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Abstract

The main theme of this thesis is higher algebraic structures that come from
operads and props.

The first chapter is an introduction to the mathematical framework need-
ed for the content of this thesis. The chapter does not contain any new re-
sults.

The second chapter is concerned with the construction of a configura-
tion space model for a particular 2-colored differential graded operad en-
coding the structure of two A∞ algebras with two A∞ morphisms and a ho-
motopy between the morphisms. The cohomology of this operad is shown
to be the well-known 2-colored operad encoding the structure of two asso-
ciative algebras and of an associative algebra morphism between them.

The third chapter is concerned with deformation quantization of (po-
tentially) infinite dimensional (quasi-)Poisson manifolds. Our proof em-
ploys a variation on the transcendental methods pioneered by M. Kontse-
vich for the finite dimensional case. The first proof of the infinite dimen-
sional case is due to B. Shoikhet. A key feature of the first proof is the con-
struction of a universal L∞ structure on formal polyvector fields. Our contri-
bution is a simplification of B. Shoikhet proof by considering a more natural
configuration space and a simpler choice of propagator. The result is also
put into a natural context of the dg Lie algebras coming from graph com-
plexes; the L∞ structure is proved to come from a Maurer-Cartan element
in the oriented graph complex.

The fourth chapter also deals with deformation quantization of (quasi-
)Poisson structures in the infinite dimensional setting. Unlike the previous
chapter, the methods used here are purely algebraic. Our main theorem is
the possibility to deformation quantize quasi-Poisson structures by only us-
ing perturbative methods; in contrast to the transcendental methods em-
ployed in the previous chapter. We give two proofs of the theorem via the
theory of dg operads, dg properads and dg props. We show that there is a
dg prop morphism from a prop governing star-products to a dg prop(erad)
governing (quasi-)Poisson structures. This morphism gives a theorem about
the existence of a deformation quantization of (quasi-)Poisson structure.
The proof proceeds by giving an explicit deformation quantization of super-



involutive Lie bialgebras and then lifting that to the dg properad governing
quasi-Poisson structures. The prop governing star-products was first con-
sidered by S.A. Merkulov, but the properad governing quasi-Poisson struc-
tures is a new construction.

The second proof of the theorem employs the Merkulov-Willwacher poly-
differential functor to transfer the problem of finding a morphism of dg
props to that of finding a morphism of dg operads. We construct an exten-
sion of the well known operad of A∞ algebras such that the representations
of it in V are equivalent to an A∞ structure on V [[~]]. This new operad is
also a minimal model of an operad that can be seen as the extension of the
operad of associative algebras by a unary operation. We give an explicit map
of operads from the extended associative operad to the operad we get when
applying the Merkulov-Willwacher polydifferential functor to the properad
of super-involutive Lie bialgebras. Lifting this map so as to go between their
respective models gives a new proof of the main theorem.



Sammanfattning

Det gemensamma inslaget i den här avhandlingen är högre algebraiska struk-
turer som kommer från operader och propar.

Det första kapitlet är en introduktion till det matematiska ramverk som
avhandlingen främst håller sig inom. Kapitlet innehåller inga nya resultat

Det andra kapitlet behandlar konstruktionen av en konfigurationsrums-
model för den 2-färgade differentialgraderade operaden som beskriver struk-
turen av två A∞ algebror med två A∞ avbildningar och en homotopi mellan
avbildningarna. Vi visar att kohomologin av denna operad är den välkända
2-färgade operaden som beskriver två associativa algebror och en avbild-
ning mellan dem.

Det tredje kapitlet behandlar deformationskvantisering av (potentiellt)
oändligtdimensionella (kvasi-)poissonmångfalder. Vårt bevis använder de
slags transcendentala metoder som M. Kontsevich använde för att behandla
det ändligtdimensionella fallet. Det första beviset för oändligtdimensionell
deformationskvantisering gavs av B. Shoikhet. Ett viktigt inslag i beviset är
konstruktionen av en universel L∞ struktur på formella polyvektorfält. Vårt
bidrag är en förenkling av B. Shoikhets bevis via användandet av en enklare
propagator. Resultatet sätts även in i sammanhanget givit av differential-
graderade Lie algebror kommande från grafkomplex; L∞ strukturen bevisas
komma från ett Maurer-Cartan element i det orienterade grafkomplexet.

Det fjärde kapitlet behandlar också deformationskvantisering av kvasi-
poissonstrukturer i det oändligtdimensionella fallet. Till skillnad från det
föregående kapitlet så är metoderna i detta kapitel rent algebraiska. Vårt
huvudteorem är möjligheten att deformationskvantisera kvasipoissonstruk-
turer med hjälp av endast perturbativa metoder; i kontrast till de transcen-
dentala metoder som användes i kapitlet innan.

Vi ger två bevis för teoremet med hjälp av teorin för dg operader, dg pr-
operader och dg propar. Vi visar att det finns en propavbildning från en prop
som beskriver stjärnprodukter till en prop som beskriver kvasipoissonstruk-
turer. Denna avbildning ger ett teorem för existensen av en deformation-
skvantisering av kvasipoissonstrukturer. Beviset börjar med att beskriva en
explicit deformationkvantisering av superinvolutiva Lie bialgebror och sen
lyfts den associerade avbildningen till dg properaden som beskriver kvasipois-



sonstrukturer. Propen som beskriver stjärnprodukter konstruerades av S.A.
Merkulov men properaden som beskriver kvasipoissonstrukterer är en ny
konstruktion.

Det andra beviset av teoremet använder Merkulov-Willwachers polyd-
ifferentiella funktor för att överföra problemet att hitta en avbildning av dg
propar till att hitta en avbildning av dg operader. Vi konstruerar en utvid-
ning av operaden av A∞ algebror. Representationerna av utvidgningen i ett
vektorrum V är det samma som A∞ strukturer i A[[~]]. Denna operad är
en minimal model för en utvidgning av operaden av associativa algebror
genom att lägga till en unär operation. Vi beskriver en explicit avbildning
från den utvidgade operaden av associativa algebror till den operad som
bildas då man använder Merkulov-Willwachers polydifferentiella funktor på
propen av superinvolutiva Lie bialgebror. Att lyfta denna avbildning till de-
ras respektive modeler ger ett nytt bevis för teoremet.
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1. Introduction

1.1 Operads as a unifying language in mathematics

As this thesis practically revolves around the concept of an operad, I will give
a little background on them and, by examples, try to convince the reader
that they lead to interesting and beautiful mathematics.

1.1.1. General background and motivation Operads originated in the 1970s
in the field of topology. The formal definition was given by P. May in [May],
where he built upon the previous ideas of M. Bordmann, R. Vogt and J.D.
Stasheff [BV1; BV2; St]. Since their invention, operads have come to have
applications in several other areas of mathematics, most prominently in al-
gebra, geometry and mathematical physics. Operads have been used to or-
ganize similar ideas under a common umbrella. To give an example from
algebra. Commutative, associative and Lie algebras all have a cohomology
theory of their own; the Harrison, Hochschild and Chevalley-Eilenberg co-
homology, respectively. Within the framework of algebraic operads, each of
these theories can be realized as an example of a general operad cohomol-
ogy theory.

One can think of operads as a universal language in mathematics. It’s
often the case that the same operad will have an interesting incarnation in
both algebra and geometry. In this way one can uncover deep and often
unexpected connections. Let us discuss the example of the operad of little
n-disks, denoted En . The first use of this operad was in topology to clas-
sify iterated and infinite loop spaces; a simply connected CW-complex X
has the weak homotopy type of an n-fold (or infinite) loop space if it has
the structure of an algebra over the operad En (or the E∞ operad). Later,
the associated chains operad on En , Chains(En), was studied in a paper by
F. Cohen [C]. In it he proved that the homology operad of E2 coincides with
the operad of Gerstenhaber algebras. This algebraic structure has impor-
tant applications in algebra, geometry and mathematical physics. The op-
erad Chains(E2) was proven to be formal by D. Tamarkin [Ta] and this was
subsequently used to give a new proof of M. Kontsevich’s formality theo-
rem [Kon1]. This chains operad also plays a central role in the (now proven)
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Deligne conjecture, which says that the Hochschild cochain complex of an
associative algebra A (or more generally a A∞ algebra) has the structure of
an algebra over the operad Chains(E2). A generalization of this result states
that the Hochschild cochain complex of a Chains(En) algebra has the struc-
ture of a Chains(En+1) algebra [HKV]. Finally, the minimal model of this
chain operad of little disks controls the Hertling-Manin system of non-linear
partial differential equations which lie behind the notion of F -manifolds
[Me7]. The operad of little disks demonstrates how operads can establish
connections between very different mathematical structures.

1.1.2. Topological operads and configuration spaces Many important op-
erads can be reinterpreted as operads of chains on a topological operad.
We mentioned above the topological operad of little 2-disks, whose chain
operad is equivalent to the operad controlling strongly homotopy Gersten-
haber algebras. Another example is given by the operad of little 1-disks,
D1(R). The n-th part of this operad is (roughly speaking) given by the space
of embeddings of n copies of R into R such that the image intervals are dis-
joint. The representations of D1(R) are the same thing as A∞ spaces and the
chains of this topological operad is a differential graded operad that is quasi-
isomorphic to the operad Ass∞. There is however another very useful way to
connect the theory of A∞ algebras to the theory of geometric operads.

Consider n points on the real line modulo the action of the affine group;
x 7→ λx + c where λ ∈ R+ and c ∈ R. The space of such configurations of
points is an n −2 dimensional manifold Cn(R). This manifold Cn(R) can be
suitably compactified into a closed manifold with corners C n(R) in a such
a way that the whole family {C n(R)}n≥2 gives us an operad in the category
of smooth manifolds with corners. The associate operad of fundamental
chains is identical to the operad of Ass∞ algebras. Note that in this ap-
proach we get a geometric interpretation of the Ass∞ operad in terms of
manifolds, not just topological spaces! Therefore this approach gives us new
mathematical tools when studying strongly homotopy algebras, as for ex-
ample, manifolds with corners are always equipped with sheaves of differ-
ential forms which one can integrate and which obey the Stokes’ theorem.
Therefore such an interpretation of an algebraic operad in terms of an op-
erad of configuration spaces opens up the possibility of obtaining transcen-
dental results; results that cannot be achieved just through homological al-
gebra and perturbative methods. There are two such famous transcendental
results due to M. Kontsevich.

In the 90s M. Kontsevich made a ground breaking contribution to the
field of mathematical physics by proving his Formality conjecture [Kon1].
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The result gives an L∞ quasi-isomorphism

K : (Tpol y (Rd ), [−,−]S ,d = 0) −→ (Dpol y (O(Rd )), [−,−]G ,dH )

from the Lie algebra of polyvectorfields on Rd equipped with the Schouten-
Nijenhuis bracket and the trivial differential to the Lie algebra of polydif-
ferential operators on smooth functions on Rd equipped with the Gersten-
haber bracket and the Hochschild differential. The proof consists of an ex-
plicit construction. The map constructed by M. Kontsevich is given as a lin-
ear combination over a family of graphs. Each graph giving a polydifferential
operator and a weight that is determined as the integral over a configuration
space. The formality theorem can be formulated as a morphism of operads,
i.e. as a morphism from the operad of fundamental chains of Kontsevich
configuration spaces to the operad of Kontsevich graphs.

The second such transcendental result due to M. Kontsevich gives and
explicit proof of the formality of the little disks operad [Kon2].

1.2 Outline of thesis

The thesis is mainly concerned with the higher algebraic structures coming
from operads and props. The text is divided into four chapter.

The first chapter is an introduction to the mathematical framework in
which the thesis is embedded. It does not contain any novel results and
serves as a collection definitions, constructions and theorems that are re-
quired for the following chapters.

The second chapter investigates the notion of homotopies between
(weak) morphisms of Ass∞ algebras. The major achievement is a construc-
tion of a configurations space model for the 2-colored dg operad Ho(Ass)∞
which controls a pair of A∞ algebras, (V ,µV ), (W,µW ), a pair of A∞ mor-
phism between them f , g : (V ,µV ) → (W,µW ) and a homotopy between these
morphism,

h : f ∼ g .

Put another way a representation of our 2-colored operad is a diagram in the
category of A∞ algebras like this:

(
V ,µV

) f

''

g

88

(
W,µW

)
h

��
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The configuration space model is given by considering a suitable compact-
ification of the configuration space of points on the real line. In a very natu-
ral way this model generalizes previously known configuration space model
that describe the 2-colored operad Mor(Ass)∞. The 2-colored operad
Mor(Ass)∞ admits the configuration space model given by compactifica-
tions of configurations of n points on the line modulo the Lie group of trans-
lations. We also calculate the cohomology of the 2-colored dg operad Ho(Ass)∞
and show that it is equal to Mor(Ass). Put another way, this result proves that
Ho(Ass)∞ is a non-minimal model of Mor(Ass). The result also implies, af-
ter some additional work, that Ho(Ass)∞ is a non-minimal quasi-free model
of the 2-colored dg operad Ho(Ass) which is defined as the operad encod-
ing the structure of two dg associative algebras, two algebra morphisms be-
tween them and a homotopy between these two morphisms. Compared to
the original presentation in loc. cit., the present presentation of the result
is significantly modified with constructions simplified and exposition im-
proved.

The third chapter is concerned with deformation quantization of (po-
tentially) infinite dimensional formal (quasi-)Poisson structures. The proof
in this chapter is a variation of M. Kontsevich’s original proof for the finite
dimensional case [Kon1]; We employ the transcendental methods pioneered
in Loc. cit. and consider integrals over compactifications of configuration
spaces. The first proof of the infinite dimensional case is due to B. Shoikhet
[Sh]. An integral part of his proof is the construction of a universal Lie∞
structure on the polyvector fields on a space V . Our contribution is a sim-
plification of B. Shoikhet proof by considering a more natural configuration
space and a simpler choice of propagator. The result is also put into a nat-
ural context of the dg Lie algebras coming from graph complexes. We show
that the aforementioned Lie∞ structure comes from a Maurer-Cartan ele-
ment in the oriented graph complex defined by Willwacher [Wi2].

The fourth chapter is also concerned with the problem of deformation
quantization in the infinite dimensional setting. Whereas the methods of
chapter three are transcendental in nature — relying on integrals over con-
figuration spaces — the methods of chapter four are purely algebraic. We
give two proofs of deformation quantization of quasi-Poisson structures.

Following S.A. Merkulov [Me5; Me6] we reinterpret the problem of de-
formation quantization as that of finding a morphism of dg props. On one
hand we have the dg prop DefQ~ that can be characterized by having repre-
sentations in a vector space V given by Maurer-Cartan elements in the full
polydifferential Hochschild cochain complex Hoch•(OV [[~]]). These MC-
elements correspond to (curved) Ass∞ structures on OV [[~]]. On the other
hand we have the dg properad qPois that can be characterized by having

18



representations in a vector space V given by Maurer-Cartan elements in the
Kontsevich-Shoikhet Lie∞ algebra Tpol y (V ) discussed in chapter three, i.e.,
quasi-Poisson structure in V. To prove a universal deformation quantiza-
tion of quasi-Poisson structures it is enough to demonstrate a morphism of
props Q : DefQ~ −→ qPois. The proof uses that qPois is a cofibrant replace-
ment of the much simpler properad LieB¦

odd , encoding odd Lie bialgebras
with an extra relation corresponding to a higher notion of involutivity. It’s a
straightforward calculation to deformation quantize LieB¦

odd ; to give a map

of props q : DefQ~ −→ LieB¦
odd . By the cofibrancy of the two props DefQ~

and qPois we can construct a lift of q such that the following diagram com-
mutes

qPois

π
����

DefQ~

Q
::

q // LieB¦
odd

This gives us the necessary morphism to prove deformation quantization
of quasi-Poisson structures. The prop DefQ~ was first considered by S.A.
Merkulov [Me5], but the properad qPois is a construction that is original to
this thesis.

The second proof of the theorem employs the Merkulov-Willwacher poly-
differential functor O ([MW1]) to transfer the problem of finding a mor-
phism of dg props to that of finding a morphism of dg operads. We construct
the operad Ass¦∞ which is an extensions of the Ass∞ operad. The represen-
tations of Ass¦∞ in a K-module V is equivalent to an Ass∞ structure on the
K[[~]]-module V [[~]]. As the notation implies, the operad Ass¦∞ is a minimal
resolution of an operad Ass¦. This operad is an extension of the classical Ass
operad formed by adding a unary operation. The idea of the second proof is
to use the functor O to transfer the map

p : LieB¦
odd −→EndV

giving a LieB¦
odd structure in a vector space V to a map

Op :OLieB¦
odd −→End¯•V .

By constructing an explicit map

f : Ass¦ −→OLieB¦
odd

we prove the existence of a universal deformation quantization by using the
exactness of O and cofibrancy of qPois and Ass¦∞.
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1.3 Admission

Some parts of this thesis were already published in the authors licentiate
thesis [B]. To be precise, most of the content of the second chapter and parts
of the exposition about monoidal categories and operads were taken from
there.

1.4 Notations and conventions

Through out the thesis we let K be a field of characteristic zero. Vector
spaces will always be over the field K unless specified otherwise. The set
{1,2, . . . ,n} will be denoted by [n]. The group of permutations of [n] will be
denoted Sn . Given a Z-graded vector space V = ⊕

i∈ZV (i ), the shifted vec-
tor space V [k] is defined to have the component V [k](i ) =V (i+k) in degree i .
Let s denote the degree 1 isomorphism s : V →V [1]. We will often abbreviate
differential graded as "dg".

1.5 General background

1.5.1. Differential graded Lie algebras and deformation theory Let g be
a dg Lie algebra over the field K with Lie bracket [−,−] and differential ∂.
For a formal parameter ~ we can give the structure of a dg Lie algebra to
g ⊗̂K[[~]] = g [[~]] by extending the bracket and differential to be K[[~]]-
linear. Let m= ~K[[~]] be the maximal ideal ofK[[~]].

Definition 1.5.1. A Maurer-Cartan (or MC) element γ of the dg Lie algebra g
is a formal power series γ ∈ g 1 ⊗̂m of degree 1 elements satisfying the equation

∂(γ)+ 1

2
[γ,γ] = 0.

Consider the Lie subalgebra g 0 ⊗̂m of formal power series of degree 0
elements in g without "constant term". This Lie algebra is the inverse limit
of the system

g 0⊗̂m= lim←−

(
· · · −→ g 0 ⊗̂m

g 0 ⊗̂mN+1
−→ g 0 ⊗̂m

g 0 ⊗̂mN
−→ g 0 ⊗̂m

g 0 ⊗̂mN−1
−→ ·· ·

)
where the the maps are the natural projection maps.

The terms of the inverse system are all nilpotent Lie algebras, therefore
a group can be defined by taking the exponential map

G = exp
(
g 0 ⊗̂m

)
.
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The group G acts on the MC elements of g according to the formula:

exp(ξ)γ= exp([−,ξ])γ+ f ([−,ξ])∂ξ,

where f is the power series of the function

f (x) = ex −1

x
= ∑

n≥1

xn−1

n!

about the point x = 0. We have the interpretation

exp([−,ξ]) = ∑
k≥0

1

k !
[. . . [[−,ξ],ξ], . . . ,ξ]︸ ︷︷ ︸

k

∈K[[~]]⊗̂End(g )0

and in the same way we use the power series of f (x) to define f ([−,ξ])
From this we can define the Deligne groupoid MC(g ) [GM]. The idea of

the groupoid is to capture the formal deformation theory associated to the
dg Lie algebra g . In this groupoid the objects are MC elements of g and
morphisms between two MC elements γ1 and γ2 are elements of the group
G which transform γ1 to γ2 .

Let π0(MC(g )) denote the set of isomorphism classes of the groupoid
MC(g ).

Every morphismµ : g1 → g2 of dg Lie algebras gives us an explicit functor

µ∗ : MC(g1) −→ MC(g2)

between the corresponding Deligne groupoids.
For weakly equivalent dg Lie algebras there is a bijective correspondence

of isomorphism classes of MC elements. According to [G], [GM] and [SS] we
have the following theorem

Theorem 1.5.2. If µ : L1 → L2 is a quasi-isomorphism of dg Lie algebras then
µ∗ induces a bijection between isomorphism classes of MC elementsπ0(MC(L1))
and π0(MC(L2)) .

Remark 1.5.3. Theorem 1.5.2 is an essential ingredient in M. Kontsevich proof
of deformation quantization for Poisson manifolds [Kon1]. Where for a fi-
nite dimensional manifold M the dg Lie algebras (Tpol y (M), [ , ]SN ,0) and
(Dpol y (M), [ , ]G ,dH are found to be weakly equivalent - i.e. that they can be
connected by a zig-zag of dg Lie algebra quasi-isomorphisms

Tpol y (M) →•←•→ . . . ←•→Dpol y (M)

or equivalently, which M. Kontsevich proves, that there is an Lie∞ quasi-
isomorphism

U : Tpol y (M)[1] −→Dpol y (M)[1].
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It follows that there is a bijection between their sets of isomorphism classes of
MC elements. The deformation quantization theorem follows from the fact
that the isomorphism classes of MC elements of Tpol y (M) are exactly Poisson
structures on M and isomorphism classes of MC elements of Dpol y (M) are
exactly star-products on C∞(M).

However, Theorem 1.5.2 has also been generalized and is a corollary to a
result by E. Getzler in the paper [G]; Proposition 4.9, which is a more general
result concerning the deformation theory of Lie∞ algebras.

1.5.2. Hochschild (co)homology and the HKR theorem(s) Let A be a K-
algebra and M an A-bimodule. For A and M we will define two related dif-
ferential graded structures; The Hochschild chain complex Hoch•(A, M) and
the the Hochschild cochain complex Hoch•(A, M).

The Hochschild chain complex is the differential graded vector space

Hoch•(A, M) := ⊕
k≥0

M ⊗ A⊗k [k]

and degree −1 differential d = {d (n)}n≥0 defined by

M ⊗K A⊗n d (n)

−→ M ⊗K A⊗(n−1)

d (n) :=∑n
i=0(−1)i d (n)

i

where

d0(m ⊗a1 ⊗ . . .⊗an) = m ·a1 ⊗a2 ⊗ . . .⊗an

di (m ⊗a1 ⊗ . . .⊗an) = m ⊗a1 ⊗ . . .⊗ai ai+1 ⊗ . . .⊗an 0 < i < n

dn(m ⊗a1 ⊗ . . .⊗an) = an ·m ⊗a1 ⊗ . . .⊗an−1

The Hochschild cochain complex, Hoch•(A, M) is the differential graded
vector space with graded components

Hochn(A, M) := Hom(A⊗n , M)[n]

and degree 1 differential

Hom(A⊗n , M)
d (n)

−→ Hom(A⊗(n+1), M)

d (n) =∑n
i=0(−1)i d (n)

i

where

d0( f )(a1 ⊗ . . .⊗an+1) = a1 · f (a2 ⊗ . . .⊗an+1)
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di ( f )(a1 ⊗ . . .⊗an+1) = f (a1 ⊗ . . .⊗ai ai+1 ⊗ . . .⊗an+1) 0 < i < n

dn( f )(a1 ⊗ . . .⊗an+1) = f (a1 ⊗ . . .⊗an) ·an+1

When A = M we will simply write Hoch•(A) and Hoch•(A), respectively,
for the Hochschild (co)chain complex of A as a bimodule over itself.

The homology of the complexes (Hoch•(A, M),d) and (Hoch•(A, M),d)
are known as the Hochschild homology and Hochschild cohomology of M
with coefficients in A. We denote this group by HH•(A, M) in the homol-
ogy case and HH•(A, M) in the cohomology case. Again, we adopt the more
compact notation of HH•(A) and HH•(A) when A = M .

In the particular case when A = M the Hochschild cochain complex
Hoch•(A) has the structure of a shifted dg Lie algebra with bracket [−,−]G .
Let f ∈ Hochn(A) and g ∈ Hochm(A), the degree −1 bracket in Hoch•(A) is
defined as follows

Hochn(A)⊗Hochm(A)
[−,−]G−→ Hochn+m−1(A)

[ f , g ]G := f ◦ g − (−1)(| f |−1)(|g |−1)g ◦ f

where

f ◦ g ((x1, x2 . . . . . . xn+m−1)) =
n∑

i=1
(−1)(i−1)(m−1) f (x1, . . . xi−1, g (xi , . . . xi+m−1), xi+m , . . . xn+m−1)

When A is a commutative algebra then the Hochschild cochain complex
Hoch•(A) is equipped with a graded commutative product called the cup
product. Let f and g be as above, then the cup product is defined as follows

Hochn(A)⊗Hochm(A) −∪−−→ Hochn+m(A)

(x1, . . . , xn)⊗ (y1, . . . ym)
f ∪g7−→ f (x1, . . . , xn) · g (y1, . . . , ym)

The shifted Lie-bracket and the cup product descend to well-defined
operations on the Hochschild cohomology HH•(A). On the cohomolgy the
operations satisfy the coherence conditation that the adjoint action of the
bracket is a derivation of the cup product. This structure of a shifted Lie
bracket and graded commutative product for which the bracket acts as a
derivation is known as a Gerstenhaber algebra.

In many situations it can be convenient to shift the Hochschild cochain
complex so that the Lie bracket is of degree 0;

Hoch•+1(A) = ⊕
n≥0

Hom(A⊗n , A)[n +1].
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Kähler differentials and derivations

Let A be a commutativeK-algebra and let ε denote the multiplication map

A⊗K A
ε−→ A∑

xi ⊗ yi 7−→∑
xi yi

Let I be kernel of the map ε and consider the module I /I 2.

Proposition 1.5.4. Let M be an A-module. There is an isomorphism be-
tween the module of derivations DerK(A, M) and the module of linear maps
HomK(I /I 2, M).

The module I /I 2 is isomorphic to the module of Kähler differentials of
A (as a K-algebra); which we denote by ΩA/K. The module ΩA/K is defined
as the free A-module on the symbols d a for a ∈ A subject to the relations

• d(a +b) = d a +db

• d(ab) = adb +bd a

• dα= 0 if α ∈K

Explicitly, the isomorphismΩA/K −→ I /I 2 is given by d a 7−→ 1⊗a−a⊗1

Proposition 1.5.5. Let A be commutativeK-algebra and let M be a symmet-
ric A-bimodule, (i.e. am = ma.) Then

HH1(A, M) ∼= DerK(A, M)

HH1(A, M) ∼= M ⊗A ΩA/K

specifically when M = A we have that

HH1(A, A) ∼= DerK(A)

HH1(A, A) ∼=ΩA/K

In the seminal paper by G. Hochschild, B. Kostant and A. Rosenberg
[HKR], proposition 1.5.5 was given a generalization that has been come to
be known as the Hochschild-Kostant-Rosenberg Theorem. The generaliza-
tion works for certain well-behaved algebras. We remind the reader of some
definitions before stating the theorem.

Definition 1.5.6. Let A be a commutative K-algebra. We say that A is essen-
tially of finite type if it is a localization of a finitely generatedK-algebra.
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Definition 1.5.7. Let A be a commutativeK-algebra. We say that A is smooth
if it satisfies the following lifting property: Let C be commutative K-algebra
with square-zero ideal N with a morphism ofK-algebras A

e−→C /N . Then A

is smooth if there is a lift A
f−→ C such that p ◦ f = e where p is the natural

projection C
p−→C /N .

Theorem 1.5.8. (Hochschild-Kostant-Rosenberg) Let A be a smooth com-
mutativeK-algebra of essentially finite type then there are two quasi-isomorphism
of differential graded vector spaces(∧•ΩA/K,0

) '−→ (Hoch•(A, A),dH )(∧• DerK(A),0
) '−→ (

Hoch•(A, A),dH
)

Proof. See e.g. [We]

1.5.3. The polydifferential Hochschild (co)chain complex The Hochschild
cochain complex Hoch•(A) is a huge object in the case where the algebra A
is the algebra of smooth functions on a manifold M , A := C∞(M). In this
thesis we will mainly be interested in the subcomplex (in fact, the dg Lie
subalgebra) consisting of the so called polydifferential operators, which are
defined as follows.

Definition 1.5.9. A polydifferential operator D : C∞(M)⊗n −→ C∞(M), ex-
pressed in coordinates (xi ), is a map D of the form

D : f1 ⊗ f2 ⊗ . . .⊗ fn 7→ ∑
(I1,...,In )

F (I1,...,In )(x) · ∂
|I1|( f1)

(∂x)I1
· ∂

|I2|( f2)

(∂x)I2
· . . . · ∂

|In |( fn)

(∂x)In

where the Ii are multi-indices, F I1,...,In are smooth functions, · is the ordinary

commutative product of functions and ∂|Ii |( fi )
(∂x)Ii

is the partial derivative of fi

that is associated to the multi-index Ii .

1.6 Deformation quantization

Deformation quantization is one approach to the procedure of quantizing
a classical mechanical system to produce a quantum mechanical system-
counterpart. In this formalization one considers the algebras of observ-
ables of the physical system; in the classical mechanical system one has the
commutative algebra of smooth functions C∞(M) and the aim is to find a
deformation of the ordinary commutative product of functions to a non-
commutative associative algebra structure on C∞(M)[[~]] satisfying some
limit conditions. Such a product is called a star-product. We give a rigourous
definition.
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Definition 1.6.1. Let A be the R-algebra of smooth functions on a manifold
M. A star-product on A is an associative R[[~]]-linear product on A[[~]];

A[[~]]⊗R[[h]] A[[~]] −→ A[[~]]

of the form

( f , g ) 7→ f ? g = f g +~B1( f , g )+~2B2( f , g )+ . . .

where Bi is bilinear and a differential operator in each argument.
We will consider star-products up to the equivalence of a particular group

of automorphisms. Consider the set of R[[~]]-linear automorphisms

D : A[[~]] −→ A[[~]]

of the form

D( f ) = f +~D1( f )+~2D2( f )+ . . . f ∈ A

where each Di is a differential operator. For the group of these automorphism
we can define an action on star-products D :? 7→?′;

f ?′ g = D
(
D−1( f )?D−1(g )

)
f , g ∈ A[[~]]

We say that two star-products are equivalent if they are related by such an
automorphism.

