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Abstract

This thesis consists of three parts:
In Part I we study the Burnside ring of the �nite group G. This ring

has a natural structure of a λ-ring, {λn}n∈N. However, a priori λn(S),
where S is a G-set, can only be computed recursively, by �rst computing
λ1(S), . . . , λn−1(S). We establish an explicit formula, expressing λn(S)
as a linear combination of classes of G-sets. This formula is derived in
two ways: First we give a proof that uses the theory of representation
rings in an essential way. We then give an alternative, more intrinsic,
proof. This second proof is joint work with Serge Bouc.
In Part II we establish a formula for the classes of certain tori in the

Grothendieck ring of varieties K0(Vark). More explicitly, K0(Vark) has
a natural structure of a λ-ring, and we will see that if L∗ is the torus
of invertible elements in the n-dimensional separable k-algebra L then
[L∗] =

∑n
i=0(−1)iλi

(
[Spec L]

)
Ln−i, where L is the class of the a�ne

line. This formula is suggested by the computation of the cohomology
of the torus. To prove it requires some rather explicit calculations in
K0(Vark). To be able to make these, we introduce a homomorphism from
the Burnside ring of the absolute Galois group of k, to K0(Vark). In the
process we obtain some information about the structure of the subring
of K0(Vark) generated by zero-dimensional varieties.
In Part III we give a version of geometric motivic integration that

specializes to p-adic integration via point counting. This has been done
before for stable sets, cf. [LS03]; we extend this to more general sets.
The main problem in doing this is that it requires to take limits, hence
the measure will have to take values in a completion of K0(Vark)[L−1].
The standard choice is to complete with respect to the dimension �ltra-
tion. However, since the point counting homomorphism is not continuous
with respect to this topology we have to use a stronger one. We thus be-
gin by de�ning this stronger topology; we will then see that many of
the standard constructions of geometric motivic integration work also
in this setting. Using this theory, we are then able to give a geometric
explanation of the behavior of certain p-adic integrals, by computing the
corresponding motivic integrals.
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0.1 Introduction

This thesis is concerned with two main topics. Firstly, the investigation
of two Grothendieck rings: the Burnside ring, and the Grothendieck ring
of varieties. Secondly, the theory of motivic integration. These topics are
related by the fact that the motivic measure takes values in a certain
completed localization of the Grothendieck ring of varieties. Let us �rst
say some words about that ring:
Let k be a �eld and let Vark be the category of k-varieties, by

which we mean the category of separated k-schemes of �nite type.
The Grothendieck ring of k-varieties1, K0(Vark), is by de�nition the
free abelian group on the set of isomorphism classes of k-varieties [X],
modulo the relations [X] = [Z] + [X \ Z] if Z ⊂ X is closed (the scissor
relations), and with a multiplication given by [X][Y ] = [X ×k Y ].
The class of the a�ne line is of particular importance, and is given a
special symbol: L := [A1

k] ∈ K0(Vark) (L is for Lefschetz). It follows
immediately from the de�nition of the multiplication that [An

k ] = Ln.
For an example of how the scissor relations work, note that since we
may choose a closed subscheme of Pn

k which is isomorphic to Pn−1
k , and

has complement An
k , we have [Pn

k ] = Ln +Ln−1 + · · ·+L+1 ∈ K0(Vark).
We want to use the theory of motivic integration in order to give

a geometric explanation of the behavior of certain p-adic integrals. As
an introduction to these ideas, let us illustrate how K0(VarFp) gives a
geometric way of counting solutions to polynomial equations modulo p.
We do this with an example: For L a separable k-algebra, de�ne L∗ to be
the algebraic group of invertible elements of L, i.e., for every k-algebra
R, L∗(R) = (L⊗k R)×. In case L/k = Fp2/Fp we have |L∗(Fp)| = |F×

p2 | =
p2 − 1 and |L∗(Fp2)| = |(F2

p2)×| = (p2 − 1)2 = (p2)2 − 2p2 + 1. On the

other hand, computing in K0(VarFp), one may show that

[L∗] = L2 − [Spec L]L + [Spec L]− 1 ∈ K0(VarFp). (0.1)

By doing this, we have simultaneously computed |L∗(Fq)| for every power
q of p. Because for every such q we have a point counting homomorphism
Cq : K0(VarFp) → Z, induced by [X] 7→ |X(Fq)|. So by applying Cq to
[L∗] we obtain the number of Fq-points on L∗. In particular, using (0.1)
we again get |L∗(Fp)| = Cp([L∗]) = p2 − 1 and |L∗(Fp2)| = Cp2([L∗]) =
(p2)2 − 2p2 + 1.
Before we continue, let us mention that this example is a special case of

a more general theorem. Namely, for any �eld k, K0(Vark) has a natural
structure of a λ-ring (a λ-ring is a ring together with a set of maps λn

behaving like exterior powers, see Section 0.2.1.), and using this structure

1First introduced by Grothendieck, cf. the unpublished text Motifs, available at

www.grothendieckcircle.org
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one may, for any separable n-dimensional k-algebra L, express [L∗] as

[L∗] =
n∑

i=0

(−1)iλi([Spec L])Ln−i ∈ K0(Vark). (0.2)

The validity of this formula will be the main result of Chapter 3. In
establishing it, we will be led to consider the structure of K0(Vark) in
more detail, and this leads us to the subject of the Burnside ring.
The Burnside ring of a pro�nite group G, denoted B(G), is constructed

in much the same way as K0(Vark), but instead of the category of varieties
one uses the category of �nite, continuous G-sets. Let G be the absolute
Galois group of k. There is a natural map Artk : B(G) → K0(Vark), and
since the structure of the Burnside ring is much better known than that
of K0(Vark), Artk is useful for proving structure result about K0(Vark).
For an example of this, we may use Artk to prove that Naumann's con-
struction of zero divisors in K0(VarFp) actually works in K0(Vark) when
k is any �eld which is not separably closed: Let L/k be a �nite Ga-
lois extension of degree n. Then [Spec L]2 = [Spec L⊗k L] = [Spec Ln] =

[
�
∪n Spec L] = n[Spec L], hence [Spec L]

(
[Spec L]−n

)
= 0. Looking at the

preimage of [Spec L] under Artk, it is easy to show that [Spec L] 6= 0, n;
consequently it is a zero divisor for any k (see Section 3.3).
Moreover, B(G) also has a natural structure of a λ-ring, and Artk

commutes with the λ-operations. This allows us to move computations
of the λ-operations on K0(Vark) to B(G). Actually, one of the proofs
of the validity of (0.2) given in Chapter 3 relies on a theorem about
Burnside rings (Theorem 1.1) which is proved in Chapter 1.
We now turn to motivic integration. Motivic integration was intro-

duced by Kontsevich in 1995, in order to strengthen Batyrev's result
that birational Calabi-Yau manifolds have the same Betti numbers, to
also yield equality of Hodge numbers. It has since then rami�ed in many
di�erent directions; we are interested in utilizing it to give a geometric
way of computing p-adic integrals. In fact, motivic integration is inspired
by p-adic integration: one wants to de�ne a measure on subsets of power
series rings of the type k[[t]], in much the same way as on subsets of
Zp. However, since k[[t]] is not locally compact (whenever k is in�nite)
it is not possible to do this in the classical way. Kontsevich's method of
resolving this was to let the measure take values in a certain completion
of Mk := K0(Vark)[L−1]. This gives the original theory of geometric
motivic integration, developed in [DL99] and [DL02].
This idea may now be used also in the p-adic case: Let W be the ring

scheme of Witt vectors, constructed with respect to the prime p. (Recall
that W(Fq), where q = pf , is the integers in the unrami�ed degree f
extension of Qp; in particular W(Fp) = Zp.) Let Fp be an algebraic
closure of Fp. W(Fp) then contains all the W(Fq), q = pf , as subrings.
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However, similarly as k[[t]], W(Fp) su�ers from the defect of not being
locally compact, hence does not come with a natural measure. This may
now be resloved in the same way as for k[[t]]: using a similar construction
as in the original theory of motivic integration, one gets a measure on
certain subsets of W(Fp), taking values in a completion of MFp .

On certain simple subsets A ⊂ W(Fp), this now has the property that
if we let the measure take values in MFp (instead of in the completion),
then, by applying the point counting homomorphism Cq : MFp → Q
we recover the Haar measure of A ∩W(Fq). However, a problem arises
when we want to extend the property of specializing to general measur-
able sets: Then the integral has to take values in a completion of MFp ,
and we cannot use the standard one since Cq is not continuous with re-
spect to this topology, hence does not extends to the completion. This
problem is taken care of in Chapter 4, where we de�ne a topology that
is strong enough for the point counting homomorphism to be continu-
ous. Let K0(Vark) be the completion with respect to this topology. In
the second part of Chapter 4 we then show that many of the standard
theorems of motivic integration hold also when the integral takes values
in K0(Vark), and that the property of specializing to p-adic integration
via point counting now holds for general measurable sets.
Using this modi�ed version of geometric motivic integration we then,

in Chapter 5, address the following problem: When computing p-adic
integrals, one sometimes get a result which behaves uniformly with re-
spect to p. For a simple example, we have

∫
Zp
|X|pdµHaar = p/(p+1) for

every prime p. More complicated examples of such integrals arise when
one computes the measure of polynomials satisfying certain factorization
patterns. For example, the set of all tuples (a1, . . . , an) ∈ Zn

p , with the
property that Xn + a1X

n−1 + · · · + an splits completely, has measure
Ip/n! where

Ip =
∫

Zn
p

|
∏

1≤i<j≤n

(Xi −Xj)|pdµHaar.

There is one such integral for each prime p, and it turns out that there
exists a function f ∈ Z(T ) with the property that for all primes, Ip =
f(p). More generally, for every q = pd, let

Iq =
∫
W(Fq)n

|
∏

1≤i<j≤n

(Xi −Xj)|pdµHaar

11



It is then a fact that Iq = f(q) for every prime power q. This is certainly
not true for all integrals, e.g.,∫

W(Fq)
|X2 + 1|pdµHaar

=

{
1 q = p2d+1 where p ≡ 3 (mod 4)
(q − 1)/(q + 1) otherwise.

Here we see that the rational function occurring in the answer depends
both on the prime p, and it also varies when we integrate over di�erent
extensions W(Fq) for powers of a �xed prime p. We want to give an
explanation of this phenomenon using the theory of motivic integration,
and this is partly achieved in Chapter 5.
In that chapter, we use our modi�ed theory of motivic integration to

show that, for �xed p, the motivic integral

I =
∫
|
∏

1≤i<j≤n

(Xi −Xj)|pdµX ∈ K0(VarFp)

is equal to f(L), where f is the same rational function as above. By
applying the point counting homomorphisms we recover the integrals Iq:
We have Cq I = Iq for every power q of p, showing that Iq = f(q).
Similarly, if p ≡ 3 (mod 4) then∫

|X2 + 1|dµX = 1− [Spec Fp2 ]/(L + 1) ∈ K0(VarFp),

showing that∫
W(Fq)

|X2 + 1|pdµHaar =

{
1 q = p2d+1

1− 2/(q + 1) q = p2d
.

This is only a partial solution to the original problem, since we have
to keep the prime �xed. However, for �xed prime p we get the uniformity
when we vary the integration set over di�erent extensions of Zp. This is
about how far we reached on the original problem, even though we have
some ideas of how to de�ne an integral that specializes for almost all p,
using results of Denef and Loeser. These ideas are outlined in Chapter
5.

0.1.1 Overview of the thesis

The thesis consists of three main parts, Part I, II and III. We have also
included two initial sections: The present introductory one, and Section
0.2 which contains de�nitions and basic properties of the Grothendieck
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rings used throughout the thesis. We refer to the introductions of the
individual chapters for a more thorough description of their contents
than the one given above.
The thesis is based on the paper

• Serge Bouc and Karl Rökaeus, A note on the λ-structure on the Burn-
side ring, Journal of Pure and Applied Algebra 213 (2009), 1316�1319

and on the four preprints
• Karl Rökaeus, Computing p-adic integrals using motivic integration,
arXiv:0812.2043v1 [math.AG]

• Karl Rökaeus, A version of geometric motivic integration that spe-
cializes to p-adic integration via point counting, arXiv:0810.4496v1
[math.AG]

• Karl Rökaeus, The computation of the classes of some tori in the
Grothendieck ring of varieties, arXiv:0708.4396v3 [math.AG]

• Karl Rökaeus, A note on the λ-structure on the Burnside ring,
arXiv:0708.1470v1 [math.GR]

Part I of the thesis is based on the last of these preprints, and on the
article (these share the name and main result, but use di�erent methods
in order to prove it). Part II is based on the third item in the list of
preprints. Part III is based on the �rst two preprints.

0.1.2 Acknowledgments

I am deeply indebted to my thesis advisor Torsten Ekedahl for giving
me many suggestions and sharing many ideas with me, and for always
being enthusiastic about discussing various mathers, and providing help
whenever I asked for it.
I want to express my appreciation to all the people at the Department

of Mathematics, Stockholm University, that have initiated interesting
discussions and provided valuable help throughout the years.
I have also bene�ted from many discussions with people at KTH, Upp-

sala, Lund, Göteborg, Leuven and Amsterdam. I am grateful to all these
people.
I am also grateful to Jan Denef and Gerard van der Geer for their

hospitality during my visits to Leuven and Amsterdam respectively.
More speci�c credit is given where it is due throughout the text.

0.2 Background material

All the parts of this thesis are concerned with computations in di�erent
Grothendieck rings. In this section, we therefore give an introduction to
these rings.
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First a general remark. Many of the rings that we work with are con-
structed as free abelian groups on the objects of a category, subject to
some relations. When de�ning a map from such a ring we often just give
its action on an object in the category. (We then have to show that it
respects the relations.) Also, when letting such a map act on the class of
an object we often leave out the brackets, e.g., if f : K0(Vark) → R and
X is a scheme we write f(X) for f

(
[X]
)
.

0.2.1 λ-rings

For an introduction, see for example the �rst part of [AT69] or [Knu73].
A λ-ring is a commutative ring R together with a homomorphism λt

from the additive group of R to the multiplicative group of R[[t]], taking
x ∈ R to

∑
n≥0 λn(x)tn, where λ0(x) = 1 and λ1(x) = x. A morphism

of λ-rings R → R′ is a ring homomorphism that commutes with the
λn. Informally, this de�nition ensures that the λn behave like exterior
powers. The archetypal example is the representation ring of a �nite
group G. In this ring, λn(V ) = [

∧n V ], the nth exterior power of the
vector space V with componentwise G-action.
Let σt(x) =

∑
n≥0 σn(x)tn be a λ-structure on R. Then the opposite

structure of σt is the λ-structure λt, de�ned implicitly by the relation
σt(x)λ−t(x) = 1 ∈ R[[t]]. On the representation ring the natural λ-
structure can be obtained as the opposite of the one coming from the
symmetric powers.
A λ-ring is special if, in addition to the above requirements, there

exist integer polynomials Pn and Pn,m with the property that for
all r, s ∈ R, λn(rs) = Pn(λ1(r), . . . , λn(r);λ1(s), . . . , λn(s)) and
λm(λn(r)) = Pm,n(λ1(r), . . . , λmn(r)). The representation ring is
special, whereas we will see that the Burnside ring is not.

0.2.2 Representation rings

We use Rk(G) to denote the ring of k-representations of G, where G
is a pro�nite group. We require such a representation to be �nite and
continuous with respect to the pro�nite topology on G and the discrete
topology on k.
When k has some natural topology we can use the same construc-

tion but with respect to this topology instead. We call the ring thus
obtained the Grothendieck ring of k-representations of G, and denote it
K0(RepkG). We have an injection Rk(G) → K0(RepkG), but this is not
an isomorphism in general. For example, the cyclotomic representation
is often not discrete.
As abelian groups, both these rings are free on isomorphism classes

of irreducible representations. They are naturally λ-rings, the structure

14



being given by exterior powers. A map H → G gives rise to an induction
and a restriction map between the corresponding representation rings,
which we denote indG

H and resG
H respectively. Finally, for g ∈ G, we use

Cg to denote the character homomorphism from any representation ring
of G, i.e., the map given by V 7→ χV (g). Together they can be used to
distinguish elements in the representation ring;

∏
g∈G Cg is injective.

0.2.3 The Grothendieck ring of varieties

Let Vark be the category of varieties over the �eld k. Then K0(Vark) is
the free abelian group generated by symbols [X] for X ∈ Vark, subject to
the relations that [X] = [Y ] if X ' Y , [X] = [X \Y ]+[Y ] if Y is a closed
subscheme of X, and with a multiplication given by [X] · [Y ] := [X×k Y ].
The second relation is usually referred to as the scissor relation. 2 By
the class of the k-scheme X we mean its image [X] ∈ K0(Vark). The
class of the a�ne line is called the Lefschetz class and denoted by L. For
a quick example of how the relations work, consider the multiplicative
group Gm. It can be embedded in the a�ne line and its complement is
then Spec k. Hence [Gm] = L− 1 ∈ K0(Vark).
The Euler characteristic gives a map to the Grothendieck ring of Ql-

representations of the absolute Galois group of k,

χc : K0(Vark) → K0(RepQl
G),

such that χc(X) =
∑

(−1)i[Hi
c(Xk, Ql)]. (Here l is a prime di�erent from

the characteristic of k.) We will use χc to study K0(Vark), for example,
its existence immediately shows that Z ⊂ K0(Vark).
De�ne a λ-structure on K0(Vark) as the opposite structure of {σn},

where σn(X) = [Xn/Σn]. In [LL04] it is mentioned that this seems to
be the natural λ-structure on K0(Vark), since σn behaves like a sym-
metric power map. In particular, the Euler characteristic χc is a λ-
homomorphism.
Let K be a �eld extension of k. We write RK

k : K0(VarK) → K0(Vark)
for the forgetful morphism, de�ned by the map VarK → K0(Vark) that
takes the K-scheme X to the class of X, viewed as a k-scheme via
Spec K → Spec k. RK

k is additive but not multiplicative. Also, de�ne
EK

k : K0(Vark) → K0(VarK) by mapping the k-scheme X to the class of

2With respect to the de�nition of K0(Vark), the important characterization of a variety

is that it is of �nite type over the base �eld; if not we end up with the zero ring. If

we also include in the de�nition of a variety that it be reduced, we get a canonically

isomorphic ring, for every scheme X has a closed subscheme Xred that is reduced

and with empty complement, hence [X] = [Xred]. In the same way one can add the

conditions that a variety be separated and irreducible and still get an isomorphic

ring. However, the condition that a variety be geometrically reduced probably gives

a slightly smaller ring when k is non-perfect.
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XK := X ×k Spec K, viewed as a K-scheme. This is a ring homomor-
phism.
The reason why RK

k fails to be multiplicative is that it does not pre-
serve the multiplicative identity element, instead RK

k (1) = [Spec K] ∈
K0(Vark). Rather than being multiplicative, RK

k has a similar property:
If X is k-scheme and Z is a K-scheme then, from the universal property
de�ning �bre products, Z ×K (Spec K ×k X) ' Z ×k X as k-schemes.
It follows that if we apply the restriction map to [Z] · [XK ] ∈ K0(VarK)
we get [Z] · [X] ∈ K0(Vark), i.e., for x ∈ K0(Vark) and z ∈ K0(VarK) we
have the projection formula

RK
k

(
zEK

k (x)
)

= RK
k (z)x.

(In other words, RK
k is a morphism of K0(Vark)-modules, where the

K0(Vark)-module structure on K0(VarK) is given by EK
k .) We will use

the special case when X = An
k and Z = Spec L, where L is a �nite-

dimensional K-algebra:

RK
k ([Spec L]Ln) = [Spec L]Ln ∈ K0(Vark). (0.3)

In particular, RK
k (Ln) = [Spec K]Ln.

0.2.4 Burnside rings

For an introduction to Burnside rings, as well as proofs of the statements
below, see [Knu73] Chapter II, 4.
If G is a pro�nite group, let G−Sets be the category with objects �nite

sets with continuous G-actions (with respect to the inverse limit topology
on G) and morphisms G-equivariant maps of such sets. We will denote
the set of morphisms between the G-sets S and T by HomG(S, T ). The
Burnside ring of G, B(G), is constructed from this category as the free
abelian group generated by the symbols [S], for every continuous G-set

S, subject to the relations that [S
�
∪T ] = [S] + [T ] (disjoint union), that

[S] = [T ] if S ' T , and with a multiplication given by [S] · [T ] := [S×T ],
where G acts diagonally on S × T .
Since every G-set can be written as a disjoint union of transitive G-

sets we see that the transitive sets generate B(G), and in fact it is free
on the isomorphism classes of these. Moreover, every �nite transitive G-
set is isomorphic to G/H where H is a subgroup, and G/H ' G/H ′

if and only if H and H ′ are conjugate subgroups. So every element of
B(G) can be written uniquely as

∑
H∈R aH [G/H], where R is a system

of representatives of the set of conjugacy classes of subgroups of G and
where aH ∈ Z for every H.
There is a natural λ-structure λt on B(G). It is given by �rst de�ning

σt : B(G) → B(G)[[t]]
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by the map that takes the G-set S to the power series
∑

n≥0[S
n/Σn]tn ∈

B(G)[[t]], where Σn acts on Sn by permuting the entries. λt is then
de�ned as the structure opposite to σt. This λ-structure is non-special
(see Remark 1.10). However, it should still be considered the natural λ-
structure on B(G), a major reason for this being that there is a natural
map h: B(G) → RQ(G) which is a λ-homomorphism with respect to this
structure, see Section 1.2.
Next, let G and H be �nite groups, and let φ : H → G be a group

homomorphism. We associate to it two maps, restriction and induction,
between the corresponding Burnside rings in the same way as for rep-
resentation rings: Firstly, resG

H : B(G) → B(H) is the map induced by
restricting the G-action on a G-set S to a H-action, i.e., S is considered
as a H-set via h·s := φ(h)s for h ∈ H and s ∈ S. This map is well de�ned
also when H is pro�nite and G is a �nite quotient of H, because then
the induced H-action on S continuous. resG

H is a morphism of λ-rings.
Secondly, if instead S is a H-set then we can associate to it the G-set

G×HS, i.e., the quotient of G×S by the equivalence relation (g·φ(h), s) ∼
(g, hs) for (g, s) ∈ G×S and h ∈ H, with a G-action given by g′ ·(g, s) :=
(g′g, s). This gives rise to the induction map indG

H : B(H) → B(G), which
is additive but not multiplicative. We will only use the induction map in
the case when H is a subgroup of G. In this case, note that if we choose
a set of coset representatives of G/H, R = {g1, . . . , gr}, then we can
represent G×H S as R × S with G-action given by g · (gi, s) = (gj , hs),
where ggi = gjh for h ∈ H. It follows that indG

H is de�ned also when G
is pro�nite and H is a normal subgroup of �nite index.
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Part I:

The Burnside ring





1. The λ-structure on the Burnside ring

1.1 Introduction and statement of the main theorem

We use B(G) to denote the Burnside ring of the �nite group G, see
Section 0.2.4 for an introduction.
Recall that there is a λ-structure on B(G), {λn}n∈N, de�ned as the

opposite structure of {σn}n∈N, where σn(S) is the class of the nth sym-
metric power of S. It should be considered the natural λ-structure on
B(G), one reason for this being that there is a canonical homomorphism
to the ring of rational representations of G, h: B(G) → RQ(G), de�ned
by h(S) =

[
Q[S]

]
, and the given λ-structure on B(G) makes h into a

λ-homomorphism.
The implicit nature of the de�nition of the λ-structure on B(G) makes

it hard to compute with. The main result of this chapter is a closed
formula for λn(S), where S is any G-set. To state it, we use the following
notation: let µ = (µ1, . . . , µl) ` n, i.e., µ is a partition of n. We use
`(µ) := l to denote the length of µ, and if µ = (1α1 , 2α2 , . . . ), we de�ne
the tuple α(µ) := (α1, . . . , αl′), and write

(`(µ)
α(µ)

)
for l!

α1!···αl′ !
. Using this

notation we can express λn(S), for any G-set S, as a linear combination
of classes of G-sets:

Theorem 1.1. Let n be a positive integer and let µ = (µ1, . . . , µl) ` n.
For S a G-set, let Pµ(S) be the G-set consisting of `(µ)-tuples of pairwise
disjoint subsets of S, where the �rst one has cardinality µ1, and so on.
Then

λn(S) = (−1)n
∑
µ`n

(−1)`(µ)
(`(µ)
α(µ)

)
[Pµ(S)] ∈ B(G). (1.2)

In particular, λn(S) = 0 when n > |S|.

This result was �rst stated and proved, in a slightly di�erent setting, in
[MW97]. It was then rediscovered and proved in the preprint [Rök07b],
by showing that λn(S) lies in a subring of B(G) on which h is injective,
and then that the image of (1.2) in RQ(G) is satis�ed. That proof is
reproduced in the present chapter.
Later, Professor Serge Bouc suggested a more intrinsic proof, using

only the structure of the Burnside ring. This resulted in the joint paper
[BR09]. The proof given there relies on the construction of a ring of for-
mal power series with coe�cients in Burnside rings, and an exponential
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map on this ring, developed in [Bou92]. Using this framework, the proof
reduces to some explicit combinatorial computations. That proof is given
in Chapter 2.
Theorem 1.1 originates in the paper [Rök07a] (whose content is in-

cluded as Chapter 3 in this thesis), in which we compute the classes
of certain tori in the Grothendieck ring of varieties, in terms of the λ-
structure on that ring. This formula is suggested by the corresponding
class of the cohomology of the torus, and its proof uses a map from the
Burnside ring of the absolute Galois group of the base �eld, where for-
mula (1.2) can be applied. Actually, it was these computations that led
us to conjecture Theorem 1.1.

Reduction to the case when G is a full symmetric group

In this chapter we prove Theorem 1.1 in the special case when G = Σi.
The general case then follows straight forward in the following way:

Proof of Theorem 1.1. First, recall that a group homomorphism φ : H →
G gives rise to a λ-homomorphism resG

H : B(G) → B(H) by restricting
the action on a G-set S to an H-action via φ. Now let G be a �nite group
and let S be a G-set of cardinality i. By choosing an enumeration of S
we get a homomorphism G → Σi, the symmetric group on {1, . . . , i}. Let
resΣi

G be the corresponding restriction homomorphism (which is indepen-

dent of the chosen enumeration). We have that resΣi
G

(
{1, . . . , i}

)
= [S],

hence, since resΣi
G is a λ-homomorphism, resΣi

G

(
λn({1, . . . , i})

)
= λn(S).

Also, writing P(i)
µ for Pµ({1, . . . , i}), we see that resΣi

G (P(i)
µ ) = [Pµ(S)].

Hence, to prove Theorem 1.1 it su�ces to prove it in the special case
when G = Σi and S = {1, . . . , i}, i.e.,

λn
(
{1, . . . , i}

)
= (−1)n

∑
µ`n

(−1)`(µ)
(`(µ)
α(µ)

)
[P(i)

µ ] ∈ B(Σi). (1.3)

The validity of (1.3) will be established in Theorem 1.16.

Overview of the chapter

In Section 1.2 we give some basic properties of the map hG : B(G) →
RQ(G), together with an example which will be used in Chapter 3.
The proof of (1.3) given in Theorem 1.16 uses the canonical

λ-homomorphism hΣi : B(Σi) → RQ(Σi) to move some of the
computations to the rational representation ring, whose λ-structure
is much easier to work with. However, there is a problem in that h
is not injective for Σi. In Section 1.3 we will therefore introduce a
subgroup Schuri ⊂ B(Σi), with the property that the restriction of
hΣi : B(Σi) → RQ(Σi) to Schuri is injective. We then also include a

22



brief discussion of the structure of Schuri, proving that it is a ring
which is not closed under the λ-operations.
In Section 1.4 we then establish (1.3). The technique of passing to the

representation ring will be used at a crucial place, to prove Lemma 1.14.

