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Summary

The main topic of this doctoral thesis is asymptotic properties of
zeros in polynomial families appearing as eigenfunctions to exactly-
solvable differential operators (ES-operators). The study was ini-
tially inspired by a number of striking results from computer exper-
iments performed by G. Masson and B. Shapiro for a more restric-
tive class of operators. Our research is also motivated by a classi-
cal question going back to S. Bochner on a general classification of
differential operators possessing an infinite sequence of orthogonal
eigenpolynomials. In general however, the sequence of eigenpolyno-
mials of an ES-operator does not constitute an orthogonal system
and it can therefore not be studied by means of the extensive theory
known for such systems. Our study can thus be considered as the
first step to a natural generalization of the asymptotic behaviour
of the roots of classical orthogonal polynomials. Also, many spe-
cial functions appear as solutions to certain second-order differential
equations and hence solutions to exactly-solvable differential equa-
tions might be thought of as higher order special functions. Our
main definition is as follows. An exactly-solvable operator of
order k is a linear differential operator of the form

T =

k∑

j=1

Qj(z)
dj

dzj

where the Qj are complex polynomials in one variable satisfying
the condition degQj ≤ j with equality for at least one j. We
are interested in the sequence of polynomials {pn}∞n=0 satisfying
T (pn) = λnpn where deg pn = n, and λn is the spectral parameter.
One can show that for all sufficiently large integers n there exists a
unique and monic pn for any T as above. If degQk = k for the lead-
ing term then T is called a non-degenerate ES-operator, whereas
if degQk < k we call T a degenerate ES-operator. The major
difference between these two classes is that in the non-degenerate
case the union of all roots of all pn is contained in a compact set,
as opposed to the degenerate case where the largest modulus of the
roots of pn tends to infinity when n → ∞. Computer experiments
indicate that roots of eigenpolynomials of ES-operators fill piece-
wise real analytic curves in the complex plane. One of the main
technical tools in this thesis is the Cauchy transform of a probabil-



ity measure, which in the considered situation satisfies an algebraic
equation - in the degenerate case however only after an appropriate
scaling of the eigenpolynomials. Due to the connection between the
(asymptotic) root measure and its Cauchy transform it is thus pos-
sible to obtain detailed information on the limiting zero distribution.

Some Remarks. Let us mention some interesting but still un-
exploited connections of our results to other fascinating fields:

1. The existence of a probability measure µ with compact sup-
port such that its Cauchy transform satisfies an algebraic equation
implies that the Cauchy transform also satisfies a differential equa-
tion (of order at most k) expressed by a so called Fuchsian operator
in the Weyl algebra A1(z, ∂). It is an open problem to determine
the class of all Fuchsian operators which arise via the limiting root
measure of eigenpolynomials associated to degenerate ES-operators.

2. In many situations considered in this thesis the support of
the limiting root measure is a curvilinear tree in the complex plane
which can be straightened out in a certain canonical holomorphic
coordinate. The resulting usual tree has only a finite number of
possible angles between its edges. This bears a strong resemblance
with the notion of amoeba in tropical algebraic geometry, which is an
extremely active research area. But the actual connection between
our ’generalized’ amoebas and the classical amoebas is unclear at
the moment.

3. The support of the limiting root measure seems to be a part
of the global Stokes line of the associated ordinary linear differential
equation. But for orders k > 2 there is no satisfactory theory of
Stokes lines, and the question about the exact interrelation between
the latter support and Stokes lines is still widely open.

4. In the non-degenerate situation considered in this thesis (see
paper I) it is only the leading coefficient of the differential equation
which effects the limiting zero distribution. To change the situation
in such a way that the whole symbol of the differential operator will
be important one has to, instead of the usual spectral problem, con-
sider its homogenized version where the polynomial coefficient Qj is
multiplied by λj

n where λn is the spectral parameter. This direction
is at present pursued by J. Borcea, R. Bøgvad and B. Shapiro.



This thesis consists of five papers, all devoted to the study of zeros
of eigenpolynomials of ES-operators.

Paper I: In this paper we study roots of polynomials arising as
eigenfunctions to non-degenerate ES-operators. In this case the
eigenvalue equation can be considered as a natural generalization
to higher orders of the Gauss hypergeometric equation

(z2 − 1)f ′′(z) + (az + b)f ′(z) + cf(z) = 0

to which (for certain choices of a, b and c) the classical orthogonal
Jacobi polynomials appear as solutions. But for orders k > 2 the
sequence of eigenpolynomials is in general not an orthogonal sys-
tem. The main result in this paper is a complete characterization
of the asymptotic distribution of zeros of the eigenpolynomial of an
arbitrary non-degenerate ES-operator. We thus settle several of the
conjectures stated by G. Masson and B. Shapiro in [4]. Namely, for
any such operator, we construct the probability measure µn (we call
this the root measure) of its unique and monic eigenpolynomial pn

by placing a point mass of size 1/n at each zero of pn. We then
prove that µn converges (weakly) to a unique probability measure
µ whose Cauchy transform satisfies the equation C(z)k = 1/Qk(z)
for almost all z ∈ C. Thus the asymptotic zero distribution of pn

depends only on the leading polynomial Qk of T . Moreover, supp
µ is a tree which contains all the zeros of Qk and is contained in
the convex hull of the zeros of Qk. The proof of these properties of
supp µ depends heavily on Lemma 3 in section 3 due to H. Rullg̊ard.

Paper II: In this paper we adress a classical question going back
to S. Bochner and H.L. Krall. A system of orthogonal polynomials
which also appear as eigenfunctions of some finite-order differential
operator is called a Bochner-Krall system and the corresponding
spectral operator a Bochner-Krall operator. It is an open problem
to classify all Bochner-Krall systems - a complete classification is
only known for operators of order k ≤ 4. Here we use the results
obtained in paper I to settle a special case of a general conjecture
describing the leading terms of all Bochner-Krall operators. Namely,
in [4] it is conjectured that the leading coefficient of any such op-
erator is a power of a polynomial of degree at most 2. Our main
result in this paper is an affirmative answer to this conjecture for



Bochner- Krall operators of Nevai type - that is operators for which
the system of eigenpolynomials is orthogonal with respect to a mea-
sure of the so called Nevai class.

Paper III: This paper is devoted to a study on the location of zeros
of individual eigenpolynomials of a confluent hypergeometric opera-
tor, which is the simplest example of a degenerate ES-operator. The
classical Laguerre polynomials appear as a special case, and some
well-known results about these are recovered by yet another method
and generalized. We pay particular attention to hyperbolicity prop-
erties of the eigenpolynomials of this operator.

Paper IV: In this paper we extend our previous study to asymptotic
properties of zeros of eigenpolynomials for arbitrary degenerate ES-
operators. We prove that (as opposed to the non-degenerate case)
the zeros of the unique and monic nth degree eigenpolynomial pn do
not stay in a compact set as its degree tends to infinity. However,
computer experiments indicate the existence of a limiting root mea-
sure supported on a tree in this case too, but that it has compact
support only after an appropriate scaling. The main achievement in
this paper is an explicit conjecture and partial results (lower bound)
on the growth of the largest modulus of the roots of pn. This can be
seen as a generalization of the asymptotic behaviour of the maximal
root for classical orthogonal polynomials appearing as eigenfunc-
tions to degenerate ES-operators - our conjecture is confirmed by
known results when reduced to such systems. Namely, let T be a
degenerate ES-operator of order k and denote by j0 the largest j for
which degQj = j in T (note that j0 < k). Denote by rn the largest
modulus of the roots of pn. Then

lim
n→∞

rn

nd
= cT where d := max

j∈[j0+1,k]

(
j − j0

j − degQj

)

and where cT is a positive constant. Based on this conjecture
we introduce the properly scaled polynomial qn(z) = pn(ndz) for
which the zeros are (conjecturally) contained in a compact set when
n→ ∞. In fact, our natural heuristic arguments (see section 3) show
that d as above is the only possible choice which results in a nice
algebraic equation satisfied by the Cauchy transform of the asymp-
totic root measure of qn(z). From this equation we can conclude



which terms of T that are relevant for the limiting zero distribution
of its eigenpolynomials. Numerical evidence clearly illustrates that
distinct operators whose scaled eigenpolynomials satisfy the same
Cauchy transform equation when n→ ∞ yield identical zero distri-
butions. It is still an open problem to describe its support explicitly.

Finally, as in the non-degenerate case, operators of the type we
consider here occur in the theory of Bochner-Krall systems. By com-
paring known results on orthogonal polynomials with results on the
eigenpolynomials studied here, we believe it will be possible to gain
new insight into the nature of Bochner-Krall systems.

Paper V: In this paper we extend earlier results from paper IV
by establishing a lower bound for the largest modulus of the roots
of the eigenpolynomial of an arbitrary degenerate ES-operator. We
thus confirm the lower-bound part of our main conjecture as stated
in paper IV.
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On Polynomial Eigenfunctions for a
Class of Differential Operators

Tanja Bergkvist & Hans Rullg̊ard
Published in Mathematical Research Letters 9, 153-171 (2002)

Abstract
In this paper we study the asymptotic properties of ze-

ros of polynomials arising as eigenfunctions of a certain
class of operators (non-degenerate exactly-solvable opera-
tors). We prove that when the degree of the unique and
monic eigenpolynomial tends to infinity, its zeros are dis-
tributed according to a certain probability measure which
is compactly supported on a tree and which depends only
on the leading term of the operator.

1 Introduction

Jacobi polynomials are solutions of the differential equation

(z2 − 1)f ′′(z) + (az + b)f ′(z) + cf(z) = 0, (1)

where a, b, c are constants satisfying a > b, a + b > 0 and c =
n(1 − a − n) for some nonnegative integer n. It is a classical fact
that the zeros of the Jacobi polynomials lie in the interval [−1, 1],

and that their density in this interval is proportional to 1/
√

1 − |z|2
in the limit when the degree n tends to infinity. The usual proof of
this statement involves the observation that, for fixed a and b, the
Jacobi polynomials constitute an orthogonal system of polynomials
with respect to a certain weight function on the interval [−1, 1]. The
desired conclusion then follows from the general theory of orthogonal
systems of polynomials.

The following appears to be a natural generalization of the dif-
ferential equation (1). Let k ≥ 2 be an integer, and let Q0, . . . , Qk

be polynomials in one complex variable satisfying degQj ≤ j with
equality when j = k. Moreover, we make a normalization by assum-
ing that Qk is monic. Consider the differential operator

TQ(f) =

k∑

j=0

Qjf
(j) (2)
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where f (j) denotes the jth derivative of f . Operators of this type
appear for example in the theory of Bochner-Krall systems of orthog-
onal polynomials, see [3]. This operator was studied by G. Masson
and B. Shapiro in [4]. Particular attention was given the more spe-
cial operators T ′(f) = Qkf

(k) and T ′′(f) = (d/dz)k (f(z)Qk(z)).
These are indeed special cases of (2) obtained by taking Qj = 0 or

Qj =
(

k
j

)
Q

(k−j)
k respectively, for j = 0, . . . , k − 1. The following re-

sult, which shows that TQ has plenty of polynomial eigenfunctions,
was proved for the operators T ′ and T ′′ in [4]:

Theorem 1 For all sufficiently large integers n there exists a unique
constant λn and a unique monic polynomial pn of degree n which
satisfy

TQ(pn) = λnpn. (3)

Moreover, we have λn/n(n− 1) . . . (n− k + 1) → 1 when n→ ∞.

G. Masson and B. Shapiro made a number of striking conjectures,
based on numerical evidence, about the zeros of the eigenpolynomi-
als pn. They also observed that when k > 2, the sequence pn is in
general not an orthogonal system of polynomials, so it cannot be
studied by means of the extensive theory known for such systems.

The goal of this paper is to prove some of the conjectures in [4].
More precisely, we shall show that in the limit when n→ ∞, the ze-
ros of pn are distributed according to a certain probability measure.
This probability measure depends only on the “leading polynomial”
Qk and may be independently characterized in the following way.

Theorem 2 Let Qk be a monic polynomial of degree k. Then there
exists a unique probability measure µQk

with compact support whose
Cauchy transform

C(z) =

∫
dµQk

(ζ)

z − ζ
(4)

satisfies C(z)k = 1/Qk(z) for almost all z ∈ C.

We record some properties of the measure µQk
which will be en-

countered in the proof of Theorem 2. Let suppµ denote the support

2



of a measure µ. Also, let

Ψ(z) =

∫
Qk(z)

−1/k dz

be a primitive function of Qk(z)
−1/k. At this point, we think of

Ψ as a locally defined function in any simply connected domain
where Qk does not vanish. The choice of a branch of Qk(z)

1/k and
an integration constant is of no importance here. As need arises,
specifications will be made concerning these choices.

Theorem 3 Let Qk and µQk
be as in Theorem 2. Then supp µQk

is
the union of finitely many smooth curve segments, and each of these
curves is mapped to a straight line by the mapping Ψ. Moreover,
suppµQk

contains all the zeros of Qk, is contained in the convex hull
of the zeros of Qk and is connected and has connected complement.

If p is a polynomial of degree n, we can construct a probability
measure µ by placing a point mass of size 1/n at each zero of p. We
will call µ the root measure of p. Our main result is

Theorem 4 Let pn be the monic degree n eigenpolynomial of the
operator TQ and let µn be the root measure of pn. Then µn converges
weakly to µQk

when n→ ∞.

To illustrate, we show the zeros of the eigenpolynomial p40 for
the order 5 operator TQ with Q5(z) = z(z − 1 + i)(z − 5)(z − 2 −
4i)(z − 4 − 4i) and Q0 = · · · = Q4 = 0. Large dots represent the
zeros of Q5 (which are, in this case, also zeros of pn) and small dots
represent (the remaining) zeros of p40. It is remarkable how well the
zeros of the eigenpolynomial line up along the curves predicted by
our results. Notice also how these curves are straightened out by
the mapping Ψ, see Figure 1.

It is not difficult to deduce various other features of the measure
µQk

from the properties given in Theorem 3 and the defining prop-
erty (4). For example, a recipe for computing the angles between
the different curve segments is conjectured in [4]. The correctness of
the procedure follows easily from our results. We refrain from going
into details, but the key observation is the following. Suppose z0 is

3



Figure 1: Zeros of the polynomial Q5 and the eigenpolynomial p40 (left) and
the image of these zeros under a branch of the mapping Ψ.

a point on one of the curve segments in suppµQk
and let C1 and C2

be the limiting values of C(z) as z approaches z0 from different sides
of the curve. Then C1 and C2 are kth roots of 1/Qk(z0), and their
actual values are easily found if the combinatorics of suppµQk

are
known (which was assumed in the recipe mentioned above). From
the fact that πµQk

= ∂C/∂z̄ ≥ 0, it follows that the curve must be
perpendicular to C1 − C2 at z0. Using this observation where sev-
eral curves meet, it is possible to deduce the angles between them.
Notice also that the density of µQk

at z0 is proportional to |C1−C2|.

It is particularly easy to compute µQk
when Qk has only real zeros.

Namely, denote the zeros by z1, . . . , zk in increasing order. From
Theorem 3 we know that supp µQk

= [z1, zk]. A direct computation
shows that on the subinterval [zj , zj+1], the measure is given by

µQk
=

1

π

∂C

∂z̄
=

2

π|Qk|1/k
sin

(
πj

k

)
dx

where dx denotes Lebesgue measure on the real line. This remains
true even if Qk has multiple zeros, except if all the zeros coincide.
In this case, µQk

reduces, of course, to a point mass at this multiple
zero.

Let us finally discuss some possible applications and directions
for further research. As we already mentioned, operators of the
type we consider occur in the theory of Bockner-Krall orthogonal

4



systems. More precisely, a Bochner-Krall system (BKS), is a se-
quence of polynomials pn which are both eigenpolynomials of an
operator TQ (here one omits the assumption that degQk = k) and
also orthogonal with respect to a suitable inner product. It is a long
standing problem to classify all BKS. A great deal is known about
the asymptotic distribution of zeros of orthogonal polynomials. By
comparing such results with our results on the distribution of zeros
of eigenpolynomials, we believe that it will be possible to gain new
insight into the nature of BKS. To get the most out of this approach,
however, it would be desirable to have generalizations of our results
to the case degQk < k. Computer experiments performed by the
first author indicate that a limiting measure exists in this case too,
but that it may not have compact support.

This paper is organized as follows. In section 2 we compute the
matrix for the operator TQ with respect to the basis of monomials
1, z, z2, . . ., and use this to prove Theorem 1 for an arbitrary op-
erator of the type we consider. Section 3 contains a proof of the
uniqueness part of Theorem 2. Along the way, we also prove es-
sentially all the statements in Theorem 3. In section 4 we recall
some basic facts on the weak topology of measures in the complex
plane and on logarithmic potentials and Cauchy transforms. We
also outline the connection of these concepts to root measures of
polynomials and prove a general result on the relation between the
zeros of a polynomial and those of its derivative. In the final section
5 we apply the ideas from the previous section to give a proof of
Theorem 4. The existence part of Theorem 2 is also a consequence
of this proof.

Acknowledgements. The authors are sincerely grateful to Harold
Shapiro for highly valuable comments and discussions, and in par-
ticular for suggesting the use of the Cauchy transform. We would
also like to thank Gisli Masson and Boris Shapiro for introducing us
to the problem and for their support during our work.
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2 Calculation of the matrix

Proof of Theorem 1. We now prove that Theorem 1 as stated in
Introduction holds for any operator of the type we consider. Recall
that the differential operator TQ is defined by

TQ = Qk
dk

dzk
+Qk−1

dk−1

dzk−1
+ · · ·+Q1

d

dz
+Q0

where the Qm are polynomials such that degQm ≤ m for m =
0, . . . , k and degQk = k. Let pn(z) =

∑n
i=0 an,iz

i be a monic poly-
nomial of degree n and let Qm(z) =

∑m
j=0 qm,jz

j . Using these nota-
tions we get

TQ(pn) =
k∑

m=0

Qm · d
m

dzm
pn =

k∑

m=0

[ m∑

j=0

qm,jz
j

]
·
[ n∑

i≥m

an,i ·
i!

(i−m)!
zi−m

]

=
k∑

m=0

n∑

s=0

[ ∑

s=j+i−m
m≤i≤n
0≤j≤m

qm,j · an,i ·
i!

(i−m)!

]
zs

=
n∑

s=0

[ k∑

m=0

∑

s=j+i−m
m≤i≤n
0≤j≤m

qm,j · an,i ·
i!

(i−m)!

]
zs.

Lemma 1 If pn is monic and TQ(pn) = λnpn then

λn =
k∑

m=0

qm,m · n!

(n−m)!
.

Proof. With pn monic and TQ(pn) = λn·pn = λnz
n+λn·an,n−1z

n−1+
. . .+λn ·an,0, finding the eigenvalue λn amounts to finding the coef-
ficient at zn in TQ(pn). Note that deg

(
Qm

dm

dzmpn

)
≤ m+ n−m = n

with equality if and only if degQm = m. Thus we can assume that
pn = zn since any lower degree terms of pn will result in terms of
degree lower than n in TQ(pn). Thus

6



TQ(zn) =

k∑

m=0

Qm · d
m

dzm
zn =

k∑

m=0

Qm · n!

(n−m)!
zn−m

=
k∑

m=0

[( m∑

j=0

qm,jz
j

)
· n!

(n−m)!
zn−m

]

=
k∑

m=0

[ m∑

j=0

qm,j ·
n!

(n−m)!
zj+n−m

]
.

Setting j = m we get

λnz
n =

k∑

m=0

qm,m · n!

(n−m)!
zn =⇒ λn =

k∑

m=0

qm,m · n!

(n−m)!
.

�

Lemma 2 For n ≥ 1 the coefficient vector X of pn with components
an,0, . . . , an,n−1 satisfies the linear system MX = Y , where Y is
a vector and M is an upper triangular matrix, both with entries
expressible in the coefficients qm,j.

Proof. The relation
TQ(pn) = λn · pn

is equivalent to

n∑

s=0

[ k∑

m=0

∑

s=j+i−m
m≤i≤n
0≤j≤m

qm,j · an,i ·
i!

(i−m)!

]
zs = λn

n∑

s=0

an,sz
s.

With j = m + s − i the condition j ≤ m gives i ≥ s and the
condition j ≥ 0 results in m ≥ i − s. Therefore the above system
will be equivalent to

n∑

s=0

[ ∑

s≤i≤n

∑

i−s≤m≤min(i,k)

qm,m+s−i ·
i!

(i−m)!
· an,i −λn · an,s

]
zs = 0.

Thus for each s we have
∑

s≤i≤n

∑

i−s≤m≤min(i,k)

qm,m+s−i ·
i!

(i−m)!
· an,i − λn · an,s = 0

7



or, equivalently,

∑

s≤i≤n−1

∑

i−s≤m≤min(i,k)

qm,m+s−i ·
i!

(i−m)!
· an,i − λn · an,s =

=
∑

n−s≤m≤min(n,k)

qm,m+s−n · n!

(n−m)!
· an,n

where an,n = 1. The n × n matrix M is thus constructed for 0 ≤
s ≤ n − 1 and 0 ≤ i ≤ n − 1. The left-hand side of the above
equation corresponds to the (s + 1)st row in M multiplied by the
column vector X, and the right-hand side represents the (s + 1)st
row in Y . Thus the entries of M are given by

Ms+1,i+1 =
∑

i−s≤m≤min(i,k)

qm,m+s−i ·
i!

(i−m)!
− λn · δi,s (5)

where δ denotes the Kronecker delta. The condition i ≥ s implies
that M is upper triangular. �

We can now prove Theorem 1. Using Lemma 1 we get

λn

n(n− 1) . . . (n− k + 1)
=

∑k
m=0 qm,m · n!

(n−m)!

n(n− 1) . . . (n− k + 1)

=
q0,0

n!
n!

+ q1,1
n!

(n−1)!
+ q2,2

n!
(n−2)!

+ . . .+ qk−1,k−1
n!

(n−k+1)!
+ qk,k

n!
(n−k)!

n(n− 1) . . . (n− k + 1)

=
q0,0

n(n− 1) . . . (n− k + 1)
+

q1,1

(n− 1) . . . (n− k + 1)
+ . . .

. . .+
qk−1,k−1

(n− k + 1)
+ qk,k.

Thus

lim
n→∞

λn

n(n− 1) . . . (n− k + 1)
= qk,k = 1,

and the first part of Theorem 1 is proved. To prove the uniqueness
part, we show that the determinant of the matrix M constructed in
Lemma 2 is nonzero for all sufficiently large n. Since the matrix is
upper triangular its determinant equals the product of the diagonal
elements. Thus it suffices to prove that for sufficiently large n every
diagonal element is nonzero.
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The diagonal element Mi+1,i+1 of M is obtained by letting i = s in
(5) and so

Mi+1,i+1 =
∑

0≤m≤min(i,k)

qm,m · i!

(i−m)!
− λn

for i = 0, . . . , n− 1. But the last expression equals λi − λn. Indeed,
if i ≥ k then

∑

0≤m≤min(i,k)

qm,m · i!

(i−m)!
=

∑

0≤m≤k

qm,m · i!

(i−m)!
= λi.

If i < k then this is again true since by definition i!/(i −m)! = 0
for i < m ≤ k. Thus we have to show that λi − λn 6= 0 ∀i < n
as n → ∞. For small values of i (i < k) we have λi < ∞ but
λn → ∞ as n → ∞, implying λi − λn 6= 0. For larger values of i
(0 < m < k ≤ i) we get

λn − λi =

k∑

m=0

qm,m
n!

(n−m)!
−

k∑

m=0

qm,m
i!

(i−m)!

=
k∑

m=0

qm,m

[
n!

(n−m)!
− i!

(i−m)!

]
.

Dividing the last expression by n!
(n−k)!

− i!
(i−k)!

we obtain

λn − λi

n!
(n−k)!

− i!
(i−k)!

= qk,k +

k−1∑

m=1

qm,m

n!
(n−m)!

− i!
(i−m)!

n!
(n−k)!

− i!
(i−k)!

.

which tends to qk,k = 1 as n→ ∞, since for each m ≤ k − 1 we get

lim
n→∞

n!
(n−m)!

− i!
(i−m)!

n!
(n−k)!

− i!
(i−k)!

= lim
n→∞

i!
(n−m)!

(
n!
i!
− (n−m)!

(i−m)!

)

i!
(n−k)!

(
n!
i!
− (n−k)!

(i−k)!

)

= lim
n→∞

(n− k)!

(n−m)!
·
(

n!
i!
− (n−m)!

(i−m)!

)
(

n!
i!
− (n−k)!

(i−k)!

)

= 0.

Therefore λn − λi 6= 0. Thus, as n→ ∞, every diagonal element of
M becomes nonzero so M is invertible and the systemMX = Y has
a unique solution. �
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3 Probability measures whose Cauchy transform
satisfies an algebraic equation

In this section we will prove the uniqueness part of Theorem 2 and
show that the measure µQk

, if it exists, has the properties stated in
Theorem 3. The proof relies heavily on the following lemma.

Lemma 3 Let A ⊂ C be a finite set, U ⊂ C a convex domain
and χ : U → A a measurable function such that ∂χ/∂z̄ ≥ 0 (in
the sense of distributions). Let a ∈ A, z0 ∈ U and assume that
χ−1(a) ∩ {|z − z0| < r} has positive Lebesgue measure for every
r > 0. Then χ(z) = a almost everywhere in U ∩ (z0 + Γa) where

Γa = {z ∈ C; Re(az) ≥ Re(bz), ∀b ∈ A}. (6)

Note that if χ−1(a)∩{|z−z0| < r} has positive Lebesgue measure
for every a ∈ A and all r > 0, then χ is determined completely (out-
side a set of measure 0) since the cones Γa cover the whole complex
plane.

Proof. Let χa denote the characteristic function of the set χ−1(a).
We will show that if z1, z2 ∈ U with z2 − z1 ∈ Γa, and φ is a pos-
itive test function such that z1 + supp φ and z2 + supp φ are both
contained in U , then

(φ ∗ χa)(z1) ≤ (φ ∗ χa)(z2). (7)

The desired conclusion follows from this. Indeed, let φj be a se-
quence of positive test functions such that suppφj → 0 and

∫
φj dλ =

1, where λ denotes planar Lebesgue measure. We know then that
φj ∗ χa converges in L1

loc to χa. Hence, for any ǫ, r > 0 we can find
for all sufficiently large j a point z1 with |z1 − z0| < r such that
(φj ∗ χa)(z1) > 1 − ǫ. It follows from (7) that (φj ∗ χa)(z2) > 1 − ǫ
and hence

|(φj ∗ χ)(z2) − a| =

∣∣∣∣
∫
φj(z2 − ζ)(χ(ζ)− a) dλ(ζ)

∣∣∣∣ < ǫmax
b∈A

|b− a|

for all z2 ∈ z1 + Γa. Letting ǫ and r tend to 0 and j → ∞ it follows
that χ(z) = limj→∞(φj ∗ χ)(z) = a for almost all z in z0 + Γa.

We now prove the inequality (7). Without loss of generality we
may assume that z2 − z1 > 0 and that a = 0, for the general case
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can be reduced to this situation by replacing χ with the function
eiθ(χ(eiθz)−a) where θ = arg(z2−z1). The assumption that z2−z1 ∈
Γa then implies that A is contained in the closed left half plane
{Re z ≤ 0}.

For any ǫ > 0, let χ̃ǫ = log(χ− ǫ) where we have chosen a branch
of the logarithm function which is continuous in the left half plane.
Let ψ be a positive test function and note that ∂(ψ ∗χ)/∂z̄ ≥ 0 and
Reψ ∗ χ ≤ 0. It follows that

Re
∂

∂z̄
log(ψ ∗ χ− ǫ) = Re

(
1

ψ ∗ χ− ǫ
· ∂(ψ ∗ χ)

∂z̄

)
≤ 0.

When suppψ → 0 with
∫
ψ dλ = 1, we have that log(ψ∗χ−ǫ) → χ̃ǫ

in L1
loc, and hence as a distribution. By passing to the limit it follows

that

Re
∂χ̃ǫ

∂z̄
≤ 0.

