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Mon génie étonné tremble devant le sien.

— Jean Racine, Brittanicus

The epigraph contains the judgement passed by Nero on his mother Agrip-
pina. Disregarding the peculiar circumstances under which it was uttered, the
quote, as such, is rather well suited to describe the unprecedented awe and
admiration we feel for our advisor, the venerable Professor Torsten Ekedahl.

It was a startling encounter, back in the summer of 2006, when we first
entered his office, coyly proclaiming ourself to be his new graduate student.

“Oh yes,” he said, peering over his spectacles, “I remember you. I mean,
I don’t remember you, but I recall your looking something like that. Now,
what should you start with? Considering you know so little algebra’, I was
thinking you could begin with a little starte. How would you like to explore
the connection between polynomial and strict polynomial functors?”

Not knowing better, we acquiesced, mainly because the word “polynomi-
al” did not ring any alarm bells. It thus all began like an appetiser. It ended
up a doctoral thesis.

The project grew under our hands, expanded in all directions, and we
watched with pleasure a beautiful theory taking shape. Conducting research
may be likened to exploring an unknown territory, but many a time we have
felt less like an Explorer, and more like an Architect. By the point we arrived
at the scene, the state of affairs was a miserable one, a malaria-infested swamp
of murky waters, a jungle of buzzing mosquitoes and tangled undergrowth.
But over the course of these five years, we have worked hard to clear the
ground, dike the land, and cut down the trees to erect a glorious palace at
their place, crowned with towers and turrets glistening in the sun and coloured
banners flapping gaily in the breeze, amidst cascades of hanging gardens. Our
mission has indeed been the Architect’s.

The theory, as we here present it, is beautiful; or so we feel. There remains
to be seen if it can also be useful.

'This defect has since been remedied, we hope.






INTRODUCTION

[...] but luckily Owl kept his head and told us that the Opposite of an Introduction,
my dear Pooh, was a Contradiction; and, as he is very good at long words, I am
sure that that’s what it is.

— Alan Alexander Milne, The House at Pooh Corner

Three questions concerning the subject at hand, polynomial functors, are beg-
ging to be answered. What are polynomial functors, where do they come
from, and what are they good for?

The latter two are most easily replied to. Polynomial functors (the weaker
notion) were introduced by Professors Eilenberg and Mac Lane in 1954, who
used them to study certain homology rings ([6]). Strict polynomial functors
were invented by Professors Friedlander and Suslin in 1997, in order to devel-
op the theory of group schemes ([10]). Since then, the two spurious concepts
have evolved side by side. Mentions of them have appeared scattered in art-
icles, generally revolving around the themes of homotopy and homology. The
stance taken is rather a pragmatic one, usually treating polynomial functors as
a means, rather than an end in themselves.

As far as we know, no cross-fertilisation has yet taken place. This treatise is
likely the first ever to actually interrelate the two species. That, we allege, is the
ultimate end of this work: a comparison of polynomial® and strict polynomial
functors.

What, then, is a polynomial functor? Let us consider the category 7900
of abelian groups. Two familiar functors on this category are the (co-variant)
Hom-functor

Hom(P, —)
and the tensor functor
Q®—;
P and Q being fixed groups. They are both additive in the following sense:

Hom(P,a + B) = (a + B)sx = 04 + B = Hom(P, a) + Hom(P, B)
QA@+P) =19 (@ +P) =1®A+1QP=Q®A + QR B;

2Of course, as we discovered in due time, polynomial functors provide much too weak a
notion. Over more general base rings than Z, they are subsumed by numerical functors.
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a and B denoting homomorphisms. Consider now the tensor square T?, given
by the equation
T"(M)=MQM.

It still maps homomorphisms to homomorphisms, but it is itself not additive,
for

T"a+B)=(+P)®O+P) =0®c+0RP+PRA+PLRP,

whereas

T*(a)+T*(B) =a®a +B®B.

Evidently, if there be any justice in the world, this functor should belong to
the quadratic family. The question is how to formalise this.

One approach is to observe that, while 7% does not satisfy the affinity
relation

T*(a + B) — T*(a) — T*(B) + T*(0) = o

(T”(0) = o gives additivity), it will, however, satisfy the higher-order equation

ra+B+y) —T(a+pB) - T"B+y) - T"(v+a)
+T*(a) + T*(B) + T*(y) — T*(0) = o.

This is what it means to be quadratic in the sense of Eilenberg and Mac Lane.

But the functor 7 not only bebaves like a polynomial, Friedlander and
Suslin argued, it is in fact a polynomial. To motivate such a designation, they
offered the following calculation:

T?(aq + bB) = (a0 + bB) ® (aat + bP)
=a(a®a) +ab(a@B+B®a) +*(BRP).

One would think that, in order to discuss polynomial functors, need would
arise for things such as the “square of a homomorphism”, but not so. It will, in
fact, be sufficient that the coefficients a and b of the homomorphisms transform
as quadratic polynomials. This is what it means for the functor to be strict
quadratic.

Additive functors have been extensively studied; non-additive functors less
so, and rarely for their own sake. The first real investigation of their prop-
erties was not performed until 1988, when Professor Pirashvili showed that
polynomial functors are equivalent to modules over a certain ring ([17]), a
result we shall build upon and generalise. A similar study was conducted on
strict polynomial functors in 2003 by Dr. Salomonsson, our predecessor, in his
doctoral thesis [20].

A radically different method of attack was initiated by Dr. Dreckman and
Professors Baues, Franjou, and Pirashvili in the year 2000. Their approach
was to combinatorially encode polynomial functors, for this purpose utilising
the category of sets and surjections. Evidently inspired by this device, Dr. Sa-
lomonsson would later repeat the feat for strict polynomial functors, employ-
ing instead the category of multi-sets.



Such is the theory of polynomial functors as it stands today — or rather as
it stood just recently. This thesis proposes the following:

I:0.

2:0.

3:0.

4:0.

9:0.

To generalise the notion of polynomial functor to more general base
rings than Z, so that it smoothly agree with the existing definition of
strict polynomial functor, allowing for easy comparison. This results in
the definition of numerical functors (Chapter 6).

To make an extensive study of numerical maps of modules (which will
be needed so as to properly understand the functors), to see how they fit
into Professor Roby’s framework of strict polynomial maps (Chapter 5).

To conduct a survey of numerical rings (in order to understand the maps).
This has, admittedly, been done before, in a somewhat different guise,
but our approach will be seen to contain a few novelties (Chapter 1).

To develop the theories of numerical and strict polynomial functors
(Chapter 7) so that they run (almost) in parallel (Chapter 8).

. To show how also numerical functors may be interpreted as modules

over a certain ring (Chapter g).

:0. To expound the theory of mazes (Chapter 3), which will be seen to vastly

generalise the category of surjections employed by Professor Pirashvili
et al., since they turn out to encode, not only polynomial or numerical
functors, but all3 module functors over any# base ring (Chapter 10).

. To simplify Dr. Salomonsson’s construction involving multi-sets (Chap-

ter 2), making it more amenable to a comparison with mazes (Chapter

4).

:0. To prove comparison theorems interrelating numerical and strict poly-

nomial functors (Chapter 11).

And, finally, to merely indicate (Chapter 12) how polynomial functors
may be used to extend the operad concept, a line of thought already
present in Dr. Salomonsson’s thesis.

3Fine print: right-exact and commuting with inductive limits.
4Fine print: unital.
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POLYNOMIELLE FUNCTORER
PA MODULE-CATEGORIER

Sedo-Lirande Tankor 6fver Algebran

Wi hade litet at fiya, om Wi allenaft bewifte at twa och tw4 4ro fyra.

— Olof Dalin, Then Swinska Argus, 1732 N:o 1

Sedan tidernas begynnelfe har mennifkjan egnat {ig at Arithmetik, hvarmed of-
taft pligar menas manipulationer af tal medelft de fyra rikne-fitten addition,
{ubtracion, multiplication och divifion. Detta dr hvad Mathematik de flefta
mennifkjor ndgonfin komma i conta® med, emedan det ir, dels hvad de fa lira
{ig i {cholan, och dels hvad fom nagorlunda eger tillimpning i hvardagslifvet.

Men med en dylik begrinfad upfattning om Mathematikens vifen torde
man férundra fig {torliga derdfver, at det alls bedrifves forskning inom Ma-
thematik. Kdnner man icke redan allt om de fyra rikne-fitten, frigar fig den
mindre kunnige, och kunna des utom icke vira moderna rikne-machiner ut-
fora defsa operationer lingt qvickare 4n nidgon menfklig hjerna?

Det ir vifserligen helt rigtigt, det man icke forfkar inom Arithmetik. At
corret utfora enkla rikne-operationer har mennifkjan kunnat {fedan urminnes
tider. Strengt taget anfer man egentligen ej Arithmetican, for all {fin tillimp-
lighet, vara Mathematik per fe; {narare betragtas hon {4 fom nigon form af

Amne Uptickt Exempel pa Objecter Exempel p& Equationer

Arithmetik Tidernas Tal: o, 1, —7, i, V2 TLg, ... | 1+2)+4=1+(2+4)
begynnelfe

Elementar Algebra 1500-talet | Variabler: x, v, z, ... x+N+z=x+ @ +2)

Abftra®t Algebra 180o-talet | Algebraifka {truGturer: (x#y)sz=1x%(y*2z)

Grouper, ringar, kroppar,
lineara rum, modules, ...

. . . ®:
Categorie-Theorie 1goo-talet | Categorier: &tp, Rng, F0, | X ® X ® X e X®X
(“Abftrac Non-Sens”) Yec, Mo, ...

QU H
X®X 4;1) X

Tabell 1: Hiftorique 6fver Algebrans Utveckling.
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rikne-lira. Hon tilhandahiller endaft de fimplafte af verktyg, hvilket bevifas
deraf, at par exemple de gamle Agyptierna, trots 3,000 ar af obruten civilifa-
tion, icke voro capable at 16fa den quadratifka equationen.

Detta forefaller midhinda den moderne lidfaren en {fmula befynnerligt, ty at
de tvenne rotterna til equationen

xX*+px+g=o0

gifvas af
e L)

2
det torde hvar och en erinra fig fran {in {chol-tid. Men fér Agyptierna gick
denna formul fynbarligen ouptickt i 3,000 4r. Raifonen hirtil 4r icke {var at
forfta: utan tilging til formler, voro de hinvifade til lainga och omftindliga
befkrifningar i ord, for at nedteckna allminna reglor f6r equationers l6fande.
Lifaren kan fjelf forfoka fig p4, at befkrifva formulan ofvan i ord. Af den
concentrerade formeln lir blifva en blafkig nouvelle; och af des hirledning —
en hel roman! Intet under, det Egyptierna aldrig funno den!

Ej heller de gamle Indierna kunde, for {4 vidt man vet, 16fa den quadratifka
equationen. At det lyckades Babylonierna och Chineferna, trots at dfven defse
voro hinvifade til befkrifningar i ord, fir fes fom en {mirre bedrift.

Sé pafserade den {tora Revolutionen. Remarquabelt nog, timade denna
{amtidigt med 6friga culturella omhvilfningar af famhillet, det vil {dga, under
Renaifsancen, d& man uptickte den {ymbolifka algebran. Man fant alltfa pé
konften at {krifva formler. Och utan formler, ingen Mathematik — da &terftir
endaft rikne-lira. Det dr {dledes {vart at 6fverfkatta den {ymbolifka algebrans
betydelfe for Mathematiken, och man fkulle kunna likna des inférande vid
hjulets upfinnande.

Den Mathematifka Wetenfkapens arbetsfilt vidgades med ens, och 6ppna-
de up for hvad fkulle kunna benimnas den Elementara Algebrans epoque. Det
nya formel-{priket gjorde omedelbar fucceés, och framgéngen lit icke vinta pd
{ig. Inom kort lyckades det Italienfka Mathematiker at 16fa favil den cubifka,
{om ock den quartifka, equationen.

Den Elementara Algebran anvinder {ig af variabler i {tillet for tal, och mar-
querar ofvergingen frin ziffer-rikning til bokftafs-rikning. Des {tyrka ligger
ej blott deri, at den mojliggor nedfkrifvandet af equationer affedda at lsas;
hon later ofs ock formulera allmingiltiga rikne-lagar, fanna for alla tal.

Det forhéllande par exemple, at det, d4 tvenne tal {kola adderas, helt fak-
nar betydelfe i hvilken ordning defsa tagas, kan da compact och 6fverfkadligt
{krifvas fom den Commutativa Lagen

xX+y=y+x,

giltig for alla tal x och y.
Det forhédllande ater, at det, d& man har at addera trenne tal (i nigon gifven
ordning), icke {pelar ndgon role i hvilken ordning de tvenne additionerna ut-
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toras, utgdr den Associativa Lagen
(x+9y)+z=x+(y +2).

Mathematiker egna fig faledes, tvert emot den foreftillning folk i gemen
hafva om defse, i pafallande liten utftrickning &t ziffror. (Jemfor det vulgaira
uttrycket “zifferkarl”!)

Nifta abftraction egde rum under 180o-talet, dd man obferverade, at flere
af de lagar, hvilka gilla for rikning med vanliga tal, 4fven ega giltighet i andra
{fammanhang. Man noterade exempelvis, at den Afsociativa Lagen for addition:

(x+y)+tz=x+(y+2),

finner {in motfvarighet fér multiplication:
(x-p)-z=x-(y-2)
Det exifterar vifserligen ockfd en afsociativ lag for addition af vectorer:
(w+v)+w=u+(v+w),
multiplication af matricer:
(A-B)-C=A-(B-C),
{amt f6r compofition af functioner:

(fog)oh=folgoh).

Som {ynes kunna rikne-operationerna vara af de meft fkilda {lag, och de in-
giende {torheterna iro ej lingre begrinfade til at vara tal. Det interefsanta ir
{3ledes ej lingre rikne-operationena {fom {idana, langt mindre hvilka objeter de
verka pa, utan operationernas gemenfamma egenfkap associativitet.

Man infag, det vore af {torfta betydelfe, at ifolera detta phenomen, och tog
{ig fore, at {tudera algebraiska structurer. Defsa dro mingder af Mathematifka
objecter, equiperade med en eller flera operationer, hvilka ma upfylla vifsa
axiomata.

Silunda ir exempelvis en half-groupe en mingd med en enda operation =,
{atifhierande juft den afsociativa lagen

(xe3) vz =x%(y*2)

(for alla element x, y, z tilhorande denna mingd). Hvad operationen * “bety-
der” dr icke lingre relevant; det kan vara addition, multiplication, compofi-
tion; men ockf3 en helt abftra& operation, utan férankring i hvardagslifvet.
Det interefsanta ir egenfkapen denna poftuleras befitta: afsociativitet.

Man hade nu abftraherat up dnnu en niveau och entrerat den Abstracta Al-
gebrans domaine. En af den Abftracta Algebrans tidigafte triumpher var hen-
nes bevis fér den quintifka equationens oléflighet medelft clafsifka algebra-
ifka verktyg ({2 benimnde radicaler; defse dro de fyra riknefitten jemte rot-
utdragningar), {3 at ingen traditionel 16{ningsformel exifterar i detta fall.
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Studerades falunda ej lingre “en ridkne-operation i taget”, utan “alla famti-
digt”. Vi marquerade detta ofvan genom at beteckna den godtyckliga (okinda)
operationen med en {tjerna =, precis fom man tidigare hade betecknat tal med
bok{tifver, for at {tudera, icke “et tal i taget”, utan “dem alla famtidigt”. Detta
kan figas vara Mathematikens vifen: {6kandet efter univerfella, allmingiltiga
principer.

Et fynfitt, fom introducerades vid denna tid, och fedan des vunnit laga
hifd, dr det, at det icke {4 mycket 4r de algebraifka {tructurerna fjelfva, hvilka
forgena et {tudium, fom afbildningarna dem emellan. Defsa afbildningar ma
icke vara af helt godtyckligt {lag, utan dem vare det alagdt, at bevara de in-
giende rikne-operationerna. En fidan ftructure-bevarande afbildning kallas
homomorphism. Hafva vi exempelvis en enda operation # dr criterium, for at
afbildningen ¢ vare en homomorphifm, det, at

O(xxy) = d(x) * 6(y).

Det ir faledes detta, der ftuderas inom den Abftracta Algebran: algebraifka
{tructurer, tillamman med deras homomorphifmer.

Algebraifka ftruturer dro legio. Férutom half-grouper hafva vi, for at
blott nimna de meft frequent forekommande: grouper, ringar, kroppar, li-
neara rum, moduler, .... Hvar och en af defse clafser characeriferas af et antal
operationer med tilhrande axiomata, och hvar och en egnas et ingdende ftudi-
um inom correfponderande Mathematifka difcipline: Groupe-Theorie, Ring-
Theorie, Kropp-Theorie, Linear Algebra, Module-Theorie, ....

Under 19oo-talet begynte Mathematikerna {yftematifera i denna brokiga
flora (eller fauna?) af algebraifka {tructurer. Likafom deras féregangare hundra
ar tidigare hade obferverat likheter mellan rikne-lagarne for olika operationer,
noterade man nu vifsa reglor och lagbundenheter, en vifs Method in the Madness,
alla defsa algebraifka {truGturer emellan. Begrepp rorande en vifs forts {tructu-
re befunnos ega motfvarigheter f6r en annan; vifsa theoremer for en theorie
beviftes vara fanna dfven inom andra theorier; etc. Onfkan vicktes, at ena den-
na rika famille af algebraifka {tructurer under en och famma parapluie.

Vid forfta revolutionen hade man abftraherat bort talen, 1 det defsa erfat-
tes af variabler. Under andra refan abftraherades fedan vederborligen rikne-
operationerna bort, at remplaceras med godtyckliga fidana. I focus placerades
nu {truGturerna defsa operationer géfvo uphof til. Under tredje vigen i Alge-
brans utveckling, abftraherade man flutligen bort dfven ftructurerna. Man ville
{tudera, icke en {pecifique algebraifk {tructure — precis fom man tidigare valt,
at icke ftudera et {pecifique tal eller {pecifique rikne-operation — utan dem
alla famtidigt.

Studium inleddes af {& kallade categorier, hvarmed betecknas famlingen af
alla algebraifka {tructurer af et gifvet {lag. Hafva vi faledes: categorien af grou-
per, categorien af ringar, categorien af kroppar, categorien af lineara rum, ca-
tegorien af moduler, ... Man {6kte utrona, dels det inre machineriet i defsa
categorier, dels deras relationer {ins emellan (hvilken ftrifvan kan anfes fam-
manfatta en Algebraikers lifsniring: at utforfka structure).
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Men likfom et ftudium af algebraifka {tructurer vore otinkbart utan et
{amtidigt {tudium af deras homomorphifmer, det idr: {tructure-bevarande af-
bildningar; dr det omojligt at tinka fig categorier utan {tru¢ture-bevarande
atbildningar dem emellan. Defsa gi hir under namnet functorer.

Som exempel anfére vi categorien af moduler. En functor pa denna cate-
gorie tager en module och producerar en annan; famtidigt fom hvarje homo-
morphilm transformeras til en annan homomorphifm. Detta ma dé icke {ke
helt godtyckligt, utan ater {kola vifsa axiomata upfyllas.

Man fant {traxt, at det for fomliga categorier vore meningsfullt, at tala om
lineare funttorer. Anvindningsomraden f6r defse 4ro mangfaldiga, och deras
theorie foljagteligen mycket vil utforfkad. Men juft categorien af moduler har
des utom vifat {ig befitta en liten egenhet, hvars ritta betydelfe man egentli-
gen forft pd {fednare tid infett. Det 4r nimligen mojligt for functorer pd denna
categorie at vara (i nigon mening) polynomielle, det vil {iga: gquadratiske, cubis-
ke, etc. Detta dr themat for foreliggande athandling: Polynomielle Functorer pa
Module-Categorier.

Huru fkal d& begreppet “polynomialitet” limpligen definieras? Vi ligge
fram tvenne mojliga definitioner: det dr begreppen numerisk functor, refpecti-
ve strict polynomiel funtor. Defsa te {ig vid forfta anblicken vifensfkilda, men
vi bevife, det de i fjelfva verket dro nira befligtade. Man finner, at en {trict
polynomiel functor par nécefsité méfte vara numerifk, medan det omvinda
icke giller — det ena begreppet ir faledes {vagare 4n det andra. Men huru
mycket {vagare? Under hvilka omftindigheter 4r en numerifk funor ftrict
polynomiel? Kan en numerifk funor pa nagot lampligt vis approximeras af
en {tri&t polynomiel fadan? Det dr frigor fom defsa vi dryfta, och de utgéra
goda exempel pa hvilken forts {porsmal Mathematiker egna {ig 4t.

Det categorifka tinkandet genomfyrar i dag {tora delar af Mathematiken.
Vi tacke d4 Categorie-Theorien icke {i mycket for de theoremer hon bragt ofs,
utan for hennes philosophie. Hon har fkinkt ofs et communt {prak fér Ma-
thematiken, eller i hvart fall de delar, hvilke dro nagorlunda befligtade med
Algebran. Det mafte nu papekas, det icke alla Mathematiker prifa Categorie-
Theoriens fortjenfter {ans réfervation. Man har myntat termen abstract non-sens
for denna gren af Mathematiken, hvars theoremer ega fadan allmingiltighet,
at de icke fidga nagon ting alls.?

Categorie-Theorie kan {igas utgora den ultimata ab{traCtionen — ultimata,
emedan det exifterar et {4 {inguliert obje&t fom Categorien af Categorier. Men
Categorie-Theorien dr nu 6kidnd juft f6r {in f6rméga, at {14 knut pa fig fjelf.

5Abftraction kan 16pa amok. Enligt upgift hafva dfven vifse delar af Univerfel Algebra lidit af
detta. Det blef tommare och tommare.
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Chapter 0

PRELIMINARIES

En tyktes wara hwaf}, och grep mig an for stold,
At jag ur bocker tog, med andras tankar jiste;
Men huru wet hon det, som aldrig nansin liste?

— Hedwig Charlotta Nordenflycht,
Satyr emot afwundsjuka Fruentimber

§1. Set THEORY

We will use standard notation for finite sets:

The text is pervaded by the use of multi-sets, which are given a detailed
introduction in Chapter 2.

§2. MobpuLke THEORY

It is not uncommon for algebraists to insist upon the existence of a multi-
plicative identity in each abstract ring. Where this inclination stems from is
difficult to say, but the end result is that ideals are begrudged the right to be
rings. We shall not follow this trend, but magnanimously allow any abelian
group endowed with an associative, bilinear multiplication to call itself ring.
That being said, we point out that all our rings will indeed possess an identity,
but we shall always prefix them with the word “unital”.

Since all rings under consideration will possess an identity, we shall tacitly
assume all modules to be unital. Moreover, modules will be left modules,
unless explicitly said otherwise.

The theory of polynomial maps and functors will be developed over a fixed
base ring B. Consequently, we adopt the following conventions.

I. All modules will be unital left B-modules (unless otherwise stated), and
Mod will denote the category of these.

17



18 Chapter o. Preliminaries

II. All algebras will be commutative and unital B-algebras (we shall only
have reason to consider algebras in the case when B is commutative),
and €2lg will denote the category of these.

III. When B is numerical, all numerical algebras will be assumed B-algebras,
and 92lg will denote the category of such.

IV. Linearity will always mean B-linearity, and all homomorphisms will be B-
module homomorphisms. (However, we will consider general maps of
modules, and they will usually be very non-linear!)

V. Tensor products will be computed over B, unless otherwise stated.

VI. A linear category denotes a B-linear category; by which is meant a cat-
egory enriched over 900, so that its arrow sets are in fact B-modules.
(In the case B = Z, this is what is known as a pre-additive category.)

VIIL. The following additional assumptions will be placed upon the base ring:

(a) When discussing arbitrary maps and functors, B can be an arbitrary
ring (in particular, it may possibly be non-commutative).

(b) When discussing numerical maps and functors, B will of course be
assumed numerical.

(¢) When discussing strict polynomial maps and functors, B will be as-
sumed commutative only.

At his” leisure, the reader may put B = Z, and everywhere substitute “abeli-
an group” for “module”.

§3. CATEGORY THEORY
Now for some general notation concerning categories. When C is a category,
CO

will denote the opposite category. The set of arrows from an object X of C to
another object Y will be denoted by

C(X,Y).

There are three exceptions to this rule. Inside a module category, the set
of homomorphisms between the R-modules M and N will be denoted by

Homg (M, N),

'Of course, women, with their greater capability of multi-tasking, will no doubt be able to
keep in mind the more general case.
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and the letter R will be omitted if the ring is clear from the context (which it
usually is). The set of endomorphisms of a module M will be denoted by the
symbol

End M.

Furthermore, in the category of categories, we will let
Fun(A, B)

denote the category of functors from A to B; sometimes linear, and sometimes
not, depending on context. And finally, inside a functor category, the natural
transformations between two functors F and G will be denoted by

Nat(F, G),

which will be shortened to
Nat F

in the case F = G.
The following is a (not exhaustive) list of the categories we will use. Those
which are not standard will be defined in the text.

Get = Sets.
MSet = Multi-sets.
Laby = The labyrinth category.
Sur = Sets with surjections.
¢Ring = Commutative, unital rings.
¢Alg = Commutative, unital algebras.
MNMRing = Numerical rings.
NAlg = Numerical algebras.
Moo = Modules.
§Mod = Free modules.
XMoo = Finitely generated, free modules.
Num = Numerical functors.
Q9Hom = Quasi-homogeneous functors.
G&%Pol = Strict polynomial functors.
$Hom = Homogeneous functors.

§4. SEmMI-ABELIAN CATEGORY THEORY

The proposition below is (un)known to mathematicians as Delsarte’s Lemma,
but there seems to be no tangible way to attach Professor Delsarte’s name
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unto it.* In our licenciate thesis, we gave two versions, with rather differing
proofs, one for rings and one for abelian categories. We much deplored this,
being firm adherents to Professor Bourbaki’s infamous slogan never to prove
a theorem that could be deduced as a special case of a more general theorem.

It is not without some pride that we now enunciate the following ultimate
Delsarte’s Lemma. For an introduction to semi-abelian categories, we refer to
Professor Borceux’s survey paper [2].

THEOREM 1: DELSARTE’S LEMMA.

e Let A, B, and C be objects of a semi-abelian category such that C € A x B and the
projections C — A and C — B are regularly epic. Then A and B have a common
guotient object

A—a>>D<<LB,

which completes the square into a Doolittle diagram3:

o Conversely, let a common quotient object

A — I D <<b7 B
of A and B be given, and let C be the pullback. Then C is a subobject of A x B,
and the projections on A and B are regularly epic.

Proof. We are grateful to Professor Ekedahl and Dr. Bergh for furnishing us
with the proof, which offers an excellent opportunity to see all the classical
isomorphism theorems in action. By the Fundamental Homomorphism The-
orem,

A = C/Kerpe, B~ C/Kergc;

and so
D = C/(Kerpc u Ker gc)

is a common quotient object of A and B, where u denotes join in the lattice
of subobjects.

*Legend has it that the attribution was made by Professor Serre during his Collége de France
lectures.

3Following the terminology of Professor Freyd, a Doolittle diagram is a square which is both a
pullback and a pushout square. Professor Popescu more prosaically calls them exact squares.
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It must be shown this yields indeed a Doolittle diagram. Denote
P = Kerpc, Q = Kergc;

and consider the following diagram, whose rows by the Tower Isomorphism
Theorem are exact:

o— > P/(Pim Q —— C/(Pim Q) CIP o
o—=(PuQ)/Q C/Q C/PuQ)——=o0

By the Diamond Isomorphism Theorem, the left vertical arrow is an iso-
morphism. Write

K=P/(PnQ)=(PuQ)/Q

and consider the diagram:

K——=C/(Pn Q) C/Q

| |

o C/P C/(PuQ)

Because a diagram of the form:

Kerx —X

|

oO——Y

is always a pullback square, the left square and the outer rectangle above are
both pullback squares. It now follows, from the “unusual cancellation prop-
erty of pullbacks”, Theorem 2.7 of [2], that the right square is a pullback.

The pushout property is rather more trivial. Suppose the following dia-
gram commutes:

C*>C/P

L

C/Q——>T

The arrow C — T is zero on P and Q, and therefore on P u Q, which produces
a unique factorisation

C/(PuQ)—T.

Hence C/(P u Q) is the pushout.
Let us finally turn to the converse of the theorem. It is clear that C, defined
as the equaliser of ap and &g, is a subobject of A x B. Professor Freyd’s Pullback
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Theorem for abelian categories (Theorem 2.54 of [g]) states that pullbacks
of (regular) epimorphisms are (regular) epimorphisms, and this proposition
remains valid in a semi-abelian (or exact) category. O

Because the square is a Doolittle diagram, we have in an abelian category
the following exact sequence:

O——C——A®B——=D——>0
We may then simply choose
D = Coker (C—>A®B).

(In the general case, C may not be a normal subobject.)

§5. ABELIAN CATEGORY THEORY

Let us say some words on abstract tensor products. Preparing for what will
eventually follow; let B be an arbitrary ring of scalars. All categories and all
functors of this section are assumed B-linear, and all modules are B-modules.
The theory briefly accounted for below can be found in Professor Popescu’s
treatise [18] on abelian categories, section 3.6. (He gives the case B = Z, but
the extension to an arbitrary base ring is immediate.)

Let A be a category. We recall the classical Yoneda embedding

Y4: A — Fun(A°, Mod)
X — A(—,X).

Suppose now that A is small4, and let B be an abelian category with direct
sums. Fix a functor Q: A — B. According to Theorem 3.6.3 of [18], there is a
unique functor

— ®4 Q: Fun(A°,Mod) —» B

having a right adjoint, and making the following diagram commute:
Ya
A — Fun(4°,Mod)
3 i@AQ
B

This we call the tensor product with Q over A. Its adjoint is the mediated
Hom-functor

B(Q,—): B — Fun(A°,900)
Y = B(Q(-),Y).

4When A is finite, it is spoken of in reverence as a ring with several objects.
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Note that, when X € A, the diagram above implies that

A(_7X) ®4 Q = Q(X)v

and we may then extend by right-exactness and commutation with direct
sums.

It will sometimes be convenient to have available also a reverse tensor
product. Hence, if Q: A° — B is a fixed functor, there is a unique functor

Q®4 —: Fun(A,Mod) - B

having a right adjoint, and making the following diagram commute:

Y40
A° —— Fun(A4, 9tod)

S o

B

It will then be seen that, for functors Q: A — Band M: A° — o0, the tensor
products

Q®RuoM=M®4 Q

are equal.

ExampLe 1. — The special case most frequently encountered is when A = {}
is a category with a single object, with End # = R an algebra. Then a functor
M: A° — OMod is a B-R-bimodule, and a functor Q: A — B s a left R-object of
B. The tensor product is usually denoted by

— Qg Q: gModr — B,
and is uniquely specified by the equation

R®r Q= Q(%)

and the extension property.
Specialising even further, we may consider the case when also B = Mod.
Then Q(*) is simply a left R-module. Since

R®gr Q =rQ(*) = Rg ®r Q(*),

the tensor product “of functors” coincides with the usual tensor product “of
modules”. A

In some situations, there is an explicit description available for the tensor
product.
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THEOREM 2. — Let A and B be small categories, and fix a functor
Q: A — Fun(B,Mo0).
Then, for M: A° — 900 and Y € B, the tensor product

(M @4 Q)(Y)

is the quotient of the module

D M(X) ®QX)(Y)

XeA
by all relations
MX) @ QX)(Y) 3x@ Q(a)y (y) = M(a)(x) ®y € F(X') @ QX)(Y),
foranyxe M(X),ye QX')(Y),anda: X' — X.
The pair
(—®1 Q B(Q,—))

is, as mentioned above, an adjunction. Under certain circumstances, it is ac-
tually a category equivalence. The theorem below occurs as Corollary 3.6.4 in

[18].

TueoreM 3: THE Morita EQuivaLENCE. — Let C be an abelian category with direct
sums, having a full subcategory P of small projective generators, with inclusion functor
J: P — C. There is a category equivalence:

CcU.,-)
/\
C Fun(P°, Mod)
\_/

—®p/

ExampLE 2. — Morita equivalence is most frequently used in the situation of
a single projective generator. Denoting the endomorphism ring of P = {x} by
R, we have

Fun(P°, Mod) = gModg,

and the equivalence reduces to the familiar:
C(o,—)
N
C BWUOR
N
—Q®p*
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§6. COMMUTATIVE ALGEBRA

The subsequent (in)equality of Krull dimensions is supposedly known by
“everybody” working in commutative algebra or algebraic geometry, and con-
sequently impossible to reference. We are grateful to Professor Ekedahl for
furnishing the proof.

THEOREM 4: CHEVALLEY'S DIMENSION ARGUMENT. — Let R be a finitely generated,
non-trivial, unital ring. The (in)equality

dimR/pR = dimQ ®z R < dimR —1

holds for all but finitely many prime numbers p.
When R is an integral domain of characteristic o, there is in fact equality for all but
finitely many primes p.

Proof. In the case of positive characteristic 7, the inequality will hold trivially,
for then

Q®zR =0 =R/pR,
except when p | n.
Consider now the case when R is an integral domain of characteristic o.
There is an embedding ¢: Z — R, and a corresponding dominant morphism
Spec¢: SpecR — SpecZ

of integral schemes, which is of finite type. Letting Frac P denote the fraction
field of R/P, we may define

C, = {P € SpecZ | dim(Spec ) ~*(P) = n}
= {P € SpecZ | dimR ®z FracP = n}
~ {(p) | dimR/pR = n} U {(0) | dimR @ Q = n}.

This latter set, by Chevalley’s Constructibility Theorem5, will contain a dense,
open set in Spec Z if 7 = dim R — dim Z. Such a set must contain (o) and (p) for
all but finitely many primes p, so for those primes,

dimQ®z R = dimR/pR = dimR — 1.

Now let R be an arbitrary ring of characteristic o. For any prime ideal Q,
R/Q will be an integral domain (but not necessarily of characteristic o!), and
so we can apply the preceding to obtain

dimQ®z R/Q = dimR/(Q + pR) < dimR/Q —1,

for all but finitely many primes p. The prime ideals of Q ®z R are all of the
form Q ®z Q, where Q is a prime ideal in R. Moreover,

(Q®zR)/(Q®zQ) = Q®zR/Q.

5This proposition appears to belong to the folklore of algebraic geometry. An explicit refer-
ence is Théoréme 2.3 of [14].
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It follows that
dmQ®z R = max dim(Q®z R)/(Q ®z Q)
QeSpecR
= max dmQ®zR/Q

QeSpec R

= Qgslse)éR dimR/(Q + pR)

= _max (R/pR)/Q = dimR/pR
QeSpecR/pR

for all but finitely many p, because the maxima are taken over the finitely
many minimal prime ideals only. In a similar fashion,

dmQ®z R = QnslaXRdim(Q ®zR)/(Q®z Q)

eSpec
- ; R
QgggnglmQ ®z R/Q
< max dimR/Q—1<dimR —1
QeSpecR
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NUMERICAL RINGS

At the age of twenty-one he wrote a treatise upon the Binomial Theorem, which
has had a European vogue.

— Sherlock Holmes’s description of Professor Moriarty;
Arthur Conan Doyle, The Final Problem

Our licentiate thesis from 2009 opened with some lavish praise on Professor
Ekedahl, who purportedly “discovered”” numerical rings. This is only par-
tially correct. In his article [7] from 2002, he did indeed set forth an axiomat-
isation of rings with binomial coeflicients, and he is possibly the first to have
done so, but, as we were informed of only recently, such rings had in fact been
studied much earlier. Indeed, already in 1969, in connection with his work on
nilpotent groups, Professor Hall ([12]) had defined a binomial ring as a com-
mutative, unital ring which is torsion-free and closed under the “formation of
binomial coefficients”:

T(T—I)"'(T—ﬂ-i—I).

r—
n!