1.2 The map from the Burnside ring to the representation
ring

Let G be a pro�nite group. There is a natural map from the Burnside
ring to the rational representation ring of G, hG : B(G) → RQ(G), which
is de�ned by associating to the G-set S the class of the permutation
representation Q[S]. When there is no risk of confusion we write just h
instead of hG.
The map h is a homomorphism of λ-rings, which is one of the reasons

why we consider our λ-structure on B(G) to be the natural one. It has
the property that if S and S′ are two non-isomorphic transitive G-sets
then

h(S) 6= h(S′). (1.4)

However, since B(G) has rank equal to the number of conjugacy classes
of subgroups of G whereas RQ(G) has rank equal to the number of con-
jugacy classes of cyclic subgroups of G, h cannot be injective unless G is
cyclic. Conversely, if G is procyclic (i.e., it contains a dense cyclic sub-
group) then h is an isomorphism. These facts are proved for example by
using the character maps Cg for g ∈ G. (Usually for �nite groups, but
since taking the inverse limit of groups corresponds to taking the direct
limit of the corresponding Burnside and representation rings, they follow
immediately for any pro�nite group.)
The map h: B(G) → RQ(G) commutes with the restriction maps, and

also with the induction maps if H is a subgroup of G.
We now give an example of a �nite extension k of Q with absolute

Galois group G, having the property that hG : B(G) → RQ(G) is not
surjective. (This will be used in Remark 3.13, to �nd tori for which the
main theorem of Chapter 3 does not hold.) For this we use an example of
Serre of a �nite group having this property, together with the following
lemma:

Lemma 1.5. Let G be a pro�nite group and let N be a normal subgroup
of �nite index. De�ne H := G/N and let x ∈ RQ(H). If resH

G x is con-
tained in the image of hG : B(G) → RQ(G), then x is contained in the
image of hH : B(H) → RQ(H). In particular, if hG is surjective, then so
is hH .

Proof. De�ne a map RQ(G) → RQ(H) by V 7→ [V N ], where V N is the
elements of the G-representation V invariant under N . The correspond-
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ing map B(G) → B(H) is de�ned by S 7→ [S/N ], and one proves that
the following diagram is commutative:

B(H)
resH

G //

hH

��

B(G) //

hG

��

B(H)

hH

��
RQ(H)

resH
G // RQ(G) // RQ(H)

Since both the horizontal compositions equal the identity, the result fol-
lows by diagram chasing.

Example 1.6. There exists a �nite extension k of Q, with absolute Ga-
lois group G, such that hG : B(G) → RQ(G) is not surjective. For by
Exercise 13.4, page 105 of [Ser77], there is a �nite group H such that
hH : B(H) → RQ(H) is not surjective. (More precisely, the example in
[Ser77] shows that this holds for the product of the quaternion group with
the cyclic group of order 3.) Now choose a �nite �eld extension k of
Q such that there exists a �nite extension K/k with the property that
Gal(K/k) = H. (Actually, since the group in the example of Serre is
solvable we may, by a theorem of Shaferevich, choose k to be any num-
ber�eld.) Since H = G /Gal(k/K), it follows from preceding lemma that
hG cannot be surjective.

1.3 The Schur subring of B(Σn)

Recall that we write P(n)
µ for Pµ({1, . . . , n}) ∈ B(Σn).

Let S be a Σn-set. We say that S is a Schur set if, for every s ∈ S,
the stabilizer subgroup of s, (Σn)s, is a Schur subgroup, i.e., it stabilizes
each part of some partition of {1, . . . , n}. Equivalently, any transitive

component of S is isomorphic to P(n)
µ for some µ ` n.

De�nition 1.7. Schurn is the subgroup of B(Σn) generated by the Schur
sets.

Equivalently, this means that Schurn ⊂ B(Σn) is the free subgroup on
{[Pµ]}µ`n. The reason for us to introduce Schurn is the next theorem:

Theorem 1.8. Let h: B(Σn) → RQ(Σn) be the canonical λ-ring homo-
morphism. The restriction of h to Schurn is injective.

Even though this is a simple consequence of the injectivity of the char-
acter homomorphism from RQ(Σn) to the ring of symmetric polynomials,
we have chosen to give a more direct proof:
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Proof. For every µ ` n, let σµ ∈ Σn be an element in the conjugacy
class determined by µ and let Cσµ : RQ(Σn) → Z be the homomorphism
de�ned by V 7→ χV (σµ), where χV is the character of V . This de�nition is
independent of the choice of σµ. Together the Cσµ give a homomorphism

RQ(Σn) →
∏
µ`n

Z,

and it su�ces to show that the composition of this with the restriction
of h to Schurn is injective, i.e., that

ϕ : Schurn →
∏
µ`n

Z

[T ] 7→
(
|T σµ |

)
µ`n

is injective, where T σµ is the set of points in T �xed by σµ. To do
this, de�ne a total ordering on the set of partitions of n by µ > µ′ if
µ1 = µ′1, . . . , µj−1 = µ′j−1 and µj > µ′j for some j (i.e., lexicographic

order). We claim that |Pσµ
µ | 6= 0, whereas Pσµ

µ′ = ∅ if µ > µ′. (Here and

in the rest of this proof we write Pµ for P(n)
µ .)

For the �rst assertion, choose for example

σµ = (1, . . . , µ1)(µ1 + 1, . . . , µ1 + µ2) · · · (n− µ`(µ) + 1, . . . , n).

Then(
{1, . . . , µ1}, {µ1 + 1, . . . , µ1 + µ2}, . . . , {n− µ`(µ) + 1, . . . , n}

)
∈ Pµ

is �xed by σµ.
For the second assertion, suppose µ′ < µ and t = (T1, . . . , Tl) ∈ Pµ′ ,

where l = `(µ′). Suppose moreover that t is �xed by σµ. If now µ1 >
µ2 > · · · > µ`(µ), then, with the same σµ as above, we must have T1 =
{1, . . . , µ1}, . . . , Tl = {n − µl + 1, . . . , n}. (This is because µ1 ≥ µ′j for
every j and if 1 lies in Tj then so does σµ(1) = 2, hence also 3, . . . , µ1.
So Tj has cardinality at least µ1 and the only µ′j that can be that big
is µ′1. Consequently, j = 1, and µ1 = µ′1.) But if µ and µ′ di�er for the
�rst time in position j it is impossible for Tj to ful�ll this since it has
cardinality µ′j < µj . In the general case, when we may have µj = µj+1,
the above argument works the same only that we for example can have
T1 = {µ1 + 1, . . . , µ1 + µ2} and T2 = {1, . . . , µ1} if µ1 = µ2.
We are now ready to prove that ϕ is injective. Let x =

∑
µ`n aµ[Pµ],

where aµ ∈ Z, and suppose that x 6= 0. Choose the maximal µ0 such
that aµ0 6= 0. Let ϕµ0 be the µ0th component of ϕ. Then

ϕµ0(x) =
∑
µ`n

aµ|P
σµ0
µ | = aµ0 |P

σµ0
µ0 | 6= 0,

hence ϕ(x) 6= 0.
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We conclude this section by showing that Schurn is a subring of B(Σn).

Proposition 1.9. Schurn is closed under multiplication.

Proof. We want to see what happens when we multiply [S] and [T ],
where S and T are Schur sets. Let s ∈ S and t ∈ T . Then the stabilizers
of s and t equal the stabilizers of partitions of {1, . . . , n}, which we
denote (S1, . . . , Sk) and (T1, . . . , Tl), respectively. Then σ ∈ Σn is in the
stabilizer of (s, t) precisely when σSi = Si and σTj = Tj for each i, j.
Equivalently, σ must preserve Si∩Tj for each i, j. Hence (Σn)(s,t) equals
the stabilizer of the partition {Si ∩ Tj}i,j . Consequently, it is a Schur
subgroup, hence S × T is a Schur set. Therefore Schurn is closed under
multiplication.

Remark 1.10. Schurn is in general not a λ-ring since it is not closed
under the λ-operations. For example, note that when S is a Σn-set we
can represent the symmetric square of S as the union of S and the
set of 2-subsets of S. Now, let S be the Σ4-set {1, 2, 3, 4} and con-
sider x := σ2

(
σ2(S)

)
∈ B(Σ4). An element of the underlying Σ4-set

is {{1, 2}, {3, 4}} and the stabilizer G of this element is generated by
{(12), (34), (13)(24), (14)(23)}. The only partition that is stabilized by G
is the trivial one, so since G does not equal Σ4 it fails to be the stabilizer
of a partition. Hence x /∈ Schur4. Since λ2

(
σ2(S)

)
=
(
σ2(S)

)2−x it fol-
lows that this is not contained in Schur4 either. But σ2(S) is in Schur4,
which is therefore not a λ-ring. This also gives an example showing that
B(Σ4) is non-special. For if it were, then y := λ2

(
λ2(S)

)
would be a

polynomial in λi(S) for i = 1, 2, 3, 4, which all lie in Schur4, so y would
also lie in Schur4. But using the above one shows that y /∈ Schur4.

1.4 The λ-operations on B(Σn)

We are now ready to start the investigation of how λi acts on {1, . . . , n},
the goal being to obtain a closed formula for it. We will need some more

de�nitions. We have only de�ned P(n)
µ when µ is a partition of i ≤ n.

More generally:

De�nition 1.11. If α = (i1, . . . , il) is any tuple of positive integers

summing up to i ≤ n we de�ne P(n)
α to be the Σn-set of l-tuples of

disjoint subsets of {1, . . . , n}, the �rst one having i1 elements, and so
on.

We have [P(n)
α ] = [P(n)

µ ], where µ is the partition of i correspond-

ing to α. Also note that [P(n)
α ] = [P(n)

α,n−i], where we use P(n)
α,n−i to de-

note P(n)
(ii,...,il,n−i). Similarly, if β = (j1, . . . , jk) we will write P(n)

α,β for

P(n)
(i1,...,il,j1,...,jk).
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Throughout this section we use the following notation:

s
(n)
i :=σi({1, . . . , n})

`
(n)
i :=λi({1, . . . , n}) ∈ B(Σn)

We begin by giving a formula for s
(n)
i which shows that it lies in Schurn,

and we then deduce from this that also `
(n)
i is in Schurn. Recall from

the introduction that if µ = (µ1, . . . , µl), where µ1 = · · · = µα1 >
µα1+1 = · · · = µα1+α2 > · · · > µj−αl′+1 = · · · = µj , then we de�ne
α(µ) := (α1, . . . , αl′).

Proposition 1.12. We have

s
(n)
i =

∑
µ`i:

`(µ)≤n

[P(n)
α(µ)].

In particular, s
(n)
i and `

(n)
i are in Schurn for every i.

Proof. Identify {1, . . . , n} with {x1, . . . , xn}. Then the symmetric ith
power of {1, . . . , n}, the Σn-set {1, . . . , n}i/Σi, is identi�ed with the set
of monomials

{xe1
1 · · ·xen

n : e1 + · · ·+ en = i} =
�⋃

e1+···+en=i
e1≥e2···≥en≥0

Σn · xe1
1 · · ·xen

n ,

where the index set on the disjoint union can be identi�ed with the set
of µ ` i such that `(µ) ≤ n. Now let e1 = · · · = eα1 > eα1+1 = · · · =
eα1+α2 > · · · > en−αl+1 = · · · = en. Then

Σn · xe1
1 · · ·xen

n

=Σn · (x1 · · ·xα1)
e1(xα1+1 · · ·xα1+α2)

eα1+1 · · · (xn−αl+1 · · ·xn)en−αl+1

'Σn

(
{x1, . . . , xα1}, {xα1+1, . . . , xα1+α2}, . . . , {xn−αl+1, . . . , xn}

)
'P(n)

(α1,...,αl)

so the �rst part of the proposition follows.

To show that also `
(n)
i ∈ Schurn we use that, by de�nition,

−(−1)i`
(n)
i =

i−1∑
j=0

(−1)j`
(n)
j s

(n)
i−j .

Since we know that Schurn is a ring, and that all s
(n)
j and `

(n)
1 = [P(n)

1 ]

are in Schurn, it follows by induction that `
(n)
i ∈ Schurn.
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Recall that a group homomorphism φ : H → G gives rise to an induc-
tion map indG

H : B(H) → B(G), which is additive but not multiplicative
(see Section 0.2.4 for its de�nition). Recall also that the diagram

B(G) h // RQ(G)

B(H) h //

indG
H

OO

RQ(H)

indG
H

OO

is commutative if H is a subgroup of G.

In the following two lemmas we show that `
(n)
i and [P(n)

µ ], where µ ` i,

are determined by `
(i)
i and [P(i)

µ ] respectively. For this we use the map

indΣn
Σi×Σn−i

◦ resΣi
Σi×Σn−i

: B(Σi) → B(Σn)

which is constructed in the following way: We view Σi as the symmet-
ric group on {1, . . . , i} and embed it in Σn, the symmetric group on
{1, . . . , n}. Moreover we view Σn−i as the symmetric group on {i +
1, . . . , n}. We then restrict from B(Σi) to B(Σi × Σn−i) with respect
to the projection Σi × Σn−i → Σi and we induce from B(Σi × Σn−i) to
B(Σn) with respect to the inclusion (τ, ρ) 7→ τρ = ρτ : Σi × Σn−i → Σn.

Lemma 1.13. Let µ ` i. For n ≥ i, indΣn
Σi×Σn−i

◦ resΣi
Σi×Σn−i

(
P(i)

µ

)
=

[P(n)
µ ] ∈ B(Σn).

Proof. Let R = {σ1, . . . , σr}, where r =
(
n
i

)
, be a system of coset repre-

sentatives for Σn/(Σi × Σn−i). We know that Σn ×Σi×Σn−i P
(i)
µ can be

identi�ed with the set of pairs (σj , t), where σj ∈ R and t = (T1, . . . , Tl) ∈
P(i)

µ . From this set we de�ne a map to P(n)
µ by

(σj , t) 7→
(
σjT1, . . . , σjTl, σj{i + 1, . . . , n}

)
.

This map is surjective for given t′ = (T ′1, . . . , T
′
l , T

′
l+1) ∈ P

(n)
µ , there is a

σ ∈ Σn such that σ{1, . . . , µ1} = T ′1, . . . , σ{i − µl + 1, . . . , i} = T ′l . Let
σj ∈ R be such that σ = σjτρ where (τ, ρ) ∈ Σi × Σn−i. Then(

σj , τ{1, . . . , µ1}, . . . , τ{i− µl + 1, . . . , i}
)
7→ t′.

Since both sets have n!/(µ1! · · ·µl!(n − i)!) elements this is a bijection.
Finally, the map is G-equivariant, hence it is an isomorphism.

It is the following lemma that forces us to pass to the representation
ring, for we have not been able to prove it directly in the Burnside ring.

Lemma 1.14. Given i ∈ N. For n ≥ i we have

indΣn
Σi×Σn−i

◦ resΣi
Σi×Σn−i

(
`
(i)
i

)
= `

(n)
i ∈ B(Σn).
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Proof. We pass to the representation ring. Here, since h is a morphism
of λ-rings that commutes with the induction and restriction maps, the
image of the left hand side under h is

indΣn
Σi×Σn−i

◦ resΣi
Σi×Σn−i

◦λi
(
Q
[
{1, . . . , i}

])
∈ RQ(Σn),

and the image of the right hand side is λi
(
Q
[
{1, . . . , n}

])
∈ RQ(Σn).

Now, since `
(i)
i ∈ Schuri it follows from the preceding lemma that

indΣn
Σi×Σn−i

◦ resΣi
Σi×Σn−i

`
(i)
i ∈ Schurn. Since also `

(n)
i ∈ Schurn and h

is injective on Schurn, it su�ces to prove that

indΣn
Σi×Σn−i

◦ resΣi
Σi×Σn−i

(
λi
(
Q
[
{1, . . . , i}

]))
= λi

(
Q
[
{1, . . . , n}

])
∈ RQ(Σn),

i.e., we have to �nd a Σn-equivariant isomorphism of Q-vector spaces

ϕ : Q[Σn]⊗Q[Σi×Σn−i]

∧i
Q
[
{1, . . . , i}

]
→
∧i

Q
[
{1, . . . , n}

]
.

This is straightforward. (It is done explicitly in [Rök07c], Proposition
2.4.2.)

We are now ready to prove the main theorem of this section, the for-

mula for `
(n)
i . For this we �rst introduce a concept of degree on basis

elements of Schurn. Fix an n and the basis {[P(n)
µ ]}µ`n of Schurn. Let

k be the greatest integer such that 2k < n. For j = 1, . . . , k we say that

an element [P(n)
µ ] in the basis is of degree j if it is equal to [P(n)

ν ] for
some ν ` j. Equivalently, this means that n− j is an entry of µ. Let the

degree of [P(n)
n ] = 1 be zero and let the degree of the remaining elements

of the basis be k + 1. Because n− j > k for j = 0, 1, . . . , k, the degree is
well-de�ned.

Lemma 1.15. Let [P(n)
α ] and [P(n)

β ] be of degree m and m′ respectively,
where m + m′ ≤ n/2. Then

[P(n)
α ] · [P(n)

β ] = [P(n)
α,β] + terms of degree < m + m′.

Proof. This is a re�nement of Proposition 1.9. Let s = (S1, . . . , Sl) ∈
P(n)

α and t = (T1, . . . , Tl′) ∈ P(n)
β , where Sl and Tl′ have n − m and

n −m′ elements respectively. Then the stabilizer of (s, t) ∈ P(n)
α × P(n)

β

equals the stabilizer of (Si ∩ Tj)i,j . Let mij = |Si ∩ Tj | and let γ be
the tuple consisting of the mij . Then the transitive component of (s, t)
is P(n)

γ . Since mll′ ≥ n − m − m′ ≥ n/2 it follows that the degree of

[P(n)
γ ] is n − mll′ , and this is ≤ m + m′ with equality if and only if

[P(n)
γ ] = [P(n)

α,β].
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Theorem 1.16. Let i be a positive integer. Then for any n ≥ i,

λi
(
{1, . . . , n}

)
= (−1)i

∑
µ`i

(−1)`(µ)
(`(µ)
α(µ)

)[
P(n)

µ

]
∈ B(Σn).

Proof. For i = 1 the formula becomes `
(n)
1 =

[
P(n)

1

]
= [{1, . . . , n}], which

is true for every n.
Given i, suppose the formula is true for every pair (i′, n) where i′ < i

and n is an arbitrary integer greater than or equal to i′. We want to
show that it holds for (i, n) where n is an arbitrary integer greater than
or equal to i.

Since `
(i)
i ∈ Schuri, we have `

(i)
i =

∑
µ`i aµ

[
P(i)

µ

]
, where the aµ are

uniquely determined. Since the induction and restriction maps are addi-
tive it follows from Lemma 1.13 and Lemma 1.14 that

`
(n)
i =

∑
µ`i

aµ

[
P(n)

µ,n−i

]
∈ Schurn (1.17)

for every n ≥ i. It remains to show that aµ = (−1)i(−1)`(µ)
(`(µ)
α(µ)

)
for

every µ ` i. For this, �x an n greater than 2i and the basis {[Pµ]}µ`n of
Schurn. We now use the notion of degree introduced before this theorem.

By (1.17), `
(n)
i is a linear combination of elements of degree i. On the

other hand, by the de�nition of `
(n)
i we have

−(−1)i`
(n)
i =

i−1∑
j=0

(−1)j`
(n)
j s

(n)
i−j . (1.18)

By induction and the formula for s
(n)
j from Proposition 1.12, the right

hand side of (1.18) equals

∑
µ`i

[P(n)
α(µ)] +

i−1∑
j=1

(−1)j

(
(−1)j

∑
µ`j

(−1)`(µ)
(`(µ)
α(µ)

)[
P(n)

µ

])( ∑
µ`i−j

[P(n)
α(µ)]

)
.

(1.19)

Since we already know that `
(n)
i is zero in every degree di�erent from i

it remains to compute the degree i part of (1.19). In this expression, for
every j such that 0 < j < i we have a product of two sums, one consisting
of elements of degree j and the other one consisting of elements of degree
less than or equal to i− j, for if µ ` i− j then [Pα(µ)] has degree ≤ i− j
with equality if and only if µ = (1, 1, . . . , 1), in which case α(µ) = (i−j).
If [P(n)

µ ] has degree j and [P(n)
α(µ′)] has degree m ≤ i− j then, by Lemma

1.15,

[P(n)
µ ] · [P(n)

α(µ′)] = [P(n)
µ,α(µ′)] + terms of degree < j + m.
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Hence only the degree i−j part of
∑

µ`i−j [P
(n)
α(µ)], i.e., [P

(n)
i−j ], contributes

to the degree i part of (1.19), which therefore equals

[P(n)
i ] +

i−1∑
j=1

∑
µ`j

(−1)`(µ)
(`(µ)
α(µ)

)[
P(n)

µ,i−j

]
. (1.20)

We write this as a linear combination of elements in {[P(n)
ν ]}ν`i. Fix ν ` i

with ` := `(ν) and α := α(ν) = (α1, . . . , αt). If ` = 1 then [P(n)
ν ] = [P(n)

i ],
so [P(n)

ν ] occurs once in (1.20). If ` > 1 then [P(n)
ν ] occurs �rst when i−j

equals ν1 = · · · = να1 ; the length of µ is then ` − 1 and α(µ) = (α1 −
1, α1, . . . , αt), so the coe�cient in front of [P(n)

µ,i−j ] is −(−1)`α1 · (`−1)!
α! .

Also, [P(n)
ν ] occurs in (1.20) when i−j equals να1+1 = · · · = να1+α2 , with

coe�cient −(−1)`α2 · (`−1)!
α! , and so on. Summing up, the coe�cient in

front of [P(n)
ν ] is −(−1)`(α1 + · · ·+ αt)

(`−1)!
α! = −(−1)`

(
`
α

)
; hence (1.20)

equals

−
∑
ν`i

(−1)`(ν)
(`(ν)
α(ν)

)[
P(n)

ν

]
.

Therefore, by (1.18), `
(n)
i has the desired form and by induction we are

through.

Remark 1.21. This proof starts with noting that, as a consequence

of the preceding lemmas, given i it su�ces to compute `
(n)
i for some

n in order to get the formula for every n. We then compute `
(n)
i for

n su�ciently large. Instead we could have computed `
(i)
i by using that

h(`(i)
i ) = [sgn] ∈ RQ(Σi), where sgn is the signature representation. The

needed expression of [sgn] as a linear combination of permutation repre-
sentations is a classical formula in the theory of representations of Σi.
We chose to give the above proof since it is purely combinatorial in na-
ture.
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2. Intrinsic proof of Theorem 1.1

In this chapter we give a proof of Theorem 1.1 suggested by Serge Bouc
and published in the joint paper [BR09]. This proof relies on the con-
struction of a ring of formal power series with coe�cients in Burnside
rings, and an exponential map on this ring, developed in [Bou92]. This
proof has the advantage of being intrinsic; it uses only the structure of
the Burnside ring.
In Section 2.1 we give a survey of the relevant constructions and re-

sults from [Bou92]. Then in Section 2.2 we use these results to obtain
a formula for λn(S), which we then show to be the requested one using
some combinatorial arguments.

2.1 Background Material

We begin by giving a quick review of some de�nitions and results:

Posets

A G-poset P is a G-set with a partial ordering compatible with the G-
action, in the sense that if s ≤ t ∈ P then gs ≤ gt for all g ∈ G. A G-map
of G-posets is a map f : P → Q of posets such that gf(s) = f(gs) for
s ∈ P and g ∈ G. If also f ′ : P → Q, then f ≤ f ′ if this holds pointwise.
In connection with this, when S is a G-set and we use it as a G-poset
this means that we view S as a G-poset using its discrete ordering.
Let P be a G-poset. We recall the de�nition of the Lefschetz invariant

of P : for every i ∈ N, Sdi P is the G-set of chains x0 < · · · < xi in
P of length i + 1. The Lefschetz invariant of the G-poset P , ΛP , is
the alternating sum

∑
i≥0(−1)i[Sdi P ] ∈ B(G). The reduced Lefschetz

invariant of P is Λ̃P := ΛP −1.
We also need the notion of homotopic posets. We say that the G-posets

P and Q are simplicially homotopic, or just homotopic1, if there are G-
maps f : P → Q and g : Q → P such that gf ≤ IdP or gf ≥ IdP , and
similarly for fg. if P and Q are homotopic as G-posets then Λ̃P = Λ̃Q

(see e.g. Proposition 4.2.5 in [Bou00]). In particular, if P has a largest
or smallest element then Λ̃P = 0.

1Note however that two non-homotopic posets may admit homotopic realizations.
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Results from [Bou92]

In this subsection we give a review of the de�nitions and results from
[Bou92] that we use to prove Theorem 1.1. Let G be a �nite group. Recall
that the wreath product of G and Σn, denoted G o Σn, is by de�nition
the semidirect product Gn o Σn, where the action of Σn on Gn is given
by σ · (g1, . . . , gn) = (gσ−11, . . . , gσ−1n). We use Gn to denote this wreath
product, Gn := G oΣn (by de�nition, G0 = 1). One de�nes the ring B(G)
in the folling way: as a group it is the direct product of the Burnside
rings B(G o Σn), indexed over all n ∈ N. We represent the elements of
this group as a power series,

∑
i≥0 xit

i where xi ∈ B(GoΣi). This is a ring
in a natural way, see [Bou92] for the construction of the multiplication.
Let g̃ = ((g1, . . . , gn), σ), where σ ∈ Σn and gi ∈ G, be an element

of Gn. When S is a G-set we view Sn as a Gn-set by g̃(s1, . . . , sn) =
(g1sσ−11, . . . , gnsσ−1n). Moreover, let S be the poset de�ned by adding a
smallest element 0 to S, and de�ne the Gn-poset S∗n as the set of maps
{1, . . . , n} → S which are not constant equal to zero, where the partial
ordering is de�ned pointwise, and with the Gn-action de�ned in the same
way as on Sn, with G acting trivially on the minimal element 0.
Next one de�nes maps ui : B(G) → B(Gi) by x 7→ ΛP i , where P is a G-

poset such that ΛP = x. Let I(G) be the ideal of B(G) consisting of those
series with zero as constant coe�cient. The ui are then used to de�ne an
exponential map Exp: I(G) → B(G) having the property that if f, g ∈
I(G) then Exp(f + g) = Exp(f) Exp(g). In the case we are interested in,
when f = xt for x ∈ B(G), we have by de�nition Exp(xt) =

∑
i≥0 ui(x)ti.

(We omit the construction in the general case, see [Bou92].) In particular,
when H is a subgroup of G we have Exp([G/H]t) =

∑
i≥0[Gi/Hi]ti.

Moreover, since, for any G-set S, S = ΛS = Λ̃S+ , where S+ := S
�
∪{•},

we have Exp(−[S]t) =
∑

i≥0 ui(− Λ̃S+)ti. By Lemme 4 in [Bou92] it
follows that

Exp(−[S]t) = −
∑
i≥0

Λ̃(S+)∗i ti. (2.1)

For every i ∈ N we have a map mi : B(Gi) → B(G), induced by taking
the Gi-set S to the G-set Σi\S. Together the mi give a homomorphism
of rings m: B(G) → B(G)[[t]].

