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Abstract

In this work we present some of the geometric constructs that aid the application of
the Ważewski Theorem. To illustrate the procedure the Michaelis-Menten mechanism will
be considered. We show thatM, a slow manifold, exists and is fully contained in a given
set V . The set V must satisfy that its set of ingress points I with respect to de differential
system of equations are strict. The Ważewski Theorem asserts that if the subset of strict
ingress points of V is not a retract of the whole set then there exist a trajectory φ contained
in V for all positive/negative values of time. More specifically, the theorem establishes that
if we can find a set Z ⊂ V ∪ I such that Z ∩ I is a retract of I but not a retract of Z then
φ exists.

For the construction of the set V the existence of continuously differentiable functions
which behave similarly to Liapunov functions on some parts of their zero-levels is required.
The starting point to define such functions was to use the expressions obtained from the
quasi steady state and rapid equilibrium assumptions (QSSA and REA).

One surprising property of M is that it is the only trajectory that stays in the set
V . To discuss uniqueness of the slow manifold we show the following two conditions are
satisfied:

• One of the coordinates, let us say xi is monotone and 0 < xi <∞. The cross-section
given by xi constant has either a non-decreasing or fixed diameter as xi increases.

• The distance between two different solutions in V is non-decreasing as xi increases.

with respect to a chosen variable, any two solutions in the polyfacial set V are always
moving apart and the diameter of the cross sections of V is either decreasing or constant.
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Chapter 1

Introduction

Modeling problems that involve different time scales give rise to systems of differential
equations of the following form

x′ = f(x, z, ε)

z′ = εg(x, z, ε).
(1.1)

Where x ∈ Rn, z ∈ Rm, ε ∈ R and the functions f, g ∈ Cr, where r > 1. It is assumed
that ε is a small positive parameter. Here, the prime symbol denotes the derivative with
respect to the independent variable t. When the system involves two different time scales,
the parameter ε is significant since it establishes the difference between time scales.

Systems of differential equations such as (1.1) arise naturally when modeling biological
processes. The following authors present some applications where such type of systems are
obtained [2–4, 7, 14, 18].

From a geometric point of view, the analysis of systems of equations like (1.1) requires
the system to posses a normally hyperbolic invariant manifold (NHIM), which can be
thought of as a generalization of a hyperbolic fixed point. The concept of NHIM was
introduced by Neil Fenichel in 1972. An introduction to geometric methods for singular
perturbation problems can be found in work by Tasso J. Kaper [14] and by Christopher
K.R.T Jones [12]. These two references also contain an outline of Fenichel’s theory for
singular perturbation problems.
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System (1.1) can be reformulated via a change of time scale as

εẋ = f(x, z, ε)

ż = g(x, z, ε).
(1.2)

Derivatives in system (1.2) are with respect to the variable τ = εt. Note that as long
as ε > 0, both systems are equivalent. The case ε = 0 gives reduced expressions of (1.1)
and (1.2). Both formulations are used to gain insight about the case where ε > 0. If ε = 0

in system (1.1) yields

x′ = f(x, z, 0)

z′ = 0.
(1.3)

Here the variable x is changing while z remains constant. The set of critical points
for (1.3), given by the condition f(x, z, 0) = 0, is an l-dimensional manifold M0. Under
some conditions which are related to the linearization of (1.1) at each point ofM0, see 3.3.3
for an example, the manifoldM0 is said to be normally hyperbolic invariant manifold.

Fenichel’s theory, which applies to case whereM0 is a compact manifold without bound-
ary, gives conditions under which the NHIM persists when the perturbation is turned on.
That is, it establishes that if in the limit as ε approaches zero, the system has a normally
hyperbolic invariant manifold M0, then there exist manifolds Mε for ε sufficiently small
and positive. The persistent manifolds,Mε, are called slow manifolds.

For planar systems, other arguments have been used to give a description of the slow
dynamics of a system. See for example the work presented by Fraser [7], Fraser & Rous-
sel [18] and Calder & Siegel [2, 3]. For the Michaelis-Menten and Lindemann mechanisms
of enzyme kinetics they have shown that in the substrate/complex plane, the slow and
asymptotic motion of the system is bounded above by the Rapid Equilibrium (RE) and
below by the quasi steady-state approximation (QSSA). In reference [18], Fraser and Rous-
sel follow an iterative approach where the separation of fast and slow time scales is exploited
to find low-dimensional manifolds in the space of species concentrations. Calder and Siegel
used fences and antifunnel theory [10, Ch 1,4] to show that inside the region described by
the RE and QSSA there is an exceptional solution that stays inside and attracts all other
solutions. This exceptional solution is called the slow manifold and is usually denotedMε.

The work presented here follows the same spirit as the work done in [2, 3, 7, 18]. We look
for conditions on existence and uniqueness of an exceptional solutionM that stays inside
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a particular region and attracts all other solutions. Our aim is to present some geometric
constructs and use the Ważewski method to determine the existence and uniqueness of the
slow manifoldM. The name and notation forM is taken from the framework of geometric
singular perturbation theory. The relevance of the tools presented here is that they are
applicable to higher dimensional systems.

Existence of the slow manifold is justified by the so called Ważewski method, an outline
of the method and its relation to Conley index theory is presented by Roman Srzednicki
in [20]. The method follows a topological approach to differential equations and is due to
Tadeusz Ważewski (1896-1972) who introduced it in [22]. It gives a way to prove existence
of solutions that remain in a polyfacial set V for all positive/negative values of time. The
polyfacial set V must satisfy that its set of ingress points I are strict.

This thesis is organized as follows. In Chapter 2, concepts and theorems from analysis
and topology are introduced. A simplified version of the Ważewski Theorem is presented
also in Chapter 2. Applications of the theorem are introduced in Chapters 4 and 5.

An important piece for the application of the Ważewski Theorem is the construction of
the polyfacial set V for the differential equation. Such construction is based on the existence
of continuously differentiable functions that behave similarly to Liapunov functions on some
parts of their zero-level sets. For the examples presented here, a starting point for those
functions are the expressions obtained by the RE and QSSA assumptions. In Chapter 3
we briefly mention how those expressions are obtained for the Michaelis-Menten system.
Also, in Chapter 3 some of the concepts related to geometric singular perturbation theory
are illustrated.

In Chapters 4 and 5 we present an argument based on the Ważewski Principle to show
there exist a unique trajectoryM fully contained in a polyfacial set V . We illustrate the
concepts used by applying them to some simple models like the Michaelis-Menten system.

Finally, Ważeski’s method, although an existence result, helps us determine conditions
applicable to higher dimensions for the existence of a trajectory fully contained in a poly-
facial set V . Uniqueness of such trajectory is justified showing that the following two
conditions are satisfied:

• One of the coordinates, let us say xi is monotone and 0 < xi <∞. The cross-section
given by xi constant has either a non-decreasing or fixed diameter as xi increases.
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• The distance between two different solutions in V is non-decreasing as xi increases.

These concepts and conditions are justified in Appendices A and B.

Final remarks are presented in Chapter 6.
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Chapter 2

Background Material

In this chapter we review some of the key concepts that will arise hereafter in the exposition
of this work. The main goal of this chapter is to present the Ważewski method, also known
as the retract method. It was first introduced in the middle of the twentieth century by
the polish mathematician Tadeusz Ważewski in [22]. The method follows a topological ap-
proach to differential equations and gives a way to prove existence of solutions that remain
in a given set V for all negative values of time. The construction of V presented here is
based on the existence of functions which behave similarly to Liapunov functions on some
parts of their zero-level set, a neat procedure is presented in [20]. The retract method
asserts that there is a solution contained in V for all negative values of time if the subset
of strict ingress points of V is not a retract of the whole set V .

2.1 Basic results from topology

The Ważewski method is based on concepts and theorems from analysis and topology. The
definitions and theorems of this section can be found for example in [9, 16].

Definition. A topological space is an ordered pair (X, τ), where X is a set and τ is a
collection of subsets of X satisfying the following three axioms:

1) X and ∅ belongs to τ
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2) any union of elements of τ still belong to τ

3) the intersection of any finite number of elements of τ still belongs to τ

The elements of τ are called open sets and τ is called a topology on X.

Example 2.1.1. Every metric space can be given a topology in which the basic open sets
are the open balls defined by a metric. For example let us take X = Rn, with the Euclidean
metric. Let τ be the set of open subsets that can be realized as the union of open balls, that
is, A ∈ τ if for all x0 ∈ A there exists r > 0, which depends on x0, such that B(x0, r) ⊂ A,
then A =

⋃
x0∈A

B(x0, r).

Definition. Let X and Y be two topological spaces. We say the map f : X → Y is
continuous if for every open set A ⊂ Y the inverse image of A,

f−1(A) = {x ∈ X | f(x) ∈ A},

is an open subset of X.

Definition. Let X be a topological space and A ⊂ X. A continuous map r : X → A such
that r(a) = a for all a ∈ A is called a retraction from X to A.

The set A is called a retract of X if there is a retraction r : X → A.

Definition. A space is connected if it cannot be represented as the union of two or more
disjoint nonempty open subsets.

If X is a connected set, the following theorem will be very useful to determine whether
a set A ⊂ X, is a retract of X.

Theorem 2.1.2. Let X be a connected set and r : X → A a continuous function. The
image of X under r, r(X), is a connected set as well.

Proof. The idea of the proof is as follows. Let us assume that r(X) is not connected.
Then, there exist A1 and A2, open sets (relative to r(X)), such that A1 ∩ A2 = ∅, and
r(X) ⊆ A1∪A2. Also, r(X)∩A1 6= ∅ and r(X)∩A2 6= ∅. Let us now take a look at the set
r−1(A1) and r−1(A2). Since r(X)∩A1 6= ∅ we have that r−1(A1) 6= ∅ and an open set, since
r is continuous, similar for r−1(A2). Note that r−1(A1) ∩ r−1(A2) = ∅, otherwise if there
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exists x ∈ r−1(A1) ∩ r−1(A2) it will imply that r(x) ∈ A1 and r(x) ∈ A2 but A1 ∩ A2 = ∅
so this can not happen. Finally, we will show that X = r−1(A1)∪ r−1(A2). If x ∈ X, then
r(x) ∈ r(X) which implies r(x) ∈ A1 or r(x) ∈ A2 hence x ∈ r−1(A1) or x ∈ r−1(A2).
We have shown that X is disconnected, which is a contraction. Therefore r(X) has to be
connected when X is connected.

