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Abstract

One of the central problems in engineering is to estimate the state of a stochastic dynamic
system from limited noisy measurements. A Kalman filter is commonly used for state
estimation, which produces an unbiased optimal estimate that minimizes the variance of
the estimation error. Many physical processes, such as diffusion and beam vibrations,
can be described by partial differential equations. These governing equations may be
reformulated mathematically as infinite-dimensional dynamic systems. In this work, the
derivation of the Kalman filter for infinite-dimensional linear dynamic systems is reviewed,
and the sensor placement problem for Kalman filtering is considered. The optimality
criterion for sensor selection and location is to minimize the steady-state error variance,
which is shown to be the nuclear norm of an operator that solves an algebraic Riccati
equation.

Three partial differential equation models are examined: one-dimensional diffusion,
simply supported Euler-Bernoulli beam with Kelvin-Voigt damping, and two-dimensional
diffusion on an L-shaped region. Optimal sensor locations are calculated for the three
models. The sensor noise effects on the state estimation are investigated with the assump-
tion that all the selected sensors are placed optimally. Results show that using multiple
low quality sensors can lead to as good an estimate as using a single high quality sensor,
provided that enough sensors are used. In particular, for the one-dimensional diffusion
equation, approximately proportional relations between the square root of sensor noise
variance and the estimation error are observed in simulations.
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Chapter 1

Introduction

The problem of estimating the state of a stochastic dynamic system from limited noisy
measurements is one of the central problems in engineering. State estimation has been
considered of great value in diverse applications. For example, in monitoring a chemical
process, a state estimator can be used to estimate concentrations of chemical species, which
are usually challenging to measure. Estimating the dispersion of pollutants in air and ocean
can be of interest for environmentalists. Another application is to estimate the position
of a moving vehicle for purposes of guidance, navigation, and control. The quality of an
estimate depends not only on the type of the estimator used, but also on the quality of
measurements.

A Kalman filter is commonly used for state estimation, which produces an unbiased
optimal estimate that minimizes the variance of the estimation error. It was first devel-
oped in [38, 39] for state estimation of finite-dimensional linear systems. Many physical
processes, such as diffusion and beam vibrations, can be described by partial differential
equations. These governing equations may be reformulated mathematically as differential
equations on an abstract linear vector space of infinite dimensions. To estimate processes
modelled by partial differential equations, a theory for infinite-dimensional Kalman filtering
is necessary.

The Kalman filter has been generalized to infinite-dimensional linear systems by re-
searchers using different approaches. For instance, in [7], the filtering problem is solved
by an application of linear-quadratic (LQ) control theory and the concept of generalized
random variables introduced in [32]. In [5], the infinite-dimensional Kalman filter is ob-
tained using the theory of weak random variables and techniques of integral equations. A
detailed historical development of infinte-dimensional Kalman filter can be found in [18].
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In this thesis, the approach by R. F. Curtain and A. J. Pritchard in [20] will be described,
which uses functional analysis methods and probability theory on Hilbert spaces.

The Kalman filter makes estimates based on measurements; different sensor placement
may lead to different estimates. To obtain a desirable estimate, certain accuracy in mea-
surements is required. However, high-quality sensors that provide accurate measurements
are usually expensive and sometimes are not available. The question is, can the lack of
sensor accuracy be compensated by adding number of sensors? Also, given a set of sensors,
what are the best sensor locations that maximize the quality of estimates?

The sensor selection and location problem has been considered by many researchers
in various contexts. For example, in [15], a general procedure for the optimal selection of
sensor allocation is formulated and an example of a tubular-flow reactor system is examined,
where sensors are placed either simultaneously or sequentially. In [57], a method for optimal
sensor placement on a thin double-curved shell structure is presented. An optimization
problem is formulated in [40] to select the optimal sensor configurations that maximize
the partial observability of the dynamic system in numerical weather predictions. Optimal
actuator/sensor placement problem for transport-reaction processes is considered in [2].
In [54], an optimization method is proposed, which is successfully used for determining
the optimal sensor locations of a linearized continuous stirred-tank reactor model. In
[11, 12, 13], the optimal filtering problem with mobile sensors is considered, and control of
mobile actuator/sensor pairs is considered in [25]. Finally, in [51, 52, 53], optimizing the
shape and the location of sensors with respect to observability is investigated.

In this thesis, the sensor placement problem for infinite-dimensional Kalman filtering is
considered from two aspects: the optimal sensor location problem and the effect of sensor
noise on the estimation. The optimality criterion for sensor selection and location is to
minimize the steady-state error variance, which is shown to be the nuclear norm of an
operator that solves an algebraic Riccati equation (ARE). Optimal sensor location in this
context is the dual problem of the LQ optimal actuator location problem. The results
on well-posedness of the optimal location problem, as well as the use of approximations
in calculating the optimal locations in [48] can be applied by duality. Also, in [24], an
algorithm for computation of LQ optimal actuator location problem is presented and this
can be used for computation of the optimal sensor locations.

With the assumption that all the selected sensors are placed at optimal locations, the
effect of the sensor noise and the number of sensors on the quality of a Kalman filter esti-
mate is examined for three partial differential equation models: one-dimensional diffusion,
simply supported Euler-Bernoulli beam with Kelvin-Voigt damping, and two-dimensional
diffusion on an L-shaped region. Intuitively, using more sensors should lead to a better
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estimate. The question is, whether of a larger number of inaccurate sensors, that is those
with large noise variance, can provide as good an estimate as a single highly accurate sen-
sor. Simulations with two estimators, one constructed using a single high-quality sensor
and one with a number of poor quality sensors, indicates that number of sensors can com-
pensate for high sensor noise. In particular, for the one-dimensional equation, the same
approximately square root relation between the sensor noise variance and the solution to
the associated ARE is observed in considering different disturbances.

The thesis is organized as follows. In Chapter 2, background materials are provided,
including a brief summary of the finite-dimensional continuous-time Kalman filter, some
concepts of infinite-dimensional linear systems, probability theory on Hilbert spaces, and
the LQ control problem as a dual problem of Kalman filtering. Chapter 3 introduces the
state estimation problem and the derivation of the Kalman filter for infinite-dimensional
linear systems. The sensor placement problem is formulated in Chapter 4, with dual results
from LQ actuator location problem presented and discussion of computational aspects. In
Chapter 5, three partial differential equation models are examined, which are approximated
by finite-dimensional systems for computational purposes. Optimal sensor locations are
calculated and sensor noise effects on state estimation are investigated numerically.

3



Chapter 2

Background

2.1 Probability Theory

To consider systems with random disturbances, some concepts of probability theory are
introduced in this section.

Suppose Ω is a nonempty set of points.

Definition 2.1.1. [14] A σ-algebra of sets on Ω is a nonempty collection F of subsets of
Ω that satisfies both of the following conditions:
(1) If a sequence of subsets Ω1, Ω2, . . . ∈ F , then the union ∪∞j=1Ωj ∈ F ;
(2) If Ω0 ∈ F , then the complement set Ω \ Ω0 ∈ F .

Definition 2.1.2. [14] Let F be a σ-algebra of sets on Ω. A probability measure µ on F
is a real-valued set function with domain F , satisfying the following conditions:
(1) For any Ω0 ∈ F , µ(Ω0) ≥ 0;
(2) If {Ωj} is a countable collection of pairwise disjoint sets in F , then

µ(∪jΩj) =
∑
j

µ(Ωj);

(3) µ(Ω) = 1.

The triple (Ω,F , µ) is called a probability space; Ω alone is called the sample space,
and each point ω ∈ Ω is called a sample point.

4



Example 2.1.3. Suppose Ω = (0, 1] ⊆ R, F the σ-algebra generated by the collection of
intervals

{(a, b] : 0 < a < b ≤ 1},

and µ0 is the Lebesgue measure on F , then (Ω,F , µ0) is a probability space.

Definition 2.1.4. [14] The probability space (Ω,F , µ) is said to be complete if and only
if any subset of a set Ω0 ∈ F with µ(Ω0) = 0 also belongs to F .

Let Z be a separable Hilbert space and (Ω,F , µ) be the underlying probability space,
which is assumed to be complete.

Definition 2.1.5. [20, Definition 5.1] A Z-valued random variable is a measurable map-
ping ζ : Ω→ Z.

Definition 2.1.6. [20, Definition 5.1] For a Z-valued random variable ζ ∈ L1(Ω;Z), the
expectation of ζ is

Eζ =

∫
Ω

ζ(ω)µ(dω).

A simple example of a Z-valued random variable is as follows:

Example 2.1.7. Suppose the Hilbert space Z = L2(0, 1), a function g ∈ Z, and ξ is a
real-valued random variable. Then

ζ := ξ · g

is a Z-valued random variable.

For arbitrary z1, z2 ∈ Z, define the operation ‘◦’ by

(z1 ◦ z2)z = 〈z2, z〉z1, z ∈ Z. (2.1)

In particular, if Z = Rn for some positive integer n, then z1 ◦ z2 = z1z
T
2 .

Lemma 2.1.8. Suppose ζ1, ζ2 ∈ L2(Ω;Z) are Z-valued random variables. For arbitrary
z1, z2 ∈ Z,

〈E{ζ1 ◦ ζ2}z1, z2〉 = E{〈ζ1, z1〉〈ζ2, z2〉}.
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Proof. By Definition 2.1.6 and linearity of the inner product,

〈E{ζ1 ◦ ζ2}z1, z2〉 =
〈 ∫

Ω

〈ζ2(ω), z1〉ζ1(ω)µ(dω), z2

〉
=

∫
Ω

〈ζ2(ω), z1〉〈ζ1(ω), z2〉µ(dω)

= E{〈ζ1, z2〉〈ζ2, z1〉}.

Definition 2.1.9. [20, Definition 5.2] For a Z-valued random variable ζ ∈ L2(Ω;Z), the
covariance operator of ζ is

Cov(ζ) = E{(ζ − Eζ) ◦ (ζ − Eζ)}.

Definition 2.1.10. Let {ψj}∞j=1 be an orthonormal basis for Z. A self-adjoint nonnegative
operator L ∈ L(Z) is called nuclear if

∞∑
j=1

〈Lψj, ψj〉 <∞.

The nuclear norm of L, denoted by ||L||1, is

||L||1 =
∞∑
j=1

〈Lψj, ψj〉.

The value of ||L||1 is independent of choice of the orthonormal basis {ψj}∞j=1.

Proposition 2.1.11. [20, page 118] For a Z-valued random variable ζ ∈ L2(Ω;Z), Cov(ζ)
is a nuclear operator, with

||Cov(ζ)||1 = E{〈ζ − Eζ, ζ − Eζ〉}. (2.2)

Proof. Let {ψj}∞j=0 be an orthonormal basis for Z. Then

ζ − Eζ =
∞∑
j=0

〈ζ − Eζ, ψj〉ψj,
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which implies

〈ζ − Eζ, ζ − Eζ〉 =
∞∑
j=0

〈ζ − Eζ, ψj〉2. (2.3)

Since ζ ∈ L2(Ω;Z), by linearity of inner product,

E{〈ζ − Eζ, ζ − Eζ〉} = E{〈ζ, ζ〉} − 〈Eζ,Eζ〉 <∞. (2.4)

Moreover, for each j, by Lemma 2.1.8,

〈Cov(ζ)ψj, ψj〉 = E{〈ζ − Eζ, ψj〉2}.

Hence,

||Cov(ζ)||1 =
∞∑
j=0

〈Cov(ζ)ψj, ψj〉

=
∞∑
j=0

E{〈(ζ − E{ζ}), ψj〉2}.

By monotone convergence theorem,

||Cov(ζ)||1 = E{
∞∑
j=0

〈(ζ − E{ζ}), ψj〉2}

= E{〈ζ − Eζ, ζ − Eζ〉} (by (2.3))

<∞ (by (2.4)).

Definition 2.1.12. Let B(R) be the Borel σ-algebra of R. A real-valued random variable
ξ is Gaussian, with mean value a and variance σ2, if for any X ∈ B(R),

µ(ξ ∈ X) =

∫
X

f(x)dx,

where

f(x) =
1

σ
√

2π
exp(
−(x− a)2

2σ2
)

is called the probability density function of ξ.

7



Definition 2.1.13. [20, Definition 5.4] A Z-valued random variable ζ is Gaussian if 〈ζ, ψ〉
is a real-valued Gaussian random variable for all ψ ∈ Z.

Definition 2.1.14. [23, Page 65] An arbitrary family ζ = {ζ(t)}t≥0, of Z-valued random
variables ζ(t), t ≥ 0, defined on Ω is called a stochastic process. For each ω ∈ Ω, ζ(·, ω)
is called a sample path of ζ.

Definition 2.1.15. [23, Definition 4.2] Let Q be a nonnegative nuclear operator on Z. A
Z-valued stochastic process w(t), t ≥ 0, is called a Wiener process of incremental covari-
ance Q, if it satisfies
(1) w(0) = 0;
(2) w has continuous sample paths;
(3) w has independent increments, i.e. w(s4) − w(s3) and w(s2) − w(s1) are independent
whenever s4 ≥ s3 ≥ s2 ≥ s1 ≥ 0;
(4) w(t) − w(s), for t ≥ s ≥ 0, is a Z-valued Gaussian random variable with zero mean
and covariance (t− s)Q.

Proposition 2.1.16. [23, Proposition 4.3] Assume that w(t) is a Z-valued Wiener process
of incremental covariance Q, then there exists an orthonormal basis {ψj}∞j=0 for Z and a
bounded sequence of nonnegative real numbers {λj}∞j=0, such that

Qψj = λjψj, j = 0, 1, 2, . . . ,

and for arbitrary t ≥ 0, w has the expansion

w(t) =
∞∑
j=0

βj(t)ψj, (2.5)

where βj(t), j ≥ 0, are mutually independent real-valued Wiener processes of incremental
covariance λj, and the series above is convergent in L2(Ω,F , P ).