2.2 Proof of Theorem 1.1

The property that allows us to use the above theory on our problem is
the following:

Lemma 2.2. For any x ∈ B(G) we have m
(
Exp(xt)

)
= σt(x) and

m
(
Exp(−xt)

)
= λ−t(x).
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Proof. Let Sn denote the nth symmetric power. When x = [G/H], we
have to show that Σn\(Gn/Hn) ' Sn(G/H) as G-sets, for every positive
integer n: �rstly, the map

(g1, . . . , gn, σ) 7→ (g1, . . . , gn) : Gn → (G/H)n

factors through Gn/Hn, for if (g1, . . . , gn, σ) ∈ Gn then, for any
(h1, . . . , hn, τ) ∈ Hn, the element

(g1, . . . , gn, σ)(h1, . . . , hn, τ) = (g1hσ1, . . . , gnhσn, στ) ∈ Gn

maps to (g1hσ1, . . . , gnhσn) = (g1, . . . , gn) ∈ (G/H)n, which is also the
image of (g1, . . . , gn, σ). Denote the resulting map φ : Gn/Hn → (G/H)n.
If we give (G/H)n the Gn-set structure (g1, . . . , gn, σ) · (f1, . . . , fn) =
(g1fσ1, . . . , gnfσn), then φ is Gn-equivariant. Moreover it is surjective.
Since both Gn/Hn and (G/H)n have |G|n/|H|n elements, it follows that
φ is an isomorphism of Gn-sets. Consequently it induces an isomorphism
of G-sets Σn\(Gn/Hn) → Sn(G/H).
For arbitrary x the result now follows from the properties of m and

Exp. For suppose that it holds for x, y ∈ B(G). Firstly m(Exp(x +
y)) = m(Exp(x))m(Exp(y)) = σt(x)σt(y) = σt(x + y). Moreover 1 =
m(Exp(x))m(Exp(−x)) = σt(x) m(Exp(−x)), it therefore follows that
m(Exp(−x)) = σt(−x). Since every element of B(G) is a linear combi-
nation of elements [G/H] we are done.
The second assertion follows immediately, since σt(x)λ−t(x) = 1, so

λ−t(x) = σt(−x).

Using this lemma together with (2.1) shows that, when S is a G-set,
λ−t(S) = −m

(∑
n≥0 Λ̃(S+)∗i tn

)
, hence that

λn(S) = (−1)n−1 mn

(
Λ̃(S+)∗i

)
. (2.3)

Thus we have in some sense achieved our goal; we have expressed λn(S)
in a non-recursive way, without using λi(S) for i < n. However, we want
to be more concrete, and the major step is the following proposition,
which allows us to express λn(S) without using B(Gn).

Proposition 2.4. For S a G-set, let Ω≤n(S) be the G-poset of nonempty
subsets of S of cardinality ≤ n. For any n ∈ N,

mn

(
Λ̃S∗n

)
= Λ̃Ω≤n(S) .

Proof. Given the G-set S and a positive integer n we de�ne the G-poset
Sn,

Sn := {α : S → N : 1 ≤
∑
s∈S

α(s) ≤ n}
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with the ordering given by α ≤ α′ if α(s) ≤ α′(s) for every s ∈ S,
and the G-action (gα)(s) := α(g−1s). Note that Sn is G-homotopic to
Ω≤n(S), for we have maps θ : Sn → Ω≤n(S), given by α 7→ α−1(N\{0}),
and θ′ : Ω≤n(S) → Sn sending A ⊆ S to its characteristic function. The

composition θθ′ is the identity and θ′θ ≤ IdSn . Hence Λ̃Sn = Λ̃Ω≤n(S),

so it su�ces to show that mn

(
Λ̃S∗n

)
= Λ̃Sn . We will do this by proving

that, for every i,
Σn\Sdi(S∗n) ' Sdi(Sn)

as G-sets.
We proceed to constructing this isomorphism: �rst, we have a map

φ : S∗n → Sn, de�ned by φ(f)(s) = |f−1(s)| for s ∈ S. One checks that
this is a well-de�ned map of G-posets (where we view S∗n as a G-poset
via restriction). The map φ is surjective, for given α ∈ Sn one may
construct an element f in its preimage in the following way: for s ∈ S,
choose Es ⊆ {1, . . . , n} such that |Es| = α(s) (possibly, Es = ∅). Since∑

s∈S α(s) ≤ n we may do this such that the Es are mutually disjoint.
We now de�ne f ∈ S∗n by f(i) = 0 if i /∈ ∪s∈SEs and f(i) = s if i ∈ Es.
It then follows that φ(f)(s) = |f−1(s)| = |Es| = α(s) for all s ∈ S, i.e.,
φ(f) = α.
Next one shows that φ induces, for every i, a map of G-sets

Φ: Sdi(S∗n) → Sdi(Sn) de�ned by

Φ(f0 < · · · < fi) :=
(
φ(f0) < · · · < φ(fi)

)
.

Since we already know that φ is a map of G-posets it su�ces to show
that Φ does not map chains to shorter chains, i.e., that if f < f ′ then
ϕ(f) < ϕ(f ′). This follows since there exists an i0 ∈ {1, . . . , n} such that
f(i0) < f ′(i0), i.e., f(i0) /∈ S whereas f ′(i0) = s0 ∈ S, hence f−1(s0) is
strictly contained in f ′−1(s0), i.e., φ(f)(s0) < φ(f ′)(s0).
The map Φ is surjective, for φ is and from the construction it fol-

lows that we may choose elements in the preimages such that the chain
property is not destroyed.
Finally, for c = (f0 < · · · < fi) and c = (f ′0 < · · · < f ′i) in Sdi(S∗n) we

have Φ(c) = Φ(c′) if and only if there exists a σ ∈ Σn such that σ(c) = c′.
For suppose that Φ(c) = Φ(c′). Then, for every 0 ≤ j ≤ i, φ(fj) = φ(f ′j),
i.e., for every s ∈ S we have |f−1

j (s)| = |f ′−1
j (s)|. Since f−1

0 (s) ⊆ · · · ⊆
f−1

i (s) and f ′−1
0 (s) ⊆ · · · ⊆ f ′−1

i (s) this means that we may chose a
bijection σs : f−1

i (s) → f ′−1
i (s) such that σs

(
f−1

j (s)
)

= f ′−1
j (s) for every

0 ≤ j ≤ i. Since the sets f−1
j (s), for s ∈ S, are mutually disjoint there

exists a σ ∈ Σn which, viewed as an automorphism of {1, . . . , n}, restrict
to σs on f−1

i (s) for every s ∈ S. Then, for any 1 ≤ j ≤ i and for any
m ∈ {1, . . . , n} and s ∈ S we have that

fj(m) = s ⇐⇒ m ∈ f−1
j (s) ⇐⇒ σm ∈ f ′−1(s) ⇐⇒ f ′j(σm) = s,
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and also that fj(m) = 0 ⇐⇒ f ′j(σm) = 0. Hence σfj = f ′j for 0 ≤ j ≤ i,
i.e., σc = c′.
It follows that Φ induces an isomorphism of G-sets Σn\Sdi(S∗n) →

Sdi(Sn).

Therefore, from (2.3),

λn(S) = (−1)n−1 Λ̃Ω≤n(S) .

Theorem 1.1 therefore follows from the following computation:

Lemma 2.5. Let S be a G-set and let S+ := S ∪ {•}. In B(G) we then
have the equality

Λ̃Ω≤n(S+) = −
∑
µ`n

(−1)`(µ)
(`(µ)
α(µ)

)
[Pµ(S)].

Proof. The inclusion S → S+ induces an inclusion

i : Ω≤n(S) → Ω≤n(S+).

By Proposition 4.2.7 of [Bou00] we have

Λ̃Ω≤n(S+) = Λ̃Ω≤n(S) +
∑

A∈[G\Ω≤n(S+)]

indG
GA

(Λ̃iA Λ̃]A,.[),

where iA = {B ∈ Ω≤n(S) : B = i(B) ⊆ A}. However, when A 6=
{•} the set iA has a largest element (namely A \ {•}), hence Λ̃iA =
0. Therefore the sum after the summation sign has only one non-zero
element, namely the one with index {•}, which equals − Λ̃]•,.[ (where ]•, .[
is the set of elements of Ω≤n(S+) containing •). Since ]•, .[ is homotopic
(more precisely isomorphic) to Ω≤n−1(S), it follows that

Λ̃Ω≤n(S+) = Λ̃Ω≤n(S)− Λ̃Ω≤n−1(S) .

It is easy to see that this last expression is the desired one: let S be a
G-set and de�ne, for any tuple of positive integers α = (α0, . . . , αi), the
G-set Pα(S) similarly as when α is a partition of an integer. Then the
map sending the sequence (S0 ⊂ · · · ⊂ Si) 7→ (S0, S1 \ S0, . . . , Si \ Si−1)
is an isomorphism of G-sets Sdi(Ω≤n(S)) → ∪

α=(α0,...,αi):P
αj≤n

αj>0

Pα(S), hence

[Sdi(Ω≤n(S))] =
∑

α=(α0,...,αi):P
αj≤n

αj>0

[Pα(S)].
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We therefore have

[Sdi(Ω≤n(S))]− [Sdi(Ω≤n−1(S))]

=
∑

α=(α0,...,αi):P
αj=n

αj>0

[Pα(S)] =
∑
µ`n

`(µ)=i+1

(`(µ)
α(µ)

)
[Pµ(S)],

and consequently

Λ̃Ω≤n(S)− Λ̃Ω≤n−1(S) =
∑
i≥0

(−1)i
∑
µ`n

`(µ)=i+1

(`(µ)
α(µ)

)
[Pµ(S)]

=−
∑
µ`n

(−1)`(µ)
(`(µ)
α(µ)

)
[Pµ(S)].
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Part II:

The Grothendieck ring of varieties





3. The computation of the classes of
some tori in the Grothendieck ring of
varieties

3.1 Introduction

The Grothendieck ring of varieties over the �eld k, K0(Vark), is the free
abelian group on the objects of the category of varieties, subject to so
called scissor relations and with a multiplication given by the product
of varieties. By construction, it is hence the universal additive and mul-
tiplicative invariant for the category of k-varieties. Since χc, the Euler
characteristic with compact support, (taking values for instance in a
Grothendieck ring of mixed Hodge structures or Galois representations)
is additive and multiplicative, it factors through K0(Vark). Looking at
relations among such Euler characteristics is a powerful heuristic method
for guessing relations in K0(Vark).
For an example of this, let T be a torus de�ned over k. Then χc(T )

can be expressed in terms of exterior powers of the �rst cohomology
group. The latter in turn is essentially the cocharacter group of T . As
K0(Vark) is a λ-ring and as χc is a λ-homomorphism one can try to lift
the cohomology formulas to K0(Vark). There is a problem, however, in
that in general one cannot �nd an element in K0(Vark) that maps to the
cocharacter representation under χc. But when the torus is the group L∗

of units in a separable k-algebra L, then [Spec L] maps to the cocharacter
representation. We are thus led to conjecture the formula

[L∗] =
n∑

i=0

(−1)iλi
(
[Spec L]

)
Ln−i ∈ K0(Vark), (3.1)

where n is the dimension of L. (The details of this heuristic argument
are given in Section 3.4.)
The objective of this chapter is to prove (3.1), and in the process

to develop some techniques for performing explicit calculations in, and
prove structure results about K0(Vark). These techniques are of three
main types:
Firstly, one may use some homomorphism from K0(Vark) to a ring with

better known structure, for example the above mentioned χc, or, in case
k = Fq is �nite, the point conting homomorphism Cq induced by counting
Fq-points on the varieties. Since such homomorphisms are usually not
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injective, this method is mostly used in order to give heuristic suggestions
of relations in K0(Vark) (see Section 3.4), and also to show that elements
in K0(Vark) are distinct by proving that their images are. However, we
will also use Cq to prove the validity of relations in K0(Vark), by showing
that the image of the relation under Cq is satis�ed for su�ciently many
q, as in the alternative proof of (3.1) given in Section 3.6.
Secondly, we construct a λ-homomorphism Artk : B(G) → K0(Vark),

where B(G) is the Burnside ring of the absolute Galois group of k, which
then may be used to prove relations in K0(Vark) by proving the corre-
sponding relations in B(G) (see Section 3.5 for examples of this). The
image of Artk is contained in the subring of K0(Vark) generated by
zero-dimensional schemes, which we call the subring of Artin classes
and denote ArtClk. Using Artk we may answer some questions about
the structure of ArtClk. For example, when k is perfect with procyclic
absolute Galois group we will see that ArtClk is free on the classes of
�nite separable �eld extensions of k (Proposition 3.8). We will also give
a slightly generalization of the conditions under which the zero-divisors
of Naumann exists (Proposition 3.7).
Thirdly there is the technique of Galois descent. Using it we may prove

the validity of a relation in K0(Vark) by considering the corresponding
relation in K0(Vark), where k is a separable closure of k, where it may
be easier to prove. This is a main tool used in the proof of (3.1) given in
Section 3.5.
The structure of this chapter is as follows: In Section 3.3 we construct

the λ-homomorphism Artk : B(G) → K0(Vark). We also prove the above
mentioned structure results about ArtClk.
In Section 3.4 we describe the details of the heuristic arguments sug-

gesting (3.1). We also discuss what happens when this heuristic is applied
to other types of tori. Finally we give an example of a tori for which the
heuristic suggests a formula that does not hold (Proposition 3.13).
In Section 3.5 we show that [L∗] =

∑n
i=0 aiLn−i ∈ K0(Vark), where

ai ∈ ArtClk. We also give an explicit formula for the ai in terms of
elements in B(G). To derive this formula we embed L∗ in L̃, the a�ne
space associated to L, and use induction relative to the complement of
L∗.
In Part I of the thesis we have obtained a universal formula for the

λ-operations on the Burnside ring which, together with the formula ob-
tained in Section 3.5, gives a proof of (3.1).
In Section 3.6 we give a proof of (3.1) that avoids using the universal

formula for λi. Instead it uses one simpler result from Chapter 1, together
with point counting over �nite �elds.

Acknowledgment. Thanks are due to David Bourqui for comments on
the preprint [Rök07a], in particular concerning what is Proposition 3.13
in this thesis.

42



3.2 Background Material

For the necessary background on the Grothendieck ring of varieties, and
on Burnside and representation rings we refer to Section 0.2. Below we
give a quick review of Grothendieck's formulation of Galois theory.

Galois theory

We use the following notation. Let k be a �eld and let k be a separable
closure of k. Write G for Gal(k/k), the absolute Galois group of k. We
de�ne the category of k−G-algebras to be the category whose objects are
k-algebras L together with G-actions on the underlying rings such that
k → L is G-equivariant, and whose morphisms are G-equivariant maps
of k-algebras.
We then have an equivalence between the category of k-algebras and

the category of k − G-algebras. This equivalence takes the k-algebra L
to L ⊗k k with G-action σ(l ⊗ α) := l ⊗ σ(α). The map that takes the
k − G-algebra U to UG is a pseudo-inverse.
If the k-algebra L is �nite and separable, then the corresponding k−G

algebra is isomorphic to k
S
where S is �nite. The G-action on this must

be the action on k together with a permutation of the coordinates, i.e.,
a G-action on S. Hence as a corollary we have a contravariant equiva-
lence between the category of �nite separable k-algebras and the cate-
gory of �nite continuous G-sets. This equivalence takes the k-algebra L
to Homk(L, k) with G-action given by fσ(l) := σ ◦ f(l). It has a pseudo-
inverse that takes the G-set S to HomG(S, k), i.e., the G-equivariant maps
of sets from S to k, considered as a ring by pointwise addition and mul-
tiplication and with a k-algebra structure given by (α · f)(s) := α · f(s).
Under this correspondence, if L corresponds to S then the dimension

of L equals the number of elements in S. Moreover, if also L′ corresponds
to S′, then L ⊗k L′ corresponds to S × S′ with diagonal G-action and

the algebra L × L′ corresponds to S
�
∪S′. In particular, separable �eld

extensions of k correspond to transitive G-sets.

3.3 The subring of Artin classes in K0(Vark)

In this section we de�ne a map from the Burnside ring of the absolute
Galois group of k to K0(Vark). This map will be used in the computation
of the class of L∗, but it also gives some information about the structure
of K0(Vark). The map will take values in the subring of K0(Vark) gen-
erated by zero dimensional schemes, which we call the subring of Artin
classes. We include this as a formal de�nition:
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De�nition 3.2. Let ArtClk, the ring of Artin classes, be the subring of
K0(Vark) generated by zero-dimensional schemes.

Background

As an abelian group ArtClk is generated by {[Spec K]}, where K runs
over the isomorphism classes of �nite �eld extensions of k. When the
characteristic of k is zero there is a structure theory for K0(Vark) given
in [LL03], which asserts that the classes of stable birational equivalence
form a Z-basis of K0(Vark)/(L). Using this, one shows that, as an abelian
group, ArtClk is free on {[Spec K]}. That ArtClk is free on this set
is also true when k = Fq as is shown in [Nau07], Theorem 25, using
the point counting homomorphisms Cqn , where, for any prime-power q,
Cq : K0(VarFq) → Z is given by X 7→ |X(Fq)|. We will extend this result
to hold for any perfect �eld with procyclic Galois group.
There is also a question about zero divisors. The �rst construction

of zero divisors was given in [Poo02]; this construction works for every
�eld of characteristic zero, also the algebraically closed ones. To show
that these zero divisors really are nonzero requires the structure theory
of [LL03], hence the restriction on the characteristic of k. Now, as was
observed in [Nau07], ArtClk often contains zero divisor: If K is a �nite
Galois extension of degree n then [Spec K]2 = n · [Spec K] so [Spec K] ∈
ArtClk is a zero divisor if it is not equal to 0 or n. [Nau07] proves
that this is the case when k = Fq, and more generally when k is �nitely
generated. Using the Euler characteristic χc, we extend this result to hold
for any �eld (Proposition 3.7), hence there are examples of zero divisors
in K0(Vark) whenever k is not separably closed of prime characteristic.

Remark 3.3. [Spec K] 6= 0, n also in Mk := K0(Vark)[L−1]. This is
easy to see since χc, the invariant we use to prove that [Spec K] 6= 0, n ∈
K0(Vark), factors through Mk. Recently ([Eke09], Corollary 3.5) it was
shown that also the construction of Poonen yields zero divisors in Mk,
hence there are known examples of zero divisors in both K0(Vark) andMk

whenever k is not separably closed of prime characteristic. This question
is discussed in [Nic08] Section 2.6.

The Artin map

Let k be a �eld with absolute Galois group G. In this section we use
Galois theory to de�ne a λ-homomorphism from B(G) to K0(Vark), whose
image is contained in ArtClk. The main purpose of doing this is that it
aids the computations in K0(Vark). Also it allows us to give a slightly
generalization of the above mentioned results of [Nau07].
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De�nition 3.4. Let Artk : B(G) → K0(Vark) be the λ-homomorphism
de�ned by associating, to the G-set S, the class of its image under the
fully faithful, covariant Galois functor to Vark.

Since open disjoint union is a special case of the relations in K0(Vark)
this is well de�ned. Moreover it is multiplicative since the multiplications
in both rings come from the product in the respective categories. Finally,
to see that it commutes with the λ-structures, note that it su�ces to
check this on the opposite structures, and σn is de�ned by the same
universal property in both rings (namely the nth symmetric power) so
this is clear.
Since B(G) is free on isomorphism classes of transitive G-sets, and Artk

maps these to isomorphism classes of separable �eld extensions of k, it
follows that Im Artk is free on {[Spec K]} if and only if Artk is injective.
If k is perfect, Im Artk = ArtClk, hence the same holds for ArtClk in
this case.
Recall that we use h to denote the natural λ-homomorphism B(G) →

RQ(G). We use i for the injection RQ(G) → K0(RepQl
G). If S is a G-set

and L the corresponding separable k-algebra then the `-adic cohomology
of Spec L is Ql[S], hence we have the following commutative diagram of
λ-rings:

B(G)
Artk //

h
��

K0(Vark)

χc

��
RQ(G) i // K0(RepQl

G)

(3.5)

Recall that for σ ∈ G we write Cσ for the character homomorphism
RQ(G) → Q, and also that when k = Fq we write Cq for the count-
ing homomorphism K0(Vark) → Z. A special case of (3.5) is when
k = Fq and F ∈ G is the Frobenius automorphism: If S is a G-set corre-
sponding to the variety X then CF ◦ χc(X) = |SF| and also |X(Fq)| =
|HomFq(Spec Fq, X)| = |HomG({•}, S)| = |SF|, consequently

Cq = CF ◦ χc on Im ArtFq , (3.6)

showing that the character maps generalize point counting, a fact that we
will use in Section 3.6. (In fact, using the Lefschetz �xed point formula
one can show that (3.6) holds on all of K0(Vark).)
As a �rst application of the commutativity of (3.5) we note that if

L and L′ are two �nite, non-trivial and separable �eld extensions of k,
which are non-isomorphic, i.e., they correspond to two non-isomorphic
transitive G-sets S and S′, then [Spec L] 6= [Spec L′] and [Spec L] /∈ Z.
For it su�ces to show that this is the case for their images under χc, i.e.,
that h(S) 6= h(S′) and that h(S) /∈ Z, and this is a known property of h,
see (1.4). In particular:
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Proposition 3.7. For any �eld k, the isomorphism classes of �nite, non-
trivial Galois extensions determine distinct zero divisors in K0(Vark).

This type of argument cannot be used to prove that Im Artk is free
on {[Spec K]}, since in general there are non-isomorphic G-sets S and S′

such that h(S) = h(S′). The exception is when G is procyclic, for then h
is an isomorphism. We state this as a proposition.

Proposition 3.8. If the absolute Galois group of k is cyclic then Artk

is injective.

As a corollary we get a result from [Nau07], that ArtClFq is free on
{[Spec K]}, where K runs over the �nite �eld extensions of Fq.
To summarize: We have a good understanding of the the additive

structure of ArtClk when char k = 0, and also when k is perfect with
procyclic Galois group.

The behavior of Artk with respect to restriction of scalars

We next study how Artk behaves with respect to restriction of scalars.
The following proposition is due to Grothendieck but we have not been
able to �nd a reference so we include a proof for completeness.

Proposition 3.9. Fix a �eld k together with a separable closure k and
let G := Gal(k/k). Let K be a �nite �eld extension of k such that K ⊂ k.
Let L be a �nite separable K-algebra and let S be the corresponding
Gal(k/K)-set. View L as a k-algebra and let S′ be the corresponding
G-set. Then S′ ' G ×Gal(k/K)S. Hence the following diagram is commu-
tative.

B
(
Gal(k/K)

)ArtK //

indG
Gal(k/K)

��

K0(VarK)

RK
k

��
B(G)

Artk // K0(Vark)

Proof. De�ne a map φ : G ×S → S′ by (σ, f) 7→ σf . It has the property
that if τ ∈ Gal(k/K) then φ(στ, f) = στf = φ(σ, τf). Hence it gives
rise to a map of G-sets ϕ : G ×Gal(k/K)S → S′. If φ(σ, f) = φ(τ, g) then
τ−1σf = g so since f and g �xes K pointwise we must have that τ−1σ ∈
Gal(k/K). It follows that (τ, g) = (τ, τ−1σf) ∼ (ττ−1σ, f) = (σ, f) so
ϕ is injective. It is also surjective, for let d := [K : k] and suppose that
L has dimension n as a K-algebra, i.e., S has n elements. Then L has
dimension nd as a k-algebra so S′ has nd elements. On the other hand,
by Galois theory, |G /Gal(k/K)| = [K : k] = d. Hence G ×Gal(k/K)S also
has nd elements. Since ϕ is injective it follows that it also is surjective,
hence an isomorphism of G-sets.
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3.4 Heuristic suggesting an expression for the class of a
torus in K0(Vark)

Let k be a �eld with absolute Galois group G. As mentioned in the
introduction, if T is a torus of dimension n and N is its cocharacter
group tensored with Ql then

χc(T ) =
n∑

i=0

(−1)iλi(N)`n−i ∈ K0(RepQl
G), (3.10)

where ` := [Ql(−1)], the class of the dual of the cyclotomic represen-
tation. Let x ∈ K0(Vark) be such that χc(x) = [N ]. Since χc is a λ-
homomorphism, and since χc(L) = `, it follows that

χc(T ) = χc

( n∑
i=0

(−1)iλi(x)Ln−i

)
∈ K0(RepQl

G),

suggesting that we should have

[T ] =
n∑

i=0

(−1)iλi(x)Ln−i ∈ K0(Vark). (3.11)

However, in order to make sense of this formula, we have to �nd an
element x in the preimage of [N ] under χc, and it is not clear how to do
that in general.
There is one case when we have an easy way of doing this, namely

when N is a permutation representation of G, N = Ql[S] where S is a
�nite G-set. In that case the element Artk(S) ∈ ArtClk, maps to [N ]
under χc. Below we examine three such cases:

• In this thesis we concentrate on the case when T = L∗, the torus
of invertible elements in L. Here L is a separable k-algebra, hence it
corresponds to a G-set S. Then [N ] = [Ql[S]] = χc(Spec L), hence in
this case (3.11) says that (3.1) should hold. The remaining sections of
this chapter (Sections 3.5-3.6) are devoted to showing that it actually
does.

• The following was pointed out to me by David Bourqui: If L is a
separable k-algebra of dimension n, and S the corresponding G-set,
then the exact sequence of G-modules 0 → Z → Z[S] → M → 0 splits
over Q, hence [M ⊗Z Ql] = [Ql[S]] − 1 = χc([Spec L] − 1). So if L∗,1

is the torus with cocharacter group equal to M , i.e., L∗,1 = L∗/Gm,
then the above heuristic suggests that

[L∗,1] =
n−1∑
i=0

(−1)iλi
(
[Spec L]− 1

)
Ln−1−i.
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That this formula actually does hold can be proved by embedding
L∗,1 in the projective space associated to L, and then proceeding in
exactly same way as when proving (3.1). (It would follow directly
from (3.1) if we knew that L − 1 was not a zero-divisor, because
[L∗,1] · (L− 1) = [L∗].)

• We also mention one case when the above heuristic probably gives the
wrong formula, namely let T be the torus of elements in L of norm 1.
If M is the cocharacter group of T , then the exact sequence 0 → M →
Z[S] → Z → 0 splits over Q, hence by the above argument, [T ] would
satisfy the same formula as [L∗,1]. Looking at the top dimensional
term of the formula suggests that T should be rational, however, by
[Che54] page 322, there are �eld extensions L/k such that T is not
rational. Note however that this is just a heuristic argument; it is not
known whether equality of the classes of two varieties implies that
they are birational.

The above heuristic suggests that [T ] ∈ ArtClk[L] for any torus [T ].
We conclude this section by showing, in Proposition 3.13, that this is not
always the case. For this, we work in K0(RepQl

G). Given a �eld k with
absolute Galois group G, let B be the image of B(G) in K0(RepQl

G), and
identify RQ(G) and RQl

(G) with their (injective) images in K0(RepQl
G).

We have
B ⊂ RQ(G) ⊂ RQl

(G) ⊂ K0(RepQl
G).

We will use the following lemma:

Lemma 3.12. Let k be a �eld with absolute Galois group G. Let ` ∈
K0(RepQl

G) be the class of dual of the cyclotomic representation, ` =
[Ql(−1)]. Assume that |Im χcycl| = ∞. If b1, . . . , bn ∈ RQl

(G) are such
that

∑n
i=1 bi`

i = 0, then bi = 0 for every i.

Proof. We prove this using the character maps Cg, g ∈ G: Since the image
of the cyclotomic representation is in�nite we have that

∣∣{Cg(`)}g∈G
∣∣ =

∞. Moreover, since every discrete representation of G factors through a
�nite quotient of G, we have

∣∣{Cg(bi)}g∈G
∣∣ < ∞ for every i. Hence the

result.

Proposition 3.13. There is a �eld k and a k-torus T such that [T ] /∈
ArtClk[L].

