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Abstract

A prop profile of a differential geometric structure is a minimal resolution
of an algebraic prop such that representations of this resolution are in one-
to-one correspondence with structures of the given type. We begin this
thesis with a detailed account of the algebraic tools necessary to construct
prop profiles; we treat operads and props, and resolutions of these through
Koszul duality.

Our main results can be summarized as follows.

Firstly, we contribute to the work of S.A. Merkulov on the prop profiles of
Poisson and Nijenhuis structures. We prove that the operad of the latter
prop profile is Koszul by showing that it has a PBW-basis, and we provide a
geometrical interpretation of the former in terms of an L-infinity structure
on the structure sheaf of a manifold.

Secondly, we construct prop profiles of compatible Poisson and Nijenhuis
structures. Representations of minimal resolutions of props correspond to
Maurer-Cartan elements of certain Lie algebras associated to the resolved
props. Also the differential geometric structures are defined as solutions
of Maurer-Cartan equations. We show the correspondence between props
and differential geometry by providing explicit isomorphisms between
these Lie algebras.

Thirdly, in order to construct the prop profiles of compatible Poisson and
Nijenhuis structures we study operads of compatible algebraic structures.
By studying Cohen-Macaulay properties of posets associated to such oper-
ads we prove the Koszulness of a large class of operads of compatible struc-
tures.
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Introduction

The aim of this thesis is two-fold. To introduce the reader to the general
notion of prop profiles of differential geometric structures and to construct
the specific prop profiles of compatible Poisson structures and compati-
ble Nijenhuis structures. To accomplish the first aim we will give thor-
ough definitions of operads and props and their Koszul duality theories.
Through a solid understanding of how to compute minimal resolutions of
props the link to the differential geometric structures can be made very
clear; the differentials of the propic resolutions correspond to the Lie brack-
ets defining the differential geometric structures. Having made this cor-
respondence clear through previously known examples we hope that the
newly constructed prop profiles will be accessible to the reader.

Operads, dioperads, properads, and props

One perspective on operads is that they are structures which parametrize
operations on a space; one forgets the space and studies properties of the
operations themselves. Operads can be defined in any monoidal category
but we will only consider operads in the categories of vector spaces, dif-
ferential graded vector spaces and sets. The fundamental example of an
operad is the endomorphism operad EndV of multilinear endomorphisms
of aK-vector space V . Explicitly, it is given by the family

EndV = {
EndV (n) := HomK(V ⊗n ,V )

}
n∈N .

The axioms of an operad are modeled after the properties of composition
of multivariate functions. An associative algebra is a vector space V and an
element µ ∈ EndV (2) satisfying the associativity condition µ ◦ (µ⊗ Id) = µ ◦
(Id⊗µ). This condition is encoded by an operad, As; an operad morphism
As → EndV is equivalent to an associative algebra structure on V . Similarly
there exist operads C om and Lie encoding commutative algebras and Lie
algebras to name but a few.

On the other hand, operads can be considered as algebraic objects in their
own right in that they constitute a generalization of associative algebras. An
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associative algebra consists of a vector space A and a product ◦ : A⊗A → A;
an operad P consists of certain families of these,

{P (n)}n∈N and {◦n,n′
i : P (n)⊗P (n′) →P (n +n′−1)}.

For an algebra there are two ways any given element a ∈ A can be multi-
plied with another element b ∈ A, b ◦ a and a ◦b. For a pair of elements of
an operad p ∈ P (n) and q ∈ P (m) we have the products p ◦1 q, . . . , p ◦n q ,
and q ◦1 p, . . . , q ◦m p. With the many ways of composing elements, a one-
dimensional way of writing does not give a very clear picture of expressions
involving iterated multiplications. Enter graphs. By considering graphs
decorated with elements of the spaces P (n) we can give an illuminating
and precise description of this two-dimensional multiplication. For oper-
ads the graphs used are rooted trees.

Operads are good for describing many algebraic structures but cannot
model structures which have operations with both multiple inputs and
multiple outputs, e.g. a Lie bialgebra structure on a vector space V consists
of both a Lie bracket [_,_] : V ⊗V → V and a Lie cobracket ∆ : V → V ⊗V .
To encode such structures we need dioperads, properads, and props.
They all consist of families {P (m,n)}m,n∈N of vector spaces but differ in
according to which graphs we allow to compose elements, the restrictions
being on genus, connectedness and directed loops. Our presentation of
operads and generalizations will be based on the unifying approach of
G∗-algebras [41] which are algebraic structures in which the product is
modeled by classes of directed graphs. This makes it possible to define all
the above structures as instances of G∗-algebras differing just in which
class of graphs one considers.

For many applications the categories of algebraic structures such as asso-
ciative or Lie algebras have proven to be too restrictive. One of the more
important examples of this is the morphism between the Lie algebra of
polydifferential operators of a manifold and its homology, the Lie algebra
of polyvector fields, constructed in [26]. It had long been know that the
two were quasi-isomorphic as vector spaces but no morphism respecting
their Lie algebra structures existed. By relaxing the conditions defining a
Lie algebra so that the Jacobi identity no longer needs to hold but only is
required to hold up to homotopy with respect to a hierarchy of higher oper-
ations, one gets the notion of L∞-algebra, see e.g. [27]. Similarly the notion
of homomorphism is relaxed. Working in this category M. Kontsevich was
able to construct an L∞-quasi-isomorphism between the two Lie algebras
which implied the settling of the deformation quantization conjecture; that
there is a one-to-one correspondence between star products and Poisson
structures on a manifold.

Operads and generalizations are deeply involved in this affair by giving
a conceptual understanding of these relaxed structures, which have the

2



epithets infinity or strongly homotopy; the operad governing L∞-algebras
is given by the minimal quasi-free resolution Lie∞ of the operad Lie. By
computing minimal resolutions of other operads one obtains operadic
descriptions of strongly homotopy structures, e.g. the minimal resolution
As∞ of the operad As encodes A∞-algebras. Algebras over minimal
resolutions of operads and props are in some sense more natural to
consider; e.g. such structures transfer between homotopy equivalent
vector spaces [28] and make it possible to define the cohomology of
algebras over an operad in terms of Ext-functors [46]. As we will see,
these minimal resolutions also provide a means to give concise algebraic
descriptions of many differential geometric structures.

To compute the resolutions explicitly is in general a very difficult problem,
but for certain operads there exists a tractable way. The theory of Koszul
algebras has been generalized to operads [20], dioperads [18], properads
and props [56]. For operads (and generalizations) possessing the Koszul
property there exists an algorithmic way of computing its resolution. Thus
proving the Koszulness of the operads involved in prop profiles will be an
important task for us. Also the Koszul duality theory of the respective struc-
tures can be expressed as special cases of the Koszul duality of G∗-algebras.

For an introduction to and history of operads see e.g. [36] or [29]. We also
refer to [28].

Compatible structures

Let [ ◦ ] and [ • ] be Lie brackets on a common vector space over a field
K. One can then define a new bracket [ , ] by [a,b] := α[a ◦b]+β[a •b],
for some α,β ∈K. Any such bracket is clearly skew symmetric and bilinear,
so the only condition necessary in order for [ , ] to be a Lie bracket is that
the Jacobi identity [[a,b],c]+ [[b,c], a]+ [[c, a],b] = 0 should hold. Direct
calculation shows that this condition is equivalent to

[[a ◦b]•c]+ [[b ◦c]•a]+ [[c ◦a]•b]+ [[a •b]◦c]+ [[b •c]◦a]+ [[c •a]◦b] = 0.

We call structures compatible in this way linearly compatible.

In [14] Khoroshkin and Dotsenko described the operad Lie 2 which en-
codes pairs of compatible Lie algebras. They also considered the Koszul
dual operad 2C om encoding two compatible commutative algebras. The
compatibility condition in this case is quite different from the linear com-
patibility of Lie algebras. The commutative associative products ◦ and •
are compatible in the following sense. Firstly, it should not matter in which
order the products appear, i.e.

(a ◦b)• c = (a •b)◦ c,
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and secondly, the associativity relation should be fulfilled for any order of
applying the two products, i.e.

(a ◦b)• c = a • (b ◦ c), (a •b)◦ c = a ◦ (b • c).

We call structures compatible in this way totally compatible since ◦ and •
are totally interchangeable up to the number of each of them.

The operads of compatible Lie algebras and of compatible pre-Lie algebras
will appear in the prop profile of compatible structures, thus a clear under-
standing of their structure will be of great use. Especially their Koszulness
is of interest to us since we will compute minimal resolutions of props con-
taining these as suboperads.

In [55] B. Vallette introduced a new method for showing the Koszulness of
algebraic operads which can be obtained as the linearization of a set op-
erad. By associating a certain poset to a set operad P , and then study-
ing its Cohen-Macaulay properties, one gets a concrete recipe for check-
ing whether the algebraic operad associated to P , and thus also its Koszul
dual operad, is Koszul or not. Studying the posets of unordered and or-
dered pointed and multipointed partitions in [10], B. Vallette and F. Chapo-
ton were able to prove the Koszulness of several important operads such as
P erm, PreLie, C omTrias, P ostLie, Dias, Dend, Trias and TriDend over
a field of any characteristic and over Z.

To show the Koszulness of Lie 2 and 2C om, as well as several other linearly
and totally compatible structures, we will use the poset method of B. Val-
lette. In order to handle the poset associated to an operad of two totally
compatible structures we will show that it decomposes into the fiber prod-
uct of two posets. The first one being the poset associated to the original
structure and the other one being what we will call the poset of weighted
partitions. In contrast to the posets studied by B. Vallette and F. Chapoton,
these products of posets are not totally semimodular, therefore we need to
refine the arguments of [10] in order to show that they are Cohen-Macaulay.
In doing so we obtain:

Theorem A. The following operads are Koszul: 2C om, Lie 2, 2P erm,
PreLie 2, 2C omTrias, P ostLie 2, 2As, As 2, 2Dias, Dend 2, 2Trias and
TriDend 2.

Prop profiles

In the papers [38], [39], and [40], S.A. Merkulov made the discovery that
certain differential geometric structures, including Hertling-Manin, Nijen-
huis, and Poisson structures, allow descriptions as the degree zero part of
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minimal resolutions of certain algebraic props. Merkulov called such de-
scriptions prop profiles. Apart from the sheer beauty of these observa-
tions they provide us with new and surprising links between differential
geometry, homological algebra and algebraic topology. For example, the
prop profile of Hertling-Manin’s weak Frobenius manifolds was shown to
be given by a minimal resolution of the operad of Gerstenhaber algebras
which in turn is quasi-isomorphic to the chain operad of the little 2-disc op-
erad [11]. The prop profile of Poisson geometry, on the other hand, predicts
existence of rather mysterious wheeled Poisson structures which can be de-
formation quantized [42, 43] in a wheeled propic way. Here by wheeled we
mean that we allow graphs with oriented cycles which on the geometric side
translates to traces of the involved structures. Another connection between
wheeled props and differential geometry, the Batalin-Vilkovisky formalism,
was studied in [22] and [44]. It is an open and interesting question whether
or not the associated (wheeled) props have topological meaning as in the
case of Hertling-Manin geometry.

The general philosophy of constructing prop profiles can be expressed as
follows.

DiffGeom
(i) // DiffGeom

(ii) // Props
(iii) // Props

(iv)
jj

(i) Extract the fundamental part of a differential geometric structure.

(ii) Translate this fundamental part into a prop P , the genome.

(iii) Compute its minimal resolution P∞, the prop profile.

(iv) Translate the prop profile back into a differential geometric structure.

Poisson structures

Poisson geometry plays a prominent role in Hamiltonian mechanics; the
differential equations associated to a Hamiltonian system can be formu-
lated via Poisson structures. The presence of two compatible Poisson struc-
tures makes it possible to solve a wide range of integrable Hamiltonian
equations, e.g. the KdV-equations, by providing a hierarchy of integrable
vector fields. This kind of geometric structure is called a Poisson pair or a
bi-Hamiltonian structure. It was first considered by F. Magri in [32], Equa-
tion (3.1), for pairs of symplectic operators. The compatibility of the op-
erators was called the coupling condition. See e.g. [2] for a treatment of
Hamiltonian systems, [59] for a survey on Poisson geometry and [33] for an
introduction to bi-Hamiltonian structures.

A Poisson structure on a graded manifold V is a graded Lie bracket on the
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structure sheaf OV which acts as a derivation in each argument with re-
spect to the multiplication on OV . A Poisson structure can equivalently be
defined as a bivector field Γ of degree two satisfying [Γ,Γ]S = 0. Here the
bracket is the Schouten bracket on the polyvector fields on V . The fun-
damental part of Poisson structures translates into the prop Lie1Bi of Lie
1-bialgebras, i.e. of Lie bialgebras with bracket and cobracket differing by
one in degree. The prop profile of Poisson geometry, constructed in [40], is
given by its minimal resolution Lie1Bi∞. Translating the prop profile back
into differential geometry yields polyvector fields Γ of degree two, but not
necessarily concentrated in ∧2TV , such that [Γ,Γ]S = 0. Such a polyvector
field can be interpreted as a family {Ln}n≥1 of n-ary brackets on the struc-
ture sheaf OV . These families of brackets form L∞-algebras and the brack-
ets act as derivations in each argument with respect to the multiplication in
OV .

One of our main results is that formal bi-Hamiltonian structures can be de-
rived from a rather simple algebraic structure comprising a Lie bracket of
degree one and two compatible Lie cobrackets of degree zero, with the fur-
ther relations that each cobracket together with the Lie bracket form a Lie
1-bialgebra. We call such structures Lie2 1-bialgebras and denote the cor-
responding prop by Lie1

2Bi. Using results from [18], [14], and the results of
our efforts in studying operads of compatible structures, we show that its
dioperadic part is Koszul, which makes it possible to compute its minimal
resolution Lie1

2Bi∞ and leads us to the following conclusion.

Theorem B. There is a one-to-one correspondence between representations
of Lie1

2Bi∞ in Rn and formal bi-Hamiltonian structures on Rn vanishing at
the origin.

In fact we prove a stronger result. When considering representations in ar-
bitrary graded vector spaces we obtain the following result.

Theorem C. There is a one-to-one correspondence between representations
of Lie1

2Bi∞ in a graded vector space V and polyvector fields Γ = ∑
k kΓ}k ∈

∧•TV J}K on the formal manifold associated to V which depend on the formal
parameter } and satisfy the conditions

(i) kΓ ∈∧•≥k+1TV ,

(ii) |Γ| = 2,

(iii) [Γ,Γ]S = 0,

(iv) Γ|0 = 0.

A pair of Poisson structures are called compatible if their brackets are
compatible as Lie brackets. We will show how an element Γ ∈ ∧•TV J}K
with properties (i), (ii), and (iii) of Theorem C corresponds to a family
{k Ln}n≥1,1≤k≤n of n-ary brackets on the structure sheaf OV . These brackets
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form an L2∞-algebra, the algebraic structure encoded by the minimal
resolution of the operad Lie 2, and act as derivations in each argument
with respect to the multiplication in OV . When V is concentrated in degree
zero we obtain precisely a bi-Hamiltonian structure. Property (iv) means
that the structure vanishes at the distinguished point. By Remark 6.7 this is
not a serious restriction.

To deformation quantize in the propic sense of Merkulov one needs a
wheeled propic resolution of Lie1

2Bi. From the dioperadic resolution that
we construct one obtains a propic resolution by known results. We note
however that the same obstruction occurs as in the case of Lie1Bi when
trying to extend it to a resolution of wheeled props.

Nijenhuis structures

An almost complex structure on an even dimensional manifold M is an en-
domorphism J of TM satisfying J 2 = − Id. To any endomorphism of the
tangent sheaf of a manifold there is associated the Nijenhuis torsion NJ

NJ (X ,Y ) := J J [X ,Y ]+ [J X , JY ]− J [X , JY ]− J [J X ,Y ].

By the Newlander-Nirenberg Theorem [47] the vanishing of the Nijenhuis
torsion of an almost complex structure J is equivalent to J being a complex
structure on M . This is probably the most important application of Nijen-
huis structures; other examples can be found in [49].

The vector field valued differential forms Ω•
V ⊗TV of a manifold V together

with the Frölicher-Nijenhuis bracket [_,_]F-N comprise a graded Lie algebra
[49]. A Nijenhuis structure is an element J ∈Ω1

V ⊗TV such that [J , J ]F-N = 0.
In [39] Merkulov defined a quadratic operad N ij such that representations
of Ω(N ij¡), the cobar construction on the Koszul dual cooperad, in a vector
space V correspond to Nijenhuis structures on the formal manifold asso-
ciated to V . If an operad P is Koszul, the cobar construction on its Koszul
dual is a minimal resolution of the operad. The operad N ij consists of the
Lie operad and the pre-Lie operad with the Lie bracket and pre-Lie product
differing by one in degree and compatible in a certain sense. Until recently
the available methods have not been sufficient to prove the Koszulness of
N ij; the compatibility relation of the operations does not define a distribu-
tive law and the operad does not come from a set theoretic operad, thus
neither the methods of [34] nor [55] are applicable. Using the method of
Poincaré-Birkhoff-Witt bases for operads, introduced by E. Hoffbeck in [23],
we show that N ij is Koszul. Thereby we obtain the following result.

Theorem D. There is a one-to-one correspondence between representations
of N ij∞ in Rn and formal Nijenhuis structures on Rn vanishing at the origin.
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When considering representations of N ij∞ in a dg vector space V they cor-
respond to arbitrary degree one vector forms J , not necessarily in Ω1

V ⊗TV ,
vanishing on the Frölicher-Nijenhuis bracket. Thus they correspond to a
family of multivariate endomorphisms of the tangent sheaf satisfying cer-
tain quadratic relations. The geometric significance of this is an open ques-
tion. Another interpretation of these structures was given by Merkulov who
showed in [39] that representations of N ij∞ in V correspond to contractible
dg manifolds.

We say that two Nijenhuis structures J and K are compatible if their sum is
again a Nijenhuis structure. To the best of the authors knowledge this kind
of compatibility has not been considered before in the literature. We call
such a pair a bi-Nijenhuis structure. One of our results is that bi-Nijenhuis
structures can be derived from a rather simple algebraic structure. This
structure consists of a Lie bracket and two pre-Lie products differing by one
in degree with respect to the Lie bracket. The pre-Lie products are compat-
ible in the sense that their sum again is a pre-Lie product and each of them
is compatible with the Lie bracket in the sense that they form a N ij alge-
bra. We denote the operad encoding such structures by BiN ij. Again using
the PBW-basis method of Hoffbeck we show that BiN ij is Koszul, making
it possible to prove the following:

Theorem E. There is a one-to-one correspondence between representations
of BiN ij∞ in Rn and formal bi-Nijenhuis structures on Rn vanishing at the
origin.

Considering representations in arbitrary graded manifolds we obtain the
following generalization.

Theorem F. There is a one-to-one correspondence between representations
of BiN ij∞ in a graded vector space V and formal power series

Γ=∑
k
Γk}k ∈ (Ω•

V ⊗TV )J}K

satisfying the conditions

(i) Γk ∈Ω≥k
V ⊗TV ,

(ii) |Γ| = 1,

(iii) [Γ,Γ]F-N = 0,

(iv) Γ|0 = 0.

Maurer-Cartan elements of Lie algebras

A common characteristic of all the differential geometric structures
described above is that they can be defined as Maurer-Cartan elements,
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i.e. degree one elements γ satisfying d(γ) + 1
2 [γ,γ] = 0. On the propic

side the Maurer-Cartan equations are encoded by the condition that
representations of the minimal resolution of the involved props commute
with differentials. In fact, this correspondence can be made clearer. To any
prop, P and vector space V there exist an associated Lie algebra LP (V )
whose elements are S-bimodule morphisms from the Koszul dual coprop
P ¡ to EndV . When P is Koszul, representations of P∞ are precisely
Maurer-Cartan elements of this Lie algebra. The Lie bracket of LP (V ) is
defined from the decomposition coproduct of P ¡ as is the differential
of P∞. In [45] Merkulov and Vallette observed that the Lie algebras
associated to Lie1Bi and N ij in fact are isomorphic to the Lie algebras of
polyvector fields and vector forms, respectively.

The prop profiles of bi-Hamiltonian and bi-Nijenhuis structures give rise
to Lie algebras isomorphic to the following Lie algebras on the differential
geometric side:

gV := {Y = ∑
k≥0

k Y }k ∈∧•TV J}K | k Y ∈∧≥k+1TV }

and
hV := {K = ∑

k≥0
k K}k ∈ (Ω•

V ⊗TV )J}K | k K ∈Ω≥k
V ⊗TV }.

We summarize the prop profiles in the following table. Here the corolla
??�� is

the generator of an odd Lie algebra, the corollas ��??, ◦�� ??, and •�� ?? denote gener-
ators of Lie coalgebras, and

??
, ◦

??
, and •

??
are pre-Lie products. The notions

of extended Poisson and bi-Hamiltonian structures and (bi-)Nijenhuis∞
structures are generalizations to the graded context derived from the prop
profiles. See Chapters 7-10 for precise definitions. For V =Rn these notions
coincide with the classical definitions.

Genome P Genes LP (V ) Maurer-Cartan elements

Lie1
??�� TV Homological vector fields

Lie1Bi
??��, ��?? ∧•TV Extended Poisson structures

Lie1
2Bi

??��, ◦�� ??, •�� ?? gV Extended bi-Hamiltonian

structures

N ij
??��,

??
Ω•

V ⊗TV Nijenhuis∞ structures

BiN ij
??��, ◦

??
, •

??
hV bi-Nijenhuis∞ structures

On the contents

Chapter 1 comprises definitions of operads, dioperads, properads and
props and in Chapter 2 we give a formulation of the Koszul duality

9



machinery that enables us to compute resolutions of these structures.
These sections essentially contain no new material, rather they gather and
give a detailed exposition of the relevant results for our needs.

In Chapter 3 we give definitions of operads encoding compatible struc-
tures, in particular we describe the operads Lie 2 and 2C om. We also show
that there exist decompositions of the operads of compatible structures us-
ing black, white, and Hadamard products. Next, using the poset method
of B. Vallette we proceed to prove the Koszulness of operads encoding a
class of compatible structures. Finally we demonstrate the effectiveness of
Koszul duality by computing the minimal resolution of Lie 2. Chapter 4
recalls two other methods for proving Koszulness: W. Gan’s distributive law
method for dioperads [18] and E. Hoffbeck’s PBW-basis method for operads
[23].

In Chapter 5 we review the differential geometry necessary to define Pois-
son and Nijenhuis structures.

Chapter 6 is a template for the rest of the chapters. Here we explain the
correspondence between L∞-algebras and homological vector fields. The
process consists of the steps extracting a prop, computing its resolution,
and interpreting it geometrically. In Chapters 7-10 we iterate this proce-
dure for Poisson, bi-Hamiltonian, Nijenhuis, and bi-Nijenhuis structures,
respectively.

The correspondence between the contents of the chapters of this thesis and
of the papers I, II, and III is more or less the following. Paper I corresponds
to the first three sections of Chapter 3. Paper II encompasses most of Chap-
ters 1, 2, 7, and 8 as well as the last section of Chapter I. Paper III contains
the material of Chapters 9 and 10. The contents of Chapters 4, 5, and 6 are
distributed between the two last papers.

Preliminaries

A few words about our notation. Given a finite set S we denote its cardinal-
ity by |S|. By N we mean the set {0,1,2, . . . }. For n ≥ 1, we denote by [n] the
set {1, . . . ,n}. Let Sn denote the symmetric group of permutations of [n]. By
1ln we denote the trivial representation ofSn and by sgnn the sign represen-
tation. An element σ ∈ Sp+q is called a (p, q)-unshuffle if σ(1) < ·· · < σ(p)
and σ(p +1) < ·· · < σ(p +q). Let Sun-sh

(p,q) ⊂Sp+q denote the subset of (p, q)-
unshuffles.

All vector spaces and tensor products are considered to be over a fieldK of
characteristic zero unless otherwise specified. For a vector space V over K
we denote the linear dual Hom(V ,K) by V ∗. Given a graded vector space

10



V =⊕ j∈ZV j we denote by V [i ] the vector space whose graded components
are given by V [i ] j = V i+ j . The differential of a dg vector space is assumed
to be of degree one.

The symmetric product of vector spaces is denoted by ¯. The notation ¯•V
stands for the direct sum ⊕

n∈N
V ¯·· ·¯V︸ ︷︷ ︸

n factors

and ̂̄•V for its formal completion∏
n∈N

V ¯·· ·¯V︸ ︷︷ ︸
n factors

.

Given a coefficient X a1···an we denote its symmetrization by

X (a1···an ) := 1

n!

∑
σ∈Sn

X aσ(1)···aσ(n)

and its skew-symmetrization by

X [a1···an ] = 1

n!

∑
σ∈Sn

sgn(σ)X aσ(1)···aσ(n) .

Throughout the paper we use the Einstein summation convention, i.e. we
always sum over repeated upper and lower indices, X a∂a =∑

a X a∂a .

When depicting directed graphs we generally consider the direction of an
edge to be downwards.
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Part I:
Operads and props





1 Operads and generalizations via
graphs

In this chapter we give thorough definitions of operads, dioperads, prop-
erads, and props, as well as their co-versions, using the graph-approach of
Merkulov [41].

1.1 Decorated graphs

1.1.1 S-modules andS-bimodules

First we define the underlying spaces of our generalized structures.

Definition. An (Sm ,Sn)-bimodule is a vector space M with a right action of
Sn and a commuting left action ofSm . A family {M (m,n)}m,n∈N of (Sm ,Sn)-
bimodules is called anS-bimodule. We say that an element of M (m,n) is of
arity (m,n).

A family {M (n)}n∈N of right (Sn)-modules is called an S-module.

If anS-bimodule M satisfies M (m,n) = 0 whenever m 6= 1 we can consider
it as an S-module since the action of S1 is trivial. We then denote M (1,n)
by M (n).

Let M and N beS-bimodules. AnS-bimodule homomorphism θ : M →N

is a family {θm,n : M (m,n) → N (m,n)}m,n∈N of (Sm ,Sn)-bimodule homo-
morphisms. We will often write θ(p) for θm,n(p) for p ∈M (m,n).

1.1.2 Labeled directed graphs

Composition of elements of S-bimodules is modeled by graphs. Intuitively
we can think of these graphs as 1-dimensional regular CW-complexes with
the 1-cells given an orientation. Two subsets of the 1-cells are singled out,
directed towards and away from the graph, respectively, and are labeled
with integers.

Definition. A labeled directed graph G is the data

(VG ,EG ,ΦG ,E in
G ,E out

G , inG ,outG ).
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The elements of the set VG are called the vertices of G , the elements of the set
EG the edges. Further ΦG : EG → (VG ×VG )tVG . The edges in the preimage
Φ−1

G (VG ) are called external edges and the edges in the preimageΦ−1
G (VG×VG )

are called internal. We denote the internal edges by E int
G . For an edge e with

ΦG (e) = (u, v) we say that e is an edge from u to v and in this case we call the
vertices u and v adjacent.

The set of external edges is partitioned into the sets E in
G and E out

G of global
input edges and global output edges, respectively. We denote by nG and mG

the cardinalities of these sets. The external edges are labeled by integers via
the bijections inG : [nG ] → E in

G and outG : E out
G → [mG ].

A labeled directed (m,n)-graph G is a labeled directed graph with mG = m
and nG = n.

Note that the data (VG ,E int
G ,ΦG |E int

G
) is an ordinary directed graph.

There exist a natural right action of Sn and a commuting left action of Sm

on the class of (m,n)-graphs given by permuting the labels. For a labeled
directed (m,n)-graph G the action of τ ∈Sn is given by (inG τ)(i ) := inG ◦τ(i ).
Similarly σ ∈Sm acts to the left by (σoutG )(e) :=σ◦outG (e), cf. Figure 1.1.

G :

1 3

2

2

1

3 5 4

??????

������

������

������

�������
??????

������
??????

σGτ :

τ−1(1) τ−1(3)

τ−1(2)

σ(2)

σ(1)

σ(3) σ(5) σ(4)

??????

������

������

������

�������
??????

������
??????

Figure 1.1: Example of action on a (5,3)-graph G by S3 from the right and by S5

from the left.

A path from a vertex u to a vertex v in a labeled directed graph is a sequence
of edges e1, . . . ,er such that for some sequence of vertices u = v1, . . . vr+1 = v
either ΦG (ei ) = (vi , vi+1) or ΦG (ei ) = (vi+1, vi ). A path is called directed if
ΦG (ei ) = (vi , vi+1) for all i and it is called closed if u = v . A closed directed
path is called a wheel. A graph is connected if for each pair of vertices there
is a path between them.

1.1.3 Isomorphisms of graphs

We are only interested in the structure of the graphs up to a certain level
of detail: how many vertices there are, how many internal edges there are
in each direction between any two vertices, how many external edges are
directed towards and away from each vertex and how they are labeled. Thus
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we need to define isomorphisms of graphs.

Let G and G ′ be labeled directed graphs. An isomorphism of labeled directed
graphs Ψ : G → G ′ is a pair (ΨV ,ΨE ), where ΨV : VG → VG ′ and ΨE : EG →
EG ′ are bijections with the properties

(i) ΨE (E in
G ) = E in

G ′ and ΨE (E out
G ) = E out

G ′ ,

(ii) ΦG ′(ΨE (e)) =ΨV ×ΨV (ΦG (e)) for all internal edges e,

(iii) ΦG ′(ΨE (e)) =ΨV (ΦG (e)) for all external edges e,

(iv) inG ′ =ΨE ◦ inG and outG = outG ′ ◦ΨE .

Example. Three graphs, of which the third not is isomorphic to the first two
because of the labeling of the edges.

1 2

3

1

???
���

???
��� ∼=

2 1

3

1

???
���

???
����

1 3

2

1

???
���

???
���

1.1.4 Classes of graphs

From now on we will refer to isomorphism classes of labeled directed
graphs simply as graphs. We define the following classes of graphs:

(i) G	 is the class of all graphs.

(ii) G↓ is the class of graphs without wheels.

(iii) G↓
c is the class of connected graphs without wheels.

(iv) G↓
c,0 is the class of connected graphs without closed paths (the class

of trees).

(v) G↓1
c is the class of connected graphs without closed paths whose ver-

tices have exactly one edge directed from it (the class of rooted trees).

(vi) G
↓1

1
c is the class of connected graphs without directed paths whose ver-

tices have exactly one edge directed towards it and exactly one edge
directed from it (the class of ladder graphs).

We observe that G
↓1

1
c ⊂ G↓1

c ⊂ G↓
c,0 ⊂ G↓

c ⊂ G↓ ⊂ G	. When depicting graphs
of the classes (ii)-(vi) we think of them as having a global flow, from global
input edges to global output edges, downwards.

Let G∗ denote an arbitrary class of the classes (i)-(vi). We denote by
G∗(m,n) the subclass of G∗ consisting of all (m,n)-graphs and by G∗

(i ) the
subclass consisting of graphs with i vertices.

