
Digital Geometry, Combinatorics,

and Discrete Optimization





Digital Geometry, Combinatorics,
and Discrete Optimization

Shiva Samieinia



c© Shiva Samieinia, Stockholm 2010

ISBN 978-91-7447-196-0

Printed in Sweden by US-AB, Stockholm 2010
Distributor: Stockholm University, Faculty of Science, Department of Mathematics, 106 91 Stockholm

The cover image shows a Persian chessboard with a king. Henri-Auguste Delannoy (1833–1915) published in
1895 an article with the title “Emploi de l’échiquier pour la résolution de certains problèmes de probabilités”
(Use of the chessboard for the solution of certain problems in probability), Association Française de Bordeaux
24, 70–90, where he introduced the numbers which are now known as the Delannoy array (see Paper III) and
which describe the possible movements of the king.

Photo by Ayaz (Pedram) Razmjooei.



Abstract

This thesis consists of two parts: digital geometry and discrete optimization.
In the first part we study the structure of digital straight line segments. We also
study digital curves from a combinatorial point of view.

In Paper I we study the straightness in the 8-connected plane and in the
Khalimsky plane by considering vertical distances and unions of two seg-
ments. We show that we can investigate the straightness of Khalimsky arcs by
using our knowledge from the 8-connected plane.

In Paper II we determine the number of Khalimsky-continuous functions
with 2, 3 and 4 points in their codomain. These enumerations yield exam-
ples of known sequences as well as new ones. We also study the asymptotic
behavior of each of them.

In Paper III we study the number of Khalimsky-continuous functions with
codomain Z and N. This gives us examples of Schröder and Delannoy num-
bers. As a byproduct we get some relations between these numbers.

In Paper IV we study the number of Khalimsky-continuous functions be-
tween two points in a rectangle. Using a generating function we get a recur-
rence formula yielding this numbers.

In the second part we study an analogue of discrete convexity, namely lat-
eral convexity.

In Paper V we define by means of difference operators the class of lateral
convexity. The functions have +∞ in their codomain. For the real-valued func-
tions we need to check the difference operators for a smaller number of points.
We study the relation between this class and integral convexity.

In Paper VI we study the marginal function of real-valued functions in this
class and its generalization. We show that for two points with a certain dis-
tance we have a Lipschitz property for the points where the infimum is at-
tained. We show that if a function is in this class, the marginal function is also
in the same class.
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Introduction

This thesis deals with two domains: Digital Geometry and Discrete Optimiza-
tion. The first one was also studied from a combinatorial point of view. We
shall make a brief description of both subjects as well as of the results which
were obtained.
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1. Digital Geometry

Drawing an object on paper is an approximate illustration of a real object.
Euclidean geometry played a leading role in the study of these objects. If we
instead draw them by computer, the things that we get are collections of small
elements, namely pixels. Our eyes with the help of the brain put these small
elements together in order to see the object. People made digital objects for
thousands of years before computers. We refer to mosaics and different kind
of carpets which are thousands of years old.

After the invention of computers and initiation of research in the fields of
computer graphics and digital image analysis, the unsuitability of Euclidean
geometry and the necessity of defining a new kind of geometry became evi-
dent. Digital geometry as an application-oriented field is being built up to do
so. It deals with grid points or cells with different kinds of connections based
on topological or non-topological structure. Digital geometry can be consid-
ered as a subdiscipline of discrete geometry with mathematical roots in graph
theory and digital topology (see Klette [27]). As a brief description for this
new kind of geometry we may refer to it as the geometry of the computer
screen (Kiselman [21]).

Digital geometry was considered as a theory of n-dimensional digital spaces
(cellular or grid point spaces) oriented toward the understanding of geometric
objects (Klette [27]).

In a book chapter, Johnston and Rosenfeld [14] studied the geometric opera-
tions on digital images by considering an image as a finite subset of grid points
as well as squares (cells). In the digital geometry chapter in [46], Rosenfeld
considered a digital picture as a finite set of grid points and provided a theoret-
ical basis for some picture analysis algorithms. These are just two pioneering
works in which digital geometry was studied as cellular or grid point spaces.
This holds for current work as well. In some cases one of these models may
be more convenient than the other.

It is understood that in this new kind of geometry—digital geometry—all
fundamental concepts of Euclidean geometry should be redefined in the dis-
crete case. The way of doing this is not always unique but based on the prob-
lems we face; they can vary. Digital geometry can be considered partly as
digitized Euclidean geometry because in the analysis of pictures the ideas of
Euclidean geometry are frequently used but adapted to the discrete setting.

Digital geometry started in the 1960s, but it has grown increasingly so that
hundreds of journal papers has been published so far. Citations of important
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research in that field are provided in the book by Klette and Rosenfeld [28].
The proceedings of the DGCI conferences (Discrete Geometry for Computer
Imagery) show current research of this field. In the lecture notes by Kiselman
[21] we can find more about the mathematical knowledge required for digital
geometry.

Following the citations in digital geometry, we would like to mention a
person who played a leading role in research in this field and established a pi-
oneering theoretical framework in nearly every fundamental area of that field.
Azriel Rosenfeld (1931–2004) was working in the field of computer image
analysis and wrote the first textbook on this field in 1969 (see [43]) with
a chapter on digital geometry. The foundation of current research in digital
geometry was built during the 1960s and 1970s by Rosenfeld’s research on
digital image analysis.

1.1 Background
We shall make a brief description of the mathematical framework which is
applicable to the study of digital objects and used also in this thesis.

Digital geometry can be defined as a theory of n-dimensional digital spaces
(grid points or cell spaces) oriented toward the understanding of geometric
objects. In this thesis we consider the grid plane both with 8-adjacency and
with a topological adjacency. We follow the definition of digital space by Her-
man [12].

We define a digital space as a pair (V,π), where V is a set of points and π is
a symmetric, reflexive and binary relation on V . Two distinct points x,y of V
are called adjacent if (x,y) ∈ π . The space is called connected if for any two
distinct points x,y ∈V , there is a finite sequence x1, . . . ,xn of points in V with
the property that xi is adjacent to xi+1 for all 1≤ i≤ n−1, and x = x1, y = xn.

If V is finite, then V is just an undirected graph, but we allow V to be infinite.
In many applications V is supposed to be Z2 or Z3.

