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Abstract

The characterization of noisy quantum circuits is an important step in the development
of large-scale quantum computers. As experimental quantum architectures approach the
threshold for fault-tolerant quantum computing, obtaining a benchmark of process fidelities
is needed to verify the integrity of the system and ensure functionality. Additionally, the
ability to successfully implement a quantum code of choice may depend on the type of
noise that is present in the system. It is therefore necessary to characterize not only the
fidelity of the process, but also the structure of the noise.

Randomized benchmarking is a characterization protocol which extracts partial infor-
mation from a noisy quantum process. This thesis gives a detailed review of the randomized
benchmarking protocol, and presents the results of three collaborative projects which use
techniques similar to randomized benchmarking to obtain previously hidden information.
The first protocol is designed to obtain a benchmark on loss errors. This protocol also
provides information on the detector efficiency and an additional constraint on estimated
parameters from randomized benchmarking. The second protocol is an extension of the
first, under the special case of coherent leakage errors, for which we obtain an estimate of
the leakage rate. The third protocol provides a method of testing for spatial correlations in
noisy processes. This test may be used to determine the correlation structure of errors, and
the error correcting codes needed for successful experiments in a particular architecture.
All protocols presented in this thesis are scalable, platform-independent and insensitive to
state preparation and measurement errors. We also provide results of numerical tests of
these protocols for simulated noise, which show their accuracy and robustness.
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Chapter 1

Introduction

The prospect of a robust universal quantum computer has generated considerable interest.
The discovery of an algorithm by Shor [64] for efficiently factoring natural numbers with
a quantum computer (an impossible task for a classical computer) has motivated rapid
advance in quantum technologies. However, a roadblock to a universal quantum computer
is the large number of possible error processes that arise naturally in a quantum system.
Decoherence of the system, imperfect implementations of quantum gates, and coupling to
the environment are examples of potential threats to a quantum computer. Fortunately,
fault-tolerant quantum computation (FTQC) in combination with the threshold theorem
[1, 42, 44], tells us that a certain amount of noise in the system can be accounted for
and corrected, given we know the noise model, and are assured that the noise level is
below a certain threshold. It is therefore vital that as experimental platforms improve
and approach the error threshold we are able to characterize errors reliably. Because a
quantum computer would require many - potentially thousands - of quantum bits (qubits),
error characterization methods must be efficiently scalable in the dimension of the system,
which poses a problem for traditional characterization tools.

This thesis expands on a robust and scalable error characterization called randomized
benchmarking (RB). The standard RB protocol will be described, with both step-by-step
instructions for its experimental implementation, and the mathematical justification for
its success. Its merits and its limitations will also be explored, leading to ways to extend
the RB protocols to benchmark error models not accounted for by standard RB. Changes
to the RB protocol in order to flag and characterize three types of important, but often
neglected, types of errors are presented and mathematically justified, along with numerical
simulations showing their functionality in experimentally relevant conditions. A major
advantage of the standard RB protocol and its variations is that they may be used to
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benchmark any quantum information processing (QIP) device. Like RB, the protocols
introduced in this thesis are platform-independent and they are described generally, for
use by any quantum information processor.

The three contributions of this work are a result of the author’s collaborations with
Joel Wallman and Joseph Emerson. The material in Chapter 4 is based off the result for
characterizing loss rates in [70], for which the author provided the material in section 4.6,
the numerical simulation data and analysis in section 4.4, and contributed to the fit model
derivations and the writing of the paper. The material in Chapter 5 is expanded as a
special case of Chapter 4, and is based on the work in Ref. [69] for characterizing coherent
leakage, for which the author participated in the description of the experimental protocol
and derivation of fit models, provided the numerical data and analysis, and contributed to
the writing of the paper. Note that what is called incoherent leakage in Ref. [69], is now
termed loss, to remain consistent with standard terminology. Chapter 6 contains current
progress on a joint collaboration for expanding and generalizing the simultaneous random-
ized benchmarking protocol in Ref. [30], for which the author participated in the model
derivations, and contributed the numerical simulations and analysis. Chapters 2, 3 consist
of appropriate background information on randomized benchmarking, and the author does
not claim any originality of this work.
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Chapter 2

Mathematical Preliminaries

This chapter will provide a brief overview of the notation, background, and mathematical
tools used in this thesis. For a more complete overview of quantum information and
representation theory see Refs. [58] and [32], respectively.

2.1 Quantum Information Basics

2.1.1 Quantum States

Quantum mechanical systems are represented mathematically as existing on complex Hilbert
spaces. A complex Hilbert space, H is defined as a complex vector space, in combination
with an inner product structure. Using Dirac notation, a vector on H is represented by a
ket |ψ〉. The inner product of |ψ〉 with |φ〉 is given by 〈φ|ψ〉, where 〈φ| is a called a bra
and is defined by the designated inner produce structure. The set of linear operators on
H, denoted L(H), and the trace inner product

〈φ|ψ〉 = Tr(ψ†φ) (2.1)

define a Hilbert space. As per standard notation, the dagger operation ψ† = ψ̄T is equal
to the conjugate transpose of ψ. In the remainder of this thesis, all Hilbert spaces will be
assumed to have the trace inner product structure. Any state vector can be written as a
discrete linear combination of orthonormal (ON) basis elements of H

|ψ〉 =
∑
j

cj |φj〉 , (2.2)
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where {|φj〉} are the orthonormal basis elements. This thesis will deal with only finite-
dimensional quantum systems, for which states are written as finite linear combinations of
ON basis elements.

The state space for a single quantum bit (qubit) has basis {|0〉 , |1〉}. Unlike classical
bits, qubits can be found in a superposition of states |0〉 and |1〉, described by a linear
combination as in Eq. (2.2).

States ψ can also be represented by density operators,

ρ =
∑
j

pj |ψj〉 〈ψj| , (2.3)

where |φ〉 〈ψ| denotes the outer product of ψ and φ, and
∑

j pj = 1. States for which

ρ = ρ2 (2.4)

are called pure states. If a state is not a pure state it is called a mixed state.

2.1.2 Composite Systems

The full Hilbert space of a composite system composed of separable Hilbert spaces HA and
HB is

HAB = HA ⊗HB (2.5)

where ⊗ denotes the tensor product operation. The dimension of the composite system is
dim(HAB) = dim(HA)×dim(HB). HAB is spanned by the independent set of states {|ψl〉⊗
|φk〉},∀l, k where {|ψl〉} and {|φk〉} form orthonormal bases for HA and HB respectively.

2.1.3 Evolution

A quantum computer does not consist of states alone. Implementing computations re-
quires manipulating states, which is accomplished by applying linear transformations in
the Hilbert space. Ideal transformations in quantum mechanics are given by unitary oper-
ators.

Definition 2.1.1. A unitary operator U is a bounded linear operator on a Hilbert space
that satisfies

UU † = U †U = I. (2.6)
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Unitary operators represent evolution in a closed quantum system. Since by definition
of a unitary U † = U−1, i.e., U is invertible, therefore all unitary operations are reversible.

Consider a general (not necessarily unitary) map on H, E : L(H) → L(H). The
following definitions provide useful classifications related to the properties of E
Definition 2.1.2. Positivity: E is a positive map if E(ρ) is positive whenever ρ is positive.

Definition 2.1.3. Complete positivity: LetHAB be the composite systemHAB = HA⊗HB

for arbitrary B, where E : L(HA)→ L(HA) . E is completely positive if E ⊗ Ik is positive,
where Ik is the identity operator acting on HB

In Def. 2.1.3, the system is extended to ensure that the output state of any composite
system satisfies the positivity condition. Positive, but not completely positive, maps do
not guarantee that the transformation of a positive state on a composite system will be
positive.

Definition 2.1.4. Trace preserving: E is trace-preserving if Tr(E(ρ)) = Tr(ρ)

A map that is both trace preserving and completely positive (CPTP) is called a quan-
tum channel. CPTP maps are typically considered to represent the most general type
of quantum evolution. In experimental quantum computation, ideal transformations are
usually unitary, and noisy transformations are CPTP maps. However, we will explore in
Chapter 4 the case when noisy implementations are non-trace-preserving

2.1.4 Quantum Circuits

To perform a computation, a quantum computer applies sequences of (unitary) transfor-
mations to prepared states. The choice of sequence is determined by the objective of the
computation, and the individual unitary transformations can be referred to equivalently
as gates, similarly to a classical computer. (Note that in some cases, i.e., noisy computa-
tions, open quantum systems, gates may also refer to CPTP maps.) In this section we will
give definitions of several often-used quantum gates, and give an example of a graphical
representation of quantum circuits.

The Pauli matrices are the set of quantum gates defined as the generators of rotation
on a qubit, and are given by

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(2.7)

5



in the {|0〉 , |1〉} basis. Note that I is the identity operator, X corresponds to a bit flip,
Z corresponds to a phase flip, and Y corresponds to a both a bit and phase flip, since
Y = iXZ. The Pauli matrices form the Pauli group P = {I, X, Y, Z}.

Other important gates are the Hadamard gate (H), the phase gate (P ), and the
controlled-NOT (C-NOT) gate.

H =
1√
2

(
1 1
1 −1

)
, P =

(
1 0
0 i

)
. (2.8)

The C-NOT gate is a unitary transformation on two qubits. The C-NOT gate may be
called an entangling gate because it works by flipping the state of the second qubit, de-
pendent on the state of the first qubit. In the two qubit basis {|0〉 , |1〉} ⊗ {|0〉 , |1〉} =
{|00〉 , |01〉 , |10〉 , |11〉}, C-NOT is written

C-NOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.9)

The C-NOT gate performs a bit flip (X gate) on the second (target) qubit if the first
(control) qubit is in the |1〉 state. If the first qubit is the |0〉 state, the C-NOT, applies the
identity to the second qubit (the second qubit is unaffected).

Sequences of quantum gates can be represented by circuit diagrams, which keep track
of to which qubit(s) each gate is applied, and the order with which gates are applied. The
example in Fig. 2.1 shows two qubits, initally prepared in states |ψ〉 and |φ〉. The applied
gates are: a Hadamard gate on the first qubit and a Pauli-X gate on the second qubit,
followed by a C-NOT gate with control on qubit one, and target on qubit two. The final
step is an unspecified unitary on the second qubit, while the first is unmodified.

|ψ〉 H •

|φ〉 X U

(2.10)

Figure 2.1: Example of a circuit diagram.

2.1.5 Measurements

Ideal measurement procedures of quantum systems are represented by observables, or self-
adjoint operators. Like a density operator, a self-adjoint operator with a set of eigenvalues
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{am} admits a spectral decomposition of orthogonal projection operators

A =
∑
m

am |am〉 〈am| . (2.11)

The set of physically observable outcomes is given by the eigenvalues of A. The probability
of measuring outcome am, given a preparation ρ is Tr(|am〉 〈am| ρ), and this result is known
as the Born rule. After measurement, the state is projected onto the state of |am〉 〈am|
associated with am by the von Neumann projection postulate. Measurements of this type
are called projection valued measures (PVMs).

A more general type of measurement is called a positive-operator valued measure
(POVM). In the discrete case, which is the important case for this thesis, a measurement
is comprised of a set of linear operators {Mm} acting on H that must satisfy∑

m

M †
mMm = I. (2.12)

measurements are indexed by outcomes m. If the state is initially prepared in ρ, then the
probability of obtaining outcome m is

Pr(m) = Tr(MmρM
†
m) (2.13)

where
∑

m Pr(m) = 1. After the state is measured, it collapses to

MmρM
†
m

Tr(MmρM
†
m)
. (2.14)

By convention, POVM elements are defined as

Qm = M †
mMm (2.15)

and the set {Qm} is the POVM.

2.2 Representations of quantum channels

Here we present three useful representations of quantum channels, adapted from their
descriptions in Refs. [22, 37].
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2.2.1 Kraus Representation

The evolution of a quantum system for a given time is described by a superoperator, E ,
acting on the system preparation ρ. Consider the construction of an operation where a
preparation is subjected to a transformation, given by the unitary Uk, with probability pk.
The total transformation is then given by the convex combination

E(ρ) =
∑
k

pkUkρU
†
k , (2.16)

which is not necessarily a unitary transformation. If we define the operator Ak =
√
pkUk,

then Eq. (2.16) be written

E(ρ) =
∑
k

AkρA
†
k, (2.17)

and the Ak are called the Kraus operators. The constraint∑
k

A†kAk = I (2.18)

ensures E is trace-preserving. By the Kraus representation theorem, a superoperator E
is a CPTP map if and only if there is an operator sum decomposition of E subject to
constraints (2.16) and (2.18) [22]. Therefore all CPTP maps can be represented by Kraus
operators. If E is a CPTP map, it is also a unital map if the condition∑

k

AkA
†
k = I (2.19)

on the Kraus operators holds.

Definition 2.2.1. Unital maps: E is unital if it is a CPTP map that maps the identity
operator to the identity operator.

A CPTP map on a d-dimensional space can be represented by at most d2 Kraus op-
erators. The Kraus representation theorem also requires the assumption that the system
and the environment are initially uncorrelated. Failure of this condition can result in
non-completely postive maps [59].
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2.2.2 χ-matrix

The χ-matrix is an object which fully represents a quantum channel, E . It is defined
relative to a trace-orthonormal operator basis B = {B1, . . . , Bd2} for the operator space
Hd2 (i.e., TrB†iBj = δi,j), which is often chosen to be the Pauli operators, and it can be
calculated by expanding the Kraus operators in terms of B. Given B is an orthonormal
basis for operators on dimension d, any Kraus operator Ak of E can be written

Ak =
∑
α

BαTr(B†αAk) (2.20)

then the action of E is equivalent to

E(ρ) =
∑
i,j

∑
k

αikα
∗
jkBiρB

†
j (2.21)

where αik = Tr(B†iAk). The χ-matrix is then defined for a channel E by

E(ρ) =
∑
i,j

χi,jBiρB
†
j (2.22)

and has matrix elements

χij =
∑
k

αikα
∗
jk. (2.23)

The χ-matrix is independent of the choice of Kraus operators for a given E , and is a
Hermitian matrix by definition. It is positive semi-definite with Tr(χ) = d if and only if E
CPTP map [22].