1.1.5 Subgraphs

In order to describe the associativity of the compositions described by
graphs we need to define subgraphs and the notion of contraction of a
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subgraph in a graph.

Loosely speaking, a subgraph consists of some subset of the vertices of a
graph, the edges attached to them, and an arbitrary global labeling.

Let G be a graph. A subgraph H of G is a graph satisfying

(i) VH ⊂VG and EH ⊂ EG ,

(ii) if ΦG (e) = (u, v) and u, v ∈VH , then e ∈ EH and ΦH (e) =ΦG (e),

(iii) if e ∈ EG ,ΦG (e) = (u, v), u ∉VH and v ∈VH , then e ∈ E in
H andΦH (e) = v ,

similarly if u ∈VH , v ∉VH , then e ∈ E out
H and ΦH (e) = u,

(iv) if e ∈ E in
G , Φ(e) = v and v ∈VH , then e ∈ E in

H , similarly if e ∈ E out
G

Note that inH and outH are arbitrary labelings of the global input and out-
put edges of H .

1.1.6 Contraction of subgraphs

The contraction of a subgraph in a graph can be thought of as replacing all
vertices and internal edges of the subgraph with a single vertex.

Let H be a subgraph of a graph G . The contraction of H in G is the labeled
directed graph G/H defined by the same data as G except

(i) VG/H = (VG \VH )t {vH }, where by vH we denote the vertex into which
H is contracted,

(ii) EG/H = EG \ E int
H ,

(iii)

ΦG/H (e) =


ΦG (e) if e ∈ EG \ EH

(u, vH ) if ΦG (e) = (u, v) for some v ∈VH

(vH ,u) if ΦG (e) = (v,u) for some v ∈VH

vH if ΦG (e) = v for some v ∈VH .

We say that a subgraph H of a graph G ∈G∗ is G∗-admissible if both G/H ∈
G∗ and H ∈ G∗. In Figure 1.2 we see an example of a subgraph H which is
G	-admissible but not G↓-admissible.

1.1.7 Graphs decorated byS-bimodules

Compositions of elements of S-bimodules is described by graphs deco-
rated with S-bimodules. When decorating a vertex v with an element p
of an S-bimodule M we want to keep track of how we connect p to the
internal edges attached to v .

We define the set of local input edges of v to be

E in
v := {e ∈ E int

G | ΦG (e) = (u, v) for some u ∈VG }∪ {e ∈ E in
G | ΦG (e) = v}
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G :

v1

v3

v2

1 3

2

2

1

3 5 4

??????

������

������

������

�������
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������
??????

H :

v1

v3

2 3

1

3 16

2 4 5

??????

������

������
44444

GGGGGG

ttttt

������
??????

G/H : vH v2

1 3 2

2 3 5 4 1

??????

������

������

�����

wwwwww
/////

GGGGGG

GGGGGG

Figure 1.2: The contraction G/H of a subgraph H in a graph G .

and the set of local output edges of v as

E out
v := {e ∈ E int

G | ΦG (e) = (v,u) for some u ∈VG }∪ {e ∈ E out
G | ΦG (e) = v}.

Note that we allow edges from a vertex to itself. Such an edge will be both a
local input and output edge of the same vertex.

For two finite sets I , J of the same cardinality, let Bij(I , J ) denote the set of
bijections from I to J and let 〈I

∼→ J〉 denote the vector space generated over
K by Bij(I , J ). If |I | = n there is a natural left action of Sn on 〈I

∼→ [n]〉 given
by τg := τ◦g for g ∈ Bij(I , [n]) and τ ∈Sn . Similarly, if |J | = m,Sm acts to the
right on 〈[m]

∼→ J〉 by f σ := f ◦σ for f ∈ Bij([m], J ) and σ ∈Sm .

We define a vector space by

M (E out
v ,E in

v ) := 〈[m]
∼→ E out

v 〉⊗Sm M (m,n)⊗Sn 〈E in
v

∼→ [n]〉,

where m and n are the cardinalities of E out
v and E in

v , respectively. Often we
will denote an element f ⊗Sm p ⊗Sn g ∈M (E out

v ,E in
v ) by p or simply p.

Remark. Decorating by M (E out
v ,E in

v ) rather than by M (m,n) corresponds
to an additional labeling of the internal edges locally, cf. Figure 1 of [56,
p4869].

We want decorated graphs to extend the notion of tensor products, but for
a general graph there is no natural ordering of the vertices. Let {Vi }i∈I be
a family of vector spaces indexed by some finite set I with |I | = k. The un-
ordered tensor product of this family is defined to be

⊗
i∈I

Vi :=
( ⊕

s∈Bij([k],I )
Vs(1) ⊗·· ·⊗Vs(k)

)
Sk

.

Here we consider the coinvariants with respect to the right action of Sk on
Bij([k], I ). We denote an equivalence class in

⊗
i∈I Vi by [v1⊗·· ·⊗vk ], where

v1 ⊗·· ·⊗ vk ∈Vs(1) ⊗·· ·⊗Vs(k) for some s ∈ Bij([k], I ).
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Definition. We define the vector space of decorations of a graph G by an
S-bimodule M to be G〈M 〉 :=⊗

v∈VG
M (E out

v ,E in
v )AutG, where AutG denotes

the automorphism group of G .

An element (G , [p1 ⊗·· ·⊗pk ]) of G〈M 〉 is called a decorated graph.

A decorated subgraph of a decorated graph (G , [p1 ⊗·· ·⊗pk ]) is a decorated
graph (H , [pi1 ⊗ ·· · ⊗ pil ]) such that H is a subgraph of G , {i1, . . . , il } = {i ∈
[k] | pi ∈M (E out

v ,E in
v ) for some v ∈VH }, and i1 < ·· · < il .

1.1.8 S-bimodules of decorated graphs

We define the vector space of (m,n)-graphs of G∗ decorated by an
S-bimodule M by

G∗〈M 〉(m,n) := ⊕
G∈G∗(m,n)

G〈M 〉.

There is a natural (Sm ,Sn)-bimodule structure on G∗〈M 〉(m,n) induced by
the actions of Sm and Sn on G , σ(G , [p1 ⊗·· ·⊗pk ])τ := (σGτ, [p1 ⊗·· ·⊗pk ]).
Thus G∗〈M 〉(m,n) is naturally an (Sm ,Sn)-bimodule. This lets us define
the S-bimodule of decorated graphs

G∗〈M 〉 := {G∗〈M 〉(m,n)}m,n∈N.

1.2 Operads and generalizations via G∗-algebras

1.2.1 G∗-algebras

We are now ready to define the compositions in our generalized structures.

Let µ : G∗〈M 〉 → M be a homomorphism of S-bimodules. We call such
a morphism a composition product in M . Denote by µG : G〈M 〉 → M the
restriction of µ to G〈M 〉. We will write µG (p1 ⊗·· ·⊗pk ) for µ((G , [p1 ⊗·· ·⊗
pk ])).

Given an (r, s)-subgraph H of a graph G we define the morphism

µG
H : G〈M 〉→G/H〈M 〉

by

µG
H (G , [p1 ⊗·· ·⊗pk ⊗q1 ⊗·· ·⊗q l ]) :=

(G/H , [(out−1
H ⊗SrµH (p1 ⊗·· ·⊗pk )⊗Ss in−1

H )⊗q1 ⊗·· ·⊗q l ]),

where [p1 ⊗·· ·⊗pk ] is the decoration of H .
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Definition. A G∗-algebra is an S-bimodule P together with a composition
product µ : G∗〈P 〉→P satisfying the associativity condition

µG =µG/H ◦µG
H (1.1)

for each G ∈G∗ and each G∗-admissible subgraph H of G .

Let µ2 denote the restriction of µ to G∗
(2)〈M 〉. We say that µ2 is associative if

it satisfies
µG/H1 ◦µG

H1
=µG/H2 ◦µG

H2
(1.2)

for all G ∈G∗
(3) and admissible subgraphs H1, H2 ∈G∗

(2). We call µ2 the par-
tial composition product of P .

Proposition 1.1. Let G∗ be one of the subfamilies (ii)-(vi) of §1.1.4, then
(P ,µ) is a G∗-algebra if and only if µ2 is associative.

Proof. If (P ,µ) is a G∗-algebra, then obviously µ2 is associative. Conversely,
suppose P is equipped with an associative morphism µ2 : G∗

(2)〈P 〉 → P

then for a graph G ∈G∗
(>2) we define

µG :=µ(···(G/H1)/···/Hk−1) ◦ · · · ◦µG/H1
H2

◦µG
H1

,

where H1, . . . Hk−1 is an arbitrary sequence of two-vertex graphs such that
Hi is a G∗-admissible subgraph of (· · · (G/H1)/ · · ·/Hi−1). Since µ is asso-
ciative the definition of µG is independent of choice of sequence and the
morphisms µG satisfy (1.1).

1.2.2 G∗-coalgebras

Let ∆ : M → G∗〈M 〉 be a homomorphism of S-bimodules. We call such a
morphism a decomposition coproduct in M . Denote by G∆ : M → G〈M 〉
the composition of ∆ with the projection G∗〈M 〉� G〈M 〉.
Given an (r, s)-subgraph H of a graph G we define the morphism

G
H∆ : G/H〈M 〉→G〈M 〉

by

G
H∆(G/H , [(out−1

H ⊗Sr p H ⊗Ss in−1
H )⊗q1 ⊗·· ·⊗q l ]) :=

(G , [p1 ⊗·· ·⊗pk ⊗q1 ⊗·· ·⊗q l ]),

where (H , [p1 ⊗·· ·⊗pk ]) =∆H (p H ).

Definition. A G∗-coalgebra is an S-bimodule C together with an
S-bimodule homomorphisms ∆ : C →G∗〈C 〉 satisfying the coassociativity
condition

G∆=G
H∆◦G/H∆

for each G ∈G∗ and G∗-admissible subgraph H of G .
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As for G∗-algebras, for the subfamilies (ii)-(vi) of §1.1.4 a G∗-coalgebra can
equivalently be defined by the coassociativity of the morphism ∆2 :=π2 ◦∆,
where π2 is the projection on G∗

(2)〈C 〉;
G
H1
∆◦G/H1∆=G

H2
∆◦G/H2∆

for all G ∈G∗
(3) and admissible subgraphs H1, H2 ∈G∗

(2). We call ∆2 the par-
tial decomposition coproduct.

1.2.3 Homomorphisms of G∗-(co)algebras

Let G be a graph in G∗ and v be a vertex of G . A homomorphism θ : M →N

of S-bimodules canonically gives rise to a morphism θv : M (E out
v ,E in

v ) →
N (E out

v ,E in
v ) by

θv ( f ⊗Sm p ⊗Sn g ) := f ⊗Sm θm,n(p)⊗Sn g .

We will write θ(p) for θv ( f ⊗ p ⊗ g ). This further extends to a morphism
θG : G〈M 〉→G〈N 〉 by

θG (G , [p1 ⊗·· ·⊗pk ]) := (G ,θ(p1)⊗·· ·⊗θ(pk )).

Finally this gives us a morphism of S-bimodules θG∗ : G∗〈M 〉→G∗〈N 〉.
Let (P ,µP ) and (Q,µQ) be G∗-algebras. A G∗-algebra homomorphism is
a homomorphism of S-bimodules θ : P → Q such that for all decorated
graphs G ∈G∗ we have θ ◦ (µP )G = (µQ)G ◦θG .

Let (C ,∆C ) and (D,∆D) be G∗-algebras. A G∗-coalgebra homomorphism
is a homomorphism of S-bimodules θ : C → D such that for all decorated
graphs G ∈G∗ we have θG ◦G∆C =G∆D ◦θ.

1.2.4 G↓-(co)algebras versus G	-(co)algebras

Some notions related to G∗-(co)algebras allow simpler expositions when
one forgets about G	-(co)algebras. Since we will only implicitly be need-
ing G	-(co)algebras we avoid the subtleties related to them by restricting
our attention to the strict subclasses of G	; from now on let G∗ be one
of the subclasses (ii)-(vi) in §1.1.4. See e.g. [35, 42] for a treatment of G	-
(co)algebras, also called wheeled props (without unit).

1.2.5 Graphs decorated by severalS-bimodules

Given a graph G with |VG | > 1, we can decorate it with more than one S-
bimodule. Let M1, . . . ,Ml be S-bimodules and let VG = V1 t ·· · tVl be a
partition of the set of vertices of G . We define the vector space

G〈MV1
1 , . . .MVl

l 〉 := ⊗
v∈VG

Mv ,
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where Mv =Mi (E out
v ,E in

v ) for v ∈Vi .

Given morphisms ofS-bimodules θ1 : M1 →N1, . . . ,θl : Ml →Nl we define
the morphism

(θV1
1 , . . . ,θVl

l ) : G〈MV1
1 , . . .MVl

l 〉→G〈N V1
1 , . . .N Vl

l 〉

by
(G , [p1 ⊗·· ·⊗pl ]) 7→ (G , [θi1 (p1)⊗·· ·⊗θik (pk )]),

where θi j = θr when p j ∈Mr .

1.2.6 Units and counits

We define the S-bimodule I by{
I (1,1) =K
I (m,n) = 0 for (m,n) 6= (1,1)

.

Let G be a (m,n)-graph satisfying |E in
u | = |E out

u | = 1 for all vertices u ∈ VG

except for one vertex v which then satisfies |E in
v | = n and |E out

v | = m. The
maps inG and outG naturally induce maps ĩnG : [n] → E in

v and õutG : E out
v →

[m].

Let M be an S-bimodule. There exists a natural isomorphism

G〈I VG \{v},M {v}〉 ∼→M (m,n)

defined by

(G , [c1 ⊗·· ·⊗ck−1 ⊗p]) 7→ (c1 · · ·ck−1)σ−1pτ−1,

whereσ ∈Sm and τ ∈Sn are permutations such that for p = f ⊗Sm p⊗Sn g ∈
M (E out

v ,E in
v ) we have (τg )◦ ĩnG = Id[n] and õutG ◦ ( f σ) = Id[m].

Let µ be a composition product in P and let η : I → P be an S-bimodule
homomorphism. We say that η is a unit with respect to µ if the following
diagram commutes for all m,n ∈N and G ∈G∗(m,n) of the above type:

G〈I VG \{v},P {v}〉
(ηVG \{v},Id{v}

P (m,n)) //

∼
))TTTTTTTTTTTTTTT

G〈P 〉
µG

��
P (m,n)

.

We denote the element η(1) ∈ P (1,1) by 1l. The above condition is then
equivalent to that, for all G as above, the morphism µG satisfies

µG (1l⊗·· ·⊗1l⊗ ( f ⊗Sm p ⊗Sn g )⊗1l⊗·· ·⊗1l) =σ−1pτ−1. (1.3)
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On the coside, let ∆ be a decomposition coproduct on an S-bimodule C

and let ε : C → I be an S-bimodule homomorphism. We say that ε is a
counit with respect to ∆ if the following diagram commutes for all m,n ∈N
and G ∈G∗(m,n) of the above type:

C (m,n)
G∆ //

∼
))TTTTTTTTTTTTTTT G〈C 〉

(εVG \{v},Id{v}
C (m,n))

��
G〈I VG \{v},C {v}〉

.

1.2.7 (Co)unital G∗-(co)algebras

Let (P ,µ) be a G∗-algebra. If there exists a morphism η : I →P , which is a
unit with respect to µ, we call the data (P ,µ,η) a unital G∗-algebra.

Let (C ,∆) be a G∗-coalgebra. If there exists a morphism ε : C → I , which is
a counit with respect to∆, we call the data (C ,∆,ε) a counital G∗-coalgebra.

Definition. We have

(i) a (co)unital G↓-(co)algebra is called a (co)prop,

(ii) a (co)unital G↓
c -(co)algebra is called a (co)properad,

(iii) a (co)unital G↓
c,0-(co)algebra is called a (co)dioperad,

(iv) a (co)unital G↓1
c -(co)algebra such that M(m,n) = 0 if m 6= 1 is called

an (co)operad,

(v) a (co)unital G
↓1

1
c -(co)algebra such that M(m,n) = 0 if m,n 6= 1 is

called a(n) (co)associative (co)algebra.

In Section 1.3 we show how the above definitions relate to the classical ones.

Let (P ,µP ,ηP ) and (Q,µQ ,ηQ) be G∗-algebras. A homomorphism of uni-
tal G∗-algebras is a G∗-algebra homomorphism θ : P → Q such that ηQ =
θ ◦ηP .

Let (C ,∆C ,εC ) and (D,∆D ,εD) be G∗-coalgebras. A homomorphism of
counital G∗-coalgebras is a homomorphism of S-bimodules θ : C → D

such that εC = εD ◦θ.

1.2.8 The endomorphism G∗-algebra

We define the endomorphism G∗-algebra End∗
V of a vector space V by

End∗
V (m,n) := Hom(V ⊗n ,V ⊗m). The (Sm ,Sn) action is given by permuting

the input and output. For a graph G ∈ G∗, the composition product
µG : G〈End∗

V 〉 → End∗
V is defined as the composition of multivariate

functions according to G . The local labelings of the vertices dictate, in an
obvious way, which output is to be plugged into which input of functions
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decorating adjacent vertices. The global labeling plays a similar role. A unit
η : I → End∗

V is given by η(1) := IdV . We will usually suppress the ∗ from the
notation.

1.2.9 Representations of G∗-algebras

A representation of a G∗-algebra P in a vector space V is a homomorphism
ρ : P → EndV of G∗-algebras. We say that ρ gives V the structure of a P -
algebra.

We can think of a P -algebra structure as an assignment of multilinear op-
erations on V , possibly with several inputs and outputs, satisfying axioms
encoded by structure of decorated graphs and the composition product in
P .

1.3 Relation to classical definitions

1.3.1 Operads as monoids

By endowing the category of S-modules with a monoidal product one can
define operads as monoids in the resulting monoidal category. We define
the monoidal product in the category of S-modules by:

M ◦N (n) =⊕
1≤k≤n

( ⊕
i1+···+ik=n

M (k)⊗ (N (i1)⊗·· ·⊗N (ik ))⊗Si1×···×Sik
K[Sn]

)
Sk

,

where we consider the coinvariants with respect to the action of Sk given
by (v ⊗ (w1 ⊗ ·· ·⊗wk )⊗σ)τ = (vτ⊗ (wτ(1) ⊗ ·· ·⊗wτ(k))⊗ τ̄−1σ) and τ̄ is the
induced block permutation. A unit I with respect to this product is given by
the S-module defined by

In :=
{

1l1 if n = 1

0 if n 6= 1
.

Definition. An operad is a monoid (P ,µ : P ◦P → P ,η : I → P ) in the
monoidal category (S-modules,◦, I ).

For an element (p ⊗ (p1 ⊗·· ·⊗pk )⊗σ) ∈P ◦P we will suppress the permu-
tation σ and denote µ(p ⊗ (p1 ⊗·· ·⊗pk )) by µ(p; p1, . . . , pk ).

Operads were originally defined by P. May in [37] where the axioms con-
tained in the assertion that (P ,µ,η) is a monoid were spelled out explicitly.
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1.3.2 The monoidal product via two-level graphs

Let G∗ be one of the subfamilies (ii)-(vi) in §1.1.4. For a graph G ∈ G∗ the
direction of the edges induces a partial order on VG ; the covering relation is
defined by v1 ≺ v2 if there is an edge e ∈ EG with ΦG (e) = (v2, v1). An n-level
graph is a graph G such that VG is a ranked poset (i.e. all maximal chains
are of the same length) of rank n. For a two-level graph, let Vu denote the
vertices on the upper level and Vd the vertices on the lower level.

The monoidal product of the previous paragraph can be expressed in terms
of decorated two-level graphs; we have

M ◦N =⊕
G∈G

↓1,2
c

G〈M {v},N VG \{v}〉,

where v is the vertex on the lower level.

1.3.3 Pseudo-operads

A pseudo-operad is the data (P = {P (n)}n∈N, {◦n1,n2
i }n1,n2∈N

1≤i≤n1
), where P is an

S-module and the maps

◦n1,n2
i : P (n1)⊗P (n2) →P (n1 +n2 −1)

satisfy certain associativity and S-equivariance axioms, see e.g. [36]. The
operation ◦n1,n2

i is usually denoted by ◦i . It is called the partial composition
product.

Proposition 1.2. An S-module P is a pseudo-operad if and only if it is a
G↓1

c -algebra.

Proof. Let (P ,µ) be a G↓1
c -algebra. We can give P a pseudo-operad struc-

ture as follows. Let G ∈ G↓1
c be the two-vertex graph depicted in Figure 1.3.

We then define p1◦n1,n2
i p2 :=µG ((p1⊗Sg1)⊗(p2⊗Sg2)), where p1 and p2 are

v2

v1

i i+1 i+n1−2 i+n1−1
...

1 2 i−1 i+n1 n1+n2−2 n1+n2−1
... ...NNNNNNNNNNNNNN

=========

���������

pppppppppppppp

VVVVVVVVVVVVVVVVVVVVVVVVV

TTTTTTTTTTTTTTTTTTTT

=========

���������

jjjjjjjjjjjjjjjjjjjj

hhhhhhhhhhhhhhhhhhhhhhhhh .

Figure 1.3: A two-vertex graph in G↓1
c .
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decorating v1 and v2, respectively, and g1 and g2 are labelings satisfying
g1 ◦ inG (1) = 1, . . . , g1 ◦ inG (i −1) = i −1

g2 ◦ inG (i ) = 1, . . . , g2 ◦ inG (i +n2 −1) = n2

g1 ◦ inG (i +n2) = i +1, . . . , g1 ◦ inG (n1 +n2 −1) = n1.

The condition µG/H1 ◦µG
H1

=µG/H2 ◦µG
H2

for all pairs of admissible two-vertex

subgraphs of a three vertex graph G ∈G↓1
c together with the S-equivariance

of µ and the structure of decorated graphs are equivalent to that the opera-
tions ◦n1,n2

i satisfy the associativity and S-equivariance axioms of a pseudo-
operad.

Conversely, if P has a pseudo-operad structure then we can define a G↓1
c -

algebra structure on P by letting µG , for G a two-vertex graph, be given by
the appropriate ◦n1,n2

i as above. By Proposition 1.1 we are done.

1.3.4 Pseudo-operads and operads

Any pseudo-operad P is a non-unital operad with composition product

µ(p; p1, . . . , pk ) := (· · · (p ◦1 p1)◦n1+1 p2 · · · )◦n1+···nk−1+1 pk ,

where pi ∈ P (ni ). A unit with respect to the pseudo-operad structure is a
unit with respect to the operad structure.

Conversely, any operad is a unital pseudo-operad with partial composition
product

p1 ◦n1,n2
i p2 :=µ(p1;η(1), . . . ,η(1), p2,η(1), . . . ,η(1)),

where p2 is at the i th place, and with η serving as unit.

1.3.5 Dioperads, properads, and props

In [18] dioperads were defined as monoids in the category of S-bimodules
with monoidal product

P 2cQ = ∑
G∈G↓,2

c,0

G〈P Vd ,QVu 〉.

They were also defined asS-bimodules endowed with operations i◦ j which
can be thought of as plugging the j th input of an element into the i th input
of another element. As for operads these definitions are equivalent only
in the unital setting, so without unit the latter structure should be a called
pseudo-dioperad.
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Properads were defined in [56] as monoids with respect to the monoidal
product �c given by

P �c Q = ∑
G∈G↓,2

c

G〈P Vd ,QVu 〉.

Props were originally defined in [31], where they were called PROPs,
in terms of two operations ◦ and ⊗. The first one corresponding to
composition along two-vertex graphs with the number of output edges of
the upper vertex equal to the number of input edges of the lower and all
of them connected. The second operation corresponds to composition
according to disconnected two-vertex graphs. Also props can be defined
using a product �, which is the sum of decorated two-level graphs of G↓,
but they are not monoids with respect to this product, c.f. [56, 45].
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2 Resolutions via Koszul duality

In this chapter we give definitions of G∗-algebras presented by generators
and relations. To this end we describe the free G∗-algebra. We also set up
the differential graded framework and describe two kinds of resolutions of
G∗-algebras. One kind of resolution is based on an extension of the Koszul
duality theory for associative algebras to G∗-algebras. As the absence of
wheels in directed graphs makes a more accessible presentation possible,
we restrict our attention to the strict subfamilies of G	, i.e. in this chapter
G∗ denotes one of the subfamilies (ii)-(vi) defined in §1.1.4.

This chapter contains no new material; we merely wish to express the re-
sults we need from [20],[16],[18] and [56] in the unifying language of [41].

2.1 Differential graded framework

2.1.1 Differential gradedS-bimodules

A graded S-bimodule is an S-bimodule M which can be decomposed
as M (m,n) := ⊕

i∈ZM (m,n)i . We denote by M i the collection
{M (m,n)i }m,n∈N. For an element p ∈ M i we write |p| = i , and say that p is
of degree i . We will refer to this degree as the cohomological degree.

A homomorphism θ : M →N of gradedS-bimodules of degree j is a homo-
morphism of S-bimodules satisfying θ(M i ) ⊂N i+ j .

A differential graded (dg) S-bimodule is a pair (M ,d), where M is a graded
S-bimodule and d : M → M is a homomorphism of graded S-bimodules
of degree one satisfying d 2 = 0.

A homomorphism θ of dg S-bimodules is a degree zero homomorphism of
graded S-bimodules satisfying d ◦θ = θ ◦d .

In the differential graded framework we apply the Koszul-Quillen sign rules;
whenever a symbol of degree a is moved past a symbol of degree b the sign
(−1)ab is introduced, e.g. for graphs decorated with gradedS-bimodules we
have

(G , [p1 ⊗·· ·⊗pi ⊗pi+1 ⊗·· ·⊗pk ]) =
(G , [(−1)|pi ||pi+1|p1 ⊗·· ·⊗pi+1 ⊗pi ⊗·· ·⊗pk ]).
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2.1.2 Differential graded G∗-algebras and G∗-coalgebras

The differential d of a dgS-bimodule M extends to a differential dG on the
vector space G〈M 〉 defined by

dG (G , [p1 ⊗·· ·⊗pk ]) := (G , [
k∑

i=1
(−1)|p1|+···|pi−1|p1 ⊗·· ·⊗d(pi )⊗·· ·⊗pk ]).

The grading of M induces a grading on G〈M 〉 given by |(G , [p1⊗·· ·⊗pk ])| =
|p1|+ · · ·+ |pk |. Together this makes G∗〈M 〉 into a dg S-bimodule.

Definition. A dg G∗-algebra is a triple ((P ,d),µ,η) where (P ,µ,η) is a G∗-
algebra, (P ,d) is a dgS-bimodule, and µ is a morphism of dgS-bimodules.

Explicitly, the condition that µ is a morphism of dg S-bimodules is given
by dµG = µG dG for all G ∈G∗. We say that a morphism d : P → P is a G∗-
algebra derivation if this condition is satisfied.

Definition. A dg G∗-coalgebra is a triple ((C ,d),∆,ε) where (C ,∆,ε) is a
G∗-coalgebra, (C ,d) is a dg S-bimodule, and ∆ is a morphism of dg S-
bimodules.

The last condition can be expressed by G∆d = dG
G∆ for all G ∈G∗. We call

anS-bimodule homomorphism d : C →C a G∗-coalgebra coderivation if it
satisfies this condition.

A morphism of dg G∗-(co)algebras is a morphism of G∗-(co)algebras which
also is a morphism of dg S-bimodules.

2.1.3 Representations in the dg framework

Let (V ,d) be a dg vector space and let P be a dg G∗-algebra. The differential
of V induces a differential on EndV which we also denote by d . For f ∈
EndV (m,n) it is defined by

d( f ) =
m∑

i=1
d 1◦i f − (−1)| f |

n∑
i=1

f i◦1d

Since the differential of a vector space usually is considered as part of the
data, as in the cases of dg associative and dg Lie algebras for instance, we
define a representation of P in V to be a pair (ρ,d), where d is a differential
on V and ρ : P → EndV is a morphism of dg G∗-algebras.

2.1.4 Suspension and desuspension

The suspension ΣM of a dg S-bimodule M is defined as (ΣM )(m,n) :=
Ks ⊗M (m,n), where s is an element of degree 1. We define the desuspen-
sion Σ−1M by (Σ−1M )(m,n) :=Ks−1 ⊗M (m,n), where s−1 is an element of
degree −1. Thus (ΣM )i =M i−1 and (Σ−1M )i =M i+1.
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2.1.5 Weight gradedS-bimodules and G∗-(co)algebras

We will need to consider an extra grading on the objects we study. We call a
dg S-bimodule M weight graded if it has a decomposition M =⊕

s∈NM(s),
where each M(s) is a dg sub-S-bimodule. This is an extra grading which
differs from the cohomological degree in that it does not effect signs, i.e. the
Koszul-Quillen sign rules only apply to cohomological degree. We call M(s)

the weight s part of M . The tensor product of weight graded S-bimodules
inherits a weight grading by (M ⊗N )(t ) =⊕

r+s=t M(r ) ⊗N(s).

We call a G∗-algebra (P ,µ,η) weight-graded if P is a weight graded
S-bimodule and µ preserves the weight grading. Note that we necessarily
have η(I ) ⊂P (0).

Similarly we call a G∗-coalgebra (C ,∆,ε) weight graded if C is a weight
graded S-bimodule and ∆ preserves the weight grading.

2.1.6 Connected G∗-(co)algebras

We call anS-bimodule connected if M (m,0) = 0 for all m, M (0,n) = 0 for all
n, and M (1,1) =K.

A weight graded S-bimodule M is connected if M is connected as an S-
bimodule, M(0)(1,1) =K, and M(0)(m,n) = 0 for other m,n.

We call a (weight graded) G∗-(co)algebra connected if the underlying S-
bimodule is connected.

2.1.7 (Co)ideals

An ideal of a G∗-algebra P is a sub-S-bimodule J satisfying µG (p1 ⊗·· ·⊗
pk ) ∈J whenever at least one of the pi is in J . We denote the ideal gener-
ated by a subset J ⊂P by (J ).

Let P be a G∗-algebra and J be an ideal of P . The quotient G∗-algebra
P /J is defined by P /J (m,n) := P (m,n)/J (m,n). If P is weight graded
and the ideal J is homogeneous with respect to this weight grading,
i.e. J = ⊕

s∈NJ(s) and J(s) = J ∩P (s), then the quotient P /J inherits a
weight grading from P .

A coideal of a G∗-coalgebra C is a sub-S-bimodule J such that

∆G (J ) ⊂ ⊕
v∈VG

G〈C VG \{v},J {v}〉.

31



2.1.8 (Co)augmented G∗-(co)algebras

We can give the S-bimodule I , with{
I (1,1) =K
I (m,n) = 0 for (m,n) 6= (1,1),

a G∗-algebra structure by defining the composition product µG (c1 ⊗ ·· · ⊗
ck ) := c1 · · ·ck , the product of the scalars, the unit η being the identity I → I .

An augmentation of a G∗-algebra P is a morphism of G∗-algebras ε : P →
I . We define the augmentation ideal of P by P̄ (m,n) := ker(εm,n).