Of course, these two approaches are radically different, and it is non-trivial
that they are equivalent.

It might perhaps be argued that we ought to follow the terminology initi-
ated by Professor Hall, the original discoverer, and use the designation binomi-
al, rather than numerical. We have chosen to deviate from his practice, partly
because we really use the axiomatic definition proposed by Professor Ekedahl,
and partly because, we feel, the word binomial ring leads to the wrong asso-
ciations: polynomial rings, and such. However, since the letter N is already
reserved for the set of natural numbers, we will (in subsequent chapters) de-
note our base ring of scalars by B to suggest binomial (even though it need not
necessarily be so!).

This chapter proposes to explore numerical rings for their own sake. Some
of the results can no doubt be found in the literature. We cite a recent paper
[8] from 2003, written by Dr. Elliott, which in particular aims to elucidate the
connection between binomial rings and A-rings.

"He used himself the word introduced, a precaution that turned out to be wise.

27
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§1. NuMEeRICAL RiNGs

We here present, with minor modifications, Professor Ekedahl’s axioms for
numerical rings. The original axioms were rather non-explicit, stated as they
were in terms of three mysterious polynomials, the exact nature of which was
never made precise. Our definition intends to remedy this.

DeriNTION 1. — A numerical ring is a commutative ring with unity which is
equipped with unary operations

called binomial coefficients and subject to the following axioms:

(50,200

n()-20),.2 ()~
m (2)() -2 (50 ()
IV. (;) = o when n > 2.

v () =rana (§) =

<

The original definition also included a (non-explicit) formula for reducing
a composition (('Zz)) of binomial coeflicients to simple ones. Surprisingly, this
formula will be a consequence of the five axioms we have listed.

It follows easily from axioms I, IV, and V that, when the functions () are
evaluated on multiples of unity, we retrieve the ordinary binomial coefhicients,

namely
m-1 mim—1)---(m—n+1)
<n>= o -1, meN.

Since (") = 1, but (}) = o unless » = o, a numerical ring has necessarily
characteristic o.
The numerical structure on a given ring is always unique. This will be

proved presently.
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ExampLe 1. — In any Q-algebra, binomial coefficients may be defined by the
usual formula:
r\ _r(r—1--(r—n+1)
n) n! '
A
ExampLe 2. — For any integer m, the ring Z[m "] is numerical. Since it in-

herits the binomial coeflicients from Q, it is just a matter of verifying closure
under the formation of binomial coefficients. Because

(;) _FG0 G010 a@—f)-(@a— (- 1))

n

nl nlfn :
it will suffice to prove that whenever p | n!, but p { b, then
Pl @+b)a+2b) - (a+nb).
To this end, let
n=cup” + -+ ap+co, o< ¢g<p—1,
be the base p representation of n. For fixed k and o < d < ¢, the numbers
At (enp” + - H T A )b, 1<i<p (1)

will form a set of representatives for the congruence classes modulo p*, as will
of course the numbers

G+ T i << ()

Note that if x = y modp* and j < k, then p/ | x iff p/ | y. Hence there are at
least as many factors p among the numbers (1) as among the numbers (2). The
claim now follows. AN

ExampLe 3. — As the special case m = 1 of the preceding example, Z itself
is numerical. For this ring there is another, more direct, way of proving the
numerical axioms. Let us indicate how they may be arrived at as solutions to
problems of enumerative combinatorics.

Axiom I.  We have two types of balls: round balls, square* balls. If
we have a round balls and 5 square balls, in how many ways may
we choose 7 balls? Let p be the number of round balls chosen, and
g the number of square balls.

Axiom II.  We have a chocolate box containing a rectangular a x b
array of pralines, and we wish to eat n of these. In how many ways
can this be done? Suppose the pralines we choose to feast upon

»This is in honour of Dr. Lars-Christer Boiers, an eminent teacher, who used an example
featuring round balls and square balls during his course in discrete mathematics.
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are located in m of the 4 rows, and let g; be the number of chosen
pralines in row number 7 of these .

Axiom III.  There are a mathematicians, of which m do geometry
and 7 algebra. Naturally, there may exist people who do both or
neither. How many distributions of skills are possible? Let & be the
number of mathematicians who do only algebra.

Axiom IV.  'We are the owner of a single dog. In how many ways
can we choose 7 of our dogs to take for a walk?

Axiom V. Snufty the dog has a blankets. In how many ways may
he choose o (in the summer) or 1 (in the winter) of his blankets to
keep him warm in bed?

ExampLE 4. — The set

§=1{eQlxl/(Z) cZ}

of numerical maps on Z is numerical. Addition and multiplication of functions
are evaluated pointwise, as are binomial coefhicients:

<f> o - (f(x)) SO =1 () —n+)

n n n!

Seizing the opportunity, we remind the reader that any numerical map
may be written uniquely as a numerical polynomial

f(x) =ch<z>7 cn€ZL.

Conversely, any numerical polynomial will leave Z invariant. A

ExampLe 5. — Being given by rational polynomials, the operations » — (7

give continuous maps Q, — Q, in the p-adic topology It should be well
known that Z is dense in the ring Z,, and that Z, is closed in Q,. Since the
binomial coefficients leave Z invariant, the same must be true of Z,, which is
thus numerical.

This provides an alternative proof of the fact that Z[m '] is closed under
binomial coefficients. For this is evidently true of the localisations

=QnZ,
and therefore also for
=2
pim
A
ExampLe 6. — Products and tensor products of numerical rings are numeri-

cal. Also, inductive and projective limits of numerical rings are numerical. See
Dr. Elliott’s paper [8]. A
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§2. ELEMENTARY IDENTITIES

Tueorem 1. — The following formulee are valid in any numerical ring:
1 (r) = rr=m--(r=n+1 when r € Z.
n n!

2 n'(:) —r(r—1)---(r—n+1).

3. n<;) =(r—n+1)<n11>.

Proof- The map

0 (R +) - (+ R[], ), e Z ()

is, by axioms I and V, a group homomorphism. Therefore, when r € Z,

o(r) =0(1)" = (1+72)7,

which expands as usual (with ordinary binomial coefficients) by the Binomial
Theorem. This proves equation 1. (An inductive proof would also work.)
To prove equations 2 and 3, we proceed differently. By axiom III,

)= 62) 0 =20 ) 6)

(C0-000

which reduces to equation 3.
Equation 2 will then follow inductively from equation 3. O

§3. TorsioN
The word rorsion will always, here and elsewhere, refer to Z-torsion. In this
section we shall prove it is absent in numerical rings. This will establish the

equivalence of numerical and binomial rings, as defined by Professor Hall.

Lemma 1. — Let m be an integer. If p is prime and p' | m, but p{ k, then p' | (7).
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Proof. p' divides the right-hand side of

m m—1
{() =32
and therefore also the left-hand side. But / is relatively prime to k, so in fact
PG O
LemMaA 2. — Let my, . .., my, be natural numbers, and put

I

n=my+ 2m, +3my + - + kmy,

™1 (o)

unless m; = m = n, and all other m; = o.

is prime, then

Proof. Let a prime power p! | m. Because of the relation n = 3 m;i, not all m;
can be divisible by p, unless we are in the exceptional case

m=m=p=n

given above. Say p { m;; then

<{n7:}i> - <Z]> <’{”m1"2>

is divisible by »’ according to Lemma 1. The claim follows. O

Lemma 3. — Consider a numerical ring R. Let v € R and m,n € N. If nr = o, then
alsomn()) = o.

Proof. Follows inductively, since if nr = o, then
r r r
mn<m> = n(r—m—l—I)(m_I) = —n(m—I)(m_I).

TuEOREM 2. — Numerical rings are torsion-free.

Proof. Suppose nr = o in R, and, without any loss of generality, that » is prime.
We calculate using the numerical axioms:

(-5, 5 ()

q;=1
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- mZ <m> Zmzm ({Z}) H <> K

Z mii=n

For given numbers g;, we have let m; denote the number of these that are equal

to i (of course i > 1 and m; > o). Conversely, when the numbers m; are given,

values may be distributed to the numbers g; in ({m_}) ways, which accounts for
1

the multinomial coeflicient above.
We claim the inner sum is divisible by m» when m > 2. For when 2 <
m < n—1, then m | ({Z‘,}) by Lemma 2; also, there must exist some 0 <] < 7n
1

such that m; > o, and for this j, Lemma 1 says 7 | (7)”;] In the case m = n,

obviously all m; = o for i > 2, and m, = n, so the inner sum equals (?)”, which
is divisible by n* = mn.

We can now employ Lemma 3 to kill all terms except m = 1. But this term
is simply (7) = r, which is then equal to o. O

This theorem is remarkable in all its simplicity. We know of no other ex-
ample of a variety of algebras, of which the axioms imply lack of torsion in a
non-trivial way; that is, without actually implying a Q-algebra structure. Not
only that, the theorem is also a most crucial result in the theory of numer-
ical rings. Over the course of the following sections, we will deduce several
corollaries, seemingly without effort.

§4. UNIQUENESS

TuEOREM 3. — There is at most one numerical ring structure on a given ring.

Proof. We know that

,
n!( ) =r(r—1)---(r—n+r1),
n
and that #! 1s not a zero divisor. O

§5. EMBEDDING IN Q-ALGEBRAS

THEOREM 4. — Every numerical ving can be embedded in a Q-algebra, where the bi-
nomial coefficients are given by the usnal formula

(r) Hr=0--(r=n+1)

n n!

Consequently, a ring is numerical iff it is binomial.

Proof. Since R is torsion-free, the map R — Q ®z R is an embedding. O
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§6. ITERATED BinomiaL COEFFICIENTS

In Z, there “exists” a formula for iterated binomial coefficients:

)Y S, (7
( ” —Z}Ig/e L) G)
in the sense that there are unique integers g, making the formula valid for

every r € Z. Professor Golomb has examined these iterates in some detail, and
his paper [11] is brought to an end with the discouraging conclusion:

No simple reduction formulas have yet been found for the most general case of

().

a

We note, however, that (3) is a polynomial identity with rational coefhi-
cients, which means it holds in any Q-algebra, and therefore in any numerical
ring. This proves the redundancy of Professor Ekedahl’s original sixth axiom:

(%) - 200

Jor iterated binomial coefficients is valid in every numerical ring.

THEOREM 5. — The formula

§7. HoMOMORPHISMS

DeriniTioN 2. — Let R and S be numerical rings. The ring homomorphism
¢: R — S is said to be numerical if it preserves binomial coefficients:

+(()=C)

§ is then a numerical algebra over R. o

We denote by
MNRing

the category of numerical rings, and by
rIMUlg,

or simply
MAlg,

the category of numerical algebras over some fixed numerical base ring R.

THEOREM 6. — Every ring homomorphism of numerical rings is numerical, so that
MNRing is a full subcategory of CRing.
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Proof. Let R and § be numerical rings, and let ¢: R — § be a ring homomorph-
ism. Because of the absense of torsion, the equation

w0 ((7)) =0 (#(})) =e0tr=0--G=n+0)

implies ¢ ((7)) = (*"), so that ¢ is numerical. O

§8. Free NuMEeRICcAL RINGS

Recall from Example 4 that a numerical polynomial (over Z) in the variables
X1, ..,xp 1s a formal (finite) linear combination

X1 Xp
f(x) = Z Cny,..oimy, (711> T (nk>; Cnyy.ooimy, VA

Also, a numerical map is a rational polynomial leaving Z invariant. These two
concepts coincide.

Let X be a set, and let £(X) be the term algebra’ based on X. It consists of
all finite words that can be formed from the alphabet

XU{—}-,—,',O,I, <_> nEN},
n

where the symbols + and - are binary, — and () are unary, and o and 1 nullary
(constants).

DerinttioN 3. — The free numerical ring on X is what results after the ax-
ioms of a commutative ring with unity, as well as the numerical axioms, have
been imposed upon the term algebra. o

Of course, it need be proved that the “free” numerical ring is indeed free
in the usual sense.

TueoreM 7. — There is an isomorphism

IMNRing (Z (i() ,R) =~ Get(X,R),

which is functorial in the numerical ring R.
Moreover,

2(M) = reQmis@ <z

3The term term algebra is taken from universal algebra; confer Definition IL.10.4 of [4].
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Proof. The numerical axioms, together with the formula for iterated binomial
coefficients, will reduce any element of Z(¥) to a numerical polynomial. The
very existence of the numerical ring of numerical polynomials is enough to
guarantee the uniqueness of such a representation. We have thus established

z(*) = e s e

From this isomorphism it is evident that Z (%) is free on X, for any set map
¢: X — R can be uniquely extended to Z(¥) by setting

(52 (3) () - a(5) (45):

§9. NumMERICAL TRANSFER

TueoreM 8: THE NUMERICAL TRANSFER PRINCIPLE. — A numerical polynomial
identity p(xy,. .. ,xp) = o universally valid in Z is valid in every numerical ring.

Proof. From the previous section we have a canonical embedding

Z(xl, 5 7xk) N

p(xI, e ,X/e) — ([7(”17 ceey ”/e))(nl,...,nk)ezk'

View p as an element of Z(*~*). It is the zero numerical map, and therefore
also the zero numerical polynomial. O

ExampLe 7. — Recall that a pre-A-ring (formerly called just A-ring) is a com-
mutative ring with unity equipped with unary operations A”, n € N, satisfying
the following axioms:

L \°a) =1
2. N(a) = a.

3. N(a+b)= > M@(b
prq=n

In a numerical ring, the operations A\”(a) = (%) will evidently satisfy these
axioms.

The definition of a A-ring (a. k. a. special N-ring) involves three more axioms,
which are rather cumbersome to state. The reader will believe us when we
claim they are of a polynomial nature, so their verification in a numerical ring
will simply consist in verifying a number of numerical polynomial identities.
As these are valid in Z (for Z itself is well known to be a A-ring), they will
hold in every numerical ring by Numerical Transfer. A



¢10. The Nilradical 37

§10. Tue NILRADICAL
Yet another pleasant property of numerical rings is the following.
THEOREM 9: FERMAT’s LiTTLE THEOREM. — I a numerical ring, the congruence
& —a= o0 modp
holds for any prime number p.

Proof- Since
¥ —x

p

is a numerical map, it may be written as a numerical polynomial f(x) € Z(*).
But then evidently

fx) =

a —a=pf(a)€pR.
O

ExamrLe 8. — The polynomial f can in fact be given explicitly. For when
a € N, we may calculate the number of functions [p] — [4] as

010

where {/} denotes a Stirling number of the second kind. Since &!{}} counts
the number of onto functions [p] — [k], these numbers are all d1v1s1ble by p,
except in the case £ = 1, and so

‘52§50

It follows from the Numerical Transfer Principle that this formula is valid in
every numerical ring. A

Tueorem 10. — The nilradical of a numerical ring is divisible, and hence a vector
space over Q.

Proof. Let p be a prime and suppose « lies in the nilradical of R. From Fermat’s
Little Theorem p | a(##~* — 1), from which it inductively follows that

pla@” =) —1)

for all m € N. A large enough m will kill 4, and we conclude that p | a. O
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§11. NuMericaL IDEALS AND FACTOR RINGS

Let us now make a short survey of numerical ideals and factor rings.

Tueorem 11. — Let I be an ideal of the numerical ring R. The equation

(5)=0)

will yield a numerical structure on R/I iff
<€> el
n

Proof. The condition is clearly necessary. To show sufficiency, note that, when
r € R, e € I, and the condition is satisfied, then

() =,2, 0= C)E) = () mtr

The numerical axioms in R/I follow immediately from those in R. O

foreverye€ I andn > o.

DeriNiTION 4. — An ideal of a numerical ring satisfying the condition of the
previous theorem will be called a numerical ideal. o

ExampLE 9. — Z does not possess any non-trivial numerical ideals, because
all its non-trivial factor rings have torsion. Neither do the rings Z[m™]. A

THeOREM 12. — Let R be a (commutative, unital) ring, and let I be an ideal. Suppose
I is a vector space over Q, and that R/I is numerical. Then R itself is numerical, and I is
a numerical ideal.

Proof. Since I and R/I are both torsion-free, so is R, and there is a commutative
diagram with exact rows:

o I R R/I o

-

0—>Q® ] —>Q®R—>Q® R/l —>o0

It will suffice to show that R is closed under the formation of binomial coefhi-
cients in Q ®z R. Let r € R. Calculating in in the ring Q ®z R/I yields

=0 r—ntn) <’+]>.

n! n
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Since ("17) in fact lies in R/I, it must be that

r(r—1)---(r—n+1)

| ER,
n.

and we are finished.
That 7 is numerical follows from the fact that it is a Q-vector space. O

The quotient map R — R/I will automatically be a numerical ring homo-
morphism.

§12. FiniteLy GENERATED NUMERICAL RINGS

LemMa 4. — If a ring R is torsion-free and finitely generated as an abelian group, its
Jraction ring is Q ®z R.

Proof. By the Structure Theorem for Finitely Generated Abelian Groups, R is
isomorphic to some Z” as an abelian group. Let « € Z”. Multiplication by
a is a linear transformation on Z”, and so may be represented by an integer
matrix A. The condition that 2 not be a zero divisor corresponds to A being
non-singular. It will then have an inverse A~ with rational entries. The inverse
of a is given by

a'=AT"1eQ"=Q®zR,

where 1 denotes the multiplicative identity of R, considered as a column vector.
O

Lemma 5. — Let A denote the algebraic integers in the fielld K 2 Q. If K is finitely
generated over Q, A is finitely generated over Z.

The following theorem, together with its proof, is due to Professor Eke-
dahl. It classifies completely those numerical rings which are finitely generated
as rings (forgetting the numerical structure).

Before we enter the very technical proof, let us recall from Example 2 that
Z[m™"] inherits a numerical structure from Q. Recall also that products of
numerical rings are numerical, with componentwise evaluation of binomial
coeflicients.

THEOREM 13: THE STRUCTURE THEOREM FOR FINITELY GENERATED NUMERICAL
RinGs. — Let R be a numerical ring which is finitely generated as a ring. There exist
unique positive, square-free* integers my, . . ., my, such that

R=Z[m "] x - xZ[m,"].

4A square-free, or simply composite, number is a positive integer that is a (possibly empty) product
of distinct primes.
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Proof. Case A: R is finitely generated as an abelian group. We first impose the
stronger hypothesis that R be finitely generated as an abelian group.

If #* = o, then, because of Fermat’s Little Theorem, r is divisible by p for
all primes p > n. But in Z” this can only be if » = o; hence R is reduced.
By the lemma above, the fraction ring of R is Q ®; R. As this is reduced and
artinian, being finite-dimensional over Q, it splits up into a product of fields
of characteristic o.

Case A1: The fraction ring of R is a field. Let us first consider the special case
when the fraction ring Q ®z R is a field, whose ring of algebraic integers we
denote by A. We examine the subgroup A n R of A. Since A € Q ®z R, an
arbitrary element of A will have an integer multiple lying in R. This means
A/(ANR) is a torsion group. Also, the fraction ring Q®zR is finitely generated
over Q, so from the lemma above, we deduce that A is finitely generated over
Z. Because the factor group A/(A n R) is both finitely generated and torsion,
it is killed by a single integer N, so that

N(A/(A A R)) =o,

and as a consequence
(AnR)NT] = A[N77].

Now let z € A and let p be a prime. The element
ze A[N"']=(AnR)[N]

can be written z = where a € A n R and k € N. Using Fermat’s Little

Theorem(s),

_a_
NE?
(N*)Y? = N* + pn

& =a+pb

for some 7 € Z and b € R. Observe that pb belongs to A n R, hence to A[N~],
so that b € A, as long as p does not divide N. We then have

a a a+pb a

Nk Nk Nk+4pn Nk
_(a + pb)N* — a(N* + pn) _ N*b — na _ Nkb — na
T (NFapoNE P(NFr Nk T P NGROR
and hence

pu=2—z€A

for some u € A[N~"], assuming p { N. But then in fact » € A.

Consequently, for all z € A and all sufficiently large primes p, the relation
2# — z € pA holds, so that 27 = z in A/pA. Being reduced and artinian, A/pA
may be written as a product of fields, and because of the equation 2 = z,
these fields must all equal Z/p, which means all sufficiently large primes split
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completely in A. It is then a consequence of Chebotarev’s Density Theorem?
that Q®zR = Q. Since we are working under the assumption that R is finitely
generated as an abelian group, we infer that R = Z.

Case A2: The fraction ring of R is a product of fields. If the fraction ring of R is
a product [ | K; of fields, the projections R; of R on the factors K; will each be
numerical. Hence R € ||R;, with each R; being isomorphic to Z, according
to the above argument. But Z possesses no non-trivial numerical ideals, so by
Delsarte’s Lemma, R must equal the whole product

R=T[R=]]z

Case B: R is not finitely generated as an abelian group. Finally, we drop the as-
sumption that R be finitely generated as a group, and assume it finitely gen-
erated as a ring only. Because of the relation p | 77 — r, R/pR will be a finitely
generated torsion group for each prime p. It will then have Krull dimension
o, and it follows from Chevalley’s Dimension Argument that dimQ ®z R = o,
so that Q®zR is a finite-dimensional vector space over Q. Only finitely many
denominators are employed in a basis, so there exists an integer M for which
R[M ] is finitely generated over Z[M 7).

We can now more or less repeat the previous argument. R[M "] will still
be reduced, and as before, Q ®z R[M~"] will be finite-dimensional, hence a
product of fields, and we may reduce to the case when Q ®z R[M™] is a
field. Letting A denote the algebraic integers in Q ®z R[M ], the factor group
A/R[M ] will be finitely generated and torsion, and hence killed by some in-
teger, so that again we are lead to R[N"*] = A[N"']. As before, we may draw
the conclusion that Q ®z R = Q, and consequently that R = Z[N~']. This
concludes the proof. O

§13. MobULEs

A most elegant application of the Structure Theorem is the classification of
torsion-free modules.

Lemma 6. — Consider a ring homomorphism ¢: R — S. If R is numerical and S is
torsion-free, then Ker ¢ will be a numerical ideal.

al <(:;>) =¢ (n'(}i)) =¢(r(r—1)---(r—n+1)) =o0,

if r € Ker¢ and » > o. Thus (}) € Ker ¢, which is then numerical. O

Proof.

5(A special case of) Chebotarev’s Density Theorem states the following: The density of the
primes that split completely in a number field K equals m In our case, this set has density
L
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Let M be a torsion-free module over the numerical ring R, with module
structure given by the group homomorphism

U: R — EndM.

We have the following commutative diagram:

/ 0
o Kerp R R/Kerg——o0
Hl /
End M

The group End M is torsion-free, so, by the lemma, Ker [l is a numerical ideal.
Therefore M will in fact be a module over the numerical ring R/ Ker .

Let us now also assume that End M is finitely generated (as a module) over
Z[n™"] for some integer n. Because Z[n™'] is a noetherian ring, EndM is a
noetherian module. The submodule R/Ker | is finitely generated as a module
over Z[n "], and therefore also as a ring, so by the Structure Theorem,

R/Kerp = Z[m "] x --- x Z[m, '],

for square-free, positive integers 7;. The module M will split up as a direct
sum

M=M®® - ®M,

with each /; a torsion-free module over Z[m;']. Because these rings are prin-
cipal, the modules ; are in fact free, and we have proved:

TueoreM 14. — Consider a module M over a numerical ring. Suppose M is torsion-
free and finitely generated over Z[n™"] for some integer n. There exist positive integers
m;, 1; such that

M=Zm " ® - ®Z[m,"]*

as a module over
Z[m ] x --- x Z[m,"].

§14. EXPONENTIATION

When A is a ring, the symbol
{/o

shall denote its nilradical.
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Let R be a numerical ring, and consider a (commutative, unital) algebra
A over it. There is an induced exponentiation on 1 + {/o, given by the (finite)

binomial expansion:
o8]
,
1+x) = ”,
@ny =3 (7)s
n=0

The numerical axioms imply the following properties.
L t4+x)(1+x) = (1+x)".
IL (t+x)7) = @+x)"
IL 1+x)(1+y) = ((1+x)(1+79)".
IV. 14+x)=1+x
V. (1+x)" =1+ rx mod(4/0).

Exponentiation will thus make the abelian group (1+ {/o, -) into an R-module.
Indeed, property III shows that exponentiation by r gives an endomorphism
&(r) of the group, and properties I, II, and IV show that

€4: R — End(1 + {/o,")

is a unital ring homomorphism.
The module structure is natural in the following sense. Given two algebras

A and B and an algebra homomorphism ¢: A — B, the subsequent diagram
commutes for any » € R:

€
1+ 4621k o

| |

1+ %o ——>1+ &0
ep(r)

Let us now reverse the procedure.
TraEOREM 15: THE BiNoMIAL THEOREM. Let R be a commutative, unital ring.

e If R is numerical, the equation

(14 x)" = 2 (0) @

defines a module structure on (1 + {/o, ), which is natural in R-algebras A, and
in addition satisfies

(1 +x)" =1+ rx mod(~+/0)>. (5)
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o Conversely, if there is a natural module structure on (1 + {/0, -) for all R-algebras
A, satisfying (5), then there is a (necessarily unigue) numerical ring structure on R,

Jfulfilling the equation (4).

Proof. There remains to establish the second part. Let a natural module struc-
ture be given, and consider

€4: R — End(1 + {/o,"),
where A = R[t]/(£"""), and n is some (large) number. We have
er)(1+1t)=(0+1t) =ao +ait+ - +ayt”,

and clearly the coefficients 4;, are independent of . Therefore, we may without
ambiguity define () = 5. This will make the identity (4) hold in A, and then
it will hold everywhere by naturality.

The axioms for a numerical ring should now be immediate, as they are
simply direct translations of the module axioms. For example, identification
of the coeflicients of ” in

5 ()en () merourr o =% (77)e

proves axiom I. (Proving III will of course involve the polynomial ring in two
variables.) O

And this little “treatise upon the Binomial Theorem” closes the chapter
on numerical rings.
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MULTI-SETS

Ar Du en Enhet eller delar?
Jag bifvar, mod och sansning felar,
Min fraga giér mig stel och stum.

— Hedwig Charlotta Nordenflycht,
Ode i Anledning af Exod. XXXIII: Cap. v. 18. 20.
och XXXIV: Cap. v. 5. 6.

The text will be pervaded by the use of multi-sets, and we develop here their
theory from scratch. This we do partly to fix notation, and partly because
some concepts we need are possibly not standard. We certainly lay no claims
of originality upon the theory explored in this chapter. It is conceivable, and
even very likely, that all the results of this chapter can be found somewhere in
the literature.

After giving the basic definitions, we propose to answer the following ques-
tion: What would be the natural arrows of a category of multi-sets? The
non-existence of a definite answer does not depend on a lack of suggestions.
Dr. Salomonsson’s thesis [20] presents a plethora: multijections, multi-maps,
maps, and bimultijections. He finally decides to build the multi-set category
with multijections as the basic arrows, a choice we believe is less suited to our
purposes. We have settled on the latter kind, bimultijections, as giving the most
natural theory, and in the process renamed them multations. Our conviction
that this is the correct choice stems from the tight connection that is seen to
exist between multations and divided powers.

One advantage of using multijections is that they allow for a unique com-
position. We have found it expedient to drop that requirement. The very
nature of multi-sets, with their repeated elements, seems to exclude unam-
biguous composition in the usual sense. The solution we have accepted (which
is so natural, it might almost be termed canonical) is to “sum over all possible
compositions”.

§1. MuLTI-SETS

DeriNITION 1. — A multi-set is a pair

M= (#M7 degM)7

45
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where #M is a set and

deg) : #M — Z*
is a function, called the degree, or multiplicity. The underlying set #M is
called the support of M. o
We call
deg,, a

the degree or multiplicity of an object a € #M; it counts the “number of times
a occurs in M”. The degree of the whole multi-set M we define to be

degM = H (degx)!.
xeH#M

It might conceivably be convenient to have the degree function defined on
the whole set-theoretic universe. A multi-set may then equivalently be defined
as a function

M = deg),: Get > N

vanishing outside some set. The support is given by

#M = {x | deg;,(x) # o}.
In order to give a multi-set, it suffices to specify such a degree function.
DeriNtTioN 2. — The cardinality of M is

M| = le Z degx.

xeM XeEHM
(o

The cardinality counts the number of elements with multiplicity. We ta-
citly assume all multi-sets under discussion to be finite, as these are the only
ones we will ever need.

ExampLe 1. — The multi-set {4, 4, b} has cardinality 3 and support {a, b}. We
have dega = 2, degh = 1, and degc = o. A

It is now an easy matter to generalise the elementary set operations to
multi-sets.

DeriniTION 3. — The union A U Bof A and B is

deg, p = max(deg,, degp).

DerinitioN 4. — The disjoint union® A L B of A and B is
degy, p = degy +degp-

(o4

Please note that [20] employs a different definition of disjoint union, and calls this the sum of
A and B.
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DeriniTION 5. — The intersection A n B of A and B is

deg, .5 = min(deg,,degp).

3
DeriniTioN 6. — The relative complement A\B of B in A is
deg\p = max(degy — degy, ).
3
DerinitioN 7. — The direct product A x B of A and B is
degy, = deg, - degy: #A x #B— Z".
3
DEeFINITION 8. — A is a sub-multi-set® of B, written A C B, if
deg, < degy
(element-wise inequality). o
DEeriniTION 9. — The power multi-set of A is
A = (B|Bc A},
where every sub-multi-set of A is counted “according to multiplicity”. o
In other words, the classical formula 24| = 214! will still be valid.
ExamrpLe 2. — Given A = {x,x,y} and B = {x,7, z}, we have
AvuB={xx7y72}
AuB={xxx,7,2}
AnB={xy)
A\B = {x}
B\A = {z}
A x B = {(x,x), (x,x), (9, %), (x,9), (x,7), (0:7), (x,2), (x,2), (3, 2)}
2 = {0, {x}, {x}, ), {xx), {xoh o0 o)
A

Recall that the Principle of Inclusion and Exclusion, in one form, states
the following: Iff and g are functions such that

D) =g(Y),

XCY

2Some people would say multi-subset.
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then

f¥) = (=M Hlg(x).

X<y

Of course, X and Y are here limited to be sets, but a generalisation to multi-
sets is immediate.

Tueorem 1: THE PrinNcIPLE OF INcLUSION AND Excrusion. — Let S be a set with
n elements. Consider functions [ defined on multi-sets with support included in S and
cardinality n; and functions g defined on the power set of S. If

D f(A) =g(X),
#HASX
|A|=n
then
D1 A = Y (—M=lg(x)
Tﬁzy XcYy

Proof. Calculate

2 (00 = 3 ()X Y )

Xcy X<y #HACX
|A|=n
= > =My > (¥,
#ACY H#ACXCY
|A|=n
and note that the inner sum vanishes, unless #4 =Y. O

§2. MULTATIONS

Let A and B be multi-sets of equal cardinality. A multation u: A — B is a
pairing of their elements. We shall write multations as two-row matrices,
with the elements of A on top of those of B, the way ordinary permutations

are usually written:
_ a, .. an
M= [171 bn]

The order of the columns is of course irrelevant.

Observe that p is not a “function” from A to B, since identical copies of
some element of A may very well be paired off with distinct elements of B. It
will, however, be a sub-multi-set of A x B, with the property that every element of
A occurs exactly once as the first component of a pair in {4, and each element
of B exactly once as a second component. The degree deg,(4,) counts the

number of times a € A is paired off with b € B.
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Given a multation
a, ay ... 4y Ay ...
by by ... b, b, ...|’

with m; appearances of the column [ZJ , we shall adopt the perspective of
a
viewing it as a formal product

a [4] ﬂz- [m,]
bI bz_ .

ExampLe 3. — There exist two multations from the multi-set {a, 4, b} to itself,

namely:

a a bl |a Pl a a bl _|al|la]l|b

a a bl |a b a b a|  |a||b||a|’
The degree of (4, b) is o with respect to the first of these, and 1 with respect to
the second. A

of divided powers3.

§3. CoNFLUENT PrODUCTS

Some heavy notation will inevitably come into play when writing a thesis.
We here describe some shorthand, which will be used extensively for the re-
mainder of the text.

Let A be a multi-set, and let M be a module. Consider elements x, € M
indexed over the support of A. Define the confluent product over A as

O H xb[;degﬂ] el(M).
acA ac#A

For example, we have
xOxOy=xPy.
We may further abbreviate

KAl = @xa _ 1—[ xo[zdegA 4]7

acA ac#A

and similarly

A= Hxa = H xSCgAﬂ.

acA ac#A

3A divided power x["] should be thought of as ’% We shall later discuss divided power algebras,

but some previous familiarity with these structures will be assumed of the reader.
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This latter product is defined in any algebra.

A special case of this practice arises when pu: A — B is a multation, and the
variables x;, have been doubly indexed over the supports of B and A simultan-
eously. We then have

[deg,, (a,6)]
<M = Xpy = H x, H 7
(a, b)eu ac#A
be#B
and deg (0
a,
M= H Xpy = H X, B2
(a,b)ep ac#A
be#B

As a special case of that practice, we have, for quantities x, and y;, indexed
by #A and #B, respectively,

)M = @ xyp = [ Ceap) 8D,

(a,byen ac#A
be#B

Finally, consider a multation p: A — B and variables x;, € M indexed by the
support of B. We then let

M= ® O xe Q e =r4a).

ac#A (a,b)ep ac#A

[t 1 o2 2
u_IIzzg’

KO — Py & X,

So for example, if
then

§4. Tue MuLrti-SET CATEGORY

Let p: B — C and v: A — B be two multations, where |A| = |B| = |C| = n.
Their composition p o v is found by identifying the coefficient of x*y¥ in the
equation

[] [] )

S| o Sfi]] | 5 ]

be#B acH#A acH#HA
cce#C be#B be#B
ce#C

In somewhat fancier language, we have defined a formal multiplication of

columns:
y] [4] _ H ifb =1,
HRARME

o ifb=#Db.
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This makes the free module of columns into an algebra A. Multation compos-
ition is then given by the formula

7 4 ol — ()]

an operation which we shall later have occasion to baptise the product multi-
plication on T"(A).

ExampLe 4. — For example, to find the composition
c d d N b
a a b c d d|’
we use the equation
c d d Bl a a b B3]
Xac | N FXad | | T%bd |, O\Vea | | TVda|g| TYab |y

a a b a b1\ B!
=\ XacYca a + XadVda a + XadYdb a + XbdVda b + XpdYdb b .

Identification of the coefhicients of

XacXadXbd)ca)daYdb

cd d|l |la a bl _ |a a b a a b
a a b|l°e d dlT%a a2 bl T|a b a4l

Similarly, by picking the coeflicients of

yields

xachdy ca)), Z’a )

we obtain

A

There is a simpler, combinatorial rule for calculating the composition.
Namely, the composition of two divided power products is found by “sum-
ming over all possibilities of composing them”:

)5 )- L)
([CI Cn by by ZOI Ca(1) Ca(n) ’

where the sum is to be taken over all permutations o: [#] — [n] such that
b; = bqj) for all j. We leave it to the reader to check the accuracy of this rule.
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ExampLe 5. — Computing according to this device, we have

c d d|_|a a b]_]|c [d]| [d . [a] [a] [ 7]

a a bl |c d d| " |a||a||b]| |c]||d]]|4]

T

ARV

NIV

=X

|

| |
S

|
&W‘I&v

and similarly

c d d a a a
a a a|l’lc d d

I
||
Qo
—
||
QA [
| I

)
o
|
[V
—

A

The identity multation (“identitation”) 14 of a multi-set A is the multation
in which every element is paired off with itself. It is clear that composition is
associative and that the identity multations act as identities.

