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Abstract

Over the past decade, Deep Neural Networks (DNNs) have become very popular models
for processing large amounts of data because of their successful application in a wide variety
of fields. These models are layered, often containing parametrized linear and non-linear
transformations at each layer in the network. At this point, however, we do not rigorously
understand why DNNs are so effective. In this thesis, we explore one way to approach this
problem: we develop a generic mathematical framework for representing neural networks,
and demonstrate how this framework can be used to represent specific neural network
architectures.

In chapter 1, we start by exploring mathematical contributions to neural networks. We
can rigorously explain some properties of DNNs, but these results fail to fully describe
the mechanics of a generic neural network. We also note that most approaches to de-
scribing neural networks rely upon breaking down the parameters and inputs into scalars,
as opposed to referencing their underlying vector spaces, which adds some awkwardness
into their analysis. Our framework strictly operates over these spaces, affording a more
natural description of DNNs once the mathematical objects that we use are well-defined
and understood.

We then develop the generic framework in chapter 3. We are able to describe an
algorithm for calculating one step of gradient descent directly over the inner product space
in which the parameters are defined. Also, we can represent the error backpropagation
step in a concise and compact form. Besides a standard squared loss or cross-entropy loss,
we also demonstrate that our framework, including gradient calculation, extends to a more
complex loss function involving the first derivative of the network.

After developing the generic framework, we apply it to three specific network examples
in chapter 4. We start with the Multilayer Perceptron (MLP), the simplest type of DNN,
and show how to generate a gradient descent step for it. We then represent the Convolu-
tional Neural Network (CNN), which contains more complicated input spaces, parameter
spaces, and transformations at each layer. The CNN, however, still fits into the generic
framework. The last structure that we consider is the Deep Auto-Encoder (DAE), which
has parameters that are not completely independent at each layer. We are able to extend
the generic framework to handle this case as well.

In chapter 5, we use some of the results from the previous chapters to develop a frame-
work for Recurrent Neural Networks (RNNs), the sequence-parsing DNN architecture. The
parameters are shared across all layers of the network, and thus we require some additional
machinery to describe RNNs. We describe a generic RNN first, and then the specific case
of the vanilla RNN. We again compute gradients directly over inner product spaces.
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Chapter 1

Introduction and Motivation

Neural Networks (NNs) – Deep Neural Networks (DNNs) in particular – are a burgeoning
area of artificial intelligence research, rife with impressive computational results on a wide
variety of tasks. Beginning in 2006, when the term Deep Learning was coined [32], there
have been numerous contest-winning neural network architectures developed. That is not
to say that layered neural networks are a new concept; it is only with the advent of modern
computing power that we1 have been able to fully harness the power of these ideas that
have existed, in some form, since the 1960s. However, because of the rise in computing
power, results in the field of DNNs are almost always of a computational nature, with
only a minuscule fraction of works delivering provable, mathematical guarantees on their
behaviour. A neural network remains, for the most part, a black box, governed by a
similarly mysterious set of hyperparameters specifying the network structure.

Neural networks are known to have non-convex loss function surfaces [16], and often
handle very high-dimensional data, which adds to the complexity of their analysis and
makes sound theoretical results difficult to achieve. Furthermore, there does not exist
a standard and compact algebraic framework for neural network researchers to operate
within. This thesis begins to address the latter issue, with the hope that the framework
developed here can be used to answer challenging questions about the theoretical details
of neural networks. There has been some work done to create a standard notation for
neural networks – the formulation in this thesis shares some similarities with [19], for

1Throughout this thesis, I will be using the “royal” we, as opposed to using “I”, even though this is a
sole-authored document, for a couple of reasons. Firstly, since I accomplished a large amount of this work
with my supervisor, I believe it would be disingenuous for me to say “I” for the majority of it. Secondly,
even if I were to use “I” to refer to myself as the author, I would still sometimes use “we” to include the
reader, and switching back and forth can get confusing or read poorly.
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example – but we have added clear definitions of all mappings that we use, and also a
method for performing gradient descent to learn parameters directly over the inner product
spaces in which the parameters are defined. Mathematical analysis is important for neural
networks, not only to improve their performance by gaining a deeper understanding of
their underlying mechanics, but also to ensure their responsible deployment in applications
impacting people’s lives.2

1.1 Introduction to Neural Networks

This section will serve as a basic introduction to neural networks, including their history
and some applications in which they have achieved state-of-the-art results. Refer to [19,
Chapter 1], [43], or [68] for a more in-depth review of the history of neural networks and
modern applications.

1.1.1 Brief History

Neural networks were originally conceived as a model that would imitate the function of
the human brain – a set of neurons joined together by a set of connections. Neurons, in
this context, are a weighted sum of inputs followed by a nonlinear activation function: a
nonlinear function applied to a neuron. The McCulloch-Pitts neuron of 1943 [52] was one
of the earliest examples of an artifical neuron, being heavily influenced by the supposed
firing patterns of neurons in the brain. The perceptron of 1958 [62] built upon that work
by learning the weights of the sum comprising the neuron according to a gradient descent
learning rule,3 and other single-layer networks followed a similar idea soon after (e.g. [79]).
Researchers then began stacking these networks into hierarchical predictive models as
early as in 1966, when [38] introduced the so-called Group Method of Data Handling to
learn multi-layered networks, similar to present-day Multilayer Perceptrons (MLPs) but
with generic polynomial activation functions [68]. However, the models were perhaps too
ambitious for the computing power of the time, and neural-style networks began to fade
into obscurity until around 1980.

In the early 1980s, neural networks were revived by a few important results. Firstly, the
Neocognitron [18], the predecessor to modern Convolutional Neural Networks (CNNs), was

2e.g. driverless cars, other important decision-making systems
3Although the perceptron is just a specific case of logistic regression, which has roots from 1944 and

earlier; see [8], for example.
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developed and demonstrated strong results on image processing tasks. Secondly, the chain
rule and error backpropagation were applied to an MLP-style neural network [78], setting
the stage for future developments in learning algorithms for neural networks. Eventually,
these two results were combined to great effect – backpropagation with CNNs – resulting
in the successful classification of handwritten digits [44]. Along the way, backpropagation
was developed further [47, 64] and applied to other styles of networks, including the auto-
encoder [5] and Recurrent Neural Networks (RNNs) [80].

The developments of the 1980s laid the foundation for extensions of RNNs and CNNs
throughout the 1990s into the early 2000s. The Long Short-Term Memory (LSTM) [36]
was one of the most important networks designed in this time, as it was the first recurrent
network architecture to overcome the vanishing and exploding gradient problem, described
further in subsection 1.2.2, while still demonstrating the ability to learn long-term de-
pendencies in sequences. Around the same time, a deep CNN for image processing was
presented in [45]; financial institutions soon after employed this network to read hand-
written digits from cheques. Both the LSTM and CNN remain in the forefront of neural
network research, as they continue to produce outstanding results either on their own or
in tandem [30].

Finally, in 2006, deep learning exploded beyond just RNNs and CNNs with the discovery
of the Deep Belief Network (DBN) [32], and the increased viability of Graphical Processing
Units (GPUs) in research. DBNs are deep and unsupervised4 networks where each layer
is a Restricted Boltzmann Machine [2], and the layers are trained individually in a greedy
fashion. Greedy layer-by-layer training of unsupervised deep networks continued with Deep
Auto-Encoders (DAEs) [7] – stacks of single-layer auto-encoders. Gradually, DNNs moved
away from unsupervised learning to purely supervised learning [68], e.g. classification or
regression, with one of the forerunners of this trend being a standard deep MLP trained
with GPUs that achieved unprecented results on the MNIST [46] dataset [13]. This trend
has continued today, as most DNN research is of the supervised or semi-supervised variety,
save for one important exception: research into Generative Adversarial Networks (GANs)
[20], which we will discuss further in the subsection 1.2.3.

4We have generally two main classes of deep networks: supervised networks, requiring a specific target
for each input, and unsupervised networks, which have no specific targets and only look to find structure
within the input data. We can also have semi-supervised learning, in which some proportion of the training
examples have targets, but this is not as common. Finally, another category called reinforcement learning
exists, in which an autonomous agent attempts to learn a task, but the neural networks used within this
are still often supervised – they attempt to predict the value of an action given the current state.

3



1.1.2 Tasks Where Neural Networks Succeed

DNNs have demonstrated the ability to perform well on supervised learning tasks, particu-
larly when there is an abundance of training data. The CNN has revolutionized the field of
computer vision, achieving state-of-the-art results in the area of image recognition [14, 21]
and segmentation [28]. CNNs have also been used within autonomous agents tasked with
understanding grid-based data to great effect: a computer recently achieved super-human
performance in playing the extremely complicated game of Go [71], and in playing Atari
2600 games with minimal prior knowledge [54]. RNNs and very deep CNNs have also out-
performed all other methods in speech recognition [66]. The usefulness of RNNs (including
LSTM) in generic sequence processing is also apparernt, with state-of-the-art results in
machine translation [81], generation of marked-down text5 and handwriting in a particular
style [22], and image captioning [77], to name a few. Besides old methods that have recently
become powerful with increased computing power, the exciting and new GAN paradigm
[20] is quickly becoming the most popular generative model of data, having the ability to
generate artificial, but authentic-looking, images [65]. This is only a short discussion on
the successes of deep learning; refer to [19] for a more in-depth review of the applications.

1.2 Theoretical Contributions to Neural Networks

Although neural networks have shown the ability to perform well in a variety of tasks, it is
still currently unknown why they perform so well from a rigorous mathematical perspective
[48]. The results listed above are generally conceived heuristically, and often the reason for
doing something is because it worked well. In some ways, this is advantageous: rather than
being bogged down by the theory, which can become unwieldy from the complexity of the
models being analyzed, we can just focus on using the computing power at our disposal to
improve the performance in some domain. However, when businesses begin using neural
networks more for making important financial decisions, or autonomous vehicles employ
CNNs to interpret their surroundings, it is of paramount importance to understand the
underlying mechanics of the networks in play. A deeper mathematical understanding
of neural networks will also improve their empirical performance, as we will be able to
interpret their failures more clearly. With that said, we will review some useful theoretical
contributions to the field of deep learning in this section, and also consider their impact
within applications.

5e.g. Wikipedia articles, LaTeX documents
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1.2.1 Universal Approximation Properties

As mentioned in subsection 1.1.1, confidence in neural networks waned heavily about ten
years after Rosenblatt’s perceptron of 1958 [62]. One of the contributors to this was
Minksy and Papert’s book, Perceptrons [53], which mathematically proved some previously
unknown limitations of single-layer perceptrons – in particular, their inability to accurately
classify the XOR predicate.6 However, this result does not apply to modern neural networks
with even a single hidden layer.7 It is actually quite the opposite: it was discovered in
1989 that, under certain regularity conditions, a neural network with a single hidden layer
and a sigmoidal activation function could approximate any continuous function [15]. Soon
after, [37] extended this result to a generic activation function. Researchers again became
optimistic about the capabilities of neural networks and were beginning to understand their
efficacy better.

Unfortunately, the approximation theorems only hold when we allow the hidden layer
of the neural network to grow arbitrarily large – perhaps even exponentially with the
number of inputs [70] – which severely reduces their applicability. Additionally, the focus
on single-hidden-layer networks at the time detracted from research on deeper networks,
which are empirically more powerful and provably more effective. Modern approximation
theory in NNs tends to focus on the functional properties of deep networks, with [17]
constructing a network with two hidden layers to efficiently approximate a function which
could not be estimated by a single-hidden-layer network containing a number of units
that was polynomial in the number of inputs. Moreover, in [70], the authors construct a
sparsely-connected network with three hidden layers that has provably tight bounds on its
ability to approximate a generic function. These results, however, do not aim to analyze a
particular network structure that has been adopted by the deep learning community; they
can only infer the qualities of the networks that they have constructed, while also providing
a general sense of what might be a reasonable bound on the error of a neural network.
There exist other results of the same flavour, with some papers studying the number of
distinct regions carved out by the common Rectified Linear Unit (ReLU) network [55, 59],
described further in subsection 1.2.2, but do not provide bounds on the error. Today’s
research into the approximation properties of neural networks has led us to adopt the
notion that the depth of a neural network is more important than its width, with empirical
results confirming this [30, 73], but we have not yet developed bounds on the ability of a
generic neural network to estimate a given function in terms of both the network structure

6Although there were other major contributions to the first so-called A.I. winter, including over-
promising to grant agencies when the current technology could not deliver; see [41] for more on this.

7Perceptrons have no hidden layers
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and number of training points.

1.2.2 Vanishing and Exploding Gradients

One of the earliest roadblocks to successfully training a neural network was the problem of
vanishing and exploding gradients, first extensively documented in [34] (and reviewed in
English in [35]). This problem was of utmost importance to solve, even being referred to
as the Fundamental Problem of Deep Learning [68]. Essentially, for an RNN, the repeated
application of the chain rule required in derivative calculation for an L-layered network
will generate terms of the form λL, where λ ∈ R and L ∈ Z>0. As L grows larger, these
terms quickly go to 0 if ∣λ∣ < 1, towards ∞ if ∣λ∣ > 1, or retain absolute value 1 if ∣λ∣ = 1.
Thus, unless ∣λ∣ = 1, it becomes difficult to train deep neural networks because gradients
will either vanish or unstably diverge.

This observation inspired the creation of the highly-successful LSTM network, a popular
modern RNN variant [36]. This network contains a number of gates interacting together,
with the main advancement being the memory cell that remains largely unchanged as we
pass through layers of the network. The Jacobian of the operations of a single layer on
the memory cell has norm very close (or equal, depending on the variant) to 1 [36], which
skirts the problem of vanishing or exploding gradients and allows longer-term information
to flow through the network.

Another important feature of a neural network inspired by the problem of vanishing and
exploding gradients8 is the introduction of the ReLU activation function f(x) = max(0, x)
[56]. In the linear region of this activation, i.e. where x > 0, the derivative is exactly 1.
Thus, this activation function has become far more popular than the logistic sigmoid –
the original darling of neural network researchers – since the sigmoid suffers badly from
vanishing gradients as the number of layers increases. Most applications today involve a
large number layers to efficiently approximate a richer class of functions, as we discussed
in subsection 1.2.1, which has helped catapult the ReLU to the forefront of research. The
ReLU is not perfect, as in the region where x < 0, we have f ′(x) = 0, meaning that some
network components can die: they may be unable to exit the x < 0 regime. If too many
die, learning will be harshly impacted; thus, variants of the ReLU have emerged which
allow some nonzero gradient to flow when x < 0 [29, 50].

8And biological function, as it is a more realistic description of neuron firing [27]
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1.2.3 Wasserstein GAN

One of the most recent major developments in NN research is creation of the GAN, a
particular paradigm for training an unsupervised generative model in which the goal is to
produce artificial, but realistic, samples from some training data set [20]. In this framework,
there are two networks which are pitted against each other: a generator that attempts to
generate realistic samples, and a discriminator that attempts to distinguish between real
and generated samples. Practitioners began to notice that training GANs was unstable in
its original form [60], and suggested some heuristics to improve stability [65]. However, the
problem of instability was not fully understood until [3] analyzed the GAN through the
lens of rigorous differential geometry; they proved that the GAN objective function to be
minimized was (almost certainly) always at its maximum value under some weak assump-
tions about the data, which implied vanishing gradients in most regions of the generator
distribution. This insight led to the creation of the Wasserstein GAN, which proposed
to optimize the Wasserstein, or earth-mover, distance [75] between the data distribution
and the generator distribution [4]. The result is a more reliable training procedure re-
quiring fewer parameters but still producing high-quality images, and we expect this new
theoretical development to further improve the impressive results produced by GANs.

1.3 Mathematical Representations

Although there has been some work done towards developing a theoretical understanding
of neural networks, we still have a long way to go until the theory can reliably improve the
results of generic neural networks in application. We conjecture that one of the reasons
for this is the lack of a standard framework to analyze neural networks from an algebraic
perspective. The current approach of describing NNs as a computational graph and work-
ing over individual components [19] or using automatic differentiation (reviewed in [6]) to
calculate derivatives is excellent for a majority of applications, as evidenced by the incred-
ible empirical results that deep learning has achieved [43]. However, such an approach
does not provide a satisfying theoretical description of the network as a whole, as it does
not reference vector spaces defining the network inputs, or the associated parameters, at
each layer. In simple networks, like the MLP, this is fine, but when dealing with more
complex networks, like the CNN, it can be difficult to determine exactly how all of the
components of the network fit together using a graphical approach or when strictly dealing
with scalars. Thus, in this thesis, we propose a generic mathematical framework in which
we can represent DNNs as vector-valued functions, taking care to define all operations that
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we use very clearly. For example, in the view of graphical models, it is quite common to
differentiate nodes in the graph – which can be either scalars or vectors – with respect to
parameters [19]; in this work, we view derivatives as operators which act on functions to
produce new linear operators. Furthermore, the representations and definitions that we
use for vector- and matrix-valued derivatives are unambiguous and clearly defined, which
is not always the case in NNs. One of the biggest debates regarding matrix derivatives
is the numerator vs. denominator layout, described in [49]; our representation skirts this
issue entirely by exclusively differentiating functions.

1.4 Thesis Layout

This thesis is a purely theoretical work that aims to develop a mathematical representation
of neural networks that is clear, general, and easy to work with. To accomplish this goal,
we begin in chapter 2 by defining the notation that we will use throughout the work and
review some important preliminary results. Then, in chapter 3, we will describe a generic
neural network using this notation. We will also write out a gradient descent algorithm
acting directly over the vector space in which the parameters are defined. We apply the
generic framework to specific neural network structures in chapter 4, demonstrating its
flexibility in describing the MLP, CNN, and DAE, and also detailing how to modify and
relax some of the assumptions made. In chapter 5, we further extend the framework to
represent RNNs, explicitly writing out two methods for gradient calculation and discussing
some extensions. Finally, we review the major contributions of this thesis in chapter 6 and
outline some possible directions for future work. A large portion of chapters 2, 3 and 4
appeared in our work on CNNs [9] and MLPs and DAEs [10], but we have combined the
results from those papers into a single work in this thesis.
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Chapter 2

Mathematical Preliminaries

We discussed some of the mathematical theory in neural networks in the previous chap-
ter, and we would like to expand on this theory in this thesis by providing a standard
framework in which we can analyze neural networks. Current mathematical descriptions
of neural networks are either exclusively based on scalars or with loosely-defined vector-
valued derivatives, which we hope to improve upon. Thus, in this chapter we will begin to
build up the framework by introducing prerequisite mathematical concepts and notation
for handling generic vector-valued maps. The notation that we will introduce is standard
within vector calculus and provides us with a set of tools to establish a generic neural
network structure. Even though some of the concepts in this chapter are quite basic, it is
necessary to solidify the symbols and language that we will use throughout the thesis to
avoid the pitfall of having ambiguous notation.

The first topic that we will examine is notation for linear maps, which are useful not
only in the feedforward aspect of a generic network, but also in backpropagation. Then we
will define vector-valued derivative maps, which we will require when performing gradient
descent steps to optimize the neural network. To represent the dependence of a neural
network on its parameters, we will then introduce the notion of parameter-dependent
maps, including distinct notation for derivatives with respect to parameters as opposed
to main variables. Finally, we will define elementwise functions, which are used in neural
networks as nonlinear activation functions, i.e. to apply a nonlinear function to individual
components of a vector. A large portion of this chapter appeared in some form in [10,
Section 2], but we have added more detail to favour clarity over brevity.

9



2.1 Linear Maps, Bilinear Maps, and Adjoints

Let us start by considering three finite-dimensional and real inner product spaces E1,E2,
and E3, with the inner product denoted ⟨ , ⟩ on each space. We will denote the space of
linear maps from E1 to E2 by L(E1;E2), and the space of bilinear maps from E1 ×E2 to
E3 by L(E1,E2;E3). For any bilinear map B ∈ L(E1,E2;E3) and e1 ∈ E1, we can define a
linear map (e1 ⌟B) ∈ L(E2;E3) as

(e1 ⌟B) ⋅ e2 = B(e1, e2)

for all e2 ∈ E2. Similarly, for any e2 ∈ E2, we can define a linear map (B ⌞ e2) ∈ L(E1;E3)

as
(B ⌞ e2) ⋅ e1 = B(e1, e2).

for all e1 ∈ E1. We will refer to the symbols ⌟ and ⌞ as the left-hook and right-hook,
respectively.

In this work we will also often encounter the direct product and tensor product spaces,
and we will see how the inner product extends to these. Suppose we now have r inner
product spaces, {Ei}i∈[r], where r ∈ Z>0 and [r] ≡ {1, . . . , r} denotes the set of natural
numbers from 1 to r, inclusive. We can naturally extend the inner product to both the
direct product of r inner product spaces, E1 × ⋯ × Er, and the tensor product, E1 ⊗ ⋯ ⊗

Er, as follows [26]:

⟨(e1,⋯, er), (ē1,⋯, ēr)⟩ =
r

∑
i=1

⟨ei, ēi⟩,

⟨e1 ⊗⋯⊗ er, ē1 ⊗⋯⊗ ēr⟩ =
r

∏
i=1

⟨ei, ēi⟩,

where ei, ēi ∈ Ei for all i ∈ [r]. In particular, for some collection {Ui, U i}i∈[r], where Ui and

U i are both vectors in some inner product space H for all i ∈ [r], then we can show that
the following holds when {ei}i∈[r] is an orthonormal set:

r

∑
i=1

⟨Ui, U i⟩ = ⟨
r

∑
i=1

Ui ⊗ ei,
r

∑
i=1

U i ⊗ ei⟩ . (2.1)

We will use the standard definition of the adjoint L∗ of a linear map L ∈ L(E1;E2): L∗

is defined as the linear map satisfying

⟨L∗ ⋅ e2, e1⟩ = ⟨e2, L ⋅ e1⟩
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for all e1 ∈ E1 and e2 ∈ E2. Notice that L∗ ∈ L(E2;E1) – it is a linear map exchanging the
domain and codomain of L. The adjoint operator satisfies the direction reversing property:

(L2 ⋅L1)
∗ = L∗1 ⋅L

∗
2

for all L1 ∈ L(E1;E2) and L2 ∈ L(E2;E3). A map L ∈ L(E1;E1) is self-adjoint if L∗ = L.