Note that a connected G∗-algebra P has a canonical augmentation which
sends P (1,1) to I (1,1) and is zero otherwise.

We can also give the S-bimodule I a G∗-coalgebra structure by G∆(c) :=
(G , [c ·1⊗·· ·⊗1]), the counit ε being the identity I → I .

A coaugmentation of a G∗-coalgebra C is a morphism of G∗-
coalgebras η : I → C . We define the coaugmentation coideal of C by
C̄ (m,n) := coker(ηm,n).

Also note that a connected G∗-coalgebra is coaugmented; the coaugmen-
tation maps I (1,1) to C (1,1).

2.2 Bar and cobar constructions

2.2.1 Free G∗-algebras

The free G∗-algebra F∗(M ) on an S-bimodule M is characterized by
the classical universal property; there exists an inclusion ι : M → F∗(M )
such that given any homomorphism of S-bimodules θ : M → P there is a
unique homomorphism of G∗-algebras θ̃ making the following diagram
commute:

M
ι

$$HHHHHHHHH
θ // P

F∗(M )

θ̃

;;v
v

v
v

v

.

Here we give an explicit construction. The free non-unital G∗-algebra,
F∗(M ), on an S-bimodule M has G∗〈M 〉 as underlying S-bimodule. The
composition product µ : G∗〈F∗(M )〉 → F∗(M ) maps a graph decorated
with graphs decorated with M to a graph decorated with M . Intuitively
we may thing of this composition product as grafting the external edges of
the decorating graphs together according to the internal edges of the graph
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they decorate, leaving the decoration by M unchanged, except for a minor
modification of the internal labeling.

To be more precise, for a graph G ∈G∗, the morphism µG maps

(G , [(G1, [p1
1 ⊗·· ·⊗p1

kl
])⊗·· ·⊗ (Gk , [pk

1 ⊗·· ·⊗pk
lk

])]) ∈G〈(G∗〈M〉)〉
to

(G(G1, . . . ,Gk ), [p̃1
1 ⊗·· ·⊗ p̃k

lk
]) ∈G(G1, . . . ,Gk )〈M〉,

where G(G1, . . . ,Gk ) is the result of the grafting and p̃a
b is equal to pa

b up to
a modification of the labeling to keep track of how the pa

b connect to the
grafted graph. We describe in detail the graph G(G1, . . .Gk ) as well as the
modification of the labeling in §A of the appendix.

Since it does not matter in which order we graft the edges, the associativity
condition µG =µG/H ◦µG

H is immediate.

To define a unit of F∗(M ) we have to add a special graph, |, to G∗ consist-
ing of a single edge and no vertices. The space of decorations is defined as
|〈M 〉 := K, in analogy with the tensor product of zero factors. We define
the grafting G(|, . . . , |,G ′, |, . . . , |) := σ−1G ′τ−1, where σ, τ, and G are defined
as in (1.3) in §1.2.6 and G ′ is an (m,n)-graph. The unit is then defined by
1l := (|, [1]).

The inclusion ι : M → F∗(M ) is defined as follows, for an element p ∈
M (m,n), its image ι(p) is the decorated one vertex (m,n)-graph (G , [ f ⊗S
p ⊗S g ]) such that g ◦ inG = Id[n] and outG ◦ f = Id[m].

We will usually omit the ∗ and denote a free G∗-algebra simply by F (M )
when it is clear which family of graphs we consider.

The free G∗-algebra has a natural weight grading by the number of vertices
of a decorated graph, F∗(M ) = ⊕

s∈NF∗
(s)(M ), where F∗

(s)(M ) := G∗
(s)〈M 〉.

It is connected since F∗
(0)(M ) = |〈M 〉 and therefore also augmented. The

augmentation ideal is given by F̄∗〈M 〉 =⊕
s≥1 G∗

(s)〈M 〉.

2.2.2 Cofree connected G∗-coalgebras

A morphism θ : C → D of connected G∗-coalgebras is completely deter-
mined by the restriction θ̄ to the coaugmentation coideal of C .

The cofree connected G∗-coalgebra on an S-bimodule M is characterized
by the universal property obtained by reversing all arrows in the diagram
characterizing free G∗-algebras.

C̄
∃!θ̃

##H
H

H
H

H
θ̄ // M

F̄∗,c (M )

π

::uuuuuuuuu
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Its underlying S-bimodule is also G∗〈M 〉. The decomposition product ∆ is
defined as follows. For a decorated graph X = (G̃ , [p1 ⊗·· ·⊗pk ]) the image
of X under G∆ is the sum over all decorated graphs Y = (G , [(G1, [p1

1 ⊗ ·· ·⊗
p1

kl
])⊗ ·· ·⊗ (Gk , [pk

1 ⊗ ·· ·⊗pk
lk

])]) such that µ(Y ) = X in the free G∗-algebra
on M . The counit is given by ε : (|, [1]) → 1 and zero otherwise.

Remark. Note that this G∗-coalgebra satisfies the universal property only
in the category of connected G∗-coalgebras. Note also that there exists a
weaker notion of connected G∗-coalgebras, c.f. [45].

2.2.3 Derivations of free G∗-algebras

Let F∗(M ), be the free G∗-algebra on an S-bimodule M and let θ : M →
F∗(M ) be an S-bimodule homomorphism. Such a morphism θ deter-
mines a G∗-algebra derivation θd : F∗(M ) → F∗(M ). The morphism θ

is itself determined by morphisms Gθ : M → G〈M 〉, with |VG | ≥ 1. For a
pair of graphs H ⊂G we define the morphism G

Hθ : G/H〈M 〉 →G〈M 〉 as in
§1.2.2, then θd defined by

θd |G̃〈M 〉 := ∑
G/H=G̃

G
Hθ

can readily be checked to satisfy the derivation property. The above sum
is over all pairs H , G such that H is an admissible subgraph of G up to the
global labeling of H since G

Hθ is not dependent on this labeling. Since Gθ

applied to a fixed element of M is non-zero for only finitely many G this is
true also for G

Hθ.

Conversely a derivation d of the free G∗-algebra F∗(M ) is determined by
its restriction d |M : M →F∗(M ). Indeed,

d(G , [p1 ⊗·· ·⊗pk ]) =
dµG ((G1, [p1])⊗·· ·⊗ (Gk , [pk ])) =µG dG ((G1, [p1])⊗·· ·⊗ (Gk , [pk ])) =
k∑

i=1
(−1)(|p1|+···+|pi−1|)|d |µG ((G1, [p1])⊗·· ·⊗ (Gi , [d pi ])⊗·· ·⊗ (Gk , [pk ])) =

k∑
i=1

(−1)(|p1|+···+|pi−1|)|d |(G , [p1 ⊗·· ·⊗d pi ⊗·· ·⊗pk ]).

Here the one-vertex graphs Gi and the local labelings of the pi are appro-
priately chosen so as to satisfy the above equalities as well as (Gi , [pi ])

∼7→ pi

under the isomorphism defined in §1.2.6.

Combining the last two observations we conclude the following (cf. Lemma
14 of [45]. ):

Lemma 2.1. There is a one-to-one correspondence between G∗-algebra
derivations of F∗(M ) and S-bimodule homomorphisms M →F∗(M ).
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2.2.4 Coderivations of cofree G∗-coalgebras

Let F∗,c (M ) be the free G∗-coalgebra on an S-bimodule M and let
θ : F∗,c (M ) →M be anS-bimodule homomorphism. Such a θ determines
a G∗-coalgebra coderivation dθ : F∗,c (M ) → F∗,c (M ) as follows. The
morphism θ is itself determined by morphisms θG : G〈M 〉→M . For a pair
of graphs H ⊂ G , we define the morphism θG

H : G〈M 〉 → G/H〈M 〉 as in
§1.2.1, then dθ defined by

dθ|G〈M 〉 := ∑
H⊂G

θG
H ,

can readily be checked to satisfy the coderivation property. Here the sum is
over, up to the labeling of H , all G∗-admissible subgraphs H of G .

Conversely a coderivation d of the cofree connected G∗-coalgebra
F∗,c (M ) is uniquely determined by the projection πM d : F∗,c (M ) → M .
First we observe that

d(F∗,c
(s) (M )) ⊂⊕

r≤s
F∗,c

(r ) (M ).

This claim is verified by induction on the number of vertices. Now suppose
d |F∗,c

(r ) (M ) is known for all r < s and consider X = (G , [p1 ⊗·· ·⊗ps]). First we

note that d(X ) is a sum of decorated graphs with at most s vertices. Next
for G ′ ∈ G∗

(2) we observe that G ′∆d(X ), if non-zero, consists of terms where
either one of the vertices is decorated with (|, [1]) or both vertices are dec-
orated with graphs with at most s − 1 vertices. It is clear that in order to
determine the part of d(X ) which consists of graphs with more than one
vertex, it is enough to know the part of G ′∆d(X ) without trivially decorated
vertices, for all G ′ ∈G∗

(2). Thus if we consider only such terms in the equal-

ity G ′∆d(X ) = dG ′
G ′∆(X ), then in the right hand side d is applied only to

graphs with less than s vertices and is therefore known by the induction as-
sumption. Hence d(X ) is fully known if we only know the projection of d to
F∗,c

(1) (M ) ∼=M . We have proved the following (cf. Lemma 15 of [45]):

Lemma 2.2. There is a one-to-one correspondence between G∗-coalgebra
coderivations of F∗,c (M ) and S-bimodule homomorphisms F∗(M ) →M .

2.2.5 Quasi-(co)free dg G∗-(co)algebras

A free G∗-algebra on a dg S-bimodule (M ,d) has a natural differential in-
duced by d , as defined in §2.1.2. We will consider also free G∗-algebras
where the differential differs from the differential freely generated by d . We
call a free G∗-algebra F∗(M ) with a differential θδ = d + θd , where θd is a
derivation determined by a morphism θ : M →F∗(M ) (cf. §2.2.3), a quasi-
free G∗-algebra.
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Similarly we call a cofree G∗-coalgebra F∗,c (M ) quasi-cofree if its codiffer-
ential is a sum δθ = d+dθ of the codifferential induced by the one on M and
a coderivation dθ determined by a morphism θ : F∗(M ) →M (cf. §2.2.4).

2.2.6 Bar and cobar constructions

For the rest of the section let G∗ be one of G
↓1

1
c , G↓1

c , G↓
c,0, and G↓

c . Let

P be a dg G∗-algebra. Consider the cofree G∗-coalgebra F∗,c (Σ−1P̄ ). It
comes equipped with the codifferential d induced by the differential of P ,
cf. §2.1.2. The partial composition product µ2 of P induces a degree one
morphism µ̃ : G∗

(2)〈Σ−1P̄ 〉 → Σ−1P̄ . By §2.2.4, the morphism µ̃ determines

a coderivation µ̃d of F∗,c (Σ−1P̄ ). The associativity of µ2 implies µ̃d 2 = 0
and that µ2 is a morphism of dg S-bimodules implies d(µ̃d)+ (µ̃d)d = 0.
Hence δ := d + µ̃d satisfies δ2 = 0. We define the bar construction of P to be
the quasi-cofree G∗-coalgebra B∗(P ) := (F∗,c (Σ−1P̄ ),δ).

Now let C be a dg G∗-coalgebra. We define the cobar construction of C to
be the quasi-free G∗-algebra Ω∗(C ) := (F∗(ΣC̄ ),δ) where the differential
δ := d +d∆̃ is defined as follows. The G∗-algebra F∗(ΣC̄ ) has a differential
d induced by the codifferential of C , cf. §2.1.2. The partial decomposition
coproduct ∆2 of C induces a degree one morphism ∆̃ : ΣC̄ →G∗

(2)〈ΣC̄ 〉. By

§2.2.3, ∆̃ determines a derivation d∆̃ of F∗(ΣC̄ ). The coassociativity of ∆2

implies d 2
∆̃
= 0. That ∆2 is a morphism of dg S-bimodules implies d(d∆̃)+

(d∆̃)d = 0. From this we conclude that δ2 = 0.

When we do not want to emphasize which family of graphs we are con-
sidering we will usually omit the ∗ from the notation of the bar and cobar
constructions.

2.2.7 Quasi-free resolutions

A dg G∗-algebra P together with a quasi-isomorphism φ : P → Q

of dg G∗-algebras is called a resolution of Q. We call the resolution
quasi-free if P = (F∗(M ),θδ) is a quasi-free G∗-algebra. If θδ satisfies

θδ(M ) ⊂⊕
i≥2 F∗

(i )(M ) we call the resolution minimal.

2.2.8 Bar-cobar resolutions

Applying first the bar and then the cobar construction to a G∗-algebra P

yields a quasi-free resolution of P .

Theorem. Let P be a connected dg G∗-algebra, where G∗ is one of G
↓1

1
c , G↓1

c ,
G↓

c,0, and G↓
c . In this case the morphism

F∗(ΣF̄∗,c (Σ−1P̄ )) →P
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induced by the projection

ΣF̄∗,c (Σ−1P̄ ) →ΣF̄∗,c
(1) (Σ−1P̄ ) ∼= P̄ ⊂P

induces a quasi-isomorphism of dg G∗-algebras

Ω(B(P ))
∼→P .

This was proved for operads in [20], for dioperads in [18], and for properads
in [56]. The problem with the bar-cobar resolution is that it can be very
difficult to compute explicitly. Fortunately there exists a large class of G∗-
algebras for which there is a more easily computable resolution.

2.3 Koszul duality

2.3.1 Quadratic G∗-algebras

Definition. A quadratic G∗-algebra is a G∗-algebra P = F∗(M )/(R),
where R ⊂ F∗

(2)(M ). A quadratic G∗-algebra is called binary if M (m,n) =
for (m,n) 6= (1,2), (2,1).

Example 2.3 (Dioperad of Lie bialgebras). Let M be the S-bimodule given
by M (1,2) = 1l1 ⊗ sgn2, M (2,1) = sgn2⊗1l1, and M (m,n) = 0 for other m,n.
We denote a graph decorated with the natural basis element of M (1,2) by??�� and a graph decorated with the basis element of M (2,1) by ��??. Consider
the binary quadratic dioperad LieBi = F (M )/(R) where R = R(1,3) t
R(3,1)tR(2,2), with R(i , j ) ⊂F (M )(i , j ), is the following set of relations:

R(1,3) :

1 2

3???
���

???
��� +

2 3

1???
���

???
��� +

3 1

2???
���

???
��� R(3,1) :

3

1 2

��� ???

��� ??? +
1

2 3

��� ???

��� ??? +
2

3 1

��� ???

��� ??? (2.1)

R(2,2) :

1 2

1 2

???
���

��� ??? −
1

2

1

2

��� ???
��� +

2

1

1

2

��� ???
��� +

1

2

2

1

��� ???
��� −

2

1

2

1

��� ???
���. (2.2)

A representation ρ : LieBi → EndV in a vector space V makes V into a
Lie bialgebra. The Lie bracket is given by ρ(

??��) : V ⊗2 → V and the Lie co-
bracket by ρ(��??) : V → V ⊗2. That ρ is map of dioperads ensures that the
Jacobi and co-Jacobi identities (2.1) are satisfied as well as the compatibility
of the brackets (2.2).

See e.g. [20] for a treatment of quadratic operads, [18] for quadratic dioper-
ads and [56] for quadratic properads and props.
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2.3.2 Koszul G∗-algebras

In addition to the weight grading given by the number of vertices, the cofree
G∗-coalgebra on a weight graded S-bimodule M inherits another weight
grading, the total weight,

F∗,c (M )(s) := ⊕
G∈G∗

{v1,...,vk }=VG
s1+···+sk=s

G〈(M(s1))
v1 , . . . , (M(sk ))

vk 〉.

For a weight gradedS-bimodule M concentrated in positive weight we ob-
serve that {

F∗,c
(s) (M )(s) =F∗,c

(s) (M(1))

F∗,c
(r ) (M )(s) = 0 for r > s.

Now consider the bar construction B(P ) on a connected weight graded G∗-
algebra P . By the above observations we see that B(P ) is bi-graded by the
number of vertices and the total weight. We also observe that Σ−1P̄ is con-
centrated in positive weight since P is connected. By construction we see
that θd(B(r )(P )(s)) ⊂ B(r−1)(P )(s). The compatibility of θd and d yields a
complex of dg S-bimodules

0 → B(s)(P )(s) → B(s−1)(P )(s) → ...

One can show that the weight graded sub-S-bimodule given by

(P ¡)(s) := Hs(B(•)(P )(s),θd) = ker(θd : B(s)(P )(s) → B(s−1)(P )(s))

is a weight graded sub-G∗-coalgebra of B(P ). We call P ¡ the Koszul dual
G∗-coalgebra of P and we say that P is Koszul if the inclusion P ¡ ,→ B(P )
is a quasi-isomorphism. It is shown in the above mentioned references that
a Koszul G∗-algebra is necessarily quadratic.

Remark. Note that the Koszul dual G∗-coalgebra is defined as the homology
of (B(P ),θd) with respect to the weight grading. The codifferential raises the
cohomological degree by one but lowers the weight by one.

2.3.3 Koszul resolutions

For Koszul G∗-algebras we have the following well-known result.

Theorem 2.4 ([50, 20, 18, 56]). Let P be a dg G∗-algebra, where G∗ is one of

G
↓1

1
c , G↓1

c , G↓
c,0, and G↓

c . In this case P is Koszul if and only if the morphism of
the bar-cobar resolution induces a quasi-free resolution

Ω(P ¡)
∼→P .
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We denote this resolution by P∞. Representations of P∞ yield strongly ho-
motopy, also called infinity, versions of the algebras corresponding to P ;
e.g. algebras over the operad Lie∞ are called strongly homotopy Lie alge-
bras or L∞-algebras.

If P is a Koszul G∗-algebra with zero differential, then all we need to know
in order to compute the differential of Ω(P ¡) is the structure of the decom-
position coproduct of P ¡. Next we will consider a shortcut to determining
this coproduct.

2.3.4 Koszul dual G∗-algebras

To a quadratic G∗-algebra there is an associated dual G∗-algebra defined
as follows.

Let M be an S-bimodule. The Czech dual S-bimodule M ∨ of M is de-
fined by M ∨(m,n) := sgnm ⊗M (m,n)∗⊗ sgnn . Now consider the free G∗-
algebra on a connectedS-bimodule M satisfying in addition that M (1,1) =
0 and that M (m,n) is finite dimensional for all (m,n). The components
F∗

(s)(M )(m,n) are then all finite dimensional and the linear dual (F∗(M ))∗

is naturally isomorphic to F∗,c (M∗) as G∗-coalgebras. This isomorphism
induces a pairing

〈_,_〉 : F∗
(2)(M

∨)⊗F∗
(2)(M ) →K

defined by

(G , [e∗a ⊗e∗b ])⊗ (G ′, [ec ⊗ed ]) 7→ δG ,G ′δa,cδb,d ,

where the δ:s are Kronecker deltas, {ei } is a basis of M , {e∗i } the dual basis,
and we assume in the case G =G ′ that ea decorates the same vertex as ec .

Now let P =F (M )/(R) be a quadratic G∗-algebra such that M satisfies the
above conditions. Let R⊥ be a subset of F∗

(2)(M
∨) satisfying that (R⊥)(2) is

the orthogonal complement to (R)(2) with respect to the pairing 〈_,_〉. We
define the Koszul dual G∗-algebra of P to be P ! :=F (M ∨)/(R⊥).

Remark. For a quadratic G∗-algebra P =F (M )/(R) such that M (m,n) is
finite dimensional for all m,n ∈Nwe have that (P !)! =P .

The property of being Koszul is preserved under Koszul duality.

Proposition 2.5 ([20],[56]). Let P be a quadratic G∗-algebra. Then P is
Koszul if and only if P ! is Koszul.

The Koszul dual G∗-algebra P ! of a quadratic G∗-algebra P relates to the
Koszul dual P ¡ in the following way.

(P ¡)(s)(m,n) ∼=Σ−s((P !)(s)(m,n))∨,
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where the isomorphism is of G∗-coalgebras. Thus, computing the Koszul
dual G∗-algebra and its composition product gives us an accessible way of
determining the differential of the cobar construction on P ¡.

2.4 P∞-algebras as Maurer-Cartan elements

2.4.1 The Lie algebra associated to a G∗-algebra

The total space of a dg G∗-algebra (P ,µ,dP ) is defined by
P := ∏

m,n P (m,n). There exists a binary product ? on P ; for p and q of
homogeneous arities the product p?q is defined as the sum of all possible
compositions of p and q along two-vertex graphs, in case the graph is
connected with p decorating the lower vertex and q the upper vertex.

For operads this product defines a pre-Lie algebra structure on P [45]. The

subset of two-vertex graphs in (G↓1
c )(n) is explicitly given by

. . .

. . .

σ(1) σ(i )

σ(i+1) σ(n)
GGGGG

4444






wwwww

EEEEEE

4444






wwwww


σ∈Sun-sh

(i ,n−i )

.

Remark. Note that for operads p ? q often denotes the operation p ? q =∑n
i=1 p ◦i q , for p ∈P (n), which also is a pre-Lie product [24]. We will always

refer to the former product.

In the case of properads the product ? is a Lie admissible product and for
props it is an associative product [45].

For dioperads the subset of two-vertex graphs of (G↓
c,0)(n) is given by

. . .

. . .
. . .

. . .

τ(1) τ( j )

τ( j+1) τ(n)

σ(1) σ(i )

σ(i+1) σ(m)

GGGGG
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 4444

GGGGG


τ∈Sun-sh

( j ,n− j )

σ∈Sun-sh
(i ,m−i )

.

In this case the product is of yet another type.

Let V be a vector space and let ? : V ⊗V → V be a bilinear operation on V .
We define the associator of ? to be A?(u, v, w) := (u? v)?w −u? (v ?w),
for u, v, w ∈V .

Definition. A vector space V endowed with a product ? is called a left-
symmetric algebra if the product satisfies A?(u, v, w) = A?(v,u, w) for all
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u, v, w ∈ V . It is called a right-symmetric algebra if ? satisfies A?(u, v, w) =
A?(u, w, v) for all u, v, w ∈V , and it is called a bi-symmetric algebra [3] if it is
both a left-symmetric and a right-symmetric algebra.

Remark. Right-symmetric and left-symmetric algebras are often called pre-
Lie algebras and left-symmetric algebras are known also as Vinberg alge-
bras. Bi-symmetric algebras can equivalently be defined by A?(v1, v2, v3) =
A?(vσ(1), vσ(2), vσ(3)) for all v1, v2, v3 ∈ V and all σ ∈S3. They are also called
assosymmetric algebras [25].

It is not hard to show the following:

Proposition 2.6. For a dioperad P the product ? is bi-symmetric.

In all the above cases, for P a G∗-algebra the commutator of ? together
with the differential of P makes P into a dg Lie algebra. See [28] and [45].

2.4.2 Convolution G∗-algebras

Let (C ,∆,δC ) be a dg G∗-coalgebra and (P ,µ,δP ) a dg G∗-
algebra. The collection P C = HomK(C ,P ) of all homomorphisms
of graded K-modules is an S-bimodule with components
HomK(C ,P )(m,n) = HomK(C (m,n),P (m,n)) and the S-action given by
(σ f τ)(x) = σ f (σ−1xτ−1)τ. The invariants (P C )S of this action are the
S-equivariant maps. The S-module (P C )S has a G∗-algebra structure,
see [4] and [45] for the cases of operads and props, respectively, defined
as follows. For a graph G and an element (G , [ f1 ⊗ ·· · ⊗ fk ] ∈ G〈(P C )S〉,
let G( f1, . . . , fk ) : G〈C 〉 → G〈P 〉 denote the morphism which applies fi to
the decoration of the corresponding vertex. The composition product of
(P C )S is given by

µG ( f1 ⊗·· ·⊗ fk ) :=µG ◦G( f1, . . . , fk )◦G∆.

The differential δP and codifferential δC induce a differential ∂ given by
∂( f ) = δP ◦ f − (−1)| f | f ◦δC . Together this gives (P C )S a structure of dg
G∗-algebra called the convolution G∗-algebra.

2.4.3 Maurer-Cartan elements of convolution Lie algebras

Definition. A Maurer-Cartan element in a dg Lie algebra (g, [_,_],d), is a de-
gree one element γ satisfying the Maurer-Cartan equation

d(γ)+ 1

2
[γ,γ] = 0.

Let P be a dg G∗-algebra and let C denote the dg G∗-coalgebra P ¡. Fur-
ther let (V ,d) be a dg vector space and let E denote the endomorphism
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G∗-algebra of V . Since a G∗-algebra morphism from a free G∗-algebra is
determined by its restriction to the space of generators, the dg G∗-algebra
morphisms Ω(P ¡) = (F (ΣC ),δ= dΣC +d∆̃) → (E ,dE ) correspond to the de-
gree zero S-invariants ρ ∈ E ΣC which satisfy

ρ ◦δ= dE ◦ρ⇐⇒ ρ ◦d∆̃ = dE ◦ρ−ρ ◦dΣC . (2.3)

Let LP (V ) := (((E C )S), [_,_],−∂) denote the dg Lie algebra associated to the

convolution G∗-algebra (E C )S. We call it the convolution Lie algebra. A
degree r S-bimodule morphism ρ : ΣC → E induces a degree r +1 element
ρ̃ ∈ ((E C )S). That ρ satisfies (2.3) is equivalent to that ρ̃ satisfies

∑
G∈G(2)

µG ◦G〈ρ̃〉◦G∆= dE ◦ ρ̃− ρ̃ ◦dC ⇐⇒−∂(ρ̃)+ 1

2
[ρ̃, ρ̃] = 0.

Thus we obtain the following result.

Theorem 2.7 (Theorem 62 (ii) in [45]). Let P be a Koszul operad. Then there
is a one-to-one correspondence between representations of P∞ = Ω(P ¡) in
(V ,d) and Maurer-Cartan elements in LP (V ).
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3 Operads of compatible structures

In this chapter we describe operads encoding two different kinds of com-
patibility of algebraic structures. We show that there exist decompositions
of these in terms of black and white products and we prove that they are
Koszul for a large class of algebraic structures by using the poset method of
B. Vallette. In particular we show that this is true for the operads of compat-
ible Lie, associative and pre-Lie algebras.

3.1 Compatibility of structures encoded by operads

3.1.1 Linearly compatible structures

Let O =F (M )/(R) be a binary quadratic operad with aK-basis e1, . . . ,es of
M . A representation ρ of O in a vector space U can be thought of as the
data (U , {ρ(e1), . . . ,ρ(es)}), where ρ(ei ) are binary operations on U subject to
axioms encoded by the relations R and the S-module structure of M .

Definition. Let O be a binary quadratic operad and U a vector space over
K. Let A = (U ,µ1 . . . ,µk ) and B = (U ,ν1 . . . ,νk ) be O-algebra structures on
U . Define new operations by ηi :=αµi +βνi for some α,β ∈K. We say that
A and B are linearly compatible if C = (U ,η1, . . . ,ηk ) is an O-algebra for any
choice of α and β. Note that this is equivalent to requiring C to be an O-
algebra for α=β= 1.

3.1.2 Koszul dual operad of a binary operad

For an S-module M concentrated in M (2) we have that
F(2)(M ) = F(2)(M )(3). Given such a module M with K-basis
{ 1

??��, . . . , s
??��} we denote a labeled tree in F(2)(M ) decorated with i

??�� above j
??��

by
a b

c
i

j

???
���

???
���.

The space F(2)(M ) is then spanned by the trees{1 2

3
i

j

???
���

???
���,

2 3

1
i

j

???
���

???
���,

3 1

2
i

j

???
���

???
���

}
1≤i , j≤s

.
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and is 3s2-dimensional. Thus for a binary quadratic operad O =F (M )/(R)
we have that R consists of t ≤ 3s2 linearly independent relations

R =
{ ∑

1≤i , j≤s
γk,1

i , j

1 2

3
i

j

???
���

???
��� +γk,2

i , j

2 3

1
i

j

???
���

???
��� +γk,3

i , j

3 1

2
i

j

???
���

???
���

}
1≤k≤t

. (3.1)

Recall from §2.3.4 that the Koszul dual operad of O is given by
O ! =F (M ∨)/(R⊥), where M ∨ is defined by M ∨(n) =M (n)∗⊗sgnn and R⊥

is a maximal set of relations orthogonal to R with respect to the natural
pairing

〈_,_〉 : F(2)(M
∨)⊗F(2)(M ) →K.

Explicitly, for a binary quadratic operad this pairing is given by(a b
c

i∨
j∨

???
���

???
��� ,

d e

f
k

l

???
���

???
���

)
= δ(a,b,c),(d ,e, f )δi ,kδ j ,l .

Given relations R as in (3.1), there are 3s2 − t linearly independent orthog-
onal relations

R⊥ =
{ ∑

1≤i , j≤s
ηk,1

i , j

1 2

3
i∨

j∨
???

���
???

��� +ηk,2
i , j

2 3

1
i∨

j∨
???

���
???

��� +ηk,3
i , j

3 1

2
i∨

j∨
???

���
???

���

}
1≤k≤3s2−t

. (3.2)

3.1.3 Operads of linearly compatible structures

Let O = F (M )/(R) be a binary quadratic operad. Consider two operads
O◦ =F (M◦)/(R◦) and O• =F (M•)/(R•) both isomorphic to O . We choose
K-bases ◦1

?? ��, . . . , ◦ s
?? �� of M◦ and •1

?? ��, . . . , • s
?? �� of M• so that there exists an isomor-

phism φ : O◦ → O• with φ( ◦ i
?? ��) = • i

?? ��. The relations R◦ and R• can then be
given by the same coefficients γk,l

i , j , cf. (3.1). By embedding O◦ and O• into
F (M◦ ⊕M•)/(R◦ ∪R•) we obtain an operad whose representations are
pairs of O-algebras which not necessarily are compatible in any way. In
order to encode linear compatibility we define the following relations:

R◦• :=
{ ∑

1≤i , j≤s
γk,1

i , j

1 2

3◦ i
• j

??
��

??
�� +γk,2

i , j

2 3

1◦ i
• j

??
��

??
�� +γk,3

i , j

3 1

2◦ i
• j

??
��

??
��+

γk,1
i , j

1 2

3• i
◦ j

??
��

??
�� +γk,2

i , j

2 3

1• i
◦ j

??
��

??
�� +γk,3

i , j

3 1

2• i
◦ j

??
��

??
��

}
1≤k≤t

.

Definition. Given O◦ and O• and R◦• as above we define a new binary
quadratic operad by O2 :=F (M◦⊕M•)/(R◦∪R•∪R◦•).

Proposition 3.1. A representation of O2 is a pair of linearly compatible O-
algebras.

