1],

with its Chevalley-Eilenberg differential and bracket. Similarly, A∞ al-
gebras are representations of an operad Ass∞ = C(coAss{−1}), where
coAss(n) = k[Σn] is the Koszul dual to the Koszul dg operad controlling
dg associative algebras. The operadic deformation complex of a usual as-
sociative algebra is the degree-shifted and truncated Hoschschild cochain
complex

CAss(A,A) = C+
Hoch(A,A)[1],

with its Hochschild differential and Gerstenhaber bracket.
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Definition 2.2.5.1. For an A∞ algebra A we define the Hochschild
cochain complex by

CHoch(A,A) := A⊕ CAss(A,A)[−1] = Map(T (A[1]), A).

The dg Lie algebra structure on the deformation complex extends to
CHoch(A,A)[−1]. Analogously, if L is an L∞ algebra, then we define the
Chevalley-Eilenberg cochain complex by

CCE(L,L) := L⊕ CLie(L,L)[−1].

If A and L are algebras concentrated in degree zero, then these defini-
tions coincide with the classical ones.

2.2.6 Deformations of algebras.

Let P be a Koszul dg operad and let

µ : P∞ → End〈A〉

be a P∞-algebra.

Definition 2.2.6.1. A formal deformation of µ is a Maurer-Cartan
element ~ν ∈ CP(A,A)[[~]]. Two formal deformations ~ν and ~ν ′ are
equivalent if there exists an ~-linear ∞-isomorphism

F : (A[[~]], µ+ ~ν)→ (A[[~]], µ+ ~ν ′),

with the property that F(0) : A[[~]]→ A[[~]] has the form id+O(~).
An infinitesimal deformation of µ is a Maurer-Cartan element of

homogeneous degree one in ~ in CP(A,A)[[~]]/〈~2〉. Equivalence of in-
finitesimal deformations is defined as in the formal case, but modding
out by ~2.

Note that a formal deformation defines an infinitesimal deformation.

Proposition 2.2.6.2. The set of infinitesimal deformations of µ is in
bijection with the set of degree 1 cocycles of CP(A,A), and two infinites-
imal deformations are equivalent if and only if the two corresponding
cocycles are cohomologous.

Two formal deformations are equivalent if and only if their cor-
responding infinitesimal deformations are equivalent. In particular, if
H1

P(A,A) = 0, then any formal deformation is equivalent to the trivial
one.

We remark that is often possible to dispense with the parameter ~,
due to nilpotency or automatic presence of a suitable filtration.
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2.2.7 Homotopy transfer.

Assume W is a P∞-algebra, for P some Koszul operad, and assume we
are given a homotopy retract

V W δ−1
j

p
,

idW − j ◦ p = dW ◦ δ−1 + δ−1 ◦ dV .

Then there is an induced P∞-algebra structure on V , such that j is a
quasi-isomorphism of P∞ algebras. The induced algebra structure is
called the homotopy transfer to V and is defined using the following
lemma.

Lemma 2.2.7.1. The homotopy retract defines a morphism of dg co-
operads

Ψ : B(End〈W 〉)→ B(End〈V 〉).

Let us give the definition of Ψ. Since the bar construction is cofree,
forgetting differentials, it is enough to specify Ψ as a map

Ψ : B(End〈W 〉)→ End〈V 〉[1].

Recall
B(End〈W 〉)(s· | s) = lim

Iso(TS↓(s·|s))
End〈W 〉[1](T )

is a limit over decorated rooted S-colored trees. The restriction of the
morphism Ψ to

End〈W 〉[1](T )→ End〈V 〉[1]

is defined by decorating all input legs with j, all edges by δ−1, the root
leg with p, and keeping the vertex decorations as they are. For example,
the decorated tree

ϕ1

ϕ2

would be mapped to the operation

p ◦ φ1 ◦
(
j ⊗ (δ−1 ◦ φ2 ◦ (j ⊗ j))

)
.

One can verify that Ψ commutes with the bar differentials.
By the bar-cobar adjunction, the P∞-structure

P∞ = C(P¡)→ End〈W 〉
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on W is equivalently given as a morphism of cooperads

P¡ → B(End〈W 〉).

Postcomposing this with Ψ defines P¡ → B(End〈V 〉), which is equivalent
to a morphism P∞ = C(P¡)→ End〈V 〉.
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CHAPTER 3

The twist construction for colored operads

Let g be a dg Lie algebra. Recall that a Maurer-Cartan element is
an element π ∈ g1 satisfying the equation dπ + 1

2 [π, π] = 0. Given a
Maurer-Cartan element one can define the twisted dg Lie algebra gπ,
with the same underlying graded vector space and the same bracket,
but with the new differential dπ := d + [π, ]. This procedure is known
to generalize to L∞ algebras, but then one has to change not just the
differential: the differential changes by the same formula and the n-ary
bracket λn is replaced by

∑
k≥0

1
k!λk+n(π⊗k, ). Consider now the case of

a (single-colored) dg operad Q equipped with a morphism of dg operads

Lie∞ → Q.

Then any Q-algebra g is also an L∞ algebra. Let gπ be the twisted
algebra corresponding to some Maurer-Cartan element. It is a new L∞
algebra, as explained above, but it is generally not a new Q-algebra.
Thomas Willwacher wrote down the definition of an operad TwQ with
the property that gπ is a TwQ-algebra, in [Willwacher 2010]. The con-
struction was later conceptually clarified in [Dolgushev and Willwacher
2012], where it was shown that it defines a comonad

Tw : (Lie∞ ↓ dgOp)→ (Lie∞ ↓ dgOp)

on the category of dg operads under the L∞ operad. In this chapter
we generalize the construction to colored operads. This generalization
allows us to recognize the construction as a derived adjoint functor to
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another simple construction, which we call the Lie module construction.
The Lie-module construction can not be defined without the introduc-
tion of (more than one-)colored operads, so the adjunction is not visible
when only working with single-colored operads. Thus, our work is more
than just a straight-forward generalization of the single-colored twisting
to the colored setting, but at the same time it clarifies the single-colored
twisting.

Definition 3.0.7.2. Given a pointed set S with base point ∗, define
L∞-mod(S) to be the operad whose representations are an L∞ algebra
V∗, and a collection of L∞ representations V∗ → gl(Vs), parametrized by
s ∈ S \ {∗}. Note that if S = {∗} is a singleton, then L∞-mod(S) is the
operad of L∞ algebras. Similarly, we introduce the operads L-mod(S),
corresponding to a strict Lie algebra and strict Lie algebra representa-
tions.

Given a operad P with set of colors X, let L-mod(P) be the S := Xt
{∗}-colored operad whose representations are a P-algebra V = (Vx)x∈X ,
a dg Lie algebra V∗, and a dg Lie algebra representation V∗ → DerP(V )
by P-derivations. The assignment P 7→ L-mod(P) is a functor

L-mod: dgOpX → (L∞-mod(S) ↓ dgOpS),

which we term the Lie module construction. We define a functor

tw : (L∞-mod(S) ↓ dgOpS)→ dgOpX ,

essentially by a Kan extension, and prove that there is an adjunction

Ho(L-mod) a Ho(tw)

on homotopy categories. We call this functor the small twist con-
struction. On an endomorphism operad

L∞-mod(S)→ End〈g, A〉

(g is in the distinguished color ∗) it has the suggestive form

tw End〈g, A〉 = CCE(g,End〈A〉),

using that components the of End〈A〉 have an induced g-module struc-
ture. Set S̃ := S t {∗̃} and let δ : S̃ → S be the unique map of pointed
sets which is the identity on X ⊂ S̃. We then define the large twist
construction to be the small twist construction on δ∗Q:

TwQ := tw δ∗Q.
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Our large twist construction coincides with that defined by Willwacher,
when restricted to single-colored operads. On an endomorphism operad
as above it equals

Tw End〈g, A〉 = CCE(g,End〈g, A〉),

using that g always has an adjoint action on itself, as well as the action on
A. Apart from the homotopy adjunction formula we also prove several
properties about how these three functors behave in relation to Koszulity
and deformation complexes. No part of this chapter has previously been
published.

3.0.8 Model structures.

For a set X, define dgOpX to be the category of augmented dg X-colored
operads. For a pointed set S we shall call the comma category TwistS :=
(L∞-mod(S) ↓ dgOpS) the category of S-colored operads with twist
data.

We use the standard model structure on dg vector spaces (over
a field of characteristic zero), for which weak equivalences are quasi-
isomorphisms and fibrations are degree-wise surjections (and cofibra-
tions are defined by the lifting property), and the corresponding model
structure on dg operads which defines quasi-isomorphisms and fibrations
componentwise, cf. 2.2. Any comma category of objects over a fixed ob-
ject in an ambient model category has a canonical model structure. We
use this to equip the category of operads with twist data with a model
structure. Explicitly, a morphism

f : (L∞-mod(S)→ Q)→ (L∞-mod(S)→ Q′)

in TwistS is defined to be a weak equivalence/fibration/cofibration if
f : Q→ Q′ is a weak equivalence/fibration/cofibration in dgOpS .

3.1 The twist construction.

3.1.1 The Lie-module construction.

Given a operad P with set of colors X, let L-mod(P) be the S := Xt{∗}-
colored operad whose representations are a P-algebra V = (Vx)x∈X , a
dg Lie algebra V∗, and a dg Lie algebra representation V∗ → DerP(V ) by
P-derivations. The assignment P 7→ L-mod(P) is clearly functorial and
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there is an obvious morphism L∞-mod(S) → L-mod(P), considering ∗
as the base-point of S, so we may regard the construction as a functor

L-mod : dgOpX → TwistS .

Call this functor the Lie-module construction.

Lemma 3.1.1.1. The Lie module construction preserves weak equiva-
lences.

Before the proof we make a preliminary remark. Let M and N be
S-colored dg Σ-modules. Define the plethysm product over X, denoted
◦X , by

(M ◦X N)(s̃· | x̃) :=
⊔

s·:[k]→S,p:I→s·−1(X)

M(s· | x̃)⊗Σk

k⊗
i=1

N(si· | si),

with Ij := p−1(j) and sj· := s̃·|Ij . Note si ∈ X in N(si· | si). Succinctly,
the plethysm product over X allows the Σ-modules to have S-colored
inputs but only uses the colors in X for composition.

Proof. Let (f : P → P′) ∈ dgOpX be a weak equivalence. The Leibniz
rule for derivations gives us an identification

L-mod(P) = P ◦X L-mod(S) + Lie

as S-colored dg Σ-modules. It follows that we obtain

L-mod(f) : L-mod(P)→ L-mod(P′)

by the formula L-mod(f) = f ◦X idL-mod(S) + idLie. This is clearly a
quasi-isomorphism whenever f is.

Let us record some further homotopical properties of the operads
L-mod(P). We shall use the following fact when dealing with S-colored
operads. Let s· be a list in S that hits the base point k times. Then
there is a unique list x· in X, of length n if s· has length n + k, such
that ∗k ∪ x· and s· differ by a (k, n)-shuffle. Here ∗k ∪ x· : [k] t I → S
constantly equal to the distinguished color ∗ on [k], I := s·

−1(X) and
x· is the restriction of s· to I. This means that an S-colored operad Q
can be specified by giving only its components for sequences of the form
∗k ∪ x·.
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Let P be an X-colored augmented dg operad with a cobar resolution
P∞ := C(C). Define L-mod(P)∞ to be the operad whose representations
are an L∞ algebra L, a P∞-algebra A and an L∞ morphism

L→ Def(P∞ → End〈A,A〉).

It is easy to see that L-mod(P)∞ = C(LC) for a certain cooperad LC wich
can described as follows. Its coalgebras are a cocommutative coalgebra
B[1], a C-coalgebra F and a B-comodule structure ρ : F → B⊗F , such
that for all n, n-ary cooperations γ ∈ C and 1 ≤ i ≤ n, (idB ⊗ γ)ρ =
τ(id⊗i−1

F ⊗ ρ ⊗ id⊗n−iF )γ for τ the permutation isomorphism F⊗i−1 ⊗
F ⊗ B ⊗ F⊗n−i ∼= B ⊗ F⊗n. The description in terms of components
is that its restriction to the color ∗ equals a copy of the cooperad Lie¡,
LC(∗k ∪x· | x) = sgnk[k]⊗C(x· | x) for k ≥ 0 and x ∈ X, while all other
components are 0.

Lemma 3.1.1.2. If C(C) is a resolution of P, then C(LC) is a resolution
of L-mod(P).

Proof. We will verify that the LC-bar construction on a free L-mod(P)-
algebra is the space of generators. To this end, let F = (U, V ), where
U = F∗ and V = {Fx}x∈X . The free L-mod(P)-algebra on F has as com-
ponent in the distinguished color the free Lie algebra L(U) on U , and
the free P-algebra P(T (U)⊗ V ) on the free L(U)-module T (U)⊗ V on
V in the remaining colors. The bar construction on this has component
BLie(L(U)) in the distinguished color, and the Chevalley-Eilenberg ho-
mology complex CCE(L(U),Bf (P(T (U)⊗ V ))) in the remaining colors,
where f denotes the map C→ P.

The inclusion U → BLie(L(U)) is a quasi-isomorphism since L(U)
is a free Lie algebra. The inclusion T (U) ⊗ V → Bf (P(T (U) ⊗ V )) is
a quasi-isomorphism since we assumed f to be a resolution of P and
P(T (U) ⊗ V ) is free. But T (U) ⊗ V is a free L(U)-module, so the
inclusion V → CCE(L(U), T (U)⊗V ) is a quasi-isomorphism. All-in-all,
this shows that the inclusion

(U, V )→ (BLie(L(U)), CCE(L(U),Bf (P(T (U)⊗ V ))))

is a quasi-isomorphism.

Remark 3.1.1.3. Assume that P is quadratic. Then L-mod(P) is
quadratic and the Koszul dual L-mod(P)¡ equals LP¡. Hence it follows
by the preceeding arguments that L-mod(P) is Koszul if P is Koszul.
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3.1.2 The small twist construction.

Let pX : S o Σ × X → X o Σ × X be the functor that maps an object
(s· : I → S | x) to the object (s· : s·

−1(X) → X | x) and a morphism
σ : (s· | x)→ (s′· | x) (recall this means s′· ◦ σ = s·) to σ|s′·−1(I′). Define

RX : [S o Σ×X, Chk]→ [X o Σ×X, Chk]

to be the right Kan extension along pX . By first restricting output colors
to X we may also consider it as defined

RX : [S o Σ× S, Chk]→ [X o Σ×X, Chk].

We will switch freely between the two domains for RX and rely on the
context to make it clear which domain we have in mind.

Let M be an S-colored dg Σ-module. Then

RXM(x· | x) = lim((pX ↓ (x· | x))
M−→ Chk).

It follows that for any object pX(s· | x)→ (x· | x) of the comma category
(pX ↓ (x· | x)) there is a universal projection

RXM(x· | x)→M(s· | x).

By universality of the projections out of a limit we obtain a natural
transformation

RXM ◦RXN → RX(M ◦X N).

Any dg S-colored operad defines, by restriction of allowed outputs, an
operad for the plethysm over X. The argument above shows that the
functor RX will map this to an X-colored dg operad (for the unrestricted
plethysm).

Define L ∈ [S o Σ × X, Chk] by L(s· | x) := sgnk[k], where k :=
#s−1
· (∗), if k ≥ 1, and L(s· | x) = k if k = 0. It has a cooperad

structure for the plethysm over X, given by the maps

L(s· | x) = sgnk[k]→ L(s′· | x)⊗ L(s′′· | x′) = sgnk′ [k
′]⊗ sgnk′′ [k′′],

1 7→ 1⊗ 1.

(Note k = k′ + k′′.)

Remark 3.1.2.1. Let P be a Koszul X-colored dg operad. Then accord-
ing to the results of the last section, L-mod(P)¡ = Lie¡ + L⊗ p∗XP¡, with
the Koszul dual of the Lie operad considered as ∗-colored. Generally,
C(LC), with LC := Lie¡ + L⊗ p∗XC, is quasi-isomorphic to L-mod(C(C)).
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Definition 3.1.2.2. Assume given an S-colored dg operad Q. Let [L,Q]
denote convolution operad. Define

tw′Q := RX [L,Q].

It follows from our discussion that tw′Q is a dg X-colored operad.

Remark 3.1.2.3. The category S oΣ is a coproduct of categories S(k) oΣ,
where an object in S(k) o Σ is a sequence s· : I → S with #s·

−1(∗) = k.
In particular, S(0) oΣ = X oΣ. Accordingly, if tw′Q(k) denotes the right

Kan extension of [L,Q] along S(k) o Σ×X → X o Σ×X, then

tw′Q =
∏
k≥0

tw′Q(k).

Moreover, each object of S(k) o Σ over x· is isomorphic to ∗k ∪ x·. Each
of these objects ∗k ∪ x· has an automorphism group over x· that we can
identify with Σk. It follows that we can model tw′Q by

tw′Q(x· | x) =
∏
k≥0

tw′Q(x· | x)(k),

tw′Q(x· | x)(k) := MapΣk
(sgnk[k],Q(∗k ∪ x· | x)).

This description is the easiest for explicit calculations, but it breaks
some of the symmetry. Write 1k for the generator of sgnk[k]. The
partial operadic compositions can be written as follows.

(φ ◦i φ′)(1`) =
∑

k+k′=`

∑
σ∈Sh(k,k′)

(−1)|σ|
(
φ(1k) ◦k+i φ(1k′)

)
· σ.

The partial composition ◦k+i is a partial composition in Q.

Lemma 3.1.2.4. The convolution dg Lie algebra MapΣ(Lie¡,Q) (consid-
ered in the distinguished color) has a right action • by operadic deriva-
tions on the operad tw′Q.

Proof. The convolution operad [L,Q] is an operadic right module for
[Lie¡,Q], using the partial compositions in the distinguished color. This
transforms into an action of MapΣ(Lie¡,Q) by derivations of the partial
◦X -compositions (that the action is by operadic derivations is equivalent
to associativity of the full S-colored compositions of [L,Q]). The action
is naturally induced on the right Kan extension.

53



Remark 3.1.2.5. The action • can be given in the following way. Note
that MapΣ(Lie¡,Q) can be decomposed as

∏
p≥1 MapΣ(Lie¡,Q)(p), where

MapΣ(Lie¡,Q)(p) := MapΣp(sgnp[p],Q|∗(p))[1].

Take γ ∈ MapΣ(Lie¡,Q) and ϕ ∈ tw′Q(x· | x). Mimicking the definition
of compositions in tw′Q, we have

(ϕ • γ)(1`) =
∑
k,k′≥1

k+k=`+1

∑
σ∈Sh(k,k′)

(−1)|σ|
(
ϕ(1k) ◦1 γ(1k′)

)
· σ.

Note that the degree of γ is measured as a map from sgnp[p] to Q[1],
whereas ϕ is a map to Q (no suspension). This is cancelled by the extra
“dummy input” of ϕ in above formula, the input into which we insert γ.

Proposition 3.1.2.6. Let C be an augmented X-colored dg cooperad.
Then, as convolution dg Lie algebras

MapSoΣ×S(LC,Q) = MapXoΣ×X(C, tw′Q) o MapΣ(L-mod(S)¡,Q).

Proof. Since we assume C to be coaugmented we can split it as I ⊕ C.
This gives a direct sum decomposition LC = L-mod(S)¡+L⊗p∗XC; hence

MapSoΣ×S(LC,Q) = MapSoΣ×X(L⊗p∗XC,Q)⊕MapSoΣ×X(L-mod(S)¡,Q).

Using the adjunction for the pointwise tensor product and the adjunction
defining right Kan extension:

MapSoΣ×X(L⊗ p∗XC,Q) = MapSoΣ×X(p∗XC, [L,Q])

= MapXoΣ×X(C, tw′Q).

The only thing left to show is that the direct sum decomposition is a
semidirect product of dg Lie algebras, but this is entirely obvious looking
at the allowed input and output colors of respective factor and recalling
the action of MapΣ(Lie¡,Q) on tw′Q.

Lemma 3.1.2.7. Twist data for Q defines a Maurer-Cartan element

£ + λ ∈ MapSoΣ×X(L⊗ p∗XI,Q) o MapΣ(Lie¡,Q)

= MapΣ(L-mod(S)¡,Q).

Proof. This is clear, since L∞-mod(S) = C(Lie¡ ⊕ p∗XI).

Note that £ may be considered as an operation of arity one in tw′Q,
or rather, as a collection (£x)x∈X of operations of arity one.
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Definition 3.1.2.8. Given a dg operad Q with twist data, we define
the small twist construction, denoted twQ, to the operad tw′Q with
the term [£, ] + ( ) • λ added to the differential.

Remark 3.1.2.9. Define FptwQ :=
∏
k≥p twQ(k). This is a complete

filtration
Q = F0twQ ⊃ F1twQ ⊃ . . . ,

compatible with operadic compositions in an obvious way, and such that
the differential maps FptwQ into itself. In this way twQ can be regarded
as a filtered dg operad.

Lemma 3.1.2.10. The small twist construction preserves weak equiv-
alences.

Proof. Let f : Q → Q′ be a quasi-isomorphism. The functor tw′ pre-
serves quasi-isomorphisms because since all dg operads are fibrant it
equals a homotopy right Kan extension (there is no need for a fibrant
replacement). The associated graded of the filtration FptwQ is tw′Q;
hence the associated graded of

tw f : twQ→ twQ′

is a quasi-isomorphism; and hence tw f is a quasi-isomorphism.

Proposition 3.1.2.11. Let Q be an S-colored dg operad with twist
data and let C be a coaugmented X-colored dg cooperad. There is a
bijection between the set of morphisms C(LC) → Q in the category of
operads with twist data and the set of morphisms C(C) → twQ of dg
X-colored operads.

Proof. A morphism C(LC)→ Q respecting twist data is a Maurer-Cartan
element

f + £ + λ ∈ MapXoΣ×X(C, tw′Q) o MapΣ(L-mod(S)¡,Q).

The Maurer-Cartan equation for f + £ + λ is equivalent to demanding
that f satisfies the Maurer-Cartan equation in

MapXoΣ×X(C, twQ).

Hence f is a morphism C(C)→ Q.

Corollary 3.1.2.12. The functors L-mod and tw induce an adjunction
Ho(L-mod) a Ho(tw) between the homotopy categories.
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Proof. Any P ∈ dgOpX admits a cofibrant replacement of the form C(C).
We need only show that C(LC) is a cofibrant replacement of L-mod(P )
in the category of operads with twist data. We know C(LC)→ L-mod(P)
is a quasi-isomorphism, so the problem is to show that

(L∞-mod(S)→ C(LC)) ∈ TwistS

is cofibrant, i.e., that it has the lifting property with respect to any
acyclic fibration

f : (L∞-mod(S)→ Q)→ (L∞-mod(S)→ Q′)

and morphism

g : (L∞-mod(S)→ C(LC))→ (L∞-mod(S)→ Q′).

Using the bijection from above proposition, we note that giving a lift as
required is equivalent to giving a lift h fitting into the following diagram
in dgOpX :

twQ

C(C) twQ′.

h

g

tw f

Such a lift exists because C(C) is cofibrant in dgOpX , and tw f is by the
preceeding lemma an acyclic fibration in dgOpX .

Remark 3.1.2.13. Assume given twist data on End〈g⊕A〉, A = {Ax}x∈X .
Thus g is an L∞ algebra and, for each x, Ax is an L∞ g-module. In this
case

tw End〈g⊕A〉(x· | x) = CCE(g,End〈A〉(x· | x)),

where End〈A〉(x· | x) has the g-module structure defined by that on each
Ax′ . More succinctly, we may write tw End〈A〉 = CCE(g,End〈A〉). The
adjunction between representations L-mod(P)∞ → End〈g⊕A〉 and rep-
resentations P∞ → CCE(g,End〈A〉) is a rather obvious statment about
L∞ modules.

Moreover, assume π is a Maurer-Cartan element of ~g[[~]]. The
image of π under the given L∞ action g[[~]] → gl(A)[[~]] defines a new
differential dA + dπ on A[[~]]. Denote by A[[~]]π the algebra with this
new differential. Evaluating on (products of) π defines a morphism of
operads

CCE(g,End〈A〉)→ End~〈A[[~]]π〉.
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In conclusion:
Given an L-mod(P)∞-algebra structure on End〈g⊕A〉 and a Maurer-

Cartan element of π ∈ ~g[[~]], we obtain an ~-linear P∞-algebra struc-
ture on A[[~]]π. By functoriality, if Q → End〈g ⊕ A〉 is a morphism of
operads with twist data, then we obtain a representation

twQ→ End~〈A[[~]]π〉.

Thus, the small twist construction goes some way in explaining how
algebras (for some operad) behave under twisting by Maurer-Cartan
elements: Q-algebras are twisted into twQ-algebras.

Remark 3.1.2.14. End~〈A[[~]]〉 = End〈A〉[[~]] is filtered by

FpEnd〈A〉[[~]] = ~pEnd〈A〉[[~]].

Any operad twQ is likewise filtered, as we have seen, and the assumption
π ∈ ~g[[~]] means that

twQ→ End~〈A[[~]]π〉

will be a morphism of filtered operads. When g ⊕ A already has a
complete filtration, and π ∈ F1g, then we may dispense with the for-
mal parameter ~. We may likewise dispense with the formal parameter
whenever some suitable nilpotency ensures convergence.

3.1.3 The (large) twist construction.

The small twist construction does not, on the face of it, explain why a
dg Lie algebra can be twisted into a new dg Lie algebra, because the
small twist construction loses one color and hence does not apply to
algebras in a single color. To remedy this we introduce the (large) twist
construction Tw, which does not lose one color. It is defined in such a
way that

Tw End〈g⊕A〉(s· | s) = CCE(g,End〈g⊕A〉(s· | s)),

where End〈g ⊕ A〉(s· | s) is considered as a g-module using the actions
on the Ax, just like in the small twist construction, but also using the
adjoint action of g on itself. Thus, g in the right hand side above comes
in two incarnations: one as an L∞ algebra, and one as a module for
that L∞ algebra. By making this “double incarnation” abstract we can
formalize the (large) twist construction as a special case of the small
twist construction.
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Define Y := S ∪{∗̃}. We consider it as a pointed set with base-point
∗̃. Let δ : Y → S be the function that restricts to the identity on S and
maps ∗̃ to ∗. It induces a functor

δ∗ : [S o Σ× S, Chk]→ [Y o Σ× Y, Chk].

We leave the following lemma without proof.

Lemma 3.1.3.1. The functor δ∗ is (lax) monoidal for the plethysm,
hence maps operads to operads.

There is a simple map L∞-mod(Y )→ δ∗L∞-mod(S). The restriction
of δ∗L∞-mod(S) to the distinguished color ∗̃ equals the restriction of
L∞-mod(Y ) to ∗; hence we may use the identity on these components.
On components

L-mod(Y )(∗̃k ∪ x | x)→δ∗L∞-mod(S)(∗̃k ∪ x | x)

= L∞-mod(S)(∗k ∪ x | x)

it is likewise the identity. Finally, to write down

L∞-mod(Y )(∗̃k ∪ ∗ | ∗)→ δ∗L∞-mod(S)(∗̃k ∪ ∗ | ∗) = Lie∞(k + 1)

we use that L∞ operations can be reinterpreted as an adjoint action:

L-mod(Y )¡(∗̃k ∪ ∗ | ∗)[−1] = sgnk[k − 1]→sgnk+1[(k + 1)− 2]

= Lie¡(k + 1)[−1].

Remark 3.1.3.2. The above morphism L∞-mod(Y ) → δ∗L∞-mod(S)
allows us to regard δ∗ as a functor δ∗ : TwistS → TwistY .

Definition 3.1.3.3. For an operad with twist data Q ∈ TwistS , we
define the (large) twist construction to be the small twist construction
on δ∗Q, i.e., the dg operad

TwQ := tw δ∗Q,

using the obvious redefinition of the small twist construction as a functor
from TwistY to dgOpS .

There is by functoriality a morphism

twL∞-mod(Y )→ tw δ∗L∞-mod(S) = TwL∞-mod(S).
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Giving a morphism L∞-mod(S)→ twL∞-mod(Y ) is, by our adjunction
formula, in bijection with giving a morphism

L-mod(L∞-mod(S))∞ → L∞-mod(Y ).

There is a natural such map (essentially the identity). Hence we obtain
a composite

L∞-mod(S)→ twL∞-mod(Y )→ TwL∞-mod(S).

Using this we can regard the large twist construction as an endofunctor
on TwistS . Moreover, the definition as a (pointwise) limit gives a natural
transformation

η : Tw → idTwistS .

Note that Tw TwQ is given pointwise by

Tw TwQ(s· | s) = lim
(y·|s)∈(pS↓(s·|s))

Map

(
L(y· | s),

lim
(y′·|s)∈(pS↓(δ◦y·|s))

Map(L(y′· | s), δ∗Q(y′· | s))
)
.

Internal homs are continuous (in the covariant argument) so the above
equals the double end

lim
(y·|s)∈(pS↓(s·|s))

lim
(y′·|s)∈(pS↓(δ◦y·|s))

Map(L(y· | s),Map(L(y′· | s), δ∗Q(y′· | s))).

Finally, we can use the adjunction for the pointwise tensor product to
write this as

lim
(y·|s)∈(pS↓(s·|s))

lim
(y′·|s)∈(pS↓(δ◦y·|s))

Map(L(y· | s)⊗ L(y′· | s), δ∗Q(y′· | s))).

The partial cocompositions L(y′′· | s)→ L(y· | s)⊗L(y′· | s), δ◦y′′· = δ◦y′·,
define maps

lim
(y·|s)∈(pS↓(s·|s))

lim
(y′·|s)∈(pS↓(δ◦y·|s))

Map(L(y· | s)⊗ L(y′· | s), δ∗Q(y′· | s)))

→ Map(L(y′′· | s), δ∗Q(y′′· | s)).

By universality of limits these projections must factor through a map
from TwQ(s· | s) to Tw TwQ(s· | s). Working out the details shows
that these maps define a natural transformation

� : Tw → Tw Tw .
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Proposition 3.1.3.4. The functor Tw is a comonad on TwistS , with
counit η and coproduct �.

Remark 3.1.3.5. Thomas Willwacher introduced the functor Tw for
single-colored operads in [Willwacher 2010], in a somewhat ad hoc man-
ner. It is elementary to see that the restriction of our twist construction
to the single-colored case agrees with Willwacher’s original definition. In
[Dolgushev and Willwacher 2012] the authors gave a thourough treat-
ment of the single-colored twist construction and proved that it defines
a comonad. Their proof can be almost literally paraphrased to give a
proof of above proposition. We shall accordingly refer the reader to that
paper [Dolgushev and Willwacher 2012] for a proof.

3.1.4 Comonads for the (large) twist construction.

By definition, a coalgebra for the twist comonad is a dg operad Q with
twist data together with a morphism

(κ : Q→ TwQ) ∈ TwistS

such that

(i) κ ◦ ηQ = idQ, and

(ii) Tw κ ◦ κ = �Q ◦ κ.

The meaning of these conditions is best clarified in terms of algebras,
so, assume

µ : Q→ End〈g⊕A〉 A = {Ax}x∈X
is a Q-algebra. Then by functoriality we obtain a morphism

Twµ : TwQ→ Tw End〈g⊕A〉 = CCE(g,End〈g⊕A〉).

