A Novel Mathematical Framework for the Analysis of Neural Networks

by

Anthony L. Caterini

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Applied Mathematics

Waterloo, Ontario, Canada, 2017
(C) Anthony L. Caterini 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

Over the past decade, Deep Neural Networks (DNNs) have become very popular models for processing large amounts of data because of their successful application in a wide variety of fields. These models are layered, often containing parametrized linear and non-linear transformations at each layer in the network. At this point, however, we do not rigorously understand why DNNs are so effective. In this thesis, we explore one way to approach this problem: we develop a generic mathematical framework for representing neural networks, and demonstrate how this framework can be used to represent specific neural network architectures.

In chapter 1, we start by exploring mathematical contributions to neural networks. We can rigorously explain some properties of DNNs, but these results fail to fully describe the mechanics of a generic neural network. We also note that most approaches to describing neural networks rely upon breaking down the parameters and inputs into scalars, as opposed to referencing their underlying vector spaces, which adds some awkwardness into their analysis. Our framework strictly operates over these spaces, affording a more natural description of DNNs once the mathematical objects that we use are well-defined and understood.

We then develop the generic framework in chapter 3. We are able to describe an algorithm for calculating one step of gradient descent directly over the inner product space in which the parameters are defined. Also, we can represent the error backpropagation step in a concise and compact form. Besides a standard squared loss or cross-entropy loss, we also demonstrate that our framework, including gradient calculation, extends to a more complex loss function involving the first derivative of the network.

After developing the generic framework, we apply it to three specific network examples in chapter 4. We start with the Multilayer Perceptron (MLP), the simplest type of DNN, and show how to generate a gradient descent step for it. We then represent the Convolutional Neural Network (CNN), which contains more complicated input spaces, parameter spaces, and transformations at each layer. The CNN, however, still fits into the generic framework. The last structure that we consider is the Deep Auto-Encoder (DAE), which has parameters that are not completely independent at each layer. We are able to extend the generic framework to handle this case as well.

In chapter 5, we use some of the results from the previous chapters to develop a framework for Recurrent Neural Networks (RNNs), the sequence-parsing DNN architecture. The parameters are shared across all layers of the network, and thus we require some additional machinery to describe RNNs. We describe a generic RNN first, and then the specific case of the vanilla RNN. We again compute gradients directly over inner product spaces.

Acknowledgements

First of all, I would like to thank my supervisor, Dong Eui Chang, for all of your helpful comments, edits, discussion, and otherwise. I have learned so much from our work together and appreciate that you took me on as your student. You were never afraid to challenge the status quo in a given field of research, and this trait helped to shape my thesis.

I would also like to thank my immediate family. To my parents, Michael and Judy Caterini, you both fostered an academic interest in me and provided me with everything I needed to succeed in life. To my dad, I also thank you for reading, understanding, and contributing helpful edits to this work. To my sister, Jessica, I thank you for helping me deal with the rigours of university life and being there when I needed it most.

Additionally, I am grateful to my classmates Matthew Ambacher, Shawn Corvec, Jonathan Drake, Tony Pierre Kim, and Paul Tiede. Thank you all for the great discussions and friendship. You have made the last two years more than just a learning experience, but also a lot of fun.

To my committee members Soo Jeon and Jeff Orchard, thank you for agreeing to read my thesis and taking part in this process.

I would also like to thank the Canadian Government for the Natural Sciences and Engineering Research Council (NSERC) award for Master's studies, and the Ontario Government for the Ontario Graduate Scholarship (OGS), for supporting my academic endeavours financially.

To the following people, thanks for your support: Mary Caterini, Wilma Luoma, Bill Denman, Bryan Yates, Hans De Sterck, Ali Ghodsi, Shari Bond, Ian Shewan, Natalie Shewan, and Jack Shewan.

Finally, to my wonderful fiancée Alexandra Shewan. Thank you for always motivating and believing in me. I am excited for the next chapter of our life together.

Dedication

To Alexandra, my fiancée. Without your support, this would not have been possible.

Table of Contents

List of Tables x
List of Abbreviations xi
List of Symbols xii
1 Introduction and Motivation 1
1.1 Introduction to Neural Networks 2
1.1.1 Brief History 2
1.1.2 Tasks Where Neural Networks Succeed 4
1.2 Theoretical Contributions to Neural Networks 4
1.2.1 Universal Approximation Properties 5
1.2.2 Vanishing and Exploding Gradients 6
1.2.3 Wasserstein GAN 7
1.3 Mathematical Representations 7
1.4 Thesis Layout 8
2 Mathematical Preliminaries 9
2.1 Linear Maps, Bilinear Maps, and Adjoints 10
2.2 Derivatives 11
2.2.1 First Derivatives 11
2.2.2 Second Derivatives 12
2.3 Parameter-Dependent Maps 13
2.3.1 First Derivatives 13
2.3.2 Higher-Order Derivatives 14
2.4 Elementwise Functions 15
2.4.1 Hadamard Product 16
2.4.2 Derivatives of Elementwise Functions 16
2.4.3 The Softmax and Elementwise Log Functions 18
2.5 Conclusion 20
3 Generic Representation of Neural Networks 21
3.1 Neural Network Formulation 22
3.2 Loss Functions and Gradient Descent 23
3.2.1 Regression 24
3.2.2 Classification 24
3.2.3 Backpropagation 25
3.2.4 Gradient Descent Step Algorithm 26
3.3 Higher-Order Loss Function 27
3.3.1 Gradient Descent Step Algorithm 31
3.4 Conclusion 31
4 Specific Network Descriptions 33
4.1 Multilayer Perceptron 34
4.1.1 Formulation 34
4.1.2 Single-Layer Derivatives 35
4.1.3 Loss Functions and Gradient Descent 36
4.2 Convolutional Neural Networks 38
4.2.1 Single Layer Formulation 39
4.2.2 Multiple Layers 48
4.2.3 Single-Layer Derivatives 48
4.2.4 Gradient Descent Step Algorithm 49
4.3 Deep Auto-Encoder 49
4.3.1 Weight Sharing 51
4.3.2 Single-Layer Formulation 52
4.3.3 Single-Layer Derivatives 52
4.3.4 Loss Functions and Gradient Descent 54
4.4 Conclusion 56
5 Recurrent Neural Networks 58
5.1 Generic RNN Formulation 58
5.1.1 Sequence Data 59
5.1.2 Hidden States, Parameters, and Forward Propagation 59
5.1.3 Prediction and Loss Functions 61
5.1.4 Loss Function Gradients 61
5.2 Vanilla RNNs 68
5.2.1 Formulation 69
5.2.2 Single-Layer Derivatives 70
5.2.3 Backpropagation Through Time 71
5.2.4 Real-Time Recurrent Learning 72
5.3 RNN Variants 75
5.3.1 Gated RNNs 76
5.3.2 Bidirectional RNNs 77
5.3.3 Deep RNNs 77
5.4 Conclusion 78
6 Conclusion and Future Work 79

References 81

Glossary 88

List of Tables

4.1 Common elementwise nonlinearities, along with their first derivatives 35

List of Abbreviations

BPTT Backpropagation Through Time
BRNN Bidirectional Recurrent Neural Network
CNN Convolutional Neural Network
DAE Deep Auto-Encoder
DBN Deep Belief Network
DNN Deep Neural Network
DRNN Deep Recurrent Neural Network
GAN Generative Adversarial Network
GPU Graphical Processing Unit
GRU Gated Recurrent Unit
LSTM Long Short-Term Memory
MLP Multilayer Perceptron
NN Neural Network
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
RTRL Real-Time Recurrent Learning

List of Symbols

$\mathcal{L}\left(E_{1} ; E_{2}\right)$	The space of linear maps from E_{1} to E_{2}
$\left.\left(e_{1}\right\lrcorner B\right)$	For a bilinear map $\left.B,\left(e_{1}\right\lrcorner B\right) \cdot e_{2}=B\left(e_{1}, e_{2}\right)$
$\left(B\left\llcorner e_{2}\right)\right.$	For a bilinear map $B,\left(B\left\llcorner e_{2}\right) \cdot e_{1}=B\left(e_{1}, e_{2}\right)\right.$
\times	The direct product
\otimes	The tensor product
$[r]$	The set of integers from 1 to r inclusive, i.e. $\{1, \ldots, r\}$
L^{*}	The adjoint of the linear map L
$\mathrm{D} f(x)$	The derivative of a function f with respect to its main variable
$\mathrm{D}^{*} f(x)$	The adjoint of D $f(x)$
$\mathrm{D}^{2} f(x)$	The second derivative of a function f with respect to its main variable
$\nabla f(x ; \theta)$	The derivative of a function f with respect to its parameter
$\nabla^{*} f(x ; \theta)$	The adjoint of $\nabla f(x ; \theta)$
\odot	The Hadamard product
σ	The softmax function
$\mathbf{1}$	For an inner product space with orthonormal basis $\left\{e_{k}\right\}_{k=1}^{n}, \mathbf{1}=\sum_{k=1}^{n} e_{k}$.
F	The output of a neural network
id	The identity map on a particular space, i.e. id $(x)=x$ for all x
α_{i}	$f_{i} \circ \cdots \circ f_{1}$, for $i \in[L]$, and $\alpha_{0}=$ id
ω_{i}	$f_{L} \circ \cdots \circ f_{i}$, for $i \in[L]$, and $\omega_{L+1}=$ id
\mathcal{D}	A set of input and target points
$\mathcal{K}_{k, l}$	The cropping operator at (k, l) acting on tensor product inputs, defined
$\kappa_{k, l}$	in (4.12)
The cropping operator at (k, l) acting on matrix inputs, defined in (4.13)	
Em	The embedding operator at (k, l) defined as in (4.14)
C	The convolution operator defined as in (4.15)
Φ	The pooling operator acting on tensor product inputs, defined in (4.18)
ϕ	The pooling operator acting on matrix inputs, defined in (4.19)

$\xi \quad$ The mapping from a layer i to the layer that shares its weights, defined in (4.34)
$\tau_{i} \quad$ The function governing the weight sharing at layer i
$\mu_{j, i} \quad f_{j} \circ \cdots \circ f_{i+1} \circ f_{i}$ for $j \geq i$, and id otherwise

Chapter 1

Introduction and Motivation

Neural Networks (NNs) - Deep Neural Networks (DNNs) in particular - are a burgeoning area of artificial intelligence research, rife with impressive computational results on a wide variety of tasks. Beginning in 2006, when the term Deep Learning was coined [32], there have been numerous contest-winning neural network architectures developed. That is not to say that layered neural networks are a new concept; it is only with the advent of modern computing power that we ${ }^{1}$ have been able to fully harness the power of these ideas that have existed, in some form, since the 1960s. However, because of the rise in computing power, results in the field of DNNs are almost always of a computational nature, with only a minuscule fraction of works delivering provable, mathematical guarantees on their behaviour. A neural network remains, for the most part, a black box, governed by a similarly mysterious set of hyperparameters specifying the network structure.

Neural networks are known to have non-convex loss function surfaces [16], and often handle very high-dimensional data, which adds to the complexity of their analysis and makes sound theoretical results difficult to achieve. Furthermore, there does not exist a standard and compact algebraic framework for neural network researchers to operate within. This thesis begins to address the latter issue, with the hope that the framework developed here can be used to answer challenging questions about the theoretical details of neural networks. There has been some work done to create a standard notation for neural networks - the formulation in this thesis shares some similarities with [19], for

[^0]example - but we have added clear definitions of all mappings that we use, and also a method for performing gradient descent to learn parameters directly over the inner product spaces in which the parameters are defined. Mathematical analysis is important for neural networks, not only to improve their performance by gaining a deeper understanding of their underlying mechanics, but also to ensure their responsible deployment in applications impacting people's lives. ${ }^{2}$

1.1 Introduction to Neural Networks

This section will serve as a basic introduction to neural networks, including their history and some applications in which they have achieved state-of-the-art results. Refer to [19, Chapter 1], [43], or [68] for a more in-depth review of the history of neural networks and modern applications.

1.1.1 Brief History

Neural networks were originally conceived as a model that would imitate the function of the human brain - a set of neurons joined together by a set of connections. Neurons, in this context, are a weighted sum of inputs followed by a nonlinear activation function: a nonlinear function applied to a neuron. The McCulloch-Pitts neuron of 1943 [52] was one of the earliest examples of an artifical neuron, being heavily influenced by the supposed firing patterns of neurons in the brain. The perceptron of 1958 [62] built upon that work by learning the weights of the sum comprising the neuron according to a gradient descent learning rule, ${ }^{3}$ and other single-layer networks followed a similar idea soon after (e.g. [79]). Researchers then began stacking these networks into hierarchical predictive models as early as in 1966, when [38] introduced the so-called Group Method of Data Handling to learn multi-layered networks, similar to present-day Multilayer Perceptrons (MLPs) but with generic polynomial activation functions [68]. However, the models were perhaps too ambitious for the computing power of the time, and neural-style networks began to fade into obscurity until around 1980.

In the early 1980s, neural networks were revived by a few important results. Firstly, the Neocognitron [18], the predecessor to modern Convolutional Neural Networks (CNNs), was

[^1]developed and demonstrated strong results on image processing tasks. Secondly, the chain rule and error backpropagation were applied to an MLP-style neural network [78], setting the stage for future developments in learning algorithms for neural networks. Eventually, these two results were combined to great effect - backpropagation with CNNs - resulting in the successful classification of handwritten digits [44]. Along the way, backpropagation was developed further [47,64] and applied to other styles of networks, including the autoencoder [5] and Recurrent Neural Networks (RNNs) [80].

The developments of the 1980s laid the foundation for extensions of RNNs and CNNs throughout the 1990s into the early 2000s. The Long Short-Term Memory (LSTM) [36] was one of the most important networks designed in this time, as it was the first recurrent network architecture to overcome the vanishing and exploding gradient problem, described further in subsection 1.2.2, while still demonstrating the ability to learn long-term dependencies in sequences. Around the same time, a deep CNN for image processing was presented in [45]; financial institutions soon after employed this network to read handwritten digits from cheques. Both the LSTM and CNN remain in the forefront of neural network research, as they continue to produce outstanding results either on their own or in tandem [30].

Finally, in 2006, deep learning exploded beyond just RNNs and CNNs with the discovery of the Deep Belief Network (DBN) [32], and the increased viability of Graphical Processing Units (GPUs) in research. DBNs are deep and unsupervised ${ }^{4}$ networks where each layer is a Restricted Boltzmann Machine [2], and the layers are trained individually in a greedy fashion. Greedy layer-by-layer training of unsupervised deep networks continued with Deep Auto-Encoders (DAEs) [7] - stacks of single-layer auto-encoders. Gradually, DNNs moved away from unsupervised learning to purely supervised learning [68], e.g. classification or regression, with one of the forerunners of this trend being a standard deep MLP trained with GPUs that achieved unprecented results on the MNIST [46] dataset [13]. This trend has continued today, as most DNN research is of the supervised or semi-supervised variety, save for one important exception: research into Generative Adversarial Networks (GANs) [20], which we will discuss further in the subsection 1.2.3.

[^2]
1.1.2 Tasks Where Neural Networks Succeed

DNNs have demonstrated the ability to perform well on supervised learning tasks, particularly when there is an abundance of training data. The CNN has revolutionized the field of computer vision, achieving state-of-the-art results in the area of image recognition [14, 21] and segmentation [28]. CNNs have also been used within autonomous agents tasked with understanding grid-based data to great effect: a computer recently achieved super-human performance in playing the extremely complicated game of Go [71], and in playing Atari 2600 games with minimal prior knowledge [54]. RNNs and very deep CNNs have also outperformed all other methods in speech recognition [66]. The usefulness of RNNs (including LSTM) in generic sequence processing is also apparernt, with state-of-the-art results in machine translation [81], generation of marked-down text ${ }^{5}$ and handwriting in a particular style [22], and image captioning [77], to name a few. Besides old methods that have recently become powerful with increased computing power, the exciting and new GAN paradigm [20] is quickly becoming the most popular generative model of data, having the ability to generate artificial, but authentic-looking, images [65]. This is only a short discussion on the successes of deep learning; refer to [19] for a more in-depth review of the applications.

1.2 Theoretical Contributions to Neural Networks

Although neural networks have shown the ability to perform well in a variety of tasks, it is still currently unknown why they perform so well from a rigorous mathematical perspective [48]. The results listed above are generally conceived heuristically, and often the reason for doing something is because it worked well. In some ways, this is advantageous: rather than being bogged down by the theory, which can become unwieldy from the complexity of the models being analyzed, we can just focus on using the computing power at our disposal to improve the performance in some domain. However, when businesses begin using neural networks more for making important financial decisions, or autonomous vehicles employ CNNs to interpret their surroundings, it is of paramount importance to understand the underlying mechanics of the networks in play. A deeper mathematical understanding of neural networks will also improve their empirical performance, as we will be able to interpret their failures more clearly. With that said, we will review some useful theoretical contributions to the field of deep learning in this section, and also consider their impact within applications.

[^3]
1.2.1 Universal Approximation Properties

As mentioned in subsection 1.1.1, confidence in neural networks waned heavily about ten years after Rosenblatt's perceptron of 1958 [62]. One of the contributors to this was Minksy and Papert's book, Perceptrons [53], which mathematically proved some previously unknown limitations of single-layer perceptrons - in particular, their inability to accurately classify the XOR predicate. ${ }^{6}$ However, this result does not apply to modern neural networks with even a single hidden layer. ${ }^{7}$ It is actually quite the opposite: it was discovered in 1989 that, under certain regularity conditions, a neural network with a single hidden layer and a sigmoidal activation function could approximate any continuous function [15]. Soon after, [37] extended this result to a generic activation function. Researchers again became optimistic about the capabilities of neural networks and were beginning to understand their efficacy better.

Unfortunately, the approximation theorems only hold when we allow the hidden layer of the neural network to grow arbitrarily large - perhaps even exponentially with the number of inputs [70] - which severely reduces their applicability. Additionally, the focus on single-hidden-layer networks at the time detracted from research on deeper networks, which are empirically more powerful and provably more effective. Modern approximation theory in NNs tends to focus on the functional properties of deep networks, with [17] constructing a network with two hidden layers to efficiently approximate a function which could not be estimated by a single-hidden-layer network containing a number of units that was polynomial in the number of inputs. Moreover, in [70], the authors construct a sparsely-connected network with three hidden layers that has provably tight bounds on its ability to approximate a generic function. These results, however, do not aim to analyze a particular network structure that has been adopted by the deep learning community; they can only infer the qualities of the networks that they have constructed, while also providing a general sense of what might be a reasonable bound on the error of a neural network. There exist other results of the same flavour, with some papers studying the number of distinct regions carved out by the common Rectified Linear Unit (ReLU) network [55, 59], described further in subsection 1.2.2, but do not provide bounds on the error. Today's research into the approximation properties of neural networks has led us to adopt the notion that the depth of a neural network is more important than its width, with empirical results confirming this [30, 73], but we have not yet developed bounds on the ability of a generic neural network to estimate a given function in terms of both the network structure

[^4]and number of training points.

1.2.2 Vanishing and Exploding Gradients

One of the earliest roadblocks to successfully training a neural network was the problem of vanishing and exploding gradients, first extensively documented in [34] (and reviewed in English in [35]). This problem was of utmost importance to solve, even being referred to as the Fundamental Problem of Deep Learning [68]. Essentially, for an RNN, the repeated application of the chain rule required in derivative calculation for an L-layered network will generate terms of the form λ^{L}, where $\lambda \in \mathbb{R}$ and $L \in \mathbb{Z}_{>0}$. As L grows larger, these terms quickly go to 0 if $|\lambda|<1$, towards ∞ if $|\lambda|>1$, or retain absolute value 1 if $|\lambda|=1$. Thus, unless $|\lambda|=1$, it becomes difficult to train deep neural networks because gradients will either vanish or unstably diverge.

This observation inspired the creation of the highly-successful LSTM network, a popular modern RNN variant [36]. This network contains a number of gates interacting together, with the main advancement being the memory cell that remains largely unchanged as we pass through layers of the network. The Jacobian of the operations of a single layer on the memory cell has norm very close (or equal, depending on the variant) to 1 [36], which skirts the problem of vanishing or exploding gradients and allows longer-term information to flow through the network.

Another important feature of a neural network inspired by the problem of vanishing and exploding gradients ${ }^{8}$ is the introduction of the ReLU activation function $f(x)=\max (0, x)$ [56]. In the linear region of this activation, i.e. where $x>0$, the derivative is exactly 1 . Thus, this activation function has become far more popular than the logistic sigmoid the original darling of neural network researchers - since the sigmoid suffers badly from vanishing gradients as the number of layers increases. Most applications today involve a large number layers to efficiently approximate a richer class of functions, as we discussed in subsection 1.2.1, which has helped catapult the ReLU to the forefront of research. The ReLU is not perfect, as in the region where $x<0$, we have $f^{\prime}(x)=0$, meaning that some network components can die: they may be unable to exit the $x<0$ regime. If too many die, learning will be harshly impacted; thus, variants of the ReLU have emerged which allow some nonzero gradient to flow when $x<0[29,50]$.

[^5]
1.2.3 Wasserstein GAN

One of the most recent major developments in NN research is creation of the GAN, a particular paradigm for training an unsupervised generative model in which the goal is to produce artificial, but realistic, samples from some training data set [20]. In this framework, there are two networks which are pitted against each other: a generator that attempts to generate realistic samples, and a discriminator that attempts to distinguish between real and generated samples. Practitioners began to notice that training GANs was unstable in its original form [60], and suggested some heuristics to improve stability [65]. However, the problem of instability was not fully understood until [3] analyzed the GAN through the lens of rigorous differential geometry; they proved that the GAN objective function to be minimized was (almost certainly) always at its maximum value under some weak assumptions about the data, which implied vanishing gradients in most regions of the generator distribution. This insight led to the creation of the Wasserstein GAN, which proposed to optimize the Wasserstein, or earth-mover, distance [75] between the data distribution and the generator distribution [4]. The result is a more reliable training procedure requiring fewer parameters but still producing high-quality images, and we expect this new theoretical development to further improve the impressive results produced by GANs.

1.3 Mathematical Representations

Although there has been some work done towards developing a theoretical understanding of neural networks, we still have a long way to go until the theory can reliably improve the results of generic neural networks in application. We conjecture that one of the reasons for this is the lack of a standard framework to analyze neural networks from an algebraic perspective. The current approach of describing NNs as a computational graph and working over individual components [19] or using automatic differentiation (reviewed in [6]) to calculate derivatives is excellent for a majority of applications, as evidenced by the incredible empirical results that deep learning has achieved [43]. However, such an approach does not provide a satisfying theoretical description of the network as a whole, as it does not reference vector spaces defining the network inputs, or the associated parameters, at each layer. In simple networks, like the MLP, this is fine, but when dealing with more complex networks, like the CNN, it can be difficult to determine exactly how all of the components of the network fit together using a graphical approach or when strictly dealing with scalars. Thus, in this thesis, we propose a generic mathematical framework in which we can represent DNNs as vector-valued functions, taking care to define all operations that
we use very clearly. For example, in the view of graphical models, it is quite common to differentiate nodes in the graph - which can be either scalars or vectors - with respect to parameters [19]; in this work, we view derivatives as operators which act on functions to produce new linear operators. Furthermore, the representations and definitions that we use for vector- and matrix-valued derivatives are unambiguous and clearly defined, which is not always the case in NNs. One of the biggest debates regarding matrix derivatives is the numerator vs. denominator layout, described in [49]; our representation skirts this issue entirely by exclusively differentiating functions.

1.4 Thesis Layout

This thesis is a purely theoretical work that aims to develop a mathematical representation of neural networks that is clear, general, and easy to work with. To accomplish this goal, we begin in chapter 2 by defining the notation that we will use throughout the work and review some important preliminary results. Then, in chapter 3, we will describe a generic neural network using this notation. We will also write out a gradient descent algorithm acting directly over the vector space in which the parameters are defined. We apply the generic framework to specific neural network structures in chapter 4, demonstrating its flexibility in describing the MLP, CNN, and DAE, and also detailing how to modify and relax some of the assumptions made. In chapter 5, we further extend the framework to represent RNNs, explicitly writing out two methods for gradient calculation and discussing some extensions. Finally, we review the major contributions of this thesis in chapter 6 and outline some possible directions for future work. A large portion of chapters 2,3 and 4 appeared in our work on CNNs [9] and MLPs and DAEs [10], but we have combined the results from those papers into a single work in this thesis.

Chapter 2

Mathematical Preliminaries

We discussed some of the mathematical theory in neural networks in the previous chapter, and we would like to expand on this theory in this thesis by providing a standard framework in which we can analyze neural networks. Current mathematical descriptions of neural networks are either exclusively based on scalars or with loosely-defined vectorvalued derivatives, which we hope to improve upon. Thus, in this chapter we will begin to build up the framework by introducing prerequisite mathematical concepts and notation for handling generic vector-valued maps. The notation that we will introduce is standard within vector calculus and provides us with a set of tools to establish a generic neural network structure. Even though some of the concepts in this chapter are quite basic, it is necessary to solidify the symbols and language that we will use throughout the thesis to avoid the pitfall of having ambiguous notation.

The first topic that we will examine is notation for linear maps, which are useful not only in the feedforward aspect of a generic network, but also in backpropagation. Then we will define vector-valued derivative maps, which we will require when performing gradient descent steps to optimize the neural network. To represent the dependence of a neural network on its parameters, we will then introduce the notion of parameter-dependent maps, including distinct notation for derivatives with respect to parameters as opposed to main variables. Finally, we will define elementwise functions, which are used in neural networks as nonlinear activation functions, i.e. to apply a nonlinear function to individual components of a vector. A large portion of this chapter appeared in some form in [10, Section 2], but we have added more detail to favour clarity over brevity.

2.1 Linear Maps, Bilinear Maps, and Adjoints

Let us start by considering three finite-dimensional and real inner product spaces E_{1}, E_{2}, and E_{3}, with the inner product denoted \langle,$\rangle on each space. We will denote the space of$ linear maps from E_{1} to E_{2} by $\mathcal{L}\left(E_{1} ; E_{2}\right)$, and the space of bilinear maps from $E_{1} \times E_{2}$ to E_{3} by $\mathcal{L}\left(E_{1}, E_{2} ; E_{3}\right)$. For any bilinear map $B \in \mathcal{L}\left(E_{1}, E_{2} ; E_{3}\right)$ and $e_{1} \in E_{1}$, we can define a linear map $\left.\left(e_{1}\right\lrcorner B\right) \in \mathcal{L}\left(E_{2} ; E_{3}\right)$ as

$$
\left.\left(e_{1}\right\lrcorner B\right) \cdot e_{2}=B\left(e_{1}, e_{2}\right)
$$

for all $e_{2} \in E_{2}$. Similarly, for any $e_{2} \in E_{2}$, we can define a linear map $\left(B\left\llcorner e_{2}\right) \in \mathcal{L}\left(E_{1} ; E_{3}\right)\right.$ as

$$
\left(B\left\llcorner e_{2}\right) \cdot e_{1}=B\left(e_{1}, e_{2}\right) .\right.
$$

for all $e_{1} \in E_{1}$. We will refer to the symbols \lrcorner and \llcorner as the left-hook and right-hook, respectively.

In this work we will also often encounter the direct product and tensor product spaces, and we will see how the inner product extends to these. Suppose we now have r inner product spaces, $\left\{E_{i}\right\}_{i \in[r]}$, where $r \in \mathbb{Z}_{>0}$ and $[r] \equiv\{1, \ldots, r\}$ denotes the set of natural numbers from 1 to r, inclusive. We can naturally extend the inner product to both the direct product of r inner product spaces, $E_{1} \times \cdots \times E_{r}$, and the tensor product, $E_{1} \otimes \cdots \otimes$ E_{r}, as follows [26]:

$$
\begin{aligned}
\left\langle\left(e_{1}, \cdots, e_{r}\right),\left(\bar{e}_{1}, \cdots, \bar{e}_{r}\right)\right\rangle & =\sum_{i=1}^{r}\left\langle e_{i}, \bar{e}_{i}\right\rangle, \\
\left\langle e_{1} \otimes \cdots \otimes e_{r}, \bar{e}_{1} \otimes \cdots \otimes \bar{e}_{r}\right\rangle & =\prod_{i=1}^{r}\left\langle e_{i}, \bar{e}_{i}\right\rangle,
\end{aligned}
$$

where $e_{i}, \bar{e}_{i} \in E_{i}$ for all $i \in[r]$. In particular, for some collection $\left\{U_{i}, \bar{U}_{i}\right\}_{i \in[r]}$, where U_{i} and \bar{U}_{i} are both vectors in some inner product space H for all $i \in[r]$, then we can show that the following holds when $\left\{e_{i}\right\}_{i \in[r]}$ is an orthonormal set:

$$
\begin{equation*}
\sum_{i=1}^{r}\left\langle U_{i}, \bar{U}_{i}\right\rangle=\left\langle\sum_{i=1}^{r} U_{i} \otimes e_{i}, \sum_{i=1}^{r} \bar{U}_{i} \otimes e_{i}\right\rangle \tag{2.1}
\end{equation*}
$$

We will use the standard definition of the adjoint L^{*} of a linear map $L \in \mathcal{L}\left(E_{1} ; E_{2}\right)$: L^{*} is defined as the linear map satisfying

$$
\left\langle L^{*} \cdot e_{2}, e_{1}\right\rangle=\left\langle e_{2}, L \cdot e_{1}\right\rangle
$$

for all $e_{1} \in E_{1}$ and $e_{2} \in E_{2}$. Notice that $L^{*} \in \mathcal{L}\left(E_{2} ; E_{1}\right)$ - it is a linear map exchanging the domain and codomain of L. The adjoint operator satisfies the direction reversing property:

$$
\left(L_{2} \cdot L_{1}\right)^{*}=L_{1}^{*} \cdot L_{2}^{*}
$$

for all $L_{1} \in \mathcal{L}\left(E_{1} ; E_{2}\right)$ and $L_{2} \in \mathcal{L}\left(E_{2} ; E_{3}\right)$. A map $L \in \mathcal{L}\left(E_{1} ; E_{1}\right)$ is self-adjoint if $L^{*}=L$.
Note that we have been using the • notation to indicate the operation of a linear map on a vector and the composition of two linear maps, i.e.

$$
L \cdot e_{1} \equiv L\left(e_{1}\right) \quad \text { and } \quad L_{2} \cdot L_{1} \equiv L_{2} \circ L_{1} .
$$

We will continue to use this notation throughout the text as it is standard and simple.

2.2 Derivatives

In this section, we will present notation for derivatives in accordance with [1, Chapter 2, Section 3] and [51, Chapter 6, Section 4]. Since derivative maps are linear, this section relies on the notation developed in the previous section. The results in this section lay the framework for taking the derivatives of a neural network with respect to its parameters, and eventually elucidate a compact form for the backpropagation algorithm.

2.2.1 First Derivatives

First, we consider a function $f: E_{1} \rightarrow E_{2}$, where E_{1} and E_{2} are inner product spaces. The first derivative map of f, denoted $\mathrm{D} f$, is a map from E_{1} to $\mathcal{L}\left(E_{1} ; E_{2}\right)$, operating as $x \mapsto$ $\mathrm{D} f(x)$ for any $x \in E_{1}$. The map $\mathrm{D} f(x) \in \mathcal{L}\left(E_{1} ; E_{2}\right)$ operates in the following manner for any $v \in E_{1}$:

$$
\begin{equation*}
\mathrm{D} f(x) \cdot v=\left.\frac{\mathrm{d}}{\mathrm{~d} t} f(x+t v)\right|_{t=0} \tag{2.2}
\end{equation*}
$$

For each $x \in E_{1}$, the adjoint of the derivative $\mathrm{D} f(x) \in \mathcal{L}\left(E_{1} ; E_{2}\right)$ is well-defined, and we will denote it $\mathrm{D}^{*} f(x)$ instead of $\mathrm{D} f(x)^{*}$ for the sake of convenience. Then, $\mathrm{D}^{*} f: E_{1} \rightarrow$ $\mathcal{L}\left(E_{2} ; E_{1}\right)$ denotes the map that takes each point $x \in E_{1}$ to $\mathrm{D}^{*} f(x) \in \mathcal{L}\left(E_{2} ; E_{1}\right)$.