Example 2.1.3. Let us consider the set S = [a, b], and A = {a}. Then we have that A is
a retract of S. We could just take r(x) = a which is a continuous function and the identity
when the domain is restricted to the set A.

On the other hand, if we consider the set A = {a, b} instead, by the previous theorem A

cannot be a retract of S. Since S is connected, the image of S under a continuous function
has to be a connected as well.

Note. This type of argument is used in one of the applications of the Ważewski theorem
presented in Chapter 4.

Another useful result is the No Retraction Theorem (NRT) which is equivalent to
Brouwer’s Fixed Point Theorem. We present a popular version of the NRT, which states
that there is no retraction from the unit ball to the unit circle. A general version, together
with its proof can be found for example in [9].

Theorem 2.1.4 (No Retraction Theorem). Let

D2 = {(x, y) ∈ R2 | x2 + y2 ≤ 1}

and
S1 = {(x, y) ∈ R2 | x2 + y2 = 1}.

There is no retraction r : D2 → S1.

There are several proofs of the NRT, for a self-contained proof see for example [13]. The
NRT holds in higher dimensions, for example, it can be shown that there is no retraction
from the n-dimensional ball to its boundary. Furthermore, the NRT is also valid for a
general bounded open subset B of Rn with a smooth boundary S, or a set homeomorphic
to an n-dimensional ball, see [9, 13].

Note. The NRT argument is used in one of the applications of the Ważewski theorem which
is presented in Chapter 5.
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2.2 Flows, trajectories and semi trajectories on a topo-
logical space

Let us consider the following initial value problem

ẋ = f(x)

x(0) = x0,

(2.1)

where x : R→ Rn and f : Rn → Rn is a continuous vector field. We assume that for each
point x0 in the phase space there exists a unique solution t 7→ φ(x0, t) of the initial value
problem (2.1) that passes through x0. Such a solution might not be defined for all t ∈ R.

The definitions presented in the remaining sections of this chapter can be consulted
in [20, pp.594-620].

Definition. Let X be a topological space and let D be an open subset of X ×R. A local
flow is a continuous map φ : D → X such that for every x ∈ X the set {t : (x, t) ∈ D} is
equal to an open interval (αx, ωx), where −∞ < αx ≤ 0 ≤ ωx <∞.

If t ∈ (αx, ωx) then αφ(x,t) = αx − t and ωφ(x,t) = ωx − t. Also, the local flow φ satisfies
the following:

φ(x, 0) = x,

φ(x, s+ t) = φ(φ(s,x), t).

If D = X × R, then a local flow is called a flow.

Note. In this work if A ⊂ X and J ⊂ R we will write φ(A, J) instead of φ(A× J).

Definition. Let x ∈ X and φ be a local semiflow on X.

The positive semitrajectory of x is given by the set

φ+(x) := φ(x, [0, ωx)).
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Similarly, the negative semitrajectory of x is

φ−(x) := φ(x, (αx, 0]).

If φ is a local flow then we call the trajectory of x the following set

φ(x) := φ(x, (αxωx)).

2.3 Ingress, egress and outward tangency points

In what follows, let us consider V to be an open subset of the phase space Rn. The next
definition gives a classification of points on V and the boundary of V when we consider
the trajectories passing through those points.

Note. We use ∂V to denote set of points in the boundary of V . The set V = V ∪ ∂V and
Rn \ V denotes the complement of V in Rn.

Definition. Let V be an open set in Rn, take x ∈ ∂V .

• We say that x is an ingress point of V with respect to (2.1) if there exist an ε > 0

such that φ(x, t) ∈ V for 0 < t < ε. Moreover, if φ(x, t) ∈ Rn \ V for −ε < t < 0

then x is called strict ingress point.

• Similarly, we say that x is an egress point of V if there exist an ε > 0 such that
φ(x, t) ∈ V for −ε < t < 0. Moreover, if φ(x, t) ∈ Rn \ V for 0 < t < ε then x is
called strict egress point.

• Finally, x is an outward tangency point of V if there exist ε > 0 such that φ(x, t) ∈
Rn \ V for all t ∈ (−ε, 0) ∪ (0, ε).

Example 2.3.1. For one example the set of points described above is visualized in the
Figure 2.1. In this case, let us assume the open set that we are referring to is given by

V = {(x1, x2) | |x1| < 1, |x2| < 1}

9



Figure 2.1: Illustration of ingress, egress and outward tangency points.

and the vector field is f = (f1, f2) which satisfies

x1f1(x1, x2) > 0 if |x1| = 1, |x2| ≤ 1,

and
x2f2(x1, x2) < 0 if |x1| ≤ 1, |x2| = 1.

This is, the open vertical sides of the square consist of strict egress points. Similarly, the
open horizontal sides consist of strict ingress points, and the four vertices of the square
form the set of outward tangency points.

The retract method asserts that there is a solution contained in V for all negative values
of time if the subset of strict ingress points of V is not a retract of the whole set V . In
the following section, we present a way to construct a polyfacial sets V for a vector field
described by f . The construction of such set gives us a neat way to determine whether a
point x ∈ ∂V is either strict egress, strict ingress or an outward tangency point.

10



2.4 Polyfacial sets

Here we present a way to construct polyfacial sets in differential equations. Such con-
struction is based on the existence of continuously differentiable functions which behave
similarly to Liapunov functions on some parts of their zero-level set. The main purpose
of such construction is to have a neat way to determine whether a point x ∈ ∂V is either
strict egress, strict ingress or outward tangency point.

Let p and q be nonnegative integers such that p + q ≥ 1. Consider the continuously
differentiable functions li,mj : Rn → R where i = 1, 2, . . . , p and j = 1, 2, . . . , q. Let the
set V be described in the following way

V := {x ∈ Rn | li < 0 ∀i = 1, 2, . . . , p, mj < 0 ∀j = 1, 2, . . . , q}.

Furthermore, let us consider the following sets

Li := {x ∈ ∂V | li(x) = 0}

Mi := {x ∈ ∂V | mi(x) = 0}.

Definition. The set V describe above is called a polyfacial set determined by the set of
functions {li,mi} for i = 1, 2, . . . , p, and j = 1, 2, . . . , q.

Note. The possibility to have either Li = ∅ or Mi = ∅ is not excluded. This is actually
the case in the example presented in Chapter 4 where the set Li = ∅. The set of functions
determining the set V are given by the QSSA and RE approximations which are described
in more detail in the following chapter.

Definition. If for every i = 1, 2, . . . , p and j = 1, 2, . . . , q the following conditions are
satisfied

f(x)·∇li(x) > 0, if x ∈ Li (2.2)

(2.3)

f(x)·∇mi(x) < 0, if x ∈Mi. (2.4)

Then we say that the set V is a polyfacial set for the differential equation ẋ = f(x)

determined by {li,mi}.
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For the case where x ∈ ∂V , we have defined above in section 2.3 the concepts of strict
ingress, strict egress and outward tangency point of V . When V is a polyfacial set for the
differential equation ẋ = f(x) the following Proposition presented in [20] provides a way
to determine which points of ∂V are in each set.

Proposition 2.4.1. Let V be a polyfacial set for the differential equation ẋ = f(x).

a) The point x ∈ ∂V is a strict ingress point if and only if satisfies x ∈ Mj for some
j = 1, 2, . . . , q and x /∈ Li for every i = 1, 2, . . . p.

b) Similarly, the point x ∈ ∂V is a strict egress point if and only if x ∈ Li for some
i = 1, 2, . . . , p and x /∈Mj for every j = 1, 2, . . . q.

c) The point x ∈ ∂V is a outward tangency point if and only if x ∈ Li ∩Mi for some
i = 1, 2, . . . , p and j = 1, 2, . . . q.

Proof. a) Let x ∈ ∂V , note that

∂V ⊂
p⋃
i=1

Li ∪
q⋃
j=1

Mi. (2.5)

(⇒ If x is a strict ingress point, then x /∈ Li every i = 1, 2, . . . , p. For the relation
established in equation (2.5), it follows that x ∈Mj for some j = 1, 2, . . . , q.

(⇐ Assume x is in someMj, for j = 1, 2, . . . , q and x /∈ Li every i = 1, 2, . . . , p. Note
that for any point x ∈ V we have that mj(x) ≤ 0 for j = 1, 2, . . . , q. Since each mj

is a continuous function, when mj(x) < 0 then

mj(φ(x, t)) < 0

for t > 0 sufficiently small.

On the other hand, if mj(x) = 0, this is x ∈Mj for some j = 1, 2, . . . , q, then

φ(x, (−εj, 0)) ⊂ Rn \ V

and
mj(φ(x, t)) < 0 if 0 < t < εj for some εj > 0.

Therefore, in each case there exist an ε > 0 such that φ(x, t) ∈ V for 0 < t < ε and
φ(x, t) ∈ Rn \ V for −ε < t < 0 thus x is in the set of strict ingress points of V .
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b) It follows from a) after reversing the time direction.

c) (⇒ For the relation established in equation (2.5), and parts a) and b) it follows that
x ∈ Li ∩Mj for some i = 1, 2, . . . , p and some j = 1, 2, . . . , q.

(⇐ x ∈ Li ∩Mj for some i = 1, 2, . . . , p and j = 1, 2, . . . , q. Since each mj and li
are continuous functions, when mj(x) < 0 then mj(φ(x, t)) < 0 for t > 0 sufficiently
small. Similarly li(x) < 0 then li(φ(x, t)) < 0 for t < 0 sufficiently small.