The notion of star-product is closely connected to the deformation the-
ory of algebras. We develop this connection in the rest of the section.

Let ? be a star-product on A and suppose it has the explicit form

f ? g = f g +~B1( f , g )+~2B2( f , g )+ . . .

We can show that the commutator of B1 defines a Poisson bracket on the
algebra A,

{−,−} : A⊗ A → A

{ f , g } := B1( f , g )−B1(g , f ),

i.e. it’s a Lie bracket which acts as a derivation of the associative product of
A;

{ f , g h} = { f , g }h + g { f ,h}.

To see that this is the case we first notice that

[ f , g ] := 1

~
( f ? g − g ? f )

26



defines a Lie bracket on A[[~]]. If we reduce the commutator [−,−] modulo
~ we still have a Lie bracket and this reduction exactly produces the com-
mutator of B1, i.e. {−,−}. Considering the associativity of the star-product ?
we find that the following relation holds for all α,β,γ ∈ A[[~]]

B1(αβ,γ)−B1(α,βγ)−αB1(β,γ)+γB1(α,β) = 0 (1.1)

using equation 1.1 repeatedly we can demonstrate that {−,−} is a Poisson
bracket

{ f , g h} = B1( f , g h)−B1(g h, f )

= B1( f g ,h)− f B1(g ,h)+hB1( f , g )−B1(g , f h)+ f B1(g ,h)− g B1(h, f )

= B1(g f ,h)−B1(g , f h)+hB1( f , g )− g B1(h, f )

= g B1( f ,h)+hB1( f , g )− g B1(h, f )−hB1(g , f )

= g { f ,h}+h{ f , g }

We also notice that equation 1.1 is exactly the criterion for B1 to be a
2-cocycle in the Hochschild cochain complex of A. Furthermore, if the two
star-products

f ? g = f g +~B1( f , g )+~2B2( f , g ) . . .

and
f ?′ g = f g +~B ′

1( f , g )+~2B ′
2( f , g )+ . . .

are equivalent through the automorphism D = Id+~E then we can deduce
that

B ′
1( f , g ) = B1( f , g )+ f E(g )+ g E( f )−E( f g ),

which means that B ′
1 and B1 differ by a 2-coboundary. We summarize the

discussion in a theorem.

Theorem 1.6.2. The set of equivalence classes of first order deformations of
an algebra A is bijective to the second Hochschild cohomology HH2(A).

Let A be an algebra and let ? be star-product on A. We let µ denote the
ordinary multiplication in A

µ : A⊗ A −→ A

and µ~ denote the multiplication coming from the star-products

µ~ : A[[~]]⊗ A[[~]] −→ A[[~]]

The shifted Hochschild cochain complex of Hoch•+1(A) is a dg Lie algebra
with the Hochschild differential dH and Gerstenhaber bracket [ , ]G . Let us
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apply the general idea of deformation theory and make some comments on
its Deligne groupoid of Maurer-Cartan elements.

A Maurer-Cartan element for Hoch•+1(A) is an elementγ ∈ Hoch1+1(A)⊗̂m,
(where m= ~R[[~]] is the maximal ideal of R[[~]]) such that

dH (γ)+ 1

2
[γ,γ]G = 0

We can think ofµ~ as an element of Hoch1+1(A)[[~]]. We let the Lie bracket
be extended by R[[~]]-linearity. Now the associativity of µ~ can be phrased
as

0 = 2(µ~(µ~( f , g ),h)−µ~( f ,µ~( f , g ))) = [µ~,µ~]G ( f , g ,h),

we conclude that
[µ~,µ~]G = 0. (1.2)

Let us consider the decomposition of µ~ as a sum µ~ = µ+ B where B ∈
Hoch1+1(A)⊗̂m then we can expand equation 1.2 as follows

[µ~,µ~]G = [µ,µ]G +2[µ,B ]+ [B ,B ]G = 0

We notice two things:

• µ is associative and therefore [µ,µ] = 0

• the Hochschild differential can be understood as the adjoint action of
µ;

dH =±[µ,−]

From this we can see that equation 1.2 is equivalent to the Maurer-Cartan
equation for B ;

dH (B)+ 1

2
[B ,B ]G = 0

and that star-products on A are given by Maurer-Cartan elements of the dg
Lie algebra

(
Hoch•+1(A),dH , [−,−]G

)
.

1.7 Monoidal categories

The appropriate categorical setting for the higher algebraic structures like
operads, properads and props is that of a symmetric monoidal category.

Definition 1.7.1. A monoidal category is a category C with a functor ⊗ : C×
C→ C and a unit object I together with three natural isomorphisms,

i) the associator αA,B ,C : (A⊗B)⊗C ∼= A⊗ (B ⊗C )
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ii) the left unitor ρA : I ⊗ A ∼= A

iii) the right unitor νA : A⊗ I ∼= A,

such that the following diagrams commute

((A⊗B)⊗C )⊗D
αA⊗B ,C ,D //

αA,B ,C⊗D
��

(A⊗B)⊗ (C ⊗D)

αA,B ,C⊗D

��

(A⊗ (B ⊗C ))⊗D

αA,B⊗C ,D

��
A⊗ ((B ⊗C )⊗D)

A⊗αB ,C ,D // A⊗ (B ⊗ (C ⊗D))

(A⊗ I )⊗B
νA⊗B

&&

αA,I ,B // A⊗ (I ⊗B)

A⊗ρBxx
A⊗B

Furthermore, we say that monoidal category C is symmetric if it’s equipped
with an isomorphism σA,B : A ⊗B ∼= B ⊗ A such that the following diagrams
commute:

A⊗ I
νA

""

σA,I // I ⊗ A

ρA||
A

(A⊗B)⊗C
σA,B⊗C //

αA,B ,C

��

(B ⊗ A)⊗C

αB ,A,C

��
A⊗ (B ⊗C )

σA,B⊗C

��

B ⊗ (A⊗C )

B⊗σA,C

��
(B ⊗C )⊗ A

αA,B ,C // B ⊗ (C ⊗ A)

B ⊗ A
σB ,A

$$
A⊗B

σA,B

::

A⊗B
A⊗B

Example 1.7.2. The category of sets with Cartesian products form a sym-
metric monoidal category with the one element set as a unit and the map
σ : A×B → B × A being given on pairs (a,b) 7→ (b, a).
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Example 1.7.3. The category of dg vector spaces together with the tensor prod-
uct form a symmetric monoidal category with the ground field as the unit and
the map σ : (A⊗B) =⊕

i+ j=n Ai ⊗B j →⊕
i+ j=n B j ⊗ Ai = B ⊗ A given on ho-

mogeneous components as a ⊗b 7→ (−)deg a degbb ⊗a.

Example 1.7.4. The category of topological spaces with Cartesian products
form a symmetric monoidal category with the unit being the point and the
map σ : A×B → B × A being given on pairs (a,b) 7→ (b, a).

Definition 1.7.5. A functor F : C→D between monoidal categories (C,⊗, I ,α)
and (D,⊗, J ,β) together with a natural transformation

φAB : F A⊗F B → F (A⊗B)

and a morphismψ : J → F I is called monoidal if the following diagrams com-
mute

(F A⊗F B)⊗FC
β //

φ⊗Id
��

F A⊗ (F B ⊗FC )

Id⊗φ
��

F (A⊗B)⊗FC

φ

��

F A⊗F (B ⊗C )

φ

��
F ((A⊗B)⊗C )

Fα // F (A⊗ (B ⊗C ))

F A⊗ J
Id⊗ψ //

νA

��

F A⊗F I

φ

��
F A oo

FνA
F (A⊗ I )

J ⊗F A
ψ⊗Id //

ρA

��

F I ⊗F A

φ

��
F A oo

FρA
F (I ⊗ A)

Furthermore, the monoidal functor F is called symmetric monoidal if it’s a
functor between symmetric monoidal categories and if the following diagram
commutes

F A⊗F B
σ //

φ

��

F B ⊗F A

φ

��
F (A⊗B) oo

Fσ
F (B ⊗ A)

Example 1.7.6. Two central examples of symmetric monoidal functors are
the chains functor on a topological space and the homology functor on com-
plexes. That these functors are symmetric monoidal is essentially the content
of the Eilenberg-Zilber theorem and the Künneth theorem, respectively.
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1.8 Operads

1.8.1. The classical definition of operads J.P. May gave the definition of an
operad in a suitable category of topological spaces [May]. We will restate
this definition with the generalization to objects of a symmetric monoidal
category, as has been done in [MSS].

Definition 1.8.1. Let G be a group and x an object in some category C. A left
action by G on x is a group homomorphism G → AutC(x, x), where AutC(x, x)
is the group of units in the monoid homC(x, x). A right action by G on x is
function G → AutC(x, x) such that it is a group homomorphism when com-
posed with the inversion map G →G

Definition 1.8.2. LetΣ be the category with objects the sets [n] = {1, . . . ,n} and
morphisms the elements of the symmetric groups. A Σ-module in a category
C is an element in Fun(Σop ,C). Alternatively we could say that a E is a Σ-
module if there are objects E(n) (where it is understood that E([n]) = E(n))
for all n ≥ 0 with a right action of Sn .

Definition 1.8.3. A non-unital operad in a symmetric monoidal category
(C,⊗, I ) is a Σ-module {O(n)}n≥1 and a composition map

γ : O(k)⊗
k⊗

r=1
O( jr ) →O

(∑
jr

)
such that the following diagrams commute:

1. (associativity)

O(k)⊗ (
⊗k

r=1 O( jr ))⊗ (
⊗∑

jr
t=1 O(it ))

γ⊗id //

shu f f le

��

O(
∑k

r=1 jr )⊗ (
⊗∑

jr
t=1 O(it ))

γ

��

O(k)⊗ (
⊗k

r=1(O( jr )⊗ (
⊗ j1+...+ jr

q=1+ j1+...+ jr−1
O(iq ))

id⊗(⊗r γ)

��
O(k)⊗ (

⊗k
r=1 O(

∑ jr
q=1 i j1+...+ jr−1+q ))

γ // O(
∑∑

jr
t=1 it )

2. (equivariance)

O(k)⊗ (
⊗k

r=1 O( jr ))

γ

��

σ⊗σ−1
// O(k)⊗⊗k

r=1 O( jσ(r ))

γ

��
O(

∑k
r=1 jr )

σ( j1,..., jk ) // O(
∑k

r=1 jr )
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O(k)⊗ (
⊗k

r=1 O( jr ))

γ

��

id⊗(τ1⊗...⊗τk ) // O(k)⊗⊗k
r=1 O( jr )

γ

��
O(

∑k
r=1 jr )

τ1⊕...⊕τk // O(
∑k

r=1 jr )

for σ ∈ Sk and τi ∈ S ji , where σ( j1, . . . , jk ) ∈ S∑
jr is the induced per-

mutation action on the k blocks r j and where τ1 ⊕ . . .⊕τk ∈S∑
jr is the

block sum permutation.

Definition 1.8.4. A pseudo operad in a symmetric monoidal category (C,⊗, I )
is a Σ-module {O(n)}n≥1 and with composition maps

◦ j : O(n)⊗O(m) →O(n +m −1) 1 ≤ j ≤ n

such that the following conditions are fulfilled

• (associativity

◦i (◦ j ⊗ id) =


◦ j+p−1(◦i ⊗ id)(id⊗τ) for 1 ≤ i ≤ j −1,

◦ j (id⊗◦i j+1) for j ≤ i ≤ j +n −1 and

◦ j (◦i−n+1 ⊗ id)(id⊗τ) for j +n ≤ i ,

where τ is the transposition O(n)⊗O(m) →O(m)⊗O(n).

• (equivariance)

◦i (σ⊗ρ) = (σ◦i ρ)◦σ(i )

whereσ ∈Sn , ρ ∈Sm such thatσ◦iρ ∈Sm+n−1 withσ◦iρ =σ1,...,1,m,1,...,1(1×
·· ·×1×ρ×1×·· ·×1), and where σ1,...,1,m,1,...,1 is the block permutation on
the n blocks 1, . . . ,1,m,1, . . . ,1.

Definition 1.8.5. An operad in a symmetric monoidal category (C,⊗, I ) is a
Σ-module {O(n)}n≥1, a unit map ν : I →O(1) and a composition map

γ : O(k)⊗
k⊗

r=1
O( jr ) →O

(∑
jr

)
such that the following diagrams commute:
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1. (associativity)

O(k)⊗ (
⊗k

r=1 O( jr ))⊗ (
⊗∑

jr
t=1 O(it ))

γ⊗id //

shu f f le

��

O(
∑k

r=1 jr )⊗ (
⊗∑

jr
t=1 O(it ))

γ

��

O(k)⊗ (
⊗k

r=1(O( jr )⊗ (
⊗ j1+...+ jr

q=1+ j1+...+ jr−1
O(iq ))

id⊗(⊗r γ)

��
O(k)⊗ (

⊗k
r=1 O(

∑ jr
q=1 i j1+...+ jr−1+q ))

γ // O(
∑∑

jr
t=1 it )

2. (unitality)

O(k)⊗ (I )⊗k

∼=
&&

id⊗(ν⊗k )
��

O(k)⊗ (O(1)⊗k )
γ // O(k)

I ⊗O(k)
∼=
&&

ν⊗id
��

O(1)⊗O(k)
γ // O(k)

3. (equivariance)

O(k)⊗ (
⊗k

r=1 O( jr ))

γ

��

σ⊗σ−1
// O(k)⊗⊗k

r=1 O( jσ(r ))

γ

��
O(

∑k
r=1 jr )

σ( j1,..., jk ) // O(
∑k

r=1 jr )

O(k)⊗ (
⊗k

r=1 O( jr ))

γ

��

id⊗(τ1⊗...⊗τk ) // O(k)⊗⊗k
r=1 O( jr )

γ

��
O(

∑k
r=1 jr )

τ1⊕...⊕τk // O(
∑k

r=1 jr )

for σ ∈ Sk and τi ∈ S ji , where σ( j1, . . . , jk ) ∈ S∑
jr is the induced per-

mutation action on the k blocks r j and where τ1 ⊕ . . .⊕τk ∈S∑
jr is the

block sum permutation.

We can also give a partial definition of the operadic composition map.

Definition 1.8.6. An operad in a symmetric monoidal category (C,⊗, I ) is a
Σ-module {O(n)}n≥1, a unit map ν : I →O(1) and n composition maps

◦ j : O(n)⊗O(m) →O(n +m −1) 1 ≤ j ≤ n
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such that ◦ j = γσπ where

π : O(n)⊗O(m) ∼=O(n)⊗ I j−1 ⊗O(m)⊗ I n− j

σ : O(n)⊗ I j−1 ⊗O(m)⊗ I n− j →O(n)⊗O(1) j−1 ⊗O(m)⊗O(1)n− j

γ : O(n)⊗O(1) j−1 ⊗O(m)⊗O(1)n− j →O(n +m −1).

where γ satisfies the associativity, unitality and equivariance axiom of the
preceding definition.

Example 1.8.7. Let C be a symmetric monoidal category with internal hom-
functor Hom and let X be an object in C. The endomorphism operad of X ,
EndX , is the objects Hom(X ⊗k , X ) with the operadic composition γ defined as
a certain pre-composition scheme. Explicitly

γ : Hom(X ⊗n , X )⊗Hom(X ⊗k1 , X )⊗ . . .⊗Hom(X ⊗kn , X ) −→ Hom(X ⊗(
∑

ki ), X )

acting on f ∈ Hom(X ⊗n , X ) and gi ∈ Hom(X ⊗ki , X ) such that

γ( f , g1, . . . , gn) = f (g1(−), . . . , gn(−)) ∈ Hom(X ⊗(
∑

ki ), X ).

Definition 1.8.8. Let O = {O(n)}n≥1 and P = {P(n)}n≥1 be operads. A mor-
phism φ : O → P is a sequence of maps φ(n) : O(n) → P(n) such that the fol-
lowing diagram commutes

O(n)⊗ (
⊗

i O(ki ))

γO

��

id⊗(
⊗

i φ(ki ))
// P(n)⊗ (

⊗
i P(ki ))

γP

��
O(

∑
ki )

φ(
∑

ki ) // P(
∑

ki )

where γO is the composition map in O and γP is the composition map in P.

Definition 1.8.9. Let O be an operad in a symmetric monoidal category C. An
algebra A over O is an object from C and a morphism of operads θ : O→EndA .

Definition 1.8.10. An ideal I in an operad O is a collection of subobjects I(n) ⊂
O(n) such that whenever i ∈ I then γ(. . . , i , . . . ) ∈ I.

Given a family of elements, (xi )i∈I , from an operad O. The smallest ideal
in O that contains all the xi is the ideal generated by the family (xi )i∈I .

Definition 1.8.11. The quotient of an operad O by an ideal I is the operad
(O/I)(n) :=O(n)/I(n) and with the induced composition map from O.
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1.8.2. An alternative definition of operads

Definition 1.8.12. A rooted tree t is a genus 0 connected graph with one
marked vertex called the root of t , r oot (t ). The root must be a vertex with only
one edge connected to it. We call all other vertices with only one edge leaves
and denote them with the set l eaves(t ). The vertices with more than one
edge are called internal vertices and we denote the set of them with ver t (t ).
Choosing a root in a tree endows the graph with a flow; for every edge at
a vertex it is either leading toward or away from the root. Call all edges
that lead away from the root at an internal vertex v input edges and denote
the set of them with i n(v). Denote the set of edges of t with ed g es(t ). Call
the edge connecting to the root the stem, stem(t ), the edges connecting to
the leaves the branches, br anches(t ) and call the union of these be the legs;
leg s(t ) = stem(t )∪br anches(t )

Example 1.8.13. Consider the rooted tree t with vertices a,b, . . . , l and edges
α,β, . . . ,λ,

t :

a

b

c d e

f g h i j k l

α

β γ δ

ε ζ η θ ι κ λ

We designate the vertex a to be the root, r oot (t ) = {a}. The set of internal
vertices is given by ver t (t ) = {b,c,d ,e} and the set of leaves is given by the set
leaves(t ) = { f , g ,h, i , j ,k, l }. Input edges are as follows,

i n(b) = {β,γ,δ}

i n(c) = {ε,ζ}

i n(d) = {η,θ}

i n(e) = {ι,κ,λ}.

The legs are given as follow, stem(t ) = {α} and br anch(t ) = i n(c)∪ i n(d)∪
i n(d) = {ε,ζ, . . . ,λ}

Definition 1.8.14. Let C be a non-empty set. A C -colored rooted tree is a
rooted tree t together with a map ed g es(t ) → C . The set C is called the set
of colors of t .

Definition 1.8.15. Let X be a finite set. Let RTC (X ) be the set of C -colored
rooted trees t with a bijection leaves(t ) → X .
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Definition 1.8.16. Let FinSet denote the category of finite sets with bijections.
A C-valued S-module is a contravariant functor O : FinSet → C, where C is a
symmetric monoidal category. Denote by ModS(C) the category of C-valued
S-modules with natural transformations as morphism.

Definition 1.8.17. Let C be symmetric monoidal category with finite colimits.
Given a non-empty finite set Y with a bijection f : Y → {1, . . . ,n} and objects
Ay in C for each y ∈ Y . Define the product⊗

f
A f = A f −1(1) ⊗ . . .⊗ A f −1(n).

There is a natural action of the symmetric group Sn on this product

σ∗ :
⊗

A f →
⊗

Aσ◦ f

We define the unordered product over Y as

⊗
y∈Y

Ay = coequalizerσ∈Sn

{
σ∗ :

∐
f :Y ∼={1,...,n}

n⊗
i=1

A f →
∐

f :Y ∼={1,...,n}

n⊗
i=1

A f

}
.

Let C be a symmetric monoidal category with small limits and colim-
its and with the property that the functor A ⊗C − preserves colimits for any
object A. Specifically this implies that C has an initial object 0. Let O be a
S-module with O({}) = 0. We define the treewise tensor product as the un-
ordered product

O(t ) := ⊗
v∈ver t (t )

O(i n(v)).

The treewise tensor product defines a functor T :: ModS(C) → ModS(C) given
by

T (O)(X ) = ∐
t∈RTC (X )

O(t ).

We have two transformations of functors:

1. ι : IdS−mod → T, given on an S-module O and a set X as the map which
takes O(X ) to the coproduct of the treewise tensor product

ιO(X ) : O(X ) 7→∐
O(cor )

where cor is the graph with one vertex and |X | branches and where
the coproduct is taken over all ways to color the legs of the corolla.
Clearly O(cor ) =O(X ), regardless of coloring of cor.
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2. α : T ◦ T → T, given on an S-module O and a set X as the grafting
of trees. The grafting works as follows: Given t ∈ RTC (X ) and v ∈
ver t (t ), then for every tree with an admissible1 coloring of its legs,
τ ∈ RTC (i n(v)) we define the grafting of τ at the vertex v in t as the new
tree t ′ where the vertex v has been replaced with the tree τ and the
leaves of τ connected (according to the bijection leaves(τ) → i n(v))
to the input edges of v. The grafting is performed in all possible ways
on all vertices.

Lemma 1.8.18. The tree functor T is a monad with composition map α :
T ◦T → T and unit ι : IdModS (C) → T.

Proof. The grafting of trees as defined is naturally associative. Replacing a
vertex with a corolla is the same as replacing a corolla with a vertex so the
transformation ι is a unit.

From this general framework the definition of the operad is easy to state.

Definition 1.8.19. A C -colored operad in the symmetric monoidal category
C is an algebra (O,γ : T (O) →O) for the monad (T,α, ι).

For the most part it’s not important to consider operads valued on a gen-
eral finite set. For an operad O and the finite set [n] = {1,2, . . . ,n} we define
O(n) :=O([n]).

Definition 1.8.20. The free C -colored operad on the S-module E is the alge-
bra T (E). We often denote the free operad by Free〈E〉.
Definition 1.8.21. A morphism of operads f : (O,γ) → (P ,ν) is map such that
the following diagram commutes

T (O)

γ

��

T ( f ) // T (P)

ν

��
O

f // P

Definition 1.8.22. A differential graded operad or dg operad for short, is an
operad in the symmetric monoidal category of differential graded vector spaces.

Much of the operadic theory is concerning this class of operads. Exam-
ples includes the operads of dg associative, dg commutative and dg Lie al-
gebras.

1 The coloring is admissible if the bijection leaves(τ) → i n(v) preserves color
and the non-input edge at v has the same color as the stem of τ.

37



Proposition 1.8.23. Let F : C →D be a symmetric monoidal functor and let
O be an operad in the symmetric monoidal category C. The object F (O) is an
operad in the category D.

This important result has as a consequence that there is an associated
operad of chains and homology coming from an operad of topological spaces.

Definition 1.8.24. A C -colored operad is said to be of transformation type if
the color set C is a union of two sets Ci n and Cout such that input colors are
always from the set Ci n and the output color is always from the set Cout .

1.8.3. Tensor products and shifts of algebraic operads Let the ambient
symmetric monoidal category be that of dg vector spaces over K. For this
category aΣ-module, O, is exactly a series of differential graded vector spaces
{O(n)}n≥1 such that O(n) has the structure of a module over the group ring
K[Sn]. For this reason we shall refer to Σ-modules in this category as S-
modules.

Given operads O and P we can form the tensor product O⊗P defined by

(O⊗P)(n) :=O(n)⊗P(n).

One can show that O⊗P inherits the structure of an operad.
Consider the S-module Λ

Λ(n) =
{

s1−n sgnn if n ≥ 1

0 if n = 0
(1.3)

with sgnn being the sign representation of Sn . Let

◦i : Λ(n)⊗Λ(k) →Λ(n +k −1)

be the partial composition operations defined by

1n ◦i 1k = (−1)(1−k)(n−i )1n+k−1 , (1.4)

where 1m denotes the generator s1−m1 ∈ s1−m sgnm . The obvious unit map
ι= id :K→Λ(1) ∼=K will equip the S-module Λ with the structure of an op-
erad. It’s clear that representations of Λ in a vector space V are in bijection
with representations of Com in the shifted space V [1] .

For an operad O we denote by O{k} the operad

O{k} :=Λ⊗ . . .⊗Λ︸ ︷︷ ︸
k

⊗O . (1.5)

The representation of O{k} in dg space V are in bijection with representa-
tions of O in the shifted space V [k] .
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Example 1.8.25. Let Lie be the operad of Lie algebras. A representation of
Lie{1} in a graded vector space V is equivalent to a binary operation:

{ , } : V ⊗V →V

of degree −1 satisfying the identities:

{v1, v2} = (−1)|v1||v2|{v2, v1} ,

{{v1, v2}, v3}+ (−1)|v1|(|v2|+|v3|){{v2, v3}, v1}+ (−1)|v3|(|v1|+|v2|){{v3, v1}, v2} = 0.

1.9 Props and other generalizations of operads

For the theory of properads and props we follow B. Vallete [Va1; Va2].

1.9.1. Props and properads

Modules

We include here a short summary of the monoidal categories ofS-bimodules
and their construction for vector spaces over the field K. There is a natural
generalization to the differential graded framework.

Definition 1.9.1. AnS-bimodule Q is a collection ofK-modules {Q(m,n)}m,n≥0

such that each module Q(m,n) has an action of Sm on the left and an ac-
tion of Sn on the right. The two actions are compatible in the sense that if
F ∈Q(m,n) and σ ∈Sm , ν ∈Sn then

(σ(F ))ν=σ((F )ν)).

Definition 1.9.2. A morphisms of S-bimodules f : Q −→ P, is a collection of
morphisms fm,n : Q(m,n) −→ P(m,n) that are compatible with the action of
Sm on the left and the action of Sn on the right.

Remark 1.9.3. The objects S-bimodules with S-bimodule morphism form
the category S−biMod.

Definition 1.9.4. Let G be be set of non-planar directed graphs without loops
or wheels. To each vertex the set of input/output edges are labeled by integers
{1,2, . . . ,n}. We allow for edges to only connect to a vertex at one end. Such
edges are essentially input (or output depending on direction) edges for the
graph as a whole. We will assume graphs of this type are drawn so that the
directed edges always point downwards.
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Definition 1.9.5. We say that an element of G is a 2-level graph if the vertices
can be distributed on two levels. We denote the set of 2-level graphs by G2. For
a 2-level graph we denote the vertices on the i -th by Li

Let In(v) and Out (v), respectively, denote the set of input and output
edges of a vertex v .

Definition 1.9.6. Composition product � for S-bimodules. Let Q and P be
S-bimodules. We the define the composition product Q�P as the following
S-bimodule

Q�P(m,n) =
( ⊕

g∈G2

⊗
v2∈L2

Q(|Out (v2)|, |In(v2)|)⊗K
⊗

v1∈L1

P(|Out (v1)|, |In(v1)|)
)

/ ≈,

with the relation ≈ meaning that the action of symmetric groups on the in-
put/output edges of vertex should be compatible with the action on the S-
bimodules.

Definition 1.9.7. Concatenation product ⊗ for S-bimodules. Let Q and P be
S-bimodules. We the define the concatenation productQ⊗P as the following
S-bimodule

Q⊗P(m,n) = ⊕
m′+m′′=m
n′+n′′=n

K[Sm′+m′′ ]⊗Sm′×Sm′′ Q(m′,n′)⊗KP(m′′,n′′)⊗Sn′×Sn′′K[Sn′+n′′ ]

Proposition 1.9.8. The categoryS−biMod with the concatenation product ⊗
and the unit object I;

I(m,n) =
{
K m = n = 0

0 otherwise

is a monoidal category (S−biMod,⊗, I).

Definition 1.9.9. We say that a graph is connected if it’s geometric realization
is a connected as a topological space. We denote the set of connected graphs
with Gc .

Definition 1.9.10. Connected composition product�c for S-bimodules. Let
Q and P be S-bimodules. We the define the connected composition product
Q�c P as the following S-bimodule

Q�c P(m,n) =
 ⊕

g∈G2
c

⊗
v2∈L2

Q(|Out (v2)|, |In(v2)|)⊗K
⊗

v1∈L1

P(|Out (v1)|, |In(v1)|)
/

≈

Proposition 1.9.11. The category S−biMod with the connected composition
product�c and the unit object I;

I(m,n) =
{
K m = n = 1

0 otherwise

is a monoidal category (S−biMod,�c , I).
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Definition 1.9.12. TheS-bimodules T⊗(P) andS(P). We denote the free monoid
of P with respect to the monoidal product ⊗ as T⊗(P). Explicitly, it’s given by

T⊗(P) := ⊕
n≥0

P⊗n .

As the monoidal product⊗ is symmetric we also define the truncated sym-
metric algebra S(P);

S(P) := ⊕
n≥1

(
P⊗n)

Sn
.

The functorial assignment given by S express the relationship between
�c and�.

Proposition 1.9.13. For S-bimodules P and Q the following relation holds

S(P�c Q) =P�Q

Definition 1.9.14. We say that an S-bimodules Z is saturated if S(Z) =Z.