Note that we have been using the ⋅ notation to indicate the operation of a linear map
on a vector and the composition of two linear maps, i.e.

L ⋅ e1 ≡ L(e1) and L2 ⋅L1 ≡ L2 ○L1.

We will continue to use this notation throughout the text as it is standard and simple.

2.2 Derivatives

In this section, we will present notation for derivatives in accordance with [1, Chap-
ter 2, Section 3] and [51, Chapter 6, Section 4]. Since derivative maps are linear, this
section relies on the notation developed in the previous section. The results in this sec-
tion lay the framework for taking the derivatives of a neural network with respect to its
parameters, and eventually elucidate a compact form for the backpropagation algorithm.

2.2.1 First Derivatives

First, we consider a function f ∶ E1 → E2, where E1 and E2 are inner product spaces. The
first derivative map of f , denoted Df , is a map from E1 to L(E1;E2), operating as x ↦
Df(x) for any x ∈ E1. The map Df(x) ∈ L(E1;E2) operates in the following manner for
any v ∈ E1:

Df(x) ⋅ v =
d

dt
f(x + tv)∣

t=0

. (2.2)

For each x ∈ E1, the adjoint of the derivative Df(x) ∈ L(E1;E2) is well-defined, and
we will denote it D∗f(x) instead of Df(x)∗ for the sake of convenience. Then, D∗f ∶ E1 →

L(E2;E1) denotes the map that takes each point x ∈ E1 to D∗f(x) ∈ L(E2;E1).

Now, let us consider two piecewise C1 maps f1 ∶ E1 → E2 and f2 ∶ E2 → E3, where E3 is
another inner product space. The derivative of their composition, D(f2 ○f1)(x), is a linear
map from E1 to E3 for any x ∈ E1, and is calculated using the well-known chain rule, i.e.

D(f2 ○ f1)(x) = Df2(f1(x)) ⋅Df1(x). (2.3)
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2.2.2 Second Derivatives

We can safely assume that every map here is (piecewise) C2. The second derivative map
of f , denoted D2f , is a map from E1 to L(E1,E1;E2), which operates as x ↦ D2f(x) for
any x ∈ E1. The bilinear map D2f(x) ∈ L(E1,E1;E2) operates as

D2f(x) ⋅ (v1, v2) = D (Df(x) ⋅ v2) ⋅ v1 =
d

dt
(Df(x + tv1) ⋅ v2)∣

t=0

(2.4)

for any v1, v2 ∈ E1. The map D2f(x) is symmetric, i.e. D2f(x) ⋅ (v1, v2) = D2f(x) ⋅ (v2, v1)

for all v1, v2 ∈ E1. We can also use the left- and right-hook notation to turn the second
derivative into a linear map. In particular, (v ⌟D2f(x)) and (D2f(x) ⌞ v) ∈ L(E1;E2) for
any x, v ∈ E1.

Two useful identities exist for vector-valued second derivatives – the higher-order chain
rule and the result of mixing D with D∗ – which we will describe in the next two lemmas.

Lemma 2.2.1. For any x, v1, v2 ∈ E1,

D2(f2 ○ f1)(x) ⋅ (v1, v2) = D2f2(f1(x)) ⋅ (Df1(x) ⋅ v1,Df1(x) ⋅ v2)

+Df2(f1(x)) ⋅D
2f1(x) ⋅ (v1, v2),

where f1 ∶ E1 → E2 is C1 at x and f2 ∶ E2 → E3 is C2 at f1(x) for vector spaces E1,E2, and
E3.

Proof. We can prove this directly from the definition of the derivative.

D2(f2 ○ f1)(x) ⋅ (v1, v2) = D (D(f2 ○ f1)(x) ⋅ v2) ⋅ v1

= D (Df2(f1(x)) ⋅Df1(x) ⋅ v2) ⋅ v1 (2.5)

=
d

dt
(Df2(f1(x + tv1)) ⋅Df1(x + tv1) ⋅ v2)∣

t=0

=
d

dt
(Df2(f1(x + tv1)) ⋅Df1(x) ⋅ v2)∣

t=0

(2.6)

+Df2(f1(x)) ⋅
d

dt
(Df1(x + tv1) ⋅ v2)∣

t=0

= D2f2(f1(x)) ⋅ (
d

dt
f1(x + tv1)∣

t=0

,Df1(x) ⋅ v2) (2.7)

+Df2(f1(x)) ⋅D
2f1(x) ⋅ (v1, v2)

= D2f2(f1(x)) ⋅ (Df1(x) ⋅ v1,Df1(x) ⋅ v2)

+Df2(f1(x)) ⋅D
2f1(x) ⋅ (v1, v2),
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where (2.5) is from (2.3), (2.6) is from the standard product rule, and (2.7) is from the
standard chain rule along with the definition of the second derivative.

Lemma 2.2.2. Consider three inner product spaces E1,E2, and E3, and two functions
f ∶ E1 → E2 and g ∶ E2 → E3. Then, for any x, v ∈ E1 and w ∈ E3,

D (D∗g(f(x)) ⋅w) ⋅ v = ((Df(x) ⋅ v) ⌟D2g(f(x)))
∗
⋅w.

Proof. Pair the derivative of the map D∗g(f(x)) ⋅w with any y ∈ E2 in the inner product:

⟨y, D (D∗g(f(x)) ⋅w) ⋅ v⟩ = D (⟨y, D∗g(f(x)) ⋅w⟩) ⋅ v

= D (⟨Dg(f(x)) ⋅ y, w⟩) ⋅ v

= ⟨D2g(f(x)) ⋅ (Df(x) ⋅ v, y), w⟩

= ⟨((Df(x) ⋅ v) ⌟D2g(f(x))) ⋅ y, w⟩

= ⟨y, ((Df(x) ⋅ v) ⌟D2g(f(x)))
∗
⋅w⟩.

Since this holds for any y ∈ E2, the proof is complete.

2.3 Parameter-Dependent Maps

We will now extend the derivative notation developed in the previous section to parameter-
dependent maps: maps containing both a state variable and a parameter. We will heavily
rely on parameter-dependent maps because we can regard the input of each layer of a
feed-forward neural network as the current state of the network, which will be evolved
according to the parameters at the current layer. To formalize this notion, suppose f is a
parameter-dependent map from E1 ×H1 to E2, i.e. f(x; θ) ∈ E2 for any x ∈ E1 and θ ∈H1,
where H1 is also an inner product space. In this context, we will refer to x ∈ E1 as the
state for f , whereas θ ∈H1 is the parameter.

2.3.1 First Derivatives

We will use the notation presented in (2.2) to denote the derivative of f with respect to
the state variable: for all v ∈ E1,

Df(x; θ) ⋅ v =
d

dt
f(x + tv; θ)∣

t=0

.
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Also, D2f(x; θ) ⋅ (v1, v2) = D (Df(x; θ) ⋅ v2) ⋅ v1 as before. However, we will introduce new
notation to denote the derivative of f with respect to the parameters as follows:

∇f(x; θ) ⋅ u =
d

dt
f(x; θ + tu)∣

t=0

for any u ∈ H1. Note that ∇f(x; θ) ∈ L(H1;E2). When f depends on two parameters
as f(x; θ1, θ2), we will use the notation ∇θ1f(x; θ1, θ2) to explicitly denote differentiation
with respect to the parameter θ1 when the distinction is necessary. We will also retain
the adjoint notation such that ∇∗f(x; θ) ∈ L(E2;H1). We will also require a chain rule
for the composition of functions involving parameter-dependent maps, especially when
not all of the functions in the composition depend on the parameter, and this appears in
Lemma 2.3.1.

Lemma 2.3.1. Suppose that E1,E2,E3, and H1 are inner product spaces, and g ∶ E2 → E3

and f ∶ E1 ×H1 → E2 are both C1 functions. Then, the derivative of their composition with
respect to the second argument of f , i.e. ∇(g ○ f)(x; θ) ∈ L(H1;E3), is given by

∇(g ○ f)(x; θ) = Dg(f(x; θ)) ⋅ ∇f(x; θ), (2.8)

for any x ∈ E1 and θ ∈H1.

Proof. This is just an extension of (2.3), where we have used Dg instead of ∇g in (2.8)
because g has no explicit dependence on θ.

2.3.2 Higher-Order Derivatives

We define the mixed partial derivative maps, ∇Df(x; θ) ∈ L(H1,E1;E2) and D∇f(x; θ) ∈
L(E1,H1;E2), as

∇Df(x; θ) ⋅ (u, e) =
d

dt
(Df(x; θ + tu) ⋅ e)∣

t=0

,

and

D∇f(x; θ) ⋅ (e, u) =
d

dt
(∇f(x + te; θ) ⋅ u)∣

t=0

.

for any e ∈ E1, u ∈ H1. Note that if f ∈ C2, then D∇f(x; θ) ⋅ (u, e) = ∇Df(x; θ) ⋅ (e, u). A
useful identity similar to Lemma 2.2.2 exists when mixing ∇∗ and D.
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Lemma 2.3.2. Consider three inner product spaces E1,E2, and H1, and a parameter-
dependent map g ∶ E1 ×H1 → E2. Then, for any x, v ∈ E1, w ∈ E2, and θ ∈H1,

D (∇∗g(x; θ) ⋅w) ⋅ v = (∇Dg(x; θ) ⌞ v)
∗
⋅w = (v ⌟D∇g(x; θ))

∗
⋅w.

Proof. Prove similarly to Lemma 2.2.2 by choosing y ∈H1 as a test vector.

2.4 Elementwise Functions

Layered neural networks conventionally contain a nonlinear activation function operating
on individual components – also known as an elementwise nonlinearity – placed at the
end of each layer. Without these, neural networks would be nothing more than over-
parameterized linear models; it is therefore important to understand the properties of
elementwise functions. To this end, consider an inner product space E of dimension n, and
let {ek}nk=1 be an orthonormal basis of E. We define an elementwise function as a function
Ψ ∶ E → E of the form

Ψ(v) =
n

∑
k=1

ψ(⟨v, ek⟩)ek, (2.9)

where ψ ∶ R → R – which we will refer to as the elementwise operation associated with Ψ
– defines the operation of the elementwise function over the components {⟨v, ek⟩}k of the
vector v ∈ E with respect to the chosen basis. If we use the convention that ⟨v, ek⟩ ≡ vk ∈ R,
we can rewrite (2.9) as

Ψ(v) =
n

∑
k=1

ψ(vk)ek,

but we will tend to avoid this as it becomes confusing when there are multiple subscripts.
The operator Ψ is basis-dependent, but {ek}nk=1 can be any orthonormal basis of E.

We define the associated elementwise first derivative, Ψ′ ∶ E → E, as

Ψ′(v) =
n

∑
k=1

ψ′(⟨v, ek⟩)ek. (2.10)

Similarly, the elementwise second derivative function Ψ′′ ∶ E → E is

Ψ′′(v) =
n

∑
k=1

ψ′′(⟨v, ek⟩)ek. (2.11)

We can also re-write equations (2.10) and (2.11) using ⟨v, ek⟩ ≡ vk as

Ψ′(v) =
n

∑
k=1

ψ′(vk)ek and Ψ′′(v) =
n

∑
k=1

ψ′′(vk)ek.
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2.4.1 Hadamard Product

To assist in the calculation of derivatives of elementwise functions, we will define a sym-
metric bilinear operator ⊙ ∈ L(E,E;E) over the orthogonal basis {ek}nk=1 as

ek ⊙ ek′ ≡ δk,k′ek, (2.12)

where δk,k′ is the Kronecker delta. This is the standard Hadamard product – also known as
elementwise multiplication – when E = Rn and {ek}nk=1 is the standard basis of Rn, which
we can see by calculating v ⊙ v′ for some v, v′ ∈ Rn:

v ⊙ v′ = (
n

∑
k=1

vkek)⊙ (
n

∑
k′=1

v′k′ek′)

=
n

∑
k,k′=1

vkv
′
k′ek ⊙ ek′

=
n

∑
k,k′=1

vkv
′
k′δk,k′ek

=
n

∑
k=1

vkv
′
kek,

where we have used the convention that ⟨v, ek⟩ ≡ vk. However, when E ≠ Rn or {ek}nk=1 is
not the standard basis, we can regard ⊙ as a generalization of the Hadamard product. For
all y, v, v′ ∈ E, the Hadamard product satisfies the following properties:

v ⊙ v′ = v′ ⊙ v, (v ⊙ v′)⊙ y = v ⊙ (v′ ⊙ y), ⟨y, v ⊙ v′⟩ = ⟨v ⊙ y, v′⟩ = ⟨y ⊙ v′, v⟩. (2.13)

2.4.2 Derivatives of Elementwise Functions

We can now compute the derivative of elementwise functions using the Hadamard product
as described below.

Proposition 2.4.1. Let Ψ ∶ E → E be an elementwise function over an inner product space
E as defined in (2.9). Then, for any v, z ∈ E,

DΨ(z) ⋅ v = Ψ′(z)⊙ v.

Furthermore, DΨ(z) is self-adjoint, i.e. D∗Ψ(z) = DΨ(z) for all z ∈ E.
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Proof. Let ψ be the elementwise operation associated with Ψ. Then,

DΨ(z) ⋅ v =
d

dt
Ψ(z + tv)∣

t=0

=
d

dt

n

∑
k=1

ψ(⟨z + tv, ek⟩)ek∣
t=0

=
n

∑
k=1

ψ′(⟨z, ek⟩)⟨v, ek⟩ek

= Ψ′(z)⊙ v,

where the third equality follows from the chain rule and linearity of the derivative.

Furthermore, for any y ∈ E,

⟨y, DΨ(z) ⋅ v⟩ = ⟨y, Ψ′(z)⊙ v⟩
= ⟨Ψ′(z)⊙ y, v⟩
= ⟨DΨ(z) ⋅ y, v⟩.

Since ⟨y, DΨ(z) ⋅ v⟩ = ⟨DΨ(z) ⋅ y, v⟩ for any v, y, z ∈ E, DΨ(z) is self-adjoint.

Proposition 2.4.2. Let Ψ ∶ E → E be an elementwise function over an inner product space
E as defined in (2.9). Then, for any v1, v2, z ∈ E,

D2Ψ(z) ⋅ (v1, v2) = Ψ′′(z)⊙ v1 ⊙ v2. (2.14)

Furthermore, (v1 ⌟D2Ψ(z)) and (D2Ψ(z) ⌞ v2) are both self-adjoint linear maps for any
v1, v2, z ∈ E.

Proof. We can prove (2.14) directly:

D2Ψ(z) ⋅ (v1, v2) = D(DΨ(z) ⋅ v2) ⋅ v1

= D(Ψ′(z)⊙ v2) ⋅ v1

= (Ψ′′(z)⊙ v1)⊙ v2,

where the third equality follows since Ψ′(z)⊙ v2 is an elementwise function in z.

Also, for any y ∈ E,

⟨y, (v1 ⌟D2Ψ(z)) ⋅ v2⟩ = ⟨y, D2Ψ(z) ⋅ (v1, v2)⟩
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= ⟨y, Ψ′′(z)⊙ v1 ⊙ v2⟩

= ⟨Ψ′′(z)⊙ v1 ⊙ y, v2⟩

= ⟨(v1 ⌟D2Ψ(z)) ⋅ y, v2⟩.

This implies the following:

1. The map (v1 ⌟D2Ψ(z)) is self-adjoint for any v1, z ∈ E

2. The map (D2Ψ(z) ⌞ v1) is also self-adjoint for any v1, z ∈ E.

This completes the proof.

2.4.3 The Softmax and Elementwise Log Functions

We will often encounter the softmax and elementwise log functions together when using
neural networks for classification, so we will dedicate a short section to them. The softmax
takes in an input in a generic inner product space E and exponentially scales it so that
its components sum to 1. More specifically, we define the softmax function σ ∶ E → E in
terms of the elementwise exponential function Exp1 as

σ(x) =
1

⟨1, Exp(x)⟩
Exp(x), (2.15)

where x ∈ E and 1 ≡ ∑
n
k=1 ek for an orthonormal basis of E given by {ek}nk=1. We can refer

to 1 as the all-ones vector, particularly when {ek} is the standard basis. Notice that the
first term of (2.15) is a scalar, so the multiplication is well-defined. We will compute the
derivative of (2.15) in the following lemma.

Lemma 2.4.3. Let x and v be any vectors in an inner product space E. Then,

Dσ(x) ⋅ v = σ(x)⊙ v − ⟨σ(x), v⟩σ(x).

Furthermore, Dσ(x) is self-adjoint for any x ∈ E.

Proof. First note that D Exp(x) ⋅ v = Exp(x) ⊙ v from Proposition 2.4.1. Then, by the
product rule,

Dσ(x) ⋅ v = [D(
1

⟨1, Exp(x)⟩
) ⋅ v]Exp(x) +

1

⟨1, Exp(x)⟩
D Exp(x) ⋅ v

1The elementwise function with elementwise operation exp
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=
1

⟨1, Exp(x)⟩
[−

⟨1, D Exp(x) ⋅ v⟩

⟨1, Exp(x)⟩
Exp(x) +Exp(x)⊙ v]

= −
⟨1, Exp(x)⊙ v⟩

⟨1, Exp(x)⟩
σ(x) + σ(x)⊙ v

= σ(x)⊙ v − ⟨σ(x), v⟩σ(x),

which proves the first statement. As for the adjoint, pick any y ∈ E. Then,

⟨y, Dσ(x) ⋅ v⟩ = ⟨y, σ(x)⊙ v − ⟨σ(x), v⟩σ(x)⟩

= ⟨y ⊙ σ(x), v⟩ − ⟨y, σ(x)⟩⟨σ(x), v⟩

= ⟨σ(x)⊙ y − ⟨σ(x), y⟩σ(x), v⟩,

by the symmetry of the inner product. We have thus proven that

D∗σ(x) ⋅ y = σ(x)⊙ y − ⟨σ(x), y⟩σ(x),

i.e. D∗σ(x) = Dσ(x).

In the classification setting in neural networks, the loss function will often contain the
elementwise log function, Log, composed with the softmax function, i.e. Log ○σ will often
appear. We will need the adjoint of the derivative map of this composition for reasons that
will become clear later and thus we will calculate it in the following lemma.

Lemma 2.4.4. Let v, x ∈ E, where E is an inner product space. Then,

D∗ (Log ○σ) (x) ⋅ v = Dσ(x) ⋅D Log(σ(x)) ⋅ v = v − ⟨1, v⟩σ(x).

Proof. First note that D (Log ○σ) (x) = D Log(σ(x)) ⋅Dσ(x) by the chain rule (2.3). Then,
since Log is an elementwise function, D Log(σ(x)) is self-adjoint by Proposition 2.4.1. By
Lemma 2.4.3, Dσ(x) is also self-adjoint. Thus, by the reversing property of the adjoint,

D∗ (Log ○σ) (x) = Dσ(x) ⋅D Log(σ(x)).

As for the second part, first note that σ(x) ⊙ Log′(σ(x)) = 1, since Log′ has elementwise
operation log′(z) = 1

z for any z ∈ R, and each component of σ(x) is greater than 0 for all
x. Also, 1⊙w = w for any w ∈ E. Therefore,

Dσ(x) ⋅D Log(σ(x)) ⋅ v = Dσ(x) ⋅ (Log′(σ(x))⊙ v)
= σ(x)⊙ (Log′(σ(x))⊙ v) − ⟨σ(x), Log′(σ(x))⊙ v⟩σ(x)
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= v − ⟨σ(x)⊙ Log′(σ(x)), v⟩σ(x)
= v − ⟨1, v⟩σ(x),

where we have used the properties of the Hadamard product from (2.13) throughout the
proof.

Remark 2.4.5. In classification, v will be an encoding of the observed class of the data.
We can represent this using a one-hot encoding, which means that if we observe class i,
then the ith component of v will be set to 1 and the other components will be set to 0. In
the context of Lemma 2.4.4, this means that ⟨1, v⟩ = 1, implying that

Dσ(x) ⋅D Log(σ(x)) ⋅ v = v − σ(x).

2.5 Conclusion

In this chapter, we have presented mathematical tools for handling vector-valued functions
that will arise when describing generic neural networks. In particular, we have introduced
notation and theory surrounding linear maps, derivatives, parameter-dependent maps, and
elementwise functions. Familiarity with the material presented in this chapter is paramount
for understanding the rest of this thesis.
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Chapter 3

Generic Representation of Neural
Networks

In the previous chapter, we took the first step towards creating a standard mathematical
framework for neural networks by developing mathematical tools for vector-valued func-
tions and their derivatives. We will use these tools in this chapter to describe the operations
employed in a generic layered neural network. Since neural networks have been empirically
shown to reap performance benefits from stacking increasingly more layers in succession
[30], it is important to develop a solid and concise theory for representing repeated function
composition as it is applicable to neural networks, and we will see how this can be done
in this chapter. Furthermore, since neural networks often learn their parameters via some
form of gradient descent, we will also compute derivatives of these functions with respect
to the parameters at each layer. The derivative maps that we compute will remain in the
same vector space as the parameters, which will allow us to perform gradient descent nat-
urally over these vector spaces for each parameter. This approach contrasts with standard
approaches to neural network modelling where the parameters are broken down into their
components. We can avoid this unnecessary operation using the framework that we will
describe.