DeriNtTioN 10. — The nth multi-set category has as objects the multi-sets of
cardinality exactly #. Given two multi-sets A and B, the arrow set MSet, (A, B)
is the free module generated by the multations A — B. 3

§5. MuLTI-SETS ON MULTI-SETS

Unfortunately, we shall have to push things one step further, and deal with
multi-sets supported by multi-sets, which may sound like rather a baroque
consideration. But the situation is not nearly as unpleasant as it was originally,
before Professor Franjou graciously helped us tidy things up a bit, for which
we are humbly grateful.

DerinitioN 11. — Let M be a multi-set. A multi-set supported in M is a
multiset supported in the set

M#* ={(x,k)e #M x Z" |1 <k <degx }.
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ExampLE 6. — Let M be the set {a, b, ¢} and N the multi-set {x, x, y}. There are
three multi-sets with support M and cardinality 4:

{a7 d’b7 C}’ {ﬂ, b? b’ C}7 {ﬂ,b, C7 C}'

Likewise, since
N* = {(x,1), (x,2), (0, 1)},
there are three multi-sets with support N and cardinality 4:
{(x:1), (6, 1), (x,2), (0, D, {(x,1), (x,2), (x,2), (0,0}, {(x,1), (x,2), (0, 1), (y, 1)}
A

When speaking of multi-sets supported in a multi-set M, we will let “de-
gree over M” stand for “degree over M#”.

ExampLe 7. — The three multi-sets above supported in N have all degree 2

over N. A

§6. PArTITIONS AND COMPOSITIONS

Partitions and compositions of multi-sets will come into play when we invest-
igate operads. The generalisation from the case of sets should be straightfor-
ward.

DeriNtTION 12. — Let X be a multi-set. The multi-set £ constitutes a partition
of X if

| |y =x.

YeE
We let

Par X

denote the set of partitions of X. o
ExampLe 8. — The four partitions of {1,1,2} are

nn2p ={L o) ={d o} ={guigu

A
DeriniTION 13. — Let X be a multi-set. The multation w: A — B constitutes
an A-composition of X if
|_| w(a) = X.
acA
We let
Comy X

denote the set of A-compositions of X. o
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ExampLe 9. — The ten {a,4, b}-compositions of {1,1,2} are

}
}
[{} {1} {b}] [{} {1} {}]

(Each row corresponds to a partition above.) A
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MAZES

Dedalus genom sin konst och sitt snille vida beryktad
Bygde det opp; han forvirrar de ledande mirken och 6gat
I villfarelse for ibland skiljaktiga vigar.

Sa pa de Frygiska filt, man ser den klara Meandros

Leka. I tveksamt lopp han rinner och rinner tillbaka,
Moter sig ofta sjelf och skddar sin kommande bélja,

Och nu till killan vind, nu 4t obegrinsade hafvet,

Radvill 6fvar sin vag. Sa fyllas af Dedalus dfven

Tusen vigar med irrande svek: Knappt miktar han sjelf att
Hitta till tréskeln igen. S& bedriglig han boningen danat.

— Ovidius, Metamorphoses

Once upon a time’, we introduced? the concept of mazes. A maze from the set
{a,b,c,d} to the set {w,x,y,z} (say) is something like the following diagram:

[ a4 —b— w ]
N
b b
c y
| d "<z |

where k,[,m,n,0,p,q,7,s,t are scalars. The reason for applying the name maze
to such a contraption should be apparent from the picture. This is not to
say that other names have not been suggested. “Why not guiver,” we were
once asked, “for something that obviously contains a lot of arrows?” Because
quivers have already been invented.

The labyrinth category is the category with finite sets as objects, and mazes
as arrows. It might at first seem a puzzling object. Why would anyone be

"This was back in 2009, in our licenciate thesis.
*Syn.: discovered, invented.

55



56 Chapter 3. Mazes

interested in a category with such strange arrows (and an even stranger law of
composing them)? The answer is that the labyrinth category provides a very
natural, one might even say canonical, means of encoding endofunctors of the
category IMoo.

When defining the labyrinth category and exploring its properties, we re-
mark that the base ring B need not be commutative. The existence of a unity
is required, as always, but otherwise it may be of quite an arbitrary nature.

§1. MAzEes

Let X and Y be finite sets. A passage from x € X to y € Y is a (formal) arrow p
from x to v, labelled with an element of B, denoted by p. This we write as

p:x—>y7
or
x$y7

though we shall frequently forget the bar over p when no confusion is likely
to arise.

DEerINITION 1. — A maze from X to Y is a multi-set of passages from X to Y.
It is required that there be at least one passage leading from every element of
X, and at least one passage leading to every element of Y. (We, so to speak,
wish to prevent dead ends from forming.) 3

Because a maze is a multi-set, there can (and, in general, will) be multiple
passages between any two given elements.

ExampLe 1. — The following is a maze from {z} to {x,y}:
a X
ey
Q=177 |.
™
Y

whereas the following is not:

a, X
ez
Y
A
ExampLe 2. — It is perfectly legal to consider the empty maze ) — (. It is the
only maze into or out of (), and is the only maze having no passages. A

DEerINITION 2. — We say P: X — Y is a submaze of Q: X —» Y if P € Q as
multi-sets. o
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ExampLe 3. — The following is a submaze of Q above:
d/ x
P = VA
o™
Y
A
DerINITION 3. — Let P: X — Y be a maze, and consider subsets X’ € X and

Y’ € Y. The restriction of P to X’ — Y’ is the maze (if indeed it is one)
containing only those passages of P that begin in X’ and end in Y. It will be
denoted by

Py y
o
Note that P|, ., is not a submaze of P (unless X’ = X and Y =Y.
ExampLE 4. — With Q as above, we have
x
by’
Qo =| 2 7
A
Restrictions may not always exist, as in the following example.
ExampLE 5. — If
X g- X
y e y

then the restriction R | D) does not exist (it is not a maze). In such a case,
it will be convenient to define the symbol

R (yoapy = ©

§2. THE LABYRINTH CATEGORY
Passages p: y — z and ¢q: x — y are said to be composable, because one ends
where the other begins.

DeriNtTiON 4. — If P:'Y — Z and Q: X — Y are mazes, we define the
cartesian product P X Q to be the multi-set of all pairs of composable pas-
sages:

pea={ ([ 25 ] [ra)|[s£5]er o [12] 0}
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For a sub-multi-set U € P[] Q, we shall write
UcZCPXQ

to indicate that the projections on P and Q are both onto.
Note that such a set U can be naturally interpreted as a maze itself, namely

e[l 2o | [y ]) e v

Observe carefully the order in which p and ¢ occur. The surjectivity condition
on the projections will prevent dead ends from forming.

When writing PXQ, we will sometimes refer to the cartesian product, and
sometimes the maze which thus is naturally associated therewith, and hope
the circumstances will make clear which is meant.

ExampLE 6. — Consider the two mazes
X \a c% X
P = z |, Q = | z
¥ A
Y b d )

Their cartesian product is

pQ={([xe] [o<x]) ([r2 ] [sx]).
([x+] [0]) (2] 45 ]) }

which we identify with the maze

A

We now define the composition of two mazes. As for multi-sets, this com-
position will not in general be a maze, but rather a sum of mazes, and living
in the free module generated by those.

DerinitioN 5. — The composition or product of the mazes P and Q is the
formal sum
Q= > U
U=PxQ
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ExampLe 7. — Let P and Q be as above. Their composition is
[ — x| [»—%x] T« x|
b b’
PQ = + +
M& nd§
| v L Y |
[ ] [x—%x] [« < 1 x x
4 \ w7 ><lac7
+ + + +
/ ady ><ad\ ) dd‘y
_—
| P w? ] Ly . bd

That composition is associative follows from the observation that (PQ)R
and P(QR) both equal
> w

WEPKQXR

There exist identity mazes

IX=U{x$x}.

xeX

DerinitioN 6. — The labyrinth category Laby has as objects the finite sets.
Given two sets X and Y, the arrow set Laby(X,Y) is the module generated by
the mazes X — Y, with the following relations imposed.

lPu{**o>*}] =o0,
for any multi-set P of passages.

[pu{*ﬂ*}]:
[pu{*$*}]+[pu{*$*”+[pu{*$*H,

for any multi-set P of passages.

IL.

The second axiom may be generalised by means of mathematical induction
to yield the following elementary formulz.
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THEOREM 1. — In the labyrinth category, the following two equations hold:

[Pu{*ZL\*H :@szc:[n] lpug{*ﬁ*}]
lPuU{*a*}] :I;[n](_l)"’lpu{*ﬁ*}].

§3. OPERATIONS ON MAZES

Passages p: x — y and ¢: x — y sharing starting and ending points, will be said
to be parallel.

DerinirioN 7. — The maze P is called simple, if it contains no (pair of) par-
allel passages. o

By means of the labyrinth axioms I and II, any maze can be written as the
sum of simple mazes.

DerinitioN 8. — The mazes P,Q: X — Y are similar, if, for any x € X and
y € Y, there are as many passages x — y in P as there are in Q. o
ExampLe 8. — The following two mazes are similar:
x d_ x

s o

s 7t

N, ~
A

DeriNITION 9. — Let P: Y — Z and Q: X — Y be mazes. Their functional
product is

P@Qz{[z 2. x] zeZ,xeX},

where the sum is taken over all pairs [z L y] € Pand [y L x] € Q of compos-
able passages. o
The functional product is always a simple maze.

ExampLE 9. — Let
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Then the functional product P[E1Q coincides with the cartesian product PKQ,
computed earlier. The functional product

Qar=| <%, |,

however, differs from the cartesian product

QXIP=|zZ—"—"2

The following formula relates the cartesian and functional products.

ov= > w.

VePrxQ W PeIQ

THEOREM 2.

Proof. Consider a submaze W € P[] Q. It has at most one passage running
between any two given elements. We then consider the set

E(W)={VcPRQ|I[x—>z]eV & F[x—>z]e W}.

Apply the first formula of Theorem 1 to each passage of E(W) to show

dov=w.

VEE(W)
This proves the theorem. O

DeriniTION 10. — Let P be a maze, and let 4 be a scalar. The functional scalar
multiplication of P by 4 is the maze 4 [[] P obtained from P by multiplying the
labels of all passages by a:
«mp={ [yt |||y Lor]er)
3

Naturally, one should distinguish between left and right multiplication,
but we shall only employ this operation in the case of a commutative base
ring.

DeriniTioN 11. — Let P, Q: X — Y be similar, simple mazes. Their function-
al sum is

ST N [ P P9 R YY)
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ExampLe 10. — Plainly,

Za/x ZC/x /
b\y d\y b+d\y

A

Applying some induction to Theorem 1 yields the following formula for
the functional sum.

TueOREM 3. — Let Py, ..., P, be similar, simple mazes, and let the passages of P; be
Pits - - - » Pim (where it is understood that the passages py;, . . . , p; all run in parallel). Then

PI"'Pn=Z{Pij|(i7j)eK}7
K

where the sum is taken over all K C [n] x [m] such that projection on the second com-
ponent is onto.

These functional operations will later be shown to have very natural inter-
pretations, which will account for the epithet “functional”.

DeriNiTION 12. — Let P: X — Y be a maze in £aby(B). The dual of P is the
maze
P°:Y - X

in £aby(B°), obtained by reversing all passages in P. 3

Of course, the dual will also belong to £aby(B), but it is more natural to
let it lie in Laby(B°). Letting * denote the multiplication of B°® (the opposite
multiplication of B), and also the corresponding induced multiplication on
the labyrinth category £aby(B°), we have the equation

(PQ)F = Q° + P°.
The dual thus provides an isomorphism of categories

Laby(B)° = Laby(B°).

§4. Tue QuoTieENT LABYRINTH CATEGORIES

Everything up to this point makes sense for an arbitrary base ring. In order
to construct quotient categories of Laby, we need the assumption that B be
numerical.

Let P: X — Y be a maze. We shall consider multi-sets A supported in P
(recall this notion from Chapter 2). This is intended to capture the informal
notion that A: X — Y is the maze that results after certain passages of P have
been multiplied.
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When A is a maze, we let E4 denote the maze

Eq = U {X*Iﬂ’},

[p: x—y]eA

in which all passages of A have been reassigned the label 1.
While the full labyrinth category encodes arbitrary module functors, the
following quotient category will be seen to encode numerical functors (of degree

DerinttioN 13. — The category Laby,, is the quotient category obtained from
Laby when the following relations are imposed:
III.
P=o,

whenever P contains more than » passages.

IV, )
SRS
#AZ:P};[’ degAP
A <n
for all mazes P.
3
ExampLE 11. — An instance of the fourth axiom is the following:
00
~ | \u/\a N
b % T %
I_ % .
QO O0L ]
2/ \1 N . 1) \2 N
A

It may be proved that, over the integers, Axiom IV is redundant, as it
follows from Axiom III.

DeriniTION 14. — A maze of which all passages carry the label 1 is called a
pure maze. 3

The pure mazes evidently generate the category Laby,. Not as evident,
but equally true, is that they actually consitute a basis. This will be proved
presently.

We shall have reason to impose upon the labyrinth category yet another
axiom. This will be for encoding guasi-homogeneous functors (of degree n).
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DeriniTioN 15. — The category Laby” is the quotient category
Laby,, /(L n Laby,),

where L is the ideal of Q ®7 Laby,, generated by the following elements:

V.
a'P —al[P,

for any pure maze P and 2 € Q ®z B.

Using the fourth axiom, this fifth axiom can be equivalently written

np a
aP= Y ( A)A.
#A=P
|A|<n

Implicit in the fifth axiom is the existence of an inclusion of categories
'Qabnn < Q ®z 'Qabnm

which is not quite justified at this point, unless we take it on faith (which we
do) that the category Laby, is free, and hence torsion-free.

ExampLe 12. — The fifth axiom considers the ideal generated in Q ®; Laby,,,
rather than just £aby,. The slightly sharper requirement will first make a
difference in degree 4. Consider, for example, zLaby,. Dividing out by the
ideal generated in Laby, by elements of the form

a*P — a1 P

makes it possible to prove

whereas we shall be needing a stronger statement. By allowing the full force
of Axiom V, we make it possible to divide by 2, and thus establish

1 + *I//?* + *I/I* =6 *7
SN R SN R 3

I I * *
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MULTI-SETS VERSUS MAZES

I leave to the various futures (not to all) my garden of forking patbs.

— Jorge Luis Borges, The Garden of Forking Paths

We propose to investigate how the multi-set and labyrinth categories are re-
lated. A functor in one direction is readily found; viz. the Ariadne functor

Ay: Laby — MSet,,

so called because it leads the way out of the labyrinth. In the case of a numer-
ical base ring, it turns out to factorise, yielding a functor

Ay Laby — Laby, — Laby” — MSet,,.

We will later see that multi-sets encode strict polynomial functors, while
mazes encode numerical ones. The Ariadne functor will then correspond to
the forgetful functor from the former functor category to the latter.

Does there exist a functor in the other direction? No, at least not in gen-
eral. It is, however, possible to slightly tweak the labyrinth category in some
rather non-invasive way, which will enable defining a functor in the reverse
direction. This is the Theseus functor T,, going into the labyrinth.

For the purposes of this chapter, we shall modify slightly the definitions
of the categories of multi-sets and mazes by adjoining to them direct sums, thus
making them additive. This can be done in a way that is not only well-known,
but universal (left adjoint to a forgetful functor, and so on); hence we omit the
details. It will make no difference for linear functors out of these categories,
as we shall later have occasion to consider.

One of the reasons for keeping the original definition is that, sometimes,
it will be nice to know that the categories Laby, and MSet, possess finite
skeleta. Not actually helpful, perhaps, but still nice to know.

Finally, we pay tribute to Dr. Dreckman and Professors Baues, Franjou, and
Pirashvili, as their article [1] has provided a wonderful source of inspiration for
our work. Their main object of study Sur, the category of sets and surjections,
may rightly be called the early ancestor of the labyrinth category.

65
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Chapter 4. Multi-Sets versus Mazes

§1. Tue AriaADNE FuNcTOR

For the duration of this section, let # be a fixed natural number.
Let P be a maze. Consider the following sum of multations:

A,(P) ( 5[ ) v [ ).

This will provide a functor from £aby to MSet,, which we now set out to
prove. It is clear that A,(P) = o if a single passage of P is labelled 0. Now to
show that

An<Pu{u$v}> +An<pu{uiv}> +An<pu{u$v}>.

Denote

[p: x—>y]eA
Since

An<Pu { u%'zz }) :WZZZ] flzanP (u@fﬁ [”] ! [Z] m) ,

this relation follows from the equation

(x4 )l = yf) Sl

i+j=m
1,7=>1

Hence A, gives a well-defined map on the mazes of the labyrinth category.
We now prove that it is in fact a functor.
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THEOREM 1. — The formule
AX) = @ 4
#A=X
Al=n
AP = Y ( © pH)
#a=p [p: voylea LV

provide a linear functor
A, Laby — MGet,,.

Proof. Let P: Y — Z and Q: X — Y be two mazes. We wish to show that

Au(P)oALQ = 3] ( o p[yD D <[ © qm)

#A=P \[p: y—z]eA #B=Q \l[g: x—y]eB
|A|=n |B|=n

- 3ol

|Cl=n

N CREH)

|Cl=n
=4, | D) R|=4,(PQ).
RCPXIQ

The dubious step here is the third one, which follows from the equation
[ [#] .
_[y _[x _ —[x
(s ) zob) [zt
[p: y—z]eP lq: x—y]eQ [p: y—z]eP
lq: x=y]€Q

after noting that restricting attention to monomials 7'g® with #4 = P and
#B = Q in the left-hand side corresponds to considering (pg)¢ with C € PRIQ

in the right-hand side. O
DeriNtTion 1. — This functor is called the nth Ariadne functor. o
TueoRrREM 2. — The Ariadne functor factors through the guotient category Laby,,, pro-
ducing a functor

A, Laby, — MGet,,.
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Proof. It is clear that A,(P) = o when |P| > n. We now prove that A, respects

the relation
= Z H (d €84 P)

#A=P peP
|[A|<n

Calculate:

A Z H( gAP)

#A=P peP
(Al <n
- 31062 2, 2.0)
#Z/?Z:PPEHP <degAp T&éfl [p: x—>y]eS y
<n S|=n

) #;;P#EA (jzzig (degAP>> (degIPS p: H B])

x—yleS
|A|<n |S|=n

The quantity

P
PEHP (degA P>

counts the number of ways to colour the passages of A (or E4) in distinct
colours, with a selection of p colours available for (copies of) passage p. There
are exactly

degp S
deg, S

distinct ways in which the passages of § can inherit the colours from A. Hence
the coefficient of

s, 1L
degPS [p: x—y]eS Y

in the horrendous sum above is the number of ways to colour the passages of
§ arbitrarily, with p colours to choose from for passage p. Consequently, the
sum equals

#ép (;1;;["1)> (deg $ [p: Ey]ES B]) ) #ép ([p gy]eSp[ D

|S|=n |S|=n
= An(P)
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TueoreM 3. — The Ariadne functor factors through the guotient category Laby”, pro-
ducing a functor
A, Laby” — MGet,,.

Proof. When P is pure,

— #AZZIP <[x S)JGA BD = a"A,(P).

|A|=n
O]

There will be no more factorisation after this, for passing to the category
Laby” has the effect of making the Ariadne functor faithful. This is easy to see
from the theorem below, asserting that the pure mazes with exactly » passages
generate the category Laby” over Q®zB. We shall even manufacture an inverse
of sorts to A,,.

§2. Pure Mazes

The Ariadne functor can be used to shed important light on the internal struc-
ture of the labyrinth categories.

THeOREM 4. — The pure mazes are linearly independent in the category Laby).

Proof. Let P,,; denote a pure maze of cardinality m, where all P,, ; are assumed
distinct. Suppose we have a relation

D1niPuj+ ) ansajPusrj+ =0
j j

in Laby(X,Y), for some a4,,; € B. The nth Ariadne functor will kill all mazes
of cardinality greater than », and the end result after application will be

Zdn,jAn(Pn,j) = 0.
]

Since the P, ; are distinct pure mazes, the A,(P, ;) will all denote distinct mul-
tations. Hence all 4,,; = o. The claim now follows by induction. O

THEeOREM 5. — The pure mazes constitute a basis for the category Laby,,.

Proof. The proof for linear independence goes through exactly as before, be-
cause the Ariadne functor factors through £aby,. From the defining equations
for Laby,,, we see that any maze will reduce to pure ones. O
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THEOREM 6. — The pure mazes with exactly n passages are linearly independent in the
category £aby”, and generate the category over Q ®z B.

Proof. Linear independence goes through as before. The defining equation for

Laby” can be written
a a
4P = < >P+ ) < )A,
P A, 4

[P|<|A|<n

and since a” # (}) if |P| < 7, such a P may be expressed in terms of mazes with
more passages, provided division by integers is permissible. O

As can be seen from the proof, it is in fact not necessary to have available
inverses for every integer. It suffices to invert the positive integers up to 7.

TueoreM 7. — The following categories are isomorphic:

pLaby, = B ®z zLaby,,
pLaby” =~ B ®z zLaby”.

Proof. The first equation is an immediate corollary of the pure mazes consti-
tuting a basis for £aby,. Let us prove the second one. By the theorem above,
Laby” is torsion-free. From the definition of £aby”,

Q ®z pLaby” = Q ®z B®z zLaby”.

gLaby” will then embed in the former of those, and B ®y zLaby” in the latter.
O

Because the Ariadne functor embeds 7 £aby” in z9MGet,,, which is free, it
follows that zLaby” is free as well. By the isomorphism above, g£aby” will
then be free for arbitrary B, though it does not, in general, seem to possess a
preferred basis.

§3. Tue Tueseus Funcror

ExampLE 1. — Let

I

121
P: ? ) Q:

Z?Z

I
I—1
I
—_—
2 I;Z

In Q ®z Laby’, as may be checked, the following equation holds:

I%I-I
74[{1,2} = l ] =P+Q.

22— 2
1

Also, evidently PQ = QP = o; hence the mazes 1P and 2Q would form a direct
sum system, splitting the set {1, 2} in two. But no such sezs exist. A
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It is the purpose of this section to adjoin objects to the category Q®yz Laby”
so that some sets (like {1, 2} in the example) actually split as direct sums. This
will enable us to define an inverse to the Ariadne functor.

LemMma 1. — Let M be a torsion-free module, and let
p(x) € M @ B[x].
Then p = o iff p(a) = o for all integers a.
Proof. Induction on the degree of p. O
LemMa 2. — In the category Q ®z Laby”, the following equation holds, for any set X:
I
Ix = #SZIX dogs”®
|S|=n

Proof. Use the previous lemma. Identify the coefficient of 4” in the defining

equation for £aby”:
Sly= Y (2) s.

#S=P
|S|<n

Evidently, the mazes 35S, with § supported in Ix, satisfy

I g I g o ifS#T,
o —— =
degS S " degT T TegsS ifS=T.

Hence they form a direct sum system, though the objects themselves of the
system do not exist. There is a simple remedy for this: adjoin to the category
Q ®z Laby” an object

I

Im ——
mdegSS

for each such S.
However, we first observe that the category Q ®z £aby” is not the minimal
localisation of £aby”, for which this procedure makes sense. It may be verified

that the mazes L

—A
degA™’
where |A| = n, and #A = P for some pure and simple maze P, form a basis for

a subcategory of Q ® Laby” which contains Laby”.
To this category we adjoin an object

I

Im ——§
m deg S
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for each multi-set § supported in some Ix, and denote the resulting category
by
Laby®”.

The set X will now split into components:

I

X= @ Im—5.

451y deg$
|S|=n

Exampre 2. — The category £aby® contains exactly five (isomorphism clas-
ses of) objects. The set {1, 2} has been split up in two:

I I
=Im-P®Im-Q.
(1,2} =Im 2 P®I - Q

AN
DeriniTION 2. — The nth Theseus functor
T,: MSet, — Laby®”
is given by the following formulz:
I 1
An—»ImdegAg{a a}
n dk n .
[1[5:]~ Ul —=nt
k=1 k=1
o

It should be rather clear that this is indeed a (linear) functor, as composi-
tion in both categories is effectuated by “summing over all possibilities”. An
arbitrary multation transforms as

pHde;“(ag)Jeu{ﬂ*I)b}-

TueorReM 8. — There is an isomorphism of categories:

An
7 S\
Laby®” MSet,
~—
T,

Proof. We first show that the Ariadne functor actually factors through the
category £aby®”. Let A be a multi-set with |A| = 7 and #A4 = P a pure maze.

Then
A= ] [’;]=degA- © ["]

[x—’>y] eA [x—1>y] €A Y
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and hence we may extend A, by letting
I x
i O
degA [x—ﬁy] €A Y
Moreover, A, maps the “virtual” biproduct system
I 1
Ix = Z deng{b b}

#B=X
|B|=n

in £aby” onto the “real” biproduct system

2 s

#B=X
|Bl=n

in MBGet,, and we may consequently extend 4, to £aby®” by defining

I I
beB
It is now easy to see that 7, and A, are inverse to each other. O

§4. Tuae CATEGORY OF CORRESPONDENCES

For reference, we devote this last section to investigating the connection be-
tween the labyrinth category and the category of surjections explored by the
quartet Baues, Dreckmann, Franjou & Pirashvili in [1].

Let C be a category possessing weak pullbacks; that is, a finite number of
universal ways to complete an incomplete pullback square. For two objects
X,Y € C, a correspondence’ from X to Y is a diagram

Y < U—X,

to be read from right to left. Suppose there exists a commutative diagram of
the following shape, with the middle column an isomorphism:

Y<—U——>X

!

Y<—V—X
We then identify the two correspondences

[Y<-U—=X]|=[Y<V—=X].

Professor Pirashvili and his colleagues employ the word fléche, a rather unfortunate choice, as
this may also denote a single arrow.
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Construct a category C in the following way. Its objects are those of C.
Its arrows are formal sums of correspondences of C (identified under the just
described equivalence relation), in the free abelian group they generate. The
composition of correspondences is defined as:

[ z<v—>y|o[y<v—=x]=-]z<Ww—>Xx]|,
where the sum is taken over all weak pullbacks:

W

V/; :V\U
SN\
Z Y X

(If C does indeed possess pullbacks, there will be no need to bother to these
formal sums, and composition can be defined simply as the pullback.) The
category C is pre-additive, and is called the category of correspondences in C.

It will now be observed that the category Gur of finite sets and surjections
possesses weak pullbacks. Namely, the condition

WEAxpB={(a,b)eAxB|ala)=p(b)}

(that the projections of W on A and B both be onto) is necessary and sufficient
for the following to be a weak pullback square:

wooo-B
2 lB
v

We call A xp B (the pullback in Get) the principal pullback.
It is thus possible to build the category Gur of surjection correspondences.
We form a quotient category Sur, by forcing

[Y<-U—X]=o0

whenever |U| > n. This category, so vividly dissected in [1], turns out to be an
old acquaintance of ours.

THEOREM 9. .
Gur, = zLaby,,.

Proof. Define a functor
=: Gur, — zLaby,
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by Z(X) = X for any finite set X. The correspondence

*
o = Y<%U¢>X]

in Sur, will map to the pure maze X — Y, of which the passages x — y
number exactly
|(¢*a¢*)_1(x7y)|

(the cardinality of the fibre above (x,y) € X x Y).
We now explain why this gives a functor. Let

®
Y<¢LULX

®
P = lz&vw*)y b=

be two wedges, corresponding to the mazes Q: ¥ — Zand P: X — Y, respect-
ively. The number of passages x — y in P equals

(&%, 0:) " (x, ),
and the number of passages y — z in Q equals
(W, W) (0, 2)-

The functoriality of = follows from the observation that U xy V may be
naturally identified with Q X P, and subsets W = U xy V with submazes
RS QREP.

Since the pure mazes form a basis, this functor is invertible. O

ExampLE 3. — An example will clarify the idea. The pure maze
c<7 a
2,
should be thought of as a correspondence
{c.,d} <= {(c,a),(d, ), (d,a),, (d, D)} — {a, b} ,
where the maps are the obvious projections. A
Curiously enough, even though
él}tn =~ 7 Laby,,

for all n, the categories Gur and z€aby are themselves not isomorphic. This
stems from the fact that Z£abt) encodes functors from the category of free
abelian groups, while Gur was built to encode functors from the category of
free commutative monoids. These functor categories are not originally equi-
valent, but they will be, once polynomiality is assumed.
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Chapter 5

POLYNOMIAL MAPS

And God said unto the animals: “Be fruitful and multiply.”

But the snake answered: “How could I? I am an adder!™*

Before embarking on the study of module functors, it seems worthwhile to gain
a reasonable understanding of module maps. The words of Professor Roby [19]
may serve as an opening vignette:

L’idée qui nous fit entreprendre le travail que nous présentons ici a son origine dans
le souci d’élargir 'arsenal des applications dont on dispose communément en al-
gebre. L’analyse classique dans les espaces R” ou C” utilise une grande diversité de
fonctions ou d’applications (continues, différentiables, analytiques, holomorphes,
etc.); il en est de méme, par exemple, dans I’étude des variétés pour lesquelles R”
et C” servent de modele local. Mais dés qu’on considére des espaces vectoriels plus
généraux, et pis encore s’il s’agit de modules, on ne dispose plus guére que d’appli-
cations et de formes linéaires.

To us, a map of modules shall always denote an arbitrary map — in gen-
eral non-linear. On those rare occasions when a linear map is actually under
consideration, we shall try to proclaim it a “homomorphism” quite loudly.

All modules will of course be B-modules, and our module maps will be
generalisations of ordinary polynomial maps (as defined on fields). The prob-
lem is then, naturally, how to form “polynomials” on modules, where no
multiplication is at hand.

One possible approach is to study maps that are (let us phrase it care-
tully) polynomial-like*, in the sense that they satisfy certain equations somehow
thought to characterise polynomials. For example, a map ¢: CkF — C* is
quadratic (polynomial of degree 2) iff, as may be checked, it satisfies the two
equations

Ox+y+2) —d(x+y) -0 +2) —0(z+x)
+0(x) +0(y) +¢(2) — (o) =0

In some retellings of this myth, it is said that God constructed a wooden table for the snakes
to crawl upon, since even adders can multiply on a log table. God is not assumed to be familiar
with tensor products.

P4 swensko: polynom-agtiga.

77
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and
o) = (2)o0)+ (£) 00 - 000) + (%) (000 - 00 +0),

for any x,y,z € C* and 4 € C. We observe the binomial coefficients, which
explains why numerical rings will inevitably enter the theory.

It is perhaps surprising that the importance of the second condition was
not discovered until now. (We presume we are the very first to explore its
consequences.) The explanation for this could possibly be that (1) numerical
rings are not very much in use, and (2) people have only been interested in
maps of abelian groups, and never cared for the case of a general module. But
we digress.

The quantity

d(xoyoz) =0(x+y+2) —0(x+y) -0 +2) —¢(z+x)
+6(x) +0(y) +¢(2) - ¢(0)

is called the (second) deviation of ¢. From the formula it should be clear how to
form higher-order deviations. In general, a map ¢: M — N of modules is said
to be numerical of degree n if it satisfies the two equations

d(x; 0 0x,11) =0

@) = (D)o + (F)oton) + (£)otron) oo

foranyae Band x;,...,x,41,x € M.

Apart from requiring a numerical base ring, such an approach has the
seeming disadvantage of producing maps that merely behave as polynomials,
without actually being polynomials. On the other hand, Roby’s strict polynomial
maps (he called them himself lois polynomes) actually look like polynomials. He
develops their theory in a journal article [19] spanning a hundred and thirty
pages, from which we quote:

and

[...] la généralisation en vue devrait conduire 2 associer, 4 «quelque chose» qui
s’écrirait : x, Ty + - - - x,Tp, une «autre chose» qui s’écrirait

q
D QT Ty),
i=1

les Q; étant cette fois des polynomes. Manifestement s’introduisent ici les modules
produits tensoriels [...].

The definition Roby hints at is the following. A strict polynomial map
¢: M — N is a natural transformation

O MR ——>N®—
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of functors €2Alg — Get. This may look even less like a polynomial than the
numerical maps defined above, but because of naturality, it is easily seen that
the following holds: for any u,, ..., u, € M there exist unique elements vy € N (only
finitely many of which are non-zero), X varying over multi-sets supported in [k], such
that

(ot @xr + - + up @ xz) :Z’UX®XX7
X

for all x; in all algebras.

It turns out that a similar property holds for numerical maps, namely: for
any uy, . .., uy, € M there exist unique elements vx € N (only finitely many of which are
non-zero), X varying over multi-sets supported in [k, such that

O(gtty + -+ -+ xpup) = Z <)x(> ® vx,

X

for all x; in all numerical algebras..

A remarkable fact then ensues, namely, that the numerical maps admit a
description similar in spirit to Roby’s framework. The resulting theorem is
that the map ¢: M — N is numerical (essentially) iff it can be extended to a
natural transformation

MR ——>NRQ—

of functors MAlg — Set! This provides a beautiful and unexpected unification
of the two notions.

§1. PoLYNOMIALITY

Let us begin by making an extremely general discussion of polynomiality, and
then identify the two notions we will actually make use of.

Let D < Moo be a finitary algebraic category, by which is simply meant an
equational class in the sense of universal algebra. Since D is a subcategory of
Mod, the objects of D are first of all B-modules, possibly equipped with some
extra structure.

For a set of variables V, let

Vp
denote the free algebra on V in D. That the free algebra exists is a basic fact
of universal algebra; see for example [4].

DeriniTioN 1. — Let M be a module, not necessarily in D. An element of
M®<x1, - 7x/€>D
is called a D-polynomial over M in the variables x, . . ., xz.

A linear form over M in these variables is a polynomial of the form

24 ®x;,

for some u; € M. o
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THaEOREM 1: ExEDAHL’S ESOTERIC POLYNOMIALITY PRINCIPLE. — Let two modules
M and N be given, and a family of maps

b4 MR A >NR®A, AeD.
The following statements are equivalent:

A. For every D-polynomial p(x) = p(xy, . .. ,xp) over M, there is a unique D-polyno-
mial q(x) = q(xi, . ..,xp) over N, such that for all A € D and all a; € A,

¢4 (p(a)) = q(a).

B. For every linear form l(x) over M, there is a unigue D-polynomial q(x) over N,

such that for all A € D and all a; € A,

C. The map o N
MY ——>N®—

is a natural transformation of functors D — Get.

Proof. It is of course trivial that A implies B. Suppose statement B holds, and
consider a homomorphism X: A — B, along with finitely many elements #; €

M. Define
l(x) = Z ; ®Xj,

and find the unique D-polynomial g satisfying B. Then, for any 4; € A, there is
a commutative diagram of the following form, proving that ¢ is natural:

MoA- N4 24 ®a q(a)
s e l
M®B—5>N®B > 4 ®X(4) — q(X(a))

Thus, condition C holds.
Finally, suppose ¢ natural. We shall prove condition A. Given a D-polyno-
mial
p(X) EM®<x17' o ax/e>D7
define

.....

For any A € D and 4; € A, define the homomorphism

X: Xy Xp)p = A, x4y
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Then since ¢ is natural, the following diagram commutes:

M@, %) Yo N@Gu . xy  plx) —=q(x)
@xl l@x i
M®A ” N®A pla) > qla)
The uniqueness of ¢ is evident, which proves A. O
DeriniTioN 2. — When the conditions of the theorem are fulfilled, we call ¢
a D-polynomial map from M to N. o

According to part B of the theorem, ¢4 maps

D ®aj - qla),

for some (unique) D-polynomial g. This observation means that the Polyno-
miality Principle, in naive language, amounts to the following. If we want the
coefficients aj (in some algebra) of the module elements u; to transform according to cer-
tain operations, the correct setting is the category of algebras using these same operations.

