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ABSTRACT

This paper is an empirical study on Harry Markowitz work on Modern Portfolio Theory. The
model introduced by him assumes the normality of assets return. We examined the OMX
Large Cap List! by mathematical and statistical methods for normality of assets returns. We
studied the effect of the parameters, Skewness and Kurtosis for different time series data. We
tried to figure it out which data series is better to construct a portfolio and how these extra
parameters can make us better informed in our investments.

! We have chosen 42 stocks from this list from different sectors of length 10 years. The complete Large Cap list
isavailable at appendix X.
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| ntroduction

The aim of this paper is to construct an empirical study on the concept, Modern Portfolio
Theory. The method is appreciated by scientists and without any doubt it is the most practical
investment model ever introduced. We are about to introduce the model and its components
fully, also covering the mathematical development of the model. But we are not going to give
just an introduction to this model.

The first part of this paper, “Theory of the Modern Portfolio Theory” gives a broad view on
the theory to the reader. Almost all the parameters and components of the basic model defined
in this part. We tried to be careful with references and choose the best literature in order to
give this opportunity to the reader to deepen his/her knowledge by referring to these sources.
Some historical facts, the risk and reward analysis, mathematical development of the model,
diversification and finally some other concepts introduced fully in this section of the paper.

The second part of this paper under title “Construction of the Model on Excel” shows how we
established the model on excel for further investigations. This part is brief and references
introduced can help the reader to get a better understanding of the process while referring to
the excel file provided by this study can also help the reader for these calculations.

The last section under title “Empirical investigation” is the main pat of this research. In the
first part we question the validity of one of the critical assumptions of the model and by some
statistical test we support our claim, then we introduce a new ratio to handle this inefficiency
regarding the model and finally we test these two ratios against each other by different
combination of some extra parameters introduced during the process.

In the following part, “ Data and Methodology” we introduce the type of the data under use for
this study and some practical information about the data.



Data and M ethodology

The data to investigate consists of 42 risky stocks listed on the Swedish stock exchange,
Large Cap list, one Index and a risk-free government bond. The data is chosen for a period of
10 years, which is aimed to cover large events on the stock market. The aim to choose this
period, 1997-2007, is to consider the extreme market events of August of 1998 as well as
September 11, 2001 incident. Using this data set, we separate it into two parts, and we define
the first period of the data set as Historical Data and the latter as Future Data. Throughout this
paper they are referred as historical and future data. The data is analyzed in 5 different time
scales, daily, weekly, monthly, quarterly and yearly. For each time period of 5 years, 4
different types of portfolios and each in different time scales constructed and studied.

Practically in analysis of the data there are always some missing cells due to discrepancies or
simply the fact that no trade took place under those dates, to solve this issue we considered no
changes in the prices occurred during those dates and consequently the assets' return was zero
on those dates.

The risk-free interest rate is extracted from the data on SSVX30 (which is the government
bond) for both periods and the volatility of the market is studied from the SIXRX (RT) (which
is the Index or Benchmark). The portfolio is constructed by Markowitz Model, where we
emphasized it as the traditional model compared with what we did adjustments to the
parameters of this model.



Theory on Modern Portfolio Theory

Modern Portfolio Theory (MPT)

Modern Portfolio Theory (MPT) is not as modern as it implies in first glance. Like other
theorems and models, which went through mysteries, MPT has its own story too. But it is
aways so that one gets lucky and wins whole the pot. P—— >

The insight for which Harry Markowitz (born August
24, 1927) received the Nobel Prize was first published
1952 in an article entitled “Portfolio Selection”. The :
article later expanded to a book by Markowitz at 1959, .__,\.
“Portfolio Selection: Efficient Diversification of ) ; i
Investments’. The quantitative approach of the model e A
existed far back in time, and they were modeled on the \“‘-n"/

investment trusts of the England and Scotland, which Figurel- Harry M. Markowitz?
began in the middle of the nineteenth century. Where Galati [1] cites a quote about
diversification which showed that it happened also earlier in time, where in Merchant of
Venice, Shakespeare put the words on merchant Antonio who says,

Yy ,
Qﬁ//yj venturds are nol in one botlom trasted
Yy .
-/ %;, lo ane /)/(lﬂe,' nor i my whole edlate
1y
C/%)(i 7 /4(,'/(// wune (// i /)/f(%dﬂ/// /{,’(IJ‘,’

Q%M/?m, my merchandise makes me not sad.

Prior to Markowitz article, 1952, Hicks mentioned the necessity of improvements on theory of
money in 1935. He introduced risk in his analysis, and he stated “ The risk-factor comes into
our problem in two ways: First, as affecting the expected period of investment, and second, as
affecting the expected net yield of investment.” Gallati [1] aso mentioned in his book that he
could not demonstrate a formula relating risk of individual assets to risk of the portfolio as
whole.

Since thiswork is based on MPT we will consider the model developed by Markowitz and his
work on mean-variance analysis. He states that the expected return (mean) and variance of
returns of a portfolio are the whole criteria for portfolio selection. These two parameters can
be used as a possible hypothesis about actual behaviour and a maxim for how investors ought
to act.

It is essentia to understand the intimates of Markowitz model. It is not all about offering a
good model for investing in high return assets. It might be interesting to know that whole the
model is based on an economic fact, “Expected Utility”. In economic term the concept of
utility is based on the fact that different consumers have different desires and they can be
satisfied in different ways. Do not forget that we mentioned two parameters, risk and return. It
will make more sense to you when we go in the explaining diversification of a portfolio. In
behavioural finance we can explain it so; Investors are seeking to maximize utility.

2 Internet reference: http://www.depotanal yse24.de/portfoliotheorie.html




Consequently if al investors are seeking to maximize the utility, so al of them must behave
in essentially the same way! Which this consistency in behaviour can suggest a very specific
statement about their aggregate behaviour. It helps us to reach some description for future
actions. We will talk more about thisin next sections.

Every model or theory is based on some assumption, basically some simplification tools.
Markowitz model relies on the following assumptions®;

e Investors seek to maximize the expected return of total wealth.

e All investors have the same expected single period investment horizon.

e All investors are risk-adverse, that is they will only accept a higher risk if they are
compensate with a higher expected return.

e Investors base their investment decisions on the expected return and risk.

e All markets are perfectly efficient.

By having these assumptions in mind, we will go through some concepts and terminologies
that will make us understand the model constructed in further part of this paper.

Risk and Reward (Mean and Variance Analysis)

As mentioned above Markowitz model relies on balancing risk and return, and it is important
to understand the role of consumer’s preferences in this balance. There are different methods
to calculate risk and return and the choice of these methods can change the result of our
calculations dramatically. The following sections describe these methods in brief and we
motivate our choice by mathematical proof.

By assumption for the Markowitz model, investors are risk averse. Assuming equal returns,
the investor prefers the one with less risk, which implies that an investor who seeks higher
return must also accept the higher risk. Thereis no exact formulaor definition for thisand it is
totally dependent on individual risk aversion characteristics of the investor.

[I{w) A Rick Pronz

fick Heutra

Risk Averse
-
Wealth (w)

Figure 2 - Utility Curvefor Investorswith Different Risk Preferences’

% The assumptions are cited from the WebCab Components home page, the PDF fileis available at internet
reference [2].
* Internet Reference: http://facweb.furman.edu/~dstanford/mecon/b1.htm



A further assumption is that risk and return preferences of an investor can be described via a
guadratic utility function. This means when plotted on a graph, your utility function is a curve
with decreasing slope, for larger risk. Where w is an indicator for wealth and U is a quadratic
utility function. We have,
U (w)=w—w?

A consumer's utility is hard to measure. However, we can determine it indirectly with
consumer behaviour theories, which assume that consumers will strive to maximize their
utility. Utility is a concept that was introduced by Daniel Bernoulli. He believed that for the
usual person, utility increased with wealth but at a decreasing rate. Figure 2 shows the utility
curve for investors with different risk preferences.

Risk aversion can be determined through defining the risk premium, which by Markowitz
defined to be the maximum amount that an individua is prepared to give up to avoid
uncertainty. It is calculated as the difference between the utility of the expected wealth and
the expected utility of the wealth.

U[E(W)] - E[U (W)]

This allows us to determine the characteristic of the behaviour of the investor regarding risk;

o If U[E(W)]> E[U(W)], then the utility function is concave and the individual is risk

averse,

o If U[E(W)]=E[U(W)], thenthe utility function islinear and the individual isrisk
neutral;

o IfU[E(W)] < E[U(W)], then the utility function is convex and the individual is risk
seeking.

It is what was defined by Markowitz (1959) and cited by Amenc et a [3]. Figure 2 gives a
graphical interpretation of what was stated above.

A Short Note on Mean Calculation

Before we move to the main challenge of MPT, the risk, we determine a method to calculate
the first parameter in use for constructing the model. It is possible to calculate mean of an
investment with severa methods, but mainly arithmetic and geometric. We have chosen
geometric method and in following sections we motivate our choice by mathematical proofs
and examples. Before al these, we introduce them briefly;

Arithmetic Mean

The arithmetic mean of alist of numbers is the sum of all the members of the list divided by
the number of theitemsin thelist.

_ 1 1
a=-> 3= _(a+:+a)
Where,



a Arithmetic mean
a Sample's datawhere (i =1,2,---,n)
n Number of data set's memeber

Geometric Mean

The Geometric Mean of a collection of positive datais defined as the nth root of the product
of al members of the data set, where n is the number of members. The Geometric Mean of

the dataset [a,,a,,...,, |is:
n 1Un
f1a] v
i=1

a Sample'sdatawhere (i =1,2,---,n)
n Number of data set's memeber

Where,

Geometric Versus Arithmetic Mean

Mathematics makes it easier for us to illustrate a problem more concrete. The comparison
between these two average methods is possible by Jensen’s Inequality. It states that for any
random variable X, if g(x) is aconvex function, then

Eg(X) = g(EX)

Equality holds if and only if, for every line atbX that is tangent to g(x) at x=EX,
P(g(X)=a+bX)=1.

This theorem can be used to prove the inequality between these two methods of averaging. If
a,a,,...,a, are positive numbers, defined as;

aA:%(a1+a2+---+a\1), (Arithmetic mean)

a; =[aa,-a,]'". (Geometric mean)

Where an inequality relating these means is
a; <a,.
In order to apply the Jenson’s Inequality, let X be a random variable with range a,,a,,--,a,

and P=(X =a,.)=%,i =1---,n. since log x is a concave function, Jensen’s Inequality shows
that E(log X) <log(EX); so,

Sk

loga, :%Zn“logq = E(log X) <log(EX) = Iog(
i=1

5

3 quloga ,
=1

S0 a5 < a,.

® The proof is taken from Statistical Inference by Casellaet al. [4].



When to use Geometric Mean

When it comes to the cal culation of the growth rate of a portfolio, Markowitz suggests the use
of Geometric Mean method. He argues that this method of calculation will guarantee us a
more redlistic result in compare with Arithmetic and Compounding Average methods. Since
we should consider reinvestment of the origina amount invested plus its growth in the
following period, we should use a method to cumulate the growth in investment at the end of
each period. Arithmetic method can not fulfil this criterion. The second reason becomes more
touchable when we consider the average of two extremes. Consider two real numbers as
ratios, 100000 and 0.00001. The average calculated by Geometric mean is equal to 1, while
the arithmetic method gives us an average of approximately 50000. This exampleis aresult of
the above argument.

Variance and Standard Deviation

According to Wackerly [5], variance of a sample of measurements a,, a,,.....,a, isthe sum of

the square of the differences between the measurements and their mean, divided byn-1,
where n denoted the sample size. The sample variance is denoted as:

1 —
“-tifle-d

Where,

s Thevariance

n Number of the sample's members

a The corresponding member of the data set wherei =1,2,---,n
a The mean of the sample

When referring to the population variance, we denote it by the following symbol o*. A
complete proof for the mean and variance just presented above is available in Appendix 1 and
2 respectively. Thisformulais an unbiased estimator of the population variance.

The standard deviation of a sample of measurements is the positive square root of the
variance, which can be denoted as:
s=+¢

The population standard deviation is denoted by o = \/? . The proof of the standard deviation
issimilar to the variance, but it is squared.

For both the variance and standard deviations in these cases, they are assumed to be unbiased
estimators for o, meaning that the random variables a,, a,,.....,a, are assumed to be normally
distributed.



Description of Standard Deviation in Portfolio theory

In portfolio theory the standard deviation measures how much the return of a portfolio or the
stock moves around the average return. The standard deviation grows as returns move further
above or below the average. This is considered as a measure of risk, where most investors
only care about the standard deviation of a stock in one direction, above or below the mean.
For investors who are long stocks do not want returns to dip below mean, but would be happy
with returns that exceed it. If the returns on a portfolio or stock are normally distributed, then
the standard deviation is a valid measure of the returns that are below the mean Markowitz
[6]. If returns are not normal but skewed, then the standard deviation is less meaningful. This
will be explained more later on.

Annualizing Returns and Standard deviation

To annualize returns and standard deviations from sets of periodic data, it is important to
realize what type of mean calculations you are using and how it works. Since there are two
different methods of annualizing returns and standard deviations, in the case of ether
arithmetic mean or geometric mean calculations.

According to Chincarini [7], in the case of the arithmetic mean or average mean as it is also
called, we should have in mind that this method assumes no compounding and the set of
equations for annualizing the return and standard deviationsis:

Ramua = M* (ﬁPeriodic)

Gannual = \/E* GPeriodic
Where,
Rama = Annualized return
m= The number of periods per year
Reeiosic = The Periodic return

o = Annualized standard deviation

annual

In the case of the geometric mean and standard deviation we should have in mind that it
assumes compounding. We then have the following set of equations for annualizing
compounding returns and standard deviations:

Rannual = <l+ Reeriodic )m -1

O il = \/[Gﬁmodic + (1+ Repeidic )2 T — (1+ Reaiodic )2m

Where,
Ramua = Annualized return
m= The number of periods per year

Rereiodic = The Periodic return

o = Annualized standard deviation

annual



M athematics of the M arkowitz M odel

Markowitz model involves some mathematics. Before implementing the model in Excel it
might be better to develop the model mathematically to get a better understanding. In the
previous sections of the theory part we introduced some basic definitions and building blocks
of Markowitz model, risk and return. Markowitz model makes it possible to construct a
portfolio with different combinations where short sales and lending or borrowing might be
allowed, or not. The case might be the best alternative to consider for the purpose of our
paper, which is clarifying the construction of a portfolio when short sales are alowed and
riskless borrowing and lending is possible. The Markowitz model is all about maximizing
return and minimizing risk, but simultaneoudly.

The investor preferences are the most important parameter which is hidden in the balancing of
the two parameters of Markowitz model. We should be able to reach a single portfolio of
risky assets with the least possible risk that is preferred to all other portfolios with the same
level of return. Let’'s consider the following coordinate system of expected return and
standard deviation of return. It will help us to plot all combinations of investments available
to us. Some investments are riskless and some are risky. Our optimal portfolio will be

somewhere on the ray connecting risk free investments R. to our risky portfolio and where

the ray becomes tangent to our set of risky portfolios or efficient set it has the highest possible
slope, in Figure 3 this point is showed by B. Different points on the ray between tangent point
and interception with expected return coordinate represents combination of different amounts
possible to lend or borrow to combine with our optimal risky portfolio on intersection of
tangent line and efficient set.

Expected return R,

X
-

Standard deviation of return o,

Figure 3 - Combinations of therisk lessasset in arisky portfolio (Gruber et al. [9])

As we mentioned above, the ray discussed has the greatest slope. It can help us to determine
the ray. The slope is simply the return on the portfolio, R, minus risk-free rate divided by

standard deviation of the portfolio, o,. Our task is to determine the portfolio with greatest

ratio of excess return to standard deviationd. In mathematical terms we should maximize
0 (Later so called Sharpe ratio).



This function is subject to the constraint,

Where X;s are the samples members, also can be random variables. The constraint can be

expressed in another way, Lintnerian, which considers an alternative definition for short sales.
It assumes that when a stock sold short, cash did not received but held as collateral. The
constraint with Lintner definition of short salesis®,

N
Zzl:|xi|:1

The above constrained problem can be solved by Lagrangian multipliers. We consider an
aternative solution, by substituting the constraint in the objective function, where it will
become maximized as in unconstrained problem. By writing R- asR: times one,

R =1R: =(§XJRF =§(XiRF)

By stating the expected return and standard deviation of the expected return in the general
form we get,

> X.(R -

0=

- N N %
Zxo +.> X X0

i=1 j=1
j#

Now we have the problem constructed and ready to solve. It is a maximization problem and
solved by getting the derivatives of the function with respect to different variables and
eguating them to zero. It gives us a system of simultaneous equations,

® Gruber et al. [9)].

10



1'd_0 = O
dX,
, 40

-0
dX,

Nd@

— =0
dX,

Let’'s consider here the Lagrange theorem’,

Let X be open in R"and f,g: X — Rbe functions of class C. Let S={xe X|g(x)=c}

denote the level set of g at highest c. Then if f|s(the restriction of f to S) has an

extremum at apoint x, € S suchthat Vg(x,) # 0. There must be some scalar 4 such that
VE (%) =AVa(x,) .

Where A is called a Lagrange multiplier. Now we show how it proceeds and then its
application on our case;

1. Form the vector equation, Vf (X) = AVQg(X) .
2. Solvethe system,

{Vf (X) = AVg(X)
g(x)=c

For x andA. By extension of this problem we have n+1 equation in n+1
unkNowN X, X,, Xs, ..., X, 4,

Where the solution for x = (X, %,,...,X,), adong with any other point satisfying g(x) =c
andVg(x) =0, are candidates for extremafor the problem.

7 James Stewart [10].
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3. Finally we determine nature of f (as maximum, minimum or neither) at the critical
points found in step 2.