Digital geometry often deals with real-valued functions from a set of points.
A digital picture is such a function defined on a (finite) subset G of V = Zn.
As we mentioned the value of n is most often 2 or 3, and we refer to 2D or
3D digital pictures. The set G is called a grid. (It is sometimes called a set
of lattice points which is actually not as in lattice theory. In order not to be
confusing the theories in which lattices are studied as partially ordered sets,
we prefer to use the term grid.) An element of a two-dimensional G is called a
pixel, which is the short term used for ‘picture element’. The analogous term
in a three-dimensional grid G is voxel, which is short for ‘volume element’.

Following the definition of digital spaces, we are free to choose the adja-
cency relations. The most common adjacency relations used in Z2 are the 4-
and 8-adjacency. The 4-adjacency is defined by the l1 metric. Two grid points
p,q ∈ Z2 are called 4-adjacent if d1(p,q) = |p1−q1|+ |p2−q2| ≤ 1. By this
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adjacency relation each isolated grid point p will be connected to the four
neighboring points (p1±1, p2) and (p1, p2±1).

The 8-adjacency is defined by the l∞ metric. In this case, two grid points
p,q ∈ Z2 are called 8-adjacent if d∞(p,q) = max{|p1− q1|, |p2− q2|} ≤ 1.
Through this adjacency relation the point p is connected to the eight neigh-
boring points (p1±1, p2), (p1, p2±1), (p1±1, p2 +1) and (p1±1, p2−1).

The concepts of 4- and 8-adjacency were introduced in picture analysis in
1966 during the work on sequential local operations on neighborhoods by
Rosenfeld and Pfaltz [47]. (However, the prefixes "4-" and "8-" were not used
in this work. The earliest uses of these prefixes seem to have been made a few
years later, in 1970 in [44] and [46].)

u u u u u
u u u u u
u u u u u
u u u u u
u u u u u

u u u u u
u u u u u
u u u u u
u u u u u
u u u u u

(a) 4-adjacency (b) 8-adjacency

Figure 1.1: (a) and (b) show the digital plane Z2 equipped with 4- and 8-adjacency,
respectively.

1.2 Digital topology
One of the powerful fields in mathematics is topology. A topology on a set X
is a collection τ =U(X) of subsets of X which is closed under the formation
of arbitrary unions and finite intersections. The elements of U(X) are called
open sets. The empty set /0 and the whole space X are always open. Using
the topology of Rn is not appropriate in image processing, since in this kind
of topology every pixel (discrete point) is an open set. Therefore an image
will be a set of disjoint pixels, which does not carry any information about
connections and neighboring points. Therefore, even though using topology
in image processing is desirable, it should be constructed according to the
discrete nature of pixels and the problems which we are expected to solve.

In a topological space it is not always true that the intersection of any family
of open sets is open. If this is true, it implies that every point in the space can
possess a smallest neighborhood containing it. A topological space with this
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property was introduced by Aleksandrov [1] and developed in [2]. It is called
an Aleksandrov space, a P. S. Aleksandrov space or a smallest-neighborhood
space. (The name Aleksandrov space is used also in differential geometry so
we prefer to use the name smallest-neighborhood space.)

In a topological space X , let N(B) be the intersection of all open sets con-
taining B. This is in general not open. In a smallest-neighborhood space this
set is open. The set N({x}) = N(x) is in that case the smallest neighborhood
of x.

According to what we wrote until here, it is not far-fetched to say that digital
geometry is the geometry of Zn. In this thesis we deal with the digital plane
Z2. In higher dimensions, most applications are in Z3. In image processing
the digital plane is a mathematical model of digitized black and white images.
The set S ⊂ Z2 of black points and its complement, which is the set of white
points, represents a digital image. In this thesis we deal with such black and
white images. As already mentioned, there are two adjacency relations, 4- and
8-adjacency, which are of interest in the study of digital images.

Since the points in Zn are isolated, connectedness of the set is usually de-
fined by an adjacency relation. It is of interest to know which kind of con-
nectedness based on the adjacency relation can be defined using a topological
connectedness.

The 4-adjacency relation is such an adjacency relation defined also by a
topological basis (see Rosenfeld [46]:9). Kong [30] went on to show that under
some restrictions on the notion of adjacency, for any positive integer n there
are only finitely many topological adjacency relations on Zn.

Khalimsky topology
There is a topology on Zn by which we can equip the space with two adja-
cency relations: (3n− 1)- and 2n-adjacency. The topology called Khalimsky
topology was defined in the 1960s by Efim Khalimsky [15] and [16]. He stud-
ied the topology of ordered segments and products of ordered segments. At
that time the uses of this topology in image processing were not known. Some
years later, Khalimsky [17], Khalimsky et al. [18], and Kopperman [31] stud-
ied applications of the Khalimsky topology in digital geometry.

We define the Khalimsky topology on Z (in a different way than the original
one) by declaring that for every even integer 2n, the set {2n−1,2n,2n+1} is
open, thus N(2n) = {2n− 1,2n,2n+ 1} and for every odd integer 2n+ 1 the
singleton {2n+1} is open, thus N(2n+1) = {2n+1}. The complement of an
even point 2n is the union of all smallest neighborhoods N(x), x 6= 2n, which
is an open set. Thus the even points are closed. Through this construction we
present the Khalimsky topology by a topological basis given by

{
{2n+1},{2n−1,2n,2n+1};n ∈ Z

}
.
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Thus a subset A of the Khalimsky line Z is open if and only if, for each even
number 2n ∈ A, we have 2n±1 ∈ A. Figure 1.2 illustrates the Khalimsky line.

x
-4

h
-3

x
-2

h
-1

x
0

h
1

x
2

h
3

x
4

xclosed set hopen set

Figure 1.2: The Khalimsky line.

A Khalimsky interval is an interval [a,b]Z = [a,b]R ∩Z equipped with the
Khalimsky topology on Z. The Khalimsky plane is the Cartesian product of
two Khalimsky lines, and, more generally, Khalimsky space is the Cartesian
product of n copies of Z. Equivalently, we can define Khalimsky topology on
Zn by declaring {x ∈Zn;‖x−c‖∞ ≤ 1} to be open for any point c ∈ (2Z)n and
then taking all intersections of such sets as open sets, then all unions of such
intersections.

In the Khalimsky plane a point with both coordinates odd is open. If both
coordinates are even, the point is closed. These types of points are called pure
points. The points with one even and one odd coordinate are neither open
nor closed; these are called mixed points. Note that the mixed points are only
connected to their four neighbors, whereas the pure points are connected to all
eight neighbors.