2.2.3 Liouville Representation

In the remainder of this thesis we will often work in the Liouville (sometimes called super-
operator) representation of quantum channels. The Liouville representation is also defined
relative to a trace-orthonormal operator basis B = {B1, . . . , Bd2} for the operator space
Hd2 . We refer to the special case where B is the (normalized) set of Pauli operators as the
Pauli-Liouville representation.

Density operators ρ and measurement outcomes M are represented by column and row
vectors |ρ) and (M | whose ith elements are Tr(B†i ρ) and Tr(M †Bi) respectively. The Born
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rule can then be expressed as TrMρ = (M |ρ). Completely positive maps E : Hd2 → Hd2

are represented by matrices E such that

E ij = Tr[B†i E(Bj)], (2.24)

where E|ρ) = |E [ρ]) for all ρ. Note that bolded notation is used to denote the Liouville
representation of the channel, and round-bracket Dirac notation is used to denote the
Liouville representation of quantum states and measurements.

One advantage of using the Liouville representation is that channels compose via ma-
trix multiplication. This allows probabilities for long sequences of channels to be easily
calculated.

Given the choice of B1 = d−1/2Id, it is convenient to express E in block-matrix form as

E =

(
S(E) ~m(E)
~n(E) R(E)

)
, (2.25)

where R is a d2− 1×d2− 1 matrix. We will sometimes omit the argument when it is clear
from the context. For trace-preserving (TP) maps, S(E) = 1 and ~m = ~0, while for unital
maps, S(E) = 1 and ~m = ~n = 0 [71]. We show this using the more well-known Kraus
operator representation.

Proof. We start by proving the trace-preserving condition on S(E). Let E be a quantum
channel with operator sum decomposition E(ρ) =

∑
k AkρA

†
k. Then in the Pauli-Liouville

representation

E ij = Tr[B†i E(Bj)]

= Tr

(
B†i
∑
k

AkBjA
†
k

)
. (2.26)

By the linearity and cyclic properties of the trace we find:

E ij = Tr

(
Bj

∑
k

A†kB
†
iAk

)
. (2.27)

Since S(E) = E11, the choice of B1 = d−1/2Id implies

S(E) = Tr

(
B1

∑
k

A†kB
†
1Ak

)

= Tr

(
1

d

∑
k

A†kAk

)
(2.28)
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and by the trace-preserving condition on the Kraus operators in Eq. (2.18)

S(E) = Tr

(
1

d
I

)
= 1. (2.29)

All unital maps are trace-preserving, so S(E) = 1 for unital maps as well, although this is
also easy to show using the unital condition in Eq (2.19). By recalling the trace-orthonormal
condition on the operator basis, TrB†iBj = δi,j, a similar calculation can be performed to
show that ~m = ~0 for trace-preserving maps, and ~n = ~0 for unital maps.

We therefore refer to ~n and R as the non-unital and unital components respectively.

2.3 Unitary t-designs

A unitary t-design is a finite set of unitary operations with special properties.

Definition 2.3.1. A unitary t-design for d dimensions is a finite set {U1, . . . UK} ⊆ U(D)
of unitary matrices on Cd such that for every homogeneous complex valued polynomial
p(t,t)(U) of degree at most t in both the matrix elements of U , and the complex conjugates
of those elements,

1

K

K∑
j=1

p(t,t)(Uj) =

∫
U(d)

dUp(t,t)(U) (2.30)

where the integral is taken over the Haar measure, U(d) [17, 21].

By this definition it is easy to see every t-design is a (t− 1)-design. Examples of 2- and
1-designs are the Clifford group (see section 2.4) and the Pauli group (see section 2.1.4)
respectively.

2.3.1 2-design Twirling

The twirl of a quantum channel E is defined as the average of E under the composition
U † ◦ E ◦ U where ◦ denotes composition (i.e. apply E then apply U), and U is a unitary
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operation, U(ρ) = UρU †. The averaged channel is

E(ρ) =

∫
U(d)

U † ◦ E ◦ U(ρ) dµ(U)

=

∫
U(d)

UE(U †ρU)U † dµ(U). (2.31)

where µ(U) is a probability distribution for U . Of particular interest is the case where the
measure µ(U) = µH(U) on U(d) is the unique bi-invariant normalized Haar measure. In
this case

E(ρ) =

∫
U(d)

UE(U †ρU)U † dµH(U)

= pρ+ (1− p) I
d
. (2.32)

That is, the twirl of E over the Haar measure is a one-parameter depolarizing channel [23].
This result may be used to extract some important parameters which describe a quantum
channel. As we will show later (and as is shown in various randomized benchmarking
papers), the depolarizing parameter p is directly related to the channel fidelity of E .

An important feature of 2-designs arises by considering the set of unitaries Uj ∈ U to
be a discrete set. The discrete twirl over U is given by

EU(ρ) =
∑
j

µjU †j ◦ E ◦ Uj(ρ)

=
∑
j

µj(U
†
j E(UjρU

†
j )U †j ) (2.33)

where {µj} is a probability distribution over the Uj, and we denote the discrete twirled
channel by EU . The twirling condition for 2-designs gives an alternate definition of 2-
designs.

Definition 2.3.2. The set of unitaries {Uj} forms a unitary 2-design if and only if, the
twirl of E over {Uj} is equal to the full Haar twirl of E , for any channel E and any state ρ
[8, 51].

2.4 The Clifford Group

Definition 2.4.1. A group G is defined as an algebraic structure consisting of a set of
elements {gi}, and a group operation “ · ” obeying four axioms:
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1. Closure: g1 · g2 = g3, g3 ∈ G.

2. Associativity: g1 · (g2 · g3) = (g1 · g2) · g3
3. Identity: ∃I ∈ G such that I · g = g,∀g ∈ G.

4. Inversibility: ∀g ∈ G, ∃g−1 ∈ G such that g · g−1 = g−1 · g = I.

There are two groups of particular importance for this thesis. First is the Pauli group,
and second is the Clifford group, described in this section.

The n-qubit Clifford group Cn is a set of unitary operators, defined as the normalizer
of the Pauli group (up to overall phases), Pn = {I, X, Y, Z}⊗n × {±1,±i}.

Definition 2.4.2. A unitary operator C of dimension d = 2n is a member of Cn if and
only if CPC† ∈ Pn for all P ∈ Pn.

The Clifford group for n = 1 can be fully generated by the hadamard and phase gate,
defined in Eq. (2.8). For n ≥ 2, the generating set of Cn requires the addition of the C-NOT
gate. For arbitrary n, Cn is generated by tensor products of the three generating gates.

The Clifford group alone does not provide any additional “quantum power”, it can be
efficiently simulated on a classical computer as proved by the Gottesmann-Knill theorem
[34, 45]. To achieve universal quantum computation, additional operations outside the
Clifford group are required. However, only a single gate outside the Clifford group need
be added for universal quantum computation. Examples of gates outside Cn are the π/8
rotation gate, and the Toffoli gate. Additionally, a technique called magic state distillation,
in combination with the Clifford group, is sufficient for universal quantum computation
[43, 61].

Theorem 1. The uniform distribution over the Clifford group on n qubits is a unitary
2-design.

The twirling condition for 2-designs therefore applies to the Clifford group, and the
Cn-twirl is therefore a depolarizing channel. There are implementations of robust quan-
tum computing that have a close relationship with the Clifford group, which makes it an
interesting and important group in the study of quantum information.
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2.5 Schur’s Lemma

To understand Schur’s Lemma we define two key concepts: irreducible representations and
intertwining operators. Proof of Schur’s lemma requires supplemental background informa-
tion in group theory. We omit the proof here because our work uses mainly consequences
of Schur’s lemma, but for the interest of the reader it can be found in Appendix D or
Ref. [65].

A representation (rep) of a group G on a vector space V is a homomorphism φ : G →
GL(V), where GL(V) is the group of automorphisms of V . Given finite dimension d,
GL(V) ≡ GL(d,C) is the group of invertible d × d matrices. A map φ : G → F between
groups is a homomorphism if it preserves group structure. This implies that φ(IG) = IF
and φ(g−1) = φ(g)−1. A subrepresentation (subrep) φW of φ is the restriction of φ to a
subspace W ⊆ V that is invariant under the action of G, that is, φ(g)W ⊆ W for all g ∈ G.

Definition 2.5.1. An irreducible representation (irrep) is a representation φ whose only
subreps are φ0 (i.e., the null rep φ(g) = 0 for all g ∈ G) and φ itself [29].

Since the reps we consider are unitary reps of compact groups, if W is a subrep of
V then the orthogonal complement W⊥ is a subrep as well. Therefore any rep can be
decomposed into a direct sum of irreps, which may occur with some multiplicity. Any
basis that decomposes a rep into a direct sum of irreps is called a Schur basis. The
simplest rep is the trivial rep φ(g) = 1 (which is also an irrep) for all G, which is defined
for any group G.

Definition 2.5.2. A map T : V → W is an intertwining operator if for reps φ : G → GL(V )
and φ′ : G → GL(W ), T (φ(g)) = φ′(T (g)).

The set of all intertwining operators forms a complex vector space.

Now that we have defined irreps and intertwining operators, we give the second form
of Schur’s lemma, which is the form most applicable to this work.

Theorem 2. Schur’s Lemma (of the second form): Let φ : G → GL(V) be an irrep, and
T : V → V be a intertwining operator for φ, where V = Cn. Then T = λI for some λ.

Combining knowledge of twirls with Schur’s lemma provides an alternate intuition for
twirling. Recall that the twirl of A is denoted by AG. Let φ be a nontrivial d-dimensional
irreducible representation of a group G and A ∈ GL(d,C),B ∈ GL(d + 1,C). Then all
three of the following statements follow directly from Schur’s Lemma [32].
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• AG = (TrA/d)Id;

• BG = B11 ⊕ bId where the representation of G is 1⊕ φ and b = (TrB −B11)/d; and

• ∑g∈G φ(g) = 0.
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Chapter 3

Randomized Benchmarking

3.1 The Quantum Error Characterization Problem

The accuracy threshold theorem promises that for error rates below a certain threshold
value, quantum computation is possible in the presence of errors. Completely charac-
terizing the noise affecting a quantum system (using quantum process tomography and
others) is not scalable in the number of qubits and is therefore infeasible for larger systems
[60]. In response to this difficulty, methods of scalable quantum gate characterization have
emerged, which have the cost of obtaining only partial information about the system in
question. However, many of these characterization methods make assumptions about the
noise and available resources, such as: negligible or no state preparation and measure-
ment (SPAM) errors, and noisy processes are close to ideal operations. In recent years a
toolkit of characterization protocols called randomized benchmarking has been developed
to reliably solve these issues [50, 51]. RB methods are scalable and robust characteriza-
tion protocols which are insensitive to SPAM errors, and have been used with success in
various experimental implementations such as NMR, superconducting, and ion trap qubits
[12, 15, 62].

When considering time- and gate-independent, Markovian noise, it is standard and
convenient to represent the ideal operation by a unitary, U , and the implemented gate by
quantum operation, EU . The error is then defined as

E = U † ◦ EU , (3.1)

where E can be either the error on the gate, or the noise due to free evolution of the system.
Equivalently, E can be written as E ′U ◦ U †, where in general E ′U 6= EU .
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In this thesis we will focus on gate- and time-independent errors, and furthermore, we
will make the assumption of Markovian errors, unless otherwise stated. If such errors are
of interest to the reader, approaches which give partial RB results for gate- and time-
dependent noise, and a model of non-Markovian noise can be found in Refs. [4, 51, 71].
These approaches can be applied to all of the RB-variant protocols outlined in this thesis,
but we note that full (scalable) characterization of non-Markovian noise remains a difficult
open problem.

3.2 Average Fidelity

One often used measure for distinguishing how alike two CPTP maps E1 and E2 are to one
another is the channel fidelity,

FE1,E2(ρ) = F (E1(ρ), E2(ρ)) (3.2)

=

(
tr

√√
E1(ρ)E2(ρ)

√
E1(ρ)

)2

. (3.3)

Here F is the usual fidelity between quantum states as in Nielsen and Chuang [58]. Often
it is useful to compare an ideal implementation of a gate with its actual, noisy implemen-
tation. Consider the ideal operation as being a unitary, U , and the actual gate a quantum
operation, EU , as in Eq. (3.1). The fidelity of EU to U is then equal to the fidelity of E to
I,

FEU ,U(φ) = FE,I(φ) = tr (|φ〉〈φ|E(|φ〉〈φ|)) (3.4)

for φ↔ |φ〉〈φ| ∈ CPd−1, a pure state in the complex projective space. The expression for
the average gate fidelity (over states) is obtained by integrating FEU ,U over CPd−1 using
the unique unitarily invariant measure on pure states, the Fubini-Study measure µFS [7],

FEU ,U = FE,I =

∫
CPd−1

tr (|φ〉〈φ|E(|φ〉〈φ|)) dµFS(φ). (3.5)

The average fidelity of an operation, or group of operations gives a good idea of the
performance of this group in practice. The basic idea behind RB is to partially characterize
a set of noisy gates acting on an arbitrary number of qubits. In the case of standard RB,
information related to the average gate fidelity is obtained. The protocol in section 3.3 is
the standard RB protocol for benchmarking a unitary 2-design G ⊆ U(d), but variations of
the protocol have been proposed to characterize individual and non-2-design gates [14, 52],
as well as other interesting parameters besides the average gate fidelity, which will be the
contribution of this thesis.
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3.3 Experimental Protocol

To implement standard randomized benchmarking, a unitary 2-design G with implementable
elements g ∈ G must be designated. Noisy implementations of the g are given by Eg = g◦E
for some fixed E . Ideally, G should be a group of interest, and an experimentalist should
want to characterize the accuracy of its implementation by their apparatus. Often G is
chosen as the Clifford group, because of its applications in FTQC, and it conveniently is a
2-design. The RB protocol for a chosen G is as follows:

1. Choose a sequence length m ∈ N.

2. Choose a sequence k = (k1, . . . , km) of m integers uniformly at random where kj ∈
{1, . . . , |G|}.

3. Prepare an initial d-dimensional system in some state ρ (usually ρ ≈ |0〉〈0|).

4. Apply the sequence of operations gkm ◦ . . .◦gk0 , where gk0 =
∏m

i=1 g
−1
ki

, is the inversion
operator of the sequence.