2.2 Finite-Dimensional Kalman Filter

Consider a linear system modelled by n scalar stochastic differential equations, written in
the form of

dz(t) = Az(t)dt+Gdw(t), z(0) = z0, t ≥ 0, (2.6)

and
dy(t) = Cz(t)dt+ dv(t), y(0) = 0, (2.7)

8



where z(t) ∈ Rn, A ∈ Rn×n, C ∈ Rn×m and G ∈ Rn×p. The function z(t) is called the
state of the system, and y(t) ∈ Rm is the output. The initial state z0 ∈ Rn is known as
a Gaussian random vector, with zero mean value and covariance matrix P0 ∈ Rn×n. The
signals w(t) ∈ Rp and v(t) ∈ Rm are vector-valued Wiener processes, each with zero mean
value and incremental covariances:

E{(w(t)− w(s))(w(t)− w(s))T} = (t− s)Q̃,

E{(v(t)− v(s))(v(t)− v(s))T} = (t− s)R̃,

for all t ≥ s ≥ 0, where Q̃ ∈ Rp×p is nonnegative and R̃ ∈ Rm×m is positive definite.
Moreover, assume z0, w(t) and v(t) are mutually uncorrelated.

In (2.6),
dw(t) = w(t+ dt)− w(t),

and
dz(t) = z(t+ dt)− z(t),

where dt is the infinitesimal time difference. Similarly, in (2.7) ,

dv(t) = v(t+ dt)− v(t),

and
dy(t) = y(t+ dt)− y(t).

Theorem 2.2.1. [3, Theorem 6.2.2 & Corollary 8.2.4] The stochastic differential equation
(2.6) has the unique solution

z(t) = exp(At)z0 +

∫ t

0

exp(A(t− s))Gdw(s),

where exp(At) is the matrix exponential:

exp(At) =
∞∑
n=0

Antn

n!
.

In many cases, the internal state z(t) can not be fully observed. An estimate z̃(t) for
the state z(t) is called unbiased if

E{z̃(t)} = E{z(t)}, t ≥ 0.
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Based on the output {y(τ) : 0 ≤ τ ≤ t}, the continuous-time Kalman filter, also known as
Kalman-Bucy filter, provides system (2.6) with an optimal unbiased linear estimate z̃(t)
(see e.g. [10, Chapter 4]), such that the error variance

E{||z(t)− z̃(t))||2}, t ≥ 0

is minimized. The Kalman-Bucy filter can be described by an n-dimensional linear dynamic
system

dz̃(t) = Az̃(t)dt+ F (t)(dy(t)− Cz̃(t)dt), z̃(0) = 0, t ≥ 0,

where
F (t) = Pe(t)C

∗R̃−1,

and Pe(t) is the unique solution to the differential Riccati equation

Ṗe(t) = APe + PeA
∗ − PeC∗R̃−1CPe +GQ̃G∗

Pe(0) = P0.
(2.8)

Moreover, Pe(t) is the estimation error covariance matrix

Pe(t) = E{(z(t)− z̃(t))(z(t)− z̃(t))T}.

Under certain conditions, the matrix Pe(t) reaches a steady-state matrix Pss as t→∞,
which solves the algebraic Riccati equation (ARE)

APss + PssA
∗ − PssC∗R̃−1CPss +GQ̃G∗ = 0. (2.9)

The Kalman filter converges to a time-invariant filter:

dz̃(t) = Az̃(t)dt+ Fss(dy(t)− Cz̃(t)dt), z̃(0) = 0, t ≥ 0,

where
Fss = PssC

∗R̃−1,

Definition 2.2.2. (1) A matrix A is Hurwitz if all the eigenvalues of A have negative real
parts.
(2) The matrix pair (A,B) is stabilizable if there exists K such that A−BK is Hurwitz.
(3) The matrix pair (A,C) is detectable if there exists F such that A− FC is Hurwitz.

Theorem 2.2.3. [43, Theorem 2.3] The ARE (2.9) has a unique positive semi-definite
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solution Pss such that
lim
t→∞

Pe(t) = Pss

if and only if the pair (A,G

√
Q̃) is stabilizable and (A,C) is detectable. Furthermore,

the corresponding steady-state Kalman filter is stable. That is, the matrix (A − FssC) is
Hurwitz.

2.3 Infinite-dimensional Linear System

Let Z be a separable Hilbert space. An infinite-dimensional linear system can be written
similar to the state-space form (2.6), but with the state z ∈ Z instead, and where A, B,
C are linear operators on Hilbert spaces. In this section, some concepts and results on
infinite-dimensional linear systems are reviewed. The material here can be found in [20]
and [21].

2.3.1 Semigroup Theory

Let L(X ,Z) denote the set of all bounded linear operators from a Hilbert space X to a
Hilbert space Z, and when X = Z, write L(Z) = L(Z,Z).

Definition 2.3.1. [21, Definition 2.1.2] A strongly continuous semigroup on Z is an
operator-valued function

T (·) : R+ → L(Z)

that satisfies the following properties:

(1) T (t+ s) = T (t)T (s) for t, s ≥ 0;

(2) T (0) = I,where I is the identity operator on H;

(3) lim
t→0+

T (t)z = z, for any z ∈ Z.

Definition 2.3.2. [21, Definition 2.1.8] The infinitesimal generator A of a C0-semigroup
T (·) on Z is defined by

Az = lim
t→0+

T (t)z − z
t

,

with the domain of A, D(A), being the set of elements in Z for which the limit exists.
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For each z0 ∈ D(A), the solution to

ż(t) = Az(t), z(0) = z0, t ≥ 0

is
z(t) = T (t)z0, t ≥ 0.

Theorem 2.3.3. [21, Theorem 2.2.6] If T (t) is a C0-semigroup with infinitesimal generator
A on a Hilbert space Z, then T ∗(t) is a C0-semigroup with infinitesimal generator A∗ on
Z.

Let X , Z be separable Hilbert spaces and [0, t1] be a time interval. Define the set

B∞([0, t1];L(X ,Z)) :=

{
D : D(t) ∈ L(X ,Z)), t ∈ [0, t1], 〈D(·)z1, z2〉 is measurable on

[0, t1] for all z1 ∈ X , z2 ∈ Z and ess supt∈[0,t1] ||D(t)|| <∞

}
,

and the region
4([0, t1]) := {(t, s) : t1 ≥ t ≥ s ≥ 0} ⊂ R2.

Definition 2.3.4 (mild evolution operator). [21, Definition 3.2.4] The operator S(t, s) :
4([0, t1])→ L(Z) is called a mild evolution operator if it has the following properties:
(1) S(s, s) = I, for s ∈ [0, t1];
(2) S(t, r)S(r, s) = S(t, s), 0 ≤ s ≤ t ≤ t1;
(3) For each fixed s ∈ [0, t1], S(·, s) is strongly continuous on [s, τ ];
(4) For each fixed t ∈ [0, t1], S(t, ·) is strongly continuous on [0, t].

Theorem 2.3.5. [21, Theorem 3.2.5 & Definition 3.2.6] Suppose A is the infinitesimal
generator of the C0-semigroup T (·). For D(·) ∈ B∞([0, t1];L(Z)) and arbitrary z ∈ D(A),

S(t, s)z = T (t− s)z +

∫ t

s

T (t− τ)D(τ)S(τ, s)zdτ, (s, t) ∈ [0, t1]) (2.10)

has a unique solution in the class of mild evolution operators on Z. The solution is called
the mild evolution operator generated by A+D(·).

For each z0 ∈ D(A), the solution to

ż(t) = (A+D(t))z(t), z(s) = z0, t ≥ s ≥ 0

is
z(t) = S(t, s)z0, t ≥ s ≥ 0.
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2.3.2 Stochastic Integral

The material in this section can be found in [20, §5.2]. Let X , Z be separable Hilbert
spaces and [0, t1] be a finite time interval. Define

B2([0, t1];L(X ,Z)) =

{
Φ : Φ(t) ∈ L(X ,Z), t ∈ [0, t1], 〈Φ(·)z1, z2〉 is measurable on [0, t1]

for arbitrary z1 ∈ X , z2 ∈ Z, and
∫ t1

0
||Φ(t)||2dt <∞

}
.

For an X -valued Wiener process w(·) and Φ(·) ∈ B2([0, t1];L(X ,Z)), stochastic integral of
the form ∫ t

0

Φ(s)dw(s), t ∈ [0, t1],

can be defined as infinite-dimensional Itô integral (see e.g. [20, §5.2]). The construction of
this integral is summarized as follows.

First, consider the integral ∫ t

0

f(s)dβ(s),

where f(·) ∈ L2([0, t1];Z) and β(·) is a real-valued Wiener process of incremental covariance
λ.

Lemma 2.3.6. [20, Lemma 5.26] Let f(·) ∈ L2([0, t1];Z) be a step function, such that

f(s) = fi on [si, si+1), 0 = s0 < s1 < . . . < sk = t1.

Define ∫ t

0

f(s)dβ(s) =
k−1∑
i=0

fi(β(si+1)− β(si))), (2.11)

Then the following holds:
(1)E{

∫ t
0
f(s)dβ(s)} = 0;

(2)E{〈
∫ t

0
f(s)dβ(s),

∫ t
0
f(s)dβ(s)〉} = λ

∫ t
0
〈f(s), f(s)〉ds.

Since the step functions are dense in L2([0, t1];Z), the integral (2.11) can be extended
to arbitrary f(·) ∈ L2([0, t1];Z) by defining∫ t

0

f(s)dβ(s) = lim
n→∞

∫ t

0

fn(s)dβ(s),
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where the limit is obtained in L2(Ω,F , P ) and {fn} is a sequence of step functions con-
verging to f in L2([0, t1];Z).

Using Proposition 2.1.16, the integral
∫ t

0
Φ(s)dw(s) can then be defined:

Definition 2.3.7. [20, Definition 5.25] For a X -valued Wiener process w(·) that has the
expansion (2.5), and Φ(·) ∈ B2([0, t1];L(X ,Z)), define∫ t

0

Φ(s)dw(s) :=
∞∑
j=0

∫ t

0

Φ(s)ψjdβj(s), t ∈ [0, t1], (2.12)

where the infinite sum converges in L2(Ω,F , P ).

Theorem 2.3.8. [20, Lemma 5.28] The indefinite integral defined by (2.12) has the fol-
lowing properties:

E{
∫ t

0

Φ(s)dw(s)} = 0, t ≥ 0, (2.13)

Cov
( ∫ t

τ

Φ(s)dw(s)
)

=

∫ t

τ

Φ(s)QΦ∗(s)ds, t ≥ τ ≥ 0. (2.14)

2.3.3 Stochastic Differential Equations

The material in this section can be found in [20, §5.3]. Let X , Z be separable Hilbert
spaces and [0, t1] be a time interval. Consider a class of stochastic differential equations

dz(t) = Az(t)dt+Gdw(t), z(0) = z0, t ∈ [0, t1], (2.15)

where A, with domain D(A), is the infinitesimal generator of a C0-semigroup T (t) on Z,
z0 is an Z-valued random variable, G ∈ L(X ,Z), and w(t) represents a X -valued Wiener
process of incremental covariance Q. By definition of a Wiener process (Definition 2.1.15),
Q is a nonnegative nuclear operator. Assume {ψj}j≥1 is a sequence of eigenvectors of Q
that forms an orthonormal basis for the space X , and {λj}j≥1 is the corresponding sequence
of eigenvalues.

Definition 2.3.9. [20, Definition 5.30] If z(t) ∈ D(A) with probability 1 (w.p.1), z(t)
satisfies the integral equation

z(t) = z0 +

∫ t

0

Az(s)ds+

∫ t

0

Gdw(s).
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almost everywhere on [0, t1]×Ω, and z(t) has continuous sample paths, then z(t) is a strong
solution of (2.15).

Theorem 2.3.10. [20, Theorem 5.35] If, for all j ≥ 0 and 0 ≤ s ≤ t ≤ t1, T (t − s)Gψj,
T (t)z0 ∈ D(A) w.p.1, and

∞∑
j=0

λj

∫ t

0

||AT (t− s)Gψj||2ds <∞,

then

z(t) = T (t)z0 +

∫ t

0

T (t− s)Gdw(s) (2.16)

is the unique strong solution of (2.15).

A more general type of differential equation, that will arise in the coming chapter, is

dz(t) = (A+ F (t))z(t)dt+Gdw(t), z(0) = z0, t ∈ [0, t1], (2.17)

where F (t) ∈ B∞([0, t1];L(Z)). By Theorem 2.3.5, A + F (t) generates a mild evolution
operator S(·, ·) : 4([0, t1]) → L(Z). The solution of (2.17) can be defined analogously to
Definition 2.3.9.

Definition 2.3.11. If z(t) ∈ D(A) with probability 1 (w.p.1), z(t) satisfies the integral
equation

z(t) = z0 +

∫ t

0

(A+ F (s))z(s)ds+

∫ t

0

Gdw(s)

almost everywhere on [0, t1]×Ω, and z(t) has continuous sample paths, then z(t) is a strong
solution of (2.17).

Theorem 2.3.12. [20, Corollary 5.37] Under the same conditions in Theorem 2.3.10, and
if additionally, F ∈ B∞([0, t1];L(Z)) satisfies

T (t− s)F (s) : Z → D(A)

and
AT (t− s)F (s) ∈ B2([0, t1]× [0, t1];L(Z)),

then

z(t) = S(t, 0)z0 +

∫ t

0

S(t, s)Gdw(s) (2.18)

15



is the unique strong solution of (2.17).

2.4 White Gaussian Noise

White Gaussian noise is widely used as an idealized model for rapidly varying random
fluctuations that are perceived as uncorrelated at different instants of time. A real-valued
white Gaussian noise is generally understood as a stochastic process {η(t) : t ≥ 0}, with
zero mean value and covariance

E{η(t)η(s)} = Qδ(t− s), (2.19)

where δ(·) is the Dirac delta distribution and Q ∈ R+.