Example 1.9.15. For any S-bimodule Q we have that S(Q) is saturated.

Let sat−S−biMod denote the category of saturated S-bimodules.

Remark 1.9.16. Let I, as above, be defined as

I(m,n) =
{
K m = n = 1

0 otherwise

then S(I) is given explicitly as

S(I) =
{

0 m 6= n

K[Sm] otherwise

Proposition 1.9.17. The category sat−S−biMod with the composition prod-
uct� and the unit objectS(I) is a monoidal category (sat−S−biMod,�,S(I)).

Props and properads

With the appropriate framework of monoidal categories developed we can
state the definition of props and properads.

Definition 1.9.18. A prop is a monoid (P,µ,ν) in the monoidal category
(sat−S−biMod,�,S(I)). Which is equivalent to the following:

• The S-bimodule P is closed under concatenation P⊗P ,→P.
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• The composition P�P
µ−→P is associative.

• The morphism S(I)
ν−→P is a unit.

Properads are the specialization of props given by restricting to only
consider connected compositions.

Definition 1.9.19. A properad is a monoid (P,µ,ν) in the monoidal category
(S−biMod,�c , I). Which is equivalent to the following:

• The composition P�c P
µ−→P is associative.

• The morphism I
ν−→P is a unit.

Example 1.9.20. To every vector space V we associate a canonical prop(erad);
the endomorphism prop(erad) EndV . We make no symbolic distinction be-
tween the prop and properad case.

• The underlying S-bimodule of the endomorphism prop is given as fol-
lows

EndV (n,m) := Hom(V ⊗m ,V ⊗n)

• The associative product EndV�EndV −→EndV is given by composition
of functions.

• The unit morphism S(I) ,→ EndV sends a permutation σ ∈ k[Sn] ∈
S(I)(n,n) to the map fσ : V ⊗n → V ⊗n permutating the variables ac-
cording to σ .

If we restrict to connected compositions EndV �c EndV −→ EndV we instead
get the endomorphism properad.

Definition 1.9.21. Let P and Q be props . A morphism f : P → Q of S-
bimodules is a morphism of props if the following diagram commutes:

P�P

µP

��

f� f // Q�Q

µQ
��

O
f // P

The definition of a morphism of properads is acquired if one, in the
above definition, replaces the composition � with the connected compo-
sition�c .

Definition 1.9.22. Let V be anS-bimodule. The free properad on V , denoted
by F(V ), is defined as follows

F(V ) :=
( ⊕

g∈Gc

⊗
v∈L

V (|Out (v)|, |In(v)|)
)/

≈
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Algebras over props and properads

We define the notion of an algebra over a properad and prop in complete
analogy to how it’s defined for operads.

Definition 1.9.23. Let P be prop (or a properad). The structure of a P-algebra
on the vector space V is a morphism of props

Ξ : P−→EndV

Example 1.9.24. Many classical and well-known algebraic structures can be
recovered as the algebra over some prop(erad). Examples include (co)associative
algebras, (co)Lie algebras, bialgebras and Lie bialgebras.

Differential graded analogue

One can mimic the above constructions for the category of differential graded
S-bimodules to generalize the framework to that of differential graded pr-
operads and differential graded props.
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2. Configuration space model
for A∞ homotopies

2.1 Introduction

One of the first and most important operads is the topological Ass∞ operad.
It was introduced by J.D. Stasheff [St] with the help of the following motivat-
ing example.

2.1.1. A motivating topological example An H-space is a topological space
H with a multiplication map

µ : H ×H → H

and a point e ∈ H such that µ(−,e) and µ(e,−) are homotopic; µ has unit up
to homotopy. We say that an H-space is topological monoid if the multipli-
cation map is associative;

µ◦ (Id×µ) =µ◦ (µ× Id),

and the maps µ(−,e) and µ(e,−) are equal.
The space of maps γ : [0,1] → X such that γ(0) = γ(1) = b where b is the

base point of X is called the based loop space of X . Denote the (based) loop
space on X with ΩX . We can define a multiplication on ΩX as the concate-
nation of loops;

m2 :ΩX ×ΩX →ΩX

(γ1(t ),γ2(t )) 7→ m2(γ1,γ2)(t ) :=
{
γ1(2t ) t ∈ [

0, 1
2

]
γ2(2t −1) t ∈ [1

2 ,1
]

The loop space ΩX with concatenation as multiplication and the constant
map as unit is an H-space but not a topological monoid; the unit axiom is
satisfied up to homotopy but the multiplication map fails to be associative.
While multiplication in ΩX is non-associative, at least there is a homotopy
between m2 ◦ (Id×m2) and m2 ◦ (m2 × Id);

m3 : [0,1]× (ΩX )3 →ΩX .
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The homotopy can be explicitly defined in coordinates, but instead, we de-
scribe it with a picture as follows

α β γ

m2(α,m2(β,γ))

m2(m2(α,β),γ)

Where α,β and γ are appropriately variable-substituted so that on every
horizontal line, each loop takes its full course before the next one starts. We
represent m2 with a corolla

m2 = ,

the two top edges are the inputs and the lower one is the output. Analo-
gously, m3 can be thought of as a map with three inputs and one output for
every fixed t ∈ [0,1];

m3 = .

It’s natural to associate the interval to m3 due to the parameter dependence.
The following schematic picture of this would look like

m2 ◦ (Id×m2) m2 ◦ (m2 × Id)

m3

| |
//

Choosing to orientate the interval in the positive direction we see that
∂m3 := m3(1)−m3(0) = m2(m2×Id)−m2(Id×m2). Along the same lines; four
loops can be composed in five ways, and there are homotopies connecting
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them. The following picture describes the situation

xx

ff

YY

��

oo

The appearing pentagon is called K4. We define a homotopy

m4 :K4 × (ΩX )4 →ΩX ,

such that on the edges of K4 the map m4 acts as the map corresponding to
trees built from m2 and m3. On the corners m4 act as trees built from m2

alone. We orient K4 in the positive direction and we have that the induced
orientation on the boundary will give signs to the formula for how m4 acts
on the boundary of K4. If the arrow along the edge points in the same direc-
tion as the orientation we have a plus sign, otherwise a minus sign. Explicitly

∂m4 = m4|∂(K4)

= ∑
s∈segments of ∂K4

±m4|s

= m3 ◦ (Id× Id×m2)+m3 ◦ (m2 × Id× Id)−
m2 ◦ (Id×m3)−m3 ◦ (Id×m2 × Id)−m2 × (m3 × Id).

For five loops there are 14 binary trees built from m2, one for each way to
concatenate five loops. Letting each binary tree represent a vertex, adding
an edge when there is a homotopy between two vertices and adding a face
when two edges are homotopic we get polytope K5 describing a general ho-
motopy

m5 :K5 × (ΩX )5 →ΩX .

The polytope K5 has two quadrilateral faces and six pentagonal faces. It is

47



given a geometric representation in the following figure.

In general, for each n ≥ 2 there is an n −2 dimensional polytope Kn where
the vertices are labeled by binary rooted trees with n leaves. The spaces Kn

are called associahedrea or Stasheff ’s associahedrea. For each associahedron
Kn , there exist a map mn : Kn × (ΩX )n → ΩX . The map mn is controlling
the homotopies between the different ways to multiply together n loops,
either by concatenation or by their induced higher multiplications. Note
that K2 = {∗} is just a point and that K3 = [0,1] is the unit interval.

A topological space X equipped with a series of coherent maps mn :Kn×
X n → X subject to the relations which one reads of the loop space in the
above manner is called an A∞ space. The notion of an A∞ space was first
introduced in the thesis by Stasheff [St],which was devoted to the study of
H-spaces. It explored the idea that a strictly associative multiplication can
be weakened to a sequence of higher multiplications wherein the condition
of associativity has been relaxed in a certain sense. From this perspective
a topological monoid can be regarded as a special case in a larger class of
spaces, the A∞-spaces, where the associativity condition is demanded to
hold up to coherent homotopy of higher multiplications.

It was proved that all A∞ spaces X are of the same weak homotopy type
as the loop space ΩY , for some space Y .

In fact the set of Stasheff’s associahedra
{
Kn

}
give us an example of a

non-symmetric topological operad.

2.1.2. Strongly homotopy algebras The algebraic analogue of A∞ spaces
are called A∞ algebras and the examples include the singular chains on an
A∞ space. Morally one can say that A∞ algebras are to associative algebras
as A∞ spaces are to topological monoids.

Having defined some algebraic structure it is natural to ask what the cor-
rect notion of morphism between these algebraic structures should be. In
the case of associative algebras (A,mA) and (B ,mB ), where

mA : A⊗ A → A
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and
mB : B ⊗B → B

are multiplication maps, we know that the correct notion of morphism is a
linear map

f : A → B ,

such that
mB ◦ ( f ⊗ f ) = f ◦mA .

One can define a 2-colored operad encoding the structure of an associative
algebra morphism between a pair of associative algebras. We denote this
operad by Mor(Ass). Due to the work of Van der Laan [VdL] there is a gener-
alized theory of Koszul duality for colored operads that can be used to give
models of operads like Mor(Ass). It was proved by M. Markl [Mar4] that the
minimal model of Mor(Ass) is a 2-colored operad encoding a pair of A∞
algebras and a series of maps between them, we denote this operad with
Mor(Ass)∞. The encoded maps are, not surprisingly, the correct notion of
morphism between A∞ algebras. Similarly one can describe a 2-colored op-
erad describing the structure of a L∞ morphism between two L∞ algebras.

The structure of strongly homotopy algebras have also been exhibited in
(closed) string field theory, see for example Zwiebach [Z] and Markl [Mar3].

2.2 Operads and A∞ algebras

Definition 2.2.1. The operad Ass is defined as the quotient

Ass=Free〈E〉/R

where the S-module E is given by

E(n) =
{
K[S2] n = 2

0 n 6= 2

and the ideal R is generated by a quadratic relation; R = span〈(id ⊗ σ)◦σ−
(σ ⊗ id)◦σ〉σ∈S2 ⊆Free〈E〉(≥2).

The operad Ass gives an operadic description of associative algebras; a
dg associative algebra V is a map of operads Ass−→EndV .

The operad Ass has a minimal model, which we call Ass∞.

Definition 2.2.2. The dg operad (Ass∞,∂) is quasi-free on the S-module E
given by

E(n) =
{
K[Sn][2−n] n ≥ 2

0 n < 2
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Represent the generator σ ∈ E(n) by the corolla

. . .
σ1 σ2 σ3 σn−1 σn

•

The differential is defined as

∂


. . .

σ1 σ2 σ3 σn−1 σn

•

=
n−2∑
k=0

n−k∑
l=2

(−1)k+l (n−k−l )+1 •
. . .

σ1 σk σk+l+1 σn
...

. . .•
σk+1 σk+l

Definition 2.2.3. The 2-colored operad Mor(Ass) is defined as the quotient

Mor(Ass) =Free〈E〉/R

where E = E0 ⊕E1 ⊕E f with E0 = E1 =K[S2]and

E f (n) =
{

span〈 f 〉 n = 1

0 n 6= 1

is the one-dimensional space spanned by the indeterminate f . The elements
of Ei are monochrome with color i and the elements of E f are two-colored,
having input color 0 and output color 1. The relations in this operad are given
by R = R0 ⊕R1 ⊕R f where the spaces R0 and R1 correspond to the associative
relation for the elements of E0 and E1, respectively; R0 = span〈(id ⊗ σ0)◦σ0−
(σ0 ⊗ id)◦σ0〉σ0∈S2 and R1 = span〈(id ⊗ σ1)◦σ1− (σ1 ⊗ id)◦σ1〉σ1∈S2 . Lastly,
the space R f is given as the space span〈( f ⊗ f )◦σ1 −σ0 ◦ f 〉σ0,σ1∈S2 .

The operad Mor(Ass) gives an operadic description of dg (associative)
algebra morphisms. The operad Mor (As) has a minimal model, which we
call Mor(Ass)∞.

Definition 2.2.4. The 2-colored dg operad (Mor(Ass)∞,∂) is quasi-free on the
S-module E = E1 ⊕E2 ⊕E f , where Ei is monochrome with color i and E f is
dichromatic with input color 0 and output color 1. TheS-modules E1 and E2

are copies (if we disregard the colors) of E appearing in Definition 2.2.2. The
S-modules E f is defined as

E f (n) =
{
K[Sn][1−n] n ≥ 1

0 n = 0
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Represent generators σ ∈ E0(p) and τ ∈ E1(q) by monochrome corollas, either
black edges or dashed edges and represent elementsϕ ∈ E f (n) by dichromatic
corollas;

σ∼
. . .

σ1 σ2 σ3 σp−1 σp

• τ∼
. . .

τ1 τ2 τ3 τq−1 τq

◦ ϕ∼
. . .

ϕ1 ϕ2 ϕ3 ϕn−1 ϕn

�

The action of the differential ∂ on corollas σ and τ is identical to the one de-
scribed in Definition 2.2.2. On the corolla representing ϕ the differential acts
as follows:

∂


. . .

ϕ1 ϕ2 ϕ3 ϕn−1 ϕn

�

=
n∑

l=2

n−l∑
k=0

ε(l ,k) �
. . .

ϕ1 ϕk ϕk+l+1 ϕn
...

. . .•
ϕk+1 ϕk+l

+
n∑

k=2

∑
n=n1+...+nk

ε(k;n1, . . . ,nk )

... ...

. . .

ϕ1 ... ϕn1 ϕn1+1... ϕn1+n2
. . . ϕn

...

◦

� � �

Where ε(k, l ) = (−1)(k−1)(l−1)+n and

ε(k;n1, . . . ,nk ) = (−1)(k−1)(n1−1)+(k−2)(n2−1)+...+2(nk−2−1)+nk−1−1

Definition 2.2.5. The 2-colored dg operad (Ho(Ass),d) is defined as the quo-
tient

Free〈E〉/R.

The free construction is taken on the space E = E0 ⊕E1 ⊕E f ⊕Eg ⊕Eh and the
relations are given by the direct sum R = R0 ⊕R1 ⊕R f ⊕Rg ⊕Rh . The spaces
E0,E1,E f are just like above, Eg is like E f but spanned by the indeterminate
g . The last generator Eh is defined as

Eh(n) =
{

span〈h〉[−1] n = 1

0 n 6= 1
,

the one-dimensional space spanned by the indeterminate h and concentrated
in degree 1. The relation spaces R0, R1 and R f are identical to the proceeding
definition, and the space Rg is defined just like R f with g in place of f . Lastly,
the space Rh is given by the space span〈( f ⊗h)◦σ1+(h⊗g )◦σ1−σ0◦h〉σ0,σ1∈S2 .
The differential d is defined to be trivial on all generators except h, for which
it has the action d(h) = f − g .
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The operad Ho(Ass) gives an operadic description of a homotopy of dg
algebra morphisms. There is a non-minimal model for Ho(Ass), which we
call Ho(Ass)∞.

Definition 2.2.6. The 2-colored dg operad (Ho(Ass)∞,∂) is quasi-free on the
S-module E = E0⊕E1⊕E f ⊕Eg ⊕Eh . The summands E0,E1,E f are defined as
in Definition 2.2.4, Eg is a copy of E f and Eh is dichromatic with input color
0 and output color 1 and defined as

Eh(n) =
{
K[Sn][−n] n ≥ 1

0 n = 0

Represent generators σ ∈ E0(p) and τ ∈ E1(q) by monochrome corollas, either
black edges or dashed edges and represent elementsϕ ∈ E f (n), γ ∈ Eg (m) and
χ ∈ Eh(l ) by dichromatic corollas;

σ∼
. . .

σ1 σ2 σ3 σp−1 σp

• τ∼
. . .

τ1 τ2 τ3 τq−1 τq

◦ ϕ∼
. . .

ϕ1 ϕ2 ϕ3 ϕn−1 ϕn

J

γ∼
. . .

γ1 γ2 γ3 γn−1 γn

I χ∼
. . .

χ1 χ2 χ3 χn−1 χn

H

The action of the differential on the generators coming from E0,E1,E f and
Eg is just as in Definition 2.2.2-2.2.4. The differential acts on the generator
χ ∈ Eh as

∂


. . .

i1 i2 i3 in−1 in

H

=

. . .
i1 i2 i3 in−1 in

I −
. . .

i1 i2 i3 in−1 in

J +
n−2∑
k=0

n−k∑
l=2

(−1)ε1 H
. . .

i1 ik ik+l+1 in
...

. . .•
ik+1 ik+l

+ ∑
2≤k+l+m≤n

a1+...+ak+m+b1+...bl =n

(−1)ε2 ... ...

... ... ... ... ...
i1 ... iα1 iαk−1+1...iαk

iαk+1...iαk+m iαk+m+1...iβ1
iβl−1+1...iβl

◦
J J H I I

Where 1 ≤ m ≤ n−1,αi = a1+. . .+ai and β j =αk +m+b1+. . .b j . The factors
ε1 and ε2 are signs;

ε1 = (k −1)(l −1)+n +1

ε2 = l + ∑
1≤i≤l

(1−bi )

(
n − ∑

j≥i
b j

)
+m

∑
1≤i≤k

ai +
∑

2≤i≤k
(1−ai )

(∑
j<i

a j

)

52



From cofree coalgebras to A∞ algebras

We state here the relation between two common non-operadic definition of
strongly homotopy associative structures (algebras, morphisms and homo-
topies).

Definition 2.2.7. Let V be a graded vector space. The tensor coalgebra TcV
is as a vector space the direct sum ⊕k≥0V ⊗i , where V ⊗i is the i -times iterated
tensor product with itself,

V ⊗i =V ⊗ . . .⊗V︸ ︷︷ ︸
i -times

.

TcV can be given a coalgebra structure with the coproduct map

∆ : TcV → TcV ⊗TcV

given on summand T n
c V =V ⊗n as

∆ : (v1, . . . , vn) →
n∑

i=0
(v1, . . . , vi )⊗ (vi+, . . . , vn),

where the term for i = 0,n are 1⊗ (v1, . . . , vn) and (v1, . . . , vn)⊗1 inside V ⊗0 ⊗
V ⊗n and V ⊗n ⊗V ⊗0, respectively.

The reduced tensor coalgebra T cV is as a vector space the direct sum⊕i≥1V ⊗i ,
with coproduct

∆ : T cV → T cV ⊗T cV

given, as above, on summands as

∆ : (v1, . . . , vn) →
n−1∑
i=1

(v1 . . . vi )⊗ (vi+1, . . . , vn).

Remark 2.2.8. From the coproduct we define the partial coproducts:

∆a,b
a+b :=V ⊗(a+b) ,→ T cV

∆−→ T cV
⊗

T cV →V ⊗a
⊗

V ⊗b .

This will be a convenient short hand in many of the proofs of this section.

Proposition 2.2.9. A map of vector spaces b : T cV → V can be lifted to a
unique coderivation of coalgebras,

B : T cV → T cV ,

such that pr1 ◦B = b, when pr1 is the natural projection T cV → V . If B m
n

denotes the composition

B m
n : V ⊗n ,→ T cV

B→ T cV →V ⊗m ,
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then the explicit formula for B m
n is given by

B m
n =

{
0 if n < m∑

i+ j=m−1 Id⊗i ⊗bn+1−m ⊗ Id⊗ j

where ba := b|V ⊗a . Furthermore, the map B is recovered as a product;

B = ∏
n≥1

B n B n = ∏
m≥1

B n
m ,

and note that B 1
a = ba

Proof. The proof is by induction. The case B 1
n is clear from the projection

property. Assume that for all m < M we have that B m
n is given by the formula.

The equation
∆B = (Id

⊗
B +B

⊗
Id)∆

is true. Specifically we can restrict its input to be V ⊗n and its output to be in
V ⊗(M−1) ⊗V , in which case the formula becomes:

∆M−1,1
M B M

m = (Id⊗(M−1)
⊗

B 1
n+1−M +B M−1

n−1

⊗
Id)∆n−1,1

n .

By the induction hypothesis we know that B M−1
n−1 =∑

i+ j=M−2 Id⊗i ⊗bn+1−M ⊗
Id⊗ j so, as an M-fold tensor, the right hand side has the desired form; it’s the
formula given for B M

n .

Proposition 2.2.10. A map of vector spaces f : T cV → W can uniquely be
lifted to a morphism of coalgebras F : T cV → T cW, such that pr1 ◦ F = f ,
when pr1 is the natural projection T cW →W . If we let F m

n be a composition;

F m
n : V ⊗n ,→ T cV

F→ T cW →W ⊗m

and let fk = f |V ⊗k then, explicitly, F m
n will be of the form

F m
n =

{
0 if n < m∑

i1+···+im=n fi1 ⊗ . . .⊗ fim

where F can be recovered as the product;

F = ∏
m≥1

F m F m = ∏
n≥1

F m
n .

Proof. By the property of the projection, pr1 ◦F = f , it follows that F 1
n = fn .

We proceed by induction; assume that

F m
n = ∑

i1+···+im=n
fi1 ⊗ . . .⊗ fim ,
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for all m < M . The equation

(F
⊗

F )◦∆=∆◦F

can be restricted to taking the input V ⊗n and having the output W ⊗(M−1) ⊗W,
in which case it becomes

∆M−1,1
M F M

n = ∑
i+ j=n

(F M−1
i

⊗
F 1

j )∆i , j
n .

Now we can expand F M−1
i with the induction hypothesis and compare the

two sides of the equation as an M-fold tensor. It follows that F M
n is of the

correct form.

Proposition 2.2.11. Let F,G : T cV → T cW be two morphisms of coalgebras
and let h : T cV →W be a map of vector spaces then, there exist a unique map
H : T cV → T cW, such that (H

⊗
G +F

⊗
H)∆ = ∆H and so that pr1 ◦H = h

when pr1 is the natural projection T cW →W. Define H m
n as the composition

H m
n : V ⊗n ,→ T cV

H→ T cW →W ⊗m

Explicitly H m
n is of the following form

H m
n =

{
0 if m > n∑

a+b=m−1
∑

i1+...+ia+s+ j1+...+ jb=n F 1
i1
⊗ . . .⊗F 1

ia
⊗hs ⊗G1

j1
⊗ . . .⊗G1

jb
,

where a,b ≥ 0, s > 0 and, F 1
k and G1

l are as in the previous proposition, and
hi := h|V ⊗i . From H m

n we can recover H by taking the product;

H = ∏
m≥1

H m H m = ∏
n≥1

H m
n .

Proof. We prove this with induction. When m = 1 this follows from the pro-
jection property; H 1

n = hn . Assume that

H m
n = ∑

a+b=m−1

∑
i1+...+ia+s+ j1+...+ jb=n

F 1
i1
⊗ . . .⊗F 1

ia
⊗hs ⊗G1

j1
⊗ . . .⊗G1

jb

for all m < M . Restrict the input to V ⊗n and consider the projection to the
(M −1,1)-th component in the equation (H

⊗
G +F

⊗
H)∆=∆H to get:

∆M−1,1
M ◦H N

n = ∑
i+ j=n

(F M−1
i

⊗
H 1

j +H M−1
i

⊗
G1

j )◦∆i , j
n ,

if we expand H M−1
i with the induction hypothesis and F M−1

i with the help
of Proposition 2.2.10 then we see that this, as an M-fold tensor, is precisely
the formula that was given.
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Definition 2.2.12. An A∞ algebra is a graded vector space V equipped with
the structure of a codifferential bV on the associated reduced tensor coalgebra
(of the shifted vector space);

bV : TcV [1] → TcV [1].

A morphism of A∞ algebras

f : (V ,bV ) → (W,bW )

is a morphism of dg coalgebras

F : TcV [1] → TcW 1].

Let F and G be the morphism of dg coalgebras

F,G : (TcV [1],bV ) → (TcW [1],bW ),

where bV and bW are codifferentials giving V and W the structure of A∞ al-
gebras. We say that a map

H : TcV [1] → TcW [1]

is a homotopy of F and G if it satisfies two relations:

1. (F ⊗H +H ⊗G)◦∆V =∆W ◦H

2. F −G = bW ◦H +H ◦bV .

By analyzing the relations it is possible reinterpret the definitions con-
cerning A∞ algebras without referencing the tensor coalgebra explicitly.

Theorem 2.2.13. An A∞ algebra structure on the graded vector space V is a
sequence of maps mn : V ⊗n →V of degree 2−n such that following equations
are satisfied

m1 ◦m1 = 0

−m2 ◦ (Id⊗m1)−m2 ◦ (m1 ⊗ Id)+m1 ◦m2 = 0

−m2 ◦ (m2 ⊗ Id)−m2 ◦ (Id⊗m2)+m3 ◦ (m1 ⊗ Id⊗2)

+m3 ◦ (Id⊗m1 ⊗ Id)+m3 ◦ (Id⊗2⊗m1)+m1 ◦m3 = 0

...∑
s+ j+t=n

(−1)s+ j t ms+1+t ◦ (Id⊗s ⊗m j ⊗ Id⊗t ) = 0
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Proof. The proof is a matter of expanding the expression bV ◦ bV = 0 and
recognizing that mn = s−1 ◦bV

n
1 ◦ s⊗n , where bV

n
1 is the restriction of bV to

(V [1])⊗n followed by the projection onto V [1]. The sign factor comes from
applying the Koszul sign rule when shifts are reorganized.

We will occasionally denote an A∞ algebra with the pair (V ,mV ), where
mV is the system of maps given in the above theorem.

Theorem 2.2.14. A morphism of A∞ algebras f : (V ,mV ) → (W,mW ) is a
collection of maps fn : V ⊗n →W of degree 1−n such that

∑
r+s+t=n

(−1)r+st fr+1+t◦(Id⊗r ⊗mV
s ⊗Id⊗t ) =

n∑
q=1

∑
i1+...+iq=n

(−1)p mW
q ◦( fi1⊗. . .⊗ fiq )

where p = (q −1)(i1 −1)+ (q −2)(i2 −1)+ . . .+2(iq−2 −1)+ (iq−1 −1).

Proof. Let F : (T cV [1],BV ) → (T cW [1],BW ) be a coalgebra morphism. Ex-
plicitly fn is given as s−1◦F 1

n ◦s⊗n , where F 1
n is the restriction of F to the n:th

component followed by the projection to the first; F 1
n : (V [1])⊗n →W [1].

We start with the equation BW ◦F = F ◦BV . In it we restrict the input to
(V [1])⊗n and output to W [1]. The result is

n∑
i=1

(BW )1
i ◦F i

n =
n∑

j=1
F 1

j ◦ (BV ) j
n .

It can be determined that

B m
n = ∑

i+ j=m−1
Id⊗i ⊗B 1

s ⊗ Id⊗ j

and
F m

n = ∑
n1+...+nm=n

F 1
n1

⊗ . . .⊗F 1
nm

.

Using these explicit formulas we arrive at the expression

n∑
i=1

(BW )1
i ◦ (

∑
n1+...+ni=n

F 1
n1

⊗ . . .⊗F 1
ni

) =
n∑

i=1
F 1

i ◦ (
∑

a+b=i−1
Id⊗a(BV )1

n+1−i ⊗ Idb)

Theorem 2.2.15. Let (V ,µV ) and (W,µW ) be two A∞ algebras and let f , g :
(V ,µV ) → (W,µW ) be two A∞ algebra morphisms given on the form of maps

fn : V ⊗n →W

gn : V ⊗n →W
.
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A system of maps of graded vector spaces hn : V ⊗n → W of degree −n is a
homotopy of f and g if

fn − gn =
n∑

m=1

∑
k+l=m−1

i1+...+ik+t+ j1+... jl=n

(−1)sµW
m ◦ (

fi1 ⊗ . . .⊗ fik ⊗ht ⊗ g j1 ⊗ . . .⊗ g jl

)

+ ∑
i+ j+k=n

(−1)i j+k hi+1+k ◦
(
Id⊗i ⊗µV

j ⊗ Id⊗k
)

,

s = l + ∑
1≤a≤l

(1− ja)(n − ∑
b≥a

jb)+ t
∑

1≤a≤k
ia +

∑
2≤a≤k

(1− ia)(
∑

b<a
ib)

Proof. The proof is along the lines of the previous theorems. Use a careful
analysis of the tensor coalgebra to lift h to a map H , f to F and g to G . In
that setting you can apply the rule for homotopy, project the formula to the
first component and lastly you recognize the sign that comes from taking
into account the degree-shifts.

2.3 The configuration spaces Con fn(R), Cn(R) andCn(R)

2.3.1. Families of uncompactified configuration spaces Given a set A we
define the configuration space Con f A(R) as the set of injections of the set A
into the real line;

Con f A(R) := {A ,→R}.

Sometimes we will consider the full set of maps A → R, and for it we intro-
duce the notation âCon f A(R) := {A →R}.

In the special case when A = [n] we use the notation

Con fn(R) :=Con f[n](R).

The set Con f A(R) is a real oriented manifold of dimension |A|. As a space
Con f A(R) is the union of |A|! connected components, all isomorphic to

Con f o
|A|(R) := {x1 < x2 < . . . < x|A|}.

The orientation on Con f o
n (R) is given as the volume form d x1 ∧d x2 ∧ . . .∧

d xn . The group Sn acts on Con fn(R) by permuting the elements of [n]. We
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assume that the action of Sn is orientation preserving on Con fn(R) and this
fixes the orientation on all connected components of Con fn(R).

The 2-dimensional Lie group G(2) = Aff(R) acts freely on Con f A(R) via
the action

(xa1 , . . . , xa|A|)× (λ,ν) = (λxa1 +ν, . . . ,λxa|A| +ν).