As before, any Maurer-Cartan element π ∈ ~g[[~]] will define a morphism

( )π : CCE(g,End〈g⊕A〉)→ End~〈g[[~]]π ⊕A[[~]]π〉.

This means that we obtain a representation

( )π ◦ Twµ : TwQ→ End~〈g[[~]]π ⊕A[[~]]π〉.

Now assume Q is a coalgebra for the twist comonad. Then there is a
representation

µπ := ( )π ◦ Twµ ◦ κ : Q→ End~〈g[[~]]π ⊕A[[~]]π〉.

Thus, coalgebras for the twist construction are operads Q with the prop-
erty that twisting the Q-algebras µ by Maurer-Cartan elements π will
produce new Q-algebras µπ. Moreover:
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(a) Condition (i) says that twisting by the trivial Maurer-Cartan ele-
ment has no effect: µ0 = µ.

(b) Let π′ ∈ ~g[[~]]π be a second Maurer-Cartan element. Then we can
iterate and twist to a representation (µπ)π

′
in g[[~]]π+π′⊕A[[~]]π+π′

(there is no need to introduce an extra formal parameter). Condi-
tion (ii) says that twisting by Maurer-Cartan elements is linear in
the sense that (µπ)π

′
= µπ+π′ .

We can collect this as an informal slogan, by saying that coalgebras for
the twist comonad are exactly the operads that are well-behaved with
respect to twisting by Maurer-Cartan elements.

Remark 3.1.4.1. Let P be a Koszul X-colored dg operad. Then the dg
operad L-mod(P)∞ is a coalgebra for the twist comonad in a canonical
way. To see this, note that specifying

κ : L-mod(P)∞ → TwL-mod(P)∞

is, by our adjunction equivalent to giving a P∞ → tw TwL-mod(P)∞.
The restriction of the value of the natural transformation � to the color
X gives us a morphism twL-mod(P)∞ → tw TwL-mod(P)∞. The iden-
tity map on L-mod(P)∞ corresponds under our adjunction formula to
a morphism P∞ → twL-mod(P)∞. Composing the aforementioned two
morphisms gives us a morphism P∞ → tw TwL-mod(P)∞. It is easily
checked that the κ so defined satisfies the axioms for a coalgebra.

In fact, there is no need to invoke resolutions: L-mod(P) is a coalge-
bra for the twist construction for any P ∈ dgOpX . But to argue this fact
it is easier to look at the level of algebras than to use our adjunction.
Recall that giving a L-mod(P)-algebra structure on g⊕ A is equivalent
to specifying a dg Lie algebra structure on g, a P-algebra structure on
A and a morphism of dg Lie algebras g → DerP(A). Assume given a
Maurer-Cartan element π ∈ ~g[[~]]. Its image in DerP(A)[[~]] is a differ-
ential on A[[~]] that acts by P-derivations: so we obtain a representation
P → End~〈A[[~]]π〉 by just extending the given P-algebra structure ~-
linearly. Finally, the usual twisting procedure for dg Lie algebras gives
a morphism g[[~]]π → DerP(A)[[~]]π = DerP,~(A[[~]]π). Taken together
this specifies

L-mod(P)→ End~〈g[[~]]π ⊕A[[~]]π〉.

It is obvious that this twisting satisfies conditions (a) and (b) above.
Reinterpreting the construction on the level of operads defines a mor-
phism κ : L-mod(P)→ TwL-mod(P) satisfying (i) and (ii).
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3.1.5 Twisting and deformation complexes.

Let Q be a Koszul dg operad and assume κ : Q∞ → TwQ∞ makes
Q∞ a coalgebra for the twist comonad. Then, given a map of graded
Σ-modules φ : Q¡ → P, we can construct a map of graded Σ-modules

tφ : Q¡ κ→ TwQ∞
Tw φ−−−→ TwP.

One could imagine that this defines a morphism

t : Def(Q∞
f→ P)→ Def(Q∞

tf−→ TwP)

of dg Lie algebras. This is not the case, however: the map does generally
not respect the Lie bracket. However, we will presently show that if
P = End〈V 〉, V∗ = g, is an endomorphism operad and π ∈ ~g[[~]] is a
Maurer-Cartan element, then there exists a subcomplex

CQ(V, V )(π) ⊂ CQ(V, V )

such that the map t postcomposed with the evaluation on π defines a
morphism of dg Lie algebras

tπ : CQ(V, V )(π)→Def(Q∞ → CCE(g,End〈V 〉))
→ Def(Q∞ → End~〈V [[~]]π〉).

(But observe that the first map in above composite is not claimed to be
a morphism of dg Lie algebras.)

Definition 3.1.5.1. In the situation above we say that ψ ∈ CQ(V, V )
is Maurer-Cartan with respect to π if ψ(q ⊗ π⊗n = 0 for all n ≥ 1,
s ∈ S and q ∈ Q¡(∗n | s).

Define CQ(V, V )(π) to be the subcomplex consisting of all φ such
that both φ and dφ are Maurer-Cartan with respect to π.

Proposition 3.1.5.2. The morphism

tπ : CQ(V, V )(π)→ CQ(V [[~]]π, V [[~]]π)

is a morphism of dg Lie algebras.

Proof. The only thing which is not evident is that it respects the Lie
brackets. Take φ = φ(s·|s) defined on a single component. First consider

a sequence of the form s· = ∗k ∪ x· : [k] t [n]→ S, n ≥ 1. Then Tw φ is
defined on the components

TwQ(∗k−p ∪ x· | s)(p) → TwP(∗k−p ∪ x· | s)(p), 0 ≤ p ≤ k.
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If s· = ∗`, then Tw φ is defined on

TwQ(∗`−r | s)(r) → TwP(∗`−r | s)(r), 0 ≤ r ≤ `− 1.

Intuitively, Tw φ is given by all ways of making some of the ∗-inputs
“dummy” while keeping at least one input “non-dummy”. In the partial
compositions tφ ◦i tφ′ (defining the Lie bracket) we must thus have at
least one non-dummy input in both φ and φ′. However, in t(φ ◦j φ′)
it may happen that we make all inputs of φ′ dummy. The discrepancy
t[φ, φ′] − [tφ, tφ′] is given by all such expressions; all the terms where
either φ or φ′ has all its inputs considerd dummy. The evaluation on the
Maurer-Cartan element inserts π into all dummy inputs. Hence, if both
φ and φ′ are in CQ(V, V )(π), then the discrepancy vanishes.

The complex CQ(V, V )(π) should be regarded as governing those
deformations of V that induce deformations also of the twisted algebra
V [[~]]π.

3.1.6 Remarks on generalizations.

Let us first mention an obvious generalization. Let L{r}∞-mod(S) be
the operad whose representations consist of an L∞ algebra L[−r] and
a collection of L∞ morphisms L[−r] → gl(Ax), x ∈ X. It is obvious
that we can repeat the small and large twist constructions for the mod-
ified version (L{r}∞-mod(S) ↓ dgOpS) of the category of operads with
twist data. Define {r}∗ to be the endomorphism operad of the collec-
tion of dg vector spaces V with V∗ = k[r] and Vx = k for all x ∈ X.
Note L{r}∞-mod(S) = L∞-mod(S) ⊗ {r}∗. Tensoring with {−r}∗ is
accordingly a functor

(L{r}∞-mod(S) ↓ dgOpS)→ TwistS .

Hence we can define the (large) twist construction on the category to
the left by

TwQ := (Tw (Q⊗ {−r}∗))⊗ {r}∗.

A more interesting generalization is to extend the constructions to prop-
erads. The Lie-module construction P 7→ L-mod(P) makes perfect sense
in the more general context of a (colored) dg properad P. The theory of
Koszul duality, resolutions and deformation complexes generalizes from
operads to properads. Hence, if P is a Koszul properad with Koszul
resolution P∞, then we can consider the properad L-mod(P)∞ whose
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algebras g⊕A consist of an L∞ algebra g, a P∞-algebra A, and an L∞
morphism

g→ Def(P∞ → End〈A〉).

One can then look for a homotopy adjoint tw and its enlarged incar-
nation Tw , defined by essentially the same formulas as our operadic
versions. It would appear that all our constructions can be repeated
mutatis mutandum in this properadic setting.

Our main application of the twist construction is in formal geom-
etry; see chapter 6. Formal geometry may be said to be the study of
germs of geometric structure. To get a non-formal, global, geometric
structure on a manifold one must ensure that the germs at each point
vary coherently with the point. This is encoded by the action of formal
diffeomorphisms on germs. Thus, in formal geometry one always has to
consider the action of (the Lie algebra of) formal diffeomorphisms. In
the terminology of this chapter, all algebraic structures on germs come
canonically equipped with twist data. We will in the coming chapters only
be interested in algebraic structures defined by operads, but there is a
large family of germs of geometric structure, such as germs of Nijenhuis
structures, that require properads for their description, hence suggesting
the importance of a properadic twist construction.
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CHAPTER 4

Two-colored nc Gerstenhaber (non-)formality
in affine coordinates

The lion’s share of this chapter constituted sections 3-5 of [Alm 2011],
but the present chapter contains several clarifying revisions of the ma-
terial. Sections 4.4 and 4.9 are entirely new.

4.1 Introduction.

Let Tpoly denote the space of polynomial polyvector fields on Rd and
A denote the algebra of polynomial functions on Rd, d < ∞. Maxim
Kontsevich explicitly constructed an L∞ quasi-isomorphism

U : Tpoly[1]→ CHoch(A,A)[1]

from the space of polyvector fields equipped with the Schouten bracket
to the Hochschild cochain complex equipped with Hochschild differential
and Gerstenhaber bracket, extending the Hochschild-Kostant-Rosenberg
quasi-isomorphism of complexes

HKR : Tpoly[1]→ CHoch(A,A)[1].

For details, see [Kontsevich 2003]. Kontsevich’s construction is best un-
derstood as a morphism of two-colored operads

K(C(H))→ End〈Tpoly,A〉,
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where K(C(H)) is the operad of fundamental chains on a cellular operad
C(H) of compactified configuration spaces of points in the closed upper
half-plane and End〈Tpoly,A〉 is the standard two-colored endomorphism
operad on polyvector fields and functions. The content of this map of
operads is an L∞ map from Tpoly to the Hochschild cochain complex
of A. In this chapter we introduce a three-colored operad CF (H) of
compactified configuration spaces of points in the closed upper half-
plane equipped with a line parallel to the real axis, and, using the same
techniques as Kontsevich, a representation

K(CF (H))→ End〈Tpoly, Tpoly,A〉

of its fundamental chains. To explain the structure encoded in this
representation, define the two-colored operad NCG := L{−1}-mod(Ass).
Explicitly, an algebra for this operad is a dg Lie algebra L[1], a dg
associative algebra A, and a morphism of dg Lie algebras from L[1] to
DerAss(A,A). We call such a structure a two-colored noncommutative
Gerstenhaber algebra. Two copies of the Hochschild cochain complex
carry a natural structure of algebra for this operad; namely, we can
take L to be CHoch(A,A) with Hochschild differential and Gerstenhaber
bracket, A to be CHoch(A,A) with the Hochschild differential and cup
product, and the morphism to be the braces map

br : CHoch(A,A)[1]→ CAss(CHoch(A,A), CHoch(A,A)),

br(x) = ( ){x}1 +
∑
p≥1

±x{. . . }p.

The operad NCG is Koszul, hence has a canonical resolution NCG∞. Our
construction encodes:

- An NCG∞-structure on (Tpoly, Tpoly), where the first copy of polyvec-
tor fields is a graded Lie algebra under the Schouten bracket and
the second copy is an associative algebra under the usual (commu-
tative) wedge product, while the action

Tpoly[1]→ CAss(Tpoly, Tpoly)

is a novel deformation of the adjoint Schouten action of Tpoly on
itself.

- Finally, the data encodes an ∞-quasi-isomorphism

(Tpoly, Tpoly)→ (CHoch(A,A), CHoch(A,A))
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of NCG∞-algebras, where Hochschild cochains is a two-colored non-
commutative Gerstenhaber algebra in the canonical way defined
by the braces map, having the property that on the Lie-part the
morphism restricts to Kontsevich’s formality morphism U.

Remark 4.1.0.1. We prove in chapter 5 that the deformation of the ad-
joint action of the Schouten bracket is (generically) nontrivial; hence the
paranthetical word“(non-)formality”in the title of this chapter, since our
construction implies that the NCG-algebra (CHoch(A,A), CHoch(A,A))
is not NCG∞-quasi-isomorphic to its cohomology (when the latter is re-
garded without higher homotopies).

We remark that the construction works not just for Rd but for an ar-
bitrary graded vector space of finite type. This will be important in
chapter 5, where we will discuss applications of our result to the Duflo
isomorphism. In chapter 6, we will prove that the construction can be
globalized to work on any smooth manifold.

Related results were announced in [Mochizuki 2002], which can be
regarded as a precursor to our work, though that paper contains a se-
rious error which unfortunately spoiled the main conclusion. Our work
is also closely related to the more general homotopy braces formality
of [Willwacher 2011]. Willwacher’s results were published only shortly
after our own work was announced as a preprint, but were found inde-
pendently of our construction.

4.2 Configuration space models of homotopy algebras.

In this section we define four different operads in the category of cellular
compact semialgebraic manifolds. The last two of the operads are our
invention.

4.2.1 Semialgebraic geometry.

For a thorough treatment of the material in this subsection, see [Hardt
et al. 2011].

A semialgebraic set (in Rn) is a finite union of finite intersections
of solution sets to polynomial equations or polynomial inequalities, for
real polynomials in n variables. Semialgebraic sets are topologized as
subsets. A semialgebraic map is a continuous map of semialgebraic
sets whose graph is itself a semialgebraic set. The closure or interior
of a semialgebraic set is again semialgebraic, and the inverse image of a
semialgebraic map is also semialgebraic. A semialgebraic manifold of
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dimension k is, for our purposes, a semialgebraic set in Rk such that each
point has a semialgebraic neighbourhood semialgebraically homeomor-
phic to Rk or R≥0 ×Rk−1. The boundary of a semialgebraic manifold
is again semialgebraic. A smooth semialgebraic submanifold of a
semialgebraic manifold is a semialgebraic subset that is also a smooth
submanifold of the ambient euclidean space.

Let Ωp
c(Rk) denote the vector space of smooth differential p-forms

on Rk with compact support. This vector space can be topologized in
a natural way, and we let C−p(Rk) be the topological dual of Ωp

c(Rk).
The adjoint of the de Rham differential yields a differential graded vector
space (C−p(Rk), ∂), the complex of smooth currents on Rk.

LetX be an oriented semialgebraic manifold in Rk and define C(X) ⊂
C(Rk) to be the subspace of currents that have support contained in X.
For V1, . . . , Vr p-dimensional disjoint smooth semialgebraic submanifolds
of Rk with each closure V i compact and contained in X and integers
n1, . . . , nr, there is a a current

∑
i ni[Vi] in C−p(X) (defined by inte-

gration). The complex of semialgebraic currents on X, denoted
CSA(X), is the subcomplex of the complex of currents spanned by all
currents of that form.

The association X 7→ CSA(X) is a symmetric monoidal functor from
semialgebraic manifolds to differential graded vector spaces; so, in par-
ticular, if X is an operad of semialgebraic manifolds, then CSA(X) is a
dg operad.

4.2.2 A configuration space model for Lie algebras.

For an integer ` ≥ 2, let Conf`(C) be the manifold of all injective maps of
[`] := {1, . . . , `} into C. The group of translations and positive dilations
of the plane, CoR>0, acts on the plane and hence (by postcomposition)
on Conf`(C). Define C`(C) := Conf`(C)/CoR>0. Let Conf`(C) be the
real Fulton-MacPherson compactification (in the literature also called
the Axelrod-Singer compactification) of Conf`(C), i.e. the real oriented
blow-up of C` along all diagonals. It can be explicitly realized as the
closure under the embedding

Conf`(C)→ C` ×
∏
i,j

S1 ×
∏
i,j,k

[0,∞],

x 7→
(
x,

xj − xi
|xj − xi|

,
|xj − xi|
|xi − xk|

)
.

The products are, respectively, over all pairs of distinct indices i, j ∈ [`]
and all triples of distinct indices i, j, k ∈ [`]. The action by translations
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and positive dilations is smooth; hence extends uniquely to a smooth
action on Conf`(C). Define C`(C) to be the quotient of Conf`(C) by
this action. It is a compact semialgebraic manifold with codimension
one boundary ⊔

S

C`−|S|+1(C)× CS(C),

given by products labelled by subsets S ⊂ [`] (of cardinality 2 ≤ |S| < `).
Moreover, the closure of C`−|S|+1(C) × CS(C) in C`(C) is the product

C`−|S|+1(C) × CS(C). This means that the family of spaces C(C) =

{C`(C)} together with the inclusions of boundary components and per-
mutation actions by permutation of points assemble into the structure of
an operad. We promote it to an operad of oriented semialgebraic mani-
folds as follows. Let Cstd

` (C) be the submanifold of Conf`(C) consisting

of configurations x satisfying
∑`

i=1 xi = 0 and
∑`

i=1 |xi|2 = 1. The
manifolds C`(C) and Cstd

` (C) are isomorphic. The manifold Conf`(C)
is canonically oriented; hence so is Cstd

` (C). We orient C`(C) by pulling
back the orientation on Cstd

` (C). Requiring Stokes’ formula to hold
(without a sign) defines an orientation of the compactification C`(C).
It is easy to see that all permutations of [`] preserve the orientation.

The boundary description describes a canonical stratification and the
face complexes of the stratification of each component form a suboperad
K(C(C)) of the dg operad of semialgebraic chains CSA(C(C)) that is
freely generated as a graded operad by the set {[C`(C)] | ` ≥ 2} of
“fundamental chains”. We shall regard chains in the components as
semialgebraic chains, to avoid the need for simplicial subdivisions. It
is well-known that representations of K(C(C)) in a dg vector space V
are in one-to-one correspondence with L∞ structures on the suspension
V [1] of V ; see e.g., [Getzler and Jones 1994]. In other words, K(C(C))
is isomorphic as a dg operad to the operad Lie∞{−1}.

Historical references for the study of configuration spaces Conf`(C)
and their compactifications are [Fadell and Neuwirth 1962; Arnol’d 1969],
and Fred Cohen’s survey of his own and other’s contributions in [Cohen
1995].

4.2.3 A configuration space model for OCHAs.

Set H := R × R≥0. For integers m,n > 0, with 2m + n ≥ 2, let
Confm,n(H) be the manifold consisting of those injections of [m] + [n]
into H that map [n] into the boundary R×{0} of the half-plane and map
[m] into the interior. The group of translations along the boundary and
positive dilations, R×R>0, acts (by postcomposition) on Confm,n(H),
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and we let Cm,n(H) be the quotient of this action. The embedding

Confm,n(H)→ Conf2m+n(C)

defined by sending a configuration in [m] + [n] ↪→ H to its orbit under
complex conjugation induces an embedding

Cm,n(H)→ C2m+n(C) ⊂ C2m+n(C).

The compactification Cm,n(H) of Cm,n(H) was in [Kontsevich 2003] de-
fined as the closure under this embedding. It is a semialgebraic manifold
with n! connected components. Let C

+
m,n(H) be the connected compo-

nent that has the boundary points “compatibly ordered”, by which we
mean that if i < j ∈ [n] = {1 < · · · < n}, then the point labelled by i is
before the point labelled by j on the boundary for the orientation of the
boundary induced by the orientation of the half-plane. This gives us a
permutation-equivariant identification Cm,n(H) ∼= C

+
m,n(H) × Σn. The

codimension one boundary of C
+
m,n(H) is⊔

I

(
C+
m−|I|+1,n(H)× CI(C)

)
t
⊔
S,T

(
C+
m−|S|,n−|T |+1(H)× C+

S,T (H)
)
.

Here C+
m−|I|+1,n(H) is the interior of C

+
m−|I|+1,n(H), etc. The union

is over all subsets I ⊂ [m] and subsets S ⊂ [m], T < [n] such that
all involved spaces are defined. This description of the boundary ex-
tends, via the identification Cm,n(H) ∼= C

+
m,n(H) × Σn, to boundary

descriptions for all connected components, and defines the structure of
a two-coloured operad on the collection C(H) := {C`(C), Cm,n(H)},
the points in the interior being inputs of one color and the points on
the boundary being inputs of another color. The spaces Cm,n(H) are
defined using embeddings into spaces of the form C`(C), for which we
have chosen orientations. We orient the spaces Cm,n(C) by the pullback
orientations of these embeddings.

The dg operad of face complexes of the stratification defined by the
boundary decomposition is again generated by the fundamental chains.
We shall denote this operad of fundamental chains as either K(C(H))
or as OC. A representation of it is referred to as an open-closed ho-
motopy algebra [Kajiura and Stasheff 2006; Hoefel 2009], henceforth
abbreviated as an OCHA. An OCHA consists of a pair of dg vector
spaces V and W , an L∞ structure on V [1], an A∞ structure on W , and
an L∞ morphism from V [1] to the Hochschild cochain complex of W .
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Remark 4.2.3.1. The operad OC is quasi-free but it is not formal, i.e.,
it is not a quasi-isomorphic resolution OC→ H(OC) of its cohomology.
Thus, despite its name, OCHAs are not really to be considered as strong
homotopy versions of some would-be notion of (graded) open-closed al-
gebras, cf. [Hoefel and Livernet 2004].

We now define what we shall term“flag”versions of the operads C(C)
and C(H).

4.2.4 A model for two-colored nc Gerstenhaber.

Since the affine group preserves collinearity and parallel lines it makes
sense to say that some points in a configuration x ∈ C`(C) are collinear
on a line parallel to the real axis. For integers p ≥ 0 and q ≥ 1 with
p + q ≥ 2, define CFp,q(C) ⊂ C[p]+[q](C) to be the subset of configura-
tions for which the points labelled by [q] are collinear on a line parallel
to the real axis. Define CF p,q(C) to be its closure inside Cp+q(C). It
has q! connected components. Let CF+

p,q(C) denote the interior of the
connected component that has the collinear points compatibly ordered,
by which we mean that if i < j ∈ [q] = {1 < · · · < q}, then the point
labelled by i is before the point labelled by j on their common line for
the orientation of the line induced by the orientation of the plane. Then
CFp,q(C) ∼= CF+

p,q(C)×Σq. We deduce that the codimension one bound-

ary of the corresponding compact connected component, CF
+
p,q(C), is⊔

I

(
CF+

p−|I|+1,q(C)× CI(C)
)
t
⊔
S,T

(
CF+

p−|S|,q−|T |+1(C)× CF+
S,T (C)

)
.

The union is over all subsets I ⊂ [p], S ⊂ [p], T < [q] for which all
involved spaces are defined. One can use the inclusions of boundary
components to define a two-colored operad structure on the collection

CF (C) := {C`(C), CF p,q(C)},

in a way completely analogous the previously discussed operadic struc-
ture on C(H).

Definition 4.2.4.1. We call CF (C) the operad of configurations on a
flag in the plane.

We orient the spaces of the form CF p,q(C) by the pullback orien-
tations of the defining embeddings into Cp+q(C). As before one then
obtains a dg operad K(CF (C)) of fundamental chains. It is almost iden-
tical to the operad K(C(H)) of OCHAs: its representations also consist
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of an L∞ algebra V [1], an A∞ algebra W and an L∞ morphism from
V [1] to the Hochschild cochain complex of W . The difference lies in
that the latter operad contains chains [Cm,n(H)] with n = 0 while the
former operad does not contain any chain of the form [CFp,q(C)] with
q = 0. This means that the L∞ map of an OCHA contains components
V ⊗p →W , so called curvature terms, whilst the L∞ map of a K(C(H))-
representation can not, i.e. it maps into the truncated Hochschild cochain
complex C+

Hoch(W,W )[1] = CAss(W,W ).

Definition 4.2.4.2. We call K(CF (C)) the operad of two-colored strong
homotopy noncommutative Gerstenhaber algebras and denote it NCG∞.

Remark 4.2.4.3. The identification NCG∞ is canonical. Recall

NCG∞ = L{−1}-mod(Ass)∞.

It follows from our general results on the Lie module construction that
NCG∞ is quasi-isomorphic to its cohomology, the Koszul operad

NCG := L{−1}-mod(Ass).

We shall abbreviate “two-colored strong homotopy noncommutative
Gerstenhaber algebra” as NCG∞ algebra.

4.2.5 A model for flag OCHAs.

There is also a flag version of the operad C(H), defined as follows. Let
k,m, n ≥ 0 be integers with 2k + m + n ≥ 1 if m ≥ 1 and k + n ≥ 2
if m = 0. Let CFk,m,n(H) be the subspace of Ck+m,n(H) consisting
of all configurations wherein the points labelled by [m] are collinear
on a line parallel to the boundary. Denote by CF k,m,n(H) the clo-
sure inside Ck+m,n(H). Let CF+

k,m,n(H) be the connected component of
CFk,m,n(H) that has both the collinear points and the boundary points
compatibly ordered, i.e. if i < j in [m], then xi < xj on their common
line of collinearity, and if r < s in [n], then xr < xs on the boundary.

The codimension one boundary of its compactification, CF
+
k,m,n(H), has

the form⊔
I

(
CF+

k−|I|+1,m,n(H)×CI(C)
)
t
⊔
P,Q

(
CF+

k−|P |,m−|Q|+1,n(H)×CF+
P,Q(C)

)
t
⊔
S,T,U

(
CF+

k−|S|,m−|T |,n−|U |+1(H)× CF+
S,T,U (H)

)
.
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The union is over all subsets I, P, S ⊂ [k], Q,T < [m], S < [n] for which
all involved spaces are defined. These boundary factorizations define an
operad structure, but now in three colors, on the collection

CF (H) := {C`(C), CF p,q(C), CF k,m,n(H)}.

Definition 4.2.5.1. We call CF (H) the operad of configurations on a
flag in the half-plane.

Orient the spaces CF k,m,n(H) by the pullback orientations of the
embeddings into Ck+m,n(H). There is an associated operad K(CF (H))
of fundamental chains.

Definition 4.2.5.2. We call K(CF (H)) the operad of flag open-closed
homotopy algebras, abbreviated as the operad of flag OCHAs, and in-
troduce the notation FOC := K(CF (H)).

Definition 4.2.5.3. Define Mor∗(NCG) to be the three-colored operad
whose representations are two NCG-algebras (L,A) and (L,A′), with the
same dg Lie algebra appearing in both, and a morphism of NCG-algebras
(L,A)→ (L,A′) that is the identity on L. In other words, the morphism
is a morphism f : A → A′ of associative algebras that intertwines the
actions of L; f(x · a) = x · f(a).

Lemma 4.2.5.4. The operad Mor∗(NCG) is Koszul.

Proof. We note that

Mor∗(NCG) = L{−1}-mod(Mor(Ass)),

where Mor(Ass) is the two-colored operad governing a pair of dg associa-
tive algebras A, A′ and a morphism A→ A′ between them. The operad
Mor(Ass) is well-known to be (homotopy) Koszul, with a minimal model
Mor(Ass)∞ given by the cell-complex of the multiplihedra, see [Merkulov
and Vallette 2009] and also 4.2.5.8 below. The Lie module construction
preserves being Koszul.

Denote by

Mor∗(NCG)∞ = L{−1}-mod(Mor(Ass))∞

the Koszul resolution of Mor∗(NCG).

Lemma 4.2.5.5. Let (L,B) be an OCHA. Then there is an induced
structure of NCG∞ algebra on (L,CHoch(B,B).
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Proof. Recall that the Hochschild cochain complex CHoch(A,A) of an
A∞ algebra A is, as a graded vector space, equal to Map(T (A[1]), A).
The brace operations on the Hochschild cochains complex are the maps

( ){. . . }p : CHoch(A,A)⊗
p⊗
i=1

CHoch(A,A)→ C(A,A), p ≥ 1,

defined for x ∈ Map(A[1]⊗r, A), xi ∈ Map(A[1]⊗ri , A), 1 ≤ i ≤ p ≤ r,
n = r + r1 + · · ·+ rp − p, by

x{x1, . . . , xp}p(a1, . . . , an) =
∑

1≤i1<···<ip<r
± x(a1, . . . , ai1−1, x1(ai1 , . . . ),

. . . , aip−1, xp(aip , . . . ), . . . , an).

Recall that CAss(A,A)[1] is the subspace Map(
⊕

r≥1A[1]⊗r, A) of the
Hochschild cochain complex. Set ( ){. . . } :=

∑
p≥1( ){. . . }p and define

br : CHoch(A,A)[1]→ CAss(CHoch(A,A), CHoch(A,A)), x 7→ (){x}1+x{. . . }.

One verifies that this is a map of graded Lie algebras. Hence an L∞
morphism L[1] → CHoch(B,B)[1] can always be postcomposed to an
L∞ action

L[1]→ CHoch(B,B)[1]→ CAss(CHoch(B,B), CHoch(B,B)).

Proposition 4.2.5.6. A representation of the operad of flag open closed
homotopy algebras, FOC, in a triple of dg vector spaces (L,A,B) is
equivalent to

- an NCG∞ algebra structure on (L,A);

- an OCHA structure on (L,B);

- and an extension of above data to a representation

(L,A)→ (L,CHoch(B,B))

of Mor∗(NCG)∞, using the NCG∞-structure on (L,CHoch(B,B))
induced via the braces operations, as in the preceeding lemma.
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Proof. The first two items in the list are obvious. The key to the
correspondence suggested in the third item is to change from the op-
eradic perspective that the chains [CFk,m,n(H)] are represented as maps
L⊗k ⊗A⊗m ⊗B⊗n → B to the perspective that they define maps

L⊗k ⊗A⊗m → Map(B⊗n, B).

This hom-adjunction argument exactly parallels the argument used for
interpreting an OCHA structure {[Cp,q(H)] : L⊗p⊗B⊗q → B} as an L∞
morphism L→ C(B,B), compare with [Kajiura and Stasheff 2006; Hoe-
fel 2009]. After this reinterpretation of the chains the argument reduces
to (i) recognizing the induced NCG∞ algebra structure on (L,C(B,B))
and (ii) comparing the differential on the chains to the differential on
Mor∗(NCG)∞. The details are left to the reader. We work out some
more explicit details in the subsequent sections.

Remark 4.2.5.7. The operad of flag open closed homotopy algebras is
not formal. This is true since it contains the operad of OCHAs, which
is known to not be formal.

Remark 4.2.5.8. Consider the two-colored suboperad of CF (H) on
the components

{CF 0,q(C), CF 0,m,0(H), CF 0,0,n(H)}.

It is isomorphic as an operad of compact semialgebraic manifolds to
the operad of quilted holomorphic disks introduced in [Mau and Wood-
ward 2010] as a moduli space interpretation of J. Stasheff’s multiplihedra
[Stasheff 1963]. Its operad of cellular chains is the operad Mor(Ass)∞ of
A∞ morphisms of A∞ algebras.