ExampLE 1. — A OMod-polynomial map ¢: M — N is just a linear transforma-
tion M — N. This is because, by B above, ¢p will map >} # ®7; to > v ®7; for
all r; € B, and such a map is easily seen to be linear. Conversely, any module
homomorphism induces a natural transformation ¥ ® — > N ® —. A

ExampLE 2. — Let § be a B-algebra; then ¢9t0d € Mod. An s9Mod-polynomial
map M — N is a transformation

MRX®IA ->NRA

which is natural in the S-module A. This is the same as a natural transforma-
tion

M®S)®s— - (N®S) ®s —,
which is an ¢9tov-polynomial map M ® S - N ® S; or, as we noted in the
previous example, an S-linear map from M ® S to N ® S. A

The two examples below will be the important ones.

ExampLe 3. — A CUlg-polynomial map M — N is a strict polynomial map, or
polynomial law, in the sense of [19]. Here condition B reads as follows. For every
linear form > uj @ x; over M, there is a unique (ordinary) polynomial ¥ vy ® x* over
N (X ranging over multi-sets), such that for all algebras A and all a; € A,

¢A (Z%f@dj) = ZY)X ®aX.

Intuitively, the coefficients of the elements #; “transform as ordinary polyno-
mials”.
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ExampLE 4. — Suppose now that B is numerical, and consider the category
MNAlg of numerical algebras over B. An MAlg-polynomial map M — N is what
will be called a numerical map. Condition B now reads as follows. For every
linear form Y, u; ® x; over M, there is a unique numerical polynomial Y, vx @ () over
N (X ranging over multi-sets), such that for all numerical algebras A and all 4; € A,

ba (21/1]'@%/) ZZ‘UX@) (;)

Intuitively, the coefhcients of the elements #; “transform as numerical (bino-
mial) polynomials”. A

§2. PoLynomiaL MAPs

For historical reasons, we shall begin the exposition by defining the notion of
polynomial maps. Over general modules, this is much too weak a notion to be
useful. For example, it cannot be incorporated into Roby’s framework, which
is one indication it is faulty.

Presumably, it was Eilenberg and Mac Lane, who first studied non-additive
maps of abelian groups, introducing in [6] the so-called deviations of a map.

DEeriniTioN 3. — Let ¢: M — N be a map of modules. The nth deviation of ¢

is the map
B0 0xpyr) = 2 (_I)n+17|1‘¢ (Z xi>

IS[n+1] el
of n + 1 variables. S

Let us, for clarity, point out that the diamond sign itself does not work as
an operator; the entity x oy does not possess a life of its own, and cannot exist
outside the scope of an argument of a map.

It is an immediate consequence of the definition that

Ol + -+ Xpyr) = Z [0 <<>x,>
IC[n+1] el

Loosely speaking, the nth deviation measures how much ¢ deviates from
being polynomial of degree n. We have for example

d(xoy) =0(x+y) —d(x) —d() + (o),
d(ox) = ¢(x) — (o),

and, of course,

We abbreviate
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DerinitioN 4. — The map ¢: M — N is polynomial of degree » if its nth
deviation vanishes:

O(x; 0 - 0x,41) =0

for any x;,...,x,4; € M. o

This definition of polynomiality is the classical one for abelian groups.
While this notion remains valid for arbitrary modules, it is clearly a poor
one, as it does not take the scalar multiplication into account. Recall that an
extra condition

¢ (rx) = 70(x)

need be imposed on a group homomorphism to make it a module homo-
morphism (but that this is automatic when the base ring is Z!). In the next
section, we shall see what this equation generalises to.

§3. NUMERICAL Maps

The base ring B of scalars will now be assumed numerical.

DerinitioN 5. — The map ¢: M — N is numerical of degree (at most) 7 if it
satisfies the following two equations:

d(x; 0 0xp44) = O, Xpy ooy Xngr EM
¢(Tx)=/§c)<;>¢<<>X>, reB, xe M.

<&

Observe that, when we speak of maps of degree 7, we always mean degree
n or less.

It is easy to prove that, over the integers, the second equation above is
automatic, so that the concepts of polynomial and numerical map coincide.

ExampLe 5. — ¢ is of degree o iff it is constant, for when » = o the above
equations read:

ExampLE 6. — When 7 = 1, the equations read as follows:

Ot +x,) = 0(x) = 0(xs) +9(0) = d(x 0x;) = 0,

30f course, Eilenberg and Mac Lane themselves do not deign to make this definition, but
instead move on to more important topics, like the computation of homology.
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o) = (1 )ot) + (7 )oton) = 0(0) + 16(x) ~ $(0)).

The map
Y(x) = ¢(x) — ¢(0)

is then a homomorphism. Conversely, any translate of a homomorphism is of
degree 1. A

ExampLe 7. — Let B = Z. It is a well-known fact, and not difficult to prove,
that the numerical (polynomial) maps ¢: Z — Z of degree » are precisely the
ones given by numerical polynomials of degree n:

D) = ka(k)

A

LemMA 1. — For r in a numerical ring and natwral numbers m < n, the following

formula holds:
26 - ()

m

Proof. Induction on n. (The Numerical Transfer Principle is optional; the
induction will go through in any ring.) O

THEOREM 2. — Let the map ¢: M — N be polynomial of degree n. It is numerical (of
degree n) iff it satisfies the equation

0(rx) = 2(—1)"—’"@) (T_m_1>¢(mx), reB, xe M.

Proof. This follows from the lemma:

$ ()06 = 5 (2) S=(4)oonn
e (Zer () ) oo
- r

B () (22"

m=0
m
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§4. THE AUGMENTATION ALGEBRAS

There is an algebraic way of describing numerical maps, which turns out to
be very fruitful. Recall that the free module on a set M is the set

B[M] = {Zﬂ][x]] ‘djEB, x]'EM}

of formal (finite) linear combinations of elements of M. It obviously has a
module structure, and if M itself is a module (or even abelian group), it also
carries a multiplication, namely the sum multiplication

[x[y] = [x + 1,

extended by linearity. It makes B[M] into a commutative, associative algebra
with unity [o].

When M is not only a module, but an algebra, there is another natural
multiplication on B[M], namely the product multiplication:

[x] « ] = [xy]-

This multiplication has the identity element [1], and is of course commutative
only if M is. This latter operation will make an apparition later on, in the
context of Morita equivalence. In the present discussion, we will assume M to
be a module only, and concentrate on the sum multiplication.

Let thus M be a module, and consider the map

M — B[M], x> [x].
We may form its nth deviation
(%ry ey Xpgr) P [X1 00 O Xy
THEOREM 3. — In the free algebra B[ M|, the following formula holds:
[eco. o xnia] = (fo] = [0]) -+ ([%n41] = [0]) -

Proof. Simply calculate:

[X:10...0Xp4q] = Z (_I)nﬂ*\ll lZ xi]

IS[n+1] el

= (P] = [o]) -~ ([xn41] = [o]) -

There is a filtration of B[M], given by the decreasing sequence of ideals
L= ([x10...0%41| |x; €M)

+ <[rx] —kzno @ [gx]

reB,xeM), n=—I.
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DeriniTioN 6. — The nth augmentation algebra is the quotient algebra
B[M], = B[M]/L,.
3

If M is an algebra, then I, is a two-sided ideal with respect to the product
multiplication, so the augmentation algebras will inherit this operation.

THEOREM 4. — The map
0,: M - B[M],, x~ [x],

is the universal numerical map of degree n, in that every numerical map ¢: M — N of
degree n has a unique factorisation through it.

oy
M —— B[M],

Nv
N

Proof. Given a map ¢: M — N, extend it linearly to a homomorphism
¢: B[M] — N.

The theorem amounts to the trivial observation that ¢ is numerical of degree
n iff it kills 7. O

The augmentation quotients of a free module M are given by the next the-
orem.

THEOREM 5. — In the polynomial algebra Bty . . ., tp], let J, be the ideal generated by
monomials of degree greater than n. Denote by (¢;)%_, the canonical basis of BX. Then

W: B[, ..., 1]/J» — B[B*],
X s [<> ] ~ (e] - [o])¥

eX
is an isomorphism of algebras. In particular, B[BF], is a free module.
Proof- The map
Bt . .., 4] — B[B],

¢ | 96| = @ - ¥

1eX

is clearly a homomorphism of algebras, and since it annihilates J,, it factors
via B[y, ..., tz]/J»- This establishes the existence of Y.
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We now define the inverse of Y. Each ¢ is nilpotent in B[, ..., ]/J,, and
so the powers
(1 +4)*

are defined for any 4 € B. Accordingly, for an element

X =aze +--- +a;ee/eeBk,
we define

X: B[B*] - B[t1, ..., 1]/

[arer + -+ + apep] = (1 + 0)" -+ (1 + )% + -
We write this more succinctly as
[x] = (142" + ]
The map X is linear by definition, and also multiplicative, since
X(XIDD = X([x +y]) = 1+ "7 = 1+ (1 + £ = X@©X()-

It maps I, into J,, because, when x;, ... ,x,4; € B,

X([rr o 0xp14]) = Z n)~tUly <[Zx]])

JE[n+1] €/

- Z (_I)n+1—\]|(1+t)2/e1xf
J<[n+1]
n+1

:H((I+z)xf—1)=o
J=1

Also, for r € B and x € B¥,

(-3 () o)) ( m

gM=
N
I =
N——
D5
|
=
3
N
VRS
<3
N——
=y
=2
N—

~.

o I

= (@+0)%— Z (;) (—1)™ f(’j”) (1 + 1y
o \1) =

— (14 1) — é}o (;) (T+1)* —1)

~ 0+ = 33 (] )otor

where, in the last step, we have let p(¢) = (1+¢)*—1. By the Binomial Theorem,

(b(0) + 1) = wo ().



88 Chapter 5. Polynomial Maps

but since the terms of index 7 + 1 and higher yield an (7 + 1)st degree poly-
nomial, the above difference will belong to J,. We therefore have an induced
map

X: B[B*], = B[t - .., 44]/]n,

and it is easy to verify that  and X are inverses to each other. O

ExampLe 8. — The isomorphism

W: B[B*], — B[t, /]

is given by
[0] =1 [e; o €] — £
[oer] — t; [eroe,] — tit,
[¢e,] — ¢, [e, o e,] — 2.

§5. PROPERTIES OF NUMERICAL MAPS

Let us elaborate somewhat on the behaviour of numerical maps, and invest-
igate their elementary properties. To begin with, we note that the binomial
coeflicients themselves, considered as maps B — B, are numerical. This is of
course hardly surprising, as they are given by polynomials in the enveloping
Q-algebra.

THEOREM 6. — The binomial coefficient x — () is numerical of degree n.

Proof. Tt is numerical of degree » in Z, and therefore also in B by the Numer-
ical Transfer Principle. O

Next, not only do the nth deviations of an nth degree map vanish, but its
lower order deviations are also quite pleasant.

THEOREM 7. — Themap & : M — N is numerical of degree n iff the following equation

holds:
dlax, o oapxy) = Z (;)d) (§x> , a4;€B, x;eM.
#X=[k]

| X|<n

Proof. If the equation is satisfied, it follows that

oo om) = X (1)e(ox) =o.

#X=[rt1]
X|<n

v = 3 ()0 (9) =2 (1) (),

1X|<n

and
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Conversely, if ¢ is of degree n, a calculation in the augmentation algebra
B[M], yields

[axs o -+ o apxp] = ([axi] — [o]) - ([axe] — [0])

e 26 e

9k
— /x: P % ﬂI P ﬂk -
=33 () () [oxeegm).

The theorem follows after application of ¢. O

This proof is pure magic! It is absolutely vital that the calculation be
carried out in the augmentation algebra, as there would have been no way to
perform the above trick had the map ¢ been applied directly.

ExamrLe 9. — If ¢ is of degree 3, the following formula hold:

ax

O (oarx) = <I>¢(<>x1) + (d;)([)(xloxl) + <2I>¢(x10x10x1)

O (apx; © a,x,) ( ( ) (2; ©x,)
(“:>¢(xl ox; 0%,) + (‘i) <d;>¢(x1 0%, 0%,)
Bk, o, 0 ayr,) = ( < ) ) (5 033 0 x3).

We now have the following very explicit description of numerical maps.

A

THEOREM 8. — The map ¢: M — N is numerical of degree n iff for any uy, ...,
€ M there exist unique elements vx € N, X varying over multi-sets with #X < [k] and
|X| < n, such that

Oty + -+ apmp) = (;) vx,

X

foranyay,...,a € B.

Proof. Assume ¢ is numerical of degree 7. By the preceding theorem, we have

Ol + - +apm) = > ¢ <<>MZ>

= el

-3 3 (2)e(an)

IX|<n
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" 2, W)

| X|<n

which establishes the existence of the elements vy.
We now prove uniqueness. Let Q < [k] be a multi-set, with g; = deg, 7, and
let
S={X|#Xc[k] A Vi:degsi<g;}.

Then
O(qum + -+ qen) = ) <§(>vx = (;)vx
X Xe§
=oQ + Z (;) vx.
XeS\{Q}

We see that v is determined by all vy, such that X precedes Q in the lexico-
graphical ordering on the set of all multi-sets on [k], which can be identified
with N*. By induction, each vy is uniquely determined.

Conversely, assume ¢ is of the form specified in the theorem. It then read-

ily follows that
vx =¢ <'<> %i>
X

for all X. In particular, the nth deviations of ¢ will vanish, and also
N (a “ (a
ot = 30 (1 )on= 2 ()0 (9%):

And so, finally, we shall tie things together, and show that the definition
we have given of numerical map, “essentially” coincides with 9[g-polynomi-
ality; this latter notion entailing a natural transformation

O

MR ——>NRQ—

between functors MAlg — Set. The subtle point here is that of degree. A
numerical map, as we have defined it, always comes with a degree, which is
of course not uniquely defined; it will also be numerical of any higher degree.
In particular, there is no such thing as a map that is simply numerical. This is
where the concept we have introduced differs from 92lg-polynomiality, for a
map could well be M2Alg-polynomial of infinite degree.

ExampLe 10. — Let U = {uo, #y, u,, ...y be free on an infinite basis. The map

a
04: URA > URA, Y u®@ap— Yt ® (,f)

is MAlg-polynomial, but not numerical of any finite degree 7. JAN
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In order to exclude such anomalies, we are obliged to introduce a bounded-
ness condition. Let ¢: M — N be an MAlg-polynomial map. From the Poly-
nomiality Principle, we know that for every linear form /(x) over M there is a
unique NAlg-polynomial g(x) over N, such that

¢4 (l(a)) = g(a),

for all A € MAlg and all 4; € A. We say that ¢ is of bounded degree 7 if the
degree of the polynomial g is uniformly bounded above by » (independent of

D).

THEOREM 9. — The map & : M — N is numerical of degree n iff it may be extended to
a (unique) NAlg-polynomial map of bounded degree n.

Proof- If
ba: M- > N®-—

is an MAlg-polynomial map of bounded degree n, it is clear from the Polyno-
miality Principle that
¢p: M > N

has the property of Theorem 8.

Conversely, let a numerical map ¢: M — N be given. Given elements
#y,...,mp € M, fix the elements vy from Theorem 8. We may then extend
¢ in the obvious way to a natural transformation:

a
P4 MR®A > NRA, Zu]‘®d]"—>;‘vx®<X>-

Some care is needed to ensure this map is well-defined on the tensor product,
but everything works out in the end, essentially because it is postulated to
work in the case A = B. O

§6. StricT PoLYNOMIAL MAPs

As we direct our attention toward strict polynomial maps, we no longer as-
sume a numerical base ring.

DerINITION 7. — A €lg-polynomial map ¢: M — N; that is, a natural trans-
formation
MR®-——>N®-

between functors €Alg — Get; which is of bounded degree 7, will be called a
strict polynomial map of degree 7. o

It is clear that a strict polynomial map is also numerical of the same degree
(provided of course the base ring is numerical). If the base ring B is a Q-
algebra, the two concepts coincide, for then every algebra is numerical.

ExampLE 11. — A map is strict polynomial of degree o iff it is constant. A
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ExampLe 12. — Let ¢: M — N be a homomorphism. Then
PRI MR® - >NRQ —

defines a strict polynomial map of degree 1.
From this we see that in degrees o and 1, numerical and strict polynomial
maps always coincide. A

ExampLE 13. — Let B = Z. The map
2R ——>Z2Z®—, 1IQx—I® <;C>,

is numerical of degree 2, but not strict polynomial of any degree. The follow-
ing tentative diagram, where B: ¢ — 4, indicates the impossibility of defining
&1

&
Z®Z[1] -2 707 1t

?
N
27—~ 10Z 1®a—>18 ()
z
Note that Z[] is not a numerical ring; there is no such thing as (£)! A
ExampLe 14. — Contrary to the situation for numerical maps, strict poly-

nomial maps are not determined by the underlying maps. The most simple
example is probably the following. Let B = Z, and define

04:Z2RA > Z2RA, 1®x—1®x(x—1).

This is a non-trivial strict polynomial map of degree 2, and its underlying map
is zero!

We see here at play the well-known distinction between polynomials and
polynomial maps, the former class being richer than the latter. The point is
that the strict polynomial structure provides extra data, which makes the zero
map strict polynomial of degree 2 in a non-trivial way. A

As mentioned earlier, strict polynomial maps were invented by Norbert
Roby, who designated them /lois polynomes. The elementary facts enumerated
below, where we consider a strict polynomial map ¢: M — N, are all taken
from his article [19].

1. From the Polynomiality Principle, the following proposition is immedi-

ately deduced. Forany u,, ..., uy € M there exist unique elements vx € N (only
finitely many of which are non-zero), X varying over multi-sets with X C k], such
that

b @ar + -+ up @ay) =Z7’X®4X
X
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for all aj in all algebras.
We call vx the multi-deviation of ¢ of type X, with respect to the ele-
ments #;, and we shall denote this by the symbol

vx = -

(This notation makes the subscript look like a divided power, which, in
fact, it is. See below)

2. ¢ is of degree 7 iff 7 = o whenever |X| > .
3. ¢ is said to be homogeneous of degree 7 if
b(az) = a"¢(2)

for all 4 in all algebras A and all ze M ® A. This amounts to saying that
¢,x1 # o only when |X| = z.

4. When ¢ is homogeneous of degree 7, note that
0,00 = 0(n).

5. Any ¢ will have a unique decomposition into homogeneous compon-
ents, namely:

”
O ®@a+- +up®@ap) = Y > O, @a .

n=0 |X|=n

There is some subtlety here. It is important to note that the above sum
is only locally finite. For a given

z=u;Qar + - +u, Qay,

the sum contains only a finite number of terms, but this number depends
on z, and, worse, need not be bounded above. Restricting attention to
strict polynomial maps of some given degree n, as we shall do, these
difficulties are avoided.

6. There is a fundamental relationship between homogeneous maps and
divided power algebras. For any module M there is a universal homoge-
neous map

Yo: M- (M), > ui®ai—> >, @~

X|=n
of degree n, through which every map ¢: M — N of degree n factors
uniquely:

T |

N®A 21X =n Puix) ®aX
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In other words, there is a canonical isomorphism between the module of
homogeneous polynomial maps of degree # from M to N and the module
of homomorphisms from (M) to N.

7. Given ¢, the map
) - N, e o,m

is a module homomorphism.

§7. Tue DivipE»D POWER ALGEBRAS

Divided power algebras are intimately connected to strict polynomial maps.
Roby, in all his prolificacy, has a great deal to say about them, and we once
again refer the reader to [19].

Like the free algebra, the divided power algebra I' (M) comes equipped with
two natural multiplications.

Let first M be a module. We recall that the divided power multiplication on
(M) is given simply by juxtaposition:

The homogeneous components (M) are not closed under this operation.

Let now M be an algebra. Then there is another multiplication on the nth
divided power module (M), which we now describe. Note that there is a
canonical map

5: M x M — (M) @T(M),  (x,7) = @)1,

which is universal for bihomogeneous maps of bidegree (7, 7) out of M x M.
Because the map

GMxM—T"MOM), (x,y) — (x®y),

is bthomogeneous of degree (7, 7), it will have a unique factorisation through
o

M x M —2= (M) @ T"(M)

rMMeM)

(M)
Composition with the canonical (linear) map

MMM - T"M),  (x©)M— (x)r,
results in the following multiplication on ' (M):

MM @ (M) - T"(M), <T@y > xxy = (x)lL.



¢7. The Divided Power Algebras 95

It will be called the product multiplication on " (M).

Let now A and B be multi-sets of cardinality 7, and let the variables x, and
7, be indexed over #A and #B, respectively. It is then easy to verify that the
following formula holds:

ALl = S ()l
u: A—B

(where the sum is taken over multations, rather than sums of such). We do not
prove this formula here, as we shall establish a more general result in Chapter

It deserves to be pointed out, and emphasised, that the nth divided power
module (M) is not generated by the pure divided powers zl"l, for z € M, as
the following example shows.

Exampre 15. — Consider in 3(Z*) a pure power

(are; + aZeZ)B] = a?eIB] + afazel[z] e, + alaielegz] + azega].

The coefficients of eI[Z]eZ and elegz] have the same parity (even or odd). There-

fore, it will be impossible to isolate e”le, as a linear combination of pure

powers. A

(M) is, however, “universally” generated by pure powers, in the following
sense.

Traeorem 10: THE DivipEp POwER LEMMA.

o A natural transformation
CMNMMe—->N-—,

betrween functors €Alg — IMo0, is uniquely determined by its effect on pure di-
vided powers 21" (when z € M ® A for some algebra A).

o More generally, a natural transformation
M erM)®@ — - N —

is uniquely determined by its effect on tensor products 2" @ wl”) of pure powers.

Proof. Tt suffices to show that if { vanishes on pure powers, it is identically zero.
Indeed, linear maps (M) — N correspond to homogeneous maps M — N:

4 n
MM @A —>NQA (Yu@x)" —=o0

| A e

MRA D @x;
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Since { = {y, = o, also { = o.
For the second part, proceed similarly, while noting that linear maps

MM)r* (M) - N
correspond to bihomogeneous maps

M®M — N.



Chapter 6

POLYNOMIAL FUNCTORS

Och nir jag stod dir gripen, kall av skrick
och fylld av dngslan inf6r hennes tillstdnd
begynte plotsligt mimans fonoglob

att tala till mig pé den dialekt

ur hogre avancerad tensorlira

som hon och jag till vardags brukar mest.

— Harry Martinson, Aniara

With all preliminary work disposed of, we may finally begin our study of
polynomial functors proper. The first layer of bricks has been laid out with
minute detail, and will provide the rock solid foundations upon which to erect
our glorious temple. The chief aim of this monograph, it will be recalled, is to
study module functors. But, in order to describe these, it was necessary first
to gain a proper understanding of module maps. Only then could we hope for
some insight into the machinery of functors.

We now consider ourselves amply prepared for the task. Our incorpora-
tion of numerical and strict polynomial maps into the same framework (Pro-
fessor Roby’s) will be seen to lead to a corresponding unification of the no-
tions of numerical and strict polynomial functor. Here, again, can be seen the
deficiency of Professors Eilenberg and Mac Lane’s original notion, as functors
that are just polynomial do not allow for such a unified treatment.

The beginning of the chapter is comprised by a quick introduction to mod-
ule functors in general. This is less of a luxurious indulgence than it may seem,
but rather an important reminder that our attention is restricted to a spe-
cial class of functors, albeit rather large and general. Namely, we shall only
consider those module functors that are determined by their values on free and
finitely generated modules; this latter category admitting a smooth description,
and being pleasant in a multitude of ways. The question then arises as to what
functors possess this amiable property. We are by no means the first to study
these; from [3] we draw the characterisation of them as the right-exact functors
that commute with inductive limits.

Corresponding to the classes of numerical and strict polynomial maps are
the classes of numerical and strict polynomial functors, which we then set out
to explore. The chapter closes with a swift investigation of analytic functors,

97
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which are characterised as the inductive limits of polynomial functors.

§1. MobuLe FuNcTORs

Let
FMod

be the category of free modules, finitely or infinitely generated; and let
XMoo

be the category of those modules that are finitely generated and free (the letter
X intended to suggest “eXtra nice modules”!). A module functor is a functor

X900 — MNNod

— and there should really be no need to point out that linearity will not be
assumed.

This may seem a meagre substitute for a functor defined on all modules,
but the restriction is not as heavy as one might think. As it turns out, a func-
tor defined on the subcategory X900 has a canonical well-behaved extension
to the whole module category 9t0d. We now describe this extension process,
and thus convince ourselves (and hopefully the reader) that there is no seri-
ous imposition in considering only functors XMod — Mod, as will be done
henceforth.

First, let us recall what it means for a functor, not necessarily additive, to
be right-exact.

DeriniTioN 1. — A functor F between abelian categories is right-exact if for
any exact sequence
a—-p-Ltoc o

the associated sequence

F(a+1)

-F F

FA®B) — i) P k(o) o

is also exact. o

This definition agrees with the usual one in the case of an additive functor.
In fact, the usual definition actually implies additivity of the functor, which
renders it useless for our purposes.

THEOREM 1.

1. Any functor X9Mod — Mod has a unique extension to a functor FMod — NMod
which commutes with inductive limis.
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2. Any functor Mod — 9Mod has a unique extension to a right-exact functor
Mod — Joo.

Proof. Since the result is well-known, we shall be content to sketch an outline
of its proof.

The first part follows from Lazard’s Theorem, which states that every flat
module is an inductive limit of finitely generated, free modules. A functor
G: X9Mod — IMod may be extended to G: FNMod — Mod by putting

é(h_f,nMa) = li_H,lG(Ma)7

for any inductive system (My) of finitely generated, free modules. This defini-
tion is probably independent of the inductive system chosen.

The second part of the theorem is an immediate consequence of Theorem
2.14 in [3]. (The crucial point is that §9od is a subcategory of projective
generators that is closed under direct sums.) The extension procedure (which
essentially uses parts of the Dold—Puppe construction originally presented in
[5]) may be summarised as follows.

Let a functor F: Mod — Mod be given. Given a module M, choose a free

resolution:

leP M o

Let mand & denote the canonical projections:
s 3
Define the extension F: 900 — Mod by the equation
F(M) = F(P) / [F(n) (Ker F(Ti+ wz))].

Again, this definition is independent of the particular free resolution chosen.
That F extends F is clear. When M is free, we may take the obvious free

resolution:
o]

o M M o

Here 1= 17 and & = o, and so
F(M) = F(M) / [F(n) (Ker F(T+ Lpz))] — F(M) / [F(IM)(KerF(IM))]

— F(n) / [1r0n)(Ker 1)) = F@)/o = FlO).
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§2. PoryNnoMIAL FUNCTORS

We now turn to interpreting our three notions of polynomiality in terms of
functors, in order from the weakest to the strongest.

DeriNtTiON 2. — The functor F: X900 — Moo is said to be polynomial of
degree (at most) 7 if every arrow map

F: Hom(M,N) —» Hom(F(M),F(N))
1s. 3

ExampLe 1. — If F is polynomial of degree o, then F(a) = F(o) for every
homomorphism a. We have

1) = F(uy) = Flo: M — M) = F(o: N — M)F(o: M — N),

and similarly
17Ny = F(o: M — N)F(o: N — M);

hence F(M) = F(N). The polynomial functors of degree o are thus the constant
ones. A

Exampre 2. — If F is of degree 1, then
F(a+B) — F(a) - F(B) + F(o) = o,
or, equivalently,
F(a+B) = F(o) = (F(a) — F(o)) + (F(B) — F(0)).

The functor
is then additive.

Conversely, a functor F of the form

F(M) = K@ E(M),

with E additive, is polynomial of degree 1. A

§3. NumericaL FUNCTORS

In order to discuss numerical functors, we assume of course a numerical base
ring.

DerinitioN 3. — The functor F: X900 — 9Mod is said to be numerical of
degree (at most) 7 if every arrow map

F: Hom(M,N) — Hom(F(M),F(N))

1S. o
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Note that, over the integers, the notions of polynomial and numerical
functor coincide.

Note also the inconspicuous assumption on uniformly bounded degree.
We shall presently see what happens when this assumption is dropped.

ExampLe 3. — The functor F is numerical of degree o iff it is constant:
F(M) =K.
A
ExampLe 4. — The functor F is numerical of degree 1 iff it is of the form

F(M)=K®EM),

with E linear. Taking it on faith that there exist functors which are additive,
but not linear, we see that numericality is a stronger notion than polynomial-
ity already in degree 1. A

ExampLe 5. — The most notorious examples of polynomial functors are no
doubt the classical algebraic functors: the tensor power T"(M), the symmetric
power §"(M), the exterior power N*(M), and the divided power T”(M). They are
all numerical of degree n, because they commute with extension of scalars,
and are of bounded degree. For example, the map

T AQT'(M) =T{(M) - Tf(N) =A®T"(N)
is clearly natural in all (numerical) algebras A. A

A natural transformation n: F — G of numerical functors is a family of
homomorphisms

n=Nu: FM) - GM) | M € XMod),
such that for any modules M and N, any numerical algebra A, and any
we A ®Hom(M, N),
the following diagram commutes:

AQFM) 2M A © GM) @)

F(w)l lG(w)

We shall denote the category of numerical functors of degree » by
Num,,.

It is easy to see that it is abelian (the case B = Z is well known). It is closed
under direct sums, and we will see in Chapter g that it possesses a small pro-
jective generator, so by the Morita Equivalence, it is in fact a module category.
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DerinitioN 4. — The numerical functor F is quasi-homogeneous of degree »
if the extension functor

F: Q®z XMod - Q ®z Moo

satisfies the equation
F(ra) = v"F(a),

for any r € Q ®z B and homomorphism a. o
As remarked in connection with the category £aby”, demanding
F(ra) = 7"F(a)

just for r € B would be insufficient to yield interesting results. Being quasi-
homogeneous is, in a sense, the closest a numerical functor can come to being
homogeneous.
The category of quasi-homogeneous functors of degree » will be denoted
by
QHom,,.

§4. ProPERTIES OF NUMERICAL FUNCTORS

Let us hasten to point out that our definition of natural transformation is
unnecessarily complicated. A consequence of Theorem 8 of Chapter 5 is that a
polynomial functor is uniquely determined by its underlying functor. In view
of this, the following theorem is hardly surprising. The reason for adopting
the more complicated condition as definition, is to conform to the situation
for strict polynomial functors.

THEOREM 2. — The diagram (1) commutes for any (ordinary) natural transformation
n: F—- G

Proof. Consider homomorphisms
Oy, ...,0: M — N.
Assume that
G(ﬂ1®a1 +ﬂ/€®qk = (dI> . < ) ®Vv,

for any a;, ..., a, in any numerical algebra A, where we have abbreviated

F(ﬂ1®a1 +dk®ak :Z(dl> ( k>®BH
m my
>

U= (my,...,mp) and V= (n,...,1m).
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The naturality of n ensures that

%) (=2 () G

Specialise first to the case 4, = a; = --- = o, to obtain
ay ax
Z ( )r]NB(mI,o,...) = Z ( )y(nl,o,“.)r]/l/ﬁ
my Ny
my ny
Successively putting 4; = 0,1, 2, ... leads to

NNBonio,...) = Ym0, )N
for all m,. Proceeding inductively, one shows that
NnBu = Yunu
for all p. The commutativity of the diagram (1), for
W=a;,®0; + - +a,®0,

is then demonstrated by the following instantiation:

b®x b®@nu(x)

|

ay ... (e 3 G) e () b @nnBu(x)
2 () ()P @ Bul) — l: ZHU (o) (/:fzi)b®yuﬂM(x)1

O

The subsequent theorem is the first to illustrate a recurring theme: that a
numerical functor of degree 7 is essentially determined by its action on B”.

TueoreM 3. — The following conditions are equivalent on a polynomial functor F of
degree n.
A.
= (r
F(ra) = F(da
= 2 (1) (50

for any scalar r and homomorphism a (numerical functor).

) oy = 3 o0 (1) (7o

for any scalar r and homomorphism a.
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A

for any scalar r.

T Al

m=0

for any scalar r.

Proof. That A and B are equivalent follows from Theorem 2 of Chapter 5, as
does the equivalence of A’ and B’. Clearly B implies B/, so there remains to
establish that B’ implies B.

Hence assume B’, and put

Z

I
=
i
3
N\
I =
N——
7\
<
S |
I3
S
-
N——

In the case g < n the equation
7’ IBq Z m IBq
m=0

holds, because 1ps factors through 1p».
Consider now the case g > n. By induction, assume the formula holds for
g — 1. Letting T; as usual denote canonical projections, we calculate:

F(r-1pe) = F(rTg + - -+ + 1TY))

-~ 2 o e (3m)

Ic[q] el

- Y (- qVIZzp(Z:mm)
Ic[q] el

=— Z Zn Y, ()T VIF (2 mm)
m=0 Ic[q] 1€l

= > ZpF(mmy + -+ miy) = . Z,F(m - 1p1).
m=0 m=0

The third and sixth steps are because the gth deviation vanishes. This shows
that the equation holds for 1y, for any 4.
Finally, in the case of an arbitrary homomorphism a: B? — B?, we have

F(ra) = F(r - 1g¢)F(Q)
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Z F(m - 1p¢)F(Q)

m=0 m=0

and the proof is finished. O

Il
N
N
3
2
3
2

The following very pleasant formula is an immediate consequence of the
corresponding formula for maps.

TueOREM 4. — The module functor F is numerical of degree n iff for any scalars a; and
homomorphisms Q;, the following equation holds:

F(a,0, 0 --- 0 aqp0) = Z[k] (;(>F ()(? 0(> .

#X=
1X|<n

Proof. Theorem 7 of Chapter 5. O
ExamrLe 6. — If F is of degree 3, the following formula hold:

Floayay) = (“‘)F(oa ) + (“Z)F(aI o)

(%)
( )( >¢ 0 © ) (i) (@F(waloaz)
( )(aZ>F(O(I<>O(Z<>0(Z)

a a a
F(a,0; 0 2,0, ¢ 2,0 )7 ) Fogea, 0 ay).
3 I I I 3

§5. Tuae HierarcHY oF NUMERICAL FUNCTORS

Fla;o0;004)

F(a,0; 0 a,0,)

+

We say that a map ¢, or a family of such, is multiplicative if

0(2)¢(w) = ¢(zw),

whenever z and w are entities («quelques choses») such that the equation
makes sense, and also
0(1) =1,

where the symbol 1 is to be interpreted in a natural way (usually differently on
each side). An ordinary functor is the prime example of such a multiplicative
family.

Also, we say that a family of maps is of (uniformly) bounded degree, if
every map in the family is numerical of some fixed degree 7.
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Tueorem 5. — Consider the following constructs, where A ranges over all numerical
algebras:

A. A family of ordinary functors Eg : 4 X900 — 4900, commuting with extension
of scalars.

B. A functor ] : X9Mod — IMod, with arrow maps
Ja: Homy(A®M,A®N) - Homy(A ®J(M),A®](N))
that are multiplicative and natural in A.
C. A functor F: X900 — Mo, with arrow maps
Fy: A®Homp(M,N) - A®Homp(F(M),F(N))
that are multiplicative and natural in A (numerical maps).

Constructs A and B are equivalent, but weaker than C. If, in addition, the arrow maps
are assumed to have uniformly bounded degree, all three are equivalent.

Proof. Given E, define J by
J(M) = Ep(M)

and the diagram:

Homy (4 ® M, A ® N) —2~ Homy(E4(A ® M), Es(A ® N))

Homy (A ® Eg(M),A ® Eg(N))
Conversely, given ], define the functors E by the equations
Ex(M) = AQJ(M)

and
Homy (4 @ M,A ® N) ——- Homy (4 @ J(M),A ® (N)).

Also, it is easy to define J from F; simply let
J(M) = F(M),

and use the following diagram:

A ®Homg (M, N) ——~ A @ Homg(F(M), F(N))

| |

Homy(A®M,A®N) - > Homs (4 ® F(M),A®F(N))
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The left column in the diagram is an isomorphism as long as M and N are free.