The quotient space from this action is an (n −2)-dimensional real oriented
manifold. We define C A(R) and C o

A(R) as the quotient by the action of G(2)

C A(R) :=Con f A(R)/G(2), C o
A(R) :=Con f o

A (R)/G(2)

The elements of C o
n(R) := C o

[n](R) can be represented by the equivalence
classes of the form (0 = x1 < x2 . . . < xn−1 < xn = 1). The orientation orien-
tation on C o

n(R) is given by the form d x2∧. . .∧d xn−1. Let us also remark that
Cn(R) ∼= Sn ×C o

n(R).
Alternatively we can represent equivalence classes of C A(R) with ele-

ments p = (x1, . . . , xn) ∈Con f A(R) subject to

xc (p) = 1

|A|
∑
x∈A

x = 0 ||p|| =
√ ∑

x∈A
(x −xc (p))2 = 1.

We define

C st
A (R) := {p ∈Con f A(R) |xc (p) = 0, ||p|| = 1}, C st

n (R) :=C st
[n](R)

and

C̃ st
A (R) := {p ∈ âCon f A(R) |xc (p) = 0, ||p|| = 1}, C̃ st

n (R) = C̃ st
[n](R)

The 1-dimensional Lie group G(1) =R acts freely on Con fn(R) by trans-
lation

(p,ν) 7→ p +ν,

and we denote associated the quotient spaces

CA(R) :=Con f A(R)/G(1), Cn(R) :=C[n](R).

We also introduce the notation

Cst
A (R) := {p ∈Con f A(R) |xc (p) = 0}, Cst

n (R) :=Cst
[n](R).

We have three homeomorphisms associated to these configuration spaces.

1. The space Cn(R) is naturally homeomorphic to C st
n (R)

59



2. We have

ΨA :CA(R)
'−→C st

A (R)× (0,1)

given by

p 7→
(

p −xc (p)

||p|| ,
||p||

1+||p||
)

.

3. We have

Φn : Con fn(R)
'−→ (−1,1)n ×C st

n (R)× (0,1)× (−1,1)

given by

p 7→
(

p −xc (p)

||p|| ,
||p||

1+||p|| ,
xc (p)

1+|xc (p)|
)

.

These homeomorphisms provide a starting point to determine compact-
ifications of the configuration spaces in questions. The method employed
is essentially a variation of the Fulton-MacPherson compactification for the
configuration space of points in the complex plane as given by M. Kontse-
vich [Kon1].

2.4 The Fulton-MacPherson compactification of Cn(R)
and Cn(R)

In this subsection we give a short summary of a compactification procedure
given in [? ]. This paper attempts to build onto and expand the construc-
tions of loc.cit., and therefore it’s most natural for us to reiterate some of the
constructions.

The compactification of Cn(R)

We introduce a topological compactification C n(R) as the closure of the fol-
lowing injections

Cn(R)
∏
πA //

∏
|A|⊂[n],|A|≥2

A conn

C A(R)
' //

∏
|A|⊂[n],|A|≥2

A conn

C st
A (R) �

� //
∏

|A|⊂[n],|A|≥2
A conn

C̃ st
A (R)

In the products A is a connected subsets of [n]. By a connected subset of [n]
we mean a set which contains all intermediate integers between any two
integers that are included in it.
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• The codimension one boundary strata of the configuration space C n(R)
is given by

∂C n(R) = ⋃
A⊂[n]

C n−|A|+1(R)×C |A|(R),

where A is a connected proper subset of [n] with two or more ele-
ments. By a connected subset of [n] we mean a set which contains all
intermediate integers between any two integers that are included in
it.

• The face complex on C •(R) has the natural structure of a dg free op-
erad;

Free

〈
. . .

i1 i2 i3 iq−1 iq

•
〉

q≥2

where the differential acts as follows

∂


. . .

i1 i2 i3 iq−1 iq

•

=
q−2∑
k=0

q−k∑
l=2

ε(k, l ) •
. . .

i1 ik ik+l+1 iq
...

. . .•
ik+1 ik+l

The factor ε(k, l ) is a sign that can be worked out to be (−1)k+l (q−k−l )+1.
Representations of this operad in differential graded vector space are
given by A∞ structures. Thus this is a description of the Ass∞ operad.

The space C n(R) as a smooth manifold with corners

Let RTn,l be the set of rooted trees with n legs and l +1 internal vertices. The
set RTn,l parameterizes the codimension l boundary strata of C n(R) in the
following sense. Each tree t ∈ RTn,l describes a space Ct (R) which is defined
as the product

Ct (R) := ∏
v∈ver t (t )

C|i n(v)|(R),

where, like before, ver t (t ) denote the set of internal vertices of t and i n(v)
the set of input edges at the vertex v. From this one gets a description of
C n(R) as a stratified disjoint union of spaces

C n(R) = ∐
l≥0

∏
t∈RTn,l

Ct (R).

To make the compactified configuration space C n(R) into a smooth man-
ifold with corners, we shall define coordinate charts Ut near the boundary
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stratum Ct (R). We do this for a specific tree t but the general procedure
should be clear from the given example. Let t be the tree

t =
1

35 8

6 247

•

• •

•

We define the coordinate chart close to Ct (R) in a three step procedure.

1. Associate to the tree t a metric tree, tmetr i c by endowing each internal
edge with a bounded non-negative parameter ε;

tmetr i c = 1

35 8

6 247

ε1
ε2

ε3

•

• •

•

with ε1,ε2,ε3 ∈ [0,ε).

2. Pick an Sn-equivariant section γ : Cn(R) → Con fn(R), of the natu-
ral projection Con fn(R) → Cn(R) and associate to the image of γ a
smooth structure. The section could be either of the two description
of Cn(R) we mentioned above; C st

n (R) or the space of configurations
where x1 = 0 and xn = 1.

3. The coordinate chart Ut can now be seen to be diffeomorphic to the
smooth manifold with corners [0,ε)|E(t )|×∏

v∈ver t (t ) C|i n(v)(R). The dif-
feomorphism is given by the map Φt ,

Φt : [0,ε)|E(t )|× ∏
v∈ver t (t )

C|i n(v)|(R)−→Ut .

which we describe in the example of our tree t . Coordinate-wise it is
defined as follows

(0,ε)3 × C st
3 (R) × C st

3 (R) × C st
2 (R) × C st

3 (R)
(ε1,ε2,ε3) × (x1, x ′, x ′′) × (x7, x4, x6) × (x2, x ′′′) × (x5, x3, x8)

−→ C8(R)
(y1, y7, y4, y6, y2, y5, y3, y8)
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according to

y1 =x1

y2 =x ′′+ε2x2

y3 =x ′′+ε2(x ′′′+ε3x3)

y4 =x ′+ε1x4

y5 =x ′′+ε2(x ′′′+ε3x5)

y6 =x ′+ε1x6

y7 =x ′+ε1x4

y8 =x ′′+ε2(x ′′′+ε3x5)

In general the map Φt is given as the recursive ε-magnified substitu-
tion scheme. If the coordinates xi , . . . , xi+k lie in a corolla controlled
by the internal edge associated to the coordinate x ′ and where the in-
ternal edge is parameterized by the factor ε, then the substitution give
the new coordinates x ′+εxi , . . . , x ′+εxi+k .

A compactification of Ĉn(R)

Define the compactification of Cn(R) as the closure of the following inclu-
sions

Cn(R)
∏
πA //

∏
|A| ⊂ [n]
|A| ≥ 1
A conn

CA(R)
∏
ΨA //

∏
|A| ⊂ [n]
|A| ≥ 1
A conn

C st
A (R)× (0,1) �

� //
∏

|A| ⊂ [n]
|A| ≥ 1
A conn

C̃ st
A (R)× [0,1]

• The codimension one boundary strata of the configuration space Ĉn(R)
is given by

∂Ĉn(R) =⋃
Ĉn−|A|+1(R)×C |A|(R)∪⋃

C k (R)× Ĉ|A1|(R)× . . .× Ĉ|Ak |(R)

where A is as above and where the Ai are connected disjoint subsets
of [n] such that i n f A1 < . . . < i n f Ak and ∪Ai = [n].

• The face complex of the disjoint union

C •(R)t Ĉ•(R)tC •(R)

has the natural structure of a dg free operad of transformation type;

Free

〈
. . .

i1 i2 i3 iq−1 iq

• ,
. . .

i1 i2 i3 in−1 in

� ,
. . .

i1 i2 i3 ip−1 ip

◦
〉

p,q≥2
n≥1
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The differential has the following action

∂


. . .

i1 i2 i3 in−1 in

�

=
n∑

l=2

n−l∑
k=0

ε(l ,k) �
. . .

i1 ik ik+l+1 in...
. . .•

ik+1 ik+l

+
n∑

k=2

∑
n=n1+...+nk

ε(k;n1, . . . ,nk )

... ...

. . .

i1 ... in1 in1+1... in1+n2
. . . in

...

◦
� � �

Where ε(k, l ) = (−1)k+l+l (n−k)+1 and

ε(k;n1, . . . ,nk ) = (−1)(k−1)(n1−1)+(k−2)(n2−1)+...+2(nk−2−1)+nk−1−1

On the corollas corresponding to the A∞ structure,
. . .

i1 i2 i3 iq−1 iq

•

and
. . .

i1 i2 i3 in−1 ip

◦ , the differential acts precisely like in the case

C n(R). Representations of this operad are given by three pieces of data:
two A∞ algebras, A and A′, and a morphism of A∞ algebras A → A′.
Thus this is the previously discussed operad Mor(Ass)∞.

The space Ĉn(R) as a smooth manifold with corners

We generalize the procedure for C n(R) to Ĉn(R). For every tree t ∈Mor(Ass)∞
we define the sets ver t•,◦(t ) and ver t�(t ) as the vertices of t marked by {•,◦}
or�. For the tree t we define Ct (R) as a product;

Ct (R) := ∏
v∈ver t•,◦(t )

C|i n(v)|(R)× ∏
v∈ver t�(t )

C|i n(v)|(R).

We can describe the space Ĉn(R) as a stratified union of spaces;

Ĉn(R) = ∏
t∈Mor (As)∞(n)

Ct (R).

We shall define a coordinate chart Ut around every boundary stratum Ct (R)
with a metric tree. We associate to t the metric tree tmetr i c with for

1. every internal edge of the type
�

• a small positive parameter ε;
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2. every vertex of a dashed corolla associate a large positive number τ,

◦τ
. . .
,

3. every subgraph of tmetr i c of the type
◦
◦
τ1

τ2
an inequality τ1 > τ2.

Example 2.4.1. As an example we consider a specific tree. The general method
should be clear from this description. Let t be the following tree

1

3 5 6 2

4

7 8

◦

� ◦ �

�� •

Then the associated metric tree, tmetr i c , is given by

1

3 5 6 2

4

7 8

◦τ1

� ◦τ2 �

�� •
ε

Choose an equivariant section,

s :Cn(R) →Con fn(R)

to the projection
Con fn(R) →Cn(R)

and a smooth structure on the image of s. DefineCst
n (R) := s(Cn(R)), which is

called the space of configurations in standard position. One possible choice
of Cst

n (R) is subspace of points in Con fn(R) where
∑

xi = 0.
The coordinate chart Ut ⊂ Ĉn(R) is now defined to be diffeomorphic to

the manifold with corners,

(l ,+∞]|ver t◦|(t ) × [0, s)|ed g e�• (t )|× ∏
v∈ver t◦,•(t )

C st
|i n(v)|(R)× ∏

v∈ver t�(t )
Cst
|i n(t )|(R)
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where ver t◦ denotes the set of vertices of type ◦, ver t◦,• denotes the set of

vertices of type ◦ or • and ed g e�• denote the set of edges of type
�

• . The

diffeomorphismΦt between the coordinate chart Ut and the product above
is read from metric tree. The map is given in coordinates, for the specific
tree in the above example, as follows

(l ,+∞]2 × [0, s) × C st
3 (R) × C st

2 (R) × C st
2 (R)

(τ1,τ2) × ε × (x ′, x ′′, x ′′′) × (t ′, t ′′) × (x7, x8)

× Cst
1 (R) × Cst

2 (R) × Cst
2 (R) × Cst

2 (R)
× x1 × (x3, x5) × (x6, x2) × (x4,u)

−→ C8(R)
(y1, . . . , y8)

such that

y1 =τ1x ′+x1

y2 =τ1x ′′+τ2t ′′+x2

y3 =τ1x ′′+τ2t ′+x3

y4 =τ1x ′′′+x4

y5 =τ1x ′′+τ2t ′+x5

y6 =τ1x ′′+τ2t ′′+x6

y7 =τ1x ′′′+u +εx7

y8 =τ1x ′′′+u +εx8

The boundary strata in Ut are given by allowing formally τ1 =∞,τ2 =∞
such that τ1/τ2 = 0 and ε= 0.

2.5 The operad Ho(Ass)∞

2.5.1. Compactification of the configuration space Con f•(R) In this sec-
tion we introduce our main result. We define the new compactification
Con f n(R) of the configuration space Con fn(R) as the closure of the follow-
ing injections

Con fn(R)
Φ×Ψ[n]−→ (−1,1)n ×Cn

id×Ψ•−→ [−1,1]n × ∏
|A|⊂[n],|A|≥1

A conn

C̃ st
A (R)× [0,1]

where

(x1, . . . , xn)
Φ7−→

(
x1

1+|x1|
, . . . ,

xn

1+|xn |
)

and Ψ• =
∏

|A|⊂[n],|A|≥1
A conn

ΨA
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We extend the previous result for C n and Ĉn to the space Con f n(R). The
codimension one boundary strata of Con f n(R) are given as

∂Con f n(R) =⋃
Con f n−|A|+1(R)×C |A|(R)∪ Ĉn(R)∪ Ĉn(R)⋃

C k+1+l (R)× Ĉ|A1|(R)× . . .× Ĉ|Ak |(R)×Con f |A|(R)× Ĉ|B1|(R)× . . .× Ĉ|Bl |(R)

1. The first union runs over all connected subsets A ⊂ [n] such that |A| >
1. The stratum correspond to the collapsing of the points of A into one
point.

2. The stratum Ĉn(R) appears when either all points go to plus or minus
infinity but in such a manner that the distance between the points is
finite.

3. The second union runs over all partitions of [n] into connected non-
empty subsets [n] = A1 ∪ . . .∪ Ak ∪F ∪B1 ∪ . . .∪Bl with |F | > 0. These
limit points correspond to when the points from A1, . . . , Ak go to −∞,
the points from F stay in a finite position and the points from B1, . . . ,Bl

go to ∞. The points do this such that each point in Ai and B j remain
a finite distance from each other; ||p Ai ||, ||pB j || <∞.

By methods described in [? ] we can consider the fundamental chains of
{C •(R)tĈ•(R)tCon f •(R)tĈ•(R)tC •(R)} as a dg free operad with two colors.
We identify the faces with corollas;

C q (R) '
. . .

i1 i2 i3 iq−1 iq

• .

We need to illustrate two versions of this space as it appears either as col-
lapsing or as controlling points at infinity. We distinguish between them by
the color of their internal vertex and legs; drawn black or white/dashed.

C p (R) '
. . .

i1 i2 i3 ip−1 ip

◦

Points going to plus or minus infinity in a cluster are given a two-colored
corolla:

−∞ : Ĉn(R) '
. . .

i1 i2 i3 in−1 in

J

∞ : Ĉn(R) '
. . .

i1 i2 i3 in−1 in

I
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We represent points staying finite with a two-colored corolla as follows:

Con f n(R) '
. . .

i1 i2 i3 in−1 in

H

In this graphical notation the differential has the following action:

∂


. . .

i1 i2 i3 in−1 in

H

=

±
. . .

i1 i2 i3 in−1 in

I ±
. . .

i1 i2 i3 in−1 in

J +
n−2∑
k=0

n−k∑
l=2

± H
. . .

i1 ik ik+l+1 in
...

. . .•
ik+1 ik+l

+ ∑
2≤k+l+m≤n

a1+...+ak+m+b1+...bl =n

± ... ...

... ... ... ... ...
i1 ... iα1 iαk−1+1...iαk

iαk+1...iαk+m iαk+m+1...iβ1
iβl−1+1...iβl

◦
J J H I I

Where 1 ≤ m ≤ n −1, αi = a1 + . . .+ ai and β j = αk +m +b1 + . . .b j On the
corollas corresponding to C •(R) and Ĉ•(R) the differential acts identically to
the differential in the Mor(Ass)∞ operad.

Example 2.5.1. To convince the reader we proceed to work out the codimen-
sion 1 boundary strata of Con f 3(R) :

Con f 3(R) ⊂ [−1,1]3 × C̃ st
12(R)× [0,1]× C̃ st

23(R)× [0,1]× C̃ st
123(R)× [0,1]

the points of which can be written in coordinates

x =
(

x1

1+|x1|
,

x2

1+|x2|
,

x3

1+|x3|
,∗,

||p12||
1+||p12||

,∗,
||p23||

1+||p23||
,

(
x1 −xc

||p|| ,
x2 −xc

||p|| ,
x3 −xc

||p||
)

,
||p||

1+||p||

)

where
||p12|| = x2 −x1p

2
, ||p23|| = x3 −x2p

2
xc = x1 +x2 +x3

3

and

||p|| =
√(

2x1 −x2 −x3

3

)2

+
(−x1 +2x2 −x3

3

)2

+
(−x1 −x2 −2x3

3

)2

There is some redundant information in x. The parameter ||p|| is at a bound-
ary value if and only if ||p12|| or ||p23|| is at a boundary value. The same is
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true for the coordinates of C̃ st
123(R), where a boundary point arises if ||p12|| or

||p23|| becomes zero.
To analyze the codimension one boundary strata it is enough to consider

the coordinates of the form (y1, y2, y3, s12, s23) with

y1 < y2 < y3 ∈ [−1,1] and s12, s23 ∈ [0,1]

We will see that the codimension one strata are given in twelve different
ways:
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1. The configurations (y1, y2, y3) = (−1,−1,−1) with s12 and s23 being points of the closed unit interval. This can be achieved
by x1 = r −p

2λ1, x2 = r, x3 = r +p
2λ2 and then letting r → −∞. These limit points are scaling-invariant so we can

identify them with a copy of Ĉ{x1,x2,x3}(R)

x1 x2 x3

H
(y1,y2,y3)−→(−1,−1,−1)

s12−→λ1

s23−→λ2

//

x1 x2 x3

J ∼= {(−1,−1,−1, s12, s23)} ∼= Ĉ{x1,x2,x3}(R)

2. The configurations (y1, y2, y3) = (1,1,1) with s12 and s23 being points of the closed unit interval. This boundary strata
can also be identified with a copy of Ĉ{x1,x2,x3}(R).

x1 x2 x3

H
(y1,y2,y3)−→(1,1,1)

s12−→λ1

s23−→λ2

//

x1 x2 x3

I ∼= {(1,1,1, s12, s23)} ∼= Ĉ{x1,x2,x3}(R)

3. The configurations (y1, y2, y3) = (−1,−1, a) with s12 = s23 = 1. Points of this type can be identified with elements of
C {x1, x2, x3}R)× Ĉ{x1} × Ĉ{x2}(R)×Con f {x3}(R).

x1 x2 x3

H
(y1,y2,y3)−→(−1,−1,a)

s12−→1

s23−→1

//

x1 x2 x3

◦
J J H

∼= {(−1,−1, a,1,1)} ∼=C {x1,x2,x3}(R)× Ĉ{x1} × Ĉ{x2}(R)×Con f {x3}(R)

4. The configurations (y1, y2, y3) = (a,1,1) with s12 = s23 = 1. Points of this type can be identified with elements of C {x1,x2,x3}(R)×
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Con f {x1}(R)× Ĉ{x2}(R)× Ĉ{x3}(R).

x1 x2 x3

H
(y1,y2,y3)−→(a,1,1)

s12−→1

s23−→1

//

x1 x2 x3

◦
H I I

∼= (a,1,1,1,1) ∼=C {x1,x2,x3}(R)×Con f {x1}(R)× Ĉ{x2}(R)× Ĉ{x3}(R)

5. The configurations (y1, y2, y3) = (−1,−1, a) with s12 = 0. Points of this type can be identified with elements of C {x2,x3}(R)×
Ĉ{x1,x2}(R)×Con f {x3}(R).

x1 x2 x3

H
(y1,y2,y3)−→(−1,−1,a)

s12−→0

s23−→1

//

x1 x2 x3

◦
J H

∼= (−1,−1, a,0,1) ∼=C {x2,x3}(R)× Ĉ{x1,x2}(R)×Con f {x3}(R)

6. The configurations (y1, y2, y3) = (−1, a,b) i.e. s12 = 1. Points of this type can be identified with elements of C {x1,x2}(R)×
Ĉ{x1}(R)×Con f {x2,x3}(R)

x1 x2 x3

H
(y1 ,y2 ,y3)−→(−1,a,b)

s12−→1

s23−→λ

//

x1 x2 x3

◦
J H

∼= (−1, a,b,1, s23) ∼=C {x1 ,x2}(R)× Ĉ{x1}(R)×Con f {x2 ,x3}(R)

7. The configurations (y1, y2, y3) = (−1, a,1) i.e. s12 = s23 = 1 These points can be identified with C {x1,x2,x3}(R)× Ĉ{x1}(R)×
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Con f {x2}(R)× Ĉ{x3}(R)

x1 x2 x3

H
(y1 ,y2 ,y3)−→(−1,a,1)

s12−→1

s23−→1

//

x1 x2 x3

◦
J H I

∼= (−1, a,1,1,1) ∼=C {x1 ,x2 ,x3}(R)× Ĉ{x1}(R)×Con f {x2}(R)× Ĉ{x3}(R)

8. The configurations (y1, y2, y3) = (a,b,1) i.e. s23 = 1. Points of this type can be identified with elements of C {x2,x3}(R)×
Con f {x1,x2}(R)× Ĉ{x3}(R).

x1 x2 x3

H
(x1 ,x2 ,x3)−→(a,b,∞)

//

x1 x2 x3

◦
H I

∼= (a,b,1, s12,1) ∼=C {x1 ,x2}(R)×Con f {x1 ,x2}(R)× Ĉ{x3}(R)

9. The configurations (y1, y2, y3) = (a,1,1) with s23 = λ being an arbitrary real number of the unit interval. Points of this
type can be identified with elements of C {x1,x2}(R)×Con f {x1}(R)× Ĉ{x2,x3}(R)

x1 x2 x3

H
(x1,x2,x3)−→(a,∞,∞)

||p23||−→λ

//

x1 x2 x3

◦
H I

∼= (a,1,1,1,1) ∼=C {x1,x2}(R)×Con f {x1}(R)× Ĉ{x2,x3}(R)

10. The configurations (y1, y2, y3) = (a, a,b) i.e. s12 = 0. Points of this type can be identified with elements of Con f {x2,x3}(R)×
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C {x1,x2}(R).

x1 x2 x3

H
(x1,x2,x3)−→(a,a,b)

||p12||−→0

//

x1 x2

x3

H
•

∼= (a, a,b,0, s23) ∼=Con f {x2,x3}(R)×C x1,x2 (R)

11. The configurations (y1, y2, y3) = (a,b,b) i.e. s23 = 0. Points of this type can be identified with elements of Con f {x1,x2}(R)×
C {x2,x3}(R)

x1 x2 x3

H
(x1,x2,x3)−→(a,b,b)

||p23||−→0

//

x1

x2 x3

H
•

∼= (a,b,b, s12,0) ∼=Con f {x1,x2}(R)×C x2,x3 (R)

12. The configurations (y1, y2, y3) = (a, a, a) i.e. s12 = s23 = 0. Points of this type can be identified with elements of Con f {x1}(R)×
C {x1,x2,x3}(R)

x1 x2 x3

H
(x1,x2,x3)−→(a,a,a)

||p||−→0

//

x1 x2 x3

H
•

∼= (a, a, a,1,1) ∼=Con f {x1}(R)×C {x1,x2,x3}(R)
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We summarize this in the formula:

∂

x1 x2 x3

H =±
x1 x2 x3

J ±
x1 x2 x3

I ±

x1 x2 x3

◦
J J H

±

x1 x2 x3

◦
H I I

±

x1 x2 x3

◦
J H

±

x1 x2 x3

◦
J H

±

x1 x2 x3

◦
J H I

±

x1 x2 x3

◦
H I

±

x1 x2 x3

◦
H I

±

x1 x2

x3

H
•

±
x1

x2 x3

H
•

±

x1 x2 x3

H
•

We summarize the result in our main theorem

Theorem 2.5.2. The face complex on the disjoint union

C •(R)t Ĉ•(R)tCon f •(R)t Ĉ•(R)tC •(R)

is naturally a dg free operad of transformation type

Ho(Ass)∞ =Free

〈
. . .

i1 i2 i3 iq−1 iq

• ,
. . .

i1 i2 i3 ik−1 ik

J ,
. . .

i1 i2 i3 im−1 im

H ,

. . .
i1 i2 i3 in−1 in

I ,
. . .

i1 i2 i3 ip−1 ip

◦
〉

p,q≥2,k,m,n≥1

.

Representation of this operad in a pair of vector spaces V 1 and V 2 is the struc-
ture of two A∞ algebras, (V 1,µ1) and (V 2,µ2), two A∞ morphisms, f , g :
(V 1,µ1) → (V 2,µ2) and a homotopy h between the morphism h : f → g . The
action of the differential was described earlier.

Proof. The proof is by inspection. We have worked out the cases of three
points in detail and we can see that they correspond the to algebraic formu-
las of the previous section. The general case is treated in complete analogy.

Let p be a configuration of n points on the real line p = (x1 < x2 < . . . <
xn) ∈ Con fn(R). The possible codimension 1 boundary strata can arise in
three different ways.

1. A connected subset A = (xi < xi+1 < . . . xi+k−1) of points collapsing
into single point; A limit point

p −→ p̃ = (a1 < a2 < . . . ai−1 < ai = ai+1 = . . . = ai+k−1 < ai+k < . . . < an).
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Points of this type can be identified with Con f n−k+1(R)×C k (R).

x1 x2 x3
. . .

xn

H
p−→p̃

||p A ||−→0

// H
. . .

x1 xi−1 xi+k xn
...

. . .•
xi xi+k−l

2. All n points moving in a cluster towards ±∞; A limit point

p −→±(∞,∞, . . . ,∞)

where the distance between points remain finite, e.g. it could look like
p = (t+λ1, t+λ2, . . . , t+λn) withλ1 <λ2 < . . . <λn and t −→±∞. Limit
points of this type can be identified with Ĉn(R).

x1 x2 x3
. . .

xn

H
p−→(−∞,...,−∞)

||pi j ||−→ci j>0

for all i 6= j

//

. . .
x1 x2 x3 xn−1 xn

J

x1 x2 x3
. . .

xn

H
p−→(∞,...,∞)

||pi j ||−→ci j>0

for all i 6= j

//

. . .
x1 x2 x3 xn−1 xn

I

3. For each k ≥ 2 the n points congregate in k = k− + 1 + k+ clusters
where k− clusters move to −∞, k+ clusters move to +∞ and one clus-
ter for the points that stay finite. Within each of the k−+k+ clusters
moving to ±∞ the distance between points remain finite, while the
distance from any two points from different clusters tend to ∞. Ev-
ery such configuration is determined by a disjoint union of connected
subsets A1 ∪ . . .∪ Ak− ∪F ∪B1 ∪ . . .∪Bk+ = [n] is with inf A1 < inf A2 <
. . . < inf Ak− < infF < infB1 < infB2 < . . . < infBk+ , and limit points of
this type can then be identified with

C k (R)× Ĉ|A1|(R)× . . .× Ĉ|Ak− |(R)×Con f |F |(R)× Ĉ|B1|(R)× . . .× Ĉ|Bk+ |(R).

x1 x2 x3
. . .

xn

H
p−→(−∞,...,a1,...,a|F |,...,∞)

||p Ai ||−→ci<∞
||pB j ||−→d j<∞

for all i∈[k−], j∈[k+]

// ... ...

... ... ... ... ...
A1 Ak− F B1 Bk+

◦
J J H I I
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2.5.2. The space Con f n(R) as a smooth manifold with corners. We shall

endow the space Con f n(R) with a manifold structure in an almost identical
procedure to how the space Ĉn(R) was treated. For every tree t ∈ Ho(Ass)∞
we define the sets ver t•,◦(t ), ver tJ,I(t ) and ver tH as the vertices of t marked
by {•,◦}, {J,I} or H, respectively. For the tree t we define Con ft (R) as a
product;

Con ft (R) := ∏
v∈ver t•,◦(t )

C|i n(v)|(R)× ∏
v∈ver tJ,I(t )

C|i n(v)|(R)× ∏
v∈ver tH

Con fn(R).

We can describe the space Con f n(R) as a stratified union of spaces;

Con f n(R) = ∏
t∈Ho(As)∞(n)

Con ft (R).

We shall define a coordinate chart Ut around every boundary stratum Con ft (R)
with a metric tree. We associate to t the metric tree tmetr i c with for

1. every internal edge of the types
J

• ,
I

• or
H

• a small positive parameter
ε;

2. every vertex of a dashed corolla associate a large positive number τ,

◦τ
. . .
,

3. every subgraph of tmetr i c of the type
◦
◦
τ1

τ2
an inequality τ1 > τ2.