4.3 A method of constructing representations.

Kontsevich’s proof of his formality conjecture and construction of a uni-
versal deformation quantization formula can be regarded as the con-
struction of

- a map of cooperads θ : graOC → Ω(C(H)), where graOC is a certain
cooperad of “Feynman diagrams”,

- and a map of operads D : GraOC → End〈Tpoly,A〉 from the linearly
dual operad of Feynman diagrams.
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These two morphisms correspond (at least heuristically) to the Feynman
rules of a perturbative path integral expansion, see [Cattaneo and Felder
2000] for a conceptual rederivation of Kontsevich’s formulas in terms of
physics. Dualizing the map of cooperads and composing, one gets a
representation

D ◦ θ∗ : OC→ GraOC → End〈Tpoly,A〉

of the fundamental chains of half-plane configurations, i.e., an OCHA
structure on (Tpoly,A). We shall show that Kontsevich’s construction
can be extended, essentially without any changes, to a representation

D ◦ θ∗ : FOC→ GraFOC → End〈Tpoly, Tpoly,A〉

of the operad of flag OCHAs. This is our NCG∞ (non-)formality the-
orem. The new data added by extending Kontsevich’s OCHA to a flag
OCHA is a quasi-isomorphism Tpoly → C(A,A) of A∞ algebras with
homotopy actions by Tpoly.

The first construction we need for our extension of the Kontsevich
representation is a suitable operad GraFOC, extending Kontsevich’s operad
of Feynman diagrams.

4.4 Various graph operads.

In this section we shall introduce various operads whose operations are
defined by formal sums of graphs. These operads serve as “universal,”
or “stable,” endomorphism operads. Before giving the definitions we
shall give a motivational detour to clarfiy the sense in which these graph
operads are universal.

4.4.1 Stable endomorphisms of polyvectors.

Let d ≥ 1. We define the space of polynomial polyvector fields on kd, to
be denoted Tpoly(kd), as the commutative algebra

S((kd)∗ ⊕ kd[−1])

and identify it with the graded commutative polynomial ring

k[x1, . . . , xd, η1, . . . , ηd]

(the generators ηµ have degree 1). The group

A(d) := GL((k∗)d) n ((k∗)d ⊕ kd[−1])
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acts on Tpoly(kd) by algebra automorphisms, using the defining repre-
sentation of GLd on (k∗)d, its dual representation on kd[−1] and the
defining representation of (k∗)d ⊕ kd[−1] in terms of translations.

There are inclusions Tpoly(kd) ↪→ Tpoly(kd+1) given by the canonical

k[x1, . . . , xd, η1, . . . , ηd]→k[x1, . . . , xd, η1, . . . , ηd]⊗ k[xd+1, ηd+1]

= k[xd+1, . . . , xd, η1, . . . , ηd+1]

and also projections Tpoly(kd+1)→ Tpoly(kd), given by the augmentation
k[xd+1, ηd+1]→ k. For every n ≥ 1 these maps define maps

Map(Tpoly(kd)⊗n, Tpoly(kd))→ Map(Tpoly(kd+1)⊗n, Tpoly(kd+1))

by post- and precomposition. It is clear that we get induced maps on
invariants;

Map(Tpoly(kd)⊗n, Tpoly(kd))Ad → Map(Tpoly(kd+1)⊗n, Tpoly(kd+1))Ad+1 .

Define G(n) := limd Map(Tpoly(kd)⊗n, Tpoly(kd))Ad to be the limit of this
diagram.

Lemma 4.4.1.1. There is an isomorphism between G(n) and the free
graded commutative algebra k[eij ] generated by degree −1 elements eij ,
1 ≤ i, j ≤ n, explicitly given by associating to eij the map

∂

∂ηiµ

∂

∂xµj
:= µ(n) ◦i

∂

∂ηµ
◦j

∂

∂xµ
: Tpoly(kd)⊗n → Tpoly(kd+1),

where µ(n) : Tpoly(kd)⊗n → Tpoly(kd) is the (commutative) multiplica-
tion and ◦i and ◦j denote compositions in the endomorphism operad of
Tpoly(kd) and a sum over µ = 1, . . . , d is implied.

Proof. First identify

Map(Tpoly(kd)⊗n, Tpoly(kd))Ad =

(
k[xµ, ην ]⊗

n⊗
i=1

k

[
∂

∂xµi
,
∂

∂ηiν

])Ad
,

where, e.g., ∂/∂xµi := µ(n) ◦i ∂/∂xµ, and note that this reduces to( n⊗
i=1

k

[
∂

∂xµi
,
∂

∂ηiν

])GLd
.

The first fundamental theorem of invariant theory for the general linear
group says that this is of the form

k

[
∂

∂ηiµ

∂

∂xµj

]
/Id,

where Id is an ideal, and colimd Id = 0.
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Remark 4.4.1.2. Note that we could have defined G(n) as a limit of
(S(kd)⊗n)GLd , where

S(kd) := k

[
∂

∂xµ
,
∂

∂ην

]
and we interpret

S(kd)⊗n ∼=
n⊗
i=1

k

[
∂

∂xµi
,
∂

∂ηiν

]
as a subset of Map(Tpoly(kd)⊗n, Tpoly(kd)). The spaces (S(kd)⊗n)GLd

assemble, as n varies, to operads

T+(S(kd))GLd ∼= End〈Tpoly(kd)〉Ad ⊂ End〈Tpoly(kd)〉.

The sequence {G(n)}n≥1 also defines an operad G, which we can regard
as either of the two limits

limd End〈Tpoly(kd)〉Ad or limd T
+(S(kd))GLd

in the category of dg operads.

Remark 4.4.1.3. Define Tpoly(V ) := S(V ∗ ⊕ V [−1]) and the group
A(V ) := GL(V ∗) n (V ∗ ⊕ V [−1]), for V a graded vector space of finite
type. Let τ be the image of idV under

V ⊗ V ∗ → V ⊗ V ∗[1] ∼= (V ∗ ⊗ V [−1])∗,

and then extended as a biderivation

Tpoly(V )⊗ Tpoly(V )→ Tpoly(V )⊗ Tpoly(V )

of degree−1. It is clear that there is a morphism G→ End〈Tpoly(V )〉A(V ),
sending eij to µ(n) ◦ τij , where τij acts as τ on the ith factor tensor the
jth factor and as the identity on all others.

Likewise, defining S(V ) := S(V ⊕ V ∗[1]) gives an operad

T+(S(V ))GL(V ∗) ∼= End〈Tpoly(V )〉A(V ).

Definition 4.4.1.4. For any dg operad P and graded vector space of
finite type V , we say that a P-algebra structure on Tpoly(V ) is stable if
it factors through G→ End〈Tpoly(V )〉.
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4.4.2 Graphical model of the stable endomorphisms.

Elements of G(n) can be regarded as linear combinations of certain la-
beled graphs, subject to certain symmetry relations. Recall G(n) is a
polynomial algebra k[eij ]. To every monomial M ∈ G(n) we associate a
graph Γ with set of vertices [n], no legs, and a directed edge connecting
the vertex i and the vertex j for every eij ∈ M . Since the generators
eij have degree −1 we need to order the set of edges of Γ up to an even
permutation in order to be able to recover M from Γ. Moreover, the
degrees imply eij ·eij = 0, meaning that Γ cannot contain a double edge.
Let us make this more precise.

Definition 4.4.2.1. Define fdgrakn to be the set of graphs Γ with set
of vertices [n], set of flags [2k] with the involution i 7→ i + k (mod
k). This means that the only freedom in defining Γ is the attachment
map h : [2k] → [n]. The set of edges is naturally identified with [k] by
associating to the edge {i, i+ k} the number i. We regard the edge i as
directed from the vertex h(i) to the vertex h(i+ k). Define

dGra	(n) :=
⊕
k≥0

k{fgrakn}[k]⊗Σk sgnk,

using the action of Σk which permutes the edges.

Remark 4.4.2.2. There is an isomorphism of graded Σn-modules

dGra	(n) ∼= G(n),

defined by sending a graph Γ to the monomial
∏k
i=1 eh(i)h(i+k).

Let us describe the operadic composition in terms of graphs. Take
graphs Γ ∈ fdgrakn and Γ′′ ∈ fdgrak′′n′′ . Define an embedding ι : Γ′′ ↪→ Γ
to be a pair of injectionso ιv : V ′′ → V , ιf : F ′′ → F such that ιf ◦ τ ′′ =
τ ◦ ιf and h ◦ ιf = ιv ◦ h′′. Given an embedding ι : Γ′′ → Γ we define
Γ′ ∈ fdgrak′n′ , k′ := k − k′′, n − n′′ + 1 by letting h′ : F ′ → V ′ be the
composition

F ′ ∼= F \ ιf (F ′′)
h→ V → V/ιv(V

′′) ∼= V ′.

The two isomorphisms are the unique order-preserving bijections. Write
Γ/iΓ

′′ = Γ′ to mean an embedding Γ′′ ↪→ Γ such that V/ιv(V
′′) ∼= V ′

maps ιv(V
′′) to i ∈ V ′. The operadic composition is defined by

Γ′ ◦i Γ′′ :=
∑

Γ/iΓ′′=Γ′

(−1)|σ|Γ,

for σ the unique order-preserving bijection E′ tE′′ ∼= E, where E′ tE′′
has the lexicographic order defined by E′ < E′′.
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4.4.3 Our graph operads.

Here we define the various operads we will use in our construction.

Definition 4.4.3.1. Let dGra be the suboperad of dGra	 consisting of
graphs without tadpoles (i.e., of graphs corresponding to monomials not
containing any eii).

Define Gra	 ⊂ dGra	 to be the suboperad spanned those linear com-
binations of graphs that are invariant under reflection of edge-directions.
Thus: ⊕

k≥0

k{fgrakn}[k]⊗Σk×Σk2
sgnk.

Further, we denote by Gra := Gra	 ∩ dGra the corresponding operad of
graphs without tadpoles. We shall consider the vertices of graphs in Gra
as colored black.

Let p : {•, ◦} → {•} and define the operad GraNCG := p∗Gra. Hence
GraNCG(m,n | c) = Gra(m+ n), for any color c ∈ {•, ◦}.

Let q : {•, ◦, } → {•} and let GraFOC to be the suboperad of q∗dGra
defined as follows. Its restriction to the first two colors is a copy of
GraNCG, while GraNCG(k,m, n | ) is the subspace of dGra(k + m + n)
spanned by only those graphs that do not have any edges directed away
from a vertex labelled by . We say that the black vertices are free
interior vertices, the white circle vertices are collinear vertices, and
the white square vertices are boundary vertices.

Remark 4.4.3.2. The description of the composition of dGra	 makes
it clear that these operads are well-defined.

There is by definition a representation

D : Gra→ End〈Tpoly(V )〉,

for any graded vector space V of finite type. The graph is under
this representation sent to the commutative wedge product ∧, and the
graph is sent to the Schouten bracket [ , ]S . Analogously, there is a
representation

D : GraNCG → End〈Tpoly(V ), Tpoly(V )〉.

Here we can mix the colors of the vertices. The triple of graphs ,
and define the canonical NCG-representation on polyvector fields in
terms of the Schouten bracket, the wedge product, and the adjoint action
of the Schouten bracket as an action by derivations of the wedge product.
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Define A(V ) := S(V ∗), again for V of finite type. There is, lastly, a
representation (again denoted D)

D : GraFOC → End〈Tpoly(V ), Tpoly(V ),A(V )〉,

defined as follows. Take a graph Γ ∈ GraFOC(k,m, n | ). A priori it by
definition only defines a map

Tpoly(V )⊗k ⊗ Tpoly(V )⊗m ⊗ Tpoly(V )⊗n → Tpoly(V ).

Precompose this with the inclusion A(V )⊗n ⊂ Tpoly(V )⊗n on the third
factor and postcompose it with the projection Tpoly(V ) → A(V ); this
gives our map

DΓ : Tpoly(V )⊗k ⊗ Tpoly(V )⊗m ⊗A(V )⊗n → A(V ).

Definition 4.4.3.3. Let gra(n) be the subspace of Gra(n)∗ spanned by
finite sums of (formal duals to) graphs. These assemble to a cooperad
(with cocomposition dual to the operadic composition) that we denote
gra. The same finiteness condition defines analogous cooperads graNCG

and graFOC.

To simplify notation we define

graFOC(k,m, n) := graFOC(k,m, n | ), graNCG(p, q) := graNCG(p, q | ).

This will not create any confusion since no other components will feature
in our construction.

4.5 A de Rham field theory.

Given a pair of distinct indices i, j ∈ [k]+ [m]+ [n] we follow Kontsevich
and consider the function

φhi,j : CFk,m,n(H)→ S1, x+ R o R>0 7→ Arg

(
xj − xi
xj − xi

)
.

Here a barred variable denotes the complex conjugate variable. The
function is smooth and extends to a smooth function defined on the
compactified configuration space.

Let θ be the homogeneous normalized volume form on the circle S1.
Given a graph Γ ∈ dgra(k,m, n) with d edges, define

θΓ := ∧eij∈EΓ
(φhi,j)

∗θ.
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The form θΓ is a smooth closed differential form of degree d on CF k,m,n(H).
We extend θ to a map of dg vector spaces

θ : graFOC(k,m, n)→ Ω(CF k,m,n(H)).

Define similarly, for indices i, j ∈ [`], φi,j : C`(C)→ S1 by

φi,j : x+ C o R>0 7→ Arg(xj − xi).

The function φ extends to the compactification. For a graph Γ ∈ gra,
let

θΓ := ∧eij∈EΓ
(φi,j)

∗θ.

This allows us to define maps of dg vector spaces

θ : gra(`)→ Ω(C`(C)).

By identifying CF p,q(C) with a subset of Cp+q(C) and identifying the
space graNCG(p, q) with gra(p + q) we can use this to define maps of dg
vector spaces

θ : graNCG(p, q)→ Ω(CF p,q(C))

as well.

In all cases we interpret the form associated to a graph without edges
as the function identically equal to 1.

Claim. The de Rham complex functor Ω is only comonoidal up to quasi-
isomorphism with respect to the usual tensor product of dg vector spaces.
Hence Ω(CF (H)) is only a cooperad up to quasi-isomorphisms. This in-
convenience can be ignored by working with a completed tensor product,
regarding it, say, as a cooperad in the category of chain complexes of
nuclear Fréchet spaces. Our maps θ : Γ 7→ θΓ, for the variously colored
graphs, assemble to a morphism

θ : graFOC → Ω(CF (H))

of cooperads in this category of cooperads.

We shall not prove this statement as it is a consequence of similar
statements in [Merkulov 2010] and the original arguments in [Kontsevich
2003].
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4.6 Explicit (non-)formality.

Combining the previous subsections, we have a representation

D ◦ θ∗ : FOC→ graFOC → End〈Tpoly, Tpoly,A〉.

Since FOC = K(CF (H)) is quasi-free the representation consists of a
family of maps, one for each generator of the operad, satisfying some
quadratic identities coming from the boundary differential on K(CF (H)).
We shall denote the components as follows:

• λ` := D ◦ θ∗([C`(C)]) ∈ Map3−2`(T⊗`poly, Tpoly), for ` ≥ 2.

• νp := D ◦ θ∗([CF+
0,q(C)]) ∈ Map2−q(T⊗qpoly, Tpoly) for q ≥ 2.

• µn := D ◦ θ∗([CF+
0,0,n(H)]) ∈ Map2−n(A⊗n,A) for n ≥ 2.

• Vp,q := D ◦ θ∗([CF+
p,q(C)]) ∈ Map2−2p−q(T⊗ppoly ⊗ T

⊗q
poly, Tpoly) for

p, q ≥ 1.

• Uk,n := D ◦ θ∗([CF+
k,0,n(H)]) ∈ Map2−2k−n(T⊗kpoly ⊗ A⊗n,A) for

k ≥ 1, n ≥ 0.

• Finally, there are morphisms Zk,m,n := D ◦ θ∗([CF+
k,m,n(H)]) in

Map1−2k−m−n(T⊗kpoly ⊗ T
⊗m
poly ⊗A⊗n,A), for k ≥ 0, m ≥ 1, n ≥ 0.

Recall that the Hochschild cochain complex CHoch(A,A) of an A∞ alge-
bra A is

Map(T (A[1]), A), where T (A[1]) =
⊕
r≥0

A[1]⊗r,

while theA∞ deformation complex is CAss(A,A) = Map(T+(A[1]), A[1]).
The brace operations on the Hochschild cochains complex are maps

( ){. . . }p : CHoch(A,A)⊗
p⊗
i=1

CHoch(A,A)→ CHoch(A,A), p ≥ 1,

defined for x ∈ Map(A[1]⊗r, A), xi ∈ Map(A[1]⊗ri , A), 1 ≤ i ≤ p ≤ r,
n = r + r1 + · · ·+ rp − p, by

x{x1, . . . , xp}p(a1, . . . , an) =
∑

1≤i1<···<ip<r
± x(a1, . . . , ai1−1, x1(ai1 , . . . ),

. . . , aip−1, xp(aip , . . . ), . . . , an).
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The Gerstenhaber bracket on the Hochschild cochain complex is the
operation

[x, y]G := x{y}1 ± y{x}1.
It is a graded Lie bracket of degree −1 in our grading on the Hochschild
cochain complex, while on the deformation complex it has degree 0. Set
( ){. . . } :=

∑
p≥1( ){. . . }p and define

br : CHoch(A,A)[1]→ CAss(CHoch(A,A), CHoch(A,A)),

x 7→ (){x}1 + x{. . . }.
One verifies that this is a map of graded Lie algebras.

An A∞ structure on A is a Maurer-Cartan element m = d+m2 + . . .
in CAss(A,A). The differential [m, ]G makes the Hochschild cochain
complex a dg Lie algebra. It is also an A∞ algebra with A∞ structure the
Maurer-Cartan element ∪m := br(m) of CAss(CHoch(A,A), CHoch(A,A)).
When A has a given A∞ structure m we shall find it convenient to write
CHoch(m) for CHoch(A,A) with differential [m, ]G, and, similarly, also
write CAss(m) for the deformation complex of (A,m).

The interpretation of the components of our representation is that

• λ = {λ`} is an L∞ structure on Tpoly[1].

• ν = {νp} is an A∞ structure on Tpoly.

• µ = {µn} is an A∞ structure on A.

• V = {Vp,q} is an L∞ map (Tpoly[1], λ)→ (CAss(ν), [ , ]G).

• U = {Uk,n} is an L∞ map (Tpoly[1], λ)→ (CHoch(µ)[1], [ , ]G).

• Z = {Zk,m,n} is an A∞ morphism

(Tpoly, ν,V)→ (CHoch(µ),∪µ, br ◦ U)

of A∞ algebras equipped with homotopy actions by (Tpoly, λ).

This description is a result of the interpretation of the operad of flag
open-closed homotopy algebras. All the component maps have an ex-
plicit description as sums over graphs, e.g.

Vp,q =
∑

[Γ]∈[graNCG(p,q)2p+q−2]

∫
CF

+
p,q(C)

θΓDΓ,

with [graNCG(p, q)2p+q−2] the set of equivalence classes of graphs with
2p + q − 2 edges under the Σ2p+q−2-action by permutation of edges.
We shall use this description to give a more detailed description of the
component maps. The main tool is “Kontsevich’s vanishing lemma”:
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Lemma 4.6.0.4. [Kontsevich 2003] Let X be a complex algebraic vari-
ety of dimension N ≥ 1 and Z1, ..., Z2N be rational functions on X, not
equal identically to 0. Let U be any Zariski open subset of X such that
each function Zα is well-defined and nowhere vanishing on U , and that
U consists of smooth points. Then the integral∫

U(C)
∧2N
α=1d(Arg(Zα))

is absolutely convergent and is equal to zero.

4.7 Descriptions of the involved structures.

4.7.1 The homotopy Lie structure.

We have

λ` =
∑

[Γ]∈[gra(`)2`−3]

∫
C`(C)

θΓDΓ.

For ` ≥ 3, C`(C) ∼= S1 × U , with U = (C \ {0, 1})`−2 \ diagonals. This
identification can be obtained by using the translation freedom to fix the
point labelled by 1, say, at the origin of C and using the dilation freedom
to put the point labelled by 2, say, on the unit circle S1. Multiplying
the remaining points by the inverse of the phase of the point labelled by
2 gives a point in U . Using this description we can reduce every integral∫

C`(C)
θΓ

to an integral over a circle times an integral of the type appearing in
Kontsevich’s vanishing lemma. Hence all weights vanish for ` ≥ 3. The
configuration space C2(C) is a circle. The set of graphs [gra(2)1] contains
a single graph, namely . It follows that λ2 is the Schouten bracket.
As all higher homotopies λ≥3 vanish, this means λ is the usual graded
Schouten Lie algebra structure on Tpoly.

4.7.2 The first homotopy associative structure.

The A∞ structure ν has components

νp =
∑

[Γ]∈[graNCG(0,p)p−2]

∫
CF

+
0,p(C)

θΓDΓ.
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The angle between collinear points is constant, so the differential form
associated to a graph containing an edge connecting collinear vertices
will be zero; hence no such graphs can contribute. It follows that the
only graph which contributes is the graph with two vertices and no
edge. The associated differential form is identically equal to one and we
evaluate it on the one-point space CF 0,2(C). It follows that ν = ν2 = ∧
is the usual (wedge) product on Tpoly.

4.7.3 The second homotopy associative structure.

The operation µn is given by a sum over graphs in graFOC(0, 0, n)n−2. This
space of graphs is empty if n is not equal to 2 since the condition that
no edge begins at a boundary vertex forces a graph with only boundary
vertices to have no edges; thus, the only contributing graph is . The
space CF

+
0,0,2(H) is a point and the differential form associated to the

graph with two vertices and no edge is the function identically equal to
1. The associated operator DΓ is the wedge product of polyvector fields,
restricted to a product on functions. It follows that µ = µ2 is the usual
associative (and commutative) product on A.

4.7.4 The homotopy action.

Since

Vp,q =
∑

[Γ]∈[dgra2p+q−2
p,q ]

∫
CF

+
p,q(C)

θΓDΓ

and CF
+
p,1(C) ∼= Cp+1(C), the argument regarding the L∞ structure λ

can be repeated to conclude that Vp,1 = 0 for p ≥ 2, while

V1,1 : Tpoly ⊗ Tpoly → Tpoly, X ⊗ ξ 7→ [X, ξ]S .

In other words, V1,1 is the adjoint action Tpoly → Der(Tpoly) of Tpoly on
itself by derivations of the wedge product, corresponding to the graph .

Using the translation freedom to put the collinear point labelled by 1
at the origin and the dilation freedom to put the collinear point labelled
by 2 at 1 identifies CF+

p,2(C) with (C \ {0, 1})p \ diagonals, so that one
may again use Kontsevich’s vanishing lemma and conclude that Vp,2 = 0
for all p ≥ 1.

Reflection of the plane in the line of collinearity induces an involu-
tion f of CF

+
p,q(C). (Choosing representative configurations with the

collinear points on the real axis identifies f with complex conjugation.)
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The map f preserves orientation if p is even and reverses it if p is odd.
For Γ ∈ graNCG(p, q)2p+q−2, f∗θΓ = (−1)2p+q−2θΓ = (−1)qθΓ. Thus

(−1)p
∫
CF

+
p,q(C)

θΓ = (−1)q
∫
CF

+
p,q(C)

θΓ,

implying the integral is 0 whenever p and q have different parity, i.e. when-
ever p + q is odd. This means that the first homotopy to V1,1 is given
by V1,3. The angle between collinear points is constant, so the differen-
tial form associated to a graph containing an edge connecting collinear
vertices will be zero. The set [graNCG(1, 3)3] contains a unique graph
without edges connecting collinear vertices, up to direction and order-
ing of edges, namely the graph . Hence there are eight (equivalence
classes of) graphs (corresponding to the 23 ways to direct the three edges)
contributing to V1,3. Each of these eight equivalence classes has a repre-
sentative with the edges ordered so that ei connects the free vertex with
the collinear vertex labelled by i, 1 ≤ i ≤ 3. These representatives all
have weight 1/24. To see this one may argue as follows.

Assume given a configuration in CF+
1,3(C). Use the freedom to trans-

late along the imaginary axis to put the line of collinearity on the real
axis. Use the freedom to translate along the real axis to put the free
point on the imaginary axis. We are then left with a positive dilation
that can be used to put the free point either at +i or at −i, depend-
ing on wether it lies above or below the line of collinearity, respectively.
These two types of configurations are mapped to each other by the in-
volution f in the line of collinearity, discussed above. Denote the space
of configurations of the first type, i.e. the subspace of CF+

1,3(C) where
the free point lies above the line of collinearity, by C. It follows from
the remarks on the involution f that the weight∫

CF
+
1,3(C)

θΓ

of a graph Γ entering the operation V1,3 may be calculated as

∫
CF

+
1,3(C)

θΓ = 2

∫
C
θΓ.

We can identify C with the infinite open simplex {−∞ < x1 < x2 <
x3 <∞} and, for Γ the graph with the i-th edge directed from the
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free vertex to the i-th collinear vertex, we may then calculate∫
C
θΓ

=
1

(2π)3

∫
−∞<x1<x2<x3<∞

dArg(i− x1) ∧ dArg(i− x2) ∧ dArg(i− x3)

=
1

(2π)3

∫
−∞<x1<x2<x3<∞

d arctan(x1) ∧ d arctan(x2) ∧ d arctan(x3)

=
1

48
.

The total weight is 2/48 = 1/24.
It follows that the operation has the form

V1,3 =
1

24
∧ ◦
(
τ1,4 ◦ τ1,3 ◦ τ1,2 + τ1,4 ◦ τ1,3 ◦ τ2,1

+ τ1,4 ◦ τ3,1 ◦ τ1,2 + τ4,1 ◦ τ1,3 ◦ τ1,2 + τ4,1 ◦ τ3,1 ◦ τ1,2

+ τ4,1 ◦ τ1,3 ◦ τ2,1 + τ1,4 ◦ τ3,1 ◦ τ2,1 + τ4,1 ◦ τ3,1 ◦ τ2,1

)
as a map T⊗1+3

poly → Tpoly. (The first of the four copies of Tpoly acts on
the last three.)

4.7.5 The homotopy Lie-morphism.

The map U is, by construction, Kontsevich’s formality map. Recall that
it’s first Taylor component U1 =

∑
n≥0 U1,n is the Hochschild-Kostant-

Rosenberg quasi-isomorphism.

4.7.6 The (non-)formality morphism.

Since CF
+
0,1,n(H) is isomorphic to CF

+
1,0,n(H) and graFOC(0, 1, n) is iso-

morphic to graFOC(1, 0, n), for all n, the maps Z0,1,n coincide with the
maps U1,n. Hence the first Taylor component of Z,∑

n≥0

Z0,1,n : Tpoly → CHoch(µ),

is the Hochschild-Kostant-Rosenberg (HKR) quasi-isomorphism. The
higher components of Kontsevich’s formality map U are homotopies mea-
suring the failure of the HKR map to respect the Lie brackets. In the
same way, the higher components of Z are homotopies that keep track of
the failure of the HKR map to respect the associative products and the
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respective actions of Tpoly by homotopy derivations of said associative
products. Since the first component is the HKR morphism, we deduce
the following theorem:

Theorem 4.7.6.1. The map

Z = {Zk,m =
∑
n≥0

Zk,m,n}k≥0,m≥1

is an explicitNCG∞ quasi-isomorphism from ((Tpoly, [ , ]S), (Tpoly,∧,V))
to ((Tpoly, [ , ]S), (CHoch(A,A), dH + ∪, br ◦ U))

This statement implies the following A∞ formality theorem:

Corollary 4.7.6.2. The map A = {Am :=
∑

n≥0 Z0,m,n}m≥1 is an
explicit A∞ quasi-isomorphism from (Tpoly,∧) to (CHoch(A,A), dH +∪).

This corollary has essentially already been demonstrated, but in a
different way, by Boris Shoikhet; see [Shoikhet 1998].

4.8 Induced homotopy associative structure.

An NCG∞ algebra consists of an L∞ algebra (L[1], λ), an A∞ algebra
(A, ν) and an L∞ morphism V : L[1] → CAss(ν). Let ~ be a formal
parameter. The map V induces a map on the sets of Maurer-Cartan
elements,

MC(L[1][[~]])→ MC(CAss(ν)[[~]]), π 7→
∑
p≥1

1

p!
Vp,q((~π)⊗p, ).

This gives us, for each Maurer-Cartan element π of L, an A∞ structure

νV(π)
q := νq +

∑
p≥1

1

p!
Vp,q((~π)⊗p, ), q ≥ 1,

on A[[~]].
If Z : (L,A, λ,V, ν)→ (L,B, λ,U, µ) is a morphism of NCG∞ alge-

bras (the same L∞ algebra acting on both and we assume the NCG∞
algebra morphism is the identity on the Lie-color), then, for any Maurer-
Cartan element π of L[[~]], we get an induced map of A∞ algebras

Zπ : (A[[~]], νV(π))→ (B[[~]], µU(π))

by Zπm := Z0,m +
∑

k≥0
1
k!Zk,m((~π)⊗k, ). See the preceeding chapter

on the operadic twist construction for the general argument. If Z is a
quasi-isomorphism, then Zπ is as well.
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Applying this general construction to our representation D ◦ θ∗ pro-
duces, for any Maurer-Cartan element π ∈ Tpoly (i.e., a possibly graded
Poisson structure),

• an A∞ structure νV(π) on Tpoly[[~]] with ν
V(π)
1 +ν

V(π)
2 = ~[π, ]S +∧

as its first two Taylor components, and

ν
V(π)
3 = ~V1,3(π) +O(~3);

• the A∞ cup product on the Hochschild cochains of A[[~]] that
corresponds to the Kontsevich star product µU(π) defined by π;

• and an A∞ quasi-isomorphism

Zπ : (Tpoly[[~]], νV(π))→ CHoch(µU(π))[[~]].

We record this fact as a corollary.

Corollary 4.8.0.3. Let π ∈ Tpoly be a Poisson structure. Then the A∞
algebra (Tpoly[[~]], νV(π)) is quasi-isomorphic as an A∞ algebra to the
algebra of Hochschild cochains on A[[~]] equipped with the cup product
corresponding to the Kontsevich star product defined by π. The map
Zπ is an explicit such quasi-isomorphism.

It has been shown that one of the integrals entering Kontsevich’s
L∞ morphism U evaluates to a rational multiple of ζ(3)/π2 [Felder and
Willwacher 2010], which probably is not a rational number. However, we
do not know anything about the (ir)rationality of the integrals entering
our exotic structure on polyvector fields.

Conjecture 4.8.0.4. Are all integrals entering the exotic NCG∞ alge-
bra structure on polyvector fields rational numbers?

4.9 Relationship to Tamarkin’s formality.

Dimitry Tamarkin gave an alternative proof [Tamarkin 1998] of Kontse-
vich’s result that there exists an L∞ quasi-isomorphism from polynomial
polyvector fields to the Hochschild cochain complex; a proof which is less
explicit but also in a sense more general. Tamarkin’s proof roughly pro-
ceeds as follows. Apart from the Schouten bracket we also have the
wedge product of polyvector fields, and together they give Tpoly the
structure of a Gerstenhaber algebra. Tamarkin argues that there exists
a strong homotopy Gerstenhaber structure (i.e., a Ger∞-structure) on
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CHoch(A,A) with the propoerties that (i) its homotopy trasfer to Tpoly

via the HKR map coincides with the aforementioned canonically given
Gerstenhaber structure, and (ii) its L∞-structure is the Gerstenhaber
bracket. From this one deduces existence of a Ger∞ quasi-isomorphism

T : Tpoly → CHoch(A,A).

This morphism can then be restricted to an L∞ quasi-isomorphism
Tpoly[1] → CHoch(A,A)[1], giving an alternative proof of Kontsevich’s
formality. Note that neither the Ger∞-structure on CHoch(A,A) or the
morphism T are (fully) explicit. Tamarkin essentially only shows exis-
tence. In particular, the induced Com∞-structure on CHoch(A,A) is not
specified.