We will begin this chapter by formulating a generic neural network as the composition
of parameter-dependent functions. We will then introduce standard loss functions based on
this composition for both the regression and classification cases, and take their derivatives
with respect to the parameters at each layer. There are some commonalities between these
two cases that we will then explore. In particular, both employ the same form of error
backpropagation, albeit with a slightly differing initialization. We are able to express this
in terms of adjoints of derivative maps over generic vector spaces, which has not been
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explored before. We will then outline a concise algorithm for computing derivatives of the
loss functions with respect to their parameters directly over the vector space in which the
parameters are defined. This helps to clarify the theoretical results presented. We will
also model a higher-order loss function that imposes a penalty on the derivative towards
the end of this chapter. This demonstrates one way to extend the framework that we have
developed to a more complicated loss function, and also demonstrates its flexibility. A
condensed version of this chapter appeared in [10, Section 3], but we have again expanded
it as in the previous chapter.

3.1 Neural Network Formulation

We can represent a neural network with L layers as the composition of L functions fi ∶
Ei ×Hi → Ei+1, where Ei,Hi, and Ei+1 are inner product spaces for all i ∈ [L]. We will refer
to variables xi ∈ Ei as state variables, and variables θi ∈Hi as parameters. Throughout this
section, we will often suppress the dependence of the layerwise function fi on the parameter
θi for ease of composition, i.e. fi is understood as a function from Ei to Ei+1 depending
on θi. We can then write down the output of a neural network for a generic input x ∈ E1

using this suppression convention as a function F ∶ E1 × (H1 ×⋯ ×HL) → EL+1 according
to

F (x; θ) = (fL ○ ⋯ ○ f1) (x), (3.1)

where each fi is dependent on the parameter θi ∈ Hi, and θ represents the parameter set
{θ1, . . . , θL}. Each parameter θi is independent of the other parameters {θj}j≠i in this for-
mulation, but we will see how to modify this assumption when working with autoencoders
and recurrent neural networks in future chapters.

We will now introduce some maps to assist in the calculation of derivatives. First, the
head map at layer i, αi ∶ E1 → Ei+1, is given by

αi = fi ○ ⋯ ○ f1 (3.2)

for each i ∈ [L]. Note that αi implicitly depends on the parameters {θ1, . . . , θi}. For
convenience, set α0 = id: the identity map on E1. Similarly, we can define the tail map at
layer i, ωi∶ Ei → EL+1, as

ωi = fL ○ ⋯ ○ fi (3.3)

for each i ∈ [L]. The map ωi implicitly depends on {θi, . . . , θL}. Again for convenience, set
ωL+1 to be the identity map on EL+1. We can easily show that the following hold for all
i ∈ [L]:

F = ωi+1 ○ αi, ωi = ωi+1 ○ fi, αi = fi ○ αi−1. (3.4)
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The equations in (3.4) imply that the output F can be decomposed into

F = ωi+1 ○ fi ○ αi−1

for all i ∈ [L], where ωi+1 and αi−1 have no dependence on the parameter θi.

3.2 Loss Functions and Gradient Descent

The goal of a neural network is to optimize some loss function J with respect to the param-
eters θ over a set of n network inputs D = {(x(1), y(1)), . . . , (x(n), y(n))}, where x(j) ∈ E1 is
the jth input data point with associated response or target y(j) ∈ EL+1. Most optimization
methods are gradient-based, meaning that we must calculate the gradient of J with respect
to the parameters at each layer i ∈ [L].

We will begin this section by introducing the loss functions for both the regression
and classification setting. Although they share some similarities, these two cases must be
considered separately since they have different loss functions. We will take the derivatives
of these loss functions for a single data point (x, y) ≡ (x(j), y(j)) for some j ∈ [n], and then
present error backpropagation in a concise format. Finally, we will present algorithms for
performing gradient descent steps for both regression and classification, and we will also
discuss how to incorporate the common `2-regularization, also known as weight decay [42],
into this framework. Note that we will often write

xi = αi−1(x)

throughout this section for ease of notation.

We will first present a result to compute ∇∗
θi
F (x; θ), as this will occur in both the

regression and classification cases.

Lemma 3.2.1. For any x ∈ E1 and i ∈ [L],

∇∗
θi
F (x; θ) = ∇∗

θi
fi(xi) ⋅D

∗ωi+1(xi+1), (3.5)

where F is defined as in (3.1), αi is defined as in (3.2), ωi defined as in (3.3), and xi =
αi−1(x).

Proof. Apply the chain rule from (2.8) to F = ωi+1 ○ fi ○ αi−1 according to

∇θiF (x; θ) = Dωi+1(fi(αi−1(x))) ⋅ ∇θifi(αi−1(x))

= Dωi+1(xi+1) ⋅ ∇θifi(xi),

since neither ωi+1 nor αi−1 depend on θi. Then, by taking the adjoint and applying the
reversing property we can obtain (3.5).

23



3.2.1 Regression

In the case of regression, the target variable y ∈ EL+1 can be any generic vector of real
numbers. Thus, for a single data point, the most common loss function to consider is the
squared loss, given by

JR(x, y; θ) =
1

2
∥y − F (x; θ)∥

2
=

1

2
⟨y − F (x; θ), y − F (x; θ)⟩. (3.6)

In this case, the network prediction ŷR ∈ EL+1 is given by the network output F (x; θ).
We can calculate the gradient of JR with respect to the parameter θi according to Theo-
rem 3.2.2, presented below.

Theorem 3.2.2. For any x ∈ E1, y ∈ EL+1, and i ∈ [L],

∇θiJR(x, y; θ) = ∇∗
θi
fi(xi) ⋅D

∗ωi+1(xi+1) ⋅ (ŷR − y), (3.7)

where xi = αi−1(x), JR is defined as in (3.6), αi−1 and ωi+1 are defined as in (3.2) and
(3.3), respectively, and ŷR = F (x; θ).

Proof. By the product rule, for any Ui ∈Hi,

∇θiJR(x, y; θ) ⋅Ui = ⟨F (x; θ) − y, ∇θiF (x; θ) ⋅Ui⟩ = ⟨∇∗
θi
F (x; θ) ⋅ (F (x; θ) − y), Ui⟩. (3.8)

This implies that the derivative map above is a linear functional, i.e. ∇θiJR(x, y; θ) ∈

L(Hi;R). Then, by the isomorphism described in [57, Chapter 5, Section 3], we can
represent ∇θiJR(x, y; θ) as an element of Hi as in (3.7), where F (x; θ) = ŷR and ∇∗

θi
F (x; θ) =

∇∗
θi
fi(xi) ⋅D∗ωi+1(xi+1) by (3.5).

Remark 3.2.3. For an inner product space H, we will use the canonical isomorphism from
[57, Chapter 5, Section 3] throughout this work to express linear functionals from H to R
as elements of H themselves, similarly to how we derived (3.7) from (3.8) in the above
proof.

3.2.2 Classification

For the case of classification, the target variable y is often a one-hot encoding, i.e. the
component of y corresponding to the class of the data point is equal to 1, and the other
components are 0, as described in Remark 2.4.5. Therefore, we must constrain the output
of the network to be a valid discrete probability distribution. We can enforce this by
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applying the softmax function σ to the network output F (x; θ). Then, we can compare
this prediction, ŷC = σ(F (x; θ)) ∈ EL+1, to the target variable by using the cross-entropy
loss function. For a single point (x, y), we can write the full expression for this loss as
given in [31, Equation 3], but with an inner product instead of a sum:

JC(x, y; θ) = −⟨y, (Log ○σ) (F (x; θ))⟩. (3.9)

We can calculate the gradient of JC with respect to the parameter θi according to Theo-
rem 3.2.4.

Theorem 3.2.4. For any x ∈ E1, y ∈ EL+1, and i ∈ [L],

∇θiJC(x, y; θ) = ∇∗
θi
fi(xi) ⋅D

∗ωi+1(xi+1) ⋅ (ŷC − y) , (3.10)

where JC is defined as in (3.9) and ŷC = σ(F (x; θ)).

Proof. By the chain rule from (2.8), for any Ui ∈Hi,

∇θiJC(x, y; θ) ⋅Ui = −⟨y, D (Log ○σ) (F (x; θ)) ⋅ ∇θiF (x; θ) ⋅Ui⟩

= −⟨D∗ (Log ○σ) (F (x; θ)) ⋅ y, ∇θiF (x; θ) ⋅Ui⟩

= −⟨y − ⟨1, y⟩σ(F (x; θ)), ∇θiF (x; θ) ⋅Ui⟩

= ⟨∇∗
θi
F (x; θ) ⋅ (σ(F (x; θ)) − y) , Ui⟩

= ⟨∇∗
θi
fi(xi) ⋅D

∗ωi+1(xi+1) ⋅ (σ(F (x; θ)) − y) , Ui⟩,

where the third line follows from Lemma 2.4.4 and the fourth line from y being a one-hot
encoding, i.e. ⟨1, y⟩ = 1. Thus, (3.10) follows from the canonical isomorphism referenced
in Remark 3.2.3 and by setting ŷC = σ(F (x; θ)).

3.2.3 Backpropagation

Although the two loss functions are quite different, the derivative of each with respect to
a generic parameter θi – (3.7) for regression and (3.10) for classification – is almost the
same, as both apply D∗ωi+1(xi+1) to an error vector. This operation is commonly referred
to as backpropagation, and we will demonstrate how to calculate it recursively in the next
theorem.

Theorem 3.2.5 (Backpropagation). For all xi ∈ Ei, with ωi defined as in (3.3),

D∗ωi(xi) = D∗fi(xi) ⋅D∗ωi+1(xi+1), (3.11)

where xi+1 = fi(xi), for all i ∈ [L].
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Proof. Apply the chain rule (2.3) to ωi(xi) = (ωi+1 ○ fi)(xi), and take the adjoint to obtain
(3.11). This holds for any i ∈ [L] since ωL+1 = id.

Theorem 3.2.5 presents a concise and generic form for error backpropagation without
referencing individual vector components, which current prevailing approaches explaining
backpropagation fail to do. We will see why (3.11) is referred to as backpropagation in
Algorithm 3.2.1, since D∗ωi(xi) will be applied to an error vector eL ∈ EL+1 and then sent
backwards at each layer i.

3.2.4 Gradient Descent Step Algorithm

We present a method for computing one step of gradient descent for a generic layered neural
network in Algorithm 3.2.1, clarifying how the results of this section can be combined. The
inputs are the network input point (x, y) ∈ E1 ×EL+1, the parameter set θ = {θ1, . . . , θL} ∈
H1 × ⋯ ×HL, the learning rate η ∈ R>0, and the type of problem being considered type ∈
{regression, classification}. It updates the set of network parameters θ via one step of
gradient descent.

The algorithm generates the network prediction using forward propagation from lines 2-
4 and stores the state at each layer. We then use these states in the backpropagation step,
which begins at line 5. At the top layer (i = L), we initialize the error vector eL to either
ŷR − y for regression, or ŷC − y for classification, since D∗ωL+1(xL+1) = id and

∇θLJ(x, y; θ) = ∇∗
θL
fL(xL) ⋅D

∗ωL+1(xL+1) ⋅ eL = ∇
∗
θL
fL(xL) ⋅ eL,

where J is either JR or JC . When i ≠ L, we update the error vector ei in line 12 through
multiplication by D∗fi+1(xi+1) in accordance with (3.11). Then, line 13 uses either ei =
D∗ωi+1(xi+1) ⋅(F (x; θ)−y) in the case of regression, or ei = D∗ωi+1(xi+1) ⋅(σ(F (x; θ))−y) for
classification, to calculate ∇θiJ(x, y; θ) as per (3.7) or (3.10), respectively. Notice that the
difference between classification and regression simply comes down to changing the error
vector initialization.

We can easily extend Algorithm 3.2.1 linearly to a batch of input points {(x(j), y(j))}j∈A,
where A ⊂ [n], by averaging the contribution to the gradient from each point (x(j), y(j))
over the batch. We can also extend Algorithm 3.2.1 to more complex versions of gradient
descent, e.g. momentum and adaptive gradient step methods; these methods are reviewed
in [63] but are not in the scope of this thesis. We can also incorporate a simple form of
regularization into this framework as described in Remark 3.2.6.
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Algorithm 3.2.1 One iteration of gradient descent for a generic NN

1: function GradStepNN(x, y, θ, η, type)
2: x1 ← x
3: for i ∈ {1, . . . , L} do
4: xi+1 ← fi(xi) ▷ xL+1 = F (x; θ); forward propagation step

5: for i ∈ {L, . . . ,1} do
6: θ̃i ← θi ▷ Store old θi for updating θi−1

7: if i = L and type = regression then
8: eL ← xL+1 − y
9: else if i = L and type = classification then

10: eL ← σ(xL+1) − y
11: else
12: ei ← D∗fi+1(xi+1) ⋅ ei+1 ▷ Update with θ̃i+1; backpropagation step

13: ∇θiJ(x, y; θ)← ∇∗
θi
fi(xi) ⋅ ei ▷ J is either JR or JC

14: θi ← θi − η∇θiJ(x, y; θ) ▷ Parameter update step

15: return θ

Remark 3.2.6. We can easily incorporate a standard `2-regularizing term into this frame-
work. Consider a new objective function JT (x, y; θ) = J(x, y; θ) + λT (θ), where λ ∈ R≥0 is
the regularization parameter, J is either JR or JC, and

T (θ) =
1

2
∥θ∥

2
=

1

2

L

∑
i=1

∥θi∥
2
=

1

2

L

∑
i=1

⟨θi, θi⟩

is the regularization term. It follows that ∇θiJT (x, y; θ)= ∇θiJ(x, y; θ)+λθi, since ∇θiT (θ) =
θi by the canonical isomorphism. This implies that gradient descent can be updated to
include the regularizing term, i.e. we can change line 14 in Algorithm 3.2.1 to

θi ← θi − η (∇θiJ(x, y; θ) + λθi) .

3.3 Higher-Order Loss Function

We can also consider a higher-order loss function that penalizes the first derivative of the
network output. This was used in [61] to promote invariance of the network to noisy
transformations; it was also used in [72] to promote network invariance, but this time in
the direction of a translation applied to the input data that should not affect its class (e.g.
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translating an image of a digit should not alter the digit). We can enforce this, in the case
of regression1, by adding the term R ∶ E1 × (H1 ×⋯ ×HL), defined as

R(x; θ) =
1

2
∥DF (x; θ) ⋅ v − β∥

2
, (3.12)

to the loss function (3.6), where v ∈ E1 is a tangent vector at the input x, β ∈ EL+1

is the desired tangent vector after transformation, and F (x; θ) is the network prediction
defined in (3.1). We can use (3.12) to impose invariance to infinitesimal deformation in
the direction of v by setting β as the zero vector. In this way, F will be less likely to alter
its prediction along the direction of v.

Adding R to JR creates a new loss function

JH(x, y; θ) = JR(x, y; θ) + µR(x; θ), (3.13)

where µ ∈ R≥0 determines the amount that the higher-order term R contributes to the loss
function. We can additively extend R to contain multiple terms as

R(x; θ) =
1

2K

K

∑
k=1

∥DF (x; θ) ⋅ vk − βk∥
2
, (3.14)

where {(vk, βk)}Kk=1 is a finite set of pairs for each data point x independent of the param-
eters θ. For any i ∈ [L], we must compute ∇θiR(x; θ) to perform a gradient descent step,
and we describe how to do this in Theorem 3.3.1.

Theorem 3.3.1. For any x, v ∈ E1, β ∈ EL+1, and i ∈ [L],

∇θiR(x; θ) = (∇θiDF (x; θ) ⌞ v)
∗
⋅ (DF (x; θ) ⋅ v − β) , (3.15)

with R defined as in (3.12).

Proof. For any Ui ∈Hi,

∇θiR(x; θ) ⋅Ui = ⟨DF (x; θ) ⋅ v − β, ∇θiDF (x; θ) ⋅ (Ui, v)⟩

= ⟨DF (x; θ) ⋅ v − β, (∇θiDF (x; θ) ⌞ v) ⋅Ui⟩

= ⟨(∇θiDF (x; θ) ⌞ v)
∗
⋅ (DF (x; θ) ⋅ v − β) , Ui⟩.

Thus, (3.15) follows from the canonical isomorphism as employed in Theorem 3.2.2.

1Classification will not be explicitly considered in this section but it is not a difficult extension
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We need to present some preliminary results before actually computing (3.15). In
particular, we will show how we can use our previous results to compute (∇θiDF (x; θ) ⌞ v)

∗
.

Lemma 3.3.2. For any x ∈ E1 and i ∈ [L],

Dαi(x) = Dfi(xi) ⋅Dαi−1(x),

where αi is defined in (3.2) and xi = αi−1(x).

Proof. This is proven using the chain rule (2.3), since αi = fi ○ αi−1 for all i ∈ [L].

Note that DαL = DF since αL = F , which means that we require Lemma 3.3.2 to
calculate DF (x; θ) ⋅ v. Lemma 3.3.2 compactly defines forward propagation through the
tangent network in the spirit of [72]. Unsurprisingly, forward propagation through the
tangent network is simply the derivative of forward propagation through the base network.
This will be a recurring theme throughout this section: new results for the higher-order loss
will emerge as derivatives of results from the previous section. Tangent backpropagation
shares this property and we will see why this is true in the next theorem.

Theorem 3.3.3 (Tangent Backpropagation). For any x, v ∈ E1,

((Dαi−1(x) ⋅ v) ⌟D2ωi(xi))
∗
= D∗fi(xi) ⋅ ((Dαi(x) ⋅ v) ⌟D2ωi+1(xi+1))

∗
(3.16)

+ ((Dαi−1(x) ⋅ v) ⌟D2fi(xi))
∗
⋅D∗ωi+1(xi+1),

where αi is defined in (3.2), ωi is defined in (3.3), and i ∈ [L]. Also,

((DαL(x) ⋅ v) ⌟D2ωi+1(xi+1))
∗
= 0. (3.17)

Proof. First of all, by Lemma 2.2.2, we know that for any e ∈ EL+1,

D (D∗ωi(αi−1(x)) ⋅ e) ⋅ v = ((Dαi−1(x) ⋅ v) ⌟D2ωi(αi−1(x)))
∗
⋅ e, (3.18)

which is the left-hand-side of (3.16) applied to a vector e. Now, recall the generic back-
propagation rule from Theorem 3.2.5, i.e.

D∗ωi(αi−1(x)) = D∗fi(αi−1(x)) ⋅D
∗ωi+1(αi(x)), (3.19)

where we have explicitly written αi(x) in place of xi+1. Then, if we apply the right-hand-
side of (3.19) to a generic vector e and take its derivative in the direction of v, we obtain

D (D∗fi(αi−1(x)) ⋅D
∗ωi+1(αi(x)) ⋅ e) ⋅ v

= ((Dαi−1(x) ⋅ v) ⌟D2fi(αi−1(x)))
∗
⋅D∗ωi+1(αi(x)) ⋅ e (3.20)

+D∗fi(αi−1(x)) ⋅ ((Dαi(x) ⋅ v) ⌟D2ωi+1(αi(x)))
∗
⋅ e,
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where we rely on the product rule and the results from Lemma 2.2.2 again. Then, since the
left-hand-sides of (3.18) and (3.20) are equal by (3.19), their right-hand-sides must also be
equal. This shows that (3.16) holds upon making the substitution that xi = αi−1(x) and
xi+1 = αi(x).

Also, (3.17) holds since ωL+1 is the identity, implying that its second derivative map
(and thus also the adjoint) is the zero map.

We can use Theorem 3.3.3 to backpropagate the tangent error DF (x; θ)⋅v−β throughout
the network at each layer i analogously to how we can use Theorem 3.2.5 to backpropagate
the error vector ŷR−y at each layer i.2 Since we now understand the forward and backward
propagation of tangent vectors, we can finally compute (∇θiDF (x; θ) ⌞ v)

∗
for any v ∈ E1

and i ∈ [L]; this is the main result of this section and is presented in Theorem 3.3.4.

Theorem 3.3.4. For any x, v ∈ E1 and i ∈ [L],

(∇θiDF (x; θ) ⌞ v)
∗
= ∇∗

θi
fi(xi) ⋅ ((Dαi(x) ⋅ v) ⌟D2ωi+1(xi+1))

∗
(3.21)

+ ((Dαi−1(x) ⋅ v) ⌟D∇θifi(xi))
∗
⋅D∗ωi+1(xi+1),

where F is defined in (3.1), αi is defined in (3.2), and ωi is defined in (3.3).

Proof. We will prove this in a similar manner to the proof of Theorem 3.3.3. Referring to
Lemma 2.3.2, we can see that for any e ∈ EL+1,

D (∇∗
θi
F (x; θ) ⋅ e) ⋅ v = (∇θiDF (x; θ) ⌞ v)

∗
⋅ e. (3.22)

Furthermore, from Lemma 3.2.1, we know that

∇∗
θi
F (x; θ) ⋅ e = ∇θ∗i fi(αi−1(x)) ⋅D

∗ωi+1(αi(x)) ⋅ e. (3.23)

Then, if we apply the right-hand-side of (3.23) to a generic vector e and take its derivative
in the direction of v, we obtain

D (∇∗
θi
fi(αi−1(x)) ⋅D

∗ωi+1(αi(x)) ⋅ e) ⋅ v

= ((Dαi−1(x) ⋅ v) ⌟D∇θifi(αi−1(x)))
∗
⋅D∗ωi+1(αi(x)) ⋅ e (3.24)

+∇∗
θi
fi(αi−1(x)) ⋅ ((Dαi(x) ⋅ v) ⌟D2ωi+1(αi(x)))

∗
⋅ e,

where we rely on the product rule and Lemma 2.3.2. Then, as in the proof of Theorem 3.3.3,
since the left-hand-sides of (3.22) and (3.24) are equal by (3.23), their right-hand-sides must
also be equal. This shows that (3.21) holds upon making the substitutions xi = αi−1(x)
and xi+1 = αi(x).