On the other hand, if mj(x) = 0, this is x ∈Mj for some j, then

φ(x, (−εj, 0)) ⊂ Rn \ V

and
mj(φ(x, t)) < 0 if 0 < t < εj for some εj > 0

Similarly, li(x) = 0, this is x ∈ Li for some i, then

φ(x, (0, εi)) ⊂ Rn \ V

and
li(φ(x, t)) < 0 if − εi < t < 0 for some εi > 0.

Let ε = min{εi, εj}. Therefore, φ(x, t) ∈ Rn \ V for (−ε, 0) ∪ (0, ε), hence x is an
outward tangency point.

Note. When considering a polyfacial set V for the differential equation

ẋ = f(x),

based on the previous Proposition 2.4.1 we can determine when a point x ∈ ∂V is either
strict egress point, strict ingress point or outward tangency point. Other possibilities hold
when the inequalities 2.2 are not strict. See example presented in Chapter 4 where the
origin is an equilibrium point, it is in the boundary of the set V and is not either egress,
ingress or outward tangency point.

In this work we will use part a) of the Proposition’s proof to show that a given point
of x in the boundary of V is a strict ingress points.

An extended version of the Ważewski method for equations without the uniqueness of
IVP and with weak inequalities 2.2 is presented in [20, pp.614-617].
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2.5 Ważewski theorem

Next, we will consider a particular case of the theorem presented by Ważewski in [22]. The
Ważewski method and several extensions are discussed in [20, Chapter 7].

Assume that the equation ẋ = f(x) generates a local flow. Let I∗ denote the set of
ingress points, and I the set of strict ingress points with respect to ẋ = f(x). Although
the theorem is usually presented in terms of the egress points to better suit our purposes
we present the theorem in terms of the ingress points.

Theorem 2.5.1 (Ważewski principle). Let V be an open set in Rn, with I∗ and I the set
of ingress and strict ingress points with respect to ẋ = f(x) respectively. If I∗ = I and
there is a set Z ⊂ V ∪ I such that

• Z ∩ I is a retract of I, and

• Z ∩ I is not a retract of Z.

Then, there exist at least a point x0 ∈ Z \ I such that φ(x0, (αx0 , 0]), the negative semitra-
jectory of x0, is contained in V .

Proof. Let us consider a point x0 ∈ V such that φ(x0, (αx0 , 0]) ∩ (Rn \ V ) 6= ∅, that is,
part of the local trajectory through x0 lies outside of V . The previous property of the
trajectory passing through x0 implies that there is a first time tx0 for which φ(x0, tx0) ∈ I
and φ(x0, t) ∈ V for t ∈ [0, tx0). Let us refer to the point φ(x0, tx0) as the consequent of
x0 and denote it as C(x0), see Figure 2.2. Let us now collect all the points in V such that
its consequent exist in the set G = {x0 ∈ V : C(x0) exist}.

In the next step we will establish a relationship between points that are in G with
points lying in I. Let us define the map K : G ∪ I → I such that

K(x) = C(x) if x ∈ G

and
K(x) = x if x ∈ I.

We first prove that K is continuous and therefore a retraction from G ∪ I to I.

14



Z

C(x0)

x0

a1

a2

Figure 2.2: Same as in example 2.3.1, the set of strict ingress points I, are the open
horizontal sides of the square. The set Z = {(x0, x2) | |x0| < 1, |x2| ≤ 1} and Z ∩ I =

{a1, a2} is a retract of I but is not a retract of Z since Z is a connected set.

• If x ∈ G and C(x) = φ(x, tx), since I = I∗ there is a ε0 > 0 such that

φ(C(x), (0, ε0)) ⊂ V

and
φ(C(x), (−ε0, 0)) ∈ Rn \ V.

Since φ(x, s) is continuous in (x, s), for any ε > 0, there is an δ > 0 such that
‖φ(y, s)− φ(x, s)‖ < ε for s ∈ (−ε0, ε0) whenever ‖y − x‖ < δ. This implies that
C(y)→ C(x) if y→ x.

• The case where x ∈ I follows the same argument about the continuity of φ(x, t).

Therefore, since K is a continuous function, we have shown that I is a retract of G ∪ I.

Finally, let us assume that the conclusion of the theorem is not true.

Let us suppose that for all x0 ∈ Z \ I there exist its consequent C(x0). The fact that

(Z \ I) ⊂ G implies that Z ⊂ G ∪ I.
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Since we assume that Z ∩ I is a retract of I, there exist a continuous map

H : I → Z ∩ I

such that
H(x) = x for x ∈ Z ∩ I.

The composition map

(H ◦K) : G ∪ I → Z ∩ I is continuous

and
(H ◦K)(x) = x for x ∈ Z ∩ I.

Therefore Z ∩ I is a retract of G ∪ I. However, since Z ⊂ G ∪ I, the map

(H ◦K) : Z → Z ∩ I

is a retraction of Z into Z ∩ I which is a contradiction.
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Chapter 3

Michaelis-Menten Model

In this chapter we explore some of the properties of the Michaelis-Menten model which
is the one of the simplest approaches to study reactions that are catalyzed by enzymes.

3.1 One Substrate Reaction

The Michaelis-Menten model is one of the simplest approaches to study reactions that
are catalyzed by enzymes. Enzymes which are mostly proteins, have great catalytic power
and specificity. They can accelerate the rate of a chemical reaction by a factor of a million
or more. This allows an enzyme-catalyzed reaction to occur in milliseconds compared to
the years it could take without the catalyzing enzyme. A table comparing the estimated
non-enzymatic reaction rate constants and the catalytic proficiency of some enzymes can be
found in [1, Ch 8]. Enzymes are highly specific, they usually catalyze only one reaction, or
a set of related reactions, and act with only one reactant which is called substrate. These
two main properties of enzymes, great catalytic power and high specificity, are considered
when modeling enzyme-catalyzed reactions.

The Michaelis-Menten model models a single substrate binding to the active site
on the enzyme leading to the formation of the reaction’s product. The reduced form of
the model presented below assumes an intermediate step in the catalysis of substrate to
product, the formation of an enzyme-substrate complex from which product and enzyme
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are released. Schematically this is represented as

S + E ES P + E
k1

k−1

k2 (3.1)

The enzyme E combines with the substrate S to form the enzyme-substrate complex
ES at a constant rate k1. The ES complex can either dissociate to E and S with a rate
constant k−1 or it can lead to the formation of product P with a rate constant k2. In this
scheme, another assumption made is that the product never binds the free enzyme, this
can be the case in the initial stage of the reaction when concentration of product is very
low or motivated by the fact that in the laboratory, measurements of reactions rates are
typically carried out in the absence of product. The reversible case is consider for example
in [11, 15].

3.1.1 Associated System of Differential Equations

We will use [·] to denote concentration of the reactants, then let

s(t) = [S], e(t) = [E], c(t) = [ES] and p(t) = [P ]

to represent the concentration at a given time t of substrate, enzyme, enzyme-substrate
complex and reaction’s product respectively. Hereafter, we assume the variables satisfy
s > 0, e, c, p ≥ 0. The non-negativity of solutions of chemical kinetics systems when the
initial values are non-negative is known to hold, see for example [21, Ch.12]. We also
assume the parameters k1, k−1, k2 > 0.

Applying the law of mass action, the reaction network (3.1) can be modeled by the
following system of differential equations

ṡ = −k1se+ k−1c,

ė = −k1se+ k2c+ k−1c,

ċ = k1se− (k2 + k−1)c,

ṗ = k2c.

(3.2)
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The system (3.2) has two linear conservation relations. Note that ė + ċ = 0, if we
assume c(0) = p(0) = 0, this implies e(t) + c(t) = e0, where e0 is the initial concentration
of the enzyme. Also, note that ṡ+ ċ+ ṗ = 0, thus s(t) + c(t) + p(t) = s0, where s0 > 0 is
the initial concentration of the substrate. Hence, an insight of system (3.2) can be gained
by analyzing

ṡ = −k1s(e0 − c) + k−1c,

ċ = k1s(e0 − c)− (k2 + k−1)c,

ṗ = k2c.

(3.3)

In Figure 3.1 we present a simulation of system (3.3) where a separation of timescales
can be observed. On the fast timescale, formation of enzyme-substrate complex c occurs
very fast, it remains fairly steady until much of the substrate has been consumed and then
falls again to zero. The falling of c takes longer when e(0) = e0 is small compared to
s(0) = s0. The formation of product proceeds on the slower timescale.

3.2 Rapid Equilibrium and Quasi-Steady-State Assump-
tions

The rapid equilibrium and quasi-steady-state assumptions (hereafter abbreviated
REA and QSSA respectively), are two common approaches for model reduction by sepa-
ration of timescales. More information about these approach can be found for example in
[11, 15, 17].

We present below two approximations for the concentration of complex C which later
are used to describe a polyfacial set for the differential system of equations (3.3). These
approximations are obtained following the assumptions made in the REA and QSSA.

In the network (3.1) that we are considering, there are two processes involved, the
reversible association/dissociation S+E ↔ C and the product formation where C → P+E.
The time constants for those reactions events are respectively

t1 =
1

k1 + k−1
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Figure 3.1: Simulation of the Michaelis-Menten system (3.3). Two timescales can be
observed, one is the transient timescale, near t = 0. The complex C reaches its quasi-steady
state. The product formation proceeds on the slower timescale, the substrate concentration
changes significantly while the concentration of C remains along its quasi-steady state for
some time. The parameter values used are k1 = 40, k−1 = 20, k2 = 16, c(0) = p(0) = 0,
s0 = 5 and e0 = 1.

and
t2 =

1

k2
.

If t1 � t2 this can be thought as if the association/dissociation process reaches equilibrium
faster compared to the product formation process.

The differentiable equations associated with the reversible association/dissociation re-
action are

ṡ = −k1se+ k−1c,

ċ = k1se− k−1c,
ė = −k1se+ k−1c.