Proof. By direct calculation.
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3.1.4 Totally compatible structures

We now turn our attention to the other kind of compatibility which should
generalize the compatibility of 2C om. Given a binary quadratic operad O

and isomorphic operads O◦ and O• as in the previous paragraph, we define

1◦•R :=
{1 2

3◦ i
• j

??
��

??
�� −

1 2

3• i
◦ j

??
��

??
��,

2 3

1◦ i
• j

??
��

??
�� −

2 3

1• i
◦ j

??
��

??
��,

3 1

2◦ i
• j

??
��

??
�� −

3 1

2• i
◦ j

??
��

??
��

}
1≤i , j≤s

.

These relations encode that the order in which we apply operations of O◦
and O• is irrelevant. Next we define

2◦•R :=
{ ∑

1≤i , j≤s
γk,1

i , j

1 2

3◦ i
• j

??
��

??
�� +γk,2

i , j

2 3

1◦ i
• j

??
��

??
�� +γk,3

i , j

3 1

2◦ i
• j

??
��

??
��

}
1≤k≤t

,

which encodes that the relations of the original operad are satisfied for
combinations of the operations of O◦ and O• if we first apply an operation
of O◦ and then an operation of O•. Note that a consequence of 1◦•R and

2◦•R is

2•◦R :=
{ ∑

1≤i , j≤s
γk,1

i , j

1 2

3• i
◦ j

??
��

??
�� +γk,2

i , j

2 3

1• i
◦ j

??
��

??
�� +γk,3

i , j

3 1

2• i
◦ j

??
��

??
��

}
1≤k≤t

.

We define ◦•R := 1◦•R∪ 2◦•R.

Definition. Given O◦, O• and ◦•R as above we define a new binary quadratic
operad by 2O := F (M◦⊕M•)/(R◦∪R•∪ ◦•R). A representation of 2O is a
pair of O-algebras with the compatibility given by ◦•R. We call structures
compatible in this way totally compatible.

In the next paragraph we will see that 2C om is an operad of this form, but
first we note how linear and total compatibility relate under Koszul duality.

Proposition 3.2. Let O =F (M )/(R) be a binary quadratic operad such that
M (n) is finite dimensional for all n ∈ N. We have (O2)! = 2(O !) and (2O )! =
(O !)2.

Proof. By direct calculation.

3.1.5 The operads Lie 2 and 2C om

Here we give descriptions of the operads encoding linearly compatible Lie
algebras and totally compatible commutative algebras using the definitions
and notation of the previous two paragraphs. Thereby we show that the
notation for compatible structures agrees with the notation already given
to these operads. Both results follow from straightforward verifications.
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Proposition 3.3. The operad Lie 2, encoding pairs of linearly compatible Lie
algebras, is the quadratic operad F (M )/(R) where theS-module M is given
by

M (n) :=
sgn2⊕sgn2 =K

1 2

◦
??

�� ⊕K
1 2

•
??

�� if n = 2

0 if n 6= 2

and the relations R =R◦∪R•∪R◦• are as follows

R◦ :

1 2

3◦
◦

??
��

??
�� +

2 3

1◦
◦

??
��

??
�� +

3 1

2◦
◦

??
��

??
�� R• :

1 2

3•
•

??
��

??
�� +

2 3

1•
•

??
��

??
�� +

3 1

2•
•

??
��

??
��

R◦• :

1 2

3◦
•

??
��

??
�� +

2 3

1◦
•

??
��

??
�� +

3 1

2◦
•

??
��

??
�� +

1 2

3•
◦

??
��

??
�� +

2 3

1•
◦

??
��

??
�� +

3 1

2•
◦

??
��

??
��.

Proposition 3.4. The operad 2C om, encoding pairs of totally compatible
commutative algebras, is the quadratic operad F (M )/(R), where the
S-module M is given by

M (n) :=
1l2 ⊕1l2 =K

1 2

◦
??

�� ⊕K
1 2

•
??

�� if n = 2

0 if n 6= 2

and the relations R =R◦∪R•∪ 1◦•R∪ 2◦•R are given by

R◦ :

1 2

3◦
◦

??
��

??
�� −

2 3

1◦
◦

??
��

??
��,

1 2

3◦
◦

??
��

??
�� −

3 1

2◦
◦

??
��

??
�� R• :

1 2

3•
•

??
��

??
�� −

2 3

1•
•

??
��

??
��,

1 2

3•
•

??
��

??
�� −

3 1

2•
•

??
��

??
��

1◦•R :

1 2

3◦
•

??
��

??
�� −

1 2

3•
◦

??
��

??
��,

2 3

1◦
•

??
��

??
�� −

2 3

1•
◦

??
��

??
��,

3 1

2◦
•

??
��

??
�� −

3 1

2•
◦

??
��

??
��

2◦•R :

1 2

3◦
•

??
��

??
�� −

2 3

1◦
•

??
��

??
��,

1 2

3◦
•

??
��

??
�� −

3 1

2◦
•

??
��

??
��.

Note that by Proposition 3.2 Lie 2 is Koszul dual to 2C om.

Remark. The operads Lie 2 and 2C om were denoted by Lie2 and C om2,
respectively, in [14]. We denote them with upper index so that the nota-
tion does not interfere with that of set operads, see §3.2.1, and we have the
indices to the right and left respectively to emphasize that these are two dif-
ferent kinds of compatibility.

3.1.6 Black product and white product

In [20, 21] Ginzburg and Kapranov generalized the notions of black and
white products for algebras to binary quadratic operads. B. Vallette gen-
eralized the notion further to arbitrary operads given by generators and re-
lations and to properads in [54]. He also established some results about
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black and white products for operads. For more details we refer the reader
to these papers.

The definition of the black product for binary quadratic operads is given
in terms of a certain map Ψ. Note that for an S-module M concentrated
in M (2) we have that F (M )(3) is equal to F(2)(M ) and that F(2)(M ) is
spanned by three types of decorated trees, corresponding to the possible
labelings of the leaves, see §3.1.2. Given two binary quadratic operads O =
F (M )/(R) and Q =F (N )/(S ) the map

Ψ : F (M )(3)⊗F (N )(3)⊗ sgn3 →F (M ⊗N ⊗ sgn2)

is defined by
a b

c
i

j

???
���

???
��� ⊗

d e

f
k

l

???
���

???
��� 7→ δ(a,b,c),(d ,e, f )

a b
c

i⊗k
j⊗l

???
���

???
��� ,

where by abuse of notation i ⊗k denotes the tensor product of the elements
decorating the trees.

Definition. Let O = F (M )/(R) and Q = F (N )/(S ) be binary quadratic
operads whose S-modules of generators M and N are finite dimensional.
We define their black product by

O •Q :=F (M ⊗N ⊗ sgn2)/(Ψ(R⊗S )).

The white product is defined through another map

Φ : F (M ⊗N )(3) →F (M )(3)⊗F (N )(3)

which is given by
a b

c
i⊗k

j⊗l

???
���

???
��� 7→

a b
c

i
j

???
���

???
��� ⊗

a b
c

k

l

???
���

???
���.

Definition. Let O = F (M )/(R) and Q = F (N )/(S ) be binary quadratic
operads. We define their white product by

O ◦Q :=F (M ⊗N )/(Φ−1(R⊗F (N )(3)+F (M )(3)⊗S )).

We have the following relation between black and white products which
was stated in [20, 21] and explicitly proven in [54].

Proposition 3.5 (Theorem 2.2.6 in [20]). Let O and Q be binary quadratic
operads generated by finite dimensional S-modules, then (O ◦Q)! =O ! •Q!.
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3.1.7 Decomposition of operads of compatible structures

We now reach the highlight of this section with the following theorem.

Theorem 3.6. Let O be a binary quadratic operad. We have O2 =O •Lie 2.

Proof. Let O = F (M )/(R) be generated by the S-module M = K 1
??�� ⊕ ·· · ⊕

K s
??�� and with relations

R =
{ ∑

1≤i , j≤s
γk,1

i , j

1 2

3
i

j

???
���

???
��� +γk,2

i , j

2 3

1
i

j

???
���

???
��� +γk,3

i , j

3 1

2
i

j

???
���

???
���

}
1≤k≤t

.

Further denote the generators of Lie 2 as in §3.1.5 by ◦
?? �� and •

?? �� and the rela-
tions by S =S◦∪S•∪S◦•.

By the definition of the black product we see that O •Lie 2 is generated by
(K 1

??��⊕·· ·⊕K s
??��)⊗(K ◦

?? ��⊕K •
?? ��)⊗sgn2. We denote the generator ofK i

??��⊗K ◦
?? ��⊗

sgn2 by ◦ i
?? �� and sinceK ◦

?? ��⊗ sgn2 = sgn2⊗sgn2
∼= 1l2 we have that M◦ =K ◦1

?? ��⊕
·· ·⊕K ◦ s

?? �� is isomorphic to M as an S-module. Of course the same is true for
M• =K •1

?? ��⊕·· ·⊕K • s
?? ��, with the obvious meaning of • i

?? ��.

Next we see that

R◦ =Ψ(R⊗S◦) =
{ ∑

1≤i , j≤s
γk,1

i , j

1 2

3
i

j

???
���

???
��� +γk,2

i , j

2 3

1
i

j

???
���

???
��� +γk,3

i , j

3 1

2
i

j

???
���

???
���

}
1≤k≤t

.

and similarly for R• =Ψ(R⊗S•). Finally for R◦• =Ψ(R⊗S◦•) we have

R◦• =
{ ∑

1≤i , j≤s
γk,1

i , j

1 2

3◦ i
• j

??
��

??
�� +γk,2

i , j

2 3

1◦ i
• j

??
��

??
�� +γk,3

i , j

3 1

2◦ i
• j

??
��

??
��+

γk,1
i , j

1 2

3• i
◦ j

??
��

??
�� +γk,2

i , j

2 3

1• i
◦ j

??
��

??
�� +γk,3

i , j

3 1

2• i
◦ j

??
��

??
��

}
1≤k≤t

.

where 1 ≤ i ≤ n. Thus we see that O •Lie 2 =F (M◦⊕M•)/(R◦∪R•∪R◦•) =
O2.

Corollary 3.7. Let O be a binary quadratic operad. We have 2O =O ◦ 2C om.

Proof. By Proposition 3.2 we have that ((O !)2)! = 2O and by Theorem 3.6 that
(O !)2 = O ! •Lie 2. By Proposition 3.5 we know that (O ! •Lie 2)! = O ◦ 2C om.
Putting this together we conclude that

2O = ((O !)2)! = (O ! •Lie 2)! =O ◦ 2C om.
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3.1.8 White product and Hadamard product

In practice the white product can be difficult to compute explicitly. In [54] a
useful result was proven relating the white product and Hadamard product
for certain operads.

Definition. The Hadamard product O ⊗H Q of two operads O and Q is de-
fined as (O ⊗H Q)(n) :=O (n)⊗Q(n). The composition µ is given by

µ(e ⊗q ;e1 ⊗q1, . . . ,ek ⊗qk ) :=µ(e;e1, , . . . ,ek )⊗µ(q ; q1, . . . , qk ).

For a quadratic operad O = F (M )/(R) let πO : F (M ) → O be the natu-
ral projection. Denote by T a labeled binary tree with n − 1 internal ver-
tices. We order the internal vertices linearly in an arbitrary way and let L M

T
denote the induced decoration morphism L M

T : M⊗(n−1) → F (M ) which
decorates the internal vertices of T with elements of M .

Proposition 3.8 (Proposition 15 in [54]). Let O be a binary quadratic operad
such that for every n ≥ 3 and every labeled binary tree T with n −1 vertices
the composite map πO ◦L M

T : M⊗(n−1) → O (n) is surjective. For every bi-
nary quadratic operad, Q, the white product O ◦Q is equal to the Hadamard
product O ⊗H Q.

3.1.9 Weakly associative operads

Since we will use the condition in Proposition 3.8 later we extract it into a
definition.

Definition. Let O =F (M )/(R) be a binary quadratic operad with aK-basis
{ 1

??��, . . . , s
??��} of M . Denote the element i

??��(12) by i op
??�� . We call O weakly asso-

ciative if

∀
a b

c
i

j

???
���

???
��� ∃

b c

a
k

l op

???
���

???
��� such that

a b
c

i
j

???
���

???
��� =

b c

a
k

l op

???
���

???
��� .

Note that an operation i
??�� is associative in the usual sense precisely when

the above condition is satisfied for i = j = k = l .

Proposition 3.9. Let O be binary quadratic operad, then O is weakly associa-
tive if and only if it has the property of Proposition 3.8.

Proof. Assume that O = F (M )/(R) is weakly associative. Let T be any la-
beled binary tree. By repeatedly using the identity

a b
c

i
j

???
���

???
��� =

b c

a
k

lop

???
���

???
���

any decorated labeled binary tree T ′ is equivalent to a decorated tree with
the same shape and labeling as T . Hence the map πO ◦L M

T is surjective.
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Now assume instead that πO ◦L M
T is surjective for any labeled binary tree

T . Let

T =
b c

a???
���

???
���.

Then since πO ◦L M
T is surjective, any decorated tree

a b
c

i
j

???
���

???
���

is equivalent to a decorated tree of the same shape and labeling as T , which
is exactly the condition for being weakly associative.

Corollary 3.10. For every binary quadratic operad O we have O ◦ 2C om =
O ⊗H

2C om.

Proof. Clearly 2C om is weakly associative, thus by Proposition 3.9 it satisfies
the condition of Proposition 3.8 whence we obtain the desired result.

3.2 Operadic partition posets of set operads

3.2.1 Set operads

AnS-set is a collection of sets, S = (Sn)n∈N, equipped with a right action of
the symmetric group Sn on Sn . Define a monoidal product in the category
of S-sets by:

S ◦T n = ⊔
1≤k≤n

( ⊔
i1+···+ik=n

Sk × (Ti1 ×·· ·×Tik )×Si1×···×Sik
Sn

)
Sk

,

where we consider the coinvariants with respect to the action of Sk given
by (s, (t1, . . . , tk ),σ)τ = (sτ, (tτ(1), . . . , tτ(k)), τ̄−1σ) and τ̄ is the induced block
permutation. A unit I with respect to this product is given by theS-module
defined by

In :=
{

[1] if n = 1

; if n 6= 1.

Definition. A set operad is a monoid (P ,µ : P ◦P → P ,ε : I → P ) in the
monoidal category (S-sets,◦, I ). For an element (p, (p1, . . . , pk ),σ) ∈ P ◦P

we will suppress the sigma and denote µ(p, (p1, . . . , pk )) by µ(p; p1, . . . , pk ).

To any set operad P one can associate an algebraic operad P̃ by consider-
ing formal linear combinations of the elements. We define P̃ (n) := KPn ,
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the K-vector space spanned by Pn . We call P̃ the linearization of P . Of-
ten we will use the same notation for a set operad as for its linearization. It
should be clear from the context which of the two is referred to.

To an element (p1, . . . , pk ) ∈P i1 ×·· ·×P ik one can associate a map

µp1,...,pk : Pk →P i1+···+ik

defined as µp1,...,pk (p) :=µ(p; p1, . . . , pk ). The following definition was intro-
duced in [55] since it is a crucial property for set operads in order to use the
poset method.

Definition 3.11. A set operad P is called a basic-set operad if the map
µp1,...,pk is injective for all (p1, . . . , pk ) ∈P i1 ×·· ·×P ik .

Proposition 3.12. The operad 2C om is the linearization of a basic-set op-
erad.

Proof. The operad 2C om is the linearization of P , where Pn = {Dn
i } and Dn

i
are as in Proposition 3.21. It is immediate from the formula for the compo-
sition product that P is basic-set.

3.2.2 Operadic partition posets

For definitions of the various notions related to posets see [5, 55].

Definition. Let P be a set operad. A P -partition of [n] is the data
{(B1, p1), . . . , (Bs , ps)}, where {B1, . . . ,Bs} is a partition of [n] and pi ∈ P |Bi |.
We let ΠP (n) denote the set of all P -partitions of [n] and let ΠP denote the
collection {ΠP (n)}n∈N. For an algebraic operad O which is the linearization
of a set operad P , i.e. O = P̃ , we will sometimes write ΠO for ΠP .

Remark 3.13. One can think of this as enriching a partition with elements
of an operad or, shifting the perspective, as labeling the input of the opera-
tion that an element pi ∈ P |Bi | describes with the elements of the block Bi

instead of with [|Bi |]. E.g. one can identify(
{3,4,7},

2 3

1◦
◦

??
��

??
��

)
∼

4 7

3◦
◦

??
��

??
��.

The definition in [55] uses ordered sequences of elements of the blocks in-
stead of unordered blocks and then considers equivalence classes of pairs
(SB , p), where SB is an ordered sequence of the elements of a block B where
each element appears exactly once and p ∈P |SB |. E.g.(

(3,4,7),

2 3

1◦
◦

??
��

??
��

)
∼

(
(4,7,3),

1 2

3◦
◦

??
��

??
��

)
∼

4 7

3◦
◦

??
��

??
��.
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Our definition corresponds to choosing the representative of a class with
the elements of the sequence in ascending order. In the following we will
assume that, given a partition α = {(A1, p1), . . . , (Ar , pr )}, the elements of a
block Ai = {ai

1, . . . , ai
mi

} are indexed in ascending order, i.e. ai
j < ai

j+1.

Next we define a partial order on ΠP (n) .

Definition 3.14. Let α = {(A1, p1), . . . , (Ar , pr )} and β = {(B1, q1), . . . , (Bs , qs)}
be two P -partitions of [n]. We define α≤β if

(i) {A1, . . . , Ar } is a refinement of {B1, . . . ,Bs}, i.e. each B j is the union of
one or more Ai .

(ii) when B j = Ai1 ∪ ·· · ∪ Ai t then there exists a p ∈ P t such that q j =
µ(p; pi1 , . . . , pi t )σ−1, where σ ∈ S|B j | is the obvious permutation asso-
ciated to (

b j
1 . . .b j

|B j |
ai1

1 . . . ai t
mit

)
.

We callΠP together with this partial order the operadic partition poset of P .

Remark. We define the order in the opposite way to the one in [55] to make
it correspond to the way it is defined in [10]. Note that with this in mind
our definition leads to the same ordering of the corresponding equivalence
classes.

Example. Using the identification in Remark 3.13 we see that in Π2Com(7)

{1 2

6◦
◦

??
��

??
��,

5

,

3 4

7•
◦

??
��

??
��

}
≤


1 2

6◦
◦

??
��

??
��,

•
◦ 7

◦ 5

3 4

?? ��

?? ��

?? ��


since

µ(
1 2

◦
??

��;
5

,

3 4

7•
◦

??
��

??
��) =

◦
•

◦5 7

3 4

?? ttt

?? ��

?? ��
=

•
◦ 7

◦ 5

3 4

?? ��

?? ��

?? ��
.

In [55], Vallette studied homological properties of the order complex asso-
ciated to the partition poset of an operad. The following is the main result.

Theorem 3.15 (Theorem 9 of [55]). Let P be a basic-set quadratic operad.
The operad P̃ is Koszul if and only if each subposet [0̂,γ] of each ΠP (n) is
Cohen-Macaulay, where γ is a maximal element of ΠP (n).

3.2.3 Fiber product of operadic partition posets

In [6] a product of posets was introduced under the name Segre product
and a particular case was studied. We prefer to call it the fiber product be-
cause it corresponds to this categorical construction.
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Definition. Let P ,Q and S be posets. Given poset maps f : P → S and
g : Q → S we define P × f ,g Q, the fiber product of P and Q over f , g , to be the
subset of P ×Q consisting of pairs (p, q) such that f (p) = g (q). The order on
P × f ,g Q is induced by the order on P ×Q which is given by (p, q) ≤ (p ′, q ′) if
p ≤ p ′ and q ≤ q ′.

Let Πn denote the poset of partitions of [n] and let Π denote the
collection {Πn}n∈N. Further, given operadic partition posets ΠP and
ΠQ , let f : ΠP → Π and g : ΠQ → Π be the natural projections which
send an element α = {(A1, p1), . . . , (Am , pm)} ∈ ΠP to the underlying
partition {A1, . . . , Am} and similarly for g . Then ΠP × f ,g ΠQ consists
of pairs (α,β), where α = {(A1, p1), . . . , (Am , pm)} and β = {(A1, q1), . . . ,
(Am , qm)}. This poset is isomorphic to the poset consisting of elements
α = {(A1, p1, q1), . . . , (Am , pm , qm)}, where pi ∈ P |Ai | and qi ∈ Q|Ai |, with the
order given by α≤α′ if

(i) {A1, . . . , Ar } is a refinement of {A′
1, . . . , A′

s}.

(ii) when A′
j = Ai1∪·· ·∪Ai t then there exist a p ∈P t and a q ∈Qt such that

p ′
j = µ(p; pi1 , . . . , pi t )σ−1 and q ′

j = µ(q ; qi1 , . . . , qi t )σ−1, where σ ∈ S|A′
j |

is the permutation given in Definition 3.14.

We will denote this fiber product byΠP ×ΠΠQ . Note thatΠCom =Πwhence
ΠP ×ΠΠCom =ΠP , for any P .

Definition. The Hadamard product P ×H Q of two set operads P and Q is
defined as (P ×H Q)n = Pn ×Qn , where × denotes the Cartesian product.
The composition µ is given by

µ((p, q); (p1, q1), . . . , (pk , qk )) := (µ(p, ; p1, , . . . , pk ),µ(q ; q1, . . . , qk )).

Proposition 3.16. For any set operads P , Q the following equalities hold.

(i) ΠP ×H Q =ΠP ×ΠΠQ

(ii) ãP ×H Q = P̃ ⊗H Q̃

Proof. Immediate from the definitions involved.

Next we describe the operadic partition poset associated to an operad en-
coding totally compatible structures.

Corollary 3.17. Let O be an algebraic operad which is the linearization of a
set operad P . Then

(i) 2O = ãP ×H
2C om and

(ii) Π2O =ΠP ×ΠΠ2Com.
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Proof. Using Corollary 3.7 and Propositions 3.10 and 3.16 (ii) we have that

2O =O ◦ 2C om =O ⊗H
2C om = ãP ×H

2C om.

Thus by Proposition 3.16 (i) we have Π2O =ΠP ×H Π2Com.

Let P be a set operad. We define 2P :=P ×H
2C om and observe that 2̃P =

2P̃ .

Proposition 3.18. Let P and Q be set operads. If P and Q are basic-set, then
so is P ×H Q.

Proof. We want to show that the map

µ(ν1,η1),...,(νk ,ηk ) : Pk ×Qk →P i1+···+ik ×Qi1+···+ik

given by

µ(ν1,η1),...,(νk ,ηk )(α,β) = (µ(α;ν1, . . . ,νk ),µ(β;η1, . . . ,ηk ))

is injective for all ((ν1,η1), . . . , (νk ,ηk )) ∈ (P i1 × Qi1 ) × ·· · × (P ik × Qik ).
Now let (α,β), (α′,β′) ∈ Pk × Qk be such that (α,β) 6= (α′,β′). Then
α 6= α′ or β 6= β′ and thus, since P and Q are basic-set, either
µ(α;ν1, . . . ,νk ) 6=µ(α′;ν1, . . . ,νk ) or µ(β;η1, . . . ,ηk )) 6=µ(β′;η1, . . . ,ηk )).

Corollary 3.19. Let P be a basic-set operad, then so is 2P .

Proof. By Proposition 3.12 we know that 2C om is basic-set. Thus we can
apply Proposition 3.18 to 2P =P ×H

2C om.

3.3 Koszulness of a class of compatible structures

3.3.1 2C om and weighted partitions

Theorem 3.15 was used in [54] and [10] to show the Koszulness of several
operads. There it was shown that for the associated posets all maximal in-
tervals [0̂,γ] were totally semimodular. Hence by Corollary 5.2 of [5] they are
CL-shellable and by Proposition 2.3 of the same paper shellable whence it
follows that they are Cohen-Macaulay by Theorem 4.2 of [19]. The chain of
implications is

totally semimodular =⇒ CL-shellable =⇒ shellable =⇒ Cohen-Macaulay.
(3.3)
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Definition. A finite poset P is called semimodular if it is bounded, i.e. has
a least and a greatest element, and for any distinct κ,λ ∈ P covering a ν ∈ P
there exists a ω ∈ P covering both κ and λ. The poset P is said to be totally
semimodular if it is bounded and all intervals [ζ,ξ] are semimodular.

Remark. Contrary to the claims in [14], the maximal chains of Π2Com are
not necessarily totally semimodular. For example, consider the elements

(
1 2

◦
??

��,
3

,
4

), (
1

,
2

,
3 4

◦
??

��) ∈ [(
1

,
2

,
3

,
4

), (
•

• 4
◦ 3

1 2

?? ��

?? ��

?? ��
)] ⊂Π2Com(4).

They both cover (
1

,
2

,
3

,
4

) but the only element covering both of them is

(
1 2

◦
??

��,
3 4

◦
??

��) which does not belong to the interval [(
1

,
2

,
3

,
4

), (
•

• 4
◦ 3

1 2

?? ��

?? ��

?? ��
)].

By the chain of implications (3.3) we see that to show Cohen-Macaulayness
of Π2Com and thus Koszulness of 2C om, it is in fact sufficient to show that
the maximal intervals of Π2Com are CL-shellable. A poset is CL-shellable if
a certain kind of labeling of the maximal chains is possible, see [5]. By The-
orem 3.2 of [5], showing CL-shellability of a poset is equivalent to showing
that it admits a recursive atom ordering. Recall that the atoms of a poset are
the elements covering 0̂.

Definition. A graded poset P admits a recursive atom ordering if the length
of the poset is 1 or if the length is greater than 1 and there is an ordering
α1, . . . ,αm of the atoms of P satisfying

(i) For all j ∈ [m], [α j , 1̂] admits a recursive atom ordering in which
the atoms of [α j , 1̂] that come first in the ordering are those that cover
some αi , where i < j .

(ii) For all i < j , if αi ,α j < λ then there is a k < j , not necessarily dis-
tinct from i , and an element κ≤λ such that κ covers both α j and αk

We will soon see that Π2Com admits a recursive atom ordering, but first we
make the structure of Π2Com explicit by the following partition poset.

Definition. Given a partition β= {B1, . . . ,Bs} of [n], we assign a weight wi ∈
N to each block Bi = {bi

1, . . . ,bi
ki

}, with 0 ≤ wi ≤ ki −1. The weight of the block
is denoted by w(Bi ) := wi . The weight of a partition β is w(β) := w(B1)+·· ·+
w(Bs). We call a partition with this extra structure a weighted partition and
we denote the set of weighted partitions of [n] byΠw

n . The collection {Πw
n}n∈N

is denoted by Πw.

Let n(β) be the number of blocks of β. Then we can define a partial order on
Πw

n by letting α≤β if
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Figure 3.1: The poset Πw
3

(i) the partition of α is a refinement of the partition of β and

(ii) w(β)−w(α) ≤ n(α)−n(β).

We call Πw together with this partial order the poset of weighted partitions.

Remark 3.20. We see that the covering relation ≺ of the above partial order
is given by α≺β if

(i) the partition of α is a refinement of that of β obtained by splitting
exactly one block of β into two and

(ii) 0 ≤ w(β)−w(α) ≤ 1.

Any element α ofΠw
n can be described by α= {(A1, w1), . . . , (Am , wm)} where

{A1, . . . Ar } is a partition of {1, . . . ,n} and wi = w(Ai ). We observe that Πw
n is a

pure poset, i.e. all maximal chains have the same length.

Remark. In Figure 3.1. the weight w of a block B = {b1, . . . ,bk } is indicated
by b1 · · ·bw

k . For example, the block {1,2} with weight 1 is denoted by 121.

To show the relation between the posets Πw
n and Π2Com(n) we present a ba-

sis of 2C om and the composition product with respect to this basis.

Proposition 3.21. We have that 2C om(n) = 1ln ⊕·· ·⊕1ln , where the sum con-
sists of n terms. In terms of labeled trees decorated with M ∨, a K-basis for
2C om(n) is given by  •.

..•
◦.

..◦

n

i+2

i+1

21

��

��
??

��

?? ��


0≤i≤n−1

.
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Denote by Dn
i the basis element in 2C om(n) corresponding to i white prod-

ucts. The composition product in 2C om is then given by

µ(Dn
i ;Dm1

i1
, . . . ,Dmn

in
) = Dm1+···+mn

i+i1+···+in

Proof. This follows from the relations of 2C om being homogeneous in the
number of black and white products. Thus any element of 2C om(n) is de-
termined by the number of white products, which can be at most n −1.

Proposition 3.22. The poset Π2Com(n) is isomorphic to Πw
n .

Proof. There is an obvious bijection between the elements of Π2Com(n) and
Πw

n where a block B enriched with an element D |B |
i with i white product(s)

corresponds to the same block B with weight i in Πw
n .

Now let α = {(A1, p1), . . . , (Am , pm)} be a 2C om-partition, then β covers α if
and only if

β= {(A j ∪ Ak ,µ( •
?? ��; p j , pk )), (A1, p1), . . . , á(A j , p j ), . . . , á(Ak , pk ), . . . , (Am , pm)}

or

β= {(A j ∪ Ak ,µ( ◦
?? ��; p j , pk )), (A1, p1), . . . , á(A j , p j ), . . . , á(Ak , pk ), . . . , (Am , pm)}.

The first case corresponds to increasing the weight by one when merging
two blocks of a weighted partition and the second case to keeping it con-
stant, which precisely is the covering relation of Πw

n .

3.3.2 Proof of Koszulness

Lemma 3.23. Let P be a weakly associative binary quadratic set operad such
that the maximal intervals ofΠP are totally semimodular. Then the maximal
intervals of Π2P are CL-shellable.

Proof. By Propositions 3.17 and 3.22 we have that Π2P = ΠP ×ΠΠ2Com =
ΠP ×ΠΠw. By Theorem 3.2 of [5] CL-shellable is equivalent to admitting a
recursive atom ordering. We aim to show that ΠP ×Π Πw admits such an
ordering.

When denoting decorated partitions we will suppress the blocks only con-
taining one element e.g.

{({i , j }, p), ({k, l }, p ′)} = {({i , j }, p), ({k, l }, p ′), ({1},1), . . . , �({i },1), . . . ,à({ j },1), . . . , à({k},1), . . . , �({l },1), . . . , ({n},1)}.

Denote the maximal elements {([n], p, w)} of ΠP (n)×Πn Π
w
n by µp,w . Simi-

larly denote the maximal elements {([n], p)} of ΠP (n) by µp . Assume that
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the length of a maximal interval [0̂,µp,w ] is greater than 1, otherwise we are
done. We may also assume that the weight w satisfies 0 < w < n −1. Other-
wise [0̂,µp,w ] is isomorphic to [0̂,µp ] ∈ΠP (n) which is totally semimodular
by assumption. Thus by Corollary 5.2 of [5] it is CL-shellable.

Denote the atom {({i , j }, p)} ∈ ΠP (n) by αp
i , j . Similarly denote the atoms of

ΠP (n)×Πn Π
w
n by αp,w

i , j .