Now, let us consider two piecewise C^{1} maps $f_{1}: E_{1} \rightarrow E_{2}$ and $f_{2}: E_{2} \rightarrow E_{3}$, where E_{3} is another inner product space. The derivative of their composition, $\mathrm{D}\left(f_{2} \circ f_{1}\right)(x)$, is a linear map from E_{1} to E_{3} for any $x \in E_{1}$, and is calculated using the well-known chain rule, i.e.

$$
\begin{equation*}
\mathrm{D}\left(f_{2} \circ f_{1}\right)(x)=\mathrm{D} f_{2}\left(f_{1}(x)\right) \cdot \mathrm{D} f_{1}(x) \tag{2.3}
\end{equation*}
$$

2.2.2 Second Derivatives

We can safely assume that every map here is (piecewise) C^{2}. The second derivative map of f, denoted $\mathrm{D}^{2} f$, is a map from E_{1} to $\mathcal{L}\left(E_{1}, E_{1} ; E_{2}\right)$, which operates as $x \mapsto \mathrm{D}^{2} f(x)$ for any $x \in E_{1}$. The bilinear map $\mathrm{D}^{2} f(x) \in \mathcal{L}\left(E_{1}, E_{1} ; E_{2}\right)$ operates as

$$
\begin{equation*}
\mathrm{D}^{2} f(x) \cdot\left(v_{1}, v_{2}\right)=\mathrm{D}\left(\mathrm{D} f(x) \cdot v_{2}\right) \cdot v_{1}=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{D} f\left(x+t v_{1}\right) \cdot v_{2}\right)\right|_{t=0} \tag{2.4}
\end{equation*}
$$

for any $v_{1}, v_{2} \in E_{1}$. The map $\mathrm{D}^{2} f(x)$ is symmetric, i.e. $\mathrm{D}^{2} f(x) \cdot\left(v_{1}, v_{2}\right)=\mathrm{D}^{2} f(x) \cdot\left(v_{2}, v_{1}\right)$ for all $v_{1}, v_{2} \in E_{1}$. We can also use the left- and right-hook notation to turn the second derivative into a linear map. In particular, $\left.(v\lrcorner \mathrm{D}^{2} f(x)\right)$ and $\left(\mathrm{D}^{2} f(x)\llcorner v) \in \mathcal{L}\left(E_{1} ; E_{2}\right)\right.$ for any $x, v \in E_{1}$.

Two useful identities exist for vector-valued second derivatives - the higher-order chain rule and the result of mixing D with D^{*} - which we will describe in the next two lemmas.

Lemma 2.2.1. For any $x, v_{1}, v_{2} \in E_{1}$,

$$
\begin{aligned}
\mathrm{D}^{2}\left(f_{2} \circ f_{1}\right)(x) \cdot\left(v_{1}, v_{2}\right)=\mathrm{D}^{2} & f_{2}\left(f_{1}(x)\right) \cdot\left(\mathrm{D} f_{1}(x) \cdot v_{1}, \mathrm{D} f_{1}(x) \cdot v_{2}\right) \\
& +\mathrm{D} f_{2}\left(f_{1}(x)\right) \cdot \mathrm{D}^{2} f_{1}(x) \cdot\left(v_{1}, v_{2}\right)
\end{aligned}
$$

where $f_{1}: E_{1} \rightarrow E_{2}$ is C^{1} at x and $f_{2}: E_{2} \rightarrow E_{3}$ is C^{2} at $f_{1}(x)$ for vector spaces E_{1}, E_{2}, and E_{3}.

Proof. We can prove this directly from the definition of the derivative.

$$
\begin{align*}
\mathrm{D}^{2}\left(f_{2} \circ f_{1}\right)(x) \cdot\left(v_{1}, v_{2}\right)= & \mathrm{D}\left(\mathrm{D}\left(f_{2} \circ f_{1}\right)(x) \cdot v_{2}\right) \cdot v_{1} \\
= & \mathrm{D}\left(\mathrm{D} f_{2}\left(f_{1}(x)\right) \cdot \mathrm{D} f_{1}(x) \cdot v_{2}\right) \cdot v_{1} \tag{2.5}\\
= & \left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{D} f_{2}\left(f_{1}\left(x+t v_{1}\right)\right) \cdot \mathrm{D} f_{1}\left(x+t v_{1}\right) \cdot v_{2}\right)\right|_{t=0} \\
= & \left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{D} f_{2}\left(f_{1}\left(x+t v_{1}\right)\right) \cdot \mathrm{D} f_{1}(x) \cdot v_{2}\right)\right|_{t=0} \tag{2.6}\\
& +\left.\mathrm{D} f_{2}\left(f_{1}(x)\right) \cdot \frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{D} f_{1}\left(x+t v_{1}\right) \cdot v_{2}\right)\right|_{t=0} \\
= & \mathrm{D}^{2} f_{2}\left(f_{1}(x)\right) \cdot\left(\left.\frac{\mathrm{d}}{\mathrm{~d} t} f_{1}\left(x+t v_{1}\right)\right|_{t=0}, \mathrm{D} f_{1}(x) \cdot v_{2}\right) \tag{2.7}\\
& +\mathrm{D} f_{2}\left(f_{1}(x)\right) \cdot \mathrm{D}^{2} f_{1}(x) \cdot\left(v_{1}, v_{2}\right) \\
= & \mathrm{D}^{2} f_{2}\left(f_{1}(x)\right) \cdot\left(\mathrm{D} f_{1}(x) \cdot v_{1}, \mathrm{D} f_{1}(x) \cdot v_{2}\right) \\
& +\mathrm{D} f_{2}\left(f_{1}(x)\right) \cdot \mathrm{D}^{2} f_{1}(x) \cdot\left(v_{1}, v_{2}\right),
\end{align*}
$$

where (2.5) is from (2.3), (2.6) is from the standard product rule, and (2.7) is from the standard chain rule along with the definition of the second derivative.

Lemma 2.2.2. Consider three inner product spaces E_{1}, E_{2}, and E_{3}, and two functions $f: E_{1} \rightarrow E_{2}$ and $g: E_{2} \rightarrow E_{3}$. Then, for any $x, v \in E_{1}$ and $w \in E_{3}$,

$$
\left.\mathrm{D}\left(\mathrm{D}^{*} g(f(x)) \cdot w\right) \cdot v=((\mathrm{D} f(x) \cdot v)\lrcorner \mathrm{D}^{2} g(f(x))\right)^{*} \cdot w
$$

Proof. Pair the derivative of the map $\mathrm{D}^{*} g(f(x)) \cdot w$ with any $y \in E_{2}$ in the inner product:

$$
\begin{aligned}
\left\langle y, \mathrm{D}\left(\mathrm{D}^{*} g(f(x)) \cdot w\right) \cdot v\right\rangle & =\mathrm{D}\left(\left\langle y, \mathrm{D}^{*} g(f(x)) \cdot w\right\rangle\right) \cdot v \\
& =\mathrm{D}(\langle\mathrm{D} g(f(x)) \cdot y, w\rangle) \cdot v \\
& =\left\langle\mathrm{D}^{2} g(f(x)) \cdot(\mathrm{D} f(x) \cdot v, y), w\right\rangle \\
& \left.=\left\langle((\mathrm{D} f(x) \cdot v)\lrcorner \mathrm{D}^{2} g(f(x))\right) \cdot y, w\right\rangle \\
& \left.=\left\langle y,((\mathrm{D} f(x) \cdot v)\lrcorner \mathrm{D}^{2} g(f(x))\right)^{*} \cdot w\right\rangle .
\end{aligned}
$$

Since this holds for any $y \in E_{2}$, the proof is complete.

2.3 Parameter-Dependent Maps

We will now extend the derivative notation developed in the previous section to parameterdependent maps: maps containing both a state variable and a parameter. We will heavily rely on parameter-dependent maps because we can regard the input of each layer of a feed-forward neural network as the current state of the network, which will be evolved according to the parameters at the current layer. To formalize this notion, suppose f is a parameter-dependent map from $E_{1} \times H_{1}$ to E_{2}, i.e. $f(x ; \theta) \in E_{2}$ for any $x \in E_{1}$ and $\theta \in H_{1}$, where H_{1} is also an inner product space. In this context, we will refer to $x \in E_{1}$ as the state for f, whereas $\theta \in H_{1}$ is the parameter.

2.3.1 First Derivatives

We will use the notation presented in (2.2) to denote the derivative of f with respect to the state variable: for all $v \in E_{1}$,

$$
\mathrm{D} f(x ; \theta) \cdot v=\left.\frac{\mathrm{d}}{\mathrm{~d} t} f(x+t v ; \theta)\right|_{t=0}
$$

Also, $\mathrm{D}^{2} f(x ; \theta) \cdot\left(v_{1}, v_{2}\right)=\mathrm{D}\left(\mathrm{D} f(x ; \theta) \cdot v_{2}\right) \cdot v_{1}$ as before. However, we will introduce new notation to denote the derivative of f with respect to the parameters as follows:

$$
\nabla f(x ; \theta) \cdot u=\left.\frac{\mathrm{d}}{\mathrm{~d} t} f(x ; \theta+t u)\right|_{t=0}
$$

for any $u \in H_{1}$. Note that $\nabla f(x ; \theta) \in \mathcal{L}\left(H_{1} ; E_{2}\right)$. When f depends on two parameters as $f\left(x ; \theta_{1}, \theta_{2}\right)$, we will use the notation $\nabla_{\theta_{1}} f\left(x ; \theta_{1}, \theta_{2}\right)$ to explicitly denote differentiation with respect to the parameter θ_{1} when the distinction is necessary. We will also retain the adjoint notation such that $\nabla^{*} f(x ; \theta) \in \mathcal{L}\left(E_{2} ; H_{1}\right)$. We will also require a chain rule for the composition of functions involving parameter-dependent maps, especially when not all of the functions in the composition depend on the parameter, and this appears in Lemma 2.3.1.

Lemma 2.3.1. Suppose that E_{1}, E_{2}, E_{3}, and H_{1} are inner product spaces, and $g: E_{2} \rightarrow E_{3}$ and $f: E_{1} \times H_{1} \rightarrow E_{2}$ are both C^{1} functions. Then, the derivative of their composition with respect to the second argument of f, i.e. $\nabla(g \circ f)(x ; \theta) \in \mathcal{L}\left(H_{1} ; E_{3}\right)$, is given by

$$
\begin{equation*}
\nabla(g \circ f)(x ; \theta)=\mathrm{D} g(f(x ; \theta)) \cdot \nabla f(x ; \theta) \tag{2.8}
\end{equation*}
$$

for any $x \in E_{1}$ and $\theta \in H_{1}$.
Proof. This is just an extension of (2.3), where we have used $\mathrm{D} g$ instead of ∇g in (2.8) because g has no explicit dependence on θ.

2.3.2 Higher-Order Derivatives

We define the mixed partial derivative maps, $\nabla \mathrm{D} f(x ; \theta) \in \mathcal{L}\left(H_{1}, E_{1} ; E_{2}\right)$ and $\mathrm{D} \nabla f(x ; \theta) \in$ $\mathcal{L}\left(E_{1}, H_{1} ; E_{2}\right)$, as

$$
\begin{aligned}
& \nabla \mathrm{D} f(x ; \theta) \cdot(u, e)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}(\mathrm{D} f(x ; \theta+t u) \cdot e)\right|_{t=0}, \\
& \text { and } \\
& \mathrm{D} \nabla f(x ; \theta) \cdot(e, u)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}(\nabla f(x+t e ; \theta) \cdot u)\right|_{t=0} .
\end{aligned}
$$

for any $e \in E_{1}, u \in H_{1}$. Note that if $f \in C^{2}$, then $\mathrm{D} \nabla f(x ; \theta) \cdot(u, e)=\nabla \mathrm{D} f(x ; \theta) \cdot(e, u)$. A useful identity similar to Lemma 2.2.2 exists when mixing ∇^{*} and D .

Lemma 2.3.2. Consider three inner product spaces E_{1}, E_{2}, and H_{1}, and a parameterdependent map $g: E_{1} \times H_{1} \rightarrow E_{2}$. Then, for any $x, v \in E_{1}, w \in E_{2}$, and $\theta \in H_{1}$,

$$
\mathrm{D}\left(\nabla^{*} g(x ; \theta) \cdot w\right) \cdot v=\left(\nabla \mathrm{D} g(x ; \theta)\llcorner v)^{*} \cdot w=(v\lrcorner \mathrm{D} \nabla g(x ; \theta)\right)^{*} \cdot w
$$

Proof. Prove similarly to Lemma 2.2 .2 by choosing $y \in H_{1}$ as a test vector.

2.4 Elementwise Functions

Layered neural networks conventionally contain a nonlinear activation function operating on individual components - also known as an elementwise nonlinearity - placed at the end of each layer. Without these, neural networks would be nothing more than overparameterized linear models; it is therefore important to understand the properties of elementwise functions. To this end, consider an inner product space E of dimension n, and let $\left\{e_{k}\right\}_{k=1}^{n}$ be an orthonormal basis of E. We define an elementwise function as a function $\Psi: E \rightarrow E$ of the form

$$
\begin{equation*}
\Psi(v)=\sum_{k=1}^{n} \psi\left(\left\langle v, e_{k}\right\rangle\right) e_{k} \tag{2.9}
\end{equation*}
$$

where $\psi: \mathbb{R} \rightarrow \mathbb{R}$ - which we will refer to as the elementwise operation associated with Ψ - defines the operation of the elementwise function over the components $\left\{\left\langle v, e_{k}\right\rangle\right\}_{k}$ of the vector $v \in E$ with respect to the chosen basis. If we use the convention that $\left\langle v, e_{k}\right\rangle \equiv v_{k} \in \mathbb{R}$, we can rewrite (2.9) as

$$
\Psi(v)=\sum_{k=1}^{n} \psi\left(v_{k}\right) e_{k},
$$

but we will tend to avoid this as it becomes confusing when there are multiple subscripts. The operator Ψ is basis-dependent, but $\left\{e_{k}\right\}_{k=1}^{n}$ can be any orthonormal basis of E.

We define the associated elementwise first derivative, $\Psi^{\prime}: E \rightarrow E$, as

$$
\begin{equation*}
\Psi^{\prime}(v)=\sum_{k=1}^{n} \psi^{\prime}\left(\left\langle v, e_{k}\right\rangle\right) e_{k} \tag{2.10}
\end{equation*}
$$

Similarly, the elementwise second derivative function $\Psi^{\prime \prime}: E \rightarrow E$ is

$$
\begin{equation*}
\Psi^{\prime \prime}(v)=\sum_{k=1}^{n} \psi^{\prime \prime}\left(\left\langle v, e_{k}\right\rangle\right) e_{k} . \tag{2.11}
\end{equation*}
$$

We can also re-write equations (2.10) and (2.11) using $\left\langle v, e_{k}\right\rangle \equiv v_{k}$ as

$$
\Psi^{\prime}(v)=\sum_{k=1}^{n} \psi^{\prime}\left(v_{k}\right) e_{k} \quad \text { and } \quad \Psi^{\prime \prime}(v)=\sum_{k=1}^{n} \psi^{\prime \prime}\left(v_{k}\right) e_{k}
$$

2.4.1 Hadamard Product

To assist in the calculation of derivatives of elementwise functions, we will define a symmetric bilinear operator $\odot \in \mathcal{L}(E, E ; E)$ over the orthogonal basis $\left\{e_{k}\right\}_{k=1}^{n}$ as

$$
\begin{equation*}
e_{k} \odot e_{k^{\prime}} \equiv \delta_{k, k^{\prime}} e_{k} \tag{2.12}
\end{equation*}
$$

where $\delta_{k, k^{\prime}}$ is the Kronecker delta. This is the standard Hadamard product - also known as elementwise multiplication - when $E=\mathbb{R}^{n}$ and $\left\{e_{k}\right\}_{k=1}^{n}$ is the standard basis of \mathbb{R}^{n}, which we can see by calculating $v \odot v^{\prime}$ for some $v, v^{\prime} \in \mathbb{R}^{n}$:

$$
\begin{aligned}
v \odot v^{\prime} & =\left(\sum_{k=1}^{n} v_{k} e_{k}\right) \odot\left(\sum_{k^{\prime}=1}^{n} v_{k^{\prime}}^{\prime} e_{k^{\prime}}\right) \\
& =\sum_{k, k^{\prime}=1}^{n} v_{k} v_{k^{\prime}}^{\prime} e_{k} \odot e_{k^{\prime}} \\
& =\sum_{k, k^{\prime}=1}^{n} v_{k} v_{k^{\prime}}^{\prime} \delta_{k, k^{\prime}} e_{k} \\
& =\sum_{k=1}^{n} v_{k} v_{k}^{\prime} e_{k},
\end{aligned}
$$

where we have used the convention that $\left\langle v, e_{k}\right\rangle \equiv v_{k}$. However, when $E \neq \mathbb{R}^{n}$ or $\left\{e_{k}\right\}_{k=1}^{n}$ is not the standard basis, we can regard \odot as a generalization of the Hadamard product. For all $y, v, v^{\prime} \in E$, the Hadamard product satisfies the following properties:

$$
\begin{equation*}
v \odot v^{\prime}=v^{\prime} \odot v, \quad\left(v \odot v^{\prime}\right) \odot y=v \odot\left(v^{\prime} \odot y\right), \quad\left\langle y, v \odot v^{\prime}\right\rangle=\left\langle v \odot y, v^{\prime}\right\rangle=\left\langle y \odot v^{\prime}, v\right\rangle \tag{2.13}
\end{equation*}
$$

2.4.2 Derivatives of Elementwise Functions

We can now compute the derivative of elementwise functions using the Hadamard product as described below.

Proposition 2.4.1. Let $\Psi: E \rightarrow E$ be an elementwise function over an inner product space E as defined in (2.9). Then, for any $v, z \in E$,

$$
\mathrm{D} \Psi(z) \cdot v=\Psi^{\prime}(z) \odot v
$$

Furthermore, $\mathrm{D} \Psi(z)$ is self-adjoint, i.e. $\mathrm{D}^{*} \Psi(z)=\mathrm{D} \Psi(z)$ for all $z \in E$.

Proof. Let ψ be the elementwise operation associated with Ψ. Then,

$$
\begin{aligned}
\mathrm{D} \Psi(z) \cdot v & =\left.\frac{\mathrm{d}}{\mathrm{~d} t} \Psi(z+t v)\right|_{t=0} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{k=1}^{n} \psi\left(\left\langle z+t v, e_{k}\right\rangle\right) e_{k}\right|_{t=0} \\
& =\sum_{k=1}^{n} \psi^{\prime}\left(\left\langle z, e_{k}\right\rangle\right)\left\langle v, e_{k}\right\rangle e_{k} \\
& =\Psi^{\prime}(z) \odot v,
\end{aligned}
$$

where the third equality follows from the chain rule and linearity of the derivative.
Furthermore, for any $y \in E$,

$$
\begin{aligned}
\langle y, \mathrm{D} \Psi(z) \cdot v\rangle & =\left\langle y, \Psi^{\prime}(z) \odot v\right\rangle \\
& =\left\langle\Psi^{\prime}(z) \odot y, v\right\rangle \\
& =\langle\mathrm{D} \Psi(z) \cdot y, v\rangle .
\end{aligned}
$$

Since $\langle y, \mathrm{D} \Psi(z) \cdot v\rangle=\langle\mathrm{D} \Psi(z) \cdot y, v\rangle$ for any $v, y, z \in E, \mathrm{D} \Psi(z)$ is self-adjoint.
Proposition 2.4.2. Let $\Psi: E \rightarrow E$ be an elementwise function over an inner product space E as defined in (2.9). Then, for any $v_{1}, v_{2}, z \in E$,

$$
\begin{equation*}
\mathrm{D}^{2} \Psi(z) \cdot\left(v_{1}, v_{2}\right)=\Psi^{\prime \prime}(z) \odot v_{1} \odot v_{2} . \tag{2.14}
\end{equation*}
$$

Furthermore, $\left.\left(v_{1}\right\lrcorner \mathrm{D}^{2} \Psi(z)\right)$ and $\left(\mathrm{D}^{2} \Psi(z)\left\llcorner v_{2}\right)\right.$ are both self-adjoint linear maps for any $v_{1}, v_{2}, z \in E$.

Proof. We can prove (2.14) directly:

$$
\begin{aligned}
\mathrm{D}^{2} \Psi(z) \cdot\left(v_{1}, v_{2}\right) & =\mathrm{D}\left(\mathrm{D} \Psi(z) \cdot v_{2}\right) \cdot v_{1} \\
& =\mathrm{D}\left(\Psi^{\prime}(z) \odot v_{2}\right) \cdot v_{1} \\
& =\left(\Psi^{\prime \prime}(z) \odot v_{1}\right) \odot v_{2}
\end{aligned}
$$

where the third equality follows since $\Psi^{\prime}(z) \odot v_{2}$ is an elementwise function in z.
Also, for any $y \in E$,

$$
\left.\left\langle y,\left(v_{1}\right\lrcorner \mathrm{D}^{2} \Psi(z)\right) \cdot v_{2}\right\rangle=\left\langle y, \mathrm{D}^{2} \Psi(z) \cdot\left(v_{1}, v_{2}\right)\right\rangle
$$

$$
\begin{aligned}
& =\left\langle y, \Psi^{\prime \prime}(z) \odot v_{1} \odot v_{2}\right\rangle \\
& =\left\langle\Psi^{\prime \prime}(z) \odot v_{1} \odot y, v_{2}\right\rangle \\
& \left.=\left\langle\left(v_{1}\right\lrcorner \mathrm{D}^{2} \Psi(z)\right) \cdot y, v_{2}\right\rangle .
\end{aligned}
$$

This implies the following:

1. The map $\left.\left(v_{1}\right\lrcorner \mathrm{D}^{2} \Psi(z)\right)$ is self-adjoint for any $v_{1}, z \in E$
2. The map $\left(\mathrm{D}^{2} \Psi(z)\left\llcorner v_{1}\right)\right.$ is also self-adjoint for any $v_{1}, z \in E$.

This completes the proof.

2.4.3 The Softmax and Elementwise Log Functions

We will often encounter the softmax and elementwise \log functions together when using neural networks for classification, so we will dedicate a short section to them. The softmax takes in an input in a generic inner product space E and exponentially scales it so that its components sum to 1 . More specifically, we define the softmax function $\sigma: E \rightarrow E$ in terms of the elementwise exponential function Exp ${ }^{1}$ as

$$
\begin{equation*}
\sigma(x)=\frac{1}{\langle\mathbf{1}, \operatorname{Exp}(x)\rangle} \operatorname{Exp}(x) \tag{2.15}
\end{equation*}
$$

where $x \in E$ and $\mathbf{1} \equiv \sum_{k=1}^{n} e_{k}$ for an orthonormal basis of E given by $\left\{e_{k}\right\}_{k=1}^{n}$. We can refer to 1 as the all-ones vector, particularly when $\left\{e_{k}\right\}$ is the standard basis. Notice that the first term of (2.15) is a scalar, so the multiplication is well-defined. We will compute the derivative of (2.15) in the following lemma.

Lemma 2.4.3. Let x and v be any vectors in an inner product space E. Then,

$$
\mathrm{D} \sigma(x) \cdot v=\sigma(x) \odot v-\langle\sigma(x), v\rangle \sigma(x) .
$$

Furthermore, $\mathrm{D} \sigma(x)$ is self-adjoint for any $x \in E$.
Proof. First note that $\operatorname{DEx}(x) \cdot v=\operatorname{Exp}(x) \odot v$ from Proposition 2.4.1. Then, by the product rule,

$$
\mathrm{D} \sigma(x) \cdot v=\left[\mathrm{D}\left(\frac{1}{\langle\mathbf{1}, \operatorname{Exp}(x)\rangle}\right) \cdot v\right] \operatorname{Exp}(x)+\frac{1}{\langle\mathbf{1}, \operatorname{Exp}(x)\rangle} \mathrm{D} \operatorname{Exp}(x) \cdot v
$$

[^6]\[

$$
\begin{aligned}
& =\frac{1}{\langle\mathbf{1}, \operatorname{Exp}(x)\rangle}\left[-\frac{\langle\mathbf{1}, \mathrm{D} \operatorname{Exp}(x) \cdot v\rangle}{\langle\mathbf{1}, \operatorname{Exp}(x)\rangle} \operatorname{Exp}(x)+\operatorname{Exp}(x) \odot v\right] \\
& =-\frac{\langle\mathbf{1}, \operatorname{Exp}(x) \odot v\rangle}{\langle\mathbf{1}, \operatorname{Exp}(x)\rangle} \sigma(x)+\sigma(x) \odot v \\
& =\sigma(x) \odot v-\langle\sigma(x), v\rangle \sigma(x),
\end{aligned}
$$
\]

which proves the first statement. As for the adjoint, pick any $y \in E$. Then,

$$
\begin{aligned}
\langle y, \mathrm{D} \sigma(x) \cdot v\rangle & =\langle y, \sigma(x) \odot v-\langle\sigma(x), v\rangle \sigma(x)\rangle \\
& =\langle y \odot \sigma(x), v\rangle-\langle y, \sigma(x)\rangle\langle\sigma(x), v\rangle \\
& =\langle\sigma(x) \odot y-\langle\sigma(x), y\rangle \sigma(x), v\rangle,
\end{aligned}
$$

by the symmetry of the inner product. We have thus proven that

$$
\mathrm{D}^{*} \sigma(x) \cdot y=\sigma(x) \odot y-\langle\sigma(x), y\rangle \sigma(x)
$$

i.e. $\mathrm{D}^{*} \sigma(x)=\mathrm{D} \sigma(x)$.

In the classification setting in neural networks, the loss function will often contain the elementwise \log function, Log, composed with the softmax function, i.e. $\log \circ \sigma$ will often appear. We will need the adjoint of the derivative map of this composition for reasons that will become clear later and thus we will calculate it in the following lemma.

Lemma 2.4.4. Let $v, x \in E$, where E is an inner product space. Then,

$$
\mathrm{D}^{*}(\log \circ \sigma)(x) \cdot v=\mathrm{D} \sigma(x) \cdot \mathrm{D} \log (\sigma(x)) \cdot v=v-\langle\mathbf{1}, v\rangle \sigma(x)
$$

Proof. First note that $\mathrm{D}(\log \circ \sigma)(x)=\mathrm{D} \log (\sigma(x)) \cdot \mathrm{D} \sigma(x)$ by the chain rule (2.3). Then, since \log is an elementwise function, $\mathrm{D} \log (\sigma(x))$ is self-adjoint by Proposition 2.4.1. By Lemma 2.4.3, $\mathrm{D} \sigma(x)$ is also self-adjoint. Thus, by the reversing property of the adjoint,

$$
\mathrm{D}^{*}(\log \circ \sigma)(x)=\mathrm{D} \sigma(x) \cdot \mathrm{D} \log (\sigma(x))
$$

As for the second part, first note that $\sigma(x) \odot \log ^{\prime}(\sigma(x))=1$, since $\log ^{\prime}$ has elementwise operation $\log ^{\prime}(z)=\frac{1}{z}$ for any $z \in \mathbb{R}$, and each component of $\sigma(x)$ is greater than 0 for all x. Also, $\mathbf{1} \odot w=w$ for any $w \in E$. Therefore,

$$
\begin{aligned}
\mathrm{D} \sigma(x) \cdot \mathrm{D} \log (\sigma(x)) \cdot v & =\mathrm{D} \sigma(x) \cdot\left(\log ^{\prime}(\sigma(x)) \odot v\right) \\
& =\sigma(x) \odot\left(\log ^{\prime}(\sigma(x)) \odot v\right)-\left\langle\sigma(x), \log ^{\prime}(\sigma(x)) \odot v\right\rangle \sigma(x)
\end{aligned}
$$

$$
\begin{aligned}
& =v-\left\langle\sigma(x) \odot \log ^{\prime}(\sigma(x)), v\right\rangle \sigma(x) \\
& =v-\langle\mathbf{1}, v\rangle \sigma(x)
\end{aligned}
$$

where we have used the properties of the Hadamard product from (2.13) throughout the proof.

Remark 2.4.5. In classification, v will be an encoding of the observed class of the data. We can represent this using a one-hot encoding, which means that if we observe class i, then the $i^{\text {th }}$ component of v will be set to 1 and the other components will be set to 0 . In the context of Lemma 2.4.4, this means that $\langle\mathbf{1}, v\rangle=1$, implying that

$$
\mathrm{D} \sigma(x) \cdot \mathrm{D} \log (\sigma(x)) \cdot v=v-\sigma(x)
$$

2.5 Conclusion

In this chapter, we have presented mathematical tools for handling vector-valued functions that will arise when describing generic neural networks. In particular, we have introduced notation and theory surrounding linear maps, derivatives, parameter-dependent maps, and elementwise functions. Familiarity with the material presented in this chapter is paramount for understanding the rest of this thesis.

Chapter 3

Generic Representation of Neural Networks

In the previous chapter, we took the first step towards creating a standard mathematical framework for neural networks by developing mathematical tools for vector-valued functions and their derivatives. We will use these tools in this chapter to describe the operations employed in a generic layered neural network. Since neural networks have been empirically shown to reap performance benefits from stacking increasingly more layers in succession [30], it is important to develop a solid and concise theory for representing repeated function composition as it is applicable to neural networks, and we will see how this can be done in this chapter. Furthermore, since neural networks often learn their parameters via some form of gradient descent, we will also compute derivatives of these functions with respect to the parameters at each layer. The derivative maps that we compute will remain in the same vector space as the parameters, which will allow us to perform gradient descent naturally over these vector spaces for each parameter. This approach contrasts with standard approaches to neural network modelling where the parameters are broken down into their components. We can avoid this unnecessary operation using the framework that we will describe.

We will begin this chapter by formulating a generic neural network as the composition of parameter-dependent functions. We will then introduce standard loss functions based on this composition for both the regression and classification cases, and take their derivatives with respect to the parameters at each layer. There are some commonalities between these two cases that we will then explore. In particular, both employ the same form of error backpropagation, albeit with a slightly differing initialization. We are able to express this in terms of adjoints of derivative maps over generic vector spaces, which has not been
explored before. We will then outline a concise algorithm for computing derivatives of the loss functions with respect to their parameters directly over the vector space in which the parameters are defined. This helps to clarify the theoretical results presented. We will also model a higher-order loss function that imposes a penalty on the derivative towards the end of this chapter. This demonstrates one way to extend the framework that we have developed to a more complicated loss function, and also demonstrates its flexibility. A condensed version of this chapter appeared in [10, Section 3], but we have again expanded it as in the previous chapter.

3.1 Neural Network Formulation

We can represent a neural network with L layers as the composition of L functions f_{i} : $E_{i} \times H_{i} \rightarrow E_{i+1}$, where E_{i}, H_{i}, and E_{i+1} are inner product spaces for all $i \in[L]$. We will refer to variables $x_{i} \in E_{i}$ as state variables, and variables $\theta_{i} \in H_{i}$ as parameters. Throughout this section, we will often suppress the dependence of the layerwise function f_{i} on the parameter θ_{i} for ease of composition, i.e. f_{i} is understood as a function from E_{i} to E_{i+1} depending on θ_{i}. We can then write down the output of a neural network for a generic input $x \in E_{1}$ using this suppression convention as a function $F: E_{1} \times\left(H_{1} \times \cdots \times H_{L}\right) \rightarrow E_{L+1}$ according to

$$
\begin{equation*}
F(x ; \theta)=\left(f_{L} \circ \cdots \circ f_{1}\right)(x), \tag{3.1}
\end{equation*}
$$

where each f_{i} is dependent on the parameter $\theta_{i} \in H_{i}$, and θ represents the parameter set $\left\{\theta_{1}, \ldots, \theta_{L}\right\}$. Each parameter θ_{i} is independent of the other parameters $\left\{\theta_{j}\right\}_{j \neq i}$ in this formulation, but we will see how to modify this assumption when working with autoencoders and recurrent neural networks in future chapters.

We will now introduce some maps to assist in the calculation of derivatives. First, the head map at layer $i, \alpha_{i}: E_{1} \rightarrow E_{i+1}$, is given by

$$
\begin{equation*}
\alpha_{i}=f_{i} \circ \cdots \circ f_{1} \tag{3.2}
\end{equation*}
$$

for each $i \in[L]$. Note that α_{i} implicitly depends on the parameters $\left\{\theta_{1}, \ldots, \theta_{i}\right\}$. For convenience, set $\alpha_{0}=$ id: the identity map on E_{1}. Similarly, we can define the tail map at layer $i, \omega_{i}: E_{i} \rightarrow E_{L+1}$, as

$$
\begin{equation*}
\omega_{i}=f_{L} \circ \cdots \circ f_{i} \tag{3.3}
\end{equation*}
$$

for each $i \in[L]$. The map ω_{i} implicitly depends on $\left\{\theta_{i}, \ldots, \theta_{L}\right\}$. Again for convenience, set ω_{L+1} to be the identity map on E_{L+1}. We can easily show that the following hold for all $i \in[L]$:

$$
\begin{equation*}
F=\omega_{i+1} \circ \alpha_{i}, \quad \omega_{i}=\omega_{i+1} \circ f_{i}, \quad \alpha_{i}=f_{i} \circ \alpha_{i-1} . \tag{3.4}
\end{equation*}
$$

The equations in (3.4) imply that the output F can be decomposed into

$$
F=\omega_{i+1} \circ f_{i} \circ \alpha_{i-1}
$$

for all $i \in[L]$, where ω_{i+1} and α_{i-1} have no dependence on the parameter θ_{i}.