As you see this method reduces a problem in n variables with k constraints to a solvable
problem in n+k variables with no constraint. This method introduces a new scalar variable,
the Lagrange multiplier, for each constraint and forms linear combination involving the
multipliers as coefficients.

Before we start to mention Lagrange theorem we got to the point that in order to solve the
maximization problem we need to take derivatives of the ratiof. We rewrited in the
following form;

7
9:{in(§ _RF):| inzaiz_i_zzxixjaij

i=1 j=1
j#i

As it is written above, the ratio consists of multiplication of two functions. To derivate this

ratio we need to use Product Rule and as the second term suggests where it has power —1/2

another rule of calculus, the Chain Rule must be applied. After applying the chain rule, we use
product rule and we get,

-3
deo N = 1\ g2 2, v k 2 N
@ [$x@-m)[2) S ESxxe |+ 2xet e xe,
K i=1 i=1 i=1 i :Il j=¢lk
7
N N N _
DRSSPI O S X[(Rk_RF)J:O
i-1 i1 j-1

]
J

If we multiply the derivative by

N N N %
21: Xfol + 2 JZ;‘ X, X,0
J#i
And rearrange, then;
_ N ) _
2 X(R-R) o )
~| = 21:12 S Xk0k+ng% +|:(F\)<—RF)]=0
D Xfal+2. > X X0 ok
i=1 i=1l j=1
L i J
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Where we define 2 as Lagrange multiplier,

in(é _RF)
iqu%iixixjaﬂ

J#i

Yields,

2 xka§+ixpkj +[(R-R.)]=0

j=k

By multiplication,

- Axka§+iﬂxjakj +[(R-R)]=0

j=k
Now by extension

C?%z—(lxloﬂ FAX, 0, A+ AX O+ AX 1Oy FAX O ) +R —R =0

We use amathematical trick, where we define anew variableZ, = 1 X, . The X, are fraction to
invest in each security, and Z, are proportional to this fraction. In order to simplify we
substitute Z, for A X, and move variance covariance terms to the left,

) 2
R-Re =20y, +2,0, ++Zo  ++Z 10y +Z\0y

The solution of the above statement involves solving the following system of simultaneous
equations,

2
20 +2,0,+2,0,;++2Z0

2
-Re =20,,+2,6,+ 203+ + 2Oy

/o] D

2
R =203+ 2,63+ 2Z,05 +-+ 203y

5 2
Ry —Re =240y + 2,0, + 2304+ + 2Oy

Now we have N equations with N unknowns. By solving for Zs we can get X, , which are the
optimum proportions to invest in stock k,

13



Up to here we calculate the weights for the general form, where short sales are allowed and
lending and borrowing is possible. For other form of portfolio constructions, we follow the
same pattern but there might be other kinds of constraints defined.

Diversfication

Despite what kind of role we have in finance world all of us might have heard this old English
proverb “Do not put all your eggs in one basket” by the character Sancho Panzain Miguel de
Cervantes Don Quixote®. It is simply what we call it here diversification. More specifically,
diversification is a risk management technique that mixes a wide variety of investments
within a portfolio. It is done to minimize the impact of any security on the overall portfolio
performance. A great reason for anybody to choose mutual funds is because they are said to
be well diversified. In order to have a diversified portfolio it is important that the assets
chosen to be included in a portfolio do not have a perfect correlation, or a correlation
coefficient of one.

Diversification reduces the risk on a portfolio, but not necessarily the return, and though it is
referred as the only free lunch in finance. Diversification can be loosely measured by some
statistical measurement, intra-portfolio correlation. It has a range from negative one to one
and measures the degree to which the various asset in a portfolio can be expected to perform
inasimilar fashion or not.

Portfolio balance can be measured by some of these intra-portfolio correlations. As the sum
approaches negative one the percentage of diversifiable risk eliminated reaches 100%. It is
why it is called weighted average intra portfolio correlation. It is computed as’

Q= Z?:erj]:l Xi X, p;
ZLZL X X,

Where,

Q istheintra-portfolio correaltion

X, isthefraction invested in asset i.

X, isthefraction invested in asset j.

p; isthe crrealtion between assetsi and j.
n number of different assets.

Table one shows how diversifiable risk eliminated in relation with intra-portfolio correlation.

8 http://www.riskythi nking.com/articles/articl e13.php#herbison
% Internet Reference: http://www.freepatentsonline.com/20030088492.html
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Intra-portfolio correlation | Percentage of diversifiable risk eliminated

1 0,0%

0,75 12,5%

0,5 25,0%

0,25 37,5%

0 50,0%

-0,25 62,5%

-0,5 75,0%

-0,75 87,5%

-1 100,0%

Table 1 - Percentage of the diversifiablerisk eliminated™®

Now let's come back again to diversification. In order to understand how to diversify a
portfolio we should understand the risk. According to Ibbotson et a. [11] risk has two
components, systematic and unsystematic. Where market forces affect all assets
simultaneously in some systematic manner it generates Systematic risk or what so called,
undiversifiable risk. Examples are Bull markets, Bear markets, wars, changes in the level of
inflation. The other component of risk is unsystematic one, or so called diversifiable risk.
These are idiosyncratic events that are statistically independent from the more widespread
forces that generate undiversifiable risk. The examples of a diversifiable risk are Acts of God
(Hurricane or flood), inventions, management errors, lawsuits and good or bad news affecting
one firm.

As defined above, Total risk of a portfolio is the result of summation of systematic and
unsystematic risks. On average, the total risk of a diversified portfolio tends to diminish as
more randomly selected common stocks are added to the portfolio. But, when more than
about three dozen random stocks are combined, it is impossible to reduce arandomly selected
portfolio’s risk below the level of undiversifiable risk that exists in the market. Figure 4
shows the graphical interpretation of this. The straight line separates the systematic risk from
unsystematic one, the systematic or undiversifiable risk lies under the straight line.

19 These figures from Table 1 is taken from; M. Statman, "How Many Stocks Make a Diversified Portfolio?"
Journal of Financial and Quantitative Analysis 22 (September 1987), pp. 353-64. They were derived from E. J.
Elton and M. J. Gruber, "Risk Reduction and Portfolio Size: An Analytic Solution,” Journal of Business 50
(October 1977), pp. 415-37. Taken from Ross, Westerfield, and Jordan, "Fundamentals of Corporate Finance"
7th Edition (2006-11-14), pp. 406.
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Figure 4 - The effect of number of securitieson risk of the portfolio in the United States (Gruber et al [9])

Diversification in Markowitz model

Markowitz model suggests that it is possible to reduce the level of risk below the
undiversifiable risk. Ibbotson [11] categorized Markowitz diversification on five basic
interrelated concepts,

1. The Weights Sum to One: The first concept requires that the weights of the assets in the
portfolio sum to 100%. Simply the investment weights are a decision variable, which is the
main task for portfolio manager to determine them.
N
x =1
i=1

Where x represents weights or participation level of asset i in a portfolio that contains N
assets. When the portfolio involves short sales, weights can be negative, but remember that
they should not violate this concept. A portfolio which has negative weights for some assets is
called leveraged portfolio or borrowing portfolio.

2. A Portfolio’'s Expected Return: It is the weighted average of the expected returns of the
assets that make up the portfolio, the portfolio’s expected rate of return for N-assets portfolio
is,

E(R,) =Y XE(R)

Where E(R ) isthe security analysts forecast for expected rate of return from the ith asset.

3. The Objective: Investment weights chosen by portfolio managers should add up to an
efficient portfolio which is:
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e The maximum expected return in its risk-class, or, conversely.
e Theminimum risk at itslevel of expected return.

The set of al efficient portfolios is called efficient frontier. This is the maximum return at
each level of risk. The efficient frontier dominates all other investment opportunities.

4. Portfolio Risk: In contrast with expected return of a portfolio which is based on forecast,

the risk of a portfolio is calculated from historical data available to the asset manager. The

risk of the portfolio, or its variance should be broken into two parts, the variance which

represents the individual risks and interaction between N candidate assets. This equation

(double summation) represents the variance-covariance matrix and can be expanded and
written in matrix form.

N N

VAR(R) =D xX0;

i 4

i j=1

Where o, =0,0,p; and p;is correlation coefficient between assetsi and j. In order to have a

portfolio well-diversified according to Markowitz, the assets included in the portfolio should
have low enough correlations between their rates of returns. As shown in the figure 5, a
portfolio with correlation coefficient equal to zero gives the same level of return, but with a
lower risk level, than a portfolio which the assets including it have a correlation coefficient of
one. If an investment or portfolio manager achieves to include securities whose rates of return
have low enough correlation, according to Markowitz, he or she can reduce a portfolio’s risk
below the undiversifiable level.

L

14.0

8.0

Figure5 - Relationship between expected return and standard deviation of return for various correlation
coefficients (Gruber et al. [9].)

5. The Capital Allocation Line: The last concept to consider on diversification by
Markowitz is The Capital Allocation Line. This concept discusses the possibility of lending
and borrowing at arisk freerate of interest provided by Markowitz model. An example can be
a government treasury bill, where as the phrase risk free interest rate suggests the variance is
zero.
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Markowitz model gives the opportunity to the asset manager to combine a risky asset or a set
of risky assets (a portfolio of risky assets) with a riskless asset. In next parts this concept will
be more clarified when we explain al conceptsin MPT one by one.

The Risk Free Asset

This asset is said to be a hypothetical asset which pays a risk-free return to the investor, with a
variance and standard deviation equal to zero. Usualy this type of assets issued by the
government and can be referred to as government bond or Treasury bill (T-bill). But theniitis
also assumed that government dose not go bankrupt. In reality we can also conclude that there
is no such thing as a risk-free asset, al financia instruments carry some degree of risk. But
also that these risk free-rates are subject to inflation risk. The common notation of the risk-

freeassetisR: .

The Security Market Line—(SML)

The Security Market Line is based on the CAPM model, where one believes that the correct
measure of risk (systematic risk) is based on the market and called Beta. This means that the
SML lineis graphed by the CAPM equation.

Expected return

1.0
Beta

Figure6 - The Security Market Line (Gruber et al. [9])

Here in the graph we can see that as the expected return increases so dose the risk (Beta). The
SML lineisbased on therisk free rate R. . We can then also see that since R-isrisk freeit has
a zero beta. When you go to the right of the graph, you will come to the market portfolio (M).
The market portfolio is a hypothetical portfolio, consisting of al the securities that are
available for an investor. That is why we have a beta of 1. The markets risk premium is
determined by the slope of the SML line.
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The Capital Market Line—(CML)

The difference in the Capital Market Line compared to the SML Lineis that al investors on
the market are taking some position on the CML line, by lending, borrowing or holding the
market portfolio ( A). The market value for the equity an investor holds is the same as for any
other investor. Both of them own the same portfolio namely the market portfolio. The CML
line considers the equity risk, standard deviationo , while the SML line considers the market
risk beta . The CML lineis derived by the following expression:

E(Ry)-R

Owm

E(R)=R: +0op

The CML line also represents the highest possible Sharpe ratio possible. The CML line is
derived by drawing a tangent line from the intercept point of the efficient frontier (or the
optimal portfolio) to the point where the expected return equals the risk-free rate R .

R

Figure7 - The Capital Market Line (Gruber et al. [9])

The Security Characteristic Line—(SCL)

The SML line is a line of best fit through some data points. But statisticians call it a time-
series regression line. The model uses a one period rate of return from some market index in

time periodt, it's denoted asR,, , . Then to explain some rate of return from some asset, we de
denote it by the index i for the ith asset. The characteristics line is used by many security

anaysts, in the form of estimating the undiversifiable and diversifiable risk of an investment.
The Security Characteristic line is denoted by the following regression equation.
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i =q +ﬂiRM,t +6,
where,

a, = Thelinesintercept/the alpha coefficient.

B, = The slope of the line/the beta coefficient.

e, = Theunexplained residua return fromasset i that occursin time period t.
Ry = Rateof return from some market index in the time period t.

From this expression we can rearrange and have the following explanation that o; +§, isthe
diversifiable return in time periodt, and that B R, is the undiversifiable return in time
periodt.

The Capital Asset Pricing Modd — (CAPM)

The CAPM model, evaluates the return on the asset in relation to the market return and the
sensitivity of the security to the market. The CAPM mode is aso based on a set of axioms
and concepts that are based on the theory of finance. Also the price of the risk in the CAPM
model is defined by the difference between the expected rate of return for the market
portfolio, and the return on the risk-free rate. This risk measure is called beta, which is
defined as follows:

As we can see the beta is equal to the covariance between the return on asset i and the return
on the market portfolioo,, , which is divided by the variance of the market portfolioo/, . This

also means that the risk-free rate has a beta of zero, the market portfolio a beta of one. We can
then define the CAPM model asfollows:

E(R)=R-+5(E(R/)-R)

o

Market Risk Premium/
where,

E(R,) = Expected return on asset i

R:= Risk-Freerate

B, = Risk of asset i

E(R,,) = Expected return on the market

From the CAPM model, we can also establish that at equilibrium the return on asset, less the
risk-free rate; have alink to the return and the market portfolio which islinear. Also to noteis
that the market portfolio is built according to the Markowitz principles. The graphical
representation of the CAPM isthe security market line.
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The Efficient Frontier and Mar ket Portfolio

The efficient frontier emphasizes a geometric interpretation of asset combinations. In this
frontier a market portfolio will be alocated which should be preferred by all investors, under
the assumptions that all investor exhibit risk avoidance and prefer more return to less. Thisis
also the fundamental of the Markowitz theory. The efficient frontier is also referred to as the
“Markowitz frontier”.

The efficient frontier is also subject to different assumptions about lending and borrowing,
with the constraint combination of the risk-free asset. It also contains aternative assumptions
about short sales. When considering these different assumptions to apply, there are aso
several different constraints that need to be handled. These assumptions are important
conceptsin portfolio theory if you want to find the optimal market portfolio.

should lie on this

/ curve (known as

High Risk/High Return the "Efficient

'\ Fontier")

Medium Risk/Medium Return

Optimal portfolios

A Portfolio above this
curve is impossible.

Portfolios below the curve are not
efficient, because for the same risk
one could achieve a greater return.

Return % (Mean)

<+—— Low Risk/Low Return

Risk % (Standard Deviation)
Figure 8 - The Efficient Frontier (Gruber et al. [9])

In the figure we can se that the efficient frontier will be convex. The explanation is that there
isarisk and return characteristics of the portfolio that will change in a non-linear fashion as
its component weighting are changed. The case is aso that the portfolio risk is a function of
correlation of the components assets, which also changes in a non-linear fashion as the
weighting of the component assets change.

The next step is finding the optimal market portfolio by connect some chosen risk-free asset
to the frontier, and then applying the Sharpe ratio which should be maximized. These two
properties will give you two points on the graph, which you then make a straight line from.
This line represents the lending part of a possible investment on the left side of the market
portfolio. If you draw the line straight to the right also, you will be able to borrow and invest
more in the market portfolio. This line that is connected to the efficient frontier is called the
capital allocation line (CAL).
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The following figure shows a graphical view of what | just described. Here the E(R) stands

for return, o isthe standard deviation, R istherisk-free asset and M stands for the market
portfolio.

a
Figure9 - Efficient Frontier with R- and M (Gruber et al. [9])

The Sharpe Ratio

This ratio is a measurement for risk-adjusted returns and was developed by William F.
Sharpe*’. This is where the name the Sharpe ratio comes from. The Sharpe ratio is defined by

where,
E(R;)= denotes, the expected return of the portfolio;

R; = denotes, the return on the risk-free asset; and
o (Rp)= denotes, the standard deviation of the portfolio returns.

This ratio measures the excess return, or the risk premium of a portfolio compared with the
risk-free rate, and with the total risk of the portfolio, measured by the standard deviation. It is
drawn from the capital market line, and it can be represented as follows:

E(R)-R _E(R)-R
o(R) o(Ry)

This relation indicates that at equilibrium, this means that the Sharpe ratio of the portfolio to
be evaluated and the Sharpe ratio of the market portfolio are equal. The Sharpe ratio

1 william F. Sharpe won the Nobel Prize in economics for his development of the CAPM in 1990.
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corresponds to the slope of the market line. If the portfolio is well diversified, then its Sharpe
ratio is close to that of the market.

The Sharperatio in Portfolio theory

The Sharpe ratio provides a good basis for comparing portfolios, and is widely used by
investment firms for measuring portfolio performance. In isolation, it dose not mean much.
This even when managers speak of “good” and “bad” Sharpe ratios, they are speaking only in
relative terms. E.g. if portfolio manager A has the highest Sharpe ratio of several managers,
then he or she has the highest risk-adjusted return of the managers for that period.

Skewness

Skewness is a parameter that describes asymmetry in a random variable's probability
distribution. In other words a distribution is skewed if one of its tails is longer than the other.
Skewness can be positive; this means that it has along tail in the positive direction. It also can
have a negative value, where it is called a negative Skewness. Consider the figure below
where two distributions are plotted by the same mean 1, and standard deviationo , but the
one to the left is positively skewed (skewed to the right) and the one on the right is negatively
skewed (skewed to the left).

i M
Figure 10 - PDFswith the same expectation and variance. *?

Skewnessis equal to zero where we have a perfect asymmetry. Mathematically the kth
standardized moment, v, , is defined by Finch [12] as,

Yy = %lzuz

Consequently the third moment becomes,

Wi = %23/2 = 'u%s/z .

12 | nternet Reference: www.riskglossary.com
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Kurtosis

The fourth standardized moment according to the general form presented in the last section is
the Kurtosis defined by Finch [12] mathematically as,

vzt

Or equivalently it becomes,

_Hy/ :,u/ _
Vet o= Yo s

In probability theory Kurtosis is the measure of peakedness of the probability distribution of a
real valued random variable. The "minus 3" at the end of this formula is often explained as a
correction to make the kurtosis of the normal distribution equa to zero. A high kurtosis
distribution has a sharper peak and fatter tails, while a low kurtosis distribution has a more
rounded peak with wider shoulders. Figure 11 shows different sorts of Kurtosis, Mesokurtic
curves take place when kurtosis is zero which means we have a normal distribution.
Leptokurtic case happens when data are fat-tailed, we say so that we have a positive kurtosis.
The last type is Platykurtic Curve, which the kurtosis is less than zero. Last two cases are not
normal distributions.