The diflicult part is defining F from J, provided that ] is indeed of bounded
degree n. The following proof is modelled on the corresponding proof for
strict polynomial functors in [20]. Let M and N be two modules, and let A be
any numerical algebra. Find a free resolution

B B J(M) o,
and apply the contra-variant, left-exact functor
Hom(A ® —, A®J(N)),

to obtain a commutative diagram:

0 — Homy (A ® (M), A®J(N)) —— (AQJ(N))* —=— (A®J(N))*

A
/] .

A ®Hom(M, N) A ®B[Hom(M, N)],

The homomorphism

I/: A@ Hom(#,N) — (A®]J(N))"
may be split up into components

(1))p: A®Hom(M,N) - A®J(N),

for each k& € K. Those are numerical of degree n, and will factor over d, via
some linear ;. Together they yield a linear map

{: A®B[Hom(M,N)], — (A®J(N))",

making the above square commute.
Now, 0, = 01 = o, which gives 6{ = o. By the exactness of the upper
row, { factors via some homomorphism

&: B[Hom(M, N)], — Hom(J(M),](N)).
Because
I] = Zan = 155;1

and 1 is one-to-one, we also have | = &3,. The following diagram will therefore
commute:

Hom(J(M),J(N)) ———J(N)®

Hom(M, N) B[Hom(M, N)],

n

Since J factors over B[Hom(M, N)],,, it is numerical of degree 7, and so may be
used to construct F. O
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We thus obtain the following hierarchy of functors.

o Numerical functors, as defined previously, have bounded degree, and satis-
ty all three conditions A, B and C.

e A functor satisfying condition C, but with no assumption on the degree,
will be called locally numerical.

e A functor satisfying the weaker conditions A and B, again without any
assumption on the degree, will be called analytic.

ExampLe 7. — The classical algebraic functors 7, S, A and I are all analytic,
for they evidently satisfy condition A of the theorem.

Of these, only A is locally numerical. This is because, when n > p, the
module

N'(B) = o,
and hence, for given p and g, the map
A: Hom(B?,B?) — Hom(A(B?), A(B%))

is numerical of degree max(p, q). A

§6. Strict PoLyNomiIAL FuNcTORs
The base ring B is now no longer assumed numerical.

DerintrioN 5. — The functor F: X000 — Moo is said to be strict polynomial
of degree 7 if the arrow maps

F: Hom(M,N) — Hom(F(M),F(N))
have been given a (multiplicative) strict polynomial structure. o

A strict polynomial functor is also numerical of the same degree, provided
the base ring is numerical. If the base ring B is a Q-algebra, the two concepts
coincide, for then every algebra is numerical.

We remark that, comparable to the situation for maps, strict polynomial
functors are not determined by their underlying functors.

ExampLe 8. — Because numerical and strict polynomial maps coincide in de-
grees o and 1, the same holds true for functors. A
ExampLe 9. — The classical algebraic functors 77, §”, A” and I'” are in fact

strict polynomial of degree 7, because they are natural in a// algebras, not just
numerical ones. A
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ExampLe 10. — The following singular example may serve as a warning. Let
B be a numerical ring, let p be a prime, and consider the functor

F(M) = $(M)/pS (M).

F inherits from $? the property of being homogeneous of degree p. On the
other hand, because p | » — r by Fermat’s Little Theorem, the underlying
functor of F takes

F(ra) = $P(ra) = 725P(a) = rS?(a) = rF(a).
Moreover, by the Binomial Theorem,
(a+ by =a’ + b modp,

SO

Fla+pB) =$(a+B) =)+ S(B) = Fa) + F(B).

The underlying functor of F is linear!

Quite obviously, F may also be given the structure of homogeneous functor
of degree 1, furnishing us with two different strict polynomial structures on
the same functor, and even of different degrees. A

By a natural transformation n: F — G of strict polynomial functors, we
mean a family of homomorphisms

N = (Nu: F(M) — G(M) [ M € XDMNod),
such that for any modules # and N, any algebra A, and any
we A ®Hom(M,N),
the following diagram commutes:

AQFM) 2M™ A © GM)

F(w)l lG(w)

We shall denote by
GPol,,

the category of strict polynomial functors of degree n. It is well known to
be abelian, and, like the category of numerical functors, it is in fact a module
category. However, rather than consider arbitrary strict polynomial functors,
we shall usually limit our attention to homogeneous ones, as any strict poly-
nomial functor decomposes as a direct sum of such.
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§7. Tue HierArRcCHY OF STrICT PoLYNOMIAL FUNCTORS

As in the numerical case, we have the following three equivalent characterisa-
tions of strict polynomial functors. The words (uniformly) bounded degree will
here be taken to mean “strict polynomial of bounded degree”.

TueoreM 6. — Consider the following constructs, where A ranges over all algebras:

A. A family of ordinary functors Eg : 4 X900 — 4900, commuting with extension
of scalars.

B. A functor ] : X900 — IMod with arrow maps
Ja: Homy(A®@M,A®N) — Homy(A®J(M),AQJ(N))
that are multiplicative and natural in A.
C. A functor F: X0Mod — 9Mod with arrow maps
Fy: AQ@Homgp(M,N) > A®Homg(F(M),F(N))
that are multiplicative and natural in A (strict polynomial maps).

Constructs A and B are equivalent, but weaker than C. If, in addition, the arrow maps
are assumed to have uniformly bounded degree, all three are equivalent.

Proof. The proof is exactly analogous to the one given for polynomial functors,
except that, in the proof that B implies C, the module

n
@ r*Hom(M, N)
k=0

is used in place of BlHom(M, N)],,. The details are found in [20]. O
As in the numerical case, we obtain the following hierarchy.

e Strict polynomial functors, as defined previously, have bounded degree, and
satisfy all three conditions A, B and C.

e A functor satisfying condition C, but with no assumption on the degree,
will be called locally strict polynomial.

e A functor satisfying the weaker conditions A and B, again without any
assumption on the degree, will be called strict analytic.

ExampLe 11. — The functors 7, S, and I are in fact strict analytic, and A is
locally strict polynomial. A
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§8. HoMoGeENEOUS FUNCTORS

There are some superficial similarities between numerical and strict polyno-
mial functors — the first and most glaringly obvious one being their respective
definitions. Parts of their theories indeed run exactly in parallel. Therefore, it
may come as a surprise that, in fact, some very fundamental differences exist
between the two genera.

There is especially one property of strict polynomial functors that is lack-
ing for numerical ones, and that is the ability to split into a sum of homoge-
neous components. We saw this happen already in the case of maps.

DeriNiTioN 6. — The functor F: X900 — 9Mod is said to be homogeneous of
degree 7 if the arrow maps

F: Hom(M, N) — Hom(F(M), F(N))
have been given a (multiplicative) homogeneous structure. 3
The category of homogeneous functors will be denoted by
Hom,,.

We shall always prefer this category over &%ol,, since, according to the fol-
lowing theorem, nothing essential will be lost by considering homogeneous
functors only.

THEOREM 7. — A strict polynomial functor decomposes as a unique direct sum of homo-
geneous functors. The only possible natural transformation berween homogeneons func-
tors of different degrees is the zero transformation. Consequently,

SPol,, = P Hom.
k=0

Proof. See [20]. O

Exampre 12. — If Fj, is homogeneous of degree k, the direct sum
n
D F
k=0

will provide a strict polynomial functor of degree n. By the theorem, this is
the generic situation. On the other hand, a numerical functor is in general
“more than the sum of its parts”. An example of this phenomenon cannot be
given at this stage, since we do not yet know of a functor that is numerical,
but not strict polynomial. JAN
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§9. ANaLryTic FUNCTORS

We now examine the analytic and strict analytic functors. They will come into
play later, when we consider operads.

Tueorem 8. — The strict analytic functors are precisely the direct sums (o7, equival-
ently, inductive limits) of strict polynomial functors.

Proof. See [20]. O

ExampLe 13. — The strict analytic functors 7, S, A, and I all decompose as
infinite direct sums of homogeneous functors. This is the generic situation. A

Lemma 1. — Let F be an analytic functor, let u € F(P), and define the subfunctor G by
G(M) = (F(o)(w) [ P — M.
Consider the natural transformation
&: Hom(P,—) —> F,
given by

&nv: Hom(P,N) — F(N)
o — F(o)(u).

If &N is numerical of degree n, then so is
G: (M,N) - Hom(G(M), G(N))
forall M. In particular:
o Ifall & are numerical, then G is locally numerical.

o Ifall & are numerical of bounded degree, then G is numerical.

Proof. Observe that the modules G(M) are invariant under the action of F.
Thus, G is indeed a subfunctor of F.
Suppose &y is numerical of degree n. Then, for all homomorphisms

a,0;,: P> N

and scalars r, the following equations hold:

{F(O(I 0 0 Upy)(8) =0
F(ra)(u) = 35— (7)) F (Om @) ().

This implies that, for all homomorphisms

B,Bi:M—>N, y:P—oM,
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and scalars 7, the following equations hold:

{F(BI o0 Bus) F(Y)(n) = 0
FOB)E(Y) () = Yr_g (1) F (Om B) F(Y) ().

Hence

and

on G(M), which means that every

G: (M,N) — Hom(G(M), G(N))

is indeed numerical of degree 7. O
TueOREM 9. — The analytic functors are precisely the inductive limits of numerical
Jfunctors.

Proof. Step 1: Inductive limits of numerical, or even analytic, functors are analytic. Let
the functors F;, for i € 1, be analytic. For any

o € Homy(A®@M,A®N),

we have
F(a): A@F(M) — A ®F(N).

Therefore
limy F5(01) : A © lim F; (M) — A ® limy F(N),
since tensor products commute with inductive limits, which yields a map

lim £;: Homa(A @ M,A ® N) — Homy (A ® lim F;(M), A ®lim F;(N)),

establishing that lim 7; is analytic.
Step 2: Analytic functors are inductive limits of locally numerical functors. Let F be
analytic. The maps

F: Homy(A®@M,A®N) - Homy (A ® F(M),A ® F(N))

are then multiplicative and natural in A. To show F is the inductive limit of
locally numerical functors, it is sufficient to construct, for any given module
P and element » € F(P), a locally numerical subfunctor G of F, such that
u € G(P).

To this end, define G as in the lemma:

G(M) = (F(a)(u)|a: P — M.
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Clearly » € G(P). By the lemma, G is locally numerical, if only we can show
that
&u: Hom(P, M) — F(M)

is always numerical (of possibly unbounded degree).

We make use of the following fact. The module Hom(P, M) is finitely
generated and free, because P and M are. Let €, ..., &, be a basis.

Lets,...,s; be free variables, and let

A= B(-sla"_wsk)-

F (Zsi ®si) € Homy (A ® F(P),A® F(M)),

Since

we may write

F(Zsi@)si) (14 ®@u) = Z (;() ®uvx e AQF(M)
| X|<n
for some 7, and hence
&n ( 5i€i) =F (ZS;’&') (n) = Z <;(>~ux.
|X|<n

Since the €; generate Hom(P, M), it follows that &4 is numerical of degree 7.
Step 3: Locally numerical functors are inductive limits of numerical functors. Let F
be locally numerical, and, given P and # € F(P), define G and & as before. We
shall show that G is numerical by showing that  is numerical of some fixed
degree.
Let a;: P — M be homomorphisms, let

B=B<Sla-'_-75/e)7 C=B<517'-'_askat>

be free numerical rings, and consider the algebra homomorphism
T: B> C, s 155,

There is a commutative diagram:

B B® Hom(P, M) —-~ B® Hom(F(P), F(M))

l | Jre

C C®Hom(P, M) T>C®Hom(F(P),F(M))
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As a consequence, we obtain, for any homomorphisms a;: P — M:

F(Xsi®a)

|

TR®NF (X s;®a;)
Ztsi®ai4>|: =F(Xti@a,) ]

Y5 ®0;

Consider now

F: B<SI’ B ) ® Hom(P, M) — k) ® Hom(F(P), F(M)),

and write

("
F(Ysea) - ;( ) ®bx.

for some homomorphisms By : F(P) — F(M).
Similarly, from contemplating

r8( ") ottom(r.)  B( ) @ Hom(F(2). F(P)

we may write

F(t®1p) = Z ( >®Vm7

m<n

msn

for some number 7 and homomorphisms V,,: F(P) — F(P). Observe that n is
fixed, and only depends on F.
We now have

) () ®px = o) (; (x) @BX)

T®1 ( sl®a)

F(Zts,@ﬁ)
F(251®0() (t®1p)

(FGem) (2()er)
;; G() (;) ® BxYin-

The right-hand side, and therefore also the left-hand side, is of degree 7 in ¢,
whence By = o when |X| > n.
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Consequently,

Eu (ZSiGz) =F (ZS;‘OU) ()= ) <;(> Bx (#),

[X|<n

and & is numerical of degree 7. O



Chapter 7

DEVIATIONS AND
CROSS-EFFECTS

[...] je donnerais bien cent sous au mathématicien qui me démontrerait par une
équation algébrique I'existence de I’enfer.

— Honoré de Balzac, La Pean de chagrin

We have now arrived at the arguably most technical chapter of the mono-
graph, being virtually nothing more than a collection of formula. These will
be established with the pronounced goal of examining the internal structure
of functors, essentially “taking them apart to see what makes them tick”. Me-
chanics employ a technical term for this process: reverse engineering.

The central concept in the theory of polynomial functors has hitherto been
that of cross-effects. Ever since they were first designed by Professors Eilenberg
and Mac Lane in 1954 ([6]), they have been the algebraist’s vivisection tool par
préférence, being to module functors what the deviations are to module maps.

Recall that the first deviation measures how much a module map ¢ deviates
from being affine, as testified by the equation

O(x +7) = d(0) + (0x) + ¢(cy) + ¢(x0).

A corresponding equation for functors then ensues, namely the direct sum
decomposition

FXoY)=FeFX)eF(Y)oF'(X|Y),

valid for any module functor F, and any modules X and Y. The quantities
¢(o) and FT() are the “constant terms”. Disregarding these, the first cross-
effect FT(X | Y), like the first deviation ¢(x ¢ y), measures the deviation from
additivity. Indeed, polynomial functors of degree » may be defined, as did
originally Eilenberg and Mac Lane ([6]), as those with vanishing nth cross-
effects.

But the cross-effects carry an inherent deficiency, which greatly reduces
their utility, in that they do not take scalar multiplication into account. Of
course, neither did the deviations, but there we were able to save the day
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by inventing a second equation involving binomial coeflicients, marking the

transition from polynomial to numerical maps. This flexibility is lost when

passing to cross-effects, which would seem to render them somewhat obsolete.
Nevertheless, we shall later see how to put them to good use.

§1. Tue DevIATIONS

We first make a more detailed study of deviations in the context of functors.
We shall obtain formula for the composition of deviations, the deviations of
a tensor product, and the deviations of a composition. The results are valid
for any module functors F and G over any base ring B.
The symbol
MEXxY

shall denote that M is a subset of X x Y, and that both the canonical projections
are onto.

LemMA 1. — Let m and n be natural numbers, and let L  [m] x [n]. Then
> (fi=o
LSKE [m]x[1]

unless L is of the form P x Q, for some P < [m], Q C [n].

Proof. If L is not of the given form, there exists an (4, 5), which is not in L,
but such that some (4,7) and some (z,5) are in L. Then, for any set K ©
[m] x [n] containing (a,b), K will satisfy the given set inclusions iff K\{(«,b)}
does. Because the cardinalities of these sets differ by 1, the corresponding
terms in the above sum will have opposite signs, and hence cancel. O

LemMA 2. — Let m, n, p, and q be natural numbers. Then
(—I)lKl _ (_I)m+n+p+q+pq'
[p]x[g)=KE[m]x[n]

Proof. Let Y(m, n, k) denote the number of sets K of cardinality k satisfying

[p] x lq] € K & [m] x [n].

The formula is evidently true for m = p and n = ¢, for then Y (p,q,pg) = 1, and
all other Y(p,q,k) = o.

We now do recursion. Consider the pair (m,7) € [m] x [n]. The sets K
containing (m,n) will fall into two classes: those where (2, 7) is mandatory in
order to satisfy K © [m] x [r], and those where it is not. For the latter class we
may proceed as in the preceding proof. Taking such a K and removing (m, n)
will yield another set counted in the sum above, but of cardinality decreased
by 1. Since these two types of sets exactly pair off, with opposing signs, their
contribution to the given sum is o.

Consider then those K of which (m,7) is a mandatory element. They fall
into three categories:
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e Some (m,j) € K,for1 <j<n—1butno (i,n) €K, for1 <i<m—r1 The
number of such sets is Y (m,n — 1,k —1).

e No (m,j) € K, for1 <j<n—1,butsome (i,n) e K,for1 <i<m—1
The number of such sets is Y (m — 1,72,k — 1).

e No (m,j)eK,for1<j<n-—r1and no (i,n) € K, for1 <i<m —1 The
number of such sets is Y(m — 1,7 — 1,k — 1).

Induction yields

DU=0)*Y (m,n, k)

k

Z(—I)k(Y(m,n—I,/e—I) +Y(m—-1nk—1)+Y(m—1,n—1k—1))
k

= —((—ayr IR o ()PP gy

— (_I)m+n+p+q+pq,
as desired. O

TraEOREM 1: THE DEVIATION FORMULA.

Flo;0--00,)0F(Bo---0B,) = Z F( O GiBj)-
x[n]

Kc[m] (t)ek

Proof. We have

2 F<4,<> aﬁ,-) = Z(—r)'“”f“( D aiB,-)
] (iy)eK KC (

KS[m]x [ [m] % [n] LEK ij)el

= Z Z (—1)KI=ILIF ( Z aiBj)
]

Lc[m]x[n] LEKE[m]x[n (ij)eL

LS [m]x[n 1,7)EL LK [m] x [n]

= ] (—I)LlF(Z GiBj) >, (-
1 (

I (_I)P|Q|F< D aiB]_)(_I)m+n+P|+|Q|+P|Q
1x[7] (47

PxQc[m )EPXQ
= > (=" PIF (Zou) > (—)IF (2 B,-)
Pcm] i€P Q<] JeQ

=F(0; 0 00,)F(Bro--oBy).

In the fifth step the lemmata were used to evaluate the inner sum. O
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Lemma 3. — Let n be a natural number, and let P, Q S [n]. Then
Z (- = o
Pcl
Qg
oy
unless P = Q.

Proof. Compute

Z \IIHI\ Z 2 \I\HJI

per Pcic[n] QSj<[n]
= [\
= > (-pf D (-,
S Qu(In\)/Sin]

and note that the inner sum vanishes unless Q U ([#]\I) = [#], or, equivalently,

I < Q. Hence
Z (=M=l = Z (—)+7 = o,
g§§ PcicQ
C
Tu]=[n]
when P # Q. O
LemMa 4. — Let n be a natural number, and let P € [n]. Then
Z (—)HI+V = (—p)m=17,
Pclj
Toj=[n]

Proof. By the preceding proof,

SR (P]/ I VAN | S}
> (-1 (=1 (—1)

Pcl I=P
Tuj=[n]

THEOREM 2.

FRG) (0 00,) = Y <<> )@G@o@

10]=[n] el

Proof. Compute:

> F<<> ai) @GQ@ a,-)
10]=[n] el e/
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_ <Z(_I)1—P|F (Z Gi)) ® (Z (—nl-lg (Z aj))
Iuj=[n] \PcI P Qg/ 7€Q
= Z (—1)lPIHI (F (Z 0(i> ®RG (Z Gj)) Z (—p)l1+V1
P,Q<(n] ieP 7€Q Pci
Qs]
101
Z PP Il [ F (Z ou) ®G(Ya;
Pc(n ieP jepP
Z ~IPlF® G) (Z )z(F@G)(an---oan).
Pcn 1€eP
In the fourth step, the lemmata were used. O

Let X be a set. We shall write

MaX

to indicate that M € 2% (that is, M is a family of subsets of X), such that M & 27

for any Y € X. Equivalently,

Um=1z=x

ZeM
LemMa 5. — Let n be a natural number, and let P  [n]. Then
S (V=
PSj<ln]

unless P is of the form 22, for some Q < [n].
Proof. If P C U P choose A € U P\P. Because the set J satisfies
Pc]<n]

iff it satisfies
Pcjui{A} <in],

sets J with and without A will cancel each other out in the sum.

Lemma 6. — Let n be a natural number, and let Q < [n]. Then

3N (V= (—r) 1=

2Rcj«[n]
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Proof. The formula is clearly valid when » = |Q|. Now assume » > |QJ, and
consider for the moment the sets J satisfying

N0 {{n}}) # 0.

(There is thus a set Y € J with n € Y, but Y # {n}.) Because such a set J
satisfies

2R ] <n]

iff it satisfies
22U {n) aln],

sets J with and without {n} will cancel each other out.
There remain the sets | with

Jc G ({n))

Since ] <i[7], necessarily {n} € J, and we may write ] = KU {{n}} for K < 2l"=1.

We then have
PN L M e L
22c]<ln] 2QcK<[n—1]
and the formula follows by induction. O
THEOREM 3.

(FoG)(0y0---00,) = Z]F<<> G(Q ai>>.

Proof. Compute:

= F(9(9%))

J<lA]
= 3 Y (nlnE (ZGQE,O‘Z‘)

J<[n] PS] IepP

e "’F<ZG<<>0(>) T ()
pealn] Iep Nl Pcyaln]

- > 0F <Z (<>a))< il
Q<[] e N

2 {le)
Qcn] €Q

= (FoG) (0, 0---00y).

In the fourth step, the lemmata were used. O
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§2. Tue Cross-ErrecTs

An arbitrary module functor may be analysed in terms of its cross-effects. We
here indicate how this is done. Again, no assumptions are placed on either the
functors or the base ring.

ExamrLe 1. — Consider the second symmetric functor $%, and let X and Y be
modules. We see that
SHX) = Cox, | xi € XD

contains the monomials obtained from X, and
SY) =0 |2i€Y)
the monomials from Y only. If §* were additive, we would have
SXDY) = S(X) @S (Y).

But not so; mixed terms of the form xy will appear in $*(X @ Y), terms that
were not present in either $*(X) or §(Y). This is the crosseffect (S*)1(X | V). A

The cross-effects may be defined as either of four equally canonical mod-
ules. Given a direct sum M =M, @ --- DM, let

M —->M
be projection on the jth summand,
0y M~ M/
retraction from the jth summand, and
U M/M; — M
insertion of o into the jth summand.

THEOREM 4. — For a module functor F, the following four modules are naturally iso-
morphic:

A=Im[F(To---om,): F(M) — F(M)]

B=Ker [(F(p), ... F(p)): F(M) — (D F(M/M)]

C = Coker [F(T,) + -+ + F(1,): @D F(M/M;) — F(M)]

D = Coim [F(T o -+ - o Ty,): F(M) — F(M)].

Proof. We only show that modules A = B, and leave the remaining cases to the
reader.
Suppose

z € Ker(F(py), ..., F(pn))-
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Note that if j # 7, then 1T;p; = 7. Consequently, if j ¢ 7, then
F (Z sz) (z) =F (Z Tfi) F(1;)F(p;)(z) = o.
1€l i€l
It follows that

E(To--omy)(z) = > (-0 VIF (Z”i) (2)

IC[n
=F([T31+---+Tfn)(l) =F(1)(z) = z
Conversely, assume
z=F(Tho---oT,)(y) e ImF(Th o - o T,).
Then, since p;T; = o, we get

F(pj)(z) = F(p)E(Th o ---om,)(y) = Y, (—1)" VIF (@'ZW) )

Ic[n] iel

= > (- VIF ( > pﬂTi) () =o,

1€[n] e}y
because sets 7 with and without j will give cancelling terms. O
DeriniTioN 1. — The (7 — 1)st cross-effect of F is the multi-functor

FY(My |-+ | My)
of n arguments, defined as any of the four modules above. o

For our purposes, it shall be most convenient to view the cross-effect as
FN (M |-+ | M) =ImF(Tg o oTL,).

It is also the definition which generalises most readily to yield the multi-cross-
effects of a strict analytic functor.

Let us now describe, for given homomorphisms a;: M; — M, how to form
the map

FU(og || ay) : FY (M, |- | M) — FF (M| - | M)

It is easy to verify the commutativity of the following diagram:

F @) LD k@)

F(0 m)l if(oré)
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Therefore, there will be an induced homomorphism

ImF (OTg) — ImF (O),

which we define to be FT (a; | - -+ | a,). It will now be readily checked that, in
fact,
Fi(a,|---]a,) =F(a,0---oay).
When presented with a (finite) family (4;);c; of modules, we shall write
Fr(Mi;)

for the cross-effect of the modules M;.

THeoreEM 5: THE Cross-ErrecT DECOMPOSITION.
F(M,®---@M) = @ F'(Milier)-
IC[k]
Proof. See [6]. O

This decomposition is evidently functorial, and there is a corresponding
decomposition of natural transformations {: F — G:

lno-om, = P [ZLAZ.E,: FY(Milier) — GT(Mi|iel)] :
Ic[k]
THEOREM 6. — F is polynomial of degree n iff its nth cross-effect vanishes.

Proof. Suppose the nth cross-effect vanishes, and consider 7 + 1 homomorph-
isms
Oy ...,0p4: M — N.

Let M; =M and N; = N, forj =1,...,n +1, let
: DN~ DN

denote the jth projection, and define

0: AN, >N, (e Inta) = D i
The equality

Flayo0---00,1;) = F(0) o F(Th 0+ - 0 Th4y) 0 F((Oy, . .., O0ppty))

is easily checked, for maps

F(N) « F(PN,) « F(DN) — F(M).
Since the middle component is zero by assumption, we conclude that

F(o; 00 0,41) =0,

and so F is polynomial of degree 7.
The other direction is trivial. O
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Exampre 2. — For any functor F,

is the “constant term” of F.
If F is reduced, that is, F(0) = o; then the zeroth cross-effect coincides with
the functor itself:

In the general case,

A
ExampLe 3. — If F is polynomial of degree 1, then all cross-effects of order
higher than o vanish, and
FX®Y)=F()a@F(X)@F\(Y).
A
ExampLe 4. — For a functor of degree 2, all cross-effects of order higher than

1 vanish, and
FXeoY)=F()eoF(X)oF (Y)oF (X|Y).

To take a concrete example, we have for §

()0 =0
()N(X) = (xux, | xi € X)
()'NY) = O lyieY)
(X |Y) =Gy | xi€X, y;€Y).

The equation
()XY ]Z) =0

allows for the following interpretation in words: there are no monomials of
degree 2 involving elements from all three modules X, Y, and Z. A

§3. Tuae Mutrti-DEvIATIONS

The deviations, which exist for arbitrary maps and functors, find for strict
polynomial maps and functors their equivalent in the multi-deviations, intro-
duced earlie. 'We shall derive formula for the composition of multi-devi-
ations, the multi-deviations of a tensor product, and the multi-deviations of a
composition. Perhaps surprisingly, the proofs will here be substantially short-
er, because no combinatorial tinkering will be necessary.
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Throughout this section and the next, F and G will denote strict analytic
functors over a commutative base ring. Let a;: ¥ — N be homomorphisms.
Recall that the maps
F [A] * F(M) - F(N)

a

are defined by the universal validity of the equation

F(ZM@%) ZaA® olAl-
i
We have mentioned the formula

MAPL P oL
u: A—>B

for the product multiplication on the divided power algebras. Its functorial
generalisation is as follows.

THEOREM 7.
Fymy o Fgin = D, Fiopy-
u: A-B

Proof. Identify the coefficient of 244? in

(ZaA ®F0([A]> o (ZbB®FB[3]> F( ﬂl®dl> oF (Zb ®B])
A B
( alb ®q; [3])
i

Z (ab)* ®Faog)[u]
u: A>B

THEOREM 8.
(FRG)q1 = Y, Fyu1 @ Gyuar-
ALB=X

Proof. Identify the coefficient of a*

(F®G) (Zi]a,-@ai) =F (Zi]a@ai) QG (24@@)

= <ZﬂA ®Fa[A]) ® <ZﬂB®Gu[B]) :
A B
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Let G be a functor, and let ay, for £ € X, be homomorphisms. If E is a
partition of X, we define the symbol

deg .
G = Gan = ] G .
YeE Ye#E

Thus, for example, if
E= {{Ia I}a {Zv 3}7 {7‘7 3}}

is a partition of X = {1,1,2,2,3,3}, then

[E] _ 1] [2] _ [2]
Ga” = Ga[{m}] Gq[{z,a}] - GGI[Z] Gazas-

THEOREM 9.

(FoGgm = ), Fon-
EePar X

Proof. 1dentify the coefficient of ¥ in

e (2®) :F(G (2®))

=F<;aY®Ga[y]>
-2 3 (I17) 070,00

X EeParX \YeE

§4. Tuae Murti-Cross-EFFECTS

The cross-effects of a strict analytic functor may be further dissected into so
called multi-cross-effects. Let us begin with an example to illustrate the concept.

ExamrLe 5. — Let X and Y be modules, and consider the third symmetric
functor 3. We know from before that the cross-effect ($3)7(X | Y) contains
the cubic monomials built by elements of both X and Y. This module splits
canonically into two components:

OX|Y) =y [xieX, ye Y@y [ xi€eX, y€Y).
These are the multi-cross-effects
(Sa)T{LXVX’Y}(X| Y) and (SS)J{FXVY,Y}(X | Y),

respectively. A
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When given a direct sum
M=M®®@- - @M,

T : M — M will as usual denote the ith projection. We recall that the cross-
effects of an arbitrary module functor F are given by

Fr(M |- |M,) =ImF(Tg o---oTL,).

DerintTiON 2. — Let A be a multi-set with #A < [r]. The multi-cross-effect
of F of type A is the multi-functor

Fy (My |-+ | My) = Im Fon
of n arguments. 3
When (M) is a family of modules, we may write
F} (M)
for the multi-cross-effect of type A of the modules ;.
TuaEOREM 10: THE MULTI-CROSS-EFFECT DECOMPOSITION.

FT(MI|"'|Mn): @ F;(MI||M7Z)7
#A=[n]

and consequently,

FM,® - @M,) = @ Fy(M |- | My).
#ACS[n]

Proof. It immediately follows from the equation

F(Zéﬁ@“i) ZZaA ® Fya)
1 A

that the identity map on

decomposes as
1=F(1)=F (Zm> = > Fa.
i A

Furthermore, the equation

ZﬂAbB Q@ Fa Fym = F (Zai ®T[i> r (ij@@')
A.B i ]
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=F (Z apb, ® T[k> = Z(db)c ®Fn[c]
k

C
shows that
o when A # B
FanFp = ’
Al 7] {FT[[A] When A =B.
Consequently, the maps F 4 provide a direct sum decomposition. O

This decomposition is evidently functorial, and there is a corresponding
decomposition of natural transformations {: F — G:

#AC([n]

Note in particular the following special case of the theorem:

F(B") = @ F|(B.),

#AS[7]
which is the one that will be most frequently used.

THeOREM 11. — F is homogeneous of degree n iff its multi-cross-effects of type A vanish
whenever |A| # n.

Proof. If F is homogeneous of degree 7, then plainly
Fy (M |-+ | My) =ImFya) # 0
only if |A| = n.

Conversely, suppose that the multi-cross-effects of F of type A vanish when
|A| # n. Because there is a direct sum decomposition

rarny = F(uy) = ZFIA[;:]»

and we made the assumption that
ImF [m] = O
Tn
when m # n, we deduce that, in fact,
Fpm =0
M

when m # n, and hence
I[:(M) = FI/][;,] .
Let a: M — N be a homomorphism. We get

Fa®a) =Fa®a)F(a®1y)
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= (I®F(G))Zam®FIA[/Im]
= (1@ F())(a" @ 1pq)) = a" @ F(a).
O

Of course, F is strict polynomial of degree » iff the multi-cross-effects of
type A vanish whenever |A| > n.

ExamprLE 6. — When F is homogeneous of degree o, then

Fly( = F1() = F(o),

with all other multi-cross-effects vanishing. A
ExampLE 7. — When F is homogeneous of degree 1, then

Fly, (X) = F(X) = F(X)
are the only non-vanishing multi-cross-effects. A
ExampLe 8. — Even in the case of homogeneity degree 2, the multi-cross-

effects coincide with the cross-effects, and thus provide no further decompos-
ition. So, for example:

Fly X 1Y) = F1(X)
Fly y, (X |Y) = F(Y)
Fly (X | Y) =FI(X | Y).
A

ExampLe 9. — The utility of the multi-cross-effects becomes apparent once
we reach homogeneity degree 3. In this case, we have

FYX) = Fly (X | Y 1 2)
FUX|Y) = Fly x (X | Y| 2)®Flyy (X | Y | 2)
FIX|Y|2)=Flyy,X|Y|2).
We see that F1(X | Y) all of a sudden decomposes, as in the introductory
example. A

ExampLE 10. — As our final, very general, example, we choose the complete
symmetric functor S. Abbreviating

XPYq:<xI,..xpyI...yq|xi€X7 ijY>’

we obtain the following decomposition of S(X @ Y):
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S0 4 SHEX|Y) =
TSIX}(X |Y) X
§7(X) 4 SwnXIV) = X
S{X,X,X}(X| Y) = X3
TS{Y}(X| Y) = Y
— 2
SH(y) 4 Sy 1Y) = Y
SyyryX1Y) = 13
Sy X 1Y) = Xxv
SIX,X,Y}(X| Y) = XY
ﬂx Y,Y}(X| Y) XY?
S'XTY) S S§X’X’X)Y}(X | Y) BY
SxxynyX 1Y) = XY
S{X,Y,Y,Y}(X| Y) = XY3




Chapter 8

PROJECTIVE GENERATORS

The first person he met was Rabbit.

“Hallo, Rabbit,” he said, “is that you?”

“Let’s pretend it isn’t,” said Rabbit, “and see what happens.”

"I've got a message for you.”

“I'll give it to him.”

“We’re all going on an Expotition with Christopher Robin!”

“What is it when we’re on it?”

“A sort of boat, I think,” said Pooh.

“Oh! that sort.”

“And we’re going to discover a Pole or something. Or was it a Mole? Anyhow
we’re going to discover it.”

“We are, are we?” said Rabbit.

“Yes. And we’ve got to bring Pro-things to eat with us. In case we want to eat
them. [...]”

— Alan Alexander Milne, Winnie-the-Pooh

All functors are equal, but some are more equal than others. Indeed, some
functors turn out to possess the pleasant property of being a projective gener-
ator of the category they live in. Expounding upon these amiable functors is
the purpose of the present chapter.

If the theory of polynomial functors be likened to a palace, then this chap-
ter, along with the next, could not unjustly be called the oriental garden en-
circling it. Japanese influences are here highly perceptible. The course of the
current chapter will have us indulge in a veritable orgy of lemmata, which
all bear the unmistakable mark of Yoneda, while the theorems of the next
are elaborate instances of the classical Morita Equivalence. Of course, the
counterexamples, if there were any, would probably be due to Nagata.

§1. Tue FunNDAMENTAL MoDULE FUNCTOR

Let us begin by exhibiting a projective generator for the category of all module
functors. As usual, B is then permitted to be an arbitrary, unital ring.

Tueorem 1. — Let K be a fixed module. The functor Bl[Hom(K, —)], given by

M — B[Hom(K, M)]

133
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. Xx]: B[Hom(K,M)] — B[Hom(K, N)
e it

is a module functor.

Define

B = (@B = JB" = lim B,
the module of all finite vectors over B. The functor
B[Hom(B”, -)]
will be called the fundamental module functor. It is a projective generator for
the category of module functors, as will be demonstrated in the next chapter.