However, notice that δ(·) is a generalized function, {η(t) : t ≥ 0} cannot be treated as
an ordinary stochastic process. One of the approaches to interpret white Gaussian noise
is to use the concept of a generalized stochastic process, which was first introduced in
[32, Chapter 3]. By considering Wiener process w(t) of incremental covariance Q as a
generalized stochastic process, white Gaussian noise can be interpreted as the generalized
time derivative of w(t) [3, §3.2]:

η(t) = ẇ(t). (2.20)

To make the connection between η(t) and w(t) more explicit, for a small time difference
4t > 0, define

η4t(t) :=
w(t+4t)− w(t)

4t
, t ≥ 0. (2.21)

Since w(t) has independent increments, η4t(t) and η4t(s) are independent whenever |t −
s| ≥ 4t. Moreover, η4t is a Gaussian process with zero mean and covariance

E{η4t(t)η4t(s)} = Qδ4t(t− s),

where

δ4t(t) =

{
1
4t(1−

|t|
4t), if |t| < 4t,

0 otherwise.

Intuitively, one may think of η(t) as the limit of η4t(t) as 4t→ 0, which is consistent with
(2.20). Such a limit η(t) only exists as a generalized stochastic process, since w(t) is not
differentiable under ordinary rules of calculus.

For simplicity, further discussion on generalized stochastic process is omitted. Instead,
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by taking (2.20) as an intuitive notation, white Gaussian noise, η(·), can be identified as a
stochastic process whose time integral

w(t) =

∫ t

0

η(s)ds, t ≥ 0,

is a Wiener process. In stochastic differential equations, white Gaussian noise is modelled
by the term dw(t). For numerical simulations, the white Gaussian noise η(t) is approxi-
mated by the Gaussian process η4t(t) in (2.21):

η(t) ≈ η4t(t). (2.22)

For each t ≥ 0, η4t(t) is a real-valued Gaussian random variable, with zero mean value
and variance Q

4t .

2.5 Linear-Quadratic Optimal Control

Consider a linear dynamic system described by

ż(t) = Az(t) +Bu(t), z(0) = z0, t ≥ 0 (2.23)

where A, with domain D(A), is the infinitesimal generator of a C0-semigroup T (t) on Z
and B is a bounded linear operator from a separable Hilbert space U to Z. The function
u(·) is the input, z(·) represents the state of the system, with initial state z0 ∈ D(A).

Definition 2.5.1. [21, Definition A.3.71] A self-adjoint operator X on the Hilbert space
Z is coercive if there exists an ε > 0 such that

〈Az, z〉 ≥ ε||z||2

for all z ∈ D(X), where D(X) represents the domain of X.

Let [0, t1] be a finite time interval. Define a quadratic cost functional

J(z0; 0, t1, u) := 〈z(t1),Mz(t1)〉+

∫ t1

0

〈z(t), Qz(t)〉+ 〈u(t), Ru(t)〉dt, (2.24)

where M,Q ∈ L(Z) are self-adjoint and nonnegative. R ∈ L(U) is self-adjoint and coercive.
The linear-quadratic (LQ) control problem for system (2.23) on [0, t1] is, given an initial
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state z0, to find an optimal control uopt(·; z0, 0, t1) ∈ L2([0, t1];U) that minimizes the cost
functional J(z0; 0, t1, u) over all state trajectories z(·) of (2.23). The optimal control is
related to a differential Riccati equation.

Theorem 2.5.2. [21, Theorem 6.1.13] For every self-adjoint, nonnegative operator M ∈
L(Z), the differential Riccati equation

d
dt
〈h1, X(t)h2〉+ 〈h1, [A

∗X(t) +X(t)A−X(t)BR−1B∗X(t) +Q]h2〉 = 0, t ≥ 0,
X(0) = M, for arbitrary h1, h2 ∈ D(A),

(2.25)

has a unique solution X(·) in the class of strongly continuous, self-adjoint operators in
L(Z). Furthermore, for each fixed t1 ≥ 0,

〈z0, X(t1)z0〉 = min
u∈L2([0,t1];U)

J(z0; 0, t1, u).

On the infinite time interval [0,∞], the LQ control problem is to find an optimal control
minimizing the quadratic cost functional

J(z0;u) :=

∫ ∞
0

〈z(t), Qz(t)〉+ 〈u(t), Ru(t)〉dt (2.26)

over all state trajectories z(·) given by (2.23), with inputs u ∈ L2([0,+∞);U).

Proposition 2.5.3. [41, Theorem 9.4-2]) For any self-adjoint and nonnegative operator
Q ∈ L(Z), there exists a unique nonnegative square root

√
Q, such that

√
Q ·
√
Q = Q.

Definition 2.5.4. [21, Definition 5.1.1 & Definition 5.2.1] (1) A C0-semigroup on a
Hilbert space Z, say T (t), is exponentially stable if there exist positive constants α and β
such that

‖ T (t) ‖≤ βe−αt for any t ≥ 0. (2.27)

(2) If there exists K ∈ L(Z,U) such that A − BK generates an exponentially stable C0-
semigroup, then we say that the pair (A,B) is exponentially stabilizable.
(3) We say that (A,C) is exponentially detectable if there exists F ∈ L(Y ,Z) such that
A− FC generates an exponentially stable C0-semigroup.

Theorem 2.5.5. [21, Theorem 6.2.4 & Theorem 6.2.7] If Σ(A,B,
√
Q) is exponentially

stable and exponentially detectable, then the cost functional (2.26) has a minimum for every
z0 ∈ Z. Furthermore, there exists a self-adjoint, nonnegative operator Π ∈ L(Z) such that
A−BR−1B∗Π generates an exponentially stable C0-semigroup

Tπ(·) : R+ → L(Z)
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and
〈z0,Πz0〉 = min

u∈L2([0,+∞);U)
J(z0;u).

This operator Π is the strong limit of X(t) as t → ∞, where X(·) is the unique solution
of the differential Riccati equation (2.25) with X(0) = 0. Equivalently, Π is characterized
as the unique nonnegative solution of an algebraic Riccati equation (ARE) of operators in
L(H):

〈h1, [A
∗Π + ΠA− ΠBR−1B∗Π +Q]h2〉 = 0, for any h1, h2 ∈ D(A). (2.28)

The optimal control is a state feedback control:

uopt(t; z0) = −R−1B∗Πz(t), (2.29)

where z(t) = Tπ(t)z0 is the corresponding state trajectory.
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Chapter 3

State Estimation

Consider an infinite-dimensional integral process

z(t) = T (t)z0 +

∫ t

0

T (t− s)Gdw(s) (3.1)

and the output

y(t) =

∫ t

0

Cz(s)ds+ v(t), t ≥ 0, (3.2)

where T (t) is a C0-semigroup, with infinitesimal generator A, on a separable Hilbert space
Z, w(t) is a Wiener process of incremental covariance Q̃ on a separable Hilbert space W ,
v(t) is a Wiener process of incremental covariance R̃ on a separable Hilbert space Y . The
operators G ∈ L(W ,Z) and C ∈ L(Z,Y). The initial state, z0, is a Z-valued Gaussian
random variable with zero mean value and covariance P0. Assume Y is finite-dimensional,
w(t), v(t), z0 are mutually uncorrelated, and the operator R̃ ∈ L(Y) is coercive.

In many practical situations, while the output is measured, the internal state, z(t),
cannot be fully observed, and therefore, the state estimation problem arises. An extension
of the finite-dimensional Kalman filter, presented previously, is to infinite-dimensional sys-
tems. Derivation of the infinite-dimensional Kalman filter in this chapter follows the book
[20, Chapter 6].
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3.1 Optimal Estimation on Finite Time Horizon

Consider system (3.1)-(3.2) on a finite time interval [0, t1]. The objective is to find an
unbiased optimal linear estimate, z̃opt(t), for the state z(t), based on the measured output
{y(s) : 0 ≤ s ≤ t}, that minimizes the error variance,

Je(t; z̃) := E{||z(t)− z̃(t)||2}, (3.3)

for each t ∈ [0, t1].

Define

B2([0, t1];L(Y ,Z)) =

{
Φ : Φ(t) ∈ L(Y ,Z), t ∈ [0, t1], 〈Φ(·)z1, z2〉 is measurable on [0, t1]

for arbitrary z1 ∈ Y , z2 ∈ Z, and
∫ t1

0
||Φ(t)||2dt <∞

}
.

Consider an estimate of the form

z̃(t) =

∫ t

0

Ψ(t, s)dy(s), (3.4)

where Ψ(t, ·) ∈ B2([0, t];L(Y ,Z)) for each t ∈ [0, t1].

Let
e(t) := z(t)− z̃(t)

be the estimation error. By the assumption that E{z0} = 0 and property (2.13) of stochas-
tic integrals,

E{z(t)} = E{T (t)z0}+ E{
∫ t

0

T (t− s)Gdw(s)} = 0, t ∈ [0.t1].

Also, for the estimate z̃(t) in (3.4),

E{z̃(t)} = E{
∫ t

0

Ψ(t, s)dy(s)}

= E{
∫ t

0

Ψ(t, s)Cz(s)ds+

∫ t

0

Ψ(t, s)dv(s)}

=

∫ t

0

Ψ(t, s)CE{z(s)}ds+ E{
∫ t

0

Ψ(t, s)dv(s)}

= 0.
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Therefore, (3.4) gives an unbiased estimate for the state z(t), so that

E{e(t)} = E{z(t)} − E{z̃(t)} = 0.

The error covariance is
Pe(t) := E{e(t) ◦ e(t)}. (3.5)

It follows from Proposition 2.1.11 that

Je(t; z̃) = ||Pe(t)||1.

Define
Je(t, h; z̃) := E{〈z(t)− z̃(t), h〉2}, h ∈ Z. (3.6)

By Lemma 2.1.8,
Je(t, h; z̃) = 〈Pe(t)h, h〉.

Suppose {ψj}∞j=1 is an orthonormal basis of Z, then

Je(t; z̃) = ||Pe(t)||1 =
∞∑
j=1

〈Pe(t)ψj, ψj〉 =
∞∑
j=1

Je(t, ψj; z̃). (3.7)

Therefore, to find an optimal estimate that minimizes the error variance Je(t; z̃), it is
sufficient to find an estimate that minimizes Je(t, h; z̃) for each h ∈ Z.

Lemma 3.1.1 (Orthogonality Projection Lemma). [20, Lemma 6.2] For each fixed t ∈
[0, t1], a linear estimate, z̃(t), minimizes (3.6) over all estimates of the form (3.4) with
Ψ(t, ·) ∈ B2([0, t];L(Y ,Z)) if and only if for any σ, τ such that 0 ≤ τ ≤ σ ≤ t1,

E{e(t) ◦ (y(σ)− y(τ))} = 0, (3.8)

where
e(t) = z(t)− z̃(t)

represents the estimation error, and y(·) represents the output process.

Proof. Let Ξ be the set of Z-valued random variables ξ such that

E{〈ξ, ξ〉} <∞.
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For fixed t ∈ [0, t1], define

Ξt := {ηt ∈ Ξ : ηt =

∫ t

0

Ψ(t, s)dy(s),Ψ(t, ·) ∈ B2([0, t];L(Y ,Z))}.

For h ∈ Z, let
Ξ(h) := {〈ξ, h〉 : ξ ∈ Ξ}

be a Hilbert space with inner product d·, ·e

d〈ξ, h〉, 〈η, h〉e := E{〈ξ, h〉〈η, h〉}.

Define
Ξt(h) := {〈ηt, h〉 ∈ Ξ(h) : ηt ∈ Ξt}

as a subspace of Ξ(h). Then, by the well-known orthogonal projection lemma (see e.g.
[50]), E{〈e(t), h〉2} is minimized over Ξt by e(t) if and only if 〈e(t), h〉 ⊥ Ξt(h), that is, for
any 〈ηt, h〉 ∈ Ξt(h),

d〈e(t), h〉〈ηt, h〉e = E{〈e(t), h〉〈ηt, h〉} = 0.

Therefore, E{〈e(t), h〉2} is minimized for all h ∈ Z if and only if for any ηt ∈ Ξt,

E{e(t) ◦ ηt} = 0, (3.9)

which implies (3.8) by choosing Ψ(t, s) as a step function in s. On the other hand, any
Ψ(t, ·) ∈ B2([0, t];L(Y ,Z)) can be approximated by a sequence of step functions Ψn(t, ·),
n ≥ 1 [20, page 160]. Hence (3.8) is equivalent to (3.9).

Theorem 3.1.2 (Wiener-Hopf Equation). [17, Theorem 2.3] Let z(·) be the process given
by (3.1). Define

Λ(r, s) := E{z(r) ◦ z(s)}

for r, s ≥ 0. For each fixed t ∈ [0, t1], the estimate z̃(t) =
∫ t

0
Ψ(t, s)dy(s) minimizes (3.6)

if and only if ∫ t

0

Ψ(t, r)CΛ(r, s)C∗dr + Ψ(t, s)R̃ = Λ(t, s)C∗ (3.10)

for almost all s ∈ [0, t].
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Proof. By (3.8), for σ, τ such that 0 ≤ τ ≤ σ ≤ t1,

E{e(t) ◦ (y(σ)− y(τ)}
= E{(z(t)−

∫ t
0

Ψ(t, s)dy(s)) ◦ (
∫ σ
τ
Cz(s)ds+ v(σ)− v(τ))}

=
∫ τ
σ

Λ(t, s)C∗ds− E{
∫ t

0
Ψ(t, s)Cz(s)ds ◦ (

∫ σ
τ
Cz(s)ds)}

−E{
∫ t

0
Ψ(t, s)dv(s) ◦

∫ τ
σ
dv(s)}

(by the assumed uncorrelatedness between z(·) and v(·))
=
∫ τ
σ

(Λ(t, s)C∗ −
∫ t

0
Ψ(t, r)CΛ(r, s)C∗dr −Ψ(t, s)R̃)ds.

By Lemma 3.1.1, z̃(t) =
∫ t

0
Ψ(t, s)dy(s) minimizes (3.6) if and only if

E{e(t) ◦ (y(σ)− y(τ)} = 0

for any σ, τ such that 0 ≤ τ ≤ σ ≤ t1. Equivalently, (3.10) holds for almost all s ∈ [0, t].