Proof. By Example 1.6, we may choose a �nite extension k of Q such
that the inclusion B ⊂ RQ(G) is proper. Moreover, since this k is
�nitely generated, the image of the cyclotomic character is in�nite. We
�x this k. Suppose now that [T ] ∈ ArtClk[L], where T is a k-torus
of dimension n. Then [T ] =

∑n
i=m aiLn−i, where ai ∈ ArtClk, and

m is a (possibly negative) integer. Then, since χc(L) = `, we have
χc(T ) =

∑n
i=m bi`

n−i, where bi is in B (by the commutativity of (3.5)).
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Hence, by (3.10),
∑n

i=0(−1)iλi(N)`n−i =
∑n

i=m bi`
n−i. Consequently,

since λi(N) ∈ RQ(G) ⊂ RQl
(G) and bi ∈ B ⊂ RQl

(G), Lemma 3.12
shows that bi = 0 for i < 0 and that bi = (−1)iλi(N) for every
0 ≤ i ≤ n. In particular, [N ] = λ1(N) = −b1 ∈ B.
But not all tori has this property. To see that, note that every Q-

representation of G, V , comes from the cocharacter group of a torus,
namely the free Z-module 〈gei〉g∈G ⊂ V , where {ei} is a basis for V .
(Here it is important that the representation is discrete, otherwise this
group can have in�nite rank.) So every Q-representation of G, V , comes
from some torus TV . By what was said above, if [V ] is not contained in
B, then [TV ] 6∈ ArtClk[L]. Since we have chosen k such that the inclusion
B ⊂ RQ(G) is proper, it follows that there are V with this property.

3.5 Computation of the class of L∗ in K0(Vark)

Given a �eld k and a separable k-algebra L of dimension n we de�ne the
a�ne group scheme L∗ by letting L∗(R) = (L⊗k R)× for every k-algebra
R. This is a torus, because if k is a separable closure of k and R is a
k-algebra then, since L⊗k k = k

n
, we have

L∗
k
(R) = L∗(R) =

(
(L⊗k k)⊗k R

)× = (Rn)× = Gn
m(R)

as groups, and consequently (L∗)k ' Gn
m. We call L∗ the torus of in-

vertible elements in L. Note that if L = kn then L∗ = Gn
m, hence

[L∗] = (L− 1)n ∈ K0(Vark).
The objective of this section is to compute, for an arbitrary separable

k-algebra L, the class of L∗ in K0(Vark) in terms of the Lefschetz class L
and Artin classes. More precisely, we will show that there exist elements
a1, . . . , an ∈ ArtClk ⊂ K0(Vark) such that

[L∗] = Ln + a1Ln−1 + a2Ln−2 + · · ·+ an ∈ K0(Vark). (3.14)

In Theorem 3.32 we then derive a universal formula for the ai which,
together with Theorem 1.1 proves (3.1).

De�nitions

We begin by giving a de�nition of L∗ for any free algebra of �nite rank:
Let K be a commutative ring and let L be a free K-algebra of rank n.

Let L̃/K, or just L̃, be L considered as an a�ne space, i.e., the set of
R-points on L̃ is L ⊗K R. We have L̃ = Spec S(L∨). Note in particular
that K̃ is the ring scheme with additive group Ga and multiplicative
group Gm. Also, if we choose a K-basis for L we get an isomorphism
S(L∨) ' K[X1, . . . , Xn], where n is the rank of L. Hence L̃ ' An

K as
schemes.
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We next give the general de�nition of the K-scheme (L/K)∗, which
we write as L∗ when K is clear from the context. De�ne L∗ ⊂ L̃ as the
subfunctor given by L∗(R) = (L ⊗K R)×. To see that this is an a�ne
group scheme, note that it is the inverse image of K∗ under the norm
map ÑL/K : L̃ → K̃. (Here, ÑL/K is de�ned on R-points as NL⊗KR/R.)
We now turn to the problem of computing [(L/k)∗] when k is a

�eld and L is separable. The obvious approach would be to compute
an explicit equation de�ning L∗ and then use the scissor relations.
More precisely, choose a basis of L over k. This identi�es L̃ with
Spec k[X1, . . . , Xn] and k̃ with Spec k[X]. Then ÑL/k corresponds to a
homomorphism of k-algebras k[X] → k[X1, . . . , Xn] sending X to some
polynomial, say f(X1, . . . , Xn). Therefore,

Ñ
−1

L/K(Gm) = Spec k[X, 1/X]⊗k[X] k[X1, . . . , Xn]

= Spec k[X1, . . . , Xn, 1/f(X1, . . . , Xn)].

When n = 2 this can be used to compute [L∗] using the scissor relations
as the following example shows.

Example 3.15. Let L be a separable �eld extension of k of degree 2. We
can represent L as k[T ]/

(
f(T )

)
where f(T ) = T 2 +αT +β is irreducible,

in particular β 6= 0. If char k 6= 2 we assume that α = 0. With this
notation we have L̃(R) = R[T ]/

(
f(T )

)
for every k-algebra R. A basis

for the R-algebra L̃(R) is {1, t} where t is the class of T modulo f(T ).
If r1, r2 ∈ R then NeL(R)/R

(r1 + r2t) = r2
1− r1r2α+ r2

2β. So if we identify

L̃ with Spec k[X1, X2] then

L∗ = D
(
X2

1 − αX1X2 + βX2
2

)
⊂ L̃.

We now have an explicit equation describing L∗. To compute [L∗] we �rst
compute [L̃\L∗]. Now L̃\L∗ = Spec k[X1, X2]/(X2

1−αX1X2+βX2
2 ) ⊂ L̃.

This can be split into two parts, the closed subscheme Spec k[X1]/(X2
1 ),

which maps to 1 in K0(Vark), and its complement

Spec
k[X1, X2, 1/X2](

X2
1 − αX1X2 + βX2

2

) ' Spec
k[Y1, Y2, 1/Y2](
Y 2

1 − αY1 + β
) .

Now if char k 6= 2 then α = 0 so Y 2
1 − αY1 + β = f(Y1) and this is also

true if char k = 2 for then −α = α. Hence the above expression equals
Spec k[Y2, 1/Y2]×kSpec L, and this maps to (L−1)·[Spec L] ∈ K0(Vark).
Putting this together gives [L∗] = L2 − [Spec L] · L + [Spec L] − 1 ∈
K0(Vark).

This method does not work when L is a �eld of degree greater than
2, the cutting and pasting then becomes to complicated. The rest of this
section is devoted to giving a systematic way of computing [L∗].
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Reduction to case of lower dimension

We now describe a method which makes it possible to recursively com-
pute [L∗] as an element of ArtClk[L]. This will be done in the following
way. We �rst describe subschemes of L̃, denoted U1, . . . , Un, such that
[L∗] = Ln −

∑n
i=1[Ui]. We are then reduced to compute [Ui] for every i.

To do that we �nd a subscheme Ti of Ui and a Ti-algebra L′i of rank n−i.
More precisely, Ti is the spectrum of a �nite product of �elds

∏
v Kv, and

L′i equals Lv on Kv, L′i =
∏

v Lv. We then show that Ui ' (L′i/Ti)∗ as

k-schemes. In Lemma 3.16 we will show that (L′i/Ti)∗ '
�
∪(Lv/Kv)∗ and

we are then in the situation we started with, only that the algebras have
dimension less than n, for having computed [(Lv/Kv)∗] ∈ K0(VarKv) we
can �nd [(Lv/Kv)∗] ∈ K0(Vark) with the help of the projection formula.
To do this we will need the following lemma.

Lemma 3.16. Let K =
∏

v∈I Kv where the Kv are �elds and I is �nite.
Let L be a free K-algebra of rank n, i.e., L =

∏
v∈I Lv where, Lv is

a Kv-algebra of dimension n. Then L̃/K '
�
∪v L̃v/Kv and (L/K)∗ '

�
∪v(Lv/Kv)∗ as K-schemes.

Proof. The �rst part follows since S(L∨) '
∏

v∈I S(L∨v ) as K-algebras.

To prove that (L/K)∗ '
�
∪(Lv/Kv)∗ as K-schemes we prove that their

functors of points are equal. Let R be a K-algebra, i.e., R =
∏

v Rv where

Rv is a Kv-algebra, possibly equal to zero. An R-point on
�
∪(Lv/Kv)∗ is a

morphism f :
�
∪v Spec Rv →

�
∪(Lv/Kv)∗ that commutes with the struc-

tural morphisms to
�
∪v Spec Kv. Since the image of Spec Rv under the

structural morphism is contained in Spec Kv we must have f(Spec Rv) ⊂
L∗v. Therefore f is determined by a set of morphisms {fv : Spec Rv →
L∗v}v∈I where fi is a morphism of Kv-schemes. Hence we can identify f
with an element in

∏
L∗v(Rv). The same is true for an R-point on L∗ for

L∗(R) =
((∏

Lv

)
⊗Q

Kv

(∏
Rv

))×
'
∏

(Lv⊗Kv Rv)× =
∏

L∗v(Rv).

So by Yoneda's lemma, L∗ '
�
∪L∗v. (This method could also have been

used to prove the �rst part of the lemma, but there we knew the algebra
representing L̃ and that gave a shorter proof.)

We will now give the de�nitions of Ui, Ti and L′i. There are two ways
of doing this. The �rst is to construct them explicitly in much the same
way as we constructed L∗ with the help of the norm map. The second
is to just construct their images after scalar extension, as subschemes of
(L̃)k, and then use Galois descent as described in Section 3.2. The �rst
method requires more work but has the advantage that it works also
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when the base is not a �eld. It is carried out in [Rök07c]. In this paper
we will use the second method:
Let L be the separable k-algebra and let S be the corresponding G-set,

i.e., the corresponding k−G-algebra is k
S
. Since, for every k-algebra R,

L̃k(R) = (L⊗k k)⊗k R = k
S ⊗k R = (k ⊗k R)S = RS = AS

k
(R),

it follows that the k-scheme L̃ corresponds to the k − G-scheme AS
k
,

i.e., Spec k[Xs]s∈S where G acts on the scalars and by permuting the
indeterminates. In the same way we see that the k-scheme L∗ corresponds
to the k − G-scheme GS

m. (This also gives an alternative construction of
L∗ when the base is a �eld, it is the k-scheme corresponding to the
k − G-scheme GS

m ⊂ AS
k
.)

We next de�ne Ui ⊂ L̃, where i ∈ {0, . . . , n}. For this, let Pi(S) be
the G-set of subsets of S of cardinality i. We then de�ne Ui to be the
k-scheme corresponding to the k − G-scheme⋃

T∈Pi(S)

GS\T
m ⊂ AS

k
,

where GS\T
m (R) is the group of n-tuples (rs)s∈S ∈ AS(R) such that rs = 0

if s ∈ T and rs ∈ R× if rs /∈ T . Since

GS\T
m = V

(
{Xs}s∈T

)
\V
(
{Xs}s/∈T

)
⊂ Spec k[Xs]s∈S = AS

k

we see that
⋃

T∈Pi(S) GS\T
m is locally closed and that their union over

all i cover AS
k
. It hence follows that the Ui are locally closed and that

they cover L̃. Noting that U0 = L∗, we see that [L∗] = Ln −
∑n

i=1[Ui] ∈
K0(Vark).
Now consider V({Xt−1}t/∈T ) ⊂ GS\T

m . This subscheme is isomorphic to
Spec k. Taking the union over every T ∈ Pi(S) we get an k−G-subscheme

Spec k
Pi(S) ⊂

⋃
T∈Pi(S)

GS\T
m . (3.17)

We denote the corresponding k-scheme with Ti. Moreover, the fact that

(Ti)k = Spec k
Pi(S)

shows (in fact is equivalent to) that Ti is the spectrum
of a separable algebra. Hence Ti corresponds to the G-set Pi(S) and it is
a product of separable �eld extensions of k.

Next use the algebras k → k
S\T

for T ∈ Pi(S) to de�ne a k
Pi(S)

-
algebra ∏

T∈Pi(S)

k
S\T
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of rank
∣∣S \ T

∣∣ = n − i in the category of k − G-algebras. Denote the
corresponding Ti-algebra with L′i, which is then also of rank n−i. We note
that the map Ti → L′i corresponds the projection {(s, T ) ∈ S × Pi(S) :
s /∈ T} → Pi(S) in the category of G-sets.
Now by Proposition 3.16,( ∏

T∈Pi(S)

k
S\T
/

k
Pi(S)

)∗
=

⋃
T∈Pi(S)

(
k

S\T
/k
)∗

and since this is isomorphic to
⋃

T∈Pi(S) GS\T
m it follows that the corre-

sponding k-schemes are isomorphic, i.e., (L′i/Ti)∗ ' Ui.
Since Ti is a �nite product of separable extensions of k,

∏
Kv, we must

have L′i =
∏

Lv where Lv is a Kv-algebra of dimension n− i (since the
rank of L′i/Ti is n − i). Hence we see that (L′i/Ti)∗ =

⋃
(Lv/Kv)∗. By

induction then, we may compute [(Lv/Kv)∗] ∈ K0(VarKv) for each v and
then use the projection formula (0.3) to compute [(L′i/Ti)∗] and hence
[L∗] ∈ K0(Vark).
We summarize the results of this subsection in the following proposi-

tion:

Proposition 3.18. Given a �eld k and a separable k-algebra L of di-
mension n. With the same notation as above we then have [L∗] = Ln −∑n

i=1[Ui] ∈ K0(Vark), where [Ui] =
∑

v∈I [(Lv/Kv)∗], the index set I is
�nite and the dimension of Lv/Kv is n− i.

We illustrate with an example.

Example 3.19. Let k = Fq and L = Fq3 . We then have

[L∗] = L3 − [U1]− [U2]− 1 ∈ K0(Vark). (3.20)

Let G := Gal(k/k) and let F be the topological generator of G, the Frobe-
nius automorphism α 7→ αq. Then L corresponds to the G-set S :=
Homk(L, k) = {1,F,F2}, where we have identi�ed F with its restriction
to L.
We have P1(S) = {{1}, {F}, {F2}} ' S. Therefore T1 ' Spec L. More-

over, L′1 corresponds to{
(1, {F}), (1, {F2}), (F, {1}), (F, {F2}), (F2, {1}), (F2, {F})

}
and this is the union of two sets on which G acts transitive, hence it

is isomorphic to S
�
∪S as a G-set. So L′1 ' L2. Therefore [(L′1/T1)∗] =

(L− 1)2 ∈ K0(VarL) and hence by (0.3)

[U1] = RL
k

(
(L− 1)2

)
= [Spec L] · (L− 1)2 ∈ K0(Vark)

In the same way we �nd that [U2] = [Spec L]·(L−1) ∈ K0(Vark). Putting
this into (3.20) gives that

[L∗] = L3 − [Spec L] · L2 + [Spec L] · L− 1 ∈ K0(Vark).
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An explicit formula

We have now showed how to compute [L∗] in principle. Evolving what
we already have proved will give us an explicit formula.
To get more compact formulas we use the following notation. In the

last section we worked with a �xed algebra L/k and de�ned Ui, Ti and
L′i with respect to this algebra. To translate the recursion into a closed
formula we need to repeat these constructions. Hence we �x once and for
all our base �eld, k. Let K be a �nite extension �eld of k and let L be
a separable K-algebra. We then use Ui(L/K), Ti(L/K) and L′i(L/K) to
denote Ui, Ti and L′i constructed with respect to the algebra L/K. We
have that Li(L/K) and Ti(L/K) are K-schemes which we also can view
as k-schemes by restriction of scalars. Similarly, L′i(L/K) is a Ti(L/K)-
algebra which we also may view as a k-algebra.
We next want to generalize these de�nitions to the case when K is a

�nite separable k-algebra. Recall that this is already done for (L/K)∗.
However, since the de�nitions of Ui, Ti and L′i use Galois descent their
constructions cannot be generalized directly. We instead do the following.

De�nition 3.21. Let K be a �nite separable k-algebra and L a �nite
separable K-algebra, so K =

∏
v Kv where Kv are separable extension

�elds of k and L =
∏

v Lv where Lv is a separable Kv-algebra. De�ne

Ui(L/K) :=
�
∪v Ui(Lv/Kv).

Furthermore, de�ne

Ti(L/K) :=
�
∪v Ti(Lv/Kv)

and de�ne L′i(L/K) to be the Ti(L/K)-algebra which is L′i(Lv/Kv) on
Ti(Lv/Kv).

Let K be a �nite separable k-algebra and L a �nite separable K-
algebra of rank n, so K =

∏
v Kv where Kv are separable extension �elds

of k and L =
∏

v Lv where Lv is a separable Kv-algebra of dimension n
as a vector space over Kv. Using De�nition 3.21, Proposition 3.16 and
the strati�cation of L̃ over a �eld given in the preceding section gives
the following:

Lemma 3.22. We have that

L̃/K = (L/K)∗ ∪
n−1⋃
i=1

Ui(L/K) ∪ Spec K

where the union is disjoint and open. Hence,

[(L/K)∗] = [Spec K] · Ln −
n−1∑
i=1

[Ui(L/K)]− [Spec K] ∈ K0(Vark).
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From the preceding section we know that L′i(Lv/Kv)/Ti(Lv/Kv) has
rank n− i and that Ui(Lv/Kv) '

(
L′i(Lv/Kv)/Ti(Lv/Kv)

)∗
. Taking the

union over every v and using Proposition 3.16 we get the following.

Lemma 3.23. The algebra L′i(L/K)/Ti(L/K) has rank n− i, and

Ui(L/K) '
(
L′i(L/K)/Ti(L/K)

)∗
as k-schemes.

For the rest of this section, we �x a �eld k and a separable k-algebra L
of dimension n. Notation: Given a sequence of positive integers i1, . . . , iq.
Construct the algebra L′i1/Ti1 := L′i1(L/k)/Ti1(L/k). De�ne the al-
gebra L′i2,i1

/Ti2,i1 as L′i2(L
′
i1

/Ti1)/Ti2(L
′
i1

/Ti1) and de�ne inductively
L′ir+1,...,i1

/Tir+1,...,i1 as

L′ir+1
(L′ir,...,i1/Tir,...,i1)/Tir+1(L

′
ir,...,i1/Tir,...,i1).

Inductively we get that the rank of L′ir,...,i1
/Tir,...,i1 is n− (i1 + · · ·+ ir).

Hence, as a corollary to the preceding lemmas we get the following.

Lemma 3.24. Let α = (ir, . . . , i1) where
∑r

s=1 is = i. Then

[
(L′α/Tα)∗

]
= [Tα] · Ln−i −

n−i−1∑
j=1

[
(L′j,α/Tj,α)∗

]
− [Tα] ∈ K0(Vark).

We are now ready to prove the main theorem of this subsection.

Theorem 3.25. With the same notation as above we have

[L∗] = Ln + a1Ln−1 + · · ·+ an−1L + an

where

aj =
j∑

r=1

(−1)r
∑

(i1,...,ir):
i1+···+ir=j

is≥1

[Tir,...,i1 ]

for j = 1, . . . , n.

Proof. We evaluate [L∗] in n steps, using Lemma 3.24. In the �rst step
we write

[(L/k)∗] = Ln − [(L′1/T1)∗]− · · · − [(L′n−1/Tn−1)∗]− 1

so we get the contribution Ln−1. We then evaluate the remaining terms,
using Lemma 3.24, so in step two we get a sum consisting of two parts.
First,

[
(L′i2,i1

/Ti2,i1)
∗] shows up with sign (−1)2, for 2 ≤ i2 + i1 < n (we

always have is ≥ 1). These are the terms that we will take care of in step
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three. The second part of the sum contributes to our formula. It consists
of the terms

(−1)2
(
−[Tj ] · Ln−j + [Tj ]

)
1 ≤ j < n.

Continuing in this way we �nd that in step r we get a sum consisting
of two parts. Firstly, every term of the form

[
(L′ir,...,i1

/Tir,...,i1)
∗] with

coe�cient (−1)r, for
∑r

s=1 is < n. This part is taken care of in step
r + 1. And secondly we get a contribution to our formula consisting of

(−1)r
(
−[Tir−1,...,i1 ] · Ln−j + [Tir−1,...,i1 ]

)
r − 1 ≤ j < n

for every r − 1-tuple (ir−1, . . . , i1) such that
∑r−1

s=1 is = j. This process
ends in step n.
Collecting terms we now see that if 1 ≤ j ≤ n− 1 then the coe�cient

in front of Ln−j becomes

j+1∑
r=2

(−1)r+1
∑

(i1,...,ir−1):
i1+···+ir−1=j

is≥1

[Tir−1,...,i1 ].

This equals
j∑

r=1

(−1)r
∑

(i1,...,ir):
i1+···+ir=j

is≥1

[Tir,...,i1 ]. (3.26)

A separate computation, using that [Tn] = 1 and that if 1 ≤
∑r−1

s=1 is =
j < n then Tn−j,ir−1,...,i1 = Tir−1,...,i1 , shows that formula (3.26) holds
also for the constant coe�cient, when j = n.

The formula expressed using the Burnside ring

The formula in the preceding section is not suitable for computations.
In this section we make it so, by computing the object in the Burnside
ring that maps to [Tα]. We begin with some notations.

De�nition 3.27. Let G be a pro�nite group. Given a G-set S of cardi-
nality n and a positive integer r. Moreover, let (i1, . . . , ir) be an r-tuple
of positive integers such that i1 + · · ·+ ir ≤ n. Then Pir,...,i1(S) is the G-
set of r-tuples (Sr, . . . , S1) where Sj is a subset of S of cardinality ij and
the Sj are pairwise disjoint. In particular Pi(S) has the same meaning
as before (up to isomorphism).

Lemma 3.28. Let k be a �eld and K a separable k-algebra of dimen-
sion t. Let L be a separable K-algebra of rank n. Let G := Gal(ks/k)
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and let K and L correspond to T respectively S as G-sets. Write T =
Homk(K, ks) = {τ1, . . . , τt}. Let Sj be the inverse image of τj under the
map S → T corresponding to K → L. Then Ti(L/K) corresponds to the
G-set

t⋃
j=1

Pi(Sj)

and L′i(L/K) corresponds to{
(f, U) ∈

t⋃
j=1

Sj × Pi(Sj) : f /∈ U

}

Proof. Suppose �rst that K is a �eld. According to (1.15), Ti(L/K) cor-
responds to Pi

(
HomK(L, ks)

)
as a Gal(ks/K)-set. Hence by Proposition

3.9 it corresponds to

G ×Gal(ks/K)Pi

(
HomK(L, ks)

)
as a G-set, with the G-action given in that proposition. Since we assumed
that K is a �eld we may write T as {τ1|K , . . . , τt|K}, where τj ∈ G, and
this in turn can be identi�ed with a system of coset representatives of
G /Gal(ks/K). We hence want to show that we have an isomorphism of
G-sets,

φ : T × Pi

(
HomK(L, ks)

)
→

t⋃
j=1

Pi(Sj).

To construct this, de�ne φ as (τj |K , U) 7→ τjU . (Note that τj have to
be �xed for every j, if we replace it with τ ′j such that τj |K = τ ′j |K we
may get another φ.) First φ is well de�ned because every element in U
�xes K, so every element of τjU is in Sj , the inverse image of τj |K in S.
Hence φ(τj |K , U) ∈ Pi(Sj). It is also G-equivariant, because if σ ∈ G is
such that στj = τlτ

′, where τ ′ ∈ Gal(ks/K), then

φ
(
σ(τj |K , U)

)
= φ(τl, τ

′U) = τlτ
′U

and
σφ(τj |K , U) = σ(τjU) = στjU = τlτ

′U.

Next φ is injective: If φ(τj |K , U) = φ(τl|K , U ′) then they both must be
in Pi(Sj), so l = j. Hence τjU = τjU

′ and since τj is an isomorphism,
U = U ′. So φ is an injective morphism between two G-sets of cardinality
t ·
(
n
i

)
, hence an isomorphism.

For the general case when K is a separable k-algebra of dimension t,
note that we can identify T with

�⋃
v
Homk(Kv, k

s)
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where K =
∏

v Kv, by sending f ∈ Homk(Kv0 , k
s) to (αv) 7→ f(αv0) ∈ T .

Denote the map S → T by π. We have that Ti(L/K) =
�
∪v Ti(Lv/Kv).

This corresponds to the G-set

�⋃
v

⋃
τ∈Homk(Kv ,ks)

Pi(π−1τ) =
⋃
τ∈T

Pi(π−1τ) =
t⋃

j=1

Pi(Sj)

As for L′i(L/K), assume �rst that K is a �eld. As a Gal(ks/K)-set,
L′i(L/K) corresponds to

M := {(f, U) ∈ HomK(L, ks)× Pi

(
HomK(L, ks)

)
: f /∈ U},

hence it corresponds to T ×M as a G-set. De�ne a map

T ×M →

{
(f, U) ∈

t⋃
j=1

Sj × Pi(Sj) : f /∈ U

}

by (
τj |K , (f, U)

)
7→ (τj ◦ f, τjU).

As above one shows that this is an isomorphism of G-sets. The case
when K is an arbitrary separable k-algebra is handled in the same way
as Ti.

Proposition 3.29. Let α = (ir, . . . , i1) be an r-tuple of positive integers
such that i1 + · · · + ir = i where 1 ≤ i ≤ n. The algebra L′α/Tα in the
category of k-algebras corresponds to the G-sets{(

s, (Sr, . . . , S1)
)
∈ S × Pα(S) : s /∈ ∪r

t=1St

}
and Pα(S) together with the projection morphism.

Proof. By construction the proposition holds for r = 1. Suppose the
formula has been proved for r. We have

Tir+1,ir,...,i1 = Tir+1(L
′
ir,...,i1/Tir,...,i1).

By the induction hypothesis and Lemma 3.28 this corresponds to⋃
(Sr,...,S1)∈Pir,...,i1

(S)

Pir+1

({(
s, (Sr, . . . , S1)

)
: s /∈ ∪r

t=1St

})
which is isomorphic to⋃

(Sr,...,S1)∈Pir,...,i1
(S)

{(
{s1, . . . , sir+1}, Sr, . . . , S1

)
: sit /∈ ∪r

t=1St

}
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and this in turn is equal to Pir+1,ir,...,i1(S).
Moreover, L′ir+1,ir,...,i1

corresponds to the set of pairs (f, U) in

⋃
(Sr,...,S1)∈Pir,...,i1

(S)

{(
s, (Sr, . . . , S1)

)
: s /∈ ∪r

t=1St

}
× Pir+1

({(
s, (Sr, . . . , S1)

)
: s /∈ ∪r

t=1St

})
such that f /∈ U . This set is isomorphic to the union, taken over all
(Sr, . . . , S1) ∈ Pir,...,i1(S), of the sets{(

s, (Sr+1, Sr, . . . , S1)
)
∈ S × Pir+1,ir,...,i1(S) : s /∈ ∪r+1

t=1St

}
.

This in turn equals{(
s, (Sr+1, Sr, . . . , S1)

)
∈ S × Pir+1,...,i1(S) : s /∈ ∪r+1

t=1St

}
.

We are now ready to give our �rst closed formula for [L∗]. It follows
from Theorem 3.25 and Proposition 3.29.

Theorem 3.30. Let L be a k-algebra of dimension n and S a G-set such
that Artk

(
[S]
)

= [Spec L]. De�ne

ρi(S) =
i∑

t=1

∑
(i1,...,it):

i1+···+it=i
is≥1

(−1)t[Pit,...,i1(S)] ∈ B(G).

Then

[L∗] = Ln + a1 · Ln−1 + · · ·+ an−1 · L + an ∈ K0(Vark)

where ai = Artk(ρi(S)).

The universal nature of the formula

Fix a �eld k with absolute Galois group G. Also, �x a separable k-
algebra L of dimension n corresponding to the G-set S. De�ne a ho-
momorphism φ : G → Σn as the composition of G → Aut(S) with an
isomorphism Aut(S) → Σn. Let resΣn

G : B(Σn) → B(G) be the restric-

tion map with respect to φ. Then resΣn
G is independent of the chosen

isomorphism Aut(S) → Σn. We have that

resΣn
G
(
{1, . . . , n}

)
= [S] ∈ B(G).
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Using the notation that P(n)
α := Pα({1, . . . , n}) we also have

resΣn
G (P(n)

α ) = [Pα(S)]. De�ne

ρ
(n)
i :=

i∑
t=1

∑
(i1,...,it):

i1+···+it=i
is≥1

(−1)t[P(n)
it,...,i1

] ∈ B(Σn). (3.31)

Then resΣn
G (ρ(n)

i ) = ρi(S). This discussion gives the following formulation
of Theorem 3.30.