VAN —

Mesokurtic Curve Leptokurtic Curve Platykurtic Curve

Figure 11 - Different form of Kurtosis®.

13 | nternet Reference: http://allpsych.com/researchmethods/di stributions.html
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Construction of the M odel on Excel

Excel modulesfor portfolio modelling

In the following part, we will specify the excel formulas that we have used for the portfolio
spreadsheet modeling. We will do this both by the mathematical notation and its equivalent
excel notation. When working in a spreadsheet, it is always easer to have expressions for the
portfolio risk and return that are easy to enter. Excel is not suited for quadratic computations,
but since excel is built on columns and rows we can do the necessary computations by
applying linear algebra. For the complex computations our approach will be to observe cell
formulas based on excels vector and matrix multiplication, also the defined built in functions
that arein excdl.

Portfolio Risk and Return

In excel we could express the expected return and the portfolio weights by column vectors
(denoted e and w respectively, with row vector transposes €' and w'), and the variance-
covariance matrix is denoted by the matrix notation V. From this we can write the expression
of the portfolio risk and return in matrix and excel format as follows.

Matrix notation Excel formula™*
Portfolio return: w'e =SUMPRODUCT(w, €)
Portfolio variance: w'Vw =MMULT(TRANSPOSE(W),MMULT(V, w))
Portfolio sigma Jw'Vw = \/ MMULT (TRANSPOSE(w), MMULT (V,w))

NOTE: that when computing the following models, the user needsto
press ctrl+shift+Enter for it to be executed.

For calculating the portfolios risk and return, we also need to compute some other parameters
that these are based on. These are the arithmetic mean, geometric mean, variance population,
standard deviation of population and the variance-covariance matrix. These are implemented
mainly by using excel user-defined functions already implemented in excel.

Mathematical notation Excel formula
Arithmetic mean 1 D% =AVERAGE(arrays)
n<
n 1/n
Geometric mean (H a j =(GEOMEAN(arrays))-1
i=1

4 The model construction in Microsoft Excel by Jackson [13].
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Variance of population EZ(X —?() =VARP(numbers)
i=1
Sigma of population %z (% —X)? =STDEV P(numbers)
i=1
Covariance 1 > ( X — ;<)( y — 9) =COVAR(arrayl;array?2)
N

When it comes to calculating variance-covariance matrix for a large sample of different
categories, in our case different equity returns, there exists a fast and simple way in excel to
do this. This you do by accessing “Tools” in the excel work sheet, and then choose “ Data
Analysis’ if it is not enabled, you need to go to the “ Tools” > “Add-Ins’ and add it. In the
“Data Analysis’ screen, you pick “ Covariance’ to generate a variance-covariance matrix.

Using Solver to optimize efficient points

When focusing on the efficient sets of portfolios, we want to find some split across the asset
that achieves the target return by minimizing the variance of return. This problem is a
standard optimization problem, which Excels Solver can solve. It contains arange of iterative
search methods for optimization. Then for this case of the portfolio variance which is a
guadratic function of the weights, and for this we will be using Solver for quadratic
programming.

The Solver requires changing cells, a target cell for minimization and the specification of
constraints, which acts as restrictions on feasible values for the changing cells. The target cell
to be minimized is the standard deviation of return, for the portfolio. Also that the changing
cells should be the cells containing the weights.

The stepsin using solver are:

1. Excesssolver by choosing Tools > Options > Solver .
2. Specify in the Solver Parameter Dialog Box:
e Thetarget cel to be optimized
e Specify max or min
e Choose changing cells
3. Choose Add to specify the constraints then OK. This constraint ensures that it must
meet the target cell selected.
4. Click on Options and ensure that Assume Linear Model is not checked.
5. Solve and get the results in the spreadsheet.

The following figure shows how the Solver screen looks like.
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Solver Parameters

Set Target Cell: [i;]
Equal To: ®Max (OMn  Ovalueof: |0 1
By Changing Cells:
Subject to the Constraints:
Reset All
(e ]

Help

Figure 12 - The Solver Optimizer.

Further excel implementations

For the other parts of the portfolio modeling implementation, we choose to edited formulas
directly in to the cells. E.g. when we implemented the CAL we applied the formulain the cell,
since it is a linear model, there will be no complications for excel to compute it. This is
similar for the computations of the stock returns from the bid prices, calculated by taking
today’ s price minus yesterday’s price divided by yesterday’s price.

When the risk-free asset is added in to the model we will start working with the CAL. At this
point one will start combining the efficient frontier and the risk-free asset. To do so one uses
the Sharpe ratio by maximizing it. To maximize the Sharpe ratio we use again the Solver in
Excel. The different here then previous, is that now set the target cell to be the Sharpe ration,
by changing the cells “ weights’ . This will give you the optimal weighted portfolio reachable
on the efficient frontier. Since the Sharpe ratio is the slope of the tangent portfolio, we can
then draw a line from the risk-free asset and through the tangent portfolio on the efficient
frontier. We do this by writing a linear equation for these combinations. Also buy using
Solver, which is connected to the risk and return of the portfolio, will give you the best
possible return and the lowest risk for the market portfolio.

Next up is to graph the efficient portfolio with the CAL. To do this we mainly need 3-4
portfolios with different risk and returns. The first two portfolios that we need are the
maximum return portfolio and the minimum risk portfolio. The minimum risk portfolio is
usually denoted as the GMV (Global Minimum Variance) portfolio. Next is the optimal
tangent portfolio, which one obtains by maximizing the Sharpe ratio. The optiona oneis the
minimum return portfolio, which will give you a full concave figure of the graph. The final
thing is to draw the CAL from the risk-free rate and through the tangent portfolio. The
following figure shows how it could be illustrated.
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CAL = 0,2482x + 0,0033

Figure 13 - The Efficient Frontier.

I mplementing the Portfolio VaR in Excel

According to Cormac [14], the conventiona way to calculate the VaR for a portfolio is that if
one wishes to calculate the standard deviation of the portfolio and hence the VaR at the 95%
level with a significant of 5%. The details can be outlined as follows:

A [ E C ] |
k] Number of assets 0
il Fort, Return 0,053
Bl FPort, Std Dev 1115
EZ Fort, ¥ariance 0,000122357
E3 Annual Port, Beturn 26,8062
Ed Annual Port, 5td Dev 22,151
ER Annual Risk-Free 3,83
EE Annual Risk-Free [Rizk] 0,134
E7 Modefied Sharpe 06031059

8 T GotwforModenedShape | Yawempu |

B3 Confidence level 95X
i No, OF standard deviations 1644853627
hil Annual Standars deviation of Portfolio 22.15% |
T2 ¥alue at Risk of Portfolio 036434

Figure 14 - Portfolio VaR.

The essential inputs that are needed in this model are under the label “ Set up for the Modified
Sharpe”’. Then the first thing needed is the portfolio variance which is 0.000122351, next the
annualized portfolio standard deviation (Risk) 22.15%. Then after this we look up how many
standard deviations are needed to calculate VaR at the 95% level. This is obtained from the
normal distribution tables which will give you 1.64485, or in excel you use the built in
function NORMSINV (probability). This returns the inverse of the standard normal
cumulative distribution, which has a mean of zero and a standard deviation of one. Thereafter,
we multiply this by the portfolios standard deviation of 22.15%. This then means that we are

28



95% confident that our losses will not exceed 36.43% of our portfolio value. Below is the
spread sheet formula behind VaR calculation that was shown in figure 15.

Confidence level 0,95
No, Of standard deviations =NORMSINV($C$69)
Annual Standars deviation of Portfolio =D64
Value at Risk of Portfolio =C70*C71

Figure 15 - Spreadsheet fromula behind VaR calculation.
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Empirical I nvestigation

This part under title Empirical Investigation tries to answer to some questions and use some
statistical methods to motivate these answers. In the last part of this paper we are going to
study some parameters on a group of constructed portfolios with up to forty two assets by
Markowitz model. Up to today lots of the financial models including Markowitz model were
subject to a series of assumptions. The pioneering work of Harry Markowitz in Modern
Portfolio Theory was not an exception; neither the semi-variance introduction could minimize
the damage of these assumptions. He defined the reward as expected return and the risk as the
standard deviation or variance of the expected returns. Rachev [15] claims since Markowitz
assumes the returns are normally distributed, the expectation operator is linear and the
portfolio’s expected return is simply given by the weighted sum of the individual assets
expected return. The variance operator, however, is not linear. This means that the risk of a
portfolio, as measured by the variance, is not equal to the weighted sum of risk of the
individual assets.

Before any further steps in analyzing the data we will examine the distributions’ normality of
our stream of data. There exist different statistical methods to do such a test. Some of them
are computational and it is easier to construct a Null Hypothesis Testing with the help of
them, and some others can only confirm our claim by visual evidence. We will here examine
the stream of datain two ways, Jarque-Beratest and QQ-plot.

Another interesting result of constructing a portfolio with Markowitz model was the
amazingly unrealistic results for the Sharpe ratio maximization. The problem with Sharpe
ratio isthat it is accentuated by investments that do not have a normal distribution of returns.
As it is clear here, for a risk manager that tries to guard against large losses, the deviation
from the normality can not be neglected.

"In the case of testing the hypothesis that a sample has been drawn

from a normally distributed population, it seems likely that for large samples
and when only small departures from normality are in question, the most
efficient criteria will be based on the moment coefficients of the sample,

e g. onthevaluesof /B, and 3, "™

E. S. Pearson, 1935

The Jarque Bera test of Normality

It is a goodness-of-fit measure of departure from normality, based on the sample kurtosis and
skewness. We mentioned earlier that the normal or Gaussian distribution is the most popular
distribution family used in modelling finance. When it comes to stock market, it is assumed
that areturn or change in the stock price is the result of many small influences and shocks and
thus the return can be treated as a normal random variable. But is it really true? There are
different methods to test for normality such as Jarque-Bera test, Kolmogorov-Smirnov and

© /B, and B, representing skewness and kurtosis respectively denoted by Finchj12].
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Anderson-Darling introduced by Rachev et a [16]. Here we preferred to use Jarque-Bera test
of normality. It is simple to calculate and it considers the higher moments which we are
concerned about, skewness and kurtosis.

The formulafor JB-test presented by Rachev et a [16];

n~2 n ~
JB=—y +—(k-3)*
y 24( )

6
Where,
l (XAX] The sample skewness
naz (e}
K= EZ(XA XJ The sample kurtosis
L (e}
Q:LZ(X ) The sample variance

n-14=%

The result shows that under the hypothesis that x is independent observations from a normal

distribution, for large n the distribution of the JB-test statistic is asymptotically Chi-square
distributed. This will help us to do a test on normality. If we have a large sample, and we
calculate the JB-test statistic on it and compare it with the null hypothesis that the data
represents a normal distribution, while we know that in 95% of the cases the value of the JB-
test will be smaller than 5,99 for the normally distributed samples. Consequently we reject the
hypothesis of normality if the value of JB-test statistic exceeds this amount.

The Result of Jarque-Bera Test on Our Portfolio Assets

In order to see if we can rgject the normality of the data set, we performed a JB-test on the
data sets. As mentioned before, our study compares 5 different sorts of data on OMX stock
exchange, daily, weekly, monthly, quarterly and yearly. The data provides a long term
investment of 10 years and what we did was to separate it into two 5-year period data for all
categories of data. In order to perform comparisons and analyze the results, we treated the
first period as the historical data and the second as the future one. Let's consider these
categories closer;

Daily returns are the longest set of the data we analyzed. The size of the data seems to have a
big impact on the JB-test. This claim becomes more touchable when we compare it more in
depth with other categories of data. As it is shown in the table taken from our empirical
investigation shown in Appendix 6, where the marked cells means that the null hypothesis of
normality is rejected we see that the statistic values for the JB-test are notably higher than
other categories in comparison with the daily returns. But more and less the number of stocks
that their normality can be rejected by thistest is equal in the first three categories of data sets,
daily, weekly and monthly for both periods, historical and future one.

Surprisingly the quarterly data set has a larger number of normally distributed assets, which
can be due to the lack of data (the length of the data set is shorter than the latter categories).
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But still it does not mean that we can apply models with normality assumptions on these data
sets, since amost 50-60 percent of the assets included in this category are not normally
distributed. The last category is the yearly data set, most of the assets successfully pass the
JB-test, but it can not be areliable result considering the number of data in each data set. We
considered 10 years data, for two periods which will result in an analysis of a data set of five.
How convincing can the result of such a study be? So we exempt this category from our
normality test by JB-test method.

Although JB-test rejects the normality for the data categories just mentioned with a good level
of significance, but in order to present a more decent result we decided to hire another method
for testing the normality. There is a visua method so called Q-plotting for normality, where
the data sets' normality will be tested by plotting the data set against a normal distributed one.

Using Plotsto M otivate the Non-Normality of Asset’s Return Data

There are different types of tests for normality, where we can determine if a data set is
normally distributed or not? As we examined our data sets by the JB-test, it became clear to
us that the majority of the asset returns under our investigation are non-Gaussian distributed.
There are other methods mentioned above which will give us a statistic value and they can
determine normality of a data set by doing a hypothesis test. But when we are working with
financial data sets, it is interesting to observe the behaviour of the market visually. For this
purpose charts, diagrams and graphs are strong tools.

What we did on our data was a large scale empirical investigation where we plotted the
histograms for forty four stocks on the Large Cap list of Stockholm Stock Exchange for two
5-year periods where data was sorted in 5 groups, daily, weekly, monthly, quarterly and
yearly. It gave us interesting results; the shape of the histograms did not support what we
expected; to have a nice bell shaped normal distribution. Instead we got all other possible
shapes. It was the reason why we started to calculate the 3 and 4™ statistical moments, the
parameters which are essentia in forming the shape of the distributions. Here we present
some results, but the whole data analysis is available in the excel file provided by this report.
These histograms visualize distribution of data for four assets included in our empirica
investigation from the historical period (1997-2002).
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Figure 16 - Asset Returns Distribution - Daily data (year 1997-2002) *°.

As the figures show clearly, some of the tails are showing fat-tail and no strong visual sign for
asymmetric distributions. Some of the stocks like Latour B show an excess Kurtosis and
heavy tails while others like SAS shows an unsymmetrical distribution. But still we need a
more convincing method to become sure whether asset returns under our study are normally
distributed or not?

Another visual method used widely by statisticians is normal probability plotting. This can be
a good method to visualize the data distribution to study. We consider that the reader of this
paper is aready familiar with normal plotting. We just mention different cases that we might
face in our data plot. Some pictures will be provided in order to help reader to understand the
concept better.

Normal Probability Plot for Determining Non-Normality

It is a technique to see whether the data is approximately normally distributed or not. The
normal probability plot is constructed on a graph with two axes, where vertical axes are our
data and the horizontal is the z-values. With the help of normal probability plot we can answer
these two questions;

16 Reference: Taken from the empirical investigations done under this study.
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1- Arethe datanormally distributed?
2- What is the nature of the departure from the normality (Skewness,
Kurtosis, tails or peakedness of the data)?
We will consider the possible cases we might face after plotting the normal probability;

1- Dataare normally distributed;

HEAT FLOW METER DATA
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CORRELATION = 0999 INTERCEPT = 9 2615, SLOPE =0.023

Figure 17 - Data Nor mally Distributed®’.
We can conclude that the normal probability plot shows a strong linear pattern, where
the minor deviations from the line are insignificant. The normal distribution is a good
modél fitting the subject data.
2- Datahavefat-tails;
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Figure 18 - Data hasfat tails™.

If we face a plot with such a shape we conclude that, the normal probability plot shows a
non-linear pattern. Consequently the normal distribution is not a good model for these data.
If we take a closer look, both fat and short tail distributed data share some common
characteristics. Both showing a S-shaped curve in the middle and both are deviated form the
reference line at both ends of the plot.

7 Internet Reference: http://www.itl.ni st.gov/div898/handbook/eda/section3/normprpl.htm
18 | nternet Reference: http://www.itl.ni st.gov/div898/handbook/eda/section3/normprp2.htm




3- Datahave short-tails;
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Figure 19 - Data has short tails'.
In this case the normal probability plot shows a reasonably linear pattern in the middle of
the plot but it departures from both ends. As we suggested for long fat-tailed one, another
distribution other than normal would be reasonable for this case.

4- Dataare skewed right;
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Figure 20 - Data isright skewed®.

Here we have a strong non-linear pattern, where normal distribution is not a good pattern for
this data set.

The Result of Normal Probability Plot on OMX Large Cap List

After introducing the possible cases, we plotted our data on OMX Large Cap list, for 10 years
period where data is categorized in 4 different groups, daily, weekly, monthly and quarterly. It
was not far from our expectation that almost all the plots confirmed the nonlinearity and the
fact that these data are not normally distributed. Here we present the normal probability plots
of the stocks we showed histogram plots for earlier. We can take a look at the shapes and
analyse them in relation with the histograms just mentioned.

9 | nternet Reference: http://www.itl.ni st.gov/div898/handbook/eda/section3d/normprp3.htm
2 |nternet Reference: http://www.itl.ni st.gov/div898/handbook/eda/section3/normprp4.htm
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Figure 21 - The normal probability plot for 10 yearsdaily asset returns’.