If we write χ̃ǫ = σǫ + iτǫ, this means that

∂σǫ

∂x
≤ ∂τǫ

∂y
. (8)

Fix a positive test function φ such that zj + supp φ ⊂ U for
j = 1, 2 and consider the function (φ∗σǫ)(z1 +ξ) of the real variable
ξ. It follows from (8) and the fact that τǫ is uniformly bounded for
all ǫ that

∂

∂ξ
(φ ∗ σǫ)(z1 + ξ) =

∫
∂φ

∂x
(z1 + ξ − ζ)σǫ(ζ) dλ(ζ)

≤
∫
∂φ

∂y
(z1 + ξ − ζ)τǫ(ζ) dλ(ζ)

≤ M

where the constant M does not depend on ǫ. In particular,

(φ ∗ σǫ)(z2) − (φ ∗ σǫ)(z1) ≤M |z2 − z1|. (9)

On the other hand it is clear that

(φ ∗ σǫ)(z) = log ǫ · (φ ∗ χa)(z) +O(1). (10)

Now (7) follows from (9) and (10) when ǫ→ 0. �
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We deduce two corollaries of Lemma 3.

Corollary 1 Let U ⊂ C be a convex domain and A ⊂ C a finite set.
If v is a subharmonic function defined in U such that 2∂v/∂z ∈ A
almost everywhere, then v is convex.

Recall that a subharmonic function can locally be written as the
sum of a harmonic function and a logarithmic potential. It follows
that the distribution ∂v/∂z is represented by a locally integrable
function. The condition 2∂v/∂z ∈ A should be interpreted by say-
ing that 2∂v/∂z is represented by a measurable function with values
in A.

Proof. Let χ = 2∂v/∂z. Since v is subharmonic, ∂χ/∂z̄ ≥ 0.
Take any point z0 ∈ U and let A0 be the set of all a ∈ A such
that χ−1(a) has positive measure in every neighbourhood of z0. Let
U0 be a convex neighbourhood of z0 such that χ(z) ∈ A0 almost
everywhere in U0. By Lemma 3, χ(z) = a almost everywhere in
U0 ∩ (z0 + Γa) where Γa is defined by (6) but with A0 in place of A.
This implies that v(z) = v(z0)+Re a(z−z0) for all z ∈ U0∩(z0+Γa),
so that

v(z) = v(z0) + max
a∈A0

Re a(z − z0), z ∈ U0.

We have shown that in a neighbourhood of z0, v is the maximum
of certain linear functions, hence it is convex there. Since z0 was
arbitrary, it follows that v is convex. �

Corollary 2 Let A ⊂ C be a finite set, U ⊂ C a convex domain
and let χ : U → A be a measurable function. Then ∂χ/∂z̄ ≥ 0 if
and only if there exist real numbers ca (possibly equal to −∞) such
that χ(z) = a almost everywhere in Ga where

Ga = {z ∈ U ; ca + Re(az) ≥ cb + Re(bz), ∀b ∈ A}.

Proof. Suppose ca are real numbers such that χ(z) = a almost
everywhere in Ga. Let v(z) = maxa∈A (ca + Re(az)). Then v is
subharmonic and χ = 2∂v/∂z, hence

∂χ

∂z̄
= 2

∂2v

∂z∂z̄
≥ 0.
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Suppose conversely that ∂χ/∂z̄ ≥ 0. Since ∂χ/∂z̄ is real, there
exists a real valued function v defined in U with 2∂v/∂z = χ. It
follows from Corollary 1 that v is convex. Moreover, we see from
the proof that

v(z) = max
a∈A

(ca + Re(az))

where
ca = inf

z∈U
(v(z) − Re(az)).

If we define Ga using these constants ca it follows that v(z) = ca +
Re(az) for z ∈ Ga, hence χ(z) = 2∂v/∂z = a in Ga. �

Fix a monic polynomial Qk of degree k and suppose that µ is a
compactly supported probability measure whose Cauchy transform
C(z) satisfies

C(z)k = 1/Qk(z). (11)

We will first show that µ has the properties asserted in Theorem 3,
except that supp µQk

is contained in the convex hull of the zeros of
Qk, which will be proved in section 5.

Lemma 4 If the Cauchy transform of µ satisfies (11), then the sup-
port of µ is the union of finitely many smooth curve segments. These
curves are mapped to lines by Ψ.

Proof. It is sufficient to prove that suppµ has these properties in
a neighbourhood of any given point z0. Assume first that Qk(z0) 6=
0. Choose a branch of Qk(z)

−1/k defined in a simply connected
neighbourhood of z0 and let Ψ be a primitive function of Qk(z)

−1/k.
Let U be a convex neighbourhood of Ψ(z0) so small that Ψ maps
a neighbourhood of z0 bijectively onto U . By (11) we can write
C(z) = χ(Ψ(z))Qk(z)

−1/k for z ∈ Ψ−1(U), where χ has values in
the set of kth roots of unity. If we write w = Ψ(z), then

πµ =
∂C

∂z̄
=
∂χ(Ψ(z))

∂z̄
·Q−1/k

k = Ψ∗

(
∂χ

∂w̄

)
· ∂Ψ
∂z

·Q−1/k
k

= Ψ∗

(
∂χ

∂w̄

)
· |Qk|−2/k

where Ψ∗ denotes the pullback of distributions in U by Ψ. Since µ
is positive, it follows that

∂χ

∂w̄
≥ 0.
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By Corollary 2, U is the union of sets Ga whose boundaries are
finite unions of line segments, such that χ is constant in each Ga.
It follows that supp µ ∩ Ψ−1(U) = Ψ−1(supp ∂χ/∂z̄) is the union of
finitely many curve segments which are mapped to straight lines by
Ψ.

If z0 is a zero of Qk, we take a disc D centered at z0 wich does
not contain any other zeros of Qk. If γ is any ray emanating at z0,
we can define single valued branches of Q(z)−1/k and Ψ in D r γ.
Notice that Ψ is continuous up to z0. Let U be any half disc centered
at Ψ(z0) and contained in Ψ(D r γ). It follows as in the first part
of the proof that suppµ has the required properties in Ψ−1(U). By
varying γ and U , we see that the same holds in a full neighbourhood
of z0. �

Hence supp µ can be thought of as a graph whose edges are smooth
curve segments connecting certain vertices. The statement that
suppµ is connected and has connected complement then means that
it is a connected graph without cycles, that is a tree. Recall that a
connected graph is a tree precisely if the number of vertices exceeds
the number of edges by exactly one.

Lemma 5 If the Cauchy transform of µ satisfies (11), then the sup-
port of µ is a tree.

Proof. We will first prove that supp µ is connected. To do this we
will show that if U is a bounded domain which is connected and
simply connected, and the boundary of U does not intersect suppµ,
then either supp µ ⊂ U or supp µ ⊂ C r U . From this it easily
follows that supp µ is connected. Now it is clear that all the zeros
of Qk are either contained in U or in the complement of U , since
C(z) defines a continuous branch of Qk(z)

−1/k along ∂U . Observe
also that

1

2πi

∫

∂U

C(z) dz =
1

2πi

∫

C

∫

∂U

dz

z − ζ
dµ(ζ) =

∫

U

dµ(ζ). (12)

Now if all the zeros of Qk are contained in the complement of U ,
there is an analytic continuation of C(z) across U , hence the left
hand side of (12) vanishes. It follows that suppµ ⊂ C r U . If on
the other hand, all the zeros of Qk are contained in U , then C(z)
has an analytic continuation in CrU which is asymptotically equal
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to a/z for some kth root of unity a when z → ∞. Thus the left
hand side of (12) is equal to a. Since the right hand side is positive,
a must be 1, which means that all the mass of µ is in U . Hence we
have proved that suppµ is connected.

Now let E be the set of all curve segments in supp µ and let V
be the set of vertices which are endpoints of the edges in E. We
may assume that V contains all the zeros of Qk. To every pair
e ∈ E, v ∈ V such that v is an endpoint of e, we assign a number
ν(e, v) by the following rule. Let γ be a small loop winding once
around v in the clockwise direction, and let ν(e, v) be the jump
of (2πi)−1 logC(z) when z crosses e moving along γ. This number,
which is defined modulo Z, will be uniquely determined if we require
that 0 < ν(e, v) < 1. Assume now that v is not a zero of Qk and
let e1, . . . , er be the curves in E having v as one endpoint. (If some
curve has both its endpoints in v, it will be counted twice.) Select
a branch of Qk(z)

1/k near v and observe that by Lemma 3 and the
proof of Lemma 4, Qk(z)

1/kC(z) is a kth root of unity, which moves
once around the unit circle in the counterclockwise direction as z
moves along γ. It follows that ν(e1, v) + · · · + ν(er, v) = 1. If
instead v is a zero of Qk of multiplicity m, a slight modification of
the argument shows that ν(e1, v) + · · · + ν(er, v) = 1 − m/k. On
the other hand, it is clear that ν(e, v1) + ν(e, v2) = 1 where v1, v2

are the endpoints of e ∈ E. Hence the sum of all the ν(e, v) is equal
both to ♯V − 1 and to ♯E. Since suppµ is a connected graph, this
implies that it is a tree. �

We are now ready to prove the uniqueness part of Theorem 2.
This is done by means of the following two lemmas.

Lemma 6 Suppose the Cauchy transform of µ satisfies (11) and
let u be the logarithmic potential of µ. If Ψ−1 is a (locally defined)
inverse of a primitive function of Qk(z)

−1/k, then u ◦Ψ−1 is convex.

Proof. Let χ be as in the proof of Lemma 4. Since 2∂u/∂z = C(z)
we have

2
∂

∂w
u(Ψ−1(w)) = 2

∂u

∂z
(Ψ−1(w)) ·Qk(Ψ

−1(w))1/k

= C(Ψ−1(w)) ·Qk(Ψ
−1(w))1/k

= χ(w).
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It follows from Corollary 1, that u ◦ Ψ−1 is convex. �

Lemma 7 Let µ be a measure whose Cauchy transform satisfies
(11), let Ω = C r supp µ and let Ψ(z) be defined in Ω by

Ψ(z) =

∫
log(z − ζ) dµ(ζ).

Then Ψ is a multivalued function mapping Ω onto a domain H =
{w; Rew > h(Imw)} where h is a continuous function, and Ψ−1 :
H → Ω is a single valued function.

Proof. It is clear that Ψ is a holomorphic function in Ω defined up
to multiples of 2πi and that Ψ′(z) = C(z). Let γ be a curve segment
of supp µ and let U be a one-sided neighbourhood of γ in Ω on which
Ψ has a single valued branch. Now the restriction of Ψ to U has an
analytic continuation across γ, and by Lemma 4, Ψ maps γ to a line
segment. Moreover, since in the notation of the proof of Lemma 4,
χ = 1 in Ψ(U) and Reχ ≤ 1 everywhere, it follows that Ψ(γ) is not
horizontal and that Ψ(U) is on the right hand side of Ψ(γ). Putting
the segments Ψ(γ) together as U moves around supp µ, we obtain
a broken line of the form {Rew = h(Imw)} bounding a domain
H = {Rew > h(Imw)}. It is clear that Ψ maps Ω into H and the
boundary of Ω to the boundary of H . Now ψ(z) = exp(−Ψ(z)) is
a single valued proper mapping from Ω ∪ {∞} to D = {ζ ; log |ζ | <
−h(− arg ζ)} which does not vanish in Ω and has a simple zero
at ∞. It follows that ψ : Ω ∪ {∞} → D is a bijection, hence
Ψ−1(w) = ψ−1(e−w) is a single valued holomorphic mapping. �

Corollary 3 If µ1 and µ2 are two probability measures whose Cauchy
transforms satisfy (11), then µ1 = µ2.

Proof. Let Ψ be defined as in Lemma 7 with µ1 in place of µ,
and let u1 and u2 be the logarithmic potentials of µ1 and µ2. Then
u1(Ψ

−1(w)) = Rew for all w ∈ H and u2(Ψ
−1(w)) = Rew when

Rew is sufficiently large. Since u2 ◦ Ψ−1 is convex by Lemma 6, it
follows that u2(Ψ

−1(w)) ≥ Rew for all w ∈ H , hence u1(z) ≤ u2(z)
for almost all z. Similarly, u2(z) ≤ u1(z) for almost all z, and it
follows that µ1 = ∆u1/2π = ∆u2/2π = µ2. �
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4 Root measures and the Cauchy transform

In this section we describe the basic connections between root mea-
sures and the Cauchy transform which will be used to prove Theorem
4.

Let µn be a sequence of measures in the complex plane. The
sequence is said to converge weakly to a measure µ if

∫
φ(z) dµn(z) →

∫
φ(z) dµ(z)

for every continuous function φ with compact support. If in addition
there exists a compact set K such that suppµn ⊂ K for every n, we
will say that µn converges weakly with compact support to µ and
write µn → µ (w.c.s.).

If K ⊂ C is a compact set and M(K) denotes the space of all
probability measures with support in K, equipped with the weak
topology, it is known thatM(K) is a sequentially compact Hausdorff
space. We will use this fact to select a convergent subsequence from
a sequence of measures as a first step in the proof of Theorem 4.

If φ is a locally integrable function and µ is a compactly supported
measure, the convolution

(φ ∗ µ)(z) =

∫
φ(z − ζ) dµ(ζ)

is a locally integrable function defined almost everywhere in the
complex plane. If µn → µ (w.c.s.), it is easy to show that φ ∗ µn →
φ ∗ µ in L1

loc.

We will be particularly interested in the cases where φ(z) = log |z|
or φ(z) = 1/z. Convolution with these functions defines the loga-
rithmic potential

u(z) =

∫
log |z − ζ | dµ(ζ)

17



and the Cauchy transform

C(z) =

∫
dµ(ζ)

z − ζ

of µ. It is well known that the measure µ can be reconstructed from
either u or C by the formula

µ =
1

2π
· ∆u =

1

π
· ∂C
∂z̄

where ∆ = (∂/∂x)2 + (∂/∂y)2 is the Laplace operator and ∂/∂z̄ =
(∂/∂x + i∂/∂y)/2. These identities should be understood in the
sense of distribution theory.

Let p be a polynomial of degree n and let µ be the root measure
of p, as defined in the introduction. If p is monic, the logarithmic
potential of µ is given by

1

n
log |p(z)| =

∫
log |z − ζ | dµ(ζ), (13)

and for any p, the Cauchy transform of µ is

p′(z)

np(z)
=

∫
dµ(ζ)

z − ζ
. (14)

These two identities, which can easily be verified, are among the
main ingredients in the proof of Theorem 4. We will here use them
to prove a general lemma which will be needed later.

Lemma 8 Let pm be a sequence of polynomials, such that nm :=
deg pm → ∞ and let µm and µ′

m be the root measures of pm and p′m
respectively. If µm → µ, µ′

m → µ′ (w.c.s.) and u and u′ are the
logarithmic potentials of µ and µ′, then u′ ≤ u with equality in the
unbounded component of C r supp µ.

Proof. Assume with no loss of generality that the pm are monic.
Let K be a compact set containing the zeros of every pm. By (13)
we then have

u(z) = lim
m→∞

1

nm

log |pm(z)|
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and

u′(z) = lim
m→∞

1

nm − 1
log

∣∣∣∣
p′m(z)

nm

∣∣∣∣ = lim
m→∞

1

nm

log

∣∣∣∣
p′m(z)

nm

∣∣∣∣

with convergence in L1
loc. Hence by (14),

u′(z) − u(z) = lim
m→∞

1

nm
log

∣∣∣∣
p′m(z)

nmpm(z)

∣∣∣∣

= lim
m→∞

1

nm
log

∣∣∣∣
∫
dµm(ζ)

z − ζ

∣∣∣∣ . (15)

Now, if φ is a positive test function it follows that
∫
φ(z)(u′(z) − u(z)) dλ(z) = lim

m→∞

1

nm

∫
φ(z) log

∣∣∣∣
∫
dµm(ζ)

z − ζ

∣∣∣∣ dλ(z)

≤ lim
m→∞

1

nm

∫
φ(z)

∫
dµm(ζ)

|z − ζ | dλ(z)

= lim
m→∞

1

nm

∫∫
φ(z) dλ(z)

|z − ζ | dµm(ζ)

(16)

where λ denotes Lebesgue measure in the complex plane. Since 1/|z|
is locally integrable, the function

∫
φ(z)|z−ζ |−1 dλ(z) is continuous,

and hence bounded by a constant M for all z in K. Since supp µm ⊂
K, the last expression in (16) is bounded by M/nm, hence the limit
when m→ ∞ is 0. This proves that u′ ≤ u.

In the complement of supp µ, u is harmonic and u′ is subhar-
monic, hence u′−u is a negative subharmonic function. Moreover, in
the complement of K, p′m/(nmpm) converges uniformly on compact
sets to the Cauchy transform C(z) of µ. Since C(z) is a nonconstant
holomorphic function in the unbounded component of CrK, it fol-
lows from (15) that u′ − u = 0 there. By the maximum principle
for subharmonic functions it follows then that u′ − u = 0 in the
unbounded component of C r supp µ. The proof is complete. �

5 Root measures of eigenpolynomials

We now turn to the proof of Theorem 4. The plan is to show that µn

converges to a measure whose Cauchy transform satisfies (11). This
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will prove Theorem 4 and the existence part of Theorem 2. Let µn

be the root measure of pn as in the statement of Theorem 4. Also

let µ
(i)
n be the root measure of the ith derivative p

(i)
n . We begin by

showing that there is a compact set K containing the supports of

all the measures µ
(i)
n .

Lemma 9 Let Q0, ..., Qk be fixed and let pn be an eigenpolynomial
of degree n of the operator TQ. Then there exists a compact set K

such that all the zeros of every p
(i)
n lie in K for every n and every

i ≥ 0. If Q0 = . . . = Qk−1 = 0, K may be taken as the convex hull
of the zeros of Qk.

Proof. The case with Q0 = · · · = Qk−1 = 0 was treated in [4]. In
the general case it suffices to check the roots of pn, since by Gauss-

Lucas’ theorem the roots of any derivative p
(i)
n are contained in the

convex hull of the roots of pn. Moreover it suffices to show that
there exists a compact set containing the zeros of pn for large values
of n, since for any finite value of n there are finitely many roots of
the polynomial pn, and these are clearly contained in some compact
set.

Let z be a root of pn. Then

TQ(pn)(z) =
k∑

i=0

Qi(z) · p(i)
n (z) = λn · pn(z) = 0

or, equivalently,

Qk(z) · p(k)
n (z) +Qk−1(z) · p(k−1)

n (z) + . . .+Q1(z) · p(1)
n (z) = 0. (17)

We will show that for sufficiently large choices of |z| and n this
equation cannot not hold. It is possible to find some r0 and some
n0 such that if |z| ≥ r0 and n > n0, then z cannot be a root of pn.
Using formula (14) we have

p
(i+1)
n (z)

(n− i) · p(i)
n (z)

=

∫
dµ

(i)
n (ζ)

z − ζ
=: bi.

Thus

p(k−1)
n (z) =

p
(k)
n (z)

(n− k + 1) · bk−1

,
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p(k−2)
n (z) =

p
(k−1)
n (z)

(n− k + 2) · bk−2
=

p
(k)
n (z)

(n− k + 1)(n− k + 2) · bk−1 · bk−2
,

and so on. Generally we have

p(i)
n (z) =

p
(k)
n (z)

(n− k + 1) . . . (n− i) ·
∏k−1

j=i bj
.

Now assume that z is the root of pn with the largest modulus and

let |z| = r. With ζ being a root of some p
(i)
n we have |ζ | ≤ |z|

by Gauss-Lucas’ theorem. We will estimate bi =
∫ dµ

(i)
n (ζ)
z−ζ

so that

|bi| ≥ 1/2r ∀i ≤ k. We have

1

z − ζ
=

1

z
· 1

1 − ζ/z
=

1

z
· 1

1 − θ

and |θ| = |ζ/z| ≤ 1.
With w = 1/(1 − θ) we obtain

|w − 1| =

∣∣∣∣
1

1 − θ
− (1 − θ)

(1 − θ)

∣∣∣∣ =
|θ|

|1 − θ| = |θ||w| ≤ |w|

⇔
|w − 1| ≤ |w|

⇔

Re(w) ≥ 1

2
.

Using this result we get

|bi| =

∣∣∣∣∣

∫
dµ

(i)
n (ζ)

z − ζ

∣∣∣∣∣ =
1

r

∣∣∣∣∣

∫
dµ

(i)
n (ζ)

1 − θ

∣∣∣∣∣ =

=
1

r

∣∣∣∣
∫
wdµ(i)

n (ζ)

∣∣∣∣ ≥
1

r

∣∣∣∣
∫

Re(w)dµ(i)
n (ζ)

∣∣∣∣ ≥

≥ 1

2r

∫
dµ(i)

n (ζ) =
1

2r
.

Now we choose r0 in such a way that |Qk(w)| ≥ rk/2 as |w| ≥ r0 and
then a constant C such that |Qi(w)| ≤ C ·ri for every i = 1, . . . , k−1.

Finally we choose n0 such that C·2k−i+1

(n−i)...(n−k+1)
< 1

k−1
as n > n0 for
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every i = 1, . . . , k − 1. Then, as |z| = r ≥ r0 and n > n0, we get
∣∣∣∣∣
Qi(z) · p(i)

n (z)

Qk(z) · p(k)
n (z)

∣∣∣∣∣ =
|Qi(z)|
|Qk(z)|

· (n− k)!

(n− i)!
· 1
∏k−1

j=i |bj |
≤

≤ |Qi(z)|
|Qk(z)|

· (n− k)!

(n− i)!
· 2k−i · rk−i ≤

≤ C · ri

rk/2
· (n− k)!

(n− i)!
· 2k−i · rk−i =

=
C · 2k−i+1

(n− i) . . . (n− k + 1)
<

1

k − 1
.

Dividing (17) by Qk(z) · p(k)
n (z) we obtain

1 +

k−1∑

i=1

Qi(z) · p(i)
n (z)

Qk(z) · p(k)
n (z)

= 0,

but with r ≥ r0 and n > n0 we get
∣∣∣∣∣

k−1∑

i=1

Qi(z) · p(i)
n (z)

Qk(z) · p(k)
n (z)

∣∣∣∣∣ ≤
k−1∑

i=1

∣∣∣∣∣
Qi(z) · p(i)

n (z)

Qk(z) · p(k)
n (z)

∣∣∣∣∣ <
k−1∑

i=1

1

k − 1
= 1

and so (17) cannot be fulfilled with such choices of r and n. �

Assume that N is a subsequence of the natural numbers such that

µ(j) = lim
n→∞,n∈N

µ(j)
n (18)

exists for j = 0, . . . , k. The following lemma shows that the Cauchy
transform of µ = µ(0) satisfies (11).

Lemma 10 The measures µ(j) are all equal and the Cauchy trans-
form C(z) of this common limit satisfies C(z)k = 1/Qk(z) for almost
every z.

Proof. By (14) we have that

p
(j+1)
n (z)

(n− j)p
(j)
n (z)

→
∫
dµ(j)(ζ)

z − ζ
(19)
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with convergence in L1
loc, and by passing to a subsequence once

again we can assume that we have pointwise convergence almost
everywhere. From the relation TQpn = λnpn it follows that

Qk
p

(k)
n

n . . . (n− k + 1)pn
=

λn

n . . . (n− k + 1)

−
k−1∑

l=0

Ql

(n− l) . . . (n− k + 1)

l−1∏

j=0

p
(j+1)
n

(n− j)p
(j)
n

. (20)

Now λn/n . . . (n − k + 1) → 1 by Theorem 1, while the sum con-
verges pointwise to 0 almost everywhere by virtue of the factors
(n− l) . . . (n− k + 1) in the denominators. It follows that

p
(k)
n (z)

n . . . (n− k + 1)pn(z)
→ 1

Qk(z)
(21)

when n → ∞ through the sequence N for almost every z. If u(j)

denotes the logarithmic potential of µ(j), then it follows from (13)
and (21) that

u(k)−u(0) = lim
n→∞

1

n
log

∣∣∣∣∣
p

(k)
n

n . . . (n− k + 1)pn

∣∣∣∣∣ = − lim
n→∞

1

n
log |Qk| = 0.

On the other hand we have from Lemma 8 that u(0) ≥ u(1) ≥ · · · ≥
u(k), hence the potentials u(j) are all equal, and it follows that µ(j) =
∆u(j)/2π are all equal. Finally we have from (19) and (21) that

C(z)k = lim
n→∞

k−1∏

j=0

p
(j+1)
n (z)

(n− j)p
(j)
n (z)

= lim
n→∞

p
(k)
n (z)

n . . . (n− k + 1)pn(z)
=

1

Qk(z)

for almost every z. This completes the proof. �

Corollary 4 There exists a unique measure µQk
satisfying the re-

quirements in Theorem 2. The sequence µn converges weakly to µQk
.

Moreover, suppµQk
is contained in the convex hull of the zeros of

Qk.

Proof. By Theorem 1, the operator TQ has an eigenpolynomial pn

of degree n for all sufficiently large n. By Lemma 9, there exists a

compact set K such that supp µ
(j)
n ⊂ K for all n. By compactness,
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there exists a subsequence N such that the limit (18) exists for j =
0, . . . , k. By Lemma 10, µQk

= µ(0) has the required properties, so
existence is proved. Uniqueness was established in section 3. Since

we may take Q0 = . . . = Qk−1 = 0, and in this case supp µ
(j)
n ⊂ K

where K is the convex hull of the zeros of Qk by Lemma 9, it follows
that supp µQk

is also contained in K.
Assume that µn does not converge to µQk

Then we can find a
subsequence N ′ of the natural numbers such that µn stays away
from a fixed neighbourhood of µQk

in the weak topology, for all
n ∈ N ′. Again by compactness, we can find a subsequence N of N ′

such that the limit (18) exists for j = 0, . . . , k. By Lemma 10 and
the uniqueness of µQk

, it follows that µ(0) = µQk
, contradicting the

assumption that µn stays away from µQk
for all n in N ′ and hence

all n in N . The proof is complete. �
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Abstract

In this paper we address the classical question going
back to S. Bochner and H. L. Krall to describe all sys-
tems {pn(x)}∞n=0 of orthogonal polynomials (OPS) which
are the eigenfunctions of some finite order differential op-
erator. Such systems of orthogonal polynomials are called
Bochner-Krall OPS (or BKS for short) and their spectral
differential operators are accordingly called Bochner-Krall
operators (or BK-operators for short). We show that the
leading coefficient of a Nevai type BK-operator is of the
form ((x − a)(x − b))N/2. This settles the special case of
the general conjecture 7.3. of [4] describing the leading
terms of all BK-operators.

1 Summary

Consider a sequence of polynomials {pn}∞n=0 in a variable x, where
deg pn = n. This sequence is orthogonal with respect to a measure µ
if

∫
pn(x)pm(x)dµ(x) is nonzero precisely when n = m. We are here

concerned with polynomials orthogonal with respect to a measure
of the so-called Nevai class, see [11] and below. Furthermore we say
that {pn} is a sequence of eigenpolynomials if there exists a differ-

ential operator d =
∑N

k=1 ak(x)(d/dx)
k where ak are polynomials in

x. Finally, {pn} is called a Bochner-Krall system if it is both or-
thogonal and a system of eigenpolynomials. If it is orthogonal with
respect to a measure of Nevai class, we say that it is a Bochner-Krall
system of Nevai type.

It is an open problem to classify all Bochner-Krall systems. In
[4] it is conjectured that the leading coefficient aN for any Bochner-
Krall system is a power of a polynomial of degree at most 2. Our
main result is an affirmative answer to this conjecture for Bochner-
Krall systems of Nevai type.

1



Main Theorem. Let {pn} be a compact type BKS orthogonal with
respect to a measure µ and with differential operator d. If µ is of the
Nevai class and the convex hull of supp µ is the interval [a, b], then
N is even and aN (x) is a constant multiple of ((x− a)(x− b))N/2.