2ŷC − y in the case of classification
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3.3.1 Gradient Descent Step Algorithm

Algorithm 3.3.1 describes how to perform one step of gradient descent for the higher-order
loss function JH . The inputs to the algorithm are a superset of the ones for Algorithm 3.2.1,
with the new inputs being: the input tangent vector v ∈ E1, the desired tangent vector
β ∈ EL+1, and the weight of the higher-order term µ ∈ R≥0. The output is again an updated
set of weights θ.

The algorithm proceeds by performing both types of forward propagation from lines 4-6.
Then, three variants of backpropagation at each layer i are used to calculate the required
derivatives:

� The high-order tangent error eti = ((Dαi(x) ⋅ v) ⌟D2ωi+1(xi+1))
∗
⋅ (DF (x; θ) ⋅ v − β),

calculated via (3.16) and used in (3.21)

� The low-order tangent error evi = D∗ωi+1(xi+1)⋅(DF (x; θ) ⋅ v − β), calculated via (3.11)
and used in both (3.16) and (3.21)

� The normal backpropagation error eyi = D∗ωi+1(xi+1) ⋅ (F (x; θ) − y), calculated via
(3.11) and used in (3.5)

Each of these three quantities is calculated recursively from i = L to i = 1. At level
i = L, we initialize the high-order tangent error to the zero vector because of (3.17), the
low-order tangent error to DF (x; θ) ⋅ v − β because D∗ωL+1(xL+1) = id, and the normal
backpropagation error to F (x; θ) − y (as in Algorithm 3.2.1’s regression case – there it
is just ei) again because D∗ωL+1(xL+1) = id. We can then use the three backpropagated
quantities to calculate ∇θiJR(x, y; θ) and ∇θiR(x; θ), which eventually allows us to compute
∇θiJH(x, y; θ) = ∇θiJR(x, y; θ) + µ∇θiR(x; θ) for each i and update the weights.

The extensions of Algorithm 3.2.1 to a batch of input points, more complicated gradient
descent methods, and `2 regularization also apply here. Furthermore, we can linearly
extend this algorithm to calculate the derivatives for R defined with multiple terms as in
(3.14).

3.4 Conclusion

In this section, we have developed a generic mathematical framework for layered neural
networks. We have calculated derivatives with respect to the parameters of each layer for
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Algorithm 3.3.1 One iteration of gradient descent for a higher-order loss function

1: function GradDescHighOrderNN(x, y, v, β, θ, η, µ)
2: x1 ← x
3: v1 ← v ▷ vi = Dαi−1(x) ⋅ v and Dα0(x) = id
4: for i ∈ {1, . . . , L} do ▷ xL+1 = F (x; θ) and vL+1 = DF (x; θ) ⋅ v
5: xi+1 ← fi(xi)
6: vi+1 ← Dfi(xi) ⋅ vi ▷ Lemma 3.3.2

7: for i ∈ {L, . . . ,1} do
8: θ̃i ← θi ▷ Store θi for updating θi−1

9: if i = L then ▷ Initialization of ei’s
10: etL ← 0
11: evL ← vL+1 − β
12: eyL ← xL+1 − y

13: else ▷ Calculate D∗fi+1(xi+1) with θ̃i+1

14: eti ← D∗fi+1(xi+1) ⋅ eti+1 + (vi+1 ⌟D2fi+1(xi+1))
∗
⋅ evi+1 ▷ High-Order Tangent

15: evi ← D∗fi+1(xi+1) ⋅ evi+1 ▷ Low-Order Tangent
16: eyi ← D∗fi+1(xi+1) ⋅ e

y
i+1 ▷ Standard backpropagation

17: ∇θiJR(x, y; θ)← ∇∗
θi
fi(xi) ⋅ e

y
i

18: ∇θiR(x; θ)← ∇∗
θi
fi(xi) ⋅ eti + (vi ⌟D∇θifi(xi))

∗
⋅ evi ▷ (3.21)

19: θi ← θi − η(∇θiJR(x, y; θ) + µ∇θiR(x; θ)) ▷ Parameter update step

20: return θ

standard loss functions, demonstrating to do this directly over the vector space in which
the parameters are defined. We have also done this with a higher-order loss function, which
shows the flexibility of the developed framework. We will use this generic framework to
represent specific network structures in the next chapter.
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Chapter 4

Specific Network Descriptions

We developed an algebraic framework for a generic layered network in the preceding chap-
ter, including a method to express error backpropagation and loss function derivatives
directly over the inner product space in which the network parameters are defined. We
will dedicate this chapter to expressing three common neural network structures within
this generic framework: the Multilayer Perceptron (MLP), Convolutional Neural Network
(CNN), and Deep Auto-Encoder (DAE). To do this, we must first define the input and
parameter spaces – Ei and Hi in the context of the previous chapter – and the layerwise
function fi ∶ Ei ×Hi → Ei+1, for each layer i ∈ [L]. We will then calculate D∗fi and ∇∗

θi
fi,

for each layer i and each of the parameters θi, and insert these results into Theorems 3.2.2,
3.2.4 and 3.2.5 in order to generate an algorithm for a single step of gradient descent similar
to Algorithm 3.2.1.

The exact layout of this chapter is as follows. We will first explore the simple case of the
MLP, deriving the canonical vector-valued form of backpropagation along the way. Then,
we shift our attention to the CNN. Here, our layerwise function is far more complicated,
as our inputs and parameters are in tensor product spaces, and thus we require more
complex operations to combine the inputs and the parameters. CNNs still fit squarely
in the framework of section 3.1. The final network that we consider in this chapter, the
DAE, does not fit as easily into that framework, as the parameters at any given layer have
a deterministic relationship with the parameters at exactly one other layer, violating the
assumption of parametric independence between layers. We will be able to overcome this
issue, however, with a small adjustment to the framework.
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4.1 Multilayer Perceptron

The first specific network that we will formulate is the standard MLP, comprised of multi-
ple layers of Rosenblatt’s perceptron [62]. These are layered models in which we generate
each component1 of the input to the current layer by taking a weighted sum of the out-
puts of the previous layer and then applying an elementwise nonlinearity. We will review
the standard result expressing the layerwise function using matrix multiplication, and
we will also demonstrate how to use the framework from the previous chapter to calcu-
late the gradient directly over the space of matrices in which the parameters are defined.
We will also recover the forward and backpropagation algorithms described in [19, Algo-
rithms 6.3 and 6.4], combined together here in Algorithm 4.1.1, but we will have arrived
at them from the generic algebraic formulation in section 3.1.

4.1.1 Formulation

We will begin with specifying the spaces in which we will be working at each layer of the
neural network. Suppose we choose our network to have L layers, and our input x and
known response y have n1 and nL+1 components, respectively. Then, if we choose each of
the other layers to take in inputs of size ni,2 ≤ i ≤ L, we will have that the spaces Ei as
described in section 3.1 can each be given by Rni , for all i ∈ [L + 1]. The parameters at
each layer i are the weight matrix Wi ∈ Rni+1×ni and the bias vector bi ∈ Rni+1 . We thus
have that each Hi from section 3.1 is given by Rni+1×ni × Rni+1 for every i ∈ [L]. We will
equip each Ei and Hi with the standard Euclidean inner product ⟨A, B⟩ ≡ tr(A ⋅BT ).

Recall the generic layerwise function fi ∶ Ei ×Hi → Ei+1. In the MLP, we can explicitly
write fi ∶ Rni × (Rni+1×ni ×Rni+1)→ Rni+1 as

fi(xi;Wi, bi) = Ψi(Wi ⋅ xi + bi) (4.1)

for any xi ∈ Rni ,Wi ∈ Rni+1×ni , and bi ∈ Rni+1 , where Ψi ∶ Rni+1 → Rni+1 is an elementwise
function with elementwise operation ψi ∶ R → R and ⋅ denotes matrix-vector multiplication.
We often suppress the dependence of fi on the parameters, as before, by writing

fi(xi) ≡ fi(xi;Wi, bi)

to clarify the meaning of the composition of several layerwise functions. We will define the
output of the neural network, F (x; θ) ∈ RnL+1 , as in (3.1), substituting the specific form of

1Also known as a neuron in keeping with the brain analogy
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fi defined in (4.1) at each layer. We will also retain the definitions of αi ∶ Rn1 → Rni+1 and
ωi ∶ Rni → RnL+1 as in (3.2) and (3.3), respectively.

Remark 4.1.1. The map Ψi depends on the choice of elementwise operation ψi. We
present the most popular basic choices and their derivatives in Table 4.1. Note that H is
the Heaviside step function, and sinh and cosh are the hyperbolic sine and cosine functions,
respectively. Table 4.1 is not a complete description of all possible nonlinearities.

Table 4.1: Common elementwise nonlinearities, along with their first derivatives

Name Definition First Derivative

tanh ψi(x) ≡
sinh(x)
cosh(x) ψ′i(x) =

4 cosh2(x)
(cosh(2x)+1)2

Sigmoid ψi(x) ≡
1

1+exp(−x) ψ′i(x) = ψi(x) (1 − ψi(x))

ReLU ψi(x) ≡ max(0, x) ψ′i(x) =H(x)

4.1.2 Single-Layer Derivatives

To apply the gradient descent framework derived in section 3.2 to either of the standard
loss functions in the context of MLP, we only need to calculate D∗fi, ∇∗

Wi
fi, and ∇∗

bi
fi, for

all i ∈ [L], where fi is given by (4.1). We will see how to do this in Lemmas 4.1.2 and 4.1.3:
the former containing the derivative maps, and the latter containing their adjoints.

Lemma 4.1.2. For any xi ∈ Rni and Ui ∈ Rni+1×ni,

∇Wi
fi(xi) ⋅Ui = DΨi(zi) ⋅Ui ⋅ xi, (4.2)

∇bifi(xi) = DΨi(zi), (4.3)

where zi =Wi ⋅ xi + bi, fi is defined in (4.1), and i ∈ [L]. Furthermore,

Dfi(xi) = DΨi(zi) ⋅Wi. (4.4)

Proof. Equations (4.2) and (4.3) are both consequences of the chain rule in (2.8), while
equation (4.4) is a consequence of the chain rule in (2.3).

Lemma 4.1.3. For any xi ∈ Rni and u ∈ Rni+1,

∇∗
Wi
fi(xi) ⋅ u = (Ψ′

i(zi)⊙ u)x
T
i , (4.5)
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∇∗
bi
fi(xi) = DΨi(zi), (4.6)

where zi =Wi ⋅ xi + bi, fi is defined as in (4.1), and i ∈ [L]. Furthermore,

D∗fi(xi) =W T
i ⋅DΨi(zi). (4.7)

Proof. By (4.2), for any u ∈ Rni+1 and any Ui ∈ Rni+1×ni ,

⟨u, ∇Wi
fi(xi) ⋅Ui⟩ = ⟨z, DΨi(zi) ⋅Ui ⋅ xi⟩

= ⟨DΨi(zi) ⋅ u, Ui ⋅ xi⟩

= ⟨(DΨi(zi) ⋅ u)x
T
i , Ui⟩,

where the third equality arises from the cyclic property of the trace. Since this is true for
all Ui ∈ Rni+1×ni ,

∇∗
Wi
fi(xi) ⋅ u = (DΨi(zi) ⋅ u)x

T
i = (Ψ′

i(zi)⊙ u)x
T
i ,

which proves (4.5). We can easily derive (4.6) from (4.3) by taking the adjoint and using
the fact that DΨi(zi) is self-adjoint (Proposition 2.4.1). Finally, we can derive (4.7) from
(4.4) by taking the adjoint, using the self-adjointness of DΨi(zi), and noting that the
adjoint of multiplication by a matrix W is simply multiplication by its transpose under
the standard inner product.

A quick note on Lemma 4.1.3: in (4.5), we are multiplying a column vector in Rni+1 on the
left with a row vector in Rni on the right, which results in a matrix in Rni+1×ni – exactly the
same space in which Wi resides. We will also encounter this in (4.9) in the next section.

4.1.3 Loss Functions and Gradient Descent

In this section, we will see how to insert the results from the previous sections into the
generic results given in Theorems 3.2.2, 3.2.4 and 3.2.5. This will allow us to recover a
gradient descent algorithm for MLPs from the generic algorithm given in Algorithm 3.2.1.
To this end, we will first describe error backpropagation as it pertains to MLPs in Theo-
rem 4.1.4, and then compute the full loss function derivatives afterwards.

Theorem 4.1.4 (Backpropagation in MLP). For fi defined as in (4.1), ωi from (3.3), and
any e ∈ RnL+1,

D∗ωi(xi) ⋅ e =W T
i ⋅ [Ψ′

i(zi)⊙ (D∗ωi+1(xi+1) ⋅ e)] , (4.8)

where xi+1 = fi(xi) and zi =Wi ⋅ xi + bi, for all i ∈ [L].
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Proof. By Theorem 3.2.5 and equation (4.7), for any i ∈ [L],

D∗ωi(xi) ⋅ e = D∗fi(xi) ⋅D∗ωi+1(xi+1) ⋅ e

=W T
i ⋅DΨi(zi) ⋅D

∗ωi+1(xi+1) ⋅ e.

Once we evaluate DΨi(zi) as in Proposition 2.4.1, the proof is complete.

Theorem 4.1.5 (Loss Function Gradients in MLP). Let J be either JR, as defined in (3.6),
or JC, as defined in (3.9). Let (x, y) ∈ E1 ×EL+1 be a network input-response pair, and the
parameters be represented by θ = {W1, . . . ,WL, b1, . . . , bL}. Then, the following equations
hold for any i ∈ [L]:

∇Wi
J(x, y; θ) = [Ψ′

i (zi)⊙ (D∗ωi+1(xi+1) ⋅ e)]x
T
i , (4.9)

∇biJ(x, y; θ) = Ψ′
i(zi)⊙ (D∗ωi+1(xi+1) ⋅ e) , (4.10)

where xi = αi−1(x), zi =Wi ⋅ xi + bi, and the prediction error is

e =

⎧⎪⎪
⎨
⎪⎪⎩

F (x; θ) − y, for regression,

σ(F (x; θ)) − y, for classification,
(4.11)

for F defined in (3.1) and σ defined in (2.15).

Proof. By Theorems 3.2.2 and 3.2.4, for all i ∈ [L] and θ ∈ {Wi, bi},

∇θiJ(x, y; θ) = ∇∗
θi
fi(xi) ⋅D

∗ωi+1(xi+1) ⋅ e,

where e is defined as in (4.11) and J is either JR or JC . Then, we can substitute Wi or bi
in for θi within ∇∗

θi
fi(xi) and evaluate it according to Lemma 4.1.3:

∇Wi
J(x, y; θ) = ∇∗

Wi
fi(xi) ⋅D

∗ωi+1(xi+1) ⋅ e = [Ψ′
i(zi)⊙ (D∗ωi+1(xi+1) ⋅ e)]x

T
i ,

∇biJ(x, y; θ) = ∇∗
bi
fi(xi) ⋅D

∗ωi+1(xi+1) ⋅ e = DΨi(zi) ⋅D
∗ωi+1(xi+1) ⋅ e.

We can now complete the proof by evaluating DΨi(zi) in the second equation according
to Proposition 2.4.1.

We now have all of the ingredients to build an algorithm for one step of gradient
descent in an MLP, and we will do this by inserting the specific definitions of fi, D∗fi
and ∇∗

θi
fi into Algorithm 3.2.1 at each layer i ∈ [L], where θi is Wi or bi. The inputs

are the network input (x, y) ∈ Rn1 × RnL+1 , the parameter set θ ≡ {W1, . . . ,WL, b1, . . . bL},
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the learning rate η ∈ R>0, and the type of problem being considered type ∈ {regression,
classification}. We receive an updated parameter set upon completion of the algorithm.
The extensions of Algorithm 3.2.1 to a batch of points, more complex versions of gradient
descent, and regularization all apply here as well. We can also extend this algorithm to
a higher-order loss function by calculating the second derivatives of fi and inserting these
into Algorithm 3.3.1 as in [10, Section 4.2], although we do not explicitly cover that in this
thesis.

Algorithm 4.1.1 One iteration of gradient descent for an MLP

1: function GradDescMLP(x, y, θ, type, η)
2: x1 ← x
3: for i ∈ {1, . . . , L} do ▷ xL+1 = F (x; θ)
4: zi ←Wi ⋅ xi + bi
5: xi+1 ← Ψi(zi) ▷ Inserted specific definition of fi

6: for i ∈ {L, . . . ,1} do
7: W̃i ←Wi ▷ Store old Wi for updating Wi−1

8: if i = L and type = regression then
9: eL ← xL+1 − y

10: else if i = L and type = classification then
11: eL ← σ(xL+1) − y
12: else
13: ei ← W̃ T

i+1 ⋅ (Ψ
′
i+1(zi+1)⊙ ei+1) ▷ (4.8); MLP backpropagation

14: ∇biJ(x, y; θ)← Ψ′
i(zi)⊙ ei ▷ (4.10); specific definition of ∇∗

bi
fi(xi)

15: ∇Wi
J(x, y; θ)← (Ψ′

i(zi)⊙ ei)x
T
i ▷ (4.9); specific definition of ∇∗

Wi
fi(xi)

16: bi ← bi − η∇biJ(x, y; θ) ▷ Parameter update steps
17: Wi ←Wi − η∇Wi

J(x, y; θ)

18: return θ

4.2 Convolutional Neural Networks

We will now investigate how to apply the generic neural network formulation from sec-
tion 3.1 to a Convolutional Neural Network (CNN), which is more complicated than the
MLP. The mathematical difficulties arise from handling multi-channel inputs and preserv-
ing the spatial dependence within matrices. However, once we can specify fi to determine
the related quantities D∗fi and ∇∗

θi
fi, we can extend Algorithm 3.2.1 to the CNN case as
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we did for MLP in the previous section. To achieve this goal, we will specify the space of
inputs and parameters, describe how to express the actions of the multi-channel convolu-
tion, and then calculate derivatives and adjoints of each of these operations. This section is
quite similar to our work from [9], but we have made additional refinements to emphasize
the similarity to section 3.1. As far as we know, this is the only fully algebraic description
of the CNN in the literature describing both the convolution and pooling operations.

4.2.1 Single Layer Formulation

We will structure this section differently than subsection 4.1.1. Instead of introducing the
spaces first and then describing the layerwise function at each layer, we will operate in
reverse order by describing the layerwise function first. One reason for this is that we will
encounter intermediate spaces at each layer in the CNN, as opposed to the MLP, which
can make the notation complicated if we also explicitly consider the layer number i in each
computation.

We can describe the actions of a generic layer of a CNN as a parameter-dependent map
that takes as input an m1-channeled tensor, where each channel is a matrix of size n1 × `1,
and outputs an m2-channeled tensor, where each channel is a matrix of size n2 × `2. The
parameters that we must learn through gradient descent are a set of m2 filters, each of size
p × q.2 To represent the input, we will use a point x ∈ Rn1×`1 ⊗Rm1 , and we will represent
the parameters as W ∈ Rp×q ⊗Rm2 . Note that, in application, it is almost always the case
that p << n1 and q << `1 – the filters are much smaller than the inputs. If we use {ej}

m1
j=1 to

denote an orthonormal basis for Rm1 , and {ej}
m2
j=1 to denote an orthonormal basis for Rm2 ,

we can write x and W as follows:

x =
m1

∑
j=1

xj ⊗ ej, W =
m2

∑
j=1

Wj ⊗ ej,

where we refer to each xj ∈ Rn1×`1 as a feature map, and each Wj ∈ Rp×q as a filter used
in convolution. Then, we can write the generic layerwise function as f ∶ (Rn1×`1 ⊗Rm1) ×

(Rp×q ⊗Rm2)→ Rn2×`2 ⊗Rm2 , i.e.

f(x;W ) ∈ Rn2×`2 ⊗Rm2

for all x and W as described above. We will specify the particular form of f in this
section; it begins with specifying the convolution – which relies on a cropping operator –

2We will omit the use of a bias vector b in this formulation because it is a simple extension of what we
will develop here and will lighten the notation. Refer to [9] to see how we can handle the bias vector.
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applying an elementwise nonlinearity to the output of the convolution, and then applying
max-pooling to that.

Note that, throughout this section, we will use {Ej,k}
n1,`1
j,k=1 to denote an orthonormal

basis for Rn1×`1 , {Ẽj,k}
p,q
j,k=1 denote an orthonormal basis for Rp×q, {Ej,k}

n2,`2
j,k=1 to denote

an orthonormal basis for Rn2×`2 , and {Êj,k}
n̂1,̂̀1
j,k=1 to denote an orthonormal basis for the

(intermediate, and as of yet undefined) space Rn̂1×̂̀1 .

Cropping and Embedding Operators

We need to develop notation for cropping grid-based inputs before we are able to express
the actions of convolution. We will thus introduce a linear cropping operation in this
section. We will also derive its adjoint, which is given by an embedding operation, and is
necessary for calculating ∇∗f and D∗f .

We can define the cropping operator at index (k, l), Kk,l ∈ L(Rn1×`1 ⊗Rm1 ;Rp×q), as

Kk,l (
m1

∑
j=1

xj ⊗ ej) ≡
m1

∑
j=1

κk,l(xj) (4.12)

where we define κk,l ∈ L(Rn1×`1 ;Rp×q) as

κk,l(xj) ≡
p

∑
s=1

q

∑
t=1

⟨xj, Ek+s−1,l+t−1⟩Ẽs,t (4.13)

for any k ∈ [n1 − p + 1] and l ∈ [`1 − q + 1]. When {Ej,k}j,k and {Ẽs,t}s,t are standard bases
of their respective spaces, κk,l(xj) is the p × q submatrix of xj, containing the (k, l) to
(k + p − 1, l + q − 1) elements of xj, inclusive.