For a maximal interval [0̂,µp,w ] with w > 0 we claim that any ordering of the
form

α
p1,0
i1, j1

aαp1,1
i1, j1

a ·· · aαpr ,0
i1, j1

aαpr ,1
i1, j1

a ·· ·
aαp1,0

im , jm
aαp1,1

im , jm
a ·· · aαpr ,0

im , jm
aαpr ,1

im , jm
(3.4)

satisfies the second criterion of being a recursive atom ordering, where
{({ik , jk }, p1), . . . , ({ik , jk }, pr )} is some indexing of the atoms in [0̂,µp ] and
α a β means that α is less than β in the atom ordering. Note that given an
atom α

ps ,v
i t , jt

∈ [0̂,µp,w ], the atom α
pr ,ṽ
i1, j1

will also be in the interval since we
assume 0 < w < n −1. Here ṽ denotes the element of {0,1} \ {v}.

Let αp1,w1

i , j and α
p2,w2

k,l be distinct atoms with α
p1,w1

i , j a α
p2,w2

k,l and suppose

α
p1,w1

i , j ,αp2,w2

k,l ≤ γ, for some γ = {(C1, q1, v1), . . . , (Cs , qs , vs)} ∈ [0̂, {([n], p, w)}].

We want to show that there is a δ ≤ γ and an α
p ′,w ′

i ′, j ′ a α
p2,w2

k,l such that

α
p ′,w ′

i ′, j ′ ,αp2,w2

k,l ≺ δ. Let γ′ = {(C1, q1), . . . , (Cs , qs)}. We have three main cases to
consider:

(I) {i , j }={k, l }. Since the length of [0̂, {([n], p, w)}] is greater than 1
we have that n ≥ 3. We get two further subcases:

(i) p1 = p2: Since αp1,w1

i , j ,αp1,w2

i , j ≤ γ and w1 6= w2 there must
be at least one decorated block (Cr , q,u) of γ such that
α

p1

i , j ≤ {(Cr , q)} for some q ∈ P |Cr | and |Cr | ≥ 3. Further,

since P is weakly associative there exist q ′ ∈ P3 and m ∈
Cr \ {i , j }, for some r , such that δ′ = {({i , j ,m}, q ′)} Â α

p1

i , j

and δ′ ≤ γ′. Then δ = {({i , j ,m}, q ′, max(w1, w2))} ≤ γ and
covers αp1,w1

i , j and αp2,w2

k,l .

(ii) p1 6= p2: Since ΠP (n) is totally semimodular there exists
a δ′ = {({i , j ,m}, p)} ∈ [0̂,γ′] covering both α

p1

i , j and α
p2

k,l .

Then δ = {({i , j , m}, q, v)} ≤ γ covers both α
p1,w1

i , j and

α
p2,w2

k,l , where

v =


max(w1, w2) if w1 6= w2

w if w1 = w2 = w

w1 +1 if w1 = w2 ≤ w
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(II) {i , j }∩ {k, l } = {m}, for some m ∈ {i , j }. Let m′ be the element
of {k, l } \ {m}. Since both atoms are less then γ we must have
that {i , j ,m′} is a subset of a block Cr in γ. SinceΠP (n) is totally
semimodular there exists a δ′ = {({i , j ,m′}, q)} ∈ [0̂,γ′] covering
both αp1

i , j and αp2

k,l . Then δ= {({i , j ,m′}, q, v)} is an element cov-

ering both α
p1,w1

i , j and α
p2,w2

k,l and which is less than γ, where v
is as in case (ii).

(III) {i , j }∩ {k, l } =;. Here we have two subcases:
(i) w1 6= w2: δ = {({i , j }, p1, w1), ({k, l }, p2, w2)} covers both

α
p1,w1

i , j and αp2,w2

k,l and will always be less than or equal to
any γ greater than both atoms.

(ii) w1 = w2: By the ordering of the atoms αp1,w1

i , j a α
p2,w2

k,l

implies α
p1,w̃1

i , j a α
p2,w2

k,l , where w̃1 is the element

in {0,1} \ {w1}. Now since α
p1,w1

i , j ,αp2,w2

k,l ≤ γ

either δ = {({i , j }, p1, w1), ({k, l }, p2, w2)} ≤ γ or
δ̃ = {({i , j }, p1, w̃1), ({k, l }, p2, w2)} ≤ γ, where δ covers
α

p1,w1

i , j and αp2,w2

k,l whereas δ̃ covers αp1,w̃1

i , j and αp2,w2

k,l .

We also need to show that, given an ordering of the form (3.4), any inter-
val [αq,v

i , j ,µp,w ] satisfies the first criterion of being a recursive atom order-

ing. Note that αq
i , j ≤ µp implies that there exists a p ′ ∈ Pn−1 such that p =

µ(p ′; q,1, . . . ,1) whence we observe that [αq,v
i , j ,µp,w ] ∼= [0̂,µp ′,w−v ] ⊂ ΠP (n −

1)×Πn−1 Π
w
n−1.

Thus checking the above step is readily done if we may order the atoms of
[αq,v

i , j ,µp,w ] in the same way as above. We only need to show that some way
of ordering the atoms in pairs as above satisfies that the first atoms are the

ones covering some atomα
p ′,w ′

i ′, j ′ aαp,w
i , j . After that we can proceed by induc-

tion.

We may assume that the length of [αq,v
i , j ,µp,w ] is greater than 1, since other-

wise we are done. We may also assume that 0 < w − v < n −2, since other-
wise the interval [αq,v

i , j ,µp,w ] is isomorphic to [αq
i , j ,µp ] ⊂Pn which is totally

semimodular by assumption. Thus in the case that w−v = 0 or w−v = n−2
we have by Theorem 5.1 of [5] that any ordering of the atoms is a recur-
sive atom ordering. We would therefore be able to freely order the atoms of
[αq,v

i , j ,µp,w ] so that the atoms that come first are those that cover some atom

less than αq,v
i , j in the ordering (3.4).

Now the atoms are either of the form {({i , j }, q, v), ({k, l }, t ,u)} which we de-
note by βt ,u

k,l or of the form {({i , j ,k}, t , v+u)} which we denote by βt ,u
k , where

u ∈ {0,1}. Let ũ be the element of {0,1} \ {u}.

We have that βt ,u
k,l covers some αq ′,v ′

i ′, j ′ aα
q,v
i , j , namely αq ′,v ′

i ′, j ′ =αt ,u
k,l , if and only

if αt ,u
k,l a α

p,w
i , j . Since by the atom ordering of [0̂,µp,w ] we have that αt ,u

k,l a
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α
q,v
i , j if and only if αt ,ũ

k,l a α
q,v
i , j , we have that βt ,u

k,l covers some αq ′,v ′

i ′, j ′ a α
q,v
i , j if

and only if βt ,ũ
k,l covers some αq ′,v ′

i ′, j ′ aα
q,v
i , j .

Similarly we have that βt ,u
k may cover some α

q ′,v ′

i ′, j ′ a α
q,v
i , j , where {i ′, j ′} ⊂

{i , j ,k} and q ′ is an appropriate element of P2. Again α
q ′,v ′

i ′, j ′ a α
p,w
i , j if and

only if αq ′,ṽ ′
i ′, j ′ a α

q,v
i , j . Hence βt ,u

k covers some αq ′,v ′

i ′, j ′ a α
q,v
i , j if and only if βt ,ũ

k
does.

Thus we may order the atoms of [αq,v
i , j ,µp,w ] by first putting all pairs of

atoms, differing only in weight, covering some atom less than αq,v
i , j followed

by all pairs of atoms not covering any atom less than α
q,v
i , j . Using the

aforementioned identification [αq,u
i , j ,µp,w ] ∼= [0̂,µp ′,w−u], we proceed by

induction.

Remark. Note that the assumption that P is weakly associative and the as-
sumption that the maximal intervals of its associated poset are totally semi-
modular are both necessary for the proof to go through. Both are used, in
subcase (I)(i) and e.g. subcase (I)(ii), respectively, and neither of the two
properties implies the other.

Theorem 3.24. Let P be a weakly associative binary quadratic basic-set op-
erad such that the maximal intervals of ΠP are totally semimodular, then
2P̃ and (P̃ !)2 are Koszul.

Proof. By Lemma 3.23 and the chain of implications (3.3) we obtain that the
maximal intervals of Π2P are Cohen-Macaulay and by Corollary 3.19 we see
that 2P is basic-set. Thus we can apply Theorem 3.15 and conclude that 2P̃

is Koszul. Since 2P̃ and (P̃ !)2 are Koszul dual to each other we are done.

We get the following immediate corollary.

Corollary 3.25. The following operads are Koszul: 2C om, Lie 2, 2P erm,
PreLie 2, 2C omTrias, P ostLie 2, 2As, As 2, 2Dias, Dend 2, 2Trias and
TriDend 2.

Proof. The operads C om, P erm, C omTrias, As, Dias, and Trias are all al-
gebraic operads which are linearizations of weakly associative basic-set op-
erads whose associated posets have totally semimodular maximal intervals.
The other operads are their Koszul dual operads. See [55, 10] for these re-
sults and definitions of the operads.
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3.4 The minimal resolution of L ie2

3.4.1 The resolution

The minimal resolution of the operad Lie 2 of pairs of compatible Lie al-
gebras will play an important role in the interpretation of bi-Hamiltonian
structures on formal graded manifolds as algebraic structures on the struc-
ture sheaf. As a first application of the techniques presented in Chapter 2
we compute this resolution.

Theorem 3.26. The minimal resolution (Lie 2)∞ of the operad Lie 2 is the
quasi-free operad on the S-module E = {E (n)}n≥2 where

E (n) =


sgnn ⊕·· ·⊕ sgnn︸ ︷︷ ︸

n copies

[n −2] if n ≥ 2

0 otherwise.

Denote the natural basis element of E (n) corresponding to the element of
2C om with i white products by

i

1 . . . n

4444
***

���






∼
•.

..•
◦.

..◦

n

i+2

i+1

21

��

��
??

��

?? ��

0 ≤ i ≤ n −1.

The differential of (Lie 2)∞ is then given by

δ : i

1 . . . n

4444
***

���






7→ ∑
2≤k≤n−1

i1+i2=i
τ∈Sun-sh

(k,n−k)

(−1)sgn(τ)+(k−1)(n−k+1)

i1

τ(k)...τ(1)

i2

τ(n)...τ(k+1)






���***

4444

4444444






���*** .

Proof. From the Koszulness of Lie 2 it follows by Theorem 2.4 that
(Lie 2)∞ = Ω((Lie 2)¡) is a quasi-free resolution of Lie 2. Since Lie 2 has
no differential, whence (Lie 2)¡ has no codifferential, it follows from
the definition of the cobar construction that the resolution is minimal.
The underlying S-bimodule of the cobar construction is given by

Ω((Lie 2)¡) = F (Σ(Lie 2)¡)). We observed in §2.3.4 that for an operad P we
have (P ¡)(s)(n) ∼= Σ−s((P !)(s)(n))∨. The weight-grading of C om1 is given by
the number of vertices of a decorated graph. Thus C om1(n) is concentrated
in weight n −1 and it follows from Proposition 8.3 that

(Lie 2)¡(n) = sgnn ⊕·· ·⊕ sgnn︸ ︷︷ ︸
n copies

[n −1].
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Setting E =Σ(Lie 2)¡ the first assertion of the theorem follows.

A derivation of a free operad is completely determined by its restriction to
the S-module of generators. Since (Lie 2)¡ has no codifferential it follows
that the differential δ of Ω((Lie 2)¡) is fully determined by the decomposi-
tion coproduct of (Lie 2)¡. Through straightforward graph calculations one
can determine the composition product of (Lie 2)!. Considering the linear
dual of this product yields a coproduct on ((Lie 2)!)∗ which induces the co-
product of (Lie 2)¡.

We denote the operad of the above theorem by Lie 2∞.

3.4.2 Algebras over the resolved operad

Algebras over the operad Lie 2∞ are defined as follows:

Definition. A dg vector space V together with a family {k ln}n≥1,1≤i≤n of
maps i ln : ∧n V → V of degree 2−n is called an L2∞-algebra if the following
condition is satisfied for all n,k ≥ 1 with 2 ≤ k ≤ n +1∑

r+s=n+1
i+ j=k

σ∈Sun-sh
(s,r−1)

ε(σ)sgn(σ)(−1)r (s−1)
i lr ( j ls(vσ(1), . . . vσ(s)), vσ(s+1), . . . , vσ(n)).

Here the sign ε(σ) is the sign appearing from the Koszul-Quillen sign rule.

Remark. Note that the subfamilies {1ln}n≥1 and {nln}n≥1 both are
L∞-algebras (see §6.1.2) sharing the same differential 1l1. The rest of the
brackets model the higher homotopies of the compatibility of the brackets

1l2 and 2l2. If these two are the only non-zero brackets, then an L2∞-algebra
is a pair of compatible Lie algebras.

Remark. As pointed out by the referee of Paper II, a family of morphisms
{k ln}n∈N≥1,1≤k≤n is an L2∞-algebra if and only if for all λ ∈ K the family of
morphisms {Ln}n∈N≥1, where Ln = ∑n

k=1λ
k−1

k ln , is an L∞-algebra, i.e. an
L2∞-algebra is a non-linear pencil of L∞-algebras.
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4 Two methods for showing
Koszulness

To compute prop profiles of differential geometric structures we need to es-
tablish that the involved G∗-algebras are Koszul. In this chapter we review
two methods to this end that will come in handy: W. Gan’s distributive law
method for dioperads [18] and E. Hoffbeck’s PBW-basis method for operads
[23].

4.1 Distributive laws for dioperads

4.1.1 The operads of a dioperad

To a dioperad P one can associate its opposite dioperad defined by
P op(m,n) := P (n,m). The composition product µop is obtained from µ

by reversing the direction of all graphs. Further, from a quadratic dioperad
P we can extract two operads Pu and Pd defined by Pu(n) := P (1,n)
and Pd (n) := P op(1,n). Explicitly, for a binary quadratic dioperad
P =F (M )/(R) we have

Pu =F (M (1,2))/(R(1,3)), Pd =F (M (2,1)op)/(R(3,1)op),

where R(1,3) is the part of R in F(2)(M )(1,3), M (2,1)op is the S-module
given by M (2,1)op(2) = M (2,1) and zero otherwise, and R(3,1)op are the
relations in F(2)(M (2,1)op) obtained from R(3,1) ⊂F(2)(M )(3,1) by revers-
ing the direction of the decorated graphs.

We also note that to any operad P one can associate a dioperad P̃ defined
by P̃ (1,n) :=P (n) and P̃ (m,n) = 0 for m 6= 1.

4.1.2 Distributive laws

The inclusions (P̃d )op ,→ P and Pu ,→ P induce S-bimodule morphisms
P̃u2(P̃d )op →P and (P̃d )op2P̃u , see §1.3.5 for the definition of 2. We say
that a quadratic dioperad P is given by a distributive law if P̃u2(P̃d )op =P

or if (P̃d )op2P̃u =P .

The following theorem was proved by W. Gan, generalizing results in [34]
and [13].
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Theorem 4.1 (Theorem 5.9 of [18]). Let P be a binary quadratic dioperad. If
Pu and Pd are Koszul operads and P̃u2(P̃d )op(i , j ) = P (i , j ) (respectively,
if (P̃d )op2P̃u(i , j ) =P (i , j )) for (i , j ) = (2,2), (2,3), (3,2), then P̃u2(P̃d )op =
P (respectively (P̃d )op2P̃u =P ) and P is Koszul.

Example 4.2. It was shown in [18] that the dioperad LieBi of Example 2.3
is given by a distributive law.

4.1.3 Extending dioperadic resolutions

To compute the minimal resolution of a quadratic prop it is often easier
to work in a sub-category if possible, e.g. when the quadratic relations are
dioperadic, and then to extend the resolution to a resolution of props.

There exists a forgetful functor from the category of properads to the cate-

gory of dioperads which is denoted by U
dioperad
properad . It keeps the same under-

lying S-bimodule but only allows composition along graphs of genus zero.

The functor U
dioperad
properad has a left adjoint which is denoted by F

properad
dioperad . For a

quadratic dioperad P =F
↓
c,0(M )/(R) we have F

properad
dioperad (P ) =F

↓
c (M )/(R),

where in the latter case (R) is the properadic ideal generated by R. The

functor F
properad
dioperad is not exact, Theorem 47 of [45], however in the same pa-

per it is proved, Proposition 50, that if a dioperad is given by a distributive
law then a quasi-free resolution of the dioperad is still a resolution when
this functor is applied.

The step from properads to props is less troublesome. There exists a sim-
ilar pair of functors U

properad
prop and F

prop
properad. Also here it is true that for a

quadratic properad P = F
↓
c (M )/(R) we have F

prop
properad(P ) = F ↓(M )/(R),

where (R) is the propic ideal generated by R. By §7.4 of [56] the functor
F

prop
properad is exact.

Let F
prop
dioperad denote the composition F

prop
properad ◦F

properad
dioperad . For this compo-

sition of functors we observe:

Proposition 4.3. Let P =F
↓
c,0(M)(R) be a quadratic dioperad given by a dis-

tributive law and let Q = (F ↓
c,0(E),δ) be a quasi-free resolution of P , then we

have

F
prop
dioperad(P ) =F ↓(M)(R) and F

prop
dioperad(Q) = (F ↓(E),δ),

moreover, the latter is a quasi-free resolution of the former.
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4.2 PBW-bases for operads

In [23] E. Hoffbeck generalized the notion of PBW-bases from quadratic al-
gebras to quadratic operads. Our interest in PBW-bases lies in that if an
operad has a PBW-basis then it is Koszul.

4.2.1 A planar representation of trees

By a tree we mean an element of G↓1
c , i.e. a directed, rooted, labeled tree. We

refer to the external output edge as the root and the external input edges
simply as external edges. A tree is called reduced if all vertices have at least
one input edge. If an S-module satisfies M (0) = 0, then all non-zero dec-
orated trees in F

↓1
c (M ) are reduced. An operad is called reduced if it is

spanned by reduced trees. A reduced tree has a natural planar representa-
tion.

(i) To every e ∈ E in
v we associate the minimum of the labels of the external

edges of the tree which are linked to e through a directed path (we
consider an external input edge to be linked to itself).

(ii) We place the edges of E in
v (and thus the vertices directly above) from

left to right above v in ascending order.

4.2.2 An ordering of decorated trees

Let M be anS-module, let BM be aK-basis of M , and let BF (M ) denote all
trees decorated with elements of BM . The set BF (M ) is aK-basis of F (M ).
For a tree τ, we denote by BF (M )

τ the subset of BF (M ) consisting of the ele-
ments whose underlying tree is τ.

Given an order of the elements of BM , and using the above defined planar
representations of trees, we define an order on BF (M )(n). To each decorated
tree in F (M )(n) we associate a sequence of n words in the alphabet BM

as follows. There is a unique path of vertices from the root of the tree to
the external edge labeled by i ∈ [n]. Let ai be the word consisting (from
left to right) of the labels of these vertices (from bottom to top). Thus we
obtain the sequence ā = (a1, . . . , an). The words are ordered by the length
lexicographical order; we first compare two words a and b by their length
(a < b if l (a) < l (b), where l denotes the length) and if the lengths are equal
we compare them lexicographically using the order on BM . We compare
two sequences ā and b̄ associated to α,β ∈ BF (M )(n) by first comparing a1

with b1, next a2 with b2, and so forth. This order is compatible with the
operad structure of F (M ), see [23] for details. Another compatible order is
obtained by considering the reverse length lexicographic order.
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4.2.3 Definition of PBW-bases

To each internal edge e of a tree τwe define the restricted tree τe as follows.
The vertices of τe are the two vertices v1, v2 adjacent to e. The edges of τe

are all edges adjacent to v1 and v2. The external input edges of τe are given
labels according to which labels are directly linked to them; the external
edge of τe linked to the external edge of τ labeled by 1 is given this label, the
external edge of τe linked to the external edge of τwhich has the least of the
labels not linked to the previous edge is given the label 2, and so forth.

Definition. Let BM be an ordered K-basis of M . A PBW-basis for a
quadratic operad P = F (M )/(R) with respect to the order on BM is a
K-basis BP ⊂ BF (M ) of P containing 1l and satisfying the conditions:

(i) for α ∈ BF (M ), either α ∈ BP or the elements of the basis γi ∈ BP

which appear in the unique decomposition α≡∑
i c iγi , satisfy γi >α,

(ii) a decorated tree α ∈ BF (M )
τ is in BP

τ if and only if for every internal
edge e of τ, the restricted decorated tree α|τe is in BP

τe
.

The following result makes it easier to verify that a given basis is a PBW-
basis.

Proposition 4.4 (Proposition 3.9 of [23]). Let M be finitely generated. If con-
dition (i) is verified when the underlying tree of α has two vertices and condi-
tion (ii) is satisfied, then condition (i) is satisfied for all α.

Using a filtration induced by the ordering on F (M ) Hoffbeck was able to
prove the following theorem.

Theorem 4.5 (Theorem 3.10 of [23]). A reduced operad which has a PBW-
basis is Koszul.

In fact we already have come across an example of a PBW-basis of an op-
erad.

Proposition 4.6. The basis of 2C om presented in Proposition 3.21 is a PBW-
basis with respect to the length lexicographic order defined by ◦

?? ��< •
?? ��.

Proof. Condition (ii) is easily verified. Using Proposition 4.4 it is not hard to
see that

1 2

3◦
◦

??
��

??
��,

1 2

3◦
•

??
��

??
��, and

1 2

3•
•

??
��

??
��

are maximal among the decorated graphs equal to them.
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Part II:
Differential geometric structures and
prop profiles





5 Poisson and Nijenhuis geometry

In this chapter we recall the definitions of Poisson and Nijenhuis structures
for ordinary and graded manifolds. We also present definitions of compat-
ible Poisson structures, called bi-Hamiltonian structures, and introduce a
definition of compatible Nijenhuis structures.

5.1 Poisson geometry

In this section we recall basic facts concerning Poisson structures.

5.1.1 Poisson structures

Let M be a manifold and denote by OM the structure sheaf of M , i.e. the
sheaf of commutative K-algebras of smooth functions on M . A Poisson
bracket on M is an operation {_,_} : OM ⊗OM → OM satisfying the follow-
ing properties:

(i) { f , g } =−{g , f } (skew-symmetry)

(ii) { f , {g ,h}}+ {g , {h, f }}+ {h, { f , g }} = 0 (Jacobi identity)

(iii) { f , g h} = { f , g }h + g { f ,h} (Leibniz property of { f ,_}).

Thus a Poisson bracket is a Lie bracket on OM which in each argument acts
as a derivation with respect to the multiplication of smooth functions on
OM . A Poisson bracket is often called a Poisson structure.

5.1.2 Polyvector fields and the Schouten bracket

To a manifold M there is associated the tangent sheaf TM of derivations of
OM . Global sections of the tangent sheaf are called vector fields and there is
a Lie bracket on TM given by

[X ,Y ] := X ◦Y −Y ◦X .

Consider now the exterior algebra ∧•TM of polyvector fields, where the ex-
terior algebra is considered over OM . It has a natural grading given by the
tensor length, i.e. ∧i TM are precisely the elements of degree i . The bracket
of TM can be extended to a degree −1 Lie bracket on ∧•TM through a stan-
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dard construction. The extended bracket

[_,_]S̃ : ∧k TM ∧K∧l TM →∧k+l−1TM , (5.1)

which we call the odd Schouten bracket, is defined by

[X1 ∧·· ·∧Xk ,Y1 ∧·· ·∧Yl ]S̃ :=∑
i , j

(−1)i+ j [Xi ,Y j ]∧X1 ∧·· ·∧ X̂i ∧·· ·∧Xk ∧Y1 ∧·· ·∧ Ŷ j ∧·· ·∧Yl ,

for k ≥ 1, l = 0, i.e Y0 ∈OM , by

[X1 ∧·· ·∧Xk ,Y0]S̃ :=∑
i

(−1)i+k Xi (Y0)∧X1 ∧·· ·∧ X̂i ∧·· ·∧Xk ,

for k = 0, l ≥ 1 by

[X0,Y1 ∧·· ·∧Yl ]S̃ :=∑
j

(−1) j Y j (X0)∧Y1 ∧·· ·∧ Ŷ j ∧·· ·∧Yl ,

and for k = l = 0 by
[X0,Y0]S̃ := 0.

Note that with the degree shift∧•TM [1], the odd Schouten induces the ordi-
nary degree zero Schouten bracket [_,_]S , cf. §6.1.4. We will usually suppress
this degree shift from the notation, but keep the distinction in the notation
of the brackets.

5.1.3 Poisson structures as Maurer-Cartan elements

The cotangent sheaf of a manifold M is defined by Ω1
M := HomOM (TM ,OM )

and the de Rham algebra by Ω•
M := ∧•Ω1

M , with multiplication given
by the wedge product. Note that there is a natural isomorphism
Ωi

M
∼= HomOM (∧i TM ,OM ). The elements of Ωi

M are called i -forms. The
morphism d : OM → Ω1

M , defined by d f (X ) := X ( f ) for a smooth function
f and a vector field X , extends to a differential on Ω•

M called the de Rham
differential.

From a bivector field P , i.e. an element of ∧2TM , one obtains an operation

{_,_}P : OM ⊗OM →OM

defined by
{ f , g }P := d f ∧d g (P ).

This operation satisfies properties (i) and (iii) of §5.1.1 since P is a bivec-
tor field. Conversely, any bilinear operation OM ∧OM → OM satisfying the
properties (i) and (iii) can be described by a bivector field in this way. The
condition that {_,_}P satisfies the Jacobi identity is equivalent to [P,P ]S̃ = 0.
Thus the following definition is equivalent to the one given in §5.1.1.
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Definition 5.1. A Poisson structure on a manifold M is a polyvector field
P ∈∧2TM satisfying [P,P ]S̃ = 0.

Under the degree shift (∧•TM )[1] the elements of ∧2TM are of degree
one. Since the Schouten algebra of polyvector fields has no differential,
a Poisson-structure is precisely a Maurer-Cartan element (§2.4.3) in
((∧•TM )[1], [_,_]S).

5.1.4 Generalized Poisson structures

In fact one does not need to consider only the solutions of [P,P ]S = 0 which
are of degree two. One generalization of Poisson geometry is to n-ary Pois-
son brackets. For n even, a polyvector field P ∈∧nTM defines a generalized
Poisson structure if [P,P ]S = 0. The associated n-ary Poisson bracket is de-
fined analogously to the case n = 2; for a polyvector field P ∈ ∧nTM it is
given by

{ f1, . . . , fn} := d f1 ∧·· ·∧d fn(P ).

The condition [P,P ]S = 0 translates into a generalized Jacobi identity. Notice
that for polyvector fields of a non-graded manifold the expression [P,P ]S

identically vanishes for n odd. It is possible to define a Poisson bracket with
properties mimicking the classical case also for n odd, but then the gener-
alized Jacobi identity can not be expressed through the Schouten bracket.
See e.g. [12] and [57] for more on n-ary Poisson brackets. In Section 7.3 we
study a generalization of Poisson structures in the setting of graded mani-
folds.

5.1.5 Bi-Hamiltonian structures

Let M be a manifold equipped with a pair of Poisson brackets {_,_}◦ and
{_,_}•. Consider the bracket defined by their sum

{_,_} := {_,_}◦+ {_,_}•.

This bracket is obviously skew symmetric and it satisfies the Leibniz prop-
erty, but it does not always satisfy the Jacobi identity. The Poisson brackets
{_,_}◦ and {_,_}• are called compatible if their sum satisfies the Jacobi iden-
tity (i.e. if they are linearly compatible as Lie brackets, cf. §3.1.1) and thus
itself is a Poisson bracket.

Definition. A pair of compatible Poisson structures is called a
bi-Hamiltonian structure or a Poisson pair.

Let P◦ and P• be bivector fields corresponding to a pair of Poisson brackets,
thus they satisfy [P◦,P◦]S = 0 and [P•,P•]S = 0, respectively. The compati-
bility of the Poisson brackets is equivalent to [P◦+P•,P◦+P•]S = 0 which in
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turn, if P◦ and P• are Poisson structures, is equivalent to [P◦,P•]S = 0. By
introducing a formal parameter }, the above conditions are together equiv-
alent to

[P◦+P•},P◦+P•}]S} = 0.

Here the bracket is the linearization in } of the Schouten bracket.

5.2 Nijenhuis geometry

Here we review basic definitions concerning Nijenhuis structures and de-
fine a notion of compatibility.

5.2.1 Nijenhuis structures

To a morphism J : TM →TM one can associate a morphism NJ : ∧2 TM →
TM , called the Nijenhuis torsion, defined by

NJ (X ,Y ) := J J [X ,Y ]+ [J X , JY ]− J [X , JY ]− J [J X ,Y ].

Definition. We call an endomorphism J of TM a Nijenhuis structure if it
satisfies NJ = 0.

5.2.2 Vector forms and the Frölicher-Nijenhuis bracket

A vector field valued differential form, or vector form for short, is a tensor
field in Ω•

M ⊗TM , where the tensor product is over OM . One can identify
vector i -forms with homomorphisms HomOM (∧i TM ,TM ); for K = ω⊗ X ∈
Ωi

M ⊗TM the associated morphism is defined by K (Y ) :=ω(Y )X , where Y ∈
∧i TM .

In [17] Frölicher and Nijenhuis studied derivations of Ω•
M . They showed

that there exist two types of derivations, derivations of type i∗ which vanish
on OM and of type d∗ which commute with the de Rham differential, and
that any derivation can be uniquely decomposed as a sum of two deriva-
tions, one of each type.

To any vector form K ∈ Ωr
M ⊗TM one can associate two derivations: a

derivation iK : Ω•
M →Ω•+r−1

M of type i∗ defined by

iK (ω)(Y1 ∧·· ·∧Yr+s−1) :=∑
σ∈Sun-sh

(r,s−1)

ω(K (Yσ(1), . . .Yσ(r )),Yσ(r+1), . . . ,Yσ(r+s−1)),

for ω ∈ Ωs
M and Y1 ∧ ·· · ∧Yr+s−1 ∈ ∧r+s−1TM , and a derivation dK : Ω•

M →
Ω•+r

M of type d∗ defined by dK := iK ◦ d − (−1)r−1d ◦ iK . Conversely, any
derivation of respective type uniquely determines a vector form.
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The commutator of two derivations is again a derivation and the subsets of
derivations of type i∗ and of type d∗ are both closed under the formation
of commutators. Thus, to a pair of vector forms K and L there exists an
associated vector form [K ,L]F-N uniquely determined by the condition

d[K ,L]F-N
= [dK ,dL].

This was shown to be a Lie bracket by A. Nijenhuis [49] and is called the
Frölicher-Nijenhuis bracket. A formula for this bracket is

[K ,L]F-N =φ∧ψ⊗ [X ,Y ]+φ∧dX (ψ)⊗Y −dY (φ)∧ψ⊗X

+ (−1)r (
dφ∧ iX (ψ)⊗Y + iY φ∧d(ψ)⊗X

)
,

where K =φ⊗X ∈Ωr
M ⊗TM and L =ψ⊗Y ∈Ωs

M ⊗TM . It generalizes the or-
dinary Lie bracket of vector fields in the sense that when K and L are vector
fields, then [K ,L]F-N = [K ,L].

