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0.1 Abstract

This thesis is divided into two parts. The first part is concerned with the
commutative algebra of certain combinatorial structures arising from uniform
hypergraphs. The main focus lies on two particular classes of hypergraphs called
chordal hypergraphs and complete hypergraphs, respectively. Both these classes
arise naturally as generalizations of the corresponding well known classes of sim-
ple graphs. The classes of chordal and complete hypergraphs are introduced and
studied in Chapter 2 and Chapter 3 respectively. Chapter 4, that is the content
of [14], answers a question posed at the P.R.A.G.MAT.I.C. summer school held
in Catania, Italy, in 2008. In Chapter 5 we study hypergraph analogues of line
graphs and cycle graphs. Chapter 6 is concerned with a connectedness notion
for hypergraphs and in Chapter 7 we study a weak version of shellability.

The second part is concerned with affine monoids and their monoid rings.
Chapter 8 provide a combinatorial study of a class of positive affine monoids
that behaves in some sense like numerical monoids. Chapter 9 is devoted to
the class of numerical monoids of maximal embedding dimension. A combi-
natorial description of the graded Betti numbers of the corresponding monoid
rings in terms of the minimal generators of the monoids is provided. Chapter
10 is concerned with monomial subrings generated by edge sets of complete
hypergraphs.
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Chapter 1

Introduction and
preliminaries

1.1 Introduction

Combinatorial commutative algebra lies, as the name suggests, in the intersec-
tion of combinatorics and commutative algebra and was created by Hochster
and Stanley in the mid-seventies. A wealth of mathematics has, and still do,
come out of the subject and new connections between combinatorics and com-
mutative algebra and other fields of mathematics and related sciences are being
discovered.

Edge ideals of simple graphs were introduced by Villarreal in the nineties,
[67], and have since then been extensively studied. See for example [17, 28, 29,
30, 32, 39, 46, 45, 50, 49, 54, 55, 60, 61, 63, 70, 71]. Among all simple graphs
chordal graphs and various complete graphs have been in particular focus and
many nice results concerning their algebraic properties have been presented. An
interesting question is then of course if there are natural hypergraph analogous
of chordal and complete graphs that provides similar results. This thesis is
mainly devoted to studying this question.

A milestone and a starting point for many algebraic investigations of graph
algebras is a famous theorem by Fröberg that classifies all simple graphs for
which the corresponding graph algebra has linear resolution:

Theorem 1.1.1 (Fröberg, [39]). Let G be a simple graph on n ∈ N vertices.
Then the graph algebra k[x1, . . . , xn]/I(G) has linear resolution precisely when
Gc is chordal.

Inspired by this beautiful theorem researchers have subsequently been at-
tacking the much harder problem of giving classes of (often square-free) mono-
mial ideals generated in some degree d ≥ 3 that have linear resolutions. By
Alexander duality this is the same thing as providing classes of Cohen–Macaulay
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rings. Thus such tasks are interesting but of course one should not hope to clas-
sify all monomial ideals with linear resolutions.

The key in investigating hypergraph algebras is often to find a suitable way
of translating the combinatorial information of the hypergraphs or of the corre-
sponding simplicial complexes to the algebras themselves. There are two cele-
brated results by Hochster that often do the trick. One of them links the local
cohomology of Stanley–Reisner rings with the simplicial homology of certain
simplicial complexes and the other, called Hochster’s formula, provides a com-
binatorial interpretation of the Betti numbers of Stanley–Reisner rings. The
later result is well suited when considering linear resolutions and is the key
ingredient of Fröberg’s proof of the above theorem.

Shellable simplicial complexes were introduced by Björner and Wachs, see
[8, 9]. Many natural combinatorial objects gives rise to shellable simplicial
complexes. It is well known that shellability implies Cohen–Macaulayness and
that the Alexander dual notion of shellability is that of linear quotients. Besides
[8, 9] the interested reader should consider also [47, 48, 55, 56, 65, 70]. In
Chapter 7 we study a weak version of shellability that combinatorially resembles
shellability but homologically behaves different.

The notion of being connected is natural for simple graphs and simplicial
complexes. It can be stated in terms of the homology of the corresponding chain
complexes. In Chapter 6 we consider a connectedness property for uniform hy-
pergraphs that is inspired by this homological interpretation of the connected-
ness notion for graphs. It turns out that our connectedness notion is related to
the depths of the corresponding hypergraph algebras. However, due to its com-
plexity it is hard to understand how a connected uniform hypergraph “should”
look and behave, and other authors have considered other notions of connected
hypergraphs, see [46].

The polynomial ring k[x1, . . . , xn] is naturally Nn-graded. If one instead
considers a grading of k[x1, . . . , xn] by an arbitrary positive affine monoid S
one stumbles into the land of toric varieties and polyhedral cones. For positive
affine monoids S much information about the monoid rings k[S], for example
their dimensions and descriptions of their monomial prime ideals, is contained in
the monoid itself and also in its geometric manifestation R≥0S. The geometry of
the cone R≥0S is intimately connected to the local cohomology of k[S]. Details
may be found in the books [11, 59].

If one considers positive affine monoids whose sets of minimal generators
satisfy some strong combinatorial condition, one usually obtains strong results
for the corresponding monoid rings k[S]. There are many nice results concern-
ing monoid rings corresponding in this way to various kinds of matroids. The
fundamental underlying combinatorial property here is the exchange property
of the set of bases of a matroid. We recommend the papers [3, 15, 48, 56] and
the books [66] and [68, Chapters 7, 8 and 9] .
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1.2 Preliminaries and notation

In this section we briefly recall relevant background material and establish our
notation. General background on commutative algebra may be found in the
books [2, 57]. A reference on hypergraphs in general is Berge’s book [7]. [11, 19,
59] are excellent resources on combinatorial commutative algebra. Background
in topology and homological algebra, respectively, may be found in [58] and
[69]. The book [10] covers monoids and monoid rings and the related geometry
of polyhedra. For background on numerical monoids we recommend [43].

1.2.1 Rings and ideals

Let k be a field and denote by R the polynomial ring k[x1, . . . , xn] in the in-
determinates {x1, . . . , xn}. By N we mean the set {0, 1, 2, 3, . . .} of non-zero
integers. A monomial m in R is a product m = xa11 · · ·xann , where ai ∈ N for
all i ∈ {1, 2, . . . , n}. If a = (a1, . . . , an) ∈ Nn, we also use the notation m = xa

for m. We frequently identify a subset W ⊆ {1, 2, . . . , n} with its characteris-
tic vector v(W ) ∈ Nn whose ith component is 1 if i ∈ W and zero otherwise.
Employing this we also write xW for the monomial xv(W ).

The ring R is naturally both N- and Nn-graded where in the N-grading
deg xi = 1 for all i ∈ {1, . . . , n} whereas deg xi = ei in the Nn-grading. Here
ei is the ith unit vector xv({i}). With the N-grading R is a standard graded
k-algebra.

If a = (a1, . . . , an) ∈ Nn we call supp(a) = {i ∈ {1, . . . , n} ; ai 6= 0} the
support of a.

A vector a ∈ Nn is called square-free if its non-zero components are 1 and a
monomial xa ∈ R is called square-free it its exponent vector a is square-free.

A monomial ideal I ⊆ R is an ideal generated by monomials and I is called
a square-free monomial ideal if it is generated by square-free monomials. By
Hilbert’s basis theorem and the fact that a monomial ideal I is a Nn-graded
R-submodule of R, there is a unique minimal set of monomial generators of
I. We denote this set G(I). If J ⊆ R is an ideal generated by the elements
{g1, . . . , gr}, we denote this by J = (g1, . . . , gr).

The depth of a finitely generated R-module is

depthM = min{i ; ExtiR(R/m,M) 6= (0)},

where (0) denotes the zero R-module. The depth of an R-module M equals
the length of the longest possible M -sequence in R. The dimension dimM of a
R-module M , is the Krull dimension of R/AnnM . We always have depthM ≤
dimM and in case of equality one says that M is a Cohen–Macaulay R-module.

Let I ⊆ R be a monomial ideal minimally generated by the set {g1, . . . , gt}.
I is said to have linear quotients if there exists an ordering g1 < · · · < gt of
the minimal generators of I such that for each s ∈ {1, . . . , t}, the colon ideal
(g1, . . . , gs−1) : gs is generated by a subset of the variables {x1, . . . , xn}.
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1.2.2 Hypergraphs

Let V be a finite set and E = {E1, . . . , Es} a finite collection of non-empty
distinct subsets of V. The pair H = (V, E) is called a hypergraph. The elements
of V and E , respectively, are called the vertices and the edges, respectively, of
the hypergraph. If we want to specify what hypergraph we consider, we write
V(H) and E(H) for the vertices and edges respectively. If V = {v1, . . . , vn} we
usually identify V and the generic set of n objects [n] = {1, 2, . . . , n}.

Let H be a hypergraph. A sub-hypergraph K of H is a hypergraph such that
V(K) ⊆ V(H), and E(K) ⊆ E(H). If W ⊆ V, the induced hypergraph on W,
HW , is the sub-hypergraph with V(HW) = W and with E(HW) consisting of
the edges of H that lie entirely in W. A hypergraph H is said to be d-uniform
if |Ei| = d for every edge Ei ∈ E(H). We always assume d ≥ 2. By a uniform
hypergraph we mean a hypergraph that is d-uniform for some d ∈ N. Note
that a 2-uniform hypergraph is an ordinary simple graph. A free vertex v of
a hypergraph is a vertex v that lies in at most one edge. The complementary
hypergraph, Hc, of a d-uniform hypergraph H is defined as the hypergraph with
V(H)c = V(H) and with edge set

E(Hc) = {F ⊆ V(H) ; |F | = d, F 6∈ E(H)}.

1.2.3 Simplicial complexes

An (abstract) simplicial complex on vertex set V = {v1, . . . , vn} is a collection,
∆, of distinct subsets of V with the property that G ⊆ F, F ∈ ∆ ⇒ G ∈ ∆.
As for hypergraphs, we usually identify V and [n]. The elements of ∆ are
called the faces of the complex and the maximal (under inclusion) faces are
called facets. The set of facets of ∆ we denote by F(∆). The dimension,
dimF , of a face F in ∆ is defined as dimF = |F | − 1. The dimension of ∆ is
dim ∆ = max{dimF ; F ∈ ∆}. The r-skeleton of a simplicial complex ∆ is the
collection of faces of ∆ of dimension at most r. The empty set ∅ is the unique
−1 dimensional face of every complex that is not the void complex {} which
has no faces. The dimension of the void complex we define as −∞. If W ⊆ V
we denote by ∆W the simplicial complex

∆W = {F ⊆ V ; F ∈ ∆, F ⊆W}.

Given a simplicial complex ∆, C̃.(∆; k) denotes its reduced chain complex
with coefficients in the field k and H̃n(∆; k) = Zn(∆; k)/Bn(∆; k) the nth re-
duced homology group of this complex. For convenience, we define the homology
of the void complex to be zero.

Let ∆ be an arbitrary simplicial complex on vertex set V. We then define
the Alexander dual simplicial complex of ∆ as

∆∗ = {F ⊆ V ; V r F 6∈ ∆}.

Note that (∆∗)∗ = ∆.
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If X and Y are two sets, we denote their disjoint union by XtY . Let ∆ and Γ
be two non-empty simplicial complexes on disjoint vertex sets {x1, . . . , xn} and
{y1, . . . , ym} respectively. The join ∆∗Γ of ∆ and Γ is the simplicial complex on
vertex set {x1, . . . , xn, y1, . . . , ym} having faces {xi1 , . . . , xir , yj1 , . . . , yjs}, where
{xi1 , . . . , xir} and {yj1 , . . . , yjs} are faces of ∆ and Γ respectively.

Given a finite collection {F1, . . . , Ft} of non-empty subsets of V we denote
by 〈F1, . . . , Ft〉 the simplicial complex with F(∆) = {F1, . . . , Ft}.

We recall the definition of the classes of pure shellable and non-pure shellable
simplicial complexes:

Definition 1.2.1. Let ∆ be a simplicial complex with F(∆) = {F1, . . . , Ft}.
∆ is called pure shellable if

(i) |Fi| = |Fj | for every pair of indices 1 ≤ i < j ≤ t.

(ii) There exists an ordering F1 < · · · < Ft of the facets such that 〈Fj〉 ∩
〈F1, . . . Fj−1〉 is generated by a non-empty set of proper maximal faces of
〈Fj〉 for every j ∈ {2, . . . , t}.

A simplicial complex ∆ is called non-pure shellable if (ii) but not (i) holds. If ∆
is a shellable (pure of non-pure) simplicial complex a linear order F1 < · · · < Ft
of F(∆) as in (ii) is called a shelling of ∆.

For other equivalent descriptions of shellable simplicial complexes, see The-
orem 7.1.8.

1.2.4 Stanley–Reisner rings and ideals

Let ∆ be a simplicial complex on vertex set V = {v1, . . . , vn}. The Stanley–
Reisner ring k[∆] of ∆ is the quotient of the ring R = k[x1, . . . , xn] by the
Stanley–Reisner ideal

I∆ = (xF ; F 6∈ ∆).

In this way a vertex vi of ∆ is identified with a variable xi in the polynomial
ring k[x1, . . . , xn]. Conversely, to every square-free monomial ideal I one may
associate a simplicial complex ∆I in such way that its Stanley–Reisner ideal is
precisely I.

The above correspondence between simplicial complexes and square-free
monomial ideals yields the following duality: If I = I∆ is the Stanley–Reisner
ideal of a simplicial complex ∆ we may associate to it its Alexander dual ideal
(I∆)∗ = I∆∗ . One verifies that ((I∆)∗)∗ = I∆. A simplicial complex ∆ is called
Cohen–Macaulay if the Stanley–Reisner ring k[∆] is Cohen–Macaulay.

It is well known that a Stanley–Reisner ideal I∆ has linear quotients if and
only if the Alexander dual simplicial complex ∆∗ is shellable. See also Theorem
7.1.7.
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1.2.5 Edge ideals and independence complexes

Let H be a d-uniform hypergraph on vertex set V = {v1, . . . , vn} and consider
the simplicial complex

∆(H) = {F ⊆ V ; Ei 6⊆ F, Ei ∈ E(H)}.

This is called the independence complex of H. Note that the edges of H are
precisely the minimal non-faces in ∆(H). Thus the Stanley–Reisner ideal of
∆(H) is

I(H) = (xEi ; Ei ∈ H).

This ideal is called the edge ideal of H. The Stanley–Reisner ring k[∆(H)] is
called the also called hypergraph algebra of H. Another simplicial complex we
associate to H is its clique complex:

∆H = {F ⊆ V ;

(
F

d

)
⊆ E(H)},

where
(
F
d

)
denotes the set of all cardinality d subsets of the set F . Observe

that all sets F ⊆ V with |F | < d are faces of ∆H. If H is uniform, we have
∆H = ∆(Hc).

1.2.6 Resolutions and Betti numbers

To every finitely generated N-graded module M over the polynomial ring R =
k[x1, . . . , xn] we may, in an essentially unique way, associate a minimal graded
free resolution

0→
⊕

j
R(−j)βl,j(M) → · · · →

⊕
j
R(−j)β0,j(M) →M → 0

where l ≤ n and R(−j) is the R-module obtained from R by shifting the degrees
by j. Thus, R(−j) is the graded R-module in which the grade i component
(R(−j))i is Ri−j .

The number βi,j(M) is called the ith N-graded Betti number of M in degree
j. The total i’th Betti number is βi(M) =

∑
j βi,j . Observe that we may equally

well consider the Nn-graded minimal free resolution and Betti numbers of M .
Then we instead use shifts R(−j), j ∈ Nn.

We are interested in the Betti numbers of quotient rings R/I. Hence, since
in this situation β0(R/I) = 1, the interesting parts of the resolutions are the
homological degrees greater than zero. In the various formulas for Betti numbers
we give we therefore sometimes omit homological degree 0.

The Betti numbers of a finitely generated graded R-module M occur as the
k-dimensions of certain R-modules: Let m = (x1, . . . , xn) be the unique graded
maximal ideal of R and put k = R/m . We have

βi,j(M) = dimk TorRi (M,k)j.
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Thus the Betti numbers depend on the field k. However, for convenience, we
omit k in the notation for the Betti numbers.

The projective dimension pdM of M over R is

pdM = max{i ; ∃βi,j(M) 6= 0}.

A minimal free resolution of M is said to be linear if for i > 0, βi,j(M) = 0
whenever j 6= i + d− 1 for some fixed natural number d ≥ 1. In connection to
this we mention the Eagon–Reiner theorem:

Theorem 1.2.2 ([18], Theorem 3). Let ∆ be a simplicial complex and ∆∗ its
Alexander dual simplicial complex. Then k[∆] is Cohen–Macaulay if and only
if k[∆∗] has linear minimal free resolution.

A common way of displaying the Betti numbers of a R-module M is giving
the Betti diagram of M :

0 · · · s · · ·
0 β0,0(M) · · · βs,s(M) · · ·
· · · · · · · · · · · · · · ·
i β0,i(M) · · · βs,s+i(M) · · ·
· · · · · · · · · · · · · · ·

Observe that if M has linear resolution there is at most one i > 0 for which there
are non-zero entries in row i in the Betti diagram. More about Betti diagrams
may be found in for example [20].

One further result which we will use is the Auslander–Buchsbaum formula
([19], Exercise 19.8):

Theorem 1.2.3 (The Auslander–Buchsbaum formula). Let R be a finitely gen-
erated graded k-algebra for some field k and M 6= 0 a finitely generated graded
R-module with pdM <∞, then

pdM + depthM = depthR.

1.2.7 Hochster’s formula

In topology one defines Betti numbers in a somewhat different manner. Hochster’s
formula provides a link between these and the Betti numbers defined above.

Theorem 1.2.4 (Hochster’s formula, [11], Theorem 5.5.1.). Let k[∆] be the
Stanley–Reisner ring of a simplicial complex ∆. The non-zero Betti numbers of
k[∆] are only in squarefree degrees j and may be expressed as

βi,j(k[∆]) = dimk H̃|j|−i−1(∆supp(j); k).

Hence the total ith Betti number may be expressed as

βi(k[∆]) =
∑
V⊆[n]

dim H̃|V |−i−1(∆V ; k).
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If one has Nn-graded Betti numbers, it is easy to obtain the N-graded ones
since

βi,j(k[∆]) =
∑
j′∈Nn
|j′|=j

βi,j′(k[∆]).

Thus
βi,j(k[∆]) =

∑
V⊆[n]
|V |=j

dim H̃|V |−i−1(∆V ; k).

1.2.8 The Mayer–Vietoris sequence

If R is a commutative ring and we have an exact sequence of complexes of
R-modules

0→ L→M→ N→ 0,

there is a long exact homology sequence associated to it

· · · → H̃r(N)→ H̃r−1(L)→ H̃r−1(M)→ H̃r−1(N)→ · · · .

Suppose we have a simplicial complex N and two sub-complexes L and M ,
such that N = L ∪ M . This gives us an exact sequence of reduced chain
complexes

0→ C̃.(L ∩M ; k)→ C̃.(L; k)⊕ C̃.(M ; k)→ C̃.(N ; k)→ 0 (1.1)

where the non trivial maps are defined by x 7→ (x,−x) and (x, y) 7→ x+ y. The
long exact homology sequence associated to (1.1) is called the Mayer–Vietoris
sequence. More about the Mayer–Vietoris sequence can be found in [58, Section
4.4].

1.2.9 Künneth’s theorem for simplicial homology

Let C̃.(∆; k) and C̃.(Γ; k) be the reduced chain complexes, with coefficients in
a field k, of the simplicial complexes ∆ and Γ respectively. Künneth’s tensor
formula ([58, Theorem 10.1], or [69, Theorem 3.6.3]) then says

H̃n(C̃.(∆; k)⊗ C̃.(Γ; k)) =
⊕
r+s=n
r,s≥0

H̃r(∆; k)⊗ H̃s(Γ; k). (1.2)

We will use of this formula in connection to the join operation on simplicial
complexes: It is easy to verify that the chain complex C̃.(∆ ∗ Γ; k) of the join
of two simplicial complexes ∆ and Γ is isomorphic to (C̃.(∆; k)⊗ C̃.(Γ; k))(−1).
This is the same as the complex (C̃.(∆; k)⊗ C̃.(Γ; k)) if we shift the homological
degrees by 1.
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1.2.10 Affine monoids and monoid rings

An affine monoid S = 〈s1, . . . , sn〉 is a finitely generated sub-monoid of Zr for
some r ∈ N, r ≥ 1. We denote by gpS the group inside Zr generated by S.
Observe that every element x ∈ gpS can be written as x = s − s′ for some
elements s and s′ in S and that gpS is free of rank at most r. The rank of S,
rankS, is by definition the rank of gpS. We assume all affine monoids S are
embedded in Zd where d = rankS.

Our main concern will be positive affine monoids: An affine monoid is called
positive if zero is the only element whose inverse in gpS also lies in S. A positive
affine monoid S = 〈s1, . . . , sn〉 of rank d is isomorphic to an affine monoid T
inside Nd. Thus in the sequel all positive affine monoids S will be considered to
be inside Nd where d = rankS.

Assume S = 〈s1, . . . , sn〉 is a positive affine monoid of rank one such that
gcd(s1, . . . , sn) = 1. Then S is called a numerical monoid.

Any affine (resp. positive affine) monoid S = 〈s1, . . . , sn〉 gives rise to a
cone (resp. pointed cone) R≥0S = R≥0{s1, . . . , sn}, whose dimension dimR≥0S
equals rankS. Recall that such a cone is the intersection of finitely many half-
spaces in Rd, where d = rankS. Let H+ be a half-space in R≥0S with bounding
hyperplane H. Assume H intersects R≥0S and that R≥0S lies entirely inside
H+. Then F = H ∩R≥0S is called a face of the cone R≥0. The dimension of a
face is by definition the dimension of its affine hull. A face of dimension d− 1,
where d = dimR≥0S, is called a facet. The faces form a lattice under inclusion.
See [10] for details.

If S is a positive affine monoid the set S+ = S r {0} is called the maximal
ideal of S.

The normalization of an affine monoid S, denoted S̄, is the monoid

S̄ = {x ∈ gpS ; mx ∈ S for somem ∈ N,m > 1}.

We have S̄ = R≥0S ∩ gpS and S̄ is affine (resp. positive affine) when S is affine
(resp. positive affine). The normalization of S is (by construction) a normal
monoid. That is, a monoid T such that if mx ∈ T for some m ∈ N, m > 1, and
x ∈ gpT , then x ∈ T . An affine monoid is normal precisely when S = S̄, see
[10, Proposition 2.22].

As for numerical monoids we define the set of gaps of an affine monoid S as
H(S) = S̄ r S. Also, we define a set T (S) by

T (S) = {x ∈ gpS ; x /∈ S, x+ S+ ⊆ S+}.

Remark 1.2.5. For numerical monoids the cardinality of the set T (S) is called
the type of S, denoted typeS, and agrees with the Cohen–Macaulay type of the
corresponding monoid ring.

Assume S is an affine monoid. Then, by considering the elements s ∈ S that
lie in some bounding hyperplane of the cone R≥0S and the affine form defining
that hyperplane, we see that T (S) ⊆ R≥0S and, in fact, T (S) ⊆ S̄. Thus for
affine monoids S we have T (S) ⊆ H(S).
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We associate to an affine monoid S = 〈s1, . . . , sn〉 its monoid ring k[S], k
being a field. This is the k-algebra k[ts ; s ∈ S] ⊆ k[t1, . . . , td], d = rankS, with
multiplication

ts · ts
′

= ts+s
′
, s ∈ S, s′ ∈ S.

The dimension of k[S] coincides with the rank of S. The ring k[S] is naturally
S-graded. That is, it is a graded ring with non-zero components only in degrees
s ∈ S.

Two important classes of numerical monoids are the classes of symmetric and
quasi-symmetric numerical monoids. These classes of numerical monoids are
characterized by the fact that T (S) consists of one, respectively two, elements.

If R is the polynomial ring k[x1, . . . , xn] we can define a homomorphism

R
φ−→k[S]

by xi 7→ tsi . Since φ is surjective we have a kernel kerφ = p, and consequently
an isomorphism k[S] ∼= R/p. The ideal p is a prime ideal generated by binomials.

Definition 1.2.6. A monoid ring k[S] = k[ts1 , . . . , tsn ] corresponding to a
positive affine monoid is called homogeneous if there is a vector v ∈ Qd with

si · v = 1

for all i ∈ {1, . . . , n}.

It is well known that k[S] is homogeneous if and only if it is standard graded
with respect to the grading

k[S]i =
∑
|b|=i

k{(ts1)b1 · · · (tsn)bn}, (1.3)

where |b| = b1 + · · ·+ bn for any vector b ∈ Nn. For details, see [68], Proposition
7.2.39.

Lastly, let S be an affine monoid. Then it is known that the integral closure
k[S] of k[S] in its field of fractions is k[S̄]. For details, see for example [59,
Proposition 7.25].
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Part I

Hypergraph algebras
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Chapter 2

Various complete
hypergraphs

The complete graph Kn is a fundamental and important graph. For d-uniform
hypergraphs there is a natural analogue to Kn that we call the d-complete hyper-
graph. If one instead tries to construct a hypergraph analogue to the complete
multipartite graph Kn1,...,nt one realizes rather quickly that this may be done
in several equally natural ways. In this chapter we present gradually inclusive
classes of complete hypergraphs. We compute the Betti numbers of the hyper-
graph algebras of two of these classes and show that the hypergraph algebras
corresponding to all classes have linear resolutions. The last fact here has subse-
quently been improved: In [60], Mohammadi, Moradi, and Kiani show that the
corresponding edge ideals even have linear quotients. They do this by proving
that the edge sets of all our complete hypergraph are weakly polymatroidal sets.
The notion of weakly polymatroidal sets was introduced by Kokubo and Hibi.
Among other things they show that weakly polymatroidal sets do provide linear
quotients, see [56] for details.

2.1 Some results on induced hypergraphs

Let H be a d-uniform hypergraph. We say that two edges E and E′ are disjoint
if E∩E′ = ∅. By considering the Taylor resolution (see [6]) of k[∆(H)], one can
prove the following results, which are essentially due to Jacques, see [54].

Proposition 2.1.1. Let H be a d-uniform hypergraph. Then βi,id(k[∆(H)])
equals the number of induced hypergraphs that consist of i disjoint edges.

Proof. For d = 2 this is [54, Theorem 3.3.5]. The proof given there holds also
for d > 2.

Proposition 2.1.2. Let H be a hypergraph and K an induced hypergraph. Then

βi,j(k[∆(K)]) ≤ βi,j(k[∆(H)]).
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Proof. Since K = HW for some W ⊆ V(H), we have

βi,j(k[∆(H)]) =
∑

V⊆V(H)
|V |=j

dimk H̃|V |−i−1(∆(H)V ; k) ≥

∑
V⊆W
|V |=j

dimk H̃|V |−i−1(∆(K)V ; k) = βi,j(k[∆(K)]).

Corollary 2.1.3. Let H be a hypergraph and K an induced hypergraph. Then

βi(k[∆(K)]) ≤ βi(k[∆(H)])

pd k[∆(K)] ≤ pd k[∆(H)].

2.2 The d-complete hypergraph

We start by defining the d-complete hypergraph.

Definition 2.2.1. The d-complete hypergraph Kd
n on a vertex set V of cardi-

nality n is defined by

E(Kd
n) =

(
V
d

)
.

If n < d, we interpret Kd
n as n isolated points.