The histograms showed a high-peaked data plot and made us suspicious about the asset
returns being normally distributed, and lead us to conclude that our data sets are fat-tailed.
Also based on the calculations for skewness and kurtosis which are the parameters of statistic
value of the JB-test, it is highly convincing to reason and clam the non-normality of the
distributions. Now the norma probability plot confirms strongly that the fundamental
assumption, normality of the asset returns by Markowitz model is not true. Most of the
investment managers are not aware of this fact that each one of this assumptions are made to
simplify the calculations, where the normality assumption by Markowitz model makes it easy
for amost every investment manager despite the level of knowledge in mathematics or
statistics to construct the model. The damage of this assumption often is underestimated by
investors or basically can be unknown to them.

The Problem with Sharpe Ratio and the Reason

The greater a portfolio’s Sharpe ratio, the better is its risk-adjusted performance. Where
Lhabitant [17] claims that in contrast, a Sharpe ratio of 1.0 indicates a return on investment
that is proportiona to the risk taking in achieving return. A Sharpe ratio lower than one
indicates areturn on the investment that is less than the risk taken.

But what about extreme losses? This question might seem inappropriate here, but it is not
true. An important parameter of the Sharpe ratio is risk, or to be precise the volatility. For a
portfolio with normally distributed returns, what the measure of volatility provides can be

2 Reference: Taken from the empirical investigations done under this study.
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used in constructing the portfolio. For a portfolio with assets which are normally distributed
the volatility automatically infer the extreme loss risk. This illustrated under a paper work
released by Sinopia Asset Management member of the HSBC Group by Bertland [18]%. B,
is the asset returns always normally distributed? The answer is No. What we showed so far by
this empirical investigation by JB-test and graphs was that the assets' returns are not normally
distributed, at least in the case of Large Cap List on OMX.

The following graph compares the distribution of monthly returns of a Fixed-lncome
Arbitrage instrument and the equivalent normal distribution. Volatility is equal for both cases,
while the extreme losses on the Fixed-Income Arbitrage instrument are much higher than the
Gaussian one. This shows the danger of relying solely on volatility to measure risk in
portfolios.

Dostribution of enenthly
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Source - Sinopia

Figure 22 - Extremelossesin normal V'S. Non-normal asset distributionswith equal volatility®

A feeling which is common to every risk manager is that the perception of investment is
naturally related to the potential for extreme losses. Despite the technical analysis and
complicated calculations, all investment managers are concerned about the large losses, what
we called here extreme losses. By the graph just presented, we are convinced that normal
distribution is not a good model to fit the assets returns. Let's consider another graph
presented on a study by Rachev et a [19] and see what happened to Dow Jones Industrial
Average (DJIA) daily return between 1991 and 2003. In this graph presented in Figure 23, the
volatility plotted in the interval just mentioned. As you see this graph indicates that extreme
|osses happened where it will never occur under normal distributions assumptions.

Now let’s see how these facts can affect Sharpe ratio. Because of the way volatility is defined,
returns that are 5% above average will inevitably be treated in the same way as those 5%
below average. When we consider a normal distribution since its skewness is zero and
perfectly symmetrical it can not cause any problem regarding the results. But where the
symmetrical distribution is not the case, it can be a source of problem. Consider the two
extreme losses occurred at left tail of the distribution shown in Figure 22. It shows the

2 Internet Reference: Source: http://www.sinopia.fr/docs/NewRisklndicator.pdf
2 Internet Reference: Source: http://www.sinopia.fr/docs/NewRisklndicator.pdf
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extreme losses, now considers these extreme occurrences that are on the positive side of the
mean, and then the investment has extreme gains. Compared to normally distributed ones
presented in the same graph but still the risk indicated by the volatility is equal for al three
cases. Our conclusion would be that the volatility is not an adequate measure for risk. In the
same way accuracy of Sharpe ratio can be questioned!
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These extreme losses never occur under the Normal distribution.

Figure 23 - Volatility and extreme losses of DJIA daily returns®.

Adjustments to the Risk Regarding Higher Moments' Effects

Since we proved that our asset’s returns are not normally distributed, and we explained how it
affects the Sharpe ratio measure for performance, and finaly the concept of extreme fals,
now we can apply some adjustments to the Sharpe ratio. After comparing some methods for
measuring performance we choose modified Sharpe ratio as a good measure in order to
compare it to our benchmark, conventional Sharpe ratio. The reason to do so was the result of
the study by Greg et a. [20]. He claims that due to non-normality of returns, a mean-variance
framework suffers from some limitation. Some adjustments should be done on the origina
Sharpe ratio through the use of a new measure for risk. He introduces the Modified Sharpe
Ratio where the standard deviation or risk factor of the model is replaced by Modified Vaue
a Risk (MVaR), ameasure which takes in the higher statistical moments discussed earlier.

o . (R,-R))
Modified Sharperatio = —>——
MVaR
Where,
MVaR=Wa {2 +£ (2 ~DS+ (2 ~32)K - .- (22 -52)S) o],
6 24 36
And,

2| nternet Reference: http://www.stati stik.uni-karlsruhe.de/download/Sofia_conference.pdf
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R, Portfolio return

R; Risk-freeratio

MVaR Modified VaR

o Standard Deviation

S Skewness

K Kurtosis

z, isthecritical vaue of the probability (1-¢)

The benefit of involving the higher moments in our calculation is that we want to avoid
underestimating risk. MVaR is introduced here since the conventional value at risk exhibit the
same shortcoming as the standard deviation (based on normal distribution assumptions for
asset returns). For derivation of the formula you can refer to Favre and Galeano [2002]%.

Construction of the Portfolio with New Adjustmentsto Sharpe Ratio

The steps to construct a portfolio with the new optimization factor, Modified Sharpe ratio is
as the pattern for the tradition one. The only difference between these two models is the
measure of the risk, which in the traditional Markowitz moddl is the volatility or standard
deviation of the asset returns and in the new one is the MVaR. After replacing the new risk
measure we can use our optimizer tool? to maximize the new measure for the Sharpe quote.

Analysis of the Empirical I nvestigation

In this part of the empirical investigation we will sum up our study by answering some
guestions. These questions were loosely thought of in our minds from when we started to
construct the model by two methods (traditional and modified Sharpe). But here we want to
formulate them and answer them with regards to the result of the study done on the available
data. The answers of these questions will be given in the following parts.

The Questions to Answer;
1. What will be the difference between two optimized portfolios when;

- The first one is optimized by traditional mean-variance with the Sharpe model,
and then by sorting out the stocks skewness and kurtosis and study the importance
of these parameters.

- Second case, when we optimize the portfolio considering a new risk measure,
MVaR. Then sorting out data by skewness and kurtosis and perform the same
study done aready on the last group.

2 Internet Reference: http://www.gloriamundi.org/picsresources/rb-fg.pdf
% Excel tools, Add-Ins; Solver
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Then compare these results with future data.

2. Compare the portfolios calculated in part one with other portfolios that have different time
series (monthly, daily, etc).

Daily Portfolio

In the first place, everybody would like to compare risk and returns between these two types
of optimized portfolios and by doing so we will find out that the figures are slightly equal. So
what is the point of doing this analysis? We will try to find out the answer of this question by
considering the results from traditional and modified Sharpe ratio.

Many investment managers, who intend to prepare statistical reports for their clients and the
board of directors, prefer to use the traditional Sharpe quote. It is aratio which is used vastly,
to measure the investments' performance. But why is it so that the traditional Sharpe quote is
So popular?

Comparing the results from our study on the daily data showed that we had the same results
concerning return and risk with optimization for two different Sharpe ratios, Traditional and
modified one. The definition of these was mentioned earlier in this paper. The drawback of
the traditional Sharpe ratio is that it does not distinguish between upside and downside risk,
but rather penalized upside risk specifically as downside risk. The other case is the way these
treat the extreme losses. The traditional Sharpe quote considers extreme or irregular losses as
those which are repeated regularly. By extreme or irregular losses we mean the events such as
IT crash or 11" September 2001 incident. This had extreme impact on the world's stock
markets. The use of Modified Sharpe ratio proposed to count for cancelling out the impact of
such deficiencies by the traditional model.

As the Table 2 shows, our claim holds. Optimization of Sharpe ratio gives results in the same
stocks picked by the same proportions with ailmost equal risk and return. This shows an
overestimation of traditional Sharpe, compared to modified Sharpe ratio.

Comparing the portfolios constructed to study extra parameters, skewness and kurtosis, the
only portfolio which performed acceptably was the portfolio constructed with positive
skewness. If we look at the traditional Sharpe ratio, it is still highest and greater than one,
which means we are accepting less risk for getting more return. But the Modified Sharpe ratio
is still less than one. Among other portfolios still this category claims for the highest Sharpe
ratio calculated by these two methods, and till risk and return are best performed. Comparing
the results with future data, it is still this category that gives the best risk, return and Sharpe
ratios results in connection with each other.

The other category which performs acceptably is where we have stocks with only Kurtosis
greater than 3. The risk and return are relatively high and it performed a good Sharpe quote
for both methods, and thisis still the second best performance. In our ranking it comes second
after the portfolio with only positive skewness. When it comes to future data it gives the
highest return, but also second high risk. So the ranking for this case will be alittle bit tricky
and it depends on the importance of the risk in the second time period, future data.

The other category which ranked by us as the third best performance is the portfolio
optimized without considering the higher statistical moments. The return of this category
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becomes first while the Sharpe quote stands at second place after the portfolio with stocks
sorted out by positive skewness. When considering the future data risk, this category comes as
best as aresult of diversification (access to more assets to be included in the portfolio).

Based on this study the worst performance is for the category which hires stocks with both
Kurtosis grater than 3 and positive Skewness. Comparing Sharpe ratios calculated by both
methods for both periods this category stand for the lowest results. This category is ranked
last.

Historical Data Future Data Increase/Decrease %
Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio
Traditional Markowitz Model 0,99202 0,60311 0,45249 0,27509 -54,39% -54,39%
Optimization withPositive Skewness and Kurtosi Greater than 3 0,86085 0,52336 0,33160 0,20185 -61,48% -61,43%
Optimization with Positive Skewness 1,04398 0,63470 0,49298 0,29988 -52,78% -52,75%
Optimization with Kurtosis Greater than 3 0,88005 0,53503 0,45455 0,27637 -48,35% -48,34%
Historical Data Future Data Increase/Decrease %
Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio
Traditional Markowitz Model 25,81% 25,81% 10,37% 10,37% -59,82% -59,82%
Optimization withPositive Skewness and Kurtosi Greater than 3 26,83% 26,83% 9,56% 9,57% -64,37% -64,34%
Optimization with Positive Skewness 27,03% 27,03% 11,35% 11,35% -58,01% -57,99%
Optimization with Kurtosis Greater than 3 24,89% 24,89% 11,50% 11,51% -53,78% -53,78%
Historical Data Future Data Increase/Decrease %
Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio
Traditional Markowitz Model 22,15% 22,15% 17,08% 17,08% -22,92% -22,92%
Optimization withPositive Skewness and Kurtosi Greater than 3 26,72% 26,71% 20,85% 20,85% -21,95% -21,96%
Optimization with Positive Skewness 22,22% 22,22% 17,66% 17,66% -20,53% -20,53%
Optimization with Kurtosis Greater than 3 23,93% 23,93% 19,49% 19,49% -18,55% -18,55%

Table 2 - Daily Portfolio
Weekly Portfolio

In the same pattern we analyzed the data for the daily portfolios constructed, we can look at
weekly ones. We have the same table for Sharpe ratios, return and risk of portfolios when
different factors, skewness and kurtosis considered in our optimization.

Let’s consider the first portfolio constructed by the traditional Sharpe ratio where skewness
and kurtosis effect were not considered by the original model. Not surprisingly the traditional
Sharpe ratio is amost double the Modified one in the first case, but by referring to the excel
file we will see that the stocks chosen and their weights are identical for both portfolios. This
case introduces the second highest return for the historical portfolio and the lowest risk. But it
will be interesting to compare the results with the future portfolios. In this case the Sharpe il
has the highest value and risk and return kept their positions.

The next portfolio is the one with both positive skewness and kurtosis greater than 3. In this
case we have the lowest Sharpe ratio for both historical and future portfolios. Returns are
second best, but considering the high risks they are not worth to consider. But it is interesting
to consider the velocity of losing value of the returns from the historical portfolio to the future
one, from 23,21% to 9,12%.

The third portfolio is the one with just positive skewness. It has still atraditional Sharpe ratio
greater than 1, highest return and simultaneously lowest risk. The most interesting case, but
let’s see if these characteristics remain the same when we go to the future portfolio. Sharpeis
il relatively high. The return is not the highest but the risk managed to be the lowest for the
future data.



The fourth portfolio that we analyzed is the portfolio with stocks which have kurtosis greater
than 3. Asit is predictable by looking back again in the second case it is not a good method to
construct a portfolio. Low Sharpe ratio for both periods, and the risk which is high for both
periods and the return which is not so high compared with other cases for the first period, but
interestingly not diminished as much as other portfolios for the second period.

Again as the daily analysis, the worst case seems to be the second case. But it is difficult to
distinguish between the first and third case as a candidate for the best case.

Historical Data Future Data Increase/Decrease %
Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio
Traditional Markowitz Model 1,12922 0,68652 0,706234 0,429416 -37,46% -37,45%
Optimization withPositive Skewness and Kurtosi Greater than 3 0,52150 0,31705 0,251157 0,152692 -51,84% -51,84%
Optimization with Positive Skewness 1,08602 0,66025 0,611901 0,372110 -43,66% -43,64%
Optimization with Kurtosis Greater than 3 0,55674 0,33848 0,58705496 0,357137817 5,44% 5,51%
Historical Data Future Data Increase/Decrease %
Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio
Traditional Markowitz Model 24,90% 24,91% 13,67% 13,68% -45,09% -45,10%
Optimization withPositive Skewness and Kurtosi Greater than 3 23,21% 23,21% 9,12% 9,12% -60,71% -60,71%
Optimization with Positive Skewness 25,17% 25,17% 12,59% 12,60% -49,97% -49,96%
Optimization with Kurtosis Greater than 3 20,24% 20,24% 15,34% 15,35% -24,22% -24,16%
Historical Data Future Data Increase/Decrease %
Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio
Traditional Markowitz Model 18,63% 18,64% 15,76% 15,77% -15,37% -15,39%
Optimization withPositive Skewness and Kurtosi Greater than 3 37,10% 37,10% 26,21% 26,21% -29,37% -29,37%
Optimization with Positive Skewness 19,62% 19,62% 16,43% 16,43% -16,24% -16,24%
Optimization with Kurtosis Greater than 3 29,42% 29,42% 21,81% 21,81% -25,88% -25,86%

Table 3 - Weekly Portfolio
Monthly Portfolio

In the following data set, we can se that values for the two portfolios with “ Skewness and
Kurtosis’ and “Kurtosis greater than 3” is not included. The reason for thisis that the numbers
of stocks after sorting out for these portfolios were not reaching the desired level for an
efficient diversification. Thisis one of the most important concepts of portfolio construction.

Considering the first available category which is the portfolio constructed with the traditional
Markowitz model where only mean and variance are considered, the Sharpe ratio is the
highest for both methods of calculation, modified and traditional Sharpe. When we move to
future portfolios for the same category the Sharpe ratios almost became half. When we are
analyzing the Sharpe ratios, it would make more sense to look at risk and return closely.
Return is still highest for this category while representing the least risk. But surprisingly while
the return became almost half of the historical portfolios the risk is decreased only by 6%. The
next category is where we have stocks included in the portfolio with only positive skewness.
In this category we have almost the same figures as the last case, but in general 1-2 percent
less.

The interesting result is where we compare the modified Sharpe ratio by the traditional one
where the portfolio constructed by the traditional Markowitz model. In this category we have
a minimization of only 43 percent for modified Sharpe ratio against 52 percent of the
traditional case. In order to analyze this result, you can compare these figures with the case of
considering stocks with positive skewness. In the case of constructing a portfolio with only
positive skewness, the figures for both methods of calculation of the Sharpe ratios are



identical. It clarified that the modified Sharpe ratio considers the positive skewness even in
the case of traditional Markowitz model.

Historical Data Future Data Increase/Decrease %
Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio
Traditional Markowitz Model 1,41441 0,85990 0,67654 0,48224 -52,17% -43,92%
Optimization withPositive Skewness and Kurtosi Greater than 3 N/A N/A N/A N/A N/A N/A
Optimization with Positive Skewness 1,32204 0,80374 0,62795 0,38177 -52,50% -52,50%
Optimization with Kurtosis Greater than 3 N/A N/A N/A N/A N/A N/A
Historical Data Future Data Increase/Decrease %
Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio
Traditional Markowitz Model 25,62% 25,62% 12,33% 12,33% -51,89% -51,88%
Optimization withPositive Skewness and Kurtosi Greater than 3 N/A N/A N/A N/A N/A N/A
Optimization with Positive Skewness 24,67% 24,67% 11,99% 11,99% -51,41% -51,42%
Optimization with Kurtosis Greater than 3 N/A N/A N/A N/A N/A N/A
Historical Data Future Data Increase/Decrease %
Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio
Traditional Markowitz Model 15,38% 15,38% 14,45% 14,45% -6,03% -6,02%
Optimization withPositive Skewness and Kurtosi Greater than 3 N/A N/A N/A N/A N/A N/A
Optimization with Positive Skewness 15,74% 15,74% 15,03% 15,03% -4,50% -4,50%
Optimization with Kurtosis Greater than 3 N/A N/A N/A N/A N/A N/A

Table 4 - Monthly Portfolio

Quarterly Portfolio

Based on the same reason we mentioned on the last type of the portfolio, we have only two
categoriesto analyze for quarterly portfolio.

The first category is where we have the general model applied. Looking at Sharpe ratios and
their developments we will see that this category has the highest Sharpe ratios both traditional
and modified while the development for the traditional case is worse compared with other
categories, afigure equa to amost 80%.

Compared to the case of the portfolio with positive skewness, the return considering the risk
for the same category is not at all satisfying 14% of return versus 15% of risk. The
development of the risk in this category considering the development of its counterpart is not
good at all.