To find the adjoint of (4.13), we will first define the embedding operator at the index
(k, l), Emk,l ∈ L(Rp×q;Rn1×`1), as

Emk,l(y) ≡
p

∑
s=1

q

∑
t=1

⟨y, Ẽs,t⟩Ek+s−1,l+t−1 (4.14)

for any y ∈ Rp×q, k ∈ [n1 − p+ 1], and l ∈ [`1 − q + 1], which corresponds to embedding y into
the zero matrix when {Ej,k}j,k is the standard basis. We will see how the adjoint of Kk,l
relies on Emk,l in Lemma 4.2.1.
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Lemma 4.2.1. For any y ∈ Rp×q,

K∗k,l(y) =
m1

∑
j=1

Emk,l(y)⊗ ej,

where Kk,l is defined as in (4.12), Emk,l is defined as in (4.14), k ∈ [n1 − p + 1], and
l ∈ [`1 − q + 1].

Proof. For any z ∈ Rn1×`1 ,

⟨y, κk,l(z)⟩ = ⟨y,
p

∑
s=1

q

∑
t=1

⟨z, Ek+s−1,l+t−1⟩Ẽs,t⟩

= ⟨

p

∑
s=1

q

∑
t=1

⟨y, Ẽs,t⟩Ek+s−1,l+t−1, z⟩

= ⟨Emk,l(y), z⟩,

which proves that κ∗k,l(y) = Emk,l(y) for all y ∈ Rp×q.

Now, let x = ∑
m1
j=1 xj ⊗ ej ∈ Rn1×`1 ⊗Rm1 . Then,

⟨z, Kk,l(x)⟩ =
m1

∑
j=1

⟨z, κk,l(xj)⟩

=
m1

∑
j=1

⟨κ∗k,l(z), xj⟩

=
m1

∑
j=1

⟨Emk,l(z), xj⟩

= ⟨
m1

∑
j=1

Emk,l(z)⊗ ej, x⟩ ,

where the last equation follows from (2.1). Thus we have completed the proof.

Convolution Operator

We will now use the cropping operator Kk,l to define the action of convolution. The
convolution operator, which we will denote by C, is a bilinear map which convolves3 the

3Actually, in the neural network community, we use cross-correlation instead of convolution, although
the difference is minor and we almost never mention cross-correlation; refer to [39] for more on the difference
between the two.
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filters with the feature maps. More formally, we can write the convolution operator C ∈

L(Rp×q ⊗Rm2 ,Rn1×`1 ⊗Rm1 ;Rn̂1×̂̀1 ⊗Rm2) as

C(W,x) =
m2

∑
j=1

cj(W,x)⊗ ej, (4.15)

where cj ∈ L(Rp×q ⊗ Rm2 ,Rn1×`1 ⊗ Rm1 ;Rn̂1×̂̀1) is a bilinear operator that defines the me-
chanics of the convolution. We can explicitly write out cj for all j ∈ [m2] by using the
cropping operator:

cj(W,x) =
n̂1

∑
k=1

̂̀
1

∑
l=1

⟨Wj,Kγ(k,l,∆)(x)⟩ Êk,l, (4.16)

where W = ∑
m2
j=1Wj ⊗ ej,

γ(k, l,∆) = (1 + (k − 1)∆,1 + (l − 1)∆), (4.17)

is shorthand for the indices of the crop operator, and ∆ ∈ Z>0 defines the stride of the
convolution.4

Notice that cj(W,x) produces a new feature map for each j ∈ [m2], post-convolution,
which means that we can view C(W,x) as a stack of m2 feature maps, or an m2-channeled
tensor. Using (4.16) we can describe the convolution operator in the following way: first
crop the input feature maps, convolve the cropped maps with the filter Wj, and then sum

up the contributions to the feature map for each k ∈ [n̂1] and l ∈ [̂̀1].

The next two theorems give us the adjoints of the operators (C ⌞ x), (W ⌟ C), and
(W ⌟ cj), which are all necessary for gradient calculations.

Theorem 4.2.2. Let y = ∑
m2
j=1 yj ⊗ ej ∈ Rn̂1×̂̀1 ⊗Rm2 and x ∈ Rn1×`1 ⊗Rm1. Then,

(C ⌞ x)∗ ⋅ y =
m2

∑
j=1

⎧⎪⎪
⎨
⎪⎪⎩

n̂1

∑
k=1

̂̀
1

∑
l=1

⟨yj, Êk,l⟩Kγ(k,l,∆)(x)
⎫⎪⎪
⎬
⎪⎪⎭

⊗ ej,

where C is defined as in (4.15), γ(k, l,∆) is defined as in (4.17), and Kγ(k,l,∆) is defined
as in (4.12).

4Here, we have assumed that both n1 and `1 are divisible by ∆; in particular, n1 = ∆n̂1 and `1 = ∆̂̀1.
If this is not the case, however, we can increase n1 or `1 to be divisible by ∆ via boundary conditions on
the input matrices; refer to [39] for more on image padding or boundary conditions.
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Proof. Let U = ∑
m2
j=1Uj ⊗ ej ∈ Rp×q ⊗Rm2 . Then,

⟨y, (C ⌞ x) ⋅U⟩ = ⟨y, C(U,x)⟩

=
m2

∑
j=1

⟨yj, cj(U,x)⟩

=
m2

∑
j=1

⟨yj,
n̂1

∑
k=1

̂̀
1

∑
l=1

⟨Uj, Kγ(k,l,∆)(x)⟩Êk,l⟩

=
m2

∑
j=1

n̂1

∑
k=1

̂̀
1

∑
l=1

⟨yj, Êk,l⟩⟨Kγ(k,l,∆)(x), Uj⟩

=
m2

∑
j=1

⟨
n̂1

∑
k=1

̂̀
1

∑
l=1

⟨yj, Êk,l⟩Kγ(k,l,∆)(x), Uj⟩ .

Then, by equation (2.1), the proof is complete since this is true for any U ∈ Rp×q⊗Rm2 .

Theorem 4.2.3. Let W = ∑
m2
j=1Wj⊗ej ∈ Rp×q⊗Rm2. Then, for any y ∈ Rn̂1×̂̀1 and j ∈ [m2],

(W ⌟ cj)
∗ ⋅ y =

n̂1

∑
k=1

̂̀
1

∑
l=1

⟨y, Êk,l⟩K
∗
γ(k,l,∆)(Wj),

where cj is defined as in (4.16), γ(k, l,∆) is defined as in (4.17), and Kγ(k,l,∆) is defined

as in (4.12). Furthermore, for any z = ∑
m2
j=1 zj ⊗ ej ∈ Rn̂1×̂̀1 ⊗Rm2,

(W ⌟C)∗ ⋅ z =
m2

∑
j=1

(W ⌟ cj)
∗ ⋅ zj,

where C is defined as in (4.15).

Proof. Let x ∈ Rn1×`1 ⊗Rm1 . Then,

⟨y, (W ⌟ cj) ⋅ x⟩ = ⟨y, cj(W,x)⟩

=
n̂1

∑
k=1

̂̀
1

∑
l=1

⟨Wj, Kγ(k,l,∆)(x)⟩⟨y, Êk,l⟩

=
n̂1

∑
k=1

̂̀
1

∑
l=1

⟨⟨y, Êk,l⟩K
∗
γ(k,l,∆)(Wj), x⟩ ,
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which proves the first equation. Also,

⟨z, (W ⌟C) ⋅ x⟩ = ⟨z, C(W,x)⟩

=
m2

∑
j=1

⟨zj, cj(W,x)⟩

=
m2

∑
j=1

⟨(W ⌟ cj)
∗ ⋅ zj, x⟩

= ⟨
m2

∑
j=1

(W ⌟ cj)
∗ ⋅ zj, x⟩ .

Both of the above results are true for any x ∈ Rn1×`1 ⊗Rm1 , which completes the proof.

Max-Pooling Operator

The final piece of the layerwise function in a CNN is a pooling operation. In this thesis,
we will describe the popular max-pooling operation; refer to [9] for a similar discussion on
average pooling. Max-pooling is a nonlinear operation that outputs the maximum element
in every disjoint r × r region in each feature map for some r ∈ Z>0. The effect of the max-
pooling operation is to down-sample the feature maps to a smaller size. We can describe
max-pooling using the map Φ ∶ Rn̂1×̂̀1 ⊗ Rm2 → Rn2×`2 ⊗ Rm2 , for any y = ∑

m2
j=1 yj ⊗ ej,

according to

Φ(y) ≡
m2

∑
j=1

φ(yj)⊗ ej, (4.18)

where we define φ ∶ Rn̂1×̂̀1 → Rn2×`2 as

φ(yj) ≡
n2

∑
k=1

`2

∑
l=1

max(κγ(k,l,r)(yj))Ek,l (4.19)

for all yj ∈ Rn̂1×̂̀1 . Here, we have modified the map κ to take inputs in Rn̂1×̂̀1 and produce
a result in Rr×r, i.e. κγ(k,l,r) ∈ L(Rn̂1×̂̀1 ;Rn2×`2) for all k ∈ [n2] and l ∈ [`2] in (4.19).5 The
max in (4.19) calculates the max over an r × r region and outputs a single number, which
we can express as follows: for any z ∈ Rr×r, with a minor abuse of notation,

max(z) ≡ max
(k,l)∈[r]×[r]

⟨z, Ĕk,l⟩, (4.20)

5Again, we have established a relationship between (n̂1, ̂̀1) and (n2, `2) – in particular, n̂1 = rn2 and
̂̀
1 = r`2. If n̂1 or ̂̀1 is not divisible by r, we can add padding or boundary conditions as in the convolution.
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where {Ĕk,l}rk,l=1 is an orthornomal basis for Rr×r.

Notice how we have defined Φ and φ in the same format as K and κ6: Φ operates over
the tensor product space, and φ over matrices.

We will need to differentiate (4.19) and take its adjoint to compute the gradient descent
algorithm. We will do this first for the max function, and then use this result for the
derivative of (4.19).

Lemma 4.2.4. For any v and z ∈ Rr×r,

D max(z) ⋅ v = ⟨v, Ĕk∗,l∗⟩, (4.21)

where
(k∗, l∗) = arg max

(k,l)∈[r]×[r]
⟨z, Ĕk,l⟩

are the indices at which the maximum occurs.

Proof. We will use the definition of the derivative to prove (4.21):

D max(z) ⋅ v =
d

dt
max(z + tv)∣

t=0

=
d

dt
max

(k,l)∈[r]×[r]
⟨z + tv, Ĕk,l⟩∣

t=0

=
d

dt
⟨z + tv, Ĕk∗,l∗⟩∣

t=0

= ⟨v, Ĕk∗,l∗⟩,

where the third equality follows from the fact that max(z) outputs the maximum value of
⟨z, Ĕk,l⟩ over all (k, l) ∈ [r]×[r], and the index of this maximum is unchanged after adding
tv to z.

Remark 4.2.5. In Lemma 4.2.4, we assume a unique maximum value. If the maximum
value is not unique, i.e. there are multiple choices for (k∗, l∗), we can either average the
contributions from the argument of each maximum or pick one of the maximums at random.
Neither of the two solutions changes the output of the max function; they only change its
derivative. We will choose to use one of the maximums at random in this section when the
maximum is non-unique for simplicity.

6Also C and cj , AND Ψ and ψ
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We will also quickly examine a result concerning the inner product of the cropping
operator with a basis element, since this is a simplification which will prove useful in
determining the derivative of (4.19).

Lemma 4.2.6. For any z ∈ Rn̂1×̂̀1, r ∈ Z>0, and k, l, k′, l′ ∈ [r],

⟨κγ(k,l,r)(z), Ĕk′,l′⟩ = ⟨z, Êk′+(k−1)r,l′+(l−1)r⟩, (4.22)

where κγ(k,l,r) ∈ L(Rn̂1×̂̀1 ;Rr×r), and γ(k, l, r) is defined as in (4.17).

Proof. We will prove this directly from the definition of κ:

⟨κγ(k,l,r)(z), Ĕk′,l′⟩ = ⟨κ1+(k−1)r,1+(l−1)r(z), Ĕk′,l′⟩

= ⟨
r

∑
s,t=1

⟨z, Ês+(k−1)r,t+(l−1)r⟩Ĕs,t, Ĕk′,l′⟩

=
r

∑
s,t=1

⟨z, Ês+(k−1)r,t+(l−1)r⟩⟨Ĕs,t, Ĕk′,l′⟩

= ⟨z, Êk′+(k−1)r,l′+(l−1)r⟩,

where the last line follows from the fact that ⟨Ĕs,t, Ĕk′,l′⟩ = δs,k′δt,l′ and δ is the Kronecker
delta.

Let us introduce notation to make the indices of (4.22) easier to read:

γ′(k, l, k′, l′, r) ≡ (k′ + (k − 1)r, l′ + (l − 1)r). (4.23)

Now, we can finally take the derivatives and adjoint of (4.19), and the associated (4.18).

Theorem 4.2.7. Let φ be defined as in (4.19). Then, for any yj and vj ∈ Rn̂1×̂̀1,

Dφ(yj) ⋅ vj =
n2

∑
k=1

`2

∑
l=1

⟨vj, Êγ′(k,l,k∗,l∗,r)⟩Ek,l, (4.24)

where γ′(k, l, k∗, l∗, r) is defined in (4.23), and

(k∗, l∗) = arg max
(k′,l′)∈[r]×[r]

⟨yj, Êγ′(k,l,k′,l′,r)⟩. (4.25)

Furthermore, for any zj ∈ Rn2×`2,

D∗φ(yj) ⋅ zj =
n2

∑
k=1

`2

∑
l=1

⟨zj, Ek,l⟩Êγ′(k,l,k∗,l∗,r), (4.26)
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and for any y = ∑
m2
j=1 yj ⊗ ej ∈ Rn̂1×̂̀1 ⊗Rm2 and z = ∑

m2
j=1 zj ⊗ ej ∈ Rn2×`2 ⊗Rm2,

D∗Φ(y) ⋅ z =
m2

∑
j=1

(D∗φ(yj) ⋅ zj)⊗ ej (4.27)

Proof. From the definition of φ and by the linearity of the derivative,

Dφ(yj) ⋅ vj =
n2

∑
k=1

`2

∑
l=1

(D max(κγ(k,l,r)(yj)) ⋅ κγ(k,l,r)(vj))Ek,l.

We can evaluate the contents of the parentheses according to Lemma 4.2.4:

D max(κγ(k,l,r)(yj)) ⋅ κγ(k,l,r)(vj) = ⟨κγ(k,l,r)(vj), Ĕk∗,l∗⟩

= ⟨vj, Êγ′(k,l,k∗,l∗,r)⟩,

where the second equality follows from (4.22), and

(k∗, l∗) = arg max
(k′,l′)∈[r]×[r]

⟨κγ(k,l,r)(yj), Ĕk′,l′⟩

= arg max
(k′,l′)∈[r]×[r]

⟨yj, Êγ′(k,l,k′,l′,r)⟩,

with the second equality again following from (4.22). We have thus proven (4.24) and
(4.25). Finding the adjoint is simply an exercise in linear algebra:

⟨zj, Dφ(yj) ⋅ vj⟩ =
n2

∑
k=1

`2

∑
l=1

⟨zj, Ek,l⟩⟨vj, Êγ′(k,l,k∗,l∗,r)⟩

= ⟨
n2

∑
k=1

`2

∑
l=1

⟨zj, Ek,l⟩Êγ′(k,l,k∗,l∗,r), vj⟩ ,

which proves (4.26). Also,

⟨z, DΦ(y) ⋅ v⟩ =
m2

∑
j=1

⟨zj, Dφ(yj) ⋅ vj⟩

=
m2

∑
j=1

⟨D∗φ(yj) ⋅ zj, vj⟩

= ⟨
m2

∑
j=1

(D∗φ(yj) ⋅ zj)⊗ ej, v⟩ ,

where the last line follows from (2.1). Thus, we have proven (4.27).

47



The Layerwise Function

We can now explicitly define the layerwise function f for a CNN, which we will write as

f(x;W ) = Φ (Ψ(C(W,x))) , (4.28)

where Ψ ∶ Rn̂1×̂̀1 ⊗ Rm2 → Rn̂1×̂̀1 ⊗ Rm2 is an elementwise nonlinearity, with associated
elementwise operation ψ ∶ R → R, defined as in (2.9). We can see that f first convolves the
input x with the filters W according to (4.15), then applies an elementwise nonlinearity,
and then performs max-pooling on the final result.

4.2.2 Multiple Layers

We are now going to cast the CNN in the framework of section 3.1. The first thing that we
will do is specify the spaces of the input and parameters at each layer i ∈ [L]. Suppose that
our network input x consists of m1 channels, each of size n1 × `1, and our known response
y has nL+1 components. If we also assert that the ith layer will take in an mi-channelled
input of size ni×`i, for 2 ≤ i ≤ L, then we have that each of the Ei’s are given by the tensor
product space Rni×`i ⊗Rmi , for all i ∈ [L]. By setting `L+1 = mL+1 = 1, we can also ensure
this holds for i = L+1. The parameters at layer i are given by the mi+1 filter matrices each
of size pi × qi – which we will denote by Wi ∈ Rpi×qi ⊗Rmi+1 .

We will slightly adjust f as defined in (4.28) to a function fi which depends on the
layer i, and adjust the maps comprising it accordingly, i.e.

fi(xi) = Φi (Ψi(Ci(Wi, xi))) , (4.29)

such that fi ∶ Rni×`i ⊗ Rmi → Rni+1×`i+1 ⊗ Rmi+1 , for i ∈ [L]. Notice that we have again
suppressed the dependence of fi on the parameters Wi, for ease of composition. We define
the network prediction F as in (3.1).

The final layer of a CNN is generally fully-connected, bearing similarity to a layer of
an MLP. To implement this, we will set ΦL and κL – the pooling and cropping operators
at layer L, respectively – to be identity maps, which implies nL = pL = n̂L, `L = qL = ̂̀

L, and
rL = 1.

4.2.3 Single-Layer Derivatives

We will require the derivatives of (4.29), and their adjoints, to derive a gradient descent
step algorithm; we will present these in Theorem 4.2.8.
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Theorem 4.2.8. For any xi ∈ Rni×`i ⊗Rmi, W ∈ Rpi×qi ⊗Rmi+1, and i ∈ [L],

∇Wfi(xi) = DΦi (Ψi(Ci(Wi, xi))) ⋅DΨi(Ci(Wi, xi)) ⋅ (Wi ⌟Ci) , (4.30)

Dfi(xi) = DΦi (Ψi(Ci(Wi, xi))) ⋅DΨi(Ci(Wi, xi)) ⋅ (Ci ⌞ xi) , (4.31)

where fi is defined as in (4.29). Furthermore,

∇∗
Wfi(xi) = (Wi ⌟Ci)

∗
⋅DΨi(Ci(Wi, xi)) ⋅D

∗Φi (Ψi(Ci(Wi, xi))) , (4.32)

D∗fi(xi) = (Ci ⌞ xi)
∗
⋅DΨi(Ci(Wi, xi)) ⋅D

∗Φi (Ψi(Ci(Wi, xi))) . (4.33)

Proof. Equations (4.30) and (4.31) are both direct consequences of the chain rule and
linearity of the derivative. Also, we can derive (4.32) and (4.33) using the reversing property
of the adjoint, and the fact that D∗Ψi(zi) is self-adjoint for any zi by Proposition 2.4.1.

4.2.4 Gradient Descent Step Algorithm

We can easily insert the maps D∗fi(xi) and ∇∗
Wi
fi(xi) into Algorithm 3.2.1 – or, equiva-

lently, into (3.11) and (3.7) or (3.10) – to generate an algorithm for one step of gradient
descent for a CNN, and we present this in Algorithm 4.2.1. Unlike subsection 4.1.3, we
will not explicitly give the forms for backpropagation and ∇∗

Wi
J(x, y; θ) in separate theo-

rems, as these are simple extensions of the forms in (4.8) and (4.9) and are included in the
algorithm.

We give Algorithm 4.2.1 the following inputs: the network input and known response
(x, y) ∈ (Rn1×`1 ⊗Rm1) ×RnL+1 , the filters θ ≡ {W1, . . . ,WL}, the learning rate η ∈ R>0, and
the type of problem under consideration, type ∈ {regression, classification}. We obtained
an updated set of filters upon completion of the algorithm. In Algorithm 4.2.1, we have
elected to not insert the explicit formulae for (W ⌟C)∗, (C ⌞ x)∗, DΨ, and D∗Φ to make
the algorithm easier to read; these are available in Theorem 4.2.3, Theorem 4.2.2, Propo-
sition 2.4.1, and Theorem 4.2.7, respectively. We can extend Algorithm 4.2.1 similarly to
Algorithm 4.1.1, including the use of a higher-order loss function which we explored in [9].

4.3 Deep Auto-Encoder

The final network that we will describe in this chapter is the 2L-layer DAE of the form given
in [33], albeit with layers of matrix multiplication instead of Boltzmann Machines. The
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Algorithm 4.2.1 One iteration of gradient descent for a CNN

1: function GradDescCNN(x, y, θ, type, η)
2: x1 ← x
3: for i ∈ {1, . . . , L} do ▷ xL+1 = F (x; θ)
4: zi ← Ψi(Ci(Wi, xi))
5: xi+1 ← Φ(zi) ▷ Inserted specific definition of fi

6: for i ∈ {L, . . . ,1} do
7: W̃i ←Wi ▷ Store old Wi for updating Wi−1

8: if i = L and type = regression then
9: eL ← xL+1 − y

10: else if i = L and type = classification then
11: eL ← σ(xL+1) − y
12: else
13: ei ← (W̃i+1 ⌟Ci+1)

∗
⋅DΨi+1 (Ci+1(W̃i+1, xi+1)) ⋅D∗Φi+1(zi+1) ⋅ ei+1

14: ▷ Inserted D∗fi+1 from (4.33) into (3.11). Backpropagation for CNNs.