5. Perform a POVM {Q, I −Q}.

6. Repeat steps 3− 5 enough times to estimate

Qk = Tr[Qgkm ◦ E ◦ . . . ◦ gk0 ◦ E(ρ)], (3.6)

the probability of the outcome Q occurring, to a desired precision.

7. Repeat steps 2− 6 enough times to estimate the expectation value of Qk:

EkQk = |G|−m
∑
k

Qk (3.7)

to a desired precision.

8. Repeat steps 1 − 7 for various choices of m, and fit the results to the exponential
decay curve

EkQk = A(E)pm +B(E) (3.8)

to obtain partial information on the noise affecting G. A diagram of a single trial of
the experimental protocol is illustrated in Fig. 3.1.
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3.4 Derivations of the Fit Models

The full derivation of the fit model can be found in [50]. We will show here that the decay
parameter p in Eq.(3.8) is related to the average gate fidelity, and state preparation and
measurement errors are absorbed by the constants A(E) and B(E).

E gk0 E gk1 E · · · gkm

Q

ρ ...

Q

Figure 3.1: Circuit diagram of the randomized benchmarking procedure.

The choice of gk0 in step 3 can be calculated using a classical computer according to
the Gottesmann-Knill theorem [34, 45]. This specifically-selected gate allows that each
group gate can be thought of as the composition gki = ci ◦ c†i−1 with gkm = c†m, and ci ∈ G
by the properties of groups. By considering this rearrangement, we see that randomized
benchmarking produces a sequence of conjugations, c†j ◦ E ◦ cj, as shown in Fig. 3.2.

E c0 E c†0 c1 E c†1 · · · cm E c†m

Q

ρ ...

Q

Figure 3.2: Circuit diagram of the twirling “trick” in standard RB.

Randomized benchmarking protocols make use of the fact that randomly sampling
channels g from the Clifford group (or any unitary 2-design), and averaging over a number
of selections of these channels, closely approximates the full discrete G-twirl of E [17],
denoted by EG. The discrete G-twirl of E is given by

EG =
1

|G|

|G|∑
j=1

c†j ◦ E ◦ cj. (3.9)

Because G is a unitary 2-design, the discrete twirl is equal to the twirl over the the full
Haar measure by the twirling condition for 2-designs. The average fidelity is invariant
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under the twirling operation, therefore the twirled channel, EG is a depolarizing channel,
Dp, with average fidelity identical to that of E [23],

EG(ρ) = pρ+
1− p
d
Id (3.10)

for dimension d. The decay parameter p in Eq. (3.8) and Eq. (3.10) is related to the average
gate fidelity of the group G in the following way

FE,I = p+
(1− p)
d

. (3.11)

The sequence of twirls in a length-m randomized benchmarking sequence is the m-fold
composition of EG with itself,

(EG)m(ρ) = pmρ+
1− pm
d
Id, (3.12)

therefore, the sequence fidelity decays exponentially with the length of the sequence, giving
us the exponential model in Eq. (3.8). To derive this, note that after averaging over
sequences

EkQK = Tr[QEG ◦ . . . ◦ EG ◦ E(ρ)]

= Tr[Q(EG)m ◦ E(ρ)]. (3.13)

Replacing (EG)m with the expression in Eq. (3.12) gives Eq. (3.8), with A(E) = Tr[Q(ρ−
Id
d

)E(ρ)] and B(E) = 1
d
Tr[QE(ρ)].

We may also consider the average error rate (or infidelity) of G, which is directly related
to the average fidelity. We define the average error rate r for the group G as

r = 1−FE,I

=
(d− 1)(1− p)

d
. (3.14)

3.5 RB in the Pauli-Liouville Representation

The Liouville picture provides an equivalent, intuitive view of randomized benchmarking.
Any quantum channel E , i.e. a completely positive trace-preserving map, can be written

E =

(
1 0

~n(E) R(E)

)
(3.15)
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where E is a d2 × d2 square matrix, and represents the Liouville representation of E . The
d2 − 1 dimensional column vector ~n is the non-unital block and the (d2 − 1) × (d2 − 1)
matrix R is the unital block. Given that G is a 2-design, the G-twirl in this representation,
by Schur’s lemma is

EG =

(
1 0
0 pId2−1

)
(3.16)

where p is the decay parameter in Eq. (3.8), and

p =
tr(R(E))

d2 − 1
. (3.17)

For sequences of length m, it is obvious that (EG)m is a single-parameter diagonal matrix
of the same block-structure as EG, with parameter pm. Clearly the sequence of operations
produces the decay curve in Eq. 3.8, with constants A and B depending on the preparation
and measurement.

3.6 Relation to the χ-matrix

The χ matrix, as described in section 2.2.2, is an important object in experimental quantum
computation, and relates to methods in process tomography. It may therefore be useful
to show the particular information given by RB on the χ-matrix. Calculating the average
fidelity of E , using the representation in Eq. (2.22) gives

FE,I =
χ0,0d+ 1

d+ 1
(3.18)

rearranging, we have

χ0,0 =
FE,I(d+ 1)− 1

d
= p

(
1− 1

d2

)
+

1

d2
. (3.19)

Therefore, by estimating the parameter p in RB, one can directly estimate the (0, 0) entry
of the χ-matrix. χ0,0 is also the probability that the identity operation occurs for Pauli
channels [51].
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3.7 Bound on the Worst-Case Error

The decay parameter also provides an upper- and lower-bound on the worst-case error
rate, which is given by the diamond distance of E from the identity operation; 1

2
‖E −Id‖�,

where the diamond distance of a map ∆ is

‖∆‖� = supψ‖I ⊗∆(ψ)‖1. (3.20)

As shown in Ref. [71], the worst case error of E is bounded by

r(d+ 1)

d
≤ 1

2
‖E − Id‖� ≤

√
d−1(d+ 1)r. (3.21)

3.8 Limits of Randomized Benchmarking

Although randomized benchmarking has proved to be a powerful tool for estimating the
average gate fidelity, there are limitations to the technique. Firstly, there are instances
where assigning a fidelity to individual quantum gates may be useful, or required, instead
of the average fidelity of the Clifford group (or any 2-design) obtained through standard
RB. Quantum process tomography offers full characterization of individual quantum gates,
but as previously mentioned, there are scalability issues associated with this technique. A
variation of RB in Ref. [52] called interleaved randomized benchmarking addresses this
concern by slightly altering the RB protocol to provide a bound on the average fidelity of
a single gate within the benchmarking group. This thesis will not focus on this technique,
but additional literature on this method can be found in Ref. [41].

Secondly, standard RB gives a single piece of information, the average gate fidelity.
Gates are not fully characterized by their average fidelity, and we may require additional
information to ensure that an implementation of a desired algorithm will perform without
issue. For example, certain architectures are vulnerable to probabilistic and irretrievable
loss of a qubit, which cannot be distinguished from other types of noise if only the average
fidelity is known. Other architectures are prone to errors which exhibit coherences between
the qubit subspace, and a second, disjoint subspace of the Hilbert space. This type of noise
is called leakage, and is trace-preserving on the full Hilbert space, but not within the desired
subspace. The standard RB method simply assumes the errors are trace-preserving in the
qubit subspace, and therefore does not provide characterization of loss or leakage. Loss and
leakage processes are problematic in quantum computation because many quantum error
correction codes [13, 33, 66] rely on the assumption that the qubits remain in the code
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space. Noise models for qubit loss and leakage, and potential solutions for characterizing
them are discussed in detail in Chapters 4 and 5. Additionally, RB cannot detect if the
noise on two or more qubits is comprised of single qubit errors, or if the noise performs an
entangling (or correlated) operation on multiple qubits. Correlated errors are discussed in
detail in Chapter 6, along with a variation of the RB protocol which provides a test for
these types of errors.

We also point out for standard RB, (and the protocols presented in this thesis) there
are limitations on the accuracy of the estimation of p in RB due to finite sampling, and
the number of experiments that are possible to perform in a timely manner. Obtaining
rigorous confidence intervals on the parameters obtained from our protocol is still an open
problem. However, these types of limitations are addressed in Ref. [51], and techniques
bounding the number of sequences to be sampled [71] and using Bayesian methods to refine
prior information [35] have recently been described, and should also be applicable to our
protocol. We also provide numerical simulations to gauge the effects of finite sampling on
the new protocols presented in this thesis.
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Chapter 4

Characterizing Loss

Many experimental implementations of qubits—such as ion traps [10, 75], optical lat-
tices [67] and linear optics [26]—suffer from irretrievable loss, that is, there is a nonzero
probability of the qubit vanishing (as opposed to leaking to other energy levels). Such loss
of normalization can be a substantial obstacle to many quantum information protocols,
requiring different error-correction techniques to achieve fault-tolerance [68, 26, 74]. For
example, the surface code may not be used directly if there is any probability of losing a
qubit, while for the topological cluster states, loss rates of less than 1% are required to
avoid impractical overheads [74].

However, there are two substantial challenges in characterizing loss. Firstly, the loss rate
may depend on the state of the qubit, such as when a qubit is encoded in a superposition of
vacuum and single-photon states. Secondly, the loss due to imperfect operations has to be
distinguished from the inefficiency of the detector [38]. Quantum process tomography [16,
60] could be used to characterize loss, however, it is inefficient in the number of qubits and
is sensitive to SPAM errors [54] and so cannot distinguish between loss due to imperfect
operations and inefficient detectors.

This chapter covers results which are published as Ref. [70]. We present a robust and
efficient protocol that characterizes the loss rate due to imperfect operations averaged over
input states. Our protocol is platform-independent, simple to implement and analyze, and
only assumes that the noise is Markovian. We begin by defining survival rates and then
present our protocol and derive the associated analytical decay curve under the assumption
of Markovian noise. We then prove that the average loss rate estimated via our protocol
provides a practical bound on the loss rate for any state. Since our protocol is robust
to SPAM errors, the choice of state and measurement in our protocol is unconstrained.

24



However, we discuss two particularly suitable choices. The first of these allows one of the
parameters in randomized benchmarking [50] to be independently estimated and leads to
a new test for non-Markovian effects. The first choice also allows for an estimate of the
unitarity metric introduced in Ref. [72] with no additional experimental overhead. The
second choice maximizes the signal, reducing the resources required to obtain a reliable
fit. In addition, we demonstrate that our protocol produces reliable estimates of loss rates
through a numerical simulation under an error model that has the greatest variation in
loss over states. Finally we illustrate how the analytical model breaks down when applied
to systems that have reversible (coherent) leakage to an ancillary level.

4.1 Average Survival Rates

In order to distinguish between inefficient detectors and lossy processes, we now define
survival rates. Many methods for characterizing a process E (including randomized bench-
marking [23, 45, 50]) assume it is trace-preserving. However, many experimental processes
are not trace-preserving, but instead a state ρ has a survival rate under E

S(ρ|E) =
Tr[E(ρ)]

Trρ
(4.1)

that is less than 1, or, equivalently, a nonzero loss rate L(ρ|E) = 1−S(ρ|E). Since the trace
is linear and any unnormalized density matrix is proportional to a unit-trace density matrix,
the survival rate averaged over all states (hereafter the average survival rate) is simply the
survival rate of the maximally mixed state, that is, S(E) := S(1

d
I|E). Correspondingly, the

average loss rate is L(E) = 1− S(E).

In the Liouville representation for basis B = {B1, . . . , Bd2}, typically B1 is chosen to
equal the normalized identity operator. It is therefore easy to see

S(E) =
Tr[E(1

d
I)]

Tr(1
d
I)

= Tr
[

1√
d
IE
(

1√
d
I
)]

= E11. (4.2)

So the average survival rate is equal to the identity component, or the (1, 1) component,
of the Liouville representation of E .

4.2 Experimental Protocol

We now present a protocol for characterizing the average survival rate S(E) in the experi-
mental implementations {Eg} of a set of gates G = {g1, . . . , g|G|} that are at least a unitary
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1-design (e.g., the Pauli or Clifford groups) [17]. For simplicity, we assume the noise is
time- and gate-independent Markovian noise, so that Eg = g◦E for some fixed map E . This
approach can be extended to accommodate time- and gate-dependent noise and a model
of non-Markovian noise by applying the approaches of Refs. [51, 71, 4].

Our protocol for estimating S(E) is as follows.