In a sense, Tamarkin starts with something natural on Tpoly and lifts
it to something rather mysterious on Hochschild cochains. The result
we prove may be considered as doing something opposite. Recall that
the braces map defines a canonical NCG-structure on the Hochschild
complex of an associative algebra. The operad NCG is Koszul, hence
has a canonical resolution NCG∞. Thus, by homotopy transfer along the
HKR-map there must exist an NCG∞-structure on the pair (Tpoly, Tpoly),
and a Gerstenhaber ∞-quasi-isomorphism

(Tpoly, Tpoly)→ (CHoch(A,A), CHoch(A,A)),

Our construction can be read as giving an explicit construction of this
NCG∞-structure on polyvector fields, and of the morphism. Our ap-
proach is an explicit construction in the spirit of Kontsevich’s construc-
tion, not actually relying on homotopy transfer, but the above discussion
explains our result from the perspective of Tamarkin’s work. The HKR-
map has an explicit inverse, but to the author’s best knowledge one can
only write down a recursive definition of a contracting homotopy on the
Hochschild cochain complex; hence one cannot write down the homo-
topy transferred NCG∞-structure on polyvector fields in a closed form
(something our explicit formula does accomplish).

We prove in the next chapter that the transferred NCG∞-structure
is not homotopic to the canonical one. In this sense we do something
opposite to Tamarkin; he starts with something standard on polyvec-
tor fields and gets something exotic on Hochschild cochains, while we
have something natural on Hochschild cochains and are forced to put
something exotic on polyvector fields.
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CHAPTER 5

Homotopical properties of the exotic structure

This chapter is devoted to proving that our exotic NCG∞-structure on
polyvector fields is essentially unique. More precisely, we show the fol-
lowing theorem.

Theorem 5.0.0.5. H1(Def(NCG∞ → GraNCG)) = k .

An immediate corollary is that our exotic structure is a homotopy
nontrivial deformation. Hence the following statement.

Corollary 5.0.0.6. The canonical NCG-algebra structures on polyvec-
tor fields and on Hochschild cochains can not be NCG∞ quasi-isomorphic.

In the last section we apply the general results to give an explicit
strong homotopy version of the Duflo isomorphism. This generalizes
earlier work by many authors, cf. [Pevzner and Torossian 2004; Calaque
and Rossi 2011; Shoikhet 1998; Kontsevich 2003] and, of course, the
original work by Michel Duflo [Duflo 1969]. More specifically, we con-
struct a universal and generically homotopy nontrivial A∞ deformation
CCE(g, S(g))exotic of the Chevalley-Eilenberg algebra CCE(g, S(g)), for
a graded Lie algebra g of finite type, and an A∞ quasi-isomorphism
CCE(g, S(g))exotic → CCE(g, U(g)) that on the cohomology level re-
produces the Duflo-Kontsevich isomorphism of Chevalley-Eilenberg co-
homologies. This implies that the Duflo-Kontsevich isomorphism can
not be lifted in a universal way to a chain-level A∞ quasi-isomorphism
CCE(g, S(g)) → CCE(g, U(g)). We thus give a negative answer to the
conjectured existence of a strong homotopy Duflo quasi-isomorphism,
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but our actual proof is by an explicit construction of a “best possible”
substitute.

The main theorem of this chapter (above) was demonstrated by the
author and Sergei Merkulov in “Grothendieck-Teichmüller group and
Poisson cohomologies”, which has been accepted for publication in“Jour-
nal of Noncommutative Geometry”, though the application to the Duflo
isomorphism was essentially contained already in [Alm 2011].

5.1 Results by Kontsevich, Tamarkin and Willwacher.

The main result of this chapter is a rather simple consequence of sev-
eral remarkable theorems by Maxim Kontsevich, Dimitry Tamarkin and
Thomas Willwacher. In this section we review those results.

5.1.1 A closer look at the Gerstenhaber operad.

Define a Gerstenhaber algebra to be a dg vector space F and two
binary operations λ and µ, such that (F [1], λ) is a dg Lie algebra, (F, µ)
is a dg commutative algebra, and the adjoint action of λ is a morphism

F [1]→ DerCom(F, F )

of dg Lie algebras; thus, for any ξ ∈ F p the operation λ(ξ, ) is a deriva-
tion of µ of degree |ξ| − 1. Denote the operad governing Gerstenhaber
algebras by Ger.

Recall the operad C(C) of compactified configuration spaces that
we defined in 4.2.2. We noted there that its operad of cellular chains is
isomorphic to the operad Lie∞{−1}; hence the homology operad of the
cellular chains, H(K(C(C))), equals the suspended Lie operad Lie{−1}.
The following theorem says what the homology of all chains is.

Proposition 5.1.1.1. [Cohen 1995] The homology H·(C(C)) (with re-
versed grading, so that it is concentrated in negative degrees) is iso-
morphic to the operad of Gerstenhaber algebras, by identifying the
class [S1] ∈ H−1(C2(C)) with the Lie bracket operation and the class
[pt] ∈ H0(C2(C)) with the commutative product operation.

Thus, the inclusion K(C(C)) → CSA(C(C)) of the fundamental
chains into all semialgebraic chains induces the inclusion Lie{−1} → Ger
upon taking homology.

Proposition 5.1.1.2. [Arnol’d 1969] The cohomology H ·(Cn(C))) is
isomorphic as an algebra to the graded commutative algebra An freely
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generated by degree 1 elements ωij = ωji (1 ≤ i 6= j ≤ n) modulu the
relations ωijωjk + ωjkωki + ωkiωji = 0.

5.1.2 Kontsevich’s operad of two-colored graphs.

Recall our 2-colored operad GraNCG of graphs with black and white ver-
tices. Kontsevich introduced the following operad (though he did so
without any mention of the twist construction).

Definition 5.1.2.1. [Kontsevich 1999] Define Graphs ⊂ twGraNCG to be
the dg suboperad spanned by only those graphs that have (i) all black
vertices at least trivalent and (ii) have no connected component with
only black vertices.

Note twGraNCG = TwGra. Polyvector fields are a Gerstenhaber alge-
bra, with the representation factoring through

Ger→ Gra.

The Gerstenhaber operad is a coalgebra for the twist comonad [Dolgu-
shev and Willwacher 2012], hence there exists a morphism

Ger→ TwGra,

and one may check that it factors through the inclusion of Graphs. Ex-
plicitly, the commutative product is represented by the graph and
the Schouten bracket is represented by the graph . Kontsevich proved
the following proposition.

Proposition 5.1.2.2. [Kontsevich 1999; Lambrechts and Volić 2008]
The map Ger→ Graphs is a quasi-isomorphism.

We shall not give a proof of this theorem, but will indicated the idea.
Recall that we defined in 4.5 a morphism

θ : gra→ Ω(C(C)).

Define graphs the be the linearly dual cooperad to Graphs which is
spanned by finite sums of (formal duals to) graphs. Take Γ ∈ graphs(n)
with k black vertices. Considering Γ as an element of gra(k+ n) we can
consider

θΓ ∈ Ω(Ck+n(C)).

There is a projection π : Ck+n(C)) → Cn(C)) that forgets the points
labelled by [k]. Define

ϑΓ := π!(θΓ) ∈ Ω(Cn(C))
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to be the fiber integration. Kontsevich proved that all the fiber integrals
converge, so that these forms are well-defined, and that

ϑ : graphs→ Ω(C(C))

is a quasi-isomorphism. In more detail, he argued that the cohomology
H(graphs) is generated multiplicatively by the graphs with a single edge
connecting two vertices, say i and j, modulu exactly the Arnol’d rela-
tions 5.1.1.2, i.e., the classes of the corresponding forms [θij ] generate
the cohomology algebra H ·(C(C)).

5.1.3 Tamarkin and the Grothendieck-Teichmüller group.

The Lie algebra tn of infinitesimal braids on n-strands is the Lie algebra
generated by tij = tji, 1 ≤ i 6= j ≤ n modulu the relations

[tij , tkl] = 0 = [tij + tjk, tik]

if {i, j} ∩ {k, l} = ∅. The Arnol’d algebra An is Koszul dual to the Lie
algebra of infinitesimal braids, in the sense that it is quasi-isomorphic
as a dg commutative algebra to the Chevalley-Eilenberg cochain algebra
CCE(tn). The infinitesimal braids are an operad in the category of Lie
algebras (with direct sum as monoidal product), via

◦i : tn+1 ⊕ tk → tn+k,

◦i(tab) = tab, a 6= i 6= b, a, b ∈ [n+ 1]

=
∑
c∈[k]

tic, a = i, b ∈ [n+ 1]

= tab, a, b ∈ [k].

This can be used as follows to define a model of the Gerstenhaber operad.
Let Pa(n) be the set of planar rooted trivalent trees with an iso-

morphism between the set of leaves and the set [n]. We identify it
with the set of binary paranthesizations of the symbols 1, 2, . . . , n, e.g.
((13)2)(5(46)) ∈ Pa(6). Grafting of trees (substitution of paranthesiza-
tions) defines an operad Pa with components Pa. For example,

((13)2) ◦2 (1(23)) = ((15)(2(34))).

Let Û(tn) be the completed (with respect to word-length) universal en-
veloping algebra and denote by PaCD(n) the category with objects Pa(n)
and morphisms between any two objects the set Û(tn). It is naturally
considered as a category enriched in complete filtered cocommutative
coalgebras.
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Definition 5.1.3.1. [Tamarkin 2002; Bar-Natan 1998] The Grothendieck-
Teichmüller group GRT1 is the group of automorphisms of the enriched
category PaCD which are the identity on objects and fix the two mor-
phisms

t12 : (12)→ (12), 1 : (12)→ (21).

The nerve of the enriched category PaCD(n) is the simplicial vector
space with

Nr(PaCD(n)) =
⊕

u0,...,ur∈ObPa(n)

Nr(Û(tn)),

Nr(Û(tn)) = Û(tn)⊗r.

The face maps di are for i = 0 and i = r given by the augmentation
on the first and last copy of Û(tn), respectively, while the face map
di for 1 ≤ i ≤ r − 1 is defined by the multiplication between the ith
copy and the (i+ 1)th copy. The degeneracies are given by insertion of
units 1 ∈ Û(tn). Define C(PaCD(n)) to be the associated normalized
chain complex. These assemble to a dg operad C(PaCD) and there is a
sequence of quasi-isomorphisms of operads

Ger→ B(Û(t))← C(PaCD).

Here B(Û(t)) is the (associative) normalized bar construction, defined
as the normalized chain complex associated to N•(Û(t)). The only dif-
ference between that and C(PaCD) is that all reference to objects of Pa
is dropped.

The group GRT1 is prounipotent. The action on PaCD gives a map
grt1 → Der(PaCD) from its associated Lie algebra. Since all morphisms
displayed above are quasi-isomorphisms one may, following Tamarkin,
conclude that there is a (uniquely defined) morphism

grt1 → H1(Def(Ger∞ → Ger)).

Next, Tamarkin proved the following results.

Proposition 5.1.3.2. [Tamarkin 2002] The dg vector spaces CCE(tn)
form an operad, quasi-isomorphic to the Gerstenhaber operad, and the
first cohomology group of Def(Com∞ → CCE(t)) equals the Grothendieck-
Teichmüller Lie algebra grt1. Moreover, the composite

grt1 → H1(Def(Ger∞ → Ger))→ H1(Def(Com∞ → CCE(tn))) = grt1

is the identity.
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Corollary 5.1.3.3. The map grt1 → H1(Def(Ger∞ → Ger)) is injective.

We shall not prove this proposition but only make the following
remark. The complex

Def(Com∞ → CCE(t)) =
∏
n≥1

MapΣn(Com¡(n), CCE(tn))

has a subcomplex

C ′ :=
∏
n≥1

MapΣn(Com¡(n), tn[1]) ∼=
∏
n≥1

Lie(n)⊗Σn

(
sgnn ⊗ tn[2− n]

)
.

An elment of degree 1 in C ′ is a ψ ∈ t3 satisfying the following two
symmetry conditions:(

(213)− (231)− (123)
)
· ψ = 0,(

(132)− (312)− (123)
)
· ψ = 0.

It follows from the defining relations of the Lie algebra of infinitesimal
braids that t3 = kzolie(x, y) can be decomposed as a semidirect product
of an Abelian Lie algebra on a central element z and a free Lie algebra
on two generators. Using this, above symmetry conditions mean that we
can write ψ = ψ(x, y) ∈ lie(x, y), satisfying the two symmetry relations

ψ(x, y) + ψ(x,−x− y) + ψ(−x− y, x) = 0,

ψ(x, y) + ψ(y, x) = 0.

Demanding that ψ ∈ C ′ is a cocycle adds the so-called pentagon condi-
tion

0 = ψ(t12, t23)− ψ(t13 + t23, t34) + ψ(t12 + t13, t24 + t34)

− ψ(t12, t23 + t24) + ψ(t23, t34) ∈ t4.

There are no exact degree 1 elements in C ′. The two symmetry re-
lations and the pentagon condition are the defining equations of the
Grothendieck-Teichmüller Lie algebra; thus:

Remark 5.1.3.4. H1(C ′) = grt1. (The reader may take H1(C ′) = grt1,
i.e. the relations given above, as the definition of the Grothendieck-
Teichmüller Lie algebra.)

The first part of Tamarkin’s result, accordingly, amounts to the state-
ment that the degree 1 cohomology of the deformation complex

Def(Com∞ → CCE(t))

is concentrated in the subcomplex C ′.
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5.1.4 Willwacher’s theorems.

It follows from Tamarkin’s results that

H1(Def(Com∞ → Graphs)) ∼= grt1,

since Kontsevich showed that Graphs is quasi-isomorphic to the Ger-
stenhaber operad, which, in turn, is quasi-isomorphic to CCE(t). It also
follows that there is an injection

grt1 → H1(Def(Ger∞ → Graphs)).

Definition 5.1.4.1. Define the full Kontsevich’s graph complex to be
the deformation complex

fGC := Def(Lie{−1}∞ → Gra)

=
∏
n≥1

Gra(n)Σn [2− 2n].

Its elements are linear combinations of graphs with symmetrized vertex-
labels, and we define Kontsevich’s graph complex to be the subcom-
plex GC ⊂ fGC that is spanned by connected graphs with all vertices of
valency 3 or higher.

The differential on Kontsevich’s graph complex has the pictorial form

δγ = [ , γ].

General properties of twisting imply a morphism

Def(Lie{−1}∞ → G)[−1]→ Def(Ger∞ → TwG).

The operad G was defined a kind of universal endomorphism operad of
polynomial polyvector fields:

G := limd End〈Tpoly(kd)〉Ad .

The morphism above is in this sense a universal incarnation of the mor-
phism

CLie(Tpoly(kd)[1],Tpoly(kd)[1])[−1]

→ CCE(Tpoly(kd)[1], CGer(Tpoly(kd), Tpoly(kd))

that sends a cochain γ : Tpoly(kd)[1])⊗n → Tpoly(kd)[1]) to the cochain
that maps n polyvector fields ξ1, . . . , ξn to the cochain

γ(ξ1, . . . , ξn) ∧ ( ) + [γ(ξ1, . . . , ξn), ]S .
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The map on deformation complexes induces a morphism

GC→ Def(Ger∞ → Graphs) ' Def(Ger∞ → Ger),

that plays a very essential rôle in the work of Willwacher. Let us spend
some time on the conceptual properties of this morphism, since it will
be important also for us.

Let W := kd ⊕ (kd[−1])∗, so Tpoly(kd) can be identified with the
algebra OW := S(W ∗) of polynomial functions on W . The space W can
be regarded as an odd symplectic manifold and the corresponding Pois-
son Lie bracket on OW [1] is the Schouten bracket on Tpoly(kd). Finally,
define XW := DerCom(OW ,OW ).

Remark 5.1.4.2. The inclusion S+
OW

(XW [−2])[2] → CGer(OW ,OW ) is
a quasi-isomorphism, if the complex to the left is equipped with the
Poisson-Lichnerowitz differential defined by the odd symplectic struc-
ture.

Proof. We can put a filtration on

CGer(OW ,OW ) = Map(S+(L(OW )[1])[1])[−2],OW )

that at the first step only sees the differential increasing the length of
Lie words, i.e., only sees the differential on L(OW [1]) = BCom(OW )[1].
Since OW is free commutative the inclusion W ∗[1] ⊂ BCom(OW )[1] is
a quasi-isomorphism. Whenever a spectral sequence at the first step
reduces to a subcomplex, the inclusion of that subcomplex must be a
quasi-isomorphism. Hence

Map(S+(W ∗[1][1])[−2],OW ) ↪→ CGer(OW ,OW )

is a quasi-isomorphism.

The association

X : OW [1]→ XW , f 7→ Xf := {f, }

of a Hamiltonian vector field to every function defines a morphism of
cochain complexes

X : (OW [1], d = 0)→ S+
OW

(XW [−2])[2],

where the complex on the right is equipped with the Poisson-Lichnerowicz
differential. The isomorphism between 1-forms and vector fields given
by the symplectic structure, defines an isomorphism of complexes

ω] : Ω+
W [2] = S+

OW
(Ω1

W [−1])[2]→ S+
OW

(XW [−2])[2].
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The map X may be written as the composite ω] ◦ddR between this map
and the de Rham differential ddR : OW [1] → Ω+

W [2]. The truncated de
Rham complex Ω+

W and the Poisson complex S+
OW

(XW [−2])[2] are both
modules for the Lie algebra OW , with the action of f ∈ OW given in
both cases the Lie derivative LXf . In particular, both ddR and ω] are
morphisms of Lie modules.

Define O+
W := S+(W ∗). The de Rham differential restricts to a quasi-

isomorphism from O+
W to Ω+

W . From this and the preceeding lemma we
can conclude the following corollary.

Corollary 5.1.4.3. The inclusion X : O+
W → CGer(OW ,OW ) is a quasi-

isomorphism.

It follows form the preceeding discussion that

Def(Lie{−1}∞ → G)[−1]→ Def(Ger∞ → TwG)

corresponds to the evident map

CLie(OW [1],OW [1])[−1]→ CCE(OW ,O
+
W ).

There are problems with this correspondence because the group Ad is not
reductive, so our cohomology computations can not simply be commuted
with taking invariants. The space O+

W is not even a representation of
Ad. However, we can reduce to

X : CLie(OW [1],OW [1])[−1]→ CCE(OW , S
+
OU

(XU [−2])[2])

without any problems. A universal version of that step is a reduction to
the subcomplex

fC ⊂ Def(Ger∞ → Graphs)

spanned by graphs with only univalent white vertices.

Theorem 5.1.4.4. [Willwacher 2010] The morphism

GC[−1]→ Def(Ger∞ → Graphs)

induces an isomorphism

H0(GC)⊕ k ∼= H1(Def(Ger∞ → Graphs)).

The summand k is essentially a copy of H(Def(Ger→ G)). A represen-
tative class is the graph with two white vertices and an edge.
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Again, the map from the graph complex can be restricted to lie in the
subcomplex fC of graphs with univalent white vertices. The morphism
then has the form

X : GC[−1]→ fC, γ 7→ Xγ := • γ.

Recall H1(Def(Com∞ → Graphs)) ∼= grt1. If we replace Graphs by the
full operad TwG, then on the level of algebras we consider

Def(Com∞ → Tw End〈OW ,OW 〉) = CCE(OW [1], CCom(OW ,OW )).

Since OW is free as graded commutative algebra, we have a quasi-
isomorphism

CCE(OW [1],XW )→ CCE(OW [1], CCom(OW ,OW )).

Graphically, this implies that we can replace Def(Com∞ → Graphs) by
the subcomplex C spanned by graphs with a univalent single white ver-
tex. Note that X : GC[−1]→ fC actually factors as map into C.

Lemma 5.1.4.5. [Willwacher 2010] The morphism X : GC[−1]→ C is
injective on cohomology.

We now have almost all ingredients necessary to deduce H0(GC) ∼=
grt1. It first follows from Tamarkin’s result and the theorem above by
Willwacher that there is an inclusion

grt1 → H1(Def(Ger∞ → Graphs)) ∼= H0(GC)⊕ k,

and that the composite

grt1 →H1(Def(Ger∞ → Graphs))

∼= H0(GC)⊕ k→ H1(Def(Com∞ → Graphs)) = grt1

is the identity. However, the injective mapX : H0(GC)→ H1(C) = grt1
allows one to deduce that there is a composite of injections

grt1 → H0(GC)→ H1(C) = grt1

which equals the identity; hence grt1
∼= H0(GC) as a vector space. (But

note that Willwacher proves the isomorphism is compatible with the Lie
brackets.)
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5.1.5 The Furusho-Willwacher theorem.

We noted in 5.1.3.4 that H1(Def(Com∞ → CCE(t))) is spanned by Lie
series ψ ∈ lie(x, y) satisfying the two symmetry equations

ψ(x, y) + ψ(x,−x− y) + ψ(−x− y, x) = 0

ψ(x, y) + ψ(y, x) = 0.

and the pentagon equation

0 = ψ(t12, t23)− ψ(t13 + t23, t34) + ψ(t12 + t13, t24 + t34)

− ψ(t12, t23 + t24) + ψ(t23, t34) ∈ t4.

Hidekazu Furusho proved the following very remarkable result.

Proposition 5.1.5.1. [Furusho 2010] If ψ ∈ lie(x, y) satisfies the pen-
tagon equation and, additionally, the coefficient of [x, y] in ψ is zero,
then ψ also satisfies the two symmetry equations.

Changing from the operad Com∞ to the operad Ass∞ exactly has the
effect that the symmetry conditions are dropped. Hence the following
corollary.

Corollary 5.1.5.2. H1(Def(Ass∞ → CCE(t))) = grt1 ⊕ k[t12, t23].

We not that Willwacher has given an independ direct proof of this
fact, in the following form.

Proposition 5.1.5.3. [Willwacher 2010]

H1(Def(Ass∞ → Graphs)) ∼= H1(Def(Com∞ → Graphs))⊕ k .

5.2 Homotopical uniqueness.

Before we prove our main theorem of this chapter we recall yet another
result by Willwacher. Write fGCc ⊂ fGC for the subcomplex spanned
by connected graphs. Recall that Kontsevich’s graph complex GC is
defined by additionally requiring all vertices to be at least trivalent.

Theorem 5.2.0.4. [Willwacher 2010] The cohomology connected graph
complex satisfies

H(fGCc) = H(GC)⊕
⊕
j≥0

k[−3− 4j].

The class spanning k[−3 − 4j] is represented by a wheel with 5 + 4j
edges and only bivalent vertices.

The negative cohomology of Kontsevich’s graph complex vanishes,
H<0(GC) = 0.
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To simplify notation we define the complexes

fC := Def(NCG∞ → GraNCG);

fD := Def(Ass∞ → TwGra).

It follows from our result 3.1.2.6 on the twist and Lie module construc-
tions that

fC = Cone(X : fGC[−1]→ fD) = fGC⊕ fD .

For completeness, let us record the pictorial forms of the differentials.
The differential on fD is of the form ∂ + dH , where ∂ is the internal
differential on TwGra and dH is a Hochschild-type differential.

∂Γ = [ ,Γ] + Γ • , dHΓ = [ ,Γ].

Denote the full differential on C by d, viz.

d(Γ, γ) =
(
∂Γ + dHΓ−Xγ , δγ),

for δγ = [ , γ] the differential on Kontsevich’s graph complex. Recall
also that the morphism X has the form

γ 7→ Xγ := • γ.

Lemma 5.2.0.5. The morphism X : fGC[−1] → fD is injective on
cohomology in degree 1 and 2.

Proof. Since any graph can be written as a disjoint union of connected
components, we may write fGC = Ŝ+(fGCc[−2])[2], where fGCc ⊂ fGC
the subcomplex of connected graphs. Analogously if we write fGraphsc ⊂
Graphs for the dg suboperad spanned by graphs without a connected
component with only black vertices, then

TwGra = Ŝ(fGCc[−2])⊗ fGraphsc.

With this decomposition in place, X is for each p ≥ 1 a map

Sp(fGCc[−2])[1]→ Sp−1(fGCc[−2])⊗Def(Ass∞ → fGraphsc).

In particular, X is completely determined by the Leibniz rule and its
restriction

X : fGCc → Def(Ass∞ → fGraphsc).

The proposed injectivity now follows from Willwacher’s result 5.1.4.5
since, (i) H i(fGCc) = H i(GC) in degrees i = 0, 1 by the theorem cited
above, and (ii) the inclusion Graphs ⊂ fGraphsc is a quasi-isomorphism
[Willwacher 2010].

104



Proposition 5.2.0.6. H1(fC ) = k .

Proof. Consider the long exact sequence defined by the mapping cone:

· · · → H i(fGC)→ H i+1(fD)→ H i+1(fC )→ · · · .

Applying the preceeding lemma to this sequence, we extract a short
exact sequence

0→ H0(fGC)→ H1(fD)→ H1(fC )→ 0.

We now note that

H1(fD) = H1

(
(fGC[−2]⊕ k)⊗Def(Ass∞ → fGraphsc)

)
.

The quasi-isomorphism Graphs ⊂ fGraphsc implies

H i(Def(Ass∞ → fGraphsc))
∼= H i(Def(Ass∞ → CCE(t))).

Since the results of Tamarkin and Willwacher say that the complex on
the right has cohomology concentrated in the subcomplex∏

n≥1

tn[2− n],

which has no cohomology in strictly negative degrees, it follows that

H<0(Def(Ass∞ → fGraphsc)) = 0.

Applying the Künneth formula to the above tensor decomposition of
H1(fD), and using 5.2.0.4, we conclude

H1(fC ) ∼= H1(Def(Ass∞ → fGraphsc))/H
0(fGCc)

∼= H1(Def(Ass∞ → Graphs))/H0(GC).

The combination of Willwacher’s theorem (thatH0(GC) equals grt1) and
the Furusho-Willwacher theorem now implies that H1(fC ) is isomorphic
to the quotient (grt1 ⊕ k )/grt1 = k .

Lemma 5.2.0.7. The graph also represents the exotic cohomol-
ogy class.
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Proof. We first note that

dH

(
1

2
+

1

2

)
= −2

1 2
.

Here we have written out the order on edges so that the signs are un-
ambiguous, and we regard the white vertices to be numbered from left
to right. Then we observe that

∂

(
1

2
+

1

2

)
= 2 1 2 3 .

These two equations imply that the two cochains

and

in Def(Ass∞ → Graphs) are cohomologous.

Remark 5.2.0.8. The image of in the Hochschild cochain com-
plex of polyvector fields is the map

X ⊗ Y ⊗ Z ⊗W 7→ [X,Z]S ∧ [Y,W ]S .

5.3 The Duflo isomorphism.

Kontsevich’s paper [Kontsevich 2003] contained a proof that the tan-
gential morphism of his formality morphism, applied to a finite dimen-
sional Lie algebra, defined an isomorphism H(g, S(g))→ H(g, U(g)) of
Chevalley-Eilenberg cohomology algebras. This result was later given
a detailed proof and generalized to an arbitrary graded Lie algebra of
finite type, see [Pevzner and Torossian 2004; Calaque and Rossi 2011].
In this section we discuss a homotopy generalization of this theorem.

Let g be a graded real vector space which is concentrated in non-
negative degrees and finite dimensional in each degree. Let Tpoly be the
polyvector fields on g[1], so Tpoly = S(g∗[−1]) ⊗ S(g). Identify Tpoly

with Map(S(g[1]), S(g)). The wedge product on polyvector fields is
under this identification equal to the convolution product on the space of
maps Map(S(g[1]), S(g)) from a coalgebra into an algebra. The graded
Lie algebra

CLie(g,g) = Map(S+(g[1])),g[1])

embeds into Tpoly[1] as a Lie subalgebra. Denote by A := S(g∗[−1]) the
algebra of functions on g[1].
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The following result is a straight-forward corollary to the main the-
orem of the preceeding chapter.

Lemma 5.3.0.9. The representation

D ◦ θ∗ : FOC→ End〈Tpoly, Tpoly,A〉

restricts to a representation FOC→ End〈CLie(g[1],g[1])[−1], Tpoly,A〉.

Note that the Hoschschild cochain complex of A is

CHoch(A,A) = Map(B(S(g∗[−1])), S(g∗[−1]))
∼= Map(S(g[1]),C(S(g[1]))).

Here B denotes the classical (coassociative) bar construction: B(A) is
the coalgebra T (A[1]) with the product on A turned into a differential;
and C denotes the classical (associative) cobar construction, dually de-
fined. In the isomorphism we use that g concentrated in degrees ≥ 0 and
finite-dimensional in each degree. These two assumptions ensure that
S(g∗[−1])∗ ∼= S(g[1]). Note that both mapping spaces above carry con-
volution products, since both are mapping spaces from a coalgebra into
an algebra, and the isomorphisms respect these products. Combining
this with the above lemma defines an explicit quasi-isomorphism(

CLie(g,g)[−1],Map(S(g[1]), S(g))
)

→
(
CLie(g[1],g[1])[−1],Map(S(g[1]),C(S(g[1]))

)
of NCG∞-algebras.

We can twist the construction by Maurer-Cartan elements. A Maurer-
Cartan element Q of CLie(g,g) is precisely an L∞ structure on g. As-
sume given a Q without differential part (so Q = Q2+Q3+. . .) and inter-
pret it as a coderivation of S(g[1]). Denote the dg coalgebra (S(g[1]), Q)
by CCE(g), as usual. The cobar construction

C(CCE(g)) =: U∞(g)

is the derived universal enveloping algebra of the L∞ algebra (g, Q)
introduced in [Baranovsky 2008]. (That it is quasi-isomorphic to the
usual universal enveloping algebra in the special case that g is a Lie
algebra is a classical case of Koszul duality.) Kontsevich’s formality map
U quantizesQ to a differential on A and we may identify A equipped with
this differential with the Chevalley-Eilenberg cochain complex CCE(g)
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with trivial coefficients. If follows that after twisting by Q the A∞
structure on the Hochschild cochain complex of A will be the algebra

CHoch(CCE(g), CCE(g)) ∼= Map(CCE(g), U∞(g))

= CCE(g, U∞(g)).

However, the induced A∞ structure on polyvector fields after twisting
is not simply

CCE(g, S(g)) = Map(CCE(g), S(g)).

Instead, we obtain an A∞ algebra CCE(g, S(g))exotic, which is a defor-
mation of the usual algebra CCE(g, S(g)). The first term deforming the
usual product is defined by the graph . Nevertheless, we have an
explicit A∞ quasi-isomorphism

ZQ : CCE(g, S(g))exotic → CCE(g, U∞(g)).

Proposition 5.3.0.10. (i) The cohomologies of CCE(g, S(g))exotic and
CCE(g, S(g)) are isomorphic as associative algebras and the map
on cohomology induced by ZQ coincides with the Duflo-Kontsevich
isomorphism.

(ii) There does not, generically, exist a quasi-isomorphism

CCE(g, S(g))→ CCE(g, U∞(g))

of A∞ algebras. In other words, it is impossible to find a uni-
versal A∞ lift of the Duflo-Kontsevich isomorphism on Chevalley-
Eilenberg cohomologies to the Chevalley-Eilenberg cochain alge-
bras.