15: ∇Wi
J(x, y; θ)← (Ci ⌞ xi)

∗
⋅DΨi(Ci(Wi, xi)) ⋅D∗Φi(zi) ⋅ ei

16: ▷ Inserted ∇∗
Wi
fi from (4.32) into (3.7) (regression) or (3.10) (classification)

17: Wi ←Wi − η∇Wi
J(x, y; θ) ▷ Parameter update step

18: return θ

first L layers of the DAE perform an encoding function, with the input to each of these
layers being of lower dimension than the previous layer. Then, the remaining L layers
increase the size of their inputs until the dimension of the output of the final layer is of
the same dimension as the original input. The goal of the network is to find a meaningful
representation of the input with reduced dimensionality, and we will typically pick the
output of the Lth layer as the new representation of our input. We can achieve this goal by
using either the cross-entropy or squared loss to compare the network input to the network
output (at the 2Lth layer), with the intuition being that the representation outputted by
the Lth layer will be an efficiently-compressed version of the data if it can produce a low
value for the loss when projected into higher dimensions.

The DAE shares a lot of similarities with the MLP – effectively, the first L layers of
the DAE are an MLP, and we will exploit this similarity whenever possible throughout
this section. We will structure this section similarly to section 4.1: we will first formulate
the network, then present single-layer derivatives, then the loss functions and gradient
descent step algorithm. The main difference is that we will also include weight-sharing

50



between layers, which we will define next. We included a large potion of this section in
[10, Section 5].

4.3.1 Weight Sharing

In formulating a DAE, the first point to mention is weight-sharing across layers of the
network. The weights at any layer i ∈ [2L] have a deterministic relationship with the
weights at layer ξ(i), where we define ξ ∶ [2L]→ [2L] as

ξ(i) = 2L − i + 1 (4.34)

for all i ∈ [2L]. This function has the property that (ξ ○ ξ)(i) = i.

Weight-sharing influences the spaces of inputs and parameters at layer i ∈ [2L]. If we
assume that the ith layer of the DAE takes as input a vector of length ni, and outputs a
vector of length ni+1, for all i ∈ [2L], we impose the restriction

ni = nξ(i)

for all i ∈ [2L + 1]. We can then define the input space to the ith layer, Ei, as

Ei =

⎧⎪⎪
⎨
⎪⎪⎩

Rni , 1 ≤ i ≤ L,

Rnξ(i) , L + 1 ≤ i ≤ 2L.

We can also write the parameter spaces Hi, containing both the space of weight matrices
and a bias vectors at layer i, in this form:

Hi =

⎧⎪⎪
⎨
⎪⎪⎩

Rni+1×ni ×Rni+1 , 1 ≤ i ≤ L,

Rnξ(i)+1×nξ(i) ×Rnξ(i) , L + 1 ≤ i ≤ 2L.

We will also introduce the function τi defining the weight sharing at layer i, where
L + 1 ≤ i ≤ 2L, as τi ∈ L(Rnξ(i)+1×nξ(i) ;Rnξ(i)×nξ(i)+1). The most common choice for τi is the
matrix transpose, and we compute its adjoint for this case in Lemma 4.3.1, although it can
be any linear operator satisfying the above signature.

Lemma 4.3.1. Let τ ∈ L(Rn×m;Rm×n) be defined as τ(U) = UT for all U ∈ Rn×m. Then,
for all W ∈ Rm×n,

τ∗(W ) =W T .

Proof. For any U ∈ Rn×m and W ∈ Rm×n, ⟨W, τ(U)⟩ = ⟨W, UT ⟩ = tr(WU) = tr(UW ) =

⟨U, W T ⟩, which proves the result by the symmetry of ⟨ , ⟩.
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4.3.2 Single-Layer Formulation

We can now write out the layerwise function fi ∶ Rni × (Rni+1×ni ×Rni+1)→ Rni+1 as

fi(xi;Wi, bi) = Ψi(Wi ⋅ xi + bi), i ≤ L,

fi(xi;Wξ(i), bi) = Ψi (τi (Wξ(i)) ⋅ xi + bi) , i ≥ L + 1, (4.35)

where xi is the input to layer i ∈ [2L], bi is the bias vector at layer i ∈ [2L], Wi is the weight
matrix at layer i ∈ [L], and τi(Wξ(i)) is the weight matrix at layer i ∈ {L + 1, . . . ,2L}. We
can express this in a more compact form by defining a matrix Ki as follows:

Ki =

⎧⎪⎪
⎨
⎪⎪⎩

Wi, 1 ≤ i ≤ L,

τi(Wξ(i)), L + 1 ≤ i ≤ 2L.

Then, we can express the actions of layer i as

fi(xi) = Ψi(Ki ⋅ xi + bi), (4.36)

where we again suppress the explicit dependence of fi on the parameters Ki and bi.

We can now represent the network prediction function as

F = f2L ○ ⋯ ○ f1, (4.37)

which is of the same form as (3.1), but with 2L layers instead of L. Notice that layers i
and ξ(i) both explicitly depend on the parameter Wi, for any i ∈ [L]; we can explicitly
demonstrate their impact on F by writing it as follows:

F = f2L ○ ⋯ ○ fξ(i) ○ ⋯ ○ fi ○ ⋯ ○ f1. (4.38)

In this section, we define αi and ωi as in (3.2) and (3.3) respectively.

4.3.3 Single-Layer Derivatives

We need to calculate the gradients of (4.36) with respect to the parameters for each layer
i ∈ [2L]. We already know how to do this for i ∈ [L] from Lemmas 4.1.2 and 4.1.3, as
the form of fi is the same for DAE and MLP in this case. We only have to determine the
gradients of fi for i ∈ {L + 1, . . . ,2L}, and we will present a very particular instance of the
chain rule for parameter-dependent maps in Lemma 4.3.2 that will allow us to then take
these derivatives in Lemma 4.3.3.
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Lemma 4.3.2. Let E, Ẽ,H1, and H2 be generic inner product spaces. Consider a linear
map τ ∈ L(H1;H2), and two parameter-dependent maps g ∶ E×H1 → Ẽ and h ∶ E×H2 → Ẽ,
such that

g(x; θ) = h(x; τ(θ))

for all x ∈ E and θ ∈H1. Then, the following two results hold for all U ∈H1 and y ∈ Ẽ

∇g(x; θ) ⋅U = ∇h(x; τ(θ)) ⋅ τ(U),

∇∗g(x; θ) ⋅ y = τ∗ (∇∗h(x; τ(θ)) ⋅ y) .

Proof. This is a consequence of the chain rule, the linearity of τ , and the reversing property
of the adjoint.

Lemma 4.3.3. Consider a function f of the form

f(x;W,b) = Ψ(τ(W ) ⋅ x + b),

where x ∈ Rn, b ∈ Rm,W ∈ Rn×m, τ ∈ L(Rn×m;Rm×n), and Ψ ∶ Rm → Rm is an elementwise
function. Then, the following hold for any U ∈ Rn×m,

∇Wf(x;W,b) ⋅U = DΨ(z) ⋅ τ(U) ⋅ x, (4.39)

∇bf(x;W,b) = DΨ(z), (4.40)

Df(x;W,b) = DΨ(z) ⋅ τ(W ), (4.41)

where z = τ(W ) ⋅ x + b. Furthermore, the following hold for any y ∈ Rm,

∇∗
Wf(x;W,b) ⋅ y = τ∗ ((Ψ′(z)⊙ y)xT ) , (4.42)

∇∗
bf(x;W,b) = DΨ(z), (4.43)

D∗f(x;W,b) = τ∗(W ) ⋅DΨ(z). (4.44)

Proof. We computed the derivatives and corresponding adjoints of

f̃(x; W̃ , b) = Ψ(W̃ ⋅ x + b)

in Lemmas 4.1.2 and 4.1.3, where W̃ ∈ Rm×n. Then, equations (4.39) and (4.42) are
consequences of Lemma 4.3.2. Equations (4.40) and (4.41) also follow from derivatives
calculated in Lemma 4.1.2, along with the chain rule and the linearity of τ . Equations
(4.43) and (4.44) follow from the reversing property of the adjoint and the self-adjointness
of DΨ(z) from Proposition 2.4.1.
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4.3.4 Loss Functions and Gradient Descent

The loss function for the DAE is also slightly different than the one provided in section 3.2,
as we replace the y in either (3.6) or (3.9) with x. The DAE is an unsupervised learning
algorithm, meaning that we do not have access to a response variable y. Furthermore, we
will no longer refer to regression or classification, as those are only relevant for supervised
learning algorithms, although we will still maintain the distinction between the squared
and cross-entropy losses. In a DAE, we can write the squared loss as

JR(x; θ) =
1

2
⟨F (x; θ) − x, F (x; θ) − x⟩, (4.45)

where θ ≡ {W1, . . . ,WL, b1, . . . , b2L} represents the parameter set, and x ∈ Rn1 is the input
data point. We can write the cross-entropy loss as

JC(x; θ) = −⟨x, (Log ○σ) (F (x; θ))⟩. (4.46)

We first need to calculate ∇∗
Wi
F (x; θ), for any i ∈ [L], before we can calculate the gradients

of (4.45) and (4.46).

Lemma 4.3.4. For any x ∈ Rn1 and i ∈ [L],

∇∗
Wi
F (x; θ) = ∇∗

Wi
fξ(i)(xξ(i)) ⋅D∗ωξ(i)+1(xξ(i)+1) +∇

∗
Wi
fi(xi) ⋅D

∗ωi+1(xi+1), (4.47)

where xj = αj−1(x) for all j ∈ [2L], αj and ωj are defined as in (3.2) and (3.3), respectively,
and ξ is defined in (4.34).

Proof. Recall that only two of the functions comprising F in (4.38) depend on Wi: fi and
fξ(i). Hence, by the product and chain rules,

∇Wi
F (x; θ) = Dωξ(i)+1(xξ(i)+1) ⋅ ∇Wi

fξ(i)(xξ(i)) +Dωi+1(xi+1) ⋅ ∇Wi
fi(xi).

We can take the adjoint of this equation and recover (4.47) by the reversing property.

Theorem 4.3.5. Let J be defined as in either (4.45) or (4.46), F be defined as in (4.37),
and ωi be defined as in (3.3). Then, for all i ∈ [L] and x ∈ Rn1,

∇Wi
J(x; θ) = (Ψ′

i(zi)⊙ (D∗ωi+1(xi+1) ⋅ e))x
T
i (4.48)

+ τ∗ξ(i) [(Ψ′
ξ(i)(zξ(i))⊙ (D∗ωξ(i)+1(xξ(i)+1) ⋅ e))x

T
ξ(i)] ,
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where xj = αj−1(x) and zj =Kj ⋅ xj + bj for all j ∈ [2L], and the error e is

e =

⎧⎪⎪
⎨
⎪⎪⎩

F (x; θ) − x, for squared loss,

σ(F (x; θ)) − x, for cross-entropy loss.
(4.49)

Furthermore, for all i ∈ [2L],

∇biJ(x; θ) = Ψ′
i(zi)⊙ (D∗ωi+1(xi+1) ⋅ e) , (4.50)

with e defined as in (4.49).

Proof. Proving equation (4.50) for any i ∈ [L] is the same as proving (4.10) and is omitted.

As for (4.48), we can show that

∇∗
Wi
J(x; θ) = ∇∗

Wi
F (x; θ) ⋅ e (4.51)

using a similar argument to those used to derive (3.7) or (3.10), where we define e as in
(4.49). We know how to compute ∇∗

Wi
F (x; θ) from (4.47), and we know that

∇∗
Wi
fi(xi) ⋅ u = (Ψ′

i(zi)⊙ u)x
T
i (4.52)

for any u ∈ Rni+1 and i ∈ [L] from (4.5). Now, since i ∈ [L], we have that

ξ(i) ∈ {L + 1, . . . ,2L},

which means that we use the definition of fξ(i) from (4.35), i.e.

fξ(i)(xξ(i)) = Ψξ(i) (τξ(i)(Wi) ⋅ xξ(i) + bξ(i)) .

Thus, from Lemma 4.3.3, we have that

∇∗
Wi
fξ(i)(xξ(i)) ⋅ v = τ∗ξ(i) ((Ψ′

ξ(i)(zξ(i))⊙ v)x
T
ξ(i)) (4.53)

for any v ∈ Rnξ(i)+1 and any i ∈ [L], where zξ(i) = τξ(i)(Wi) ⋅ xξ(i) + bξ(i).

Hence, we can recover (4.48) by setting v = D∗ωξ(i)+1(xξ(i)+1) ⋅ e in (4.53), setting u =

D∗ωi+1(xi+1) ⋅ e in (4.52), and then adding them together according to (4.47).

The final step before taking the loss function gradients is backpropagation, and we will
see in Theorem 4.3.6 that this has the same form as in an MLP.
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Theorem 4.3.6 (Backpropagation in DAE). With fi defined as in (4.36) and ωi given as
in (3.3), then for any xi ∈ Rni, v ∈ Rn2L+1, and i ∈ [2L],

D∗ωi(xi) ⋅ v =KT
i ⋅ (Ψ

′
i(zi)⊙ (D∗ωi+1(xi+1) ⋅ v)) ,

where zi =Ki ⋅ xi + bi.

Proof. Since fi(xi) =Ki ⋅ xi + bi, where Ki is independent of xi, we can prove this result in
the same way as Theorem 4.1.4, replacing Wi with Ki.

As in the previous sections, we complete this one by presenting an algorithm for one
step of gradient descent. Algorithm 4.3.1 takes as input the network input point x ∈ Rn1 ,
the parameters θ ≡ {W1, . . . ,WL, b1, . . . , b2L}, the learning rate η ∈ R>0, and the type of loss
function that we are using, loss ∈ {squared, cross-entropy}. We again receive an updated
set of parameters upon completion of the algorithm. We can extend Algorithm 4.3.1 to
a batch of points, regularization, and a higher-order loss function; we covered the higher-
order loss case for DAEs in [10].

4.4 Conclusion

We have demonstrated in this chapter how to apply the generic formulation from the
previous chapter to the specific examples of the MLP, CNN, and DAE. We have also seen
how to manage a complicated layerwise function, as in the CNN, and how to work with
parameters which are dependent on other layers, as in the DAE. Furthermore, we have
presented algorithms for one step of gradient descent, again directly over the inner product
space in which the parameters reside. In the next chapter, we will take the dependence
between layers a step further and explore a method for representing the sequence-parsing
RNN.
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Algorithm 4.3.1 One iteration of gradient descent in a DAE

1: function GradDescDAE(x, θ, loss, η)
2: x1 ← x
3: for i ∈ {1, . . . ,2L} do ▷ x2L+1 = F (x; θ)
4: if i <= L then
5: Ki ←Wi

6: else
7: Ki ← τi(Wξ(i))

8: zi ←Ki ⋅ xi + bi
9: xi+1 ← Ψi(zi) ▷ Inserted specific definition of fi

10: for i ∈ {2L, . . . ,1} do
11: if i = 2L and loss = squared then
12: e2L ← x2L+1 − x
13: else if i = 2L and loss = cross-entropy then
14: e2L ← σ(x2L+1) − x
15: else
16: ei ←KT

i+1 ⋅ (Ψ
′
i+1(zi+1)⊙ ei+1) ▷ Theorem 4.3.6; DAE backpropagation

17: ∇biJ(x; θ)← Ψ′
i(zi)⊙ ei ▷ (4.50); J is from either (4.45) or (4.46)

18: bi ← bi − η∇biJ(x; θ)
19: if i > L then
20: ∇Wξ(i)J(x; θ)← τ∗i ((Ψ′

i(zi)⊙ ei)x
T
i ) ▷ Second term in (4.48)

21: else
22: ∇Wi

J(x; θ)← ∇Wi
J(x; θ) + (Ψ′

i(zi)⊙ ei)x
T
i ▷ Add first term in (4.48)

23: Wi ←Wi − η∇Wi
J(x; θ)

24: return θ
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Chapter 5

Recurrent Neural Networks

We applied the generic neural network framework from chapter 3 to specific network struc-
tures in the previous chapter. MLPs and CNNs fit squarely into that framework, and we
were also able to modify it to capture DAEs. We will now extend the generic framework
even further to handle Recurrent Neural Networks (RNNs), the sequence-parsing network
structure containing a recurring latent, or hidden, state that evolves at each layer of the net-
work. This will involve the development of new notation, but we will remain as consistent
as possible with previous chapters.

The specific layout of this chapter is as follows. We will first formulate a generic, feed-
forward recurrent neural network. We will calculate gradients of loss functions for these
networks in two ways: Real-Time Recurrent Learning (RTRL) [80] and Backpropagation
Through Time (BPTT) [64]. Using our notation for vector-valued maps, we will derive
these algorithms directly over the inner product space in which the parameters reside. We
will then proceed to formally represent a vanilla RNN, which is the simplest form of RNN,
and we will formulate RTRL and BPTT for that as well. At the end of the chapter, we
briefly mention modern RNN variants in the context of our generic framework.

5.1 Generic RNN Formulation

We will begin to work outside of the framework developed in section 3.1 to describe the
RNN, as it is a completely different style of neural network. We first introduce notation for
sequences, then discuss the forward propagation of the hidden state, and then we introduce
the loss functions and two gradient descent methods for the RNN: RTRL and BPTT.
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5.1.1 Sequence Data

In the most general case, the input to an RNN, which we will denote x, is a sequence of
bounded length, i.e.

x ≡ (x1, . . . , xL) ∈ Ex × . . . ×Ex
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L times

≡ EL
x ,

where Ex is some inner product space, EL
x is shorthand for the direct product of L copies

of Ex, and L ∈ Z>0 is the maximum sequence length for the particular problem. We can
also write the RNN target variables, which we will denote y, as a sequence of bounded
length, i.e.

y ≡ (y1, . . . , yL) ∈ Ey × . . . ×Ey
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L times

≡ EL
y ,

where Ey is also an inner product space.

When using an RNN, our datasets will be of the form D = {(x(j),y(j))}nj=1, where
(x(j),y(j)) ∈ EL

x × E
L
y for all j ∈ [n]. However, sequences are generally of varying length,

so any particular x(j) may only have ` < L elements; for those points, we will simply not
calculate the loss or prediction beyond the `th layer of the network. Similarly, a given y(j)
may not contain a target value for each i ∈ [L]; again, we only calculate the loss when
there is actually a target value. Thus, without loss of generality, we will only present the
case where the data point we are considering, (x(j∗),y(j∗)) ≡ (x,y) ∈ D, is full, i.e. x is of
length L and y contains L target points.

5.1.2 Hidden States, Parameters, and Forward Propagation

One feature that makes RNNs unique is that they contain a hidden state – initialized
independently from the inputs – that is propagated forwards at each layer i. Note that in
the context of RNNs, we consider one layer to be both the evolution of the hidden state
and the resulting prediction generated post-evolution. We will refer to the inner product
space of hidden states as Eh. The method of propagating the hidden state forward is also
the same at each layer, which is another unique property of RNNs. It is governed by the
same functional form and the same set of transition parameters θ ∈HT , where HT is some
inner product space. This is the recurrent nature of RNNs: each layer performs the same
operations on the hidden state, with the only difference between layers being that the input
data is xi ∈ Ex at layer i ∈ [L].

To solidify this concept, we will introduce a generic layerwise function f ∶ Eh×Ex×HT →

Eh that governs the propagation of the hidden state forward at each layer. We can express
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this for any h ∈ Eh, x ∈ Ex, and θ ∈HT as

f(h;x; θ) ∈ Eh.

Now consider a data point x ∈ EL
x as we described above. We assert that the ith layer

of the RNN will take as input the (i − 1)th hidden state, which we will denote hi−1 ∈ Eh,
and the ith value of x, which is xi ∈ Ex, for all i ∈ [L]. The forward propagation of the
hidden state after the ith layer is given by

hi ≡ f(hi−1;xi; θ),

where h0 ∈ Eh is the initial hidden state, which can either be learned as a parameter
or initialized to some fixed vector. For ease of composition, we again will suppress the
parameters of f , but we will also suppress the input xi in this formulation such that

hi ≡ fi(hi−1)

for all i ∈ [L].1 Notice that fi retains implicit dependence on xi and θ. We refer to hi as
the state variable for the RNN, as it is the quantity that we propagate forward at each
layer.

We can define the head map as in (3.2), but with the argument corresponding to a
hidden state, i.e. for all i ∈ [L], we define αi ∶ Eh → Eh as

αi = fi ○ ⋯ ○ f1, (5.1)

and we define α0 to be the identity map on Eh. If we view the RNN as a discrete-time
dynamical system, we could also call αi the flow of the system. We will introduce a new
map to aide in the calculation of derivatives, µj,i∶ Eh → Eh, which accumulates the evolution
of the hidden state from layer i ∈ [L] to j ∈ {i, . . . , L} inclusive, i.e.

µj,i = fj ○ ⋯ ○ fi. (5.2)

We will also set µj,i to be the identity on Eh for j < i, which we extend to include the case
when i > L, i.e.

µj,i = id

whenever i > min(j,L).