1. Choose a sequence length m ∈ N.

2. Choose a random sequence k = (k1, . . . , km) of m integers uniformly at random,
where kj ∈ {1, . . . , |G|}.

3. Prepare a state ρ.

4. Apply the sequence of gates gkm ◦ . . . ◦ gk1 .

5. Measure some operator Q (e.g., a self-adjoint operator or POVM element).

6. Repeat steps 3–5 to estimate

Qk = Tr [Qgkm ◦ E ◦ . . . ◦ gk1 ◦ E(ρ)] (4.3)

to a desired precision.

7. Repeat steps 2–6 to estimate the expectation value of Qk:

EkQk = |G|−m
∑
k

Qk (4.4)

to a desired precision (see, e.g., Ref. [71] for methods to bound the number of se-
quences required to obtain a given precision).

8. Repeat steps 1–7 for multiple m and fit to the decay curve

EkQk = D(Q)S(ρ|E)Sm−1(E), (4.5)

derived below, to obtain estimates of S(E) and S(ρ|E)D(Q) (assuming Trρ = 1)
where D(Q) = TrQ/d is the detector efficiency.

(Note that the above protocol differs from the randomized benchmarking protocol of
Ref. [50] in that no inversion gate is applied prior to the measurement.) The assump-
tion Trρ = 1 is needed, since for m = 1, EkQk = D(Q)S(ρ|E) only under this assumption.
If Trρ < 1, then the experimental value of EkQk for m = 1 will differ from this expression.
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Figure 4.1: Semilog plot of numerical data for our protocol demonstrating robust identi-
fication of the average loss rate. The numerical data is obtained for loss model described
by Eq. (4.9). Fitting the numerical results gave S(E) = 0.9900(2) and D(Q) = 0.902(8),
compared to the theoretical values S(E) = 0.9901 and D(Q) = 0.910 respectively.

Results of a numerical simulation of our protocol for a specific loss model are illustrated
in Fig. 4.1, demonstrating the robust performance of our protocol.

For the numerical simulation, the set of operations G is the set of single-qubit Paulis,
and we modeled the error as E as

E(ρ) = (α |0〉 〈0|+ |1〉 〈1|)ρ(α |0〉 〈0|+ |1〉 〈1|), (4.6)

where α = 0.99. The channel E corresponds to loss from the |0〉 state and, as proven
in Proposition 1 below, has the greatest variation of loss over states. The measurement
was set to 0.87 |φ〉 〈φ|+ 0.95 |φ⊥〉 〈φ⊥| where {|φ〉 , |φ⊥〉} is a randomly-chosen orthonormal
basis, to model an imperfect detector. The data points are the estimates of EkQk for
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m = 5, 10, ..., 100 obtained by sampling 30 random sequences of single-qubit Pauli operators
(unitary 1-design) and the error bars are the standard errors of the mean. The grey line is
the fit to the model in Eq. (4.5), obtained using MATLAB’s nlinfit package.

4.3 Analysis

To derive the decay curve in Eq. (4.5), note that averaging over all sequences corresponds
to independently averaging over all group gates gkj , so that

EkQk = Tr
[
QG ◦ E ◦ . . . ◦ G ◦ E(ρ)

]
(4.7)

where G(ρ) = |G|−1∑g∈G gρg
† (noting that a unitary channel corresponds to unitary

conjugation). Since G is a unitary 1-design (and a linear map), G(A) = Tr(A)I/d for
all d × d matrices A [17, 3]. Therefore, assuming Trρ = 1, G ◦ E(ρ) = S(ρ|E)I/d and
G ◦ E(I/d) = S(E)I/d and so Eq. (4.7) simplifies to Eq. (4.5).

The average survival rate obtained via our protocol is one possible figure of merit that
could be used to characterize loss, with an important alternative being the worst-case loss.
However, as we now prove, the average loss provides a practical bound for the worst-case
loss:

Proposition 1. For any quantum channel E and state ρ for a d-dimensional system,

L(ρ|E) ≤ L(E)d.

Moreover, for all d there exist channels E and states ρ that saturate this bound.

Proof. Let ρ and E be arbitrary states of and channels for a d-dimensional system. Since
the trace is linear and any valid state can be written as ρ = τTrρ where τ is a unit-trace
density matrix, the survival rate is independent of Trρ, so we assume Trρ = 1 without loss
of generality.

Let ρ′ = (I − ρ)/(d − 1), which is a valid quantum state since it is Hermitian and
positive-semidefinite by construction and has unit trace. Since ρ′ is a valid quantum state,
the probability of detecting a system in the state ρ′ after applying E is a true probability
and thus

dS(E)− S(ρ|E)

d− 1
=

Tr[E(I)− E(ρ)]

d− 1
= TrE(ρ′) ≤ 1, (4.8)
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where we have used the fact that quantum channels and the trace are linear. Rearranging
and substituting L = 1− S gives the desired bound.

To see that the bound is saturated, fix d and consider the channel

E(ρ) = [I+ (α− 1) |0〉 〈0|]ρ[I+ (α− 1) |0〉 〈0|] (4.9)

for α ∈ [0, 1]. For this channel,

E(|j〉 〈j|) =

{
α2 |0〉 〈0| j = 0

|j〉 〈j| j 6= 0,
(4.10)

so L(|j〉 〈j| |E) = δj(1− α2) and

L(E) =
1

d

∑
j

L(|j〉 〈j| |E) =
1− α2

d
. (4.11)

Therefore there exists a channel E and a state ρ such that L(ρ|E) = L(E)d.

For average survival rates close to 1, the estimate of S(ρ|E)D(Q) can be used to directly
estimate the detector efficiency D(Q), since

S(ρ|E)D(Q) ∈ [(1− d[1− S(E)])D(Q), D(Q)] (4.12)

by Proposition 1. Consequently, S(ρ|E)D(Q)/S(E) will give an estimate of D(Q) that is
accurate to within a factor of (d− 1)L(E). Estimating D(Q) can be used to estimate the
efficiency of the detector as

η =
D(Q)

D(Qideal)
, (4.13)

where Qideal and Q are the ideal and actual measurement operators. That is, η is the ratio
of observed to expected detector “clicks”, averaged (independently) over all states.

4.4 Model of Loss for Numerical Simulations

For the numerical simulation of loss in Fig. 4.1, the error was modelled by E as in Eq. (4.9)
for a single qubit, where α = 0.99. Therefore, the survival rate is S(E) = 1− L(E), where
L(E) is defined in Eq. (4.11). This gives,

S(E) = 1− 1− α2

d
=

1 + α2

2
(4.14)
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for d = 2.

Alternatively, in the Pauli-Liouville representation the error channel is given by

E =


α2+1

2
0 0 α2+1

2
− 1

0 α 0 0
0 0 α 0

α2+1
2
− 1 0 0 α2+1

2

 , (4.15)

and again S(E) = E11 = α2+1
2

. Replacing α with 0.99 gives the theoretical value S(E) =
0.9901.

The measurement was modeled by Q = x |φ〉 〈φ|+y |φ⊥〉 〈φ⊥| where x = 0.87, y = 0.95,
and {|φ〉 , |φ⊥〉} was a randomly-chosen orthonormal basis to model an imperfect detector.
Independent of basis, TrQ = x+ y = 1.82, therefore D(Q) = TrQ/d = 0.91.

4.5 Choosing Initial States and Measurements

Our protocol is robust to SPAM errors, in that the choice of the state ρ and measurement
operator Q only effect the value of the constant S(ρ|E)D(Q). However, there are two
choices of Q and ρ that have particular benefits.

(i) The most useful scenario corresponds to choosing G to be a unitary 2-design [17]
and choosing ρ,Q ≈ |0〉 〈0| as in randomized benchmarking [50]. There are two major
advantages to this choice. Firstly, with this choice the same data can also be used to
estimate the unitarity of E , a quantitative measure of how the noise E effects the purity of
input states [72]. Secondly, estimating the constant prefactor in Eq. (4.5) with this choice
is particularly useful because it allows an additional and vital constraint to be imposed
when fitting randomized benchmarking data to the fidelity decay curve. In Ref. [50], it
was shown that the fidelity decay curve is

A(E ′)pm +B(E ′) (4.16)

where p is related to the average gate fidelity, E ′ is the average error under the convention
that the experimental implementation of g is written as Eg = E ′ ◦ g (in contrast to our
choice of Eg = g ◦ E) and

A(E ′) = Tr[QE ′(ρ− I
d
)]

B(E ′) = Tr[QE ′( I
d
)]. (4.17)
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If the alternative convention of writing errors as E ′ ◦ g is applied to Eq. (4.7), then the
constant prefactor S(ρ|E)D(Q) in Eq. (4.5) becomes B(E ′). Since the fidelity decay curve
is in terms of observable properties, it is independent of the choice of convention and so
B(E ′) = S(ρ|E)D(Q). Obtaining a precise estimate of the constant term for randomized
benchmarking is important for two reasons. First, underestimating the constant term
B(E ′) [and hence overestimating the coefficient A(E ′)] will lead to an overestimate of the
decay parameter p, or, equivalently, an underestimate of the average gate infidelity. That
is, underestimating the constant term will falsely indicate that the gates are performing
better than they actually are. Second, the values of the constants A and B in randomized
benchmarking are not completely independent: they must satisfy particular constraints in
order to correspond to physical Markovian noise processes. In particular, for qubits, note
that

B(E)− A(E) = Tr[QE(ρ⊥)] (4.18)

where ρ⊥ is the state whose Bloch vector is anti-parallel to that of ρ. Therefore B(E)−A(E)
is a probability and so must be nonnegative if the noise is truly Markovian. Consequently,
if B(E) − A(E) is (strongly) negative, then either the noise is non-Markovian or strongly
gate dependent and so the estimate of the average gate infidelity in randomized bench-
marking is not known to be accurate. Moreover, if the prefactor S(ρ|E)D(Q) in Eq. (4.5)
is estimated by setting m = 1, then the resulting estimate is unaffected by the presence
of non-Markovian effects between sequential operations (since there is only one operation
applied). Therefore if the estimate obtained by setting m = 1 differs from the estimate
obtained from fitting the randomized benchmarking data under the protocol of Ref. [50],
then this disagreement indicates that non-Markovian effects are present in the data for the
latter.

(ii) Alternatively, given any allowed choice of G, choosing Q ≈ I and ρ to be any
unit-trace density matrix will maximize the value of the constant prefactor in Eq. (4.5),
reducing the number of experiments required to obtain a desired precision (since EkQk is
close to one for sufficiently small m). Note that this data can be collected under the same
experimental configuration as case (i), where Q = |0〉 〈0| and G is a unitary 2-design, by
simply re-incorporating the outcomes associated with I−Q that are discarded in case (i).
This data gives independent information because by assumption the probabilities of these
two outcomes are not constrained to add to 1 due to presence of loss.
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4.6 Relation to the χ-matrix

We can also consider the situation in the χ-matrix representation.

Proposition 2. The parameter S(E) is related to the χ-matrix in the following way:

S(E) =
χ0,0 + χ1,1 + χ2,2 + χ3,3

d
=

Tr(χ)

d
(4.19)

so Tr(χ) = d · S(E) for a trace-decreasing map, where S(E) quantifies the percent of infor-
mation not lost to the environment.

Proof. In the normalized Pauli-Liouville basis Eαβ = Tr
(
P †α√
d
E(

Pβ√
d
)
)

, and in the χ matrix

representation E (χ) =
∑

γ,δ χγ,δ

(
Pα√
d
ρ
P †β√
d

)
, for unnormalized Pauli operators Pi. Combining

the two, we find:

Eαβ =
1

d2

∑
γ,δ

χγ,δTr(PαPγPβPδ). (4.20)

Then the element S(E) can be found by letting Pα = Pβ = I.

S(E) =
1

d2

∑
γ,δ

χγ,δTr(PγPδ) (4.21)

=
1

d2

∑
γ,δ

d · χγ,δδγ,δ (4.22)

=
Tr(χ)

d
(4.23)

Note: In the case where E is a CPTP map, S(E) = 1→ Tr(χ) = d, as expected.

4.7 Failure of the Loss Protocol for Coherent Leakage

A distinct, but closely related error to loss is (coherent) leakage, wherein the system is
“leaked” from the qubit subspace to other energy levels. Leakage errors are non-Markovian
errors on the qubit subspace, since the system can return to the qubit subspace. Coherent
leakage is a known consequence of control imperfections in certain implementations of the
coupling gate in ion traps [63] and the controlled-phase gate in superconducting qubits [19,
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Figure 4.2: Semi-log plot demonstrating the signature of non-Markovian leakage under our
protocol. Numerical results were obtained for a model of coherent leakage from a qubit
subspace to a third level under a small random unitary on the full qutrit space.

20]. Fig. 4.2 shows the results of our protocol given a model of coherent leakage, in
particular, an error model for a random (fixed) unitary acting on a qutrit with a random
relative phase between the leakage level and the qubit levels. The data points are the
estimates of EkQk for m = 10, 20, ..., 300 obtained by sampling 30 random sequences of
single-qubit Pauli operators and the error bars are the standard errors of the mean. The
results initially appear to fit a single exponential decay, but then quickly converge to a
constant, similar to the behavior observed in Ref. [25]. Consequently, if experimental data
for our protocol does not neatly fit a single exponential, one explanation would be that
there is a leakage level that has not been accounted for. A simple protocol for estimating
rates of coherent leakage has been provided in Ref. [69] and in Chapter 5 of this thesis.
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4.8 Summary

In this chapter, we have presented a platform-independent and robust protocol for char-
acterizing the average loss rate due to noisy implementations of operations. Our protocol
can also be used to estimate the detector efficiency, provided the loss rate due to noisy op-
erations is sufficiently small. Since our protocol is easy to implement, it is also a promising
technique for experimentally optimizing quantum control, as done, e.g. in Ref. [40] using
randomized benchmarking experiments.