5.2.3 Nijenhuis structures as Maurer-Cartan elements

Given two endomorphisms J and K of TV one can consider the morphism
NJ ,K : TV ⊗TV →TV defined by

NJ ,K (X ,Y ) = JK [X ,Y ]+ [J X ,K Y ]− J [X ,K Y ]−K [J X ,Y ].

When J and K are commuting, i.e. J ◦K = K ◦ J , we have that NJ ,K corre-
sponds to a (1,2) tensor field which in general is not alternating. It was
introduced in [48] in the study of the problem of when eigenvectors of a
tangent bundle endomorphism form an integrable distribution. It was fur-
ther considered in [7] where an explicit description was given of the relation
between NJ and NA,B when A and B are polynomials in J .

For arbitrary J ,K ∈ Ω1
V ⊗TV Nijenhuis showed in [49] that the following

identity holds:
NJ ,K +NK ,J = [J ,K ]F-N .

Thus the following definition is equivalent to the one given in §5.2.1.

Definition. A Nijenhuis structure on a manifold M is a vector form J ∈Ω1
M ⊗

TM satisfying [J , J ]F-N = 0.

In other words, a Nijenhuis structure is a Maurer-Cartan element in the Lie
algebra (Ω•

M ⊗TM , [_,_]F-N ).

5.2.4 Compatible Nijenhuis structures

We call two Nijenhuis structures J and K compatible if their sum again is a
Nijenhuis structure and we call such a pair a bi-Nijenhuis structure. Note
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that this is equivalent to that αJ +βK is a Nijenhuis structure for any α,β ∈
K. For the Nijenhuis torsion of the sum of two Nijenhuis structures J and K
we have

NJ+K =NJ +NJ ,K +NK ,J +NK =NJ ,K +NK ,J = [J ,K ]F-N .

The compatibility of J and K is thus equivalent to [J ,K ]F-N = 0. Introducing a
formal parameter } and considering the linearization in } of the Frölicher-
Nijenhuis bracket, the pair J and K is a bi-Nijenhuis structure precisely
when

[J +}K , J +}K ]F-N = 0.

Remark. The notion of compatible Nijenhuis structures has been defined
differently elsewhere, e.g. in [30] it is defined to be what we call commuting
Nijenhuis structures.

5.3 Structures on formal graded manifolds

5.3.1 Formal graded manifolds

A formal manifold is a manifold consisting of a formal neighborhood of a
single point. Let (V ,d) be a dg vector space with a homogeneous basis {ea}
and associated dual basis {t a}. We may view V as a formal graded mani-
fold by considering a formal neighborhood of the origin. For the structure
sheaf we have OV

∼=KJt aK and the tangent sheaf TV is generated as an OV -
module by {∂a}, where we write ∂a for ∂

∂t a . The cotangent sheaf Ω1
V in turn,

is generated by {d t a} with d t a(∂b) = δa,b .

5.3.2 Graded Poisson structures

A graded Poisson bracket on a formal graded manifold V is a degree zero
bilinear operation {_,_} : OV ∧OV →OV satisfying the properties

(i) { f , g }+ (−1)| f ||g |{g , f } (graded skew-symmetry)

(ii) (−1)| f ||h|{ f , {g ,h}}+ (−1)|g || f |{g , {h, f }}+ (−1)|h||g |{h, { f , g }}

(graded Jacobi identity)

(iii) { f , g h} = { f , g }h + (−1)| f ||g |g { f ,h} (Leibniz property of { f ,_}).

We see that a graded Poisson structure is a graded Lie algebra on OV with
the extra property that the Lie bracket is a graded derivation in each argu-
ment with respect to the graded commutative multiplication on OV .
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5.3.3 Graded Poisson structures as bivector fields

The sheaf of polyvector fields is defined as

∧•TV :=¯•(TV [−1]),

where the symmetric product is considered over OV .

We denote the generators s∂a by νa , where s is a formal symbol of degree
one. Thus |νa | = −|t a |+1. With this notation we have ∧•TV

∼=KJt ,νK. The
degree of a homogeneous polyvector field

P = P a1...ai

b1...b j
t b1 . . . t b jνa1 · · ·νai

is given by
|P | = |t b1 |+ · · ·+ |t b j |+ |νa1 | · · · |νai |.

Note that ∧•TV also has the grading described in §5.1.2; we will refer to
this grading as the weight and to the former as the cohomological degree or
simply as the degree. When V is concentrated in degree zero these gradings
coincide.

In local coordinates the odd Schouten bracket is given by

[X ,Y ]S̃ := X •Y + (−1)|X ||Y |+|X |+|Y |Y •X

where we use the notation

X •Y := ∂X

∂νa

∂Y

∂t a .

Note that the with the above grading the Schouten bracket is a degree −1
(cohomological as well as weight) Lie bracket and if V is concentrated in
degree zero, then this definition coincides with (5.1). An interpretation
of graded Poisson structures in terms of bivector fields vanishing on the
Schouten bracket, analogous to that of §5.1.3 can be found in [8].

Definition. A graded Poisson structure on a formal graded manifold V is an
element P ∈∧2TV of degree two satisfying [P,P ]S̃ = 0.

Remark. Working with Z-graded manifolds instead of with Z2-graded also
called super manifolds introduces a technical detail on the grading of ∧•TV

and Ω•
V . For i -forms to induce morphisms ∧i TV → TV one should define

the de Rham algebra as Ω•
V := ̂̄•(Ω1

V [1]), where the symmetric product is
considered over OV , causing i -forms of a manifold concentrated in degree
zero to be of degree −i , but of weight i . We will work also with the definition
Ω•

V := ̂̄•(Ω1
V [−1]) (§5.3.1) as the link to the classical non-graded definition

is clearer with this grading; weight and degree then coincide for ordinary
manifolds.
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5.3.4 Graded bi-Hamiltonian structures

A graded Bi-Hamiltonian structure on a formal manifold V is defined anal-
ogously to the non-graded case; it is a pair P◦ and P• of graded Poisson
structures such that their sum P◦+P• again is a graded Poisson structure.
In particular this implies that the associated Poisson brackets are a pair of
compatible graded Lie brackets.

5.3.5 Nijenhuis structures on graded manifolds

A graded Nijenhuis structure is a degree zero morphism J : TV → TV such
that the Nijenhuis torsion NJ vanishes.

Let us use the gradingsΩ•
V := ̂̄•(Ω1

V [−1]) and ∧•TV :=¯•(TV [1]), cf. §5.3.3.
Denoting sd t a by γa , where s is a formal symbol of degree one, the de
Rham algebra is given by Ω•

V
∼= KJt a ,γbK and the de Rham differential by

d = γa∂a . Using the interpretation Ωi
V ⊗TV = HomOV (∧i TV ,TV ) a graded

Nijenhuis structure is equivalent to a degree one element J ∈Ω1
V ⊗TV such

that [J , J ]F-N = 0.

Let
K = K i

[a1···ap ](t )γa1 · · ·γap∂i

and
L = L j

[c1···cq ](t )γc1 · · ·γcq∂ j

be vector forms, p, q ≥ 0. In local coordinates the Frölicher-Nijenhuis
bracket is defined by

[K ,L]F-N =
(
K i

[a1···ap |∂i L j
|ap+1···ap+q ] −pK j

[a1···ap−1|i |∂ap Li
ap+1···ap+q ]

(−1)pq (Li
[a1···aq |∂i K j

|aq+1···ap+q ] −qL j
[a1···aq−1|i |∂aq K i

aq+1···ap+q ])
)

γa1 · · ·γap+q∂ j .

A pair of graded Nijenhuis structures are called compatible if their sum is a
graded Nijenhuis structure.

5.3.6 Pointed manifolds and structures

A manifold V with a distinguished point p is called pointed. A differential
geometric structure, e.g. a vector form or a polyvector field, is called pointed
if it vanishes at the distinguished point.

Note that a formal graded manifold is naturally pointed with the origin as
the distinguished (and only) point. We denote the origin by 0.
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6 Operad profile of homological
vector fields

A common property of the prop profiles computed by S.A. Merkulov [38,
39, 40, 42, 43, 44] is that they all contain the minimal resolution Lie1∞ of
the operad Lie1 of odd Lie algebras as a suboperad. On the differential ge-
ometric side this corresponds to that the geometric structures all contain
homological vector fields. In this chapter we will explain the correspon-
dence between homological vector fields and representations of Lie1∞.

6.1 From vector fields to operads

6.1.1 Homological vector fields

A homological vector field on a formal graded manifold V is a degree one
vector field Q such that [Q,Q] = 0, i.e. it is a Maurer-Cartan element in
the dg Lie algebra (TV , [_,_],0). Homological vector fields were introduced
by V. Šander in the study of differential equations on supermanifolds [51].
They are also useful in that various mathematical objects can be described
in terms of homological vector fields, see e.g. [52, 53].

6.1.2 L∞-algebras

Definition. A graded vector space V together with a family {ln}n≥1 of maps
ln : ∧n V →V of degree 2−n is called an L∞-algebra if the following condi-
tion is satisfied for all n ∈N≥ 1∑

r+s=n+1
σ∈Sun-sh

(s,r−1)

ε(σ)sgn(σ)(−1)r (s−1)lr (ls(vσ(1), . . . vσ(s)), vσ(s+1), . . . , vσ(n)). (6.1)

Here the sign ε(σ) is the sign appearing from the Koszul-Quillen sign rule.

It was observed by M. Kontsevich [26] that a homological vector field on a
formal manifold V is equivalent to an L∞-algebra structure on V [−1]. We
will take a detour through the world of operads before arriving at this con-
clusion in order to set the stage for the operad and prop profiles to be stud-
ied in the following chapters.
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6.1.3 Extracting an operad

To a degree one vector field

Q = ∑
i≥1

Qb
(c1···ci )t c1 · · · t ci∂b

on a formal graded manifold V we can associate a family of degree one
maps {qi : ¯i V →V } by

qi (ec1 ¯·· ·¯eci ) =Qb
(c1···ci )eb .

Of the operations of an L∞-algebra the binary operation is fundamental
while the higher operations are homotopies of its relations, see e.g. [27].
Encoding just the properties of this fundamental part in an operad captures
the essence of the structure. The rest of the structure is the result of plug-
ging the operad into the Koszul duality machinery. We depict the operation
q2 by the corolla

??��. That q2 is symmetric implies
??��(12) = ??��. Let us denote

the part of Q corresponding to q2 by Q̂. The condition

[Q̂,Q̂] = 0 (6.2)

translates to
1 2

3???
���

???
��� +

2 3

1???
���

???
��� +

3 1

2???
���

???
��� = 0. (6.3)

Definition. An odd dg Lie algebra is a dg vector space (V ,d) together with a
bilinear symmetric degree one map [_•_] satisfying the odd Jacobi identity

(−1)|u||w |+|u|+|w |[u • [v •w]]+ (−1)|v ||u|+|v |+|u|[v • [w •u]]+
(−1)|w ||v |+|w |+|v |[w • [u • v]] = 0.

Next we define the operad governing odd Lie algebras.

Definition. The operad Lie1 is the quadratic operad F (M )/(R) where M

is the S-module given by M (2) =K??�� = 1l2[−1] and zero for other n, and the
relations R are given by (6.3).

6.1.4 Odd versus ordinary Lie algebras

An odd Lie algebra on a vector space V naturally induces an ordinary Lie
algebra structure on V [−1] as follows. The vector space V [−1] can be con-
sidered as Ks ⊗V , where s is a formal symbol of degree one. We will write
sv for s ⊗ v . Let s : V → V [−1] be the degree one morphism v 7→ sv and let
(V , [_•_]) be an odd Lie algebra. It is not hard to show that

[_,_] := s ◦ [_•_]◦ s−1 ⊗ s−1 : V [−1]⊗V [−1] →V [−1]
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is a Lie bracket. Conversely, given an ordinary Lie bracket [_,_] on V [−1],
the construction [_ • _] := s−1 ◦ [_,_] ◦ s ⊗ s : V ⊗V → V defines an odd Lie
bracket on V . Rephrasing this correspondence we observe that a represen-
tation of the operad Lie1 in V is equivalent to a representation of Lie in
V [−1].

6.2 An application of Koszul duality

6.2.1 Koszul dual of Lie1

Proposition 6.1. The Koszul dual operad of Lie1 is the quadratic operad
C om1 := F (N )/(S ), where N is the S-module defined by N (2) = K??�� =
sgn2[1] and N (n) = 0 for n 6= 2, and the relations S are given by

1 2

3???
���

???
��� −

2 3

1???
���

???
���,

1 2

3???
���

???
��� −

3 1

2???
���

???
���.

The underlying S-bimodule of C om1 is given by C om1(n) = sgnn[n −1]. In
terms of the operations

??��, aK-basis for C om1(n) is given by the element

...

1 2

n

???
���

???
���.

Proof. The first claim is a straightforward verification using the definition of
Koszul dual operads §2.3.4. The second claim follows from graph computa-
tions using the relations S .

6.2.2 Koszulness of Lie1

To calculate a minimal resolution of Lie1 we first need to establish Koszul-
ness of Lie1.

Proposition 6.2. The operad C om1 is Koszul.

Proof. Using the notation of §4.2.2, let BN = ??��. We claim that the basis in
Proposition 6.1 is a PBW-basis of C om1. To the basis element of C om1(n) we
associate the sequence of words (wn−1, wn−1, wn−2 . . . , w1), where wi is the
word which contains the letter

??�� i times. Clearly this is the largest sequence
of words associated to a decorated tree in BF (N )(n), whence condition (i) is
satisfied. Since the basis element of C om1(n) is the unique decorated tree
of BF (N )(n) for which the restricted decorated tree of any internal edge is

1 2

3???
���

???
���,
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also condition (ii) is satisfied.

By Theorem 2.5 we obtain the following immediate corollary.

Corollary 6.3. The operad Lie1 is Koszul.

6.2.3 The minimal resolution of Lie1

The Koszulness of Lie1 enables us to prove the following:

Theorem 6.4. The minimal resolution Lie1∞ of Lie1 is the quasi-free operad
(F (E ),δ), where

E (n) =

K
...1 n

GGGG
444





wwww

= 1ln[−1] if n ≥ 2

0 otherwise

and the differential δ is given by

δ :

. . .1 n

GGGGG
4444






wwwww

7→
n−1∑
i=2

∑
σ∈Sun-sh

(i ,n−i )

. . .

. . .

σ(1) σ(i )

σ(i+1) σ(n)
GGGGG

4444






wwwww

EEEEEE

4444






wwwww .

Proof. The proof is completely analogous to that of Theorem 3.26.

6.3 From operads to vector fields

6.3.1 An isomorphism of Lie algebras

Recall from §2.4.3 that to any dg operad P and dg vector space (V ,d) there
is an associated dg Lie algebra LP (V ). In the case when P is Koszul, rep-
resentations of P∞ in V are Maurer-Cartan elements in this Lie algebra. An
arbitrary element f ∈ LLie1 (V ) is determined by the image of the genera-

tors of (Lie1)¡ and can thus be considered as a family of linear maps{
fn := f (s−1

...1 n
GGG 444




www
) : V ¯n →V

}
n≥2

.

We note that s−1
. . .MMM qqq is of degree zero and from now on omit s−1 from the

notation.

From f we construct a vector field X f ∈ TV
∼= KJt bK⊗K∂a on the formal

graded manifold associated to V as follows. For a vector field X we denote
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by Xn the part of X of polynomial degree n in the variables t b q . We define
X f by

(X f )n := 1

n!
X a

(b1···bn )t b1 · · · t bn∂a ,

where the coefficients X a
(b1···bn ) are given by fn(eb1 ¯ ·· · ¯ ebn ) = X a

(b1···bn )ea .

Let m denote the maximal ideal ofKJt bK. We define a subset of vector fields

T̃V := {X = X a(t )∂a ∈TV | X a(t ) ∈m2},

further, we note that T̃V is a Lie subalgebra of TV and that

T̃V = {X f | f ∈LLie1 (V )}.

In the same manner the differential d of V corresponds to a degree one
vector field D , linear in t ; let D = Da

b t b∂a , where Da
b ∈ K are defined by

d(ea) = Db
aeb . That d is a differential, i.e. d 2 = 0, is equivalent to [D,D] = 0.

From this it follows that δD := [D,_] defines a differential on TV and we
note that it is compatible with the Lie bracket and that δD (T̃V ) ⊂ T̃V . Thus
(T̃V , [_,_],δD ) is a dg Lie algebra. We let (T̃ op

V , [_,_]op,δop
D ) denote the oppo-

site Lie algebra defined by [X ,Y ]op := [Y , X ].

Theorem 6.5. The morphism

Φ : LLie1 (V ) → T̃
op

V , f 7→ X f

is an isomorphism of dg Lie algebras.

Proof. Let f ∈ LLie1 (V ) be a homogeneous element of degree r . Explicitly,
this means that if a structure coefficient X a

(b1···bn ) of f is non-zero, then |ea |−
|eb1 |− · · ·− |ebn | = r . Since |∂a | = |ea | and |t b | = −|eb | it follows that X f is of
degree r . That the maps fn are graded symmetric is equivalent to that X f is
graded commutative in the variables t b . Applying the differential δ to f we
obtain a new family of maps {δ( f )n}n≥2 where

δ( f )n := δ( f )(
...1 n

GGG 444



www

) = d ◦ f (
...1 n

GGG 444



www

) = d( fn) =

d ◦1 fn − (−1)r
n∑

i=1
fn ◦i d =∑

d ◦1 fn − (−1)r n fn ◦1 d .

From this we get that

Φ(δ( f ))n =
(

1

n!
X c

b1···bn
Da

c − (−1)r 1

(n −1)!
Dc

b1
X a

cb2···bn

)
t b1 · · · t bn∂a =

([X f ,D])n = δop
D (Φ( f ))n .

Thus Φ defines an isomorphism of dg vector spaces.
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Now let f and g be homogeneous elements of LLie1 (V ) of degrees r and
s, respectively, and let Y a

b1···bn
denote the structure coefficients of the mor-

phisms g (
. . .MMM qqq ) : V ¯n →V . By definition

[ f , g ](
...1 n

GGG 444



www

) =∑
G∈G(2)

µG ◦
(
(G , [ f d ⊗ g u])− (−1)r s(G , [g d ⊗ f u])

)
◦G∆(

...1 n
GGG 444




www
) =∑

i+ j=n+1
σ∈Sun-sh

( j ,i−1)

( fi ◦1 g j − (−1)r s g j ◦1 fi )◦φσ.

Here φσ : V ⊗n →V ⊗n denotes the morphism defined by

φσ : (−1)εv1 ⊗·· ·⊗ vn 7→ vσ(1) ⊗·· ·⊗ vσ(n),

where ε is determined by the Koszul-Quillen sign-rule. Note that the cardi-
nality of Sun-sh

(i , j ) is (i + j )!/(i ! j !). Now it follows that

Φ([ f , g ])n =
n−1∑
i=1

1

i !(n − i )!

(
Y c

b1···bi
X a

cbi+1···bn
− (−1)r s X c

b1···bi
Y a

cbi+1···bn

)
t b1 · · · t bn∂a =

[Xg , X f ]n = [Φ( f ),Φ(g )]op
n .

6.3.2 Representations of Lie1∞ and homological vector fields

For an element X f ∈ T̃V we have

[D +X f ,D +X f ] = 0 ⇐⇒ δD (X f )+ 1

2
[X f , X f ] = 0

⇐⇒ δ
op
D (X f )+ 1

2
[X f , X f ]op = 0,

i.e. X f is a Maurer-Cartan element in (T̃V , [_,_],δD ) if and only if D +X f is a
pointed Maurer-Cartan element in (TV , [_,_]).

Recall that we consider the differential of a vector space to be part of the
representation of an operad in V , see §2.1.3. From the isomorphism be-
tween LLie1 (V ) and T̃V we thus obtain the following corollary.

Corollary 6.6. There is a one-to-one correspondence between representations
of Lie1∞ in a vector space V and pointed homological vector fields on the
formal manifold associated to V .

82



Remark 6.7. That the homological vector field considered in Corollary 6.6
are pointed is no serious restriction. Given an arbitrary non-pointed homo-
logical vector field on a formal graded manifold V , i.e. an element Q ∈ TV

such that [Q,Q] = 0 and Q|0 6= 0, it can be obtained from Lie1∞ by consider-
ing representations in V ⊕K. For a formal variable x, viewed as a coordinate
on K, we have that xQ ∈ TV ⊕K vanishes at the distinguished point of V ⊕K
and since xQ still satisfies [xQ, xQ] = 0, it corresponds to a representation of
Lie1∞.

Using the isomorphism ∧n(V [−1]) ∼= (¯nV )[−n], see e.g. [1], we arrive at the
conclusion that a homological vector field is equivalent to an L∞-algebra
structure on V [−1]
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7 Prop profile of Poisson structures

In this chapter we first review the prop profile of Poisson structures orig-
inally constructed in [40], following the outline of the previous chapter,
whereafter we give an interpretation of the prop profile as a family of brack-
ets comprising an L∞-algebra on the structure sheaf of the manifold.

7.1 Extracting the prop

7.1.1 The main idea

Consider the formal graded manifold associated to a vector space V . Recall
that a Poisson structure on V is a degree two bivector field P ∈ ∧•TV sat-
isfying [P,P ]S̃ = 0. To be precise we consider a pointed Poisson structure,
i.e. P |0 = 0. With the notation of Section 5.3 we have

P = ∑
n≥1

P [a1a2]
(b1···bn )t b1 · · · t bnνa1νa2 .

We can interpret this as a collection of degree zero maps

pn : ¯n V →∧2V

defined by
pn(eb1 ¯·· ·¯ebn ) → P a1a2

b1···bn
ea1 ∧ea2 .

The condition [P,P ]S̃ = 0 then translates into a sequence of quadratic rela-
tions of these maps. Merkulov’s idea [40] was that this algebraic structure
corresponds to just the degree zero part of the resolution of a prop. This
means that a certain part of the structure is fundamental and the rest of the
maps are higher homotopies, many of which may not be visible in degree
zero.

7.1.2 The visible part

Of the operations pi the fundamental one is p1. We denote the part of P
corresponding to p1 by P̂ . We will see that for Poisson structures on graded
manifolds there exist a hierarchy of higher homotopies of p1 which for de-
gree reasons do not appear in a classical Poisson structure. We depict the
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map p1 with the corolla ��??. The condition

[P̂ , P̂ ]S̃ = 0 (7.1)

is then equivalent to the relation

3

1 2

��� ???

��� ??? +
1

2 3

��� ???

��� ??? +
2

3 1

��� ???

��� ??? = 0. (7.2)

Definition. A Lie coalgebra is a vector space V together with a linear map
∆ : V →V ∧V which satisfies the co-Jacobi identity

(∆⊗ Id)◦∆+σ(∆⊗ Id)◦∆+σ2(∆⊗ Id)◦∆= 0,

where σ is the cyclic permutation (1,2,3) 7→ (2,3,1).

Thus the fundamental part of a Poisson structure gives V a Lie coalgebra
structure.

7.1.3 Adding a homological vector field

To obtain also the maps pi with i ≥ 2 we need to add a homological vector
field Q. In Chapter 6 we saw that the properties of a homological vector field
is encoded in the condition [Q̂,Q̂] = 0. To obtain the relations of the prop
profile of Poisson structures we use that the Schouten bracket is a general-
ization of the Lie bracket of vector fields and consider the condition

[P̂ ,Q̂]S̃ = 0, (7.3)

which translates to
1 2

1 2

???
���

��� ??? −
1

2

1

2

��� ???
��� +

2

1

1

2

��� ???
��� −

1

2

2

1

��� ???
��� +

2

1

2

1

��� ???
��� = 0. (7.4)

The compatibility condition (7.4) has an interpretation in terms of
Chevalley-Eilenberg cohomology. Let V be an odd Lie algebra and consider
the associated Chevalley-Eilenberg cochain complex with values in V ∧V .
Then ∆ : V → V ∧V is a 1-cocycle if and only if condition (7.4) is satisfied.
See e.g. [15] for a treatment of Lie bialgebras.

Note that a vector field of degree r is of degree r +1 when considered as an
element of (∧•TV , [_,_]S̃). Thus P̂ and Q̂ are both of degree two.

7.1.4 The genome

Since [Q̂,Q̂]S̃ ∈ ∧1TV , [Q̂, P̂ ]S̃ ∈ ∧2TV , and [P̂ , P̂ ]S̃ ∈ ∧3TV , we can simul-
taneously express the conditions (6.2), (7.1), and (7.3) which we want to
encode by

[P̂ +Q̂, P̂ +Q̂]S̃ = 0.
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To describe Poisson geometry as a minimal resolution of an algebraic ob-
ject we need to go beyond operads; since p1 has multiple outputs and q2

multiple inputs operads, are to restrictive. As the relations (7.4) are given by
genus zero graphs and constitute what is called a distributive law, it suffices
to encode the fundamental part of the geometric structure as a dioperad.
Its resolution is then straightforwardly extended to a resolution of the cor-
responding prop, see §4.1.3.

Definition. The dioperad Lie1Bi is the quadratic dioperad F (M )/(R)
where M is the S-bimodule given by

M (m,n) =


K

??�� = 1l1 ⊗1l2[−1] if (m,n) = (1,2)

K��?? = sgn2⊗1l1 if (m,n) = (2,1)

0 otherwise

The relations R are given by (6.3), (7.2), and (7.4):

R(1,3) :

1 2

3???
���

???
��� +

2 3

1???
���

???
��� +

3 1

2???
���

???
���

R(2,2) :

1 2

1 2

???
���

��� ??? −
1

2

1

2

��� ???
��� +

2

1

1

2

��� ???
��� −

1

2

2

1

��� ???
��� +

2

1

2

1

��� ???
���

R(3,1) :
3

1 2

��� ???

��� ??? +
1

2 3

��� ???

��� ??? +
2

3 1

��� ???

��� ???

Remark. This dioperad is similar to the dioperad LieBi of Example 2.3 with
the difference being that the bracket and cobracket lie in degrees differing
by one, explaining the 1 in the notation.

Merkulov called the generators and relations of Lie1Bi the genes and engi-
neering rules of Poisson geometry, together constituting its genome.

7.2 Computing the resolution

7.2.1 Koszulness of Lie1Bi

Since Lie [20] and Lie1 (§6.2.2) are Koszul and the relations of Lie1Bi are
given by a distributive law we obtain:

Proposition 7.1 (Proposition 3.1 of [40]). The dioperad Lie1Bi is Koszul.
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7.2.2 The Koszul dual dioperad of Lie1Bi

Proposition 7.2. The Koszul dual dioperad of Lie1Bi is the quadratic diop-
erad F (N )/(S ), where N is the S-bimodule given by

N (m,n) =


1l1 ⊗ sgn2[1] =K??�� if (m,n) = (1,2)

1l2 ⊗1l1 =K��?? if (m,n) = (2,1)

0 otherwise,

and the relations S are given by

S (1,3) :

1 2

3???
���

???
��� −

2 3

1???
���

???
���,

1 2

3???
���

???
��� −

3 1

2???
���

???
��� (7.5)

S (2,2) :

1 2

1 2

???
���

��� ??? +
1

2

1

2

��� ???
���,

1 2

1 2

???
���

��� ??? −
2

1

1

2

��� ???
���,

1 2

1 2

???
���

��� ??? +
1

2

2

1

��� ???
���,

1 2

1 2

???
���

��� ??? −
2

1

2

1

��� ???
��� (7.6)

S (3,1) :
3

1 2

��� ???

��� ??? −
1

2 3

��� ???

��� ??? ,
3

1 2

��� ???

��� ??? −
2

3 1

��� ???

��� ??? (7.7)

Proof. For Lie1Bi = F (M )/(R) we first observe that N = M ∨. Recalling
the pairing described in 2.3.4 we notice that (S )(2) is the orthogonal com-
plement to (R)(2) with respect to this pairing.

We see that Lie1Bi! is constructed from the operads (Lie1Bi!)U = C om1

and (Lie1Bi!)D = Lie. The relations (7.6) are orthogonal to the compati-
bility relations (7.4) of Lie1Bi and are related to the dioperad of Frobenius
algebras; the dioperad of Frobenius algebras is Koszul dual to the dioperad
of Lie bialgebras, see e.g. [18].

By straightforward graph calculations we obtain the following result.

Proposition 7.3 ([40]). The dioperad Lie1Bi! has as underlying S-bimodule

Lie1Bi!(m,n) =
{

1lm ⊗ sgnn[n −1] if m +n ≥ 3

0 otherwise.

Explicitly, in terms of the operations
??�� and ��??, the basis-element of

Lie1Bi!(m,n) is given by the

...
...

1 2
n

1 2

m

???
���

���

???

��� ???
.
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7.2.3 A minimal resolution of Lie1Bi

Theorem 7.4 (Theorem 3.2 of [40]). The Koszul resolution Lie1Bi∞ of the
dioperad Lie1Bi is the quasi-free dioperad (F (E ),δ) where

E (m,n) =
{

sgnm ⊗1ln[m −2] if m +n ≥ 3

0 otherwise.

We denote the element of E (m,n) corresponding to the basis element of
Lie1Bi!(m,n) by

. . .1 n

. . .
1 m

GGGGG
4444






wwwww

wwwww
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GGGGG ∼
...
...

1 2
n

1 2

m

???
���

���

???

��� ???
.

The differential of Lie1Bi∞ is then given by

δ :

. . .1 n

. . .
1 m

GGGGG
4444
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GGGGG 7→ ∑
τ∈Sun-sh

( j ,n− j )

σ∈Sun-sh
(i ,m−i )

(−1)sgn(σ)+i (m−i )

. . .

. . .
. . .

. . .

τ(1) τ( j )

τ( j+1) τ(n)

σ(1) σ(i )

σ(i+1) σ(m)

GGGGG
4444
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GGGGG
.

Proof. The proof is completely analogous to that of Theorem 3.26. We just
make two remarks: Lie1Bi¡(m,n) is concentrated in weight m+n−2 and the
graph calculations though still straightforward are somewhat more tedious.

7.2.4 From dioperads to props

From the results reviewed in §4.1.3 and the fact that the relations define a
distributive law we obtain the following corollary.

Corollary 7.5. With the notation

Lie1Bi =F
↓
c,0(M )(R) and Lie1Bi∞ = (F ↓

c,0(E ),δ)

we have

F
prop
dioperad(Lie1Bi) =F ↓(M )(R) and F

prop
dioperad(Lie1Bi∞) = (F ↓(E ),δ),

moreover, the latter is a quasi-free resolution of the former.

We will use the same notation for Lie1Bi when considering it as prop.
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7.2.5 From props to wheeled props

There exist a pair of adjoint functors U
prop
wheeledprop and F

wheeledprop
prop between

props and wheeled props. Unfortunately the latter functor is not exact; it

has been shown that when applying F
wheeledprop
prop to the propic resolution

of Lie1Bi new cohomology classes arise, Remark 4.2.4 of [42]. In the
same paper it was shown though, that a minimal quasi free wheeled
propic resolution exists, Theorem 4.5.1, but neither the differential nor
the S-bimodule by which it is generated need necessarily be directly
obtained from the propic resolution. The explicit calculation of the
wheeled resolution is a highly non-trivial problem and has not yet been
accomplished.