§2. THEe CrassicarL YONEDA CORRESPONDENCE

Recalling the classical Yoneda correspondence, we strongly emphasise that
natural transformations are always assumed linear, whereas functors are not.

Tueorem 2: THE CrassicaL YONEDA LEmma. — Let K be a fixed module, and F a

functor. The map
Yk r: Nat (B[Hom(K7 —)],F) — F(K)
n — N ([1x])

is an isomorphism of modules.
The isomorphism is natural, in the sense that the following two diagrams commute:

YK, F

K Nat(B[Hom(K, —)], F) ——= F(K)

Bl [B*]*i iF(B)
L

Nat(B[Hom(L, —)], F) w F(L)

Yk F

Nat(B[Hom(K, —)], F) —> F(K)

F
| .| «
G Nat(B[Hom(K, —)], G) W G(K)
Proof. This is, in fact, the original Yoneda Lemma in disguise. Note that arbit-
rary natural transformations
Hom(K,—) —» F
correspond to linear transformations

B[Hom(K,—)] — F.
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§3. Tue FUNDAMENTAL NUMERICAL FUNCTOR

We now turn to numerical functors, and, as is customary, assume a numerical
base ring.

Tueorem 3. — Let K be a fixed module. The functor Bl[Hom(K, —)],,, given by
M — B[Hom(K, M)],

[X+]: B[Hom(K,M)], — B[Hom(K,N)],

:M — N|—
bx: = N) [o] ~ [xoa] |
is numerical of degree n.

Proof. Since B[Hom(K, —)], is the composition of B[—], with the Hom-func-
tor, it suffices to prove B[], is of degree n. Let x;: M — N be homomorph-
isms, and let x € M; then

[Xi o+ o Xnsa] ([x]) = [Xe(x) © -+ © Xnta(x)] = 0.
Moreover, if 2 € B and X: M — N, then
= (a e
1) = faxl = 5 (1) 93] = 33 () [ 9] e
We infer that B[], is numerical of degree 7. O
The case K = B” is especially important. The functor
B[Hom(B”, —)],

will be called the fundamental numerical functor of degree n. It will presently
be seen to be a projective generator.

ExampLE 1. — We give an example of a functor which is polynomial, but not
numerical, of degree 1. Let the base ring be R, and define for real vector spaces

F: g9700 — gNod
Vo RIV]/{[x+y] = [x] = DD

We thus impose additivity, but not linearity. Since F is additive, its first cross-
effect will vanish. But F is not numerical of degree 1, for

F(v3: R = R): [i] = [V2]
VAE(1: R - R): [1] = v/2]1],

and [/2] # v/2[1] in
F(R) =R[R]/([x+y] = [x] = D] -

In fact, F is not numerical of any degree. JAN
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§4. Tue NuMERICAL YONEDA CORRESPONDENCE

TueOREM 4: THE NUMERICAL YONEDA LEMMA. — Let K be a fixed module, and F a
numerical functor of degree n. The map

Yk r: Nat (B[Hom(K, —)],,F) — F(K)
n — nk([k])

is an isomorphism of modules.
The isomorphism is natural, in the sense that the following two diagrams commute:

YK F

K Nat(B[Hom(K, —)],,, F) — F(K)

Bi [B*]*i lF(B)
L

Nat(B[Hom(L, —)],, F) —— F(L)

Nat(B[Hom(K, —)],,, G) 7 G(K)

Proof. The proof is the usual one. Consider the following commutative dia-
gram:

K B[Hom(K,K)], % FK)  [x] —— nx([x])

Do e

M B[Hom(K,M)], ->FM)  [a] —nu([a]) = F(a)(nk([1k]))

Nm

Upon inspection, we find that Yk ¢ has the inverse

. [nM: B[Hom(K, M)], —>F(M)]
4 [a] — F(o)(y) '

When defining this inverse, the numericality of F is used in an essential way
to ensure that the map

Hom(K,M) — Hom(F(K), F(M))

factor through B[Hom(K, M)],.
The naturality of Y is obvious. O
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In particular, putting F = B[Hom(K, —)],, we obtain a module isomorph-
ism
Nat(B[Hom(K, —)],) =~ B[Hom(K,K)], = B[End K],
given by the map
Y:n e ng([ig])
with inverse
Y1 [o] > [0*]: B[Hom(K, —)], — B[Hom(K, —)], '
[a] — [aoa].

We note that

Y ([o][1]) = Y ([0 +1]) = [(0 +1)*]
= [0% + 1] = [0¥][v*] = Y ([a)Y*([]),

so that the Yoneda correspondence is actually a ring isomorphism under the
sum multiplication.

Now, this is probably very interesting and all, but for our purposes it will
be of no major consequence, and we mentioned the above fact just in passing.
The really interesting question is what happens to the product multiplication
on B[EndK],:

Y~ ([o] » [1]) = Y™([ot]) = [(01)*]

[t*] o [0™] = Y7 ([x]) o Y™*([0]).

The product multiplication is reversed by Y.

TueorREM 5. — The Yoneda correspondence provides an isomorphism of rings
(Nat B[Hom(K, —)],)" = B[End K],,

where the former is equipped with composition, and the latter with the product multiplic-
ation.

§5. Tue DeviaTep Power FuNcTORS
The fundamental numerical functor
B[Hom(B”, —)],,

is not atomic, but built from simpler components. A similar decomposition
is available for the functor

B[Hom(B”, )],

and, in order to subsume this case, we shall, in what follows, allow for the
possibility » = co. The symbol
Num.,
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will then denote arbitrary module functors, and we agree that
Laby,. = Laby.

In the case n = o, numericality of the base ring shall of course not be needed.

We draw the reader’s attention to a little peculiarity. When including the
case n = o0, we allow for a non-commutative base ring B. However, since
we limit ourselves to the study of finitely generated and free modules, all our
modules are automatically bimodules. Homomorphisms are still one-sided, and
we settle on the consideration of right module homomorphisms only, as this turns
out to give the most natural theory.

When (M;)es is a finite family of modules, we define

o] =[] jwemycn[@m]

el
As a degenerate case, we have

Lg@Mz‘L = ([e]) ={[o]) = B.

Let X be a finite set. Define the corresponding deviated power functor by

AX(M)=[<>M] cB|@M| .
xeX n xeX ”
DerinitioN 1. — The deviated power category Dev is the category of functors
AX, where X € Laby,,. o

The definition we have given of deviated powers, in terms of deviations, is
algebraic, but awkward. It turns out that the most natural, and fruitful, way
of viewing them is as mazes.

Let M be a module, and X and Y be finite sets. We will denote by

uLaby, (X,Y)

the module of mazes X — Y, where the passages have been labelled with
elements of M (rather than B). We can, and will, still impose the labyrinth
axioms — two if # = o0, and four if » < co. It should be noted that there is no
way of composing such mazes (as there is no multiplication in M), so we do
not obtain a category.

Evidently, the assignment

M — yLaby,(X,Y)
is functorial. When a: M — N, we shall denote by
dsabnn(Xa Y) : Msabnn(Xv Y) - Nﬂab‘)n(Xa Y)



¢5. The Deviated Power Functors 139

the induced homomorphism (acting on labels of passages).

Putting ¥ = #, the canonical one-element set, will provide us with the
sought description of the deviated power functors. We are forced to accept
the degenerate case X = (). An element of /Laby, (0, =) will be an (unlabelled)
“dead end”, which we otherwise took great care to forbid, but it is necessary
to allow this pathology in order to handle the functor A°.

Let two direct sums M* and MY be given. Recall that, forpe X and g€ Y,

there is a canonical transportation map
X Y o ify#q
Op: M = M, O (e)sex), = ny, ify=gq.

THEOREM 6. — Let X be a finite set, and M a module. The map
Sxu: A (M) — yLaby, (X, *)
Uy | X l> *
&)= Ui

is an isomorphism of modules.
The isomorphism is natural, in the sense that the following two diagrams commute:

X A (M) L ) Laby,, (X, #)
Pl [<>[p x—)y]el’po-}”c]i l(PO)*
Y AY (M) —— uLaby,, (Y, *)
=Y.M
=X
M A (M) —— yLaby, (X, *)
al [a]l lzabny,(u)
N AX(N) —— nELaby,, (X, #)
=X,N

Proof. Define a map

xeX n X

(el = (U {rm }) |

zcX

and note that =y y is the restriction of this to AX(M). Hence = is well-defined,
and it has an obvious inverse.

The second diagram above evidently commutes. That the first one does
is a consequence of the Deviation Formula and the definition of the maze
product. O
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ExampLE 2. — The maze

x I

€ yLaby, ({1,2}, %)

Z 7

corresponds to the deviation
[(x,0) ¢ (y,0) ¢ (0,2)] € A*(M).
A

We see that deviations of module elements correspond to mazes. That also
deviations of homomorphisms can be naturally interpreted as mazes should
come as no surprise.

TueOREM 7. — Given homomorphisms ay,: M — N, let

s=1J { v } € Hom(1,N) £aby,, (+, #).

The following diagram commutes:

X (M) % 3y Laby,, (X, )

[0 a,e]l ls*

AX(N) —— nLaby, (X, )
=X,N

Proof. The formula
[0 0 y] ([0 0uy]) = l 0 Gi(”‘)]
K;[mzlx p Lesiex

can be obtained as a special case of the Deviation Formula (it is, in any case,
proved in exactly the same way). The commutativity of the above diagram is
then an immediate consequence. O

Let P: X — Y be a maze. We denote by
AP AT — AX
the corresponding natural transformation
P*: _Laby, (Y, *) > _Laby, (X, *).

With the current description of deviated powers, the verification of the
following theorem becomes a mere triviality.
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Tueorem 8. — The functor
=: Laby, — Dev,,
mapping
X - ¥
[P: X > Y] [AP: AY—>AX],
is an anti-isomorphism of categories.

Proof. That every transformation
uLaby, (Y, *) - yLaby, (X, *),

which is natural in M, is of the form P*, and uniquely so, is not difficult to see.
Recall that we may choose M to be a free algebra. O

ExampLE 3. — We have thus made three important identifications. The set
{1,2} € Laby, corresponds under the category anti-isomorphism to the func-
tor A%, which, as we know, is naturally isomorphic to the functor

b, (1,2}, ).
In what follows, such identifications will be made without comment. A

The importance of the deviated power functors stems from the fact that
they provide a splitting of the fundamental (numerical) functor into atomic
components (and here, for once, the original definition is actually useful). To
subsume the case n = 0, we put [00] = Z*.

THEOREM 9.
B[Hom(B",—)], = P A%
Xc[n]

Proof.

B[Hom(B”,M)]nZBl@M] =@ [<> M] = @ a5 m).

ke[n)

§6. Tue LABYRINTHINE YONEDA CORRESPONDENCE

As usual, 0 denotes transportation maps.
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THEOREM 10: THE LABYRINTHINE YONEDA LEMMA. — Let X be a set, and F a func-
tor. The map

Yx.r: Nat(A*, F) — F'(B|x)

ZHZB)((}CEQ({;C;**})

is an isomorphism of modules.
The isomorphism is natural, in the sense that the following two diagrams commute:

Y
Nat(8¥, F) —> Ft(B|x)

X

Pl (AP)*\L iF(O[p x—)y]eP?Gy")
Y Nat(AY,F) ?)FT(B|Y)

Y,F

X Yx,F +
F Nat(A*, F) —— F'(B|x)
zl z*l iz;;x
G Nat(AX, G) Y*> GT(B|X)
X,G

Proof. A natural transformation
N> F
corresponds to a natural transformation
Nu: B[Hom(BY, M)] — F(M),

taking

o ifY c X,
LSY[G” B HM]] 7 (Uyey [ LI D iy =x
The original Yoneda map takes n to
Npx ([1gx]) = Z Npx ([ Q IB},D = Npx ([ O IBX])
Yox yeY xeX
ZBX <U |: *Mx]> :ZBX <U [*&x]) .

xeX xeX
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Thus, Yx r is the X-component of the original Yoneda map, and it is clear that

Y £(@) = ngx (Lgxmx]) e FI(Bly).

That the second diagram above commutes is clear, so there remains to
investigate the first. From the original Yoneda Lemma, there is a commutative
diagram:

X wrr X
Nat(B[Hom(B*,)], F) — F(B*)

[(O[,,; qu]eppcyx)*]*i J/F(O[p: x_,y]epﬁoyx)

Nat(B[Hom(BY, —)], F) — F(BY)

YBY,F

We shall show that the following diagram commutes, from which the claim
follows:
Nat(AX, F) —— Nat(B[Hom(BX,)], F)

| o
Nat(AY, F) — Nat(B[Hom(BY, —)], F)
Consider a natural transformation
(0% > F,

corresponding to an
n: B[Hom(BX,-)] > F

as above. The homomorphism

O POy
l([p xﬂy]ePp y) ]

maps N to the natural transformation

*

N l( O P%) ] : B[Hom(B", M)] — F(M),

[p: x—>yleP

which takes
B, - M||+— DOy
I:ySY[Gy Y ]] it <l3/§Y % ° [p: xgy]ePpo-y 1)

=n O Oy opOy
M(Lp:xﬂy]&P Y P ) ])
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s Y [z ]
[p: x—>yleP

s U [oeen )
[p: x—>y]eP

ay@o-yx(lx)) = ay(ﬁ' Iy) = Gy(Iy 17) = ay(Iy) -p-
On the other hand,

where the last step is because

WA > F
corresponds to a natural transformation

B[Hom(BY,M)] — F(M),

that takes
<>[O(y:By—>M]]'—>ZM U[*MJ’] U [yix] .
yey yeY [p: x—yleP
The commutativity of the diagram is demonstrated. a

§7. Tue FunpaMeENTAL HoMOGENEOUS FUNCTOR

We recall that, given 4, € A (where A is some algebra) and homomorphisms
0, € Hom(M, N), the equation

re (Zﬂi@)ai) = > @ (Mg
i |X|=n
defines the multi-deviations
(M)gex = T*(M) = T7(N).
As a matter of notational convenience, let us agree to write
al¥l = (M)gx.
The symbol al*] may thus be interpreted either as an element of
" Hom(M, N)

or as a map
(M) — T"(N)

(and usually as both).
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TueoreM 11. — Let K be a fixed module. The functor T Hom(K, —), given by

M — I Hom(K, M)

. (X )["]: " Hom(K,M) — ' Hom(K, N)
[X.M—»N] — [ * al”l s (x o a)l! ,
is homogeneous of degree n.

It will prove convenient to have available a formula for the strict polyno-
mial structure. Thus, for any algebra A:

2. ®Xi ] o (X4 ® (Xi)*)[n] = 2X|=n X @ (x+)M
€ A®Hom(M, N) € A®Hom(" Hom(K, M), Hom(K,N)) |

Again, the case K = B” is especially important. The functor
" Hom(B”, —)
will be called the fundamental homogeneous functor of degree n. It will

presently be seen to be a projective generator.

§8. Tae HoMoGENEOUS YONEDA CORRESPONDENCE

Tueorem 12: THE HoMoGENEOUS YONEDA LEMMA. — Let K be a fixed module, and
F a homogeneous functor of degree n. The map

Yk r: Nat(Mr" Hom(K, —),F) — F(K)
ne= rlK(IE?])

is an isomorphism of modules.
The isomorphism is natural, in the sense that the following two diagrams commute:

YK, F

K Nat(I"” Hom(K, —), F) — F(K)

Bl ((B*)["])*i iF(B)
L

Nat(Ir"” Hom(L, —), F) - F(L)

L,F

YK, F

Nat(I"” Hom(K, —), F) ——= F(K)

l N izK

Nat(I'"” Hom(K, —), G) — G(K)

Yk,
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Proof. Let y € F(K), and consider the strict polynomial map

=: Hom(K,M) —- > Hom(F(K), F(M)) — F(M),

where the second (linear) map is evaluation at y. Since this map is homogene-
ous of degree 7, it gives rise to a linear map

" Hom(K,M) — F(M), al’l — F(a)(y).
We may therefore define
=: F(K) —» Nat(I'" Hom(K, —), F)

8 I'”Hom(K,M) —>F(M)
e al”l o F(a)(y) ]

It should be evident that  is indeed natural.
Let us now show that the above formula gives the inverse of Y. On the one
hand, it is clear that

On the other hand, let
n: MHom(K,—) > F

be given. There is a commutative diagram:

K "Hom(K,K) %~ F(K) ) ()

T

M T"Hom(K,M) —=F(M) ol —ny(al) = F(a)(nx(f)))
We deduce that the natural transformation =Y (n) maps

al” s F(a)(Y(n)) = F(a)(nk (1f) = na(al),

and hence ZY(n) = n.
The naturality of Y is obvious. O

In particular, putting F = ' Hom(K, —), we obtain a module isomorphism
Nat(I"” Hom(K, —)) =~ " Hom(K,K) = " (End K),
given by the map
Yine— nK(IE?])v
with inverse

v-i. gl o (o®)"1: T" Hom(K, M) — ' Hom(K, M)
: C([”] — (C( o O')[”]
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As in the numerical case, we observe that
Y= (ol w1ty = Y= (o)) = (o))"
= ()" = (@)1 o (0" = Y (@) o Y (0,
and we have deduced the following theorem.
THEOREM 13. — The Yoneda correspondence provides an isomorphism of rings
(Nat(r” Hom(K, —)))° =~ I'"(EndK),

where the former is equipped with composition, and the latter with the product multiplic-
ation.

§9. Tue Divibep Power FuNcTORS

When (M,),ea is a (finite) multi-set of modules, we define

@M _ ® rdega(jua)7

acA ac#A

which might be called a confluent product of modules. As a degenerate case,

we have
(M, =B.

acl

Let A be a multi-set. Define the corresponding divided power functor by

M) =M= &) resu).

acA ac#A
DeriniTioN 2. — The nth divided power category Div,, is the full subcategory
of $om,, consisting of the functors [, where A € MGSet,,. o

In order to study the deviated powers, we took to establishing an iso-
morphism between AX(M) and a module of formal mazes, labelled with ele-
ments from M. Analogously, it will prove convenient to view elements of
(M) as formal multations. We recall that, at the very beginning, we saw
an example of the reverse procedure, that of viewing multations as divided
powers. There is indeed a very intimate connection between multations and
divided powers.

Let M be a module, let £&: A — K be a multation, and consider module
elements x;, € M, for k € K. Recall that we have defined the symbol

B = R O el

ac#A (a,k)ek

If € is a sum of multations, we choose to interpret this quantity as the cor-
responding sum of divided powers. (This is why we prefer the symbol to the
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left, as this could conceivably be linear in §, whereas it looks more doubtful
that the right one is.)

Consider now a multation p: A — B, and free variables x;,. Let M be a
module. As usual, 0, will denote transportation maps M#8 — M#4 but this
time acting on the right. Recall that the equation

(]

Z xba ® cba — qu ® 0'[“]
ac#A u
be#B
defines homomorphisms
oM. r(m#B) — r*(M#4).

(Here p will range over multations X — Y, where #X € #A, #Y C #B, and
|X| = |Y| = n.) We note that

oM ((ep)pesn)™ = () (x,)00,
(a,b)ep

and hence oM may be viewed as a map
rH(a): TP — T4 (),

taking
SIB Bl

It is clear that " is a natural transformation.

ExampLe 4. — The multation
I 1 2 2
= [1 2 2 z]
provides a natural transformation
rH. o222} o

X ® xES] = XX ® x£2] .

Tueorem 14. — The functor
=: MGet,, — Div,,
mapping
A4

N
[M: A — B] [x®[§] o x@[zul]

is an anti-isomorphism of categories.
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Proof. Since " is found as the coeflicient of x* in

(]

Z Xpy @ Opy, ;
acH#A
be#B

while H itself is the coefficient of x* in
[~]
a
Z xbﬂ ® |:b:| 9
ac#A
be#B

it is evident that the correspondence is functorial. Also, it should be clear that
any natural transformation I'® — ' can be expressed as a sum of maps ¥,
for, as usual, M may be chosen to be a free algebra.
Finally, let us verify the given formula for M. Let &: B — C be a multation;
then we already know that
ré.r¢ s
maps
BICT L, (Ol

Hence, by functoriality,

MR = PRE(®ICT)) = FEH(®ICT) = x®IEH],

The theorem should be compared with the category anti-isomorphism

IlRo

Set, = {T | A € Set,,},

a result that appears to hark back to Weyl. Here, to complete the analogy,
Get,, denotes the category of n-element sets and their bijections.

Dr. Salomonsson presents an alternative proof in [20]; more conceptual,
but with the disadvantage of obscuring the underlying combinatorics.

ExampLe 5. — In the previous example, we studied the multation
I I 2 2
W= [1 2 2 z] ’
and the corresponding natural transformation
rH. 222 ) rlonead

] ]

X ® x? — XX, ® x£2 .
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We now use the theorem to find out what happens to an element
y@xyll e riv2223(pr).

First, write the divided power as a multation

|:IZZZ:|‘
y x vy’

then, simply compose the multations:

|:I 2 2 2,:||:I I 2 24:|_|:I I 2 z]+2[1 I 2 z]
y o x y ypr oz 2 2 Xy yy y ¥y ox ]
Therefore,

My@xull) =y +20 @xy).

A

Like their cousins, the deviated powers, the divided power functors provide
a splitting of the fundamental functor into its atomic components.

THEOREM 15.
"Hom(B",—)= @ .

#AS[n]
|A|=n

Proof.
" Hom(B", M) ="(M") = @ T4xM).

#AC([n]
|A|=n

§10. THE MULTI-SET YONEDA CORRESPONDENCE

And finally, to close the chapter, yet another Yoneda Lemma. As usual, o
denotes transportation maps.

TaEOREM 16: THE MULTI-SET YONEDA LEMMA. — Let A be a multi-set, and F a
strict analytic functor. The map

Yar: Nat(M, F) — F} (Bl ya)

N ZB#A(I®[A])

is an isomorphism of modules.
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The isomorphism is natural, in the sense that the following two diagrams commute:

A YAE 4
A Nat(l ,F)HFA(B|#A)

ul (r”)*i ifo[u]

B Nat ('8, F) o F}(B|yp)

Y
F Nat(M, F) —> F}(B|4)

E*l l(ZL)B#A

G Nat(M, G) ~ G’ (Bla)

3

Proof. A natural transformation
(T4 > F
corresponds to a natural transformation
N T4 Hom(B#4, M) — F(M),

taking

(X[X-I . (o] le SéA,
ln (C((I)®[X]) ifX=A,

where a,: B, — M, for a € #A. The original Yoneda map takes n to

Np#a (Il[glig) = Z Np#4 (I®[X]) = Np#4 (I®[A]) = {gua (I®[A]).
XCc#HA
1X]=|A]

Thus, Y4 r is the A-component of the original Yoneda map, and it is clear that

Ya,r(Q) = Lgwa (1®4) € Fl (Bl a).

That the second diagram above commutes is clear, so there remains to
investigate the first. Evidently, since p is a multation, A and B must be multi-
sets of the same cardinality ». From the original Yoneda Lemma, there is a
commutative diagram:

Yp#d p

Nat(r"” Hom(B#4, —), F) —— F(B#4)

((o*)[u]) * i ch[u]

Nat(r” Hom(B#8, —), F) —— F(B#?)

B#B F
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We shall show that the following diagram commutes, from which the claim
follows:
Nat(I'4, F) — Nat(I"” Hom(B#4, —), F)

(ru)*l J{((c*)[u])*
Nat(I'2, F) — Nat(I"” Hom(B#%, —), F)
Consider a natural transformation
T > F

corresponding to an
n: I Hom(B#4, —) - F

as above. The homomorphism

((0*)[u]) *

maps N to the natural transformation
N (0*)M: I Hom(B##, M) — F(M),
which, for homomorphisms a,: B, — M, takes
alfl — nu(al®l o (%))
= nu((ao)M) = Ly ((ao) (M) = Ly (a()®M).

On the other hand,
r*rf>F

corresponds to a natural transformation
" Hom(B#8, M) — F(M),

that takes
al®l e 4y (a()®1) = Gy (a(n)®M).

The commutativity of the diagram is demonstrated. O



Chapter 9

MODULE REPRESENTATIONS

Et la glace ot se fige un réel mouvement

Reste froide malgré son détestable ouvrage.

La force du miroir trompa plus d’un amant
Qui crut aimer sa belle et n’aima qu’un mirage.

— Guillaume Apollinaire, La Force du Miroir

Exhibited on display in the preceding chapter were some rather special func-
tors, most notably

B[Hom(B”, -)], and [”Hom(B", -).

We rather vaguely suggested they were projective generators for the categories
Num,, and Hom,, respectively, postponing the proof to the present chapter.
After proving this, and invoking the celebrated Morita Equivalence, it can be
inferred that numerical and homogeneous functors of degree » may be viewed
as modules over the rings B[B”*"], and " (B"*"), respectively.

A first incarnation of this curious result, published in a Georgian journal
of some obscurity, appeared in 1988, when Professor Pirashvili, [17], estab-
lished an equivalence of the category of polynomial tunctors (over Z) with a
module category. Fifteen years later, Dr. Salomonsson and Professor Ekedahl
discovered that strict polynomial functors likewise admit a module represen-
tation. This was based on previous work by Professors Friedlander and Suslin,
which only subsumed the special case of the base ring being a field. We refer
to Salomonsson’s doctoral thesis [20] for the general result.

We shall state and prove an equivalent version of Salomonsson’s theorem,
using the modern conveniences brought about by the invention of multations,
along with a modified version of Pirashvili’s, making it apply to numerical,
rather than polynomial, functors.

The formidable consequence of these two theorems is that polynomial
functors — of modules! — may in fact be viewed as modules themselves,
albeit over two different rings. Techniques of module theory may then enter
the game in order to study these functors.

153
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§1. Tue Divibep POWER Map

Presupposing for a moment the key réle the rings B[B”*"], and ”*(B"*") are
about to play, one obvious way of relating our two species of functors — nu-
merical and strict polynomial — is to find homomorphisms between the two
rings. We shall pave the way in this section, preparing for a full exploration
later.

Let us begin with somewhat greater generality. Start with a module M. We
propose a study of the divided power map

Yo: M — T"(M)
x> x.

TueoreM 1. — The divided power map is numerical of degree n and therefore induces
a linear map

Ya: B[M], — (M)
[x] — x.
This is a natural transformation of (numerical) functors.

Proof. Since Y, is homogeneous of degree 7, it is also numerical of the same
degree. O

LeMMA 1. — Ifx;,...,x, € M, then
(on...an)[”] =Xp* Xy
Proof. The Principle of Inclusion and Exclusion. O

THeorREM 2. — Let M be finitely generated and free. The cokernel of the homomorph-
ism
(TLY,): B[M], — B[M],— @ (M)
is
Coker(Try,) = T*(M)/{xy ... x, | x; € M).

In particular, (TLY,) is an injection of finite index.

Proof. Let {ey, ..., e} be a basis for M. Then the elements
[fio--ofml, ficle,....e},

for o < m < n, constitute a basis for B[M],. The image of (T Y,) is generated
by the images

(oo ful) = (o oful lhowofull), o<m<n

and

Myl ofi) = (0, (ho- o)1) = (0.fi-fo)-
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The relations

[fio-ofm] = —[ﬂo---ofm][”] mod Im(T, y,)

let us represent each element of the cokernel by a sum of divided nth powers,
while the relations

fi-ofn =0 modIm(Ty,)
yield the desired factor module of [ (M). O

THeEOREM 3. — Let M be finitely generated and free. The kernel of the homomorphism
Ya: BIM], — T*(M)

s
Kery, = Q®z{[rz] —7"[z] | r€ B, ze M) n B[M],.

Proof- Let {ey, ..., e} be a basis for M. Then the elements

[fro---ofnl, fielen . el

for o < m < n, constitute a basis for B[M],,.
Denote
L=Q®z{rz]—7"|z] | r€B,ze M);

then evidently
L nB[M], < Kery,.

We now show the reverse inclusion.
Calculating modulo L, we have

[22] = 2 [Z] - i(—x)’”f(”j) 2]

I<[m] iel r=o

S0 () = m {2 e

where {”} denotes a Stirling number of the second kind.

We may then write
} )m—\[| lZﬁ]
el

ol
Cz[: 1 [Ozf]
=&+ &,

€l
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where  is a sum of mth deviations, and & collects the higher-order deviations.
We calculate &:

- % o 3 (3)] o]

I1S[m] #ACT acA
|A]=m
= S (=t (Z) [ o j&]
#AC[m] \#ASIS[m] acA
|A|=m
= Z <Z>|:<>Afa:|=<I m I>[flo”'<>fm]:n7![f10”'ofm]-
A=[m] ag. RN
#TAlim
We thus have

m!{:z}[ﬂo---ofm] =ml[fo-ofu] +& modL,

and, consequently, provided 1 < m < 7z (so that {'} > 1),

[ﬁo---ofm]zm-ﬁ mod L.

Now suppose w € Kery,. Using the above relation, together with
[¢] = [0o] =0 modL
and

1= 11~ o] = o [<n>f] - [gf] mod L,

we may express was a (fractional) linear combination of nth deviations of the
basis elements e;:

acA

w= Z cA [ O eﬂ] mod L.
[#]

Apply vy:

c #AC[k]
|Al=n |A|=n

Because the elements el4] constitute a basis for [(M), it must be that all coef-

ficients ¢4 = o, and hence we L. The proof is finished. O

We remark that the divided power map may be extended, without much
ado, to a map
Yo: Q®z B[M], - Q@7 (M).
This map (almost trivially) possesses an inverse. We shall, however, be inter-
ested in obtaining an inverse under a slightly less generous localisation.
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TueoreM 4. — The homomorphism

€,: M(M) - Q®z B[M],

I
degA [2 x]

constitutes a section of the divided power map:

41

Yn€n = Irn(if)-
This leads to a direct sum decomposition

Ime, =M (M) ® (Kery, nImg,).

Proof. The relation Y,€, = 1 is immediate, and then the following exact se-
quence splits:

Yn

o——=Kery, nIme, ——=1Ime, =" (M) ——o0

n

O

It will now be appropriate to specialise the preceding discussion to the
particular rings B[B"*”], and '"”*(B"”*").

THEOREM 5. — The maps

are homomorphisms of algebras, when both rings are equipped with the product multi-
plication.

Proof. Calculate:

Va([x1) * V(D) = 2 %58 = ()P = yo([x9]) = (] * )

To show ¢, preserves multiplication, it will be enough to consider pure
powers x[”l and y". Use the Deviation Formula:

66 +5,0) = % |0x] « % 03]

= (90

= % [Oxy] = Sn((xy)[n]) - Sn(x["] *y[”]).

n
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§2. MobuLe FuNcTORs

LemMa 2. — A module functor that vanishes on B* is identically zero.

Proof. Let
F: X9Mod — Moo

be a module functor. Since F is extended to arbitrary modules through in-
ductive limits, we have by definition

F(B*) = lim F(B").

Note that F(M) is always a direct summand in F(M & N), for modules M
and N. This follows from the Cross-Effect Decomposition:

FM@®N) =F ()@ F'(M)®F (N)® F'(M | N).
—_—

F(M)

Since B” is always a direct summand of B*, any F(B”) is a direct summand
of F(B®). O
THEOREM 6. — The fundamental module functor

B[Hom(B”, —)]
is a small projective generator for
Num,, = Fun(X9Mod, Mod),
through which there is a Morita equivalence
Fun(XMo0, NMod) ~ B[Bq,xxo]f)ﬁom

where B[B* *Xo| carries the product multiplication.
More precisely, the functor F corresponds to the abelian group F(B*), with module
structure given by the equation

Proof. Step 1: Bl[Hom(B™, —)] is projective. We must show that
Nat(B[Hom(B*, —)], —)

is right-exact, or preserves epimorphisms. Hence let n: F — G be epic, so that
each ny is onto. The following diagram, constructed by aid of the Yoneda
Lemma, shows that n, is epic:

Nat(B[Hom(B*, —)], F) <> F(B*)

| |

Nat(B[Hom(B*, -], G) <<~ G(B*)
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Step 2: Bl[Hom(B*, —)] is a generator. By the lemma,
o = Nat(B[Hom(B*, —)],F) = F(B™)

implies F = o.
Step 3: B[Hom(B*, —)] is small. Compute, using the Yoneda Lemma:

Nat (B[Hom(B™, -)], P F) = (P Fr) (B*) = P F(B¥)
~ (P Nat (B[Hom(B™, —)], F).

Step 4: The Morita equivalence. As Fun(X900d,9Mod) is an abelian category
with arbitrary direct sums, we have a Morita equivalence:

Nat(B[Hom(B”,—)],~)
Fun(X9MMoo, mg),,,»m\ $Mod
The new base ring is
S = (NatB[Hom(B*, —)])° =~ B[End B*] = B[B**™].
Plainly, the functor F corresponds to the abelian group
Nat(B[Hom(B”*, —)], F) = F(B™).

Step 5: The module structure. Under the Yoneda map, an element x € F(B™*)
will correspond to the natural transformation

i B[Hom(B*, 41)] — F(M)
[o] = F(a)(x)-
Likewise, a scalar [1] € B[B**®°] will correspond to
oy : Bl[Hom(B*,M)] — B[Hom(B™, M)]
[a] — [aoT].
The product of the scalar 0 and the module element n is the transformation
(0 © 0)ur: B[Hom(B*, M)] — F(M)
[o] = F(aeT)(x),
which under the Yoneda map corresponds to
(0 0)» ([15-]) = Flapr o 1)(x) = F(T)(x) € F(B®).
The scalar multiplication on F(B*) is thus given by the formula
[1] - x = F(U)(x),
and the proof is finished. O
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ExampLe 1. — The functor 7* corresponds to the abelian group
T*(B”) = B* ® B,
with module structure
[1-c®y) = T"(Y(x®y) = 1(x) ®T(),
for any [1] € B[B**%°]. A

§3. NumericaL FUNCTORS

We now repeat the feat, but for numerical functors.
LemMA 3. — A polynomial functor of degree n that vanishes on B” is identically zero.

Proof. Suppose that F is polynomial of degree 7, and that F(B”) = o. We shall
show that F(B?) = o for all natural numbers 4.
Consider first the case ¢ < 7. Then B? is a direct summand of B”, so F(B?)
is a direct summand of F(B"?) = o.
Proceed by induction, and suppose F(B7*) = o for some g —1 > n. De-
compose
By = Th + - + TG,

where T;: B? — B as usual denotes the jth projection. Since F is polynomial
of degree 7, and therefore of degree ¢ —1,

o=F(go o1y = Z (_I)Q—VIF <ZT9>
J

JEldl
Consider a J with |J| < ¢ — 1. Since 3}, T factors through B?™", the homo-
morphism F (Z] ﬂ;) factors through F(B?™*) = o. Only J = [¢] will give a
non-trivial contribution to the sum above, yielding
0=F(Ty +---+ 1) = F(1p1) = 15B0);
hence F(B) = o. O
TuEOREM 7. — The fundamental numerical functor
B[Hom(B", -],
is a small projective generator for Mum,,, through which there is a Morita equivalence
Num, ~ B[ann]nﬂﬁob,

where B[B"*"|,, carries the product multiplication.
More precisely, the functor F corresponds to the abelian group F(B"), with module
structure given by the equation
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Proof. The preceding proof goes through exactly as before, but with Lemma 3
in place of Lemma 2. O

ExampLE 2. — Let n = 2. The functor T* corresponds to the abelian group
T*(B*) =B*®B’,
with module structure
[t :®2) = T*(D(x®y) = 1(x) ®T(y),
for any [1] € B[B***],.
This should be compared with the module obtained in Example 1. Appar-
ently this latter module contains vast amounts of superfluous data, and may

be cut down in size considerably, once we take advantage of the fact that the
functor is quadratic. A

§4. HomoGENEOUS FUNCTORS
TueoreM 8. — The fundamental homogeneous functor
" Hom(B”, —)
is a small projective generator for $yom,,, through which there is a Morita equivalence
Homy, ~ prgrxny Mo,

where [ (B"*") carries the product multiplication.
More precisely, the functor F corresponds to the abelian group F(B"), with module
structure given by the equation

. x = F(1)(x).