(3.4)

In theREA we assume that the association/dissociation reaction (3.4) is in equilibrium
at all times. This is translated to have ṡ = ċ = 0 from where we obtain the following
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expression

c =
k1
k−1

se.

Using that e(t) = e0 − c(t), the REA the approximation for c is

cre =
k1e0s

k−1 + k1s
. (3.5)

A second approximation for c is given by the QSSA which is justified assuming two
things. First, a difference in the time constants, t1 � t2. This can be interpreted as
if the reactions involving complex C occurs on the fast timescale. Second, there is an
assumption about the concentration of s, it is assumed that s� e0. With the two previous
assumptions in mind we have that the enzyme-substrate complex reaches quickly its steady-
state concentration compared to the substrate.

If c is in its quasi-steady state, from system (3.3) it satisfies

0 = k1s(e0 − c)− (k2 + k−1)c.

Solving for c we get

css =
k1se0

k2 + k−1 + k1s
. (3.6)

3.3 Nondimensionalization of the system.

Multiscale phenomena it is often approached using singular perturbation methods. A
first step in such case is to identify a small parameter from the system. For the QSSA, we
required that s0 � e0, thus a possible small parameter for the system is given by ε = e0/s0.

Next, we rewrite system (3.3) as a singular perturbation problem. This can be done in
several ways see for example [3, 8, 15, 17, 18]. We follow the one presented in [8, 15, 17].
Let s0 = s(0), e0 = e(0) and

Km =
k−1 + k2

k1
,
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whereKm is called the Michaelis constant. Consider the following dimensionless quantities:

ε =
e0
s0
, K =

k−1 + k2
k1s0

=
Km

s0
,

λ =
k2
k1s0

, τ = k1e0t,

u(τ) =
s(t)

s0
, v(τ) =

c(t)

e0
.

(3.7)

The non-dimensional form of system (3.3) is

u′ = −u+ (u+K − λ)v,
εv′ = u− (u+K)v.

(3.8)

Where the initial conditions are now u(0) = 1 and v(0) = 0. With solutions for v and
u we can find the other two variables. Recall that e(t) = e0− c(t) thus e(τ) = e0− e0v(τ).
To determine p(t) we should solve P ′ = λv where P (τ) = p(t)/s0.

In the system (3.8) the derivatives are with respect to the variable τ . The variables
u and v, represent the scaled substrate and complex concentrations respectively. Note
that the parameters are now 0 ≤ ε < 1, K and λ with K − λ = k−1/k1s0 > 0. In the
framework of singular perturbation theory, ε is a singular perturbation parameter and K,λ
are ordinary parameters.

The equivalent non-dimensional form of equations (3.5) and (3.6) are given as follows

vre(τ) =
u(τ)

K − λ+ u(τ)
, (3.9)

and
vss(τ) =

u(τ)

K + u(τ)
. (3.10)

3.3.1 Equilibrium points

It is easy to check that when ε > 0 the only equilibrium point of the system (3.8) is
(u, v) = (0, 0). Next we show it is asymptotically stable.
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Proposition 3.3.1. If ε > 0, the system (3.8) has an asymptotically stable equilibrium
point at the origin.

Proof. The Jacobian matrix at the origin is

J(0, 0) =

[
−1 K − λ
1
ε

−K
ε

]
.

It has distinct eigenvalues ν1 and ν2 such that

ν1 =
−(K

ε
+ 1) +

√
(K
ε
+ 1)2 − 4λ

ε

2
=
−(K + ε) +

√
(K + ε)2 − 4ελ

2ε
,

and

ν2 =
−(K

ε
+ 1)−

√
(K
ε
+ 1)2 − 4λ

ε

2
=
−(K + ε)−

√
(K + ε)2 − 4ελ

2ε
.

We show next that both eigenvalues are real. Note that λ = K − k−1

k1s0
, therefore the

discriminant is

K2 + 2εK + ε2 − 4ελ = K2 + 2εK + ε2 − 4εK +
4k−1
k1s0

= K2 − 2εK + ε2 +
4k−1
k1s0

= (K − ε)2 + 4k−1
k1s0

> 0.

Since the discriminant is positive, ν1 and ν2 are real-valued eigenvalues.

Finally, note that n2 < n1. After few steps we can justify that ν1 < 0 having both
eigenvalues being real and negative. Simply note that

2εν1 = −(K + ε) +
√

(K + ε)2 − 4ελ

=
(
−(K + ε) +

√
(K + ε)2 − 4ελ

)(−(K + ε)−
√

(K + ε)2 − 4ελ

−(K + ε)−
√
(K + ε)2 − 4ελ

)
=

4ελ

−(K + ε)−
√

(K + ε)2 − 4ελ
< 0.
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Therefore, since the eigenvalues of the Jacobian matrix ν1, ν2 are real and satisfy

ν1 < ν2 < 0,

the origin is an asymptotically stable equilibrium point.

3.3.2 Phase portrait

In this section we will explore the qualitative behaviour of solutions to the system (3.8).
First, let us reconsider equations (3.5) and (3.6) but now as functions of the variable u.
This is, let

Vre(u) =
u

K − λ+ u
, (3.11)

and
Vss(u) =

u

K + u
. (3.12)

In the uv− plane, when ε 6= 0, equations (3.11) and (3.12) coincide with the zero isoclines
of the system. This is, they are solutions to u′ = 0 and v′ = (1/ε)(u− (u+K)v) = 0.

The qualitative behaviour of solutions can be observed in the sketch of the phase por-
trait presented in Figure 3.2. The origin is the only equilibrium and is asymptotically
stable. We can observe that the two zero isoclines (3.11) and (3.12) describe similar curves
and form a narrowing region in which trajectories eventually enter and never leave. After
solutions enter this trapping region, they follow along the isoclines. Note that trajectories
get very close to the horizontal isocline for small ε as u gets large. This will be consistent
with the fact that QSSA agrees with the real solutions as they approach to its steady state.

Inside the region described by the zero isoclines, there appears to be an exceptional
solution that stays inside and attracts all other solutions. This exceptional solution is often
called the slow manifold and will be denotedM. The name and notation ofM comes from
the framework of geometric singular perturbation theory. We will give a brief description
below.

Several authors have observed and give detail descriptions of slow manifolds that attract
other solutions. See for example the work of Calder and Siegel [2, 3], Fraser and Rous-
sel [18], Fraser [7] where different arguments are used to prove the existence and uniqueness
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Figure 3.2: Simulation of the non-dimensional system (3.8). The trajectories have been
obtained by numerical integration of the system. Parameters were chosen such that as-
sumptions for REA and QSSA were satisfied, see section 3.2. The parameter values used
are k1 = 40, k−1 = 20, k2 = 16, c(0) = p(0) = 0, s0 = 5 and e0 = 1.

ofM in planar systems. In chapter 4, using the Ważewski theorem, we will give a descrip-
tion of such region as a polyfacial set V and prove the existence and uniqueness of a slow
manifoldM that stays inside V and attracts all the other trajectories.

3.3.3 Fast-slow systems and the slow manifold

A natural framework for the analysis of systems like (3.13) is provided by geometric singular
perturbation theory (GSPT). In this work we are following the same notation used when
treating slow-fast systems with GSPT. In this section we introduce some of the geometric
constructs and concepts relevant for this work.

A first necessary step is the introduction of a small parameter ε. If we assume the initial
amount of substrate is more abundant than the total enzyme, the chosen small parameter
is ε = e0/s0. The system of interest is given as follows

u′ = −u+ (u+K − λ)v,
εv′ = u− (u+K)v.

(3.13)
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The variables u and v are functions of variable τ and the prime denotes differentiation with
respect to τ . Initial conditions are u(0) = 1 and v(0) = 0. The variable τ is called the slow
time because it defines the time-scale on which the slow variables evolve.

In the context of geometric singular perturbation theory, system (3.13) is usually studied
along with its reformulation in terms of another scale of time. If ε > 0, let us define the fast
time scale given by t̂ = τ/ε. The system obtained where the dot denotes differentiation
taken with respect to the variable t̂ is

u̇ = ε(−u+ (u+K − λ)v),
v̇ = u− (u+K)v.

(3.14)

Note that whenever ε 6= 0, the so called fast system (3.14) and slow system (3.13) are
equivalent. There are two limiting behaviours associated with the case ε→ 0. If ε = 0, we
have the following two reduced cases:

u′ = −u+ (u+K − λ)v,
0 = u− (u+K)v,

(3.15)

and

u̇ = 0,

v̇ = u− (u+K)v.
(3.16)

The first equation of the reduced slow system (3.15), describes the rate of change of
the slow variable u. The second equation, corresponds to the zero level set of the function
g(u, v) = u − (u + K)v, it gives an algebraic constraint delimiting the dynamics of u to
occur in there. Furthermore, in the phase space, the zero level set of g is a one-dimensional
manifoldM0 given byM0 = {(u, v) | v = u

K+u
}, it describes the graph of (3.12). On the

other hand, from the perspective of the reduced fast system (3.16), M0 is a manifold of
fixed points thus trivially invariant. See Figure 3.3 for phase portraits of systems (3.14)
and (3.16).

Proposition 3.3.2. Each point (u, u
K+u

) onM0 is an asymptotically stable fixed point of
v̇ = u− (u+K)v (second equation in the reduced fast system (3.16)).

26



0
u

v

(a) Phase portrait of system (3.14), 0 < ε� 1.
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(b) Phase portrait of system (3.16), ε = 0.

Figure 3.3: Sketch of the phase portraits of the fast and reduced fast system.

Proof. Note that considering the whole system (3.16) we have that u is constant. If v < u
K+u

then v̇ > 0 and if v > u
K+u

we have v̇ < 0.
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Keeping in mind that u is constant, if we look at the Jacobian ( a 1-dimensional
matrix), it has a negative eigenvalue which is given by −(u + K). Therefore v = u

K+u
is

asymptotically stable.

Since each point (u, u
K+u

) on M0 is a hyperbolic fixed point of the reduced fast sys-
tem (3.16),M0 is a normally hyperbolic invariant manifold.