The following lemma is a special case of [17, Lemma 2.3].

Lemma 3.1.3. The inner-product version of the infinite-dimensional differential Riccati
equation

d
dt
〈P (t)h1, h2〉 = 〈(AP (t) + P (t)A∗ − P (t)C∗R̃−1CP (t) +GQ̃G∗)h1, h2〉, t ≥ 0,

P (0) = P0, for arbitrary h1, h2 ∈ D(A∗),
(3.11)

has a unique solution P (t) ∈ L(Z), which is strongly continuous in t on [0, t1].

Theorem 3.1.4. [20, Lemma 6.7] Let P (·) be the unique solution of (3.11), and

Sp(·, ·) : 4([0, t1])→ L(Z)

indicate the mild evolution operator generated by A − P (·)C∗R̃−1C . For each fixed t ∈
[0, t1],

Ψ(t, s) = Sp(t, s)P (s)C∗R̃−1 (3.12)

is the unique solution of (3.10) in the class of B2([0, t];L(Y ,Z)).

Thus, by Theorem 3.1.2, a unique optimal estimate of the form (3.4) is obtained with
Ψ(t, s) given by (3.12).

Theorem 3.1.5 (Infinite-dimensional Kalman filter). [20, Theorem 6.9 & Lemma 6.12]
Let P (·) be the unique solution of (3.11) and

Sp(·, ·) : 4([0, t1])→ L(Z)
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the mild evolution operator generated by A− P (·)C∗R̃−1C . The estimate

z̃opt(t) =

∫ t

0

Sp(t, s)P (s)C∗R̃−1dy(s), t ∈ [0, t1], (3.13)

is the unique optimal estimate for z(t) in that for each h ∈ Z,

E{〈(z(t)− z̃opt(t), h〉2} = min
z̃
E{〈(z(t)− z̃(t), h〉2} (3.14)

where the minimum is taken over all estimates z̃(t) of the form (3.4). The error covariance

P (t) = E{(z(t)− z̃opt(t)) ◦ (z(t)− z̃opt(t))}. (3.15)

Moreover,

||P (t)||1 = E{||z(t)− z̃opt(t)||2}
= min

z̃
E{||z(t)− z̃(t)||2}. (3.16)

Under some conditions, (3.13) is the unique solution of a differential equation. The
following theorem is a special case of [20, Theorem 6.21].

Theorem 3.1.6. Let P (t) be the unique solution of (3.11) and T (t) be the C0-semigroup
generated by operator A. Define

F (t) = P (t)C∗R̃−1.

Under the additional assumptions:

T (t)P0 and T (t)GQ̃G∗ : Z → D(A) for any t ∈ [0, t1], (3.17)

and
∞∑
j=0

µ2
j

∫ t1

0

||AT (t)ϕj||2dt <∞, (3.18)

where {(µj, ϕj)}∞j=0 are eigenvalues and eigenvectors of the operator P0 ∈ L(Z), the optimal
estimate z̃opt(t) is the unique solution of the equation

dz̃(t) = Az̃(t)dt+ F (t)(dy(t)− Cz̃(t)dt), z̃(0) = 0, t ∈ [0, t1]. (3.19)
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3.2 Steady-State Kalman Filter

On a finite time interval, the Kalman filter provides system (3.1)-(3.2) with an optimal
estimate. As time t → ∞, in some situations, the Kalman filter converges to a time-
invariant filter .

The following theorem gives conditions under which the unique solution of (3.11) con-
verges strongly to a solution of an algebraic Riccati equation (ARE).

Theorem 3.2.1 ([20], Corollary 6.13). Let P (·) be the unique solution of (3.11). Suppose

the pair (A,G

√
Q̃) is exponentially stabilizable and (A,C) exponentially detectable, then

the inner-product version of ARE

〈[AX +XA∗ −XC∗R̃−1CX +GQ̃G∗]h1, h2〉 = 0, for arbitrary h1, h2 ∈ D(A∗) (3.20)

has a unique nonnegative solution, Pss, which is the strong limit of P (t) as t → ∞, i.e.
for each h ∈ Z,

lim
t→∞

P (t)h = Pssh, (3.21)

The theorem below follows from Theorem (2.5.5) by duality.

Theorem 3.2.2 (Steady-state Kalman filter). If (A,G

√
Q̃) is exponentially stabilizable

and (A,C) is exponentially detectable, then the ARE (3.20) has a unique nonnegative,
self-adjoint solution, Pss ∈ L(Z), such that A − PssC

∗R̃−1C generates an exponentially
stable C0-semigroup

Tp(·) : R+ → L(Z).

The estimate obtained by steady-state Kalman filter for system (3.1)-(3.2) is

z̃(t) =

∫ t

0

Tp(t− s)PssC∗R̃−1dy(s). (3.22)

Proof. By Definition 2.5.4, the exponential detectability of (A,C) and stabilizability of

(A,G

√
Q̃) imply that (A∗,

√
Q̃G∗) is exponentially detectable and (A∗, C∗) is exponentially

stabilizable. By Theorem 2.3.3, A∗ is the infinitesimal generator of the C0-semigroup T ∗(·).
Then, using the duality of (2.28) and (3.20), it follows from Theorem 2.5.5 that the ARE
(3.20) has a unique nonnegative solution Pss ∈ L(Z) such that A− PssC∗R̃−1C generates
an exponentially stable C0-semigroup.
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According to Theorem 3.1.5, the operator P (t) is the error covariance in Kalman fil-
tering so that

||P (t)||1 = min
z̃
E{||z(t)− z̃(t)||2},

where the minimum is taken over all estimates z̃(t) of the form (3.4). As t→∞, with the
strong convergence (3.21), Pss is considered as the error covariance at steady state.

A new result of convergence in nuclear norm is proved here. The following two lemmas
are useful.

Lemma 3.2.3. [16, Theorem 3.3] Suppose that A is the infinitesimal generator of a C0-
semigroup T (t) on the Hilbert space Z, B ∈ L(Cm,Z), and C ∈ L(Z,Cp). If (A,B) is
exponentially stabilizable, then the minimal nonnegative solution of the ARE

〈[A∗X +XA−XBR̃−1B∗X + C∗C]h1, h2〉 = 0, h1, h2 ∈ D(A)

is nuclear.

Lemma 3.2.4. [34, Theorem 2] If a sequence of self-adjoint operators Xn converges strong-
ly to X, and ||Xn||1 converges to ||X||1, then

lim
n→∞

||Xn −X||1 = 0.

Theorem 3.2.5. Assume (A,G

√
Q̃) is exponentially stabilizable and (A,C) is exponen-

tially detectable. If both the spaces W and Y are finite-dimensional, then Pss is nuclear
and

lim
t→∞
||P (t)− Pss||1 = 0. (3.23)

Proof. The fact that Pss is nuclear is a straightforward consequence of Lemma 3.2 by duali-
ty and the assumption that both the input spaceW for the process noise and measurement
space Y are finite-dimensional. Also,

||P (t)||1 = E{||z(t)− z̃opt(t)||2} <∞.

Convergence of the nuclear norm

lim
t→∞
||P (t)||1 = ||Pss||1
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will be proved first. Then the convergence in (3.23) will follow from Lemma 3.2.4.

Results on linear-quadratic control in Section 2.5 will be applied in the proof. Let
D(A∗) ⊂ Z be the domain of A∗. For arbitrary h0 ∈ D(A∗), consider the dynamic system

ż(t) = A∗z(t) + C∗u(t), z(0) = h0, t ≥ 0. (3.24)

Define cost functionals

J̃(h0; 0, t, u) := 〈z(t), P0z(t)〉+

∫ t

0

〈z(s), GQ̃G∗z(s)〉+ 〈u(s), R̃u(s)〉ds

and

J̃(h0;u) :=

∫ ∞
0

〈z(s), GQ̃G∗z(s)〉+ 〈u(s), R̃u(s)〉ds.

Applying the results in Theorem 2.5.2 to system (3.24), since P (·) is the unique solution
of Riccati equation (3.11), for each fixed t ≥ 0,

〈P (t)h0, h0〉 = min
u∈L2([0,t];U)

J̃(h0; 0, t, u).

Also, by the dual of Theorem 2.5.5,

〈Pssh0, h0〉 = min
u∈L2([0,+∞);U)

J̃(h0;u).

The minimum is achieved by using the state feedback control

uss(t) := −R̃−1CPssz(t),

with the state trajectory z(t) = T ∗p (t)h0, in which T ∗p (·) is the exponentially stable C0-

semigroup on H generated by A∗ − C∗R̃−1CPss. By the definition of exponentially stable
C0-semigroup (Definition 2.5.4), there exist positive constants α and β such that

‖ T ∗p (t) ‖=‖ Tp(t) ‖≤ βe−αt ≤ β, for any t ≥ 0.
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Thus,

〈P (t)h0, h0〉 ≤ J̃(h0; 0, t, uss)

≤ 〈T ∗p (t)h0, P0T
∗
p (t)h0〉+ J̃(h0;uss)

= ||
√
P0T

∗
p (t)h0||2 + 〈Pssh0, h0〉

≤ 〈(β2P0 + Pss)h0, h0〉

for any h0 ∈ D(A∗). Since A∗ is the infinitesimal generator of C0-semigroup T ∗(·), D(A∗)
is dense in Z. Hence, for any h ∈ Z,

〈P (t)h, h〉 ≤ 〈(β2P0 + Pss)h, h〉. (3.25)

Suppose {ψj}∞j=1 is an orthonormal basis of Z. For any ε > 0, since both P0 and Pss are
nuclear, there exists positive integer Nε such that for any N > Nε,

∞∑
j=N

〈β2P0ψj.ψj〉 <
ε

2

and
∞∑
j=N

〈Pssψj, ψj〉 <
ε

2
.

Therefore, by (3.25)

||P (t)||1 − ||Pss||1 =
∞∑
j=1

〈(P (t)− Pss)ψj, ψj〉

≤
Nε∑
j=1

〈(P (t)− Pss)ψj, ψj〉+
∞∑

j=Nε+1

〈β2P0ψj.ψj〉

<

Nε∑
j=1

〈(P (t)− Pss)ψj, ψj〉+
ε

2
.

Since P (t) converges strongly to Pss, there exists tε > 0 such that for any t > tε,

Nε∑
j=1

|〈(Pss − P (t))ψj, ψj〉| <
ε

2
.
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It follows that
||P (t)||1 − ||Pss||1 <

ε

2
+
ε

2
= ε, for any t > tε.

Also, notice that for t > tε

||Pss||1 =
Nε∑
j=1

〈(Pss − P (t))ψj, ψj〉+
Nε∑
j=1

〈P (t)ψj, ψj〉+
∞∑

j=Nε+1

〈Pssψj, ψj〉

<
ε

2
+ ||P (t)||1 +

ε

2
= ||P (t)||1 + ε.

Hence,
||Pss||1 − ε < ||P (t)||1 < ||Pss||1 + ε, for any t > tε.

Since ε > 0 is arbitrary,
lim
t→∞
||P (t)||1 = ||Pss||1.

Moreover, since P (t) converges strongly to Pss and the operators are self-adjoint, Lem-
ma 3.2.4 then implies that

lim
t→∞
||P (t)− Pss||1 = 0.

Hence P (t) converges to Pss in nuclear norm.

With the convergence of the error covariance P (t) in nuclear norm, it can be furthermore
shown that ||Pss||1 represents the minimum error variance at the steady state. Therefore,
the steady-state estimation error can be determined by simply solving the ARE (3.20).

Proposition 3.2.6. Assume (A,G

√
Q̃) is exponentially stabilizable and (A,C) is expo-

nentially detectable. If both the spaces W and Y are finite-dimensional, then

||Pss||1 = lim
t→∞

E{||z(t)− z̃opt(t)||2}

= min
z̃

lim
t→∞

E{||z(t)− z̃(t)||2}, (3.26)

where the minimum is taken over all estimates z̃(t) of the form (3.4) such that the limit
limt→∞E{||z(t)− z̃(t)||2} exists.

30



Proof. By Theorem 3.1.5,

||P (t)||1 = E{||z(t)− z̃opt(t)||2}
= min

z̃
E{||z(t)− z̃(t)||2}.

Let t→∞,

||Pss||1 = lim
t→∞

E{||z(t)− z̃opt(t)||2}

= lim
t→∞

min
z̃
E{||z(t)− z̃(t)||2}

where the minimum is taken over all estimates z̃(t) of the form (3.4). Hence,

||Pss||1 = lim
t→∞

E{||z(t)− z̃opt(t)||2}

≥ min
z̃

lim
t→∞

E{||z(t)− z̃(t)||2},

where the minimum is taken over all estimates z̃(t) of the form (3.4) such that the limit
limt→∞E{||z(t)− z̃(t)||2} exists. On the other hand,

||Pss||1 = lim
t→∞

min
z̃
E{||z(t)− z̃(t)||2}

≤ min
z̃

lim
t→∞

E{||z(t)− z̃(t)||2}.

Thus,
||Pss||1 = min

z̃
lim
t→∞

E{||z(t)− z̃(t)||2},

where the minimum is taken over all estimates z̃(t) of the form (3.4) such that the limit
limt→∞E{||z(t)− z̃(t)||2} exists.

31



Chapter 4

Sensor Placement Problem

4.1 Problem Formulation

Consider an infinite-dimensional linear system

dz(t) = Az(t)dt+Gdw(t), z(0) = z0, t ≥ 0, (4.1)

dy(t) = Cz(t)dt+ dv(t), y(0) = 0, (4.2)

where A, with domain D(A), is the infinitesimal generator of a C0-semigroup T (t) on a
separable Hilbert space Z, w(t) is a Wiener process of incremental covariance Q̃ on a
separable Hilbert space W , v(t) is a Wiener process of incremental covariance R̃ on a
separable Hilbert space Y . The operators G ∈ L(W ,Z) and C ∈ L(Z,Y). For simplicity,
assume W = R in this chapter. This assumption is reasonable for the process noise that is
random with respect to time and deterministic in spatial domain. Also, assume m sensors
are used, with the measurement space Y = Rm (for some positive integer m). The initial
state, z0, is a Z-valued Gaussian random variable with zero mean value and covariance
P0. Assume w(t), v(t), and z0 are mutually uncorrelated and the operator R̃ ∈ L(Y) is
coercive.