3.2 Loss Functions and Gradient Descent

The goal of a neural network is to optimize some loss function J with respect to the parameters θ over a set of n network inputs $\mathcal{D}=\left\{\left(x_{(1)}, y_{(1)}\right), \ldots,\left(x_{(n)}, y_{(n)}\right)\right\}$, where $x_{(j)} \in E_{1}$ is the $j^{\text {th }}$ input data point with associated response or target $y_{(j)} \in E_{L+1}$. Most optimization methods are gradient-based, meaning that we must calculate the gradient of J with respect to the parameters at each layer $i \in[L]$.

We will begin this section by introducing the loss functions for both the regression and classification setting. Although they share some similarities, these two cases must be considered separately since they have different loss functions. We will take the derivatives of these loss functions for a single data point $(x, y) \equiv\left(x_{(j)}, y_{(j)}\right)$ for some $j \in[n]$, and then present error backpropagation in a concise format. Finally, we will present algorithms for performing gradient descent steps for both regression and classification, and we will also discuss how to incorporate the common ℓ_{2}-regularization, also known as weight decay [42], into this framework. Note that we will often write

$$
x_{i}=\alpha_{i-1}(x)
$$

throughout this section for ease of notation.
We will first present a result to compute $\nabla_{\theta_{i}}^{*} F(x ; \theta)$, as this will occur in both the regression and classification cases.
Lemma 3.2.1. For any $x \in E_{1}$ and $i \in[L]$,

$$
\begin{equation*}
\nabla_{\theta_{i}}^{*} F(x ; \theta)=\nabla_{\theta_{i}}^{*} f_{i}\left(x_{i}\right) \cdot \mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right), \tag{3.5}
\end{equation*}
$$

where F is defined as in (3.1), α_{i} is defined as in (3.2), ω_{i} defined as in (3.3), and $x_{i}=$ $\alpha_{i-1}(x)$.

Proof. Apply the chain rule from (2.8) to $F=\omega_{i+1} \circ f_{i} \circ \alpha_{i-1}$ according to

$$
\begin{aligned}
\nabla_{\theta_{i}} F(x ; \theta) & =\mathrm{D} \omega_{i+1}\left(f_{i}\left(\alpha_{i-1}(x)\right)\right) \cdot \nabla_{\theta_{i}} f_{i}\left(\alpha_{i-1}(x)\right) \\
& =\mathrm{D} \omega_{i+1}\left(x_{i+1}\right) \cdot \nabla_{\theta_{i}} f_{i}\left(x_{i}\right),
\end{aligned}
$$

since neither ω_{i+1} nor α_{i-1} depend on θ_{i}. Then, by taking the adjoint and applying the reversing property we can obtain (3.5).

3.2.1 Regression

In the case of regression, the target variable $y \in E_{L+1}$ can be any generic vector of real numbers. Thus, for a single data point, the most common loss function to consider is the squared loss, given by

$$
\begin{equation*}
J_{R}(x, y ; \theta)=\frac{1}{2}\|y-F(x ; \theta)\|^{2}=\frac{1}{2}\langle y-F(x ; \theta), y-F(x ; \theta)\rangle . \tag{3.6}
\end{equation*}
$$

In this case, the network prediction $\hat{y}_{R} \in E_{L+1}$ is given by the network output $F(x ; \theta)$. We can calculate the gradient of J_{R} with respect to the parameter θ_{i} according to Theorem 3.2.2, presented below.

Theorem 3.2.2. For any $x \in E_{1}, y \in E_{L+1}$, and $i \in[L]$,

$$
\begin{equation*}
\nabla_{\theta_{i}} J_{R}(x, y ; \theta)=\nabla_{\theta_{i}}^{*} f_{i}\left(x_{i}\right) \cdot \mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot\left(\hat{y}_{R}-y\right), \tag{3.7}
\end{equation*}
$$

where $x_{i}=\alpha_{i-1}(x), J_{R}$ is defined as in (3.6), α_{i-1} and ω_{i+1} are defined as in (3.2) and (3.3), respectively, and $\hat{y}_{R}=F(x ; \theta)$.

Proof. By the product rule, for any $U_{i} \in H_{i}$,

$$
\begin{equation*}
\nabla_{\theta_{i}} J_{R}(x, y ; \theta) \cdot U_{i}=\left\langle F(x ; \theta)-y, \nabla_{\theta_{i}} F(x ; \theta) \cdot U_{i}\right\rangle=\left\langle\nabla_{\theta_{i}}^{*} F(x ; \theta) \cdot(F(x ; \theta)-y), U_{i}\right\rangle . \tag{3.8}
\end{equation*}
$$

This implies that the derivative map above is a linear functional, i.e. $\nabla_{\theta_{i}} J_{R}(x, y ; \theta) \epsilon$ $\mathcal{L}\left(H_{i} ; \mathbb{R}\right)$. Then, by the isomorphism described in [57, Chapter 5 , Section 3], we can represent $\nabla_{\theta_{i}} J_{R}(x, y ; \theta)$ as an element of H_{i} as in (3.7), where $F(x ; \theta)=\hat{y}_{R}$ and $\nabla_{\theta_{i}}^{*} F(x ; \theta)=$ $\nabla_{\theta_{i}}^{*} f_{i}\left(x_{i}\right) \cdot \mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right)$ by (3.5).

Remark 3.2.3. For an inner product space H, we will use the canonical isomorphism from [57, Chapter 5, Section 3] throughout this work to express linear functionals from H to \mathbb{R} as elements of H themselves, similarly to how we derived (3.7) from (3.8) in the above proof.

3.2.2 Classification

For the case of classification, the target variable y is often a one-hot encoding, i.e. the component of y corresponding to the class of the data point is equal to 1 , and the other components are 0 , as described in Remark 2.4.5. Therefore, we must constrain the output of the network to be a valid discrete probability distribution. We can enforce this by
applying the softmax function σ to the network output $F(x ; \theta)$. Then, we can compare this prediction, $\hat{y}_{C}=\sigma(F(x ; \theta)) \in E_{L+1}$, to the target variable by using the cross-entropy loss function. For a single point (x, y), we can write the full expression for this loss as given in [31, Equation 3], but with an inner product instead of a sum:

$$
\begin{equation*}
J_{C}(x, y ; \theta)=-\langle y,(\log \circ \sigma)(F(x ; \theta))\rangle . \tag{3.9}
\end{equation*}
$$

We can calculate the gradient of J_{C} with respect to the parameter θ_{i} according to Theorem 3.2.4.

Theorem 3.2.4. For any $x \in E_{1}, y \in E_{L+1}$, and $i \in[L]$,

$$
\begin{equation*}
\nabla_{\theta_{i}} J_{C}(x, y ; \theta)=\nabla_{\theta_{i}}^{*} f_{i}\left(x_{i}\right) \cdot \mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot\left(\hat{y}_{C}-y\right), \tag{3.10}
\end{equation*}
$$

where J_{C} is defined as in (3.9) and $\hat{y}_{C}=\sigma(F(x ; \theta))$.
Proof. By the chain rule from (2.8), for any $U_{i} \in H_{i}$,

$$
\begin{aligned}
\nabla_{\theta_{i}} J_{C}(x, y ; \theta) \cdot U_{i} & =-\left\langle y, \mathrm{D}(\log \circ \sigma)(F(x ; \theta)) \cdot \nabla_{\theta_{i}} F(x ; \theta) \cdot U_{i}\right\rangle \\
& =-\left\langle\mathrm{D}^{*}(\log \circ \sigma)(F(x ; \theta)) \cdot y, \nabla_{\theta_{i}} F(x ; \theta) \cdot U_{i}\right\rangle \\
& =-\left\langle y-\langle\mathbf{1}, y\rangle \sigma(F(x ; \theta)), \nabla_{\theta_{i}} F(x ; \theta) \cdot U_{i}\right\rangle \\
& =\left\langle\nabla_{\theta_{i}}^{*} F(x ; \theta) \cdot(\sigma(F(x ; \theta))-y), U_{i}\right\rangle \\
& =\left\langle\nabla_{\theta_{i}}^{*} f_{i}\left(x_{i}\right) \cdot \mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot(\sigma(F(x ; \theta))-y), U_{i}\right\rangle,
\end{aligned}
$$

where the third line follows from Lemma 2.4.4 and the fourth line from y being a one-hot encoding, i.e. $\langle\mathbf{1}, y\rangle=1$. Thus, (3.10) follows from the canonical isomorphism referenced in Remark 3.2.3 and by setting $\hat{y}_{C}=\sigma(F(x ; \theta))$.

3.2.3 Backpropagation

Although the two loss functions are quite different, the derivative of each with respect to a generic parameter $\theta_{i}-(3.7)$ for regression and (3.10) for classification - is almost the same, as both apply $\mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right)$ to an error vector. This operation is commonly referred to as backpropagation, and we will demonstrate how to calculate it recursively in the next theorem.

Theorem 3.2.5 (Backpropagation). For all $x_{i} \in E_{i}$, with ω_{i} defined as in (3.3),

$$
\begin{equation*}
\mathrm{D}^{*} \omega_{i}\left(x_{i}\right)=\mathrm{D}^{*} f_{i}\left(x_{i}\right) \cdot \mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right), \tag{3.11}
\end{equation*}
$$

where $x_{i+1}=f_{i}\left(x_{i}\right)$, for all $i \in[L]$.

Proof. Apply the chain rule (2.3) to $\omega_{i}\left(x_{i}\right)=\left(\omega_{i+1} \circ f_{i}\right)\left(x_{i}\right)$, and take the adjoint to obtain (3.11). This holds for any $i \in[L]$ since $\omega_{L+1}=\mathrm{id}$.

Theorem 3.2.5 presents a concise and generic form for error backpropagation without referencing individual vector components, which current prevailing approaches explaining backpropagation fail to do. We will see why (3.11) is referred to as backpropagation in Algorithm 3.2.1, since $\mathrm{D}^{*} \omega_{i}\left(x_{i}\right)$ will be applied to an error vector $e_{L} \in E_{L+1}$ and then sent backwards at each layer i.

3.2.4 Gradient Descent Step Algorithm

We present a method for computing one step of gradient descent for a generic layered neural network in Algorithm 3.2.1, clarifying how the results of this section can be combined. The inputs are the network input point $(x, y) \in E_{1} \times E_{L+1}$, the parameter set $\theta=\left\{\theta_{1}, \ldots, \theta_{L}\right\} \in$ $H_{1} \times \cdots \times H_{L}$, the learning rate $\eta \in \mathbb{R}_{>0}$, and the type of problem being considered type ϵ \{regression, classification\}. It updates the set of network parameters θ via one step of gradient descent.

The algorithm generates the network prediction using forward propagation from lines 24 and stores the state at each layer. We then use these states in the backpropagation step, which begins at line 5 . At the top layer $(i=L)$, we initialize the error vector e_{L} to either $\hat{y}_{R}-y$ for regression, or $\hat{y}_{C}-y$ for classification, since $\mathrm{D}^{*} \omega_{L+1}\left(x_{L+1}\right)=\mathrm{id}$ and

$$
\nabla_{\theta_{L}} J(x, y ; \theta)=\nabla_{\theta_{L}}^{*} f_{L}\left(x_{L}\right) \cdot \mathrm{D}^{*} \omega_{L+1}\left(x_{L+1}\right) \cdot e_{L}=\nabla_{\theta_{L}}^{*} f_{L}\left(x_{L}\right) \cdot e_{L},
$$

where J is either J_{R} or J_{C}. When $i \neq L$, we update the error vector e_{i} in line 12 through multiplication by $\mathrm{D}^{*} f_{i+1}\left(x_{i+1}\right)$ in accordance with (3.11). Then, line 13 uses either $e_{i}=$ $\mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot(F(x ; \theta)-y)$ in the case of regression, or $e_{i}=\mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot(\sigma(F(x ; \theta))-y)$ for classification, to calculate $\nabla_{\theta_{i}} J(x, y ; \theta)$ as per (3.7) or (3.10), respectively. Notice that the difference between classification and regression simply comes down to changing the error vector initialization.

We can easily extend Algorithm 3.2.1 linearly to a batch of input points $\left\{\left(x_{(j)}, y_{(j)}\right)\right\}_{j \in A}$, where $A \subset[n]$, by averaging the contribution to the gradient from each point $\left(x_{(j)}, y_{(j)}\right)$ over the batch. We can also extend Algorithm 3.2.1 to more complex versions of gradient descent, e.g. momentum and adaptive gradient step methods; these methods are reviewed in [63] but are not in the scope of this thesis. We can also incorporate a simple form of regularization into this framework as described in Remark 3.2.6.

```
Algorithm 3.2.1 One iteration of gradient descent for a generic NN
    function GradStepNN \((x, y, \theta, \eta\), type \()\)
        \(x_{1} \leftarrow x\)
        for \(i \in\{1, \ldots, L\}\) do
            \(x_{i+1} \leftarrow f_{i}\left(x_{i}\right) \quad \triangleright x_{L+1}=F(x ; \theta)\); forward propagation step
        for \(i \in\{L, \ldots, 1\}\) do
            \(\tilde{\theta}_{i} \leftarrow \theta_{i} \quad \triangleright\) Store old \(\theta_{i}\) for updating \(\theta_{i-1}\)
            if \(i=L\) and type \(=\) regression then
                    \(e_{L} \leftarrow x_{L+1}-y\)
            else if \(i=L\) and type \(=\) classification then
                    \(e_{L} \leftarrow \sigma\left(x_{L+1}\right)-y\)
            else
                    \(e_{i} \leftarrow \mathrm{D}^{*} f_{i+1}\left(x_{i+1}\right) \cdot e_{i+1} \quad \triangleright\) Update with \(\tilde{\theta}_{i+1}\); backpropagation step
                \(\nabla_{\theta_{i}} J(x, y ; \theta) \leftarrow \nabla_{\theta_{i}}^{*} f_{i}\left(x_{i}\right) \cdot e_{i} \quad \triangleright J\) is either \(J_{R}\) or \(J_{C}\)
                \(\theta_{i} \leftarrow \theta_{i}-\eta \nabla_{\theta_{i}} J(x, y ; \theta) \quad \triangleright\) Parameter update step
        return \(\theta\)
```

Remark 3.2.6. We can easily incorporate a standard ℓ_{2}-regularizing term into this framework. Consider a new objective function $\mathcal{J}_{T}(x, y ; \theta)=J(x, y ; \theta)+\lambda T(\theta)$, where $\lambda \in \mathbb{R}_{\geq 0}$ is the regularization parameter, J is either J_{R} or J_{C}, and

$$
T(\theta)=\frac{1}{2}\|\theta\|^{2}=\frac{1}{2} \sum_{i=1}^{L}\left\|\theta_{i}\right\|^{2}=\frac{1}{2} \sum_{i=1}^{L}\left\langle\theta_{i}, \theta_{i}\right\rangle
$$

is the regularization term. It follows that $\nabla_{\theta_{i}} \mathcal{J}_{T}(x, y ; \theta)=\nabla_{\theta_{i}} J(x, y ; \theta)+\lambda \theta_{i}$, since $\nabla_{\theta_{i}} T(\theta)=$ θ_{i} by the canonical isomorphism. This implies that gradient descent can be updated to include the regularizing term, i.e. we can change line 14 in Algorithm 3.2.1 to

$$
\theta_{i} \leftarrow \theta_{i}-\eta\left(\nabla_{\theta_{i}} J(x, y ; \theta)+\lambda \theta_{i}\right) .
$$

3.3 Higher-Order Loss Function

We can also consider a higher-order loss function that penalizes the first derivative of the network output. This was used in [61] to promote invariance of the network to noisy transformations; it was also used in [72] to promote network invariance, but this time in the direction of a translation applied to the input data that should not affect its class (e.g.
translating an image of a digit should not alter the digit). We can enforce this, in the case of regression ${ }^{1}$, by adding the term $R: E_{1} \times\left(H_{1} \times \cdots \times H_{L}\right)$, defined as

$$
\begin{equation*}
R(x ; \theta)=\frac{1}{2}\|\mathrm{D} F(x ; \theta) \cdot v-\beta\|^{2}, \tag{3.12}
\end{equation*}
$$

to the loss function (3.6), where $v \in E_{1}$ is a tangent vector at the input $x, \beta \in E_{L+1}$ is the desired tangent vector after transformation, and $F(x ; \theta)$ is the network prediction defined in (3.1). We can use (3.12) to impose invariance to infinitesimal deformation in the direction of v by setting β as the zero vector. In this way, F will be less likely to alter its prediction along the direction of v.

Adding R to J_{R} creates a new loss function

$$
\begin{equation*}
\mathcal{J}_{H}(x, y ; \theta)=J_{R}(x, y ; \theta)+\mu R(x ; \theta) \tag{3.13}
\end{equation*}
$$

where $\mu \in \mathbb{R}_{\geq 0}$ determines the amount that the higher-order term R contributes to the loss function. We can additively extend R to contain multiple terms as

$$
\begin{equation*}
R(x ; \theta)=\frac{1}{2 K} \sum_{k=1}^{K}\left\|\mathrm{D} F(x ; \theta) \cdot v_{k}-\beta_{k}\right\|^{2} \tag{3.14}
\end{equation*}
$$

where $\left\{\left(v_{k}, \beta_{k}\right)\right\}_{k=1}^{K}$ is a finite set of pairs for each data point x independent of the parameters θ. For any $i \in[L]$, we must compute $\nabla_{\theta_{i}} R(x ; \theta)$ to perform a gradient descent step, and we describe how to do this in Theorem 3.3.1.

Theorem 3.3.1. For any $x, v \in E_{1}, \beta \in E_{L+1}$, and $i \in[L]$,

$$
\begin{equation*}
\nabla_{\theta_{i}} R(x ; \theta)=\left(\nabla_{\theta_{i}} \mathrm{D} F(x ; \theta)\llcorner v)^{*} \cdot(\mathrm{D} F(x ; \theta) \cdot v-\beta),\right. \tag{3.15}
\end{equation*}
$$

with R defined as in (3.12).
Proof. For any $U_{i} \in H_{i}$,

$$
\begin{aligned}
\nabla_{\theta_{i}} R(x ; \theta) \cdot U_{i} & =\left\langle\mathrm{D} F(x ; \theta) \cdot v-\beta, \nabla_{\theta_{i}} \mathrm{D} F(x ; \theta) \cdot\left(U_{i}, v\right)\right\rangle \\
& =\left\langle\mathrm{D} F(x ; \theta) \cdot v-\beta,\left(\nabla_{\theta_{i}} \mathrm{D} F(x ; \theta)\llcorner v) \cdot U_{i}\right\rangle\right. \\
& =\left\langle\left(\nabla_{\theta_{i}} \mathrm{D} F(x ; \theta)\llcorner v)^{*} \cdot(\mathrm{D} F(x ; \theta) \cdot v-\beta), U_{i}\right\rangle .\right.
\end{aligned}
$$

Thus, (3.15) follows from the canonical isomorphism as employed in Theorem 3.2.2.

[^7]We need to present some preliminary results before actually computing (3.15). In particular, we will show how we can use our previous results to compute $\left(\nabla_{\theta_{i}} \mathrm{D} F(x ; \theta)\llcorner v)^{*}\right.$.
Lemma 3.3.2. For any $x \in E_{1}$ and $i \in[L]$,

$$
\mathrm{D} \alpha_{i}(x)=\mathrm{D} f_{i}\left(x_{i}\right) \cdot \mathrm{D} \alpha_{i-1}(x)
$$

where α_{i} is defined in (3.2) and $x_{i}=\alpha_{i-1}(x)$.
Proof. This is proven using the chain rule (2.3), since $\alpha_{i}=f_{i} \circ \alpha_{i-1}$ for all $i \in[L]$.
Note that $\mathrm{D} \alpha_{L}=\mathrm{D} F$ since $\alpha_{L}=F$, which means that we require Lemma 3.3.2 to calculate $\mathrm{D} F(x ; \theta) \cdot v$. Lemma 3.3.2 compactly defines forward propagation through the tangent network in the spirit of [72]. Unsurprisingly, forward propagation through the tangent network is simply the derivative of forward propagation through the base network. This will be a recurring theme throughout this section: new results for the higher-order loss will emerge as derivatives of results from the previous section. Tangent backpropagation shares this property and we will see why this is true in the next theorem.

Theorem 3.3.3 (Tangent Backpropagation). For any $x, v \in E_{1}$,

$$
\begin{align*}
\left.\left(\left(\mathrm{D} \alpha_{i-1}(x) \cdot v\right)\right\lrcorner \mathrm{D}^{2} \omega_{i}\left(x_{i}\right)\right)^{*}= & \left.\mathrm{D}^{*} f_{i}\left(x_{i}\right) \cdot\left(\left(\mathrm{D} \alpha_{i}(x) \cdot v\right)\right\lrcorner \mathrm{D}^{2} \omega_{i+1}\left(x_{i+1}\right)\right)^{*} \tag{3.16}\\
& \left.+\left(\left(\mathrm{D} \alpha_{i-1}(x) \cdot v\right)\right\lrcorner \mathrm{D}^{2} f_{i}\left(x_{i}\right)\right)^{*} \cdot \mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right),
\end{align*}
$$

where α_{i} is defined in (3.2), ω_{i} is defined in (3.3), and $i \in[L]$. Also,

$$
\begin{equation*}
\left.\left(\left(\mathrm{D} \alpha_{L}(x) \cdot v\right)\right\lrcorner \mathrm{D}^{2} \omega_{i+1}\left(x_{i+1}\right)\right)^{*}=0 \tag{3.17}
\end{equation*}
$$

Proof. First of all, by Lemma 2.2.2, we know that for any $e \in E_{L+1}$,

$$
\begin{equation*}
\left.\mathrm{D}\left(\mathrm{D}^{*} \omega_{i}\left(\alpha_{i-1}(x)\right) \cdot e\right) \cdot v=\left(\left(\mathrm{D} \alpha_{i-1}(x) \cdot v\right)\right\lrcorner \mathrm{D}^{2} \omega_{i}\left(\alpha_{i-1}(x)\right)\right)^{*} \cdot e \tag{3.18}
\end{equation*}
$$

which is the left-hand-side of (3.16) applied to a vector e. Now, recall the generic backpropagation rule from Theorem 3.2.5, i.e.

$$
\begin{equation*}
\mathrm{D}^{*} \omega_{i}\left(\alpha_{i-1}(x)\right)=\mathrm{D}^{*} f_{i}\left(\alpha_{i-1}(x)\right) \cdot \mathrm{D}^{*} \omega_{i+1}\left(\alpha_{i}(x)\right), \tag{3.19}
\end{equation*}
$$

where we have explicitly written $\alpha_{i}(x)$ in place of x_{i+1}. Then, if we apply the right-handside of (3.19) to a generic vector e and take its derivative in the direction of v, we obtain

$$
\begin{align*}
& \mathrm{D}\left(\mathrm{D}^{*} f_{i}\left(\alpha_{i-1}(x)\right) \cdot \mathrm{D}^{*} \omega_{i+1}\left(\alpha_{i}(x)\right) \cdot e\right) \cdot v \\
& \left.\quad=\left(\left(\mathrm{D} \alpha_{i-1}(x) \cdot v\right)\right\lrcorner \mathrm{D}^{2} f_{i}\left(\alpha_{i-1}(x)\right)\right)^{*} \cdot \mathrm{D}^{*} \omega_{i+1}\left(\alpha_{i}(x)\right) \cdot e \tag{3.20}\\
& \left.\quad+\mathrm{D}^{*} f_{i}\left(\alpha_{i-1}(x)\right) \cdot\left(\left(\mathrm{D} \alpha_{i}(x) \cdot v\right)\right\lrcorner \mathrm{D}^{2} \omega_{i+1}\left(\alpha_{i}(x)\right)\right)^{*} \cdot e
\end{align*}
$$

where we rely on the product rule and the results from Lemma 2.2.2 again. Then, since the left-hand-sides of (3.18) and (3.20) are equal by (3.19), their right-hand-sides must also be equal. This shows that (3.16) holds upon making the substitution that $x_{i}=\alpha_{i-1}(x)$ and $x_{i+1}=\alpha_{i}(x)$.

Also, (3.17) holds since ω_{L+1} is the identity, implying that its second derivative map (and thus also the adjoint) is the zero map.

We can use Theorem 3.3.3 to backpropagate the tangent error $\mathrm{D} F(x ; \theta) \cdot v-\beta$ throughout the network at each layer i analogously to how we can use Theorem 3.2 .5 to backpropagate the error vector $\hat{y}_{R}-y$ at each layer $i .{ }^{2}$ Since we now understand the forward and backward propagation of tangent vectors, we can finally compute $\left(\nabla_{\theta_{i}} \mathrm{DF}(x ; \theta)\llcorner v)^{*}\right.$ for any $v \in E_{1}$ and $i \in[L]$; this is the main result of this section and is presented in Theorem 3.3.4.
Theorem 3.3.4. For any $x, v \in E_{1}$ and $i \in[L]$,

$$
\begin{align*}
\left(\nabla_{\theta_{i}} \mathrm{D} F(x ; \theta)\llcorner v)^{*}=\right. & \left.\nabla_{\theta_{i}}^{*} f_{i}\left(x_{i}\right) \cdot\left(\left(\mathrm{D} \alpha_{i}(x) \cdot v\right)\right\lrcorner \mathrm{D}^{2} \omega_{i+1}\left(x_{i+1}\right)\right)^{*} \tag{3.21}\\
& \left.+\left(\left(\mathrm{D} \alpha_{i-1}(x) \cdot v\right)\right\lrcorner \mathrm{D} \nabla_{\theta_{i}} f_{i}\left(x_{i}\right)\right)^{*} \cdot \mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right),
\end{align*}
$$

where F is defined in (3.1), α_{i} is defined in (3.2), and ω_{i} is defined in (3.3).
Proof. We will prove this in a similar manner to the proof of Theorem 3.3.3. Referring to Lemma 2.3.2, we can see that for any $e \in E_{L+1}$,

$$
\begin{equation*}
\mathrm{D}\left(\nabla_{\theta_{i}}^{*} F(x ; \theta) \cdot e\right) \cdot v=\left(\nabla_{\theta_{i}} \mathrm{D} F(x ; \theta)\llcorner v)^{*} \cdot e .\right. \tag{3.22}
\end{equation*}
$$

Furthermore, from Lemma 3.2.1, we know that

$$
\begin{equation*}
\nabla_{\theta_{i}}^{*} F(x ; \theta) \cdot e=\nabla_{\theta_{i}^{*}} f_{i}\left(\alpha_{i-1}(x)\right) \cdot \mathrm{D}^{*} \omega_{i+1}\left(\alpha_{i}(x)\right) \cdot e . \tag{3.23}
\end{equation*}
$$

Then, if we apply the right-hand-side of (3.23) to a generic vector e and take its derivative in the direction of v, we obtain

$$
\begin{align*}
& \mathrm{D}\left(\nabla_{\theta_{i}}^{*} f_{i}\left(\alpha_{i-1}(x)\right) \cdot \mathrm{D}^{*} \omega_{i+1}\left(\alpha_{i}(x)\right) \cdot e\right) \cdot v \\
&\left.\quad=\left(\left(\mathrm{D} \alpha_{i-1}(x) \cdot v\right)\right\lrcorner \mathrm{D} \nabla_{\theta_{i}} f_{i}\left(\alpha_{i-1}(x)\right)\right)^{*} \cdot \mathrm{D}^{*} \omega_{i+1}\left(\alpha_{i}(x)\right) \cdot e \tag{3.24}\\
&\left.\quad+\nabla_{\theta_{i}}^{*} f_{i}\left(\alpha_{i-1}(x)\right) \cdot\left(\left(\mathrm{D} \alpha_{i}(x) \cdot v\right)\right\lrcorner \mathrm{D}^{2} \omega_{i+1}\left(\alpha_{i}(x)\right)\right)^{*} \cdot e,
\end{align*}
$$

where we rely on the product rule and Lemma 2.3.2. Then, as in the proof of Theorem 3.3.3, since the left-hand-sides of (3.22) and (3.24) are equal by (3.23), their right-hand-sides must also be equal. This shows that (3.21) holds upon making the substitutions $x_{i}=\alpha_{i-1}(x)$ and $x_{i+1}=\alpha_{i}(x)$.

[^8]
3.3.1 Gradient Descent Step Algorithm

Algorithm 3.3.1 describes how to perform one step of gradient descent for the higher-order loss function \mathcal{J}_{H}. The inputs to the algorithm are a superset of the ones for Algorithm 3.2.1, with the new inputs being: the input tangent vector $v \in E_{1}$, the desired tangent vector $\beta \in E_{L+1}$, and the weight of the higher-order term $\mu \in \mathbb{R}_{\geq 0}$. The output is again an updated set of weights θ.

The algorithm proceeds by performing both types of forward propagation from lines 4-6. Then, three variants of backpropagation at each layer i are used to calculate the required derivatives:

- The high-order tangent error $\left.e_{i}^{t}=\left(\left(\mathrm{D} \alpha_{i}(x) \cdot v\right)\right\lrcorner \mathrm{D}^{2} \omega_{i+1}\left(x_{i+1}\right)\right)^{*} \cdot(\mathrm{D} F(x ; \theta) \cdot v-\beta)$, calculated via (3.16) and used in (3.21)
- The low-order tangent error $e_{i}^{v}=\mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot(\mathrm{D} F(x ; \theta) \cdot v-\beta)$, calculated via (3.11) and used in both (3.16) and (3.21)
- The normal backpropagation error $e_{i}^{y}=\mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot(F(x ; \theta)-y)$, calculated via (3.11) and used in (3.5)

Each of these three quantities is calculated recursively from $i=L$ to $i=1$. At level $i=L$, we initialize the high-order tangent error to the zero vector because of (3.17), the low-order tangent error to $\mathrm{D} F(x ; \theta) \cdot v-\beta$ because $\mathrm{D}^{*} \omega_{L+1}\left(x_{L+1}\right)=$ id, and the normal backpropagation error to $F(x ; \theta)-y$ (as in Algorithm 3.2.1's regression case - there it is just e_{i}) again because $\mathrm{D}^{*} \omega_{L+1}\left(x_{L+1}\right)=\mathrm{id}$. We can then use the three backpropagated quantities to calculate $\nabla_{\theta_{i}} J_{R}(x, y ; \theta)$ and $\nabla_{\theta_{i}} R(x ; \theta)$, which eventually allows us to compute $\nabla_{\theta_{i}} \mathcal{J}_{H}(x, y ; \theta)=\nabla_{\theta_{i}} J_{R}(x, y ; \theta)+\mu \nabla_{\theta_{i}} R(x ; \theta)$ for each i and update the weights.

The extensions of Algorithm 3.2.1 to a batch of input points, more complicated gradient descent methods, and ℓ_{2} regularization also apply here. Furthermore, we can linearly extend this algorithm to calculate the derivatives for R defined with multiple terms as in (3.14).

3.4 Conclusion

In this section, we have developed a generic mathematical framework for layered neural networks. We have calculated derivatives with respect to the parameters of each layer for

```
Algorithm 3.3.1 One iteration of gradient descent for a higher-order loss function
    function GradDeschighOrderNN \((x, y, v, \beta, \theta, \eta, \mu)\)
        \(x_{1} \leftarrow x\)
        \(v_{1} \leftarrow v \quad \triangleright v_{i}=\mathrm{D} \alpha_{i-1}(x) \cdot v\) and \(\mathrm{D} \alpha_{0}(x)=\mathrm{id}\)
        for \(i \in\{1, \ldots, L\}\) do \(\triangleright x_{L+1}=F(x ; \theta)\) and \(v_{L+1}=\mathrm{D} F(x ; \theta) \cdot v\)
            \(x_{i+1} \leftarrow f_{i}\left(x_{i}\right)\)
            \(v_{i+1} \leftarrow \mathrm{D} f_{i}\left(x_{i}\right) \cdot v_{i} \quad \triangleright\) Lemma 3.3.2
        for \(\underset{\tilde{\theta}_{i}}{i}\{L, \ldots, 1\}\) do
            \(\tilde{\theta}_{i} \leftarrow \theta_{i}\)
            if \(i=L\) then \(\quad \triangleright\) Initialization of \(e_{i}\) 's
                    \(e_{L}^{t} \leftarrow 0\)
                    \(e_{L}^{v} \leftarrow v_{L+1}-\beta\)
                    \(e_{L}^{y} \leftarrow x_{L+1}-y\)
            else
                    \(\triangleright\) Calculate \(\mathrm{D}^{*} f_{i+1}\left(x_{i+1}\right)\) with \(\tilde{\theta}_{i+1}\)
                    \(\left.e_{i}^{t} \leftarrow \mathrm{D}^{*} f_{i+1}\left(x_{i+1}\right) \cdot e_{i+1}^{t}+\left(v_{i+1}\right\lrcorner \mathrm{D}^{2} f_{i+1}\left(x_{i+1}\right)\right)^{*} \cdot e_{i+1}^{v} \quad \triangleright\) High-Order Tangent
                    \(e_{i}^{v} \leftarrow \mathrm{D}^{*} f_{i+1}\left(x_{i+1}\right) \cdot e_{i+1}^{v} \quad \triangleright\) Low-Order Tangent
                    \(e_{i}^{y} \leftarrow \mathrm{D}^{*} f_{i+1}\left(x_{i+1}\right) \cdot e_{i+1}^{y} \quad \triangleright\) Standard backpropagation
            \(\nabla_{\theta_{i}} J_{R}(x, y ; \theta) \leftarrow \nabla_{\theta_{i}}^{*} f_{i}\left(x_{i}\right) \cdot e_{i}^{y}\)
            \(\left.\nabla_{\theta_{i}} R(x ; \theta) \leftarrow \nabla_{\theta_{i}}^{*} f_{i}\left(x_{i}\right) \cdot e_{i}^{t}+\left(v_{i}\right\lrcorner \mathrm{D} \nabla_{\theta_{i}} f_{i}\left(x_{i}\right)\right)^{*} \cdot e_{i}^{v}\)
            \(\theta_{i} \leftarrow \theta_{i}-\eta\left(\nabla_{\theta_{i}} J_{R}(x, y ; \theta)+\mu \nabla_{\theta_{i}} R(x ; \theta)\right) \quad \triangleright\) Parameter update step
        return \(\theta\)
```

standard loss functions, demonstrating to do this directly over the vector space in which the parameters are defined. We have also done this with a higher-order loss function, which shows the flexibility of the developed framework. We will use this generic framework to represent specific network structures in the next chapter.