2 Introduction

Let PR and PC denote the spaces of all real and complex polynomials,
respectively, in a variable x. By a real (or complex) polynomial
system we will mean a sequence {pn}∞n=0 of polynomials in PR (or PC)
such that deg pn = n. By an orthogonal polynomial system (OPS)
one understands a real polynomial system {pn} such that 〈pn, pm〉
is nonzero precisely when n = m, where 〈 , 〉 is some reasonable
inner product on the linear space PR. If an orthogonal polynomial
system for a given inner product exists, the pn are unique, up to
multiplication by scalars.

Orthogonal polynomial systems have been studied in various de-
grees of generality. Classically, one has considered inner products of
the form

〈p, q〉 = σ(p · q)
where σ is a moment functional, that is a linear functional on PR.
It is known that all moment functionals can be represented by an
integral

σ(p) =

∫
p(x) dµ(x) (1)

where µ is a (possibly signed) Borel measure on the real line. The
most complete theories have been obtained in the case where µ is
positive with compact support, and moreover belongs to the so-
called Nevai class. If the density of µ is a function ρ and log ρ is
integrable on the smallest interval containing suppµ, then µ is of
the Nevai class, but this condition is not necessary. See [11] for the
precise definition of the Nevai class, denoted there by M(a, b). In
what follows we will mainly be concerned with orthogonal polyno-
mial systems of this particular kind, which we will call orthogonal
systems of Nevai type. Recently, there has been interest in more
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general inner products called Sobolev, which are of the form

〈p, q〉 =

M∑

k=0

σk(p
(k) · q(k))

where the σk are moment functionals. For the basics of the classical
theory of orthogonal polynomials see e.g. [12] and [3].

Consider now a differential operator

d =
N∑

k=1

ak(x)
dk

dxk
(2)

where the coefficients ak(x) are polynomials in PC. We are interested
in eigenpolynomials of this operator, that is polynomials p ∈ PC sat-
isfying dp = λp for some constant λ. Already S. Bochner observed
that the operator d has infinitely many linearly independent eigen-
polynomials if and only if deg ak ≤ k, with equality for at least one
k. In this case there is precisely one monic degree n eigenpolynomial
pn for all sufficiently large n. For generic ak, the same is true for
every n ≥ 0. If a complex polynomial system consists of eigenpoly-
nomials for an operator of the form (2), we will call it a system of
eigenpolynomials.

A Bochner-Krall system (BKS for short) is defined to be a real
polynomial system which is both orthogonal (with respect to some
inner product 〈 , 〉) and a system of eigenpolynomials (for some dif-
ferential operator d). In this case 〈 , 〉 is called a Bochner-Krall inner
product, and d is called a Bochner-Krall operator. If a BKS is an
orthogonal system of Nevai type, we will call it for short a Nevai
type BKS. The results we report in this note are valid for all Nevai
type BKS.

It is an open problem to classify all Bochner-Krall systems. A
complete classification is only known for Bochner-Krall operators d

with N ≤ 4. The corresponding BKS are various classical systems
such as the Jacobi-type, the Laguerre-type, the Legendre-type, the
Bessel and the Hermite polynomials, see [4], Th. 3.1. In general,
it is not even known which differential operators are Bochner-Krall
operators for some BKS. In [4] it is conjectured that the leading
coefficient aN of a Bochner-Krall operator is a power of a polynomial
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of degree at most 2. Our main result is an affirmative answer to this
conjecture for Nevai type BKS.

Our results are obtained by studying the asymptotic distribution
of zeros of a polynomial system. To make this more precise, let {pn}
be a polynomial system and for fixed n ≥ 1, let α1, . . . , αn denote
the (real or complex) zeros of pn. Let νn = 1

n

∑n
i=1 δ(x− αi) be the

probability measure in the complex plane with point masses at these
zeros. We call the measures νn the root measures of the polynomial
system {pn}. If the sequence of root measures νn converges weakly
to a measure ν when n → ∞, we say that ν is the asymptotic
distribution of zeros of the polynomial system.

The following results, which characterize the asymptotic distribu-
tion of zeros for Nevai type OPS and for systems of eigenpolynomials
respectively, are crucial to our treatment.

Suppose that a polynomial system {pn} is orthogonal with re-
spect to a positive measure µ, and that the convex hull of suppµ is
a compact interval [a, b]. It is well known (see [3]) that the zeros of
every pn are contained in the interval [a, b]. The following is a more
precise result on the distribution of zeros for orthogonal systems of
Nevai type.

Theorem A. See [11], Th. 3, p. 50. Let the polynomial system
{pn} be orthogonal with respect to a measure µ of Nevai class on
R, and let the convex hull of supp µ be [a, b]. Then the asymptotic
distribution of zeros of {pn} is an absolutely continuous measure ν
which depends only on [a, b]. The support of ν is precisely [a, b] and
its density in this interval is given by

ρ(x) =
1

π
√

(b− x)(x− a)
.

Next we describe the asymptotic distribution of zeros for a sys-
tem of eigenpolynomials.

Theorem B. See [1] Th. 2 and 4. Let {pn} be a system of eigen-
polynomials for an operator d with aN monic of degree N . Then the
asymptotic distribution of zeros of {pn} is a probability measure ν
with the following properties:

4



a) ν has compact support;

b) its Cauchy transform C(x) =
∫ dν(ζ)

x−ζ
satisfies the equation C(x)N =

1/aN(x) for almost all x ∈ C.
These properties determine ν uniquely.

Note that the limiting measure ν is independent of all terms in
(2) except the leading term aN (x) dN

dxN .
To derive from these two results a statement about Nevai type

BKS, we will need the following

Proposition 1. Let {pn} be a system of eigenpolynomials for a
differential operator d, and assume that all the zeros of pn are real.
Then there exists a compact set containing all the zeros of every pn

if and only if deg aN = N .

Now it is easy to derive the following

Main Theorem. Let {pn} be a Nevai type BKS, orthogonal with
respect to a measure µ and with differential operator d. If µ is of
the Nevai class and the convex hull of supp µ is the interval [a, b],
then N is even and aN (x) is a constant multiple of ((x−a)(x−b))N/2.

References and acknowledgements. There exists a really vast
literature devoted to the classification problem for OPS. Classifica-
tion of BKS has also attracted considerable attention, see e.g. [4]
with its 100 references and [7],[8], [9] and references therein. The au-
thors are happy to be able to contribute to this both classical and ac-
tive area. We are grateful to Dr.M. Shapiro and Professor H. Shapiro
for a number of discussions on the topic. The third author wants to
acknowledge the hospitality of Mathematisches Forschungsinstitut
Oberwolfach in September 2001 in whose peaceful and serene at-
mosphere he found some information on BKS and realized that the
results of [10] and [1] are applicable to the BKS-classification prob-
lem. We should mention that when a preliminary version of this
note was shown to some experts in this field, Professors Kwon and
Lee sent us their paper [6] in preparation containing several results
very much in the same spirit as in the present note. We also want
to thank Prof. G. J. Yoon for clarifying to us the significance of the
Nevai class.
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3 Proofs

We need to prove Proposition 1 and the main theorem (as its corol-
lary). Since the proof of Theorem B, in the situation where we will
need it, follows easily along the same lines, we will include such a
proof for the convenience of the reader.

Consider a polynomial system {pn} with the associated root mea-
sures νn. Assume that the supports of the measures νn are all con-
tained in the same compact set, and that νn → ν in the weak topol-
ogy. Let Cn(x) be the Cauchy transform of νn and note that

Cn(x) =

∫
dνn(ζ)

x− ζ
=

p′n(x)

npn(x)
.

If C(x) denotes the Cauchy transform of ν, it follows that

p′n(x)

npn(x)
→ C(x)

for almost every x ∈ C.

Suppose now that {pn} is a system of eigenpolynomials for an
operator d and that supp νn are all contained in the same compact
subset of the real line. Then there exists at least a subsequence of

the νn converging weakly to some measure ν. Moreover, if we let ν
(j)
n

denote the root measure of the jth derivative of pn, then it follows

from Rolle’s theorem that (a subsequence of) ν
(j)
n converges weakly

to ν for every j > 0. In particular,

p
(j+1)
n (x)

(n− j)p
(j)
n (x)

→ C(x)

for almost every x ∈ C, where C(x) is the Cauchy transform of ν.
If we divide both sides of the differential equation dpn = λnpn by
n(n− 1) . . . (n−N + 1)pn we obtain

aN (x)

N−1∏

j=0

p
(j+1)
n (x)

(n− j)p
(j)
n (x)

+
aN−1(x)

n−N + 1

N−2∏

j=0

p
(j+1)
n (x)

(n− j)p
(j)
n (x)

+ · · · =

=
λn

n(n− 1) . . . (n−N + 1)
.
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When n→ ∞ all the terms on the left hand side but the first tend
to zero, and so

aN (x)C(x)N = lim
n→∞

λn

n(n− 1) . . . (n−N + 1)

for almost all x. But it can be seen (see [1]) that λn =
∑N

k=1 ckn(n−
1) . . . (n−k+1) where ck is the coefficient at xk in ak(x). In partic-
ular, if deg aN < N i.e. cN = 0, then λn/n(n−1) . . . (n−N+1) → 0
when n → ∞, and it follows that C(x) = 0 for almost all x. This
implies that ν = 0, a contradiction. This argument proves one
of the implications in Proposition 1. For the other implication we
refer to [1], Lemma 9. Moreover, if aN is monic of degree N , then
λn/n(n−1) . . . (n−N+1) → 1, and it follows that C(x)N = 1/aN(x).

Suppose now that {pn(x)} is a Nevai type BKS as in the main
theorem. By the remark preceding Theorem A, the zeros of every
pn(x) are contained in the interval [a, b]. It follows from Proposition
1 that deg aN(x) = N , and we might as well assume that aN(x) is
monic. Hence the Cauchy transform C(x) of the limit ν = limn→∞ νn

satisfies C(x)N = 1/aN(x). On the other hand, a direct computation
of the Cauchy transform, using the expression for ν in Theorem A,
gives C(x)2 = 1/(x − a)(x − b). Comparing these results yields
aN(x) = ((x− a)(x− b))N/2.

4 Final remarks

Problem 1. The major problem in the context of this paper is
whether every BKS, orthogonal with respect to a positive mesure
with compact support, is a Jacobi-type OPS, compare [4], Conjec-
ture 7.3. For the constant leading coefficient the analogous fact was
proved in [9].

Problem 2. Is there an analogue of Theorem A on the asymptotic
zero distribution for a signed measure µ with compact support?
What is the situation for a probability measure with a noncom-
pact support as well as for Sobolev orthogonal polynomial systems.
(There exists a literature on this topic.)
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Problem 3. Generalize the results of [1] to operators with deg aN <
N . Preliminary computer experiments show that similar results on
the asymptotic distribution of zeros would hold for all operators (2).
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On Generalized Laguerre Polynomials
with Real and Complex Parameter

Tanja Bergkvist
submitted

Abstract

In this paper we consider families of polynomials arising
as eigenfunctions to the confluent hypergeometric operator
T = Q1(z)

d
dz

+Q2(z)
d2

dz2 where the polynomial coefficients
Q1 and Q2 are linear. We study the location and proper-
ties of zeros of individual eigenpolynomials. The classical
Laguerre polynomials appear as a special case and some
well-known results about these are recovered and general-
ized.

1 Introduction

The confluent hypergeometric operator studied in this paper is a
special case of a wider class of operators which we are interested in.
Namely, consider the differential operator

TQ =

k∑

j=1

Qj(z)
dj

dzj

where the Qj are polynomials in one complex variable satisfying the
condition degQj ≤ j with equality for at least one j. In [3] we
studied the eigenvalue problem

TQ(pn) = λnpn

where TQ is an operator of the above kind of order k and where in
particular degQk = k (we call this the non-degenerate case). We
proved that for such an operator there exists a unique monic eigen-
polynomial pn of degree n for all sufficiently large integers n. The
main topic in [3] was asymptotic properties of the zeros of pn. Our
main result was that when the degree n tends to infinity, the ze-
ros of pn are distributed according to a certain probability measure
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which is compactly supported on a tree and which depends only on
the leading polynomial Qk. Moreover, we proved that the zeros of
pn are all contained in the convex hull of the zeros of Qk.

An operator of the above type of order k but with the condition
degQk < k for the leading term is referred to as a degenerate op-
erator. In this paper we restrict our study to properties of zeros of
eigenpolynomials of the the simplest degenerate operator, namely
the confluent hypergeometric operator1

T = Q1(z)
d

dz
+Q2(z)

d2

dz2

where degQ1 = degQ2 = 1. With Q1(z) = αz + β and Q2(z) =
γz + δ where α, β, γ, δ ∈ C and α, γ 6= 0, one can show (see Lemma
2 in Section 2) that by an appropriate affine transformation of z any
such operator can be rewritten as

T = δ

[
(z + κ)

d

dz
+ z

d2

dz2

]
,

where δ, κ ∈ C. In what follows T will denote this operator. The
corresponding eigenvalue equation then becomes

zp
′′

n(z) + (z + κ)p
′

n(z) = npn(z), (1)

since λn = n. One can prove, using a similar method as in [3], that
there exists a unique and monic eigenpolynomial pn of degree n for
every integer n in (1), see Lemma 1 in Section 2.

In this paper we study the location of zeros of individual eigen-
polynomials of T . In the sequel we will extend this study to asymp-
totic properties of zeros of eigenpolynomials of arbitrary degenerate
operators.

The Laguerre polynomials appear as solutions to the Kummer
hypergeometric equation

zy
′′

(z) + (α + 1 − z)y
′

(z) + ny(z) = 0

1Various familiar functions of mathematical analysis such as
Hermite polynomials, Laguerre polynomials, Whittaker functions,
Bessel functions and cylinder functions, are confluent hypergeomet-
ric functions, that is solutions to confluent hypergeometric equa-
tions.
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when α ∈ R, α > −1 and n ∈ Z.2 Making the transformation
z → −z it is easy to see that this equation corresponds to our
eigenvalue equation (1) when κ ∈ R and κ > 0. Thus the clas-
sical Laguerre polynomials appear normalized3 as solutions to (1).
One of the most important properties of the Laguerre polynomials
is that they constitute an orthogonal system with respect to the
weight function e−xxα on the interval [0,∞). It is well-known that
the Laguerre polynomials are hyperbolic - that is all roots are real -
and that the roots of two consecutive Laguerre polynomials pn and
pn+1 are interlacing. For other choices of the complex parameter α
in Kummer’s equation the sequence {pn} is in general not an or-
thogonal system and it can therefore not be studied by means of the
theory known for such systems.

One of the results in this paper is the characterization of the ex-
act choices on α for which T has hyperbolic eigenpolynomials and
also for which α two consecutive eigenpolynomials have interlacing
roots. It turns out that these properties are not restricted to the
Laguerre polynomials solely. Our study can therefore be considered
as a generalization of the properties of zeros of Laguerre polynomi-
als to any family of polynomials appearing as eigenfunctions of the
operator T . We also recover some well-known results (Theorems 3
and 4) by another method.

In what follows pn denotes the nth degree unique and monic eigen-
polynomial of T . These are our results:

Theorem 1. The following two conditions are equivalent:
(i) there exists a real affine transformation z → az+ b such that our
operator can be written

T = δ

[
(z + κ)

d

dz
+ z

d2

dz2

]

where δ ∈ C, κ ∈ R and κ > −1,
(ii) pn is hyperbolic for all n.

2Observe that this equation has a degree n polynomial solution
if and only if n is an integer. Without the condition that n is an
integer we obtain the Laguerre functions.

3The nth degree Laguerre polynomial becomes monic when mul-
tiplied by n!(−1)n.
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Remark. Each pn is actually strictly hyperbolic here, that is all
roots are real and simple, see Corollary 2. Note that (i)⇒(ii) for
κ > 0 also follows from the general theory of orthogonal polynomial
systems, since then the pn are normalized Laguerre polynomials.

Theorem 1
′

. The following two conditions are equivalent:
(i)

′

there exists a real affine transformation z → az + b such that
our operator can be written

T = δ

[
(z + κ)

d

dz
+ z

d2

dz2

]

where δ ∈ C, κ ∈ R and κ > −1 or κ = −1,−2,−3, . . . ,−(n− 1),
(ii)

′

pn is hyperbolic.

Remark. Thus if κ is a negative integer then all pn such that
n > |κ| are hyperbolic. Note that when the degree n tends to infin-
ity, pn is hyperbolic for all negative integer values of κ.

The above results imply the following corollaries:

Corollary 1. The following two conditions are equivalent:
(i) there exists a complex affine transformation z → αz + β such
that our operator can be written

T = δ

[
(z + κ)

d

dz
+ z

d2

dz2

]

where δ ∈ C, κ ∈ R and κ > −1,
(ii) the roots of pn lie on a straight line in C for all n.

Corollary 1
′

. The following two conditions are equivalent:
(i)

′

there exists a complex affine transformation z → αz + β such
that our operator can be written

T = δ

[
(z + κ)

d

dz
+ z

d2

dz2

]

where δ ∈ C, κ ∈ R and κ > −1 or κ = −1,−2,−3, . . . ,−(n− 1),
(ii)

′

the roots of pn lie on a straight line in C.
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Remark. Thus if κ is a negative integer, then the roots of ev-
ery pn such that n > |κ| lie on a straight line in C.

Theorem 2. Let

T = δ

[
(z + κ)

d

dz
+ z

d2

dz2

]

where δ, κ ∈ C. Then all roots of pn are simple, unless
κ = −1,−2, . . . ,−(n− 1).

Combining Theorem 1 (hyperbolicity) and Theorem 2 (simplic-
ity) we obtain the following

Corollary 2. The eigenpolynomials of T are strictly hyperbolic
(all roots are real and simple) for all n if and only if there exists a
real affine transformation z → az + b such that our operator can be
written

T = δ

[
(z + κ)

d

dz
+ z

d2

dz2

]

where δ ∈ C, κ ∈ R and κ > −1.

Corollary 3. Let

T = δ

[
(z + κ)

d

dz
+ z

d2

dz2

]

where δ ∈ C and κ = 0,−1,−2, . . . ,−(n − 1). Then the eigenpoly-
nomial pn has (n + κ) distinct roots, all of which are simple except
the root at the origin which has multiplicity (1 − κ). Note that for
κ = 0 all roots are simple.

Moreover, it is possible to count the exact number of real roots
of pn. Namely,

Theorem 3. Let

T = δ

[
(z + κ)

d

dz
+ z

d2

dz2

]

where δ ∈ C, κ ∈ R and κ < −(n− 1). Then pn has no real roots if
n is even, and pn has precisely one real root if n is odd.
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Theorem 4. Let

T = δ

[
(z + κ)

d

dz
+ z

d2

dz2

]

where δ ∈ C, κ ∈ R and −(n − 1) < κ < −1 such that κ is not an
integer. Let [κ] denote the integer part of κ. Then the number of
real roots of pn equals

{
n+ [κ] + 1, if [κ] is odd
n+ [κ], if [κ] is even.

It is a classical fact that the roots of any two consecutive La-
guerre polynomials interlace along the real axis. These polynomials
arise (normalized and after letting z → −z) as eigenfunctions to
our operator T when κ > 0. Here we extend this result and prove
that the interlacing property also holds for polynomials arising as
eigenfunctions of T when κ = 0,−1,−2, . . . ,−(n− 1). We have the
following

Theorem 5. Assume that our operator, after some complex affine
transformation, can be written

T = δ

[
(z + κ)

d

dz
+ z

d2

dz2

]

where δ ∈ C, κ ∈ R. Then the roots of any two consecutive eigen-
polynomials pn and pn+1 are interlacing if κ = 0,−1,−2, . . . ,−(n−
1).

Remark. If the eigenpolynomials are hyperbolic then the mean-
ing of this is obvious, while if they are not hyperbolic the roots
interlace along a straight line in the complex plane (see Corollary
1
′

).

Recent results on zero asymptotics. When α is arbitrary and
real the polynomial solutions to Kummer’s equation are referred to
as generalized Laguerre polynomials. Some properties of the zeros
when α ≤ −1 have been studied in [18]. In [23] similar results
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and several others are derived by considering the Laguerre polyno-
mials as a limiting case of the Jacobi polynomials. In this paper
we recover some of these results using yet another method. The
asymptotic zero distribution for the generalized Laguerre polynomi-
als (and several others) with real and degree dependent parameter
αn (αn/n→ ∞) have been studied in [6] using a continued fraction
technique, and the same results are derived in [11] via a differen-
tial equation approach. It is known that when α ≤ −1 the zeros
accumulate along certain interesting contours in the complex plane.
More recent results on this can be found in [14] where a Riemann-
Hilbert formulation for the Laguerre polynomials together with the
steepest descent method (introduced in [6]) is used to obtain asymp-
totic properties of the zeros. The asymptotic location of the zeros
depends on A = limn→∞−αn

n
> 0, and the results show a great

sensitivity of the zeros to αn’s proximity to the integers. For A > 1
the contour is an open arc. For 0 < A < 1 the contour consists of a
closed loop together with an interval on the positive real axis. In the
intermediate case A = 1 the contour is a simple closed contour. The
case A > 1 is well-understood (see [21]), and uniform asymptotics
for the Laguerre polynomials as A > 1 were obtained more recently,
see [9], [15] and [26]. For fixed n interesting results can be found in
[7] and [8].

Acknowledgements. I wish to thank Boris Shapiro for introduc-
ing me to this problem and for his support during my work. I would
also like to thank Harold Shapiro for valuable comments. My re-
search was supported by Stockholm University.

2 Proofs

We start with the following preliminary result:

Lemma 1. Let

TQ =

k∑

j=0

Qj(z)
dj

dzj

be a linear differential operator where the polynomial coefficients
satisfy degQ0 = 0, degQj = j for exactly one j ∈ [1, k], and
degQm < m if m 6= 0, j. Then TQ has a unique and monic eigen-
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polynomial pn of degree n for every integer n. Also, using the nota-
tion Qm =

∑m
j=0 qm,jz

j, we have

lim
n→∞

λn

n(n− 1) . . . (n− j + 1)
= qj,j

where λn is the eigenvalue.

Proof. In [3] we proved that for any operator TQ as above but
with the weaker restriction degQj ≤ j for all j ∈ [0, n], the eigen-
value equation can be expressed as follows:

For n ≥ 1 the coefficient vector X of pn=(an,0, an,1, . . . , an,n−1) sat-
isfies the linear system MX = Y , where Y is a vector and M is an
upper triangular matrix, both with entries expressible in the coeffi-
cients qm,j of the Qj .

We then used this to prove that there exists a unique monic eigen-
polynomial of degree n for all sufficiently large integers n. Here we
use the same method to prove that for the operator in Lemma 1 (of
which the operator studied in this paper is a special case) we ac-
tually obtain a unique and monic eigenpolynomial of every degree n.

If we compute the matrix M with respect to the basis of mono-
mials 1, z, z2, . . ., a diagonal element Mi+1,i+1 of M at the position
(i+ 1, i+ 1) (where 0 ≤ i ≤ n− 1) is given by

Mi+1,i+1 =
∑

0≤m≤min(i,k)

qm,m · i!

(i−m)!
− λn

where

λn =
k∑

m=0

qm,m · n!

(n−m)!
,

where we have used the notation Qm =
∑m

j=0 qm,jz
j . For the op-

erator TQ in Lemma 1 we have degQm < m if m 6= 0, j, and so
qm,m = 0 for all m 6= 0, j. Inserting this in the expression for λn we
obtain

λn =

k∑

m=0

qm,m · n!

(n−m)!
= q0,0 + qj,j ·

n!

(n− j)!
=

= q0,0 + qj,j · n(n− 1) . . . (n− j + 1),
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and thus

lim
n→∞

λn

n(n− 1) . . . (n− j + 1)
=

lim
n→∞

(
q0,0

n(n− 1) . . . (n− j + 1)
+ qj,j

)
= qj,j.

To prove the uniqueness of pn we calculate the determinant of the
matrix M and since it is upper triangular this equals the product of
the diagonal elements. Thus, if we prove that all diagonal elements
are nonzero for every n, then M is invertible for every n and the
system MX = Y has a unique solution for every n and we are done.
Inserting qm,m = 0 for m 6= 0, j we get

Mi+1,i+1 =
∑

0≤m≤min(i,k)

qm,m · i!

(i−m)!
− λn =

=
∑

0≤m≤min(i,k)

qm,m · i!

(i−m)!
−

(
q0,0 + qj,j ·

n!

(n− j)!

)
=

= qj,j ·
(

i!

(i− j)!
− n!

(n− j)!

)
6= 0

where qj,j 6= 0 since degQj
= j and i < n. Note that for i < j one

sets i!/(i− j)! = 0. �

Remark. The operator

T = Q1(z)
d

dz
+Q2(z)

d2

dz2

which we are interested in here is a special case of the operator TQ

in Lemma 1.

Lemma 2. Any operator

T = (αz + γ)
d

dz
+ (βz + δ)

d2

dz2

where α, β, γ, δ ∈ C can be written

T = δ

[
(z + κ)

d

dz
+ z

d2

dz2

]
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for some δ, κ ∈ C.

Proof. Dividing T = (αz + γ) d
dz

+ (βz + δ) d2

dz2 by β we obtain

T ∗ = T/β =

(
α

β
z +

γ

β

)
d

dz
+

(
z +

δ

β

)
d2

dz2

and making the translation z̃ = z + δ
β

we have

T̃ ∗ =

(
α

β

(
z̃ − δ

β

)
+
γ

β

)
d

dz̃
+

(
z̃ − δ

β
+
δ

β

)
d2

dz̃2
=

=

(
α

β
z̃ − αδ

β2
+
γ

β

)
d

dz̃
+ z̃

d2

dz̃2
.

Finally with z̄ = α
β
z̃ ⇔ z̃ = β

α
z̄ we have dz̄/dz̃ = α/β and so






d
dz̃

= α
β

d
dz̄

d2

dz̃2 = d
dz̄

(
d
dz̃

)
dz̄
dz̃

= d
dz̄

(
α
β

d
dz̄

)
α
β

= α2

β2
d2

dz̄2

and we get

¯̃T ∗ =

(
α

β
z̃ − αδ

β2
+
γ

β

)
d

dz̃
+ z̃

d2

dz̃2
=

=

(
α

β
· β
α
z̄ − αδ

β2
+
γ

β

)
α

β

d

dz̄
+
β

α
z̄ · α

2

β2

d2

dz̄2
=

=
α

β

[(
z̄ − αδ

β2
+
γ

β

)
d

dz̄
+ z̄

d2

dz̄2

]
= δ

[
(z̄ + κ)

d

dz̄
+ z

d2

dz̄2

]

where δ = α
β

and κ = −αδ
β2 + γ

β
. �

Note that if α, β, γ, δ ∈ R then δ, κ ∈ R.

We will now study hyperbolicity of the eigenpolynomials of T in
detail. Note that performing the transformations in Lemma 2 above
with all coefficients real does not affect hyperbolicity of the polyno-
mial eigenfunctions.

Proof of Theorems 1 and 1
′

and their corollaries. We first
need the following well-known corollary (see [2]):
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Corollary of Sturm’s Theorem. All roots of a monic and real
polynomial are real if and only if the nonzero polynomials in its
Sturm sequence have positive leading coefficients.

Here the Sturm sequence is defined as follows. Let p = p0 be a
given real polynomial. Define p1 = p

′

(the derivative of p) and
choose the pi to satisfy

p0 = p1q1 − p2, deg p2 < deg p1

p1 = p2q2 − p3, deg p3 < deg p2

p2 = p3q3 − p4, deg p4 < deg p3

...

where the qi are polynomials, and so on until a zero remainder is
reached. That is, for each i ≥ 2, pi is the negative of the remainder
when pi−2 is divided by pi−1. Then the sequence (p0, p1, p2, . . .) is
called the Sturm sequence of the polynomial p.