A subset A of the Khalimsky plane is open if and only if, for every pair of
even numbers x = (2m,2n), all pairs y∈Z2 with ‖y−x‖∞ ≤ 1 belong to A, for
every pair (2m,2n+ 1) ∈ A also (2m± 1,2n+ 1) ∈ A, and, finally, for every
pair (2m+1,2n) ∈ A, also (2m+1,2n±1) ∈ A.

A topological space X is said to be connected if the only sets that are both
open and closed are the empty set and the whole space X . The 4- and 8-
adjacency were defined as graph connections. A connected path was also de-
fined according to this. In a topological space we can define an adjacency
relation between two distinct points x,y by declaring the set {x,y} to be con-
nected in the adjacency sense if it is so in the topological sense. Therefore in a
smallest-neighborhood space we can say that x and y are adjacent if and only if
y ∈ N(x) or x ∈ N(y). The adjacency relation in the Khalimsky plane is a mix-
ture of 4- and 8-adjacency. A mixed point is adjacent to its four neighboring
points, whereas a pure point is adjacent to its eight neighboring points. More
precisely, at each mixed point (p,q) we have 4-adjacency and it is connected
to its four neighbors (p± 1,q) and (p,q± 1), and on the other hand at each
pure point (p,q) we have 8-adjacency and it is connected to its eight neigh-
bors which consists of the four neighbors already mentioned and the points
(p±1,q+1) and (p±1,q−1).
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We mention that in general topology it might be that the concept of path
connectedness is equivalent to the connectivity based on the topological struc-
ture. This also happens in digital topology as we wrote for the 4-connected
plane, and for the Khalimsky plane. More information on the Khalimsky plane
and the Khalimsky topology can be found in Khalimsky et al. [18], Kisel-
man [21] and Melin [34]. The Khalimsky plane is illustrated in Figure 1.3.

x uh x uh x
uh h uh h uh
x uh x uh x
uh h uh h uh
x uh x uh x

xclosed point

hopen point

hu mixed point

Figure 1.3: The Khalimsky plane.

Khalimsky-continuous functions
The concept of continuity is one of the main subjects in general topology.
It would be useful for many applications to have such a concept in discrete
spaces. When we equip Z with the Khalimsky topology, we can speak of con-
tinuous functions Z→ Z, i.e., functions for which the inverse image of an
open set is open.

A function f : X → Y from one smallest-neighborhood space into another
is continuous at a point x if and only if the direct image of NX(x) is contained
in NY ( f (x)), or, equivalently, the inverse image of NY ( f (x)) contains NX(x):

f (NX(x))⊂ NY ( f (x)), equivalently NX(x)⊂ f−1(NY ( f (x))). (1.2.1)

Here NX(x) and NY (y) denote the smallest neighborhoods of x ∈ X and y ∈ Y ,
respectively.

If we let X =Y =Z equipped with the Khalimsky topology, this means that:
1. For odd x, property (1.2.1) always holds;
2. For even x, if f (x) is odd, we shall have f (x±1) = f (x);
3. For even x, if f (x) is even, we shall have | f (x±1)− f (x)| ≤ 1.

In particular, a continuous function is Lip-1, but sometimes it must be con-
stant in some intervals meaning that when it takes an odd value at an even
point, or conversely an even value at an odd point.

We also observe that the following functions are continuous:
(1) Z 3 x→ a ∈ Z, where a is constant;
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(2) Z 3 x→±x+ c ∈ Z, where c is an even constant;
(3) max( f ,g) and min( f ,g) if f and g are continuous.

Actually every continuous function on a bounded Khalimsky interval can be
obtained by a finite succession of the rules (1), (2), (3). For more information
see Kiselman [21]:74.

1.3 Digitization
In Rn we do continuum (non-digital) geometry but in Zn we do digital geom-
etry. Digitization is a way in which we can go from Rn to Zn.

Digitization might be understood as finding a good approximation in a dig-
ital space of real objects. As two pioneering methods which are related to this
we mention Gauss digitization which goes back to the time that Gauss (1777–
1855) studied the measurement of the area of a planar set S⊂ R2 by counting
the grid points (i, j) ∈ Z2 contained in S, and Jordan digitization which goes
back to Jordan (1838–1922) when he used grids to estimate the volumes of
subsets of R3 (see Klette and Rosenfeld [28]:56 and 58).

A kind of digitization which is commonly used for arcs and curves is grid-
intersection digitization. It is defined as the closest grid points (i, j) to the
intersection of curve or arc with the grid lines. The distance measures by Eu-
clidean distance and this digitization works for planar curves and arcs.

A conflict appears when the intersection points have the same distance to
the two different grid points. In this case we have to limit the digitization
process by choosing for example the left or the down point, respectively.

The result of this digitization is an ordered sequence of grid points. Each
two successive pairs of grid points are at distance 1 along a grid line, or

√
2

along a diagonal.
We have eight possible directions to go from one pixel to the next adjacent

pixel. Freeman [7] proposed a technique in which directions can be repre-
sented by codes 0,1, . . . ,7. The corresponding Freeman chain code of lines
with slope 0≤ α ≤ 1 can consist only 0 or 1. In the right side of Figure 1.4 we
can see these directions and their related codes which are in a counterclock-
wise order beginning from 0.

Hence each digitized arc can be represented geometrically as a polygonal
arc with vertices at grid points, and also by chain codes which are given by
the direction. Using chain codes yields simple algorithms for image process-
ing operations (see Freeman [7] and [8]). It is also an appropriate way to
investigate the problems from a combinatorial point of view.

Kiselman [23] put the definition of digitization in a mathematical form as
follows:
Let P be a subset of Rn. We may define the P-digitization of a set M ⊂ Rn as
the set

digP(M) = (M+P)∩Zn, M ⊂ Rn.
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Figure 1.4: The left part shows the digitization of a curve by using grid intersection.
In this digitization we choose the intersection points to the left or down. The right part
shows the directional codes proposed by Freeman. The related Freeman chain code to
the curve on the left side is 00121766542.

Here P may be a pixel or voxel or any subset of Rn. Note that M 7→ M +P
is a dilation whose role is to fatten the set M before intersecting with the gird
points.