Chapter 4

Specific Network Descriptions

We developed an algebraic framework for a generic layered network in the preceding chapter, including a method to express error backpropagation and loss function derivatives directly over the inner product space in which the network parameters are defined. We will dedicate this chapter to expressing three common neural network structures within this generic framework: the Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), and Deep Auto-Encoder (DAE). To do this, we must first define the input and parameter spaces - E_{i} and H_{i} in the context of the previous chapter - and the layerwise function $f_{i}: E_{i} \times H_{i} \rightarrow E_{i+1}$, for each layer $i \in[L]$. We will then calculate $\mathrm{D}^{*} f_{i}$ and $\nabla_{\theta_{i}}^{*} f_{i}$, for each layer i and each of the parameters θ_{i}, and insert these results into Theorems 3.2.2, 3.2.4 and 3.2.5 in order to generate an algorithm for a single step of gradient descent similar to Algorithm 3.2.1.

The exact layout of this chapter is as follows. We will first explore the simple case of the MLP, deriving the canonical vector-valued form of backpropagation along the way. Then, we shift our attention to the CNN. Here, our layerwise function is far more complicated, as our inputs and parameters are in tensor product spaces, and thus we require more complex operations to combine the inputs and the parameters. CNNs still fit squarely in the framework of section 3.1. The final network that we consider in this chapter, the DAE, does not fit as easily into that framework, as the parameters at any given layer have a deterministic relationship with the parameters at exactly one other layer, violating the assumption of parametric independence between layers. We will be able to overcome this issue, however, with a small adjustment to the framework.

4.1 Multilayer Perceptron

The first specific network that we will formulate is the standard MLP, comprised of multiple layers of Rosenblatt's perceptron [62]. These are layered models in which we generate each component ${ }^{1}$ of the input to the current layer by taking a weighted sum of the outputs of the previous layer and then applying an elementwise nonlinearity. We will review the standard result expressing the layerwise function using matrix multiplication, and we will also demonstrate how to use the framework from the previous chapter to calculate the gradient directly over the space of matrices in which the parameters are defined. We will also recover the forward and backpropagation algorithms described in [19, Algorithms 6.3 and 6.4], combined together here in Algorithm 4.1.1, but we will have arrived at them from the generic algebraic formulation in section 3.1.

4.1.1 Formulation

We will begin with specifying the spaces in which we will be working at each layer of the neural network. Suppose we choose our network to have L layers, and our input x and known response y have n_{1} and n_{L+1} components, respectively. Then, if we choose each of the other layers to take in inputs of size $n_{i}, 2 \leq i \leq L$, we will have that the spaces E_{i} as described in section 3.1 can each be given by $\mathbb{R}^{n_{i}}$, for all $i \in[L+1]$. The parameters at each layer i are the weight matrix $W_{i} \in \mathbb{R}^{n_{i+1} \times n_{i}}$ and the bias vector $b_{i} \in \mathbb{R}^{n_{i+1}}$. We thus have that each H_{i} from section 3.1 is given by $\mathbb{R}^{n_{i+1} \times n_{i}} \times \mathbb{R}^{n_{i+1}}$ for every $i \in[L]$. We will equip each E_{i} and H_{i} with the standard Euclidean inner product $\langle A, B\rangle \equiv \operatorname{tr}\left(A \cdot B^{T}\right)$.

Recall the generic layerwise function $f_{i}: E_{i} \times H_{i} \rightarrow E_{i+1}$. In the MLP, we can explicitly write $f_{i}: \mathbb{R}^{n_{i}} \times\left(\mathbb{R}^{n_{i+1} \times n_{i}} \times \mathbb{R}^{n_{i+1}}\right) \rightarrow \mathbb{R}^{n_{i+1}}$ as

$$
\begin{equation*}
f_{i}\left(x_{i} ; W_{i}, b_{i}\right)=\Psi_{i}\left(W_{i} \cdot x_{i}+b_{i}\right) \tag{4.1}
\end{equation*}
$$

for any $x_{i} \in \mathbb{R}^{n_{i}}, W_{i} \in \mathbb{R}^{n_{i+1} \times n_{i}}$, and $b_{i} \in \mathbb{R}^{n_{i+1}}$, where $\Psi_{i}: \mathbb{R}^{n_{i+1}} \rightarrow \mathbb{R}^{n_{i+1}}$ is an elementwise function with elementwise operation $\psi_{i}: \mathbb{R} \rightarrow \mathbb{R}$ and \cdot denotes matrix-vector multiplication. We often suppress the dependence of f_{i} on the parameters, as before, by writing

$$
f_{i}\left(x_{i}\right) \equiv f_{i}\left(x_{i} ; W_{i}, b_{i}\right)
$$

to clarify the meaning of the composition of several layerwise functions. We will define the output of the neural network, $F(x ; \theta) \in \mathbb{R}^{n_{L+1}}$, as in (3.1), substituting the specific form of

[^9]f_{i} defined in (4.1) at each layer. We will also retain the definitions of $\alpha_{i}: \mathbb{R}^{n_{1}} \rightarrow \mathbb{R}^{n_{i+1}}$ and $\omega_{i}: \mathbb{R}^{n_{i}} \rightarrow \mathbb{R}^{n_{L+1}}$ as in (3.2) and (3.3), respectively.

Remark 4.1.1. The map Ψ_{i} depends on the choice of elementwise operation ψ_{i}. We present the most popular basic choices and their derivatives in Table 4.1. Note that H is the Heaviside step function, and sinh and cosh are the hyperbolic sine and cosine functions, respectively. Table 4.1 is not a complete description of all possible nonlinearities.

Table 4.1: Common elementwise nonlinearities, along with their first derivatives

Name	Definition	First Derivative
tanh	$\psi_{i}(x) \equiv \frac{\sinh (x)}{\cosh (x)}$	$\psi_{i}^{\prime}(x)=\frac{4 \cosh ^{2}(x)}{(\cosh (2 x)+1)^{2}}$
Sigmoid	$\psi_{i}(x) \equiv \frac{1}{1+\exp (-x)}$	$\psi_{i}^{\prime}(x)=\psi_{i}(x)\left(1-\psi_{i}(x)\right)$
ReLU	$\psi_{i}(x) \equiv \max (0, x)$	$\psi_{i}^{\prime}(x)=H(x)$

4.1.2 Single-Layer Derivatives

To apply the gradient descent framework derived in section 3.2 to either of the standard loss functions in the context of MLP, we only need to calculate $\mathrm{D}^{*} f_{i}, \nabla_{W_{i}}^{*} f_{i}$, and $\nabla_{b_{i}}^{*} f_{i}$, for all $i \in[L]$, where f_{i} is given by (4.1). We will see how to do this in Lemmas 4.1.2 and 4.1.3: the former containing the derivative maps, and the latter containing their adjoints.

Lemma 4.1.2. For any $x_{i} \in \mathbb{R}^{n_{i}}$ and $U_{i} \in \mathbb{R}^{n_{i+1} \times n_{i}}$,

$$
\begin{align*}
\nabla_{W_{i}} f_{i}\left(x_{i}\right) \cdot U_{i} & =\mathrm{D} \Psi_{i}\left(z_{i}\right) \cdot U_{i} \cdot x_{i} \tag{4.2}\\
\nabla_{b_{i}} f_{i}\left(x_{i}\right) & =\mathrm{D} \Psi_{i}\left(z_{i}\right) \tag{4.3}
\end{align*}
$$

where $z_{i}=W_{i} \cdot x_{i}+b_{i}, f_{i}$ is defined in (4.1), and $i \in[L]$. Furthermore,

$$
\begin{equation*}
\mathrm{D} f_{i}\left(x_{i}\right)=\mathrm{D} \Psi_{i}\left(z_{i}\right) \cdot W_{i} . \tag{4.4}
\end{equation*}
$$

Proof. Equations (4.2) and (4.3) are both consequences of the chain rule in (2.8), while equation (4.4) is a consequence of the chain rule in (2.3).

Lemma 4.1.3. For any $x_{i} \in \mathbb{R}^{n_{i}}$ and $u \in \mathbb{R}^{n_{i+1}}$,

$$
\begin{equation*}
\nabla_{W_{i}}^{*} f_{i}\left(x_{i}\right) \cdot u=\left(\Psi_{i}^{\prime}\left(z_{i}\right) \odot u\right) x_{i}^{T} \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{b_{i}}^{*} f_{i}\left(x_{i}\right)=\mathrm{D} \Psi_{i}\left(z_{i}\right), \tag{4.6}
\end{equation*}
$$

where $z_{i}=W_{i} \cdot x_{i}+b_{i}, f_{i}$ is defined as in (4.1), and $i \in[L]$. Furthermore,

$$
\begin{equation*}
\mathrm{D}^{*} f_{i}\left(x_{i}\right)=W_{i}^{T} \cdot \mathrm{D} \Psi_{i}\left(z_{i}\right) \tag{4.7}
\end{equation*}
$$

Proof. By (4.2), for any $u \in \mathbb{R}^{n_{i+1}}$ and any $U_{i} \in \mathbb{R}^{n_{i+1} \times n_{i}}$,

$$
\begin{aligned}
\left\langle u, \nabla_{W_{i}} f_{i}\left(x_{i}\right) \cdot U_{i}\right\rangle & =\left\langle z, \mathrm{D} \Psi_{i}\left(z_{i}\right) \cdot U_{i} \cdot x_{i}\right\rangle \\
& =\left\langle\mathrm{D} \Psi_{i}\left(z_{i}\right) \cdot u, U_{i} \cdot x_{i}\right\rangle \\
& =\left\langle\left(\mathrm{D} \Psi_{i}\left(z_{i}\right) \cdot u\right) x_{i}^{T}, U_{i}\right\rangle
\end{aligned}
$$

where the third equality arises from the cyclic property of the trace. Since this is true for all $U_{i} \in \mathbb{R}^{n_{i+1} \times n_{i}}$,

$$
\nabla_{W_{i}}^{*} f_{i}\left(x_{i}\right) \cdot u=\left(\mathrm{D} \Psi_{i}\left(z_{i}\right) \cdot u\right) x_{i}^{T}=\left(\Psi_{i}^{\prime}\left(z_{i}\right) \odot u\right) x_{i}^{T},
$$

which proves (4.5). We can easily derive (4.6) from (4.3) by taking the adjoint and using the fact that $\mathrm{D} \Psi_{i}\left(z_{i}\right)$ is self-adjoint (Proposition 2.4.1). Finally, we can derive (4.7) from (4.4) by taking the adjoint, using the self-adjointness of $\mathrm{D} \Psi_{i}\left(z_{i}\right)$, and noting that the adjoint of multiplication by a matrix W is simply multiplication by its transpose under the standard inner product.

A quick note on Lemma 4.1.3: in (4.5), we are multiplying a column vector in $\mathbb{R}^{n_{i+1}}$ on the left with a row vector in $\mathbb{R}^{n_{i}}$ on the right, which results in a matrix in $\mathbb{R}^{n_{i+1} \times n_{i}}$ - exactly the same space in which W_{i} resides. We will also encounter this in (4.9) in the next section.

4.1.3 Loss Functions and Gradient Descent

In this section, we will see how to insert the results from the previous sections into the generic results given in Theorems 3.2.2, 3.2.4 and 3.2.5. This will allow us to recover a gradient descent algorithm for MLPs from the generic algorithm given in Algorithm 3.2.1. To this end, we will first describe error backpropagation as it pertains to MLPs in Theorem 4.1.4, and then compute the full loss function derivatives afterwards.

Theorem 4.1.4 (Backpropagation in MLP). For f_{i} defined as in (4.1), ω_{i} from (3.3), and any $e \in \mathbb{R}^{n_{L+1}}$,

$$
\begin{equation*}
\mathrm{D}^{*} \omega_{i}\left(x_{i}\right) \cdot e=W_{i}^{T} \cdot\left[\Psi_{i}^{\prime}\left(z_{i}\right) \odot\left(\mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot e\right)\right] \tag{4.8}
\end{equation*}
$$

where $x_{i+1}=f_{i}\left(x_{i}\right)$ and $z_{i}=W_{i} \cdot x_{i}+b_{i}$, for all $i \in[L]$.

Proof. By Theorem 3.2.5 and equation (4.7), for any $i \in[L]$,

$$
\begin{aligned}
\mathrm{D}^{*} \omega_{i}\left(x_{i}\right) \cdot e & =\mathrm{D}^{*} f_{i}\left(x_{i}\right) \cdot \mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot e \\
& =W_{i}^{T} \cdot \mathrm{D} \Psi_{i}\left(z_{i}\right) \cdot \mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot e
\end{aligned}
$$

Once we evaluate $\mathrm{D} \Psi_{i}\left(z_{i}\right)$ as in Proposition 2.4.1, the proof is complete.
Theorem 4.1.5 (Loss Function Gradients in MLP). Let J be either J_{R}, as defined in (3.6), or J_{C}, as defined in (3.9). Let $(x, y) \in E_{1} \times E_{L+1}$ be a network input-response pair, and the parameters be represented by $\theta=\left\{W_{1}, \ldots, W_{L}, b_{1}, \ldots, b_{L}\right\}$. Then, the following equations hold for any $i \in[L]$:

$$
\begin{align*}
\nabla_{W_{i}} J(x, y ; \theta) & =\left[\Psi_{i}^{\prime}\left(z_{i}\right) \odot\left(\mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot e\right)\right] x_{i}^{T} \tag{4.9}\\
\nabla_{b_{i}} J(x, y ; \theta) & =\Psi_{i}^{\prime}\left(z_{i}\right) \odot\left(\mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot e\right), \tag{4.10}
\end{align*}
$$

where $x_{i}=\alpha_{i-1}(x), z_{i}=W_{i} \cdot x_{i}+b_{i}$, and the prediction error is

$$
e= \begin{cases}F(x ; \theta)-y, & \text { for regression } \tag{4.11}\\ \sigma(F(x ; \theta))-y, & \text { for classification }\end{cases}
$$

for F defined in (3.1) and σ defined in (2.15).
Proof. By Theorems 3.2.2 and 3.2.4, for all $i \in[L]$ and $\theta \in\left\{W_{i}, b_{i}\right\}$,

$$
\nabla_{\theta_{i}} J(x, y ; \theta)=\nabla_{\theta_{i}}^{*} f_{i}\left(x_{i}\right) \cdot \mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot e,
$$

where e is defined as in (4.11) and J is either J_{R} or J_{C}. Then, we can substitute W_{i} or b_{i} in for θ_{i} within $\nabla_{\theta_{i}}^{*} f_{i}\left(x_{i}\right)$ and evaluate it according to Lemma 4.1.3:

$$
\begin{aligned}
\nabla_{W_{i}} J(x, y ; \theta) & =\nabla_{W_{i}}^{*} f_{i}\left(x_{i}\right) \cdot \mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot e=\left[\Psi_{i}^{\prime}\left(z_{i}\right) \odot\left(\mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot e\right)\right] x_{i}^{T} \\
\nabla_{b_{i}} J(x, y ; \theta) & =\nabla_{b_{i}}^{*} f_{i}\left(x_{i}\right) \cdot \mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot e=\mathrm{D} \Psi_{i}\left(z_{i}\right) \cdot \mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot e
\end{aligned}
$$

We can now complete the proof by evaluating $\mathrm{D} \Psi_{i}\left(z_{i}\right)$ in the second equation according to Proposition 2.4.1.

We now have all of the ingredients to build an algorithm for one step of gradient descent in an MLP, and we will do this by inserting the specific definitions of $f_{i}, \mathrm{D}^{*} f_{i}$ and $\nabla_{\theta_{i}}^{*} f_{i}$ into Algorithm 3.2.1 at each layer $i \in[L]$, where θ_{i} is W_{i} or b_{i}. The inputs are the network input $(x, y) \in \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{L+1}}$, the parameter set $\theta \equiv\left\{W_{1}, \ldots, W_{L}, b_{1}, \ldots b_{L}\right\}$,
the learning rate $\eta \in \mathbb{R}_{>0}$, and the type of problem being considered type ϵ \{regression, classification $\}$. We receive an updated parameter set upon completion of the algorithm. The extensions of Algorithm 3.2.1 to a batch of points, more complex versions of gradient descent, and regularization all apply here as well. We can also extend this algorithm to a higher-order loss function by calculating the second derivatives of f_{i} and inserting these into Algorithm 3.3.1 as in [10, Section 4.2], although we do not explicitly cover that in this thesis.

```
Algorithm 4.1.1 One iteration of gradient descent for an MLP
    function \(\operatorname{GradDescMLP}(x, y, \theta\), type, \(\eta)\)
        \(x_{1} \leftarrow x\)
        for \(i \in\{1, \ldots, L\}\) do \(\quad \triangleright x_{L+1}=F(x ; \theta)\)
        \(z_{i} \leftarrow W_{i} \cdot x_{i}+b_{i}\)
        \(x_{i+1} \leftarrow \Psi_{i}\left(z_{i}\right) \quad \triangleright\) Inserted specific definition of \(f_{i}\)
        for \(i \in\{L, \ldots, 1\}\) do
        \(\tilde{W}_{i} \leftarrow W_{i} \quad \triangleright\) Store old \(W_{i}\) for updating \(W_{i-1}\)
        if \(i=L\) and type \(=\) regression then
            \(e_{L} \leftarrow x_{L+1}-y\)
        else if \(i=L\) and type \(=\) classification then
            \(e_{L} \leftarrow \sigma\left(x_{L+1}\right)-y\)
        else
            \(e_{i} \leftarrow \tilde{W}_{i+1}^{T} \cdot\left(\Psi_{i+1}^{\prime}\left(z_{i+1}\right) \odot e_{i+1}\right) \quad \triangleright(4.8)\); MLP backpropagation
        \(\nabla_{b_{i}} J(x, y ; \theta) \leftarrow \Psi_{i}^{\prime}\left(z_{i}\right) \odot e_{i} \quad \triangleright(4.10)\); specific definition of \(\nabla_{b_{i}}^{*} f_{i}\left(x_{i}\right)\)
        \(\nabla_{W_{i}} J(x, y ; \theta) \leftarrow\left(\Psi_{i}^{\prime}\left(z_{i}\right) \odot e_{i}\right) x_{i}^{T} \quad \triangleright(4.9)\); specific definition of \(\nabla_{W_{i}}^{*} f_{i}\left(x_{i}\right)\)
        \(b_{i} \leftarrow b_{i}-\eta \nabla_{b_{i}} J(x, y ; \theta) \quad \triangleright\) Parameter update steps
        \(W_{i} \leftarrow W_{i}-\eta \nabla_{W_{i}} J(x, y ; \theta)\)
        return \(\theta\)
```


4.2 Convolutional Neural Networks

We will now investigate how to apply the generic neural network formulation from section 3.1 to a Convolutional Neural Network (CNN), which is more complicated than the MLP. The mathematical difficulties arise from handling multi-channel inputs and preserving the spatial dependence within matrices. However, once we can specify f_{i} to determine the related quantities $\mathrm{D}^{*} f_{i}$ and $\nabla_{\theta_{i}}^{*} f_{i}$, we can extend Algorithm 3.2.1 to the CNN case as
we did for MLP in the previous section. To achieve this goal, we will specify the space of inputs and parameters, describe how to express the actions of the multi-channel convolution, and then calculate derivatives and adjoints of each of these operations. This section is quite similar to our work from [9], but we have made additional refinements to emphasize the similarity to section 3.1. As far as we know, this is the only fully algebraic description of the CNN in the literature describing both the convolution and pooling operations.

4.2.1 Single Layer Formulation

We will structure this section differently than subsection 4.1.1. Instead of introducing the spaces first and then describing the layerwise function at each layer, we will operate in reverse order by describing the layerwise function first. One reason for this is that we will encounter intermediate spaces at each layer in the CNN, as opposed to the MLP, which can make the notation complicated if we also explicitly consider the layer number i in each computation.

We can describe the actions of a generic layer of a CNN as a parameter-dependent map that takes as input an m_{1}-channeled tensor, where each channel is a matrix of size $n_{1} \times \ell_{1}$, and outputs an m_{2}-channeled tensor, where each channel is a matrix of size $n_{2} \times \ell_{2}$. The parameters that we must learn through gradient descent are a set of m_{2} filters, each of size $p \times q .^{2}$ To represent the input, we will use a point $x \in \mathbb{R}^{n_{1} \times \ell_{1}} \otimes \mathbb{R}^{m_{1}}$, and we will represent the parameters as $W \in \mathbb{R}^{p \times q} \otimes \mathbb{R}^{m_{2}}$. Note that, in application, it is almost always the case that $p \ll n_{1}$ and $q \ll \ell_{1}$ - the filters are much smaller than the inputs. If we use $\left\{e_{j}\right\}_{j=1}^{m_{1}}$ to denote an orthonormal basis for $\mathbb{R}^{m_{1}}$, and $\left\{\bar{e}_{j}\right\}_{j=1}^{m_{2}}$ to denote an orthonormal basis for $\mathbb{R}^{m_{2}}$, we can write x and W as follows:

$$
x=\sum_{j=1}^{m_{1}} x_{j} \otimes e_{j}, \quad W=\sum_{j=1}^{m_{2}} W_{j} \otimes \bar{e}_{j},
$$

where we refer to each $x_{j} \in \mathbb{R}^{n_{1} \times \ell_{1}}$ as a feature map, and each $W_{j} \in \mathbb{R}^{p \times q}$ as a filter used in convolution. Then, we can write the generic layerwise function as $f:\left(\mathbb{R}^{n_{1} \times \ell_{1}} \otimes \mathbb{R}^{m_{1}}\right) \times$ $\left(\mathbb{R}^{p \times q} \otimes \mathbb{R}^{m_{2}}\right) \rightarrow \mathbb{R}^{n_{2} \times \ell_{2}} \otimes \mathbb{R}^{m_{2}}$, i.e.

$$
f(x ; W) \in \mathbb{R}^{n_{2} \times \ell_{2}} \otimes \mathbb{R}^{m_{2}}
$$

for all x and W as described above. We will specify the particular form of f in this section; it begins with specifying the convolution - which relies on a cropping operator -

[^10]applying an elementwise nonlinearity to the output of the convolution, and then applying max-pooling to that.

Note that, throughout this section, we will use $\left\{E_{j, k}\right\}_{j, k=1}^{n_{1}, \ell_{1}}$ to denote an orthonormal basis for $\mathbb{R}^{n_{1} \times \ell_{1}},\left\{\widetilde{E}_{j, k}\right\}_{j, k=1}^{p, q}$ denote an orthonormal basis for $\mathbb{R}^{p \times q},\left\{\bar{E}_{j, k}\right\}_{j, k=1}^{n_{2}, \ell_{2}}$ to denote an orthonormal basis for $\mathbb{R}^{n_{2} \times \ell_{2}}$, and $\left\{\widehat{E}_{j, k}\right\}_{j, k=1}^{\widehat{n}_{1}, \widehat{l}_{1}}$ to denote an orthonormal basis for the (intermediate, and as of yet undefined) space $\mathbb{R}^{\widehat{n_{1}} \times \overline{\ell_{1}}}$.

Cropping and Embedding Operators

We need to develop notation for cropping grid-based inputs before we are able to express the actions of convolution. We will thus introduce a linear cropping operation in this section. We will also derive its adjoint, which is given by an embedding operation, and is necessary for calculating $\nabla^{*} f$ and $\mathrm{D}^{*} f$.

We can define the cropping operator at index $(k, l), \mathcal{K}_{k, l} \in \mathcal{L}\left(\mathbb{R}^{n_{1} \times \ell_{1}} \otimes \mathbb{R}^{m_{1}} ; \mathbb{R}^{p \times q}\right)$, as

$$
\begin{equation*}
\mathcal{K}_{k, l}\left(\sum_{j=1}^{m_{1}} x_{j} \otimes e_{j}\right) \equiv \sum_{j=1}^{m_{1}} \kappa_{k, l}\left(x_{j}\right) \tag{4.12}
\end{equation*}
$$

where we define $\kappa_{k, l} \in \mathcal{L}\left(\mathbb{R}^{n_{1} \times \ell_{1}} ; \mathbb{R}^{p \times q}\right)$ as

$$
\begin{equation*}
\kappa_{k, l}\left(x_{j}\right) \equiv \sum_{s=1}^{p} \sum_{t=1}^{q}\left\langle x_{j}, E_{k+s-1, l+t-1}\right\rangle \widetilde{E}_{s, t} \tag{4.13}
\end{equation*}
$$

for any $k \in\left[n_{1}-p+1\right]$ and $l \in\left[\ell_{1}-q+1\right]$. When $\left\{E_{j, k}\right\}_{j, k}$ and $\left\{\widetilde{E}_{s, t}\right\}_{s, t}$ are standard bases of their respective spaces, $\kappa_{k, l}\left(x_{j}\right)$ is the $p \times q$ submatrix of x_{j}, containing the (k, l) to ($k+p-1, l+q-1$) elements of x_{j}, inclusive.

To find the adjoint of (4.13), we will first define the embedding operator at the index $(k, l), \operatorname{Em}_{k, l} \in \mathcal{L}\left(\mathbb{R}^{p \times q} ; \mathbb{R}^{n_{1} \times \ell_{1}}\right)$, as

$$
\begin{equation*}
\operatorname{Em}_{k, l}(y) \equiv \sum_{s=1}^{p} \sum_{t=1}^{q}\left\langle y, \widetilde{E}_{s, t}\right\rangle E_{k+s-1, l+t-1} \tag{4.14}
\end{equation*}
$$

for any $y \in \mathbb{R}^{p \times q}, k \in\left[n_{1}-p+1\right]$, and $l \in\left[\ell_{1}-q+1\right]$, which corresponds to embedding y into the zero matrix when $\left\{E_{j, k}\right\}_{j, k}$ is the standard basis. We will see how the adjoint of $\mathcal{K}_{k, l}$ relies on $\mathrm{Em}_{k, l}$ in Lemma 4.2.1.

Lemma 4.2.1. For any $y \in \mathbb{R}^{p \times q}$,

$$
\mathcal{K}_{k, l}^{*}(y)=\sum_{j=1}^{m_{1}} \operatorname{Em}_{k, l}(y) \otimes e_{j}
$$

where $\mathcal{K}_{k, l}$ is defined as in (4.12), $\operatorname{Em}_{k, l}$ is defined as in (4.14), $k \in\left[n_{1}-p+1\right]$, and $l \in\left[\ell_{1}-q+1\right]$.

Proof. For any $z \in \mathbb{R}^{n_{1} \times \ell_{1}}$,

$$
\begin{aligned}
\left\langle y, \kappa_{k, l}(z)\right\rangle & =\left\langle y, \sum_{s=1}^{p} \sum_{t=1}^{q}\left\langle z, E_{k+s-1, l+t-1}\right\rangle \widetilde{E}_{s, t}\right\rangle \\
& =\left\langle\sum_{s=1}^{p} \sum_{t=1}^{q}\left\langle y, \widetilde{E}_{s, t}\right\rangle E_{k+s-1, l+t-1}, z\right\rangle \\
& =\left\langle\operatorname{Em}_{k, l}(y), z\right\rangle,
\end{aligned}
$$

which proves that $\kappa_{k, l}^{*}(y)=\operatorname{Em}_{k, l}(y)$ for all $y \in \mathbb{R}^{p \times q}$.
Now, let $x=\sum_{j=1}^{m_{1}} x_{j} \otimes e_{j} \in \mathbb{R}^{n_{1} \times \ell_{1}} \otimes \mathbb{R}^{m_{1}}$. Then,

$$
\begin{aligned}
\left\langle z, \mathcal{K}_{k, l}(x)\right\rangle & =\sum_{j=1}^{m_{1}}\left\langle z, \kappa_{k, l}\left(x_{j}\right)\right\rangle \\
& =\sum_{j=1}^{m_{1}}\left\langle\kappa_{k, l}^{*}(z), x_{j}\right\rangle \\
& =\sum_{j=1}^{m_{1}}\left\langle\operatorname{Em}_{k, l}(z), x_{j}\right\rangle \\
& =\left\langle\sum_{j=1}^{m_{1}} \operatorname{Em}_{k, l}(z) \otimes e_{j}, x\right\rangle,
\end{aligned}
$$

where the last equation follows from (2.1). Thus we have completed the proof.

Convolution Operator

We will now use the cropping operator $\mathcal{K}_{k, l}$ to define the action of convolution. The convolution operator, which we will denote by C, is a bilinear map which convolves ${ }^{3}$ the

[^11]filters with the feature maps. More formally, we can write the convolution operator $C \in$ $\mathcal{L}\left(\mathbb{R}^{p \times q} \otimes \mathbb{R}^{m_{2}}, \mathbb{R}^{n_{1} \times \ell_{1}} \otimes \mathbb{R}^{m_{1}} ; \mathbb{R}^{\widehat{n}_{1} \times \overline{\ell_{1}}} \otimes \mathbb{R}^{m_{2}}\right)$ as
\[

$$
\begin{equation*}
C(W, x)=\sum_{j=1}^{m_{2}} c_{j}(W, x) \otimes \bar{e}_{j}, \tag{4.15}
\end{equation*}
$$

\]

where $c_{j} \in \mathcal{L}\left(\mathbb{R}^{p \times q} \otimes \mathbb{R}^{m_{2}}, \mathbb{R}^{n_{1} \times \ell_{1}} \otimes \mathbb{R}^{m_{1}} ; \mathbb{R}^{\widehat{n}_{1} \times \overline{\ell_{1}}}\right)$ is a bilinear operator that defines the mechanics of the convolution. We can explicitly write out c_{j} for all $j \in\left[m_{2}\right]$ by using the cropping operator:

$$
\begin{equation*}
c_{j}(W, x)=\sum_{k=1}^{\widehat{n}_{1}} \sum_{l=1}^{\widehat{l}_{1}}\left\langle W_{j}, \mathcal{K}_{\gamma(k, l, \Delta)}(x)\right\rangle \widehat{E}_{k, l} \tag{4.16}
\end{equation*}
$$

where $W=\sum_{j=1}^{m_{2}} W_{j} \otimes \bar{e}_{j}$,

$$
\begin{equation*}
\gamma(k, l, \Delta)=(1+(k-1) \Delta, 1+(l-1) \Delta), \tag{4.17}
\end{equation*}
$$

is shorthand for the indices of the crop operator, and $\Delta \in \mathbb{Z}_{>0}$ defines the stride of the convolution. ${ }^{4}$

Notice that $c_{j}(W, x)$ produces a new feature map for each $j \in\left[m_{2}\right]$, post-convolution, which means that we can view $C(W, x)$ as a stack of m_{2} feature maps, or an m_{2}-channeled tensor. Using (4.16) we can describe the convolution operator in the following way: first crop the input feature maps, convolve the cropped maps with the filter W_{j}, and then sum up the contributions to the feature map for each $k \in\left[\widehat{n}_{1}\right]$ and $l \in\left[\widehat{\ell}_{1}\right]$.

The next two theorems give us the adjoints of the operators $(C\llcorner x)$, $(W\lrcorner C)$, and ($W\lrcorner c_{j}$), which are all necessary for gradient calculations.
Theorem 4.2.2. Let $y=\sum_{j=1}^{m_{2}} y_{j} \otimes \bar{e}_{j} \in \mathbb{R}^{\widehat{n}_{1} \times \widehat{\ell}_{1}} \otimes \mathbb{R}^{m_{2}}$ and $x \in \mathbb{R}^{n_{1} \times \ell_{1}} \otimes \mathbb{R}^{m_{1}}$. Then,

$$
\left(C\llcorner x)^{*} \cdot y=\sum_{j=1}^{m_{2}}\left\{\sum_{k=1}^{\widehat{n}_{1}} \sum_{l=1}^{\widehat{l}_{1}}\left\langle y_{j}, \widehat{E}_{k, l}\right\rangle \mathcal{K}_{\gamma(k, l, \Delta)}(x)\right\} \otimes \bar{e}_{j},\right.
$$

where C is defined as in (4.15), $\gamma(k, l, \Delta)$ is defined as in (4.17), and $\mathcal{K}_{\gamma(k, l, \Delta)}$ is defined as in (4.12).