Remark 2.2.2. Observe that the combinatorial configuration E(Kd
n) occur else-

where: It is used in a hypergraph setting by Berge, [7]. Also, it is clear that the
set E(Kd

n) is the set of bases of a matroid. Hence it occurs also in such contexts.
One may also find this configuration in purely algebraic contexts since the edges
correspond to the generators of the square-free Veronese subring, see Remark
10.2.3.

We now compute the Betti numbers of k[∆(Kd
n)].

Theorem 2.2.3. The ring k[∆(Kd
n)] has linear minimal free resolution and the

N-graded Betti numbers may be written as

βi,j(k[∆(Kd
n)]) =


(
n
j

)(
j−1
d−1

)
, j = i+ (d− 1)

0, j 6= i+ (d− 1).

In particular the Betti numbers are independent of the characteristic of the field
k.
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Proof. The fact that the minimal free resolution is linear will follow from the
more general Theorem 2.6.3. Let V, |V| = n, be the vertex set of Kd

n. Recall
that Hochster’s formula says

βi,j(k[∆(Kd
n)]) =

∑
V⊆V
|V |=j

dimk H̃|V |−i−1(∆(Kd
n)V ; k).

Consider ∆(Kd
n)V for some V ⊆ V. It is clear that every cycle in Zd−2(∆(Kd

n)V ; k)
is a linear combination of “elementary cycles”, by which we mean the derivatives
of (d− 1)-simplices in the simplex 〈V〉. Denote this generating set by GV .

We note that we may extract a smaller generating set out of GV . Namely,
we claim that it is enough to consider the elements that contain a fixed vertex
x ∈ V (by containing x we mean that some term in the cycle contains x). Denote
this set by GV (x) and consider an element ∂({x1, . . . , xd}) in GV , that do not
contain x. This cycle is a linear combination of elements in GV (x), which may
be seen by first forming the cone (see [11] p. 230) x ∗ {x1, . . . , xd}, and then
taking the derivative of the (d− 1)-skeleton of this cone. This proves our claim.

Furthermore the images σ̄ in the homology group H̃d−2(∆(Kd
n); k) of the

elements σ ∈ GV (x) are linearly independent: Assume that
∑t
i=1 aiσ̄i = 0,

ai ∈ k = k[x1, . . . , xn]/(x1, . . . , xn) and σi ∈ GV (x). Every σi contains a unique
term which does not contain x. This is because σi = ∂(Σi), where Σi is a (d−1)
simplex. Hence ai = 0 for every i ∈ {1, . . . , t}.

Now we are done, since if |V | = j, the cardinality of GV (x) clearly is
(
j−1
d−1

)
,

and the number of j-sets V ⊆ V are
(
n
j

)
.

Due to Corollary 2.2.4, the above result also follows from [51, Theorem 1].
Corollary 2.2.4 seems to be well known, but we did not find a published proof.

Since ∆(Kd
n) has a specially nice structure, it is easy to determine its Alexan-

der dual. As the minimal non-faces of ∆(Kd
n) are all {xi1 , . . . , xid}, xij ∈ V,

the facets of ∆(Kd
n)∗ are all {xi1 , . . . , xin−d}, xij ∈ V. Whence ∆(Kd

n)∗ ∼=
∆(Kn−d+1

n ).

Corollary 2.2.4. The ring k[∆(Kd
n)] is Cohen–Macaulay and we have

βi(k[∆(Kd
n)]) =

(
n

j

)(
j − 1

d− 1

)
pd k[∆(Kd

n)] = n− (d− 1)

where j = i+ (d− 1).

Proof. The last two claims follows directly from the theorem. We know, by the
Eagon–Reiner theorem, that a Stanley–Reisner ring k[∆] of a simplicial complex
∆ has a linear resolution precisely when the Stanley–Reisner ring k[∆∗] of the
Alexander dual complex is Cohen–Macaulay. Since ∆(Kd

n)∗ ∼= ∆(Kn−d+1
n ) we

are done.

One should note that ∆(Kd
n) is in fact shellable. A shelling is easy to con-

struct using the lexicographic order on n-tuples.
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Corollary 2.2.5. The ring k[∆(Kd
n)∗] is Cohen–Macaulay and we have

dim ∆(Kd
n)∗ = n− d− 1

dim k[∆(Kd
n)∗] = n− d

pd k[∆(Kd
n)∗] = d.

Proof. The Cohen–Macaulayness is now clear and the first equation follows from
the definitions. The second equation follows from the first one since dim k[∆] =
dim ∆ + 1 for any simplicial complex ∆ (see [11, Theorem 5.1.4]). The second
equation and the Cohen–Macaulayness together with the Auslander–Buchsbaum
formula imply the third equation.

In [54] Jacques studies the graph algebra of Kn, which we denote K2
n, and

obtains the formula

βi,j(k[∆(Kn)]) =


(
n
j

)
i, j = i+ 1

0, j 6= i+ 1.

Note that this is a special case of our formula for βi,j(k[∆(Kd
n)]).

2.3 The d-complete multipartite hypergraph

We start by defining the d-complete multipartite hypergraph Kd
n1,...,nt .

Definition 2.3.1. Let V = V1 t V2 t · · · t Vt be a disjoint union of sets Vi
of cardinality ni, i ∈ {1, 2, . . . , t}, respectively. The d-complete multipartite
hypergraph Kd

n1,...,nt on vertex set V is the d-uniform hypergraph whose edge

set E(Kd
n1,...,nt) consists of all sets E ⊆ V of cardinality d except those of the

form {xi1 , . . . , xid} where xij ∈ Vi for all j ∈ {1, . . . , d}.

Lemma 2.3.2. The ring k[∆(Kd
n1,...,nt)] has linear minimal free resolution.

That is, if βi,j(k[∆(Kd
n1,...,nt)]) 6= 0, then j = i+ d− 1.

Remark 2.3.3. The lemma will follow from Theorem 2.6.3.

Theorem 2.3.4. The N-graded Betti numbers βi,j = βi,j(k[∆(Kd
n1,...,nt)] of the

ring k[∆(Kd
n1,...,nt)] are independent of the characteristic of the field k and may

be written as

βi,j =

{ (
N
j

)(
j−1
d−1

)
−
∑

(j1,...,jt)∈Nt
j1+···+jt=j

[
∏t
s=1

(
ns
js

)
] ·
∑t
s=1

(
js−1
d−1

)
, j = i+ (d− 1)

0, j 6= i+ (d− 1)

where N =
∑t
s=1 ns.
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Proof. In order to get the notations as clear as possible, we prove here only the
case where t = 2. It will be obvious that the same proof holds also when t > 2.

For t = 2 the formula for βi,j = βi,j(k[∆(Kd
n,m))] has the form

βi,j =

(
n+m

j

)(
j − 1

d− 1

)
−

j∑
j1=0

(
n

j1

)(
m

j − j1

)
[

(
j1 − 1

d− 1

)
+

(
j − j1 − 1

d− 1

)
]

Our idea is to compare H̃|V |−i−1(∆(Kd
n,m)V ; k) and H̃|V |−i−1(∆(Kd

n+m)V ; k).
We realize that

dimk H̃|V |−i−1(∆(Kd
n,m)V ; k) ≤ dimk H̃|V |−i−1(∆(Kd

n+m)V ; k)

for every set V ⊆ V1 t V2. The possible difference lies in the fact that there
might very well be faces F ∈ ∆(Kd

n,m) such that |F | ≥ d. This would result in a

non-zero boundary group Bd−2(∆(Kd
n,m); k) in the chain complex of ∆(Kd

n,m).

It is an elementary fact that dimk H̃d−2(∆(Kd
n,m)V ; k) equals

dimk Zd−2(∆(Kd
n,m)V ; k)− dimk Bd−2(∆(Kd

n,m)V ; k).

Since the cycle groups Zd−2(∆(Kd
n+m)V ; k) and Zd−2(∆(Kd

n,m)V ; k) clearly co-

incide and since Bd−2(∆(Kd
n+m)V ; k) = 0, we only have to compute the dimen-

sion over k of Bd−2(∆(Kd
n,m)V ; k). If we write V = V1 tV2, where V1 ⊆ V1 and

V2 ⊆ V2, it is clear that

Bd−2(∆(Kd
n,m)V ; k) = Bd−2(∆(Kd

n,m)V1 ; k)⊕Bd−2(∆(Kd
n,m)V2 ; k).

This is because the potential (d− 1)-faces of ∆(Kd
n,m) lies either in ∆(Kd

n,m)V1
or in ∆(Kd

n,m)V2 , which are disjoint.
Now, we have already computed (this was done in the proof of Theorem

2.2.3) dimk Bd−2(∆(Kd
n,m)Vν ; k), ν = 1, 2. Thus,

dimk Bd−2(∆(Kd
n,m)V1

; k) =

(
|V1| − 1

d− 1

)

dimk Bd−2(∆(Kd
n,m)V2 ; k) =

(
|V2| − 1

d− 1

)
.

If we put |V1| = j1 the theorem follows as we sum over all possible V ⊆ V1 t
V2.

Corollary 2.3.5. Given Kd
n1,...,nt we have

βi(k[∆(Kd
n1,...,nt)]) =

(
N

j

)(
j − 1

d− 1

)
−

∑
(j1,...,jt)∈Nt
j1+···+jt=j

[

t∏
s=1

(
ns
js

)
] ·

t∑
s=1

(
js − 1

d− 1

)
,

pd k[∆(Kd
n1,...,nt))] = N − (d− 1)

where N =
∑t
s=1 ns ≥ d and j = i+ (d− 1).
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Proof. The fact that pd k[∆(Kd
n1,...,nt))] ≤ N − (d − 1) follows from directly

from the expression for the Betti number. By putting j = N we get(
N − 1

d− 1

)
−

t∑
s=1

(
ns − 1

d− 1

)
. (2.1)

This expression is strictly greater than 0, which we may prove as follows: Con-
sider the vertex set V = V1 t V2 t · · · t Vt. Pick an arbitrary element xs from
each one of the sets Vs, s ∈ {1, . . . , t}. The first term in the above display
counts the number of ways of choosing d − 1 elements from V r {x1} whereas∑t
s=1

(
ns−1
d−1

)
is the number of (d − 1) element subsets of V that do lie in some

Vs r xs.

Example 1. Denote the vertex set of K3
2,3 by {a, b}t{A,B,C}. Then we have

E(K3
2,3) = {abA, abB, abC, aAB, bAB, aAC, bAC, aBC, bBC}.

The Betti numbers are β0(k[∆(K3
2,3)]) = 1, β1(k[∆(K3

2,3)]) = 9, β2(k[∆(K3
2,3)]) =

13, β3(k[∆(K3
2,3)]) = 5.

By construction, the edges in a hypergraph H are the minimal non faces
in ∆(H). This makes it easy to determine the facets of ∆(H)∗ once E(H) is
known: they are the complements of the edges.

Corollary 2.3.6. The ring k[∆(Kd
n1,...,nt)

∗] is Cohen–Macaulay and we have

dim ∆(Kd
n1,...,nt)

∗ = N − d− 1

dim k[∆(Kd
n1,...,nt)

∗] = N − d
pd k[∆(Kd

n1,...,nt)
∗] = d.

Proof. The Cohen–Macaulayness follows from Lemma 2.3.2 and the Eagon–
Reiner theorem. The first equation is clear and the second follows from the
fact that dim k[∆] = dim ∆ + 1 for any simplicial complex. The third equation
follows since k[∆(Kd

n1,...,nt)
∗] is Cohen–Macaulay.

Also in this case we have generalized a formula given by Jacques in [54]. By
studying the graph algebra of Kn,m he obtains the formula

βi,j(k[∆(Kn,m)]) =


∑j−1
j1=1

(
n
j1

)(
m
j−j1

)
, j = i+ 1

0, j 6= i+ 1.

A priori this looks quite different from our result. But, if one put d = 2 and use
that

(
n
d

)
is defined as 0 if n < d, our formula simplifies to this one.

Contrary to when we considered ∆(Kd
n), the structure of the Alexander dual

∆(Kd
n1,...,nt)

∗ is not transparent. A natural question is: When do k[∆(Kd
n1,...,nt)]

both have linear resolution and the Cohen–Macaulay property? We answer this
below.
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Lemma 2.3.7. Let N =
∑t
s=1 ns and ns ≤ d − 1 for s ∈ {1, . . . , t}. Then

Kd
N = Kd

n1,...,nt .

Proof. E(Kd
n1,...,nt) = E(Kd

N ) and V(Kd
n1,...,nt) = V(Kd

N ).

Proposition 2.3.8. The Stanley–Reisner ring k[∆(Kd
n1,...,nt)] of a d-complete

multipartite hypergraph on vertex set V1 t V2 t · · · t Vt is Cohen–Macaulay
precisely when ns ≤ d− 1 for all s ∈ {1, . . . , t}.

Proof. The Auslander–Buchsbaum formula tells us that

pd k[∆(Kd
n1,...,nt)] + depth k[∆(Kd

n1,...,nt)] = N

where N =
∑t
s=1 ns. Since we already have computed the projective dimension,

the above formula says

depth k[∆(Kd
n1,...,nt)] = d− 1

and it is clear that

dim ∆(Kd
n1,...,nt) = max{ni − 1, d− 2 ; i ∈ {1, . . . , t}}.

Thus since depthM ≤ dimM holds for every finitely generated R-module M
we see that k[∆(Kd

n1,...,nt)] is Cohen–Macaulay precisely when ns ≤ d − 1 for
all s ∈ {1, . . . , t}. Furthermore, according to the lemma, in this case we have
Kd
n1,...,nt = Kd

N .

2.4 The Alexander dual of a join

Let ∆ be a simplicial complex on vertex set V, |V| = n, with Stanley–Reisner
ideal I∆ = (xF ; F /∈ ∆). It is well known (follows from [59, Theorem 1.7]) that
the Stanley–Reisner ideal of the Alexander dual simplicial complex ∆∗ then may
be written

I∆∗ =
⋂

VrF /∈∆

pF , (2.2)

where pF is the prime ideal generated by the variables xi, i ∈ V r F .
Let ∆ and Γ be simplicial complexes on disjoint vertex sets V and W, re-

spectively. Denote the minimal non-faces of ∆ and Γ by Fi, i ∈ {1, . . . , r}, and
Gj , j ∈ {1, . . . , s}, respectively.

If we consider I∆ ⊆ k[x1, . . . , xn] and IΓ ⊆ k[y1, . . . , ym] as ideals in the ring
k[x1, . . . , xn, y1, . . . , ym], it follows that

I∆∗Γ = I∆ + IΓ = (xFi ,xGj ; i ∈ {1, . . . , r}, j ∈ {1, . . . , s}).

Hence, by the equation (2.2) the Stanley–Reisner ideal of (∆ ∗ Γ)∗ is

I(∆∗Γ)∗ = I∆∗ ∩ IΓ∗ = I∆∗IΓ∗ . (2.3)
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Suppose hypergraphs H = (V, E(H)) and K = (W, E(K)) are given. We
define the product H · K of H and K to be the hypergraph on vertex set V tW
and with edges {x1, . . . , xr, y1, . . . , ys}, where {x1, . . . , xr} is an edge in H and
{y1, . . . , ys} is an edge in K. Thus E(H · K) may be identified with the cartesian
product E(H)× E(K).

Lemma 2.4.1. Let H = (V, E(H)) and K = (W, E(K)) be d- and d′-uniform
hypergraphs respectively. Then H · K is a (d + d′)-uniform hypergraph, and
k[∆(H · K)] has linear resolution if and only if both k[∆(H)] and k[∆(K)] have
linear resolutions.

Proof. The fact that H · K is (d+ d′)-uniform is clear from the definition. If we
put ∆ = ∆(H)∗ and Γ = ∆(K)∗ equation (2.3) yields

∆(H · K) = (∆(H)∗ ∗∆(K)∗)∗.

It is known, and proved in for example [38], that the join ∆∗Γ of two simplicial
complexes ∆ and Γ is Cohen–Macaulay precisely when both ∆ and Γ are Cohen–
Macaulay. Thus by the Eagon–Reiner theorem the Stanley–Reisner ring of
(∆(H)∗ ∗∆(K)∗)∗ has linear resolution precisely when both ∆(H)∗ and ∆(K)∗

are Cohen–Macaulay. This is, again by the Eagon–Reiner theorem, the same
thing as saying both k[∆(H)] and k[∆(K)] have linear resolutions.

Let V = V1 t V2 ⊆ V tW where V1 ⊆ V and V2 ⊆ W. Since

∆(H · K) =
(
∆(H) ∗ 〈W 〉

)
∪
(
〈V 〉 ∗∆(K)

)
we have an exact sequence

0→ C̃.((∆(H) ∗∆(K))V ; k)→
C̃.((∆(H) ∗ 〈W〉)V ; k)⊕ C̃.((〈V〉 ∗∆(K))V ; k)→ C̃.(∆(H · K)V ; k)→ 0.

(2.4)
Our aim is to use Hochster’s formula and thus we interested in the homology

of ∆(H · K)V . If V1 or V2 is empty then ∆(H · K)V has zero homology. Therefore
assume V1 and V2 are non-empty. In this case the complexes (∆(H)∗〈W〉)V and
(〈V〉∗∆(K))V are cones, so if we consider the Mayer–Vietoris sequence obtained
from (2.4) we get that the following equation holds for every V = V1 t V2 ⊆
V tW, V1 6= ∅, V2 6= ∅, and r ≥ −1:

H̃r(∆(H · K)V ; k) ∼= H̃r−1((∆(H) ∗∆(K))V ; k).

From equation (1.2) in Section 1.2.9 it follows that

H̃r(∆(H · K)V ; k) ∼=
⊕

r1+r2=r−2
r1,r2≥0

H̃r1(∆(H)V1
; k)⊗ H̃r2(∆(K)V2

; k).
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Thus by Hochster’s formula we get

βi,j(k[∆(H · K)]) =
∑
ri≥0
|V |=j

V=V1tV2
r1+r2=j−i−3

dimk H̃r1(∆(H)V1 ; k) · dimk H̃r2(∆(K)V2 ; k).

We extend this to products of more than two hypergraphs inductively.

Remark 2.4.2. In the below theorem and corollary Vi, i ∈ {1, . . . , t+1}, denotes
a subset of Vi.

Theorem 2.4.3. Assume hypergraphs Hi, i ∈ {1, . . . , t+ 1}, on disjoint vertex
sets Vi respectively are given. The N-graded Betti numbers of k[∆(H1 · · ·Ht+1)]
are given by

βi,j(k[∆(H1 · · ·Ht+1))] =
∑
ri≥0
|V |=j

V=V1t···tVt+1

r1+···+rt+1=j−i−(2(t+1)−1)

[t+1∏
l=1

dimk H̃rl(∆(Hl)Vl ; k)
]
.

Proof. We have seen that the formula holds for t = 1. It follows by induction
that

dimk H̃r(∆(H1 · · ·Ht)V ; k) =
∑

r1+···+rt=r−2(t−1)
ri≥0

[ t∏
l=1

dimk H̃rl(∆(Hl)Vl ; k)
]

(2.5)

holds for every r ≥ −1 and Vi ⊆ Vi, i ∈ {1, . . . , t}, Vi 6= ∅. By the case t = 1,
βi,j(k[∆(H1 · · ·Ht+1)]) equals∑

r≥0,rt+1≥0
|V |=j

V=V1t···tVt+1

r+rt+1=j−i−3

dimk H̃r(∆(H1 · · ·Ht)V1t···tVt ; k) · dimk H̃rt+1
(∆(Ht+1)Vt+1

; k). (2.6)

By putting the expression for dimk H̃r(∆(H1 · · ·Ht)V ; k) from (2.5) into (2.6)
we get

∑
r≥0,ri≥0
|V |=j

V=V1t···tVt+1

r+rt+1=j−i−3
r1+···+rt=r−2(t−1)

[ t∏
l=1

dimk H̃rl(∆(Hl)Vl ; k)
]
· dimk H̃rt+1(∆(Ht+1)Vt+1 ; k)

which after cleaning of the summation symbol is the asserted formula.

The above formula for the Betti numbers becomes much nicer if we know
that each Hi has linear resolution. This is because then know that for each l,
dimk H̃rl(∆(Hl)Vl ; k) can be non-zero only in one specific degree rl.
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Corollary 2.4.4. Let hypergraphs Hi, i ∈ {1, . . . , t+ 1}, on disjoint vertex sets
Vi respectively be given. Assume for i ∈ {1, . . . , t+1} that Hi is ai-uniform and
that k[∆(Hi)] has linear minimal free resolution. Then the ith N-graded Betti
number in degree j of k[∆(H1 · · ·Ht+1)] is given by the following expression.

βi,j(k[∆(H1 · · ·Ht+1)]) =
∑
|V |=j

V=V1t···tVt+1

[t+1∏
l=1

dimk H̃al−2(∆(Hl)Vl ; k)
]
.

2.5 The d(a1, . . . , at)-complete multipartite hyper-
graph

Consider the d-complete multipartite hypergraph Kd
n1,...,nt on vertex set V =

V1tV2t· · ·tVt. Recall that the edge set E(Kd
n1,...,nt) consists of all cardinality

d subsets of V except those of the form {xi1 , . . . , xid}, xij ∈ Vs for some s ∈
{1, . . . , t}. In the case of the ordinary graph Kn,m this just tells us that we have
all edges between the disjoint sets V1 and V2 of vertices. This one may think
of as an edge being a choice of two vertices, prescribing a certain number of
vertices in each one of the sets V1 and V2, namely one in each. This is the idea
behind the following definition.

Definition 2.5.1. Let V = V1 t V2 t · · · t Vt be a disjoint union of sets Vi of
cardinality ni, i ∈ {1, 2, . . . , t}, respectively. The d(a1, . . . , at)-complete mul-

tipartite hypergraph K
d(a1,...,at)
n1,...,nt on vertex set V is the d-uniform hypergraph

whose edge set E(K
d(a1,...,at)
n1,...,nt ) consists of all sets E ⊆ V of cardinality d such that

precisely as elements of E comes from the set Vs, as ∈ N, as ≥ 1,
∑t
s=1 as = d.

To simplify the notation, for the rest of the section a1, . . . , at = a, n1, . . . , nt =

n and d =
∑t
s=1 as. Thus, d(a1, . . . , at) = d(a) and K

d(a)
n = K

d(a1,...,at)
n1,...,nt .

Lemma 2.5.2. The ring k[∆(K
d(a)
n )] has linear minimal free resolution. That

is, if βi,j(k[∆(K
d(a)
n )]) 6= 0, then j = i+ (d− 1).

Remark 2.5.3. The lemma will follow from Theorem 2.6.3. We give a proof here
anyway since it is very short and also provides a description of the Alexander

dual simplicial complex ∆(K
d(a)
n )∗.

Proof. By considering the facets of the Alexander dual complex, we realize that

∆(Kd(a)
n )∗ = ∆(Kn1−a1+1

n1
) ∗ · · · ∗∆(Knt−at+1

nt ).

Thus ∆(K
d(a)
n )∗ is Cohen–Macaulay since we know that each ∆(Kns−as+1

ns ) is
Cohen–Macaulay. The lemma now follows from the Eagon–Reiner theorem.
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We now compute the Betti numbers of K
d(a)
n . It follows directly from the

definitions that

Kd(a)
n =

t∏
s=1

Kas
ns .

Thus we may apply the results from the previous section.

Theorem 2.5.4. The N-graded Betti numbers βi,j = βi,j(k[∆(K
d(a)
n )]) are in-

dependent of the characteristic of the field k and may be written as

βi,j =

{ ∑
r1+···+rt=i+t−1

ri≥1
[
∏t
l=1 βrl,rl+al−1(Kal

nl
)] if j = i+ (d− 1)

0 if j 6= i+ (d− 1).

Proof. Using the notation of Section 2.4 we know that dimk H̃rl(∆(Kal
nl

)Vl ; k) 6=
0 only when rl = al − 2, and in this case we have

dimk H̃rl(∆(Kal
nl

)Vl ; k) =

(
jl − 1

al − 1

)
where jl = |Vl|. Thus the expression

∑
ri≥0
|V |=j

V=V1t···tVt
r1+···+rt=j−i−(2t−1)

[ t∏
l=1

dimk H̃rl(∆(Kal
nl

)Vl ; k)
]

obtained from Theorem 2.4.3 simplifies, via the formula in Corollary 2.4.4, to

∑
|V |=j

V=V1t···tVt

t∏
l=1

(
jl − 1

al − 1

)
.

This may in turn be written as

∑
jl≥0

j=j1+···+jt

t∏
l=1

(
nl
jl

)(
jl − 1

al − 1

)
.

Now, if some jl ≤ al − 1 the corresponding term is zero. So, we may write
jl = rl + al − 1 where rl ≥ 1 for l ∈ {1, . . . , t}. The above expression then
becomes ∑

rl≥1
r1+···+rt=j−d+t

t∏
l=1

(
nl

rl + al − 1

)(
rl + al − 2

al − 1

)
. (2.7)

We know that the resolution is linear so for non-zero Betti numbers βi,j we have
j = i+ (d− 1). Using this in (2.7) we get the formula in the theorem.
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Corollary 2.5.5. The N-graded Betti numbers of the d(a, b)-complete bipartite

hypergraph K
d(a,b)
n,m may be written as

βi,j(k[∆(Kd(a,b)
n,m )]) =

∑
r+s=i+1
r,s≥1

(
n

r + a− 1

)(
r + a− 2

a− 1

)(
m

s+ b− 1

)(
s+ b− 2

b− 1

)
.

Note that by putting a = b = 1 we get

βi,j(k[∆(Kd(1,1)
n,m )]) =

∑
p+q=j
p,q≥1

(
n

p

)(
m

q

)
.

Now K
d(1,1)
n,m = Kn,m, so we have another proof of Jacques’ formula for the Betti

numbers βi,j(k[∆(Kn,m)]).

Corollary 2.5.6. Given K
d(a)
n we have

βi(k[∆(Kd(a)
n )]) =

∑
r1+···+rt=i+t−1

ri≥1

[

t∏
l=1

βrl,rl+al−1(Kal
nl

)]

pd k[∆(Kd(a)
n )] = N − (d− 1),

where j = i+ (d− 1).

Proof. The first assertion is clear. If we put i = N − (d− 1) in the formula we
get

βN−(d−1)(k[∆(Kd(a)
n )]) =

t∏
l=1

βnl−(al−1)(k[∆(Kal
nl

)])

which is non-zero. At the same time we see that if i > N − (d− 1) every term
in the sum is zero because some factor in every term is zero.

Example 2. Consider H = K
4(2,2)
3,3 . If we denote the set of vertices of this

hypergraph by {a, b, c} t {x, y, z}, we get

I(H) = (abxy, abxz, abyx, acxy, acxz, acyz, bcxy, bcxz, bcyz).

The Betti diagram of k[∆(H)] is

0 1 2 3
0 1 - - -
1 - - - -
2 - - - -
3 - 9 12 4

Considering Theorem 2.5.4 this diagram may be constructed from the diagram

0 1 2
0 1 - -
1 - 3 2

of k[∆(K2
3 )].
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Corollary 2.5.7. The ring k[∆(K
d(a)
n )∗] is Cohen–Macaulay and we have

dim ∆(Kd(a)
n )∗ = N − d− 1

dim k[∆(Kd(a)
n )∗] = N − d

pd k[∆(Kd(a
n )∗] = d.

Proof. The Cohen–Macaulayness follows from Lemma 2.5.2 and the Eagon–
Reiner theorem and imply the third equation. By considering the description
of the Alexander dual given in Lemma 2.5.2 the first and second equation are
clear.

Proposition 2.5.8. The ring k[∆(K
d(a)
n )] is Cohen–Macaulay precisely when

as = ns for all s ∈ {1, . . . , t} but possibly one. This single ai is such that it
maximizes the expression ai +

∑t
j 6=i, j=1 nj.