Theorem 3.32. Fix a positive integer n. The ρ
(n)
i ∈ B(Σn), de�ned

in (3.31), are universal in the sense that for every �eld k with absolute
Galois group G and every separable k-algebra of dimension n,

[L∗] = Ln + a1 · Ln−1 + · · ·+ an−1 · L + an ∈ K0(Vark),

where ai = Artk ◦ resΣn
G (ρ(n)

i ).

We illustrate with an example.

Example 3.33. Let L/k = Fq4/Fq. Since G is generated by the
Frobenius map F we can identify S, the G-set corresponding to L, with
{1,F,F2,F3}. We have

P2(S) =
{
{1,F}, {F,F2}, {F2,F3}, {1,F3}

} �
∪
{
{1,F2}, {F,F3}

}
.

The �rst of these sets is isomorphic to S. The second is transitive of
cardinality 2 so it corresponds to a �eld extension of k of degree 2, i.e.,
Fq2 . Reasoning in this way and using Theorem 3.32 we �nd that

[L∗] = L4 − [Spec Fq4 ] · L3 +
(
2[Spec Fq4 ]− [Spec Fq2 ]

)
· L2

− [Spec Fq4 ] · L + [Spec Fq2 ]− 1.

If instead L/k = Fq2 × Fq2/Fq then S = {e1,F e1}
�
∪{e2,F e2} where e1

and e2 are the projection maps. We then get, for example,

P2(S) =
{
{e1,F e1}

} �
∪
{
{e2,F e2}

}
�
∪
{
{e1, e2}, {F e1,F e2}

} �
∪
{
{e1,F e2}, {F e1, e2}

}
.

This kind of computation gives that

[L∗] = L4 − 2[Spec Fq2 ] · L3 +
(
4[Spec Fq2 ]− 2

)
· L2 − 2[Spec Fq2 ] · L + 1.

(3.34)
Note however that since L∗(R) = (Fq2 ⊗k R)× × (Fq2 ⊗k R)× = (F∗q2 ×k

F∗q2)(R), Yoneda's lemma shows that L∗ ' F∗q2×kF∗q2 , so (3.34) could also

have been obtained by squaring the expression for [F∗q2 ] given in Example
3.15.
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3.6 The class of the torus in terms of the λ-operations

In Part I of this thesis we study the λ-structure on B(Σn). The main
result is that there is a formula for λi namely that, given n, for i =
1, . . . , n we have

λi
(
{1, . . . , n}

)
= (−1)i

i∑
t=1

∑
(i1,...,it):

i1+···+it=i
is≥1

(−1)t
[
P(n)

it,...,i1

]
∈ B(Σn). (3.35)

From this and Theorem 3.30 the following theorem is immediate.

Theorem 3.36. Let ρ
(n)
i be the elements de�ned in Theorem 3.32, i.e.,

the elements in B(Σn) describing [L∗] ∈ K0(Vark) for every separable,
n-dimensional algebra k → L. Then

ρ
(n)
i = (−1)i · λi

(
{1, . . . , n}

)
∈ B(Σn).

As a corollary, (3.1) follows:

Proof of (3.1). Let L correspond to the G-set S. From Theorem 3.32

we know that the coe�cient in front of Ln−i is Artk ◦ resΣn
G (ρ(n)

i ). By
Theorem 3.36, and the fact that resΣn

G is a λ-homomorphism, this equals
Artk

(
(−1)i ·λi(S)). Since Artk is a λ-morphism that maps [S] to [Spec L]

the result follows.

We now give an alternative proof of Theorem 3.36. This proof is based
on point counting over �nite �elds.
This proof does not use the universal formula (3.35) from Part I. We

do however need the following results proved in Chapter 1: Write Pµ for
the Σn-set Pµ

(
{1, . . . , n}

)
. We de�ne the Schur subring Schurn ⊂ B(Σn)

to be the subgroup generated by {[Pµ]}µ`n. (Here µ ` n means that µ
is a partition of n.) This is closed under multiplication, hence really a
ring. It is not a λ-ring since it is not closed under the λ-operations.
However, λi({1, . . . , n}) ∈ Schurn for every i. Moreover the restriction
of h: B(Σn) → RQ(Σn) to Schurn is injective.
Also, we do not need to know the explicit description of the universal

elements ρ
(n)
i given in Theorem 3.32. We do however need their existence

and that they lie in Schurn, and once that is proved it is not such a long
step to describe the elements. If we instead use Theorem 3.32 the below
proof of Theorem 3.36 gives a (very ad hoc) proof of (3.35).
The setting for the proof is as follows. Let L be a separable Fq-algebra

of dimension n, corresponding to the G := Gal
(
Fq/Fq

)
-set S. Choose

an isomorphism Aut(S) → Σn and compose it with the homomorphism
G → Aut(S) to get a homomorphism φ : G → Σn. Let F be the topo-
logical generator of G and de�ne σ := φ(F) ∈ Σn. Let resΣn

G denote the
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restriction maps with respect to φ for Burnside as well as representation
rings.
Recall that we use Cσ and CF for the character homomorphisms with

respect to σ and F respectively. One sees that Cσ = CF ◦ resΣn
G . The

corresponding map on the Grothendieck ring of varieties is the point
counting homomorphism Cq de�ned by X 7→ |X(Fq)|, and by (3.6) we
have CF ◦ h = Cq ◦ArtFq . So with this notation the following diagram is
commutative:

B(Σn)
resΣn

G //

h
��

B(G)

h
��

ArtFq

%%LLLLLLLLLL

RQ(Σn)
resΣn

G //

Cσ
%%KKKKKKKKKKK

RQ(G)

CF

��

K0(VarFq)

Cq
xxrrrrrrrrrrr

Z

(3.37)

Using this we are now ready to give the alternative proof.

Proof of Theorem 3.36. Fix a positive integer n. We write

`i := λi({1, . . . , n})

and we want to prove that ρi = (−1)i`i ∈ B(Σn). Since they both lie
in Schurn it su�ces to show that if R is a set of representatives of the
conjugacy classes of Σn then for every σ ∈ R,

Cσ h(ρi) = (−1)iCσ h(`i) ∈ Z.

(Since h is injective on Schurn and
∏

σ∈R Cσ is injective.) We do this
simultaneously for i = 0, . . . , n by showing that

n∑
i=0

Cσ h(ρi)Xn−i =
n∑

i=0

(−1)iCσ h(`i)Xn−i ∈ Z[X] (3.38)

for every σ ∈ R.
From now on, �x σ ∈ R. Let q be an arbitrary prime power, let

k = Fq and let G := Gal(k/k). Choose a G-set S and an isomorphism
φ : Aut(S) → Σn such that F 7→ σ, where F is the topological genera-

tor of G, the Frobenius automorphism. (Equivalently, let S =
�
∪1≤j≤m Tj

such that Tj is a transitive G-set of cardinality nj , where σ has cycle-
type (n1, . . . , nm). Such an S always exists for by Galois theory it comes
from L =

∏m
j=1 Kj where Kj is a degree nj �eld extension of k, i.e.,

Kj = Fqnj .) Construct resΣn
G with respect to φ. In what follows we write

`i(S) and ρi(S) for resΣn
G (`i) and resΣn

G (ρi) respectively.
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We begin by computing the right hand side of (3.38) in terms of
(n1, . . . , nm). Let f be an endomorphism of the vector space V of di-
mension n. From linear algebra we know the following expression for the
characteristic polynomial of f :

det(X · En − f) =
n∑

i=0

(−1)i Tr(
∧i

f)Xn−i.

Putting f = F gives

det(X · En − F) =
n∑

i=0

(−1)iχVi Q[S](F)Xn−i. (3.39)

Since h(`i(S)) =
[∧i Q[S]

]
∈ RQ(G) it follows that

CF h(`i(S)) = χVi Q[S](F),

hence, by the commutativity of (3.37), the right hand side of (3.39)
equals

n∑
i=0

(−1)iCσ h(`i)Xn−i.

As for the left hand side of (3.39), since S is a union of transitive G-
sets Tj we have Q[S] = ⊕m

j=1Q[Tj ] where Q[Tj ] is irreducible, hence the
matrix for F is of the form

M1 0

M2

. . .

0 Mm


where Mj is a transitive nj × nj permutation matrix. Since the charac-
teristic polynomial of such a matrix is Xnj −1 it follows that det(XEn−
F ) =

∏m
j=1 det(XEnj −Mj) =

∏m
j=1(X

nj −1). From (3.39) we therefore
get

m∏
j=1

(Xnj − 1) =
n∑

i=0

(−1)iCσ h(`i)Xn−i. (3.40)

We next compute the left hand side of (3.38). By the de�nition of the
ρi we have

[L∗] =
n∑

i=0

Art
(
ρi(S)

)
Ln−i ∈ K0(Vark).

Applying Cq to this gives

|L∗(k)| =
n∑

i=0

Cq Art(ρi(S)) · qn−i. (3.41)
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By the commutativity of (3.37), Cq Art(ρi(S)) = Cσ h(ρi), so the right
hand side of (3.41) equals

n∑
i=0

Cσ h(ρi)qn−i.

On the other hand, since we saw that L =
∏m

j=1 Fqnj we have L∗(k) =
L× =

∏m
j=1 F×

qnj so |L∗(k)| =
∏m

j=1(q
nj − 1). Hence (3.41) says that

m∏
j=1

(qnj − 1) =
n∑

i=0

Cσ h(ρi)qn−i.

Since q is an arbitrary prime power it follows that

m∏
j=1

(Xnj − 1) =
n∑

i=0

Cσ h(ρi)Xn−i. (3.42)

Comparing (3.40) to (3.42) now gives (3.38).
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Part III:

Motivic Integration





4. A version of motivic integration that
specializes to p-adic integration via point
counting

4.1 Introduction

There is a standard theory of geometric motivic integration, developed
in [DL99] and [DL02], and in [Seb04] for the case of mixed characteristic.
In the present chapter we give a version of that theory, with the property
that it specializes to the Haar measure on Zd

p in the case when we work

over Ad
Zp
. The main di�erence compared to the standard theory is the

value ring of the integral; normally the integral takes values in M̂k, i.e.,
Mk := K0(Vark)[L−1] completed with respect to the dimension �ltration.
However, for the arithmetic applications we have in mind, this does not
work. The reason is that the point counting homomorphism Cq : Mk →
Q, de�ned by X 7→ |X(Fq)| whenever k = Fq is �nite, is not continuous

with respect to the dimension �ltration, hence is not de�ned on M̂k.
Since K0(Vark) is the universal additive and multiplicative invariant of
Vark, and Cq is one of the most fundamental examples of such invariants,
it is of general interest to have it de�ned on the completion. In our case,
we need it in order to be able to specialize the motivic integral to the
corresponding p-adic one. So instead of using the dimension �ltration, we
let the measure take values in Mk completed with respect to a stronger
topology. This topology is de�ned for any �eld k, and it has the property
that in case k = Fq, the point conting homomorphism is continuous.
The �rst part of this chapter is hence devoted to de�ning a topology on

Mk, where k is arbitrary, in such a way that Cq is continuous for every
prime power q. The construction of this topology is based on a previous
construction, by Ekedahl [Eke09], of a topology onMk with the property
that, in case k is �nite, taking the trace of Frobenius on the l-adic coho-
mology is continuous. By the Lefschetz trace formula, this topology then
has the property we want, that the point counting homomorphism is con-
tinuous. However, it has a drawback: the fact that the class of a variety
is small does not imply that the same thing hold for its subvarieties. For
example, if Xn ⊂ Yn are varieties such that [Yn]/Ln → 0 then this does
not imply that [Xn]/Ln → 0. For our purpose, this means that we are
not able to make the de�nitions of geometric motivic integration work
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using this topology. We instead construct a weaker topology, using the
topology of Ekedahl, modi�ed using a partial ordering of Mk with the
property that if X ⊂ Y then [X] ≤ [Y ]. We use K0(Vark) to denote the
completion of Mk with respect to the resulting topology. This topology
is �ne enough for, in case k is �nite, the point counting homomorphism
to be continuous, and still coarse enough for the standard de�nitions of
geometric motivic integration to work.
In the second part of the chapter we then go through the constructions

of motivic integration using this stronger topology. Let us quickly outline
the theory in order to point out the major di�erences to the classical
theory: Let X be a variety de�ned over a complete discrete valuation
ring, whose residue �eld is k. As in all theories of geometric motivic
integration, we begin by constructing the space of arcs on X , denoted
X∞. There is a Boolean algebra of stable subsets of X∞. On this algebra
one may de�ne a measure, taking values inMk. If X is a smooth variety
de�ned over Zp we may specializes to the p-adic measure by applying the
point counting homomorphism Cp : MFp → Q, this was noted in [LS03].
Next one constructs a Boolean algebra of measurable subsets of X∞, and
a measure µX on this algebra. The measure of a general measurable set is
de�ned by covering it by stable sets and using a limiting process, also in
the standard way. Since one needs to take limits to de�ne the measure, it
has to take values in a completion of Mk. The standard choice is to use
M̂k, we instead use K0(Vark). This allows us to prove that the property
of specializing to the p-adic measure via point counting holds for general
measurable sets.
Let us give some more details about the case of primary interest to us,

namely when the discrete valuation ring is Zp, and X is an a�ne space
over Zp: Let W(Fp) be the Witt vectors with coe�cients in an algebraic
closure of Fp. Suppose that X = Ad

Zp
. Then X∞ can be identi�ed with

W(Fp)d. Moreover, for every power of p, q, we have a homomorphism
Cq : K0(VarFp) → R induced by counting Fq-points on Fp-varieties. The
motivic measure has the property that it specialize to the (normalized)
Haar measure, in the sense that for any measurable set A ⊂ X∞ =
W(Fp)d we have Cp µX (A) = µHaar(A∩Zd

p). More generally, Cq µX (A) =
µHaar(A ∩W(Fq)d) for any power q of p. (Recall that Zp ⊂ W(Fpn) ⊂
W(Fp) is the integers in the unrami�ed degree n extension of Qp.)
We have a particular application in mind for this theory: Let

q be a power of the �xed prime p and consider the set of tuples
(a1, . . . , an) ∈ W(Fq)n with the property that the polynomial
an + a1X + · · · + an−1X

n−1 + Xn splits completely. The measure of of
this set is equal to Iq/n!, where

Iq =
∫
W(Fq)n

|
∏

1≤i<j≤n

(Xi −Xj)|pdµHaar.
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Now, it turns out that there is an f ∈ Z(T ) with the property that
Iq = f(q) for every power q of the �xed prime p, and since this is un-
usual (in general the rational function should vary with q) we want a
geometric explanation of this phenomenon. Using the theory developed
in this chapter, this is achieved in Chapter 5, where we prove that the cor-
responding motivic integral,

∫
W(Fp)n |

∏
1≤i<j≤n(Xi−Xj)|dµ ∈ K0(VarFp)

is equal to f(L).
We now give an overview of the chapter: In Section 4.2 we de�ne

the completion of Mk that we work in, K0(Vark). A crucial property
of this topology is that if k = Fp then the counting homomorphisms
Cpn : K0(VarFp) → R are well de�ned and continuous.
Section 4.3 is an appendix containing results from [Eke09] which we

use at a couple of places in Section 4.2. This section also serves as a
motivation for the de�nitions given in Section 4.2.
In Section 4.4 we de�ne the arc space and the motivic measure. The

de�nitions given here are almost exactly the same as the ones used in
the theory of geometric motivic integration, as presented for example in
[Loo02] or the appendix of [DL02], and in [Seb04] for the mixed charac-
teristic case. However, since we are using a stronger topology, the veri�-
cations that everything is well-de�ned are di�erent.
It has to be remarked that this theory has some major shortcomings

in its present state. Namely, when the variety has singularities, we are
not able to prove that general cylinder sets are measurable (in particular,
we are not able to prove that the arc space itself is measurable). That
said, we are interested in utilizing the theory in the case when X = Ad

Zp
,

and in this case, and more generally for any smooth variety, everything
works well.
The material in this chapter has appeared in the preprint [Rök08b].

4.2 The completion of Mk

Let k be a �eld. We use Mk to denote K0(Vark)[L−1]. We use the stan-
dard de�nition of the dimension �ltration of Mk, namely for m ∈ Z de-
�ne FmMk to be the subgroup generated by [X]/Lr, where dim X−r ≤
m. De�ne the dimension of x ∈Mk to be the minimal m (possibly equal
to −∞) such that x ∈ FmMk. In the theory of geometric motivic inte-

gration one completes Mk with respect to this �ltration to obtain M̂k.
However, we are working from an arithmetic point of view; we want to
de�ne a theory of motivic integration for which the value of a motivic in-
tegral can be specialized to the corresponding p-adic one. For this reason
it is natural to demand, in case k is �nite, that the counting homomor-
phism is continuous. That this is not the case in the topology coming
from the dimension �ltration can be seen from the following simple ex-
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ample: Let k = Fq and consider the sequence an = qn/Ln. We have
Cq(an) = 1 for every n. However, an → 0 as n → ∞, and Cq(0) = 0.
Because of this we are forced to complete with respect to a stronger
topology. This topology should have the property that its de�nition is
independent of the base �eld, and that if the base �eld is �nite then the
counting homomorphism is continuous.
Let us outline the contents of this section: First we de�ne a notion of

weights on Mk. This de�nition is from [Eke09], where the author uses
it to construct a topology on Mk which has the property that we want,
that the counting homomorphism is continuous. However, this topology
is a bit too strong when we de�ne the motivic measure, so we have to
modify it slightly. For that we introduce a partial ordering onMk. Next
we de�ne our topology, which is stronger than the �ltration topology,
but weaker than the topology from [Eke09]. We conclude the section by
proving some lemmas on the convergence of sums, which will be needed
in later sections.
The next section, Section 4.3 is an appendix with some background

material from [Eke09], which we use at some places in this section. This
appendix also gives a background to some of the de�nitions given in the
present section, which otherwise might seem somewhat unmotivated.

Weights on Mk

To de�ne the topology we use a notion of weights of elements of Mk,
given in [Eke09]. We also refer to [Eke09] for the proof that the following
is well-de�ned. For X a separated k-scheme of �nite type, we write Hc(X)
for the `-adic cohomology with compact support, of the extension of X
to a separable closure of k.

De�nition 4.1. We de�ne the notion of weights of elements in Mk.
• For a scheme X of �nite type over the base �eld k, de�ne for every
integer n, wn(X) :=

∑
i wn

(
Hi

c(X)
)
, where wn

(
Hi

c(X)
)
is the dimen-

sion of the part of Hi
c(X) of cohomological weight n.

• For x ∈ K0(Vark), let w′n(x) be the minimum of
∑

i|ci|wn(Xi), where∑
i ci[Xi] runs over all representations of x as a linear combination

of classes of schemes.
• For x ∈ K0(Vark), de�ne wn(x) := limi→∞w′n+2i(xLi).
• Finally, extend wn to Mk by wn(x/Li) := wn+2i(x).

wn has the property that all n and all x ∈ Mk, wn(x) ≥ wn(χc(x)),
where χc is the compactly supported Euler characteristic taking values
in K0(Cohk) and wn is the corresponding weight functions on that ring,
see Section 4.3.

Example 4.2. Hi
c(A1

k) is equal to Ql(−1), the dual of the cyclotomic
representation, if i = 2, and zero otherwise. From this one deduces, using
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w2i(Li) ≥ w2i(χc(Li)) = w2i(Ql(−i)) = 1, that

wn(Li) =

{
1 if n = 2i

0 otherwise.

The weight has the properties that it is subadditive, wn(x ± y) ≤
wn(x) + wn(y), and submultiplicative, wn(xy) ≤

∑
i+j=n wi(x) wj(y).

We next de�ne the concept of uniform polynomial growth, introduced
in [Eke09].

De�nition 4.3. We say that a sequence of elements of Mk, (ai)i∈N,
is of uniform polynomial growth if there exists constants d, C and D,
independent of i and with the property that for every integer n, wn(ai) ≤
C|n|d + D.

One derives the following lemma from the fact that the the weight func-
tions are subadditive and submultiplicative. The details are in [Eke09].

Lemma 4.4. Being of uniform polynomial growth is closed under
termwise addition, subtraction and multiplication: If (ai) and (bi) are of
uniform polynomial growth, then so are (ai ± bi) and (aibi).

The partial ordering of Mk

Before we can de�ne our topology we also need a partial ordering on
Mk.

De�nition 4.5. We introduce an ordering on Mk in the following way:
First on K0(Vark) we de�ne x ≤ y if there exists varieties Vi such that
x+

∑
[Vi] = y. (Equivalently there exists a variety V such that x+[V ] =

y.) We extend it to Mk by x/Li ≤ y/Lj if there exists an n such that
xLj+n ≤ yLi+n. (We see that L−1 > 0.)

In particular, if x is a linear combination of non-empty varieties with
positive coe�cients, then x > 0.

Lemma 4.6. The ordering given above is a partial ordering of Mk.

Proof. We �rst show that this is a partial ordering of K0(Vark). The only
nontrivial thing to prove is antisymmetry. Suppose �rst that x ≤ y and
y ≤ x, where x, y ∈ K0(Vark). Then x = y +

∑
i[Ui] and y = x +

∑
i[Vi],

giving together
∑

i[Vi]+
∑

j [Uj ] = 0. Lemma 4.22 now shows that [Vi] =
[Ui] = 0 for every i.
Next, the ordering is well-de�ned on Mk, because if x/Li = y/Lj ∈

Mk, where x, y ∈ K0(Vark), then xLj+n = yLi+n for some n, conse-
quently x/Li ≤ y/Lj . We �nally show that we have antisymmetry also
on Mk: If x/Li ≤ y/Lj and x/Li ≥ y/Lj in Mk then for some n,
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Lj+nx ≤ Li+ny and Lj+nx ≥ Li+ny in K0(Vark). It follows from the
�rst part that Lj+nx = Li+ny ∈ K0(Vark), hence that x/Li = y/Lj ∈
Mk.

Given a variety X, every constructible subset of U ⊂ X can be written
as a �nite disjoint union of locally closed subsets, U =

⋃
i Ui. Since

such a subset has a unique structure of a reduced subscheme we can
take its class [Ui] ∈ K0(Vark), hence we may de�ne the class of U as
[U ] =

∑
i[Ui] ∈ K0(Vark) (this is independent of the chosen partition,

hence well de�ned).

Lemma 4.7. If U and V are constructible subsets of a variety, such that
V ⊂ U , then [V ] ≤ [U ]. Moreover, if V ⊂

⋃n
i=1 Ui then [V ] ≤

∑n
i=1[Ui].

Proof. For the �rst part, if U ⊂ V are constructible, then so is U \ V ;
consequently [U ]− [V ] = [U \ V ] ≥ 0.
For the second part, when n = 2 we have [V ] ≤ [U1 ∪ U2] = [U1] +

[U2]− [U1∩U2] ≤ [U1]+[U2]. The general statement follows by induction
on n.

Lemma 4.8. Let x, a, b ∈Mk. If a ≤ x ≤ b then

dim x ≤ max{dim a,dim b}.

Proof. There are varieties X and Y such that x = a + [X] and b =
x + [Y ]. This shows that b − a = [X] + [Y ]. By Lemma 4.22, dim[X] ≤
dim(b − a). Hence dim x = dim(a + [X]) ≤ max{dim a,dim[X]} ≤
max{dim a,dim(b− a)} ≤ max{dim a,dim b}.

The topology on Mk

We now de�ne our topology on Mk, by specifying what it means for a
sequence to converge. Since we work in a group it su�ces to tell what it
means for a sequence to converge to zero.

De�nition 4.9. Let (xi) be a sequence of elements in Mk.
• We say that xi is strongly convergent to 0 if it is of uniform polyno-
mial growth and dim xi → −∞.
• xi converges to zero, xi → 0, if there are sequences ai and bi that
converges to zero strongly, and such that ai ≤ xi ≤ bi.
• (xi) is Cauchy if xi − xj → 0 when i, j →∞.

We de�ne a topology on Mk by stipulating that a subset is closed if it
contains all its limit points with respect to this notion of convergence.

One proves that this is a topological ring. It then follows immediately
that if a sequence of elements in Mk is convergent then it is Cauchy.
Moreover, we have the property that if xi ≤ yi ≤ zi and if xi and zi
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tends to zero, then yi tends to zero, a fact that we will use without
further notice.
We compare this to the standard topology on Mk:

Lemma 4.10. If a sequence is convergent (respectively Cauchy), then it
is convergent (respectively Cauchy) with respect to the dimension �ltra-
tion. In particular, our topology is stronger than the dimension topology.

Proof. Let the sequence be xi be convergent to zero. There are sequences
ai and bi strongly convergent to zero and such that ai ≤ xi ≤ bi. By
Lemma 4.8, dim xi ≤ max{dim ai,dim bi} and it follows that dim xi →
−∞.

In particular, if we know that a sequence xn is convergent then xn → 0
if and only if dim xn → −∞.
We are now ready to give the completion that let the motivic inte-

gral specialize to the corresponding p-adic integral. We de�ne K0(Vark),
the completion of Mk, in the following way: Consider the set of Cauchy
sequences inMk. This is a ring under termwise addition and multiplica-
tion, which one proves using Lemma 4.4. Moreover it has a subset con-
sisting of those sequences that converge to zero, and it is straight forward
to prove that this subset is an ideal. We de�ne K0(Vark) to be the quo-
tient by this ideal. Moreover we have a completion mapMk → K0(Vark)
that takes x to the image of the constant sequence (x). We state this as
a formal de�nition:

De�nition 4.11. K0(Vark) is the ring of Cauchy sequences modulo the
ideal of those sequences that converges to zero.

For any sequence (xi) of elements ofMk which is Cauchy with respect
to dimension, dim xi is eventually constant, or it converges to −∞. Also,
given n, wn(xi) is eventually constant. If x = (xi) ∈ K0(Vark), de�ne
dim x and wn(x) to be these constant values. These functions keep there
basic properties, e.g., subadditivity for wn, see [Eke09]. We may then
extend the concept of being of uniform polynomial growth to K0(Vark).

De�nition-Lemma 4.12. For x, y ∈ K0(Vark) we let x ≤ y if for some
Cauchy sequences (xi) and (yi), whose images in K0(Vark) are x and y
respectively, we have xi ≤ yi ∈Mk for every i. This is a partial ordering
of K0(Vark).

Proof. It is clear that x ≤ x. Moreover, if x ≤ y and y ≤ z, let (xi), (yi)
and (y′i), (zi) be representatives of x, y and y, z respectively, such that
xi ≤ yi and y′i ≤ zi for all i. Then xi ≤ zi + yi − y′i for all i. Since (yi −
y′i)i∈N = 0 ∈ K0(Vark) it follows that x ≤ z. Finally, for antisymmetry,
it su�ces to show that if x ≤ 0 and 0 ≤ x then x = 0. In that case,
there exists a Cauchy sequence (xi) whose image in K0(Vark) is x, and
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another one, (zi) whose image in K0(Vark) is zero, such that 0 ≤ xi and
xi +zi ≤ 0. It follows that 0 ≤ xi ≤ −zi for every i, consequently xi → 0,
i.e., x = 0.

We de�ne the topology on K0(Vark) in the same way as on Mk, by
saying that a sequence converges to zero if and only if it is bounded from
above and below by sequences strongly convergent to zero. The following
result justi�es the fact that we refer to K0(Vark) as the completion of
Mk.

Lemma 4.13. The completion map Mk → K0(Vark) is continuous and
K0(Vark) is complete, in the sense that any Cauchy sequence converges.
Moreover, the image of Mk is dense in K0(Vark).