Experimentally implementing our protocol yields a single exponential decay curve which
can be fitted to our analytical expression to obtain the average loss rate. If the experimen-
tal data deviates significantly from a single decay curve, the experimental noise is either
strongly gate-dependent or non-Markovian. We have illustrated that the decay can be
observed and fitted in practice through numerical simulations of loss for a specific error
model and also that non-Markovian leakage to an ancillary level results in a deviation from
a single exponential. However, fully characterizing how the present protocol (and other
randomization-based protocols) behave in the presence of non-Markovian noise remains an
open problem.

Our protocol is scalable and robust against state-preparation and measurement errors.
However, particular choices of preparations and measurements give extra information. If
the set of gates is chosen to be a unitary 2-design and the preparation and measurement are
the same as those used in standard randomized benchmarking, then our current protocol
can be applied to directly estimate one of the parameters in randomized benchmarking
and thus provides a test to indicate non-Markovian noise. Furthermore, with this choice
of preparation and measurement, the same data obtained via our protocol can be used to
estimate the unitarity presented in Ref. [72] and thus to estimate how close the noise is to
depolarizing noise.
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Chapter 5

Characterizing Leakage

An important error mechanism in many experimental implementations of quantum infor-
mation is leakage outside of the Hilbert space under consideration. Such leakage errors can
be a substantial obstacle to fault-tolerant computation [2, 27, 31, 74].

Standard RB only provides limited information about leakage rates [25]. There are
platform-dependent methods for characterizing leakage in many of the leading experimen-
tal approaches to quantum computation, such as ion trap qubits [18], superconducting
qubits [76, 56] and quantum dots [53]. However, these approaches do not have all the ad-
vantages of RB, in particular, scalability with the number of qubits, robustness to SPAM
errors and no assumptions about the underlying error process beyond the assumption of
Markovianity.

Furthermore, leakage is distinct from loss, which we emphasize by using the term co-
herent leakage. In many physical implementations, coherent leakage can be considered as
a coherent transition to an extra dimension (e.g., an electron excitation to an energy level
outside the Hilbert space being considered) which later transitions back to the Hilbert
space under consideration. These transitions back to the Hilbert space make coherent
leakage a fundamentally non-Markovian process.

We present a protocol that provides an estimate of the average leakage rate for coherent
leakage over a given set of quantum gates. We consider computational and leakage spaces
of arbitrary dimensions, so that our protocol can be applied to both physical and logical
qudit systems. We demonstrate that our protocol produces reliable estimates of leakage
rates through a numerical simulation of our protocol for a specific error model.
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5.1 Defining Leakage Rates

Leakage is a non-Markovian process, which we model as a Markovian process on a higher-
dimensional space. We can therefore again consider experimental implementations of uni-
taries g to be written as Eg = g ◦ E for some completely positive map E : L(H) → L(H).
Note that if, as is often the case, g acts on a subspace H1 where H = H1 ⊕ H2, then we
implicitly extend g to g ⊕ IH2 where IHj denotes the identity on Hj and ⊕ denotes the
direct sum, such that for two matrices A and B,

A⊕B =

(
A 0
0 B

)
. (5.1)

The dimension of Hj is given by dj and d = d1 + d2.

Many methods for characterizing noisy channels Eg assume E remains (is trace-preserving)
in the designated subspace. However, an important limitation of many experimental imple-
mentations is that errors are not trace-preserving on the desired space. Meaning, generally
the probability Tr[PH1ρ] of the system being in a Hilbert space H1 ⊆ H can decrease,
and the probability Tr[PH2ρ] of the system being in a separate Hilbert space H2 ⊆ H can
increase upon applying an operation, where

PHj = IHj ⊕ 0 (5.2)

is the projector onto H1 [5]. (Conversely, Tr[PH1ρ] may increase, and Tr[PH2ρ] decrease.)
If the noise is trace-decreasing on the full Hilbert space of the system then the error is
characteristic of loss as in Chapter 4. However, if the noise is trace-preserving on the
full space, but trace-decreasing within the desired subspace, the error is characteristic of
coherent leakage to extra level(s).

We define the survival rate of a state in an arbitrary subspace ρ ∈ Hj under a CP map
E to be

S(ρ|E ,Hj) =
Tr[PHjE(ρ)]

Trρ
. (5.3)

We will consider survival rates averaged over states in a subspace H1 of H. In order
to define these averages, note that any ρ ∈ L(H1) can be written as pτ for some p ∈ [0, 1]
and τ ∈ L(H) such that Trτ = 1. Substituting this into Eq. (5.3) gives

S(ρ|E ,H1) = Tr[PH1E(τ)], (5.4)
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which is a linear function of τ . Consequently, the average survival rate in H1 over any
measure dτ over mixed states that is invariant under unitaries acting on H1 is

S(E ,H1) =

∫
dτTr[PH1E(τ)]

= Tr[PH1E(d−11 PH1)], (5.5)

where we have used the fact that
∫

dUUτU † = d−11 PH1 for any density operator τ , where
dU is the Haar measure over unitaries acting on H1.

Since CP maps are linear and all quantum states can be written as pρ for some p ∈ [0, 1]
and ρ ∈ L(H) such that Trρ = 1, the survival rate for H1 = H is strictly nonincreasing
under composition, that is, S(ρ|E ′ ◦ E ,H1) ≤ S(ρ|E ,H1) for all CP maps E ′. In contrast,
if H1 ( H, the survival rate can increase if E has coherences between H1 and H2. We
therefore define the coherent survival rate to be

Scoh.(E) = (Tr[PH1E(d−11 PH1)] + Tr[PH2E(d−12 PH2)])/2

= [S(E ,H1) + S(E ,H2)]/2. (5.6)

That is, the coherent survival rate is the average of the average survival probabilities in the
two subspaces. Coherent leakage rates can then be defined as Lcoh.(E) = S(E) − Scoh.(E)
where S(E) is the survival rate on the full Hilbert space from the loss protocol, see Def. 4.1.
If E is trace-preserving on the full space, which can be determined by the method in
Chapter 4, then S(E) = 1 and Lcoh.(E) = 1− Scoh.(E).

5.2 Experimental Protocol

We now present a protocol for characterizing the average survival rate Scoh.(E) over a set
of operations G = {g = v ⊕ (±1,±i)w : v ∈ V , w ∈ W}, where V and W are unitary
1-designs [17] on H1 and H2 respectively. Note that standard RB requires a unitary 2-
design, which is a strictly stronger requirement, and that our protocol does require some
experimental control over the auxiliary space H2.

For brevity we assume again that the noise is time- and gate-independent, though
results for time- and gate-dependent noise can be obtained by applying the approaches of
Ref. [71]. Our protocol works well when leakage errors exist on a much larger scale than
individual gate errors, but may require some signal amplification if this is not the case.

1. Choose a sequence length m ∈ N.
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2. Choose a random sequence k = (k1, . . . , km) of m integers uniformly at random,
where kj ∈ {1, . . . , |G|}.

3. Prepare a state ρ.

4. Apply the sequence of gates gkm ◦ . . . ◦ gk1 .

5. Measure some operator Q (e.g., a self-adjoint operator or POVM element).

6. Repeat steps 3–5 to estimate

Qk = Tr [Qgkm ◦ E ◦ . . . ◦ gk1 ◦ E(ρ)] (5.7)

to a desired precision.

7. Repeat steps 2–6 to estimate the expectation value of Qk:

EkQk = |G|−m
∑
k

Qk (5.8)

to a desired precision (see, e.g., Ref. [71] for methods to bound the number of se-
quences required to obtain a given precision).

8. Repeat steps 1–7 for multiple m and fit to the decay curve in Eq. (5.9), derived below,
to obtain estimates of Scoh.(E).

(Note that the protocol is identical to the loss protocol in section 4.2, except for the choice
of group G and fit model, and that this protocol differs from the standard RB protocol in
that no inversion gate is applied immediately prior to the measurement.)

Averaging the results over a number of random sequences with fixed m will give an
estimate of

EkQk = A(E)λm−1+ +B(E)λm−1− (5.9)

for H1 ( H, where the constants A and B relate to state-preparation and measurement
errors and the λ± are fit parameters that give the coherent survival probability through
Scoh.(E) = (λ+ + λ−)/2. If the noise is trace-preserving on H (that is, if S(E) = 1), then
Eq. (5.9) simplifies to

EkQk = A(E)pm−1coh. +B(E) (5.10)

where the fit parameter pcoh. is related to the coherent survival rate by pcoh. = 2Scoh.(E)−1.
Fitting the relevant decay curves gives an estimate of the survival rates.
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5.3 Derivation of the Fit Model

To derive the fit model we will work in the Liouville representation as outlined in sec-
tion 2.2.3. Due to the property that channels compose via matrix multiplication in the
Liouville representation, the probability for a sequence k is

Qk = (Q|gkmE . . . gk1E|ρ), (5.11)

where Q and ρ are the experimental POVM elements and density matrices respectively.
The average probability over all sequences of length m is

EkQk = |G|−m
∑
k∈Nm|G|

(Q|gkmE . . . gk1E|ρ)

= (Q|
[
ḠE
]m |ρ) . (5.12)

Since G is a group,

Ḡ2
= |G|−2

∑
g,h∈G

gh = |G|−2
∑
g′,h′∈G

g′ = Ḡ, (5.13)

so the average probability simplifies to

EkQk = (Q|
[
ḠEḠ

]m−1 |ρ′), (5.14)

where ρ′ = E(ρ).

In order to complete the derivations, we now appeal to special properties of the group
G chosen to characterize leakage rates.

To characterize coherent leakage, G is chosen so that any element g ∈ G can be written
as g = v ⊕ µw for µ ∈ {±1,±i}, where v and w are elements of unitary 1-designs V and
W on H1 and H2 respectively. Then, using the matrix basis |i〉〈j| for the operator space,
so that U = U ⊗ U∗, where ∗ denotes complex conjugation, we have (by consequences of
Schur’s Lemma)

Ḡ = |G|−1
∑
µ,v,w

(v ⊕ µw)⊗ (v ⊕ µw)∗

=
(
|V|−1

∑
v

v ⊗ v∗
)
⊕ 0⊕ 0⊕

(
|W|−1

∑
w

w ⊗ w∗
)

= |d−1/21 PH1)(d
−1/2
1 PH1|+ |d−1/22 PH2)(d

−1/2
2 PH2 |. (5.15)
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Setting B1 = d
−1/2
1 PH1 and B2 = d

−1/2
2 PH2 , we then have

ḠEḠ = s⊕ 0, (5.16)

where s is a 2× 2 matrix. We can easily take powers of s by putting it in lower-triangular
form, so that

EkQk = A(E)λm−1+ +B(E)λm−1− (5.17)

where

λ± =
s11 + s22

2
± 1

2

√
(s11 − s22)2 + 4s12s21. (5.18)

are the eigenvalues of s, and A and B are constants for a given E (which absorb both the
SPAM and the unitary that makes s lower-triangular).

The sum of the eigenvalues is equal to s11 + s22 = 2Scoh.(E) since

s11 = (B1|E|B1) = Tr

[
PH1E(

1

d1
PH1)

]
s22 = (B2|E|B2) = Tr

[
PH2E(

1

d2
PH2)

]
. (5.19)

If the noise is trace-preserving onH, then one of the eigenvalues must be one (corresponding
to Id1+d2), and the other must then be 2Scoh.(E)− 1.

5.4 Simulation Results

Results of a numerical simulation of our protocol for a relevant model of leakage are illus-
trated in Fig. 5.1, demonstrating robust performance with a specific error model.

For numerical simulations of our protocol for characterizing coherent leakage, we adopted
a noise model that is motivated by experimental techniques that use an auxiliary level
(e.g., “shelving” in ion trap experiments [11, 63]) to protect certain states while perform-
ing another operation. The ideal shelving gate is a Pauli X rotation between the second
and third level, that is, Videal = 1 ⊕ X. The group G of operations can be chosen as
{P ⊕±1 : P = I, X, Y, Z}. Our model of a coherent leakage error at each time step is

EX = Vγ2 ◦ δU2 ◦ Vγ1 ◦ δU1, (5.20)
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Figure 5.1: Numerical data for our protocol demonstrating robust indentification of the
average leakage rate. The numerical data is obtained for the leakage model described by
the composite noise channel in Eq. (5.20). Fitting the results gave Scoh.(EX) = 0.996(2)
with an r2 value of 0.991, compared to the theoretical value Scoh.(EX) = 0.996.

where

Vγ = 1⊕
(
i sin γ cos γ
cos γ i sin γ

)
δU = eiφUXU

† ⊕ 1. (5.21)

That is, our noise model consists of imperfect shelving (Vγ1) and unshelving (Vγ2) gates,
together with some small unitary on the code space (δU1 and δU2) that represents some
operation or noise that takes place while the qubit is shelved. The channel EX is trace-
preserving on the combined code and leakage space, but is trace-decreasing when restricted
to the code space. We chose U1 and U2 to be random, fixed unitaries on the Haar measure,
and φ = 0.01, γ1 = 0.04 and γ2 = 0.03 were fixed. The data points are the estimates of

41



EkQk for m = 5, 10, ..., 100 obtained by sampling 300 random sequences of operators in G
and the error bars are the standard errors of the mean. The grey line represents the fit to
the model obtained using MATLAB’s nlinfit package.