Example 2.5.3. We consider a specific tree and associated the metric tree to
it. The general method should be clear from this description. Let t be the
following tree

◦

◦ I

J H
• •

•
1 5

2 3

4

6
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Then the associated metric tree, tmetr i c , is given by

◦

◦

τ1

τ2 I

J
ε1

H
ε′• •
ε2•

1 5

2 3

4

6

The coordinate chart Ut ⊂Con f n(R) is now defined to be diffeomorphic
to the manifold with corners,

(l ,+∞]|ver t◦(t )|× [0, s)|ed g eJ,I,H
• (t )|× ∏

v∈ver t◦,•(t )
C st
|i n(v)|(R)

× ∏
v∈ver tJ,I(t )

Cst
|i n(t )|(R)× ∏

v∈ver tH(t )
Con f|i n(v)|(R)

where ver t◦ denotes the set of vertices of type ◦, ver t◦,• denotes the set of
vertices of type ◦ or • and so forth. The set ed g eJ,I,H• is give set of edges

of type
J

• ,
I

• or
H

• . The diffeomorphism Φt between the coordinate chart

Ut and the product above is read from the metric tree. The map is given in
coordinates, for the specific tree in the above example, as follows

(l ,+∞]2 × [0, s)3 × C st
2 (R) × C st

2 (R) × C st
2 (R)

(τ1,τ2) × (ε1,ε2,ε′) × (x ′′
1 , x ′′

2 ) × (x ′
1, x ′

2) × (x1, x5)

C st
2 (R) × C st

2 (R) × Cst
1 (R) × Cst

1 (R) × Con f1(R)
(x ′, x4) × (x2, x3) × x6 × s × u

−→ Con f6(R)
(y1, . . . , y6)

such that

y1 =τ1x ′′
1 +τ2x1 + t +ε1x1

y2 =τ1x ′′+τ2x ′+u +ε′(x ′+ε2x2)

y3 =τ1x ′′+τ2x ′+u +ε′(x ′+ε2x3)

y4 =τ1x ′′+τ2x ′+u +ε′x4

y5 =τ1x ′′
1 +τ2x1 + t +ε1x5

y6 =τ1x ′′+x6

The boundary strata in Ut are given by allowing formally τ1 =∞,τ2 =∞
such that τ1/τ2 = 0 and ε1 = 0,ε2 = 0, ε′ = 0.
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2.5.3. The cohomology of Ho(Ass)∞ We will state two results without giv-
ing a proof, both of which we need in order to calculate the cohomology of
the operad Ho(Ass)∞.

Theorem 2.5.4. [MeVa] Let P be a koszul operad. Define the 2-colored operad
Mor(P) whose representations are two P-algebras and a P-algebra morphism
between them. The operad Mor(P) has a minimal model given by the operad
Mor(P)∞ whose representations are two P∞-algebras and a P∞-morphism
between them.

Corollary 2.5.5. The 2-colored operad Mor(Ass) has a minimal model given
by the 2-colored dg operad Mor(Ass)∞.

Lemma 2.5.6. Let f : B →C be a map of filtered complexes, where both B and
C are complete and exhaustive. Fix r ≥ 0. Suppose that f r : E r

pq (B) ∼= E r
pq (C )

for all p and q. Then f : H(B) → H(C ) is an isomorphism.

This result is known as the comparison lemma, and can be found in a
textbook on homological algebra, e.g. [We].

We can now state our result.

Theorem 2.5.7. The natural projection of operads

π : Ho(Ass)∞�Mor(Ass)∞

is a quasi-isomorphism.

Proof. We describe the explicit action of the map π on corollas by using the
presentation of Ho(As)∞ and Mor (As)∞ from theorem 2.5.2 and section
2.4, respectively;

π

(
. . .
H

)
= 0

π

(
. . .
J

)
=π

(
. . .
I

)
=

. . .
�

π

(
. . .
•

)
=

. . .
•

π

(
. . .
◦

)
=

. . .
◦

The map π obviously respect the differentials of the operads.
We introduce a filtration on Ho(Ass)∞(n) and Mor(Ass)∞(n) on the num-

ber of internal vertices in a tree,

FP Ho(Ass)∞(n) = {x ∈Ho(Ass)∞(n)|number of internal vertices of x ≥ p}
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and

FP Mor(Ass)∞(n) = {x ∈Mor(Ass)∞(n)|number of internal vertices of x ≥ p}.

Clearly the differentials in Ho(Ass)∞ and Mor(Ass)∞ respect these filtrations
as the number of vertices can only stay the same or increase when the dif-
ferentials are applied. Note that the filtrations are both exhaustive and com-
plete, this follows from that the objects in question are finite dimensional
for any given n. The induced differential on E 0

pq (Mor(Ass)∞) will either map
a corolla to zero or increase the number of vertices and therefore

E 1
pq (Mor(Ass)∞) = H(E 0

pq (Mor(Ass)∞)) = E 0
pq (Mor(Ass)∞).

On the other hand, in the case of E 0
pq (Ho(Ass)∞), we have that the differen-

tial will map all trees except those containing a corolla of type

H

to zero. We get that the image of ∂0 : E 0
pq (Ho(Ass)∞) → E 0

pq (Ho(Ass)∞)
will consist of trees (operadically) generated by the difference of corollas;〈

J − I
〉
⊂Ho(Ass)∞.

The first page is then determined;

E 1
pq (Ho(Ass)∞)

=
Free

〈
. . .
• ,

. . .
◦ ,

. . .
J ,

. . .
I

〉
〈

. . .
J −

. . .
I

〉
∼= E 0

pq (Mor(Ass)∞)

= E 1
pq (Mor(Ass)∞)

By Lemma 2.5.6 it follows that π is quasi-isomorphism.

Corollary 2.5.8. The 2-colored dg operad Ho(Ass)∞ is a non-minimal quasi-
free model of the 2-colored operad Ho(Ass).

Proof. There is a natural projection of operads

p : Ho(Ass)∞�Ho(Ass)
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defined in the obvious fashion. We determine the cohomology of the operad
Ho(Ass). Let H(Ho(Ass)) = Z /B , then, if µV and µW are the multiplications,
f , g : V → W are the dg algebra morphisms and h : f ∼ g is the homotopy
between them. We will have that ∂ f = ∂g = ∂µV = ∂µW = 0, so these genera-
tors all constitute cycles. The boundaries are generated by ∂h = f −g . Hence
it’s easy to directly calculate the cohomology

H(Ho(Ass)) = Z /B = 〈 f , g ,µV ,µW 〉/( f − g ) ∼= 〈[ f ],µV ,µW 〉

and we see that the cohomology is equal to Mor(Ass).
It follows from the preceding theorem that

H(Ho(Ass)∞) ∼=Mor(Ass)

We will use this explicit description to prove that the projection is a quasi-
isomorphism.

Let µV• and µW• be the parts of the operad corresponding to A∞ struc-
tures in Ho(Ass)∞. The projection p will send the binary parts to the associa-
tive products, µV and µW , and all higher multiplications to 0. The induced
map on cohomology will then map the cohomology classes [µV

2 ] and [µW
2 ] to

the cohomology classesµV andµW . Let f• and g• denote the operations cor-
responding to A∞ morphism in Ho(Ass)∞. The projection p will send their
linear parts to f and g and all higher morphism to 0. The induced map on
cohomology will then map the class [ f1] (= [g1]) to [ f ] (= [g ]). We conclude
that p is a quasi-isomorphism of 2-colored dg operads.

Corollary 2.5.9. The 2-colored dg operad Ho(Ass)∞ is a non-minimal quasi-
free model of the 2-colored operad Mor(Ass).

Proof. The model inducing quasi-isomorphism comes from the map

p̃ : Ho(Ass)∞�Mor(Ass),

which is given by post-composing the map π from Theorem 2.5.7 with the
natural projection onto cohomology classes;

Ho(Ass)∞�Mor(Ass)∞) ∼=Mor(Ass).
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3. Deformation quantization of
quasi-Poisson structures

3.1 Operads of Graphs

3.1.1. The Lie algebra of Polyvector fields Let V be a d-dimensional graded
vector space, and letOV =∏

n≥0¯nV ∗ be the commutative algebra of formal
power series functions on V. Where we have defined the components of the
graded dual V ∗ as (V ∗)(−n) := Hom(V (n),K).

Now let V∞ be a infinite-dimensional graded vector space with infinite
basis {e1,e2, . . .} and let Vk be the span of the k first basis-vectors,

Vk =K〈e1, . . . ,ek〉.

We define the graded-commutative algebra of power series on Vk as

Ok := ∏
n≥0

¯nV ∗
k

There is a chain of injections of formal power series algebras,

. . . −→On −→On+1 −→On+2 −→ . . .

and we denote the associated direct limit by

O∞ := lim
n→∞On .

Suppose that {x1, x2, . . .} is the associated dual basis of V ∗∞, |xi | = −|ei |. The
algebra O∞ has the property that any given formal power series f ∈O∞ is
expressible as a power series in a finite subset of {x1, x2, . . .}, i.e. there exist
some k such that f ∈Ok .

For V∞, an infinite dimensional graded vector space, we define the polyvec-
tor fields Tpol y (V∞) as the following product of spaces

Tpol y (V∞) := ∏
m≥0

Hom
(¯m(V∞[−1]),O∞

)
81



Let ψi be associated basis in the shifted space V∞[−1] with |ψi |− |ei | =
|ψi |+ |xi | = 1. We can explicitly describe Tpol y (V∞) as the subset of

K[[x1, x2, . . . ,ψ1,ψ2, . . .]]

consisting of formal power series where the coefficient for each monomial
in {ψ1,ψ2, . . .} is a power series in Ok for some k, i.e. a power series in a finite
subset of {x1, x2, . . .}. The space Tpol y (V∞) is endowed with the Schouten-
Nijenhuis bracket;

[ f1, f2]SN =
n∑

i=1

f1
←−
∂

∂ψi

−→
∂ f2

∂xi
− (−1)(| f1|−1)(| f2|−1) f2

←−
∂

∂ψi

−→
∂ f1

∂xi

This operation is of degree −1 and defines a Lie bracket on Tpol y (V∞)[1].

3.1.2. Operads of graphs and their representations in Tpol y (V )

The operad Gra	 and its representation in Tpol y (V ) when dimV <∞
We make some minor notational changes but otherwise follow the conven-
tions in [Wi1; Wi2].

Let graN ,l be the set of directed graphs G with N vertices, V er t (G), or-
dered with [N ] = {1,2, . . . , N } and l directed edges ,E d g e(G), ordered by [l ] =
{1,2, . . . , l } The groupSl acts on a graph by reordering the edges. We use this
set of graphs to generate an S-module {Gra	n (N )}N≥1,

Gra	n (N ) =
{⊕

l≥0(K〈graN ,l 〉⊗Sl Sgnl )[l (n −1)] n ∈ 2Z⊕
l≥0(K〈graN ,l 〉⊗Sl Sgn⊗l

2 )[l (n −1)] n ∈ 2Z+1

The SN -action on Gra	n (N ) is given by permuting the vertex labels.
The described S-module can be given the structure of an operad; the

directed graphs operad. The (partial) operadic composition in Gra	2 is given
by a simple graph substitution scheme; The i -th composition Γ1 ◦i Γ2 is de-
fined to be the sum of graphs given by deleting the i -th vertex in Γ1 and
substituting in its place the graph Γ2 and finally summing all the ways of
reconnecting the edges indecent to the eliminated vertex to the graph Γ2.

We present the following calculation of the operadic composition as an
example of how it works.

Example 3.1.1. A simple example of a partial composition: •

•• 32

1

���� oo

◦3

•
1

2
•

OO
=• •

• •

1 3

2 4

//

�� oo

OO

+
• •

• •

1 4

2 3

//

�� oo ��
+

•

• ••
432

1

���� oooo
+

•

• ••
342

1

���� //oo
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For a finite dimensional V we have a representation of the operad Gra	2
in Tpol y (V ),

ρ : Gra	2 −→EndTpol y (V ).

To each Γ ∈Gra	2 (N ) we associate a map

ρ(Γ) :=ΦΓ ∈EndTpol y (V )(N ) = Hom(Tpol y (V )⊗N ,Tpol y (V )).

The map ΦΓ is defined as the composition of two maps, µ ◦φ, where µ is
just the regular multiplication map in the graded commutative algebra and
where φ=∏

e∈E d g e(Γ)∆e , the product is taken over the edges in their associ-

ated ordering. The map ∆e is defined on an edge e = i j• •// as follows

∆e =
∑
α

id⊗i−1 ⊗ ∂

∂xα
⊗ id⊗ j−i−1⊗ ∂

∂ψα
⊗ id⊗n− j +

id⊗i−1⊗ ∂

∂ψα
⊗ id⊗ j−i−1⊗ ∂

∂xα
⊗ id⊗n− j

The operad Gra↑2 and its representation in Tpol y (V ) for V any dimension

For each N ≥ 1 we define the sub-SN -module Gra↑n(N ) ⊂ Gra	n (N ) as the
subspace spanned by the set of graphs which don’t contain oriented cycles
of directed edges. We denote the set of such graphs that have V vertices
and E edges by gra↑V ,E . As in the case of the directed graphs, the action of

the symmetric groups on Gra↑n is given by permutation of the vertex-labels.
In a completely analogously manner, the S-module Gra↑2 can be given the
structure of an operad called the oriented graphs operad. The composition
in Gra↑2 is the same one defined for Gra	2 but restricted to graphs without ori-
ented cycles of directed edges, and as the composition preserves this prop-
erty, we have a well-defined suboperad.

For an arbitrary vector space V (not necessarily finite dimensional), we
can define a representation of Gra↑2 in Tpol y (V ). The representation

ρ↑ : Gra↑2 −→EndTpol y (V )

is given in much the same manner as in the directed case with a finite di-
mensional V ; to each Γ ∈Gra↑2(N ) we associate the map

ρ↑(Γ) :=Φ↑
Γ ∈EndTpol y (V )(N ) = Hom(Tpol y (V )⊗N ,Tpol y (V )).

Where we define the map Φ↑
Γ as the composition of two maps, µ◦φ, where

µ is just the regular multiplication map in the graded commutative algebra
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and where φ↑ = ∏
e∈E d g e(Γ)∆

↑
e , the product is taken over the edges in their

associated ordering. The map ∆↑
e is defined on an edge e = i j• •// as follows

∆↑
e =

∑
α

id⊗i−1⊗ ∂

∂xα
⊗ id⊗ j−i−1⊗ ∂

∂ψα
⊗ id⊗n− j .

The difference between ∆e and ∆↑
e is that we don’t symmetrize to forget the

direction of the edge e.

The undirected graphs operad Gra

For completeness and for the purpose of stating some known results, we
also want to consider an operad of undirected graphs Gran . It is defined
along the same lines as Gra	n . The generating set of graphs graN ,l is replaced
by set of undirected graphs ugraN ,l . To be precise, ugraN ,l is the set of undi-
rected graphs G with N vertices, V er t (G), ordered with [N ] = {1,2, . . . , N } and
l edges ,E d g e(G), ordered by [l ] = {1,2, . . . , l }.

The operadic composition is defined in the exact same way as for Gra	n
and Gra↑n ; the lack of directed edges is of no consequence.

Remark 3.1.2. There is map of operads Gran −→ Gra	n defined on a graph G
by sending it to the sum of all the ways to add directions on the edges of G.

3.1.3. The Kontsevich graph complex and its oriented version. Let

f ↑ : Lie{n −1} −→Gra↑n

be the map of operads given by

f ↑
(

•
)
= • •1 2// +• •1 2oo

From this we define the map f 	 := i ◦ f ↑ where i is the natural inclusion
Gra↑n ,→Gra	n . For the undirected graphs operad we define the map f : Lie{n−
1} −→Gran as

f

(
•

)
= • •1 2

We shall define particular dg Lie algebras, called graph complexes, by con-
sidering the associated deformation complex to f 	, f ↑ and f . A, for this
text, relevant dictionary follows:

• The full directed graph complex: fGC	n :=Def(Lie{n −1}
f−→Gra	n ).
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• The full oriented graph complex: fGC↑
n :=Def(Lie{n −1}

f ↑
−→Gra↑n).

• The full undirected graph complex: fGCn := Def(Lie{n −1}
f−→ Gran),

This chain complex is also known as the (full) Kontsevich graph com-
plex.

Relative to these we define the following subcomplexes

• fcGC	n which is spanned by directed graphs that are connected.

• cGC	n which is spanned by directed and connected graphs that con-
tain at least one trivalent vertex and all other vertices are at least biva-
lent.

• GC	n which is spanned by directed graphs that are connected and at
least bivalent.

• fcGC↑
n which is spanned by directed graphs that are connected and

does not contain any oriented cycles of edges.

• GC↑
n which is spanned by directed graphs that are connected, at least

bivalent and does not contain any oriented cycles of edges.

• fcGCn which is spanned by undirected graphs that are connected.

• GC↑
n which is spanned by undirected graphs that are connected and

at least trivalent.

Proposition 3.1.3. There is a natural identification of complexes coming from
splitting a graph into a product of its connected components

fGC	n = S+(fcGC	n [−n])[n]

fGC↑
n = S+(fcGC↑

n[−n])[n]

fGCn = S+(fcGCn[−n])[n]

where S+ denotes the non-unital symmetric algebra functor.

For the case of the undirected graph complex, M. Kontsevich and T. Willwacher
has shown how its cohomology is related to that of the connected version.

Proposition 3.1.4 ([Wi1]). GCn is a sub-dg Lie algebra. The cohomology sat-
isfies

H•(fcGCn) ∼= H•(GCn)⊕ ⊕
j≥1

j≡
4

2n+1

K[n − j ].

The classK(n − j ] is represented by a loop with j edges.

85



The directed graph complex is closely related to the undirected graph
complex as the following proposition demonstrates.

Proposition 3.1.5 ([Wi1]). There is an explicit quasi-isomorphism

q : GCn −→ cGC	n

induced by the map sending each graph to the sum of directed graphs where
each edge is taken in both directions.

For n = 2 the directed and undirected graph complexes have had their
zeroth cohomology calculated by T. Willwacher. The result is very interest-
ing from several points of view.

Theorem 3.1.6 ([Wi1]). The zeroth cohomology of cGC	2 is the Grothendieck-
Teichmüller Lie algebra,

H0(cGC	2 ) ∼= grt1
∼= H0(GC2).

It has also been discovered by T. Willwacher that the undirected graph
complex is a related to the oriented graph complex but with a shifted degree;

Theorem 3.1.7 ([Wi2]). The cohomology of the oriented graph complex GC↑
n

is isomorphic to the cohomology of the connected undirected graph complex
fcGCn−1

H•(GC↑
n) ∼= H•(fcGCn−1) = H•(GCn−1)⊕ ⊕

j≥1

j≡
4

2n+1

K[n − j ].

An important open problem related to the graph complex GC2 is to de-
termine its first cohomology group. The conjecture, named the Drinfeld-
Kontsevich conjecture by T. Willwacher, is that the first cohomology group
is zero.

Conjecture 3.1.8 (Drinfeld-Kontsevich). The cohomology group H1(GC2) is
trivial.

In contrast to the open problem mentioned above we have the following
result.

Theorem 3.1.9 ([Wi2]). The first cohomology group of GC↑
2 is one-dimensional

H1(GC↑
2) ∼= H1(fcGC1)
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Remark 3.1.10. The class that spans H1(GC↑
2) in GC↑

2 is given by the following
linear combination discovered by B. Shoikhet [Sh]

2

•

•
•

•__
55

FF __

FF +
•
•

• •
OO

__ ?? GGWW

+
•
•

• •

GG WWOO

__??

Remark 3.1.11. In [Wi2] T. Willwacher notes that the zeroth cohomology of
the oriented graph complex for n = 2 is trivial;

H0(fcGC↑
2) = 0.

3.1.4. Universal deformations of Schouten-Nijenhuis bracket For any Lie
algebra (g, [, ]) = ξ : Lie −→ Endg, the deformation complex of g is given by
the operadic deformation complex of the morphism ρ;

Def
(
Lie

ξ−→Endg
)
= ∏

n≥2
Hom(∧•g,g)[1−n].

The Maurer-Cartan elements of this Lie algebra determine Lie∞-structures
on g. If we, instead, assume that the bracket has degree−1 then the structure
is determined by a map

Lie{1} −→Endg.

We define the dg Lie algebra

CE•(g,g) =Def(Lie{1} −→Endg) = ∏
n≥2

Hom(S(g),g)[3−2n].

Then the Maurer-Cartan elements of CE•(g,g) that have degree 2 are exactly
(Lie{1})∞ structures on g.

Consider the special case g = Tpol y (V ) of polyvector fields on a vector

space V. The representation ρ : Gra↑ −→ EndTpol y (V ) can be precomposed

with the morphism f ↑ to yield a map

ξ := ρ ◦ f ↑ : Lie{1} −→EndTpol y (V ),

determining a Lie{1} structure on Tpol y (V ) which is exactly the Shouten-
Nijenhuis-bracket. The deformation complex of the morphism ξ = ρ ◦ f ↑

is, thus, the deformation complex for this bracket;

Def
(
Lie{1}

ξ−→EndTpol y (V )

)
=CE• (

Tpol y (V ),Tpol y (V )
)

.

Precomposition with f ↑

−◦ f ↑ : HomdgOper

(
Gra↑2,EndTpol y (V )

) −◦ f ↑
−→ HomdgOper

(
Lie{1},EndTpol y (V )

)
,
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is functorial and induces a map of dg Lie algebras of the associated defor-
mation complexes

Def

(
Lie{1}

f ↑
−→Gra↑2

)
−→Def

(
Lie{1}

ξ=ρ◦ f ↑
−→ EndTpol y (V )

)
.

Or expressed in the terminology of graph complexes, there is a map

fGC↑
2 −→CE•(Tpol y (V ),Tpol y (V )).

In a completely analogously manner it can be demonstrated that there is a
canonical map

fGC	2 −→CE•(Tpol y (V ),Tpol y (V ))

for finite dimensional V.
We can understand fGC	2 as a universal deformation complex of the

Schouten Lie algebra of polyvector fields on vector spaces V , when V is finite
dimensional. And likewise, we can understand fGC↑

2 as a universal defor-
mation complex of the Schouten Lie algebra of polyvector fields on vector
spaces of arbitrary dimension.

We make two remarks, one for the finite dimensional case and one for
the arbitrary dimensional case.

• The cohomology group H1(fGC	2 ) determines all homotopy non-trivial
infinitesimal deformations of the Schouten bracket when V is finite
dimensional. The Drinfeld-Kontsevich conjecture would then imply
that the Schouten bracket on Tpol y (V ) is rigid i.e. there are no non-
trivial deformations in finite dimension.

• The cohomology group H1(fGC↑
2) determines all homotopy non-trivial

infinitesimal deformations of the Schouten bracket when V is of arbi-
trary dimension. By Theorem 3.1.9 the cohomology H1(GC↑

2) is one-
dimensional and thus there is a unique infinitesimal non-trivial de-
formation of the Schouten bracket. The full deformation was con-
structed by Kontsevich-Shoikhet and will be described in the next sec-
tion.

3.2 Configuration spaces and transcendental methods

3.2.1. The Kontsevich-Shoikhet L∞ structure onTpol y (V )[1] We repeat the
construction of two configuration spaces due to B. Shoikhet [Sh]. The spaces
are generalizations of the configuration space Cn which M. Kontsevich used
to prove his famous Formality theorem [Kon1].
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Definition 3.2.1. Let G(n,E) be the set of directed and connected graphs Γ
with n vertices and E edges such that:

• The graph Γ has no oriented cycles of edges.

• The vertices of Γ by labeled by {1, . . . ,n} and let l (v) be the label corre-
sponding to the vertex v ∈V (Γ).

• for every directed edge v1
e−→ v2 the label increases along the direction

of the edge l (v2) > l (v1).

Remark 3.2.2. The set G(n,E) is a subset of gran,E
↑.

Let Con fn denote the configuration space of n distinct points in the
complex plane C. Let Call the quotient space of this action Cn .

Let Con f A stand for the space of injections, A ,→C, of a finite non-empty
set A into the complex plane and �Con f A for the space of all possible maps.
Let G be the three dimensional Lie group of transformations {z 7→ az+w |a ∈
R+, w ∈C}. The group G acts freely on Con f A . We define C A =Con f A/G and,
for a configuration p = {zi }i∈A ∈Con f A , we set,

zc (p) := 1

#A

∑
i∈A

zi , |p − zc (p)| :=
√∑

i∈A
|zi − zc (p)|2.

There is a section s : C A −→ Con f A given by on a configuration p = {zi }i∈A

as

s : p 7→ p − zc (p)

|p − zc (p)|
The image of s is denoted by C st

A ;

C st
A = {p ∈Con fn | zc (p) = 0, |p − zc (p)| = 1}

Similarly we can construct the space C̃ st
A ;

C̃ st
A = {p ∈ �Con f A(C) | zc (p) = 0, |p − zc (p)| = 1},

which is a compact (2#A − 3)-dimensional manifold with boundary. The
compactification C • can be defined as the closure of an embedding,

Cn

∏
πA−→ ∏

A⊆[n]
#A≥2

C A
'−→ ∏

A⊆[n]
#A≥2

C st
A ,→ ∏

A⊆[n]
#A≥2

C̃ st
A

where the product is taken over all possible subsets A of [n] with #A ≥ 2, and

πA : Cn −→ C A

p = {zi }i∈[n] 7−→ p A := {zi }i∈A

is the natural forgetful map.
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Remark 3.2.3. The face complex of the compactified configuration space C n

assemble to the operad Lie{1}∞, as was determined by E. Getzler and J.D.S.
Jones in [GJ].

Relative to an admissible graph we can define a particular subspace of
Cn . Let Γ ∈ G(n,E) and define the configuration space of n complex points
associated to Γ;

Cn,Γ := {(z1, . . . , zn) ∈Cn | Im(zl (u) − zl (v)) < 0 when (v,u) is an edge of Γ}/G

where G is the three-dimensional group of transformations mentioned above.
It should be clear how to mimic the compactification of C• to the configura-
tion space C•,Γ.

For a subgraph Γ′ ⊂ Γ there is a natural forgetful projection map

pΓ,Γ′ : C n,Γ −→C n′,Γ′

such that all coordinates and relations not associated to Γ′ are forgotten.

Let Γ be an admissible graph and e an edge of Γ with endpoint vertices
labeled by i and j . Suppose that the edge is directed from the j -vertex (to
the i -vertex). Let Γe be the subgraph given by the edge e. To every edge e we
associate the 1-form

φe = p∗
Γ,Γe

(dArg(z j − zi ))

The labels on the vertices induce an enumeration on the edges; first enu-
merate the edges outgoing from the vertex labeled by 1 in the order of the
end-vertices, then continue to the vertex labeled by 2 and so on.

We define the weight cΓ as an integral over the configuration space C n,Γ;

cΓ = 1

π2n−3

∫
C n,Γ

∧
e∈E(Γ)

φe .

We also denote

ΩΓ := ∧
e∈E(Γ)

φe

fore future use.

With these definitions and constructions we can describe the deforma-
tion of the Schouten bracket that was mentioned in the end of subsection
3.1.4 and also give the Lie{1}∞ structure it implies the existence of.
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3.2.2. Explicit description of the Kontsevich-Shoikhet Lie∞ structure on
Tpol y (V ) Let us first assume that V is a finite dimensional vector space.

Given a graph Γ ∈G(n,E) let i n(v) denote the set of directed edges end-
ing in v and let st ar (v) denote the set of directed edges that start in v

Let Γ be graph in the set G(n,E). Let V be a finite dimensional vector
space. We define the multilinear map

LΓ : ∧nTpol y (V )[1] −→ Tpol y (V )[3−n]

by the formula

LΓ(γ1, . . . ,γn) = ∑
I :E→{1,2,...,dimV }

LI
Γ(γ1, . . .γn)

where

LI
Γ(γ1, . . . ,γn) = ∧

v∈V (Γ)
ΨI

v

and the wedge product is taken in the order the vertices of Γ are labeled, ΨI
v

is defined as the sum

ΨI
v =

( ∏
e∈i n(v)

∂

∂x I (e)

)
(γl (v)(∧e∈st ar (v)d x I (e)))

A result by B. Shoikhet states this construction can be extended to the
infinite dimensional case.

Lemma 3.2.4 ([Sh]). LetΓ be a graph without oriented cycles of directed edges.
The map LΓ is well-defined for an infinite-dimensional V.

Theorem 3.2.5 ([Sh]). The Kontsevich-Shoikhet Lie∞ structure is defined on
polyvectors γ1, . . . ,γn ∈ Tpol y (V ) as

µn(γ1, . . . ,γn) = ∑
Γ∈G(n,2n−3)

∑
σ∈Sn

(−1)σcΓLΓ(γσ(1), . . . ,γσ(n))

where the sign (−1)σ is determined by the rule that (−1)(γi+1)(γ j+1) appears
when γi switches place with γ j .

Remark 3.2.6. Let {µn : ∧nTpol y (V )[1] → Tpol y (V )[3 − n]}n≥1 be the Lie∞
structure defined by γK S . B. Shoikhet proved that µ2n+1 = 0.

Theorem 3.2.5 can be reinterpreted as the existence of a Maurer-Cartan
element in the oriented graph complex of section 3.1.4.
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Theorem 3.2.7. The sum of graphs

γK S = ∑
n≥2

∑
Γ∈gra↑n,2n−3

cΓ ·Γ

is a Maurer-Cartan element of fGC↑
2. Thus γK S determine a Lie∞ structure on

Tpol y (V )[1] which is a deformation of the Schouten bracket.