[^12]Proof. Let $U=\sum_{j=1}^{m_{2}} U_{j} \otimes \bar{e}_{j} \in \mathbb{R}^{p \times q} \otimes \mathbb{R}^{m_{2}}$. Then,

$$
\begin{aligned}
\langle y,(C\llcorner x) \cdot U\rangle & =\langle y, C(U, x)\rangle \\
& =\sum_{j=1}^{m_{2}}\left\langle y_{j}, c_{j}(U, x)\right\rangle \\
& =\sum_{j=1}^{m_{2}}\left\langle y_{j}, \sum_{k=1}^{\widehat{n}_{1}} \sum_{l=1}^{\widehat{l_{1}}}\left\langle U_{j}, \mathcal{K}_{\gamma(k, l, \Delta)}(x)\right\rangle \widehat{E}_{k, l}\right\rangle \\
& =\sum_{j=1}^{m_{2}} \sum_{k=1}^{\widehat{n}_{1}} \sum_{l=1}^{\widehat{l}_{1}}\left\langle y_{j}, \widehat{E}_{k, l}\right\rangle\left\langle\mathcal{K}_{\gamma(k, l, \Delta)}(x), U_{j}\right\rangle \\
& =\sum_{j=1}^{m_{2}}\left\langle\sum_{k=1}^{\widehat{n}_{1}} \sum_{l=1}^{\widehat{l_{1}}}\left\langle y_{j}, \widehat{E}_{k, l}\right\rangle \mathcal{K}_{\gamma(k, l, \Delta)}(x), U_{j}\right\rangle .
\end{aligned}
$$

Then, by equation (2.1), the proof is complete since this is true for any $U \in \mathbb{R}^{p \times q} \otimes \mathbb{R}^{m_{2}}$.
Theorem 4.2.3. Let $W=\sum_{j=1}^{m_{2}} W_{j} \otimes \bar{e}_{j} \in \mathbb{R}^{p \times q} \otimes \mathbb{R}^{m_{2}}$. Then, for any $y \in \mathbb{R}^{\widehat{n}_{1} \times \widehat{\ell}_{1}}$ and $j \in\left[m_{2}\right]$,

$$
\left.(W\lrcorner c_{j}\right)^{*} \cdot y=\sum_{k=1}^{\widehat{n}_{1}} \sum_{l=1}^{\widehat{l}_{1}}\left\langle y, \widehat{E}_{k, l}\right\rangle \mathcal{K}_{\gamma(k, l, \Delta)}^{*}\left(W_{j}\right),
$$

where c_{j} is defined as in (4.16), $\gamma(k, l, \Delta)$ is defined as in (4.17), and $\mathcal{K}_{\gamma(k, l, \Delta)}$ is defined as in (4.12). Furthermore, for any $z=\sum_{j=1}^{m_{2}} z_{j} \otimes \bar{e}_{j} \in \mathbb{R}^{\widehat{n}_{1} \times \bar{\ell}_{1}} \otimes \mathbb{R}^{m_{2}}$,

$$
\left.(W\lrcorner C)^{*} \cdot z=\sum_{j=1}^{m_{2}}(W\lrcorner c_{j}\right)^{*} \cdot z_{j}
$$

where C is defined as in (4.15).
Proof. Let $x \in \mathbb{R}^{n_{1} \times \ell_{1}} \otimes \mathbb{R}^{m_{1}}$. Then,

$$
\begin{aligned}
\left.\left\langle y,(W\lrcorner c_{j}\right) \cdot x\right\rangle & =\left\langle y, c_{j}(W, x)\right\rangle \\
& =\sum_{k=1}^{\widehat{n}_{1}} \sum_{l=1}^{\bar{Q}_{1}}\left\langle W_{j}, \mathcal{K}_{\gamma(k, l, \Delta)}(x)\right\rangle\left\langle y, \widehat{E}_{k, l}\right\rangle \\
& =\sum_{k=1}^{\widehat{n}_{1}} \sum_{l=1}^{\bar{Q}_{1}}\left\langle\left\langle y, \widehat{E}_{k, l}\right\rangle \mathcal{K}_{\gamma(k, l, \Delta)}^{*}\left(W_{j}\right), x\right\rangle,
\end{aligned}
$$

which proves the first equation. Also,

$$
\begin{aligned}
\langle z,(W\lrcorner C) \cdot x\rangle & =\langle z, C(W, x)\rangle \\
& =\sum_{j=1}^{m_{2}}\left\langle z_{j}, c_{j}(W, x)\right\rangle \\
& \left.=\sum_{j=1}^{m_{2}}\left\langle(W\lrcorner c_{j}\right)^{*} \cdot z_{j}, x\right\rangle \\
& \left.=\left\langle\sum_{j=1}^{m_{2}}(W\lrcorner c_{j}\right)^{*} \cdot z_{j}, x\right\rangle .
\end{aligned}
$$

Both of the above results are true for any $x \in \mathbb{R}^{n_{1} \times \ell_{1}} \otimes \mathbb{R}^{m_{1}}$, which completes the proof.

Max-Pooling Operator

The final piece of the layerwise function in a CNN is a pooling operation. In this thesis, we will describe the popular max-pooling operation; refer to [9] for a similar discussion on average pooling. Max-pooling is a nonlinear operation that outputs the maximum element in every disjoint $r \times r$ region in each feature map for some $r \in \mathbb{Z}_{>0}$. The effect of the maxpooling operation is to down-sample the feature maps to a smaller size. We can describe max-pooling using the map $\Phi: \mathbb{R}^{\widehat{n}_{1} \times \overline{\ell_{1}}} \otimes \mathbb{R}^{m_{2}} \rightarrow \mathbb{R}^{n_{2} \times \ell_{2}} \otimes \mathbb{R}^{m_{2}}$, for any $y=\sum_{j=1}^{m_{2}} y_{j} \otimes \bar{e}_{j}$, according to

$$
\begin{equation*}
\Phi(y) \equiv \sum_{j=1}^{m_{2}} \phi\left(y_{j}\right) \otimes \bar{e}_{j} \tag{4.18}
\end{equation*}
$$

$$
\begin{equation*}
\phi\left(y_{j}\right) \equiv \sum_{k=1}^{n_{2}} \sum_{l=1}^{\ell_{2}} \max \left(\kappa_{\gamma(k, l, r)}\left(y_{j}\right)\right) \bar{E}_{k, l} \tag{4.19}
\end{equation*}
$$

for all $y_{j} \in \mathbb{R}^{\widehat{n}_{1} \times \widehat{\ell_{1}}}$. Here, we have modified the map κ to take inputs in $\mathbb{R}^{\widehat{n}_{1} \times \widehat{\ell_{1}}}$ and produce a result in $\mathbb{R}^{r \times r}$, i.e. $\kappa_{\gamma(k, l, r)} \in \mathcal{L}\left(\mathbb{R}^{\widehat{n}_{1} \times \bar{\ell}_{1}} ; \mathbb{R}^{n_{2} \times \ell_{2}}\right)$ for all $k \in\left[n_{2}\right]$ and $l \in\left[\ell_{2}\right]$ in (4.19). ${ }^{5}$ The max in (4.19) calculates the max over an $r \times r$ region and outputs a single number, which we can express as follows: for any $z \in \mathbb{R}^{r \times r}$, with a minor abuse of notation,

$$
\begin{equation*}
\max (z) \equiv \max _{(k, l) \in[r] \times[r]}\left\langle z, \breve{E}_{k, l}\right\rangle, \tag{4.20}
\end{equation*}
$$

[^13]where $\left\{\breve{E}_{k, l}\right\}_{k, l=1}^{r}$ is an orthornomal basis for $\mathbb{R}^{r \times r}$.
Notice how we have defined Φ and ϕ in the same format as \mathcal{K} and $\kappa^{6}: \Phi$ operates over the tensor product space, and ϕ over matrices.

We will need to differentiate (4.19) and take its adjoint to compute the gradient descent algorithm. We will do this first for the max function, and then use this result for the derivative of (4.19).

Lemma 4.2.4. For any v and $z \in \mathbb{R}^{r \times r}$,

$$
\begin{equation*}
\operatorname{D} \max (z) \cdot v=\left\langle v, \breve{E}_{k^{*}, l^{*}}\right\rangle, \tag{4.21}
\end{equation*}
$$

where

$$
\left(k^{*}, l^{*}\right)=\underset{(k, l) \in[r] \times[r]}{\arg \max }\left\langle z, \breve{E}_{k, l}\right\rangle
$$

are the indices at which the maximum occurs.

Proof. We will use the definition of the derivative to prove (4.21):

$$
\begin{aligned}
\operatorname{Dmax}(z) \cdot v & =\left.\frac{\mathrm{d}}{\mathrm{~d} t} \max (z+t v)\right|_{t=0} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} t} \max _{(k, l) \in[r] \times[r]}\left\langle z+t v, \breve{E}_{k, l}\right\rangle\right|_{t=0} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle z+t v, \breve{E}_{k^{*}, l^{*}}\right\rangle\right|_{t=0} \\
& =\left\langle v, \breve{E}_{k^{*}, l^{*}}\right\rangle,
\end{aligned}
$$

where the third equality follows from the fact that $\max (z)$ outputs the maximum value of $\left\langle z, \breve{E}_{k, l}\right\rangle$ over all $(k, l) \in[r] \times[r]$, and the index of this maximum is unchanged after adding $t v$ to z.

Remark 4.2.5. In Lemma 4.2.4, we assume a unique maximum value. If the maximum value is not unique, i.e. there are multiple choices for $\left(k^{*}, l^{*}\right)$, we can either average the contributions from the argument of each maximum or pick one of the maximums at random. Neither of the two solutions changes the output of the max function; they only change its derivative. We will choose to use one of the maximums at random in this section when the maximum is non-unique for simplicity.

[^14]We will also quickly examine a result concerning the inner product of the cropping operator with a basis element, since this is a simplification which will prove useful in determining the derivative of (4.19).

Lemma 4.2.6. For any $z \in \mathbb{R}^{\widehat{n}_{1} \times \widehat{l_{1}}}, r \in \mathbb{Z}_{>0}$, and $k, l, k^{\prime}, l^{\prime} \in[r]$,

$$
\begin{equation*}
\left\langle\kappa_{\gamma(k, l, r)}(z), \breve{E}_{k^{\prime}, l^{\prime}}\right\rangle=\left\langle z, \widehat{E}_{k^{\prime}+(k-1) r, l^{\prime}+(l-1) r}\right\rangle, \tag{4.22}
\end{equation*}
$$

where $\kappa_{\gamma(k, l, r)} \in \mathcal{L}\left(\mathbb{R}^{\widehat{n}_{1} \times \widehat{l}_{1}} ; \mathbb{R}^{r \times r}\right)$, and $\gamma(k, l, r)$ is defined as in (4.17).
Proof. We will prove this directly from the definition of κ :

$$
\begin{aligned}
\left\langle\kappa_{\gamma(k, l, r)}(z), \breve{E}_{k^{\prime}, l^{\prime}}\right\rangle & =\left\langle\kappa_{1+(k-1) r, 1+(l-1) r}(z), \breve{E}_{k^{\prime}, l^{\prime}}\right\rangle \\
& =\left\langle\sum_{s, t=1}^{r}\left\langle z, \widehat{E}_{s+(k-1) r, t+(l-1) r}\right\rangle \breve{E}_{s, t}, \breve{E}_{k^{\prime}, l^{\prime}}\right\rangle \\
& =\sum_{s, t=1}^{r}\left\langle z, \widehat{E}_{s+(k-1) r, t+(l-1) r}\right\rangle\left\langle\breve{E}_{s, t}, \breve{E}_{k^{\prime}, l^{\prime}}\right\rangle \\
& =\left\langle z, \widehat{E}_{k^{\prime}+(k-1) r, l^{\prime}+(l-1) r}\right\rangle,
\end{aligned}
$$

where the last line follows from the fact that $\left\langle\breve{E}_{s, t}, \breve{E}_{k^{\prime}, l^{\prime}}\right\rangle=\delta_{s, k^{\prime}} \delta_{t, l^{\prime}}$ and δ is the Kronecker delta.

Let us introduce notation to make the indices of (4.22) easier to read:

$$
\begin{equation*}
\gamma^{\prime}\left(k, l, k^{\prime}, l^{\prime}, r\right) \equiv\left(k^{\prime}+(k-1) r, l^{\prime}+(l-1) r\right) . \tag{4.23}
\end{equation*}
$$

Now, we can finally take the derivatives and adjoint of (4.19), and the associated (4.18).
Theorem 4.2.7. Let ϕ be defined as in (4.19). Then, for any y_{j} and $v_{j} \in \mathbb{R}^{\widetilde{n}_{1} \times \overline{\ell_{1}}}$,

$$
\begin{equation*}
\mathrm{D} \phi\left(y_{j}\right) \cdot v_{j}=\sum_{k=1}^{n_{2}} \sum_{l=1}^{\ell_{2}}\left\langle v_{j}, \widehat{E}_{\gamma^{\prime}\left(k, l, k^{*}, l^{*}, r\right)}\right\rangle \bar{E}_{k, l}, \tag{4.24}
\end{equation*}
$$

where $\gamma^{\prime}\left(k, l, k^{*}, l^{*}, r\right)$ is defined in (4.23), and

$$
\begin{equation*}
\left(k^{*}, l^{*}\right)=\underset{\left(k^{\prime}, l^{\prime}\right) \in[r] \times[r]}{\arg \max }\left\langle y_{j}, \widehat{E}_{\gamma^{\prime}\left(k, l, k^{\prime}, l^{\prime}, r\right)}\right\rangle . \tag{4.25}
\end{equation*}
$$

Furthermore, for any $z_{j} \in \mathbb{R}^{n_{2} \times \ell_{2}}$,

$$
\begin{equation*}
\mathrm{D}^{*} \phi\left(y_{j}\right) \cdot z_{j}=\sum_{k=1}^{n_{2}} \sum_{l=1}^{\ell_{2}}\left\langle z_{j}, \bar{E}_{k, l}\right\rangle \widehat{E}_{\gamma^{\prime}\left(k, l, k^{*}, l^{*}, r\right)}, \tag{4.26}
\end{equation*}
$$

and for any $y=\sum_{j=1}^{m_{2}} y_{j} \otimes \bar{e}_{j} \in \mathbb{R}^{\widehat{n}_{1} \times \bar{\ell}_{1}} \otimes \mathbb{R}^{m_{2}}$ and $z=\sum_{j=1}^{m_{2}} z_{j} \otimes \bar{e}_{j} \in \mathbb{R}^{n_{2} \times \ell_{2}} \otimes \mathbb{R}^{m_{2}}$,

$$
\begin{equation*}
\mathrm{D}^{*} \Phi(y) \cdot z=\sum_{j=1}^{m_{2}}\left(\mathrm{D}^{*} \phi\left(y_{j}\right) \cdot z_{j}\right) \otimes \bar{e}_{j} \tag{4.27}
\end{equation*}
$$

Proof. From the definition of ϕ and by the linearity of the derivative,

$$
\mathrm{D} \phi\left(y_{j}\right) \cdot v_{j}=\sum_{k=1}^{n_{2}} \sum_{l=1}^{\ell_{2}}\left(\mathrm{D} \max \left(\kappa_{\gamma(k, l, r)}\left(y_{j}\right)\right) \cdot \kappa_{\gamma(k, l, r)}\left(v_{j}\right)\right) \bar{E}_{k, l} .
$$

We can evaluate the contents of the parentheses according to Lemma 4.2.4:

$$
\begin{aligned}
\operatorname{Dmax}\left(\kappa_{\gamma(k, l, r)}\left(y_{j}\right)\right) \cdot \kappa_{\gamma(k, l, r)}\left(v_{j}\right) & =\left\langle\kappa_{\gamma(k, l, r)}\left(v_{j}\right), \breve{E}_{k^{*}, l^{*}}\right\rangle \\
& =\left\langle v_{j}, \widehat{E}_{\gamma^{\prime}\left(k, l, k^{*}, l^{*}, r\right)}\right\rangle,
\end{aligned}
$$

where the second equality follows from (4.22), and

$$
\begin{aligned}
\left(k^{*}, l^{*}\right) & =\underset{\left(k^{\prime}, l^{\prime}\right) \in[r] \times[r]}{\arg \max }\left\langle\kappa_{\gamma(k, l, r)}\left(y_{j}\right), \breve{E}_{k^{\prime}, l^{\prime}}\right\rangle \\
& =\underset{\left(k^{\prime}, l^{\prime}\right) \in[r] \times[r]}{\arg \max }\left\langle y_{j}, \widehat{E}_{\gamma^{\prime}\left(k, l, k^{\prime}, l^{\prime}, r\right)}\right\rangle,
\end{aligned}
$$

with the second equality again following from (4.22). We have thus proven (4.24) and (4.25). Finding the adjoint is simply an exercise in linear algebra:

$$
\begin{aligned}
\left\langle z_{j}, \mathrm{D} \phi\left(y_{j}\right) \cdot v_{j}\right\rangle & =\sum_{k=1}^{n_{2}} \sum_{l=1}^{\ell_{2}}\left\langle z_{j}, \bar{E}_{k, l}\right\rangle\left\langle v_{j}, \widehat{E}_{\gamma^{\prime}\left(k, l, k^{*}, l^{*}, r\right)}\right\rangle \\
& =\left\langle\sum_{k=1}^{n_{2}} \sum_{l=1}^{\ell_{2}}\left\langle z_{j}, \bar{E}_{k, l}\right\rangle \widehat{E}_{\gamma^{\prime}\left(k, l, k^{*}, l^{*}, r\right)}, v_{j}\right\rangle,
\end{aligned}
$$

which proves (4.26). Also,

$$
\begin{aligned}
\langle z, \mathrm{D} \Phi(y) \cdot v\rangle & =\sum_{j=1}^{m_{2}}\left\langle z_{j}, \mathrm{D} \phi\left(y_{j}\right) \cdot v_{j}\right\rangle \\
& =\sum_{j=1}^{m_{2}}\left\langle\mathrm{D}^{*} \phi\left(y_{j}\right) \cdot z_{j}, v_{j}\right\rangle \\
& =\left\langle\sum_{j=1}^{m_{2}}\left(\mathrm{D}^{*} \phi\left(y_{j}\right) \cdot z_{j}\right) \otimes \bar{e}_{j}, v\right\rangle,
\end{aligned}
$$

where the last line follows from (2.1). Thus, we have proven (4.27).

The Layerwise Function

We can now explicitly define the layerwise function f for a CNN, which we will write as

$$
\begin{equation*}
f(x ; W)=\Phi(\Psi(C(W, x))) \tag{4.28}
\end{equation*}
$$

where $\Psi: \mathbb{R}^{\widehat{n}_{1} \times \widehat{\ell}_{1}} \otimes \mathbb{R}^{m_{2}} \rightarrow \mathbb{R}^{\widehat{n}_{1} \times \widehat{\ell}_{1}} \otimes \mathbb{R}^{m_{2}}$ is an elementwise nonlinearity, with associated elementwise operation $\psi: \mathbb{R} \rightarrow \mathbb{R}$, defined as in (2.9). We can see that f first convolves the input x with the filters W according to (4.15), then applies an elementwise nonlinearity, and then performs max-pooling on the final result.

4.2.2 Multiple Layers

We are now going to cast the CNN in the framework of section 3.1. The first thing that we will do is specify the spaces of the input and parameters at each layer $i \in[L]$. Suppose that our network input x consists of m_{1} channels, each of size $n_{1} \times \ell_{1}$, and our known response y has n_{L+1} components. If we also assert that the $i^{\text {th }}$ layer will take in an m_{i}-channelled input of size $n_{i} \times \ell_{i}$, for $2 \leq i \leq L$, then we have that each of the E_{i} 's are given by the tensor product space $\mathbb{R}^{n_{i} \times \ell_{i}} \otimes \mathbb{R}^{m_{i}}$, for all $i \in[L]$. By setting $\ell_{L+1}=m_{L+1}=1$, we can also ensure this holds for $i=L+1$. The parameters at layer i are given by the m_{i+1} filter matrices each of size $p_{i} \times q_{i}$ - which we will denote by $W_{i} \in \mathbb{R}^{p_{i} \times q_{i}} \otimes \mathbb{R}^{m_{i+1}}$.

We will slightly adjust f as defined in (4.28) to a function f_{i} which depends on the layer i, and adjust the maps comprising it accordingly, i.e.

$$
\begin{equation*}
f_{i}\left(x_{i}\right)=\Phi_{i}\left(\Psi_{i}\left(C_{i}\left(W_{i}, x_{i}\right)\right)\right), \tag{4.29}
\end{equation*}
$$

such that $f_{i}: \mathbb{R}^{n_{i} \times \ell_{i}} \otimes \mathbb{R}^{m_{i}} \rightarrow \mathbb{R}^{n_{i+1} \times \ell_{i+1}} \otimes \mathbb{R}^{m_{i+1}}$, for $i \in[L]$. Notice that we have again suppressed the dependence of f_{i} on the parameters W_{i}, for ease of composition. We define the network prediction F as in (3.1).

The final layer of a CNN is generally fully-connected, bearing similarity to a layer of an MLP. To implement this, we will set Φ_{L} and κ_{L} - the pooling and cropping operators at layer L, respectively - to be identity maps, which implies $n_{L}=p_{L}=\widehat{n}_{L}, \ell_{L}=q_{L}=\widehat{\ell}_{L}$, and $r_{L}=1$.

4.2.3 Single-Layer Derivatives

We will require the derivatives of (4.29), and their adjoints, to derive a gradient descent step algorithm; we will present these in Theorem 4.2.8.

Theorem 4.2.8. For any $x_{i} \in \mathbb{R}^{n_{i} \times \ell_{i}} \otimes \mathbb{R}^{m_{i}}, W \in \mathbb{R}^{p_{i} \times q_{i}} \otimes \mathbb{R}^{m_{i+1}}$, and $i \in[L]$,

$$
\begin{align*}
\nabla_{W} f_{i}\left(x_{i}\right) & \left.=\mathrm{D} \Phi_{i}\left(\Psi_{i}\left(C_{i}\left(W_{i}, x_{i}\right)\right)\right) \cdot \mathrm{D} \Psi_{i}\left(C_{i}\left(W_{i}, x_{i}\right)\right) \cdot\left(W_{i}\right\lrcorner C_{i}\right), \tag{4.30}\\
\mathrm{D} f_{i}\left(x_{i}\right) & =\mathrm{D} \Phi_{i}\left(\Psi_{i}\left(C_{i}\left(W_{i}, x_{i}\right)\right)\right) \cdot \mathrm{D} \Psi_{i}\left(C_{i}\left(W_{i}, x_{i}\right)\right) \cdot\left(C_{i}\left\llcorner x_{i}\right)\right. \tag{4.31}
\end{align*}
$$

where f_{i} is defined as in (4.29). Furthermore,

$$
\begin{align*}
\nabla_{W}^{*} f_{i}\left(x_{i}\right) & \left.=\left(W_{i}\right\lrcorner C_{i}\right)^{*} \cdot \mathrm{D} \Psi_{i}\left(C_{i}\left(W_{i}, x_{i}\right)\right) \cdot \mathrm{D}^{*} \Phi_{i}\left(\Psi_{i}\left(C_{i}\left(W_{i}, x_{i}\right)\right)\right) \tag{4.32}\\
\mathrm{D}^{*} f_{i}\left(x_{i}\right) & =\left(C_{i}\left\llcorner x_{i}\right)^{*} \cdot \mathrm{D} \Psi_{i}\left(C_{i}\left(W_{i}, x_{i}\right)\right) \cdot \mathrm{D}^{*} \Phi_{i}\left(\Psi_{i}\left(C_{i}\left(W_{i}, x_{i}\right)\right)\right) .\right. \tag{4.33}
\end{align*}
$$

Proof. Equations (4.30) and (4.31) are both direct consequences of the chain rule and linearity of the derivative. Also, we can derive (4.32) and (4.33) using the reversing property of the adjoint, and the fact that $\mathrm{D}^{*} \Psi_{i}\left(z_{i}\right)$ is self-adjoint for any z_{i} by Proposition 2.4.1.

4.2.4 Gradient Descent Step Algorithm

We can easily insert the maps $\mathrm{D}^{*} f_{i}\left(x_{i}\right)$ and $\nabla_{W_{i}}^{*} f_{i}\left(x_{i}\right)$ into Algorithm 3.2.1- or, equivalently, into (3.11) and (3.7) or (3.10) - to generate an algorithm for one step of gradient descent for a CNN, and we present this in Algorithm 4.2.1. Unlike subsection 4.1.3, we will not explicitly give the forms for backpropagation and $\nabla_{W_{i}}^{*} J(x, y ; \theta)$ in separate theorems, as these are simple extensions of the forms in (4.8) and (4.9) and are included in the algorithm.

We give Algorithm 4.2.1 the following inputs: the network input and known response $(x, y) \in\left(\mathbb{R}^{n_{1} \times \ell_{1}} \otimes \mathbb{R}^{m_{1}}\right) \times \mathbb{R}^{n_{L+1}}$, the filters $\theta \equiv\left\{W_{1}, \ldots, W_{L}\right\}$, the learning rate $\eta \in \mathbb{R}_{>0}$, and the type of problem under consideration, type $\in\{$ regression, classification $\}$. We obtained an updated set of filters upon completion of the algorithm. In Algorithm 4.2.1, we have elected to not insert the explicit formulae for $(W\lrcorner C)^{*},\left(C\llcorner x)^{*}, \mathrm{D} \Psi\right.$, and $\mathrm{D}^{*} \Phi$ to make the algorithm easier to read; these are available in Theorem 4.2.3, Theorem 4.2.2, Proposition 2.4.1, and Theorem 4.2.7, respectively. We can extend Algorithm 4.2.1 similarly to Algorithm 4.1.1, including the use of a higher-order loss function which we explored in [9].

4.3 Deep Auto-Encoder

The final network that we will describe in this chapter is the $2 L$-layer DAE of the form given in [33], albeit with layers of matrix multiplication instead of Boltzmann Machines. The

```
Algorithm 4.2.1 One iteration of gradient descent for a CNN
    function \(\operatorname{GradDescCNN}(x, y, \theta\), type,\(\eta)\)
        \(x_{1} \leftarrow x\)
        for \(i \in\{1, \ldots, L\}\) do \(\quad \triangleright x_{L+1}=F(x ; \theta)\)
            \(z_{i} \leftarrow \Psi_{i}\left(C_{i}\left(W_{i}, x_{i}\right)\right)\)
            \(x_{i+1} \leftarrow \Phi\left(z_{i}\right) \quad \triangleright\) Inserted specific definition of \(f_{i}\)
        for \(i \in\{L, \ldots, 1\}\) do
            \(\tilde{W}_{i} \leftarrow W_{i} \quad \triangleright\) Store old \(W_{i}\) for updating \(W_{i-1}\)
            if \(i=L\) and type \(=\) regression then
                    \(e_{L} \leftarrow x_{L+1}-y\)
                else if \(i=L\) and type \(=\) classification then
                    \(e_{L} \leftarrow \sigma\left(x_{L+1}\right)-y\)
        else
            \(\left.e_{i} \leftarrow\left(\tilde{W}_{i+1}\right\lrcorner C_{i+1}\right)^{*} \cdot \mathrm{D} \Psi_{i+1}\left(C_{i+1}\left(\tilde{W}_{i+1}, x_{i+1}\right)\right) \cdot \mathrm{D}^{*} \Phi_{i+1}\left(z_{i+1}\right) \cdot e_{i+1}\)
                    \(\triangleright\) Inserted \(\mathrm{D}^{*} f_{i+1}\) from (4.33) into (3.11). Backpropagation for CNNs.
                \(\nabla_{W_{i}} J(x, y ; \theta) \leftarrow\left(C_{i}\left\llcorner x_{i}\right)^{*} \cdot \mathrm{D} \Psi_{i}\left(C_{i}\left(W_{i}, x_{i}\right)\right) \cdot \mathrm{D}^{*} \Phi_{i}\left(z_{i}\right) \cdot e_{i}\right.\)
                \(\triangleright\) Inserted \(\nabla_{W_{i}}^{*} f_{i}\) from (4.32) into (3.7) (regression) or (3.10) (classification)
        \(W_{i} \leftarrow W_{i}-\eta \nabla_{W_{i}} J(x, y ; \theta) \quad \triangleright\) Parameter update step
        return \(\theta\)
```

first L layers of the DAE perform an encoding function, with the input to each of these layers being of lower dimension than the previous layer. Then, the remaining L layers increase the size of their inputs until the dimension of the output of the final layer is of the same dimension as the original input. The goal of the network is to find a meaningful representation of the input with reduced dimensionality, and we will typically pick the output of the $L^{t h}$ layer as the new representation of our input. We can achieve this goal by using either the cross-entropy or squared loss to compare the network input to the network output (at the $2 L^{t h}$ layer), with the intuition being that the representation outputted by the $L^{t h}$ layer will be an efficiently-compressed version of the data if it can produce a low value for the loss when projected into higher dimensions.

The DAE shares a lot of similarities with the MLP - effectively, the first L layers of the DAE are an MLP, and we will exploit this similarity whenever possible throughout this section. We will structure this section similarly to section 4.1: we will first formulate the network, then present single-layer derivatives, then the loss functions and gradient descent step algorithm. The main difference is that we will also include weight-sharing
between layers, which we will define next. We included a large potion of this section in [10, Section 5].

4.3.1 Weight Sharing

In formulating a DAE, the first point to mention is weight-sharing across layers of the network. The weights at any layer $i \in[2 L]$ have a deterministic relationship with the weights at layer $\xi(i)$, where we define $\xi:[2 L] \rightarrow[2 L]$ as

$$
\begin{equation*}
\xi(i)=2 L-i+1 \tag{4.34}
\end{equation*}
$$

for all $i \in[2 L]$. This function has the property that $(\xi \circ \xi)(i)=i$.
Weight-sharing influences the spaces of inputs and parameters at layer $i \in[2 L]$. If we assume that the $i^{\text {th }}$ layer of the DAE takes as input a vector of length n_{i}, and outputs a vector of length n_{i+1}, for all $i \in[2 L]$, we impose the restriction

$$
n_{i}=n_{\xi(i)}
$$

for all $i \in[2 L+1]$. We can then define the input space to the $i^{\text {th }}$ layer, E_{i}, as

$$
E_{i}= \begin{cases}\mathbb{R}^{n_{i}}, & 1 \leq i \leq L \\ \mathbb{R}^{n_{\xi(i)}}, & L+1 \leq i \leq 2 L\end{cases}
$$

We can also write the parameter spaces H_{i}, containing both the space of weight matrices and a bias vectors at layer i, in this form:

$$
H_{i}= \begin{cases}\mathbb{R}^{n_{i+1} \times n_{i}} \times \mathbb{R}^{n_{i+1}}, & 1 \leq i \leq L \\ \mathbb{R}^{n_{\xi(i)+1} \times n_{\xi(i)}} \times \mathbb{R}^{n_{\xi(i)}}, & L+1 \leq i \leq 2 L\end{cases}
$$

We will also introduce the function τ_{i} defining the weight sharing at layer i, where $L+1 \leq i \leq 2 L$, as $\tau_{i} \in \mathcal{L}\left(\mathbb{R}^{n_{\xi(i)+1} \times n_{\xi(i)}} ; \mathbb{R}^{n_{\xi(i)} \times n_{\xi(i)+1}}\right)$. The most common choice for τ_{i} is the matrix transpose, and we compute its adjoint for this case in Lemma 4.3.1, although it can be any linear operator satisfying the above signature.