Proof. The previous proof goes through exactly as before. O

ExampLe 3. — Let » = 2. The functor 7% corresponds once again to the
abelian group
T*(B*) =B*®B’,

with module structure
T (x®@y) = T’ (N (x®y) = 1(x) ®1T(y),

for any tll e r*(B>*?). A
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§5. Quasi-HoMmoGeNEoOUs FUNCTORS

With all the ground-work laid in the introductory section, the module-theo-
retic interpretation of quasi-homogeneity is immediate.

TueOREM 9. — Let F be a numerical functor, corresponding to the B[B"*"|,-module
M. The functor F is quasi-homogeneous of degree n iff M is a module over

Imy, = B[B"*"],/Kery,.

Proof. Recall that the scalar multiplication of B[B"*"], on M = F(B") is given
by
[0]x = F(0)(x), ©€B"™” xeF(B").

The requirement that Kery, annihilate F(B”) is equivalent to demanding that
F itself vanish on

Kery, = Q ®z <[70] —7r"[0] |reB, o€ B”X”> n B[B"*"],,

which clearly would be a consequence of quasi-homogeneity.
To show that, conversely,

F(ro) =1"F(0), o©¢€B"™",
implies quasi-homogeneity, we first show that
F(r-1p¢) = "F(1ps)

for all natural numbers g. This is clear when g < 7, for then 1gs factors through
1g~. When g > n, split up into the canonical projections, and use induction:

F(r-1ge) = F(rTy + - -+ +1TY))

=— > (-7 VIF (E m,)

Ic[q) iel
— Z (=07 F (Z T[i)
Ic[q) iel

=7"F(Ty + -+ T4) = r"F(1pq).
Finally, for an arbitrary homomorphism a: B? — B?, we have

F(ra) = F(r - 1ge)F(Q) = r"F(1ge)F(0) = r"F(Q).
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COMBINATORIAL
REPRESENTATIONS

“Here is Ts'ui Pén’s labyrinth,” he said, indicating a tall lacquered desk.
“An ivory labyrinth!” I exclaimed. “A minimum labyrinth.”
“A labyrinth of symbols,” he corrected. “An invisible labyrinth of time. [...]”

— Jorge Luis Borges, The Garden of Forking Paths

At the beginning of the twenty-first century, the team Baues, Dreckmann,
Franjou & Pirashvili sought methods to combinatorially encode Z-module
functors, with a particular eye on polynomial ones. Their design was to build
a clever two-way correspondence (category equivalence) between functors

NXMo0 — zMNo0,

on the one hand, and Mackey functors (whatever that may be) from the category
BGur, on the other. This marvellous theorem, the first of its kind, enabled the
reduction of a functor to a significantly smaller collection of data.

Passing to polynomial functors has the effect of erasing the distinction
between N-modules and Z-modules, and the quartet’s main result may then
be stated, without resorting to Mackey functors: Polynomial (Z-)functors of degree

n are equivalent to linear (additive) functors from Sut,.

They left unresolved the interesting question of how to systematise the full
category of Z-module functors. Moreover, attempts to generalise their argu-
ment to arbitrary base rings will encounter difliculties, as it is not clear what
category should play the role of Gur. Here the labyrinth category comes to
the rescue, constituting, as it does, the universal means of combinatorially en-
coding a/l module functors (not just polynomial ones) over any (unital) base
ring (not just commutative ones). The generalisation to arbitrary rings reads:
Numerical functors of degree n are equivalent to linear functors from £aby,. This in-
cludes the case n = o, corresponding to general module functors. To connect
with the above result, recall that we have previously exhibited a category iso-
morphism

@Tt,, ~ zLaby,,.

After the quartet had announced the publication of their results in [1], Tor-
sten Ekedahl and Pelle Salomonsson quickly followed suite. They showed in
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[20] how strict polynomial functors (over any commutative base ring) may be
similarly encoded, this time as Mackey functors from the category of multi-
sets and multijections. Striving, as we do, to avoid the language of Mackey
functors at any cost, we have chosen to replace multijections with multations.
The pair’s theorem, which we reprove in this setting, then asserts the follow-
ing: Homogeneous functors of degree n are equivalent to linear functors from MGet,,.

§1. MobuLe FuNcTORs

As is our custom when dealing with general module functors, we suppose the
base ring ring B unital only, and not necessarily commutative. As before, free
and finitely generated modules are automatically bimodules, but all homo-
morphisms are right module homomorphisms.

Two kinds of functors will be considered. Module functors X0tod — Mod
may, of course, be of an arbitrary nature (linear, polynomial, numerical, and
what not). On the other hand, labyrinth modules £aby — o0 shall always be
assumed B-linear.

As usual, o denotes transportation maps.

DeriNiTION 1. — Given a homomorphism

a= > s53,05:B" > B
acA,bcB

(a B x A matrix) its associated maze S: A — B is

Sz{[ﬂi) ”aeA,beB}.
iod

Associated mazes are always simple. Note that, if but a single component
sp, vanish, the associated maze S = o.

THEOREM 1.

1. Let P be the associated maze of o: BY — BE, and Q the associated maze of
B: B4 — BE. Then the associated maze of & + B is PE Q.

2. Let P be the associated maze of a: B2 — B, and Q the associated maze of
B: B4 — BE. Then the associated maze of o o B is P[5 Q.

This theorem should retroactively motivate our interest in the operations
and [, as well as our choice of notation.
Getting down to business, we wish now to define a functor

®: Fun(X900, Mod) — Fun(Laby, Nod),
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which will eventually turn out to be an equivalence. Given a module functor
F: X000 — Mo, the corresponding labyrinth functor should take a finite set
to the corresponding cross-effect:

X — F'(B|y).

Mazes should be interpreted as deviations, in the following sense:

P.X—>Y]|— |F O DOy
[ ] [ ([p:xﬁy]ePpy>

Restricting action to the appropriate cross-effects is in fact an unnecessary
caution, as shown by the following lemma.

FT(B|y)—>F1 (B|Y)]

LemMma 1. — The map
F ( O poyx> : F(BX) - F(BY)
[p: x—>yleP

is in fact a map
F'(Blx) — F'(Bly),

in the sense that all other components vanish.

Proof.: We use Theorem 7.4. If 1, is any insertion with x € X, then 0T, = o,
and hence

F ( O poyx> F(1,) = o.

[p: x—>yleP
Similarly,
Fp)F{ O POy | = o,
) ([p x—yleP ’
when p, is any retraction with y e Y. O

For the functor
P(F): Laby — Moo,

we thus propose the following definition:
X — F'(Blx)

[P: X >Y]—

F( <> poyx> :FT(B|X) _)FT(B|Y) .

[p: x—>yleP

LeMMA 2. — D(F) is a functor Laby — Mod.
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Proof. That ®(F) respects the relations in Laby follows from
O(F) (Pu{x;’\y}) —F(---00) =0,
and

®(F) <Pu (x 2Tty }) — F(--- o (a+b)oyy)
=F(---0a0y) + F(- -+ 0 bOy) + F(- - - ©a0,, ¢ bOyy)

= o(F) (Pu{x—=7}) + O(F) (Pu{x$y})
+ D(F) <Pu{x$y}>.

Functoriality of ®(F) follows from the Deviation Formula and the definition
of maze composition. O

Let {: F — G be a natural transformation. Define
®(L): ®(F) - @(G)
by restriction to the appropriate cross-effects:
®(Q)x = T, : F'(Blx) — G'(Blx).
Lemma 3. — @ is a functor
Fun (X900, Mod) — Fun(Laby, Mod).
Proof. By the Labyrinthine Yoneda Lemma,
Gy, FT(Blx) = G'(Blx)

corresponds to
{s: Nat(AX,F) - Nat(AX, G).

We now construct the inverse of ®. Let
H: Laby — Nod
be a functor. Define
d(H): XMod — Moo

by
O (H)(BY) = P HX).
XcA
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Also, let
a = Zsbﬂcgm: B* — B
acA
beB

be a homomorphism, and let § be its associated maze. Define the component
H(X) —» H(Y) of ®~*(H)(a) to be

>, H(P).

pes ’ X—-Y

This amounts to saying that

OH)(a)= >, D>, H(P).
¥ehres| oy

Note in particular that

O (H)(S) |H(Y)—>H(Z) =0

if
Y=0#Z or Y#0=2Z,

but
PH(H)(S) |H(@)~>H(@) =H(ly) = IH((I))'

LemmA 4. — O (H) is a module functor.

Proof. Let
a = Z ScbO0ch - B - B¢ and B= Z 15400, - B4 — B
beB acA
ceC beB

be homomorphisms, and let § and T be their associated mazes. The associated
maze of 0 o B is then S[5] 7.
Let X € A and Z < C. By Theorem 3.2,

®H(H)(SeT) |H(X)HH(Z) = Z H(W)

weEEn |,

= ), HW),

W |,

while

(@ EH)(S) 0 @ E)NT)) | yixymra)

= 23 (©ES) | rryirn) (07 ED sy
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= >, HP) Y, HEQ

res PeS | Y—>Z QET | X—-Y
= . Y H(PQ
YgBP(;S | Y—>Z Q(;T | X—-Y
-2 T %oz
Y<Ppes | yoz QT | VEPRQ
= H(V)
vessn |,
The last step comes from noting that every submaze of (SXIT) | ,_, , is obtained
as V £ PR Q, for some P and Q. The functoriality of ®~*(H) follows. O
LemmMma 5.
(O (H)) = H.

Proof. Let P: X — Y be a maze, and calculate the deviation
& (H) 0 Py | = (=) FloTi(E) | Y g0 |. (1)
[p: x—y]eP Scp »eS

The sum should run over all sub-multi-sets S of P (rather than just submazes).

Beginning with
7 (H) (Z poyx> ,
peS

the component H(Z,) — H(Z,) is
>, HQ.

Zy—7Zy

Qcs
The component H(Z,) — H(Z,) of (1) is then
S S HQ =Y (PHQ Y (0

scp Qcs QsScP

c
Iy —7Z, QfP Zi—7Z,

The inner sum vanishes if P # Q, and it equals (—1)"! if P = Q. In the latter
case, since Q € P| 7.7, it must bethat Z, =X, Z, = Y,and Q=P =P|,_ ..
Consequently,

O (H O POy
( ) <[p x—)y]EPp > )

o else.

~ {H(P) ifZ,=Xand Z, = Y,

H(Z,)>H(Z,)
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It is then an immediate consequence that

(@7 (H))(X) = 7 (H)(Blx) = Im @~ (H) <xé>XT[x>

= ImH(Ix) = ImIH(X) = H(X),

and also that

O
LemmMma 6.
O (P(F)) = F.
Proof. 'We have, by the Cross-Effect Decomposition,
(@) (BY) = D (F)(X) = D F'(Blx) = F(A).
XcA XcA
Let a homomorphism
a= Z SbaOpa B! - Bf
acA,bcB
be given, with associated maze S. Then
OHOR) ()= Y, D, PE)P)
yenres |y
-3 % (0
— [p: x—>y]eP
))gég pes | X-Y
= Z Z F ( O Syxoyx)
= [x—y]eP
i(’gfq? PES| oy
= F O 5Oy
EQ;XB <(W)EE Y >
=F| D 504 |=F(a).
(x,y)EAXB
O

Assembling these results, we obtain the following marvellous theorem.
(The functoriality of ®~* is a direct consequence of the lemmata, and need
not be established separately.)
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TueOREM 2: LaBYRINTH OF FUN. — The functor
Pgapy: Fun(XMod, Mod) — Fun(Laby, Mod),
where Poqpy (F): Laby — Mod takes
X F'(B|x)

[P: X —>Y]—

F( O poyx>;FT(B|X)_>FT(B|y),

[p: x—>yleP

is an equivalence of categories.

§2. PoryNnoMIAL FUNCTORS

Since mazes correspond to deviations, the following simple characterisation
of polynomiality should come as no surprise.

THEOREM 3. — The module functor F is polynomial of degree n iff ® ¢qpy (F) vanishes
on sets with more than n elements.

Proof. Assume first that F is polynomial of degree ». Since mazes with & pas-
sages correspond to kth deviations, ®gqp, (F) Will certainly vanish on mazes
with more than » passages.

Suppose now, conversely, that ®gqp, (F) vanishes on mazes with more than
n passages. Consider # + 1 homomorphisms

A B
Oy ...,0,,: BY — B,

with associated mazes
P,....P, ,:A— B,

respectively. These mazes are all similag, and we may label consistently the
passages of each P; by

pits - - Pim-
Let X € A and Y < B be sets.

Note that if

{piliel}
is a legitimate submaze of P; for one particular i, it is so for all choices of .
When this is the case, we say that the set ]  [m] is admissible. Then also

{szy‘ /'6]}

1€l
= Pi ’ X-Y

XY el

is a legitimate submaze of

@)

el
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for any I < [n + 1]. Note that this is the associated maze of the sum )
We are now ready to calculate the deviation of F:

ze]

Flap o+ 0 0ppy) ’FT(B\X)HFT(BW)

- ¥ Fﬁmﬂw(2m>

Ic[n+1] el

F1(B|x)—>F1(B|y)

= >, (=i > Peany (F)(Q)

LA Q= (zEI ) ‘X—)Y
= Z (_I)n+17|1| Z D gqpy (F) <{ Zpi/ jeJ }) ,
IC[n+1] J<[m] el

where the inner sum is taken over admissible J only. For aset K € I x J, let K;
and K; denote the projections on I and ], respectively. We may use Theorem
3.3 to transform the latter sum to

F(ayo---00,41) | FT(B|y)—Ft (Bly)

= Z n+I 1 Z Z cDEublj )({sz ‘ (17]) EK})

IC[n+1] J<[m] KC1><]
K;=]
= ( Y, (= I') (Z Peany (F)({ 3| (7.) EK}))
Kcn+1]x[m] \K;cIc[n+1] J=K;
= Z q)Subn(F)({pij ‘ (lv]) €K })
KC[n+1]x [m]
Ki=[n+1]

The condition K; = [n + 1] implies |K| = 7 + 1, and so all mazes

{pilG.j)eK}

will contain more than n passages. The sum will therefore equal o, by the
hypothesis on ®gqp, (F). O

§3. NuMmericaL Funcrors

We now investigate how to interpret numericality in the labyrinthine setting.
The base ring B is assumed numerical.

Lemma 7. — Let v € B, and let n, wy, . . ., w, be natural numbers satisfying

Wt tw,<n

1(2)- 2 () 2o (1)

J=I =0 J=I

Then
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Proof. We prove the formula when r is an integer, and then refer to the Nu-
merical Transfer Principle.

Fix a subset § < [r] with |S| = m. Suppose we wish to choose subsets
Wi, ..., W, < S, such that |Wj| = w; and [JW; = S. By the Principle of
Inclusion and Exclusion, this can be done in

Lo (D)

k=0

ways. The quantites

1(2)- 3 () S ()11()

j=1 k=0 j=1

will then both count the total number of ways to choose subsets W;,..., W, <
[7], such that |W}| = w,. O

TueoreM 4. — The module functor F is numerical of degree n iff ®gqpy (F) factors
through Laby,,. The functor P g qpy induces an equivalence of categories

Num,, — Fun(Laby,,, Mod).

Proof. Recall from Chapter 3 that, when A is a multi-set supported in the maze
P, we let E4 denote the maze

Er= |J {x—>r}
Ip: v oleA

with all passages of A reassigned the label 1.
The theorem states that the functor F is numerical of degree 7 iff the equa-

tion _
Poaen(F)(P) = 3 H( o p)qasabn(F)(EA)

#A=P peP
lAl<n
holds for all mazes P. It should be clear from Theorem 6.4 that numerical
functors satisfy this equation.
Suppose now, conversely, that ®gqp, (F) satisfies the equation. It will then
certainly vanish on mazes with more than » elements, whence F is polynomial
of degree n. We now wish to use Theorem 6.3, and thus seek to evaluate

F(T-IBn) = Z q)Eabn(F)(P)'
P,

The component
cDEabt)(F)(X) - cDEabU(F)(Y)
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of this is 0 if X # Y. Turning to the case X = Y, we may without loss of
generality assume X = Y = [g]. Then the component

Peavy (F)([g]) = Peavy (F)([g])

1s
1 r
Poany(F)(r @) = D) H( .><D,3ab,,(F)(EA)

q

- Zw ) JH @,) Paon (F)(E),

where we let w; = deg,;j > 1. Similarly, the component

Deapy (F)([g]) = Peasy (F)([g])

£ (0)r(em)- B0 S (e

i<;>i(‘”m_k@ 2 H( )%ubn )(Ee).

m=o0 k=0 Wit WS j=1

1S

It is now only a matter of using the lemma, to establish the equality

F(r-1p1) = mio <;>F <2 IBn) .

Consequently, F is numerical. 0O

ExampLE 1. — Let us take a simple example. If the labyrinth module H cor-
responds to a module functor of degree 3, it will satisfy the equation

oo

e

™

n () <b>H R ¢
2 1 1\*

and also

a I

/N
dEOIRUIUES;

R A
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We now pay homage to our predecessors. The main result of Professor
Pirashvili’s team ([1]) is the following": Polynomial functors on the category of Z-

modules are equivalent to linear functors from Sut,, to Z-modules. For the ring Z, the
concepts “polynomial” and “numerical” coincide; hence this theorem may be
written as L

zJum,, = Fun(Sur,, z900).

It is an immediate consequence of the isomorphisms

Sut, =~ zLaby, and Num, = Fun(Laby,, Mod).

§4. Quasi-HoMmoGeNEoOUS FUNCTORS

THEOREM 5. — The module functor F is quasi-homogeneous of degree n iff ® ¢qpy (F)
factors through £aby". The functor ®gqpy induces an equivalence of categories

Q$om,, — Fun(Laby”, Mod).

Proof. Let F be quasi-homogeneous, and let 2 € Q ®z B. For any deviation, we
have
F(aO;0---0aly) =a"F(O; -+ odyp),

and we may calculate for a pure maze P:

dn(D,gabn(F)(P) =4'F <> ny =F <> ao—yx
[x—y]eP [x—y]eP
= q)gabn(F)(ﬂ E]P)

Conversely, assume ®gqpy (F) factors via £aby”. Then, for any k€ N,

F(1ge) Z Deapy(F)(Uk)
Kc[k]
Z Doy (F)(alllk) = F(a-15:).
KZ[k]

O

"We point out that they restrict their attention to pointed functors. We have circumvented this
restriction by including @ among the finite sets.
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According to a structure theorem for the labyrinth categories, there are
isomorphisms

pLaby, ~ B®z zLaby, and pLaby” =~ B®yz zLaby”.

Their significance may be summarised thus. The category of numerical (or
quasi-homogeneous) functors over an arbitrary numerical ring is identical
in structure to the category of numerical (respectively, quasi-homogeneous)
functors over Z. These are the equations to prove this:

pNum,, = FunB(BEabnn, Bmﬂb)
=~ Fung(B ®z zLaby,,, gPN0od)
=~ Funy(zLaby,,, gM00).

The corresponding result for homogeneous functors holds more trivially.
By definition, for any ring B,

BIiGet, = B ®7 zMGet,,
which leads to

pHom, = Funy (z9MSet,, gN00).

§5. Quabrartic FuNCTORS

A few examples of labyrinth representations are in order. Let us take [n] as
the canonical representative of sets of cardinality 7.

ExamrLE 2. — Let C(B”) = K be a constant functor. The labyrinth functor
Cbgabn(C) will take

[0o] — K, [z],[2],[3],-- -~ o.
A
ExampLE 3. — Let F(B”) = K @ L” be an afhine functor. ®gqp,(F) will take
ol >k, [~L  [LBh...—o.

and map the maze

A

Let us now determine the structure of Mum, by classifying the quadratic
numerical functors. The key point is unravelling the structure of the category
Laby,. It contains three non-isomorphic objects: [o], [1], and [2]. We observe
the following relations:

[ess ] = (O[] () | =]
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A B c S
Al - TI+S 24 -
B|C - - B
C| - 2B 2.C —
S| A - - I

Table ro.r: Multiplication table for Laby,.

* g & _ a b E3 $ %

el “\1/\1 #— |
Consequently, every maze in £aby, can be reduced to (linear combinations of)
identity mazes and the following:

A= I—)II B= I‘>II
[ \Iz] l/]

It

co[] s[4

and

)

The (skeletal) structure of the category £aby, is thus reduced to the following,
promptly suggesting the nickname dogegory:

C A S

(N

1ol > op

OO

I B I

The mazes A, B, C, and § are not independent. Their multiplication table is
given in Table r0.1. Clearly we can do with only A, B and S, and we obtain the
following explicit description of Num,,.

THEOREM 6. — A quadratic numerical functor is equivalent o the collection of mod-
ules K, X, and Y; together with homomorphisms O, B, O as indicated, subject to the
Jollowing four relations:

ap =1+o0, Bo =B, oo = a, o’ =1
a
SN
K X Y o
A\
B

The reader will no doubt note that we can, in fact, also dispense with
0 = oaf — 1, and let the two homomorphisms a and B be subject to a meagre
two relations:

Baf = 2, opa = 20.
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We now describe the four classical quadratic functors. Because they are
of the second degree, and because they are all reduced, the module K = o.
We will juggle with two isomorphic copies of B, denoted by B, = {¢;) and

B, =<e,).
ExampLE 4. — The functor @gqp,(7?) has modules

X = (TZ)T(BI) = <eI ®el>7 Y = (TZ)T(BI|BZ) = <eI ®e,,e,Q €I>
and homomorphisms

0: ®Re—e®e +6,Qe

ea®e, 6@ e ®e
0: ea®e —e ®e

e, ®e —e®e,.

@

A
ExampLe 5. — The functor ®¢qp,(5*) has modules
X=()'B)=(), Y =(B:B,) =<eer)
and homomorphisms
a: e — 2eme,
B: ee,— e
O:  ee, > ee,.
A
ExampLE 6. — The functor ®gqp, (A*) has modules
X = (V) (B) = (e ney=0, ¥ =(N)(BiB,) = (e ne)
and homomorphisms
a: o
B: o
O: e Ae > —e A6,
A

ExampLe 7. — The functor ®gqp,(M*) has modules
X=()'B) =), ¥ =) (BiB) = (e

and homomorphisms
[2]

er - > ere,

B: ee > 2l
. 1“2 I

O: €16, > e16,.
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§6. LABYRINTH MODULES

Our description of the category equivalence
MNum,, ~ Fun(Laby,, Mod),

explicit though it be, has the disadvantage of obscuring the fact that this is
another instance of Morita equivalence. A shorter, possibly more conceptual
proof, would run as follows.

Let n e Z* U {o0}. The decomposition

B[Hom(B",-)] = P A~
Xc|[n]
shows that the functors AX constitute a family of small projective generators
for Mum,,. Letting
L: £aby, 5 Dev,, — JNum,,

denote the contra-variant inclusion functor, there is a Morita equivalence:

Nat(L,~)
T
Num,, Fun(£aby,,, Mod)
~——
L®£abnn -

As an immediate consequence of this latter view, the labyrinth functor

H: Laby, — Mod corresponds to the module functor F = L ®gapy, H, given
by

(L ®gapy, H)(M) = @B LX)M) @H(X)
XeLaby,

= P AWM eHX).

XeLaby,
Imposed upon this module are the following relations:
U®H(P)(z) = UP®z,

for any z € H(X), U € AY (M), and maze P: X — Y. Interpreting this in terms
of F, we have the following theorem, where 0 denotes the usual canonical
transportation maps.

Tueorem 7. — Let F be a numerical functor of degree n, where n € Z+ u {0}, The
module F(M) is the guotient of

@ o M) F (Blx)
XeLaby,

by all relations

UF O POy |(z) = UP®z,
[p: x—>yleP
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forany z e F'(B|x), U € AY (M), and maze P: X — Y.
Moreover, when 0: M — N is a homomorphism,

Fla)= @ b5%0) @1prp)y)-
XeLaby,

We will often abuse notation, and write simply

FM)y= @ bo5M)F (Blx),
XeLaby,

with the imposed relations tacitly understood.

The advantage of this viewpoint will become evident as soon as we try to
compute the composition of two module functors F and G (which will be used
later when considering the plethysm). We may write

F(GM) = @ &(G@M)@F (Bly),
XeLaby,

and we obtain the following formula for the deviations of a composition.

THEOREM 8.

(FoG)(aoot)= > (U{ Lﬂ)”}) ® 171 (B

XeLaby, J<a[m] \Ie]

Proof. Calculate, according to Theorems 7.3 and 8.7

(FoG)(oyo--0ty,) = > AY(G(a0:-00y)) @t g,
XeLaby,

= ZAX<<>G<<>“>>®IFT<B|X>

XeSaby, J<a[m] fe] -\l
G(Qier a;)
> x Uy ) ®my
XeLaby, J<[m] \Ie] *

O

§7. HomoGeENEOUS FUNCTORS

We now turn to combinatorially interpreting homogeneous polynomial func-
tors, and cite [20] as our reference. Specifically, we do not obtain any new
results in this section — they were known previously to at least two people
— but simply rephrase old ones in the smooth language of multations. This
allows for, we believe, the most economic formulation of the theory.
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Let B be commutative and unital. We propose to establish an equivalence
of categories
Hom, ~ Fun(MSet,,, Mod),

and we emphasise, as we did in the labyrinth case, that funcrors MSet,, — Moo,
shall always be assumed linear. These functors go by the name of Schur modules.
Let F be a homogeneous functor of degree 7. Define

P(F): MSet, — Nod
by the formule
A= Fj(Bla)
[H: 4 = B] = | Fy: F} (Blya) — Ej(Blys) |
LemMA 8. — ®(F) is a functor MSet, — Mod.

Proof. Functoriality is clear from the Multi-Set Yoneda Lemma, as Fg, cor-
responds to
(TW*: Nat(r4, F) — Nat(T8 F).

O
Let {: F — G be a natural transformation. Define
(Q): BF) —» &(G)
by restriction to the appropriate multi-cross-effects:
®(Q)a = (T)B1ys: Fi(Blya) — G (Blya).
LeMMA 9. — @ is a functor
$Hom, — Fun(MSet,,, Mod).
Proof. By the Multi-Set Yoneda Lemma, (Z;)B‘#A corresponds to
{y: Nat(M, F) - Nat(M, G).
U

We now construct the inverse of ®. Let
J: MGet,, — Mod
be a Schur module. Define

O7(]): X9Mod — Nod
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by
PI(NB) = P JA)

(where, of course, X is a set, but A ranges over multi-sets). Also, let

a= Z Syx Oy : BY — BY
xeX
yeY

be a homomorphism. When A € X and B € Y, we define the component

J(A) — J(B) of @7I(J)(a) to be

DT M.

u: A—B

This amounts to saying that

CRUICIES) S S (N

ACX p: A>B
BZY
LemMa 10. — ®7(]) is a homogeneous functor of degree n.
Proof. Let
a=>1s5,0,: B - B’ and PB= > x0y: BY > BY
yeY xeX
zeZ yeY

be homomorphisms, and calculate

[7] (7]
b a
] Z Seb c O] Z Lba b
be#B ac#A
cc#C be#B
(3 3 wa(y 3 )
B ,.Cu: B—C ABv: A>B
= PRV
A,CB,B' v: A>B
u: B—-C
=22 2 M)
A,C B v: A—>B
pn: B»C
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=& (J)(a) o @) (B).
At the same time,

[n] [n]

be#B ac#A
cc#C be#B
[]
a
=] Z Schtba |:C:|
ac#A
be#B
ce#C
[7]
=J DD sats ¢
C a c
ac#A \ be#B
ce#C

=72 D (2&%)&

ACE. AC \be#B

3
=2 (Z scma> J(€) = o7())(ap).
A,CE: A>C \be#B

That ®*(J) is strict polynomial is clear, as the defining equation

®()) Zsyxcyx :Z Z 5“](“)

xeX A,Bu: A—>B
yey

works when the coefficients s, belong to any algebra. Finally, it is evident that
it is homogeneous of degree 7. O

Lemma 11.
®(@()) =T
Proof. The equation

) Zsyxoyx = Z Z 5“](“—)

xeX AcX u: A—B
yeY BCY
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implies that

7 (ot =J(H)-
Hence
(P ())(A) = P ()] (Bla) = Im D (])
=1Im/(14) =J(4),
and
PP (M) = P ()t =J(H)-
Lemma 12.

O (P(F)) =F.
Proof. By the Multi-Cross-Effect Decomposition,
OH(P(F)(BY) = D @(F)(4)

#ACX
|A|=n

= @ F(Blga) = F(BY),
H#ACX
|A|=n

and

Zsyxoyx Z Z sMO(F

xeX ACX u: A—>B
yeY

Z Z Fopy = F Z SyxOyx

ACX u: A—>B xeX
yeY

Collecting these results together, we obtain the following theorem.

Tueorem 9. — The functor
Dopaet, : Hom, — Fun(MSet,, NMod),

where
cbimeetn (F) MGSet, — Moo

takes
A Fy(Blga)
[I_l; A — B] — [FG[“] : FIZ(B|#A) g F;(B|#B):| y

is an equivalence of categories.
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a B o
a| - 1+0 -
Bla - B
og|a - l

Table 10.2: Multiplication table for MSet,.

§8. HomoGeENEOUS QUADRATIC FUNCTORS

We here determine the structure of $om, by classifying the homogeneous
quadratic functors. To find the multi-set description of homogeneous quad-
ratic functors, we first draw the (skeletal) structure of the category MSet,:

a

N
1) fua) o
N—
B

Every multation reduces to a linear combination of identity multations and

the following;
I I I 2 I 2
sl I O B A

The multiplication table is given in Table 10.2. Compare this with Table ro.1
— the only difference lies in the value of the product Ba.

Tueorem 10. — A guadratic homogeneous functor is equivalent to the collection of
modules X and Y; together with homomorphisms o, B, O as indicated, subject to the
Jollowing five relations:

aB =r1+0, Bo =B, aa =aq, o’ =1, Ba = 2.

Evidently 0 = ap — 1 is dispensable. It is enough to have a and B, subject
to the single relation
Ba = 2.

§9. ScHUR MODULES
The category equivalence

Hom,, = Fun(MSet,,, Mod)
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is yet another instance of Morita equivalence, and we construct a more con-
ceptual proof as follows.
The decomposition

MHom(B”,—-) = P r4
#AC[n]
|Al=n

shows that the functors ' constitute a family of small projective generators
for $om,,. Letting
L: MGet, = Div, — Hom,
denote the contra-variant inclusion functor, there is a Morita equivalence:
Nat(Z,—)
T
Hom,, Fun(MGet,, Mod)

W
L@y et, —

As an immediate consequence of this latter view, the functor
J: MSet, — Mod
corresponds to the homogeneous functor F = L Qopeet, J, given by

(L ®meet, (M) = P LA)M)QJA)

AEMGSet,

= @ rManejA).

AEMBSet,

Imposed upon this module are the following relations:
w®J(W)(x) = (M) (w) ®x,

for any x € J(A), w € T3(M), and multation p: A — B. Interpreting this
in terms of F, we have the following theorem, where o denotes the usual
canonical transportation maps.

TueoREM 11. — Let F be a homogeneous functor of degree n. The module F(M) is the
quotient of

@ (M) ®F,(Blga)
AEMSet,

by all relations
w @ Fop (x) = MH(M) (w) @,

Joranyx € F[Z (B|ya), w € TB(M), and multation p: A — B.
Moreover, when a: M — N is a homomorphism,

Flo)= @ 1)@, .
AeMGet,, FaBlaza)
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By abuse of notation, we shall often write simply

FM)y= @ TAM)®F,(Blsa),
AeMSet,

with the imposed relations tacitly understood. The formula may be extended
to an arbitrary strict analytic functor:

FMy= @ M) QF]|(Blya).
AeP m&et,

The composition of two strict analytic functors F and G is expressible as

FGM) = @ T(GM)) @F)(B|s),
AeP m&et,

and we obtain the following formula for the multi-deviations of a composi-
tion.

THEOREM 12.

(FoG)ym = Z ( Z (Gq)®[w]>®IFl(B|#A).

Ae@P meet, \weComy X

Proof. Calculate:

L k
(FoG) (Zsl@ai) = Z r4 (G (Zs,@ai)) ®IFAT(B|#A)

i1=1 AEMGSet,

A
= Z r <ZSB®GG[B]> ®IF;£(B|#A)

Ae@P MSety, B

z
- X (Z® © ®G°[Z]>®IFI<B|#A>'

Ae@ MGSet, \ @ ac#A (a,2)ew

(The sum is extended over all w: A — C, such that #C < [k] and |C| = n.)
Identifying the coefficient of sX yields the formula. O
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NUMERICAL VERSUS
STRICT POLYNOMIAL FUNCTORS

[...] le plus beau projet de notre académie,
Une entreprise noble et dont je suis ravie,

Un dessein plein de gloire, et qui sera vanté
Chez tous les beaux esprits de la postérité [...].

— Moliére, Les Femmes savantes

Plainly, the notion of numerical functor is weaker than that of strict polyno-
mial functor. It will naturally be inquired: how much weaker? This chapter
is devoted to a comparison of the two species. The combinatorial and the
module-theoretic viewpoint will be explored in turn, each leading to several
illuminating insights.

The reader should keep in mind that there is a fundamental difference
between the two types of functors, which is constantly at play. For while
both kinds may be viewed as ordinary functors equipped with extra data, we
know that numerical functors allow for an alternative characterisation, viz. as
ordinary functors satisfying certain equations. A fortiori, a numerical functor
is uniquely determined by its underlying functor. This is not true for strict
polynomial functors, as the following example shows.

ExampLE 1. — Let B be numerical, let A be an algebra (not necessarily numer-
ical!), and let p be a prime. The ring A/pA is a bimodule over B in the usual
way. Keeping the left module structure, equip it with another right module
structure, mediated by the Frobenius map:

(x + pA) -a=d'x + pA.

That this is a module action is a consequence of Fermat’s Little Theorem. Let
(A/pA)V denote the bimodule thus obtained.
Define, for any algebra A (not necessarily numerical!), the functors

Fq: 4XMo0 — 4Mod

187
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and

Gyg: X900 — 4Mod
M (A/pA)Y @ M.

These functors commute with scalar extensions; hence they give strict analytic
functors XMod — MNood.
Let a: M — N be a homomorphism of A-modules, and let 2 € A. As a
homomorphism
A/PARM — A/pA® N,

we have
Fi(a0) =1®a0 = a®a = aFy(a),

which shows F is homogeneous of degree 1. As a homomorphism
(4/pA)Y @M — (A/pA)P ® N,

we have
Ga(a0) =1®a0 =& @ a = G4(0),

which shows G is homogeneous of degree p.
Nonetheless, considered just as (numerical) functors XMod — Mod, F and
G are both linear, and are in fact isomorphic! This is again because of Fermat’s
Little Theorem:
(x +pB) -a = a’x + pB = ax + pB,

and consequently
(B/pB)"” = B/pB

as B-bimodules. A

Let us briefly sum up what is known of numerical versus strict polynomial
functors. For affine functors, degree o and 1, the two notions coincide. This
will no longer be the case in higher degrees, as there exist numerical functors
which do not arise from strict polynomial ones. Even when it exists, the strict
polynomial structure on a given functor is usually not unique. We saw this
in the example above, where it was even possible to define strict polynomial
structures of different degrees on the same underlying functor.

The situation for quadratic functors turns out to present an intermediate
case, exhibiting some atypical phenomena. For example, as will be seen below,
the existence of a strict polynomial structure on a quadratic functor may be
inferred from a simple equation.