Proof. Given an oriented directed graph Γ with n vertices and 2n −4 edges,
i.e.e an element Γ ∈ gra↑n,2n−4. A subset of vertices A ⊂V er t (Γ) ' [n] is called
admissible if 2 ≤ #A ≤ n−1 and the associated subgraph ΓA (which is by def-
inition has vertices A together with all edges between them inherited from
Γ) belongs to gra↑#A,2#A−3. Note that in this case the quotient graph Γ/ΓA ,
that is the graph obtained from Γ by shrinking all vertices and edges of the
subgraph ΓA into a single new vertex, belongs to gra↑n−#A+1,2(n−#A+1)−3.

By the Stokes theorem, for any Γ ∈ gra↑n,2n−4, we have using the fact that
the differential forms ΩΓ are closed,

0 =
∫

C n,Γ

dΩΓ

=
∫
∂C n,Γ

ΩΓ

= ∑
A [n]
#A≥2

(−1)σA

∫
C n−#A+1,Γ/ΓA

ΩΓ/ΓA

∫
C #A,ΓA

ΩΓA

= ∑
A⊂V (Γ)

A is admissible

(−1)σA cΓA cΓ/ΓA .

Then we obtain

[γK S ,γK S] = ∑
n1,n2≥2

∑
Γ1∈gra↑n1,2n1−3

∑
Γ2∈gra↑n2,2n2−3

cΓ1 cΓ2 · [Γ1,Γ2]

= ∑
n1,n2≥2

∑
Γ1∈gra↑n1,2n1−3

∑
Γ2∈gra↑n2,2n2−3

cΓ1 cΓ2 ·
∑

v∈V er t (Γ1)
Γ1 •v Γ2

where •v means operadic substitution of the graph Γ2 into the vertex v of
the graph Γ1. This substitution gives a graph with n1 +n2 − 1 vertices and
2(n1 + n2 − 1) − 4 edges, i.e. an element of gra↑N ,2N−4 for N = n1 + n2 − 1.
Hence we can rewrite the above expression as follows,

[γK S ,γK S] = ∑
N≥3

∑
Γ∈gra↑N ,2N−4

 ∑
A⊂V er t (Γ)

A is admissible

(−1)σA cΓA cΓ/ΓA

Γ
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= 0,

which proves the claim.

3.2.3. Formal quasi-Poisson structures Let us begin by making some re-
marks about Maurer-Cartan elements. The Kontsevich-Shoikhet Lie∞ struc-
ture in Tpol y (V )[1] involves infinitely many operations so that in order to de-
fine a Maurer-Cartan element of the latter one has to introduce formal pa-
rameters to assure convergence. Consider a formal power series extension,
Tpol y (V )[1][[λ]], of the space of polyvector fields, λ being a formal parame-
ter (of homological degree zero); the Kontsevich-Shoikhet Lie∞ operations
µn extend by R[[λ]] linearity to Tpol y (V )[1][[λ]] and hence make the latter
into a topological Lie∞ algebra. A degree 1 element π̂ ∈ Tpol y (V )[[λ]] of the
form

π̂=λπ=λ(
π0 +λπ1 +λ2π2 + . . .

)
for some π ∈ Tpol y (V )[[λ]] which satisfies an equation

0 = 1

2
µ2(π̂, π̂)+ 1

4!
µ4(π̂, π̂, π̂, π̂)+ . . .+ 1

(2k)!
µ2k (π̂, . . . , π̂)+ . . .

is called a Maurer-Cartan element of the Kontsevich-Shoikhet Lie∞ algebra.
Notice that this equation is well-define, and can be rewritten in terms of π
as follows

0 = 1

2
µ2(π,π)+ λ2

4!
µ4(π,π,π,π)+ . . .+ λ2k−2

(2k)!
µ2k (π, . . . ,π)+ . . .

The equation is clearly invariant under the transformation λ→−λ so that
it makes sense to look for solutions π which are also invariant under such
a transformation, i.e. which are formal power series in λ2. This class of
Maurer-Cartan elements of the the Kontsevich-Shoikhet Lie∞ algebra are
of special interest to us in this work, and we call them quasi-Poisson struc-
tures. Replacing λ2 → ~ we arrive at the following definition.

Definition 3.2.8. A quasi-Poisson structure on the vector space V is an ele-
ment π ∈ ~ Tpol y (V )[[~]] such that

0 = 1

2
µ2(π,π)+ ~

4!
µ4(π,π,π,π)+ . . .+ ~k−1

(2k)!
µ2k (π, . . . ,π)+ . . .

i.e. an MC-element for the Lie∞ algebra (Tpol y (V )[1],µ•)⊗K[[~]]
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Remark 3.2.9. It was proven by Merkulov and Willwacher [MW2] that, for
any finite-dimensional vector space V , the Kontsevich-Shoikhet Lie∞ alge-
bra (Tpol y (V )[1],µ•) is Lie∞ isomorphic to the standard Schouten algebra
(Tpol y (V )[1], [ , ]SN ), but the isomorphism is highly non-trivial and depends
on the choice of associator. This result implies that, in finite dimensions, there
is a 1-1 correspondence (up to gauge equivalence) between the ordinary Pois-
son structures and the above quasi-Poisson structures. In infinite dimen-
sions, however, these notions become very different. We show in Chapter 4
below, that (finite or infinite-dimensional) quasi-Poisson structures can be
quantized by an inductive procedure without using associators.

Next we recall B. Shoikhet’s explicit formulae for the universal defor-
mation quantization of quasi-Poisson structures which use the Kontsevich
propagator, and then we offer some new and much simpler formulae which
use the standard homogeneous volume form on the circle S1. Both sets of
formulae rely on transcendental methods.

Definition 3.2.10. A directed graph Γ is admissible if satisfies the following:

• The graph Γ has no oriented cycles of edges.

• The vertices of Γ are of two types. The first type labeled by {1,2, . . . ,n}
and the second type labeled by {1̄, 2̄, . . . ,m̄} with 2n +m ≥ 2.

• If v1
e−→ v2 is an edge of Γ with v1 and v2 being of the first type then

l (v1) < l (v2), where l (v) denotes the label of the vertex v.

Let G(n,m,E) denote the set of admissible graphs with n vertices of the
first type, m vertices of the second type and E edges.

Definition 3.2.11. Let z1 and z2 be two points in the upper half-plane. We
define the binary relation z2 ≤P z1 if the the point z2 is contained in the half-
circle C with diameter on the real axis and "highest" point at z1.

Given an admissible graph Γ we shall define a configuration space of
points in the upper half-plane.

Definition 3.2.12. Let Con fn,m be the set of n+m distinct points in the upper
half-plane with m points being on the real line;

Con fn,m = {(z1, . . . , zn) ∈Hn , (x1̄, . . . , xm̄) ∈Rm | zi 6= z j , xī 6= x j̄ }.

Let Γ ∈G(n,m,E) be an admissible graph and define the subset Con fn,m,Γ ⊂
Con fn,m as the subset of configurations coherent with Γ;

Con fn,m,Γ =(z1, . . . , zn , x1̄, . . . , xm̄) ∈Hn ×Rm :

x1̄ < . . . < xm̄ always

zl (v1) ≤P zl (v2) if there is an edge v2
e−→ v1

xl (u1) ≤P zl (u2) if there is an edge u2
e ′−→ u1


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where u2, v2, v1 are vertices of the first type and u1 a vertex of the second type.
The 2 dimensional group of real affine transformations G2 = {z 7→ az+b | a ∈
R+, b ∈ R} act on Con fn,m . We define Cn,m as the quotient Con fn,m/G2. The
group action is well defined on the subspace Con fn,m,Γ and we can also define
Cn,m,Γ which is the quotient Con fn,m,Γ/G2.

In [Kon1] M. Kontsevich defined for the space Cn,m a compactification
C n,m as the closure of the image of the following inclusions

Cn,m −→ C2n+m ,→ C 2n+m

{z1, . . . , zn ; x1, . . . , xm} 7−→ {z1, . . . , zn , z1, . . . , zn ; x1, . . . , xm}

For an admissible graph Γ, the configuration space Cn,m,Γ can be com-
pactified in analogy with the construction above. Let C n,m,Γ denote the
compactification of Cn,m,Γ.n

Definition 3.2.13 ([Kon1; Sh]). Let Γ0 denote the 2-vertex graph with one di-
rected edge; Γ0 : 1

e−→ 2. A modified angle function is a map θ of C 2,0,Γ0 to a
unit circle S1 such that θ is the angle varying from the −π to 0 on the upper
half-circle, and θ contracts the two other upper boundary components to a
point 0 ∈ S1.

Example 3.2.14. An example of a modified angle function is given by the
doubled Konsevich’s harmonic angle:

f (z, w) = 1

i
Log

(z −w)(z − w̄)

(z̄ −w)(z̄ − w̄)

Given a subgraph Γ′ ⊂ Γ there is a natural projection map

pΓ,Γ′ : C n,m,Γ −→C n′,m′,Γ′ .

Definition 3.2.15. Let e be an edge of an admissible graph Γ. Let θ be a mod-
ified angle function. Define the 1-form φe as the pullback of dθ along pΓ,Γ0 ;

φe = p∗
Γ,Γ0

(dθ)

The weight WΓ associated to the space C n,m,Γ is given by the integral

WΓ = 1

π2n+m−2

∫
C n,m,Γ

∧
e∈E(Γ)

φe
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3.2.4. Description of boundary strata of C n,Γ The only boundary strata
that will be of consequence is those of codimension 1. The codimension
1 boundary strata of C n,Γ fall into two types.

• Type 1: some proper subset of points S = {pi1 , . . . , pis }, s ≥ 2 approach
each other. Let Γ1 be the restriction of the graph Γ to the vertices cor-
responding to the set S and let Γ2 be the graph obtained from con-
tracting the subgraph Γ1 to a vertex. The boundary strata of this con-
figuration is then given as the product Cn−S+1,Γ2 ×Cs,Γ1 .

• Type 2: some point q with an edge p −→ q approaches the horizontal
line through p.

3.2.5. Description of boundary strata of C n,m,Γ with hyperbolic height or-

der The codimension 1 boundary strata of C n,m,Γ comes in three types:

• Type 1: Some points pi1 , pi2 , . . . , pis ∈ H s ≥ 2 approach each other in
such a way that they stay inside the appropriate geodesic half-circles.
This corresponds to a boundary strata isomorphic to the product

Cn−s+1,m,Γ2 ×Cs,Γ1 ,

where Γ1 is the subgraph given by restricting Γ to the subset of ver-
tices labeled by {i1, . . . is} and Γ2 is the graph given by contracting the
subgraph Γ1 into a new vertex.

• Type 2: Some points pi1 , . . . , pis ∈ H and some points q j1 , . . . , q jr ∈ R
such that 2m+n−1 ≥ 2s+r ≥ 2 approach each other and a point on the
real line in such a that the points stay inside the appropriate geodesic
half-circles. This boundary strata is isomorphic to the product Cs,r,Γ1×
Cn−r+1,m−r+1,Γ2 where Γ1 is the subgraph induced by the restriction to
the i1, . . . is labeled vertices and Γ2 is the graph attained by contracting
the subgraph Γ1 into a new vertex of the second type.

• some point p with an incident edge q −→ p approaches the geodesic
half-circle of a point q.

3.2.6. The Lie∞ morphism F• We use this subsection to remind the reader
of the definition of the map

UΓ : Tpol y (V )⊗|V er t (Γ)| −→Dpol y (V )

which was given by M. Kontsevich [Kon1].
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For any admissible graph Γwith n vertices of the first type, m vertices of
the second type and 2n +m −2+ l edges l ∈Z, we define the linear map

UΓ : Tpol y (V )⊗n →Dpol y (V )[1+ l −n].

This map has only one non-zero graded component UΓ(k1,...,kn ) where ki + 1
is the number of outgoing edges from the i -labeled vertex in Γ. For l = 0
the map UΓ becomes a pre-Lie∞-morphism after anti-symmetrization. Let
γ1, . . . ,γn be polyvector fields of degree k1 +1, . . . ,kn +1 respectively and let
f1, . . . , fm be functions on V. We define the polydifferential operator

( f1, . . . , fm) 7→Φ,

where the formula for Φ is given as follows

Φ := (UΓ(γ1, . . . ,γn))( f1, . . . , fm)

where Φ is sum over all configurations of indices running from 1 to dimV
labeled by E d g e(Γ); ∑

I :E d g e(Γ)→{1,...,dimV }
ΦI

The term ΦI is the product over all n + m vertices of Γ of certain partial
derivatives of functions g j and of coefficients of the polyvectors γi :

• For each vertex i ∈ {1,2, . . . ,n} of the first type we associate the func-
tion ψi ∈V ∗ which is a coefficient of the polyvector field γi :

ψi = 〈γ1,d x I (e1
i ) ⊗ . . .⊗d x I (e

ki +1
i )〉

Here we use the identification of polyvector fields and skew-symmetric
tensor fields;

ξ1 ∧ . . .∧ξk+1 7→
∑

σ∈Sk+1

sgn(σ) ξσi ⊗ . . .⊗ξσk+1

• For each vertex j ∈ {1, . . . ,m} of the second type the associated func-
tion ψ j is the function f j .

At each vertex ofΓwe "put" a functionψi orψ j . At each edge e ∈ E d g e(Γ),
there correspond coordinates I (e) in V. In the next step we put into each ver-
tex v a certain partial derivative of the function ψv ;( ∏

e∈In(v)⊂E d g e(Γ)

∂

∂x I (e)

)
ψv .
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The product of these functions running over the set of vertices of v defines
ΦI .

The complete formality morphism constructed by M. Kontsevich is lin-
ear combination of UΓ with coefficients given by the weights cΓ;

Un : Tpol y (V )⊗n −→Dpol y (V )

where

Un = ∑
m≥0

∑
Γ∈Gn,m

cΓ ·UΓ

and the second sum is taken over all admissible graphs with n vertices of the
first type m vertices of the second type and 2n +m −2 edges.

3.3 Transcendental quantization formula from
dArg-propagator

We will give a new proof of B.Shoikets theorem for infinite dimensional de-
formation quantization by using the dArg-propagator and the order on C

given by imaginary part.
Let Γ be an admissible graph with n vertices of type I, m vertices of type

II and edge set E . Define the configuration space Cn,m,Γ as the subset of
configurations (z1, . . . , zn ; x1, . . . , xm) ∈ Cn,m such that Im zi > Im z j , when-

ever there is an edge e = j i• •// ∈ E .

Remark 3.3.1. This definition is similar to the one given by B. Shoikhet [Sh].
Our definition is a slight simplification as we don’t have to consider any in-
tricacies of hyperbolic geometry.

Recall the definition of the weights cΓ

cΓ =
∫

C p,Γ

∧
e∈E(Γ)

φe

where φe = dArg(zi−z j )
π for an edge e = j i• •// ∈ E(Γ).

We define another weight coming from the configuration space C n,m,Γ;

wΓ =
∫

C n,m,Γ

∧
e∈E(Γ)

φe

with φe = dArg(zi−z j )
π as above.
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3.3.1. Description of boundary strata of C n,m,Γ with height order by imag-

inary part The codimension 1 boundary strata of C n,m,Γ comes in three
types:

• Type 1: Some points pi1 , pi2 , . . . , pis ∈Hwith s ≥ 2 approach each other

in such a way that the relation Im pia > Im pib for every edge
ia ib• •// .

This corresponds to a boundary strata isomorphic to the product

Cn−s+1,m,Γ2 ×Cs,Γ1 ,

where Γ1 is the subgraph given by restricting Γ to the subset of ver-
tices labeled by {i1, . . . is} and Γ2 is the graph given by contracting the
subgraph Γ1 into a new vertex.

• Type 2: Some points pi1 , . . . , pis ∈ H and some points q j1 , . . . , q jr ∈ R
such that 2m +n −1 ≥ 2s + r ≥ 2 approach each other at point on the
real line in such that the points in the upper half-plane stay at their
relative heights as determined by the directed edges. This boundary
strata is isomorphic to the product Cs,r,Γ1×Cn−r+1,m−r+1,Γ2 where Γ1 is
the subgraph induced by the restriction to the i1, . . . is labeled vertices
and Γ2 is the graph attained by contracting the subgraph Γ1 into a new
vertex of the second type.

• Type 3: Some point p with an incident edge q −→ p approaches the
line {z ∈H | Imz = Imq}.

3.3.2. Infinite dimensional deformation quantization To produce a for-
mality morphism in the infinite dimensional setting B. Shoikhet applies Kont-
sevich’s UΓ to define the Lie∞ morphism

F• : Tpol y (V )[1] −→Dpol y (V )[1],

explicitly it’s given by a formula which is completely analogous to the one
given by M. Kontsevich;

Fn = ∑
m≥0

∑
Γ∈Gn,m

ωΓ ·UΓ.

Theorem 3.3.2. [Sh] Let V be a Z≥0 graded vector space over C with finite-
dimensional graded-components V i . Then the maps Fn constitute a Lie∞
quasi-isomorphism

(Tpol y (V )[1],µ•) −→ (Dpol y (V )[1],dH , [−,−]G ).

Where the first component is the Hochschild-Kostant-Rosenberg map, µ• is
the Kontsevich-Shoikhet Lie∞ structure, dH Hochschild differential and [−,−]G

the Lie bracket on the Hochschilld complex.
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Proof. Let the S(a,b) denote the subgroup of (a,b) shuffles. To show that
F is a Lie∞ morphism we have to demonstrate that the following equation
holds for all n ≥ 2 (The case n = 1 is the Hochschild-Kostant-Rosenberg The-
orem)

0 = dH (Fn(γ1, . . . ,γn))

+ ∑
a+b=n
a,b≥1

∑
σ∈S(a,b)

±[
Fa(γσ(1), . . . ,γσ(a)),Fb(γσ(a+1), . . . ,γσ(a+b))

]
G

+ ∑
a+b=n
a,b≥1

∑
σ∈S(a,b)

±Fa+1(µk (γσ(1), . . . ,γσ(a)),γσ(a+1), . . . ,γσ(a+b))

We employ the same trick as M. Kontsevich (cf. [Kon1]) and consider F0 :
Tpol y (V )⊗0 →Dpol y (V ) defined by F0 : 1 7→ mV where mV ∈ Hom(O⊗2

V ,OV )
is the ordinary multiplication. We can see F0 in terms of the polydifferential
operator coming from a graph Γ0 which has 0 vertices of the first type, 2
vertices of the second type and 0 edges. The associated weight ωΓ0 is equal
to 1. The above equation can now be given the following equivalent form

0 = ∑
a+b=n
a,b≥0

∑
σ∈S(a,b)

±[
Fa(γσ(1), . . . ,γσ(a)),Fb(γσ(a+1), . . . ,γσ(a+b))

]
G

+ ∑
a+b=n
a,b≥1

∑
σ∈S(a,b)

±Fa+1(µk (γσ(1), . . . ,γσ(a)),γσ(a+1), . . . ,γσ(a+b))

We substitute F• and µ• for their definitions as sums of operators given
by graphs

∑
a +b = n
a,b ≥ 0

σ ∈ S(a,b)

±

 ∑
Γ1∈Ga,m

m≥0

ωΓ1 ·UΓ1 (γσ(1), . . . ,γσ(a)),
∑

Γ2∈Gb,m
m≥0

ωΓ2 ·UΓ2 (γσ(a+1), . . . ,γσ(a+b))


G

+ ∑
a +b = n
a,b ≥ 1

σ ∈ S(a,b)

± ∑
Γ3∈Gb+1,m

m≥0

ωΓ3 ·UΓ3

 ∑
Γ4∈gra↑a,2a−3

ν∈Sk

±cΓ4 ·LΓ4 (γν(σ(1)) . . .),γσ(a+1), . . . ,γσ(a+b)


= ∑

a +b = n
a,b ≥ 0

σ ∈ S(a,b)

∑
Γ1∈Ga,m

m≥0

∑
Γ2∈Gb,m

m≥0

±ωΓ1 ·ωΓ2

[
UΓ1 (γσ(1), . . . ,γσ(a)),UΓ2 (γσ(a+1), . . . ,γσ(a+b))

]
G

+ ∑
a +b = n
a,b ≥ 1

σ ∈ S(a,b)

∑
Γ3∈Gb+1,m

m≥0

∑
Γ4∈gra↑a,2a−3

ν∈Sk

±ωΓ3 · cΓ4 ·UΓ3

(
LΓ4 (γν(σ(1)) . . .),γσ(a+1), . . . ,γσ(a+b)

)

For a fixed m, this expression is of the form
∑
ΓαΓUΓ where αΓ are coef-

ficients coming from the products of weights and where Γ are admissible
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graphs with n vertices of the first type, m vertices of the second type and
2n +m −3 edges. Specifically the weights are given as∑

ωΓ1 ·ωΓ2 +
∑
ωΓ3 · cΓ4

The first sum is over pairs of graphs (Γ1,Γ2) such that they together have
n vertices of type 1 and m + 1 vertices of type 2. The second sum is over
pairs of graphs (Γ3,Γ4) such that they together have n +1 vertices of type 1
and Γ3 alone has m vertices type 2 while Γ4 has no vertices of type 2. For
all four graphs the relation 2#|vertices of type 1| + #|vertices of type 2| −2 =
|edges| is satisfied. The pair of graphs (Γ1,Γ2) and (Γ3,Γ4) that determine
the coefficient for UΓ are the one that appear in the process of determining
the codimension 1 boundary strata for C n,m,Γ. This fact is why the weight
αΓ vanishes. We consider the integral of a closed differential form over the
compactified configuration space C n,m,Γ.

By closedness of the form and Stokes’ theorem we have that

0 =
∫

C n,m,Γ

d

( ∧
e∈E(Γ)

φe

)
=

∫
∂(C n,m,Γ)

∧
e∈E(Γ)

φe

A decomposition of ∂(C n,m,Γ) was given in Subsection 3.3.1, we find that∫
∂(C n,m,Γ)

∧
e∈E(Γ)

φe =
∫
∂T 1

∧
e∈E(Γ)

φe +
∫
∂T 2

∧
e∈E(Γ)

φe +
∫
∂T 3

∧
e∈E(Γ)

φe

In fact ∫
∂T 3

∧
e∈E(Γ)

φe = 0

We conclude the calculation

0 =
∫

C n,m,Γ

d

( ∧
e∈E(Γ)

φe

)
. . .

=
∫
∂T 1

∧
e∈E(Γ)

φe +
∫
∂T 2

∧
e∈E(Γ)

φe

=
n∑

s=2

∑
(Γ1,Γ2)∈G1(s,Γ)

∫
Cn−s+1,m,Γ2×Cs,Γ1

∧
e∈E(Γ)

φe

+
2m+n−1∑

I=2

∑
2s+r=I

∑
(Γ1,Γ2)∈G2(s,r,Γ)

∫
Cs,r,Γ1×Cn−r+1,m−r+1,Γ2

∧
e∈E(Γ)

φe

=
n∑

s=2

∑
(Γ1,Γ2)∈G1(s,Γ)

(∫
Cn−s+1,m,Γ2

∧
e∈E(Γ1)

φe

)
·
(∫

Cs,Γ1

∧
e∈E(Γ2)

φe

)

101



+
2m+n−1∑

I=2

∑
2s+r=I

∑
(Γ1,Γ2)∈G2(s,r,Γ)

(∫
Cs,r,Γ1

∧
e∈E(Γ1)

φe

)
·
(∫

Cn−r+1,m−r+1,Γ2

∧
e∈E(Γ2)

φe

)

=
n∑

s=2

∑
(Γ1,Γ2)∈G1(s,Γ)

wΓ1 · cΓ2 +
2m+n−1∑

I=2

∑
2s+r=I

∑
(Γ1,Γ2)∈G2(s,r,Γ)

wΓ1 ·wΓ2

=αΓ

3.4 Formality as a map of operads F :OC∞ −→KGra

3.4.1. Open-closed homotopy algebras The operad OC∞ is a quasi-free 2-
colored dg operad [KS] generated by two types of corollas, of degree 3−2n
and degree 2−2n −m, respectively;

OC∞ =Fr ee

〈
. . .

1 2 3 p−1 p

◦ , H
...

1 2 n
...

m̄2̄1̄

〉
p≥2

2n+m≥2

The first class of corollas are subject to the relation

. . .
1 2 3 n−1 n

◦ =
. . .

σ(1) σ(2) σ(n)

◦ , ∀σ ∈Sn , n ≥ 2 (3.1)

with differential defined by the second class of corollas are subject to

H
...

1 2 n
...

m̄2̄1̄

= H
...

σ(1) σ(2) σ(n)
...

m̄2̄1̄

, 2n +m ≥ 2,∀ σ ∈Sn

The action of the differential on these corollas is given by the following for-
mula

∂

 H
...

1 2 n
...

m̄2̄1̄

= ∑
A([n]
#A≥2

H
... ...

m̄2̄1̄︸ ︷︷ ︸
A

︸︷︷︸
[n]\A

◦
...

+ ∑
k,l ,[n]=I1tI2
2#I1+m≥l+1

2#I2+l≥2

(−1)k+l (n−k−l )
H

...
1̄ k̄ k+l+1 m

k+1 k+l

... ...

︸︷︷︸
I2

︸ ︷︷ ︸
I1

H

......
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A representation of OC∞ in a pair of dg vector spaces (Xc , Xo) have been
called open-closed homotopy algebras or OCHA for short.

It was shown in [H] that representations of OC∞ are equivalent to degree
one codifferentials in the tensor product, ¯•(Xc [2])

⊗⊗•(Xo[1]), of the free
graded cocommutative coalgebra cogenerated by Xc [2] and the free coalge-
bra cogenerated by Xo[1].

Being a free operad, OC∞ has the property that any representation, ρ, is
uniquely determined by the values on the corollas,

νn := ρ


. . .

1 2 3 n−1 n

◦

 ∈ Hom(¯n Xc , Xc [3−2n]), n ≥ 2,

and

µn,m := ρ

 H
...

1 2 n
...

m̄2̄1̄

 ∈ Hom

( n⊙
Xc ⊗

m⊗
Xo , Xo

)
[2−2n −m],

2n +m ≥ 2

which satisfy quadratic relations presented above for the differential ∂.
Let Coder(⊗•(Xo[1]), [ , ]) be the Lie algebra of coderivations of the free

coalgebra, ⊗•(Xo[1]), cogenerated by Xo[1]. The coderivations are not re-
quired to preserve the co-unit so that MC elements in this Lie algebra de-
scribe, in general, non-flat A∞-structures on Xo . Recall that we have an iso-
morphism of vector spaces,

Coder(⊗•(Xo[1])) = ⊕
m≥0

Hom(⊗m Xo , Xo)[1−m]

The structure of an Open-closed homotopy algebras was reinterpreted by
S.A Merkulov [Me3].

Proposition 3.4.1. An OC∞ structure on a pair of vector spaces (Xc , Xo);

OC∞ −→End(Xc ,Xo ),

is equivalent to

1. A Lie{1}∞ structure ν on Xc ; {νk : ¯k Xc → Xc [3−2k]}k≥0. Stated other-
wise, it’s a Lie∞ structure on Xc [1].

2. An Ass∞ structureµ on Xo ; {µk : ⊗k Xo → Xo[2−k]}. The associated MC-
element of the Lie algebra Coder(⊗•Xo[1]) corresponding to µ gives a
differential dµ = [µ,−].
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3. A Lie∞ morphism F : (Xc [1],ν) → (Coder(⊗•Xo[1]), [−,−],dµ);{
Fk : ¯k Xc −→ Coder(⊗•Xo[1])[1−2k]

}
k≥1

such that the composition

¯k Xc
Fk−→ Coder(⊗•(Xo[1]))[1−2k]

pr o j−→ Hom(⊗m Xo , Xo)[1−m −2k]

coincides with µn,m for n ≥ 1,m ≥ 0.

Remark 3.4.2. The face complex of Kontsevich’s compactified configuration
space C n,m was considered in [Me3]. This face complex can be given the struc-
ture of an operad in the category of smooth manifolds, and the associated
operad of fundamental chains is isomorphic to the operad OC∞.

3.4.2. The operad of Kontsevich graphs. In the framework stable formality
morphisms developed by Rossi-Willwacher the existence of a formality map
is reinterpreted as a morphism of certain 2-colored operads;

OC∞ →KGra

We will start with a definition of the 2-colored operad of Kontsevich graphs
KGra. The operad is so called because it consists of the type of graphs con-
sidered by M. Kontsevich in his original proof of the Formality theorem. The
operad KGra is intimately connected to the monochromatic operad Gra	2
consisting of directed graphs.

Recall from Definition 3.2.10 that an admissible graph has vertices of
two types, and the edge-set is subject to the restriction that no edge may
begin in a vertex of the second type. Let the colors of KGra be denoted by o
and c (standing for open and closed, respectively). We denote the subspace
of operations with n inputs of color c and m inputs with color o and with
output in color o or c by KGrac (n,m) or KGrao(n,m) respectively. Define
these subspaces as follows

KGrac (n,m) =
{

Gra	2 (n) m = 0

{0} m ≥ 1

and
KGrao(n,m) = ⊕

k≥0
(K〈G(n,m,k)〉⊗Sn Sgnk )[k]

In order to promote KGra to an operad we will define its operadic com-
position by means of partial composition. As for the previous operads of
graphs the compositions are defined by substitution of a graph into a vertex

104



and summing over all the ways to reconnect the edges. The partial compo-
sition of two graphs from KGrac is defined exactly as for Gra	2 . The partial
composition of KGrao ⊗KGrac to KGrao at either a vertex of color c or o and
there are partial compositions KGrao ⊗KGrao to KGrao at a vertex of color o.
Just like for the other operads of graphs the partial composition includes a
re-labeling of vertices and an induced total order on edges.