If we let P=
(
{0}×]− 1

2 ,
1
2 ]
)
∪
(
]− 1

2 ,
1
2 ]×{0}

)
⊂R2, we get the digitization

which Rosenfeld [45] used for digitization of lines.
The Rosenfeld digitization does not work well in the Khalimsky plane. In

general the Rosenfeld digitization of a straight line segment is not connected
for this topology. Figure 1.5 shows the Rosenfeld digitization of a line segment
which is not connected in the Khalimsky plane.

v v
v v v

v v v v
v v

a

b c

d

Figure 1.5: The Rosenfeld digitization of line segment in the Khalimsky plane. The
picture shows that there is no connection between the points a and b or between the
points c and d.

To introduce a digitization for the Khalimsky plane which makes the dig-
ital line segments connected, Melin [33] introduced a Khalimsky-continuous
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digitization. This digitization maps each line segments in R2 to a Khalimsky
arc in Z2.

The main idea of his work is to first define a digitization for the pure points
and then add the mixed points to obtain connectedness.

Let

D(0) = {(t, t) ∈ R2; −1/2 < t ≤ 1/2}∪{(t,−t) ∈ R2; −1/2 < t ≤ 1/2}.

For each pure point p∈Z2, define D(p) = D(0)+ p. Note that D(p) is a cross,
rotated 45◦, with center at p.

Melin [33] defined the pure digitization DP(A) of a subset A of R2 as

DP(A) = {p ∈ Z2; p is pure and D(p)∩A 6= /0}.

By using the pure digitization he defined for a Khalimsky-connected set of
points L, the continuous digitization D(L) as follows:
If L is horizontal or vertical, D(L) is the Rosenfeld digitization. Otherwise
define DM(L) as

DM(L) = {p ∈ Z2; (p1±1, p2) ∈ DP(L)}∪{p ∈ Z2; (p1, p2±1) ∈ DP(L)}

and let D(L) = DP(L)∪DM(L).

1.4 Digital straight line segments
A straight line in a real plane is the set {(1− t)a+ tb; t ∈ R}, where a and
b are two distinct points in the plane. A straight line segment is a connected
subset of a straight line (perhaps the whole line).

In this thesis we work with two different digital planes, one with
8-adjacency and the other with the adjacency defined by the Khalimsky
topology.

For the plane with 8-adjacency we follow the Rosenfeld digitization. For a
set D of the points of digital plane Z2 we say that D is a digital straight line
segment if and only if there exists a real line segment the Rosenfeld digitiza-
tion of which is equal to this set.

For the slopes −45◦ < α < 45◦, the digitization process depends on its
crossing of vertical grid lines, and the horizontal grid lines do not give any
extra digitization points. For the other slopes it may happen that we get points
from vertical as well as horizontal grid lines. In this case we get a fat digiti-
zation set of points which is not of our interest. Since the slope zero is not a
complicated case (this is just a horizontal line) and the symmetry which we
have between first and fourth quadrant, we consider lines and straight line seg-
ments with slope strictly between 0 and 45◦ in the 8-connected case as well as
in the Khalimsky plane.
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Figure 1.6: The Rosenfeld digitization of the line segment y = x+ 1
2 which is a fat

digitization. For this line both horizontal and vertical grid lines yield the digitization
points.

Digital straight line segments have been studied extensively from the be-
ginning of the field digital geometry. Freeman [7] introduced the directional
chain code as a technique to represent 8-connected arcs and lines. He used
this technique in [9] to encode the boundary lines. Rosenfeld [45] character-
ized it by the chord property which we shall discuss in subsection 1.5. Hung
and Kasvand [13] gave a necessary and sufficient condition for a digital arc to
have the chord property. Rosenfeld [45] stated the definition of runs and some
of its properties. Studies of digital lines based on the concept of runs were
done by Smeulders and Dorst [48], Stephenson [49], and Uscka-Wehlou [51].

Digital straightness was also investigated using digital convexity by Kim
[19]. Reveillès [41] did it arithmetically by introducing the concept of naive
digital line by double Diophantine inequalities. As a generalization of this def-
inition we easily get naive digital hyperplanes. Kiselman [20, 23, 26] general-
ized Reveillès’ definition of a digital hyperplane by allowing more freely strict
and non-strict inequalities. He represented a digital hyperplane as a graph of
a function which is both convex and concave.

Bruckstein [3] presented some transformations on sequences composed of
two symbols, 0 and 1. Kiselman [23, 25] characterized straightness by using
the calculus of difference operators. Klette and Rosenfeld [29] presented a
review of the various concepts of digital lines. In the book [28] we can see
citations of important research on this concept in two and three dimensions.

Digital straight line segments in the Khalimsky plane were studied by Melin
[33]. He provided a continuous digitization and chord measure for this con-
cept.
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1.5 Summary of results in Digital Geometry
The digital geometry part of this thesis deals with the study of straightness in
both the 8-connected plane and the Khalimsky plane. Khalimsky-countinuous
functions were also studied from a combinatorial point of view.

Straightness in the 8-connected plane and the Khalimsky plane
An important problem related to straightness is how to recognize a set of pix-
els or codes representing a digital straight line segment. Given any subset P of
R2 we define its chord set chord(P) as the union of all chords, i.e., all segments
with endpoints in P, as chord(P) =

⋃
x,y∈P[x,y] ⊆ R2. Rosenfeld [45] charac-

terized straightness by the chord property. A subset P ⊆ R2 has the chord
property if chord(P) is contained in P+B∞

<(0,1). This means that the chord
between two points of set is not far from the set itself. Ronse [42] presented a
simpler proof for Rosenfeld’s theorem.

Melin [33] generalized the chord property by chord measure in order to
characterize the straightness in both 8- and Khalimsky-connectedness. This
measure is qualitative (a smaller measure implies a better approximation).

In Paper I, we define a geometric object called boomerang. It is the union
of two segments in the digital curve: horizontal and diagonal.

Definition 1.5.1. When a graph P is given, we shall say that a digital curve
consisting of m+1 points, B= (bi)m

i=0, m≥ 2, is a boomerang in P if it consists
of a horizontal segment [b0,bk], where 0 < k < m, followed by a diagonal
segment [bk,bm], or conversely, and if B is maximal with this property. We shall
call the horizontal and diagonal segments, Con(B) and Inc(B), respectively.

u
u u

u

a

b c

d

u
u u

u

a

b c

d

(a) (b)

Figure 1.7: (a) and (b) show the boomerangs in the 8- and the Khalimsky con-
nected plane. In both planes, the union of two segments ab and bc shows a con-
cave boomerang, and bc and cd a convex one. The point b is the vertex of concave
boomerang, and the point c is the vertex of convex boomerang.