According to Theorem 2.3.10, if T (t) : Z → D(A), then (4.1) has the unique strong
solution

z(t) = T (t)z0 +

∫ t

0

T (t− s)Gdw(s),

Assume that the pair (A,G

√
Q̃) is exponentially stabilizable, and (A,C) is exponentially
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detectable. Let Pss ∈ L(Z) be the unique nonnegative solution of the inner-product version
of ARE

〈[AX +XA∗ −XC∗R̃−1CX +GQ̃G∗]h1, h2〉 = 0, for all h1, h2 ∈ D(A∗).

By Proposition 3.2.6, ||Pss||1 represents the limiting minimum estimation error variance:

||Pss||1 = lim
t→∞

E{||z(t)− z̃opt(t)||2}.

Selection and location of sensors to minimize ||Pss||1 is therefore a reasonable design goal.

Suppose m(≥ 1) sensors yield the measurement

y(t) =

∫ t

0

Cz(s)ds+ v(t) ∈ Rm, (4.3)

where measurement noise

v(t) = (v1(t), v2(t), . . . , vm(t))T ∈ Rm

is characterized as an Rm-valued Wiener process of incremental covariance R̃, with vj(t)
represents the noise in j-th sensor, j = 1, 2, . . . ,m. Assume v1(t), v2(t), . . . , vm(t) are
mutually independent real-valued Wiener processes, with

E{(vj(t)− vj(s))2} = (t− s)R0, j = 1, 2, . . . ,m

for t ≥ s ≥ 0 , where R0 ∈ R+. If the sensors are of high quality, then R0 ∈ R+ is
small, while R0 is larger for low-quality sensors. The overall incremental covariance of the
measurement noise v(t) is

R̃ = diag(R0, R0 . . . R0) ∈ Rm×m.

The value of ||Pss||1 is dependent on the measurement operator C and the matrix R̃.
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4.2 Optimal Sensor Location

In many practical situations, the sensors’ locations can be chosen within some compact set
Ω ∈ Rq (q ≤ 3). Denoting the location of the m sensors by

l := (l1, l2, ..., lm) ∈ Ωm ⊂ Rq×m.

The output operator C is dependent on the sensor location:

C = C(l).

Then, the solution to the ARE is also parameterized by l:

Pss = Pss(l).

An optimal sensor location l̂ ∈ Ωm is such that

||Pss(l̂ )||1 = min
l∈Ωm
||Pss(l)||1.

Optimal sensor location in this context is the dual problem of the LQ optimal actu-
ator location problem, in which the nuclear norm ||Π||1 is minimized, with Π the unique
nonnegative solution of the ARE

〈h1, [A
∗Π + ΠA− ΠBR−1B∗Π +Q]h2〉 = 0, for any h1, h2 ∈ D(A).

The existence of an optimal sensor location, l̂, is guaranteed by continuity of ||Pss(l)||1
with respect to the sensor location l. In [48], the existence of an optimal actuator location
is proved. The theorem below follows from [48, Theorem 2.10] by duality.

Theorem 4.2.1. Let C(l) ∈ L(Z,Y), l ∈ Ωm, be a family of output operators such that
for any l0 ∈ Ωm,

lim
l→l0
||C(l)− C(l0))|| = 0.

If the spaces W and Y are finite-dimensional, (A,G

√
Q̃) is exponentially stabilizable and

(A,C(l)) are all exponentially detectable, then the corresponding Riccati operators Pss =
Pss(l) are continuous with respect to l in the nuclear norm:

lim
l→l0
||Pss(l)− Pss(l0)||1 = 0,
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and there exists an optimal sensor location l̂ such that

||Pss(l̂ )||1 = min
l∈Ωm
||Pss(l)||1.

4.3 Computing Optimal Sensor Locations by Approx-

imation

In practice, the infinite-dimensional ARE can not be solved exactly. Let Zn ⊂ Z, n =
1, 2, . . ., be a sequence of finite-dimensional subspaces of Z and Θn the orthogonal pro-
jection of Z onto Zn. For each n ≥ 1, Zn is an n-dimensional space equipped with
the inner product inherited from Z. Consider a sequence of operators An ∈ L(Zn,Zn),
Gn ∈ L(W ,Zn) and Cn = C |Zn∈ L(Zn,Y) (the restriction of C to Zn), which leads to a
sequence of approximations for the infinite-dimensional system (4.1):

dzn(t) = Anzn(t)dt+Gndw(t), zn(0) = z0,n = Θnz0 ∈ Zn, t ≥ 0,
dyn(t) = Cnzn(t)dt+ dv(t), yn(0) = 0,

If (An, Gn

√
Q̃) is exponentially stabilizable and (An, Cn) is exponentially detectable, then

there exists the unique nonnegative solution P
(n)
ss ∈ L(Zn) to the finite-dimensional ARE

AnP
(n)
ss + P (n)

ss A
∗
n − P (n)

ss C
∗
nR̃
−1CnP

(n)
ss +GnQ̃G

∗
n = 0. (4.4)

In [48], a standard set of assumptions for approximating controller design on the ap-
proximating systems is provided. The same assumptions should be satisfied for approxi-
mating estimator design. Let Tn(t) indicate the semigroup generated by An. The standard
assumptions are as follows:

(H1) For each z ∈ Z,
(i) ||Tn(t)Pnz − T (t)z|| → 0,

(ii) ||T ∗n(t)Pnz − T ∗(t)z|| → 0

uniformly in t on bounded intervals.
(H2) For each z ∈ Z, w ∈ W , y ∈ Y ,

(i) ||Gnw −Gw|| → 0 and ||CnΘnz − Cz|| → 0,

(ii) ||G∗nΘnw −G∗w|| → 0 and ||C∗nz − C∗z|| → 0.
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(H3) (i) The family of pairs (An, Gn

√
Q̃) is uniformly exponentially stabilizable, that is,

there exists uniformly bounded sequence operators Kn ∈ L(Zn,W) such that

the semigroups TKn(t) generated by An −Gn

√
Q̃Kn satisfy

||TKn(t)|| ≤ β1e
−α1

for positive constants α1 and β1 ≥ 1.

(ii) The family of pairs (An, Cn) is uniformly exponentially detectable, that is, there
exists uniformly bounded sequence operators Fn ∈ L(Y ,Zn) such that the semi-
groups TFn(t) generated by An − FnCn satisfy

||TFn(t)|| ≤ β2e
−α2

for positive constants α2 and β2 ≥ 1.

The assumptions (H1) and(H2) are required for the convergence of the systems (An, Gn, Cn),
n ≥ 1, as well as of the dual systems (A∗n, G

∗
n, C

∗
n), n ≥ 1, since the ajoint operators also

present in the ARE; the assumption (H3) guarantees that the approximate ARE (4.4) has

the unique solution P
(n)
ss for each n ≥ 1 .

With assumptions (H1)-(H3), the convergence of P
(n)
ss to the infinite-dimensional Riccati

operator Pss can be guaranteed, which follows from [48, Theorem 3.8] by duality:

Theorem 4.3.1. Assume that (A,G

√
Q̃) is exponentially stabilizable, (A,C) is exponen-

tially detectable, and the spaces W and Y are finite-dimensional. Let (An, Gn, Cn) be a
sequence of approximations to (A,G,C) that satisfy assumptions (H1)-(H3) . Then

lim
n→∞

||P (n)
ss Θn − Pss||1 = 0, (4.5)

where Θn is the orthogonal projection of Z onto Zn.

With convergence in (4.5), optimal sensor locations for approximating systems can also
converge to the optimal sensor location for the infinite-dimensional system. The following
result is a dual version of [48, Theorem 3.9].

Theorem 4.3.2. Let C(l) ∈ L(Z,Y), l ∈ Ωm, be a family of output operators such that
for any l0 ∈ Ωm,

lim
l→l0
||C(l)− C(l0))|| = 0.
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Assume that (A,G

√
Q̃) is exponentially stabilizable and (A,C(l)) are all exponentially de-

tectable. Choose some approximation scheme such that assumptions (H1)-(H3) are satisfied

for each l ∈ Ωm, P
(n)
ss (l) converges to the infinite-dimensional Riccati operator Pss(l) in

nuclear norm as n→∞. Letting l̂ be an optimal sensor location with

||Pss(l̂ )||1 = min
l∈Ωm
||Pss(l)||1.

It follows that
||Pss(l̂ )||1 = lim

n→∞
||P (n)

ss (l̂n)||1,

and there exists a subsequence {l̂nk}∞k=1 of {l̂n}∞n=1 such that limk→∞ l̂nk = l̂.

4.4 An Optimization Algorithm

In [24], an optimization algorithm is used to calculate LQ optimal actuator locations. The
algorithm is presented in this section, which can be applied to search for optimal sensor
locations.

Suppose an n-dimensional system is to be computed:

dz(t) = Azdt+Gdw, z(0) = z0, t ≥ 0,

dy(t) = Czdt+ dv, y(0) = 0,

where A ∈ Rn×n, G ∈ Rn×1, and C is the output matrix that is dependent on sensor
placement. The optimal sensor location problem is reformulated into a convex optimization
problem as described in [33]. The reformulation relies on considering a discrete set of N
possible sensor locations. Suppose that there are m sensors and N possible sensor locations.
Let κ = (κ1, κ2, . . . , κN)T be a vector of N logical elements where the i-th entry κi = 1 if
a sensor is placed at the i-th possible location and κi = 0 otherwise, so that

N∑
i=1

κi = m.

Each such binary vector κ defines a possible set of sensor locations. Let Ci ∈ R1×n,
i = 1, 2, . . . , N , be the output operator with a single sensor placed at the i-th possible
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location. Then the output matrix is

C(κ) = (κ1C
T
1 , κ2C

T
2 , . . . , κNC

T
N)T

and the sensor noise covariance is
R̃ = R0IN ,

where IN is the N ×N identity matrix. The operator Pss is dependent on κ:

Pss = Pss(κ).

Define the objective function
ρ(κ) := ||Pss(κ)||1.

Then the optimization problem is

min{ρ(κ) : κ ∈ Υ}, (4.6)

subject to

Υ = {κ ∈ RN s.t. κi ∈ {0, 1};
N∑
i=1

κi = m}.

Theorem 4.4.1. [33, Theorem 10] Define the convex set

Υc := {κ ∈ RN s.t. κi ≥ 0, i = 1, 2, . . . , N}.

The function ρ(κ) : Υc → R is a convex function. For any κ ∈ Υc, the following defines a
subgradient % of ρ(κ):

%(κ) = (%1(κ), %2(κ), . . . , %n(κ)),

%i(κ) = ||LiS(κ)||1,
Li = CiR

−1
0 CT

i , i = 1, 2, . . . , N,

S(κ) = −Pss(κ)θ(κ)Pss(κ),

(4.7)

where θ(κ) is the solution of the Lyapunov equation

(A− PssCT R̃−1C)T θ(κ) + θ(κ)(A− PssCT R̃−1C) + In = 0.
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Since ρ(κ) is a convex function of κ on Υc and Υ ⊂ Υc, for arbitrary κ0 ∈ Υ,

ρ(κ) ≥ ρ(κ0) + 〈%(κ0),κ− κ0〉

for all κ ∈ Υ. Therefore, if κ̂ ∈ Υ is such that

ϑ̂ = min
κ∈Υ

ρ(κ0) + 〈%(κ0),κ− κ0〉

and
ϑ̂ = ρ(κ0) + 〈%(κ0), κ̂− κ0〉,

then κ̂ is the global solution to the optimization problem (4.6). The global solution κ̂ can
be found by the algorithm summarized below:

Step 1: Choose an initial value κ0, solve the Riccati equation and calculate ρ(κ0).
Determine the subgragient %(κ0) by Theorem 4.4.1. Set j = 0 and choose a sufficiently
small value ε > 0.

Step 2: Solve the relaxed problem

min
κ∈Υ
{ϑ : ϑ ≥ ρ(κi) + 〈%(κi),κ− κi〉, i = 0, 1, . . . , j}. (4.8)

Let ϑj+1 and κj+1 be the optimal solution.

Step 3: Calculate ρj+1 = ρ(κj+1). If ρj+1 − ϑj+1 ≤ ε, terminate. If not, calculate
%j+1 = %(κj+1) and return to Step B.

This proceduare generates a feasible sequence κj, j = 0, 1, 2, . . ., that will converge to
the global solution κ̂.

The relaxed problem (4.8) in step 2 can be written as

min
κ∈Υ

max
0≤i≤j

ρ(κi) + 〈%(κi),κ− κi〉. (4.9)

Since the variable κ ∈ Υ is a vector of binary components, an integer optimization method,
the branch and bound method, is applied to solve the problem (4.9). Initially, all the integer
constraints are removed so that (4.9) is relaxed to

min
κ∈Υ0

max
0≤i≤j

ρ(κi) + 〈%(κi),κ− κi〉,

Υ0 = {κ ∈ RN s.t. 0 ≤ κi ≤ 1;
N∑
i=1

κi = m}.
(4.10)
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The relaxed problem (4.10) is then solved. If it does not result in a binary solution, then
an element of the vector is chosen to add equality binary constraints on, and the problem is
solved once again. The problems with added constraints are called candidate subproblems,
which form the branches of a binary tree.

Definition 4.4.2. [29, Definition 5.3.3] A candidate subproblem will be considered that
has been fathomed if one of the following two conditions takes place:

(i) It can be ascertained that the feasible solution of the subproblem can not contain a
better solution than the best solution so far;

(ii) An optimal solution of the subproblem is found.