Fenichel’s theory, which applies to case whereM0 is a compact manifold without bound-
ary, gives conditions under which NHIM persist when the perturbation is turned on. This
establishes that if in the limit ε→ 0, the system has a normally hyperbolic invariant man-
ifold M0, then there exist manifolds Mε for ε sufficiently small positive. The persistent
manifolds,Mε, are labeled slow manifolds. Using tools from GSPT, it is possible to give a
complete geometric and analytical description of all solutions in the vicinity ofMε, also,
to say something about how trajectories approach the manifold. For results in compact
NHIM see for example Fenichel’s work [6], Jones [12] or Sakamoto [19]. The noncompact
case is presented for example by Eldering in [5].

In section 3.3.2, we presented the phase portrait of the system 3.13 for the case where
0 < ε < 1. We mentioned that it appears to be an exceptional solution, M, that stays
inside the region delimited by the zero isoclines and attracts all other solutions. According
to the concepts that we have just presented, this solution is a slow manifold. Note that
in the uv-plane, the graph of the horizontal isocline of system (3.13), agrees with the set
described by M0. In this work we will not use GSPT to further analyze system (3.13).
Instead, in chapter 4 we will give a description of the region delimited by the zero isoclines
in terms of polyfacial sets. Later we prove the existence and uniqueness of a slow manifold
Mε that is fully contained in the set. We will use the Ważewski theorem to prove its
existence.
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Chapter 4

Application of Ważewski Theorem in
the Michaelis-Menten system

In this chapter we present an argument based on the Ważewski Principle to show there
exist a unique trajectory M fully contained in a given region. To illustrate the concepts
and results we are considering the Michaelis-Menten model whose dimensionless form is
given as follows

u′ = −u+ (u+K − λ)v,
εv′ = u− (u+K)v,

(4.1)

where 0 < ε � 1 and the parameters K,λ are defined in section 3.3. First we will
go over the description of the region in question, whose construction comes from what is
called a polyfacial set. Such construction is based on the existence of continuous functions
which behave similarly to Liapunov functions on some parts of their zero-levels sets. For
the construction of the polyfacial set we are using the functions given by the QSSA and
REA which where discussed in great detail in Chapter 3.

29



4.1 Existence and uniqueness of the slow manifold

In what follows it will be useful to rewrite system (4.1) in the following form. If 0 < ε� 1

let

x′ = F(x), (4.2)

where

x =

[
u

v

]
and

F(x) =

[
−u+ (u+K − λ)v
(1/ε)(u− (u+K)v).

]

4.1.1 Polyfacial set

Consider the following continuously differentiable functions m1,m2 : R2
≥0 → R given as

follows:
m1(u, v) = u− (u+K)v

and
m2(u, v) = −u+ (u+K − λ)v.

The polyfacial set determined by the set of functions {m1,m2} is defined as

V = {(u, v) ∈ R2
>0 | m1(u, v) < 0, m2(u, v) < 0}

= {(u, v) ∈ R2
>0 |

u

u+K
< v <

u

u+K − λ
}.

(4.3)

Consider also the following sets

M1 = {(u, v) ∈ ∂V | m1(u, v) = 0} = {(u, v) ∈ ∂V | v =
u

u+K
},

and
M2 = {(u, v) ∈ ∂V | m2(u, v) = 0} = {(u, v) ∈ ∂V | v =

u

u+K − λ
}.

Note. With respect to section 2.4, since the origin is an asymptotically stable equilibrium
point, the "Li" sets are empty. This also implies that the set of egress and outward
tangency points of V with respect to (4.2) are empty too.
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4.1.2 Set of strict ingress points

Let x = (u, v) ∈ V and φ be the local flow generated by (4.2). Recall that the set of egress
points of V is empty, thus when x ∈ ∂V , x is either an ingress point or an equilibrium
point. We have shown in previous Chapter 3 the origin is the only equilibrium point and
is locally asymptotically stable. Below we prove that if x ∈ ∂V and x 6= (0, 0), then it is a
strict ingress point.

Proposition 4.1.1. The set of strict ingress points of V with respect to (4.2) is given by

I = (M1 ∪M2) \ (0, 0).

Furthermore, V is positively invariant.

Proof. 1. If (u, v) ∈M1 and (u, v) 6= (0, 0) then v = u
u+K

.

F(u, v) · (1− v,−(u+K)) = (1− v) (−u+ (u+K − λ))−
(
u+K

ε

)
(u− (u+K)v)

=

(
1− u

u+K

)(
−u+ (u+K − λ)

(
u

u+K

))
=
−λKu

(u+K)2
< 0.

(4.4)

2. If (u, v) ∈M2 and (u, v) 6= (0, 0) then v = u
u+K−λ .

F(u, v) · (−1 + v, u+K − λ) = (v − 1) (−u+ (u+K − λ)) +
(
u+K − λ

ε

)
(u− (u+K)v)

=

(
u+K − λ

ε

)(
u− (u+K)

(
u

u+K − λ

))
=
−λu
ε

< 0.

(4.5)
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Hence, when (u, v) 6= (0, 0) the normal vectors to the surfaces described by mi = 0,
i = 1, 2, and the vector field are pointing to opposite directions. The set of strict ingress
points of V with respect to (4.2) is given by

I = (M1 ∪M2) \ (0, 0).

Furthermore, once solutions enter V they stay there since

F (u, v) · ∇m1(u, v) < 0

and
F (u, v) · ∇m2(u, v) < 0.

Therefore V is a invariant set.

4.1.3 An application of the Ważewski theorem

To use the Ważewski theorem we should find a set Z ⊂ V ∪ I satisfying the following two
conditions:

1. Z ∩ I is a retract of I

2. Z ∩ I is not a retract of Z.

A simple choice of the set Z is given as follows. For a given value of u = u0 > 0, take

Z =

{
(u, v) | u = u0 > 0,

u

u+K
≤ v ≤ u

u+K − λ

}
. (4.6)

A description of Z and Z ∩ I is sketched in Figure 4.1.

Proposition 4.1.2. Let u = u0 > 0, a1 = u0
u0+K

and a2 = u0
u+K−λ . The set Z ∩I = {a1, a2}

is a retract of I but is not a retract of Z.
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0 u0

u

v M1

M2

a1

a2

V

I

Z

Z∩ I

Figure 4.1: The set V is represented in the shaded area. The set of strict ingress points of
set V with respect to the system (4.2) is I = (M1 ∪M2) \ (0, 0). The set Z ∩ I = {a1, a2}
is a retract of I but is not a retract of Z.

Proof. For the first part of the statement, consider the function r : I → Z ∩ I define as
follows

r(u, v) =

{
(u0, a1) if (u, v) ∈M1

(u0, a2) if (u, v) ∈M2.

The function r, is continuous and the identity when the domain is restricted to Z ∩ I.
Therefore, r is a retraction from I to Z ∩ I.

On the other hand, Z ∩ I = {a1, a2} is not a connected set on the uv-plane. Using
Theorem 2.1.2 we can justify that Z ∩ I is not a retract of Z.

In section 3.3.2, we presented the phase portrait of the system 4.1 for the case where
0 < ε < 1. We mentioned that it appears to be an exceptional solution, M, that stays
inside the region described here as the polyfacial set. In the following proposition we prove
this statement.
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Proposition 4.1.3. Consider the sets V, I and Z as described above. There exist a slow
manifold M for system (4.2) that is fully contained in the set V . Furthermore, the slow
manifoldM is the only trajectory that lies entirely inside V .

Proof. Existence of M is given by the Ważewski Theorem 2.5.1. If the set Z is given
by (4.6), we have shown in Proposition 4.1.2 that Z∩I is a retract of I but not a retract of Z
therefore we can conclude there is at least an x0 ∈ Z such that the negative semitrajectory
of x0 is contained in V . Furthermore, since the set of egress points of V is empty we have
that φ(x0, t) exists for −∞ < t < ∞ and φ(x0, t) ∈ V for all t. In such case,the slow
manifold is given by

M(x0) = φ(x0, t) where −∞ < t <∞.

Uniqueness ofM is justified by Proposition A.0.1 presented in Appendix A.

For the set described by V , let us consider the vertical cross sections given as follows

Du0 =

{
(u0, v) ∈ R2 | u0 > 0,

u0
u0 +K

≤ v ≤ u0
u0 +K − λ

}
.

For a given u0 > 0, the diameter of the cross sections is given by

Diam(Du0) = sup{‖p1 − p2‖ | p1, p2 ∈ Du0} =
u0λ

(u0 +K − λ)(u0 +K)
.

We can observe that Diam(Du0)→ 0 as u0 →∞.

As in Proposition A.0.1, if ε > 0 and (−u+ (u+K − λ)v) 6= 0 let

dv

du
=

u− (u+K)v

ε(−u+ (u+K − λ)v)
= g(u, v) (4.7)

Next we will show that the distance between two solutions is nondecreasing if ∂g
∂v
≥ 0

in the region V .

Let us consider v1(u) and v2(u) two different solutions of system (4.7) in V . To simplify
the argument, let us assume that v1(u) > v2(u) and consider the difference of those two
solutions. First note that
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∂g

∂v
=

∂

∂v

(
u− (u+K)v

ε(−u+ (u+K − λ)v)

)
=

1

ε

λu

(−u+ (u+K − λ)v)2

≥ 0 when (u, v) ∈ V.

Then, taking the derivative of v1(u)− v2(u) we observe that

d

du
(v1(u)− v2(u)) = g(u, v1(u))− g(u, v2(u))

=

v1(u)∫
v2(u)

∂

∂v
g(u, s)ds ≥ 0,

which implies that the distance between v1 and v2 is nondecreasing.

Finally, since Diam(Du0) → 0 as u0 → ∞ and the distance between v1 and v2 is
nondecreasing there cannot be more that one solution that stays in V . Hence the slow
manifoldM is the only trajectory that lies entirely inside the polyfacial set V .
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Chapter 5

Applications of the Ważewski Theorem
for systems in R3

The main goal of this chapter is to present some of the ideas involved when trying to use
the Ważewski theorem for systems whose dimension is greater than two.