We now calculate the Sturm sequence for a monic and real degree
n eigenpolynomial p = pn of the operator T = δ

[
(z + κ) d

dz
+ z d2

dz2

]
,

where δ ∈ C and κ ∈ R. Note that p is real if κ ∈ R and any
two operators differing by a complex constant have identical poly-
nomial eigenfunctions. Since our eigenpolynomials by assumption
are monic, the first two elements in the Sturm sequence, p and p

′

,
clearly have positive leading coefficients, namely 1 and n. Define
R(i) = pi+1 in the Sturm sequence above. Then R(1) is the nega-
tive of the remainder when p is divided by p

′

. With deg p = n we
have degR(i) = n− i− 1. The last element in the Sturm sequence
(if it has not already stopped) will be the constant R(n − 1). We
now claim that for every n and every i ≥ 1 we have

{
R(i) = A · ∑n−i−1

j=0

(
n−i−1

j

) (κ+n−i−1)!
(κ+j)!

zj if i is odd

R(i) = B ·
∑n−i−1

j=0

(
n−i−1

j

) (κ+n−i−1)!
(κ+j)!

zj if i is even
(2)

where
{
A = (n− 1)(κ+ n− 1)(n− 3)(κ+ n− 3) . . . (n− i)(κ + n− i),
B = n(n− 2)(κ+ n− 2)(n− 4)(κ+ n− 4) . . . (n− i)(κ + n− i).
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It is obvious that with κ = 0 the leading coefficients of all the
R(i) are positive and p will be hyperbolic. For κ ∈ R and κ 6= 0
we have the following conditions for the leading coefficients R(i)lc

of the R(i) to be positive:




R(1)lc > 0 ⇒ κ > 1 − n
R(2)lc > 0 ⇒ κ > 2 − n
R(3)lc > 0 ⇒ κ > 3 − n
...
R(i)lc > 0 ⇒ κ > i− n
...
R(n− 1)lc > 0 ⇒ κ > −1.

These conditions together yield κ > −1. Note that if some factor
(κ+n− j) = 0, then not only the leading coefficient is zero, but the
whole polynomial R(i) is zero. So for κ = j−n with j ∈ [1, n−1] we
also get hyperbolic pn since the Sturm sequence by definition stops
when a zero remainder is reached, and thus the leading coefficients
of the previous components of the Sturm sequence are positive. So
by the corollary of Sturm’s Theorem, pn is hyperbolic for all n if and
only if κ > −1, and pn is hyperbolic for a particular n if and only
if κ > −1 or κ = −1,−2, . . . ,−(n − 1). One can prove by induc-
tion that the Sturm sequence polynomials are of the form claimed
in (2) (see Appendix) . Moreover, it is obvious that if the roots of
pn lie on a straight line they can be transformed to the real axis
by some complex affine transformation, and thus T must be on the
form claimed by Theorem 1 or 1

′

, and so Corollaries 1 and 1
′

follow.�

To prove Theorem 2 we need the following

Lemma 3. Let pn =
∑n

j=0 an,jz
j be the nth degree monic poly-

nomial eigenfunction of T = δ
[
(z + κ) d

dz
+ z d2

dz2

]
where δ, κ ∈ C.

Note that T and δT have identical eigenpolynomials. Then the co-
efficients an,j of pn are given by

an,j =

(
n

j

)
(κ+ n− 1)!

(κ+ j − 1)!
, ∀j ∈ [0, n].
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Proof. Inserting pn =
∑n

j=0 an,jz
j in (z+κ)p

′

n +zp
′′

n = npn we have

(z + κ)

n∑

j=1

jan,jz
j−1 + z

n∑

j=2

j(j − 1)an,jz
j−2 = n

n∑

j=0

an,jz
j

⇔
n∑

j=1

jan,jz
j +

n∑

j=1

κjan,jz
j−1 +

n∑

j=2

j(j − 1)an,jz
j−1 =

n∑

j=0

nan,jz
j

⇔
n∑

j=1

jan,jz
j +

n−1∑

j=0

κ(j + 1)an,j+1z
j +

n−1∑

j=1

j(j + 1)an,j+1z
j =

n∑

j=0

nan,jz
j .

Comparing coefficients we obtain

jan,j + κ(j + 1)an,j+1 + j(j + 1)an,j+1 = nan,j

⇔

an,j =
(j + 1)(κ+ j)

(n− j)
· an,j+1

Applying this iteratively and using an,n = 1 (by monicity of pn) we
arrive at

an,j =

(
n

j

)
(κ+ n− 1)!

(κ+ j − 1)!
, ∀j ∈ [0, n].

�

Proof of Theorem 2. Let α 6= 0 be a root of pn that is not
simple. Then, by repeatedly differentiating our eigenvalue equation

zp
′′

n + (z + κ)p
′

n = npn and inserting z = α, we get p
(j)
n (α) = 0

∀j, which means the multiplicity of α is infinite, which is absurd.
Thus, for all κ ∈ C, any non-zero root α of pn is simple4. Next
we prove that if κ 6= −1,−2, . . . ,−(n − 1) and if α = 0 is a
root of pn then it must be simple too. Let α = 0 be a root
of pn of multiplicity m and write pn(z) = zmq(z) where α = 0
is not a root of q(z). Then p

′

n(z) = mzm−1q(z) + zmq
′

(z) and

4This also follows from the uniqueness theorem for a second order
differential equation.
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p
′′

n(z) = m(m − 1)zm−2q(z) +mzm−1q
′

(z) +mzm−1q
′

(z) + zmq
′′

(z).
Inserting this in our eigenvalue equation we obtain

λnpn(z) =zp
′′

n(z) + (z + κ)p
′

n(z)

⇔
zm−1[λnzq(z)] =m(m− 1)zm−1q(z) +mzmq

′

(z)

+mzmq
′

(z) + zm+1q
′′

(z) +mzmq(z) + zm+1q
′

(z)

+κmzm−1q(z) + κzmq
′

(z)

=zm−1[m(m− 1)q(z) +mzq
′

(z) +mzq
′

(z)

+z2q
′′

(z) +mzq(z) + z2q
′

(z) + κmq(z) + κzq
′

(z)].

Equating the expressions in the brackets and setting z = 0 we arrive
at the relation m(m − 1)q(0) + κmq(0) = 0 ⇔ m(m − 1 + κ) =
0. Thus m = 0 or m = 1 − κ for the multiplicity m of the root
α = 0. But if m = 0 then α = 0 is not a root of pn whence all
roots of pn are simple and we are done. If κ = 0 then m = 0 or
m = 1 (it will soon be proved that the latter is true, see below).
If κ 6= 0,−1,−2 . . . ,−(n − 1) then either m = 0 and we are done,
or m = 1 − κ. Since m is the multiplicity of the root it must be a
non-negative integer, and therefore m = 1 − κ is impossible unless
κ = 0,−1,−2, . . . ,−(n − 1). Thus α = 0 is not a root of pn if
κ > −1 and κ 6= 0. Also, m = 1 − κ is absurd if κ 6∈ Z, and thus
m = 0 for κ 6∈ Z. Now consider the case κ ∈ Z with κ ≤ −n. Then
either m = 0 or m = 1 − κ. By Lemma 3 the constant term an,0 of
pn equals

an,0 =
(κ− 1 + n)!

(κ− 1)!
= (κ−1+n)(κ−2+n)(κ−3+n) . . . (κ+2)(κ+1)κ.

and this cannot be zero if κ ∈ Z and κ ≤ −n - hence there is
no zero at the origin (m = 0). Finally we prove that for κ =
−1,−2, . . . ,−(n − 1) the multiplicity of the root α = 0 is m =
1 − κ > 1 and so in this case not all roots of pn are simple. Re-
call that m(m − 1 + κ) = 0, so if m 6= 0 then m = 1 − κ and we
are done. Thus we have to prove that we do have a root at the
origin for κ = 0,−1,−2, . . . ,−(n − 1). But this is only possible if
an,0 = 0, and this is indeed the case if κ = 0,−1,−2, . . . ,−(n − 1)
and we can conclude that all roots of pn are simple for all κ ∈
C r {−1,−2, . . . ,−(n− 1)}. �
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Using Lemma 3 we also obtain the following

Proposition 1. Let pn(κ, z) denote the nth degree monic eigen-

polynomial of T = δ
[
(z + κ) d

dz
+ z d2

dz2

]
where δ, κ ∈ C. Then, using

the explicit representation of pn in Lemma 3, we obtain the identity

p(m)
n (κ, z) =

n!

(n−m)!
pn−m(κ +m, z), n = 0, 1, . . . ;m = 1, 2, . . .

and the recurrence formula

pn(κ, z) = (z + 2n+ κ− 2)pn−1(κ, z)− (n− 1)(n+ κ− 2)pn−2(κ, z),

where p0(κ, z) = 1 and p1(κ, z) = z + κ.

Proof of Corollary 3. By Theorem 2 all nonzero roots of pn

are simple, and from the proof of Theorem 2 we know that for
κ = 0,−1,−2, . . . ,−(n−1) the multiplicity of the root at the origin
is m = 1 − κ. We have a total of n roots of pn and thus there are
n− (1 − κ) + 1 = n + κ distinct roots. �

As stated in Theorems 3 and 4, it is possible to count the exact
number of real roots of pn if κ ∈ R in T . We use Sturm’s Theorem
to count the number of real roots in any interval:5

Sturm’s Theorem. Let (p0(t), p1(t), p2(t), . . .) be the Sturm se-
quence of a polynomial p(t) (as defined in the proof of Theorems 1
and 1

′

). Let u < v be real numbers. Assume that U is the number
of sign changes in the sequence (p0(u), p1(u), p2(u), . . .) and let V be
the number of sign changes in the sequence (p0(v), p1(v), p2(v), . . .).
Then the number of real roots of p(t) between u and v (with each
multiple root counted exactly once) is exactly U − V .

Remark. Combining Sturm’s Theorem with Theorem 2 and its
Corollary 3 it is possible to recover Theorems 1 and 1

′

in the di-
rection ⇒. Namely, we get (i) ⇒ (ii) if κ > −1 and pn is the
nth degree monic polynomial eigenfunction of T , since then the
Sturm sequence of pn has (n + 1) nonzero elements, all with posi-
tive leading coefficients. With u = −∞ and v = ∞ we then have

5see [2].
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U = n and V = 0, and therefore the number of real roots of pn

is U − V = n, so pn is hyperbolic (Theorem 1). And similarly
(i)′ ⇒ (ii)′ for κ = −1,−2, . . . ,−(n− 1), since the Sturm sequence
stops as soon as the zero remainder is reached, and here it has
(n + κ + 1) nonzero elements, all with positive leading coefficients.
Therefore, with u = −∞ and v = ∞, we have U = n+κ and V = 0.
By Corollary 3 all roots of pn are simple except the root at the origin
which has multiplicity 1−κ. Thus, counted with multiplicity, pn has
U − V + (−κ) = n real roots and is therefore hyperbolic (Theorem
1
′

) .

We already know that if κ 6= −1,−2, . . . ,−(n−1), then all roots
of pn are simple and no element in the Sturm sequence of pn is iden-
tically zero. The leading coefficients of the elements of the Sturm
sequence are (see the proof of Theorems 1 and 1

′

) given by






plc = 1
p
′

lc = n
R(1)lc = (n− 1)(κ+ n− 1)
R(2)lc = n(n− 2)(κ+ n− 2)
R(3)lc = (n− 1)(κ+ n− 1)(n− 3)(κ+ n− 3)
R(4)lc = n(n− 2)(κ+ n− 2)(n− 4)(κ+ n− 4)
R(3)lc = (n− 1)(κ+ n− 1)(n− 3)(κ+ n− 3)(n− 5)(κ+ n− 5)
R(4)lc = n(n− 2)(κ+ n− 2)(n− 4)(κ+ n− 4)(n− 6)(κ+ n− 6)
...
R(n− 1)lc = . . .

We now use Sturm’s Theorem to prove Theorems 3 and 4:

Proof of Theorem 3. Let pn be the monic degree n eigenpoly-
nomial of T where κ < −(n − 1), i.e. κ + n − 1 < 0 and therefore
κ + n − j < 0 for every j ≥ 1. Thus we get the following for the
leading coefficients of the Sturm sequence elements:
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plc = 1 > 0
p
′

lc = n > 0
R(1)lc < 0
R(2)lc < 0
R(3)lc > 0
R(4)lc > 0
R(5)lc < 0
R(6)lc < 0
...

This pattern continues up to the last element R(n − 1) of the se-
quence. Inserting v = ∞ in the Sturm sequence of pn we find that
there is a sign change at every R(i) where i is odd. Therefore the
number of sign changes V in this sequence equals the number of
R(i) where i is odd. Thus:

V =

{
n
2

if n is even,
n−1

2
if n is odd.

Inserting u = −∞ in the Sturm sequence we find that there is a sign
change between the first two elements in the sequence and then at
every R(i) where i is even. and hence the number of sign changes
U equals 1+ [the number of R(i) where i is even]. Thus:

U =

{
n−2

2
+ 1 = n

2
if n is even

n−1
2

+ 1 = n+1
2

if n is odd.

By Theorem 2 all roots of pn are simple and thus the number of real

roots of pn equals U − V =

{
0 if n is even.
1 if n is odd.

�

Proof of Theorem 4. Let pn be the monic eigenpolynomial of
T where κ ∈ R and j − n < κ < j − n + 1 for j ∈ [1, n− 2]. Then
(κ + n − j) > 0 and (κ + n − j − 1) < 0 and [κ] = j − n. Again
we consider the leading coefficients in the Sturm sequence of pn.
Clearly plc = 1 > 0, p

′

lc = n > 0 and R(i)lc > 0 ∀i ∈ [1, j]. For the
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remaining leading coefficients we have




R(j + 1)lc < 0
R(j + 2)lc < 0
R(j + 3)lc > 0
R(j + 4)lc > 0
R(j + 5)lc < 0
R(j + 6)lc < 0

...

and this pattern continues up to the last element R(n − 1) in the
sequence. Consider the sequence we obtain by inserting v = ∞ in
this Sturm sequence. We have sign changes at every R(j + l) where
l is odd. Our last element is R(n − 1) = R(j + (n − j − 1)). Also
note that if n− j − 1 = n− n− [κ] − 1 = −[κ] − 1 is even then [κ]
is odd, and if n− j − 1 is odd then [κ] is even. Thus the number of
sign changes V in this sequence is

V =

{
n−j−1

2
if [κ] is odd,

n−j
2

if [κ] is even.

Now insert u = −∞ in the Sturm sequence. The number of sign
changes from the first element p in the sequence till the element R(j)
is (1 + j). For the remaining n− j − 1 elements of this sequence we
have a change of sign at every R(j + l) where l is even. Thus the
number of sign changes is (n− j − 1)/2 if (n− j − 1) is even ⇔ [κ]
is odd, and the number of sign changes is (n− j−2)/2 if (n− j−1)
is odd ⇔ [κ] is even. Thus for the total number of sign changes U
in this sequence we get

U =

{
(1 + j) + n−j−1

2
= n+j+1

2
if [κ] is odd

(1 + j) + n−j−2
2

= n+j
2

if [κ] is even.

Therefore the number of real roots U − V of pn, counted with mul-
tiplicity, is precisely

U − V =

{
n+j+1

2
− n−j−1

2
= j + 1 = n + [κ] + 1 if [κ] is odd

n+j
2

− n−j
2

= j = n+ [κ] if [κ] is even.

since all roots of pn are simple in this case by Theorem 2. �
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Proof of Theorem 5. The proof of the interlacing property con-
sists of a sequence of five lemmas. Lemmas 4 and 8 are well-known.
Lemmas 4,5 and 6 are used in the proof of Lemma 7, which is proved
using an idea due to S. Shadrin presented in [20]. The five lemmas
are the following:

Lemma 4. If Rn and Rn+1 are strictly hyperbolic polynomials of
degrees n and n + 1 respectively, then Rn + ǫRn+1 is hyperbolic for
any sufficiently small ǫ.

Lemma 5. Let pn and pn+1 be two polynomial eigenfunctions of

the operator T = (z + κ) d
dz

+ z d2

dz2 with κ = 0,−1,−2, . . . ,−(n− 1).
Then pn + ǫpn+1 is hyperbolic for any sufficiently small ǫ.

Proof of Lemma 5. From Corollary 3 we know that pn and
pn+1 have all their roots simple except for the root at the origin
which for both polynomials has multiplicity 1 − κ. Thus we can
write pn + ǫpn+1 = z1−κ(Rn+κ−1 + ǫRn+κ), where Rn+κ−1 and Rn+κ

are strictly hyperbolic polynomials of degrees n + κ − 1 and n + κ
respectively. By Lemma 4, Rn+κ−1+ǫRn+κ is hyperbolic for any suf-
ficiently small ǫ, and then clearly z1−κ(Rn+κ−1+ǫRn+κ) = pn+ǫpn+1

is also hyperbolic for any sufficiently small ǫ. �

Lemma 6. Let T = κ+(z+κ) d
dz

+z d2

dz2 with κ = 0,−1,−2, . . . ,−(n−
1), and let pn and pn+1 be two consecutive eigenpolynomials of T .
Then letting T act on any linear combination αpn + βpn+1 with
α, β ∈ R that is hyperbolic (i.e. has all its roots real) results in a
hyperbolic polynomial.

Proof of Lemma 6. Note that the operators T = κ+(z+κ) d
dz

+z d2

dz2

and T = (z + κ) d
dz

+ z d2

dz2 have identical eigenpolynomials. Let f =
αpn+βpn+1 be a hyperbolic linear combination with real coefficients
of two consecutive eigenpolynomials of T . Then f

′

is a hyperbolic
polynomial by Gauss-Lucas Theorem. By Rolle’s Theorem f and
f

′

have interlacing roots and so by the well-known Lemma 8 below,
(f+f

′

) is a hyperbolic polynomial. By Corollary 3 both pn and pn+1

have a root at the origin of multiplicity 1−κ. Thus f = αpn+βpn+1

has a root at the origin of multiplicity at least 1 − κ, and f
′

has a
root at the origin of multiplicity at least −κ. Thus the polynomial
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(f + f
′

) has a root at the origin of multiplicity at least (−κ) and we
can write (f + f

′

) = z−κg for some hyperbolic polynomial g. Now
zκ(f + f

′

) = g is a hyperbolic polynomial. But D[zκ(f + f
′

)] =
κzκ−1(f +f

′

)+ zκ(f
′

+f
′′

) = zκ−1[κf +(z+κ)f
′

+ zf
′′

] = zκ−1T (f)
where T (f) = κf + (z + κ)f

′

+ zf
′′

. By Gauss-Lucas Theorem
one has that D[zκ(f + f

′

)] is a hyperbolic polynomial and therefore
T (f) = z1−kD[zκ(f + f

′

)] is a hyperbolic polynomial. �

Lemma 7. Let T = κ + (z + κ) d
dz

+ z d2

dz2 . Any linear combination
αpn +βpn+1 with real coefficients of two consecutive eigenpolynomi-
als of T with κ = 0,−1,−2, . . . ,−(n−1) is a hyperbolic polynomial.

Proof of Lemma 7. Applying to αpn + βpn+1 some high power
T−N of the inverse operator one gets

T−N(αpn + βpn+1) =
α

λN
n

pn +
β

λN
n+1

pn+1 =

=
α

λN
n

(pn + ǫpn+1),

where ǫ is arbitrarily small for the appropriate choice of N (since
0 < λn < λn+1). Thus, by Lemma 5, the polynomial T−N(αpn +
βpn+1) is hyperbolic for sufficiently large N . Assume that αpn +
βpn+1 is non-hyperbolic and take the largest N0 for which RN0 =
T−N0(αpn + βpn+1) is still non-hyperbolic. Then RN0 = T (RN0+1)
where RN0+1 = T−N0−1(αpn + βpn+1). Note that RN0+1 is hyper-
bolic and that if κ = 0,−1,−2, . . . ,−(n − 1) then letting T act on
any hyperbolic linear combination αpn +βpn+1 with real coefficients
results in a hyperbolic polynomial by Lemma 6. Contradiction. �

Lemma 8 [classical]. If Rn and Rn+1 are any real polynomials
of degrees n and n + 1, respectively, then saying that every lin-
ear combination αRn + βRn+1 with real coefficients is hyperbolic is
equivalent to saying that
(i) both Rn and Rn+1 are hyperbolic, and
(ii) their roots are interlacing.

We now prove Theorem 5. Consider the operator T = (z +

κ) d
dz

+ z d2

dz2 where κ = 0,−1,−2, . . . ,−(n− 1), and let pn and pn+1

be two consecutive eigenpolynomials of T . Recall that δT and T
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have identical eigenpolynomials and that by Corollary 1
′

the roots
in this case lie on straight lines in the complex plane. By Lemma 5
the linear combination pn + ǫpn+1 is hyperbolic for any sufficiently
small ǫ. Using Lemmas 5 and 6 we can therefore apply Lemma 7
which says that any linear combination αpn +βpn+1 with real coeffi-
cients α and β is a hyperbolic polynomial. By Lemma 8 this implies
that the roots of pn and pn+1 are interlacing and we are done. �

Remark. Note that we can recover the interlacing property for
the normalized Laguerre polynomials using the same proof as in
Theorem 5 but with a small modification of Lemma 6. Namely,
if κ > 0, then the application of T to any hyperbolic polynomial
results in a hyperbolic polynomial. For if f is a hyperbolic poly-
nomial, then f

′

is hyperbolic by Gauss-Lucas Theorem, f and f
′

have interlacing roots by Rolle’s Theorem, and by the well-known
Lemma 8 the linear combination (f + f

′

), and therefore zκ(f + f
′

),
is a hyperbolic polynomial. Finally D[zκ(f + f

′

)] = zκ−1T (f) is
hyperbolic by Gauss-Lucas Theorem.

When suitably scaled, it is possible to find a limiting expansion
for pn when n→ ∞ that is closely related to a Bessel function. Be-
cause of the scaling however, the convergence to the Bessel function
only gives information about the asymptotic behaviour of pn in an
infinitesimal neighbourhood of the origin. Although other methods
must be used to get information elsewhere, it is interesting that on
the infinitesimal scale our eigenpolynomials mimic the global be-
haviour of this particular Bessel function. We have the following
proposition, where Jκ−1 denotes the Bessel function of the first kind
of order (κ− 1):

Proposition 2. Let pn(κ, z) denote the unique and monic eigen-
polynomial of the operator

T = δ

[
(z + κ)

d

dz
+ z

d2

dz2

]

where δ, κ ∈ C and κ is not a negative integer. We then have the
limit formula

lim
n→∞

n1−κ

n!
pn(κ, z/n) = (−z)(1−κ)/2Jκ−1(2i

√
z),
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where the convergence holds for all z ∈ C and uniformly on compact
z-sets.

Remark. The Bessel function of the first kind of order κ is de-
fined by the series

Jκ(z) ≡
∞∑

ν=0

(−1)ν(z/2)κ+2ν

ν!Γ(κ+ ν + 1)

where z, κ ∈ C and |z| < ∞. Clearly z−κJκ(z) is an entire analytic
function for all z ∈ C if κ is not a negative integer. This Bessel
function is a solution to Bessel’s equation 6 of order κ, which is the
second-order linear differential equation

z2 d
2y

dz2
+ z

dy

dz
+ (z2 − κ2)y = 0.

From now on we adopt the notational convention Γ(n + κ) =
(n+ κ− 1)! for κ ∈ C, where Γ is the Gamma function. In order to
prove Proposition 2, we will need the following technical

Lemma 9.

lim
n→∞

(
n+ κ− 1

n− ν

)
n1−κ−ν =

1

Γ(κ + ν)

where n, ν ∈ R and κ ∈ C \ {−1,−2, . . .}.

Proof of Lemma 9. Using the following well-known asymptotic
formula:

Corollary of the Stirling formula. 7

lim
n→∞

Γ(n+ α)

Γ(n)
n−α = 1

where α ∈ C and n ∈ R,

6Bessel’s equation is encountered in the study of boundary value
problems in potential theory for cylindrical domains. The solutions
to Bessel’s equation are referred to as cylinder functions, of which
the Bessel functions are a special kind.

7see e.g.[25]
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we get

lim
n→∞

(
n+ κ− 1

n− ν

)
n1−κ−ν =

1

Γ(κ + ν)
lim

n→∞

Γ(n+ κ)

Γ(n− ν + 1)
n1−κ−ν

=
1

Γ(κ + ν)
lim

n→∞

Γ(n+ κ)

Γ(n)
n−κ lim

n→∞

Γ(n)

Γ(n− ν + 1)
n1−ν

=
1

Γ(κ + ν)
.

Proof of Proposition 2. By Lemma 3 our eigenpolynomials have
the following explicit representation:

pn(κ, z) =

n∑

ν=0

(
n

ν

)
(κ+ n− 1)!

(κ+ ν − 1)!
zν =

n∑

ν=0

(
n+ κ− 1

n− ν

)
n!

ν!
zν

where κ ∈ C.

Thus, with the scaling z → z/n and using Lemma 9, we get

lim
n→∞

n1−κ

n!
pn(κ, z/n) = lim

n→∞

n∑

ν=0

(
n + κ− 1

n− ν

)
n1−κ 1

ν!

(
z

n

)ν

= lim
n→∞

n∑

ν=0

(
n + κ− 1

n− ν

)
n1−κ−ν z

ν

ν!

=
∞∑

ν=0

zν

Γ(κ + ν)ν!
= (−z)(1−κ)/2Jκ−1(2i

√
z).

�
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Appendix: Proof of (2) in Section 2.

Note that we have adopted the notational convention Γ(n + κ) =
(n + κ − 1)! for κ ∈ C, where Γ denotes the Gamma function. I
start by calculating R(1) and R(2) and so the hypothesis (actually
there are two hypotheses, one for even i and one for odd i) is true
for one case of even i and one case of odd i. With the nth degree
eigenpolynomial pn =

∑n
j=0 an,jz

j we have by Lemma 3 that

an,j =

(
n

j

)
(κ+ n− 1)!

(κ+ j − 1)!
⇒ pn =

n∑

j=0

(
n

j

)
(κ+ n− 1)!

(κ + j − 1)!
zj .

Calculation of R(1) = [the negative of the remainder when the eigen-
polynomial pn is divided by p

′

n]:

z

n
+

(n − 1 + κ)

n

n
X

j=1

j
“n

j

” (κ + n − 1)!

(κ + j − 1)!
zj−1

n
X

j=0

“n

j

” (κ + n − 1)!

(κ + j − 1)!
zj

−

» n
X

j=1

j

n

“n

j

” (κ + n − 1)!

(κ + j − 1)!
zj

–

=

n−1
X

j=0

“n

j

” (κ + n − 1)!

(κ + j − 1)!

»

1 −
j

n

–

zj

−

» n−1
X

j=0

j + 1

n

“ n

j + 1

”

(κ + n − 1)
(κ + n − 1)!

(κ + j)!
zj

–

=

n−2
X

j=0

»

“n

j

” (κ + n − 1)!

(κ + j − 1)!

„

1 −
j

n

«

−
(j + 1)

n

“ n

j + 1

”

(κ + n − 1)
(κ + n − 1)!

(κ + j)!

–

zj

and it remains to prove that the negative of this remainder equals

R(1) = (n− 1)(κ+ n− 1)
n−2∑

j=0

(
n− 2

j

)
(κ+ n− 2)!

(κ+ j)!
zj .
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Developing the coefficient in front of zj in our remainder we obtain
“n

j

” (κ + n − 1)!

(κ + j − 1)!

„

1 −
j

n

«

−
(j + 1)

n

“ n

j + 1

”

(κ + n − 1)
(κ + n − 1)!

(κ + j)!

=
n!

(n − j)!j!

(κ + n − 1)!

(κ + j − 1)!
−

n!

(n − j)!j!

j

n

(κ + n − 1)!

(κ + j − 1)!
−

(j + 1)

n

n!(κ + n − 1)

(j + 1)!(n − j − 1)!

(κ + n − 1)!

(κ + j)!

=
n(n − 1)(n − 2)!

(n − j − 2)!(n − j − 1)(n − j)j!

(κ + n − 2)!(κ + n − 1)(κ + j)

(κ + j)!

−
(n − 1)(n − 2)!(κ + n − 2)!(κ + n − 1)j(κ + j)

(n − j − 2)!(n − j − 1)(n − j)(κ + j)!j!
−

(n − 1)(n − 2)!(κ + n − 1)2(κ + n − 2)!

j!(n − j − 2)!(n − j − 1)(κ + j)!