Proof. Item (i) is true by construction. For the second point we invoke
our theorem 5.0.0.5 and make the following remark. Define

Graphs′ := Graphs/〈 〉

to be the quotient by the ideal operadically generated by the displayed
graph. Decorating all black vertices by Q defines a representation

DQ : Graphs→ End〈(Tpoly, dπ)〉,

and it naturally factors through the quotient projection onto Graphs′.
(The quotient can be regarded as a universal way of imposing the Maurer-
Cartan equation [Q,Q] = 0.) There is an induced map

Def(Ass∞ → Graphs)→ Def(Ass∞ → Graphs′)
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of dg Lie algebras. The cohomology class defined by maps to a
nonzero cohomology class, because it is cohomologous to , which,
since it has no black vertices, is exact in Def(Ass∞ → Graphs′) if and only
if it is exact to begin with. Thus the exotic deformation is homotopy
trivial only when this class is mapped to a coboundary under

DQ : Def(Ass∞ → Graphs′)→ CAss((Tpoly, dπ), (Tpoly, dπ)).

We now finish the proof by cheating and define the mathematical mean-
ing of the word “generically” that appears in the proposition to mean
“whenever the exotic cohomology class is not mapped to zero under the
map displayed above,” making the statement true by default.

Remark 5.3.0.11. Note, however, that the above definition of “gener-
ically” is not completely stupid. There are essentially only two reasons
that can make the class vanish. The first is dimensional, but

Graphs ⊂ TwGra ⊂ lim
d
CCE(Tpoly(kd),End〈Tpoly(kd)〉)Ad

implies that if the dimension is high enough, then for most Q the exotic
structure is nontrivial. The other reason that can make the class vanish
is that Q is Abelian. This can be argued in at least two ways. The
first one is direct and graphical. If Q = 0, then is represented by a
map which is identically equal to zero, hence it is a trivial cohomology
class. (The other representative, , is mapped to a nonzero cochain,
but since the graph is dH -exact the corresponding cochain will be exact
when Q = 0.) The second way to argue that the cohomology class is
trivial when the Lie algebra is Abelian is to note that U(g) is isomorphic
to S(g) as an algebra when the the Lie algebra happens to be Abelian,
implying CCE(g, U(g)) and CCE(g, S(g)) are isomorphic.

Remark 5.3.0.12. There is a canonical isomorphism between Tpoly on
g[1] and Tpoly on g∗. Above we used the first graded vector space, for
which A = S(g∗[−1]). Application of Kontsevich’s formality to the sec-
ond case, for which A = S(g), quantizes an L∞ structure Q ∈ Tpoly to a
(flat) A∞ structure ? on S(g)[[~]]. In [Calaque et al. 2011] the authors
constructed a nontrivial but explicit A∞ (S(g)[[~]], ?) − CCE(g)[[~]]-
bimodule structure K~ on R[[~]] and they proved that the derived left
action

L : (S(g)[[~]], ?)→ Map~(K~[1]⊗B(CCE(g))[[~]],K~[1])

is a quasi-isomorphism of A∞ algebras. Here Map~ denotes the mapping
space of maps which are linear in ~. In the present case one may formally
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set ~ = 1 in this quasi-isomorphism, and then identify the term on the
right (above) with the cobar construction C(CCE(g)). Thus the result
of [Calaque et al. 2011] implies that the quantization of the symmetric
algebra on the L∞ algebra g, i.e. (S(g), ?), is quasi-isomorphic as an
A∞ algebra to Baranovsky’s derived universal enveloping algebra of g.
Together with our result this quasi-isomorphism implies that the A∞
algebras CCE(g, S(g))exotic and CCE(g, (S(g), ?)) are quasi-isomorphic,
though the quasi-isomorphism is presently not explicit.
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CHAPTER 6

Globalization

The material in this chapter has not been previously published.

6.1 Algebraic structures and formal geometry.

Let us start with some motivational discussion. The infinitesimal neigh-
borhood of a point x in a smooth manifold M of dimension d looks
(noncanonically) like the infinitesimal neighborhood of 0 ∈ Rd. The
germs at x of sections of some “naturally/universally” defined sheaf FM
will look like the germs V := J∞0 FRd at 0 of the corresponding sheaf
on Rd. Consider the following question: what algebraic structures on
V are sufficiently natural that they are induced on the global sections
Γ(M,FM) of F , for any manifold M? For example, if F = T is the
tangent space functor, then V has the structure of a Lie algebra and
this Lie algebra structure is well-known to be universal in the sense that
it can be regarded as inducing a Lie algebra structure on the global vec-
tor fields on any manifold. A sufficient condition is of course that the
formulae defining the algebraic operations are equivariant with respect
to all coordinate changes on Rd. (This is the case for the Lie bracket on
germs of vector fields.) It is not a neccessary condition however, at least
not if we are suitably homotopical in what we mean when we require
the structure on V to globalize.

In this section we make both this question and its answer more pre-
cise.
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6.1.1 Geometric background.

We begin by briefly recalling the notion of profinite smooth manifolds.
Consider the directed system of topological spaces

· · · → Rk+1 → Rk → · · · → R→ {∗},

where Rk+1 → Rk sends (x1, . . . , xk, xk+1) to (x1, . . . , xk). Let R∞ be
the limit of this diagram. Denote by πk : R∞ → Rk the projection. If
U and V are open subsets of R∞ then we say that a function f : U → V
is smooth if for every x ∈ U there exists an open neighborhood W ⊂ U
of x, a natural number k ≥ 0 and, for every ` ≥ 0, a smooth function
fk,` : πk(W )→ π`(V ) with the property that π`◦f |W can be represented
as fk,`◦πk. One defines a profinite manifold just like one defines ordinary
manifolds, except that the local charts and transition functions are open
subsets of R∞ and smooth maps between them. A profinite Lie group
is the evident generalization of Lie groups to the context of profinite
smooth manifolds. From now on “manifold” will refer to a possibly
profinite smooth manifold, and“Lie group,”“fiber bundle,” etc. will refer
to these objects in the category of (possibly) profinite smooth manifolds.

We shall similarly allow Lie algebras, vector spaces, etc., to be profi-
nite (limits of directed systems of finite-dimensional counterparts). In
the case of profinite linear objects we shall tacitly assume that all lin-
ear maps between them are continuous with respect to the projective
topologies.

Let d <∞.

Definition 6.1.1.1. [Kolar, Michor, and Slovak 1993] A natural bun-
dle functor on d-dimensional manifolds is a functorial assignment of
a graded vector bundle FM → M to every d-dimensional manifold M
and of a vector bundle morphism Ff : FM → F (N) to every local
diffeomorphism f : M → N , such that (i) Ff covers f and is a fibre-
wise isomorphism of graded vector spaces, and (ii) if γ : R ×M → N
is a smooth 1-parameter family of local diffeomorphisms, then the map
R× FM → F (N) defined by (t, p) 7→ Fγt(p) is smooth.

6.1.2 Harish-Chandra torsors.

A Harish-Chandra pair is the datum of a Lie group G, a Lie algebra
h, a linear action of G on h and a G-equivariant embedding of the Lie
algebra g of G into h which is compatible with the G-action in the sense
that the differential of the G-action coincides with the adjoint action of
g on h. We denote a Harish-Chandra pair as (G, h).
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Let (G, h) be a Harish-Chandra pair. A (G, h)-module is a dg vector
space V that carries a representation h→ gl(V ) of h with the property
that the induced action of g integrates to an action of G. This termi-
nology was introduced in [Beilinson and Bernstein 1993].

Definition 6.1.2.1. [Bezrukavnikov and Kaledin 2003] Let M be a
smooth finite-dimensional manifold. A (G, h)-torsor on M is a prin-
cipal G-bundle P → M together with a flat h-valued G-equivariant
connection ϑ : T (P )→ P ×h with the property that the composite map

P × g→ T (P )
ϑ→ P × h,

of bundles on P , coincides with the map P × g→ P × h defined by the
given g→ h.

If (P → M,ϑ) is a (G, h)-torsor and V is a (G, h)-module, then
one can use the h-action on V to turn ϑ into a flat connection on the
associated bundle P ×G V →M . In this way the torsor defines an exact
symmetric monoidal functor from the category of (G, h)-modules to the
category of bundles on M with flat connections. The idea of formal
geometry is to use this to reduce general constructions on manifolds
to constructions with Harish-Chandra modules. The most important
Harish-Chandra torsor is the torsor of formal coordinate systems, which
we will now define.

6.1.3 Formal geometry.

Given finite-dimensional manifolds M and N and points x ∈M , y ∈ N ,
denote by J∞x (M,N)y the space of infinite jets of based smooth maps
(M,x)→ (N, y). We shall write inv J∞x (M,N)y for the subspace of jets
with invertible differential, i.e. the jets corresponding to maps which are
local diffeomorphisms near x. We introduce the Lie group Gd of formal
diffeomorphisms of Rd that preserve the origin,

Gd := inv J∞0 (Rd,Rd)0.

and denote its Lie algebra by gd. It sits inside the Lie algebra Wd :=
J∞0 (T (Rd)) of formal vector fields as the subalgebra of vector fields
vanishing at the origin.

For a manifold M , of finite dimension d, we shall denote the bundle
of formal coordinate systems on M by M coor → M . It is given as the
space of infinite jets at 0 ∈ Rd of smooth maps Rd →M with invertible
differential at 0, i.e., the fiber above x ∈M is

M coor
x := inv J∞0 (Rd,M)x.

113



It is clearly a principal (right) Gd-bundle. Each tangent space of M coor

is canonically isomorphic to the Lie algebra Wd, and these isomorphisms
define a flat connection form ϑ ∈ Ω(M coor,Wd). In fact, (M coor →M,ϑ)
is a (Gd,Wd)-torsor. This torsor has the following useful property.

Remark 6.1.3.1. Let F be a natural bundle functor and denote the
projection from M coor to M by π. The pullback by π of the bundle of
infinite jets of sections of FM is canonically trivial:

π∗J∞FM ∼= M coor × J∞0 FRd.

Equivalently, one can realize J∞FM as

M coor ×Gd J
∞
0 FRd ∼= J∞FM,

and the isomorphism is one of bundles with flat connections. The map
of taking jets,

Γ(M,FM)→ Ω(M,J∞FM)θ,

where the cochain complex on the right is equipped with the differential
defined by the canonical flat connection on jets, is a quasi-isomorphism.

Define Maff := M coor/GLd, the bundle of formal affine coordinate
systems on M , to be the quotient of M coor by all linear changes of
coordinates. The projection M coor →Maff is a (GLd,Wd)-torsor.

6.2 Globalization of formal algebraic structures.

6.2.1 Descent to associated bundles.

Pick a Harish-Chandra pair (G, h).
Let X be a set of colors and let ∗ be a color not in X. Let O be an

S := {∗}tX-colored dg operad with twist data and let V = {Vs}s∈S be
an S-colored collection of dg vector spaces with h ⊂ V∗.

Definition 6.2.1.1. Consider the situation of a representation

O→ End〈V 〉,

with the properties that (i) h ⊂ V∗ is a dg Lie subalgebra and (ii) each
Vx, x ∈ X, is a (G, h)-module. When these conditions are satisfied we
say that O→ End〈V 〉 is a Harish-Chandra representation.

Remark 6.2.1.2. Observe that we do not require the L∞ actions h→
gl(Vx) defined by the twist data of O to equal the Harish-Chandra struc-
tures.
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Let (P → M,ϑ) be some given (G, h)-torsor and assume that O
is a coalgebra for the twist comonad. By the assumption that O is a
Tw -coalgebra, we obtain an induced representation

O→ TwO→ End〈Ω(P, V )ϑ〉,

where Ω(P, V )ϑ denotes {Ω(P, Vs)}s∈S with differentials given by the flat
connection ϑ. We are interested in conditions that allow us to descend
this to a representation

O→ End〈Ω(M,P ×G V )ϑ〉

on the associated bundle(s) on M .

Let Ωhor(P, V ) denote the subspace of Ω(P, V ) consisting of horizon-
tal forms with respect to the projection P → M . In other words, it
is the intersection of the kernels of all the contractions iζX , X ∈ g, for
ζX the vector field on P associated to X. Define the subspace of basic
forms by

Ωbasic(P, V ) := Ωhor(P, V )G.

By G-invariance of ϑ this is a subcomplex with respect to dϑ. The
following lemma is well-known.

Lemma 6.2.1.3. Pullback Ω(M,P ×G V )ϑ → Ω(P, V )ϑ along the pro-
jection P →M factors through an isomorphism onto the the subcomplex
Ωbasic(P, V )ϑ.

Proposition 6.2.1.4. The representation of TwO descends to a repre-
sentation in

Ω(M,P ×G V )ϑ

if and only if the following two conditions are satisfied for all n ≥ 1,
k ≥ 0, s· : [n]→ S, s ∈ S and ϕ ∈ TwO(s· | s)(k):

(1) ϕ : h⊗k ⊗
⊗n

i=n Vsi → Vs is G-equivariant.

(2) If k ≥ 1, then ϕ(X, . . . ) : h⊗k−1 ⊗
⊗n

i=n Vsi → Vs is 0 for all
insertions of an X ∈ g.

Proof. Take ϕ ∈ TwO(s· | s)(k) and forms αi ∈ Ωqi
basic(P, Vsi), 1 ≤ i ≤ n.

Write q := q1 + · · · + qn and α := α1 ∧ · · · ∧ αn. That the representa-
tion of TwO is given by operations that preserve G-invariance, i.e. that
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g∗ϕ(ϑ∧k, α1, . . . , αn) = g−1ϕ(ϑ∧k, α1, . . . , αn) for g ∈ G, is equivalent to
that the outer square below commutes.

∧k+qTp(P ) h⊗k ⊗
⊗n

i=n Vsi Vs0

∧k+qTp(P ) h⊗k ⊗
⊗n

i=n Vsi Vs0 .

ϑ∧k ∧ α

g∗

ϕ

(g−1)⊗k+n g−1

ϑ∧k ∧ α ϕ

The left square commutes by the G-invariance of ϑ, α1, . . . , αn. Hence
commutativity of the outer square is equivalent to commutativity of the
right square, which is equivalent to G-equivariance of ϕ.

Next we consider

iζXϕ(ϑ∧k, α1, . . . , αn) = ϕ(iζX (ϑ∧k), α1, . . . , αn).

Since iζXαi = 0 for i = 1, . . . , n by assumption, the above is automati-
cally 0 if k = 0. So assume k ≥ 0. We have to show that ϕ(iζXϑ, . . . ) = 0.
Since iζXϑ = X this finishes the proof.

6.2.2 Globalization on smooth manifolds.

This subsection contains few new technical result, its purpose is mainly
to explain the typical application of the technical result of the previous
section. To this end, we start by assuming we have a family of natural
bundle functors F = {Fs}s∈S , such that F∗ contains the tangent bundle
as a graded subbundle. Define Fd := J∞0 FRd. Thus the Lie algebra
Wd of formal vector fields is a subspace of Fd∗ , as is the Lie algebra
gld ⊂Wd of linear vector fields. Denote by Endbasic〈Fd〉 the dg suboperad
of multilinear maps that (i) areGLd-equivariant and (ii) vanish whenever
we insert an X ∈ gld as an input in the distinguished color. Assume
further that the family of natural bundles F exists for manifolds of an
arbitrary finite dimension d and that we are given an operad GF , which
for every d has a morphism

GF → Endbasic〈Fd〉.

In typical situations the operads Endbasic〈Fd〉 assemble in a diagram

· · · → Endbasic〈Fd〉 → Endbasic〈Fd+1〉 → · · ·

and we take GF to be (some suboperad of) the limit limd Endbasic〈Fd〉.
Moreover, the operad GF typically has a combinatorial description in
terms of graphs.
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The assumption that F is a family of natural bundle functors auto-
matically ensures that each Fds (s ∈ S) is a (Gd,Wd)-module. Assume
given twist data for GF . Take M to be a manifold of dimension d. By
6.2.1.4 there is an induced representation

TwGF → End〈Ω(Maff,M coor ×GLd F
d)ϑ〉.

The bundle Maff → M always admits a section because the fibers are
contractible. Pick such a section ϕ. Then we can pull back above mor-
phism to a representation

TwGF → End〈Ω(M,ϕ∗(M coor ×GLd F
d))ϕ∗ϑ〉.

There is a canonical isomorphism

Ω(M,ϕ∗(M coor ×GLd F
d))ϕ∗ϑ ∼= Ω(M,J∞FM)θ,

where θ denotes the jet bundle connection. The map of taking jets

j : Γ(M,FM)→ Ω(M,J∞FM)θ

is a quasi-isomorphism. Thus, we have a representation of TwGF in
Γ(M,FM), up to homotopy.

This is rather uninteresting in itself since GF does not code any
kind of particular algebraic structure: it is just a dimension-independent
incarnation of Endbasic〈Fd〉. Therefore, let us assume that Q∞ = C(C)
is a coalgebra for the twist comonad and that we have a representation
Q∞ → GF . Since Q∞ is a comonad for the twist construction, we then
obtain

Q∞ → TwGF → End〈Ω(M,J∞FM)θ〉.

A choice of retract data

Γ(M,FM) Ω(M,J∞FM)θ

will then, via homotopy transfer formulae, define an explicit representa-
tion

Q∞ → End〈Γ(M,FM)〉.

We remark that the only choices we made to get this representation
where the choice of a section ϕ of the bundle Maff and the choice of an
extension of the map of taking jets, j : Γ(M,FM)→ Ω(M,J∞FM), to
a contraction and homotopy-diagram.
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Proposition 6.2.2.1. The representation Q∞ → End〈Γ(M,FM)〉 is up
to homotopy independent of the choices made.

Let us only sketch a proof since we do not want to get into detail
about the precise meaning of homotopy between representations, and
then also only of the independence of the choice of section ϕ.

Proof. (Sketch.) Let ϕ0 and ϕ1 be two given sections of the bundle
Maff. One may find a path ϕt in the space of sections Γ(M,Maff) from
ϕ0 to ϕ1 depending polynomially on t. For example, if ϕi is defined by
the jets of the exponential map of an affine torsion-free connection ∇i,
i = 0, 1, then we can take ϕt to be defined by the spray of the connection
(1− t)∇0 + t∇1; a choice which is manifestly polynomial. From this we
obtain a family of representations

ρt : Q∞ → End〈Ω(M,J∞FM)θ〉

depending polynomially on t, i.e., a polynomial path ρt in the space of
Maurer-Cartan elements of

Map(Q¡,End〈Ω(M,J∞FM)θ〉),

connecting the representation defined by the choice ϕ0 and the repre-
sentation defined by the choice ϕ1.

6.2.3 Universal deformation complexes.

Let the notation be as in the last subsection. There is a morphism of dg
Lie algebras

Def(Q∞ → TwGF )→ CQ(Ω(M,J∞FM)θ,Ω(M,J∞FM)θ)).

Yet, we claim, it is incorrect to regard Def(Q∞ → TwGF ) as a universal
deformation complex for the Q∞-stucture on Γ(M,FM). Recall that
GF is supposed to be a universal version of Endbasic〈Fd〉. Thus TwGF
relates to

Tw End〈Fd〉 = CCE(Fd∗ ,End〈Fd〉),

so that, by our adjunction formula for the twist and Lie module con-
structions, Def(Q∞ → TwGF ) relates to

Def(L-mod(Q)∞ → δ∗End〈Fd〉),

where δ : Y = S t {∗̃} → S sends ∗̃ to ∗ and is the identity on S.
This means that the Q∞-deformations of Ω(M,J∞FM)θ coming from
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Def(Q∞ → TwGF ) typically involve deforming the effect of twisting
by the Maurer-Cartan element, by way of deforming the L∞-mod(S)-
structure. In the applications this is something we want to avoid.

Definition 6.2.3.1. Say that γ ∈ Def(Q∞ → GF ) is Maurer-Cartan
with respect to vector fields if, for every d, the image of ψ under pd :
GF → End〈Fd〉 has the property that pd(ψ)(q)(X1, . . . , Xn) = 0 for all
n ≥ 1, q ∈ Q¡(∗n | s), s ∈ S and vector fields x1, . . . , Xn ∈Wd.

Define Def(Q∞ → TwGF )(Wd) to be the subcomplex of the defor-
mation complex spanned by all φ such that both φ and dφ are Maurer-
Cartan with respect to vector fields.

Remark 6.2.3.2. The above definition mimics our related definition in
3.1.5.1.

The given morphism

Def(Q∞ → GF )→ CQ(Ω(M,J∞FM),Ω(M,J∞FM))

restricts to a morphism

Def(Q∞ → GF )(Wd)→ CQ(Ω(M,J∞FM),Ω(M,J∞FM))(θ),

since θ corresponds to a vector-valued differential form. Recall that there
is a morphism

CQ(Ω(M,J∞FM),Ω(M,J∞FM))(θ)

→ CQ(Ω(M,J∞FM)θ,Ω(M,J∞FM)θ),

from which we get

Def(Q∞ → GF )(Wd)→ CQ(Ω(M,J∞FM)θ,Ω(M,J∞FM)θ).

The complex Def(Q∞ → GF )(Wd) is more appropriately considered as a
universal deformation complex for the Q∞-stucture on Γ(M,FM). The
deformations it classifies do not inadvertently use the Maurer-Cartan
element. It classifies, simply, those deformations of Fd as a Q∞-algebra
that survive the globalization to become deformations of Γ(M,FM).

6.3 Global two-colored (non-)formality.

Fix a d-dimensional smooth manifold M . We define the space of polyvec-
tor fields on M to be the space of global sections of the exterior powers
of the tangent bundle; that is, we set Tpoly(M) := Γ(M,S(TM [−1])).
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Note that this clashes with our notation Tpoly(Rd) for the polynomial
polyvector fields. To remove the ambiguity we adopt the convention
that Tpoly(Rd) always refers to the polynomial vector fields; only for
manifolds M 6= Rd do we adopt the other definition. The polydiffer-
ential Hochschild cochain complex on M is defined as the subcomplex
Dpoly(M) of the Hochschild cochain complex of C∞(M) that is spanned
by those maps C∞(M)⊗n → C∞(M) which are polydifferential. In the
Chapter 4 we constructed a representation

FOC→ End〈Tpoly(Rd), Tpoly(Rd),A(Rd)〉.

Recall that this representation defines a representation

Mor∗(NCG)∞ → End〈Tpoly(Rd), Tpoly(Rd), CHoch(A(Rd),A(Rd))〉.

We will show that this can be globalized to a representation

Mor∗(NCG)∞ → End〈Tpoly(M), Tpoly(M), Dpoly(M)〉.

The reason that we globalize the representation of Mor∗(NCG)∞ instead
of the representation of FOC is that the latter operad does not have twist
data, nor is it formal, while

Mor∗(NCG)∞ = L{−1}-mod(Mor(Ass))∞

implies that the former is both formal and a coalgebra for the twist
construction.

Definition 6.3.0.3. Recall that in coordinates yi on Rd,

A(Rd) = R[y1, . . . yd],

Tpoly(Rd) = R[y1, . . . , yd, ∂/∂y1, . . . , ∂/∂yd], |∂/∂yi| = 1.

Define the completions

Â(Rd) := Rd[[y1, . . . , yd]], T̂poly(Rd) := Â(Rd)[∂/∂y1, . . . , ∂/∂yd].

Introduce also the formal polydifferential Hochschild cochain complex
D̂(Rd) ⊂ CHoch(Â, Â) as the complex of polydifferential cochains, i.e.,
of cochains of the form∑

DI1,...,Ik
∂

∂yI1
. . .

∂

∂yIn
, DI1,...,Ik ∈ Â(Rd),

with multiindices Ij . We may identify D̂(Rd) = CHoch(A, Â).
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Note that T̂poly(Rd) ∼= J∞0 S(TRd[−1]) and similarly for the other
completions.

Remark 6.3.0.4. There is an induced representation

Mor∗(NCG)∞ → End〈T̂poly(Rd), T̂poly(Rd), D̂(Rd)〉.

The general philosophy explained in the previous section tells us
that we should look for a universal version GF of an operad of the form
Endbasic〈F〉, where subscript “basic” refers to GL-equivariance vanishing
whenever a linear vector field is inserted in the distinguished color. Our
operad GF is, in the present case, the operad GraFOC. The operations
defined by graphs in this operad are GL-equivariant, but the operations
do not vanish when a linear vector field is inserted at a black input.
To get around this we need to following series of lemmata, for which
we have borrowed the proofs either in part or in full from [Kontsevich
2003].

Lemma 6.3.0.5. Let Γ be a graph in either graNCG(p, q) or graFOC(k,m, n),
respectively, with at least three vertices in total. If Γ has a univalent
black vertex, then the integral of θΓ over CF p,q(C) or CF k,m,n(H), re-
spectively, vanishes.

Proof. Let v be the univalent black vertex. The short proof is that v has
a two-dimensional freedom while θΓ has only a 1-form dependence on v,
since only one edge connects to v. In more detail, we argue as follows.
If Γ ∈ graNCG(p, q) then, since we cannot have edges between collinear
vertices, but have at least three vertices in total, we must have at least
one other black vertex for the form to be top-dimensional. Let u be the
(single) vertex adjacent to v and let e be the edge connecting them. We
have 2πθΓ = θΓ\e ∧ d arg(xv − xu). Use the gauge-freedom to put this
other black vertex at i and the collinear points on the real axis. Then it
is clear that v encodes two degrees of freedom. However, the level sets
of arg(xv −xu) foliate the domain of integration and θΓ restricts to zero
on any one of them.

The argument if Γ ∈ graphsFOC(k,m, n) is a repetition of essentially
the same argument.

Lemma 6.3.0.6. Let Γ be a graph in graNCG(p, q). If Γ has a bivalent
black vertex, then the integral of θΓ over CF p,q(C) vanishes.

Proof. Let v be the bivalent black vertex and let it be connected to ver-
tices u and w. Since we cannot have double edges u 6= w. Consider the
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function f defined on CFp,q(C) which reflects the point xv (correspond-
ing to the bivalent vertex) in the barycenter (xu + xw)/2, and leaves all
other points unchanged. This is not a map

f : CFp,q(C)→ CFp,q(C),

because f(xv) = xu + xw − xu might equal one of the other points x.
Nevertheless, f can be extended to the compactification by replacing the
image in that special case with the boundary point given by letting x
and ε(xu + xw − xu) collapse as ε tends to 0. We note that f preserves
orientation. Let e1 be the edge connecting v and u and let e2 be the edge
connecting v and w. Then f∗θe1 = θe2 , f∗θe2 = θe1 , while f∗θe = θe for
any other edge e. Hence f∗θΓ = −θΓ. Thus the integral is zero.

Lemma 6.3.0.7. Let Γ be a graph in graFOC(k,m, n). If Γ has a bivalent
vertex with one outgoing edge and one incoming edge, then the integral
of θΓ over CF k,m,n(H) vanishes.

Proof. Let π : CF k,m,n(H) → CF k−1,m,n(H) be the projection which
forgets the point xv that corresponds to the bivalent vertex v. We can
apply Fubini in the form∫

CFk,m,n(H)
θΓ =

∫
CFk−1,m,n(H)

π!(θΓ).

Let e1 = (u, v) be the incoming edge at v and let e2 = (v, w) be the
outgoing edge. Then

π!(θΓ) = ±θΓ\{e1,e2} ∧ π!(θe1 ∧ θe2).

The sign depends on which order the edges are in. We shall show that
the function h := π!(θe1∧θe2) is constantly equal to zero. First we argue
that it is constant. By fibrewise Stokes’:

dh = π!(d(θe1 ∧ θe2))± π!
∂(θe1 ∧ θe2) = ±π!

∂(θe1 ∧ θe2),

if π!
∂ denotes integration along the fibrewise boundary. The fibrewise

boundary has three kinds of strata. First of all there are strata where
the point xu collapses to a point on the boundary. This point can be
a new boundary point or an existing one. In either case the resulting
differential form to be integrated over the strata is zero, because since v
has an outgoing edge e2 the form will contain a factor corresponding to
an edge emanating from a boundary point. The second kind of strata
are given by xu tending to infinity, or, equivalently, by all the other
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points collapsing together to a single boundary point. In this case the
form is also zero, because in this limit configuration the edge e1 becomes
an edge emanating from a boundary point. Finally, the third kind of
strata is when xu collapses to one the points not on the boundary. In
all such cases the strata is a circle S1 = C2(C). We then distinguish
two possibilities: either xu collapses to one of the points xv or xw, or it
collapses to some other point x. In the latter case, when xu collapses to
x, the form is zero. If xu collapses to xv or xw the form is the normalized
volume form on the circle, so the integral does not vanish; however, those
two contributions cancel each other. This proves that h is constant.

Finally, we argue that h is zero. Here we have to distinguish two
cases. In the first case neither v nor w is a boundary vertex. In that
case, assume xv = i and xw = 2i. For this particular case the involution
given by reflection in the imaginary axis reverses orientation of the fiber
but preserves the integrand. Thus h(i, 2i) = 0, which since we know it
is a constant function implies it vanishes everywhere. In the second case
w is a boundary point. In this case we look at xw = 0 and xu = i, apply
the same involution, and make the same conclusion.

Corollary 6.3.0.8. Let π ∈ ~Tpoly[[~]] be a Maurer-Cartan element.
All the operations in the π-twisted representation

Mor∗(NCG)∞ → End〈Tpoly[[~]]π, Tpoly[[~]]π, CHoch(A,A)[[~]]π〉

are given by sums over graphs Γ ∈ graNCG, with π decorating at least
trivalent black vertices, and graphs Γ ∈ graFOC, that have π decorating
black vertices that might be bivalent, but can not have just one incoming
and one outgoing edge.

Proposition 6.3.0.9. The θ-twisted representation

Mor∗(NCG)∞

→ End〈Ω(M coor, T̂poly(Rd))ϑ,Ω(M coor, T̂poly(Rd))ϑ,Ω(M coorD̂(Rd))ϑ〉

descends to a representation in the associated bundles on Maff.

Proof. We need to check the conditions of 6.2.1.4. The GLd equivari-
ance is clear since all Mor∗(NCG)∞-operations are represented as linear
combinations of operations of the form DΓ(ϑ∧k, . . . ), and all operations
defined by graphs are GLd-equivariant. The necessary vanishing on gld
follows from the preceeding corollary. The form ϑ takes values in formal
vector fields, and a formal vector field can handle at most one outgoing
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edge. Hence, if a vertex of a graph in graNCG that decorated by ϑ is triva-
lent, then two of the three edges must be bivalent. This means that the
operation vanishes if the vector field is linear, since a second derivative
of something linear vanishes. If the graph is in graFOC, then any vertex
decorated by ϑ must have exactly one outgoing edge, since ϑ is vector
field-valued. Since it cannot have only one outgoing and one incoming
edge, it must then have at least two incoming edges, and we will again
be taking the second derivative of something linear.

Choose a section ϕ of Maff →M . Define

Tpoly(M) := Ω(M,ϕ∗(M coor ×GLd T̂poly(Rd))),

Dpoly(M) := Ω(M,ϕ∗(M coor ×GLd D̂(Rd))),

and B := ϕ∗ϑ ∈ Ω1(M,ϕ∗(M coor ×GLd Wd)).

Lemma 6.3.0.10. In the B-twisted representation

Mor∗(NCG)∞ → End〈Tpoly(M)B,Tpoly(M)B,Dpoly(M)B〉

the L∞-structure on Tpoly(M)[1] is the one with differential d+[B, ]S and
fibrewise Schouten bracket, the A∞-structure on Tpoly(M) is nonstan-
dard but has differential d+[B, ]S , and the A∞-structure on Dpoly(M) is
the one with differential d+ [B, ]G and fibrewise standard cup product.