To obtain the theoretical value of the coherent survival rate, we consider the Gell-Mann
basis as our operator basis, B, for defining the Liouville representation. That is,

B1 =
1√
3

 1 0 0
0 1 0
0 0 1

 , B2 =
1√
6

 1 0 0
0 1 0
0 0 −2

 , B3 =
1√
2

 0 1 0
1 0 0
0 0 0

 ,

B4 =
1√
2

 0 −i 0
i 0 0
0 0 0

 , B5 =
1√
2

 1 0 0
0 −1 0
0 0 0

 , B6 =
1√
2

 0 0 1
0 0 0
1 0 0

 ,

B7 =
1√
2

 0 0 −i
0 0 0
i 0 0

 , B8 =
1√
2

 0 0 0
0 0 1
0 1 0

 , B9 =
1√
2

 0 0 0
0 0 −i
0 i 0

 . (5.22)

The third, fourth and fifth elements correspond to the standard (nontrivial) Pauli basis
elements. Using this basis to define the Liouville representation, we find by the linearity
of the trace,

s11 + s22 = Tr[B1E(B1)] + Tr[B2E(B2)]

= Tr[PH1E(
1

2
PH1)] + Tr[PH2E(PH2)]

= 2Scoh.(E) (5.23)

for any channel E acting on H. In our model of coherent leakage, the subspace H1 is the
qubit subspace, and the subspace H2 is the shelving level and has dimension one. The full
Hilbert space H is a three-dimensional quantum system, or a qutrit space.

Consider now the protocol applied with the qubit shelving gate applied twice (once to
shelve, and once to de-shelve the qubit) after each application of the group gates, each
followed by a fixed unitary noise, as in Fig. 5.1. The output is then

(Q|
[
ḠEXḠ

]m−1 EX |ρ) (5.24)

where EX is as defined in Eq. (5.20). This error model is trace-preserving on the full Hilbert
space, that is, S(EX) = s11(EX) = 1, and the decay may therefore be fit to the model in
Eq. (5.10).
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Given our choice of random unitaries, and parameters γ1 and γ2, fit parameter was

pcoh. = 2Scoh.(EX)− 1

= s11(EX) + s22(EX)− 1

= s22(EX)

= 0.9926 (5.25)

by direct calculation in the Liouville representation with the above basis. The theoretical
coherent survival rate was then Scoh.(EX) = 0.996.

5.5 Summary

In this section, we have presented a protocol for characterizing average survival rates under
coherent leakage to an orthogonal subspace. Experimentally implementing our protocol
yields a decay curve which can be fitted to our analytical expressions to obtain the average
probability of a leakage event occurring. We have also demonstrated that the decay can be
observed and fitted in practice through numerical simulations of leakage for specific error
models.

Our protocol is scalable and robust against state-preparation and measurement errors.
Our current protocol can also be applied in conjunction with standard RB to determine
both the average leakage rate and the average gate infidelity over a unitary 2-design such
as the Clifford group.
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Chapter 6

Characterizing Correlations

Because some FTQC codes assume errors in the computation are uncorrelated, it is im-
portant to determine whether there will be spatial correlations between qubits in a given
implementation of quantum information processing. As in previous sections, we consider
an ideal implementation of a quantum channel U , which has experimental implementation
U ◦ E , where E is an error channel, which may represent an error in implementing the gate
or the noise due to free evolution of the system.

The symmetrization method described in [24] for a general noise model E is based on
identifying a symmetry associated with interesting features, and symmetrizing the noise
process to obtain the twirled channel EG which contains a reduced number of parameters
that relate to the interesting properties. This process consists of conjugating E with an
operator drawn from the single-qubit Clifford group, and averaging over the group, that is,
twirling E over the C⊗n1 group. This symmetrization method was adapted to the randomized
benchmarking framework for two qubits in [30]. Here we adapt that 2-qubit example to
arbitrary n qubits, and add a step which makes the fitting procedure of the protocol robust
to SPAM errors.

6.1 Definition of a Correlated Channel

Before describing symmetrization protocols in detail, an important question to answer is:
“What is a correlated (or uncorrelated) channel?” We are considering correlations in space
(between qubits), and define an uncorrelated channel as E such that E = E1⊗E2⊗ . . .⊗En.
That is, an uncorrelated channel on n qubits is a channel which can be written as a tensor
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product of n single-qubit channels. Conversely, a correlated channel is simply any channel
which is not uncorrelated. One can imagine correlations between two individual qubits, but
also between many qubits, or sets of qubits, see Fig. 6.1 for examples. Our protocol allows
identification of the correlated error structure. That is, whether the errors resemble the
type in Fig. 6.1a, 6.1b, 6.1c etc., or a combination of various types. (Note that correlations
are not limited to existing between specific qubits, i.e. channels of the form E23, or E45,
etc. are equally valid.)

E1

E2

E3

E4

E5

E6

(a) Example of uncorrelated
errors.

E12

E34

E56

(b) Example of correlated 2-
qubit errors.

E123

E456

(c) Example of correlated 3-
qubit errors.

Figure 6.1: Circuit diagrams showing uncorrelated and correlated errors.

Consider a quantum channel which rotates all states in a register by a global phase.
This channel is not independent, and it may also be tempting to say such a channel is
correlated, when in fact it can be written as n single qubit channels, E1 ⊗ E2 ⊗ . . . ⊗ En,
and by our definition is therefore uncorrelated. Conceptually, the notions of correlation
and independence have many subtleties. For this thesis we will model correlated and
uncorrelated channels by the simple description above.

6.2 Two Qubit Example

Let us first consider the characterization of correlations in a bipartite system. The sym-
metrization protocol for two qubits consists of twirling over the C1⊗C1 group. In the case
of full two-qubit Clifford twirl, as in standard randomized benchmarking, there are two
irreducible subspaces: φ0, the projector onto the identity operator, and φ1, the projector
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onto the remaining Pauli group members. In the case of the C1 ⊗ C1 twirl, there are four
irreducible subspaces: φ0 = I ⊗ I, φ2 = I ⊗ P , φ1 = P ⊗ I, φ12 = P ⊗ P , where P is
the vector of Pauli operators for each qubit subsystem. Therefore by Schur’s lemma we
obtain a Pauli-Liouville representation matrix of four blocks proportional to the identity
by twirling E

EC1⊗C1 =


1 0 0 0
0 q2I3 0 0
0 0 q1I3 0
0 0 0 q12I9

 (6.1)

where qk = Tr(φkE)/Tr(φk). Performing sequences of Clifford gates, of various lengths
m, puts the symmetrization protocol into the randomized benchmarking framework. The
sequence fidelity has three exponential terms,

Fseq(m,Q, ρ) = A1q
m
1 + A2q

m
2 + A12q

m
12 +B (6.2)

for constants Ak and B. The individual qk may be extracted by preparing initial states, or
measurements, which have support on only one of the irreducible subspaces.

The Clifford twirl produces a depolarizing channel, and in this case if E is uncorrelated,
the twirled channel is a tensor product of two one-qubit depolarizing channels,

EC1⊗C1 = EC11 ⊗ EC12
= Dp1 ⊗Dp2 , (6.3)

where Dp = pρ+ (1− p)I/d is the depolarizing channel with depolarizing parameter p [17].
We can therefore impose a test to flag correlations by examining ∆(E) = q12(E)−q1(E)q2(E).
If the noise does not contain any correlations then, q12(E) = q1(E)q2(E). Therefore, any
deviation from ∆(E) = 0 indicates the presence of undesired correlations in the noise.

There are several issues with this protocol. First, there are contrived examples of
correlated channels for which ∆(E) = 0. Second, this protocol is sensitive to SPAM errors,
as it requires preparing or measuring states with support in only one of the irreducible
subspaces. SPAM errors are detectible, by noting deviations from a single exponential in
the results of the protocol, but it would be preferable to have a protocol which is certainly
insensitive to these errors. Third, this protocol should be made to check for correlations
generally between any two disjoint subsets of the full quantum register. The following
sections address these concerns by providing a generalization of the protocol that is fully
scalable and robust to spam, and examining values of ∆(E) for various error models.
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6.3 Experimental Protocol

The protocol presented here expands on previous work by generalizing the 2-qubit simul-
taneous RB protocol outlined in the previous section and in Ref. [30] to n qubits, and
providing a version of the protocol that is fully robust to SPAM errors. Our protocol con-
sists of performing the standard randomized benchmarking procedure, except the group
elements are tensor products of the single-qubit Clifford group, C⊗n1 , as opposed to the
full Clifford group on the n-qubit space. To make the protocol robust to SPAM errors, an
additional random Pauli gate is applied at the final time-step of each independent trial.

First, choose some subset, S ⊆ {1, . . . , n}, of the full set of n qudits, for which char-
acterizing characterizing correlations is of interest. Let G be an n-fold tensor product of
a single-qudit unitary 2-design, and F ⊆ G be a single-qudit unitary 1-design. Going for-
ward, we will assume G = C⊗n1 , the tensor product of the single-qubit Clifford group, and
F = P , the single-qubit Pauli group. However, this protocol is not restricted to qubits, or
any particular unitary 2- and 1-designs.

All elements g ∈ G can be written gi = Ci1 ⊗ Ci2 ⊗ . . . ⊗ Cin , where the C are the
single-qubit Clifford gate. All elements f ∈ F are single qubit Paulis, fi = Pi. As in
standard RB, noisy implementations are again given by Eg = g ◦ E , for an error E . Our
protocol is as follows:

1. Choose a sequence length m ∈ N.

2. Choose a sequence k = (k1, . . . , km) of m integers uniformly at random where kj ∈
{1, . . . , |G|}.

3. Prepare an initial n qubits in some state ρ (usually ρ ≈ |0〉〈0|⊗n).

4. Apply the sequence of operations gkm ◦ . . .◦gk0 , where gk0 =
∏m

i=1 g
−1
ki

, is the inversion
operator of the sequence.

This is the standard C⊗n1 RB protocol. To make this protocol robust to SPAM errors, we
add the following steps:

5. Choose a strictly upper-triangular, |S|×|S|matrix J, with elements Ji,j ∈ {1, . . . , |F|};
and a vector L, of length (n− |S|), with elements Li ∈ {1, . . . , |F|}.
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6. At time step m+ 1, apply the gate fJ,L,S where

fJ,L,S =
∏
s′ /∈S

f
(s′)
Ls′

∏
s,t∈S

f
(s)
Js,t
f
(t)
Js,t

(6.4)

and f (s) = I⊗s−1 ⊗ f ⊗ I⊗n−s.

When preparation and measurement procedures are relatively very efficient, steps 5 and 6
may be omitted from the experimental protocol.

7. Measure some operator Q (e.g., a self-adjoint operator or POVM element) with sup-
port in S.

8. For a fixed k, J, L, and S, repeat steps 2–7 to estimate

Qk,J,S = Tr[QfJ,L,S ◦ gkm ◦ E ◦ . . . ◦ gk0 ◦ E(ρ)], (6.5)

to a desired precision.

9. Repeat steps 1–8, choosing k, J, and L uniformly at random, but keeping S fixed,
to estimate the expectation value

Ek,J,L(Qk,J,S) = Tr
[
QRS ◦

(
EG
)m ◦ E(ρ)

]
(6.6)

to a desired precision, where

EG = |G|−1
∑
g∈G

g† ◦ E ◦ g (6.7)

is the subsystem twirl of E , and

RS = |F|−2
∑
J,L

fJ,L,S . (6.8)

10. Repeat all steps for various m, and fit to the decay curve in Eq. (6.18) derived below.
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6.4 Derivation of the Fit Model

To derive the decay curve for this protocol we will work in the Pauli-Liouville representa-
tion. The single-qubit Clifford group, C1 contains 2 irreducible subspaces: the projector
onto the identity, and the projector on the Pauli group. Therefore, C⊗n1 contains 2n ir-
reducible subspaces, so by Schur’s lemma the twirled channel can then be written as 2n

blocks, all proportional to the identity, i.e.

EG = 1
2n−1⊕
j=1

qSjIdj (6.9)

for some qSj , dj. The constants qS are related to the average gate fidelity. See section 6.2
or Ref. [30] for the two-qubit example.

To eliminate SPAM errors in the fitting procedure, our choice of fJ,L,S is very specially
selected to get rid of all qS′ in EG, for which S ′ 6= S. To see how our choice of fJ,L,S
accomplishes this, we will obtain a general expression for RS , and show how it applies to
the two qubit example. Let

UL =
∏
s′ /∈S

f
(s′)
Ls′

(6.10)

and

UJ =
∏
s,t∈S

f
(s)
Js,t
f
(t)
Js,t

(6.11)

so that fJ,L,S = ULUJ. For simplicity, assume that the subset S consists of the first
|S| qubits. This is not necessary but will greatly simplify the derivation. Under this
assumption, UL can be written

UL = I⊗|S| ⊗ fL1
⊗ fL2

⊗ . . .⊗ fLn−|S| . (6.12)

Here we assume I is the single-qubit identity, I4 in the Pauli-Liouville representation. Given
that tensor products of f ∈ F form a unitary 1-design, namely, the n-qubit Pauli group,
the averaging over the group gives

|F|−1
∑
L

UL = I⊗|S| ⊗ (1⊕ 0). (6.13)
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Next, recall that the matrix J is chosen to be strictly upper-triangular, and designate
f0 = I. Writing only the non-identity terms, UJ can be expanded as

UJ = (fJ1,2 ⊗ fJ1,2 ⊗ I⊗|S|−2 ⊗ I⊗n−|S|)(fJ1,3 ⊗ I⊗ fJ1,3 ⊗ I⊗|S|−3 ⊗ I⊗n−|S|)
. . . (I⊗|S|−2 ⊗ fJ|S|−1,|S|

⊗ fJ|S|−1,|S|
⊗ I⊗n−|S|). (6.14)

Averaging over the group F gives,

|F|−1
∑
J

UJ = |F|−1
∑
J1,2

(fJ1,2 ⊗ fJ1,2 ⊗ I⊗n−2) . . .
∑

J|S|−1,|S|

(I⊗|S|−2 ⊗ fJ|S|−1,|S|
⊗ fJ|S|−1,|S|

I⊗n−|S|)

 ,
(6.15)

which can also be written as a matrix composed of blocks of identity matrices, thanks to
the special properties of Paulis. We find after multiplying and averaging,

RS = |F|−2
∑
L

UL

∑
J

UJ

= 1⊕ 0⊕ I3 ⊕ 0. (6.16)

The location of the non-zero, I3 block depends on the ordering of the Pauli basis. It corre-
sponds to non-identity, Pauli basis elements P

⊗|S|
i ⊗I⊗n−|S|, where P

⊗|S|
i ∈ {X⊗|S|, Y ⊗|S|, Z⊗|S|}.