= (n − 1)(κ + n − 1)
(n − 2)!

j!(n − j − 2)!

(κ + n − 2)!

(κ + j)!

»

n(κ + j)

(n − j − 1)(n − j)
−

j(κ + j)

(n − j − 1)(n − j)

−
(κ + n − 1)(n − j)

(n − j − 1)(n − j)

–

= (n − 1)(κ + n − 1)
“n − 2

j

” (κ + n − 2)!

(κ + j)!

»

nκ + nj − jκ − j2 − κn + κj − n2 + nj + n − j

n2 − nj − nj + j2 − n + j

–

= −(n − 1)(κ + n − 1)
“n − 2

j

” (κ + n − 2)!

(κ + j)!
,

and we are done.
Calculation of R(2) = [the negative of the remainder when p

′

n is
divided by R(1)]:

nz

(n − 1)(κ + n − 1)
+

n(2n − 3 + κ)

(n − 1)(κ + n − 1)

n−2
X

j=0

“n − 2

j

” (κ + n − 2)!

(κ + j)!
(n − 1)(κ + n − 1)zj

n−1
X

j=0

(j + 1)
“ n

j + 1

” (κ + n − 1)!

(κ + j)!
zj

−

» n−1
X

j=1

n
“n − 2

j − 1

” (κ + n − 2)!

(κ + j − 1)!
zj

–

=

n−2
X

j=0

»

(j + 1)
“ n

j + 1

” (κ + n − 1)!

(κ + j)!
− n

“n − 2

j − 1

” (κ + n − 2)!

(κ + j − 1)!

–

zj

−

» n−2
X

j=0

“n − 2

j

” (κ + n − 2)!

(κ + j)!
n(2n−3+κ)zj

–

=

n−3
X

j=0

»

(κ + n − 2)!

(κ + j − 1)!

„

(j + 1)
“ n

j + 1

” (κ + n − 1)!

(κ + j)!
− n

“n − 2

j − 1

”

«

− n(2n − 3 + κ)
“n − 2

j

” (κ + n − 2)!

(κ + j)!

–

zj

and it remains to prove that the negative of this remainder equals

R(2) = n(n− 2)(κ+ n− 2)

n−3∑

j=0

(
n− 3

j

)
(κ + n− 3)!

(κ+ j)!
zj .
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Developing the coefficient in front of zj in our remainder we have

(κ + n − 2)!

(κ + j − 1)!
(j + 1)

“ n

j + 1

” (κ + n − 1)

(κ + j)
−

(κ + n − 2)!

(κ + j − 1)!
n

“n − 2

j − 1

”

−
(κ + n − 2)!

(κ + j)!

“n − 2

j

”

n(2n − 3 + κ)

=
(κ + n − 2)!

(κ + j − 1)!

n!

j!(n − j − 1)!

(κ + n − 1)

(κ + j)
−

(κ + n − 2)!

(κ + j − 1)!

n(n − 2)!

(j − 1)!(n − j − 1)!

−
(κ + n − 2)!

(κ + j)!

(n − 2)!

(j!(n − j − 2)!
n(2n − 3 + κ)

=
(κ + n − 3)!(κ + n − 2)(n − 3)!(n − 2)(n − 1)n(κ + n − 1)

(κ + j)!j!(n − j − 3)!(n − j − 2)(n − j − 1)

−
(κ + n − 3)!(κ + n − 2)n(n − 2)(n − 3)!j(κ + j)

j!(n − j − 3)!(n − j − 2)(n − j − 1)(κ + j)!

−
(κ + n − 3)!(κ + n − 2)(n − 2)(n − 3)!n(2n − 3 + κ)

(κ + j)!j!(n − j − 2)(n − j − 3)!

=
(κ + n − 3)!(n − 3)!

(κ + j)!j!(n − j − 3)!
n(n − 2)(κ + n − 2)

»

(n − 1)(κ + n − 1)

(n − j − 2)(n − j − 1)

−
j(κ + j)

(n − j − 2)(n − j − 1)
−

(2n − 3 + κ)(n − j − 1)

(n − j − 2)(n − j − 1)

–

= n(n − 2)(κ + n − 2)
“n − 3

j

” (κ + n − 3)!

(κ + j)!

»

−n2 + nj + n + nj − j2 − j + 2n − 2j − 2

n2 − nj − n − nj + j2 + j − 2n + 2j + 2

–

= −n(n − 2)(κ + n − 2)
“n − 3

j

” (κ + n − 3)!

(κ + j)!
,

and we are done.

To prove the induction hypotheses we divide R(i) by R(i + 1) to
obtain R(i + 2). Here it is assumed that i is odd. The proof with
even i differs only in small details from this proof and is therefore
omitted here. For simplicity we use the notations
{
A = (n− 1)(κ+ n− 1)(n− 3)(κ+ n− 3) . . . (n− i)(κ+ n− i),
B = n(n− 2)(κ+ n− 2)(n− 4)(κ+ n− 4) . . . (n− i)(κ+ n− i).
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Dividing R(i) by R(i+ 1):

A

B
z +

A

B
(2n − 2i − 3 + κ)

B

n−i−2
X

j=0

“n − i − 2

j

” (κ + n − i − 2)!

(κ + j)!
zj A

n−i−1
X

j=0

“n − i − 1

j

” (κ + n − i − 1)!

(κ + j)!
zj

−

»

A

n−i−1
X

j=1

“n − i − 2

j − 1

” (κ + n − i − 2)!

(κ + j − 1)!
zj

–

= A

n−i−2
X

j=0

»

“n − i − 1

j

” (κ + n − i − 1)!

(κ + j)!
−

“n − i − 2

j − 1

” (κ + n − i − 2)!

(κ + j − 1)!

–

zj

−

»

A

n−i−2
X

j=0

(2n−2i−3+κ)
“n − i − 2

j

” (κ + n − i − 2)!

(κ + j)!
zj

–

= A

n−i−3
X

j=0

»

“n − i − 1

j

” (κ + n − i − 1)!

(κ + j)!
−

“n − i − 2

j − 1

” (κ + n − i − 2)!

(κ + j − 1)!
− (2n − 2i − 3 + κ)

“n − i − 2

j

” (κ + n − i − 2)!

(κ + j)!

–

zj

and it remains to prove that the negative of this remainder equals
the excpected (by hypothesis)

R(i+2) = A(n−i−2)(κ+n−i−2)

n−i−3∑

j=0

(
n− i− 3

j

)
(κ + n− i− 3)!

(κ + j)!
zj ,

i.e. we have to prove the following equality:
(
n− i− 1

j

)
(κ + n− i− 1)!

(κ + j)!
−

(
n− i− 2

j − 1

)
(κ+ n− i− 2)!

(κ + j − 1)!

− (2n− 2i− 3 + κ)

(
n− i− 2

j

)
(κ+ n− i− 2)!

(κ+ j)!
=

= −(n− i− 2)(κ+ n− i− 2)

(
n− i− 3

j

)
(κ+ n− i− 3)!

(κ+ j)!
.
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But
“n − i − 1

j

” (κ + n − i − 1)!

(κ + j)!
−

“n − i − 2

j − 1

” (κ + n − i − 2)!

(κ + j − 1)!
− (2n − 2i − 3 + κ)

“n − i − 2

j

” (κ + n − i − 2)!

(κ + j)!

=
(n − i − 1)!

j!(n − i − j − 1)!

(κ + n − i − 1)!

(κ + j)!
−

(n − i − 2)!

(j − 1)!(n − i − j − 1)!

(κ + n − i − 2)!

(κ + j − 1)!

− (2n − 2i − 3 + κ)
(n − i − 2)!

j!(n − i − j − 2)!

(κ + n − i − 2)!

(κ + j)!

=
(n − i − 3)!(n − i − 2)(n − i − 1)(κ + n − i − 3)!(κ + n − i − 2)(κ + n − i − 1)

j!(n − i − j − 1)(n − i − j − 2)(n − i − j − 3)!(κ + j)!

−
(n − i − 3)!(n − i − 2)j(κ + n − i − 3)!(κ + n − i − 2)(c + j)

j!(n − i − j − 3)!(n − i − j − 2)(n − i − j − 1)(κ + j)!

− (2n − 2i − 3 + κ)
(n − i − 3)!(n − i − 2)(κ + n − i − 3)!(κ + n − i − 2)

j!(n − i − j − 3)!(n − i − j − 2)(κ + j)!

= (n − i − 2)(κ + n − i − 2)
(n − i − 3)!

j!(n − i − j − 3)!

(κ + n − i − 3)!

(κ + j)!

·

»

(n − i − 1)(κ + n − i − 1) − j(κ + j) − (2n − 2i − 3 + κ)(n − i − j − 1)

(n − i − j − 1)(n − i − j − 2)

–

= (n − i − 2)(κ + n − i − 2)
(n − i − 3)!

j!(n − i − j − 3)!

(κ + n − i − 3)!

(κ + j)!
(−1)

= −(n − i − 2)(κ + n − i − 2)
“n − i − 3

j

” (κ + n − i − 3)!

(κ + j)!
.

�
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Abstract

In this paper we study roots of eigenpolynomials of de-
generate exactly-solvable differential operators, i.e. T =∑k

j=1QjD
j with polynomial coefficients Qj in one complex

variable satisfying the condition degQj ≤ j with equality
for at least one j, and in particular degQk < k. We show
that the root with the largest modulus of the nth degree
unique and monic eigenpolynomial pn of T tends to in-
finity when n → ∞, as opposed to the non-degenerate
case (degQk = k), which we have treated previously in
[2]. Our main result in this paper is an explicit conjecture
and partial results on the growth of the largest modulus
of the roots of pn. Based on this conjecture we deduce the
algebraic equation satisfied by the Cauchy transform of
the asymptotic root measure of the appropriately scaled
eigenpolynomials, for which the union of all roots is con-
jecturally contained in a compact set.

1 Introduction

In this paper we study asymptotic properties of roots in certain
families of eigenpolynomials. Namely, consider a linear differential
operator

T =
k∑

j=1

QjD
j ,

where D = d/dz and the Qj are complex polynomials in a sin-
gle variable z satisfying the condition degQj ≤ j for all j, and
degQk < k for the leading term. Such operators will be referred
to as degenerate exactly-solvable operators, see Definition 1 below.
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In this paper we study polynomial eigenfunctions of such operators,
that is polynomials satisfying

T (pn) = λnpn (1)

for some value of the spectral parameter λn, where n is a positive
integer and deg pn = n.

The basic motivation for this study comes from two sources: 1)
a classical question going back to S. Bochner, and 2) the generalized
Bochner problem, which we describe below.

1) In 1929 Bochner asked about the classification of differential
equations (1) having an infinite sequence of orthogonal polynomial
solutions, see [15]. Such a system of polynomials {pn}∞n=0 which are
both eigenpolynomials of some finite order differential operator and
orthogonal with respect to some suitable inner product, are referred
to as Bochner-Krall orthogonal polynomial systems (BKS), and the
corresponding operators are called Bochner-Krall operators. It is an
open problem to classify all BKS - a complete classification is only
known for Bochner-Krall operators of order k ≤ 4, and the corre-
sponding BKS are various classical systems such as the Jacobi type,
the Laguerre type, the Legendre type and the Bessel and Hermite
polynomials, see [7].

2) The problem of a general classisfication of linear differential op-
erators for which the eigenvalue problem (1) has a certain number
of eigenfunctions in the form of a finite-order polynomial in some
variables, is referred to as the generalized Bochner problem, see [19]
and [20]. In the former paper a classification of operators possessing
infinitely many finite-dimensional subspaces with a basis in poly-
nomials is presented, and in the latter paper a general method has
been formulated for generating eigenvalue problems for linear differ-
ential operators in one and several variables possessing polynomial
solutions.

Notice that for the operators considered here the sequence of
eigenpolynomials is in general not an orthogonal system and it can
therefore not be studied by means of the extensive theory known for
such systems.
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Definition 1. We call a linear differential operator T of the kth
order exactly-solvable if it preserves the infinite flag P0 ⊂ P1 ⊂ P2 ⊂
· · · ⊂ Pn ⊂ · · · , where Pn is the linear space of all polynomials of
degree less than or equal to n.1 Or, equivalently, the problem (1)
has an infinite sequence of polynomial eigenfunctions if and only if
the operator T is exactly-solvable, see [21].

Notice that any exactly-solvable operator is of the form T =∑k
j=1QjD

j. They split into two major classes: non-degenerate and
degenerate, where in the former case degQk = k, and in the latter
case degQk < k for the leading term. The major difference between
these two classes is that in the non-degenerate case the union of all
roots of all eigenpolynomials of T is contained in a compact set (see
[2]), contrary to the degenerate case, which we prove in this paper.

The importance of studying eigenpolynomials of exactly-solvable
operators is among other things motivated by numerous examples
coming from classical orthogonal polynomials. Our study can be
considered as a natural generalization of the behaviour of the max-
imal root for classical orthogonal polynomial families such as the
Laguerre and Hermite polynomials, which appear as solutions to
the eigenvalueproblem (1) for certain choices on the polynomial co-
efficients Qj for a second-order degenerate exactly-solvable opera-
tor; the Laguerre polynomials appear as solutions to the differential
equation zy′′(z) + (1 − z)y′(z) + ny(z) = 0, and the Hermite poly-
nomials are solutions to the differential equation y′′(z) − 2zy′(z) +
2ny(z) = 0 where n is a nonnegative integer. Recent studies and
interesting results on the asymptotic zero behaviour for these poly-
nomials and the corresponding generalized polynomials can be found
in e.g [6], [9],[13], [17], [18], [11], [12] and references therein. In [11]
one can find bounds on the spacing of zeros of certain functions
belonging to the Laguerre-Polya class satisfying a second order dif-
ferential equation, and as a corollary new sharp inequalities on the
extreme zeros of the Hermite, Laguerre and Jacobi polynomials are
established.

1Correspondingly, a linear differential operator of the kth order
is called quasi-exactly-solvable if it preserves the space Pn for some
fixed n.
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Let us briefly recall our previous results. In [2] we treated the
asymptotic zero distribution for polynomial families appearing as
solutions to (1) where T is an arbitrary non-degenerate exactly-
solvable operator. This seems to be a natural generalization to
higher orders of the Gauss hypergeometric equation. As a special
case, the Jacobi polynomials appear as solutions to (z2 − 1)y′′(z) +
(az + b)y′(z) + cy(z) = 0, where a, b and c are constants satisfying
a > b, a+b > 0 and c = n(1−a−n) for some nonnegative integer n.
It is a classical fact that the zeros of the Jacobi polynomials lie in the
interval [−1, 1] and that their density in this interval is proportional

to 1/
√

1 − |z|2 when the degree n tends to infinity, which follows
from the general theory of orthogonal polynomial systems. However,
for higher-order operators of this kind, the sequence of eigenpolyno-
mials is in general not an orthogonal system. In [2] we proved that
when n → ∞, the roots of the nth degree eigenpolynomial pn for a
non-degenerate exactly-solvable operator are distributed according
to a certain probability measure which has compact support and
which depends only on the leading polynomial Qk. Namely,

Theorem A. Let Qk be a monic polynomial of degree k. Then
there exists a unique probability measure µQk

with compact support

whose Cauchy transform C(z) =
∫ dµQk

(ζ)

z−ζ
satisfies C(z)k = 1/Qk(z)

for almost all z ∈ C.

Theorem B. Let Qk and µQk
be as in Theorem A. Then supp

µQk
is the union of finitely many smooth curve segments, and each

of these curves is mapped to a straight line by the locally defined
mapping Ψ(z) =

∫
Qk(z)

−1/kdz. Moreover, supp µQk
contains all

the zeros of Qk, is contained in the convex hull of the zeros of Qk

and is connected and has connected complement.

If pn is a polynomial of degree n we construct the probability
measure (root measure) µn by placing the point mass of size 1

n
at

each zero of pn. The following is our main result from [2]:

Theorem C. Let pn be the monic degree n eigenpolynomial of a
non-degenerate exactly-solvable operator, and let µn be the root mea-
sure of pn. Then µn converges weakly to µQk

when n→ ∞.
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To illustrate, we show the zeros of some polynomial eigenfunc-
tions for the non-degenerate exactly-solvable operator T = Q5D

5,
where Q5 = (z − 2 + 2i)(z + 1 − 2i)(z + 3 + i)(z + 2i)(z − 2i− 2).
In the pictures below large dots represent the zeros of Q5 and small
dots represent the zeros of the eigenpolynomials p50, p75 and p100

respectively.
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-2
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0
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2

-3 -2 -1 0 1 2
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-1

0

1

2

n=50 n=75 n=100.

As a consequence of the above results we were able to prove a
special case of a general conjecture describing the leading terms of
all Bochner-Krall operators, see [3].

In the present paper we partially extend the above results to
the case of degenerate exactly-solvable operators. Numerical evi-
dence shows that the roots of the nth degree eigenpolynomial are
distributed on a tree in this case too, but that the limiting root
measure is compactly supported only after an appropraite scaling of
the roots. In what follows we will wlog assume that pn is monic.

We start with the following preliminary result:

Lemma 1. Let T =
∑k

j=1QjD
j be a degenerate exactly-solvable

operator of order k. Then, for all sufficiently large integers n, there
exists a unique constant λn and a unique monic polynomial pn of
degree n which satisfy T (pn) = λnpn. If degQj = j for precisely one
value j < k, then there exists a unique constant λn and a unique
monic polynomial pn of degree n which satisfy T (pn) = λnpn for
every integer n = 1, 2, . . ..
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In what follows we denote by rn the largest modulus of all roots of
the unique and monic nth degree eigenpolynomial pn of T , i.e.

rn = max{|z| : pn(z) = 0}.

These are our main results:

Theorem 1.2 Let T be a degenerate exactly-solvable operator of
order k. Then rn → ∞ when n→ ∞.

Next we establish a lower bound for rn when n→ ∞.

Theorem 2. Let T =
∑k

j=1QjD
j =

∑k
j=1

(∑deg Qj

i=0 αj,iz
i
)
Dj be a

degenerate exactly-solvable operator of order k. Then for any γ < b
we have

lim
n→∞

rn

nγ
= ∞,

where

b :=
+

min
j∈[1,k−1]

(
k − j

k − j + degQj − degQk

)
,

and where the notation min+ means that the minimum is taken only
over positive terms (k − j + degQj − degQk).

Corollary 1. Let T =
∑k

j=1QjD
j be a degenerate exactly-solvable

operator of order k such that degQj ≤ j0 for all j > j0, and in par-
ticular degQk = j0, where j0 is the largest j such that degQj = j.
Then limn→∞

rn

nγ = ∞ for any γ < 1.

Corollary 2. Let T =
∑k

j=1QjD
j be a degenerate exactly-solvable

operator of order k such that degQj = 0 for all j > j0, where j0 is
the largest j for which degQj = j. Then limn→∞

rn

nγ = ∞ for any

γ < k−j0
k

.

In fact our extensive numerical experiments and natural heuristic
arguments (see Section 3) support the following conjecture:

2This theorem is joint work with H. Rullg̊ard.
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Main Conjecture. Let T =
∑k

j=1QjD
j be a degenerate exactly-

solvable operator of order k and denote by j0 the largest j for which
degQj = j. Then

lim
n→∞

rn

nd
= cT ,

where cT > 0 is a positive constant and

d := max
j∈[j0+1,k]

(
j − j0

j − degQj

)
.

Remark. Note that Main Conjecture implies Theorem 2 since
b ≤ d.

The next two theorems support the above conjecture:

Theorem 3. Let T be a degenerate exactly-solvable operator of or-
der k consisting of precisely two terms: T = Qj0D

j0 +QkD
k. Then

there exists a positive constant c such that

lim
n→∞

inf
rn

nd
≥ c

where d := maxj∈[j0+1,k]

(
j−j0

j−deg Qj

)
= k−j0

k−deg Qk
.

This result can be generalized to operators consisting of any number
of terms, but with certain conditions on the degree of the polyno-
mial coefficients Qj when j > j0, where j0 is the largest j for which
degQj = j. Namely,

Theorem 4. Let T be a degenerate exactly-solvable operator of
order k. Denote by j0 the largest j such that degQj = j and let
(j − degQj) ≥ (k − degQk) for every j > j0. Then there exists a
positive constant c > 0 such that

lim
n→∞

inf
rn

nd
≥ c

where d := maxj∈[j0+1,k]

(
j−j0

j−deg Qj

)
= k−j0

k−deg Qk
.

Computer experiments indicate that roots of eigenpolynomials
scaled according to the Main Conjecture fill certain interesting curves
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in C. To illustrate this phenomenon let us present some typical pic-
tures. Below pn denotes the nth degree unique and monic eigenpoly-
nomial of the given operator, and qn(z) = pn(ndz) denotes the cor-
responding appropriately scaled polynomial, where d is as in Main
Conjecture, and for which the union of all roots is (conjecturally)
contained in a compact set.

Fig.1: Fig.2: Fig.3:

-2 -1.5 -1 -0.5 0
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-0.5

0

0.5

1
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-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-0.4 -0.2 0 0.2 0.4

-1

-0.5

0

0.5

1

roots of roots of roots of
q100(z) = p100(100z) q100(z) = p100(100z) q100(z) = p100(100z)

Fig.1: T1 = zD + zD2 + zD3 + zD4 + zD5.
Fig.2: T2 = z2D2 +D7.
Fig.3: T3 = z3D3 + z2D4 + zD5.

In Section 3 we will derive the (conjectural) algebraic equation
satisfied by the Cauchy transform C(z) of the asymptotic root mea-
sure of the scaled eigenpolynomial qn for an arbitrary degenerate
exactly-solvable operator. From this equation one can obtain de-
tailed information about the above curves and also conclude which
terms of the operator that are relevant for the asymptotic zero dis-
tribution of its eigenpolynomials.3 Namely, with d and j0 as in Main
Conjecture and assuming Qj0 is monic, we have

zj0Cj0(z) +
∑

j∈A

αj,deg Qj
zdeg QjCj(z) = 1,

where A = {j : (j−j0)/(j−degQj) = d} and αj,deg Qj
is the leading

coefficient of Qj . For details see Section 3.

3As was mentioned earlier, in the non-degenerate case which we
have treated previously, the asymptotic zero distribution of the
eigenpolynomials depends only on the leading coefficient Qk. For
the operators considered here however, the situation is more com-
plicated.
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Numerical evidence clearly illustrates that distinct operators whose
scaled eigenpolynomials satisfy the same Cauchy transform equation
when n→ ∞, will yield identical asymptotic zero distributions. Be-
low we show one such example. For further details see Section 4.3.
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-0.5

0

0.5

1

-1 -0.5 0 0.5

-1

-0.5

0
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1

T4, roots of T̃4, roots of
q100(z) = p100(1002/3z) q100(z) = p100(1002/3z)

where T4 = z3D3 + z2D5 and T̃4 = z2D2 + z3D3 + zD4 + z2D5 +D6.

Let us finally mention some possible applications of our results
and directions for further research. As was mentioned earlier, oper-
ators of the type we consider occur in the theory of Bochner-Krall
orthogonal systems. A great deal is known about the asymptotic
zero distribution of orthogonal polynomials. By comparing such
known results with results on the asymptotic zero distribution of
the eigenpolynomials considered here, we believe it will be possible
to gain new insight into the nature of BKS.

This paper is structured as follows. In Section 2 we give the
proofs of the lemma, the theorems and the corollaries stated in this
section. In Section 3 we explain how we arrived at Main Conjecture
and how we obtain as its corollary the algebraic Cauchy transform
equation. In Section 4 we display numerical evidence supporting
Main Conjecture and its corollary. In Section 5 (Appendix) we
give the detailed calculations which led to the corollary of Main
Conjecture, and we also prove that for a class of operators of the
type we consider, the conjectured upper bound for rn implies the
conjectured lower bound. Finally, in Section 6, we discuss some
open problems and directions for further research.
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2 Proofs

Proof of Lemma 1. In [2] we proved that for any exactly-solvable
operator T , the eigenvalue problem T (pn) = λnpn can be writ-
ten as a linear system MX = Y , where X is the coefficient vec-
tor of the monic nth degree eigenpolynomial pn with components
an,0, an,1, an,2, . . . , an,n−1, and Y is a vector and M is an upper
triangular n × n matrix, both with entries expressible in the co-

efficients of T . With T =
∑k

j=1QjD
j, Qj =

∑deg Qj

i=0 αj,iz
i, and

pn(z) =
∑n

i=0 an,iz
i, the eigenvalue λn is given by

λn =
k∑

j=1

αj,j
n!

(n− j)!
,

and the diagonal elements of the matrix M are given by

Mi+1,i+1 =
∑

1≤j≤min(i,k)

αj,j
i!

(i− j)!
−λn =

k∑

j=1

αj,j

[
i!

(i− j)!
− n!

(n− j)!

]

for i = 0, 1, . . . , n− 1. The last equality follows since i!/(i− j)! = 0
for i < j ≤ k by definition (see Lemma 2 in [2]). In order to prove
that pn is unique we only need to check that the determinant of M
is nonzero, which implies that M is invertible, whence the system
MX = Y has a unique solution. Notice that M is upper trian-
gular and thus its determinant equals the product of its diagonal
elements. We therefore prove that every diagonal element Mi+1,i+1

(i ∈ [0, n − 1]) is nonzero for all sufficiently large integers n for an
arbitrary T as above, as well as for every n if degQj = j for exactly
one j.
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From the expression

−Mi+1,i+1 =
k∑

j=1

αj,j

[
n!

(n− j)!
− i!

(i− j)!

]

it is clear that Mi+1,i+1 6= 0 for every i ∈ [0, n − 1] and every n if
αj,j 6= 0 for exactly one j, that is if degQj = j for precisely one j,
and thus we have proved the second part of Lemma 1.

Now assume that degQj = j for more than one j and denote by
j0 the largest such j. Then αj0,j0 6= 0 and we have

− Mi+1,i+1 =

j0∑

j=1

αj,j

[
n!

(n− j)!
− i!

(i− j)!

]

=
n!

(n− j0)!

[
αj0,j0

(
1 − i!/(i− j0)!

n!/(n− j0)!

)
+

∑

1≤j<j0

αj,j
(n− j0)!

(n− j)!

−
∑

1≤j<j0

(n− j0)!i!

n!(i− j)!

]
.

The last two sums in the brackets on the right-hand side of the above
equality tend to zero when n→ ∞, since j0 > j and i ≤ n−1. Thus
for all sufficiently large n we get

−Mi+1,i+1 =
n!

(n− j0)!

[
αj0,j0

(
1 − i!/(i− j0)!

n!/(n− j0)!

)]
6= 0

for every i ∈ [0, n− 1], and we have proved the first part of Lemma
1. �

To prove Theorem 1 we need the following. If pn is a polynomial
of degree n we construct the probability measure µn by placing a
point mass of size 1

n
at each zero of pn. We call µn the root measure

of pn. By definition, for any polynomial pn of degree n, the Cauchy

transform Cn,j of the root measure µ
(j)
n for the jth derivative p

(j)
n is

defined by

Cn,j(z) :=
p

(j+1)
n (z)

(n− j)p
(j)
n (z)

=

∫
dµ

(j)
n (ζ)

z − ζ
,

11



for j = 0, 1, . . . , n − 1, and it is well-known that the measure µ
(j)
n

can be reconstructed from Cn,j by the formula µ
(j)
n = 1

π
· ∂Cn,j

∂z̄
where

∂/∂z̄ = 1
2
(∂/∂x + i∂/∂y).

Proof of Theorem 1. Let T =
∑k

j=1QjD
j and denote by j0

the largest j for which degQj = j. Note that since T is degenerate
we have j0 < k. Thus, using the above notation, we have

p
(j)
n (z)

pn(z)
= Cn,0(z)Cn,1(z) · · ·Cn,j−1(z) · n(n− 1) · · · (n− j + 1)

=
n!

(n− j)!

j−1∏

m=0

Cn,m(z).

With the notationQj(z) =
∑deg Qj

i=0 αj,iz
i we have λn =

∑j0
j=1 αj,j

n!
(n−j)!

.