5.1 A Toy Model

Let us consider the following system in R3

ẋ = λ1x,

ẏ = λ2y,

ż = λ3z.

(5.1)

where λ1 < λ2 < λ3 < 0. In terms of slow/fast variables, the slow direction in this case is
the z axis.

5.1.1 Polyfacial set

Similar to section 4.1.1 of Chapter 4, let us consider the continuously differentiable function
m1 : R

3
≥0 → R given as follows

m1(x, y, z) = x2 + y2 − 1.
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The polyfacial set determined by {m1} is

V = {(x, y, z) ∈ R3
>0 | m1(x, y, z) < 0}

= {(x, y, z) ∈ R3
>0 | x2 + y2 < 1}.

(5.2)

Note that V is a open set whose boundary includes the shell and bottom part of the
vertical cylinder. The boundary of V it is described as follows

∂V = {(x, y, z) ∈ R3
≥0 | z > 0, x2 + y2 = 1} ∪ {(x, y, z) ∈ R3

≥0 | z = 0, x2 + y2 ≤ 1}.

5.1.2 Set of strict ingress points

To determine the set of strict ingress points of V we should split the analysis into to cases.

• If z > 0, and (x, y, z) ∈ ∂V . This implies m1(x, y, z) = 0 and the normal vector of
the surface described is (2x, 2y, 0). Therefore, the following inequality is satisfied

f(x, y, x) · ∇m1(x, y, z) = (λ1x, λ2y, λ3z) · (2x, 2y, 0)
= 2λ1x

2 + 2λ2y
2

< 2λ2(x
2 + y2)

= 2λ2 < 0.

(5.3)

• If z = 0, and (x, y, z) ∈ ∂V . The normal vector of the surface described is (0, 0, 1)

and we have that

f(x, y, x) · (0, 0, 1) = (λ1x, λ2y, λ3z) · (0, 0, 1)
= λ3z

= 0 since z = 0

(5.4)

Proposition 5.1.1. The set of strict ingress points of V with respect to the system (5.1)
is

I = {(x, y, z) ∈ ∂V | z > 0, m1 = 0} = {(x, y, z) ∈ R3
>0 | x2 + y2 = 1}.

Proof. This is a consequence of inequality (5.3). The normal vectors to the surfaces de-
scribed by m1 = 0 and the vector field are pointing to opposite directions.
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In the following proposition we verify that the only equilibrium point of the system (5.1)
is (x, y, z) = (0, 0, 0) and it is asymptotically stable.

Proposition 5.1.2. The system (5.1) has an asymptotically stable equilibrium point at the
origin.

Proof. The Jacobian matrix at the origin is

J(0, 0, 0) =

λ1 0 0

0 λ2 0

0 0 λ3

 .
It has distinct, real-valued eigenvalues

λ1 < λ2 < λ3 < 0,

hence the origin is an asymptotically stable equilibrium point.

By the previous proposition, we have that the set of egress points of V with respect to
the system (5.1) is empty.

Note. We haven not said what happens with the points at the bottom boundary of V .
Since the xy plane is invariant, by inequality (5.4) the set of points

T = {(x, y, z) ∈ R3
≥0 | z = 0, x2 + y2 ≤ 1},

can not be classified according to definition 2.3 given in Chapter 2. However, the Ważewski
theorem still applies in this case.

An extended version of the Ważewski method, which is not considered in this work, is
presented in [20, pp.614-617]. It considers the case where IVP do not have unique solution
and there are weak inequalities like 5.4.

5.1.3 Existence of the slow manifold

The Ważewski theorem provides conditions for the existence of a solution M that lies
entirely in the polyfacial set V . Compared to the polyfacial set of the example presented
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in Chapter 4, here the set V is not "narrowing" as the slow variable increases. This
condition was used before to show uniqueness. However, when z = z0 for z0 a positive
constant, the cross sections of V are equal. This property of V will be useful when looking
for conditions to justify uniqueness ofM.

Although we know that the z-axis is the trajectory that we are looking for, let us see
how the Ważewski principle could be used in this case. For z = z0 with z0 a positive
constant, let us consider the set

Z = {(x, y, z0) ∈ R3 | z0 > 0, x2 + y2 ≤ 1},

which satisfies Z ⊂ V ∪ I, see Figure 5.1.

Based on the conditions of Theorem 2.5.1 we should show that Z ∩ I is a retract of I
but not a retract of Z. We prove this in the next steps

a) The set
Z ∩ I = {(x, y, z0) ∈ R3 | z0 > 0, x2 + y2 = 1}

is a retract of I.
Let r : I → Z ∩ I be the projection function given by r(x, y, z) = (x, y, z0). The
function r is continuous and the identity when its domain is restricted to Z ∩ I.
Therefore r satisfies the conditions for being a retraction from I to Z ∩ I.

b) the set Z ∩ I is not a retract of Z.
This is a direct application of the No Retraction Theorem 2.1.4.

Therefore by the Ważewski theorem, there is at least one point p ∈ Z \ I such that
the negative semitrajectory of p is contained in V . Since the set of egress points is empty,
once solutions enter in V they do not leave, therefore we can conclude that the trajectory
passing through p satisfies

φ(p, t) ∈ V for all −∞ < t <∞

In such case, the slow manifold is given by

M(p) = φ(p, t) where −∞ < t <∞.
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Figure 5.1: Solutions enter the cylinder and approach the origin, tangent to z-axis. The
set Z ∩ I = {(x, y, z0) ∈ R3 | z0 > 0, x2 + y2 = 1} is the circle in red.

5.1.4 Uniqueness of the slow manifold

Uniqueness ofM is justified by Propositions A.0.1 and B.0.1 presented in Appendixes A
and B.

For the polyfacial set V , let us consider the horizontal cross sections given as follows

Dz0 =
{
(x, y, z0) ∈ R3 | z0 > 0, x2 + y2 = 1

}
.

In this case the cross sections Dz0 are unit circles whose diameter defined is bounded.

Following the procedure outlined in Appendixes A and B, as ż < 0 in V we can consider
x and y as functions of z. The system in terms of the slower variable z is given as follows

dx

dz
=
λ1
λ3

x

z
,

dy

dz
=
λ2
λ3

y

z
.

(5.5)

Note that the Jacobian matrix of system (5.5), is given by

J =
1

z

(
λ1
λ3

0

0 λ2
λ3

)
,
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which is a positive definite matrix when z > 0. Let µ1 = λ1
λ3

and µ2 = λ2
λ3
, µ1 > µ2 > 1.

Note that the smallest eigenvalue of J is µ2
z
.

Let v1(z) and v2(z) be two different solutions to system (5.5). Consider the squared
difference of v1 and v2, this is v(z) = |v1(z)− v2(z)|2, then we have

dv

dz
≥ 2µ2

v

z
dv

v
≥ 2µ2

dz

z

ln |v| ≥ 2µ2 ln z + C

v ≥ K1z
2µ2 ,

(5.6)

that is, |v1(z)−v2(z)| ≥ Kzµ2 > 0 for all z > 0. More details of the previous inequalities
are developed in Appendix B.

Relation (5.6) implies that in the phase space, with respect to the variable z, any two
different solutions move apart from each other. Thus at most one of the two trajectories
can remain in Z.

Using the Ważewski principle, we have shown that there is a trajectory of p ∈ Z, that is
fully contained in V . Based on the calculations done above,M(p) is the unique trajectory
fully contained in V since any other trajectory will have to eventually leave V .

5.2 A single-substrate enzyme-catalyzed reaction

Let us consider the following version of a system describing an enzyme catalyzed reaction
where a single substrate is involved.

S + E C1 C2 P + E
k1 k2 k3 (5.7)

As we have done it before, we will use [·] to denote concentration of the reactants. Let
s(t) = [S], e(t) = [E], c1(t) = [C1], c2(t) = [C2] and p(t) = [P ] represent the concentration
at a given time t of the reactants. Here s is substrate, e stands for enzyme, c1 is the enzyme-
substrate complex, c2 is the enzyme-product complex and p is product. We assume that
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all variables are greater or equal than zero. The non-negativity of solutions of chemical
kinetics systems when the initial values are non-negative is known to hold, see [21, Ch.12].

By the law of mass action, the full system of ODEs has four equations:

ṡ = −k1se,
ė = −k1se+ k3c2,

ċ1 = k1se− k2c1,
ċ2 = k2c1 − k3c2,
ṗ = k3c2.

Note that the enzyme is not consumed in the reaction hence the total enzyme concen-
tration, denoted e0, remains constant. Also, ė + ċ1 + ċ2 = 0 and c1(0) = c2(0) = 0, so we
can replace the variable e by

e = e0 − c1 − c2 (5.8)

and eliminate the differential equation for e. Also, only to make calculations easier, let us
take all the parameters ki, i = 1, 2, 3 equal to one. The resulting system is

ċ1 = s(e0 − c1 − c2)− c1,
ċ2 = c1 − c2,
ṡ = −s(e0 − c1 − c2).

(5.9)

5.2.1 Polyfacial set

Consider the following continuously differentiable functions mi : R3
≥0 → R, for i = 1, 2, 3

given as follows:

m1(c1, c2, s) = c1 + c2 − e0,
m2(c1, c2, s) = 2c2 − c1 − e0,
m3(c1, c2, s) = s(e0 − c1 − c2)− 2c1
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The polyfacial set determined by the set of functions {mi} for i = 1, 2, 3 is defined by

V = {(c1, c2, s) ∈ R3
>0 | mi(c1, c2, s) < 0, i = 1, 2, 3}. (5.10)

Furthermore, let us consider the following sets:

M1 = {(c1, c2, s) ∈ R3
≥0 | m1(c1, c2, s) = 0} = {(c1, c2, s) ∈ R3

≥0 | c1 + c2 − e0 = 0},
M2 = {(c1, c2, s) ∈ R3

≥0 | m2(c1, c2, s) = 0} = {(c1, c2, s) ∈ R3
≥0 | 2c2 − c1 − e0 = 0},

M3 = {(c1, c2, s) ∈ R3
≥0 | m5(c1, c2, s) = 0} = {(c1, c2, s) ∈ R3

≥0 | s(e0 − c1 − c2)− 2c1 = 0}.