To avoid unnecessary enumerations, fathoming tests can be performed for each candi-
date subproblem. Details of the branch and bound method can be found in [29, Chapter
5].
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Chapter 5

Numerical Examples

In this chapter, three partial differential equation models, which depend on both time
and location, are examined: two parabolic equations, one-dimensional diffusion and two-
dimensional diffusion on an L-shaped region, as well as a hyperbolic equation that describes
the vibration of a simply-supported Euler-Bernoulli beam. The equations are approxi-
mated by finite-dimensional systems using Galerkin methods, so that the optimal sensor
locations can be calculated and the effect of sensor noise on estimation can be investigated
numerically.

For simulations, the approximate algebraic Riccati equations are solved using the Mat-
lab function ‘care’. The white Gaussian noises are approximated by Gaussian processes
as in Section 2.4, with the time step size 4t = 0.01 that is used in solving the differential
equations; noises are generated for each time step using the Matlab function ‘randn’, and
added to the dynamic systems by linear interpolation [27, §5.3], using Matlab function ‘in-
terp1’. Moreover, the Matlab function ‘ode45’, which is based on an explicit Runge-Kutta
(4,5) formula [26], is used to solve the differential equations.

5.1 Galerkin Approximation

Consider an infinite-dimensional linear system

dz(t) = Az(t)dt+Gdw(t), z(0) = z0, t ≥ 0,
dy(t) = Cz(t)dt+ dv(t), y(0) = 0,

(5.1)
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where A, with domain D(A), is the infinitesimal generator of a C0-semigroup T (·) on a
separable Hilbert space Z, w(t) is a Wiener process of incremental covariance Q̃ on a
separable Hilbert space W , v(t) is a Wiener process of incremental covariance R̃ on a
separable Hilbert space Y . The operators G ∈ L(W ,Z) and C ∈ L(Z,Y). For simplicity,
assume W = R and Y = Rm (for some positive integer m). The initial state, z0, is a Z-
valued Gaussian random variable with zero mean value and covariance P0. Assume w(t),
v(t), and z0 are mutually uncorrelated, and the operator R̃ ∈ L(Y) is coercive.

For computational purposes, an infinite-dimensional system is approximated by finite-
dimensional systems. Suppose the approximation lies in an n-dimensional subspace Zn of
the state space Z, with Θn the orthogonal projection of Z onto Zn. The subspace Zn is
equipped with the inner product inherited from Z. A standard Galerkin approximation
for (5.1) is to seek a Zn-valued function zn(t) that solves the weak formulation

〈dzn(t), ϕ〉 = 〈Azn(t), ϕ〉dt+ 〈Gdw(t), ϕ〉, 〈zn(0), ϕ〉 = 〈z0, ϕ〉, t ≥ 0, (5.2)

for all ϕ ∈ Zn.

Suppose φ1, φ2 . . . , φn ∈ Zn are linearly independent so that

Zn = span{φ1, φ2. . . . , φn}.

The projection Θn : Z → Zn is orthogonal if and only if for all h ∈ Z and j = 1, 2, . . . , n,

〈Θnh, φj〉 = 〈h, φj〉.

For h ∈ Z, let
hn := (hn,1, hn,2, . . . , hn,n)T ∈ Rn

be the vector of coefficients of the projection on Zn. Then

Θnh =
n∑
i=1

hn,iφi ∈ Zn,

and

〈Θnh, φj〉 =
n∑
i=1

hn,i〈φi, φj〉 = 〈h, φj〉, j = 1, 2, . . . , n. (5.3)
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Define the matrix

Mn :=

 〈φ1, φ1〉 . . . 〈φn, φ1〉
...

. . .
...

〈φ1, φn〉 . . . 〈φn, φn〉

 .

By (5.3),
Mnhn = (〈h, φ1〉, 〈h, φ2〉, . . . , 〈h, φn〉)T . (5.4)

Since φ1, φ2, . . . , φn are linearly independent, the matrix Mn is nonsingular and, hence, the
vector can be uniquely determined by (5.4):

hn = M−1
n (〈h, φ1〉, 〈h, φ2〉, . . . , 〈h, φn〉)T .

In particular, if {φ1, φ2, . . . , φn} forms an orthonormal basis for Zn, then Mn ∈ Rn×n is the
identity matrix. The orthogonal projection Θn : Z → Zn is well-defined:

Θnh = (φ1, φ2, . . . , φn) · (M−1
n (〈h, φ1〉, 〈h, φ2〉, . . . , 〈h, φn〉)T ), (5.5)

for all h ∈ Zn. Define Gn := ΘnG ∈ L(R,Zn) and z0,n := Θnz0 ∈ Zn. By defining the
approximate generator An ∈ L(Zn,Zn) such that

〈Anzn, ϕ〉 = 〈Azn, ϕ〉

for arbitrary zn, ϕ ∈ Zn, (5.2) is equivalent to

〈dzn(t), φj〉 = 〈Anzn(t), φj〉dt+ 〈Gndw(t), φj〉, 〈zn(0), φj〉 = 〈z0,n, φj〉, t ≥ 0, (5.6)

for j = 1, 2, . . . , n.

If the operator A has eigenfunctions {φn(x) : n ≥ 1} that form an orthonormal basis
for the state space Z, define

Zn := span{φ1, φ2. . . . , φn}.

Then Zn ⊂ D(A) and the approximating generator An ∈ L(Zn,Zn) can be defined by

Anφj = Aφj

for j = 1, 2, . . . , n.

More generally, for partial differential equation models, the infinitesimal generator A
can often be described in weak form as follows [47]. Let V be a Hilbert space that is dense
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in Z and consider a bilinear form a(·, ·) : V × V → R. A linear operator A can be defined
by

〈−Aψ,ϕ〉 = a(ψ, ϕ),

with domain D(A) = {ψ ∈ V : ∃h ∈ Z, s.t. a(ψ, ϕ) = 〈h, ϕ〉 for all ϕ ∈ V}. On a
subspace Zn ⊂ V , the approximating generator An ∈ L(Zn,Zn) is defined by

〈−Anzn, ϕn〉 = a(zn, ϕn)

for all zn, ϕn ∈ Zn. This type of approximation is used in finite element methods.

Using the Galerkin approximation, a finite-dimensional system is obtained and the
corresponding finite-dimensional ARE can be solved.

5.2 One-dimensional Diffusion Equation

Consider a one-dimensional diffusion equation with disturbance

∂z

∂t
= σ

∂2z

∂x2
+ g(x)η(t), 0 ≤ x ≤ 1, t ≥ 0, (5.7)

where σ is the diffusivity, the function g(x) describes the shape of the spatially distributed
disturbance, and η(t) is a time-dependent noise model. Assume the initial condition

z(0, x) = z0(x), (5.8)

where z0 is a L2(0, 1)-valued Gaussian random variable with zero mean value and covariance
P0, and Neumann boundary condition

∂z

∂x
(t, 0) = 0,

∂z

∂x
(t, 1) = 0. (5.9)

The physical interpretation of z depends on the application and its value is with respect
to a reference state. For example, in the case of thermal diffusion, z is temperature, and
temperature in Celsius is with reference to the freezing point of water.

Suppose η(t) is a real-valued white Gaussian noise so that the integral

w(t) :=

∫ t

0

η(s)ds
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is a real-valued Wiener process, with

E{(w(t)− w(s))2} = (t− s)Q̃,

for t ≥ s ≥ 0 , where Q̃ ∈ R+. Let the state space Z = L2(0, 1) and A = σ ∂2

∂x2
with domain

D(A) = {h ∈ H2(0, 1) : h′(0) = h′(1) = 0} ⊂ Z.

The state-space representation for the equation (5.7) is

dz(t) = Az(t)dt+Gdw(t), z(0) = z0, t ≥ 0, (5.10)

where G ∈ L(R,Z) is defined by

Gk = kg(x), for k ∈ R,

The operator A generates a C0-semigroup T (t), so that the solution to (5.22) can be
expressed as

z(t) = T (t)z0 +

∫ t

0

T (t− s)Gdw(s), t ≥ 0.

Each sensor measures the average state over a small interval of length 4 > 0. Write

l = (l1, l2, . . . , lm),

and define

clj(x) :=

{
1/4, |x− lj| ≤ 4

2

0, otherwise
,

for j = 1, 2, . . . ,m. With m sensors centred at x = l1, l2, ..., lm,

C(l)z = (〈cl1 , z〉, 〈cl2 , z〉, . . . , 〈clm , z〉)T ,

and the measurement is

y(t) =

∫ t

0

C(l)z(s)ds+ v(t),

where v(t) is a Rm-valued Wiener process, with

E{(v(t)− v(s))(v(t)− v(s))T} = (t− s)R̃

for t ≥ s ≥ 0.
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5.2.1 Finite-Dimensional Approximation

A Galerkin approximation based on the eigenfunctions of A will be used. The operator
A = σ ∂2

∂x2
has eigenfunctions

φ0(x) = 1, φj(x) =
√

2 cos(jπx), j ≥ 1,

with corresponding eigenvalues

λj := −σj2π2, j ≥ 0.

The eigenfunctions form an orthonormal basis for the state space Z = L2(0, 1). Thus, for
z ∈ Z, there exists the expansion

z =
∞∑
j=0

〈z, φj〉φj,

where 〈, 〉 denotes the inner product on Z.

Let
Zn := span{φj(x) : 0 ≤ j ≤ n− 1}

be a subspace of the state space Z, with the inner product inherited from Z. Define the
orthogonal projection Θn : Z → Zn as

Θn(z) =
n−1∑
j=0

〈z, φj〉φj, z ∈ Z.

Let An = ΘnA |Zn∈ L(Zn,Zn), Gn = ΘnG ∈ L(R,Zn), Cn(l) = C(l) |Zn∈ L(Zn,Rm), and
z0,n = Θnz0 ∈ Zn. A Galerkin approximation zn(t) ∈ Zn of the state z(t) shall solve the
weak formulation

〈dzn(t), φj〉 = 〈Anzn(t), φj〉dt+ 〈Gndw(t), φj〉, 〈z0,n(0), φj〉 = 〈z0, φj〉, t ≥ 0, (5.11)

for j = 0, 1, 2, . . . , n− 1. It can be easily verified that the approximation by eigenfunctions
satisfies the assumptions (H1)-(H3) listed in Section 4.3 and, therefore, the convergence
can be guaranteed.
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For calculations, let the vector

zn(t) := (zn,1(t), zn,2(t), . . . , zn,n(t))T ∈ Rn

so that

zn(t) =
n−1∑
i=0

zn,i+1(t)φi.

Substituting it into (5.11) gives

n−1∑
i=0

〈φi, φj〉dzn,i+1(t) =
n−1∑
i=0

〈Aφi, φj〉zn,i+1(t) + 〈Gdw(s), φj〉,
n−1∑
i=0

〈φi, φj〉zn,i+1(0) = 〈z0, φj〉, j = 0, 1, 2, . . . , n− 1.
(5.12)

Since φ0, φ1, φ2, . . . , φn−1 are eigenfunctions of A that form an orthonomal basis for the
subspace Zn,

〈φi, φj〉 = δij, 〈Aφi, φj〉 = λiδij,

for i, j = 0, 1, 2, . . . , n− 1, where δij is the Kronecker delta. Define the matrix

An := diag(λ0, λ1, ..., λn−1)

and the vectors
gn := (〈g, φ1〉, 〈g, φ2〉, . . . , 〈g, φn〉)T ,

z0,n := (〈z0, φ1〉, 〈z0, φ2〉, . . . , 〈z0, φn〉)T .

It follows from (5.24) that

dzn(t) = An zn(t)dt+ gndw(t), zn(0) = z0,n.

For each j = 0, 1, 2, . . . , n− 1, C(l)φj ∈ Rm. Define the matrix

Cn(l) := (C(l)φ0, C(l)φ1, C(l)φ2, . . . , C(l)φn−1) ∈ Rm×n.

Then,
Cn(l)zn = Cn(l) zn.
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Therefore, the approximate system in vector form is obtained:

dzn(t) = An zn(t)dt+ gndw(t), zn(0) = z0,n,

dyn = Cn(l) zndt+ dv(t).

5.2.2 Optimal Sensor Location

In this section, optimal sensor location that minimizes ||Pss||1 is calculated for the case
where only one sensor is used. For the simulations, the diffusivity was set to be σ = 0.1,
the approximation mode number n = 20, the spatial domain [0, 1] was equally discretized
into subintervals of length 4 = 0.04, and the initial condition was

z0 = 2x+ x2. (5.13)

First, consider the case where the noise on the state is evenly distributed in space:

g(x) = 1.

The value of ||Pss||1 was computed for different sensor locations, which is constant with
respect to sensor location. Hence, there does not exist a unique optimal sensor location in
this case.

Next, consider a spatially localized disturbance centered at x = 0.2:

g(x) = sech(100(x− 0.2)),

as displayed in Figure 5.1. By Figure 5.2, the value of ||Pss||1 is minimized at around
x = 0.2, where the process noise locates. Figure 5.3 compares two estimates with the
actual state at x = 0.5. One estimate is obtained using a single sensor at optimal location
x = 0.2, while the other is obtained using a sensor located at non-optimal location x = 0.8.
The sensor placed at optimal location corresponds to a better estimate.

For a mixed disturbance function that combines a localized disturbance with a evenly
distributed disturbance

g(x) = 0.5 sech(100(x− 0.2)) + 0.5,

as shown in Figure 5.4, the unique optimal sensor location is where the process noise peaks
(Figure 5.5). Figure 5.6 compares two estimates with the actual state at x = 0.5. One
estimate is obtained using a single sensor at optimal location x = 0.2, while the other is
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Figure 5.1: Disturbance spatially localized around x = 0.2.
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Figure 5.2: Spatially localized disturbance; ||Pss||1 reaches minimum value for sensor loca-
tion at around x = 0.2.
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Figure 5.3: Spatially localized disturbance. Comparison of the actual and estimated state
at x = 0.5. One estimate is obtained using a single sensor at optimal location x = 0.2,
while the other is obtained using a sensor located at non-optimal location x = 0.8.

obtained using a sensor located at non-optimal location x = 0.8. Again, the sensor placed
at optimal location corresponds to a better estimate.
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Figure 5.4: Mixed disturbance g(x) = 0.5 sech(100(x− 0.2)) + 0.5.
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Figure 5.5: Mixed disturbance; ||Pss||1 reaches minimum value for sensor location at around
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Figure 5.6: Mixed disturbance. Comparison of the actual and estimated state at x = 0.5.
One estimate is obtained using a single sensor at optimal location x = 0.2, while the other
is obtained using a sensor located at non-optimal location x = 0.8.
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5.2.3 Effect of Sensor Noise on Estimation

In this section, the effect of sensor noise on estimation is investigated by considering the
dependence of ||Pss||1 on the sensor noise variance R0 and using different number of sensors.