Now dividing the equation T (pn) = λnpn by pn we obtain

Qk(z)
p

(k)
n (z)

pn(z)
+Qk−1(z)

p
(k−1)
n (z)

pn(z)
+ . . .+Q1(z)

p′n(z)

pn(z)
=

j0∑

j=1

αj,j
n!

(n− j)!

⇔

Qk(z)
n!

(n− k)!

k−1∏

m=0

Cn,m(z) +Qk−1(z)
n!

(n− k + 1)!

k−2∏

m=0

Cn,m(z) + . . .

. . .+Q1(z)
n!

(n− 1)!
Cn,0(z) =

j0∑

j=1

αj,j
n!

(n− j)!
. (2)

Dividing both sides of this equation by n!
(n−k)!

we get

Qk(z)

k−1∏

m=0

Cn,m(z)

[
1 +

(n− k)!

(n− k + 1)!

1

Cn,k−1(z)

Qk−1(z)

Qk(z)
+

(n− k)!

(n− k + 2)!

1

Cn,k−1(z)Cn,k−2(z)

Qk−2(z)

Qk(z)
+ . . .

. . .+
(n− k)!

(n− 1)!

1
∏k−1

m=1Cn,m(z)

Q1(z)

Qk(z)

]
=

j0∑

j=1

αj,j
(n− k)!

(n− j)!
. (3)

Now assume that all zeros of all pn are uniformly bounded. Then
we can take a subsequence {pni

} such that all the corresponding
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root measures µni
are weakly convergent to a compactly supported

probability measure. Then all Cauchy transforms Cni,m will be uni-
formly convergent to a non-vanishing function outside some large
disc, which in particular contains all the roots ofQk(z). Since j0 < k,
the right-hand side of (3) tends to zero when n→ ∞. On the other
hand, in the left-hand side of (3), all terms in the bracket except for
the constant term 1 tend to zero when n → ∞, and thus the limit
of the left-hand side equals limn→∞Qk(z)

∏k−1
m=0 Cn,m(z) = K 6= 0,

and we obtain a contradiction when n→ ∞. �

In order to prove Theorem 2 we need the following two lemmas,
where Lemma 2 is used to prove Lemma 3.

Lemma 2. Let zn be a root of pn with the largest modulus rn.
Then, for any complex number z0 such that |z0| = r0 ≥ rn, we have
|Cn,j(z0)| ≥ 1

2r0
for all j ≥ 0.

Proof. Recall that Cn,j(z) :=
∫ dµ

(j)
n (ζ)
z−ζ

= p
(j+1)
n (z)

(n−j)p
(j)
n (z)

. With ζ being

some root of p
(j)
n (z) we have |ζ | ≤ |z0| by Gauss-Lucas theorem.

Thus 1
z0−ζ

= 1
z0

· 1
1−ζ/z0

= 1
z0

· 1
1−θ

where |θ| = |ζ/z0| ≤ 1. With

w = 1
1−θ

we obtain

|w − 1| =
|θ|

|1 − θ| = |θ||w| ≤ |w| ⇔ |w − 1| ≤ |w| ⇒ Re(w) ≥ 1/2,

and thus

|Cn,j(z0)| =

∣∣∣∣
∫
dµ

(j)
n (ζ)

z0 − ζ

∣∣∣∣ =
1

r0

∣∣∣∣
∫
dµ

(j)
n (ζ)

1 − θ

∣∣∣∣ =
1

r0

∣∣∣∣
∫
wdµ(j)

n (ζ)

∣∣∣∣

≥ 1

r0

∣∣∣∣
∫
Re(w)dµ(j)

n (ζ)

∣∣∣∣ ≥
1

2r0

∫
dµ(j)

n (ζ) =
1

2r0
.

�

Lemma 3. Let T =
∑k

j=1QjD
j =

∑k
j=1

( ∑deg Qj

i=0 αj,iz
i
)
Dj be a

degenerate exactly-solvable operator of order k. Wlog we assume
that Qk is monic, i.e. αk,deg Qk

= 1. Let zn be a root of pn with the
largest modulus rn. Then the following inequality holds:
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1 ≤
k−1∑

j=1

deg Qj∑

i=0

|αj,i|2k−j rk−j−degQk+i
n

(n− k + 1)k−j
+

∑

0≤i<deg Qk

|αk,i|
rdeg Qk−i
n

. (4)

Proof. From Cn,j(z) = p
(j+1)
n (z)

(n−j)p(j)(z)
we get

p(j)(z) =
p

(k)
n (z)

(n− k + 1)(n− k + 2) · · · (n− j)
∏k−1

m=j Cn,m(z)
(5)

for all j < k. Inserting zn in the eigenvalue equation Tpn(z) =
λnpn(z) we obtain

k−1∑

j=1

( deg Qj∑

i=0

αj,iz
i
n

)
p(j)

n (zn) +

( deg Qk∑

i=0

αk,iz
i
n

)
p(k)

n (zn) = λnpn(zn) = 0,

and after division by zdeg Qk
n p

(k)
n (zn) we obtain

k−1∑

j=1

( deg Qj∑

i=0

αj,i
1

zdeg Qk−i
n

)
p

(j)
n (zn)

p
(k)
n (zn)

+
∑

0≤i<deg Qk

αk,i
1

zdeg Qk−i
n

+ 1 = 0.

Thus, applying (5) and Lemma 2, we obtain

1 =

∣∣∣∣
k−1∑

j=1

( deg Qj∑

i=0

αj,i
1

zdeg Qk−i
n

)
p

(j)
n (zn)

p
(k)
n (zn)

+
∑

0≤i<deg Qk

αk,i
1

zdeg Qk−i
n

∣∣∣∣

≤
k−1∑

j=1

∣∣∣∣
deg Qj∑

i=0

αj,i
1

zdeg Qk−i
n

∣∣∣∣
|p(j)

n (zn)|
|p(k)

n (zn)|
+

∑

0≤i<deg Qk

|αk,i|
rdeg Qk−i
n

≤
k−1∑

j=1

deg Qj∑

i=0

|αj,i|
rdeg Qk−i
n

1

(n− k + 1) · · · (n− j)
∏k−1

m=j |Cn,m(zn)|

+
∑

0≤i<deg Qk

|αk,i|
rdeg Qk−i
n

≤
k−1∑

j=1

deg Qj∑

i=0

|αj,i|
rdeg Qk−i
n

(2rn)
k−j

(n− k + 1)k−j
+

∑

0≤i<deg Qk

|αk,i|
rdeg Qk−i
n

=
k−1∑

j=1

deg Qj∑

i=0

|αj,i|2k−j rk−j−degQk+i
n

(n− k + 1)k−j
+

∑

0≤i<deg Qk

|αk,i|
rdeg Qk−i
n

.
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The proof of Theorem 2 follows from Theorem 1 and Lemma 3.

Proof of Theorem 2. Applying Theorem 1, we see that the last
sum on the right-hand side of inequality (4) in Lemma 3 tends to zero
when n→ ∞. Now consider the double sum on the right-hand side
of (4). If, for given i and j, the exponent (k− j−degQk + i) of rn is
negative or zero, the corresponding term tends to zero when n→ ∞
by Theorem 1. We now consider the remaining terms in the double
sum, namely those for which the exponent (k−j−degQk+i) of rn is
positive. If rn ≤ c0(n−k+1)γ where c0 > 0 and γ < k−j

k−j+i−deg Qk
for

given j ∈ [1, k− 1] and given i ∈ [0, degQj ], then the corresponding
term

rk−j+i−deg Qk
n

(n− k + 1)k−j
=

(
rn

(n− k + 1)
k−j

k−j+i−deg Qk

)k−j+i−deg Qk

in the double sum tends to zero when n → ∞. Thus assume that
rn ≤ c0(n− k+ 1)γ where c0 is a positive constant and γ < b where

b =
+

min
j∈[1,k−1]

i∈[0,j]

k − j

k − j + i− degQk
=

+

min
j∈[1,k−1]

k − j

k − j + degQj − degQk
,

and where the notation min+ means that we only take the minimum
over positive terms (k−j+i−degQk) and (k−j+degQj−degQk).

4

Then every term in the double sum tends to zero when n→ ∞, and
we obtain a contradiction to (4) when n → ∞. Thus for all suf-
ficiently large integers n we must have rn > c0(n − k + 1)γ for all
γ < b, and hence lim infn→∞

rn

nγ > c0 for any γ < b. But for any

such γ we can form γ
′

= γ+b
2

for which γ
′

< b and γ < γ
′

, and thus
limn→∞

rn

nγ = ∞ for all γ < b. �

4On the left-hand side in the expression for b above we take the
minimum over i ∈ [0, degQj ], so we can put i = degQj in this

expression. Thus with b = min+
j∈[1,k−1]

k−j
k−j+deg Qj−deg Qk

we get that

γ < k−j
k−j+i−deg Qk

for every j ∈ [1, k − 1] and every i ∈ [0, degQj ].

Then if rn ≤ c0(n − k + 1)γ and γ < b, every term with positive
exponent (k − j + i− degQk) will tend to zero when n→ ∞.
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Proof of Corollary 1. For this class of operators we have

b :=
+

min
j∈[1,k−1]

k − j

k − j + degQj − degQk

=
+

min
j∈[1,k−1]

k − j

k − j + degQj − j0
=
k − j0
k − j0

= 1,

and the proof is complete applying Theorem 2. �

Proof of Corollary 2. For this class of operators we have

b :=
+

min
j∈[1,k−1]

(
k − j

k − j + degQj − degQk

)

=
+

min
j∈[1,k−1]

(
k − j

k − j + degQj

)
= min

j∈[1,j0]

k − j

k
=
k − j0
k

where the third equality follows from choosing any j for which
degQj = j, and the minimum is then attained for j = j0 (note
that for j > j0 we get (k − j)/(k − j + degQj) = 1 > (k − j0)/k),
and the proof is complete applying Theorem 2. �

Remark. Note that for the class of operators considered in Corol-
lary 1 the Main Conjecture claims that limn→∞

rn

n
= cT for some

cT > 0, since d := maxj∈[j0+1,k]

(
j−j0

j−deg Qj

)
= k−j0

k−j0
= 1 (the maxi-

mum is attained by choosing any j > j0 such that degQj = j0, e.g.
j = k), and for the class of operators considered in Corollary 2 the
Main Conjecture claims that limn→∞

rn

n(k−j0)/k = cT for some cT > 0,
since

d := max
j∈[j0+1,k]

(
j − j0

j − degQj

)
= max

j∈[j0+1,k]

(
j − j0
j

)
=
k − j0
k

.

Remark. For a class of operators containing the operators con-
sidered in Corollaries 1 and 2 we can actually prove that the con-
jectured upper bound limn→∞ sup rn

nd ≤ c1 implies the conjectured
lower bound limn→∞ inf rn

nd ≥ c0 where c1 ≥ c0 > 0, see Theorem 5
in Section 5.2.

Proof of Theorem 3. Clearly degQj0 = j0 since there exists
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at least one such j < k. Set

T = Qj0D
j0 +QkD

k =

j0∑

i=0

αj0,iz
iDj0 +

deg Qk∑

i=0

αk,iz
iDk,

where αj0,j0 6= 0, and where we wlog assume that Qk is monic. From
inequality (4) in Lemma 3 we have

1 ≤
j0∑

i=0

|αj0,i|2k−j0
ri−deg Qk+k−j0
n

(n− k + 1)k−j0
+

∑

0≤i<deg Qk

|αk,i|
1

rdeg Qk−i
n

≤
j0∑

i=0

|αj0,i|2k−j0
ri−deg Qk+k−j0
n

(n− k + 1)k−j0
+ ǫ,

where we choose n so large that ǫ < 1 (this is possible since ǫ → 0
when n→ ∞ due to Theorem 1). Thus for sufficiently large n

c0 ≤
j0∑

i=0

|αj0,i|2k−j0
ri−deg Qk+k−j0
n

(n− k + 1)k−j0

≤
j0∑

i=0

|αj0,i|2k−j0
rk−deg Qk
n

(n− k + 1)k−j0

= K
rk−deg Qk
n

(n− k + 1)k−j0
,

where 1− ǫ = c0 → 1 when n→ ∞, and K > 0 since αj0,j0 6= 0 (the
second inequality follows since i ≤ j0). Thus

rn ≥
( c0
K

)1/(k−deg Qk)
(n− k + 1)

k−j0
k−deg Qk

for sufficiently large integers n, and hence there exists a positive
constant c = (1/K)1/(k−deg Qk) such that

lim
n→∞

inf
rn

n

(
k−j0

k−deg Qk

) ≥ c.

Finally, it is clear that for this two-term operator

d := max
j∈[j0+1,k]

(
j − j0

j − degQj

)
=

k − j0
k − degQk

,
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and we are done. �

Remark. If, in Theorem 3, Qk is a monomial (i.e. Qk = zdeg Qk),
then there exists a positive constant c such that rn ≥ c(n− k + 1)d

for every n, where d := maxj∈[j0+1,k]

(
j−j0

j−deg Qj

)
= k−j0

k−deg Qk
. This is

easily seen from the calculations in the proof of Theorem 3 since∑
0≤i<deg Qk

|αk,i| 1

r
deg Qk−i
n

on the right-hand side of (4) vanishes, and

therefore 1 ≤ K r
k−deg Qk
n

(n−k+1)k−j0
for every n. From the second part of

Lemma 1 we know that for this class of operators there exists a
unique eigenpolynomial pn for every n, and the conclusion follows.

Proof of Theorem 4. For this class of operators (j − degQj) ≥
(k − degQk) for every j > j0 and thus

d := max
j∈[j0+1,k]

(
j − j0

j − degQj

)
=

k − j0
k − degQk

.

Assuming that Qk is monic we have the inequality

1 ≤
k−1∑

j=1

deg Qj∑

i=0

|αj,i|2k−j rk−j+i−deg Qk
n

(n− k + 1)k−j
+

∑

0≤i<deg Qk

|αk,i|
rdeg Qk−i
n

(6)

by Lemma 3. The last sum here tends to zero when n → ∞ by
Theorem 1. Considering the double sum on the right-hand side of
(6) we see that for every j we have (since i ≤ degQj) that

deg Qj∑

i=0

|αj,i|2k−j rk−j+i−degQk
n

(n− k + 1)k−j

=

deg Qj∑

i=0

|αj,i|2k−j r
k−j+deg Qj−deg Qk
n

(n− k + 1)k−j
ri−deg Qj
n

=
r

k−j+deg Qj−deg Qk
n

(n− k + 1)k−j

(
2k−j|αj,deg Qj

| +
∑

i<deg Qj

2k−j|αj,i|ri−deg Qj
n

)

= Kj,n
r

k−j+deg Qj−deg Qk
n

(n− k + 1)k−j
, (7)

where

Kj,n = 2k−j|αj,deg Qj
| +

∑

i<deg Qj

2k−j|αj,i|ri−deg Qj
n ,
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where Kj,n > 0 since αj,deg Qj
6= 0. Also, Kj,n < ∞ when n →

∞ since (i − degQj) < 0 for the exponent of rn, and then using
Theorem 1 (note that Kj,n → 2k−j|αj,deg Qj

| when n → ∞). With
the decomposition
A = {j : degQj = j},
B = {j : degQj < j and (k − j + degQj − degQk) > 0},
C = {j : degQj < j and (k − j + degQj − degQk) ≤ 0},
and using (7) we see that inequality (6) is equivalent to:

1 ≤
k−1∑

j=1

j∑

i=0

|αj,i|2k−j rk−j+i−deg Qk
n

(n− k + 1)k−j
+

∑

0≤i<deg Qk

|αk,i|
rdeg Qk−i
n

=
∑

j∈A

Kj,n
rk−deg Qk
n

(n− k + 1)k−j
+

∑

j∈B

Kj,n
r

k−j+deg Qj−deg Qk
n

(n− k + 1)k−j

+
∑

j∈C

Kj,n
r

k−j+degQj−deg Qk
n

(n− k + 1)k−j
+

∑

0≤i<deg Qk

|αk,i|
rdeg Qk−i
n

.

The last two sums on the right-hand side of this inequality both
tend to zero when n → ∞, the last one due to Theorem 1, and the
sum over C since (j − degQj) ≥ (k − degQk) ⇔ (k − j + degQj −
degQk) ≤ 0 for every j ∈ C by assumption, and then applying
Theorem 1. Therefore, when n→ ∞, we get the inequality

c0 ≤
∑

j∈A

Kj,n
rk−deg Qk
n

(n− k + 1)k−j
+

∑

j∈B

Kj,n
r

k−j+deg Qj−deg Qk
n

(n− k + 1)k−j
(8)

where

c0 = 1 −
∑

j∈C

Kj,n
r

k−j+deg Qj−deg Qk
n

(n− k + 1)k−j
−

∑

0≤i<deg Qk

|αk,i|
rdeg Qk−i
n

.

Note that c0 → 1 when n→ ∞.
Now assume that B is empty. This corresponds to an opera-

tor such that (j − degQj) ≥ (k − degQk) for every j for which
degQj < j. Then inequality (8) above becomes
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c0 ≤
∑

j∈A

Kj,n
rk−deg Qk
n

(n− k + 1)k−j

=
rk−deg Qk
n

(n− k + 1)k−j0

(
Kj0,n +

∑

j∈A\{j0}

Kj,n
1

(n− k + 1)j0−j

)

≤ KA
rk−deg Qk
n

(n− k + 1)k−j0
(9)

where KA is a positive constant which is finite when n → ∞, since
j0 − j > 0 for every j ∈ A\{j0} (recall that j0 is the largest element
in A by definition). Thus for all sufficiently large integers n we have

rn ≥
( c0
KA

)1/(k−deg Qk)
(n− k + 1)

k−j0
k−deg Qk ,

and therefore there exists a positive constant c = (1/KA)1/(k−deg Qk)

such that

lim
n→∞

inf
rn

n

(
k−j0

k−deg Qk

) ≥ c,

and we are done.

Now assume that B is nonempty. Again inequality (8) holds, i.e.

c0 ≤
∑

j∈A

Kj,n
rk−deg Qk
n

(n− k + 1)k−j
+

∑

j∈B

Kj,n
r

k−j+deg Qj−deg Qk
n

(n− k + 1)k−j
,

where c0 → 1 when n→ ∞. From (9) we have

∑

j∈A

Kj,n
rk−deg Qk
n

(n− k + 1)k−j
≤ KA

rk−deg Qk
n

(n− k + 1)k−j0

for the sum over A for large n and thus
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c0 ≤
∑

j∈A

Kj,n
rk−deg Qk
n

(n− k + 1)k−j
+

∑

j∈B

Kj,n
r

k−j+deg Qj−deg Qk
n

(n− k + 1)k−j

≤ KA
rk−deg Qk
n

(n− k + 1)k−j0
+

∑

j∈B

Kj,n
r

k−j+deg Qj−deg Qk
n

(n− k + 1)k−j

=
rk−deg Qk
n

(n− k + 1)k−j0

(
KA +

∑

j∈B

Kj,n
r
deg Qj−j
n

(n− k + 1)j0−j

)

≤ KAB
rk−deg Qk
n

(n− k + 1)k−j0
,

where KAB is a positive and finite constant when n→ ∞ (note that
KAB → KA when n→ ∞, since (degQj − j) < 0 and j0 − j > 0 for
every j ∈ B). Thus for all sufficiently large integers n we have

rn ≥
( c0
KAB

)1/(k−deg Qk)
(n− k + 1)

k−j0
k−deg Qk ,

so there exists a positive constant c = (1/KAB)1/(k−deg Qk) such that

lim
n→∞

inf
rn

n

(
k−j0

k−deg Qk

) ≥ c.

�

3 Main Conjecture and its Corollary

In this section we explain how we arrived at Main Conjecture (see
Section 1) and obtain as a corollary of our method the (conjectural)
algebraic equation satisfied by the Cauchy transform of the asymp-
totic root measure of the properly scaled eigenpolynomials.

How did we arrive at Main Conjecture?

Let T =
∑k

j=1QjD
j =

∑k
j=1

(∑deg Qj

i=0 αj,iz
i
)
Dj be an arbitrary de-

generate exactly-solvable operator of order k and denote by j0 the
largest j for which degQj = j. Wlog we assume that Qj0 is monic,
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i.e. αj0,j0 = 1. Consider the scaled eigenpolynomial qn(z) = pn(ndz),
where pn(z) is the unique and monic nth degree eigenpolynomial of
T , and d is some real number. The goal is now to obtain a well-
defined algebraic equation for the Cauchy transform of the root mea-
sure µn of the scaled eigenpolynomial qn when n → ∞, and as we
will see in the process of doing this, we are forced to choose d as in
Main Conjecture.5

Basic assumption. When performing our calculations we as-

sume that the root measures µ
(0)
n , µ

(1)
n , µ

(2)
n . . . , µ

(k−1)
n of the scaled

eigenpolynomial qn(z) and its derivatives up to the kth order ex-
ist when n → ∞ and that they are are all weakly convergent to
the same asymptotic root measure µ.6 Thus the corresponding
Cauchy transforms are all asymptotically identical, and we define
C(z) := limn→∞Cn,j(z) for all j ∈ [0, k − 1], where C(z) is the
Cauchy transform of µ and is considered for z’s away from the sup-
port of µ. Computer experiments strongly indicate that this as-
sumption is true - for details see Section 4.2.

From the definition of the Cauchy transform we obtain

j−1∏

i=0

Cn,i(z) =

j−1∏

i=0

q
(i+1)
n (z)

(n− j)q
(i)
n (z)

=
q
(1)
n (z)

nqn(z)
· q

(2)
n (z)

(n− 1)q(1)(z)
· q

(3)
n (z)

(n− 2)q
(2)
n (z)

· · ·

· · · q
(j−1)
n (z)

(n− j + 2)q
(j−2)
n (z)

· q
(j)
n (z)

(n− j + 1)q
(j−1)
n (z)

=
q
(j)
n (z)

n(n− 1) · · · (n− j + 1)qn(z)
,

5It is already well-known that for the Laguerre polynomials, which
appear as eigenpolynomials for a second order exactly-solvable op-
erator, the largest root grows as n when n → ∞ and thus d = 1 in
this case, which is consistent with Main Conjecture.

6Conjecturally supp µ is a tree, see Section 6 on Open Problems.
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and thus the basic assumption implies

Cj(z) = lim
n→∞

j−1∏

i=0

Cn,i(z) = lim
n→∞

q
(j)
n (z)

n(n− 1) · · · (n− j + 1)qn(z)
. (10)

In the above notation consider the eigenvalue equation Tpn(z) =
λnpn(z), where the eigenvalue λn is given by

λn =
k∑

j=1

αj,j
n!

(n− j)!
=

j0∑

j=1

αj,j
n!

(n− j)!
=

j0∑

j=1

αj,jn(n−1) · · · (n−j+1).

Clearly this sum ends at j0 since αj,j = 0 for all j > j0 by definition
of j0 as the largest j for which degQj = j. We then have

Tpn(z) = λnpn(z)

⇔
k∑

j=1

( deg Qj∑

i=0

αj,iz
i

)
p(j)

n (z) =

j0∑

j=1

αj,jn(n− 1) · · · (n− j + 1)pn(z).

Substituting z = ndz in this equation we obtain

k∑

j=1

( deg Qj∑

i=0

αj,in
dizi

)
p(j)

n (ndz) =

j0∑

j=1

αj,jn(n−1) · · · (n−j+1)pn(ndz),

and with qn(z) = pn(ndz) we get

k∑

j=1

( deg Qj∑

i=0

αj,i
zi

nd(j−i)

)
q(j)
n (z) =

j0∑

j=1

αj,jn(n− 1) · · · (n− j +1)qn(z).

Dividing this equation by n!
(n−j0)!

qn(z) = n(n−1) · · · (n−j0 +1)qn(z)
we get

k∑

j=1

( deg Qj∑

i=0

αj,i
zi

nd(j−i)

)
q
(j)
n (z)

n(n− 1) · · · (n− j0 + 1)qn(z)
=

=

j0∑

j=1

αj,j
n(n− 1) · · · (n− j + 1)

n(n− 1) · · · (n− j0 + 1)
. (11)
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Consider the right-hand side of (11). Since j ≤ j0 all terms for
which j < j0 (if not already zero, which is the case if αj,j = 0, i.e.
if degQj < j) tend to zero when n→ ∞, and therefore the limit of
the right-hand side of (11) equals

lim
n→∞

j0∑

j=1

αj,j
n(n− 1) · · · (n− j + 1)

n(n− 1) · · · (n− j0 + 1)
= αj0,j0 = 1,

since we assumed that Qj0 is monic. Now consider the jth term in
the sum on the left-hand side of (11). It equals

deg Qj∑

i=0

αj,i
zi

nd(j−i)
· q

(j)
n (z)

n(n− 1) · · · (n− j0 + 1)qn(z)
=

=

deg Qj∑

i=0

αj,i
zi

nd(j−i)
· q

(j)
n (z)

n(n− 1) · · · (n− j + 1)qn(z)
· n · · · (n− j + 1)

n · · · (n− j0 + 1)

=

deg Qj∑

i=0

αj,i
zi

nd(j−i)
·

j−1∏

i=0

Cn,i(z) ·
n(n− 1) · · · (n− j + 1)

n(n− 1) · · · (n− j0 + 1)

=

deg Qj∑

i=0

αj,i
zi

nd(j−i)+j0−j

j−1∏

i=0

Cn,i(z)
n · · · (n− j + 1)

nj

nj0

n · · · (n− j0 + 1)
.

Taking the limit and using the basic assumption (10) we obtain

lim
n→∞

deg Qj∑

i=0

αj,i
zi

nd(j−i)
· q

(j)
n (z)

n(n− 1) · · · (n− j0 + 1)qn(z)

= lim
n→∞

deg Qj∑

i=0

αj,i
zi

nd(j−i)+j0−j
Cj(z)

for the jth term and thus, taking the limit of the left-hand side of
(11) we get

lim
n→∞

k∑

j=1

( deg Qj∑

i=0

αj,i
zi

nd(j−i)

)
q
(j)
n (z)

n(n− 1) · · · (n− j0 + 1)qn(z)

= lim
n→∞

k∑

j=1

( deg Qj∑

i=0

αj,i
zi

nd(j−i)+j0−j

)
Cj(z).
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Adding up, the following equation is satisfied by C(z) for z’s away
from the support of µ:

lim
n→∞

k∑

j=1

( deg Qj∑

i=0

αj,i
zi

nd(j−i)+j0−j

)
Cj(z) = 1. (12)

In order to make (12) a well-defined algebraic equation, i.e. to avoid
infinities in the denominator when n→ ∞, we must impose the fol-
lowing condition on the real number d in the exponent of n, namely

d(j − i) + j0 − j ≥ 0 ⇔ d ≥ j − j0
j − i

for all j ∈ [1, k] and all i ∈ [0, degQj ]. Therefore we take d =
max j∈[1,k]

i∈[0,deg Qj ]

(
j−j0
j−i

)
, but this maximum is clearly obtained for the

maximal value of i for any given j, so we may as well put i = degQj .
Our condition then becomes d = maxj∈[1,k]

(
j−j0

j−deg Qj

)
, and clearly

the maximum is taken only over j for which Qj(z) is not identically
zero. Finally we observe that since T is degenerate we have j0 < k
and thus we need only take this maximum over j ∈ [j0 + 1, k], since
there always exists a positive value on d for any operator of the type
we consider. Thus our condition becomes:

d = max
j∈[j0+1,k]

(
j − j0

j − degQj

)
.

Corollary of Main Conjecture.

In the above notation (recall that αj0,j0 = 1 by monicity of Qj0), the
following well-defined algebraic equation follows immediately when
inserting d as defined in Main Conjecture into equation (12) and
letting n→ ∞:

Corollary. The Cauchy transform C(z) of the asymptotic root mea-
sure µ of the scaled eigenpolynomial qn(z) = pn(ndz) of an exactly-
solvable operator T as above with Qj0 monic satisfies the following
algebraic equation for almost all complex z in the usual Lebesgue
measure on C:

zj0Cj0(z) +
∑

j∈A

αj,deg Qj
zdeg QjCj(z) = 1,
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where A is the set consisting of all j for which the maximum
d := maxj∈[j0+1,k]

(
j−j0

j−deg Qj

)
is attained, i.e.