Proof. For s ∈ {1, . . . , t} let Is ⊆ Vs. It is necessary and sufficient that at least

one set Ii satisfy |Ii| < ai for I1 t · · · t It to be a face of ∆(K
d(a)
n ). Thus the

dimension of ∆(K
d(a)
n ) is

max{ai − 2 +

t∑
j 6=i, j=1

nj ; i ∈ {1, . . . , t}},

so

dim k[∆(Kd(a)
n )] = max{ai − 1 +

t∑
j 6=i, j=1

nj}.

We know that pd k[∆(K
d(a)
n )] = N − (d − 1), so depth k[∆(K

d(a)
n )] = d − 1.

Now, since by construction d =
∑t
s=1 as we are done.

In [7], Berge defines what he calls the d-partite complete hypergraph. In our

language this is K
d(1,...,1)
n1,...,nd . Its ith Betti number in degree j is

βi,j(k[∆(Kd(1,...,1)
n1,...,nt )]) =

∑
r1+···+rt=i+t−1

rs≥1

t∏
l=1

(
nl
rl

)
.

2.6 The d(I1, . . . , It)-complete multipartite hyper-
graph

Definition 2.6.1. Let V = V1 t V2 t · · · t Vt be a disjoint union of sets Vi of
cardinality ni, i ∈ {1, 2, . . . , t}, respectively. For each s ∈ {1, . . . , t} let Is =
[αs, βs] be an interval in {0, . . . , ns}. The d(I1, . . . , It)-complete multipartite
hypergraph on vertex set V is the d-uniform hypergraph whose edge set consists
of all sets I1(a1) t · · · t It(at) of cardinality d, were Is(as) is a subset of Vs of
cardinality as ∈ Is and d =

∑t
s=1 as.
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We immediately see why this generalizes previously considered hypergraphs:

• If Is = {0, . . . , ns} for all s ∈ {1, . . . , t} we have the d-complete hypergraph
Kd
N , N =

∑t
i=1 ni.

• If Is = {0, . . . ,min{ns, d − 1}} we obtain the d-complete multipartite
hypergraph Kd

n1,...,ns .

• By letting Is consist of only one non zero element for all s, we obtain the

d(a1, . . . , at)-complete hypergraph K
d(a1,...,at)
n1,...,nt .

One easily realizes that two different sets of intervals I1, . . . , It and J1, . . . , Jt
say, may yield the same hypergraph. Just consider the case where Is = {as} for
all s,

∑t
s=1 as = d, and Js = {as} for all s 6= 1, J1 = [a1, a1 + 1].

Without loss of generality we assume that the sequence of intervals I1, . . . , It
corresponding to a hypergraph K

d(I1,...,It)
n1,...,nt satisfies the following property: If

Is = [αs, βs], s ∈ {1, . . . , t}, then

αs +
∑
j 6=s

βj ≥ d

and
βs +

∑
j 6=s

αj ≤ d

holds for all s ∈ {1, . . . , t}. This guarantees that there is no redundancy in the
intervals.

Remark 2.6.2. It is clear that a set of intervals I1, . . . , It corresponding to a

hypergraph K
d(I1,...,It)
n1,...,nt can be constructed from a sequence a1, . . . , at, d =∑t

s=1 as, aj ∈ Ij for all j ∈ {1, . . . , t}, by successively extending one or two
of the intervals in such a way that the inequalities above remain true in each
step. The following example will clarify this idea.

Example 3. Suppose a1 + a2 + a3 = d and consider consider the hypergraph

K
d(I1,I2,I3)
n1,n2,n3 with I1 = [a1 − 1, a1], I2 = [a2 − 1, a2 + 1], I3 = [a3, a3 + 1]. The

intervals can be constructed in the following steps:

{a1}, {a2}, {a3} [a1 − 1, a1], [a2, a2 + 1], {a3}

 [a1 − 1, a1], [a2 − 1, a2 + 1], [a3, a3 + 1].

Theorem 2.6.3. The ring k[∆(K
d(I1,...,It)
n1,...,nt )] has linear minimal free resolution.

That is, if βi,j(k[∆(K
d(I1,...,It)
n1,...,nt )]) 6= 0, then j = i+ (d− 1).

Proof. The theorem follows from [60, Theorem 3.3], where the authors show

that the edge ideal I(K
d(I1,...,It)
n1,...,nt ) is weakly polymatroidal (see [56] for details

about weakly polymatroidal ideals). It is known that all weakly polymatroidal
ideals have linear quotients.
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Remark 2.6.4. A straight forward proof using induction may be found in [23].

Example 4. Consider H = K
5(I1,I2,I3)
3,3,3 where I1 = [1, 2], I2 = {1}, I3 = [2, 3].

There are 36 5-edges in this hypergraph and the Betti numbers are β0(H) =
1, β1(H) = 36, β2(H) = 90, β3(H) = 87, β4(H) = 39, β5(H) = 7.

By considering the edges in K
d(I1,...,It)
n1,...,nt and the description of the Alexander

dual of ∆(K
d(a)
n ), we obtain the following description of ∆(K

d(I1,...,It)
n1,...,nt )∗.

∆(Kd(I1,...,It)
n1,...,nt )∗ =

⋃
a1+···+at=d

as∈Is

∆(Kn1−a1+1
n1

) ∗ · · · ∗∆(Knt−at+1
nt ).

We immediately get the following

Corollary 2.6.5. The ring k[∆(K
d(I1,...,It)
n1,...,nt )∗] is Cohen–Macualay and we have

dim ∆(Kd(I1,...,It)
n1,...,nt )∗ = N − d− 1

dim k[∆(Kd(I1,...,It)
n1,...,nt )∗] = N − d

pd k[∆(Kd(I1,...,It)
n1,...,nt )∗] = d.
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Chapter 3

Chordal hypergraphs

The class of chordal graphs is a well studied class of graphs and indeed turns out
to have many nice properties, graph-theoretical as well as algebraic. A corner
stone in the algebraic investigations of chordal graphs is the following theorem
by Fröberg:

Theorem 3.0.6 (Fröberg, [39]). Let G be a simple graph on n ∈ N vertices.
Then the graph algebra k[x1, . . . , xn]/I(G) has linear resolution precisely when
Gc is chordal.

3.1 The classes of chordal and triangulated hy-
pergraphs

Definition 3.1.1. Two distinct vertices x, y of a hypergraph H are neighbors
if there is an edge E ∈ E(H), such that x, y ∈ E. For any vertex x ∈ V(H), the
neighborhood of x, denoted N(x), is the set

N(x) = {y ∈ V(H) ; y is a neighbor of x}.

If N(x) = ∅, x is called isolated. Furthermore, we let N [x] = N(x)∪{x} denote
the closed neighborhood of x.

Remark 3.1.2. Let H be a hypergraph and V ⊆ V(H). Denote by NV [x] the
closed neighborhood of x in the induced hypergraph HV . For ordinary graphs
it is clear that NV [x] = N [x] ∩ V . This is not always the case for hypergraphs,
as is shown in the example below. Note that the notation NV [x] will only occur
in this remark and the example below.

Example 5. Consider the hypergraph H on vertex set V(H) = {a, b, c, d, e}
and edge set E(H) = {{a, b, c}, {a, d, e}, {b, c, d}}. Let V = {a, b, c, d}. Then
NV [a] = {a, b, c} but N [a] ∩ V = {a, b, c, d}.
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Definition 3.1.3. A d-uniform hypergraph H is called triangulated if for every
non-empty subset V ⊆ V(H), either there exists a vertex x ∈ V such that
the induced hypergraph HN [x]∩V is isomorphic to a d-complete hypergraph Kd

n,
n ≥ d, or else the edge set of HV is empty.

This definition is basically due to Hà and Van Tuyl, see [46, Definition 5.5].
However, in [46] the property of being triangulated is defined on a special class of
hypergraphs called properly-connected. For a further discussion see Subsection
3.2 below.

Recall that ∆H denotes the clique complex of a uniform hypergraph H.

Definition 3.1.4. A d-uniform hypergraphH is called triangulated* if for every
non-empty subset V ⊆ V(H), either there exists a vertex x ∈ V such that
N [x]∩V is a facet of (∆H)V of dimension greater than or equal to d−1, or else
the edge set of HV is empty.

We will show (Theorem-definition 3.1.12) that the above two definitions, and
also the following two definitions are equivalent.

Definition 3.1.5. A chordal hypergraph is a d-uniform hypergraph, obtained
inductively as follows:

• Kd
n is a chordal hypergraph, {n, d} ⊆ N.

• If G is chordal, then so is H=G
⋃
Kd
j
Kd
i , for 0 ≤ j < i. (This we think of

as glueing Kd
i to G by identifying some edges, or parts of some edges, of

Kd
i with the corresponding part, Kd

j , of G.)

Remark 3.1.6. For d = 2 this specializes precisely to the class of generalized
trees, i.e. generalized n-trees for some n, as defined in [39].

Remark 3.1.7. Recall that a simple graph is called chordal if every induced cycle
of length > 3, has a chord. It follows from [16, Theorem 1, Theorem 2], that
the chordal graphs are precisely the generalized trees.

Another characterization of chordal graphs may be found in [42]. There it is
shown that a simple graph is chordal precisely when it has a perfect elimination
order. Recall that a perfect elimination order of a graph G = (V, E) is an ordering
of its vertices, x1 < x2 < · · · < xn, such that for each i, GN [xi]∩{xi,xi+1,...,xn}
is a complete graph. The concept of perfect elimination order is well suited for
generalizations. We make the following

Definition 3.1.8. A d-uniform hypergraph H is said to have a perfect elimi-
nation order if its vertices can be ordered x1 < x2 < · · · < xn, such that for
each i, either HN [xi]∩{xi,xi+1,...,xn} is isomorphic to a d-complete hypergraph

Kd
n, n ≥ d, or else xi is isolated in H{xi,xi+1,...,xn}

This specializes precisely to the definition of perfect elimination order for
simple graphs if we put d = 2.

28



Lemma 3.1.9. Let H be a d-uniform hypergraph and x ∈ V ⊆ V(H) a vertex
such that HN [x]

∼= Kd
m, m ≥ d. Then HN [x]∩V either is isomorphic to a d-

complete hypergraph Kd
m′ , m

′ ≥ d, or else x is isolated in V .

Proof. Either |N [x] ∩ V | ≥ d or else |N [x] ∩ V | < d.

Lemma 3.1.10. If a d-uniform hypergraph H with E(H) 6= ∅ has a perfect
elimination order, then it has a perfect elimination order x1 < x2 < · · · < xn in
which x1 is not isolated.

Proof. Let x1 < x2 < · · · < xn be a perfect elimination order of H, and put

t = min{i ; xi is not isolated}.

We claim that xt < · · · < xn < x1 < · · · < xt−1 also is a perfect elimi-
nation order of H. Since x1, . . . , xt−1 are isolated, we need only verify that
HN [xi]∩{xi,xi+1,...,xn,x1,...,xt−1}

∼= Kd
mi for some mi ≥ d, i ∈ {t, . . . , n}. However,

this is clear since HN [xi]∩{xi,xi+1,...,xn,x1,...,xt−1} = HN [xi]∩{xi,xi+1,...,xn}.

Lemma 3.1.11. If a d-uniform hypergraph H is triangulated (triangulated*,
chordal), or, has a perfect elimination order, the same holds for HV for every
V ⊆ V(H).

Proof. Let V ⊆ V(H). If E(HV ) = ∅, HV clearly is triangulated and triangu-
lated*. It is also chordal since we can add one vertex at a time until we have the
desired discrete hypergraph, and any ordering of V yields a perfect elimination
order. Thus we may assume that E(HV ) 6= ∅.

The lemma is clear for the classes of triangulated and triangulated* hyper-
graphs, since if W ⊆ V , we have that (HV )W = HW . Now, let H = G

⋃
Kd
j
Kd
i ,

0 ≤ j < i, be chordal. If V ⊆ V(G), or if V ⊆ V(Kd
i ), we are done by induc-

tion. If this is not the case, it is easy to realize that HV = GV
⋃

(Kd
j )V

(Kd
i )V .

Since GV is chordal by induction, the result follows. Finally, assume H has a
perfect elimination order x1 < x2 < · · · < xn. Then V inherits an ordering
xi1 < xi2 < · · · < xi|V | . The fact that this is a perfect elimination order of HV
follows from Lemma 3.1.9 .

Theorem-definition 3.1.12. Let H = (V(H), E(H)) be a d-uniform hyper-
graph. Then the following are equivalent.

(i) H is triangulated.

(ii) H is triangulated*.

(iii) H is chordal.

(iv) H has a perfect elimination order.
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Proof. Due to Lemma 3.1.11, we need only consider the full set V(H) of vertices
in our arguments, and we may assume that E(H) 6= ∅.

(i) ⇒ (ii). Since we assume E(H) 6= ∅ and consider only the case where
V = V(H), there is a vertex x such that HN [x]

∼= Kd
n, n ≥ d. Then, N [x] clearly

is a face in ∆H of dimension at least d − 1. Furthermore it has to be a facet,
since if there were a y ∈ V(H), y 6= x, such that N [x] ∪ {y} ∈ ∆H, then there
would exist an edge E with x, y ∈ E. Hence, y ∈ N [x].

(ii) ⇒ (i). By assumption, there is a vertex x such that N [x] is a facet in
∆H of dimension greater than or equal to d − 1, whence it is clear (from the
definition of ∆H) that HN [x]

∼= Kd
n for some n ≥ d.

(i) ⇒ (iii). By assumption there is a vertex x ∈ V(H) such that HN [x]
∼=

Kd
n, for some n ≥ d. Let G be the induced hypergraph on V(H)r{x}. Then E(G)

consists of all edges of H, except those that contain x. This yields H = G∪KKd
n,

where K = Kd
|N(x)| on vertex set N(x), and by induction we are done.

(iii) ⇒ (i). Assume H = G ∪Kd
j
Kd
i , 0 ≤ j < i, is chordal, where G is

chordal by construction. If i ≥ d, any vertex x ∈ V(Kd
i ) r V(G) will do, since

HN [x]
∼= Kd

i for such x. If i < d, we find, by induction, a vertex x ∈ V(G) with

the property that HN [x] = GN [x]
∼= Kd

n for some n ≥ d, since otherwise the edge
set of H would be empty, contrary to our assumptions.

(i)⇒ (iv). By assumption we find a vertex x = x1 such that HN [x1]
∼= Kd

n,
n ≥ d. Since the induced hypergraph on V(H) r {x1} is triangulated, by
induction it has a perfect elimination order x2 < · · · < xn. If we put x1 < x2

we are done.
(iv) ⇒ (i). By Lemma 2.2 there is a perfect elimination order x1 < · · · <

xn, such that HN [x1]∩V ∼= Kd
m for some m ≥ d.

We use hypergraphs from Chapter 2 to create some examples.

Example 6. Consider the complement H = (Kd
n,m)c of the complete hyper-

graph Kd
n,m on vertex set VtW, |V| = n, |W| = m. We claim that H is chordal.

It is easy to see, considering the the Stanley–Reisner ring, that

∆H = ∆(Kd
n+m) ∪ 〈V,W〉.

From this one may conclude that H is the disjoint union two d-complete hyper-
graphs,

H = Kd
n ∪Kd

0
Kd
m,

so H is chordal.
The analogous case of the d-complete multipartite hypergraph, Kd

n1,...,nt goes
through similarly.

Example 7. Let Kd
n,m be as in the previous example and consider the complex

∆Kd
n,m

. If n < d and m < d we have an isomorphism Kd
n,m
∼= Kd

n+m, so in

this case Kd
n,m is chordal. If n or m is greater than or equal to d, Kd

n,m is
not chordal. This is because no matter which vertex x we choose, the induced
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hypergraph on N [x] cannot be d-complete, since it would then contain an edge
lying entirely in either V or W, which is impossible.

The analogous case of the d-complete multipartite hypergraph, Kd
n1,...,nt goes

through similarly.

Example 8. In Chapter 5 we will consider a class of hypergraphs that we call
line hypergraphs. A line hypergraph Ld,αn may be written

Ld,αn = Kd
d ∪Kd

α
Kd
d ∪Kd

α
Kd
d ∪Kd

α
· · · ∪Kd

α
Kd
d ∪Kd

α
Kd
d

and is thus chordal.

3.2 Various concepts of chordality

In recent years several authors have generalized the properties of chordal graphs
and since such generalizations may be made in many different directions, no
particular standard concerning the use of the word chordal has been established.
Thus there is the risk of different, but often somehow related, concepts getting
similar names. We comment here on a couple of interesting papers in which the
concept of chordality/triangulability has been studied.

As mentioned after Definition 3.1.3, the concept of triangulated hypergraphs
also occurs in [46]. There the authors (among other things) aim for a gener-
alization of Theorem 3.0.6. However, the triangulated property is used on the
complementary hypergraphs compared with how Fröberg and we use it. The
class of triangulated hypergraphs in the sense of [46], is properly included in the
class of triangulated (chordal) hypergraphs considered here.

In [13] the authors (indirectly via matriods) define two classes of uniform
hypergraphs, called D-perfect and triangulable respectively. It is then shown
that a D-perfect hypergraph H is also triangulable. These hypergraphs and
our chordal hypergraphs are related, but the relationship is not completely
transparent.

In [62] the authors note that chordal graphs may be characterized as follows:
A graph G is chordal if and only if its vertices can be labelled by numbers in
[n] = {1, 2, . . . , n} so that G has no induced subgraph G{i<j<k} with edges
(i, j), (i, k) but without the edge (j, k). The authors call a graph with this
property perfectly labelled. This description of chordal graphs is then used to
show that (see [62, Definition 6.1, Example 6.2, Definition 9.2, and Theorem
9.4] for background) a certain kind of building sets, called graphical building
sets, are chordal if and only if the underlying graph is chordal. It seems possible
that chordal hypergraphs (or some variant thereof) may be connected to chordal
building sets, but it is not clear to us how.

Recall that a clutter is a (not necessarily uniform) hypergraph. Recently
Woodroofe, [70], introduced a class of clutters that he calls chordal. The classes
of chordal clutters and chordal hypergraphs do have non-empty intersection, but
are in general quite different. Below we show that if H is a generalized chordal
hypergraph, then I∆H has linear resolution. In the case of chordal hypergraphs
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one can even show that I∆H has linear quotients. This was first proved in [27,
Theorem 4.3] and also follows from Woodroofe’s stronger result [70, Proposition
6.13]: Woodroofe proves that (∆H)∗ is vertex decomposable, which implies
shellability.

3.3 Generalized chordal hypergraphs

It is easy to find an example of a uniform hypergraph H that is not chordal,
but such that the Stanley–Reisner ring of ∆H has linear resolution.

Example 9. Let H be the 3-uniform hypergraph with V(H) = {a, b, c, d}, and
edge set

E(H) =
{
{a, b, c}, {a, c, d}, {a, b, d}

}
.

The following simple picture lets us visualize H.

d

a

b c

k[∆H] has linear resolution, but H is not chordal.

If ∆ is a simplicial complex on V and E is a finite set, we denote by ∆ ∪ E
the simplicial complex on vertex set V ∪ E whose set of facets, F(∆ ∪ E), is
F(∆) ∪ {E}. Similarly, if H is a (not necessarily uniform) hypergraph and E a
finite set, we denote by H ∪ E the hypergraph on V(H) ∪ E whose edge set is
E(H ∪ E) = E(H) ∪ {E}.

Definition 3.3.1. A generalized chordal hypergraph is a d-uniform hypergraph,
obtained inductively as follows:

• Kd
n is a generalized chordal hypergraph, {n, d} ⊆ N.

• If G is generalized chordal, then so is H=G
⋃
Kd
j
Kd
i , for 0 ≤ j < i.

• If G is generalized chordal and E ⊆ V(G), |E| = d, is such that E has
non-empty intersection with some edge of G and at least one element of(
E
d−1

)
is not a subset of any edge of G, then G ∪ E is generalized chordal.

Remark 3.3.2. The hypergraph in Example 9 is generalized chordal.

Remark 3.3.3. It is clear that every chordal hypergraph is also a generalized
chordal hypergraph. Furthermore, for d = 2 chordal graphs and generalized
chordal graphs are the same.
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Theorem 3.3.4. Let H be a generalized chordal hypergraph and k a field of
arbitrary characteristic. Then the Stanley–Reisner ring k[∆H] has linear reso-
lution.

Proof. We consider the three instances of Definition 4.1 one at a time. IfH ∼= Kd
n

we are done, since if n ≥ d we have a simplex so the situation is trivial, and if
n < d the claim is proved for example in Theorem 2.6.3. So, we may assume
H 6∼= Kd

n. Let H = G ∪Kd
j
Kd
i , 0 ≤ j < i, where G is generalized chordal. Let C

and B be the simplices determined by Kd
j and Kd

i , respectively, and consider
the complex ∆′H = ∆G

⋃
B. Note that ∆G ∩ B = C, B 6= C. We first show

that ∆′H has linear resolution. For every V ⊆ V(H), we have an exact sequence
of chain complexes

0→ C̃.(CV ; k)→ C̃.((∆G)V ; k)⊕ C̃.(BV ; k)→ C̃.((∆′H)V ; k)→ 0.

By induction, via Hochster’s formula, we know that (∆G)V can have non-zero
homology only in degree d− 2. But then, since both BV and CV are simplices
and accordingly have no homology at all, by considering the Mayer–Vietoris
sequence we conclude that the only possible non-zero homologies of (∆′H)V lies
in degree d− 2.

Note that it is not in general true that ∆H = ∆′H. In fact, this holds only
when d = 2. However, the difference between the two complexes is easy to
understand, and we may use the somewhat easier looking ∆′H to show that ∆H
has linear resolution as well.

To this end, let Γ be the (d − 2)-skeleton of the full simplex on vertex set
V(H). Then one sees that

∆H = ∆′H ∪ Γ.

The (d − 2)-faces that we add to ∆′H to obtain ∆H can certainly not cause
any homology in degrees greater than d − 2, that did not already exist in ∆′H.
Indeed, suppose

∑
i aiσi is a cycle in a degree r > d− 2, where ai ∈ k and the

σi’s are faces of ∆H of dimension r. Since every face σi actually lies in ∆′H, it
follows that

∑
i aiσi is a cycle also in ∆′H. Thus, if ∆′H has linear resolution, so

does ∆H.
Finally, let H = G ∪E. Let {F1, . . . , Ft} be the set of elements of

(
E
d−1

)
that

are not subsets of any edge of G. Note that ∆H = ∆G ∪ E. Take V ⊆ V(H).
If E 6⊆ V , then (∆H)V = (∆G)V , so, by induction we conclude that the only
possible non-zero homologies of (∆H)V lies in degree d − 2. Hence we may
assume that E ⊆ V . Then we have an exact sequence

0→ C̃.((∆G ∩ E)V ; k)→ C̃.((∆G)V ; k)⊕ C̃.(EV ; k)→ C̃.((∆H)V ; k)→ 0.

Note that EV is a simplex so it has zero homology, and, by induction, we know
that k[∆G ] has linear resolution. Using Hochster’s formula, we may conclude
that H̃d−1((∆G)V ; k) = 0. Hence, the Mayer–Vietoris sequence obtained from
the above exact sequence looks as follows:

0→ H̃d−1((∆H)V ; k)→
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H̃d−2((∆G ∩ E)V ; k)→ H̃d−2((∆G)V ; k)→ H̃d−2((∆H)V ; k)→ 0.

Let z =
∑
j ajσj be an element in Zd−1((∆H)V ; k), where σ1 = E. Consider

the expression for the derivative of this cycle

0 = d(z) = · · ·+
t∑
i=1

±a1Fi + · · · .

Since
∑t
i=1±a1Fi only can come from d(E), we conclude that a1 = 0. Hence

z ∈ Zd−1((∆G)V ; k), and, using Hochster’s formula, we may conclude that the
Stanley–Reisner ring of ∆H has linear resolution.

Corollary 3.3.5. Let H be a generalized chordal hypergraph and k a field of
arbitrary characteristic. Then the Stanley–Reisner ring k[∆∗H] of the Alexander
dual complex ∆∗H is Cohen–Macaulay.

Proof. This follows by the Eagon–Reiner theorem.

Corollary 3.3.6. Theorem 3.3.4 and Corollary 3.3.5 in particular applies to
triangulated and triangulated* hypergraphs, and also to hypergraphs that have
perfect elimination orders.

As mentioned in Section 3.2 we have

Theorem 3.3.7. If H is a chordal hypergraph, then I∆H has linear quotients.

Proof. This is proved in [27, Theorem 4.3] and also follows from Woodroofe’s
stronger result [70, Proposition 6.13].

Remark 3.3.8. Observe that this improves Theorem 3.3.4 in the case of chordal
hypergraphs.

Corollary 3.3.9. A graph G is chordal if and only if I∆G has linear quotients.

Proof. The fact that the ideal I∆G has linear quotients follows from the theorem.
Assume I∆G has linear quotients. Then it has linear resolution and thus by
Fröberg’s theorem, Theorem 3.0.6, G is chordal.

In [39] Fröberg considers a class of chordal graphs called n-trees.

Definition 3.3.10. An n-tree is a chordal graph defined inductively as follows:

• Kn+1 is a n-tree.

• If G is a n-tree, then so is H=G
⋃
Kn

Kn+1. (We attach Kn+1 to G in a
common (under identification) Kn)

Now, consider the corresponding subclass Td of the class of chordal hyper-
graphs. That is, Td is the class of chordal hypergraphs described as follows:

• Kd
n+1 belongs to Td.
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• If G belongs to Td, then so does H=G
⋃
Kd
n
Kd
n+1. (We attach Kd

n+1 to G
in a common (under identification) Kd

n.)

We get the following results:

Theorem 3.3.11. For any hypergraph H in Td, the clique complex ∆H is pure
shellable and hence Cohen–Macaulay.

Proof. The proof is by induction. If H = Kd
n+1, then ∆H is a simplex and

pure shellable. Let H = G ∪Kd
n
Kd
n+1 and F1 < · · · < Fr be a shelling for ∆G .

Then ∆H = 〈F1, . . . , Fr, Fr+1〉, where Fr+1 = V(Kd
n+1). Let V(Kd

n) = L. Then
L ⊆ Fi for some 1 ≤ i ≤ r. We claim that F1 < · · · < Fr < Fr+1 is a shelling
for ∆H. Let Fr+1 = L ∪ {v}. Then for any j ≤ r, one has v ∈ Fr+1 r Fj and
Fr+1 r Fi = {v}.

Corollary 3.3.12. For any d-tree G, the clique complex ∆G is pure shellable
and hence Cohen–Macaulay.

In the proof of the following proposition, we will use the fact that the com-
plexes ∆(Kd

n) are shellable.

Proposition 3.3.13. Let H = Kd
m ∪Kd

j
Kd
i , m ≥ d. Then I(H) has linear

quotients precisely when

(i) i < d, or

(ii) i ≥ d, and j = m− 1 (or symmetrically j = i− 1).

Proof. Put A = V(H) r V(Kd
m) and B = V(H) r V(Kd

i ). We show that the
Alexander dual complex ∆(H)∗ is shellable precisely in the cases mentioned
above. Assume that F ′1 < · · · < F ′t is a shelling of ∆(Kd

m)∗. For i ∈ {1, . . . , t},
set Fi = F ′i ∪A . In case (i) the sequence F1 < · · · < Ft is a shelling of ∆(H)∗.