Proof. The statement about the Lie algebra Tpoly(M) follows from not-
ing that it, before twisting, is a dg Lie algebra (so there can be no higher
operations after twisting either).

The statement about the differential on the A∞ algebra Tpoly(M)
follows from noting that the differential is given by

[B, ]S +
∑
p≥2

1

p!
Vp,1(B∧p, ),

but by the trivalency condition on free interior vertices the second term
vanishes.

The statement about Dpoly(M) is argued as follows. It has the A∞-
structure corresponding to the fibrewise star product U(B). But U(B) =
B because the graphs used in all other potential contributions to U(B)
are at least trivalent, hence vanish when we decorate all vertices with
B.
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Lemma 6.3.0.11. The following identifications are canonical:

ϕ∗(M coor ×GLd T̂poly(Rd)) ∼= Ŝ(T ∗M)⊗ S(TM [−1]);

ϕ∗(M coor ×GLd D̂(Rd)) ∼= Ŝ(T ∗M)⊗ T̂ (S(TM)[−1]);

ϕ∗(M coor ×GLd Wd) ∼= Ŝ(T ∗M)⊗ TM.

Proof. Let p denote the projection p : Maff → M and let J∞(M)
denote the bundle of infinite jets of functions on M . The identifica-
tions are more or less formal consequences of the canonical identification
p∗J∞(M) ∼= p∗Ŝ(T ∗M), so we settle for proving that. Let π be the pro-
jection M coor →M and take a φ with π(φ) = x. The formal coordinate
system φ comes from some local diffeomorphism φ̃ : Rd → M . That
local diffeomorphism defines an isomorphism

π∗J∞(M)φ = J∞x (M) ∼= J∞0 (Rd) = R[[y1, . . . , yd]].

It similarly defines an isomorphism

π∗Ŝ(T ∗M)φ ∼= Ŝ(T ∗0 Rd) = Rd[[dy1, . . . , dyd]], |dyi| = 0.

It follows that

p∗J∞(M) ∼= M coor ×GLd R[[y1, . . . , yd]],

p∗Ŝ(T ∗M) ∼= M coor ×GLd R[[dy1, . . . , dyd]].

The coordinates yi and the covectors dyi transform the same under linear
coordinate changes, hence the two bundles are isomorphic.

Remark 6.3.0.12. The preceeding lemma lets us write everything lo-
cally in terms of coordinates xi on M and the corresponding 1-forms
dxi, a frame yi of T ∗M and the corresponding dual frame ∂/∂yi of TM .
For example, a bivector field in Tpoly(M) will have a local expression

ξ =
∑

ξijI (x, dx)yI
∂

∂yi
∂

∂yj
,

with I a multi-index, and each coefficient ξijI (x, dx) a differential form
on M .

There universal property of M coor with respect to natural bundle
functors gives an isomorphism

ϕ∗(M coor ×GLd T̂poly(Rd)) ∼= J∞S(TM [−1]).
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This isomorphism, together with the map of taking jets, defines a quasi-
isomorphism of dg vector spaces

j : Tpoly(M)→ Tpoly(M)B = (Tpoly(M), d+ [B, ]S).

Similarly, we have a quasi-isomorphism j : Dpoly(M) → Dpoly(M)B.
Define inverse projections

p : Tpoly(M)B,Dpoly(M)B → Tpoly(M), Dpoly(M)

by p(xi) = xi, p(∂/∂yi) = ∂/∂xi, and p(dxi) = 0 = p(yi). We complete
the data with a homotopy δ−1 defined by

δ−1f(x, dx, y) := ykι∂/∂xk

∫ 1

0
f(x, tdx, ty)

dt

t
.

We now have a homotopy retract diagram

Tpoly(M) Tpoly(M)B

and a similar one for polydifferential Hochschild cochains.

Lemma 6.3.0.13. The A∞-structure on Tpoly(M) obtained by homo-
topy transfer from Tpoly(M)B is the usual structure of graded associative
algebra given by the wedge product.

Proof. Call the components of the transferred structure µn and the com-
ponents of the structure we transfer νBq . Recall

νB2 = ∧+
∑
p≥1

1

p!
Vp,2(B∧p, ), νBq =

∑
p≥1

1

p!
Vp,q(B

∧p, ), q ≥ 3.

The transferred structure is given by the formula µn =
∑

T∈PTn ν
B
T , the

sum being over all planar rooted trees with at least bivalent vertices,
and with νBT denoting the operation obtained by decorating the vertices
of T with the matching operations νBq , all edges with δ−1, the root leg
with p and all input legs with j, and interpreting the resulting decorated
tree as a composition diagram.

The projection p kills everything of form-degree ≥ 1. This means
that the only terms that can contribute to µn have V0,2 = ∧ decorating
the vertex closest to the root.

Assume, then, that T has a bivalent vertex u decorated by ∧ closest
to the root, and at least one other vertex v connected by an edge to
u. The edge between u and v is decorated with δ−1. Anything not of
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form-degree ≥ 1 is killed by δ−1, so at the vertex v we must place a
decoration containing at least one B. But on applying the homotopy we
then obtain an input for the wedge product at u which is of degree ≥ 1
in y. Since ∧ can not reduce the degree in y we then end up feeding
something of degree ≥ 1 in y to the projection p at the root; getting
something that vanishes.

We conclude that the only nonzero µn is µ2(X,Y ) = p(jX ∧ jY ) =
X ∧ Y , the first wedge denoting the fibrewise wedge-product and the
second one denoting the usual wedge-product on polyvector fields.

Theorem 6.3.0.14. There is an explicit homotopy transferred structure

Mor∗(NCG)∞ → End〈Tpoly(M), Tpoly(M), Dpoly(M)〉

with

(i) the Schouten graded Lie algebra structure on Tpoly(M)[1].

(ii) the associative wedge product on Tpoly(M).

(iii) the associative cup product on Dpoly(M).

(iv) the action of polyvector fields on the polydifferential Hochschild
cochain complex being of the form br ◦ U, where

U : Tpoly(M)→ Dpoly(M)

is a quasi-isomorphism of L∞ algebras. (The globalized Kontsevich
formality.)

(v) the morphism of NCG∞-algebras being a quasi-isomorphism.

Proof. The map of taking jets j : Tpoly(M) → Tpoly(M)B is a quasi-
isomorphism of dg Lie algebras, if both are equipped with the Schouten
bracket. Similarly, the map of taking jets of polydifferential operators
is also a quasi-isomorphism of dg associative algebras. This proves (i)
and (iii). Point (ii) is the statement of the previous lemma. Point (iv)
is argued as follows. The action before homotopy transfer is given by
the fibrewise B-twisted br ◦ U. Since br is a strict morphism of dg Lie
algebras, twisting and homotopy transfer has to produce a morphism of
the form br◦U. It has to be a quasi-isomorphism since homotopy transfer
preserves quasi-isomorphisms. Point (v) again follows from the fact that
the homotopy transfer of a quasi-isomorphism is a quasi-isomorphism.
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6.3.1 The global exotic action.

Part of the globalized data constructed in 6.3.0.14 is an L∞ morphism

V : Tpoly(M)[1]→ CAss(Tpoly(M), Tpoly(M)).

Remark 6.3.1.1. The morphism V maps into a subcomplex of polyd-
ifferential Hochschild cochains.

Our task in this section is to give explicit formulas for the simplest
terms of V.

Proposition 6.3.1.2. The first two terms of V are V1,1 = [ , ]S and

V1,3 = p ◦
(
V1,3 + [ , ]S ◦

(
id⊗ (δ−1 ◦ V1,3(B))

))
◦ (j ⊗ j⊗3).

Proof. The morphism V is defined by transfer of NCG∞-structure, from
Tpoly(M)B to Tpoly(M). Denote by

VB : Tpoly(M)B[1]→ CAss(Tpoly(M)B,Tpoly(M)B)

the B-twisted fibrewise structure. Recall that

VBp,q =
∑
k≥0

1

k!
Vk+p,q(B

∧k, . . . ).

The transferred structure is given by a formula

Vr,s =
∑
T

VBT ,

where we sum over rooted trees T with at least bivalent vertices and
with two kinds of legs/edges, corresponding to the two operadic colors.
The legs in the Lie color are non-planar while the legs in the associative
color are planar. Vertices are decorated by matching components VBp,q,

λBk or νBn , of the B-twisted fibrewise structures, edges are decorated by
the homotopy δ−1, the root by the projection p, and all inputs by j.

Let us start with V1,1. Simply by constraint on the number of inputs,

V1,1 = p ◦ VB1,1 ◦ j ⊗ j.

Since p is 0 on anything of form-degree ≥ 1 we cannot have a B as input
at the bottom vertex. Thus

V1,1 = p ◦ V1,1 ◦ j ⊗ j.
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Since V1,1 = [ , ]S is the fibrewise Shouten-bracket we deduce V1,1 = [ , ]S
is the (global) Schouten bracket, considered as an adjoint action.

Similarly, we cannot have a B as input at the bottom vertex in any
tree contributing to V1,3. This means that a tree contributing to this
operation must either have V 1,3 or V 1,1 at the bottom vertex. If we
put V 1,3 at the bottom vertex then we cannot have any further vertices,
since that would have to increase the number of inputs beyond (1, 3).
Hence we have a contribution

p ◦ V1,3 ◦ (j ⊗ j⊗3)

to V1,3. Assume we put V 1,1 at the bottom vertex. Then we must have
at least one other vertex v. The homotopy δ−1 kills everything of form-
degree zero. Since V1,2 = 0, this (together with the constraint on the
number of inputs) then requires that we put νB3 on v. The homotopy
reduces form-degree by 1 so there can be at most one B at the inputs
of the operation decorating v, and that singles out the term V1,3(B) of
νB3 . This gives the only other contribution to V1,3.

Up to taking jets and using the contracting homotopy, the only op-
erations used to compute V1,3 are the fibrewise Schouten bracket and
the fibrewise V1,3. Recall that up to orientations of edges there is a
single graph contributing to V1,3; the graph , with three collinear
vertices and a single trivalent free interior vertex. Still, the general for-
mula for V1,3 is very complicated. We shall write it out explicitly only
for V1,3(π)(f, Y, Z), where π is a bivector, f is a function, and Y and Z
are vector fields.

Over a parallelizable open subset U ⊂ M we can always find a lift
of ϕ to a section φ of M coor. Recall that φ(x) is the jet of a local
diffeomorphism φ̃ : Rd →M taking 0 to x. If we give Rd coordinates yi

and take the subset U to have coordinates xi, then φ is represented as
the Taylor expansion of φ̃:

φi(x, y) = xi + φijy
j +

1

2
φijky

jyk + · · ·+ 1

r!
φij1...jry

j1 . . . yjr + . . . .

=
∑ 1

r!

∂rφ̃

∂yj1 . . . ∂yjr
yj1 . . . yjr .

We shall find it convenient to not distinguish between φ̃ and φ. The con-
dition that φ is a local diffeomorphism at 0 ∈ Rd amounts to demanding
that φij is an invertible matrix. Moreover, since Maff = M coor/GLd we
may assume the representative φ of ϕ to start with the unit matrix:
φij = δij . Finally, let us drop also the distinction between ϕ and φ in all
local calculations.
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6.3.2 The Maurer-Cartan element.

Let X ∈ TφM coor be a tangent vector and let φt : I →M coor be a path
of formal coordinate systems, with φ0 = φ and tangent vector X at φ.
The connection form ϑ on M coor is defined locally by

ϑ(X) = −
∑ 1

r!

∂r

∂yj1 . . . ∂yjr

(
(dφ(y))−1 d

dt
φt(y)|t=0

)
∈Wd.

It follows that ϕ∗ϑ ∈ Ω1(M,Wd) has the local expression

ϕ∗ϑ = Bi
j(x, y)dxj

∂

∂yi
,

where

Bi
j(x, y) := −

((∂ϕ
∂y

)−1
)i
k

∂ϕk

∂xj
.

Here (∂ϕ/∂y)−1 denotes the matrix inverse of the matrix of formal power
series ∂ϕi/∂yj . Let us caculate B up to second order. Define

Ψ :=
(∂ϕ
∂y

)−1
, Ψi

j =
∑ 1

r!
ψija1...ary

a1 . . . yar .

The equation Ψi
k(∂ϕ

k/∂yj) = δij can be solved iteratively, using

ψij = δij ,

1

r!
ψija1...ary

a1 . . . yar = −
r∑
p=1

1

p!(r − p)!
ϕik(a1...ap|ψ

k
j|ap+1...ar)

ya1 . . . yar .

Note that the indices as to the right are symmetrized since the corre-
sponding variables yas commute. Our convention for symmetrization is
to normalize, so that A(ij) = (1/2)(Aij + Aji) and, e.g., ϕi(ab) = ϕiab. It
follows that

−Bi
j =

(
δik − ϕikaya +

(
ϕik(a|ϕ

k
j|b) −

1

2
ϕikab

)
yayb + . . .

)
·
(
δkj +

1

2

∂

∂xj
ϕkrsy

rys + . . .

)
= δij − ϕijaya +

(
1

2
∂jϕ

i
ab + ϕik(a|ϕ

k
j|b) −

1

2
ϕijab

)
yayb +O(y3).

Let us now specialize to the case when ϕ is defined as the jet of the
exponential map of an affine torsion-free connection on M . In this case
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we get the local expression of ϕ as follows. Let Φi(x, y, t) be smooth in
x and t ∈ [0, 1] and formal in y. The formal geodesic equation

Φ̈i + ΓijkΦ̇
jΦ̇k = 0, Φ(x, y, 0) = x, Φ̇(x, y, 0) = y,

where Γijk are the Christoffel symbols of the connection, can be solved
and ϕ(x, y) = Φ(x, y, 1). The first orders of the solution are

ϕi = xi + yi − 1

2
Γiaby

ayb +
1

3!

(
2Γik(aΓ

k
bc) − ∂(aΓ

i
bc)

)
yaybyc +O(y4).

Hence ϕiab = −Γiab and ϕiabc = 2Γik(aΓ
k
bc) − ∂(aΓ

i
bc). Inserting this into

our expression for the quadratic coefficient Bi
jab of Bi

j gives1

−Bi
jab =

1

2

(
1

3

(
∂[aΓ

i
j]b + ∂[bΓ

i
j]a

)
+

1

3

(
ΓikaΓ

k
jb + ΓikbΓ

k
ja − 2ΓikjΓ

k
ab

))
=

1

6

(
Ribaj +Riabj

)
=

1

3
Ri(ab)j .

The components of the Riemann curvature tensor are here defined ac-
cording to the standard convention R(u, v)w = Rijklu

kvlwj . Bracketed
indices denote normalized antisymmetrization. It follows that

Bi
j = −δij − Γiajy

a − 1

3
Ri(ab)jy

ayb +O(y3).

6.3.3 Explicit computation of a term.

We can by assumption invert ϕ(x) : Rd → M in a neighborhood of x.
Taking a polyvector field ξ on M we may then take the push-forward
(ϕ(x)−1)∗ξ and get a polyvector field on some small neighborhood of
0 ∈ Rd. Taking the Taylor expansion of that then gives us the formula
for the jet jξ. For a bivector field π this gives

jπij = πkl(ϕ(x, y))Ψi
kΨ

j
l

= πij +∇aπijya +
(
∇(a∇b)πij +

2

3
R

[i
(ab)kπ

j]k
)
yayb +O(y3),

after a simplification analogous to the one that gave us the quadratic
part of the Maurer-Cartan element. For the vector fields and functions
we only need up to linear in y: jXi = Xi+∇aXiya+O(y2), analogously
for jY , and jf = f + ∂afy

a +O(y2).

1I am grateful to Malin Göteman for helping me with this calculation.
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Lemma 6.3.3.1. In local coordinates as above,

24p(V1,3(jπ)(jX, jY, jf))

= 4

(
∇(a∇b)πci +

2

3
R

[c
(ab)kπ

i]k

)
XaY b∂cf

∂

∂xi

+ 2∇aπbc∇bY iXa∂cf
∂

∂xi
+ 2∇aπbcY a∇bXi∂cf

∂

∂xi
.

Proof. Recall that V1,3 is given by the 8 differential operators corre-
sponding to the 23 ways of orienting the edges of the graph , and
that each of these graphs have weight 1/24. Since π is a bivector and
f is a function we can have at most two outgoing edges from the free
vertex, and must have an incoming edge at the vertex decorated with
f . This reduces the calculation from 8 terms to 3. That p sends all yi’s
to zero gives us constraints on the order of the jets (Taylor expansions).
The rest is a straight-forward computation (no terms cancel each other,
no Bianchi identities are used, or etc.)

Lemma 6.3.3.2. In local coordinates as above,

24p
(
[jπ, δ−1V1,3(B)(jX, jY, jf)]S

)
= −4

3
πkiRc(ab)kX

aY b∂cf
∂

∂xi
.

Proof. Since the fibrewise Schouten bracket [jπ, ]S reduces the degree in
y by one, δ−1 increases the degree in y by one, and p vanishes on y, we
are looking for the term of V1,3(B)(jX, jY, jf) of y-degree zero. Since
B is a vector field and jf must have an incoming edge, there is a single
directed graph contributing to V1,3(B)(jX, jY, jf); that with the edges
directed from jX and jY to B and from B to f . The degree condition
means that the only term of B that contributes is the quadratic term

−1

3
dxjRi(ab)jy

ayb
∂

∂yi
.

A simple calculation gives

24V1,3(B)(jX, jY, jf) = −2

3
dxjRc(ab)jy

aybXaY b∂cf
∂

∂yi
+O(y).

Applying δ−1 replaces dxj by yj . Finally applying p ◦ [jπ, ]S contracts
indices and multiplies by 2 for the polyvector-degree of π.

Proposition 6.3.3.3. In local coordinates,

24V1,3(π)(X,Y, f)

= −4

3
Ri(ab)cX

aY bπck∂kf
∂

∂xi
+ 4XaY b∇(a∇b)πki∂kf

∂

∂xi

− 2Xa∇aπkb∂kf∇bY i ∂

∂xi
− 2Y a∇aπkb∂kf∇bXi ∂

∂xi
.
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Proof. Combine the two preceeding lemmata and note that two terms
cancel each other.

Remark 6.3.3.4. If π is a Poisson bivector, then the global V defines
an A∞ structure νπ on (Tpoly(M) with differential the Poisson complex
differential dπ = [π, ]S . The term V1,3(π)(X,Y, f) is the lowest order
term in π of νπ3 (X,Y, f).

Remark 6.3.3.5. Assume π is a symplectic Poisson structure and take
∇ to be a symplectic connection. Then all covariant derivaties of π
vanish and, moreover, πck∂kf are the components of the Hamiltonian
vector field H corresponding to f . Thus, in this special case the above
formula reduces to

V1,3(π)(X,Y, f) = − 1

36

(
R(Y,H)X +R(X,H)Y

)
.

This showcases an interesting (but not entirely surprising) feature of
the globalization. Namely, applying the non-global construction in for-
mal Darboux coordinates (so that the symplectic Poisson structure is
constant) gives operations that vanish. Still, the actual global formula
involves correction terms whose prescription is constrained by the global
topology of the manifold.
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CHAPTER 7

Duflo automorphisms of Poisson cohomology

7.1 Summary of the results.

Let M be a smooth finite-dimensional manifold. It is known that the
Grothendieck-Teichmüller group GRT1 acts by L∞ automorphisms of
the Lie algebra of polyvector fields with Schouten bracket. (The action
is strictly speaking defined only up to homotopy, as one needs to pick
representative cocycles in the graph complex GC of elements in grt1.)
Recall the canonical (strict) NCG-structure on polyvector fields, given
by the Schouten bracket, the wedge product, and the adjoint action of
the Schouten bracket by derivations of the wedge product. The main
result of this chapter is the following:

Theorem 7.1.0.6. Let g ∈ GRT1 be an element of the Grothendieck-
Teichmüller group. Then:

(i) There is an NCG∞ deformation(
(Tpoly(M), [ , ]S), (Tpoly(M), µg),Vg

)
of the standard structure on polyvector fields, where µg = ∧+µg≥5

and Vg = adS +V≥3,≥5 have higher homotopies only for more than
five inputs in the associative color.

(ii) There is an NCG∞-isomorphism(
(Tpoly(M), [ , ]S), (Tpoly(M),∧), adS

)
→
(
(Tpoly(M), [ , ]S), (Tpoly(M), µg),Vg

)
,
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extending the L∞ automorphism defined by g.

Let ~π ∈ Tpoly(M)[[~]] be a Maurer-Cartan element. The image of
~π under the L∞ automorphism defined by g is another Maurer-Cartan
element ~g(π). By twisting we obtain from the preceeding theorem an
A∞ isomorphism

(Tpoly(M)[[~]], d~π,∧)→ (Tpoly(M)[[~]], d~g(π), ν
g,~g(π)).

The following is an immediate corollary of above theorem since νg,~g(π) =

∧+ ν
g,~g(π)
≥5 .

Corollary 7.1.0.7. There is an algebra isomorphism

(H(Tpoly(M)[[~]], d~π),∧)→ (H(Tpoly(M)[[~]], d~g(π)),∧)

on cohomology.

As a special case, consider the case when M = g[1] is the suspension
of a graded Lie algebra g of finite type and π is defined as the tensor
giving the Lie bracket on g. In this case we may set the formal parameter
~ = 1 and identify (Tpoly(M), dπ) as a complex with the Chevalley-
Eilenberg cochain complex CCE(g, S(g)). Moreover, it is known that
g(π) = π for a Maurer-Cartan element of this form. (The reason is
the elementary observation that in this situation π is a vectorfield; so
vertices decorated by π can have at most one outgoing edge, but g(π) is
defined by decorating all vertices of some sum of graphs γ ∈ GC0 with
at least trivalent vertices. Such a graph can not be directed without
some vertex getting more than one outgoing edge.) Hence:

Corollary 7.1.0.8. Every g ∈ GRT1 defines an algebra automorphism
of HCE(g, S(g)).

This last corollary is a slight generalization of Kontsevich’s remark
on the Duflo automorphism, cf. [Kontsevich 1999].

The above results are contained in “Grothendieck-Teichmüller group
and Poisson cohomologies”, by the author and S. Merkulov. However,
that paper does not give a fully detailed discussion of the globalized
statements, unlike the present chapter, which explains everything in
detail.
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7.2 Proof of the main theorem.

7.2.1 An equality in graph complexes.

Recall the operads Gra and GraNCG and that the deformation complex
Def(NCG∞ → GraNCG) may be regarded either as the semidirect product
(explains the Lie bracket)

Def(Ass∞ → twGraNCG) o Def(Lie∞{−1} → Gra).

of the right action (Γ, γ) 7→ Γ • γ, or as the mapping cone (makes the
differential transparent) of the morphism

X : Def(Lie∞{−1} → Gra)[−1]→ Def(Ass∞ → twGraNCG),

γ 7→ Xγ := • γ.

We draw vertices of graphs in Def(Lie∞{−1} → Gra) and the dummy
vertices of graphs in Def(Ass∞ → twGraNCG) as black, and the others
white. Since we shall be interested in globalizations, let us restrict at-
tention right away to graphs that have at least trivalent black vertices
and look at the subcomplex

C := Cone
(
X : GC[−1]→ Def(Ass∞ → Graphs)

)
,

discussed at some length in chaper 5, e.g. 5.2.0.6. Denote the differential
on GC by δ and the differential on the complex to the right by ∂ + dH .
In pictures,

δγ = [ , γ], ∂Γ = [ ,Γ] + Γ • , dHΓ = [ ,Γ].

Denote the full differential on C by d, viz.

d(Γ, γ) =
(
∂Γ + dHΓ−Xγ , δγ).

Define a map

GC→ Def(Ass∞ → Graphs), γ 7→ γ(1)

by coloring the vertex labeled by, say, 1 white. (Remember that vertex
labels of graphs in GC are symmetrized, so it does not matter which
label we recolor.)

Lemma 7.2.1.1. For all graphs γ ∈ GC, Xγ = ∂(γ(1))− (δγ)(1).
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Proof. The statement is easiest to verify on the level of representations,
recalling that the graphical operads can be regarded as certain universal
endomorphism operads. Let V be a finite-dimensional vector space, set
OW = S∗(V ∗ ⊕ V [−1]) and consider it as the polynomial functions on
the odd symplectic space V ⊕ V ∗[1]. The shifted algebra OW [1] is a Lie
algebra under the Poisson bracket { , }. In this setting our morphisms
correspond to the map

X : CLie(OW [1],OW [1])[−1]→ CCE(OW [1], CAss(OW ,OW )),

that sends a cochain γ : Sn(OW [2])[−1] → OW to the map that takes
n functions f1, . . . , fn to the Hamiltonian vector field Xγ(f1,...,fn) =
{γ(f1, . . . , fn), } associated to the function γ(f1, . . . , fn), and the map

CLie(OW [1],OW [1])→ CCE(OW [1], CAss(OW ,OW ))

which sends a cochain γ as above to the map which sends n−1 functions
f1, . . . , fn−1 to the map sending a function g to γ(1)(f1, . . . , fn−1)(g) =
γ(f1, . . . , fn−1, g). The differentials δ and ∂ are the respective Chevalley-
Eilenberg differentials while dH is the differential on CAss(OW ,OW ). We
leave the actual verification of the formula to the reader.

The lemma has the following consequence: if γ is a cocycle in GC,
then Xγ = ∂γ(1) is a cocycle in Def(Ass∞ → Graphs), because, clearly,
dHXγ = 0. Recall the result 5.1.2.2 by Kontsevich that the morphism
Ger → Graphs is a quasi-isomorphism. A consequence of that result is
that all cocycles in

Def(Ass∞ → Graphs)

can be represented as graphs without dummy vertices. Using this one
can prove the following statement.

Lemma 7.2.1.2. [Lambrechts and Volić 2008] Any ∂-cocycle Γ in

Def(Ass∞ → Graphs)

with at least one dummy vertex is ∂-exact.

Corollary 7.2.1.3. Let γ ∈ GC be a cocycle with each term having k
black vertices. Then there are graphs γ(`) with ` white vertices and k−`
white vertices for 2 ≤ ` ≤ k, such that

(∂ + dH)(γ(1) + · · ·+ γ(k)) = ∂γ(1) + dHγ(k).
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Proof. If k = 1, then we can take the γ(1) already defined. If k ≥ 2 we
note that, since ∂dHγ(1) = 0, there must exist a graph γ(2) with two
white vertices and the property that dHγ(1) = −∂γ(2). If k ≥ 3 we can
apply the same argument again, obtaining at the final step a graph γ(k)

without dummy vertices.

Definition 7.2.1.4. In the situation as above, define γmax := dHγ(k).
It is a graph with k + 1 white vertices and no dummy vertices.

Corollary 7.2.1.5. Let γ ∈ GC be a cocycle. Then

d(γ(1) + · · ·+ γ(k), γ) = (γmax, 0)

in the complex C .

7.2.2 The main theorem on affine space.

Let us apply the corollary at the end of the last subsection to a degree 0
cocycle γ and interpret the result in terms of deformations. The degree
1 element (γmax, 0) represents a universal infinitesimal deformation of
the standard NCG∞ structure on polyvector fields. By its very form,
involving no black vertices, we deduce that it involves deforming only the
asociative wedge-product, which is given by the graph , to a product
given infinitesimally by the sum + γmax. Since degree 0 cocycles
in Kontsevich’s graph complex have ≥ 4 vertices, γmax has ≥ 5 white
vertices.

The degree 0 element (γ(1) + · · ·+γ(k), γ) defines a universal infinites-
imal NCG∞-isomorphism from the standard structure to this deforma-
tion.

Proposition 7.2.2.1. The element (γ(1) + · · ·+γ(k), γ) can be exponen-
tiated to define an NCG∞-isomorphism Hγ from the standard NCG∞-
structure on polynomial polyvector fields to one which deforms the stan-
dard one by adding homotopies involving only ≥ 5 inputs in the asso-
ciative color. In short, the main theorem is true on affine space.

Proof. We must only prove that all operations defined by exponentiation
converge, without the need to introduce a formal parameter. This is clear
because there are always a finite number of terms having a fixed number
of black and a fixed number of white inputs. In more detail, the gauge
equation

(Γ, ) = exp
[
−adC (γ(1) + · · ·+ γ(k), γ)

]
·
(

+ ,
)
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has a solution Γ ∈ Def(Ass∞ → Graphs) of the form

Γ = + γmax + + Γ′,

where terms in Γ′ have ≥ 5 white vertices and a total number of vertices
≥ 8, since its first contributions are [γ(1) + · · ·+γ(k), γmax]. Restricted to
the Lie color the gauge equation says that the cocycle γ exponentiates
to an L∞ automorphism eγ of the Schouten bracket.

7.2.3 The main theorem on a smooth manifold.

Fix a smooth manifold M of finite dimension d for the remainder of this
section. As in the Chapter 6, choose a section ϕ of Maff →M and define

Tpoly(M) := Ω(M,ϕ∗(M coor ×GLd T̂poly(Rd))),

B := ϕ∗ϑ ∈ Ω1(M,ϕ∗(M coor ×GLd Wd)).

As in 6.3.0.11, we identify

ϕ∗(M coor ×GLd T̂poly(Rd)) ∼= Ŝ(T ∗M)⊗ S(TM [−1]),

and, accordingly, Tpoly(M) ∼= Ω(M, Ŝ(T ∗M)⊗ S(TM [−1])).

Lemma 7.2.3.1. The canonical morphism

D : Def(NCG∞ → GraNCG)→ CNCG(Tpoly(M),Tpoly(M))

maps the complex C (from the preceeding section) into the subcomplex
CNCG(Tpoly(M),Tpoly(M))(B) (defined in 3.1.5.1).

Proof. The Maurer-Cartan element is a fibrewise vector-valued. Hence
the statement follows from the fact that all black vertices of graphs are at
least trivalent; such a graph with only black vertices can not be directed
in such a way that all vertices have at most one outgoing edge.

The above lemma says that the following is well-defined.

Definition 7.2.3.2. Define Φ to be the composition

C
D−→ CNCG(Tpoly(M),Tpoly(M))(B)

tB−→ CNCG(Tpoly(M)B,Tpoly(M)B).

Proposition 7.2.3.3. The main theorem is true.
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Proof. The morphism Φ allows us to transfer the gauge equation

( + γmax + + Γ′, ) = exp
[
−adC (γ(1) + · · ·+ γ(k), γ)

]
·
(

+ ,
)

in C , which gives the affine version of the construction promised in the
main theorem, to an analogous equation in the deformation complex

CNCG(Tpoly(M)B,Tpoly(M)B).

The morphism Φ informally acts by decorating an arbitrary number of
black vertices by B; in particular, Φ does not alter the fact that the
higher homotopies in the NCG∞ structure represented by the Maurer-
Cartan element to the left have at least 5 inputs in the associative color.
This proves that the main theorem holds in the form of an NCG∞ iso-
morphism

Hγ,B :
(
(Tpoly(M)B, [ , ]S), (Tpoly(M)B,∧), adS

)
→
(
(Tpoly(M)B, [ , ]S), (Tpoly(M)B, µ

γ),Vγ
)
.

Homotopy transfer creates new higher homotopies by summing over
compositions of the operations in the structure that is transfered, hence
one deduces that the new higher homotopies also have ≥ 5 inputs in the
associative color. Thus, the main theorem holds on M .