1We have adopted a slightly different indexing convention in this chapter – notice that fi takes in hi−1
and outputs hi, as opposed to the previous chapters where we evolved the state variable according to
xi+1 = fi(xi). This indexing convention is more natural for RNNs, as we will see that the ith prediction
will depend on hi with this adjustment, instead of on hi+1.
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5.1.3 Prediction and Loss Functions

Recall that we have a target variable at each layer i ∈ [L], meaning that we should also have
a prediction at each layer. As in the previous section, we will enforce that the prediction
also has the same functional form and set of prediction parameters at each layer. The
prediction function g takes in a hidden state h ∈ Eh and a set of prediction parameters
ζ ∈ HP , and outputs an element of Ey, i.e. g ∶ Eh ×HP → Ey. Often, we will suppress the
dependence of g on the parameters such that g ∶ Eh → Ey again for ease of composition.
We can then write the prediction at layer i ∈ [L] in a number of ways:

ŷi = g(hi) = (g ○ µi,k) (hk−1) = (g ○ αi) (h) (5.3)

for any k ≤ i, where hi = αi(h) for all i ∈ [L], and h ≡ h0 ∈ Eh is the initial hidden state.

Since we have a prediction at every layer, we will also have a loss at each layer. The
total loss for the entire network, J , is the sum of these losses, i.e.

J =
L

∑
i=1

J(yi, ŷi), (5.4)

where J ∶ Ey ×Ey → R is either the squared or cross-entropy loss. Recall that we can define
the squared loss as

JR(y, ŷ) =
1

2
⟨y − ŷ, y − ŷ⟩ (5.5)

and the cross-entropy loss as

JC(y, ŷ) = −⟨y, (Log ○σ) (ŷ)⟩. (5.6)

We have lightened the notation in this chapter compared to the previous so that it does
not become unruly, but it is important to note that ŷi from (5.4) depends on the initial
state h, the transition parameters θ, the prediction parameters ζ, and the input sequence
up to layer i, given by xi ≡ (x1, . . . , xi).

5.1.4 Loss Function Gradients

We will need to take derivatives of the loss function (5.4) with respect to the parameters.
We can easily take the derivatives of the loss with respect to the prediction parameters
ζ. As for the transition parameters θ, there are two prevailing methods: RTRL, where
we only send derivatives forward throughout the network [80], and BPTT, where we go
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through the entire network first and then send derivatives backward [64]. In practice, basic
RTRL is very slow compared to BPTT [67], but we can derive it more intuitively than
BPTT and so it serves as a good starting point. Furthermore, RTRL can sometimes be
applicable to streams of data that must be processed as they arrive.

Prediction Parameters

We would like to compute ∇ζJ , where we define J in (5.4), and J is either JR, from (5.5),
or JC , from (5.6). Since the derivative is linear, we have

∇ζJ =
L

∑
i=1

∇ζ (J(yi, ŷi)) , (5.7)

where we enclose J(yi, ŷi) in parentheses to emphasize that we will first evaluate J(yi, ŷi),
and then take its derivative with respect to ζ.

Theorem 5.1.1. For any yi ∈ Ey, hi ∈ Eh, and i ∈ [L],

∇ζ (J(yi, ŷi)) = ∇
∗
ζg(hi) ⋅ ei, (5.8)

where ŷi is defined in (5.3), J is either the squared or cross-entropy loss, and

ei =

⎧⎪⎪
⎨
⎪⎪⎩

ŷi − yi, if J is the squared loss,

σ(ŷi) − yi, if J is the cross-entropy loss,
(5.9)

is the prediction error at layer i.

Proof. We can prove this theorem similarly to Theorems 3.2.2 and 3.2.4, although the
notation is a bit different. If we suppose J is the cross-entropy loss, then for any i ∈ [L]
and U ∈HP ,

∇ζ (JC(yi, ŷi)) ⋅U = ∇ζ (−⟨yi, (Log ○σ) (g(hi))⟩) ⋅U

= −⟨yi, D (Log ○σ) (g(hi)) ⋅ ∇ζg(hi) ⋅U⟩

= −⟨∇∗
ζg(hi) ⋅D

∗ (Log ○σ) (g(hi)) ⋅ yi, U⟩

= ⟨∇∗
ζg(hi) ⋅ (σ(ŷi) − yi) , U⟩,

where the second line is true since hi has no dependence on ζ, and the fourth line is from
Lemma 2.4.4. Then, by the canonical isomorphism discussed in Remark 3.2.3, we have
proven (5.8) for the case when J is the cross-entropy loss. We omit the case when J is the
squared loss as it is easy to extend from this proof.
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Real-Time Recurrent Learning

We will now proceed with the presentation of the RTRL algorithm for calculating the
gradient of (5.4) with respect to the transition parameters θ. We will first show the
forward propagation of the derivative of the head map in Lemma 5.1.2, and then proceed
to calculate the derivatives of (5.4) with respect to θ in Theorem 5.1.3.

Lemma 5.1.2. For any h ∈ Eh and i ∈ [L], with αi defined in (5.1),

∇∗
θαi(h) = ∇

∗
θαi−1(h) ⋅D

∗fi(hi−1) +∇
∗
θfi(hi−1), (5.10)

where hi−1 = αi−1(h).

Proof. We know that for any i ∈ [L], αi = fi ○ αi−1. Since both fi and αi−1 depend on
θ, to take the derivative of their composition we must combine the chain rule with the
product rule: first hold αi−1 constant with respect to θ and differentiate fi, and then hold
fi constant with respect to θ and differentiate αi−1. In particular,

∇θαi(h) = ∇θ (fi ○ αi−1) (h) = ∇θfi(hi−1) +Dfi(hi−1) ⋅ ∇θαi−1(h) (5.11)

since hi−1 = αi−1(h). Then, by taking the adjoint, we recover (5.10). Note that (5.10) still
holds when i = 1, as α0 is the identity on Eh with no dependence on the parameters θ, and
thus ∇∗

θα0(h) is the zero operator.

Theorem 5.1.3 (Real-Time Recurrent Learning). For any h ∈ Eh, yi ∈ Ey, and i ∈ [L],

∇θ (J(yi, ŷi)) = ∇
∗
θαi(h) ⋅D

∗g(hi) ⋅ ei, (5.12)

where J is either JR or JC, hi = αi(h), αi is defined in (3.2), ŷi is defined in (5.3), and ei
is defined in (5.9).

Proof. We will again proceed with only the case of cross-entropy loss; the case of squared
loss is a minor extension and is omitted. For any U ∈HT ,

∇θ (JC(yi, ŷi)) ⋅U = ∇θ {− ⟨yi, (Log ○σ) (g(αi(h)))⟩} ⋅U

= −⟨yi, D (Log ○σ) (g(hi)) ⋅Dg(hi) ⋅ ∇θαi(h) ⋅U⟩

= −⟨∇∗
θαi(h) ⋅D

∗g(hi) ⋅D∗ (Log ○σ) (g(hi)) ⋅ yi, U⟩

= ⟨∇∗
θαi(h) ⋅D

∗g(hi) ⋅ (σ(ŷi) − yi) , U⟩.

Therefore, by the canonical isomorphism and since ei = σ(ŷi)−yi, we have proven (5.12).
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Note that even though we do not have access to ei and hi until layer i, we can still
propagate the linear map ∇∗

θαi(h) forward without an argument at each layer i according
to (5.10), and then use this to calculate (5.12). This is the real-time aspect of RTRL, as it
allows for exact gradient computation at each layer i without knowledge of the information
at future layers. Unfortunately, this forward propagation is also what makes RTRL slow
compared to BPTT. Nevertheless, we present a generic algorithm for performing one step
of gradient descent via RTRL in Algorithm 5.1.1. As input to the algorithm, we provide
the sequence input x and associated targets y, the initial state h, the transition parameters
θ, the prediction parameters ζ, the learning rate η, and the type of loss function, loss ∈
{squared, cross-entropy}. We receive, as output, a parameter set updated by a single step
of gradient descent.

Algorithm 5.1.1 One iteration of gradient descent for an RNN via RTRL

1: function GradDescRTRL(x,y, h, θ, ζ, loss, η)
2: h0 ← h
3: ∇θJ ← 0 ▷ 0 in HT , the inner product space in which θ resides
4: ∇ζJ ← 0 ▷ 0 in HP , the inner product space in which ζ resides
5: for i ∈ {1, . . . , L} do
6: hi ← fi(hi−1) ▷ fi depends on θ, xi
7: ŷi ← g(hi)
8: ∇∗

θαi(h)← ∇∗
θαi−1(h) ⋅D∗fi(hi−1) +∇

∗
θfi(hi−1)

9: if loss = squared then
10: ei ← ŷi − yi
11: else
12: ei ← σ(ŷi) − yi

13: ∇θJ ← ∇θJ +∇∗
θαi(h) ⋅D

∗g(hi) ⋅ ei ▷ Add accumulated gradient at each layer
14: ∇ζJ ← ∇ζJ +∇∗

ζg(hi) ⋅ ei

15: θ ← θ − η∇θJ ▷ Parameter update steps
16: ζ ← ζ − η∇ζJ

17: return θ, ζ

Backpropagation Through Time

We can derive a more efficient method for gradient calculation with respect to the transition
parameters in RNNs, known as BPTT. Even though we must traverse the network both
forwards and backwards to execute BPTT, the forward and backward steps combined are
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far more computationally efficient than RTRL [67]. Note that we will use the notation Dhi

to denote the action of taking the derivative with respect to the state hi in this section,
for any i ∈ [L]. We use this, as opposed to ∇hi , since hi is a state variable.

The first part of BPTT that we will derive is the backpropagation step, which sends
the error at layer i ∈ [L] backwards throughout the network. To do this, we will calculate
Dµj,i+1(hi) for j ≥ i + 1 in Lemma 5.1.4, and then use this result to derive the recurrence
in Theorem 5.1.5.

Lemma 5.1.4. For any hi ∈ Eh, i ∈ [L − 1], and j ∈ [L] with j ≥ i + 1,

Dµj,i+1(hi) = Dµj,i+2(hi+1) ⋅Dfi+1(hi) (5.13)

where hi+1 = fi+1(hi) and µj,i is defined in (5.2). Furthermore, Dµi,i+1(hi) is the identity
map on Eh.

Proof. First of all, since µi,i+1 is the identity on Eh, we automatically have that Dµi,i+1(hi)
is the identity on Eh.

Furthermore, for j ≥ i + 1, by the definition of µj,i+1 we have that

µj,i+1 = µj,i+2 ○ fi+1.

Therefore, by the chain rule, for any hi ∈ Eh,

Dµj,i+1(hi) = D(µj,i+2 ○ fi+1)(hi)

= Dµj,i+2(hi+1) ⋅Dfi+1(hi),

since hi+1 = fi+1(hi).

Theorem 5.1.5 (Backpropagation Through Time). For any i ∈ [L] and hi ∈ Eh, with J
defined as in (5.4),

DhiJ = D∗fi+1(hi) ⋅Dhi+1J +D∗g(hi) ⋅ ei, (5.14)

where we set DhL+1J to be the zero vector in Eh and we define ei as in (5.9).

Proof. We can prove this directly from the definition of J for the cross-entropy loss case.
For any v ∈ Eh,

DhiJ ⋅ v = Dhi (−
L

∑
j=1

⟨yj, (Log ○σ) (g(αj(h))⟩) ⋅ v
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= Dhi (−
L

∑
j=i

⟨yj, (Log ○σ) (g(µj,i+1(hi)))⟩) ⋅ v (5.15)

= −
L

∑
j=i

⟨yi, D (Log ○σ) (ŷj) ⋅Dg(hj) ⋅Dµj,i+1(hi) ⋅ v⟩ (5.16)

=
L

∑
j=i

⟨D∗µj,i+1(hi) ⋅D
∗g(hj) ⋅ ej, v⟩, (5.17)

where (5.15) holds since the loss from layers j < i is not impacted by hi, (5.16) holds
from the chain rule in (2.3), and (5.17) holds by Lemma 2.4.4 and the definition of the
adjoint. Therefore, by the canonical isomorphism, we can represent DhiJ as an element of
Eh according to

DhiJ =
L

∑
j=i

D∗µj,i+1(hi) ⋅D
∗g(hj) ⋅ ej, (5.18)

for any i ∈ [L]. We can manipulate (5.18) as follows when i < L:

DhiJ = D∗µi,i+1(hi) ⋅D
∗g(hi) ⋅ ei +

L

∑
j=i+1

D∗µj,i+1(hi) ⋅D
∗g(hj) ⋅ ej

= D∗g(hi) ⋅ ei +
L

∑
j=i+1

D∗fi+1(hi) ⋅D
∗µj,i+2(hi+1) ⋅D

∗g(hj) ⋅ ej (5.19)

= D∗g(hi) ⋅ ei +D∗fi+1(hi) ⋅ (
L

∑
j=i+1

D∗µj,i+2(hi+1) ⋅D
∗g(hj) ⋅ ej) , (5.20)

where (5.19) follows from Lemma 5.1.4 and the reversing property of the adjoint. We
recognize ∑

L
j=i+1 D∗µj,i+2(hi+1) ⋅D∗g(hj) ⋅ ej in (5.20) as Dhi+1J (from (5.18)), and thus we

have proven (5.14) for i < L.

As for when i = L, it is quite easy to show that DhLJ = D∗g(hL) ⋅ eL, which also proves
(5.14) for this case since we set DhL+1J to zero. Thus, we have proven (5.14) for all i ∈ [L].

We again omit the proof for the case of squared loss as it is not a difficult extension.

We will present the gradient of J with respect to the transition parameters for BPTT
in Theorem 5.1.7 after first presenting a useful result in Lemma 5.1.6. The expression
that we will derive relies heavily on the recursion from Theorem 5.1.5, similarly to how
Theorems 3.2.2 and 3.2.4 depend on the recursion from Theorem 3.2.5.
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Lemma 5.1.6. For any k ∈ [L] and h ∈ Eh,

∇θαk(h) =
k

∑
j=1

Dµk,j+1(hj) ⋅ ∇θfj(hj−1), (5.21)

where αk is defined in (5.1), hj = αj(h) for all j ∈ [L], and µk,j+1 is defined in (5.2).

Proof. We can prove this via induction. For k = 1, since α1 = f1 and h = h0,

∇θα1(h) = ∇θf1(h0).

Also, by Lemma 5.1.4, Dµ1,2(h1) is the identity. Therefore, (5.21) is true for k = 1.

Now assume (5.21) holds for 2 ≤ k ≤ L − 1. Then,

∇θαk+1(h) = Dfk+1(hk) ⋅ ∇θαk(h) +∇θfk+1(hk)

= Dfk+1(hk) ⋅ (
k

∑
j=1

Dµk,j+1(hj) ⋅ ∇θfj(hj−1)) +Dµk+1,k+2(hk+1) ⋅ ∇θfk+1(hk)

=
k+1

∑
j=1

Dµk+1,j+1(hj) ⋅ ∇θfj(hj−1)

where the first line follows from (5.11), the second line from the inductive hypothesis
and the fact that Dµk+1,k+2(hk+1) is the identity, and the third line from the fact that
fk+1 ○ µk,j+1 = µk+1,j+1, implying

Dfk+1(hk) ⋅Dµk,j+1(hj) = Dµk+1,j+1(hj)

for j ≤ k. Thus, we have proven (5.21) for all k ∈ [L] by induction.

Theorem 5.1.7. For J defined as in (5.4),

∇θJ =
L

∑
i=1

∇∗
θfi(hi−1) ⋅DhiJ , (5.22)

where we can write DhjJ as an element of Eh recursively according to (5.14).

Proof. We can prove this directly using the results from earlier in this section:

∇θJ =
L

∑
j=1

∇∗
θαj(h) ⋅D

∗g(hj) ⋅ ej

=
L

∑
j=1

j

∑
i=1

∇∗
θfi(hi−1) ⋅D

∗µj,i+1(hi) ⋅D
∗g(hj) ⋅ ej,
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where the first equality follows from summing (5.12) over all j ∈ [L], and the second from
taking the adjoint of (5.21). We will now swap the indices to obtain the final result, since
we are summing over {(i, j) ∈ [L] × [L] ∶ 1 ≤ i ≤ j ≤ L}:

∇θJ =
L

∑
i=1

L

∑
j=i
∇∗
θfi(hi−1) ⋅D

∗µj,i+1(hi) ⋅D
∗g(hj) ⋅ ej

=
L

∑
i=1

∇∗
θfi(hi−1) ⋅ (

L

∑
j=i

D∗µj,i+1(hi) ⋅D
∗g(hj) ⋅ ej)

=
L

∑
i=1

∇∗
θfi(hi−1) ⋅DhiJ ,

where the final line comes from (5.18).

We will now present an algorithm for taking one step of gradient descent in BPTT. The
inputs and outputs are the same as Algorithm 5.1.1, with the only difference being that we
compute the gradient with respect to the transition parameters according to BPTT and
not RTRL. We will denote the backpropagated error quantity in Algorithm 5.1.2 by

εi ≡ DhiJ

for all i ∈ [L + 1]. We can again extend Algorithm 5.1.2 to a batch of inputs, more
complicated gradient descent algorithms, and regularization, as in Algorithm 3.2.1.

One important extension to the BPTT algorithm given in Algorithm 5.1.2 is truncated
BPTT, in which we run BPTT every ` < L timesteps down for a fixed m < L steps [74], and
then reset the error vector to zero after. Truncated BPTT requires fewer computations
than full BPTT and can also help with the problem of vanishing and exploding gradients, as
the gradients will not be propagated back as far as in full BPTT. One potential downside is
that the exact gradients will not be calculated, although this is preferable to exact gradients
if they would otherwise explode.

5.2 Vanilla RNNs

We will now formulate the basic vanilla RNN [19, 64] in the framework of the previous
section. We first need to specify the hidden, input, output, and parameter spaces, the
layerwise function f , and the prediction function g. We will also take the derivatives of
f and g to develop the BPTT and RTRL methods for vanilla RNNs. In this section, we
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Algorithm 5.1.2 One iteration of gradient descent for an RNN via BPTT

1: function GradDescBPTT(x,y, h, θ, ζ, loss, η)
2: h0 ← h
3: ∇θJ ← 0 ▷ 0 in HT , the inner product space in which θ resides
4: ∇ζJ ← 0 ▷ 0 in HP , the inner product space in which ζ resides
5: for i ∈ {1, . . . , L} do
6: hi ← fi(hi−1) ▷ fi depends on θ, xi
7: ŷi ← g(hi)
8: if loss = squared then
9: ei ← ŷi − yi

10: else
11: ei ← σ(ŷi) − yi

12: ∇ζJ ← ∇ζJ +∇∗
ζg(hi) ⋅ ei ▷ Add accumulated gradient at each layer

13: εL+1 ← 0 ▷ 0 in Eh; Initialization of DhL+1J

14: for i ∈ {L, . . . ,1} do
15: εi ← D∗fi+1 ⋅ εi+1 +D∗g(hi) ⋅ ei ▷ BPTT update step from (5.14)
16: ∇θJ ← ∇θJ +∇∗

θfi(hi−1) ⋅ εi ▷ Add accumulated gradient at each layer

17: θ ← θ − η∇θJ ▷ Parameter update steps
18: ζ ← ζ − η∇ζJ

19: return θ, ζ

will discuss BPTT first, since once we take the derivatives of the layerwise function and
prediction functions it is easy to insert them into the results of the previous section. It
is not as easy to handle RTRL now, though, as we will need to introduce notation to
implement the forward propagation of (5.10).

5.2.1 Formulation

Let us assume the hidden state is a vector of length nh, i.e. Eh = Rnh . Suppose also that
Ex = Rnx and Ey = Rny . We will evolve the hidden state h ∈ Rnh according to a hidden-
to-hidden weight matrix W ∈ Rnh×nh , an input-to-hidden weight matrix U ∈ Rnh×nx , and a
bias vector b ∈ Rnh . We can then describe the hidden state evolution as

f(h;x;W,U, b) = Ψ(W ⋅ h +U ⋅ x + b),

where Ψ ∶ Rnh → Rnh is the elementwise nonlinearity.The tanh function is a particularly
popular choice of elementwise nonlinearity for RNNs. If we employ the parameter and
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input suppression convention for each layer i ∈ [L], we can write the layerwise function fi
as:

fi(hi−1) = Ψ(W ⋅ hi−1 +U ⋅ xi + b). (5.23)

The prediction function g is also parametrized by matrix-vector multiplication as follows
for any h ∈ Rnh :

g(h) = V ⋅ h + c, (5.24)

where V ∈ Rny×nh is the hidden-to-output weight matrix, and c ∈ Rny is the output bias
vector.

5.2.2 Single-Layer Derivatives

We will first derive the maps Df and ∇θf , for θ ∈ {W,U, b}, and their adjoints. Then, we
will derive Dg and ∇ζg, for ζ ∈ {V, c}, and the adjoints of those as well.

Theorem 5.2.1. For any hi−1 ∈ Rnh, xi ∈ Rnx, W̃ ∈ Rnh×nh, and Ũ ∈ Rnh×nx, with fi defined
as in (5.23),

Dfi(hi−1) = DΨ(zi) ⋅W, (5.25)

∇Wfi(hi−1) ⋅ W̃ = DΨ(zi) ⋅ W̃ ⋅ hi−1, (5.26)

∇Ufi(hi−1) ⋅ Ũ = DΨ(zi) ⋅ Ũ ⋅ xi, (5.27)

∇bfi(hi−1) = DΨ(zi), (5.28)

where zi =W ⋅ hi−1 +U ⋅ xi + b. Furthermore, for any v ∈ Rnh,

D∗fi(hi−1) =W
T ⋅DΨ(zi), (5.29)

∇∗
Wfi(hi−1) ⋅ v = (DΨ(zi) ⋅ v)h

T
i−1, (5.30)

∇∗
Ufi(hi−1) ⋅ v = (DΨ(zi) ⋅ v)x

T
i , (5.31)

∇∗
bfi(hi−1) = DΨ(zi). (5.32)

Proof. Equations (5.25) to (5.28) are all direct consequences of the chain rule.