The cardinalities of the horizontal and diagonal segments are denoted by
|Con(B)| and |Inc(B)|, and they are equal to the number of zeros and ones
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in the related chain code, respectively. The cardinality of a boomerang |B| is
defined as the sum of |Con(B)| and |Inc(B)|. The boomerangs need not be
disjoint and the last segment of a boomerang may be a starting segment of
the next boomerang, so the number of boomerangs is equal to the number of
vertices.

We modified the chord property in both planes by using vertical distances
at the vertices of boomerangs. These modification of chord property made the
straightness easier to check.

Theorem 1.5.2. Let P = (pi)n
i=0 be an 8-connected sequence of points which

is the graph of a function and has b boomerangs. Let V = (vi)i=1,...,b be the
sequence of all vertices of its boomerangs. Then P ∈ DSLS8 if and only if for
all i = 1, . . . ,b and all real points a ∈ chord(P) such that a1 = vi

1 we have
dv(vi,a) = |vi

2−a2|< 1.

This result is similar to the characterization of digital lines by Reveillès
[41]. He introduced the concept of naive digital line by double Diophantine
inequalities. His definition characterizes the straightness arithmetically, and
this is a useful tools in the analysis of medical images (see Figueiredo [5]). In
our work we have shown that we need just to check the inequalities for certain
points, namely vertices of boomerangs.

In the Khalimsky plane the vertices do not play the same role as in the
8-connected plane. In the Khalimsky plane, the vertical distances at mixed
points are important for characterizing the straightness.

Theorem 1.5.3. Suppose that P = (pi)n
i=0 is a Khalimsky-connected sequence

with pure endpoints and let b be the number of its boomerangs. Let M be the
set of all mixed points in P. Then P ∈ DSLSKh if and only if for all m ∈M and
all a ∈ chord(P) with a1 = m1 we have dv(m,a) = |m2−a2|< 1.

According to two propositions in Paper I, we consider two classes when we
study digital straightness, dominant increasing if |Inc(Bi)|= 1, and dominant
constant if |Con(Bi)| = 1 in the 8-connected case and |Con(Bi)| = 2 in the
Khalimsky plane.

Rosenfeld [45] stated that an 8-connected digitized line can only contain
runs of two different lengths and their lengths must be consecutive integers.
This fact plays a leading role in many works afterwards.

We mention some works in which the notion of runs was developed. To
decompose the digital curves, Smeulders and Dorst [48] worked with runs as
the sequences of successive elements in the Freeman chain code with the same
values, and go to the higher order by classifying runs with the same number
of elements. They showed that there are two different values for the runs of
nonfinal orders. Stephenson [49] studied digital lines with rational slopes by
considering runs. Uscka-Wehlou [51] did it for irrational slopes as well.

For the cardinality of boomerangs in the 8-connected plane, we have the
same result as for runs in [45], but not exactly the same in the Khalimsky
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plane. For a digital straight line segments we have at most two possible values
for the cardinality of the boomerangs in both planes. In the 8-connected plane
they can differ by at most one. However in the Khalimsky plane, the cardinal-
ity of boomerangs for the dominant increasing differs by at most 1, and for
the dominant constant by at most 2. These conditions are necessary but not
sufficient for straightness.

In Paper I, we found a sufficient condition for straightness. We have just two
possibilities for the values of |Bi|. Thus we map the boomerangs with greater
cardinality to 1 and the other boomerangs to 0. This gives a transformation
from the set {0,1}N into the same set. The graph of this function is an 8-
connected set. Hence, to investigate the straightness in the Khalimsky plane
we can refer to the previous works on the 8-connected case.

Theorem 1.5.4. We define a function f on a subset of the set {0,1}N of se-
quences of zeros and ones and with values in the same set: f (C) is defined for
those chain codes that represent dominant increasing or dominant constant se-
quences which arise from sets of boomerangs of at most two different lengths.
We define f (C) as the sequence obtained by replacing the chain code of a long
concave boomerang by 1 and that of a short concave boomerang by 0. Then
(I) C is the chain code of an element of DSLS8 if and only if f (C) ∈ DSLS8,
and
(II) C is the chain code of an element of DSLSKh if and only if C is the chain
code of a Khalimsky-connected set and f (C) ∈ DSLS8.

Digital curves from a combinatorial point of view
In Papers II, III and IV, we studied the Khalimsky-continuous functions from
a combinatorial point of view.

In Paper II, we determined the number of Khalimsky-continuous functions
with two, three, and four points in their codomain.

For the case of two points in the codomain the number of such functions is
given by the Fibonacci numbers.

Theorem 1.5.5. Let an be the number of Khalimsky-continuous functions
[0,n−1]Z→ [0,1]Z. Then an = Fn+2, where (Fn)

∞
0 is the Fibonacci sequence,

defined by F0 = 0, F1 = 1, Fn = Fn−1 +Fn−2, n≥ 2.

The case of three points in the codomain gives an example of the Tribonacci
and Jacobsthal sequences for odd and even indices.

Theorem 1.5.6. Let bn be the number of Khalimsky-continuous functions
[0,n−1]Z→ [0,2]Z. Then b1 = 3, b2 = 5, and

b2k = b2k−1 +b2k−2 +b2k−3 = 2b2k−2 +3b2k−3, k ≥ 2,

b2k−1 = b2k−2 +2b2k−3, k ≥ 2.
(1.5.1)
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Considering four points in the codomain led us to the following theorem.

Theorem 1.5.7. Let cn be the number of Khalimsky-continuous functions
f : [0,n− 1]Z → [0,3]Z and let ci

n be the number of Khalimsky-continuous
functions f : [0,n−1]Z→ [0,3]Z such that f (n−1) = i for i = 0,1,2,3. Then
c1

1 = c2
1 = 1, c2 = 7, c3 = 15 and

cn = cn−1 +2cn−2 + c1
n−3 + c2

n−3. (1.5.2)

Formula (1.5.2) together with two other formulas in the proof determine the
value of cn.

In all three cases we also studied the asymptotic behavior.
In Paper III, we determined the number of Khalimsky-continuous functions

with codomain Z and N.
Enumeration of Khalimsky-continuous functions with codomain Z gave us

the 30th example of the Delannoy numbers. The 29 previous examples are
listed in Sulanke [50].

Theorem 1.5.8. Let f s
n , |s| ≤ n, be the number of Khalimsky-continuous func-

tions f : [0,n]Z→ Z such that f (0) = 0 and f (n) = s, and di, j be the Delannoy
numbers. Then we have that f s

n = di, j for i = 1
2(n+ s) and j = 1

2(n− s) where
n+ s ∈ 2Z, and f s

n = f s
n−1 for n+ s odd.