M4 = {(c1, c2, s) ∈ R3
≥0 | c1 > 0, c2 = 0, 0 < s <

2c1
e0 − c1 − c2

},

M5 = {(c1, c2, s) ∈ R3
≥0 | s = 0, c2 < e0 − c1, c2 < (c1 + e0)/2},

The sets Mi, for i = 1, 2, . . . , 5 describe simple surfaces in R3. The boundary of V is
determined by the union of such sets. A cross section of V given when s = s0 > 0, is
illustrated in Figure 5.2.

(
s0

2+s0

)
e0

e0

e0
2

e0

c1

c2

Figure 5.2: A cross section of V for a given s = s0.
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5.2.2 Set of strict ingress points

In this section we will classify the points in the boundary of V as equilibrium or egress
points. We will show that the origin, which belongs to ∂V , is the only equilibrium point
of the system.

Proposition 5.2.1. The system (5.9) has a locally asymptotically stable node at the origin.

Proof. The Jacobian matrix evaluated at the origin is

A =

−1 0 e0
1 −1 0

0 0 −e0

 .
We assume that e0 > 0 and e0 6= 1, the matrix A has real negative eigenvalues ν1 = ν2 = −1
and ν3 = −e0. Therefore, the origin is a locally asymptotically stable node.

Furthermore, if e0 6= 1, the stable subspace Es of the linearized system at the origin is

Es = Span


01
0

 ,
10
0

 ,
1− e01

(e0−1)2
e0


 .

Proposition 5.2.2. Let

I1 = {(c1, c2, s) ∈ ∂V | s > 0,mi = 0, i = 1, 2, 3}

and
I2 = {(c1, c2, s) ∈ ∂V | c1 > 0, c2 = 0, 0 < s <

2c1
e0 − c1 − c2

}.

The set of strict ingress points of V with respect to (5.9) is given by

I = (I1 ∪ I2) \ (0, 0, 0).

Proof. The vector field is described by

f(c1, c2, s) = (ċ1, ċ2, ṡ).
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a) If (c1, c2, s) ∈M1 and (c1, c2, s) 6= (0, 0, 0), then c1 + c2 − e0 = 0 with

∇m1 · f(c1, c2, s) = (1, 1, 0) · (ċ1, ċ2, ṡ)
= ċ1 + ċ2

= −c2 < 0.

b) If (c1, c2, s) ∈M2 and (c1, c2, s) 6= (0, 0, 0), then 2c2 = c1 + e0 with

∇m2(c1, c2, s) · f(c1, c2, s) = (−1, 2, 0) · (ċ1, ċ2, ṡ)
= −ċ1 + 2ċ2

= −s(e0 − c1 − c2) + c1 + 2c1 − 2c2

= −s(e0 − c1 − c2) + 2c1 − e0 < 0 when 2c1 − e0 < 0.

Note that if (c1, c2, s) ∈ V , then we can assume 2c1 − e0 < 0. In the c1c2-plane, the
intersection of the lines 2c2 = c1 + e0 and c2 = e0 − c1 occurs at the point c1 = e0/3.
Therefore we are interested in the sign of ∇m2(c1, c2, s) · f(c1, c2, s) only for the case
where c1 ≤ e0/3 which implies 2c1 − e0 < 0.

c) If (c1, c2, s) ∈M3 and (c1, c2, s) 6= (0, 0, 0) then s(e0 − c1 − c2)− 2c1 = 0 with

∇m3(c1, c2, s) · f(c1, c2, s) = (−s− 2,−s, e0 − c1 − c2) · (ċ1, ċ2, ṡ)
= −(s+ 2)c1 − s(c1 − c2)− s(e0 − c1 − c2)2

= −s
(
c1 +

2c1
s

+ c1 − c2 + (e0 − c1 − c2)2
)

=
−2c1

e0 − c1 − c2

(
c1 +

s(e0 − c1 − c2)
s

+ c1 − c2 + (e0 − c1 − c2)2
)

=
−2c1

e0 − c1 − c2
(
2c1 + e0 − c1 − c2 − c2 + (e0 − c1 − c2)2

)
=

−2c1
e0 − c1 − c2

(
c1 − 2c2 + e0 + (e0 − c1 − c2)2

)
< 0.

Note that if (c1, c2, s) ∈ V , then 2c2 − c1 − e0 < 0.

d) Similarly, if (c1, c2, s) ∈ M4 and (c1, c2, s) 6= (0, 0, 0) then c1 > 0, c2 = 0, and
0 < s < 2c1

e0−c1−c2 . In this case, an outward normal vector to portion of plane described
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by M4 is for example (0,−1, 0) then

(0,−1, 0) · f(c1, c2, s) = (0,−1, 0) · (ċ1, ċ2, ṡ)
= −ċ2
= −c1 < 0.

e) Finally, if (c1, c2, s) ∈ M5 and (c1, c2, s) 6= (0, 0, 0) then s = 0, c2 < e0 − c1 and
c2 <

c1+e0
2

. In this case, an outward normal vector to portion of plane described by
M4 is for example (0, 0,−1) then

(0, 0,−1) · f(c1, c2, s) = (0, 0,−1) · (ċ1, ċ2, ṡ)
= −ṡ = 0.

Note that the c1c2-plane is an invariant set. By the previous equation the set of
points described by the set M5, which is part of ∂V , can not be classified according
to definition 2.3 given in Chapter 2. However, the Ważewski theorem still applies in
this case. An extended version of the Ważewski method, which is not considered in
this work, is presented in [20, pp.614-617]. It considers the case where IVP do not
have unique solution and there are weak inequalities as this case.

We have shown that the vector field and the respective outward normal vectors of the
surfaces describing ∂V have opposite directions. Therefore, the set I as defined above is
the set of strict ingress points of V with respect to the system (5.9). Furthermore, parts
a) to e) imply the set V is positively invariant, trajectories enter V and they do not leave.
Hence the set of egress points of V with respect to the system (5.9) is empty.

5.2.3 Existence of the slow manifold

The Ważewski theorem provides conditions for the existence of a solution M that lies
entirely in the polyfacial set V . To use the theorem, we need to find a set Z such that
Z ∩ I is a retract of I but not a retract of Z.

For s = s0, where s0 is a positive constant, let

Z = {(c1, c2, s) ∈ R3
≥0 | s = s0 > 0, mi(c1, c2, s0) ≤ 0, i = 1, 2, 3}.
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a) Z ∩ I is a retract of I;

The set Z ∩ I is the convex irregular quadrilateral in Figure 5.2. Such quadrilateral,
drew in green, it is delimited by the c1-axis and the lines

c2 = e0 − c1, c2 =
c1 + e0

2
and c2 = e0 − c1 −

2c1
s0
.

Now, we need to find a continuous map T : I → Z ∩ I such that T (x) = x for
all x ∈ Z ∩ I. The construction of the proposed continuous map T involves some
transformations. First we “straighten” the surface described by the set of ingress
points. With reference to Figure 5.2, the line trough the point (0, e0) and any point
(c1, c2) in the quadrilateral or the region that is bounded by, intersects the c1-axis at
(σ, 0), where σ = e0c1

e0−c2 . Similarly, the line through (−e0, 0) and (c1, c2) intersects the
c2-axis at (0, τ), where τ = e0c2

e0+c1
. Solving for c1 and c2 in terms of (σ, τ) gives

c1 =
e0

στ+e20
(−στ + e0σ),

c2 =
e0

στ+e20
(στ + e0τ).

The points in V for a given s > 0 are those with e0s
2+s

< σ < e0 and 0 < τ < e0
2
, which

in Figure 5.3 is represented by the green rectangle ABCD in the στ -plane. For a
given s = s0, this rectangle can be continuously mapped by a function φ onto the
rectangle a′b′c′d′ in the σ′τ ′-plane. In this case, let φ(σ, τ) = (σ′, τ ′) where

σ′ = (2+s)σ
2+s0

+ (s0−s)
2+s0

and τ ′ = τ.

This leads to the continuous map T where T (c1, c2, s) = (c′1, c
′
2, s0) with

c′1 =
e0

σ′τ+e20
(−σ′τ + e0σ

′),

c′2 =
e0

σ′τ+e20
(σ′τ + e0τ).

Therefore Z ∩ I is a retract of I.

b) It can be justify that Z∩I is not a retract of Z using the No Retraction Theorem 2.1.4.
There are a couple of results that we need:

– First, Z ∩ I is a convex polygonal region, see Figure 5.2. It can be shown that
Z ∩ I is homeomorphic to the unit square S = {(x, y) | |x| ≤ 1, |y| ≤ 1}.
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Figure 5.3: Rectangle ABCD can be mapped onto the rectangle with s = s0 a
′b′c′d′.

– Second, the unit disk D2 = {(x, y) | x2 + y2 ≤ 1} is homeomorphic to the unit
square, see [16, p.19].

By Ważewski theorem, there is at least one point p ∈ Z \ I such that the negative
semitrajectory of p is contained in V . Since the set of egress points is empty, once solutions
enter in V they do not leave. Hence, the trajectory passing through p, let us denote it
M(p), is fully contained in V .

Furthermore, let us look at the linearization of the system (5.9) around the origin. We
have shown in Proposition 5.2.1 that the system (5.9) has a locally asymptotically stable
node at the origin. Also, the stable subspace Es of the linearized system at the origin is

Es = Span


01
0

 ,
10
0

 ,
1− e01

(e0−1)2
e0


 .