Lemma 4.3.1. Let $\tau \in \mathcal{L}\left(\mathbb{R}^{n \times m} ; \mathbb{R}^{m \times n}\right)$ be defined as $\tau(U)=U^{T}$ for all $U \in \mathbb{R}^{n \times m}$. Then, for all $W \in \mathbb{R}^{m \times n}$,

$$
\tau^{*}(W)=W^{T} .
$$

Proof. For any $U \in \mathbb{R}^{n \times m}$ and $W \in \mathbb{R}^{m \times n},\langle W, \tau(U)\rangle=\left\langle W, U^{T}\right\rangle=\operatorname{tr}(W U)=\operatorname{tr}(U W)=$ $\left\langle U, W^{T}\right\rangle$, which proves the result by the symmetry of \langle,$\rangle .$

4.3.2 Single-Layer Formulation

We can now write out the layerwise function $f_{i}: \mathbb{R}^{n_{i}} \times\left(\mathbb{R}^{n_{i+1} \times n_{i}} \times \mathbb{R}^{n_{i+1}}\right) \rightarrow \mathbb{R}^{n_{i+1}}$ as

$$
\begin{align*}
f_{i}\left(x_{i} ; W_{i}, b_{i}\right) & =\Psi_{i}\left(W_{i} \cdot x_{i}+b_{i}\right), & & i \leq L, \\
f_{i}\left(x_{i} ; W_{\xi(i)}, b_{i}\right) & =\Psi_{i}\left(\tau_{i}\left(W_{\xi(i)}\right) \cdot x_{i}+b_{i}\right), & & i \geq L+1, \tag{4.35}
\end{align*}
$$

where x_{i} is the input to layer $i \in[2 L], b_{i}$ is the bias vector at layer $i \in[2 L], W_{i}$ is the weight matrix at layer $i \in[L]$, and $\tau_{i}\left(W_{\xi(i)}\right)$ is the weight matrix at layer $i \in\{L+1, \ldots, 2 L\}$. We can express this in a more compact form by defining a matrix K_{i} as follows:

$$
K_{i}= \begin{cases}W_{i}, & 1 \leq i \leq L \\ \tau_{i}\left(W_{\xi(i)}\right), & L+1 \leq i \leq 2 L\end{cases}
$$

Then, we can express the actions of layer i as

$$
\begin{equation*}
f_{i}\left(x_{i}\right)=\Psi_{i}\left(K_{i} \cdot x_{i}+b_{i}\right), \tag{4.36}
\end{equation*}
$$

where we again suppress the explicit dependence of f_{i} on the parameters K_{i} and b_{i}.
We can now represent the network prediction function as

$$
\begin{equation*}
F=f_{2 L} \circ \cdots \circ f_{1}, \tag{4.37}
\end{equation*}
$$

which is of the same form as (3.1), but with $2 L$ layers instead of L. Notice that layers i and $\xi(i)$ both explicitly depend on the parameter W_{i}, for any $i \in[L]$; we can explicitly demonstrate their impact on F by writing it as follows:

$$
\begin{equation*}
F=f_{2 L} \circ \cdots \circ f_{\xi(i)} \circ \cdots \circ f_{i} \circ \cdots \circ f_{1} . \tag{4.38}
\end{equation*}
$$

In this section, we define α_{i} and ω_{i} as in (3.2) and (3.3) respectively.

4.3.3 Single-Layer Derivatives

We need to calculate the gradients of (4.36) with respect to the parameters for each layer $i \in[2 L]$. We already know how to do this for $i \in[L]$ from Lemmas 4.1.2 and 4.1.3, as the form of f_{i} is the same for DAE and MLP in this case. We only have to determine the gradients of f_{i} for $i \in\{L+1, \ldots, 2 L\}$, and we will present a very particular instance of the chain rule for parameter-dependent maps in Lemma 4.3.2 that will allow us to then take these derivatives in Lemma 4.3.3.

Lemma 4.3.2. Let E, \widetilde{E}, H_{1}, and H_{2} be generic inner product spaces. Consider a linear map $\tau \in \mathcal{L}\left(H_{1} ; H_{2}\right)$, and two parameter-dependent maps $g: E \times H_{1} \rightarrow \widetilde{E}$ and $h: E \times H_{2} \rightarrow \widetilde{E}$, such that

$$
g(x ; \theta)=h(x ; \tau(\theta))
$$

for all $x \in E$ and $\theta \in H_{1}$. Then, the following two results hold for all $U \in H_{1}$ and $y \in \tilde{E}$

$$
\begin{aligned}
\nabla g(x ; \theta) \cdot U & =\nabla h(x ; \tau(\theta)) \cdot \tau(U) \\
\nabla^{*} g(x ; \theta) \cdot y & =\tau^{*}\left(\nabla^{*} h(x ; \tau(\theta)) \cdot y\right)
\end{aligned}
$$

Proof. This is a consequence of the chain rule, the linearity of τ, and the reversing property of the adjoint.

Lemma 4.3.3. Consider a function f of the form

$$
f(x ; W, b)=\Psi(\tau(W) \cdot x+b)
$$

where $x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, W \in \mathbb{R}^{n \times m}, \tau \in \mathcal{L}\left(\mathbb{R}^{n \times m} ; \mathbb{R}^{m \times n}\right)$, and $\Psi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is an elementwise function. Then, the following hold for any $U \in \mathbb{R}^{n \times m}$,

$$
\begin{align*}
\nabla_{W} f(x ; W, b) \cdot U & =\mathrm{D} \Psi(z) \cdot \tau(U) \cdot x \tag{4.39}\\
\nabla_{b} f(x ; W, b) & =\mathrm{D} \Psi(z) \tag{4.40}\\
\mathrm{D} f(x ; W, b) & =\mathrm{D} \Psi(z) \cdot \tau(W) \tag{4.41}
\end{align*}
$$

where $z=\tau(W) \cdot x+b$. Furthermore, the following hold for any $y \in \mathbb{R}^{m}$,

$$
\begin{align*}
\nabla_{W}^{*} f(x ; W, b) \cdot y & =\tau^{*}\left(\left(\Psi^{\prime}(z) \odot y\right) x^{T}\right) \tag{4.42}\\
\nabla_{b}^{*} f(x ; W, b) & =\mathrm{D} \Psi(z) \tag{4.43}\\
\mathrm{D}^{*} f(x ; W, b) & =\tau^{*}(W) \cdot \mathrm{D} \Psi(z) \tag{4.44}
\end{align*}
$$

Proof. We computed the derivatives and corresponding adjoints of

$$
\widetilde{f}(x ; \widetilde{W}, b)=\Psi(\widetilde{W} \cdot x+b)
$$

in Lemmas 4.1.2 and 4.1.3, where $\widetilde{W} \in \mathbb{R}^{m \times n}$. Then, equations (4.39) and (4.42) are consequences of Lemma 4.3.2. Equations (4.40) and (4.41) also follow from derivatives calculated in Lemma 4.1.2, along with the chain rule and the linearity of τ. Equations (4.43) and (4.44) follow from the reversing property of the adjoint and the self-adjointness of $\mathrm{D} \Psi(z)$ from Proposition 2.4.1.

4.3.4 Loss Functions and Gradient Descent

The loss function for the DAE is also slightly different than the one provided in section 3.2, as we replace the y in either (3.6) or (3.9) with x. The DAE is an unsupervised learning algorithm, meaning that we do not have access to a response variable y. Furthermore, we will no longer refer to regression or classification, as those are only relevant for supervised learning algorithms, although we will still maintain the distinction between the squared and cross-entropy losses. In a DAE, we can write the squared loss as

$$
\begin{equation*}
J_{R}(x ; \theta)=\frac{1}{2}\langle F(x ; \theta)-x, F(x ; \theta)-x\rangle, \tag{4.45}
\end{equation*}
$$

where $\theta \equiv\left\{W_{1}, \ldots, W_{L}, b_{1}, \ldots, b_{2 L}\right\}$ represents the parameter set, and $x \in \mathbb{R}^{n_{1}}$ is the input data point. We can write the cross-entropy loss as

$$
\begin{equation*}
J_{C}(x ; \theta)=-\langle x,(\log \circ \sigma)(F(x ; \theta))\rangle . \tag{4.46}
\end{equation*}
$$

We first need to calculate $\nabla_{W_{i}}^{*} F(x ; \theta)$, for any $i \in[L]$, before we can calculate the gradients of (4.45) and (4.46).

Lemma 4.3.4. For any $x \in \mathbb{R}^{n_{1}}$ and $i \in[L]$,

$$
\begin{equation*}
\nabla_{W_{i}}^{*} F(x ; \theta)=\nabla_{W_{i}}^{*} f_{\xi(i)}\left(x_{\xi(i)}\right) \cdot \mathrm{D}^{*} \omega_{\xi(i)+1}\left(x_{\xi(i)+1}\right)+\nabla_{W_{i}}^{*} f_{i}\left(x_{i}\right) \cdot \mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right), \tag{4.47}
\end{equation*}
$$

where $x_{j}=\alpha_{j-1}(x)$ for all $j \in[2 L], \alpha_{j}$ and ω_{j} are defined as in (3.2) and (3.3), respectively, and ξ is defined in (4.34).

Proof. Recall that only two of the functions comprising F in (4.38) depend on W_{i} : f_{i} and $f_{\xi(i)}$. Hence, by the product and chain rules,

$$
\nabla_{W_{i}} F(x ; \theta)=\mathrm{D} \omega_{\xi(i)+1}\left(x_{\xi(i)+1}\right) \cdot \nabla_{W_{i}} f_{\xi(i)}\left(x_{\xi(i)}\right)+\mathrm{D} \omega_{i+1}\left(x_{i+1}\right) \cdot \nabla_{W_{i}} f_{i}\left(x_{i}\right) .
$$

We can take the adjoint of this equation and recover (4.47) by the reversing property.
Theorem 4.3.5. Let J be defined as in either (4.45) or (4.46), F be defined as in (4.37), and ω_{i} be defined as in (3.3). Then, for all $i \in[L]$ and $x \in \mathbb{R}^{n_{1}}$,

$$
\begin{align*}
\nabla_{W_{i}} J(x ; \theta)= & \left(\Psi_{i}^{\prime}\left(z_{i}\right) \odot\left(\mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot e\right)\right) x_{i}^{T} \tag{4.48}\\
& +\tau_{\xi(i)}^{*}\left[\left(\Psi_{\xi(i)}^{\prime}\left(z_{\xi(i)}\right) \odot\left(\mathrm{D}^{*} \omega_{\xi(i)+1}\left(x_{\xi(i)+1}\right) \cdot e\right)\right) x_{\xi(i)}^{T}\right],
\end{align*}
$$

where $x_{j}=\alpha_{j-1}(x)$ and $z_{j}=K_{j} \cdot x_{j}+b_{j}$ for all $j \in[2 L]$, and the error e is

$$
e= \begin{cases}F(x ; \theta)-x, & \text { for squared loss } \tag{4.49}\\ \sigma(F(x ; \theta))-x, & \text { for cross-entropy loss }\end{cases}
$$

Furthermore, for all $i \in[2 L]$,

$$
\begin{equation*}
\nabla_{b_{i}} J(x ; \theta)=\Psi_{i}^{\prime}\left(z_{i}\right) \odot\left(\mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot e\right), \tag{4.50}
\end{equation*}
$$

with e defined as in (4.49).
Proof. Proving equation (4.50) for any $i \in[L]$ is the same as proving (4.10) and is omitted.
As for (4.48), we can show that

$$
\begin{equation*}
\nabla_{W_{i}}^{*} J(x ; \theta)=\nabla_{W_{i}}^{*} F(x ; \theta) \cdot e \tag{4.51}
\end{equation*}
$$

using a similar argument to those used to derive (3.7) or (3.10), where we define e as in (4.49). We know how to compute $\nabla_{W_{i}}^{*} F(x ; \theta)$ from (4.47), and we know that

$$
\begin{equation*}
\nabla_{W_{i}}^{*} f_{i}\left(x_{i}\right) \cdot u=\left(\Psi_{i}^{\prime}\left(z_{i}\right) \odot u\right) x_{i}^{T} \tag{4.52}
\end{equation*}
$$

for any $u \in \mathbb{R}^{n_{i+1}}$ and $i \in[L]$ from (4.5). Now, since $i \in[L]$, we have that

$$
\xi(i) \in\{L+1, \ldots, 2 L\}
$$

which means that we use the definition of $f_{\xi(i)}$ from (4.35), i.e.

$$
f_{\xi(i)}\left(x_{\xi(i)}\right)=\Psi_{\xi(i)}\left(\tau_{\xi(i)}\left(W_{i}\right) \cdot x_{\xi(i)}+b_{\xi(i)}\right) .
$$

Thus, from Lemma 4.3.3, we have that

$$
\begin{equation*}
\nabla_{W_{i}}^{*} f_{\xi(i)}\left(x_{\xi(i)}\right) \cdot v=\tau_{\xi(i)}^{*}\left(\left(\Psi_{\xi(i)}^{\prime}\left(z_{\xi(i)}\right) \odot v\right) x_{\xi(i)}^{T}\right) \tag{4.53}
\end{equation*}
$$

for any $v \in \mathbb{R}^{n_{\xi(i)+1}}$ and any $i \in[L]$, where $z_{\xi(i)}=\tau_{\xi(i)}\left(W_{i}\right) \cdot x_{\xi(i)}+b_{\xi(i)}$.
Hence, we can recover (4.48) by setting $v=\mathrm{D}^{*} \omega_{\xi(i)+1}\left(x_{\xi(i)+1}\right) \cdot e$ in (4.53), setting $u=$ $\mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot e$ in (4.52), and then adding them together according to (4.47).

The final step before taking the loss function gradients is backpropagation, and we will see in Theorem 4.3.6 that this has the same form as in an MLP.

Theorem 4.3.6 (Backpropagation in DAE). With f_{i} defined as in (4.36) and ω_{i} given as in (3.3), then for any $x_{i} \in \mathbb{R}^{n_{i}}, v \in \mathbb{R}^{n_{2 L+1}}$, and $i \in[2 L]$,

$$
\mathrm{D}^{*} \omega_{i}\left(x_{i}\right) \cdot v=K_{i}^{T} \cdot\left(\Psi_{i}^{\prime}\left(z_{i}\right) \odot\left(\mathrm{D}^{*} \omega_{i+1}\left(x_{i+1}\right) \cdot v\right)\right),
$$

where $z_{i}=K_{i} \cdot x_{i}+b_{i}$.
Proof. Since $f_{i}\left(x_{i}\right)=K_{i} \cdot x_{i}+b_{i}$, where K_{i} is independent of x_{i}, we can prove this result in the same way as Theorem 4.1.4, replacing W_{i} with K_{i}.

As in the previous sections, we complete this one by presenting an algorithm for one step of gradient descent. Algorithm 4.3.1 takes as input the network input point $x \in \mathbb{R}^{n_{1}}$, the parameters $\theta \equiv\left\{W_{1}, \ldots, W_{L}, b_{1}, \ldots, b_{2 L}\right\}$, the learning rate $\eta \in \mathbb{R}_{>0}$, and the type of loss function that we are using, loss $\in\{$ squared, cross-entropy\}. We again receive an updated set of parameters upon completion of the algorithm. We can extend Algorithm 4.3.1 to a batch of points, regularization, and a higher-order loss function; we covered the higherorder loss case for DAEs in [10].

4.4 Conclusion

We have demonstrated in this chapter how to apply the generic formulation from the previous chapter to the specific examples of the MLP, CNN, and DAE. We have also seen how to manage a complicated layerwise function, as in the CNN, and how to work with parameters which are dependent on other layers, as in the DAE. Furthermore, we have presented algorithms for one step of gradient descent, again directly over the inner product space in which the parameters reside. In the next chapter, we will take the dependence between layers a step further and explore a method for representing the sequence-parsing RNN.

```
Algorithm 4.3.1 One iteration of gradient descent in a DAE
    function GradDEscDAE \((x, \theta\), loss,\(\eta)\)
        \(x_{1} \leftarrow x\)
        for \(i \in\{1, \ldots, 2 L\}\) do
        \(\triangleright x_{2 L+1}=F(x ; \theta)\)
            if \(i<=L\) then
                \(K_{i} \leftarrow W_{i}\)
        else
            \(K_{i} \leftarrow \tau_{i}\left(W_{\xi(i)}\right)\)
            \(z_{i} \leftarrow K_{i} \cdot x_{i}+b_{i}\)
            \(x_{i+1} \leftarrow \Psi_{i}\left(z_{i}\right) \quad \triangleright\) Inserted specific definition of \(f_{i}\)
        for \(i \in\{2 L, \ldots, 1\}\) do
            if \(i=2 L\) and loss \(=\) squared then
                    \(e_{2 L} \leftarrow x_{2 L+1}-x\)
        else if \(i=2 L\) and loss \(=\) cross-entropy then
            \(e_{2 L} \leftarrow \sigma\left(x_{2 L+1}\right)-x\)
        else
            \(e_{i} \leftarrow K_{i+1}^{T} \cdot\left(\Psi_{i+1}^{\prime}\left(z_{i+1}\right) \odot e_{i+1}\right) \quad \triangleright\) Theorem 4.3.6; DAE backpropagation
        \(\nabla_{b_{i}} J(x ; \theta) \leftarrow \Psi_{i}^{\prime}\left(z_{i}\right) \odot e_{i} \quad \triangleright(4.50) ; J\) is from either (4.45) or (4.46)
        \(b_{i} \leftarrow b_{i}-\eta \nabla_{b_{i}} J(x ; \theta)\)
        if \(i>L\) then
            \(\nabla_{W_{\xi(i)}} J(x ; \theta) \leftarrow \tau_{i}^{*}\left(\left(\Psi_{i}^{\prime}\left(z_{i}\right) \odot e_{i}\right) x_{i}^{T}\right) \quad \triangleright\) Second term in (4.48)
        else
            \(\nabla_{W_{i}} J(x ; \theta) \leftarrow \nabla_{W_{i}} J(x ; \theta)+\left(\Psi_{i}^{\prime}\left(z_{i}\right) \odot e_{i}\right) x_{i}^{T} \quad \triangleright\) Add first term in (4.48)
            \(W_{i} \leftarrow W_{i}-\eta \nabla_{W_{i}} J(x ; \theta)\)
        return \(\theta\)
```


Chapter 5

Recurrent Neural Networks

We applied the generic neural network framework from chapter 3 to specific network structures in the previous chapter. MLPs and CNNs fit squarely into that framework, and we were also able to modify it to capture DAEs. We will now extend the generic framework even further to handle Recurrent Neural Networks (RNNs), the sequence-parsing network structure containing a recurring latent, or hidden, state that evolves at each layer of the network. This will involve the development of new notation, but we will remain as consistent as possible with previous chapters.

The specific layout of this chapter is as follows. We will first formulate a generic, feedforward recurrent neural network. We will calculate gradients of loss functions for these networks in two ways: Real-Time Recurrent Learning (RTRL) [80] and Backpropagation Through Time (BPTT) [64]. Using our notation for vector-valued maps, we will derive these algorithms directly over the inner product space in which the parameters reside. We will then proceed to formally represent a vanilla RNN, which is the simplest form of RNN, and we will formulate RTRL and BPTT for that as well. At the end of the chapter, we briefly mention modern RNN variants in the context of our generic framework.

5.1 Generic RNN Formulation

We will begin to work outside of the framework developed in section 3.1 to describe the RNN, as it is a completely different style of neural network. We first introduce notation for sequences, then discuss the forward propagation of the hidden state, and then we introduce the loss functions and two gradient descent methods for the RNN: RTRL and BPTT.

5.1.1 Sequence Data

In the most general case, the input to an RNN, which we will denote \mathbf{x}, is a sequence of bounded length, i.e.

$$
\mathbf{x} \equiv\left(x_{1}, \ldots, x_{L}\right) \in \underbrace{E_{x} \times \ldots \times E_{x}}_{L \text { times }} \equiv E_{x}^{L}
$$

where E_{x} is some inner product space, E_{x}^{L} is shorthand for the direct product of L copies of E_{x}, and $L \in \mathbb{Z}_{>0}$ is the maximum sequence length for the particular problem. We can also write the RNN target variables, which we will denote \mathbf{y}, as a sequence of bounded length, i.e.

$$
\mathbf{y} \equiv\left(y_{1}, \ldots, y_{L}\right) \in \underbrace{E_{y} \times \ldots \times E_{y}}_{L \text { times }} \equiv E_{y}^{L}
$$

where E_{y} is also an inner product space.
When using an RNN, our datasets will be of the form $\mathcal{D}=\left\{\left(\mathbf{x}_{(j)}, \mathbf{y}_{(j)}\right)\right\}_{j=1}^{n}$, where $\left(\mathbf{x}_{(j)}, \mathbf{y}_{(j)}\right) \in E_{x}^{L} \times E_{y}^{L}$ for all $j \in[n]$. However, sequences are generally of varying length, so any particular $\mathbf{x}_{(j)}$ may only have $\ell<L$ elements; for those points, we will simply not calculate the loss or prediction beyond the $\ell^{\text {th }}$ layer of the network. Similarly, a given $\mathbf{y}_{(j)}$ may not contain a target value for each $i \in[L]$; again, we only calculate the loss when there is actually a target value. Thus, without loss of generality, we will only present the case where the data point we are considering, $\left(\mathbf{x}_{\left(j^{*}\right)}, \mathbf{y}_{\left(j^{*}\right)}\right) \equiv(\mathbf{x}, \mathbf{y}) \in \mathcal{D}$, is full, i.e. \mathbf{x} is of length L and \mathbf{y} contains L target points.

5.1.2 Hidden States, Parameters, and Forward Propagation

One feature that makes RNNs unique is that they contain a hidden state - initialized independently from the inputs - that is propagated forwards at each layer i. Note that in the context of RNNs, we consider one layer to be both the evolution of the hidden state and the resulting prediction generated post-evolution. We will refer to the inner product space of hidden states as E_{h}. The method of propagating the hidden state forward is also the same at each layer, which is another unique property of RNNs. It is governed by the same functional form and the same set of transition parameters $\theta \in H_{T}$, where H_{T} is some inner product space. This is the recurrent nature of RNNs: each layer performs the same operations on the hidden state, with the only difference between layers being that the input data is $x_{i} \in E_{x}$ at layer $i \in[L]$.

To solidify this concept, we will introduce a generic layerwise function $f: E_{h} \times E_{x} \times H_{T} \rightarrow$ E_{h} that governs the propagation of the hidden state forward at each layer. We can express
this for any $h \in E_{h}, x \in E_{x}$, and $\theta \in H_{T}$ as

$$
f(h ; x ; \theta) \in E_{h} .
$$

Now consider a data point $\mathbf{x} \in E_{x}^{L}$ as we described above. We assert that the $i^{\text {th }}$ layer of the RNN will take as input the $(i-1)^{t h}$ hidden state, which we will denote $h_{i-1} \in E_{h}$, and the $i^{\text {th }}$ value of \mathbf{x}, which is $x_{i} \in E_{x}$, for all $i \in[L]$. The forward propagation of the hidden state after the $i^{\text {th }}$ layer is given by

$$
h_{i} \equiv f\left(h_{i-1} ; x_{i} ; \theta\right),
$$

where $h_{0} \in E_{h}$ is the initial hidden state, which can either be learned as a parameter or initialized to some fixed vector. For ease of composition, we again will suppress the parameters of f, but we will also suppress the input x_{i} in this formulation such that

$$
h_{i} \equiv f_{i}\left(h_{i-1}\right)
$$

for all $i \in[L] .{ }^{1}$ Notice that f_{i} retains implicit dependence on x_{i} and θ. We refer to h_{i} as the state variable for the RNN, as it is the quantity that we propagate forward at each layer.

We can define the head map as in (3.2), but with the argument corresponding to a hidden state, i.e. for all $i \in[L]$, we define $\alpha_{i}: E_{h} \rightarrow E_{h}$ as

$$
\begin{equation*}
\alpha_{i}=f_{i} \circ \cdots \circ f_{1}, \tag{5.1}
\end{equation*}
$$

and we define α_{0} to be the identity map on E_{h}. If we view the RNN as a discrete-time dynamical system, we could also call α_{i} the flow of the system. We will introduce a new map to aide in the calculation of derivatives, $\mu_{j, i}: E_{h} \rightarrow E_{h}$, which accumulates the evolution of the hidden state from layer $i \in[L]$ to $j \in\{i, \ldots, L\}$ inclusive, i.e.

$$
\begin{equation*}
\mu_{j, i}=f_{j} \circ \cdots \circ f_{i} . \tag{5.2}
\end{equation*}
$$

We will also set $\mu_{j, i}$ to be the identity on E_{h} for $j<i$, which we extend to include the case when $i>L$, i.e.

$$
\mu_{j, i}=\mathrm{id}
$$

whenever $i>\min (j, L)$.

[^15]
5.1.3 Prediction and Loss Functions

Recall that we have a target variable at each layer $i \in[L]$, meaning that we should also have a prediction at each layer. As in the previous section, we will enforce that the prediction also has the same functional form and set of prediction parameters at each layer. The prediction function g takes in a hidden state $h \in E_{h}$ and a set of prediction parameters $\zeta \in H_{P}$, and outputs an element of E_{y}, i.e. $g: E_{h} \times H_{P} \rightarrow E_{y}$. Often, we will suppress the dependence of g on the parameters such that $g: E_{h} \rightarrow E_{y}$ again for ease of composition. We can then write the prediction at layer $i \in[L]$ in a number of ways:

$$
\begin{equation*}
\widehat{y}_{i}=g\left(h_{i}\right)=\left(g \circ \mu_{i, k}\right)\left(h_{k-1}\right)=\left(g \circ \alpha_{i}\right)(h) \tag{5.3}
\end{equation*}
$$

for any $k \leq i$, where $h_{i}=\alpha_{i}(h)$ for all $i \in[L]$, and $h \equiv h_{0} \in E_{h}$ is the initial hidden state.
Since we have a prediction at every layer, we will also have a loss at each layer. The total loss for the entire network, \mathcal{J}, is the sum of these losses, i.e.

$$
\begin{equation*}
\mathcal{J}=\sum_{i=1}^{L} J\left(y_{i}, \widehat{y}_{i}\right), \tag{5.4}
\end{equation*}
$$

where $J: E_{y} \times E_{y} \rightarrow \mathbb{R}$ is either the squared or cross-entropy loss. Recall that we can define the squared loss as

$$
\begin{equation*}
J_{R}(y, \widehat{y})=\frac{1}{2}\langle y-\widehat{y}, y-\widehat{y}\rangle \tag{5.5}
\end{equation*}
$$

and the cross-entropy loss as

$$
\begin{equation*}
J_{C}(y, \widehat{y})=-\langle y,(\log \circ \sigma)(\widehat{y})\rangle . \tag{5.6}
\end{equation*}
$$

We have lightened the notation in this chapter compared to the previous so that it does not become unruly, but it is important to note that \widehat{y}_{i} from (5.4) depends on the initial state h, the transition parameters θ, the prediction parameters ζ, and the input sequence up to layer i, given by $\mathbf{x}_{\mathbf{i}} \equiv\left(x_{1}, \ldots, x_{i}\right)$.

5.1.4 Loss Function Gradients

We will need to take derivatives of the loss function (5.4) with respect to the parameters. We can easily take the derivatives of the loss with respect to the prediction parameters ζ. As for the transition parameters θ, there are two prevailing methods: RTRL, where we only send derivatives forward throughout the network [80], and BPTT, where we go
through the entire network first and then send derivatives backward [64]. In practice, basic RTRL is very slow compared to BPTT [67], but we can derive it more intuitively than BPTT and so it serves as a good starting point. Furthermore, RTRL can sometimes be applicable to streams of data that must be processed as they arrive.

Prediction Parameters

We would like to compute $\nabla_{\zeta} \mathcal{J}$, where we define \mathcal{J} in (5.4), and J is either J_{R}, from (5.5), or J_{C}, from (5.6). Since the derivative is linear, we have

$$
\begin{equation*}
\nabla_{\zeta} \mathcal{J}=\sum_{i=1}^{L} \nabla_{\zeta}\left(J\left(y_{i}, \widehat{y}_{i}\right)\right) \tag{5.7}
\end{equation*}
$$

where we enclose $J\left(y_{i}, \widehat{y}_{i}\right)$ in parentheses to emphasize that we will first evaluate $J\left(y_{i}, \widehat{y}_{i}\right)$, and then take its derivative with respect to ζ.
Theorem 5.1.1. For any $y_{i} \in E_{y}, h_{i} \in E_{h}$, and $i \in[L]$,

$$
\begin{equation*}
\nabla_{\zeta}\left(J\left(y_{i}, \widehat{y}_{i}\right)\right)=\nabla_{\zeta}^{*} g\left(h_{i}\right) \cdot e_{i} \tag{5.8}
\end{equation*}
$$

where \widehat{y}_{i} is defined in (5.3), J is either the squared or cross-entropy loss, and

$$
e_{i}= \begin{cases}\widehat{y}_{i}-y_{i}, & \text { if } J \text { is the squared loss, } \tag{5.9}\\ \sigma\left(\widehat{y}_{i}\right)-y_{i}, & \text { if } J \text { is the cross-entropy loss },\end{cases}
$$

is the prediction error at layer i.
Proof. We can prove this theorem similarly to Theorems 3.2.2 and 3.2.4, although the notation is a bit different. If we suppose J is the cross-entropy loss, then for any $i \in[L]$ and $U \in H_{P}$,

$$
\begin{aligned}
\nabla_{\zeta}\left(J_{C}\left(y_{i}, \widehat{y}_{i}\right)\right) \cdot U & =\nabla_{\zeta}\left(-\left\langle y_{i},(\log \circ \sigma)\left(g\left(h_{i}\right)\right)\right\rangle\right) \cdot U \\
& =-\left\langle y_{i}, \mathrm{D}(\log \circ \sigma)\left(g\left(h_{i}\right)\right) \cdot \nabla_{\zeta} g\left(h_{i}\right) \cdot U\right\rangle \\
& =-\left\langle\nabla_{\zeta}^{*} g\left(h_{i}\right) \cdot \mathrm{D}^{*}(\log \circ \sigma)\left(g\left(h_{i}\right)\right) \cdot y_{i}, U\right\rangle \\
& =\left\langle\nabla_{\zeta}^{*} g\left(h_{i}\right) \cdot\left(\sigma\left(\widehat{y}_{i}\right)-y_{i}\right), U\right\rangle,
\end{aligned}
$$

where the second line is true since h_{i} has no dependence on ζ, and the fourth line is from Lemma 2.4.4. Then, by the canonical isomorphism discussed in Remark 3.2.3, we have proven (5.8) for the case when J is the cross-entropy loss. We omit the case when J is the squared loss as it is easy to extend from this proof.

Real-Time Recurrent Learning

We will now proceed with the presentation of the RTRL algorithm for calculating the gradient of (5.4) with respect to the transition parameters θ. We will first show the forward propagation of the derivative of the head map in Lemma 5.1.2, and then proceed to calculate the derivatives of (5.4) with respect to θ in Theorem 5.1.3.

Lemma 5.1.2. For any $h \in E_{h}$ and $i \in[L]$, with α_{i} defined in (5.1),

$$
\begin{equation*}
\nabla_{\theta}^{*} \alpha_{i}(h)=\nabla_{\theta}^{*} \alpha_{i-1}(h) \cdot \mathrm{D}^{*} f_{i}\left(h_{i-1}\right)+\nabla_{\theta}^{*} f_{i}\left(h_{i-1}\right), \tag{5.10}
\end{equation*}
$$

where $h_{i-1}=\alpha_{i-1}(h)$.
Proof. We know that for any $i \in[L], \alpha_{i}=f_{i} \circ \alpha_{i-1}$. Since both f_{i} and α_{i-1} depend on θ, to take the derivative of their composition we must combine the chain rule with the product rule: first hold α_{i-1} constant with respect to θ and differentiate f_{i}, and then hold f_{i} constant with respect to θ and differentiate α_{i-1}. In particular,

$$
\begin{equation*}
\nabla_{\theta} \alpha_{i}(h)=\nabla_{\theta}\left(f_{i} \circ \alpha_{i-1}\right)(h)=\nabla_{\theta} f_{i}\left(h_{i-1}\right)+\mathrm{D} f_{i}\left(h_{i-1}\right) \cdot \nabla_{\theta} \alpha_{i-1}(h) \tag{5.11}
\end{equation*}
$$

since $h_{i-1}=\alpha_{i-1}(h)$. Then, by taking the adjoint, we recover (5.10). Note that (5.10) still holds when $i=1$, as α_{0} is the identity on E_{h} with no dependence on the parameters θ, and thus $\nabla_{\theta}^{*} \alpha_{0}(h)$ is the zero operator.

Theorem 5.1.3 (Real-Time Recurrent Learning). For any $h \in E_{h}, y_{i} \in E_{y}$, and $i \in[L]$,

$$
\begin{equation*}
\nabla_{\theta}\left(J\left(y_{i}, \widehat{y}_{i}\right)\right)=\nabla_{\theta}^{*} \alpha_{i}(h) \cdot \mathrm{D}^{*} g\left(h_{i}\right) \cdot e_{i}, \tag{5.12}
\end{equation*}
$$

where J is either J_{R} or $J_{C}, h_{i}=\alpha_{i}(h), \alpha_{i}$ is defined in (3.2), \widehat{y}_{i} is defined in (5.3), and e_{i} is defined in (5.9).

Proof. We will again proceed with only the case of cross-entropy loss; the case of squared loss is a minor extension and is omitted. For any $U \in H_{T}$,

$$
\begin{aligned}
\nabla_{\theta}\left(J_{C}\left(y_{i}, \widehat{y_{i}}\right)\right) \cdot U & =\nabla_{\theta}\left\{-\left\langle y_{i},(\log \circ \sigma)\left(g\left(\alpha_{i}(h)\right)\right)\right\rangle\right\} \cdot U \\
& =-\left\langle y_{i}, \mathrm{D}(\log \circ \sigma)\left(g\left(h_{i}\right)\right) \cdot \mathrm{D} g\left(h_{i}\right) \cdot \nabla_{\theta} \alpha_{i}(h) \cdot U\right\rangle \\
& =-\left\langle\nabla_{\theta}^{*} \alpha_{i}(h) \cdot \mathrm{D}^{*} g\left(h_{i}\right) \cdot \mathrm{D}^{*}(\log \circ \sigma)\left(g\left(h_{i}\right)\right) \cdot y_{i}, U\right\rangle \\
& =\left\langle\nabla_{\theta}^{*} \alpha_{i}(h) \cdot \mathrm{D}^{*} g\left(h_{i}\right) \cdot\left(\sigma\left(\widehat{y}_{i}\right)-y_{i}\right), U\right\rangle .
\end{aligned}
$$

Therefore, by the canonical isomorphism and since $e_{i}=\sigma\left(\widehat{y}_{i}\right)-y_{i}$, we have proven (5.12).