We also went on to show that these numbers has the same recursion relation
as the Pell numbers, but with different initial values.

Theorem 1.5.9. Let fn be the number of Khalimsky-continuous functions
f : [0,n]Z 7→ Z such that f (0) = 0. Then

fn = 2 fn−1 + fn−2 for n≥ 2. (1.5.3)

When we consider the codomain N we get an example of Schröder numbers
as follows.

Theorem 1.5.10. Let gs
n = card{g : [0,n]→ N;g(0) = 0,g(n) = s} for s ∈ N

and s ≤ n, and ri, j be the Schröder numbers. Then we have gs
n = ri, j for i =

1
2(n+ s) and j = 1

2(n− s), where n+ s ∈ 2N.

As a byproduct we showed some relations between the Delannoy and
Schröder arrays.

Theorem 1.5.11. Let gs
n be the number of Khalimsky-continuous functions

g : [0,n]→ N such that g(0) = 0 and g(n) = s for s ∈ N and s≤ n. Let

pt,n =

n−t
2

∑
i=0

gt+2i
n where 0≤ t ≤ n and n+ t ∈ 2N.

Then pt,n = di, j where i = n+t
2 , j = n−t

2 and the di, j are Delannoy numbers.
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Corollary 1.5.12. Let ri, j and di, j be the Schröder numbers and Delannoy

numbers, respectively. Then di, j =
j

∑
l=0

ri+l, j−l for i≥ j.

We also went on to show that the number of Khalimsky-continuous func-
tions with codomain N can be obtained by summing two consecutive numbers
of other sequences.

Theorem 1.5.13. Let gn be the number of Khalimsky-continuous functions
g : [0,n]→ N such that g(0) = 0. Let pn = p0,n for n even and pn = p1,n for n
odd, where pt,n are the numbers defined in Theorem 1.5.11. Then

gn = pn + pn−1. (1.5.4)

What we perceive from Euclidean geometry is that there is just one line
segment between two points. On the other hand, there are infinitely many line
segments with endpoints in a given rectangle. However the discrete nature of
lines in Z2 leads to a countable number of these. Considering digital objects
(digital straight line segments or curves) exhibits great differences between
Euclidean and digital geometry. Another striking contrast is shown by the fact
that the number of Khalimsky-continuous functions between two given points
is finite.

In Paper IV, we defined a generating function by which we introduced a
recurrence formula to enumerate the number of Khalimsky-continuous func-
tions not exiting from a rectangle and with two endpoints. To be precise, we
proved the following result.

Theorem 1.5.14. Let f s
n be the number of Khalimsky-continuous functions

f : [0,n]Z→ [0,s]Z such that f (0) = 0 and f (n) = s. Then

f 1
2k+1 =(−1)k(n−1

k

)
f n
n +(−1)k−1

(n−1
k−1

)
f n
n+2+ · · ·+(−1)

(n−1
1

)
f n
n+2(k−1)+ f n

n+2k

for all natural numbers n,k≥ 1. The formula serves to define f n
n+2k in terms of

f n
j for j < n+2k and f 1

2k+1.
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2. Discrete Optimization

An important concept in optimization theory of real variables is convexity of
sets and functions. For a convex function f : Rn → R we have the following
results from convex analysis of real-valued functions.
(I). Local minima: A local minimum of a convex function is global;
(II). Separating hyperplane: There exists a separating hyperplane between two
disjoint convex sets;
(III). The marginal function of a convex function is convex.

The aim of much work in discrete convex analysis is to provide a theoretical
framework for discrete convexity by which these three properties and some
others are valid as for convexity of functions of real variables.

A natural way to define the concept of convexity for functions of integer
variables is to define it as a function which admits a convex extension defined
in the space Rn of real variables. There are some examples in Murota [38]
and Kiselman [22,26] which show that this is not a good discrete analogue of
convexity.

To improve the concept of discrete convexity in order to have the theoretical
framework comparable with convexity in real variables, several types of dis-
crete convexity have been studied. Let us mention some classes of functions,
like the discretely convex functions introduced by Miller [35], integrally con-
vex functions defined by Favati and Tardella [4], M-convexity introduced by
Murota [36] and L-convexity by Murota [37].

In this thesis we shall take up the first and third problems mentioned above
and point to convenient solutions.

2.1 Background
Any good discrete analogue of convexity should cover the fundamental prop-
erties of convexity in real variables as local minima being global; the existence
of separating hyperplanes; convexity of marginal functions, as well as some
other properties. We mention here some pioneering work on discrete convex-
ity.

Miller [35] found a condition called discrete convexity, which is a sufficient
condition for a local minimum to be global. This class of functions is not
closed under addition and its members are in general not convex extensible
(see Murota and Shioura [40]:161).
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Favati and Tardella [4] introduced the notion of integral convexity by means
of ordinary convexity.

Definition 2.1.1. Given a function f : Zn→ [−∞,+∞], we define its canonical
extension of f by can( f ) : Rn→ R as the convex envelope of f on each unit
hypercube a+[0,1]n, a ∈ Zn.

Definition 2.1.2. A function f : Zn→R is called integrally convex if its canon-
ical extension can( f ) is convex.

The elements of this class are convex extensible by definition. The property
of local minima being global was proved in [4]. We mention that this class is
not closed under addition when n≥ 3 (see Murota and Shioura [40]:161).

The concept of M-convexity was introduced by Murota [36] in terms of an
exchange axiom. An M\-convex function can be obtained by a restriction of an
M-convex function to a certain (n−1)-dimensional plane. For the first time it
was introduced by Murota and Shioura [39]. It is also possible to characterize
it by an exchange property.

The concept of L-convex function was introduced by Murota [37]. The con-
cept of L\-convexity is defined as a variant of L-convexity defined by restric-
tion to an (n−1)-dimensional plane by Fujishige and Murota [11].

The class of L- and M-convexity are conjugate to each other through a
discrete version of the Legendre–Fenchel transformation. We note that the
letter L stands for lattice, and M for matroid.

We recall the definition of submodularity and supermodularity as well as
modularity.
A function f : Zn→ R is submodular if we have

f (x)+ f (y)≥ f (x∨ y)+ f (x∧ y) (∀x,y ∈ Rn),

where (x∨ y)i = max(xi,yi) and (x∧ y)i = min(xi,yi), for i = 1, . . . ,n.
The function is supermodular if we have the inequality on the other direction;
it is modular if equality holds.