A = {j : (j − j0)/(j − degQj) = d}.

For detailed calculations see Section 5.1.

4 Numerical evidence

4.1 Evidence for Main Conjecture

In the table on the last page of this section we present numerical
evidence on the growth of rn = max{|z| : pn(z) = 0} which sup-
ports the choice of d in Main Conjecture. We have performed sim-
ilar computer experiments for a large number of other degenerate
exactly-solvable operators, and the results are in all cases consis-
tent with Main Conjecture. Next we present some typical pictures
on the zero distribution of the appropriately scaled eigenpolyno-
mial qn(z) = pn(ndz) for some degenerate exactly-solvable opera-
tors, where pn denotes the nth degree unique and monic polynomial
eigenfunction of the given operator T . Conjecturally the zeros of
qn(z) are contained in a compact set when n→ ∞.

-2 -1.5 -1 -0.5 0

-1

-0.5

0

0.5

1

-2 -1.5 -1 -0.5 0
-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0
-1.5

-1

-0.5

0

0.5

1

1.5

T1, roots of T1, roots of T1, roots of
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T3, roots of T3, roots of T3, roots of
q50(z) = p50(501/2z) q75(z) = p75(751/2z) q100(z) = p100(1001/2z)

where T1 = zD + zD2 + zD3 + zD4 + zD5, T2 = z2D2 + D7 and
T3 = z3D3 + z2D4 + zD5.

4.2 On the basic assumption

Below examples supporting the basic assumption, namely that the
root measures of qn(z) and its derivatives up to the kth order exist
when n→ ∞ and are all weakly convergent to the same measure µ.

Fig. 1: T7 = zD +D3 and qn(z) = pn(n2/3z)
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Fig. 2:T9 = zD + zD4 + z3D7 and qn(z) = pn(n3/2z).
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100 (z) roots of q
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100(z) roots of q
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100 (z) roots of q
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100 (z)
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4.3 On the Corollary of Main Conjecture

The algebraic equation in the corollary of Main Conjecture satis-
fied by the Cauchy transform of the asymptotic root measure of the
scaled eigenpolynomial indicates that the asymptotic zero distribu-
tion depends only on the term zj0Dj0 and the term(s) αj,deg Qj

zdeg QjDj

for which d = maxj∈[j0+1,k]

(
j−j0

j−deg Qj

)
is attained.7 Thus any term

QjD
j in T for which j < j0 or such that (j − j0)/(j − degQj) < d

is (conjecturally) irrelevant for the zero distribution when n→ ∞.

To illustrate this fact we now present some pictures of the zero
distributions of the scaled eigenpolynomials for some distinct oper-
ators for which the Cauchy transforms of the corresponding scaled
eigenpolynomials qn satisfy the same equation when n→ ∞, namely
the equation in the Corollary of Main Conjecture in Section 3.

As a first example consider the operator T4 = z3D3 +z2D5. Here
d = maxj∈[j0+1,k]

(
j−j0

j−deg Qj

)
= (5 − 3)/(5 − 2) = 2/3, the corre-

sponding scaled eigenpolynomial is qn(z) = pn(n2/3z), and we have
z3C3 +z2C5 = 1 for the Cauchy transform of qn when n→ ∞. Now
consider the slightly modified operator T̃4 = z2D2 + z3D3 + zD4 +
z2D5 + D6 and note that d is obtained again (only) for j = 5 (for
j = 4 we have (4 − 3)/(4 − 1) = 1/3 < 2/3 and for j = 6 we have
(6 − 3)/(6 − 0) = 3/6 = 1/2 < 2/3). We therefore obtain the same
Cauchy transform equation as for T4, and hence the terms z2D2,

zD4 and D6 in T̃4 can be considered as irrelevant for the zero distri-
bution for sufficiently large n. The pictures below clearly illustrate
this.
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T4, roots of T̃4, roots of
q100(z) = p100(1002/3z) q100(z) = p100(1002/3z)

where T4 = z3D3 + z2D5 and T̃4 = z2D2 + z3D3 + zD4 + z2D5 +D6.

7Recall that we normalized T by letting Qj0 be monic.
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However, instead of D6, we may add the more ”disturbing” term
zD6 to T4. Note that for the operator T 4 = z2D2 + z3D3 + zD4 +
z2D5 + zD6 for j = 6 we have (6 − 3)/(6 − 1) = 3/5 = 0.6 < 2/3.
Adding any term QjD

j such that (j−j0)/(j−degQj) < d to a given
operator, it is clear that the closer the value of (j− j0)/(j−degQj)
is to d (in this case 2/3), the more disturbing it is in the sense that
it requires larger n for the corresponding zero distributions to coin-
cide. See pictures below, where qn(z) = pn(n2/3z):
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T4, roots of T 4, roots of T 4, roots of
q100(z) q100(z) q600(z)

Increasing n however, experiments indicate that the zero distri-
butions of the scaled eigenpolynomials of T4 and T 4 coincide, as they
(conjecturally) should.

As a second example, consider T5 = z5D5 + z4D6 + z2D8 and

T̃5 = z2D2 + z5D5 + z4D6 + zD7 + z2D8, whose scaled eigenpolyno-
mials qn(z) = pn(n1/2z) both satisfy the Cauchy transform equation
z5C5 + z4C6 + z2C8 = 1 when n→ ∞. In the pictures below we see
that the terms z2D2 and zD7 of T̃5 seem to have no effect on the
zero distribution for large n:
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T5, roots of q100(z) T̃5, roots of q100(z)
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Finally note that for j0 and for any j for which d is attained, it is
only the highest degree term αj,deg Qj

zdeg Qj of Qj that is involved in
the Cauchy transform equation. Consider for example the following
case, where adding lower degree terms to αj,deg Qj

zdeg Qj in the (rele-
vant) Qj seems to have no effect on the zero distribution for large n.

Below T6 = z3D3 + z2D6, and T̃6 = [(1 + 13i) + (24i− 3)z+ 11iz2 +
z3]D3+[(22i−13)+(−9−14i)z+z2]D6, and thus qn(z) = pn(n3/4z).
Note the difference in scaling between the pictures:
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Operator n rn experimental rn conjectured

50 2.7 · 500.967595 c1 · 501

T1 = zD + zD2 + zD3 + zD4 + zD5 100 2.7 · 1000.984180 c1 · 1001

200 2.7 · 2000.992557 c1 · 2001

250 2.7 · 2500.994272 c1 · 2501

50 1.3 · 500.671977 c2 · 505/7

100 1.3 · 1000.694847 c2 · 1005/7

T2 = z2D2 + D7 200 1.3 · 2000.706226 c2 · 2005/7

300 1.3 · 3000.710085 c2 · 3005/7

400 1.3 · 4000.712043 c2 · 4005/7

50 4/3 · 500.469007 c3 · 501/2

100 4/3 · 1000.484824 c3 · 1001/2

T3 = z3D3 + z2D4 + zD5 200 4/3 · 2000.492832 c3 · 2001/2

300 4/3 · 3000.495592 c3 · 3001/2

400 4/3 · 4000.497009 c3 · 4001/2

50 1.4 · 500.633226 c4 · 502/3

100 1.4 · 1000.652141 c4 · 1002/3

T4 = z3D3 + z2D5 200 1.4 · 2000.661412 c4 · 2002/3

300 1.4 · 3000.664511 c4 · 3002/3

400 1.4 · 4000.666066 c4 · 4002/3

50 1.4 · 500.632811 c̃4 · 502/3

100 1.4 · 1000.651960 c̃4 · 1002/3

eT4 = z2D2 + z3D3 + zD4 + z2D5 + D6 200 1.4 · 2000.661332 c̃4 · 2002/3

300 1.4 · 3000.664461 c̃4 · 3002/3

400 1.4 · 4000.666030 c̃4 · 4002/3

50 1.5 · 500.462995 c5 · 501/2

100 1.5 · 1000.481684 c5 · 1001/2

T5 = z5D5 + z4D6 + z2D8 200 1.5 · 2000.491066 c5 · 2001/2

300 1.5 · 3000.494304 c5 · 3001/2

400 1.5 · 4000.495971 c5 · 4001/2

50 1.5 · 500.463391 c̃5 · 501/2

100 1.5 · 1000.481837 c̃5 · 1001/2

eT5 = z2D2 + z5D5 + z4D6 + zD7 + z2D8 200 1.5 · 2000.491129 c̃5 · 2001/2

300 1.5 · 3000.494342 c̃5 · 3001/2

400 1.5 · 4000.495998 c̃5 · 4001/2

50 1.4 · 500.702117 c6 · 503/4

100 1.4 · 1000.725715 c6 · 1003/4

T6 = z3D3 + z2D6 200 1.4 · 2000.737541 c6 · 2003/4

300 1.4 · 3000.741614 c6 · 3003/4

400 1.4 · 4000.743713 c6 · 4003/4

50 1.4 · 500.769260 c̃6 · 503/4

eT6 = [(1 + 13i) + (24i − 3)z + 11iz2 + z3]D3 100 1.4 · 1000.760399 c̃6 · 1003/4

+[(22i − 13) − (9 + 14i)z + z2]D6 200 1.4 · 2000.756161 c̃6 · 2003/4

300 1.4 · 3000.754590 c̃6 · 3003/4

400 1.4 · 4000.753765 c̃6 · 4003/4
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5 Appendix

5.1 Arriving at the Corollary of Main Conjecture

The algebraic equation in the corollary of Main Conjecture follows
immediately from inserting d as defined in Main Conjecture into
equation (12) in Section 3 and letting n→ ∞. If we put d into (12)
we namely get

k∑

j=1

( deg Qj∑

i=0

αj,i
zi

n
maxj∈[j0+1,k]

(
j−j0

j−deg Qj

)
(j−i)+j0−j

)
Cj(z) = 1. (13)

Denote by Nj,i the exponent of n in (13) for given j and i. Thus

Nj,i = max
j∈[j0+1,k]

(
j − j0

j − degQj

)
(j − i) + j0 − j.

The terms in (13) for which this exponent is positive tend to zero
as n→ ∞.

First we consider j for which degQj = j, and denote, as usual,
by j0 the largest such j. If j = j0, then i ≤ degQj0 = j0 and thus
for j = j0 and i = j0 we get

Nj0,j0 = max
j∈[j0+1,k]

(
j − j0

j − degQj

)
(j − i) + j0 − j

= max
j∈[j0+1,k]

(
j − j0

j − degQj

)
(j0 − j0) + j0 − j0 = 0,

and for j = j0 and i < j0 we have

Nj0,i = max
j∈[j0+1,k]

(
j − j0

j − degQj

)
(j − i) + j0 − j

> max
j∈[j0+1,k]

(
j − j0

j − degQj

)
(j0 − j0) + j0 − j0 = 0.

Thus Nj0,j0 = 0 and Nj0,i > 0 for i < j0, and for the term corre-
sponding to j = j0 in (13) we get

j0∑

i=0

αj0,i
zi

n
maxj∈[j0+1,k]

(
j−j0

j−deg Qj

)
(j0−i)+j0−j0

Cj0(z) → zj0Cj0(z)
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when n→ ∞ (recall that αj0,j0 = 1).
Now let j be such that degQj = j and j < j0. Then i ≤ degQj = j
and

Nj,j = max
j∈[j0+1,k]

(
j − j0

j − degQj

)
(j − i) + j0 − j

= max
j∈[j0+1,k]

(
j − j0

j − degQj

)
(j − j) + j0 − j = j0 − j > 0,

and for i < j we get

Nj,i = max
j∈[j0+1,k]

(
j − j0

j − degQj

)
(j − i) + j0 − j

> max
j∈[j0+1,k]

(
j − j0

j − degQj

)
(j − j) + j0 − j = j0 − j > 0,

that is Nj,i > 0 for all j < j0 such that degQj = j and for all i ≤ j.
Thus for the corresponding terms in (13) we get

∑

j∈{j<j0:deg Qj=j}

deg Qj∑

i=0

αj,i
zi

n
maxj∈[j0+1,j]

(
j−j0

j−deg Qj

)
(j−i)+j0−j

Cj(z) → 0

when n→ ∞ for every j < j0 for which degQj = j.

Now denote by jm the j for which d = maxj∈[j0+1,k]

(
j−j0

j−deg Qj

)
is

attained. Note that there may be several distinct j for which this
maximum is attained.8 Then

Njm,degQjm
= max

j∈[j0+1,k]

(
j − j0

j − degQj

)
(j − i) + j0 − j

=

(
jm − j0

jm − degQjm

)
(jm − degQjm) + j0 − jm

= jm − j0 + j0 − jm = 0,

8Consider for example the Laplace type operator (that is with
all polynomial coefficients Qj linear) T = zD + zD2 + . . . zDk.
Here j0 = 1 and the equation satisfied by the Cauchy trans-
form of the asymptotic root measure of the scaled eigenpolynomial
qn(z) = pn(nz) is given by zC(z) + zC2(z) + . . . zCk(z) = 1, since
d = maxj∈[2,k]

(
j−j0

j−deg Qj

)
= 1 is attained for every j = 2, 3, . . . k.
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and for i < degQjm we get

Njm,i = max
j∈[j0+1,k]

(
j − j0

j − degQj

)
(j − i) + j0 − j

>

(
jm − j0

jm − degQjm

)
(jm − degQjm) + j0 − jm

= jm − j0 + j0 − jm = 0,

i.e. Njm,deg Qjm
= 0 and Njm,i > 0 for i < degQjm, and for the term

corresponding to j = jm in (13) we get

deg Qjm∑

i=0

αjm,i
zi

n
maxj∈[j0+1,k]

(
j−j0

j−deg Qj

)
(jm−i)+j0−jm

Cjm(z) →

→ αjm,deg Qjm
zdeg QjmCjm(z)

when n → ∞. In case of several j for which d is attained, we put
A = {j : (j−j0)/(j−degQj) = d}, and for the corresponding terms
in (13) we get

∑

j∈A

deg Qj∑

i=0

αj,i
zi

n
maxj∈[j0+1,k]

(
j−j0

j−deg Qj

)
(j−i)+j0−j

Cj(z) →

→
∑

j∈A

αj,deg Qj
zdeg QjCj(z)

when n → ∞. Now consider the remaining terms in (13), namely
terms for which j < j0 such that degQj < j, terms for which
j0 < j < jm, and terms for which jm < j ≤ k (clearly this last
case does not exist if jm = k).

We start with j < j0 such that degQj < j. Then i ≤ degQj < j
and

Nj,i = max
j∈[j0+1,k]

(
j − j0

j − degQj

)
(j − i) + j0 − j

> max
j∈[j0+1,k]

(
j − j0

j − degQj

)
(j − j) + j0 − j = j0 − j > 0,
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and for the corresponding terms in (13) we have

∑

j∈{j<j0:deg Qj<j}

deg Qj∑

i=0

αj,i
zi

n
maxj∈[j0+1,k]

(
j−j0

j−deg Qj

)
(j−i)+j0−j

Cj(z) → 0

when n→ ∞.

Now assume that jm < k and consider jm < j ≤ k. Clearly
jm > j0 since the maximum is taken over j ∈ [j0+1, k], and therefore
i ≤ degQj < j for jm < j ≤ k. Also,

max
j∈[j0+1,k]

(
j − j0

j − degQj

)
=

(
jm − j0

jm − degQjm

)
>

(
j − j0

j − degQj

)
,

since the maximum is attained for jm by assumption. Thus we get

Nj,i = max
j∈[j0+1,k]

(
j − j0

j − degQj

)
(j − i) + j0 − j

=

(
jm − j0

jm − degQjm

)
(j − i) + j0 − j

>

(
j − j0

j − degQj

)
(j − i) + j0 − j

≥
(

j − j0
j − degQj

)
(j − degQj) + j0 − j

= j − j0 + j0 − j = 0,

i.e. Nj,i > 0 for every jm < j ≤ k and every i ≤ degQj . For the
corresponding terms in (13) we therefore get

∑

jm<j≤k

deg Qj∑

i=0

αj,i
zi

n
maxj∈[j0+1,k]

(
j−j0

j−deg Qj

)
(j−i)+j0−j

Cj(z) → 0

as n→ ∞.

Finally we consider j0 < j < jm. Note that this also covers the
case jm1 < j < jm2 where the maximum d is attained for both jm1
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and jm2 . Since i ≤ degQj < j we get

Nj,i = max
j∈[j0+1,k]

(
j − j0

j − degQj

)
(j − i) + j0 − j

=

(
jm − j0

jm − degQjm

)
(j − i) + j0 − j

>

(
j − j0

j − degQj

)
(j − i) + j0 − j

≥
(

j − j0
j − degQj

)
(j − degQj) + j0 − j

= j − j0 + j0 − j = 0,

i.e. Nj,i > 0 for every j0 < j < jm and every i ≤ degQj. Thus for
the corresponding terms in (13) we get

∑

j0<j<jm

deg Qj∑

i=0

αj,i
zi

n
maxj∈[j=+1,k]0

(
j−j0

j−deg Qj

)
(j−i)+j0−j

Cj(z) → 0

when n→ ∞.

Adding up these results we finally get the following equation by
letting n→ ∞ in equation (13):

zj0Cj0(z) +
∑

j∈A

αj,deg Qj
zdeg QjCj(z) = 1,

where j0 is the largest j for which degQj = j, and A is the set
consisting of all j for which the maximum d = maxj∈[j0+1,k]

(
j−j0

j−deg Qj

)

is attained, i.e. A = {j : (j − j0)/(j − degQj) = d}.

5.2 Theorem 5

Here we prove that for a class of operators containing the opera-
tors considered in Corollaries 1 and 2 the conjectured upper bound
limn→∞ sup(rn/n

d) ≤ c1 implies the conjectured lower bound
limn→∞ inf(rn/n

d) ≥ c0 for some constants c1 ≥ c0 > 0 and where d
is as in Main Conjecture. This follows automatically from inequality
(4) in Lemma 3. We have the following
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Theorem 5. Let T be a degenerate exactly-solvable operator of
order k which satisfies the condition

b =
+

min
j∈[1,k−1]

(
k − j

k − j + degQj − degQk

)
= max

j∈[j0+1,k]

(
j − j0

j − degQj

)
= d

where the notation min+ means that the minimum is taken only
over positive values of (k − j + degQj − degQk). Assume that the
inequality rn ≤ c1(n−k+1)d holds for some positive constant c1 for
all sufficiently large n. Then there exists a positive constant c0 ≤ c1
such that rn ≥ c0(n− k+1)d holds for all sufficiently large n. Thus

lim
n→∞

sup
rn

nd
≤ c1 ⇒ lim

n→∞
inf

rn

nd
≥ c0.

Proof. From inequality (4) in Lemma 3 we have

1 ≤
k−1∑

j=1

deg Qj∑

i=0

|αj,i|2k−j rk−j+i−deg Qk
n

(n− k + 1)k−j
+

∑

0≤i<deg Qk

|αk,i|
rdeg Qk−i
n

≤
k−1∑

j=1

Kj
r

k−j+deg Qj−deg Qk
n

(n− k + 1)k−j
+

∑

0≤i<ik

|αk,i|
rik−i
n

(14)

where the Kj are positive constants. The second sum on the right-
hand side of (14) tends to zero when n → ∞ due to Theorem 1.
We now decompose the first sum on the right-hand side of (14) into
three parts. Namely, let

A = {j : k−j
k−j+deg Qj−deg Qk

= d}, and note that (k − j + degQj −
degQk) > 0 here since d > 0.

B = {j : k−j
k−j+deg Qj−deg Qk

> d}, and note that (k − j + degQj −
degQk) > 0 here since d > 0.

C = {j : (k−j+degQj−degQk) ≤ 0}, and note that j < k in (14).

Clearly due to the condition b = d there are no terms for which
k−j

k−j+deg Qj−deg Qk
< d and (k − j + degQj − degQk) > 0 both hold .
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If j ∈ A then

rk−j+deg Qk−deg Qk
n

(n− k + 1)k−j
=

(
rn

(n− k + 1)d

)k−j+deg Qj−deg Qk

for the corresponding terms in the sum on the right-hand side of
(14).

If j ∈ B then d(k − j + degQj − degQk) < (k − j), and this
inequality together with the upper bound rn ≤ c1(n− k+1)d which
we assume holds for all sufficiently large n, gives us

r
k−j+deg Qj−deg Qk
n

(n− k + 1)k−j
≤ c1(n− k + 1)d(k−j+deg Qj−deg Qk)

(n− k + 1)k−j
→ 0

when n→ ∞ for the corresponding terms in (14).

If j ∈ C then (k − j + degQj − degQk) ≤ 0 and we get

r
k−j+deg Qj−deg Qk
n

(n− k + 1)k−j
→ 0

when n → ∞ for the corresponding terms in (14) due to Theorem
1. Note that if (k−j+degQj −degQk) = 0 the corresponding term
tends to zero when n→ ∞ since j < k in (14).

With this decomposition of the first sum on the right-hand side
of the last inequality in (14) we can write

1 ≤
k−1∑

j=1

Kj
r

k−j+deg Qj−deg Qk
n

(n− k + 1)k−j
+

∑

0≤i<ik

|αk,i|
rik−i
n

≤
∑

j∈A

Kj

(
rn

(n− k + 1)d

)k−j+deg Qj−deg Qk

+
∑

j∈B

Kj
c1(n− k + 1)d(k−j+deg Qj−deg Qk)

(n− k + 1)k−j

+
∑

j∈C

Kj
r

k−j+deg Qj−deg Qk
n

(n− k + 1)k−j
+

∑

0≤i<ik

|αk,i|
rik−i
n
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where the last three sums tend to zero when n → ∞ by the above
arguments (and the last one due to Theorem 1).
Thus for all sufficiently large n there exists a positive constant c′

such that

c′ ≤
∑

j∈A

Kj

(
rn

(n− k + 1)d

)k−j+deg Qj−deg Qk

(15)

where c′ → 1 when n → ∞. If the set A contains precisely one
element, then the sum in (15) consists of one single term, and we are
done: there exists a positive constant c0 = (c′/Kj)

1/(k−j+deg Qj−deg Qk)

such that rn ≥ c0(n − k + 1)d for all sufficiently large n, and thus
limn→∞ inf(rn/n

d) ≥ c0.
But clearly, for some operators A will contain more than one ele-

ment. If this is the case define m := minj∈A(k−j+degQj −degQk)
and denote by jm the corresponding j for which this minimum is at-
tained. Using the upper bound rn ≤ c1(n− k + 1)d we then get the
following inequality from (15):

c′ ≤
∑

j∈A

Kj

(
rn

(n− k + 1)d

)k−j+deg Qj−deg Qk

= Kjm

(
rn

(n− k + 1)d

)m

+
∑

j∈A\{jm}

Kj

(
rn

(n− k + 1)d

)m(
rn

(n− k + 1)d

)k−j+deg Qj−deg Qk−m

≤ Kjm

(
rn

(n− k + 1)d

)m

+
∑

j∈A\{jm}

Kj

(
rn

(n− k + 1)d

)m

c
k−j+deg Qj−deg Qk−m
1

=

(
rn

(n− k + 1)d

)m(
Kjm +

∑

j∈A\{jm}

Kj · ck−j+deg Qj−deg Qk−m
1

)

=

(
rn

(n− k + 1)d

)m

·K

where K > 0. Thus rn ≥
(

c′

K

)1/m
(n−k+1)d for all sufficiently large

n, and therefore there exists a positive constant c0 = (1/K)1/m (re-
call that c′ → 1 when n→ ∞) such that limn→∞ inf rn

nd ≥ c0. �
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Remark. About the last inequality following from (15) in the above
proof, consider for example the operator T = zD+D2 +zD3 +zD4.
In this case, by Lemma 3, we have

1 ≤
3∑

j=1

24−jr
3−j+deg Qj
n

(n− 3)4−j
= 8

r3
n

(n− 3)3
+ 4

rn

(n− 3)2
+ 2

rn

(n− 3)
,

where rn is the largest modulus of all roots of the unique and monic
eigenpolynomial of T . For this operator d = 1 and we see that
(4− j)/(3− j+degQj) = d for j = 1 and for j = 3. Now, assuming
that rn ≤ c1(n − 3) holds for some positive constant c1 for large n,
our inequality becomes

1 ≤ 8
r3
n

(n− 3)3
+ 4

rn

(n− 3)2
+ 2

rn

(n− 3)

≤ 8
rn

(n− 3)
· c

2
1(n− 3)2

(n− 3)2
+ 4

c1(n− 3)

(n− 3)2
+ 2

rn

(n− 3)

= (8c21 + 2)
rn

(n− 3)
+

4c1
(n− 3)

where the last term tends to zero as n → ∞. Thus rn ≥ c0(n − 3)
for sufficiently large choices on n, where c0 = 1/(8c21 +2), and hence
limn→∞ inf(rn/n) ≥ c0.

6 Open Problems

1. The main challenge is to obtain a complete proof of the Main
Conjecture, see Introduction. This proof requires both the sharp
upper and lower bounds of the largest root. The upper bound can
apparently be obtained by a detailed study of the corresponding
Riccati equation at ∞. If the Main Conjecture is settled then to
achieve its corollary (the Cauchy transform equation) one can use
a technique similar to that of [2] to prove the basic assumption, see
Section 3.

2. As suggested by one of the referees, estimates similar to that
of Main Conjecture can be formulated for the sequence of roots zn,i

of pn such that limn→∞
rn,i

rn,n
= α where 0 < α < 1 and |zn,i| = rn,i.
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3. In the case of orthogonal polynomials there is a number of re-
sults describing the growth of the largest modulus rn of the roots
as an expansion in powers of n, see e.g. [11] and [12] and references
therein. In the present paper we conjectured the form of the leading
term of rn in our more general setup. As suggested by one of the
referees, the question about the lower terms in the expansion of rn

is natural in our context as well.

4. Operators of the type we consider occur in the theory of Bochner-
Krall orthogonal systems, i.e. families of polynomials which are both
eigenfunctions of some finite order differential operator and orthog-
onal with respect to some suitable inner product. A lot is known
about the asymptotic zero distribution of orthogonal polynomials,
and by comparing such known results with results on the asymptotic
zero distribution of eigenpolynomials of degenerate exactly-solvable
operators, we believe it will be possible to gain new insight into the
nature of BKS. We have previously used our results from [2] to prove
a special case of a general conjecture describing the leading terms of
all Bochner-Krall operators, see [3]. Another problem relevant for
BKS is to describe all exactly-solvable operators whose eigenpoly-
nomials have real roots only.

5. Numerical evidence indicates that the roots of the scaled eigen-
polynomials fill certain curves in the complex plane. The support
of the limiting root measure µ seems to be a tree. This is the case
for the non-degenerate exactly-solvable operators which we treated
in [2], but then without such a scaling of the eigenpolynomials. By
a tree we mean a connected compact subset Γ of C which consists
of a finite union of analytis curves and where Ĉ \ Γ is simply con-
nected. The (conjectural) algebraic equation satisfied by the Cauchy
transform contains a lot of information about µ, and it remains to
describe its support explicitly.

6. Conjecturally the support of the asymptotic zero distribution
of the scaled eigenpolynomial qn is the union of a finite number of
analytic curves in the complex plane which we denote by ΞT , i.e.
ΞT = supp µ, where µ is the limiting root measure of qn. Then the
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following conjecture seems to be quite plausible9.

Conjecture 1. [Interlacing property] For any family {qn} of ap-
propriately scaled eigenpolynomials of a degenerate exactly-solvable
operator, the zeros of any two consecutive polynomials qn+1 and qn
interlace along ΞT for all sufficiently large integers n.

When defining the interlacing property some caution is required
since the zeros of qn do not lie exactly on ΞT . Thus identify some
sufficiently small neighbourhood N(ΞT ) of ΞT with the normal bun-
dle to ΞT by equipping N(ΞT ) with the projection onto ΞT along
the fibres which are small curvilinear segments orthogonal to ΞT .
We then say that two sets of points in N(ΞT ) interlace if their or-
thogonal projections on ΞT interlace in the usual sense. If ΞT has
singularities one should first remove some sufficiently small neigh-
bourhoods of these singularities and then proceed as above on the
remaining part of ΞT . Conjecture 1 thus states that for any suffi-
ciently small neighbourhood N(ΞT ) of ΞT there exists a number n0

such that the interlacing property holds for the zeros of qn and qn+1

for all n ≥ n0. We conclude this section by showing some pictures
illustrating the interlacing property. Below, small dots represent the
roots of qn+1 and large dots represent the roots of qn for some fixed
n.
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1

T = z2D2 + z3D3 + zD5 , T = zD + z2D2 +D3 ,
roots of q25 and q24. roots of q20 and q19.