In case (ii) we give a shelling when i ≥ d and j = m− 1. The case j = i− 1
is similar. Construct sets Fi as above, put V(Kd

m) r V(Kd
j ) = {v}, and let

G′1 < · · · < G′s be a shelling of ∆(Kd
i )∗. Set Gi = G′i ∪ B for i ∈ {1, . . . , s}. It

is easy to see that the set of facets of ∆(H)∗ is {Fi}ti=1 ∪ {Gj}sj=1. We claim
that the ordering G1 < · · · < Gs < F1 < · · · < Ft is a shelling of ∆(H)∗. Let
Gi < Fj , where Gi = V(H) r E1 and Fj = V(H) r E2 for some edges E1 of
Kd
i and E2 of Kd

m. Let E1 = {w1, . . . , wd} and E2 = {v, v1, . . . , vd−1}, where
{v1, . . . , vd−1} ⊆ V(Kd

j ). Then there exists 1 ≤ l ≤ d such that wl ∈ FjrGi. Set
E3 = {wl, v1, . . . , vd−1}, then V(H)rE3 = Gk for some k and Fj rGk = {wl}.

Now, assume (i) and (ii) do not hold. Then i ≥ d, m− j ≥ 2 and i− j ≥ 2.
We first claim that if j ≤ d − 2, there is no shelling: Consider the intersection
Gj ∩ Fi (with the same notation as above). The two facets here correspond to
two edges in H, one from Kd

m and one from Kd
i . These two edges can at most

have j elements in common. Hence, by considering the set complements of these
edges we realize that the two facets can at most have |V(H)| − d− 2 vertices in
common. This shows that no ordering of the Fi’s and the Gj ’s can be a shelling,
since dimFi = dimGj = V(H)− d− 1 for every i ∈ {1, . . . , t}, j ∈ {1, . . . , s}.
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So, we assume j ≥ d−2. Let {v1, v2} ⊆ V(Kd
m)rV(Kd

j ), {w1, w2} ⊆ V(Kd
i )r

V(Kd
j ) and {u1, . . . , ud−2} ⊆ V(Kd

j ). To finish the proof by contradiction, we
assume ∆(H)∗ is shellable. Consider the edges E1 = {u1, . . . , ud−2, v1, v2} and
E2 = {u1, . . . , ud−2, w1, w2}. Then Hi = V(H) r Ei for i ∈ {1, 2} are facets of
∆(H)∗. Without loss of generality may assume H1 < H2. Hence there exists
vertex v ∈ H2rH1 and facet H3 such that H2rH3 = {v}. Let H3 = V(H)rE3

for some edge E3. Since H2rH1 = {v1, v2}, we have v = v1 or v = v2. Therefore
v ∈ E3 so E3 ⊆ V(Kd

m). Thus {w1, w2} ⊆ H3 which is a contradiction since
|H3| = |H2|.

We end this section with a result on the diameter of the complement of a
chordal graph. Recall that the diameter of a connected graph G is defined as

diam(G) = max{dist(u, v) ; u, v ∈ V(G)},

where dist(u, v) is the number of edges in a shortest path between u to v. If G
is not connected we set the diameter to be ∞.

Proposition 3.3.14. Let G be a connected chordal graph. Then the diameter
of the complementary graph Gc is at most 3.

Proof. If diam(Gc) > 3 we find vertices u and v with dist(u, v) = 4. Hence there
are vertices {v1, v2, v3} such that the induced graph of Gc on {u, v1, v2, v3, v} is
the path uv1, v1v2, v2v3, v3v. The graph complement of Gc{u,v1,v2,v3,v} contains
a 4-cycle without any chord. This contradiction gives our result.

3.4 d-uniform hypergraphs and Quasi-Forests

It is known that a certain class of simplicial complexes, called quasi-trees (see
definition below), and chordal graphs, in a sense contain the same information.

The following lemma is basically [49, Lemma 3.1].

Lemma 3.4.1. Let ∆ be a simplicial complex. Then ∆ is a quasi-forest precisely
when ∆ = ∆G for some chordal graph G.

In this section we will see that there is a close connection also between
quasi-trees and the class of chordal hypergraphs.

Definition 3.4.2 (Faridi, [29], Zheng, [71]). Let ∆ be a simplicial complex. A
sub-collection Γ, of ∆, is a sub-complex of ∆ such that F(Γ) ⊆ F(∆). A facet
F of ∆ is called a leaf if either F is the only facet of ∆, or there exists a facet
G in ∆, G 6= F , such that F ∩H ⊆ F ∩G for any facet H in ∆, H 6= F .
Assume ∆ is connected. Then ∆ is called a tree if every sub-collection of ∆
has a leaf, and ∆ is called a quasi-tree if there exists an order F1, . . . , Ft of the
facets of ∆ such that for each i ∈ {1, . . . , t}, Fi is a leaf of the simplicial complex
〈F1, . . . , Fi〉. The order F1, . . . , Ft is called a leaf order. A simplicial complex
with the property that every connected component is a (quasi-)tree is called a
(quasi-)forest.
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Remark 3.4.3. A tree is clearly a quasi-tree, but the converse need not hold.
Consider the quasi-tree

∆ = 〈{a, b, c}, {b, c, d}, {c, d, e}, {b, d, f}〉.

One sees that the sub-complex 〈{a, b, c}, {c, d, e}, {b, d, f}〉 has no leaf.

Let ∆ be a simplicial complex. Denote by Rd(∆) the simplicial complex
obtained from ∆ by removing every facet F with 1 ≤ dimF ≤ d − 2, and
all faces G ⊆ F , with 1 ≤ dimG ≤ dimF , that are not faces of some facet
of dimension greater than d − 2. Conversely, denote by Ad(∆) the simplicial
complex obtained from ∆ by adding, as a facet, every face of dimension d − 2
that is not already in the complex.

Lemma 3.4.4. Let ∆H and ∆G be the clique complexes of a d-uniform hyper-
graph H, and a graph G, respectively. Then the following holds:

• Ad(Rd(∆H)) = ∆H

• Rd′(Ad′(∆G)) = ∆G for all d′ < min{dimF ;F facet in ∆G}.

Proof. This follows immediately from the definition of clique complex.

Lemma 3.4.5. Let H = G ∪Kd
j
Kd
i be a chordal hypergraph. If i < d (that is

Kd
i is consists of i isolated vertices), we may exchange the attaching of Kd

i to
Kd
j , with i− j attachings of the form

H′ = G′ ∪Kd
0
Kd

1

Proof. This is clear, since either way, we are just adding a number of isolated
vertices.

Proposition 3.4.6. Let H be a d-uniform chordal hypergraph, and let G be a
chordal graph. Then the following holds:

(i) Rd(∆H) is the clique complex of a chordal graph.

(ii) Ad′(∆G) is, for any d′, the clique complex of a d′-uniform chordal hyper-
graph.

Proof. A chordal hypergraph H may, according to its inductive construction,
be represented by a sequence of pairs of d-complete hypergraphs

(Kd
0 ,K

d
i1), . . . , (Kd

jt ,K
d
it),

where in each step of the construction of H, Kd
is

is attached to Kd
js

. We assume
that in the construction of H, Lemma 3.4.5 has been used if necessary. Then
every d-complete hypergraph in the sequence (Kd

0 ,K
d
i1

), . . . , (Kd
jt
,Kd

it
) yields

a complete graph, and, by considering the facets, it is clear that Rd(∆H) is
the complex of the chordal graph that is represented by the sequence of pairs
(K0,Ki1), . . . , (Kjt ,Kit). This proves (i).
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Now let (K0,Kj1), . . . , (Kjt ,Kit) denote a chordal graph G. If d′ − 2 ≥
dim ∆G , then the claim (ii) is trivial, so we assume d′ − 2 < dim ∆G . It is
obvious that Ad′(∆G) will be the complex of a d′-uniform hypergraph H, since
every minimal non-face has dimension d′ − 1. We now show that H is chordal.
We do this by constructing a sequence of pairs (Kd

0 ,K
d
i1

), . . . , (Kd
jr
,Kd

ir
), r ≥ t,

from the sequence (K0,Ki1), . . . , (Kjt ,Kit), and showing that this sequence
actually defines H.

First note that if is ≥ d′, a complete graph Kis immediately yields a d′-
complete hypergraph Kd′

is
. For such is, we get a pair (Kd′

js
,Kd′

is
), corresponding

to the pair (Kjs ,Kis) in the sequence representing G. If is < d′, we may
instead associate to the pair (Kjs ,Kis) a sequence of “trivial pairs”, as in Lemma
3.4.5. Continuing in this way, we obtain a sequence (Kd

j1
,Kd

ii
), . . . , (Kd

jr
,Kd

ir
),

representing a d′-uniform chordal hypergraph H′.
The d′-uniform chordal hypergraph that correspond to the constructed se-

quence yields the same complex as H, and hence we conclude that they must
be the same.

Corollary 3.4.7. To every chordal hypergraph H we may associate a quasi-
forest ∆, and vice versa.

Proof. If ∆ is a quasi-forest, then ∆ = ∆G for some chordal graph ([49, Lemma
3.1]). Then, according to the proposition, we may associate to ∆ the chordal
hypergraph H whose clique complex is the complex Ad′(∆G) in the proposition.
Conversely, given a chordal hypergraphH we may associate to it the quasi-forest
Rd(∆H) from the proposition.
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Chapter 4

Componentwise linearity of
ideals arising from graphs

Let G be a simple graph on n ∈ N vertices. Francisco and Van Tuyl have
shown that if G is chordal, then I(G)∗ =

⋂
{xi,xj}∈E(G)(xi, xj) is componentwise

linear. It is natural to ask for which tij > 1 the ideal
⋂
{xi,xj}∈E(G)(xi, xj)

tij

is componentwise linear, if G is chordal. We show that
⋂
{xi,xj}∈E(G)(xi, xj)

t

is componentwise linear for all n ≥ 3 and positive t, if G is a complete graph.
We give also an example where G is chordal, but the intersection ideal is not
componentwise linear for any t > 1.

4.1 Intersections for complete graphs

For a graded ideal I in a polynomial ring we denote by I〈d〉 the ideal generated
by the elements of degree d that belong to I. In [47] Herzog and Hibi defined I
to be componentwise linear if I〈d〉 has a linear resolution for all d.

Here we examine componentwise linearity of ideals arising from complete
graphs and of the form ⋂

{xi,xj}∈E(G)

(xi, xj)
t.

Let Kn be a complete graph on n vertices. We write

K(t)
n =

⋂
{xi,xj}∈E(Kn)

(xi, xj)
t.

We will show that the ideal K
(t)
n is componentwise linear for all n ≥ 3 and t ≥ 1.

Recall that a vertex cover of a graph G is a subset A ⊂ V(G) such that every
edge of G is incident to at least one vertex of A. It is not hard to show that
I(G)∗ = (xi1 · · ·xik | {xi1 , . . . , xik} a vertex cover of G). A t-vertex cover (or a
vertex cover of order t) of G is a vector a = (a1, . . . , an) with ai ∈ N such that
ai + aj ≥ t for all {xi, xj} ∈ E(G).
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In the proof of the theorem below, we use the following proposition.

Proposition 4.1.1 (Proposition 2.6 in [31] and Lemma 4.1 in [12]). If I is a
homogeneous ideal with linear quotients, then I is componentwise linear.

Theorem 4.1.2. The ideal K
(t)
n is componentwise linear for all n ≥ 3 and

t ≥ 1.

Proof. For calculating an explicit generating system of K
(t)
n we will use t-vertex

covers. Pick any monomial m in the generating set of K
(t)
n and, for some k and

l, consider the greatest exponents tk and tl such that xtkk x
tl
l is a factor in m. As

m is contained in (xk, xl)
t we must have tk + tl ≥ t. Hence, K

(t)
n is generated

by the monomials of the form xa, where a is a t-cover of Kn. That is, the sum

of the two lowest exponents in every (monomial) generator of K
(t)
n is at least t.

First we assume that t = 2m+ 1 is odd. Considering the minimal monomial
generators (t-covers) we get

K
(t)
n = K

(2m+1)
n =

(
xm1
∏
i6=1 x

m+1
i , . . . , xmn

∏
i 6=n x

m+1
i ,

xm−1
1

∏
i6=1 x

m+2
i , . . . , xm−1

n

∏
i6=1 x

m+2
i ,

...∏
i 6=1 x

2m+1
i , . . . ,

∏
i6=n x

2m+1
i

)
.

The generators of the ideal are ordered, increasing from left to right, using the
degree lexicographic ordering with x1 ≺ x2 ≺ · · · ≺ xn. This ordering yields

linear quotients and hence K
(t)
n is componentwise linear by Proposition 4.1.1.

If t = 2m is even we get instead

K
(t)
n = K

(2m)
n =

(∏2m
i=1 x

m
i , xm−1

1

∏
i6=1 x

m+1
i , . . . , xm−1

n

∏
i6=n x

m+1
i ,

xm−2
1

∏
i6=1 x

m+2
i , . . . , xm−2

n

∏
i 6=1 x

m+2
i ,

...∏
i6=1 x

2m
i , . . . ,

∏
i 6=n x

2m
i

)
,

which also yields linear quotients.

Example 10.

K
(5)
12 =

(
{x2

j

∏
i6=j

x3
i }1≤j≤12, {xj

∏
i 6=j

x4
i }1≤j≤12, {

∏
i6=j

x5
i }1≤j≤12

)
and

K
(6)
5 =

( 5∏
i=1

x3
i , {x2

j

∏
i 6=j

x4
i }1≤j≤5, {xj

∏
i6=j

x5
i }1≤j≤5, {

∏
i 6=j

x6
i }1≤j≤5

)
.
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Remark 4.1.3. A monomial ideal is called polymatroidal if it is generated in one
degree and its minimal generators satisfy a certain ”exchange condition”. In [52]
Herzog and Takayama show that polymatroidal ideals have linear resolutions.
Later Francisco and Van Tuyl proved, [31, Theorem 3.1], that some families of
ideals I are componentwise linear by showing that I〈d〉 is polymatroidal for all
d.

The ideals K
(t)
n are also polymatroidal, but proving this using the same

techniques as in the proof of [31, Theorem 3.1] is rather tedious.

4.2 A Counterexample

Claim 1. There exists a chordal graph G such that
⋂
{xi,xj}∈E(G)(xi, xj)

t is not
componentwise linear for any t > 1.

Proof. Let G be the chordal graph

b

a d

c

and denote the intersection (a, b)t ∩ (a, c)t ∩ (b, c)t ∩ (b, d)t ∩ (c, d)t by I(t). We
have

I(1) = (bc) + (abd, acd)

and
I(2) = (b2c2, abcd) + (a2b2d2, a2c2d2).

Considering the t-covers in the same way as we did for K
(t)
n we see the

following:
If ta ≤ b t2c then tb = t − ta = tc (the sum tb + tc ≥ t automatically) and

td = t− tb = t− tc = ta. Thus, we get the set of minimal generators of degree
2t: {

ai(bc)t−idi
}

0≤i≤b t2 c
.

If ta > b t2c, then either tb = t− ta and tc = t− tb = ta, or tc = t− ta and tb = ta.
Further td = ta. The set of minimal generators we get in this way is equal to{

(acd)ibt−i
}
b t2 c<i≤t

∪
{

(acd)ibt−i
}
b t2 c<i≤t

.

The generators in this set are of degree at least (2t+ 1) for odd t and of degree
at least (2t+ 2) for even t.

Now consider the minimal free resolution F . of (I(t))〈2t〉. Since F . is con-

tained in any free resolution G. of (I(t))〈2t〉 we have that if F1 (the component
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of F . in homological degree 1) has a non-zero component in a certain degree,
then so do G1. Let G. be the Taylor resolution of (I(t))〈2t〉. The degrees in
which G1 has non-zero components come from least common mutliples of pairs
of minimal generators of (I(t))〈2t〉. By considering the above description of the
minimal generators in degree 2t, one sees that G1 has non-zero components only
in degrees strictly larger than 2t+ 1. Thus F . cannot be a linear resolution and
hence, I(t) is not componentwise linear.
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Chapter 5

Hypercycles and Line
Hypergraphs

In [54] Jacques computes the Betti numbers of the graph algebras for graphs
that are lines and cycles. In this chapter we define line hypergraphs Ld,αn and
hypercycles Cd,αn and compute the Betti numbers of their hypergraph algebras.

5.1 Hypercycles and Line Hypergraphs

Definition 5.1.1. Let V be a finite set and α and d positive integers such that
d ≥ 2α. The line hypergraph Ld,αn on vertex set V is the d-uniform hypergraph
with edge set E(Ld,αn ) = {E1, . . . , En} such that

(i) V(Ld,αn ) =
⋃n
i=1Ei.

(ii) For any 0 ≤ i < j ≤ n, Ei
⋂
Ej 6= ∅ if and only if j = i+ 1.

(iii) |Ei
⋂
Ei+1| = α for all i ∈ {1, . . . , n− 1}.

The length of a line hypergraph is defined as the number of edges.

Example 11. Every line hypergraph Ld,αn is a chordal hypergraph since it may
be written as

Ld,αn = Kd
d ∪Kd

α
Kd
d ∪Kd

α
Kd
d ∪Kd

α
· · · ∪Kd

α
Kd
d ∪Kd

α
Kd
d .

Definition 5.1.2. Let V be a finite set and α and d positive integers such that
d ≥ 2α. The hypercycle Cd,αn on vertex set V is the d-uniform hypergraph with
edge set E(Cd,αn ) = {E1, . . . , En} such that

(i) V(Cd,αn ) =
⋃n
i=1Ei.

(ii) For any i 6= j we have Ei
⋂
Ej 6= ∅ if and only if |j − i| ≡ 1 mod n.
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(iii) |Ei
⋂
Ei+1| = α for all i ∈ {1, . . . , n− 1} and |E1

⋂
En| = α.

The length of a hypercycle is defined as the number of edges.

Remark 5.1.3. Hypercycles are generalized chordal hypergraphs but not chordal
hypergraphs. Thus a chordal hypergraph can not contain any induced hypercy-
cle Cd,αn .

Remark 5.1.4. For d = 2 Definition 5.1.1 and Definition 5.1.2 give the usual
concepts of a line graph and a cycle graph.

5.1.1 Betti numbers of Line Hypergraphs

Recall that a free vertex of a hypergraph is a vertex that lies in at most one
edge.

If each edge of a hypergraph H contains a free vertex it is particularly easy
to compute the Betti numbers of the corresponding hypergraph algebra.

Lemma 5.1.5. Let H be a hypergraph such that each edge of H contains a free
vertex. Then βi(k[∆(H)]) =

(
n
i

)
, where n is the number of edges of H.

Proof. Let E(H) = {E1, . . . , En} and vi ∈ Ei, 1 ≤ i ≤ n, be a free vertex. Then,
for any j, 1 ≤ j ≤ n,

xEj - lcm(xE1 , . . . , xEj−1 , xEj+1 , . . . , xEn)

since
vj /∈

⋃
i6=j

Ei∈E(H)

Ei.

Therefore the Taylor resolution (see [6]) of k[∆(H)] is minimal and βi(k[∆(H)]) =(
n
i

)
.

It is now easy to give a combinatorial interpretation of the graded Betti
numbers:

Theorem 5.1.6. Let H be a hypergraph with E(H) = {E1, . . . , En} such that
each edge has a free vertex. Then

βi,j(k[∆(H)]) =
∣∣∣{F ⊆ [n] ; |F | = i, |

⋃
k∈F

Ek| = j}
∣∣∣.

Proof. Since each edge of H has a free vertex, it is enough to find the number
of basis elements ek1,...,ki of degree j in the Taylor resolution of k[∆(H)] that
sits in homological degree i. We have deg(ek1,...,ki) = deg(lcm(xEk1 , . . . , xEki )).

Since all xEkl ’s are square-free, deg(lcm(xEk1 , . . . , xEki )) = |
⋃i
l=1Ekl |, which

completes the proof.

44



Corollary 5.1.7. Let Ld,αn be a line hypergraph such that d > 2α. Then

βn,j(k[∆(Ld,αn )]) =

{
0 if j 6= n(d− α) + α
1 if j = n(d− α) + α.

Proof. Since d > 2α, each edge has a free vertex. Thus by Theorem 5.1.6,

βn,j(k[∆(Ld,αn )]) =
∣∣∣{F ⊆ [n] ; |F | = n, |

⋃
k∈F

Ek| = j}
∣∣∣.

Therefore it equals 1 if j = |
⋃n
i=1Ei| and 0 if j 6= |

⋃n
i=1Ei|. Since |

⋃n
i=1Ei| =

n(d− α) + α, the assertion holds.

We now continue towards a formula for all Betti numbers in the case when
d > 2α.

For i ∈ {1, . . . , r} let si be positive integers and let Ld,αn be a line hypergraph
of length n. Set E(s1, . . . , sr, n) = {H ; H is a sub-hypergraph of Ld,αn , which
is comprised of r disjoint line hypergraphs of lengths s1, . . . , sr}. Thus if H ∈
E(s1, . . . , sr, n) H have no isolated vertices.

Lemma 5.1.8. Let s1, . . . , sr be positive integers such that 1 ≤ s1 = · · · = sl1 <
sl1+1 = · · · = sl1+l2 < sl1+l2+1 = · · · = sl1+l2+l3 < · · · < sl1+···+lt−1+1 = · · · =
sl1+···+lt = sr and s1 + · · ·+ sr = i, then

|E(s1, . . . , sr, n)| = r!

l1! · · · lt!

(
n− i+ 1

r

)
.

Proof. Let Ld,αn be a line hypergraph of length n and S be the set of hypergraphs
H ∈ E(s1, . . . , sr, n) such that H is comprised of line hypergraphs Q1, . . . , Qr
such that the length of Qi is si and for any 1 ≤ i < j ≤ r, if vλ ∈ V(Qi) and
vγ ∈ V(Qj), then λ < γ. By basic counting arguments one sees that

|E(s1, . . . , sr, n)| = r!

l1! · · · lt!
|S|. (5.1)

We claim that there is a bijection between S and the set of integer solutions
(t1, . . . , tr+1) to the equation

r+1∑
l=1

tl = n− i,

subject to the conditions t1 ≥ 0, tr+1 ≥ 0 and ti ≥ 1 for i ∈ {2, . . . , r}. For
any H ∈ S, let H′ be the sub-hypergraph of Ld,αn with edge set E(Ld,αn ) r E(H)
considered as a line hypergraph. Assume H′ is comprised of l line hypergraphs
Q′1, . . . , Q

′
l such that for any 1 ≤ i < j ≤ l, if vλ ∈ V(Q′i) and vγ ∈ V(Q′j),

then λ < γ. We have r − 1 ≤ l ≤ r + 1. Set vH = (t1, . . . , tr+1) where the ti,
1 ≤ i ≤ r + 1, are as follows:

(i) If l = r − 1, set t1, tr+1 = 0 and ti = |E(Q′i−1)| for any 2 ≤ i ≤ r.
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(ii) If l = r and v0 ∈ V(Q1), set t1 = 0 and ti = |E(Q′i)| for any 2 ≤ i ≤ r+ 1.

(iii) If l = r and v0 ∈ V(Q′1), set tr+1 = 0 and ti = |E(Q′i)| for any 1 ≤ i ≤ r.

(iv) If l = r + 1, set ti = |E(Q′i)| for any 1 ≤ i ≤ r + 1.

Observe that
∑r+1
k=1 tk =

∑l
k=1 |E(Q′k)| = n− i. We define a function

φ : S −→ {(t1, . . . , tr+1), t1, tr+1 ≥ 0, t2, . . . , tr ≥ 1,

r+1∑
l=1

tl = n− i}

by φ(H) = vH. It is easy to see that φ is a bijection and hence

|S| =
(
n− i+ 1

r

)
.

Thus by equation (5.1) |E(s1, . . . , sr, n)| = r!
l1!···lt!

(
n−i+1
r

)
.

Theorem 5.1.9. Let i < n be a positive integer and let Ld,αn be a line hypergraph
such that d > 2α. Then

βi,id−α(i−r)(k[∆(Ld,αn )]) =

(
i− 1

r − 1

)(
n− i+ 1

r

)
for any r ∈ {1, . . . , i} and βi,j(k[∆(Ld,αn )]) = 0 for all other degrees j.

Proof. Let i < n and j be integers such that βi,j(k[∆(Ld,αn )]) 6= 0. Since d > 2α,
each edge has a free vertex. Thus as was shown in Theorem 5.1.6,

βi,j(k[∆(Ld,αn )]) =
∣∣∣{F ⊆ [n] ; |F | = i, |

⋃
k∈F

Ek| = j}
∣∣∣.

Let El1 , . . . , Eli be some edges of Ld,αn such that |
⋃i
t=1Elt | = j and let H be

the line sub-hypergraph of Ld,αn with edge set {El1 , . . . , Eli} and assume that H
is comprised of r line hypergraphs which are of lengths s1, . . . , sr. Observe that
s1 + · · ·+ sr = i. Let Ld,αt , t ∈ {1, . . . , r}, be the corresponding line hypergraph

of length st, so that |V(Ld,αt )| = std− α(st − 1). Therefore

|V(H)| =
r∑
t=1

(std− α(st − 1)) = id− α(i− r)

and so j = id− α(i− r) for some r ∈ {1, . . . , i}. Hence

βi,id−α(i−r)(k[∆(Ld,αn )]) =
∑

1≤s1≤···≤sr
s1+···+sr=i

|E(s1, . . . , sr, n)|

and βi,j(k[∆(Ld,αn )]) = 0 for those j that can not be written in the form id −
α(i − r) for some r. Let l1, . . . , lm be positive integers and P(l1,...,lm) be the
number of integer solutions to the equation

x1 + · · ·+ xr = i

such that
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• xj ≥ 1 for all j ∈ {1, . . . , r}, and

• li components of (x1, . . . , xr) are equal for all i ∈ {1, . . . ,m}.

Then by basic counting arguments∑
m≥1,li≥1

P(l1,...,lm) =

(
i− 1

r − 1

)
.

Also the number of solutions of x1 + · · ·+xr = i such that 1 ≤ x1 = · · · = xl1 <
xl1+1 = · · · = xl1+l2 < xl1+l2+1 = · · · = xl1+l2+l3 < · · · < xl1+···+lm−1+1 =

· · · = xl1+···+lm = xr is equal to P(l1,...,lm)
l1!···lm!
r! . Thus using Lemma 5.1.8 we

see that

βi,id−α(i−r)(k[∆(Ld,αn )]) =
∑

m≥1,li≥1

P(l1,...,lm)
l1! · · · lm!

r!

r!

l1! · · · lm!

(
n− i+ 1

r

)

=
∑

m≥1,li≥1

P(l1,...,lm)

(
n− i+ 1

r

)
=

(
i− 1

r − 1

)(
n− i+ 1

r

)
.

The proof is complete.

The remaining case when d = 2α reduces to the graph case found in [54].

Theorem 5.1.10. Let Ld,αn be a line hypergraph such that d = 2α. Then the
non-zero Betti numbers of k[∆(Ld,αn )] are in degrees jα, where 2j ≥ i, and are
as follows:

βi,jα(k[∆(Ld,αn )]) =

(
j − i
2i− j

)(
n+ 1− 2j + 2i

j − i

)
+

(
j − i− 1

2i− j

)(
n+ 1− 2j + 2i

j − i− 1

)
.

Proof. Let E(Ld,αn ) = {E1, . . . , En}, where Ei = {x1,i, . . . , xd,i}. Set Xi =
x1,i · · ·xα,i and Xi+1 = xα+1,i · · ·xd,i for any i, 1 ≤ i ≤ n. Here {xα+1,i · · ·xd,i}
are, for every i ∈ {1, . . . , n−1}, the vertices in the intersection Ei∩Ei+1. Then
I(Ld,αn ) = (X1X2, . . . , XnXn+1). Since the Xi’s are independent variables and
deg(Xi) = α, we have

βi,jα(k[∆(Ld,αn )]) = βi,j(R/(X1X2, . . . , XnXn+1)),

where R is the polynomial ring over k in the variables {X1, . . . , Xn+1}. The
result now follows, using Theorem 7.7.34 of [54].