7.2.4 Remarks on the global morphism.

Define Gγ := eγ to be the fibrewise L∞ automorphism of the Schouten
bracket and F γ = {F γn,m} the remaining terms, such that Hγ = (Gγ , F γ)
is the fibrewise NCG∞ morphism on Tpoly(M) (note no twisting by B!).
We shall find it convenient to drop the superscript γ whenever no con-
fusion arises, and, e.g., write just F instead of F γ .

Define

Gik :=
1

i!
Gi+k(B

∧i, . . . ), F in,m :=
1

i!
Fi+k(B

∧i, . . . ).

Note that the B-twisted fibrewise L∞ morphism GB accordingly has
components GBk =

∑
i≥0G

i
k and similarly for the components of HB =

(GB, FB). Define H = (G,F ) to be the homotopy transfer of HB.

Lemma 7.2.4.1. The following formula holds:

Fn,1 = pF 0
n,1(j⊗n ⊗ j) +

∑
p[G0

nr , δ
−1[δ−1Gjr−1

nr−1
,

. . . , δ−1[δ−1Gj2n2
, δ−1F j1n1,1

]S . . . ]S(j⊗n ⊗ j),

summing over all r ≥ 1, j1, . . . , jr−1 ≥ 1, and n1, . . . , nr ≥ 1 such that
n1 + . . . nr = n.
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Proof. Clearly, all such expressions may contribute. The question is why
no other compositions may contribute. The argument is similar to that
given in 6.3.1.2. Recall that the homotopy δ−1 reduces differential form-
degree by 1 and that p vanishes on everything of form-degree ≥ 1. This
means there is some redundancy in our formula above since most choices
of indices ji give a vanishing result.

A priori the homotopy transfer also includes expressions such as that
given, but with some Lie word in the Schouten bracket inserted into a
Lie-input, suitably inserspersed with copies of δ−1. These can not con-
tribute because they do not include anyB and δ−1 vanishes on something
of form-degree 0. A priori we may also have terms such as that given,
but precomposed with a composition of homotopies and terms Vp,1 of
the NCG∞-action. However, the only part of the action with a single
input in the associative color is the adjoint action adS , but then there
is no room to place the necessary copy of B.

Note that the fibrewise
∑

n≥1 Fn,1 is given by

e−(γ(1),γ) = − γ(1) +
1

2

(
[γ(1), γ(1)] + γ(1) • γ

)
+

1

6

(
−[γ(1), [γ(1), γ(1)]]− [γ(1), γ(1) • γ]− γ(1) • γ • γ

)
+ . . .

It follows from this that F 0,1 = id and the lowest order term beyond
that is

F k−1,1 = −p ◦Dγ(1)
◦ j⊗k−1 ⊗ j,

if γ has k vertices.

Remark 7.2.4.2. The formula F 1 :=
∑

n≥0
~n
n! Fn,1(π⊗n, ), with π a

Poisson bivector, defines an isomorphism of complexes

F 1 : (Tpoly(M)[[~]], d~π)→ (Tpoly(M)[[~]], d~γ(π)),

where ~γ(π) := G(~π), that on the level of cohomology is an isomor-
phism of algebras.

Example 7.2.4.3. The simplest nontrivial cocycle in Kontsevich’s graph
complex is the tetrahedron graph, given schematically as:

For this choice of γ, and f a function, it is relatively easy to verify that

F 1(f) = f + ~3C∇iπjk∇kπlm∇mπni∇j∇l∂nf +O(~6),

where C ∈ Q is some combinatorial prefactor.
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Remark 7.2.4.4. If π = 0 or if π is symplectic, then F 1 = id. This
follows from the observation that 7.2.4.1 implies that all terms of F 1

except the identity have to involve a factor corresponding to a graph that
has a vertex decorated by π. Since black vertices are at least trivalent
that factor must involve a (covariant) derivative of π. However, the
higher homotopies extending F 1 to an A∞ morphism are not all zero,
even for a symplectic Poisson structure. This is true because in the
higher homotopies there terms given by graphs with only white vertices,
and graphs that have a single black vertex (e.g., the graph γ(k−1)) which
may be decorated by B.
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CHAPTER 8

Graph-free Rossi-Willwacher Drinfel’d associators
and multiple zeta values

A Drinfel’d associator is usually defined as a formal series Φ(x, y) in two
noncommutative variables satisfying certain equations. Alternatively,
one may also see it defined as a series Φ(t12, t23) in the completion of the
universal enveloping algebra of the Lie algebra of infinitesimal braids
on three strands. For a long time only two examples of associators
where known, the Knizhnik-Zamolodchikov associator ΦKZ and its sib-
ling the anti-Knizhnik-Zamolodchikov associator ΦKZ , both introduced
by Vladimir Drinfel’d [Drinfel’d 1991]. The set of Drinfel’d associators
is a torsor for the Grothendieck-Teichmüller group and appear naturally
in such diverse fields as knot theory and multiple zeta values. In 2009,
Anton Alekseev and Charles Torossian [Alekseev and Torossian 2010]
gave a construction which they conjectured gave a third example of an
associator. Their conjecture was affirmatively answered shortly after in
[Ševera and Willwacher 2011]. This third associator is since called the
Alekseev-Torossian associator and denoted ΦAT . Let us briefly remark
on how it is constructed.

The components of Kontsevish’s operad Graphs have subspaces, de-
noted TCG(n), that are spanned by graphs satisfying certain degree-
restrictions, connectedness assumptions and cocycle conditions. The
spaces TCG(n) are L∞ algebras, equipped with quasi-isomorphic pro-
jections TCG(n)→ tn onto the Lie algebra of the corresponding number
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of infinitesimal braids. The formula∑
Γ∈TCG(3)

ϑΓ ⊗ Γ ∈ Ω(C3(C),TCG)

defines a flat L∞ connection. Here ϑΓ is the form associated to Γ in
Kontsevich’s proof of the formality of the little disks operad [Kontsevich
1999]; it is defined as the fiber integral π!θΓ of the form

θΓ := ∧(i,j)∈EΓ

d arg(xj − xi)
2π

along the projection π : C#VΓ
(C)→ C3(C) that forgets all points except

the three distinguished ones. Using the projection TCG(3)→ t3 gives a
flat t3-connection. Taking the holonomy along the path from 0 to 1 along
the real axis defines a series ΦAT ∈ Û(t3). A geometric argument then
proves it satisfies all the equations required from a Drinfel’d associator.

Degree zero cocycles in Kontsevich’s graph complex should act on
associators, since H0(GC) ∼= grt1 and associators are a torsor for the
group GRT1. The construction of the associator ΦAT makes this action
transparent, using the action of GC on Kontsevich’s operad Graphs. The
construction of ΦAT also makes it transparent how associators fit into
Kontsevich’s graphically constructed formality morphisms, cf. [Ševera
and Willwacher 2011]. But, the construction makes it difficult to extract
the coefficients of ΦAT as a series in two-noncommutative variables. The
difficulty arises from fact that the projection TCG(3)→ t3 has a rather
extensive kernel. Carlo Rossi and Thomas Willwacher recently made a
remarkable preprint available [Rossi and Willwacher 2013], where they,
among other things, construct a whole family of associators Φt. At t = 0
the associator equals the KZ associator (up to normalizing prefactors);
at t = 1/2 it equals the AT associator; and at t = 1 it equals the
KZ associator (up to normalizing prefactors). Their associators are
constructed using the same graphical technique as that used to define
ΦAT and, hence, all associators in their family share the problem that
it is somewhat difficult to extract the coefficients. This chapter explains
how their construction can be modified, so as to side-step the use of
a projection from graphs to Lie words and, as a result, obtain simpler
explicit integral formulas for the coefficients of all the associators. All
the steps we take are more or less implicit in the existing literature but
we believe it is useful to cohesively put everything together. Let us
summarize our central construction in the form of a theorem.

Let L denote the set of Lyndon words on the two letters 0, 1 and
for a Lyndon word λ, let xλ denote the corresponding basis element of
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the free Lie algebra lie(x0, x1); thus, the bracket on this free Lie algebra
is defined by structure constants cλµν , for λ, µ, ν ∈ L .

Theorem 8.0.4.5. Define differential forms

ϑ0
t :=

1− t
2πi

d log(w) +
t

2πi
d log(w̄);

ϑ1
t :=

1− t
2πi

d log(1− w) +
t

2πi
d log(1− w̄),

and for a Lyndon word λ of length greater than one, we recursively define

ϑλt =
1

2πi

∑
µ<ν

cλµνπ
!
w

((
(1− t) dw

w − z
− t dw̄

w̄ − z̄

)
π∗zϑ

µ
t π
∗
zϑ

ν
t

)
.

Here πx : Conf2(C \ {0, 1})→ C \ {0, 1} is the projection which forgets
the point not equal to x and a superscript ! means integration along the
fiber.

Then Θt :=
∑

λ ϑ
λ
t xλ is a flat connection on C \ {0, 1} and its

holonomy along the path from 0 to 1 along the real axis is Rossi’s and
Willwacher’s Drinfel’d associator Φt.

There is some regularization procedure needed to define the holon-
omy of the connection but this regularization problem is solved by Rossi
and Willwacher. It essentially repeats mutatis mutandum the regulariza-
tion of the Knizhnik-Zamolodchikov connection [Knizhnik and Zamolod-
chikov 1982].

The main application of knowing explicit formulas for the coeffi-
cients in the family of associators is that it allows us to write down an
equally explicit associated family of evaluations (Q-algebra morphisms)
ζt : FZ → C on the algebra of formal multiple zeta values, by using the
fundamental result of [Furusho 2011]. Papers about multiple zeta values
tend to include a lot of combinatorics with Lyndon words, iterative con-
structions, etc., and our graph-free formulation of the Rossi-Willwacher
associators is specifically tailored to fit in such a context.

Proposition 8.0.4.6. Define ζt(n1, . . . , nd) to be the value on the for-
mal multiple zeta value z(n1, . . . , nd) under the evaluation defined by
Φt. Then ζt(n1, . . . , nd) = (−1)n1+···+ndζ1−t(n1, . . . , nd); so in particu-
lar, ζ1/2 is zero on all multiple zeta values of odd weight.

The Alekseev-Torossian associator was known to be even before it
was known to actually be a Drinfel’d associator [Alekseev and Torossian
2010]. The main result of [Furusho 2011] then immediately implies that
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ζ1/2 vanishes on multiple zeta values of odd weight, so the second part
of the proposition above is not really new.

Another application is that we can give a slightly more explicit for-
mula for the conjectured generators τ2j+1 of grt1 defined by Rossi and
Willwacher. Lastly, our formulas show that the differential forms en-
tering the integrals giving the coefficients (both of the associators and
Grothendieck-Teichmüller elements) satisfy certain recurrence relations
which are obscured in the original graphical construction. These new re-
currence relations could, maybe, simplify the calculations of the integrals
used to compute the coefficients, help in recognizing which coefficients
are rational, or etc.

The material in this chapter has not been previously published.

8.1 Graphs and Lie words.

8.1.1 Internally connected graphs and Lie graphs.

This section contains some overlap with earlier chapters but we spell
out the details, for completeness. Let fgraphsdn,k be the set of graphs Γ
with d (undirected) edges, no tadpoles (edges connected at both ends to
the same vertex), no legs, n+ k vertices and the following extra data:

- The edges are ordered by a specified isomorphism E(Γ) ∼= [d].

- n of the vertices are labelled “white” and k of the vertices are
labelled “black”.

Define graphsdn,k to be the subset consisting only of those graphs that
have no tadpoles (edges with both ends connecting to the same vertex),
have no connected component with only black vertices, and have all
black vertices ≥ 3-valent. We define

graphs(n) :=
⊕

d≥0,k≥1

Q(graphsdn,k)Σk [d− 2k]⊗Σd sgnd.

We remark that graphs(n) ⊂ Graphs(n) sits inside Kontsevich’s operad
of graphs with black and white vertices as the subspace spanned by finite
sums. These subspaces form a dg suboperad; in particular, graphs(n) is
for each n ≥ 1 a complex under the edge-insertion differential

∂Γ = [ ,Γ] + Γ • .

For a graph Γ ∈ graphsdn,k we define the corresponding internal graph,

to be denoted Γint, to be the graph with legs obtained by deleting the
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white vertices and turning edges previously connected to white vertices
into legs.

Definition 8.1.1.1. A graph Γ is internally connected if either (i)
it consists of a single edge connecting two white vertices or (ii) it has
no edge connecting two white vertices and the associated internal graph
Γint is connected.

Define ICG(n)[1] ⊂ graphs(n) to be the subspace spanned by all
graphs that are internally connected. Clearly,

graphs(n) = S(ICG(n)[1]),

since any graph can be regarded as a superposition of internally con-
nected graphs. The differential ∂ is a coderivation of the coalgebra S( ),
hence, by definition, ICG(n) is an L∞ algebra.

Definition 8.1.1.2. We define the truncation TCG(n) ⊂ ICG(n) as fol-
lows. TCG≤−1 := ICG≤−1, TCG≥1 := 0 and TCG0 is the degree 0 cocycles
of ICG.

It is rather immediate that TCG(n) is an L∞ subalgebra.

Definition 8.1.1.3. Define Ln ⊂ TCG(n+1) to be the subspace spanned
by the graphs that have the white vertex labelled by n + 1 of valency
one or higher. For a graph Γ ∈ Ln, we call the vertex n + 1 the root
vertex.

Again, it is obvious that Ln is an L∞ subalgebra. Let lien denote the
free Lie algebra over Q generated by variables y1, . . . , yn.

Definition 8.1.1.4. Define ( ) : Ln → lien by the following recipe. Take
a graph Γ ∈ Ln. If the root vertex has valency exactly one and Γint is a
tree with all vertices exactly trivalent, then Γint is canonically a rooted
trivalent tree with the input legs (legs not equal to the root) labelled by
[n]. Regard the rooted tree as an operadic composition diagram for a
Lie bracket and insert yi into every input leg that is labelled by i. This
produces a Lie word (Γ) ∈ lien. If the root vertex of Γ has valency ≥ 2
or if Γint is not a trivalent tree, then we define (Γ) := 0.

Proposition 8.1.1.5. The map ( ) : Ln → lien is a quasi-isomorphism.

The proof of this statement is sketched at the end of [Ševera and
Willwacher 2011].
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Proof. The only graphs in Ln that do not have a black vertex are the n
single-edge graphs on edges {n+1, i}, 1 ≤ i ≤ n. these are mapped to the
corresponding generators yi. Hence we may redefine Ln to be spanned
by graphs with ≥ 1 black vertex, and prove that this is quasi-isomorphic
to the space lie≥2

n spanned by Lie words containing ≥ 1 bracket.
Introduce the following two-term filtration on Ln. Define F1Ln to

be spanned by all graphs that have a univalent root vertex and define
F2Ln to be spanne by all graphs that have a root vertex of valency ≥ 2.
Consider the corresponding spectral sequence, which has as only nonzero
terms

E−1,q
0 = F1Lq−1

n , E−2,q
0 = F2Lq−2

n .

The differential, d0, is zero on E−1,q
0 , while on E−2,q

0 is has the schematic
form

d0

root
=

root

.

It follows that E1 can be identified with the subspace of F1Ln that is
spanned those graphs Γ with the property that Γint becomes discon-
nected when one removes the root and the unique edge connected to the
root. Alternatively put, Γ ∈ E1 if contracting the root edge gives a

Γ′ = Γ1 ∧ · · · ∧ Γr ∈ S(Ln[1]).

Using this, we can identify E1
∼= S≥2(Ln[1]), with differential induced

by that on Ln. By induction on the number of vertices we may conclude
E2 = S≥2(lien[1]), equipped with the Chevalley-Eilenberg differential.
The cohomology of the full Chevalley-Eilenberg complex S(lien[1]) is
Qn[1] since the algebra is free. Hence

E3 = S2(lien[1])/d3(S2(lien[1]).

We can identify this as formal antisymmetric bracketings [a, b] of Lie
words a, b ∈ lien modulu relations [[x, y], z]− [[x, z], y] + [[y, z], x], where
the outer brackets are formal bracketings and the inner ones are actual
Lie brackets. The relations say exactly that the formal bracketings sat-
isfy the Jacobi identity, i.e., can be identified with actual Lie brackets.
Hence E3

∼= lie≥2
n .

The morphism Γ 7→ (Γ) is actually a quasi-isomorphism of L∞ alge-
bras. To prove that we first introduce a binary operation

� : graphsdn,k × graphsd
′
n,k′ → graphsd+d′+1

n,k+k′+1.
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Take Γ ∈ graphsdk and Γ′ ∈ graphsd
′
n,k′ . First form the disjoint union

ΓtΓ′. Then form a graph Γ∧Γ′ by superimposing the respective white
vertices (the two vertices labelled i ∈ [n+ 1] are identified into a single
new white vertex labelled i) and ordering the edge-set lexicographically
by E(Γ) < E(Γ′). Finally, recolor the vertex labelled by n + 1 black,
and connect that black vertex to a new white vertex labelled n + 1 via
a new edge e, which we order to be the first edge. The resulting graph
is Γ � Γ′. Below is a schematic picture.

Γ � Γ′ =

root

Γ Γ′

.

Remark 8.1.1.6. The operation � induces a bilinear operation (of de-
gree 0) on Ln.

Proposition 8.1.1.7. The map ( ) : Ln → lien is a quasi-isomorphism
of L∞ algebras.

Proof. Recall the edge-splitting differential ∂ on graphs(n). The `-ary
bracket λ`(Γ1, . . . ,Γ`) on Ln is given by projecting ∂(Γ1 ∧ · · · ∧ Γ`) onto
Ln. This means that

(λ2(Γ1,Γ2)) = (Γ1 � Γ2),

since all other edge-splittings of Γ1 ∧ Γ2 have a root vertex of valency
≥ 2. Moreover, the black vertex attached to the root vertex in Γ � Γ′

is trivalent if and only if Γ1 and Γ2 both have a univalent root vertex.
Since (Γ) = 0 unless Γint is a trivalent tree, this allows us to conclude
inductively that (Γ1 � Γ2) = 0 unless Γ1 and Γ2 are generated by the
single-edged graphs {i, n+1} (i ∈ [n]) under �. These single-edge graphs
are mapped to the generators yi. Thus

(λ2(Γ1,Γ2)) = [(Γ1), (Γ2)].

Note (λ`(Γ1, . . . ,Γ`)) = 0 if ` ≥ 3 because all terms in ∂(Γ1 ∧ · · · ∧ Γ`)
must contain a vertex which is more than trivalent.

8.1.2 The Lyndon basis.

In this subsection we recollect some known results about Lyndon words
and free Lie algebras.
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Define W to be the set of (arbitrarily long) words in the letters 0
and 1. We order it using the lexicographical ordering defined by 0 < 1
and denote the length of a word w by |w|. Recall that a Lyndon word
is a nonempty word λ that either has length one or has the property
that if λ = µν with ν 6= ∅, then λ < ν. Define L ⊂ W to be the set of
Lyndon words. The set of nontrivial factorizations λ = µ′ν ′ (µ′, ν ′ 6= ∅)
of a Lyndon word contains an element µν with ν as small as possible,
i.e. ν < ν ′ for all other factorizations µ′ν ′. This factorization λ = µν
is called the standard factorization. A fundamental theorem about
Lyndon words is that if λ = µν is the standard factorization of a Lyndon
word λ, then both µ and ν are themselves Lyndon words.

Define l to be the free Lie algebra over Q on generators x0 and x1.
Define a function L → l, λ 7→ xλ inductively by x0 := x0, x1 := x1 and
for a Lyndon word λ with standard factorization µν, xλ := [xµ, xν ]. For
example,

x001 = [x0, x01] = [x0, [x0, x1]].

Note that |λ|−1 equals the number of brackets in the Lie word xλ. The
set of Lie words {xλ | λ ∈ L } is a vector space basis for l.

The Lyndon basis and the Poincaré-Birkhoff-Witt (PBW) isomor-
phism combine to give a basis of the universal enveloping algebra U(l)
of l. The definition of the universal enveloping algebra leads to the
identification, as algebras, of U(l) with the algebra of noncommutative
polynomials in two variables, Q〈x0, x1〉. The PBW isomorphism gives an
identification as vector spaces between U(l) and the commutative poly-
nomial ring Q[xλ] generated by Lyndon words. Since Lyndon words are
ordered lexicographically we can fix the convention that monomials in
Q[xλ] are always written with the smallest element to the right:

xλ1 . . . xλp , λ1 ≥ · · · ≥ λp.

There is a simple algorithm for rewriting any noncommutative monomial
in Q〈x0, x1〉 in terms of expressions like the one above, cf. [Melanchon
and Reutenauer 1989].

Define U(l)′ = Q〈x0, x1〉 to be the finite dual of U(l). It is equipped
with a product dual to the coproduct on U(l). This product is known
as the shuffle product and traditionally denoted x. The algebra U(l)′

is freely generated by Lyndon dual basis elements xλ ∈ l∗ under the
x-product.

Given a word w = a1 . . . ar with letters aj ∈ {0, 1}, denote xw :=
xa1 . . . xar ∈ U(l)′ and xw := xa1 . . . xar ∈ U(l). Note that xλ 6= xλ for a
Lyndon word λ, e.g. x01 = [x0, x1] = x0x1−x1x0 ∈ U(l) but x01 = x0x1.
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The paper by Melanchon and Reutenauer [Melanchon and Reutenauer
1989] proves the identity∑

w

xw ⊗ xw =
∏
λ

exp(xλ ⊗ xλ) ∈ Û(l)′ ⊗ Û(l),

where the product over Lyndon words is taken in decreasing order and
Û(l)′ and Û(l) are the completed algebras of noncommutative formal
series. Spelled out in more detail the exponential above is the formal
sum ∑

λ1>···>λk

∑
i1,...,ik≥1

1

i1! . . . ik!
(xλ1)xi1x . . .x(xλk)xik ⊗ xi1λ1

. . . xikλk .

Remark 8.1.2.1. The monomials xλ also constitute a multiplicative
basis of U(l)′, called the Radford basis [Radford 1979]). The Radford
basis is better suited for computations relating to multiple zeta values,
since it makes regularization easier to describe. We will not develop
regularization, and will, accordingly, not use the Radford basis.

8.1.3 Lyndon words and graphs.

Based on the Lyndon basis it is possible to write the Lie bracket on l in
the form

[xµ, xν ] =
∑
λ∈L

cλµνxλ.

For reasons that will be clear later, consider the white vertices of L2

as labelled by 0, 1 and w, with w labelling the root vertex. Using
the structure constants cλµν , we define a function L → L2, λ 7→ Γλ

inductively by letting Γ0 be the graph with only the edge {0, w}, Γ1 be
the graph with only the edge {1, w} and, for a λ of length ≥ 2,

Γλ :=
∑

µ<ν∈L

cλµνΓµ � Γν .

This function is clearly injective. We can regard the function as a map
l∗ → L∗2, since Lyndon words can be regarded as a basis {xλ} of the dual
space l∗

Remark 8.1.3.1. The map λ 7→ Γλ is the map on dual spaces induced
by ( ) : L2 → lie2, up to the obvious identification l ∼= lie(y1, y2).
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Below are some examples.

Γ001 =

w

0 1

, Γ011 =

w

0 1

, Γ0011 =

w

0 1

+

w

0 1

.

The fact that Γ0011 is a sum of two terms is a consequence of the equality
[x0, x011] = x0011 = [x001, x1] in the free Lie algebra.

8.1.4 Special derivations and infinitesimal braids.

The splitting TCG(n+ 1) = TCG(n)⊕ Ln is a semi-direct product

TCG(n+ 1) = TCG(n) n Ln

of L∞ algebras. It follows from the quasi-isomorphism Ln ' lien that

H(TCG(n+ 1)) = H(TCG(n)) n lien.

Inductively, this proves thatH(TCG(n)) ∼= tn, cf. [Ševera and Willwacher
2011]. Here tn is the so called Lie algebra of infinitesimal braids on n
strands. It has generators tij = tji, 1 ≤ i 6= j ≤ n and relations

[tij , tkl] = 0 = [tij + tjk, tik]

if {i, j} ∩ {k, l} = ∅. The relations imply

tn+1 = tn o lie(t1,n+1, . . . , tn,n+1),

and hence we can recursively use TCG(n+ 1) = TCG(n) n Ln to extend
our L∞ quasi-isomorphism ( ) to an L∞ quasi-isomorphism

( ) : TCG(n)→ tn.

Definition 8.1.4.1. A tangential derivation of lien is a derivation
u of lien which acts on each yi by an inner derivation yi 7→ [yi, ui],
ui ∈ lien. Thus, a tangential derivation is uniquely represented by an
n-tuple (u1, . . . , un), where for each i = 1, . . . , n the term of order 1 with
respect to yi in ui ∈ lien is zero. The space of tangential derivations of
lien is denoted tdern. It is a Lie algebra under the bracket on derivations.

A tangential derivation u is called special if u(
∑n

i=1 yi) = 0. The
special derivations form a Lie subalgebra sdern of the tangential deriva-
tions.

154



Remark 8.1.4.2. One may identify the Lie algebra of infinitesimal
braids with the subalgebra of sdern generated by

tij = (0, . . . , 0, yj , 0, . . . , 0, yi, 0, . . . , 0) ∈ sdern,

where yj is in the ith position and yi is in the jth position, cf. [Alekseev
and Torossian 2012].

The inclusion tn ↪→ sdern has a graphical counterpart wich is impor-
tant in the construction by Rossi and Willwacher. Define TCG(n)tree :=
TCG(n)/TCG(n)loop to be the quotient by modding out all graphs that
contain a cycle, i.e., the quotient may be considered as spanned by TCG-
graphs that are internal (but not necessarily trivalent) trees. It inherits
an L∞ algebra structure from TCG(n). Its degree 0 cohomology can be
identified with sdern, via the following combinatorial procedure due to
[Alekseev and Torossian 2010].

Take a degree zero Γ in TCG(n)tree. For degree reasons Γint must be a
trivalent tree. Consider its legs as labelled by remembering which white
vertex they where attached to. Assume that the white vertex i of Γ has
valency di and label the edges attached to i by the set [di]. For each i
and each 1 ≤ r ≤ di we obtain a way of regarding Γint as a rooted tree,
by declaring the leg corresponding to r to be the root. The remaining
legs now become input legs. The resulting rooted labeled tree defines a
word ui,r in lien, just like we how we define the word Γ corresponding
to a Γ ∈ Ln. Define the tangential derivation u by

u := (u1, . . . , un), ui :=

di∑
r=1

ui,r.

The statement of Alekseev and Torossian [Alekseev and Torossian 2010]
is that u is a special derivation. If Γ ∈ TCG(n)tree does not have degree
0, then the associated special derivation is defined to be zero.

Lemma 8.1.4.3. The following diagram commutes.

Ln−1 TCG(n) TCG(n)tree

lien−1 tn sdern.

( ) u

Note that Ln−1 → TCG(n)→ TCG(n)tree is injective on degree zero.
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Proof. (Sketch.) The left square commutes since TCG(n) → tn was de-
fined recursively using the semidirect product decomposition. By an
analogous recursive argument we conclude that it is enough to check
that the outer square commutes. First note that the outer square com-
mutes on the single-edged graphs ei,n := {i, n}. There are two possible
orientations of these, corresponding to

(0, . . . , yn, . . . , 0) + (0, . . . , yi) = tin ∈ sdern.

We noted in 8.1.1.7, above, that (Γ) = 0 unless Γ ∈ Ln−1 can be
generated from the single-edged graphs ei,n using the �-operation. As
(Γ1 � Γ2) = [(Γ1), (Γ2)] it is by induction enough to show that ei,n � ej,n
is mapped to [tin, tjn] ∈ sdern. There are three ways of orienting

ei,n � ej,n =

n

i j

,

corresponding to the sum

(0, . . . , [yn, yj ], . . . , 0) + (0, . . . , [yi, yn], . . . , 0) + (0, . . . , [yi, yj)

of tangential derivations. (Here [yn, yj ] is in the ith position and [yi, yn]
is in the jth.) One verifies that this sum equals the bracket [tin, tjn] in
sdern.

8.1.5 Lyndon words and special derivations.

We here define two different maps

γ0, γ1 : L≥3 → TCG(2)∗tree

from Lyndon words of length ≥ 3. We define them as follows. Let γ̃λ0 be
the (sum of) graph(s) obtained by identifying identifying the vertices 0
and w in Γλ into a single vertex 0. This sum of graphs possibly contains
graphs with a double edge. Define γλ0 to be γ̃λ0 minus all terms in γ̃λ0
containing a double edge; i.e., the part of γ̃λ0 not containg double edges.
Below are two examples.

γ0011
0 =

0 1

, γ001
0 =

0 1

.
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We define γλ1 just like we defined γλ0 , except we now collapse w and 1
(into a new 1). For example:

γ0011
1 =

0 1

, γ001
1 =

0 1

.

It is clear from these examples that the graphs we construct possess cer-
tain symmetries, relating graphs associated to different Lyndon words to
each other. To phrase the most crucial symmetry we recall a fact about
the involution of the free Lie algebra on two variables that exchanges
the generators. Let ρ : {0, 1} → {0, 1} be the self-bijection mapping 0 to
1 and 1 to 0. It induces a self-bijection ρ of the set of words W . Given
a word w = a1 . . . ap ∈ W , let ←−w be the reverese word ap . . . a1 and put
i(w) := ρ(←−w ). The operation w 7→ i(w) restricts to an involution on
the set of Lyndon words. (For example, i(00101) = 01011.) This invo-
lution has the following interpretation in terms of the free Lie algebra:
Let % : l → l be the map that sends a Lie word a(x0, x1) to the word
(%a)(x0, x1) := a(x1, x1). Then, for all Lyndon words λ,

%(xλ) = (−1)|λ|−1xi(λ).

Denote by %∗ the map on linear combinations of graphs that interchanges
the vertices 0 and 1 and multiplies a graph with k internal vertices by
(−1)k. Then, clearly

Lemma 8.1.5.1. For all Lyndon words λ of length ≥ 3 the equation

%∗(γλ1 ) = (−1)|λ|−1γ
i(λ)
0 holds in TCG(2)∗tree.

8.1.6 Drinfel’d associators.

Let k ⊃ Q be a field containing the rationals and let κ ∈ k.

Definition 8.1.6.1. A κ-Drinfel’d associator over k is an element
Φ ∈ k〈〈x0, x1〉〉 satisfying the following axioms.

(i) It is group-like, ∆Φ = Φ⊗̂Φ.

(ii) Φ(x1, x0) = Φ(x0, x1)−1.

(iii) eκa/2Φ(c, a)eκc/2Φ(b, c)eκb/2Φ(a, b) = 1 whenever a+ b+ c = 1.
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(iv) It satisfies the pentagon equation

Φ(t23, t34)Φ(t12 + t13, t24 + t34)Φ(t12, t23)

= Φ(t12, t23 + t24)Φ(t13,+t23, t34)

in the completed universal enveloping algebra of t4.

The set of κ-Drinfel’d associators over k is denoted Assocκ(k).

The Grothendieck-Teichmüller group GRT1(k) can be defined as
Assoc0(k). The formula

(Φ ·Ψ)(x0, x1) := Φ(Ψ(x0, x1)x0Ψ(x1, x0), x1)Ψ(x0, x1),

defines both a group multiplication on GRT1 and a right action of it on
the set of associators.