Considering the portfolio with stocks which has only positive skewness, we have a good
Sharpe ratio for both methods compared with the first category analyzed where the return is
amost 26% and risk is relatively low, only 16%. Development of the figures from the
historical portfolios to future is interesting. While return diminished, the risk has risen for
both categories.

The other phenomena explained above, about the development of modified Sharpe ratio for
the origina method of the construction of the portfolio is touchable here too. The
development of the Modified Sharpe ratio remained amost constant for the case of the
portfolio with positive skewness while it has fallen for the first category.
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Historical Data Future Data Increase/Decrease %
Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio

Traditional Markowitz Model 1,49323 0,90782 0,30437 0,42635 -79,62% -53,04%
Optimization withPositive Skewness and Kurtosi Greater than 3 N/A N/A N/A N/A N/A N/A
Optimization with Positive Skewness 1,39841 0,85017 0,61989 0,37686 -55,67% -55,67%
Optimization with Kurtosis Greater than 3 N/A N/A N/A N/A N/A N/A
Historical Data Future Data Increase/Decrease %
Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio
Traditional Markowitz Model 25,78% 25,78% 8,52% 8,53% -66,93% -66,90%
Optimization withPositive Skewness and Kurtosi Greater than 3 N/A N/A N/A N/A N/A N/A
Optimization with Positive Skewness 26,66% 26,66% 14,82% 14,82% -44,41% -44,41%
Optimization with Kurtosis Greater than 3 N/A N/A N/A N/A N/A N/A
Historical Data Future Data Increase/Decrease %
Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio Sharpe Ratio Modified Sharpe Ratio
Traditional Markowitz Model 15,38% 15,38% 19,63% 19,65% 27,64% 27,79%
Optimization withPositive Skewness and Kurtosi Greater than 3 N/A N/A N/A N/A N/A N/A
Optimization with Positive Skewness 16,30% 16,30% 19,80% 19,80% 21,44% 21,45%
Optimization with Kurtosis Greater than 3 N/A N/A N/A N/A N/A N/A

Table5 - Quarterly Portfolio
Yearly Portfolio

For this category, since the time series in not long, we can not construct portfolios with
reasonabl e structures. So we won't consider this category in our investigation. The reason for
thisisthe unrealistic results of Sharpe ratio calculations.

Analysisfor the different type of time seriesfor constructing a portfolio
Daily time series:

We have constructed 4 different types of portfolios by combining two additional parameters,
skewness and kurtosis. The time series’ length is 10 years that is divided into two periods.
These two periods as mentioned before are caled historical and future, each of length of 5
years. In this part we will compare the development of Sharpe ratio, risk and return from
historical period to future one for these 4 types of portfolios. The development parameterized
by ratios presented in Table 3.

The first portfolio is constructed by standard Markowitz model, and the first part of the table
shows the traditional Sharpe ratio development against modified Sharpe ratio. For the daily
portfolio we have a traditional Sharpe of 0.99 which is relatively high. The development is
about 54% decrease comparing with weekly portfolio, which has a traditional Sharpe ratio of
1.12 for the historical period and a negative devel opment of 37%. This can be due to the level
of diversification, but surprisingly we see that the number of the stocks included in both
portfolios is the same. By looking at risk it can be explained why we have such a
development. Since the number of data is less in the case of weekly portfolio, and probably
most of the extreme events happened during the week and this data are not available at
weekly time series to analyze, we have a lower risk for weekly portfolio versus the daily one
and consequently a higher traditional Sharpe ratio for the weekly portfolio. To see if it is
really true we can compare the modified Sharpe ratio of the two portfolios. The historical
daily portfolio has a Sharpe ratio of 0.6 while the weekly has a modified Sharpe ratio of 0.68.
By looking at Value at Risk for both portfolios we can see that the daily portfolio has a higher
value compared with the weekly portfolio, 0.36 versus 0.3. This explains the differences in
the modified Sharpe ratios obtained by these two data sets and the reason is that the daily
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portfolio as a matter of fact considers al the events in the time series, including positive
extreme events. So as a result we have a higher return for the daily portfolio compared with
weekly one, but also higher risk. It will not obviously violate the concept of the utility. This
result becomes more touchable if the reader understands fully what we explained under
subtitle “The Problem with Sharpe Ratio and the Reason”.

The second row of the table shows the development for Sharpe ratios on a portfolio
constructed considering two additional parameters, positive skewness and a kurtosis greater
than three. Since the number of stocksislimited under such a constraint the traditional Sharpe
ratio has a low value. It is due to the level of diversification for this category. The annual
portfolio risk is 26% for the daily portfolio which assigns weight to only 8 stocks to the
portfolios out of 19, while in the weekly case it is 37% which is the result of a portfolio of
only 2 stocks out of 11. Since the weekly portfolio has such a high risk and low Sharpe
consequently and the construction of the portfolio isimpossible for other categories, a deeper
analysis of thistype of portfolio (with positive skewness and kurtosis greater than 3) seemsto
be useless. But among all other portfolios if we consider the development of Sharpe ratio, risk
and return, still this type of portfolio is the worst one, with the highest decrease of Sharpe
ratio and return for the two time periods versus the lowest decrease of the risk. So we can
conclude that this type of portfolio not only in Daily time series but aso in other time series
can not be a considerable investment. So we will omit this category from our analysis for
further time series.

The third row representing a portfolio constructed with only positive skewness. The
development among the other portfolios can be claimed to be moderate. This category enjoys
a better change in Share ratio and particularly the return for the two periods compared with
the traditional Markowitz model. In the case of a daily time series, the traditional Sharpe ratio
is 1,04, and greater than one which is good. And still in a weekly time horizon the Sharpe
ratio have a value grater than 1. Considering the values of the return and risk, they show still
the best performance compared with other portfoliosin this time horizon.

The fourth type of portfolio is the one with only kurtosis greater than three. Before looking
into the Sharpe ratio and the return and risk, we will start by considering the number of stocks
included in this type of portfolio to have a rough estimation of the level of diversification.
Among the stocks on the Large Cap list on OMX, there are 29 stocks that have kurtosis
greater than 3. After optimization for this category, the weights are assigned to only 9 of
them. Thisresulted in a high return but also high risk. Explanation for the high return is due to
the positive Kurtosis which results from fat-tail distributed asset returns and this can be seen
when we apply the new Sharpe ratio by a modified risk measure, resulting in a lower Sharpe
ratio, with the same risk, return and weights for the portfolio. But the question is that if this
category is a good type of investment. Answering this question is difficult, since we have a
relatively low negative development in Sharpe ratio compared with other portfolio types in
the same time horizon but also still a high level of risk. This can be considered as the last
choice to an investment manager since it has the lowest traditional or modified Sharpe ratio.
So in order to compare, we can not only take a look at development ratios, but also the
magnitude of these parameters are essential to our anaysis.

The last interesting result which is true for al 4 different portfolios is the result of

optimization for maximizing both traditional and modified Sharpe ratio. Although we get the
same weights, portfolio risk and return for these cases, the modified Sharpe ratio is smaller
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than the traditional. This confirms our claim about the overestimation of the Sharpe ratio
calculated by the traditional method.

Increase/Decrease % Increase/Decrease % Increase/Decrease % Increase/Decrease %
Sharpe Ratio Modified Sharpe Ratio | Sharpe Ratio Modified Sharpe Ratio | Sharpe Ratio Modified Sharpe Ratio | Sharpe Ratio Modified Sharpe Ratio
Traditional Markowitz Model -54,39% -54,39% -37,46% -37,45% -52,17% -43,92% -79,62% -53,04%
Positive Skewness and Kurtosi Greater than: -61,48% -61,43% -51,84% -51,84% N/A N/A N/A N/A
Positive Skewness -52,78% -52,75% -43,66% -43,64% -52,50% -52,50% -55,67% -55,67%
Kurtosis Greater than 3 -48,35% -48,34% 5,44% 5,51% N/A N/A N/A N/A
Increase/Decrease % Increase/Decrease % Increase/Decrease % Increase/Decrease %
Sharpe Ratio Modified Sharpe Ratio | Sharpe Ratio Modified Sharpe Ratio | Sharpe Ratio Modified Sharpe Ratio | Sharpe Ratio Modified Sharpe Ratio
Traditional Markowitz Model -59,82% -59,82% -45,09% -45,10% -51,89% -51,88% -66,93% -66,90%
Positive Skewness and Kurtosi Greater than: -64,37% -64,34% -60,71% -60,71% N/A N/A N/A N/A
Positive Skewness -58,01% -57,99% -49,97% -49,96% -51,41% -51,42% -44,41% -44,41%
Kurtosis Greater than 3 -53,78% -53,78% -24,22% -24,16% N/A N/A N/A N/A
Increase/Decrease % Increase/Decrease % Increase/Decrease % Increase/Decrease %
Sharpe Ratio Modified Sharpe Ratio | Sharpe Ratio Modified Sharpe Ratio | Sharpe Ratio Modified Sharpe Ratio | Sharpe Ratio Modified Sharpe Ratio
Traditional Markowitz Model -22,92% -22,92% -15,37% -15,39% -6,03% -6,02% 27,64% 27,79%
Positive Skewness and Kurtosi Greater than: -21,95% -21,96% -29,37% -29,37% N/A N/A N/A N/A
Positive Skewness -20,53% -20,53% -16,24% -16,24% -4,50% -4,50% 21,44% 21,45%
Kurtosis Greater than 3 -18,55% -18,55% -25,88% -25,86% N/A N/A N/A N/A

Table 6 - Difference Ratios for Different Time Horizons
Weekly time series:

This time series is divided into two periods as mentioned above for the latter time series, and
four types of portfolios constructed considering combinations of 2 additional parameters,
skewness and kurtosis. As we mentioned above, we are not going to consider the case of a
portfolio with positive skewness and kurtosis greater than 3, since the number of the stocks
availableislimited and the diversification can not take place.

The traditional Markowitz model shows the lowest decrease in Sharpe ratio which is due to
the low decrease in return and the lowest decrease in risk of the portfolio for the two periods.
This case was compared with other portfolios has the highest Sharpe ratio in this time
horizon, aso the least risk and a high return.

The next category is where we have a portfolio of positive skewness. 34 stocks out of our 42
in the sample have this characteristic. This obviously gives a good level of diversification to
us. The decrease of the Sharpe ratio both traditional and modified seems to be moderately low
compared with other categories. Despite the last case, with only kurtosis greater than 3 we
have a positive development! Later we discuss the reason for this. A high traditional Sharpe
ratio of 1.08 simultaneously an annua portfolio return of 25% followed by a risk of 19%
makes this investment attractive for its time horizon. As we see the difference in this category
is not much from the traditional Markowitz model, but still there is dlight differences, due to
effect of diversification, and extreme events happened during the week.

The last case is interesting, the only case with positive development of the Sharpe ratio. The
reason is that the decrease in risk of the portfolio is greater than the decrease for the return of
the portfolio. And thisis due to alow Sharpe ratio, less than 1. So this case will be not worth
to consider as investment opportunity.



Monthly Time series:

The next category to analyze is the monthly time series. Before considering this category we
should mention that two types of portfolios were not possible to establish, the portfolios with
positive skewness and kurtosis greater than 3, and the one with only kurtosis greater than 3.
The reason for this was the lack of data, alimited number of stocks to perform a portfolio and
consequently low level of diversification.

Let’s consider the first row of the data for the monthly portfolios. It is the portfolio based on
traditional Markowitz model and for the first time compared with latter portfolios we see that
the level of decrease in traditional Sharpe and the modified one is not equal. This can be
another reason to why we use modified Sharpe ratio. Modified Sharpe ratio gave us a more
stable result in these two periods which was not observed under the traditional Sharpe ratio.
One explanation to this can be the low level of decrease in the risk associated with this type of
portfolio. Monthly portfolio in compare with daily and weekly portfolio has a lower risk in
association with almost the same level of return with these portfolios. In other two cases we
have such a radical decrease in the risk measure in these two periods while the level of
decrease for return remained amost constant for these two types of portfolios. One might
conclude that it is a good sign. More decrease in the level of risk for two periods, associated
with almost the same level of return might be attractive to anybody! But there is a question of
stability too. Isthisradical decrease really reliable? Our answer is No!

Here we need more inter analysis of the risk for these four types of time series. One of the
most obvious characteristic of the behaviour of the risk is as the time series of the events
become more frequent, which means that if we are going to have longer time series, obviously
we have a higher level of risk, due to discrepancies. It is touchable under daily and weekly
time series. On the other hand if the data sets become less frequent but of the same time
length the omission of the volatility during the intervals can cause a decrease in the level of
risk, which happened in the case of monthly and quarterly time series. For more detailed data
you can refer to risk and return tables followed at the end of this analysis.

Now after this analysis on the behaviour of the risk, we can see that we should be more
careful to accept and interpret the results of studies.

Traditional Markowitz Model
Sharpe Ratio 0,992020696 1,12922393 1,414414883 1,493233205
Historical |Modified Sharpe Ratio 0,603105761 0,686519981 0,859903226 0,907821329
Sharpe Ratio 0,45248599 0,706233886 0,676540412 0,304372119
Future |Modified Sharpe Ratio 0,275087437 0,429416123 0,48223651 0,426347861
Positive Skewness and Kurtosi Greater than 3
Sharpe Ratio 0,86085468 0,521497735 N/A N/A
Historical |Modified Sharpe Ratio 0,523362572 0,317048111 N/A N/A
Sharpe Ratio 0,331603596 0,2511566 N/A N/A
Future |Modified Sharpe Ratio 0,201847344 0,15269236 N/A N/A
Positive Skewness
Sharpe Ratio 1,043982831 1,08602251 1,322041672 1,39841282
Historical |Modified Sharpe Ratio 0,634696239 0,6602549 0,803744036 0,850174664
Sharpe Ratio 0,49297677 0,611900981 0,627952737 0,619887812
Future |Modified Sharpe Ratio 0,299879543 0,372109973 0,381771894 0,376864504
Kurtosis Greater than 3
Sharpe Ratio 0,880049544 0,556742372 N/A N/A
Historical |Modified Sharpe Ratio 0,535032139 0,338475322 N/A N/A
Sharpe Ratio 0,454549224 0,587054964 N/A N/A
Future |Modified Sharpe Ratio 0,276372552 0,357137817 N/A N/A

Table 7 - Sharpe Ratio
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The second portfolio in this time category is constructed with stocks which have only positive
skewness. As it was not far from imagination, we have again the same level of decrease in the
both portfolios, optimized by traditional Sharpe ratio or by the modified Sharpe ratio. This
can be the result of our choice of stocks, the stocks with only positive skewness. It can be
seen that the Modified Value at Risk used to measure the risk for constructing the modified
Sharpe ratio can consider the right skewed effect, since still giving the same level of the risk
and return for both of the portfolios optimized by traditional or modified Sharpe ratio. You
can compare the results for Sharpe ratios by table 7.

Quarterly Time Series:

The last time series we are going to analyze more in detail is the quarterly time series. The
data to construct two types of portfolios was not available to us as indicated in the table by
N/A. This type of time horizon is quiet different from other time horizons. The reason is the
release of quarterly reports by companies. Almost al companies try to clean up their financia
losses and show a good performance, although it might come quiet late into the analysis of
investors, but it hasits impact on stock markets, both on liquidity and volatility of the market.

As it is shown in table 6, the first row where we have a portfolio constructed by traditional
Markowitz model for quarterly time horizon, you' |l see that the decrease in traditional Share
ratio is the highest change ever in our research. The reason can be clarified by looking more
closely into the risk factor. For this time horizon the difference in return of the portfolios is
amost in the same range of the other time horizons, that is why we exempt this parameter and
go directly to the risk for finding out the reason for this dramatic decrease in traditional
Sharperatio.

The pattern of changes in the difference of ratios for risk which started from daily time
horizon just turned the sign and became an increase for quarterly time horizon. This increase
in the risk can be due to release of the quarterly reports by corporations and of course
followed by an increase in trade for stocks. This results in more liquidity in the market. The
other reason can be the cumulative return of the stocks during the quarter, while we ignore the
volatility of the market in this period. We should aso consider positive or mostly
overestimated effect of these reports; the annual returns based on figures deviated long from
the mean, and the annual risk based on the not so frequent return statistics, but cumulated and
long away from the mean.

Now let's take a look at the second portfolio in this category. It takes only stocks with
positive skewness. For historical time horizon we have amost the same risk, return and
Sharpe ratio for these two portfolios. These figures are available in tables 7, 8 and 9 for
comparison. But the interesting results come into eyes when we look at developments of these
two portfolio types in future time horizon. The portfolio with positive skewness has a less
difference in risk development in compare with the Markowitz model and also a much less
difference in return’s developments. This consequently follows by a less difference in
traditional Sharpe ratio. In contrast with the latter portfolio, the one with skewness shows the
same development for traditiona vs. modified Sharpe ratio.

To conclude one more time we can claim that the portfolio constructed by stocks with positive
skewness can generate better results for future periods.
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Yearly Time Series

This data series can not be used to construct a portfolio, since the value obtained by solver for
optimized Sharpe ratio is irrelevant. A Sharpe quote of amost 600 obtained for this time
horizon.

Traditional Markowitz Model
Sharpe Ratio 22,15% 18,63% 15,38% 15,38%
Historical |Modified Sharpe Ratio 22,15% 18,64% 15,38% 15,38%
Sharpe Ratio 17,08% 15,76% 14,45% 19,63%
Future  [Modified Sharpe Ratio 17,08% 15,77% 14,45% 19,65%
Positive Skewness and Kurtosi Greater than 3
Sharpe Ratio 26,72% 37,10% N/A N/A
Historical |Modified Sharpe Ratio 26,71% 37,10% N/A N/A
Sharpe Ratio 20,85% 26,21% N/A N/A
Future |Modified Sharpe Ratio 20,85% 26,21% N/A N/A
Positive Skewness
Sharpe Ratio 22,22% 19,62% 15,74% 16,30%
Historical [Modified Sharpe Ratio 22,22% 19,62% 15,74% 16,30%
Sharpe Ratio 17,66% 16,43% 15,03% 19,80%
Future |Modified Sharpe Ratio 17,66% 16,43% 15,03% 19,80%
Kurtosis Greater than 3
Sharpe Ratio 23,93% 29,42% N/A N/A
Historical |Modified Sharpe Ratio 23,93% 29,42% N/A N/A
Sharpe Ratio 19,49% 21,81% N/A N/A
Future |Modified Sharpe Ratio 19,49% 21,81% N/A N/A

Table 8 - Portfolio Risk in Different Time Horizons.