5.1.2 Betti numbers of Hypercycles

We start with the following observation similar to Corollary 5.1.7.

Corollary 5.1.11. Let Cd,αn be a hypercycle such that each edge has a free
vertex. Then

βn,j(k[∆(Cd,αn )]) =

{
0 if j 6= n(d− α)
1 if j = n(d− α).
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Proof. By Theorem 5.1.6,

βn,j(k[∆(Cd,αn )]) =
∣∣∣{F ⊆ [n] ; |F | = n, |

⋃
k∈F

Ek| = j}
∣∣∣.

Therefore it is equal to 1 if j = |
⋃n
t=1Et| and 0 if j 6= |

⋃n
t=1Et|. Since

|
⋃n
t=1Et| = n(d− α), the assertion holds.

We compute the Betti numbers of the hypergraph algebra of Cd,αn in the
same manner as we did for Ld,αn in the previous section. That is, we consider
the two cases d > 2α and d = 2α separately.

For i ∈ {1, . . . , r} let si be positive integers and let Cd,αn be a cycle of length
n. Set F (s1, . . . , sr, n) = {H ; H is a sub-hypergraph of Cd,αn , which is comprised
of r disjoint line hypergraphs of lengths s1, . . . , sr}.

Lemma 5.1.12. Let s1, . . . , sr be positive integers such that s1 = · · · = sl1 <
sl1+1 = · · · = sl1+l2 < sl1+l2+1 = · · · = sl1+l2+l3 < · · · < sl1+···+lt−1+1 = · · · =
sl1+···+lt = sr and s1 + · · ·+ sr = i, then

|F (s1, . . . , sr, n)| = n(r − 1)!

l1! · · · (lt − 1)!

(
n− i− 1

r − 1

)
.

Proof. Let {Ek1 , . . . , Eksr } ⊆ E(Cd,αn ). The number of sub-hypergraphs of Cd,αn
that are comprised of r line hypergraphs Q1, . . . , Qr of lengths s1, . . . , sr with
E(Qr) = {Ek1 , . . . , Eksr } is equal to the number of sub-hypergraphs of Ld,αn−sr−2,
which are comprised of r−1 line hypergraphs of lengths s1, . . . , sr−1. Therefore

|F (s1, . . . , sr, n)| = n|E(s1, . . . , sr−1, n− sr − 2)|,

since the line hypergraph Qr can start from any of the n edges. By Lemma
5.1.8

|E(s1, . . . , sr−1, n− sr − 2)| = (r − 1)!

l1! · · · (lt − 1)!

(
n− i− 1

r − 1

)
,

which completes the proof.

Theorem 5.1.13. Let i < n be a positive integer and let Cd,αn be a hypercycle
such that d > 2α. Then

βi,id−α(i−r)(k[∆(Cd,αn )]) =
n

r

(
i− 1

r − 1

)(
n− i− 1

r − 1

)
for any r ∈ {1, . . . , i} and βi,j(k[∆(Cd,αn )]) = 0 for all other degrees j.

Proof. Let i < n and j be integers such that βi,j(k[∆(Cd,αn )]) 6= 0. Since d > 2α,
each edge has a free vertex. Thus as was shown in Theorem 5.1.6,

βi,j(k[∆(Cd,αn )]) =
∣∣∣{F ⊆ [n] ; |F | = i, |

⋃
k∈F

Ek| = j}
∣∣∣.
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Let El1 , . . . , Eli be some edges of Cd,αn such that |
⋃i
t=1Elt | = j and let H be

the line sub-hypergraph of Cd,αn with edge set {El1 , . . . , Eli} and assume that H
is comprised of r line hypergraphs which are of lengths s1, . . . , sr. Observe that
s1 + · · ·+ sr = i. Let Ld,αt , t ∈ {1, . . . , r}, be the corresponding line hypergraph

of length st so that |V(Ld,αt )| = std− α(st − 1). Therefore

|V(H)| =
r∑
t=1

(std− α(st − 1)) = id− α(i− r)

and so j = id− α(i− r) for some r ∈ {1, . . . , i}. Hence

βi,id−α(i−r)(k[∆(Cd,αn )]) =
∑

1≤s1≤···≤sr
s1+···+sr=i

|F (s1, . . . , sr, n)|

and βi,j(k[∆(Cd,αn )]) = 0 for all j that can not be written in the form id−α(i−r)
for some r ∈ {1, . . . , i}.

Construct the numbers P(l1,...,lm) and P(l1,...,lm)
l1!···lm!
r! in the same way as

in the proof of Theorem 5.1.9. Thus using Lemma 5.1.12 we see that

βi,id−α(i−r)(k[∆(Cd,αn )]) =
∑

m≥1,li≥1

P(l1,...,lm)
l1! · · · lm!

r!

n(r − 1)!

l1! · · · lm!

(
n− i− 1

r − 1

)
=

=
n

r

(
i− 1

r − 1

)(
n− i− 1

r − 1

)
,

and the proof is complete.

Now consider the case where d = 2α. Also this reduces to the graph case in
[54].

Theorem 5.1.14. Let Cd,αn be a hypercycle such that d = 2α. Then the non-
zero Betti numbers of k[∆(Cd,αn )] are in degrees jα, where j ≤ n, and are as
follows:

(i) If j < n and 2i ≥ j, then

βi,αj(k[∆(Cd,αn )]) =
n

n− 2(j − i)

(
j − i
2i− j

)(
n− 2(j − i)

j − i

)
.

(ii) If n ≡ 1 mod 3, then

β 2n+1
3 ,αn(k[∆(Cd,αn )]) = 1.

(iii) If n ≡ 2 mod 3, then

β 2n−1
3 ,αn(k[∆(Cd,αn )]) = 1.
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(iv) If n ≡ 0 mod 3, then

β 2n
3 ,αn

(k[∆(Cd,αn )]) = 2.

Proof. Let E(Cd,αn ) = {E1, . . . , En}, where Ei = {x1,i, . . . , xd,i}. Set Xi =
x1,i · · ·xα,i and Xi+1 = xα+1,i · · ·xd,i for any i, 1 ≤ i ≤ n − 1, where Xi and
Xi+1 denote the same things as they do in the proof of Theorem 5.1.10. Then

I(Cd,αn ) = (X1X2, . . . , Xn−1Xn, XnX1).

Since Xi are independent variables and deg(Xi) = α, we have

βi,jα(k[∆(Cd,αn )]) = βi,j(R/(X1X2, . . . , Xn−1Xn, XnX1))

where R is the polynomial ring over k in the variables {X1, . . . , Xn}. Using
Theorem 7.6.28 of [54], the result follows.

We recall from [54] that a star graph is a complete bipartite graph K1,n for
some n. One generalization of this graph is the d-complete bipartite hypergraph
Kd

1,n. Another way of generalizing the star graph is to focus on its appearance.
The following is a picture of K1,4, here on vertex set {y} t {x1, x2, x3, x4}:

x1 x2

y

x3 x4

Definition 5.1.15. Let V be a finite set and α and d positive integers such
that d ≥ α ≥ 1. The star hypergraph Sd,αn on vertex set V is the d-uniform
hypergraph with edge set E(Sd,αn ) = {E1, . . . , En} such that

(i) V(Sd,αn ) =
⋃n
i=1Ei.

(ii) For any i 6= j, |Ei ∩ Ej | = |
⋂n
j=1Ej | = α.

Remark 5.1.16. If d > α, so that the situation is non-trivial, then each edge
contains a free vertex.

Theorem 5.1.17. Let V be a finite set and let Sd,αn , d > α, be a star hypergraph
on vertex set V. Then βi,j(k[∆(Sd,αn )]) 6= 0 if and only if j = id− α(i− 1) and

βi,id−α(i−1)(k[∆(Sd,αn )]) =

(
n

i

)
.

Proof. For any i and any edges El1 , . . . , Eli , we have |
⋃i
t=1Elt | = id−α(i− 1).

The number of different unions
⋃i
t=1Elt with |

⋃i
t=1Elt | = id − α(i − 1) is(

n
i

)
. Therefore using Theorem 5.1.6, we have βi,j(k[∆(Sd,αn )]) 6= 0 if and only if

j = id− α(i− 1) and βi,id−α(i−1)(k[∆(Sd,αn )]) =
(
n
i

)
.
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5.2 Poincaré series of Hypercycles and Line Hy-
pergraphs

We determine the Poincaré series Pk[∆(H)](t) for line hypergraphs, hypercycles,
and stars hypergraphs. Recall that the Poincaré series of a graded k-algebra
R = k[x1, . . . , xn]/I is PR(t) =

∑∞
i=1 dimk TorRi (k, k)ti. [44] is an excellent

source for results on Poincaré series.

5.2.1 The case d = 2α

We start with the case d = 2α. Let Ei = {xi1, . . . , xiα, x′i1, . . . , x′iα}, where
{x′ij} ∈ Ei+1 and denote by M the set of all binomials xik − xil and x′ik − x′il.
The elements of M form a linear regular sequence (this is proved by Fröberg in
[36]) of length (n+ 1)(α− 1) for the line hypergraph and of length n(α− 1) for
the hypercycle. Factor out by these sequences in k[∆(Ld,αn )] and k[∆(Cd,αn )],
respectively, and denote the results by

k[∆(Ld,αn )]′ = k[x1, . . . , xn+1]/(xα1x
α
2 , x

α
2x

α
3 , . . . , x

α
nx

α
n+1)

and
k[∆(Cd,αn )]′ = k[x1, . . . , xn]/(xα1x

α
2 , x

α
2x

α
3 , . . . , x

α
n−1x

α
n, x

α
nx

α
1 ),

respectively. Then by [44, Theorem 3.4.2 (ii)] we have

Pk[∆(L2α,α
n )](t) = (1 + t)(n+1)(α−1)Pk[∆(L2α,α

n )]′(t)

and
Pk[∆(C2α,α

n )](t) = (1 + t)n(α−1)Pk[∆(C2α,α
n )]′(t).

Now k[∆(L2α,α
n )]′ and k[∆(C2α,α

n )]′ obviously have the same (ungraded)
Poincaré series as the graph algebras

k[∆(Ln)] = k[∆(L2,1
n )] = k[x1, . . . , xn+1]/(x1x2, x2x3, . . . , xnxn+1)

and

k[∆(Cn)] = k[∆(C2,1
n )] = k[x1, . . . , xn]/(x1x2, x2x3, . . . , xn−1xn, xnx1),

respectively.
For a graded k-algebra R = ⊕∞i=0Ri the Hilbert series of R is defined as

HR(t) =
∑∞
i=0 dimk(Ri)t

i. The exact sequence (of k-algebras)

0 −→ (xn+1) −→ k[∆(Ln)] −→ k[∆(Ln)]/(xn+1) −→ 0

and k[∆(Ln)]/(xn+1) ∼= k[∆(Ln−1)] and (xn+1) ∼= k[∆(Ln−2)]⊗ xn+1 · k[xn+1]
gives

Hk[∆(Ln)](t) = Hk[∆(Ln−1)](t) +
t

1− t
Hk[∆(Ln−2)](t). (5.2)
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The exact sequences

0 −→ (x1, xn−1)(−1) −→ k[∆(Cn)](−1)
xn·−→ k[∆(Cn)] −→ k[∆(Ln−2)] −→ 0

and
0 −→ (x1, xn−1) −→ k[∆(Cn)] −→ k[∆(Cn)]/(x1, xn−1) −→ 0

and k[∆(Cn)]/(x1, xn−1) ∼= k[∆(Ln−4)]⊗ k[xn] gives

Hk[∆(Cn)](t) = Hk[∆(Ln−2)](t) +
t

1− t
Hk[∆(Ln−4)](t). (5.3)

Now k[∆(Cn)] and k[∆(Ln)] are (as all graph algebras) Koszul algebras [34,
Corollary 2], so

Pk[∆(Cn)](t) = 1/Hk[∆(Cn)](−t)

and
Pk[∆(Ln)](t) = 1/Hk[∆(Ln)](−t).

Since k[∆(L0)] = k[x1] and k[∆(L1)] = k[x1, x2]/(x1x2), we have

Hk[∆(L0)](t) = 1/(1− t)

and
Hk[∆(L1)](t) = (1 + t)/(1− t).

If we put k[∆(L−1)] = 1 equations (5.2) and (5.3) give the first Hilbert series:

• Hk[∆(L2)](t) = (1 + t− t2)/(1− t)2

• Hk[∆(L3)](t) = (1 + 2t)/(1− t)2

• Hk[∆(L4)](t) = (1 + 2t− t2 − t3)/(1− t)3

• Hk[∆(L5)](t) = (1 + 3t+ t2 − t3)/(1− t)3

• Hk[∆(C3)](t) = (1 + 2t)/(1− t)

• Hk[∆(C4)](t) = (1 + 2t− t2)/(1− t)2

• Hk[∆(C5)](t) = (1 + 3t+ t2)/(1− t)3

• Hk[∆(C6)](t) = (1 + 3t− 2t3)/(1− t)3.

Thus we get

• Pk[∆(L2)](t) = (1 + t)2/(1− t− t2)

• Pk[∆(L3)](t) = (1 + t)2/(1− 2t)

• Pk[∆(L4)](t) = (1 + t)3/(1− 2t− t2 + t3)

• Pk[∆(L5)](t) = (1 + t)3/(1− 3t+ t2 + t3)
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• Pk[∆(C3)](t) = (1 + t)/(1− 2t)

• Pk[∆(C4)](t) = (1 + t)2/(1− 2t− t2)

• Pk[∆(C5)](t) = (1 + t)2/(1− 3t+ t2)

• Pk[∆(C6)](t) = (1 + t)3/(1− 3t+ 2t3).

We collect the results in

Theorem 5.2.1. The Poincaré series of k[∆(Ln)] and k[∆(Cn)] satisfy the
recursion formulas

Pk[∆(Ln)](t) =
(1 + t)Pk[∆(Ln−1)](t)Pk[∆(Ln−2)](t)

(1 + t)Pk[∆(Ln−2)](t)− tPk[∆(Ln−1)](t)

where Pk[∆(L0)](t) = 1 + t and Pk[∆(L1)](t) = (1 + t)/(1− t) and

Pk[∆(Cn)](t) =
(1 + t)Pk[∆(Ln−2)](t)Pk[∆(Ln−4)](t)

Pk[∆(Ln−2)](t) + (1 + t)Pk[∆(Ln−4)](t)
.

Furthermore

Pk[∆(L2α,α
n )](t) = (1 + t)(n+1)(α−1)Pk[∆(Ln)](t)

and
Pk[∆(C2α,α

n )](t) = (1 + t)n(α−1)Pk[∆(Cn)](t).

5.2.2 The case 2α < d

Next we turn to the case 2α < d. Now each edge has a free vertex so by Lemma
5.1.5 the Taylor resolution of the respective hypergraph algebra is minimal.
In that case there is a formula for the Poincaré series in terms of the graded
homology of the Koszul complex [35, Corollary to Proposition 2]: Let R be a
monomial ring for which the Taylor resolution is minimal and denote by KR

the Koszul complex. Then the homology H(KR) is of the form H(KR) =
k[u1, . . . , uN ]/I, where I is generated by a set of monomials of degree 2. Define
a bi-grading induced by deg(ui) = (1, |ui|), where |ui| is the homological degree.
Then PR(t) = (1 + t)e/HR(−t, t), where e is the embedding dimension and
HR(x, y) is the bi-graded Hilbert series of H(KR), see [35].

We begin with the hypercycle. The homology of the Koszul complex (which
computes the Betti numbers) is generated by {zI}, where I = {i, i+1, . . . , j} cor-
responds to a path {Ei, Ei+1, . . . , Ej} in Cd,αn (indices counted modulo n). Thus
there are n generators in all homological degrees < n and one generator in homo-
logical degree n. We have zIzJ = 0 if I ∩ J 6= ∅. Thus the surviving monomials
are of the form m = zI1 · · · zIr , where Ii ∩ Ij = ∅ if i 6= j. Let

∑r
j=1 |Ij | = i. If

the bi-degree of m is (r,
∑r
j=1 |Ij |) then m lies in H(KR)i,di−α(i−r). The graded

Betti numbers are determined in Section 5.1.2. The non-zero Betti numbers are

βi,di−α(i−r)(k[∆(Cd,αn )]) =
n

r

(
i− 1

r − 1

)(
n− i− 1

r − 1

)
, 1 ≤ r ≤ i < n
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and
βn,n(d−α)(k[∆(Cd,αn )]) = 1.

This gives the Poincaré series.
Next we consider the line hypergraph. The homology of the Koszul com-

plex is generated by {zI}, where I = {i, i + 1, . . . , j} corresponds to a path
{Ei, Ei+1, . . . , Ej} in Ld,αn . Thus there are n + 1 − i generators of homologi-
cal degree i. We have zIzJ = 0 if I ∩ J 6= ∅. The graded Betti numbers are
determined in Section 5.1.1. The non-zero Betti numbers are

βi,di−(i−r)α(k[∆(Ld,αn )]) =

(
i− 1

r − 1

)(
n− i+ 1

r

)
, 1 ≤ r ≤ i ≤ n.

The same reasoning as above gives the Poincaré series. We state the results in
a theorem.

Theorem 5.2.2. If 2α < d, then

Pk[∆(Cd,αn )](t) =
(1 + t)n(d−α)

1 +
∑

1≤r≤i<n(−1)r nr
(
i−1
r−1

)(
n−i−1
r−1

)
ti+r − tn+1

,

and

Pk[∆(Ld,αn )](t) =
(1 + t)n(d−α)+α

1 +
∑

1≤r≤i≤n(−1)r
(
i−1
r−1

)(
n−i+1
r

)
ti+r

.

5.3 The Hyperstar

The edge ideal of the star hypergraph is of the form m(m1, . . . ,mn), where m
is a monomial of degree α. Then k[∆(Sd,αn )] is Golod [44, Theorem 4.3.2]. This
means that

Theorem 5.3.1.

Pk[∆(Sd,αn )](t) = (1 + t)|V |/(1−
∑

βit
i+1) = (1 + t)n(d−α)+α/(1−

∑(
n

i

)
ti+1).
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Chapter 6

Connectivity for uniform
hypergraphs

For graphs and simplicial complexes there is a natural notion of being connected.
This property may be described purely in terms of 0-homologies of certain chain
complexes. As we have mentioned, the notion of a connected hypergraph may
be defined in several ways. In this chapter we introduce in a homological fashion
a concept of connected hypergraph.

6.1 Connectivity and depth

Definition 6.1.1. Let H be a d-uniform hypergraph and k be a field. The
connectivity of H over k, con(H), is defined as

con(H) = min{|V | ; V ⊆ [n],dim H̃d−2((∆H[n]rV ; k) 6= 0}.

Definition 6.1.2. Let k be a field. If H is a d-uniform hypergraph with non-
zero connectivity over k, we say that H is homologically connected over k. If
H is homologically connected over every field, we say that H is homologically
connected.

Note that in the case of graphs, this is the usual notion of connectedness.
Also, in terms of homological connectedness, the connectivity of a d-uniform
hypergraph H, is the cardinality of a minimal disconnecting set of vertices.

Proposition 6.1.3. If H is homologically connected over Q, it is homologically
connected over every field k.

Proof. By the Universal Coefficient Theorem we have

H̃i(∆H; k) ∼= H̃i(∆H;Q)⊗ k ⊕ TorZ1 (H̃i−1(∆H), k).

Now if we consider the clique complex ∆H of a non-empty d-uniform hypergraph,
H̃l(∆H; k) = 0 for every l ≤ d− 3 over every field k.
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Proposition 6.1.4. If G is an induced hypergraph of a d-uniform hypergraph
H, such that G is not homologically connected over k, then

β|V(G)|−d+1(k[∆H]) 6= 0

Proof. We will use the fact that (∆H)V = ∆HV . Consider Hochster’s formula
with i = |V(G)| − d+ 1;

β|V(G)|−d+1(k[∆H]) =
∑

V⊆V(H)

dimk H̃|V |−|V(G)|+d−2(∆HV ; k) ≥

dimk H̃d−2(∆V(G); k) > 0.

Corollary 6.1.5. If G is an induced hypergraph of a d-uniform hypergraph H,
such that G is not homologically connected over k, then

|V(G)| − d+ 1 ≤ pd k[∆H] ≤ n,

0 ≤ depth k[∆H] ≤ n− |V(G)|+ d− 1,

where n = |V(H)|.

Proof. It is well know that (Hilbert’s syzygy theorem) n ≥ pdR/I∆H . Fur-
thermore, according to the lemma, β|V(G)|−d+1(H) > 0. This gives the first
assertion. The second follows from the first using the Auslander–Buchsbaum
formula.

Corollary 6.1.6. If H is a d-uniform hypergraph that is not homologically
connected over k, then

n− d+ 1 ≤ pd k[∆H] ≤ n, (6.1)

0 ≤ depth k[∆H] ≤ d− 1, (6.2)

where n = |V(H)|.

If H is a d-uniform hypergraph that is not homologically connected we will
see (Theorem 6.1.10 below) that the left inequality in (6.1) and the right inequal-
ity in (6.2) are in fact both equalities. First, we prove the following theorem,
which connects the depth of the Stanley–Reisner ring k[∆H], with the connec-
tivity of H.

Theorem 6.1.7. Let ∆H be the clique complex of a d-uniform hypergraph H
with |V(H)| = n and put g = depth k[∆H]. Then,

con(H) = g − d+ r + 1,

where r is the minimal number such that βn−g−r,n−g−r+d−1(k[∆H]) 6= 0. That
is, r is the minimal number such that there exists a V ⊆ V(H), |V | = n− (g −
d+ r + 1) with H̃d−2(∆HV ; k) 6= 0
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Remark 6.1.8. If H is a d-uniform hypergraph, recall that the linear strand of a
resolution of k[∆H] is the part of the resolution that is of degrees (i, i+ d− 1).
Note that r = pd k[∆H]−max{i ; βi,i+d−1(k[∆H]) 6= 0}.

Proof. We know that TorRn−g(k[∆H], k) 6= 0, but TorRn−i(k[∆H], k) = 0 for every

i < g. In particular, TorRn−i(k[∆H], k)j = 0 in every degree j if i < g. This gives,

via Hochster’s formula, that H̃|V |−(n−i+1)(∆HV ; k) = 0 for every V ⊆ V(H),

i < g, and that there exists a V ⊆ V(H) such that H̃|V |−(n−g+1)(∆HV ; k) 6= 0.

Let r ≥ 0 be the minimal number such that TorRn−(g+r)(k[∆H], k)j 6= 0 for
j = n − (g − d + r + 1). This is the same thing as saying that there exists a
V ⊆ V(H), |V | = n − (g − d + r + 1), such that H̃d−2(∆HV ; k) 6= 0 but at the
same time, for any V ⊆ V(H), |V | > n− (g − d+ r + 1), the homology of ∆HV
in degree d− 2 is zero. This means precisely that con(H) = g − d+ r + 1.

If in the following corollary H is 2-uniform we get as a special case Lemma
3 in [39].

Corollary 6.1.9. Let H be a d-uniform hypergraph and suppose the length of
the linear strand of k[∆H] is maximal. Then

depth k[∆H] = con(H) + d− 1.

Theorem 6.1.10. Let H be a d-uniform hypergraph with |V(H)| = n. Then H
is not homologically connected over k precisely when

pd k[∆H] = n− d+ 1,

depth k[∆H] = d− 1,

and the length of the linear strand of k[∆H] is maximal.

Proof. We know that n − d + 1 ≤ pd k[∆H] ≤ n. Put pd k[∆H] = n − r,
0 ≤ r ≤ d− 1. Hochster’s formula gives

βn−r(k[∆H]) =
∑

V⊆V(H)

dimk H̃|V |−(n−r)−1(∆HV ; k).

If r ≤ d−2 then |V |− (n−r)−1 ≤ |V |−n+d−3 ≤ d−3. But H̃l(∆HV ; k) = 0
for all l ≤ d− 3 and for all V ⊆ V(H).

The last claim follows from Theorem 6.1.7 since not being homologically
connected is the same thing as having connectivity 0.

Example 12. Since homologically connected and connected are the same things
for an ordinary simple graph G, we have pd k[∆G ] = n − 1 and depth k[∆G ] =
1 for any simple graph G that is not connected. Furthermore, the length of
the linear strand of k[∆G ] is maximal. This special case of Theorem 6.1.10 is
Theorem 4.2.6 in [54].
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Corollary 6.1.11. Let H be a d-uniform hypergraph. If k[∆H] is Cohen–
Macaulay of dimension at least d, then H has non-zero connectivity. Put another
way, the only d-uniform hypergraph H with connectivity 0 such that k[∆H] is
Cohen–Macaulay, is the discrete hypergraph.

Proposition 6.1.12. Let H be a d-uniform hypergraph with |V(H)| = n. Then
the Betti number βn−d+1(k[∆H]) can be non-zero only in degree n. Furthermore,
it determines whether H has non-zero connectivity or not.

Proof. This follows from Hochster’s formula and the fact that βi,j(k[∆H]) = 0
if j < i+ d− 1.

Remark 6.1.13. In the case of ordinary simple graphs it follows from the above
proposition that the number βn−1(k[∆H]) + 1 is the number of connected com-
ponents of G.

Example 13. Let H be the 3-uniform hypergraph on vertex set {a, b, c, d} and
with edge set E(H) = {{a, b, c}, {b, c, d}}. We may visualize H as follows:

b

a d

c

By computing the Betti numbers of k[∆H] one sees that β2(k[∆H]) = 1. If we
add to the edge set the edge {a, b, d}, the resulting hypergraph has non-zero
connectivity.

Example 14. Let H be the 3-uniform hypergraph on vertex set {a, b, c, d, e}
and with edge set E(H) = {{a, b, c}, {c, d, e}}. H is illustrated below:

a d

c

b e

The Betti number β3(k[∆H]) = 4 shows that H has 0 connectivity. If we create
new hypergraphs by, in turn, adding to the edge sets the edges {a, c, d}, {b, c, e}
and {a, b, d}, we do not obtain hypergraphs with non-zero connectivity. If we
finally add the edge {a, b, e} we arrive at a hypergraph with edge set

{{a, b, c}, {c, d, e}, {a, c, d}, {b, c, e}, {a, b, d}, {a, b, e}},

that has non-zero connectivity.
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Example 15. Let H = (Kd
n)c. Then we know that (Theorem 2.2.3)

βi,j(k[∆H]) =

(
n

j

)(
j − 1

d− 1

)
.

Hence H has connectivity 0. This is quite natural since it generalizes the fact
that the discrete graph on n vertices has n =

(
n−1
2−1

)
+ 1 connected components.

Example 16. We have seen that k[∆
K
d(a1,...,at)
n1,...,nt

] has linear minimal free resolu-

tion and projective dimension n−d+1, where n =
∑t
i=1 ni. Hence (K

d(a1,...,at)
n1,...,nt )c

has connectivity 0.

Lemma 6.1.14 ([37], Lemma 7). Let k[∆] be a Stanley–Reisner ring with
dim k[∆] = e and with embedding dimension n. Then k[∆] is Cohen–Macaulay if
and only if H̃i(∆V ; k) = 0 for every i and V ⊆ V(H) such that |V | = n−e+i+2.