Similarly we may define a submodular function on the lattice of all subsets
of a set with n elements. There is a relation between this submodularity and
convexity given by László Lovász [32]: A set function is submodular if and
only if its Lovász extension is convex. It should be noted, however, that in
this extension, the empty set must correspond to the origin, and the full set to
(1,1, . . . ,1), the opposite point in the hypercube—no translation or reflection
is allowed.

The study of submodular and supermodular functions by Frank [6] and the
min-max duality theorem by Fujishige [10] together with other works on sub-
modularity in the 1980s led to a similarity between submodularity and con-
vexity. Thus it has became of interest afterwards to compare submodularity
with convexity and not to concavity, and study of duality for submodularity-
supermodularity in the discrete sense. However, it should be noted that sub-
modularity is not a good analogue of convexity in all cases. Among other
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things, we would like our class to be closed under simple coordinate changes
like (x1, . . . ,xn) 7→ (x1, . . . ,−xn). Hence finding a new class of functions and
a new framework in order to compare the convexity in real variables with
discrete analogues of this is still of interest.

The concept of integral convexity was studied in detail in the
two-dimensional case by Kiselman [22, 26]. He presented several equivalent
definitions for this class in the two-dimensional case. One of these definitions
is based on difference operators.

The structure of canonical extension plays a leading role in his work. We
can see that the canonical extension can( f ) over a unit square contains two
affine planes which intersect on the line segment [(0,0),(1,1)] if the function
is submodular on the unit square {0,1}2, and if on the other hand the func-
tion is supermodular on this unit square then the two affine plane intersects
on [(1,0),(0,1)]. We notice that it will be just one affine plane if we have
modularity.

Figure 2.1: The left and right squares show the structure of canonical extension for a
submodular and supermodular function, respectively.

The structure of canonical extension in dimension more than three is not as
easy as the two-dimensional case. We refer to the works by Kiselman [24].

The canonical extension is not in general linear. We have can( f )+can(g)≤
can( f +g). The equality holds if at least one of the functions f and g is linear
(Favati and Tardella [4]). For the two-dimensional case, Kiselman [26] defined
a function as a difference between two sides of the inequality and described it
exactly. He went on to show that equality holds if and only if both functions
are submodular or supermodular. In the case of local minimum he found a
suitable neighborhood depending on the function to have the property of local
minimum being global.
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2.2 Summary of results in Discrete Optimization
The discrete optimization part of this thesis deals with the study of a new
class of discrete convexity, namely lateral convexity. We study two important
properties of convexity, local minima and marginal functions.

Lateral convexity and local minima
Two-dimensional integrally convex functions were defined using difference
operators by Kiselman [22]. In Paper V, using difference operators, we gen-
eralized his definition to the n-dimensional case. We show also that this new
class is a subclass of the integrally convex functions but not equal to it in
general.

We use difference operators which were introduced by Kiselman [26]. For
a given a∈Zn, a difference operator Da on functions f : Zn→R is defined by

(Da f )(x) = f (x+a)− f (x), x ∈ Zn.

Da is a difference operator from RZn
to RZn

.
The second-order operators DbDa will be as follows:

(DbDa f )(x) = f (x+a+b)− f (x+a)− f (x+b)+ f (x).

Using an extension of operation of addition, Kiselman [26] extended Da to
(Da)! : (R!)

Zn → (R!)
Zn

for functions f : Zn→ R! by

(Da)! f (x) = f (x+a)+̇(− f (x)), x,a ∈ Zn.

We also define

(DaDb)! f (x) = f (x+a+b)+̇(− f (x+a))+̇(− f (x+b))+̇ f (x).

A-lateral convexity can be defined as follows:

Definition 2.2.1 (Kiselman [26]). Given any subset A of Zn×Zn we shall say
that a function f : Zn→R is A-laterally convex if DaDb f ≥ 0 for all (a,b)∈ A.
For a function f with infinite values, f : Zn → R!, we shall say that it is A-
laterally convex if (DaDb)! f ≥ 0 for all (a,b) ∈ A.

From the definition it is obvious that the class of real-valued A-laterally convex
functions is closed under addition and multiplication by a nonnegative scalar.
The set

−A = {(−a,−b);(a,b) ∈ A}

defines the same class as A. The same is true for

A˘= {(b,a);(a,b) ∈ A}.

32



We define
Asym = A∪ (−A)∪A˘∪ (−A) ,̆

which may have up to four times as many elements as A but still defines the
same class.

We have also that

(DbDa f )(x)+(DcDa f )(x+b) = (Db+cDa f )(x). (2.2.1)

Thus if DbDa f ≥ 0 and DcDa f ≥ 0, then we also have Db+cDa f ≥ 0. This
means that the set of pairs {(a,b) ∈ Zn×Zn} such that the inequality holds is
closed under partial addition:

(a,b)+2 (a,c) = (a,b+ c),

i.e., if the first elements agree, we may add the second elements. For sets we
define

B+2 C = {(a,b+ c);(a,b) ∈ B,(a,c) ∈C}.

Similarly we can define of course (a,b)+1 (c,b) = (a+ c,b) and

B+1 C = {(a+ c,b);(a,b) ∈ B,(c,b) ∈C}

when the two second elements are the same.
By repeated use of these formulas we see that A-lateral convexity is equiva-

lent to B-lateral convexity, where B is any class such that A⊂ B⊂ Ã, denoting
by Ã the smallest set which contains

(Zn×{0})∪ ({0}×Zn)∪Asym

and is closed under both partial additions

(B,C) 7→ B+1 C and (B,C) 7→ B+2 C.

Thus Ã contains sets such as Asym +1 Asym, Asym +2 (Asym +1 Asym) and so on.
In view of some examples in Paper VI in this thesis, it is normally required

that
(e( j),e( j)) ∈ A, j = 1, . . . ,n. (2.2.2)

and
(a,b) ∈ A implies a jb j ≥ 0, j = 1, . . . ,n. (2.2.3)

Property (2.2.2) shows that all A-laterally convex functions are separately
{(1,1)}-laterally convex.

In paper V, we considered

B =
{(

∑ j∈V e j,∑ j∈V e j +∑i6∈V ai
)
; V ⊂ {1, . . . ,n} and ai ∈ [−1,1]Z

}
,

which serves as a generalization of two-dimensional set of points in Kisel-
man [26]. An example in [26] shows that the set B cannot be modified by a
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smaller number of points for function with infinite values to have the convex-
ity of the canonical extension. On the other hand when the range consists of
real numbers only, we showed that it is not necessary to consider all possi-
ble directions and it is enough to check B-lateral convexity using a smaller
number of points. The result is as follows.