Proof. We prove that for any x = (xj)j∈N ∈ K0(Vark) we have xi → x
as i →∞. This will show that any Cauchy sequence of elements in Mk

converges and that Mk is dense in K0(Vark). For this we have to prove
that yi := xi − x = (xi − xj)j∈N → 0 as i →∞.
There are two sequences aij and bij which are strongly convergent to

zero as i, j → ∞, and such that aij ≤ xi − xj ≤ bij . Hence (aij)j∈N ≤
yi ≤ (bij)j∈N. We prove that (aij)j tends strongly to zero as i → ∞:
The dimension of (aij)j is dim ai,f(i), where f(i) is some su�ciently
large integer which we may and will assume is greater than i. Moreover,
wn((aij)j) = wn(ai,g(i)) for some g(i). Since aij is strongly convergent,

dim ai,f(i) → −∞ as i →∞, and wn(ai,g(i)) ≤ C|n|d +D for every i.

Let M̂k be the completion ofMk with respect to the dimension �ltra-
tion. We have an injective, continuous homomorphism K0(Vark) → M̂k

so we may think of K0(Vark) as a subring of M̂k, although its topology
is stronger than the subspace topology.

Example 4.14. By Example 4.2 and subadditivity, wn(
∑j

m=i L−m) ≤ 1
for every i, j. Furthermore dim L−m → −∞ as m → ∞. Together this
show that the sequence (

∑N
m=0 L−m)N is Cauchy, hence that the sum∑

m∈N L−m is convergent in K0(Vark). In the same way one sees that
L−m converges (strongly) to zero, hence letting N tend to in�nity in the
equality (1−L−1)(

∑N
m=0 L−m) = 1−L−(N+1) shows that

∑
m∈N L−m =

1/(1−L−1) ∈ K0(Vark). In particular, since also L is invertible, it follows
that L− 1 is invertible.
Similarly one proves that if {ei}i∈N is a sequence of integers such that

ei →∞, then
∑

i∈N L−ei is convergent.

On the other hand, note that for example 1 − 3L−1 is not invertible
(contrary to with respect to the dimension �ltration). For its formal
inverse is x =

∑
n≥0 3nL−n, and w2n(x) = 3−n, showing that x is not

of uniform polynomial growth. In view of Lemma 4.15, this would also
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follow from the fact that C2 x is not convergent (note however that Cp x
is convergent for p > 3).
When k is �nite, this topology makes the point counting homomor-

phism continuous:

De�nition-Lemma 4.15. For k = Fq, de�ne Cq : K0(Vark) → Z by
[X] 7→ |X(k)|. It is a ring homomorphism and it extends to a homo-
morphism Mk → Q, continuous with respect to the above constructed
topology. It hence extends by continuity to a continuous homomorphism
Cq : K0(Vark) → R.

Proof. In [Eke09] it is proved that Cq is continuous with respect to the

topology of K0
pol(Vark), i.e., if an → 0 strongly then Cq an → 0. Now,

if xn → 0 then there are sequences an and bn such that an ≤ xn ≤ bn

and an, bn → 0 strongly. Since Cq an ≤ Cq xn ≤ Cq bn it follows that
Cq xn → 0, consequently Cq is continuous.

Various lemmas on the convergence of series

We collect here some lemmas that will be needed when working with this
de�nition.

Lemma 4.16. Suppose that xi ≤ yi ≤ zi. If
∑

i∈N xi and
∑

i∈N zi are
convergent, then so is

∑
i∈N yi. Moreover,

∑
i∈N xi ≤

∑
i∈N yi ≤

∑
i∈N zi.

Proof. We have
∑n

i=m xi ≤
∑n

i=m yi ≤
∑n

i=m zi, and since
∑n

i=m xi → 0
and

∑n
i=m zi → 0 as m,n → ∞, it follows that

∑n
i=m yi is bounded

from above and below by sequences strongly convergent to zero, hence
it converges to zero. So (

∑N
i=0 yi)N is Cauchy, the sum is convergent.

The second assertion follows by de�nition, since it holds for each partial
sum.

Note that if xi ≤ yi ≤ zi it does not follow that yi is convergent when
xi and zi are.
Let ai ∈ K0(Vark). In general it is not true that

∑
ai is convergent if

and only if ai → 0, a property that holds for M̂k. However, some of the
consequences of this are true in a special case:

Lemma 4.17. If ai ≥ 0 for every i and if
∑

i ai is convergent then every
rearrangement of the sum is convergent, and to the same limit.

Proof. If (bi)i∈N is a rearrangement of (ai)i∈N then, for some Nn, the
elements a0, . . . , an are among b0, . . . , bNn . Therefore

∑
i≤Nn

(bi−ai) is an
alternating sum of aj , with j > n. Since every ai ≥ 0, this sum is between

−
∑M

j=n+1 ai and
∑M

j=n+1 ai for some M . Since
∑

i∈N ai is Cauchy, both
these sums tend to 0 as n tends to ∞. Hence

∑
i∈N(bi − ai) = 0.
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For this reason, we will write
∑

i,j∈N aij to mean the sum over some

unspeci�ed enumeration of N2.

Lemma 4.18. Assume that all aij ≥ 0. If the sum
∑

i,j∈N aij is con-
vergent then the same holds for

∑
i∈N
∑

j∈N aij, and the two sums are
equal.

Proof. For every i ∈ N, it follows from Lemma 4.16, and the convergence
of
∑

i,j∈N aij , that
∑

j∈N aij is convergent. We then have∑
i≤n

∑
j∈N

aij −
∑
i,j≤n

aij =
∑
i≤n

∑
j>n

aij

=
∑
j>n

∑
i≤n

aij ,

Now
∑

j∈N(
∑j

i=0 aij) is convergent, because of Lemma 4.16 and since
every rearrangement of

∑
i,j∈N aij is. Hence limn→∞

∑
j>n(

∑
i≤n aij) = 0

(because if
∑

i∈N bi = b then
∑

i>n bi = b −
∑

i≤n bi → 0). The result
follows.

Lemma 4.19. Suppose that ai ≥ 0, bi ≥ 0. The sum
∑

n∈N
∑

i+j=n aibj

is convergent if and only if
∑

i∈N ai
∑

i∈N bi is. In this case they are equal.

Proof. ( ∑
0≤i≤N

ai

)( ∑
0≤i≤N

bi

)
−

∑
0≤n<N

∑
i+j=n

aibj =
∑
I(N)

aibj ,

where I(N) is a set of indices (i, j), all of which ful�ll i + j ≥ N .
Now, since every ai and bi is ≥ 0, it follows that 0 ≤

∑
I(N) aibj ≤∑

n≥N

∑
i+j=n aibj for every N . Since

∑
n∈N(

∑
i+j=n aibj) is Cauchy it

follows that
∑

n≥N

∑
i+j=n aibj → 0 as N → ∞, hence

∑
I(N) aibj →

0.

Lemma 4.20. If ai ≥ 0, bi ≥ 0, and if
∑

i∈N ai and
∑

i∈N bi are conver-
gent, then

∑
i∈N aibi is convergent and ≤

∑
i∈N ai

∑
i∈N bi.

Proof. Lemma 4.19 shows that
∑

n∈N(
∑

i+j=n aibj) is convergent. Since
anbn ≤

∑
i+j=2n aibj , and 0 ≤

∑
i+j=2n+1 aibj it hence follows from

Lemma 4.16 that
∑

i∈N aibi is convergent, and less than or equal to∑
n∈N(

∑
i+j=n aibj).

4.3 Appendix to Section 4.2: Results from [Eke09]

In this section we give a quick review of the construction of the topol-
ogy from [Eke09]. First, recall that we have an Euler characteristic map
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from Mk, taking values in K0(RepGQl). The �rst step is to modify this
map, by letting the recipient ring be K0(Cohk), which is de�ned as fol-
lows: Firstly, for k �nitely generated, we use Cohk to denote the cate-
gory of mixed Galois Ql-representations. This is the full subcategory of
RepGQl consisting of those representations that have a weight �ltration.
We then have an injection K0(Cohk) ↪→ K0(RepGQl), the image being
generated by modules of pure cohomological weight. (When k = Fq a
representation is of pure weight n if all the archimedean absolute values
of all eigenvalues of the geometric Frobenius are in Q and have absolute
value qn/2.) The image of χc is contained in this subring, i.e., we have
χc : Mk → K0(Cohk). We refer to [Eke09] for the de�nition of this ring
in case k is not �nitely generated, but let us note that if {kα} is the col-
lection of �nitely generated sub�elds of k then we have an isomorphism
lim→α K0(Cohkα) → K0(Cohk), and that if X is a k-scheme of �nite type
then it is de�ned over some �nitely generated sub�eld kα0 , hence χc(X)
is de�ned in K0(Cohkα0

) which maps to K0(Cohk).
The reason for us to work in K0(Cohk) rather than in K0(RepGQl)

is that it is graded by weight: If V is any mixed representation then
there is a Jordan-Hölder sequence 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V . Here
Vi+1/Vi is simple, hence of pure weight. Since [V ] =

∑
i[Vi+1/Vi], and

since this sum is independent of the chosen sequence, it follows that any
v ∈ K0(Cohk) may be written uniquely as

v =
∑

n

vn, where vn =
∑

i

cni[Vni] (4.21)

and the Vni are irreducible, pairwise non-isomorphic representations of
pure weight n. Since this also respects the multiplication, it follows that
K0(Cohk) is graded by weight. When working with this grading, the fol-
lowing result of Deligne is useful: For any separated scheme of �nite
type, Hi

c(X) is of mixed weight ≤ i, and if i > 2 dim X then Hi
c(X) = 0.

Furthermore, if dim X = n then H2n
c (X) is of pure weight 2n, and its di-

mension equals the number of geometric components of X of dimension
n. Using it, one sees that the Euler characteristic χc : Mk → K0(Cohk) is
continuous with respect to the dimension �ltration onMk and the weight
grading on K0(Cohk) (where a sequence tends to zero if the degree of its
highest nonzero part tends to −∞). For suppose that dim xi = d, where
xi ∈ Mk. Then χc(xi) is zero in degree > 2d. Hence, if xi → 0, then
χc(xi) → 0. Therefore χc extends by continuity to a continuous homo-

morphism χc : M̂k → ̂K0(Cohk). Since the topology on K0(Cohk) comes
from a grading, its completion is very nice; elements can be represented
uniquely as sums, in�nite in the negative direction:

̂K0(Cohk) =
{∑

n≤N

vn : in�nite sums

}
.
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We use this grading to prove the following structure result aboutMk,
which we need in the proof of Lemma 4.6.

Lemma 4.22. Let ni be non-negative integers and let Xi be k-varieties.
Let x =

∑
i ni[Xi] ∈ Mk. If x = 0 then ni = 0 for every i. And if

x ∈ FmMk, then [Xi] ∈ FmMk for every i.

Proof. The �rst part follows from [Nic08], Corollary 2.11. The second
part can be proved similarly, alternatively, we give a proof here. We use
the above mentioned results of Deligne. Let m′ be the maximal dimension
of the Xi and suppose that m′ > m. Since the dimension of x is m, the
weight 2m′ part of χc(x) is 0. On the other hand

χc(x) =
∑

dim Xi=m′

ni[H2m′
c (Xi)] +

(
terms of weight < 2m′

)
,

and the weight 2m′-part of this is non-zero, a contradiction.

This now makes it transparent why the point counting homomorphism
is not continuous. For, as was noted in Section 3.3, when k = Fq we have,
by the Lefschetz trace formula, a commutative diagram

Mk
χc //

Cq
$$JJJJJJJJJJJ K0(Cohk)

CF

��
Q

(4.23)

where CF is de�ned by taking the trace of Frobenius, i.e., by mapping
the representation V to the character of V evaluated at the geometric
Frobenius automorphism F. We then �rst need to complete K0(Cohk) in
such a way that it is possible to extend CF to the completion in case k
is �nite, and for this we need a stronger topology on K0(Cohk) than the
above mentioned. For de�ne, for v =

∑
n vn as in (4.21),

wn(v) :=
∑

i

|cni|dim Vni.

Then, if k = Fq, the only possible extension of CF to K0(Cohk) would
be by continuity, i.e., to de�ne CF v =

∑
n CF vn. However,

∑
n|CF vn| ≈∑

n qn/2 wn(v). So in case wn grows too fast, CF v is not convergent. (For
an example, let v =

∑
0≤n qn[Ql(n)]. This is convergent with respect to

the grading, but CF qn[Ql(n)] = 1 for all n.) We therefore need a stronger
topology on K0(Cohk):
Let {vi}i∈N be a sequence in K0(Cohk). We say that the sequence is

of uniform polynomial growth is there exist constants D and d such that
for every i and n we have

wn(vi) ≤ |n|d + D. (4.24)
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We now de�ne the sequence to be convergent if it is of uniform polyno-
mial growth, and convergent with respect to the weight �ltration. This
topology does not come from a �ltration anymore, neither from a met-
ric. However, we may de�ne the completion as the ring of all Cauchy
sequences (meaning that vi − vj → 0 as i, j → ∞) modulo those con-
verging to zero. It has the properties of a completion: K0(Cohk) is dense
in it, and every Cauchy sequence is convergent. Denote this completion

by K0
pol(Cohk). It has a very simple description as

K0
pol(Cohk) =

{
v =

∑
n≤N

vn : v of uniform polynomial growth

}
.

If k = Fq we may now de�ne CF, the trace of Frobenius, on K0
pol(Cohk).

For if v =
∑

n≤N vn ∈ K0
pol(Cohk) then

|CF v| ≤
∑
n≤N

|CF vn| ≤
∑
n≤N

qn/2 wn(v) ≤
∑
n≤N

qn/2(|n|d + D)

which is convergent. Similarly one proves that CF is continuous.
If we want to use (4.23) to make Cq continuous, we need to introduce

a stronger topology on Mk as well, for χc : Mk → K0
pol(Cohk) is not

continuous with respect to the dimension �ltration. In [Eke09], this is
resolved by introducing weight functions wn also on Mk, see Section
4.2. These are compatible with the weight functions on K0(RepGQl) in
that wn(x) ≥ wn(χc(x)). One then de�nes a sequence inMk to converge
to zero if it is of uniform polynomial growth with respect to this notion of
weight, and converges to zero with respect to the dimension �ltration. We

write K0
pol(Vark) to denoteMk completed with respect to this topology.

Now, for k = Fq, we get a commutative diagram of continuous maps,
where the extension of Cq is de�ned by continuity, or equivalently as
just the composition CF ◦χc:

K0
pol(Vark)

χc //

Cq

''PPPPPPPPPPPPP
K0

pol(Cohk)

CF

��
C

However, this topology is too strong for our purpose of motivic integra-
tion; in Section 4.2 we therefore de�ne a slightly coarser topology which
�ts out purpose, but which has the disadvantage that we cannot tell
whether the Euler characteristic is still continuous.
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4.4 De�nition of the motivic measure

Before we start, let us remark that all the de�nitions in this section are
the standard ones, used in the appendix of [DL02], in [Loo02] and in
[Seb04]. (There are some minor di�erences between these expositions;
in these cases we have followed the path of [Loo02]. In particular, our
arc spaces will be sets, rather than schemes.) However, since we use a
stronger topology, the proofs that everything works is slightly di�erent,
even though they are based on the corresponding existing proofs. In the
end of the section we also prove that we now have the property that we
want, that we may specialize to p-adic integration via point counting.
Given a complete discrete valuation ring O, which we assume to be ab-

solutely unrami�ed in the mixed characteristic case, with perfect residue
�eld k. Let X be a scheme over O, of �nite type and of pure rela-
tive dimension d, and de�ne Xn to be the its nth Greenberg scheme
over k. In the mixed characteristic case, Xn is characterized by the
property that if R is a k-algebra then Xn(R) = X

(
Wn(R)

)
, where

W is the Witt vectors (see Section 5.2 for the an introduction). We
then have projection maps, πn+1

n : Xn+1 → Xn, de�ned on R-points
by the projection Wn+1(R) → Wn(R). Next, in the equal character-
istic case, Xn is characterized by the property that if R is a k-algebra
then Xn(R) = X (R[T ]/(Tn)

)
. The projections πn+1

n are now de�ned
by R[T ]/(Tn+1) → R[T ]/(Tn). Moreover, in both the equal and mixed
characteristic case, we see that X1 is the base extension of X to k,
X1 = X ×O Spec k.
Fix an algebraic closure k of k and de�ne X∞ to be the projective limit

of the sets Xn(k). Let πn : X∞ → Xn(k) be the projection maps. We are
going to de�ne the measure of certain subsets of X∞.
We say that a subset S ⊂ Xn(k) is constructible if there are a �nite

number of locally closed subschemes Vi ⊂ Xn such that S =
⋃

i Vi(k).
If A ⊂ X∞, then it is a cylinder if the following holds: For some n,

πn(A) is constructible in Xn(k), and de�ned over k, and A = π−1
n πn(A).

In this case there are mutually disjoint subschemes Vi ⊂ Xn such that
πn(A) =

⋃
i Vi(k); we de�ne [πn(A)] :=

∑
i[Vi] ∈ K0(Vark). It follows

that [πn(A)] ≥ 0.
If, in addition, for all m ≥ n, the projection πm+1(A) → πm(A) is a

piecewise trivial �bration, with �ber an a�ne space of dimension d, then
we say that the cylinder A is stable of level n. A cylinder is stable if it is
stable of some level n. It is a fact that every cylinder is stable in case X
is smooth.
If A is stable of level n we see that dim πm(A)−md is independent of

the choice of m ≥ n, de�ne the dimension of A to be this number.
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We also see that µ̃X (A) := [πm(A)]L−md ∈ Mk is independent of the
choice of m ≥ n. This is an additive measure on the set of stable subsets.
It is immediate that µ̃X (A) ≥ 0.
We want to de�ne a measure on a bigger collection of subsets of X∞.

We will use the standard construction, except that we let the measure
take values in K0(Vark) instead of M̂k. So let µX (A), the measure of A,
be the image of µ̃X (A) in K0(Vark). Note that dim µX (A) = dim A.

Example 4.25. The case that we are particularly interested in is when
O = Zp (so k = Fp) and X = Ad

Zp
. Then

X∞ = lim
←−

Ad
Zp

(
Wn(k)

)
= W(k)d.

By the standard construction of the (normalized) Haar measure on Zd
p

we see that if A ⊂ X∞ is stable then µHaar(A ∩ Zd
p) = Cp(µX (A)) ( cf.

[LS03], Lemma 4.6.2). Below we de�ne a concept of measurability of
subsets of X∞, for general X , in such a way that in the special case when
X = Ad

Zp
, if A ⊂ X∞ is measurable then µHaar(A ∩ Zd

p) = Cp(µX (A)).

We next extend the motivic measure to a bigger collection of subsets:
We want to do this in a way similar to that of the ordinary Haar measure.
The problem is that the standard construction involves taking sup or inf,
which we cannot do in K0(Vark). We therefore use the same method as

is used in [Loo02], except that we use K0(Vark) instead of M̂k:

De�nition 4.26. The subset A ⊂ X∞ is measurable if the following
holds:
• For every positive integer m, there exists a stable subset Am ⊂ X∞
and a sequence of stable subsets (Cm

i ⊂ X∞)∞i=1, with
∑

i µX (Cm
i )

convergent, such that A ∆ Am ⊂
⋃

i C
m
i .

• limm→∞
∑

i µX (Cm
i ) = 0.

The measure of A is then de�ned to be µX (A) := limm→∞ µX (Am).

Below we will prove that this is well-de�ned. But let us �rst note that
by de�nition µX (A) ≥ 0 for every measurable A, because this is true for
stable sets.

Remark 4.27. This de�nition works well when X is smooth, since
in that case all cylinders are stable. In the general case, it is prob-
ably better to �rst de�ne the measure of an arbitrary cylinder A as

lime→∞ µX (X (e)
∞ ∩ A) ∈ K0(Vark), where X

(e)
∞ = X∞ \ π−1

e

(
(Xsing)e

)
,

and then replace �stable sets� with �cylinders� in the de�nition of a mea-
surable set. However, since we are not able to prove that this limit exists
in general, we use the present de�nition, which in any case works for our
purposes.
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To prove that this is well-de�ned we will use the following well known
lemma (cf. Lemma 3.5.1 in [LS03]).

Lemma 4.28. Let A ⊂ X∞ be stable. Then every countable covering of
A with stable subsets Ci has a �nite subcovering.

Proposition 4.29. The measure µX is well-de�ned. The measurable
subsets form a Boolean ring on which µX is additive.

Proof. We �rst prove that the limit exists. For this we have to prove that
the sequence (µX (Am))∞m=1 is Cauchy, i.e., that µX (Am)−µX (A′m) → 0
as m,m′ → 0. Let m and m′ be any positive integers. Since Am and Am′

are stable,

µX (Am ∆ Am′) = µX (Am)− µX (Am′) + 2µX (Am′ \Am).

Moreover, µX (Am′ \ Am) ≥ 0 so it follows that µX (Am) − µX (Am′) ≤
µX (Am ∆ Am′). Next, Am ∆ Am′ ⊂

⋃
i C

m
i ∪Cm′

i . By Lemma 4.28 a �nite
number of the Cm

i ∪ Cm′
i su�ces, hence the right hand side is stable so

µX (Am ∆ Am′) ≤ µX (
⋃N

i=0 Cm
i ∪ Cm′

i ). From Lemma 4.7 we then see

that µX (Am ∆ Am′) ≤
∑N

i=0

(
µX (Cm

i ) + µX (Cm′
i )
)
. Hence

µX (Am)− µX (Am′) ≤
N∑

i=0

(
µX (Cm

i ) + µX (Cm′
i )
)
.

Similarly, −
∑N

i=0

(
µX (Cm

i ) + µX (Cm′
i )
)
≤ µX (Am) − µX (Am′). Since,

by assumption,
∑N

i=0 µX (Cm
i ) converges to zero as m tends to in�nity,

it follows that µX (Am)− µX (Am′) is bounded from above and below by
sequences strongly convergent to zero.
Next, suppose that A ∆ Bm ⊂

⋃
i D

m
i is another sequence that de�nes

µX (A). In the same way as above we see that for some N ,

−
N∑

i=0

(
µX (Cm

i ) + µX (Dm
i )
)
≤ µX (Am)− µX (Bm)

≤
N∑

i=0

(
µX (Cm

i ) + µX (Dm
i )
)

hence µX (Am)− µX (Bm) → 0 as m →∞.

The following proposition is sometimes useful when proving that a set
is measurable.

Proposition 4.30. Let A ⊂ X∞ be a union of stable sets Ai, A =⋃
i∈N Ai, such that the sum

∑
i∈N µX (Ai) is convergent. Then A is mea-

surable and µX (A) = limn→∞ µX (
⋃

i≤n Ai). If furthermore the Ai are
pairwise disjoint, then µX (A) =

∑
i∈N µX (Ai).
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Proof. We have A ∆
⋃

i≤n Ai =
⋃

i>n Ai. Here
∑

i>n µX (Ai) is conver-
gent since

∑
i∈N µX (Ai) is, and it then follows that

lim
n→∞

∑
i>n

µX (Ai) = lim
n→∞

(∑
i∈N

µX (Ai)−
∑
i≤n

µX (Ai)
)

=
∑
i∈N

µX (Ai)− lim
n→∞

∑
i≤n

µX (Ai) = 0.

Therefore, by de�nition, A is measurable and

µX (A) = lim
n→∞

µX (
⋃
i≤n

Ai).

In the case when the Ai are disjoint we have µX (
⋃

i≤n Ai) =∑
i≤n µX (Ai), hence µX (A) =

∑
i∈N µX (Ai).

We will use the following lemma to apply the proposition.

Lemma 4.31. Let (Ai) and (Bi) be two sequences of stable subsets of
X∞, such that for any i, Ai ⊂ Bi. If

∑
i∈N µX (Bi) is convergent, then so

is
∑

i∈N µX (Ai).

Proof. For some n, both Ai and Bi are stable of level n. We have
πn(Ai) ⊂ πn(Bi), hence by Lemma 4.7, [πn(Ai)] ≤ [πn(Bi)]. There-
fore 0 ≤ µX (Ai) ≤ µX (Bi), it follows from Lemma 4.16 that the sum is
convergent.

The following proposition shows that this de�nition generalizes the
p-adic measure.

Proposition 4.32. Let X = Ad
Zp
. If A ⊂ X∞ is measurable then

µHaar(A ∩ Zd
p) = Cp(µX (A)).

Proof. By de�nition, we have that Cp µX (A) = Cp limm→∞ µX (Am).
Since Cp is continuous, this equals

lim
m→∞

Cp µX (Am) = lim
m→∞

µHaar(Am ∩ Zd
p).

If we now can show that µHaar

(
(A ∆ Am)∩Zd

p

)
→ 0 when m →∞, then

by standard measure theory it follows that limm→∞ µHaar(Am ∩ Zd
p) =

µHaar(A ∩ Zd
p), and we are done.

Since, by de�nition, there are stable sets Cm
i such that

(A ∆ Am) ∩ Zd
p ⊂ (

⋃
i

Cm
i ) ∩ Zd

p,

it su�ces to show that
∑

i µHaar(Cm
i ∩ Zd

p) → 0 as m → ∞. Now this
equals limm→∞

∑
i Cp µX (Cm

i ). Using two times the fact that Cp is con-
tinuous, together with the assumption on the Ci gives that this equals
Cp limm→∞

∑
i µX (Cm

i ) = Cp 0 = 0
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We next de�ne the integrals of functions X∞ → K0(Vark). For this
we note that every x ∈ K0(Vark) may be written as x = a − b, where
a, b ≥ 0. (This follows straight forward from that the fact that the same
thing is true for elements of K0(Vark).)

De�nition-Lemma 4.33. We say that f : X∞ → K0(Vark) is positively
integrable if its image is contained in {a ≥ 0} ⊂ K0(Vark), it has mea-
surable �bers, and the property that the sum

∑
a∈K0(Vark) µX (f−1(a))a

is convergent, (in particular it has only countably many nonzero terms).
We then de�ne

∫
fdµX to be this limit.

We say that f is integrable if it has measurable �bres, and we
can write every a ∈ K0(Vark) as a = a′ − a′′, where a′, a′′ ≥ 0,
in such a way that the sums S1 =

∑
a∈K0(Vark) µX (f−1(a))a′ and

S2 =
∑

a∈K0(Vark) µX (f−1(a))a′′ are convergent. In that case we de�ne∫
fdµX = S1 − S2.

Proof. Since µX (f−1(a)) ≥ 0, the notion of positive integrability is well-
de�ned by Lemma 4.17.
That a function is integrable is well-de�ned, because if there exist

such convergent sums S1 and S2, then (by de�nition of addition in a ring
of Cauchy sequences) their di�erence equals

∑
a∈K0(Vark) µX (f−1(a))a,

which is then independent of the choice of a′ and a′′.

If A ⊂ X∞, let χA be the characteristic function of A and de�ne∫
A fdµX :=

∫
f · χAdµX . If

∫
A fdµX and

∫
B fdµX exists and A and B

are disjoint then
∫
A∪B fdµX exists and is equal to

∫
A fdµX +

∫
B fdµX .

Proposition 4.34. Let X = Ad
Zp
. If A ⊂ X∞ is measurable and if

f : X∞ → K0(Vark) is integrable, then

Cp

∫
A

fdµX =
∫

A∩Zd
p

Cp ◦fdµHaar.

Proof. As we have set things up, this is straight forward:

Cp

∫
A

fdµX =Cp

∑
a∈K0(Vark)

µX (f−1a ∩A)a

=
∑

a∈K0(Vark)

µHaar(f−1a ∩A ∩ Zd
p) Cp a

=
∑
r∈R

µHaar

(
(Cp ◦f)−1r ∩A ∩ Zd

p

)
r

=
∫

A∩Zd
p

Cp ◦fdµHaar.

For a �rst illustration of how this work, see Example 5.11 where we
compute explicit some simple integrals.
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5. Computing motivic integrals

5.1 Introduction

Fix a prime p. In [Sko09] the author computes the integral

Ip =
∫

Zn
p

|
∏

1≤i<j≤n

(Xi −Xj)|pdµHaar.