As mentioned previously, if there are m(≥ 1) sensors, the measurement noise is

v(t) = (v1(t), v2(t), . . . , vm(t))T ∈ Rm

where vj(t) (j = 1, 2, . . . ,m) represents the noise in j-th sensor, and v1(t), v2(t), . . . , vm(t)
are mutually independent real-valued Wiener processes, with

E{(vj(t)− vj(s))2} = (t− s)R0, j = 1, 2, . . . ,m

for t ≥ s ≥ 0 , where R0 ∈ R+. If the sensors are of high quality, then R0 ∈ R+ is small,
while R0 is larger for low-quality sensors. Both the vaule of R0 and m can be varied.

For the simulations, the diffusivity was set to σ = 0.1, the approximation mode number
n = 20 and the coefficient of process noise covariance was Q̃ = 10, the spatial domain [0, 1]
was equally discretized into subintervals of length 4 = 0.04, and the initial condition was

z0 = a(2x+ x2). (5.14)

where a has normal distributionN (0, 10) and was chosen using the Matlab function ‘randn’.

Three different disturbances were considered.

Spatially distributed disturbance

First, consider the case where the noise on the state is evenly distributed in space:

g(x) = 1.

The initial condition (5.14) was scaled by a = 0.2722.

When using a single sensor, the sensor noise covariance R̃ = R0. The value of ||Pss||1
was computed for R0 ranging from 0.1 to 2. As shown in Figure 5.7(a), ||Pss||1 is an
increasing function of R0. Motivated by the presence of a quadratic term XC∗R̃−1CX in
ARE (3.20), a square root function was used to match the value of ||Pss||1:

f1(R0) := C1

√
R0,
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in which the constant C1 ≈ 1.00.

Now suppose a number of poor-quality sensors (say R0 = 2) are used. Figure 5.7(b)
shows that ||Pss||1 decreases as the sensor number m increases. Let

g1(m) := C2/
√
m (C2 ≈ 1.41)

be the function defined continuously on the interval [0, 20]. As shown in Figure 5.7(b),
the curve of function g1 fits with the value of ||Pss||1 for m = 1, 2, ..., 20. It appears that
||Pss||1 is approximately proportional to the value of

√
R0/m:

||Pss||1 ≈ C
√
R0/m (5.15)

with C = C1 ≈ C2/
√

2. Therefore, a smaller value of R0/m implies a better estimate.

The two estimates obtained by using a single sensor of noise scaled by R0 = 0.2 and
by using 15 sensors of noise scaled by R0 = 2, are compared in Figure 5.8, which shows
a comparison of the two estimates with the actual system state z(t) at the middle point
x = 0.5 for t ∈ [0, 20]. Because of the process and sensor noise, no estimate will be perfect;
however, using multiple relatively poor-quality sensors led to a more accurate estimate.

Spatially localized disturbance

Now, consider a localized disturbance as illustrated in Figure 5.1:

g(x) = sech(100(x− 0.2)).

The initial condition (5.14) was scaled by a = 2.1064.

By computing the value of ||Pss||1 for the case that using a single sensor (m = 1) with
varied R0 ∈ [0.1, 2], an ascending curve is derived, as shown in Figure 5.9(a). It again
coincides well with a square root function:

f2(R0) := C3

√
R0 (C3 ≈ 0.09).

For the multi-sensor case (with R0 = 2), the value of ||Pss||1 fits well with the curve of a
decreasing function

g2(m) := C4/
√
m (C4 ≈ 0.14),

as shown in Figure 5.9(b). Hence, the same proportional relation (5.15), but with constant
C = C3 ≈ C4/

√
2 appears to hold.
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Comparisons of the actual system state with estimates made by a single sensor of noise
scaled by R0 = 0.2 and by 15 sensors of noise scaled by R0 = 2 are displayed in Figure
5.10. The errors are similar for estimation obtained using either type of measurement.

Spatially mixed disturbance

A third disturbance, as shown in Figure 5.4, that includes both the evenly distributed
disturbance and the spatially localized disturbance:

g(x) = 0.5 sech(100(x− 0.2)) + 0.5,

was considered. The initial condition (5.14) was scaled by a = −0.3404.

Like the previous two disturbances, the same computations were carried out. The value
of ||Pss||1 as the sensor noise covariance is changed are shown in Figure 5.11. Two curves

f3(R0) := C5

√
R0 (C5 ≈ 1.57),

g3(m) := C6/
√
m (C6 ≈ 2.25).

were fit to the plots in Figure 5.11(a) and 5.11(b) respectively. The same square root
relation as for other disturbances seems to hold with constant C = C5 ≈ C6/

√
2.

The estimate obtained with one sensor of noise scaled by R0 = 0.2 is compared with
that obtained using 15 sensors of noise scaled by R0 = 2 in Figure 5.12. The accuracy of
the estimate obtained with many inaccurate sensors is better than that obtained with one
accurate sensor.
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Figure 5.7: Uniform disturbance g(x) = 1. (a)||Pss||1 is an increasing function of R̃ = R0,
coincides well with the curve f1(R0) = C1

√
R0, C1 ≈ 1.00; (b)||Pss||1 is an decreasing

function of the number of sensors (m) with R0 = 2. The curve is matched by g1(m) =
C2/
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Figure 5.8: Comparison of the actual state at x = 0.5, t ∈ [0, 20] for g(x) = 1 with
estimates using a single sensor with noise variance R0 = 0.2, and using 15 sensors each
with R0 = 2.
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Figure 5.10: Comparison of the actual and estimated state at x = 0.5 with g(x) a spatially
localized disturbance. One estimate is obtained using a single sensor with noise variance
R0 = 0.2, while the other uses 15 sensors each with R0 = 2.
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Figure 5.12: Mixed disturbance. Comparison of the actual and estimated state at x = 0.5.
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5.3 Simply Supported Euler-Bernoulli Beam

Consider a simply supported Euler-Bernoulli beam of length 1, with Kelvin-Voigt damping.
Let f(t, x) denote the deflection of the beam at time t and position x. The beam deflection
is described by the partial differential equation

∂2f

∂t2
+
∂4f

∂x4
+ cd

∂5f

∂x4∂t
= g(x)η(t), t ≥ 0, 0 < x < 1, (5.16)

where cd is the damping parameter, g(x) models the shape of the spatially distributed
disturbance, and η(t) is a time-dependent noise model. Assume initial condition

f(0, x) = f0(x),
∂

∂t
f(0, x) = f1(x),

and boundary conditions
f(t, 0) = f(t, 1) = 0,

∂2

∂x2
f(t, 0) =

∂2

∂x2
f(t, 1) = 0.

Suppose η(t) is a real-valued white Gaussian noise so that the integral

w(t) :=

∫ t

0

η(s)ds

is a real-valued Wiener process, with

E{(w(t)− w(s))2} = (t− s)Q̃,

for t ≥ s ≥ 0 , where Q̃ ∈ R+. Let

Hs(0, 1) = {f ∈ H2(0, 1) : f(0) = f(1) = 0}

and the state space Z = Hs(0, 1)× L2(0, 1), with state z := (f, ft)
T ∈ Z. Equation (5.16)

can be written in the state-space form

dz(t) = Az(t)dt+Gdw(t), z(0) = z0, t ≥ 0, (5.17)

where

A =

(
0 1

− ∂4

∂x4
−cd ∂4

∂x4

)
, G =

(
0

g(x)

)
, z0 =

(
f0(x)
f1(x)

)
,
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with domain

D(A) = {z = (z1, z2) ∈ Z : z′′1 ∈ Hs(0, 1), z′′2 ∈ Hs(0, 1)}.

The solution to (5.22) can be expressed as

z(t) = T (t)z0 +

∫ t

0

T (t− s)Gdw(s), t ≥ 0,

where T (t) is the C0-semigroup generated by A.

Each sensor measures average deflection over a small interval of length 4 > 0. Write

l = (l1, l2, . . . , lm)

and define

clj(x) :=

{
1/4, |x− lj| ≤ 4

2

0, otherwise
,

for j = 1, 2, . . . ,m. With m sensors centred at x = l1, l2, ..., lm,

C(l)z(t) = (

∫ 1

0

cl1(x)f(t, x)dx,

∫ 1

0

cl2(x)f(t, x)dx, . . . ,

∫ 1

0

cln(x)f(t, x)dx)T ,

and the measurement is

y(t) =

∫ t

0

C(l)z(s)ds+ v(t),

where v(t) is a Rm-valued Wiener process, with

E{(v(t)− v(s))(v(t)− v(s))T} = (t− s)R̃

for t ≥ s ≥ 0.

5.3.1 Finite-dimensional Approximation

Define

A0 :=
∂4

∂x4

with domain
D(A0) = {z ∈ Hs(0, 1) : z′′ ∈ Hs(0, 1)}.
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The operator A0 has eigenfunctions

φj(x) =
√

2 sin(jπx), j ≥ 1

that form an orthonormal basis for L2(0, 1), with corresponding eigenvalues {λj = j4π4 :
j ≥ 1}. Let

Zn = span{φ1, φ2. . . . , φn}.

The approximating operator A0,n ∈ L(Zn,Zn) is defined by

A0,nφj = λjφj

for j = 1, 2, . . . , n.

The infinitesimal generator is

A =

(
0 I
−A0 −cdA0

)
,

where I is the identity operator. Then (5.17) can be written as(
dz1

dz2

)
=

(
z2

−A0z1 − cdA0z2

)
dt+

(
0
g

)
dw(t),

where z1 = f and z2 = ft. Let

An :=

(
0 In

−A0,n −cdA0,n

)
,

where In is the identity operator on Zn. A Galerkin approximation zn := (z1,n, z2,n) ∈
Zn ×Zn solves the weak formulation(

〈dz1,n, φj〉
〈dz2,n, φj〉

)
=

(
〈z2,n, φj〉

〈−A0,nz1,n − cdA0,nz2,n, φj〉

)
dt+

(
0

〈g, φj〉

)
dw(t) (5.18)

for j = 1, 2, . . . , n. The convergence of this approximation scheme is shown in [48], where
the LQ optimal actuator location problem is considered. The convergence of optimal sensor
location then follows by duality.

For calculations, let the vector

zn(t) := (zn,1(t), zn,2(t), . . . , zn,2n(t))T ∈ R2n,
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so that

zn,1(t) =
n∑
i=1

zn,i(t)φi, zn,2(t) =
2n∑

i=n+1

zn,i(t)φi.

Write the matrix
A0,n := diag(π4, 16π4, . . . , n4π4)

and the vectors
gn := (〈g, φ1〉, 〈g, φ2〉, . . . , 〈g, φn〉)T ,

z0,n := (〈f0, φ1〉, 〈f0, φ2〉, . . . , 〈f0, φn〉, 〈f1, φ1〉, 〈f1, φ2〉, . . . , 〈f1, φn〉)T .

It follows from (5.18)

dzn(t) = An zn(t)dt+Gndw(t), zn(0) = z0,n, t ≥ 0,

where

An =

 0 In

−A0,n −cdA0,n

 ∈ R2n×2n,

and

Gn =

(
0
gn

)
∈ R2n,

The measurement is approximated by

yn(t) = Cn(l)zn(t) + v(t),

where the sensor location l = (l1, l2, . . . , lm) ∈ Rm, the matrix

Cn(l) =


∫ 1

0
cl1φ1dx . . .

∫ 1

0
cl1φndx 0 . . . 0∫ 1

0
cl2φ1dx . . .

∫ 1

0
cl2φndx 0 . . . 0

...
. . .

...
...

. . .
...∫ 1

0
clmφ1dx . . .

∫ 1

0
clmφndx 0 . . . 0

 ∈ Rm×2n.

5.3.2 Optimal Sensor Location

In this section, optimal sensor location that minimizes ||Pss||1 is calculated for the case
where only one sensor is used. For simulations, the parameters used are: cd = 0.0001,
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4 = 0.02, the approximation mode number N = 15, and the initial condition

f0(x) = 0.25− (x− 0.5)2, f1(x) = 0, 0 < x < 1.

Consider the evenly distributed disturbance: g(x) = 1. The value of ||Pss||1 was com-
puted for different sensor locations with the varied process noise variance. Figure 5.13
shows that the optimal sensor location is dependent on the variance of the process noise:
when Q̃ is small, the optimal sensor location is at the center of the beam; as Q̃ gets larger,
the optimal sensor location slips to the side.
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Figure 5.13: The value of ||Pss||1 for different sensor location, with noise parameters
R0 = 0.0001, and (a) Q̃ = 0.1, (b) Q̃ = 1, (c) Q̃ = 10, (d) Q̃ = 100; the magenta dots
indicate the optimal sensor locations.
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5.3.3 Effect of Sensor Noise on Estimation

Here, estimates obtained using a single high-quality sensor are compared with estimates ob-
tained using multiple relatively low-quality sensors. Again, the three different disturbances
were considered.

First, consider the case where the noise on the state is evenly distributed in space:

g(x) = 1.

The estimates obtained by using a single sensor with R0 = 0.02 and by using 15 sensors
each with R0 = 0.2 are compared in Figure 5.14 with the actual system state z(t) at the
middle point x = 0.5 for t ∈ [0, 10].

For a localized disturbance

g(x) = sech(100(x− 0.2)),

comparisons of the actual system state with estimates made by a single sensor with R0 =
0.02 and by 15 sensors with R0 = 0.2 are displayed in Figure 5.15. The estimation errors
are similar.