7.3 Geometrical interpretation

7.3.1 An isomorphism of Lie algebras

We are going to follow the paradigm of Chapter 6, this time constructing a
morphism from LLie1Bi(V ) to a Lie subalgebra of ∧•TV [1]. Let us use the
same notation for the basis of Lie1Bi¡ as for the basis of the S-bimodule E

of Theorem 7.4. A degree r element f ∈LLie1Bi(V ) is equivalent to a family
of degree r linear maps{

f n
m := f (

...1 n

...
1 m

GGG 444
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www



 444

GGG ) : ¯n V →∧mV [1−m]

}
m,n≥1

m+n≥3

.

From f we construct a polyvector field X f ∈ ∧•TV [1] ∼=KJt b ,νaK[1] on the
formal graded manifold associated to V as follows. We denote the part of a
polyvector field X of polynomial degree n in the variables t and m in ν by
X n

m . We define X f by

(X f )n
m := 1

m!n!
X [a1···am ]

(b1···bn ) t b1 · · · t bnνa1 · · ·νam ,

where the coefficients X [a1···am ]
(b1···bn ) are given by

f n
m(eb1 ¯·· ·¯ebn ) = X [a1···am ]

(b1···bn ) ea1 ∧·· ·∧eam .

Let m denote the maximal ideal of KJt bK. We define a subset of polyvector
fields

�∧•TV := {X = X a(t )νa ∈∧1TV [1] | X a(t ) ∈m2} ∪ {X ∈∧≥2TV [1] | X |0 = 0},

further, we note that �∧•TV is a Lie subalgebra of ∧•TV [1] and that X f ∈�∧•TV .
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The differential d of V corresponds to a degree one vector field D , as
noted in §6.3.1, and δD := [D,_]S defines a differential on ∧•TV [1]. Thus
(�∧•TV , [_,_]S ,δD ) is a dg Lie algebra. We let (�∧•TV

op
, [_,_]op

S
,δop

D ) denote
the opposite Lie algebra.

The following result was stated in [45]:

Theorem 7.6. Consider Lie1Bi with dioperad structure, then the morphism

Φ̃ : LLie1Bi(V ) → �∧•TV
op

, f 7→ X f

is an isomorphism of dg Lie algebras.

Proof. Let f ∈ LLie1 (V ) be a homogeneous element of degree r . Explic-

itly, this means that if a structure coefficient X [a1···am ]
(b1···bn ) of f is non-zero, then

|ea1 |+ · · ·+ |eam |− |eb1 |− · · ·− |ebn | = r +1−m. Since |νa | = |ea |+1 and |t b | =
−|eb | it follows that X f is of degree r . Applying the differential δ to f we
obtain a new family of maps {δ( f )n

m}m,n≥1,m+n≥3 where

δ( f )n
m := δ( f )(

...1 n

...
1 m

GGG 444
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GGG ) = d ◦ f (
...1 n

...
1 m

GGG 444
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GGG ) = d( f n
m) =
m∑

i=1
d 1◦i f n

m − (−1)r
n∑

i=1
f n

m i◦1d .

From this we get that

(Xδ( f ))
n
m =

(
1

(m −1)!n!
X a1···am−1c

b1···bn
Dam

c

−(−1)r 1

m!(n −1)!
Dc

b1
X a1···am

cb2···bn

)
t b1 · · · t bnνa1 · · ·νam =

([X f ,D]S )n
m = (δop

D (X f ))n
m .

Thus Φ̃ defines an isomorphism of dg vector spaces.

Now let f and g be homogeneous elements of LLie1Bi(V ) of degrees r and
s, respectively, and let Y a1···am

b1···bn
denote the structure coefficients of the vector

space endomorphisms corresponding to g . By definition

[ f , g ](
...1 n

...
1 m

GGG 444
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GGG ) =
∑

G∈G(2)

µG ◦
(
(G , [ f d ⊗ g u])− (−1)r s(G , [g d ⊗ f u])

)
◦G∆(

...1 n

...
1 m

GGG 444
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www
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GGG ) =∑
i+k=n+1
τ∈Sun-sh

(k,i−1)
j+l=m+1
σ∈Sun-sh

( j−1,l )

sgn(σ)φσ ◦ ( f i
j 1◦l g k

l − (−1)r s g i
j 1◦l f k

l )◦φτ.
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Here φσ : V ⊗n →V ⊗n denotes the morphism defined by

φσ : (−1)εv1 ⊗·· ·⊗ vn 7→ vσ(1) ⊗·· ·⊗ vσ(n),

whereσ ∈Sn and ε is determined by the Koszul-Quillen sign-rule. Note that
the cardinality of Sun-sh

(i , j ) is (i + j )!/(i ! j !). Now it follows that

Φ([ f , g ])n
m =

n−1∑
i=1

m−1∑
j=1

1

i !(n − i )!

1

( j −1)!(m − j +1)!(
Y

[a1···a j−1c]
(b1···bi ) X

[a j ···am ]
(cbi+1···bn ) − (−1)r s X

[a1···a j−1c]
(b1···bi ) Y

[a j ···am ]
(cbi+1···bn )

)
t b1 · · · t bnνa1 · · ·νam =

([Xg , X f ]S )n
m = ([Φ( f ),Φ(g )]op

S
)n

m .

7.3.2 Extended Poisson structures

Any pointed polyvector field Y ∈∧≥1TV [1] can be uniquely decomposed as
a sum Y = D +Y f for some pair ( f ,d), where f ∈ LLie1Bi(V ) and D is the
vector field corresponding to a differential d of V . Since

[D +Y f ,D +Y f ]S = 0 ⇐⇒ δD (Y f )+ 1

2
[Y f ,Y f ]S = 0

⇐⇒ δ
op
D (Y f )+ 1

2
[Y f ,Y f ]op

S
= 0,

we obtain the following corollary of Theorem 7.6.

Corollary 7.7 (Proposition 1.5.1 of [40]). There is a one-to-one correspon-
dence between representations of Lie1Bi∞ in a dg vector space V and pointed
Maurer-Cartan elements of ∧≥1TV [1].

We propose the following definition.

Definition. An extended Poisson structure on a formal graded manifold V is
a Maurer-Cartan element in the odd Lie algebra (∧≥1TV , [_,_]

S̃
), i.e. a degree

two element P ∈∧≥1TV satisfying [P,P ]S̃ = 0.

Note that if V is concentrated in degree zero, then an extended Poisson
structure is an ordinary Poisson structure on V , i.e. in this case P ∈∧2TV .

By Remark 6.7 the prop profile LLie1Bi(V ) essentially describes all extended
Poisson structures on V .

7.3.3 The family of brackets of an extended Poisson structure

To a polyvector field P = ∑
n≥1 Pn , with Pn := P [a1...an ](t )νa1 · · ·νan , we asso-

ciate a family of brackets {
Ln : ⊗n OV →OV

}
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where

Ln( f1, . . . , fn) : = Pn(d f1 ∧·· ·∧d fn)

= (−1)εP [a1...an ](t )(∂a1 f1) · · · (∂an fn)

and the sign (−1)ε is given by ε=

|∂an |(| f1|+· · ·+| fn−1|+n−1)+|∂an−1 |(| f1|+· · ·+| fn−2|+n−2)+·· ·+|∂a2 |(| f1|+1).

Proposition 7.8. The brackets Ln associated to a polyvector field P ∈∧•≥1TV

as above are graded skew commutative and have the graded Leibniz property
in each argument, i.e. for all n ≥ 1 and all 1 ≤ j ≤ n

Ln( f1, . . . , f j−1, g h, f j+1, . . . fn) =
(−1)ε1 g Ln( f1, . . . , f j−1,h, f j+1, . . . fn)+ (−1)ε2 Ln( f1, . . . , f j−1, g , f j+1, . . . fn)h,

where ε1 = |g |(| f1|+· · ·+| f j−1|+2−n) and ε2 = |h|(| f j+1|+· · ·+| fn |). Moreover,
the family of brackets {Ln}n≥1 gives OV the structure of L∞-algebra if and only
if P is an extended Poisson structure.

Proof. That the brackets Ln are graded skew symmetric is imme-
diate from the definition. The Leibniz property is satisfied since
Ln( f1, . . . , f j−1, _ , f j+1, . . . fn) is a vector field. We notice that

|Ln | = |P a1...an (t )|+ (|∂a1 |+ · · ·+ |∂an |) = |Pn |−n = 2−n.

Thus P is of degree two if and only if Ln is of degree 2−n. For the Poisson
bracket associated to a bivector field Y the condition [Y ,Y ]S̃ = 0 is equiv-
alent to the Poisson bracket satisfying the Jacobi identity. That the Li sat-
isfy the L∞-conditions is proven much in the same way. It is a tedious but
straightforward computation to verify that the brackets Ln associated to a
polyvector field P of degree two satisfy equation (6.1) if and only if [P,P ]S̃ =
0.

This leads to another definition of extended Poisson structures on formal
graded manifolds, which by the preceding proposition is equivalent to the
one we gave in §7.3.2.

Definition. An extended Poisson structure on a formal graded manifold V
is an L∞-algebra {Ln}n≥1 on OV such that the brackets Ln have the Leibniz
property in each argument.

Remark. That a polyvector field gives an L∞-algebra structure on the struc-
ture sheaf was observed in [58] using the notion of higher derived brackets.
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8 Prop profile of bi-Hamiltonian
structures

In this chapter we define a prop such that the degree zero part of repre-
sentations of its minimal resolution in a vector space V are in a one-to-one
correspondence with bi-Hamiltonian structures on the formal manifold as-
sociated to V . In the general case representations correspond to Maurer-
Cartan elements in a certain Lie subalgebra of ∧•TV J}K. We call such ele-
ments extended bi-Hamiltonian structures. We also give an interpretation
of extended bi-Hamiltonian structures as a family of brackets which gives
OV the structure of L2∞-algebra.

8.1 Extracting the prop

8.1.1 The compatibility relation

A bi-Hamiltonian structure on the formal manifold associated to a vec-
tor space V is a pair of bivector fields P1 and P2 satisfying [P1,P1]S̃ = 0,
[P2,P2]S̃ = 0, and [P1,P2]S̃ = 0. We want again to extract a prop encoding
the fundamental part of this structure. As in §7.1.2 we let P̂1 and P̂2 denote
the parts of P1 and P2 corresponding to maps V →∧2V . The conditions

[P̂1, P̂1]S̃ = 0 and [P̂2, P̂2]S̃ = 0 (8.1)

are equivalent to that the maps corresponding to P̂1 and P̂2 each give V the
structure of Lie coalgebra.

Definition. Let V be a vector space and let ∆1 and ∆2 be Lie cobrackets on
V . We say that the cobrackets are compatible if their sum ∆1 +∆2 again is a
Lie cobracket. We denote the quadratic dioperad encoding this structure by
C oLie 2.

We note that C oLie 2
D =Lie 2, cf §4.1.1.

We depict the maps corresponding to P̂1 and P̂2 with ◦�� ??and •�� ??, respectively.
The compatibility condition [P̂1, P̂2]S̃ = 0 can then be illustrated by

◦
•

3

1 2

�� ??

�� ?? + ◦
•

1

2 3

�� ??

�� ?? + ◦
•

2

3 1

�� ??

�� ?? + •
◦

3

1 2

�� ??

�� ?? + •
◦

1

2 3

�� ??

�� ?? + •
◦

2

3 1

�� ??

�� ?? = 0,
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i.e. the pair (P̂1, P̂2) gives V the structure of compatible Lie coalgebras.

8.1.2 Adding a homological vector field

From the experience of constructing the prop profile of Poisson structures
we expect a homological vector field Q compatible with both P1 and P2 to
be present, i.e. satisfying [P1,Q]S̃ = 0 and [P2,Q]S̃ = 0. The compatibility of
the fundamental part Q̂ with P̂1 and P̂2 means that the maps corresponding
to the pairs (P̂1,Q̂) and (P̂2,Q̂) both give V the structure of Lie1Bi algebra.

8.1.3 The genome

To express all the above conditions with a single equation we introduce a
formal parameter }. The conditions

[Q̂,Q̂]S̃ = 0, [P̂1,Q̂]S̃ = 0, [P̂1, P̂1]S̃ = 0, [P̂2, P̂2]S̃ = 0, and [P̂1, P̂2]S̃ = 0

are then all subsumed by

[Q̂ + P̂1 + P̂2},Q̂ + P̂1 + P̂2}]S} = 0. (8.2)

Here the bracket is the linearization in } of the Schouten bracket. As in the
case of Poisson structures, the relations (8.2) are dioperadic and in order
to make the computation of the resolution easier we extract the dioperad
encoding these relations.

Definition. The dioperad Lie1
2Bi is the quadratic dioperad F (M )/(R),

where M is the S-bimodule defined by

M (m,n) =


1l1 ⊗ (1l2[−1]) =K??�� if (m,n) = (1,2)

(sgn2⊕sgn2)⊗1l1 =K ◦�� ??⊕K •�� ?? if (m,n) = (2,1)

0 otherwise

,

and the relations R =R(1,3)tR(2,2)tR(3,1) consist of the following sub-
sets R(i , j ) ⊂F(2)(M)(i , j ):

96



R(1,3) :

1 2

3???
���

???
��� +

2 3

1???
���

???
��� +

3 1

2???
���

???
��� (8.3)

R(2,2) :

1 2

◦

1 2

???
���

�� ?? −
1

2◦

1

2

�� ??
��� +

2

1◦

1

2

�� ??
��� −

1

2◦

2

1

�� ??
��� +

2

1◦

2

1

�� ??
���, (8.4)

1 2

•

1 2

???
���

�� ?? −
1

2•

1

2

�� ??
��� +

2

1•

1

2

�� ??
��� −

1

2•

2

1

�� ??
��� +

2

1•

2

1

�� ??
��� (8.5)

R(3,1) :
◦

◦
3

1 2

�� ??

�� ?? + ◦
◦

1

2 3

�� ??

�� ?? + ◦
◦

2

3 1

�� ??

�� ?? ,
•

•
3

1 2

�� ??

�� ?? + •
•

1

2 3

�� ??

�� ?? + •
•

2

3 1

�� ??

�� ?? , (8.6)

◦
•

3

1 2

�� ??

�� ?? + ◦
•

1

2 3

�� ??

�� ?? + ◦
•

2

3 1

�� ??

�� ?? + •
◦

3

1 2

�� ??

�� ?? + •
◦

1

2 3

�� ??

�� ?? + •
◦

2

3 1

�� ??

�� ?? . (8.7)

By this we have obtained the genome of bi-Hamiltonian structures. We are
now ready to plug it into the machinery of Koszul resolutions.

8.2 Computing the resolution

8.2.1 Koszulness of Lie1
2Bi

We begin by showing the following result.

Proposition 8.1. The dioperad Lie1
2Bi is Koszul.

Proof. We observe that Lie1
2BiU = Lie1 and Lie1

2BiD = Lie 2. We showed
in §3.3.2 that the operad Lie 2 is Koszul and in §6.2.2 that Lie1 is Koszul. It
is straightforward to see that Lie12(Lie 2)op(i , j ) = Lie1

2Bi(i , j ) for (i , j ) =
(2,2), (2,3), (3,2); thus by Theorem 4.1 we obtain that Lie1

2Bi is Koszul.

8.2.2 The Koszul dual dioperad of Lie1
2Bi

Proposition 8.2. The Koszul dual dioperad of Lie1
2Bi is the quadratic diop-

erad F (N )/(S ), where

N (m,n) =


1l1 ⊗ sgn2[1] = ??�� if (m,n) = (1,2)

(1l2 ⊕1l2)⊗1l1 =K ◦
?? ��⊕K •

?? �� if (m,n) = (2,1)

0 otherwise
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and the relations S = S(1,3)tS(3,1)tS(2,2) are given by

S(1,3) :

1 2

3???
���

???
��� −

2 3

1???
���

???
���,

1 2

3???
���

???
��� −

3 1

2???
���

???
��� (8.8)

S(2,2) :

1 2

◦

1 2

???
���

�� ?? +
1

2◦

1

2

�� ??
���,

1 2

◦

1 2

???
���

�� ?? −
2

1◦

1

2

�� ??
���,

1 2

◦

1 2

???
���

�� ?? +
1

2◦

2

1

�� ??
���,

1 2

◦

1 2

???
���

�� ?? −
2

1◦

2

1

�� ??
��� (8.9)

1 2

•

1 2

???
���

�� ?? +
1

2•

1

2

�� ??
���,

1 2

•

1 2

???
���

�� ?? −
2

1•

1

2

�� ??
���,

1 2

•

1 2

???
���

�� ?? +
1

2•

2

1

�� ??
���,

1 2

•

1 2

???
���

�� ?? −
2

1•

2

1

�� ??
��� (8.10)

S(3,1) :
◦

◦
3

1 2

�� ??

�� ?? − ◦
◦

1

2 3

�� ??

�� ?? ,
◦

◦
3

1 2

�� ??

�� ?? − ◦
◦

2

3 1

�� ??

�� ?? (8.11)

•
•

3

1 2

�� ??

�� ?? − •
•

1

2 3

�� ??

�� ?? ,
•

•
3

1 2

�� ??

�� ?? − •
•

2

3 1

�� ??

�� ?? , (8.12)

◦
•

3

1 2

�� ??

�� ?? − ◦
•

1

2 3

�� ??

�� ?? ,
◦

•
3

1 2

�� ??

�� ?? − ◦
•

2

3 1

�� ??

�� ?? , (8.13)

◦
•

3

1 2

�� ??

�� ?? − •
◦

3

1 2

�� ??

�� ?? ,
◦

•
1

2 3

�� ??

�� ?? − •
◦

1

2 3

�� ??

�� ?? ,
◦

•
2

3 1

�� ??

�� ?? − •
◦

2

3 1

�� ??

�� ?? . (8.14)

Proof. For Lie1
2Bi = F (M )/(R) we first observe that N = M ∨. Recalling

the pairing described in 2.3.4 we notice that (S )(2) is the orthogonal com-
plement to (R)(2) with respect to this pairing.

Like Lie1
2Bi, its Koszul dual dioperad Lie1

2Bi! is constructed from two oper-
ads: (Lie1

2Bi!)U = C om1 and (Lie1
2Bi!)D = 2C om, see Sections 6.2 and 3.1,

respectively. By straightforward graph calculations we obtain the following
result.

Proposition 8.3. The dioperad Lie1
2Bi! has as underlying S-bimodule

Lie1
2Bi!(m,n) =


(1lm ⊕·· ·⊕1lm)︸ ︷︷ ︸

m terms

⊗sgnn[n −1] if m +n ≥ 3

0 otherwise.

Explicitly, aK-basis for Lie1
2Bi!(m,n) is given by

...
◦...◦

•...•

1 2
n

1 2

i+1

i+2

m

???
���

���

??

�� ??
??

�� ??


0≤i≤m−1

.
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8.2.3 A minimal resolution of Lie1
2Bi

We now have everything we need to describe a minimal resolution of
Lie1

2Bi explicitly.

Theorem 8.4. The Koszul resolution Lie1
2Bi∞ of the dioperad Lie1

2Bi is the
quasi-free dioperad (F (E ),δ), where

E (m,n) =


(sgnm ⊕·· ·⊕ sgnm)︸ ︷︷ ︸

m terms

⊗1ln[m −2] if m +n ≥ 3

0 otherwise.

We denote the element of E corresponding to the basis element of
Lie1

2Bi!(m,n) with i black operations by

i

1 . . . n

1
. . .

m

4444
***

���











��� ***

4444 ∼
...

◦...◦
•...•

1 2
n

1 2

i+1

i+2

m

???
���

���

??

�� ??
??

�� ??

.

The differential of Lie1
2Bi∞ is then given by

δ : i

1 . . . n

1
. . .

m

4444
***

���











��� ***

4444 7→ ∑
1≤k≤n

0≤ j≤m−1
2≤ j+k≤m+n−2

i1+i2=i
τ∈Sun-sh

(k,n−k)

σ∈Sun-sh
( j ,m− j )

(−1)sgn(σ)+ j (m− j )

i2

σ( j+1)
. . .

σ(m)

τ(k+1). . . τ(n)

i1

σ(1)
. . .

σ( j )

τ(1) . . . τ(k)






���

***
4444

4444444
*** ���












���

***

4444
*** ���







.

Proof. The proof is completely analogous to that of Theorems 3.26 and 7.4.

We will use the same notation for Lie1
2Bi when considering it as prop.

8.2.4 From dioperads to props to wheeled props

Since the relations of Lie1
2Bi constitute a distributive law the dioperadic

resolution extends to a propic resolution as in §7.2.4. Because Lie1Bi∞ is
present in Lie1

2Bi∞ as a subcomplex, consider e.g. all generators with only
white operations, at least the same difficulties arise when trying to extend
the propic resolution of Lie1

2Bi, cf. §7.2.5.
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8.3 Geometrical interpretation

8.3.1 An isomorphism of Lie algebras

Now we are going to construct a morphism from LLie1
2Bi(V ) to a Lie subal-

gebra of ∧•TV J}K[1], where } denotes a formal variable of degree zero. For
the rest of this paragraph we will suppress the degree shift. Let us use the
same notation for the basis of Lie1

2Bi¡ as for the basis of the S-bimodule E

of Theorem 7.4. A degree r element f ∈LLie1
2Bi(V ) is equivalent to a family

of degree r linear mapsk f n
m := f ( k

1 ... n

1
...

m

444
***

���









��� ***

444 ) : ¯n V →∧mV [1−m]

 m,n≥1
m+n≥3

0≤k≤m−1

.

From f we construct a formal power series Y f ∈ ∧•TV J}K ∼=KJt b ,νa ,}K as
follows. For a power series Y we denote by k Y n

m the part of Y of polynomial
degree n in the variables t b , m in νa , and k in }. Further, we denote by k Y
the polyvector field coefficient of }k . We define Y f by

k (Y f )n
m := 1

m!n! k Y [a1···am ]
(b1···bn ) t b1 · · · t bnνa1 · · ·νam ,

where the coefficients k Y [a1···am ]
(b1···bn ) are given by

k f n
m(eb1 ¯·· ·¯ebn ) = k Y [a1···am ]

(b1···bn ) ea1 ∧·· ·∧eam .

The role of the formal parameter } is to distinguish polyvector fields of the
same weight from each other. We let [_,_]S} denote the linearization in } of
the Schouten bracket.

We define a subset of ∧•TV J}K by

g̃V := {Y = ∑
k≥0

k Y }k ∈∧•TV J}K | k Y ∈∧≥k+1TV , Y |0 = 0, and 0Y 1
1 = 0}.

The following is immediate from the definition of g̃V .

Lemma 8.5. The subset g̃V is a Lie subalgebra of ∧•TV J}K and

g̃V = {Y f | f ∈LLie1
2Bi(V )}.

As noted in the preceding chapters, the differential d of V corresponds
to a degree one vector field D and δD := [D,_]S}

defines a differential on
∧•TV J}K. Thus (g̃V , [_,_]S}

,δD ) is a dg Lie algebra.

Theorem 8.6. The morphism

Φ : LLie1
2Bi(V ) → g̃

op
V , f 7→ Y f

is an isomorphism of dg Lie algebras.

Proof. The proof is completely analogous to the proof of Theorem 7.6.
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8.3.2 Extended bi-Hamiltonian structures

We define a Lie subalgebra of the odd Lie algebra ∧•TV J}K by

gV := {Y = ∑
k≥0

k Y }k ∈∧•TV J}K | k Y ∈∧≥k+1TV }.

Any pointed element Y ∈ gV can be uniquely decomposed as a sum Y =
D +Y f for some pair ( f ,d), where f ∈ LLie1

2Bi(V ) and D is the vector field
corresponding to a differential d of V . Since

[D +Y f ,D +Y f ]
S̃}

= 0 ⇐⇒ δ
op
D (Y f )+ 1

2
[Y f ,Y f ]op

S}
= 0,

we obtain the following corollary to Theorem 8.6.

Corollary 8.7. There is a one-to-one correspondence between representations
of Lie1

2Bi∞ in a dg vector space V and pointed Maurer-Cartan elements of
gV .

This is just another formulation of Theorem C in the introduction. The pre-
ceding corollary suggests the following definition.

Definition. An extended bi-Hamiltonian structure on a formal graded man-
ifold V is a Maurer-Cartan element of gV , i.e. a degree two element P ∈ gV

satisfying [P,P ]S̃}
= 0.

8.3.3 Representations of Lie1
2Bi∞ in non-graded vector spaces

If V is a vector space concentrated in degree zero, then the maps k f n
m corre-

sponding to an element f ∈LLie1
2Bi(V ) vanish unless m = 2. Thus Y f = P◦+

P•}, where P◦ and P• are pointed bivector fields. The condition [Y f ,Y f ]S̃}
=

0 is therefore equivalent to

[P◦,P◦]S̃ + ([P◦,P•]S̃ + [P•,P◦]S̃)}+ [P•,P•]S̃}
2 = 0

and we observe that representations of Lie1
2Bi∞ in V are in one-to-one cor-

respondence with pointed bi-Hamiltonian structures on the formal mani-
fold associated to V . In particular this proves Theorem B.

8.3.4 The family of brackets of an extended bi-Hamiltonian structure

To an element P =∑
k≥0 k P}k ∈ gV with k P =∑

i≥k+1 k Pi and

k Pi := k P a1...ai (t )νa1 · · ·νai

we associate a family of brackets as follows. For 1 ≤ k ≤ n we define an n-ary
bracket k Ln : ⊗n OV →OV by

k Ln( f1, . . . , fn)i : = k−1Pnd f1 ∧·· ·∧d fn

= (−1)εk−1P a1...an (t )(∂a1 f1) · · · (∂an fn).
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Here the sign (−1)ε is given by

ε= |∂an |(| f1|+ · · ·+ | fn−1|+n −1)+
|∂an−1 |(| f1|+ · · ·+ | fn−2|+n −2)+·· ·+ |∂a2 |(| f1|+1).

Theorem 8.8. The brackets k Ln associated to a power series P ∈ gV as above
satisfy the Leibniz property in each argument, i.e.

k Ln( f1, . . . , f j−1, g h, f j+1, . . . fn) =
(−1)ε1 g k Ln( f1, . . . , f j−1,h, f j+1, . . . fn)+

(−1)ε2
k Ln( f1, . . . , f j−1, g , f j+1, . . . fn)h.

where ε1 = |g |(| f1|+· · ·+| f j−1|+2−n) and ε2 = |h|(| f j+1|+· · ·+| fn |). Moreover,
the family of brackets {k Ln}n≥1,1≤k≤n gives OV the structure of L2∞-algebra if
and only if P is of degree two and satisfies [P,P ]S̃}

= 0.

Proof. The proof is completely analogous to that of Proposition 7.8.

This leads to another definition of extended bi-Hamiltonian structures on
formal graded manifolds, which by the preceding theorem is equivalent to
the one we gave in §8.3.1.

Definition. An extended bi-Hamiltonian structure on a formal graded man-
ifold V is an L2∞-algebra {k Ln}n≥1,1≤k≤n on OV such that the brackets k Ln

have the Leibniz property in each argument.
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9 Operad profile of Nijenhuis
structures

In [39] S.A. Merkulov described Nijenhuis structures as corresponding to
representations of the cobar construction on the Koszul dual of a certain
quadratic operad. In this chapter we first review the construction of this op-
erad. Thereafter we prove, using the PBW-basis method of E. Hoffbeck [23],
that the operad governing Nijenhuis structures is Koszul, thereby showing
that Nijenhuis structures correspond to representations of the minimal res-
olution of this operad. Finally, we consider the geometric meaning of the
operad profile.

9.1 Extracting the operad

9.1.1 The visible part

Let V be a dg vector space considered as a formal graded manifold. Recall
from §5.3.5 that a pointed graded Nijenhuis structure on V is a degree one
element J ∈Ω1

V ⊗TV such that [J , J ]F-N = 0 and J |0 = 0. Using the notation of
§5.3.1 we have

J = ∑
i≥1

J b
(c1···ci )a t c1 · · · t ciγa∂b ,

where J b
(c1···ci )a ∈ K. Here we consider the grading Ω•

V = ̂̄•(Ω1
V [−1)]). The

vector form J defines a family of degree zero maps { ji : ¯i V ⊗V →V } by

ji (ec1 ¯·· ·¯eci ⊗ea) = J b
c1···ci aeb .

Let Ĵ denote the part of J corresponding to j1. It was observed in [39] that
j1 gives V a pre-Lie algebra structure if and only if [ Ĵ , Ĵ ]F-N = 0. We want
to encode this in the language of operads. To j1 we associate the corolla??

. Denoting the nontrivial element of S2 by (12) we depict the elements
??

and
??

(12) by the planar corollas

1 2
???

and
2 1

???
,
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respectively. The condition [ Ĵ , Ĵ ]F-N = 0 then translates to

RPL
a,b,c :=

a b
c???

??? −
cb

a ???
??? −

a c

b???
??? +

bc

a ???
??? = 0,

for a,b,c being the cyclic permutations of 1,2,3. Let MPL =K
?? ⊕K??

(12) =
K[S2] and RPL =RPL

1,2,3∪RPL
2,3,1∪RPL

3,1,2, then the operad of pre-Lie algebras
PreLie is given by F (MPL)/(RPL). This operad was shown to be Koszul in
[9] and thus its minimal resolution PreLie∞ can be computed explicitly.
Representations of PreLie∞ correspond to Nijenhuis structures which are
linear in t . To obtain arbitrary pointed Nijenhuis structures we need to add
a homological vector field.

9.1.2 Adding a homological vector field

In §6.1.3 we translated the properties of the fundamental part Q̂ of a homo-
logical vector field to operadic relations. Let us denote the relations of (6.3)
by RL. The last step in encoding the operad profile of Nijenhuis structures
is achieved by considering the interplay between Ĵ and Q̂. Here we use that
the Frölicher-Nijenhuis bracket is an extension of the Lie bracket of vector
fields. The compatibility is given by

[ Ĵ ,Q̂]F-N = 0.

This translates to

RC
a,b,c :=

a b
c???

���
??? +

cb
a ���???

??? +
ca

b ���???
??? −

cb
a ???

���??? −
ca

b ???

���??? = 0,

for a,b,c being the cyclic permutations of 1,2,3. Let RC = RC
1,2,3 ∪RC

2,3,1 ∪
RC

3,1,2.

9.1.3 The genome

Since [Q̂,Q̂]F-N ∈ Ω0
V ⊗TV , [ Ĵ ,Q̂]F-N ∈ Ω1

V ⊗TV , and [ Ĵ , Ĵ ]F-N ∈ Ω2
V ⊗TV , the

relations RL, RPL, and RC can all be simultaneously expressed by the single
condition

[Q̂ + Ĵ ,Q̂ + Ĵ ]F-N = 0.