Note that even though we do not have access to e_{i} and h_{i} until layer i, we can still propagate the linear map $\nabla_{\theta}^{*} \alpha_{i}(h)$ forward without an argument at each layer i according to (5.10), and then use this to calculate (5.12). This is the real-time aspect of RTRL, as it allows for exact gradient computation at each layer i without knowledge of the information at future layers. Unfortunately, this forward propagation is also what makes RTRL slow compared to BPTT. Nevertheless, we present a generic algorithm for performing one step of gradient descent via RTRL in Algorithm 5.1.1. As input to the algorithm, we provide the sequence input \mathbf{x} and associated targets \mathbf{y}, the initial state h, the transition parameters θ, the prediction parameters ζ, the learning rate η, and the type of loss function, loss ϵ \{squared, cross-entropy\}. We receive, as output, a parameter set updated by a single step of gradient descent.

```
Algorithm 5.1.1 One iteration of gradient descent for an RNN via RTRL
    function GradDescrirRL \((\mathbf{x}, \mathbf{y}, h, \theta, \zeta, l o s s, \eta)\)
        \(h_{0} \leftarrow h\)
        \(\nabla_{\theta} \mathcal{J} \leftarrow 0 \quad \triangleright 0\) in \(H_{T}\), the inner product space in which \(\theta\) resides
        \(\nabla_{\zeta} \mathcal{J} \leftarrow 0 \quad \triangleright 0\) in \(H_{P}\), the inner product space in which \(\zeta\) resides
        for \(i \in\{1, \ldots, L\}\) do
            \(h_{i} \leftarrow f_{i}\left(h_{i-1}\right) \quad \triangleright f_{i}\) depends on \(\theta, x_{i}\)
            \(\widehat{y}_{i} \leftarrow g\left(h_{i}\right)\)
            \(\nabla_{\theta}^{*} \alpha_{i}(h) \leftarrow \nabla_{\theta}^{*} \alpha_{i-1}(h) \cdot \mathrm{D}^{*} f_{i}\left(h_{i-1}\right)+\nabla_{\theta}^{*} f_{i}\left(h_{i-1}\right)\)
            if loss \(=\) squared then
                    \(e_{i} \leftarrow \widehat{y}_{i}-y_{i}\)
            else
                    \(e_{i} \leftarrow \sigma\left(\widehat{y}_{i}\right)-y_{i}\)
            \(\nabla_{\theta} \mathcal{J} \leftarrow \nabla_{\theta} \mathcal{J}+\nabla_{\theta}^{*} \alpha_{i}(h) \cdot \mathrm{D}^{*} g\left(h_{i}\right) \cdot e_{i} \triangleright\) Add accumulated gradient at each layer
            \(\nabla_{\zeta} \mathcal{J} \leftarrow \nabla_{\zeta} \mathcal{J}+\nabla_{\zeta}^{*} g\left(h_{i}\right) \cdot e_{i}\)
        \(\theta \leftarrow \theta-\eta \nabla_{\theta} \mathcal{J} \quad \triangleright\) Parameter update steps
        \(\zeta \leftarrow \zeta-\eta \nabla_{\zeta} \mathcal{J}\)
        return \(\theta, \zeta\)
```


Backpropagation Through Time

We can derive a more efficient method for gradient calculation with respect to the transition parameters in RNNs, known as BPTT. Even though we must traverse the network both forwards and backwards to execute BPTT, the forward and backward steps combined are
far more computationally efficient than RTRL [67]. Note that we will use the notation $\mathrm{D}_{h_{i}}$ to denote the action of taking the derivative with respect to the state h_{i} in this section, for any $i \in[L]$. We use this, as opposed to $\nabla_{h_{i}}$, since h_{i} is a state variable.

The first part of BPTT that we will derive is the backpropagation step, which sends the error at layer $i \in[L]$ backwards throughout the network. To do this, we will calculate $\mathrm{D} \mu_{j, i+1}\left(h_{i}\right)$ for $j \geq i+1$ in Lemma 5.1.4, and then use this result to derive the recurrence in Theorem 5.1.5.

Lemma 5.1.4. For any $h_{i} \in E_{h}, i \in[L-1]$, and $j \in[L]$ with $j \geq i+1$,

$$
\begin{equation*}
\mathrm{D} \mu_{j, i+1}\left(h_{i}\right)=\mathrm{D} \mu_{j, i+2}\left(h_{i+1}\right) \cdot \mathrm{D} f_{i+1}\left(h_{i}\right) \tag{5.13}
\end{equation*}
$$

where $h_{i+1}=f_{i+1}\left(h_{i}\right)$ and $\mu_{j, i}$ is defined in (5.2). Furthermore, $\mathrm{D} \mu_{i, i+1}\left(h_{i}\right)$ is the identity map on E_{h}.

Proof. First of all, since $\mu_{i, i+1}$ is the identity on E_{h}, we automatically have that $\mathrm{D} \mu_{i, i+1}\left(h_{i}\right)$ is the identity on E_{h}.

Furthermore, for $j \geq i+1$, by the definition of $\mu_{j, i+1}$ we have that

$$
\mu_{j, i+1}=\mu_{j, i+2} \circ f_{i+1}
$$

Therefore, by the chain rule, for any $h_{i} \in E_{h}$,

$$
\begin{aligned}
\mathrm{D} \mu_{j, i+1}\left(h_{i}\right) & =\mathrm{D}\left(\mu_{j, i+2} \circ f_{i+1}\right)\left(h_{i}\right) \\
& =\mathrm{D} \mu_{j, i+2}\left(h_{i+1}\right) \cdot \mathrm{D} f_{i+1}\left(h_{i}\right),
\end{aligned}
$$

since $h_{i+1}=f_{i+1}\left(h_{i}\right)$.
Theorem 5.1.5 (Backpropagation Through Time). For any $i \in[L]$ and $h_{i} \in E_{h}$, with \mathcal{J} defined as in (5.4),

$$
\begin{equation*}
\mathrm{D}_{h_{i}} \mathcal{J}=\mathrm{D}^{*} f_{i+1}\left(h_{i}\right) \cdot \mathrm{D}_{h_{i+1}} \mathcal{J}+\mathrm{D}^{*} g\left(h_{i}\right) \cdot e_{i}, \tag{5.14}
\end{equation*}
$$

where we set $\mathrm{D}_{h_{L+1}} \mathcal{J}$ to be the zero vector in E_{h} and we define e_{i} as in (5.9).
Proof. We can prove this directly from the definition of \mathcal{J} for the cross-entropy loss case. For any $v \in E_{h}$,

$$
\mathrm{D}_{h_{i}} \mathcal{J} \cdot v=\mathrm{D}_{h_{i}}\left(-\sum_{j=1}^{L}\left\langle y_{j},(\log \circ \sigma)\left(g\left(\alpha_{j}(h)\right)\right\rangle\right) \cdot v\right.
$$

$$
\begin{align*}
& =\mathrm{D}_{h_{i}}\left(-\sum_{j=i}^{L}\left\langle y_{j},(\log \circ \sigma)\left(g\left(\mu_{j, i+1}\left(h_{i}\right)\right)\right)\right\rangle\right) \cdot v \tag{5.15}\\
& =-\sum_{j=i}^{L}\left\langle y_{i}, \mathrm{D}(\log \circ \sigma)\left(\widehat{y}_{j}\right) \cdot \mathrm{D} g\left(h_{j}\right) \cdot \mathrm{D} \mu_{j, i+1}\left(h_{i}\right) \cdot v\right\rangle \tag{5.16}\\
& =\sum_{j=i}^{L}\left\langle\mathrm{D}^{*} \mu_{j, i+1}\left(h_{i}\right) \cdot \mathrm{D}^{*} g\left(h_{j}\right) \cdot e_{j}, v\right\rangle, \tag{5.17}
\end{align*}
$$

where (5.15) holds since the loss from layers $j<i$ is not impacted by h_{i}, (5.16) holds from the chain rule in (2.3), and (5.17) holds by Lemma 2.4.4 and the definition of the adjoint. Therefore, by the canonical isomorphism, we can represent $\mathrm{D}_{h_{i}} \mathcal{J}$ as an element of E_{h} according to

$$
\begin{equation*}
\mathrm{D}_{h_{i}} \mathcal{J}=\sum_{j=i}^{L} \mathrm{D}^{*} \mu_{j, i+1}\left(h_{i}\right) \cdot \mathrm{D}^{*} g\left(h_{j}\right) \cdot e_{j}, \tag{5.18}
\end{equation*}
$$

for any $i \in[L]$. We can manipulate (5.18) as follows when $i<L$:

$$
\begin{align*}
\mathrm{D}_{h_{i}} \mathcal{J} & =\mathrm{D}^{*} \mu_{i, i+1}\left(h_{i}\right) \cdot \mathrm{D}^{*} g\left(h_{i}\right) \cdot e_{i}+\sum_{j=i+1}^{L} \mathrm{D}^{*} \mu_{j, i+1}\left(h_{i}\right) \cdot \mathrm{D}^{*} g\left(h_{j}\right) \cdot e_{j} \\
& =\mathrm{D}^{*} g\left(h_{i}\right) \cdot e_{i}+\sum_{j=i+1}^{L} \mathrm{D}^{*} f_{i+1}\left(h_{i}\right) \cdot \mathrm{D}^{*} \mu_{j, i+2}\left(h_{i+1}\right) \cdot \mathrm{D}^{*} g\left(h_{j}\right) \cdot e_{j} \tag{5.19}\\
& =\mathrm{D}^{*} g\left(h_{i}\right) \cdot e_{i}+\mathrm{D}^{*} f_{i+1}\left(h_{i}\right) \cdot\left(\sum_{j=i+1}^{L} \mathrm{D}^{*} \mu_{j, i+2}\left(h_{i+1}\right) \cdot \mathrm{D}^{*} g\left(h_{j}\right) \cdot e_{j}\right), \tag{5.20}
\end{align*}
$$

where (5.19) follows from Lemma 5.1.4 and the reversing property of the adjoint. We recognize $\sum_{j=i+1}^{L} \mathrm{D}^{*} \mu_{j, i+2}\left(h_{i+1}\right) \cdot \mathrm{D}^{*} g\left(h_{j}\right) \cdot e_{j}$ in (5.20) as $\mathrm{D}_{h_{i+1}} \mathcal{J}$ (from (5.18)), and thus we have proven (5.14) for $i<L$.

As for when $i=L$, it is quite easy to show that $\mathrm{D}_{h_{L}} \mathcal{J}=\mathrm{D}^{*} g\left(h_{L}\right) \cdot e_{L}$, which also proves (5.14) for this case since we set $\mathrm{D}_{h_{L+1}} \mathcal{J}$ to zero. Thus, we have proven (5.14) for all $i \in[L]$.

We again omit the proof for the case of squared loss as it is not a difficult extension.
We will present the gradient of \mathcal{J} with respect to the transition parameters for BPTT in Theorem 5.1.7 after first presenting a useful result in Lemma 5.1.6. The expression that we will derive relies heavily on the recursion from Theorem 5.1.5, similarly to how Theorems 3.2.2 and 3.2.4 depend on the recursion from Theorem 3.2.5.

Lemma 5.1.6. For any $k \in[L]$ and $h \in E_{h}$,

$$
\begin{equation*}
\nabla_{\theta} \alpha_{k}(h)=\sum_{j=1}^{k} \mathrm{D} \mu_{k, j+1}\left(h_{j}\right) \cdot \nabla_{\theta} f_{j}\left(h_{j-1}\right), \tag{5.21}
\end{equation*}
$$

where α_{k} is defined in (5.1), $h_{j}=\alpha_{j}(h)$ for all $j \in[L]$, and $\mu_{k, j+1}$ is defined in (5.2).
Proof. We can prove this via induction. For $k=1$, since $\alpha_{1}=f_{1}$ and $h=h_{0}$,

$$
\nabla_{\theta} \alpha_{1}(h)=\nabla_{\theta} f_{1}\left(h_{0}\right) .
$$

Also, by Lemma 5.1.4, $\mathrm{D} \mu_{1,2}\left(h_{1}\right)$ is the identity. Therefore, (5.21) is true for $k=1$.
Now assume (5.21) holds for $2 \leq k \leq L-1$. Then,

$$
\begin{aligned}
\nabla_{\theta} \alpha_{k+1}(h) & =\mathrm{D} f_{k+1}\left(h_{k}\right) \cdot \nabla_{\theta} \alpha_{k}(h)+\nabla_{\theta} f_{k+1}\left(h_{k}\right) \\
& =\mathrm{D} f_{k+1}\left(h_{k}\right) \cdot\left(\sum_{j=1}^{k} \mathrm{D} \mu_{k, j+1}\left(h_{j}\right) \cdot \nabla_{\theta} f_{j}\left(h_{j-1}\right)\right)+\mathrm{D} \mu_{k+1, k+2}\left(h_{k+1}\right) \cdot \nabla_{\theta} f_{k+1}\left(h_{k}\right) \\
& =\sum_{j=1}^{k+1} \mathrm{D} \mu_{k+1, j+1}\left(h_{j}\right) \cdot \nabla_{\theta} f_{j}\left(h_{j-1}\right)
\end{aligned}
$$

where the first line follows from (5.11), the second line from the inductive hypothesis and the fact that $\mathrm{D} \mu_{k+1, k+2}\left(h_{k+1}\right)$ is the identity, and the third line from the fact that $f_{k+1} \circ \mu_{k, j+1}=\mu_{k+1, j+1}$, implying

$$
\mathrm{D} f_{k+1}\left(h_{k}\right) \cdot \mathrm{D} \mu_{k, j+1}\left(h_{j}\right)=\mathrm{D} \mu_{k+1, j+1}\left(h_{j}\right)
$$

for $j \leq k$. Thus, we have proven (5.21) for all $k \in[L]$ by induction.
Theorem 5.1.7. For \mathcal{J} defined as in (5.4),

$$
\begin{equation*}
\nabla_{\theta} \mathcal{J}=\sum_{i=1}^{L} \nabla_{\theta}^{*} f_{i}\left(h_{i-1}\right) \cdot \mathrm{D}_{h_{i}} \mathcal{J} \tag{5.22}
\end{equation*}
$$

where we can write $\mathrm{D}_{h_{j}} \mathcal{J}$ as an element of E_{h} recursively according to (5.14).
Proof. We can prove this directly using the results from earlier in this section:

$$
\begin{aligned}
\nabla_{\theta} \mathcal{J} & =\sum_{j=1}^{L} \nabla_{\theta}^{*} \alpha_{j}(h) \cdot \mathrm{D}^{*} g\left(h_{j}\right) \cdot e_{j} \\
& =\sum_{j=1}^{L} \sum_{i=1}^{j} \nabla_{\theta}^{*} f_{i}\left(h_{i-1}\right) \cdot \mathrm{D}^{*} \mu_{j, i+1}\left(h_{i}\right) \cdot \mathrm{D}^{*} g\left(h_{j}\right) \cdot e_{j},
\end{aligned}
$$

where the first equality follows from summing (5.12) over all $j \in[L]$, and the second from taking the adjoint of (5.21). We will now swap the indices to obtain the final result, since we are summing over $\{(i, j) \in[L] \times[L]: 1 \leq i \leq j \leq L\}$:

$$
\begin{aligned}
\nabla_{\theta} \mathcal{J} & =\sum_{i=1}^{L} \sum_{j=i}^{L} \nabla_{\theta}^{*} f_{i}\left(h_{i-1}\right) \cdot \mathrm{D}^{*} \mu_{j, i+1}\left(h_{i}\right) \cdot \mathrm{D}^{*} g\left(h_{j}\right) \cdot e_{j} \\
& =\sum_{i=1}^{L} \nabla_{\theta}^{*} f_{i}\left(h_{i-1}\right) \cdot\left(\sum_{j=i}^{L} \mathrm{D}^{*} \mu_{j, i+1}\left(h_{i}\right) \cdot \mathrm{D}^{*} g\left(h_{j}\right) \cdot e_{j}\right) \\
& =\sum_{i=1}^{L} \nabla_{\theta}^{*} f_{i}\left(h_{i-1}\right) \cdot \mathrm{D}_{h_{i}} \mathcal{J},
\end{aligned}
$$

where the final line comes from (5.18).
We will now present an algorithm for taking one step of gradient descent in BPTT. The inputs and outputs are the same as Algorithm 5.1.1, with the only difference being that we compute the gradient with respect to the transition parameters according to BPTT and not RTRL. We will denote the backpropagated error quantity in Algorithm 5.1.2 by

$$
\varepsilon_{i} \equiv \mathrm{D}_{h_{i}} \mathcal{J}
$$

for all $i \in[L+1]$. We can again extend Algorithm 5.1.2 to a batch of inputs, more complicated gradient descent algorithms, and regularization, as in Algorithm 3.2.1.

One important extension to the BPTT algorithm given in Algorithm 5.1.2 is truncated BPTT, in which we run BPTT every $\ell<L$ timesteps down for a fixed $m<L$ steps [74], and then reset the error vector to zero after. Truncated BPTT requires fewer computations than full BPTT and can also help with the problem of vanishing and exploding gradients, as the gradients will not be propagated back as far as in full BPTT. One potential downside is that the exact gradients will not be calculated, although this is preferable to exact gradients if they would otherwise explode.

5.2 Vanilla RNNs

We will now formulate the basic vanilla RNN [19,64] in the framework of the previous section. We first need to specify the hidden, input, output, and parameter spaces, the layerwise function f, and the prediction function g. We will also take the derivatives of f and g to develop the BPTT and RTRL methods for vanilla RNNs. In this section, we

```
Algorithm 5.1.2 One iteration of gradient descent for an RNN via BPTT
    function GradDEscBPTT( \(\mathbf{x}, \mathbf{y}, h, \theta, \zeta, l o s s, \eta)\)
        \(h_{0} \leftarrow h\)
        \(\nabla_{\theta} \mathcal{J} \leftarrow 0 \quad \triangleright 0\) in \(H_{T}\), the inner product space in which \(\theta\) resides
        \(\nabla_{\zeta} \mathcal{J} \leftarrow 0 \quad \triangleright 0\) in \(H_{P}\), the inner product space in which \(\zeta\) resides
        for \(i \in\{1, \ldots, L\}\) do
            \(h_{i} \leftarrow f_{i}\left(h_{i-1}\right) \quad \triangleright f_{i}\) depends on \(\theta, x_{i}\)
            \(\widehat{y}_{i} \leftarrow g\left(h_{i}\right)\)
            if loss = squared then
                    \(e_{i} \leftarrow \widehat{y}_{i}-y_{i}\)
            else
                \(e_{i} \leftarrow \sigma\left(\widehat{y_{i}}\right)-y_{i}\)
            \(\nabla_{\zeta} \mathcal{J} \leftarrow \nabla_{\zeta} \mathcal{J}+\nabla_{\zeta}^{*} g\left(h_{i}\right) \cdot e_{i} \quad \triangleright\) Add accumulated gradient at each layer
        \(\varepsilon_{L+1} \leftarrow 0\)
                                \(\triangleright 0\) in \(E_{h}\); Initialization of \(\mathrm{D}_{h_{L+1}} \mathcal{J}\)
        for \(i \in\{L, \ldots, 1\}\) do
            \(\varepsilon_{i} \leftarrow \mathrm{D}^{*} f_{i+1} \cdot \varepsilon_{i+1}+\mathrm{D}^{*} g\left(h_{i}\right) \cdot e_{i} \quad \triangleright\) BPTT update step from (5.14)
            \(\nabla_{\theta} \mathcal{J} \leftarrow \nabla_{\theta} \mathcal{J}+\nabla_{\theta}^{*} f_{i}\left(h_{i-1}\right) \cdot \varepsilon_{i} \quad \triangleright\) Add accumulated gradient at each layer
        \(\theta \leftarrow \theta-\eta \nabla_{\theta} \mathcal{J} \quad \triangleright\) Parameter update steps
        \(\zeta \leftarrow \zeta-\eta \nabla_{\zeta} \mathcal{J}\)
        return \(\theta, \zeta\)
```

will discuss BPTT first, since once we take the derivatives of the layerwise function and prediction functions it is easy to insert them into the results of the previous section. It is not as easy to handle RTRL now, though, as we will need to introduce notation to implement the forward propagation of (5.10).

5.2.1 Formulation

Let us assume the hidden state is a vector of length n_{h}, i.e. $E_{h}=\mathbb{R}^{n_{h}}$. Suppose also that $E_{x}=\mathbb{R}^{n_{x}}$ and $E_{y}=\mathbb{R}^{n_{y}}$. We will evolve the hidden state $h \in \mathbb{R}^{n_{h}}$ according to a hidden-to-hidden weight matrix $W \in \mathbb{R}^{n_{h} \times n_{h}}$, an input-to-hidden weight matrix $U \in \mathbb{R}^{n_{h} \times n_{x}}$, and a bias vector $b \in \mathbb{R}^{n_{h}}$. We can then describe the hidden state evolution as

$$
f(h ; x ; W, U, b)=\Psi(W \cdot h+U \cdot x+b),
$$

where $\Psi: \mathbb{R}^{n_{h}} \rightarrow \mathbb{R}^{n_{h}}$ is the elementwise nonlinearity. The tanh function is a particularly popular choice of elementwise nonlinearity for RNNs. If we employ the parameter and
input suppression convention for each layer $i \in[L]$, we can write the layerwise function f_{i} as:

$$
\begin{equation*}
f_{i}\left(h_{i-1}\right)=\Psi\left(W \cdot h_{i-1}+U \cdot x_{i}+b\right) . \tag{5.23}
\end{equation*}
$$

The prediction function g is also parametrized by matrix-vector multiplication as follows for any $h \in \mathbb{R}^{n_{h}}$:

$$
\begin{equation*}
g(h)=V \cdot h+c, \tag{5.24}
\end{equation*}
$$

where $V \in \mathbb{R}^{n_{y} \times n_{h}}$ is the hidden-to-output weight matrix, and $c \in \mathbb{R}^{n_{y}}$ is the output bias vector.

5.2.2 Single-Layer Derivatives

We will first derive the maps $\mathrm{D} f$ and $\nabla_{\theta} f$, for $\theta \in\{W, U, b\}$, and their adjoints. Then, we will derive $\mathrm{D} g$ and $\nabla_{\zeta} g$, for $\zeta \in\{V, c\}$, and the adjoints of those as well.

Theorem 5.2.1. For any $h_{i-1} \in \mathbb{R}^{n_{h}}, x_{i} \in \mathbb{R}^{n_{x}}, \widetilde{W} \in \mathbb{R}^{n_{h} \times n_{h}}$, and $\widetilde{U} \in \mathbb{R}^{n_{h} \times n_{x}}$, with f_{i} defined as in (5.23),

$$
\begin{align*}
\mathrm{D} f_{i}\left(h_{i-1}\right) & =\mathrm{D} \Psi\left(z_{i}\right) \cdot W, \tag{5.25}\\
\nabla_{W} f_{i}\left(h_{i-1}\right) \cdot \widetilde{W} & =\mathrm{D} \Psi\left(z_{i}\right) \cdot \widetilde{W} \cdot h_{i-1}, \tag{5.26}\\
\nabla_{U} f_{i}\left(h_{i-1}\right) \cdot \widetilde{U} & =\mathrm{D} \Psi\left(z_{i}\right) \cdot \widetilde{U} \cdot x_{i}, \tag{5.27}\\
\nabla_{b} f_{i}\left(h_{i-1}\right) & =\mathrm{D} \Psi\left(z_{i}\right), \tag{5.28}
\end{align*}
$$

where $z_{i}=W \cdot h_{i-1}+U \cdot x_{i}+b$. Furthermore, for any $v \in \mathbb{R}^{n_{h}}$,

$$
\begin{align*}
\mathrm{D}^{*} f_{i}\left(h_{i-1}\right) & =W^{T} \cdot \mathrm{D} \Psi\left(z_{i}\right), \tag{5.29}\\
\nabla_{W}^{*} f_{i}\left(h_{i-1}\right) \cdot v & =\left(\mathrm{D} \Psi\left(z_{i}\right) \cdot v\right) h_{i-1}^{T}, \tag{5.30}\\
\nabla_{U}^{*} f_{i}\left(h_{i-1}\right) \cdot v & =\left(\mathrm{D} \Psi\left(z_{i}\right) \cdot v\right) x_{i}^{T}, \tag{5.31}\\
\nabla_{b}^{*} f_{i}\left(h_{i-1}\right) & =\mathrm{D} \Psi\left(z_{i}\right) . \tag{5.32}
\end{align*}
$$

Proof. Equations (5.25) to (5.28) are all direct consequences of the chain rule.
Equations (5.29) and (5.32) follow directly from the reversing property of the adjoint and the self-adjointness of $\mathrm{D} \Psi$. We can also prove equations (5.30) and (5.31) in the exact same way as (4.5) so the proof is complete.

Theorem 5.2.2. For any $h \in E_{h}$ and $\widetilde{V} \in \mathbb{R}^{n_{y} \times n_{h}}$, with g defined as in (5.24),

$$
\begin{align*}
\mathrm{D} g(h) & =V, \tag{5.33}\\
\nabla_{V} g(h) \cdot \widetilde{V} & =\widetilde{V} \cdot h, \tag{5.34}\\
\nabla_{c} g(h) & =i d . \tag{5.35}
\end{align*}
$$

Furthermore, for any $v \in \mathbb{R}^{n_{y}}$,

$$
\begin{align*}
\mathrm{D}^{*} g(h) & =V^{T} \tag{5.36}\\
\nabla_{V}^{*} g(h) \cdot v & =v h^{T}, \tag{5.37}\\
\nabla_{c}^{*} g(h) & =i d . \tag{5.38}
\end{align*}
$$

Proof. Equations (5.33) to (5.35) are consequences of the chain rule and equations (5.36) to (5.38) are simpler versions of their counterparts in Theorem 5.2.1.

We can use the results from Theorem 5.2.2 in (5.8) to calculate the loss function derivatives with respect to the prediction parameters V and c.

5.2.3 Backpropagation Through Time

In this section, we will explicitly write out the BPTT recurrence (5.14) and full gradient (5.22) for the case of vanilla RNNs. Once we write these out, they can easily be inserted into Algorithm 5.1.2 to perform BPTT. The equations that we will derive bear a strong resemblance to those found in [19, Chapter 10]; however, we have explicitly shown the derivation here and have carefully defined the maps and vectors that we are using.

Theorem 5.2.3. For any $i \in[L]$,

$$
\begin{equation*}
\mathrm{D}_{h_{i}} \mathcal{J}=W^{T} \cdot \mathrm{D} \Psi\left(z_{i}\right) \cdot \mathrm{D}_{h_{i+1}} \mathcal{J}+V^{T} \cdot e_{i} \tag{5.39}
\end{equation*}
$$

where \mathcal{J} is defined in (5.4), $z_{i}=W \cdot h_{i-1}+U \cdot x_{i}+b, e_{i}$ is defined in (5.9), and we set $\mathrm{D}_{h_{L+1}} \mathcal{J}$ to be the zero vector in $\mathbb{R}^{n_{h}}$.

Proof. We can prove this simply by inserting the definitions of $\mathrm{D}^{*} f_{i}$ and $\mathrm{D}^{*} g$ from (5.25) and (5.33), respectively, into (5.14).

Theorem 5.2.4. For \mathcal{J} defined as in (5.4),

$$
\begin{aligned}
\nabla_{W} \mathcal{J} & =\sum_{i=1}^{L}\left(\mathrm{D} \Psi\left(z_{i}\right) \cdot \mathrm{D}_{h_{i}} \mathcal{J}\right) h_{i-1}^{T} \\
\nabla_{U} \mathcal{J} & =\sum_{i=1}^{L}\left(\mathrm{D} \Psi\left(z_{i}\right) \cdot \mathrm{D}_{h_{i}} \mathcal{J}\right) x_{i}^{T} \\
\nabla_{b} \mathcal{J} & =\sum_{i=1}^{L} \mathrm{D} \Psi\left(z_{i}\right) \cdot \mathrm{D}_{h_{i}} \mathcal{J}
\end{aligned}
$$

where $h_{i}=\alpha_{i}(h)$ for all $i \in[L]$, and $\mathrm{D}_{h_{i}} \mathcal{J}$ can be calculated recursively according to Theorem 5.2.3.

Proof. As with Theorem 5.2.3, we can prove this by inserting $\nabla_{W}^{*} f_{i}\left(h_{i-1}\right)$ from (5.30), $\nabla_{U}^{*} f_{i}\left(h_{i-1}\right)$ from (5.31), or $\nabla_{b}^{*} f_{i}\left(h_{i-1}\right)$ from (5.32) into (5.22).

We can use the results from Theorems 5.2.3 and 5.2.4 to create a specific BPTT algorithm for vanilla RNNs, which we present in Algorithm 5.2.1. We have the same inputs and outputs as Algorithm 5.1.2, although our transition parameters θ are now $\theta=\{W, U, b\}$, and our prediction parameters ζ are now $\zeta=\{V, c\}$.

5.2.4 Real-Time Recurrent Learning

As mentioned earlier, we will have to develop some additional machinery to implement RTRL for vanilla RNNs. Consider, for example, propagating $\nabla_{W}^{*} \alpha_{i}(h)$ forward at each layer i according to (5.10). This map is an element of $\mathcal{L}\left(\mathbb{R}^{n_{h}} ; \mathbb{R}^{n_{h} \times n_{h}}\right)$, which is isomorphic to $\mathbb{R}^{n_{h} \times n_{h} \times n_{h}}$, implying that we require tensor product notation to represent it. However, tensor products will be quite convenient and useful in this section, as they were for representing CNNs.