As was implicit in M. Kontsevich definition of the individual compo-
nents UΓ of the Formality morphism, the pair (Tpol y (X ),OX ), X =Kd form
an algebra over the 2-colored operad KGra.

Recall that we can think of Tpol y (X ) as being the graded commutative
algebra generated by {xa}, coordinates of X and {ψa} the associated vector
fields (ψa = ∂

∂xa ). Let Γ be an admissible graph with n vertices of type I and
m vertices of type II and let E denote the set of edges. For every edge e =
i j• •// we set

∆↑
e =

∑
α

id⊗i−1⊗ ∂

∂xα
⊗ id⊗ j−i−1⊗ ∂

∂ψα
⊗ id⊗n− j .

A mapΦ↑
Γ ∈ Hom(Tpol y (X )⊗(n+m),Tpol y (X )) of degree |E | can now be defined

as follows. The map Φ↑
Γ is the composition of two maps, µ ◦φ↑, where µ is

just the regular associative multiplication map in the graded commutative
algebra and where φ↑ =∏

e∈E d g e(Γ)∆
↑
e , the product is taken over the edges in

their associated ordering. By the natural inclusion ι : OX −→ Tpol y (X ) and
the natural projection π : Tpol y →OX we can define a map

ΠΓ : Tpol y (X )⊗n ⊗O⊗m
X −→OX

as the composition

ΠΓ : Tpol y (X )⊗n ⊗O⊗m
X

ι⊗m

−→ Tpol y (X )⊗(n+m) Φ↑
Γ−→ Tpol y (X )

π−→OX

The association Γ 7→ΠΓ gives the map of operads mentioned above

Π : KGra−→End(Tpol y (X ),OX )

3.4.3. Stable formality maps

Definition 3.4.3. A stable formality morphism is map of operads

Ξ : OC∞ −→KGra

such that the induced OC∞ structure on (Tpol y (X ),OX ) coincides with the
Kontsevich-Shoikhet Lie{1}∞ structure onTpol y (X ), the standard graded com-
mutative A∞ structure on OX and such that the one black vertex-part of
the Lie∞ morphism coincides with the Hochschild-Kostant-Rosenberg quasi-
isomorphism.
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Theorem 3.4.4. There exist a stable formality morphism Ξ : OC∞ −→ KGra
given on generators as follows.

i) The Lie{1}∞ generators:

Ξ(νp ) = ∑
Γ∈G(p,0,2p−3)

cΓΓ

cΓ =
∫

C p,Γ

∧
e∈E(Γ)

φe

where φe = dArg(zi−z j )
π for an edge e = j i• •// ∈ E(Γ).

ii) The A∞ generators

Ξ(µ0,m) =
{
Γ◦◦ m = 2

0 m ≥ 3

Where the graph Γ◦◦ is the graph ith two vertices of type II (and no edges);

Γ◦◦ = ◦ ◦

iii) The Lie∞ morphism generators

Ξ(µn,m) = ∑
Γ∈G(n,m,E)

wΓΓ

with n ≥ 1 and E = 2n +m −2 and weights

wΓ =
∫

C n,m,Γ

∧
e∈E(Γ)

φe

with φe = dArg(zi−z j )
π as above.

Proof. The content of i) is exactly Theorem 3.2.7. It’s an obvious conse-
quence of how the representation KGra→End(Tpol y (X ),OX ) is defined that the
graph Γ◦◦ produces the standard graded commutative multiplication on OX

and therefore ii) is satisfied. The graphs of the form

Γ•k = •
◦ ◦ ◦◦◦ ...︸ ︷︷ ︸

k

have weight 1
k ! and thus give us the Hochschild-Kostant-Rosenberg quasi-

isomorphism;

Π◦Ξ(µ1,k ) =Π
(
ωΓ•kΓ

•
k

)
= HKRk : Tpol y (X )(k) −→ Hom(O⊗k

X ,OX )[1−k]

The proof of iii) is the content of Theorem 3.3.2.
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4. Wheel-free deformation
quantization

4.1 A propic approach to deformation quantization

4.1.1. The dg Lie algebra of polydifferential operators Let OV = ¯•V ∗ be
the free graded commutative algebra generated by V ∗, where we as usual
mean that the k-th graded component of V ∗ is the linear dual of the k-th
graded component of V ; (V ∗)(k) = (V (k))∗. It is well known that the graded
space of linear maps

⊕
k≥0 Hom(O⊗k

V ,OV )[1−k] can be given the structure of
a dg Lie algebra with the Gerstenhaber bracket, [−,−]G , and the Hochschilld
differential, dH . This dg Lie algebra is known as the Hochschild cochain com-
plex of OV ;

Hoch•(OV ) := ⊕
k≥0

Hom(O⊗k
V ,OV )[1−k].

The Hochschild cochain complex has an interesting dg Lie subalgebra,DV ⊂
Hoch•(OV ), consisting of the operators in Hoch•(OV ) that, for k ≥ 1, vanish
on an element f1⊗ f2⊗ . . .⊗ fk ∈O⊗k

V if at least one of the polynomials fi is a
constant. Any degree one element, Γ ∈DV can be decomposed into a sum,
Γ=∑

k≥0Γk , where eachΓk is a "polydifferential" mapO⊗k
V −→OV of degree

2 − k. If we fix s system of local coordinates {xα} that span V , then Γ can
be represented as a power series (of finite total order as a polydifferential
operator)

Γ= ∑
k≥0

∑
I1,...,Ik ,J

Γ
I1,...,Ik
J x J∂I1 ⊗ . . .⊗∂Ik .

In this series the ΓI1,...,Ik
J are a scalars from our base field and the I1, . . . , Ik , J

are multi-indices; If I = a1a2 . . . a|I | then

x I := xa1 xa2 . . . xa|I | and ∂I := ∂|I |

∂xa1 . . .∂xa|I |

We say that an elementΓ ∈DV is a Maurer-Cartan element in the Hochschild
cochain complex if it satisfies the equation

dHΓ+ 1

2
[Γ,Γ]G = 0.
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A Maurer-Cartan element in DV (or more generally, in Hoch•(OV )) deter-
mines a deformation of the associative (graded commutative) algebra OV .

4.1.2. Prop profile of deformations In [Me4] S.A Merkulov gives a very in-
teresting alternative description of the Maurer-Cartan elements in the Hochschild
complex. In loc. cit. the author constructs a dg prop, DefQ, such that the
representations of it is exactly the structure of a Maurer-Cartan element in
the Hochschild cochain complex.

We remind the reader about the definition of the prop DefQ and its per-
turbative version DefQ~.

Definition 4.1.1. Define the S-bimodule D= {D(m,n)}m,n≥0 where we set

D(m,n) =D(m)⊗1n[m −2],

D(0) =K[−2]

D(m ≥ 1) = ⊕
k≥1

⊕
[m]=I1t...tIk

IndSm
S|I1 |×...×S|Ik |

1|I1|⊗ . . .⊗1|Ik |[k −2]

The prop DefQ is now defined as the free prop generated by the D;

DefQ :=Free〈D〉.

Let the generators be graphically represented by planar corollas of de-
gree 2−k

...
...

... ...
...

...

...

I1 Ii Ii+1 Ik

1 2 3 . . . n

(4.1)

Where the edges labeled 1, . . . ,n correspond to the input. The input edges
are symmetric; the order in which they are written down does not matter.
The edges labeled by elements from I1 t . . .t Ik = {1, . . . ,m} correspond to
the output. Within each group labeled by a Ii , the edges are symmetric.

The differential on DefQ is defined by its action on the generators

δ


...

...
... ...

...
...

...

I1 Ii Ii+1 Ik

1 2 3 . . . n

=
k∑

i=1
(−1)i+1

...
...

... ...
...

...

...

I1 Iit Ii+1 Ik

1 2 3 . . . n

+ ∑
p+q=k+1
p≥1,q≥0

p−1∑
i=0

∑
Ii+1=I ′

i+1
tI ′′

i+1.......................
Ii+q=I ′

i+q
tI ′′

i+q

∑
[n]=J1tJ2

∑
s≥0

(−1)(p+1)q+i (q−1)
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1

s!

...
...

... ...... ...

. . . . . . . . .︸ ︷︷ ︸
J1

I1 Ii I ′i+1
I ′i+q ...s

... · · · ...
I ′′i+1

I ′′i+q

...︸︷︷︸
J2

...
...

...Ii+q+1 Ik

The proof that δ squares to zero was given in [Me4].

Remark 4.1.2. Notice the limits on the parameter s. As s may be zero, the
graph created by the differential can be disconnected; the disjoint union of
two corollas. The number s is also not bounded above so we shall actually
consider DefQ to be completed on the sum of the number of vertices and the
genus.

The above formula for the differential shows that the free prop DefQ
makes sense as a differential prop only if it is considered as genus com-
pleted as the r.h.s. of the above formula involves infinitely many graphs of
increasing genus. This immediately raises a question: what can be a rep-
resentation of the completed prop DefQ in an arbitrary vector space V ? A
morphism of dg props

ρ : DefQ−→EndV

is uniquely specified by its values on the generators,

ρ


...

...
... ...

...
...

...

I1 Ii Ii+1 Ik

1 2 3 . . . n

 ∈ Hom(O⊗k
V ,OV ) ⊂EndV

which can be arbitrary. Hence an arbitrary representation ρ gives us an in-
finite sum of polydifferential operators with order tending, in general, to in-
finity. This is definitely not the object we are interested in as the Gersten-
haber brackets [ , ]G can diverge on such infinite sums of polydifferential
operators. Therefore we introduce a new notion of an admissible represen-
tation ρadm which, by definition, satisfies the condition that the values

ρadm


...

...
... ...

...
...

...

I1 Ii Ii+1 Ik

1 2 3 . . . n


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vanish for sufficiently for sufficiently large values of the cardinalities |Ii |. We
give a rigourous definition

Let N be a positive integer. We say that a representation

ρ : DefQ−→EndV

is N -admissible if

ρ


...

...
... ...

...
...

...

I1 Ii Ii+1 Ik

1 2 3 . . . n

= 0

whenever |Ii | > N for some i = 1,2, . . .k.
Let RepDefQ

N (V ) denote the set of N -admissible representation of DefQ
in V. Clearly there is a chain of inclusions

· · · −→ RepDefQ
N−1 (V ) −→ RepDefQ

N (V ) −→ RepDefQ
N+1 (V ) −→ ·

we say that a representation is admissible if it is an element of the direct limit

lim
N→∞

RepDefQ
N (V )

of the above diagram.
This condition assures that we get polydifferential operators of finite or-

der. There is a one-to-one correspondence between the set of admissible
representations and the Hochschild polydifferential complex

DV ⊂ Hoch•(OV ) := ⊕
k≥0

Hom(O⊗k
V ,OV )[1−k].

Moreover, the following stronger result holds true.

Proposition 4.1.3 ([Me4]). There is a one-to-one correspondence between
admissible representations

ρ : (DefQ,δ) → (EndV ,d)

and Maurer-Cartan elements, Γ, in the Hochschild dg Lie algebra of polydif-
ferential operators, DV , that is, degree one polydifferential operators on OV

satisfying the equation dHΓ+ 1
2 [Γ,Γ]G = 0.

4.1.3. Prop profile of perturbative deformations There is a perturbative

analogue of the polydifferential operators on OV , D~
V , in which Maurer-

Carten elements correspond to perturbative deformations of the ordinary
product inOV . Formally we defineD~

V :=DV ⊗~K[[~]]. This makesD~
V into a

110



dg Lie algebra of polydifferential operators on OV [[~]] which vanish at ~= 0.
The elements Γ ∈D~

V that solve the associated Maurer-Cartan equation cor-
respond to generalized A∞ structures on OV [[~]]. These Maurer-Cartan el-
ements can also be described as the representation of a dg prop.

Definition 4.1.4. Let DefQ~ be the free prop generated by D~;

DefQ~ :=Free〈D~〉.

Where D~ = {D~(m,n)} is defined by the following

Da(m,n) :=D(m)⊗1n[m −2],where a +1,m,n ∈Z≥0

D~(m,n) :=
∞⊕

a=1
Da(m,n)

where D(m) is the same module introduced in the non-perturbative case.

Analogously to DefQ, the generators of DefQ~ can be identified with
corollas,

a

...
...

... ...
...

...

...

I1 Ii Ii+1 Ik

1 2 3 . . . n

, (4.2)

which have the same properties as those defined in the previous section but
additionally they also carry a numerical label a ∈Z>0.

The differential in DefQ~ is defined on generators by the following graph-
ical expression:

δ

 a

...
...

... ...
...

...

...

I1 Ii Ii+1 Ik

1 2 3 . . . n

=
k∑

i=1
(−1)i+1 a

...
...

... ...
...

...

...

I1 Iit Ii+1 Ik

1 2 3 . . . n

+ ∑
b+c=a
b,c≥1

∑
p+q=k+1
p≥1,q≥0

p−1∑
i=0

∑
Ii+1=I ′

i+1
tI ′′

i+1.......................
Ii+q=I ′

i+q
tI ′′

i+q

∑
[n]=J1tJ2

∑
s≥0

(−1)(p+1)q+i (q−1)

1

s!
b

...
...

... ...... ...

. . . . . . . . .︸ ︷︷ ︸
J1

I1 Ii I ′i+1
I ′i+q ...s

c

... · · · ...
I ′′i+1

I ′′i+q

...︸︷︷︸
J2

...
...

...Ii+q+1 Ik
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One defines the notion of an admissible representation of DefQ~ in ex-
actly the same way as in the case of DefQ to assure that we do work with
operators of infinite order. For the prop DefQ~ the following proposition is
analogous to Proposition 4.1.3 from the previous section.

Proposition 4.1.5 ([Me4]). There is a one-to-one correspondence between
admissible representations

ρ : (DefQ~,δ) → (EndV [[~]],d)

of DefQ~ in a K[[~]] extension of the dg vector space (V ,d) and curved A∞
structures in OV [[~]], i.e. Maurer-Cartan elements, Γ, in DV [[~]] satisfying
the equations dHΓ+ 1

2 [Γ,Γ]G = 0 and Γ|~=0 = d .

4.1.4. Propic formulation of deformation quantization Suppose we have
a mathematical structure φ on a dg vector space (V ,d) that can be defined
as the representation of a dg properad (P,∂);

ρφ : (P,∂) −→ (EndV ,d).

Following [Me4] we understand the problem of deformation quantization of
this structure as finding a morphism of dg props

q : (DefQ,δ) −→ (P,∂)

that satisfy some boundary condition to guarantee non-triviality. The com-
position q ◦ρφ gives us an explicit representation of (DefQ,δ) in (V ,d) and
by the propositions 4.1.3 this determines a star-product on OV .

This procedure of deformation quantization for P-algebras has the corol-
lary that if C(P) is a cofibrant replacement of P then the cofibrancy of DefQ
implies the existence of a lift for the map q ;

q̂ : DefQ−→C(P).

Alternatively, if we wish to prove that a certain formal dg properad (Q,d) can
be deformation quantized then it is enough to find a morphism (DefQ,δ) −→
(H•(Q),0).

The main result of [Me4] was the proof for deformation quantization of
a formal graded Poisson structure in a dg vector space (V ,d).

4.1.5. Properad of quasi-Poisson structures In [Sh] B. Shoikhet determines
a universal Lie∞ structure on Tpol y (V )[1] and goes on to define the notion
of quasi-Poisson structure as a Maurer-Cartan element in this Lie∞-algebra.
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We shall see that the notion of quasi-Poisson structure has a natural prop-
eradic interpretation.

Consider the Kontsevich-Shoiket Maurer-Cartan element as an infinte
sum of graphs

γK S = Γ2 +Γ4 +Γ6 + . . . ∈GC↑
2, (4.3)

where Γn is the sum of graphs with n vertices. This element has a natural
perturbative analogue

γ̂K S = Γ2 +~Γ4 + . . .+~k−1Γ2k + . . . ∈GC↑
2[[~]] :=GC↑

2 ⊗K[[~]].

We define a free properad, qPois on the following generators aaaa

. . .
1 2 n

1 2 m

aaaa

. . .


n+m+a≥3

n,m≥1
a≥0

with the relation

aaaa

. . .
1 2 n

aaaa

. . .1 2 m

= (−1)σ aaaa

. . .
τ(1) τ(2) τ(n)

aaaa

. . .σ(1) σ(2) σ(m)

∀σ ∈Sm ,∀τ ∈Sn .

We will consider qPois to be completed with respect to the number of ver-
tices.

The dg Lie algebra GC↑
2[[~]] acts on qPois. by derivation

~kΓ


aaaa

. . .

aaaa

. . .

1 2 n

1 2 m
= ∑

g r a f t i ng
i nput s/out put s

∑
a1+...+a|V (Γ)|=a−k

ΓΓΓΓ

. . .
ΓΓΓΓ

. . .

j1 j2 jn

i1 i2 im

The first sum is over all the ways to graft the output and input edges to
the vertices of Γ. The second sum is over all the ways to decorate the vertices
in Γ by non-negative weights ai such that the sum of the weights total to
a −k.

From this action it follows that γ̂K S defines a differential ∂ on qPois.

Proposition 4.1.6. Representations qPois −→ EndV are in one-to-one corre-
spondence with quasi-Poisson structures on (V ,d), i.e. Maurer-Cartan ele-
ments in the Kontsevich-Shoikhet Lie{1}∞ algebra (Tpol y (V )[[~]],µ•).

Proof. Let ρ : qPois−→EndV be a map of dg props. Each corolla
aaaa

. . .

aaaa

. . .

1 2 n

1 2 m

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gives rise to a map ∧nV → ¯mV , or equivalently, the image of every such
corolla is an element π(a)(m,n) ∈ ∧nV ⊗¯mV ∗ and therefore it can be re-
garded as polyvector field on V . From the image of these corollas we define
the following power series

π¦ = ∑
m,n≥1

∑
a≥0

~aπ(a)(m,n)

where we make the addition that π(0)(1,1) := d . An inspection of the condi-
tion ρ ◦ ∂ = dEndV ◦ρ reveals that this implies that π¦ satisfies the Maurer-
Cartan equation

1

2
µ2(π¦,π¦)+ ~

4!
µ4(π¦,π¦,π¦,π¦)+ . . . = 0

for the Kontsevich-Shoikhet Lie{1}∞ structure µ• on Tpol y (V ).

4.2 Wheel-free deformation quantization

4.2.1. Odd Lie bialgebras and the cohomology of qPois We will give the
"classical" algebraic definition of odd Lie bialgebras and then the properadic
definition.

Definition 4.2.1. The structure of an odd Lie bialgebra in a graded vector
space V is a given by a degree 1 skew-symmetric bilinear map

[−,−] : V ∧V →V [1]

such that the pair (V [−1], [−,−]) is a graded Lie algebra and a map

∆ : V →V ∧V

such that the pair (V ,∆) is graded Lie coalgebra. Furthermore, we require that
the following compatibility rule is satisfied

∆◦ [−,−] =([−,−]⊗ id)◦ (id⊗∆)+τ◦ ([−,−]⊗ id)◦ (id⊗∆)−
([−,−]⊗ id)◦ (id⊗∆)◦τ−τ◦ ([−,−]⊗ id)◦ (id⊗∆)◦τ

where τ denotes the twist map τ : x ⊗ y → y ⊗x.

Let us now consider the properad of odd Lie bialgebra, denoted LieBodd .
This properad can be represented as a quotient of a free properd F modulo
an ideal of relations R. The free properad F is generated by the S-bimodule
E = {E(m,n)}m,n≥1 with all E(m,n) = 0 except

E(2,1) := id1⊗sgn2 = span

〈
•
1

21
=− •

1

12 〉
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E(1,2) := id2[−1]⊗ id1 = span

〈
•
1

21
= •

1

12

〉

The ideal R is generated by the following relations

R :



•• 3
21

+ •• 2
13

+ •• 1
32

= 0,

•• 3
21

+ •• 2
13

+ •• 1
32

= 0,

•
•

21

1 2

− •
•

1
2

2
1

− •
•

2
1

2
1

+ •
•

2
1

1
2

+ •
•

1
2

1
2

= 0.

(4.4)

Remark 4.2.2. For odd Lie bialgebras, due to the cocommutativity of the co-
bracket and the skew-commutativity of the bracket, the standard involutive
relation is automatically satisfied,

[−,−]◦∆= 0,

or in terms of graphs

•
• = 0.

Let LieB¦
odd be the properad of odd Lie bialgebras modulo the additional

relation

• •• •
= 0

Remark 4.2.3. We call these Lie bialgebras super-involutive, because they
don’t only satisfy the ordinary notion of involutivity but also a higher notion
of involutivity corresponding to the genus 2 graphs given above.

It follows immediately from the definition of the differential in qPois that
there is an epimorphism of properads

g : LieB¦
odd −→ H(qPois)

and existence of such a map is enough to prove the Main Theorem below.
After this chapter was completed, it was proven in [KMW] that the coho-
mology of qPois is precisely the properad LieB¦

odd , i.e. that the map g is an
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isomorphism. We shall use this latest result below though it is worth em-
phasizing that it is not required for the purposes of this result. The natural
“forgetful" map

ν : qPois−→ LieB¦
odd

which vanishes on all generators except the following ones,

ν

(
000

)
:= • , ν

(
000

)
:= • , (4.5)

is therefore a quasi-isomorphism.

4.2.2. Super-involutive Lie bialgebras Our next purpose is to construct a
non-trivial morphism of props

ρ0 : (DefQ~,δ) −→ (LieB¦
odd ,0).

If r : LieB¦
odd →EndV is a representation of LieB¦

odd in a graded vector space
V , that is a quasi-Poisson structure in V , the above morphism ρ0 induces
a representation r : DefQ~ → EndV , that is, a Maurer-Cartan element in
DV [[~]] satisfying certain conditions, see Proposition 4.1.5 above.

Any prop can be understood as a totality of its representations in all pos-
sible graded vector spaces V. Therefore, we can read of the morphism ρ0

via a universal construction of Maurer-Cartan elements Γ in DV [[~]] from
an arbitrary quasi-Poisson structure in V (universal in the sense that the
construction does not depend on a particular choice of V ). Moreover, it
is enough to work with a sufficiently large family of graded vector spaces
V which satisfy the condition that any non-zero element in LieB¦

odd or in

DefQ~ can be represented by an element in EndV that does not vanishing
identically for sufficiently generic V in our family. To simplify the rules
of sign we choose to work (following the standard trick in mathematical
and theoretical physics) with all possible representations of the above props
in the category of free modules V over graded commutative K-algebras Λ
which satisfy the condition that V (and hence V ∗) admits a set of generators
{x1, . . . , xn} (over Λ) of homological degree zero for some (arbitrary large)
n ∈ N. For sufficiently large n and generic Λ the non-vanishing condition
can be obviously satisfied so that we loose no information about our props
(cf. [MeVa]) while working in this family of representations. We can view
every suchΛ-module V as aΛ-supermanifold (cf. [R]) and hence talk about
formal polyvector fields on V ,

∑
C b1,...,bl

a1,..,ak
xa1 · · ·xak

∂

∂xb1
∧ . . .∧ ∂

∂xbl
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whose coefficients are elements of the graded commutative ringΛ. This is a
standard “coordinate" approach to supermanifolds in mathematical physics.

In this context a representation r : LieB¦
odd → EndV is the same as the

following pair of polyvector fields

ν=Φab
c xc ∂

∂xa ∧ ∂

∂xb
∈∧2TV ∗

ξ=C c
ab xa xb ∂

∂xc ∈ TV ∗

where the structure constants

Φab
c =−Φba

c

are degree zero elements in Λ, and

C c
ab =C c

ba

are degree 1 elements in Λ. More elementary, ν is a degree 0 co-Lie bracket
on V and ξ is a degree 1 Lie bracket on V. If one wants to employ a geometric
intuition, with respect to the above interpretation as polyvector fields, then
they are given as a linear Poisson structure and a quadratic degree 1 vector
field.

In the same local coordinates, the differential dV on V will determine a
degree 1 linear vector field of the following form

dV = Lb
a xa ∂

∂xb
∈ TV ∗

The relations of LieB¦
odd imply that the elementΛ= dV +ν+ξ is a graded

Poisson structure on V ∗ subject to the super-involutive relation. Explic-
itly the element Λ will satisfy the Maurer-Cartan equation for the classical
Schouten bracket on Tpol y (V ∗),

1

2
[Λ,Λ]SN = 0,

and the equation

C a
bcC b

deΦ
ec
f Φ

e f
g xg ∂

∂xa = 0 (4.6)

which corresponds to the super-involutive relation.
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4.2.3. Structure constants The fact that ν and ξ make up an odd Lie bial-
gebra on V ∗ implies that certain relations on structure constant for ν and ξ
hold. We will state some of them explicitly for the sake of future calculations.

The structure constants of ν satisfy the following relations

Φbc
a +Φcb

a = 0

Φab
i Φi c

d +Φbc
i Φi a

d +Φca
i Φi b

d = 0

Analogously one has formulas for ξ. The structure constants of ξ satisfy
the following relations

Cα
ab −Cα

ba = 0

Cα
i cC i

ab +Cα
i aC i

bc +Cα
i bC i

ca = 0

The Lie bialgebra compatibility between the bracket and co-bracket gives
the following relation on structure constants.

C a
k jΦ

j b
i +C a

i jΦ
j b
k −C b

k jΦ
j a
i −C b

i jΦ
j a
k −Φab

j C j
ki = 0

4.2.4. Quantization procedure To deformation quantize the pair (ν,ξ) is
to construct from it a degree 2 function Γ0 ∈ Hom2(K,OV )[[~]], a differen-
tial operator Γ1 ∈ Hom1(OV ,OV )[[~]], and a bi-differential operator Γ2 ∈
Hom0(O⊗2

V ,OV )[[~]] such that the following equations are satisfied

Γ1Γ0 = 0

Γ2
1 + [Γ0,Γ2]G = 0

dHΓ1 + [Γ1,Γ2]G = 0

dHΓ2 + 1

2
[Γ2,Γ2]G = 0 (4.7)

The bi-differential operator Γ2

As ν determines a linear Poisson structure on V ∗ we can deformation quan-
tize it to produce Γ2 with the Poincare-Birkhoff-Witt isomorphism. The con-
struction is well known and we restate it here for completeness. Let [−,−]
denote the Lie bracket on V ∗ coming from ν and form the homogenous uni-
versal enveloping algebra U~ defined as the quotient

U~ :=
⊗̂•

V ∗[[~]]

J

118



where the ideal J is generated by all expressions of the form (x ⊗ y − y ⊗ x −
~[x, y]) with x, y ∈V ∗. Let −◦− : U⊗2

~ −→ U~ denote the associative prod-
uct in the enveloping algebra. The Poincaré-Birkhoff-Witt theorem gives an
isomorphism

s :OV [[~]] −→U~

explicitly defined as

s(xi1 xi2 . . . xik ) = 1

k !

∑
σ∈Sk

xσ(i1) ◦xσ(i2) ◦ . . .◦xσ(ik )

We define the star-product through the isomorphism s;

f ?~ g := s−1(s( f )◦ s(g ))

and from it define the bi-differential operator Γ2,

Γ2( f ⊗ g ) := f ?~ g − f g .

That ?~ is an (even degree) associative product on OV [[~]] is equivalent to
that 1

2 [?~,?~]G = 0. We have that ?~ = µ+Γ2, where µ denotes the ordinary
product of functions. That this choice of Γ2 satisfied dHΓ2 + 1

2 [Γ2,Γ2]G = 0
can now be seen by expanding the expression [?~,?~]G ;

0 = 1

2
[?~,?~]G = 1

2
[µ,µ]+ [µ,Γ2]+ 1

2
[Γ2,Γ2]

the ordinary multiplication is associative and therefore [µ,µ]G = 0.

The differential operator Γ1

To find Γ1 we need to solve the equation dHΓ1+ [Γ1,Γ2], which is equivalent
to that Γ1 is a derivation of the star-product;

Γ1( f ?~ g ) = Γ1( f )?~ g + f ?~Γ1(g )

To start we form the map θ : V ∗[[~]] −→ ⊗̂•
V ∗[[~]] by using the structure

constants of ξ and dV ;

θ(xa) := 1

2
~C a

i j xi ⊗x j +~La
i xi

Let θ̂ be the extension of θ to a derivation of the tensor algebra
⊗̂•

V ∗[[~]].
By using the relations for ξ, ν and dV implied by the LieB¦

odd representation
we can see that this derivation preserves the ideal

J =
〈

xa ⊗xb −xb ⊗xa −~Φab
k xk

〉
and so it also becomes a derivation of the universal enveloping algebra U~.

Before proceeding we will establish a technical lemma
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Lemma 4.2.4. The following relations are exhibited

xa ⊗xb ⊗xc =xc ⊗xa ⊗xb +~Φac
j x j ⊗xb +~Φbc

i xa ⊗xi

xa ?~ xb ?~ xc =xa ⊗xb ⊗xc − ~
2

(
Φbc

i xa ⊗xi +Φac
i xb ⊗xi +Φab

i xc ⊗xi
)

− ~2

3

(
Φab

i Φi c
j x j +Φac

i Φi b
j x j

)
Proof. We derive the first expression from

xα⊗xβ−xβ⊗xα−~Φαβk xk = 0;

xa ⊗xb ⊗xc = xa ⊗
(
xc ⊗xb +~Φbc

i xi
)

= xa ⊗xc ⊗xb +~Φbc
i xa ⊗xi

=
(
xc ⊗xa +~Φac

j x j
)
⊗xb +~Φbc

i xa ⊗xi

= xc ⊗xa ⊗xb +~Φac
j x j ⊗xb +~Φbc

i xa ⊗xi

The second expression is derived in a process of repeatedly using the quadratic
relation

xα?~ xβ = xα⊗xβ− ~
2
Φ
αβ

i xi

and we omit the proof

Lemma 4.2.5. The map s−1 ◦ θ̂ ◦ s is a derivation of the star-product ?~.