8.2 Configuration spaces and differential forms.

For n ≥ 2 and a manifold M we denote by Confn(M) the space of all
injective maps x : [n]→M , considered as a submanifold of Mn. Define
M0,n+1 := Confn−2(C\{0, 1}). The space Confn(C) has a (real) Fulton-
MacPherson-Axelrod-Singer compactification Confn(C). Let M0,n+1 be
the closure of the embedding M0,n+1 → Confn(C) sending (w1, . . . , wn−2)
(wi 6= 0, 1, wj) to (x1, . . . , xn) = (0, w1, . . . , wn−2, 1). (Note that this is
not the Deligne-Mumford compactification.)

Given i, j ∈ [n] and a variable t, let

θijt :=
1− t
2πi

d log(xj − xi)−
t

2πi
d log(x̄j − x̄i) ∈ E 1(Confn(C)).

Here we use E to denote the analytical de Rham complex. Pull it back
to a form on M0,n+1. It can alternatively be written

1

2π
d arg(xj − xi) +

1− 2t

2πi
d log |xj − xi|.

Given a graph Γ with 3 white vertices, k black vertices and d edges, we
define a differential form θΓ

t on M4+k as follows. Label the white vertices
according to the order-preserving bijection {1 < 2 < 3} ∼= {0 < w < 1}
and label the black vertex i (1 ≤ i ≤ k) by zi. Thus, the set of vertices
is labelled by the list

(0, w, z1, . . . , zk, 1).
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Regard this formally as a point (x1, . . . , xk+3) ∈ Confk+3(C). If under
this identification the edge e ∈ E(Γ) is {i, j}, then we put θet := θijt , and

θΓ
t := ∧e∈E(Γ)θ

e
t ∈ E d(M4+k).

The point-forgetting projection π : M0,4+k →M0,4 that only remembers
(0, w, 1) induces a projection

π : M0,4+k →M0,4.

Define ϑΓ
t := π!(θΓ

t ) to be the fiber integration of the form previously
defined. It is a nontrivial analytical fact, proved in [Rossi and Willwacher
2013], that the fiber integration converges for all graphs Γ ∈ TCG(2)∗tree

of degree zero. Given a Lyndon word λ we define define an associated
differential form by

ϑλt := ϑΓλ

t ∈ E 1(M0,4).

This defines a map of graded algebras

ϑt : CCE(l)→ E (M0,4), xλ1 ∧ · · · ∧ xλp 7→ ϑλ1
t ∧ . . . ϑ

λp
t .

Proposition 8.2.0.2. The map ϑt : CCE(l) → E (M0,4) is a morphism
of dg algebras.

Proof. Take a Lyndon word λ of length ≥ 2. Recall that

Γλ =
∑
µ<ν

cλµνΓµ � Γν .

If λ has length two or more then the vertex w is connected to a single
edge e1 = {w, z1} The form dϑλt has the following appearance (see [Rossi
and Willwacher 2013])

dϑλt =
∑

e∈E(Γλ)

±π!(θ
Γλ/e
t ),

where Γλ/e is a the graph formed by contracting the edge e to a single
vertex. Contracting the edge e1 of Γλ gives exactly∑

µ<ν

cλµνΓµ ∧ Γν ,

by the definition of �. It follows that what we need to show is that the
differential form associated to

dΓλ − Γ/e1 = −
∑

e∈E(Γλ)\{e1}

(−1)|e|Γ/e
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vanishes. This follows from degree reasons. The form associated to
dΓλ − Γ/e1 should be a 2-form. However, the vertex w has valency 1
in each of the graphs Γ/e (e 6= e1). This means that the none of the
indecomposable tensors in the form corresponding to Γ/e can depend on
both dw and dw̄, so the form is zero.

If λ has length one, then it is either the word 0 or the word 1. In either
case the associated differential form is closed, as are the corresponding
words in CCE(l).

Remark 8.2.0.3. As is implicit in above proof, note that the obvious
map CCE(l)→ CCE(TCG(3)) does not respect differentials.

8.3 A family of associators.

Since Maurer-Cartan elements of a dg Lie algebra g, with coefficients
in an algebra A, are in bijective correspondence with morphisms of dg
algebras CCE(g)→ A we deduce the following corollary.

Corollary 8.3.0.4. The element Θt :=
∑

λ ϑ
λ
t xλ ∈ E 1(M0,4, l) is a flat

connection.

Chen’s theory identifies homotopy invariant iterated integrals on a
manifold M with the degree 0 cohomology of the (reduced) bar con-
struction on the de Rham complex of M . By functoriality we have an
induced morphism

ϑt : B(CCE(l))→ B(E (M0,4))

which allows us to view closed degree 0 elements of B(C(l)) as homotopy
invariant iterated integrals.

Note that B(CCE(l)) is concentrated in degrees ≥ 0 so H0(B(C(l)))
is the same as the space of degree 0 cocycles. General Koszul dual-
ity theory provides an isomorphism I : U(l)′ → H0(B(CCE(l))). The
product on U(l)′ = Q〈x0, x1〉 is the so-called shuffle product x. It is
commutative and U(l)′ is a free commutative algebra generated by l∗.
The algebra H0(B(CCE(l))) is also equipped with a product called the
shuffle product, which we we also denote x. The map I is an isomor-
phism of algebras. Define B := H0(B(E (M0,4))). Put It := ϑt ◦ I and
define Πt ∈ B ⊗ Û(l) to be the image under It of id ∈ Û(l)′ ⊗ Û(l).
We interpret Πt as the holonomy operator of the flat connection Θt. It
follows that

Πt =
∏
λ

exp(It(x
λ)⊗ xλ),
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with the product over Lyndon words taken in decreasing order. This
expression is an algebraic counterpart of expressing the holonomy as a
path ordered exponential. Expanding this expression leads to

Πt =
∑

λ1>···>λk

∑
i1,...,ik≥1

1

i1! . . . ik!
It(x

λ1)xi1x . . .xIt(xλk)xik⊗xi1λ1
. . . xikλk .

In this formula xi1λ1
. . . xikλk is considered as an element of Û(l) by the

Poincaré-Birkhoff-Witt theorem. Note that Πt takes values in the set of
group-like elements of the universal enveloping algebra.

Remark 8.3.0.5. The parallel translation Π1/2 is convergent for paths

with endpoints in the compactification M0,4. This follows from the fact
that the forms

θij1/2 =
1

2π
d arg(xj − xi)

are minimal algebraic forms and their push-forwards ϑt are, hence, semi-
algebraic PA-forms on Confn(C).[Hardt et al. 2011] The associated
holonomy

Π1/2(01)

along the interval [0, 1] is the Alekseev-Torossian Drinfel’d associator.

Let us explain in more detail why our formula is equivalent to that
given in [Rossi and Willwacher 2013]. They define ΦAT as follows. First
they introduce the sder3-valued flat connection

Θ̃1/2 :=
∑

Γ

ϑΓ
1/2uΓ.

Here the sum is over all degree zero graphs Γ ∈ TCG(3)∗tree and uΓ is the
corresponding special derivation defined by the graph. Then, they know
a priori from the article [Ševera and Willwacher 2011] that it in fact
must be a connection with values in the subalgebra t3 ⊂ sder3, because
the connection is a restriction/projection of an L∞ connection∑

Γ∈TCG(3)∗

ϑΓ
1/2Γ

with values in the L∞ algebra TCG(3), which comes with a quasi-
isomorphic projection TCG(3) → t3. Finally, the resulting associator
can by a standard symmetry argument, using t3 = kt13 ⊕ lie(t12, t23),
be taken have values only in lie(t12, t23). By the commutative diagram
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of 8.1.4.3 we may, instead, right from the beginning work with the L∞
connection ∑

Γ∈L∗2

ϑΓ
1/2Γ

and project that to a connection with values in l ∼= lie(t12, t23). But
note, ∑

Γ∈L∗2

ϑΓ
1/2(Γ) =

∑
Γ∈L∗2

ϑΓ
1/2

∑
λ

〈xλ, (Γ)〉xλ

=
∑
λ

∑
Γ∈L∗2

〈Γλ,Γ〉ϑΓ
1/2xλ

=
∑
λ

ϑλ1/2xλ,

because λ 7→ Γλ is dual to L2 → l.

Define pε to be the path following the real axis from ε to 1− ε, with
ε > 0. Rossi and Willwacher work with sder3-valued flat connections

Θ̃t :=
∑

Γ∈TCG(3)∗tree

ϑΓ
t uΓ,

and their associated parallel transport operators Π̃t. They show that
Π̃t(pε) has an asymptotic expansion with respect to log ε. Formally
setting log ε = 0 gives a regularized value

Φ̃t := lim
ε→0

(Πt(pε)|log ε=0).

They then prove:

Theorem 8.3.0.6. [Rossi and Willwacher 2013] The Φ̃t’s are Drinfel’d
associators for all t.

The argument showing equality between our Φ1/2 and their Φ̃1/2

implies we have an analogous asymptotic expansion of Πt(pε) and that
the regularized limits Φt equal their Drinfel’d associators. From now on
we discard the tilde-symbol on top of their associators.

8.3.1 Associated Grothendieck-Teichmüller elements.

First, recall the following constructions from [Rossi and Willwacher
2013].
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Define functions hij on Confn(C) by

hij :=
i

π
log |xj − xi|.

If e is an edge of a graph that corresponds to {xi, xj}, then we put
he := hij . For a degree zero graph Γ ∈ TCG(3)∗tree, define

φΓ
t := −

∑
e∈E(Γ)

(−1)|e|heθ
Γλ\e
t ∈ E d−1(M4+k).

Here θ
Γ\e
t = ∧e′ 6=eθe

′
t . Then, similarly to how ϑλt was defined, define

ϕΓ
t := π!(φΓ

t ) ∈ E 0(M0,4).

That these functions exist (that the fiber integrals converge) is proved
in [Rossi and Willwacher 2013]. Rossi and Willwacher also define (but
in different notation)

f̃t :=
∑

Γ∈sg∗3

ϕΓ
t uΓ ∈ E 0(M0,4, sder3),

and prove that

∂tΘ̃t = df̃t + [Θ̃t, f̃t] ∈ E 1(M0,4, sder3).

The gauge-transformations f̃t relate the parallel transport operators Π̃t

associated to the Θ̃t. To make this precise we introduce some notation.
For a point w ∈M0,4, and t < t′ define the path-ordered exponential

Et
′
t [f̃s(w)] :=

∫ t′

t

(
1 + f̃s(w)ds+ [f̃s(w)ds|f̃s(w)ds]

+ [f̃s(w)ds|f̃s(w)ds|f̃s(w)ds] + . . .

)
∈ exp(sder3).

Then, for any path p : [0, 1]→M0,4 from x = p(0) to y = p(1), we have

Π̃t′(p) = Et
′
t [f̃s(y)]Π̃t(p)E

t′
t [−f̃s(x)] ∈ exp(sder3).

They argue that after regularized evaluation on the path 01 this equation
translates to an equality of associators

Φt′ = Et
′
t [ψs] · Φt, Et

′
t [ψs] ∈ GRT1,

where

ψs := lim
δ↗1

(
f̃s(δ)−

i

π
log(1− δ)t23

)
− lim
ε↘0

(
f̃s(ε)−

i

π
log εt12

)
is an element that, by a result of Alekseev and Torossian [Alekseev and
Torossian 2012] lies in grt1 ⊂ lie(t12, t23) ⊂ sder3.
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Remark 8.3.1.1. Note that neither of the two limits in ψs lie in lie(t12, t23);
only when they are added together does one get an element in the free
Lie algebra.

Our present goal is to show how using Lyndon words and Lyndon
graphs simplifies the formula for ψs. The simplification is, we believe,
significant.

Define fs :=
∑

λ ϕ
λ
sxλ, where ϕλs := ϕΓλ

s . We must have

ψs = lim
δ↗1

(
fs(δ)−

i

π
log(1− δ)t23

)
− lim
ε↘0

(
fs(ε)−

i

π
log εt12

)
,

because no terms in f̃s− fs can contribute since ψs ∈ lie(t12, t23). More-
over, both limits in above expression must both exist separately. Since
−i log(1− δ)/π · t23 = φ1

s(δ)x1 and −i log(ε)/π · t12 = φ0
s(ε)x0 under the

identfication x0 = t12, x1 = t23, it follows that

ψs = lim
δ↗1

∑
|λ|≥2

ϕλs (δ)xλ − lim
ε↘0

∑
|λ|≥2

ϕλs (ε)xλ.

Recall the graphs γλ0 and γλ1 . Using them we define, for every Lyndon
word λ of length ≥ 2,

αλs := −
∑

e∈E(γλ0 )

(−1)|e|he ∧e 6=e′∈E(γλ0 ) θ
e′
t ∈ E (M0,3+k),

βλs := −
∑

e∈E(γλ1 )

(−1)|e|he ∧e6=e′∈E(γλ1 ) θ
e′
t ∈ E (M0,3+k),

where k = |λ| − 1, and the corresponding integrals

aλs :=

∫
M0,3+k

αλs , bλs :=

∫
M0,3+k

βλs .

Lemma 8.3.1.2. The following limits hold: aλs = limε↘0 ϕ
λ
s (ε), and

bλs = limδ↗1 ϕ
λ
s (δ).

Proof. The limits can be obtained by formally setting w to 0 or 1 in the
function ϕλs (w). This is the same as formally setting w = 0, 1 in the
form φλs , giving us the forms αλs or βλs , respectively, and then applying
integration.

Lemma 8.3.1.3. For all λ, b
i(λ)
s = (−1)|λ|−1aλs .
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Proof. Let % be the coordinate change z 7→ 1 − z of C and extend
it factor-wise to a diffeomorphism of M0,3+k, with k = |λ| − 1. Note
that it preserves the orientation of M0,3+k. The combinatorial equality

%∗(γλ1 ) = (−1)|λ|−1γ
i(λ)
0 translates to the equality %∗(βλs ) = (−1)|λ|−1αλs

for differential forms. Hence the claim.

Corollary 8.3.1.4. The expressions ψλs := bλs −aλs are the explicit coef-
ficients of the family of grt1 ⊂ l-elements found in [Rossi and Willwacher
2013].

The following lemma is proved by Rossi and Willwacher.

Lemma 8.3.1.5. [Rossi and Willwacher 2013] For all s,

ψs =
∑
|λ|≥3

22|λ|−2(s(1− s))|λ|−1ψλ1/2xλ.

The proof is based on noting that θijs is a sum of a holomorphic part
scaled by 1 − s and an antiholomorphic part scaled by s. The terms
of the differential form φλs contributing to the integral ϕλs must contain
an equal number of holomorphic and anti-holomorphic parts, and that
number is the complex dimension |λ| − 1 of the space over which we
integrate.

Lemma 8.3.1.6. The coefficients ψλs are 0 whenever |λ| is even.

Rossi and Willwacher do not prove this claim in detail, so let us do
it. It follows from the lemma expressing the s-dependence of ψs and the
following:

Lemma 8.3.1.7. ϕλs (w) = (−1)|λ|−1ϕλ1−s(w) for real 0 < w < 1.

Proof. Let f : Conf |λ|−1(C \ {0, w, 1}) → Conf |λ|−1(C \ {0, w, 1}) be
the map which acts as complex conjugation on all points, where w is
real. It acts on orientation of each fiber above C \ {0, w, 1} by −1)|λ|−1.
On the other hand f∗φλs = φλ1−s. Applying integration then proves the
claim.

Rossi’s and Willwacher’s formula for the s-dependence implies ψλs =
ψλ1−s, while our lemma above implies ψλs = (−1)|λ|−1ψλs . The two are
compatible only if ψλs = 0 if λ has even length. Let us summarize the
discussion so far in the form of a theorem.
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Theorem 8.3.1.8. Let j ≥ 1. The Lie-series

τ2j+1 :=
∑

|λ|=2j+1

24j
(
bλ1/2 + (−1)|λ|b

i(λ)
1/2

)
xλ

are elements of the Grothendieck-Teichmüller Lie algebra grt1. The fam-
ily of elements ψs has the form

ψs =
∑
j≥1

(s(1− s))2jτ2j+1.

Moreover, each Drinfel’d associator Φt is obtained as Et1/2[ψs]·ΦAT where
ΦAT = Φ1/2.

We take no credit for the actual mathematical content of above
theorem, our contribution is only a formulaic simplification of its con-
stituents.

Remark 8.3.1.9. The Deligne-Drinfel’d-Ihara conjecture may be phrased
as saying that the morphism

lie(σ3, σ5, . . . , σ2j+1, . . . )→ grt1

from the degree-completed free Lie algebra on generators σ2j+1 to grt1
defined by sending σ2j+1 7→ τ2j+1 is an isomorphism of Lie algebras. A
recent theorem by Francis Brown [Brown 2012] implies that this mor-
phism is injective.

8.4 Recurrence relations.

A big part of the difficulty in the calculations of the integrals defining
the coefficients of the associators Φt or the Grothendieck-Teichmüller
elements ψs is the calculation of the differential forms entering the in-
tegrals. We show here that these differential forms satisfy interesting
recurrences, coming from the recursive definition the Lie word associ-
ated to a Lyndon word.

Denote by πx : Confk(C \ {0, 1})→ Conf1(C \ {0, 1}) the projection
which forgets all points except the point x.

Proposition 8.4.0.10. The differential form ϑλt satisfies

ϑλt =
1

2πi

∑
µ<ν

cλµνπ
!
w

((
(1− t) dw

w − z
− t dw̄

w̄ − z̄

)
π∗zϑ

µ
t π
∗
zϑ

ν
t

)
.
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Remark 8.4.0.11. In other words, the differential forms defining the
Drinfel’d associator can be defined by above recurrence formula. The
formula ϑλt = π!(θΓλ

t ) is a solution to the recurrence, but maybe it is
possible to write the solution in another way.

Proof. The equality Γλ =
∑

µ<ν c
λ
µνΓµ � Γν implies that

θλt =
∑
µ<ν

cλµνθt(w, z1)θµt (z1, z2, . . . , zr)θ
ν
t (z1, zr+1, . . . , zk).

We then integrate out z1, . . . , zk to obtain ϑλt . Repeated fiber integration
is associative, so we may first integrate out z2, . . . , zk, after which we are
left with (renaming z = z1)∑

µ<ν

cλµνθt(w, z)θ
µ
t (z)θνt (z).

The end result, i.e. ϑλt , must be a form in dw and dw̄. Recalling that

θt(w, z) =
1− t
2πi

d log(z − w)− t

2πi
d log(z̄ − w̄)

then gives the proposed formula.

Let us introduce the convention that a lack of subscript s means
s = 1/2. The following two results are proved in a way completely
analogous to the preceeding proposition.

Proposition 8.4.0.12. The function ϕλ satisfies

ϕλ = −
∑
µ<ν

cλµνπ
!
w

(
i

π
log |z − w|π∗zϑµπ∗zϑν

+
1

2π
d arg(w − z)

(
π∗zϕ

µπ∗zϑ
ν − π∗zϑµπ∗zϕν

))
,

and the constant ψλ satisfies

ψλ = −
∑
µ<ν

cλµν

∫
M0,4

(
i

π
log
|1− w|
|w|

ϑµϑν

+
1

2π
d arg

1− w
w

(
ϕµϑν − ϑµϕν

))
.

Note that the dependence on s of ϕs and ψs is known so one may
reduce to ϕ = ϕ1/2 and ψ = ψ1/2.
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8.5 Multiple zeta values.

A theorem due to Hidekazu Furusho states that every Drinfel’d associa-
tor with coefficients in a field k ⊃ Q defines a morphism of Q-algebras
FZ → k from the algebra of formal multiple zeta values [Furusho 2011].
The example which served as the starting point for this result was the
original associator due to Drinfel’d, the Knizhnik-Zamolodchikov asso-
ciator. Its associated algebra morphism is the evaluation of a formal
multiple zeta value as an actual multiple zeta value. Since we have
achieved a thoroughly explicit formula for the Rossi-Willwacher asso-
ciators Φt, we can write down the associated morphisms FZ → C in
equally explicit form, and prove some properties of them.

8.5.1 The double shuffle group.

Denote by Q〈〈Y 〉〉 the completed tensor algebra on the countably many
symbols y0 = 1, yi, i ≥ 1, and define PY : Q〈〈x0, x1〉〉 → Q〈〈Y 〉〉 to be
the linear map that sends a word ending in x0 to 0 and xn1−1

0 x1 . . . x
nr−1
0 x1

to (−1)rys1 . . . ysr . We consider both spaces as coalgebras, by equipping
Q〈〈Y 〉〉 with the stuffle coproduct

∆∗yn :=
∑
k+l

yk ⊗ yl,

(note y0 = 1) and Q〈〈x0, x1〉〉 with the usual coproduct ∆xxi = 1 ⊗
xi + 1⊗ xi, i = 0, 1. The following definition is due to Georges Racinet,
though we use slightly different sign conventions.

Definition 8.5.1.1. [Racinet 2000] Define DMR to be the set of Φ ∈
Q〈〈x0, x1〉〉 such that

- the coefficient of 1 is 1, i.e. (Φ|1) = 1,

- (Φ|x0) = 0 = (Φ|x1),

- ∆xΦ = Φ⊗̂Φ,

- and ∆∗Φ∗ = Φ∗⊗̂Φ∗,

where

Φ∗ := exp

(∑
n≥1

(−1)n

n

(
Φ|xn−1

0 x1

)
yn1

)
PY (Φ).

The set DMR is an affine variety defined over the rationals. The algebra
of formal multiple zeta values FZ is defined to be the ring of functions
on DMR.
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Define DMR0 to be the the subvariety defined by the additional
equation (Φ|x0x1) = 0. More generally, for κ ∈ k ⊃ Q, define DMRκ(k)
to be the set of k-valued points Φ with (Φ|x0x1) = −κ.

The following theorem is due to Racinet.

Theorem 8.5.1.2. [Racinet 2000] DMR0 is a group under the multi-
plication

(Φ ·Ψ)(x0, x1) := Φ(Ψ(x0, x1)x0Ψ−1(x0, x1), x1)Ψ(x0, x1),

for Ψ−1 defined as the inverse of Ψ in the group of grouplike elements
of Q〈〈x0, x1〉〉. Moreover, DMR is a torsor for DMR0 under the right
action given by the same formula as the group multiplication.

The following theorem is due to Hidekazu Furusho.

Theorem 8.5.1.3. [Furusho 2011] The trivial map Φ 7→ Φ is an injective
morphism of groups from GRT1 to DMR0, and it extends to an inclusion
of the set of associators Assoc(k) over k ⊃ Q into the set of k-valued
points of DMR.

Given a sequence of integers (n1, . . . , nr), with n1 ≥ 2, define

z(n1, . . . , nr) ∈ FZ

to be the function given by evaluating (−1)r(Φ|xn1−1
0 x1 . . . x

nr−1
0 x1).

These elements generate FZ (but with a lot of redundancy, of course).
It follows that we can identify DMRκ(k) with the set of Q-algebra
morphisms FZ → k sending z(2) to κ. Generally, Furusho’s theo-
rem may be phrased as saying that if Φ is a Drinfel’d associator over
k, then the map FZ → k that sends z(n1, . . . , nr) to the coefficient
(−1)r(Φ|xn1−1

0 x1 . . . x
nr−1
0 x1) is a morphism of Q-algebras.

Remark 8.5.1.4. The algebra FZ is defined by imposing only the so-
called regularized double shuffle relations. They are conjectured to form
a complete list of relations for the classical multiple zeta values. There
is also a relation called the (Hoffman) duality relation, and as far as the
present author knows it is still unknown wether the regularized shuffle
relations imply it or not; however, the duality relation is satisfied by
any evaluation defined by a Drinfel’d associator, see [Soudères 2013]. In
the present case the duality relations can be verified also more directly,
using the representation as iterated integrals.

Remark 8.5.1.5. The t-dependence of the forms ϑλt is polynomial.
Thus, the family of evaluations should maybe more properly be con-
sidered as a map of Q-algebras FZ → C[t].

169



8.5.2 Properties of the family of evaluations.

Define ζt : FZ → C to be the family of algebra morphisms correspond-
ing to the family of Drinfel’s associators Φt and set ζt(n1, . . . , nr) :=
ζt(z(n1, . . . , nr).

Remark 8.5.2.1. The associator Φ0 is, up to normalizing prefactors,
equal to the Knizhnik-Zamolodchikov associator. Hence, and in more
detail,

ζ0(n1, . . . , nr) =
1

(2πi)n
ζ(n1, . . . , nr), n := n1 + . . . nr,

where the ζ on the right refers to the classical multiple zeta value. For
example,

ζ0(2) = − 1

4π2

π2

6
= − 1

24
.

Proposition 8.5.2.2. For all t, ζt(2) = −1/24.

The result is equivalent to saying that all associators Φt are κ = 1-
associators. It is known that the GRT1-action on associators does not
change κ; hence ζ0(2) = −1/24 already implies the claim. Let us give a
direct proof as well.

Proof. The formal zeta z(2) is given by evaluating the coefficient of
−x0x1. We first rewrite this in the PBW Lyndon basis, as x0x1 =
x01 +x1x0. The dual is x01 +x1xx0, which gives us the iterated integral

It(x
01) + It(x

1)xIt(x1) = [ϑ01
t ] + [ϑ1

t |ϑ0
t ] + [ϑ1

t ]x[ϑ0
t ]

= [ϑ01
t ] + 2[ϑ1

t |ϑ0
t ] + [ϑ0

t |ϑ1
t ].

The iterated integral 2[ϑ1
t |ϑ0

t ] diverges on 01 but is regularized away in
the associator. (The regularization discards all iterated integrals that
start with ϑ1

t and/or end with ϑ0
t .) Hence, the proposition is that evalu-

ation of the iterated integral [ϑ01
t ]+[ϑ0

t |ϑ1
t ] on the path 01 equals 1/24 for

all t. The differential form ϑ01
t was calculated in [Rossi and Willwacher

2013] and equals

t(1− t)2

2π2

(
log |1− w|

w
+

log |w|
1− w

)
dw+

t2(1− t)
2π2

(
log |1− w|

w̄
+

log |w|
1− w̄

)
dw̄.

Restricted to real 0 < w < 1 it simplifies to

t(1− t)
2π2

(
log(1− w)

w
+

log(w)

1− w

)
dw.
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Note∫ 1

0
log(1− w)

dw

w
=

∫ 1

0

∫ w1

0
d log(1− w2)d log(w1) = ζ(2) =

π2

6
.

The other term gives another ζ(2), and hence∫
01

[ϑ01
t ] =

t(1− t)
6

.

Since the iterated integral [ϑ0
t |ϑ1

t ] on 01 does not depend on the angular
part of the differentials one deduces∫

01
[ϑ0
t |ϑ1

t ] =
(1− 2t)2

2π2
ζ(2) =

(1− 2t)2

24
.

Collecting terms,
t(1− t)

6
+

(1− 2t)2

24
=

1

24
.

Remark 8.5.2.3. As a consequence, the formal version

z(2n) = (−1)n+1B2n

2

(24)n

(2n)!
z(2)n

of Euler’s formula implies that

ζt(2n) = − B2n

2(2n)!
∈ Q.

Proposition 8.5.2.4. For all Lyndon words, ϑλt = (−1)|λ|ϑλ1−t when
restricted to 01.

Proof. This is a copy of the analogous relation that we proved in 8.3.1.7.
The only difference is that f∗θλt = −θλ1−t.

Corollary 8.5.2.5. The evaluations satisfy the the following time-reflection
symmetry

ζt(n1, . . . , nd) = (−1)n1+···+ndζ1−t(n1, . . . , nd).

We remark that the number n1 + · · · + nd is called the weight of
z(n1, . . . , nd).
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Proof. If xλ1 . . . xλk appears as a summand when writing the monomial
xn1−1

0 x1 . . . x
nd−1
0 x1 in the PBW Lyndon basis, then |λ1| + · · · + |λk| =

n1 + · · · + nd. Hence, the corresponding contributing iterated integrals
satisfy ∫

01
[ϑλ1
t | . . . |ϑ

λk
t ] = (−1)n1+···+nd

∫
01

[ϑλ1
1−t| . . . |ϑ

λk
1−t].

Corollary 8.5.2.6. For t = 1/2 all multiple zetavalues of odd weight
are zero.

For example, the odd zetavalues ζ1/2(2n + 1) = 0 and, of course,
many more. Let us give a direct verification of this latter fact, since the
argument has some elucidating features.

Proof. The odd zeta ζt(2n+1) equals −(Φt|x2n
0 x1). In the PBW Lyndon

basis,

x2n
0 x1 = x02n1 + c1x02n−11x0 + · · ·+ c2n−1x01x

2n−1
0 + x1x

2n
0 ,

for some integer coefficients c1, . . . , c2n−1. Note that

θij1/2 =
1

2π
d arg(xj − xi)

is zero when the points are constrained to be collinear; it follows im-
mediately that all iterated integrals involving ϑ0

1/2 or ϑ1
1/2 along 01 are

zero, and hence

ζ1/2(2n+ 1) = −
∫

01
ϑ02n1

1/2 .

Consider CF2n,3 := {(z1, . . . , z2n, w) ∈ M0,2n+1 | 0 ≤ w ≤ 1}. We may
identify ∫

01
ϑ02n1

1/2 =

∫
CF2n,3

θ02n1
1/2 .

Let f be the diffeomorphism of CF2n,3 induced by complex conjuga-
tion. It acts on orientation by (−1)2n, i.e., it preserves orientation. On
the other hand f∗θ02n1

1/2 = (−1)2(2n+1)−1θ02n1
1/2 = −θ02n1

1/2 , so the integral
vanishes.
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8.5.3 Questions.

It is a famous conjecture that the standard evaluation FZ → R is in-
jective (possibly adding to FZ also the duality relations). Since the
standard evaluation corresponds to the Knizhnik-Zamolodchikov asso-
ciator, the conjecture is equivalent to conjecturing that ζ0 is injective
up to the “gauge-fix” that ζ0(2) = −1/24. The evaluation for t = 1
is given by ζ1(n1, . . . , nd) = (−1)n1+···+ndζ0(n1, . . . , nd), so it equals ζ0

on multiple zetas of even weight and is minus ζ0 on multizetas of odd
weight. Hence the conjecture also implies that ζ1 is essentially injective.
On the other hand, ζ1/2 has a very large kernel because, as we have seen,
it vanishes on all multizetas of odd weight. It is tempting to conjecture
that ζ1/2 is rational. Since the various evaluations ζt are all given by
acting on ζ1/2 with a Grothendieck-Teichmüller element

Gt = Et1/2

[∑
j≥1

(s(1− s))2jτ2j+1

]

that conjecture would (somewhat informally) be equivalent to saying
that all the transcendent numbers come from the coefficients of the
τ2j+1’s. The conjecture is probably too optimistic. Since there are no
relations in FZ between multiple zetas of different weight one could, to
the other extreme, conjecture that ζ1/2 is injective mod z(2) on the part
of even weight.

The graph Γ01 is the graph defining the operation V1,3 in our ex-
otic NCG∞-structure on polyvector fields. The weight of the graph is
1/24 in that construction as well. Hence, it is natural to conjecture that
there is a family of exotic NCG∞-structures on polyvector fields, corre-
sponding to the family Φt, such that our exotic structure from chapter 4
corresponds to the Alekseev-Torossian associator, and such that all the
NCG∞-structures in the family have a first exotic correction term with
weight 1/24. Ideally such a construction should be possible by simply
redefining the differential forms associated to graphs by decorating edges
with θt; however, there are convergence issues that require regulariza-
tion and it is not clear how to regularize and still respect all operadic
structure.
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