Equations (5.29) and (5.32) follow directly from the reversing property of the adjoint
and the self-adjointness of DΨ. We can also prove equations (5.30) and (5.31) in the exact
same way as (4.5) so the proof is complete.
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Theorem 5.2.2. For any h ∈ Eh and Ṽ ∈ Rny×nh, with g defined as in (5.24),

Dg(h) = V, (5.33)

∇V g(h) ⋅ Ṽ = Ṽ ⋅ h, (5.34)

∇cg(h) = id. (5.35)

Furthermore, for any v ∈ Rny ,

D∗g(h) = V T , (5.36)

∇∗
V g(h) ⋅ v = vh

T , (5.37)

∇∗
cg(h) = id. (5.38)

Proof. Equations (5.33) to (5.35) are consequences of the chain rule and equations (5.36)
to (5.38) are simpler versions of their counterparts in Theorem 5.2.1.

We can use the results from Theorem 5.2.2 in (5.8) to calculate the loss function deriva-
tives with respect to the prediction parameters V and c.

5.2.3 Backpropagation Through Time

In this section, we will explicitly write out the BPTT recurrence (5.14) and full gradient
(5.22) for the case of vanilla RNNs. Once we write these out, they can easily be inserted
into Algorithm 5.1.2 to perform BPTT. The equations that we will derive bear a strong
resemblance to those found in [19, Chapter 10]; however, we have explicitly shown the
derivation here and have carefully defined the maps and vectors that we are using.

Theorem 5.2.3. For any i ∈ [L],

DhiJ =W T ⋅DΨ(zi) ⋅Dhi+1J + V T ⋅ ei, (5.39)

where J is defined in (5.4), zi =W ⋅hi−1+U ⋅xi+b, ei is defined in (5.9), and we set DhL+1J

to be the zero vector in Rnh.

Proof. We can prove this simply by inserting the definitions of D∗fi and D∗g from (5.25)
and (5.33), respectively, into (5.14).
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Theorem 5.2.4. For J defined as in (5.4),

∇WJ =
L

∑
i=1

(DΨ(zi) ⋅DhiJ )hTi−1,

∇UJ =
L

∑
i=1

(DΨ(zi) ⋅DhiJ )xTi ,

∇bJ =
L

∑
i=1

DΨ(zi) ⋅DhiJ ,

where hi = αi(h) for all i ∈ [L], and DhiJ can be calculated recursively according to Theo-
rem 5.2.3.

Proof. As with Theorem 5.2.3, we can prove this by inserting ∇∗
Wfi(hi−1) from (5.30),

∇∗
Ufi(hi−1) from (5.31), or ∇∗

bfi(hi−1) from (5.32) into (5.22).

We can use the results from Theorems 5.2.3 and 5.2.4 to create a specific BPTT algo-
rithm for vanilla RNNs, which we present in Algorithm 5.2.1. We have the same inputs and
outputs as Algorithm 5.1.2, although our transition parameters θ are now θ = {W,U, b},
and our prediction parameters ζ are now ζ = {V, c}.

5.2.4 Real-Time Recurrent Learning

As mentioned earlier, we will have to develop some additional machinery to implement
RTRL for vanilla RNNs. Consider, for example, propagating ∇∗

Wαi(h) forward at each
layer i according to (5.10). This map is an element of L(Rnh ;Rnh×nh), which is isomorphic
to Rnh×nh×nh , implying that we require tensor product notation to represent it. However,
tensor products will be quite convenient and useful in this section, as they were for repre-
senting CNNs.

Evolution Equation

For a generic parameter θ ∈ {W,U, b} and any i ∈ [L], we can write

∇∗
θαi =

nh

∑
j=1

Ai,j ⊗ ej,
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Algorithm 5.2.1 One iteration of gradient descent for a vanilla RNN via BPTT

1: function GradDescVanillaBPTT(x,y, h, θ, ζ, loss, η)
2: h0 ← h
3: ∇WJ ,∇UJ ,∇bJ ← 0 ▷ 0 in their respective spaces
4: ∇V J ,∇cJ ← 0
5: for i ∈ {1, . . . , L} do
6: zi ←W ⋅ hi−1 +U ⋅ xi + b
7: hi ← Ψ(zi) ▷ Specific definition of fi
8: ŷi ← V ⋅ hi + c ▷ Specific definition of g
9: if loss = squared then

10: ei ← ŷi − yi
11: else
12: ei ← σ(ŷi) − yi

13: ∇cJ ← ∇cJ + ei ▷ Inserted (5.38) into (5.8) to accumulate gradient
14: ∇V J ← ∇V J + ei ⋅ hTi ▷ Inserted (5.37) into (5.8) to accumulate gradient

15: εL+1 ← 0 ▷ 0 in Eh; Initialization of DhL+1J

16: for i ∈ {L, . . . ,1} do
17: εi ←W T ⋅DΨ(zi+1) ⋅ εi+1 + V T ⋅ ei ▷ BPTT update step with (5.29) and (5.36)
18: ∇bJ ← ∇bJ +DΨ(zi) ⋅ εi ▷ Inserted (5.32) into (5.22)
19: ∇WJ ← ∇WJ + (DΨ(zi) ⋅ εi)hTi−1 ▷ Inserted (5.30) into (5.22)
20: ∇UJ ← ∇UJ + (DΨ(zi) ⋅ εi)xTi ▷ Inserted (5.31) into (5.22)

21: θ ← θ − η∇θJ ▷ Parameter update steps for all θ, ζ
22: ζ ← ζ − η∇ζJ

23: return θ, ζ

where {ej}nj=1 is an orthonormal basis for Rnh ,2 and Ai,j ∶ Rnh → Θ is a function from the
space of hidden states to the space in which the parameter θ resides for all i ∈ [L] and
j ∈ [nh]. We can interpret this expression as follows: for any h, v ∈ Rnh and i ∈ [L],

∇∗
θαi(h) ⋅ v =

nh

∑
j=1

Ai,j(h)⟨ej, v⟩ =
nh

∑
j=1

⟨ej, v⟩Ai,j(h). (5.40)

2We use ej here instead of simply ej since we already have ei defined in (5.9) and will continue to use
it throughout this section.
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We can also write out the right-hand-side of (5.10) similarly:

(∇∗
θαi−1(h) ⋅D

∗fi(hi−1) +∇
∗
θfi(hi−1)) ⋅ v (5.41)

=
nh

∑
j=1

⟨ej, D∗fi(hi−1) ⋅ v⟩Ai−1,j(h) +∇
∗
θfi(hi−1) ⋅ v,

where hi−1 = αi−1(h). Equating (5.40) with (5.41), which is valid from (5.10), we obtain

nh

∑
j=1

⟨ej, v⟩Ai,j(h) =
nh

∑
k=1

⟨ek, D∗fi(hi−1) ⋅ v⟩Ai−1,k(h) +∇
∗
θfi(hi−1) ⋅ v,

or if v = ej for some j ∈ [nh],

Ai,j(h) =
nh

∑
k=1

⟨ek, D∗fi(hi−1) ⋅ ej⟩Ai−1,k(h) +∇
∗
θfi(hi−1) ⋅ ej. (5.42)

Thus, we can evolve Ai,j(h), or equivalently ∇∗
θαi(h), according to (5.42), for θ ∈ {W,U, b},

and we then evaluate ∇∗
θαi(h) as in (5.40). Also, since ∇∗

θα0(h) is the zero operator for all
h ∈ Rnh , we initialize A0,j(h) to be zero in Θ for all j ∈ [nh].

We will quickly discuss the specific results for each parameter. For θ =W , AWi,j(h) is in
the same space as W , i.e. AWi,j(h) ∈ Rnh×nh for all i ∈ [L] and j ∈ [nh]. Similarly, we have

AUi,j(h) ∈ Rnh×nx and Abi,j(h) ∈ Rnh . If we insert the results from Theorem 5.2.1 into (5.42)
for each parameter θ, we obtain the following three recurrence equations for each of the
transition parameters:

AWi,j(h) =
nh

∑
k=1

⟨W ⋅ ek, DΨ(zi) ⋅ ej⟩A
W
i−1,k(h) + (DΨ(zi) ⋅ ej)h

T
i−1, (5.43)

AUi,j(h) =
nh

∑
k=1

⟨W ⋅ ek, DΨ(zi) ⋅ ej⟩A
U
i−1,k(h) + (DΨ(zi) ⋅ ej)x

T
i , (5.44)

Abi,j(h) =
nh

∑
k=1

⟨W ⋅ ek, DΨ(zi) ⋅ ej⟩A
b
i−1,k(h) +DΨ(zi) ⋅ ej (5.45)

for all i ∈ [L] and j ∈ [nh], where zi = W ⋅ hi−1 + U ⋅ xi + b, and we have moved W to the
other side of the inner product since (W T )

∗
=W under the standard inner product.

Loss Function Derivatives

Once we have propagated the map ∇∗
θαi(h) forward, we will apply it to D∗g(hi) ⋅ ei as

in (5.12). If we insert the specific definition of D∗g from (5.36) and our representation of
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∇∗
θαi(h), we obtain

∇∗
θαi(h) ⋅D

∗g(hi) ⋅ ei =
nh

∑
j=1

⟨ej, D∗g(hi) ⋅ ei⟩Aθi,j(h)

=
nh

∑
j=1

⟨ej, V
T ⋅ ei⟩A

θ
i,j(h) (5.46)

for all i ∈ [L] and θ ∈ {W,U, b}.

Gradient Descent Step Algorithm

In Algorithm 5.2.2, we explicitly write out RTRL for vanilla RNNs. We replace line 8 in
Algorithm 5.1.1 with lines 17 - 19 in Algorithm 5.2.2 to update ∇∗

θαi(h) (equivalently Aθi,j
for j ∈ [nh]) at each layer i ∈ [L] and for each transition parameter θ ∈ {W,U, b}. Then, we
use the updated ∇∗

θαi(h) to compute ∇θ (J(yi, ŷi)) in lines 21 - 23 of Algorithm 5.2.2 as
in (5.46).

5.3 RNN Variants

Beyond just the vanilla RNN, there exist numerous variants in the literature that we
will discuss quickly in this section. Vanishing and exploding gradients are prevalent in
vanilla RNNs, necessitating the development of gated RNN architectures to accurately
model longer-term dependencies in data and control the magnitude of the gradient flowing
through the network, and we discuss these in subsection 5.3.1. Another extension is the
Bidirectional Recurrent Neural Network (BRNN), which we examine in subsection 5.3.2.
BRNNs parse the sequence both forwards and backwards, if the entire sequence is known at
the start, allowing the network to capture more information about the sequence. Finally,
we can also obtain a more expressive network structure using Deep Recurrent Neural
Networks (DRNNs), where each layer of the recurrent network is itself a layered DNN,
and we will discuss these in subsection 5.3.3. We can also combine the network variants;
see, for example, the deep bidirectional LSTM developed in [23]. We include this section
for completeness and to allow the reader to further investigate RNNs, although we do not
explicitly represent these extensions in the framework developed throughout this thesis.
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Algorithm 5.2.2 One iteration of gradient descent for a vanilla RNN via RTRL

1: function GradDescVanillaRTRL(x,y, h, θ, ζ, loss, η)
2: h0 ← h
3: ∇WJ ,∇UJ ,∇bJ ,∇V J ,∇cJ ← 0 ▷ 0 in their respective spaces
4: for j ∈ {1, . . . , nh} do
5: Ab0,j(h),A

W
0,j(h),A

U
0,j(h)← 0 ▷ 0 in their respective spaces

6: for i ∈ {1, . . . , L} do
7: zi ←W ⋅ hi−1 +U ⋅ xi + b
8: hi ← Ψ(zi)
9: ŷi ← V ⋅ hi + c

10: if loss = squared then
11: ei ← ŷi − yi
12: else
13: ei ← σ(ŷi) − yi

14: for j ∈ {1, . . . , nh} do ▷ RTRL update steps
15: vi,j ← Ψ′(zi)⊙ ej ▷ Evaluated DΨ(zi) as in Proposition 2.4.1
16: aj,k ← ⟨W ⋅ ek, vi,j⟩ ▷ Common term in (5.43), (5.44), and (5.45)
17: AWi,j(h)← ∑

nh
k=1 aj,kA

W
i−1,k(h) + vi,j ⋅ h

T
i−1 ▷ (5.43)

18: AUi,j(h)← ∑
nh
k=1 aj,kA

U
i−1,k(h) + vi,j ⋅ x

T
i ▷ (5.44)

19: Abi,j(h)← ∑
nh
k=1 aj,kA

b
i−1,k(h) + vi,j ▷ (5.45)

20: ṽi,j ← ⟨ej, V T ⋅ ei⟩ ▷ Common term in RTRL gradient accumulation
21: ∇WJ ← ∇WJ +∑

nh
j=1 ṽi,jA

W
i,j(h) ▷ RTRL gradient accumulation

22: ∇UJ ← ∇UJ +∑
nh
j=1 ṽi,jA

U
i,j(h)

23: ∇bJ ← ∇bJ +∑
nh
j=1 ṽi,jA

b
i,j(h)

24: ∇cJ ← ∇cJ + ei ▷ These are the same as Algorithm 5.2.1
25: ∇V J ← ∇V J + ei ⋅ hTi
26: θ ← θ − η∇θJ ▷ Parameter update steps for all θ, ζ
27: ζ ← ζ − η∇ζJ

28: return θ, ζ

5.3.1 Gated RNNs

Gated RNNs have demonstrated the ability to learn long-term dependencies within se-
quences by controlling the flow of gradients with a series of gating mechanisms for hidden-
state evolution [12]. The gates introduced result in a more complicated layerwise function,
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but the outcome is worth the complexity: the problem of vanishing and exploding gradi-
ents becomes less apparent. The standard techniques of BPTT and RTRL can be applied
in gated RNNs.

The first widely successful recurrent architecture to employ gating is the LSTM, intro-
duced in [36]. We can understand the success of the LSTM by referring to [25], particularly
section 2, where the transition and prediction equations are defined. We notice that the
cell state at layer t, denoted ct – one of the hidden states in the LSTM – is updated such
that the norm of the Jacobian of the evolution from layer t − 1 is close to 1. This adds
stability to the calculation of gradients, allowing longer-term dependencies to propagate
farther backwards through the network and forgoing the need for truncated BPTT.

We notice from [25] that the update and prediction steps for the LSTM are quite
complicated, requiring 6 equations total. Thus, a simpler gating mechanism requiring
fewer parameters and update equations than the LSTM – now referred to as the Gated
Recurrent Unit (GRU) [12] – was introduced in [11]. The GRU state update still maintains
an additive component, as in the LSTM, but does not explicitly contain a memory state.
Introducing a GRU has been shown to be at least as effective as the LSTM on certain tasks
while converging faster [12]. Another interesting comparison between LSTM and GRU is
given in [40], where the authors demonstrate empirically that the performance between the
two is almost equal.

5.3.2 Bidirectional RNNs

When we work with sequences that are known in their entirety at training time (as opposed
to streams of data that become available as training proceeds), there is nothing prevent-
ing us from analyzing the sequence in any order. The BRNN [69] was developed to take
advantage of this: it is a principled method to parse sequences both forwards and back-
wards. This RNN structure maintains hidden states proceeding both ways throughout the
network, so that every layer in the network has access to every input in the sequence. The
forward and backward hidden states do not interact, although we feed both into the pre-
diction at each layer. BRNNs have shown excellent utility when the entire input sequence
is required for a prediction; their applications are reviewed in [19].

5.3.3 Deep RNNs

In our development of RNNs above – in particular within vanilla RNNs – we had, at
each layer, a single state update equation and a single prediction equation. However, in
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principle, there is nothing preventing us from making either of those a deep neural network.
This is the concept behind DRNNs, in which we parametrize the simple f and g functions
of section 5.1 by DNNs [58]. We can justify the use of DRNNs heuristically: adding
more layers to a standard DNN can exponentially improve their representational power, as
discussed in subsection 1.2.1, so we would expect the same effect in RNNs. Empirically,
this hypothesis has been confirmed, as DRNNs have performed admirably in language
modeling [58], speech recognition [23, 24], and video captioning [76]. We could use our
neural network framework from previous chapters of this thesis to succinctly represent the
DNNs within DRNNs; however, we leave this for future work at this time.

5.4 Conclusion

In this chapter, we have developed a method to represent both a generic and a vanilla RNN
structure based on the vector-valued notation developed in previous chapters. We have
clearly and thoroughly derived the BPTT and RTRL methods for both cases and provided
pseudo-code for their implementation. Also, we have reviewed some modern extensions to
basic RNNs that have demonstrated usefulness in application. By developing the mathe-
matical results in this chapter, we hope to have provided a standard for theoreticians to
work with and understand RNNs and their extensions.
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Chapter 6

Conclusion and Future Work

In this thesis, we began to address the lack of a standard mathematical framework for
representing neural networks. We first developed some useful mathematical notation for
vector-valued maps, and then used this to represent a generic neural network. From this
generic representation, we were able to implement the specific examples of the MLP, CNN,
and DAE. Then, we extended this representation further to encapsulate RNNs. We were
able to, throughout this work, derive gradient descent steps operating directly over the
inner product space in which the network’s parameters reside, allowing us to naturally
represent error backpropagation and loss function derivatives. The framework developed
in this work is generic and flexible enough to cover numerous further extensions to the
basic neural networks that we have not explicitly mentioned.

One important point to note is that this work is of a purely theoretical nature. Most of
the first-order derivatives calculated here for the specific network examples are already im-
plemented in automatic differentiation packages within DNN software, for example. How-
ever, those results are not useful to theoreticians attempting to analyze the behaviour of
neural networks – they are only useful to the practitioners implementing these networks.
We believe that this framework can help influence future developments in applications of
neural networks, but we have not focused on that in this thesis.

We have developed a mathematical framework for neural networks over finite dimen-
sional inner product spaces with deterministic inputs and outputs. Future theoretical
work can modify the assumption of finite dimensionality and work with infinite dimen-
sional function spaces; we anticipate that representing DNNs with infinite dimensional
bases will increase their expressiveness. This extension would not be too difficult to imple-
ment since we have established the generic network framework over any finite dimensional
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inner product space. Another interesting avenue of future research would be moving from
inner product spaces to generic manifold representations of the input and parameters. This
would condense the dimensions that we were working with, allowing for a more efficient
description of our data and parameters. Finally, we could also add uncertainty and stochas-
ticity into the framework that we have created here, which would perhaps make inference
in neural networks more tractable. These suggestions are quite involved, but could be very
useful for theoretical, and later on application-based, research into neural networks.

There are also some more immediate directions for future work. One would be to repre-
sent the RNN using the higher-order loss function from chapter 3, as we did for the MLP,
CNN, and DAE in earlier works [9, 10]. We could also generate explicit representations for
the RNN variants that we mentioned in chapter 5. On the applications side, it could be
useful to implement a neural network that had first undergone dimensionality reduction in
our generic framework. In dimensionality reduction methods, we often project the input
down to a subspace of lower dimension than the original input, and our framework could
efficiently operate over this subspace instead of the full input space.

In conclusion, we have created a generic and flexible mathematical framework to repre-
sent layered neural networks. We believe that this framework can be useful to theoreticians
to build a deeper understanding of neural networks, which would catalyze further develop-
ments on the applications side. We must improve our understanding of how DNNs work,
and this thesis is one attempt at expanding this knowledge base.
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Glossary

activation function A nonlinear function applied to a neuron, or a vector component

adjoint The adjoint of a linear map L ∈ L(E1;E2), denoted L∗, is the linear map satisfying
⟨L∗ ⋅ e2, e1⟩ = ⟨e2, L ⋅ e1⟩, for all e1 ∈ E1, e2 ∈ E2.

backpropagation The process of sending the error vector backward through a neural
network. Refer to Theorem 3.2.5 or Algorithm 3.2.1 for more detail.

bilinear map A function taking in two arguments which is linear in either

direct product The direct product of two spaces E1 and E2 is the space E1 × E2, with
elements (e1, e2) for all e1 ∈ E1 and e2 ∈ E2.

elementwise first derivative The function obtained by replacing the elementwise oper-
ation of an elementwise function with its first derivative

elementwise function A function which applies a scalar function to each of its inputs
individually

elementwise nonlinearity An elementwise function with a nonlinear elementwise oper-
ation

elementwise operation The scalar function associated with an elementwise function

elementwise second derivative The function obtained by replacing the elementwise op-
eration of an elementwise function with its second derivative

feature map One of the matrices comprising the input to a generic layer of a convolutional
neural network
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filter A matrix that is convolved with grid-based data to produce a new grid

forward propagation The process of sending the neural network input through the layers
of function compositions

hyperparameter A fixed parameter in a neural network

inner product space A vector space endowed with an inner product

layerwise function The actions of one layer of a neural network, often represented as f
or fi

linear functional A linear map from some vector space to the real numbers R

one-hot encoding A vector with one component set to 1 and the remaining components
set to zero

parameter-dependent map A map f with a clear distinction between its state variable
and parameter

self-adjoint A linear map L satisfying L∗ = L is self-adjoint

softmax The function which returns an exponentially scaled version of its input

stride The number of steps to take when performing a convolution

tensor product The tensor product of two spaces E and E, with bases {ej}nj=1 and {ek}nk=1

respectively, is the space E ⊗E, with a basis consisting of all pairs (ej, ek) denoted
ej ⊗ ek for all j ∈ [n] and k ∈ [n]. Refer to [26] for more on the tensor product.

vanishing and exploding gradient A problem in deep neural networks characterized
by gradients approaching either zero or infinity
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