Evolution Equation

For a generic parameter $\theta \in\{W, U, b\}$ and any $i \in[L]$, we can write

$$
\nabla_{\theta}^{*} \alpha_{i}=\sum_{j=1}^{n_{h}} A_{i, j} \otimes \bar{e}_{j}
$$

```
Algorithm 5.2.1 One iteration of gradient descent for a vanilla RNN via BPTT
    function GradDescVanillaBPTT( \(\mathbf{x}, \mathbf{y}, h, \theta, \zeta, l o s s, \eta)\)
        \(h_{0} \leftarrow h\)
        \(\nabla_{W} \mathcal{J}, \nabla_{U} \mathcal{J}, \nabla_{b} \mathcal{J} \leftarrow 0 \quad \triangleright 0\) in their respective spaces
        \(\nabla_{V} \mathcal{J}, \nabla_{c} \mathcal{J} \leftarrow 0\)
        for \(i \in\{1, \ldots, L\}\) do
            \(z_{i} \leftarrow W \cdot h_{i-1}+U \cdot x_{i}+b\)
            \(h_{i} \leftarrow \Psi\left(z_{i}\right) \quad \triangleright\) Specific definition of \(f_{i}\)
            \(\widehat{y}_{i} \leftarrow V \cdot h_{i}+c \quad \triangleright\) Specific definition of \(g\)
            if loss \(=\) squared then
                    \(e_{i} \leftarrow \widehat{y}_{i}-y_{i}\)
            else
                \(e_{i} \leftarrow \sigma\left(\widehat{y}_{i}\right)-y_{i}\)
            \(\nabla_{c} \mathcal{J} \leftarrow \nabla_{c} \mathcal{J}+e_{i} \quad \triangleright\) Inserted (5.38) into (5.8) to accumulate gradient
            \(\nabla_{V} \mathcal{J} \leftarrow \nabla_{V} \mathcal{J}+e_{i} \cdot h_{i}^{T} \quad \triangleright\) Inserted (5.37) into (5.8) to accumulate gradient
        \(\varepsilon_{L+1} \leftarrow 0 \quad \triangleright 0\) in \(E_{h}\); Initialization of \(\mathrm{D}_{h_{L+1}} \mathcal{J}\)
        for \(i \in\{L, \ldots, 1\}\) do
            \(\varepsilon_{i} \leftarrow W^{T} \cdot \mathrm{D} \Psi\left(z_{i+1}\right) \cdot \varepsilon_{i+1}+V^{T} \cdot e_{i} \quad \triangleright\) BPTT update step with (5.29) and (5.36)
            \(\nabla_{b} \mathcal{J} \leftarrow \nabla_{b} \mathcal{J}+\mathrm{D} \Psi\left(z_{i}\right) \cdot \varepsilon_{i} \quad \triangleright \operatorname{Inserted}\) (5.32) into (5.22)
            \(\nabla_{W} \mathcal{J} \leftarrow \nabla_{W} \mathcal{J}+\left(\mathrm{D} \Psi\left(z_{i}\right) \cdot \varepsilon_{i}\right) h_{i-1}^{T} \quad \triangleright \operatorname{Inserted}\) (5.30) into (5.22)
            \(\nabla_{U} \mathcal{J} \leftarrow \nabla_{U} \mathcal{J}+\left(\mathrm{D} \Psi\left(z_{i}\right) \cdot \varepsilon_{i}\right) x_{i}^{T} \quad \triangleright \operatorname{Inserted}\) (5.31) into (5.22)
        \(\theta \leftarrow \theta-\eta \nabla_{\theta} \mathcal{J} \quad \triangleright\) Parameter update steps for all \(\theta, \zeta\)
        \(\zeta \leftarrow \zeta-\eta \nabla_{\zeta} \mathcal{J}\)
        return \(\theta, \zeta\)
```

where $\left\{\bar{e}_{j}\right\}_{j=1}^{n}$ is an orthonormal basis for $\mathbb{R}^{n_{h},{ }^{2}}$ and $A_{i, j}: \mathbb{R}^{n_{h}} \rightarrow \Theta$ is a function from the space of hidden states to the space in which the parameter θ resides for all $i \in[L]$ and $j \in\left[n_{h}\right]$. We can interpret this expression as follows: for any $h, v \in \mathbb{R}^{n_{h}}$ and $i \in[L]$,

$$
\begin{equation*}
\nabla_{\theta}^{*} \alpha_{i}(h) \cdot v=\sum_{j=1}^{n_{h}} A_{i, j}(h)\left\langle\bar{e}_{j}, v\right\rangle=\sum_{j=1}^{n_{h}}\left\langle\bar{e}_{j}, v\right\rangle A_{i, j}(h) . \tag{5.40}
\end{equation*}
$$

[^16]We can also write out the right-hand-side of (5.10) similarly:

$$
\begin{align*}
& \left(\nabla_{\theta}^{*} \alpha_{i-1}(h) \cdot \mathrm{D}^{*} f_{i}\left(h_{i-1}\right)+\nabla_{\theta}^{*} f_{i}\left(h_{i-1}\right)\right) \cdot v \tag{5.41}\\
& \quad=\sum_{j=1}^{n_{h}}\left\langle\bar{e}_{j}, \mathrm{D}^{*} f_{i}\left(h_{i-1}\right) \cdot v\right\rangle A_{i-1, j}(h)+\nabla_{\theta}^{*} f_{i}\left(h_{i-1}\right) \cdot v,
\end{align*}
$$

where $h_{i-1}=\alpha_{i-1}(h)$. Equating (5.40) with (5.41), which is valid from (5.10), we obtain

$$
\sum_{j=1}^{n_{h}}\left\langle\bar{e}_{j}, v\right\rangle A_{i, j}(h)=\sum_{k=1}^{n_{h}}\left\langle\bar{e}_{k}, \mathrm{D}^{*} f_{i}\left(h_{i-1}\right) \cdot v\right\rangle A_{i-1, k}(h)+\nabla_{\theta}^{*} f_{i}\left(h_{i-1}\right) \cdot v,
$$

or if $v=\bar{e}_{j}$ for some $j \in\left[n_{h}\right]$,

$$
\begin{equation*}
A_{i, j}(h)=\sum_{k=1}^{n_{h}}\left\langle\bar{e}_{k}, \mathrm{D}^{*} f_{i}\left(h_{i-1}\right) \cdot \bar{e}_{j}\right\rangle A_{i-1, k}(h)+\nabla_{\theta}^{*} f_{i}\left(h_{i-1}\right) \cdot \bar{e}_{j} . \tag{5.42}
\end{equation*}
$$

Thus, we can evolve $A_{i, j}(h)$, or equivalently $\nabla_{\theta}^{*} \alpha_{i}(h)$, according to (5.42), for $\theta \in\{W, U, b\}$, and we then evaluate $\nabla_{\theta}^{*} \alpha_{i}(h)$ as in (5.40). Also, since $\nabla_{\theta}^{*} \alpha_{0}(h)$ is the zero operator for all $h \in \mathbb{R}^{n_{h}}$, we initialize $A_{0, j}(h)$ to be zero in Θ for all $j \in\left[n_{h}\right]$.

We will quickly discuss the specific results for each parameter. For $\theta=W, A_{i, j}^{W}(h)$ is in the same space as W, i.e. $A_{i, j}^{W}(h) \in \mathbb{R}^{n_{h} \times n_{h}}$ for all $i \in[L]$ and $j \in\left[n_{h}\right]$. Similarly, we have $A_{i, j}^{U}(h) \in \mathbb{R}^{n_{h} \times n_{x}}$ and $A_{i, j}^{b}(h) \in \mathbb{R}^{n_{h}}$. If we insert the results from Theorem 5.2.1 into (5.42) for each parameter θ, we obtain the following three recurrence equations for each of the transition parameters:

$$
\begin{align*}
& A_{i, j}^{W}(h)=\sum_{k=1}^{n_{h}}\left\langle W \cdot \bar{e}_{k}, \mathrm{D} \Psi\left(z_{i}\right) \cdot \bar{e}_{j}\right\rangle A_{i-1, k}^{W}(h)+\left(\mathrm{D} \Psi\left(z_{i}\right) \cdot \bar{e}_{j}\right) h_{i-1}^{T}, \tag{5.43}\\
& A_{i, j}^{U}(h)=\sum_{k=1}^{n_{h}}\left\langle W \cdot \bar{e}_{k}, \mathrm{D} \Psi\left(z_{i}\right) \cdot \bar{e}_{j}\right\rangle A_{i-1, k}^{U}(h)+\left(\mathrm{D} \Psi\left(z_{i}\right) \cdot \bar{e}_{j}\right) x_{i}^{T}, \tag{5.44}\\
& A_{i, j}^{b}(h)=\sum_{k=1}^{n_{h}}\left\langle W \cdot \bar{e}_{k}, \mathrm{D} \Psi\left(z_{i}\right) \cdot \bar{e}_{j}\right\rangle A_{i-1, k}^{b}(h)+\mathrm{D} \Psi\left(z_{i}\right) \cdot \bar{e}_{j} \tag{5.45}
\end{align*}
$$

for all $i \in[L]$ and $j \in\left[n_{h}\right]$, where $z_{i}=W \cdot h_{i-1}+U \cdot x_{i}+b$, and we have moved W to the other side of the inner product since $\left(W^{T}\right)^{*}=W$ under the standard inner product.

Loss Function Derivatives

Once we have propagated the map $\nabla_{\theta}^{*} \alpha_{i}(h)$ forward, we will apply it to $\mathrm{D}^{*} g\left(h_{i}\right) \cdot e_{i}$ as in (5.12). If we insert the specific definition of $\mathrm{D}^{*} g$ from (5.36) and our representation of
$\nabla_{\theta}^{*} \alpha_{i}(h)$, we obtain

$$
\begin{align*}
\nabla_{\theta}^{*} \alpha_{i}(h) \cdot \mathrm{D}^{*} g\left(h_{i}\right) \cdot e_{i} & =\sum_{j=1}^{n_{h}}\left\langle\bar{e}_{j}, \mathrm{D}^{*} g\left(h_{i}\right) \cdot e_{i}\right\rangle A_{i, j}^{\theta}(h) \\
& =\sum_{j=1}^{n_{h}}\left\langle\bar{e}_{j}, V^{T} \cdot e_{i}\right\rangle A_{i, j}^{\theta}(h) \tag{5.46}
\end{align*}
$$

for all $i \in[L]$ and $\theta \in\{W, U, b\}$.

Gradient Descent Step Algorithm

In Algorithm 5.2.2, we explicitly write out RTRL for vanilla RNNs. We replace line 8 in Algorithm 5.1.1 with lines 17 - 19 in Algorithm 5.2 .2 to update $\nabla_{\theta}^{*} \alpha_{i}(h)$ (equivalently $A_{i, j}^{\theta}$ for $\left.j \in\left[n_{h}\right]\right)$ at each layer $i \in[L]$ and for each transition parameter $\theta \in\{W, U, b\}$. Then, we use the updated $\nabla_{\theta}^{*} \alpha_{i}(h)$ to compute $\nabla_{\theta}\left(J\left(y_{i}, \widehat{y}_{i}\right)\right)$ in lines 21-23 of Algorithm 5.2.2 as in (5.46).

5.3 RNN Variants

Beyond just the vanilla RNN, there exist numerous variants in the literature that we will discuss quickly in this section. Vanishing and exploding gradients are prevalent in vanilla RNNs, necessitating the development of gated RNN architectures to accurately model longer-term dependencies in data and control the magnitude of the gradient flowing through the network, and we discuss these in subsection 5.3.1. Another extension is the Bidirectional Recurrent Neural Network (BRNN), which we examine in subsection 5.3.2. BRNNs parse the sequence both forwards and backwards, if the entire sequence is known at the start, allowing the network to capture more information about the sequence. Finally, we can also obtain a more expressive network structure using Deep Recurrent Neural Networks (DRNNs), where each layer of the recurrent network is itself a layered DNN, and we will discuss these in subsection 5.3.3. We can also combine the network variants; see, for example, the deep bidirectional LSTM developed in [23]. We include this section for completeness and to allow the reader to further investigate RNNs, although we do not explicitly represent these extensions in the framework developed throughout this thesis.

```
Algorithm 5.2.2 One iteration of gradient descent for a vanilla RNN via RTRL
    function GradDescVanillaRTRL( \(\mathbf{x}, \mathbf{y}, h, \theta, \zeta, l o s s, \eta)\)
        \(h_{0} \leftarrow h\)
        \(\nabla_{W} \mathcal{J}, \nabla_{U} \mathcal{J}, \nabla_{b} \mathcal{J}, \nabla_{V} \mathcal{J}, \nabla_{c} \mathcal{J} \leftarrow 0 \quad \triangleright 0\) in their respective spaces
        for \(j \in\left\{1, \ldots, n_{h}\right\}\) do
            \(A_{0, j}^{b}(h), A_{0, j}^{W}(h), A_{0, j}^{U}(h) \leftarrow 0 \quad \triangleright 0\) in their respective spaces
        for \(i \in\{1, \ldots, L\}\) do
            \(z_{i} \leftarrow W \cdot h_{i-1}+U \cdot x_{i}+b\)
            \(h_{i} \leftarrow \Psi\left(z_{i}\right)\)
            \(\widehat{y}_{i} \leftarrow V \cdot h_{i}+c\)
            if loss \(=\) squared then
                    \(e_{i} \leftarrow \widehat{y}_{i}-y_{i}\)
            else
                    \(e_{i} \leftarrow \sigma\left(\widehat{y}_{i}\right)-y_{i}\)
            for \(j \in\left\{1, \ldots, n_{h}\right\}\) do \(\quad \triangleright\) RTRL update steps
                \(v_{i, j} \leftarrow \Psi^{\prime}\left(z_{i}\right) \odot \bar{e}_{j} \quad \triangleright\) Evaluated \(\mathrm{D} \Psi\left(z_{i}\right)\) as in Proposition 2.4.1
                \(a_{j, k} \leftarrow\left\langle W \cdot \bar{e}_{k}, v_{i, j}\right\rangle \quad \triangleright\) Common term in (5.43), (5.44), and (5.45)
                \(A_{i, j}^{W}(h) \leftarrow \sum_{k=1}^{n_{h}} a_{j, k} A_{i-1, k}^{W}(h)+v_{i, j} \cdot h_{i-1}^{T} \quad \triangleright(5.43)\)
                \(A_{i, j}^{U}(h) \leftarrow \sum_{k=1}^{n_{h}} a_{j, k} A_{i-1, k}^{U}(h)+v_{i, j} \cdot x_{i}^{T} \quad \triangleright(5.44)\)
                \(A_{i, j}^{b}(h) \leftarrow \sum_{k=1}^{n_{h}} a_{j, k} A_{i-1, k}^{b}(h)+v_{i, j}\)
            \(\tilde{v}_{i, j} \leftarrow\left\langle\bar{e}_{j}, V^{T} \cdot e_{i}\right\rangle \quad \triangleright\) Common term in RTRL gradient accumulation
            \(\nabla_{W} \mathcal{J} \leftarrow \nabla_{W} \mathcal{J}+\sum_{j=1}^{n_{h}} \tilde{v}_{i, j} A_{i, j}^{W}(h) \quad \triangleright\) RTRL gradient accumulation
            \(\nabla_{U} \mathcal{J} \leftarrow \nabla_{U} \mathcal{J}+\sum_{j=1}^{n_{h}} \tilde{v}_{i, j} A_{i, j}^{U}(h)\)
            \(\nabla_{b} \mathcal{J} \leftarrow \nabla_{b} \mathcal{J}+\sum_{j=1}^{n_{h}} \tilde{v}_{i, j} A_{i, j}^{b}(h)\)
            \(\nabla_{c} \mathcal{J} \leftarrow \nabla_{c} \mathcal{J}+e_{i} \quad \triangleright\) These are the same as Algorithm 5.2.1
            \(\nabla_{V} \mathcal{J} \leftarrow \nabla_{V} \mathcal{J}+e_{i} \cdot h_{i}^{T}\)
        \(\theta \leftarrow \theta-\eta \nabla_{\theta} \mathcal{J} \quad \triangleright\) Parameter update steps for all \(\theta, \zeta\)
        \(\zeta \leftarrow \zeta-\eta \nabla_{\zeta} \mathcal{J}\)
        return \(\theta, \zeta\)
```


5.3.1 Gated RNNs

Gated RNNs have demonstrated the ability to learn long-term dependencies within sequences by controlling the flow of gradients with a series of gating mechanisms for hiddenstate evolution [12]. The gates introduced result in a more complicated layerwise function,
but the outcome is worth the complexity: the problem of vanishing and exploding gradients becomes less apparent. The standard techniques of BPTT and RTRL can be applied in gated RNNs.

The first widely successful recurrent architecture to employ gating is the LSTM, introduced in [36]. We can understand the success of the LSTM by referring to [25], particularly section 2, where the transition and prediction equations are defined. We notice that the cell state at layer t, denoted c^{t} - one of the hidden states in the LSTM - is updated such that the norm of the Jacobian of the evolution from layer $t-1$ is close to 1 . This adds stability to the calculation of gradients, allowing longer-term dependencies to propagate farther backwards through the network and forgoing the need for truncated BPTT.

We notice from [25] that the update and prediction steps for the LSTM are quite complicated, requiring 6 equations total. Thus, a simpler gating mechanism requiring fewer parameters and update equations than the LSTM - now referred to as the Gated Recurrent Unit (GRU) [12] - was introduced in [11]. The GRU state update still maintains an additive component, as in the LSTM, but does not explicitly contain a memory state. Introducing a GRU has been shown to be at least as effective as the LSTM on certain tasks while converging faster [12]. Another interesting comparison between LSTM and GRU is given in [40], where the authors demonstrate empirically that the performance between the two is almost equal.

5.3.2 Bidirectional RNNs

When we work with sequences that are known in their entirety at training time (as opposed to streams of data that become available as training proceeds), there is nothing preventing us from analyzing the sequence in any order. The BRNN [69] was developed to take advantage of this: it is a principled method to parse sequences both forwards and backwards. This RNN structure maintains hidden states proceeding both ways throughout the network, so that every layer in the network has access to every input in the sequence. The forward and backward hidden states do not interact, although we feed both into the prediction at each layer. BRNNs have shown excellent utility when the entire input sequence is required for a prediction; their applications are reviewed in [19].

5.3.3 Deep RNNs

In our development of RNNs above - in particular within vanilla RNNs - we had, at each layer, a single state update equation and a single prediction equation. However, in
principle, there is nothing preventing us from making either of those a deep neural network. This is the concept behind DRNNs, in which we parametrize the simple f and g functions of section 5.1 by DNNs [58]. We can justify the use of DRNNs heuristically: adding more layers to a standard DNN can exponentially improve their representational power, as discussed in subsection 1.2.1, so we would expect the same effect in RNNs. Empirically, this hypothesis has been confirmed, as DRNNs have performed admirably in language modeling [58], speech recognition [23, 24], and video captioning [76]. We could use our neural network framework from previous chapters of this thesis to succinctly represent the DNNs within DRNNs; however, we leave this for future work at this time.

5.4 Conclusion

In this chapter, we have developed a method to represent both a generic and a vanilla RNN structure based on the vector-valued notation developed in previous chapters. We have clearly and thoroughly derived the BPTT and RTRL methods for both cases and provided pseudo-code for their implementation. Also, we have reviewed some modern extensions to basic RNNs that have demonstrated usefulness in application. By developing the mathematical results in this chapter, we hope to have provided a standard for theoreticians to work with and understand RNNs and their extensions.

Chapter 6

Conclusion and Future Work

In this thesis, we began to address the lack of a standard mathematical framework for representing neural networks. We first developed some useful mathematical notation for vector-valued maps, and then used this to represent a generic neural network. From this generic representation, we were able to implement the specific examples of the MLP, CNN, and DAE. Then, we extended this representation further to encapsulate RNNs. We were able to, throughout this work, derive gradient descent steps operating directly over the inner product space in which the network's parameters reside, allowing us to naturally represent error backpropagation and loss function derivatives. The framework developed in this work is generic and flexible enough to cover numerous further extensions to the basic neural networks that we have not explicitly mentioned.

One important point to note is that this work is of a purely theoretical nature. Most of the first-order derivatives calculated here for the specific network examples are already implemented in automatic differentiation packages within DNN software, for example. However, those results are not useful to theoreticians attempting to analyze the behaviour of neural networks - they are only useful to the practitioners implementing these networks. We believe that this framework can help influence future developments in applications of neural networks, but we have not focused on that in this thesis.

We have developed a mathematical framework for neural networks over finite dimensional inner product spaces with deterministic inputs and outputs. Future theoretical work can modify the assumption of finite dimensionality and work with infinite dimensional function spaces; we anticipate that representing DNNs with infinite dimensional bases will increase their expressiveness. This extension would not be too difficult to implement since we have established the generic network framework over any finite dimensional
inner product space. Another interesting avenue of future research would be moving from inner product spaces to generic manifold representations of the input and parameters. This would condense the dimensions that we were working with, allowing for a more efficient description of our data and parameters. Finally, we could also add uncertainty and stochasticity into the framework that we have created here, which would perhaps make inference in neural networks more tractable. These suggestions are quite involved, but could be very useful for theoretical, and later on application-based, research into neural networks.

There are also some more immediate directions for future work. One would be to represent the RNN using the higher-order loss function from chapter 3, as we did for the MLP, CNN, and DAE in earlier works [9, 10]. We could also generate explicit representations for the RNN variants that we mentioned in chapter 5. On the applications side, it could be useful to implement a neural network that had first undergone dimensionality reduction in our generic framework. In dimensionality reduction methods, we often project the input down to a subspace of lower dimension than the original input, and our framework could efficiently operate over this subspace instead of the full input space.

In conclusion, we have created a generic and flexible mathematical framework to represent layered neural networks. We believe that this framework can be useful to theoreticians to build a deeper understanding of neural networks, which would catalyze further developments on the applications side. We must improve our understanding of how DNNs work, and this thesis is one attempt at expanding this knowledge base.

References

[1] R. Abraham, J. Marsden, and T. Ratiu. Manifolds, Tensor Analysis, and Applications (2nd edition). Springer, 1988.
[2] D. Ackley, G. Hinton, and T. Sejnowski. A learning algorithm for boltzmann machines. Cognitive science, 9(1):147-169, 1985.
[3] M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial networks. arXiv preprint arXiv:1701.04862, 2017.
[4] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. arXiv preprint arXiv:1701.07875, 2017.
[5] D. Ballard. Modular learning in neural networks. In AAAI, pages 279-284, 1987.
[6] A. Baydin, B. Pearlmutter, A. Radul, and J. Siskind. Automatic differentiation in machine learning: a survey. arXiv preprint arXiv:1502.05767, 2015.
[7] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep networks. In Advances in neural information processing systems, pages 153-160, 2007.
[8] J. Berkson. Application of the logistic function to bio-assay. Journal of the American Statistical Association, 39(227):357-365, 1944.
[9] A. L. Caterini and D.E. Chang. A geometric framework for convolutional neural networks. arXiv preprint arXiv:1608.04374, 2016.
[10] A. L. Caterini and D.E. Chang. A novel representation of neural networks. arXiv preprint arXiv:1610.01549, 2016.
[11] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.
[12] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.
[13] D. Cireşan, U. Meier, L. Gambardella, and J. Schmidhuber. Deep, big, simple neural nets for handwritten digit recognition. Neural computation, 22(12):3207-3220, 2010.
[14] D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289, 2015.
[15] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems (MCSS), 2(4):303-314, 1989.
[16] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In Advances in neural information processing systems, pages 2933-2941, 2014.
[17] R. Eldan and O. Shamir. The power of depth for feedforward neural networks. In Conference on Learning Theory, pages 907-940, 2016.
[18] K. Fukushima and S. Miyake. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition. In Competition and cooperation in neural nets, pages 267-285. Springer, 1982.
[19] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http: //www.deeplearningbook.org.
[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672-2680, 2014.
[21] B. Graham. Fractional max-pooling. arXiv preprint arXiv:1412.6071, 2014.
[22] A. Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.
[23] A. Graves, N. Jaitly, and A. Mohamed. Hybrid speech recognition with deep bidirectional LSTM. In Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE Workshop on, pages 273-278. IEEE, 2013.
[24] A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee international conference on, pages 6645-6649. IEEE, 2013.
[25] K. Greff, R. Srivastava, J. Koutník, B. Steunebrink, and J. Schmidhuber. LSTM: A search space odyssey. IEEE transactions on neural networks and learning systems, 2017.
[26] W. Greub. Multilinear Algebra. Springer Verlag, 1978.
[27] R. Hahnloser, R. Sarpeshkar, M. A Mahowald, R. Douglas, and H. Seung. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature, 405(6789):947-951, 2000.
[28] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. arXiv preprint arXiv:1703.06870, 2017.
[29] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing humanlevel performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision, pages 1026-1034, 2015.
[30] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770-778, 2016.
[31] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6):82-97, 2012.
[32] G. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural computation, 18(7):1527-1554, 2006.
[33] G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. science, 313(5786):504-507, 2006.
[34] S. Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische Universität München, 91, 1991.
[35] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies, 2001.
[36] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735-1780, 1997.
[37] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251-257, 1991.
[38] A. Ivakhnenko and V. Lapa. Cybernetic predicting devices. Technical report, DTIC Document, 1966.
[39] A. Jain. Fundamentals of digital image processing. Prentice-Hall, Inc., 1989.
[40] R. Jozefowicz, W. Zaremba, and I. Sutskever. An empirical exploration of recurrent network architectures. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 2342-2350, 2015.
[41] L. Kanal. Perceptron. Encyclopedia of Computer Science, 2003.
[42] A. Krogh and J. A. Hertz. A simple weight decay can improve generalization. In NIPS, volume 4, pages 950-957, 1991.
[43] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
[44] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. Handwritten digit recognition with a back-propagation network. In Advances in neural information processing systems, pages 396-404, 1990.
[45] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
[46] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. AT\&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2, 2010.
[47] Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski. A theoretical framework for back-propagation. In The Connectionist Models Summer School, volume 1, pages 21-28, 1988.
[48] H. Lin and M. Tegmark. Why does deep and cheap learning work so well? arXiv preprint arXiv:1608.08225, 2016.
[49] H. Lutkepohl. Handbook of matrices. Computational Statistics and Data Analysis, 2(25):243, 1997.
[50] A. Maas, A. Hannun, and A. Ng. Rectifier nonlinearities improve neural network acoustic models. In Proc. ICML, volume 30, 2013.
[51] J. Marsden. Elementary classical analysis. Freeman, 1974.
[52] W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):115-133, 1943.
[53] M. Minsky and S. Papert. Perceptrons. MIT press, 1969.
[54] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves, M. Riedmiller, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.
[55] G. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear regions of deep neural networks. In Advances in neural information processing systems, pages 2924-2932, 2014.
[56] V. Nair and G. Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10), pages 807-814, 2010.
[57] E. Nering. Linear algebra and matrix theory. John Wiley \& Sons, 1970.
[58] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. How to construct deep recurrent neural networks. arXiv preprint arXiv:1312.6026, 2013.
[59] R. Pascanu, G. Montufar, and Y. Bengio. On the number of response regions of deep feed forward networks with piece-wise linear activations. arXiv preprint arXiv:1312.6098, 2013.
[60] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.
[61] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-encoders: Explicit invariance during feature extraction. In Proceedings of the 28th international conference on machine learning (ICML-11), pages 833-840, 2011.
[62] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological review, 65(6):386, 1958.
[63] S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747, 2016.
[64] D. Rumelhart, G. Hinton, and R. Williams. Learning internal representations by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985.
[65] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training GANs. In Advances in Neural Information Processing Systems, pages 2226-2234, 2016.
[66] G. Saon, T. Sercu, S. J. Rennie, and H. Jeff Kuo. The IBM 2016 English conversational telephone speech recognition system. arXiv preprint arXiv:1604.08242, 2016.
[67] J. Schmidhuber. A fixed size storage $O\left(n^{3}\right)$ time complexity learning algorithm for fully recurrent continually running networks. Neural Computation, 4(2):243-248, 1992.
[68] J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85-117, 2015.
[69] M. Schuster and K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11):2673-2681, 1997.
[70] U. Shaham, A. Cloninger, and R. Coifman. Provable approximation properties for deep neural networks. Applied and Computational Harmonic Analysis, 2016.
[71] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, et al. Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.
[72] P. Simard, B. Victorri, Y. LeCun, and J. Denker. Tangent Prop - A formalism for specifying selected invariances in an adaptive network. In Advances in neural information processing systems, pages 895-903, 1992.
[73] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
[74] I. Sutskever. Training recurrent neural networks. University of Toronto, Toronto, Ont., Canada, 2013.
[75] S. Vallender. Calculation of the wasserstein distance between probability distributions on the line. Theory of Probability \& Its Applications, 18(4):784-786, 1974.
[76] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, and K. Saenko. Translating videos to natural language using deep recurrent neural networks. arXiv preprint arXiv:1412.4729, 2014.
[77] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3156-3164, 2015.
[78] P. Werbos. Applications of advances in nonlinear sensitivity analysis. In System modeling and optimization, pages 762-770. Springer, 1982.
[79] B. Widrow and M. Hoff. Associative storage and retrieval of digital information in networks of adaptive neurons. In Biological Prototypes and Synthetic Systems, pages 160-160. Springer, 1962.
[80] R. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural networks. Neural computation, 1(2):270-280, 1989.
[81] Z. Xie, A. Avati, N. Arivazhagan, D. Jurafsky, and A. Ng. Neural language correction with character-based attention. arXiv preprint arXiv:1603.09727, 2016.

Glossary

activation function A nonlinear function applied to a neuron, or a vector component
adjoint The adjoint of a linear map $L \in \mathcal{L}\left(E_{1} ; E_{2}\right)$, denoted L^{*}, is the linear map satisfying $\left\langle L^{*} \cdot e_{2}, e_{1}\right\rangle=\left\langle e_{2}, L \cdot e_{1}\right\rangle$, for all $e_{1} \in E_{1}, e_{2} \in E_{2}$.
backpropagation The process of sending the error vector backward through a neural network. Refer to Theorem 3.2.5 or Algorithm 3.2.1 for more detail.
bilinear map A function taking in two arguments which is linear in either
direct product The direct product of two spaces E_{1} and E_{2} is the space $E_{1} \times E_{2}$, with elements $\left(e_{1}, e_{2}\right)$ for all $e_{1} \in E_{1}$ and $e_{2} \in E_{2}$.
elementwise first derivative The function obtained by replacing the elementwise operation of an elementwise function with its first derivative
elementwise function A function which applies a scalar function to each of its inputs individually
elementwise nonlinearity An elementwise function with a nonlinear elementwise operation
elementwise operation The scalar function associated with an elementwise function
elementwise second derivative The function obtained by replacing the elementwise operation of an elementwise function with its second derivative
feature map One of the matrices comprising the input to a generic layer of a convolutional neural network
filter A matrix that is convolved with grid-based data to produce a new grid
forward propagation The process of sending the neural network input through the layers of function compositions
hyperparameter A fixed parameter in a neural network
inner product space A vector space endowed with an inner product
layerwise function The actions of one layer of a neural network, often represented as f or f_{i}
linear functional A linear map from some vector space to the real numbers \mathbb{R}
one-hot encoding A vector with one component set to 1 and the remaining components set to zero
parameter-dependent map A map f with a clear distinction between its state variable and parameter
self-adjoint A linear map L satisfying $L^{*}=L$ is self-adjoint
softmax The function which returns an exponentially scaled version of its input
stride The number of steps to take when performing a convolution
tensor product The tensor product of two spaces E and \bar{E}, with bases $\left\{e_{j}\right\}_{j=1}^{n}$ and $\left\{\bar{e}_{k}\right\}_{k=1}^{\bar{n}}$ respectively, is the space $E \otimes \bar{E}$, with a basis consisting of all pairs (e_{j}, \bar{e}_{k}) denoted $e_{j} \otimes \bar{e}_{k}$ for all $j \in[n]$ and $k \in[\bar{n}]$. Refer to [26] for more on the tensor product.
vanishing and exploding gradient A problem in deep neural networks characterized by gradients approaching either zero or infinity

[^0]: ${ }^{1}$ Throughout this thesis, I will be using the "royal" we, as opposed to using "I", even though this is a sole-authored document, for a couple of reasons. Firstly, since I accomplished a large amount of this work with my supervisor, I believe it would be disingenuous for me to say "I" for the majority of it. Secondly, even if I were to use "I" to refer to myself as the author, I would still sometimes use "we" to include the reader, and switching back and forth can get confusing or read poorly.

[^1]: ${ }^{2}$ e.g. driverless cars, other important decision-making systems
 ${ }^{3}$ Although the perceptron is just a specific case of logistic regression, which has roots from 1944 and earlier; see [8], for example.

[^2]: ${ }^{4}$ We have generally two main classes of deep networks: supervised networks, requiring a specific target for each input, and unsupervised networks, which have no specific targets and only look to find structure within the input data. We can also have semi-supervised learning, in which some proportion of the training examples have targets, but this is not as common. Finally, another category called reinforcement learning exists, in which an autonomous agent attempts to learn a task, but the neural networks used within this are still often supervised - they attempt to predict the value of an action given the current state.

[^3]: ${ }^{5}$ e.g. Wikipedia articles, LaTeX documents

[^4]: ${ }^{6}$ Although there were other major contributions to the first so-called A.I. winter, including overpromising to grant agencies when the current technology could not deliver; see [41] for more on this.
 ${ }^{7}$ Perceptrons have no hidden layers

[^5]: ${ }^{8}$ And biological function, as it is a more realistic description of neuron firing [27]

[^6]: ${ }^{1}$ The elementwise function with elementwise operation exp

[^7]: ${ }^{1}$ Classification will not be explicitly considered in this section but it is not a difficult extension

[^8]: ${ }^{2} \hat{y}_{C}-y$ in the case of classification

[^9]: ${ }^{1}$ Also known as a neuron in keeping with the brain analogy

[^10]: ${ }^{2}$ We will omit the use of a bias vector b in this formulation because it is a simple extension of what we will develop here and will lighten the notation. Refer to [9] to see how we can handle the bias vector.

[^11]: ${ }^{3}$ Actually, in the neural network community, we use cross-correlation instead of convolution, although the difference is minor and we almost never mention cross-correlation; refer to [39] for more on the difference between the two.

[^12]: ${ }^{4}$ Here, we have assumed that both n_{1} and ℓ_{1} are divisible by Δ; in particular, $n_{1}=\Delta \widehat{n}_{1}$ and $\ell_{1}=\Delta \widehat{\ell}_{1}$. If this is not the case, however, we can increase n_{1} or ℓ_{1} to be divisible by Δ via boundary conditions on the input matrices; refer to [39] for more on image padding or boundary conditions.

[^13]: ${ }^{5}$ Again, we have established a relationship between $\left(\widehat{n}_{1}, \widehat{\ell}_{1}\right)$ and (n_{2}, ℓ_{2}) - in particular, $\widehat{n}_{1}=r n_{2}$ and $\widehat{\ell}_{1}=r \ell_{2}$. If \widehat{n}_{1} or $\widehat{\ell}_{1}$ is not divisible by r, we can add padding or boundary conditions as in the convolution.

[^14]: ${ }^{6}$ Also C and c_{j}, AND Ψ and ψ

[^15]: ${ }^{1}$ We have adopted a slightly different indexing convention in this chapter - notice that f_{i} takes in h_{i-1} and outputs h_{i}, as opposed to the previous chapters where we evolved the state variable according to $x_{i+1}=f_{i}\left(x_{i}\right)$. This indexing convention is more natural for RNNs, as we will see that the $i^{t h}$ prediction will depend on h_{i} with this adjustment, instead of on h_{i+1}.

[^16]: ${ }^{2}$ We use \bar{e}_{j} here instead of simply e_{j} since we already have e_{i} defined in (5.9) and will continue to use it throughout this section.