Traditional Markowitz Model
Sharpe Ratio 25,81% 24,90% 25,62% 25,78%
Historical [Modified Sharpe Ratio 25,81% 24,91% 25,62% 25,78%
Sharpe Ratio 10,37% 13,67% 12,33% 8,52%
Future |Modified Sharpe Ratio 10,37% 13,68% 12,33% 8,53%
Positive Skewness and Kurtosi Greater than 3
Sharpe Ratio 26,83% 23,21% N/A N/A
Historical [Modified Sharpe Ratio 26,83% 23,21% N/A N/A
Sharpe Ratio 9,56% 9,12% N/A N/A
Future _|Modified Sharpe Ratio 9,57% 9,12% N/A N/A
Positive Skewness
Sharpe Ratio 27,03% 25,17% 24,67% 26,66%
Historical |Modified Sharpe Ratio 27,03% 25,17% 24,67% 26,66%
Sharpe Ratio 11,35% 12,59% 11,99% 14,82%
Future |Modified Sharpe Ratio 11,35% 12,60% 11,99% 14,82%
Kurtosis Greater than 3
Sharpe Ratio 24,89% 20,24% N/A N/A
Historical [Modified Sharpe Ratio 24,89% 20,24% N/A N/A
Sharpe Ratio 11,50% 15,34% N/A N/A
Future |Modified Sharpe Ratio 11,51% 15,35% N/A N/A

Table 9 - Portfolio Return in Different Time Horizon.
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Summary of the Results Touched by Empirical | nvestigation

To sum up shortly the answers to the questions that we have investigated, we have the
following resuilt.

1. What will be the difference between two optimized portfolios when;

-The first one is optimized by traditional mean-variance with the Sharpe
model, and then by sorting out the stocks skewness and kurtosis and study the
importance of these parameters.

-Second case, when we optimize the portfolio considering a new risk measure,
MVaR. Then sorting out data by skewness and kurtosis and perform the same
study done already on the last group.

Then compar e these results with future data.
Daily Portfolio

For the comparison of the two different Sharpe ratios for optimising the portfolios, we found
no differences when comparing return and risk or even the weights of these two Portfolios.
But aso that the modified Sharpe quotes is approximately half of the traditional one. The
reason for this as we mentioned was that the traditional one dose not distinguish between
upside and downside risk, while the use of modified Sharpe ratio proposed to count for
cancelling out the impact of such deficiencies by the traditional model.

When looking also at the different combinations of skewness and kurtosis for portfolios. We
could reasonably easy see that the portfolio of choose would be the on optimized with only by
positively skewed stocks. This portfolio had the highest Sharpe in both cases and aso
preformed best when looking at the risk and return outcome in the future. So this portfolio had
the best combination of these three parameters.

It was also quit easy to distinguish that the combination of optimizing portfolios with both
positive skewness and kurtosis greater then 3, was the worst performer of these four
portfolios.

Weekly Portfolio

Then again we see the same case of equa weights when using different Sharps, also the same
risk and return. But also that the traditional Sharpe is amost doubled compared to the
modified one.

In this case when comparing the different combinations of portfolios, it is not that easy to
raly distinguish which one is the best. The ones that we could be indifference with is the
portfolio optimised by traditional Markowitz model or positively skewed. But from the result
we have obtained we can say that the best portfolio leans more to the traditional Markowitz
model based on our result.
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But to distinguish which portfolio(s) are not clear investment objectives was not as difficult.
The least attractive investment would be the on optimised by assets which are both positively
skewed and have a kurtosis grater then 3.

Monthly Portfolio

For this data set, we did not include portfolios with “ Skewness and Kurtosis’ and “Kurtosis
grater then 3”. Thisis due strongly to the inefficiency of diversification possibility.

Then when we only head two portfolios to look at, traditional Markowitz and positively
skewed. There is not really a clear distinction between optimized Markowitz model or the
positively skewed one. But still again it leans alittle more against the Markowitz model.

But aso to notice an interesting finding in this part of the investigation is that the traditional
Sharpe ratio and the modified one differs, but only for the traditional Markowitz model and
not for the portfolio with positive skewness.

Quarterly Portfolio

In this part we omitted the two portfolios mentioned also in the monthly data. Since the
diversifiable amount of assetsis not acceptable.

Then for the traditiona Markowitz portfolio we see that it has the highest Sharpe ratio
compared to the positively skewed one. We aso saw in this case that the traditional Sharpe
had an 80% in difference compared to the modified one of 53%. While for the skewed
portfolio was the same in both cases.

One could aso notice from our investigation that the risk for both portfolios has risen when
we look in to the future. While at the same time the return has decreased considerably more
for the Markowitz model then the skewed portfolio. But looking at the historical figures only,
would make it difficult to determine which portfolio performed the best. But looking at the
whole picture of the future and history, we can say that the positively skewed one is the best
choose.

Yearly Portfolio
For this type of series we have conclude from the attempt to implement the different models,

that we are not able to construct reasonable portfolio structures with this data. The reason is
the unrealistic result of the Sharpe ratio calculations.

2. Compare the portfolios calculated in part one with other portfolios that
have different time series (monthly, daily, etc).

Daily time series
We can see in this data set that the standard Markowitz model has a Sharpe of 0.99 while
weekly has a Sharpe of 1.12, this is higher then the daily. But the number of stocks in the

portfolio is the same. We found that the explanation for this lies under the risk comparison.
Since the data set is larger in the daily series, more extreme events can be registered, then
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during the weekly data. This is showed by the daily data having a higher risk and weekly a
lower one. We could also find the effect on the modified Sharpe, which had daily Sharpe of
0.60 and weekly 0.68, and the VaR was 36% and 30% respectively. This shows that the
difference is smaller since VaR accounts for extreme events.

In our time series investigation we have noticed that by building portfolios during a then year
period divided by two five years period, and adding on the different combinations of
skewness and kurtosis. That the smaller amount of time series you have to work with the less
diversification possibility you will have when adding on extra constraints to the Markowitz
model. Thisis aso because it limits the amount of stocks to be included in the optimisation.
This is the reason why we omitted some portfolios, because they did not follow the
diversification principle.

The different portfolios have different levels of impact depending on the time series. Mostly
because the methods we used had effects on the assets at different time series events.

We were also able due to the time series to conclude that, for our 4 types of portfolios that
although the weight, return and risk, modified Sharpe ratio is smaller than the traditional one.
This shows that our claim about the overestimation of the traditional Sharperatio istrue.

Weekly time series

In this time series we found that the Sharpe ratio for the Markowitz model had the smallest
change, as we can see in table 6 comparing al other portfolios and time series. The weekly
time series shows an overall smallest change in Sharpe compared to the other time series.

We were able to find one portfolio compared to other time series and portfolios, which had an
increase in the future, Sharpe ratios. The reason for this was that the decrease in risk in the
portfolio was greater then the decrease in the return. The portfolio in this case was the one
with akurtosis greater then 3.

The positively skewed and the Markowitz portfolio is the two clear chooses in this data set.
But when comparing to the different time series, we could se that the Markowitz portfolio had
the lowest return compared to the other time series for this portfolio, but had the second
highest risk. The skewed portfolios had the second highest risk but the third highest return. In
the future data for these portfolios the Markowitz model had the third highest risk and the
highest return, compared to its other time series. For the skewed one we had the third highest
risk and the second highest return. So in this case it would lean a little more in favour for the
Markowitz model.

Monthly time series

In this data series we omitted the portfolios with positive skewness and kurtosis greater than
3, and the one with only kurtosis greater than 3. The reason for this was that it did not fill the
concept of diversification.

What we found here was that, for the traditional Markowitz model when looking ahead was
that the level of decrease in the traditiona and modified Sharpe is not equal. But also the
modified Sharpe showed a more stable result. A reason for this could be the low level of risk
associated with that type of portfolio. The monthly portfolio has a lower level of risk
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compared to the other time series daily and weekly, whereas the return was approximately the
same.

There was also an obvious pattern realised on the characteristics of the behaviour of risk. This
was that the bigger frequency of time series we had, the higher the level of risk, due to
discrepancies. In the other way around it could decrease the level of risk, which it did for the
monthly and quarterly data.

For the portfolio with positive skewness, we obtained again the same level of decrese in both
portfolios, optimizing using traditional and modified Sharpe ratio. It was shown that the
Modified Value at Risk used to measure the risk for constructing the modified Sharpe ratio
can consider the right skewed effect, since it till gives the same level of the risk and return
for both of the portfolios optimized by traditional or modified Sharpe ratio.

Quarterly timeseries

We redlized that one of the underlying reasons for the large shifts in the stock returnsis, from
how the stock markets are affected by the speculators and analysts that play the market during
quarterly reports.

We can find that in this time series the decrease in the traditional Sharpe is the highest. And
that it had the highest Sharpe ration in the historical time series than the other once. It is also
interesting to see in the investigation that the risk when looking into the future has a positive
change (increase), then all the other time sets. We believed that the markets speculations on
the quarterly reports had an impact of large effects on the stock prices. But that theincreasein
the futurerisk, is affected of other things mentioned.
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Conclusion

After introducing the model and constructing it on excel we started our empirica
investigation on the model. The results were amazingly satisfying in this section. The tests on
the normality of the assets return showed a strong support for our clam about the
abnormality of the assets' return with ahigh level of statistical significance. The next part as a
result of the abnormality of data sets leads us into finding a new measure for the performance
in order to consider these inefficiencies. The new measure introduced and compared with the
original model aso in combination with some new parameters, like skewness and kurtosis.
Hiring these parameters changed the results of the future portfolios and we presented above
which factor had the greatest influence or how they could make an investment manager better
in hisinvestment.

Form our empirical research we are able to draw the following conclusion of the study we
made. The description will be brief since a deeper explanation of what we conclude in our
investigation could be found in the empirical and analysis part of the paper.

e The concept of diversification on portfolio selection showed its importance in the
mean-variance optimisation approach, due to the balancing of risk and reward.

e Incorporating higher statistical moments in decision-making has shown both
weaknesses and strengths. The incorporation of Skewness has shown dlightly better
effect on the mean-variance optimisation compared to future portfolios.

e The data set which replicated best for the future portfolios was the monthly time
series. It showed a moderate accurate estimate of the future, when risk and return was
taken into account.

e |In generda the traditional Sharpe model showed an inconsistent estimation compared
with modified verson when two time periods collated. This was mainly due to
extreme events.
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Appendices

Appendix 1 — Proof of Expected Value (M ean)®

Assume some population X and some random sample of that population x;, X, ......, X, . Then
we can define another random variableY , which is he mean of the sample:

For population in statistics one defines the mean of X asu . We can then prove that the mean
of Y is:

n

E[Y]-E| 3% |

N4
1 n
-1e2x ]
1 n

== E[x]

Nz

1<
:_Zﬂ
i=1

n.
1
n

This means then that since the expected value of Y isu, this then is referred to as an
unbiased estimator of 1. One can also refer to it as, if we don’t know u, but we know the

sample mean, X, then we should use x to estimate u .

%0 Wackerly et a. [5]
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Appendix 2 — Proof of Variance®

This is a proof of why s” is an unbiased estimator of the population variance. To show that
s” is unbiased, we will show that E(sz) = o”. We need to assume that the population which

the X, X,,....., x aretaken from has mean u and variances*. Then we can prove that:

“(<)- (n =D
(s )
([0 (x-n) )
(&0~ 07) 2205 -0 (x|
nil.l{a %Zn:E &—u)(&—u))}iziiE((xj_“)(Xk_“))}
(
(

j=1
O' G
G _— PR
n n
2

n-— 1
n

This proves that s* is an unbiased estimator of the population variance. The proof for the
standard deviation is the same but instead the whole expression is squared , | E(sz) =+o?.

3 Wackerly et al. [5]

58



Appendix 3 — Table of Skewness™

Skewness for Individual Stocks Daily Weekly [Monthly |Quarterly [Yearly JDaily Weekly [Monthly |Quarterly |Yearly
SX-SSVX30.SE Benchmark | SSVX 30 0,781 0,113 -0,447 0,741  -1,369] 1,957 0,922 0,848 0,904 0,966
RT-SIXRX.SE Benchmark 0,053 0,411 0,086 0,313 1,292 0,102 -0,664 -0,523 -1,926 -2,018
JM JM Finance 0,071 0,601 0,409 0,483 -0,580] -0,330 -0,011 -0,524 -0,779 -0,605
CAST Castellum Finance 0,465 0,504 -0,140 -0,603 0,281 -0,185 -0,345 -0,401 0,169 -0,340
KINV-B Kinnevik B Finance 0,187 0,178 0,615 0,749 0,577 0,107 0,225 1,726 0,364 1,156
SWED-A Swedbank A Finance 0,150 0,308 0,632 1,116 0,294} -0,021  -0,459 -0,152 -0,737 -1,320
FABG Fabege Finance 1,084 0,992 0,313 0,113 -1,050] -1,433  -0,990 -1,123 -0,767 1,466
LATO-B Latour B Finance 0,063 0,794 0,888 1,025 0,511 1,085 -0,289 0,346 -1,344 -0,654
LUND-B Lundberg Finance -0,097 -0,451  -1,272 -1,010  -1,893f -0,487 -0,539 0,475 0,108 1,860
OMX OMX Finance 3,722 0,733 1,195 1,051 0,156' 1,741 1,783 0,683 -0,384 0,385
RATO-B Ratos B Finance -0,008 0,875 -0,086 0,091 -0,889' 0,133 -0,443 -0,332 -0,175 1,060
ORES Oresund Finance -1,495 -1,423 -0,755 0,072 0,359' -0,318 0,622 -0,173 -0,256 0,351
SEB-A SEB A Finance 0,148 0,749 -1,075 -1,233 0,434' 0,527 0,035 -0,534 -0,342  -1,545
SHB-A SHB A Finance 0,463 0,721 -0,087 0,313 0,788' 0,008 -0,335 -0,084 -0,944  -1,405
INVE-B Investor B Finance 0,244 0,073 -0,620 -0,963 -0,530' 0,028 -0,391 -0,829 -2,601  -1,267
HUFV-A Hufvudstaden A Finance 0,701 1,124 0,237 -0,597 -0,059] -0,181 -0,196 -0,264 -0,397 -0,028
INDU-A Industryvéarden A Finance 0,040 0,068 -0,108 0,145 1,120 -0,076  -0,539 -0,297 -1,487 -2,011
SKF-B SKF B Industry 0,423 0,296 0,214 -0,067 0,912 0,474 0,014 -0,147 0,216 1,619
VOLV-B Volvo B Industry 0,218 0,708 0,212 0,282 0,314 0,007 -0,135 0,122 -1,186 -0,952
SKA-B Skanska B Industry -1,962 -1,171 0,117 -0,533 0,767' 0,112 0,098 0,360 -1,150 -0,753
TREL-B Trelleborg B Industry 0,137 0,914 0,273 -0,420 -0,188' 0,144 -0,314 0,035 -0,859 0,811
NCC-B NCC B Industry -0,348 0,099 -0,068 -0,229 l,7l4l -0,375 -0,289 -0,031 0,236 -0,531
PEAB-B Peab B Industry 0,973 0,366 0,415 -0,218 1,438' -0,057 -0,044 -0,105 -0,339  -1,662
HEXA-B Hexagon B Industry -0,318 0,300 -0,092 0,088 0,252' 0,331 0,273 0,032 -0,548 1,320
SECO-B Seco Tools B Industry -0,082 0,050 -0,485 -0,167 -0,184' -0,598 -0,471 0,007 0,737 -0,234
ASSA-B Assa Abloy B Industry 0,554 0,712 0,663 -0,054 -0,659' 0,064 0,296 0,671 -0,733  -0,545
SAS SAS Industry -0,331 -0,950 -0,616 -1,021 0,682' 0,450 0,393 0,276 -0,161 0,528
SECU-B Securitas B Industry 0,965 0,464 0,553 0,633 0,829] -1,079 -0,393 -0,639 -0,873 -0,715
ATCO-A Atlas Copco A Industry 0,415 0,306 0,407 0,242 1,062 0,506 -0,268 -0,049 -1,355 -0,460
SAND Sandvik Industry 0,438 0,093 0,412 -0,233 1,827 0,106 -0,357 -0,020 0,925 -0,982
HOLM-B Holmen B Material -1,264 -0,679 -0,900 -0,751  2,211] -0,823 -0,869 -0,922 0,090 -0,446
SCA-B SCA B Material 0,320 0,203 0,390 -0,729 0,252 0,381 -0,084 -0,060 -0,078 1,599
SSAB-A SSAB A Material 0,494 0,162 -0,134 0,109 0,900 0,209 0,166 0,005 -0,836 0,307
ELUX-B Electrolux B Commodities 0,023 0,030 0,211 0,168 -0,589) 0,389 -0,205 0,087 -0,743  -0,042
HM-B H&MB Commodities -0,860 -0,007 0,500 0,088 -0,470| 0,617 0,055 -0,383 -0,014 -0,832
TEL2-B Tele2 B Telecommunication 0,443 0,071 0,520 1,163 0,437 0,267 0,264 1,792 1,514 0,870
ERIC-B Ericsson B -0,042 -0,086 -0,078 0,784 1,422 0,356 0,715 2,412 0,115 -0,620
NOKI-SDB Nokia 0,335 -0,260 -0,216 0,749  0,549) -0,342 0,023 -0,251 -0,405 0,434
GETI-B Getinge B Health Care 0,085 0,642 0,286 0,140 1,266' 0,407 0,275 0,306 0,308 -0,189
EKTA-B Elekta B Health Care 1,171 0,799 1,059 0,566 1,799I -0,051 0,016 -0,503 -0,853 0,434
MEDA-A Meda A Health Care 2,330 3,342 3,424 1,485 -0,868] 1,676 3,641 2,519 0,298 0,747
AXFO Axfood Commodities 1,491 0,804 1,105 0,297 1,457 -0,345 0,485 0,123 -0,224  -0,479
SWMA Swedish Match Commodities 0,212 0,635 0,653 0,411 0,807 0,146 -0,172 0,098 1,163 0,334
VOST-SDB Vostok Nafta Energy 0,858 1,088 -0,095 1,189 0,487 0,213 0,443 0,541 1,767 1,249

Table 10 - Skewnessfor stocks and different type of data series.