The method is recursive and �nds a rational function f such that Ip =
f(p) (with respect to the normalized absolute value). Looking at these
computations it is immediate that instead of integrating over Zn

p we may
as well integrate over W(Fq)n, where W is the Witt vectors and q is any
power of p, to obtain the value of

Iq =
∫
W(Fq)n

|
∏

1≤i<j≤n

(Xi −Xj)|pdµHaar.

It turns out that for every q, Iq = f(q). Here f is the same rational
function as above, it is hence independent of q.
This kind of behavior is unusual, one would expect that f should vary

with q (cf. Example 5.11). When it occurs one could suspect that there
is some geometric explanation; the aim of this chapter is to give such an
explanation.
For this we use the version of geometric motivic integration developed

in Chapter 4 to prove that if X = An
Zp

then

I =
∫
X∞
|
∏

1≤i<j≤n

(Xi −Xj)|pdµX ∈ K0(VarFp)

is a rational function in L with integer coe�cients, more precisely I =
f(L) where f is the same as above (this follows from Theorem 5.27).
By applying the point counting homomorphism we recover the original
integrals:

Iq = Cq I = Cq f(L) = f(q)

for every power q of p.
Here is an overview of the chapter: Since we will do a lot of compu-

tations in the Witt vectors, we begin with some necessary background
about them, in Section 5.2.
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When performing the computations of this chapter, we cannot work
in the full generality for which the integration theory was developed in
Chapter 4, we need to impose some extra condition on the variety X with
respect to which the integrals are constructed (most importantly that it
is an a�ne space, but we also need some additional assumptions on the
discrete valuation ring). In Section 5.3 we describe these conditions. We
then prove some general result about our motivic integral in this case,
in particular that all the integrals that we are interested in exist.
In Section 5.4 we give three fundamental results, about change of vari-

ables and separation of variables. We need these in the last section, to
perform the recursions which are the ultimate goal of the chapter.
In Section 5.5 we do the work that allows us to compute the integral I

de�ned above. In fact, we compute more general integrals; we show that
for p su�ciently large, the motivic integral of the absolute value of any
product of linear forms is a rational function in L, with coe�cients in Z.
Then when p is arbitrary we compute the motivic integral of the absolute
value of a product of more special linear forms, in particular the integral
I. These computations also make it possible to give an explicit formula
for the integral. (If one is only interested in the p-adic integrals, it is
possible to translate these computations to that setting, with no reference
to motivic integration.) We will also see that all these computations work
also in the equal characteristic case.
Finally, it turns out that the rational function f , discussed above, is

independent also of the prime p: Ip = f(p) for every prime p. In Section
5.7 we discuss how one could give a motivic explanation also of this fact.

Acknowledgment. This chapter is based on the preprint [Rök08a] which
was completed during my stay in Leuven in the autumn of 2008. I want
to thank Jan Denef for his hospitality during that stay, and him and Raf
Cluckers for discussing the topics of this chapter with me.

5.2 Background material about the Witt vectors

In this section we give the basic de�nitions in connection with the Witt
vectors, W. This material is essentially in [Ser79] pp. 40-44 and in
[Dem72].

De�nitions

Fix a prime p. De�ne, for every n ∈ N, the polynomial

Wn =
n∑

i=0

piXpn−i

i ∈ Z[X].
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The ring of Witt vectors with coe�cients in the commutative ring A,
W(A), is by de�nition AN with the ring operations de�ned by requiring
that the map

W∗(A) : W(A) → AN

a 7→
(
W0(a), . . . ,Wn(a), . . .

)
should be a homomorphism. W(A) is a commutative ring with iden-
tity element (1, 0, 0, . . . ). The ring scheme of Witt vectors is the func-
tor W : Rings → Rings that takes the commutative ring A to W(A).
W∗ : W → AN

Z is then a morphism of ring schemes. If p is invertible in
A, W∗(A) is an isomorphism, hence WZ[1/p] ' AN

Z[1/p] as ring schemes.
One de�nes the Witt vectors of length n, Wn, to be the functor that

takes the ring A to the projection of W(A) onto its n �rst coordinates.
This scheme is of �nite type over Spec Z . One has that W1 is the identity
functor, that is W1(A) = A. We also have that the ring W(A) is the
inverse limit of the rings Wn(A) as n → ∞. We de�ne the projection
map πn : W → Wn by

(a0, a1, . . . ) 7→ (a0, . . . , an−1) : W(A) → Wn(A)

for every ring A.
If A is a perfect ring of characteristic p (meaning that x 7→ xp is

surjective) then p is not a zero-divisor in W(A), which is Hausdor� and
complete with respect to the �ltration {pnW(A)}n∈N. Moreover, the
residue ring of W(A) is A. In particular, W(Fp) = Zp and if q = pn then
W(Fq) is the integral closure of Zp in the unique unrami�ed degree n
extension of Qp (in a �xed algebraic closure of Qp).

Operations on W

De�ne V: W → W by V a = (0, a0, . . . , an−1, . . . ). V is short for "Ver-
schiebung". It is not a morphism of ring schemes but it is additive. Note
that W(A)/ Vn W(A) ' Wn(A) for every ring A.
Next we de�ne the map r : W1 → W by a 7→ (a, 0, . . . , 0, . . . ). The

map r is multiplicative. Moreover, for any a = (a0, a1, , . . . , ) ∈ W(A)
we have

a =
∞∑
i=0

Vi r(ai). (5.1)

When A is perfect of characteristic p, r(A) is the unique system of multi-
plicative representatives of A in W(A). In particular, r(Fp) is the subset
of Zp consisting of 0 and the (p− 1)st roots of unity.
Finally, over Fp (where p is the prime that was �xed in the beginning

of this section) we de�ne the Frobenius morphism F: WFp → WFp by
Fa = (ap

0, . . . , a
p
n, . . . ). It is a morphism of ring schemes.
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Proposition 5.2. If A is an Fp-algebra and a,b ∈ W(A) the following
formulas hold:

V Fa =F V a = pa

a ·V b =V(Fa · b).

Proof. For the �rst formula see [Ser79]. For the second formula it su�ces
to prove this when A is perfect so we may assume that b = F c. The �rst
formula, the distributive law and the fact that F is a ring homomorphism
then give

V(Fa·b) = V(Fa·F c) = V F(a·c) = p(a·c) = a·(pc) = a·V F c = a·V b.

It follows that if A is an Fp-algebra, a,b ∈ W(A) and i, j ∈ N then

Vi a ·Vj b = Vi+j
(
Fj a · Fi b

)
. (5.3)

We need the following consequence of the the proposition:

Corollary 5.4. Let k be a perfect Fp-algebra, let A be a k-algebra and
let ∆ ∈ W(k)[X1, . . . , Xn] be a form of degree d. If a1, . . . ,an ∈ W(A)
then

∆(V a1, . . . ,V an) = Fd−1 Vd(F∆)(a1, . . . ,an).

In particular, if ∆ ∈ Zp[X1, . . . , Xn] then

∆(V a1, . . . ,V an) = Fd−1 Vd ∆(a1, . . . ,an).

Proof. Let ∆ = Xd
1 . The formula is true for d = 1. Suppose that it is

true for d− 1. Then with the help of Corollary 5.3,

∆(V a) =(V a)(V a)d−1

=(V a)(Fd−2 Vd−1 ad−1)

=Vd(Fd−1 a · Fd−1 ad−1)

=Fd−1 Vd ∆(a).

Next, let d and n be arbitrary and suppose the formula is proved for
every Xd1

1 · · ·Xdn−1

n−1 with d1 + · · ·+ dn−1 ≤ d. Let ∆ = Xd1
1 · · ·Xdn

n with
d1 + · · ·+ dn = d. Then

∆(V a1, . . . ,V an) =(V a1)d1

n∏
i=2

(V ai)di

=Fd1−1 Vd1 ad1
1 · Fd−d1−1 Vd−d1

n∏
i=2

adi
i .
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Since F and V commute we can use Corollary 5.3 on this expression to
get

Vd

(
Fd−1 ad1

1 · Fd−1
n∏

i=2

adi
i

)
and because F is a homomorphism this equals Fd−1 Vd ∆(a1, . . . ,an).
Finally, let ∆ ∈ W(k)[X1, . . . , Xn] be an arbitrary form of degree d:

∆ =
∑

α∈I cα∆α, where the ∆α are monomials of degree d and cα ∈
W(k). Since k is perfect we may, for every α ∈ I, chose c′α such that
Fd−1 c′α = cα. We then have

∆(V a1, . . . ,V an) =
∑
α∈I

Fd−1 c′α Fd−1 V d∆α(a1, . . . ,an)

=Fd−1
∑
α∈I

Vd(Fd c′α ·∆α)

=Fd−1 Vd
∑
α∈I

F cα ·∆α

=Fd−1 Vd(F∆)(a1, . . . ,an).

In particular, if cα ∈ Zp = W(Fp) then F cα = cα, hence F∆ = ∆.

5.3 Assumptions and general results

In Chapter 4 we developed a version of motivic integration, valid for
any variety X de�ned over a complete discrete valuation ring, O. In this
chapter we will utilize this theory in the case when X is an a�ne space,
X = Ad

O. Actually, what interests us the most is when O = Zp, for then
the computations of certain p-adic integrals can be done in the motivic
setting, and then be obtained by applying Cp to the result.
In the present section �rst we go through the assumptions on X and

O used throughout this chapter; we then prove that all the integrals we
are interested in actually exist, and prove some basic facts about them.
The computations of measures and integrals given in this section are

all standard. We include them anyway, �rstly to establish notation and
give examples, and also to check that everything works also with respect
to our stronger topology

The setup

Throughout this chapter, we assume that X = Ad
O where O is a complete

discrete valuation ring with residue �eld k, of one of the following types:
• k is a perfect �eld, of prime characteristic p, and O = W(k), where

W is the ring scheme of Witt vectors constructed with respect to the
prime p.
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• k is a �eld, and O = k[[t]].
(We are mainly interested in the cases when O is either Zp or Q[[t]] so
that k = Fp and Q respectively.) Then the space of arcs X∞ of X = Ad

O
is the set

X∞ =

{
W(k)d, O = W(k)
k[[t]]d, O = k[[t]]

,

where k is an algebraic closure of k. We use the standard terminology in
connection with the Witt vectors, see Section 5.2. Moreover, in order to
get a uniform notation, we will write (xi)i≥0 for

∑
i≥0 xit

i ∈ k[[t]].
For every n, if O = W(k) then Xn is the k-scheme whose R-points is

Wd
n(R) for every k-algebra R (Wn is the Witt vectors of length n). If

instead O = k[[t]] then Xn(R) = (R[t]/(tn))d for every k-algebra R. We
use πn to denote the projection X∞ → Xn(k).

Convergence of integrals

We continue to use O to denote a complete discrete valuation ring with
residue �eld k, of the type de�ned above.
To show that the integrals we are interested in exist we need the fol-

lowing simple approximation:

Lemma 5.5. Let X = Ad
O and let A be a measurable subset of X∞. Then

0 ≤ µX (A) ≤ 1 and dim µX (A) ≤ 0.

Proof. Suppose �rst that A is stable of level n. We have πn(A) ⊂ Xn =
Adn

k , giving immediately that dim A = dim πn(A) − nd ≤ nd − nd = 0,
i.e., dim µX (A) ≤ 0. Also 0 ≤ [πn(A)] ≤ Ldn, hence 0 ≤ µX (A) ≤ 1.
In the general case there are, by de�nition, stable subsets Ai such

that µX (A) = limi→∞ µX (Ai), i.e., µX (A) = (µX (Ai))i∈N. Since the
equalities holds for stable sets it follows by de�nition that 0 = (0)i∈N ≤
µX (A) ≤ (1)i∈N = 1. The same reasoning goes for the statement about
dimension.

Lemma 5.6. Let X = Ad
O and let Ai be measurable subsets of X∞. If

ei →∞ as i →∞, then the sum
∑

i∈N µX (Ai)L−ei is convergent.

Proof. By Lemma 5.5, 0 ≤ µX (Ai)L−ei ≤ L−ei . By Example 4.14 the
sum

∑
i∈N L−ei is convergent if and only if dim L−ei → −∞, i.e., ei →

∞. In this case it follows from Lemma 4.16 that
∑

i∈N µX (Ai)L−ei is
convergent.

The motivic measure of {ord f ≥ n}
Let X 1 = A1

O and let X 1
∞ be its arc space. We have a function ord: X 1

∞ →
N ∪ {∞}, mapping x to the biggest power of the uniformizer dividing
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x, and with the properties that ord ab = ord a + ord b and ord(a + b) ≥
min{ord a, ord b}. We continue to write X for Ad

O. If f ∈ O[X1, . . . , Xd]
it de�nes a function X∞ → X 1

∞. So for n ∈ N we may consider the subset

{ord f ≥ n} := {(a1, . . . , ad) ∈ X∞ : ord f(a1, . . . , ad) ≥ n}.

When O = Zp this set has the property that {ord f ≥ n} ∩ Zd
p =

{(a1, . . . , ad) ∈ Zd
p : ordp f(a1, . . . , ad) ≥ n}.

Lemma 5.7. Let X = Ad
O. The subset {ord f ≥ n} ⊂ X∞ is stable of

level n and µX ({ord f ≥ n}) = [πn({ord f ≥ n})]L−dn.

Proof. To simplify the notation, we prove this for the special case when
O = W(k); the case when O = k[[t]] is similar. When we view X∞ as
the k-points on the ring scheme Wd, we see that {ord f ≥ n} is actually
the k-points on a closed subscheme. For let k[Xi0, Xi1, . . . , XiN , . . . ]di=1

represent Wd. Let f0, f1, . . . be the universal polynomials de�ning f in
the Witt vectors, i.e., fn ∈ k[Xi0, . . . , Xin]di=1 and if R is any k-algebra
and ri = (ri0, ri1, . . . ) ∈ W(R) for i = 1, . . . , d, then f(r1, . . . , rd) =
(f0(r1, . . . , rd), f1(r1, . . . , rd), . . . ) ∈ W(R). (We write fn(r1, . . . , rd) for
fn(r10, . . . , rd0; . . . ; r1n, . . . , rdn) ∈ R.) We then see that {ord f ≥ n} is
identi�ed with

{(x1, . . . , xd) ∈ W(k)d : f(x1, . . . , xd) ≡ 0 (mod Vn)} ⊂ X∞,

i.e.,

{(x1, . . . , xd) ∈ W(k)d : fi(x1, . . . , xd) = 0 for i = 0, . . . , n− 1} ⊂ X∞,

This in turn is the k-points on the close subscheme

Spec
k[Xi0, Xi1, . . . , XiN , . . . ]di=1

(f0, . . . , fn−1)
⊂ Wd.

Now πm(X∞) = Wd
m(k). Hence, for m ≥ n, we see that πm({ord f ≥

n}) is the k-points on the k-scheme

Spec
k[Xi0, . . . , Xi,m−1]di=1

(f0, . . . , fn−1)
.

In what follows we identify πm({ord f ≥ n}) with its underlying scheme.

We then see that πm({ord f ≥ n}) = πn({ord f ≥ n}) ×k Ad(m−n)
k . The

result follows.

When {f = 0} ⊂ Ad
O is smooth we have the following re�nement of

the preceding lemma:

91



Lemma 5.8 (Motivic Newton's Lemma). Let f ∈ O[X1, . . . , Xd] be
non-constant. Assume that {f = 0} ⊂ Ad

O is smooth. Consider the
subset {ord f ≥ n} ⊂ X∞, where n ≥ 1. Then [πn

(
{ord f ≥ n}

)
] =

L(d−1)(n−1)[π1

(
{ord f ≥ n}

)
] ∈ K0(Vark). In particular,

µX
(
{ord f ≥ n}

)
=
[
Spec k[X10,...,Xd0]

(f0)

]
L−n−d+1.

Proof. Let Z := {f = 0} ⊂ X . Note that, for every n ≥ 1,

πn{ord f ≥ n} = {x ∈ Wn(k)d : f0(x) = · · · = fn−1(x) = 0} = Zn(k).

Since Z is smooth, Z∞ is stable of level 1, hence [Zn] = L(d−1)(n−1)[Z1].
The result follows.

Motivic integrals of absolute values of polynomials

Next consider the function a 7→ L− ord f(a) : X∞ → K0(Vark). For a ∈
W(k) we write |a| := L− ord a and we want to compute the integral∫
X∞ |f |dµX . The following proposition shows that the integral exists.

Proposition 5.9. Let X = Ad
O. Let A be a measurable subset of X∞,

and f ∈ O[X1, . . . , Xd]. The integral
∫
A|f |dµX =

∫
A L− ord fdµX exists.

Moreover, when X = Ad
Zp

we have, for q any power of p, Cq

∫
A|f |dµX =∫

A∩W(Fq)d |f |pdµHaar.

Proof. By de�nition the integral equals µX (f = 0) · 0 +
∑

i∈N µX
(
A ∩

{ord f = i}
)
L−i. By Lemma 5.7, {ord f = i} is stable, hence A∩{ord f =

i} is measurable. The integral therefore exists by Lemma 5.6. Next, by
Proposition 4.34, Cq

∫
A L− ord fdµX =

∫
A∩W(Fq)d |f |pdµHaar.

When {f = 0} ⊂ Ad
O is smooth we may compute the integral more

explicitly:

Proposition 5.10. Let f ∈ O[X1, . . . , Xd] and assume that {f = 0} ⊂
Ad
O is smooth. Then∫

|f |dµX = 1− [Spec k[X10, . . . , Xd0]/(f0)]
L1−d

L + 1
∈ K0(Vark).

Proof. By de�nition we have∫
X∞
|f |dµX =

∑
m≥0

L−mµX {ord f = m}.

Since {ord f = m} = {ord f ≥ m} \ {ord f ≥ m + 1} we have

µX {ord f = m} =
[
Spec k[X10,...,Xd0]

(f0)

]
· L1−d(L−m − L−(m+1))
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for m ≥ 1. For m = 0 we have µX (ord f = 0) = µX (X∞ \{ord f ≥ 1}) =
1−

[
Spec k[X10,...,Xd0]

(f0)

]
L1−dL−1. Therefore, using Example 4.14,∫

X∞
|f |dµX

=1 +
[
Spec k[X10,...,Xd0]

(f0)

]
· L1−d

(
−L−1 +

∑
m≥1

L−m
(
L−m − L−(m+1)

))

=1−
[
Spec k[X10,...,Xd0]

(f0)

]
· L1−d

L + 1
.

Example 5.11. We look at the case when O = Zp: If f = aX +b, where

a ∈ Z×p , then
k[X0]
(f0) = k. Since [Spec k] = 1 we have

∫
X∞ |aX + b|dµX =

L
L+1 , showing in particular that if q is a power of p then

∫
W(Fq)|aX +

b|dX = q
q+1

More generally, assume that f is such that f0 is irreducible of degree d.

Then Spec k[X0]/(f0) ' Fpd , hence
∫
X∞ |f |dµX = 1−

[Spec F
pd ]

L+1 . Applying
Cq for di�erent powers of p shows that∫

W(Fq)
|f |pdµHaar =

{
1− d/(q + 1) q = pi where d | i
1 q = pi where d - i

.

Partitions of integrals

The primary purpose of this chapter is to show that the integral of the
absolute value of a certain polynomial in many variables is a rational
function in L, with coe�cients in Z. For this we begin with some lemmas
about general integrals of this kind of functions.

Lemma 5.12. Let A =
⋃

i∈N Ai be a disjoint union of stable subsets and
suppose that

∑
i∈N µX (Ai) is convergent (so that A is measurable). Then

for any f ∈ O[X1, . . . , Xd], we have
∫
A|f |dµX =

∑
i∈N
∫
Ai
|f |dµX .

Proof. By Proposition 5.9 the integral exists. Since Ai ∩ {ord f = m} is
stable, and Ai ∩ {ord f = m} ⊂ Ai, it follows from Lemma 4.31 that the
sum

∑
i∈N µX

(
Ai ∩ {ord f = m}

)
is convergent. Hence, since the union

A ∩ {ord f = m} =
⋃

i∈N Ai ∩ {ord f = m} is disjoint it follows from
Proposition 4.30 that µX

(
A ∩ {ord f = m}

)
=
∑

i∈N µX
(
Ai ∩ {ord f =

m}
)
. We may therefore write∫

A
|f |dµX =

∑
m∈N

µX
(
A ∩ {ord f = m}

)
L−m

=
∑
m∈N

∑
i∈N

µX
(
Ai ∩ {ord f = m}

)
L−m.
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Because of Lemma 5.6, if we do the above summation over an enumera-
tion of N2, it is convergent. Hence by Lemma 4.18 it equals∑

i∈N

∑
m∈N

µX
(
Ai ∩ {ord f = m}

)
L−m =

∑
i∈N

∫
Ai

|f |dµX .

Let f1, . . . , fr ∈ O[X1, . . . , Xd]. For α = (α1, . . . , αr) ∈ Nr we write
{ord fi = αi}r

i=1 for the subset {a ∈ X∞ : ord fi(a) = αi}r
i=1 ⊂ X∞.

Lemma 5.13. Let X = Ad
O. For I ⊂ (N∪ {∞})d (�nite or in�nite), let

UI :=
⋃

α∈I{ordXi = αi}d
i=1. Let f ∈ O[X1, . . . , Xd]. Then

∫
UI
|f |dµX =∑

α∈I

∫
{ord Xi=αi}|f |dµX . (In particular the integral exists.)

Proof. We show that UI is measurable, the result then follows from
Lemma 5.12. Since the union UI =

⋃
α∈I{ordXi = αi}d

i=1 is disjoint
it su�ces, by Proposition 4.30, to prove convergence of the sum∑

α∈I

µX ({ordXi = αi}d
i=1).

Let N be a large integer. We have πN ({ordXi = αi}d
i=1) ⊂

πN ({ordXi ≥ αi}d
i=1). The underlying scheme of this latter set is

Spec
k[Xi0, . . . , XiN ]di=1

(Xi0, . . . , Xi,αi−1)d
i=1

= Spec k[Xiαi , . . . , XiN ]di=1.

Hence
[πN ({ordXi = αi}d

i=1)] ≤ LNd−
Pd

i=1 αi

and consequently µX ({ordXi = αi}d
i=1) ≤ L−

Pd
i=1 αi . Now, when I is

in�nite we see that as α varies over I, max{αi}d
i=1 → ∞, hence that

−
∑d

i=1 αi → −∞. So by Example 4.14,
∑

α∈I L−
Pd

i=1 αi is convergent,
hence by Lemma 4.16,

∑
α∈I µX ({ordXi = αi}d

i=1) is convergent.

5.4 Change of variables

We prove three theorems about manipulation of these kind of integrals.
Recall that we use O to denote a complete discrete valuation ring with
perfect residue �eld k.

Linear change of variables

A linear change of variables is easy to do also in the motivic case:

Proposition 5.14. Let X = Ad
O and let aij ∈ O be such that the de-

terminant of M = (aij) is in O×. Given f ∈ O[X1, . . . , Xd], de�ne
g(X1, . . . , Xd) := f

(
(X1, . . . , Xd)M

)
. Then

∫
X∞ |f |dµX =

∫
X∞ |g|dµX .

94



Proof. We �rst prove that µX {ord f ≥ n} = µX {ord g ≥ n} for every n.
We have a map

{ord f ≥ n} → {ord g ≥ n},

given by (x1, . . . , xd) 7→ (x1, . . . , xd)M−1. This is a bijection, for it is
well de�ned since g(xM−1) = f(xM−1M) = f(x) ≡ 0 (mod Vn), and
it has a well de�ned inverse x 7→ xM . Therefore πn{ord f ≥ n} and
πn{ord g ≥ n} are isomorphic (viewed as subschemes of Xn), conse-
quently [πn{ord g ≥ n}] = [πn{ord f ≥ n}].
It follows that µX {ord f = n} = µX {ord g = n} for every n, hence

that the integrals are equal.

(The proposition holds more generally when X is any smooth O-
scheme and M : X → Y is an isomorphism of O-schemes.)

Separation of variables

Throughout this subsection, let X := Ad
O and Y := Ae

O. Moreover, let
Z := Ad+e

O = X ×O Y. We may then identify (Z)∞ with X∞ × Y∞.
Our aim is to show the separation of variables result, Theorem 5.17. We
do this using two partial results, which we state as the following two
lemmas:

Lemma 5.15. If A ⊂ X∞ and B ⊂ Y∞ are stable, then A×B ⊂ Z∞ is
stable, and µZ(A×B) = µX (A)µY(B).

Proof. Since A and B are stable there is an integer n with the
property that there are a �nite number of k-varieties Vi such that
πn(A) =

⋃
i Vi(k), and a �nite number of k-varieties Ui such that

πn(A) =
⋃

i Ui(k). We have

πn(A×B) =πn(A)× πn(B)

=
⋃
i

Vi(k)×
⋃
j

Uj(k)

=
⋃
i,j

Vi(k)× Uj(k)

=
⋃
i,j

(Vi ×k Uj)(k),

hence [πn(A×B)] =
∑

i,j [Vi×k Uj ] =
∑

i,j [Vi][Uj ] = (
∑

i[Vi])(
∑

j [Uj ]) =
[πn(A)][πn(B)]. Therefore µX×Y(A × B) = [πn(A × B)]L−n(d+e) =
([πn(A)]L−nd)([πn(B)]L−ne) = µX (A)µY(B).

Lemma 5.16. If A ⊂ X∞ and B ⊂ Y∞ are measurable, then A × B ⊂
Z∞ is measurable, and µZ(A×B) = µX (A)µY(B).
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Proof. Let Am and Cm
i be stable subsets of X∞ such that A ∆ Am ⊂⋃

i∈N Cm
i . Let um :=

∑
i∈N µX (Cm

i ) be convergent and limm→∞ um = 0.
Let Bm and Dm

i be stable subsets of Y∞ such that B ∆ Bm ⊂
⋃

i∈N Dm
i ,

where vm :=
∑

i∈N µX (Dm
i ) is convergent and limm→∞ vm = 0. Then

(A × B) ∆(Am × Bm) = (A ∆ Am) × (B ∆ Bm) ⊂
⋃

i∈N Cm
i × Dm

i . By
Lemma 5.15, µZ(Cm

i ×Dm
i ) = µX (Cm

i )µY(Dm
i ), hence by Lemma 4.20,

the sum sm :=
∑

i∈N µZ(Cm
i ×Dm

i ) is convergent, and sm ≤ umvm. Since
um and vm tends to zero the same holds for umvm and consequently also
for sm. Hence, since Am and Bm are stable,

µZ(A×B) = lim
m→∞

µZ(Am ×Bm)

= lim
m→∞

µX (Am)µY(Bm) = µX (A)µY(B).

Theorem 5.17 (Separation of variables). Let X , Y and Z be de�ned as
above. If A ⊂ X∞ and B ⊂ Y∞ are measurable, and f ∈ O[X1, . . . , Xd],
g ∈ O[Y1, . . . , Ye], then

∫
A×B|fg|dµZ =

∫
A|f |dµX ·

∫
B|g|dµY .

Proof. By Proposition 5.9 the integral is convergent:∫
A×B

|fg|dµZ =
∑
ξ∈N

µZ((A×B) ∩ {ord fg = ξ})L−ξ

Since {ord fg = ξ} =
⋃

µ+ν=ξ{ord f = µ} × {ord g = ν} we have

(A×B) ∩ {ord fg = ξ} =
⋃

µ+ν=ξ

(
A ∩ {ord f = µ}

)
×
(
B ∩ {ord g = ν}

)
and since this is a disjoint union of measurable sets it follows from the
previous lemma that∫

A×B
|fg|dµZ

=
∑
ξ∈N

( ∑
µ+ν=ξ

µX
(
A ∩ {ord f = µ}

)
· µY

(
B ∩ {ord g = ν}

))
L−ξ.