Assume H is a d-uniform hypergraph such that k[∆H] has linear resolution.
Since induced complexes ∆HV can only have homology in degree d−2, one gets:

Corollary 6.1.15. Let H be a d-uniform hypergraph with |V(H)| = n. Assume
dim k[∆H] = e and that k[∆H] has linear resolution. Then k[∆H] is also Cohen–
Macaulay if and only if H̃d−2(∆HV ; k) = 0 for every V ⊆ V(H) with |V | =
n− (e− d). Furthermore, in this case we have that

e = con(H) + d− 1.

Proof. The if and only if statement follows from Lemma 6.1.14 and the last
claim follows from Corollary 6.1.9.

59



Chapter 7

A weak version of
shellability

Pure shellable simplicial complexes is somewhat of a cornerstone of combinato-
rial commutative algebra. This is perhaps mostly since they provide a rather
non-technical way of showing that a complex ∆ is Cohen–Macaulay. Also,
shellability may be used together with Alexander duality to show that certain
rings have linear quotients.

7.1 d-shellability

We start by recalling the definition of pure and non-pure shellability.

Definition 7.1.1. Let ∆ be a simplicial complex with F(∆) = {F1, . . . , Ft}.
∆ is called pure shellable if

(i) |Fi| = |Fj | for every pair of indices 1 ≤ i < j ≤ t.

(ii) There exists an ordering F1, < · · · <,Ft of the facets such that 〈Fj〉 ∩
〈F1, . . . Fj−1〉 is generated by a non-empty set of proper maximal faces of
〈Fj〉 for every j ∈ {2, . . . , t}.

A simplicial complex ∆ is called non-pure shellable if (ii) but not (i) holds. If ∆
is a shellable (pure or non-pure) simplicial complex a linear order F1 < · · · < Ft
of F(∆) as in (ii) is called a shelling of ∆.

Remark 7.1.2. It is well known, see for example [11, Theorem 5.1.13], that
pure shellability implies Cohen–Macaulayness. This also follows from Corollary
7.1.15 below and the Eagon–Reiner Theorem.

In the following two definitions we introduce the concepts of d-shellability
and d-quotients.
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Definition 7.1.3. Let ∆ be a simplicial complex with F(∆) = {F1, . . . , Ft}.
∆ is called d-shellable if its facets can be ordered F1 < · · · < Ft, such that
〈Fj〉 ∩ 〈F1, . . . , Fj−1〉 is generated by a non-empty set of proper faces of 〈Fj〉 of
dimension |Fj | − d− 1 for every j ∈ {2, . . . , t}.

Remark 7.1.4. The concepts of being 1-shellable and shellable coincides. If ∆
is a simplicial complex, a linear ordering of F(∆) satisfying the conditions of
Definition 7.1.3 is called a d-shelling of ∆.

Definition 7.1.5. Let I be a monomial ideal. We say that I has d-quotients
if there exists an ordering xm1 ≤ · · · ≤ xmt of the minimal generators of I
such that if for every s ∈ {1, . . . , t} we put Is = (xm1 , . . . , xms), then there are
monomials xbsi , i ∈ {1, . . . , rs}, deg xbsi = d for all i, such that

Is−1 : xms = (xbs1 , . . . , xbsrs ).

The motivation behind these definitions is the following well known theorem,
which we generalize below.

Theorem 7.1.6. Let I∆ = (xm1 , . . . , xmt) be a square-free monomial ideal.
Then I∆ has linear quotients (that is, 1-quotients) precisely when the simplicial
complex ∆∗ is shellable.

Example 17. The simplicial complexes ∆Ld,αn
and ∆Cd,αn

are both (d − α)-
shellable.

Theorem 7.1.7. Let I∆ be a square-free monomial ideal. Then I∆ has d-
quotients precisely when the simplicial complex ∆∗ is d-shellable.

Proof. Assume the vertex set of ∆ is V. Let I∆ = (xm1 , . . . , xmt), where the xmi

are the minimal generators. The set of facets of ∆∗ is F(∆∗) = {F1, . . . , Ft},
where Fi = V rmi for i ∈ {1, . . . , t}.

Assume I∆ has d-quotients. If for every 1 ≤ i < j ≤ t, xaji denotes the
minimal generator of (xmi) : xmj , then Ij−1 : xmj is minimally generated by
the set {xaj1 , . . . , xajr }, for some r ≤ j − 1. This is equivalent to saying that
the sets ajα , α ∈ {1, . . . , jr}, that all have cardinality d by assumption, are
precisely the minimal subsets of V such that Fj r ajα ⊆ Fi for some 1 ≤ i < j
and that 〈Fj〉 ∩ 〈F1, . . . , Fj−1〉 is pure of dimension |Fj | − d − 1 and equals
〈Fj r aj1 , . . . , Fj r ajr 〉.

The converse is proved by a similar argument: Assume ∆∗ is d-shellable, and
let F(∆∗) = {F1, . . . , Ft}. Put mi = V r Fi. Then the ideal I∆ is minimally
generated by the monomials xmi , i ∈ {1, . . . , t}. For every j ∈ {2, . . . , t}, we let
ajα , α ∈ {1, . . . , jr} denote the minimal subsets of Fj that one has to remove in
order for Fjrajα to be a generator of 〈Fj〉∩〈F1, . . . , Fj−1〉. Then the monomials
xajα are precisely the minimal generators of Ij−1 : xmj .

The following theorem occurs frequently in the literature. It shows that sim-
plicial complexes that are 1-shellable may be defined in (at least) three equiva-
lent ways:
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Theorem 7.1.8. Let ∆ be a simplicial complex on vertex set V with F(∆) =
{F1, . . . , Ft}. Then the following conditions are equivalent:

(i) ∆ is shellable and F1 < · · · < Ft is a shelling.

(ii) For all i, j, 1 ≤ i < j ≤ t, there exist a vertex v and an integer k with
1 ≤ k < j, such that v ∈ Fj r Fi and Fj r Fk = {v}.

(iii) The set {F ∈ V |F ∈ 〈F1, . . . , Fj〉 , F 6∈ 〈F1, . . . , Fj−1〉} has a unique
minimal element for all 2 ≤ i ≤ t.

Two of these statements, slightly modified, remain equivalent in the case of
d-shellable complexes also for d > 1.

Theorem 7.1.9. Let ∆ be a simplicial complex on vertex set V with F(∆) =
{F1, . . . , Ft}. Then the following conditions are equivalent:

(i) ∆ is d-shellable and F1 < · · · < Ft a d-shelling.

(ii) For all i, j, 1 ≤ i < j ≤ t, there exist some set aj ⊆ V, |aj | = d, and a k
with 1 ≤ k < j, such that aj ⊆ Fj, aj ∩ Fi = ∅ and Fj r Fk = aj.

Proof. The implication (i) ⇒ (ii) follows by considering the proof of Theorem
7.1.7. For the converse let F be a face of 〈Fj〉 ∩ 〈F1, . . . , Fj−1〉. Then F lies in
some 〈Fi〉, i < j. Let aj be a set that fits the description in (ii). Then F is also
a face of 〈Fj raj〉 so 〈Fj〉∩ 〈F1, . . . , Fj−1〉 is pure of dimension |Fj |− d− 1.

Remark 7.1.10. Let ∆ be a simplicial complex on vertex set V and F a face of
∆. The link of F , lk∆F , is by definition the simplicial complex with faces

{G ⊆ V ; G ∩ F 6= ∅, G ∪ F ∈ ∆}.

As for shellable complexes, links of faces of d-shellable complexes stay d-
shellable:

Proposition 7.1.11. Let ∆ be a d-shellable complex and F a face of ∆. Then
lk∆(F ) is again d-shellable.

Proof. Assume F1 < · · · < Ft is a d-shelling of ∆ and that the face F lies
in the facets Fi1 , . . . , Fir , where i1 < · · · < ir. Put Gij = Fij r F . Then
lk∆(F ) = {Gi1 , . . . , Gir}. If j ≤ r and G is a face of Gij ∩ 〈Gi1 , . . . , Gij−1〉,
then F ∪G is a face of Fij ∩ 〈F1, . . . , Fij−1

〉. Hence, if G is maximal we see that
|G| = |Fji | − |F | − d, which is our result.

Splittable monomial ideals were introduced by Eliahou and Kervaire in [21]
and has been studied in for example [33, 46, 45]. This class of ideals is well
behaved in the sense that their Betti numbers satisfy the Eliahou–Kervaire
formula, see [21] Proposition 3.1. The following definition (that is Definition 1.1
in [33]), captures the content of the Eliahou–Kervaire formula in an axiomatic
way.
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Definition 7.1.12. Let I, J and K be monomial ideals such that G(I) is the
disjoint union of G(J) and G(K). Then I = J +K is a Betti splitting of I if

βi,j(I) = βi.j(J) + βi,j(K) + βi−1,j(J ∩K)

for all i ∈ N and (multi)degrees j.

It follows from [33, Proposition 2.1] that I = J +K is a Betti splitting of I
if and only if the mapping cone of the lifting of the map J ∩K → J ⊕K to the
corresponding minimal free resolutions is a minimal free resolution of I.

Theorem 7.1.13. Denote by R the polynomial ring k[x1, . . . , xn] and let I =
(xm1 , . . . , xmt) ⊆ R, deg xmi = d′ for every i ∈ {1, . . . , t}, be a square-free
monomial ideal with d-quotients, d ≤ d′. For each s ∈ {1, . . . , t} put Is =
(xm1 , . . . , xms). Then

(i) Is = Is−1 + (xms) is a Betti splitting.

(ii) βi,j(R/(Is−1 : xms)(−d′)) and βi,j(R/Is−1) are not non-zero in any com-
mon degree j for any i ≥ 2, s ∈ {2, . . . , t}.

(iii) For all i, 2 ≤ i ≤ pdR(R/I), we have

βi(R/I) =

t∑
s=2

βi−1(R/(Is−1 : xms)(−d′)).

Proof. By [33, Proposition 2.1] (i) and (ii) are equivalent. (iii) is a consequence
of (i) (and (ii)) since if we assume that (i) holds, then for every s ∈ {2, . . . , t}
we have an exact sequence

0→ R/(Is−1 : xms)(−d′)x
ms

−→R/Is−1 → R/Is → 0,

where the second map is multiplication by xms . It follows from the long exact
Tor-sequence that βi(R/Is) = βi(R/Is−1) + βi−1(R/(Is−1 : xmt)(−d′)). Noting
that β2(R/I1) = 0, (ii) follows by induction.

To prove (i), let 2 ≤ r ≤ t and consider the following exact sequence

0→ Ir−1 ∩ (xmr )→ Ir−1 ⊕ (xmr )→ Ir → 0. (7.1)

The non trivial maps are x 7→ (x,−x) and (x, y) 7→ x + y. Let F. and G. be
the minimal free resolutions of Ir−1 ∩ (xmr ) and Ir−1 ⊕ (xmr ) respectively. We
show that the mapping cone, cone(α), of the lifting α : F.→ G. of the left map
in the above exact sequence is the minimal free resolution of Ir. By looking at
the generators of the ideals Ir−1 : xmr and Ir−1∩ (xmr ), it is clear that we have
an homogeneous R-module isomorphism

(Ir−1 : xmr )(−d′)→ Ir−1 ∩ (xmr ),
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the map being multiplication by xmr . Hence we wish to show that the mapping
cone of the lifting of the injection

(Ir−1 : xmr )(−d′)→ Ir−1 ⊕ (xmr )

gives a minimal free resolution of Ir. Note that the minimal free resolutions of
Ir−1 and Ir−1⊕ (xmr ) only differ in a simple way at the bottom degrees. Hence
the mapping cone of the lifting of the map (Ir−1 : xmr )(−d′) → Ir−1 ⊕ (xmr )
is essentially the same (except possibly in the bottom degrees) as the mapping
cone of the lifting of the injection (Ir−1 : xmr )(−d′)→ Ir−1.

Let F ′. and G′. be the minimal free resolutions of R/(Ir−1 : xmr )(−d′)
and R/Ir−1 respectively, and α′ : F ′. → G′. a lifting of the map R/(Ir−1 :
xmr )(−d′)→ R/Ir−1. Hence cone(α) and cone(α′) are the same except possibly
in the bottom degrees after shifting the homological degrees one step. It is
known that, see Exercise A3.30 in [19], if we have an ideal J/I in a quotient
ring R/I, the mapping cone of the lifting of the inclusion J/I → R/I provide a
free resolution of R/J . Since R/(Ir−1 : xmr ) ∼= Ir/Ir−1, the result follows after
separately considering the bottom degrees.

Corollary 7.1.14. Denote by R the polynomial ring k[x1, . . . , xn] and let I =
(xm1 , . . . , xmt) ⊆ R, deg xmi = d′ for every i ∈ {1, . . . , t}, be a square-free
monomial ideal with d-quotients, d ≤ d′. Assume the minimal generators of
Is−1 : xms forms an R-sequence for every s ∈ {1, . . . , t}. Then βi,j(R/I) is
non-zero only for j = i+ d′ − 1 + (i− 1)(d− 1) and for all i, 2 ≤ i ≤ pd(R/I),
we have

βi,j(R/I) =

t∑
s=2

(
rs
i− 1

)
,

where rs is the cardinality of the minimal generating set of Is−1 : xms .

Proof. Let Is−1 : xms = (xbs1 , . . . , xbsrs ). It is then easy to see that βi(R/(Is−1 :
xms)(−d′)) =

(
rs
i

)
in degree j = id + d′ and zero in all other degrees. By

induction, βi(R/Is−1) is non-zero only in degree j = i+d′− 1 + (i− 1)(d− 1) =
d′+id−d. This shows that βi(R/Is) may be non-zero only in degree j = i+d′−
1 + (i− 1)(d− 1) and that βi(R/Is) = βi(R/Is−1) +βi−1(R/(Is−1 : xms)(−d′)).
The result now follows by induction and Theorem 7.1.13.

Corollary 7.1.15. Denote by R the polynomial ring k[x1, . . . , xn] and let I =
(xm1 , . . . , xmt) ⊆ R, deg xmi = d′ for every i ∈ {1, . . . , t}, be a square-free
monomial ideal with linear quotients. If for each s ∈ {2, . . . , t}, Is−1 : xms =
(xs1 , . . . , xsrs ), then for all 2 ≤ i ≤ pdR/I, βi,j(R/I) is non-zero only in degree
j = i+ d′ − 1 and we have

βi,j(R/I) =

t∑
s=2

(
rs
i− 1

)
.
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Part II

Positive affine monoids
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Chapter 8

Positive affine monoids

For numerical monoids S the Krull dimension of the ring k[S̄]/k[S] is always
zero. This is of course because the set of gaps H(S) is finite, a property that
does not hold in general for positive affine monoids of higher rank. We exam-
ine here in a combinatorial fashion positive affine monoids S with H(S) finite,
or equivalently, positive affine monoids with dim k[S̄]/k[S] = 0. This class of
monoids turns out to behave in some respects like numerical monoids. In par-
ticular we describe the maximal elements in certain posets whose elements are
positive affine monoids. This description provides natural higher dimensional
versions of familiar classes of numerical monoids such as the class of symmetric
numerical monoids.

8.1 Iterated Frobenius numbers

Recall from the introduction that we assume all affine monoids S are embedded
in Zd where d = rankS is the rank of gpS. Thus in this chapter whenever Nd
or Zd occur without further explanation, d is the rank of S. Also recall that d
equals the dimension of the cone R≥0S generated by S. Positive affine monoids
S are assumed to be embedded in Nd, d = rankS.

In the sequel we will use the following partial ordering:

• If S is an affine monoid and a and b are two elements in gpS we say that
a ≤S b if and only if a+ s = b for some element s ∈ S.

Since Nd is a monoid we obtain as a special case the familiar ordering ≤Nd , where
for any two elements a = (a1, . . . , ad) and b = (b1, . . . , bd) we have a ≤Nd b if and
only if ai ≤ bi holds for every i ∈ {1, . . . , d}. Note that if a and b are elements
of a positive affine monoid S and a ≤S b, then a ≤Nd b.

Given an affine monoid S we defined in the introduction a set T (S) by

T (S) = {x ∈ gpS ; x /∈ S, x+ S+ ⊆ S+}.

We may deduce that T (S) is finite.
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Lemma 8.1.1. Let S = 〈s1, . . . sn〉 be an affine monoid. Then |T (S)| <∞.

Proof. Let s be any non-zero element of S and consider the S-graded ideal
(ts+u ; u ∈ T (S)) of k[S]/(ts). The fact that T (S) is finite follows since k[S]/(ts)
is Noetherian and the minimal generators of the ideal (ts+u ; u ∈ T (S)) are in
1-1 correspondence with the elements in T (S).

Remark 8.1.2. In the case of numerical monoids the above lemma yields the
fact (see Remark 1.2.5) that |T (S)| equals the Cohen–Macaulay type of k[S].
See [40] for details.

Example 18. We note that S being finitely generated need not imply H(S)
finite. Let S be the sub-monoid of N2 generated by the elements

{(0, 2), (1, 0), (1, 1)}.

Here T (S) is the empty set but H(S) consists of all points (0, 2k + 1), k ∈ N.

Remark 8.1.3. For any subsets A and B of Zd, we denote by A − B the set of
differences {a − b ; a ∈ A, b ∈ B}. If the set A consists of only one element, a
say, we write a−B instead of A−B.

Let S be an affine monoid and denote by T0(S) = {h0,1, . . . , h0,r0} the set
of maximal elements in T (S) with respect to the partial order ≤Nd . We define
sets Ti(S) recursively as follows: Assuming we have defined already Tj(S), j ∈
{0, 1, . . . , i− 1} we define Ti(S) to consist of the elements x ∈ R≥0S ∩ gpS that
are maximal relative ≤Nd with the properties

• x /∈ S.

• x /∈ Tj(S)− S, j ∈ {0, . . . , i− 1}.

Remark 8.1.4. If Ti(S) = ∅ for some number i, then Tj(S) = ∅ for all j > i as
well. This follows readily from the definition of the sets Ti(S).

Remark 8.1.5. Let S be an affine monoid of rank d. A finite subset T0 ⊆ Nd
can satisfy T0 = T0(S) only if T0 is an anti-chain in the poset (Zd,≤Nd).

Example 19. Let S be the sub-monoid of N2 generated by the elements

{(1, k) ; k ∈ N}.

Then T (S) consists of all integer points on the y-axis so |T (S)| =∞ but T0(S) =
∅. According to Remark 8.1.5, Ti(S) = ∅ for all i ≥ 0.

Definition 8.1.6. The elements in the set
⋃
i≥0 Ti(S) are called the iterated

Frobenius numbers of S.

We now display an important property of the iterated Frobenius numbers.

Proposition 8.1.7. Let S be a positive affine monoid with H(S) finite. Then

T (S) =
⋃
j≥0

Tj(S).
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Proof. The elements of T0(S) belong to T (S) by definition. Assume all ele-

ments in
⋃i−1
j=0 Tj(S) belong to T (S) and consider an arbitrary iterated Frobe-

nius number hi ∈ Ti(S). If hi /∈ T (S) there is an element s ∈ S+ such that
hi + s /∈ S+. By considering the maximal property defining hi we conclude
that hi + s ∈ Tα(S) − S for some α ∈ {0, . . . , i − 1}. This however yields a
contradiction since if hα ∈ Tα(S) and s′ ∈ S we have

hi + s = hα − s′

⇐⇒

hi = hα − (s′ + s) ∈ hα − S.

Thus
⋃
i≥0 Ti(S) ⊆ T (S).

By the first part of the proof Ti(S) can be non-empty only for a finite number

of integers i. Assume Tj(S) = ∅ for j > i. If T (S) 6=
⋃i
j=0 Tj(S) the finite set

{x ∈ R≥0S ∩ gpS ; x /∈ S, x /∈
⋃
j≥0

Tj(S)− S}

is non-empty. This however would imply Ti+1(S) 6= ∅ which is a contradiction.
Thus T (S) ⊆

⋃
j≥0 Tj(S) and we are done.

Corollary 8.1.8. Let S be a positive affine monoid and assume hi ∈ Ti(S) and
hk ∈ Tk(S). Then either hi+hk ∈ S or hi+hk ∈ Tr(S) where 0 ≤ r < min{i, k}.

Proof. Assume hi + hk /∈ S and let s ∈ S+. Then

hi + hk + s = hi + (hk + s) = hi + s′ = s′′

where s′ and s′′ belong to S. Hence hi + hk ∈ T (S) so hi + hk ∈ Tr(S) for
some r ≥ 0. It follows from the definition of the iterated Frobenius numbers
that 0 ≤ r < min{i, k}.

Remark 8.1.9. The property in Corollary 8.1.8 of the iterated Frobenius numbers
will be used many times in the sequel.

Remark 8.1.10. For numerical monoids S the elements of the set T (S) are known
as Pseudo-Frobenius numbers, see [43]. However, due to the above proposition
the name iterated Frobenius numbers is motivated.

The following lemma describes for positive affine monoids T (S) as a subset
of H(S). For numerical monoids the lemma is part of Proposition 1.19 in [43].

Lemma 8.1.11. Let S be a positive affine monoid. Then we have the following:

(i) T (S) consists of the elements of H(S) that are maximal with respect to
the partial order ≤S.

(ii) T0(S) consists of the elements of H(S) that are maximal with respect to
the partial order ≤Nd .
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Proof. The elements of H(S) that are maximal with respect to the partial order
≤S are precisely the elements that are characterized by the fact that x+s ∈ S for
any s ∈ S+. This proves (i). The second assertion follows from the definition
of T0(S) and the fact that being maximal with respect to ≤Nd implies being
maximal with respect to ≤S .

Proposition 8.1.12. Let S be a positive affine monoid. Then the following are
equivalent:

(i) H(S) is finite.

(ii) H(S) = (T (S)− S) ∩ Nd.

(iii) If x ∈ H(S) there is an element s ∈ S such that x+ s ∈ T (S).

Proof. The fact that (i) and (iii) are equivalent follows from Lemma 8.1.11 and
Proposition 8.1.7. (iii) clearly implies (ii) and (ii) implies (i) since in this case
H(S) lies in a bounded region of Nd.

Consider a positive affine monoid S withH(S) finite and let x be an arbitrary
non-zero element in −S̄ = {x ∈ Zd ; −x ∈ S̄}. Since x ∈ gpS we have x = s−s′
for some elements s and s′ in S. Then

0 ≤Nd h0,i ≤Nd h0,i − x = h0,i − (s− s′) = h0,i + s′ − s = s′′ − s ∈ gpS. (8.1)

Now, since H(S) is finite we have

h0,i ∈ T0(S), h0,i <Nd y, y ∈ S̄ =⇒ y ∈ S, (8.2)

and so h0,i − x ∈ S by (8.1). This proves

Corollary 8.1.13. Let S be a positive affine monoid such that H(S) is finite.
Then

−S̄ ⊆
⋂

1≤i≤r0

(h0,i − S). (8.3)

Remark 8.1.14. The corollary provides a generalization of the fact that all neg-
ative integers are in g−S when S is a numerical monoid with Frobenius number
g. Also, we may view (8.2) as generalizing the fact that every integer greater
than the Frobenius number lies in S when S is a numerical monoid.

It is well known that numerical monoids have Cohen–Macaulay monoid rings,
a property that does not hold in general for positive affine monoids, in particular
not if H(S) is finite non-empty and rankS ≥ 2. Indeed, Hoa and Trung have
characterized the positive affine monoids that have Cohen–Macaulay monoid
rings, see Theorem 8.1.15 below. We review the notions that are used in that
theorem:

Let S be a positive affine monoid and denote by Fi, i ∈ {1, . . . ,m}, the set
of facets of the cone R≥0S. Put

Si = {x ∈ gpS ; x+ s ∈ S, for some s ∈ S ∩ Fi},
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and S′ =
⋂m
i=1 Si. Furthermore, for every subset J ⊆ {1, . . . ,m} we put

GJ =
⋂
i/∈J

Si r
⋃
j∈J

Sj .

Finally, we let πJ be the abstract simplicial complex consisting of the non-
empty subsets I ⊆ J for which⋂

i∈I
S ∩ Fi 6= {0}.

Theorem 8.1.15 (Hoa and Trung [53]). The monoid ring of a positive affine
monoid S is Cohen–Macaulay if and only if

• S = S′, and

• for every non-empty subset J ⊆ {1, . . . ,m}, either GJ is empty or else the
chain complex of πJ has zero reduced homology, that is, πJ is acyclic.

Remark 8.1.16. Let S be a numerical monoid. Then R≥0S = N, so the only
facet is {0}. Then S′ = S1 = S so the first condition is satisfied. The second
condition is trivially satisfied since there are no non-empty proper subsets of
{1}. Thus follows the well known fact that all numerical monoids have Cohen–
Macaulay monoid rings.

Remark 8.1.17. Assume S is a positive affine monoid and k[S] is not Cohen–
Macaulay. Then rankS ≥ 2 and, as one easily sees, T (S) ⊆ S′.

The following results, Proposition 8.1.19, Corollary 8.1.21, and Corollary
8.1.22, are easy to come by in a purely algebraic way since dim k[S̄]/k[S] = 0 if
H(S) is finite. However, we prove them here using our combinatorial tools and
the following lemma.

Lemma 8.1.18. Let S be a positive affine monoids with rankS ≥ 2 and let F
be a facet of R≥0S. Then there is a non-zero element s ∈ S ∩ F .

Proof. Assume S is minimally generated by {s1, . . . , sn} and letRi, i ∈ {1, . . . , t}
be the set of one dimensional faces of R≥0S. Let xi be any non-zero element in
Ri. By [10, Proposition 1.20] the finite set of elements {xi}ti=1 is, up to scalar
multiples, the unique set of minimal generators of R≥0S. Now, since {s1, . . . , sn}
generate R≥0S we conclude that the elements xi can be chosen from S.

Example 20. The condition that S is finitely generated in the lemma is crucial.
Consider the monoid

S = 〈(n,m) ; n ≥ 1,m ≥ 1〉 ⊆ N2.

The facets of R≥0S are the coordinate axes. Hence no non-zero element of S
can lie in a facet.

Lemma 8.1.18 lets us prove the following
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Proposition 8.1.19. Let S be a positive affine monoid with rankS ≥ 2 and
assume H(S) is finite. Then S′ = S̄.

Proof. By considering the affine forms defining the facets of R≥0S, one may
conclude that an element x ∈ Si must lie in S̄, so S′ ⊆ S̄. Consider an element
x ∈ H(S). By Proposition 8.1.12 x = h − s for some elements h ∈ T (S) and
s ∈ S. Let s′ be an element in S ∩ Fk for some facet Fk. Such an element s′

exists by the lemma. Now, h− s+ s′ = (h+ s′)− s = s′′ − s ∈ gpS. If s′′ − s
does not already lie in S we substitute s′ with ns′, n ∈ N being a large integer.
Then, since H(S) is finite, we conclude that x = h− s ∈ Sk. Since we only have
a finite number of facets, it follows that H(S) ⊆ S′ so S′ = S̄.

Remark 8.1.20. Let S be an affine monoid and assume {F1, . . . , Fm} is the set of
facets of R≥0S. The sets Si are the localizations S−Fi of S along the facets Fi,
that is, Si is generated as a monoid by S and the inverses of the elements of S
that lie in Fi. Thus S′ =

⋂m
i=1(S − Fi). This implies that k[S′] =

⋂m
i=1 k[S]pFi ,

where pFi is the monomial prime ideal corresponding to the facet Fi. See [59,
Section 7.2] for details.

Corollary 8.1.21. Let S be a positive affine monoid with rankS ≥ 2 such that
k[S] is Cohen–Macaulay. Then T (S) = ∅. If in addition H(S) is finite, then
H(S) = ∅.

Proof. S = S′ if k[S] is Cohen–Macaulay so T (S) must be empty since T (S) ⊆
S′. The last claim follows from Lemma 8.1.11.