% These tables presented on the appendices are the results of our study and they are available on the excel file
provided by this report.
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Appendix 4 — Table of Kurtosis

Kurtosis for Individual Stocks Daily Weekly [Monthly |Quarterly [Yearly JDaily |Weekly |[Monthly |Quarterly |Yearly
SX-SSVX30.SE Benchmark I SSVX 30 4,787 4,128 -0,351 -0,048 l,83ll 4,195 0,104 -0,179 -0,048 -0,285
RT-SIXRX.SE Benchmark 2,382 2,683 -0,201 4,861 l,813l 3,949 2,668 1,657 4,861 4,180
M JM Finance 5543 1,234 0,321 0,244 -0,124' 4,621 2,833 0,385 0,244 -3,259
CAST Castellum Finance 5958 2,268 -0,232 -0,237  0,8590 3,147 1529 0,421 -0,237  -1,497
KINV-B Kinnevik B Finance 5,566 1,976 0,969 0,457 -1,997§ 7,701 2,721 8,145 0,457 1,656
SWED-A Swedbank A Finance 1,251 3,027 3,053 0,894 -2,695§ 2,790 0,738 0,424 0,894 2,009
FABG Fabege Finance 9,722 4,675 -0,028 -0,467  2,506f 17,046 3,537 1,644 -0,467 2,326
LATO-B Latour B Finance 7,540 3,353 1,389 2,349 l,277l 31,342 1,366 0,682 2,349 -2,213
LUND-B Lundberg Finance 3,994 2,888 4,572 -0,621 3,529' 4,376 2,508 0,596 -0,621 3,440
OMX OMX Finance 50,656 1,292 2,165 1,255 -0,875' 19,433 12,302 3,090 1,255 1,474
RATO-B Ratos B Finance 6,124 8,412 0,651 -0,241 O,464I 3,830 1,995 -0,249 -0,241 1,819
ORES Oresund Finance 19,747 9,527 1,390 0,124 0,311' 6,289 6,457 1,177 0,124 -1,844
SEB-A SEB A Finance 1,913 6,637 2,427 0,053 -l,768l 4,470 1,577 0,363 0,053 2,962
SHB-A SHB A Finance 1,810 3,766 0,042 0,512 -O,348I 4,033 2,025 -0,266 0,512 2,311
INVE-B Investor B Finance 2,640 0,968 0,843 8,319 -0,244' 3,782 2,602 1,292 8,319 2,653
HUFV-A Hufvudstaden A Finance 5552 4,530 0,150 -0,781 -2,134] 4,749 35544 0,917 -0,781  -2,160
INDU-A Industryvarden A Finance 1,829 0,992 -0,279 3,175 l,748l 3,627 0,682 1,355 3,175 4,314
SKF-B SKF B Industry 2,064 0,905 -0,510 -0,329 0,218' 5219 0,398 -0,604 -0,329 2,578
VOLV-B Volvo B Industry 3,814 3,588 -0,795 3,465 -2,588' 2,828 0,511 1,211 3,465 1,168
SKA-B Skanska B Industry 20,582 6,332 0,650 1,358 -2,293' 3,689 1,398 1,048 1,358 1,637
TREL-B Trelleborg B Industry 4,804 3,736 1,339 0,084 -l,506l 3,097 1,054 -0,674 0,084 -1,373
NCC-B NCC B Industry 3,631 1,363 -0,460 -0,472 2,698' 4,557 1,045 -0,333 -0,472  -1,338
PEAB-B Peab B Industry 6,206 0,321 -0,430 0,559 l,802l 3,850 1,648 -0,299 0,559 2,652
HEXA-B Hexagon B Industry 4,554 2,402 0,990 0,258 -2,883' 2,339 0,121 0,457 0,258 2,115
SECO-B Seco Tools B Industry 11,574 0,911 -0,249 0,391 l,544l 14,096 2,000 1,750 0,391 -1,457
ASSA-B Assa Abloy B Industry 3,394 2,565 0,837 -0,186 -2,835' 7,577 3,076 2,142 -0,186 -1,138
SAS SAS Industry 4,307 7,368 1,632 -0,716 -l,880l 2931 1,099 2,518 -0,716 -0,870
SECU-B Securitas B Industry 5767 2,427 1,592 -0,058 2,300' 20,055 6,058 0,779 -0,058 -0,419
ATCO-A Atlas Copco A Industry 4,293 0,408 1,447 2,678 -O,57ll 4,057 0,075 0,193 2,678 0,364
SAND Sandvik Industry 2,471 0,414 1,097 0,257 3,749' 3,510 0,423 0,043 0,257 -0,369
HOLM-B Holmen B Material 17,475 5,718 2,147 0,154 4,911' 12,904 3,017 0,901 0,154 -3,022
SCA-B SCA B Material 1,471 -0,234 0,091 -0,729 -2,346' 4,141 1,192 0,462 -0,729 3,003
SSAB-A SSAB A Material 2,593 1,165 -0,004 1,707 0,436' 5471 3,130 -0,699 1,707 -2,063
ELUX-B Electrolux B Commodities 1,697 1,309 -0,256 0,689 -0,829' 5648 1,668 -0,554 0,689 -2,629
HM-B H&MB Commodities 15,768 3,648 1,641 -0,113 -2,439' 7,233 1568 -0,244 -0,113 -0,100
TEL2-B Tele2 B Telecommunication 5,110 1,993 0,639 3,415 -3,034' 5,837 2,342 8,576 3,415 0,148
ERIC-B Ericsson B 2,921 1,929 -0,098 1,298 2,132§ 7,212 5,377 13,606 1,298 0,637
NOKI-SDB Nokia 4,618 0,752 0,024 0,421 -3,041§ 5,751 2,157 1,400 0,421 1,706
GETI-B Getinge B Health Care 2,713 1,440 0,621 0,097 1,984 2,133 1,009 0,309 0,097 -0,291
EKTA-B Elekta B Health Care 6,510 2,228 2,727 2,443 3,777' 5,043 2,633 1,548 2,443 0,168
MEDA-A Meda A Health Care 28,517 23,600 17,790 0,245 O,4l4l 14,137 29,876 12,279 0,245 -1,251
AXFO Axfood Commodities 10,598 1,871 2,203 -0,680 l,736l 12,387 2,835 0,629 -0,680 -3,017
SWMA Swedish Match Commodities 1,920 0,445 0,372 2,072 l,223| 3,121 0,877 -0,635 2,072 -0,922
VOST-SDB Vostok Nafta Energy 8,037 5,954 3,215 5,266 -l,565l 4,986 3,212 0,231 5,266 0,636

Table 11 - Kurtosisfor stocks and different type of data series.
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Appendix 5—Table of Beta for Individual Stocks

Beta Ratio for Individual Stocks Daily Weekly Monthly Quarterly Yearly JDaily  Weekly Monthly Quarterly Yearly
SX-SSVX30.SE Benchmark | SSVX 30 |
RT-SIXRX.SE Benchmark SIXRX (TR
JM JM Finance 0,261 0,313 0,109 0,211 0,432} 0,552 0,668 0,797 1,201 1,048
CAST Castellum Finance 0,166 0,130 0,129 0,285 -0,193) 0,267 0,344 0,656 0,952 0,256
KINV-B Kinnevik B Finance 0,957 1,482 1,618 1,788 l,llll 1,169 1,211 1,869 2,116 1,841
SWED-A Swedbank A Finance 0,604 0,516 0,472 0,426 0,040I 0,815 0,815 0,755 0,864 0,718
FABG Fabege Finance 0,326 0,370 0,217 0,307 —0,082' 0,416 0,517 0,411 0,640 0,155
LATO-B Latour B Finance 0,333 0,632 0,708 0,702 0,196] 0,523 0,855 0,902 0,947 0,596
LUND-B Lundberg Finance 0,294 0,314 0,310 0,225 —0,024' 0,378 0,422 0,419 0,523 -0,010
OMX OMX Finance 1,019 1,217 1,877 2,044 l,258| 1,387 1,782 2,037 1,971 1,771
RATO-B Ratos B Finance 0,420 0,686 0,517 0,420 0,144] 0,548 0,702 0,710 0,894 0,558
ORES Oresund Finance 0,292 0,284 0,473 0,674 0,189f 0,323 0,499 0,493 0,703 0,406
SEB-A SEB A Finance 0,789 0,966 0,943 0,851 0,212§ 1,181 1,068 0,755 0,751 0,846
SHB-A SHB A Finance 0,497 0,470 0,280 0,289 0,011} 0,864 0,796 0,641 0,627 0,594
INVE-B Investor B Finance 0,828 0,792 0,704 0,842 0,659 1,196 1,378 1,327 1,281 1,400
HUFEV-A Hufvudstaden A Finance 0,222 0,271 0,295 0,396 0,208] 0,368 0,477 0,673 0,792 0,311
INDU-A Industryvérden A Finance 0,960 1,038 1,072 0,995 0,972 1,000 1,075 1,126 1,076 0,983
SKF-B SKF B Industry 0,640 0,794 0,674 0,601 1,011 1,028 1,036 0,808 0,639 0,291
VOLV-B Volvo B Industry 0,619 0,775 0,521 0,405 0,301} 0,989 1,037 0,996 0,880 0,880
SKA-B Skanska B Industry 0,522 0,640 0,515 0,380 0,571 0,934 1,076 1,184 1,186 0,836
TREL-B Trelleborg B Industry 0,458 0,564 0,416 0,329 0,176f 0,828 0,935 1,056 1,149 0,721
NCC-B NCC B Industry 0,352 0,570 0,505 0,414 O,772I 0,623 0,753 0,671 0,877 0,902
PEAB-B Peab B Industry 0,305 0,219 0,122 0,154 -0,408] 0,467 0,573 0,687 0,797 0,005
HEXA-B Hexagon B Industry 0,439 0,478 0,388 0,280 —0,325' 0,617 0,827 1,070 1,159 0,884
SECO-B Seco Tools B Industry 0,316 0,397 0,265 0,230 0,190I 0,484 0,491 0,575 0,619 0,421
ASSA-B Assa Abloy B Industry 0,721 0,872 0,924 0,853 0,770 1,152 1,329 1,225 1,292 0,587
SAS SAS Industry 0,312 0,483 0,534 0,456 O,lGSI 0,845 1,100 1,190 1,322 1,008
SECU-B Securitas B Industry 0,591 0,669 0,714 0,630 O,598I 1,147 1,247 1,231 1,034 0,716
ATCO-A Atlas Copco A Industry 0,689 0,797 0,645 0,455 0,601 1,243 1,322 1,383 1,144 1,184
SAND Sandvik Industry 0,596 0,620 0,624 0,435 O,973I 0,971 1,050 0,581 0,517 0,660
HOLM-B Holmen B Material 0,553 0,553 0,618 0,679 0,849 0,667 0,688 0,770 0,672 0,365
SCA-B SCA B Material 0,475 0,477 0,382 0,383 0,412} 0,657 0,666 0,536 0,564 0,049
SSAB-A SSAB A Material 0,597 0,596 0,566 0,532 0,672} 0,786 0,930 0,710 0,912 0,790
ELUX-B Electrolux B Commodities 0,675 0,731 0,701 0,870 0,656f 1,026 1,012 0,924 0,773 0,568
HM-B H&MB Commodities 0,901 0,907 0,808 0,647 0,962] 0,812 0,736 0,529 0,376 0,552
TEL2-B Tele2 B Telecommunication 1,240 1,626 1,658 1,795 l,268| 1,156 0,958 1,038 1,031 0,899
ERIC-B Ericsson B 2,029 2,013 2,246 2,407 2,574' 2,165 2,210 2,971 2,516 2,023
NOKI-SDB Nokia 1,629 1,379 1,367 1,990 2,869 1,299 1,169 1,070 0,611 0,837
GETI-B Getinge B Health Care 0,370 0,263 0,220 0,218 —0,435' 0,564 0,670 0,802 0,968 0,549
EKTA-B Elekta B Health Care 0,552 0,556 0,438 0,227 -0,578] 0,615 0,651 0,873 0,973 0,773
MEDA-A Meda A Health Care 0,274 0,207 0,182 0,183 0,092} 0,515 0,630 0,683 1,220 1,220

AXFO Axfood Commodities 0,297 0,322 0,045 0,148 -0,595§ 0,400 0,554 0,419 0,396 -0,398
SWMA Swedish Match Commodities 0,179 0,099 -0,185 -0,193 -0,327§ 0,272 0,205 -0,097 0,307 -0,067
VOST-SDB Vostok Nafta Energy 0,677 0,779 0,789 0,832 0,579 0,940 0,743 1,022 1,375 1,770

Table 12 - Beta for individual stocks.
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Appendix 6 — Table of Jarque Bera Test

JB-Test [Daily ___[Weekly |Monthly |Quarterly |Yearly JDaily _|weekly [Monthly [Quarterly |Yearl
SX-SSVX30.SE Benchmark SSVX 30 3,03
RT-SIXRX.SE Benchmark SIXRX (TR 3,68
JM JM Finance
CAST Castellum Finance 4,31
KINV-B Kinnevik B Finance 1,49
SWED-A Swedbank A Finance 1,66
FABG Fabege Finance 1,89
LATO-B Latour B Finance
LUND-B Lundberg Finance 2,92
OMX OMX Finance 0,61
RATO-B Ratos B Finance 1,23
ORES Oresund Finance
SEB-A SEB A Finance
SHB-A SHB A Finance
INVE-B Investor B Finance
HUFV-A Hufvudstaden A Finance
INDU-A Industryvarden A Finance
SKF-B SKF B Industry
VOLV-B Volvo B Industry
SKA-B Skanska B Industry
TREL-B Trelleborg B Industry
NCC-B NCC B Industry
PEAB-B Peab B Industry
HEXA-B Hexagon B Industry
SECO-B Seco Tools B Industry
ASSA-B Assa Abloy B Industry
SAS SAS Industry
SECU-B Securitas B Industry
ATCO-A Atlas Copco A Industry
SAND Sandvik Industry
HOLM-B Holmen B Material
SCA-B SCA B VEETE
SSAB-A SSAB A EVCE]
ELUX-B Electrolux B Commodities
HM-B H&MB Commodities
TEL2-B Tele2 B Telecommunication
ERIC-B Ericsson B IT
NOKI-SDB Nokia IT
GETI-B Getinge B Health Care
EKTA-B Elekta B Health Care
MEDA-A Meda A Health Care
AXFO Axfood Commodities
SWMA Swedish Match Commodities
VOST-SDB Vostok Nafta Energy

Table 13 - Jarque Bera Test Results.
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Appendix 7 —Nordic Large Cap List®

The Nordic list

June 30, 2006,
Explanation: LP = Liquidity Provider, PLUS = Copenhagen PLUS companies, * = Officially listed companies, OBS = Observation segment