Theorem 2.2.2. Let

B =
{
(∑ j∈V e j,∑ j∈V e j +∑i6∈V ai); V ⊂ {1, . . . ,n} and ai ∈ [−1,1]Z

}
,

and

C =
{
(e j,e j +∑i 6= j ai); j ∈ {1, . . . ,n} and ai ∈ [−1,1]Z

}
. (2.2.4)

A function f : Zn→ R is B-laterally convex if and only if it is C-laterally con-
vex.

The set C cannot be reduced; the same example as we mentioned for the set
B can show this fact.

We defined a metric δk,l for k = 1, . . . ,n and l ∈ R, l > 0, by

δk,l(x,y) = max
(

1
l |xk− yk|, max

i 6=k,1≤i≤n
|xi− yi|

)
, x,y ∈ Zn. (2.2.5)

Using this metric, we introduced an equivalent property for lateral convex-
ity which stated as follows.

Theorem 2.2.3. A function f : Zn → R is C-laterally convex, where C is de-
fined by (2.2.4), if and only if we have the following property for all 1≤ k≤ n;

f (x)+ f (y)≥ f (x+ ek)+ f (y− ek), (2.2.6)

for each two points x and y in Zn where yk− xk = 2 and δk,2(x,y) = 1.

In Paper V, we showed that the class of C-laterally convex functions is a
subclass of the class of integrally convex functions.

Theorem 2.2.4. A C-laterally convex function f : Zn→R is integrally convex.

By an example, we showed that the converse is not true in general. We also
prove the following result.

Theorem 2.2.5. Consider a unit hypercube a+ {0,1}n, a ∈ Zn. The sides of
this hypercube is the set

a+∑
i∈J

ei,

where I = {1, . . . ,n} and J is a subset of I of cardinality m, 1 ≤ m ≤ n−1. If
an integrally convex function f : Zn→ R is modular on the sides of each unit
hypercube a+{0,1}n, a ∈ Zn, then it is C-laterally convex function.

Since a laterally convex function is integrally convex, we have indeed the
property of local minimum.
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Lateral convexity and marginal functions
In Paper VI, we studied the marginal functions of laterally convex functions.

For the two-dimensional case, Kiselman [22] proved the convexity of
marginal functions for integrally (laterally) convex functions. He also
represented some equivalent conditions for integral convexity by using
marginal functions.

We studied the relation between A-lateral convexity and the interval (possi-
bly empty) where the infimum defining the marginal function is attained.

Theorem 2.2.6. Let us define, for any function f : Zn→ R,

M f (x1, . . . ,xn−1)

= {b ∈ Z; f (x1, . . . ,xn−1,b) = infs∈Z f (x1, . . . ,xn−1,s)} ,

where (x1, . . . ,xn−1) ∈ Zn−1. We also define

fβ (x) = f (x)−βxn, x = (x1, . . . ,xn) ∈ Zn, β ∈ R.

Now let a = (a′,an) ∈ Zn, where a′ = (a1, . . . ,an−1) and an ≥ 0, and define

A = {(e(n),e(n)),(e(n),(a′,an)),(e(n),(−a′,an))}.

Then f is A-laterally convex if and only if s 7→ f (x,s) is convex extensible for
every x and

M fβ
(x+a′)⊂M fβ

(x)+ [−an,an]Z, x ∈ Zn−1, β ∈ R.

By permuting the variables, we concluded that

Corollary 2.2.7. Given a function f : Zn → R, we define, for 1 ≤ j ≤ n and
(x1, . . . ,x j−1,x j+1, . . . ,xn) ∈ Zn−1,

M j, f (x1, . . . ,x j−1,x j+1, . . . ,xn−1)

=
{

b ∈ Z; f (x1, . . . ,x j−1,b,x j+1, . . . ,xn−1,xn) = infx j∈Z f (x)
}
.

We also define

f j,β (x) = f (x)−βx j, x = (x1, . . . ,xn) ∈ Zn, j = 1, . . . ,n, β ∈ R.

Fix a set A which contains (a,e( j)) and (ā,e( j)), where

ā = 2a je( j)−a = (−a1, . . . ,a j, . . . ,−an),

and satisfies (2.2.2) and (2.2.3). If f is A-laterally convex, then f is convex
extensible in each variable separately and we have

M j, f j,β (x+a′)⊂M j, f j,β (x)+ [−a j,a j]Z, x ∈ Zn−1,

where now a′ = (a1, . . . ,a j−1,a j+1, . . . ,an).
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Kiselman [26] using the marginal functions f1,β and f2,β , β ∈ R, found a
necessary and sufficient condition for a function of two integer variables to be
integrally convex function.

Theorem 2.2.8. Let A ⊂ Zn−1×Zn−1 and B ⊂ Zn×Zn be given. We assume
that (2.2.2) and (2.2.3) hold both for A and B. Assume that

If (a,b) ∈ A and s ∈ [−1,1]Z, then ((a,s),(b,0)) belongs to B̃; (2.2.7)

that

If there exists c ∈ Zn−1 such that (a,c) ∈ A, then ((a,1),e(n)) ∈ B̃; (2.2.8)

and finally that

If ((a,1),e(n)) ∈ B, then ((−a,1),e(n)) ∈ B̃. (2.2.9)

If f : Zn→ R is B-laterally convex, then its marginal function

h(x) = inf
s∈Z

f (x,s), x ∈ Zn−1,

is A-laterally convex, provided that it does not take the value −∞.

By iteration we concluded that

Corollary 2.2.9. Let us define B(0) = {(0,0)}, B(1) = {(1,1)}, and generally
B(n) ⊂ Zn×Zn such that B(n) and B(n−1) satisfy the conditions for B and A
in Theorem 2.2.8, n = 2,3, . . . If f : Zn → R is a given B(n)-laterally convex
function, then the successive marginal functions hn = f ,

hm(x) = inf
s∈Z

hm+1(x,s), x = (x1, . . . ,xm) ∈ Zm, m = n−1, . . . ,0,

are B(m)-laterally convex, provided that the constant h0 is not −∞. In par-
ticular, the marginal function h1 of one variable is {(1,1)}-laterally convex,
equivalently convex extensible.
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