Since this sum is convergent, Lemma 4.19 says that we may rearrange it
to obtain(∑

µ∈N
µX
(
A ∩ {ord f = µ}

)
L−µ

)(∑
ν∈N

µY
(
B ∩ {ord f = ν}

)
L−ν

)

=
∫

A
|f |dµX ·

∫
B
|g|dµY
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Multiplication by the uniformizer

In this subsection we prove a motivic version of the change of variables
induced by multiplication by the uniformizer of the discrete valuation
ring.
To simplify notation, we write k[X•0, . . . , X•N ] for the polynomial ring

k[Xi0, . . . , XiN ]ni=1. As usual, we use QN to denote the universal polyno-
mials de�ning Q ∈ O[X1, . . . , Xn], so that QN ∈ k[X•0, . . . , X•N ]. (See
the discussion in the proof of Lemma 5.7.)

Lemma 5.18. Let X = An
O. Let Q ∈ O[X1, . . . , Xn] be a form of degree

s. If ordxi > 0 for i = 1, . . . , n, then ordQ(x1, . . . , xn) ≥ s. Moreover
for every ξ ∈ N

µX ({ordQ > ξ + s, ordxi > 0}n
i=1) = L−nµX ({ordQ > ξ}).

Proof. For N su�ciently large, πN+1(ordQ > ξ + s, ordxi > 0) is the
spectrum of the algebra

k[X•0, . . . , X•N ](
Q0, . . . , Qξ+s, X•0

) .
The class of this in K0(Vark) equals the class of the spectrum of

k[X•1, . . . , X•N ](
Q0(X•1), . . . , Qξ(X•1, . . . , X•ξ+1)

) .
In the mixed characteristic case, this is proved using Corollary 5.4 (from
the section about the Witt vectors), together with the fact that [X] =
[Xred] for any scheme X. In the equal characteristic case it is straight
forward to prove.
Now, using the change of variables X•i 7→ X•i−1, the spectrum of this

algebra is πN (ordQ > ξ). The result follows.

Theorem 5.19. Let X = An
O, and let Q ∈ O[X1, . . . , Xn] be a form

of degree s. De�ne A = {ordxi > 0}n
i=1 ⊂ X∞. Then

∫
A|Q|dµX =

L−s−n
∫
X∞ |Q|dµX .

Proof. By the �rst part of Lemma 5.18, {ordQ = ξ, ordxi > 0}n
i=1 = ∅

for ξ < s, hence∫
A
|Q|dµX =

∑
ξ≥0

µX {ordQ = ξ + s, ordxi > 0}L−(ξ+s).

Using the second part of the lemma it follows that this equals∑
ξ≥0

L−nµX (ordQ = ξ)L−(ξ+s) = L−s−n

∫
X∞
|Q|dµX .
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5.5 The integral of the absolute value of a product of
special linear forms

As before, we let O be a complete discrete valuation ring with residue
�eld k, of one of the types described in Section 5.3. We de�ne, for any
n ∈ N, X n = An

O, and we let X n
∞ be its space of arcs.

The main result of this section is Theorem 5.27. In Theorem 5.27
we give a recursive method to compute I =

∫
Xn
∞
|
∏

`i|dµXn , where

`i ∈ Z[X1, . . . , Xn] are linear forms. When O = k[[t]], these forms are
arbitrary; when O = W(k) we need the forms to be of a rather special
type. The restriction in the second case is taken care of in Section 5.6,
in Theorem 5.32, when we give a recursion that works for general forms
in case O = W(k), provided that the characteristic of k is su�ciently
large.
When applicable, these theorems also give a function f ∈ Z(T ) such

that I = f(L). If we let O = Zp this also gives a motivic explanation to
the phenomenon discussed in the introduction. For by applying Cq to I,
for di�erent powers q of p, we get

∫
W(Fq)|

∏
`i|dµHaar = f(q).

Remark 5.20. As mentioned in the introduction, it is not true in general
that the motivic integral of the absolute value of a polynomial is equal to
f(L), with f ∈ Z(T ). This can be seen from the integral

∫
X 1
∞
|x2+1|dµX 1 :

When O = Zp with p ≡ 3 mod 4, then by Example 5.11 this integral
is equal to 1 − [Spec Fp2 ]/(L + 1), and by applying the point counting
homomorphism for di�erent powers of p we see that this cannot be equal
to f(L) for f ∈ Z(T ).

The crucial step in the recursion

The main result of this subsection is a change of variables result, Theorem
5.26, which is the crucial step in performing the recursion of Theorem
5.27. However, since the motivic recursion is inspired by a p-adic com-
putation, but requires a di�erent, more complicated, method, we begin
by brie�y discuss the p-adic method, and why it does not translate to
the motivic case. This is done in the following example:

Example 5.21. Suppose we want to compute I =
∫
A|α1−α2|dα, where

we integrate over the set A ⊂ Z3
p of tuples such that α1 ≡ α2 mod p

and α1 6≡ α3 mod p. One way to do this is to express the integral in
terms of an integral of the same function, but now integrated over all of
Z3

p. This is what is done for general integrals, and in the motivic setting
in Theorem 5.26. We illustrate this method on the integral I: Choosing
a set of representatives of the cosets of pZp, x 7→ x̃ : Fp → Zp, we may
write each such αi uniquely as αi = x̃i + pβi. Moreover, αi ≡ αj mod p
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if and only if xi = xj in Fp. Hence

I =
∑

x∈F3
p:

x1=x2 6=x3

∫
αi=x̃i+pβi

|αi − αj |dα.

On each of these integrals we perform the change of variables αi = x̃i+pβi

(the xi are �xed). The Jacobian of this has absolute value p−3, hence
each of the integrals in the sum equal p−3

∫
Z3

p
|pβ1 − pβ2|dβ. (This step

do not generalize to arbitrary linear forms, since then the x̃i will not
cancel.) Since there are p(p − 1) terms in the sum, we �nd that I =
p(p− 1)p−3−1

∫
Z3

p
|β1 − β2|dβ.

The main problem in translating this to the motivic setting is that it
is not possible to partition the integration set in this manner. However,
this partition is not visibly in the result of the computation, so the result
might still be possibly to translate into the motivic setting. This is done
in Theorem 5.26. Also, note that in that theorem we work in the most
general case possibly, contrary to in this example.

To prove Theorem 5.26 we �rst needs two lemmas about the Witt
vectors. See Section 5.2 for notation used in connection with the Witt
vectors.

Lemma 5.22. Let k be a perfect �eld of characteristic p, where p is
a prime di�erent from 2, and let ` = aX + bY ∈ W(k)[X, Y ] be a
linear form in two variables whose coe�cients are multiplicative repre-
sentatives. For x = (x0, x1, . . . ) ∈ W(A), where A is a k-algebra, de�ne
x̃ = (x1, x2, . . . ) ∈ W(A). Let y ∈ W(A) and de�ne ỹ similarly. Suppose
that `(x, y) ≡ 0 mod V. Then `(x, y) = V `(x̃, ỹ). If p = 2 the result
holds provided ` = X − Y .

Proof. When p 6= 2 we have for every ring A that −1 = − r(1) = r(−1) ∈
W(A). This follows in the standard way by �rst proving it when p is
invertible in A. In this case W ∗ is an isomorphism, and since W ∗ r(x) =
(x, xp, xp2

, . . . ) we have W ∗ r(1)+W ∗ r(−1) = 0 so the result follows. But
if it this result is true for a ring A, it holds for every sub- and quotient
ring, hence for every ring.
Let a = r a0 and b = r b0. The condition `(x, y) ≡ 0 mod V then

means that a0x0 + b0y0 = 0. From what was said above it follows that
a rx0 + b r y0 = r(a0x0) + r(b0y0) = r(a0x0) + r(−a0x0) = 0. We then
have

`(x, y) =`(rx0 + V x̃, r y0 + V ỹ)
=(a rx0 + b r y0) + (aV x̃ + b V ỹ)
=V(F a · x̃) + V(F b · ỹ)
=V `(x̃, ỹ).
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When p = 2 we may still prove the result when ` = X − Y , for if
`(x, y) ≡ 0 mod V then x0 = y0, hence r(x0) = r(y0).

Recall the notation used in Section 5.4: We write k[X•0, . . . , X•N ] for
the polynomial ring k[Xi0, . . . , XiN ]ni=1, and use QN to denote the uni-
versal polynomials de�ning Q ∈ O[X1, . . . , Xn].

Lemma 5.23. Fix a perfect �eld k of characteristic p. Let P =
∏d

i=1 `i ∈
W(k)[X1, . . . , Xn], where the `i are linear forms, all of whose coe�cients
are multiplicative representatives, at most two of which are non-zero.
Moreover, if p = 2, assume that all the forms are of the type Xi−Xj. Let
x1, . . . , xn ∈ W(A), where A is a k-algebra, be such that `i(x1, . . . , xn) ≡
0 mod V for every i, and de�ne x̃i as in Lemma 5.22. Then

P (x1, . . . , xn) = Fd−1 Vd P (x̃1, . . . , x̃n).

In particular, working in W(k[X•n]n∈N), we have Pξ = 0 for ξ < d, and

Pξ+d = Pξ(X•1, . . . , X•ξ+1)pd−1
for ξ ∈ N.

Proof. Using the preceding lemma and Corollary 5.3 we get

P (x1, . . . , xn) =
d∏

i=1

`i(x1, . . . , xn)

=
d∏

i=1

V `i(x̃1, . . . , x̃n)

= Fd−1 Vd
d∏

i=1

`i(x̃1, . . . , x̃n)

= Fd−1 Vd P (x̃1, . . . , x̃n)

In the case of equal characteristic, this lemma also holds, but for any
set of linear forms. Its proof is straight forward, we just state the result:

Lemma 5.24. Let k be a �eld, and let O = k[[t]]. Let P =
∏d

i=1 `i ∈
O[X1, . . . , Xn], where the `i are linear forms. Let x1, . . . , xn ∈ A[[t]],
where A is a k-algebra, be such that `i(x1, . . . , xn) ≡ 0 mod t for every
i, and de�ne x̃i as in Lemma 5.22 (recall that we write elements of power
series rings as tuples). Then

P (x1, . . . , xn) = tdP (x̃1, . . . , x̃n).

In particular, working in k[X•n]n∈N[[t]], we have Pξ = 0 for ξ < d, and
Pξ+d = Pξ(X•1, . . . , X•ξ+1) for ξ ∈ N.

Lemma 5.25. Let S be a �nite set. Let Q =
∏

i∈S `i, where the `i ∈
O[X1, . . . , Xn] are linear forms satisfying the following conditions:
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• If O = k[[t]] then the `i are arbitrary
• If O = W(k), where k is a �eld of prime characteristic di�erent
from 2, then each `i is linear form in at most two variables, and its
coe�cients are multiplicative representatives.
• If O = W(k), where k is a �eld of characteristic 2, assume that all
the forms are of the type Xi −Xj

Let T be a subset of S. If ord `i > 0 for i ∈ T , then ordQ ≥ |T |.
Moreover, for every integer ξ ≥ −1 we have

µXn(ordQ > ξ + |T |, ord `i > 0, i ∈ T, ord `i = 0, i ∈ S \ T )

= [HT ]
Ln µXn(ordQ > ξ),

where HT is the subvariety of X n
1 = An

k given by (`i)0 = 0 for i ∈ T and
(`i)0 6= 0 for i ∈ S \ T .

Proof. For N su�ciently large, πN+1(ordQ > ξ + |T |, ord `i > 0, i ∈
T, ord `i = 0, i /∈ T ) is the spectrum of the algebra

k[X•0, . . . , X•N ][(`i)−1
0 ]i/∈T(

Q0, . . . , Qξ+|T |, (`i)0
)
i∈T

.

By Lemma 5.23 or 5.24 the class of this equals the class the spectrum of

k[X•0, . . . , X•N ][(`i)−1
0 ]i/∈T(

Q0(X•1), . . . , Qξ(X•1, . . . , X•ξ+1), (`i)0
)
i∈T

.

Now, since the (`i)0 only involves the variables X•0, we may write this
as

k[X•0][(`i)−1
0 ]i/∈T

((`i)0)i∈T
⊗k

k[X•1, . . . , X•N ]
(Q0(X•1), . . . , Qξ(X•1, . . . , X•ξ+1))

The spectrum of the �rst factor is HT whereas, using the change of
variables X•i 7→ X•i−1, the spectrum of the second factor is πN (ordQ >
ξ). The result follows.

Theorem 5.26. Let S be a �nite set. For i ∈ S, let `i ∈ O[X1, . . . , Xn] be
a linear forms, satisfying the conditions of Lemma 5.25. Let Q =

∏
i∈S `i.

For T ⊂ S, de�ne QT =
∏

i∈T `i. Let HT be the subvariety of X n
1 = An

k

given by (`i)0 = 0 for i ∈ T and (`i)0 6= 0 for i ∈ S \ T . Then∫
ord `i 6=0,i∈T
ord `i=0,i/∈T

|Q|dµXn = [HT ]L−|T |−n

∫
Xn
∞

|QT |dµXn .

Proof. By the �rst part of the lemma,

{ordQ = ξ, ord `i > 0, i ∈ T, ord `i = 0, i /∈ T} = ∅
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for ξ < |T |, hence∫
ord `i 6=0,i∈T
ord `i=0,i/∈T

|Q|dµXn =
∫

ord `i 6=0,i∈T
ord `i=0,i/∈T

|QT |dµXn

equals∑
ξ≥0

µXn(ordQT = ξ + |T |, ord `i > 0, i ∈ T, ord `i = 0, i /∈ T )L−(ξ+|T |).

Using the second part of the lemma it follows that this equals∑
ξ≥0

[HT ]L−nµXn(ordQT = ξ)L−(ξ+|T |) = [HT ]L−|T |−n

∫
Xn
∞

|QT |dµXn .

The recursion

We are �nally ready to give the motivic version of the recursion. We will
then see in Example 5.30 how to use this in practice.

Theorem 5.27. Let O be a complete discrete valuation ring. Let Q =∏
i∈S `i, where `i ∈ O[X1, . . . , Xn] are linear forms, satisfying the con-

ditions of Lemma 5.25. Then
∫
Xn
∞
|Q|dµXn is a rational function in L,

i.e., there is an f ∈ Z(T ) such that the integral equals f(L). Moreover,
f may be computed explicitly by recursion.

Proof. This recursion is immediate, using Theorem 5.26: Write, for T ⊂
S, QT :=

∏
i∈T `i. We have∫

Xn
∞

|Q|dµX =
∫

`i=0, i∈S
|Q|dµX +

∑
T(S

∫
`i=0, i∈T

`i 6=0, i∈S\T

|QT |dµX .

Theorem 5.26 now shows that

(1− [HS ]L−|S|−n)
∫
Xn
∞

|Q|dµX =
∑
T(S

[HT ]L−|T |−n

∫
Xn
∞

|QT |dµX . (5.28)

The right hand side is known inductively. Moreover, since dim HS ≤ n it
follows that [HS ]L−|S|−n ∈ F≤−|S|Mk, hence it is not equal to 1. Also,
by the �rst part of the proof of Theorem 5.29, HS is an a�ne space, hence
equal to Lm for some m. Therefore, by Example 4.14, 1 − [HS ]L−|S|−n

is invertible. Hence
∫
Xn
∞
|Q|dµX is as a rational function in L and the

classes of various hyper plane arrangements. Because of the next theorem,
Theorem 5.29, it follows that the integral is a rational function in L.

The following theorem is of course already well known. We provide a
proof for completeness.
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Theorem 5.29. Let V be a �nite dimensional k-space, I a �nite set
and for every i ∈ I, let `i : V → k be a linear function. For S ⊂ I, let
HS = {`i = 0, i ∈ S, `i 6= 0, i /∈ S} ⊂ AV , i.e, HS(R) = {x ∈ R ⊗k V :
`i(x) = 0, i ∈ S, `i(x) ∈ R×, i /∈ S} for every k-algebra R. Then there is
a polynomial p ∈ Z[X] such that [HS ] = p(L) ∈ K0(Vark).

Proof. First, let U = ∩i∈S ker `i. Then HS = {`i|U 6= 0, i /∈ S} ⊂ AU . We
may therefore assume that S = ∅. We now prove the claim by induction
on the number of hyperplanes: First, let ` : V → k be non-zero. We may
then choose a basis of V , {e1, . . . , ed} such that `(e1) = 1 and `(ei) = 0
for i > 1. Hence {` 6= 0} = Spec k[X1, . . . , Xd][X−1

1 ], and consequently
[{` 6= 0}] = Ld−1(L− 1) ∈ K0(Vark).
Assume now that the claim holds for any k-space V and for any col-

lection of less than n hyperplanes. Let H = {`i 6= 0}n
i=1 ⊂ AV . De�ne

U = ker `n. Then {`i 6= 0}n−1
i=1 ⊂ AV is the disjoint union of H and

{`i|U 6= 0}n−1
i=1 ⊂ AU ⊂ AV , hence [H] = [{`i 6= 0}n−1

i=1 ] − [{`i|U 6=
0}n−1

i=1 ] ∈ K0(Vark), and we are done by induction.

We illustrate this with an example.

Example 5.30. We apply this to the example that motivated this com-
putations, the integral V n :=

∫
Xn
∞

∣∣∏
1≤i<j≤n(Xi −Xj)

∣∣dµXn. By (5.28)
we have (

1− [{X1 = X2}]L−2−1
)
V 2 = [{X1 6= X2}]L−2.

Since [{X1 = X2}] = L and [{X1 6= X2}] = L2 − L it follows that
V 2 = L/(L + 1).
Note that V 2 may also be computed using change- and separation of

variables, together with the result of Example 5.11: V 2 =
∫
X 2
∞
|X1 −

X2|dµX 2 =
∫
X 2
∞
|X1|dµX 2 =

∫
X 1
∞
|X1|dµX 1 ·

∫
X 1
∞

dµX 1 = L/(L + 1).
Next we compute V 3. Here we really need our recursion, there is no

straight forward way to compute V 3, as was the case with V 2. So we use
(5.28) to obtain

(1− [{X1 = X2 = X3}]L−3−3)V 3

=3[{X1 = X2 6= X3}]L−1−3

∫
X 3

|X1 −X2|dµX

+ [{X1 6= X2, X2 6= X3, X1 6= X3}]L−3.

Here the classes of the two �rst hyperplane arrangements are straight
forward to compute, [{X1 = X2 = X3}] = L, and [{X1 = X2 6= X3}] =
L(L−1). For the third one we use the method of Theorem 5.29 to obtain
(the expected result) [H∅] = L(L − 1)(L − 2). Finally, by separation of
variables, the integral in the right hand side equals V 2. Putting things

together we obtain V 3 = (1−L−1)(1−L−1+L−2)
(1+L−1)(1−L−5)

.
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Remark 5.31. The integrals V n comes up in connection with the prob-
lem of computing the density of the monic nth degree polynomials whose
Galois group is the full symmetric group and whose nontrivial inertia
groups are generated by a transposition. It is possible to do the same
thing for general Weyl groups, and the integrals appearing in these com-
putations are also possible to handle using the recursion.

5.6 The integral of the absolute value of a product of
arbitrary linear forms

In this section, we give a way to compute the integrals for arbitrary
forms that works also in the mixed characteristic case. However, we have
to assume that the characteristic of the residue �eld is su�ciently large,
and that the forms have coe�cients in Z. Also, this method is rather
complicated to use in practice. (This method works also in the case if
equal characteristic, but since we already have Theorem 5.27 in that
case, we state the following theorem in the case of mixed characteristic
only.)

Theorem 5.32. Let X = An
O, where O = W(k) and k is a perfect

�eld of characteristic p. Let Q =
∏

i∈S `i, where `i ∈ Z[X1, . . . , Xn] are
linear forms. Then, if p is su�ciently large,

∫
X∞ |Q|dµXn ∈ K0(Vark) is

a rational function in L, i.e., there is an f ∈ Z(T ) such that the integral
equals f(L). Moreover, there is an algorithm for computing f .

Proof. We do the recursion over the number of forms, the cardinality
of S. Also, for the recursion to work, we compute

∫
mj=0, j∈M |Q|dµ for

any �nite set of linear functions mj , j ∈ M (in fact, it would su�ce
to compute it for the two cases when M = ∅, and when all the `j are
contained among the mj):
So assume that all such integrals are known when Q is any product

of less that |S| linear forms. We then want to compute
∫
mj=0, j∈M |Q|dµ,

where Q =
∏

i∈S `i

As a �rst reduction, note that we may assume that

K :=
⋂
i∈S

ker `i ∩
⋂

j∈M

kermj

is equal to 0. For let K ′ be a linear complement of K. Let Y = AK and
Z = AK′ . Then, by separation of variables, Theorem 5.17,∫

mj=0, j∈M
|Q|dµX =

∫
Y∞

dµY

∫
mj=0, j∈M

|Q|dµZ =
∫
mj=0, j∈M

|Q|dµZ .

Hence, after a linear change of variables, Proposition 5.14, we may
assume that all the elements of the dual basis is contained among the `i
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and mj , i.e., `i = xi for i = 1, . . . , n′ and mj = xn′+j for j = 1, . . . , n−n′.
For this to work, we need the Jacobian to be invertible in Zp, which it
is for p su�ciently large.
For T ⊂ S, write QT :=

∏
i∈T `i. Note that, for T ( S, the integral

IT :=
∫

`i=0, i∈T
`i 6=0, i∈S\T

|QT |dµ

is known by induction. For we may eliminate the `i 6= 0 conditions in
the following way: Choose t ∈ S \ T . Then

IT +
∫

`i=0, i∈T
`i 6=0, i∈S\(T\{t})

`t=0

|QT |dµ =
∫

`i=0, i∈T
`i 6=0, i∈S\(T\{t})

|QT |dµ,

so inductively, IT may be expressed as an alternating sum of∫
`i=0, i∈T
`i=0, i∈T ′

|QT |dµ,

for di�erent T ′ ⊂ S \ T .
We now compute

∫
Xn
∞
|Q|dµ in terms of things that are already known

by induction:∫
Xn
∞

|Q|dµ =
∫

`i=0, i∈S
|Q|dµ +

∑
T(S

∫
`i=0, i∈T

`i 6=0, i∈S\T

|QT |dµ.

Since we may assume that `i = xi for i = 1, . . . , n, we have {`i = 0}i∈S =
{xi = 0}n

i=1. Hence �rst term of the sum is, by Theorem 5.19, equal to
L−n−s

∫
Xn
∞
|Q|dµ. The rest of the terms (after the summation sign), is

already known by induction. Denote this second sum with Σ. It then
follows that

∫
X∞ |Q|dµ = (1−L−s−n)−1Σ. (That 1−L−s−n is invertible

follows from Example 4.14.)
Consider now an arbitrary integral:∫

mj=0, j∈M
|Q|dµ =

∫
`i=0, i∈S

mj=0, j∈M

|Q|dµ +
∑
T(S

∫
`i=0, i∈T

`i 6=0, i∈S\T
mj=0, j∈M

|QT |dµ

The terms after the summation sign is again taken care of by the induc-
tion assumption. The �rst term is, because of Theorem 5.19, equal to
L−n−s

∫
Xn
∞
|Q|dµ. By the �rst part of the induction step, this is already

known. (It would su�ce to compute this integral in the case when all `i

are contained among the mi, and in this case we get
∫
mj=0, j∈M |Q|dµ =

L−n−s
∫
Xn
∞
|Q|dµ.)

105



5.7 Varying the prime

Let us mention one remaining question about these integrals: From the
computations performed in Theorem 5.27 and 5.32 it is clear that f ∈
Z(T ), the rational function with the property that

∫
Xn
∞
|
∏

`i|dµXn =
f(L), is independent of O, provided that we choose O among the rings

{W(k) : p su�ciently large} ∪ {k[[t]]}.

In particular, we have
∫

Zn
p
|
∏

`i|dµHaar = f(p) for p big enough. It would

be desirable to have a motivic explanation also for this fact. This can
probably be achieved using the theory of motivic integration developed
in [CL08]. Alternatively, we indicate in the following paragraph how the
problem could be handled using geometric motivic integration:

Motivic computation of the rational function

By Theorem 6.1 of [DL01], if O = Q[[t]], if Y = {P = 0} ⊂ X n where
P is a polynomial, and if J(T ) =

∑
i≥0[Yi+1]T i ∈ MQ[[T ]], then the

following holds: Firstly, J(T ) is rational, with denominator consisting
of factors of the form 1 − LaT b. Moreover, if we choose representatives
for the coe�cients of J(T ), de�ned over Z, and then count Fp-points
on them, then for p su�ciently large we get the power series Jp(T ) =∑

i≥0|{x ∈ (Z/(pi+1))n : P (x) = 0}|T i.
The process of choosing representatives for elements of MQ, and

then counting Fp-points on them for all p, de�nes a homomorphism
C: MQ →

∏
p Q/∼, where (ap) and (bp) are equivalent if ap = bp for

almost all p. (The �lter product with respect to the Fréchet �lter.)
Since

∫
Zn

p
|P |dµHaar = 1 + p−n−1(1 − p)Jp(p−1−n), one could de�ne the

motivic integral of P by �rst computing J as a rational function, and
then de�ne the integral to be

I = 1 + L−n−1(1− L)J(L−1−n) ∈MQ[(1− Li)−1]i≥1.

This integral then has the property that C I =
(∫

Zn
p
|P |dµHaar

)
p
∈∏

p Q/∼. For example, let P = X2+1, and let m = [Spec Q[X]/(P (X))].
Using Theorem 5.8 one sees that J(T ) = m/(1−T ), so the integral of P
is 1−m/(L+1). Hence, for p su�ciently large the value of

∫
Zp
|P |dµHaar

is 1 if p ≡ 1 mod 4 and (p− 1)/(p + 1) if p ≡ 3 mod 4 (a result that of
course is true for all p).
Probably the method used to prove Theorem 5.27 can be used also

to compute J(T ) when P is a product of linear forms, showing that the
integral equals f(L) ∈MQ[(1−Li)−1]i≥1, hence that

∫
Zn

p
|
∏

`i|dµHaar =
f(p) for p big enough.
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Small p

We now give an example showing that f is not independent of p for
all p, only for p su�ciently large. For this, �x a prime l. Let p be any
prime di�erent from l, and let X 2 = A2

Zp
. Then, using Proposition 5.14,

Proposition 5.17, and Proposition 5.10, we see that∫
X 2
∞

|(x1 + x2)(x1 − (l − 1)x2)|dµX 2

=
∫
X 2
∞

|y1y2|dµX 2 =
(∫
X 1
∞

|y|dµX 1

)2
= L2

(L+1)2
.

If this formula were true for p = l, then it would follow that
∫

Z2
p
|(x1 +

x2)(x1−(p−1)x2)|dx1dx2 = p2

(p+1)2
, contradicting the following example.

Example 5.33. Consider the linear mapping

(x1, x2) 7→ (x1 + x2, x1 − (p− 1)x2) : Z2
p → Z2

p.

It is easy to check that it is injective, that its image is
⋃p−1

a=0(a + pZp)2,
and that its Jacobian is constant of absolute value 1/p. Hence∫

Z2
p

|(x1 + x2)(x1 − (p− 1)x2)|dx1dx2 = p

p−1∑
a=0

∫
(a+pZp)2

|y1y2|dy1dy2.

Now if a 6= 0,
∫
(a+pZp)2 |y1y2|dy1dy2 = (

∫
a+pZp

dy)2 = 1/p2, whereas∫
(pZp)2 |y1y2|dy1dy2 = (

∫
pZp
|y|dy)2 = (

∫
Zp
|y|dy−

∫
Z×p dy)2 = (p/(p + 1)−

(p− 1)/p)2 = 1/(p(p + 1))2, hence∫
Z2

p

|(x1 + x2)(x1 − (p− 1)x2)|dx1dx2 = p2+p−1
(p+1)2

.
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