Another anomaly, occurring in the quadratic case only, is the following.
A guasi-homogeneous quadratic functor may always be made homogeneous of
degree 2; and not only that, but uniquely so. This is singular indeed, and far
from the generic situation. Beware, however, that a quadratic functor which
is not quasi-homogeneous need not arise from a strict polynomial functor.
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§1. QuabprATic FUNCTORS

We first propose to examine quadratic functors in detail. Let the following be
the Schur description, as in Theorem 10.10, of a strict polynomial functor F of
degree 2:

K X X, Y
N’
B

Here K denotes the degree o part, X; the degree 1 part, and fa = 2 arises from
degree 2. The labyrinthine description of F is, as may be checked:

a

PN
K X DX, Y
~—_
B

We hence obtain the following characterisation of strict polynomial functors
of degree 2.

THEOREM 1. — Let the following be the labyrinthine description of a quadratic functor
F:
a
PR
K X Y
N~
B

o F may be (non-uniquely) extended to a strict quadvatic functor iff the following
conditions are satisfied:

- X has a direct sum decomposition X = X; @ X, such that X; < Ker o and
Imp c X,

- B(X = 2X,-

o F may be (uniguely) extended to a homogeneons quadratic functor iff the following
conditions are satisfied:

-K=o
- Ba =2
ExampLE 2. — A continuation of the example above in the case p = 2 will

serve to illustrate the theorem, and also to point out its subtlety. Both functors
F and G have the following labyrinthine description:

o

/\
o B/.B o
~
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Since it evidently satisfies the conditions of the theorem, it has a unique struc-
ture of homogeneous quadratic functor — the functor G above. Yet we man-
aged to exhibit another strict polynomial structure F on this same underlying
functor, but this one linear! A

It will perhaps be illuminating to write out in detail why it is necessary that
Ba = 2 in order to define a strict polynomial structure on the functor. This
becomes evident when, given the labyrinthine description of a functor F, we
try to calculate how F acts on the homomorphism

g:B— B
given by multiplication by the ring element g. The maze associated to g is
G= [ * 4g> * ] 5
and hence

g
F(g) ’FT(B)HFT(B) = Z Deapy (F)(G) = Pgany < *—> )
PcG

_ <§>¢£abn(1~*) ( x5 ) n <§>¢L‘abn(F) ( *é *>
=g+ (i)ﬁa.

On the other hand, we know what the answer should be for a homogeneous
quadratic functor F, namely

Fg) = g'F(r) = g".
Equating these two expressions (for g = 2) yields fa = 2.

ExamrLe 3. — Denote by F = B[Hom(B?* —)], the fundamental quadratic
functor. There are isomorphisms

F(BZ) = B[Hom(BZ7BZ)]Z = B[BZXZ]Z = B[tIH tIZa tZIa tll]/]l7

where we have denoted

I o o I o o o o).
tn:OO’ tn:OO’ tZI:Io; tzz:017

and J, is the ideal of polynomials of degree greater than 2. This module is free
of rank 15, and is the direct sum of four cross-effects:

F'() =<»

FT (BI) = <t117 I, t?p bt t%z>
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F'(B,) = {tor, ts, 121, tarln, £,
FT(B.|B,) = {tutr, tutss, tistar, tistss ) -
It may now be checked that the modules
K=<, X =,tu tn,th tutn,thy, Y = {tutu, tuts, tuta, b,
together with the following maps, constitute the labyrinthine description of

F:

tII tII tZI

~ byt tZ
—
i, P Inbn e o
. 2 . Ity > Iuln
a: Iy > 2lnply B:
Ity = tnto
tiuly, Y Inby + tnla 2
2 > oot tntn = I
12, 12422

We now put

Xy = {8, — 2by, ), — 25,
Xz = <tIZI7 tiln, t122> P

and observe that, if 2 is invertible in B, X will decomposes as X = X, ®X,, and
F is in fact strict polynomial of degree 2.

This is an instance of a general phenomenon. We pointed out before
that over a Q-algebra, numerical and strict polynomial functors coincide.
A slightly stronger statement is true: If the integers 1 through n are invertible,
then numerical and strict polynomial functors of degree n coincide. This may not be
completely obvious from the theory developed thus far, but we shall prove it
presently. A

§2. THE ARIADNE THREAD

Before Theseus entered the legendary labyrinth to fight the Minotaur, Ariadne
presented him with a wonderful gift: the thread that will now forever bear
her name. This device would eventually assist him in backtracking out of the
frightful maze. Such is the legend. We too will be assisted on our quest by an
Ariadne thread.

Let us expound our doctrine. We know that homogeneous functors of
degree n correspond to Schur modules

J: MSet,, — Moo,
and numerical functors to labyrinth modules
H: £aby, — Mood.

Pre-composition with the Ariadne functor corresponds in effect to the forget-
ful functor
Hom, — Num,,.
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In fact, since homogeneous functors are of course quasi-homogeneous, we
have the following diagram:

Moo
NHom,
Laby” F‘gt\ om,

S

MGSet,
THEOREM 2: THE ARIADNE THREAD.

Peapy © q’itleet,, = (An)*.

Proof: We must show that, for a Schur module J: MSet, — Moo,
‘Dﬂabnq)a_nleetn (/) = JAn.

Denoting H = ®gqpy Py, (/) We have, for a finite set X,

H(X) = Dyla. () (Bly) = Im O3l () ( o nx)

xeX
=1Im ) (0" Moge., 0) [ 2 |-
Yex yeY
Recalling that
q);ﬁIGetn ) (Z ijxoyx) = Z Z 5“](“)7
A,Bu: A—B
we obtain

H(X) =Im )} (=)= 37 J(1a)

Yex #ACY
|A|=n
=Im Z (—n)XI=1Y] Z )
Ycx #ACY
|A]|=n
=Im > yuy = @ JA) =JA.X).
#A=X #A=X
|A]=n |A|=n

The fourth step is due to the Principle of Inclusion and Exclusion.
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We now turn to computing H(P) when P: X — Y is a maze. It will be
enough to consider the case of a simple maze, as any maze may be expressed
as a sum of such. Denote the passages of P by p;: x;, —» y; for 1 < i < k, and
compute:

H(P) = q)gnleetn U) (Oﬁcﬂ’ixi)

- Z (1Mo e, () (Zploylx) ,
IC[F] iel
of which the J(4) — J(B) component is

Z(—I)k_m Z (H?,ﬁ(a)d)](u)

IC[k] u: A—-B

B (BT 0

where we have defined

o else.

7 P, ffa=xjandb=y;foriel
Pra =

We see that for the coeflicient of /(1) to be non-zero, all elements of the mul-
tation Y must correspond to passages in P. The converse also holds, namely,
that all passages of P must be represented in p. This is because of the following
reason. If a passage p; be “missing” from , sets I with and without; in (1) will
give rise to terms of alternating signs, which will cancel. Hence the coeflicient
of J(n) will survive only if p is of the form

mi]
=TI

for positive integers
Mg+ my=n.

Then only I = [k] will yield a non-zero contribution in (1), and consequently

Hpy = Y ([157) (HH[W]> — JA(P).

my+---tmp=n

§3. NUMERICAL VERSUS STRICT PoLYNOMIAL FUNCTORS

As the crowning glory of our work, the pinnacle of the palace, let us record
the exact obstruction for a numerical functor to be strict polynomial. Recall



194 Chapter 1. Numerical versus Strict Polynomial Functors

from Theorem 9.4 the homomorphism
Sn. rn(Ban) N Q®Z B[ann]n

oAl s

I
deg A [2 G]
and the direct sum decomposition
Ime, =M (M) ® (Kery, nImg,).

Tueorem 3: THE PoLynomiaL FuNcTor THEOREM. — Let F be a quasi-homogene-
ous functor of degree n, corresponding to the labyrinth module

H: Laby” — Mod
and the B[B"*"],,-module M. The following three constructions are equivalent:
A. Imposing the structure of homogeneous functor upon F.
B. Exhibiting a factorisation of H through Laby®”.,

C. Giving M the structure of Im €,-module.

Proof. The isomorphism £aby®” =~ 9MMGet, shows the equivalence of A and B.
From the isomorphism

Ime, =~ " (B"*") x (Kery, n Img,)

we conclude that '”(B”*”)-modules canonically correspond to Im€,-modules,
and vice versa. (The ring Kery, n Img, corresponds to subfunctors of lower
degree. By considering quasi-homogeneous functors only, modules over this
ring will be zero.) This shows the equivalence of A and C. O

We caution the reader that, even in the case H factors through £aby®” and
M may be considered an Im€,-module, the factorisation and the module struc-
ture are not unique. There are in general many strict polynomial structures
on the same functor, even of different degrees!

ExampLE 4. — We point out one particular case when any such A will factor
(uniquely) through £aby®”. When B is a Q-algebra,

Laby®” = MSet,

is simply the additive hull of £aby”. This mirrors the already well-known fact
that, over a Q-algebra, numerical and strict polynomial functors coincide. In
fact, as is seen from the definition of £aby®”, it is sufficient for the integers
through 7 to be invertible in B to guarantee such a factorisation. A
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ExampLe 5. — For affine functors (degree o and 1), numerical and strict poly-
nomial functors coincide. This is no longer the case in higher degrees. Yet, as
we saw before, the quadratic case retains some regularity, in that any guasi-
homogeneous functor is necessarily homogeneous. Any quasi-homogeneous
functor of degree 2 may be given a unique strict polynomial structure, which
makes it homogeneous of degree 2.

The reason for this becomes clear when we examine the creation of £aby®*
in detail. The localisation procedure requires us to adjoin mazes

I 1
—_—
|:* *:|,
2 I

but in Laby?, the equation

holds, as may be verified. Hence £aby®” is simply the additive hull of £aby”. A

§4. RESTRICTION AND EXTENSION OF SCALARS
The divided power map
yn: B[ann]n N rn(ann)

gives rise to two natural functors between the corresponding module categor-
ies, namely restriction and extension of scalars. We consider them in turn.
Restriction of scalars is the functor

rn(ann)mﬂa - B[Bm]nimob,

which takes a I”?(B"*”)-module M and views it a B[B"*”],,-module under the
multiplication
[0]x = yu(0)x = olx = F(o)x.

On the functorial level, this corresponds to the forgetful functor
Hom, — Num,,.
Extension of scalars is the functor
BB %], P00 = [n(gnxmy 0D,
which takes a B[B"*"],-module M and transforms it into a ["”(B”*”)-module
[ (B"") @pgrny, M

through the tensor product. How does it act on the functorial level?
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Let us denote by

P = B[Hom(B", —)],,
Q =T"Hom(B”, —)

the projective generators of the categories Mum,, and $Hom,, respectively. A
functor F € 9um,, will then correspond to the B[B”*"],-module

M = Nat(P, F).
Extension of scalars transforms it into the [*(B”*”)-module
N = ["(B") @pygrny, M = ["(B"*") @gqgsny, Nat(P, F),
which corresponds to the homogeneous functor

G = Q®rn(Bn><n) N
= Q ®rn(Bn><n) r"(B"X”) ®B[B”X”]n Nat(P, F)
= Q®B[Bn><n]n Nat(P,F).

This tensor product is interpreted in the usual way. By definition,

P~ Q®B[B"X”]n Nat(P,P)
= Q ®gpr=n, B[B""];, = Q,

and we then extend by direct sums and right-exactness.
We summarise in a theorem.

Tueorem 4. — Consider the divided power map
V¢ BB"], — (B,
e Restriction of scalars
rn(Brxm MO0 — prpuxny, Mod
corresponds to the forgetful functor

Hom, — um,,.

e Extension of scalars corresponds to the functor
B[ann]nmﬂa i rn(Ban)imob,
which maps

F — " Hom(B", —) ®pgrx»), Nat(B[Hom(B”, —)],, F).
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Restriction of scalars, as we know, corresponds on the combinatorial level
to the Ariadne functor. Extension of scalars, on the contrary, does not seem
to admit a simple combinatorial interpretation. Evidently, this procedure
will grasp any numerical functor, and through brute force transform it into
a homogeneous functor of degree n. The functor to start with need not be
quasi-homogeneous; it may very well contain parts of lower degree. Excessive
amounts of violence will then be needed to transfigure it into a homogeneous
functor, and it is hardly surprising that this process will wreak havoc with its
internal structure.

§5. TorsioN-Free FuNcTORS

In this section we consider torsion-free functors and modules. Torsion shall, as
before, always mean Z-torsion. We let

M*

denote the greatest torsion-free quotient of the module M, which is simply M
divided by its torsion submodule. Observe that

Q®z M =Q®z M.
Also, when C is a category of modules or functors, we shall let
c*
denote the subcategory of torsion-free modules.

DerinitioN 1. — Let A,B € C be linear categories. The category of (epic)
angles joining A and B over C is the linear category of formal angles

X—=7<—Y, XeA, YeB, ZeC;
with both arrows epic (in C). It will be denoted by
AveB.
3

We shall usually suppress mention of the epics, and denote the formal
angle

X—7Z<—Y

by simply
[XzY],

when no confusion is likely to result.
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An arrow in the angle category is defined in the obvious way. Namely, an
arrow from [XZY] to [X’Z'Y"] is given by a commutative diagram:

X—=7<~—Y

N

XI > Z/ < YI

where the three arrows X — X', Y — Y, and Z — Z’ belong to A, B, and C,
respectively.

A subtle fact, which has hitherto gone unmentioned, is the following. A
careful examination of the proof of Theorem g.7 will reveal that

B[Hom(B"*", —)],,
is another projective generator for 9um,. As a notable consequence, the rings
B[B"*"],—; and B[BU" Vx"0],_,
are Morita equivalent, so that, in fact,
Mumy, 1 ~ g1 x(-n7, M0 ~ prpuxny,_ IN0D.

The set-up is then as follows. We have rings
R = B[B™"],
§ = BIB""],,
T =Imy, c I'"(B"""),
and surjections
0:R—S§, T:R—-T,

where 0 denotes the canonical quotient map, and T = y,. By Theorem 9.2, the
homomorphism

(0,1): R—>8SxT
is an injection of finite index. The goal is to show how this leads to a category

equivalence
R0 ~ ¢Mod” v poon 7900

(Recall the construction of the pullback categpry in Chapter o.)
Let us begin with a very general remark. Let X: A — B be a surjective ring
homomorphism, and let M be an A-module. There is an exact sequence:

o—— (KeryY)M —= M —>B®M——o0
The module
B M =M/(Kerx)M

is the greatest B-quotient of M. Furthermore, (B®4 M)* is the greatest torsion-
free B-quotient. Applying this observation to the homomorphisms 6: R — §
and 1: R — T, we conclude:
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THEOREM 5. — Every functor in Mum,, has a greatest quotient in both Num,_; and

0Hom,.

THEOREM 6. — When [XZY'] is an object of the category
sMOD™ V ponon 70D,

the module Z is a torsion module.

Proof. There are R-homomorphisms:

¢ v

X—Z<—Y
Note that X and Y are also § x T-modules, according to:

(s,) - x = sx, (s,t)y = ty.

Consider a z € Z. Because R has finite index in § x T, we can find an integer
p # o such that p(1,0) € R. Choose x € X such that

and calculate

In the fifth step, we used that ¢ is R-linear. Similarly, there is a non-zero
integer ¢ such that (o0,g) € R and

9z = (0,9)z.
We conclude that
pqz = @70)(0761) "2=0-2=0,

so that z is a torsion element. O
We shall now construct our category equivalence:

n
T T

rRIMod” $Mod* V 900 Mod*
N —
>

Consider first an M € gMod*. There is a homomorphism of R-modules

X:M—> (S@RM)*(-B(TG@RM)*
x— (I1®x,1Qx).
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The projections
M— SRR M M—->TRrM

X—>IXXx X IXX
are onto, because 0 and T are onto.

Let us now show X is one-to-one. Consider the following exact sequence
of R-modules:

o Kerx M X (SR M)* ® (T ®r M)*

Tensoring with the Z-module Q produces:

&1
o‘>KerX®ZQ*>M®zQX*> [(S®RM)*®(T®RM)*] ®z Q

ROrM®7zQ ExT)RrM®zQ

Since R has finite index in § x 7, the lower map is an isomorphism, and hence
KerX ®z Q = o. We conclude that Ker is a torsion module, and therefore,
being included in the torsion-free module M, zero. Consequently, X is one-to-
one.

We thus infer; by Delsarte’s Lemma, the existence of a formal angle

(S@r M)* —= [(S@r M)* @ (T @ M)*|/M <*— (T @x M)*

in the category
sMod* V pMod TWUD*.

We define this to be M(M).
THEOREM 7: THE SpLITTING-OFF THEOREM. — The functors
M: M | (S@r M)*, [(S @r M)* @ (T @& M)*]/M, (T @x M)" |
2 [ XZY ] - Ker(X @Y — Z)
provide a category equivalence:

n
P

rRMod* sMod™ V gonoo 7I0D”
\__'_/‘
s

Consequently, there is an equivalence of functor categories:

* * *
Num,, ~ QHom), Verym, Num,_ .
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Proof. With notation as above,
Ker(¢ +y) =4,

so we immediately have XM = I.
Consider now an angle

[XZY] € 593?00* VR 9Mod TWOU*.

Defining
M=2([XZY]) =Ker(X DY — Z),

we observe that M has finite index in X @ Y, since Z is torsion. Furthermore,
NE(XZY]) = M) = (S @ M)*, [(S @k M)* @ (T @ M)*]/M, (T @ M)*|.

By Delsarte’s Lemma, X is an S-quotient of M, and, moreover, it is by
assumption torsion-free. Since (S ®g M)* is by definition the greatest torsion-
free S-quotient of M, there is a factorisation:

M

o Ker& (S®RM)*T>X*>O
Tensoring with Q yields:
M&zQ

|

OHKerE(@ZQH(5®RM)*®ZQE>X®ZQ*>O

Because M has finite index in X @ Y, we have
M®;Q=(X®,Q)® (Y ®;Q).

We infer that the greatest torsion-free S-quotient of M ®7 Q is, in fact, X®7 Q.
Therefore, the homomorphism & ®1 is an isomorphism, with kernel

Keré ®7 Q = o.

The module Ker§ is torsion, and therefore zero, being included in the torsion-
free module (S ®g M)*. We have thus deduced

(SRrM)* = X.

Similarly,
(T ®r M)* = Y,
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and there only remains the verification

[(S@rM)* D (TRRrRM)'|/M=(X®Y)/Ker(XDY — Z)
=Im(X®Y - Z) = Z

The relation N = I follows. O



Chapter 12

POLYNOMIAL
MONADS AND OPERADS

Han dmnar nu ge ug, till vinst for Pappersbruken,
Till vinst for hvar och en som ldser 1 vart land,
Et dubbelt Skalde verk ifrén sin lirda hand:

Om rynkbands nytta i peruken

Och skadan utaf mal i gamla folioband.

— Anna Maria Lenngren, Herr Grilberg

This closing chapter will deal with practical matters — it is the palace kitchen,
if the expression be us pardoned. Let us, very briefly, indicate how polynomial
functors could possibly be put to use.

The theory of operads has long suffered from its unnatural restriction to
fields of characteristic o. Polynomial functors, it turns out, allow for a natural
extension to arbitrary base rings. We certainly do not aim to be encyclopzdic,
but merely to sketch an outline of what polynomial monads and operads look
like, and how they behave under the fundamental operations of induction
product and plethysm.

It is our hope that somebody, someday, might find this theory useful.

§1. CrassicaL OPERADS

The reader wishing a comfortable introduction to operads is referred to the
manuscript [15] by Professors Loday and Vallette (currently at the draft stage),
which has served as our source of information.

Let B be a field of characteristic o, and let Z, denote the symmetric group
on n symbols. A Z,-module is (by definition, if you like) the same as a functor

B[Z,] — Mod,

where B[Z,] is interpreted as a category with a single object. Already in 1995,
Professor Macdonald had established a category equivalence

Hom,, ~ 5, NMod.

2.03
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A homogeneous functor F would correspond to the Z,-module’
Nat(T", F),
and a Z,-module P to the homogeneous functor
M T"(M) ®s, P.

(The right action of Z, on T”(M) is the obvious one.) See [16], in which
the result has been relegated to an “appendix” This led to the following
definitions.

DEeriNiTION 1. — A Z-module is a family
P = (Pp)neN
of ¥,,-modules. S
DeriniTion 2. — The Schur functor associated to a Z-module P is
XNod — Mod

e
M— @ (M) ®s,, P,.

n=o
3
DeriNITION 3. — A classical operad is a Z-module with an associated monadic
Schur functor. o
TueoreM 1. — Ower a field of characteristic o, a classical operad is equivalent to a

strict analytic monad.

Proof. Because of the category equivalence
Hom,, ~ 5 NMod,

giving a strict analytic monad is the same as specifying a Z-module, and re-
quiring that its Schur functor be monadic. O

Operads and monads are thus equivalent, and we shall usually prefer the
latter viewpoint. The examples we give below will all be of monads.
When considering a strict analytic monad

D: X900 — Moo,

we have automatically the concept of algebra (as inherited from the theory of
monads). The base category is (as always) 900, so an algebra for our operads
will first of all be a module.

"Evidently, Nat(7”, F) is a right module over Nat 7”. That indeed Nat 7” =~ B[Z,]° is a result
that dates back to Weyl.
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ExampLe 1. — Let A be an (associative, unital) algebra, and consider the lin-
ear functor

DM) = A®M.
It is canonically a monad, with structure maps

HA: AQAQRQM - AQRM, a@bRx— ab@x
€A M —o>ARQM, x> 1Q®x.

An algebra over this monad is a homomorphism
AQM —- M

(satisfying some axioms), which is just an A-module. D is the operad (or mon-
ad) of A-modules. A

ExampLe 2. — The tensor functor T is a strict analytic monad. An algebra
over T is a homomorphism

T(M) - M,

which is just an associative, unital algebra. 7T gives the operad of associative
algebras. (To obtain non-unital algebras, simply remove the degree o part
from T, which produces the reduced tensor algebra.) A

ExampLe 3. — The symmetric functor § is a strict analytic monad. An al-
gebra over S is an associative, commutative, and unital algebra. The operad
corresponding to S is known as the operad of commutative algebras. A

ExampLE 4. — The monad A is evidently the operad of anti-commutative al-
gebras. A

ExampLE 5. — The monad I is the operad of divided power algebras. In the
current context, B being a field of characteristic o, I' = §. A

ExampLe 6. — The functor L, which constructs the free Lie algebra on a mod-
ule, is a monad. Being a subfunctor of 7, it is strict analytic. It gives the operad
of Lie algebras. TAN

There are two standard constructions on operads: the induction product
and the plethysm. On the monadic level, they are simply tensor product and
composition, respectively.

DerinitioN 4. — Let P and Q be operads with Schur functors F and G, re-
spectively. The induction product is the Z-module

P®Q

that has Schur functor F ® G. o
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There is a conceivable risk of confusion here with the usual use of the
symbol ®, but we shall never have occasion to consider the tensor product of
Z-modules.

It is contended in [15] that the induction product is given by the formula

P®Q:X— P PA)Q(B).

AuB=X

We shall presently produce a stronger statement, from which this formula can
be derived as a special case.

DeriNtTioN 5. — Let P and Q be operads with Schur functors F and G, re-
spectively. The plethysm is the Z-module

PoQ
that has Schur functor F o G. o

To describe the plethysm, we recall the terminology of compositions from
Chapter 2. Let X be a set, and let w: [#] — 2% be an [1#]-composition of X.
Define

Q(w) = Q((1)) ® Q(w(2)) ® -+ - ® Q(w(n)).
According to [15], the plethysm is given by the formula

PoQ X @ @ Pn)eQw)

n=o (.A)ECOm[n] X

§2. Scaur OPERADS

Arguably, the fields of characteristic o form a rather limited class of rings. It
should be clear, then, that an extension of the operad concept is called for.
Evidently, there is no problem in considering strict analytic monads over an
arbitrary (commutative and unital) base ring, but it is, perhaps, not as evident
what the appropriate generalisation on the operad side is.

A Z-module is (by definition, if you like) the same as a functor

B[Z,] — Moo,

where B[Z,] is interpreted as a category with a single object. It extends to a
linear functor
Get,, — Moo,

where Get,, denotes the linear category of sets of cardinality n. It was the in-
sight of Dr. Salomonsson and Professor Ekedahl ([20]) that, over an arbitrary
commutative and unital base ring, Get, is superseded by MSet,. These two
categories are, quite blatantly, not equivalent, but they are Morita equivalent
over a field of characteristic o.
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DEerINITION 6. — A Schur module is a linear functor

e8]

@ MSet, — No0.

n=0
3
Recall the category equivalence
Ponset, : Hom, — Fun(MGSet,, NMod),
under which a homogeneous functor F corresponds to the Schur module
Ponset, (F): X — Nat(T, F).
DerinirioN 7. — The Schur functor associated to a Schur module P is the
homogeneous functor
Dppser, (P): XNMod — Mod
M- @ TIMUPX).
Xe@P Mm6et,
3
DeriniTioN 8. — A Schur operad is a Schur module with an associated mon-
adic Schur functor. 3

We then have the following result, which appears as Theorem [.3.4 in
Dr. Salomonsson’s thesis [20].

TuEeOREM 2. — Over a commutative, unital base ring, a Schur operad is equivalent to
a strict analytic monad.

Proof. Immediate from the category equivalence above. O

ExampLe 7. — Let B be a ring of characteristic p. Recall from Professor Ja-
cobson’s excellent treatise on Lie algebras, [13], the definition of a restricted Lie
algebra of characteristic p. It is a Lie algebra A of characteristic p, equipped with
a unary operation (—)?1, satisfying the following axioms:

L (ax)?) = #xP) forae B, x € A.

p—I
2. (x4 y) Pl = X1 4] Z si(x,y), where is;(x,y) is the coefficient of £~

1=I
in the expansion of x(ad(zx + y))?*. Here x and y commute with the
indeterminate t, but not with each other.

3. [91] = x(ad y)?, for x,y € A.
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The monad L, of free restricted algebras is strict analytic, and gives rise to the
operad of restricted Lie algebras of characteristic p. It is not given by a classical
operad, mainly because the characteristic is wrong,. A

ExamrLE 8. — No treatment of operads with self-respect could omit men-

tion of trees. Like their classical counterparts, also Schur operads may be
illustrated by trees. An element

(o ® vw) @ x e T 122 (M) @ P({1, 1,1, 2,2})

of the Schur functor should be thought of as a multi-tree”:

X
I/L\Z
u u v v ‘w

From their interpretation as a tensor product, it is clear that multi-trees
are linear in each vertex (top and bottom row, that is; those in the middle
are just labels). But, as we recall from Theorem ro.11, they are subject to yet
another relation, which we now exemplify. Let #,v € M, and let x € P({1,1,2}).

Because
1 2 2|t 1 2 I I 2 I 1 2
=2 + )
w u vl 2 2 u u v w v u
we have a relation

2%
2

(u®wv)®P<[i ])(x)=z(1/t[z]®’u)®x+(wv®u)®x

on the Schur functor

@ rrmerx),

Xe@P MGet,

and a corresponding equation for trees, which might be termed “vertical as-
sociativity”:

*This was originally Dr. Salomonsson’s device, and somewhat (genetically) modified to suit
our needs.
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§3. TuE InpuUcTION PRODUCT OF SCHUR OPERADS

Induction products and plethysms of Schur modules are defined as for Z-mod-
ules. We emphasise again that these operations correspond to tensor product
and composition of the corresponding Schur functors.

Consider two Schur modules P and Q, corresponding to Schur functors F
and G, respectively. Let T, as usual, denote projection. According to Theorem
7.8, the induction product P ® Q maps

(P®Q)(X) = (F® G)k(Blyx)

= Im(F® G)n[X] = @ Im (FT[[A] ® Gn[s])
AuB=X

= @ FBlu)®GyBlux)= @ PA (B).
AUB=X ALB=X

The action of a multation p: X — Y is found as follows. By the Multi-Set
Yoneda Lemma, it corresponds to

(F® G)otur : (F® Gy (Blyex) — (F® G)}(Blyy),

or, as it so happens, the homomorphism

FO®G)on1: @ Fi(Blyx) ®GhBlux) > @D FL(Blay) ® Gh(Blyy),
AuB=X CuD=Y

given by the formula

FRG)gm = », Fopq ® Gyp-

KuA=H
TueoRrREM 3. — The induction product of two Schur modules P and Q is given by
PRQX)= D PA)@Q(B).
AuB=X
For a multationp: X - 'Y,
PRQMW) = > P
KLA=H

§4. Tue PLETHYSM OF SCHUR OPERADS

We now turn to the plethysm. From Theorem 10.12, we recall the formula

(FoG)a[XJZZ( Y. ® O GG[Z]>®IF*B#A>’

A \weComy X ac#A (a,Z)ew
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This yields the plethysm

(PoQ)X) =1Im(F o G)x

:Im%}( Z ® @ GT[[Z]>®IFT(B| D

weComy X a€#A (a,Z)ew

weComy X a€#A (a,2)ew

- Im; ( 2 ® O My, ) O @] 1)
@ ( e O Q(Z)> o P(A),
A \weComy X (a,2)ew
with certain relations divided away, as seen in the following theorem.

TueoreM 4. — The plethysm of two Schur modules P and Q is given by

PoQX)= @D ( ® O Q(Z)>®P(A)7

AeMSet \weComy X (a,2)ew

which is a quotient by all relations

( ® ’wz) ®P<v><x)=( ® ’wz) ®x,
(b,2)ew (a,2)EwV

for any elements x € P(A), w; € Q(Z), B-composition &, and multationv: A — B.
For a multation: X - 'Y,

A EeComy W (a,V)€8

=Z< > © Q(V))®IP<A>~

Proof. Only the last part remains:

(PoQ)(W) = (Fo Gy

=2( Y ® 0 Gam)wm ,

A \EeComy pac#A (a,v)ed

A \&eComy p (a,v)e

=53 ( PO Q(V)> ® 1p(4)
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ExampLE 9. — As an example of a relation of the above kind, we take
X ={11,2}
A ={a,a,b}
B ={c,d,d},

and

V:[j y fl] ‘*’:[{i} {f} {f}]'

‘*”:Z[{f} {1 {Z]*[{f} 6l {If}]’

Because

we get
(@ @ wiw,) ® PV)(x) = 2(wf! @ w,) ®x + (wyw, @ wr) @,
where the left-hand side comes from
O Q(Z)®P(B) = Q({1}) ® Q({1}) ® Q({2}) ® P(B),
“Z’e[{i} & {f}]

and the right-hand side from

O  Querd e O Q@A)
“’Z)E[{'f} {1 {f}] (S’Z>E[{‘f} (o} {If}]
- (FZ(Q({I})) ® Qi) ®P<A>) ® (Q({I}) ® QUi2}) ® Q({1) ®P<A>) |

A

§5. Sur OPERADS

The theory of numerical functors and mazes allows for a further extension of
the operad concept.

DEeriniTION 9. — A labyrinth module is a linear functor

Laby — Mood.

Recall the category equivalence
Peoqpy: Fun(X90d, Mod) — Fun(Laby, Mod),
under which a module functor F corresponds to the labyrinth module

qJEabn(F)Z X — Nat(AX,F).
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DeriNiTioN 10. — The Sur functor associated to a labyrinth module P is the
module functor

Py gy (P): XI00 — Mod
M- @ &5M)ePX).

XeLaby
3
DeriNiTION 11. — A Sur operad is a labyrinth module with an associated
monadic Sur functor. 3

Quite analogous to the situation for Schur operads, we have the following
result.

TueOREM 5. — Owver any (unital) base ring, a Sur operad is equivalent to a monad.
Proof: Immediate from the category equivalence above. O

For our purposes, it will not be necessary to restrict attention to analytic
monads, but it might well be needed for any sensible applications.

ExampLE 10. — Sur operads manage to capture at least two additional classes
of algebras. First, of course, there is the monad
M
o =(*)

of free numerical rings. It gives the operad of numerical algebras. A
ExampLe 11. — As another example, Sur operads succeed in encoding A-
rings. Constructing the free A-ring on a module yields an analytic monad,
which we call the operad of A-algebras. A
ExampLe 12. — Let us now describe the graphical version of Sur operads. An
element

3The Swedish word guast means broom-stick.
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The qvast is, unlike the multi-tree, not linear in its vertices or edges. Rather,
being a maze construct itself, it will inherit its properties from the labyrinth
category, which we leave for the interested reader to find.

Let us, however, indicate an instance of the relation displayed in Theorem
10.7. Let u,v € M, a right module over the possibly non-commutative ring B,
and let x € P({1,2}). Because

w1 ua 1
4 'y
there will be a relation

Lt 1< —1 M{/
*é ®P(Lb/zl>(x)= *@b ®x

on the Sur functor

@ &) ®PX),

XeLaby

which will again translate into vertical associativity:

§6. Tur INpDUcTION PRODUCT OF SUR OPERADS

Induction products and plethysms of labyrinth modules are defined as in the
classical case.

Let us find the induction product. Consider two labyrinth modules P and
Q, corresponding to Sur functors F and G, respectively. According to Theo-
rem 7.2, the induction product P ® Q maps

P®QX) = (F®G)(Blx)
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=Im(F ® G) ( o T[x>

xeX

B Au(—l!?:X " <F <ﬂgA nﬂ) ®c (17<E>B Trb))

- @ F'B)®G®BE = P PA)QMB).

AuB=X AuB=X
TueoreM 6. — The induction product of two Sur modules P and Q is given by
PRQX)= @ PA)eQMB)
AuB=X

ForamazeR: X — Y,

PRQR) = Y PSOQT).

SuT=R

§7. Tae PLETHYSM OF SUR OPERADS

One last definition, before we reach the end. When X is a set and (M,),ey is a
(finite) family of modules, we shall let

AX((My)er) < AX @My>
eY

denote the module of deviations [y, #] such that every #;, belongs to some M,,
each M, being represented at least once. Alternatively, this may be interpreted as
the set of mazes X — #, where the passages have been labelled with elements
of the modules M,, again with each module represented at least once.

LemmA 1. — Let
W DM, - DM,
yey yeY

be the canonical projections, and consider

(g{*L*}) N @My>—>AX @My>.

Its image is
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From Theorem 10.8 we have the formula

(FoG)(ay0-- = > (U{ %*}) QIrt(Bl,)s

AeLaby J[n] \Ie]
which we use to compute the plethysm:

(PoQX) =In(Fo6) (0,

xeX

G(Qzeznl)
=Im Z Z (U {*4>*}) ®IFT(B\A)

AcLaby WX \ZeW

=Im ) > (U{*M*D @ Irt(B|,)
£

AeLaby WX \ZeW

= @ D 2((G'(Bl2)zew) ®F (Bla)

AeLaby WX

= @ D AMUQAD)zw)®PA),

AeLaby WX
with certain relations divided away, as displayed in the following theorem.

TueoreM 7. — The plethysm of two Sur modules P and Q is given by
PoQ)X)= @ @ 2 (Q2)zew) ®PA),

AeLaby WaX
which is a quotient by all relations
U®PR)(x) =UR®x,

for any W <1 X, elements x € P(A), U € DP((Q(Z)) zew ), and maze R: A — B.
ForamazeS: X - Y,

= Z 2 <U { N T) * }) ®IP(A)
AcSaby EQS \TeE .

Proof. There remains only the last statement:

(PoQ)(S) = (FoG) < O s%)

[s: x—y]eS
5 5 (uf- ) o
FT(B|a)
AeLaby EQS \TeE % !
(T)
2 (U{*HQ *}) @ 1p(4)
AeLaby E<S \TeE %
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ExampLe 13. — From the classical case of operads and trees, the graphical in-
terpretation of the induction product and the plethysm is clear. The induction
product corresponds to a two-stemmed tree, and the plethysm to a grafted
tree. These interpretations remain valid for multi-trees and qvastar. A
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