We encode this in an operad.

Definition (Merkulov). The operad N ij is the quadratic operad

F (MPL ⊕ML)/(RL ∪RPL ∪RC).

The operad N ij thus contains the Lie operad and the pre-Lie operad with
the operations differing by one in degree and compatible in the sense of
RC . See [39] for interpretations of this compatibility.
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Remark. The operad N ij was denoted by pre-Lie 2 in [39]. We renamed it
to avoid confusion with the operad of compatible pre-Lie algebras.

9.2 Computing the resolution

9.2.1 The Koszul dual operad of N ij

Proposition 9.1 ([39]). The Koszul dual dioperad of N ij is

N ij! =F (N )/(S )

where N is the S-module defined by

N (n) =
{

sgn2[1]⊕K[S2]⊗ sgn2 =K
??�� ⊕K?? ⊕K??

(12) if n = 2

0 otherwise.

The relations S are given by

a b
c???

���
???

��� −
cb

a ���???

���??? ,

a b
c???

??? −
cb

a ???
??? ,

a b
c???

??? −
a c

b???
??? , (9.1)

a b
c???

???
��� −

a c

b???
���

??? ,

cb
a ���???

??? −
a c

b???
���

??? +
a b

c???
���

??? . (9.2)

Proof. For N ij = F (M )/(R) we first observe that N = M ∨. Recalling the
pairing described in 2.3.4 we notice that (S )(2) is the orthogonal comple-
ment to (R)(2) with respect to this pairing.

We note that N ij! has the operads P erm, of permutative algebras (see
e.g. [9]), and C om1 as suboperads.

For H a subgroup of G and M an H-module we define IndG
H M :=K[G]⊗K[H ]

M . Using the relations S of the previous proposition one can show the
following:

Proposition 9.2. The operad N ij! has as underlying S-bimodule

N ij!(n) =
{⊕n

i=1 IndSn
Si×Sn−i

sgni ⊗1ln−i [i −1] if n ≥ 2

0 otherwise.

Explicitly, in terms of the operations
??�� and

??
, a K-basis of N ij!(n) is given

by 
...

...

σ(1) σ(2)

σ(i )

σ(i+1)

σ(n)

???
���

���
???

 1≤i≤n
σ∈Sun-sh

(i ,n−i )

.
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9.2.2 Koszulness of N ij

In the following theorem we use the notation

1 2

��� instead of
2 1

???

in order to write the trees using the planar representation of §4.2.1.

Proposition 9.3. Let BM = {
??��,

??
, ��}. The following is a PBW-basis of N ij!

with respect to the ordering �� < ??�� < ??
:

BNij ! =


...

...

1 i1

ir
j1

js

???
���

???
���

???

???


i1<···<ir
j1<···< js

∪


...

...

1 i1
i2

ir
j1

js

���
???

���

???
���

???

???


i1<···<ir
j1<···< js

.

Proof. Through straightforward graph calculations one can verify that BNij !

is a basis of N ij !, cf. §3.6 of [39] and note that the dotted edges here corre-
spond to the wavy edges in [39]. Condition (ii) is easily verified. We denote
the elements of BNij !(3) by

β1 =
1 2

3???
���

??? , β2 =
1 3

2???
���

??? , β3 =
1 2

3���
???

���, β4 =
1 2

3???
���

???
���

β5 =
1 2

3???
??? , β6 =

1 2

3���
??? , β7 =

1 3

2���
??? .

To show that (i) is satisfied, it is sufficient, using Proposition 4.4, to observe
that for any decorated two-vertex graph α ∈ BF (M ) \ BNij !

with α = ∑
ciβi ,

ci ∈K, we have ci 6= 0 =⇒ βi >α. Here M =K?? ⊕K �� ⊕K??��.

Together with Theorems 4.5 and 2.5 we obtain:

Corollary 9.4. The operads N ij! and N ij are Koszul.

9.2.3 The minimal resolution of N ij

Theorem 9.5. The minimal resolution N ij∞ of the operad N ij is the quasi-
free operad (F (E ),δ) where the S-module E is given by

E (n) =
{⊕n−1

j=0 IndSn
Sn− j×S j

1ln− j ⊗ sgn j [ j −1]) if n ≥ 2

0 otherwise.
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We denote the basis elements of E (n) corresponding to the basis elements of
N ij!(n) by

I︷ ︸︸ ︷ J︷ ︸︸ ︷
SSSSSSSS
OOOOOOO

GGGGG
4444

∼
...

...

σ(1) σ(2)

σ(i )

σ(i+1)

σ(n)

???
���

���
???

,

where I = {σ(1), . . . ,σ(i )} and J = {σ(i +1), . . . ,σ(n)}. Note that they are sym-
metric in the input edges labeled by I , skew-symmetric in the ones labeled by
J , and of degree 1−|J |. The differential of N ij∞ is then given by

δ :

I︷ ︸︸ ︷ J︷ ︸︸ ︷
SSSSSSSS
OOOOOOO

GGGGG
4444

7→

∑
I1tI2=I
J1tJ2=J

(−1)ε1

J1︷ ︸︸ ︷I2︷ ︸︸ ︷
J2︷ ︸︸ ︷I1︷ ︸︸ ︷4444

GGGGG
OOOOOOO

SSSSSSSS

***

***
4444

GGGGG
OOOOOOO

SSSSSSSS − ∑
I1tI2=I

J1t{J2}tJ3=J

(−1)ε2

I2︷ ︸︸ ︷ J1
J2︷ ︸︸ ︷

I1︷ ︸︸ ︷ J3︷ ︸︸ ︷SSSSSSSS
OOOOOOO

GGGGG
4444

���

���

SSSSSSSS
OOOOOOO

GGGGG
4444 .

Here ε1 = |J2| +π(J1 t J2) and ε2 = |J2| + |J3| +π(J1 t J2 t J3), and π(J1 t J2)
and π(J1 t J2 t J3) denote the parities of the permutations J 7→ J1 t J2 and
J 7→ J1tJ2tJ3, where we assume the elements of each disjoint set to be ordered
ascendingly.

Proof. The proof is completely analogous to that of Theorem 3.26. The
graph calculations are more tedious though.

9.3 Geometrical interpretation

9.3.1 An isomorphism of Lie algebras

We are going to follow the pattern of Chapter 6 once more, this time con-
structing a morphism from LNij(V ) to a Lie subalgebra of Ω•

V ⊗TV .

A degree r element f ∈ LNij(V ) is equivalent to a family of degree r linear
maps {

f(i , j ) := f (s−1
1 ... i i+1 ... i+ j

SSSSSS
OOOOO

GGG 444
) : ¯i V ⊗∧ j V →V [− j ]

}
i≥1
j≥0

i+ j≥2

.
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That we only need to consider the image of corollas labeled as above is a
consequence of the S-equivariance of f .

From f we construct a vector form K f ∈Ω•
V ⊗TV

∼=KJt a ,γbK⊗K∂c as fol-
lows. Let

(K f )(i , j ) := 1

i ! j !
K c

(a1···ai )[b1···b j ]t
a1 · · · t aiγb1 · · ·γb j ∂c ,

where the elements K c
(a1···ai )[b1···b j ] ∈K are given by

f(i , j )(ea1 ¯·· ·¯eai ⊗eb1 ∧·· ·∧eb j ) = K c
(a1···ai )[b1···b j ]ec . (9.3)

We define

K f := ∑
i≥1, j≥0
i+ j≥2

(K f )(i , j ).

Further, we define a subset of vector forms

ãΩ•
V ⊗TV := {K ∈Ω≥1

V ⊗TV | K |0 = 0}∪ T̃V ,

where T̃V was defined in §6.3.1. We note that ãΩ•
V ⊗TV is a Lie subalgebra

of Ω•
V ⊗TV and that K f ∈ ãΩ•

V ⊗TV .

As noted in §6.3.1 the differential d of V corresponds to a degree one
vector field D and δD := [D,_]F-N defines a differential on Ω•

V ⊗TV . Thus

( ãΩ•
V ⊗TV , [_,_]F-N ,δD ) is a dg Lie algebra. We let ( ãΩ•

V ⊗TV
op

, [_,_]op
F-N ,δop

D )
denote the opposite Lie algebra.

Theorem 9.6. The morphism

Φ : LNij(V ) → ãΩ•
V ⊗TV

op
, f 7→ K f

is an isomorphism of dg Lie algebras.

Proof. Let f ∈ LNij(V ) be a homogeneous element of degree r . Explicitly,
this means that if a structure coefficient K c

(a1···ai )[b1···b j ] of f is non-zero, then

|ec |−|ea1 |−· · ·−|eai |−|eb1 |−· · ·−|eb j | = r − j . Since |∂c | = |ec |, |t a | = −|ea |, and

|γb | = −|eb |+1, it follows that K f is of degree r . Applying the differential δ to
f we obtain a new family of maps {δ( f )(i , j )} determined by the morphisms

δ( f )(i , j ) = δ( f )(
1 ... i i+1 ... i+ j

SSSSSS
OOOOO

GGG 444
) = d ◦ f (

1 ... i i+1 ... i+ j
SSSSSS
OOOOO

GGG 444
) =

d ◦1 f(i , j ) − (−1)r
i+ j∑
k=1

f(i , j ) ◦k d .

108



From this we get that

Φ(δ( f ))(i , j ) =
(

1

i ! j !
K e

(a1···ai )[b1···bn ]D
c
e − (−1)r 1

(i −1)! j !
De

ai
K a

(a1···ai−1e)[b1···b j ]

−(−1)r 1

(i !( j −1)!
De

b1
K c

(a1···ai )[eb2···b j ]

)
t a1 · · · t aiγb1 · · ·γb j ∂c =

([Φ( f ),D]F-N )(i , j ) = (δop
D (Φ( f )))(i , j ).

Thus Φ defines an isomorphism of dg vector spaces.

Now let f and g be homogeneous elements of LLie1 (V ) of degrees r and
s, respectively, and let Lc

(a1···ai )[b1···b j ] denote the structure coefficients of the

morphisms g (
. . .MMM qqq ) : ¯i V ⊗∧ j V →V . By definition

[ f , g ](
1 ... i i+1 ... i+ j

SSSSSS
OOOOO

GGG 444
) =

∑
G∈G(2)

µG ◦
(
(G , [ f d , g u]− (−1)r s(G , [g d , f u])

)
◦G∆(

1 ... i i+1 ... i+ j
SSSSSS
OOOOO

GGG 444
) =∑

i1+i2=i+1
j1+ j2= j
σ∈S′

i+ j

s̃gn(σ)
(

f(i1, j1) ◦i1 g(i2, j2) − (−1)r s g(i1, j1) ◦i1 f(i2, j2)
)◦φσ

+ ∑
i1+i2=i

j1+ j2= j+1
σ∈S′′

i+ j

s̃gn(σ)
(
( f(i1, j1) ◦i1+1 g(i2, j2) − (−1)r s g(i1, j1) ◦i1+1 f(i2, j2))

)◦φσ

Here S′
i+ j and S′′

i+ j denote the subset of permutations of Si+ j defined in
Theorem 9.5 and s̃gn(σ) denotes the sign of the permutation of the inputs
i +1, . . . , i + j . It follows that

Φ([ f , g ])(i , j ) = ([Φ( f ),Φ(g )]op
F-N

)(i , j ).

9.3.2 Representations of N ij∞ and vector forms

We note that any pointed vector form K ∈Ω•
V ⊗TV can be decomposed as

the sum K = D +K f where f ∈LNij(V ) and D is a vector field derived from
a differential of V . Thus Theorem 9.6 yields the following:

Corollary 9.7. There is a one-to-one correspondence between representations
of N ij∞ in V and pointed Maurer-Cartan elements of Ω•

V ⊗TV .

Remark. Using the above correspondence between S-module morphisms
N ij¡ → EndV and vector forms Merkulov showed in [39] that there is a
one-to-one correspondence between representations of Ω(N ij¡) in V and
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pointed Maurer-Cartan elements of Ω•
V ⊗ TV . This result together with

Corollary 9.4 immediately implies Corollary 9.7. We note also that the
differential given in §3.6 of [39] really is the differential of the minimal
resolution of N ij.

When V is concentrated in degree zero the Maurer-Cartan elements ofΩ•
V ⊗

TV lie in Ω1
V ⊗TV . Thus representations of N ij∞ correspond precisely to

pointed classical Nijenhuis structures.

9.3.3 Nijenhuis∞ structures

The Maurer-Cartan elements of Ω•
V ⊗TV were studied in [39].

Definition (Merkulov). A Nijenhuis∞ structure on a graded manifold V is a
Maurer-Cartan element of Ω•

V ⊗TV .

One of the results obtained by Merkulov is that Nijenhuis∞ structures cor-
respond to contractible dg manifolds, see Section 5 of [39] for details.

A Nijenhuis∞ structure can be interpreted as a family of maps {Ji : ∧i TV →
TV }i∈N (or as a map J : ∧• TV → TV ) satisfying certain quadratic relations.
The geometrical (or algebraic) significance of these maps is an interesting
and open question.
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10 Operad profile of compatible
Nijenhuis structures

In this chapter we define the operad encoding bi-Nijenhuis structures.
Again we use the PBW-method to show that the operad BiN ij of
compatible Nijenhuis structures is Koszul which enables us to calculate its
minimal resolution. Finally we give a geometrical interpretation of the
operad BiN ij∞.

10.1 Extracting the operad

10.1.1 The fundamental parts

Recall that a bi-Nijenhuis structure is pair (J ,K ) of Nijenhuis structures
such that their sum is a Nijenhuis structure. This is equivalent to that the
following conditions are satisfied:

[J , J ]F-N = 0, [J ,K ]F-N = 0, and [K ,K ]F-N = 0,

or equivalently
[J +}K , J +}K ]F-N = 0.

We want to define an operad capturing the fundamental part of this struc-
ture, analogously to how a Nijenhuis structure is encoded.

Let Ĵ and K̂ denote the fundamental parts of J and K , respectively, and let
Q̂ again denote the fundamental part of a homological vector field. That J
and K are Nijenhuis structures is encoded by translating

[Q̂,Q̂]F-N = 0, [Q̂, Ĵ ]F-N = 0, [ Ĵ , Ĵ ]F-N = 0, [Q̂, K̂ ]F-N = 0, and [K̂ , K̂ ]F-N = 0

to corresponding operadic relations. In doing this we denote the corollas
encoding Ĵ and K̂ by ◦

??
and •

??
, respectively.

10.1.2 Linearly compatible pre-Lie algebras

The compatibility of J and K is captured by

[ Ĵ , K̂ ]F-N = 0,
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which translates to
a b

c◦
•

??
?? −

cb
a ◦

•

??
?? −

a c

b◦
•

??
?? +

bc

a ◦
•

??
?? +

a b
c•

◦

??
?? −

cb
a •

◦

??
?? −

a c

b•
◦

??
?? +

bc

a •
◦

??
?? = 0,

for a,b,c being the cyclic permutations of 1,2,3. We make the following
definition.

Definition. Let ◦ and • be pre-Lie products on a vector space V . We call
them compatible if their sum ◦+•, defined by a(◦+•)b := a ◦b + a •b is a
pre-Lie product. Equivalently, the products are compatible if they satisfy

(a ◦b)• c −a • (b ◦ c)− (a ◦ c)•b +a • (c ◦b)+
(a •b)◦ c −a ◦ (b • c)− (a • c)◦b +a ◦ (c •b) = 0.

Thus the compatibility of Ĵ and K̂ means that the corresponding maps j1

and k1 give V the structure of compatible pre-Lie algebras.

10.1.3 The genome

We can encode all the above conditions on Ĵ , K̂ , and Q̂ by the single equa-
tion

[Q̂ + Ĵ +}K̂ ,Q̂ + Ĵ +}K̂ ]F-N = 0.

Translated to the language of operads we obtain the following:

Definition. The operad BiN ij is the quadratic operad F (M )/(R), where
M is the S-module given by

M (n) =


1l2[−1]⊕K[S2]⊕K[S2] =
K

??�� ⊕K ◦
?? ⊕K ◦

??
(12)⊕K •

?? ⊕K •
??

(12) if n = 2

0 otherwise

and the relations R are given by

a b
c◦

◦

??
?? −

cb
a ◦

◦

??
?? −

a c

b◦
◦

??
?? +

bc

a ◦
◦

??
?? ,

a b
c•

•

??
?? −

cb
a •

•

??
?? −

a c

b•
•

??
?? +

bc

a •
•

??
?? ,

a b
c◦

•

??
?? −

cb
a ◦

•

??
?? −

a c

b◦
•

??
?? +

bc

a ◦
•

??
?? +

a b
c•

◦

??
?? −

cb
a •

◦

??
?? −

a c

b•
◦

??
?? +

bc

a •
◦

??
?? ,

1 2

3???
���

???
��� +

2 3

1???
���

???
��� +

3 1

2???
���

???
���,

a b
c

◦

???
���

?? +
cb

a

◦
���???

?? +
ca

b

◦
���???

?? −
cb

a ◦
??

��??? −
ca

b ◦
??

��??? ,

a b
c

•

???
���

?? +
cb

a

•
���???

?? +
ca

b

•
���???

?? −
cb

a •
??

��??? −
ca

b •
??

��??? .
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To sum up this definition, a BiN ij-algebra is a pair of N ij-algebras sharing
the same Lie bracket and such that the pre-Lie products are compatible.

10.2 Computing the resolution

10.2.1 The Koszul dual operad of BiN ij

From the definition of Koszul dual operads we immediately obtain the fol-
lowing:

Proposition 10.1. The Koszul dual operad of BiN ij is the quadratic operad
F (N )/(S ), where N is the S-module given by

N (n) =


sgn2[1]⊕K[S2]⊗ sgn2⊕K[S2]⊗ sgn2

K
??�� ⊕K ◦

?? ⊕K ◦
??

(12)⊕K •
?? ⊕K •

??
(12) if n = 2

0 otherwise.

and the relations S are given by
a b

c◦
◦

??
?? −

cb
a ◦

◦

??
?? ,

a b
c◦

◦

??
?? −

a c

b◦
◦

??
?? ,

a b
c•

•

??
?? −

cb
a •

•

??
?? ,

a b
c•

•

??
?? −

a c

b•
•

??
?? ,

a b
c◦

•

??
?? −

cb
a ◦

•

??
?? ,

a b
c◦

•

??
?? −

a c

b◦
•

??
?? ,

a b
c•

◦

??
?? −

cb
a •

◦

??
?? ,

a b
c•

◦

??
?? −

a c

b•
◦

??
?? ,

a b
c◦

•

??
?? −

a b
c•

◦

??
?? ,

cb
a ◦

•

??
?? −

cb
a •

◦

??
?? ,

a b
c???

���
???

��� −
cb

a ���???

���??? ,

a b
c◦

??
??

��� −
a c

b

◦

???
���

?? ,

cb
a

◦
���???

?? −
a c

b

◦

???
���

?? +
a b

c

◦

???
���

?? ,

a b
c•

??
??

��� −
a c

b

•

???
���

?? ,

cb
a

•
���???

?? −
a c

b

•

???
���

?? +
a b

c

•

???
���

?? .

Straightforward graph computations yield the following:

Proposition 10.2. The underlying S-module of BiN ij! is given by

BiN ij!(n) =
⊕

0≤p≤n−1(IndSn
Sn−p×Sp

sgnn−p ⊗(1lp ⊕·· ·⊕1lp︸ ︷︷ ︸
p +1 terms

)[n −p −1]) if n ≥ 2

0 otherwise.

Explicitly, aK-basis for BiN ij!(n) is given by
...

◦...◦
•...•

σ(1) σ(2)

σ(i )

σ(i+1)
σ(i+ j )

σ(i+ j+1)

σ(n)

???
���

���
??

??

 i≥1, j≥0
σ∈Sun-sh

(i ,n−i )

. (10.1)

113



10.2.2 Koszulness of BiN ij

Through a slight modification of the basis (10.1) we obtain a PBW-basis for
BiN ij!.

Proposition 10.3. The following is a PBW-basis of BiN ij! with respect to the
ordering ◦��< •��< ??�� < ◦

?? < •
??

BBiNij! =


...

◦...◦
•...•

1 i1
ir

j1
js

js+1
js+t

???
���

���
??

??


i1<···<ir

j1<···< js+t

∪



◦
...

◦...◦
•...•

1 i1
i2

ir
j1

js
js+1

js+t

��
??

���
���

??

??


i1<···<ir

j1<···< js+t

∪


•

...
•...•

1 i1
i2

ir
j1

js

��
??

���
���

??


i1<···<ir
j1<···< js

.

Proof. Through straightforward graph calculations one can verify that
BBiNij!

is a basis of BiN ij!, cf. the basis (10.1). Condition (ii) is easily
verified. We denote the elements of BBiNij!(3) by

β1 =
1 2

3

◦

???
���

?? , β2 =
1 3

2

◦

???
���

?? , β3 =
1 2

3◦��
??

���, β4 =
1 2

3

•

???
���

?? ,

β5 =
1 3

2

•

???
���

?? , β6 =
1 2

3•��
??

���, β7 =
1 2

3◦
◦

??
?? , β8 =

1 2

3◦
◦

��
?? ,

β9 =
1 3

2◦
◦

��
?? , β10 =

1 2

3•
•

??
?? , β11 =

1 2

3•
•

��
?? , β12 =

1 3

2•
•

��
?? ,

β13 =
1 2

3◦
•

??
?? , β14 =

1 2

3◦
•

��
?? , β15 =

1 3

2◦
•

��
?? , β16 =

1 2

3???
���

???
���.

To show that (i) is satisfied it is sufficient, using Proposition 4.4, to observe
that for any decorated two-vertex graph α ∈ BF (N ) \BBiNij!

with α=∑
ciβi ,

ci ∈K, we have ci 6= 0 =⇒ βi >α.

Corollary 10.4. The operad BiN ij!, and thus also BiN ij, is Koszul.
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10.2.3 The minimal resolution of BiN ij

Theorem 10.5. The minimal resolution BiN ij∞ of the operad BiN ij is the
quasi-free operad (F (E),δ) where E = {E(n)}n≥0 is the S-module

E(n) =


⊕

0≤ j≤n−1(IndSn
Sn− j×S j

1ln− j ⊗ (sgn j ⊕·· ·⊕ sgn j︸ ︷︷ ︸
j +1 terms

)[ j −1]) if n ≥ 2

0 otherwise.

We denote the basis elements of E(n) corresponding to the basis elements of
BiN ij!(n) with k white operations by

k

I︷ ︸︸ ︷ J︷ ︸︸ ︷
OOOOOOO

JJJJJ
????

////

∼
...

◦...◦
•...•

σ(1) σ(2)

σ(i )

σ(i+1)

σ(i+k)

σ(i+k+1)

σ(n)

???
���

���
??

?? ,

where I = {σ(1), . . . ,σ(i )} and J = {σ(i +1), . . . ,σ(n)}. Note that they are sym-
metric in the input edges labeled by I , skew-symmetric in the ones labeled by
J , and of degree 1−|J |. The differential of BiN ij∞ is then given by

δ : k

I︷ ︸︸ ︷ J︷ ︸︸ ︷
OOOOOOO

JJJJJ
????

////

7→

∑
k1+k2=k
I1tI2=I
J1tJ2=J

(−1)ε1

J1︷ ︸︸ ︷I2︷ ︸︸ ︷
J2︷ ︸︸ ︷I1︷ ︸︸ ︷

k1

k2

////
????

JJJJJ
OOOOOOO

***

'''
////

????
JJJJJ

OOOOOOO − ∑
k1+k2=k
I1tI2=I

{J1}tJ2tJ3=J

(−1)ε2

I2︷ ︸︸ ︷ J1
J2︷ ︸︸ ︷

I1︷ ︸︸ ︷ J3︷ ︸︸ ︷SSSSSSSS
OOOOOOO

GGGGG
4444

���

���

SSSSSSSS
OOOOOOO

GGGGG
4444 .

Here ε1 = |J2| +π(J1 t J2) and ε2 = |J2| + |J3| +π(J1 t J2 t J3), and π(J1 t J2)
and π(J1 t J2 t J3) denote the parities of the permutations J 7→ J1 t J2 and
J 7→ J1tJ2tJ3, where we assume the elements of each disjoint set to be ordered
ascendingly.

Proof. The proof is completely analogous to that of Theorem 3.26 and 9.5.
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10.3 Geometrical interpretation

10.3.1 An isomorphism of Lie algebras

We will construct a morphism Φ from LLie1
2Bi(V ) to a Lie subalgebra of

(Ω•
V ⊗TV )J}K. A degree r element f ∈ LLie1

2Bi(V ) is equivalent to a fam-
ily of degree zero linear mapsk fi , j := f ( k

1 i i+1 i+ j

OOOOO
JJJJ

???
///

) : ¯i V ⊗∧ j V →V [1− j ]

 j≥0,i≥1
i+ j≥2
0≤k≤ j

.

From such a family of maps we construct a family of vector forms as follows.
Let

k Ki , j = 1

i ! j ! k K c
(a1···ai )[b1···b j ]t

a1 · · · t aiγb1 · · ·γb j ∂c ,

where the numbers k K c
(a1···ai )[b1···b j ] ∈K are given by

k fi , j (ea1 ¯·· ·¯eai ⊗eb1 ∧·· ·∧eb j ) = k K c
(a1···ai )[b1···b j ]ec

We assemble these vector forms into a formal power series in the formal
parameter }with vector form coefficients:

K f =
∑
k≥0

k K}k , where k K = ∑
i≥1
j≥k

k Ki , j .

We introduce } to distinguish vector forms of the same weight but corre-
sponding to different maps. We write [_,_]F-N}

for the linearization in } of
the Frölicher-Nijenhuis bracket.

h̃V := {K ∈ (Ω≥1
V ⊗TV )J}K | k K ∈ (Ω≥k

V ⊗TV )J}K and K |0 = 0}∪ T̃V ,

where T̃V is defined as in §6.3.1.

Before we proceed to the main theorem we make an observation.

Lemma 10.6.

Theorem 10.7. The morphism

Φ : LNij(V ) → h̃
op
V , f 7→ K f

is an isomorphism of dg Lie algebras.

Proof. The proof is completely analogous to the proof of Theorem 9.6.
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10.3.2 Bi-Nijenhuis∞ structures

We define another Lie subalgebra of ∧•TV J}K by

hV := {K = ∑
k≥0

k K}k ∈ (Ω•
V ⊗TV )J}K | k K ∈Ω≥k

V ⊗TV }.

Any pointed element K ∈ gV can be uniquely decomposed as a sum K =
D +K f for some pair ( f ,d), where f ∈ LBiNij(V ) and D is the vector field
corresponding to a differential d of V . The equivalence

[D +K f ,D +K f ]F-N}
= 0 ⇐⇒ δ

op
D (K f )+ 1

2
[K f ,K f ]op

F-N}
= 0,

yields the following corollary to Theorem 10.7.

Corollary 10.8. There is a one-to-one correspondence between representa-
tions of BiN ij∞ in a dg vector space V and pointed Maurer-Cartan elements
of hV .

Note that Theorem F in the introduction is just another formulation of the
preceding theorem. In analogy with Nijenhuis∞ structures we make the
following definition.

Definition. A bi-Nijenhuis∞ structure on a manifold V is a Maurer-Cartan
element in gV .

10.3.3 Representations of BiN ij∞ in non-graded vector spaces

Let V be a vector space concentrated in degree zero, then a morphism f ∈
LBiNij(V ) corresponds to an element J f = J1 + J2} ∈ hV such that J1 and
J2 are pointed elements of Ω1

V ⊗TV . That f is a representation of BiN ij∞
in V is thus equivalent to that J f is a pointed bi-Nijenhuis structure on the
formal manifold associated to V . In particular this proves Theorem E.
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A Details on G∗-algebras

Composition product of free G∗-algebras

We keep the notation of §2.2.1. When describing the grafting of graphs we
will denote G(G1, . . .Gk ) by G̃ .

The vertices of the graph G̃ are given by VG̃ := VG1 t ·· · tVGk , the internal
edges by E int

G̃
:= E int

G1
t·· ·tE int

Gk
tE int

G , and the external edges by E in
G̃

:= E in
G and

E out
G̃

:= E out
G . Defining the incidence morphism ΦG̃ is more complicated.

For an edge e ∈ E int
Gi

we define ΦG̃ (e) :=ΦGi (e). Let e ∈ E int
G be an edge with

ΦG (e) = (vi , v j ) and let the vertices vi and v j of G be decorated with fi ⊗S
Gi ⊗S gi and f j ⊗SG j ⊗S g j , respectively. Via the local labeling of G and the
global labelings of Gi and G j , this edge connects two vertices, wi ∈VGi and
w j ∈ VG j of G̃ , as follows. Let ei be the edge in E out

Gi
with fi ◦ outGi (ei ) =

e. Note that this composition is well defined since another representative,
f ′

i ⊗SG ′
i ⊗S g ′

i of the decoration of vi , will satisfy outG ′
i
= σoutGi and f ′

i =
fiσ

−1 for some permutation σ, implying f ′
i ◦ outG ′

i
= fi ◦σ−1 ◦σ ◦ outGi =

fi ◦outGi . By composing further with inG j ◦g j , which by a similar argument

also is well defined, we obtain an edge e j = inG j ◦g j ◦ fi ◦outGi (ei ) ∈ E in
G j

. Let

wi =ΦGi (ei ) and w j =ΦG j (e j ), then we set ΦG̃ (e) := (wi , w j ).

For an external edge e ∈ E in
G̃

with ΦG (e) = vi let ei = inGi ◦gi (e) ∈ E in
Gi

and

wi =ΦGi (ei ). We define ΦG̃ (e) := wi . Similarly for an external edge e ∈ E out
G̃

with ΦG (e) = vi let ei = fi ◦ outGi (e) ∈ EGi and wi = ΦGi (ei ). We define
ΦG̃ (e) := wi . By the same arguments as above this is well defined. The
global labeling of the external edges is directly induced by the one of G ,
inG̃ := inG and outG̃ := outG .

For three edges e,ei ,e j connected as above we will use the notation ein := ei ,
eout := e j , and (ei )con = (e j )con := e. We will use the same notation for two
connected edges.

wi

w j

ei

e

e j

•

•

con
��

out
��

con

DD
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The elements p̃a
b are defined as follows. If pa

b = f a
b ⊗Spa

b ⊗Sg a
b is an element

decorating a vertex w ∈ VGi with |E out
w | = m and |E in

w | = n, then p̃a
b = f̃ a

b ⊗S
pa

b ⊗S g̃ a
b , where the bijections f̃ a

b : [m] → E out
w and g̃ a

b : E in
w → [n] are given

by

f̃ a
b (i ) =

{
f a

b ( j ) if f a
b ( j ) ∈ E int

Gi

f a
b ( j )con if f a

b ( j ) ∈ E out
Gi

and

g̃ a
b (e) =

{
g a

b (e) if e ∈ E int
Gi

g a
b (eout) if e ∈ EG ∩ (E in

w )con.
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