To demonstrate the implications of this, we attest that the action of RS takes all blocks
of the subsystem twirl to zero, except for the block corresponding to the set S, and the
indentity block, S(E), which is always equal to 1 for CPTP maps. We show this for our 2
qubit example, but it is easy to see how it will apply generally, once a specific set of qubits
is chosen. That is,

RS ◦
(
EG
)m

= 1⊕ 0⊕ qmS I3 ⊕ 0. (6.17)

Preparation and measurement errors will therefore introduce no unwanted dependence on
m, and averaging over uniformly-random choices of k, J, and L for a fixed set S gives an
estimate of

Ek,J(Qk,J,S) = AS(E)qmS +BS(E), (6.18)

where AS and BS are constants that incorporate SPAM errors.
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6.5 Two Qubit Example, Continued

Continuing with the two qubit example from Section 6.2, we describe how to extract a
particular qS . First, let qS = qS12 , the parameter corresponding to the set of both qubits.
There are no qubits s′ /∈ S to consider, so we need only to calculate |F|−1∑JUJ. The
matrix J has only one non-zero entry so,

UJ = (fJ1,2 ⊗ fJ1,2). (6.19)

Which we can easily take the average of, given that F is the Pauli group,

RS12 = |F|−1
∑
J

UJ

= |F|−1(I⊗ I+X ⊗X + Y ⊗ Y + Z ⊗ Z)

=


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I3

 . (6.20)

Taking EC1⊗C1 as in Eq. (6.1), the modified C1 ⊗ C1-twirled channel is then

RS12 ◦ EC1⊗C1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 q12I3

 . (6.21)

By preparing or measuring with support in S, we can extract q12, but any error in prepa-
ration or measurement will be absorbed by the constants AS and BS , and will not effect
the decay parameter.

Next, say we want to calculate the parameter for just one qubit in our two-qubit system.
Let qS = qS1 , the parameter corresponding to qubit 1. There is an s′ /∈ S (qubit 2) so we
will first calculate |F|−1∑LUL.

UL = I⊗ fL1
. (6.22)

Averaging gives,

|F|−1
∑
L

UL = |F1|−1(I⊗ I+ I⊗X + I⊗ Y + I⊗ Z)

= I⊗ (1⊕ 03). (6.23)
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For a single qubit UJ is the identity so,

RS1 ◦ EC1⊗C1 =


1 0 0 0
0 0 0 0
0 0 q1I3 0
0 0 0 0

 . (6.24)

A similar calculation can be done for qS = qS2 .

6.6 Testing for Correlations

In analogy with the 2-qubit example, the values qS can be used to test whether the experi-
mental noise E is correlated as follows. The Clifford subsystem twirl EC⊗n1 of an uncorrelated
channel E = E1 ⊗ . . .⊗ En, is simply

EC11 ⊗ . . .⊗ EC1n = Dp1 ⊗ . . .⊗Dpn (6.25)

where Dp is the depolarizing channel with depolarizing parameter p. Therefore for any
uncorrelated channel, set S, and partitioning of S into L disjoint sets S1, . . . , SL,

qS − qS1qS2 . . . qSL = 0. (6.26)

If the estimates qS for multiple sets S, obtained by fitting the fidelity decay to Eq. (6.18),
do not satisfy Eq. (6.26), then the experimental noise is correlated.

In the following section we will examine numerically simulated values of

∆(E) = qS(E)− qS1(E)qS2(E) (6.27)

for various noise models to show how our protocol can be used to identify n-qubit errors
in high-fidelity gates.

6.7 Simulation Results

Although uncorrelated noise by nature produces a test result of ∆(E) = 0, there are
certainly possible cases of errors which will result in ∆(E) = 0, but where correlations
are present. For example, the controlled-NOT gate, which is highly correlated, will test
as uncorrelated. Fortunately, the counter-examples that we know of correspond to a very
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high rate of error, and typically we are interested in implementations with high fidelity, or
low error rate. However, as the gate fidelity approaches 1, the qS also tend close to 1, and
∆(E), therefore becomes very small. By numerically and analytically examining several
examples of error models, we demonstrate how the protocol will work in experiment, given
a finite number of sequences, and demonstrate that for these error models, high fidelity
counter-examples do not exist. We also give insight on the precision needed to detect
non-zero ∆(E) for high-fidelity, correlated errors, based on the gate fidelity of E . For this
section we will set S1 and S2 to be single-qubit subspaces, and S to be the two-qubit space.

6.7.1 Example: Correlated Pauli Errors

Pauli channel errors are an important class of errors in quantum error correction, so we are
interested in testing the protocol for this type of error. Consider a two-qubit noise model
that with probability p, is a two-qubit Pauli channel without an identity component, and
with probability 1 − p, is an uncorrelated noise channel, with probabilities s1 and s2 of
Pauli errors on the individual qubits. This is an example of a correlated channel, provided
p 6= 0 and p 6= 1.

The results of simulations of the symmetrization experiment for Pauli channel errors
are displayed in Fig. 6.2. The resulting test parameter, ∆(E) is plotted in terms of p in the
stated Pauli error model for p = [0, 0.05], since we are typically more concerned with small
p. The number of repetitions was k = 50 per sequence length. The sequence lengths used
were m = 5, 10, 15, ..., 100 (larger plot) and m = 200, 400, ..., 4000 (inset). The grey line is
a curve showing the analytical values of ∆(E), and the error bars were determined from
the 95% confidence intervals of the parameters. The numerically simulated data aligns well
with the analytical curve, showing both the high sensitivity of the test, and the ability of
the protocol to accurately estimate the test parameters.

We now derive an expression for the analytical curve in Fig. 6.2 based on the Pauli
error model, and show how ∆(E) may be used to estimate the probability of two-qubit
errors. For correlated Pauli errors, the error channel E takes the form

E(ρ) = (1− p)Λ(ρ) + pF(ρ) (6.28)

where Λ denotes Pauli-X errors on the individual qubits,

Λ = ((1− s1)I + s1X)⊗ ((1− s2)I + s2X) . (6.29)

In Fig. 6.2 the probabilities of Pauli errors on the individual qubits were constant and
chosen as s1 = s2 = 10−5. We introduce the uncorrelated, 2-qubit error channel F , and
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Figure 6.2: Plot showing the identification of correlations for classically-correlated Pauli
errors by the symmetrized randomized benchmarking protocol, for up to error rates of
∼ 5% (larger plot) and ∼ 0.01% (inset).

since we are interested in Pauli errors, we set

F = X ⊗X. (6.30)

The channel F has qS1(F) = −1/3, qS2(F) = −1/3, and qS(F) = 1/9. Equivalently, F
could be any tensor product of two non-indentity Pauli operators.

Notice that the full channel E(ρ) = (1−p)Λ(ρ)+pF(ρ) can be put into Kraus form with
only uncorrelated Kraus operators

√
piAi as indicated in Table 6.1. This indicates that E

is classically-correlated, that is, E can be written as a convex combination of uncorrelated
channels.
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Ai pi
I ⊗ I (1− p)(1− s1)(1− s2)
I ⊗X (1− p)(1− s1)s2
X ⊗ I (1− p)s1(1− s2)
X ⊗X p+ (1− p)s1s2

Table 6.1: Kraus operators for correlated Pauli errors.

Using the two qubit Pauli basis, we can write the full error channel in the Pauli-Liouville
representation, from which we can directly extract qS1(E), qS2(E), and qS(E). We find that

∆(E) = p0
(
p− p2

)
(1− qS1(F))(1− qS2(F)). (6.31)

Without loss of generality we can assume the probability of no errors, p0 = 1−O(r) where
r is the infidelity of Λ to the identity, to show that ∆(E) can then be approximated by p
multiplied by a constant factor,

∆(E) =
(
p− p2 − pO(r) + p2O(r)

)
(1− qS1(F))(1− qS2(F))

= p(1− qS1(F))(1− qS2(F)) +O(p2, pr, r2). (6.32)

Given that F is a Pauli channel, (1− qS1(F))(1− qS2(F)) = 16/9, and for high fidelity
channels p + (1 − p)s1s2 ≈ p, so 9

16
∆(E) gives a close estimate of the probability of a

two-qubit error. Generally, for Pauli errors on n qubits, it is analogous to see that ∆(E)
can be used to approximate the probability of an error occurring on both partitions, S1
and S2.

6.7.2 Example: Correlated Dephasing

Single qubit dephasing noise is described by a channel which for a Z-error occurs with some
probability s, and has Kraus operators {

√
1− sI,√sZ}. We can express dephasing noise

on two qubits by taking the tensor product of two the single qubit dephasing operators,

Λ = ((1− s1)I + s1Z)⊗ ((1− s2)I + s2Z) . (6.33)

where s1 and s2 are the individual dephasing parameters for each qubit. This is another
case of the description of uncorrelated Pauli errors on single-qubits in Eq. (6.29), where
the Pauli channel is chosen as phase flip gate, Z.
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To express correlated dephasing noise, we require additional Kraus terms which repre-
sent the correlations. From Ref. [46], the correlated dephasing channel E has the following
(unnormalized) Kraus operators {I ⊗ I, Z ⊗I, I ⊗Z,Z ⊗Z, 1

2
(iZ + I)⊗ (iZ + I), 1

2
(iI +

Z) ⊗ (iI + Z)}. To model correlated dephasing, we can therefore add the last two Kraus
operators to the tensor product of dephasing channels and write the full channel in the
form: E(ρ) = (1− p)Λ(ρ) + pF(ρ) where F corresponds to the sum of the final two Kraus
operators. The full set of Kraus operators and coefficients is then given by Table 6.2.

Ai pi
I ⊗ I (1− p)(1− s1)(1− s2)
I ⊗ Z (1− p)(1− s1)s2
Z ⊗ I (1− p)s1(1− s2)
Z ⊗ Z (1− p)s1s2
(iZ + I)⊗ (iZ + I) p/2
(iI + Z)⊗ (iI + Z) p/2

Table 6.2: Kraus operators for correlated dephasing errors.

The channel F has qS1(F) = 1/3, qS2(F) = 1/3, and qS(F) = 1/9. The test parameters
of the full channel E , in terms of the probabilities p, s1, and s2, is given by:

∆(E) = (p− p2)(1− 2s1)(1− 2s2)(1− qS1(F))(1− qS2(F)). (6.34)

Similarly to the Pauli error case, ∆(E) can be written as a constant times p, with a small
perturbation, given high fidelity computations,

∆(E) = p(1− qS1(F))(1− qS2(F)) +O(p2, pr, r2). (6.35)

Fig. 6.3 demonstrates the results of the test in a numerically simulated experiment,
with slow dephasing. The value of the test parameter, ∆(E) is shown in terms of various
probabilities p. The data points are the result of a simulated symmetrization experiment
where the number of repetitions was k = 50 per sequence length. The sequence lengths
chosen were m = 5, 10, ..., 100. The grey line is a curve showing the analytical values
of ∆(E), and the error bars were determined from the 95% confidence intervals of the
parameters. We also see that for small errors, ∆(E) may be used to estimate the probability
p, which relates to the “amount” of correlation, given it is known that correlations are only
present as correlated dephasing noise.
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Figure 6.3: Plot showing the identification of correlations for correlated dephasing errors
by the symmetrized randomized benchmarking protocol, for error rates up to ∼ 4% (larger
plot) and ∼ 0.009% (inset).

6.7.3 Example: Small C-NOT Errors

As mentioned earlier, if the error on G is a controlled-NOT gate then the test for spatial
correlations will fail. However, a more realistic scenario, which we explore in this section,
is a small probability of controlled-NOT error.

Fig. 6.4 shows the value of the test parameter, ∆(E) in terms of various probabilities of
C-NOT errors, p. The data points are the result of a simulated symmetrization experiment
where the number of repetitions was k = 50 per sequence length. The sequence lengths
chosen were m = 5, 10, ..., 400. The grey line is a curve showing the analytical values
of ∆(E), and the error bars were determined from the 95% confidence intervals of the
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parameters.
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Figure 6.4: Plot showing identification of correlations for small probabilities of C-NOT,
for probabilities p of 0 to 0.05, by the symmetrized randomized benchmarking protocol.

We will model small C-NOT errors as a probability p of a C-NOT gate being applied,
otherwise, with probability 1− p, the identity is applied. Based on this, the error channel
can be written as the operator sum decomposition

E(ρ) = (1− p)ρ+ pCXρCX† (6.36)

where CX is the controlled-NOT or controlled-X gate. The channel CX has qS1(CX) =
1/3, qS2(CX) = 1/3, and qS(CX) = 1/9.

By direct calculation, the test parameter is

∆(E) = (p− p2)(1− qS1(CX))(1− qS2(CX)), (6.37)
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and given that p is small,

∆(E) = p(1− qS1(CX))(1− qS2(CX)) +O(p2). (6.38)

We see that if p = 0, then ∆(E) = 0, as expected, and if p = 1 we observe the failure of
the test. For any non-zero p 6= 1, however ∆(E) 6= 0, meaning the test will be accurate.
We, somewhat surprisingly, also see that for small p, given prior knowledge about the error
model, estimating the test parameter allows a reasonable estimation of the probability of
a CX error, to within a constant factor.