Then, consider a mixed disturbance that includes both the evenly distributed distur-
bance and the spatially localized disturbance:

g(x) = 0.5 sech(100(x− 0.2)) + 0.5,

The estimate obtained using one sensor with R0 = 0.02 is compared with that obtained
using 15 sensors each with R0 = 0.2 in Figure 5.16. The accuracy of the estimate obtained
with many poor sensors is similar to that obtained with one accurate sensor.

All the three figures suggest that increasing the number of sensors can compensate for
high sensor noise.
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Figure 5.14: Uniform disturbance g(x) = 1. Comparison of the actual state at x = 0.5,
t ∈ [0, 10] with estimates using a single sensor with noise variance R0 = 0.02 and 15 sensors
each with R0 = 0.2.

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t

de
fle

ct
io

n 
at

 x
=0

.5

 

 

actual state
R

0
=0.02;m=1

R
0
=0.2;m=15

Figure 5.15: Spatially localized disturbance. Comparison of the actual state at x = 0.5,
t ∈ [0, 10] with estimates using a single sensor with noise variance R0 = 0.02 and 15 sensors
each with R0 = 0.2.
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Figure 5.16: Mixed disturbance. Comparison of the actual state at x = 0.5, t ∈ [0, 10] with
estimates using a single sensor with noise variance R0 = 0.02 and 15 sensors each with
R0 = 0.2.
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5.4 Two-Dimensional Diffusion Equation

Let Ω be an L-shaped region in R2, as shown in Figure 5.17. Consider a two-dimensional
diffusion equation

zt = σ

(
∂2z

∂x2
1

+
∂2z

∂x2
2

)
+ g(x1, x2)η(t), (x1, x2) ∈ Ω, (5.19)

where σ represents the diffusivity, the function g(x1, x2) describes the shape of the spatially
distributed disturbance, and η(t) is a time-dependent noise model. Assume the initial
condition

z(0, x1, x2) = z0(x1, x2), (5.20)

where z0 is a L2(Ω)-valued Gaussian random variable with zero mean value and covariance
P0, and Dirichlet boundary condition

z(t, x1, x2) |∂Ω= 0. (5.21)

In applications, the case z = 0 represents a reference state, such as the freezing point
of water when considering temperature in Celsius in thermal diffusion, and the value of
z(t, x1, x2) represents the departure from the reference state at time t and location (x1, x2).

Suppose η(t) is a real-valued white noise so that the integral

w(t) :=

∫ t

0

η(s)ds

is a real-valued Wiener process, with

E{(w(t)− w(s))2} = (t− s)Q̃,

for t ≥ s ≥ 0 , where Q̃ ∈ R+. Let the state space Z = L2(Ω) and A = σ∇2 with domain

D(A) = H2(Ω) ∩H1
0(Ω) ⊂ Z.

The state-space representation for the equation (5.7) is

dz(t) = Az(t)dt+Gdw(t), z(0) = z0, t ≥ 0, (5.22)
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where G ∈ L(R,Z) is such that for k ∈ R,

Gk = kg(x).

The solution to (5.22) can be expressed as

z(t) = T (t)z0 +

∫ t

0

T (t− s)Gdw(s), t ≥ 0,

where T (t) is the C0-semigroup generated by A.

Each sensor measures the average state z(t) over a small square of side length 4 > 0.
Write

l = (l1, l2, . . . , lm)

and define

clj(x1, x2) :=

{
1/42, if |x1 − lj(1)| ≤ 4

2
and |x2 − lj(2)| ≤ 4

2

0, otherwise
,

for j = 1, 2, . . . ,m. With m sensors centred at x = l1, l2, ..., lm,

C(l)z = (〈cl1 , z〉, 〈cl2 , z〉, . . . , 〈clm , z〉)T ,

and the measurement is

y(t) =

∫ t

0

C(l)z(s)ds+ v(t),

where v(t) is a Rm-valued Wiener process, with

E{(v(t)− v(s))(v(t)− v(s))T} = (t− s)R̃

for t ≥ s ≥ 0.

5.4.1 Finite-Dimensional Approximation

Here, the equation is approximated by a standard finite element method with linear basis
functions [4]. Higher order polynomial basis can also be used to improve the accuracy.
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Let V = H1
0(Ω) ⊂ Z. Define a bilinear form a(·, ·) : V ×V → R such that for ψ, ϕ ∈ V ,

a(ψ, ϕ) := σ(〈 ∂ψ
∂x1

,
∂ϕ

∂x1

〉+ 〈 ∂ψ
∂x2

,
∂ϕ

∂x2

〉),

where 〈, 〉 denotes the inner product on Z = L2(Ω). For ϕ ∈ V , write

F := (
∂z

∂x1

ϕ,
∂z

∂x2

ϕ)T .

By the divergence theorem, ∫
Ω

div F =

∮
∂Ω

F · n ds = 0,

where n represents the outward pointing unit normal vector of ∂Ω. Hence, with the
homogeneous Dirichlet boundary condition,

〈∇2z, ϕ〉 = −
(〈 ∂z
∂x1

,
∂ϕ

∂x1

〉
+
〈 ∂z
∂x2

,
∂ϕ

∂x2

〉)
.

It follows that
〈−Az, ϕ〉 = a(z, ϕ).

A triangular mesh of the L-shaped region Ω can be created and refined using Matlab
functions ‘initmesh’ and ‘refinemesh’. The mesh is shown in Figure 5.17. Suppose there are
n interior nodes {νj : j = 1, 2, . . . , n} in the mesh. Basis functions {φj : j = 1, 2, . . . , n} ⊂
V are chosen to be linear spline functions such that

φj(νk) = δjk, j, k = 1, 2, . . . , n,

where δjk is the Kronecker delta. Let

Zn = span{φ1, φ2. . . . , φn} ⊂ V .

The approximating generator An is defined by

〈−Anzn, ϕn〉 = a(zn, ϕn)

for zn, ψn ∈ Zn. A Galerkin approximation zn(t) ∈ Zn of the state z(t) shall solve the
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Figure 5.17: Triangular mesh of Ω

weak formulation

〈dzn(t), φj〉 = 〈Anzn(t), φj〉dt+ 〈Gndw(t), φj〉, 〈z(0), φj〉 = 〈z0, φj〉, t ≥ 0, (5.23)

for j = 1, 2, . . . , n. The convergence of the finite element approximation is shown in [6,
Chapter 12].

For calculations, let the vector

zn(t) := (zn,1(t), zn,2(t), . . . , zn,n(t))T ∈ Rn,

so that

zn(t) =
n∑
i=1

zn,i(t)φi.

Substituting it into (5.23),

n∑
i=1

〈φi, φj〉dzn,i(t) =
n∑
i=1

〈Anφi, φj〉zn,i(t) + 〈Gndw(s), φj〉,
n∑
i=1

〈φi, φj〉zn,i(0) = 〈z0, φj〉, j = 1, 2, . . . , n.
(5.24)
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Define the mass matrix

Mn :=

 〈φ1, φ1〉 . . . 〈φn, φ1〉
...

. . .
...

〈φ1, φn〉 . . . 〈φn, φn〉

 ,

and the stiffness matrix

Kn :=

 〈Anφ1, φ1〉 . . . 〈Anφn, φ1〉
...

. . .
...

〈Anφ1, φn〉 . . . 〈Anφn, φn〉

 .

Also, since G ∈ L(R,Z), there exists g ∈ Z, such that for any k ∈ R,

Gk = kg.

Hence, for j = 1, 2, . . . , n,
〈Gdw(t), φj〉 = 〈g, φj〉dw(t).

Define the vector
gn := (〈g, φ1〉, 〈g, φ2〉, . . . , 〈g, φn〉)T .

It follows from (5.24) that the vector zn(t) is determined by

Mndzn(t) = Knzn(t)dt+ gndw(t),
Mnzn(0) = (〈z0, φ1〉, 〈z0, φ2〉, . . . , 〈z0, φn〉)T .

The measurement y(t) is approximated by

yn(t) = Cn(l)zn(t) + v(t),

where the matrix

Cn(l) := (C(l)φ1, C(l)φ1, C(l)φ2, . . . , C(l)φn) ∈ Rm×n.

5.4.2 Optimal Sensor Location

For simulations, the triangular mesh shown in Figure 5.17 was used, which contains n =
526 nodes. The mesh size is 0.1, that is, the maximal length of any triangle side. The
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parameters are σ = 0.1, Q̃ = 0.01, 4 = 0.1, and the initial condition

z0(x1, x2) = sech((10(x1 − 1.5)2 + 50(x2 − 0.3)2)),

as shown in Figure 5.18.

Consider a spatially localized disturbance centered at x = (1.5, 1.5) (see Figure 5.19):

g(x) = sech(100((x1 − 1.5)2 + (x2 − 1.5)2)).

When using only one sensor, as marked in Figure 5.20, the optimal sensor location is
around where the local disturbance is. Figure 5.22 shows the actual state and the estimate
obtained by the Kalman filter at t = 0.5, t = 1.0, t = 1.5, with the sensor placed at the
optimal location. Two estimates, one obtained when the sensor is optimally placed and
the other obtained when the sensor is placed at the non-optimal location x = (1.35, 1.45)
are compared in Figure 5.21, with the actual state at two points x = (1.74, 1.36) and
x = (1.51, 1.02). Putting sensor at optimal location leads to a more accurate estimate for
both of the sample points.

5.4.3 Effect of Sensor Noise on Estimation

When using 25 sensors, the optimal sensor locations are still concentrated at around the
location of the disturbance (see Figure 5.23). The estimates obtained by using a single
sensor with R0 = 0.00002, and by using 25 sensors each with R0 = 0.0002, are compared in
Figure 5.24. Again, the two estimates are similar, which indicates that using more sensors
can compensate for larger noise in sensors.
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Figure 5.18: Initial condition
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Figure 5.19: Disturbance spatially localized around x = (1.5, 1.5)
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Figure 5.20: Optimal location for a single sensor

0 1 2 3
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
(a)

t

St
at

e 
at

 x
=(

1.
74

,1
.3

6)

0 1 2 3
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
(b)

t

St
at

e 
at

 x
=(

1.
51

,1
.0

2)

Figure 5.21: Comparison of two estimates: one obtained when the sensor is optimally
placed (red dashed line) and the other obtained when the sensor is placed at the non-
optimal location x = (1.35, 1.45) (black dotted line), with the actual state (blue solid line)
at points (a)x = (1.74, 1.36), (b)x = (1.51, 1.02)
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Figure 5.23: Optimal location for 25 sensors
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Figure 5.24: Comparison of two estimates: one obtained when using a single optimally
placed sensor with R0 = 0.00002 (red dashed line) and the other obtained when using 25
optimally placed sensors with R0 = 0.0002 (black dotted line), with the actual state (blue
solid line) at points (a)x = (1.74, 1.36), (b)x = (1.51, 1.02).
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Chapter 6

Conclusion and Future Work

In this work, the theory of Kalman filtering for infinite-dimensional linear systems is re-
viewed. It is known that a Kalman filter produces an optimal linear estimate that minimizes
the variance of the estimation error and that the error covariance, P (t), is a solution to
a differential Riccati equation. As t → ∞, under certain conditions, the Kalman filter
converges to a time-invariant filter. The convergence of error covariance, P (t), in the nu-
clear norm is proved, with the limit, Pss, the unique nonnegative solution to an algebraic
Riccati equation. Furthermore, the nuclear norm, ‖Pss‖1, represents the minimum steady-
state error variance obtained by a Kalman filter. The value of ‖Pss‖1 is dependent on
measurements, and a smaller ‖Pss‖1 indicates a better estimate at the steady state.

Using ‖Pss‖1 as the optimality criterion, the sensor placement problem for Kalman
filtering is considered. Optimal sensor location in this context is the dual problem of
the LQ optimal actuator location problem. The results on well-posedness of the optimal
location problem, as well as the use of approximations in calculating the optimal locations
in [48] are applied by duality. The optimization algorithm used to calculate LQ optimal
actuator locations in [24] is introduced for computation of the optimal sensor locations.

Three partial differential equation models are examined: one-dimensional diffusion,
simply supported Euler-Bernoulli beam with Kelvin-Voigt damping, and two-dimensional
diffusion on an L-shaped region. For computational purposes, the equations are approxi-
mated by finite-dimensional systems using Galerkin methods, and optimal sensor locations
that minimizes the value of ‖Pss‖1 were calculated. With a spatially evenly-distributed dis-
turbance, for the one-dimensional diffusion equation, ‖Pss‖1 is constant at different sensor
locations, and hence no preference for sensor location was observed. While for the simply
supported Euler-Bernoulli beam equation, the optimal sensor location is dependent on the
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variance of the process noise: when the variance is small, the optimal sensor location is at
the center of the beam; as the variance gets larger, the optimal sensor location slips to the
side. By considering spatially localized disturbances, the optimal sensor locations for the
diffusion equations are around the location of disturbance.

Also, sensor noise effects on state estimation were investigated by simulations. Both the
quality and the quantity of sensors were varied. For the one-dimensional diffusion equation,
three different disturbances were considered: spatially evenly-distributed disturbance, s-
patially localized disturbance and mixed disturbance that combines the evenly distributed
disturbance with a spatially localized disturbance. Assuming that all the selected sen-
sors are optimally placed, accuracy of the estimation depends on sensor accuracy which
is expected. However, using a number of poor quality sensors, that is those with large
noise variance, leads to an estimator with accuracy comparable to that with a single good
quality sensor. Similar results are also observed for the simply supported Euler-Bernoulli
beam and the two-dimensional diffusion equation. In particular, for the one-dimensional
diffusion equation, the same approximately square root relation between ‖Pss‖1 and the
noise variance, as well as between ‖Pss‖1 and the number of sensors, holds for all the
calculations.

Other partial differential equation models can be examined in the future, for example,
a convection-diffusion equation. Estimation problem for nonlinear partial differential equa-
tions can also be considered, using techniques such as the extended Kalman filter [9] and
the unscented Kalman filter [37]. Another interesting future project could be investigating
sensor noise effects on state estimation from a theoretical perspective.
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