The generalized eigenvectors 01
0

 and

10
0


correspond to the repeated eigenvalue ν1 = ν2 = −1. If we assume e0 is a small quantity
such that 0 < e0 < 1, similarly to the assumption made in the Michaelis-Menten system
in Chapter 3, then the slow direction followed for the trajectories approaching the origin
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is determined by the eigenvector

vs =

1− e01
(e0−1)2
e0

 .
This eigenvector corresponds to the eigenvalue ν3 = −e0. Observe that vs is pointing into
the first octant of the phase space when 0 < e0 < 1.

Note that at the origin, the tangent vector to M(p) is vs. We want to show that
solutions approach the origin tangent to the slow direction vector vs. Let us calculate the
dot product of vs with the outward normal vector of the surface M3 to verify they have
opposite directions. We only need to consider M3 since the rest of the surfaces describing
∂V do not pass through the origin.

If (c1, c2, s) ∈M3 then

∇m3(c1, c2, s) · vs = (−s− 2,−s, e0 − c1 − c2) ·
(
1− e0, 1,

(e0 − 1)2

e0

)
.

At the origin,

∇m3(0, 0, 0) · vs = (−2, 0, e0) ·
(
1− e0, 1,

(e0 − 1)2

e0

)
= 2(e0 − 1) + (e0 − 1)2

= (e0 − 1)(1 + e0) < 0 since 0 < e0 < 1.

In summary, using the Ważewski theorem we have shown that M(p) exist and stays
inside the set V . Solutions approach the origin tangent toM(p) along the slow direction.
In that sense we say thatM(p) is a slow attracting manifold.
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Chapter 6

Final Remarks

In this work we presented an application of the Ważewski theorem to justify existence and
uniqueness of an exceptional solutionM that stays inside a particular region and attracts
all other solutions. Our principal goal was to present the geometric constructs and results
involved in the so called Ważewski method. The relevance of the tools presented here is
that they are applicable to higher dimensional systems.

The method presented follows a topological approach to differential equations and is
due to Tadeusz Ważewski (1896-1972) who introduced it in [22]. It gives a way to prove
existence of solutions that remain in a polyfacial set V for all positive/negative values of
time. The polyfacial set V must satisfy that its set of ingress points I are strict. The
Ważewski Theorem asserts that there is a solution contained in V for all positive/negative
values of time if the subset of strict ingress points of V is not a retract of the whole set V .
The relevant concepts and a simplified version of the Theorem was presented in Chapter 2.

In this work an important piece for the application of the Ważewski Theorem was the
construction of the polyfacial set V for the differential equation. Such construction is based
on the existence of continuously differentiable functions that behave similarly to Liapunov
functions on some parts of their zero-level sets. To illustrate the concepts and results
related to the Ważewski Theorem we have presented the Michaelis-Menten model which
is one of the simplest is approaches to study reactions that are catalyzed by enzymes. A
starting point for those functions that define the polyfacial set are the expressions obtained
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from RE and QSSA type assumptions.

The Ważewski theorem is an existence result. It has the great advantage that it can be
used in higher dimensional autonomous systems. As we showed in the models considered,
when there are two different time scales and some enzyme-catalyzed reactions we get a
neat tool to show existence of slow attracting manifolds in a polyfacial set. In the au-
thor’s experience writing this work, the construction of the polyfacial sets and determining
whether the points in its boundary are strict ingress points could become an difficult task.

For the models considered, a surprising property ofM was to be the only trajectory that
stays in the set V and attracts the other trajectories entering V . To discuss uniqueness of
the slow manifold, we look at two things: first, we determine if the solutions were "moving
apart" from each other in the phase space. Second, we look at the cross sections of the
region described by V . By observing that the cross sections of the region described by V
were in a sense "narrowing" or have a fixed diameter we were able to justify uniqueness
when the difference between two different solutions is nondecreasing in V .
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Appendix A

One criteria to justify uniqueness of the
slow manifold

Let us assume that we have a system of differential equations of the form

ẋ = f(x), (A.1)

where x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ Rn, and f(x) = (f1(x), . . . , fn(x)). If D is an open
subset of Rn, we assume f ∈ C(D,Rn) and is Lipschitz continuous such that there exist an
unique solution to the initial value problem.

If fn(x) 6= 0 then system (A.1) is equivalent to the following one

dx1
dxn

=
f1(x)

fn(x)
,

...
dxn−1
dxn

=
fn−1(x)

fn(x)
.

(A.2)

It might result useful to rewrite (A.2) in its shorter form

y′ = g(xn,y), (A.3)
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where

y =


x1
x2
...

xn−1


and

g(xn,y) =


f1(x)
fn(x)
...

fn−1(x)
fn(x)

.

 .
Note. System (A.3) is no longer autonomous. We will assume that g satisfies necessary
conditions such that the initial value problem has an unique solution. Also, note that any
solution y is now given in terms of xn, this is

y(xn) =

 x1(xn)
...

xn−1(xn)

 .
Let us assume that we have a positively invariant unbounded region T in Rn such that

there exist at least one trajectory fully contained in there. An example of such region could
be the polyfacial sets V described in Chapters 4 and 5. In the following proposition we
establish a criteria to determine uniqueness of solutions that are fully contained in T .

We show that if the distance between two different trajectories in T with respect to
system (A.3) never decreases and the diameter of the cross-sections is bounded or tends to
zero then at least on of the solutions will eventually have to leave the region T .

Proposition A.0.1. With respect to system (A.3) let us consider the unbounded region T
which is described as follows

T = {(x1, . . . , xn−1, xn) ∈ Rn | (x1, . . . , xn−1) ∈ Dxn , xn > 0},

where Dxn 6= 0, the cross-section, is a bounded region in Rn−1. Let us consider the diameter
of the cross-section, diam(Dxn), given as

diam(Dxn) = sup{|p1 − p2| | p1, p2 ∈ Dxn}.

Two possibilities are considered:
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• if diam(Dxn) → 0 as xn → ∞ and the distance between different solutions to sys-
tem (A.3) in T does not decrease as xn →∞, or

• if for all values of xn diam(Dxn) is bounded and the distance between different solu-
tions to system (A.3) in T is unbounded as xn →∞.

Then, there can only be one trajectory fully contained in T .

Proof. Let z(xn) and y(xn) be two different solutions to system (A.3) in T and d(z, y) the
distance between them. In the phase space, let us consider cross-sections at fixed values of
xn with diameter diam(Dxn).

• If diam(Dxn) → 0 as xn → ∞, and the distance between different solutions never
decreases. This is, if for all α1 < α2

d(z(α1), y(α1)) ≤ d(z(α2), y(α2)).

Then, there is a xn = α > 0 such that d(z(α), y(α)) > diam(Dα) thus the two
trajectories cannot stay inside the trapping region.

• Similarly, if for all values of xn, the diameter of the cross-section satisfies

diam(Dxn) ≤ k,

where k > 0 and d(z, y)→∞ as xn →∞. Then, there is a xn = α > 0 such that

d(z(α), y(α)) > diam(Dα)

which means that at least one trajectory has to leave the trapping region.

In either case we have that if there is a trajectory fully contained in T this has to be
unique.
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Appendix B

Dispersion of solutions in the phase
space

Let us assume that we have a system of differential equations of the form

ẋ = f(x), (B.1)

where x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ Rn, and f(x) = (f1(x), . . . , fn(x)). If fn(x) 6= 0

then system (B.1) is equivalent to have

dx1
dxn

=
f1(x)

fn(x)
,

...
dxn−1
dxn

=
fn−1(x)

fn(x)
.

Or in a shorter notation
y′ = g(xn,y). (B.2)

Let J ⊂ R and V ⊂ Rn−1 be open and convex such that g ∈ C(J ×V,Rn−1). Note that
any solution y of system (B.2) is given now in terms of xn, this is,

61



y(xn) =

 x1(xn)
...

xn−1(xn)

 .
Below, we present sufficient conditions to determine if distance between two different

solutions in the phase space is nondecreasing. We consider the particular case where the
symmetric part of the Jacobian matrix is a positive-semidefinite matrix.

Proposition B.0.1. Let z,y ∈ V two different solutions of system (B.2) and

Dg = Dyg(xn,y)

the Jacobian matrix of g. If Dg is a positive-semidefinite matrix, it follows that as xn ∈ J
increases the distance between different solutions is nondecreasing.

Proof. Let us consider the following derivative

d

dxn
|z− y|2 = d

dxn
(z− y) · (z− y)

= 2(z− y) · (z′ − y′)

= 2(z− y) · (g(xn, z)− g(xn,y))

= 2(z− y)T
(∫ 1

0

Dg(xn,y + s(z− y))ds

)
(z− y)

≥ 2λ0|z− y|2.

(B.3)

Observe that convexity of V ensures that F (s) = Dg(xn,y + s(z− y)) for s ∈ [0, 1] is
defined.

Note. To obtain the last inequality in B.3 we are using the following three facts:

1.

g(xn, z)− g(xn,y) =

∫ 1

0

d

ds
g(xn,y + s(z− y))ds

=

(∫ 1

0

Dg(xn,y + s(z− y))ds

)
(z− y).

(B.4)
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2. In a quadratic form vTAv, we can assume that A = AT since

vTAv = vT ((A+ AT )/2)v.

The matrix obtained by taking the "average" of A and AT , this is (A + AT )/2, is
called the symmetric part of A.

3. Finally, if the eigenvalues of A are λmax ≥ . . . λmin we have

λminv
Tv ≤ vTAv ≤ λmaxv

Tv.

Therefore, the last inequality in (B.3) follows by assuming that

1

2
(Dg(w) +DgT (w))

is a positive-semidefinite matrix with λ0 the smallest eigenvalue.

The calculations done in (B.3) imply that as xn increases, the distance between different
solutions never decreases. This is, in the phase space any two different solutions "move
apart" as xn increases.

Furthermore, solving the differential inequality (B.3) we get

|z(xn)− y(xn)| ≥ eλ0xn|x(0)− y(0)|.

In an applied context, a possible difficulty might arise when determining if the sym-
metric part of Dg(w) is a positive-semidefinite matrix, specially if the parameters involved
are unknown.
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