9The question concerning interlacing was raised by B. Shapiro.
Also see [1].
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T = zD + zD2 + zD3 + zD4 + zD5, T = z3D3 + z2D5 + zD6,
roots of q23 and q22. roots of q20 and q19.
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On Roots of Eigenpolynomials for
Degenerate Exactly-Solvable Differential

Operators

Tanja Bergkvist & Jan-Erik Björk
submitted

Abstract

In this paper we partially settle our conjecture from [1]
on the roots of eigenpolynomials for degenerate exactly-
solvable operators. Namely, for any such operator we es-
tablish a lower bound (which supports our conjecture) for
the largest modulus of all roots of its unique and monic
eigenpolynomial pn as the degree n tends to infinity. The
main theorem below thus extends earlier results obtained
in [1] for a restrictive class of operators.

1 Introduction

We are interested in roots of eigenpolynomials satisfying certain
linear differential equations. Namely, consider an operator

T =

k∑

j=1

QjD
j

where D = d/dz and the Qj are complex polynomials in one vari-
able satisfying the condition degQj ≤ j, with equality for at least
one j, and in particular degQk < k for the leading term. Such op-
erators are referred to as degenerate exactly-solvable operators1, see
[1]. We are interested in eigenpolynomials of T , that is polynomials
satisfying

T (pn) = λnpn (1)

for some value of the spectral parameter λn, where n is a positive in-
teger and deg pn = n. The importance of studying eigenpolynomials
for these operators is among other things motivated by numerous

1Correspondingly, operators for which degQk = k are called non-
degenerate exactly-solvable operators. We have treated roots of
eigenpolynomials for these operators in [2].
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examples coming from classical orthogonal polynomials, such as the
Laguerre and Hermite polynomials, which appear as solutions to (1)
for certain choices on the polynomials Qj when k = 2. Note however
that for the operators considered here the sequence of eigenpolyno-
mials {pn} is in general not an orthogonal system.

Let us briefly recall our previous results:

A. In [2] we considered eigenpolynomials of non-degenerate exactly-
solvable operators, that is operators of the above type but with the
condition degQk = k for the leading term. We proved that when
the degree n of the unique and monic eigenpolynomial pn tends to
infinity, the roots of pn stay in a compact set in C and are distributed
according to a certain probability measure which is supported by a
tree and which depends only on the leading polynomial Qk.

B. In [1] we studied eigenpolynomials of degenerate exactly-solvable
operators (degQk < k). We proved that there exists a unique and
monic eigenpolynomial pn for all sufficiently large values on the de-
gree n, and that the largest modulus of the roots of pn tends to
infinity when n→ ∞. We also presented an explicit conjecture and
partial results on the growth of the largest root. Namely,

Conjecture (from [1]). Let T =
∑k

j=1QjD
j be a degenerate

exactly-solvable operator of order k and denote by j0 the largest j
for which degQj = j. Let rn = max{|α| : pn(α) = 0}, where pn is
the unique and monic nth degree eigenpolynomial of T . Then

lim
n→∞

rn

nd
= c0,

where c0 > 0 is a positive constant and

d := max
j∈[j0+1,k]

(
j − j0

j − degQj

)
.

Extensive computer experiments listed in [1] confirm the exis-
tence of such a constant c0. Now consider the scaled eigenpolyno-
mial qn(z) = pn(ndz). We construct the probability measure µn by
placing a point mass of size 1/n at each zero of qn. Numerical ev-
idence indicates that for each degenerate exactly-solvable operator

2



T , the sequence {µn} converges weakly to a probability measure µT

which is (compactly) supported by a tree. In [1] we deduced the al-
gebraic equation satisfied by the Cauchy transform of µT .2 Namely,
let

T =

k∑

j=1

Qj(z)D
j =

k∑

j=1

( deg Qj∑

i=0

qj,iz
i
)
Dj

and denote by j0 the largest j for which degQj = j. Assuming
without loss of generality that Qj0 is monic, i.e. qj0,j0 = 1, we have

zj0Cj0(z) +
∑

j∈A

qj,deg Qj
zdeg QjCj(z) = 1

where C(z) =
∫ dµT (ζ)

z−ζ
is the Cauchy transform of µT and A = {j :

(j − j0)/(j − degQj) = d}, where d is defined in the conjecture.

Below we present some typical pictures of the distribution of roots
of the scaled eigenpolynomial qn(z) = pn(ndz) for some degenerate
exactly-solvable operators.

Fig.1: Fig.2: Fig.3:
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Fig.1: T1 = zD + zD2 + zD3 + zD4 + zD5.
Fig.2: T2 = z2D2 +D7.
Fig.3: T3 = z3D3 + z2D4 + zD5.

In this paper we extend the results from [1] by establishing a
lower bound for the largest modulus rn of the roots of pn for any
degenerate exactly-solvable operator and which supports the above

2It remains to prove the existence of µT and to describe its support
explicitly, see Open Problems and Conjectures.
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conjecture.3 This is our main result:

Main Theorem. Let T =
∑k

j=1QjD
j be a degenerate exactly-

solvable operator and denote by j0 the largest j for which degQj = j.
Let pn be the unique and monic nth degree eigenpolynomial of T and
rn = max{|α| : pn(α) = 0}. Then there exists an integer n0 and a
positive constant s > 0 such that

rn ≥ s · nd

for all n > n0, where

d := max
j∈[j0+1,k]

( j − j0
j − degQj

)
.

Acknowledgements. The authors are greatly obliged to Professor
Boris Shapiro for introducing us to this very fascinating subject.
Our research was supported by Stockholm University.

2 Proofs

Lemma 1. For any monic polynomial p(z) of degree n ≥ 2 for
which all the zeros are contained in a disc of radius A ≥ 1, there
exists an integer n(j) and an absolute constant Cj depending only
on j, such that for every j ≥ 1 and every n ≥ n(j) we have

1

Cj

· n
j

Aj
≤

∣∣∣∣
∣∣∣∣
p(j)(z)

p(z)

∣∣∣∣
∣∣∣∣
2A

≤ Cj ·
nj

Aj
(2)

where p(j)(z) denotes the jth derivative of p(z), and where we have
used the maximum norm ||p(z)||2A = max|z|=2A |p(z)|.

Remark. The right-hand side of the above inequality actually holds
for all n ≥ 2, whereas the left-hand side holds for all n ≥ n(j).

Proof. To obtain the inequality on the right-hand side we use the
notation p(z) =

∏n
i=1(z−αi) where by assumption |αi| ≤ A for every

complex root of p(z). Then p(j)(z) is the sum of n(n−1) · · · (n−j+1)

3It is still an open problem to prove the upper bound.
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terms, each being the product of (n − j) factors (z − αi).
4 Thus

p(j)(z)/p(z) is the sum of n(n− 1) · · · (n− j + 1) terms, each equal
to 1 divided by a product consisting of n − (n − j) = j factors
(z − αi). If |z| = 2A we get |z − αi| ≥ A⇒ 1

|z−αi|
≤ 1

A
, and thus

∣∣∣∣p
(j)

p

∣∣∣∣
2A

≤ n(n− 1) · · · (n− j + 1)

Aj
≤ Cj ·

nj

Aj
.

Here we can choose Cj = 1 for all j, but we refrain from doing this
since we will need Cj large enough to obtain the constant 1/Cj in
the left-hand side inequality. To prove the left-hand side inequality
we will need inequalities (i)-(iv) below, where we need (i) to prove
(ii), and we need (ii) and (iii) to prove (iv), from which the left-hand
side inequality of this lemma follows.

For every j ≥ 1 we have

(i)
∣∣∣∣ d

dz

(p(j)(z)
p(z)

)∣∣∣∣
2A

≤ j · nj

Aj+1 .

For every j ≥ 1 there exists a positive constant C ′
j depending only

on j, such that

(ii)

∣∣∣∣
∣∣∣∣
p(j)

p
− (p′)j

pj

∣∣∣∣
∣∣∣∣
2A

≤ C ′
j · nj−1

Aj .

(iii)
∣∣∣∣p′

p

∣∣∣∣
2A

≥ n
3A

.

For every j ≥ 1 there exists a positive constant C ′′
j and some in-

teger n(j) such that for all n ≥ n(j) we have

(iv)
∣∣∣∣ p(j)

p

∣∣∣∣
2A

≥ C ′′
j · nj

Aj .

To prove (i), let p(z) =
∏n

i=1(z − αi), where |αi| ≤ A for each
complex root αi of p(z). Then again p(j)(z)/p(z) is the sum of
n(n − 1) · · · (n − j + 1) terms and each term equals 1 divided by a
product consisting of j factors (z − αi). Differentiating each such

4Differentiating p(z) =
∏n

i=1(z − αi) once yields
(

n
1

)
= n terms

each term being a product of (n−1) factors (z−αi), differentiating
once again we obtain n

(
n−1

1

)
= n(n − 1) terms, each being the

product of (n− 2) factors (z − αi), etc.
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term we obtain a sum of j terms each being on the form (−1) divided

by a product consisting of (j + 1) factors (z −αi).
5 Thus d

dz

(p(j)(z)
p(z)

)

is a sum consisting of j · n(n− 1) · · · (n− j + 1) terms, each on the
form (−1) divided by (j + 1) factors (z − αi). Using 1

|z−αi|
≤ 1

A
for

|z| = 2A since |αi| ≤ A for all i ∈ [1, n], we thus get

∣∣∣∣ d
dz

(p(j)(z)

p(z)

)∣∣∣∣
2A

≤ j · n(n− 1) · · · (n− j + 1)

Aj+1
≤ j · nj

Aj+1
.

To prove (ii) we use (i) and induction over j. The case j = 1 is trivial

since p′

p
− (p′)1

p1 = 0. If we put j = 1 in (i) we get
∣∣∣∣ d

dz

(
p′

p

)∣∣∣∣
2A

≤ n
A2 .

But d
dz

(
p′

p

)
= p(2)

p
− (p′)2

p2 , and thus
∣∣∣∣p(2)

p
− (p′)2

p2

∣∣∣∣ ≤ n
A2 , so (ii) holds

for j = 2. We now proceed by induction. Assume that (ii) holds for

some j = p ≥ 2, i.e.
∣∣∣∣p(p)

p
− (p′)p

pp

∣∣∣∣
2A

≤ C ′
p · np−1

Ap . Also note that

with j = p in (i) we have

∣∣∣∣p
(p+1)

p
− p(p) · p′

p2

∣∣∣∣
2A

=
∣∣∣∣ d
dz

(p(p)

p

)∣∣∣∣
2A

≤ p · np

Ap+1
,

and also ||p′
p
||2A ≤ n

A
(from the right-hand side inequality of this

lemma). Thus we have
∣∣∣∣

∣∣∣∣
p(p+1)

p
− (p′)p+1

pp+1

∣∣∣∣

∣∣∣∣
2A

=

∣∣∣∣

∣∣∣∣
p(p+1)

p
− p(p) · p′

p2
+
p(p) · p′
p2

− (p′)p+1

pp+1

∣∣∣∣

∣∣∣∣
2A

≤
∣∣∣∣
∣∣∣∣
p(p+1)

p
− p(p) · p′

p2

∣∣∣∣
∣∣∣∣
2A

+

∣∣∣∣
∣∣∣∣
p′

p

(
p(p)

p
− (p′)p

pp

)∣∣∣∣
∣∣∣∣
2A

≤ p · np

Ap+1
+
n

A
· C ′

p ·
np−1

Ap

= (p+ C ′
p) ·

np

Ap+1
= C ′

p+1 ·
np

Ap+1
.

5With D = d/dz consider for example D 1
Qj

i=1(z−αi)
=

−1·D
Qj

i=1(z−αi)
Qj

i=1(z−αi)2
, which is a sum of j terms, each being on the form

(−1) divided by a product consisting of 2j−(j−1) = (j+1) factors
(z − αi).
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To prove (iii) observe that p′(z)
p(z)

=
∑n

i=1
1

(z−αi)
=

∑n
i=1

1
z
· 1

1−
αi
z

. By

assumption |αi| ≤ A for all complex roots αi of p(z), so for |z| = 2A
we have |αi

z
| ≤ A

2A
= 1

2
for all i ∈ [1, n]. Writing wi = 1

1−
αi
z

we obtain

|wi − 1| =

∣∣∣∣
1

1 − αi

z

− 1 − αi

z

1 − αi

z

∣∣∣∣ =

∣∣αi

z

∣∣
∣∣1 − αi

z

∣∣ ≤ 1

2
|wi|,

which implies

Re

(
1

1 − αi

z

)
= Re(wi) ≥

2

3
∀i ∈ [1, n] ⇒ Re

( n∑

i=1

1

1 − αi

z

)
≥ 2n

3
.

Thus
∣∣∣∣
∣∣∣∣
p′(z)

p(z)

∣∣∣∣
∣∣∣∣
2A

= max
|z|=2A

∣∣∣∣
p′(z)

p(z)

∣∣∣∣ = max
|z|=2A

1

|z| ·
∣∣∣∣

n∑

i=1

1

1 − αi

z

∣∣∣∣

≥ 1

2A
·
∣∣∣∣

n∑

i=1

1

1 − αi

z

∣∣∣∣
2A

≥ 1

2A
· Re

( n∑

i=1

1

1 − αi

z

)

≥ n

3A
.

To prove (iv) we note that from (iii) we obtain
∣∣∣∣(p′

p

)j∣∣∣∣
2A

≥ nj

3jAj ,

and this together with (ii) yields

∣∣∣∣
∣∣∣∣
p(j)

p

∣∣∣∣
∣∣∣∣
2A

=

∣∣∣∣
∣∣∣∣
(
p′

p

)j

+
p(j)

p
−

(
p′

p

)j∣∣∣∣
∣∣∣∣
2A

≥
∣∣∣∣
∣∣∣∣
(
p′

p

)j∣∣∣∣
∣∣∣∣
2A

−
∣∣∣∣
∣∣∣∣
p(j)

p
−

(
p′

p

)j∣∣∣∣
∣∣∣∣
2A

≥ nj

3jAj
− C ′

j ·
nj−1

Aj
=
nj

Aj

(
1

3j
−
C ′

j

n

)
≥ C ′′

j · n
j

Aj
,

where C ′′
j is a positive constant such that C ′′

j ≤
(

1
3j − C′

j

n

)
for all

n ≥ n(j). The left-hand side inequality in this lemma now follows
from (iv) if we choose the constant Cj on right-hand side inequality
so large that 1

Cj
≤ C ′′

j . �
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To prove Main Theorem we will need the following lemma, which
follows from Lemma 1:

Lemma 2. Let 0 < s < 1 and d > 0 be real numbers. Let p(z)
be any monic polynomial of degree n ≥ 2 such that all its zeros are
contained in a disc of radius A = s · nd, and let Qj(z) be arbitrary
polynomials. Then there exists some positive integer n0 and positive
constants Kj such that

1

Kj

·nd(deg Qj−j)+j ·s
deg Qj

sj
≤

∣∣∣∣
∣∣∣∣Qj(z)·

p(j)

p

∣∣∣∣
∣∣∣∣
2snd

≤ Kj·nd(deg Qj−j)+j·s
deg Qj

sj

for every j ≥ 1 and all n ≥ max(n0, n(j)), where n(j) is as in Lemma
1.

Proof. Let Qj(z) =
∑deg Qj

i=0 qj,iz
i. Then for |z| = 2A >> 1 we

have

|Q(z)|2A = |qj,deg Qj
|2deg QjAdeg Qj

(
1 +O(

1

A
)

)
.

Since A = s · nd there exists some integer n0 such that n ≥ n0 ⇒
A ≥ A0 >> 1, and thus by Lemma 1 there exists a positive constant
Kj such that the following inequality holds for all n ≥ max(n(j), n0)
and all j ≥ 1:

1

Kj
· n

j

Aj
· Adeg Qj ≤

∣∣∣∣
∣∣∣∣Qj(z) ·

p(j)

p

∣∣∣∣
∣∣∣∣
2A

≤ Kj ·
nj

Aj
·Adeg Qj .

Inserting A = s · nd in this inequality we obtain

1

Kj
· nj

sjndj
·sdeg Qjnd·deg Qj ≤

∣∣∣∣
∣∣∣∣Qj(z)·

p(j)

p

∣∣∣∣
∣∣∣∣
2snd

≤ Kj·
nj

sjndj
·sdeg Qjnd·deg Qj

⇔
1

Kj
·nd(deg Qj−j)+j ·s

deg Qj

sj
≤

∣∣∣∣
∣∣∣∣Qj(z)·

p(j)

p

∣∣∣∣
∣∣∣∣
2snd

≤ Kj·nd(deg Qj−j)+j·s
deg Qj

sj

for every j ≥ 1 and all n ≥ max(n0, n(j)). �

Proof of Main Theorem. Let d = maxj∈[j0+1,k]

(
j−j0

j−deg Qj

)
where
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j0 is the largest j for which degQj = j in the degenerate exactly-

solvable operator T =
∑k

j=1QjD
j, where Qj(z) =

∑deg Qj

i=0 qj,iz
i.

Let pn(z) be the nth degree unique and monic eigenpolynomial of T
and denote by λn the corresponding eigenvalue. Then the eigenvalue
equation can be written

k∑

j=1

Qj(z) ·
p

(j)
n (z)

pn(z)
= λn (3)

where λn =
∑j0

j=1 qj,j · n!
(n−j)!

. We will now use the result in Lemma

2 to estimate each term in (3).

* Denote by jm the largest j for which d is attained. Then d =
(jm − j0)/(jm − degQjm) ⇒ d(degQjm − jm) + jm = j0, and jm −
degQjm = (jm − j0)/d. By Lemma 2 we have:

1

Kjm

· nj0 · 1

s
jm−j0

d

≤
∣∣∣∣
∣∣∣∣Qjm(z) · p

(jm)

p

∣∣∣∣
∣∣∣∣
2snd

≤ Kjm · nj0 · 1

s
jm−j0

d

. (4)

Note that the exponent of s is positive since jm > j0 and d > 0.
In what follows we will only need the left-hand side of the above
inequality.

* Consider the remaining (if there are any) j0 < j < jm for
which d is attained. For such j we have (using the right-hand side
inequality of Lemma 2):

∣∣∣∣

∣∣∣∣Qj(z) ·
p(j)

p

∣∣∣∣

∣∣∣∣
2snd

≤ Kjn
j0 · 1

s
j−j0

d

= Kjn
j0 · 1

s
jm−j0

d

· s jm−j
d

≤ Kjn
j0 · 1

s
jm−j0

d

· s1/d (5)

where we have used that (jm − j) ≥ 1 and s < 1 ⇒ s(jm−j)/d ≤ s1/d.

* Consider all j0 < j ≤ k for which d is not attained. Then
(j−degQj) > 0 and (j−j0)/(j−degQj) < d⇒ d(degQj−j)+j < j0
and we can write d(degQj − j) + j ≤ j0 − δ where δ > 0. Then we

9



have:
∣∣∣∣
∣∣∣∣Qj(z) ·

p(j)

p

∣∣∣∣
∣∣∣∣
2snd

≤ Kj · nd(deg Qj−j)+j · s
deg Qj

sj
≤ Kj · nj0−δ · s

deg Qj

sj

≤ Kj · nj0−δ · 1

sk
, (6)

where the last inequality follows since degQj ≥ 0 ⇒ sdeg Qj ≤ s0 = 1
and j ≤ k ⇒ sj ≥ sk since 0 < s < 1.

* For j = j0 by definition degQj0 = j0 and thus:
∣∣∣∣
∣∣∣∣Qj0(z) ·

p(j0)

p

∣∣∣∣
∣∣∣∣
2snd

≤ Kj0 ·nd(deg Qj0
−j0)+j0 · s

deg Qj0

sj0
= Kj0 ·nj0. (7)

* Now consider all 1 ≤ j ≤ j0−1. Since n ≥ n0 ⇒ A = snd >> 1
we get (snd)j−deg Qj ≥ 1 and thus:
∣∣∣∣
∣∣∣∣Qj(z) ·

p(j)

p

∣∣∣∣
∣∣∣∣
2snd

≤ Kj · nd(deg Qj−j)+j · s
deg Qj

sj
= Kj · nj · (snd)(deg Qj−j)

= Kj · nj · 1

(snd)j−deg Qj
≤ Kj · nj ≤ Kj · nj0−1. (8)

* Finally we estimate the eigenvalue λn =
∑j0

i=1 qj,j · n!
(n−j)!

, which

grows as nj0 for large n, since there exists an integer nj0 and some
positive constant K ′

j0 such that for all n ≥ nj0 we obtain:

|λn| ≤
j0∑

j=1

|qj,j| ·
n!

(n− j)!

= |qj0,j0| ·
n!

(n− j0)!

[
1 +

∑

1≤j<j0

∣∣∣∣
qj,j
qj0,j0

∣∣∣∣ ·
(n− j0)!

(n− j)!

]

≤ K ′
j0
· nj0 . (9)

Finally we rewrite the eigenvalue equation (3) as follows:

Qjm(z) · p
(jm)
n (z)

pn(z)
= λn +

∑

j 6=jm

Qj(z)
p

(j)
n (z)

pn(z)
.
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Applying inequalities (5)-(9) to this we obtain

∣∣∣∣
∣∣∣∣Qjm · p

(jm)
n (z)

pn(z)

∣∣∣∣
∣∣∣∣
2snd

≤ |λn| +
∑

j 6=jm

∣∣∣∣
∣∣∣∣Qj

p
(j)
n (z)

pn(z)

∣∣∣∣
∣∣∣∣
2snd

≤ K ′
j0n

j0 +Kj0n
j0 +

∑

1≤j<j0

Kjn
j0−1

+
∑

j0<j≤k

(
j−j0

j−deg Qj
)<d

Kj
nj0−δ

sk
+

∑

j0<j<jm

(
j−j0

j−deg Qj
)=d

Kjn
j0

s1/d

s
jm−j0

d

≤ K · nj0 +K · n
j0−δ

sk
+K · nj0

s1/d

s
jm−j0

d

(10)

for all n ≥ max(n0, n(j), nj0), where K is some positive constant
and 0 < s < 1. For the term on the left-hand side of the rewritten
eigenvalue equation above we obtain using (4) the following estima-
tion:

1

K
· nj0 · 1

s
jm−j0

d

≤ 1

Kjm

· nj0 · 1

s
jm−j0

d

≤
∣∣∣∣
∣∣∣∣Qjm · p

(jm)
n (z)

pn(z)

∣∣∣∣
∣∣∣∣
2snd

(11)

for some constantK ≥ Kjm which also satisfies (10). Now combining
(10) and (11) we get

1

K
· nj0 · 1

s
jm−j0

d

≤ K · nj0 +K · n
j0−δ

sk
+K · nj0

s1/d

s
jm−j0

d

.

Dividing this inequality by nj0 and multiplying by K we have

1

s
jm−j0

d

≤ K2 +K2 · 1

nδ
· 1

sk
+K2 · s1/d

s
jm−j0

d

.

⇔
1

sw
≤ K2 +

K2

sk
· 1

nδ
+K2 · s

1/d

sw

⇔
1

sw
[1 −K2 · s1/d] ≤ K2 +

K2

sk
· 1

nδ
. (12)

where w = (jm − j0)/d > 0.

11



In what follows we will obtain a contradiction to this inequality
for some small properly chosen 0 < s < 1 and all sufficiently large
n. Since jm ∈ [j0 + 1, k] we have w = (jm − j0)/d ≥ 1/d, and since
s < 1 we get sw ≤ s1/d ⇒ 1/sw ≥ 1/s1/d. Now choose s1/d = 1

4K2 ,
where K is the constant in (12). Then estimating the left-hand
side of (12) we get

1

sw
[1 −K2 · s1/d] ≥ 1

s1/d
[1 −K2 · s1/d] = 4K2 −K2 = 3K2

and thus from (12) we have

3K2 ≤ 1

sw
[1 −K2 · s1/d] ≤ K2 +

K2

sk
· 1

nδ

⇔

2K2 ≤ K2

sk
· 1

nδ

⇔
nδ ≤ 1

2
· 1

sk
=

1

2
(2K)2dk.

We therefore obtain a contradiction to this inequality, and hence
to inequality (12) and thus to the eigenvalue equation (3), if nδ >
1
2
(2K)2dk and s = 1/(2K)2d, and consequently all roots of pn cannot

be contained in a disc of radius s · nd for such choices on s and n.
Hence there exists an integer n0 such that for all n > n0 we have
rn > s · nd. �

3 Open Problems and Conjectures

3.1 The upper bound

Based upon numerical evidence from computer experiments (some
of which is presented in [1]) we are led to assert that there exists a
constant C0, which depends on T only, such that

rn ≤ C0 · nd (13)

holds for all sufficiently large integers n. We refer to this as the
upper-bound conjecture. Computer experiments confirm that
the zeros of the scaled eigenpolynomial qn(z) = pn(ndz) are con-
tained in a compact set when n→ ∞.
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3.2 The measures {µn}
Consider the sequence of discrete probability measures

µn =
1

n

ν=n∑

ν=1

δ(
αν

nd
)

where α1, . . . , αn are the roots of the eigenpolynomial pn and d is
as in Definition 1. Assuming (13) the supports of {µn} stay in a
compact set in C. Next, by a tree we mean a connected compact
subset Γ of C which consists of a finite union of real-analytic curves
and where Ĉ \ Γ is simply connected (here Ĉ = C ∪ ∞ is the ex-
tended complex plane). Computer experiments from [1] lead us to
the following

Conjecture 1. For each operator T the sequence {µn} converges
weakly to a probability measure µT which is supported on a certain
tree ΓT .

3.3 The determination of µT

Given T =
∑k

j=1Qj(z)D
j and Qj(z) =

∑deg Qj

i=0 qj,iz
i we obtain an

algebraic function CT (z) which satisfies the following algebraic equa-
tion (also see [1]):

qj0,j0 · zj0 · Cj0
T (z) +

∑

j∈J

qj,deg Qj
· zdeg Qj · Cj

T (z) = qj0,j0,

where J = {j : (j − j0)/(j − degQj) = d}, i.e. the sum is taken
over all j for which d is attained. In addition CT is chosen to be the
unique single-valued branch which has an expansion

CT (z) =
1

z
+
c2
z2

+
c3
z3

+ . . .

at ∞ ∈ Ĉ. Let DT be the discriminant locus of CT , i.e. this is
a finite set in C such that the single-valued branch of CT in an
exterior disc |z| > R can be continued to an (in general multi-

valued) analytic function in Ĉ \ DT . If ΓT is a tree which contains
DT , we obtain a single-valued branch of CT in the simply connected
set ΩΓT

= Ĉ \ ΓT . It is easily seen that this holomorphic function
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in ΩΓT
defines a locally integrable function in the sense of Lebesgue

outside the nullset ΓT . A tree ΓT which contains DT is called T -
positive if the distribution defined by

νΓT
=

1

π
· ∂̄CT/∂̄z̄

is a probability measure.

3.4 Main conjecture

Now we announce the following which is experimentally confirmed
in [1]:

For each operator T , the limiting measure µT in Conjecture 1 ex-
ists. Moreover, its support is a T -positive tree ΓT and one has the
equality µT = νΓT

which means that when z ∈ Ĉ \ ΓT the following
holds:

CT (z) =

∫

ΓT

dµT (ζ)

z − ζ
.

Remark. For non-degenerate exactly-solvable operators (i.e. when
degQk = k) it was proved in [2] that the roots of all eigenpoly-
nomials stay in a compact set of C, and the unscaled sequence of
probability measures {µn} converge to a measure supported on a
tree, i.e. the analogue of the main conjecture above holds in the
non-degenerate case.
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