Proof.

θ̂(xa ⊗xb −xb ⊗xa −~Φab
i xi )

= θ̂(xa )⊗xb +xa ⊗ θ̂(xb )− θ̂(xb )⊗xa −xb ⊗ θ̂(xa )−~Φab
c θ̂(xc )

=
(

1

2
~C a

i j xi ⊗x j +~La
i xi

)
⊗xb +xa ⊗

(
1

2
~C b

i j xi ⊗x j +~Lb
i xi

)
−

(
1

2
~C b

i j xi ⊗x j +~Lb
i xi

)
⊗xa

−xb ⊗
(

1

2
~C a

i j xi ⊗x j +~La
i xi

)
−~Φab

i

(
1

2
~C i

k j xk ⊗x j +~Li
k xk

)
= ~

[
1

2
C a

i j xi ⊗x j ⊗xb + 1

2
C b

i j xa ⊗xi ⊗x j − 1

2
C b

i j xi ⊗x j ⊗xa − 1

2
C a

i j xb ⊗xi ⊗x j

+ La
i xi ⊗xb +Lb

i xa ⊗xi −Lb
i xi ⊗xa −La

i xb ⊗xi
]
−~2

[
1

2
Φab

i C i
k j xk ⊗x j +Φab

i Li
k xk

]

= ~

C a
i j

2

(
−xb ⊗xi ⊗x j +xi ⊗x j ⊗xb

)
+

C b
i j

2

(
xa ⊗xi ⊗x j −xi ⊗x j ⊗xa

)

+ La
i

(
xi ⊗xb −xb ⊗xi

)
+Lb

i

(
xa ⊗xi −xi ⊗xa

)]
−~2

[
1

2
Φab

i C i
k j xk ⊗x j +Φab

i Li
k xk

]
[
using the relation implied by the ideal J directly and Lemma 4.2.4

]
≡

(mod J )
~2

C a
i j

2

(
Φi b

k xk ⊗x j +Φ j b
k

xi ⊗xk
)
−

C b
i j

2

(
Φi a

k xk ⊗x j +Φ j a
k

xi ⊗xk
)
− 1

2
Φab

i C i
k j xk ⊗x j
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+La
i Φ

i b
k xk +Lb

i Φ
ai
k xk −Φab

i Li
k xk

]
[
dV is a derivation of ν

]
≡

(mod J )
~2

C a
i j

2

(
Φi b

k xk ⊗x j +Φ j b
k

xi ⊗xk
)
−

C b
i j

2

(
Φi a

k xk ⊗x j +Φ j a
k

xi ⊗xk
)
− 1

2
Φab

i C i
k j xk ⊗x j


[
by relabeling indices

]
≡

(mod J )

~2

2

(
C a

k jΦ
j b
i +C a

i jΦ
j b
k

−C b
k jΦ

j a
i −C b

i jΦ
j a
k

−Φab
j C

j
ki

)
xk ⊗xi

[by the Lie bialgebra compatibility between bracket and co-bracket]

≡
(mod J )

0

This choice of derivation also squares to zero;

Lemma 4.2.6. The map s−1 ◦ θ̂ ◦ s is a differential.

Proof. It’s enough to prove that θ̂2(xa) = 0 for an arbitrary basis element xa .

θ̂2(xa ) =θ̂
(

1

2
~C a

bc xb ?~ xc +~La
b xb

)
= 1

2
~C a

bc θ̂(xb )?~ xc + 1

2
~C a

bc xb ?~ θ̂(xc )+~La
b θ̂(xb )

= 1

2
~C a

bc

(
1

2
~C b

de xd ?~ xe +~Lb
d xd

)
?~ xc + 1

2
~C a

bc xb ?~

(
1

2
~C c

de xd ?~ xe +~Lc
d xd

)
+~La

b

(
1

2
~C b

cd xc ?~ xd +~Lb
c xc

)
= 1

4
h2C a

bcC b
de xd ?~ xe ?~ xc + 1

4
~2C a

bcC c
de xb ?~ xd ?~ xe + 1

2
~2C a

bc Lc
d xb ?~ xd

+ 1

2
~2C a

bc Lb
d xd ?~ xc + 1

2
~2La

bC b
cd xc ?~ xd +~2La

b Lb
c xc[

relabeling indices and cancelling the linear term by using that La
b Lb

c = 0
]

= 1

4
h2C a

i d C i
bc xb ?~ xc ?~ xd + 1

4
~2C a

bi C i
cd xb ?~ xc ?~ xd + 1

2
~2C a

bi Li
c xb ?~ xc

+ 1

2
~2C a

i c Li
b xb ?~ xc + 1

2
~2La

i C i
bc xb ?~ xc

=h2

4

(
C a

i d C i
bc +C a

bi C i
cd

)
xb ?~ xc ?~ xd + ~2

2

(
C a

bi Li
c +C a

i c Li
b +La

i C i
bc

)
xb ?~ xc[

by the Jacobi identity and since dV is a derivation of ξ
]

=− h2

4
C a

i cC i
db xb ?~ xc ?~ xd[

by Lemma 4.2.4
]

=− h2

4
C a

i cC i
db

(
xb ⊗xc ⊗xd − ~

2

(
Φcd

i xb ⊗xi +Φbd
i xc ⊗xi +Φbc

i xd ⊗xi
)

−~2

3

(
Φbc

i Φi d
j x j +Φbd

i Φi c
j x j

))

=− h2

4
C a

i cC i
db xb ⊗xc ⊗xd + h3

8
C a

i cC i
db

(
Φcd

i xb ⊗xi +Φbd
i xc ⊗xi +Φbc

i xd ⊗xi
)

+ h4

12
C a

i cC i
db

(
Φbc

i Φi d
j x j +Φbd

i Φi c
j x j

)
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[
using that C−

αβΦ
αβ− = 0, the commutativity of ξ and skew-commutativity of ν

]
=− h2

4
C a

i cC i
db xb ⊗xc ⊗xd + h4

12
C a

i cC i
db Φ

bc
j Φ

j d
k

xk[
by the super-involutive relation

]
=− h2

12

(
C a

i cC i
db xb ⊗xc ⊗xd +C a

i d C i
bc xd ⊗xb ⊗xc +C a

i bC i
cd xc ⊗xd ⊗xb

)
[

by xa ⊗xb −xb ⊗xa −~Φab
k xk = 0

]
=− h2

12

(
C a

i cC i
db +C a

i d C i
bc +C a

i bC i
cd

)
xb ⊗xc ⊗xd − ~3

12
C a

i d C i
bcΦ

db
j x j ⊗xc

− ~3

12
C a

i d C i
bcΦ

dc
j xb ⊗x j − ~3

12
C a

i bC i
cdΦ

db
j xc ⊗x j − ~3

12
C a

i bC i
cdΦ

cb
j x j ⊗xd

= 0[
using the Jacobi identity and the skew-commutativity of ν

]

We have constructed Γ1 which solves dHΓ1 + [Γ1,Γ2]G = 0 and satisfies
Γ2

1 = 0, thus the last two equations for the star-product can be solved for by
setting Γ0 = 0.

4.2.5. Main Theorem There is a universal perturbative quantization of (pos-
sibly infinite-dimensional) quasi-Poisson structures which does not use Drin-
feld’s associators.

This theorem is an immediate corollary of the following proposition

Proposition

There is a morphism of dg props

ρ : DefQ~ −→ qPois

such that

π1 ◦ρ

 a

...
...

... ...
...

...

...

I1 Ii Ii+1 Ik

1 2 3 . . . n

= 0000
. . .
0000

. . .

1 2 n

1 2 k
for a = n +k −2
and |I1| = . . . = |Ik | = 1 (4.8)

where π1 : qPois → (qPois)1 is the projection of the free prop qPois to the
subspace, (qPois.)1, consisting of graphs with precisely 1 internal vertex.

Proof. The above formulae show that there is a morphism of dg props

ρ0 : (DefQ~,δ) −→ (LieB¦
odd ,0)

such that
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• ρ0 vanishes on all generators (4.2) with k = 0 and k ≥ 3,

• ρ0 sends the generators (4.2) with k = 1 and weight a into a graph
incarnation of the ~a-summand of the above explicit solution Γ1 of
the equations (4.7)

• ρ0 sends the generators (4.2) with k = 2 and weight a into a graph
incarnation of the ~a-summand of the above explicit solution Γ2 of
the equations (4.7).

In particular one has the following formulae (cf. [Me5])

ρ0

 1
...

1 2 ... n

= 0, ρ0

 1
...

1 2 ... n

...I1
=

 • for |I1| = 1,n = 2

0 otherwise.

ρ0

 2
...

1 2 ... n

= 0, ρ0

 1
...

1 2 ... n

...I1 ...I2
=

 • for |I1| = 1, |I2| = 1,n = 1

0 otherwise.

and hence can use a standard lifting argument and a cofibrant structure of
DefQ~ first observed in [Me5] to finish the proof of the Main Theorem.

Define Es to be zero for negative s and, for s ≥ 0,

Es := span

 a

...
...

... ...
...

...

...

I1 Ii Ii+1 Ik

1 2 3 . . . n

∈DefQ~


2a+k−2=s

k≥0,a≥1,n≥0

For example,

E0 = span

 1
...

1 2 ... n

 , E1 = span

 1
...

1 2 ... n

...  , E2 = span

 2
...

1 2 ... n

, 1
...

1 2 ... n

... ...  .

Let DefQ~
s ⊂DefQ~ be the free prop generated by ⊕s

i=0Ei . Thereby we get an

increasing filtration, 0 ⊂DefQ~
0 ⊂ . . . ⊂DefQ~

s ⊂DefQ~
s+1 . . . with

lim
s→∞DefQ~

s =DefQ~.
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A straightforward inspection of the formula for the differential δ in DefQ~

implies
δEs+1 ⊂DefQ~

s ,

i.e. that the dg prop (DefQ~,δ) has a cofibrant structure (even an elemental
cofibrant structure in the sense of Definition 17 in [Mar4] formulated for
props rather than for operads). As the natural projection

π : qPois−→ LieB¦
odd

is a quasi-isomorphism, one can use an inductive argument to construct a
lift of the morphism ρ0 to the required morphism ρ making the following
diagram commutative,

qPois

π

��
DefQ~

ρ
::

ρ0

// LieB¦
odd

Indeed, we start our induction by defining the values of ρ on the subspace
E0 ⊕E1 ⊕E2 as follows

ρ

 1
...

1 2 ... n

= 0, ρ

 1
...

1 2 ... n

...I1
=


000 for |I1| = 1,n = 2

0 otherwise.

ρ

 2
...

1 2 ... n

= 0, ρ

 1
...

1 2 ... n

...I1 ...I2
=


000 for |I1| = 1, |I2| = 1,n = 1

0 otherwise.

On this subset of generators the equationsπ◦ρ = ρ0 and (4.8) hold obviously
true

Let us assume next that we have a morphism

ρs : DefQ~
s −→ qPois

satisfying the condition π◦ρs = ρ0 for some s ≥ 3. Let us show that we can
extend ρs to a morphism of dg props,

ρs+1 : DefQ~
s+1 −→ qPois

a −→ ρs+1(a)
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such that π ◦ρs+1 = ρ0 and the condition (4.8) hold true. Let a′ be a lift of
ρ0(a) along the surjection π. Then ρs(δa)−∂a′ is a cycle in qPois. which the
projection π sends to zero. As π is a quasi-isomorphism, this element must
be exact, ρs(δa)−∂a′ = ∂a′′, for some a′′ ∈ qPois. We set ρs+1(a) := a′+ a′′

completing thereby the inductive construction of ρ as a morphism of dg
props. The condition π ◦ ρ = ρ0 is satisfied by construction. The second
condition (4.8) is also satisfied by induction due to exactly the same obser-
vation as the one used in (cf. [Me4]) — the Gerstenhaber brackets, [γ,γ]G , of
a degree 1 polyvector field γ (viewed as a polydifferential operator) contain
the Schouten-Nijenhuis bracket, [γ,γ]SN , as one of the the summands.

Proof of the Main Theorem

Given a quasi-Poisson structure on a (possibly infinite-dimensional) graded
vector space V . This is the same as a representation

ν : qPois−→EndV

of the prop qPois. in V . Composing νwith the above morphism ρ we obtain
a representation

ν~ : DefQ~ ρ−→ qPois
ν−→EndV

of the prop DefQ~ in V which gives us the required deformation quantiza-
tion of ν. At no stage of this construction are Drinfeld’ associators utilized.
The proof is completed.

Remark

The map ρ : DefQ~−→qPois takes values in the ordinary prop, not in the
wheeled completion of the minimal resolution of the prop LieBodd as in
[Me4]. Therefore the map ρ sends to zero all generators (4.2) of DefQ~ with
k = 0.

Let I be the differential ideal of DefQ~ generated by corollas (4.2) with
k = 0; this ideal is clearly differential so that it makes sense to consider the
quotient dg prop

DefQ~
0 :=DefQ~.

Our morphism ρ factors through this prop, i.e. it can be written as the com-
position

ρ : DefQ~−→DefQ~
0

ρ0−→ qPois

where the first arrow is the canonical projection.
The prop DefQ~

0 has a nice algebraic meaning. If admissible represen-
tations of DefQ~ in a dg vector space (V ,d) give us curved A∞ structures in
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OV [[~]] (see Proposition 4.1.5, representations of DefQ~
0 in V give us ordi-

nary or flat A∞ structures in V .
We conclude therefore that contrary to the case of universal quantiza-

tions of ordinary graded Poisson structures which gives rise to curved A∞
structures inOV [[~]], our universal deformation quantization of quasi-Poisson
structures always gives us flat A∞-structures, that is, Maurer-Cartan ele-
ments Γ in the reduced polydifferential Hochschild complex,

dHΓ+ 1

2
[Γ,Γ]G = 0, Γ|~=0 = d ,

with

Γ ∈D≥1
V [[~]] ⊂

(⊕
k≥1

Hom(O⊗k
V ,OV )[1−k]

)
[[~]].

Put another way, our universal quantization of quasi-Poisson structures give
rise to morphisms of dg operads

ε~ : Ass∞ −→End¯•V [[~]]

such that ε0 := ε~|~=0 equals to the standard morphism

ε0 : Ass∞ −→End¯•V

which factors through the composition

ε0 : Ass∞ −→Ass−→End¯•V

and sends the generator of Ass into the standard graded commutative prod-
uct in the symmetric tensor algebra ¯•V . We shall use this observation
heavily below when showing a second “more conceptual" proof of the Main
Theorem.

4.3 A second proof of the Main Theorem

Merkulov-Willwacher polydifferential functor

The authors of [MW1] constructed an exact functor from the category of dg
(augmented) props to the category of operads which has the property that
for any prop P= {P(m,n)}m,n≥1 and its representation

ρ : P−→EndV

in a dg vector space V , the associated operad OP = {OP(k)}k≥1 admits an
associated representation,

ρpol y :OP−→End¯•V

126



in the graded commutative algebra ¯•V on which elements p ∈ P act as
polydifferential operators.

Let P be an augmented prop. As anS-module the operadOP= {OP(k)}k≥1

is defined as follows [MW1],

OP(k) :=Com(k) ⊕ ∏
m,n≥1

⊕
[m]= J1t...tJk

#J1,...,#Jk≥0

OPn
J1,...,Jk

where

OPn
J1,...,Jk

:= idSJ1
⊗ . . .⊗ idSJk

⊗SJ1×...×SJk
⊗ P̄(m,n)⊗Sop

n
idn

where idI stands for the trivial one-dimensional representation of the per-
mutation group SI , and Com = {Com(k)}k≥1 for the operad of commutative
associative algebras. Thus an element of the summand OPn

J1,...,Jk
⊂OP(k) is

an element of P(#J1+. . .+#Jk ,n) with all its n inputs symmetrized and all its
outputs in each bunch Js ⊂ [m], s ∈ [k], also symmetrized. We assume from
now on that all legs in each bunch Js are labelled by the same integer s; this
defines an action of the group Sk on OP(k).

It is often useful to represent elements p of the (non-unital) prop P̄ as
(decorated) corollas,

p ∼
...

...

◦
1 2 n

2 m1

∈ P̄(m,n)

The image of such an element under the projection πn
J1,...,Jk

is represented
pictorially as the same corolla whose output legs are decorated by the same
symbol 1 (which is omitted in the pictures) and the input legs decorated with
possibly coinciding indices as in the following picture

◦◦◦◦◦◦◦◦◦
... ...

︷︸︸︷
J1

︷︸︸︷
Ji

︷︸︸︷
Jk

[n]︸︷︷︸
◦◦◦◦ or ◦◦◦◦◦◦◦◦◦

... ...111 i ii kk k

[n]︸︷︷︸
◦◦◦◦ 1 ≤ i ≤ k.

Note that some of the sets Ji can be empty so that some of the numbers
decorating inputs can have no legs attached! For example, an element q =

◦
1 2 3 4

2 4 51 3

∈ P̄(5,4) can generate several different elements in OP,

◦
1 1 21 2

∈OP(2) , ◦
1 1 21 2 3 4

∈OP(4) , etc. (4.9)

Often (but not always) it is useful to represent elements ofOP not as corollas
decorated by elements from P whose legs are labelled by possibly coincid-
ing natural numbers, but as graphs having two types of vertices: the small
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one (with is decorated by an element of P̄) and new big ones corresponding
to inputs of OP and having a “non-coinciding" numerical labelling

◦◦◦◦◦◦◦◦◦
... ...111 i ii kk k

◦◦◦◦ ' ◦◦◦◦◦◦◦◦◦
... ...

◦◦◦◦
1 ki

In this notation elements (4.9) gets represented, respectively, as

◦

1 2

and ◦

1 2 3 4

while generators of Com(n) ⊂OP(n) as 1 2 n· · · .

Using this notation it is easy to define an operadic composition,

◦i :OP(m)⊗OP(n) −→OP(m +n −1)

for any i ∈ [m]: take any elements Γ1 ∈OP(m) and Γ2 ∈OP(n), then Γ1 ◦1Γ2

is sum a graphs obtained by substituting the graph Γ2 into the i -th white
vertex of Γ1 and then taking a sum over all possible ways of attaching half-
edges of the i -th vertex to the output legs and/or white vertices of Γ2.

It is important to notice that the functor O is exact. For example, if

ν : qPois−→ LieB¦
odd

is a quasi-isomorphism of props, then

Oν :OqPois−→OLieB¦
odd

is a quasi-isomorphism of the associated polydifferential operads.

4.3.1. An extended version of the operad Ass Let Ass¦ be an operad gener-

ated by degree 1 corolla 11 and degree zero corollas

00

21

0 6= 00

12

0 = 0,

subject to the following relations,

1

1
= 0 ,

0

1
−

0

1 −
0

1 = 0,

1 2

3

0

0 −
32

1

0

0

Thus Ass¦ is an extension of the operad of associative algebras Ass by one
extra degree 1 generator of arity (1,1) subject to quadratic relations.

We want to construct a minimal resolution of Ass¦.
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An extended version of the operad Ass∞

Let Ass¦∞ be the free operad generated by the following S-module

E¦(n) = span

〈
aaaa

σ1 σ2 σn

aaaa

. . .
〉

σ∈Sn
n+a≥2, a≥0

(4.10)

the degree of the generators is given in the same manner as for the regular
Ass∞ operad; ∣∣∣∣ aaaa

σ1 σ2 σn

aaaa

. . .
∣∣∣∣= 2−n.

The standard differential in Ass∞ extends naturally to Ass¦ by the following
formula (which is analogous to the one in the operad "Li e¦∞" introduced in
[CMW])

d¦
(

aaaa

σ1 σ2 σn

a

. . .
)
= ∑

p+q+r=n
a=b+c

(−1)qr+p
bbbb

σ1 σp σp+q+1 σp+q+r

σp+1 ... σp+q

cc

bbb

c

b

... ...

Theorem 4.3.1. The dg operad (Ass¦∞,d¦) is a minimal resolution of Ass¦.

Proof. We shall use the exact functor F introduced in Step 1 of the proof of
Theorem 2.7.1 in [CMW],

F : category of dg
1

2
-props −→ category of dg properads,

where, for a 1
2 -prop P,

F (P)(m,n) := ⊕
Γ∈Gr(m,n)

( ⊗
v∈v(Γ)

P(Out (v), In(v))⊗⊙•H 1(Γ,∂Γ)

)
Aut (Γ)

,

with Gr(m,n) representing the set of all (isomorphism classes of) oriented
graphs with n output legs and m input legs an such that they do not have in-
ternal edges which might correspond to 1

2 -prop compositions. Here H 1(Γ,∂Γ)
is the relative cohomology of the connected graphΓ viewed as a 1-dimensional
CW complex; the space H 1(Γ,∂Γ) is assumed to live in cohomological de-
gree 1. In particular the symmetric tensor algebra

⊙• H 1(Γ,∂Γ) is finite di-
mensional, and the square of any relative cohomology class vanishes. The
differential acts trivially on the H 1(Γ,∂Γ) part.

For any graphΓ, H 1(Γ,∂Γ) may be identified with the space of formal lin-
ear combinations of edges of Γ, modulo the relations that the sum of incom-
ing edges at any vertex equals the sum of outgoing edges. Then

⊙p H 1(Γ,∂Γ)
may be identified with formal linear combinations of p-fold wedge products
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of edges, modulo similar relations. Such a product of p edges may be rep-

resented combinatorially by putting a marking of the form 11 , on these p

edges. As for any edge e the wedge product e ∧ e vanishes identically, we
have a relation

1

1 = 0

for these markings.
Operads form a special case of 1

2 -props, and the functor F restricted to
dg operads gives us an exact endofunctor

F : category of dg operads −→ category of dg operads.

Let us apply this functor to dg operads Ass∞ and Ass. The operad F (Ass)
is precisely the operad Ass¦. The dg operad F (Ass∞) is generated by corollas
(4.10) with either a = m = n = 1 or a = 0 and m+n ≥ 3 subject to the relations

1

1 = 0 ,

1

1 2 m−1 m
...

0

1

−
m∑

i=1

1 i−1

i

i+1 m

1

... ...

0

1

= 0

The differential in F (Ass∞) acts non-trivially only on corollas with weight
zero, and is given by the formula identical to the case of Ass∞.

As the functor F is exact, we have a canonical projection

F (Ass∞) −→ F (Ass) ≡Ass¦

which is a quasi-isomorphism.
We also have an epimorphism of dg operads

p : Ass¦∞ −→ F (Ass∞)

which sends to zero all generators (4.10) which do not satisfy the condition
a = m = n = 1 or the condition a = 0 and m +n ≥ 3 (it is easy to check that
this projection respects the differentials). To complete the proof of the the-
orem we have to show that the morphism p is a quasi-isomorphism. Con-
sider a filtration of Ass¦∞ given, for any graph Γ, by the difference a(Γ)−n(Γ),
where a(Γ) is the sum of all decorations of non-bivalent vertices and n(Γ) is
the sum of valences of non-bivalent vertices (cf.[CMW]). On the 0-th page
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E pq
0 Ass¦∞ of this spectral sequence the induced differential δ0 acts only on

bivalent vertices by splitting them as follows

δ0 aa = ∑
a=b+c

b≥1,c≥1
b

c

b

c

.

By Proposition 2.6.1 from [CMW], the associated δ0-cohomology (i.e. the
first page of this spectral sequence)

H(E pq
0 Ass¦∞,δ0) = E pq

1 Ass¦∞

consists of graphs which

i) have no bivalent vertices,

ii) have each non-bivalent vertex assigned weight a ∈Z≥0 and

iii) have every edge either decorated by the symbol 1 or not decorated at
all.

The induced differential δ1 in E pq
1 Ass¦∞ is given by

δ1 aaaa

1 2 m

aaaa

. . .

=

1

1 2 m−1 m
...

a−1

1

−∑m
i=1

1 i−1

i

i+1 m

1

... ...

a−1

1

Now comes the main observation that each complex (E pq
1 Ass¦∞(m),δ1), m ≥

2, is identical to the following one

F̂ (Ass∞)(m) = ⊕
Γ∈G(m,1)

( ⊗
v∈v(Γ)

Ass∞(Out (v))⊗⊙•C (Γ,∂Γ)

)
Aut (Γ)

,

where G(m,1) is the set of planar trees with one input leg and m output legs,
and C (Γ,∂Γ) is the relative chain complex of the graph Γ viewed as the 1-
dimensional CW complex; the differential in F̂ (Ass∞) is induced from the
standard chain differential in C (Γ,∂Γ). Indeed, C (Γ,∂Γ) is a graded vector
space

C (Γ,∂Γ) = span〈V (Γ)〉[0] ⊕ span〈E(Γ)〉[1]

concentrated in degree zero and degree one; the degree zero part is spanned
over a field K by the (internal) vertices of the graph Γ, and the degree one
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part is spanned over K by the set of its internal edges and legs. The differ-
ential ∂ in C (Γ,∂Γ) is trivial on edges, and is given on an arbitrary vertex
v ∈V (Γ) by the formula

d v = ei n(v) −
∑

ev∈Out (v)
ev ,

where Out (v) is the set of edges outgoing from v and ei n(v) is the unique
edge incoming to the vertex v . Therefore the symmetric tensor algebra⊙•C (Γ,∂Γ)

is spanned overK by monomials of the form∏
v∈V (Γ)

v av ⊗ ∏
e∈E(Γ)

eαe

where av is some non-negative natural number, and αv takes values 0 or 1.
An element of

⊕
Γ∈G(m,1)

( ⊗
v∈v(Γ)

Ass∞(Out (v))
∏

v∈V (Γ)
v av ⊗ ∏

e∈E(Γ)
eαe⊗

)
Aut (Γ)

can be understood as an element of Ass∞ whose vertices v are decorated
by non-negative numbers av and whose edges e are either decorated with
symbol 1 (in the case αe = 1) or not decorated at all (in the case αe = 0).
The differential can then be identified with δ1 above. As H0(Γ,∂Γ) = 0, we
conclude immediately that

H(E pq
1 Ass¦∞,δ1) ' F (Ass∞)

proving thereby that the map p is a quasi-isomorphism.
The proof of the theorem is completed.

4.3.2. Representations of the operad Ass¦∞ The representations of Ass¦∞ in
aK-module V is a series of maps

µ(a)
n : V ⊗n −→V

subject to the compatibility condition Cn for each n ≥ 1

Cn :
∑

p+q+r=n
a=b+c

(−1)qr+pµ(b)
p+1+r ◦

(
id⊗p ⊗µ(c)

q ⊗ idr
)
= 0
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We can think of the collection µ(0)
n ,µ(1)

n , . . . as homogenous ~ components of
a continuous morphism ofK[[~]]

µn : V ⊗n[[~]] −→V [[~]],

which if extended to a completed tensor product of K[[~]]-modules can be
interpreted as

µ~n : (V [[~]])⊗n −→V [[~]].

One can check that the system of maps µ~• constitute an Ass∞ structure on
theK[[~]]-module V [[~]].

4.3.3. Lemma There is a morphism of operads

f : Ass¦ −→OLieB¦
odd

such that

f

 00

21

0

 = 1 2 + 1

2

1 2

•

1

+ terms with ≥ 2 internal vertices

f

(
11

)
= 1

2
1 1

1

• + terms with ≥ 2 internal vertices

Proof. Given any LieB¦
odd structure in an arbitrary graded vector space V ,

we constructed above in section 4.2.4 a universal Maurer-Cartan element
(Γ2,Γ1) of the Hochschild dg Lie algebra of OV , i.e. the structure of a dg as-
sociative algebra structure in OV which deforms the standard graded com-
mutative multiplication in OV . Put another way, we get a universal repre-
sentation of Ass¦ in OV which sends the multiplication generator of Ass¦

into Γ2 and the (1,1) generator of Ass¦ into Γ1. Restating this result in terms
of graphs, we obtain the above claim.

4.3.4. Theorem There exists a morphism of dg props

F : Ass¦∞ −→OqPois

which makes the following diagram commutative,

Ass¦∞
F //

p

��

OqPois

π

��
Ass¦

f
// OLieB¦

odd
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and satisfies the condition

π1 ◦F

(
. . .1 2 3 m−1 m

a

)
=λm

1 2 . . . m

•

1 2 ... a+1

(4.11)

where λm is a non-zero constant of unspecified (and inconsequential) value
and where π1 : qPois → (qPois)1 is the projection of the free prop qPois to
the subspace, (qPois)1, consisting of graphs with precisely 1 internal vertex
of weight zero.

Proof. The existence of F follows immediately from existence of the mor-
phism f and the fact that vertical lines represent cofibrant replacements of
dg operads. The second condition of π1◦F follows from the standard induc-
tion (cf. [Me4]).

4.3.5. Second proof of the Main Theorem Given a quasi-Poisson structure
in a dg space V , i.e., given a representation of dg properads

ρ : qPois−→EndV .

By the very definition of the Merkulov-Willwacher polydifferential functor
O, there is an associated representation of dg operads

Oρ :OqPois−→End¯•V

in the symmetric tensor algebra ¯•V . Composing it with the canonical mor-
phism F from the above Theorem we obtain a morphism of dg operads,

Ass¦∞ −→End¯•V

which gives us the required universal deformation quantization of the given
quasi-Poisson structure.
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