In particular, if S is as in Corollary 8.1.21, rankS = d, and H(S) is infinite,
then there are no ≤Nd -maximal elements in H(S).

Hochster proved ([10, Theorem 6.10]) that normal affine monoids have Cohen–
Macaulay monoid rings. Using this we get

Corollary 8.1.22. Let S be a positive affine monoid with rankS ≥ 2 such that
k[S] is Cohen–Macaulay but not normal. Then H(S) is infinite.

Let S be a positive affine monoid. If H(S) is not finite we would like to
construct a positive affine monoid S̃, S ⊆ S̃ ⊆ S̄, such that H(S̃) is finite
and T (S̃) = T (S). It is however not clear how to proceed to obtain this. The
last couple of results in this section, Proposition 8.1.25 and Proposition 8.1.26,
provide a “partial answer” to this problem.

Lemma 8.1.23. Let S be a positive affine monoid with H(S) infinite. Then
there exists a positive affine monoid S̃ with H(S̃) finite such that S ⊆ S̃.

Proof. For any element x = (x1, . . . , xd) ∈ S̄, let |x| = x1 + · · ·+ xd. Put

a =

{
1 + max{|hi,j | ; hi,j ∈ T (S)} if T (S) 6= ∅
1 if T (S) = ∅

and denote by H+ the positive half-space

H+ = {x ∈ Rd ; x1 + · · ·+ xd ≥ a}.
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Then P = R≥0S ∩H+ is a polyhedron. Also, by construction, the intersection

Q = R≥0S ∩H

of the cone R≥0S and the bounding hyperplane H of H+, is a convex polytope.
By [10, Proposition 1.28], P is the Minkowski sum

P = Q+ R≥0S. (8.4)

We claim that P ∩ gpS is finitely generated, by which we mean that all x ∈
P ∩ gpS are positive integer combinations of a finite set of vectors. To prove
this, assume Q = conv{b1, . . . , bt}. By (8.4), an element x ∈ P ∩ gpS may be
written as

x = α1b1 + · · ·+ αtbt + β1s1 + · · ·+ βnsn (8.5)

where
∑

0≤αi≤1 αi = 1 and 0 ≤ βj for all i ∈ {1, . . . , t} and j ∈ {1, . . . , n}.
Put S̃ = 〈S,B〉 where B is the set of elements x ∈ P ∩ gpS as in (8.5) with
0 ≤ βj < 1 for all j ∈ {1, . . . , n}. Clearly B is a bounded set and thus B is

finite. Hence S̃ is positive affine.

Lemma 8.1.24. Let S be a positive affine monoid and let x ∈ H(S). Then
S ∪ {x} is a positive affine monoid if and only if 2x ∈ S and x ∈ T (S).

Proof. If 2x ∈ S and x ∈ T (S) clearly S ∪{x} = 〈S, x〉 so in this case S ∪{x} is
a positive affine monoid. On the other hand if S∪{x} is a positive affine monoid
then, since 2x 6= x, 2x must belong to S and x must belong to T (S).

Proposition 8.1.25. Let S be a positive affine monoid with H(S) infinite.
Then there is a positive affine monoid S̃ such that

(i) S ⊆ S̃.

(ii) H(S̃) is finite.

(iii) T (S) ⊆ T (S̃).

(iv) T0(S) = T0(S̃).

Proof. We define a set S0 by

S0 = S ∪ {x ∈ S̄ ; x 6≤Nd h0 ∈ T0(S)}.

Adding any two elements from S0 yields a new element in S0, so S0 is a sub-
monoid of Nd containing S. Also, S0 may differ from the positive affine monoid
S̃ constructed in Lemma 8.1.23 only by a finite number of elements. Thus S0 is
positive affine with H(S0) finite. It is easy to see that T (S) ⊆ T (S0). If there is
an element h ∈ T0(S0)rT (S) we put S1 = S0∪{h}. Since 2h ∈ S0 this is again
a positive affine monoid with H(S1) finite and T (S) ⊆ T (S1). In this way we
obtain in a finite number of steps a positive affine monoid Sk with H(Sk) finite
and T (S) ⊆ T (Sk) and T0(Sk) ⊆ T (S). In fact, since the elements in T0(Sk)
are Nd-maximal in H(Sk), we see that T0(Sk) ⊆ T0(S). Then T0(S) ⊆ T0(Sk)
must hold so T0(Sk) = T0(S). Put S̃ = Sk and we are done.
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Proposition 8.1.26. Let S be a positive affine monoid with H(S) finite and
let M ⊆ Ti(S) for some i ≥ 0. Then there exists a positive affine monoid S̃
such that S ⊆ S̃ and T0(S̃) = M .

Proof. By Lemma 8.1.24 and Corollary 8.1.8 we see that

S0 =
(⋃
j<i

Tj(S)
)
∪ S ∪

(
Ti(S) rM

)
is a positive affine monoid and S ⊆ S0. By Corollary 8.1.8 it follows that
M ⊆ T (S0). Put B0 = T0(S0) rM and S1 = S0 ∪ B0. Again S1 is a positive
affine monoid and M ⊆ T (S1). Clearly S ⊆ S0 ⊆ S1. Since H(S) is finite we
obtain in a finite number of steps a positive affine monoid Sk such that S ⊆ Sk
and M = T0(Sk). Put S̃ = Sk and we are done.

Question 1. Let S be a positive affine monoid and assume H(S) is not finite.
Is there is a positive affine monoid S̃, S ⊆ S̃ ⊆ S̄, such that H(S̃) is finite and
T (S̃) = T (S).

Remark 8.1.27. Using the notation introduced in the next section, given a pos-
itive affine monoid S with H(S) infinite, we ask for a positive affine monoid
S̃ ∈ ST0(S) with T (S̃) = T (S).

8.2 Maximal objects in the poset ST0

For symmetric (resp. quasi-symmetric, depending on the parity of g) numerical
monoids one has that for all x ∈ Z either x ∈ S or else g − x ∈ S (resp. x ∈ S
or, g − x ∈ S, or x = g

2 ), where g is the Frobenius number of S. These two
particular classes of numerical monoids are also characterized by the following
fact (see [4, 41]): A numerical monoid S is maximal (with respect to inclusion)
among the numerical monoids with fixed Frobenius number g = g(S) if and only
if it is symmetric (resp. quasi-symmetric). The following lemma lets us prove a
similar result, Theorem 8.2.3, for positive affine monoids.

Lemma 8.2.1. Let S be a positive affine monoid and assume H(S) is finite.
For any integer a > 1 and any hi ∈ Ti(S) we have

aihi ∈ S ⇐⇒ aihi /∈ T0(S).

Proof. The “only if” part is clear and the result holds for i = 0. Assume the
result holds for j ∈ {1, . . . , i − 1} and consider an element hi ∈ Ti(S). If
aihi /∈ T0(S) and aihi /∈ S, then ahi /∈ S. But hi <Nd ahi so ahi ∈ hk − S for
some iterated Frobenius number hk with k < i. But ahi = hk − s implies that
s = 0, so ahi = hk. Now, by the induction hypothesis, either akhk ∈ S or else
akhk ∈ T0(S). In either case, the equation

aihi = ai−k−1akhk

yields a contradiction.
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Note in particular that it follows from the lemma that 2i+1hi ∈ S for all i
and all hi ∈ Ti(S).

Lemma 8.2.2. Let S be a positive affine monoid and assume hi ∈ Ti(S), i > 0,
is such that 2ihi ∈ T0(S). Then i = 1.

Proof. By Corollary 8.1.8 we see that all multiples khi, 2 ≤ k ≤ 2i − 1, are
iterated Frobenius numbers. Thus we must have i+ 1 = 2i which can only hold
for i = 0 and i = 1.

Let T0 be a finite non-empty set of vector in Nd and denote by ST0
the set

of positive affine monoids S of rank d with H(S) finite and T0(S) = T0. ST0

is a partially ordered set with respect to inclusion. Let S be a non-maximal
element in ST0

. According to the proof of the following theorem, a monoid Ŝ,
S ⊂ Ŝ ⊆ S̄, with T0(S) = T0 = T0(Ŝ) can be constructed.

Theorem 8.2.3. Let S be a positive affine monoid. Assume H(S) is finite and
put T0(S) = T0. Then S is maximal in ST0

if and only if 2ihi ∈ T0 for all i and
all hi ∈ Ti(S). In particular, if S is maximal in ST0

then T (S) = T0(S)∪T1(S).

Proof. Assume S is such that 2ihi ∈ T0 for all i and all hi ∈ Ti(S), and pick an
element b /∈ S, b ∈ gpS. Then by Proposition 8.1.12 b = hi−s for some element
s ∈ S and some iterated Frobenius number hi, and thus hi ∈ 〈S, b〉. But, then
2ihi ∈ 〈S, b〉 so T0(S) 6⊆ T0(〈S, b〉) so S is maximal in ST0

.
Now assume S does not have the property that 2ihi ∈ T0 for all i and all

hi ∈ Ti(S). Then, by Lemma 8.2.1 (with a = 2), there is an element hi ∈ T (S)
with 2ihi ∈ S. Assume i = min{k ∈ N ; ∃hk ∈ Tk(S), 2khk ∈ S}. Note that
this implies i > 0. Also, put b = min{k ∈ N ; khi ∈ S}. If h0 ∈ 〈S, hi〉 for some
h0 ∈ T0(S) we have h0 = s+ nhi, n ∈ N. Then clearly s = 0 so h0 = nhi. Here
we must have n > 1 and thus 2 ≤ n < b ≤ 2i. Observe that this implies 3 ≤ b
and 2 ≤ i. Since (b − 1)hi /∈ S, by Lemma 8.1.8 we have (b − 1)hi ∈ T (S), so
(b− 1)hi = hr ∈ Tr(S) where 0 ≤ r < i. From the equation

bhi <Nd 2(b− 1)hi = 2hr

we conclude that 2hr ∈ S. This implies r = 0 since r ≥ 1 would contradict
the minimality of i. Also, we may conclude that b = 3: Considering Corollary
8.1.8, b > 3 implies that (b − 2)hi = hs ∈ Ts(S) for some s ≥ 1 and that
b− 1 < 2(b− 2). But, then

(b− 1)hi = h0 <Nd 2(b− 2)hi = 2hs ∈ S

which contradicts the minimality of i.
In summary we know that i ≥ 2, 2hi = h0 ∈ T0(S), and that 3hi ∈ S.

In particular this implies hi /∈ S and hi /∈ T0(S) − S. Since i ≥ 2, hi is not
Nd-maximal with the properties hi /∈ S and hi /∈ T0(S) − S. Thus there is a
non-zero element y ∈ Nd such that hi + y = h1 ∈ T1(S). Then 2(hi + y) = 2h1,
but 2(hi + y) = h0 + 2y ∈ S so 2h1 ∈ S. This again contradicts the minimality
of i.
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We conclude that S ⊂ 〈S, hi〉 and T0(S) ⊆ T0(〈S, hi〉). If T0(S) 6= T0(〈S, hi〉)
we may use the same procedure as in Proposition 8.1.26 and produce a positive
affine monoid S̃ with S ⊂ S̃ and T0(S) = T0(S̃). Thus S is not maximal in ST0

.
The fact that T (S) = T0(S) ∪ T1(S) if S is maximal in ST0

now follows from
Lemma 8.2.2.

Remark 8.2.4. The theorem should be compared to the situation for numerical
monoids: Let S be a numerical monoid. If g = g(S) is odd, then S is maximal
in Sg if and only if T (S) = {g}. If g is even then S is maximal in Sg if and only
if T (S) = { g2 , g}.

Corollary 8.2.5. Assume S is a positive affine monoids such that H(S) is finite
and T (S) = T0(S). Then S is maximal in ST0

and provide a generalization of
a symmetric numerical monoid.

Corollary 8.2.6. Let S be a positive affine monoid. Assume H(S) is finite and
that for all hi ∈ Ti(S) there exist positive integers ai such that aihi ∈ T0(S).
Then S is maximal in ST0

.

Proof. Pick an element b ∈ H(S). Then b ∈ hi − S for some iterated Frobenius
number hi. Thus b = hi − s for some s ∈ S and it follows that hi ∈ 〈S, b〉.
Hence, since aihi = h0 ∈ T0(S), T0(S) 6⊆ T0(〈S, b〉) so S is maximal in ST0

.

Corollary 8.2.7. Let S be a positive affine monoid and assume H(S) is finite.
If for all h0 ∈ T0(S) the coordinates of the vector h0 have no common divisor
that is even, then either S is not maximal in ST0(S) or else T (S) = T0(S).

Example 21. Let S1 and S2 be two numerical monoids. Put S1 on the positive
x-axis and S2 on the positive y-axis in N2 and fill in all integer points in the
interior of N2. This gives a positive affine monoid S with T0(S) = {g(S1), g(S2)}.

Proposition 8.2.8. Let S be an positive affine monoid. Then the following
conditions on S are equivalent.

(i) S ∪
(
(T0(S)− S)) ∩ Nd

)
= S̄ r

⋃
q≥1 Tq(S).

(ii) For all x ∈ S̄ ∪−S̄ it holds that x ∈ S or x ∈ h0 − S for some h0 ∈ T0(S)
or x ∈ T (S) r T0(S).

Proof. Taking into account Corollary 8.1.13 the two statements are merely re-
formulations of each other.

Definition 8.2.9. A positive affine monoid as in Proposition 8.2.8 is called
almost symmetric.

Note in particular that H(S) is finite if S is almost symmetric.

Proposition 8.2.10. Let S be a positive affine monoid and assume H(S) is
finite. Put T ′1(S) = {x ∈ T1(S) ; 2x ∈ T0(S)}. Then S is maximal in ST0(S) if
and only if for all x ∈ S̄ ∪ −S̄ it holds that either x ∈ S, or x ∈ T0(S)− S, or
x ∈ T ′1(S). In particular, if S is maximal in ST0(S) then S is almost symmetric.
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Proof. Assume S is maximal in ST0(S). In order to prove that for all x ∈ S̄∪−S̄
it holds that either x ∈ S, or x ∈ T0(S)−S, or x ∈ T ′1(S), by Proposition 8.1.12,
Corollary 8.1.13 and Theorem 8.2.3 it is sufficient to show that every element
h1 − s, h1 ∈ T1(S), s ∈ S+, can be written as h0 − s′, where h0 ∈ T0(S) and
s′ ∈ S. Let h1 be an arbitrary element in T1(S). Since S is maximal in ST0(S)

we know that 2h1 = h0 for some h0 ∈ T0(S), so h1 = h0−h1. Pick any element
s ∈ S+. Then h1 − s = h0 − (h1 + s) = h0 − s′, s′ ∈ S.

Now assume S is a positive affine monoid such that H(S) is finite and assume
that for all x ∈ S̄∪−S̄ it holds that either x ∈ S, or x ∈ T0(S)−S, or x ∈ T ′1(S).
Then

S ∪
(
T0(S)− S)) ∩ Nd

)
= S̄ r T ′1(S)

and clearly S is maximal in ST0(S).

Remark 8.2.11. By Proposition 8.2.8 and Proposition 8.2.10 the class of almost
symmetric monoids as defined above, naturally generalizes the class of almost
symmetric numerical monoids, see [5] for details about almost symmetric nu-
merical monoids.

Corollary 8.2.12. Let S be an almost symmetric monoid. Then S is maximal
in ST0(S) in the sense that for any monoid S′ ∈ ST0(S) strictly containing S, we
have |T (S′)| < |T (S)|.

Corollary 8.2.13. Let S be an almost symmetric monoid with T0(S) = {h0}.
Then an iterated Frobenius number hi lies in T (S)rT0(S) if and only if h0−hi ∈
T (S) r T0(S).

Proof. We know that

S ∪
(
(h0 − S) ∩ Nd

)
= S̄ r

⋃
q≥1

Tq(S).

Pick an element x ∈
⋃
q≥1 Tq(S). We see that h0 − x cannot belong to neither

S nor to h0 − S. Thus h0 − x ∈
⋃
q≥1 Tq(S).

Remark 8.2.14. If S is as in Corollary 8.2.13 then the elements of
⋃
i≥1 Ti(S)

occur in pairs. This fact is in the case of numerical monoids observed already
in [41].

Let S ∈ ST0 be an almost symmetric monoid. We thus have

S ∪
(
(T0(S)− S) ∩ Nd

)
= S̄ r

⋃
q≥1

Tq(S).

Assume S is not maximal in ST0
. Then there exists an element hi ∈ Ti(S) such

that 〈S, hi〉 ∈ ST0
. It is natural to ask if 〈S, hi〉 ∈ ST0

is almost symmetric.
Since S̄ = 〈S, hi〉 we clearly have

〈S, hi〉 ∪
(
T0(S)− 〈S, hi〉) ∩ Nd

)
= 〈S, hi〉r

(⋃
q≥1

Tq(S) r Thi
)
, (8.6)
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where Thi = 〈S, hi〉 ∪
(
T0(S)− 〈S, hi〉) ∩ Nd

)
∩
(⋃

q≥1 Tq
)
. It is not hard to see

that
Thi = {hl −mhi,mhi}hl,m ∩

(⋃
q≥1

Tq(S)
)
,

where hl ∈ T0(S) and 1 ≤ m ≤ mi = max{k ∈ N ; khi /∈ S}.

Proposition 8.2.15. Let S ∈ ST0 be an almost symmetric monoid that is not
maximal in ST0

and assume hi ∈ Ti(S) is such that 〈S, hi〉 ∈ ST0
. Then 〈S, hi〉

is almost symmetric precisely when(⋃
α<i

Tα(S)−mhi
)
∩
(⋃
q≥1

Tq(S) r Thi
)

= ∅,

where 1 ≤ m ≤ mi = max{k ∈ N ; khi /∈ S}.

Proof. It follows from equation (8.6) that

T (〈S, hi〉) r T0(〈S, hi〉) ⊆
⋃
q≥1

Tq(S) r Thi ⊆ H(〈S, hi〉), (8.7)

and 〈S, hi〉 is almost symmetric precisely when the left inclusion is an equality.
If the left inclusion is strict there is an element hk ∈ Tk(S) with

hk ∈
( ⋃
q≥1

Tq(S) r Thi
)
r T (〈S, hi〉).

Since hk ∈ H(〈S, hi〉) r T (〈S, hi〉) by Proposition 8.1.12 there is a non-zero
element s+mhi ∈ 〈S, hi〉 such that hk + (s+mhi) = hα ∈ T (〈S, hi〉). Clearly
we must have s = 0 and 1 ≤ m ≤ mi and hk + mhi cannot lie in S. Thus, by
Corollary 8.1.8, hα ∈ Tα(S) where α < min{i, k}. Hence hk = hα −mhi and(⋃

α<i

Tα(S)−mhi
)
∩
(⋃
q≥1

Tq(S) r Thi
)
6= ∅.

To prove the converse assume

hk ∈
( ⋃

α<i
1≤m≤mi

Tα(S)−mhi
)
∩
(⋃
q≥1

Tq(S) r Thi
)
.

Hence hk has the form hk = hα −mhi. If hk ∈ T (〈S, hi〉) in particular we have

hk +mhi = hα = s+ khi (8.8)

for some s ∈ S and k ∈ N. If s = 0 then hk = (k − m)hi. This yields a
contradiction since then

(k −m)hi ∈ S or (k −m)hi ∈ Thi or (k −m)hi ≤Nd 0.

On the other hand if s 6= 0 it follows from (8.8) that hα = s+ khi ∈ S which is
impossible since hα ∈ T (S). Thus hk /∈ T (〈S, hi〉) and the left inclusion in (8.7)
is strict.
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Corollary 8.2.16. Let S ∈ ST0 be an almost symmetric monoid that is not
maximal in ST0 . If there is an element h1 ∈ T1(S) such that 〈S, h1〉 ∈ ST0 , then
〈S, hi〉 is almost symmetric.

Proof. This follows since any element

hk ∈
(⋃
q≥1

Tq(S) r Th1

)
r T (〈S, h1〉)

would by the proof of Proposition 8.2.15 lie in Th1
which is a contradiction.

Corollary 8.2.17. Let S be an almost symmetric numerical monoid that is not
maximal in Sg(S). Then 〈S, h1〉 is almost symmetric.

Proof. The fact that S is not maximal in Sg(S) implies g
2 < h1. Thus 2h1 ∈ S

so 〈S, h1〉 ∈ Sg(S) and is almost symmetric by Corollary 8.2.16.

8.3 Apéry sets

As for numerical monoids one may define the Apéry set of a positive affine
monoid S with respect to any non-zero element m ∈ S:

Ap(S,m) = {x ∈ S ; x−m /∈ S}.

For numerical monoids the following is Proposition 7 in [41].

Proposition 8.3.1. Let S be a positive affine monoid and m a non-zero element
of S. Then the following conditions on an element t ∈ Zd are equivalent.

(i) t−m ∈ T (S).

(ii) t is maximal in Ap(S,m) with respect to the partial order ≤S.

Proof. Assuming (i) we have t = hi,j + m for some iterated Frobenius number
hi,j so, clearly, t ∈ Ap(S,m). Let s ∈ S+ and consider the element t+ s−m =
(hi,j + m) + s − m. Since this element belong to S we see that t is maximal
in Ap(S,m). If (ii) holds then t + s − m ∈ S for every s ∈ S+, that is,
t−m ∈ T (S).

Corollary 8.3.2. Let S be a positive affine monoid and m ∈ S+. Then there is
a 1-1 correspondence between the elements of T (S) and the elements of Ap(S,m)
that are maximal relative ≤S. In particular, Ap(S,m) is finite.

Proof. This follows from Proposition 8.3.1.

Just as for numerical monoids, the set T0(S) can be described using Ap(S,m)
for any non-zero element m ∈ S.
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Proposition 8.3.3. Let S be a positive affine monoid. For any non-zero ele-
ment m ∈ S we have

T0(S) = max
≤Nd
{x ∈ Ap(S,m)} −m.

Proof. We know that T (S) ⊆ Ap(S,m) −m. On the other hand all elements
in the set Ap(S,m) − m belong to H(S), so the result follows from Lemma
8.1.11.

8.4 Special case of numerical monoids

In this section we confine ourselves to numerical monoids. We present here
separately versions of a few results seen in the previous sections since in case of
numerical monoids one may say a bit more. Recall from the introduction that
in case of numerical monoids S the cardinality of the set T (S) is called the type
of S and is denoted by typeS. Also, typeS equals the Cohen–Macaulay type
of k[S].

For numerical monoids S all negative integers belong to g(S) − S. The
definition of the iterated Frobenius numbers thus takes the following form:

Definition 8.4.1. Let S be a numerical monoid with Frobenius number g(S).
Put h0(S) = g(S) and define the iterated Frobenius numbers hi(S) by

hi(S) = max{x ∈ Z ; x /∈ S, x /∈ hj(S)− S, j ∈ {0, . . . , i− 1}}.

Remark 8.4.2. The number h1(S) is the the number h(S) explored already in
[41].

Since a numerical monoid is an affine monoid, we have

Proposition 8.4.3. Let S be a numerical monoid and assume there are r + 1
iterated Frobenius numbers {hr, . . . , h1, g}. Then typeS = r + 1 and

T (S) = {hr, . . . , h1, g}.

Remark 8.4.4. In particular we see that hi is the (i + 1)st largest element in
T (S).

Observe that for numerical monoids gpS = Z. Using this we recall from
Proposition 8.2.8 that a numerical monoid satisfying the equivalent conditions
in Proposition 8.4.5 below, is called an almost symmetric numerical monoid.

Proposition 8.4.5. Let S = 〈s0, . . . , st〉 be a numerical monoid with T (S) =
{hr, . . . , h1, g}. Then the following conditions on S are equivalent:

(i) S ∪ (g − S) = Z r {hr, . . . , h1}.

(ii) For all x ∈ Z it holds that x ∈ S or x ∈ g − S or x ∈ {hr, . . . , h1}.
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(iii) If x + y = g, then either x ∈ S or y ∈ S, or both x and y belong to
{hr, . . . , h1}.

(iv) There are equally many elements in the set

{0, 1, . . . , g}r {hr, . . . , h1}

from S as there are from outside S.

(v) hi − S+ ⊆ g − S+ for all 0 ≤ i ≤ r.

Proof. We first consider the case when g is odd. (i) and (ii) are equivalent
by Proposition 8.2.8. (ii) implies (iii) since if neither x nor y lies in S, then
x+ y = g implies that neither x nor y lies in g − S and hence both x and y lie
in {hr, . . . , h1}. (iii) implies (i) since for any integer x, we have that if neither
x nor g − x lies in S, they both belong to the set {hr, . . . , h1}. The fact that
(iii) and (iv) are equivalent is easily verified considering the equation x+ y = g
and Corollary 8.2.13. Finally, by considering the equation

S ∪ (g − S) ∪ · · · ∪ (hr − S) = Z

we see that (i) and (v) are equivalent since hi /∈ g − S for any i other than 0.
The case g even follows in the exact same way considering Remark 8.4.7 and

Lemma 8.4.8 below.

Remark 8.4.6. Proposition 8.4.5 partially generalizes Lemma 1 and Lemma 3
in [41].

Remark 8.4.7. In order for the proof of Proposition 8.4.5 to go through also in
the case g even, we need to know that g

2 belongs to T (S) in case S satisfies the
equivalent conditions (i) and (ii). Lemma 8.4.8 below shows that this is the
case. However observe that g

2 does not always belong T (S) if g(S) is even. The
numerical monoid 〈3, 11, 13〉 is an example of this since g(〈3, 11, 13〉) = 10 but
5 + 3 = 8 /∈ S.

Lemma 8.4.8. Let S be an almost symmetric numerical monoid. Then

(i) typeS is odd whenever g(S) is odd.

(ii) typeS is even whenever g(S) is even and in particular, in this case g
2

always belongs to T (S).

Proof. Clearly we may assume S is not maximal in Sg. By Corollary 8.2.17
we know that 〈S, h1〉 is almost symmetric and Proposition 8.2.15 gives that
T (〈S, h1〉) = T (S) r {g − h1, h1}. The result follows by induction on r.

Example 22. Consider the numerical monoid S = 〈8, 12, 14, 15, 17, 18, 21, 27〉.
We have g(S) = 19 and T (S) = {6, 9, 10, 13, 19} so S is not symmetric. However,
N ∩ (g − S) = {1, 2, 3, 4, 5, 7, 11} so we see that S is almost symmetric.
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Example 23. Consider the numerical monoid S = 〈4, 17, 18, 23〉. We have
g(S) = 19, N∩(g−S) = {1, 2, 3, 7, 11, 15} and T (S) = {13, 14, 19}. Since 5 /∈ S,
5 /∈ g − S and 5 /∈ T (S) we conclude that S is not almost symmetric.

Proposition 8.4.9. Let S = 〈s0, . . . , st〉 be an almost symmetric numerical
monoid with g odd (resp. even) and assume typeS = 2r + 1 (resp. 2(r + 1)).
Then there exists a strict sequence of almost symmetric numerical monoids

S ⊂ S1 ⊂ · · · ⊂ Sr

such that g(S) = g(Si) for all i ∈ {1, . . . , r} and with Sr symmetric (resp.
quasi-symmetric).

Proof. We may assume that S is not maximal in Sg. As in Lemma 8.4.8 we
have T (〈S, h1〉) = T (S) r {g − h1, h1} and 〈S, h1〉 is almost symmetric. The
result follows by induction on r.
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Chapter 9

Numerical monoids of
maximal embedding
dimension

We compute the Betti numbers of all monoid rings corresponding to numerical
monoids of maximal embedding dimension. A description, in terms of the gen-
erators of S, precisely in which degrees the non-zero graded Betti numbers occur
is given. We show that for arithmetic numerical monoids of maximal embedding
dimension, the graded Betti numbers occur symmetrically in two respects.