6.7.4 Example: Correlated random small unitaries

Consider correlated two-qubit unitaries, which are close to identity. Such errors are small,
but should produce ∆(E) 6= 0 since they contain correlations. To check the sensitivity of
the test for this type of error, we generated a large number of random unitaries with equal
fidelity to the identity, and compiled the values of ∆(E) taken directly from the individual
unitaries in Fig. 6.5. The results approximate Gaussian distributions with means (a)
µ = 0.0105, (b) µ = 1.07×10−4, and standard deviations (a) σ = 2.06−3, (b) σ = 2.10×10−5

as found using MATLAB’s histfit package, and demonstrated by the red fit curves.
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Figure 6.5: Histogram of test results from 100,000 randomly generated two-qubit small
unitaries for two error rates; (a) 8.0× 10−3 and (b) 8.0× 10−5 from identity.

The results show that ∆(E) must be estimated with higher precision as the size of the
error decreases. To further show this, in Fig. 6.6 we compiled the means of the approximate
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Gaussian distributions obtained from the fitting to the data from 1000 random unitaries
with error rates from the identity, r = 1−FE,I , where FE,I is the average channel fidelity
of E to the identity.
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Figure 6.6: Plot of the mean ∆(E) for randomly generated small unitaries with error rates
from identity r ranging from 0 to 1.1 × 10−4. Frequency data for 1000 random unitaries
was used to determine µ(∆(E)) for each choice of r. The error bars represent the range
within which 95% of ∆(E)’s will fall for random unitary errors.

The error bars in Fig. 6.6 are two standard deviations, σ, and were also obtained by
fitting to a Gaussian distributions. The data was fit using MATLAB’s linear regression and
gave µ(∆(E)) = 0.996r (grey line). The results therefore show numerically that ∆(E) gives
a fair estimation of the infidelity for random unitary error, since for 95% of unitaries, ∆(E)
will fall within 2σ. More importantly, the result of this analysis indicates that information
about the average fidelity (which can be found via RB) can be used to determine the a
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threshold ε below which measuring ∆(E) ≤ ε will indicate uncorrelated noise.

6.8 Summary

In this chapter, we have given a description of a scalable process which is robust to SPAM
and combines a generalized version of symmetrization and randomized benchmarking to
perform a check for correlated noise. We outlined the example in previous work [30] of the
protocol for two qubits and resolved issues associated with this protocol. We have provided
numerics to demonstrate the robustness of the test and the experimental protocol. We also
state that for Pauli errors, this protocol may be used to determine the probability of two
disjoint subsets of qubits both experiencing errors, in addition to the test of whether or
not the errors are correlated in a particular computation, which suggests that this protocol
may be very useful for quantum error correcting codes.

61



Chapter 7

Conclusion and Future Work

Randomization methods are known to provide important information on noisy quantum
channels at relatively minimal cost. These methods exploit random sampling and proper-
ties of special groups in order to achieve this. The information that can be gained from
these methods, at low cost is clearly not limited to the average gate fidelity. This thesis has
shown three examples where randomization, group averaging and twirling can be used to
obtain additional characteristics of noisy gates. We first introduced the concept of loss and
loss rates, which correspond to probabilities of irretrievable loss of a qubit. We outlined
step by step instructions for implementing a protocol to estimate loss rates by fitting a
decay curve. We derived the fit model, and showed that the fit results provide additional
information on detector efficiencies. We then introduced coherent leakage as a case where
the randomized loss estimation protocol fails. Coherent leakage rates were derived, using
steps analogous to the loss rate derivation. Instructions for estimating coherent leakage
rates were presented as a slightly modified version of the instructions for estimating loss.
The protocol requires some control over leakage levels. Finally, we introduced a generalized
and robust protocol which tests for spatially correlated errors, using single-qubit Clifford
twirls. Our protocol addresses issues and limitations on previous work on symmetrization
schemes. We suggested that the revised version of this protocol may be very useful in
practice, as some quantum error correcting codes require prior information on levels of
correlations between qubits. For each protocol, we provided a full analysis of our models
and numerical simulations of experiments, showing robust performance for realistic error
models. These methods have arisen in a timely fashion, as many implementations of quan-
tum processing are approaching the fault-tolerant threshold (though with a limited number
of qubits), and will continue to provide a useful characterization toolkit as the number of
realizable qubits increases.

62



The aim for the future is that these protocols will prove useful for experimentalists.
The first two methods may be used to certify that leakage and/or loss does not exist (or
only exists to a insignificant extent) in a particular implementation. If loss and/or leak-
age is present, the protocol can also be used by experimentalists to determine the rate of
loss/leakage (and by extension the overhead required to correct it). For all three protocols
we have assumed any errors are gate- and time-independent. Future work may include a
proof of robustness of these protocols, in particular the leakage and correlations protocol,
under gate- and time-dependent errors. Additionally, comparing our protocol for charac-
terizing correlations to that by Laforest in Ref. [46] to determine for what situations which
of these protocols is optimal, is a goal for the future. We also suggest that modifications
on the protocol for benchmarking leakage may be useful as a future project to benchmark
non-Markovian noise in general, which is currently an open problem. Future work related
to the protocol for characterizing correlations could be to explore in depth how it can be
used to select an optimal quantum error correcting code depending on assumptions on the
noise model, and the results of the protocol. Simulations and analysis of the protocol for
three or more qubits could provide initial insights into this problem. As is the case with
RB, all three protocols can be used in the tuning of experimental instruments to minimize
or eliminate errors, by performing repetitions of the experiments at various settings. The
usefulness of randomization techniques is certainly not limited to these examples, other re-
lated protocols include Refs. [14, 72] and there are almost certainly many more applications
of these for quantum error characterization yet to be realized.
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Appendix A

Properties of the Trace

Definition A.0.1. The trace operation for an N ×N matrix A is defined by

TrA =
N∑
j

Ajj, (A.1)

where Ajk is the element in the jth row and kth column of A.

One useful property of the trace is its linearity, that is Tr(A+B) = TrA+ TrB.

Proof.

Tr(A+B) =
N∑
j,k

(Ajj +Bkk)

=
N∑
j

Ajj +
N∑
k

Bkk

= TrA+ TrB. (A.2)
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Also notice that

Tr(αA) =
N∑
j

αAjj

= α
N∑
j

Ajj

= αTrA (A.3)

so, more generally,

Tr

(∑
i

αiAi

)
=
∑
i

αiTrAi. (A.4)

The trace also has a cyclic property. Suppose A is an n ×m matrix and B is an m × n
matrix then Tr(AB) = Tr(BA).

Proof.

Tr(AB) =
n∑
k

(AB)kk,

=
n∑
i

m∑
j

AijBji

=
m∑
j

n∑
i

BjiAij

= Tr(BA). (A.5)
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Appendix B

Tensor Products

The tensor product is an operation which combines two vector spaces to form one larger
space. For a general m × n matrix A, and a general p × q matrix B the tensor product
A⊗B is defined as

A⊗B =


A11B A12B . . . A1nB
A21B A22B . . . A2nB

...
...

...
...

Am1B Am2B . . . AmnB

 (B.1)

where

AijB =


AijB11 AijB12 . . . AijB1q

AijB21 AijB22 . . . AijB2q
...

...
...

...
AijBp1 AijBp2 . . . AijBpq

 . (B.2)

Tensor products can be taken of quantum states or operators. The notation A⊗k represents
the tensor product of A with itself k times. That is A⊗k = A⊗A⊗ . . .⊗A. For example,
A⊗3 = A⊗ A⊗ A.
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Appendix C

Proof of Theorem 1

To prove that the Clifford group on n qubits Cn forms a 2-design, we prove the 2-design
twirling condition, that is, for all ρ,

1

|Cn|
∑
C∈Cn

C†E(CρC†)C =

∫
U(d)

dUU †E(UρU †)U. (C.1)

The original proof can be found in Ref. [17].

Proof. Let the map E be a linear map, and have the form

E(ρ) = AρB (C.2)

for A,B ∈ L(Cd). The 2-design twirling condition can then be alternatively expressed as

1

|Cn|
∑
C∈Cn

C†ACρC†BC =

∫
U(d)

dUU †AUρU †BU. (C.3)

The RHS is the twirl over the bi-invariant Haar Measure, and from Ref. [23] can be ex-
pressed as∫

U(d)

dUU †AUρU †BU =
Tr(AB)Tr(ρ)

d

I

d
+
dTr(A)Tr(B)− Tr(AB)

d(d2 − 1)

(
ρ− Tr(ρ)

I

d

)
.

(C.4)

This is also the depolarizing channel discussed in Eq. (2.32).
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To evaluate the LHS, we first observe that the discrete Pauli-twirl of E maps the state
ρ to

EPn(ρ) =
1

d2

∑
j

PjAPjρPjBPj. (C.5)

The Pj ∈ Pn form a basis, so all A and B can be expressed by A =
∑d2

a=1 αaPa and

B =
∑d2

b=1 βbPb. Then the Pauli-twirl can be expressed

EPn(ρ) =
1

d2

d2∑
a=1

d2∑
b=1

∑
j

αaβbPjPaPjρPjPbPj

=
∑
a=1

αaβaPaρPa

=
∑
k=1

rkPkρPk (C.6)

by the special properties of Paulis, and where r1 = Tr(A)Tr(B)/d2 and
∑d2

k=1 rk = Tr(AB)/d.

Every Clifford element C ∈ Cn can be expressed as C = PjQi, where Pj ∈ Pn and the
Qi are elements of Cn/Pn. the full Clifford twirl ECn can then be expressed

1

|Cn|

|Cn|/|Pn|∑
i=1

d2∑
j=1

Q†iPjAPjQiρQ
†
iPjBPjQi =

1

|Cn|

|Cn|/|Pn|∑
i=1

d2∑
j=1

d2∑
a=1

d2∑
b=1

αaβbQ
†
iPjPaPjQiρQ

†
iPjPbPjQi

=
|Pn|
|Cn|

|Cn|/|Pn|∑
i=1

d2∑
k=1

rkQ
†
iPkQiρQ

†
iPkQi. (C.7)

To see that the RHS is equal to the LHS of Eq. (C.3), set apart the identity element P1 = I,
and recall that the Clifford group is defined as the normalized of the n-qubit Pauli group,
so that Q†jPkQj ∈ Pn,∀j, k, where non-identity Pauli elements are mapped with equal
frequency to other non-identity Pauli elements under conjugation by a Clifford group map.
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Therefore,

ECn = r1ρ+
|Pn|
|Cn|

|Cn|/|Pn|∑
i=1

d2∑
k=2

rkQiPkQ
†
iρQiPkQ

†
i

= r1ρ+
1

d2 − 1

(
d2∑
k=2

rk

)
d2∑
l=2

PlρPl

= r1ρ+
1

d2 − 1

(
d2∑
k=1

(rk)− r1
)(

d2∑
l=1

(PlρPl)− ρ
)
. (C.8)

Substituting the known expressions for rk, and
∑d2

l=1 PlρPl = dTr(ρ)I we find(
dTr(A)Tr(B)− Tr(AB)

d(d2 − 1)

)
ρ+

(
dTr(AB)− Tr(A)Tr(B)

d2 − 1

)
Tr(ρ)

I

d
. (C.9)

which, with a bit of rearranging, is equal to the RHS of Eq. (C.4).
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Appendix D

Proof of Theorem 2

To prove Schur’s lemma of the second form, we first state and prove Schur’s lemma of the
first form.

Theorem 3. Schur’s lemma (of the first form): Suppose we have two irreducible repre-
sentations:

φ : G → GL(V )

φ′ : G → GL(W ) (D.1)

for a finite group G. If the map T : V → W is an intertwining operator for φ and φ′, then
either T = 0 (the zero map), or T is invertible.

Proof. Suppose T 6= 0, then KerT is a proper subspace of V and φ is an irrep, which
implies KerT = {0}. Therefore T is injective.

And invertible map is injective and surjective, so it follows that if T is not invertible, it
must not be surjective. Suppose T is not surjective, then ImT is a proper subspace of W .
However, because φ′ is an irrep, ImT = {0}, which violates the T 6= 0 assumption, since
KerT = {0}. Therefore, T must be surjective.

Combining these results we see that either T is injective and surjective, and therefore
invertible, or T = 0.

We now prove theorem 2.
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Proof. Suppose T : V → V is an intertwining operator for irrep φ : G → GL(V ). V is a
complex vector space, therefore, T has at least one eigenvalue λ. Let

T ′ = T − λI. (D.2)

Since T is an intertwining operator, T ′ is also an intertwining operator;

φ(T ′) = φ(T − λI)
= φ(T )− φ(λI)

= (T − λI)(φ)

= T ′(φ). (D.3)

Note that KerT ′ 6= {0} since T has at least one eigenvalue. Therefore T ′ is not invertible
so by Schur’s lemma of the first form, T ′ = 0, and it follows that T = λI.
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Appendix E

List of abbreviations

Abbreviation Full Name
FTQC Fault-Tolerant Quantum Computation
RB Randomized Benchmarking
QIP Quantum Information Processing
ON Orthonormal
CPTP Completely Positive, Trace-Preserving
PVM Projection Valued Measurement
POVM Positive-Operator Valued Measurement
SPAM State Preparation and Measurement
NMR Nuclear Magnetic Resonance

Table E.1: List of abbreviations used and their full meanings.
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C. A. Ryan, and M. Steffen. Self-consistent quantum process tomography. Physical
Review A, 87(6):062119, 2013.
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