HORDIC LARGE CAP Currency Last Change BestBid Best Ask High 12 Low 1z End Price Turnover Market Cap Traded Exchange Motes
Paid Months Months 2005 Thousands Millions Index
Energy
DS Torm DKK FRo0 1500 278,00 27850 364,50 228,00 305,00 120 507 10149 SE *
Lundin Petroleun AB SEK Bpas -a50 Broo Bp2s 14,00 65,25 E4.00 222 676 22435 STO
Neste Oil Oy EUR 2754 069 2754 2762 329 20,82 2388 379m 7o OMXHz5 HEL *
Vostok Natta, Inv Ltd 5DB LP SEK 47900 W50 47850 479,00 639,00 9,00 300 415 362 22 987 5TO
Materials
Ahlstrom Corporation Oy EUR . 20 2138 21,50 2545 2045 307 279 HEL *
Baoliden AB SEK 32,50 500 132,00 132,50 750 3040 65,00 1322 957 3B 353 5TO
Haolmen AB ser. A SEK 200,00 310,00 352,00 220,00 2700 6787 5TO *
Halmen AB ser. B SEK 29,00 4,00 290,50 267,00 33900 230,00 262,50 72170 Wob  OMXS30 STO *
Huhtamaki Oy EUR .89 006 13,89 13,92 6,73 zan 1391 3896 1447 OMXHz2s HEL *
Higanis AB ser. B SEK FH00 150 17900 18050 220,00 158,00 72,00 096 6107 5TO *
Kemira Oy EUR 1285 000 1285 12,92 .58 1018 A48 34w 1605 HEL *
M-real Oyj A EUR 415 amn 404 4,36 5.67 294 424 3 5 HEL *
M-real Oyj B EUR 3.87 o044 387 389 5,62 361 4,22 20 455 1120 OMXHz25 HEL *
Movazymes B DKK 39400 =100 294,00 39550 474,00 297,00 345.00 122875 ngs OMXCo SE *
Dutokumpu Oyj EUR 1830 a0 8,20 8,30 21,30 9,63 12,55 1574 337  OMXHz2s HEL *
Rautaruukki Oyj K EUR 62 105 2361 23,62 EER 206 20,55 8519 3280 OMXHzas HEL *
SSAB Svenskt St3l AB ser. A SEK 143,50 00 42,00 14350 500,00 12900 289,00 255620 2B 943 5TO *
SSAB Svenskt St3l AB ser. B SEK 3600 Boo 135,50 136,00 466,00 120,50 265,00 120823 9 66 ST0 *
Stora EnsoOyj A EUR 0,68 o008 w7 e 8o 016 146 & 1908 HEL *
Stora EnsoOyj R EUR 052 0,39 088 10,92 1358 w001 44 59162 6677 OMXH2s HEL *
Stora Enso Oyj ser. A SEK 101,50 275 00,00 WLE0 128 00 93.50 w800 1440 Bo138 STO *
Stora Enso Oyj ser. R SEK 9950 75 99,50 00,00 12750 92,50 WIS 69 591 7E55  OMXS30 STO *
Svenska Celluloza AB SCA ser A SEK 29650 295,50 257,00 355,50 245,00 297.00 4 917 o STO *
Svenska Cellulosa AB SCA ser. B SEK 297,50 150 297,50 258,00 351,00 243,00 297,00 315107 sBssg  OMXS30 STO *
UPM-Kymmene Cyj EUR 6,85 038 16.85 16,90 209 15,25 1656 83 661 BBy OMXHag HEL *
Industrials
ABB Ltd SEK 93.25 300 93,25 G50 109,00 48,60 o0 234 768 #y204 OMXS30 5TO *
Alfa Laval AB SEK 215,50 650 274,50 21550 275,00 00 72,00 138 Bos 24065 OMXS30 5TO
AP Maller- Maersk A DKK 44 Boopo o000 4460000 4480000 66 30000  40700,00 63 200,00 5033 98 481 OMXCao CSE *
AP Maller- Marsk B DKK 4540000 50000 4530000 4540000 69 500,00  47000,00 65 200,00 s6B 673 go 780 OMXC2o CSE *
ASSA ABLOY AB ser. B SEK 11,00 100 120,50 121,00 60,50 9735 125,00 313 592 41956  OMXS30 STO *
Atlas Copco AB ser. A SEK 20000 500 200,00 207,00 238,00 8,50 700 613 B16 Binzy OMXSz0 5TO *
Atlas Copco AB ser. B SEK WB7.00 450 187.00 188,00 220,00 106,50 15850 185 233 w3 OMXS30 STO *
Cargotec Oyj EUR 34.25 o028 3425 3427 43,50 21,84 2929 BEay 1864 OMXHag HEL *
Dsv DKK  gp500  4o00 974,00 475 00 1m0 518,00 7800 w1547 w382 OMXCo CSE *
FLSmidth & Co. DKK 220,00 500 219,00 220,00 276,00 n7o0 186,00 4B ARG 6 g CSE *
Group 4 Securicor plc DKK 18,40 a50 W40 .50 2,50 15,70 1780 57 928 23393 OMXCo CSE *
Hesagon AB ser. B SEK 26200 12,50 262,00 263,00 304,00 TE7.00 #7.00 54 187 1 904 5TO *
KO MEQyj B EUR 32,50 a3 3250 3255 58.80 .80 3353 91332 3539 OMEH25 HEL *
Koebenhawvns Lufthavne DKK 178500 -500 178500 1 Boo,00 27176.00 134000 187500 407 14009 CSE *
Metso Oy EUR 2837 0,76 2837 2843 395 767 2312 22555 q4omw  OMEH25 HEL *
MCC AB ser. A SEK 173,00 E00 175,00 nyo0 .00 142,50 188 Ba5E STO
NCC AB ser. B SEK 74,00 500 7350 174,00 nyso 16,50 142,50 43758 W0 562 STO
MET Holding DKK 36450 -050 364,50 IBA50 425,50 ko0 289,00 44 523 Bg30 CSE *
Peab AB ser. B SEK 1700 250 116,00 1850 134,00 By,00 W2,00 3285 055 5TO
Rockwoaol Intemational A DKK 740,00 1500 Jio00 745,00 Boo,o0 41,00 E30,00 15W 9 B SE *
Rockwoaol Intemational B DKK 743,00 500 743.00 745,00 798 00 478 00 B22,00 30 BEG B By SE *
Sandvik AB SEK B3.75 0,25 8305 4,00 530,00 76.00 3p0,00 432208 99352 OMXS30 5TO *
SAS AB DKK 61,50 000 61,00 B150 §0,00 4820 B350 165y Wy CSE *
SASAB SEK 7575 Q00 7575 7625 114,00 60,75 104,50 B476 12480 sTO *
SCANIAAB ser. A SEK 323,50 1450 39,50 324,00 353.00 255,50 285,50 ™ 302 40 B57 STO *
SCANIAAB ser. B SEK 3zp00 1200 326,00 32700 356,00 256,50 287,50 577059 3200 STO *
Seco Tools AB ser. B SEK o,00 =300 .00 94,75 562,00 B8.50 400,00 1443 9279 STO *
Securitas AB ser. B SEK 800 250 138,00 13850 161,00 5,00 132,00 ngm 48 m2  OMXS30 STO *
Skanska AB ser. B SEK moo 300 m,.00 ms50 136,50 1,75 13,00 150728 43957 OMXS30 STO *
SKE AB ser A SEK n400 350 ma50 14, 00 138,50 7800 moon 100 5739 5TO *
SKE 4B ser B SEK 113,50 200 173,00 ni50 140,00 7750 M50 506732 45 968 OMXS30 STO *
SAAB AB ser B SEK 83,00 100 182,50 183,00 200,00 .00 170,00 1844 W m3 STO
Trelleborg AB ser. B SEK 133,00 <200 123.00 12350 3150 n3.00 15850 252022 9945 5TO *

33 | nternet Reference: http://www.omxgroup.com/digital Assets/5643 nordiclist june30 06.pdf
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NORDIC LARGE CAP

Uponor Oyj
Vestas Wind Systems
Valvo, AB ser. A
Valvo, AB ser. B
Wartsili Oyj Abp A
Wirtsild Oyj Abp B
YIT Oy

Consumer Discretionary

Amer Sports Corporation
Autoliv Inc. SDB

Bang & Clufsen B
Electrolux, AB ser. A
Electrolux, AB ser. B

Eniro AB

Hennes & Mauritz AB,H & M ser. B
Husqvama AB ser. A

Husqvama AB ser. B

Modem Times Group MTG AB ser A
Modem Times Group MTG AB ser B
Nobia AB

Mokian Renkaat Oy
SanomaWs0oY Oyj

Stockmann Oyj Abp A

Stockmann Oyj Abp B

Consumer Staples
foxfood AB

Carlsberg AFS A
Carsberg A/S B

Danisco

Kesko Oyj A

Kesko Oyj B

Oriflame Cosmetics S.A SDB
Swedizh Match AB

Health Care
ALK-Abell6 B
AstraZeneca PLC

Capio AB

Coloplast B

Elekta AB zer. B
Gambro AB ser. A (DBS)
GambroAB ser. B (OBS)
Genmab

Getinge AB ser. B

GM Store Nord
Lundbeck A/S

Meda AB ser. A

Mobel Biocare Holding AG
Mowvo Mordizk B

Crion Oyj A

Crion Oyj B

William Demant Holding

Financials

Castellum AB
CodanA/S

Danske Bank A/S

D. Camegie & Co AB
Fabege AB
FareningsSparbanken AB ser A
Hufwdstaden AB ser. A
Hufwdstaden AB ser. C
Industrivirden, AB ser. A
Industrivirden, AB ser. C
Investor AB ser. &
Investor AB ser. B

1M AB

Cumency

EUR
DK
SEK
SEK
EUR
EUR
EUR

EUR
SEK
DK
SEK
SEK
SEK
SEK
SEK
SEK
SEK
SEK
SEK
EUR
EUR
EUR
EUR

SEK
DKK
DK
DKK
ELUR
ELUR
SEK
SEK

DKK
SEK
SEK
DKK
SEK
SEK
SEK
DK
SEK
DKK
DK
SEK
SEK
DK
EUR
EUR
DK

SEK
DKK
DKK
SEK
SEK
SEK
SEK
SEK
SEK
SEK
SEK
SEK
SEK

Last Change BestBid

Paid

n
5950
34700
3400

3300
w7

1633
40500
64500

W4,00
7575
Hao0
99,00
8675
360,00
37850
B4.00
0,28
18,82
5o
74

20700
400,00
426,50
42500
29,00
2998
23950
nEO0

7375
4150

13200
TE4.00
189,00

55,25

20200
189,50
50
13200
450

100
4.50
50
00
5
169
052

022
0,00

125
05
4,00

.75

1550
&0
02
0,20

0,20

.51 ]

059
062
700

275
6,50
4.50

550

15
=050

0,00
“150
3.00
300

15

2015
15925
347.00
353,00
3230
32,96
1937

16,30
404,50

0700
04,00
7575
279,00
500

378,00
233,50
10,28
18,82
35
L6

20650
39500
425,50
42300

2850

20,98
239.50
neo0

795.00
434,50
129,00
432,50
10,50
113,50
113,50
750

BE7S
13275
149,00
BE5.00
370,00
1556
15,53
435,50

7350
421,00
2275

133,50
185,00
55.25
59.00
2m,50
185,00
13,50

450

Best Aslc

6
159,50
347.50

354,00
32,70
33.00

w8

405,00
645,00
14,50
104,50
76,00
279,50
WO,00
8675
380,00
378,50
234.00
19,32
1850
350
74

96,00
435,00
129,50
433,00

500
4,00
88,00
123,00

67,00
133,00
150,00

170700

nso
15.69
15,57
436,00

7375
421,50

32,50
134,00
189,50

56.00

89,50
132,50
132,50
n5.00

Highiz
Months

2640
190,00
391,00
35750
3682
3757
4548

229,00
475,00
44400
525,00
n50
7,98
295.00
19,50

536,00
43700
159,00
510,00

125,00
120,00
22800
135,00

99,50
7025
160,00

1944,00

470,50
am
2089
47700

354,00
488,00
255,00
188,00
177.00
226,00
65,75
72,00
265,50
250,00
1Es0
W5.00
545,00

Low 12
Months

545
90,25
295,00
305,00
2060
a5
16,65

anoo
40500
105,00
M50
72,00
24850
EBo0
7550
226,00
226,00
107.50
9,70
1780
29,02
2645

850

30800
37600
20,00
2036
168,00
B5.00

275,00

5650
300,50
ko,50
E5.00
mE50
16750
4750
60,00
164,50
152,00
102,00
103,00
moo

End Price
2005

18,00
105,50
364,50
450

2484

25,00

3613

573
35900
648.00

D400
20650
100,00

270,00

800
3350
6100
1065
w67

3253

315,00
33800
482,50
Ee
2395
229,00
93.50

Br4.00
388,50
w150
3900
mi.oo
BE7S
Be50
135.00
09,50

130,50
w800
740,00
35450
15,60
15,64
348,50

286,00
365,00

177,00
1550
216,50

52,00

.00
200,00
13850
BLO0
3500

Turnover Market Cap

Thousands

5283
323526
55452
105 Bag
mg
15378
1236

1569
126196
Eg550

ELLR
98 o3
BgB188
70

244 825
36

36 461
70487
1ok
2352
9

50

20526
277
90 069
15467
55
4395
37306
248146

18258
733548
mn7m3
63 267
FERLE]
& 709
12 408
28840
63063
147 380
75793
30880
1052
206976

2749
64 489

28 457
62 478
338 059
56 367
173135
831367
4290

36 294
N 6o
nE646
362 625
45668

Millions

1545
29540
47026
w2k

766

2342

2407

1167
33 Bgg
7309
1079
1139
3 794
203 764
an
24678
5596
19297
13536
1253
2599
4
959

k1]
73 480
18 160
20 794

920
1966
12 B47
37653

7329
86 945
1093
225
noy4
28 440
W75
742
23076
14725
30235
15 672
44 460
1803
B78
138
2B 588

12 685
19057
141 704
9125

13 477
100 229
nnE
505
nin
1754

BO0124
302

Traded
Index
OMXC20
OMXS30
OMXHzs

OMXHzs

OMXHzs
OMXS30
DOMXC20
OMXS30

OMXS30
OMXS30

OMEHz25
OMXHzs

OMXC20
OMEC20

OMXHz25

OMXS30

OMXS30

OMEC20

OMEC20

OMXC20

OMXC20

OMXHzs
OMXC20

OMEC20

OMXS30
OMXS30

OMXS30

Exchange Motes

HEL *
CSE *
5T0 *
ST *
HEL *
HEL *
HEL *
HEL *
5T0 *
CSE *
5TO *
5T0 *
5T0

5TO

ST0

5T0

ST

ST

5T0

HEL *
HEL *
HEL *
HEL *
5TO

CSE *
CSE *
CSE *
HEL *
HEL *
5TO

ST0 *
CSE *
5T0 *
51O

CSE *
5T0 *
5T0 *
ST *
CSE *
5T0 *
CSE *
CSE *
5T0

ST *
CSE *
HEL *
HEL *
CSE *
5T0

CSE *
CSE *
5T0

5T0

ST *
5T0 *
5T0 *
ST *
ST0 *
5T0 *
ST *
ST *



NORDIC LARGE CAP

Jyske Bank A/S
Kaupthing Bank

Kinnevik, Investment AB ser. A
Kinnevik, Investment AB ser. B
Kungsleden AB

Latour, Investmentab. ser. A
Latour, Investmentab. ser. B
Lundbergfaretagen AB, LE ser. B
Mational Bank of Greece
Mordea Bank AB

Nardea Bank AB

Mordea Bank AB (publ) FOR
OKO Pankki Oy A

0d Mutual Pl

OMXAB

OME AB

OMX AB

Ratos AB ser. A

Ratos AB ser. B

Sampo Oy A

LP

LP
LP

LP

Skandinaviska Enskilda Banken ser. A
Skandinaviska Engkilda Banken ser. C

Spar Mord Bank

Svenska Handelsbanken ser. A
Svenska Handelsbanken ser. B
Sydbank

Topdanmark

TrygWesta ASS

Information Technology
Ericsson, Telefonab. L M ser. &
Ericsson, Telefonab. L M ser. B
Lawson Software, Inc.

Mokia Abp, SDB

Maokia O

Mokia Oyj Mew Shares
TietoEnator Oyj

TietoEnator Oyj

Telecommunication Services

Elisa Oy

Millicom Intemational Cellular SA,
sDB

TOC A5 (0BS)

Telez AB ser. A

Tele2 AB ser. B

TeliaSonera AB

TeliaSonera AB

Utilities
Fortum Cryj
Fortum Espoo Oy

LP

DK
SEK
SEK
SEK
SEK
SEK
SEK
SEK
DKK
DK
SEK
EUR
EUR
SEK
EUR
DK
SEK
SEK
SEK
EUR
SEK
SEK
DK
SEK
SEK
DK
DKK
DK

SEK
SEK
SEK
SEK
EUR
EUR
EUR
SEK

EUR

SEK
DK
SEK
SEK
EUR
SEK

EUR
EUR

Last Change
Paid
338,00 .50
Fo.00 0.00
B7.25
E50 150
8450 150
258,00 0,00
37300 B.oo
69,50 175
BE.00 75
930 o7
.50 01
2160 =00
1407 195
03,85 635
129,00 £50
105,50 050
1492 0,26
M50 450
163,50 2,50
130,00 50
85,50 0,50
EL50 200
193,50 2,50
B300 29,00
364,00 10,00
23.80 0,70
23.80 0,70
4850  -150
46,50 350
15,96 a5
2258 038
207,50 2,50
14.89 015
330,00 0.00
10,00 2,50
73.50 Q00
7275 a5
442 =002
40,90 “0,%0
20,00 030

Best Bid

360
2300
48,00
146,50
1596

22,53
207,00
.89
32500
190,00
7225
7275
4080

20,00
6745

Best Ask

338,00
70.25
Bg.25

, D0

Ba.75

260,00
37300

69,75
86,00
S40
54
70
14.25
WES0
130,00
36,00
W00

prah ]
169,00
130,00
1BE50
BE50
w350

364,00

2380
23.80
4850
U750

597

208,00

330,00
19025

73,00
445
4090

20,00

6934

High 12
Months

399,00
12550
noo
3,00
M50
283,00
296,50
M550

50
9925
w59
.06
28,30
7S
134,00
167.00
280,00
280,50
799
TG, 50
194,50

1 650,00

240,00
238,00

839,00
398,00

30,90
31,00
59,50
178 00
1909
1845
328
307.00

6.0

Low 12
Months

265,00
63,00
575
5550
BE.25
162,50
68,00
304,00

5475
69,50
737
919
20,30
9.30
70.00
&r.75

20,90

43,00
16,00

140

187,00

End Price
2005

309.50
F3.00
7400
7425

[000

202,00

204,50

335,50

BE,25
82,50
883
.86

8750
10,50
155,50
WE.00

w72
163,50
158,00

929,00
197,00
196,50
151,00
547,00
31850

27,50
27.30

44,50
145

3085
28550

5,65

214,50
37750
86,25
85,25
4.55

1584

Turnover Market Cap

Thousands

67820
G441
28
349
38350

1o
7699

o793
95200
129%
2163
305910
44
2819
98377

5336
4030
4m 613
EELT)
7 oBo
452152
5350
27065
67 332
79 783

5422

2 B34152
250
250343
633 Bs2

U2

T 7H5

w475

362458
1387

303128

9906
1082 720

42692

Millions

328
46519
4380
18520
534
2507
L]
14228

80 25
223093
25168
1815
Bagaq
1667
123
5283
474
12556
Bz
3 705
3961
749
120566
3692
T3 545
16877
24752

3148
352799
9427
B21 8
65338
2475
113

5 737

2473

32605
37 6

EE
28929
20 665

191 277

7654
1054

Traded Exchange Motes

Index

OMXCo

OMXCo
OMXS30
OMEHz2s
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