9.1 Betti numbers

Let S be a numerical monoid with minimal generators {s0, . . . , sn}. Recall that
the Betti numbers of k[S] over R = k[x0, . . . , xn] are the invariants βi(k[S]) =
dim TorRi (k[S], k). The Betti numbers inherit a grading from the chosen grading
of R and we denote by βi,j(k[S]) = dim TorRi (k[S], k)j the ith Betti number in
degree j.

Assume S = 〈s0, s1, . . . , sn〉 where s0 < · · · < sn and recall that the number
e(S) = n+ 1 is called the embedding dimension of S. The number s0 is called
the multiplicity of S and is denoted by m(S). We always have e(S) ≤ m(S)
and if e(S) = m(S) we say that S has maximal embedding dimension.

Our results all rely on the following lemma.

Lemma 9.1.1. Let S = 〈s0, . . . , sn〉 be a numerical monoid of maximal embed-
ding dimension and k[S] the corresponding monoid ring. Put R̄ = R/(x0) and
let m = (x1, . . . , xn). Then

βi,j(k[S]) = βi,j(R̄/m
2).

Proof. Let

G. · · · → ⊕iR(−b2i)→ ⊕iR(−b1i)→ R→ R/I → 0
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be a minimal R-free resolution of the monoid ring R/I ∼= k[S]. Since x0 is not
a zero divisor on R or on R/I, by [11, Proposition 1.1.5], the tensored complex
G.⊗R/(x0) is an R-free resolution of R/I⊗R/(x0), that is in fact also minimal.
Recall that s0 < · · · < sn and that x0 correspond to ts0 in the isomorphism
k[S] ∼= R/I. Since S has maximal embedding dimension {s0, . . . , sn} represents
a full system of residue classes modulo s0. This yields

R/I ⊗R/(x0) ∼= R/(I + (x0)) ∼= R̄/m2. (9.1)

Remark 9.1.2. Because of Lemma 9.1.1, in the results below we will write
βi,j(k[S]) for the Betti numbers, even if the computations will be explicitely
made for k[S]/(ts0) ∼= R̄/m2.

In the standard grading of R it is plain that the Hilbert series is of R̄/m2 is

H(R̄/m2; z) = 1 + nz =
(1 + nz)(1− z)n

(1− z)n
. (9.2)

It is well known ([11, Theorem 4.1.13]) that the polynomial (1 + nz)(1 − z)n
here may be written in the form∑

i,j

(−1)iβi,j(R̄/m
2)zj . (9.3)

Since R̄/m2 clearly has 2-linear resolution over R (that is, βi,j(R̄/m
2) 6= 0

only for j = i + 1) when using the standard grading, we only have to identify
the coefficients from the denominator of (9.2) with those from (9.3).

Proposition 9.1.3. Let S = 〈s0, . . . , sn〉 be a numerical monoid of maximal
embedding dimension and k[S] the corresponding monoid ring. Then

βi(k[S]) =

{
1 if i = 0

i
(
n+1
i+1

)
if i ≥ 1

Proof. From (9.1), (9.2), (9.3) and the equation

(1 + nz)(1− z)n = 1 +

n∑
k=1

[
(−1)k

(
n

k

)
+ (−1)k−1n

(
n

k − 1

)]
zk + (−1)nnzn+1

it follows that

βi(k[S]) =

{
1 if i = 0

n
(
n
i

)
−
(
n
i+1

)
if i ≥ 1.

However, it is easily seen that i
(
n+1
i+1

)
= n

(
n
i

)
−
(
n
i+1

)
for all i ≥ 1.
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Remark 9.1.4. The Betti numbers in Proposition 9.1.3 occur elsewhere, for
example as the Betti numbers of certain graph algebras: One may view (via
polarization, see [36] for details) the ideal m2 as the edge ideal I(G) of the simple
graph G on 2n vertices {x1, . . . , xn}∪ {y1, . . . , yn} whose edge set consists of all
edges on the variables xi, and all edges of the form {xi, yi}, 1 ≤ i ≤ n. Also,
consider the edge ideal I(Kn+1) of the complete graph Kn+1 on n+ 1 vertices

{z1, . . . , zn, w}. Define an onto map S1/I(G)
ϕ−→S2/I(Kn+1) by

xi 7→ zi, yi 7→ w

for all 1 ≤ i ≤ n. Here S1 and S2 are polynomial rings over k in 2n and n + 1
variables, respectively. Clearly the ideal generated by the elements y1 − yj ,
j > 1, lies in the kernel which in turn must lie inside the ideal generated by the
yi, 1 ≤ i ≤ n. Hence

kerϕ = (y1 − yj ; j > 1).

It is not hard to see that the elements y1 − yj , j > 1, form a regular sequence
on S1/I(G). Thus, using the same kind of arguments as in the proof of Lemma
9.1.1, we see that S1/I(G) and S2/I(Kn+1) have the same graded Betti numbers.
The proposition now follows from Theorem 2.2.3.

As mentioned before Proposition 9.1.3, the standard grading of R yields a
2-linear resolution of k[S] ∼= R̄/m2. This is not the case if one use the grading
given by deg(xi) = si instead. This fact is illustrated in the following two
examples.

Example 24. Consider the monoid S = 〈5, 9, 13, 17, 21〉. Below we see the
Betti diagram of R̄/m2 considering the standard grading of R.

0 1 2 3 4
0 1 - - - -
1 - 10 20 15 4

In the sequel we will collect the Betti numbers in tables of the following form
instead of using the Betti diagrams. The numbers in the column to the right
are j(βi,j(k[S])).

i βi j(βi,j)
1 10 2(10)
2 20 3(20)
3 15 4(15)
4 4 5(4)

Example 25. We consider the same monoid as in the previous example but
instead with the grading of R defined by deg(xi) = si. We get the following
table:

i βi j(βi,j)
1 10 18(1) 22(1) 26(2) 30(2) 34(2) 38(1) 42(1)
2 20 31(1) 35(2) 39(3) 43(4) 47(4) 51(3) 55(2) 59(1)
3 15 48(1) 52(2) 56(3) 60(3) 64(3) 68(2) 72(1)
4 4 69(1) 73(1) 77(1) 81(1)
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We now determine, in general, the degrees j for which βi,j(k[S]) is nonzero.
Since m2 is a stable ideal the Eliahou–Kervaire resolution, see [21] for details,
provides a minimal R-free resolution of R̄/m2. The minimal generators of Li,
the ith component of the Eliahou–Kervaire resolution, are the symbols e(σ, u)
where σ = (q1, . . . , qi) is a sequence of integers satisfying

1 ≤ q1 < · · · < qi < maxu, (9.4)

and u a minimal generator of m2. Here max(u) denotes the maximal index of a
variable xi that divides u. For i = 0 the condition (9.4) is considered as void, so
that the symbols of L0 are in 1-1 correspondence with the minimal generators
of m2. The Eliahou–Kervaire resolution is in fact graded and in the standard
grading of R the degree of a symbol e(σ, u) ∈ Li is by definition deg(u) + i.
Thus in our case, in the standard grading of R, the degree of e(σ, u) ∈ Li is
2 + i.

Remark 9.1.5. Note that the Eliahou–Kervaire resolution resolves the ideal m2.
Thus, in the formulas below the homological degrees are shifted one step since
we resolve R̄/m2.

Lemma 9.1.6. Let S = 〈s0, . . . , sn〉 be a numerical monoid of maximal embed-
ding dimension and k[S] the corresponding monoid ring. Then βi+1,j(k[S]) is
non-zero precisely in the degrees j that may be written

j = sk + sl + sq1 + · · ·+ sqi (9.5)

for some 1 ≤ k ≤ l ≤ n and 1 ≤ q1 < · · · < qi < l, and equals the number of
different ways in which this can be done.

Proof. Recall that if u = xkxl, in the standard grading the degree of a symbol
e(σ, u) ∈ Li is deg(xkxl)+i. If we translate this via the isomorphism k[S] ∼= R/I
to the corresponding R-free resolution of k[S] in the grading given by deg(xi) =
si, we see that the degree of the symbol e(σ, u) becomes sk+sl+sq1+· · ·+sqi .

Let j ∈ N. Recall that a partition of j with i parts on a set I ⊆ {1, 2, . . . , j},
is an expression

j = x1 + · · ·+ xi

where 1 ≤ x1 ≤ · · · ≤ xi and xk ∈ I for all k ∈ {1, . . . , i}. We denote the number
of partitions of j with i parts on the set {1, 2, . . . , n} by p(j, i, n). Motivated by
Lemma 9.1.6, we define an Eliahou–Kervaire partition of an integer j with i+ 2
parts on the set {1, 2, . . . , n} to be a partition j = k + l + q1 + · · ·+ qi where

(i) 1 ≤ k ≤ l ≤ n

(ii) 1 ≤ q1 < · · · < qi < l.

Also, let EKP(j, i, n) denote the number of Eliahou–Kervaire partitions of j
with i+ 2 parts on {1, 2, . . . , n}.
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If S = 〈s0, . . . , sn〉 is a numerical monoid of maximal embedding dimension
with s0 < · · · < sn, then {s0, . . . , sn} represents a full system of congruence
classes modulo s0. Thus we may re-index so that si ≡ i mod s0. We assume
this is done for the rest of this section.

If βi+1,j(k[S]) 6= 0 (so that there is a partition j = sk + sl + sq1 + · · ·+ sqi)
we see that there is a number mj such that j = (k + l + q1 + · · ·+ qi) +mjs0.
This is clear since for every i ∈ {0, 1, . . . , n}, si may be written as si = i+nis0.
For given i and j denote by Mi,j the set of all such numbers mj .

Proposition 9.1.7. Let S = 〈s0, . . . , sn〉 be a numerical monoid of maximal
embedding dimension and k[S] the corresponding monoid ring. Then

βi+1,j(k[S]) =
∑

mj∈Mi,j

EKP(j −mjs0, i, n). (9.6)

Proof. Assume βi+1,j(R) is nonzero and that j = sk + sl + sq1 + · · · + sqi =
(k+l+q1+· · ·+qi)+mjs0. Clearly every Eliahou–Kervaire partition of j−mjs0

with i+ 2 parts on {1, 2, . . . , n} will contribute by 1 to the number βi+1,j(k[S]).
Hence, taking the sum over all elements in Mi,j yields βi+1,j(k[S]).

Example 26. Let S = 〈3, 5, 7〉. We may use Lemma 9.1.6 directly to find the
degrees where the relations generating the ideal I lies. The Betti numbers that
keep track of this information lies in homological degree 1, so we have i = 0.
Thus the degrees j are  j = 5 + 5 = (2 + 2) + 2 · 3

j = 5 + 7 = (2 + 1) + 3 · 3
j = 7 + 7 = (1 + 1) + 4 · 3.

From the expressions to the right we see that the corresponding Eliahou–Kervaire
partitions are 4 = 2 + 2, 3 = 2 + 1 and 2 = 1 + 1.

Assume we have an Eliahou–Kervaire partition k+ l+ q1 + · · ·+ qi of j. By
subtracting h from qh+1 for every h ∈ {1, 2, . . . , i − 1} we obtain a partition
q′1 + · · · + q′i of j − k − l −

(
i
2

)
with i parts on {1, 2, . . . , n − i}. The number k

still satisfies 1 ≤ k ≤ l. This yields:

Lemma 9.1.8. For the number EKP(j, i, n) we have the equality

EKP(j, i, n) =
∑

i+1≤l≤n
1≤k≤l

p(j − k − l −
(
i

2

)
, i, n− i).

By inserting this into (9.6) we get

Theorem 9.1.9. Let S = 〈s0, . . . , sn〉 be a numerical monoid of maximal em-
bedding dimension and k[S] the corresponding monoid ring. Then

βi+1,j(k[S]) =
∑

i+1≤l≤n
1≤k≤l
mj∈Mi,j

p(j −mjs0 − k − l −
(
i

2

)
, i, n− i).
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To make this theorem more explicit we give, in Proposition 9.1.12 below, a
generating series for the numbers EKP(j, i, n) for fixed i and n. We will use the
following two lemmas.

The following lemma describes, for any integer l, the bivariate generating
series

G(x, y) =
∑
n≥0
k≥0

p(n, k, l)ykxn.

Lemma 9.1.10. Given a positive integer l, the bivariate generating series
G(x, y) of the numbers p(n, k, l) is given by

G(x, y) =

l∏
j=1

1

1− yxj
. (9.7)

If we consider the above generating series for fixed k, we have the vertical
generating series

Gk(x) =
∑
n≥k

p(n, k, l)xn.

We may use the vertical generating series to rewrite G(x, y) as

G(x, y) =
∑
k≥0

Gk(x)yk. (9.8)

Lemma 9.1.11. With k fixed and the notations as above, we have

Gk(x) = xk
k∏
j=1

1− xj+l−1

1− xk
.

Proof. It is easy to verify that G(x, xy)(1−yxl+1) = G(x, y)(1−yx). From this
and equation (9.8) we get that

Gk(x) =
x(1− xk+l−1)

1− xk
·Gk−1(x),

which proves the assertion by induction.

In light of Proposition 9.1.7 and Lemma 9.1.8 our interest lies in the coeffi-

cients of Gi(x) = xi
∏i
j=1

1−xj+n−i−1

1−xi (we use l = n−i) that stand before powers

of x with exponents of the form j−k−l−
(
i
2

)
, where 1 ≤ k ≤ l ≤ n. Considering

the double sum in Lemma 9.1.8 we see that the maximal value the expression
j−k−l−

(
i
2

)
takes there, is j−i−

(
i
2

)
−2. For each pair k, l of summation indices,

we let αk,l denote the number k+ l− i− 2 = (j− i−
(
i
2

)
− 2)− (j− k− l−

(
i
2

)
).

Observe that αk,l does not depend on j. Using this we obtain the generating
series for the numbers EKP(r, i, n):
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Proposition 9.1.12. The generating series for the numbers EKP(j, i, n), i and
n fixed, is given by

∑
j≥0

EKP(j, i, n)xr = x2i+(i2)+2 ·
∑

i+1≤l≤n
1≤k≤l

[
xαk,l

i∏
r=1

1− xr+n−i−1

1− xi
]
.

Proof. We have added generating series of the summands that occur in Lemma

9.1.8 giving them an additional “weight”, xαk,l+2i+(i2)+2, so that the coefficient
before xj in the sum counts precisely EKP(j, i, n).

Example 27. Consider the numerical monoid S = 〈3, 5, 7〉 from Example 3.
We showed there that β1,10(k[S]) = β1,12(k[S]) = β1,14(k[S]) = 1. If we do the
same kind of computations but with i = 1 instead we get

j = 5 + 5 + 5 = (2 + 2 + 2) + 3 · 3
j = 5 + 5 + 7 = (2 + 2 + 1) + 4 · 3
j = 5 + 7 + 7 = (2 + 1 + 1) + 5 · 3
J = 7 + 7 + 7 = (1 + 1 + 1) + 6 · 3.

Considering the right hand side expressions we see that only the middle two
degrees j are in fact Betti degrees. We have β2,17(k[S]) = β2,19(k[S]) = 1.
Computing the generating series from the above proposition (with i = 1 and
n = 2) gives ∑

j≥0

EKP(j, 1, 2)xj = x4 + x5.

The exponents 4 and 5 here correspond to the Eliahou–Kerviare partitions 4 =
2 + 1 + 1 and 5 = 2 + 2 + 1.

We may also confirm the fact that pd k[S] = 2: Consider the following
computations 

j = 5 + 5 + 5 + 5 = (2 + 2 + 2 + 2) + 4 · 3
j = 5 + 5 + 5 + 7 = (2 + 2 + 2 + 1) + 5 · 3
j = 5 + 5 + 7 + 7 = (2 + 2 + 1 + 1) + 6 · 3
j = 5 + 7 + 7 + 7 = (2 + 1 + 1 + 1) + 7 · 3
j = 7 + 7 + 7 + 7 = (1 + 1 + 1 + 1) + 8 · 3.

None of the expressions on the right hand side give Eliahou–Kervaire partitions,
so β3(k[S]) = 0.

9.2 Arithmetic numerical monoids

We do no longer assume that the minimal generators of S satisfy si ≡ i mod s0.
Consider the sets Mi,j from Proposition 9.1.7. If |Mi,j | = 1 for every i and j, the
description of the Betti numbers can be made more explicit. We call a numerical
monoid S = 〈s0, . . . , sn〉 arithmetic if si = s0 + id for all i ∈ {0, . . . , n}, where
d is some integer 1 ≤ d < s0 with gcd(d, s0) = 1.
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Example 28. S = 〈5, 9, 13, 17, 21〉 is an example of an arithmetic numerical
monoid with d = 4. Another example is S = 〈5, 6, 7, 8, 9〉 where d = 1.

Remark 9.2.1. For n = 3, the following results are included in more general
results by Sengupta, [64]. In [64] minimal resolutions for all monomial curves in
A4 defined by an arithmetic sequence are given. Hence the information about
the Betti numbers below can be obtained from these resolutions in the case
where n = 3.

Proposition 9.2.2. Let S = 〈s0, . . . , sn〉 be an arithmetic numerical monoid of
maximal embedding dimension and k[S] the corresponding monoid ring. Assume
si = s0 + id for every i ∈ {0, 1, . . . , n}. Then the following holds.

(i) The non-zero Betti numbers βi+1,j(k[S]) lie in degrees j that are of the
form (i+ 2)s0 +mjd. The integer mj is uniquely determined by j and mj

has an Eliahou–Kervaire partition with i+ 2 parts on {1, 2, . . . , n}.

(ii) βi+1,j(k[S]) equals the number of Eliahou–Kervaire partitions of mj with
i+ 2 parts on {1, 2, . . . , n}.

(iii) The minimal and maximal degrees, jmin and jmax respectively, for which
βi+1,j(k[S]) is nonzero are

jmin = (i+ 2)s0 +
(
1 +

(
i+ 2

2

))
d

jmax = (i+ 2)s0 +
(
(i+ 2)n−

(
i+ 2

2

))
d.

(iv) βi+1,j(k[S]) is nonzero in every degree j = (i+ 2)s0 +mjd for which

1 +

(
i+ 2

2

)
≤ mj ≤ (i+ 2)n−

(
i+ 2

2

)
.

Remark 9.2.3. Part (iv) of the proposition says that there is a certain kind
of symmetry in the Betti numbers. Namely, if si = s0 + id for every i ∈
{0, 1, . . . , n}, then βi+1,j(k[S]) is non-zero in every dth degree j between two
specific degrees jmin and jmax.

Proof. (i), (iii) and (iv) follows directly by considering (9.5), so let us prove the
second assertion. Let mj be the unique number for which j = (i+ 2)s0 +mjd.
By mapping the partition j = sk + sl + sq1 + · · ·+ sqi to the Eliahou–Kervaire
partition k+ l+q1 + · · ·+qi of mj , we obtain not only an injection, but in fact a
bijection between the set Bi+1,j consisting of partitions j = sk+sl+sq1 +· · ·+sqi
of j and the set of Eliahou–Kervaire partitions of integers with i + 2 parts on
{1, 2, . . . , n}.
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Proposition 9.2.4. Let S = 〈s0, . . . , sn〉 be an arithmetic numerical monoid
of maximal embedding dimension and k[S] the corresponding monoid ring. If
j1, . . . , jr are the degrees in which βi+1,j(k[S]) is non-zero, then

βi+1,jk(k[S]) = βi+1,jr−k+1
(k[S]), (9.9)

for every 0 ≤ k ≤ r.

Proof. Define a map φ on the set of generators of S by si 7→ sn−i+1, 0 ≤ i ≤ n.
If e(σ, u) is a generator of Li corresponding to the sequence σ = (q1, . . . , qi) and
the minimal generator u = xkxl of m2, 1 ≤ k ≤ l ≤ n, we consider the set

Nσ,u = {sk, sl, sq1 , . . . , sqi}.

Here all but possibly two elements are distinct, and φ maps Nσ,u to a set
φ(Nσ,u) = {φ(sk), φ(sl), φ(sq1), . . . , φ(sqi)}, that in turn correspond to some
other generator of Li. In light of Proposition 9.2.2 and the fact that φ preserves,
but reverses, all relations st ≤ su, st, su ∈ Nσ,u, the proposition follows.

Thus, if S is arithmetic of maximal embedding dimension equation (9.9) tells
us that the contributions to βi(k[S]) from its graded components βi+1,j(k[S])
are symmetric relative to the non-zero degrees j.

Note that for arithmetic numerical monoids of maximal embedding dimen-
sion, there are two kinds of symmetries in the Betti numbers. One described
just above, and one in Remark 9.2.3. It is natural to ask for other numerical
monoids for which both these symmetries hold.

Example 29. Let S = 〈5, 7, 9〉. Below are the Betti numbers of k[S] using the
grading given by deg(xi) = si. Clearly the Betti numbers are symmetric in the
sense of Proposition 9.2.4, but not in the sense of (iv) in Proposition 9.2.2.

i βi j(βi,j)
1 3 14(1) 25(1) 27(1)
2 2 28(1) 30(1)

Example 30. The symmetry in the Betti numbers in Proposition 9.2.4 does
not hold in general. Consider for example the monoid S = 〈5, 11, 17, 18, 19〉.
Below are the Betti numbers of k[S].

i βi j(βi,j)
1 10 22(1) 28(1) 29(1) 30(1) 34(1) 35(1) 36(1) 37(1) 38(1)
2 20 39(1) 40(1) 41(1) 45(1) 46(2) 47(3) 48(2) 4(1) 52(1)

53(2) 54(2) 55(2) 56(1)
3 15 57(1) 58(1) 59(1) 63(1) 64(2) 65(3) 66(2) 67(1) 71(1)

72(1) 73(1)
4 4 76(1) 82(1) 83(1) 84(1)
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Chapter 10

Monomial subrings of
complete hypergraphs

Let ai, i ∈ {1, 2, . . . , n}, and d be non-negative integers. Recall that for any
u = (u1, . . . , un) ∈ Nn we denote by |u| = u1 + · · ·+ un. Consider the set

A = {u ∈ Nn ; 0 ≤ ui ≤ ai, i ∈ {1, 2, . . . , n}, |u| = d}.

The monomial subring k[A] ⊆ k[t1, . . . , tn] generated by the set of monomials
{tu ; u ∈ A} is said to be of Veronese type and is well studied, see for example
[48, 66]. Since the set A generates a positive affine monoid the ring k[A] is
isomorphic to a quotient k[xu ; u ∈ A]/pA via the map xu 7→ tu. Here k[xu ; u ∈
A] is a polynomial ring with one variable for each element in A.

Sturmfels showed, [66, Theorem 14.2], that there exists a monomial order
on k[xu ; u ∈ A] such that the standard monomials modulo pA are the so called
sorted monomials and that pA in this monomial order has a Gröbner basis
consisting of square-free quadratic binomials called sorting relations. Later De
Negri, [15], showed that these properties are inherited by certain sub-algebras
of k[A]. The monomial algebras considered by De Negri are generated by so
called sortable subsets of A.

We use the results of De Negri and Sturmfels to study monomial subrings
k[H] of k[t1, . . . , tn] that are generated by the edge sets of complete hypergraphs
H.

10.1 Preliminaries

Recall that an integral domain D is called normal if it is integrally closed in its
field of fractions. The following result is part of [66, Proposition 13.15].

Proposition 10.1.1. If S is a positive affine monoid and k[S] is a homogeneous
monomial subring whose toric ideal has a square-free initial ideal with respect
to some term order, then k[S] is normal.
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Let Md ⊆ Nn be the set of integral vectors u = (u1, . . . , un) such that
|u| = u1 + · · ·+ un = d and assume B ⊆Md. Assume further u1 and u2 belong

to B. Write tu1tu2 = ti1 · · · ti2d where i1 ≤ · · · ≤ i2d. We set tu
′
1 =

∏d
j=1 ti2j−1

and tu
′
2 =

∏d
j=1 ti2j . This defines a map

sort : B ×B →Md ×Md, sort(u1,u2) = (u′1,u
′
2),

called the sorting operator.
A subset B ⊆ Md is called sorted if sort(B × B) ⊆ B × B, and a pair

(u,v) ∈ B ×B is called sorted if sort(u,v) = (u,v).

Remark 10.1.2. The sorting operator was introduced by Sturmfels in [66]. It is
also used by Herzog and Hibi in [48].

Let M be any subset of Md and consider the monomial subring k[M ] ∼=
k[xu ; u ∈M ]/pM . Binomials xuxv − xu′xv′ ∈ pM , where (u′,v′) = sort(u,v),
are called sorting relations. Thus the before mentioned result by Sturmfels, [66,
Theorem 14.2], says that if A is of Veronese type, then

pA = (xuxv − xu′xv′ ; (u′,v′) = sort(u,v))

and there exists a monomial order on k[xu ; u ∈ A] such that the standard
monomials modulo pA are the sorted monomials.

10.2 Monomial subrings of complete hypergraphs

Proposition 10.2.1. Let H be any d(I1, . . . , It)-complete hypergraph. Then the
toric ideal pH of H has a Gröbner basis consisting of square-free binomials of
degree two and k[H] is normal.

Proof. The normality follows either directly from the fact that the edge set is
the set of bases of a discrete polymatroid (see [48]), or else will follow from
Proposition 10.1.1. We show that the set E(H) is sortable. Pick two edges Ei
and Ej and denote by ai and bi respectively the number of vertices from Vi in Ei
and Ej respectively. If Ii = [αi, βi], by definition αi ≤ ai ≤ βi and αi ≤ bi ≤ βi.
Consider the image sort(Ei, Ej) = (M,N) and let a′i and b′i denote the number
of vertices from Vi in M and N respectively. We claim a′i ∈ Ii, b′i ∈ Ii. Clearly

2αi ≤ ai + bi ≤ 2βi.

If ai + bi = 2k, k ∈ N, then αi ≤ k ≤ βi and k = a′i = b′i. Hence in this case
a′i ∈ Ii and b′i ∈ Ii. Assume ai + bi = 2k + 1, k ∈ N. Then αi ≤ k + 1

2 ≤ βi
and either a′i = k + 1, b′i = k or a′i = k, b′i = k + 1. Hence also in this case
a′i ∈ Ii and b′i ∈ Ii. Since this holds for every i ∈ {1, . . . , t} and since M and
N both have cardinality d, M and N are in E(H) and hence E(H) is sortable.
The result now follows from [66, Theorem 14.2] and [15, Proposition 2.1].

Corollary 10.2.2. If H is a d(I1, . . . , It)-complete hypergraph, then k[H] is
Koszul.
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Proof. This follows since there is a square-free quadratic Gröbner basis, see
[1].

Remark 10.2.3. The case H = Kd
n is the square-free Veronese and is treated by

Sturmfels in [66].

Example 31. Consider the complete hypergraph H = K
3(2,1)
3,2 . Let the vertex

set be {v1, v2, v3, w1, w2}. The edge set E(H) then is

{{v1, v2, w1}, {v1, v2, w2}, {v1, v3, w1}, {v1, v3, w2}, {v2, v3, w1}, {v2, v3, w2}}.

The ideal pH is the kernel of the map

k[x1, x2, x3, x4, x5, x6]→ k[t1, t2, t3, t4, t5]

defined by

x1 7→ t1t2t4, x2 7→ t1t2t5, x3 7→ t1t3t4, x4 7→ t1t3t5, x5 7→ t2t3t4, x6 7→ t2t3t5.

Considering all sorting relations we get

pH = (x2x3 − x1x4, x2x5 − x1x6, x4x5 − x3x6).
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[38] R. Fröberg. A note on the Stanley–Reisner ring of a join and of a suspension.
Manusripta Math., 60(1):89–91, 1988.
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